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Preface to the Third Edition

This textbook was developed from a course in stochastic processes given by the au-

thors over many years to second-year students studying mathematics or statistics at

Keele University. At Keele the majority of students take degrees in mathematics or

statistics jointly with another subject, which may be from the sciences, social sci-

ences, or humanities. For this reason the course has been constructed to appeal to

students with varied academic interests, and this is reflected in the book by including

applications and examples that students can quickly understand and relate to. In par-

ticular, in the earlier chapters, the classical gambler’s ruin problem and its variants

are modeled in a number of ways to illustrate simple random processes. Specialized

applications have been avoided to accord with our view that students have enough to

contend with in the mathematics required in stochastic processes.

The book is to a large extent modular, and topics can be selected from Chapters

2 to 10 for a one-semester course in random processes. It is assumed that readers

have already encountered the usual first-year courses in calculus and matrix algebra

and have taken a first course in probability; nevertheless, a revision of relevant basic

probability is included for reference in Chapter 1. Some of the easier material on

discrete random processes is included in Chapters 2, 3, and 4, which cover some

simple gambling problems, random walks, and Markov chains. Random processes

continuous in time are developed in Chapters 5 and 6. These include birth and death

processes, and general population models. Continuous time models include queues in

Chapter 7, which has an extended discussion on the analysis of associated stationary

processes. There follow two chapters on reliability and other random processes, the

latter including branching processes and martingales. The main text ends with a new

chapter on Brownian motion, which we have attempted to explain in an intuitive

manner.

Much of the text has been extensively reworked to clarify explanations. New prob-

lems and worked examples have been added in this edition. Some applications have

been added including wildlife and stochastic epidemic models. There are over 50

worked examples in the text and 220 end-of-chapter problems with hints and answers

listed at the end of the book. An Appendix of key mathematical terms is included for

reference.

The software MathematicaTM has been used to evaluate many numerical examples

and simulations, and to check results symbolically. Many of the graphs and figures

have been produced using this software.

xiii



xiv PREFACE TO THE THIRD EDITION

An alternative software for some applications is R, which is a statistical computing

and graphics package available free of charge; it can be downloaded from:

http://www.r-project.org

Like R, S-PLUS (not freeware) is derived from the S language, and hence users

of these packages will be able to apply them to the solution of numerical projects,

including those involving matrix algebra presented in the text. Mathematica code has

been applied to all the projects listed (about 40 in total) by chapters in Chapter 11,

and R code to some as appropriate.

The programs, which generally use standard commands, are intended to be flexible

in that inputs, parameters, data, etc., can be varied by the user. Graphs and computa-

tions can often add insight into what might otherwise be viewed as rather mechanical

analysis. In addition, more complicated examples, which might be beyond hand cal-

culations, can be attempted. However, the main text does not assume or require any

particular software.

A Solutions Manual and Mathematica and R Programs are freely available at:

www.crcpress.com/9781498778114

The website contains solutions to all end-of-chapter problems and all Mathematica

and R programs listed in Chapter 11. They should be considered as an extension of

the main text.

We should acknowledge the influence of the internet. Any individual studying

stochastic processes (or any other mathematical course for that matter) would do well

to search topics on the web for alternative viewpoints and code for other software.

The quality can vary but there are also many excellent lecture notes, actual lectures,

presentations, video graphics and applications.

Finally, we would like to thank the many students at Keele over many years who

have helped to develop this book, and acknowledge the interest shown by users of

the first and second editions in helping us to refine and update this new edition. We

are particularly grateful to a number of reviewers who have made frank and detailed

comments, and suggestions for improvement in this new edition.

Peter W. Jones

Peter Smith

Keele University

2017

http://www.r-project.org
www.crcpress.com/9781498778114


CHAPTER 1

Some Background on Probability

1.1 Introduction

We shall be concerned with the modeling and analysis of random experiments us-

ing the theory of probability. The outcome of such an experiment is the result of a

stochastic or random process. In particular we shall be interested in the way in which

the results or outcomes vary or evolve over time. An experiment or trial is any sit-

uation where an outcome is observed. In many of the applications considered, these

outcomes will be numerical, sometimes in the form of counts or enumerations. The

experiment is random if the outcome is not predictable or is uncertain.

At first we are going to be concerned with simple mechanisms for creating random

outcomes, namely games of chance. One recurring theme initially will be the study of

the classical problem known as gambler’s ruin. We will then move on to applications

of probability to modeling in, for example, engineering, medicine, and biology. We

make the assumption that the reader is familiar with the basic theory of probability.

This background will however be reinforced by the brief review of these concepts

which will form the main part of this chapter.

1.2 Probability

In random experiments, the list of all possible outcomes is termed the sample space,

denoted by S. This list consists of individual outcomes or elements. Sample spaces

can have a finite or infinite number of outcomes, and can be discrete or continuous.

These elements have the properties that they are mutually exclusive and that they

are exhaustive. Mutually exclusive means that two or more outcomes cannot occur

simultaneously; exhaustive means that all possible outcomes are in the list. Thus each

time the experiment is carried out one of the outcomes in S must occur. A collection

of elements of S is called an event: these are usually denoted by capital letters,

A, B, etc. We denote by P(A) the probability that the event A will occur at each

repetition of the random experiment. Remember that A is said to have occurred if one

element making up A has occurred. In order to calculate or estimate the probability

of an event A there are two possibilities. In one approach an experiment can be

performed a large number of times, and P(A) can be approximated by the relative

frequency with which A occurs. In order to analyse random experiments we make

the assumption that the conditions surrounding the trials remain the same, and are

independent of one another. We hope that some regularity or settling down of the

1



2 SOME BACKGROUND ON PROBABILITY

outcome is apparent. The ratio

the number of times a particular event A occurs

total number of trials

is known as the relative frequency of the event, and the number to which it ap-

pears to converge as the number of trials increases is known as the probability of

an outcome within A. Where we have a finite sample space it might be reasonable

to assume that the outcomes of an experiment are equally likely to occur as in the

case, for example, in rolling a fair die or spinning an unbiased coin. In this case the

probability of A is given by

P(A) =
number of elements of S where A occurs

number of elements in S
.

There are, of course, many ‘experiments’ which are not repeatable. Horse races are

only run once, and the probability of a particular horse winning a particular race may

not be calculated by relative frequency. However, a punter may form a view about

the horse based on other factors which may be repeated over a series of races. The

past form of the horse, the form of other horses in the race, the state of the course, the

record of the jockey, etc., may all be taken into account in determining the punter’s

estimate of the probability of a win. This leads to a view of probability as a ‘degree

of belief’ about uncertain outcomes. The odds placed by bookmakers on the horses

in a race reflect how punters place their bets on the race. The odds are also set so that

the bookmakers expect to make a profit.

It is convenient to use set notation when deriving probabilities of events. This

leads to the sample space S being termed the universal set, the set of all outcomes:

an event A is a subset of S. This also helps with the construction of more com-

plex events in terms of the unions and intersections of several events. The Venn

diagrams1 shown in Figure 1.1 represent the main set operations of union (∪), in-

tersection (∩), and complement (Ac) which are required in probability.

• Union. The union of two sets A and B is the set of all elements which belong to

A, or to B, or to both. It can be written formally as

A ∪B = {x|x ∈ A or x ∈ B or both}.
• Intersection. The intersection of two sets A and B is the set A∩B which contains

all elements common to both A and B. It can be written as

A ∩B = {x|x ∈ A and x ∈ B}.
• Complement. The complement Ac of a set A is the set of all elements which

belong to the universal set S but do not belong to A. It can be written as

Ac = {x 6∈ A}.
So, for example, in an experiment in which we are interested in two events A

and B, then Ac ∩ B may be interpreted as ‘only B’, being the intersection of the

complement of A and B (see Figure 1.1d): this is alternatively expressed in the

1 John Venn (1834–1923), English philosopher.
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AA

A

A

B B B

S S SS

A

BB

(a) (b) (c) (d)

Figure 1.1 (a) The union A ∪B of A and B; (b) the intersection A ∩B of A and B; (c) the

complement Ac of A: S is the universal set; (d) Ac ∩B or B\A.

difference notation B\A meaning B but not A. We denote by φ the empty set, that

is, the set which contains no elements. Note that Sc = φ. Two events A and B
are said to be mutually exclusive if A and B have no events in common so that

A ∩B = φ, the empty set: in set terminology A and B are said to be disjoint sets.

The probability of any event satisfies, the three axioms

• Axiom 1: 0 ≤ P(A) ≤ 1 for every event A

• Axiom 2: P(S) = 1

• Axiom 3: P(A∪B) = P(A)+P(B) if A and B are mutually exclusive (A∩B =
φ)

Axiom 3 may be extended to more than two mutually exclusive events, say k of them

represented by

A1, A2, . . . , Ak

in S where Ai ∩ Aj = φ for all i 6= j. This is called a partition of S if

• (a) Ai ∩ Aj = φ for all i 6= j,

• (b)

k⋃

i=1

Ai = A1 ∪A2 ∪ . . .∪Ak = S: A1, A2, . . . Ak is an exhaustive list so that

one of the events must occur.

• (c) P(Ai) > 0.

In this definition, (a) states that the events are mutually exclusive, (b) that every event

in S occurs in one of the events Ai, and (c) implies that there is a nonzero probability

that any Ai occurs. It follows that

1 = P(S) = P(A1 ∪ A2 ∪ · · · ∪ Ak) =
k∑

i=1

P(Ai).

Theorem

• (a) P(Ac) = 1−P(A);
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• (b) P(A ∪B) = P(A) +P(B)−P(A ∩B).

(a) Axiom 3 may be combined with Axiom 2 to give P(Ac), the probability that the

complement Ac occurs, by noting that S = A ∪ Ac. This is a partition of S into the

mutually exclusive exhaustive events A and Ac. Thus

1 = P(S) = P(A ∪Ac) = P(A) +P(Ac),

giving

P(Ac) = 1−P(A).

(b) For any sets A and B

A ∪B = A ∪ (B ∩ Ac),

and

B = (A ∩B) ∪ (B ∩ Ac),

in which A and B ∩ Ac are disjoint sets, and A ∩ B and B ∩ Ac are disjoint sets.

Therefore, by Axiom 3,

P(A ∪B) = P(A) +P(B ∩ Ac),

and

P(B) = P(A ∩B) +P(B ∩ Ac).

Elimination of P(B ∩ Ac) between these equations leads to

P(A ∪B) = P(A) +P(B)−P(A ∩B) (1.1)

as required.

Example 1.1. Two distinguishable fair dice a and b are rolled and the values on the uppermost

faces noted. What are the elements of the sample space? What is the probability that the sum

of the face values of the two dice is 7? What is the probability that at least one 5 appears?

We distinguish first the outcome of each die so that there are 6× 6 = 36 possible outcomes

for the pair. The sample space has 36 elements of the form (i, j) where i and j take all integer

values 1, 2, 3, 4, 5, 6, and i is the outcome of die a and j is the outcome of b. The full list is

S = { (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6) },

and they are all assumed to be equally likely since the dice are fair. If A1 is the event that the

sum of the dice is 7, then from the list,

A1 = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}
which occurs for 6 elements out of 36. Hence

P (A1) =
6
36

= 1
6
.

The event that at least one 5 appears is the list

A2 = {(1, 5), (2, 5), (3, 5), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 5)},
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which has 11 elements. Hence

P (A2) =
11
36
.

Example 1.2 From a well-shuffled pack of 52 playing cards a single card is randomly drawn.

Find the probability that it is a heart or an ace.

Let A be the event that the card is an ace, and B the event that it is a heart. The event A∩B
is the ace of hearts. We require the probability that it is an ace or a heart, which is P(A ∪B).
However, since one of the aces is a heart the events are not mutually exclusive. Hence, we

must use Eqn (1.25). It follows that

the probability that an ace is drawn is P(A) = 4/52,

the probability that a heart is drawn is P(B) = 13/52 = 1/4,

the probability that the ace of hearts is drawn is P(A ∩B) = 1/52.

From (1.25)

P(A ∪B) = P(A) +P(B)−P(A ∩B) =
4

52
+

1

4
− 1

52
=

16

52
=

4

13
.

This example illustrates events which are not mutually exclusive. The result could also be

obtained directly by noting that 16 of the 52 cards are either hearts or aces.

In passing note that A ∩Bc is the set of aces excluding the ace of hearts, whilst Ac ∩B is

the heart suit excluding the ace of hearts. Hence

P(A ∩Bc) =
3

52
, P(Ac ∩B) =

12

52
=

3

13
.

1.3 Conditional probability and independence

If the occurrence of an event B is affected by the occurrence of another event A then

we say that A and B are dependent events. We might be interested in a random ex-

periment with which A and B are associated. When the experiment is performed, it

is known that event A has occurred. Does this affect the probability of B? This prob-

ability of B now becomes the conditional probability of B given A, which is now

written as P(B|A). Usually this will be distinct from the probability P(B). Strictly

speaking, this probability is conditional since we must assume that B is conditional

on the sample space occurring, but it is implicit in P(B). On the other hand the con-

ditional probability of B is restricted to that part of the sample space where A has

occurred. This conditional probability is defined as

P(B|A) = P(A ∩B)

P(A)
, P(A) > 0. (1.2)

In terms of counting, suppose that an experiment is repeated N times, of which A
occurs N(A) times, and A given by B occurs N(B ∩ A) times. The proportion of

times that B occurs is

N(A ∩B)

N(A)
=

N(A ∩B)

N

N

N(A)
,
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which supports (1.2).

If the probability of B is unaffected by the prior occurrence of A, then we say that

A and B are independent or that

P(B|A) = P(B),

which from the above implies that

P(A ∩B) = P(A)P(B).

Conversely, if P(B|A) = P(B), then A and B are independent events. Again this

result can be extended to 3 or more independent events.

Example 1.3 Let A and B be independent events with P(A) = 1
4

and P(B) = 2
3

. Calculate

the following probabilities: (a) P(A∩B); (b) P(A∩Bc); (c) P(Ac ∩Bc); (d) P(Ac ∩B);
(e) P((A ∪B)c).

Since the events are independent, then P(A ∩B) = P(A)P(B). Hence

(a) P(A ∩B) = 1
4
· 2
3
= 1

6
.

(b) The independence A and Bc follows by eliminating P(A ∩B) between the equations

P(A ∩B) = P(A)P(B) = P(A)[1−P(Bc)]

and

P(A) = P[(A ∩Bc) ∪ (A ∩B)] = P(A ∩Bc) +P(A ∩B).

Hence

P(A ∩Bc) = P(A)P(Bc) = P(A)[1−P(B)] = 1
4
(1− 2

3
) = 1

12
.

(c) Since Ac and Bc are independent events,

P(Ac ∩Bc) = P(Ac)P(Bc) = [1−P(A)][1−P(B)] = 3
4
· 1
3
= 1

4
.

(d) Since Ac and B are independent events, P(Ac ∩B) = P(Ac)P(B) = [1− 1
4
] 2
3
= 1

2
.

(e) P((A ∪B)c) = 1−P(A ∪B) = 1−P(A)−P(B) +P(A ∩B) by (1.1). Hence

P((A ∪B)c) = 1−P(A)−P(B) +P(A)P(B) = 1− 1
4
− 2

3
+ 1

6
= 1

4
.

Example 1.4. For three events A, B, and C, show that

P(A ∩B|C) = P(A|B ∩C)P(B|C),

where P(C) > 0.

By using (1.2) and viewing A ∩B ∩C as (A ∩B) ∩C or A ∩ (B ∩C),

P(A ∩B ∩ C) = P(A ∩B|C)P(C) = P(A|B ∩C)P(B ∩C).

Hence

P(A ∩B|C) = P(A|B ∩ C)
P(B ∩ C)

P(C)
= P(A|B ∩C)P(B|C)

by (1.2) again.

Example 1.5. The security lock on a case can be opened by entering 2 digits (each from

1, 2, . . . , 9) in the lock. which will have 102 = 100 possible codes. A traveller has forgotten

the code, and attempts to find the code by choosing 2 digits at random. If the code fails to open
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the case, the traveller tries another code from the remaining pairs. What is the probability that

the new code opens the case, or any subsequent attempt?

Let Xn be the event that the n-th attempt opens the case, previous attempts having failed.

At the first attempt P(X1) = 1/100. Now

P(X2) = P(X2 ∩Xc
1),

where complement Xc
1 is the event that the first attempt failed. Using (1.2)

P(X2) = P(X2 ∩Xc
1) = P(Xc

1)P(X2|Xc
1) =

9

100
· 1

99
=

1

100
,

the same probability as the first attempt. In fact P(Xn) = 1/100 for all n. Note that the

conditional probability P(X2|Xc
1) = 1/99.

A result known as the law of total probability or the partition theorem will

be used extensively later, for example, in the discrete gambler’s ruin problem (Sec-

tion 2.1) and the Poisson 2 process (Section 5.2). Suppose that A1, A2, . . . , Ak rep-

resents a partition of S into k mutually exclusive, exhaustive events in which, inter-

preted as sets, the sets fill the space S but with none of the sets overlapping. Fig-

ure 1.2 shows such a scheme. When a random experiment takes place, one and only

A1
A2

A3

A4

A5

B

Figure 1.2 Schematic set view of a partition of S into 5 events A1, . . . , A5 with event B
intersecting all 5 events.

one of the events can take place.

Suppose that B is another event associated with the same random experiment (Fig-

ure 1.2). Then B must be made up of the sum of the intersections of B with events

in the partition. Some of these will be empty but this does not matter. We can say that

B is the union of the intersections of B with each Ai. Thus

B =

k⋃

i=1

B ∩ Ai,

but the significant point is that any pair of these events is mutually exclusive. It

2 Siméon-Denis Poisson (1781–1840), French mathematician.
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follows that

P(B) =

k∑

i=1

P(B ∩ Ai). (1.3)

Since, from Eqn (1.2),

P(B ∩ Ai) = P(B|Ai)P(Ai),

Eqn (1.3) can be expressed as

P(B) =

k∑

i=1

P(B|Ai)P(Ai), (1.4)

which is the law of total probability or the partition theorem.

1.4 Discrete random variables

In most of the applications considered in this text, the outcome of the experiment

will be numerical. A random variable usually denoted by the capital letters X , Y ,

or Z , say, is a numerical value associated with the outcome of a random experiment.

If s is an element of the original sample space S, which may be numerical or sym-

bolic, then X(s) is a real number associated with s. The same experiment, of course,

may generate several random variables. Each of these random variables will, in turn,

have sample spaces whose elements are usually denoted by lower case letters such as

x1, x2, x3, . . . for the random variable X . We are now interested in assigning proba-

bilities to events such as P(X = x1), the probability that the random variable X is

x1, or P(X ≤ x2), the probability that the random variable is less than or equal to

x2.

If the sample space is finite or countably infinite on the integers (that is, the ele-

ments x0, x1, x2, . . . can be counted against integers, say 0, 1, 2, . . .) then we say that

the random variable is discrete. Technically, the set {xi} will be a countable subset

V , say, of the real numbers R. We can represent the {xi} generically by the variable

x with x ∈ V . For example, V could be the set

{0, 12 , 1, 32 , 2, 52 , 3, . . .}.
In many cases V consists simply of the integers or a subset of the integers, such as

V = {0, 1} or V = {0, 1, 2, 3, . . .}.
In the random walks of Chapter 3, however, V may contain all the positive and neg-

ative integers

. . .− 3,−2,−1, 0, 1, 2, 3, . . . .

In these integer cases we can put xi = i.
The probability denoted by

p(xi) = P(X = xi)

is known as the probability mass function. The pairs {xi, p(xi)} for all i in the

sample space define the probability distribution of the random variable X . If xi =
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i, which occurs frequently in applications, then p(xi) = p(i) is often replaced by

pi. Since the x values are mutually exclusive and exhaustive then it follows that for

p(x0), p(x1), . . .

• (a) 0 ≤ p(xi) ≤ 1 for all i,

• (b)

∞∑

i=0

p(xi) = 1, or in generic form
∑

x∈V
p(x) = 1,

• (c) P(X ≤ xk) =

k∑

i=0

p(xi), which is known as the distribution function for

k = 0, 1, 2, . . . .

Example 1.5. A fair die is rolled until the first 6 appears face up. Find the probability that the

first 6 appears at the n-th throw.

Let the random variable N be the number of throws until the first 6 appears face up. This is

an example of a discrete random variable N with an infinite number of possible outcomes

{1, 2, 3, . . .}.
The probability of a 6 appearing for any throw is 1

6
and of any other number appearing is 5

6
.

Hence the probability of n− 1 numbers other than 6 appearing followed by a 6 is

P(N = n) =
(
5

6

)n−1 (1

6

)

=
5n−1

6n
,

which is the probability mass function for this random variable.

In this example the distribution has the probability

P(N ≤ k) =
1

6
+

1

6

5

6
+ · · ·+ 1

6

(
5

6

)k−1

=
1

6

k∑

i=1

(
5

6

)i−1

= 1−
(
5

6

)k

,

for k = 1, 2, . . . 6 after summing the geometric series.

1.5 Continuous random variables

In many applications the discrete random variable, which for example might take

the integer values 1, 2, . . . , is inappropriate for problems where the random variable

can take any real value in an interval. For example, the random variable T could be

the time measured from time t = 0 until a light bulb fails. This could be any value

t ≥ 0. In this case T is called a continuous random variable. Generally, if X is a

continuous random variable there are mathematical difficulties in defining the event

X = x: the probability is usually defined to be zero. Probabilities for continuous

random variables may only be defined over intervals of values as, for example, in

P(x1 < X < x2).
We define a probability density function (pdf) f(x) over −∞ < x < ∞, which

has the properties:

• (a) f(x) ≥ 0, (−∞ < x < ∞);
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• (b) P(x1 ≤ X ≤ x2) =

∫ x2

x1

f(x)dx for any x1, x2 such that −∞ < x1 < x2 <

∞;

• (c)

∫ ∞

−∞
f(x)dx = 1.

A possible graph of a density function f(x) is shown in Figure 1.3. By (a) the area

the curve must remain nonnegative, by (b) the probability that X lies between x1

f(x)

xx1 x2

Figure 1.3 A probability density function.

and x2 is the shaded area, and by (c) the total area under the curve must be 1 since

P(−∞ < X < ∞) = 1.

We define the (cumulative) distribution function (cdf) F (x) as the probability

that X is less than or equal to x. Thus

F (x) = P(X ≤ x) =

∫ x

−∞
f(u)du. (1.5)

It follows from (c) above that

F (x) → 1 as x → ∞,

and that

P(x1 ≤ x ≤ x2) =

∫ x2

x1

f(u)du = F (x2)− F(x1). (1.6)

An example of a cdf is shown in Figure 1.4.

F(x)

x

1

Figure 1.4 A (cumulative) distribution function.



MEAN AND VARIANCE 11

Example 1.6. Show that

f(x) =

{
1/(b− a) a ≤ x ≤ b
0 for all other values of x

is a possible probability density function. Find its cumulative distribution function.

The function f(x) must satisfy conditions (a) and (c) above. This is the case since f(x) ≥ 0
and ∫ ∞

−∞
f(x)dx =

∫ b

a

1

b− a
dx = 1.

Also its cumulative distribution function F (x) is given by

F (x) =

∫ x

a

1

b− a
dx =

x− a

b− a
for a ≤ x ≤ b.

For x < a, F (x) = 0 and for x > b, F (x) = 1.

The pdf f(x) is the density function of the uniform distribution.

1.6 Mean and variance

The mean (or expectation or expected value), E(X), of a discrete random variable

X is defined as

µ = E(X) =

∞∑

i=0

xip(xi), (1.7)

where p(xi) = P(X = xi), and, for a continuous random variable X , by

µ = E(X) =

∫ ∞

−∞
xf(x)dx, (1.8)

where f(x) is the probability density function. It can be interpreted as the weighted

average of the values of X in its sample space, where the weights are either the

probability function or the density function. It is a measure which may be used to

summarise the probability distribution of X in the sense that it is an average value.

In the discrete case the summation over ‘all x’ includes both finite and infinite sample

spaces.

A measure which is used in addition to the mean is the variance of X denoted

by V(X) or σ
2. This gives a measure of variation or spread (dispersion) of the

probability distribution of X , and is defined by

σ
2 = V(X)

= E[(X −E(X))2] = E[(X − µ)2]

=







∞∑

i=0

(xi − µ)2p(xi) or
∑

x∈V
(x− µ)2p(x), if X is discrete,

∫ ∞

−∞
(x− µ)2f(x)dx, if X is continuous.

(1.9)

The variance is the mean of the squared deviations of each value of X from the
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central value µ. In order to give a measure of variation which is in the same units as

the mean, the square root σ of V(X) is used, namely

σ =
√

V(X). (1.10)

This is known as the standard deviation (sd) of X .

A function of a random variable is itself a random variable. If h(X) is a function

of the random variable X , then it can be shown that the expectation of h(X) is given

by

E[h(X)] =







∞∑

i=0

h(xi)p(xi) or
∑

x∈V
h(x)p(x), if X is discrete

∫ ∞

−∞
h(x)p(x)dx, if X is continuous.

It is relatively straightforward to derive the following results for the expectation

and variance of a linear function of X :

E(aX + b) = aE(X) + b = aµ+ b, (1.11)

V(aX + b) = E[(aX + b− aµ− b)2]

= E[(aX − aµ)2] = a2E[(X − µ)2] = a2V(X), (1.12)

where a and b are constants. Note that the translation of the random variable does

not affect the variance. Also

V(X) = E[(X − µ)2] = E(X2)− 2µE(X) + µ
2 = E(X2)− µ

2, (1.13)

which is sometimes known as the computational formula for the variance. These re-

sults hold whether X is discrete or continuous and enable us to interpret expectation

and variance as operators on X . Of course, in all cases mean and variance only exist

where the summations and infinite integrals are finite.

For expectations, it can be shown more generally that

E

[
k∑

i=1

aihi(X)

]

=

k∑

i=1

aiE[hi(X)], (1.14)

where ai, i = 1, 2, . . . , k are constants and hi(X), i = 1, 2, . . . , k are functions of

the random variable X .

1.7 Some standard discrete probability distributions

In this section we shall look at discrete random variables X with probability mass

function p(xi) or pi, where xi takes integer values. Each of the random variables

considered are numerical outcomes of independent repetitions (or trials) of a simple

experiment knowns as a Bernoulli experiment3. This is an experiment where there

3 Jacob Bernoulli (1655–1705), Swiss mathematician.
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are only two outcomes: a ‘success’ (X = 1) with probability p or a ‘failure’ (X =
0) with probability q = 1 − p. The value of the random variable X is used as an

indicator of the outcome, which may also be interpreted as the presence or absence

of a particular characteristic. For example, in a single coin toss X = 1 is associated

with the occurrence, or the presence of the characteristic, of a head, and X = 0 with

a tail, or the absence of a head.

The probability function of this random variable may be expressed as

p1 = P(X = 1) = p, p0 = P(X = 0) = q, (1.15)

where p is known as the parameter of the probability distribution, and q = 1 − p.

We say that the random variable has a Bernoulli distribution.

The expected value of X is easily seen to be

µ = E(X) = 0× q + 1× p = p, (1.16)

and the variance of X is

σ
2 = V(X) = E(X2)− µ

2 = 02 × q + 12 × p− p2 = pq. (1.17)

Suppose now that we are interested in random variables associated with indepen-

dent repetitions of Bernoulli experiments, each with a probability of success, p. Con-

sider first the probability distribution of a random variable X (a differentX from that

defined above) which is the number of successes in a fixed number of independent

trials, n. If there are k successes and n− k failures in n trials, then each sequence of

1’s and 0’s has the probability P(X = k) = pkqn−k. The number of ways in which

x successes can be arranged in n trials is the binomial expression

n!

k!(n− k)!
, also expressed in the notation

(
n

k

)

.

Since each of these mutually exclusive sequences occurs with probability pkqn−k,

the probability function of this random variable is given by

pk =

(
n

k

)

pkqn−k, k = 0, 1, 2, . . . , n. (1.18)

In (1.18) these are the (n + 1) terms in the binomial expansion of (p + q)n. For

this reason, it is known as the binomial distribution, with parameters n and p. A

consequence of this observation is that, as we expect,

n∑

k=0

pk =

n∑

k=1

(
n

k

)

pkqn−k = (p+ q)n = 1.

The mean and variance may be easily shown to be np and npq, respectively, which

is n times the mean and variance of the Bernoulli distribution (see Example 1.8).

Suppose that the random variable X is now the number k until the first success

occurs:

pk = P(X = k) = qk−1p, k = 1, 2, . . . ,

that is, (k − 1) failures before the first success. This is the geometric distribution

with parameter p. This process is known as inverse sampling. Note that successive
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probabilities form a geometric series with common ratio q = 1 − p. Note that the

sample space is now countably infinite. After some algebra it can be shown that the

mean is given by µ = 1/p, and the variance by σ
2 = q/p2 (see Problem 1.9).

The geometric probability distribution possesses an interesting property known as

the ‘no memory’, which can be expressed by

P(X > a+ b|X > a) = P(X > b),

where a and b are positive integers. What this means is that if a particular event has

not occurred in the first a repetitions of the experiment, then the probability that it

will occur in the next b repetitions is the same as in the first b repetitions of the

experiment. The result can be proved as follows, using the definition of conditional

probability in Section 1.3:

P(X > a+ b|X > a) =
P(X > a+ b ∩X > a)

P(X > a)
=

P(X > a+ b)

P(X > a)
.

Since P(X > x) = qx,

P(X > a+ b|X > a) =
qa+b

qa
= qb = P(X > b).

The converse is also true, but the proof is not given here.

Consider now the case in which r(> 1) successes have occurred. The probability

function of the number of trials may be derived by noting that X = k requires that

the k-th trial results in the r-th success and that the remaining r − 1 successes may

occur in any order in the previous k− 1 trials. The number of combinations in which

r − 1 successes occur in k − 1 trials is the binomial

(k − 1)!

(r − 1)!(k − r)!
=

(
k − 1

r − 1

)

.

Hence

pk =

(
k − 1

r − 1

)

prqk−r, k = r, r + 1, . . . . (1.19)

This is known as a Pascal4 or negative binomial distribution with parameters r and

p. Its mean is r/p and its variance rq/p2, which are respectively r times the mean

and r times the variance of the geometric distribution. Hence a similar relationship

exists between the geometric and the Pascal distributions as between the Bernoulli

and the binomial distributions.

The binomial random variable arises as the result of observingn independent iden-

tically distributed Bernoulli random variables, and the Pascal by observing r sets of

geometric random variables.

Certain problems involve the counting of the number of events which have oc-

curred in a fixed time period; for example, the number of emissions of alpha particles

by an X-ray source or the number of arrivals of customers joining a queue. It has been

found that the Poisson distribution is appropriate in modeling these counts when the

underlying process generating them is considered to be completely random. We shall

4 Blaise Pascal (1623–1662), French mathematician and scientist.



SOME STANDARD CONTINUOUS PROBABILITY DISTRIBUTIONS 15

spend some time in Chapter 5 defining such a process, which is known as a Poisson

process.

As well as being a probability distribution in its own right, the Poisson distribu-

tion also provides a convenient approximation to the binomial distribution to which

it converges when n is large and p is small and np = α, a constant. This is a situa-

tion where rounding errors would be likely to cause computational problems, if the

numerical probabilities were to be calculated.

The Poisson probability function with parameter α is

pk =
e−ααk

k!
, k = 0, 1, 2, . . .

with mean and variance both equal to α.

The discrete uniform distribution with integer parametern has a random variable

X which can take the values r, r + 1, r + 2, . . . r + n− 1 with the same probability

1/n (the continuous uniform distribution was introduced in Example 1.6). Hence

P(X = k) =
1

n
(k = r, r + 1, . . . r + n− 1) (1.20)

for any integer r. It is easy to show that the mean and variance of X are given by

µ = r + 1
2 (n+ 1), σ

2 = V(X) = 1
12 (n

2 − 1). (1.21)

A simple example of the uniform discrete distribution is the fair die in which the

faces 1, 2, 3, 4, 5, 6 are equally likely to appear, each with probability 1
6 .

1.8 Some standard continuous probability distributions

The exponential distribution is a continuous distribution which will be used in sub-

sequent chapters to model the random variable, say X , which is the time to a par-

ticular event. In a Poisson process (discussed in Chapter 5), we shall see that this is

the time between successive occurrences of the event of interest. For example, the

inter-arrival time of customers in a queue, or the lifetime or the time to failure of a

component, where the failure rate α is assumed to be constant in reliability theory,

can be modelled by exponential distributions.

The density function is

f(x) =

{
αe−αx, x ≥ 0
0 x < 0

where α is a positive parameter. It is a density function since
∫ ∞

−∞
f(x)dx =

∫ ∞

0

αe−αxdx = 1.

The mean and variance are given by

µ = E(X) =

∫ ∞

0

αxe−αxdx =
1

α
, (1.22)
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and

σ
2 = V(X) =

∫ ∞

0

(

x− 1

α

)2

αe−αxdx =
1

α2
. (1.23)

The distribution function F (x) of this random variable is given by

F (x) =

∫ x

−∞
f(u)du =

∫ x

0

αe−αydy = 1− e−αx.

If X has an exponential distribution, then using the conditional probability result

from Section 1.3,

P[X > a+ b|X > a] =
P[X > a+ b]

P[X > a]
=

e−α(a+b)

e−αa
= eαb, (1.24)

where a, b > 0. This shows the ‘no-memory’ property of the exponential distribu-

tion, that is, the result does not depend on a. It can be shown that the exponential

distribution is the only continuous distribution with this property.

A random variable X has a normal distribution with two parameters, the mean

µ and variance V(X) or σ2, if its probability density function is

f(x) =
1

σ
√
2π

exp

[

− (x− µ)2

2σ2

]

(−∞ < x < ∞). (1.25)

That ∫ ∞

−∞
f(x)dx = 1

follows from the standard integral
∫ ∞

−∞
e−u2

du =
√
π.

For the normal distribution it can be confirmed that the mean and variance are
∫ ∞

−∞
xf(x)dx = E(X) = µ,

∫ ∞

−∞
(x− µ)2f(x)dx = σ

2 = V(X). (1.26)

The normal distribution is denoted by N(µ,σ2).
By using a change of variable, thenZ = (X−µ)/σ is easily shown to be normally

distributed with mean 0 and variance 1, or N(0, 1) with density (see Section 1.6 and

Problem 1.28(b) for an alternative derivation)

f(z) = 1√
2π

exp[− 1
2z

2], −∞ < z < ∞. (1.27)

The transformation of X is known as standardising, and consequently Z is termed

a standard normal variable. The graph of N(0, 1) is shown in Figure 1.5.5 This

transformation enables calculation of probabilities for any normally distributed ran-

dom variable. Suppose, for example, X is a N(2, 9) random variable, then

P(−1 < X < 3) = P(−1 < Z < 1
3 ) = Φ(13 )− Φ(−1) = 0.629− 0.159 = 0.470

(see Figure 1.5).

5 Tables of the cumulative function P(Z < z) = Φ(z) can be found on the internet, or in most statistics
texts.
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Figure 1.5 Standardised normal distribution N [0, 1].

Consider now the random variable Y = aX + b, where a and b are constants: Y
is a linear function of X . Again using a change of variable it may be shown that Y is

normally distributed with mean aµ+ b and variance a2σ2, or N(aµ+ b, a2σ2) (see

Problem 1.28(c) for an alternative derivation). The distribution Z may be recovered

by setting a = 1/µ and b = −µ/σ.

The gamma distribution depends on the properties of the gamma function Γ(n)
defined by

Γ(n) =

∫ ∞

0

xn−1e−xdx. (1.28)

Integration by parts produces the recurrence formula

Γ(n) = (n− 1)Γ(n− 1),

since

Γ(n) = −
∫ ∞

0

xn−1 de
−x

dx
dx

= [−xn−1e−x]∞0 +

∫ ∞

0

dxn−1

dx
e−xdx

= (n− 1)

∫ ∞

0

xn−2e−xdx = (n− 1)Γ(n− 1).

When n is an integer it follows that

Γ(n) = (n− 1)!.

The gamma distribution has two parameters n > 0, α > 0, and has the density

function

f(x) =
αn

Γ(n)
xn−1e−αx, x > 0.

Note that by setting n = 1, we obtain the exponential distribution. The mean is given

by

E(X) =
αn

Γ(n)

∫ ∞

0

xne−αxdx =
αn

Γ(n)αn+1

∫ ∞

0

yne−ydy,
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after the change of variable y = αx. Hence

E(X) =
Γ(n+ 1)

αΓ(n)
=

n

α
.

It can be shown that the variance of the gamma distribution is n/α2. Note that the

mean and variance are respectively n times the mean and variance of the exponential

distribution with parameter α.

It will be shown in the next section that if X1, X2, . . . , Xn are independent iden-

tically distributed exponential random variables, then

Y =

n∑

i=1

Xi

has a gamma distribution with parameters α, n.

Another distribution arising in reliability (Chapter 8) is the Weibull distribution6

which depends on two positive parameters, α and β, and has density

f(x) = αβxβ−1e−αxβ

, x > 0.

This enables more complex lifetime data to be modeled, especially where a constant

failure rate is not a reasonable assumption. Note that setting β = 1 gives the expo-

nential distribution. After some algebra, it may be shown that the mean and variance

of the Weibull distribution are

µ =
1

α
1
β

Γ

(
1

β
+ 1

)

,

σ
2 =

1

α
2
β

[

Γ

(
2

β
+ 1

)

−
{

Γ

(
1

β
+ 1

)}2
]

.

1.9 Generating functions

In this section we are going to consider two generating functions. The main purpose

is to use their uniqueness properties to identify the probability distributions of func-

tions of random variables. The first is the moment generating function (mgf). This

function depends on a dummy variable s and uses the series expansion of esX to

generate the moments E(Xr), (r ≥ 1) of the random variable X . The expected

value E(Xr) is called the r-th moment of the random variable X about zero. The

power series expansion of esX is given by

esX = 1 + sX +
(sX)2

2!
+ · · ·+ (sX)r

r!
+ · · · ,

a series which converges for all sX . The mgf is obtained by taking expected values

of both sides of this equation,

MX(s) = E(esX) = E

[

1 + sX +
(sX)2

2!
+ · · ·+ (sX)r

r!
+ · · ·

]

. (1.29)

6 Waloddi Weibull (1887–1979), Swedish engineer.
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We mentioned in Section 1.6 that the expected value of a finite sum of functions was

equal to the sum of the expected values, and that E(aX) = aE(X). We now wish

to apply this result to an infinite sum, making the assumption that this result holds (it

does so under fairly general conditions). Thus we assume that

MX(s) = 1+sE(X)+
s2

2!
E(X2)+ · · ·+ sr

r!
E(Xr)+ · · · =

∞∑

r=0

sr

r!
E(Xr). (1.30)

The coefficient of sr/r! is therefore the r-th moment of X . Taking successive deriva-

tives of the mgf with respect to s, and then setting s = 0, we can obtain these mo-

ments. For example,

M ′
X(0) = E(X) = µ, M ′′

X(0) = E(X2),

and the variance is therefore given by (see Section 1.6)

σ
2 = M ′′

X(0)− [M ′
X(0)]2.

Let X have a gamma distribution with parameters n, α. Then, using the substitu-

tion x = u/(α− s),

MX(s) = E(esX) =

∫ ∞

0

αn

Γ(n)
esxxn−1e−αxdx,

=

∫ ∞

0

αn

Γ(n)
xn−1e−x(α−s)dx.

=
αn

Γ(n)(α− s)n

∫ ∞

0

un−1e−udu =

(
α

α− s

)n

provided that s < α. Now consider the result quoted but not proved in the previous

section on the distribution of independent and identically distributed (iid) expo-

nential random variables X1, X2, . . . , Xn.

We may now use the two results above to prove this. We first need to note that

since the random variables are independent, it follows that

E[g1(X1)g2(X2) · · · gn(Xn)] = E[g1(X1)]E[g2(X2)] · · ·E[gn(Xn)]

for random variable functions g1(X1), g2(X2), . . . gn(Xn). Let Y =
∑n

i=1 Xi. Then

MY (s) = E[exp(sY )] = E

[

exp

(

s

n∑

i=1

Xi

)]

= E[

n∏

i=1

exp(sXi)] =

n∏

i=1

E[exp(sXi)] (using the result above)

=

n∏

i=1

MXi
(s), (1.31)

but since the Xis are identically distributed, they have the same mgf MX(s). Hence

MY (s) =
[

MX(s)
]n

.
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Of course this result holds for any iid random variables. If X is exponential, then

MX(s) =
α

α− s
,

and

MY (s) =

(
α

α− s

)n

,

which is the mgf of a gamma-distributed random variable.

Example 1.7 n rails are cut to a nominal length of ℓ meters. By design the cutting machine

cannot cut lengths less than ℓ but the actual length of any rail can have positive error of xi,

which is exponentially distributed with parameter α independently of each other. The rails are

welded end-to-end to form a continuous rail of nominal length nℓ. Find the expected value

and variance of the length of the composite rail.

Let Xi be the random variable representing the error xi of rail i. Let Y be the random

variable of the additional length of the whole rail so that

Y = X1 +X2 + · · ·+Xn.

Since the random variables are independent and identically distributed, and the errors expo-

nentially distributed, the moment generating function is (see above)

MY (s) =

n∏

i=1

MXi
(s) = [MX1

(s)]n.

Therefore

MY (s) =
(

α

α− s

)n

=
(

1− s

α

)−n

= 1 +
n

α
s+

1

2

n(n+ 1)

α2
s2 + · · · .

Hence the expected value of the length of the composite rail and the variance of the error

are given by

E(Y ) =
n

α
, σ

2 = E(Y 2)− [E(Y )]2 =
n(n+ 1)

α2
− n2

α2
=

n

α2
.

The latter result is an example of the result that

V(X1 +X2 + · · ·+Xn) = V(X1) +V(X2) + · · ·+V(Xn),

provided X1, X2, . . . , Xn are independent.

The moment generating function (mgf) MX of a N(µ,σ2) variable is

exp(µs+ 1
2σ

2s2) (1.32)

(see Problem 1.28(a)). Hence by inspection the mgf of a standard normal Z is

MZ(s) = exp(12s
2). (1.33)

Consider a sequence of n iid N(µ,σ2) random variables X1, X2,. . . ,Xn. Then

for the random variable Y =
∑n

i=1 Xi, using the results above,

MY (s) = [exp(µs+ 1
2σ

2s2)]n = exp(nµs+ 1
2nσ

2s2), (1.34)



GENERATING FUNCTIONS 21

which is the mgf of an N(nµ, nσ2) random variable. Hence by the uniqueness prop-

erty of mgf’s, Y is normally distributed with mean nµ and variance nσ2.

If the sequence of independent normally distributed random variables now have

different means and, say, variances µ1 and σ
2
i , then Y will be normally distributed

with mean
∑n

i=1 µi and variance
∑n

i=1 σ
n
i (see Problem 1.28(d)). A further gen-

eralisation is to consider a linear sum of these random variables W =
∑n

i=1 aiXi

where the ai’s are constants. It may be shown that W is normally distributed with

mean
∑n

i=1 aiµi and variance
∑n

i=1 a
2
iσ

2
i (see Problem 1.28(e)).

Moment generating functions may be defined for both discrete and continuous

random variables, but the probability generating function (pgf) is only defined for

integer-valued random variables. To be specific, we consider the probability distri-

bution pn = P(N = n), where the random variable N can only take the values

0, 1, 2, . . . . (We use the notation pn rather than p(n) in this context since it conforms

to the usual notation for coefficients in power series.) Again it is expressed in terms

of a power series in a dummy variable s, and is defined as the expected value of sN :

GN (s) = E(sN ) =

∞∑

n=0

pns
n, (1.35)

provided the right-hand side converges. The question of uniqueness arises with gen-

erating functions, since we deduce distributions from them. Later we shall represent

the probability generating function by G(s) without the random variable subscript.

It can be shown (see Grimmett and Welsh (1986)) that two random variables X and

Y have the same probability generating function if and only if they have the same

probability distributions.

In many cases the pgf will be a polynomial: this will occur if the outcomes can

only be a finite as in a death process. In others, such as in birth and death processes

(Chapter 6), in which there is, theoretically, no upper bound to the population size,

the series for the pgf will be infinite. If a pgf is an infinite power series there are

requirements for the convergence, uniqueness, and term-by-term differentiation of

the series, but we shall assume here that such conditions are generally met without

further discussion.

With these assumption, if GN (s) =
∑∞

n=0 pns
n, then

dGN

ds
= G′

N (s) =

∞∑

n=1

npns
n, (0 ≤ s ≤ 1),

d2GN

ds2
= G′′

N (s) =

∞∑

n=2

n(n− 1)pns
n−2, (0 ≤ s ≤ 1).

The pgf has the following properties:

• (a) GN (1) =
∞∑

n=0

pn = 1.

• (b) G′
N (1) =

∞∑

n=0

npn = E(N) = µ, the mean.
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• (c) G′′
N (1) =

∞∑

n=0

n(n− 1)pn = E(N2)−E(N), so that the variance is given by

V(N) = σ
2 = E(N2)− µ

2 = G′′(1) +G′(1)− [G′(1)]2.

• (d) G
(m)
N (1) = dmG(1)/dsm = E[N(N − 1) . . . (N −m+ 1)], which is called

the factorial moment of N .

• (e) If N1, N2, . . . , Nr are independent and identically distributed discrete random

variables, and Y =
∑r

i=1 Ni, then

GY (s) = E[sY ] = E

[

s
∑r

i=1
Ni

]

= E

[
r∏

i=1

(sNi)

]

=

r∏

i=1

GNi
(s),

and since the Ni’s are identically distributed,

GY (s) = [GX(s)]r, (1.36)

which is similar to the result for moment generating functions.

Example 1.8 The random variable N has a binomial distribution with parameters m, p. Its

probability function is given by

p(n) = pn = P(N = n) =

(
m

n

)

pnqm−n, n = 0, 1, 2, . . . ,m

(see Eqn (1.23)). Find its pgf, and its mean and variance.

The pgf of N is

GN (s) = G(s) =

m∑

n=0

sn
(
m

n

)

pnqm−n =

m∑

n=0

(
m

n

)

(ps)nqm−n

= (q + ps)m

using the binomial theorem. It follows that

G′(s) = mp(q+ ps)m−1,

G′′(s) = m(m− 1)p2(q + ps)m−2.

Using the results above, the mean and variance are given by

µ = G′(1) = mp,

and

σ
2 = G′′(1) +G′(1)− [G′(1)]2 = m(m− 1)p2 +mp−m2p2 = mpq.

The Bernoulli distribution is the binomial distribution with m = 1. Hence its pgf

is

GX(s) = q + ps.
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Consider n independent and identically distributed Bernoulli random variables

X1, X2, . . . , Xn, and let Y =
∑n

i=1 Xi. Then from the results above,

GY (s) = [GX(s)]n = (q + ps)n,

which is again the pgf of a binomial random variable.

It is possible to associate a generating function with any sequence {an}, (n =
0, 1, 2, . . .) in the form

H(s) =
∞∑

n=0

ans
n

provided that the series converges in some interval containing the origin s = 0. Un-

like the pgf, this series need not satisfy the conditions H(1) = 1 for a probability

distribution nor 0 ≤ an ≤ 1. An application using such a series is given in Prob-

lem 1.24, and in Section 3.3 on random walks.

1.10 Conditional expectation

In many applications of probability we are interested in the possible values of two

or more characteristics in a problem. For this we require two or more random vari-

ables which may or may not be independent. We shall only consider the case of two

discrete random variables X and Y which form a two-dimensional random variable

denoted by (X,Y ), which can take pairs of values (xi, yj): for example, we could

assume (i = 1, 2, . . . ; j = 1, 2, . . .) (either sequence may be finite or infinite, or start

for some other values) with joint probability (mass) function p(xi, yj), which is now

a function of two variables. As in Section 1.4, the probabilities must satisfy

• (a) 0 ≤ p(xi, yj) ≤ 1 for all (i, j),

• (b)
∑

iεI

∑

jεJ

p(xi, yj) = 1.

The domains of i and j are defined by iεI and jεJ where I and J can be either

bounded or unbounded sequences of the integers.

The random variables X and Y are said to be independent, if and only if,

p(xi, yj) = q(xi)r(yj) for all i and j, (1.37)

where, of course,
∑

iεI

q(xi) = 1,
∑

jεJ

r(yj) = 1.

If the random variable Z = H(X,Y ) is a function of the random variables X and

Y , then we will state without proof that the expected value of Z is given by

E(Z) =
∑

iεI

∑

jεJ

H(xi, yj)p(xi, yj).

We now introduce the concept of conditional expectation. This is an informal

introduction with the intention of presenting the main ideas in a comprehensible

manner. This comes with a caution. There are aspects such as probability spaces,
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measure theory, existence, and convergence, which will be assumed here but will not

be explicitly defined.

We consider the joint distribution of two random variables X and Y with joint

mass function p(xi, yj). We assume that we can associate with X and Y conditional

probabilities

P(X = xi|Y = yj) and P(Y = yj |x = xi).

We use alternative equivalent notations

pX(xi|yj) or simply P(X |Y )

if the context is clear for the first, and similarly for the second, namely

pY (yj |xi) or simply P(Y |X)

(there are a plethora of notations in this subject which make comparisons between

texts hard work). With these probabilities we can consider expectations. Hence the

conditional expectation of X for each element of Y is

E(X |Y = yj) =
∑

iεI

xiP(X = xi|Y = yj) or
∑

iεI

xipX(xi|yj). (1.38)

The significance of this expectation is that it has value for each element of J . The

totality of these values is E[X |Y ], which is a random variable. It will have the same

number of elements as J . Similarly

E(Y |X = xi) =
∑

jεJ

yjpY (yj |xi), (1.39)

and E[Y |X ] is another random variable.

The conditional probabilities are given by

pX(xi|yj) = p(xi, yj)/
∑

iεI

p(xi, yj), (1.40)

and

pY (yj |xi) = p(xi, yj)/
∑

jεJ

p(xi, yj). (1.41)

In (1.40), p(xi, yj) is the probability that X and Y occur (intersection in Section

1.3), and the denominator is the probability that Y occurs. A similar interpretation

applies to (1.41). The probabilities
∑

iεI p(xi, yj) and
∑

jεJ p(xi, yj) are known as

the marginal probability distributions.

If X and Y are independent then (1.37) holds, and (1.40) and (1.41) become sim-

ply

pX(xi, yj) = q(xi), pY (xi, yj) = r(yj),

with expectations

E(X |Y ) =
∑

iεI

xiq(xi) = E(X),

E(Y |X) =
∑

jεJ

yjr(yj) = E(Y ).
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Returning to the dependent case, we can anticipate that the conditional expecta-

tions E(X |Y ) and E(Y |X), being random variables, will also have expectations.

Thus

E(E(X |Y )) =
∑

jεJ

E(X |Y )
∑

kεI

p(xk, yj)

=
∑

jεJ

∑

iεI

xipX(xi, yj)
∑

kεI

p(xk, yj)

=
∑

jεJ

∑

iεI

xip(xi, yj)

= E(X) (1.42)

using (1.40) for the conditional probability. In words this states that the expected

value of the conditional expectation of X with respect to Y is simply the expected

value of X . Similarly,

E(E(Y |X)) = E(Y ). (1.43)

The following routine example, whilst of no intrinsic value, attempts in a particu-

lar case to identify the various probabilities and expectations, which are not always

easily understood in the general theory.

Example 1.9 Let the random variable (X,Y ) take the values (xi, yj) (i = 1, 2, 3; j =
1, 2, 3). The mass functions p(xi, yj) are given in the table.

p(xi, yj) y1 y2 y3

x1 0.25 0 0.05

x2 0.05 0.10 0.15

x3 0.05 0.25 0.10

Find the random variable E(X|Y ), and verify that

E(E(X|Y )) = E(X)

We have gone into the calculations perhaps in a long-winded manner but it helps to under-

stand the multiple summations which occur for conditional expectations. It could be a use-

ful checklist. In this example I = {1, 2, 3} and J = {1, 2, 3}. In the table, for example,

p(x1, y3) = 0.05 and p(x3, y2) = 0.25. Note also that

3∑

i=1

3∑

j=1

p(xi, yj) = 1

as required.

The marginal probability distributions for Y will each have three components, namely

3∑

i=1

p(xi, y1) = p(x1, y1) + p(x2, y1) + p(x3, y1) = 0.25 + 0.05 + 0.05 = 0.35,

3∑

i=1

p(xi, y2) = 0 + 0.1 + 0.25 = 0.35,
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3∑

i=1

p(xi, y3) = 0.05 + 0.15 + 0.10 = 0.3.

Similarly for X ,

3∑

j=1

p(x1, yj) = 0.3,

3∑

j=1

p(x2, yj) = 0.3,

3∑

j=1

p(x3, yj) = 0.4.

Using (1.40) and (1.41) we can compute the conditional probabilities, which also require the

marginal distributions previously calculated. Hence

pX(x1|y1) = p(x1, y1)/

3∑

i=1

p(xi, y1) = 0.25/0.35 = 5/7,

pX(x2|y1) = 0.05/0.35 = 1/7, pX(x3|y1) = 0.05/0.35 = 1/7.

pX(x1|y2) = 0, pX(x2|y2) = 2/7, pX(x3|y2) = 5/7,

pX(x1|y3) = 1/6, pX(x2|y3) = 1/2, pX(x3|y3) = 1/3.

From (1.38) we can find the component of the random variable, namely,

E(X|Y = y1) =

3∑

i=1

xip(xi|y1) = 1× 5

7
+ 2× 1

7
+ 3× 1

7
=

10

7
,

E(X|Y = y2) =

3∑

i=1

xip(xi|y2) =
19

7
,

E(X|Y = y3) =

3∑

i=1

xip(xi|y3) =
13

6
,

Finally the random variable E(X|Y ) takes the values

{
10

7
,
19

7
,
13

6

}

= Z = {z1, z2, z3},

say.

The expected value of E(X|Y ) or Z is

E(Z) =

3∑

j=1

zj

3∑

i=1

p(xi, yj) =
10

7
× 0.35 +

19

7
× 0.35 +

13

6
× 0.3 =

21

10
.

Equally

E(X) =

3∑

i=1

3∑

j=1

xip(xi, yj) = 1× 0.3 + 2× 0.3 + 3× 0.4 =
21

10
,

which confirms that E(E(X|Y )) = E(X).

These calculations can be repeated for E(Y |X) but this is left as a useful exercise in Prob-

lem 1.27.



PROBLEMS 27

U

A B

C

Figure 1.6 See Problem 1.1.

1.11 Problems

1.1. The Venn diagram of three events is shown in Figure 1.6. Indicate on the diagram

(a) A ∪B; (b) A ∪ (B ∪ C); (c) A ∩ (B ∪C); (d) (A ∩ C)c; (e) (A ∩B) ∪Cc.

1.2. In a random experiment, A, B, C are three events. In set notation, write down expressions

for the events:

(a) only A occurs;

(b) all three events A, B, C occur;

(c) A and B occur but C does not;

(d) at least one of the events A, B, C occurs;

(e) exactly one of the events A, B, C occurs;

(f) not more than two of the events occur.

1.3. For two events A and B, P(A) = 0.4, P(B) = 0.5, and P(A ∩B) = 0.3. Calculate

(a) P(A ∪B); (b) P(A ∩Bc); (c) P(Ac ∪Bc).

1.4. Two distinguishable fair dice a and b are rolled. What are the elements of the sample

space? What is the probability that the sum of the face values of the two dice is 9? What is the

probability that at least one 5 or at least one 3 appears?

1.5. Two distinguishable fair dice are rolled. What is the probability that the sum of the faces

is not more than 6?

1.6. For the probability generating function

G(s) = (2− s)−
1
2

find the probability function {pn} and its mean.

1.7. Find the probability generating function G(s) of the Poisson distribution (see Section 1.7)

with parameter α given by

pn =
e−ααn

n!
, n = 0, 1, 2, . . . .

Determine the mean and variance of {pn} from the generating function.
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1.8. A panel contains n warning lights. The times to failure of the lights are the indepen-

dent random variables T1, T2, . . . , Tn, which have exponential distributions with parameters

α1, α2, . . . , αn, respectively. Let T be the random variable of the time to first failure, that is,

Ti = min{T1, T2, . . . , Tn}.
Show that Ti has an exponential distribution with parameter

∑n

j=1
αj .

1.9. The geometric distribution with parameter p is given by

p(x) = qx−1p, x = 1, 2, . . .

where q = 1−p (see Section 1.7). Find its probability generating function. Calculate the mean

and variance of the geometric distribution from its pgf.

1.10. Two distinguishable fair dice a and b are rolled. What are the probabilities that:

(a) at least one 4 appears;

(b) only one 4 appears;

(c) the sum of the face values is 6;

(d) the sum of the face values is 5 and one 3 is shown;

(e) the sum of the face values is 5 or only one 3 is shown?

1.11. Two distinguishable fair dice a and b are rolled. What is the expected sum of the face

values? What is the variance of the sum of the face values?

1.12. Three distinguishable fair dice a, b, and c are rolled. How many possible outcomes are

there for the faces shown? When the dice are rolled, what is the probability that just two dice

show the same face values and the third one is different?

1.13. In a sample space S, the events B and C are mutually exclusive, but A and B are not.

Show that

P(A ∪ (B ∪C)) = P(A) +P(B) +P(C)−P(A ∩ (B ∪C)).

From a well-shuffled pack of 52 playing cards a single card is randomly drawn. Find the

probability that it is a club or an ace or the king of hearts.

1.14. Show that

f(x) =







0 x < 0

1/(2a) 0 ≤ x ≤ a

e−(x−a)/a/(2a) x > a

is a possible probability density function. Find the corresponding cumulative distribution func-

tion.

1.15. A biased coin is tossed. The probability of a head is p. The coin is tossed until the first

head appears. Let the random variable N be the total number of tosses including the first head.

Find P(N = n), and its pgf G(s). Find the expected value of the number of tosses.

1.16. The m random variables X1, X2, . . . , Xm are independent and identically distributed

each with a gamma distribution with parameters n and α. The random variable Y is defined

by

Y = X1 +X2 + · · ·+Xm.
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Using the moment generating function, find the mean and variance of Y .

1.17. A probability generating function with parameter 0 < α < 1 is given by

G(s) =
1− α(1 − s)

1 + α(1− s)
.

Find pn = P(N = n) by expanding the series in powers of s. What is the mean of the

probability function {pn}?

1.18. Find the moment generating function of the random variables X which has the uniform

distribution

f(x) =

{
1/(b− a), a ≤ x ≤ b,

0, for all other values of x.

Deduce E(Xn).

1.19. A random variable X has a normal distribution with mean µ and variance σ2. Find its

moment generating function.

1.20. Find the probability generating functions of the following distributions, in which 0 <
p < 1:

(a) Bernoulli distribution: pn = pn(1− p)1−n, (n = 0, 1);
(b) geometric distribution: pn = p(1− p)n−1, (n = 1, 2, . . .);
(c) negative binomial distribution with parameters r and p expressed in the form:

pn =

(
r + n− 1

r − 1

)

pr(1− p)n, (n = 0, 1, 2, . . .)

where r is a positive integer. In each case also find the mean and variance of the distribution

using the probability generating function.

1.21. A word of five letters is transmitted by code to a receiver. The transmission signal is

weak, and there is a 5% probability that any letter is in error independently of the others. What

is the probability that the word is received correctly? The same word is transmitted a second

time with the same errors in the signal. If the same result is received, what is the probability

now that the word is correct?

1.22. A binary code of 500 bits is transmitted across a weak link. The probability that any bit

has a transmission error is 0.0004 independently of the others.

(a) What is the probability that only the first bit fails?

(b) What is the probability that the code is transmitted successfully?

(c) What is the probability that at least two bits fail?

1.23. The source of a beam of light is a perpendicular distance d from a wall of length 2a,

with the perpendicular from the source meeting the wall at its midpoint. The source emits

a pulse of light randomly in a direction θ, the angle between the direction of the pulse and

the perpendicular, chosen uniformly in the range − tan−1(a/d) ≤ θ ≤ tan−1(a/d). Find

the probability distribution of x (−a ≤ x ≤ a), where the pulses hit the wall. Show that its

density function is given by

f(x) =
d

2(x2 + d2) tan−1(a/d)
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(this the density function of a Cauchy distribution7). If a → ∞, what can you say about the

mean of this distribution?

1.24. Suppose that the random variable X can take the integer values 0, 1, 2, . . .. Let pj and

qj be the probabilities

pj = P(X = j), qj = P(X > j), (j = 0, 1, 2, . . .).

Show that, if

G(s) =

∞∑

j=0

pjs
j , H(s) =

∞∑

j=0

qjs
j ,

then (1− s)H(s) = 1−G(s).
Show also that E(X) = H(1).

1.25 In a lottery, players can choose q numbers from the consecutive integers 1, 2, . . . , n (q <
n). The player wins if r numbers (3 ≤ r ≤ q) agree with the r numbers randomly chosen

from the n integers. Show that the probability of r numbers being correct is
(
q

r

)(
n− q

q − r

)/(
n

q

)

.

Compute the probabilities if n = 49, q = 6, r = 3, 4, 5, 6 (the UK lottery).

1.26. A count of the second edition of this book showed that it contains 181,142 Roman letters

(not case sensitive: Greek not included). The table of the frequency of the letters:

Frequency table

a 13011 j 561 s 12327

b 4687 k 1424 t 15074

c 6499 l 6916 u 5708

d 5943 m 5487 v 2742

e 15273 n 14265 w 3370

f 5441 o 11082 x 2361

g 3751 p 6891 y 3212

h 9868 q 1103 z 563

i 12827 r 10756

The most frequent letter is e closely followed by t , n , and a . However, since this is a

mathematical textbook, there is considerable distortion compared with a piece of prose caused

by the extensive use of symbols, particularly in equations. What is the probability that a letter

is i? What is the probability that a letter is a vowel a, e, i , o,u?

A word count shows that the word probability occurs 821 times.

1.27 Using the table of probabilities in Example 1.9, calculate the conditional probabilities

and random variable given by the conditional expectation E(Y |X).

1.28. (a) Show that the moment generating function (mgf) of a N(µ,σ2) random variable is

exp(µs+ 1
2
σ

2s2).

7 Augustin-Louis Cauchy (1789–1857), French mathematician.
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(b) Use (a) to identify the distribution of Z = (X −µ)/σ where X is N(µ,σ2).

(c) Use an mgf to identify the distribution of Y = aX + b where a, b are constants and X
is N(µ,σ2).

(d) A sequence Xi (i = 1, 2, . . . n) of n independent normally distributed random variables

has mean µi and variance σ
2
i . Derive the distribution of

∑n

i=1
Xi. If Zi are n iid standard

normal random variables, what is the distribution of
∑n

i=1
Zi?

(e) Consider the sequence of random variables in (c): find the distribution of
∑n

i=1
aiXi,

where the ai’s (i = 1, 2, . . . , n) are constants. What is the distribution of the average of the

Xi’s, namely
∑n

i−1
Xi/n?

1.29. (a) Let Z have a standard normal distribution. Show that the mgf of Z2 is (1 − 2s)−
1
2 .

This is the mgf of a χ2 distribution on 1 degree of freedom (χ2
1). Hence Z2 has a χ2

1 distribu-

tion.

(b) Let Z1, Z2 . . . , Zn be a sequence of n iid standard normal random variables . Show that

the mgf of

Y =

n∑

i=1

Z2
i

is (1− 2s)−
1
2
n, which is the mgf of a χ2

n distribution.

(c) Find the mean and variance of Y in (b).
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CHAPTER 2

Some Gambling Problems

2.1 Gambler’s ruin

Consider a game of chance between two players: A, the gambler and B, the oppo-

nent. It is assumed that at each play, A either wins one unit from B with probability

p or loses one unit to B with probability q = 1− p. Conversely, B either wins from

A or loses to A with probabilities q or p. The result of every play of the game is

independent of the results of previous plays. The gambler A and the opponent B
each start with a given number of units and the game ends when either player has

lost his or her initial stake. What is the probability that the gambler loses all his or

her money or wins all the opponent’s money, assuming that an unlimited number of

plays are possible? This is the classic gambler’s ruin problem1. In a simple example

of gambler’s ruin, each play could depend on the spin of a fair coin, in which case

p = q = 1
2 . The word ruin is used because if the gambler plays a fair game against a

bank or casino with unlimited funds, then the gambler is certain to lose.

The problem will be solved by using results from conditional probability, which

then leads to a difference equation, and we shall have more to say about methods

of solution later. There are other questions associated with this problem, such as how

many plays are expected before the game finishes. In some games the player might

be playing against a casino which has a very large (effectively infinite) initial stake.

2.2 Probability of ruin

The result of each play of the game is a (modified) Bernoulli random variable (Sec-

tion 1.7), which can only take the values −1 and +1. After a series of plays, we are

interested in the current capital or stake of A, the gambler. This is simply the initial

capital of A plus the sum of the values of the Bernoulli random variables generated

by these plays. We are also interested in how the random variable which represents

the current capital changes or evolves with the number of plays. This is measured at

discrete points when the result of each play is known.

Suppose that A has an initial capital of k units and B starts with a − k, where a
and k are positive integers and a > k. If Xn is a random variable representing A’s

stake after n plays (or at time point n), then initially X0 = k. If Xn = 0, then the

1 The problem was first proposed by Pascal in 1656. Many mathematicians were attracted by this gam-
bling question, including Fermat (1601–1665), Huygens (1629–1695) and others. For an account of
the history of the problem see Song and Song (2013).

33
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gambler A has lost (note that we must have n ≥ k), whilst if Xn = a (n ≥ a − k)

then B is ruined, and in both cases the game terminates. Our initial objective is the

derivation of P(Xn = 0) for all n ≥ k.

The sequence of random variables X0, X1, X2 . . . represents what is known as a

random process with a finite sample space consisting of the integers from 0 to a.

These values are known as the state of the process at each stage or time point n. If

Ck is the event that A is eventually ruined when starting with initial capital k, then,

by using the fact Xn = 0 (n = k, k + 1, k + 2, . . .), it follows that

P(Ck) =

∞∑

n=k

P(Xn = 0).

Note again that the summation starts at n = k since the minimum number of steps

in which the game could end must be k. Note also that the results of each trial are

independent, but Xn, n = 0, 1, 2, . . . are not. This is easily seen to be true by con-

sidering a particular value of Xn, say x, (0 < x < a), after n plays, say. This event

may only occur if previously Xn−1 = x− 1 or x+ 1. The state reached in any play

depends on the state of the previous play only: in other words the process is said to

display the Markov property, of which more will be explained later.

Clearly the calculation of P(Xn = 0) for all n is likely to be a long and tedious

process. However, we now introduce a method for the calculation of these probabili-

ties which avoids this: it is based on the solution of linear homogeneous difference

equations.

Due to the sequential nature of this process, after the result of a play is known, then

A’s stake is either increased or decreased by one unit. This capital then becomes

the new stake which, in turn, becomes the initial stake for the next play. Hence if

we define uk = P(Ck), then after the first play the probability of ruin is either

uk+1 = P(Ck+1) or uk−1 = P(Ck−1). Let us consider the result of the first play,

and define D to be the event that A wins, and the complement Dc the event that A
loses. Using the law of total probability (Section 1.3), it follows that

P(Ck) = P(Ck|D)P(D) +P(Ck|Dc)P(Dc). (2.1)

As remarked previously, event Ck given a win, namely Ck|D becomes event Ck+1.

Hence P(Ck|D) = P(Ck+1). Similarly P(Ck|Dc) = P(Ck−1). Also P(D) = p
and P(Dc) = q, which means that Eqn (2.1) can be written as

uk = uk+1p+ uk−1q, (1 ≤ k ≤ a− 1).

This equation can be re-arranged into

puk+1 − uk + quk−1 = 0, (2.2)

which is a second-order linear homogeneous difference equation. It is described as

homogeneous since there is no term on the right-hand side of Eqn (2.2), and second-

order since the sequence difference between uk+1 and uk−1 is (k+1)− (k−1) = 2.

If the gambler starts with zero stake, then ruin is certain, whilst if the gambler starts

with all the capital a, then ruin is impossible. These translate into

u0 = P(C0) = 1 and ua = P(Ca) = 0, (2.3)
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which are the boundary conditions for the difference equation (2.2).

It is also possible to solve the equation by iteration (see Tuckwell (1995)): this

will be the subject of Problem 2.17. However here we shall describe a method which

also has a more general application (see Jordan and Smith (2008) for a more detailed

explanation of the solution of difference equations). Consider a solution of the form

uk = mk,

where m is to be determined. Direct substitution into the left-hand side of Eqn (2.2)

yields

puk+1 − uk + quk−1 = mk−1[pm2 −m+ q].

This is zero if either m = 0, which is known as the trivial solution and is not usually

of interest in this context, or if m satisfies the quadratic equation

pm2 −m+ q = (pm− q)(m− 1) = 0, (p+ q = 1),

which is known as the characteristic equation of the difference equation (2.2). The

roots of the equation are m1 = 1 and m2 = q/p. Since the difference equation is

linear, the general solution is, provided that p 6= q, any linear combination of the two

solutions with m = m1 and m = m2, that is

uk = A1m
k
1 +A2m

k
2 = A1 +A2

(
q

p

)k

,

where A1 and A2 are arbitrary constants. The boundary conditions u0 = 1 and

ua = 0 imply that

A1 +A2 = 1 and A1 +A2s
a = 0,

so that

A1 = − sa

1− sa
and A2 =

1

1− sa
,

where s = q/p. Hence the probability that the gambler is ruined given an initial

capital of k is, if p 6= 1
2 ,

uk =
sk − sa

1− sa
. (2.4)

The special case p = q = 1
2 has to be treated separately. The characteristic equa-

tion of
1
2uk+1 − uk +

1
2uk−1 = 0

is

m2 − 2m+ 1 = 0,

which has the repeated root m1 = m2 = 1. In this case one solution is 1, but we still

require a second independent solution. For a repeated root of difference equations

we try k × (the repeated root). Hence

1
2uk+1 − uk +

1
2uk−1 = 1

2 (k + 1)− k + 1
2 (k − 1) = 0,

implying that uk = k is a second independent solution. Thus the general solution is

uk = A1 +A2k.
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With the same boundary conditions, it follows that

uk =
a− k

a
. (2.5)

If the game is now looked at from B’s viewpoint, then to obtain his/her probability

of ruin, va−k, say, there is no need to derive this from first principles. In the above

derivation, simply interchange p and q, and replace k by a−k in the results (2.4) and

(2.5). Hence B is ruined with probability

va−k =

(
1

sa−k
− 1

sa

)/(

1− 1

sa

)

=
sk − 1

sa − 1
,

if s 6= 1, and with probability

va−k =
k

a
,

if s = 1.

It follows that

uk + va−k = 1

in both cases. Hence the game must terminate eventually with one of the players

losing.

Example 2.1. Suppose the possibility of a draw is now included. Let the probability that the

gambler wins, loses, or draws against the opponent in a play be respectively p, q, or r. We

assume that these are the only possible outcomes so that p + q + r = 1. Show that the

probability of ruin uk is given by

uk =
sk − sa

1− sa
, s =

q

p
6= 1, (p 6= 1

2
),

where the gambler’s initial stake is k and the total at stake is a.

In this case the law of total probability given by (2.1) is extended to include a third possible

outcome. In the draw the stakes remain unchanged after the play. Hence the probability of ruin

uk satisfies

uk = uk+1p+ ukr + uk−1q,

or

puk+1 − (1− r)uk + quk−1 = 0. (2.6)

As in the main problem, the boundary conditions are u0 = 1 and ua = 0. Replace 1 − r by

p+ q in the difference equation. Its characteristic equation becomes

pm2 − (p+ q)m+ q = (pm− q)(m− 1) = 0,

which has the general solution

uk = A1 + A2

(
q

p

)k

.

Notice that this is the same solution as the standard problem with no draws; q/p is still the

ratio of the probability of losing to winning at each play. The only difference is that p+ q 6= 1
in this case. Hence as in (2.4)

uk =
sk − sa

1− sa
, (2.7)

where s = q/p.
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Example 2.2. In a gambler’s ruin game the initial stakes are k and a − k (1 ≤ k ≤ a − 2)

for the two players: if the gambler wins then she or he wins two units but if the gambler loses

then she or he loses one unit. If at some point in the game the gambler has a − 1 units then

only one unit can be won. The probability of win or lose at each play is p = 1
3

or q = 2
3

. What

are the boundary conditions and what is the probability of ruin?

If uk is the probability of the gambler’s ruin, then the law of total probability has to be

changed in this problem to

uk = puk+2 + (1− p)uk−1,

for 1 ≤ k ≤ a− 2.

The boundary conditions u0 = 1 and ua = 0 still hold. If k = a− 1, then the law of total

probability has to be amended to

ua−1 = pua + (1− p)ua−2,

or

ua−1 − (1− p)ua−2 = 0,

and this becomes the third boundary condition. Three boundary conditions are required since

the difference equation for uk is now the third-order equation

puk+2 − uk + (1− p)uk−1 = 0.

Its characteristic equation is, with p = 1
3

,

m3 − 3m+ 2 = (m− 1)2(m+ 2) = 0,

which has the roots 1, 1,−2. Hence the general solution is (note the solution for the repeated

root)

uk = A1 + A2k +A3(−2)k. (2.8)

The three boundary conditions above lead to

A1 +A3 = 1,

A1 +A2a+A3(−2)a = 0,

A1 +A2(a− 1) +A3(−2)a−1 = 2
3
(A1 +A2(a− 2) +A3(−2)a−2),

for A1, A2, and A3. The solutions are

A1 = 1−A3 =
(1 + 3a)(−2)a

(1 + 3a)(−2)a − 1
, A2 =

−3(−2)a

(1 + 3a)(−2)a − 1
,

from which it follows that

uk =
(1 + 3a− 3k)(−2)a − (−2)k

(1 + 3a)(−2)a − 1
.

2.3 Some numerical simulations

It is very easy now with numerical and symbolic computation to simulate probability

problems with simple programs. Figure 2.1 shows a simulation of the gambler’s ruin

in the case a = 20, k = 10, and p = 1
2 : the theoretical probability of ruin is given by

Eqn (2.5), namely uk = (a− k)/a = 1
2 . The program runs until the gambler’s stake
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O 10 20 30 40

20

10

gambler’s stake

steps

Figure 2.1 The figure shows the steps in a simulation of a gambler’s ruin problem with a = 20
and k = 10 with probability p = 1

2
at each play. Ruin occurs after 40 steps in this case,

although by (2.5) the gambler has even chances of winning or losing the game.

is either 0 or 20 in this example. Some sample probabilities computed from Eqn (2.4)

and Eqn (2.5):

uk =
sk − sa

1− sa
, (p 6= 1

2 ), uk =
a− k

a
, (p = 1

2 ),

are shown in Figure 2.2, again with a = 20 for various initial probabilities and play

probabilities p. So, for example, the probability of ruin with p = 0.42 and initial

Figure 2.2 The ruin probability uk = (sk− sa)/(1− sa), (p 6= 1
2

), uk = (a−k)/a, (p = 1
2

)

versus k for a = 20 and a sample of probabilities p.

stake of 17 is about 0.62. The figure shows that, in a game in which both parties

start with the same initial stake 10, the gambler’s probability of ruin becomes very

close to certainty for any p less than 0.35. An alternative view is shown in Figure 2.3,

which shows the value of u10 versus p. The figure emphasizes that there is only a real
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u10

p

1.0

0.8

0.6

0.4

0.2

0
0.2 0.4 0.6 0.8 1.0

a =20

Figure 2.3 The probability u10 is shown against the play probability p for the case a = 20.

contest between the players if p lies between 0.4 and 0.6.

2.4 Duration of the game

It is natural in the gambler’s ruin problem to be curious about how long, or really

how many plays we would expect the game to last. This is the number of steps to

termination in which either the gambler or the opponent loses the game. Let us first

consider a situation where the state of the game is defined in terms of two variables:

k, the initial capital, and n, the remaining number of plays until the end of the game.

Now n is unknown, and is a value of the random variable N which depends, in turn,

on the results of the remaining plays.

Let p(n|k) be the conditional probability that the game ends in n steps given that

the initial capital is k. Clearly n will be any positive integer greater than or equal to

the smaller of k and a− k since if the gambler won (lost) every play then s/he would

win (lose) the game in a − k (k) plays. Let the random variable N be the number

of plays until the game ends, and let K be the random variable of the initial stake.

The expected number of plays to termination, or, as it is also known, the expected

duration, will be the conditional expectation and random variable

E(N |K) =

∞∑

n=0

np(n|k) = dk, (2.9)

say (see Section 1.10 for discussion of conditional expectation). We have proved

in Section 2.2 that termination is certain eventually so that p(n|k) is a probability

function and must therefore satisfy

∞∑

n=0

p(n|k) = 1,

for each fixed k. After the result of the next play is known, then the process will

move from step (k, n) to either step (k + 1, n − 1) with probability p, or to step

(k − 1, n− 1) with probability q = 1− p. By the law of total probability, it follows

that

p(n|k) = p(n− 1|k + 1)p+ p(n− 1|k − 1)q, (n, k ≥ 1).
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Substituting for p(n|k) in Eqn (2.9), we obtain the expected duration dk given by

dk = p
∞∑

n=1

np(n− 1|k + 1) + q
∞∑

n=1

np(n− 1|k − 1).

The change of variable r = n− 1 in both summations leads to

dk = p

∞∑

r=0

(r + 1)p(r|k + 1) + q

∞∑

r=0

(r + 1)p(r|k − 1),

= p

∞∑

r=1

rp(r|k + 1) + q

∞∑

r=1

rp(r|k − 1) + p

∞∑

r=0

p(r|k + 1) +

q

∞∑

r=0

p(r|k − 1),

= p

∞∑

r=1

rp(r|k + 1) + q

∞∑

r=1

rp(r|k − 1) + p+ q,

since for the probability functions p(r|k + 1) and p(r|k − 1),

∞∑

r=0

pk+1(r|k + 1) =

∞∑

r=0

pk−1(r|k − 1) = 1.

Hence the expected duration dk satisfies the difference equation

dk = pdk+1 + qdk−1 + 1, (k ≥ 1)

since p+ q = 1 and

dk+1 =
∞∑

r=1

rp(r|k + 1) and dk−1 =
∞∑

r=1

rp(r|k − 1).

This equation can be re-arranged into

pdk+1 − dk + qdk−1 = −1, (2.10)

which is similar to the difference equation for the probability uk except for the term

on the right-hand side. This is a linear inhomogeneous second-order difference equa-

tion. The boundary conditions are again obtained by considering the extremes where

one of the players loses. Thus if k = 0 or k = a, then the game terminates so that

the expected durations must be zero, that is,

d0 = da = 0.

The solution to this type of difference equation is the sum of the general solution of

the corresponding homogeneous equation, known as the complementary function,

and a particular solution of the complete equation. The homogeneous equation has,

for s = q/p 6= 1, the general solution

A1 +A2s
k

as in Eqn (2.2). For the particular solution we look at the right-hand side and try a
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suitable function. Since any constant is a solution of the homogeneous equation, it

cannot also be a solution of the inhomogeneous equation. Instead, we try dk = Ck,

where C is a constant. Thus

pdk+1 − dk + qdk−1+1=pC(k + 1)− Ck + qC(k − 1)+1=C(p− q)+1=0,

for all k if C = 1/(q − p). Hence the full general solution is

dk = A1 +A2s
k +

k

q − p
.

The boundary conditions imply

A1 +A2 = 0, and A1 +A2s
a +

a

q − p
= 0.

Hence

A1 = −A2 = − a

(q − p)(1− sa)
,

with the result that the expected duration for s 6= 1 is

dk = − a(1− sk)

(q − p)(1− sa)
+

k

q − p
=

1

1− 2p

[

k − a(1− sk)

1− sa

]

. (2.11)

If s = 1, the difference equation (2.12) becomes

dk+1 − 2dk + dk−1 = −2.

The general solution of the homogeneous equation is

A1 +A2k,

which means that neither C nor Ck can satisfy the inhomogeneous equation. Instead

we try Ck2 for the particular solution. Thus

dk+1 − 2dk + dk−1 + 2 = C(k + 1)2 − 2Ck2 + C(k − 1)2 + 2 = 2C + 2 = 0,

if C = −1. Hence

dk = A1 +A2k − k2 = k(a− k).

The boundary conditions imply A1 = 0 and A2 = a, so that

dk = k(a− k). (2.12)

A sample of expected durations are shown in Figure 2.4 for a total stake of a =
20 and different probabilities p. For p = 1

2 the expected duration has a maximum

number of 100 when k = 10. Hence, on average in this case, a game in which both

players start with 10 units each will last for 100 plays. Generally if a = 2k, each

player starting with a stake of k and p = 1
2 , then the expected duration behaves as

k2.

2.5 Some variations of gambler’s ruin

2.5.1 The infinitely rich opponent

Consider the gambler’s ruin problem in which the opponent is assumed to be in-

finitely rich. This models a gambler playing against a bank or a casino whose re-
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Figure 2.4 Expected duration dk against k for a = 20 and a selection of play probabilities p.

sources are very large. As before, the gambler’s initial stake is a finite integer k, but

effectively the bank’s resources are infinite, that is, a = ∞. We approach the problem

by looking at the finite case, and then find the limits of uk and the expected duration,

dk, as a → ∞. As we might expect, the results depend on magnitude of s = q/p, the

ratio of the probabilities.

(a) s = q/p < 1, (p > 1
2 ). The gambler A has the advantage in each play. Since

lima→∞ sa = 0, it follows from Eqn (2.4) that

limuk = lim
a→∞

sk − sa

1− sa
= sk < 1.

The expected number of plays until this happens is given by Eqn (2.11), which states

that

dk = − a(1− sk)

(q − p)(1 − sa)
+

k

q − p
.

Again sa → 0, since s < 1, so that a in the first term dominates with the result

that lima→∞ dk = ∞. Hence A is not certain to be ruined but the game would be

expected to take an infinite number of plays, which itself is to be anticipated since B
has an infinite stake.

(b) s > 1, (p < 1
2 ). B has the advantage in each play. In this case lima→∞ sa = ∞,

so that, from Eqn (2.4),

lim
a→∞

uk = lim
a→∞

(sk/sa)− 1

(1/sa)− 1
= 1,

and

lim
a→∞

dk = lim
a→∞

−a

sa
(1− sk)

( 1
sa

− 1)(q − p)
+

k

q − p
=

k

q − p
,

since

lim
a→∞

a

sa
= 0.

As might be anticipated, ruin is certain and the expected duration is finite.
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(c) s = 1 or p = 1
2 . For the case of equal probabilities,

lim
a→∞

uk = lim
a→∞

(

1− k

a

)

= 1, and lim
a→∞

dk = lim
a→∞

k(a− k) = ∞.

Ruin is certain but it may take a great deal of time.

2.5.2 The generous opponent

Suppose that both players start with finite capital, and suppose that wheneverA loses

his/her last unit, one unit is returned to A so that A is never ruined. The opponent B
is the generous gambler. As a consequence we might expect that B must be ruined

since A cannot lose. Hence there can be no possibility, other than uk = 0. This can

be checked by solving Eqn (2.2) subject to the boundary conditions

u0 = u1, and ua = 0.

For the expected duration the boundary condition at k = 0 must be modified.

Since one unit is returned, the expected duration at k = 0 must be the same as that at

k = 1. The boundary conditions become

d0 = d1, and da = 0.

Consider the case of equal probabilities at each play. Then for p = 1
2 ,

dk = A1 +A2k − k2.

Hence A1 = a2 − a and A2 = 1, so that

dk = (a− k)(a+ k − 1).

There are thus (a− k)(a− 1) more plays than in the standard game.

2.5.3 Changing the stakes

Suppose that in the original game the stakes per play are halved for both players so

that in the new game A has effectively 2k units and B has 2(a− k) units. How is the

probability of ruin changed?

Let vk be the probability of ruin. Then, by analogy with the formula for uk given

by Eqn (2.4),

vk =
s2k − s2a

1− s2a
=

(sk − sa)(sk + sa)

1− sa)(1 + sa)
= uk

sk − sa

1 + sa
, s 6= 1.

If s < 1, then
sk + sa

1 + sa
< 1

so that vk < uk. On the other hand, if s > 1, then

sk + sa

1 + sa
> 1.

so that vk > uk. If s < 1 namely p > 1
2 , then it could be wise for A to agree to
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this change of play. As might be expected for s = 1, that is, equal probabilities with

p = 1
2 , the probability of ruin is unaffected.

2.6 Problems

2.1. In the standard gambler’s ruin problem, with total stake a and gambler’s stake k, and

the gambler’s probability of winning at each play is p, calculate the probability of ruin in the

following cases;

(a) a = 100, k = 5, p = 0.6;

(b) a = 80, k = 70, p = 0.45;

(c) a = 50, k = 40, p = 0.5.

Also find the expected duration in each case.

2.2. In a casino game based on the standard gambler’s ruin, the gambler and the dealer each

start with 20 tokens and one token is bet on at each play. The game continues until one player

has no further tokens. It is decreed that the probability that any gambler is ruined is 0.52 to

protect the casino’s profit. What should the probability that the gambler wins at each play be?

2.3. Find general solutions of the following difference equations:

(a) uk+1 − 4uk + 3uk−1 = 0;

(b) 7uk+2 − 8uk+1 + uk = 0;

(c) uk+1 − 3uk + uk−1 + uk−2 = 0;

(d) puk+2 − uk + (1− p)uk−1 = 0, (0 < p < 1).

2.4 Solve the following difference equations subject to the given boundary conditions:

(a) uk+1 − 6uk + 5uk−1 = 0, u0 = 1, u4 = 0;

(b) uk+1 − 2uk + uk−1 = 0, u0 = 1, u20 = 0;

(c) dk+1 − 2dk + dk−1 = −2, d0 = 0, d10 = 0;

(d) uk+2 − 3uk + 2uk−1 = 0, u0 = 1, u10 = 0, 3u9 = 2u8.

2.5. Show that a difference equation of the form

auk+2 + buk+1 − uk + cuk−1 = 0,

where a, b, c ≥ 0 are probabilities with a+ b+ c= 1, can never have a characteristic equation

with complex roots.

2.6. In the standard gambler’s ruin problem with equal probabilities p = q = 1
2

, find the

expected duration of the game given the usual initial stakes of k units for the gambler and

a− k units for the opponent.

2.7. In a gambler’s ruin problem the possibility of a draw is included. Let the probability that

the gambler wins, loses, or draws against an opponent be, respectively, p, p, 1− 2p, (0 < p <
1
2
). Find the probability that the gambler loses the game, given the usual initial stakes of k

units for the gambler and a− k units for the opponent. Show that dk, the expected duration of

the game, satisfies

pdk+1 − 2pdk + pdk−1 = −1.
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Solve the difference equation and hence find the expected duration of the game.

2.8. In the changing stakes game in which a game is replayed with each player having twice as

many units, 2k and 2(a−k) respectively, suppose that the probability of a win for the gambler

at each play is 1
2

. Whilst the probability of ruin is unaffected, by how much is the expected

duration of the game extended compared with the original game?

2.9. A roulette wheel has 37 radial slots of which 18 are red, 18 are black, and 1 is green.

The gambler bets one unit on either red or black. If the ball falls into a slot of the same color,

then the gambler wins one unit, and if the ball falls into the other color (red or black), then

the casino wins. If the ball lands in the green slot, then the bet remains for the next spin of the

wheel or more if necessary until the ball lands on a red or black slot. The original bet is either

returned or lost depending on whether the outcome matches the original bet or not (this is the

Monte Carlo system). Show that the probability uk of ruin for a gambler who starts with k
chips with the casino holding a− k chips satisfies the difference equation

36uk+1 − 73uk + 37uk−1 = 0.

Solve the difference equation for uk. If the house starts with 1,000,000 euros at the roulette

wheel and the gambler starts with 10,000 euros, what is the probability that the gambler breaks

the bank if 5,000 euros are bet at each play?

In the US system the rules are less generous to the players. If the ball lands on green then

the player simply loses. What is the probability now that the player wins given the same initial

stakes? (See Luenberger (1979).)

2.10. In a single trial the possible scores 1 and 2 can each occur with probability 1
2

. If pm is

the probability of scoring exactly m points at some stage, that is the score after several trials

is the sum of individual scores in each trial. Show that

pm = 1
2
pm−1 +

1
2
pm−2.

Calculate p1 and p2, and find a formula for pm. How does pm behave as m becomes large?

How do you interpret the result?

2.11. In a single trial the possible scores 1 and 2 can occur with probabilities q and 1 − q,

where 0 < q < 1. Find the probability of scoring exactly n points at some stage in an

indefinite succession of trials. Show that

pn → 1

2− q
,

as n → ∞.

2.12. The probability of success in a single trial is 1
3

. If uk is the probability that there are no

two consecutive successes in k trials, show that uk satisfies

uk+1 = 2
3
uk + 2

9
uk−1.

What are the values of u1 and u2? Hence show that

uk =
1

6

[

(3 + 2
√
3)

(
1 +

√
3

3

)k

+ (3− 2
√
3)

(
1−

√
3

3

)k
]

.

2.13. A gambler with initial capital k units plays against an opponent with initial capital a −
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k units. At each play of the game the gambler either wins one unit or loses one unit with

probability 1
2

. Whenever the opponent loses the game, the gambler returns one unit so that the

game may continue. Show that the expected duration of the game is k(2a− 1− k) plays.

2.14. In the usual gambler’s ruin problem, the probability that the gambler is eventually ruined

is

uk =
sk − sa

1− sa
, s =

q

p
, (p 6= 1

2
).

In a new game the stakes are halved, whilst the players start with the same initial sums. How

does this affect the probability of losing for the gambler? Should the gambler agree to this

change of rule if p < 1
2

? By how many plays is the expected duration of the game extended?

2.15. In a gambler’s ruin game, suppose that the gambler can win £2 with probability 1
3

or lose

£1 with probability 2
3

. Show that

uk =
(3k − 1− 3a)(−2)a + (−2)k

1− (3a+ 1)(−2)a
.

Compute uk if a = 9 for k = 1, 2, . . . , 8.

2.16. Find the general solution of the difference equation

uk+2 − 3uk + 2uk−1 = 0.

A reservoir with total capacity of a volume units of water has, during each day, either a

net inflow of two units with probability 1
3

or a net outflow of one unit with probability 2
3

. If

the reservoir is full or nearly full, any excess inflow is lost in an overflow. Derive a difference

equation for this model for uk, the probability that the reservoir will eventually become empty

given that it initially contains k units. Explain why the upper boundary conditions can be

written ua = ua−1 and ua = ua−2. Show that the reservoir is certain to be empty at some

time in the future.

2.17. Consider the standard gambler’s ruin problem in which the total stake is a and gambler’s

stake is k, and the gambler’s probability of winning at each play is p and losing is q = 1 − p.

Find uk, the probability of the gambler losing the game, by the following alternative method.

List the difference Eqn (2.2) as

u2 − u1 = s(u1 − u0) = s(u1 − 1)

u3 − u2 = s(u2 − u1) = s2(u1 − 1)

.

..

uk − uk−1 = s(uk−1 − uk−2) = sk−1(u1 − 1),

where s = q/p 6= 1
2

and k = 2, 3, . . . a. The boundary condition u0 = 1 has been used in the

first equation. By adding the equations, show that

uk = u1 + (u1 − 1)
s− sk

1− s
.

Determine u1 from the other boundary condition ua = 0, and hence find uk. Adapt the same

method for the special case p = q = 1
2

.

2.18. A car park has 100 parking spaces. Cars arrive and leave randomly. Arrivals or departures
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of cars are equally likely, and it is assumed that simultaneous events have negligible probabil-

ity. The ‘state’ of the car park changes whenever a car arrives or departs. Given that at some

instant there are k cars in the car park, let uk be the probability that the car park first becomes

full before it becomes empty. What are the boundary conditions for u0 and u100? How many

car movements can be expected before this occurs?

2.19. In a standard gambler’s ruin problem with the usual parameters, the probability that the

gambler loses is given by

uk =
sk − sa

1− sa
, s =

1− p

p
.

If p is close to 1
2

, given say by p = 1
2
+ ε where |ε| is small, show, by using binomial

expansions, that

uk =
a− k

a

[

1− 2kε− 4

3
(a− 2k)ε2 +O(ε3)

]

as ε → 0. (The order O terminology is defined as follows: we say that a function g(ε) = O(εb)

as ε → 0 if g(ε)/εb is bounded in a neighborhood which contains ε = 0.)

2.20. A gambler plays a game against a casino according to the following rules. The gambler

and casino each start with 10 chips. From a deck of 53 playing cards which includes a joker,

cards are randomly and successively drawn with replacement. If the card is red or the joker,

the casino wins 1 chip from the gambler, and if the card is black the gambler wins 1 chip from

the casino. The game continues until either player has no chips. What is the probability that

the gambler wins? What will be the expected duration of the game?

2.21. In the standard gambler’s ruin problem with total stake a and gambler’s stake k, the

probability that the gambler loses is

uk =
sk − sa

1− sa
,

where s = (1 − p)/p. Suppose that uk = 1
2

, that is, fair odds. Express k as a function of a.

Show that

k =
ln[ 1

2
(1 + sa)]

ln s
.

Of course this value of k can only be an approximation since it is generally not an integer.

2.22. In a gambler’s ruin game the probability that the gambler wins at each play is αk and

loses is 1− αk , (0 < αk < 1, 0 ≤ k ≤ a− 1), that is, the probability varies with the current

stake. The probability uk that the gambler eventually loses satisfies

uk = αkuk+1 + (1− αk)uk−1, uo = 1, ua = 0.

Suppose that uk is a specified function such that 0 < uk < 1, (1 ≤ k ≤ a− 1), u0 = 1, and

ua = 0. Express αk in terms of uk−1, uk, and uk+1.

Find αk in the following cases:

(a) uk = (a− k)/a;

(b) uk = (a2 − k2)/a2;

(c) uk = 1/(a+ k).

2.23. In a gambler’s ruin game the probability that the gambler wins at each play is αk and
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loses is 1− αk , (0 < αk < 1, 1 ≤ k ≤ a− 1), that is, the probability varies with the current

stake. The probability uk that the gambler eventually loses satisfies

uk = αkuk+1 + (1− αk)uk−1, uo = 1, ua = 0.

Reformulate the difference equation as

uk+1 − uk = βk(uk − uk−1),

where βk = (1− αk)/αk. Hence show that

uk = u1 + γk−1(u1 − 1), (k = 2, 3, . . . , a)

where

γk = β1 + β1β2 + · · ·+ β1β2 . . . βk.

Using the boundary condition at k = a, confirm that

uk =
γa−1 − γk−1

1 + γa−1
.

Check that this formula gives the usual answer if αk = p 6= 1
2

, a constant.

2.24. Suppose that a fair n-sided die is rolled n independent times. A match is said to occur if

side i is observed on the ith trial, where i = 1, 2, . . . , n.

(a) Show that the probability of at least one match is

1−
(

1− 1

n

)n

.

(b) What is the limit of this probability as n → ∞?

(c) What is the probability that just one match occurs in n trials?

(d) What value does this probability approach as n → ∞?

(e) What is the probability that two or more matches occur in n trials?

2.25. (Kelly’s2 strategy) A gambler plays a repeated favourable game in which the gambler

wins with probability p > 1
2

and loses with probability q = 1 − p. The gambler starts with

an initial outlay K0 (in some currency). For the first game the player bets a proportion rK0,

(0 < r < 1). Hence, after this play the stake is K0(1 + r) after a win or K0(1 − r) after

losing. Subsequently, the gambler bets the same proportion of the current stake at each play.

Hence, after n plays of which wn are wins the stake Sr will be

Kn(r) = K0(1 + r)wn(1− r)n−wn .

Construct the function

Gn(r) =
1

n
ln

[
Kn(r)

K0

]

.

What is the expected value of Gn(r) for large n? For what values of r is this expected value

a maximum? This value of r indicates a safe betting level to maximise the gain, although

at a slow rate. You might consider why the logarithm is chosen: this is known as a utility

function in gambling and economics. It is a matter of choice and is a balance between having

a reasonable gain against having a high risk gain. Calculate r if p = 0.55. [At the extremes

r = 0 corresponds to no bet whilst r = 1 corresponds to betting K0—the whole stake—in

one go, which could be catastrophic.]

2 John L. Kelly (1923–1965), American scientist.



CHAPTER 3

Random Walks

3.1 Introduction

Another way of modelling the gambler’s ruin problem of the last chapter is as a one-

dimensional random walk. Suppose that a+1 positions are marked out on a straight

line and numbered 0, 1, 2, . . . , a. A person starts at k where 0 < k < a. The walk

proceeds in such a way that at each step there is a probability p that the walker goes

‘forward’ one place to k+1, and a probability q = 1− p that the walker goes ‘back’

one place to k − 1. The walk continues until either 0 or a is reached, and then ends.

Generally, in a random walk, the position of a walker after having moved n times is

known as the state of the walk after n steps or after covering n stages. Thus the walk

described above starts at stage k at step 0 and moves to either stage k − 1 or stage

k + 1 after 1 step, and so on. A random walk is said to be symmetric if p = q = 1
2 .

If the walk is bounded, then the ends of the walk are known as barriers, and they

may have various properties. In this case the barriers are said to be absorbing, which

implies that the walk must end once a barrier is reached since there is no escape.

On the other hand, the barrier could be reflecting, in which case the walk returns to

its previous state. A useful diagrammatic way of representing random walks is by a

transition or process diagram as shown in Figure 3.1. In a transition diagram the

possible stages of the walker can be represented by points on a line. If a transition

between two points can occur in one step, then those points are joined by a curve or

edge, as shown with an arrow indicating the direction of the walk and a weighting

denoting the probability of the step occurring. In discrete mathematics or graph the-

ory the transition diagram is known as a directed graph. A walk in the transition

diagram is a succession of edges covered without a break. In Figure 3.1 the closed

loops with weightings of 1 at the ends of the walk indicate the absorbing barriers

with no escape.

0 1 2 a-2 a-1 a
1 1

p p p

q q q

Figure 3.1 Transition diagram for a random walk with absorbing barriers at each end of the

walk.

49
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3.2 Unrestricted random walks

A simple random walk on a line or in one dimension occurs when a step forward

(+1) has probability p and a step back (−1) has probability q(= 1 − p). At the i-th
step the modified Bernoulli random variable Wi (see Section 1.7) is observed, and

the position of the walk at the n-th step is the random variable:

Xn = X0 +

n∑

i=1

Wi = Xn−1 +Wn. (3.1)

In the gambler’s ruin problem, X0 = k, but in the following discussion it is assumed,

without loss of generality, that walks start from the origin so that X0 = 0.

The random walks described so far are restricted by barriers. We now consider

random walks without barriers, or unrestricted random walks as they are known. In

these walks, the position or state x can take any of the values {. . . ,−2,−1, 0, 1, 2, . . .}.

In particular, we are interested in the position of the walk after a number of steps and

the probability of a return to the origin, the start of the walk. As seen from Eqn (3.1),

the position of the walk at step n simply depends on the position at the (n−1)th step.

This means that the simple random walk possesses what is known as the Markov

property: the current state of the walk depends on its immediate previous state, not

on the history of the walk up to the present state. Furthermore Xn = Xn−1 ± 1, and

we know that the transition probabilities from one position to another

P(Xn = j|Xn−1 = j − 1) = p,

and

P(Xn = j|Xn−1 = j + 1) = q,

are independent of n, the number of steps in the walk.

It is straightforward to find the mean and variance of Xn from (3.1) with X0 = 0:

E(Xn) = E

(
n∑

i=1

Wi

)

=

n∑

i=1

E(Wi),

V(Xn) = V

(
n∑

i=1

Wi

)

=

n∑

i=1

V(Wi),

since the Wi are independent and identically distributed random variables. Thus

E(Wi) = 1.p+ (−1).q = p− q.

Since

V(Wi) = E(W 2
i )− [E(Wi)]

2,

and

E(W 2
i ) = 12.p+ (−1)2q = p+ q = 1,

then

V(Wi) = 1− (p− q)2 = 4pq.

Hence the probability distribution of the position of the random walk at stage n has
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mean and variance

E(Xn) = n(p− q), and V(Xn) = 4npq.

If p > 1
2 then we would correctly expect a drift away from the origin in a positive

direction, and if p < 1
2 , it would be expected that the drift would be in the negative

direction. However, sinceV(Xn) is proportional to n, and thus grows with increasing

n, we would be increasingly uncertain about the position of the walker as n increases.

For the symmetric random walk, when p = 1
2 , the expected position after n steps

is the origin. However, this is precisely the value of p which yields the maximum

value of the varianceV(Xn) = 4npq = 4np(1−p) (check where dV(Xn)/dp = 0).

Thus the maximum value as a function of p is maxp V(Xn) = n.

Knowing the mean and standard variation of a random variable does not enable us

to identify the probability distribution. However, for largen we may apply the central

limit theorem, which states: if W1,W2, . . . is a sequence of independent identically

distributed (iid) random variables with mean µ and varianceσ2, then, for the random

variable Xn = W1 +W2 + · · ·+Wn,

Xn − nµ√
nσ2

has a standard normal N(0, 1) distribution as n → ∞ (see Section 1.8). We shall not

give a proof of this theorem in this book (see, for example, Larsen and Marx (1985)).

In our case µ = p− q and σ
2 = V(Wi) = 4pq. Put another way, we can say that

Zn =
Xn − n(p− q)√

4npq
≈ N(0, 1) or Xn ∼ N [n(p− q), 4npq] (3.2)

for large n.

In this approximation, Xn is a discrete random variable, but the normal distribu-

tion assumes a continuous random variable. We can overcome this by employing a

continuity correction. Suppose that we require the probability that the position of

the walk at (say) the 100th step with p = 0.7 (say) lies on or between positions 35

and 45. Then

E(X100) = 100(0.7− 0.3) = 40, V(X100) = 4× 100× 0.7× 0.3 = 84.

For the correction we use P(34.5 < X100 < 45.5) since the event (35 < X100 < 45)
is approximated by P(34.5 < X100 < 45.5) for large n due to rounding. Put another

way the event (35 < X100 < 45) for xn discrete is equivalent to P(34.5 < X100 <
45.5) for Xn continuous.

From (3.2)

−0.60 ≈ 34.5− 40√
84

< Z100 =
X100 − n(p− q)√

4npq
<

45.5− 40√
84

≈ 0.60.

Finally

P(−0.60 < Z100 < 0.60) = Φ(0.60)− Φ(−0.60) = 0.45, (3.3)

where Φ(s) is the standard normal distribution function. Hence the required proba-

bility is approximately 0.45.
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3.3 The exact probability distribution of a random walk

As before we assume that the walk is such that X0 = 0, with steps to the right

or left occurring with probabilities p and q = 1 − p, respectively. The probability

distribution of the random variable Xn, the position after n steps, is a more difficult

problem. The position Xn, after n steps, can be written as

Xn = Rn − Ln,

where Rn is the random variable of the number of right (positive) steps (+1) and Ln

is that of the number of left (negative) steps (−1). Furthermore,

N = Rn + Ln,

where N is the random variable of the number of steps. Hence,

Rn =
1

2
(N +Xn).

Now, let vn,x be the probability that the walk is at position x after n steps. Thus

vn,x = P(Xn = x). (3.4)

The type of distribution can be deduced by the following combinatorial argument.

To reach position x after n ≥ |x| steps requires r = 1
2 (n + x) (+1) steps (and

consequently l = n − r = 1
2 (n − x) (−1) steps). Right (r) and left (l) must be

integers so that it is implicit that if x is an odd (even) integer then n must also be odd

(even). We now ask: in how many ways can r = 1
2 (n+ x) steps be chosen from n?

The answer is

hn,x =
n!

r!l!
=

n!

r!(n − r)!
=

(
n

r

)

.

The r = 1
2 (n + x) steps occur with probability pr and the l = 1

2 (n − x) steps with

probability ql. Hence, the probability that the walk is at position x after n steps is

(Eqn (3.4))

vn,x = hn,xp
rql =

(
n

r

)

prql =

(
n

1
2 (n+ x)

)

p
1
2
(n+x)q

1
2
(n−x). (3.5)

From Section 1.7 we observe that (3.5) defines a binomial distribution with index n
and probability p.

Example 3.1 Find the probability that a random walk of 8 steps with probability p = 0.6 ends

at (a) position x = 6, (b) position x = −4.

(a) The events X8 = 6 occur with r = 7 positive (+1) steps and l = 1 negative (−1) steps

but they could be in any order. Hence by (3.5),

P(X8 = 6) =

(
8

7

)

0.67 × 0.4 = 0.0896.

(b) For X8 = −4,

P(X8 = −4) =

(
8

2

)

0.62 × 0.46 = 0.0413.
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We defined vn,x to be the probability that the walk ends at position x after n steps:

the walk could have overshot x before returning there. A related probability is the

probability that the first visit to position x occurs at the n-th step. This is sometimes

also known as the first passage through x, and will be considered in the next section

for x = 0. The following is a descriptive derivation of the associated probability

generating function for the symmetric random walk in which the walk starts at the

origin, and we consider the probability that the walk is at the origin at a future step.

The walk can only return to the origin if n is even. For this reason put n = 2m,

(m = 1, 2, 3, . . .). From the previous section a symmetric random walk (p = 1
2 ) is at

the origin at step 2m if (Eqn (3.5))

v2m,0 =
1

22m

(
2m

m

)

= p2m, (m = 1, 2, 3, . . .), (3.6)

say. Construct a generating function (see Section 1.9) with these coefficients, namely

H(s) =

∞∑

m=1

p2ms2m =

∞∑

m=1

1

22m

(
2m

m

)

s2m.

An alternative identity for the binomial
(
2m
m

)
is needed as follows:

(
2m

m

)

=
(2m)!

m!m!
=

2m(2m− 1)(2m− 2) . . . 3.2.1

m!m!
,

=
2mm!(2m− 1)(2m− 3) . . . 3.1

m!m!
,

=
22m

m!
.
1

2
.
3

2
· · ·
(

m− 1

2

)

.

Hence

H(s) =

∞∑

m=1

1

m!

[
1

2

3

2
· · ·
(

m− 1

2

)]

s2m, (3.7)

which is recognizable as the binomial expansion of

H(s) = (1 − s2)−
1
2 − 1.

It is evident that H(1) = ∞: in other words the series for H(s) diverges at s = 1.

This breaks the first condition (a) for a generating function in Section 1.9. However,

the coefficients in the series do give the correct probabilities. This type of generating

function is sometimes known as giving a defective distribution. The reason for the

defect is that the mean 1

H ′(1) = lim
s→1−

= lim
s→1−

s

(1− s2)
3
2

= ∞. (3.8)

This means that the mean number of visits to the origin is infinite, but we shall not

1 s → 1− means that s tends to 1 from the left.
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prove these conclusions here; see Problem 3.24 for further discussion of the diver-

gence of the series.

3.4 First returns of the symmetric random walk

As we remarked in the previous section, a related probability is that for the event that

the first visit to position x occurs at the n-th step given that the walk starts at the

origin, known also as the first passage through x. We shall look in detail at the case

x = 0, which will lead to the probability of the first return to the origin. We shall

approach the first passage by using total probability (Section 1.3).

As in the previous section, for a return to the origin x = 0 to exist, the number of

steps n must be even, so let n = 2m (m = 1, 2, 3, . . .). Let A2m be the event that the

random number X2m = 0, and let B2k be the event that the first return to the origin

is at the 2k-th step. The significant difference is that the event A2m can occur many

times in a given walk. By the law of total probability (Section 1.3),

P(A2m) =
m∑

k=1

P(A2m|B2k)P(B2k). (3.9)

(In the earlier notations, P(A2m) = v2m,0 = p2m.) What (3.9) states is that the

probability that the walk is at the origin at step 2k must include every previous first

return for every k from k = 1 to k = m. As a consequence, P(A2m|B2k) = p2m−2k

(we define p0 = 1). Let f2k = P(B2k). Our aim is to construct f2k from (3.9).

It is worth pausing to look at (3.8) in a particular simple case to interpret the

various probabilities. Suppose m = 2. Then there are 24 = 16 possible distinct

walks which start at x = 0, of which 6 reach x = 0 after 4 steps, namely:

• (i) 0 → 1 → 0 → 1 → 0;

• (ii) 0 → 1 → 0 → −1 → 0;

• (iii) 0 → −1 → 0 → −1 → 0;

• (iv) 0 → −1 → 0 → 1 → 0;

• (v) 0 → 1 → 2 → 1 → 0;

• (vi) 0 → −1 → −2 → −1 → 0.

Therefore,

f2 = P(B2) =
2

22
=

1

2
[0 → 1 → 0 and 0 → −1 → 0],

f4 = P(B4) =
2

24
=

1

8
[from (v)and (vi)],

p4−2 = p2 = P(A4|B2) =
2× 22

24
=

1

2
,

p4−4 = p0 = P(A4|B4) =
2

2
= 1 [certainty].

Hence,

P(A4) =
1
2
1
2 + 1. 18 = 3

8 ,
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which agrees with v4,0 in (3.5). The first return probabilities are

f2 = P(B2), f4 = P(B4) =
1
8 .

Equation (3.8) can be expressed in the form

p2m =

m∑

k=1

p2m−2kf2k (3.10)

with p0 = 1 and f0 = 0. We intend to construct a generating function for the first

return or passage probabilities . Multiply both sides of (3.10) by s2m and sum for

all m ≥ 1 (assuming convergence of the infinite series for the moment). From Sec-

tion 3.3, Eqn (3.7),

H(s)− 1 =

∞∑

m=1

p2ms2m =

∞∑

m=1

m∑

k=1

p2m−2kf2ks
2k. (3.11)

Expanded, the series looks like this (remember, p0 = 1):

H(s) =

1∑

k=1

p2−2kf2ks
2k +

2∑

k=1

p4−2kf2ks
2k +

3∑

k=1

p6−2kf2ks
2k + · · ·

= f2s
2 + [p2f2s

2 + f4s
4] + [p4f2s

2 + p2f4s
4 + f6s

6] + · · ·
= [1 + p2s

2 + p4s
4 + · · ·][f2s2 + f4s

4 + · · ·]

=

[ ∞∑

m=0

p2ms2m

][ ∞∑

k=1

f2ks
2k

]

= [1 +H(s)]F (s), (3.12)

using (3.10), where

F (s) =
∞∑

k=1

f2ks
2k.

The derivation of (3.12) from (3.11) in this descriptive approach is really a well-

known result from the formula for the product of two power series. Finally from

(3.12) it follows that

F (s) = H(s)/[H(s) + 1] = 1− (1 − s2)
1
2 . (3.13)

The probability that the walk will, at some step, return to the origin is the sum of

all the first returns, namely

∞∑

k=1

f2k = F (1) = 1;

in other words, return is certain. In this walk the origin (or any starting point by

translation) is said to be persistent. However, the mean number of steps until this

return occurs is

∞∑

n=1

nfn = lim
s→1−

F ′(s) = lim
s→1−

s

(1 − s2)
1
2

= ∞.
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In other words a symmetric random walk which starts at the origin is certain to return

there in the future, but, on average, it will take an infinite number of steps.

Example 3.2 Find the probability that a symmetric random walk starting from the origin

returns there for the first time after 6 steps.

We require the coefficient of s6 in the power series expansion of the pgf F (s), which is

F (s) = 1− (1− s2)
1
2 = 1− [1 − 1

2
s2 − 1

8
s4 − 1

16
s6 +O(s8)]

=
1

2
s2 +

1

8
s4 +

1

16
s6 +O(s8).

Hence the probability of a first return at step 6 is 1
16

.
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Figure 3.2 Two computer simulations of symmetric random walks of 1,000 steps each.

Figure 3.2 shows a computer simulation of two sample walks of 1,000 steps start-

ing at k = 0, with forward or backward steps equally likely. It might be expected

intuitively that the walk would tend to oscillate about the starting position k = 0
by some law of averages. But a feature of such walks is how few times the walk

recrosses the axis k = 0. In fact in the first case, after a brief oscillation about k = 0,

the walk does not return to the start and finishes some 70 paces away. Intuition can

be misleading in these problems. Remember that the expected state is the average of

many walks. A full discussion of this phenomena can be found in Feller (1968).

Example 3.3 A symmetric random walk starts at x = 0. Find the probabilities that the walk:
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(a) is at x = 0 after 10 steps;

(b) first returns to x = 0 after 10 steps;

(c) returns to x = 0 on the second occasion after a further 10 steps.

(a) From (3.5) the probability that the walk is at x = 0 after 10 steps is

v10,0 =
1

210

(
10

5

)

=
1

210
10!

5!5!
=

63

256
= 0, 246 . . . .

(b) We require the coefficient of s10 in the expansion of F (s) in (3.12). The series is

F (s) = 1
2
s2 + 1

8
s4 + 1

16
s6 + 5

128
s8 + 7

256
s10 + · · ·.

Hence the probability of a first return at the 10-th step is f10 = 7/256 = 0.027 . . .
(c) To return to x = 0 for a second occasion after 10 steps has the probability

q10 = f2f8 + f4f6 + f6f4 + f8f2;

in other words q10 is the probability that a first return occurs at step 2 followed by a subsequent

first return occurring at step 8, plus the probability that a first return occurs at step 4 followed

by a subsequent first return occurring at step 6, and so on. The result is

q10 = 1
2
. 5
128

+ 1
8
. 1
16

+ 1
16
. 1
8
+ 1

256
. 1
2
= 25

512
= 0.049 · · · .

3.5 Problems

3.1. In a random walk the probability that the walk advances by one step is p and retreats by

one step is q = 1−p. At step n let the position of the walker be the random variable Xn. If the

walk starts at x = 0, enumerate all possible sample paths which lead to the value X4 = −2.

Verify that

P[X4 = −2] =

(
4

1

)

pq3.

3.2. A symmetric random walk starts from the origin. Find the probability that the walker is at

the origin at step 8. What is the probability, also at step 8, that the walker is at the origin but

that it is not the first visit there?

3.3. An asymmetric walk starts at the origin. From Eqn (3.5), the probability that the walk

reaches x in n steps is given by

vn,x =

(
n

1
2
(n+ x)

)

p
1
2
(n+x)q

1
2
(n−x),

where n and x are both even or both odd. If n = 4, show that the mean value of position x is

4(p − q), confirming the result in Section 3.2.

3.4. The pgf for the first return distribution {fn} to the origin in a symmetric random walk is

given by

F (s) = 1− (1− s2)
1
2

(see Section 3.4).
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(a) Using the binomial theorem, find a formula for fn, the probability that the first return

occurs at the n-th step.

(b) What is the variance of the probability distribution fn, n = 1, 2, . . ..?

3.5. An unbiased coin is spun 2n times and the sequence of heads and tails is recorded. What

is the probability that the number of heads equals the number of tails after 2n spins?

3.6. For an asymmetric walk with parameters p and q = 1− p, the probability that the walk is

at the origin after n steps is

q2n = v2n,0 =

(
2n

n

)

pnqn, (n = 1, 2, 3, . . .),

from Eqn (3.5). Note that {q2n} is not a probability distribution. Find the mean number of

steps of a return to the origin conditional on a return occurring.

3.7. Using Eqn (3.13) relating to the generating functions of the returns and first returns to the

origin, namely

H(s) = [H(s) + 1]F (s),

which is still valid for the asymmetric walk, show that

F (s) = 1− (1− 4pqs2)
1
2 ,

where p 6= q. Show that a first return to the origin is not certain unlike the situation in the

symmetric walk. Find the mean number of steps to the first return.

3.8. A symmetric random walk starts from the origin. Show that the walk does not revisit the

origin in the first 2n steps with probability

hn = 1− f2 − f4 − · · · − f2n,

where f2n is the probability that a first return occurs at the 2n-th step.

The generating function for the sequence {fn} is

F (s) = 1− (1− s2)
1
2

(see Section 3.4). Show that

f2 =
1

2
f2n =

(2n− 3)!

n!(n − 2)!22n−2
, (n = 2, 3, . . .).

Show that hn satisfies the first-order difference equation

hn+1 − hn = f2n+2 =
(2n+ 1)!

(n+ 1)!(n− 1)!22n
.

Verify that this equation has the general solution

hn = C +

(
2n

n

)
1

22n
,

where C is a constant. By calculating h1, confirm that the probability of no return to the origin

in the first 2n steps is
(
2n

n

)
1

22n
.
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y, walk position

n, steps
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Figure 3.3 Representation of a random walk.

3.9. A walk can be represented as a connected graph between coordinates (n, y) where the

ordinate y is the position on the walk, and the abscissa n represents the number of steps. A

walk of 7 steps which joins (0, 1) and (7, 2) is shown in Figure 3.3. Suppose that a walk starts

at (0, y1) and finishes at (n, y2), where y1 > 0, y2 > 0, and n+ y2 − y1 is an even number.

Suppose also that the walk first visits the origin at n = n1. Reflect that part of the path for

which n ≤ n1 in the n-axis (see Figure 3.3), and use a reflection argument to show that the

number of paths from (0, y1) to (n, y2) which touch or cross the n-axis equals the number of

all paths from (0,−y1) to (n, y2). This is known as the reflection principle.

3.10. A walk starts at (0, 1) and returns to (2n, 1) after 2n steps. Using the reflection principle

(see Problem 3.9), show that there are

(2n)!

n!(n+ 1)!

different paths between the two points which do not ever revisit the origin. What is the prob-

ability that the walk ends at (2n, 1) after 2n steps without ever visiting the origin, assuming

that the random walk is symmetric?

Show that the probability that the first visit to the origin after 2n+ 1 steps is

pn =
1

22n+1

(2n)!

n!(n+ 1)!
.

3.11. A symmetric random walk starts at the origin. Let fn,1 be the probability that the first

visit to position x = 1 occurs at the n-th step. Obviously, f2n,1 = 0. The result from Prob-

lem 3.10 can be adapted to give

f2n+1,1 =
1

22n+1

(2n)!

n!(n+ 1)!
, (n = 0, 1, 2, . . .).

Suppose that its pgf is

G1(s) =

∞∑

n=0

f2n+1,1s
2n+1.
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Show that

G1(s) = [1− (1− s2)
1
2 ]/s.

[Hint: the identity

1

22n+1

(2n)!

n!(n+ 1)!
= (−1)n

(
1
2

n+ 1

)

, (n = 0, 1, 2, . . .)

is useful in the derivation of G1(s).]
Show that any walk starting at the origin is certain to visit x > 0 at some future step, but

that the mean number of steps in achieving this is infinite.

3.12. A symmetric random walk starts at the origin. Let fn,x be the probability that the first

visit to position x occurs at the n-th step (as usual, fn,x = 0 if n + x is an odd number).

Explain why

fn,x =

n−1∑

k=1

fn−k,x−1fk,1, (n ≥ x > 1).

If Gx(s) is its pgf, deduce that

Gx(s) = {G1(s)}x,
where G1(s) is given explicitly in Problem 3.11. What are the probabilities that the walk first

visits x = 3 at the steps n = 3, n = 5, and n = 7?

3.13. Problem 3.12 looks at the probability of a first visit to position x ≥ 1 at the n-th step in a

symmetric random walk which starts at the origin. Why is the pgf for the first visit to position

x where |x| ≥ 1 given by

Gx(s) = {G1(s)}|x|,
where G1(s) is defined in Problem 3.11?

3.14. An asymmetric walk has parameters p and q = 1 − p 6= p. Let gn,1 be the probability

that the first visit to x = 1 occurs at the n-th step. As in Problem 3.11, g2n,1 = 0. It was

effectively shown in Problem 3.10 that the number of paths from the origin, which return to

the origin after 2n steps, is

(2n)!

n!(n+ 1)!
.

Explain why

g2n+1,1 =
(2n)!

n!(n+ 1)!
pn+1qn.

Suppose that its pgf is

G1(s) =

∞∑

n=0

g2n+1,1s
2n+1.

Show that

G1(s) = [1− (1− 4pqs2)
1
2 ]/(2qs).

(The identity in Problem 3.11 is required again.)

What is the probability that the walk ever visits x > 0? How does this result compare with

that for the symmetric random walk?

What is the pgf for the distribution of first visits of the walk to x = −1 at step 2n+ 1?



PROBLEMS 61

3.15. It was shown in Section 3.3 that, in a random walk with parameters p and q = 1− p, the

probability that a walk is at position x at step n is given by

vn,x =

(
n

1
2
(n+ x)

)

p
1
2
(n+x)q

1
2
(n−x), |x| ≤ n,

where 1
2
(n+ x) must be an integer. Verify that vn,x satisfies the difference equation

vn+1,x = pvn,x−1 + qvn,x+1,

subject to the initial conditions

v0,0 = 1, vn,x = 0, (x 6= 0).

Note that this difference equation has differences of two arguments.

Can you develop a direct argument which justifies the difference equation for the random

walk?

3.16. In the usual notation, v2n,0 is the probability that, in a symmetric random walk, the

walk visits the origin after 2n steps. Using the difference equation from Problem 3.15, v2n,0

satisfies

v2n,0 = 1
2
v2n−1,−1 +

1
2
v2n−1,1 = v2n−1,1.

How can the last step be justified? Let

G1(s) =

∞∑

n=1

v2n−1,1s
2n−1

be the pgf of the distribution {v2n−1,1}. Show that

G1(s) = [(1 − s2)−
1
2 − 1]/s.

By expanding G1(s) as a power series in s show that

v2n−1,1 =

(
2n− 1

n

)
1

22n−1
.

By a repetition of the argument show that

G2(s) =

∞∑

n=0

v2n,2s
2n = [(2− s2)(1− s2)−

1
2 − 2]/s2.

3.17. A random walk takes place on a circle which is marked out with n positions. Thus, as

shown in Figure 3.4, position n is the same as position 0. This is known as the cyclic random

walk of period n. A symmetric random walk starts at 0. What is the probability that the walk

is at 0 after j steps in the cases:

(a) j < n;

(b) n ≤ j < 2n?

Distinguish carefully the cases in which j and n are even or odd.

3.18. An unrestricted random walk with parameters p and q starts from the origin, and lasts

for 50 paces. Estimate the probability that the walk ends at 12 or more paces from the origin

in the cases:

(a) p = q = 1
2

;

(b) p = 0.6, q = 0.4.
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1

2

n,0

n - 2

n - 1

Figure 3.4 The cyclic random walk of period n.

3.19. In an unrestricted random walk with parameters p and q, for what value of p are the mean

and variance of the probability distribution of the position of the walk at stage n the same?

3.20. Two walkers each perform symmetric random walks with synchronized steps, both start-

ing from the origin at the same time. What is the probability that they are both at the origin at

step n?

3.21. A random walk takes place on a two-dimensional lattice as shown in Figure 3.5. In the

example shown the walk starts at (0, 0) and ends at (2,−1) after 13 steps. In this walk di-

x

y

o

(2,-1)

2

3

-1

-2

-3

1

-3 -2 -1 1 2 3

Figure 3.5 A two-dimensional random walk.

rect diagonal steps are not permitted. We are interested in the probability that the symmetric

random walk, which starts at the origin, has returned there after 2n steps. Symmetry in the

two-dimensional walk means that there is a probability of 1
4

that, at any position, the walk

goes right, left, up, or down at the next step. The total number of different walks of length 2n
which start at the origin is 42n. For the walk considered, the number of right steps (positive

x direction) must equal the number of left steps, and the number of steps up (positive y di-

rection) must equal those down. Also the number of right steps must range from 0 to n, and



PROBLEMS 63

the corresponding steps up must range from n to 0. Explain why the probability that the walk

returns to the origin after 2n steps is

p2n =
(2n)!

42n

n∑

r=0

1

[r!(n− r)!]2
.

Prove the two identities

(2n)!

[r!(n− r)!]2
=

(
2n

n

)(
n

r

)2

,

(
2n

n

)

=

n∑

r=0

(
n

r

)2

.

[Hint: compare the coefficients of xn in (1 + x)2n and [(1 + x)n]2.] Hence show that

p2n =
1

42n

(
2n

n

)2

.

Calculate 1/(πp40) and 1/(πp80). How would you guess that p2n behaves for large n?

3.22. A random walk takes place on the positions {. . . ,−2,−1, 0, 1, 2, . . .}. The walk starts

at 0. At step n, the walker has a probability qn of advancing one position, or a probability

1− qn of retreating one step (note that the probability depends on the step not the position of

the walker). Find the expected position of the walker at step n. Show that if qn = 1
2
+ rn,

(− 1
2
< rn < 1

2
), and the series

∑∞
j=1

rj is convergent, then the expected position of the walk

will remain finite as n → ∞.

3.23. A symmetric random walk starts at k on a position chosen from 0, 1, 2, . . . , a, where

0 < k < a. As in the gambler’s ruin problem, the walk stops whenever 0 or a is first reached.

Show that the expected number of visits to position j where 0 < j < k is 2j(a− k)/a before

the walk stops.



http://taylorandfrancis.com


CHAPTER 4

Markov Chains

4.1 States and transitions

The random walk discussed in the previous chapter is a special case of a more general

Markov process1. Suppose that a random process passes through a discrete sequence

of steps or trials numbered n = 0, 1, 2, . . ., where the outcome of the n-th trial is the

random variable Xn; X0 is the initial position of the process. This discrete random

variable can take one of the values i = 1, 2, . . .m. The actual outcomes are called

the states of the system, and are denoted by Ei (i = 1, 2, . . .m) (states can be any

consecutive sequence of integers, say starting with i = 0 or some other integer, but

they can be renumbered to start with i = 1). In most but not quite all cases in this

text, we shall investigate systems with a finite number, m, of states E1, E2, . . . Em,

which are independent and exhaustive.

If the random variables Xn−1 = i and Xn = j, then the system has made a

transition Ei → Ej , that is, a transition from state Ei to state Ej at the n-th trial.

Note that i can equal j, so that transitions within the same state may be possible.

We need to assign probabilities to the transitions Ei → Ej . This discrete process is

known as a chain. Generally in chains the probability that Xn = j will depend on the

whole sequence of random variables starting with the initial value X0. The Markov

chain has the characteristic property that the probability that Xn = j depends only

on the immediate previous state of the system. Formally this means that we need no

further information at each step other than, for each i and j,

P{Xn = j|Xn−1 = i},

which means the probability that Xn = j given that Xn−1 = i: this probability is

independent of the values of Xn−2, Xn−3, . . . , X1. Put alternatively, conditional on

the present state of the chain, its future and present are independent.

In some chains the probabilities P{Xn = j|Xn−1 = i} are functions of n, the

step or trial number. If this is not the case, so that the probabilities are the same at

every step, then the chain is said to be homogeneous.

1 Andrey Markov (1856–1922), Russian mathematician.
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4.2 Transition probabilities

For a finite Markov chain with m states E1, E2, . . . , Em, introduce the notation

pij = P{Xn = j|Xn−1 = i}, (4.1)

where i, j = 1, 2, . . . ,m to represent the probability of a transition from state Ei

to Ej . The numbers pij are known as the transition probabilities of the chain, and

must satisfy

pij ≥ 0,

m∑

j=1

pij = 1

for each i = 1, 2, . . . ,m. If pij > 0, then we say that state Ei can communicate with

Ej : two-way communication is possible if additionally pji > 0 (see Section 4.7(a)

later). Obviously for each fixed i, the list {pij} is a probability distribution, since

at any step one of the outcomes E1, E2, . . . , Em must occur: the states Ei, (i =
1, 2, . . .m).

Transition probabilities form an m×m array which can be assembled into a tran-

sition matrix T , where

T = [pij ] =








p11 p12 . . . p1m
p21 p22 . . . p2m

...
...

. . .
...

pm1 pm2 . . . pmm







. (4.2)

Note that each row of T is a probability distribution. Any square matrix for which

pij ≥ 0 and
∑m

j=1 pij = 1 is said to be row-stochastic.

Example 4.1. The matrices A = [aij ] and B = [bij ] are m × m row-stochastic matrices.

Show that C = AB is also row-stochastic.

By the multiplication rule for matrices

C = AB = [aij ][bij ] =

[
m∑

k=1

aikbkj

]

.

Hence cij , the general element of C, is given by

cij =

m∑

k=1

aikbkj .

Since aij ≥ 0 and bij ≥ 0 for all i, j = 1, 2, . . . ,m, it follows that cij ≥ 0. Also

m∑

j=1

cij =

m∑

j=1

m∑

k=1

aikbkj =

m∑

k=1

aik

m∑

j=1

bkj =

m∑

k=1

aik · 1 = 1,

since
∑m

j=1
bkj = 1 and

∑m

k=1
aik = 1.

It follows from this example that any power T n of the transition matrix T must

also be row-stochastic.



TRANSITION PROBABILITIES 67

(i) The absolute probability p
(n)
j

One further probability which will be of interest is the probability of outcome Ej

after n steps, given an initial probability distribution {p(0)i }. Here p
(0)
i is the proba-

bility that initially the system occupies state Ei. Of course we must have
∑m

i=1 p
(0)
i =

1. Let p
(1)
j be the probability Ej is occupied after one step. Then, by the law of total

probability (see Section 1.3)

p
(1)
j =

m∑

i=1

p
(0)
i pij . (4.3)

We can express this more conveniently in vector form. Let p(0) and p(1) be the

probability (row) vectors given by

p(0) =
[

p
(0)
1 p

(0)
2 . . . p

(0)
m

]

(4.4)

and

p(1) =
[

p
(1)
1 p

(1)
2 . . . p

(1)
m

]

. (4.5)

Here p(0) is the initial distribution, and the components of p(1) will be the probabil-

ities that each of the states E1, E2, . . . , Em is reached after one step. Equation (4.3)

can be represented as a matrix product as follows:

p(1) =
[

p
(1)
j

]

=

[
m∑

i=1

p
(0)
i pij

]

= p(0)T,

where T is the transition matrix given by (4.2). If p(2) is the distribution after two

steps, then

p(2) = p(1)T = p(0)TT = p(0)T 2.

Hence after n steps by repeating the process

p(n) = p(n−1)T = p(0)T n, (4.6)

where

p(n) =
[

p
(n)
1 p

(n)
2 . . . p

(n)
m

]

. (4.7)

More generally,

p(n+r) = p(r)T n.

In (4.7), the component p
(n)
j is the absolute or unconditional probability of out-

come Ej at the n-th step given the initial distributionp(0), that is, P{Xn = j}=p
(n)
j .

Note that
m∑

j=1

p
(n)
j = 1.

Example 4.2. In a three-state Markov chain with states E1, E2, E3, the chain starts in E2 so

that p(0) =
[

0 1 0
]
. Find the absolute probability p(3) if the transition matrix is

T =

[ 1
2

1
4

1
4

0 1
2

1
2

3
4

1
4

0

]

.
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We require

T 3 =

[ 1
2

1
4

1
4

0 1
2

1
2

3
4

1
4

0

]3

=
1

16

[
7 5 4
6 6 4
6 5 5

]

.

Hence,

p(3) = p(0)T 3 =
1

16

[
0 1 0

]

[
7 5 4
6 6 4
6 5 5

]

=
1

16

[
6 6 4

]
.

This result gives the probabilities that, given that the chain starts inE1, it is in statesE1, E2, E3

after 3 steps.

(ii) The n-step transition probability p
(n)
ij

We now define p
(n)
ij as the probability that the chain is in state Ej after n steps

given that the chain started in state Ei. The first step transition probabilities p
(1)
ij =pij

are simply the elements of the transition matrix T . We intend to find a formula for

p
(n)
ij . Now, by definition,

p
(n)
ij = P(Xn = j|X0 = i),

and also

p
(n)
ij =

m∑

k=1

P(Xn = j,Xn−1 = k|X0 = i)

for n ≥ 2, since the chain must have passed through one of all the m possible states

at step n− 1.

For any three events A, B, and C, we have available the identity

P(A ∩B|C) = P(A|B ∩ C)P(B|C)

(see Example 1.4). Interpreting A as Xn = j, B as Xn−1 = k, and C as X0 = i, it

follows that

p
(n)
ij = P(A ∩B|C) = P(Xn = j,Xn−1 = k|X0 = i)

=
m∑

k=1

P(Xn = j|Xn−1 = k,X0 = i)P(Xn−1 = k|X0 = i)

=

m∑

k=1

P(Xn = j|Xn−1 = k)P(Xn−1 = k|X0 = i)

=
m∑

k=1

p
(1)
kj p

(n−1)
ik , (4.8)

using the Markov property again. These are known as the Chapman–Kolmogorov

equations 2. Putting n successively equal to 2, 3, . . ., we find that the matrices with

2 Sydney Chapman (1888–1970), British scientist; Andrey Kolmogorov (1908–1987), Russian mathe-
matician.
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these elements are, using the product rule for matrices,

[

p
(2)
ij

]

=

[
m∑

k=1

p
(1)
ik p

(1)
kj

]

= T 2,

[

p
(3)
ij

]

=

[
m∑

k=1

p
(2)
ik p

(1)
kj

]

= T 2T = T 3,

since p
(2)
ik are the elements of T 2, and so on. Generalising this rule,

[p
(n)
ij ] = T n.

Example 4.3. In a certain region the weather patterns have the following sequence. A day is

described as sunny (S) if the sun shines for more than 50% of daylight hours and cloudy (C)

if the sun shines for less than 50% of daylight hours. Data indicate that if it is cloudy one day

then it is equally likely to be cloudy or sunny on the next day; if it is sunny there is a probability
1
3

that it is cloudy and 2
3

that it is sunny the next day.

(i) Construct the transition matrix T for this process.

(ii) If it is cloudy today, what are the probabilities that it is (a) cloudy, (b) sunny, in three days’

time?

(iii) Compute T 5 and T 10. How do you think that Tn behaves as n → ∞? How does p(n)

behave as n → ∞? Do you expect the limit to depend on p(0)?

(i) It is assumed that the process is Markov and homogeneous so that transition probabilities

depend only on the state of the weather on the previous day. This is a two-state Markov chain

with states

E1 = (weather cloudy, C), E2 = (weather sunny, S).

The transition probabilities can be represented by the table below which defines the transition

matrix T :

C S

C 1
2

1
2

S 1
3

2
3

or T =

[
1
2

1
2

1
3

2
3

]

.

The actual transition probabilities are

p11 = 1
2
, p12 = 1

2
, p21 = 1

3
, p22 = 2

3
.

(ii) Measuring steps from today, we define

p(0) =
[

p
(0)
1 p

(0)
2

]
=
[

1 0
]

which means that it is cloudy today. In three days’ time,

p(3) = p(0)T 3 =
[

1 0
]
[

1
2

1
2

1
3

2
3

]3

=
[

1 0
]
[

29/72 43/72
43/108 65/108

]

=
[

29/72 43/72
]
=
[

0.403 0.600
]
.

Hence the probabilities of cloudy or sunny weather in three days’ time are respectively:
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(a) p
(3)
1 = 29/72

(b) p
(3)
2 = 43/72.

(iii) The computed values of T 5 and T 10 are (to 6 decimal places):

T 5 =

[
0.400077 0.599923
0.399949 0.600051

]

, T 10 =

[
0.400000 0.600000
0.400000 0.600000

]

.

Powers of matrices can be easily computed using software such as R or Mathematica. It ap-

pears that

Tn →
[

0.4 0.6
0.4 0.6

]

= Q,

say, as n → ∞. From Eqn (4.6)

p(n) = p(0)Tn.

If Tn → Q as n → ∞, then we might expect

p(n) → p(0)Q =
[

p
(0)
1 p

(0)
2

]
[

0.4 0.6
0.4 0.6

]

=
[

(p
(0)
1 + p

(0)
2 )0.4 (p

(0)
1 + p

(0)
2 )0.6

]

=
[

0.4 0.6
]

since p
(0)
1 + p

(0)
2 = 1. Note that limn→∞ pn is independent of p(0). The limit indicates that,

in the long run, 40% of days are cloudy and 60% are sunny.

This example indicates that it would be useful if we had a general algebraic for-

mula for the n-th power of a matrix. The algebra required for this aspect of Markov

chains will be looked at in the next two sections.

4.3 General two-state Markov chains

Consider the two-state chain with transition matrix

T =

[
1− α α
β 1− β

]

, 0 < α, β < 1.

We want to construct a formula for T n. First find the eigenvalues (λ) of T : they are

given by the solutions of the determinant equation det(T − λI2) = 0, that is
∣
∣
∣
∣

1− α− λ α
β 1− β − λ

∣
∣
∣
∣
= 0, or (1− α− λ)(1 − β − λ) − αβ = 0.

Hence λ satisfies the quadratic equation

λ2 − λ(2 − α− β) + 1− α− β = 0,

or

(λ− 1)(λ− 1 + α+ β) = 0. (4.9)

Denote the eigenvalues of T by λ1 = 1, and λ2 = 1− α− β = s, say. Note that

stochastic matrices always have a unit eigenvalue. We now find the eigenvectors
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associated with each eigenvalue. Let r1 be the (column) eigenvector of λ1 which is

defined by

(T − λ1I2)r1 = 0, or

[
1− α− λ1 α

β 1− β − λ1

]

r1 = 0,

or
[

−α α
β −β

]

r1 = 0.

Choose any (nonzero) solution of this equation, say

r1 =

[
1
1

]

.

Note that the eigenvector associated with λ1 = 1 is always a column of 1’s, the result

following from the fact that T is stochastic.

Similarly the second eigenvector r2 satisfies
[

1− α− λ2 α
β 1− β − λ2

]

r2 = 0, or

[
β α
β α

]

r2 = 0.

In this case we can choose

r2 =

[
−α
β

]

.

Now form the matrix C which has the eigenvectors r1 and r2 as columns, so that

C =
[
r1 r2

]
=

[
1 −α
1 β

]

. (4.10)

Now find the inverse matrix C−1 of C:

C−1 =
1

α+ β

[
β α
−1 1

]

.

If we now expand the matrix product C−1TC, we find that

C−1TC =
1

α+ β

[
β α
−1 1

] [
1− α α
β 1− β

] [
1 −α
1 β

]

=
1

α+ β

[
β α
−1 1

] [
1 −αs
1 βs

]

=

[
1 0
0 s

]

=

[
λ1 0
0 λ2

]

= D, (4.11)

say. Now D is a diagonal matrix with the eigenvalues of T as its diagonal elements:

this process is known in linear algebra as the diagonalization of a matrix. The result

is significant since diagonal matrices are easy to multiply. From (4.21), if we premul-

tiply D by matrix C and post multiply by C−1, then we find that T = CDC−1. Thus

T 2 = (CDC−1)(CDC−1) = (CD)(C−1C)(DC−1)

= (CD)I2(DC−1) = CDDC−1 = CD2C−1,
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where

D2 =

[
λ2
1 0
0 λ2

2

]

=

[
1 0
0 s2

]

.

It can be proved by induction that

T n = CDnC−1, (4.12)

where

Dn =

[
λn
1 0
0 λn

2

]

=

[
1 0
0 sn

]

.

The product of the matrices in (4.12) can be expanded to give

T n = CDnC−1 =
1

α+ β

[
1 −α
1 β

] [
1 0
0 sn

] [
β α
−1 1

]

. (4.13)

Since 0 < α, β < 1, it follows that |s| < 1, and consequently that sn → 0 as

n → ∞. Hence, from (4.13),

T n → 1

α+ β

[
1 −α
1 β

] [
1 0
0 0

] [
β α
−1 1

]

=
1

α+ β

[
β α
β α

]

.

Further, for any initial probability distributionp0, the distribution over the states after

n steps is given by (see Eqn (4.6))

p(n) = p(0)T n =
[

p
(0)
1 p

(0)
2

]

T n

→
[

p
(0)
1 p

(0)
2

] 1

α+ β

[
β α
β α

]

=

[
β

α+ β

α

α+ β

]

, (4.14)

as n → ∞, and the limit is independent of p(0). The limiting distribution in (4.14) is

usually denoted by π. It satisfies

π = πT,

which is an example of an invariant distribution of the Markov chain, since it is

independent of the initial distribution. The chain is said to be in equilibrium.

If α = β = 1, then result (4.13) still holds with s = −1, but T n no longer has a

limit as n → ∞ but oscillates between two matrices. However, limits for T n exist if

α = 1, 0 < β < 1 or 0 < α < 1, β = 1.

The conditions for an invariant distribution in the two-state chain raises the ques-

tion: what are the conditions for the n-state chain? We will return to this later.

4.4 Powers of the general transition matrix

The method derived for the two-state chain in the previous section can be generalized

to m-state chains. We shall sketch the diagonalization method here. Let T be an

m×m stochastic matrix, in other words, a possible transition matrix. The eigenvalues

of T are given by

|T − λIm| = 0, (4.15)
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where Im is the identity matrix of order m. Assume that the eigenvalues are distinct,

and denoted by λ1, λ2, . . . , λm. Again note that a stochastic matrix T always has a

unit eigenvalue, say λ1 = 1, with a corresponding unit eigenvector

r1 =
[
1 1 · · · 1

]t
.

This follows since every row in [T − Im]r1 is zero. 3

The corresponding eigenvectors ri satisfy the equations

[T − λiIm]ri = 0, (i = 1, 2, . . . ,m). (4.16)

Construct the matrix

C =
[
r1 r2 . . . rm

]
,

which has the eigenvectors as columns. By matrix multiplication

TC = T
[
r1 r2 . . . rm

]
=
[
T r1 T r2 . . . T rm

]

=
[
λ1r1 λ2r2 . . . λmrm

]
(by (4.15))

=
[
r1 r2 . . . rm

]








λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λm








= CD, (4.17)

where D is the diagonal matrix of eigenvalues defined by

D =








λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λm







. (4.18)

Hence if (4.17) is multiplied on the right by C−1, then

T = CDC−1.

Powers of T can now be easily found since

T 2 = (CDC−1)(CDC−1) = (CD)(CC−1)(DC−1)

= (CD)Im(DC−1) = CD2C−1.

Similarly, for the general power n,

T n = CDnC−1, (4.19)

where

Dn =








λn
1 0 . . . 0
0 λn

2 . . . 0
...

...
. . .

...

0 0 . . . λn
m







.

3 The notation At denotes the transpose of any matrix A in which rows and columns are interchanged.
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Although Eqn (4.19) is a useful formula for T n, the algebra involved can be very

heavy even for quite modest chains with m = 4 or 5, particularly if T contains

unknown constants or parameters. On the other hand, mathematical software is now

very easy to apply for the numerical calculation of eigenvalues, eigenvectors, and

powers of matrices for quite large systems.

As we shall see, the behaviour of T n for large n will depend on the eigenvalues

λ1, λ2, . . . , λn: a limit may or may not exist.

Example 4.4 Find the eigenvalues and eigenvectors of the stochastic matrix

T =

[ 1
4

1
2

1
4

1
2

1
4

1
4

1
4

1
4

1
2

]

.

Construct a formula for Tn, and find limn→∞ Tn.

The eigenvalues of T are given by

det(T − λI3) =

∣
∣
∣
∣
∣

1
4
− λ 1

2
1
4

1
2

1
4
− λ 1

4
1
4

1
4

1
2
− λ

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1− λ 1− λ 1− λ
1
2

1
4
− λ 1

4
1
4

1
4

1
2
− λ

∣
∣
∣
∣
∣

(adding all the rows)

= (1− λ)

∣
∣
∣
∣
∣

1 1 1
1
2

1
4
− λ 1

4
1
4

1
4

1
2
− λ

∣
∣
∣
∣
∣

= (1− λ)

∣
∣
∣
∣
∣

1 1 1
1
2

1
4
− λ 1

4

0 0 1
4
− λ

∣
∣
∣
∣
∣

( subtracting 1
4

of row 1 from row 3)

= (1− λ)( 1
4
− λ)(− 1

4
− λ) = 0.

Define the eigenvalues to be

λ1 = 1, λ2 = 1
4
, λ3 = − 1

4
.

The eigenvectors ri(i = 1, 2, 3) satisfy

(T − λiI3)ri = 0, (i = 1, 2, 3).

Some routine calculations give

r1 =

[
1
1
1

]

, r2 =

[ −1
−1
2

]

, r3 =

[
1
−1
0

]

.

We now let

C =
[

r1 r2 r3
]
=

[
1 −1 1
1 −1 −1
1 2 0

]

.
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Finally, from (4.19)

Tn = CDnC−1

=
1

6

[
1 −1 1
1 −1 −1
1 2 0

][
1 0 0
0 ( 1

4
)n 0

0 0 (− 1
4
)n

][
2 2 2
−1 −1 2
3 −3 0

]

.

In this example two eigenvalues have magnitudes less than one so that Tn will approach a

limit in which each row is the stationary distribution.

As n → ∞,

Tn → 1

6

[
1 −1 1
1 −1 −1
1 2 0

][
1 0 0
0 0 0
0 0 0

][
2 2 2
−1 −1 2
3 −3 0

]

=

[ 1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

]

= Q, say.

Suppose now that T is the transition matrix of a 3-state Markov chain, and that the

initial probability distribution is p(0). Then the probability distribution after n steps

is

p(n) = p(0)T n.

The invariant probability distribution p is

p = lim
n→∞

p(n) = lim
n→∞

p(0)T n = p(0)Q =
[

1
3

1
3

1
3

]
.

The vector p gives the long-term probability distribution across the three states. In

other words, if any snapshot of the system is eventually taken for large n, then the

system is equally likely (in this example) to lie in each of the states, and this is

independent of the initial distribution p(0).

This particular example is covered by the Perron–Frobenius theorem4, which

states: if T or T r, for some r, is a positive stochastic matrix ( that is, every element

of T or T r is strictly positive), then aside from the unit eigenvalue, all other eigen-

values have magnitudes less than one. (A proof is given by Grimmett and Stirzaker

(1982).)

Absorbing barriers were referred to in Section 3.1 in the context of random walks.

Absorbing states are recognizable in Markov chains by a value 1 in a diagonal

element of the transition matrix. Since such matrices are stochastic, then all other

elements in the same row must be zero. This means that once entered, there is no

escape from absorbing state. For example, in the Markov chain with

T =





1
2

1
4

1
4

0 1 0
1
4

1
4

1
2



 , (4.20)

then the state E2 is absorbing.

As we illustrated in Section 3.1, diagrams showing transitions between states are

4 Oskar Perron (1880–1975); Ferdinand Frobenius (1849–1917), German mathematicians.
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particularly helpful. The states are represented by dots with linking directed curves

or edges if a transition is possible: if no transition is possible then no directed edge

is drawn. Thus the transition diagram for the three-state chain with transition matrix

given by Eqn (4.20) is shown in Figure 4.1. In graph theory terminology, Figure 4.1

shows a directed graph. It can be seen that once entered, there is no escape from the

absorbing state E2.

E1

1
2
-

1
2
-1

1
4
-

1
4
-

1
4
-

1
4
-

E2
E3

Figure 4.1 Transition diagram for the transition matrix in Eqn (4.20).

The eigenvalues of T given by Eqn (4.20) are λ1 = 1, λ2 = 1
4 , λ3 = 3

4 . (The

eigenvalues of T satisfy the conclusions of the Perron–Frobenius theorem above, but

T in this case is not a positive matrix, which indicates a more general version of the

theorem: see the reference above again.) The corresponding matrix of eigenvectors

is

C =





1 −1 0
1 0 0
1 1 1



 .

Using the method illustrated by Example 4.3, it follows that

T n = CDnC−1

=





1 −1 1
1 0 0
1 1 1









1 0 0
0 (14 )

n 0
0 0 (34 )

n









0 1 0
− 1

2 0 1
2

1
2 −1 1

2





→





1 −1 1
1 0 0
1 1 1









1 0 0
0 0 0
0 0 0









0 1 0
− 1

2 0 1
2

1
2 −1 1

2





=





0 1 0
0 1 0
0 1 0



 = Q,

say, as n → ∞. This implies that

p = lim
n→∞

p(0)T n = p(0)Q =
[
0 1 0

]
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for any initial distribution p(0). This means that the system ultimately ends in E2

with probability 1.

Example 4.5 (An illness–death model) A possible simple illness–death model can be repre-

sented by a four-state Markov chain in which E1 is a state in which an individual is free of a

particular disease, E2 is a state in which the individual has the disease, and E3 and E4 are

respectively death states arising as a consequence of death as a result of the disease, or from

other causes. During some appropriate time interval (perhaps an annual cycle), we assign

probabilities to the transition between the states. Suppose that the transition matrix is (in the

order of the states),

T =






1
2

1
4

0 1
4

1
4

1
2

1
8

1
8

0 0 1 0
0 0 0 1




 . (4.21)

Find the probabilities that a person ultimately dies after a large number of transitions from

the disease given that he or she did not have the disease initially.

As we might expect, this Markov chain has two absorbing states, E3 and E4. The individual

probabilities can be interpreted as follows: for example, p11 = 1
2

means that an individual,

given that s/he is free of the disease in a certain period, has probability 1
2

of remaining free

of the disease; p24 = 1
8

means that the probability that an individual has the disease but dies

from other causes is 1
8

, and so on.

The transition diagram is shown in Figure 4.2.

E1 E2

E3
E4

1
8
_

1
2
_

1
4
_

1
2
_ 1

4
_

1
8
_1

4
_

1
1

Figure 4.2 Transition diagram for the illness–death model.

In this example it is simpler to partition the matrix T as follows. Let

T =

[
A B
O22 I2

]

,

where the submatrices5 A and B are given by

A =

[
1
2

1
4

1
4

1
2

]

, B =

[
0 1

4
1
8

1
8

]

, O22 =

[
0 0
0 0

]

, I2 =

[
1 0
0 1

]

.

5 A submatrix of a matrix is a matrix obtained by deleting any collection of rows and columns in the
original matrix.
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Note that A and B are not stochastic matrices. We then observe that

T 2 =

[
A B
O22 I2

] [
A B
O22 I2

]

=

[
A2 (A+ I2)B
O22 I2

]

,

T 3 =

[
A3 (A2 +A+ I2)B
O22 I2

]

,

and, in general,

Tn =

[
An (I2 +A+ A2 + · · ·+ An−1)B
O22 I2

]

.

Now let

Sn = I2 +A+ · · ·+An−1.

It then follows that

(I2 −A)Sn = (I2 + A+ · · ·+An−1)− (A+A2 + · · ·+An) = I2 −An,

so that

Sn = (I2 −A)−1(I2 −An).

Hence,

Tn =

[
An (I2 −A)−1(I2 −An)B
O22 I2

]

.

In the matrix T , A is not a stochastic matrix but the method of Section 4.3 to find An still

works. The eigenvalues of A are given by

det(A− λI2) =

∣
∣
∣
∣

1
2
− λ 1

4
1
4

1
2
− λ

∣
∣
∣
∣
= (λ− 1

4
)(λ− 3

4
) = 0.

Let λ1 = 1
4

and λ2 = 3
4

(note that there is not a unit eigenvalue in this case since A is not

row-stochastic). The matrix C of eigenvectors is

C =

[
−1 1
1 1

]

.

Hence,

An =
1

2

[
−1 1
1 1

] [
( 1
4
)n 0
0 ( 3

4
)n

][
−1 1
1 1

]

.

For the submatrix A, An → 0 as n → ∞, so that

Tn →
[

O22 (I2 −A)−1B
O22 I2

]

=






0 0 1
6

5
6

0 0 1
3

2
3

0 0 1 0
0 0 0 1




 = Q,

say. In this case

p =
[

0 0 1
6
p(0)1 + 1

3
p(0)2 + p(0)3

5
6
p(0)1 + 2

3
p(0)2 + p(0)4

]
.

This is a limiting distribution which depends on the initial distribution. For example, if

p(0) =
[

1 0 0 0
]
, then

p =
[

0 0 1
6

5
6

]
,

from which it can be seen that the probability of an individual not having the disease initially
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but ultimately dying as a result of the disease is 1
6

. On the other hand p(0) =
[

1
2

0 1
2

0
]

will give the different limit

p =
[

0 0 7
12

5
12

]
.

The examples we have considered so far have stochastic matrices which have real

eigenvalues. How do we proceed if the eigenvalues are complex? Consider the fol-

lowing example.

Example 4.6 Find the eigenvalues and eigenvectors of the stochastic matrix

T =

[ 1
2

1
8

3
8

1 0 0
1
4

1
2

1
4

]

.

Construct a formula for Tn, and find limn→∞ Tn.

The eigenvalues of T are given by

det(T − λI3) =

∣
∣
∣
∣
∣

1
2
− λ 1

8
3
8

1 −λ 0
1
4

1
2

1
4
− λ

∣
∣
∣
∣
∣

= (1− λ)

∣
∣
∣
∣
∣

1 1
8

3
8

1 −λ 0
1 1

2
1
4
− λ

∣
∣
∣
∣
∣

(adding all the columns)

= (1− λ)

∣
∣
∣
∣
∣

0 1
8
+ λ 3

8

1 −λ 0
0 1

2
+ λ 1

4
− λ

∣
∣
∣
∣
∣

(subtracting row 2 from rows 1 and 3)

= −(1− λ)

∣
∣
∣
∣

1
8
+ λ 3

8
1
2
+ λ 1

4
− λ

∣
∣
∣
∣

= (1− λ)(λ2 + 1
4
λ+ 5

32
).

Hence the eigenvalues are

λ1 = 1, λ2 = 1
8
(−1 + 3i), λ3 = 1

8
(−1− 3i),

two of which are complex conjugates. However, we proceed to find the (complex) eigenvectors

which are given, as before, by

(T − λiI3)ri = 0, (i = 1, 2, 3).

They can be chosen as

r1 =

[
1
1
1

]

, r2 =

[ −7− 9i
−16 + 24i

26

]

, r3 =

[ −7 + 9i
−16 − 24i

26

]

.

We now define C by

C =
[

r1 r2 r3
]
=

[
1 −7 − 9i −7 + 9i
1 −16 + 24i −16 − 24i
1 26 26

]

.
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Inevitably the algebra becomes heavier for the case of complex roots. The inverse of C is given

by

C−1 =
1

780

[
416 156 208

−8 + 14i −3− 11i 11− 3i
−8− 14i −3− 11i 11 + 3i

]

.

The diagonal matrix D of eigenvalues becomes

D =

[
1 0 0
0 (−1+3i

8
)n 0

0 0 (−1−3i
8

)n

]

→
[

1 0 0
0 0 0
0 0 0

]

as n → ∞ since |(−1±3i)/8| = √
10/8 < 1. Finally, Tn can be calculated from the formula

Tn = CDnC−1.

As n → ∞,

Tn →





8
15

1
5

4
15

8
15

1
5

4
15

8
15

1
5

4
15



 = Q.

We conclude that complex eigenvalues can be dealt with by the same procedure as real

ones: the resulting formulas for Tn and its limit Q will turn out to be real matrices.

This example illustrates the Perron–Frobenius theorem quoted previously in this

section. Although T is not positive, T 2 is a positive matrix. It can be confirmed that,

for the complex eigenvalues

λ1 = 1 |λ2| = |λ3| =
√
10

8
< 1.

We have not considered the cases of repeated eigenvalues. The matrix algebra

required is beyond the scope of this textbook. However, Problems 4.8 and 4.9 at the

end of this chapter suggest three such cases which are worth investigating.

4.5 Gambler’s ruin as a Markov chain

We start by summarizing the game (see Section 2.1). It is a game of chance between

two players A and B. The gambler A starts with k units (pounds or dollars, etc.) and

the opponent B with a − k units, where a and k are integers. At each play, A either

wins from B one unit with probability p or loses one unit to B with probability

q = 1 − p. The game ends when either player A or B has no stake. What is the

probability that A loses?

The states are E0, E1, . . . , Ea (it is convenient in this application to let the list

run from 0 to a), where Er is the state in which the gambler A has r units. This is a

Markov chain, but the transitions are only possible between neighbouring states. This

is also the case for the simple random walk. We interpret E0 and Ea as absorbing

states since the game ends when these states are reached. From the rules of the game,
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the transition matrix is

T =










1 0 0 . . . 0 0 0
1− p 0 p . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . 1− p 0 p
0 0 0 . . . 0 0 1










(an (a+ 1)× (a+ 1) matrix). (4.22)

T is an example of a tridiagonal matrix.

The diagonalization of T is not really a practical proposition for this (a+1)×(a+
1) matrix except for small a. This is often the case for chains with a large number of

states.

The initial distribution vector p(0) for the gambler’s ruin problem has the elements

p
(0)
i =

{
0 i 6= k,
1 i = k,

(0 ≤ i ≤ a, 1 ≤ k ≤ a− 1),

assuming an initial stake of k units. In the vector p(n), the component p
(n)
0 is the

probability that the gambler loses the game by the nth play, and p
(n)
a is the probability

that the gambler has won by the nth play.

Example 4.7 In a gambler’s ruin problem suppose that p is the probability that the gambler

wins at each play, and that a = 5 and that the gambler’s initial stake is k = 3 units. Compute

the probability that the gambler loses/wins by the fourth play. What is the probability that the

gambler actually wins at the fourth play?

In this example, the transition matrix Eqn (4.21) is the 6× 6 matrix

T =










1 0 0 0 0 0
1− p 0 p 0 0 0
0 1− p 0 p 0 0
0 0 1− p 0 p 0
0 0 0 1− p 0 p
0 0 0 0 0 1










,

and

p(0) =
[

0 0 0 1 0 0
]
.

Then

p(4) = p(0)T 4

=
[

(1− p)3 3(1− p)3 0 5(1 − p)2p2 0 p2 + 2(1− p)p3
]
.

Symbolic computation is helpful for the matrix powers. Alternatively the distribution can be

obtained using probability arguments. The probability that the gambler loses by the fourth play

is

p
(4)
0 = (1− p)3,

which can only occur as the probability of three successive losses. The probability that the

gambler wins at the fourth play is

p
(4)
5 = p2 + 2(1− p)p3,
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derived from two successive wins, or from the sequences win/lose/win/win or lose/win/win/win

which together give the term 2(1− p)p3. The probability that the gambler actually wins at the

fourth play is 2(1 − p)p3.

For the general (a + 1)× (a + 1) transition matrix (4.22) for the gambler’s ruin,

whilst T n is difficult to obtain, Q = limn→ T n can be found if we make a reasonable

assumption that the limiting matrix is of the form

Q =












1 0 . . . 0 0
u1 0 . . . 0 1− u1

u2 0 . . . 0 1− u2

...
...

. . .
...

...

ua−1 0 . . . 0 1− ua−1

0 0 . . . 0 1












,

where u1, u2, . . . , ua−1 are to be determined. The implication of the zeros in columns

2 to a − 1 is that eventually the chain must end in either state E0 or Ea (see Sec-

tion 2.2). We then observe that, after rearranging indices,

Q = lim
n→∞

T n+1 = ( lim
n→∞

T n)T = QT, (4.23)

and

Q = lim
n→∞

T n+1 = T ( lim
n→∞

T n) = TQ. (4.24)

In this case (4.23) turns out to be an identity. However, (4.24) implies

0=TQ−Q = (T − Ia+1)Q

=












0 0 0 . . . 0 0 0
1− p −1 p . . . 0 0 0
0 1− p −1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1− p −1 p
0 0 0 . . . 0 0 0























1 0 . . . 0 0
u1 0 . . . 0 1− u1

u2 0 . . . 0 1− u2

...
...

. . .
...

...

ua−1 0 . . . 0 1− ua−1

0 0 . . . 0 1












=












0 0 . . . 0 0
(1 − p)− u1 + pu2 0 . . . 0 −(1− p) + u1 − pu2

(1− p)u1 − u2 + pu3 0 . . . 0 −(1− p)u1 + u2 − pu3

...
...

. . .
...

...

(1− p)ua−2 − ua−1 0 . . . 0 −(1− p)ua−2 + ua−1

0 0 . . . 0 0












.

The right-hand side is zero if the elements in the first and last columns are all zero.

However, note that the elements in the last column duplicate the ones in the first

column. The result is the set of difference equations

pu2 − u1 + (1− p) = 0,

puk+2 − uk+1 + (1− p)uk = 0, (k = 1, 2, . . . , a− 3),
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−ua−1 + (1− p)ua−2 = 0.

This is equivalent to writing

puk+2 − uk+1 + (1 − p)uk = 0, (k = 0, 1, 2, . . . , a− 2),

u0 = 1, ua = 0,

the latter two equations now defining the boundary conditions. These are the dif-

ference equations and boundary conditions for the gambler’s ruin problem derived

using the law of total probability in Eqns (2.2) and (2.3).

4.6 Classification of states

Let us return to the general m-state chain with states E1, E2, . . . , Em and transition

matrix

T = [pij ], (1 ≤ i, j ≤ m).

For a homogeneous chain, recollect that pij is the probability that a transition occurs

betweenEi andEj at any step or change of state in the chain. We intend to investigate

and classify some of the more common types of states which can occur in Markov

chains. This will be a brief treatment, using mainly examples of what is an extensive

algebraic subject.

(a) Absorbing state

We have already met one type of state—namely the absorbing state (see Sec-

tion 3.1). Once entered there is no escape from an absorbing state. An absorbing

state Ei is characterized by the probabilities

pii = 1, pij = 0, (j 6= i, j = 1, 2, . . .m), (4.25)

in the i-th row of T .

(b) Periodic state

The probability of a return to Ei at step n is p
(n)
ii . Let t be an integer greater than

1. Suppose that

p
(n)
ii = 0 for n 6= t, 2t, 3t, . . .

p
(n)
ii 6= 0 for n = t, 2t, 3t, . . . .

In this case the state Ei is said to be periodic with period t. If, for a state, no such t
exists with this property, then the state is described as aperiodic.

Let

d(i) = gcd{n|p(n)ii > 0},
that is, the greatest common divisor (gcd)6 of the set of integersn for which p

(n)
ii > 0.

Then the state Ei is said to be periodic if d(i) > 1 and aperiodic if d(i) = 1.

This definition, which includes the earlier case, covers the appearance of delayed

periodicity in which a sequence of initial terms are zero (see Problem 4.12 for an

6 gcd{n|p(n)
ii > 0} is the largest integer which divides all p

(n)
ii > 0 exactly.
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example of such periodic states which satisfy this general definition but not the one

above) .

Example 4.8. A four-state Markov chain has the transition matrix

T =






0 1
2

0 1
2

0 0 1 0
1 0 0 0
0 0 1 0




 .

Show that all states have period 3.

The transition diagram is shown in Figure 4.3, from which it is clear that all states have

period 3. For example, if the chain starts in E1, then returns to E1 are only possible at steps

E2E1

E4 E3

1
2
_

1
1

1

1
2
_

Figure 4.3 The transition diagram for Example 4.8.

3, 6, 9, . . . either through E2 or E3.

The analysis of chains with periodic states can be complicated. However, one can check for

a suspected periodicity as follows. By direct computation

S = T 3 =






1 0 0 0
0 1

2
0 1

2

0 0 1 0
0 1

2
0 1

2




 .

In this example,

S2 = T 6 = SS = S,

so that

Sr = T 3r = S, (r = 1, 2, . . .),

which always has nonzero elements on its diagonal. On the other hand,

Sr+1 = SrS =






0 1
2

0 1
2

0 0 1 0
1 0 0 0
0 0 1 0




 , Sr+2 = SrS2 =






0 0 1 0
1 0 0 0
0 1

2
0 1

2

1 0 0 0




 ,
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and both these matrices have zero diagonal elements for r = 1, 2, 3, . . .. Hence, for i =
1, 2, 3, 4,

p
(n)
ii = 0 for n 6= 3, 6, 9, . . . ,

p
(n)
ii 6= 0 for n = 3, 6, 9, . . . ,

which means that all states are period 3. In this example

d(i) = gcd{3, 6, 9, . . .} = 3, for i = 1, 2, 3, 4.

(c) Persistent state

Let f
(n)
j be the probability that the first return or visit7 to Ej occurs at the n-th

step. This probability is not the same as p
(n)
jj , which is the probability that a return

occurs at the n-th step, and includes possible returns at steps 1, 2, 3, . . . , n− 1 also.

It follows that

p
(1)
jj (= pjj) = f

(1)
j , (4.26)

p
(2)
jj = f

(2)
j + f

(1)
j p

(1)
jj , (4.27)

p
(3)
jj = f

(3)
j + f

(1)
j p

(2)
jj + f

(2)
j p

(1)
jj , (4.28)

and, in general,

p
(n)
jj = f

(n)
j +

n−1∑

r=1

f
(r)
j p

(n−r)
jj (n ≥ 2). (4.29)

Think about the meaning of these equations: for example, (4.27) states that the prob-

ability of a return to Ej at step 2 is the sum of the probability of a first return at step 2

plus the probability of a first return at step 1. The terms in Eqn (4.28) imply that the

probability of a return at the third step is the probability of a first return at the third

step, or the probability of a first return at the first step and a return two steps later, or

the probability of a first return at the second step and a return one step later.

Equations (4.26) and (4.29) become iterative formulas for the sequence of first

returns f
(n)
j , which can be expressed as:

f
(1)
j = pjj , (4.30)

f
(n)
j = p

(n)
jj −

n−1∑

r=1

f
(r)
j p

(n−r)
jj (n ≥ 2). (4.31)

The probability that a chain returns at some step to the state Ej is

fj =

∞∑

n=1

f
(n)
j .

If fj = 1, then a return to Ej is certain, and Ej is called a persistent state.

7 We first met first returns in Section 3.4.



86 MARKOV CHAINS

Example 4.9 A three-state Markov chain has the transition matrix

T =

[
p 1− p 0
0 0 1

1− q 0 q

]

,

where 0 < p < 1, 0 < q < 1. Show that the state E1 is persistent.

For simple chains a direct approach using the transition diagram is often easier than the

formula (4.29) for f
(n)
j . For this example the transition diagram is shown in Figure 4.4. If a

1- q

E1

E2 E3

1- p

p

q

1

Figure 4.4 The transition diagram for Example 4.9.

sequence starts in E1, then it can be seen that first returns to E1 can be made to E1 at every

step except for n = 2, since after two steps the chain must be in state E3. From the figure it

can be argued that

f
(1)
1 = p, f

(2)
1 = 0, f

(3)
1 = (1− p) · 1 · (1− q),

f
(n)
1 = (1− p).1.qn−3.(1− q), (n ≥ 4).

The last result for f
(n)
1 for n ≥ 4 follows from the following sequence of transitions:

E1 E2

(n−3) times
︷ ︸︸ ︷

E3 E3 · · · E3 E1.

The probability f1 that the system returns at least once to E1 is

f1 =

∞∑

n=1

f
(n)
1 = p+

∞∑

n=3

(1− p)(1− q)qn−3,

= p+ (1− p)(1− q)

∞∑

s=0

qs, (s = n− 3)

= p+ (1− p)
(1− q)

(1− q)
= 1,

using the sum formula for the geometric series. Hence f1 = 1, and consequently the state E1

is persistent.
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In fact all states are persistent. Note also that T 3 is a positive matrix.

The mean recurrence time µj of a persistent state Ej , for which
∑∞

n=1 f
(n)
j = 1,

is given by

µj =
∞∑

n=1

nf
(n)
j . (4.32)

In Example 4.7 above, the state E1 is persistent and its mean recurrence time is given

by

µ1 =

∞∑

n=1

nf
(n)
1 = p+ (1− p)(1− q)

∞∑

n=3

nqn−3

= p+ (1− p)(1− q)

[
3− 2q

(1 − q)2

]

=
3− 2p− 2q + pq

1− q
,

which is finite. For some chains, however, the mean recurrence time can be infinite.

A persistent state Ej is said to be null if µj = ∞, and nonnull if µj < ∞. All

states in Example 4.7 are nonnull persistent.

To create a simple example of a finite chain with a persistent null state, we consider

a chain in which the transition probabilities depend on the step number n. Null states

are not possible in finite chains with a constant transition matrix, but a proof will not

be given here.

Example 4.10 A three-state inhomogeneous Markov chain has the transition matrix

Tn =

[ 1
2

1
2

0
0 0 1

1/(n+ 1) 0 n/(n+ 1)

]

,

where Tn is the transition matrix at step n. Show that E1 is a persistent null state.

The transition diagram at a general step n is shown in Figure 4.5. From the figure

E

EE

1

32

1
2

1
2

1

1/(n+1)

n/(n+1)

Figure 4.5 The transition diagram for Example 4.10.



88 MARKOV CHAINS

f
(1)
1 =

1

2
, f

(2)
1 = 0, f

(3)
1 =

1

2
· 1 · 1

4
,

f
(n)
1 =

1

2
· 1 · 3

4
· 4
5
· · · n− 1

n
· 1

n+ 1
=

3

2n(n+ 1)
, (n ≥ 4).

Hence,

f1 =
1

2
+

1

8
+

3

2

∞∑

n=4

1

n(n+ 1)
.

Since
1

n(n+ 1)
=

1

n
− 1

n+ 1
,

it follows that

∞∑

n=4

1

n(n+ 1)
= lim

N→∞

N∑

n=4

(
1

n
− 1

n+ 1

)

= lim
N→∞

(
1

4
− 1

N + 1

)

=
1

4
.

Hence,

f1 =
5

8
+

3

8
= 1,

which means that E1 is persistent. On the other hand, the mean recurrence time

µ1 =

∞∑

n=1

nf
(n)
1 =

7

8
+

3

2

∞∑

n=4

n

n(n+ 1)
,

=
7

8
+

3

2

(
1

5
+

1

6
+

1

7
+ · · ·

)

=
7

8
+

3

2

∞∑

n=5

1

n
.

The series in the previous equation is the harmonic series

∞∑

n=1

1

n
= 1 +

1

2
+

1

3
+ · · · ,

minus the first four terms. The harmonic series is a well-known divergent series, which means

that µ1 = ∞. Hence E1 is persistent and null.

States can be both persistent and periodic. In the four-state chain with transition

matrix

T =







0 1 0 0
0 0 0 1
0 1 0 0
1
2 0 1

2 0






,

all states are period 3, persistent, and non-null.

(d) Transient state

For a persistent state the probability of a first return at some step in the future is

certain. For some states,

fj =

∞∑

n=1

f
(n)
j < 1, (4.33)

which means that the probability of a first return is not certain. Such states are de-

scribed as transient.
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Example 4.11 A four-state Markov chain has the transition matrix

T =






0 1
2

1
4

1
4

1
2

1
2

0 0
0 0 1 0
0 0 1

2
1
2




 .

Show that E1 is a transient state.

The transition diagram is shown in Figure 4.6. From the figure

f
(1)
1 = 0, f

(2)
1 = 1

2
· 1
2
= ( 1

2
)2, f

(3)
1 = ( 1

2
)3, f

(n)
1 = ( 1

2
)n.

1
2
-

1
4
-

E4

E1 E2

E3 1

1
2
-

8
-

1
4
-

1
2
-

1
2
- 1

2
-

Figure 4.6 The transition diagram for Example 4.11.

Hence,

f1 =

∞∑

n=1

f
(n)
1 =

∞∑

n=2

( 1
2
)n = 1

2
< 1,

implying that E1 is a transient state. The reason for the transience of E1 can be seen from

Figure 4.6, where transitions from E3 or E4 to E1 or E2 are not possible.

(e) Ergodic state

An important state which we will return to in the next section is the state which

is persistent, nonnull, and aperiodic. This state is called ergodic8. Ergodic states are

important in the classification of chains, and in the existence of limiting probability

distributions, as we shall see in the following section.

Example 4.12 In Example 4.9 we considered the three-state Markov chain with transition

matrix

T =

[
p 1− p 0
0 0 1

1− q 0 q

]

8 Generally, the word ergodic means that a state will eventually return to a previous state, or put alterna-
tively a sequence or sample in a state is representative of the whole chain.
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where 0 < p < 1, 0 < q < 1. Show that state E1 is ergodic.

It was shown in Example 4.9 that E1 was persistent with

f
(1)
1 = p, f

(2)
1 = 0, f

(n)
1 = (1− p)(1− q)qn−3, (n ≥ 3).

It follows that its mean recurrence time is

µ1 =

∞∑

n=1

nf
(n)
1 = p+ (1− p)(1− q)

∞∑

n=3

nqn−3 =
3− 2q

(1− q)2
< ∞.

The convergence of µ1 implies that E1 is nonnull. Also the diagonal elements p
(n)
ii > 0 for

n ≥ 3 and i = 1, 2, 3, which means that E1 is aperiodic. Hence from the definition above, E1

(and E2 and E3 also) is ergodic.

4.7 Classification of chains

In the previous section we considered some defining properties of individual states.

In this section we discuss properties of chains.

(a) Irreducible chains

An irreducible chain is one in which every state can be reached or is accessible

from every other state in the chain in a finite number of steps. That any state Ej can

be reached from any other state Ei means that p
(n)
ij > 0 for some integer n. This is

also referred to as communicating states.

As defined in Section 4.4, a matrix A = [aij ] is said to be positive if aij > 0
for all i, j. A Markov chain with transition matrix T is said to be regular (to avoid

unnecessary repetition of the term positive) if there exists an integer N such that TN

is positive.

A regular chain is obviously irreducible. However, the converse is not necessarily

true, as can be seen from the simple two-state chain with transition matrix

T =

[
0 1
1 0

]

,

since

T 2n =

[
1 0
0 1

]

= I2 and T 2n+1 =

[
0 1
1 0

]

= T,

for n = 1, 2, 3 . . .. No power of T is a positive matrix.

Example 4.13 Show that the three-state chain with transition matrix

T =

[ 1
3

1
3

1
3

0 0 1
1 0 0

]

defines a regular (and hence irreducible) chain.
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For the transition matrix T

T 2 =

[ 4
9

1
9

4
9

1 0 0
1
3

1
3

1
3

]

, T 3 =

[ 16
27

4
27

7
27

1
3

1
3

1
3

4
9

1
9

4
9

]

.

Hence T 3 is a positive matrix, which means that the chain is regular.

An important feature of an irreducible chain is that all its states are of the same

type, that is, either all transient or all persistent (null or nonnull), or all have the

same period. A proof of this is given by Feller (1968, p. 391). This means that the

classification of all states in an irreducible chain can be inferred from the known

classification of one state. It is intuitively reasonable to also infer that the states of a

finite irreducible chain cannot all be transient, since it would mean that a return to any

state would not be certain, even though all states are accessible from all other states

in a finite number of steps. This requires a proof which will not be included here.

(b) Closed sets

A Markov chain may contain some states which are transient, some which are

persistent, absorbing states, and so on. The persistent states can be part of closed

subchains. A set of states C in a Markov chain is said to be closed if any state within

C can be reached from any other state within C, and no state outside C can be

reached from any state inside C. Algebraically, a necessary condition for this to be

the case is that

pij = 0 ∀ Ei ∈ C and ∀ Ej /∈ C. (4.34)

An absorbing state is closed with just one state. Note also that a closed subset is itself

an irreducible subchain of the full Markov chain.

Example 4.14 Discuss the status of each state in the six-state Markov chain with transition

matrix

T =










1
2

1
2

0 0 0 0
1
4

3
4

0 0 0 0
1
4

1
4

1
4

1
4

0 0
1
4

0 1
4

1
4

0 1
4

0 0 0 0 1
2

1
2

0 0 0 0 1
2

1
2










.

A diagram representing the chain is shown in Figure 4.7. As usual the figure is a great

help in settling questions of which sets of states are closed. It can be seen that {E1, E2} is a

closed irreducible subchain since no states outside the states can be reached from E1 and E2.

Similarly {E5, E6} is a closed irreducible subchain. The states E3 and E4 are transient. All

states are aperiodic, which means that E1, E2, E5, and E6 are ergodic.

(c) Ergodic chains

As we have seen, all the states in an irreducible chain belong to the same class.

If all states are ergodic, that is, persistent, nonnull, and aperiodic, then the chain is

described as an ergodic chain.
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E1

E6

E2

E3

E4
E5

1
2
_

1
2
_

1
2
_

1
2
_

1
2
_

1
2
_

3_
4

1_
4

1_
4

1_
4

1_
4

1_
4

1_
4

1_
4

1_
4

1_
4

Figure 4.7 The transition diagram for Example 4.14.

Example 4.15 Show that all states of the chain with transition matrix

T =

[ 1
3

1
3

1
3

0 0 1
1 0 0

]

are ergodic.

This is the same chain as in Example 4.13, where it was shown to be irreducible and regular,

which means that all states must be persistent, nonnull, and aperiodic. Hence all states are

ergodic.

Example 4.16 Consider the three-state Markov chain with transition matrix

T =

[ 1
5

4
5

0
0 0 1
1 0 0

]

.

Show that all states are ergodic. Find the eigenvalues of T and Q = limn→∞ Tn. Determine

the mean recurrence times µ1, µ2, µ3 for each state, and confirm that the rows of Q all have

the elements 1/µ1, 1/µ2, 1/µ3.

It is easy to check that T 4 is a positive matrix, which implies that the chain is ergodic. The

eigenvalues of T are given by

det(T − λI3) =

∣
∣
∣
∣
∣

1
5
− λ 4

5
0

0 −λ 1
1 0 −λ

∣
∣
∣
∣
∣
= −λ3 + 1

5
λ2 + 4

5

= 1
5
(1− λ)(5λ2 + 4λ+ 4) = 0.

Hence the eigenvalues can be denoted by

λ1 = 1, λ2 = − 2
5
+ 4

5
i, λ3 = − 2

5
− 4

5
i.

The corresponding eigenvectors are

r1 =

[
1
1
1

]

, r2 =

[ − 2
5
+ 4

5
i

− 1
2
− i
1

]

, r3 =

[ − 2
5
− 4

5
i

− 1
2
+ i
1

]

.
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We use the method of Section 4.4 to find Tn. Let

C =
[

r1 r2 r3
]
=

[
1 − 2

5
+ 4

5
i − 2

5
− 4

5
i

1 − 1
2
− i − 1

2
+ i

1 1 1

]

.

The computed inverse is given by

C−1 =
1

52

[
20 16 16

−10− 30i −8 + 14i 18 + i
−10 + 30i −8 − 14i 18− i

]

.

As in Example 4.6, it follows similarly that

Tn = C

[
1 0 0
0 (− 2

5
+ 4

5
i)n 0

0 0 (− 2
5
− 4

5
i)n

]

C−1.

Hence,

Q = lim
n→∞

Tn = C

[
1 0 0
0 0 0
0 0 0

]

C−1 =
1

13

[
5 4 4
5 4 4
5 4 4

]

.

The invariant distribution is therefore p =
[

5
13

4
13

4
13

]
. Note that the elements in p are

the same as the first row in C−1. Is this always the case for ergodic chains?

The first returns f
(n)
i for each of the states can be easily calculated from the transition

diagram Figure 4.8. Thus,

f
(1)
1 = 1

5
, f

(2)
1 = 0, f

(3)
1 = 4

5
.1.1 = 4

5
,

f
(1)
2 = f

(1)
3 = 0, f

(2)
2 = f

(2)
3 = 0, f

(n)
2 = f

(n)
3 = 4

5

(
1
5

)n−3
, (n ≥ 3).

E1

E2 E3

1

1

1_
5

4_
5

Figure 4.8 The transition diagram for Example 4.16.

Hence, by Eqn (4.30),

µ1 =
∑∞

n=1
nf

(n)
1 = 1

5
+ 3. 4

5
= 13

5
.

µ2 = µ3 =
∑∞

n=1
nf

(n)
2 = 4

5

∑∞
n=3

n( 1
5
)n−3 = 13

4
.

The vector of reciprocals
[

1
µ1

1
µ2

1
µ3

]
=
[

5
13

4
13

4
13

]
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agrees with the vector p above calculated by the eigenvalue method.

For ergodic chains this is always the case: the invariant distribution is the vector

of mean recurrence time reciprocals, but we shall not give a proof here.

4.8 A wildlife Markov chain model

Consider the progress of a disease in a closed wildlife population in which births are

excluded. This could be, for example, a bird population not in the breeding season.

We model the progress of the disease as a discrete Markov chain over time steps

given by 0, t, 2t, 3t, . . . which may cover various epochs for t (days, weeks, months,

etc.). We start with a population which is susceptible to the disease. The individuals

may become infected, from which they either die or recover and become immune: in

this model individual birds cannot be re-infected.

The original susceptible population may also die due to other causes. Therefore

the population can be divided into four states: E1 of susceptibles; E2 infected; E3

immune; E4 dead. The proposed transition matrix of the model is

T =







p11 p12 0 p14
0 0 p23 p24
0 0 p33 p34
0 0 0 1






. (4.35)

The transition diagram is shown in Figure 4.9. It is assumed that within any time

interval of length t, an infected bird either becomes immune or dies.

E

3

E1

E4 E

2

Figure 4.9 The transition diagram for wild life model.

The entries in Figure 4.9 are easily explained: p11 is the probability that a sus-

ceptible is not infected, p12 that it is infected, p14 that a susceptible dies, and so on.

Multiple events in any time interval are assumed to be negligible.

If we start with only a susceptible population initially, then we choose

p(0) =
[

p
(0)
1 p

(0)
2 p

(0)
3 p

(0)
4

]

=
[
1 0 0 0

]
.
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At time nt the probability that a susceptible is in one of the four states is given by

p(n) =
[

p
(n)
1 p

(n)
2 p

(n)
3 p

(n)
4

]

= p(0)T n.

We could use the eigenvalue method of Section 4.4 to obtain a general solution for

T n. The eigenvalues of T are easy to list, namely {p11, 0, p33, 1}, since T is an upper

triangular matrix. However, even in this case, the eigenvectors are complicated. It is

easier to compute powers of T directly.

Some plausible data are applied to the model. An actual wildlife application to

house finches in the USA using Markov chains can be found in the paper by Ziplin et

al (2010) and references cited therein. Here we assume the following representative

data for a bird population with a time step t = 1 week:

p11 = 0.79 p12 = 0.20 p13 = 0 p14 = 0.01
p21 = 0 p22 = 0 p23 = 0.90 p24 = 0.10
p31 = 0 p32 = 0 p33 = 0.99 p34 = 0.01
p41 = 0 p42 = 0 p43 = 0 p44 = 1

.

Hence,

T =







0.79 0.20 0 0.01
0 0 0.90 0.10
0 0 0.99 0.01
0 0 0 1






.

We expect from the effect of the absorbing state E4 (and also from the transition

diagram) that

T n →







0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1







as n → ∞. To cite a particular case, after 10 weeks,

p(10) = p(0)T 10 =
[
1 0 0 0

]







0.09 0.02 0.71 0.17
0 0 0.82 0.18
0 0 0.90 0.10
0 0 0 1







=
[
0.09 0.02 0.71 0.17

]

(aside from rounding errors).

The probability that a susceptible becomes infected in the time interval (m − 1)t
to mt is pm−1

11 p12, that is, susceptible for m− 1 weeks followed by the probability of

infection in the following week. Since immunity occurs (that is, no return to suscep-

tibility), then the expected duration d12 for a susceptible to become infected is given

by (the upper limit is not achievable)

d12 =

∞∑

m=1

mpm−1
11 p12 =

p12
(1− p11)2

= 4.53 weeks.
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Figure 4.10 The figure shows list plots of the probabilities p
(n)
1 p

(n)
2 p

(n)
3 p

(n)
4 against the

steps n as given by p(n) = p(0)Tn. The corresponding states are E1 of susceptibles; E2

infected; E3 immune; E4 dead.

Figure 4.10 shows how the individual probabilities p
(n)
1 , p

(n)
2 p

(n)
3 p

(n)
4 develop

with the time steps.

4.9 Problems

4.1. If T = [pij ], (i, j = 1, 2, 3) and

pij =
i+ j

6 + 3i
,

show that T is a row-stochastic matrix. What is the probability that a transition between states

E2 and E3 occurs at any step?

If the initial probability distribution in a Markov chain is

p(0) =
[

1
2

1
4

1
4

]
,

what are the probabilities that states E1, E2, and E3 are occupied after one step? Explain why

the probability that the chain finishes in state E2 is 1
3

irrespective of the number of steps.

4.2. If

T =





1
2

1
4

1
4

1
3

1
3

1
3

1
4

1
2

1
4



 ,

calculate p
(2)
22 , p

(2)
31 , and p

(2)
13 .

4.3. For the transition matrix

T =

[
1
3

2
3

1
4

3
4

]
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calculate p
(3)
12 , p

(2)
2 and p(3) given that p(0) =

[
1
2

1
2

]
. Also find the eigenvalues of T ,

construct a formula for Tn, and obtain limn→∞ Tn.

4.4. Sketch transition diagrams for each of the following three-state Markov chains.

(a) A =

[ 1
3

1
3

1
3

0 0 1
1 0 0

]

; (b) B =

[ 1
2

1
4

1
4

0 1 0
1
2

1
2

0

]

; (c) C =

[
0 1

2
1
2

1 0 0
1
3

1
3

1
3

]

.

4.5. Find the eigenvalues of the stochastic matrix

T =

[
a b c
c a b
b c a

]

, (a > 0, b > 0, c > 0 and a+ b+ c = 1).

Show that the eigenvalues are complex if b 6= c. T is an example of a doubly stochastic

matrix: the elements in each row and column sum to 1.

Find the eigenvalues and eigenvectors in the following cases:

(a) a = 1
2

, b = 1
4

, c = 1
4

;

(b) a = 1
2

, b = 1
8

, c = 3
8

.

4.6. Find the eigenvalues, eigenvectors, the matrix of eigenvectors C, its inverse C−1, a for-

mula for Tn, and limn→∞ Tn for each of the following transition matrices:

(a)

T =

[
1
8

7
8

1
2

1
2

]

;

(b)

T =





1
2

1
8

3
8

1
4

3
8

3
8

1
4

5
8

1
8



 .

4.7. The weather in a certain region can be characterized as being sunny (S), cloudy (C), or

rainy (R) on any particular day. The probability of any type of weather on one day depends

only on the state of the weather on the previous day. For example, if it is sunny one day then

sun or clouds are equally likely on the next day with no possibility of rain. Explain what other

day-to-day possibilities are if the weather is represented by the transition matrix

T =

S C R

S 1
2

1
2

0
C 1

2
1
4

1
4

R 0 1
2

1
2

.

Find the eigenvalues of T and a formula for Tn. In the long run what percentage of the days

are sunny, cloudy, and rainy?

4.8. The eigenvalue method of Section 4.4 for finding general powers of stochastic matrices

is only guaranteed to work if the eigenvalues are distinct. Several possibilities occur if the

stochastic matrix of a Markov chain has a repeated eigenvalue. The following three examples

illustrate these possibilities.
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(a) Let

T =

[ 1
4

1
4

1
2

1 0 0
1
2

1
4

1
4

]

be the transition matrix of a three-state Markov chain. Show that T has the repeated eigenvalue

λ1 = λ2 = − 1
4

and λ3 = 1, and two distinct eigenvectors

r1 =

[
1
−4
1

]

r3 =

[
1
1
1

]

.

In this case diagonalization of T is not possible. However, it is possible to find a nonsingular

matrix C such that

T = CJC−1,

where J is the Jordan decomposition matrix9 given by

J =

[
λ1 1 0
0 λ1 0
0 0 1

]

=

[ − 1
4

1 0
0 − 1

4
0

0 0 1

]

,

C =
[

r1 r2 r3
]
,

and r2 satisfies

(T − λ1I3)r2 = r1.

Show that we can choose

r2 =

[ −10
24
0

]

.

Find a formula for Jn and confirm that, as n → ∞,

Tn →





12
25

1
5

8
25

12
25

1
5

8
25

12
25

1
5

8
25



 .

(b) A four-state Markov chain has the transition matrix

S =






1 0 0 0
3
4

0 1
4

0
0 1

4
0 3

4

0 0 0 1




 .

Sketch the transition diagram for the chain, and note that the chain has two absorbing states

and is therefore not a regular chain. Show that the eigenvalues of S are − 1
4

, 1
4

, and 1 repeated.

Show that there are four distinct eigenvectors. Choose the diagonalizing matrix C as

C =






0 0 −4 5
−1 1 −3 4
1 1 0 1
0 0 1 0




 .

9 Camille Jordan (1838–1922), French mathematician.
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Find its inverse, and show that, as n → ∞,

Sn →






1 0 0 0
4
5

0 0 1
5

1
5

0 0 4
5

0 0 0 1




 .

Note that since the rows are not the same this chain does not have an invariant distribution:

this is caused by the presence of two absorbing states.

(c) Show that the transition matrix

U =

[ 1
2

0 1
2

1
6

1
3

1
2

1
6

0 5
6

]

has a repeated eigenvalue, but that, in this case, three independent eigenvectors can be associ-

ated with U . Find a diagonalizing matrix C, and find a formula for Un using Un = CDnC−1,

where

D =

[ 1
3

0 0
0 1

3
0

0 0 1

]

.

Confirm also that this chain has an invariant distribution.

4.9. Miscellaneous problems on transition matrices. In each case find the eigenvalues of T , a

formula for Tn, and the limit of Tn as n → ∞. The special cases discussed in Problem 4.8

can occur.

(a)

T =





1
2

7
32

9
32

1 0 0
1
2

1
4

1
4



 ;

(b)

T =





1
3

1
4

5
12

1 0 0
1
4

1
4

1
2



 ;

(c)

T =





1
4

3
16

9
16

3
4

0 1
4

1
4

1
4

1
2



 ;

(d)

T =





1
4

1
4

1
2

5
12

1
3

1
4

1
2

1
4

1
4



 ;

(e)

T =






1 0 0 0
1
2

0 0 1
2

0 0 1 0
0 1

2
1
2

0




 .

4.10. A four-state Markov chain has the transition matrix

T =






1
2

1
2

0 0
1 0 0 0
1
4

1
2

0 1
4

3
4

0 1
4

0




 .
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Find fi, the probability that the chain returns to state Ei, for each state. Determine which states

are transient and which are persistent. Which states form a closed subset? Find the eigenvalues

of T , and the limiting behavior of Tn as n → ∞.

4.11. A six-state Markov chain has the transition matrix

T =










1
4

1
2

0 0 0 1
4

0 0 0 0 0 1
0 1

4
0 1

4
1
2

0
0 0 0 0 1 0
0 0 0 1

2
1
2

0
0 0 1 0 0 0










.

Sketch its transition diagram. From the diagram, which states do you think are transient and

which do you think are persistent? Which states form a closed subset? Determine the invariant

distribution in the subset.

4.12. Draw the transition diagram for the seven-state Markov chain with transition matrix

T =











0 1 0 0 0 0 0
0 0 1 0 0 0 0
1
2

0 0 1
2

0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
1
2

0 0 0 0 0 1
2

0 0 0 0 0 0 1











.

Now discuss the periodicity of the states of the chain. From the transition diagram calculate

p
(n)
11 and p

(n)
44 for n = 2, 3, 4, 5, 6. (In this example you should confirm that p

(3)
11 = 1

2
but

that p
(3)
44 = 0; however, p

(3n)
44 6= 0 for n = 2, 3, . . . confirming that state E4 is periodic with

period 3.)

4.13. The transition matrix of a three-state Markov chain is given by

T =

[
0 3

4
1
4

1
2

0 1
2

3
4

1
4

0

]

.

Show that S = T 2 is the transition matrix of a regular chain. Find its eigenvectors and confirm

that S has an invariant distribution given by
[

14
37

13
37

10
37

]
.

4.14. An insect is placed in the maze of cells shown in Figure 4.11. The state Ej is the state

in which the insect is in cell j. A transition occurs when the insect moves from one cell to

another. Assuming that exits are equally likely to be chosen where there is a choice, construct

the transition matrix T for the Markov chain representing the movements of the insect. Show

that all states are periodic with period 2. Show that T 2 has two subchains which are both

regular. Find the invariant distributions of both subchains. Interpret the results.

4.15. The transition matrix of a four-state Markov chain is given by

T =






1− a a 0 0
1− b 0 b 0
1− c 0 0 c
1 0 0 0




 , (0 < a, b, c < 1).



PROBLEMS 101

E4

E5

E2

E1

E3

Figure 4.11 Insect in a maze.

Draw a transition diagram, and, from the diagram, calculate f
(n)
1 , (n = 1, 2, . . .), the proba-

bility that a first return to state E1 occurs at the n-th step. Calculate also the mean recurrence

time µ1. What type of state is E1?

4.16. Show that the transition matrix

T =






1− a a 0 0
1− a 0 a 0
1− a 0 0 a
1 0 0 0






has two imaginary (conjugate) eigenvalues where 0 < a < 1. If a = 1
2

, confirm that T has the

invariant distribution p =
[

8
15

4
15

2
15

1
15

]
.

4.17. A production line consists of two manufacturing stages. At the end of each manufacturing

stage each item in the line is inspected, where there is a probability p that it will be scrapped,

q that it will be sent back to that stage for reworking, and (1 − p − q) that it will be passed

to the next stage or completed. The production line can be modelled by a Markov chain with

four states: E1, item scrapped; E2, item completed; E3, item in first manufacturing stage; E4,

item in second manufacturing stage. We define states E1 and E2 to be absorbing states so that

the transition matrix of the chain is

T =






1 0 0 0
0 1 0 0
p 0 q 1− p− q
p 1− p− q 0 q




 .

An item starts along the production line. What is the probability that it is completed in two

stages? Calculate f
(n)
3 and f

(n)
4 . Assuming that 0 < p + q < 1, what kind of states are E3

and E4? What is the probability that an item starting along the production line is ultimately

completed?

4.18. The step-dependent transition matrix of Example 4.10 is

Tn =

[ 1
2

1
2

0
0 0 1

1/(n+ 1) 0 n/(n+ 1)

]

, (n = 1, 2, 3, . . .).

Find the mean recurrence time for state E3, and confirm that E3 is a persistent, nonnull state.

4.19. In Example 4.10, a persistent, null state occurred in a chain with step-dependent transi-

tions: such a state cannot occur in a finite chain with a constant transition matrix. However,
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chains over an infinite number of states can have persistent, null states. Consider the following

chain which has an infinite number of states E1, E2, . . . with the transition probabilities

p11 =
1

2
, p12 =

1

2
, pj1 =

1

j + 1
, pj,j+1 =

j

j + 1
, (j ≥ 2).

Find the mean recurrence time for E1, and confirm that E1 is a persistent, null state.

4.20. A random walk takes place on 1, 2, . . . subject to the following rules. A jump from

position i to position 1 occurs with probability qi, and from position i to i+1 with probability

1 − qi for i = 1, 2, 3, . . ., where 0 < qi < 1. Sketch the transition diagram for the chain.

Explain why to investigate the persistence of every state, only one state, say state 1, need be

considered. Show that the probability that a first return to state 1 occurs at some step is

f1 =

∞∑

j=1

[
j−1∏

k=1

(1− qk)

]

qj .

If qj = q (j = 1, 2, . . .), show that every state is persistent.

4.21. A Markov chain maze. Figure 4.12 shows a maze with entrance E1 and further gates E2,

E3, E4, E5, and E6 with target E7. These gates can be represented by states in a Markov

E

E E

E
E

EE

1

23

4

5

67

Figure 4.12 The maze in Problem 4.21.

chain. At each E1, . . . , E6 there are two possible new paths which are assumed equally likely

to be chosen. The target E7 can be considered to be an absorbing state. Construct a 7 × 7
transition matrix for the maze assuming that the walker does not return to a previous state and

does not learn from previous choices: for example, at E1 he or she can still make the mistake

of walking the dead-end again. Find the probabilities that the walker reaches the target in

6, 7, 8, . . . steps.

Suppose now that the walker learns from wrong choices. To accommodate this, let E11 be

the entrance and E12 the return to the entrance after a wrong choice (the dead-end); let E21

and E22 have the same meaning for the second entrance, and so on. Hence the probabilities

are:

P(E12 → E12) =
1
2
; P(E11 → E21) =

1
2
; P(E12 → E21) = 1;
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P(E21 → E22) =
1
2
; P(E31 → E21) =

1
2
; P(E22 → E31) = 1;

and similarly for the remaining probabilities. The transition matrix is now 13×13. with states

E11, E12, E21, E22, . . . , E61, E62, E7.

Find the probabilities that the walker reaches the centre in 6,7,8 steps. (One really needs a

computer program to compute the matrix products.)

4.22. In a finite Markov chain a subset C of states is said to be closed if, for states i and j,

i ∈ C, then transition i → j ⇒ j ∈ C.

Find the closed subset in a chain with transition matrix

T =










0 0 1
2

1
2

0 0
0 0 1

2
0 1

4
1
4

0 0 1
3

1
3

0 1
3

0 0 0 0 0 1
1
2

0 0 0 0 1
2

0 0 1 0 0 0










.

4.23. Chess knight moves. A knight moves on a reduced chess board with 4×4 = 16 squares.

The knight starts at the bottom left-hand corner and moves according to the usual chess rules.

Treating moves as a Markov chain, construct a 16×16 transition matrix for the knight moving

from any square (easier if you design a computer program for the matrix). Show that the

knight returns to it, starting corner after 2,4,6 moves (must be even) with probabilities 1
4
, 1
6
, 7
54

,

respectively. Find the corresponding first returns. [Just a reminder: if f
(n)
11 is the probability

that the first return to corner (1, 1) (say) after n moves, and p11(m) is the probability that the

knight is at (1, 1) after m moves], then

f11 = p
(1)
11 , f

(n)
11 = p

(n)
11 −

n−1∑

m=1

f
(m)
11 p

(n−m)
11 , (n ≥ 2).]
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CHAPTER 5

Poisson Processes

5.1 Introduction

In many applications of stochastic processes, the random variable can be a continu-

ous function of the time t. For example, in a population, births and deaths can occur

at any time, and any random variable representing such a probability model must

take account of this dependence on time. Other examples include the arrival of tele-

phone calls at an office, or the emission of radioactive particles recorded on a Geiger

counter. Interpreting the term population in the broad sense (not simply humans and

animals, but particles, telephone calls, etc., depending on the context), we might be

interested typically in the probability that the population size is, say, n at time t. We

shall represent this probability usually by pn(t). For the Geiger1 counter applica-

tion it will represent the probability that n particles have been recorded up to time t,
whilst for the arrival of telephone calls it could represent the number of calls logged

up to time t. These are examples of a process with discrete states but observed over

continuous times.

5.2 The Poisson process

Let N(t) be a time-varying random variable representing the population size at time

t. Consider the probability of population size n at time t given by

pn(t) = P[N(t) = n] =
(λt)ne−λt

n!
, (t ≥ 0) (5.1)

for n = 0, 1, 2, . . . (remember 0! = 1). It is assumed that N(t) can take the integer

values n = 0, 1, 2, . . . . We can confirm that (5.1) is a probability distribution by

observing that

∞∑

n=0

pn(t) =

∞∑

n=0

(λt)n

n!
e−λt = e−λt

∞∑

n=0

(λt)n

n!
= e−λteλt = 1,

using the power series expansion for the exponential function (see the Appendix).

Note that p0(0) = 1, that is, the initial population size is 1.

In fact (see Section 1.7), pn(t) is a Poisson probability (mass) function with

parameter or intensity λ. For this reason any application for which Eqn (5.1) holds

1 Hans Geiger (1882–1945), German physicist.

105
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is known as a Poisson process: we shall give a full formal statement of the process

in Section 5.7. Examples of some probabilities for pn(t) versus λt in the cases n =
0, 1, 2, 3 are shown in Figure 5.1. The Poisson process is a special case of the more

general birth process which is developed in Chapter 6.

n=0

n=1

n=2

n=3

0 2 4 6 8 10
λt

0.2

0.4

0.6

0.8

1.0

pn(t)

Figure 5.1 Probabilities pn(t) for n = 0, 1, 2, 3.

Since, for n ≥ 1,
dpn(t)

dt
=

(n− λt)

n!
λntn−1e−λt, (5.2)

the maximum values of the probabilities for fixed n occur at time t = n/λ, where

dpn(t)/dt = 0. For n = 0,

dp0(t)

dt
= −λe−λt. (5.3)

The mean µ(t) of the Poisson distribution will be a function of time given by the

sum of the products of the possible outcomes n and their probable occurrences pn(t),
(n = 0, 1, 2, . . .), namely,

µ(t) = E[N(t)] =

∞∑

n=0

npn(t) =

∞∑

n=1

n
(λt)n

n!
e−λt

= e−λtλt

∞∑

n=1

(λt)n−1

(n− 1)!
= e−λtλteλt = λt. (5.4)

Note that the mean value increases linearly with time at rate λ.

This observation that the mean increases steadily with time gives a pointer as to

why the Poisson distribution is appropriate for cumulative recording, such as the

Geiger counter application and the call-logging problem for the telephone operator.

For the Geiger counter, the recording of radioactive particle hits is assumed to occur

at random with probability of a new subsequent hit being independent of any previous

recordings. This independence requirement is crucial for the Poisson process. We can

show how this arises from the Poisson process as follows.
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Example 5.1. Find the variance of the Poisson distribution pn(t) (n = 0, 1, 2, . . .).

Expressing the variance in terms of means, the variance is given by (see Section 1.6)

V[N(t)] = E[N(t)2]− [E[N(t)]]2 = E[N(t)2]− (λt)2

by (5.4). Also

E[N(t)2] =

∞∑

n=1

n2(λt)n

n!
e−λt = e−λt

∞∑

n=1

n(λt)n

(n− 1)!

= e−λtt
d

dt

∞∑

n=1

λntn

(n− 1)!
= e−λtt

d

dt
[λteλt] = λt+ (λt)2.

Thus

V[N(t)] = λt+ (λt)2 − (λt)2 = λt.

Note that the Poisson distribution has the property that its mean is the same as its variance.

From Eqns (5.1), (5.2), and (5.3) it follows that

dp0(t)

dt
= −λp0(t), (5.5)

dpn(t)

dt
=

(n− λt)

n!
λntn−1e−λt =

λn

(n− 1)!
tn−1e−λt − λn+1

n!
tne−λt

= λ[pn−1(t)− pn(t)], (n ≥ 1). (5.6)

These are differential-difference equations for the sequence of probabilities pn(t).
From the definition of differentiation, the derivatives are obtained by the limiting

process
dpn(t)

dt
= lim

δt→0

pn(t+ δt)− pn(t)

δt
,

so that approximately, for small δt > 0,

dpn(t)

dt
≈ pn(t+ δt)− pn(t)

δt
.

Thus eliminating the derivatives in Eqns (5.5) and (5.6) in favor of their approxima-

tions, we can replace the equations by

p0(t+ δt)− p0(t)

δt
≈ −λp0(t),

pn(t+ δt)− pn(t)

δt
≈ λ[pn−1(t)− pn(t)],

so that

p0(t+ δt) ≈ (1− λδt)p0(t)

pn(t+ δt) ≈ pn−1(t)λδt + pn(t)(1 − λδt), (n ≥ 1)

}

. (5.7)

We can interpret the equations as follows. For the Geiger counter, we can infer from
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these formulas that the probability that a particle is recorded in the short time interval

δt is λδt, and that the probability that two or more particles are recorded is negligi-

ble, and consequently that no recording takes place with probability (1 − λδt). In

Eqn (5.7) the only way in which the outcome reading n(≥ 1) can occur at time

t+ δt is that either one particle was recorded in the interval δt when n particles were

recorded at time t, or that nothing occurred with probability (1 − λδt) when n − 1
particles were recorded at time t. In fact, Eqn (5.7) is really a re-statement of the

partition theorem or law of total probability (Section 1.3), and is often the starting

point for the modeling of random processes in continuous time. We will look at this

approach for the Poisson process in the next section, before we develop it further in

the next chapter for birth and death processes and queues.

5.3 Partition theorem approach

We can use Eqn (5.7) as an approach using the partition theorem (Section 1.3). We

argue as in the last paragraph of the previous section but tighten the argument. For the

Geiger counter application (a similar argument can be adapted for the call-logging

problem, etc.) we assume that the probability that one particle is recorded in the short

time interval δt is

λδt+ o(δt).

(The term o(δt) described in words as ‘little o δt’ means that the remainder or error

is of lower order than δt, that is [(see the Appendix)],

lim
δt→0

o(δt)

δt
= 0.)

The probability of two or more hits is assumed to be o(δt), that is, negligible as

δt → 0, and the probability of no hits is 1−λδt+ o(δt). We now apply the partition

theorem on the possible outcomes. The case n = 0 is special since reading zero can

only occur through no event occurring. Thus

p0(t+ δt) = [1− λδt+ o(δt)]p0(t),

pn(t+ δt) = pn−1(t)(λδt + o(δt)) + pn(t)(1 − λδt+ o(δt)) + o(δt), (n ≥ 1).

Dividing through by δt and re-organizing the equations, we find that

p0(t+ δt)− p0(t)

δt
= −λp0(t) + o(1),

pn(t+ δt)− pn(t)

δt
= λ[pn−1(t)− pn(t)] + o(1).

Now let δt → 0. Then, by the definition of the derivative and o(1),

dp0(t)

dt
= −λp0(t), (5.8)

dpn(t)

dt
= λ[pn−1(t)− pn(t)], (n ≥ 1). (5.9)

All terms o(1) tend to zero as δt → 0. Not surprisingly, we have recovered Eqns (5.5)

and (5.6).
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We started this chapter by looking at the Poisson distributions defined by Eqn (5.1).

We now look at techniques for solving Eqns (5.8) and (5.9), although for the Poisson

process we know the solutions. The methods give some insight into the solution of

more general continuous-time random processes.

5.4 Iterative method

Suppose that our model of the Geiger counter is based on Eqn (5.8), and that we

wish to solve the equations to recover pn(t), which we assume to be unknown for

the purposes of this exercise. Equation (5.8) is an ordinary differential equation for

one unknown function p0(t). It is of first-order, and it can be easily verified that its

general solution is

p0(t) = C0e
−λt, (5.10)

where C0 is a constant. We need to specify initial conditions for the problem. As-

sume that the instrumentation of the Geiger counter is set to zero initially. Thus we

have the certain event for which p0(0) = 1, and consequently pn(0) = 0, (n ≥ 1):
the probability of any reading other than zero is zero at time t = 0. Hence C0 = 1
and

p0(t) = e−λt. (5.11)

Now put n = 1 in (5.9) so that

dp1(t)

dt
= λp0(t)− λp1(t),

or
dp1(t)

dt
+ λp1(t) = λp0(t) = λe−λt,

after substituting for p0(t) from Eqn (5.11). This first order differential equation for

p1(t) is of integrating factor type with integrating factor

e
∫

λdt = eλt,

in which case it can be rewritten as the following separable differential equation:

d

dt

(
eλtp1(t)

)
= λeλte−λt = λ.

Hence, integration with respect to t results in

eλtp1(t) =

∫

λdt = λt+ C1.

Thus

p1(t) = λte−λt + C1e
−λt = λte−λt

since p1(0) = 0. We now repeat the process by putting n = 2 in Eqn (5.9) and

substituting in the p1(t) which has just been found. The result is the equation

dp2(t)

dt
+ λp2(t) = λp1(t) = λte−λt.
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This is a further first-order integrating-factor differential equation which can be solved

using the same method. The result is, using the initial condition p2(0) = 0,

p2(t) =
(λt)2e−λt

2!
.

The method can be repeated for n = 3, 4, . . ., and the results imply that

pn(t) =
(λt)ne−λt

n!
, (5.12)

which is the probability given by Eqn (5.1) as we would expect. The result in Eqn

(5.12) can be justified rigorously by constructing a proof by induction.

The initial condition is built into the definition of the Poisson process (see the

summary in Section 5.8). The iterative approach outlined above does permit the use

of other initial conditions such as the assumption that the Geiger counter is set to

reading n0, say, at time t = 0 (see Problem 5.8).

The iterative method works for the differential-difference equations (5.9) because

they contain forward differencing only in n. In many applications both forward and

backward differencing appear in the equations with the result that successive methods

of solution can no longer be applied. The alternative generating function approach

will be explained in the next section.

5.5 The generating function

An alternative approach to the solution of differential-difference equations uses the

probability generating function first introduced in Section 1.9. For continuous-time

random processes, we define a generating function as a power series in a dummy

variable s, say, in which the coefficients in the series are the probabilities, the pn(t)’s
in our notation here. Thus we construct a generating function G(s, t) as

G(s, t) =

∞∑

n=0

pn(t)s
n. (5.13)

Here s is a dummy variable which is in itself not of much direct interest. However,

given the function G(s, t), pn(t) can be recovered from the series obtained by ex-

panding G(s, t) in powers of s, and looking at their coefficients.

The practical steps involved in expressing the differential-difference equations in

terms of the generating function are as follows. Multiply Eqn (5.9) by sn, and add

the equations together including Eqn (5.8). In summation notation the result is

∞∑

n=0

dpn(t)

dt
sn = λ

∞∑

n=1

pn−1(t)s
n − λ

∞∑

n=0

pn(t)s
n. (5.14)

Note carefully the lower limits on the summations. Note also that the right-hand

side of Eqn (5.8) has been included in the second series on the right-hand side of

Eqn (5.14). We attempt to express each of the series in Eqn (5.14) in terms of the

generating function G(s, t) or its partial derivatives with respect to either s or t.
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Thus looking at each of the series in turn, we find that

∞∑

n=0

dpn(t)

dt
sn =

∂

∂t

∞∑

n=0

pn(t)s
n =

∂G(s, t)

∂t
,

∞∑

n=1

pn−1(t)s
n =

∞∑

m=0

pm(t)sm+1 = sG(s, t), (putting n = m+ 1),

∞∑

n=0

pn(t)s
n = G(s, t).

We can now replace Eqn (5.14) by the equation

∂G(s, t)

∂t
= λsG(s, t)− λG(s, t) = λ(s− 1)G(s, t). (5.15)

This partial differential equation in G(s, t) replaces the set of differential-difference

Eqns (5.8) and (5.9). If Eqn (5.15) can be solved for the generating function G(s, t),
and if this function can then be expanded in powers of s, then the probabilities can

be read off from this expansion, and it is possible by using the uniqueness property

of probability generating functions that the distribution could be identified by name.

Since Eqn (5.15) only contains a derivative with respect to t, it behaves more like

an ordinary differential equation. We can integrate it with respect to t (it is a similar

equation to (5.8)) so that

G(s, t) = A(s)eλ(s−1)t, (5.16)

where A(s) is the ‘constant of integration’ but nevertheless can be a function of the

other variable s. That (5.16) is the solution can be verified by direct substitution in

Eqn (5.15).

The function A(s) is determined by the initial conditions which must now be

expressed in terms of the generating function. The initial conditions p0(0) = 1,

pn(0) = 0, (n ≥ 1) translate into

G(s, 0) =

∞∑

n=0

pn(0)s
n = 1.

Generally the initial conditions will lead to G(s, 0) being a specified function in s.

Thus in Eqn (5.16), A(s) = 1 and the required generating function for this Poisson

process is

G(s, t) = eλ(s−1)t. (5.17)

To obtain the individual probabilities, we expand the generating function in powers

of s. In this case we need the power series for the exponential function eλst. Applying

this result to G(s, t), we obtain

G(s, t) = eλ(s−1)t = e−λteλst = e−λt

∞∑

n=0

(λst)n

n!

=

∞∑

n=0

(λt)ne−λt

n!
sn.
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Hence the probability pn(t) is confirmed again as

pn(t) =
(λt)ne−λt

n!
, (n = 0, 1, 2, . . .).

The mean value at time t can also be expressed in terms of the generating function.

Quite generally the mean is given by (see Section 1.9)

µ(t) =

∞∑

n=1

npn(t) =

[
∂G(s, t)

∂s

]

s=1

= Gs(1, t). (5.18)

For the Poisson process above,

µ(t) =

[
∂

∂s
eλ(s−1)t

]

s=1

= λteλ(s−1)t

∣
∣
∣
∣
s=1

= λt, (5.19)

which confirms (5.4) again.

The variance of the Poisson process can be found using the probability generating

function again. Modifying the result for G(s, t), we find, for fixed t, that

σ
2 = Gss(1, t) +Gs(1, t)−Gs(1, t)

2. (5.20)

Hence by (5.13),

σ
2 = [λ2t2eλ(s−1)t + λteλ(s−1)t − (λt)2e2λ(s−t)]s=1

= λ2t2 + λt− (λt)2 = λt, (5.21)

which happens to be the same as the mean.

5.6 Arrival times

For the Geiger counter, the arrival time Tn for reading n is defined as the earliest

time at which the random variable N(t) = n. We can set T0 = 0. Figure 5.2 shows

how the times might occur in a Poisson process. The inter-arrival time Qn = Tn −

N(t)

t

5

4

3

2

1

T5
T0 T1 T2

T3 T4

Figure 5.2 The Poisson process and some typical arrival times T0, T1, T2, . . . .
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Tn−1 is the time between successive hits. We have assumed that the particles hit the

Geiger counter randomly and independently. Hence we might reasonably expect that

the random variable giving the arrival time of the first particle will have the same

distribution as the inter-arrival times between any two successive readings. It is as if

the counter has reset itself to zero and is awaiting the arrival of the next particle, that

is, it has the no-memory property (see Problem 5.2). At time t the probability that

no particle has been detected by the Geiger counter is p0(t) = e−λt. The distribution

function of the arrival times of the next reading is therefore given by

F (x) = 1− p0(x) = 1− e−λx, (x ≥ 0),

which leads to the exponential probability density function

f(x) =
dF (x)

dx
= λe−λx, (x ≥ 0).

The mean or expected value of the inter-arrival times is given by

µ =

∫ ∞

0

λxe−λxdx (5.22)

=
[

− xe−λx
]∞

0
+

∫ ∞

0

e−λxdx, (integrating by parts) (5.23)

= 0 +

[

−e−λx

λ

]∞

0

=
1

λ
. (5.24)

Hence the mean of the inter-arrival times or the times between successive readings

for the Geiger counter is the reciprocal of the rate λ. The variance is given by

σ
2 =

∫ ∞

−∞
(x− µ)2f(x)dx =

∫ ∞

0

(

x− 1

λ

)2

λe−λxdx

=
1

λ2
.

Example 5.2 Incoming telephone calls to an operator are assumed to be a Poisson process

with parameter λ. Find the density function of the length of time for n calls to be received, and

find the mean time and variance of the random variable of the length of time for n calls.

We are now interested in the time Tn, which is the earliest time at which the random variable

N(t) = n occurs, and its distribution. The probability distribution of the random variable Tn

is given by

F (t) = P{Tn ≤ t}
= P{n or more calls have arrived in the time interval (0, t)}
= pn(t) + pn+1(t) + · · ·

=

∞∑

r=n

pr(t) =

∞∑

r=n

(λt)re−λt

r!

using (5.1). The corresponding density function is

f(t) =
dF (t)

dt
=

∞∑

r=n

[
λ(λt)r−1e−λt

(r − 1)!
− λ(λt)re−λt

r!

]

=
λ(λt)n−1

(n− 1)!
e−λt,
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which is the density function of a gamma distribution with parameters n and λ. The mean of

this density function is

µ = E(Tn) =

∫ ∞

0

tf(t)dt =

∫ ∞

0

(λt)ne−λt

(n− 1)!
dt =

1

λ(n− 1)!

∫ ∞

0

une−udu =
n

λ

(see Section 1.8).

The variance of this gamma distribution is given by (see Section 1.8 again)

V(Tn) = E(T 2
n)− [E(Tn)]

2 =

∫ ∞

0

t2λ(λt)n−1

(n− 1)!
e−λtdt−µ

2

=
1

λ(n− 1)!

∫ ∞

0

(λt)n+1e−λtdt− n2

λ2

=
1

λ2(n− 1)!

∫ ∞

0

un+1e−udu− n2

λ2

=
(n+ 1)!

λ2(n− 1)!
− n2

λ2
=

n(n+ 1)

λ2
− n2

λ2
=

n

λ2
.

Example 5.3 A fire and emergency rescue service receives calls for assistance at a rate of ten

per day. Teams man the service in twelve hour shifts. Assume that requests for help form a

Poisson process.

(i) From the beginning of a shift, how long would the team expect to wait until their first call?

(ii) What is the probability that a team would receive six requests for help in a shift?

(iii) What is the probability that a team has no requests for assistance in a shift

(iv) Of calls for assistance, one in five is a false alarm. What is the probability that a team has

six requests for help in a shift but no false alarms?

Let time be measured in hours. Then 10 calls per day is equivalent to 10/24 per hour. Hence

the Poisson rate is λ = 0.4167. In this problem, pn(t) = (λt)ne−λt/n! is the probability that

there are n calls in time t, where t is measured in hours.

(i) From Eqn (5.24) the team would expect to wait for 1/λ = 2.4 hours until the first emer-

gency.

(ii) Using Eqn (5.12), the required probability is

P[N(12) = 6] = p6(12) =
1

6!

[
10

24
.12
]6

e−
10
24

.12 = 0.146.

(iii) The probability of no request will be

P[N(12) = 0] = p0(12) = e−
10
24

.12 = e−5 = 0.00674.

(iv) Then

P[N = 6, no false alarm] = P[no false alarm|N = 6]P[N = 6]

=
(
4

5

)6

p6(12)

= 0.262 × 0.146 = 0.038
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5.7 Summary of the Poisson process

We have introduced the Poisson process in an informal way mainly through the il-

lustrative model application of the Geiger counter. We can formally summarize what

is meant by a Poisson process as follows.

Consider the random process with the random variable N(t), (t ≥ 0). Then N(t)
is generated by a Poisson process if

• (i) N(t) can take the values {0, 1, 2, . . .};

• (ii) N(0) = 0;

• (iii) N(t1) ≤ N(t2) if t2 ≥ t1;

• (iv) for any sequence 0 < t1 < t2 · · · < tn, the random variables N(ti)−N(ti−1)
are mutually independent;

• (v) P(N(t+ δt) = n+ 1|N(t) = n) = λδt+ o(δt),
P(N(t+ δt) ≥ n+ 2|N(t) = n) = o(δt).

• (vi) the probability generating function is

G(s, t) = eλ(s−1)t,

subject to p0(0) = 1.

• (vii) the inter-arrival times are exponentially distributed.

In (v) the first conditional probability specifies that the probability of an event

in the time interval (t, t + δt) behaves linearly in δt, whilst the second conditional

probability states that the likelihood of two or more events taking place in this time

interval is negligible.

5.8 Problems

5.1. The number of cars which pass a roadside speed camera within a specified hour is assumed

to be a Poisson process with intensity λ = 92: on average 92 cars pass in the hour. It is also

found that 1% of cars exceed the designated speed limit. What are the probabilities that (a) at

least one car exceeds the speed limit, (b) at least two cars exceed the speed limit in the hour?

5.2. If the between-event time in a Poisson process has an exponential distribution with inten-

sity λ and with density λe−λt, then the probability that the time T for the next event to occur

is at least t is

P{T > t} = e−λt.

Show that, if t1, t2 ≥ 0, then

P{T > t1 + t2|T > t1} = P{T > t2}.
What does this result imply about the Poisson process and its memory of past events?

5.3. The number of cars which pass a roadside speed camera is assumed to behave as a Poisson

process with intensity λ. It is found that the probability that a car exceeds the designated speed

limit is p.
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(a) Show that the number of cars which break the speed limit also forms a Poisson process.

(b) If n cars pass the cameras in time t, find the probability function for the cars which

exceed the speed limit.

5.4. The variance of a random variable X(t) is given by

V(X(t)) = E(X(t)2)−E(X(t))2.

In terms of the generating function G(s, t), show that

V(X(t)) =

[

∂

∂s

(

s
∂G(s, t)

∂s

)

−
(
∂G(s, t)

∂s

)2
]

s=1

(an alternative formula to Eqn (5.20)). Obtain the variance for the Poisson process using its

generating function

G(s, t) = eλ(s−1)t

given by Eqn (5.17), and check your answer with that given in Problem 5.3.

5.5. A telephone answering service receives calls whose frequency varies with time but inde-

pendently of other calls, perhaps with a daily pattern—more during the day than the night. The

rate λ(t) ≥ 0 becomes a function of the time t. The probability that a call arrives in the small

time interval (t, t+ δt) when n calls have been received at time t satisfies

pn(t+ δt) = pn−1(t)(λ(t)δt+ o(δt)) + pn(t)(1− λ(t)δt+ o(δt)), (n ≥ 1),

with

p0(t+ δt) = (1− λ(t)δt+ o(δt))p0(t).

It is assumed that the probability of two or more calls arriving in the interval (t, t + δt) is

negligible. Find the set of differential-difference equations for pn(t). Obtain the probability

generating function G(s, t) for the process and confirm that it is a stochastic process with

parameter
∫ t

0
λ(x)dx. Find pn(t) by expanding G(s, t) in powers of s. What is the mean

number of calls received at time t?

5.6. For the telephone answering service in Problem 5.5, suppose that the rate is periodic given

by λ(t) = a+ b cos(ωt) where a > 0 and |b| < a. Using the probability generating function

from Problem 5.5, find the probability that n calls have been received at time t. Find also

the mean number of calls received at time t. Sketch graphs of p0(t), p1(t), and p2(t) when

a = 0.5, b = 0.2, and ω = 1.

5.7. A Geiger counter is pre-set so that its initial reading is n0 at time t = 0. What are the initial

conditions on pn(t), the probability that the reading is n(≥ n0) at time t, and its generating

function G(s, t)? Find pn(t), and the mean reading of the counter at time t.

5.8. A Poisson process with random variable N(t) has probabilities

pn(t) = P[N(t) = n] =
(λt)ne−λt

n!
.

If λ = 0.5, calculate the following probabilities associated with the process:

(a) P[N(3) = 6];
(b) P[N(2.6) = 3];
(c) P[N(3.7) = 4|N(2.1) = 2];
(d) P[N(7) −N(3) = 3].
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5.9. A telephone banking service receives an average of 1,000 calls per hour. On average a

customer transaction takes one minute. If the calls arrive as a Poisson process, how many

operators should the bank employ to avoid an expected accumulation of incoming calls?

5.10. A Geiger counter automatically switches off when the nth particle has been recorded,

where n is fixed. The arrival of recorded particles is assumed to be a Poisson process with

parameter λ. What is the expected value of the switch-off times?

5.11. Particles are emitted from a radioactive source, and N(t), the random variable of the

number of particles emitted up to time t from t = 0, is a Poisson process with intensity λ.

The probability that any particle hits a certain target is p, independently of any other particle.

If M(t) is the random variable of the number of particles that hit the target up to time t, show,

using the law of total probability, that M(t) forms a Poisson process with intensity λp.



http://taylorandfrancis.com


CHAPTER 6

Birth and Death Processes

6.1 Introduction

We shall now continue our investigation of further random processes in continuous

time. In the Poisson process in Chapter 5, the probability of a further event was inde-

pendent of the current number of events or readings in the Geiger counter analogy:

this is a specific assumption in the definition of the Poisson process (Section 5.7).

On the other hand, in birth and death processes, the probability of a birth or death

will depend on the population size at time t. The more individuals in the popu-

lation, the greater the possibility of a death, for example. As for Markov chains,

birth and death processes are further examples of Markov processes. Additionally

they include queueing processes, epidemics, predator–prey competition, and others.

Markov processes are characterized by the condition that future development of these

processes depends only on their current states and not their history up to that time.

Generally Markov processes are easier to model and analyse, and they do include

many interesting applications. Non-Markov processes in which the future state of a

process depends on its whole history are generally harder to analyse mathematically.

We have adopted a gradual approach to the full problem. The birth and death

processes are looked at separately, and then combined into the full birth and death

process. Generally the partition theorem approach is used to derive the equations

for pn(t), the probability that the population size is n at time t, and the probability

generating function approach is the preferred method of solution.

6.2 The birth process

In this process everyone lives forever: there are no deaths. This process could model

a colony of bacteria in which each cell randomly and independently divides into two

cells at some future time, and the same happens for each divided cell. The births

could start with n0 cells at time t = 0. We shall assume in this first model that the

probability that any individual cell divides in the time interval (t, t + δt) is propor-

tional to the time interval δt for small δt. If λ is the birth rate associated with this

process, then the probability that the cell divides is λδt in the interval. For n cells

the probability of cell division is λnδt. To avoid complications, we assume that the

probability that two or more births take place in the time interval δt is o(δt) (that is,

it can be ignored: see Section 5.3) with the consequence that the probability that no

cell divides is 1− λnδt− o(δt).

119
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There are many possibilities which are excluded in this model, including multiple

births (twins, triplets, etc.) which may be significant in any real situation. The prob-

ability that a cell divides may not be homogeneous in time—it could decline with

time, for example; the probability could also depend both on the state of the host

and the number of cells, in which case the parameter λ could be a function of the

population size n. However, the simple birth process described above is an interest-

ing starting point for studying a stochastic model of growth. It is also known as the

Yule1 process, named after one of its originators.

This birth process is an example of a continuous-time Markov chain (see Chapter

4) with an unbounded set of states En0
, En0+1, En0+2, . . ., where En is the state

in which the population size is n. In this chain, however, transitions can only take

place between n and n+ 1 in time δt since there are no deaths. The probability that

a transition occurs from En to En+1 in time δt is approximately λnδt and that no

transition occurs is approximately 1−λnδt. In a continuous-time Markov chain, the

chain may spend varying periods of time in any state as the population grows.

If N(t) is the random variable associated with the process, then we write

P{N(t) = n} = pn(t),

where pn(t) is the probability that the population size is n at time t. If the initial

population size is n0 ≥ 1 at time t = 0, then

pn0
(0) = 1, and pn(0) = 0 for n > n0. (6.1)

According to the rules outlined above, a population of size n at time t+ δt can arise

either from a population of size n−1 at time t with a birth occurring with probability

λ(n − 1)δt + o(δt) or through no event when the population is n, which can occur

with probability 1− λnδt+ o(δt), so that for n ≥ n0 + 1,

pn(t+ δt) = pn−1(t)[λ(n− 1)δt+ o(δt)] + pn(t)[1−λnδt+ o(δt)], (n ≥ n0 +1)

(for explanations of the notations o(δt) and o(1), see the Appendix). This equation

can be re-arranged into

pn(t+ δt)− pn(t)

δt
= λ(n− 1)pn−1(t)− λnpn(t) + o(1).

For the special case n = n0,

pn0
(t+ δt) = pn0

(t)[1 − λn0δt+ o(δt)],

which is equivalent to

pn0
(t+ δt)− pn0

(t)

δt
= −λn0pn0

(t) + o(1).

As δt → 0 in both ratios, they become derivatives in the limit so that

dpn0
(t)

dt
= −λn0pn0

(t), (6.2a)

1 George Udny Yule (1871–1951), Scottish statistician.
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dpn(t)

dt
= λ(n− 1)pn−1(t)− λnpn(t), (n ≥ n0 + 1). (6.2b)

These are differential-difference equations for the simple birth process. Since this is

a birth process it follows that pn(t) = 0 for n < n0.

The system of Eqn (6.2) can be solved successively starting with n = n0. The first

equation

dpn0
(t)

dt
= −λn0pn0

(t)

has the solution

pn0
(t) = e−λn0t,

since pn0
(0) = 1. Put n = n0 + 1 in Eqn (6.2). Then the next equation is

dpn0+1(t)

dt
+ λ(n0 + 1)pn0+1(t) = λn0pn0

(t) = λn0e
−λn0t,

which is a standard first-order equation of the integrating-factor type. This can be

solved to give

pn0+1(t) = n0e
−λn0t(1 − e−λt),

since pn0+1(0) = 0. This process can be continued but it becomes tedious. It is easier

to use the probability generating function method, which is also more general in its

applicability. The generating function was first introduced in Section 1.9, and used

also in Section 5.5 for the Poisson process.

Consider the probability generating function

G(s, t) =
∞∑

n=n0

pn(t)s
n.

Multiply both sides of (6.2a) by sn0 , and both sides of (6.2b) by sn for n ≥ n0 + 1.

Sum the equations for n ≥ n0. The result is

∞∑

n=n0

dpn(t)

dt
sn = λ

∞∑

n=n0+1

(n− 1)pn−1(t)s
n − λ

∞∑

n=n0

npn(t)s
n. (6.3)

Consider each of the series in (6.3):

∞∑

n=n0

dpn(t)

dt
sn =

∂G(s, t)

∂t
, (6.4)

λ

∞∑

n=n0+1

(n− 1)pn−1(t)s
n = λ

∞∑

m=n0

mpm(t)sm+1 = λs2
∂G(s, t)

∂s
, (6.5)

λ

∞∑

n=n0

npn(t)s
n = λs

∂G(s, t)

∂s
. (6.6)

Equation (6.3) can be replaced therefore by the partial differential equation

∂G(s, t)

∂t
= λs2

∂G(s, t)

∂s
− λs

∂G(s, t)

∂s
= λs(s− 1)

∂G(s, t)

∂s
. (6.7)
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We now have to solve this generating function equation. The initial condition pn0
(0) =

1 translates into

G(s, 0) = sn0 (6.8)

for the generating function.

6.3 Birth process: Generating function equation

We shall look at the solution of Eqns (6.7) and (6.8) in some detail since the method

of solution is used in other applications. A change of variable is applied to Eqn (6.7)

to remove the term λs(s− 1). We achieve this by putting

ds

dz
= λs(s− 1), (6.9)

and we shall assume that 0 < s < 1 (for convergence reasons we are interested in

the series for G(s, t) for small s). This is a first-order separable equation which can

be separated and integrated as follows:
∫

ds

s(1− s)
= −

∫

λdz = −λz

(the value of any constant of integration is immaterial so we set it to a convenient

value, in this case, to zero). Partial fractions are required on the left-hand side. Thus
∫ [

1

s
+

1

1− s

]

ds = −λz, or ln

[
s

1− s

]

= −λz.

The solution of this equation for s gives

s

1− s
= e−λz or s =

1

1 + eλz
. (6.10)

Let

Q(z, t) = G(s, t) = G(1/(1 + eλz), t).

We can check that

∂Q(z, t)

∂z
=

∂G(1/(1 + eλz), t)

∂z
=

∂G(s, t)

∂s
.
ds

dz
= λs(s− 1)

∂G(s, t)

∂s
,

using the chain rule in differentiation. Thus Eqn (6.7) becomes the simpler partial

differetial equation

∂Q(z, t)

∂t
=

∂Q(z, t)

∂z
.

The general solution of this equation for Q(z, t) is any differentiable function, w,

say, of z + t, that is, Q(z, t) = w(z + t). This can be verified since

∂

∂z
Q(z, t) =

∂

∂z
w(z + t) = w′(z + t).

∂(z + t)

∂z
= w′(z + t),

∂

∂t
Q(z, t) =

∂

∂t
w(z + t) = w′(z + t).

∂(z + t)

∂t
= w′(z + t),
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where w′(z + t) means dw(z + t)/d(z + t), in other words the derivative of w with

respect to its argument. Note that if w is a function of z + t, then

w′(z + t) =
∂w(z + t)

∂z
=

∂w(z + t)

∂t
.

The function w is determined by the initial conditions. Thus, from Eqns (6.8) and

(6.10),

G(s, 0) = sn0 =
1

(1 + eλz)n0
= w(z) = Q(z, 0). (6.11)

The function is defined in the middle of Eqn (6.11). Thus by changing the argument

in w from z to z + t, and then back to s, we obtain

G(s, t) = Q(z, t) = w(z + t) =
1

[1 + eλ(z+t)]n0

=
1

[1 + (1−s)
s

eλt]n0

=
sn0e−λn0t

[1− (1− e−λt)s]n0
, (6.12)

using the change of variable Eqn (6.10) again. The probability generating function

for the simple birth process is given by Eqn (6.12). The individual probabilities are

the coefficients of sn in the power series expansion of Eqn (6.12), which can be

obtained by applying the binomial theorem to the denominator to derive a power

series in s. Thus

G(s, t) =
sn0e−λn0t

[1− (1 − e−λt)s]n0

= sn0e−λn0t

[

1 +
n0

1!
(1 − e−λt)s+

n0(n0 + 1)

2!
(1 − e−λt)2s2 + · · ·

]

= sn0e−λn0t

∞∑

m=0

(
m+ n0 − 1

n0 − 1

)

(1− e−λt)msm,

= e−λn0t

∞∑

n=n0

(
n− 1

n0 − 1

)

(1− e−λt)n−n0sn, (6.13)

putting m = n− n0, where
(
r

s

)

=
r!

s!(r − s)!

is the binomial coefficient. The binomial coefficient with s = 0 is
(
r

0

)

=
r!

0!r!
=

1

0!
= 1,

for all r ≥ 0, since 0! is defined to be 1. Hence if n0 = 1, then
(
n− 1

0

)

= 1,

for all n ≥ 1. Finally from (6.13) the coefficients of the powers of s imply that, since
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the leading power is sn0 ,

pn(t) = 0, (n < n0),

pn(t) =

(
n− 1

n0 − 1

)

e−λn0t(1− e−λt)n−n0 , (n ≥ n0),

which is a Pascal distribution with parameters (n0, e
−λt) (see Section 1.7). Some

graphs of the first four probabilities are shown in Figure 6.1 for the birth process,

starting with just one individual, n0 = 1.

n=1

n=2

n=3

n=4

0 1 2 3 4
λt

0.2

0.4

0.6

0.8

1.0

pn(t)

Figure 6.1 The probabilities pn(t) shown for an initial population n0 = 1 and n = 1, 2, 3, 4:

a dimensionless time scale τ = λt has been used.

The mean population size at time t is given by (Eqns (5.18) and (6.12))

µ(t) = Gs(1, t) =
∂

∂s

[
sn0e−λn0t

[1− (1− e−λt)s]n0

]

s=1

=

[
n0s

n0−1e−λn0t

[1− (1− e−λt)s]n0
+

n0s
n0e−λn0t(1 − e−λt)

[1− (1− e−λt)s]n0+1

]

s=1

= n0(1− e−λt)eλt + n0 = n0e
λt,

or it can be deduced directly from the mean of the Pascal distribution. The expected

population size grows exponentially with time.

6.4 The death process

In this case there are no births and the population numbers decline through deaths.

Again we assume that the probability that any individual dies in a short time interval

δt is µδt where µ is the death rate. The probability that a death occurs in a population

of size n is µnδt and as before the probability of multiple deaths in interval δt is
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assumed to be negligible. By arguments similar to those for the birth process,

p0(t+ δt) = [µδt+ o(δt)]p1(t) + [1 + o(δt)]p0(t),

pn(t+δt) = [µ(n+1)δt+o(δt)]pn+1(t)+[1−µnδt−o(δt)]pn(t), (1 ≤ n ≤ n0−1).

If the initial population size is n0, then pn(t) = 0 for n > n0 for all t, and since this

is a death process,

pn0
(t+ δt) = [1− µn0δt+ o(δt)]pn0

(t).

Thus, after rearrangement, the three previous equations can be expressed in the forms

p0(t+ δt)− p0(t)

δt
= µp1(t) + o(1),

pn(t+ δt)− pn(t)

δt
= µ(n+ 1)pn+1(t)− µnpn(t) + o(1), (1 ≤ n ≤ n0 − 1),

pn0
(t+ δt)− pn0

(t)

δt
= −µn0pn0

(t) + o(1).

Now let δt → 0 to obtain the differential-difference equations for the death process:

dp0(t)

dt
= µp1(t),

dpn(t)

dt
= µ(n+ 1)pn+1(t)− µnpn(t) (1 ≤ n ≤ n0 − 1)

dpn0
(t)

dt
= −µn0pn0

(t)







. (6.14)

If the initial population size is n0 at time t = 0, then pn0
(0) = 1. We expect

the probability generating function to be a finite series. Multiply each equation in

Eqn (6.14) by sn as appropriate, and sum over 0 ≤ n ≤ n0:

n0∑

n=0

dpn(t)

dt
sn = µ

n0−1∑

n=0

(n+ 1)pn+1(t)s
n − µ

n0∑

n=1

npn(t)s
n. (6.15)

Define the probability generating function G(s, t) as

G(s, t) =

n0∑

n=0

pn(t)s
n.

Then the left-hand side of Eqn (6.15) is ∂G(s, t)/∂t, and the two series on the right-

hand side can be represented by

n0−1∑

n=0

(n+ 1)pn+1(t)s
n =

∂G(s, t)

∂s

n0∑

n=0

npn(t)s
n = s

∂G(s, t)

∂s
.

Finally G(s, t) satisfies the partial differential equation

∂G(s, t)

∂t
= µ

∂G(s, t)

∂s
− µs

∂G(s, t)

∂s
= µ(1 − s)

∂G(s, t)

∂s
. (6.16)

The method of solution is similar to that given for the birth process in the previous
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section. The difference between Eqns (6.7) and (6.16) lies solely in a different change

of variable:
ds

dz
= µ(1 − s).

On this occasion, ∫
ds

1− s
=

∫

µdz = µz.

Hence, for 0 < s < 1,

− ln(1− s) = µz, or s = 1− e−µz .

For the death process we let

Q(z, t) = G(s, t) = G(1− e−µz , t),

where Q(z, t) now satisfies

∂Q(z, t)

∂t
=

∂Q(z, t)

∂z
.

which is the same partial differential equation as for the birth process but with a

different change of variable. As before, the general solution is

G(s, t) = w(t+ z).

If the initial population size is n0, then G(s, 0) = sn0 . Note how the initial value n0

appears in the generating function. Then

G(s, 0) = sn0 = (1− e−µz)n0 = w(z) = Q(z, 0).

Hence,

G(s, t) = Q(z, t) = w(z + t) = (1− e−µ(z+t))n0

= [1− e−µt(1 − s)]n0

= (1− e−µt)n0

[

1 +
se−µt

1− e−µt

]n0

=

n0∑

n=0

(
n0

n

)

e−nµt(1− e−µt)n0−nsn (6.17)

where the series is obtained using the binomial theorem. The individual probabilities

are

pn(t) =

(
n0

n

)

e−nµt(1− e−µt)n0−n,

for n = 0, 1, 2, . . . , n0
2, which are binomially distributed.

Example 6.1. Find the mean size µ(t) of the population in the death process at time t. Show

that µ(t) satisfies the differential equation

dµ(t)

dt
= −µµ(t),

where pn0
(0) = 1. Interpret the result.

2 Remember, the binomial coefficent
(
n0
0

)
= 1.



THE COMBINED BIRTH AND DEATH PROCESS 127

The mean is given by

µ(t) = Gs(1, t) =
∂

∂s

[
1− e−µt(1− s)

]n0

∣
∣
∣
∣
s=1

= n0e
−µt[1− e−µt(1− s)]n0−1

∣
∣
s=1

= n0e
−µt.

Hence,
dµ(t)

dt
= −µn0e

−µt = −µµ(t),

with µ(0) = n0 as required.

Suppose that we consider a deterministic model3 of a population in which the population

n(t) is a continuous function of time rather than a random variable with discrete values. This is

a justifiable approximation at least for large populations. We could then model the population

change by postulating that the rate of decrease of the population is proportional to the current

population size n(t). Thus

dn(t)

dt
∝ n(t) or

dn(t)

dt
= −µn(t)

where µ is the death-rate. This is the Malthus4 model for the death process. We can deduce

from this that the mean of the stochastic process satisfies the differential equation of the simple

deterministic model. This provides some justification for using deterministic models in large

populations.

It is easy to calculate from the probability generating function the probability of

extinction at time t. It is the probability that the population size is zero at time t,
namely,

p0(t) = G(0, t) = [1− e−µt]n0 .

The probability of ultimate extinction is

lim
t→∞

p0(t) = lim
t→∞

G(0, t) = lim
t→∞

[1− e−µt]n0 = 1,

since limt→∞ e−µt = 0. In other words the probability of ultimate extinction is cer-

tain, as we would expect in a death process.

6.5 The combined birth and death process

Both processes of Sections 6.2 and 6.4 are now combined into one with a birth rate λ
and a death rate µ, although this is not achieved by simple addition of the equations.

However, using similar arguments as to how a population of size n can arise at time

t+ δt, we obtain

p0(t+ δt) = [µδt+ o(δt)]p1(t) + [1 + o(δt)]p0(t),

pn(t+ δt) = [λ(n − 1)δt+ o(δt)]pn−1(t) + [1− (λn+ µn)δt+ o(δt)]pn(t)

+[µ(n+ 1)δt+ o(δt)]pn+1(t), (n ≥ 1).

3 See Section 9.9 for more about deterministic models
4 Thomas Malthus (1766–1834), English economist/statistician: well-known for his work on population

growth.
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In the limit δt → 0, pn(t) satisfies

dp0(t)

dt
= µp1(t)

dpn(t)

dt
=λ(n− 1)pn−1(t)− (λ+ µ)npn(t)+µ(n+ 1)pn+1(t), (n ≥ 1)







. (6.18)

The value λ = 0 in (6.18) results in the death equations (6.14) whilst the choice

µ = 0 gives the birth equations (6.2a,b), although the range of n has to be carefully

defined in both cases. Since births occur the probability generating function will be

an infinite series defined by

G(s, t) =

∞∑

n=0

pn(t)s
n.

Multiplying the appropriate equations in Eqn (6.18) by sn and summing over n ≥ 0
we obtain (see Sections 6.2 and 6.4 for the sums of the series):

∂G(s, t)

∂t
= λs(s− 1)

∂G(s, t)

∂s
+ µ(1− s)

∂G(s, t)

∂s

= (λs− µ)(s− 1)
∂G(s, t)

∂s
. (6.19)

There are two cases to consider, namely λ 6= µ and λ = µ.

(a) λ 6= µ
For the birth and death process, the required change of variable is given by the

differential equation

ds

dz
= (λs− µ)(s− 1).

This simple separable equation can be integrated to give

z =

∫

dz =

∫
ds

(λs− µ)(s− 1)
=

1

λ

∫
ds

(µ
λ
− s)(1 − s)

=
1

λ− µ

∫ [
1

µ
λ
− s

− 1

1− s

]

ds, (using partial fractions)

=
1

λ− µ
ln

[
1− s
µ
λ
− s

]

, (0 < s < min(1,
µ

λ
)). (6.20)

The inversion of this formula defines s as

s =
λ− µe(λ−µ)z

λ− λe(λ−µ)z
. (6.21)

After the change of variable, let Q(z, t) = G(s, t), so that Q(z, t) satisfies

∂Q(z, t)

∂t
=

∂Q(z, t)

∂z
,

which has the general solution Q(z, t) = w(z + t).
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If the initial population size is n0, then

G(s, 0) = sn0 =

[
λ− µe(λ−µ)z

λ− λe(λ−µ)z

]n0

= w(z) = Q(z, 0).

Hence,

G(s, t) = Q(z, t) = w(z + t) =

[
λ− µe(λ−µ)(z+t)

λ− λe(λ−µ)(z+t)

]n0

. (6.22)

From (6.20),

e(λ−µ)z =
1− s
µ
λ
− s

=
λ(1 − s)

µ− λs
.

Finally, elimination of z in Eqn (6.22) leads to

G(s, t) =

[
µ(1 − s)− (µ− λs)e−(λ−µ)t

λ(1 − s)− (µ− λs)e−(λ−µ)t

]n0

. (6.23)

The expansion of G(s, t) as a power series in s is the product of two binomial series,

which can be found, but it is complicated.

The expected population size is, at time t, for λ 6= µ,

µ(t) =

∞∑

n=1

npn(t) = Gs(1, t)

=
n0(−µ+ λe−(λ−µ)t)

−(µ− λ)e−(λ−µ)t
− n0(−λ+ λe(λ−µ)t)

−(µ− λ)e−(λ−µ)t

= n0e
(λ−µ)t.

(b) λ = µ, (birth and death rates the same).

In this case Eqn (6.19) becomes

∂G(s, t)

∂t
= λ(1− s)2

∂G(s, t)

∂s
.

Let
ds

dz
= λ(1 − s)2.

Then the change of variable is

z =
1

λ

∫
ds

(1− s)2
=

1

λ(1 − s)
or s =

λz − 1

λz
.

It follows that

w(z) = sn0 =

[
λz − 1

λz

]n0

.

Finally, the probability generating function for the special case in which the birth and

death rates are the same is given by

G(s, t) =

[
λ(z + t)− 1

λ(z + t)

]n0

=

[
1 + (λt− 1)(1− s)

1 + λt(1− s)

]n0

. (6.24)

The expected value of the population size at time t in the case λ = µ is left as a
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problem at the end of the chapter. The probability of extinction at time t for the case

λ = µ is, from (6.24),

p0(t) = G(0, t) =

[
1 + (λt− 1)

1 + λt

]n0

=

[
λt

1 + λt

]n0

. (6.25)

As t becomes large this value approaches 1 since

lim
t→∞

p0(t) = lim
t→∞

[
1

1 + 1
λt

]n0

= 1.

We obtain the interesting conclusion that, if the birth and death rates are in balance,

then ultimate extinction is certain.

That the probability generating functions in Eqns (6.23) and (6.24) are powers

of certain functions of s and t is not surprising if we recollect the definition of the

generating function (see Section 1.9) as

G(s, t) = E[sN(t)],

where N(t) is a random variable of the number of individuals in the population at

time t. Suppose that we identify the n0 individuals of the initial population and let

Ni(t) represent the number of descendants of the i-th individual so that

N(t) = N1(t) +N2(t) + · · ·+Nn0
(t).

Hence,

G(s, t) = E[sN(t)] = E[sN1(t)+N2(t)+···+Nn0
(t)].

Since the Ni(t), (i = 1, 2, . . . , n0) are independent and identically distributed (iid),

it follows that

G(s, t) = E[sN1(t)]E[sN2(t)] . . .E[sNn0
(t)] = [E[sN1(t)]]n0 ,

where N1(t) has been chosen since the means are all the same values (see Sec-

tion 1.9e). Hence G(s, t) must be the n0-th power of some function of s and t.

Example 6.2. In the birth and death process with λ = µ, show that the mean time to extinction

is infinite for any initial population size n0.

We require the probability distribution function F (t) for the time Tn0
to extinction, that is,

F (t) = P{Tn0
≤ t}

= p0(t) =

[
λt

1 + λt

]n0

from (6.25). The density function f(t) of Tn0
is

f(t) =
dF (t)

dt
=

n0λ
n0 tn0−1

(1 + λt)n0
− n0(λt)

n0λ

(1 + λt)n0+1
=

n0λ
n0 tn0−1

(1 + λt)n0+1
.

The expected value of the random variable Tn0
will be given by

E(Tn0
) =

∫ ∞

0

tf(t)dt
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only if the integral on the right converges. In this case

tf(t) =
n0λ

n0tn0

(1 + λt)n0+1
.

For large t, 1 + λt ≈ λt and

tf(t) ≈ n0λ
n0tn0

(λt)n0+1
=

n0

λ

1

t
.

Although tf(t) → 0 as t → ∞, it is too slow for the integral to converge. For example, the

integral
∫ τ

1

dt

t
=
[
ln t
]τ

1
= ln τ → ∞

as τ → ∞ has the same behaviour for large t and this integral diverges. We conclude that

E(Tn0
) = ∞. Notwithstanding that extinction is ultimately certain, we expect it on average

to take an infinite time. A graph of p0(t) is shown in Figure 6.2.

extinction curve

0 2000 4000 6000 8000 10 000
λt
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1.0
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Figure 6.2 The graph shows the behaviour of the p0(t) = [λt/(1 + λt)]n0 , the probability

of extinction, against λt for an initial population size of n0 = 1,000 in the case λ = µ. The

actual time scale will depend on the parameter λ.

Finally in this section a computed stochastic output for a birth and death process

will be shown. In any time interval δt when the population is n, the probability of a

birth is λnδt, of a death µnδt, and of neither is 1 − (λ − µ)nδt: only one of these

events can occur. Figure 6.3 shows the discrete population sequence at times mδt for

m = 0, 1, 2, . . . , 200 in this case. The birth and death rates λ = 0.1 and µ = 0.1 are

chosen together with the time step δt = 0.05. The initial population size is n0 = 50.

In the illustration in Figure 6.3 the mean is 63.9. It is possible for the population

to take a long time to return to the initial population: at the end of this epoch the

population is 90. If you have access to a program to create outputs for this symmetric

model, it is instructive to run a sequence of trials with this or a larger number of

time-steps to see how frequently a return to n = 50 occurs. This is essentially the

same discussion as occurred for the symmetric random walk in Section 3.4.
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population

time steps

Figure 6.3 Birth and death population with birth rate λ = 0.1, the same death rate µ = 0.1
for 200 time steps of duration δt = 0.05. The initial population size is n0 = 50. For this

output the sample mean is µ = 63.9

6.6 General population processes

The previous models for birth and death processes assume that the rates of births

and deaths are simply proportional to the population size. In more general population

processes the rates can be more general functions of n, which perhaps could represent

more realistic models such as higher death rates for overcrowded larger populations.

Assume that the birth and death rates are λn and µn, respectively. Using arguments

which lead to Eqns (6.14) but with the new coefficients, the governing differential-

difference equations are replaced by

dp0(t)

dt
= −λ0p0(t) + µ1p1(t)

dpn(t)

dt
= λn−1pn−1(t)− (λn + µn)pn(t) + µn+1pn+1(t), (n ≥ 1)







, (6.26)

but note that λ0 must be included since we cannot assume it is zero. The simple birth

and death process is given by the particular case in which λn = nλ and µn = nµ
are linear functions of n. The Poisson process of the previous chapter corresponds to

λn = λ and µn = 0.

The following example develops a population model in which the birth rate is

constant, perhaps sustained by immigration, and the death rate is simple and given

by µn = nµ. In other words there are no indigenous births.

Example 6.3. In a population model, the immigration rate λn = λ is a constant, and the

death rate is µn = nµ. Assuming that the initial population size is n0, find the probability

generating function for this process, and find the mean population size at time t.

Insert λn = λ and µn = nµ into (6.26), multiply by sn, and sum over n = 0, 1, 2, . . .. The

result is
∞∑

n=0

dpn(t)

dt
sn = λ

∞∑

n=1

pn−1(t)s
n − λ

∞∑

n=0

pn(t)s
n − µ

∞∑

n=1

npn(t)s
n
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+µ

∞∑

n=0

(n+ 1)pn+1(t)s
n. (6.27)

Using the general series for G(s, t) (Section 6.5) and those given by (6.5) and (6.6) for its

partial derivatives, Eqn (6.27) becomes

∂G(s, t)

∂t
= λsG(s, t)− λG(s, t)− µs

∂G(s, t)

∂s
+ µ

∂G(s, t)

∂s

= λ(s− 1)G(s, t) + µ(1− s)
∂G(s, t)

∂s
. (6.28)

This is a partial differential equation of a type we have not encountered previously since it

includes the term G(s, t) in addition to the partial derivatives. This term can be removed by

introducing a new function H(s, t) through the transformation

G(s, t) = eλs/µH(s, t).

Then

∂G(s, t)

∂t
= eλs/µ

∂H(s, t)

∂t
,

∂G(s, t)

∂s
= eλs/µ

∂H(s, t)

∂s
+

λ

µ
eλs/µH(s, t).

Substitution of the partial derivatives into (6.28) leads to

∂H(s, t)

∂t
= µ(1− s)

∂H(s, t)

∂s
(6.29)

for H(s, t). In fact H(s, t) now satisfies the same equation as that for the death process in

Section 6.4. However, the initial condition is different since, for an initial population of n0,

G(s, 0) = sn0 , but H(s, 0) = e−λs/µsn0 .

The change of variable is

s = 1− e−µz.

Hence,

H(s,0) = e−λs/µsn0 = e−λ(1−e−µz)/µ(1− e−µz)n0 = w(z), say,

from which it follows that

G(s, t) = eλs/µw(z + t)

= eλs/µ exp[−λ(1− e−µ(z+t))/µ][1 − e−µ(z+t)]n0

= eλs/µ exp[−λ(1− (1− s)e−µt)/µ][1 − (1− s)e−µt]n0 . (6.30)

To find the mean population size at time t, take the logarithm of both sides of this equation:

lnG(s, t) =
λs

µ
− λ

µ
[1 − (1− s)e−µt] + n0 ln[1− (1− s)e−µt].

Differentiate with respect to s and put s = 1:

Gs(1, t)

G(1, t)
=

λ

µ
− λ

µ
e−µt + n0e

−µt.

Now G(1, t) =
∑∞

n=0
pn(t) = 1, and the mean is therefore

µ(t) = Gs(1, t) =
λ

µ
(1− e−µt) + n0e

−µt.

As t → ∞, the long-term mean approaches the ratio of the rates λ/µ.
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The birth and death rates can be functions of time in addition to population size.

This might reflect declining fertility or seasonal variations in births or deaths. The set-

ting up of the equation for the probability generating function presents no particular

problem although its solution inevitably becomes more complicated. The following

example illustrates a birth process with a declining birth rate.

Example 6.4. A colony of bacteria grows without deaths with a birth rate which is time-

dependent. The rate declines exponentially with time according to λ(t) = αe−βt, where α
and β are constants. Find the mean population size at time t given that the initial size of the

colony is n0.

For a time-varying birth rate the construction of the equation for the probability generating

function is still given by (6.7) but with λ as a function of time. Variations of λ(t) over an

incremental time interval δt will have a lower effect on the probability of a birth. Thus G(s, t)
satisfies

∂G(s, t)

∂t
= λ(t)s(s− 1)

∂G(s, t)

∂s
= αe−βts(s− 1)

∂G(s, t)

∂s
with G(s, 0) = sn0 . We now apply the double change of variable

ds

dz
= αs(s− 1),

dt

dτ
= eβt.

As in Section 6.3,

s =
1

1 + eαz
,

whilst

τ =
1

β
(1− e−βt)

so that τ = 0 when t = 0. With these changes of variable,

Q(z, τ ) = G(s, t) = G(1/(1 + eαz),−β−1 ln(1− βτ )),

where Q(z, τ ) satisfies
∂Q(z, τ )

∂τ
=

∂Q(z, τ )

∂z
.

As in Section 6.3,

Q(z, τ ) = w(z + τ )

for any differentiable function w. The initial condition determines w through

G(s, 0) = sn0 =
1

(1 + eαz)n0
= w(z) = Q(z, 0).

Hence,

G(s, t) = Q(z, τ ) = w(z + τ ) = [1 + eα(z+τ)]−n0

= [1 +
(
1− s

s

)

eα(1−e−βt)/β]−n0

= sn0 [s+ (1− s)eα(1−e−βt)/β]−n0 . (6.31)

The mean population size at time t is

µ(t) = Gs(1, t) =
∂

∂s

[
sn0

[s+ (1− s)eα(1−e−βt)/β ]n0

]

s=1

= n0e
α(1−e−βt)/β. (6.32)

As t → ∞, then the mean population approaches the limit n0e
α/β which, at first sight, seems
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surprising since there are no deaths. However, the reason for this limit is that the birth rate

decreases exponentially to zero with time.

6.7 Problems

6.1. A colony of cells grows from a single cell. The probability that a cell divides in a time

interval δt is

λδt+ o(δt).

There are no deaths. Show that the probability generating function for this birth process is

G(s, t) =
se−λt

1− (1− e−λt)s
.

Find the probability that the original cell has not divided at time t, and the mean and variance

of population size at time t (see Problem 5.4, for the variance formula using the probability

generating function).

6.2. A simple birth process has a constant birth rate λ. Show that its mean population size µ(t)
satisfies the differential equation

dµ(t)

dt
= λµ(t).

How can this result be interpreted in terms of a deterministic model for a birth process?

6.3. The probability generating function for a simple death process with death rate µ and initial

population size n0 is given by

G(s, t) = (1− e−µt)n0

[

1 +
se−µt

1− e−µt

]n0

(see Eqn (6.17)). Using the binomial theorem find the probability pn(t) for n ≤ n0. If n0

is an even number, find the probability that the population size has halved by time t. A large

number of experiments were undertaken with live samples with a variety of initial population

sizes drawn from a common source and the times of the halving of deaths were recorded for

each sample. What would be the expected time for the population size to halve?

6.4. A birth process has a probability generating function G(s, t) given by

G(s, t) =
s

eλt + s(1− eλt)
.

(a) What is the initial population size?

(b) Find the probability that the population size is n at time t.
(c) Find the mean and variance of the population size at time t.

6.5. A random process has the probability generating function

G(s, t) =
(
2 + st

2 + t

)r

,

where r is a positive integer. What is the initial state of the process? Find the probability pn(t)
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associated with the generating function. What is pr(t)? Show that the mean associated with

G(s, t) is

µ(t) =
rt

2 + t
.

6.6. In a simple birth and death process with unequal birth and death rates λ and µ, the proba-

bility generating function is given by

G(s, t) =

[
µ(1− s)− (µ− λs)e−(λ−µ)t

λ(1− s)− (µ− λs)e−(λ−µ)t

]n0

,

for an initial population size n0 (see Eqn (6.23)).

(a) Find the mean population size at time t.
(b) Find the probability of extinction at time t.
(c) Show that, if λ < µ, then the probability of ultimate extinction is 1. What is the probability

if λ > µ?

(d) Find the variance of the population size.

6.7. In a population model, the immigration rate λn = λ, a constant, and the death rate µn =
nµ. For an initial population size n0, the probability generating function is (Example 6.3)

G(s, t) = eλs/µ exp[−λ(1 − (1− s)e−µt)/µ][1 − (1− s)e−µt]n0 .

Find the probability that extinction occurs at time t.

6.8. In a general birth and death process a population is maintained by immigration at a con-

stant rate λ, and the death rate is nµ. Using the differential-difference equations (6.25) directly,

obtain the differential equation
dµ(t)

dt
+ µµ(t) = λ,

for the mean population size µ(t). Solve this equation assuming an initial population n0 and

compare the answer with that given in Example 6.3.

6.9. In a death process the probability of a death when the population size is n 6= 0 is a constant

µ but obviously zero if the population size is zero. Verify that, if the initial population is n0,

then pn(t), the probability that the population size is n at time t is given by

pn(t) =
(µt)n0−n

(n0 − n)!
e−µt, (1 ≤ n ≤ n0),

p0(t) =
µn0

(n0 − 1)!

∫ t

0

sn0−1e−µsds.

Show that the mean time to extinction is n0/µ.

6.10. In a birth and death process the birth and death rates are given by

λn = nλ+ α, µn = nµ,

where α represents a constant immigration rate. Show that the probability generating function

G(s, t) of the process satisfies

∂G(s, t)

∂t
= (λs− µ)(s− 1)

∂G(s, t)

∂s
+ α(s− 1)G(s, t).



PROBLEMS 137

Show also that, if

G(s, t) = (µ− λs)−α/λH(s, t),

then H(s, t) satisfies
∂H(s, t)

∂t
= (λs− µ)(s− 1)

∂H(s, t)

∂s
.

Let the initial population size be n0. Solve the partial differential equation for H(s, t) using

the method of Section 6.5 and confirm that

G(s, t) =
(µ− λ)α/λ[(µ− λs)− µ(1− s)e(λ−µ)t]n0

[(µ− λs)− λ(1− s)e(λ−µ)t]n0+(α/λ)
.

(Remember the modified initial condition for H(s, t).)
Find p0(t), the probability that the population is zero at time t (since immigration takes

place even when the population is zero there is no question of extinction in this process).

Hence show that

lim
t→∞

p0(t) =

(
µ− λ

µ

)α/λ

if λ < µ. What is the limit if λ > µ?

The long-term behaviour of the process for λ < µ can be investigated by looking at the

limit of the probability generating function as t → ∞. Show that

lim
t→∞

G(s, t) =

(
µ− λ

µ− λs

)α/λ

.

This is the probability generating function of a stationary distribution and it indicates that a

balance has been achieved between the birth and immigration rates, and the death rate. What

is the long-term mean population size?

Obtain the probability generating function in the special case λ = µ.

6.11. In a birth and death process with immigration, the birth and death rates are respectively

λn = nλ+ α, µn = nµ.

Show directly from the differential-difference equations for pn(t) that the mean population

size µ(t) satisfies the differential equation

dµ(t)

dt
= (λ− µ)µ(t) + α.

Deduce the result

µ(t) → α

µ− λ

as t → ∞ if λ < µ. Discuss the design of a deterministic immigration model based on this

equation.

6.12. In a simple birth and death process with equal birth and death rates λ, the initial popula-

tion size has a Poisson distribution with probabilities

pn(0) = e−ααn

n!
, (n = 0, 1, 2, . . .)

with parameter α. It could be thought of as a process in which the initial distribution has

arisen as the result of some previous process. Find the probability generating function for this

process, and confirm that the probability of extinction at time t is exp[−α/(1 + λt)] and that

the mean population size is α for all t.
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6.13. A birth and death process takes place as follows. A single bacterium is allowed to grow

and assumed to behave as a simple birth process with birth rate λ for a time t1 without any

deaths. No further growth then takes place. The colony of bacteria is then allowed to die with

the assumption that it is a simple death process with death rate µ for a time t2. Show that the

probability of extinction after the total time t1 + t2 is

∞∑

n=1

eλt1(1− e−λt1)n−1(1− e−µt2)n.

Using the formula for the sum of a geometric series, show that this probability can be simpli-

fied to
eµt2 − 1

eλt1 + eµt2 − 1
.

6.14. As in the previous problem a single bacterium grows as a simple birth process with rate

λ and no deaths for a time τ . The colony numbers then decline as a simple death process with

rate µ. Show that the probability generating function for the death process is

(1− e−µt(1− s))e−λτ

1− (1− e−λτ )(1− e−µt(1− s))
,

where t is measured from the time τ . Show that the mean population size during the death

process is eλτ−µt.

6.15. For a simple birth and death process the probability generating function ( Eqn (6.23)) is

given by

G(s, t) =

[
µ(1− s)− (µ− λs)e−(λ−µ)t

λ(1− s)− (µ− λs)e−(λ−µ)t

]n0

for an initial population of n0. What is the probability that the population size is (a) zero, (b)

1 at time t?

6.16. (An alternative method of solution for the probability generating function.) The general

solution of the first-order partial differential equation

A(x, y, z)
∂z

∂x
+B(x, y, z)

∂z

∂y
= C(x, y, z)

is f(u, v) = 0, where f is an arbitrary function, and u(x, y, z) = c1 and v(x, y, z) = c2 are

two independent solutions of

dx

A(x, y, z)
=

dy

B(x, y, z)
=

dz

C(x, y, z)
.

This is known as Cauchy’s method.

Apply the method to the partial differential equation for the probability generating function

for the simple birth and death process, namely (Eqn (6.19))

∂G(s, t)

∂t
= (λs− µ)(s− 1)

∂G(s, t)

∂s
,

by solving

ds

(λs− µ)(1− s)
=

dt

1
=

dG

0
.



PROBLEMS 139

Show that

u(s, t,G) = G = c1 and v(s, t,G) = e(λ−µ)t

(
1− s
µ
λ
− s

)

= c2

are two independent solutions. The general solution can be written in the form

G(s, t) = H

[

e(λ−µ)t

(
1− s
µ
λ
− s

)]

.

Here H is a function determined by the initial condition G(s, 0) = sn0 . Find H and recover

formula (6.22) for the probability generating function.

6.17. Apply Cauchy’s method outlined in Problem 6.16 to the immigration model in Exam-

ple 6.3. In this application the probability generating function satisfies

∂G(s, t)

∂t
= λ(s− 1)G(s, t) + µ(1− s)

∂G(s, t)

∂s
.

Solve the equation assuming an initial population of n0.

6.18. In a population sustained by immigration at rate λ with a simple death process with rate

µ, the probability pn(t) satisfies

dp0(t)

dt
= −λp0(t) + µp1(t),

dpn(t)

dt
= λpn−1(t)− (λ+ nµ)pn(t) + (n+ 1)µpn+1(t).

Investigate the steady-state behaviour of the system by assuming that

pn(t) → pn, dpn(t)/dt → 0

for all n, as t → ∞. Show that the resulting difference equations for what is known as the

corresponding stationary process

−λp0 + µp1 = 0,

λpn−1 − (λ+ nµ)pn + (n+ 1)µpn+1 = 0, (n = 1, 2, . . .)

can be solved iteratively to give

p1 =
λ

µ
p0, p2 =

λ2

2!µ2
p0, · · · pn =

λn

n!µn
p0, · · · .

Using the condition
∑∞

n=0
pn = 1, and assuming that λ < µ, determine p0. Find the mean

steady-state population size, and compare the result with that obtained in Example 6.3.

6.19. In a simple birth process the probability that the population is of size n at time t given

that it was n0 at time t = 0 is given by

pn(t) =

(
n− 1

n0 − 1

)

e−λn0t(1− e−λt)n−n0 , (n ≥ n0)

(see Section 6.3 and Figure 6.1). Show that the probability achieves its maximum value for

given n and n0 when t = (1/λ) ln(n/n0). Find also the maximum value of pn(t) at this time.
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6.20. In a birth and death process with equal birth and death parameters λ, the probability

generating function is (see Eqn (6.24))

G(s, t) =

[
1 + (λt− 1)(1− s)

1 + λt(1− s)

]n0

.

Find the mean population size at time t. Show also that variance of the population size is

2n0λt.

6.21. In a death process the probability that a death occurs in time δt is the time-dependent

parameter µ(t)n when the population size is n. The pgf G(s, t) satisfies

∂G

∂t
= µ(t)(1− s)

∂G

∂s

as in Section 6.4. Show that

G(s, t) = [1− e−τ (1− s)]n0 ,

where

τ =

∫ t

0

µ(x)dx.

Find the mean population size at time t.
In a death process it is found that the expected value of the population size at time t is given

by

µ(t) =
n0

1 + αt
, (t ≥ 0),

where α is a positive constant. Find the corresponding death rate µ(t).

6.22. A population process has a probability generating function G(s, t) which satisfies the

equation

e−t ∂G

∂t
= λ(s− 1)2

∂G

∂s
.

If, at time t = 0, the population size is n0, show that

G(s, t) =

[
1 + (1− s)(λet − λ− 1)

1 + λ(1− s)(et − 1)

]n0

.

Find the mean population size at time t, and the probability of ultimate extinction.

6.23. A population process has a probability generating function given by

G(s, t) =
1− µe−t(1− s)

1 + µe−t(1− s)
,

where µ is a parameter. Find the mean of the population size at time t, and its limit as t → ∞.

Expand G(s, t) in powers of s, and determine the probability that the population size is n at

time t.

6.24. In a birth and death process with equal rates λ, the probability generating function is

given by (see Eqn (6.24))

G(s, t) =

[
λ(z + t)− 1

λ(z + t)

]n0

=

[
1 + (λt− 1)(1 − s)

1 + λt(1− s)

]n0

,
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where n0 is the initial population size. Show that pi, the probability that the population size is

i at time t, is given by

pi(t) =

i∑

m=0

(
n0

m

)(
n0 + i−m− 1

i−m

)

α(t)mβ(t)n0+i−m

if i ≤ n0, and by

pi(t) =

n0∑

m=0

(
n0

m

)(
n0 + i−m− 1

i−m

)

α(t)mβ(t)n0+i−m

if i > n0, where

α(t) =
1− λt

λt
, β(t) =

λt

1 + λt
.

6.25. We can view the birth and death process by an alternative differencing method. Let pij(t)
be the conditional probability

pij(t) = P(N(t) = j|N(0) = i),

where N(t) is the random variable representing the population size at time t. Assume that the

process is in the (fixed) state N(t) = j at times t and t + δt and decide how this can arise

from an incremental change δt in the time. If the birth and death rates are λj and µj , explain

why

pij(t+ δt) = pij(t)(1− λiδt− µiδt) + λiδtpi+1,j(t) + µiδtpi−1,j(t) + o(δt)

for i = 1, 2, 3, . . ., j = 0, 1, 2, . . .. Take the limit as δt → 0, and confirm that pij(t) satisfies

the differential equation

dpij(t)

dt
= −(λi + µi)pij(t) + λipi+1,j(t) + µipi−1,j(t).

How should p0,j(t) be interpreted?

6.26. Consider a birth and death process in which the rates are λi = λi and µi = µi, and the

initial population size is n0 = 1. If

p1,j = P(N(t) = j|N(0) = 1),

it was shown in Problem 6.25 that p1,j satisfies

dp1,j(t)

dt
= −(λ+ µ)p1,j(t) + λp2,j(t) + µp0,j(t), (j = 0, 1, 2, . . .),

where

p0,j(t) =

{
0, j > 0
1, j = 0.

If

Gi(s, t) =

∞∑

j=0

pij(t)s
j,

show that
∂G1(s, t)

∂t
= −(λ+ µ)G1(s, t) + λG2(s, t) + µ.
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Explain why G2(s, t) = [G1(s, t)]
2 (see Section 6.5). Now solve what is effectively an ordi-

nary differential equation for G1(s, t), and confirm that

G1(s, t) =
µ(1− s)− (µ− λs)e−(λ−µ)t

λ(1− s)− (µ− λs)e−(λ−µ)t
,

as in Eqn (6.23) with n0 = 1.

6.27. In a birth and death process with parameters λ and µ, (µ > λ), and initial population

size n0, show that the mean of time to extinction Tn0
is given by

E(Tn0
) = n0µ(µ− λ)2

∫ ∞

0

te−(µ−λ)t[µ − µe−(µ−λ)t]n0−1

[µ− λe−(µ−λ)t]n0+1
dt.

If n0 = 1, using integration by parts, evaluate the integral over the interval (0, τ ), and then let

τ → ∞ to show that

E(T1) = − 1

λ
ln

(
µ− λ

µ

)

.

6.28. A death process (see Section 6.4) has a parameter µ and the initial population size is n0.

Its probability generating function is

G(s, t) = [1 − e−µt(1− s)]n0 .

Show that the mean time to extinction is

n0

µ

n0−1∑

k=0

(−1)k

(k + 1)2

(
n0 − 1

k

)

.

6.29. A colony of cells grows from a single cell without deaths. The probability that a single

cell divides into two cells in a time interval δt is λδt+o(δt).As in Problem 6.1, the probability

generating function for the process is

G(s, t) =
se−λt

1− (1− e−λt)s
.

By considering the probability

P(Tn ≤ t) = F (t) = 1−
n−1∑

k=1

pk(t),

where Tn is the random variable representing the time that the population is of size n(≥ 2)
for the first time, show that

E(Tn) =
1

λ

n−1∑

k=1

1

k
.

6.30. In a birth and death process, the population size represented by the random variable

N(t) grows as a simple birth process with parameter λ. No deaths occur until time T when

the whole population dies. Suppose that the random variable T has an exponential distribution

with parameter µ. The process starts with one individual at time t = 0. What is the probability

that the population exists at time t, namely that P[N(t) > 0]?
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What is the conditional probability P[N(t) = n|N(t) > 0] for n = 1, 2, . . .? Now show

that

P[N(t) = n] = e−(λ+µ)t(1− e−λt)n−1.

Construct the probability generating function of this distribution, and find the mean population

size at time t.

6.31. In a birth and death process, the variable birth and death rates are, for t > 0, respectively

given by

λn(t) = λ(t)n > 0, (n = 0, 1, 2, . . .) and µn(t) = µ(t)n > 0, (n = 1, 2, . . .).

If pn(t) is the probability that the population size at time t is n, show that its probability

generating function

G(s, t) =

∞∑

n=0

pn(t)s
n,

satisfies
∂G

∂t
= (s− 1)[λ(t)s− µ(t)]

∂G

∂s
.

Suppose that µ(t) = αλ(t) (α > 0, α 6= 1), and that the initial population size is n0. Show

that

G(s, t) =

[
1− αq(s, t)

1− q(s, t)

]n0

where q(s, t) =
(
1− s

α− s

)

exp

[

(1− α)

∫ t

0

λ(u)du

]

.

Find the probability of extinction at time t.

6.32. A continuous time process has three states, E1, E2, and E3. In time δt the probability

of a change from E1 to E2 is λδt, from E2 to E3 is also λδt, and from E2 to E1 is µδt. E3

can be viewed as an absorbing state. If pi(t) is the probability that the process is in state Ei

(i = 1, 2, 3) at time t, show that

p′1(t) = −λp1(t) + µp2(t), p′2(t) = λp1(t)− (λ+ µ)p2(t), p′3(t) = λp2(t).

Find the probabilities p1(t), p2(t), p3(t), if the process starts in E1 at t = 0.

The process survives as long as it is in states E1 or E2. What is the survival probability,

that is, P(T ≥ t), of the process?

6.33. In a birth and death process, the birth and death rates are given respectively by λ(t)n
and µ(t)n in Problem 6.31. Find the equation for the probability generating function G(s, t).
If µ(t) is the mean population size at time t, show, by differentiating the equation for G(s, t)
with respect to s, that

µ
′(t) = [λ(t)− µ(t)]µ(t)

(assume that (s− 1)∂2G(s, t)/∂s2 = 0 when s = 1). Then show that

µ(t) = n0 exp

[∫ t

0

[λ(u)− µ(u)]du

]

,

where n0 is the initial population size.
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CHAPTER 7

Queues

7.1 Introduction

Queues appear in many aspects of life. Some are clearly visible, as in the queues at

supermarket check-out tills: others may be less obvious as in call-stacking at airline

information telephone lines, or in hospital waiting lists. In the latter an individual

waiting may have no idea how many persons are in front of him or her in the hospital

appointments list. Generally we are interested in the long-term behaviour of queues

for future planning purposes—does a queue increase with time or does it have a

steady state, and if it does have a steady state, then, on average, how many individuals

are there in the queue and what is the mean waiting time?

We can introduce some of the likely hypotheses behind queues by looking at a

familiar example from banking. Consider a busy city centre cash dispensing machine

(often called an ATM) outside a bank. As an observer, what do we see? Individuals

or customers as they are known in queueing processes approach the dispenser or

server. If there is no one using the machine, then the customer inserts a cash card,

obtains cash, or transacts other business. There is a period of time when the customer

is being served. On the other hand, if there is already someone at the till then the

assumption is that the customer and succeeding ones form a queue and wait their

turn.

For most queues the assumption is that customers are served in the order of ar-

rival at the end of the queue. The basis of this is the ‘first come, first served’ rule.

However, if queueing is not taking place, then the next customer could be chosen at

random from those waiting. This could be the case where the ‘customers’ are com-

ponents in a manufacturing process which are being delivered, stored until required,

and then chosen at random for the next process. In this application the arrivals could

be regular and predictable. The simplest assumption with arrivals at a queue is that

they have a Poisson distribution with parameter λ, so that λ is the average number of

arrivals per unit time. From our discussion of Poisson process in Chapter 5, this im-

plies that the probability of an arrival in the time interval (t, t+ δt) is λδt regardless

of what happened before time t. And, of course, the probability of two or more ar-

rivals in the time interval is negligible. As with the service time the density function

of the time interval between arrivals is exponential:

arrivals: g(t) = λe−λt, t ≥ 0.

Generally, service times are difficult to model successfully.

145



146 QUEUES

We have to make assumptions about both the service time and the customer ar-

rivals. We could assume that service takes a fixed time (discussed in Section 7.5), or

more likely, that the service times are random variables which are independent for

each customer. They could perhaps have a exponential density

service: f(t) = µe−µt, t ≥ 0.

This means that the customer spends on average time 1/µ at the dispenser or being

served.

In practice, however, there may be busy periods. Arrivals at our cash dispenser

are unlikely to be uniformly distributed over a 24-hour operation: there will be more

customers at peak periods during the day, and hence, in reality, an overall Poisson

distribution does not hold. If a queue lengthens too much at peak times to the point

of deterring customers, the bank might wish to install a second cash dispenser. Hence

a queue with a single server now becomes a two-server queue. Generalising this,

we can consider n-server queues, which are typical queueing processes that occur

in supermarkets, the customer having to choose which check-out appears to have

the quickest service time or shortest queues. Alternatively, the n servers could be

approached through a single queue with customers being directed to the next free

server, known as a simple feeder queue.

There are many aspects of queues which can be considered but not all of them

will be investigated here. Customers could baulk at queueing if there are too many

people ahead of them. Queues can have a maximum length: when the queue reaches

a prescribed length, further customers are turned away.

Generally, we are not concerned with how queues begin when, say, a bank opens,

but how they develop over time as the day progresses. Do the queues become longer,

and if not what is the average length of the queue? Often, therefore, we look at

the underlying limiting or steady-state process associated with the queue. We shall

see that this effectively takes time variations out of the problem with the result that

differential-difference equations for recurrent probabilities of the Markov process re-

duce to difference equations. Queueing processes are related to Poisson processes,

and birth and death processes of Chapters 5 and 6 when they are Markov and the con-

struction of the difference equations follows from similar arguments and hypotheses.

In population terminology, joining a queue corresponds to a ‘birth’, and the end of

the serving a ‘death’.

7.2 The single-server queue

We will now put together a simple model of a queue. Let the random variable N(t)
denote the number of individuals in the queue including the person being served. We

assume that there is a single counter or server with an orderly-forming queue served

on a first come, first served basis. As before we write

P(N(t) = n) = pn(t),

which is the probability that there are n individuals in the queue at time t. We now

look at the probability that there are n persons in the queue at time t + δt. We have
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to specify the probability that an individual arrives at the end of the queue in the time

interval δt. Probably the simplest assumption is that the probability of an arrival is

λδt, where λ is a constant. In other words the arrivals form a Poisson process with

intensity λ. As stated in the introduction we assume that these form random time

intervals with exponential density given by

f(t) = µe−µt, t ≥ 0,

these times being measured from the arrival of a customer at the counter. The ques-

tion is: what is the probability that a customer leaves the counter between the times t
and t+ δt? If T is a random variable representing the service time (the time spent at

the counter by the customer), then

P(t ≤ T ≤ t+ δt|T ≥ t)

represents the probability that the service will be completed in the interval (t, t +
δt), given that it is still in progress at time t. For this conditional probability (see

Sections 1.3 and 1.5):

P(t ≤ T ≤ t+ δt|T ≥ t) =
P(t ≤ T ≤ t+ δt ∩ T ≥ t)

P(T ≥ t)
=

P(t ≤ T ≤ t+ δt)

P(T ≥ t)

=

∫ t+δt

t
µe−µsds

∫∞
t

µe−µsds

=
[−e−µs]t+δt

t

[−e−µs]∞t
=

−e−µ(t+δt) + e−µt

e−µt

= 1− e−µδt ≈ 1− (1− µδt+ o(δt))

= µδt+ o(δt)

for small δt, using a two-term series expansion for e−µδt. As we would expect with

this exponential distribution, the probability of the service being completed in the

interval (t, t + δt) is independent of the current state of the service—recall the no

memory property.

By the law of total probability (Section 1.3) we have

pn(t+ δt) = λδtpn−1(t) + µδtpn+1(t) + (1− λδt− µδt)pn(t) + o(δt) (n ≥ 1),

p0(t+ δt) = µδtp1(t) + (1− λδt)p0(t),

where the probability of multiple events (arrivals or service) are assumed to be neg-

ligible. Thus

pn(t+ δt)− pn(t)

δt
= λpn−1(t) + µpn+1(t)− (λ+ µ)pn(t) + o(1),

p0(t+ δt)− p0(t)

δt
= µp1(t)− λp0(t) + o(1).
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Let δt → 0, so that

dpn(t)

dt
= λpn−1(t) + µpn+1(t)− (λ+ µ)pn(t), (n = 1, 2, . . .)

dp0(t)

dt
= µp1(t)− λp0(t).







(7.1)

These equations are difficult to solve by the probability generating function method.

Compared with birth and death equations of the previous chapter, whilst looking

similar, the additional term −λp(0)(t) in the second equation in (7.1) appears in the

generating function equation (see Problem 7.7). However, it is possible to solve the

equations using this method, and the result, after considerable analysis, leads to the

formulas for probabilities in terms of special functions known as Bessel functions 1

(see Bailey (1964)). The partial differential equation for the probability generating

function is derived in Problem 7.7. Fortunately we can obtain considerable informa-

tion about queues by looking at the underlying limiting process in Eqn (7.1). Whilst

time-dependent solutions are interesting, for planning purposes, the limiting process

(if it exists) gives us a long-term view.

7.3 The limiting process

In the limiting process we look at the long-term behaviour of the queue assuming

that it has a limiting state. Not all queues do: if rate of arrivals is large compared with

the service time then we might expect the queue to continue to grow without bound

as time progresses. For the moment let us assume that there is a limiting state, that

λ < µ, and that we can write

lim
t→∞

pn(t) = pn.

The probabilities now approach a constant distribution which does not depend on

time. In this case it is reasonable to assume that

lim
t→∞

dpn(t)

dt
= 0.

If the limits turn out to be not justifiable then we might expect some inconsistency to

occur in the limiting form of the equations or in their solution, which is a backward

justification.

Equations (7.1) now become

λpn−1 + µpn+1 − (λ+ µ)pn = 0, (n = 1, 2, . . .)

µp1 − λp0 = 0.

}

(7.2)

The general equation in (7.2) is a second-order difference equation. It is easy to

solve iteratively since

p1 =
λ

µ
p0

1 Friedrich Bessel (1784–1848), German mathematician.
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and, with n = 1,

p2 =
1

µ
[(λ+ µ)p1 − λp0] =

1

µ
[(λ+ µ)

λ

µ
p0 − λp0] =

(
λ

µ

)2

p0.

The next iterate is

p3 =

(
λ

µ

)3

p0,

and, in general,

pn =

(
λ

µ

)n

p0. (7.3)

Alternatively the second-order difference equation can be solved using the charac-

teristic equation method (see Section 2.2). The characteristic equation of (7.2) is

µm2 − (λ + µ)m+ λ = 0, or (µm− λ)(m− 1) = 0.

The roots are m1 = 1, m2 = λ/µ. If λ 6= µ, then the general solution is

pn = A+B

(
λ

µ

)n

; (7.4)

if λ = µ, it is

pn = C +Dn,

where A, B, C, and D are constants. Since µp1 = λp0, it follows that A = 0 or

D = 0, and that B = C = p0: the result is (7.3) again.

Let ρ = λ/µ for future reference: ρ is known as the traffic density. Generally, the

traffic density is defined as the ratio of expected values:

ρ =
E(S)

E(I)
,

where S and I are independent random variables of the service and inter-arrival

times, respectively. When S and I are both exponentially distributed, then E(S) =
1/µ and E(I) = 1/λ (Section 1.8). We still require the value of p0. However, since
∑∞

n=0 pn = 1, it follows that
( ∞∑

n=0

ρn

)

p0 = 1,

but the geometric series (see Appendix) on the left will only converge if |ρ| < 1. Its

sum is then given by
∞∑

n=0

ρn =
1

1− ρ
.

Hence,

p0 = 1− ρ,

and

pn = (1− ρ)ρn, (n = 0, 1, 2, . . .), (7.5)
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which is the probability mass function of a geometric distribution with parameter

1− ρ (see Section 1.7).

If ρ ≥ 1 then the series does not converge and {pn} cannot represent a probability

distribution. In this case the queue simply increases in length to infinity as t → ∞
whatever its initial length. On the other hand if ρ < 1, then λ < µ and the rate of

arrivals is less than the average service time with the result that a steady state should

be achieved as we might expect. Notice that, if ρ = 1, the queue grows in length

although there appears to be ’equilibrium’ between arrivals and service.

There are various items of further information about the single-server queue, which

we can deduce from the distribution {pn} assuming ρ < 1.

(i) Server free. The probability that the server is free when a customer arrives is

p0 = 1− ρ.

If the service time parameter ρ can be varied, for example, then the question might

arise as to what might be an acceptable figure for p0. If ρ cannot be significantly

changed then perhaps more servers are required (see Section 7.4).

(ii) Length of queue. The mean length of the queue (including the person being

served) is, if N represents a random variable of the number in the queue,

E(N) =
∞∑

n=1

npn =
∞∑

n=1

n(1− ρ)ρn =
∞∑

n=1

nρn −
∞∑

n=1

nρn+1

=

∞∑

n=1

nρn −
∞∑

n=2

(n− 1)ρn =

∞∑

n=1

ρn =
ρ

1− ρ
, (7.6)

or the result could be quoted directly from the mean of the geometric distribution.

Hence if ρ = 3
4 , then a customer might expect one person being served and two

queueing. If, for example, the service time parameter µ can be varied (customers are

served more efficiently, perhaps), then E(N) = 2 could be set at a level acceptable to

arriving customers. For example setting E(N) = 2 implies that ρ = 2
3 , or µ = 3

2λ.

(iii) Waiting time. How long will a customer expect to wait for service on arrival at

the back of the queue, and how long will the customer expect to queue and be served?

A customer arrives and finds that there are n individuals ahead including the person

being served. Let Ti be the random variable representing the time for the service of

customer i. We are interested in the random variable

Sn = T1 + T2 + · · ·+ Tn,

the sum of the random variables of service times of the first n queueing customers.

These random variables are independent, each with an exponential density function

with the same parameter µ, that is,

f(t) = µe−µt t ≥ 0.
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The moment generating function (see Section 1.9) of the random variable Ti is

MTi
(s) = E(esTi) =

∫ ∞

0

esuf(u)du = µ

∫ ∞

0

esue−µudu,

= µ

∫ ∞

0

e−(µ−s)udu,

=
µ

µ− s
, (s < µ).

We need the result that the moment generating function of the sum

Sn = T1 + T2 + · · ·+ Tn

is

MSn
(s) = E(esSn) = E(es(T1+T2+···+Tn))

= E(esT1)E(esT2) · · ·E(esTn) = MT1
(s)MT2

(s) · · ·MTn
(s)

=

(
µ

µ− s

)n

(see Section 1.9). This is the moment generating function of the gamma density func-

tion with parameters µ and n. Its density is

fSn
(t) =

µn

(n− 1)!
tn−1e−µt

(see Section 1.8). (Alternatively, the sum of iid exponential random variables is

gamma with parameters µ and n.)

Let S be the random time a customer has to wait to reach the server, and as be-

fore, N is the random variable of the number in the queue. Using the law of total

probability, the probability that S is greater than t is given by

P(S > t) =

∞∑

n=1

P(Sn > t|N = n)pn.

Hence,

P(S > t) =

∞∑

n=1

pn

∫ ∞

t

fSn
(s)ds,

=

∞∑

n=1

(1 − ρ)ρn
∫ ∞

t

µn

(n− 1)!
sn−1e−µsds,

= (1 − ρ)µρ

∫ ∞

t

e−µs

∞∑

n=0

(µρs)n

n!
ds,

= (1 − ρ)µρ

∫ ∞

t

e−µ(1−ρ)sds,

= ρe−µ(1−ρ)t.
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The associated density function is

g(t) =
d

dt
[1− ρe−µ(1−ρ)t] = ρµ(1− ρ)e−µ(1−ρ)t, t ≥ 0. (7.7)

Finally, the expected value of S is

E(S) =

∫ ∞

0

tg(t)dt =

∫ ∞

0

tρµ(1− ρ)e−µ(1−ρ)tdt,

= ρµ(1 − ρ).
1

µ2(1− ρ)2

∫ ∞

0

se−sds, [s = µ(1− ρ)t],

=
ρ

µ(1 − ρ)
, [(see the Appendix for this integral)], (7.8)

which turns out to be E(T ), the expected value 1/µ of the service time T multiplied

by the expected length of the queue ρ/(1− ρ) from (ii) above. Hence, in this case, it

occurs that

E(S) = E(N)E(T ).

To use this result directly we would need to show that N and T are independent

random variables. With n customers ahead the next customer could expect to wait

for a time ρ/(µ(1 − ρ)) to reach the server. Until service is completed the customer

could expect to spend time

ρ

µ(1 − ρ)
+

1

µ
=

1

µ(1− ρ)

since the expected service time is 1/µ.

This is a lengthy argument: the difficulty is mainly caused by the problem of find-

ing the density function of the sum of a set of random variables.

(iv) Busy periods. If N(t) is the random number representing the number of individ-

uals in a single-server queue at time t in the time-dependent case (Eqn (7.1)), then

the development of a queue over time with ρ = λ/µ < 1 might look as in Figure 7.1.

This is a realisation (or sample path) of a continuous time process which has dis-

crete jumps at varying times. There will be periods where the server is free (called

slack periods), periods of lengths

s1 = t1, s2 = t3 − t2, s3 = t5 − t4, . . . ,

and periods when the server is busy, namely

b1 = t2 − t1, b2 = t4 − t3, b3 = t6 − t5, . . . .

The times t1, t3, t5, . . . are the times when a new customer arrives when the server

is free, and t2, t4, t6, . . . are the times at which the server becomes free. The periods

denoted by b1, b2, . . . are known as busy periods. A question whose answer is of

interest is: what is the expected length of a busy period? Here we present an informal

argument which points to the result.

Suppose that the server is free at time t = t2. Then since the arrivals form a

Poisson process with parameter λ, the expected time until the next customer arrives
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n(t)

1

2

3

4

s1 b1 s2 b2 s3 b3

t

t1 t2 t3 t4 t5

Figure 7.1 A sample queue for the number in the queue N(t) against time in the time-

dependent case: the queue starts with no customers and {si} are the slack periods and {bi}
are the busy periods.

is 1/λ, since the density function is λe−λt. It seems a reasonable intuitive result that

the average lengths of a large number n of slack periods should approach 1/λ, that

is,

lim
n→∞

[∑n
i=1 si
n

]

=
1

λ
.

In the limiting process, the probability that the server is free is p0 and that the server

is busy is 1 − p0. Hence the ratio of the average lengths of the slack periods to that

of the busy periods is p0/(1− p0). Hence

lim
n→∞

[∑n
i=1 si
n

· n
∑n

i=1 bi

]

=
p0

1− p0
=

1− ρ

ρ
.

Assuming that the limit of the product is the product of the limits, it follows using

the limit above that

lim
n→∞

[

1

n

n∑

i=1

bi

]

=
1

λ

ρ

1− ρ
=

1

µ− λ
, (7.9)

which is the mean length of the busy periods.

Example 7.1 (The baulked queue) In this queue not more than m ≥ 2 people (including the

person being served) are allowed to form a queue. If there are m individuals in the queue, then

any further arrivals are turned away. It is assumed that the service distribution is exponential

with rate µ, and arrival distribution is exponential with parameter λ if n < m where n is the

number in the queue. Find the probability distribution for the queue length.

If n < m the arrival rate is λ, but if n ≥ m we assume that λ = 0. The difference equations

in (7.2) are modified so that they become the finite system

µp1 − λp0 = 0,
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λpn−1 + µpn+1 − (λ+ µ)pn = 0, (1 ≤ n ≤ m− 1),

λpm−1 − µpm = 0.

The general solution is (see Eqn (7.4))

pn = A+Bρn, (ρ 6= 1).

For the baulked queue there is no restriction on the size of ρ = λ/µ since the queue length is

controlled The case ρ = 1 is treated separately.

The boundary conditions imply

µ(A+Bρ)− λ(A+B) = 0, or, A(µ− λ) = 0.

Hence A = 0, (µ 6= λ). Therefore

pn = Bρn, (n = 0, 1, 2, . . . ,m).

Unlike the difference equation in Section 2.2, there no second boundary condition. However, a

further condition follows since {pn(t) must be a probability distribution so that
∑m

n=0
pn =

1. Hence

B

m∑

n=0

ρn = 1,

or, after summing the geometric series,

B
1− ρm+1

1− ρ
= 1.

Hence, the probability that there are n individuals in the queue is given by

pn =
ρn(1− ρ)

(1− ρm+1)
, (n = 0, 1, 2, . . . ,m) (ρ 6= 1).

If ρ = 1, then the general solution for pn is

pn = A+Bn,

and the boundary condition p1 − p0 = 0 implies B = 0. Hence pn = A (n = 0, 1, 2, . . .m),
but since

∑m

n=0
pn = 1, it follows that A = 1/(m+ 1). Finally

pn =
1

m+ 1
, (n = 0, 1, 2, . . .m),

a discrete uniform distribution which does not depend on n.

7.4 Queues with multiple servers

In many practical applications of queueing models, there is more than one server, as

in banks, supermarkets, and hospital admissions. Usually in supermarkets, shoppers

at check-outs choose a till with the shortest queue or, more accurately, a queue with

the smallest number of likely purchases. On the other, hand banks and post offices,

for example, often guide arrivals into a single queue, and then direct them to tills or

counters as they become free. It is the second type of queue which we will investigate.

A plan of such a scheme is shown in Figure 7.2.

Suppose that the queue faces r servers. As for the single-server queue, assume

that the arrivals form a Poisson process with parameter λ, and that the service time

at each counter has exponential distribution with rate µ. Let pn(t) be the probability



QUEUES WITH MULTIPLE SERVERS 155

queue

server 1 server 2 server 4server 3

Figure 7.2 A single queue with 4 servers.

that there are n people in the queue at time t including those being served. The queue

length is governed by different equations depending on whether n < r or n ≥ r. If

n ≥ r then all counters will be occupied by a customer, but some will be free if

n < r. As before, if n < r the probability of a counter becoming free in time δt
will be nµδt: if n ≥ r the probability will be rµδt. Modifying the arguments of

Section 7.2 we can derive the following incremental equations:

p0(t+ δt) = µp1(t)δt+ (1− λ)p0(t)δt+ o(δt),

pn(t+ δt) = λpn− 1(t)δt+ (n+ 1)µpn+1(t)δt+ (1 − λ− nµ)pn(t)δt+ o(δt),

(1 ≤ n < r).

pn(t+ δt) = λpn−1(t)δt+ rµpn+1(t)δt+ (1− λ− rµ)pn(t)δt+ o(δt),

(n ≥ r).
With the usual limiting process we obtain the time-dependent equations for the queue-

ing process:

dp0(t)

dt
= µp1(t)− λp0(t),

dpn(t)

dt
= λpn−1(t) + (n+ 1)µpn+1(t)− (λ+ nµ)pn(t), (1 ≤ n < r),

dpn(t)

dt
= λpn−1(t) + rµpn+1(t)− (λ+ rµ)pn(t), (n ≥ r).

Assuming that the derivatives tend to zero as t → ∞ (as in the previous section), the

corresponding limiting process (if it exists) for the queue with r servers is

µp1 − λp0 = 0, (7.10)

λpn−1 + (n+ 1)µpn+1 − (λ+ nµ)pn = 0, 1 ≤ n < r, (7.11)

λpn−1 + rµpn+1 − (λ+ rµ)pn = 0, n ≥ r. (7.12)

This is not now a set of constant-coefficient difference equations, and the character-

istic equation method of solution no longer works. However, it is easy to solve the
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equations iteratively. For n = 1 in Eqn (7.11), we have

λp0 + 2µp2 − (λ+ µ)p1 = 0,

or, using Eqn (7.10),

2µp2 − λp1 = 0.

Provided n < r we can repeat this procedure for n = 2 giving

3µp3 = (λ+ 2µ)p2 − λp1 = (λ+ 2µ)p2 − 2µp2 = λp2,

and so on:

4µp4 = λp3, . . . , rµpr = λpr−1.

For n ≥ r, we switch to the difference equations (7.8) and the sequence then

continues as

rµpr+1 = (λ+ rµ)pr − λpr−1 = λpr, . . . , rµpn = λpn−1, . . .

etc. To summarise: the set of difference equations (7.10)–(7.12) reduce to the equiv-

alent set

nµpn = λpn−1, (1 ≤ n < r), (7.13)

rµpn = λpn−1, (n ≥ r). (7.14)

Starting with n = 1,

p1 =
λ

µ
p0 = ρp0,

where ρ = λ/µ. Then for n = 2,

p2 =
ρ

2
p1 =

ρ2

2
p0,

and so on. Thus for n < r,

pn =
ρn

n!
p0,

and for n ≥ r

pn =
ρn

rn−rr!
p0.

Since
∑∞

n=0 pn = 1, we can determine p0 from

p0

[
r−1∑

n=0

ρn

n!
+

rr

r!

∞∑

n=r

(ρ

r

)n
]

= 1,

in which the infinite geometric series converges if ρ < r. As we would expect in

the multiple-server queue, it is possible for the arrival rate λ to be greater than the

service rate µ. Summing the second geometric series, it gives

∞∑

n=r

(ρ

r

)n

=
r

r − ρ

(ρ

r

)r

so that

p0 = 1

/[
r−1∑

n=0

ρn

n!
+

ρr

(r − ρ)(r − 1)!

]

. (7.15)
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If N is the random variable of the queue length n, then the expected queue length

excluding those being served is

E(N) =

∞∑

n=r+1

(n− r)pn,

=
p0ρ

r

r!

∞∑

n=r+1

(n− r)
(ρ

r

)n−r

.

We need to sum the series. Let

R =

∞∑

n=r+1

(n− r)
(ρ

r

)n−r

=
ρ

r
+ 2

(ρ

r

)2

+ 3
(ρ

r

)3

+ · · · .

Multiply both sides by ρ/r and subtract the new series from the series for R. Hence,

R
(

1− ρ

r

)

=
(ρ

r

)

+
(ρ

r

)2

+
(ρ

r

)3

+ · · · = ρ

r − ρ
,

using the formula for the sum of a geometric series. Hence

R =
ρr

(r − ρ)2
,

and, therefore

E(N) =
p0ρ

r+1

(r − 1)!(r − ρ)2
, (7.16)

where p0 is given by Eqn (7.15).

This formula gives the expected length of those actually waiting for service. The

expected length including those being served can be found in the solution to Prob-

lem 7.10.

For a queue with r servers, ρ/r = λ/(rµ) is a measure of the traffic density of the

queue, and it is this parameter which must be less than 1 for the expected length of

the queue to remain finite. If, for example, ρ = λ/µ = 4, then at least 5 servers are

required to stop queue growth. For r = 5,

p0 = 1

/[
4∑

n=0

4n

n!
+

45

4!

]

=
1

77
= 0.013 . . . ,

and

E(N) =
p04

6

4!
=

512

231
= 2.216 . . . .

The number of persons waiting averages about 2.22. Adding an extra server reduces

the expected length of the waiting queue to E(N) = 0.57.

This type of analysis could be used to determine the number of servers given esti-

mates of λ and µ.

Example 7.2. A bank has two tellers who take different mean service times to complete the

service required by a customer. The customers arrive as a Poisson process with intensity λ,

and the service times are independent and exponentially distributed with rates µ1 and µ2. If
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both tellers are free the tellers are equally likely to be chosen. In the limiting case, find the

difference equations for the probability pn that there are n persons in the queue including

those being served. Solve the equations for pn. What is the expected length of the queue?

Since customers express no preference of tellers, by comparison with Eqns (7.10)–(7.12),

the difference equations for the limiting process are

1
2
(µ1 + µ2)p1 − λp0 = 0,

(µ1 + µ2)p2 + λp0 − [λ+ 1
2
(µ1 + µ2)]p1 = 0,

(µ1 + µ2)pn+1 + λpn−1 − [λ+ (µ1 + µ2)]pn = 0, n ≥ 2.

If we let µ = 1
2
(µ1 + µ2), then this is equivalent to the two-server queue, each server having

exponential distribution with the same rate µ. Hence the required answers can be read off

from the results for the multi-server queue presented immediately before this example. Thus,

provided λ < 2µ,

p1 = ρp0,

pn =
ρn

2n−22!
p0, n ≥ 2,

where ρ = λ/µ, and

p0 = 1

/[

1 + ρ+
ρ2

2− ρ

]

=
2− ρ

2 + ρ
.

In this case the expected length of the queue is (excluding those being served)

E(N) =
p0ρ

3

(2− ρ)2
=

ρ3

4− ρ2
.

Example 7.3. Customers arrive in a bank with two counters at a rate 2λδt in any small time

interval δt. Service times at either counter is exponentially distributed with rate µ. Which of

the following schemes leads to the shorter overall queue length?

(a) A single queue feeding two servers.

(b) Two separate single-server queues with the assumptions that customers arrive at each

queue with parameter λδt, and choose servers at random.

The answer is reasonably obvious but it is useful to compare the outcomes.

(a) This is the two-server queue with rate 2λ. Hence, from (7.15) with r = 2,

p0 =
2− ρ1

(1 + ρ1)(2− ρ1) + ρ21
=

2− ρ1
2 + ρ1

=
1− ρ

1 + ρ
,

where ρ1 = 2ρ = 2λ/µ. From (7.16), the expected queue length will be, except for those

being served,

Ea(N) =
p0ρ

3
1

(2− ρ1)2
=

ρ31
(4− ρ21)

=
(2λ/µ)3

4− (2λ/µ)2
=

2ρ3

1− ρ2
, (7.17)

where ρ = λ/µ.

(b) Note that customers do not exert a choice in this queueing scheme: it is not quite the same

problem as customers arriving and choosing the shorter queue. For the scheme as described,

the expected length of the two single-server queues is twice that of one, and is, excluding those

being served,

Eb(N) = 2

∞∑

n=2

(n− 1)pn,
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where pn = (1− ρ)ρn from (7.5). Hence

Eb(N) = 2

[
ρ

1− ρ
− p1 − (1− p0 − p1)

]

using the results
∞∑

n=1

npn =
ρ

1− ρ
,

∞∑

n=0

pn = 1.

Hence, since p0 = 1− ρ and p1 = (1− ρ)ρ,

Eb(N) =
2ρ2

1− ρ
. (7.18)

We must compare Ea(N) and Eb(N) given by (7.13) and (7.14). Thus

Ea(N) =
2ρ3

1− ρ2
=

ρ

1 + ρ
Eb(N) < Eb(N)

for all ρ such that 0 < ρ < 1. We conclude in this model that the two single-server queues

have a longer expected total queue length than the two-server queue, which might perhaps be

expected. Comparative graphs of Ea(N) and Eb(N) versus r are shown in Figure 7.3.

Figure 7.3 Comparison of expected queue lengths for the two-server Ea(N) queue and the

two single-server queues Eb(N) against {arrival rate}/{service rate} ratio.

Again such an analysis could be useful in planning the type of queueing system to install.

7.5 Queues with fixed service times

In some queues the service time is a fixed value, say τ , since the customers all go

through the same service. This could arise, for example, at a bank ATM where cash

is dispensed. Suppose that the density function of the interval between arrivals is

exponential with parameter λ, namely λe−λt, that is, a Poisson arrival rate.

This queueing problem requires a different approach. As before, let pn(t) be the

probability that there are n persons in the queue at time t including the person being
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served. We consider time intervals of duration τ , the service time, and start by asking:

what is the probability p0(t+ τ) that the queue has no customers at time t+ τ? This

can arise if there was either no one in the queue at time t, or one person at time t who

must have been served and has left. The probability that this occurs is p0(t) + p1(t).
Also, there must have been no arrivals. Since the inter-arrival times have a negative

exponential distribution, the probability of no arrivals in any time interval of duration

τ is e−λτ (and remember its no-memory property). Hence

p0(t+ τ) = [p0(t) + p1(t)]e
−λτ .

We now generalize this equation. Suppose that there are n persons in the queue at

time t+ τ . This could have arisen in any of the ways listed below:

Number in queue at time t Number of arrivals Probability

0 n p0(t)e
−λτ (λτ)n/n!

1 n p1(t)e
−λτ (λτ)n/n!

2 n− 1 p2(t)e
−λτ (λτ)n−1/(n− 1)!

· · · · · · · · ·
n 1 pn(t)e

−λτλτ/1!
n+ 1 0 pn+1(t)e

−λτ

By way of explanation, for example, in row 3 in the table, the one being served

will leave at time t + τ , which means that the number of arrivals must be n − 1:

this occurs with probability that there are two in the queue at time t, namely p2(t)
times e−λτ (λτ)n−1/(n − 1)!. In general the probability of r arrivals in time τ is

e−λτ (λτ)r/r!. Thus pn(t+ τ) is the sum of the probabilities in the third column:

pn(t+ τ) = e−λτ

[

p0(t)
(λτ)n

n!
+

n+1∑

r=1

pr(t)(λτ)
n+1−r

(n+ 1− r)!

]

(n = 0, 1, . . .).

Suppose now that we just consider the long-term behavior of the queue by assum-

ing that

lim
t→∞

pn(t) = lim
t→∞

pn(t+ τ) = pn,

since τ is finite, and that the limits exist. Then the sequence {pn} satisfies the differ-

ence equations

pn = e−λτ

[

p0
(λτ)n

n!
+

n+1∑

r=1

pr(λτ)
n+1−r

(n+ 1− r)!

]

(n = 0, 1, . . .).

For the next step it is more convenient to write the equations as a list, as follows:

p0 = e−λτ (p0 + p1)

p1 = e−λτ [(p0 + p1)λτ + p2]

p2 = e−λτ

[

(p0 + p1)
(λτ)2

2!
+ p2(λτ) + p3

]
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... =
...

pn = e−λτ

[

(p0 + p1)
(λτ)n

n!
+ p2

(λτ)n−1

(n− 1)!
+ · · ·+ pn(λτ) + pn+1

]

... =
....

We now construct the probability generating function for the sequence {pn} by mul-

tiplying pn by sn in the list above, and summing over n by columns to give

G(s) =

∞∑

n=0

pns
n = e−λτ

[
(p0 + p1)e

λτs + p2se
λτs + p3s

2eλτs + · · ·
]

= e−λτ(1−s)
[
p0 + p1 + p2s+ p3s

2 + · · ·
]

= e−λτ(1−s)

[

p0 +
1

s
{G(s)− p0}

]

.

Hence, solving this equation for G(s), we obtain

G(s) =
p0(1 − s)

1− seλτ(1−s)
.

However, this formula for G(s) still contains an unknown constant p0. For G(s)
to be a pgf, we must have G(1) = 1. Since both the numerator and denominator tend

to zero as s → 1, we must use an expansion to cancel a factor (1− s). Let u = 1− s.

Then

G(s) = H(u) =
p0u

1− (1− u)eλτu
. (7.19)

The Taylor series expansion of H(u) about u = 0 is

H(u) =
p0

1− λτ
− p0λτ(2 − λτ)

2(1− λτ)2
u+O(u2)

as u → 0. Hence

G(s) =
p0

1− λτ
− p0λτ(2 − λτ)

2(1− λτ)2
(1 − s) +O((1 − s)2) (7.20)

as s → 1. G(1) = 1 implies p0 = 1− λτ .

Individual probabilities can be found by expanding G(s) in powers of s. We shall

not discuss convergence in detail here, but simply state that the expansion converges

for 0≤λτ<1, a result to be expected intuitively.

The expected queue length is given by G′(1) (see Section 1.9). From (7.19), it

follows that

µ = G′(1) =
p0λτ(2 − λτ)

2(1− λτ)2
=

λτ(2 − λτ)

2(1− λτ)
,

since p0 = 1− λτ .

This can be expressed in terms of the traffic intensity ρ since 1/λ is the mean

inter-arrival time and τ is the actual service time. Thus ρ = λτ , and the mean queue

length is

µ =
ρ(1− 1

2ρ)

1− ρ
.
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7.6 Classification of queues

There are three main factors which characterize queues: the probability distributions

controlling arrivals, service times, and the number of servers. If the inter-arrival and

service distributions are denoted by G1 and G2, and there are n servers, then this

queue is described as a G1/G2/n queue, which is shorthand for

arrival distribution, G1/ service distribution, G2 / number of servers, n.

If the inter-arrival and service distributions are exponentials with densities λe−λt

and µe−µt (that is, both are Poisson processes), then both processes are Markov with

parameters λ and µ, respectively. The Markov property means that the probability of

the next arrival or the probability of service being completed are independent of any

previous occurrences. We denote the processes by M(λ) and M(µ) (M for Markov).

Hence the corresponding single-server queue is denoted by M(λ)/M(µ)/1, and the

n-server queue by M(λ)/M(µ)/n.

The single-server queue with Markov inter-arrival but fixed service time τ , dis-

cussed in the previous section, is denoted by M(λ)/D(τ)/1, where D stands for

deterministic.

This can be extended to other distributions. If the service time for a single-server

queue has a uniform distribution with density function

f(t) =

{
µ 0 ≤ t ≤ 1/µ,
0 elsewhere,

then this would be described as an M(λ)/U(µ)/1 queue.

7.7 Problems

7.1. In a single-server queue, a Poisson process for arrivals of intensity 1
2
λ and for service and

departures of intensity λ are assumed. For the corresponding limiting process, find

(a) pn, the probability that there are n persons in the queue,

(b) the expected length of the queue,

(c) the probability that there are not more than two persons in the queue, including the

person being served in each case.

7.2. Consider a telephone exchange with a very large number of lines available. If n lines are

busy the probability that one of them will become free in small time δt is nµδt. The probability

of a new call is λδt (that is, Poisson), with the assumption that the probability of multiple calls

is negligible. Show that pn(t), the probability that n lines are busy at time t satisfies

p′0(t) = −λp0(t) + µp1(t),

p′n(t) = −(λ+ nµ)pn(t) + λpn−1(t) + (n+ 1)µpn+1(t), (n ≥ 1).

In the limiting process, show by induction that

pn = lim
t→∞

pn(t) =
e−λ/µ

n!

(
λ

µ

)n

.

Identify the distribution.
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7.3. For a particular queue, when there are n customers in the system, the probability of an

arrival in the small time interval δt is λnδt + o(δt). The service time parameter µn is also

a function of n. If pn denotes the probability that there are n customers in the queue in the

steady state queue, show by induction that

pn = p0
λ0λ1 . . . λn−1

µ1µ2 . . . µn
, (n = 1, 2, . . .),

and find an expression for p0.

If λn = 1/(n+ 1) and µn = µ, a constant, find the expected length of the queue.

7.4. In a baulked queue (see Example 7.1), not more than m ≥ 2 people are allowed to form

a queue. If there are m individuals in the queue where m is fixed, then any further arrivals are

turned away. If the arrivals form a Poisson process with intensity λ and the service distribution

is exponential with parameter µ, show that the expected length of the queue is

ρ− (m+ 1)ρm+1 +mρm+2

(1− ρ)(1− ρm+1)
,

where ρ = λ/µ 6= 1. Deduce the expected length if ρ = 1. What is the expected length of the

queue if m = 3 and ρ = 1?

7.5. Consider the single-server queue with Poisson arrivals occurring with intensity λ, and

exponential service times with parameter µ. In the stationary process, the probability pn that

there are n individuals in the queue is given by

pn =

(

1− λ

µ

)(
λ

µ

)n

, (n = 0, 1, 2, . . .).

Find its probability generating function

G(s) =

∞∑

n=0

pns
n.

Also find the mean and variance of the queue length.

7.6. A queue is observed to have an average length of 2.8 individuals including the person

being served. Assuming the usual exponential distributions for both service times and times

between arrivals, what is the traffic density, and the variance of the queue length?

7.7. The differential-difference equations for a queue with parameters λ and µ are (see Eqn (7.1))

dp0(t)

dt
= µp1(t)− λp0(t),

dpn(t)

dt
= λpn−1(t) + µpn+1(t)− (λ+ µ)pn(t),

where pn(t) is the probability that the queue has length n at time t. Let the probability gener-

ating function of the distribution {pn(t)} be

G(s, t) =

∞∑

n=0

pn(t)s
n.
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Show that G(s, t) satisfies the equation

s
∂G(s, t)

∂t
= (s− 1)(λs− µ)G(s, t) + µ(s− 1)p0(t).

Unlike the birth and death processes in Chapter 6, this equation contains the unknown prob-

ability p0(t), which complicates its solution. Show that it can be eliminated to leave the fol-

lowing second-order partial differential equation for G(s, t):

s(s− 1)
∂2G(s, t)

∂t∂s
− (s− 1)2(λs− µ)

∂G(s, t)

∂s
− ∂G(s, t)

∂t
− λ(s− 1)2G(s, t) = 0.

This equation can be solved by Laplace2 transform methods.

7.8. A call center has r telephones manned at any time, and the traffic density is λ/(rµ) =
0.86. Compute how many telephones should be manned in order that the expected number of

callers waiting at any time should not exceed 4. Assume a limiting process with inter-arrival

times of calls and service times for all operators, both exponential with parameters λ and µ,

respectively (see Section 7.4).

7.9. Compare the expected lengths of the two queues M(λ)/M(µ)/1 and M(λ)/D(1/µ)/1
with ρ = λ/µ < 1. The queues have parameters such that the mean service time for the former

equals the fixed service time in the latter. For which queue would you expect the mean queue

length to be the shorter?

7.10. A queue is serviced by r servers, with the distribution of the inter-arrival times for the

queue being exponential with parameter λ and the service times distributions for each server

being exponential with parameter µ. If N is the random variable for the length of the queue

including those being served, show that its expected value is

E(N) = p0

[
r−1∑

n=1

ρn

(n− 1)!
+

ρr[r2 + ρ(1− r)]

(r − 1)!(r − ρ)2

]

,

where ρ = λ/µ < 1, and

p0 = 1

/[
r−1∑

n=0

ρn

n!
+

ρr

(r − ρ)(r − 1)!

]

(see Eqn (7.11)).

If r = 2, show that

E(N) =
4ρ

4− ρ2
.

For what interval of values of ρ is the expected length of the queue less than the number of

servers?

7.11. For a queue with two servers, the probability pn that there are n servers in the queue,

including those being served, is given by

p0 =
2− ρ

2 + ρ
, p1 = ρp0, pn = 2

(
ρ

2

)n

p0, (n ≥ 2),

where ρ = λ/µ (see Section 7.4). If the random variable N is the number of people in the

2 Pierre-Simon Laplace (1749–1827), French mathematician.
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queue, find its probability generating function. Now find the mean length of the queue includ-

ing those being served.

7.12. The queue M(λ)/D(τ )/1, which has a fixed service time of duration τ for every cus-

tomer, has the probability generating function

G(s) =
(1− ρ)(1− s)

1− seρ(1−s)
,

where ρ = λτ (0 < ρ < 1) (see Section 7.5).

(a) Find the probabilities p0, p1, p2.

(b) Find the expected value and variance of the length of the queue.

(c) Customers are allowed a service time τ which is such that the expected length of the queue

is two individuals. Find the value of the traffic density ρ.

7.13. For the baulked queue that has a maximum length of m beyond which customers are

turned away, the probabilities that there are n individuals in the queue are given by

pn =
ρn(1− ρ)

1− ρm+1
, (0 < ρ < 1), pn =

1

m+ 1
(ρ = 1),

for n = 0, 1, 2, . . . ,m. Show that the probability generating functions are

G(s) =
(1− ρ)[1− (ρs)m+1]

(1− ρm+1)(1− ρs)
, (0 < ρ < 1),

and

G(s) =
1− sm+1

(m+ 1)(1− s)
, (ρ = 1).

Find the expected value of the queue length including the person being served.

7.14. In Section 7.3(ii), the expected length of the queue with parameters λ and µ, including

the person being served, was shown to be ρ/(1− ρ). What is the expected length of the queue

excluding the person being served?

7.15. An M(λ)/M(µ)/1 queue is observed over a long period of time. Regular sampling

indicates that the mean length of the queue including the person being served is 3, whilst the

mean waiting time to completion of service by any customer arriving is 10 minutes. What is

the mean service time?

7.16. A person arrives at an M(λ)/M(µ)/1 queue. If there are two people in the queue (in-

cluding customers being served) the customer goes away and does not return. If there are fewer

than two queueing then the customer joins the queue. Find the expected waiting time for the

customer to the start of service.

7.17. A customer waits for service in a bank in which there are four counters with customers

at each counter but otherwise no one is queueing. If the service time distribution is exponential

with parameter µ for each counter, for how long should the queueing customer have to wait?

7.18. A hospital has a waiting list for two operating theatres dedicated to a particular group of

operations. Assuming that the queue is in a steady state, and that the waiting list and operating
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time can be viewed as an M(λ)/M(µ)/2 queue, show that the expected value of the random

variable N representing the length of the queue is given by

E(N) =
ρ3

4− ρ2
, ρ =

λ

µ
< 2.

The average waiting list is very long at 100 individuals. Why will ρ be very close to 2? Put

ρ = 2 − ε where ε > 0 is small. Show that ε ≈ 0.02. A third operating theatre is brought

into use with the same operating parameter µ. What effect will this new theatre have on the

waiting list eventually?

7.19. Consider the M(λ)/M(µ)/r queue which has r servers such that ρ = λ/µ < r. Adapt-

ing the method for the single-server queue (Section 7.3 (iii)), explain why the average service

time for (n−r+1) customers to be served is (n−r+1)/(µr) if n ≥ r. There are n persons in

the queue including those being served. What is it if n < r? If n ≥ r, show that the expected

value of the waiting time random variable T until service is

E(T ) =

∞∑

n=r

n− r + 1

rµ
pn.

What is the average waiting time if service is included?

7.20. Consider the M(λ)/M(µ)/r queue. Assuming that λ < rµ, what is the probability in

the long-term that at any instant there is no one queueing excluding those being served?

7.21. Access to a toll road is controlled by a plaza of r toll booths. Vehicles approaching the toll

booths choose one at random: any toll booth is equally likely to be the one chosen irrespective

of the number of cars queueing (perhaps an unrealistic situation). The payment time is assumed

to be exponential with parameter µ, and vehicles are assumed to approach as Poisson with

parameter λ. Show that, viewed as a steady-state process, the queue of vehicles at any toll

booth is an M(λ/r)/M(µ)/1 queue assuming λ/(rµ) < 1. Find the expected number of

vehicles queueing at any toll booth. How many cars would you expect to be queueing over all

booths?

One booth is out of action, and vehicles distribute themselves randomly over the remaining

booths. Assuming that λ/[(r − 1)µ] < 1, how many extra vehicles can be expected to be

queueing overall?

7.22. In an M(λ)/M(µ)/1 queue, it is decided that the service parameter µ should be adjusted

to make the mean length of the busy period 10 times the slack period, to allow the server some

respite. What should µ be in terms of λ in the steady-state process?

7.23. In the baulked queue (see Example 7.1) not more than m ≥ 2 people (including the

person being served) are allowed to form a queue, the arrivals having a Poisson distribution

with parameter λ. If there are m individuals in the queue, then any further arrivals are turned

away. It is assumed that the service distribution is exponential with rate µ. If ρ = λ/µ 6= 1,

show that the expected length of the busy periods is given by (1− ρm)/(µ− λ).

7.24. The M(λ)/D(τ )/1 queue has a fixed service time τ , and from Section 7.5, its probabil-

ity generating function is

G(s) =
(1− λτ )(1− s)

1− seλτ(1−s)
.

Show that the expected length of its busy periods is τ/(1− λτ ).
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7.25. A certain process has the (r + 1) states En, (n = 0, 1, 2, . . . r). The transition rates

between state n and state n+ 1 is λn = (r − n)λ, (n = 0, 1, 2, . . . , r − 1), and between n
and n − 1 is µn = nµ, (n = 1, 2, . . . , r). These are the only possible transitions at each step

in the process. (This could be interpreted as a ‘capped’ birth and death process in which the

population size cannot exceed r.)

Find the differential-difference equation for the probabilities pn(t), (n = 0, 1, 2, . . . , r),
that the process is in state n at time t. Consider the corresponding steady-state process in

which dpn/dt → 0 and pn(t) → pn as t → ∞. Show that

pn =

(
λ

µ

)n(
r

n

)
µr

(λ+ µ)r
, (n = 0, 1, 2, . . . , r).

7.26. In a baulked single-server queue, not more than 3 spaces are allowed. Write down the

full time-dependent equations for the probabilities p0(t),p1(t),p2(t),p3(t). Show that

p(t) =
[

p0(t) p1(t) p2(t) p3(t)
]

satisfies

dp(t)

dt
= Ap(t) where A =






−λ µ 0 0
λ −(λ+ µ) µ 0
0 λ −(λ+ µ) 0
0 0 λ −µ




 .

Whilst the general problem can be solved, to make the algebra manageable, let µ = 2λ. Find

the eigenvalues and eigenvectors of A, and write down the general solution for p(t). If the

queue starts with no customers at time t = 0, find the solution for p(t).
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CHAPTER 8

Reliability and Renewal

8.1 Introduction

The expected life until breakdown occurs of domestic equipment such as television

sets, DVD recorders, washing machines, central heating boilers, etc., is important

to the consumer. Failure means the temporary loss of the facility and expense. A

television set, for example, has a large number of components, and the failure of just

one of them may cause the failure of the set. Increasingly, individual components

now have high levels of reliability, and the reduction of the likelihood of failure by

the inclusion of alternative components or circuits is probably not worth the expense

for a television which will suffer some deterioration with time anyway. Also, failure

of such equipment is unlikely to be life-threatening.

In other contexts, reliability is extremely important for safety or security reasons,

as in, for example, aircraft or defence installations where failure could be catas-

trophic. In such systems back-up circuits and components and fail-safe systems are

necessary, and there could still be the remote possibility of both main and secondary

failure. Generally, questions of cost, safety, performance, reliability, and complexity

have to be resolved together with risk assessment.

In medical situations the interest lies in the survivability of the patient, that is,

the expected survival time to death or relapse, under perhaps alternative medical

treatments. Again, factors such as cost and quality of life can be important.

Reliability is determined by the probability of a device giving a specified perfor-

mance for an intended period. For a system we might be interested in the probability

that it is still operating at time t, the expected time to failure, and the failure rate.

There are many external factors which could affect these functions, such as manu-

facturing defects (which often cause early failure), unexpected operating conditions,

or operator error.

8.2 The reliability function

Let T be a nonnegative random variable which is the time to failure or failure time

for a component, device, or system. Suppose that the distribution function of T is

F so that

F (t) = P{component fails at or before time t},
= P{T ≤ t}, t ≥ 0.

169
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The density of T is denoted by f , that is,

f(t) =
dF (t)

dt
. (8.1)

It is more convenient for the consumer or customer to look at the reliability or

survivor function, R(t), rather than the failure time distribution. The function R(t)
is the probability that the device is still operating after time t. Thus,

R(t) = P{T > t} = 1− F (t). (8.2)

From (8.1),

f(t) =
dF (t)

dt
= lim

δt→0

F (t+ δt)− F (t)

δt
,

= lim
δt→0

P{T ≤ t+ δt} −P{T ≤ t}
δt

,

= lim
δt→0

P{t < T ≤ t+ δt}
δt

.

Hence for small δt, f(t)δt is approximately the probability that failure occurs in the

time interval (t, t+ δt).
The failure rate function or hazard function r(t) is defined as that function for

which r(t)δt is the conditional probability that failure occurs in the interval (t, t +
δt) given that the device was operating at time t. As the limit of this conditional

probability, the failure rate function is given by

r(t) = lim
δt→0

P{t < T ≤ t+ δt|T > t}
δt

. (8.3)

There are two important results relating the reliability and failure rate functions,

which will be be proved in the following theorem.

Theorem 8.1

(i) The failure rate function

r(t) =
f(t)

R(t)
. (8.4)

(ii) The reliability function

R(t) = exp

[

−
∫ t

0

r(s)ds

]

. (8.5)

Proof (i) Use the conditional probability definition (Section 1.3):

P{A|B} = P{A ∩B}/P{B}.
Thus

P{t < T ≤ t+ δt|T > t} =
P{(t < T ≤ t+ δt) ∩ (T > t)}

P{T > t}

=
P{t < T ≤ t+ δt}

P{T > t} .
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From (8.2) and (8.3),

r(t) = lim
δt→0

P{t < T ≤ t+ δt}
δt

1

P{T > t} =
f(t)

R(t)
.

(ii) Using (8.1) and the last result,

r(t) =
f(t)

R(t)
=

dF (t)

dt

1

R(t)
= −dR(t)

dt

1

R(t)
= − d

dt
(lnR(t)).

Integration of this result gives

lnR(t) = −
∫ t

0

r(s)ds,

since R(0) = 1 (the device is assumed to be operating at start-up). Hence

R(t) = exp

[

−
∫ t

0

r(s)ds

]

.

Example 8.1 Whilst in use, an office photocopier is observed to have a failure rate function

r(t) = 2λt per hour where λ = 0.00028(hours)−2; in other words, r(t) is the probability

that the photocopier fails within the next hour given that it was working at the beginning of

the hour at time t. What is the probability that the photocopier is still operational after 20
hours? Also find the associated probability density function f(t) for the time to failure.

The failure rate function increases linearly with time. By Theorem 8.1(ii),

R(t) = exp

[

−
∫ t

0

r(s)ds

]

= exp

[

−
∫ t

0

2λsds

]

= exp(−λt2).

Thus the probability that the photocopier is still working after 20 hours is

R(20) = e−0.00028×(20)2 = 0.89.

By Theorem 8.1(i), the associated probability density function is

f(t) = r(t)R(t) = 2λte−λt2 t ≥ 0,

which is a Weibull distribution (see Section 1.8) with parameters λ and 2.

8.3 Exponential distribution and reliability

For the exponential distribution (see Section 1.8), the probability density function is

f(t) = λe−λt (t ≥ 0) . Thus, for the exponential distribution,

R(t) = 1− F (t) = 1−
∫ t

0

f(s)ds = 1 + [e−λs]t0 = e−λt, (8.6)

and

r(t) =
f(t)

R(t)
=

λe−λt

e−λt
= λ.
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This constant failure rate implies that the probability of failure in a time interval δt
given survival at time t is independent of the time at which this occurs. Thus the

conditional survival probability for times t beyond, say, time s is

P{T > s+ t|T > s} =
P{(T > s+ t) ∩ (T > s)}

P{T > s} =
P{T > s+ t}
P{T > s}

=
e−λ(s+t)

e−λs
= e−λt,

which is the no-memory property of the exponential distribution. The implication is

that such devices do not deteriorate with age, which means that they can be re-used

with the same probability of subsequent failure at any stage in their lives.

8.4 Mean time to failure

In terms of the probability density function, the mean time to failure is

E(T ) =

∫ ∞

0

tf(t)dt. (8.7)

The mean can be expressed in terms of the reliability functionR(t) as follows. Since,

from Eqn (8.1) and Eqn (8.2), f(t) = −dR/dt, then

E(T ) = −
∫ ∞

0

t
dR(t)

dt
dt = −[tR(t)]∞0 +

∫ ∞

0

R(t)dt

after integrating by parts. Assuming that tR(t) → 0 as t → ∞ (this is certainly true

for the exponential distribution, since R(t) = e−λt, which tends to zero faster than

t → ∞), then

E(T ) =

∫ ∞

0

R(t)dt. (8.8)

If R(t) decays as 1/t or slower, then we have the seeming paradox that a system can

fail although the mean time is unbounded.

For the exponential distribution of the previous section, R(t) = e−λt and

E(T ) =

∫ ∞

0

e−λtdt = 1/λ. (8.9)

Example 8.2 Find the mean time to failure for the photocopier of Example 8.1. What is the

variance of the failure times?

It was shown that reliability function was R(t) = e−λt2 . Hence the mean time to failure is

E(T ) =

∫ ∞

0

e−λt2dt = 1
2

√
(π/λ) = 52.96 hours,

using the standard formula for the integral (see the Appendix).

Now

E(T 2) =

∫ ∞

0

t2f(t)dt = −
∫ ∞

0

t2
dR(t)

dt
dt
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= −[t2R(t)]∞0 +

∫ ∞

0

2tR(t)dt =

∫ ∞

0

2te−λt2dt

= 1/λ,

since t2R(t) = t2e−λt2 → 0 as t → ∞. Hence the variance is given by

V(T ) = E(T 2)− [E(T )]2 =
1

λ
− π

4λ
=

4− π

4λ
= 766.4 (hours)2.

8.5 Reliability of series and parallel systems

In many systems, components can be in series configurations as in Figure 8.1(a), or

in parallel configurations as in Figure 8.1(b), or in complex series/parallel systems

as in Figure 8.1(c), perhaps with bridges as shown in Figure 8.1(d).

c1

c1

c6

c1

c1

c2

c2

c2

c2

c4

c3

c3

c3

c3

c4

c5

c5

(a)

(b)

(c)

(d)

Figure 8.1 (a) Components in series. (b) Components in parallel. (c) Mixed series/parallel

system. (d) Mixed system with bridge.

In the series of components in Figure 8.1(a), the system is only operable if all

the components are working; if any one fails then the system fails. Suppose that the

system has m components c1, c2,. . ., cm in series with reliability functions R1(t),
R2(t),. . .,Rm(t). Whilst it is not generally true that components operate indepen-

dently, since failure of one will affect the operation of others, we make the assump-

tion of independence in deriving the results below. If T is the random variable of the

time to failure in the system, and Tn is the random variable of the time to failure of

component cn, and assuming the independence of the Tn’s, then

R(t) = P{ all T > t}
= P{T1 > t and T2 > t and · · · and Tm > t}

= R1(t)R2(t) . . . Rm(t) =
m∏

n=1

Rn(t), (8.10)

which is simply the product of the individual reliability functions. The failure rate
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function

r(t) = − d

dt
lnR(t) = − d

dt
ln

m∏

n=1

Rn(t) = − d

dt

m∑

n=1

lnRn(t) =

m∑

n=1

rn(t)

(8.11)
is the sum of the individual failure rate functions.

For the parallel configuration in Figure 8.1(b), it is easier to start from the distri-

bution function of the time to failure F (t). Since system failure can only occur when

all components have failed,

F (t) = P{T ≤ t} = P{system fails at or before time t},
= P{all components fail at or before time t},
= P{T1 ≤ t and T2 ≤ t and · · · and Tm ≤ t}

= F1(t)F2(t) . . . Fm(t) =
m∏

n=1

Fn(t),

where Fn(t) is the distribution function of the time to failure of cn. Consequently,

the reliability function for m parallel components is

R(t) = 1− F (t) = 1−
m∏

n=1

Fn(t) = 1−
m∏

n=1

[1−Rn(t)]. (8.12)

A formula for r(t) in terms of the individual functions rn(t) can be found but it is

not particularly illuminating.

Example 8.3 If each component cn (n = 1, 2, . . . ,m) in a series arrangement has an expo-

nentially distributed failure time with parameter λn, respectively, find the reliability function

and the mean time to failure if the failure times are independent.

The reliability function for cn is Rn(t) = e−λnt. Hence by Eqn (8.10), the reliability

function for the series of components is

R(t) =

m∏

n=1

Rn(t) = e−λ1te−λ2t · · · e−λmt = e−(λ1+λ2+···+λm)t,

which is the same reliability function for that of a single component with exponentially dis-

tributed failure time with parameter
∑m

n=1
λn. Consequently by Eqn (8.9), the mean time to

failure is 1/
∑m

n=1
λn.

Example 8.4 Three components c1, c2, c3 in parallel have times to failure which are inde-

pendent and identically exponential distributions with parameter λ. Find the mean time to

failure.

From (8.12) the reliability function is

R(t) = 1− (1− e−λt)3,

since Rn(t) = e−λt(n = 1, 2, 3). The mean time to failure is

E(T ) =

∫ ∞

0

R(t)dt =

∫ ∞

0

[
1− (1− e−λt)3

]
dt,
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=

∫ ∞

0

[
1− (1− 3e−λt + 3e−2λt − e−3λt)

]
dt,

=

∫ ∞

0

[
3e−λt − 3e−2λt + e−3λt

]
dt

=
[
3

λ
− 3

2λ
+

1

3λ

]

=
11

6λ
.

For the mixed system in Figure 8.1(c), each series subsystem has its own reliability

function. Thus the series c1, c2, c3 has the reliability function R1(t)R2(t)R3(t) and

c5, c6 the reliability function R5(t)R6(t). These composite components are then in

parallel with c4. Hence, by (8.12), the reliability function for the system is

R(t) = 1− (1−R1(t)R2(t)R3(t))(1 −R4(t))(1 −R5(t)R6(t)).

To analyse the system in Figure 8.1(d) we return to a set approach. The easiest way

to determine the reliability of this bridge system is to look at the bridge component

c3. Let Si (i = 1, 2, 3, 4, 5) be the event that ci is operating.

If c3 is working, then the system is active if either c1 or c4 or both are operating.

Hence, in this case, the probability is

Q1(t) = P[(S1 ∪ S4) ∩ (S2 ∪ S5)]. (8.13)

If c3 is not working, then the system is active if c1 and c2 are working, or c4 and

c5 are working, or all are working: this probability is

Q2(t) = P[(S1 ∩ S2) ∪ (S4 ∩ S5)]. (8.14)

Hence the reliability function becomes

R(t) = Q1(t)P(S3) +Q2[1−P(S3]. (8.15)

To simplify the algebra here suppose that the components c1, c2, c4, and c5 all have

the same reliability function Rc(t) whilst the bridge component has the reliability

function R3(t). Hence, assuming independence and using the rules for union and

intersection of sets,

Q1(t) = [P (S1) +P(S4)−P(S1)P(S4)][P(S2) +P(S5)−P(S2)P(S5)]

= [2Rc(t)−Rc(t)
2]2

Q2(t) = P(S1)P(S2) +P(S4)P(S5)−P(S1)P(S2)P(S4)P(S5)

= 2Rc(t)
2 −Rc(t)

4.

Finally, from (8.15), the reliability function for the bridge system is

R(t) = [2Rc(t)−Rc(t)
2]2R3(t) + 2Rc(t)

2 −Rc(t)
4[1−R3(t)]. (8.16)

The reliability function for the system with distinct components is given by the
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following result after much algebra:

R(t) = (1−R3(t))[R1(t)R2(t) +R4(t)R5(t)−R1(t)R2(t)R4(t)R5(t)]

+R3(t)[R1(t) +R4(t)−R1(t)R4(t)][R2(t) +R5(t)−R2(t)R5(t)].

For more details of the reliability of connected systems see Blake (1979, Ch. 12).

8.6 Renewal processes

Consider a system that has a single component which, when it fails, is replaced by an

identical component with the same time to failure or lifetime probability distribution.

It is assumed that there is no delay at replacement. In this renewal process we might

ask: how many renewals do we expect in a given time t? Let N(t) be the number of

renewals up to and including time t (it is assumed that the first component is installed

at start-up at time t = 0). Let Tr be a nonnegative random variable which represents

the time to failure of the r-th component measured from its introduction. The time to

failure of the first n components, Sn, is given by

Sn = T1 + T2 + · · ·+ Tn.

At this point we include a diversion into joint distributions. We introduced joint

probability distributions for discrete random variables in Section 1.10. A similar con-

cept is required for continuous random variables. Consider the random vector

T = (T1, T2, . . . , Tn),

where T1, T2, . . . , Tnare each random variables. The joint or multivariate distribu-

tion function of T is defined by

FT (t1, t2, . . . , tn) = P(T1 ≤ t1, T2 ≤ t2, . . . , Tn ≤ tn).

The individual or univariate marginal distribution function of Ti are

F (ti) = P(T1 < ∞, T2 < ∞, . . . , Ti ≤ ti, . . . , Tn < ∞).

The random variables are said to be independent if and only if

FT (t1, t2, . . . , tn) = FT1
(t1)FT2

(t2) · · ·FTn
(tn).

The corresponding density function is

fT1
(t1)fT2

(t2) · · · fTn
(tn),

where fTi
(ti) = dFTi

(ti)/dti, (i, 1, 2, . . . , n). However, in our discussion here we

will only consider the special case in which all marginal distributions are identical

with densities

fTi
(ti) = f(ti),

and the Ti’s are iid.

Consider first the case for S2 = T1 + T2. For

F2(s2) = P(T1 + T2 ≤ s2),
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we must integrate the density over the (t1, t2)-plane such that t1 + t2 ≤ s2. Thus

P{T1 + T2 ≤ s2} =

∫ ∫

x≥0,y≥0

x+y≤s2

f(x)f(y)dxdy,

=

∫ s2

0

∫ s2−y

0

f(x)f(y)dxdy,

since the joint density function is integrated over the triangle shown in Figure 8.2.

Hence

P{T1 + T2 ≤ s2} =

∫ t

0

F (s2 − y)f(y)dy.

since ∫ s2−y

0

f(y)dy = F (s2 − y).

Figure 8.2 Area of integration for nonnegative random variables.

If we put

P{T1 + T2 ≤ s2} = F2(s2),

then

F2(s2) =

∫ s2

0

F1(s2 − y)f(y)dy, (8.17)

putting F1(t) = F (t) to suggest the iterative scheme. We can now repeat this process

to obtain the next distribution,

F3(s3) = P{S3 ≤ s3} =

∫ s3

0

F2(s3 − y)f(y)dy,

and, in general,

Fn(sn) = P{Sn ≤ sn} =

∫ sn

0

Fn−1(sn − y)f(y)dy. (8.18)

Example 8.5 The lifetimes of components in a renewal process with instant renewal are inde-

pendently and identically distributed with constant failure rate λ. Find the probability that at

least two components have been replaced at time t.
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Since the components have constant failure rates, then they must have exponentially dis-

tributed failure times with parameter λ. Hence f(t) = λe−λt and F (t) = 1 − e−λt. Two

components or more will have failed if S2 = T1 + T2 ≤ t. Hence by Eqn (8.17),

P{S2 ≤ s2} = F2(s2) =

∫ s2

0

F (s2 − y)f(y)dy =

∫ s2

0

(1− e−λ(s2−y))λe−λydy

= λ

∫ s2

0

(e−λy − e−λs2)dy,

= λ

[

−e−λy

λ
− ye−λs2

]s2

0

,

= 1− eλs2 − λs2e
−λs2 = 1− (1 + λs2)e

−λs2 . (8.19)

The general formula for the density fn(t) is derived in the next section.

8.7 Expected number of renewals

We can find the probability that N(t), the number of renewals up to and including t,
is n, and the expected value of N(t) as follows. The probability P{N(t) = n} can

be expressed as the following difference:

P{N(t) = n} = P{N(t) ≥ n} −P{N(t) ≥ n+ 1}.
We now use the important relation between Sn, the time to failure of the first n
components, and N(t), namely

P{Sn ≤ t} = P{N(t) ≥ n}.
This is true since if the total time to failure of n components is less than t, then there

must have been at least n renewals up to time t. Hence,

P{N(t) = n} = P{Sn ≤ t} −P{Sn+1 ≤ t} = Fn(t)− Fn+1(t),

by (8.18). Thus the expected number of renewals by time t is

E(N(t)) =

∞∑

n=1

n [Fn(t)− Fn+1(t)] ,

= [F1(t) + 2F2(t) + 3F3(t) + · · ·]− [F2(t) + 2F3(t) + · · ·] ,
= F1(t) + F2(t) + F3(t) + · · · ,

=

∞∑

n=1

Fn(t), (8.20)

which is simply the sum of the individual distribution functions which are given

iteratively by Eqn (8.18). This is a general formula for any cumulative distribution

function Fn(t). The corresponding sequence of density functions are given by

fn(t) =
dFn(t)

dt
=

d

dt

∫ t

0

Fn−1(t− y)f(y)dy,

= Fn(0)f(t) +

∫ t

0

F ′
n−1(t− y)f(y)dy,
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=

∫ t

0

fn−1(t− y)f(y)dy, (8.21)

since Fn(0) = 0. Note that this is the same iterative formula as for the probability

distributions given by Eqn (8.18).

Suppose now that the failure times are exponentially distributed with parameter λ:

this is essentially a Poisson process. From Eqn (8.21),

f2(t) =
dF2(t)

dt
= λ2te−λt, t ≥ 0. (8.22)

Hence the density function fn(t) is a gamma distribution with parameters (n, λ). We

can prove this by induction. Assume that

fn(t) =
λn

(n− 1)!
tn−1e−λt.

Then, from (8.21),
∫ t

0

λn

(n− 1)!
(t− y)n−1e−λ(t−y)λe−λydy =

λn+1

(n− 1)!
e−λt

∫ t

0

(t− y)n−1dy,

=
λn+1

n!
(t− y)ne−λt = fn+1(t).

Since the result has already been established for f2(t) in Eqn (8.22), the result is true

by induction for n = 3, 4, . . .. Thus,

∞∑

n=1

fn(t) =

∞∑

n=1

λn

(n− 1)!
tn−1e−λt = λeλte−λt = λ. (8.23)

Finally, from (8.23),

E(N(t)) =
∞∑

n=1

Fn(t) =
∞∑

n=1

∫ t

0

fn(s)ds,

=

∫ t

0

∞∑

n=1

fn(s)ds =

∫ t

0

λds = λt,

a result which could have been anticipated since this is a Poisson process.

The expected value of N(t) is known as the renewal function for the process.

8.8 Problems

8.1. The lifetime of a component has a uniform density function given by

f(t) =

{
1/(t1 − t0) 0 < t0 < t < t1
0 otherwise.

For all t > 0, obtain the reliability function R(t) and the failure rate function r(t) for the

component. Obtain the expected life of the component.
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8.2. Find the reliability function R(t) and the failure rate function r(t) for the gamma density

f(t) = λ2te−λt, t > 0.

How does r(t) behave for large t? Find the mean and variance of the time to failure.

8.3. A failure rate function is given by

r(t) =
t

1 + t2
, t ≥ 0.

The rate of failures peaks at t = 1 and then declines towards zero as t → ∞: failure becomes

less likely with time (see Figure 8.3). Find the reliability function, and the corresponding

probability density.

2 4 6 8 10
t

0.1

0.2

0.3

0.4

0.5

0.6
r(t)

Figure 8.3 Failure rate distribution r(t).

8.4. A piece of office equipment has a piecewise failure rate function given by

r(t) =

{
2λ1t, 0 < t ≤ t0,
2(λ1 − λ2)t0 + 2λ2t, t > t0

λ1, λ2 > 0.

Find its reliability function.

8.5. A laser printer is observed to have a failure rate function r(t) = 2λt per hour (t > 0)
whilst in use, where λ = 0.00021(hours)−2: r(t) is a measure of the probability of the printer

failing in any hour given that it was operational at the beginning of the hour. What is the prob-

ability that the printer is working after 40 hours of use? Find the probability density function

for the time to failure. What is the expected time before the printer will need maintenance?

8.6. The time to failure is assumed to be gamma with parameters α and n, that is, with

f(t) =
α(αt)n−1e−αt

(n− 1)!
, t > 0.

Show that the reliability function is given by

R(t) = e−αt

n−1∑

r=0

αrtr

r!
.
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Find the failure rate function and show that limt→∞ r(t) = α. What is the expected time to

failure?

8.7. An electrical generator has an exponentially distributed failure time with parameter λf

and the subsequent repair time is exponentially distributed with parameter λr, the times being

independent. The generator is started up at time t = 0. What is the mean time for the generator

to fail and the mean time from t = 0 for it to be operational again?

8.8. A hospital takes a grid supply of electricity which has a constant failure rate λ. This

supply is backed up by a stand-by generator which has a gamma distributed failure time with

parameters (2, µ). Find the reliability function R(t) for the whole electricity supply. Assuming

that time is measured in hours, what should the relation between the parameters λ and µ be in

order that R(1000) = 0.999?

8.9. The components in a renewal process with instant renewal are identical with constant

failure rate λ = (1/50)(hours)−1 . If the system has one spare component which can take over

when the first fails, find the probability that the system is operational for at least 24 hours.

How many spares should be carried to ensure that continuous operation for 24 hours occurs

with probability 0.98?

8.10. A device contains two components c1 and c2 with independent failure times T1 and T2

from time t = 0. If the densities of the times to failure are f1 and f2 with distribution functions

F1 and F2, show that the probability that c1 fails before c2 is given by

P{T1 < T2} =

∫ ∞

y=0

∫ y

x=0

f1(x)f2(y)dxdy,

=

∫ ∞

y=0

F1(y)f2(y)dy.

Find the probability P{T1 < T2} in the cases:

(a) both failure times are exponentially distributed with parameters λ1 and λ2;

(b) both failure times have gamma distributions with parameters (2, λ1) and (2, λ2).

8.11. Let T be the failure time of a component. Suppose that the density

f(t) = α1e
−λ1t + α2e

−λ2t, α1, α2 > 0, λ1, λ2 > 0,

where the parameters satisfy
α1

λ1
+

α2

λ2
= 1.

Find the reliability function R(t) and the failure rate function r(t) for this ‘double’ exponential

distribution. How does r(t) behave as t → ∞?

8.12. The lifetimes of components in a renewal process with instant renewal are iid with con-

stant failure rate λ. Find the probability that at least three components have been replaced by

time t.

8.13. The lifetimes of components in a renewal process with instant renewal are independent

and identically distributed, and independent with a failure rate which has a uniform distribution

with density

f(t) =

{
1/k 0 < t < k
0 elsewhere.

Find the probability that at least two components have been replaced at time t.
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8.14. The lifetimes of components in a renewal process with instant renewal are identically

distributed and independent, each with reliability function

R(t) = 1
2
(e−λt + e−2λt), t ≥ 0, λ > 0.

Find the probability that at least two components have been replaced by time t.

8.15. The random variable T is the time to failure from t = 0 of a system. The distribution

function for T is F (t), (t > 0). Suppose that the system is still functioning at time t = t0. Let

Tt0 be the conditional time to failure from this time, and let Ft0(t) be its distribution function.

Show that

Ft0(t) =
F (t+ t0)− F (t0)

1− F (t0)
,

and that the mean of Tt0 is

E(Tt0) =
1

1− F (t0)

∫ ∞

t0

[1− F (u)]du.

8.16. Suppose that the time to failure, T of a system is uniformly distributed. Using the result

from Problem 8.15, find the conditional distribution function assuming that the system is still

working at time t = t0.

8.17. In the bridge system represented by Figure 8.1(d), suppose that all components have the

same reliability function Rc(t). Show that the reliability function R(t) is given by

R(t) = 2Rc(t)
2 + 2Rc(t)

3 − 5Rc(t)
4 + 2Rc(t)

5.

Suppose that the bridge c3 is removed, What is the reliability function Rx(t) for this system?

Show that

R(t) > Rx(t).

What does this inequality imply?



CHAPTER 9

Branching and Other Random Processes

9.1 Introduction

In this chapter we look at other stochastic processes including branching and epi-

demic models. Branching processes are concerned with the generational growth and

decay of populations. The populations could be mutant genes, neutrons in a nuclear

chain reaction, or birds or animals which have annual cycles of births. As the name

implies a branching process creates a tree with branches which can split into other

branches at each step or at each generation in a chain. In this chapter we shall look at

a simplified problem in which the process starts from a single individual which gen-

erates the tree. Such a process models an application such as cellular growth rather

than an animal population in which both births and deaths are taking place continu-

ously in time.

9.2 Generational growth

Consider a model in which a single individual (cell, organism) has known probabil-

ities of producing a given number of descendants at a given time, and produces no

further descendants. In turn these descendants each produce further descendants at

the next subsequent time with the same probabilities. The process carries on in the

same way, creating successive generations, as indicated in Figure 9.1. At each step

there is a probability pj that any individual creates j descendants (j = 0, 1, 2, . . .),

X
0 = 1

X
1 = 4

X
2 = 7

X
4 = 9

X
3 = 12

generation 4

generation 3

generation 1

generation 2

Figure 9.1 Generational growth in a branching process.
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and it is assumed that this probability distribution {pj} is the same for every indi-

vidual at every generation. We are interested in the population size in generation

n: the earlier generations have either died out, or an individual can be viewed as a

continuation of itself, or are not counted in the process.

Let Xn be a random variable representing the population size of generation n.

Since the process starts with one individual, then X0 = 1. In the illustration of a

particular process in Figure 9.1,

X1 = 3, X2 = 7, X3 = 12, . . . .

As described, the generations evolve in step, and occur at the same time steps. Note

that populations do not necessarily increase with the generations.

Suppose that the probability distribution of descendant numbers {pj} has the prob-

ability generating function

G(s) =

∞∑

j=0

pjs
j . (9.1)

(G(s) will be G1(s) later, but the suffix is often suppressed.) Since X0 = 1, G(s) is

the generating function for the random variable X1. For the second generation it is

assumed that each descendant has the same probability pj of independently creating

j descendants. Let G2(s) be the generating function of the random variable X2,

which is the sum of X1 random variables (the number of descendants of X0), which,

in turn, are denoted by the independent random variables Y1, Y2, . . . , YX1
(assumed

to be identically distributed), so that

X2 = Y1 + Y2 + · · ·+ YX1
.

It might help understanding to interpret the random variables as given in Fig 9.1.

For example, X2 = Y1 +Y2 + Y3 +Y4, and the actual readings for the Y ’s are, from

the left, y1 = 4, y2 = 1, y3 = 0, y4 = 2.

Returning to the general exposition,

P (Yk = j) = pj, P (X1 = m) = pm.

Let

P (X2 = n) = hn.

Then, using the partition law (the law of total probability) (see Section 1.3),

hn = P (X2 = n) =

∞∑

r=0

P (X2 = n|X1 = r)P (X1 = r)

=

∞∑

r=0

prP (X2 = n|X1 = r).

Now multiply hn by sn and sum over n to create the generating function called

G2(s):

G2(s) =

∞∑

n=0

hns
n =

∞∑

r=0

pr

∞∑

n=0

P (X2 = n|X1 = r)sn. (9.2)
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Consider the latter summation in which r is a fixed integer. Then, by Section 1.9,

where the probability generating function is defined,

∞∑

n=0

P (X2 = n|X1 = r)sn = E(sX2 |X1 = r) = E(sY1+Y2+···+Yr )

= E(sY1)E(sY2) . . .E(sYr) (by independence)

= G(s)G(s) . . . G(s) (multiplied r times)

= [G(s)]r,

since E(sY1) = G(s), E(sY2) = G(s), and so on (see Section 1.9). This result also

follows from the observation that the distribution of X2 is the convolution of the

distribution {pj} with itself r times. Finally, Eqn (9.2) becomes

G2(s) =

∞∑

r=0

pr[G(s)]r = G(G(s)). (9.3)

Since G(1) = 1, it follows that G2(1) = G(G(1)) = G(1) = 1.

This result holds between any two successive generations. Thus if Gm(s) is the

probability generating function of Xm, then

Gm(s) = Gm−1(G(s)) = G(G(. . . (G(s)) . . .)), (9.4)

which has G(s) nested m times on the right-hand side. This general result will not

be proved here. In this type of branching process, G(s) is the probability generat-

ing function of the probability distribution of the numbers of descendants from any

individual in any generation to the next generation. It follows that Gm(1) = 1 for

m = 3, 4, 5, . . . by extending the result above.

Example 9.1. Suppose in a branching process that any individual has a probability pj =
1/2j+1 (j = 0, 1, 2, . . .) of producing j descendants in the next generation. Find the generat-

ing function for Xn, the random variable representing the number of descendants in the n-th

generation given that X0 = 1.

From (9.1), the probability generating function for X1 is

G(s) =

∞∑

j=0

pjs
j =

∞∑

j=0

1

2j+1
sj =

1

2− s
,

after summing the geometric series. From (9.3),

G2(s) =
1

2−G(s)
=

1

2− 1
2−s

=
1

2− 1
2−s

=
2− s

3− 2s
,

G3(s) =
2−G(s)

3− 2G(s)
=

3− 2s

4− 3s
, G4(s) =

4− 3s

5− 4s
.

Generally

Gn(s) = G(Gn−1(s)) =
1

2−Gn−1(s)
=

1

2− 1
2−Gn−2(s)

= · · · ,

which is an example of a continued fraction.
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Looking at the expressions for G2(s), G3(s), and G4(s), we might speculate that

Gn(s) =
n− (n− 1)s

n+ 1− ns
.

This result can be established by an induction argument outlined as follows. Assume that the

formula holds for n. Then

G(Gn(s)) =
1

2− [n− (n− 1)s]/[n+ 1− ns]

=
n+ 1− ns

2[n+ 1− ns]− [n − (n− 1)s]

=
n+ 1− ns

n+ 2− (n+ 1)s
,

which is the formula for Gn+1(s), that is, n is replaced by n+1 in the expression for Gn(s).
Hence, by induction on the integers, the result is true since we have confirmed it directly for

n = 2 and n = 3.

The power series expansion for Gn(s) can be found by using the binomial theorem. Thus

Gn(s) =
n− (n− 1)s

n+ 1− ns
=

n− (n− 1)s

n+ 1

[

1− ns

n+ 1

]−1

=
1

n+ 1
[n− (n− 1)s]

∞∑

r=0

(
ns

n+ 1

)r

=

∞∑

r=0

(
n

n+ 1

)r+1

sr −
∞∑

r=0

(
n− 1

n+ 1

)(
n

n+ 1

)r

sr+1

=
n

n+ 1
+

∞∑

r=1

nr−1

(n+ 1)r+1
sr.

The probability that the population of generation n has size r is the coefficient of sr, in this

series, which is

nr−1

(n+ 1)r+1
for r ≥ 1.

The probability of extinction for generation n is Gn(0) = n/(n+1), and this approaches 1 as

n → ∞, which means that the probability of ultimate extinction is certain for this branching

process.

9.3 Mean and variance

The mean and variance of the population size of the n-th generation can be obtained

as fairly simple general formulae as functions of the mean and variance of X1, the

random variable of the population size of the first generation.

Let µn and σ
2
n be the mean and variance of the size of the n-th generation. As

before let G(s) be the generating function of the first generation. Then (as in Sec-

tion 1.9),

µ1 = E(X1) = G′(1), (9.5)

σ
2
1 = V(X1) = G′′(1) +G′(1)−G′(1)2 = G′′(1) + µ1 − µ

2
1. (9.6)
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From the previous section, the probability generating function of X2 is G(G(s)).
Then

µ2 =
d

ds
G2(s)|s=1 =

d

ds
[G(G(s))]s=1

=

[
d

dG
G(G) · d

ds
G(s)

]

s=1

= G′(1)G′(1) = µ
2
1,

using the chain rule in calculus.

The method can be repeated for E(X3), E(X4), . . . . Thus, µn, the mean popula-

tion size of the n-th generation, is given by

µn = E(Xn) =
dGn(s)

ds

∣
∣
∣
∣
s=1

=
d[G(Gn−1(s))]

ds

∣
∣
∣
∣
s=1

= G′(1)G′
n−1(1) = µ1µn−1 = µ

2
1µn−2 = · · · = µ

n
1 (9.7)

since Gn−1(1) = 1.

The variance of the population size of the n-th generation is σ2
n, say, where

σ
2
n = V(Xn) = G′′

n(1) +G′
n(1)− [G′

n(1)]
2 = G′′

n(1) + µ
n
1 − µ

2n
1 . (9.8)

We can obtain a formula for σ2
n as follows. Differentiate

G′
n(s) = G′(Gn−1(s))G

′
n−1(s)

again with respect to s:

G′′
n(s) = G′′(Gn−1(s))[G

′
n−1(s)]

2 +G′(Gn−1(s))G
′′
n−1(s),

so that, with s = 1,

G′′
n(1) = G′′(Gn−1(1))[G

′
n−1(1)]

2 +G′(Gn−1(1))G
′′
n−1(1)

= G′′(1)[G′
n−1(1)]

2 +G′(1)G′′
n−1(1)

= (σ2
1 − µ1 + µ

2
1)µ

2n−2
1 + µ1G

′′
n−1(1), (9.9)

using Section 1.9(c). Equation (9.9) is a first-order inhomogeneous linear difference

equation for G′′
n(1).

Write the equation as

G′′
n(1)− µ1G

′′
n−1(1) = (σ2

1 − µ1 + µ
2
1)µ

2n−2
1 .

There are two cases to consider separately: µ1 6= 1 and µ1 = 1.

(i) µ1 6= 1. The corresponding homogeneous equation to (9.9)

G′′
n(1)− µ1G

′′
n−1(1) = 0

has the solution G′′
n(1) = Bµ

n
1 , where B is a constant. For the particular solution

find the constant C such that G′′
n(1) = Cµ

2n
1 satisfies the equation. It is easy to show

that

C =
σ

2
1 − µ1 + µ

2
1

µ1(µ1 − 1)
.
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Hence

G′′
n(1) = Bµ

n
1 +

(σ2
1 − µ1 + µ

2
1)µ

2n
1

µ1(µ1 − 1)
.

Since for the first generation (n = 1), G′′(1) = σ
2
1 − µ1 + µ

2
1, it follows that

B = −σ
2
1 − µ1 + µ

2
1

µ1(µ1 − 1)
,

so that

G′′
n(1) =

µ
n
1 (σ

2
1 − µ1 + µ

2
1)(µ

n
1 − 1)

µ1(µ1 − 1)
, (9.10)

where it is now obvious why µ1 cannot be 1 in this formula. Finally from Eqns (9.8)

and (9.10),

σ
2
n = G′′

n(1) + µ
n
1 − µ

2n
1 =

σ
2
1µ

n−1
1 (µn

1 − 1)

µ1 − 1
.

(ii) µ1 = 1. The equation becomes

G′′
n(1)−G′′

n−1(1) = σ
2
1.

The general solution of this difference equation is now

G′′
n(1) = A+ σ

2
1n.

Since G′′(1) = σ
2
1, it follows that A = 0. Hence, from Eqn (9.8),

σ
2
n = G′′

n(1) = nσ2
1. (9.11)

Example 9.2. For the branching process with probability pj = 1/2j+1, j = 0, 1, 2, . . . that

any individual has j descendants in the next generation (see Example 9.1), find the mean and

variance of the population size of the n-th generation.

From Example 9.1, the probability generating function of X1 is G(s) = 1/(2 − s). Its

mean is µ1 = G′(1) = 1. Hence by (9.7), the mean value of the size of the population of the

n-th generation is µn = µ
n
1 = 1.

The variance of X1 is given by (see Eqn (9.5))

σ
2
1 = G′′(1) + µ1 − µ

2
1 = 2.

Hence, by (9.11), σ2
n = 2n.

Note that, although the probability of ultimate extinction is certain for this branching pro-

cess, the mean remains 1 for all n. The variance shows increasing spread of values as n in-

creases. This result shows that a fixed mean and an increasing variance or dispersal increases

the probability of extinction.

9.4 Probability of extinction

In Example 9.1, the probability of ultimate extinction for a branching process with

the probabilities pj = 1/2j+1 was shown to be certain for this particular process. A
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general result concerning possible extinction of a population can be found from the

probability generating function G(s) for X1, the random variable of the population

size of the first generation.

The probability of extinction by generation n is Gn(0), where, as a reminder,

Gn(s) is the generating function of the n-th generation. Let gn = Gn(0), (n =
1, 2, , . . .)). Thus g1 is the probability of extinction in the first generation. Since

G1(s)(= G(s)) =
∞∑

n=0

pns
n,

then g1 = G1(0) = p0.

We can make some general observations about the functionG(s). Since 0 ≤ s ≤ 1
and 0 ≤ pn ≤ 1 for all n,

(i) G(s) > 0 for p0 > 0;

(ii) G′(s) =
∑∞

n=1 npns
n−1 ≥ 0;

(iii) G′′(s) =
∑∞

n=2 n(n− 1)pns
n−2 ≥ 0,

assuming that the series in (ii) and (iii) converge. Results (ii) and (iii) imply that the

positive function G(s) has an increasing slope with increasing s in 0 ≤ s ≤ 1. These

conditions define what is known as a convex function as illustrated in Figure 9.2.

The graph of a convex function has the property that the curve (for 0 ≤ s ≤ 1)

Figure 9.2 The convex function z = G(s) drawn in the case µ1 > 1.

always lies above every tangent to the curve.

The sequence of extinction probabilities {gn} satisfies

gn = Gn(0) = G(Gn−1(0)) = G(gn−1), (n = 2, 3, . . .). (9.12)

In particular,

g2 = G2(0) = G(G(0)) = G(g1) =

∞∑

n=0

pns
n > p0 = G(0) = g1. (9.13)

As stated above, the convexity of G(s) implies that the slope of the chord joining
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(gn−1, G(gn−1)) and (gn, G(gn)) must be greater than the slope of the tangent at

(gn−1, G(gn−1)), that is,

G(gn)−G(gn−1)

gn − gn−1
> G′(gn−1), or

gn+1 − gn
gn − gn−1

> 0

by (9.12) and (9.13). Therefore if gn > gn−1, then gn+1 > gn. From (9.13), g2 > g1:

hence, by induction on the integers, {gn} is an increasing sequence.

This increasing sequence is bounded above since gn ≤ 1 for all n. We now appeal

to a theorem in mathematical analysis which (briefly) states that a bounded increas-

ing sequence tends to a limit, say g in this case. Hence

gn → g as n → ∞.

Since gn = G(gn−1), the limits of both sides imply that g satisfies

g = G(g). (9.14)

In Figure 9.2 the solutions of (9.14) can be represented by intersections of the line

z = s and the curve z = G(s). The two always intersect at (1, 1) but there may be a

further intersection in the interval (0 < s < 1). The critical value of the slope G′(s)
which divides one solution from two occurs where the line z = s is tangential to

z = G(s) at s = 1: in other words if G′(1) = 1. Therefore

if G′(1) > 1 then gn → g < 1;

if G′(1) ≤ 1 then gn → 1.

However, G′(1) is the mean µ1 of the first generation. Hence we have the following

early simple check on extinction:

if µ1 > 1, then ultimate extinction occurs with probability g;

if µ1 ≤ 1, then ultimate extinction is certain.

Example 9.3. For a certain branching process with X0 = 1, the probability generating func-

tion for X1 is given by

G(s) =
1

(2− s)2
.

Find the probability that the population ultimately becomes extinct. Also find the mean and

variance of the populations in the n-th generation. Interpret the results.

The probability of ultimate extinction is the smallest positive root of

g = G(g) =
1

(2− g)2
.

Graphs of z = s and z = 1/(2 − s)2 are shown in Figure 9.3, which has one point of

intersection for 0 < s < 1, and the expected intersection at (1, 1). The solution for g satisfies

g(2− g)2 = 1, or (g − 1)(g2 − 3g + 1) = 0.

The required solution is

g =
1

2
(3−√

5) ≈ 0.382,

which is the probability of ultimate extinction
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z

s
z = s

z = 1/(2
_ s ) 2

(1,1)1

0.5

0 0.5 1g

Figure 9.3 Graphs of z = s and z = 1/(2− s)2.

Since

G′(s) =
2

2− s)3
, G′′(s) =

6

(2− s)4
,

then

µ1 = G′(1) = 2, σ
2
1 = G′′(1) + µ1 −µ

2
1 = 6 + 2− 4 = 4.

Hence by (9.6) and (9.11), the mean and variance of the n-th generation are given by

µn = µ
n
1 = 2n, σ

2
n =

σ
2
1µ

n−1
1 (µn

1 − 1)

µ1 − 1
= 2n+1(2n − 1).

The mean, which behaves as 2n, tends to infinity much faster than the variance, which behaves

as n. The spread is not increasing as fast as the mean. This implies that, as n increases, the

population either becomes extinct with probability of approximately 0.382 or becomes very

large with probability approximately 1−0.382 = 0.618: the probability of modest population

sizes is increasingly very small.

9.5 Branching processes and martingales

Consider again the branching process starting with one individual so that X0 = 1,

and with G(s) as the probability generating function of X1. As before, Xn is the

random variable representing the population size of the n-th generation. Suppose we

look at the expected value of the random variable Xn+1 given the random variables

X0, X1, X2, . . . , Xn. By Section 1.10, such a conditional expectation is not a number

but itself a random variable. The number of descendants at step n is the random

variable Xn, each of which will have a mean number of descendants µ1 = G′(1),
since the probability of creating descendants is the same at each generation. Hence

the expectation of Xn+1 given dependent on the previous random variables is the

product of Xn and the mean, that is

E(Xn+1|X0, X1, X2, . . . , Xn) = Xnµ1. (9.15)
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Let

Zn =
Xn

E(Xn)
=

Xn

µ
n
1

using (9.7). The random variable Zn is the random variable Xn normalised by its

own mean. Hence, using (9.7) again

E(Zn) = E

(
Xn

µ
n
1

)

=
E(Xn)

µ
n
1

= 1 = E(X0),

since the process starts with one individual in this case. Hence (9.15) becomes

E(Zn+1µ
n+1
1 |X0, X1, X2, . . . , Xn) = Znµ

n+1
1 ,

or

E(Zn+1|X0, X1, X2, . . . , Xn) = Zn,

since E(aX) = aE(X) (see Section 1.6), where a is a constant and X is any ran-

dom variable. Such a random variable sequence {Zn}, in which the expected value

of Zn+1 conditional on random variable sequence {Xn} is Zn, is known as a mar-

tingale1. In some problems as in the case discussed below the conditioning sequence

can be the same sequence of random variables, and may be thought of as a self-

conditioning martingale.

The most famous martingale arises in the following gambling problem. A gambler

makes an even money bet with a casino starting with a pound bet. If she or he wins,

the gambler has her or his £1 stake returned plus £1 from the casino. If the gambler

loses the pound to the casino, she or he then bets £2, £4, £8,. . . , until she or he wins.

Suppose the gambler first wins at the n-th bet. Then the gambler will have won £2n

for an outlay of

£(1 + 2 + 22 + 23 + · · ·+ 2n−1) = £(2n − 1),

summing the geometric series. Hence the gambler always wins £1 at some stage. It

is a guaranteed method of winning but does require a large financial backing, and for

obvious reasons casinos do not always permit this form of gambling. The martingale

betting scheme will always beat what is a fair game in terms of the odds at each play.

We shall now explain why this gamble is a martingale. Suppose that the gam-

bler starts with £1 and bets against the casino according to the rules outlined above.

The doubling bets continue irrespective of the outcome at each bet. Let Zn be the

gambler’s total asset or debt at the n-th bet: Z0 = 1 and Zn can be a negative

number indicating that the gambler owes money to the casino. Since Z0 = 1, then

Z1 is a random variable which can take the values 0 or 2. Given Z0 and Z1, Z2

can take any one of the values −2, 0, 2, 4, while Z3 can take any one of the values

−6,−4,−2, 0, 2, 4, 6, 8, and so on as shown by the tree in Figure 9.4. The random

variable Zn can take any one of the values

{−2n + 2,−2n + 4, . . . , 2n − 2, 2n}, (n = 1, 2, . . .),

1 The word has an obscure French origin. Apart from the doubling stake gamble in eighteenth century
France, it also means a strap in a horse’s harness, and a rope in ship’s rigging.
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Figure 9.4 Possible outcomes of the first three bets in the gambling martingale.

or, equivalently, in increasing order,

Zn = {−2n + 2m+ 2} (m = 0, 1, 2, . . . , 2n − 1)

for n = 1, 2, 3, . . . . The probability of any one of these values occurring at the n-th

bet is 1/2n. It follows that the expected value of Zn (the gambler’s mean asset) is

E(Zn) =

2n−1∑

m=0

1

2n
(−2n + 2m+ 2) =

1

2n
(−2n + 2)

2n−1∑

m=0

1 +
2

2n

2n−1∑

m=1

m = 1,

using the arithmetic sum
2n−1∑

m=1

m =
1

2
2n(2n − 1).

The expected winnings in a game of doubling bets would be £1 irrespective of the

duration of the wager. Tactically it would be best to play until the first win, and then

start a new game with £1.

The conditional expectation of Z3 given Z0, Z1, and Z2 (remember these condi-

tional expectations are random variables) is the random variable with outcomes

E(Z3|Z0, Z1, Z2) = {−2, 0, 2, 4} = Z2,

as shown in Figure 9.4. The mean values of the pairs in the final column give the

corresponding numbers in the previous column. Generally

E(Zn+1|Z0, Z1, Z2, . . . , Zn) = Zn,

which is a martingale with respect to its own random variable sequence.

Example 9.4 Let the random variable Xn be the position of a walker in a symmetric random

walk after n steps. Suppose that the walk starts at the origin so that X0 = 0. Show that {Xn}
is a martingale with respect to its own sequence of random variables. (See Section 3.2 for

discussion of the properties of the symmetric random walk.)
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In terms of the modified Bernoulli random variable,

Xn+1 = X0 +

n+1∑

i=1

Wi = Xn +Wn+1,

since X0 = 0. By the Markov property of the random walk,

E(Xn+1|X0,X1, . . . , Xn) = E(Xn+1|Xn).

Suppose that Xn = k where k must satisfy −n ≤ k ≤ n. The random variable Wn+1 can

take either of the values −1 or +1, each with probability of 1
2

, so that Xn+1 = k − 1 if

Wn+1 = −1 or Xn+1 = k + 1 if Wn+1 = +1. Since these outcomes are equally likely, it

follows that

E(Xn+1|Xn = k) =
1

2
(k − 1) +

1

2
(k + 1) = k = Xn,

which defines a martingale with respect to itself.

Example 9.5. Let X1, X2, . . . be independent identically distributed random variables, each

of which can take the values −1 and +1 with probabilities of 1
2

. Show that the partial sums

Zn =

n∑

j=1

1

j
Xj , (n = 1, 2, . . .),

form a martingale with respect to {Xn}.

It follows that

E(Zn+1|X1,X2, . . . ,Xn) = E(Zn +
1

n+ 1
Xn+1|X1, . . . , Xn)

= E(Zn|X1, . . . , Xn) +
1

n+ 1
E(Xn+1|X1, . . . , Xn)

= Zn +
1

n+ 1
E(Xn+1) = Zn,

since E(Xn+1) = 0.

The random variable Zn is the partial sum of a harmonic series with terms 1/j with ran-

domly selected signs, known as a random harmonic series. It is known that the harmonic series

∞∑

j=1

1

j
= 1 +

1

2
+

1

3
+

1

4
+ · · ·

diverges and that the alternating harmonic series

∞∑

j=1

(−1)j+1 1

j
= 1− 1

2
+

1

3
− 1

4
+ · · ·

converges. It can be shown that the random harmonic series converges with probability 1. This

requires considerable extra theory: a full account can be found in Lawler (1995).
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9.6 Stopping rules

Suppose we have a random process, say a Markov chain or a branching process, with

random variables {Xr}, (r = 0, 1, 2, . . .) in which we decide to stop the process

when a specified condition is met. Hence {Xr} may go through a sequence of values

(x0, x1, . . . , xn) and then stop at xn when a predetermined stopping condition is

met. The random variable T for the stopping time or number of steps can take any

of the integer values (0, 1, 2, . . .). A simple example of a stopping rule is that n = m
where m is a given positive integer: in other words the process stops after m steps. In

the case just given, T , of course, is known, but Xm is not, in which case the expected

value E(Xm) might be of interest. Alternatively, we might wish to find the expected

value E(T ) for a problem in which the stopping rule is that the process stops when

Xn ≥ x where x is a given number.

We could say that if Xm is a ’reward’, then E(Xm) could be used to determine at

which point to stop playing.

Example 9.6. A random walk starts at the origin, with probability p that the walk advances

one step and probability q = 1− p that the walk retreats one step at every position. The walk

stops after T = 10 steps. What is the expected position of the walk at the stopping time?

In terms of the modified Bernoulli random variable {Wi} (see Section 3.2), the random

variable of the position of the walk after n steps is

Xn = X0 +

n∑

i=1

Wi =

n∑

i=1

Wi

since X0 = 0. It was shown in Section 3.2 that

E(Xn) = n(p − q) = n(2p − 1).

Hence for T = 10, the expected position is

E(X10) = 10(p − q).

Another stopping rule could be that the process stops when the random variable

Xn first takes a particular value or one of several values. This could be a particular

strategy in a gambling game where the gambler abandons the game when certain

winnings are achieved or cuts his or her losses when a certain deficit is reached.

Example 9.7. A symmetric random walk starts at position k. Let Xn (n = 0, 1, 2, . . .) be

the random variable of the position of the walk at step n. Show that the random variable

Yn = X2
n − n is a martingale with respect to Xn.

This slightly surprising result needs an explanation. The table of possible outcomes is:

X0 = k;

X1 = k + 1, k − 1;

X2 = k + 2, k, k, k − 2;

X3 = k + 3, k + 1, k + 1, k − 1, k + 1, k − 1, k − 1, k − 3;

· · · · · ·
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That there are two values of k for X2 occurs because k can be reached by different routes, and

similarly for repeats in succeeding random variables. The list of outcomes for X2
n is:

X2
0 = k2;

X2
1 = (k + 1)2, (k − 1)2;

X2
2 = (k + 2)2, k2, k2, (k − 2)2;

X2
3 = (k+3)2, (k+1)2, (k+1)2, (k−1)2, (k+1)2, (k−1)2, (k−1)2, (k−3)2;

· · · · · ·
It is evident that {X2

n|Xn−1} is not a martingale since, for example, E(X2
2 |X1 = k) has the

possible outcomes

{ 1
2
[(k + 2)2 + k2], 1

2
[k2 + (k − 2)2]} = {(k + 1)2 + 1, (k − 1)2 + 1},

which is not X2
1 (see list above). However,

E(Y2|X1) = E(X2
2 − 1|X1) = { 1

2
[(k + 2)2 + k2 − 2], 1

2
[k2 + (k − 1)2 − 2]}

= {(k + 1)2, (k − 1)2}
= Y1.

Generally,

E(Yn|Xn−1) = Yn−1, (n = 3, 4, . . .),

which defines a martingale. This result provides an alternative derivation of the duration

of the game in the gambler’s ruin (see Chapter 2).

We showed in Example 9.4 that {Xn} is a martingale with respect to the modified

Bernoulli random variable {Wn} for the symmetric random walk. It has just been

shown that

E(XT ) = k = X0 = E(X0),

since X0 is specified in this problem. For this martingale and for certain other mar-

tingales generally, this result is not accidental. In fact, the stopping theorem states:

If {Zn} is a martingale with respect to {Xn} (n = 0, 1, 2, . . .), T is a defined

stopping time, and

(i) P(T < ∞) = 1,

(ii) E(|ZT |) < ∞,

(iii) E(Zn|T > n)P(T > n) → 0 as n → ∞,

then E(ZT ) = E(Z0).

This is a useful result, which we shall not prove here (see Grimmett and Stirzaker

(1982), p. 209, or, Lawler (2006), p. 93).

Example 9.8. As in the previous example a symmetric random walk starts at k. Obtain the

duration of the walk which terminates when either 0 or a is first reached This is equivalent to

the gambler’s ruin problem in Chapter 2.

The stopping time T occurs when either 0 or a is first reached. We intend to find E(T ), for

which we shall use the random variable YT = X2
T − n where Xn and Yn were defined in the

previous example. From the stopping theorem,

E(YT ) = E(Y0) = E(X2
0 − 0) = k2, (9.16)
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from the first list in Example 9.7. Also,

E(YT ) = E(X2
T − T ) = E(X2

T )−E(T )

= 0×P(XT = 0) + a2 ×P(XT = a)−E(T )

= a2 × k

a
−E(T ) = ak −E(T ), (9.17)

where P(XT = a) = va−k = k/a (see Section 2.2 for the derivation of va). Therefore, from

(9.16) and (9.17),

E(T ) = ak −E(YT ) = ak − k2 = k(a− k),

which is an alternative derivation of the expected duration dk of Section 2.4.

Example 9.9 (Polya’s urn2). An urn contains a red ball and a green ball. A ball is removed at

random from the urn and the ball is returned to the urn together with a further ball of the same

colour. This procedure is repeated. After the first replacement the urn contains the three balls,

and after the n-th replacement n + 2 balls. Let Xn be the random variable of the number of

green balls at this stage. Show the random variable Mn = Xn/(n+ 2) is a martingale.

At step n the urn contains xn (say) green balls and n+2−xn red balls. The probability of

choosing a green ball from the urn is xn/(n+2) and of a red ball (n+2−xn)/(n+2). Note

that the random variables Xn form a Markov chain. After the n-th step there are either Xn+1
or Xn green balls, that is, either a green or red ball is chosen, respectively. Suppose that we

do not know a priori the form of the martingale but suspect it is of the form Mn = u(n)Xn

where u(n) is to be determined. Hence, the conditional probability is

E(Mn+1|Xn) = u(n+ 1)(Xn + 1))
Xn

n+ 2
+ u(n+ 1)Xn

n+ 2−Xn

n+ 2

=
u(n+ 1)

n+ 2
Xn + u(n+ 1)Xn

=
(n+ 3)u(n+ 1)

n+ 2
Xn = Mn

if u(n) = 1/(n+ 2), which means that Mn defines a martingale.

9.7 A continuous time epidemic

The subject of epidemiology from a theoretical viewpoint is concerned with the con-

struction of stochastic models which can represent the spread of a specific disease

through a population. It is a topic of particular current interest with the apparent

advent of new virulent diseases which in some cases have no curative treatment.

Some diseases are cyclical, such as measles and influenza; some diseases are cur-

rently spreading, such as HIV infections, which have long periods in which infected

persons can transmit the disease to others; some diseases have disappeared, such as

smallpox, and some which have declined through treatment (such as tuberculosis)

are recurring through drug-resistant strains. The main aim of probability models is to

be able to predict the likely extent of a disease—how many are infected through the

period of the epidemic and how might inoculation affect the spread of the disease.

2 George Polya (1887–1985) Hungarian mathematician.
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There is also interest in the geographical spread, demographics, and time behaviour

of diseases.

Modeling of epidemics is important in forming animal and public health policies,

for example in outbreaks of foot and mouth disease, and the studies of the possible

transmission of tuberculosis from badgers to cattle. These require more complicated

models than we are able to discuss in this book. An indication of the complexity of

such models may be found in Ferguson et al. (2001) and Cox et al. (2005). In the

next section we shall develop a stochastic epidemic model which, however, requires

numerical computation.

In this section we shall develop a model for the simple epidemic. In epidemiology

there are assumed to be three groups of individuals in a population. These are the

susceptibles, those who might succumb to the disease, the infectives, those who

have the disease and can spread it among the susceptibles, and what we might lump

together as the immunes, which includes, in addition to those who are immune, the

isolated, the dead (as a result of the disease), and the recovered and now immune.

In practice the spread of diseases is more complicated than simple stochastic mod-

els display. They can be affected by many factors. Here is a fairly general description

of the progress of a typical disease. If someone becomes infected there is usually a

latent period during which the disease develops. At the end of this period the patient

might display symptoms and become an infective although the two events might not

occur at the same time. The individual remains an infective during the infectious

period after which death or recovery occurs, and perhaps the individual becomes

immune to further bouts of the illness.

In this simple epidemic the assumptions are very restrictive. It is assumed that

the population contains only susceptibles and infectives—individuals do not die or

recover but remain infective. This model is not very realistic but it might cover the

early stages of a disease which has a long infectious period. Suppose that the popu-

lation remains fixed at n0 + 1 with no births or deaths during the epidemic and that

one infective is introduced at time t = 0. Initially there are n0 susceptibles. Let the

random variable S(t) represent the number of susceptibles which are not infected at

time t. At this time there will be n0 +1− S(t) infectives. It is assumed that individ-

uals in the population mix homogeneously, which is rarely the case except possibly

with animals under controlled laboratory conditions. In the simple epidemic the main

assumption is that the likelihood of an infection occurring in a time interval δt is

βS(t)[n0 + 1− S(t)]δt,

that is, it is proportional to the product of the numbers of susceptibles and infectives

at time t. In this joint dependence the likelihood of infection will be high if both

populations are relatively large, and small if they are both small. The constant β is

known as the contact rate. The probability of more than one infection taking place

in time δt is assumed to be negligible. Let pn(t), 0 ≤ n ≤ n0 be the probability that

there are n susceptibles at time t. Then by the partition law,

pn(t+ δt)=β(n+ 1)(n0 − n)pn+1(t)δt+ [1− βn(n0 + 1− n)δt]pn(t)+o(δt),
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for 0 ≤ n ≤ n0 − 1, and

pn0
(t+ δt) = (1− βn0δt)pn0

(t) + o(δt)

for n = n0. In the first equation either one susceptible became an infective in time δt
with probability β(n+ 1)(n0 − n)δt when the population was n+ 1 at time t, or no

infection occurred with probability 1 − βn(n0 + 1− n)δt when the population was

n. Following the usual method of dividing through by δt and then letting δt → 0, we

arrive at the differential-difference equations for the simple epidemic:

dpn(t)

dt
= β(n+ 1)(n0 − n)pn+1(t)− βn(n0 + 1− n)pn(t), (9.18)

for n = 0, 1, 2, . . . n0 − 1 and

dpn0
(t)

dt
= −βn0pn0

(t). (9.19)

Since there are n0 susceptibles at time t = 0, the initial condition must be pn0
(0) = 1

with pn(0) = 0 for n = 0, 1, 2, . . . , n0 − 1.

The partial differential equation for the probability generating function for these

differential-difference equation is given in Problem 9.26, but unfortunately the equa-

tion does not seem to have a direct solution (see Bailey (1964), p. 173).

9.8 A discrete time epidemic model

In this section we shall introduce a discrete time Markov chain to model a simple

epidemic. As in the previous, this epidemic has two populations, represented by the

random variable NS for the susceptibes and by NI for the infectives. It is assumed

that the total population remains fixed so that NS + NI = n where n is a constant

(we can assume that any births or deaths from other causes cancel one another, and

there is no immigration). We shall also compare the results with a corresponding

deterministic model which will be explained later.

We shall assume that any population changes of NS and NI can only take place at

the discrete time steps of t at {0, τ, 2τ, 3τ, . . .}. Both NS and NI can take the values

NS , NI ∈ (0, 1, 2, . . . , n).

We shall only consider NI since NS = n−NI in this model.

This process will be represented by a Markov chain over the time steps

{0, τ, 2τ, 3τ, . . .}.
We will switch to the Markov chain notation of Chapter 4 and let Er (r = 0, 1, 2, . . . n
be the event that the infective population is r. The transition diagram is as shown in

Figure 9.5. In a Markov process only transitions between neighbouring states can

occur: infections of two or more individuals or loss of infection of two or more in

any time interval are assumed to be negligible. Hence the following transitions are

possible:

• Ei → Ei−1, Ei, Ei+1 (i = 1, 2, . . . , n− 1).

• En → En, En−1.
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Figure 9.5 A discrete-time Markov chain for an epidemic model.

• E0 → E0 (an absorbing state).

We now define the probabilities associated with the transitions denoted by pij ,

where

pi(i−1) = iγτ, (i = 1, 2, . . . , n)
pii = 1− [{βi(n− i)τ/n}+ γiτ ], (i = 0, 1, 2, . . . , n)
pi(i+1) = βi(n− i)τ/n, (i = 0, 1, 2, . . . , n− 1)
pij = 0, elsewhere







(9.20)

where γ and β are contact rates. The probability of a new infection, for example,

is pi(i+1) = βi(n − i)τ/n, which depends on the joint numbers of infectives and

susceptibles. The probability of recovery is pi(i−1) = γiτ , which is proportional to

the period τ of the time step. The other probabilities can be interpreted similarly.

Further requirements are that 0 ≤ pij ≤ 1, and the usual

n∑

j=0

pij = 1

which is the case here. Finally the increment τ should be chosen so that the maximum

value of pij for all i, j, β, γ, and n should be small and certainly less than 1. The

transition probabilities pij are functions of the increments τ but are independent of

time.

The transition matrix defined by (9.20) is a tridiagonal matrix. It is important to

visualise how the matrix appears. This 5 × 5 version for n = 4 (population size) is

the 5× 5 matrix

T =[pij ]=









1 0 0 0 0
γτ 1− (34β + γ)τ 3

4βτ 0 0
0 2γτ 1− (β + 2γ)τ βτ 0
0 0 3γτ 1− (34β + 3γ)τ 3

4βτ
0 0 0 4γτ 1− 4γτ









.

Returning to the general case we consider an example with n = 100, the total

population size, and assume that there are 2 infectives3 at time t = 0, meaning that

the epidemic starts in E2. Expressed as the vector this is

s0 =
[
0 0 1 0 · · · 0

]
.

3 Two infectives are chosen to avoid the epidemic dying out quickly: however, other initial values can be
chosen if required.
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At time t = τ the infective population will be in states E1, E2, or E3 with probabil-

ities given by

s0T =
[
0 2γτ 1− [{2β(n− 2)/n}+ 2γ]τ 2{β(n− 2)/n} · · · 0

]
.

Hence the probability that the infective population falls to 1 is 2γτ , increases to 3 is

2{β(n− 2)/n}, or remains unchanged at 2 is the remaining probability.

If the transition is to E3, then we set

s1 =
[
0 0 0 1 · · · 0

]
.

If the transition is either to E1 or remains in E2, then we set the s1 accordingly.

The next step is to compute s1T to determine the next state or event. The process is

repeated so that we generate a sequence of infective population sizes together with

the probabilities with which they occur.

If the final state En is reached (unlikely with the input data defined later) the whole

population would be infected. However, since individuals can become uninfected and

reinfected in this simple model, the process can continue indefinitely.

An infected population sequence as shown in Figure 9.6 have been computed for

E2 = 1 initially (2 infectives), and the parameters are n = 100, β = 1, γ = 0.5,

τ = 0.01. A check of the probabilities gives

max([βj(n− j)τ ]/n) = 1
4βnτ = 0.25, max(γjτ) = 0.25,

which is comfortably less than 1. A computed output4 for an infected population over

2,000 time steps is shown in Figure 9.6. It can be seen from the outputs that ultimately

Infected population

50

40

30

20

10

0
 2000 1500 1000 5000

Time steps

Figure 9.6 A simulated stochastic output for an epidemic with n = 100, β = 1, γ = 0.5, time

step τ = 0.01, with initially 2 infectives. The smooth curve is the deterministic solution given

by (9.24) with the same parameters and initial value.

the populations seem to be hovering at about 50. It can be seen from (9.20) why this

should occur: the up and down probabilities balance if

βj(n− j)τ/n = γjτ or j = (β − γ)n/β = 50,

4 A program using Mathematica is available on the associated website.
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in the example here. We shall say more about this in the next section. Note also

that there is a finite, although extremely small, probability that E0 is reached, in

which case the epidemic ends. For an extensive account of this and other stochastic

epidemic models, see Allen (2008).

9.9 Deterministic epidemic models

In the deterministic approach it is assumed that the susceptible and infective pop-

ulations are continuous smooth functions of the time t controlled by differential

equations (see Bailey (1964) and Allen (2008)). Let the continuous-time susceptible

and infective populations be denoted by xS(t) and xI(t). The deterministic model is

dxS

dt
= −β

n
xSxI + γxI , (9.21)

dxI

dt
=

β

n
xSxI − γxI , (9.22)

in which the argument t is dropped for simplicity. The assumption in the model is that

the susceptible population in (9.21) decreases according to the joint contact between

the susceptibles and the infectives and increases through individuals recovering at

rate γ. The change in infectives is the mirror image of this. We have deliberately

chosen the same symbols as in the stochastic case for the contact rates β and γ to

emphasise the comparison. Addition of (9.21) and (9.22),

d(xS + xI)

dt
= 0,

implies that xS + xI = n, that is, the total populations remains a constant n. Elimi-

nation of xS in (9.22) leads to

dxI

dt
= xI [(β − γ)n− βxI ]/n. (9.23)

This is a first-order differential equation which can be integrated directly to give,

using partial fractions, with C a constant,

t+ C =

∫
ndxI

xI [(β − γ)n− βxI ]

=
1

(β − γ)

[∫
dxI

xI

+

∫
βdxI

(β − γ)n− βxI

]

=
1

(β − γ)
ln

[
xI

(β − γ)n− βxI

]

,

where we have assumed that (β − γ)n > βxI for all n and xI . The solution of this

equation for xI is therefore

xI =
(β − γ)n

β + e−(t+C)(β−γ)
.

As in the stochastic model, we assume the initial condition xI(0) = 2 so that

e−Cn(β−γ) = 1
2n(β − γ)− β,
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and, finally

xI =
2(β − γ)n

2β + [(β − γ)n− 2β]e−(β−γ)t
. (9.24)

As t → ∞,

xI → (β − γ)n

β

(β > γ from the previous inequality). This limit is interesting since using the pa-

rameters β = 1, γ = 0.5 and population n = 100, as in the stochastic model in the

previous section, then

xI → 1
2n = 50,

if n = 100, agrees with the stochastic behaviour shown in Figure 9.6. The determin-

istic solution is also shown in the figure (in comparing the stochastic data) and the

deterministic solution t must be replaced by τt = 0.01t since the abscissa measures

time steps.

Usually epidemics are recorded by the number of new cases which occur in set

intervals (weeks, months, etc). From (9.24) this is given by

dxI

dt
=

2n(β − γ)2[(β − γ)n− 2β]e−(β−γ)t

[2β + {(β − γ)n− 2β}e−(β−γ)t]2

in this case (of 2 infectives initially). The graph of the epidemic curve, as it is known,

is shown in Figure 9.7.
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Figure 9.7 Epidemic curve of number of new cases, dxI/dt, against time steps with the same

data: β = 1; γ = 0.5; n = 100. The epidemic peaks after about 700 time steps at a infective

number of between six and seven individuals.

There are other more elaborate models. In one of these immunity is included so

that there are individuals who have contracted the disease but who subsequently be-

come immune or are removed. This model includes this third population denoted by

xR(t). The differential equations are (see Allen (2008)):

dxS

dt
= −β

n
xSZI + ν(xI + xR), (9.25)
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dxI

dt
=

β

n
xSxI − γxI , (9.26)

dxR

dt
= (γ − ν)xI − νxR, (9.27)

where β, ν, and γ are constant contact rates. This is still a model with a constant

population

xS + xI + xR = n. (9.28)

It is assumed that births and deaths cancel. To interpret Eqn (9.25), for example, the

rate of decrease of susceptibles behaves jointly with the infectives and susceptibles,

but increases with recovered infectives and the immune. Also, recovered infectives

can become susceptible again, and there are no deaths as a result of the epidemic.

There is an equilibrium state when all the derivatives are zero, given by the solu-

tions of

−β

n
xSxI + ν(xI + xR) = 0,

β

n
xSxI − γxI = 0,

(γ − ν)xI − νxR = 0,

together with (9.28). The equilibrium state of the epidemic is given by

xS =
γn

β
, xI =

nν(β − γ)

βγ
, xR =

n(γ − ν)(β − γ)

βγ
,

achieved as t → ∞, provided β > γ > ν. If β < γ, then ZI → 0 as t → ∞ and the

infection dies out.

The deterministic model (9.25)–(9.27) does not have a simple solution, but it is

possible to solve the equation numerically, and also to construct a stochastic model

including immunity (see Allen (2008)).

9.10 An iterative solution scheme for the simple epidemic

As was remarked previously (Section 9.7), a partial differential equation for the prob-

ability generating function for Eqns (9.18) and (9.19) can be obtained, but the equa-

tion has no simple solution for the epidemic problem. Here we show how solutions

for pn(t) can be constructed by an iterative procedure, although they do become

increasingly complicated and they do not suggest an obvious general formula. It is

possible to obtain explicit formulae for epidemics in very small populations.

Eliminate the parameter β by letting τ = βt, by putting

pn(τ/β) = qn(τ) (9.29)

so that Eqns (9.18) and (9.19) become the differential-difference equations

dqn(τ)

dτ
= (n+ 1)(n0 − n)qn+1(τ) − n(n0 + 1− n)qn(τ), (0 ≤ n ≤ n0 − 1),

(9.30)
dqn0

(τ)

dτ
= −n0qn0

(τ). (9.31)
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Multiply both sides of Eqn (9.31) by en0τ and use the product rule in differentiation.

The result is that (9.29) can be expressed as

d

dτ
[en0τqn0

(τ)] = 0.

Similarly multiply both sides of (9.29) by en(n0+1−n) and use the product rule again.

Then Eqn (9.30) becomes

d

dτ

[

en(n0+1−n)τ qn(τ)
]

= (n+ 1)(n0 − n)en(n0+1−n)τqn+1(τ).

In these equations, let

un(τ) = en(n0+1−n)τqn(τ). (9.32)

Then un(τ), (n = 0, 1, 2, . . . , n0) satisfy the more convenient differential equations

dun0
(τ)

dτ
= 0, (9.33)

dun(τ)

dτ
= (n+ 1)(n0 − n)e(2n−n0)τun+1(τ). (9.34)

In the simple epidemic only one infective is introduced so that the initial conditions

pn0
(0) = 1 and pn(0) = 0 for n = 0, 1, 2, . . . , n0−1 translate, by (9.29) and (9.30),

into

un0
(0) = 1 and un(0) = 0 for n = 0, 1, 2, . . . , n0 − 1. (9.35)

The solution of the differential equation (9.33) is simply

un0
(τ) = constant = 1

using the initial condition in (9.35). From Eqn (9.34) the next equation in the iteration

for un0−1(τ) is

dun0−1(τ)

dτ
= n0e

(n0−2)τun0
(τ) = n0e

(n0−2)τ .

This separable differential equation has the solution (obtained by direct integra-

tion)

un0−1(τ) =

∫

n0e
(n0−2)τdτ + C =

n0

n0 − 2
e(n0−2)τ + C,

where C is a constant. Since un0−1(0) = 1, then C = −n0/(n0 − 2), so that

un0−1(τ) =
n0

n0 − 2

[

e(n0−2)τ − 1
]

. (9.36)

Using this solution for un0−1(τ), the equation for un0−2(τ) from (9.33) is

dun0−2(τ)

dτ
= 2(n0 − 1)e(n0−4)τun0−1(τ)

= 2(n0 − 1)e(n0−4)τ n0

n0 − 2

[

e(n0−2)τ − 1
]

=
2n0(n0 − 1)

n0 − 2

[

e2(n0−3)τ − e(n0−4)τ
]

. (9.37)
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This is also a separable differential equation, and routine integration together with

the initial condition gives (for n0 > 4)

un0−2(τ) =
n0(n0 − 1)[(n0 − 4){e2(n0−3)τ − 1} − 2(n0 − 3){e(n0−4)τ − 1}]

(n0 − 2)(n0 − 3)(n0 − 4)
.

This procedure can be continued but the number of terms increases at each step. The

probabilities can be recovered from Eqns (9.29) and (9.31).

Example 9.10. One infective is living with a group of four individuals who are susceptible to

the disease. Treating this situation as a simple epidemic in an isolated group, find the proba-

bility that all members of the group have contracted the disease at time t.

In the notation above we require p0(t). In the iteration scheme, n0 = 4, so that from

Eqns (9.32) and (9.33),

u4(τ ) = 1, u3(τ ) = 2(e2τ − 1).

However, there is a change in (9.25) if n0 = 4. The differential equation becomes

d

dτ
u2(τ ) = 12(e2τ − 1),

which, subject to u2(0) = 0, has the solution

u2(τ ) = −6(1 + 2τ ) + 6e2τ .

The equation for u1(τ ) is

d

dτ
u1(τ ) = 36 − 36(1 + 2τ )e−2τ ,

which has the solution

u1(τ ) = 36(τ − 1) + 36(1 + τ )e−2τ .

A similar process gives the last function:

u0(τ ) = 1 + (27− 36τ )e−4τ − (28 + 24τ )e−6τ .

From Eqns (9.29) and (9.32) the probabilities can be now be found:

p4(t) = e−4βt, p3(t) = 2e−4βt − e−6βt, p2(t) = 6e−4βt − (6 + 12βt)e−6βt,

p1(t) = 36(βt−1)e−4βt+36(1+βt)e−6βt, p0(t) = 1+9(3−4βt)e−4βt−4(7+6βt)e−6βt.

A useful check on these probabilities is that they must satisfy

4∑

n=0

pn(t) = 1.

The formula for p0(t) gives the probability that all individuals have contracted the disease by

time t. Note that p0(t) → 1 as t → ∞, which means that all susceptibles ultimately catch the

disease, a characteristic of the simple epidemic.
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9.11 Problems

9.1. In a branching process the probability that any individual has j descendants is given by

p0 = 0, pj =
1

2j
, (j ≥ 1).

Show that the probability generating function of the first generation is

G(s) =
s

2− s
.

Find the further generating functions G2(s), G3(s), and G4(s). Show by induction that

Gn(s) =
s

2n − (2n − 1)s
.

Find the probability that the population size of the n-th generation is j given that the process

starts with one individual. What is the mean population size of the n-th generation?

9.2. Suppose that in a branching process any individual has a probability given by the modified

geometric distribution

pj = (1− p)pj, (j = 0, 1, 2, . . .),

of producing j descendants in the next generation, where p (0 < p < 1) is a constant. Find

the probability generating function for the second and third generations. What is the mean size

of any generation?

9.3. A branching process has the probability generating function

G(s) = a+ bs+ (1− a− b)s2

for the descendants of any individual, where a and b satisfy the inequalities

0 < a < 1, b > 0, a+ b < 1.

Given that the process starts with one individual, discuss the nature of the descendant genera-

tions. What is the maximum possible size of the n-th generation? Show that extinction in the

population is certain if 2a+ b ≥ 1.

9.4. A branching process starts with one individual. Subsequently any individual has a proba-

bility (Poisson)

pj =
λje−λ

j!
, (j = 0, 1, 2, . . .)

of producing j descendants. Find the probability generating function of this distribution. Ob-

tain the mean and variance of the size of the n-th generation. Show that the probability of

ultimate extinction is certain if λ ≤ 1.

9.5. A branching process starts with one individual. Any individual has a probability

pj =
λ2jsech λ

(2j)!
, (j = 0, 1, 2, . . .)

of producing j descendants. Find the probability generating function of this distribution. Ob-

tain the mean size of the n-th generation. Show that ultimate extinction is certain if λ is less

than the computed value 2.065.
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9.6. A branching process starts with two individuals. Either individual and any of their descen-

dants has probability pj , (j = 0, 1, 2, . . .) of producing j descendants independently of any

other. Explain why the probabilities of 0, 1, 2, . . . descendants in the first generation are

p20, p0p1 + p1p0, p0p2 + p1p1 + p2p0, . . . ,

n∑

i=0

pipn−i, . . . ,

respectively. Now show that the probability generating function of the first generation is

G(s)2, where

G(s) =

∞∑

j=0

pjs
j .

The second generation from each original individual has generating function G2(s) = G(G(s))
(see Section 9.2). Explain why the probability generating function of the second generation is

G2(s)
2, and of the n-th generation is Gn(s)

2.

If the branching process starts with r individuals, what would you think is the formula for

the probability generating function of the n-th generation?

9.7. A branching process starts with two individuals as in the previous problem. The probabil-

ities are given by

pj =
1

2j+1
, (j = 0, 1, 2, . . .).

Using the results from Example 9.1, find Hn(s), the generating function of the n-th genera-

tion. Also find

(a) the probability that the size of the population of the n-th generation is m ≥ 2;

(b) the probability of extinction by the n-th generation;

(c) the probability of ultimate extinction.

9.8. A branching process starts with r individuals, and each individual produces descendants

with probability distribution {pj}, (j = 0, 1, 2, . . .), which has the probability generating

function G(s). Given that the probability of the n-th generation is [Gn(s)]
r, where Gn(s) =

G(G(. . . (G(s)) . . .)), find the mean population size of the n-th generation in terms of µ =
G′(1).

9.9. Let Xn be the population size of a branching process starting with one individual. Suppose

that all individuals survive, and that

Zn = 1 +X1 +X2 + · · ·+Xn

is the random variable representing the accumulated population size.

(a) If Hn(s) is the probability generating function of the total accumulated population, Zn, up

to and including the n-th generation, show that

H1(s) = sG(s), H2(s) = sG(H1(s)) = sG(sG(s))

(which perhaps gives a clue to the form of Hn(s)).
(b) What is the mean accumulated population size E(Zn)? (You do not require Hn(s) for this

formula.)

(c) If µ < 1, what is limn→∞ E(Zn), the ultimate expected population?

(d) What is the variance of Zn?
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9.10. A branching process starts with one individual and each individual has probability pj of

producing j descendants independently of every other individual. Find the mean and variance

of {pj} in each of the following cases, and hence find the mean and variance of the population

of the n-th generation:

(a) pj =
e−µµj

j!
, (j = 0, 1, 2, . . .) (Poisson);

(b) pj = (1− p)j−1p (j = 1, 2, . . . ; 0 < p < 1) (geometric);

(c) pj =

(
r + j − 1

r − 1

)

pj(1− p)r, (j = 0, 1, 2, . . . ; 0 < p < 1) (negative binomial)

where r is a positive integer.

9.11. A branching process has a probability generating function

G(s) =

(
1− p

1− ps

)r

, (0 < p < 1),

where r is a positive integer, the process being started with one individual (a negative binomial

distribution). Show that extinction is not certain if p > 1/(1 + r). Find the probability of

extinction if r = 2 and p > 1
3

.

9.12. Let Gn(s) be the probability generating function of the population size of the n-th gen-

eration of a branching process. The probability that the population size is zero at the n-th

generation is Gn(0). What is the probability that the population becomes extinct at the n-th

generation?

In Example 9.1, where pj = 1/2j+1 (j = 0, 1, 2, . . .), it was shown that

Gn(s) =
n

n+ 1
+

∞∑

r=1

nr−1

(n+ 1)r+1
sr.

Find the probability of extinction,

(a) at the n-th generation,

(b) at the n-th generation or later.

What is the mean number of generations until extinction occurs?

9.13. An annual plant produces N seeds in a season which is assumed to have a Poisson

distribution with parameter λ. Each seed has a probability p of germinating to create a new

plant which propagates in the following year. Let M be the number of new plants. Show that

pm, the probability that there are m growing plants in the first year, is given by

pm = (pλ)me−pλ/m!, (m = 0, 1, 2, . . .),

that is, Poisson with parameter pλ. Show that its probability generating function is

G(s) = epλ(s−1).

Assuming that all the germinated plants survive and that each propagates in the same manner

in succeeding years, find the mean number of plants in year k. Show that extinction is certain

if pλ ≤ 1.
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9.14. The version of Example 9.1 with a general geometric distribution is the branching pro-

cess with pj = (1− p)pj, (0 < p < 1; j = 0, 1, 2, . . .). Show that

G(s) =
1− p

1− ps
.

Using an induction method, prove that

Gn(s) =
(1− p)[pn − (1− p)n − ps{pn−1 − (1− p)n−1}]

[pn+1 − (1− p)n+1 − ps{pn − (1− p)n}] , (p 6= 1
2
).

Find the mean and variance of the population size of the n-th generation.

What is the probability of extinction by the n-th generation? Show that ultimate extinction

is certain if p < 1
2

, but has probability (1− p)/p if p > 1
2

.

9.15. A branching process starts with one individual, and the probability of producing j de-

scendants has the distribution {pj}, (j = 0, 1, 2, . . .). The same probability distribution ap-

plies independently to all descendants and their descendants. If Xn is the size of the n-th

generation, show that

E(Xn) ≥ 1−P(Xn = 0).

In Section 9.3 it was shown that E(Xn) = µ
n, where µ = E(X1). Deduce that the probabil-

ity of extinction eventually is certain if µ < 1.

9.16. In a branching process starting with one individual, the probability that any individual

has j descendants is pj = α/2j , (j = 0, 1, 2, . . . , r), where α is a constant and r is fixed. This

means that any individual can have a maximum of r descendants. Find α and the probability

generating function G(s) of the first generation. Show that the mean size of the n-th generation

is

µn =

[
2r+1 − 2− r

2r+1 − 1

]n

.

What is the probability of ultimate extinction?

9.17. Extend the tree in Figure 9.4 for the gambling martingale in Section 9.5 to Z4, and

confirm that

E(Z4|Z0, Z1, Z2, Z3) = Z3.

Confirm also that E(Z4) = 1.

9.18. A gambling game similar to the gambling martingale of Section 9.5 is played according

to the following rules:

(a) the gambler starts with £1, but has unlimited resources;

(b) against the casino, which also has unlimited resources, the gambler plays a series of games

in which the probability that the gambler wins is 1/p and loses is (p− 1)/p, where p > 1;

(c) at the n-th game, the gambler either wins £(pn − pn−1) or loses £pn−1.

If Zn is the gambler’s asset/debt at the n-th game, draw a tree diagram similar to that of

Figure 9.3 as far as Z3. Show that Z3 has the outcomes

{−p − p2,−p2,−p, 0, p3 − p2 − p, p3 − p2, p3 − p, p3}
and confirm that

E(Z2|Z0, Z1) = Z1, E(Z3|Z0, Z1, Z2) = Z2,
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which indicates that this game is a martingale. Also show that

E(Z1) = E(Z2) = E(Z3) = 1.

Assuming that it is a martingale, show that, if the gambler first wins at the n-th game, then

the gambler will have an asset gain or debt of £(pn+1− 2pn +1)/(p− 1). Explain why a win

for the gambler can only be guaranteed for all n if p ≥ 2.

9.19. Let X1, X2, . . . be independent random variables with means µ1,µ2, . . . respectively.

Let

Zn = X1 +X2 + · · ·+Xn,

and let Z0 = X0 = 0. Show that the random variable

Yn = Zn −
n∑

i=1

µi, (n = 1, , 2, . . .)

is a martingale with respect to {Xn}. [Note that E(Zn+1|X1, X2, . . . , Xn) = Zn.]

9.20. Consider an unsymmetric random walk (p 6= 1
2
) which starts at the origin. The walk

advances one position with probability p and retreats one position with probability 1 − p. Let

Xn be the random variable giving the position of the walk at step n. Let Zn be given by

Zn = Xn + (1− 2p)n.

Show that

E(Z2|X0, X1) = {−2p, 2− 2p} = Z1.

Generally show that {Zn} is a martingale with respect to {Xn}.

9.21. In the gambling martingale of Section 9.5, the random variable Zn, is the gambler’s

asset, in a game against a casino in which the gambler starts with £1 and doubles the bid at

each play. The random variable Zn has the possible outcomes

{−2n + 2m+ 2}, (m = 0, 1, 2, . . . , 2n − 1).

Find the variance of Zn. What is the variance of

E(Zn|Z0, Z1, . . . , Zn−1)?

9.22. A random walk starts at the origin, and, with probability p1, advances one position, and,

with probability q1 = 1−p1, retreats one position at every step. After 10 steps the probabilities

change to p2 and q2 = 1 − p2, respectively. What is the expected position of the walk after a

total of 20 steps?

9.23. A symmetric random walk starts at the origin x = 0. The stopping rule that the walk

ends when the position x = 1 is first reached is applied; that is, the stopping time T is given

by

T = min{n : Xn = 1},
where Xn is the position of the walk at step n. What is the expected value of T ? If this walk

was interpreted as a gambling problem in which the gambler starts with nothing with equal

odds of winning or losing £1 at each play, what is the flaw in this stopping rule as a strategy
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of guaranteeing a win for the gambler in every game? Hint: the generating function for the

probability of the first passage is

G(s) = [1− (1− s2)
1
2 ]/s :

see Problem 3.11.

9.24. In a finite-state branching process, the descendant probabilities are, for every individual,

pj =
2m−j

2m+1 − 1
, (j = 0, 1, 2, . . . ,m),

and the process starts with one individual. Find the mean size of the first generation. If Xn is

the size of the n-th generation, explain why

Zn =

[
2m+1 − 1

2m+1 −m− 2

]n

Xn

defines a martingale over {Xn}.

9.25. A random walk starts at the origin, and at each step the walk advances one position with

probability p or retreats with probability 1− p. Show that the random variable

Yn = X2
n + 2(1− 2p)nXn + [(2p− 1)2 − 1]n+ (2p − 1)2n2,

where Xn is the random variable of the position of the walk at time n, defines a martingale

with respect to {Xn}.

9.26. A simple epidemic has n0 susceptibles and one infective at time t = 0. If pn(t) is

the probability that there are n susceptibles at time t, it was shown in Section 9.7 that pn(t)
satisfies the differential-difference equations (see Eqns (9.15 and (9.16))

dpn(t)

dt
= β(n+ 1)(n0 − n)pn+1(t)− βn(n0 + 1− n)pn(t),

for n = 0, 1, 2, . . . n0. Show that the probability generating function

G(s, t) =

n0∑

n=0

pn(t)s
n

satisfies the partial differential equation

∂G

∂t
= β(1− s)

[

n0
∂G

∂s
− s

∂2G

∂s2

]

(see Bailey (1964), Ch.12).

Nondimensionalise the equation by putting τ = βt. For small τ let

H(s, τ ) = G(s, τ/β) = H0(s) +H1(s)τ +H2(s)τ
2 + · · · .

Show that

nHn(s) = n0(1− s)
∂Hn−1(s)

∂s
− s(1− s)

∂2Hn−1(s)

∂s2
,

for n = 1, 2, 3, . . . n0. What is H0(s)? Find the coefficients H1(s) and H2(s). Now show

that the mean number of infectives for small τ is given by

n0 − n0τ − 1
2
n0(n0 − 2)τ 2 +O(τ 3).



CHAPTER 10

Brownian Motion: Wiener Process

10.1 Introduction

In this chapter we shall consider processes continuous in time, and with continuous

state spaces. In previous chapters we have discussed processes where both stage and

state are discrete: random walks (Chapter 3) where the stage is the number of steps

and the state is the position of the walk and where the stage is continuous and the state

is discrete: for example, birth processes (Chapter 6) where the stage is time and the

state is the number of births. Note that unlike birth processes there is no possibility of

an “event” or movement not occurring in any time interval. The processes developed

here may be defined in terms of a continuous random variable X(t) which depends

on continuous time t > 0, although extension to more than a one-dimensional ran-

dom variable is possible, and as shown below has been useful in modelling certain

physical behaviours. However, we shall be explaining the one-dimensional case in

detail.

10.2 Brownian motion

Brownian motion is named after Robert Brown1, who was one of the first to com-

ment on the phenomenon when observing through a microscope the seemingly ran-

dom and continuous movement of pollen grains suspended in water. This, of course

is a process in three dimensions and would require modelling using three random

variables—but more of this later. This stochastic process was used by Einstein2 in

the so-called “miraculous year” of 1905. This was the year when he postulated the

molecular or atomic hypothesis on the movement or continuous motion of particles

caused by collisions with molecules in a fluid in which they were suspended3. This

was also the year when he propounded the special theory of relativity and when his

work on the photoelectric effect was carried out, and which in 1922 was awarded the

Nobel prize in Physics.

1 Robert Brown (1773–1858), Scottish botanist.
2 Albert Einstein (1879–1955), German theoretical physicist.
3 ‘In this paper it will be shown that, according to the molecular theory of heat, bodies of a microscopi-

cally visible size suspended in liquids must as a result of thermal molecular motions, perform motions
of such magnitudes that they can be easily observed with a microscope. It is possible that the motions to
be discussed here are identical with so-called Brownian molecular motion; however, the data available
to me on the latter are so imprecise that I could not form a judgement on the question...’ Einstein (1956
from 1905 paper) regarding

213
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Two-dimensional Brownian motion can be used, for example, to model spatial

movement over time of insects on a plot of land; one-dimensional Brownian motion

has been used in finance to track stock movements. Bachelier4 carried out early work

in the mathematical modelling of Brownian motion, and went on to apply it to prob-

lems in this area. The tracking of stock movements over time is an example of an

approximation by a continuous process of an essentially discrete process observed

over a long period at small intervals. When a plot of realisations of X(t) at discrete

time points is viewed over decreasing intervals of time it appears to be continuous.

The idea of Brownian motion as a limit of a discrete process such as a random walk

(Chapter 3) is discussed in the next section.

Consider the continuous random variable X(t) which is a function of time t and

suppose that X(0) = 0 such that for any time interval (ti, ti+1), the increments or

changes

D(ti, ti+1) = [X(ti+1)−X(ti)] (10.1)

over n non-overlapping time periods are mutually independent and depend only on

X(ti), ti < ti+1, 0 ≤ i ≤ n,

where n is finite: this is a Markov property. Furthermore it is assumed that the

D(ti, ti+1) have the same probability distribution for 0 ≤ i ≤ n which depend only

on the length of the interval (ti, ti+1): in other word the process possesses stationary

independent increments.

To simplify matters it is assumed that this is a process with the expected value

E[X(t)] = 0: this defines a process with no drift. The random variable X(t) is, in

fact, D(0, t) so that X(s) will have the same probability distribution as D(t, t + s)
for all s. A consequence of all these assumptions is that X(t) can be shown to have

a normal distribution. Generally a stochastic process with stationary, independent

increments is called a Lévy process 5: hence Brownian motion is such a process.

The name Wiener process6 is also now more common when discussing technical

details. The term Brownian motion is often used for the phenomenon of diffusion but

both seem to be used interchangeably for the process: we use both terms here.

To summarise, a Wiener process or Brownian motion for a continuous random

variable X(t) has the following properties:

(a) X(0) = 0;

(b) D(ti, ti+1) = [X(ti+1) −X(ti)] has a normal distribution with mean 0

and variance σ2(ti+1 − ti), 1 ≤ i ≤ n− 1;

(c)D(ti, ti+1) are mutually independent in non-overlapping time intervals.

Note that, by choosing t1 = 0 and t2 = 1, then σ
2 = V[X(1)].

The process where σ
2 = 1 is known as standard Brownian motion or Wiener

process. Any (non-standard) process can be converted to standard process W (t) by

defining W (t) = X(t)/σ.

4 Louis Bachelier (1870–1946), French mathematician.
5 Paul Lévy (1886–1971), French mathematician.
6 Norbert Wiener (1894–1954), American mathematician.



WIENER PROCESS AS A LIMIT OF A RANDOM WALK 215

The dispersion of standard Brownian motion can be shown by viewing computed

outputs against the variance of the normal distribution. The probability density func-

tion of standard Brownian motion is given by

ft(x) =
1√
2πt

exp

(−x2

2t

)

, (−∞ < x < ∞), (t > 0), . (10.2)

Hence the variance of this normal distribution is V(X) = t. Figure 10.1 shows

graphs of five computed Brownian motions together with a measure of dispersion

given by the standard deviation shown by the curve x =
√
t. Several trials of Brow-

nian motion indicate that any particular output can diverge considerably.

Figure 10.1 Includes five Brownian motions and the dashed curve representing the standard

deviation x =
√
t.

Wiener processes are part of a larger class of processes known as diffusion pro-

cesses, and following this the variance σ2 is also known as the diffusion coefficient.

Condition (a) may be relaxed to include processes starting at a fixed point X(0) =
x rather than at the origin, but these translated processes are still Wiener processes.

10.3 Wiener process as a limit of a random walk

Let us return to the idea of illustrating a Wiener process as the limit of a random walk.

Recall from Chapter 3 the description of the symmetric one-dimensional unrestricted

random walk with step length ±1 (see Section 3.2). Since it is symmetric, or in the

terminology above, the walk has no drift, the probability of a positive or negative step

is 1
2 , and the position of the walk, Xn, at stage n has a distribution with E(Xn) = 0

and V(Xn) = n.

We adapt the symmetric random walk in the following way to create a limiting

process on the walk. Divide the time-scale t ∈ [0,∞) into intervals of fixed (small)

length ε. At each step t = 0, ε, 2ε, . . . there is a probability 1
2 that the walk advances√

ε or a probability 1
2 that the walk retreats −√

ε. The limiting process is such that
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ε → 0. Let Qi be the outcome of the i-th step (that is at time iε) so that

Qi =

{ √
ε probability 1

2
−√

ε probability 1
2

(10.3)

for i = 0, 1, 2, . . . or at t = 0, ε, 2ε, . . . (the reason for
√
ε will be explained shortly).

If Xi is the random variable of the position of the walk at step i, then

Xi = X0 +
i∑

j=1

Qj =
i∑

j=1

Qj, (10.4)

assuming X(0) = 0. Now

E(Qn) =
1

2

√
ε− 1

2

√
ε = 0, V(Qn) = E(Q2

n)−E(Qn)
2 = ε, (10.5)

for all n. Suppose that we consider a fixed interval of time [0, nε]. Over nε,

E(Xn) = 0, V(Xn) = V





n∑

j=1

Qj



 = nV(Qn) = nε. (10.6)

We have to show that (b) and (c) hold. Consider any two times t1 = i1ε and

t2 = i2ε where t2 > t1. Then

D(t1, t2) = X(t2)−X(t1) =

i2∑

j=i1+1

Qj , (10.7)

which only depends on the number of outcomes in the interval [t1, t2] that establishes

(c).

The expectation

E[X(t2)−X(t1)] = E





ni∑

j=i1+1

Qj



 =

i2∑

j=i1+1

E(Qj) = 0, (10.8)

and the variance

V[X(t2)−X(t1)] =

i2∑

j=i1+1

V(Qj) = (i2 − i1)ε = t2 − t1. (10.9)

The random variables D(t1, t2) = X(t2) −X(t1) have variances that depend only

on the interval length with σ
2 = 1, which is the reason why the step length

√
ε was

chosen. This means that this is a standard Brownian motion.

An example of computed Brownian motion is shown in Figure 10.2. A feature of

Brownian motion is that a magnification of a section of a trajectory looks like the

original.
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Figure 10.2 An example of a standard Brownian motion over the interval t ∈ [0, 1] (this was

computed using a Wiener process package in Mathematica over 1,000 time-points).

10.4 Brownian motion with drift

Consider the random variable

U(t) = X(t) + µt, (10.10)

whereX(t) is the continuous random variable defining a Brownian motion of Section

10.2 with X(0) = 0 and variance σ
2t: the constant µ 6= 0 is known as the drift of

the process. Obviously U(0) = 0 and using properties of expectation and variance

that

E[U(t)] = µt, V[U(t)] = V[X(t) + µt] = V[X(t)] = σ2t, (10.11)

by the variance rule (1.12). In this case the increment

Du(ti, ti+1) = U(ti+1)− U(ti) = D(ti, ti+1) + µ(ti+1 − ti) (10.12)

by (10.1). Its variance is given by

V[Du(ti, ti+1)] = V[U(ti+1)− U(ti)]

= V[D(ti, ti+1) + µ(ti+1 − ti)]

= V[D(ti, ti+1)], (10.13)

using the variance rule (1.12) again. Hence U(t) meets the requirements for a Wiener

process except that its mean is displaced. The arguments in terms of the random walk

of the previous section apply similarly to Brownian motion with drift.

A realisation (or sample path) of a Brownian motion with drift is shown in Fig-

ure 10.3.

10.5 Scaling

We mentioned earlier the realisations of Brownian motion and the approximation of

a continuous process by observing X(t) at smaller intervals of time. We will address

this more formally through the introduction of the idea of scaling both the vertical

(position) and horizontal (time) axes of plots of the process which naturally affect

their smoothness.
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Figure 10.3 An example of Brownian motion with drift µ = 0.3 and volatility 0.3 computed

over over 1,000 time points on the interval t ∈ [0, 1].

Suppose that the random variable X(t) represents a one-dimensional Brownian

motion with X(0) = 0 and no drift. We have already encountered the notion of scal-

ing the vertical axis by choosing to observe the standard Brownian motion W (t) =
X(t)/σ where the smoothness of a resulting plot would depend on whether σ2 is

greater than or less than 1. Consider now the transformation of X(t) to S(t) given

by

S(t) = aX(t/b), (10.14)

where a 6= 0 and b > 0 are constants. Clearly S(t) is a linear function of a continuous

normally distributed random variable X(t), and so is also normally distributed but

with mean 0 and variance a2σ2t/b. Hence the properties of the increments of S(t)
will satisfy the conditions for it to be a Brownian motion.

A particular case of this transformation occurs when a = −1 and b = 1, which

results in the process −X(t) being a Brownian motion. This is known as the reflec-

tion of the original process, with the same properties as the original. This is perhaps

not surprising given that both positive and negative increments are possible in the

original process. The use of the reflected process enables us to investigate whether a

realisation does or does not return to the origin in a specified time interval known as

the reflection principle (first introduced in Problem 3.9 in the chapter 3 on random

walks).

Realisations or sample paths are never smooth no matter how small the time

interval over which they are observed. An illustration of this may be obtained by

considering the particular transformation a =
√
c and b = c, where c is a positive

constant, giving rise to the Brownian motion Q(t) =
√
cX(t/c) whose change has

mean 0 and variance σ2t. In other words the distributional properties of Q(t) are the

same as those of X(t) whatever the value of the constant c. It does not matter how

much the two axes are stretched given increasing detail or granularity of the path:

Q(t) still acts in a similar way to the original path. However, for small time intervals,

realisations of the path will always be spiky. This parallels a phenomenon known as

a fractal.
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A fractal is a mathematical set that shows a repeating pattern which is visible at

every scale no matter how small: in other words, if the pattern is magnified it looks

the same. See Addison (1997) for explanation concerning fractals and their relation

to Brownian motion. It is also known as a self-similar pattern. The Mandelbrot

set is a particular fractal named after its creator7. However, a fractal is usually de-

fined deterministically by a mathematical formula, unlike Brownian motion, which

is generated probabilistically. In a similar way any snapshot of Brownian motion for

different scalings will be statistically similar. A sample path of Brownian motion can

be shown to be almost surely continuous8.

Consider the increment in a standard Brownian motion,

Ds(t, t+ δ) = W (t+ δ)−W (t) : (10.15)

it will be normally distributed with mean 0 and variance δ. Hence [Ds(t, t + δ)]2/δ
has a χ2 distribution on one degree of freedom which has mean 1 and variance 2,

from which it follows that [Ds(t, t+ δ)]2 has mean δ and variance 2δ.

Following Lawler (2005), for small δ. the approximate size of the increment is

therefore ±
√
δ since the variance is small and both tend to zero. The purpose of this

diversion is to establish intuitively the nature of the output W (t). Is W (t) against t a

smooth curve? To answer this question we need to examine the ratio

W (t+ δ)−W (t)

δ
=

Ds(t, t+ δ)

δ

as δ → 0. The mean of Ds(t, t+ δ) is of order
√
δ, which implies that

lim
δ→0

W (t+ δ)−W (t)

δ
= O(1/

√
δ),

which implies that the limit does not exist. Hence W (t) is nowhere differentiable.

10.6 First visit times

Consider the one-dimensional Brownian motion,X(t), with no drift, which has mean

0 and variance σ
2t, starting at the origin. In this section, we are interested in the

distribution of the time Ta for X(t) to reach a value a(6= 0) for the first time: also

known as the first passage time to a. It can be shown that the Brownian motion is

recurrent (see Lawler (2006) or Grimmett and Stirzaker (1982)).

To obtain the probability distribution of Ta we need to determine P(Ta < t) =
P(A), where A is the event Ta < t, that is, a is reached before time t, which will

depend on the random variable X(t). To derive this result it is important to note

that the path is continuous despite the the fact that realisations or plots are based on

evaluation at discrete times. The derivation of P(A) is based on what happens to the

7 Benoit Mandelbrot (1924–2010), Polish mathematician.
8 Almost surely continuity in probability means that the process is continuous with probability 1. We have

avoided undue mathematical rigour but this term arises from the difficulty in defining this probability.
For example, the certainty can arise over events which are certain but over an infinite time which can
lead to logical inconsistencies.
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path after a is reached. Suppose that the event B = (X(t) > a), then by the law of

total probability,

P(A) = P(A ∩B) +P(A ∩Bc), (10.16)

where Bc is the event X(t) ≤ a. The right-hand side of the previous equation may

be written as

P(A|B)P(B) +P(Bc|A)P(A). (10.17)

If the event Bc (that is, event X(t) ≤ a) given A has occurred then it is equally

likely that B has occurred given A. This is the reflection principle due to André9

(see Figure (10.4)). Hence

P(Bc|A) = 1
2 . (10.18)

Furthermore, P(A|B) = 1 since if X(t) > a then Ta < t. Hence from (10.17),

P(A) = P(B) + 1
2P(A),

so that

P(A) = 2P(B). (10.19)

In words, this interesting result states that:

in a Brownian motion starting from the origin, the probability that level a is reached

first within time t is twice the probability that the random variable X(t) is greater

than a.

t

a

Ta

reflected path

X(t)

Figure 10.4 Illustrating the reflection principle: Ta is the time to the first visit to level a.

Since X(t) has a normal distribution with mean 0 and variance σ2t, it follows that

the distribution function of Ta is given by

P(Ta < t) = 2[1− Φ(z)], (10.20)

where Φ is a standard normal distribution function and z = a/(σ
√
t): this is known

9 Désiré André (1840–1917), French mathematician.
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as the inverse normal distribution function and the density function is

a√
2πσ2t3

exp

[

− a2

2σ2t

]

, t > 0. (10.21)

Figure 10.4 illustrates the reflection principle which is the basis of (10.20).

10.7 Other Brownian motions in one dimension

We have already met linear transformations of X(t) to standard Brownian motion

and Brownian motion with drift. In this section we shall discuss processes where

observations over time do not satisfy the Wiener conditions for Brownian motion but

may be transformed to satisfy the conditions.

Geometric Brownian motion. This process is often used to model financial stock

prices or population growth, or in other situations where measurements cannot be

negative. In finance it forms the basis for the Black–Scholes10 equation where the

log returns of stock prices is modelled: the main interest is in the option pricing of

derivatives11.

Geometric Brownian motion G(t) is defined by

G(t) = G(0) exp[(µ− 1
2σ

2)t+ σX(t], (t ≥ 0), (10.22)

where X(t) is a standard Brownian motion and G(0) > 0 is the initial value of the

process. In this formula, µ is the drift which is defined in finance by a deterministic

or predictable long-term trend, and σ measures variation and unpredictability, which

also might have a trend given by the term 1
2σ

2t. The parameterσ is sometimes known

as the volatility of the market in finance. Note that G(t) ≥ 0, which is required for

financial data.

The random variable G(t) is not itself a Brownian motion, but

log[G(t)] = log[G(0)] + (µ− 1
2σ

2)t+ σX(t)

is, since it is essentially a Brownian motion with drift. The process G(t) is said to

have a lognormal distribution. A transformation to give the path in the original

measurements is possible by taking the exponential of the Brownian motion. An

illustration of a geometric Brownian motion is shown in Figure 10.5. The probability

density function of G(t) is

ft(x) =
1

σx
√
2πt

exp

[

− [log x− logG(0)− (µ− 1
2σ

2)t]2

2σ2t

]

. (10.23)

From the density function it can be shown that the mean and variance of G(t) are

given by

E[G(t)] = G(0)eµt, (10.24)

10 Fischer Black (1938–1995), Myron Scholes (1941–), American economists.
11 A derivative is an traded asset with a price that is dependent upon or derived from one or more un-

derlying assets which can include shares, bonds, commodities, currencies, interest rates, and market
indexes.
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Figure 10.5 Geometric Brownian motion G(t) with µ = 0.1, σ = 0.2, and initial value

G(0) = 1 drawn using 1,000 time-points. The smooth curve shows the mean E[G(t)] =
G(0)eµt, known also as the trend.

V[G(t)] = G2(0)e2µt(eσ
2t − 1). (10.25)

The result for the exponential growth in the mean explains why the term 1
2σ

2t is

present in G(t).
Some examples of probability densities for standard Brownian, motion with drift

and geometric Brownian motion are shown in Figure 10.6.

x

Standard Brownian

Brownian with drift

Geometric
   Brownian

Figure 10.6 Sample density functions for standard Brownian motion (mean 0, volatility 1),

Brownian motion with drift (drift 1.5, volatility 1), geometric Brownian motion (mean 1,

volatility 1, initial value G(0) = 1), all computed in the section t = 1.

Ornstein–Uhlenbeck process12 This process is concerned with the modelling of a

particle moving through a gas, for example, subject to a frictional drag and the ran-

dom bombardment of molecules of the gas. The resulting Brownian motion depends

on three parameters: the mean µ, velocity λ, and σ
2.

12 Leonard Ornstein (1880–1941), George Eugene Uhlenbeck (1900–1988) Dutch physicists.
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In finance this is termed a mean reverting process. For example, it has applica-

tions in commodity pricing where economic arguments suggest that prices increase

to a long-term mean value when they are considered too low and decrease when

considered too high. The derivation of results for this process involves solution of

stochastic differential equations, which is beyond the scope of this text: readers are

referred to Grimmett and Stirzaker (1982) for further details.

10.8 Brownian motion in more than one dimension

Brownian motion in two or three dimensions13 is a more likely phenomenon than

0.5 1.0 1.5 2.0
X t

– 1.5

– 1.0

– 0.5

0.5

Y t

Figure 10.7 Two-dimensional standard Brownian motion starting at the origin with 1,000 time

points in both directions.

Figure 10.8 Three-dimensional standard motion starting at the origin with 100 time points in

each direction: there are two viewpoints of the same Brownian motion.

the one-dimensional case. In the opening section we considered the example of the

13 These were computed using a standard Mathematica package
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motion of a particle in a fluid in three or two dimensions. The modelling of these

situations is relatively straightforward when variables are independent with or with-

out drift. The data for two-dimensional standard Brownian motion are generated in

simultaneous pairs to create a consecutive sequence of points in the plane. A similar

process generates three-dimensional Brownian motion. It is fairly easy to show com-

puted diagrams of Brownian motion. Illustrations of standard Brownian in two and

three dimensions are shown in Figures 10.7 and 10.8.

10.9 Problems

10.1. Let X(t) be a standard Brownian motion.

(a) Find P[X(2) > 3].
(b) Find P[X(3) > X(2)].

10.2 Let X(t) be a Brownian motion with mean 0 and variance σ
2t starting at the origin.

(a) Find the distribution of |X(t)|, the absolute distance of X(t) from the origin.

(b) If σ = 1, evaluate P(|X(5)|) > 1).

10.3. X(t) = ln[Z(t)] is a Brownian motion with variance σ
2t.

(a) Find the distribution of Z(t).
(b) Evaluate P[Z(t) > 2] when σ

2 = 0.5.

10.4. Let X(t), (t ≥ 0) be a standard Brownian motion. Let τa be stopping time for X(t)
(that is, the first time that the process reaches state a). Explain why

Y (t) =

{
X(t) 0 < t < τa,
2X(τa)−X(t) t ≥ τa

represents the reflected process. Show that Y (t) is also a standard Brownian motion.

10.5. For a standard Brownian motion X(t), (t ≥ 0), show that E[X2(t)] = t using the mgf

for X(t).

10.6. In a standard Brownian motion let ta be the first time that the process reaches a ≥ 0,

often known as the hitting time. Let Y (t) be the maximum value of X(s) in 0 ≤ s ≤ t. Both

ta and Y (t) are random variables with the property that ta ≤ t if and only if Y (t) ≥ a. Using

the reflection principle (Section 10.7), we know that

P[Y (t) ≥ a|ta ≤ t] = 1
2
.

Using this result, show that

P(ta ≤ t) =
√( 2

πt

)∫ ∞

a

exp[−x2/(2t)]dx.

What is the mean hitting time?

10.7. X(t) is a standard Brownian motion. Show that Y (t) = X(a2t)/a where a > 0 is a

constant is also a standard Brownian motion.

10.8. X(t) and Y (t) are independent standard Brownian motions.

(a) Find the probability densities of U(t) = X2(t)/t and V (t) = Y 2(t)/t.
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(b) Using mgf’s (see Problem 1.29), show that the probability distribution of W 2(t) =
U2(t) + V 2(t) is exponential.

(c) Find P[R(t) ≥ r] where R(t) =
√
[X2(t) + Y 2(t)] is the Euclidean distance of

the two-dimensional Brownian motion [X(t), Y (t)] from the origin. (See Open University

(1988), Unit 14: Diffusion Processes.)

10.9. X(t) is a standard Brownian motion. Find the moment generating function of

Y (t) =

{
0 t = 0,
tX(1/t) t > 0.

Show that

lim
t→∞

X(t)

t
= 0.

10.10. The probability density function for geometric Brownian motion is given by

fx(t) =
1

σx
√
2πt

exp[−(ln x− (µ− 1
2
σ2)t)2/(2σ2t)], (x ≥ 0)

for the random variable

Z(t) = exp[(µ− 1

2
σ2)t+ σX(t)], (x > 0).

Show that the mean and variance of this lognormal distribution are given by

E[Z(t)] = eµt, V[Z(t)] = e2µt[eσ
2t − 1].

10.11. If X(t), (t ≥ 0) is a standard Brownian motion, use the conditional expecta-

tion

E[X(t)|X(u), 0 ≤ u < y], (0 ≤ y < t)

to show that X(t) is a martingale (see Section 9.5 for definition of martingales).
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CHAPTER 11

Computer Simulations and Projects

The software Mathematica has been used extensively by the authors to confirm an-

swers in worked examples and in the problems at the end of chapters, and in gener-

ating graphs. Other symbolic computation systems such as MapleTM , MATLABTM ,

etc., could also have been used since they are frequently part of many courses in

mathematics, statistics, engineering, and the physical sciences. It is seen as a neces-

sary training in the use of computers in these subjects.

Although the symbolic computational systems may be used to solve numerical

problems alternative statistical software such as R: R can be downloaded from

http://www.r-project.org

Any statistical software with a suite of simulation routines that allow the genera-

tion of results for the probabilistic questions and procedures for the manipulation of

matrices in Markov chains, as well as graphical routines, can be used for the numer-

ical projects.

Readers of this book are encouraged to sample some of the theoretical and nu-

merical projects listed below in conjunction with the text. The following projects

follow the chapters in the main text. It should be emphasised that any computer rou-

tine will generally generate answers without explaining just how any results were

obtained. Symbolic computing is not yet a substitute for understanding the theory

behind stochastic processes. Computations and graphs are often interesting in that

they give some idea of scale and importance in problems: a result can look inter-

esting as a formula but be of negligible consequence numerically as a model of a

stochastic process.

The programs can be considered as a supplement to the text for those readers who

have access to Mathematica and R.

Chapter 1: Some Background on Probability

11-1.1. Two distinguishable dice are rolled. The program simulates the sum of the two face

values shown for 1,000, say, random throws. Compare the average of these values with the

theoretical expected sum of 7 as in Problem 1.11. Compare also theoretical variance of the

sum with the simulated value.

11-1.2. The computer program simulates the case of three dice which are rolled and their face

values noted. By running the program, say, 2,000 times, compare by calculating the ratio of

227
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the number of the cases in which two dice show the same face value and the third is different

with the theoretical probability of 5/12. Estimate the probability that the three dice all show

different values with the theoretical probability.

11-1.3. A fair coin is spun n times, and the sequence of faces shown recorded. The program

simulates this Bernoulli experiment (see Section 1.7). Count the frequencies of the occurrences

of heads and tails over, say, n = 1,000 trials.

Continue the program by counting in a simulation the number of times, say, a head appears

in say 20 spins, and perform the simulation m = 2,000 times. Compare the data obtained with

the exact binomial distribution which the theory predicts for this problem.

11-1.4. The gamma distribution has the density function

f(x) =
αn

Γ(n)
xn−1e−αx.

The program shows graphically by surfaces the distribution and density functions for n = 2,

say, in terms of x and the parameter λ = 1/α (Mathematica uses the parameter λ).

11-1.5. This program displays the moment generating function for Z which has the normal

distribution N(0, 1), and also for Z2 (see Problem 1.29).

Chapter 2: Some Gambling Problems

11-2.1. This program simulates the gambler’s ruin problem in which a gambler with k units

bets against an opponent with (a − k) with a probability p of the gambler winning at each

play. It shows a graph of the gambler’s current stake against the number of the play, and such

that the graph terminates when either of the absorbing states at k = 0 or k = a is reached. See

Figure 2.1 in Section 2.3.

11-2.2. In a single trial the possible score outcomes 1 and 2 can occur with probabilities α and

1 − α where 0 < α < 1 (see Problem 2.10). A succession of such trials take place and each

time the scores are accumulated from zero. The program simulates this process, and counts

the number of times the total scores 1,2,3,. . . , m occur. Possible numbers are α = 1
4

, m = 20
scores run 1,000 times. The theory gives the probability that score n occurs as

pn =
1− (α− 1)n+1

2− α
.

Compare the results graphically.

11-2.3. The probability of ruin in the standard gambler’s ruin problem is given by

uk =
sk − sa

1− sa
, (s 6= 1), uk = 1− k

a
, (s = 1),

where s = (1 − p)/p, a is the total stake, k is the gambler’s initial stake, and p is the proba-

bility that the gambler wins at each play. The program reproduces Figure 2.2 which shows the

probability uk versus k for a given value of a (a = 20 in the figure) for a selection of values

of p.

11-2.4. The expected duration of the gambler’s ruin is given by

dk =
1

1− 2p

[

k − a(1− sk)

1− sa

]

, (s 6= 1), dk = k(a− k), (s = 1),
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where s = (1−p)/p, a is the total stake, k is the gambler’s initial stake, and p is the probability

that the gambler wins at each play. Display the expected duration dk against k for a given value

of a (a = 20 is used in the program) for a selection of values of p.

Find the maximum expected duration for different values of p and plot the results.

Chapter 3: Random Walks

11-3.1. The program simulates a symmetric random walk which starts at position k = 0.

Display the walk in a graph with joined successive steps in the k (position of walk) versus n
(number of steps) plane as illustrated in Figure 3.3. You could try, for example, 1,000 steps.

11-3.2. From the answer to Problem 3.4, calculate the probability that the first return of a

symmetric random walk to the origin can be expressed in the form show that

f2m = (−1)n+1

(
1
2

1
2
m

)

.

It has been shown that the mean associated with fn is infinite. Note that if n is an odd integer,

then all fn are zero. Compute the series

s(r) =

r∑

m=1

2mfm

for r = 2, 4, 6, . . . , 100, and plot s(r) versus r. Show how s(r) increases with r.

11-3.3. In Section 3.3 it is shown that the probability that a random walk with parameter p is

in state x after n steps from the origin is given by

vn,x =

(
n

1
2
(n+ x)

)

p
1
2
(n+x)(1− p)

1
2
(n−x),

where n and x are either both odd or both even. Define a function of n, x, and p to represent

vn,x. For specific values of n confirm that the expected value of the final position of the walk

is n(2p − 1). Again for specific values of n (say 16) and p (say 2
3

), show graphically the

probability distribution vn,x in terms of x.

11-3.4. The program simulates a two-dimensional symmetric random walk which starts at the

origin. Make sure that odd and even values of the numbers of steps are included (see Problems

3.21 and 3.22). Collect the data of the final positions of n trial walks over m steps. Possible

numbers are n = 2, 000 and m = 40. The data can be displayed in a three-dimensional

surface plot.

Let the final positions of the walk be the list (ik, jk) for k = 1, 2, 3, . . . , n. Calculate the

squares D2
k = i2k + j2k , and find the mean of D2

k. Try this for different m. What would you

guess is the mean value of D2
k in terms of m?

Chapter 4: Markov Chains

11-4.1. The program computes the eigenvalues and eigenvectors of the transition matrix T
given by

T =







1
4

1
8

3
8

1
4

1
3

1
6

1
6

1
3

1
3

1
3

0 1
3

1
3

0 0 2
3
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(also see Problem 4.6(c)). If C is the matrix of eigenvectors and D is the diagonal matrix of

eigenvalues, check by a program that T = CDC−1. Find a general formula for Tn. For how

many decimal places is limt→∞ Tn correct for T 10?

11-4.2. Find the eigenvalues and eigenvectors of the stochastic matrix

T =





1
4

1
2

1
4

1
2

1
4

1
4

1
4

1
4

1
2



 .

Construct a formula for Tn, and find limn→∞ Tn.

11-4.3. This program simulates a two-state Markov chain with transition matrix

T =

[
1− α α
β 1− β

]

.

Possible values for the parameters are α = 1
2

and β = 1
3

for, say, 1,000 steps. Then count the

number of times that states E1 and E2 occur in the random process. Compare this output with

the theoretical stationary distribution

p =
[

β
α+β

α
α+β

]
.

11-4.4. A program is devised to simulate a three-state (or higher state) Markov chain with

transition matrix

T =

[
1− α2 − α3 α2 α3

β1 1− β1 − β3 β3

γ1 γ2 1− γ1 − γ2

]

.

Test the program with the data from Example 4.4 in which

T =





1
4

1
2

1
4

1
2

1
4

1
4

1
4

1
4

1
2



 .

Count the number of times that states E1, E2, and E3 occur in the random process. Compare

this output with the theoretical stationary distribution.

11-4.5. A four-state Markov chain with two absorbing states has the transition matrix

S =






1 0 0 0
3
4

0 1
4

0
0 1

4
0 3

4

0 0 0 1






(see Problem 4.8b). It simulates the chain which starts in state E2, and determines the pro-

portion of chains which finish in either E1 or E2 over, say, 1,000 runs. Check this answer to

Problem 4.8(b) by finding limt→∞ Tn.
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11-4.6. As in Problem 4.8(a), a Markov chain has the transition matrix

T =

[ 1
4

1
4

1
2

1 0 0
1
2

1
4

1
4

]

.

Confirm the eigenvalues of T and show that T has just two distinct nontrivial eigenvalues. Find

the Jordan decomposition matrix J and a matrix C such that T = CJC−1. Input a formula

for Jn, find Tn and its limit as n → ∞.

11-4.7. This represents a Markov chain as a signal flow of the states E1, E2, . . . against the

steps n = 1, 2, 3, . . .. It displays the chain for the three-state process with transition matrix

T =

[ 1
4

1
4

1
2

1 0 0
1
2

1
4

1
4

]

(see Problem 4.8a).

Apply the signal flow display to the six-state chain

T =











1
4

1
2

0 0 0 1
4

0 0 0 0 0 1
0 1

4
0 1

4
1
2

0
0 0 0 0 1 0
0 0 0 1

2
1
2

0
0 0 0 1

2
1
2

0
0 0 1 0 0 0











which also appears in Problem 4.11. The flow diagram should reveal the closed subset.

11-4.8. Form an n × n matrix whose rows are randomly and independently chosen from the

uniform discrete distribution of the numbers 1, 2, 3, . . . , n. Transform this into a stochastic

matrix T by dividing the elements of each row by the sum of the elements in that row. This

is a method of generating a class of positive stochastic matrices (see Section 4.7a). Find the

eigenvalues and eigenvectors of T , Tn, and limn→∞ Tn.

Chapter 5: Poisson Processes

11-5.1. In the Poisson process with parameter λ, the probability that the population is of size

n at time t is given by pn(t) = (λt)ne−λt/n! (see Section 5.2). The program computes the

first few probabilities in dimensionless form against λt as in Fig. 5.1.

This also shows that the maximum value of the probability on the graph of pn(t) lies on the

graph of pn−1(t).

11-5.2. Simulate the Geiger counter which is modelled by a Poisson process with parameter λ.

The probability of a recording of a hit in any time interval of duration δt is assumed to be λδt
with multiple recordings negligible (see Section 5.2). Assuming that the readings start from

zero, the growth of the readings against time are shown.

Run the program a number of times over the same time interval, and find the mean value of

the data. Compare this value with the theoretical value for the mean of a Poisson process.
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Chapter 6: Birth and Death Processes

11-6.1. The program simulates a simple birth and death process with birth rate λ and death rate

µ. Time interval (0, T ) should be divided into increments δt, so that the probability that a birth

takes place in any interval of duration δt is λδt, and similarly for a death (see Section 6.5).

Shows graphically how the population changes with time.

11-6.2. The probability generating function G(s, t) for a simple birth and death process with

birth and death rates λ and µ, respectively, is given by

G(s, t) =

[
µ(1− s)− (µ− λs)e−(λ−µ)t

λ(1− s)− (µ− λs)e−(λ−µ)t

]n0

,

(see Eqn (6.23). Define the function G(s, t) in Mathematica, and find the mean and variance

of the population size as functions of t.

11-6.3. In a death process, the death rate is µ and the initial population is n0. The probability

that the population is extinct by time t is given by

p0(t) = (1− e−µt)n0

(see Eqn (6.17)). Show that the mean time τn0
to extinction is given by

τn0
=

n0

µ

n0−1∑

k=0

(−1)k

(k + 1)2

(
n0 − 1

k

)

,

(see Problem 6.29). The program calculates the dimensionless µτn0
from the series. Plot a

graph of τn0
versus n0, say for n0 = 1, 2, 3, . . . , 50.

Now construct a program to simulate a death process with parameter µ. Calculate a series

of extinction times (say, 50?) and compare the mean of these times with the theoretical value

from the series.

11-6.4. For a simple birth and death process with equal birth and death rates λ, the probability

generating function is

G(s, t) =

[
1 + (λt− 1)(1− s)

1 + λt(1− s)

]n0

,

where n0 is the initial population size (see Eqn (6.24)). Find the vector function for the prob-

abilities pn(t) for n = 0, 1, 2, . . . , n1 as a function of the dimensionless time τ = λt.
Show graphically how pn(t) behaves as τ increases from zero. Possible values are n0 = 15,

n1 = 30, and τ = 1, 2, 3, 4, 5.

11-6.5. The partial differential equation for the probability generating function for the birth

and death process with birth and death rates λ and µ is given by

∂G(s, t)

∂t
= (λs− µ)(s− 1)

∂G(s, t)

∂s
.

The program solves this equation for G(s, t) subject to the initial population n0.

Chapter 7: Queues

11-7.1. This program simulates a single-server queue with arrivals having a Poisson distribu-

tion with parameter λ and with service times having a negative exponential distribution with

parameter µ (λ < µ). Possible values are λ = 1, µ = 1.1 with an elapse time of t = 2,000 in
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steps of duration δt = 0.1. By counting the number of times queue lengths 0, 1, 2, . . . occur,

a distribution for the simulation can be calculated and represented in a bar chart.

The theoretical probability that r persons are in the queue (including the person being

served) in the stationary process is given by pr = (1 − ρ)ρr where ρ = λ/µ. Compare

graphically these probabilities with the bar chart.

11-7.2. Consider the solution for the problem of the queue with r servers given in Section 7.4.

The probability p0 that there is no one queueing is given by Eqn (7.11):

p0 = 1

/[
r−1∑

n=0

ρn

n!
+

ρr

(r − ρ)(r − 1)!

]

.

Represent this by a function of the traffic density ρ1 = ρ/r and the number of servers r. Plot

the probabilities against ρ1 for r = 1, 2, 3, 4 servers. The probability pn that the queue is of

length n is given by

pn =

{
ρnp0/n! n < r
ρnp0/[r

n−rr!] n ≥ r.

Compose a list of the probabilities when r = 6 and n = 0, 1, 2, . . . , 20 for the case ρ1 = 0.8.

For what value of n does the probability take its largest value?

Display a surface over the grid r × n where r = 1, 2, 3, 4, 5, 6 and n = 0, 1, 2, . . . , 20
again for the case ρ1 = 0.8. For the same parameter plot the expected queue lengths for

r = 1, 2, . . . , 20 excluding those being served.

11-7.3. The fixed service time queue has the probability generating function

G(s) =
(1− ρ)(1− s)

1− seρ(1−s)
, 0 < ρ < 1,

where ρ = λ/τ and τ is the service time. Using Mathematica the results in Problem 7.12 for

p0, p1, p2 and the expected length of the queue are checked.

11-7.4. In the baulked queue (see Example 7.1) not more than m ≥ 2 persons are permitted to

form a queue. The probability generating function for the queue is (see Problem 7.13) given

by

G(s) =
(1− ρ)[1− (ρs)m+1]

(1− ρm+1)(1− ρs)
, ρ 6= 1.

This function is defined in Mathematica, and a list is obtained which represents the probability

distribution over i = 0, 1, 2, . . . ,m.

Now compare these results with a simulated baulked queue. Some possible parametric val-

ues are

λ = 1.2; µ = 1; incremental time step, δt = 0.1;m = 10,

run over a time of t = 2,000.

Chapter 8: Reliability and Renewal

11-8.1. In Section 8.2, the reliability function is defined as

R(t) = P(T > t) = 1− F (t),

and the failure rate function is given by r(t) = f(t)/R(t). The functions F (t), R(t), and r(t)
are derived for the gamma density function f(t) = λ2te−λt. Plot the functions for λ = 1 over

the interval 0 ≤ t ≤ 5.
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11-8.2. In Problem 8.3 the failure rate function is given by

r(t) =
ct

a2 + t2
, t ≥ 0, a > 0, c > 1.

Formulae are found for the reliability function R(t) and the density function f(t). All three

functions are plotted for a = 1 and c = 2. What general formula does Mathematica give for

the mean time to failure in terms of a and c? Find the actual means in the cases (a) a = 5,

c = 1.02, (b) a = 5, c = 2. Plot the mean time to failure as a surface in terms of a and c for,

say, 0.2 < a < 10 and 1.1 < c < 2.

11-8.3. Define a reliability function for a process in which n components are in parallel,

and each has the same time to failure, which are independent, identically exponential dis-

tributions with parameter λ (see Example 8.4). Find the mean time to failure for the cases

n = 1, 2, 3, . . . , 10, say. How do you expect this mean to behave as n → ∞?

Define a reliability function for the case of three components in parallel, each having an

exponentially distributed failure time, but with different parameters λ1, λ2, and λ3.

Chapter 9: Branching and Other Random Processes

11-9.1. A branching process starts with one individual, and the probability that any individual

in any generation produces j descendants is given by pj = 1/2j+1 (j = 0, 1, 2, . . .). The

probability generating function for the n-th generation is given by

Gn(s) =
n− (n− 1)s

n+ 1− ns

(see Example 9.1). Find the probability that there are r individuals in the n-th generation.

Plot the first few terms in the distributions for the cases n = 1, 2, 3, 4, 5. Check the mean

population size in the n-th generation.

11-9.2. The branching process in Problem 9.3 has the probability generating function

G(s) = a+ bs+ (1− a− b)s2, a > 0, b > 0, a+ b < 1.

The process starts with one individual. Using a nesting command, the probabilities that there

are 0, 1, 2, . . . , 31, 32 individuals in the 5th generation, assuming, say, that a = 1
4

and b =
1
3

, are found. The probabilities are plotted against the number of individuals: why do they

oscillate? Also find the probability of extinction for general values of a and b.

11-9.3. In Section 9.5, the gambling problem in which a gambler starts with £1 and bets against

the house with an even chance of collecting £2 or losing £1 is explained. If the gambler loses

then he or she doubles the bet to £2 with the same evens chances. The gambler continues

doubling the bet until he or she wins. It was shown that this eventually guarantees that the

gambler wins £1. A program is devised which simulates this martingale, and gives, by taking

the mean of a large number of games, an estimate of the expected number of plays until the

gambler wins.

11-9.4. This program models the doubling gambling martingale in Section 9.5 to simulate the

expected value

E(Zn+1|Z0, Z1, Z2, . . . , Zn) = Zn,

where Z0 = 1. The final outputs should take values in the sample space

{−2n + 2m+ 2}, (m = 0, 1, 2, . . . , 2n − 1),

for the random variable. A possible case to try is n = 5 over 5,000 trials.
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11-9.5. This program computes the progress of stochastic epidemic as in Section 9.8. Assume

that two individuals in a population size n = 100 are infected initially (t = 0). The tridiagonal

matrix T will need to be defined for β = 1, γ = 0.5 and the time-step τ = 0.01. The initial

probability vector is

s0 =
[

0 0 1 0 · · · 0
]
.

The calculation s0T is required to determine the random output for s(1) which will determine

I(τ ). This process is repeated in a loop to determine the sequences {sk} and {I(kτ )} for

k = 1, 2, . . . 2,000 if 2,000 steps are chosen. (All data may be varied as long as probability

magnitudes are checked.) The graph of the list I(kτ ) versus k can be plotted as in Figure 9.6.

The deterministic simple epidemic is governed by Eqns (9.21) and (9.22):

dZS

dt
= −β

n
ZSZI + γZI ,

dZI

dt
=

β

n
ZSZI − γZI ,

where ZS and ZI represent the susceptible and infective populations. The solution for ZI is

given by (9.24), namely

ZI =
2(β − γ)n

2β + [(β − γ)n− 2β]e−(β−γ)t
.

Plot the infective curve for β = 1 and γ = 0.5, and compare the result with the stochastic

curve in Project 11-9.5.

Chapter 10: Brownian Motion: Wiener Process

11-10.1. This program simulates a one-dimensional standard Brownian motion (Wiener pro-

cess) X(t) over the interval t ∈ [0, 1] with (say) 1,000 steps. Run several simulations to see

how the output can vary.

11-10.2. This program simulates a Brownian motion with drift. Figure 10.2 was drawn with

drift 0.3 and volatility 0.3 with 1,000 steps over the time interval t ∈ [0, 1].

11-10.3. This is a program to determine the time (or time-step) where a standard Brownian

motion X(t) first hits a prescribed level a > 0. The procedure stops at this time, and plots the

process as far as the stopping time.

11-10.4. This program plots five (or any number) of standard Brownian motions with 1,000

steps over 0 ≤ t ≤ 10. It shows how they disperse with respect to the variance V(t) =
√
t.

11-10.5. This program runs n standard Brownian motions over the same time interval [0, t]
and plots the final values of each to show the normal distribution at time t.

11-10.6. An example of geometric Brownian motion together with its trend is illustrated in

this program.
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Answers and Comments on
End-of-Chapter Problems

Answers are given for selected problems.

Chapter 1

1.2. (c) (A ∩B) ∩ Cc; (e) [A ∩ (B ∪ C)c] ∪ [B ∩ (A ∪ C)c] ∪ [C ∩ (A ∪B)c].
1.3. (a) 0.6; (b) 0.1; (c) 0.7.

1.4. The probabilities are 1
9

and 5
9

.

1.5. The probability is 5
12

.

1.6. The mean value is 1
2

.

1.7. The mean is α and the variance is also α.

1.9. The probability generating function is ps/(1 − qs). The mean is 1/p and the variance is

q/p2.

1.10. (a) 11/36; (b) 5/18; (c) 5/36; (d) 1/18; (e) 5/18.

1.11. The expected value of the face values is 7, and the variance is 35/6.

1.12. There are 216 possible outcomes, the probability that two dice have the same face values

and the third is different is 5/12.

1.13. 17/52.

1.14. Cumulative distribution function is F (x) = 1− 1
2
e−(x−a)/a.

1.15. G(s) = ps/[1− s(1− p)]: the mean is 1/p.

1.16. The expected value is given by

E(Y ) = nm/α.

1.17. The probabilities are

p0 =
1− α

1 + α
, pn =

2αn

(1 + α)n+1
(n = 1, 2, . . .) µ = 2α.

1.18. The moment generating function is

MX(t) =
1

b− a

∞∑

n=1

(
bn − an

n!

)

tn−1,

and

E(Xn) =
bn+1 − an+1

(n+ 1)(b− a)
.

1.20. The means and variances are: (a) µ, p(1− p); (b) 1/p, (1− p)/p2; (c) rq/p; rq/p2.

1.21. (0.95)5 ≈ 0.774 and (0.9975)5 ≈ 0.9876.

1.22. (a) 0.000328; (b) 0.1638; (c) 0.01750.

1.25. The chance of choosing 6 numbers correctly is 1 in 13,983,816.

237
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1.26. P(vowel) = 0.3196.

1.27. E(Y |X) = ( 4
3
, 7
3
, 17

3
); E[E(Y |X)] = 39/20.

1,28. (b) N(0, 1); (c) N(aµ+ b, a2
σ

2); (d)N(0, n).

1.29. (c) µ = n; σ2 = 2n.

Chapter 2

2.1. (a) Probability of ruin is uk ≈ 0.132, and the expected duration is dk ≈ 409;

(c) uk = 0.2, dk = 400.

2.2. The probability p = 0.498999 to 6 digits: note that the result is very close to 1
2

.

2.3. (a) uk = A+ 3kB; (b) A+ (B/7k); (c) uk = A+ (1 +
√
2)kB + (1−√

2)kC.

2.4. (a) uk = (625 − 5k)/624; (c) uk = k(10− k).

2.6. The expected duration is k(a− k).
2.7. dk = k(a− 2p)/(2p).

2.8. The game would be expected to take four times as long.

2.9. The probabilities of the gambler winning in the two cases are 2.23×10−4 and 2.06×10−6 .

2.10. pn = 2
3
+ 1

3
(− 1

2
)n, n = 1, 2, 3, . . . .

2.11. pn = [1− (q − 1)n+1]/(2− q).

2.14. The game extended by

1

1 + 2p

[

k − a(1− sk)(sa − 1− 2sk)

1− s2a

]

.

2.20. The expected duration of the game is about 99 plays.

2.22. (a) αk = 1
2

; (b) αk = (2k − 1)/(4k); (c) αk = (a+ k + 1)/[2(a+ k)].

2.24. (b) (e− 1)/e; (c) [(n − 1)/n]n−1.

Chapter 3

3.2. The probability that the walker is at the origin at step 8 is

P(X8 = 0) =
1

28

(
8

4

)

≈ 0.273.

The probability that it is not the first visit there is approximately 0.234.

3.4. (a)

fn =







(−1)
1
2
n+1

(
1
2
1
2
n

)

(n even)

0 (n odd)

.

3.5. Treat the problem as a symmetric random walk with a return to the origin: the probability

is

vn,0 =
(2n)!

22nn!n!
.

3.7. The mean number of steps to the first return is 4pq/|p− q|.
3.10. The probability is (2n)!/[22n+1n!(n+ 1)!].
3.12. The respective probabilities are 1

4
, 1
8

, and 1
64

.

3.14. The probability that the walk ever visits x > 0 is (1− |p− q|)/(2q).
3.17. (b) The probability that the walk is at O after n steps is
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pj =







(
j
1
2
j

)
1

2j
+

(
j

1
2
(j + n)

)
1

2j
+

(
j

1
2
(j − n)

)
1

2j
(j, n both even)

0 (j odd, n even, or j even, n odd)
(

j
1
2
(j + n)

)
1

2j
+

(
j

1
2
(j − n)

)
1

2j
(j, n both odd)

3.18. (a) 0.104; (b) 0.415.

3.19. p = (1 +
√
5)/4.

3.20. The probability that they are both at the origin at step n is at 0 if n is odd, and, if n is

even,

1

22n

(
n
1
2
n

)2

.

3.21. p2n ∼ 2/(nπ) for large n.

Chapter 4

4.1. p23 = 5/12; p(1) = [ 173
720

, 1
3
, 307
720

].

4.2. p
(2)
22 = 13

36
; p

(2)
13 = 13

48
; p

(2)
31 = 17

48
.

4.3. p(3) = [943, 2513]/3456; eigenvalues of T are 1, 1
12

;

Tn → 1

11

[
3 8
3 8

]

as n → ∞.

4.5. Eigenvalues are

a+ b+ c,
1

2
[2a− b− c± i

√
3|b− c|].

(a) The eigenvalues are 1, 1
4

, 1
4

with corresponding eigenvectors

[
1
1
1

]

,

[ −1
1
0

]

,

[ −1
0
1

]

.

4.6.(a)

Tn =
1

11

[
4 + 7(− 3

8
)n 7− 7(− 3

8
)n

4− (− 3
8
)n 7 + (− 3

8
)n

]

.

(b) The eigenvalues are − 1
4
, 1
4
, 1.

4.7. 40% of the days are sunny.

4.8. (a) The eigenvalues are − 1
4
,− 1

4
, 1; (c) The eigenvalues are 1

3
, 1
3
, and 1. The invariant

distribution is [ 1
4
, 0, 3

4
].

4.9. (a) Eigenvalues are − 1
8
,− 1

8
, 1.

(b) A matrix C of transposed eigenvectors is given by

C =

[
1 5

12
1

−4 − 5
2

1
1 1 1

]

.

(c) The invariant distribution is [28, 15, 39]/82.

(d) The eigenvectors are − 1
4
, 1
12
, 1.
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(e) The limiting matrix is

lim
n→∞

Tn =






1 0 0 0
2
3

0 1
3

0
0 0 1 0
1
3

0 2
3

0




 .

4.10. f1 = 1; f2 = 1; f3 = 1
16

; f4 = 1
16

. Every row of limn→∞ Tn is { 2
3

1
3

0 0}.

4.11. E4 and E5 form a closed subset with a invariant distribution [ 1
3

2
3
]

4.12. All states except E7 have period 3.

4.15. µ1 = 1 + a+ ab+ abc. E1 is an ergodic state.

4.17. Probability of an item being completed is (1− p − q)2/(1− q)2.

4.18. µ3 = 5
2

.

4.23. For example f
(4)
11 = 5

48
.

Chapter 5

5.1. (a) 0.602; (b) 0.235.

5.6. The mean number of calls received by time t is

µ(t) = at+ (b/ω) sinωt.

5.7. The mean reading at time t is n0 + λt.
5.8. (a) P[N(3) = 6] = 0.00353; (c) P[N(3.7) = 4|N(2.1) = 2] = 0.144; (d) P[N(7) −
N(3) = 3] = 0.180.

5.9. The bank should employ 17 operators.

5.10. The expected value of the switch-off times is n/λ.

Chapter 6

6.1. The probability that the original cell has not divided at time t is eλt. The variance at time

t is e2λt − eλt.
6.3. The probability that the population has halved at time t is

p 1
2
n0

(t) =

(
n0
1
2
n0

)

[e−µt(1− e−µt)]
1
2
n0 .

The required time is µ−1 ln 2.

6.4. (b) p0(t) = 0, pn(t) = e−λt(1− e−λt)n−1, (n = 1, 2, 3, . . .).
6.5.

pn(t) =

(
r

n

)(
2

2 + t

)r ( t

2

)n

.

The mean is rt/(2 + t).
6.6 (b),(c) The probability of extinction at time t is

G(0, t) =

[
µ− µe−(λ−µ)t

λ− µe−(λ−µ)t

]n0

→
{

(µ/λ)n0 ifλ > µ
1 ifλ < µ.

(d) The variance is

n0(λ+ µ)e(λ−µ)t[e(λ−µ)t − 1]/(λ − µ).

6.7. The probability of ultimate extinction is e−λ/µ.

6.18. The mean is

µ =
λ

µ
.
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6.19. The maximum value of pn(t) is
(

n− 1

n0 − 1

)

nn0

0 n−n(n− n0)
n−n0 .

6.21. The mean population size at time t is

n0 exp

[

−
∫ t

0

µ(s)ds

]

,

and

µ(t) =
α

1 + αt
.

6.22. Ultimate extinction is certain.

6.23. The probability that the population size is n at time t is given by

p0(t) =
1− µe−t

1 + µe−t
, pn(t) =

2µne−nt

(1 + µe−t)n+1
(n = 1, 2, . . .)

and its mean is 2µe−t.

6.30. The mean population size at time t is e(λ−µ)t.

The probability generating function is

G(s, t) = 1− e−µt +
se−(λ+µ)t

1− (1− e−λt)s
.

Chapter 7

7.1. (a) pn = 1/2n+1; (c) 7/8.

7.3.

p0 = 1/

[

1 +

∞∑

n=1

λ0λ1 · · ·λn−1

µ1µ2 · · ·µn

]

.

The expected length of the queue is 1/µ.

7.4. If m = 3 and ρ = 1, then the expected length is 3
2

.

7.5. The mean and variance are respectively λ/(µ− λ) and λµ/(µ− λ)2.

7.6. ρ ≈ 0.74 and the variance is approximately 10.94.

7.8. 6 telephones should be manned.

7.9. If the expected lengths are EM (N) and ED(N) respectively, then ED(N) < EM (N)
assuming 0 < ρ < 1, where ρ = λ/µ.

7.10. 0 ≤ ρ <
√
5− 1.

7.11. The required probability generating function is

G(s) =

(
2− ρ

2 + ρ

)(
2 + ρs

2− ρs

)

.

7.12. (b) The expected length of the queue is ρ(1− 1
2
ρ)/(1− ρ) and its variance is

ρ

12(1 − ρ)2
(12− 18ρ+ 10ρ2 − ρ3).

(c) ρ = 3−
√
5.

7.13. The expected length is 1
2
m.

7.14. The expected length is ρ2/(1 − ρ).
7.15. The mean service time is 10

3
minutes.
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7.17. The expected waiting time is 1/(4µ).
7.18. The length of the waiting list becomes 0.89 +O(ε).
7.19. The expected value of the waiting time is

1

µ

(

1 +
p0ρ

r

(r − 1)!(r − ρ)2

)′

.

7.20. The probability that no one is waiting except those being served is

1− p0ρ
r+1

r!(r − ρ)
,

where p0 is given by Eqn (7.11).

7.21. For all booths the expected number of cars queueing is

(r − 1)λ

µ(r − 1)− λ
,

and the number of extra vehicles queueing is

λ2

[µ(r − 1)− λ][µr − λ]
.

7.22. µ = 11λ/10.

Chapter 8

8.1. The reliability function is

R(t) =

{
1 t ≤ t0
(t1 − t)/(t1 − t0) t0 < t < t1
0 t ≥ t1.

The expected life of the component is 1
2
(t0 + t1).

8.2. The failure rate function is r(t) = λ2t/(1 + λt). The mean and variance of the time to

failure are respectively 2/λ and 2/λ2.

8.3. The probability density function is given by f(t) = t/(1 + t2)3/2.

8.4. The reliability function is

R(t) =

{
e−λ1t

2

, 0 < t < t0
e−[(λ1−λ2)t0(2t−t0)+λ2t

2], t > t0.

8.5. The expected time to maintenance is 61.2 hours.

8.6. The expected time to failure is n/α.

8.7. The mean time to failure of the generator is 1/λf and the mean time for the generator to

be operational again is (1/λf ) + (1/λr).
8.8. The relation between the parameters is given by

λ = − 1

1000
ln

[
0.999 − (1 + 1000µ)e−1000µ

1− (1 + 1000µ)e−1000µ

]

.

8.9. 3 components should be carried.

8.10. (a) P(T1 < T2) = λ1/(λ1 + λ2).
(b) P(T1 < T2) = λ2

1(λ1 + 3λ2)/(λ1 + λ2)
3.

8.11. r(t) → λ1 if λ2 > λ1, and r(t) → λ2 if λ2 < λ1.

8.12. P(S3 ≤ t) = 1− (1 + λt+ 1
2
t2λ2)e−λt.
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Chapter 9

9.1. pn,j = [(2n − 1)/2n]j−1. The mean population size of the n-th generation is 2n.

9.2. The probability generating function of the second generation is

G2(s) =
(1− p)(1− ps)

(1− p+ p2)− ps
.

The mean population size of the n-th generation is µn = [p/(1− p)]n.

9.3. The maximum possible population size of the n-th generation is 2n. It is helpful to draw

a graph in the (a, b) plane to show the region where extinction is certain.

9.4. The variance of the n-th generation is λn+1(λn − 1)/(λ− 1).
9.5. The expected size of the n-th generation is µn = [λn tanhn λ]/2n.

9.7. (a) The probability that the population size of the n-th generation is m is

pn,m =
nm−2

(n+ 1)m+2
(m+ 2n2 − 1).

(b) The probability of extinction by the n-th generation is [n/(n+ 1)]2.

(c)1.

9.8. µn = rµn.

9.9. (b)

E(Zn) =

{
(1− µ

n+1)/(1−µ) µ 6= 1
n+ 1 µ = 1.

(d) The variance of Zn is

V(Zn) =
σ

2(1− µ
n)(1−µ

n+1)

(1− µ)(1−µ2)
,

if µ 6= 1, or 1
2
σ

2n(n+ 1) if µ = 1.

9.10.(a) µn = µn and σ
2
n = µn(µn − 1)/(µ − 1) if µ 6= 1.

(b) µn = [p/(1− p)]n.

(c)

µn =

[
rp

1− p

]n

, σ
2
n =

(pr)n

(1− p)n+1(rp− 1 + p)

[(
rp

1− p

)n

− 1

]

,

if µ 6= 1.

9.12. (a) 1/[n(n+ 1)]; (b) 1/n.

The mean number of generations to extinction is infinite.

9.13. The mean number of plants in generation n is (pλ)n.

9.14. The probability of extinction by the n-th generation is

Gn(0) =
(1− p)[pn − (1− p)n]

pn+1 − (1− p)n+1
.

9.21. V(Zn) =
1
3
(22n − 1) and V[E(Zn|Z0, Z1, . . . , Zn−1)] = V(Zn−1) =

1
3
(22n−2 − 1).

9.22. The expected position of the walk after 20 steps is 10(p1 + p2 − q1 − q2).

Chapter 10

10.1. (a) 1− Φ(
√
3/2); (b) 0.635.

10.3(a) FZ(z) = Φ(ln z)/(σ
√
t), (z > 0).

10.8(a) pdf of U(t) is e−
1
2
u/

√
2πu

(c) P(R(t) ≥ r) = e−r2/(2t).
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Appendix

Abbreviations

gcd — greatest common divisor.

iid — independent and identically distributed.

mgf —moment generating function.

pgf — probability generating function.

rv — random variable.

Set notation

A,B — sets or events.

A ∪B — union of A and B.

A ∩B — intersection of A and B.

Ac — complement of A.

B\A — B but not A.

S — universal set.

∅ —empty set.

Probability notation

N,X, Y — random variables (usually capital letters in the context of probabilities).

P(X = x) — probability that the random variable X = x.

E(X) — mean or expected value of the random variable X .

V(X) — variance of the random variable X .

µ — alternative symbol for mean or expected value.

σ
2 — alternative symbol for variance.

Factorial function, n! = 1 · 2 · 3 · · ·n; 0! = 1.

Gamma function, Γ(n) = (n− 1)!, Γ( 1
2
) =

√
π.

Binomial coefficients:

(
n

r

)

=
n!

(n− r)!r!
, n, r positive integers n ≥ r;

(
n

0

)

= 1;

(
a

r

)

=
a(a− 1) · · · (a− r + 1)

1 · 2 · 3 · · · r , a any real number.
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Power series

Geometric series:

1 + s+ s2 + · · ·+ sn =

n∑

j=0

sj =
1− sn+1

1− s
, (s 6= 1).

s+ 2s2 + 3s3 + · · ·+ nsn =

n∑

j=1

jsj =
s[1− (n+ 1)sn + nsn+1]

(1− s)2
.

Exponential function:

es =

∞∑

n=0

sn

n!
= 1 + s+

s2

2!
+

s3

3!
+ · · · (for all s).

Binomial expansions:

(1 + s)n =

n∑

r=0

(
n

r

)

sr

= 1 + ns+
n(n− 1)

2!
s2 + · · ·+ nsn−1 + sn, (n is a positive integer)

(1 + s)a =

∞∑

r=0

(
a

r

)

sr

= 1 + as+
a(a− 1)

2!
s2 +

a(a− 1)(a− 2)

3!
s3 + · · ·

(|s| < 1, a any real number).

Probability generating function

G(s, t) =

∞∑

n=0

pn(t)s
n,

mean = µ(t) = Gs(1, t) =

∞∑

n=0

npn(t),

variance = σ
2(t) = Gss(1, t) +Gs(1, t)−Gs(1, t)

2.

Order notation

‘Big O’ notation: f(t) = O(g(t)) as t → ∞ means f(t)/g(t) < K for some constants K
and t0, and all t > t0.

‘Little o’ notation: f(t) = o(g(t)) as t → ∞ means limt→∞ f(t)/g(t) = 0. In particular

f(t) = o(1) means limt→∞ f(t) = 0.

Integrals
∫ τ

0

e−λtdt =
1

λ
(1− e−λτ ),

∫ ∞

0

e−λtdt =
1

λ
.
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∫ τ

0

te−λtdt =
1

λ2
[1− (1 + λt)e−λt],

∫ ∞

0

te−λtdt =
1

λ2
.

∫ ∞

0

tne−λtdt =
n!

λn+1

∫ ∞

0

e−λt2dt =
1

2

√
π

λ
.

Matrix algebra

Transition (stochastic) matrix (m×m):

T = [pij ] =







p11 p12 . . . p1m
p21 p22 . . . p2m

..

.
..
.

. . .
..
.

pm1 pm2 . . . pmm






, (0 ≤ pij ≤ 1 for all i, j)

where
m∑

j=1

pij = 1.

Matrix product of A = [aij ], B = [bij ], both m×m:

AB = [aij ][bij ] =

[
m∑

k=1

aikbkj

]

.

Diagonal matrix (m×m) with diagonal elements λ1, λ2, . . . , λm:

D =







λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λm






.

m×m identity matrix

Im =







1 0 . . . 0
0 1 . . . 0
..
.

..

.
. . .

..

.

0 0 . . . 1






.

For the matrix A, At denotes the transpose of A in which the rows and columns are inter-

changed.

Characteristic equation for the eigenvalues λ1, λ2, . . . , λm of the m×m matrix T :

det(T − λIm) or |T − λIm| = 0.

The eigenvectors r1, r2, . . . , rm satisfy:

[T − λiIm] ri = 0, (i = 1, 2, . . . ,m).
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Probability distributions

Discrete distributions:

Distribution P(N = n) Mean Variance

Bernoulli pn(1− p)1−n (n = 0, 1) p p(1− p)

Binomial

(
r

n

)

pn(1− p)r−n (n = 0, 1, 2, . . . , r) rp rp(1− p)

Geometric (1− p)n−1p (n = 1, 2, . . .) 1/p (1− p)/p

Negative binomial

(
n− 1

r − 1

)

pn(1− p)n (n = r, r + 1, . . .) r/p r(1− p)/p2

Poisson e−ααn/n!, (n = 0, 1, 2, . . .) α α

Uniform 1/k, (n = r, r + 1, . . . , r + k − 1) 1
2
(k + 2r − 1) 1

12
(k2 − 1)

Continuous distributions

Distribution Density, f(x) Mean Variance

Exponential αe−αx (x ≥ 0) 1/α 1/α2

Normal, 1
σ

√
2π

exp
[

− (x−µ)2

2σ2

]

µ σ
2

N(µ,σ2) −∞ < x < ∞

Gamma αn

Γ(n)
xn−1e−αx, (x ≥ 0) n/α n/α2

Uniform

{
1/(b− a) a ≤ x ≤ b
0 for all other x

1
2
(a+ b) 1

12
(b− a)2

Weibull αβxβ−1e−αxβ
, (x ≥ 0) α−1/βΓ(β−1 + 1) α−2/β [Γ(2β−1 + 1)

−Γ(β−1 + 1)2]

chi-squared χ2
n

{
0

1

2Γ( 1
2
)
[ 1
2
x]

1
2
n−1e−

1
2
x n 2n
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Index

absorbing

barrier 49

state 75, 83

baulked queue 153, 163, 166, 233

Bernoulli distribution 13, 248

Bernoulli experiment 12

Bernoulli random variable 13

modified 33, 50

binomial coefficient 52, 245

binomial distribution 13, 248

probability generating function 22

binomial expansion 246

birth and death process 127

extinction, mean time to 130

extinction, probability of 130, 136

extinction, probability of ultimate 130

immigration 132

mean, expected value 129

probability generating function 128, 130

time varying rates 134

birth process 119

mean 124

probability generating function 122

Yule process 120

branching process 183, 191

convex function 189

convolution 185

extinction probability 188

generational growth 183

mean 186

probability generating function 184

stopping rule 195

stopping time 195

tree 183

variance 186

Brownian motion (Wiener process) 213–224

drift 217

first visit 218

geometric 221

hitting time 224

independent increments 214

Lévy process 214

lognormal distribution 221

Ornstein-Uhlenbeck 222

realisation 218

reflection principle 218, 220

sample paths 218

scaling 217

standard 214

busy period (queues) 152

cdf (cumulative distribution function) 10

chain, Markov, see Markov chain

Chapman-Kolmogorov equations 68

characteristic equation (difference equations)

35

complement (of set) 2

complementary function (difference

equations) 40

conditional expectation 23

martingale 191

conditional probability 5

continued fraction 185

continuous random variables 9

convex function 189

cumulative distribution function (cdf) 10

death process 124

deterministic model 127, 202

extinction, probability of 127

extinction, probability of ultimate 127

Malthus model 127

mean 126

defective distribution 53

difference equations 33

boundary conditions 35

characteristic equation 35

complementary function 40
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complex roots 44

homogeneous 34

inhomogeneous 40

repeated roots 36

differential-difference equations 107

differential equations

Cauchy’s method 139

integrating-factor method 109

partial 111

separable 109, 122, 206

directed graph 49, 76

discrete probability distributions 12

discrete random variables 8

distribution 9

Bernoulli 13, 22, 248

binomial 13, 248

cumulative 10

exponential 15, 248

gamma 17, 248

geometric 13, 248

invariant 72

lognormal 221

negative binomial (Pascal) 14, 124, 248

normal 16, 248

Pascal, see negative binomial

Poisson 14, 248

table of 248

uniform 11, 248

uniform, discrete 248

Weibull 18, 248

duration, expected 39

eigenvalues 70, 72, 247

complex 79

eigenvectors 70, 72, 247

epidemics 197–206

contact rate 198

deterministic 199, 202

discrete time 199

immunes 198

infectives 198, 200

iterative solution 202

simple 198

stochastic

susceptibles 198, 200

events 1

exhaustive 1

independent 6

mutually exclusive 1, 3

expectation, see mean

conditional 23

expected value, see mean

exponential distribution 15, 248

extinction

probability of 127, 188

probability of ultimate 127, 188

factorial function 245

factorial moment 22

failure time (reliability) 169

mean 172

first come, first served rule 145

first passage, (random walk) 53, 212

first returns 54–57, 85–93

foot and mouth disease 198, 249

fractal 218

gambler’s ruin 1, 7, 33–44

expected duration 39, 228

generous gambler 43

infinitely rich opponent 41

Markov chain 80

martingale 196

numerical simulations 37, 228

random walk 49, 196

stopping time 196

gamma distribution 17, 248

gamma function 245

gcd (greatest common divisor) 83, 245

Geiger counter 105–115, 231

generational growth 183

geometric Brownian motion 221

trend 222

geometric distribution 13, 248

geometric series 246

harmonic series 88, 194

alternating 194

hazard function 170

iid (independent and identically distributed)

19, 20

illness-death model 77

immigration 132

independence 6

independent random variables 23

indicator 13
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intersection (of sets) 2

inverse sampling 13

lottery 30

Jordan decomposition matrix 98, 231

Malthus model 127

Mandelbrot set 219

marginal probability distribution 24

Markov chain 65–96

absolute probability 67

absorbing state 75, 83

aperiodic state 83 103

chess knight moves 103

classification of chains 90–94

classification of states 83–90

closed sets 91

communication 66

equilibrium 72

ergodic chains 90

ergodic state 89

homogeneous 65

initial probability distribution 67

invariant distribution 72

irreducible 90

limiting distribution 72

nonnull state 87

null state 87

periodic state 83

persistent state

regular 90

signal flow 231

state 65

transient state 88

transition 65

transition diagram 76

transition matrix 66

transition probability 66

two-state 70

wildlife model 94

Markov process 65, 119

Markov property 34, 50

martingale 191

gambling problem 196

Polya’s urn 197

random walks 196

self-conditioning 192

stopping time 195

matrix 66, 247

characteristic equation 247

diagonal 71, 247

diagonalization 71, 73, 81

doubly stochastic 97

eigenvalues 70, 72, 247

eigenvalues, repeated 97

eigenvectors 70, 72, 247

identity 73, 247

Jordan decomposition 98, 231

positive 75, 90

powers 72

product 66, 247

row-stochastic 66

submatrix 77

transition 65

tridiagonal 81, 201

maze 100, 102

mean (expected value, expectation) 10

probability generating function 21

table of 248

mean recurrence time 87

moments 18

moment generating function (mgf) 18

exponential 150

gamma 151

mutually exclusive event 1, 3

negative binomial (Pascal) distribution 14,

124, 248

no-memory property 14, 16, 113, 160, 172

normal distribution 16, 17, 51, 248

continuity correction 51

in Brownian motion 214–221

standard 16

order notation 246

partial differential equation 111

Cauchy’s method 126

and probability generating function 111,

122, 126, 128

partition 3, 7

theorem (law of total probability) 7, 108

Pascal distribution, see negative binomial

distribution



254 INDEX

pdf (probability density function) 9

Perron-Frobenius theorem 75, 80

pgf (probability generating function) 21

Poisson distribution 14, 248

mean 106, 248

variance 107, 248

Poisson process 7, 105–115, 145, 152

generating function 110

intensity 105

mean 106

partition theorem approach 108

probability function 105

variance 107

Polya’s urn 197

power series

binomial expansion 246

exponential function 246

probability 1

absolute 67

axioms 3

conditional 5

density function (pdf) 9

distribution 8

marginal distribution 24

mass function 8

total, law of 7, 108

transition 66

unconditional (absolute probability) 67

vector 67

probability generating function (pgf) 22,

110, 246

convolution 185

factorial moment 22

mean 21, 246

variance 22, 246

queues 145–167

arrivals 145

baulked 153, 165,167, 233

busy period 152

classification 162

first come, first served rule 145

fixed service time 159

limiting process 148

mean length 150

multiple servers 154

service time 146

service time, uniform 162

single-server 146

slack period 152

traffic density 149, 233

waiting time 150

random process 34

stage 34

state 34

random variable 8

continuous 9

discrete 8

function of 12

independent 1, 6, 12, 13, 18

two-dimensional 23

random walk 49–57, 215

absorbing barrier 49

computer simulation 56, 229

cyclic 61

first passage 53

first return 54

mean 51

persistence 55

reflecting barrier 49

reflection principle 59

state 49

step 49

symmetric 51–56, 193

transition diagram 49

transition probability 50

two-dimensional 62

unrestricted 50

variance 51

realisation(sample path) 152

reflecting barrier 49

relative frequency 2

reliability 169–179

bridge system 175

exponential distribution 171

failure rate function (hazard function) 170

failure time 169

hazard function (failure rate function) 170

mean time to failure 172

parallel system 173

reliability function 169

series system 173

survivor function (reliability function)

170

Weibull distribution 171

renewal process 176–179

expected number of renewals 178
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renewal function 179

reservoir problem 46

roulette wheel 45

sample space 1

countably infinite 8

finite 2, 34

service time (queues) 146

sets 2

complement 2

disjoint 3

empty 3

intersection 2

mutually exclusive 3

notation 245

partition 3

subset 2

union 2

universal 2

Venn diagram 2

signal flow 231

slack period (queues) 152

standard deviation 12

states

absorbing 49

accessible 90

aperiodic 83

classification 83–90

ergodic 89

first return 85

mean recurrence time 87

nonnull 87

null 87

periodic 83

persistent 85

transient 88

stopping rule 195

stopping theorem 196

stopping time 195

total probability, law of 7, 108

traffic density (queues) 149, 233

transition diagram 76

transition probability 66

trend 222

trial 1

tuberculosis 198

uniform distribution 11, 248

discrete 248

union (of sets) 2

variance 11

probability generating function 22, 245

table of 248

Venn diagram 2

volatility 221

waiting time (queues) 150

Weibull distribution 18, 248

Wiener process, see Brownian motion

Yule process 120
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