L

APPLIED PROBABILITY
ANDISTOCHASTIC
PROCESSES

SECOND EDITION

P,

FRANK BEICHELT

&
S

CRC Pr
Taylor & Francis

A CHAPMAN & HALL BC
v




APPLIED PROBABILITY
AND STOCHASTIC
PROCESSES

SECOND EDITION



This page intentionally left blank



APPLIED PROBABILITY
AND STOCHASTIC
PROCESSES

SECOND EDITION

FRANK BEICHELT

UNIVERSITY OF THE WITWATERSRAND

JOHANNESBURG, SOUTH AFRICA

CRC Press
Taylor & Francis Group

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK



CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20160208

International Standard Book Number-13: 978-1-4822-5765-6 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a photo-
copy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



CONTENTS

PREFACE

SYMBOLS AND ABBREVIATIONS

INTRODUCTION

1.1
1.2
1.3

1.4

1.5

2.1
2.2

23

PARTI PROBABILITY THEORY

1 RANDOM EVENTS AND THEIR PROBABILITIES

RANDOM EXPERIMENTS

RANDOM EVENTS

PROBABILITY

1.3.1 Classical Definition of Probability
1.3.2 Geometric Definition of Probability
1.3.3 Axiomatic Definition of Probability
1.3.4 Relative Frequency

CONDITIONAL PROBABILITY AND INDEPENDENCE OF
RANDOM EVENTS

1.4.1 Conditional Probability
1.4.2 Total Probability Rule and Bayes' Theorem
1.4.3 Independent Random Events

EXERCISES

2 ONE-DIMENSIONAL RANDOM VARIABLES

MOTIVATION AND TERMINOLOGY

DISCRETE RANDOM VARIABLES
2.2.1 Probability Distributions and Distribution Parameters
2.2.2 Important Discrete Probability Distributions

CONTINUOUS RANDOM VARIABLES

2.3.1 Probability Distributions

2.3.2 Distribution Parameters

2.3.3 Important Continuous Probability Distributions
2.3.4 Nonparametric Classes of Probability Distributions

12
15
17
20

22
22
25
28

32

39

43
43
48

59
59
63
73
86



24
2.5

2.6

3.1

3.2
3.3

4.1

4.2

43

4.4

MIXTURES OF RANDOM VARIABLES
GENERATING FUNCTIONS

2.5.1 z-Transformation

2.5.2 Laplace Transformation

EXERCISES

3 MULTIDIMENSIONAL RANDOM VARIABLES

TWO0-DIMENSIONAL RANDOM VARIABLES
3.1.1 Discrete Components

3.1.2 Continuous Components
3.1.2.1 Probability Distribution
3.1.2.2 Conditional Probability Distribution
3.1.2.3 Bivariate Normal Distribution
3.1.2.4 Bivariate Exponential Distributions
3.1.3 Linear Regression and Correlation Analysis

n-DIMENSIONAL RANDOM VARIABLES
EXERCISES

4 FUNCTIONS OF RANDOM VARIABLES

FUNCTIONS OF ONE RANDOM VARIABLE
4.1.1 Probability Distribution
4.1.2 Random Numbers

FUNCTIONS OF SEVERAL RANDOM VARIABLES
4.2.1 Introduction

4.2.2 Mean Value

4.2.3 Product of Two Random Variables

4.2.4 Ratio of Two Random Variables

4.2.5 Maximum of Random Variables

4.2.6 Minimum of Random Variables

SUMS OF RANDOM VARIABLES
4.3.1 Sums of Discrete Random Variables
4.3.2 Sums of Continuous Random Variables
4.3.2.1 Sum of Two Random Variables
4.3.2.2 Sum of Random Variables
4.3.3 Sums of a Random Number of Random Variables
EXERCISES

92
95
96
99

106

117
117

120
120
127
131
132
133

144
149

155
155
163

169
169
170
172
173
175
177

179
179
181
181
186
194
196



5.1

5.2

53

6.1
6.2
6.3
6.4

6.5

7.1
7.2

5 INEQUALITIES AND LIMIT THEOREMS

INEQUALITIES
5.1.1 Inequalities for Probabilities
5.1.2 Inequalities for Moments
LIMIT THEOREMS
5.2.1 Convergence Criteria for Sequences of Random Variables
5.2.2 Laws of Large Numbers
5.2.2.1 Weak Laws of Large Numbers
5.2.2.2 Strong Laws of Large Numbers

5.2.3 Central Limit Theorem
5.2.4 Local Limit Theorems
EXERCISES

PART II STOCHASTIC PROCESSES

6 BASICS OF STOCHASTIC PROCESSES

MOTIVATION AND TERMINOLOGY
CHARACTERISTICS AND EXAMPLES
CLASSIFICATION OF STOCHASTIC PROCESSES
TIME SERIES IN DISCRETE TIME

6.4.1 Introduction

6.4.2 Smoothing of Time Series

6.4.3 Trend Estimation

6.4.4 Stationary Discrete-Time Stochastic Processes
EXERCISES

7 RANDOM POINT PROCESSES

BASIC CONCEPTS
POISSON PROCESSES
7.2.1 Homogeneous Poisson Processes
7.2.1.1 Definition and Properties
7.2.1.2 Homogeneous Poisson Process and Uniform Distribution
7.2.2 Nonhomogeneous Poisson Processes
7.2.3 Mixed Poisson Processes
7.2.4 Superposition and Thinning of Poisson Processes
7.2.4.1 Superposition
7.2.4.2 Thinning
7.2.5 Compound Poisson Processes

199
199
202
204
204
206
206
207
208
214
217

221
225
230
237
237
239
243
246
252

255
261
261
261
267
274
278
284
284
285
287



7.3

7.4

8.1
8.2

8.3
8.4

8.5

8.6

9.1
9.2
9.3

7.2.6 Applications to Maintenance
7.2.7 Application to Risk Analysis

RENEWAL PROCESSES
7.3.1 Definitions and Examples
7.3.2 Renewal Function
7.3.2.1 Renewal Equations
7.3.2.2 Bounds on the Renewal Function
7.3.3 Asymptotic Behavior
7.3.4 Recurrence Times
7.3.5 Stationary Renewal Processes
7.3.6 Alternating Renewal Processes
7.3.7 Compound Renewal Processes
7.3.7.1 Definition and Properties
7.3.7.2 First Passage Time
EXERCISES

8 DISCRETE-TIME MARKOYV CHAINS

FOUNDATIONS AND EXAMPLES
CLASSIFICATION OF STATES

8.2.1 Closed Sets of States

8.2.2 Equivalence Classes

8.2.3 Periodicity

8.2.4 Recurrence and Transience

LIMIT THEOREMS AND STATIONARY DISTRIBUTION

BIRTH AND DEATH PROCESSES

8.4.1 Introduction

8.4.2 General Random Walk with Two Absorbing Barriers
8.4.3 General Random Walk with One Absorbing Barrier

DISCRETE-TIME BRANCHING PROCESSES

8.5.1 Introduction

8.5.2 Generating Function and Distribution Parameters
8.5.3 Probability of Extinction and Examples
EXERCISES

9 CONTINUOUS-TIME MARKOV CHAINS
BASIC CONCEPTS AND EXAMPLES
TRANSITION PROBABILITIES AND RATES
STATIONARY STATE PROBABILITIES

289
292

299
299
302
302
308
311
315
318
319
324
324
329
332

339
350
350
351
353
354
360
364
364
365
368

370

370
371
373
376

383
387
396



9.4
9.5
9.6

9.7

9.8
9.9

10.1

10.2
10.3

SOJOURN TIMES IN PROCESS STATES
CONSTRUCTION OF MARKOV SYSTEMS
BIRTH AND DEATH PROCESSES

9.6.1 Birth Processes
9.6.2 Death Processes
9.6.3 Birth and Death Processes
9.6.3.1 Time-Dependent State Probabilities
9.6.3.2 Stationary State Probabilities
9.6.3.3 Nonhomogeneous Birth and Death Processes

APPLICATIONS TO QUEUEING MODELS

9.7.1 Basic Concepts
9.7.2 Loss Systems
9.7.2.1 M/M/x-System
9.7.2.2 M/M/s/0-System
9.7.2.3 Engset's Loss System
9.7.3 Waiting Systems
9.7.3.1 M/M]/s/®-System
9.7.3.2 M/G/1/%0-System
9.7.3.3 G/M/1/0-System
9.7.4 Waiting-Loss-Systems
9.7.4.1 M/M/s/m-System
9.7.4.2 M/M/s/%0-System with Impatient Customers

9.7.5 Special Single-Server Queueing Systems
9.7.5.1 System with Priorities
9.7.5.2 M/M/1/m-System with Unreliable Server
9.7.6 Networks of Queueing Systems
9.7.6.1 Introduction
9.7.6.2 Open Queueing Networks
9.7.6.3 Closed Queueing Networks

SEMI-MARKOV CHAINS
EXERCISES

10 MARTINGALES

DISCRETE-TIME MARTINGALES

10.1.1 Definition and Examples
10.1.2 Doob-Type Martingales
10.1.3 Martingale Stopping Theorem and Applications

CONTINUOUS-TIME MARTINGALES
EXERCISES

399
401
405
405
408
410
410
418
421

425
425
428
428
428
430
431
431
434
438
439
439
441
442
442
445
447
447
447
454

458
465

475
475
479
486

489
492



11 BROWNIAN MOTION

11.1 INTRODUCTION
11.2 PROPERTIES OF THE BROWNIAN MOTION
11.3 MULTIDIMENSIONAL AND CONDITIONAL DISTRIBUTIONS
114 FIRST PASSAGE TIMES
11.5 TRANSFORMATIONS OF THE BROWNIAN MOTION
11.5.1 Identical Transformations
11.5.2 Reflected Brownian Motion
11.5.3 Geometric Brownian Motion
11.5.4 Ornstein-Uhlenbeck Process
11.5.5 Brownian Motion with Drift
11.5.5.1 Definitions and First Passage Times
11.5.5.2 Application to Option Pricing
11.5.5.3 Application to Maintenance
11.5.6 Integrated Brownian Motion
11.6 EXERCISES
12 SPECTRAL ANALYSIS OF STATIONARY PROCESSES
12.1 FOUNDATIONS
12.2 PROCESSES WITH DISCRETE SPECTRUM
12.3 PROCESSES WITH CONTINUOUS SPECTRUM
12.3.1 Spectral Representation of the Covariance Function
12.3.2 White Noise
12.4 EXERCISES
REFERENCES

495
497
501
504

508
508
509
510
511
512
512
516
522
524

526

531
533

537

537
544

547

549



PREFACE TO THE SECOND EDITION

The book is a self-contained introduction into elementary probability theory and
stochastic processes with special emphasis on their applications in science, engineer-
ing, finance, computer science and operations research. It provides theoretical founda-
tions for modeling time-dependent random phenomena in these areas and illustrates
their application through the analysis of numerous, practically relevant examples. As
a non-measure theoretic text, the material is presented in a comprehensible, applica-
tion-oriented way. Its study only assumes a mathematical maturity which students of
applied sciences acquire during their undergraduate studies in mathematics. The study
of stochastic processes and its fundament, probability theory, as of any other mathe-
matically based science, requires less routine effort, but more creative work on one's
own. Therefore, numerous exercises have been added to enable readers to assess to
which extent they have grasped the subject. Solutions to many of the exercises can
be downloaded from the website of the Publishers or the exercises are given together
with their solutions. A complete solutions manual is available to instructors from the
Publishers. To make the book attractive to theoretically interested readers as well,
some important proofs and challenging examples and exercises have been included.
'Starred' exercises belong to this category. The chapters are organized in such a way
that reading a chapter usually requires knowledge of some of the previous ones. The
book has been developed in part as a course text for undergraduates and for
self-study by non-statisticians. Some sections may also serve as a basis for pre-
paring senior undergraduate courses.

The text is a thoroughly revised and supplemented version of the first edition so that
it is to a large extent a new book: The part on probability theory has been completely
rewritten and more than doubled. Several new sections have been included in the part
about stochastic processes as well: Time series analysis, random walks, branching
processes, and spectral analysis of stationary stochastic processes. Theoretically more
challenging sections have been deleted and mainly replaced with a comprehensive
numerical discussion of examples. All in all, the volume of the book has increased by
about a third.

This book does not extensively deal with data analysis aspects in probability and sto-
chastic processes. But sometimes connections between probabilistic concepts and the
corresponding statistical approaches are established to facilitate the understanding.
The author has no doubt the book will help students to pass their exams and practi-
cians to apply stochastic modeling in their own fields of expertise.

The author is thankful for the constructive feedback from many readers of the first
edition. Helpful comments to the second edition are very welcome as well and should
be directed to: Frank.Beichelt@wits.ac.za.

Johannesburg, March 2016 Frank Beichelt
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SYMBOLS AND ABBREVIATIONS

O m e symbols after an example, a theorem, a definition

fH=c f(t) =c forall ¢ being element of the domain of definition of f
f*g convolution of two functions f and g

£ nth convolution power of f

}"(s), Lif,s} Laplace transform of a function f

o(x) Landau order symbol

;) Kronecker symbol

Probability Theory

XY Z random variables

EX), Var(X) mean (expected) value of )X, variance of X

fx(x), Fx(x) probability density function, (cumulative probability) distribution

Fy(ylx), fy(ylx)
Xt 5 F,(x)
E(Y]x)

AMx), Ax)

N, 6?%)

o(x), P(x)

Ix(x1,x2,...,Xn)
Fx(x1,x2,...,%n)

Cov(X, 1), p(X, Y)
M)

function of X

conditional distribution function, density of ¥ given X =x
residual lifetime of a system of age ¢, distribution function of X;
conditional mean value of ¥ given X=x

failure rate, integrated failure rate (hazard function)

normally distributed random variable (normal distribution) with
mean value p and variance o2

probability density function, distribution function of a standard
normal random variable N(0, 1)

joint probability density function of X = (X1,X>,...,X»)

joint distribution function of X = (X1,X>,...,X»n)

covariance, correlation coefficient between X and Y
z-transform (moment generating function) of a discrete random
variable or of its probability distribution, respectively

Stochastic Processes
{X(®), t € T}, {X;, t € T} continuous-time, discrete-time stochastic process with

V4
Ji(x), Fu(x)

ﬁ17t2=~-~»tn(x1 5 X5 e

m(f)
C(s,1)
Q)

parameter space T

state space of a stochastic process

probability density, distribution function of X(7)

Xn)s Ftyttn(X1,X2,...,Xn)

joint density, distribution function of (X(¢1), X(¢2), ..., X(¢r))
trend function of a stochastic process

covariance function of a stochastic process

covariance function of a stationary stochastic process



C(9), {C(t), t>0} compound random variable, compound stochastic process

p(s.7)
{T\,T5,..}
{Y,Ys,...}
N

{N(©), 120}
N(s, t)

H(r), H(2)
A(t)

B(?)

R(®), {R(D), t =0}
A, A®D)

n

Pii®; qij» qi

{n;;iel}
T

Ajs Wy
Aow,p

¥

n

w

L

L(x)

L(a,b)
{B(f), t 20}
02, c

(S(t), t= 0}

{B(f),0<1<1}
{D(1), t>0}
M(?)

M

{U(1), 120}

o, w

s(w), S(w)

correlation function of a stochastic process

random point process

sequence of interarrival times, renewal process
integer-valued random variable, discrete stopping time
(random) counting process

increment of a counting process in (s, ]

renewal function of an ordinary, delayed renewal processs
forward recurrence time, point availability

backward recurrence time

risk reserve, risk reserve process

stationary (long-run) availability, point availability

one-step, n-step transition probabilities of a homogeneous,
discrete-time Markov chain

transition probabilities; conditional, unconditional transition rates
of a homogeneous, continuous-time Markov chain
stationary state distribution of a homogeneous Markov chain
extinction probability, vacant probability (sections 8.5, 9.7)
birth, death rates

arrival rate, service rate, traffic intensity A/u (in queueing models)
mean sojourn time of a semi-Markov process in state i

drift parameter of a Brownian motion process with drift

waiting time in a queueing system

lifetime, cycle length, queue length, continuous stopping time
first-passage time with regard to level x

first-passage time with regard to level min(a, b)

Brownian motion (process)

o2 = Var(B(1)) variance parameter, volatility

seasonal component of a time series (section 6.4), standardized
Brownian motion (chapter 11).

Brownian bridge

Brownian motion with drift

absolute maximum of the Brownian motion (with drift) in [0, ]
absolute maximum of the Brownian motion (with drift) in [0, ©)
Ornstein-Uhlenbeck process, integrated Brownian motion process
circular frequency, bandwidth

spectral density, spectral function (chapter 12)



Introduction

Is the world a well-ordered entirety,
or a random mixture,
which nevertheless is called world-order?

Marc Aurel

Random influences or phenomena occur everywhere in nature and social life. Their
consideration is an indispensable requirement for being successful in natural, econ-
omical, social, and engineering sciences. Random influences partially or fully contri-
bute to the variability of parameters like wind velocity, rainfall intensity, electromag-
netic noise levels, fluctuations of share prices, failure time points of technical units,
timely occurrences of births and deaths in biological populations, of earthquakes, or
of arrivals of customers at service centers. Random influences induce random events.
An event is called random if on given conditions it can occur or not. For instance,
the events that during a thunderstorm a certain house will be struck by lightning, a
child will reach adulthood, at least one shooting star appears in a specified time
interval, a production process comes to a standstill for lack of material, a cancer
patient survives chemotherapy by 5 years are random. Border cases of random events
are the deterministic events, namely the certain event and the impossible event. On
given conditions, a deterministic (impossible) event will always (never) occur. For
instance, it is absolutely sure that lead, when heated to a temperature of over

327.59C will become liquid, but that lead during the heating process will turn to
gold is an impossible event. Random is the shape, liquid lead assumes if poured on an
even steel plate, and random is also the occurrence of events which are predicted from
the form of these castings to the future. Even if the reader is not a lottery, card, or
dice player, she/he will be confronted in her/his daily routine with random influences
and must take into account their implications: When your old coffee machine fails
after an unpredictable number of days, you go to the supermarket and pick a new one
from the machines of your favorite brand. At home, when trying to make your first
cup of coffee, you realize that you belong to the few unlucky ones who picked by
chance a faulty machine. A car driver, when estimating the length of the trip to his
destination, has to take into account that his vehicle may start only with delay, that a
traffic jam could slow down the progress, and that scarce parking opportunities may
cause further delay. Also, at the end of a year the overwhelming majority of the car
drivers realize that having taken out a policy has only enriched the insurance compa-
ny. Nevertheless, they will renew their policy because people tend to prefer moderate
regular cost, even if they arise long-term, to the risk of larger unscheduled cost.
Hence it is not surprising that insurance companies belonged to the first institutions
that had a direct practical interest in making use of methods for the quantitative
evaluation of random influences and gave in turn important impulses for the develop-
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ment of such methods. It is the probability theory, which provides the necessary
mathematical tools for their work.

Probability theory deals with the investigation of regularities random events are
subjected to.

The existence of such statistical or stochastic regularities may come as a surprise to
philosophically less educated readers, since at first glance it seems to be paradoxic-
al to combine regularity and randomness. But even without philosophy and without
probability theory, some simple regularities can already be illustrated at this stage:

1) When throwing a fair die once, then one of the integers from 1 to 6 will appear
and no regularity can be observed. But if a die is thrown repeatedly, then the fraction
of throws with outcome 1, say, will tend to 1/6, and with increasing number of throws
this fraction will converge to the value 1/6. (A die is called fair if each integer has
the same chance to appear.)

2) If a specific atom of a radioactive substance is observed, then the time from the
beginning of its observation to its disintegration cannot be predicted with certainty,
i.e., this time is random. On the other hand, one knows the half-life period of a radio-
active substance, i.e., one can predict with absolute certainty after which time from
say originally 10 gram (trillions of atoms) of the substance exactly 5 gram is left.

3) Random influences can also take effect by superimposing purely deterministic
processes. A simple example is the measurement of a physical parameter, e.g., the
temperature. There is nothing random about this parameter when it refers to a spe-
cific location at a specific time. However, when this parameter has to be measured
with sufficiently high accuracy, then, even under always the same measurement
conditions, different measurements will usually show different values. This is, e.g.,
due to the degree of inaccuracy, which is inherent to every measuring method, and to
subjective moments. A statistical regularity in this situation is that with increasing
number of measurements, which are carried out independently and are not biased by
systematic errors, the arithmetic mean of these measurements converges towards the
true temperature.

4) Consider the movement of a tiny particle in a container filled with a liquid. It
moves along zig-zag paths in an apparently chaotic motion. This motion is generated
by the huge number of impacts the particle is exposed to with surrounding molecules
of the fluid. Under average conditions, there are about 102! collisions per second
between particle and molecules. Hence, a deterministic approach to modeling the
motion of particles in a fluid is impossible. This movement has to be dealt with as a
random phenomenon. But the pressure within the container generated by the vast
number of impacts of fluid molecules with the sidewalls of the container is constant.

Examples 1 to 4 show the nature of a large class of statistical regularities:

The superposition of a large number of random influences leads under certain
conditions to deterministic phenomena.
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Deterministic regularities (law of falling bodies, spreading of waves, Ohm's law,
chemical reactions, theorem of Pythagoras) can be verified in a single experiment if
the underlying assumptions are fulfilled. But, although statistical regularities can be
proved in a mathematically exact way just as the theorem of Pythagoras or the rules
of differentiation and integration of real functions, their experimental verification
requires a huge number of repetitions of one and the same experiment. Even leading
scientists spared no expense to do just this. The Comte de Buffon (1707 —1788) and
the mathematician Karl Pearson (1857 —1936) had flipped a fair coin several
thousand times and recorded how often 'head' had appeared. The following table
shows their results (n number of total flippings, m number of outcome 'head'):

Scientist n m m/n

Buffon 4040 2048 0.5080
Pearson 12000 6019 0.5016
Pearson 24000 12012 0.5005

Thus, the more frequently a coin is flipped, the more approaches the ratio m/n the
value 1/2 (compare with example 1 above). In view of the large number of flipp-
ings, this principal observation is surely not a random result, but can be confirmed
by all those readers who take pleasure in repeating these experiments. However,
nowadays the experiment 'flipping a coin' many thousand times is done by a comput-
er with a 'virtual coin' in a few seconds. The ratio m/n is called the relative frequency
of the occurrence of the random event 'head appears.'

Already the expositions made so far may have convinced many readers that random
phenomena are not figments of human imagination, but that their existence is object-
ive reality. There have been attempts to deny the existence of random phenomena by
arguing that if all factors and circumstances, which influence the occurrence of an
event are known, then an absolutely sure prediction of its occurrence is possible. In
other words, the protagonists of this thesis consider the creation of the concept of
randomness only as a sign of 'human imperfection." The young Pierre Simeon
Laplace (1729 — 1827) believed that the world is down to the last detail governed by
deterministic laws. Two of his famous statements concerning this are: 'The curve
described by a simple molecule of air in any gas is regulated in a manner as certain
as the planetary orbits. The only difference between them lies in our ignorance.' And:
'Give me all the necessary data, and I will tell you the exact position of a ball on a
billiard table' (after having been pushed). However, this view has proved futile both
from the philosophical and the practical point of view. Consider, for instance, a
biologist who is interested in the movement of animals in the wilderness. How on
earth is he supposed to be in a position to collect all that information, which would
allow him to predict the movements of only one animal in a given time interval with
absolute accuracy? Or imagine the amount of information you need and the
corresponding software to determine the exact path of a particle, which travels in a
fluid, when there are 102! collisions with surrounding molecules per second. It is an



4 APPLIED PROBABILITY AND STOCHASTIC PROCESSES

unrealistic and impossible task to deal with problems like that in a deterministic way.
The physicist Marian von Smoluchowski (1872 —1917) wrote in a paper published in
1918 that 'all theories are inadequate, which consider randomness as an unknown
partial cause of an event. The chance of the occurrence of an event can only depend
on the conditions, which have influence on the event, but not on the degree of our
knowledge.'

Already at a very early stage of dealing with random phenomena the need arose to
quantify the chance, the degree of certainty, or the likelihood for the occurrence of
random events. This had been done by defining the probability of random events and
by developing methods for its calculation. For now the following explanation is
given: The probability of a random event is a number between 0 and 1. The imposs-
ible event has probability 0, and the certain event has probability 1. The probability
of a random event is the closer to 1, the more frequently it occurs. Thus, if in a long
series of experiments a random event 4 occurs more frequently than a random event
B, then A4 has a larger probability than B. In this way, assigning probabilities to
random events allows comparisons with regard to the frequency of their occurrence
under identical conditions. There are other approaches to the definition of probabili-
ty than the classical (frequency) approach, to which this explanation refers. For
beginners the frequency approach is likely the most comprehensible one.

Gamblers, in particular dice gamblers, were likely the first people, who were in need
of methods for comparing the chances of the occurrence of random events, i.e., the
chances of winning or losing. Already in the medieval poem De Vetula of Richard de
Fournival (ca1200-1250) one can find a detailed discussion about the total number
of possibilities to achieve a certain number, when throwing 3 dice. Geronimo
Cardano (1501 — 1576) determined in his book Liber de Ludo Aleae the number of
possibilities to achieve the total outomes 2, 3, ..,12, when two dice are thrown. For
instance, there are two possibilities to achieve the outcome 3, namely (1,2) and (2,1),
whereas 2 will be only then achieved, when (1,1) occurs. (The notation (i, j) means
that one die shows an 7 and the other one a j.) Galileo Galilei (1564 —1642) proved
by analogous reasoning that, when throwing 3 dice, the probability to get the (total)
outcome 10 is larger than the probability to get a 9. The gamblers knew this from
their experience, and they had asked Galilei to find a mathematical proof. The
Chevalier de Mére formulated three problems related to games of chance and asked
the French mathematician Blaise Pascal (1623 —1662) for solutions:

1) What is more likely, to obtain at least one 6 when throwing a die four times, or in
a series of 24 throwings of two dice to obtain at least once the outcome (6,6)?

2) How many time does one have to throw two dice at least so that the probability to
achieve the outcome (6,6) is larger than 1/2?

3) In a game of chance, two equivalent gamblers need each a certain number of points
to become winners. How is the stake to fairly divide between the gamblers, when for
some reason or other the game has to be prematurely broken off ? (This problem of
the fair division had been already formulated before de Méré, e.g., in the De Vetula.)
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Pascal sent these problems to Pierre Fermat (1601 —1665) and both found their
solutions, although by applying different methods. It is generally accepted that this
work of Pascal and Fermat marked the beginning of the development of probability
theory as a mathematical discipline. Their work has been continued by famous
scientists as Christian de Huygens (1629 —1695), Jakob Bernoulli (1654 —1705),

Abraham de Moivre (1667 —1754), Carl Friedrich Gauss (1777 —1855), and last
but not least by Simeon Denis de Poisson (1781 — 1840). However, probability theory
was out of its infancy only in the thirties of the twentieth century, when the Russian
mathematician Andrej Nikolajewic Kolmogorov (1903 — 1987) found the solution of
one of the famous Hilbert problems, namely to put probability theory as any other
mathematical discipline on an axiomatic foundation.

Nowadays, probability theory together with its applications in science, medicine,
engineering, economy et al. are integrated in the field of stochastics. The linguistic
origin of this term can be found in the Greek word stochastikon. (Originally, this term
denoted the ability of seers to be correct with their forecasts.) Apart from probability
theory, mathematical statistics is the most important part of stochastics. A key subject
of it is to infer by probabilistic methods from a sample taken from a set of interesting
objects, called among else sample space or universe, to parameters or properties of
the sample space (inferential statistics). Let us assume we have a lot of 10 000
electronic units. To obtain information on what percentage of these units is faulty, we
take a sample of 100 units from this lot. In the sample, 4 units are faulty. Of course,
this figure does not imply that there are exactly 400 faulty units in the lot. But
inferential statistics will enable us to construct lower and upper bounds for the
percentage of faulty units in the lot, which limit the 'true percentage' with a given
high probability. Problems like this led to the development of an important part of
mathematical statistics, the statistical quality control. Phenomena, which depend both
on random and deterministic influences, gave rise to the theory of stochastic
processes. For instance, meteorological parameters like temperature and air pressure
are random, but obviously also depend on time and altitude. Fluctuations of share
prices are governed by chance, but are also driven by periods of economic up and
down turns. Electromagnetic noise caused by the sun is random, but also depends on
the periodical variation of the intensity of sunspots.

Stochastic modeling in operations research comprises disciplines like queueing
theory, reliability theory, inventory theory, and decision theory. All of them play an
important role in applications, but also have given many impulses for the theoretical
enhancement of the field of stochastics. Queueing theory provides the theoretical
fundament for the quantitative evaluation and optimization of queueing systems, i.e.,
service systems like workshops, supermarkets, computer networks, filling stations,
car parks, and junctions, but also military defense systems for 'serving' the enemy.
Inventory theory helps with designing warehouses (storerooms) so that they can on
the one hand meet the demand for goods with sufficiently high probability, and on
the other hand keep the costs for storage as small as possible. The key problem with
dimensioning queueing systems and storage capacities is that flows of customers,
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service times, demands, and delivery times of goods after ordering are subject to
random influences. A main problem of reliability theory is the calculation of the
reliability (survival probability, availability) of a system from the reliabilities of its
subsystems or components. Another important subject of reliability theory is model-
ling the aging behavior of technical systems, which incidentally provides tools for
the survival analysis of human beings and other living beings. Chess automats got
their intelligence from the game theory, which arose from the abstraction of games of
chance. But opponents within this theory can also be competing economic blocs or
military enemies. Modern communication would be impossible without information
theory. This theory provides the mathematical foundations for a reliable transmission
of information although signals may be subject to noise at the transmitter, during
transmission, and at the receiver. In order to verify stochastic regularities, nowadays
no scientist needs to manually repeat thousands of experiments. Computers do this
job much more efficiently. They are in a position to virtually replicate the operation
of even highly complex systems, which are subjected to random influences, to any
degree of accuracy. This process is called (Monte Carlo) simulation. More and very
fruitful applications of stochastic (probabilistic) methods exist in fields like physics
(kinetic gas theory, thermodynamics, quantum theory), astronomy (stellar statistics),
biology (genetics, genomics, population dynamic), artificial intelligence (inference
under undertainty), medicine, genomics, agronomy and forestry (design of experi-
ments, yield prediction) as well as in economics (time series analysis) and social
sciences. There is no doubt that probabilistic methods will open more and more
possibilities for applications, which in turn will lead to a further enhancement of the
field of stochastics.

More than 300 hundreds years ago, the famous Swiss mathematician Jakob Bernoulli
proposed in his book Ars Conjectandi the recognition of stochastics as an independ-
ent new science, the subject of which he introduced as follows:

To conjecture about something is to measure its probability: The Art of conjecturing
or the Stochastic Art is therefore defined as the art of measuring as exactly as possi-
ble the probability of things so that in our judgement and actions we always can
choose or follow that which seems to be better, more satisfactory, safer and more
considered.

In line with Bernoulli's proposal, an independent science of stochastics would have
to be characterized by two features:

1) The subject of stochastics is uncertainty caused by randomness and/or ignorance.
2) Its methods, concepts, and language are based on mathematics.

But even now, in the twenty-first century, an independent science of stochastics is
still far away from being officially established. There is, however, a powerful sup-
port for such a move by internationally leading academics; see von Collani (2003).



PART 1
Probability Theory

There is no credibility in sciences in which
no mathematical theory can be applied,
and no credibility in fields which have no
connections to mathematics.

Leonardo da Vinci

CHAPTER 1

Random Events and Their Probabilities

1.1 RANDOM EXPERIMENTS

If water is heated up to 100°C at an air pressure of 101 325 Pa, then it will inevitab-
ly start boiling. A motionless pendulum, when being pushed, will start swinging. If
ferric sulfate is mixed with hydrochloric acid, then a chemical reaction starts, which
releases hydrogen sulfide. These are examples for experiments with deterministic
outcomes. Under specified conditions they yield an outcome, which had been known
in advance.

Somewhat more complicated is the situation with random experiments or experim-
ents with random outcome. They are characterized by two properties:

1. Repetitions of the experiment, even if carried out under identical conditions, gen-
erally have different outcomes.

2. The possible outcomes of the experiment are known.

Thus, the outcome of a random experiment cannot be predicted with certainty. This
implies that the study of random experiments makes sense only if they can be repeat-
ed sufficiently frequently under identical conditions. Only in this case stochastic or
statistical regularities can be found.
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Let Q be the set of possible outcomes of a random experiment. This set is called
sample space, space of elementary events, or universe. Examples of random experi-
ments and their respective sample spaces are:

1) Counting the number of traffic accidents a day in a specified area: Q = {0, 1,...}.

2) Counting the number of cars in a parking area with maximally 200 parking bays at
a fixed time point: Q = {0, 1,...,200}.

3) Counting the number of shooting stars during a fixed time interval: Q= {0, 1,...}.
4) Recording the daily maximum wind velocity at a fixed location: Q = [0, ©).

5) Recording the lifetimes technical systems or organisms: Q2 = [0, ).

6) Determining the number of faulty parts in a set of 1000: Q= {0, 1, ...,1000}.

7) Recording the daily maximum fluctuation of a share price: Q = [0, ).

8) The total profit sombody makes with her/his financial investments a year.

This 'profit' can be negative, i.e. any real number can be the outcome: Q = (—o0, +0).
9) Predicting the outcome of a wood reserve inventory in a forest stand: Q = [0, ©).
10) a) Number of eggs a sea turtle will bury at the beach: Q= {0, 1,...}.

b) Will a baby turtle, hatched from such an egg, reach the water? Q = {0, 1} with
meaning 0: no, 1: yes.

As the examples show, in the context of a random experiment, the term 'experiment’
has a more general meaning than in the customary sense.

A random experiment may also contain a deterministic component. For instance, the
measurement of a physical quantity should ideally yield the exact (deterministic)
parameter value. But in view of random measurement errors and other (subjective)
influences, this ideal case does not materialize. Depending on the degree of accuracy
required, different measurements, even if done under identical conditions, may yield
different values of one and the same parameter (length, temperature, pressure, amper-

age,...).

1.2 RANDOM EVENTS

A possible outcome ® of a random experiment, i.e. any o € C, is called an element-
ary event or a simple event.

1) The sample space of the random experiment 'throwing two dice consists of 36
simple elements: Q = {(i,)), i,j =1,2,---,6}. The gambler wins if the sum i+ is at
least 10. Hence, the 'winning simple events' are (5, 5), (5, 6), (6,5), and (6, 6).

2) In a delivery of 100 parts some may be defective. A subset (sample) of n = 12 parts
is taken, and the number N of defective parts in the sample is counted. The elemen-
tary events are 0,1,...,12 (possible numbers of defective parts in the sample). The
delivery is rejected if N > 4.
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3) In training, a hunter shoots at a cardboard dummy. Given that he never fails the
dummy, the latter is the sample space €, and any possible impact mark at the dum-
my is an elementary event. Crucial subsets to be hit are e.g. 'head' or 'heart.’

Already these three examples illustrate that often not single elementary events are
interesting, but sets of elementary events. Hence it is not surprising that concepts and
results from set theory play a key role in formally establishing probability theory. For
this reason, next the reader will be reminded of some basic concepts of set theory.

Basic Concepts and Notation from Set Theory A set is given by its elements. We
can consider the set of all real numbers, the set of all rational numbers, the set of all
people attending a performance, the set of buffalos in a national park, and so on. A
set is called discrete if it is a finite or a countably infinite set. By definition, a count-
ably infinite set can be written as a sequence. In other words, its elements can be
numbered. If a set is infinite, but not countably infinite, then it is called nondenumer-
able. Nondenumerable sets are for instance the whole real axis, the positive half-axis,
a finite subinterval of the real axis, or a geometric object (area of a circle, target).

Let A and B be two sets. In what follows we assume that all sets 4, B, ... considered
are subsets of a 'universal set' Q. Hence, for any set 4, 4 € Q.

A is called a subset of B if each element of 4 is also an element of B.

Symbol: 4 < B.

The complement of B with regard to A contains all those elements of B which are not
element of 4.

Symbol: B\4

In particular, 4 = Q\4 contains all those elements which are not element of 4.

The intersection of A and B contains all those elements which belong both to 4 and B.

Symbol: 4 N B

The union of A and B contains all those elements which belong to 4 or B (or to both).
Symbol: 4 U B

These relations between two sets are illustrated in Figure 1.1 (Venn diagram). The
whole shaded area is 4 U B.

Q B

1B B\4

Figure 1.1 Venn diagram
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For any sequence of sets 41,45, -+, 4, intersection and union are defined as
n n
NA;=4A1nArNn--NAy, UA4d;=41UA4,U---UA,.
i=1 i=1

De Morgan Rules for 2 Sets

AUB=ANB, AnB=AUB. (1.1)
De Morgan Rules for n Sets

AN

DL

n

Cs

Ai = mzia
1 i=1

Ai=
1 =1

A;. (1.2)

Random Events A random event (briefly: event) A is a subset of the set Q of all
possible outcomes of a random experiment, i.e. 4 < Q.

A random event A is said to have occurred as a result of a random experiment
if the observed outcome ® of this experiment is an element of A: ® € A.

The empty set & is the impossible event since, for not containing any elementary
event, it can never occur. Likewise, Q is the certain event, since it comprises all pos-
sible outcomes of the random experiment. Thus, there is nothing random about the
events & and Q. They are actually deterministic events. Even before having complet-
ed a random experiment, we are absolutely sure that Q will occur and & will not.

Let 4 and B be two events. Then the set-theoretic operations introduced above can be
interpreted in terms of the occurrence of random events as follows:

A M B is the event that both 4 and B occur,

AU B is the event that 4 or B (or both) occur,

If A < B (4 is a subset of B), then the occurrence of 4 implies the occurrence of B.

A\B is the set of all those elementary events which are elements of 4, but not of B.
Thus, A\B is the event that 4 occurs, but not B. Note that (see Figure 1.1)

A\B=A\(4 B). (1.3)

The event 4 = Q\A is called the complement of A. 1t consists of all those elementary
events, which are not in A4.

Two events A and B are called disjoint or (mutually) exclusive if their joint occur-
rence is impossible, i.e. if 4B =(. In this case the occurrence of 4 implies that B
cannot occur and vice versa. In particular, 4 and A4 are disjoint for any event 4 < Q.

Short Terminology

AnB  AandB

AUB AorB

AcB  Aimplies B, B follows from 4
A\B A butnot B

A A not
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Example 1.1 Let us consider the random experiment 'throwing a die' with sample
space Q={1,2,---,6} and the random events 4= {2,3} and B={3,4,6}. Then,
ANB={3} and AUB={2,3,4,6}. Thus, if a 3 had been thrown, then both the
events 4 and B have occurred. Hence, 4 and B are not disjoint. Moreover, 4\B = {2},
B\ ={4,6}, and 4 ={1,4,5,6}. O

Example 1.2 Two dice D and D, are thrown. The sample space is
Q= {(i19i2)3 i19i2 = 1923 36}

Thus, an elementary event ® consists of two integers indicating the results i; and i,
of D| and D, respectively. Let 4 = {i| +ir <3} and B= {i|/i; =2}. Then,

A={(1,1),(1,2), (2,1}, B={(21),(42),(6,3)}.

Hence,
AnB={(2,1}}, AUB={(1,1),(1,2),(2,1),(4,2), (6,3)}

and A\B:{(lal)a (132)} O

Example 1.3 A company is provided with power by three generators G|, G,, and

G3.The company has sufficient power to maintain its production if only two out of
the three generators are operating. Let A; be the event that generator G;, i =1,2,3, is
operating, and B be the event that at least two generators are operating. Then,

B=A1A243UA | ArA3\UA 142430 A1 A245. m|

1.3 PROBABILITY

The aim of this section consists in constructing rules for determining the probabilities
of random events. Such a rule is principally given by a function P on the set E of all
random events A: P=P(A4), A €E.

Note that in this context 4 is an element of the set E so that the notation 4 — E would not be
correct. Moreover, not all subsets of Q need to be random events, i.e., the set E need not
necessarily be the set of all possible subsets of Q.

The function P assigns to every event 4 a number P(A4), which is its probability. Of
course, the construction of such a function cannot be done arbitrarily. It has to be
done in such a way that some obvious properties are fulfilled. For instance, if 4 im-
plies the occurrence of the event B, i.e. 4 B, the B occurs more frequently than A4
so that the relation P(4) < P(B) should be valid. If in addition the function P has
properties P(&)=0 and P(Q) =1, then the probabilities of random events yield
indeed the desired information about their degree of uncertainty: The closer P(4) is
to 0, the more unlikely is the occurrence of 4, and the closer P(4) is to 1, the more
likely becomes the occurrence of A.
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To formalize this intuitive approach, let for now P = P(4) be a function on E with
properties

I) P@)=0, PQ)=1, 1) If4c B, then P(4) < P(B).

As a corollary from these two properties we get the following property of P :

IIT) For any event 4, 0 < P(4) < 1.

1.3.1 Classical Definition of Probability

The classical concept of probability is based on the following two assumptions:
1) The space Q of the elementary events is finite.

2) As a result of the underlying random experiment, each elementary event has the
same probability to occur.

A random experiment with properties 1 and 2 is called a Laplace random experiment.
Let n be the total number of elementary events (i.e. the cardinality of Q). Then any
random event 4 < Q consisting of m elementary events has probability
P(4) =m/n. 1.4)
LetQ={aj,as, --,an}. Then every elementary event has probability
Pa)=1/n, i=1,2,...,n.

Obviously, this definition of probability satisfies the properties I, II, and III listed
above. The integer m is said to be the number of favorable cases (for the occurrence
of A), and 7 is the number of possible cases.

The classical definition of probability arose in the Middle Ages to be able to determine
the chances to win in various games of chance. Then formula (1.4) is applicable given
that the players are honest and do not use marked cards or manipulated dice. For

instance, what is the probability of the event A4 that throwing a die yields an even
number? In this case, 4 = {2,4,6} so thatm =3 and P(4) =3/6 =0.5.

Example 1.4 When throwing 3 dice, what is more likely, to achieve the total sum 9
(event Ag) or the total sum 10 (event 4 )? The corresponding sample space is

Q={(,j,k), 1<i,j,k<6} withn=63=216
possible outcomes. The integers 9 and 10 can be represented a as sum of 3 positive
integers in the following ways:
9=3+3+3=44+3+2=4+4+1=542+2=5+3+1=6+2+1,
10=4+3+3=4+4+2=54+3+2=5+4+1=6+2+2=6+3+1.
The sum 3+3+3 corresponds to the event 4333 = 'every die shows a 3' ={(3,3,3)}.

The sum 4+3+2 corresponds to the event 443, that one die shows a 4, another die a
3, and the remaining one a 2:
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Aazr =1{(2,3,4),(2,4,3),(3,2,4),(3,4,2),(4,2,3),(4,3,2)}.
Analogously,

Agar ={(1,4,4),(4,1,4),(4,4, 1)}, 4522 =1{(2,2,5),(2,5,2),(5,5,2),

As3 =1{(1,3,5),(1,5,3),(3,1,5),(3,5,1),(5,1,3),(5,3, 1)},

Ae1 =1{(1,2,6),(1,6,2),(2,1,6),(2,6,1),(6,1,2),(6,2,1)}.
Corresponding to the given sum representations for 9 and 10, the numbers of favor-
able elementary events belonging to the events A9 and 4 ¢, respectively, are

my=1+6+3+3+6+6=25 mg=2+3+6+6+3+6=27.
Hence, the desired probabilities are:
P(49)=25/216 =0.116, P(A419)=27/216=0.125.

The dice gamblers of the Middle Ages could not mathematically prove this result,
but from their experience they knew that P(4g) < P(A41¢). O

Example 1.5 d dice are thrown at the same time.

What is the smallest number d = d* with property that the probability of the event
A = "no die shows a 6' does not exceed 0.1?

The problem makes sense, since with increasing d the probability P(4) tends to 0,
and if d=1, then P(4)=5/6. For d>1,the corresponding space of elementary
events Q has n =69 elements, namely the vectors (iy,i,--,i;), where the i are
integers between 1 and 6. Amongst the 67 elementary events those are favorable for
the occurrence of 4, where the i; only assume integers between 1 and 5. Hence, for
the occurrence of 4 exactly 5¢ elementary events are favorable:

P(4) =5%/64.
The inequality 59/69 < 0.1 is equivalent to

d(In5/6) < In(0.1) or d(~0.1823)<—2.3026 or d> % — 12.63.

Hence, d* = 13. O

Binomial Coefficient and Faculty For solving the next examples, we need a result
from elementary combinatorics: The number of possibilities to select subsets of &
different elements from a set of n different elements, 1 <k<n, is given by the
binomial coefficient (Z), which is defined as

n) _nm-=1)--m-k+1) <h<
(k) = k! , 1<k<n, (1.5)
where k! is the faculty of k: k! =1-2---k. By agreement

(?)=1 and 0! =1.
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The faculty of a positive integer has its own significance in combinatorics:

I There are k! different possibilities to order a set of k different objects.

Example 1.6 An optimist buys one ticket in a '6 out of 49' lottery and hopes for hit-

ting the jackpot. What are his chances? There are
(49) _49-48-47-46-45-44

6 6!

different possibilities to select 6 numbers out of 49. Thus, one has to fill in almost 14

million tickets to make absolutely sure that the winning one is amongst them. It is

m=1 and n=13983816. Hence, the probability pg of having picked the six 'cor-

rect' numbers is

=13983816

1

P6 = T5a551g = 00000000715, o

The classical definition of probability satisfies the properties P(J) =0 and P(Q) =1,
since the impossible event & does not contain any elementary events (m = 0) and

the certain event Q comprises all elementary events (m = n).

Now, let 4 and B be two events containing m 4 and mpg elementary events, respectiv-

ely. If A € B, then my <mp so that P(4) < P(B). If the events 4 and B are disjoint,

then they have no elementary events in common so that 4\UB contains my+mp

elementary events. Hence

PaUB)="ATE _ A B _ piy) 4 p(B)
or P(AUB) = P(A)+P(B) it ANB=. (1.6)

More generally, if 41,45, -, 4, are pairwise disjoint events, then

P(A VA UAy) = P(A))+P(Ay)+-+PAy), A;"Ap=@, i#k (1.7)

Example 1.7 When participating in the lottery '6 out of 49' with one ticket, what is
the probability of the event 4 to have at least 4 correct numbers?

Let 4; be the event of having got i numbers correct. Then,

A=A4UA5UAg.
Ay4,A5, and Ag are pairwise disjoint events. (It is impossible that there are on one
and the same ticket, say, exactly 4 and exactly 5 correct numbers.) Hence,

P(A) = P(A4) + P(45) + P(4¢) -
There are (2) =15 possibilities to choose 4 numbers from the 6 'correct' ones. To

each of these 15 choices there are

(469_—46) _ (423) 903
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possibilities to pick 2 numbers from the 43 'wrong' numbers. Therefore, favorable for
the occurrence of 44 are my4 = 15-903 = 13 545 elementary events. Hence,

pa=P(A4)=13545/13983 616 = 0.0009686336.

6)(49-6
o O,
ps=as)= (49) _(49)
6 6
Together with the result of example 1.6, P(4) =p4 +ps5+pg=0.0009871552, i.e.,
almost 10 000 tickets have to be bought to achieve the desired result. O

Analogously,

=0.0000184499.

1.3.2 Geometric Definition of Probability

The geometric definition of probability is subject to random experiments, in which
every outcome has the same chance to occur (as with Laplace experiments), but the
sample space Q is a bounded subset of the one, two or three dimensional Euklidian
space (real line, plain, space). Hence, in each case Q is a nondenumerable set. In
most applications, Q is a finite interval, a rectangular, a circle, a cube or a sphere.

Let A cQ be a random event. Then we denote by p(4) the measure of A. For
instance, if Q is a finite interval, then p(Q) is the length of this interval. If 4 is the
union of disjoint subintervals of Q, then pu(4) is the total length of these subinter-
vals. (We do not consider subsets like the set of all irrational numbers in a finite
interval.) If Q is a rectangular and 4 is a circle embedded in this rectangular, then
L(A) is the area of this circle and so on. If pu is defined in this way, then

Ac BcQ implies p4) < wB) < Q).

Under the assumptions stated, a probability is assigned to every event 4 — Q by

A

P(4) Q) (1.8)
For disjoint events 4 and B, w(A4UB) = w(4) + u(B) so that formulas (1.6) and (1.7)
are true again. Analogously to the classical probability, p(4) can be interpreted as
the measure of all elementary events, which are favorable to the occurrence of A.
With the given interpretation of the measure p(-), every elementary event, i.e. every
point in €, has measure and probability 0 (different to the Laplace random experi-
ment). (A point, whether at a line, in a plane or space has always extension 0 in all
directions.) But the assumption "every elementary event has the same chance to
occur" is not equivalent to the fact that every elementary event has probability 0.
Rather, this assumption has to be understood in the following sense:

I All those random events, which have the same measure, have the same probability.
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Thus, never mind where the events (subsets of Q) with the same measure are located
in Q and however small their measure is, the outcome of the random experiment will
be in any of these events with the same probability, i.e., no area in Q is preferred with
regard to the occurrence of elementary events.

Example 1.8 For the sake of a tensile test, a wire is clamped at its ends so that the
free wire has a length of 400 cm. The wire is supposed to be homogeneous with
regard to its physical parameters. Under these assumptions, the probability p that the
wire will tear up between 0 and 40 cm or 360 and 400 cm is

40+40
=——>==0.2.
400
Repeated tensile tests will confirm or reject the assumption that the wire is indeed
homogeneous. O
1
y=4q1-x?
y=1-x
0
0 1

Figure 1.2 Illustration to example 1.9

Example 1.9 Two numbers x and y are randomly picked from the interval [0, 1].
What is the probability that x and y satisfy both the conditions

x+y>1 and x*+y2<1?

Note: In this context, 'randomly' means that every number between 0 and 1 has the same
chance of being picked.

In this case the sample space is the unit square Q=[0<x<1,0<y<1], since an
equivalent formulation of the problem is to pick at random a point out of the unit
square, which is favorable for the occurrence of the event

A={(xy);x+y2 Lx2+y2<1}.

Figure 1.2 shows the area (hatched) given by 4, whereas the 'possible area' Q is left
white, but also includes the hatched area. Since u(2) =1 and p(4) = n/4 - 0.5 (area
of a quarter of a circle with radius 1 minus the area of the half of a unit square),

P(A4) = u(4) ~ 0.2854. O

Example 1.10 (Buffon's needle problem) At an even surface, parallel straight lines
are drawn at a distance of @ cm. At this surface a needle of length L is thrown, L < a.
What is the probability of the event 4 that the needle and a parallel intersect?
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Figure 1.3 Illustration to example 1.10

The position of the needle at the surface is fully determined by its distance of its 'low-
er' endpoint to the 'upper' parallel and by its angle of inclination a to the parallels
(Figure 1.3a), since a shift of the needle parallel to the lines obviously has no influ-
ence on the desired probability. Thus, the sample space is given by the rectangle
Q={(,a),0<y<q,0<a<n}
with area p(Q) = a © (Figure 1.3b). Hence, Buffon's needle problem formally consists
in randomly picking elementary events given by (y,a) from the rectangle Q. Since
the needle and the upper parallel intersect if and only if y < Lsina, the favorable
area for the occurrence of 4 is given by the hatched part in Figure 1.3b. The area of
this part is
wA) :ngsinada =L[-cosalg=L[1+1]=2L.

Hence, the desired probability is P(4) = 2 L/aw. O

1.3.3 Axiomatic Definition of Probability

The classical and the geometric concepts of probability are only applicable to very
restricted classes of random experiments. But these concepts have illustrated which
general properties a universally applicable probability definition should have:

Definition 1.1 A function P = P(4) on the set of all random events E with & € E and
Q e E is called probability if it has the following properties:

) PQ)=1.
IT) Forany4d € E, 0 <P(4)< 1.
IIT) For any sequence of disjoint events 41, Ay, ..., i.e., 4; N4;= & fori+j,

P(QA,-) - g P)). (1.9)
[ ]

Property III makes sense only if with 4; € E the union \U1 4; is also an element of
E. Hence we assume that the set of all random events E is a c—algebra:
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Definition 1.2 Any set of random events E is called a 6 — algebra if
1)Qe E.
2)If4 € E, then 4 € E. In particular, Q = @ <E.
3) For any sequence 4,4, ... with 4; € E, the union \Up 4; is also a random
event, i.e.,
U7 4; € E.

[Q, E] is called a measurable space, and [, E, P] is called a probability space. ~ ®

Note: In case of a finite or a countably infinite set Q, the set E is usually the power set of Q,
i.e. the set of all subsets of Q. A power set is, of course, always a c—algebra. In this book,
taking into account its applied orientation, specifying explicitly the underlying c— algebra is
usually not necessary. [Q, E] is called a measurable space, since to any random event 4 € E a
measure, namely its probability, can be assigned. In view of the de Morgan rules (1.1): If 4 and
B are elements of E, then A N B as well.

Given that E is a c—algebra, properties I-III of definition 1.1 imply all the properties
of the probability functions, which we found useful in sections 1.3.1 and 1.3.2:

a)Letd;=@ for i=n+1,n+2,---. Then, from III),

P(UL1 A) =281 P(A,), A;inAj=D, i#j, ij=12-n. (1.10)
In particular, letting n =2 and 4 = 4|, B = A5, this formula implies
P(AUB)=PA)+P(B) if AnB=0. (1.11)
With B = 4, taking into account Q=4 U4 and P(Q) = 1, formula (1.11) yields
P(A)+P(A)=1 or P(A)=1-P(A). (1.12)
Applying (1.12) with 4 = Q yields P(Q) + P(J) = 1, so that
P(@)=0, PQ)=1. (1.13)

Note that P(QQ) =1 is part of definition 1.1.

b) If 4 and B are two events with 4 < B, then B can be represented as B = 4 U(B\A4).
Since 4 and B\4 are disjoint, by (1.11), P(B) = P(4) + P(B\A) or, equivalently,

P(B\A)=P(B)—-P(A) if A< B. (1.14)

Therefore, P(A)<P(B) if ACB. (1.15)

c) For any events 4 and B, the event 4 U B can be represented as follows (Figure 1.1)
AUB = {4\4d " B)}U{B\(4 " B)}\U(4 N B).

In this representation, the three events combined by '"U' are disjoint. Hence, by (1.10)
withn=3:

PAUB) = P({A\ N B)}) + P({B\(A " B)}) + P(4 " B).
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On the other hand, since (4 " B) c 4 and (4 N B) < B, from (1.14),
P(AUB)=P(A)+ P(B)—P(ANB). (1.16)

Given any 3 events 4, B, and C, the probability of the event A UBU C can be deter-
mined by replacing in (1.16) 4 with 4 U B and B with C. This yields

P(AUBWUC) =P(4) +P(B)+ P(C)— P(A"B)— P(A~ C)— P(BN C)
+P(ANBAC) (1.17)

d) For any n events A1, A»,..., An one obtains by repeated application of (1.16)
(more exactly, by induction) the Inclusion-Exclusion Formula or the Formula of
Poincaré for the probability of the event 4,U A,U---U 4, :

n
P(A,UA,U---Udy) = X (-DF1R, (1.18)
k=1

n
with Rk: Z P(Ail ﬁAizﬁ“-ﬁAik),

(i1<ip<--<iy)

where the summation runs over all k-dimensional vectors (i1, 5, ...,i;) out of the set
{1,2,...,n} with 1 <i| <ip <---<ip<mand k=1,2,...,n. The sum representing R,
has exactly (',:) terms, so that the total number of terms in (1.18) is

3 (”) =2"—1.

f=1 K
For instance, if n =3, then the R, in (1.18) are

Ry =P(4)+P(42) + P(43),
Ry=P(A1NAy)+P(A1 NA3)+ P4y N A3),
R3 :P(Al ﬁAg ﬁA3).

2
ey
4
1 e3 es
3

Figure 1.4 Computer network with 4 computers

Example 1.11 Figure 1.4 shows a simple local computer network. Computers are
located at nodes 1, 2, 3, and 4. The transmission of data between the computers is
possible via cables ey, ej, -, es, which link the four computers. Cable e; is avail-
able, i.e. in a position to transfer information, with probability p; and unavailable
(e.g. under maintenance, waiting for maintenance, waiting for replacement for hav-
ing been stolen) with probability ¢, =1-p;, i=1,2,...,5.
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What is the probability of the event A that the computer at node 1 can transfer data to
the computer at node 4 via one or more paths (chains) of available edges which con-
nect node 1 to node 4? There are four potential candidates for such paths:

wi={er,es}, wy={ez,es}, wy={ey,e3,es}, wa={ez,e3,e4}.
Let 4; be the event that all edges in path w; are available, i = 1,2,3,4. Then event 4
occurs when at least one of these four events occurs. Hence, 4 can be represented as
A=41UA,VA3UA,.
The A; are not disjoint. Hence we apply the inclusion-exclusion formula (1.11) for
representing A:
P(A) = P(AIUAQUA3UA4) :Rl —R2 +R3 —R4
with
Ry =P(41)+P(d2)+ P(43) + P(44),
Ry=P(A1NAy)+P(A; "A3)+P(A1 NAg)+P(Ay N"A3)+P(Ay N Ay)
+P(A2 ﬂA4)+P(A3 ﬂA4),
R3 =P(A1 NAy ﬂA3)+P(A1 NAy ﬁA4)+P(A] ﬁAg ﬂA4)+P(A2 ﬂA3 ﬁA4),
Ry =P(A1 ('\Az F\A3 ﬂA4).
The event 4| N A, means that both the cables in 4 and in 4, are operating. Thus,
to the event 4| A, there belongs the set of cables {e},en,e4,e5}. Hence, the
notation P(A1 N Ay) = pi45 will be used. To the event 4] N Ay N A3 there belongs
the set of cables {e,e),e3,e4,e5}: P(A1 M Ay N A3)=pio345. If this way of nota-
tion is applied to all other probabilities occurring in the R;, then
Ry =p1a+p2s5+p135 +P234,
Ry =p124s +P1345 +P1234 T P1235 +P2345 + P 12345,
R3 =pi234s + 12345 +P 12345 T P12345, R4 =p1234s.
The desired probability is
P(A) =p1a+pas+P135 +P234 —P1245 —P1345 —P 1234 —P1235 —D2345 + 3P 12345.

In section 1.4.2, an additional assumption on the operation modus of the cables will
be imposed which enables the calculation of P(4) only on the basis of the p;. O

1.3.4 Relative Frequency

The probabilities of random events are usually unknown. However, they can be
estimated by their relative frequencies. If in a series of n repetitions of one and the
same random experiment the event 4 has been observed exactly m = m(A4) times,
then the relative frequency of 4 is given by
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N m(A
pn(A)=—§l ), (1.19)
Generally, the relative frequency of 4 tends to P(4) as n increases:
Jim pu(4) = P(4). (1.20)

Thus, the probability of 4 can be estimated with any required level of accuracy from
its relative frequency by sufficiently frequently repeating the random experiment (for
the theoretical background see section 5.2.2). Empirical verifications of the limit rela-
tion (1.20) were aleady given in the introduction by the coin experiments of Buffon
and Pearson. Without the validity of (1.20) the gamblers in the Middle Ages would
not have been in a position to empirically verify that, when throwing three dice, the
chance to obtain sum 9 is lower than the chance to obtain sum 10 (example 1.4).

It is interesting that the relationship (1.20) in connection with Buffon's needle prob-
lem (example 1.10) allows to estimate the number m with any desired degree of
accuracy. To do this, in the formula P(4) =2L/na the probability P(4) is replaced
with the relative frequency p,(4) for the occurrence of 4 in a series of n needle
throwings. This gives for © the estimate

AN _2L

a[A?n(A).
Lazzarini (1901) threw the needle n = 3408 times and got for & the estimate
73408 = 3.141529,

i.e., the first six figures are the exact ones. The approximate calculation of T was one
of the first examples how to solve deterministic problems by probabilistic methods.
Nowadays, nobody needs to throw a needle manually several tousand times. Com-
puters 'simulate' random experiments of this simple structure many thousand times in
a twinkling of an eye.

The reader may object that the approximate calculation of probabilities of all random
events by their relative frequency is practically not possible, in particular, if the sam-
ple space is not finite. However, depending on the respective random experiment, the
probabilities of all its elementary events are frequently given by a unifying mathemat-
ical pattern (model). For instance, the probability that the random number of traffic
accidents occurring in a specific area during a year is equal to & can frequently be

determined by the formula

k
Pr= %e‘k; k=0,1,...,

where A is the average number of traffic accidents which occur a year in that area.
Hence, for determining all infinitely many probabilities pg, p1, ... , only the paramet-
er A has to be estimated. This is done by counting the number x; of traffic accidents
occurring in year i over a period of n years and determining the arithmetic mean

A= % 2?:1 X
Defining and discussing mathematical models for the calculation of the probabilities
of random events is the subject of chapter 2.
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1.4 CONDITIONAL PROBABILITY AND INDEPENDENCE
OF RANDOM EVENTS

1.4.1 Conditional Probability

Two random events 4 and B can depend on each other in the following sense: The
occurrence of B will change the probability of the occurrence of 4 and vice versa.
Hence, the additional piece of information 'B has occurred' should be used in order to
predict the probability of the occurrence of 4 more precisely. If one has to determine
the probability that a device does not fail during its guarantee period (event A), then
this probability may depend on the manufacturer of the device (event B) if there are
several of them who produce the same type. The probability of having a sunny day
on 21 August (event 4) will increase if there is a sunny day on 20 August (event B)
in view of the inertia of weather patterns. The probability of attracting a certain dis-
ease (event A) will usually be larger than average if there was/is a family member,
who had suffered from this disease (event B). If A is the random event to spot a
leopard in a certain area of a National Park during a safari, then the probability of 4
increases if it is known that there are baboons in this area (event B).

Let us now consider some numerical examples to illustrate how to define the probab-
ility of the occurrence of an event 4 given that another event B has occurred.

Example 1.12 A gambler throws the dice 1 and 2 simultaneously. What is the prob-
ability that die 1 shows a 6 (event 4) on condition that both dice showed an even
number (event B). This probability will be denoted as P(4|B). The sample space is

Q=1{3G,y));i,j=1,2,...,6}.
In terms of the elementary events (i,j), the events 4 and B are given by
A4={(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)},
B=1{(2,2), (2,4), (2,6), (4,2), (4,4), (4,06), (6,2), (6,4), (6,6)}.
Hence,
P(A4)=6/36 and P(B)=9/36.
On condition 'B has occurred' the sample space Q reduces to the 9 elementary events
given by B. From these 9, only the 3 elementary events in the conjunction
AN B=1{(6,2), (6,4), (6,6)}
are favorable for the occurrence of 4: Therefore,
P(A4|B) = 3/9.
The following representation shows the general structure of P(4|B) :

. 3536 PANB)
P(AIB)—1/3——9/36——P(B) . O
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Example 1.13 In a bowl there are two white and two red marbles. The numbers 1
and 2 are assigned to the white marbles and the numbers 3 and 4 are assigned to the
red marbles. Two marbles are one after the other randomly picked from the bowl.
Find the probability of the event A that one of the drawn marbles is white and the
other red given the event B that the first drawn marble is white.

The sample space consists of 4 - 3 = 12 elementary events:
Q={(.));i#Jj,i,j=1,2,3,4}.
The events 4 and B are given by the following sets of elementary events:
4={(1,3),(1,4), (2,3),(2,4), 3,1), 3,2), (4, 1), (4,2) },

B=1{(1,2),(1,3), (1,4), (2,1), (2,3), (2,4) }.
Hence,
P(4)=28/12=2/3 and P(B)=6/12=1/2.

Since it is known that event B has happened, the space of possible elementary events
is given by B. Hence, the elementary events which are favorable for the occurrence
of event A4 are given by the conjunction

AnB={(1,3),(1,4), (2,3), (2,4)}.
This yields

4 2_4/12_PAnB)
PA|B)y=—-=2=—%2=
(418) = 3 6/12 PB)

For the sake of arriving at the general structure of P(4|B), solution of the problem
had been unnecessarily complicated. The problem is namely quickly solved as
follows: If the first drawn marble is white (event B), then there are one white and two
red marbles left in the bowl. Event 4 occurs if one of the red marbles will be drawn,
i.e., P(A|B) =2/3. O

Example 1.14 The lifetimes of n = 1000 electronic units had been tested. 205 units
failed in the interval [0, 500 /), 180 units failed in the interval [500, 600 %), and the
remaining 615 units failed after 600 4. Let 4 be the event that a unit fails in the inter-
val [500, 600 ), and B be the event that a unit fails after a lifetime of at least 500 4.
By formula (1.19) with n=1000, the relative frequencies for the occurrence of
events 4 and B are
m(A) 180 m(B) 1000 —205

pn(d) = ~ 1000 pn(B) = ~ 1000 =0.795.
What is the relative frequency p,(4|B) of the event 4 on condition that event B has
occurred?

Under this condition, only the 795 units, which have survived the first 500 %, need to
be taken into account. From these 795 units, 180 fail in [500, 600 /). Therefore,

A _ 180 _
Pn(AIB) = 25¢ = 0.2264.
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Since 4 ¢ B, i.e. the occurrence of 4 implies the occurrence of B, event 4 satisfies
A=A N B. Hence, the 'conditional relative frequency' p,(4|B) can be written as

m(A ~ B) B m(Ant)

mB) | mB
n

Pn(4]B) = (1.21)

By (1.20), the relative frequencies mdnB) and @ tend to P(4 N B) and P(B) as

n
n — o, respectively. Thus, the conditional probability of 4 given B has again the
structure we know from the previous examples:
oA _ _P(AnB)
lim pn(4|B) = P(4]B) = P(B) O
Now it is no longer surprising that the probability of ‘4 on condition B’ or, equival-

ently, the probability of '4 given B’ is defined as follows.

Definition 1.3 Let 4 and B be two events with P(B) > 0. Then the probability of A on
condition B is given by
P(ANB)

P(4|B) = yE)

(1.22)

Note: P(A4|B) is also denoted as the probability of A given B, the conditional probability of A
on condition B, or the conditional probability of A given B. Of course, in (1.22) the roles of 4
and B can be changed.

If A and B are arbitrary random events, formula (1.22) implies a product formula for
the probability P(4 N B) of the joint occurrence of arbitrary events 4 and B:

P(AB)=P(A4|B) P(B) or P(4 B)=P(B|A) P(4). (1.23)

Example 1.15 In a bowl there are three white and two red marbles. Two marbles are
randomly taken out one after the other. What is the probability that both of these mar-
bles are red?

Let be 4 and B be the events that the first and the second, respectively, of the chosen
marbles are red. Hence, the probability P(4 N B) has to be determined. The probabil-
ity of 4 is equal to P(4) = 2/5. On condition A4, there are 3 white and 1 red marble in
the bowl. Hence, P(B|A4) = 1/4 so that

P(4B)=P(Bl4)P(4) =5 -3 =0.1. O

Example 1.16 In a study, data from a sample of 12 000 persons had been collected.
4800 persons in this sample were obese and 3600 suffered from diabetes 2. From the
diabetes sufferers, 2700 were obese. A person is randomly selected from the sample
of 12 000 persons. It happens to be Max. Let 4 be the event that Max is obese, and B
be the event that Max has diabetes 2. Then
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P(A)=0.4, P(B)=0.3, and P(4|B) =2700/3600 = 0.75.
Hence, the probability that Max is both obese and a diabetes 2 sufferer is, by (1.22),
P(4"B)=P(A|B)P(B)=0.75-0.3 =0.225.
2) To see whether being obese increases the probability of contracting diabetes 2, the
probability P(B|A4) has to be determined: From the right equation of (1.23),
P(4 " B)=0.225=P(B|A)P(A) = P(B|4) - 0.4.

Hence, P(B|4)=0.5625. Thus, based on this study, being obese increases the
probability of contracting diabetes 2. a

1.4.2 Total Probability Rule and Bayes' Theorem

Frequently several mutually exclusive conditions have influence on the occurrence
of a random event A. The whole of these conditions are known, but it is not known,
which of these conditions is taking effect. However, the probabilities are known
which of these conditions affects the occurrence of 4 at the time point of interest.
Under these assumptions, a formula for the occurrence of 4 will be derived. But next
the procedure is illustrated by an example.

Example 1.17 A machine is subject to two stress levels 1 (event By) and 2 (event
B,) with respective probabilities 0.8 and 0.2. Stress levels can be determined e.g. by
different production conditions as speed, pressu,re or humidity. It is supposed that
the stress level does not change during a fixed working period (hour, day). Given
stress level 1 or 2, the machine will fail during a working period with probability 0.3
or 0.6, respectively. Hence,

P(4|B1)=0.3, P(4]|By)=0.6.

Since the events B and B, are disjoint (mutually exclusive) and Q= B;U B> is the
certain event, 4 can be represented as

A=4ANQ=4AN(B1UB3)=(ANB1)JANBy).
The events A " B and A N B, are disjoint so that by formula (1.11)
PA)=P(ANB)+PANB,).
By applying (1.23) to each of the two terms on the right-hand side of this formula,
P(4) = P(A|B1)P(B/) + P(4|B,)P(By)
=0.3-0.8+0.6-0.2=0.36.
Thus, without information on the respective stress level, the failure probability of the

machine in the working period is 0.36. O

Now the principle, illustrated by this example, is formulated more generally:
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Definition 1.4 The set of random events {B;, B>, ...,By, n < ®} is an exhaustive set
of random events for Q if

Q= U?:l Bia
and it is a mutually disjoint set of events if
BlﬂB] = @, iij, i,j: 1,2,...,n.

A mutually disjoint and exhaustive (for Q) set of events is called a partition of Q. ®

B, | B, | B; By

.t

By

~ | 7

Figure 1.5 Partition of a sample space

Let {B|,B>,...,Bn} be an exhaustive and mutually disjoint set of events with pro-

perty P(B;)>0 forall i=1,2,...,n, and let 4 be an event with P(4) > 0. Then 4 can
be represented as follows (see Figure 1.5):

P) = N B)).
i=1

Since the B; are disjoint, the conjunctions 4 N B; are disjoint as well. Formula
(1.10) is applicable and yields P(4) = X1 P(A N B;). Now formula (1.23) applied
to all n probabilities P(4 N B;) yields

P(4) =X P(4]B)) P(B)). (1.24)
This result is called the Formula of total probability or the Total probability rule.
Moreover, formulas (1.22) and (1.23) yield
PB;nA) _PANB;) _PA|B)PB;)

PEIO="30 ="Pay ~ P
If P(A) is replaced with its representation (1.24), then
P(A|B;)P(B;
P(B;|4) = (41B;) P(B;) i=12,..,n. (1.25)

YL P(A|B;) P(B;)

Formula (1.25) is called Bayes' theorem or Formula of Bayes. For obvious reasons,
the probabilities P(B;) are called a priori probabilities and the conditional probabili-
ties P(B;| A) a posteriori probabilities.
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Example 1.18 The manufacturers M|, M», and M5 delivered to a supermarket a total
of 1000 fluorescent tubes of the same type with shares 200, 300, and 500, respective-
ly. In these shares, there are in this order 12,9, and 5 defective tubes.

1) What is the probability that a randomly chosen tube is not defective?
2) What is the probability that a defective tube had been produced by M;,i=1,2,3?
Let events 4 and B; be introduced as follows:
A ="A tube, randomly chosen from the whole delivery, is not defective.'
B; ="A tube, randomly chosen from the whole delivery, is from M;,i=1,2,3."
According to the figures given:
P(B1)=0.2, P(By)=0.3, P(B3)=0.5,

P(A|B1) = 12/200 = 0.06, P(4|B5)=9/300=0.03, P(4|B3)=5/500=0.01.

{B1,B,B3} is a set of exhaustive and mutually disjoint events, since there are no

other manufacturers delivering tubes of this brand to that supermarket and no two
manufacturers can have produced one and the same tube.

1) Formula (1.23) yields
P(4)=0.06-0.2+0.03-0.3+0.01-0.5=0.026.
2) Bayes' theorem (1.25) gives the desired probabilities:

P8, 14) = PA)  0.026
_ P(4]B2)P(B2)  0.03-0.3 _
P(B3|4) = ) = o 0ae = 0-3462,
_ P(4]B3)P(B3) 0.01-0.5 _
P(B3|4) = ) =0 =0-1923.

Thus, despite having by far the largest proportion of tubes in the delivery, the high
quality of tubes from manufacturer M3 guarantees that a defective tube is most likely
not produced by this manufacturer. O

Example 1.19 1% of the population in a country are HIV-positive. A test procedure
for diagnosing whether a person is HIV-positive indicates with probability 0.98 that
the person is HIV-positive if indeed he/she is HIV-positive, and with probability
0.96 that this person is not HIV-positve if he/she is not HIV-positive.

1) What is the probability that a test person is HIV-positive if the test indicates that?
To solve the problem, random events 4 and B are introduced:

A ='The test indicates that a person is HIV-positive.'

B ="A test person is HIV-positive.'

Then, from the figures given,
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P(B)=0.01, P(B)=0.99
P(A|B)=0.98, P(4|B)=0.02, P(41B)=0.96, P(4|B)=0.04.
Since {B,B} is an exhaustive and disjoint set of events, the total probability rule
(1.23) is applicable to determining P(4):
P(A) = P(A|B) P(B) + P(A|B) P(B)=0.98 - 0.01 +0.04 - 0.99 = 0.0494.
Bayes' theorem (1.24) yields the desired probability P(B|A):

P(4]B)P(B) _ 0.98 - 0.01
P(B|4) = PA) ~ 0.0494 =0.1984.
Although the initial parameters of the test look acceptable, this result is quite unsatis-
factory: In view of P(B|A4)=0.8016, about 80% HIV-negative test persons will be
shocked to learn that the test procedure indicates they are HIV-positive. In such a sit-
uation the test has to be repeated several times. The reason for this unsatisfactory
numerical result is that only a small percentage of the population is HIV-positive.

2) The probability that a person is HIV-negative if the test procedure indicates this is

PAIBYP(B)  0.96 - 0.99
ey 10049 0.99979 .

This result is, of course, an excellent feature of the test. O

P(Bl4) =

1.4.3 Independent Random Events

If a die is thrown twice, then the result of the first throw does not influence the result
of the second throw and vice versa. If you have not won in the weekly lottery during
the past 20 years, then this bad luck will not increase or decrease your chance to win
in the lottery the following week. An aircraft crash over the Pacific for technical
reasons has no connection to the crash of an aircraft over the Atlantic for technical
reasons the same day. Thus, there are random events which do not at all influence
each other. Events like that are called independent (of each other). Of course, for a
quantitative probabilistic analysis a more accurate definition is required.
If the occurrence of a random event B has no influence on the occurrence of a ran-
dom event A4, then the probability of the occurrence of 4 will not be changed by the
additional information that B has occurred, i.e.
P(ANB)
P(B)

This motivates the definition of independent random events:

P(4) = P(4|B) = (1.26)

Definition 1.5: Two random events 4 and B are called independent if
P(ANB)=P(4)P(B). (1.27)
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This is the product formula for independent events 4 and B. Obviously, (1.27) is also
valid for P(B) =0 and/or P(4) = 0. Hence, defining independence of two random
events by (1.27) is preferred to defining independence by formula (1.26).

If A and B are independent random events, then the pairs 4 and B, 4 and B, as well
as 4 and B are independent, too. That means relation (1.27) implies, e.g.,

P(4 " B) = P(4) P(B).
This can be proved as follows:
P(4 " B)=P(AN(Q\B)) = P(A N Q)\(A N B)) = P(A\(4 N B))
= P(4)— P(A N B) = P(A)— P(A)P(B)
= P(A)[1 - P(B)] = P(4) P(B).

The generalization of the independence property to more than two random events is
not obvious. The pairwise independence between n > 2 events is defined as follows:

The events A, Ay, ..., Ay are called pairwise independent if for each pair (4;,4;)
PA;NA)=PA)PA)), i#j, i,j=1,2,..,n.

A more general definition of the independence of n events is the following one:

Definition 1.6 The random events 41, Ay, ..., A, are called completely independent
or simply independent if for all k=2,3,...,n,

P(A;, Ny (- (A )= P(A; ) P(Ay,) - P(A;,) (1.28)

for any subset {4; , 4;,,..., 4;, } of {41,42,....,An} With 1 <iy <ip <---<ip<n. ®

Thus, to verify the complete independence of #n random events, one has to check

n
$ (1) =2m-n-1
k=2
conditions. Luckily, in most applications it is sufficient to verify the case k=n:

P(Ay NAs "+ A\Ap)=P(A])P(4y) - P(4y). (1.29)

The complete independence is a stronger property than the pairwise independence.
For this reason it is interesting to consider an example, in which the 41,45, ...,4, are

pairwise independent, but not complete independent.

Example 1.20 The dice D and D, are thrown. The corresponding sample space
consists of 36 elementary events: Q = {(i,j); i,j = 1,2,...,6}. Let

Ay ="Dy showsa 1'={(1,1), (1,2), (1,3), (1,4), (1,5), (1,6)},
Ay ='Dy showsa 1'={(1,1), (2,1), (3,1), (4,1), (5,1), (6,1)},
Az ='both D| and D, show the same number' = '{(i,i), i=1,2,...,6)}."
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Since the 4; each contain 6 elementary events,
P(41)=P(A4,) =P(43)=1/6.
The A; have only one elementary event in common, namely (1, 1). Hence,

P(4) NAy)=P(Ad] N A3)=PAy N A3) =5 =73

Therefore, the 4; are pairwise independent. However, there is
A1 ﬁAz ﬂA3 = {(1, 1)}
Hence,

P(AlmAzmA3):%;tP(Al)P(Ag)P(Ag:é%z:ﬁ. O

Example 1.21 (Chevalier de Méré) What is more likely: 1) to get at least one 6,
when throwing four dice simultaneously (event 4), or 2) to get the outcome (6,6) at
least once, when throwing two dice 24 times simultaneously (event B)?

The complementary events to 4 and B are:

A = 'none of the dice shows a 6, when four dice are thrown simultaneously,'

B = 'the outcome (6,6) does not occur, when two dice are thrown 24 times.'

1) Both the four results obtained by throwing four or two dice and the results by
repeatedly throwing two dice are independent of each other. Hence, since the proba-
bility to get no 6, when throwing one die, is 5/6, formula (1.29) with n =4 yields

P(4) = (5/6)*.
The probability, not to get the result (6,6) when throwing two dice, is 35/36. Hence,
formula (1.29) yields with n = 24 the probability
P(B) = (35/36)%*.
Thus, the desired probabilities are
P(4)=1-(5/6)*~0518, P(B)=1-(35/36)**~0.491. O

Example 1.22 In a set of traffic lights, the color 'red' (as well as green and yellow) is
indicated by two bulbs which operate independently of each other. Color 'red' is
clearly visible if at least one bulb is operating.

What is the probability that in the time interval [0, 200 Ahours] color 'red' is visible if
it is known that a bulb survives this interval with probability 0.95?

To answer this question, let
A = "bulb 1 does not fail in [0, 200]," B = 'bulb 2 does not fail in [0, 200].'
The event of interest is
C=AUB = 'red light is clearly visible in [0, 200].'
By formula (1.16),
P(C)=P(AUB)=P(A)+ P(B)— P(A N B).
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Since 4 and B are independent,
P(C) = P(4) + P(B) — P(4) P(B)= 0.95 + 0.95 — (0.95)>.
Thus, the desired probability is
P(C)=0.9975.

Another possibility of solving this problem is to apply the Rules of de Morgan (1.1):
P(C)=P(AUB) = P(A " B) = P(A) P(B) = (1 —0.95)(1 — 0.95)

=0.0025
so that P(C) = 1-P(C) = 0.9975. O
] €3
en @ I el I I €3 I @ €X
e es

Figure 1.6 Diagram of a '2 out of 3-system'

Example 1.23 (2 out of 3 system') A system S consists of 3 independently operat-
ing subsystems S, S, and S3. The system operates if and only if at least 2 of its
subsystems operate. Figure 1.6 illustrates the situation: S operates if there is at least
one path with two operating subsystems (symbolized by rectangles) from the entrance
node en to the exit node ex. As an application may serve the following one: The pres-
sure in a high-pressure tank is indicated by 3 gauges. If at least 2 gauges show the
same pressure, then this value can be accepted as the true one. (But for safety reasons
the failed gauge has to be replaced immediately.)

At a given time point 7(, subsystem S; is operating with probability p;, i=1,2,3.
What is the probability ps that the system S is operating at time point ¢,?

Let Ag be the event that S is working at time point ¢;, and 4; be the event that S; is
operating at time point ¢y. Then,

Ag= (A1 NAx)U(A1 NA3)U(Ay N A3).
With A=41"A4>, B=A4A1nA3,and C=A4, N A3, formula (1.17) can be directly
applied and yields the following representation of A g:
PAg)=PA; NAp)+P(A|1 NA3)+(Ay NA3)—2P(A] N Ay N A3).
In view of the independence of the 4, 4;, and 43, this probability can be written as

P(Ag) = P(A1)P(A2) + P(A1)P(A3) + P(A2)P(A3) = 2P(A1)P(A2)P(43).
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or
P(As) =p1p2+p1P3 +p2P3 —2p1P2P3-
In particular, if p =p;, i =1,2,3, then
P(ds) = (3 -2p)p*. m]

Disjoint and independent random events are causally not connected. Nevertheless,
sometimes there is confusion about their meaning and use. This may be due to the
formal analogy between their properties:

If the random events 41,45, ...,An are disjoint, then, by formula (1.10),
P(A1VA)U---UAdy)=P(A1)+P(A3)+ -+ P(4n).
If the random events 41,45, ...,A, are independent, then, by formula (1.29),
PAyNAy =N An)=P(A1) P(42) - P(4n).

1.5 EXERCISES

Sections 1.1-1.3
1.1) A random experiment consists of simultaneously flipping three coins.
(1) What is the corresponding sample space?

(2) Give the following events in terms of elementary events:
A ="head appears at least two times,' B = 'head appears not more than once,' and
C ="no head appears.'

(3) Characterize verbally the complementary events of 4, B, and C.

1.2) A random experiment consists of flipping a die to the first appearance of a '6'.
What is the corresponding sample space?

1.3) Castings are produced weighing either 1, 5, 10, or 20 kg. Let A, B, and C be the
events that a casting weighs 1 or 5kg, exactly 10kg, and at least 10kg, respectively.

Characterize verbally the events AN B, AUB, AN E‘, and (Z Ul_i’) NnC.

1.4) Three randomly chosen persons are to be tested for the presence of gene g.
Three random events are introduced:

A = "none of them has gene g’

B ="at least one of them has gene g,'

C = 'not more than one of them has gene g'.

Determine the corresponding sample space Q and characterize the events
ANB, BUC, and BN C by elementary events.
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1.5) Under which conditions are the following relations between events 4 and B true:
(MHANnB=Q, 2)4uB=Q, 3)AuUB=4ANnB?

1.6) Visualize by a Venn diagram whether the following relations between random
events 4, B, and C are true:

(HANBUCO)=ANB)UANO),

Q)ANB)UMANB)=4,

(3)AUB=BU(ANB).

1.7) (1) Verify by a Venn diagram that for three random events 4, B, and C the
following relation is true: (AAB)NC=(ANC\NBNC).

(2) Is the relation (4 N B)\C = (4\C) N (B\C) true as well?

1.8) The random events 4 and B belong to a c—algebra E.
What other events, generated by 4 and B, must belong to E (see definition 1.2)?

1.9) Two dice D and D, are simultaneously thrown. The respective outcomes of D
and D, are ®; and ®; . Thus, the sample space isQ = {(®,®3); 1,0 =1,2,...,6}.
Let the events 4, B, and C be defined as follows:

A ='The outcome of D is even and the outcome of D is odd',

B ="The outcomes of D and D, are both even".

What is the smallest c—algebra E generated by 4 and B (‘smallest' with regard to the
number of elements in E)?

1.10) Let 4 and B be two disjoint random events, 4 c Q, Bc Q.

Check whether the set of events {4, B, AN B, and AN B} is (1) an exhaustive and
(2) a disjoint set of events (Venn diagram).

1.11) A coin is flipped 5 times in a row. What is the probability of the event 4 that
'head' appears at least 3 times one after the other?

1.12) A die is thrown. Let 4 = {1,2,3} and B = {3,4,6} be two random events.
Determine the probabilities P(4 U B), P(4A N B), and P(B\A).

1.13) A die is thrown 3 times. Determine the probability of the event A that the
resulting sequence of three integers is strictly increasing.

1.14) Two dice are thrown simultaneously. Let (w1, ®,) be an outcome of this ran-
dom experiment, 4 ='®| +®y <10'and B="o0| - ®y > 19.'

Determine the probability P(4 N B).
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1.15) What is the probability p3 to get 3 numbers right with 1 ticket in the '6 out of
49' number lottery?

1.16) A sample of 300 students showed the following results with regard to physical
fitness and body weight:

weight [kg]

60 < [60-80] 80>

good 48 64 11

fitness |satisfactory| 22 42 29
bad 19 17 48

One student is randomly chosen. It happens to be Paul.
(1) What is the probability that the fitness of Paul is satisfactory?
(2) What is the probability that the weight of Paul is greater than 80 kg?

(3) What is the probability that the fitness of Paul is bad and that his weight is less
than 60 kg?

1.17) Paul writes four letters and addresses the four accompanying envelopes. After
having had a bottle of whisky, he puts the letters randomly into the envelopes. Deter-
mine the probabilities p;, that k letters are in the 'correct' envelopes, k=0, 1,2, 3.

1.18) A straight stick is broken at two randomly chosen positions. What is the pro-
bability that the resulting three parts of the stick allow the construction of a triangle?

1.19) Two hikers climb to the top of a mountain from different directions. Their arriv-
al time points are between 9:00 and 10:00 a.m., and they stay on the top for 10 and
20 minutes, respectively. For each hiker, every time point between 9 and 10:00 has
the same chance to be the arrival time. What is the probability that the hikers meet on
the top?

1.20) A fence consists of horizontal and vertical wooden rods with a distance of 10 cm
between them (measured from the center of the rods). The rods have a circular sec-
tional view with a diameter of 2cm. Thus, the arising squares have an edge length of
8cm. Children throw balls with a diameter of 5c¢m horizontally at the fence. What is
the probability that a ball passes the fence without touching the rods?

1.21) Determine the probability that the quadratic equation
x2+2 fax=b-1

does not have a real solution if the pair (a,b) is randomly chosen from the quarter
circle {(a,b); a,b >0, a®> + b < 1}.



1 RANDOM EVENTS AND THEIR PROBABILITIES 35

1.22) Let 4 and B be disjoint events with P(4) = 0.3 and P(B) = 0.45. Determine the
probabilities P(4 U B), P(A U B), P(AU B), and P(4 N B).

1.23) Let P(4 " B) = 0.3 and P(B) = 0.6. Determine P(4 U B).

1.24) Is it possible that for two events 4 and B with P(4)=0.4 and P(B)=0.2 the
relation P(4 N B) = 0.3 is true?

1.25) Check whether for 3 arbitrary random events 4, B, and C the following con-
stellations of probabilities can be true:

(1) P(4) = 0.6, P(AB)=0.2, and P(A " B)=0.5,
(2) P(4) = 0.6, P(B)=0.4, (AN B)=0, and PANBAC)=0.1,
(3)P(AUBUC)=0.68 and P(ANB)=PANC)=1.

1.26) Show that for two arbitrary random events 4 and B the following inequalities
are true: P(A N B) < P(4) < P(A4 v B) < P(4) + P(B).

1.27) Let 4, B, and C be 3 arbitrary random events.

(1) Express the event 'A occurs, but B and C do not occur' in terms of suitable rela-
tions between these events and their complements.

(2) Prove: the probability of the event 'exactly one of the events 4, B, or C occurs' is
PA)+PB)+P(C)-2P(ANB)-2P(ANC)-2P(BN C)+3P(AN BN C).

Section 1.4

1.28) Two dice are simultaneously thrown. The result is (o1, ®;). What is the proba-
bility p of the event 'm, = 6' on condition that '®| + m, = 8?"

1.29) Two dice are simultaneously thrown. By means of formula (1.24) determine
the probability p that the dice show the same number.

1.30) A publishing house offers a new book as standard or luxury edition and with or
without a CD. The publisher analyzes the first 1000 orders:

luxury edition

yes no
with CD | yes 324 82
no 48 546

Let 4 (B) the random event that a book, randomly choosen from these 1000, is a
luxury one (comes with a CD). (1) Determine the probabilities

P(A4), P(B), P(AU B), P(AN B), P(4|B), P(B|4), P(A L B|B), and P(4 |B).
(2) Are the events 4 and B independent?
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1.31) A manufacturer equips its newly developed car of type Treekill optionally with
or without a tracking device and with or without speed limitation technology and
analyzes the first 1200 orders:

speed limitation

yes no

tracking device | yes 74 642
no 48 436

Let A (B) the random event that a car, randomly chosen from these 1200, has speed
limitation (comes with a tracking device).

(1) Calculate the probabilities P(4), P(B), and P(4 N B) from the figures in the table.

(2) Based on the probabilities determined under a), only by using the rules developed
in section 1.3.3, determine the probabilities

P(AU B), P(4|B), P(B|4), P(4 L B|B), and P(4|B).

1.32) A bowl contains m white marbles and »n red marbles. A marble is taken ran-
domly from the bowl and returned to the bowl together with » marbles of the same
color. This procedure continues to infinity.

(1) What is the probability that the second marble taken is red?

(2) What is the probability that the first marble taken is red on condition that the
second marble taken is red? (This is a variant of Polya's urn problem.)

1.33) A test procedure for diagnosing faults in circuits indicates no fault with probab-
ility 0.99 if the circuit is faultless. It indicates a fault with probability 0.90 if the cir-
cuit is faulty. Let the probability of a circuit to be faulty be 0.02.

(1) What is the probability that a circuit is faulty if the test procedure indicates a fault?

(2) What is the probability that a circuit is faultless if the test procedure indicates that
it is faultless?

1.34) Suppose 2% of cotton fabric rolls and 3% of nylon fabric rolls contain flaws.
Of the rolls used by a manufacturer, 70% are cotton and 30% are nylon.

a) What is the probability that a randomly selected roll used by the manufacturer
contains flaws?

b) Given that a randomly selected roll used by the manufacturer does not contain
flaws, what is the probability that it is a nylon fabric roll?

1.35) A group of 8 students arrives at an examination. Of these students 1 is very
well prepared, 2 are well prepared, 3 are satisfactorily prepared, and 2 are insuffi-
ciently prepared. There is a total of 16 questions. A very well prepared student can
answer all of them, a well prepared 12, a satisfactorily prepared 8, and an insuffi-
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transmitter receiver
0.9
0 >0
0.05
0.1
1 >
0.95

ciently prepared 4. Each student has to draw randomly 4 questions. Student Frank
could answer all the 4 questions. What is the probability that Frank

(1) was very well prepared,
(2) was satisfactorily prepared,
(3) was insufficiently prepared?

1.36) Symbols 0 and 1 are transmitted independently from each other in proportion
1 : 4. Random noise may cause transmission failures: If a 0 was sent, then a 1 will
arrive at the sink with probability 0.1. If a 1 was sent, then a 0 will arrive at the sink
with probability 0.05 (figure).

(1) What is the probability that a received symbol is '1'?

(2) '1" has been received. What is the probability that 'l' had been sent?

(3) '0' has been received. What is the probability that '1' had been sent?

1.37) The companies 1, 2, and 3 have 60, 80, and 100 employees with 45, 40, and 25
women, respectively. In every company, employees have the same chance to be
retrenched. It is known that a woman had been retrenched (event B).

What is the probability that she had worked in company 1, 2, and 3, respectively?

1.38) John needs to take an examination, which is organized as follows: To each
question 5 answers are given. But John knows the correct answer only with probabil-
ity 0.6. Thus, with probability 0.4 he has to guess the right answer. In this case, John
guesses the correct answer with probability 1/5 (that means, he chooses an answer by
chance). What is the probability that John knew the answer to a question given that
he did answer the question correctly?

1.39) A delivery of 25 parts is subject to a quality control according to the following
scheme: A sample of size 5 is drawn (without replacement of drawn parts). If at least
one part is faulty, then the delivery is rejected. If all 5 parts are o.k., then they are
returned to the lot, and a sample of size 10 is randomly taken from the original 25
parts. The delivery is rejected if at least 1 part out of the 10 is faulty.

Determine the probabilities that a delivery is accepted on condition that
(1) the delivery contains 2 defective parts,
(2) the delivery contains 4 defective parts.
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1.40) The random events 4, 4,,...,A, are assumed to be independent. Show that
P4y v Ay - Udy) =1-(1-P)))(1-P(43))--- (1 = P(4n)).

1.41) n hunters shoot at a target independently of each other, and each of them hits it
with probability 0.8. Determine the smallest #n with property that the target is hit with
probability 0.99 by at least one hunter.

1.42) Starting a car of type Treekill is successful with probability 0.6. What is the
probability that the driver needs no more than 4 start trials to be able to leave?

1.43) Let A and B be two subintervals of [0, 1]. A point x is randomly chosen from
[0,1]. Now 4 and B can be interpreted as random events, which occur if x € 4 or
x € B, respectively. Under which condition are 4 and B independent?

1.44) A tank is shot at by 3 independently acting anti-tank helicopters with one anti-
tank missile each. Each missile hits the tank with probability 0.6. If the tank is hit by
1 missile, it is put out of action with probability 0.8. If the tank is hit by at least 2 mis-
siles, it is put out of action with probability 1.

What is the probability that the tank is put out of action by this attack?

1.45) An aircraft is targeted by two independently acting ground-to-air missiles. Each
missile hits the aircraft with probability 0.6 if these missiles are not being destroyed
before. The aircraft will crash with probability 1 if being hit by at least one missile.
On the other hand, the aircraft defends itself by firing one air-to-air missile each at
the approaching ground-to-air missiles. The air-to-air missiles destroy their respec-
tive targets with probablity 0.5.

(1) What is the probability that p the aircraft will crash as a result of this attack?

(2) What is the probability that the aircraft will crash if two independent air-to-air
missiles are fired at each of the approaching ground-to-air-missiles?

1.46) The liquid flow in a pipe can be interrupted by two independent valves ¥; and
V,, which are connected in series (figure). For interrupting the liquid flow it is suf-
ficient if one valve closes properly. The probability that an interruption is achieved
when necessary is 0.98 for both valves. On the other hand, liquid flow is only possi-
ble if both valves are open. Switching from 'closed' to 'open' is successful with
probability 0.99 for each of the valves.

(1) Determine the probability to be able to interrupt the liquid flow if necessary.
(2) What is the probability to be able to resume liquid flow if both valves are closed?
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CHAPTER 2

One-Dimensional Random Variables

2.1 MOTIVATION AND TERMINOLOGY

Starting point of chapter 1 is a random experiment with sample space Q, which is the
set of all possible outcomes of the random experiment under consideration, and the
set (c—algebra) E of all random events, where a random event 4 € E is a subset of
the sample space: 4 < Q. In this way, together with a probability function P defined
on E, the probability space [Q, E, P] is given. In many cases, the outcomes (element-
ary events) of random experiments are real numbers (throwing a die, counting the
number of customers arriving per unit time at a service station, counting of wildlife
in a specific area, total number of goals in a soccer match, or measurement of life-
times of organisms and technical products). In these cases, the outcomes of a series
of identical random experiments allow an immediate quantitative analysis. However,
when the outcomes are not real numbers, i.c. Q is not a subset of the real axis or the
whole real axis, then such an immediate numerical analysis is not possible. To over-
come this problem, a real number z is assigned to the outcome ® by a given real-val-
ued function g defined on Q: z = g(®), ® € Q.

Examples for situations like that are:

1) When flipping a coin, the two possible outcomes are | = 'head' and w, ='"tail'. A
'l' is assigned to head and a '0' to fail (for instance).

2) An examination has the outcomes w| = 'with distinction', ®, ='very good.,

w3 ='good’, w4 = 'satisfactory', and o5 = 'not passed'. The figures 's','4", ---, 'l' (for
instance) are assigned to these verbal evaluations.

3) Even if the outcomes are real numbers, you may be more interested in figures de-
rived from these numbers. For instance, the outcome is the number n of items you
have produced during a workday. For first item you get a financial reward of $10,
for the second of $11, for the third $12, and so on. Then you are first of all interested
in your total income per working day.

4) If the outcomes of random experiments are vectors of real numbers, it may be
opportune to assign a real number to these vectors. For instance, if you throw four
dice simultaneously, you get a vector with four components. If you win, when the
total sum exceeds a certain amount, then you are not in the first place interested in
the four individual results, but in their sum. In this way, you reduce the complexity of
the ran- dom experiment.

5) The random experiment consists in testing the quality of 100 spare parts taken ran-
domly from a delivery. A 'l' is assigned to a spare part which meets the requirements,
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and a'0' otherwise. The outcome of this experiment is a vector @ = (1, ®2, -+, ®100),
the components ®; of which are 0 or 1. Such a vector is not tractable, so you want to

assign a summarizing quality parameter to it to get a random experiment, which has a
one-dimensional result. This can be, e.g., the relative frequency of those items in the
sample, which meet the requirements:
. %?
z=g(® ® 2.1

Basically, application of a real function to the outcomes of a random experiment does
not change the 'nature' of the random experiment, but simply replaces the 'old' sample
space with a 'new' one, which is more suitable for the solution of directly interesting
numerical problems. In the cases 1 and 3 —5 listed above:

1) The sample space {tail, head} is replaced with {0, 1}.

3) The sample space {0, 1, 2, 3, 4, ...} is replaced with {0, 10, 21, 33, 46,...}.

4) The sample space {(®,®7,®3,04); ®; =1,2,...,6}, which consists of 64 =1296
elementary events of the structure ® = (01, ®;, ®3,®4), is replaced with the sample
space {6,7,...,24}.

5) The sample space consisting of the elementary events ® = (@, ®7,...,®100)
with oy is 0 or 1 is reduced by the relative frequency function g given by (2.1) to a
sample space with 101 elementary events:

{0

2100

’100 100""100’1}

Since the outcome ® of a random experiment is not predictable, it is also random
which value the function g(m) will assume after the random experiment. Hence,
functions on the sample space of a random experiment are called random variables.
In the end, the concept of a random variable is only a somewhat more abstract formu-
lation of the concept of a random experiment. But the terminology has changed: One
says on the one hand that as a result of a random experiment an elementary event has
occurred, and on the other hand, a random variable has assumed a value. In this
book (apart from Chapter 12) only real-valued random variables are considered. As it
is common in literature, random variables will be denoted by capital Latin letters,
e.g. X, Y, Z or by Greek letters as {, &, n.

Let X be a random variable: X = X(®), ® € Q. The range Ry of X is the set of all
possible values X can assume. Symbolically: Ry = X(Q). The elements of Ry are
called the realizations of X or their values. If there is no doubt about the underlying
random variable, the range is simply denoted as R.

A random variable X is a real function on the sample space Q of a random exper-
iment. This function generates a new random experiment, whose sample space is
given by the range Ry of X. The probabilistic structure of the new random experi-
ment is determined by the probabilistic structure of the original one.
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When discussing random variables, the original, application-oriented random exper-
iment will play no explicit role anymore. Thus, a random variable can be considered
to be an abstract formulation of a random experiment. With this in mind, the proba-
bility that X assumes a value out of a set 4, 4 < R, is an equivalent formulation for

the probability that the random event 4 occurs, i.e.
P(A)=PX € 4) = P(o, X(®) € A).

For one-dimensional random variables X, it is sufficient to know the interval probab-
ilities P(I) = P(X € I) for all intervals: [ = [a, b), a < b, i.c.

PXXe)=Pla<X<bhb)=Po,a<Xo)<bh). 2.2)

If R is a finite or countably infinite set, then /= [a, b) is simply the set of all those
realizations of X, which belong to /.

Definition 2.1 The probability distribution or simply distribution of a one-dimen-
sional random variable X is given by a rule P, which assigns to every interval of the
real axis I = [a, b], a < X < b, the probabilities (2.2). ®

Remark In view of definition 1.2, the probability distribution of any random variable X should
provide probabilities P(X € A) for any random event 4 from the sigma algebra E of the under-
lying measurable space [Q, E], i.e. not only for intervals. This is indeed the case, since from
measure theory it is known that a probability function, defined on all intervals, also provides
probabilities for all those events, which can be generated by finite or countably infinite unions
and conjunctions of intervals. For this reason, a random variable is called a measurable function
with regard to [€2, E]. This application-oriented text does not explicitely refer to this measure-
theoretic background and is presented without measure-theoretic terminology.

A random variable X is fully characterized by its range Ry and by its probability
distribution. If a random variable is multidimensional, i.e. its values are n-dimen-
sional vectors, then the definition of its probability distribution is done by assign-
ing probabilities to rectangles for n =2 and to rectangular parallelepipeds for

n =3 and so on.

In chapter 2, only one-dimensional random variables will be considered, i.e., their
values are scalars.

The set of all possible values Ry, which a random variable X can assume, only plays
a minor role compared to its probability distribution. In most cases, this set is deter-
mined by the respective applications; in other cases there prevails a certain arbitrar-
iness. For instance, the faces of a die can be numbered from 7 to 12; a 3 (2) can be
assigned to an operating (nonoperating) system instead of 1 or 0. Thus, the most
important thing is to find the probability distribution of a random variable.

Fortunately, the probability distribution of a random variable X is fully characterized

by one function, called its (cumulative) distribution function or its probability distri-
bution function:
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Definition 2.2 The probability distribution function (cumulative distribution function
or simply distribution function) F(x) of a random variable X is defined as

F(x)=P(X<x), —0o<x<+o0, [

Any distribution function F(x) has the following obvious properties:
1) F(—0) =0, F(+0) =1, (2.3)
2) F(x1) < F(xp) if x <xp. (2.4)

On the other hand, every real-valued function F(x) satisfying the conditions (2.3) and
(2.4) can be considered the distribution function of a random variable.

Given the distribution function of X, it must be possible to determine the interval pro-
babilities (2.2). This can be done as follows:

For a < b, the event "X < p" is given by the union of two disjoint events:
"X<bh"="X<a"U "a<X<bh".
Hence, by formula (1.11), P(X<b)=P(X<a)+ P(a <X<b), or, equivalently,
P(a < X< b)=F(b)- F(a). 2.5)

Thus, the cumulative distribution function contains all the information, specified in
definition 2.1, about the probability distribution of a random variable. Note that defi-
nition 2.2 refers both to discrete and continuous random variables:

A random variable X is called discrete if it can assume only finite or countably
infinite many values, i.e., its range R is a finite or a countably infinite set. A ran-
dom variable X is called continuous if it can assume all values from the whole real
axis, a real half-axis, or at least from a finite interval of the real axis or unions of
finite intervals.

Examples for discrete random variables are:

Number of flipping a coin to the first appearance of 'head', number of customers arriv-
ing at a service station per hour, number of served customers at service station per
hour, number of traffic accidents in a specified area per day, number of staff being
on sick leave a day, number of rhinos poached in the Kriiger National park a year,
number of exam questions correctly answered by a student, number of sperling errors
in this chapter.

Examples for continuous random variables are:

Length of a chess match, service time of a customer at a service station, lifetimes of
biological and technical systems, repair time of a failed machine, amount of rainfall
per day at a measurement point, measurement errors, sulfur dioxide content of the air
(with regard to time and location), daily stock market fluctuations.
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2.2 DISCRETE RANDOM VARIABLES

2.2.1 Probability Distribution and Distribution Parameters

Let X be a discrete random variable with range R = {xq,x,---}. The probability dis-
tribution of X is given by a probability mass function f(x). This function assigns to
each realization of X its probability p; =f(x;); i=0,1,.... Without loss of genera-
lity it can be assumed that each p; is positive. Otherwise, an x; with f(x;) =0 could
be deleted from R. Let 4; = "X=x;" be the random event that X assumes value x;.
The A; are mutually disjoint events, since X cannot assume two different realizations
at the same time. The union of all 4;,

U?ZO Ai >
is the certain event Q, since X must take on any of its realizations. (A random experi-

ment must have an outcome.) Taking into account (1.9), a probability mass function
f(x) has two characteristic properties:

D fx)>0, 2)Zof(x)=1. (2.6)
Every function f{x) having these two properties can be considered to be the probabi-

lity mass function of a discrete random variable. By means of f(x), the probability
distribution function of X, defined by (2.3), can be written as follows:

0 if x <xo,
F(x) = Y fx) if xo <x.
{X[,X,‘SX}

With p; =f(x;), an equivalent representation of F(x) is

for x<xg,

Fx)=P(X<x) ={

Zfzop,- for xp<x<xp1, k=0,1,2,---.

Figure 2.1 shows the typical graph of the distribution function of a discrete random
variable X in terms of the cumulative probabilities s;:

A
F(x)
1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,
7777777777777777 53—
S2l-=--=--
S1
°] |
X0 Yoo *2 x3 >

Figure 2.1 Graph of the distribution function of an arbitrary discrete random variable
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Sg=po+p1+-+pr; k=0,1,...,
or sk =Fxp) = fleo) + f(x1) + - +1xp).

Thus, the distribution function of a discrete random variable is a piecewise constant
function (step function) with jumps of sizes

pi=PX=x;)=F(x;)-F(x;-0), i=0,1,....

The probability mass function of a random variable X as well as its distribution func-
tion can be identified with the probability distribution Py of X.

A
Di
P3|l
n-------—-----—--—t 7 - P4
pl ********* ****ps
po””*’—' Pe
Ny

> X
X0 X1 R%) X3 X4 X5 X6

Figure 2.2 Probability histogram of a symmetric discrete distribution

Figure 2.2 shows the probability histogram of a discrete random variable. It graphi-
cally illustrates the frequency distribution of the occurrence of the values x; of X. In
this special case, the distribution is symmetric around x3, i.e.

Po=P6> P1 =p5-and pp =py.

Hint For technical reasons it is frequently practical to renumber the x; and p; and start with
x1 (p1) instead of x¢ (pg). In what follows, no further reference will be made regarding this.
Moreover, the notation p; will be preferred to f(x;).

Example 2.1 (uniform distribution) A random variable X is uniformly distributed
over its range R = {1,2,...,m} if it has the probability distribution
pi=PX=x;)= %; i=1,2,..,m; m<o.

The conditions (2.6) are fulfilled. Thus, X is the outcome of a Laplace random exper-
iment (section 1.3), since every value of X has the same chance to occur. The cumu-
lative probabilities are s; = i/m, i < m. The corresponding distribution function is

0 for x<1,
F(x)=P(X<x)= i/m for i<x<i+l, i=1,2,---,m—1, O
1 for m<x.
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Example 2.2 The leaves of Fraxinus excelsior (an ash tree) have an odd number of
leaflets. This numbervaries from 3 to 11. A sample of n = 300 leaves had been taken
from a tree. Let X be the number of leaflets of a randomly picked leaf from this sam-
ple. Then X is a random variable with range R = {3,5,7,9,11}.

Table 2.1 shows the probability distribution of X: The first column contains the pos-
sible number of leaflets i, the second column the number n; of leaves with i leaflets,
the third one the probability that a randomly choosen leaf from the sample has 7 leaf-
lets: p; = n;/n. (In terms of mathematical statistics, p; is the relative frequency of the
occurrence of leaves with i leaflets in the sample.) The fourth column contains the
cumulative probabilities s; (cumulative frequencies).

i n, D; s
3 & 10.0267 | 0.0267
5 36 | 0.1200 | 0.1467
7 | 108 |0.3600 | 0.5067
9 | 118 ]0.3933 | 0.9000
11 30 | 0.1000 | 1

Table 2.1 Distribution of leaflets at leaves of Fraxinus excelsior

Figure 2.3 shows the distribution function and the probability histogram of X. For
instance, s7 = 0.5607 is the probability that a randomly selected leaf has at most 7

leaflets, and a randomly drawn leaf from the sample has most likely 9 leaflets. O
A
1 — A
S r — .
l 0.8 : 1 Pl o4
- |
- 0.6 | l 0.3
i — ‘
L | | |
! -
0.2 : ! | a) 0.1 —\ b)
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Figure 2.3 Distribution function a) and histogram b) for example 2.2

As pointed out before, the probability distribution and the range R contain all the in-
formation on X. However, to get quick information on essential features of a random
variable, it is desirable to condense as much as possible of this information to some
numerical parameters. In what follows, let the range of X be R = {x¢,x,---}. If the
range is finite, i.e., R = {x(,x1, -, xm; m <o}, the formulas to be given stay valid if
letting x,,,41 =X;40 =---=0.
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Mean Value If a random variable X has the finite range R = {x(,x1,...,xm}, then at

first glance the average result of a random experiment with outcome X is

X=—7 Xilo xi,

the arithmetic mean of all possible values of X. But this is only true if every value of
X has the same chance to occur as this is the case with a uniformlydistributed random
variable. Otherwise, those realizations of X contribute most to the average result (rela-
tively to their absolute value), which occur more frequently than other realizations.
To illustrate this, let us assume that in a series of » random experiments 7 times x,
ny times xq, ---, and ny times x,; occurred. Then there isn=ng+n; +---+ny, and

the arithmetic mean of all observations is
- _ 1 _ho ni Nm
X=5(moxo+nixy+- o +nmxm)= 37 xX0+ 75X+ 0+ 5 Xm.

The ratio n;/n is the relative frequency for the occurrence of x; out of the total of n

observations, which, as will be shown in section 5.2.2, tends foralli=0, 1, ...,m to the
probability p; = P(X =x;) as n — 0. Thus, the following definition is well motivated:

The mean value, or expected value, or simply the mean of a random variable X is
EX)=XZox;p; giventhat X7 |x;|p;<co. 2.7)

Thus, the mean value of a discrete random variable X is the weighted sum of all its
possible values, where the weights of the x; are their respective probabilities. The
convergence condition in (2.7) makes sure that E(X) exists (i.e., is finite). Note that

E(|1X1) = Z o xil pi- 28

A statistical motivation to the mean value of a random variable is the following one:
If one and the same random experiment with outcome X is repeated » times and the
results are x; ,x;, ...,X;,, the arithmetic mean % Z;CI=1 x;, tends to E(X) as n — oo.

If X is nonnegative with range R = {0, 1,2, ...}, then its mean value can be written in
the following way:

EX)=XZ0ipi =2t PX=0) =X 2k pre. (2.9)
If A(x) is a real function, then the mean value of the random variable ¥ = 4(X) is
E(Y) =X h(x))pi. (2.10)

In this formula, y; = A(x;), i=0,1,... are the possible values which the random var-
iable Y can take on. Since the y; occur with the same probabilities as the x;, namely
pi, (2.10) gives indeed the mean value of Y. As a special case, let Y =X". Then the

mean value of X" is given by (2.10) with A(x;) = x7:
EX™)=XZx]p; n=0,1,....

E(X") is called the nth (ordinary) moment of X. Therefore, the mean value E(X) is
the first (ordiary) moment of X.
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Variability In addition to its mean value E(X), one is interested in the variability
(scatter, fluctuations) of the outomes of a random experiment (given by X) in series
of repetitions of this experiment. These fluctuations are measured by the absolute
distances of the values x; from E(X): |x; — E(X)|. This leads to the mean absolute
linear deviation of a random variable X from its mean value:

E(X-EX)) =20 [x; — EX)| p; . (2.11)

The mean absolute linear deviation of X is a special case of the nth absolute central
(ordinary) moment of X:

My = E(|X-EX)|") =Z20 |xi = EX)|" pis n=0,1,....

For pactical and theoretical reasons, one usually prefers to work with the squared
deviation of the x; from E(X): (x; — E(X))?. The mean value of the squared deviation
of a random variable X from its mean value E(X) is called variance of X and denoted
as Var(X):

Var(X) = EX - E(X))* = ZiZo(x; — EX))* pi. (2.12)
The variance is obviously equal to the second absolute central moment of X. The

square root of the variance ,/Var(X) is called the standard deviation of X. For any

random variable X, the following notation is common:

o? =Var(X), o= JVar(X) .
Note, in determining Var(X), formula (2.10) has been used with A(x;) = (x; — E(X))?.
From (2.12), for any constant 4,
Var(hX) = h*Var(X).
There is a useful relationship between the variance and the second moment of X:
Var(X) = E(X - E(X))? = E(X?) -2 E[IXE(X)] + E [(E(X)]?

so that

Var(X) = E(X?) - (E(X))>. (2.13)
The coefficient of variation of X is

(X) = o/|E(X)|.

Variance, standard deviation, and coefficient of variation are all measures for the var-
iability of X. The coefficient of variation is most informative in this regard for taking
into account not only the deviation of X from its mean value, but also relates this de-
viation to the mean value of X. For instance, if the variabilities of two random variab-
les X and Y with equal variances Var(X) = Var(Y) =5, but with different mean values

E(X)=10 and E(Y) = 100, have to be compared, then it is already intuitively obvious
that the scatter behavior of X is more distinct than that of Y

7(X)=0.5, V(¥)=0.05.
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Continuation of Example 2.2 The mean number of leaflets is

The variance of the number of leaflets is

Altogether,
E(X)=17.8398, Var(X)=3.3751, Var(X) =1.8371, V(X)=0.2343.

EX)=3-0.0267+5-0.1200+7-0.3600+9-0.3933 +11 - 0.1000 = 7.8398.

Var(X) = (3 —7.8398)% - 0.0267 + (5 — 7.8398)2 - 0.12 + (7 — 7.8398)2 - 0.36
+(9-7.8398)2-0.3933 + (11 —7.8398)2- 0.1 =3.3751.

It is interesting to compare the standard deviation to the mean absolute linear devia-
tion, since one expects that E(|X— E(X)|) is somewhere in the order of the standard
deviation: From (2.14),

Thus,

E(X-EWX)|) = 1.5447 < [Var(X) =1.8371.

2.2.2 Important Discrete Probability Distributions

In this section, the following finite and infinite series are needed:

Z . nn+1)

> = mer D)

=0 2

4 5 nm+1)2n+1)
Yt

i=0 6

Y xl= , 0<x<l1
=0 1-x

X .

Yixi=—%—, 0<x<l
i=0 (1-x)2

n +1
lezl—x” , x#1
i=0 1-x

© i

%?_':ex’ |x| < +o0
=0 i!

S

I

(’z)xiynfi = (x+y)”

1

(geometric series)

(exponential series)

(binomial series)

E(|X-EX)|)=|3-7.8398] - 0.0267 + |5 — 7.8398| - 0.12 + |7 — 7.8398 - 0.36
+19—-7.8398] -0.3933 + |11 —7.8398] - 0.1 = 1.5447.

(2.14)
(2.15)
(2.16)

(2.17)

(2.18)
(2.19)

(2.20)

Note that in view of (2.6) every probability distribution {p¢,p1,...} of a discrete ran-

dom variable must fulfill the normalizing condition

Topi=1.

(2.21)
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Uniform Distribution A random variable X with range R = {x{, x,..., x,} has a
discrete uniform distribution if

pi=PX=x)=1: i=1,2,..n.

Thus, each possible value has the same probability. The normalizing condition (2.21)
is obviously fulfilled. Mean value and variance are
-1 1 -
EX)=%=53Xix;, Var(X)=+Zi(x;—%)>%
Thus, E(X) is the arithmetic mean of all values which X can assume.
Particularly, if x; =i fori= 1,2, ..., n, then the formulas (2.14) and (2.15) yield

Eeo - 1L Var(X)=%' (222)

For instance, if X is the outcome of 'rolling a die', then R= {1,2,..., 6} and p, = 1/6
so that

E(X)=3.5, and Var(X) ~2.92, [Var(X) ~1.71, V(X)=0.59 = 59%,
and E(IX—E(X)I):%|1—3.5|+ |2-3.5|+---+ [6-3.5])= 1.5 so that

E(X-EX)|)=1.5< [Var(X) ~1.71.

Bernoulli Distribution A random variable X with range R = {0, 1} has a Bernoulli
distribution with parameter p, 0 <p < 1, if

po=PX=0)=1-p, p=PX=1)=p. (2.23)
Mean value and variance are
EX)=p, Var(X)=p(1-p). (2.24)
This is easily verified:
EX)=0-(1-p)+1-p=p
Var(X) = (0-p)*(1 =p)+(1 =p)* p=p (1 -p).
The random experiment, which leads to the Bernoulli distribution, is called Bernoulli
trial. It has two outcomes: event 4 and its complementary event 4. Event 4 occurs

with probability p, and event 4 occurs with probability 1 —p. The random variable X
defined by (2.23) assigns a "1" to event 4 and a "0" to event A4 :

Yo { 1 if 4 hasoccurred, (2.25)

0 if 4 hasoccurred.

The occurrence of 4 is frequently referred to as success. With this terminology, X is
the indicator variable for the occurrence of a success or a failure, respectively. Gen-
erally, since X can only assume two values, it is called a (random) binary variable.
Specifically, since the two possible values of X are 0 and 1, itis a (0, 1)-variable.
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Geometric Distribution A random variable X with range R = {1,2,...} has a geo-
metric distribution with parameter p, 0 <p <1, if

pi=PX=i=p(-p)t i=12,... (2.26)
In view of the geometrical series (2.21), the normalizing condition (2.26) is fulfilled.
Mean value and variance are
EX)=1/p, Var(X)=(1-p)p>.
To verify these formulas, use the series (2.16) and (2.17) as well as formula (2.13). A
more elegant derivation is given in section 2.5.1.

For instance, if X is the random integer indicating how frequently one has to toss a
die to get for the first time a '6' (= success), then X has a geometric distribution with

p=1/6, E(X)=6, Var(X) =30, and ,/ Var(X) =5.4772.
Generally, a geometrically distributed random variable X can be interpreted as

the number of independent Bernoulli trials one has to carry out to have for the
first time a 'success’.

The geometric distribution is also defined with range R = {0, 1,...} and
pi=PX=i=p(l-p),, i=0,1,2,.... (2.27)
In this case, mean value and variance are
EX)=(1=p)p, Var(X)=(1-p)p*.
Example 2.3 (‘'nonaging property' of the geometric distribution) Let X be a geomet-

rically with parameter p distributed random variable. For any integersm > 0 and n > 1
determine the conditional probability P(X = m + n|X > m).

In view of the geometrical series (2.16) withx=1-p,

PX>m)=2Z . p(1-p)~t =p(1-p)" ZZ,(1-p)' =(1-p)™.
By the formula of conditional probability (1.22) and since the event "X=m +n"
implies the event "X > m",

P(X=m+n|X>m)=P((X:m+”)ﬂ(X>M)) _P(X=m+n))

P(X>m) P(X>m)
p(l _p)m+n—1 »
=——=p(1-p)" .
(1 _p)m p( p)
Hence,
PX=m+nlX>m)=PX=n), mn=1,2,... (2.28)

This result has an interesting interpretation: If X is the lifetime of a technical unit,
which can only fail at time points » =1,2..., and which has survived m time units,
then the residual lifetime of the unit has the same lifetime distribution as the unit at
the start of its operation, i.e. as a new unit. Such a unit is called nonaging. O
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Binomial Distribution A random variable X with range R = {0, 1,...,n} hasa
binomial distribution with parameters p and n if

pi=PX=i)= (’l?)pl’(l—p)"—i, i=0,1,..,n. (2.29)

Frequently the notation p; = b(i, n, p) is used.

In view of the binomial series (2.20) with x = p and y = 1 — p, the normalizing condi-
tion (2.21) is fulfilled. Mean value and variance are

EX)=np, Var(X)=np(1-p). (2.30)
The proofs will be given in section 2.5.1.
The binomial distribution occurs in the following situation: A Bernoulli trial, whose
outcome is the (0,1)-indicator variable for the occurrences of events 4 and 4 as giv-
en by (2.25), is independently repeated » times. (Independence in the sense of defini-

tion 1.5: The respective outcomes of the n Bernoulli are independent random events.)
Let the outcome of the ith trial be X;:

X = { 1 if 4 hasoccurred,

0 if 4 hasoccurred, i=1,2,...n.

The outcome of a series of n Bernoulli trials is a random vector X = (X1, X2, ...,X»),
whose components X; can take on values 0 or 1. The sum

X=3L1 X
is equal to the random number of successes in a series of #» Bernoulli trials. X has a

binomial distribution with parameters n and p: In view of the product formula for

independent events (1.29), the probability that in X a 'l' occurs i times and a '0'
occurs (n — i) times in a specific order, is

pi(1-p.
There are (’; ) different possibilities to order the i '1's and (n — i) '0's.
For instance, let n = 3. Then the probability that vector (0, 1,1) (first Bernoulli trial
is a failure, the second and third trial are successes) occurs is (1 —p)p2. But there are

(g) =3 vectors with 1 failure and 2 successes having probability (1 — pp:
(1,1,0), (1,0, 1), (0,1, 1).

Hence, the probability that a series of three Bernoulli trials yields one failure and two
successes is 3p2(1 —p).

Example 2.4 A power station supplies power to 10 bulk consumers. They use power
independently of each other and in random time intervals, which, for each customer,
accumulate to 20% of the calendar time. What is the probability of the random event
B that at a randomly chosen time point at least seven customers use power?
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The problem leads to a Bernoulli trial, where the 'success event' 4 for every custo-
mer is 'using power'. By assumption, p = P(4) =0.2. Let B; be the event that exact-
ly i customers simultaneously use power. Then the event of interest is

B=B7UBgUB9UBj.
The B; are disjoint so that
P(B)=2:% P(B) =215 (')(0.2)'(0.8)!0
=7.864-1074+7.373-1075+4.096-107°+1.024 - 1077
=0.000864. O

Example 2.5 From a large delivery of calculators a sample of size n =100 is taken.
The delivery will be accepted if there are at most 4 defective calculators in the sam-
ple. The average rate of defective calculators from the producer is known to be 2%.

1) What is the probability P, that the delivery will be rejected (producer's risk)?
2) What is the probability C,;y; to accept the delivery although it contains 7% defec-
tive calculators (consumer's risk)?

1) Picking a defective calculator is declared a "success" (event 4). The probability of
this event is P(4) = 0.02. Thus, the underlying Bernoulli trial has parameters p = 0.02
and 7 = 100. The probabilities p; that i from 100 calculators are defective are:

pi= (1?0)(0.02)i(0.98)100‘i, i=0,1,..,100.
In particular,
0 =0.1326, py =0.2706, py =0.2734, p3 = 0.1823, p, = 0.0902
so that the producer's risk is
Pisk =1-po—p1—p2—p3—p4="0.0509.

2) Now a "success" (picking a defective calculator) has probability p = P(4) =0.07
so that the probabilities p; to have i defective calculators in a sample of 100 are

pi= (130)(0.07)1'(0.93)100—1', i=0,1,...,100.

In particular,
po =0.0007, p; =0.0053, pp =0.0198, p3 =0.0486, p4 = 0.0888.

Thus, the consumer's risk is C,;p =po +p1+p2 +p3 +p4 =0.1632. Thus, the pro-
posed acceptance/rejection plan favors the producer. O

In examples like the previous one the successive calculation of the probabilities p;
can be efficiently done by using the following recursion formula:
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Negative Binomial Distribution A random variable X with range R = {0, 1, ...} has
a negative binomial distribution with parameters p andr, 0 <p <1, r>0, if

p,-:P(X=i)=("‘1i+’)p"(1 -p); i=0,1,... (2.31)
Equivalently,
pi=PX=0=T) o/ -p)s i=0.1....

Mean value and variance are

EX) =%, Var()= U;—f)r. (2.32)

If r is a positive integer, then X can be interpreted as the total number of trials in a
series of independent Bernoulli trials till the »th success occurs.The geometric dis-
tribution is a special case of the negative binomial distribution if » = 1.

The negative binomial distribution is also called Pascal distribution.

Hypergeometric Distribution A random variable X with range
R={0,1,...,min(n, M)}
has a hypergeometric distribution with parameters M, N, and n, M < N, n < N, if

GG

pm=PX=m)= N ; m=0,1,..,min(n, M). (2.33)
)
Mean value and variance are:
M — M _M)(y_n=1
EX)=n N Var(X)=n N(l N) (1 N—l)' (2.34)

As an application, consider the lottery '6 out of 49'. In this case, M=n=6, N=49,
and py is the probability that a gambler hits exactly m winning numbers with one
coupon (see example 1.7). More generally, hypergeometrically distributed random
variables occur in the following situations: In a set of N elements belong M elements
to type 1 and N— M elements to type 2. A sample of n elements is randomly taken
from this set. What is the probability that there are m elements of type 1 (and, hence,
n—m elements of type 2) in this sample?

If X is the random number of type 1 elements in the sample, then X has the distribu-
tion (2.33): There are (A,,/l[) possibilities to select from M type 1-elements exactly m,
and to each of these possibilities there are (],\,[:% ) possibilities to select from N— M
type 2-elements exactly n —m. The product of both numbers is the number of favor-
able cases for the occurrence of the event 'X = m'. Finally, there are (],Y ) possibilities
to select n elements from a total of Nelements. Problems of this kind are typical ones
in statistical quality control.
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Example 2.6 A customer knows that on average 4% of parts delivered by a manufac-
turer are defective and has accepted this percentage. To check whether the manufac-
turer exceeds this limit, the customer takes from each batch of 800 parts randomly a
sample of size 80 and accepts the delivery if there are at most 3 defective parts in a
batch. What is the probability that the customer accepts a batch, which contains 50
defective parts? In this case,

N=2800, M =50, and n = 80.
Let X be the random number of defective parts in the sample. Then the probabilities

pi=P(X=1i) are
(50)(800—50)
N 80—i /.

pi= (800) 5
80
The exact values are

po =0.00431, p; =0.02572, p; =0.07406, p3 =0.13734.
Thus, the acceptance probability C,;; of the delivery (consumer's risk) is

i=0,1,2,3.

Crisk =Po +p1+p2 +p3 =0.24143.
Note that according to agreement the average number of faulty parts in a batch is
supposed to be 32. O

Remark When comparing examples 2.5 and 2.6, the reader will notice that despite the same
type of problems, for their solution first the binomial disribution and then the hypergeometric
distribution had been used. This is because in example 2.5 the size of the delivery, from which
a sample was taken, had been assumed to be large compared to the sample size, whereas in
example 2.6 the size of the set of parts, namely 50, is fairly small compared to the sample of
size 5 taken from this lot. If a sample of moderate size is taken from a sufficiently large set of
parts, then this will not significantly change the ratio between defective and nondefective parts
in the set, and one can assume the probability p of picking a defective part stays approximate-
ly the same. In this case the binomial distribution will yield acceptable approximate values.
But if you want to apply the binomial distribution to small lots of parts, then, after every test
of a part, you have to return it to the lot. In this case the ratio between defective and nondefec-
tive parts in the lot will not change either. The policy 'with replacement' is not always applic-
able, since during a check a part is frequently 'tested to death'. Generally, when applying the
binomial distribution (hypergeometric distribution) in quality control, then "sampling with
replacement"” ("sampling without replacement") refers.

Example 2.7 Let N be the unknown number of adult zebras in a large National Park.
A number of M =100 randomly selected zebras from the total population of this
park had been marked. A year later, a second sample from the whole adult zebra
population of this park was taken, this time of size n = 50. AAmongst these there were
m="7 zeAbras marked a year ago. Construct an estimation N for N with property that
for N= N the probability of the observed event 'X' = 7' is maximal.
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This way of estimating N makes sense, since one does not assume to have observed
by chance an unlikely event instead of a very likely one. In this case, the hypergeo-
metrically distributed random variable X is the number of marked zebras in the
second sample of size n=50. Let p7(N) = P(X=7|N) be the probability that there
are 7 marked zebras in the secgnd sample given that the whole zebra population is of

size N. Then, by definition of N, the following two inequalities must be true:

(100) (fv+ 1— 100] (100) (fv- 100)
7 507 7/ 50-7

ps(N+1)= - < - =p7(N), (2.35)
(N+ 1j (N)
50 50
(100) (N— |- 100) (100) (N— 100)
5 7 507 7/ 50-7 A
prI(N=-1)= =p7(N). (2.36)

x < ~
') %)
50 50
Inequality (2.35) is equivalent to
(zif— 99] (Nj - (fv- 100) (fv+ 1)

43 50) 43 50 )
By making use of the representation (1.5) of the binomial coefficient (cancelling the
factors which are equal at both sides), this inequality reduces to

(N=99)(N—49) < (N- 142)(N+1) or 4993<7N or 713.3<N.
Inequality (2.36) is equivalent to
(fv- 101 j ( ﬁ/j . [fv- 100) (ﬁf— 1}

43 50) ~ 43 50 )

Again by using (1.5), this inequality simplifies to

(N—143)N < (N—100)(N—-50) or 7N<5000 or N<714.3.

Hence, 713.3 < N<714.3, so that N=714. O

If the probabilities pj; of the hypergeometric distribution have to be successively
calculated, then the following recursion formula is useful:

B (n—m)(M—m) )

Pmil = G D(N—M—nt+m+ DP™

m=0,1,...,min(n, M).
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Poisson Distribution A random variable X with range R = {0, 1,...} has a Poisson
distribution with parameter A if

LY .
pi=PX=i)="=e", A>0, i=0,1,... (2.37)

il
In view of the exponential series (2.19), the normalizing condition (2.21) is fulfilled.
Again by making use of (2.19),

®© B 0 a2 A a
EX)=Yipj=Yite?=3 — e
@) i=0 Pi =1 1! -1 (=1

=Le Y A =heteth =),

i=0 !
In section 2.2.3 it will be proved that the variance of X is equal to A as well. Thus,
EX)=L, Var(X)=Ax. (2.38)

In the context of the Poisson distribution, X is frequently said to be the number of
Poisson events (occurring in time or in a spacial area).

Example 2.8 Let X be the random number of staff of a company being on sick leave
a day. Long-term observations have shown that X has a Poisson distribution with pa-
rameter A = E(X) = 10.

What is the probability that the number of staff being on sick leave a day is 9, 10, or
11?

—_—

9
P9 = 9Le_10 =0.1251,
10

!
_ 1077 10 _
P1o = 10! e 0.1251,

- -10 _
P11 = 1 e =0.1137.

Hence, the desired probability is
PO<LX<L11)=pg+pio+p11 =0.3639. O

With regard to applications, it is frequently more adequate to write the Poisson prob-
abilities (2.37) in the following form:

i
p,v=P(X=i)=(};—?e’7", A>0,t>0;i=0,1,.... (2.39)

In this form, the Poisson distribution depends on the two parameters A and ¢. The
parameter ¢ refers to the time span or to the size of a spacial area (1-, 2-, or 3-dimen-
sional), and A refers to the mean number of Poisson events occurring per unit time,
per length unit, etc. Thus, ¢ is a scale parameter.
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Example 2.9 The number of trees per unit of area in a virgin forest stand with a stem
diameter of at least 50 cm (measured at a height of 1.3 m) follows a Poisson distribu-
tion with parameter A = 0.004 [m2]7".

What are the probabilities that in any subarea of 1000 72 in this stand there are

(1) none of such trees, and (2) exactly four of such trees?

Formula (2.39) is applied with A = 0.004 [m2]~! and ¢= 1000 m2. The results are
Po= 6—0.004'1000 — e—4 ~ 00183,

[(0.004) - 10001* __¢,004.1000

p4= T

4
_ j—,e—“ ~0.1954. O

If the 'Poisson probabilities' p; have to be manually calculated, then the following
recursion formula is useful:

A .
Dirl :H—_lpi; i=0,1,..

Approximations In view of binomial coefficients involved in the definition of the
binomial and particularly in the hypergeometric distribution, the following approxi-
mations are useful for numerical analysis with a calculator:

Poisson Approximation to the Binomial Distribution If n is sufficiently large and p
is sufficiently small, then

(’z)pi(l —p)"_izi_”—:e_k; A=mnp, n=0,1,.... (2.40)

As a rule of thumb, the Poisson approximation is applicable if

np <10 and n > 1500p.

Binomial Approximation to the Hypergeometric Distribution

GG
% ~ (Z)Pm(l —p)" ™ withp=MIN; m=0,1,...n. (2.41)

n

As a rule of thumb, the binomial approximation to the hypergeometric distribution is
applicable if

0.1<M/N<0.9, n>10, and n/N<0.05.

This approximation is heuristically motivated by the remark after example 2.6.
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Poisson Approximation to the Hypergeometric Distribution If n is sufficiently large
and p = M/N is sufficiently small, then

MY(N-M
M 2 withn=n- Y. (2.42)

T ’

This relation combines the approximations (2.40) and (2.41). As a rule of thumb, the
Poisson approximation is applicable if

M/IN<0.1, n>30, n/N<0.05.

Example 2.10 On average, only 0.01% of trout eggs will develop into adult fish.
What is the probability ps3 that at least three adult fish arise from 40 000 eggs?

Let X be the random number of eggs out of 40 000 which develop into adult fish. It
is assumed that the eggs develop independently of each other. Then X has a binomial
distribution with parameters #» = 40 000 and p = 0.0001. Thus,

pi=P(X=i)= (40 ?00) (0.0001)7 (0.9999)40000-i

where i =0, 1,...,40000. Since 7 is large and p is small, the Poisson distribution with

parameter A = np =4 can be used to approximately calculate the p;:

1
p,-:?—'e_“; i=0,1,...

The desired probability is
p>3=1—-pg—p1—-p2=1-0.0183-0.0733 —0.1465

=0.7619. O

Continuation of Example 2.6 The binomial and the Poisson approximations to the
hypergeometric distribution are applied with

N=800, M=50, and n = 80.
Table 2.2 compares the exact values to the ones obtained from approximations. The
third condition in the corresponding 'rule of thumbs', namely n/N < 0.05, is not ful-
filled. O

Po J2! D2 D3 Crisk

Exact 0.00431 | 0.02572 | 0.07406 | 0.13734 | 0.24143
Binomial | 0.00572 | 0.03053 | 0.08039 | 0.13934 | 0.25598
Poisson 0.00673 | 0.03369 | 0.08422 | 0.14037 | 0.26501

Table 2.2 Comparison of exact probabilities to its approximative values (example 2.6)
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2.3 CONTINUOUS RANDOM VARIABLES

2.3.1 Probability Distribution

The probability distribution of a discrete random variable Y is given by assigning to
each possible value of Y its probability according to the probability mass function of
Y. This approach is no longer feasible for random variables, which can assume non-
countably many values. To illustrate the situation, let us recall the geometric distribu-
tion over the interval [0, 7] (page 15). This distribution defines the probability distri-
bution of a random variable X with noncountable, but finite, range R = [0, 7] in the
following way: The probability that X takes on a value out of an interval [a,b] with
0<a<b=<T<owis

Pla<X<b)y=0b-a)lT.
If b — a, then length of this 'interval probability' tends to 0: P(X = a) = 0. However,
to assign to each value of X the probability O cannot be the way to define the probab-
ility distribution of a random variable with noncountably many values. Moreover, a
noncountable range R does not exclude the possibility that there exists a finite or
countably infinite set of values of X which actually have positive probabilities. Hence,
the probability distribution of X will be defined via the distribution function of X
(definition 2.2) as suggested in section 2.1:

F(x)=P(X<x), xeR. (2.43)

As shown there (formula 2.5), the interval probabilities for any interval I = [a, b] with
a<b and a,b € R are given in terms of the distribution function by

Pa<X<b)=F(0)-F(a). (2.44)

To exclude the case that F(x) has jumps for some x € R (i.e. F(x) has points of dis-
continuity), a continuous random variable is defined as follows:

A random variable is called continuous if its distribution function F(x) has a first
derivative f(x) = F’(x).

Equivalently, a random variable is called continuous if there is a function f(x) so that
Feoy=["_ fu)du. (2.45)

The function
fx) = F/(x) =dF(x)/dx, xeR, (2.46)

is called probability density function, probability density, or briefly density of X.
Sometimes the term probability mass function is used. A density has properties

f@)=0, [ fxydx=1. (2.47)

Conversely, every function f(x) with properties (2.47) can be interpreted as the den-
sity of a continuous random variable (Figure 2.4).
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A
J()
J(xo)

Figure 2.4 Relationship between distribution function and density

Note If a random variable X has a density f(x), then its distribution function need not exist in
an explicit form. This is the case if f(x) is not integrable. Then, if no tables are available, the
values of F(x) have to be calculated by numerical integration of (2.45).

The range of X coincides with the set of all those x for which its density is positive:
R=1{x, fix)>0} (Figure 2.4). In terms of the density, the interval probability (2.44)
has the form

Pla<x<b)=[" f(x)dx. (2.48)

Thus, the probability that X assumes a value between a and b is equal to the area be-
low f(x) and above the x-axis between a and b (Figure 2.4). This implies the larger
f(x) is in an environment of x, the larger is the probability that X assumes a value out
of this environment.

Example 2.11 A popular example for a continuous probability distribution is the
exponential distribution with parameter A: It has distribution function and density
(see Figure 2.5 a) and b))

l—-e™* x>0, Le ™ x>0,

F(x):{o, x<0, f(x):{o, x<0. (249)
A random variable with this distribution cannot take on negative values since
F(0)=P(X<0)=0.

By (2.44),if A=1,a=1, and b =2, the probability that X takes on a value between
land2is P(1<X<2)=FQ2)-F(1)=(1-¢2)—(1-e1)=0.2325. m|

b)

Figure 2.5 Distribution function a) and density b) of the exponential distribution
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A motivation of the term 'probability density' follows from the definition of f(x) as
. Flx+Ax) - F(x)
= 1 R
9= Jim, =
so that, for small Ax,

J) =

Hence, f(x) is indeed a probability per unit of x, and f(x)Ax is approximately the prob-
ability that X takes on a value in the interval [x,x+ Ax]. This is the reason why for
some heuristic derivations it is useful to interpret f(x)dx as the probability that X
takes on value x. Of course, for continuous random variables this probability is 0:

PX=x)= Alxiglo[F(x+ Ax) - F(x)] = F(x) - F(x)=0.

W or f(X)Ax = F(x +Ax) — F(x). (2.50)

Example 2.12 The weights of 60 balls for ball bearings of the same type have been
measured. Normally, one would expect that all balls have the same weight as prescri-
bed by the standard for this type of ball bearings. In view of unavoidable technolog-
ical fluctuations and measurement errors, this is not a realistic expectation. Table 2.3
shows the results of the measurements [in g]:

5.775.8215.70 | 5.78 [ 5.70 | 5.62 | 5.66 | 5.66 | 5.64 | 5.76
5.7315.80(5.76 | 5.76 | 5.68 [ 5.66 | 5.62 | 5.72 [ 5.70 | 5.78
5.76 | 5.67 | 5.70 | 5.72 | 5.81 [ 5.79 | 5.78 | 5.66 [ 5.76 | 5.72
5.70 | 5.78 [ 5.76 | 5.70 | 5.76 | 5.76 | 5.62 | 5.68 | 5.74 | 5.74
5.815.66 572 (574|5.64 (579 |5.72|5.82(5.74|5.73
5.81(5.7715.60 |5.72 [ 5.78 | 5.76 | 5.74 | 5.70 [ 5.64 | 5.78

Table 2.3 Sample of 60 weight measurements of balls for ball bearings of the same type

The data fluctuate between 5.60 and 5.82. This interval is called the range of the
sample. Of course, the weights of the balls can principally assume any value within
the range, but the accuracy of the measurement method applied is restricted to two
decimals after the point. To get an idea on the frequency distribution of the data, they
are partitioned into class intervals (or cells). In Table 2.4, the integer n; denotes the
number of measurements which belong to class i, and p; =n;/n with n =60 is the
relative frequency of the random event 4; = 'a measurement is in class interval i'. A
ball is randomly selected from the data set. Let X be the number of the class which
the weight of this ball belongs to. Then X is a discrete random variable with range
{1, 2,..., 6} and probability distribution
pi=PX=i)=n;/n, i=1,2,..,6.
The corresponding cumulative probabilities s; are

Si=p1+pr+-+p;, i=1,2,..,6, sg=1.
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X class n, D; s
1 | [5.59-5.63) 4 | 0.0667 | 0.0667
[5.63-5.67) 8 |0.1333 | 0.2000
[5.67-5.71) 10 | 0.1667 | 0.3667
[5.71-5.75) 13 ] 0.2167 | 0.5834
[5.75-5.79) 17 | 0.2833 | 0.8667
[5.79-5.83) 8 10.1333 |1

[N IV, TN BF SN VS T I )

Table 2.4 Probability distribution of X for example 2.12

Now we essentially are in the same situation as in example 2.3. In Table 2.4 the nota-
tion [a;,a;,1) means that the left end point a; belongs to the class interval, but the
right end point @, does not.

A
Feo(x) A
L o
777777777777777777777 S
0.8 > I
o6
n S4 02 - c o] ey I
04 _____ s3 a) b)
I 0.1 ,,,,,, |- - |- __°__1
02—--------—- S2 |
[ —51 | | | J

Ny
>
X

L < N ! I ! ! I
0 559 563 5.67 571 575 579 583 % 0559 5.63 567 571 575 5.79 5.83

Figure 2.6 Distribution function a) and probability histogram b) of X (example 2.12)

The jump size of the distribution function between the ith and the (i + 1)th class is
determined by the data belonging to the i th class, i.e., by the probabilities p; = n;/n :

0 for x<5.63
0.0667 for 5.63 <x<5.67
0.2000 for 5.67<x<5.71
Feo(x)=P(X<x)= 0.3667 for 5.71 <x<5.75
0.5834 for 5.75<x<5.79
0.8667 for 5.79 <x<5.83
1 for 5.83<x

The histogram is an approximation to the probability density of the random weight ¥
of the balls, which actually is a continuous random variable, for the following reason:
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If the length of the class intervals is scheduled to be one, what can always be done by
scaling the x-axis accordingly (see Figure 2.10, page 70), then the area of the column
over this interval is the probability p; = n;/n that Y takes on a value from this interval.
This corresponds to the interval probabilities (2.48) given by a density. By comparing
the probability histogram with the theoretical densities proposed in section 2.3.4, one
gets a first hint at the type of the probability distribution of Y. For instance, when com-
paring the histogram (Figure 2.6 b) with the density of the exponential distribution
(Figure 2.5b), this distribution can immediately be excluded as a suitable model. O

By partitioning in the previous example the 60 ball weights in classes, information
about the probability distribution of the ball weights was lost. No information is lost
when defining an empirical distribution function Fn(x) of Y based on a sample of
size n (i.e., the results of n repetitions of a random experiment with outcome Y have
been registered) as follows:

Falx) =29

where 7(x) is the number of values in the sample, which are equal or smaller than x.

Theorem of L V. Glivenko: F,(x) tends to F(x) = P(Y <x) as n — o in the follow-
ing sense: If G, = supcRr |Fn(x) — F(x)|, where R is the range of Y, then

P(lim Gy =0)=1.

Note that F;(x) has jumps of size 1/n at each sample value.

2.3.2 Distribution Parameters

The probability distribution function and/or the density of a continuous random vari-
able X contain all the information on X. But, as with discrete random variables, to get
fast information on essential features of a random variable or its probability distribu-
tion, it is desirable to condense as much as possible of this information into some nu-
merical parameters. Their interpretation is the same as for discrete random variables.
Remember that a random variable X can be interpreted as the outcome of a random
experiment. The mean value gives information on the average outcome of the random
experiment in a long series of repetitions. The characteristic feature of the median is
that, in a long series of repetitions of the random experiment, on average 50% of its
outcomes are to the left of the median and 50% to the right. Hence, mean value and
median characterize the central tendency of X .

Mean Value The mean value (mean, expected value) of X is defined as
EX)=[""x f(x)dx (2.51)

on condition that ["* [x| f(x)dx <.
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The condition makes sure that the integral (2.51) exists. Note that
E(XD) = [T x| f(x)dx.

Formula (2.51) can be derived from the definition of the mean value of a discrete ran-
dom variable (2.7): For simplicity of notation, let the range of X be R =[0,). R is
partitioned in intervals /; of length Ax as follows:

I = (A, (k+ DAL, k=0, 1, ...

Let X be a discrete random variable, which takes on a value x;, from each /; with
probability p; = F((k+ 1)A)— F(kA); k=0,1,... Then, by (2.7) and (2.50), as A —> 0,
ER) =220 xepi = Zico [ xp fy e
- [ xf@)dx = E(X).
For nonnegative continuous random variables, the analogue to formula (2.10) is

EX) = [ 1 - Fx)] dx. (2.52)

This formula is verified by partial integration as follows:
_[*®© RT t
EX) =[x f(x)dx = lim [ x f(x)dx
. t . t
= lim | tF() - [} Fydx | = lim [o[F@) - F )] d
= [y 11— F(x)] dx.

From (2.51) one gets analogously by partial integration the mean value of a random
variable X with range R = (-0, +0) as

EQ) =711 - Fe)ldx [ F(x)dx.

If h(x) is a real function and X any continuous random variable with density f(x),
then the mean value of the random variable Y = A(X) can directly be obtained from
the density of X:

Eh(X) = [ h(x) £(x) dx. (2.53)
If i(x) = ax + b with constants a and b, then Y =aX+b and
E(aX+b)=aE(X)+b. (2.54)

If both X and A(x) are nonnegative, one obtains by partial integration of (2.53) a for-
mula for E(A(X)), which generalizes formula (2.52):

E(h(X)) = [ [1 = F))dh(x) = [ [1 = F0)lh' (x) dx, (2.55)

where //(x) denotes the first derivative of 4(x) (assuming its existence).
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Moments By specifying /(x), formula (2.53) yields the moments of X:
The (ordinary) nth moment of X is the mean value of X" :

n=EQX") =[x f(x)dx; n=0,1,.... (2.56)
In particular, pg =1 and p; = E(X).

The nth (ordinary) central moment of X is

my = E(X-E(X))") = Ez(x—E(X))”f(x) dx,n=0,1,..., (2.57)
and the nth absolute central moment of X is
My =E(|X-EQX)|") =["7 |x— EQX)|"f(x)dx, n=0,1,.... (2.58)

Median The median of a continuous random variable X with distribution function
F(x) is defined as that value x( 5 of X which satisfies F(x¢ 5) =0.5.

Hence, in a long series of experiments with outcome X about 50% of the results will
be to the left of x5 and 50% to the right of x5 (Figure 2.7). One may expect that

x0.5 = E(X). But this is not generally true as the following example shows.
Example 2.13 Let X have an exponential distribution with parameter A (see example
2.11),i.e., F(x) =1 —e™* x> 0. Then, by formula (2.52),
EX) =]y e dx=1/i.
Now, let 4(x) = x2. Then, by (2.55), the second moment of X becomes
- = 27 -
EX?) = J‘;O e M oxdx=2 J‘;O xe My = —ﬁ[e X (ux + 1)];0
=—5l0-11=2/2

The median x5 is solution of the equation 1 —e*¥05 = 0.5 so that
X05 = 0.6931/A.
Thus, for the exponential distribution, x( 5 < E(X) and E(X?) > [E(X)]%. O

Percentile The a-percentile (also denoted as a-quantile) of a continuous random
variable X is defined as that value xo, of X which satisfies

Fxa)=a, O0<a<1. (2.59)
Hence, in a long series of experiments with outcome X, about a% of the results will
be to the left of xo and (1 —a)% to the right of x¢ (Figure 2.7). Thus, the median is
the 0.5-percentile of X or of its probability distribution, respectively.

Percentiles are important criteria in quality control. For instance, for an exponentially
distributed lifetime, what should the mean life of an electronic part be so that 95% of
these parts operate at least 5 years without failure? The mean life is L = 1/A so that pu
must satisfy P(X > 5) = e”/* > 0.95. Therefore, p > 97.5 years.
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Figure 2.7 Illustration of the percentiles
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Mode A mode xy of a continuous random variable X with density f(x) is a value at
which f(x) assumes a relative maximum. f(x) is unimodal if it has exactly one mode.
Otherwise it is called multimodal.

A density may have an uncountably infinite set of modes. This happens when the
density takes on a (relative) maximum over a whole interval. For a unimodal density
(in this case f(x) assumes its absolute maximum at x;, ), the most outcomes during a
long series of experiments will be in an environment of x,.

A function f(x) is said to be symmetric with symmetry center x; if for all x
Sxs —x) =f(xs +x).

It is quite obvious that for a random variable X with a unimodal and symmetric prob-
ability density f(x), median, mode and symmetry center coincide. If, in addition, the
mean value of X is finite, then

E(X)=x05=Xm=Xxs.

A
1o,
0 n >

Figure 2.8 Density of the Laplace distribution

Example 2.14 The Laplace distribution, also called doubly exponential distribution,
has a symmetric density with symmetry center at xy = p (Figure 2.8):

f@)=2ne?bul —ocx <o,
This density assumes its maximum at x,; = W, namely f(p) =A/2. Thus,
E(X)=x05=xm=n. o
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In what follows, formulas for the measures of variability, introduced in section 2.2
for discrete random variables, are given for continuous random variables. Their inter-
pretation does not change.

Variance The variance of X is the mean value of the squared deviation of X from its
mean value E(X), i.e. the mean value of the random variable ¥ = (X — E(X))?2:

Var(X) = E(X - E(X))?.
The calculation of this mean value does not require knowledge of the density of Y,
but can be done by (2.53) with A(x) = (x - E(X))%:

Var(X) = [ (x - E(X))? f(x) dx. (2.60)

Thus, the variance of X is its 2nd central moment (equation 2.57).
If with constants a and b the random variable aX + b is of interest, then 4(x) becomes

h(x) = (ax + b — aE(X) - b)? = a*(x — E(X))?

so that
Var(aX + b) = a*Var(X). (2.61)
There is an important relationship between the variance and the second moment of X:
Var(X) = E(X?) - [E(X)]. (2.62)

The proof is identical to the one for the corresponding relationship for discrete ran-
dom variables (see formula 2.17).

Standard Deviation The standard deviation of X is the square root of Var(X). It is

frequently denoted as o:
o= JVar(X) .

Coefficient of Variation The coefficient of variation of X is defined as the ratio
NX)=0c/EX).

It follows from formulas (2.54) and (2.61) that X and aX have the same coefficient of
variation. More generally, since the coefficient of variation considers the values of X
in relation to their average size, this coefficient allows to compare the variability of
different random variables.

An important measure of the variability is also the mean absolute linear deviation of
X from its mean value:

E(lx—ECOD = [77 |x - EQX)| f(x) d. (2.63)

This is the 1s¢ absolute central moment of X as defined by (2.58):
My = E(]x - E(X))).
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Figure 2.9 Distribution function and density for example 2.15

Example 2.15 Let X be the random emission of SO, [in 100 kg/A] of a chemical fac-
tory. Its distribution function F(x) (density f(x)) over one day, starting at midnight,
has been found to be (Figure 2.9)

0 for x<0, 0 for x<0,
F(x)=1 Jx for 0<x<1, f)=9 05x95 for 0<x<I,
1 for 1<x. 0 for 1<x.

The graph of the density shows that the bulk of the (illegal) emissions occurs imme-
diately after midnight. Later the emissions tend to the accepted values.

By (2.52), the mean value of X is
E(X) = Ié(l — JX)dx=[x—3 - x32]) = 1/3 [100 kg/h].
This result and formulas (2.56) and (2.62) yield the second moment and the variance:
EX?)=[y220.5x 2 dr=05[ xS dv=02,
62 = Var(X) = 0.2 — (1/3)% = 0.0889.
Standard deviation and coefficient of variation are
o= /Var(X) ~0.2981, W(X)=o0/E(X)~0.8943 =89,43%.
The 1st absolute central moment of X is
My = E(IX~173]) = [ [x—1/3]0.5x05dx

13
—Jo
so that E(|X—1/3]) = 0.2566 [100 kg/h]. O

173 —x)o.sx—O-SdHﬁB(x— 1/3)0.5x702dx = 0.1283 +0.1283

Continuation of Example 2.12 a) The probabilities p; in example 2.12 are actually
assigned to the class numbers 1, 2, ...,6. To be able to get quantitative information on
the ball weights, now the p; are assigned to the middle points of the class intervals.
That means the original range of X, namely {1, 2, ... ,6}, is replaced with the range
{5.605, 5.645, 5.68.5, 5.725, 5.765, 5.805}. The choice of the middle points takes
into account that the classes do not contain their upper limit.
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In this way, a discrete random variable has been generated, which approximates the
original continuous one, the weight of the balls. Mean value and variance of X are

E(X)=5.605-0.0667+5.645-0.1333 +5.685-0.1667 +5.725 - 0.2167,

and
Var(X) = (5.605 —5.722)2 - 0.0667 + (5.645 — 5.722)% - 0.1333
+(5.685—5.722)2-0.1667 +(5.725 - 5.722)% - 0.2167
+(5.765—5.722)2 - 0.2833 +(5.805 — 5.722)2 - 0.1333
so that

E(X)=5.722, Var(X)=0.00343, . /Var(X) =0.05857.
For the sake of comparison, the first absolute central moment is calculated:
E(|X-EX)|)=15.605-5.722| - 0.0667 + |5.645 - 5.722| - 0.1333
+15.685—-5.722| - 0.1667 +|5.725 - 5.722| - 0.2167
+15.765 —5.722| - 0.2833 +|5.805 — 5.722| - 0.1333
=0.0481.

By representing several values of the original data set by their average value, the
numerical effort is reduced, but some of the information contained in the data set is
lost. Based on the data set given, maximal information on the mean value and on the
variance of X give the arithmetic mean % and the empirical variance s2, respectively,
which are calculated from the individual n = 60 values provided by Table 2.2:

—_ 1wy 2_ 1 n =2 _ _1 n 2 =2
X=5 2% and s7=—=Xi(;-%)" =— Xy x; — 25X . (2.64)

The numerical results are, including the empirical standard deviation s = /s_z :
X=5.727, s> =0.0032, and s = 0.0566.

Directly from the data set, the empirical mean absolute deviation is given by
- 60
¥ T =X = 2 B0 - 5.727| = 0.0475.

b) The frequency histogram of Figure 2.5 suggests a suitable empirical density fgo()
with respect to class intervals of length 1:
0 if y<2/3,
==(3y-2) if23<y<5s,
3 .
55 (3y+22)  if 5.5<y<22/3,
0 if 22/3<y.

Jeo(») =

Having assigned length 1 to all class intervals formally means that the variables x and
v in Figure 2.10 are related by the linear transformation y = 25x — 138.75, or, in terms
of the corresponding variables Y and X:
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Figure 2.10 Probability histogram and empirical density for example 2.12

Y=25X-138.75 or X=0.04Y+5.55. (2.65)

First of all, it has to be shown that f¢y(y) is indeed a probability density, i.e,. it has

to be shown that the area A of the triangle is equal to 1: Since it is composed of 2

rectangular triangles, there is no need for integration:
A=103-(55-2/3)+103-(22/3-55)=1.

This empirical density allows the calculation of estimates for the distribution para-

meters by the formulas given in this section.

The mean value of Y is

223 NEE | 28
EX)= | yfoo0dy =135 [ yGy-dv+ 2 [ y(-3y+22)dy
0 0 55
_37.3_.2755,3 3 2722/3
_145[5’ e }2/3+55[_y +11y }5.5

=4.4965.

By formulas (2.54) and (2.65), E(X) =0.04 E(Y)+5.55 so that
E(X)=0.04-4.4965 +5.55=5.729.

By formula (2.60), an estimate of the variance of Y is

22/3
Var(Y)= | y2fe0)dy —[E(Y)]?
2/3
3 5.5 3 22/3
=== [ 2 0y-Ddy+ | 2 (3y+22)dy - [4.4965]
2/3 55

5.5 22/3
_3[.3(3,_ 2 3 3(_3 2) _ 2
= 145[3’ (43’ 3”2/3 + ss[y P t3 L.s [4.4965]

=2.0083.
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Hence, by formulas (2.59) and (2.60),

Var(X) = 0.042Var(Y) = 0.003213.
By (2.63), the mean absolute linear deviation of ¥ from E(Y) is

22/3
B(Y=EMD =[5}; v=44965feo () dy
3 4.4965 3 (55
== (44965 ) (3y—=2) dy+ Tz [ 206 (V —4:4965) By - 2) dy
3 [(22/3
+ 2[5 (V-4.4965) (-3y +22) dy
=0.58111+0.14060 + 0.44402 =1.16573.
Hence, E(|X - E(X)|) = 0.04E(|Y - E(Y)|) = 0.04663. O

Truncation Most of the probability distributions for random variables have ranges
[0,0) or (-, +x), respectively. If, however, in view of whatever reasons a random
variable, which is supposed to have distribution function F(x), can only take on values
from an interval [c,d], then a truncation of the range of X or its distribution, respec-
tively, makes sense. This is being done by replacing F(x) = P(X < x) with the condi-
tional distribution function F[. 41(x) = F(X < x|c £ X <d). By formula (1.22),

0 if x<eg,

F-Fe) .
Flea(x) = F(;_F(z) if c<x<d, (2.66)

1 if d<x

For instance, when the exponential distribution (example 2.10) is truncated with re-
gard to the interval [c,d], then
0 if x<ec,
efkc_efk\’ .
Flea1() = = if c<x<d, (2.67)

oie_phd

1 if d<x

Most important is the special case ¢ = 0. Then,

0 if x<0,
l—e™ .
F[O,d](x) = 1 e—kd if 0<x< d, (268)
1 if d<ux

Truncation is actually a very adequate tool to tailor probability distributions to the
respective application. Although, as mentioned above, most of the common probabi-
lity distributions have unbounded ranges (at least to the right), unbounded random
variables are unrealistic (even impossible) outcomes of random experiments like
determining life-, repair-, and service times or measurement errors.
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Standardization A random variable S (discrete or continuous) with
E(S)=0 and Var(S)=1

is called a standard random variable.

In view of formulas (2.54) and (2.59), for any random variable X with finite mean
value p = E(X) and variance 62 = Var(X), the linear transformation of X given by
X—n
=—c (2.69)
or, equivalently, by
u

1
SZEX_E

is a standard random variable. S is called the standardization or normalization of X.

Skewness In case of a continuous random variable, its distribution is symmetric if
and only if its density is a symmetric function. The skewness of a distribution meas-
ures the degree of asymmetry of arbitrary probability distributions, including discrete
ones. (Remember the skewness of a discrete probability distribution is visualized by
its histogram.) The two most popular skewness criterions are Charlier's skewness y¢
and Pearson's skewness yp:

_m _ K= Xm
’YC_G?” Yp= o s

where p, m3, x,, and ¢ are in this order mean value, third central moment (see
formula 2.57), mode, and standard deviation of X. For symmetric distributions both
criteria are equal to 0. They are negative if the density is skewed to the right ('long
tail' of the density to the right (Figure 2.11)) and positive if the density is skewed to
the left ('long tail' of the density to the left).

Charlier's skewness is invariant to the linear transformation (2.69), i,.e., invariant to
standardization. That means, X and its standardization (X— E(X))/c have the same
skewness if measured by yc.

A mode
Jx)

median

mean value

Figure 2.11 Asymmetric density skewed to the right
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2.3.3 Important Continuous Probability Distributions

In this section some important probability distributions of continuous random varia-
bles X will be listed. If the distribution function is not explicitely given, it can only be
represented as integral over the density.

Note: In what follows, the areas where the distribution function is 0 or 1 or, equivalently, the

density is 0, are no longer explicitely taken into account when specifying the domains of defi-
nition of these functions.

A A
e 100
a) b)
N
0 ¢ a7 0 ¢ d 7

Figure 2.12 Distribution function a) and density b) for the uniform distribution

Uniform Distribution A random variable X has a uniform distribution over the finite
interval (range) [c,d] with ¢ < d if it has distribution function and density

Flx) = =€
)=
Thus, for any subinterval [a, b] of [c,d ], the corresponding interval probability is

, c¢<x<d, f(x):ﬁ, c<x<d.

P(a<X£b)=Z_T?.

This probability depends only on the length of the interval [a, b], but not on its posi-
tion within the interval [c,d], i.e., all subintervals of [c,d] of the same length have
the same chance that X takes on a value out of it.

Mean value and variance of X are

E(X) = C;d, Var(X) = 11—2(a’—c)2.

Power Distribution A random variable X has a power distribution with finite range
[0,7] if it has distribution function and density (Figure 2.13)

Fo=(%)", f(x)=%(%)u_l, a>0, >0, 0<x<r.

Mean value and variance are

EX) =

2
aT aT
, Var =,
a+l 0 (a+1D%(a+2)

a>0, t>0.

The uniform distribution with range [0, t] is seen to be a special case if o = 1.
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Figure 2.13 Density of the power distribution

Note tis a scale parameter, i.e., without loss of generality t=1 can be chosen as meas-
urement unit. o is the shape or form parameter of this distribution, since a determines the
shape of the graph of the density.

Pareto Distribution A random variable X has a Pareto distribution with range [t, )
if it has distribution function and density

o+l

F(x)zl—(%)a, f(x):%()%) , x21 >0, a>0.

Mean value and variance are
2

__ot _ ot
E(X)_(x—l’ a>1, Var(X) ((x—l)z((x—Z)’

For o < 1 and o < 2 mean value and variance, respectively, do not exist, i.e., they are
not finite.

el

|
|
|
|
|
:
0 T > X
Figure 2.14 Density of the Pareto distribution
Cauchy Distribution A random variable X has a Cauchy distribution with parame-

ters A and p if it has density

A
fx)=——"———, -—®o<x<mw, A>0, —o<u<oo.
n[A%+ (@ -p?]

This distribution is symmetric with symmetry center u. Mean value and variance are
infinite.
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> X

Figure 2.15 Density of the Cauchy distribution

Exponential Distribution A random variable X has an exponential distribution with
(scale ) parameter A if it has distribution function and density (Figure 2.5, page 60)

F(x)=1-e™ f(x) =he™, A>0, x>0. (2.70)
Mean value and variance are
EX)=1/A, Var(X)= 122, (2.71)

Erlang Distribution A random variable X has an Erlang distribution with para-
meters ) and # if it has distribution function and density

—1 i 0 i
Fx)=1—e* "Z @ —e Y @, (2.72)
=0 ! i=n !
n—1
f(x)=7u8:)i)l)' e x20,A>0,n=1,2,... (2.73)

Mean value and variance are

EX)=n/n, Var(X)=n/\%.
The exponential distribution is a special case of the Erlang distribution for n = 1. The
relationship between the Erlang distribution and the Poisson distribution with para-

meter A is obvious, since the right-hand side of (2.72) is the probability that at least n
Poisson events occur in the interval [0,x] (formula (2.39), page 56).

Gamma Distribution A random variable X has a gamma distribution with parame-
ters oo and P if it has density (Figure 2.16)

fx)= F[ZZ) x*lePx x>0, 0>0,B>0, (2.74)
where the gammafunction I'(y) is defined by
Ty =[g " e dt, y>0. (2.75)
Mean value, variance, mode and Charlier's skewness are
EX)=al/B, Var(X)=a /B>, xm=(a—1)/p, yc=2/Ja. (2.76)

Special cases: Exponential distribution for o =1 and B =, Erlang distribution for
o=nand B=A.
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Sx) J) O<a<l

> x > X

0 xm 0

Figure 2.16 Densities of the gamma distribution

Beta Distribution A random variable X has a beta distribution with range (c¢,d) and
parameters o and f if it has density

B (d_c)lfafﬁ
fx) = T Bwp)

where the beta function B(x,y) is defined as
B(a,B) = j(l) x4 11— x)P-ax.

(x—o) 1 d-xP1, c<x<d, a>0, >0,

An equivalent representation of the beta function is

FrO)Ire) .
B(x,y) = Tary)

Mean value and variance are

x>0, y>0.

_ 2
EX)=c+(d—0)—%, Var(x)= — =P
a+f (a+B)2(o+P+1)
The mode of this distribution is
a—1
= )= > >
xm=c+(d C)O.+l3—2 forao>1,3>1,and o+ >2.

A special case is the uniform distribution in [¢,d] ifa =B =1.

If X has a beta distribution on the interval (c,d), then Y= (X—c¢)/(d —c) has a beta
distribution on the interval (0, 1). Hence, it is sufficient to consider the beta distribu-
tion with range (0,1). The corresponding density is

f(x)=B(01 531 —0P L 0<x <1 0> 0. B0,

f(x) a=2,p=3 S&) a=1/2,p=1

| N,
7

0 s 0 (.

Figure 2.17 Densities of the beta-distribution over (0, 1)
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Weibull Distribution A random variable X has a Weibull distribution with scale
parameter 0 and shape parameter B (2-parameter Weibull distribution) if it has
distribution function and density (Figure 2.18)

pB-1
F)=1-e@P f(x)= g (%) @ x50, B>0,0>0. (277
Mean value and variance are
2
— 1 — 02 2 _ 1
E(X)—er(ﬁ+l), Var(X)=0 [F(ﬁ+l) (F(B+l)) } (2.78)

Special cases: Exponential distribution if 6 = 1/A and B = 1. Rayleigh distribution if
B = 2. Distribution function, density, and parameters of the Rayleigh distribution are

F)=1-eW0% f(x)= 250" 5 x>0,0>0. (2.79)
EX)=0Jm/4, Var(X)=0%(1-m/4). (2.80)
fx)
B<1
p=1 B>1
> X
0

Figure 2.18 Densities of the Weibull distribution

3-parameter Weibull distribution A random variable X has a 3-parameter Weibull
distribution with parameters a, 3, and 0 if it has distribution function and density

F(x)= (x—a)P

0
)= g(%)ﬁ—l (x=a)’

o is a parameter of location, since X cannot assume values smaller than q..
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Remark The Weibull distribution was found by the German mining engineers £. Rosin and E.
Rammler in the late twenties of the past century when investigating the distribution of the size
of stone, coal, and other particles after a grinding process (see, for example, Rosin, Rammler
(1931)). Hence, in the mining engineering literature, the Weibull distribution is called Rosin-
Rammler distribution. The Swedish engineer W. Weibull came across this distribution type
when investigating mechanical wear in the early thirties of the past century.

Example 2.16 By a valid standard, the useful life X of front tires of a certain type of
trucks comes to an end if their tread depth has decreased to 5mm. From a large sam-
ple of n =120 useful lifes of front tires, taken under average usage conditions, the
mean useful life had been determined to be 2 years. The histogram of the same sam-
ple also justifies to assume that X has a Rayleigh distribution.

a) What is the probability of the random event A4 that the useful life of a tire exceeds
2.4 years?

By (2.77), the unknown parameter 0 of the Rayleigh distribution can be obtained
from the equation E(X)=2=0,m/4 . It follows 0 = 2.25676. Hence,
P(4) = P(X > 2.4) = e=240%) = 0.34526.

b) What is the probability of 4 on condition that a tire has not yet reached the end of
its useful life after 2 years of usage? From the formula of the conditional probability
(1.22), the desired probability is

P(A|X>2) = P(X > 2.4|X > 2)

1-F24) -48)
C1-FQ) 6%

— 042256767 _ () 83757 O

Normal Distribution A random variable X has a normal (or Gaussian) distribution
with parameters p and o2 if it has density (Figure 2.19)

1(X— 2
efz( o )

The corresponding distribution function can only be given as an integral, since there
exists no function the first derivative of which is f(x) :

fe) = —==—

, —0<x<+40, —o<pu<+0, o>0. (2.81)
2t ©

o
Fx)= \/%0—'[0 e 20 dy, —oo<x<+om, (2.82)
As the notation of the parameters indicates, mean value and variance are
EX)=p, Var(X)=o2. (2.83)

The mean absolute deviation of X from E(X) is
E(|X-EX)|) = J2/mn 6 ~0.798c. (2.84)
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1 N,

pu-2cu—-c u p+o pu+2c

Figure 2.19 Density of the normal distribution (Gaussian bell curve)

This can be seen as follows: The substitution y = (x — 1)/c in

+00

E(X=EQOD = [ -l =

e~ (0?1267 g

yields

+

E(x-Eoh= | M7=

2
eV 2ody

0 ©
== e Pyt [ye 2 a
T _L( y) ly gy y

0
_ 2c 22 g 2G|: _2/2:|°°_ 2c
== |ye dy=—=|-e” =
{2 gy Y 2

J2n 0 Jon®
The density f(x) is positive at the whole real axis. It is symmetric with symmetry
center xy = W and has points of inflection at x; = p—oc and xp = pu+aG.
In the intervals [p — ko, p+ ko], k=1,2,3, X assumes values with probabilities:

Plu—o<X<pu+o) =0.6827,
P(pn—-20 < X< u+20)=0.9545,
P(u-3c<X<u+30)=0.9973.

In particular, if a random experiment with outcome X is repeated many times, then
99.73% of the values of X will be in the '3c-interval' [u—3c, u+3c]. Therefore,
only 0.27% of all outcomes will be outside the 3c-interval. In view of the symmetry
of f(x), this implies that for p > 30 negative values of X occur only with probability

2(1-0.9973) = 0.000135 £ 0.0135%.

Thus, in case i > 3o the normal distribution can approximately serve as probability
distribution for a nonnegative random variable. If p < 3o, then a truncation with
regard to x =0 is recommended according to formula (2.68) with ¢ =0 and d = oo.

This makes sure that negative values cannot occur. The truncated normal distribution
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is a favorite model for lifetimes of systems subject to wear out. Generally, for rea-
sons to be substantiated later (section 5.2.3, page 208), the normal distribution is a
suitable probability distribution of random variables, which are generated by additive
superposition of numerous effects.
A normally distributed random variable X with parameters p and 62 is denoted as
X= N(u,6?).
Generally, the standardization S of a random variable X as given by (2.70) does not
have the same distribution type as X. But the standardization
X—p

S=—%—
of a normally distributed random variable X = N(u,c) is again normally distributed.
This can be seen as follows:

Fg(x) = P(S <) =P()% _x) = P(X< 0x + ).

From (2.82), substituting there u = }% ,
. OX+H 70/—11)2 . X 5
F = 262 Jy=—— —u 2 g,
sw=7=- [ e ="z | e Pdu

By comparison with (2.82), the right integral in this line is seen to be the distribution
function of a normally distributed random variable with mean value 0 and variance 1.
This implies the desired result, namely S= N(0, 1). S is said to be standard normal.
Its distribution function is denoted as ®(x) :

X
D(x) = P(N(0, 1) <) = ——= | e 2du, —o0<x<on, (2.85)
T —©
The corresponding density ¢(x) = ®’(x) is
L o2 _pex<oo. (2.86)

o) = ;
J2n
O(x) or @(x), respectively, determins the standard normal distribution.

®(x) is closely related to the Gaussian error integral Erf(x), which led C. F. Gauss
to the normal distribution:

Erf (x) = IZ e 24y,
Simple transformations, taking into account ®(0) = 1/2, yield
D@ =1+ LErf(Lj and Erf(x) = /7 (0(J2x)-1).

Since @(x) is symmetric with symmetry center xs = 0 (Figure 2.20),

O(x)=1-D(—x).
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Figure 2.20 Density and percentiles of the standardized normal distribution

From this another useful formula results:
P(—x < N(0,1) £ +x) = D(x) - D(—x) =2D(x) — 1. (2.87)
Hence, there is the following relationship between the a- and the (1—o)-percentiles of
the standardized normal distribution:
—Xg =X]_q, O0<a<l1/2.
This is the reason for introducing the following notation (Figure 2.20):
Zag =X1—q, 0<a<1/2.
Hence, with a replaced by o/2,
P(=zg/p SN0, 1) S zgp) = P(zgpn) = P(—zg) = 1-a.
The distribution function F(x) of X = N(i1,62) can be expressed in terms of ®(x) as

follows:

F(x) = P(X<x) =P()% < )%) =P(N(0, 1)< )%) - cb(%).

Corollaries 1) The interval probabilities (2.5) are given for any normally distributed
random variable X = N(u, 62) by

PlasXs< b):cp[b%‘j —o( 42k (2.88)

2) If x, denotes the a-percentile of X = N(u, 62), then

o=F(xg)= (I)(xa(; “)

so that, for any a < 1/2,
Xo, —
c

=Zg O Xg =0Zg + M.

Therefore, determining the percentiles of any normally distributed random variable
can be done by a table of the percentiles of the standardized normal distribution.
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Example 2.17 A company needs cylinders with a diameter of 20 mm. It accepts devi-
ations of £0.5 mm. The manufacturer produces these cylinders with a random diame-
ter X, which has a N(20, 62)-distribution.

a) What percentage of cylinders is accepted by the company if 62 = 0.04 mm?
Since the condition p > 3o is fulfilled (u > 1005), X can be considered a positive
random variable. By (2.89) and (2.88), the probability to accept a cylinder is
P(1X-20] <0.5)=P(19.5 <X<20.5)= P(l‘“ 20 < V0, 1) < 2032 20)
=P(-2.5<N0,1)<+2.5)=20(2.5)-1
=2-0.9938 -1=0.9876.
Thus, 98.76% of the produced cylinders are accepted.
b) What is the value of o2 if the company would reject 4% of the cylinders?
P(|X-20]>0.5)=1-P(19.5<X<20.5)

1 P<195 20 < o 1) < 20.50—20)

—1-P(-8 <N, < %) = 1-20(0.5/0) - 1]
=2[1-®(0.5/0)].
The term 2 [1 — ®(0.5/0)] is required to be equal to 0.04. This leads to the equation
®(0.5/c) = 0.98.

Now one takes from the table that value x(gg for which ®(x(9g) =0.98. In other

words, one determines the 0.98-percentile of the standardized normal distribution.
This percentile is seen to be x( 9g = 2.06. Hence, the desired o must satisfy

0.5/c = 2.06.
It follows ¢ = 0.2427. O

Example 2.18 By a data set collected over 32 years, the monthly rainfall from
November to February in an area has been found to be normally distributed with
mean value 92mm and variance 784 mm. (Again, the condition 1 > 3o is fulfilled.)

What are the probabilities of the 'extreme cases' that (1) the monthly rainfall during

the given time period is between 0 and 30mm, and (2) exceeds 150 mm?

0-92
8

(1)  PO<X< 30)=P( =22 <N, 1)<30-92 892) = O(-2.214) — D(~3.286)

~ d(=2.214) ~ 0.0135.

1502g92) _

=0.019. O

) P(X > 150) :P(N(o, 1)> 1-®(2.071) ~ 1 -0.981
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The first four moments (2.56) of the normal distribution M(p, 62) are

up =p=EWX),
Hy =2 +p?,
u3 =3pc? +p,

Uy = u4 + 6u262 +30%,
and its first four central moments (2.57) are
my =0, my=02%, my=0, mgy=p*+6p2c?+3c".
In view of the key role the normal distribution plays in probability theory, it is useful,
particularly for applications, to know how well any other probability distribution can
be approximated by the normal distribution. Information about this gives the excess
ve defined for any probability distribution with second central moment m, and

fourth central moment m4 :
my

" (m)?
Since g is 0 for N(u,2), the excess can serve as a measure for the deviation of the
distribution of any random variable with mean p and variance o2 from N(p,2) in
an environment of p.

YE

A
J») p=0

0 4
Figure 2.21 Densities of the logarithmic normal distribution
Logarithmic Normal Distribution A random variable Y has a logarithmic normal

distribution or log-normal distribution with parameters p and o2 if it has distribution
function and density (Figure 2.21)

Iny—
F(y):cl)(nyCF M); y>0, 6>0, —o<pu<oo,

_(ny-p)°
fO)=—=t—e 207 ; $50, 650, —0<p<w.

J2n oy

Thus, Y has a log-normal distribution with parameters p and o2 if it has structure
Y =eX with X=MNu,o2). Hence, if yq is the o-percentile of the log-normal distri-
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bution and x¢ the a-percentile of the N(u,62), then yo = e e, or, in terms of the
a-percentile uq, of the standard normal distribution, yo = e®“e*H, Since uy 5 =0, the

median is y( 5 = e". The distribution is unimodal with mode y;;, =e*™°".

Mean value and variance of X are
E(X)=eMo°2 Yar(X) = [15()()]2(e62 - 1).

The Charlier skewness and the excess are
Yo = (,/ e —1 ) (e"z +2), YE= 4% £2¢30% 130207 _ ¢,

Example 2.19 As the Rosin-Rammler distribution, the logarithmic normal distribu-
tion is a favorite model for the particle size of stone and other materials after a grind-
ing process. Statistical analysis has shown that the diameter of lava rock particles
after a grinding process in a special mill has a logarithmic normal distribution with
mean value E(X) = 1.3002 mm and variance Var(X)=0.0778.

What percentage of particles have their diameter in /=[1.1, 1.5mm]?
Solving the system of equations E(X) = 1.3002, Var(X)=0.0778 for u and 62 gives
w=0.24mm and 6% =0.045. Therefore,

PA1<X<15)= @(M) _q)(lnl.l —0.24)

0.212 0.212
=®(0.781) — D(-0.683) = 0.783 — 0.246 = 0.537.
Thus, the corresponding percentage of particles is 53.7%. O

01 <03

|

|

|

|

|

|

:
0 K ~
Figure 2.22 Density of the logistic distribution

Logistic Distribution A random variable X has a logistic distribution with parame-
ters u and o if it has distribution function

1
——E— (x—p)

1+e EG

and density (Figure 2.22)

F(x)= , —0o<x<+0w, 6>0,
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T
3o
fx)= 3o , —w<x<+00, 6>0.
i 2
(—p)

l+e ‘/?G

(x—p)

This distribution is symmetric with regard to y. Mean value, variance, and excess are
EX)=p, Var(X)=o2, yp=12.

The denominator of F(x) has the functional structure of a well-known growth curve
originally proposed by Verhulst (1845). Generally, the logistic distribution proved to
be a suitable probabilistic model for growth processes with saturation (i.e., not exceed-
ing a given upper bound) of plants, in particular trees.

A
Jx)
3_
2_
1+
| > X
0 1

Figure 2.23 Densities of the inverse Gaussian distribution

Inverse Gaussian Distribution A random variable X has an inverse Gaussian distri-
bution or a Wald distribution with positive parameters o and 3 if it has the density

(Figure 2.23)
2
fx) = /ﬁ exp (—%j x> 0. (2.89)

Integration gives the corresponding distribution function

F(x) = GD(BXJ;_EC ) +e 2B @(—%), x> 0.

Mean value, variance, and mode are
EX)=P, Var(X)=Pp3/o, xm=P ( J1+(3pa)? - 3[3/2a). (2.90)
Charlier's skewness and excess are

Yo ={PBlo,yp=15B/a.
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The practical significance of the inverse Gaussian distribution is mainly due to the
fact that it is the first passage time distribution of the Brownian motion process and
some of its derivatives (pages 504, 513). This has made the inverse Gaussian distri-
bution a favorite model for predicting time to failures of systems, which are subject
to wearout.

2.3.4 Nonparametric Classes of Probability Distributions

This section is restricted to the class of nonnegative random variables. Lifetimes of
technical systems and organisms are likely to be the most prominent members of this
class. Hence, the terminology is tailored to this application. The lifetime of a system
is the time from its starting up time point (birth) to its failure (death), where 'failure’
is assumed to be an instantaneous event. In the engineering context, a failure of a
system needs not be equivalent to the end of its useful life. If X is a lifetime of a sys-
tem with distribution function F(x) = P(X < x), then F(x) is called its failure probab-
ility and F(x) = 1 — F(x) is its survival probability. F(x) and F(x) are the respective
probabilities that the system does or does not fail in the interval [0, x].

Y

Xi

Figure 2.24 Tllustration of the residual lifetime

Residual Lifetime Let F;(x) be the distribution function of the residual lifetime X;
of a system, which has already worked for ¢ time units without failing (Figure 2.24):

Fi(x)=P(X; <x) = P(X—t<x|X>?).
By the formula of the conditional probability (1.22)

PX—-t<xnX>1t) PE<X<t+x)
P(X> 1) T PX>0)

F,(x) =

so that, by (2.44), page 59,
F(t+x)—F(?)

= >
Fi(x) —F) t>0, x>0. (2.91)
The corresponding conditional survival probability Fi(x)=1-F(x) is
Fioy =209 oo xso. (2.92)
F(1)

Hence, by using formula (2.52), the mean residual lifetime \(f) = E(X;) is seen to be

n(t) = [ Fix)dx = % [ Fixax. (2.93)
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Example 2.20 Let the lifetime X have a uniform distribution over [0,7]:
Fx)=x/T, 0<x<T.
Then,
F,(x)=ﬁ, 0<t<T, 0<x<T—t.

Thus, X; is uniformly distributed over the interval [0, 7— ], and for fixed x, the con-
ditional failure probability is increasing with increasing age ¢ of the system, t<7. O

Example 2.21 Let X have an exponential distribution with parameter A :
F(x)=1—-e, x>0.
Then, for given ¢ > 0 the conditional failure probability of the system in [¢, ¢+ x] is

) _ (1 _efk(Hx))_(l _efkt) 1

Fi(x
i oM

—e ™™ = F(x), x>0.

That means, if a system with exponentially distributed lifetime is known to have sur-
vived the interval [0, ], then it is at time point ¢ 'as good as new' from the point of
view of its future failure behavior, since its residual lifetime X; has the same failure
probability as the system had at time point z=0, when it started operating. In other
words, systems with property

Fi(x)=F(x) forall £>0. (2.94)

'do not age'. Thus, the exponential distribution is the continuous analogue to the
geometric distribution (example 2.3). Its is, moreover, the only continuous distri-
bution which has this so-called memoryless property or lack of memory property.
Usually, systems (technical or biological ones) have this nonaging property only in
certain finite subintervals of their useful life. These intervals start after the early
failures have tapered off and last till wearout processes start. In the nonaging period
failures or deaths are caused by purely random influences as natural catastrophes or
accidents. In real life there is always some overlap of the early failure, nonaging, and
wear out periods. O

'|'he fundamental relationship (2.94) is equivalent to the functional equation
F(t+x) = F(x) - F(2).
Only functions of type ¢4* are solutions of this equation, where « is a constant.

The engineering and biological background of the conditional failure probability
motivates the following definition:

Definition 2.3 A system is aging (rejuvenating) in the interval [¢],¢,], ] < o, if for
an arbitrary but fixed x, x > 0, the conditional failure probability F(x) is increasing
(decreasing) with increasing ¢, #] <¢<¢5. [ )

Remark Here and in what follows the terms 'increasing' and 'decreasing' have the meaning of
'nondecreasing' and 'nonincreasing', respectively.
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For technical systems periods of rejuvenation may be due to maintenance actions,
and for human beings due to successful medical treatment or adopting a healthier
lifestyle.

Provided the existence of the density f(x) = F/(x), another approach to modeling the
aging behavior of a system is based on the concept of its failure rate. To derive this
rate, the conditional failure probability F;(Af) of a system in the interval [¢,¢+ Af] is
considered relative to the length A¢ of this interval. This gives a conditional failure
probability per unit time, i.e. a 'failure probability rate":

1 _ 1 Fe+A)-F@)
At FuAn = I_*"(t) ' At :
If At - 0, the second ratio on the right-hand side tends to f(¢). Hence,
. 1 =
lim = F(A?) = f(O/F(?). 2.95
lim & Fu(An) = @/ (2.95)
This limit is called failure rate or hazard function, and it is denoted as A(?) :
M) = F(O)/F (D). (2.96)

In demography and actuarial science, A(f) is called force of mortality. Integration on
both sides of (2.96) yields

X X
A= 1 -0 0 o R o0a g 2.97)

By introducing the integrated failure rate
A) = [ Moy,
F(x), F¢(x) and the corresponding survival probabilities can be written as follows:
Fx)=1-e2® Fx)=e ™),
Fi(x) = 1 - TAE-AD] B () = o [AE)-AD] - x>0, > 0. (2.98)
This representation of F¢(x) implies an important property of the failure rate:

A system ages in [t,t2], t] < ta, if and only if its failure rate is increasing in this
interval.

Formula (2.95) can be interpreted in the following way: For small A¢,

Fi(Ar) = M(f) At. (2.99)
Thus, for At sufficiently small, A(f) At is approximately the probability that the
system fails 'shortly' after time point ¢ if it has survived the interval [0, #]. Hence, the
failure rate gives information on both the instantaneous tendency of a system to fail
and its 'state of wear' at any age ¢.
The relationship (2.99) can be written more exactly in the form

F(Af) = M6) At + o(AY),
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where o(x) is the Landau order symbol with respectto x — 0, i.e. o(x) is any function
of x with property
. o(x)

lim —= =0. 2.100

lim = (2.100)
In the ratio of (2.100), both functions y;(x) = o(x) and the function y,(x) =x tend
to 0 if x> 0, but yi(x) =0(x) must approach 0 'much faster' than y,(x)=x if
x — 0. Otherwise (2.100) could not be true.

The relationship (2.99) can be used for the statistical estimation of A(f): At time =0,
n identical systems start operating. Let n(f) be the number of those systems, which
have failed in the interval [0,#]. Then the number of systems which have survived
[0,7] is n—n(f), and the number of systems which have failed in the interval (¢, £ + Af]
is n(t + Af) — n(f). Then an estimate for the system failure rate in (¢, 7+ Af] is

1 n(t+ At) —n(?)

f»(x) A n- n(t)

, t<x<t+AtL

Based on the behaviour of the conditional failure probability of systems, numerous
nonparametric classes of probability distributions have been proposed and investigat-
ed during the past 60 years. Originally, they aimed at applications in reliability engi-
neering, but nowadays these classes also play an important role in fields like demo-
graphy, actuarial science, and risk analysis.

Definition 2.4 F(x) is an IFR (increasing failure rate) or a DFR (decreasing failure
rate) distribution if F(x) is increasing or decreasing in ¢ for fixed but arbitrary x, res-
pectively. Briefly: F(x) is IFR (DFR). [ )

If the density f(x) = F/(x) exists, then (2.98) implies the following corollary:

Corollary F(x) is IFR (DFR) in the interval [x,x5], x1 <X, if and only if the cor-
reponding failure rate A(x) is increasing (decreasing) in [x,x3].

The Weibull distribution shows that, within one and the same parametric class of
probability distributions, a distribution may belong to different nonparametric proba-
bility distributions: From (2.77) and (2.97),

Ax) = (x/0)P

_ B (x p-1
7\.()6)—6(6) ,XZO.

Hence, the Weibull distribution is /FR for B > 1 and DFR for B < 1. For =1 the
failure rate is constant: A = /6 (exponential distribution). The exponential distribu-
tion is both /FR and DFR. This versatility of the Weibull distribution is one reason
for being a favorite model in applications.

so that
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The failure rate (force of mortality) of human beings and other organisms is usually
not strictly increasing. In short time periods, for instance, after having overcome a
serious disease or another life-threatening situation, the failure rate will decrease,
although the average failure rate will definitely increase. Actually, in view of the
finite lifetimes of organism, their failure rates A(x) will tend to infinity as x — oo.
Analogously, technical systems, which operate under different, time-dependent stress
levels (temperature, pressure, humidity, speed), will not have a strictly increasing
failure rates, although in the long-run, their average failure rates are increasing. This
motivates the following definition:

Definition 2.5 F(x) is an IFRA (increasing failure rate average) distribution or a
DFRA (decreasing failure rate average) distribution if

1 —
-5 InF(x)

is an increasing or a decreasing function in x, respectively. ®

To justify the terminology, assuming the density f(x) = F/(x) exists and taking the
natural logarithm on both sides of the right equation in (2.97) yields

InF(x) = -J, Mo)dt.
Therefore,
() =~ InF(x) = 1 [ A0) dr

so that —(1/x)In F(x) turns out to be the average failure rate in [0,x]. An advantage of
definitions 2.3 to 2.5 is that they do not require the existence of the density. But the
existence of the density and, hence, the existence of the failure rate, motivates the
terminology. Other intuitive proposals for nonparametric classes are based on the
'new better than used' concept or on the behavior of the mean residual lifetime p(f);

see Lai, Xie (2006) for a comprehensive survey.

Obviously, F(x) being IFR (DFR) implies F(x) being IFRA (DFRA):
IFR = IFRA, DFR = DFRA.

Knowing the type of the nonparametric class F(x) belongs to allows the construction
of upper or lower bounds on F(x) or F(x). For instance, if pn, = E(X") is the nth
moment of X and F(x) = P(X<x) is IFR, then

P> { expi—x ()"} for v <pb",
B 0

otherwise.
In particular, for n = 1 with u=p; = E(X),

exp{—x/u} for x<p,

2.101
0 otherwise. ( )

F(x) > {
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Ny,
>

upper bound (2.103)

—_

o
W

Bounds for survival probability

(=]

Figure 2.25 Upper and lower bounds for example 2.22

If F(x) is IFR, then

sup |F(x) - ™| <1- [2y+1 (2.102)
X
with
Ho
=2
e

It can be shown thaty <0 (y > 0) if F(x) is IFR (DFR).
If F(x) is IFRA, then

1 for x<p,

2.103
e for x>y, ( )

I_*"(x)S{

where 7 = r(x, 1) is the unique solution of
l—ru=e™M,
Example 2.22 Let X have distribution function
Fx)=P(X<x)=1-e* , x>0.
This is a Rayleigh distribution (page 77) so that F(x) is /FR and X has mean value
p=EX)= m and second moment py = Var(X) +p2 = 1

(see formulas (2.80)). Figure 2.25 compares the exact graph of the corresponding
survival probability F(x)with the lower bound (2.101) and the upper bound (2.103).
By (2.102), an upper bound for the maximum deviation of the exact graph of F(x)
from the exponential survival probability with the same mean p= Jn/4 as X is,
since y =2/m— 1~ -0.3634,

sup F(x)—e_x/m ‘ = sup ‘e‘xz _ e mA ‘ <0.4773. O
X X
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2.4 MIXTURES OF RANDOM VARIABLES

The probability distribution Py (definition 2.1) of any random variable X depends on
one or more numerical parameters. To emphasize the dependency on a special para-
meter A, in this section the notation Py()\) instead of Py is used. Equivalently, in
terms of the distribution function and density of X,

Fy(x) = Fx(x, 1), fx(x)=fx(x,}).

Mixtures of random variables or, equivalently, their probability distributions arise
from the assumption that the parameter A is a realization (value) of a random vari-
able L, and all the probability distributions belonging to the set { Px(A), A € Ry },

where R; is the range of L, are mixed in a way to be explained as follows:

1. Discrete random parameter L Let L have range R; = {Ag, A,...} and probabi-
lity distribution

P; ={mg, my,...} with t, =P(L=%Ap), n=0,1,..., 2;0:0 m,=1.
Then the mixture of the probability distributions of type Py(A) in terms of the mix-
ture of the corresponding probability distribution functions of type Fx(x,A), A € Ry,
is defined as

G(x) = X 20 Fx(x, hn) 7.

2. Continuous random parameter L Let L have range R; with R; < (-0, +0) and
probability density
S, L e Ry.

Then the mixture of the probability distributions of type P x(A) in terms of the distri-
bution functions of type Fx(x, ) is defined as

GO0 =[5, Fx(x,2) fr (W) d.

Thus, if L is a discrete random variable, then G(x) is the weighted sum of the distri-
bution functions Fy(x,A,) with weights ©t,, given by the probability mass function

of L. If L is continuous, then G(x) is the weighted integral of Fy(x,A) with weight
Sfunction f(x,A). In either case, G(x) has properties (2.3) and (2.4) so that it is the

distribution function of a random variable Y, called a mixed random variable, and the
probability distribution of Y is the mixture of probability distributions of type P x(\).

If X is continuous and L discrete, then the density of ¥ is
8(0) = Ziro (@, An) Tn.
If X and L are continuous, then the density of Y is

8(0) = [, fxr,W)fL() .



2 ONE-DIMENSIONAL RANDOM VARIABLES 93

Formally, G(x) and g(x) are the mean values of Fx(x,L) and f x(x, L), respectively:
G(x) = E(Fx(x,L)), g(x)=E(fx(x,L)).
If L is discrete and X is discrete with probability distribution
Px(M)={p/(d) =PX=x,1);i=0,1,..},

then the probability distribution of Y, given so far by its distribution function G(x),
can also be characterized by its individual probabilities:

P(Y=x;)=2po pi(An)mn=E(p,L)); i=0,1,.... (2.104)
If L is continuous and X is discrete, then
P(Y=x)) = [ piIfL()dN = Epi(L). (2.105)

The probability distribution of L is sometimes called structure or mixing distribution.
Hence, the probability distribution Py of the 'mixed random variable' Y is a mixture
of probability distributions of type Py with regard to a structure distribution Py .

The mixture of probability distributions provides a method for producing types of

probability distributions, which are specifically tailored to serve the needs of special
applications.

Example 2.23 (mixture of exponential distributions) Assume X has an exponential
distribution with parameter A:

Fx(x,\)=P(X<x)=1-e™, x>0.

This distribution is to be mixed with regard to a structure distribution P, where L is
exponentially distributed with density

S1() =pe™, p>0.
Mixing yields the distribution function

G() = [ Fx(x,2) fr (W) dh = [(1 - e ) peWrdn = 1 - —=

x+p
Hence, mixing exponential distributions with regard to an exponential structure dis-
tribution gives the Lomax distribution with distribution function and density

__x __u
G=pig &= s ¥20.u>0 (2.106)

The Lomax distribution is also known as Pareto distribution of the second kind. O

Example 2.24 (mixture of binomial distributions) Let X have a binomial distribution
with parameters # and p:

PX=i)= (’lf)pi(l -p)"™i, i=0,1,2,..,n.



94 APPLIED PROBABILITY AND STOCHASTIC PROCESSES

The parameter n is considered to be a value of a Poisson with parameter A distributed
random variable NV:

P(N=n)= 7};—7#; n=0,1,.. (O fixed).
Then, from (2.104), using
(’f) =0 for n<i,

4

the mixture of binomial distributions Py(n), n=0,1,..., with regard to the Poisson
structure distribution Py is obtained as follows:

Pr=i= 3 (1)pi-pyritie?

> (',?)pi(l —p)’“%fX

n=i

G 0§ (L) )
Thus,
P(Y=i)= %I:)[e’xl’; i=0,1,...
This is a Poisson distribution with param.eter Ap. O

Mixed Poisson Distribution Let X have a Poisson distribution with parameter A :

_ P L .
Py(0) = (P =) =2 e 120,150 01,

A random variable Y with range {0, 1,...} is said to have a mixed Poisson distribution
if its probability distribution is a mixture of the Poisson distributions Py(A) with
regard to any structure distribution. For instance, if the structure distribution is given
by the density f7(A) of a positive random variable L (i.e., the parameter A of the

Poisson distribution is a realization of L), the distribution of Y is

A -
P(Y—z)—fi'e fi(NdL, i=0,1,.... (2.107)
0!

A mixed Poisson distributed random variable Y with any structure parameter L has the
following properties

E(Y)=E(L)
Var(Y) = E(L) + Var(L)

o (2.108)
P(Y>n)=[ e Fr()di
3ot

where F7(L)=P(L <)) is the distribution function of L and F(A) =1 —F ().
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Example 2.25 (mixed Poisson distribution, gamma structure distribution) Let the
random structure variable L have a gamma distribution with density
_ B i
fL(k)—r(a)k e P A>0,a>0, >0.

The corresponding mixed Poisson distribution is obtained as follows:

P(Y= )=TM —Xﬂka—l —Br g9,
[ ! i e (o) e

_1 p* Tknaq[x(ﬁﬂ)dx
i T(a) g

1 B¢ 17

il T(o) B+1)*e

x1+(xflefx dx

_ 1T+ B
= i F(OC) (B+1)i+a.

Thus,

1

~ (ic1+a)_ 1N B ,
P(Y=l)=(’ ,”)km) el a>0, >0, i=0,1,... (2.109)

This is a negative binomial distribution with parameters r=a and p=1/(B+1) (see
formula (2.31), page 53). In deriving this result, the following property of the gamma
function with x =i+ a, i =1,2,..., had been used

IFrx)=@x-DTx-1); x>0. O

2.5 GENERATING FUNCTIONS

Probability distributions or at least moments of random variables can frequently be
obtained from special functions, called (probability or moment) generating functions
of random variables or, equivalently, of their probability distributions. This is of im-
portance, since it is in many applications of stochastic methods easier to determine
the generating function of a random variable instead of directly its probability distri-
bution. This will be in particular demonstrated in Part II of this book in numerous
applications. The method of determining the probability distribution of a random var-
iable from its generating function is mathematically justified, since to every probabi-
lity distribution belongs exactly one generating function and vice versa.

Formally, going over from a probability distribution to its generating function is a
transformation of this distribution. In this section, transformations are separately
considered for discrete random variables (z-transformation) and for continuous ran-
dom variables (Laplace transformation).
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2.5.1 z-Transformation

The discrete random variable X has range R = {0, 1, ...} and probability distribution
{pi=PX=1i); i=0,1,...}.

The z-transform M(z) of X or, equivalently, of its probability distribution is for any
real number z with |z| <1 defined as the power series

Mz)=ZZopiz'.

Thus, the probability distribution of X has been transformed into a power series. In
this book, the extension of this series to complex numbers z is not necessary.

To avoid misunderstandings, sometimes the notation M x(z) is used instead of M(z).
From (2.10) with 4(z;) = z*, M(z) is seen to be the mean value of ¥ = X
M(z) = E(z¥). (2.110)
M(z) converges absolutely for |z] < 1:
|M@)| <X pi |Zi | <¥Zopi=1.
Therefore, M(z) can be differentiated (as well as integrated) term by term:
M @) =X ipiz"".
Letting z =1 yields
M(1)=XZipi=EWX).
Taking the second derivative of M(z) gives
M" (@)= EiZo(i—1)ip;z2.
Letting z =1 yields
M) =X 20— Dip; =XiZg 2 pi = XiZo i pi.
Therefore, M” (1) = E(X?) — E(X). Thus, the first two moments of X are
EX)=M(1), EX?)=M"(1)+M (). (2.111)
Continuing in this way, all moments of X can be generated by derivatives of M(z).
Hence, the power series M(z) is indeed a moment generating function. By (2.13),
EX)=M'(1), Var(X)=M"(1)+M(1)- [M/(l)]z. (2.112)
M(z) is also a probability generating function, since

Po=M©0), py =M (0), py = 3:M"(0), p3 = 3" (0), ...

Generally,
_ 14"M@)

n=

=0,1,.... 2.11
l’l' dZ 2:05 n 09 s ( 3)
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Otherwise, according to the definition of M(z), developing a given z-transform with
unknown underlying probability disribution into a power series yields the probabil-
ities p; simply as the coefficients of z'.

Geometric Distribution Let X have a geometric distribution with parameter p (page
50):

pi=PX=i=p(l-p)}; i=0,1,....
Then,
0 . .
M(z) = Zop(l -p)'z’
1=l

—p 5250[(1 ~pyli.

By the geometrical series (2.16) withx = (1 -p)z,

D
MO Ta e
The first two derivatives are
2
M () = p(1-p) M (2) = 2p(1-p) .
O i MO Ty
Hence, by (2.111) and (2.112),
E(X):lp%p, E(X%:W, Var(X):l;zp.
p

Poisson Distribution Let X have a Poisson distribution with parameter A (page 56):

pl:P(X:i):}\'—'lei}\'; i:(),l,....
1.

Then, in view of the exponential series (2.19),

[ee) i . o) i

M@z =2 7_“—16_7‘ Zi=e Yy M =eheth,

i—0 1! i=0 1!

Hence,
M(z) = e*ED),
The first two derivatives are
M/(Z) — }Lek(zfl)’ M//(Z) — 7\’26%(271).
Letting z =1 yields
M1)y=x, M’(1)=22

Thus, mean value, second moment, and variance of X are

EX)=L EX%=A(A+1), Var(X)=x.
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Mixed Poisson Distribution The mixed Poisson distribution with density f;(A) of
its structure parameter L has the individual probabilities (formula (2.107))

P(Y=i)= j e—KfL(x)dx i=0,1,...

Hence, its z-transform is

xz)l

My@)= 2 (J ”—em(x)dx} I§ e LM
)

so that
My@2) =[] D fr0d.
This result can be interpreted as 'mixture of z-transforms of Poisson distributions'.
Binomial Distribution Let X have a binomial distribution with parameters »n and p
(page 51):
pi=PX=i)= ('z)pi(l -p)" i=0,1,.,n

Then,

n . oy . .

M@ = £ piz = 5 ()i —pyi
i=0 i=0 ~1!

S (n i n-i
=2 J2)(A-p)".
i=0 1
This is the binomial series (2.20) with x =pz and y =1 —p so that
M@ =[pz+1-p)".
By differentiation,
M@ =nplpz+1-p)]"",

M"(@)=(n—-D)np?[pz+1-p)">
Hence,
M Q)=np and M"(1)=(n-1)np?
so that mean value, second moment, and variance of X are
EX)=np, EX?)=n-1)np?>+np, Var(X)=np(l-p).

Convolution Let {pg,p,...} and {q¢,q1,...} be the respective probability distribu-
tion of the discrete random variables X and Y, and let a sequence {r(,71,...} be defin-
ed as follows

Fn =200 Pidni =P0dn+P1qn-1 + - +pnqo, n=0,1,... (2.114)
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The sequence {rg,r1,...} is called the convolution of the probability distributions of
X and Y. The convolution is the probability distribution of a certain random variable
Z since {rg,rq,...} fulfills the conditions of a discrete probability distribution (2.6):

Z:lo:()rnzl, rnZO.

For deriving the z-transform of Z, Dirichlet's formula on how to change the order of
summation in finite or infinite double sums is needed:

To0 Zito @in = Lo Zoi Ain - (2.115)

Now,
Mz(z) =Xp0rnz" =200 Zico PidniZ"

= Z?iopizi(zf;i qn—izn_i)
= (=2opi2) (ZE0 axzt).

Thus, the z-transform of the convolution of the probability distributions of two ran-
dom variables X and Y is equal to the product of the z-transforms of the probability
distributions of X and Y-

My(z) = Mx(z) - My(2). (2.116)

2.5.2 Laplace Transformation

The Laplace transform }‘(s) of a real function f(x), x € (—o0,+), is defined as
F) =] e fx) d, 2.117)

where the parameter s is a complex number.

The Laplace transform of a function need not exist. The following assumptions 1 and
2 make sure that this function exists for all s with Re (s) > b :

1) f(x) is piecewise continuous.

2) There exist finite real constants a and b so that f(x) < aeP* for all x > 0.

Notation If c =x+1iy is any complex number (i.e., i = /—1 and x, y are real numbers), then
Re(c) denotes the real part of c: Re(c)=x. For the applications dealt with in this book, the
parameter s can be assumed to be a real number.

If f(?) is the density of a random variable X, then ;’(s) has a simple meaning:
F(s) = E(e™ ). 2.118)

This formula is identical to (2.110) if there z is written in the form z =75,
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The n-fold derivative of }"(s) with respect to s is

R

Hence, the moments of all orders of X can be obtained from E(X?) = E(1)=1 and

E(X™)= (- 1)”df(s) . n=1,2,.... (2.119)
s=0
Sometimes it is more convenient to use the notation
f)=L({ s).

Partial integration in ]A"(s) yields

L(jfw Au)du, s) =L 76s) (2.120)

and, if f(x)> 0 for all x € (—o0,+0) and £ (x) denotes the nth derivative of f(x)
with regard to x, then

FO()=5" f(s); n=12,.... 2.121)
Note This equation has to be modified for all n =1,2, ... if f(x) =0 for x <0:
}(n)(s) =g }(S) _Sn—lf(o) _Sn—Zf/(O) ———— g lf(n—Z)(O) —f(n_l)(O). (2.122)

In particular, for n =1,

d
{49 ) = s -1 (2.123)
Let f1, f2, ..., fu be any n functions for which the corresponding Laplace transforms
existand f= f1 +f5+--+fu. Then,
F)=116) +/2(5)++-+ [ (6). (2.124)

Convolution The convolution f1 *f, of two continuous functions f; and />, which
are defined on (-0, +0), is given by

(i *2)@ =["7 fie—w)fau)du. (2.125)
The convolution is a commutative operation, i.e.,
(1 #/2)@®) = (L * M@ =77 frle—u)f1(w) du.
If f1(x) =f>(x) =0 for all x < 0, then
(1 */2)0) = [ S0 =) fy () du = [ f1(x—w) f(u) du. (2.126)

The following formula is the 'continuous' analogue to (2.116):

L(f1 *f2, 5) = L(fi, 5) - L(fa, ) = f1 (5) - f2 (s). (2.127)
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A proof of this relationship is easily established:

L(fy #f2, )= ["7 e [T fo(x —u) f1 (u) dudx

=" e iy [*7 eSO f (- u dx du

=[" e i) [T eV () dy du
= L(f1, 9) - L(f2, 5) =f1(5) -f2(s).

In proving this relationship, the 'continuous version' of Dirichlet's formula (2.115)
had been applied:

21 feydeay=["_[7 f(x,y)dydx.

Verbally, equation (2.126) means that the Laplace transform of the convolution of
two functions is equal to the product of the Laplace transforms of these functions.

Retransformation The Laplace transform JA{(S) is called the image of f(x), and f(x)

is the preimage of f(s). Finding the preimage of a given Laplace transform (retrans-
formation) can be a difficult task. Properties (2.124) and (2.127) of the Laplace trans-
formation suggest that Laplace transforms should be decomposed as far as possible
into terms and factors (for instance, decomposing a fraction into partial fractions),
because the retransformation of the arising less complex terms is usually easier than
the retransformation of the original image.

Retransformation is facilitated by contingency tables. These tables contain important
functions (preimages) and their Laplace transforms. Table 2.5 presents a selection of
Laplace transforms, which are given by rational functions in s, and their preimages.
There exists, moreover, an explicit formula for the preimages of Laplace transforms.
Its application requires knowledge of complex calculus.

Example 2.26 Let X have an exponential distribution with parameter \:
fx)=re ™, x>0.
The Laplace transform of f(x) is
]A‘"(s) = J;O e he M dx = I;o e (HMx gy

so that

A
S+A°

S(s)=
The nth derivative of JA{(S) is

d"f(s)
ds®

An!
(s +2)"!

="
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Thus, the nth moment of X is

Ex™ =21 n=o,1,... O

k”’

Example 2.27 Let X have a normal distribution with density

P = i
fx)= e 200 ; xe(-o,+mn).
J2n o
The Laplace transform of f(x) is
+00 _ (—w)?

je_sxe 267 dfx.

/()=

This improper parameter integral exists for all s. Substituting u = (x — pw)/c yields

1 _HerOO —osu . —u2l2 1L sty o227 1 (utos)?
= e _Le e du=ﬁe _J;Oe 2 du.
By substituting y = u + os, the second integral is seen to be /2m . Hence,
1
I(s)=e 2O (2.128)
O

Two important special cases of the Laplace transform are the characteristic function
and the moment generating function.

Characteristic Function The characteristic function
400 ;
vo) = [ e dx

of a random variable with density f(x) is a special case of its Laplace transform,
namely if the parameter s is purely imaginary number, i.e. s =iy. Thus, the charac-
teristic function is nothing else but the Fourier transform of f(x). The advantage of
the characteristic function to the Laplace transform is that it always exists:

o)l = | [ e 5f ) x|
<[] et¥| fx) dx

=["" fyax=1.

As the z-transform and the Laplace transform, the characteristic function is moment
and probability generating. Characteristic functions belong to the most important
tools for solving theoretical and practical problems in probability theory.
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Moment Generating Function Formally, the moment generating function M(:) is

exactly defined as the Laplace transform f(s), namely by formula (2.117). The dif-
ference is that in case of the moment generating function the parameter s is always
real and usually denoted as '-#' so that

M) =["" ™ f(x) dx.

The key properties derived for Laplace transforms are of course also valid for the
moment generating function. In particular, if f(x) is a probability density, then

M(7) = E(e'¥).

The terminology is a bit confusing, since, as mentioned before, z-transform, the Lap-
lace transform, and the characteristic function of a random variable are all moment-
as well as probability generating.

Example 2.28 Let an image function be given by

fs)=

T
GV

f(s) can be written as

A S l A A
s) = . =f105) - f2(s).
S() TR S16)- f2(5)
The preimages of the factors can be found by means of Table 2.5:
f1(x)=coshx = %(ex +e™)
and
fo(x)=sinhx =1 (e —e™).
Let f1(x) and f>(x) be O for all x <0. Then preimage f(x) of }(s) is given by the
convolution (2.126) of fj(x) and f5(x):
(1 */2)) =1 [y (€67 +e ) (e — ™) du

= iU‘g (1 _672u)du +J')(; efx(e2u _ l)du]

_1 x|: 1 —2u:|x —x|:l 2u :|x}
—4{6 u+26 0+e 2@ u 0

_l{ x, 1, —~x_1x 1 x_ _—x_1 7x}
=32 xe +26 2@ +2€ xe 26 .

Thus,
fx)= %x sinhx.

This verifies the preimage given in Table 2.5 with a = 1. O
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Example 2.29 Let an image function be given by

g _ Ky
J&)= (2= 1)(s+2)2

The preimage cannot be taken from Table 2.5. But as in the previous example, it can

be determined by factorization. But now the method of decomposition of f(s) into
par- tial fractions is used: The denominator has the simple zeros s=1, s=-1 and

the doubly zero s = 2. Hence, ;’(s) can be written in the form
- A A B B
7(s) = s A4 A L, 2
(s2-1)(s+2)2 s—1 s+1 s+2 (542)2

The coefficients 41, Ay, By, and B, are determined by multiplying the equation by
(s% = 1)(s +2)? and subsequent comparison of the coefficients of s”; n=0,1,2,3; on
both sides. This gives the equations

50 44, -44,-2B| —B, =0
st 84;-B| =1

s 54, +34,+2B+B,=0
$3 A +A,+B; =0

The solution is
A1 =1/18, A, =1/2, By =-5/9, B, =-2/3.
Therefore,

L1 15 1,2 1
s—1 72 5+1 9 54273 (5122

~ _ L )

76 =1g
The preimage of the last term can be found in Table 2.5. If no table is available, then
this term is represented as

111
(s+2)2 s+2 s+2°

—2x

The preimage of each factor is e 2* so that the preimage of 1/(s +2)? is equal to the

convolution of e=2* with itself:
e_zx * e_zx = J.)(; e—2(x—y) . e—2ydy
_ X ,—2x
= IO e “*dy
=X e’zx .

Now, by (2.124), retransformation of the image }"(s) can be done term by term:

f(x)z%ex+%e_x—%e_2x+%xe_2x. |
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jf(s) preimage }(s) preimage
1 1 1 1 _ 1l
5 (52——412)2 o (xcosh ax —  sinh ax)
1 1 —1 s 1 .
LS| —L L
prl nx1 (n—l)!x (2 —a?)? 2a)csmhax
1 et st L(sinh ax+axcoshax)
s+a (52 _ az)z 2a
1 1 n—-1 ,—ax 1 | p—r _ ,—bx
(s+a)” (n—l)!x ¢ (s+a)s+b) b-a*’ e
S 1— —ax S _ b g bx_ o -ax
a2 | 4Te9e Grastb)  |poa?e e
S a — 1 —ax —bx —bx
1-2)xe™@* 1 —(e e = (b—a)xe™)
(s+a)’ 2 sras+p? |7
S 12 ax_a3, o | —5 ' —{—a™® +[a+b(b - a)x]e ™}
s+a)t |2¥¢ T € (s+a)s+b)? |9
5 1 5 é sinh (ax) 52 (b—la)z [(a?e™™ + b(b —2a — b*x + abx)]e ™
s%-a (s+a)(s +b)?
1 L. 1 1 - -
= Sm (ax e —(1l—-e % —gxe 9~
s2 +a? a (ax) s(s+a)? a2( )
S cosh (ax) 1 % 1-— —bx —b(l =
s?—a? Serasrh) | aa—p) e TAImeT
S cos ax 1 1 [(c—b)e ™+
s2+4? (s +a)s+b)s+c) | (a=b)b-c)c—a)
+a—-c)e™™ +(b-a)e™)

1 1 - . E— 1 N—ax

s+ |adme™) CHaGHDEHO) | @=hib-oyc—a) @l
+b(c — a)e ™ + c(a— b)e ]
+ L —ax _ SZ % ) b— —ax
Z(s+a) | a2 (@ rax=1) N eehere |@ho-oe—a P
—b2(c—a)e™™ — c2(a - b)e*]
1 P 1 1 - a..

——— | 72 (g sinax —xcosax) e ¥ + —=sinbx — cos bx
(2 +a)? | ¢ (s +a)s2+b2) |a®+b? [ b ]
# L 1 + . —ax H
(2 +a2)? 20" sin ax o +a) s +b2) a2+b2[ ae™ " + acos bx + bsin bx]
L i(sinax+axcosax) L I [aze“”—absinbx+bzcosbx]
2 +a2)?|* (s +a)s? +b2) |4+

Table 2.5 Images and the corresponding preimages of the Laplace transformation
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2.6 EXERCISES

Sections 2.1 and 2.2
2.1) An ornithologist measured the weight of 132 eggs of helmeted guinea fowls

[gram]:
number i 1 2 3 4 5 6 7 8 9 10
weight x; 38 41 42 43 44 45 46 47 48 50
number of eggs n; 4 6 7 10 13 26 33 16 10 7

There are no eggs weighing less than 38 and more than 50. Let X be the weight of a
randomly picked egg from this sample.

(1) Determine the probability distribution of X.
(2) Draw the distribution function of X.
(3) Determine the probabilities P(43 < X <48) and P(X > 45).

(4) Determine E(X), |/ Var(X) , and E(|X - E(X)]).

2.2) 114 nails are classified by length:

number i 1 2 3 4 5 6 7
length (in mm) x; <15.0 150 151 152 153 154 155 156 >15.6
number of nails #; 0 3 10 25 40 18 16 2 0

Let X denote the length of a nail selected randomly from this population.

(1) Determine the probability distribution of X.

(2) Determine the probabilities P(X < 15.1), and P(15.0 < X< 15.5).

(3) Determine E(X), m3 = E(X— E(X)) 3. 6= [Var(X), Yc, and yp.

Interprete the skewness measures.

2.3) A set of 100 coins from an ongoing production process had been sampled and

their diameters measured. The measurement procedure allows for a degree of accur-
acy of £0.04 mm. The table shows the measured values x; and their numbers:

i 1 2 3 4 5 6 7
X; 24.88 | 24.92 | 24.96 | 25.00 | 25.04 | 25.08 | 25.12
n; 2 6 20 40 22 8 2

Let X be the diameter of a randomly from this set picked coin.
(1) Draw the distribution function of X.
(2) Determine E(X), E(|X-E(X)|), Var(X), and V(X).
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2.4) 84 specimen copies of soft coal, sampled from the ongoing production in a col-
liery over a period of 7 days, had been analyzed with regard to ash and water content,
respectively [in %]. Both ash and water content have been partitioned into 6 classes.
The table shows the results:

water
[16,17) | [17,18) | [18, 19) | [19,20) [ [20,21) | [21,22]
[23, 24) 0 0 1 1 2 4
[24, 25) 0 1 3 4 3 3
ash | [25,26) 0 2 8 7 2 1
[26, 27) 1 4 10 8 1 0
[27, 28) 0 5 4 4 0 0
[28, 29) 2 0 1 0 1 0

Let X be the water content and Y be the ash content of a randomly chosen specimen
copy out of the 84 ones. Since the originally measured values are not given, it is as-
sumed that the values, which X and Y can take on, are the centers of the given classes,
ie, 16.5,17.5,---,21.5.

(1) Draw the distribution functions of X and Y.
(2) Determine E(X), Var(X), E(Y), and Var(Y).

2.5) It costs $50 to find out whether a spare part required for repairing a failed device
is faulty or not. Installing a faulty spare part causes damage of $1000.

Is it on average more profitable to use a spare part without checking if
(1) 1% of all spare parts of that type,

(2) 3% of all spare parts of that type, and

(3) 10 % of all spare parts of that type are faulty?

2.6) Market analysts predict that a newly developed product in design 1 will bring in
a profit of $ 500 000, whereas in design 2 it will bring in a profit of $200 000 with
probability 0.4, and a profit of $800 000 with probability 0.6.

What design should the producer prefer?

2.7) Let X be the random number one has to throw a die, till for the first time a 6
occurs. Determine £(X) and Var(X).

2.8) 2% of the citizens of a country are HIV-positive. Test persons are selected at
random from the population and checked for their HI'V-status.

What is the mean number of persons which have to be checked till for the first time
an HIV-positive person is found?
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2.9) Let X be the difference between the number of iead and the number of tail if a
coin is flipped 10 times.

(1) What is the range of X?

(2) Determine the probability distribution of X.

2.10) A locksmith stands in front of a locked door. He has 9 keys and knows that
only one of them fits, but he has otherwise no a priori knowledge. He tries the keys
one after the other.

What is the mean number of trials till the door opens?

2.11) A submarine attacks a warship with 8 torpedoes. The torpedoes hit the warship
independently of each other with probability 0.8. Any successful torpedo hits one of
the 8 submerged chambers of the ship independently of other successful ones with
probability 1/8. The chambers are isolated from each other. In case of one or more
hits, a chamber fills up with water. The ship will sink if at least 3 chambers are hit by
one or more torpedos. What is the probability that the attack sinks the warship?

2.12) Three hunters shoot at 3 partridges. Every hunter, independently of the others,
takes aim at a randomly selected partridge and hits his/her target with probability 1.
Thus, a partridge may be hit by several pellets, whereas lucky ones escape a hit.

Determine the mean E(X) of the random number X of hit partridges.

2.13) A lecturer, for having otherwise no merits, claims to be equipped with extra-
sensory powers. His students have some doubt about it and ask him to predict the
outcomes of ten flippings of a fair coin. The lecturer is five times successful. Do you
believe that, based on this test, the claim of the lecturer is justified?

2.14) Let X have a binomial distribution with parameters n =5 and p = 0.4.
(1) Draw the distribution function of X.
(2) Determine the probabilities

P(X>6), P(X<2), PB<X<T), P(X>3|X<2), and P(X<3|X>4).

2.15) Let X have a binomial distribution with parameters n = 10 and p.
Determine an interval I so that P(X=2) < P(X=3) forall p € L.

2.16) The stop sign at an intersection is on average ignored by 4% of all cars. A car,
which ignores the stop sign, causes an accident with probability 0.01. Assuming inde-
pendent behavior of the car drivers:

(1) What is the probability that from 100 cars at least 3 ignore the stop sign?

(2) What is the probability that at least one of the 100 cars causes an accident due to
ignoring the stop sign?
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2.17) Tessa bought a dozen claimed to be fresh-laid farm eggs in a supermarket.
There are 2 rotten eggs amongst them. For breakfast she boils 2 eggs.

What is the probability that her breakfast is spoilt if already one bad egg will have
this effect?

2.18) A smart baker mixes 20 stale breads from the previous days with 100 freshly
baked ones and offers this mixture for sale. Tessa randomly chooses 3 breads from
the 120, i.e., she does not feel and smell them. What is the probability that she has
bought at least one stale bread?

2.19) Some of the 270 spruces of a small forest stand are infested with rot (a fungus
affecting first the core of the stems). Samples are taken from the stems of 30 random-
ly selected trees.

(1) If 24 trees from the 270 are infested, what is the probability that there are less than
4 infested trees in the sample?

Determine this probability both by the binomial approximation and by the Poisson
approximation to the hypergeometric distribution.

(2) If the sample contains six infested trees, what is the most likely number of infest-
ed trees in the forest stand (see example 2.7)?

2.20) Because it happens that one or more airline passengers do not show up for their
reserved seats, an airline would sell 602 tickets for a flight that holds only 600 pas-
sengers. The probability that, for some reason or other, a passenger does not show up
is 0.008.

What is the probability that every passenger who shows up will have a seat?

2.21) Flaws are randomly located along the length of a thin copper wire. The number
of flaws follows a Poisson distribution with a mean of 0.15 flaws per cm. What is the
probability ps, of at least 2 flaws in a section of length 10cm?

2.22) The random number of crackle sounds produced per hour by an old radio has a
Poisson distribution with parameter A = 12.

What is the probability that there is no crackle sound during the 4 minutes transmis-
sion of a listener's favorite hit?

2.23) The random number of tickets car driver Odundo receives has a Poisson distri-
bution with parameter A = 2 a year. In the current year, Odundo had received his first
ticket on the 31st of March.

What is the probability that he will receive another ticket in that year?

2.24) Let X have a Poisson distribution with parameter A.

For which nonnegative integer # is the probability p, = P(X = n) maximal?
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2.25) In 100 kg of a low-grade molten steel tapping there are on average 120 impu-
rities. Castings weighing 1kg are manufactured from this raw material. What is the
probability that there are at least 2 impurities in a casting if the spacial distribution of
the impurities in the raw material is assumed to be Poisson?

2.26) In a piece of fabric of length 100m there are on average 10 flaws. These flaws
are assumed to be Poisson distributed over the length. The 100 m of fabric are cut in
pieces of length 4m.

What percentage of the 4m cuts can be expected to be without flaws?

2.27) X have a binomial distribution with parameters n and p. Compare the following
exact probabilities with the corresponding Poisson approximations and give reasons
for possible larger deviations:

(1) P(X=2) for n=20,p=0.1,

(2) P(X=2) for n=20,p=0.9,

(3) P(X=0) for n=10,p=0.1,

(4) P(X=3) for n=20, p=0.4.

2.28) A random variable X has range R = {x{, x5, -,xm } and probability distribution
{pk=PX=xp); k=1,2,...m}, ;L pp=1.

A random experiment with outcome X is repeated n times. The outcome of the k4
repetition has no influence on the outcome of the (k+1)#h one, k=1,2,...m—1.
Show that the probability of the event

{x| occurs n| times, x, occurs ny times, ---, X;;; OCCUIS 7, times}

is given by
n! ny_ np Nm . m
S rEEra— with —1hg=1.
nl!nz!~-~nm!pl Po ipm 2=t M
This probability distribution is called the multinomial distribution. It contains as a
special case the binomial distribution (n = 2).

2.29) A branch of the PROFIT-Bank has found that on average 68% of its customers
visit the branch for routine money matters (type 1-visitors), 14% are there for invest-
ment matters (type 2-visitors), 9% need a credit (type 3-visitors), 8% need foreign
exchange service (type 4-visitors), and 1% only make a suspicious impression or
even carry out a robbery (type 5-visitors).

(1) What is the probability that amongst 10 randomly chosen visitors 5, 3, 1, 1, and 0
are of type 1, 2, 3, 4, or 5, respectively ?
(2) What is the probability that amongst 12 randomly chosen visitors 4, 3, 3, 1, and 1
are of type 1, 2, 3, 4, or 5, respectively?
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Section 2.3

2.30) Let F(x) and f(x) be the respective distribution function and the probability
density of a random variable X. Answer with yes or no the following questions:

(1) F(x) and f(x) can be arbitrary real functions.

(2) f(x) is a nondecreasing function.

(3) f(x) cannot have jumps.

(4) f(x) cannot be negative.

(5) F(x) is always a continuous function.

(6) F(x) can assume values between —1 and +1.

(7) The area between the abscissa and the graph of F(x) is always equal to 1.
(8) f(x) must always be smaller than 1.

(9) The area between the abscissa and the graph of f(x) is always equal to 1.
(10) The properties of F(x) and f(x) are all the same to me.

2.31) Check whether by suitable choice of the parameter a the following functions
are densities of random variables. If the answer is yes, determine the respective dis-
tribution functions, mean values, variances, medians, and modes.

(1) f(x)=alx|, =3<x<+3,
Q) f&)=axe™, x>0,
3) f(x)=asinx, 0<x <,
(4) f(x)=acosx, 0 <x <.
2.32) (1) Show that f(x) = ﬁ 0<x< 1, isa probability density.
X
(2) Draw the graph of the corresponding distribution function and determine the cor-
responding 0.1, 0.5, and the 0.9-percentiles. Check whether the mean value exists.

2.33) Let X be a continuous random variable. Confirm or deny the following state-
ments:

(1) The probability P(X = E(X)) is always positive.

(2) There is always Var(X) < 1.

(3) Var(X) can be negative if X can assume negative values.
(4) E(X) is never negative.

2.34) The current which flows through a thin copper wire is uniformly distributed in
the interval [0, 10] (in mA). For safety reasons, the current should not fall below the
crucial level of 4mA.

What is the probability that at any randomly chosen time point the current is below
4 mA?
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2.35) According to the timetable, a lecture begins at 8:15 a.m. The arrival time of
Professor Wisdom in the venue is uniformly distributed between 8:13 and 8:20,
whereas the arrival time of student Sluggish is uniformly distributed over the time
interval from 8:05 to 8:30.

What is the probability that Sluggish arrives after Wisdom in the venue?

2.36) A road traffic light is switched on every day at 5:00 a.m. It always begins with
red and holds this colour for two minutes. Then it changes to yellow and holds this
colour for 30 seconds before it switches to green to hold this colour for 2.5 minutes.
This cycle continues till midnight.

(1) A car driver arrives at this traffic light at a time point which is uniformly distri-
buted between 9:00 and 9:10 a.m. What is the probability that the driver catches the
green light period?

(2) Determine the same probability on condition that the driver's arrival time point has
a uniform distribution over the interval [8:58, 9:08].

2.37) A continuous random variable X has the probability density

1/4 for 0<x <2,

f(x):{ 1/2 for 2 <x<3.

Determine ,/ Var(X) and E(|X-EX)|).

2.38) A continuous random variable X has the probability density
fx)=2x, 0<x<1.

(1) Draw the corresponding distribution function.

(2) Determine and compare the measures of variability

E(|IX-EX)|) and [ Var(X) .

2.39) The lifetime X of a bulb has an exponential distribution with a mean value of
E(X) = 8000 hours. Calculate the probabilities
P(X<4000), P(X>12000), P(7000 <X <9000), and P(X < 4000)

(time limits in hours).

2.40) The lifetimes of 5 identical bulbs are exponentially distributed with parameter
A=125-10"4[a"1].
All of them are switched on at time ¢ = 0 and will fail independently of each other.

(1) What is the probability that at time ¢ = 8000 hours a) all 5 bulbs and b) at least 3
bulbs have failed?

(2) What is the probability that at least one bulb survives 12 000 hours?
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2.41) The period of employment of staff in a certain company has an exponential
distribution with property that 92% of staff leave the company after only 16 months.
What is the mean time an employee is with this company and the corresponding stand-
ard deviation?

2.42) The times between the arrivals of taxis at a rank are independent and have an
exponential distribution with parameter A =4 [A~']. An arriving customer does not
find an available taxi and the previous one left 3 minutes earlier. No other customers
are waiting. What is the probability that the customer has to wait at least 5 minutes
for the next free taxi?

2.43) A small branch of a bank has the two tellers 1 and 2. The service times at these
tellers are independent and exponentially distributed with parameter A = 0.4 [min~'].
When Pumeza arrives, the tellers are occupied by a customer each. So she has to wait.
Teller 1 is the first to become free, and the service of Pumeza starts immediately.

What is the probability that the service of Pumeza is finished sooner than the service
of the customer at teller 2?

2.44) Four weeks later Pumeza visits the same branch as in exercise 2.43. Now the
service times at tellers 1 and 2 are again independent, but exponentially distributed
with respective parameters A.; = 0.4 [min~!] and A, = 0.2 [min~'].

(1) When Pumeza enters the branch, both tellers are occupied and no customer is wait-
ing. What is the mean time Pumeza spends in the branch till the end of her service?

(2) When Pumeza enters the branch, both tellers are occupied, and another customer
is waiting for service. What is the mean time Pumeza spends in the branch till the end
of her service? (Pumeza does not get preferential service.)

2.45) An insurance company offers policies for fire insurance. Achmed holds a poli-
cy according to which he gets full refund for that part of the claim which exceeds
$3000. He gets nothing for a claim size less than or equal to $ 3000. The company
knows that the average claim size is $5642.

(1) What is the mean refund Achmed gets from the company for a claim if the claim
size is exponentially distributed?

(2) What is the mean refund Achmed gets from the company for a claim if the claim
size is Rayleigh-distributed?

2.46) Pedro runs a fruit shop. Mondays he opens his shop with a fresh supply of straw-
berries of s pounds, which is supposed to satisfy the demand for three days. He knows
that for this time span the demand X is exponentially distributed with a mean value
of 200 pounds. Pedro pays $2 for a pound and sells it for $4. So he will lose $ 2 for
each pound he cannot sell, and he will make a profit of $2 out of each pound he sells.

What amount s = s* of strawberries Pedro should stock for a period of three days to
maximize his mean profit?
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2.47) The probability density function of the random annual energy consumption X
of an enterprise [in 108kwh] is

F(x)=30(x—-2)[1 —=2(x—2)+ (x—2)?], 2<x<3.
(1) Determine the distribution function of X. What is the probability that the annual
energy consumption exceeds 2.8?
(2) What is the mean annual energy consumption?

2.48) The random variable X is normally distributed with mean p =5 and standard
deviation o = 4.

Determine the respective values of x which satisfy
PX<x)=0.5, PX>x)=095Px<X<9)=0.2, PB<X<x)=0.95,
P(—x < X<4x)=0.99.

2.49) The response time of an average male car driver is normally distributed with
mean value 0.5 and standard deviation 0.06 (in seconds).

(1) What is the probability that his response time is greater than 0.6 seconds?
(2) What is the probability that his response time is between 0.50 and 0.55 seconds?

2.50) The tensile strength of a certain brand of paper is modeled by a normal distribu-
tion with mean 24 psi and variance 9 [psi]?.

What is the probability that the tensile strength of a sample does not fall below the
critical level of 20psi?

2.51) The total monthly sick leave time of employees of a small company has a nor-
mal distribution with mean 100 sours and standard deviation 20 Aours.

(1) What is the probability that the total monthly sick leave time will be between 50
and 80 Aours?

(2) How much time has to be budgeted for sick leave to make sure that the budgeted
total amount for sick leave is only exceeded with a probability of less than 0.1?

2.52) The random variable X has a Weibull distribution with mean value 12 and vari-
ance 9.

(1) Calculate the parameters § and 0 of this distribution.
(2) Determine the conditional probabilities P(X > 10|.X > 8) and P(X < 6|X > 8).

2.53) The random measurement error X of a meter has a normal distribution with
mean 0 and variance 62, ie., X= N(O, 62). It is known that the percentage of meas-
urements, which deviate from the 'true' value by more than [0.4|, is 80%. Use this
piece of information to determine o.
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2.54) If sand from gravel pit 1 is used, then molten glass for producing armored glass
has a random impurity content X which is N(60, 16)-distributed. But if sand from
gravel pit 2 is used, then this content is N(62,9)-distributed (u and o in 0.01%). The
admissable degree of impurity should not exceed 0.64%.

Sand from which gravel pit should be used?

2.55) Let X have a geometric distribution with
PX=0i)=(-p)p’; i=0,1,..; 0<p<]1.
By mixing these geometric distributions with regard to a suitable structure distribution
density f(p) show that
P 1
=0 (+1D)(i+2)

2.56) A random variable X has distribution function
Fo(x)= e’o‘/x; a>0,x>0

(Frechét distribution).

What distribution type arises when mixing this distribution with regard to the expo-
nential structure distribution density f(o) =Ae*®; A >0, a>0?

2.57) The random variable X has distribution function (Lomax distribution, page 93)

F(x)=xi1, x> 0.

Check whether there is a subinterval of [0, ) on which F(x) is DFR or IFR.

2.58) Check the aging behavior of systems whose lifetime distributions have
(1) a Frechét distribution with distribution function F(x) = e (10)? , x>0 (sketch its
failure rate), and

(2) a power distribution with distribution function F(x) = 1 —(1/x2), x> 1.
respectively?

2.59) Let F(x) be the distribution function of a nonnegative random variable X with
finite mean value Q.

(1) Show that the function Fs(x) defined by

1
Fo() = [o(1=F()dt
is the distribution function of a nonnegative random variable Xj.

(2) Prove: If X is exponentially distributed with parameter A = 1/p, then so is Xy and
vice versa.

(3) Determine the failure rate Ag(x) of Xj.



116 APPLIED PROBABILITY AND STOCHASTIC PROCESSES

2.60) Let X be a random variable with range {1, 2, ...} and probability distribution

. 1 j 1.
PX=)=|1-— ;i=1,2,...
( l) ( n2 n2(z—1)’ l bRt ]

Determine the z-transform of X and by means of it E(X), E(X 2), and Var(X).

2.61) Determine the Laplace transform J‘(s) of the density of the Laplace distribution
with parameters A and p (page 66):

1) = %xe*\w\, — 0 < x < 400,

By means of jA’(s) determine E(X), E(X?), and Var(X).



CHAPTER 3

Multidimensional Random Variables

The previous chapter essentially dealt with one-dimensional random variables and
their probabilistic characterization and properties. Frequently a joint probabilistic
analysis of two or more random variables is necessary. For instance, for weather
predictions the meteorologist must take into account the interplay of randomly fluc-
tuating parameters as air pressure, temperature, wind force and direction, humidity,
et cetera. The operator of a coal power station, in order to be able to properly
planning the output of the station, needs to take into account outdoor temperature as
well as ash and water content of the coal presently available. These three parameters
have a random component and there is a dependency between ash and water content.
The information technologist, when analyzing stochastic signals, has jointly to
consider their random phases and amplitudes. The forester, who has to estimate the
amount of wood in a forest stand, measures both height and stem diameter (at a
height of 1.3 m) of trees. Even in chapter 2 of this book vectors of random variables
occurred without having explicitely hinted to this: When a die is tossed twice, then
the outcome is (X1,X3). The binomial distribution is derived from a sequence of n
binary random variables (X,X>,...,X»). More challenging situations will be dis-
cussed in Part II of this book: Let, for instance, X(¢) be the price of a unit of stock at
time ¢ and 0 <¢) <#p <---<ty. Then the components of the n-dimensional vector
(X(#1),X(t2), ...,X(tn)) are the random stock prices at time points ¢;. There is an
obvious dependency between the X(#;) so that for the prediction of the stock price
development in time the random variables X{(¢;) should not be analyzed separately of
each other. The same refers to other time series as registering temperatures, popula-
tion sizes, et cetera, at increasing time points.

3.1 TWO-DIMENSIONAL RANDOM VARIABLES

3.1.1 Discrete Components

Let Xand Y be two random variables, which are combined to a random vector (X, Y).
This vector is also called a two-dimensional random variable or a bivariate random
variable. In this section, X and Y are assumed to be discrete random variables with
respective ranges Ry = {x¢,X1,...} and Ry = {y9,71,...}. Then the range of (X,7) is
the set of two-dimensional vectors

Ryy=1{(xy),x € Ry, y € Ry}.
The (deterministic) vector (x,y) is called a realization of (X, Y).
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For instance, if two dice are thrown simultaneously and the outcomes are X and Y,
respectively, then the range of (X, Y) is

Ryy=1{G,)); i,j=1,2,...,6}.
If X and Y are the random number of traffic accidents occruring a year in the two
neighboring towns Atown and Betown, respectively, then
RX: {0, 1,} and RY: {0, 1,...},
and the range of (X,Y) is Ryy = {(i,)), i,j=0,1,2,...}. It makes sense to consider X

and Y together, since weather, seasonal factors, vacation periods, and other condi-
tions induce a dependency between X and Y.

Joint probability distribution Let
pi=PX=x;;i=0,1,..} and{g;=P(Y=x;;,/=0,1,..}
be the probability distributions of X and Y, respectively. Furthermore, let
rij=PX=x;nY=y;) forall (x;,y;) € Ryy 3.1

be the probabilities for the joint occurrence of the random events 'X=x;'and 'Y =y;.'
The set of probabilities

{”iﬁ i,jIO,l,...} (32)
is the joint or two-dimensional probability distribution of the random vector (X, ¥).
From the definition of the r;;,

Pizz_;io”ij, q;=220 rij- (3.3)

Marginal Distributions The probability distribution {p;, i=0,1,...} of X and the
probability distribution { g;, i=0,1,...} of Y are called the marginal distributions of
(X, Y). The marginal distributions of (X, ¥) do not contain the full information on the
joint probability distribution of (X, Y) if there is a dependency between X and Y. How-
ever, if X and Y are independent, then the joint probability distribution of (X, Y) and
its marginal distributions are equivalent in this regard.

Definition 3.1 (independence) Two discrete random variables X and Y are (statisti-
cally) independent if

rij:piqj’ i,j:0,l,.... ([ ]

If X and Y are independent, then the value, which X has assumed, has no influence on
the value, which Y has assumed and vice versa. This is the situation when throwing
two dice simultaneously, or when X denotes the number of shark attacks at humans
occurring at the shores of South Africa in 2025 and Y the ones at the shores of
Hawaii in 2030. The mean value of the product XY is

EQXY) =X X720 rijxix;. (3.4)
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For independent X and Y, the mean value of XY becomes
EQX) =35 221 pigixixy = (Z iy pixi) (1 4;9))
so that EXY)=EX)-EY). (3.5)
Conditional Probability Distribution By formula (1.22), the conditional probabili-
ties of X =x; given Y=y; and Y=y, given X=x;, respectively, are
rij _ Tij

PX=x;|Y=y,)= ?/f,, PY=yj|X=x)) =5
The sets
Tij,o_ {’1 P
{ - 1—0,1,...} and p,-’]_o’l""

are the conditional probability distributions of X given Y =y; and of Y given X=x;,
respectively. The corresponding conditional mean values are

o0 rii 0 rii
E(MY:yj)z%xiyj, E(Y|X=xi)=%yj'p_f-
= J=

If X and Y are independent, then the conditions have no influence on the respective
mean values, since r;;/q; =p; and r;;/p; = q; (see formula 2.7):

EX|Y=y,)=EWX), EFX=x;)=E(Y); i,j=0,1,...

The conditional mean value E(X|Y) of X given Y is a random variable, since the con-
dition is random. The range of E(X|Y) is

{EXIY =y0), EXIY=y1), ... },
and the mean value of E(X]Y) is E(X), since

BEX) = 320 EX1Y =) PV =) = 320 T x4,

=X iZ0xi 220 rij = Zico xipi = EQY).
Because the roles of X and Y can be exchanged,
E(E(X|Y))=EX) and E(E(Y|X))=E(Y). (3.6)

Example 3.1 Two dice are thrown. The outcomes are X| and X, respectively. Let
X =max(X;,X) and Y = '"total number of even figures in (X1, X>).'

The ranges of X and Yare Ry ={1,2,3,4,5,6} and Ry = {0,1,2}. Since X| and X,

are independent,

, : : N1 11
PXy =1, Xo=))=PX1 =0)-PX2=))=¢ ¢ =3~

By (3.6), the g; and the p, are the corresponding row and column sums in Table 3.1.
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x| 1 2 3 4 5 6 9
Y
0 [136 | o 336 | 0 536 | 0 9/36
1 0 2/36 | 236 | 4/36 | 4/36 | 6/36 | 18/36
2 0 136 | 0 [ 386 | 0 5536 | 9/36
p, | 136 | 3/36 | 5536 | 7/36 | 9/36 | 1136 | 1

Table 3.1 Joint distribution and marginal distribution for example 3.1

The mean values of X and Y are

E(X)=3c(1+2:3+3-5+44.7+5-9+6-11)~ 4472,
E(Y)=3-(0-9+1-18+2-9)=1.

X and Y are not independent of each other: If X=1, then Y= 1.If X=2, then Y can
only be 1 or 2 and so on. Hence, it makes sense to determine the conditional distri-
butions, e.g.

o
{P(XzilY:j):#; i=1,2,..,6f; j=0,1,2.

j=0:{3.0.3,0,2,0}, Exly=0)=2~3.3889.
j=1: {0,552 231 Exy=1)=4 ~4556.
j=2: {050,202}, Exly=2)=% 45889, O

3.1.2 Continuous Components

3.1.2.1 Probability Distribution
Let X and Y be continuous, real-valued random variables with distribution functions
Fx(x)=PX<x), Fy(y) =P(Y<y)

and ranges Ry, Ry, respectively. As with discrete random variables X and Y, (X, ¥) is
called a random vector, a two-dimensional random variable, or a bivariate random
variable. Analogously to the distribution function of a (one-dimensional) random
variable, there is a function, which contains the complete probabilistic information
on (X, Y).This is the joint distribution function F y y(x,y) of X and Y defined by

Fxy(x,y)=PX<x,Y<y), xe€Ryx,ye€Ry,

where 'X<x, Y<y' = 'X<xnY<y. (For discrete random variables X and Y the
joint distribution function is defined in the same way.) To discuss the properties of
the joint distribu- tion function, it can be assumed without loss of generality that
Ry =Ry = (—00,+0).



3 MULTIDIMENSIONAL RANDOM VARIABLES 121

Fxy(x,y) has the following properties:

D Fyy(=o0,y) = Fxy(x,—0) =0, Fyy(+o0,+0) = 1.
2) 0< F)cy(x,y)ﬁ 1.
3) Fx y(x,+0) = Fx(x), Fxy(+2,y)=Fy(y).

(4) Forx1 SJCZ and Y1 Syz,
Fxyx1,y1) S Fxy(x2,y1) < Fxy(x2,y2),
Fxy(x1,y1) £ Fxy(x1,y2) £ Fxy(x2,¥2).

Thus, Fy y(x,y) is nondecreasing in every argument.

(5) PX>x,Y<y)=Fy(y)-Fxyxy).
(6) P(X<x,Y>y)=Fx(x)-Fxyxy).
7 P(X>x,Y>y)=1—Fy(y)—FX(x)+F)Qy(x,y).

A generalization of the formula (2.44) to random vectors (X,Y) is
Pla<X<b,c<Y<d)=[Fxy(b,d)-Fxy(b,c)]-[Fxy(a,d)-Fxy(a,c)]. 3.7)

Any function F(x,y), which has properties (1) and (4) and is continuous on the left in
x and y is the joint distribution function of a random vector (X, Y) if, in addition, the
right-hand side of (3.7) is nonnegative for all @, b and ¢, d with a <b and ¢ < d (see
exercise 3.17). Properties (5) — (7) are implications of properties (1) and (4). For in-
stance, to prove (5), the random event 'X >x, Y<y' is equivalently represented as'
Y<y'\'X<x, Y<y' Hence, by formula (1.14),

PX>x,Y<y)=P(Y<y)-PX<x,Y<y)=Fy(y)-Fxy,y).
Property (6) follows from (5) by changing the roles of X and Y. Property (7) is a
special case of formula (3.7) (see exercise (3.16) for a proof of formula (3.7)).
Note Properties (1) to (7) also are true for random vectors with discrete components.

The probability distribution functions of X and Y are the marginal distribution func-
tions of the two-dimensional random variable (X, Y), and the pair (Fy, Fy) is the

marginal distribution of (X, Y).

Joint Probability Density Assuming its existence, the partial derivative of Fy y(x,y)

with respect to x and y,
OF x y(x,y)
Sxyoy)=—77"— EYRE (3.8)

is called the joint (probability) density of (X,Y). Equivalently, the joint density can
be defined as a function fy y(x,y) satisfying

ny(x,y)=J-)_c wa)(?y(u,v)dudv, —00 <X,y < +00. 3.9)

00 J —
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Every joint (probability) density has the two properties
fey@e) 20, 7277 fry(y)dedy = 1. (3.10)

Conversely, any function of two variables x and y satisfying these two conditions can
be considered the joint density of a random vector (X, Y). From property (3) of the
previous page and formula (3.9) one obtains the marginal densities of (X, Y) in terms
of the joint density:

fx@) =" fey@ydy, fyo)=]""7 fryxy)dx. (3.11)

Analogously to discrete random variables, the marginal distribution {Fy, Fy} or, in
terms of the densities, {fx(x), fy(y)}, does not contain the full information on the
joint probability distribution of (X, Y) as given by Fx y(x,y) if there is a (statistical)
dependency between X and Y. If X and Y are independent, then Fy y(x,y) and its
marginal distribution {Fy, F'y} are equivalent in this regard:

Definition 3.2 (independence) Two random variables X and Y are independent if
Fxy(x,y)=Fx(x) - Fy(). L4

Remark For discrete random variables this definition of independence is equivalent to the one

given by definition 3.1. Representations of the distribution functions of discrete random varia-

bles are given at page 43.

In terms of the densities, X and Y are independent if and only if

Txy(ep) =fx(x) - fr(y). (3.12)
The mean value of XY is
EXY)=[["7 xyf(x,y) dxdy. (3.13)
As with discrete random variables (formula 3.5), for independent random variables:
EXY)=EX)-E(Y). (3.14)

Although in many applications the independence assumption is not justified, analyti-
cal results can frequently only be derived under this assumption. A reason for this
situation is, apart from mathematical challenges, the inherent difficulties the analyst
faces when trying to quantify statistical dependency.

Let Raxay be a rectangle with sufficiently small side lengths Ax and Ay. Then the
random vector (X, Y) assumes a realization from this rectangle approximately with
probability

P((X,Y) € Raxay) = fx,y(x,y) AxAy.

More generally, if B is an area in the plane, then the probability that the vector (X, Y)
assumes a realization from B is given by the surface integral

P((X,Y) € B) = [[ fry(x,y)dxdy. (3.15)
B
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a) V b)

|
|
|
| |
| |
a b X X

Figure 3.1 Normal regions with regard to the x-axis a) and the y-axis b)

For a normal region with regard to the x-axis
B={a<x<bh,yi(x)<y<yy(x)}
(Figure 3.1a), the surface integral (3.15) can be calculated by the double integral

P Y) e B =0 ([0 frrtey)dy) d. (3.16)

For a normal region with regard to the y-axis

B={xi(x)£x<x(x),c<y<d}
(Figure 3.1b), the surface integral (3.15) can be calculated by the double integral

Py e By =2 ([29) fyw ) dv) .

Double integrals can frequently be more efficiently calculated by transition from the
Cartesian coordinates x and y to curvilinear coordinates u and v:
u=u(x,y), v=v(x,y) or x=x(u,v), y=yu,v).
Then the normal region B with regard to e.g. the x-axis is transformed to a region B’ :
B/ = {a’ <ugb/,viu)<v< vo(u)l,

and the double integral (3.16) becomes

b ((pvaw) a(x,) )
I vty = [ ([0 ontsw .| 35 ) 617
where
o gLeil
2| | av o
2| | ar v
Ov Ov

is the functional determinant of the transformation.
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IfB=[a<X<b,c<Y<d], then (3.16) becomes

b(rd
P € B) =1 ([7 oyt dy) d.
This integral easily implies formula (3.7).

Figure 3.2 Integration region for example 3.2

Example 3.2 The joint probability density of the random vector (X, ) is
fxy(x,y) = e M) x>0, y>0.
(1) The corresponding marginal densities are
Sx(x) = JZO e O dy=e™ fy(y)= J.;O e dx=e; x,y20.

Thus, X and Y are both exponentially distributed with parameter A = 1. Moreover,
since e ") = ¢¥ . ¢, X and Y are independent.

(2) Let B= {|Y—X] < 1}. The region B is hatched in Figure 3.2. The lower bound for
Bisy=0if0<x<1 and y=x—-1 if 1 <x. The upper bound is y=x+1 if x> 0.
Therefore, the outer integral of formula (3.16) has to be split with regard to the x-in-
tervals [0, 1] and [1,0) :

P(Y-X<1)=], (ﬁ*‘ e ) dy) dv+[7 Gﬁf} o) dy) dr
:Jé e—x|:1 —e_(x+1)]dx+JT e~ -1 _e_(x+1):|dx
=1-1le.
Hence, P(|Y-X| <1) ~ 0.632. O
Example 3.3 Let
fry(ey)=2xy, 0<x<y<2.

(1) Show that fy y(x,y) is a joint probability density.
(2) Determine the probability P(X2 > Y).
(3) Are X and Y independent?
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Figure 3.3 Possible (shaded) and favorable (hatched) region for (X,Y) (example 3.3)

(1) It needs to be shown that the conditions (3.10) are fulfilled. f(x,y) is obviously

nonnegative. Further,
Jo (7 ey} ax =I5 (1% eyay)

=3 [je-xyde={[x? x4 ] =1

(2) In Figure 3.3 the possible set of realizations of (X, Y) is shaded, and the region B
for which Y2 > X is hatched. The upper bound of B is given by the parabola y = x2
between x = 1 and x = {2 and the straight line y =2 between x = J2 andx=2.The
lower bound of B is the straight line y = x between x = 1 and x = 2. Hence, the desired
probability is

P(X2>7) :JI‘E (J.;Cz %xydy)dxﬁ[fﬁ (J.i %xydy)dx
2 (xS—x3)dx+%J.2\/§ <4x—x3)dx

Thus, P(X? > Y) ~ 0.354.
(3) The marginal densities fy(x) and fy(y) are

_[21 1 [P 3
fx(x) = xixydy—ix[TL—Z@x—x ), 0<x<2.

1 1 2P
fy(y)=J(y)§xydy=5y[%J0=;y3, 0<y<2.
Since

Jxy(x,p) # fx(x) - fy(¥),
X and Y are not independent. O
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Two-Dimensional Uniform Distribution The random vector (X, Y) has a uniform
distribution in a finite region B of the (x,y)-plane with positive area p(B) if

-1
f(x’y) - H(B)’ (X,y) € B

Outside B the joint density f(x,y) is 0. The conditions (3.10) are fulfilled since

[ feeyydxay=f
B B

1 __1 _
5 dxdy = M(B)gazxaly 1.

For any 4 B the probability that (X, Y) assumes a value from 4 is

u4)
P(X,Y)e Ad)=—.
HB)
Remark The uniform distribution of a random vector in a plane is identical to the geometric
distribution introduced in section 1.3.2 (formula (1.8)) if Q is a finite subset of a plane.

1000
y

[
|
1
950 :
I
I
I
I

900 - - - - é

850

|
|
l
850 900 950 1000

Figure 3.4 Possible and favorable region for example 3.4

Example 3.4 Let X be the daily power production of a power station, and let ¥ be the
daily demand of the consumer. The random vector (X, Y) has a uniform distribution
over the region

B ={900 <x <1000, 850 <y <950}.
What is the probability that the demand exceeds the supply?
The possible realizations of the random vector are in the shaded region (region B) of
Figure 3.4. Its area is 10 000. Hence, the joint density of (X, Y) is
1
Txy(6) = 150000 () € B.

The subregion of B, where Y > X, is the hatched part of B. Its lower bound is the
straight line y = x. Hence, the desired probability is

950 (950 1 3
P(Y>X)_I900Lc T0000 VX =

which works out to be P(Y > X) =0.125.

Of course, no integration is required to arrive at this result, since the area of the hatch-
ed part is a half of the area of a square with side length 50. O

950
900(950 —Xx)dx,

102)00-[
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Theorem 3.1 (1) If X and Y are independent and in the respective intervals [a, b] and
[¢,d] uniformly distributed, then the random vector (X, Y) has a uniform distribution
on the rectangle

B={a<x<b,c<y<d}.
(2) Conversely, if (X, ¥) has a uniform distribution on the rectangle B, then the ran-
dom variables X and Y are independent and uniformly distributed in the intervals
[a,b] and [c,d ], respectively.

Proof (1) If X is uniformly distributed in [a, ] and Y in [c,d], then

Hence, by definition 3.2, the joint distribution function of (X, Y) is

w, (x,») € B.

Fxyon = =0d=o)

The corresponding joint density is

0 >
frrte) = G = i, () < B

f(x,y) is the joint density of a random vector (X, Y), which is uniformly distributed
on the rectangle B.

(2) If (X, Y) is uniformly distributed in the rectangle B, then its corresponding mar-
ginal densities are
d d 1 1
Sfx(x) ICfXY(x,Y) ly IC b-ad-0% o

FrO =l fertende= [ G dv=ol, esysd.

a<x<b,

so that fy y(x,y) =fx(x) - fy(y). Hence, X and Y are independent and uniformly distri-
buted in the intervals [a, b] and [c,d ], respectively. u

3.1.2.2 Conditional Probability Distribution

Given a random vector (X, ¥), the conditional distribution function of ¥ given X =x

and the corresponding conditional density of Y given X = x are denoted as
Fy(lo)=PY <ylX=x), fr(lx)=dFy(y|x)dy.

For continuous random variables, the event ' X = x' has probability 0 so that the defini-
tion of the conditional probability by formula (1.22) cannot directly be applied to
deriving Fy(y|x). Hence, consider for a Ax > 0 the conditional probability
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PY<ynx<X<x+Ax)
P(x<X<x+Ax)

Ax
P Ax(j“ frr(, v)du)dv
Az [Fx(x + Ax) = Fx(x)]
If Ax > 0, then, assuming fX(x) >0,
Fy(y|x) = /;ix) Y fxy(v)dv. (3.18)
Differentiation yields the desired conditional density:

Frtvbo) = Lere2),

Sx(x)
By (3.12), if X and Y are independent, then
frolx) =fy().

The conditional mean value of Y given X =x is

E(Y) =] yfy(l0) dy. (3.20)

The function m y(x) = E(Y|x) is called regression function of Y with regard to x. It
quantifies the average dependency of Y from X. For instance, if X is the body weight
and Y the height of a randomly chosen member from a population of adults, then
my(x) is the average height of a member of this population with body weight x. Or:
the difference my(x + Ax) —my(x) is the mean increase in body height if the body
weight increases from x to x + Ax.

PY<y|x<X<x+Ax)=

(3.19)

The conditional mean value of Y given X is

B0 =[] yfyIX)dy.
E(Y|X) is a random variable with property
E(EXY|X)=EY). (3.21)
This is proved as follows:
E(E(Y1.X) =22 [0 v fy(lx) dy fx(x) dx
00 400
J L Yoy drfxde= [ [y feydyds.
Hence, by (3.11),
E(E(Y1.X)) =2 vfy(v) dy = E(Y).
If X and Y are independent, then
E(Y|X=x)=E(Y|X) = E(Y). (3.22)
Clearly, the roles of X and Y can be exchanged in the formulas (3.18) to (3.22).
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Formula (3.21), applied to the representation (2.62) of the variance (page 67), can be
used to derive a conditional variance formula for Var(X) (exercise 3.21):

Var(X) = E[Var(X| V)] + VarE(X] V). (3.23)

Example 3.5 The random vector (X, Y) has the joint probability density
fxy(xy)=x+y, 0<x,y<l.

Jxy(x,y) is nonnegative at the unit square. The marginal densities are

fX(x)=J(1)(x+y)dy=[xy+y2/2](1) =x+1/2, 0<x<1,

fr0) =[Gt y)de=[x22+yxlh =y +1/2, 0<y<1.

Since fyy(x,y) # fx(x) - fy(»), the random variables X and Y are not independent.
(Give an intuitive explanation for this.) The mean value of X is

EWX)= jox(x+ 1/2)dx = [x3/3 +x2/4]§ = 5 ~ 0.5833.
In view of the symmetry between x and y in fy y(x,y),
E(Y)= = ~0.5833.

By (3.19), the conditional density of Y on condition X =x is

xXry
2 ('< <
f}(J/| ) 1/2 o 1, _x,y_l.

The regression function my(x) = E(Y|X = x) of ¥ with regard to x is

1
xX+y
mY(x)zziyzxﬂd zx+1j[y 7]

R E
2x+1| 2 3 0

so that
my(x) = gigx 0<x<I.
In particular,
my(0) =2~ 0.6667, my(1)=2=0.5556, my(0.5)= 15 = E(Y) ~0.5833.

The relatively small influence of the conditions at the conditional mean values sug-
gests that the dependency between X and Y is not that strong (Figure 3.5). The condi-
tional mean value of ¥ given X is the random variable

EOT0 =3

which has mean value E(Y) = 7/12. O




130 APPLIED PROBABILITY AND STOCHASTIC PROCESSES

A Example 3.6
1 |
my(x)

0.8

0.6

0.4 Example 3.5
02

| 1 1 1 > x

0 02 04 06 08 1

Figure 3.5 Regression functions for examples 3.5 and 3.6

Example 3.6 The random variable Y has probability density

fr=3y% 0<y<l
On condition Y =y, the random variable X is uniformly distributed in [0, ], y > 0.
(1) What is the joint probability density of the random vector (X, ¥)?
(2) Determine the conditional mean values E(Y|X =x) and E(X|Y = ).

(1) On condition Y=y with y > 0 the density of Xis
1
fX(xly):;s OS)CS)/

Hence, by formula (3.19), the joint density of (X, 7Y) is
1
f@.y) =fx(xly) - fy(») =5 - 3y? =3y, 0<x<y<l.

The (unconditional) density of X one obtains from (3.11):
1

2
fr@=[! 3ydy:3{%} —1.5(1-x2), 0<x<1.
0

(2) The regression function my(x) = E(Y|x) of Y with regard to X=xis
ERY fX( )

:gl—x
3157

my(x) =
0<x<l1.

The conditional mean value of X given Y=y is

E(X]y) = I x fx(x|y) dx = J dx

—00

=0.5y, 0<x<y. O



3 MULTIDIMENSIONAL RANDOM VARIABLES 131

3.1.2.3 Bivariate Normal Distribution

The random vector (X,Y) has a bivariate (2-dimensional) normal or a bivariate
(2-dimensional) Gaussian distribution with parameters

Ux, Ly, Ox, Gy and p, —oo <y, ly <0, 6x>0,0,>0, —1<p<1
if it has joint density

1 1[G
X, =——¢X - -2 +
fX,Y( J’) chx(jy ,\/ﬁ p { Z(I*PZ) k G)zc p GxGCy o’

E)0—1y)  -1y)? )
X—Le)(—Hy (yuz,) (3.24)

with -0 < x,y < +00. By (3.11), the corresponding marginal densities are seen to be

1 (x—ux)2
fx(x)= exp[——}, —00 < X < +00,
J2T Oy 26,%

[ (=u)?)
1 expk—w} —0 <y <400,
V21 oy 20y

Hence, if (X, Y) has a bivariate normal distribution with parameters iy, Gx, Ly, Gy,

Jyx) =

and p, then the random variables X and Y have each a normal distribution with res-
pective parameters Ly, 6x and uy, &y . Since the independence of X and Y is equiv-
alent to

Sxy(x, ) =fx(x)fy(»),

X and Y are independent if and only if p=0. (In the next section it will be shown
that the parameter p is the correlation coefficient between X and Y, a measure of the
degree of linear statistical dependency between any two random variables.)

The conditional density of ¥ given X'=x is obtained from fy y(x,y) and (3.19):

1 1
X) = €X -
k) J2n oy [1-p2 p{ 265(1-p?)

Hence, given X = x, the random variable Y has a normal distribution with parameters

(y— P (r— )~ uy) 2}. (3.25)

c
E(YX=x)=p g (x—px) +py and Var(YIX=x)=cj(1-p?).  (3.26)
Thus, the regression function
my(x) = E(Y|X =x)
of Y with regard to X =x for the bivariate normal distribution is a straight line.

Example 3.7 The daily consumptions of tap water X and Y of two neighboring towns
have a joint normal distribution with parameters

Ux = ly = 16[103 m3], ox= Gy =2 [103m3], and p=0.5.
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The conditional probability density of ¥ on condition X =x has parameters
o 2
EYIY)=pg (x—px)+1y=0.5- 5 (x—16) =’2—C+8

Var(Ylx) = o3(1-p?) =4(1-0.52) = 3.

y-3-8)2
, —0<y <40,

1 I (
—— — exp{-1
Jon 3 { SRE
This is the density of an N(8 +x/2, 3)-distributed random variable. Some conditional
interval probabilities are:

Hence,

fy(lx) =

P(l4<Y<16lx= 10)=q>(16‘13] —@(14‘13] =0.958 —0.718 = 0.240,

3 3
16-15 14-15
P(14<Y<16lX=14)=0 -0 =0.718-0.282 = 0.436.
(14 < 6l )(ﬁ) (ﬁ)(nsos 0.436
The corresponding unconditional probability is
16-16 14-16
P(14<Y< 16)=<D(T) —CD(T) =0.500-0.159 = 0.341. O

3.1.2.4 Bivariate Exponential Distributions

In this section some joint probability distributions of random vectors (X, Y) with non-
negative X and Y are considerered, whose marginal distributions are one-dimensional
exponential distributions.

a) A random vector (X, Y) has a Marshall-Olkin distribution if its joint distribution
function Fy y(x,y) = P(X<x,Y<y) is for x,y > 0 given by

Fyy(x,y)=1- e~y _ p=(ha+ M)y | p—h 1 X—Dp y—A max(x,y) (3.27)
with positive parameters A1, A», and a nonnegative parameter A. By property (3) at
page 121, the corresponding marginal distribution functions are

Fx(x)=1-—e Mx Fri)=1-e*2My; x y>0.

Using property (7) at page 121 gives the corresponding joint survival function

I_*")(’y(x,y) =PX>x,Y>y)= e Mr—hay-hmax(xy) x,y2>0.

The joint density of (X, ¥) is
Ao +A) e PR Gf sy
A (hy + 1) e MRty §f x <y

Sxy(x,y) = {

This distribution has the following physical background: A system, which starts oper-
ating at time point ¢ = 0, consists of two subsystems S| and S,. They are subject to
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three types of shocks: A shock of type i occurs at time 7; and immediately destroys
subsystem S;, i = 1,2. A shock of type 3 occurs at time 7 and immediately destroys
both subsystems. The subsystems cannot fail for other reasons. The arrival times of
the shocks 7'y, T, and T are asssumed to be independent, exponentially with para-
meters Aq,Ap, and A distributed random variables. Hence, the respective lifetimes X
and Y of the subsystems S| and S, are

X=min(7T1,7) and Y =min(7T3, 7).

Thus, the lifetimes of the subsystems are clearly dependent, and their joint survival
probability is given by Fy y(x,y).

b) A random vector (X, Y) has a Gumbel distribution with positive parameters A, A,
and parameter A, 0 <A < 1, if its joint distribution function is given by

Fyy(xr,y)=1-e™M¥ pe7hy —pmhax-hay=hxy x>, (3.28)
The corresponding marginal distribution functions are
Fy(x)=1-eM* Fy(y)=1-e2 x,y>0,
so that the corresponding joint survival probability is
ny(x,y) =P(X>x,Y>y)=e M¥hay-hxy x>0,

¢) Another useful bivariate distribution of a random vector (X, Y) with exponential
marginal distributions is given for x > 0 and y > 0 by the joint distribution function

Fyy(x,y)=PX<x,Y<y)=1 —eMY MY _[etMX 4 pthay )71

A1,Ap > 0. The corresponding marginal distribution functions are the same as the
ones of the Gumbel distribution. Again by property (7) at page 121, the joint survival
probability is

Fxy(x,y)=PX>x,Y>y)=[e?M* +eth2 — 11715 &1,0, >0, x,y>0.

3.1.3 Linear Regression and Correlation Analysis

For a given random vector (X, Y) the aim of this section is to approximate Y by a lin-
ear function Y of X:

Y=aX+b. (3.29)

Such an approximation can be expected to yield good results if the regression funct-
ion my(x) of Y with regard to x is at least approximately a straight line:

my(x) = E(Y| X =x) ~ ax+B. (3.30)

Whether this assumption is realistic in a practical situation, one can empirically check
by a scatter diagram of a sample: Let, for instance, X be the speed of a car and Y the
corresponding braking time to a full stop. » measurements of both speed and corres-
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0 >x

Figure 3.6 Scatter diagram for a linear regression function

ponding braking time had been done. The result is a sample of structure

{(xiayi)’ [= 1729 "'9’1}'
If the scatter diagram of this sample looks principally like the one in Figure 3.6, then
assumption (3.29) is justified.

As criterion for the optimum fit of ¥ to Y serves the mean squared deviation:
O(a,b) = E[(Y-Y]? = E[Y - (a X+ b)]%. (3.31)

The parameters @ and b have to be determined such that O(a, b) assumes its absolute
minimum. The necessary conditions are

00(a,b) . 80(a,b)
=0 T =0 (3.32)

By multiplying out the brackets in (3.31), O(a, b) is seen to be

O(a,b) = E(Y?) - 2a E(XY) - 2b E(Y) + a*E(X?) + 2ab E(X) + b> (3.33)

so that the necessary conditions (3.32) become

% = 2 E(XY) +2aE(X?)+2b E(X) = 0,
% = 2 E(Y) +2a E(X) +2b.

The unique solution (a, b) = (a, B) is

o = BN~ ECO E(n)

Vart) , (3.34)
B=EY)-aEWX). (3.35)
. 020(a,b) 5 0%0(a,b) 0?0Q(a,b)
Since aa—z = ZE(X ), 6[)—2 = 2, and W = ZE(X),

the sufficient condition for an absolute minimum at (a, b) = (o, B) is fulfilled:

020(a,b) 920(a,b) (62Q(a,b)
oa>  ob> \ dadb

2
] =4 (E(X2) - [E(X)]z) =4 Var(X)> 0.
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With Gf( = Var(X) and G%; = Var(Y), the smallest possible mean square deviation of
Y from Y is obtained from (3.33) by substituting there @ and b with o and f3:

O(a, B) = (oy —aox)?. (3.36)
O(a, B) is the residual variance. The smaller Q(a., B), the better is the fit of YtoY.

Definition 3.3 The straight line

Y=ax+p
is called regression line. The parameters o and 3 are the regression coefficients. @
Best Estimate If the regression function m y(x) is not linear, then the random regres-

sion line' f’(oc, B)=0X+p is not the best estimate for ¥ with regard to the mean
squared deviation. Without proof, the following key result is given:

The best estimate for Y is m y(X) = E(Y|X), i.e. for all real-valued functions g(x),
E(Y-E(Y|X))? <E(Y-g(X))?.

Only if the regression function my(x) = E(Y]x) is linear, ?(OL, B) =a X+ is the best
estimate for ¥ with regard to the mean-squared deviation. In view of (3.26), this
proves an important property of the bivariate normal distribution:

If (X, Y) has a bivariate normal distribution, then the regression line
Y(a, B) = oX + B

is the best possible estimation for Y with respect to the mean-squared deviation.

Covariance The covariance between two random variables X and Y is defined as

Cov(X, ¥) = E(LX~ E0)] - [Y — E(V))). (3.37)
By multiplying out the brackets, one obtains an equivalent formula for the covariance:
Cov(X,Y)=EXY)-EX)-E(Y). (3.38)

The covariance has properties
Cov(X,X) = Var(X), (3.39)
and Cov(X+7Y,Z)=Cov(X,Z)+ CowY, Z). (3.40)

From (3.14) and (3.38):
I If two random variables are independent, then their covariance is 0.

For this reason, the covariance serves as a measure for the degree of statistical depen-
dence between two random variables. Generally one can expect that with increasing
absolute value |Cov(X, Y)| the degree of statistical dependence is increasing. But there
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are examples (given later) which prove that Cov(X, ¥) = 0 not necessarily implies the
independence of X and Y.

In view of being a measure for the dependence of two random variables, it is not sur-
prising that the covariance between X and Y is a factor of o (see (3.34)). If X and ¥
are independent, then Cov(X, Y) = 0. In this case the regression line has slope o =0,

i.e., it is a parallel to the x-axis, which gives no indication of a possible dependency
between X and Y.

Unfortunately, the covariance does not allow to compare the degree of dependency
between two different pairs of random variables, since it principally can assume any
real value from —oo to +oo.

Example 3.8 The random vector (X, ¥) has the joint density
1
Sxy(y)=5xy, 0<Sx<y<2.
The marginal distributions are known from example 3.3:
frx)=FAx-x3), 0<x<2; fy()=5y%, 0<y<2.

X and Y are defined in such a way that they cannot be independent. The correspond-
ing mean values and variances are

E(X) = 16/15, Var(X) = 132/675,
E(Y)=8/5,  Var(Y)=8/75.
By (3.13),

BN =) [2xy by =4 [o 222y s

1 (2
=+ [o X} B =x3)dx =16/19.
With these parameters, the regression coefficients can be calculated:

a=—-—L5 3 _036364,

B=3-a-2=121212,

which gives the regression line

¥ =0.36364x+1.21212.
Thus, an increase of X by one unit approximately implies on average an increase of ¥
by 0.36364 units. The covariance between X and Y'is 0.07111.

In view of the restriction for the joint density to the region 0 <x <y <2, one would
expect that the regression line assumes at value x = 2 the value 2 as well. But this is
not the case since 7(2) = 1.93. This is because the regression function m y(x) is not a
straight line so that the regression line is only an approximation to my(x). The exact
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Figure 3.7 Regression function and regression line for example 3.8

average relationship between X and Y is given by the regression function:

Sxy(x.)
my(x)=E(Y|X=x)=|y—=——=d
! i I
2 — xy
2
= [ = f y-dy
X 4(4x X ) 4 x2
2 8-x3
3 a2 0<x<2.
Figure 3.7 shows that the largest differences between the regression function and the
regression line are at the left- and at the right-hand side of the x-interval [0, 2]. O

Correlation Coefficient The correlation coefficient p = p(X, Y) between two random
variables X and Y with standard deviations ¢y and oy is defined as the ratio

v yy = EIXZEX)) - (Y- E(Y))] _ EQXY) — EQX) - E(Y)
( ’Y) OCxyOy OxOy '

(3.41)
The random variables X and Y are uncorrelated if p(X, Y) = 0, they are positively cor-
related if p(X, Y) > 0, and negatively correlated if p(X,Y) <0.

The correlation coefficient can be written as the mean value of the product of the
standardizations of X and Y:

X-EX Y-E(Y
p(X,Y)=EK( G; ))) -(( GY( ))N. (3.42)
There is the following relationship to the covariance between X and Y:
Cov(X,
plx. 1) = QLD (3.43)

GxyOy -

Hence, X and Y are uncorrelated if and only if Cov(X, Y) =0. If X and Y are indepen-
dent, then X and Y are uncorrelated. But the converse need not be true (see examples
3.11 and 3.12).
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The Marshall-Olkin distribution and the Gumbel distribution (pages 132 and 133) are
examples for the equivalence of X and Y being independent and uncorrelated:

If (X, Y) has the Marshall-Olkin distribution (3.27), then the correlation coefficient
between X and Y is (exercise 3.18)

A
P =

p(X,Y)=0 if and only if AL = 0. X and Y are independent if and only if A = 0.
If (X, Y) has the Gumbel distribution (3.28) with A; =, =1, then the correlation co-
efficient between X'and Y is (without proof)

X.¥) = dy—1.
p(X, Y) £1+xyy

If A =0, then p(X,Y) =0 and X and Y are independent, and, vice versa, if X and Y
are independent or p(X, Y) =0, then A = 0.

With the correlation coefficient, the regression coefficients o and B can be written as
(compare to (3.26))

Oy Oy
a=par, B=E(Y)-pgtE), (3.44)
and another representation of the regression line is

PoE0) _ x-EX).

Sy Ox

Therefore, when X and Y are positively (negatively) correlated, then an increase (dec-
rease) in X will on average lead to an increase (decrease) in Y. If X and Y are uncor-
related, the regression line does not depend on x at all. Nevertheless, even in this case
there may be a dependency between X and Y, since X can have influence on the vari-
ability of Y. Figure 3.8 illustrates this situation: If p =0, the regression line is a
parallel to the x-axis, namely y = E(Y). With increasing x the fluctuations of the
realizations of Y become larger and larger, but in such a way that E(Y) remains
constant.

0 > X

Figure 3.8 Scatter diagram for (X, ¥) indicating a dependence



3 MULTIDIMENSIONAL RANDOM VARIABLES 139

Theorem 3.2 The correlation coefficient p(X, ¥') has the following properties:
(1) If X and Y are independent, then p(X, Y) = 0.

(2) If X and Y are linearly dependent, then p(X, Y) ==1.

(3) For any random variables Xand ¥: —1 <p(X,Y) < +1.

Proof (1) The assertion follows from Cov(X,Y) = o yoyp(X,Y) and (3.38).
(2) Let Y=a X+ b for any a and b. Then, from (2.54) and (2.61),

E(Y)=aEX)+b, o%=a*Var(X).
Now, from (3.42),

(=B (a-Bo)| _ f a(x—E)? )
p(X,Y)—EK ox ) \ laloy }_EL Ialcs%( J
Clal g2 el -1 if a<0

(3) Using (3.43), the residual variance (3.36) can be written in the form
O(o B) = o3 (1-p?).

Since a quadratic deviation can never be negative and G%; is positive anyway, the fac-
tor 1 —p2 must be positive. But 1 — p? > 0 is equivalent to —1 < p < +1. u

According to this theorem, the correlation coefficient can be interpreted as the covar-
iance standardized to the interval [-1,+1]. In case of independence the correlation
coefficient is 0; for linear (deterministic) dependence this coefficient assumes one of
its extreme values -1 or +1. Thus, unlike the covariance, the correlation coefficient
allows for comparing the (linear) dependencies between different pairs of random
variables. However, the following examples show that even in case of (nonlinear)
functional dependence the correlation coefficient can be so close to 1 that the differ-
ence is negligibly small, whereas, on the other hand, the correlation coefficient can
be 0 for non-linear functional dependence.

Example 3.9 The bending strength Y of a steel rod of a given length is given by the
equation Y= ¢ X 2, where X is the diameter of the rod and the parameter c is a mate-
rial constant. X is a random variable, which has a uniform distribution in the interval
[3.92 cm, 4.08 cm]. The input parameters for p(X,Y) are

E(X)=4,

Var(X) = 4= [408 x2dx— 16 = L[ 3 ]300 — 16 = 0.0021333,

408 5,
E(Y) = 55 [39, ¥2dx = 160021333 -c,
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2 r4.08
Var(Y) = 55 [5 0y X4dx = [c E(1)]? = 0.1365380 - ¢2,
and
__c_ 4.08 3
E(XY) = 55 [5 0y ¥3dx =64.0256000 - c.

Hence, the correlation coefficient between X and Y is

_ 64.0256-c—4-16.0021333 - ¢
P 1) = 0.0461877-0.3695105 - ¢

=0.9999976.

Although there is no linear functional relationship between X and Y, their correlation
coefficient is practically 1. (The extreme degree of numerical accuracy is required to
make sure that the calculated correlation coefficient does not exceed 1.) O

Example 3.10 Let Y = sin X, where X has a uniform distribution in the interval [0, rt],
i.e., it has density fx(x) = 1/x, 0 <x <. The input parameters for Cov(X, ¥) are
EX)=mn/2,
E(Y) = [§ sinxdx = % [-cosx]f = 2/.

E(XY) =4 [ xsinxdx = 1 [sinx —xcosx]§ = 1.

Hence, Cov(X, Y) =0 so that p(X, Y) =0 as well. Despite X and Y being functionally
related, they are uncorrelated. (Give an intuitive explanation for this.) O

As mentioned before in section 3.1.2.3, if the random vector (X, Y) has a bivariate
normal distribution, then the random variables X and Y are independent if and only if
they are uncorrelated. There are bivariate distributions, which do not have this prop-
erty, i.e., dependent random variables can be uncorrelated. This will be demonstrated
by the following two examples.

Example 3.11 The random vector (X, Y) has the joint probability density
2 2 2 2
f)(,y(x,y):x 4‘;)’ exp{(_x ery )}’ — 0 <X,V < +00,

Next the marginal densities of fy y(x,y) have to be determined:

+oo 2 2 2 2
2222

/2 +00
_ e [2j ley/zderIy ey/2dy]

2y J2n J2n

The integrand of the first integral is the density of an N(0, 1)-distribution; the second
integral is the variance of an N(0, 1)-random variable. Both integrals are equal to 1
so that
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1
22n

Since fy y(x,y) is symmetric in x and y,

]
fY()/)—zm

Obviously, fxy(x,y) #fx(x)-fy(y) so that X and Y are not independent.

2
(2 +1)e™ 2, —w<ix,y<+o.

Jx(x) =

02+ l)e_yz/z, —00 <X,y < +00.

The mean value of XY is

+0 x2+ 2 x2+ 2
E(XY)=jxy 4ny exp 2y dx dy

—00

1 ('F 5 —en 3
= — X -y
in (_'[Ox e dxj [_J;oy e dy].

141

Both integrals in the last line are 0, since their integrands are odd functions with re-
gard to the origin. But E(X) and E(Y) are 0 as well, since fx(x) and fy(y) are sym-
metric functions with regard to the origin. Hence, E(XY) = E(X) - E(Y). Thus, X and Y

are uncorrelated, but not independent.

O

Regression line and correlation coefficient are defined for discrete random variables

as well. The next example gives a discrete analogue to the previous one.

Example 3.12 Let X and Y be two discrete random variables with ranges
Rx={-2,-1,+1,+2} and Ry = {-1,0,+1}.

Their joint distribution is given by Table 3.2:

x| -2 -1 +1 | +2 q;
Y
1 [ wvie |18 |18 | vie [ 616
0 | 116 [ Ute | Vie | 116 | 4/16
+1 /16 | 18 [ 18 | Ule | 6/16
pi | 316 | 516 | 516 | 316 | 1

Table 3.2 Joint and marginal distribution for Example 3.12

From Table 3.2: The input parameters into the covariance between X and Y are

EX)=1[3-(-2)+5-(-D)+5-(+1)+3 - (+2)] =0,

E(Y)=1:[6-(-1)+4-0+6- (+1)] =0,
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EQXY) = {6 (DD +2- (DD +2- (+DED + (2)D]
+%[(—2)-0+2-(—1)~O+2-(+1)-0+(+2)~0]
+ % [((2)FD)+2-DED +2 -+ + (+2)(+1)] =0.

Hence, Cov(X,Y)=p(X,Y)=0 so that X and Y are uncorrelated.
On the other hand,

_ —_1y=L —7). —_1)=3.6_9
P(X=2,Y=-1)=1-#P(X=2)-P(Y=-1)=2 & =2

so that X and Y are not independent. O

In applications it is usually assumed that the random vector (X, Y) has a bivariate nor-
mal distribution. Reasons for this are the following ones

1) The regression line y = ax + 3 coincides with the regression function
my(x) = E(Y|X =x).

Hence, ?:JXX + B is the best estimate for ¥ with regard to the mean squared deviation
of Y from Y.

2) X and Y are independent if and only if X and Y are uncorrelated.
3) Applicability of statistical procedures.

Statistical Approach to Linear Regression The approach to the linear regression
analysis adopted so far in this section is based on assuming that the joint distribution
of the random vector (X, Y) is known, including the numerical parameters involved.
The statistical approach is to estimate the numerical parameters based on a sample
{(x;,v:); i=1,2,...,n}. This sample is obtained by repeating the random experiment

with outcome (X, ¥) independently and under identical conditions » times and register-
ing the realizations (x;,y;). The principle of minimizing the mean squared deviation
(3.31) is now applied to minimizing the arithmetic mean of the squared deviations of
the observed values y; from the ones given by the regression line y = a.x + 3, whose
coefficients o and B are to be estimated:

0. ) =5 £(3i=5.)% =5 20~ ~P)* > min, (3.45)

This method of parameter estimation is called the method of least squares. Differen-
tiating (3.45) with respect to o and 3 yields necessary and in this case also sufficient
conditions for the best least square estimates of o and B (of course, the factor 1/n can
be ignored):

S xivi—o x> -nFF+ani? =0

l_=1x,y, ocizlxl nxy ,

B=y—oax.
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The unique solution is

3 %y - n%F Z(x, )

M=l

b= , (3.46)
xlz—nx2 Z(xl- —%)2
1 i=1

I
B=y-ax,
where X and y are the arithmetic means
—_lgn - 1 gn
X= ﬁ2i=1 Xiy, Y= ﬁzi=1yi-

a and [3 are (point) estimates of the unknown regression coefficients o and 3. With
the additional notation

2 1 n - 2 1 —
SX= _ z‘41':1(951'_)5)25 Sy= -1 z I(Vz y)Z,
1 Z _ 1 J—
SXY— =1 (X =) =y) = Zie lxiyi nxyj,
the empirical regression coefficients 6. and B can be rewritten as
~ Sxy Sy A SY —
o=—"=r-—, PB=y-r =X, (3.47)
S}( Sx Sx

where s yy, the empirical or sample covariance, is an estimate for the (theoretical)
covariance Cov(X, Y) between X and Y, and

r=r Y =—2 (3.48)

SX ) Y

the empirical or sample correlation coefficient, is an estimate for the (theoretical)
correlation coefficient p = p(X, Y) between X and Y. With this notation and interpre-
tation the analogies between (3.43) and (3.47) as well as (3.41) and (3.48) are obvious.
It is interesting that the same estimates of the regression coefficients would have been
obtained if all mean values in (3.34) are replaced with the corresponding arithmetic
means. (Note that variances are mean values as well.) The fact that in sf(, s%, and s yy
the factor 1/(n — 1) appears instead of 1/n is motivated by theorem 4.2 (page 188).

Example 3.13 In a virgin forest stand of yellowwoods (Podocarpus latifolius) in the
Soutpansberg, South Africa, 12 trees had been randomly selected and had their stem
diameters (1.3 m above ground) and heights measured. Table 3.3 shows the results:

Tree number 1 2 3 4 5 6 7 8 9 10 (11 |12
Stem diameter [cm] x; |44 |62 |50 |84 (38 |95 |76 | 10435 |99 |57 |78
Height [m] y; |32 |48 |38 [56 |31 |62 57 [73 |28 |76 |41 |49

Table 3.3 Stem diameters and the corresponding tree heights
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Figure 3.9 Scatter diagram for example 3.13

Then,
x¥=68.50, y=49.25, sx=24.21, 5,=16.03, syy=378.14.

This gives the empirical correlation coefficient as

Sxy _ _ 378.14

= =0.974.
sg sy 2421-16.03 097

r=

Hence, there is a strong linear connection between stem diameter and tree height. This
numerical result is in concordance with Figure 3.9. The empirical regression line,
therefore, adequately quantifies the average relationship between stem diameter and
tree height:

7 =&x+p=0.645x+5.068.

Hence, the average increase of the height of a yellowwood is 0.645m if the stem
diameter increases by lcm. O

3.2 n-DIMENSIONAL RANDOM VARIABLES

Let x|, X5, ..., X,, n>2, be continuous random variables with distribution functions

Fx,(x1), Fx,(x2), -+, Fx,(xn) (3.49)
and probabiliy densities
Tx (1), Sy (%2), 5 fx, (xn)- (3.50)
In what follows, let
X = (X1, X2, ... Xn).
The joint distribution function of the random vector X is defined as
Fx(x1,x2, ..., xn)=P(X] <x1, Xp <x9,...,Xn <xp). 3.51)
The marginal distribution functions Fy,(x;) are obtained from Fx(xy,x2,...,xn) by

Fy (x;) = F(,...,0,x;,0,..,0); i=1,2,..n.
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Basic properties of the joint distribution function are:

1) Fx(xy,x3,--,xn) =0 if one or more of the x; are equal to -co.
2) Fx (490,40, -, +0) =1,

3) Fx(x1,x2,...,xn) is nondecreasing in each x,x7, ..., X,.

Apart from the marginal distribution functions, Fx(x1,x7,...,x;) yields the joint dis-
tributions of all subvectors of X. Let, for instance,
(X, X} X1, Xa, o Xn s i<j, n>2.
Then the joint distribution function F'y, J(/(xi,x /) of the random vector (X}, X)) is
Fx o (03,37) = FX (00, +00,X1,00, -+, 0, X1, 00, -, ).
In this way, the joint distribution functions of all subvectors
(X Xiys s Xi ) € X1, X2y s X}, k<,
can be obtained. For instance, the joint distribution function of (X, X>,...,X}) is
Fx, x5, X, (X1,X2, 0, Xp) = FX(X1,X2.00, X, 0,00, ..., 0), Kk <n.

The joint probability density of X is the nth mixed partial derivative of the joint dis-
tribution function with respect to the x{, x5, ..., x5 :

6”Fx(x1 3 XDy un ,xn)
Ox10xy- -+ Oxp

Sx&p,x2,.x0) = (3.52)

The characteristic properties of the two-dimensional densities can be extended in a
straightforward way to the n-dimensional densities. In particular, properties (3.11)
are special cases of

IXO1X25 ) 20, [T [T fx(xy,x0, ccxn) drydiy - odiy = 1, (3.53)
and the marginal densities are for alli=1,2,...,n,

Sx,(x;) = Ez a J_rz SxCe1sx2, 0 xn)dx - dx iy dxjyy - dxn. (3.54)

Definition 3.4 (independence) The random variables X, X>,...,X, are (completely)
independent if and only if

Fx(x1,x2,.xn) =Fx,(x1) - Fx,(x2) - -+ - Fx,(xn). L4

For the practical relevance of this definition, see comment after formula (3.14), page
122. In terms of the densities, the X, X5, ..., X are independent if and only if

Ix(X1,X2,05Xx0) = fx, (61) - fx,(x2) -+ fx, (Xn)- (3.55)

Definition 3.4 also includes discrete random variables. However, for discrete random
variables X; (complete) independence can be equivalently defined by
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PX) =x1,X3=x3, -, Xn=xn) = P(X; =x1)- P(X2 =x3) - ---- P(Xp =xn) (3.56)
forallx; € Ry;i=1,2,...,n.
The intuitive meaning of independence is that the values, which any of the X; have
assumed, has no influence on the values, which the remaining X; have taken on.
If the X; are independent, the set of the marginal distributions
{Fx,(x1), Fx,(x2), ... Fx,(xn)}

contains the same amount of information on the probability distribution of the random
vector X as the joint probability distribution function.

If the Xy, X>,..., X, are independent, then every subset {X; ,X;,,...,X; } of the set
{X1,X2,...,Xn} is independent as well. In particular, all possible pairs of random var-
iables (X;,Xj), i #j, are independent (pairwise independence of the X, X5, ..., Xp).
As the following example shows, pairwise independence of the X, X5, ...,X, does
not necessarily imply their complete independence.

Example 3.14 Let 4, A4,,and 43 be pairwise independent random events and X1, X5,
and X3 their respective indicator variables:

1 if A; occurs,

X, = S 12,3
Y10 otherwise, !

By (3.56), complete independence of the X, X,, and X3 would imply that
P(X1 = 1,X2 = 1,X3 = 1) =P(X1 =x1) ‘P(XZ =XZ)~P(X3 =X3),
or equivalently that
P4y nAy nA3)=P(4y) - P(43) - P(43).

However, we know from example 1.20 that the pairwise independence of random
events A1,4,, and A3 does necessarily imply their complete independence. O

The joint density of (X;, X)), i <j, is
Jx,x;, (x5, X)) = E:; _[:r: SX &1, x0, e xp)dxy - dx g dx gy dxjoydxgy - odx,
whereas the joint density of (X, X>,...,X;), k<n, is

~+00 +00
IX) X X (X 15X25 005 Xf) = J_OO "'f_oo SXOL X0, ey X Xy 1+ Xn) AX feyy - -dXp.

Conditional densities can be obtained analogously to the two-dimensional case: For
instance, the conditional density of (X}, X,,...,X;) given X; =x;is

Sx(x1,x2,...,Xn)
X Xy Koot X (1o s X i1 X 1o eens X [X7) = W, (3.57)

and the conditional density of (X1, X>,...,X») given (X| =x1, Xp =xo,...,X=x}) is
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fx(xl’xzs'"ax”) . (3.58)
IX) X, X, (X 15X2,5 000, XE)

ka+|.,Xk+2,...,Xn (xk+17xk+2a ...,an.X] 5 X2, ...,Xk) =

for k<n. Let y =h(xy,x2,...,xn) be a real-valued function of n variables. Then the
mean value of the random variable Y =4 (X, X>,...,X;) is defined as

EQ) = [T [ h(x1,x0s ooy xn) fx (01,325 e Xn) dX X dxn. (3.59)
In particular, the mean value of the product Y= X X5---X}, is

E(XIXZ"'Xn)ZJ‘iz"'J.

+00

o X1X20Xn fX (X1,%2, oy Xpn) dxdx - - -dxp.

Due to (3.55), for independent X; this n-dimensional integral simplifies to the prod-
uct of n one-dimensional integrals:

E(Xy Xy -Xn) = E(X1) E(X2) - -E(Xn). (3.60)

The mean value of the product of independent random variables is equal to the
product of the mean values of these random variables.

The conditional mean value of Y = h(Xy,...,X»n) on condition X| =x1,..., X} =X is

E(Y|x1,x2,--x) = (3.61)
+00 400 +00
fX(xlaxz"":x")
= o | h(x1,x2,.0x0) dxj1dX - dxy.
_L_L _L "X X x (X1 X 2 e xg) R !

Replacing in (3.61) the realizations x1,x5, ..., x; with the corresponding random vari-
ables X1,X>, ..., X}, yields the random mean value of ¥ on condition X1, X>, ..., X}:

EY| X1, X2, ... Xp) = (jf;j [ XL X, X X g1 Xn) (3.62)

XXX, X i1 )
Jxy, X5, 0, (X1,X2,..X))

dx1€+1dx1€+2"'dx”) .

The mean value of this random variable (with respect to all X, X>,...,X}) is
Ex, x,,..x,( EX| X1,X5,... X)) = E(Y). (3.63)
For instance, the mean value of E(Y| X1, X>, ..., X} ) with respect to the random varia-
bles X1,X3,...,X}_1 is the random variable:
Ex, x,,..x,,(EY| X1,X3,....X;)) = E(Y| Xp). (3.64)
Now it is obvious how to obtain the conditional mean values E(Y |x,-l s Xy, 0 X;,) and

EYX; ,X;

11° [2’”

-,X;,) with regard to any subsets of
{x1,x2,...,xn} and {X1,X2,....Xn},

respectively.
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Let ¢;; = Cov (X}, X)) be the covariance between X; and X, =1,2,...,n. It is use-

ful to unite the ¢;; in the covariance matrix C:
C=Wc;j)); Lj=12,..,n.

The main diagonal of C consists of the variances of the X;:

cii=Var(X;); i=1,2,..,n

n-Dimensional Normal Distribution Let X = (X,X>5,---,X;) be an n-dimensional
random vector with p; = E(X;) for i=1,2,...,n, and covariance matrix C=((c;;)).

Furthermore, let |C| and C~! be the positive determinant and the inverse of C, res-
pectively, as well as

p‘:(l"llﬂl"lzﬂn'ﬂ l"ln)’ and x = (xl’x2,"'axn)~

(X1,X3, -+, Xn) has an n-dimensionally normal (or Gaussian) distribution if it has
joint density

x(0= (-1 x-pCix-p7), (3.65)

1
——————— ¢
J@m)"|C]

where (x —p)7 is the transpose of the vector
X—p= (X1 =i, X2 =12, X0 = Hn)-
By doing the matrix-vector-multiplication in (3.65), fx(x) becomes

Sx(x)= > ¥ Cij(xi— Hi)(xj_HjJa (3.66)

e ol
— €X
2n)"|C| PUoier &4

where C;; is the cofactor of ¢;;.

Forn=2, x| =x, and x, =y, (3.66) specializes to the density of the bivariate normal
distribution (3.24). Generalizing from the bivariate special case, it can be shown that
the random variables X; have an N(;,Ll-,clg)-distribution with c? =c;;, i=1,2,..,n,
if X has an n-dimensional normal distribution, i.e., the marginal distributions of X
are the one-dimensional normal distributions

N(u,-,c?); i=1,2,..,n
If the X; are uncorrelated, then C = ((c;;)) is a diagonal matrix with ¢;; =0 fori#;

so that the joint density fx(x1,x7,...,x5) assumes the product form (3.55):

exp (—%(x’c;l“’) 2” . (3.67)

Hence, the X, X>, ..., X, are independent if and only if they are uncorrelated.

21 G;

SxCeq,x0,,x0) = H{
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Theorem 3.3 The random vector (X{,X>,...,X,) have an n-dimensionally normal
distribution. If the random variables Y1, Y», ..., ¥;; are linear combinations of the X;,
Le., if there exist constants a;; so that
n .
Yi:ijlainj; l=1,2,...,m,

then (Y1, Y5, ..., Ym) has an m-dimensional normal distribution (without proof). B

The following two n-dimensional distributions are generalizations of the bivariate
distributions (3.27) and (3.28), respectively.

n-Dimensional Marshall-Olkin Distribution The random vector X = (X, X3, ..., X»)

has an n-dimensional Marshall-Olkin distribution with positive parameters 1, Ao, ...,

and A, and with nonnegative parameter A if it has the joint survival probability
1_7X(x1,x2, ...,xn) = P(Xl >x1,X >x0, .., Xn > xn)

= e_klxl_kﬂfz_"'_xnxn_}«max(xl,x27--~,xn)’ X; > (), i= 1’ 2’ ey M

n-Dimensional Gumbel Distribution The random vector X = (X1, X>, ..., X») has an
n-dimensional Gumbel distribution with positive parameters A, A», ..., A, and with
parameter A, 0 <A < 1, if it has the joint survival probability

Fx(xX1,%2,..xn) = P(X| >x1,X2 > X2, ... Xn > Xn)

= e MRy ) x>0, 4=1,2, .0,

3.3 EXERCISES

3.1) Two dice are thrown. Their respective random outcomes are X; and X,. Let
X =max(X;,X,) and Y be the number of even components of (X;,X5). X and Y have
the respective ranges Ry = {1,2,3,4,5,6} and Ry ={0,1,2}.

(1) Determine the joint probability distribution of the random vector (X,Y) and the
corresponding marginal distributions. Are X and Y independent?

(2) Determine E(X), E(Y), and E(XY).

3.2) Every day a car dealer sells X cars of type 1 and Y cars of type 2. The following
table shows the joint distribution {r;; = P(X=1i,Y=)); i,/ =0,1,3} of (X, Y).

Y| o 1 2

X 0 0.1 0.1 0
1 0.1 03 0.1
2 0 02 0.1
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(1) Determine the marginal distributions of (X Y).
(2) Are X and Y independent?
(3) Determine the conditional mean values E(X|Y =1), i=0,1,2.

3.3) Let B be the upper half of the circle xZ + y2 = 1. The random vector (X, ¥) is uni-
formly distributed over B.

(1) Determine the joint density of (X, Y).
(2) Determine the marginal distribution densities.
(3) Are X and Y independent? Is theorem 3.1 applicable to answer this question?

3.4) Let the random vector (X, Y) have a uniform distribution over a circle with radius
r=2.

Determine the distribution function of the point (X, ¥) from the center of this circle.

3.5) Tessa and Vanessa have agreed to meet at a café between 16 and 17 o'clock. The
arrival times of Tessa and Vanessa are Xand Y, respectively. The random vector (X, ¥)
is assumed to have a uniform distribution over the square

B={(x,y); 16<x<17,16<y<17}.
Who comes first will wait for 40 minutes and then leave.
What is the probability that Tessa and Vanessa will miss each other?

3.6) Determine the mean length of a chord, which is randomly chosen in a circle with
radius 7. Consider separately the following ways how to randomly choose a chord:

(1) For symmetry reasons, the direction of the chord can be fixed in advance. Draw
the diameter of the circle, which is perpendicular to this direction. The midpoints of
the chords are uniformly distributed over the whole length of the diameter.

(2) For symmetry reasons, one end point of the chord can be fixed at the periphery of
the circle. The direction of a chord is uniformly distributed over the interval in [0, 7t].

(3) How do you explain the different results obtained under (1) an (2)?

3.7) Matching bolts and nuts have the diameters X and Y, respectively. The random
vector (X, Y) has a uniform distribution in a circle with radius 1mm and midpoint
(30mm, 30mm). Determine the probabilities

(1) P(Y> X), and (2) P(Y < X < 29).

3.8) The random vector (X, ¥) is defined as follows: X is uniformly distributed in the
interval [0, 10]. On condition X = x, the random variable Y is uniformly distributed in
the interval [0, x]. Determine

(D) fx,y(x.p), fx(x]y), and fy(vlx),
(2) E(Y), E(Y|X=5), (3) P(5<Y<10).
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3.9) Let
fryxy)=cx?y, 0<xy<l,
be the joint probability density of the random vector (X, ¥).

(1) Determine the constant ¢ and the marginal densities.
(2) Are X and Y independent?

3.10) The random vector (X, Y) has the joint probability density
Sxy(x,y) = %e*x, 0<x, 0<y<2.

(1) Determine the marginal densities and the mean values E(X) and E(Y).

(2) Determine the conditional densities fy(x|y) and fy(y|x). Are X and Y independ-
ent?

3.11) Let
Se.y)=gsin(c+y), 0<xy <3,
be the joint probability density of the random vector (X, Y).

(1) Determine the marginal densities.
(2) Are X and Y independent?
(3) Determine the conditional mean value E(Y|.X = x).

(4) Compare the numerical values E(Y|X=0) and E(Y|X=n/2) to E(Y). Are the
results in line with your anwer to (2)?

3.12) The temperatures X and Y, measured daily at the same time at two different lo-
cations, have the joint density

( 3 )
fX,Y(st’):)%eXp{—%Kx2+yT) , 0<x,y< oo,

Determine the probabilities
P(X>7Y)and P(X< Y <3X).

3.13) A large population of rats had been fed with individually varying mixtures of
wholegrain wheat and puffed wheat to see whether the composition of the food has
any influence on the lifetimes of the rats. Let Y be the lifetime of a rat and X the cor-
responding ratio of wholegrain it had in its food. An evaluation of (real life) data jus-
tifies the assumption that the random vector (X, Y) has a bivariate normal distribution
with parameters (in months)

ty =0.50, 6% =0.028, py=6.0, o3 =3.61, and p=10.92.

With these parameters, X and Y are unlikely to assume negative values.
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(1) Determine the regression function m y(x), 0 <x <1, and the corresponding resid-
ual variance.

(2) Determine the probability P(Y > 8,X < 0.6).

You may use software you are familiar with to numerically calculate this probability. Other-
wise, only produce the double integral.)

3.14) In a forest stand, the stem diameter X (measured 1.3 m above ground) and the
corresponding tree height Y have a bivariate normal distribution with joint density

1 25( (x=0.3)? (x—0.3)(y—30) (y—30)2
0.487 eXp{_ls( o2 Y MDY j}

fX,Y(x’y) =

Remark With this joint density, negative values of X and Y are extremely unlikely.

Determine
(1) the correlation coefficient p = p(X, ¥), and
(2) the regression line 7 = o + 3.

3.15) The prices per unit X and Y of two related stocks have a bivariate normal dis-
tribution with parameters

Wy =24, 0%=49, uy=36, o3 =144, and p=0.8.
(1) Determine the probabilities
P(]Y-X] <10) and P(|Y—X]| > 15).

You may make use of software you are familiar with to numerically calculate these probabil-
ities. Otherwise only produce the respective double integrals.

(2) Determine the regression function m y(x) and corresponding residual variance.

3.16) (X, Y) has the joint distribution function Fy y(x,y). Show that
Pla<X<b,c<Y<d)=[Fxy(,d) —Fxyb,c)]-[Fxyla,d)—Fxya,c)]
for a < b and c <d. (This is formula (3.7), page 121.) For illustration, see the Figure:

A

J:l (d,)a) (db)

¢ @lo AB) .
a b x~

The area integral of the joint probability density fy y(x,y) over the hatched area
gives the desired probability.
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3.17) Let a function of two variables x and y be given by

0 for x+y <0,
Fey = 1 for x+y>0.
Show that F(x,y) does not fulfill the condition

[F(b,d) - F(b,0)] - [F(a,d) - F(a,c)] 2 0
for all a,b,c, and d with a < b and c < d. Hence, although F(x,y) is continuous on
the left in x and y and nondecreasing in x and y, it cannot be the joint distribution
function of a random vector (X,7Y).

3.18) The vector (X, Y) has the joint distribution function F'y y(x,y). Show that
PX>x,Y>y)=1-Fy(y) - Fx(x) + Fxy(x,5y).

3.19) The random vector (X, Y) has the joint distribution function (Marshall-Olkin
distribution, page 132) with parameters A >0, A, >0, and L >0

F)(,Y(X,y) =1- e—M X _ e—?»gy _ e—k;x—kzy—k max(x,y)_

Show that the correlation coefficient between X and Y is given by
_ A
PN ==

3.20) At time ¢t =0, a parallel system S consisting of two elements e; and e, starts
operating. Their lifetimes X and X, are dependent with joint survival function

1

Flxp,x2) = P(X1 >x1,X2 > x3) = 0T 5 o020 ]

, X1,x2 2>0.

(1) What are the distribution functions of X; and X»?
(2) What is the probability that the system survives the interval [0, 10]?

Note By definition, a parallel system is fully operating at a time point ¢ if at least one of its
elements is still operating at time ¢, i.e., a parallel system fails at that time point when the last
of its operating elements fails. See also example 4.16, page 176.

3.21) Prove the conditional variance formula

Var(X) = E[Var(X|Y)] + Var[E(X]|Y)].
Hint Make use of formulas (2.62) and (3.21).

3.22) The random edge length X of a cube has a uniform distribution in the interval
[4.8, 5.2]. Determine the correlation coefficient p = p(X,Y), where Y=X3 is the
volume of the cube.
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3.23) The edge length X of a equilateral triangle is uniformly distributed in the inter-
val [9.9,10.1]. Determine the correlation coefficient between X and the area Y of the
triangle.

3.24) The random vector (X, ¥) has the joint density
Sxy(x,y)=8xy, 0<y<x<1.

Determine

(1) the correlation coefficient p(X, ),

(2) the regression line 7 = ox + B of Y with regard to X,

(3) the regression function y = m y(x).

3.25) The random variables U and V" are uncorrelated and have mean value 0. Their
variances are 4 and 9, respectively.

Determine the correlation coefficient p(X, Y) between the random variables

X=2U+3Vand Y=U-2V.

3.26) The random variable Z is uniformly distributed in the interval [0, 27].

Check whether the random variables X =sinZ and Y = cos Z are uncorrelated.



CHAPTER 4

Functions of Random Variables

4.1 FUNCTIONS OF ONE RANDOM VARIABLE

4.1.1 Probability Distribution

Functions of a random variable have already played important roles in the previous
two chapters. For instance, the nth moment of a random variable X is the mean value
of the random variable Y= X", the variance of X is the mean value of the random
variable Y = (X— E(X))?, a standard random variable S is defined by

X-E(X)

[ Var(X) ’

and the Laplace transform of the density of X is defined as the mean value of the ran-
dom variable ¥ =¥, In each case, a function y = h(x) is given, which assigns a
value y to each realization x of X. Since it is random, which value X assumes, it is also
random which value A(x) takes on. In this way, a new random variable is generated,
which is denoted as Y = A(X). Hence, the focus is not in the first place on the values
assumed by X, but on the values assumed by Y. The situation is quite analogous to
the one which occurred when making the transition from the outcomes ®, ® € Q, of
the underlying random experiment to the corresponding values of a random variable
X =X(®) (section 2.1). Theoretically, one could straightly assign to every elementary
event o the value y=/(X(®)) instead of making a detour via X, as the probability
distribution of Y is fully determined by the one of X:

P(Y € A) = P(X € h™1(4)),

S =

where 4~! is the inverse function of /. A motivation for making this detour is given
by an example: The area of a circle with diameter D has to be determined. In view of
a random measurement error A, the true diameter D is not known so that one has to
work with an estimate for D, namely with the random variable X = D + A. This gives
instead of the true area of the circle A = A(D) = %Dz only a random estimate of A:

Y=hX)=7X2

The aim is to obtain from the probability distribution of X, assumed to be known, the
desired probability distribution of Y. Another situation: A random signal X is emitted
by a source (the useful signal), which arrives at the receiver as ¥ = sin X. The receiver
knows that this coding takes place, and he has information on the probability
distribution of Y. Based on this knowledge, the receiver needs to extract information
on the probability distribution of the useful signal.
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a) Strictly increasing /4(x) Let X be a continuous random variable with distribution
function F y(x) = P(X < x) and with range

Ry=[a,b], —0<a<b<+w,

h(x) is assumed to be a differentiable and strictly increasing function on Ry. Hence,
to every x( there exists exactly one y( so that yy = A(x() and vice versa. This implies
the existence of the inverse function 4(x), which will be denoted as

x=x(»)=h71().
Its defining property is A~} (h(x)) = x for all x € Ry. The domain of definition of 4~}
is given by
Ry={y, y=h(x), x € Rx}.
Ry is also the range of the random variable Y = A(X).

To derive the distribution function of ¥ note that the random event "A(X) < yo" occurs
if and only if the random event "X < B! (y0) = x¢" occurs. Therefore, for all y € Ry,
the distribution function of Y can be obtained from F'y :

Fy(y)=P(Y<y) = P(h(X) < y) = PX<h™ () = Fx(h™' (), » € Ry.
Using the chain rule, differentiation of F'y(y) with regard to y yields the probability
density fy(y) of ¥:

Fyy) = YD) Y(y)

dh” () d
=/x(h~' () - = fx(x()) - 4%
dy dy
b) Strictly decreasing /4(x) Under otherwise the same assumptions and notations as
under a), let 4(x) be a strictly decreasing function in Ry. In this case, the random
event "h(X) < yo" occurs if and only if the random event "X > A~ !(y¢) = x¢" occurs.

Hence, for all y € Ry,

Fy(y)=P(Y<y)=P(h(X)<y) = PX>h"' () =1-Fx(h"' (), » € Ry.
Differentiation of F'y(y) with regard to y yields the corresponding density:

dFy(y) dh~ 1(y)

) = =~/x(h™' () - = ~x(x() - dx —fx( 0)- ( )

Summarizing If y = A(x) is strictly increasing, the distribution function of ¥ = 4(X) is

Fy(y)=Fx(h"'(), y € Ry. 4.1
If y = h(x) strictly decreasing, then
Fy(y)=1-Fx(h™'()), y e Ry. (4.2)
In both cases, the probability density of Y= A(X) is

1
a0 ‘ 4.3)

Sy =fx(h ) ‘
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In the important special case of a linear transformation A(x) =ax+ b, the inverse
function of A(x) is A=Y (y) = (v — b)/a so that the results (4.1) to (4.3) specialize to

Fy(y)= FX(J%b) fora>0,

Fy()=1 —FX(“V_Tb) for a <0, (4.4)
—b
Y0 = |3 fX(yT) for a # 0.
As pointed out before, in this case
E(Y)=cEX)+d, Var(Y)=a*Var(X). (4.5)

Example 4.1 The distribution density of the random variable X is
fx(x)=1/x2, x>1.
Integration yields the distribution function of the shifted Lomax distribution
Fx(x)= %, x> 1.
Distribution function and density of the random variable ¥ = ¢ X has to be determin-
ed. The function 4(x) = e™™ transforms the range Ry =[1,) of X to the range
Ry=(0, 1/e]

of Y=e~X. Since h(x) is strictly decreasing and x(y) = A~ (y) = —Iny, equations (4.2)
and (4.3) yield

1 1 1
Fy ) =—— and Y ) = , <y< 3. O
Example 4.2 X has an exponential distribution with parameter L =1 :
fx(x)=e, x>0.

The density of ¥ =3 — X3 has to be determined. Since y = h(x) =3 —x3, the range of
Y=h(X) is Ry = (-, 3). Moreover,

)= =6-0)" and F=3G-97 ye Ry

With these relations, equation (4.3) yields
G

—, —wo<y<3. O
33-p°°

Sy =

Example 4.3 A body with mass m moves along a straight line with a random velocity
X, which is uniformly distributed in the interval [0.8, 1.2]. What is the probability
density of the body's kinetic energy ¥ = %m X2, and what is its mean kinetic energy?

X has density
fx(x) =55 =25 08<x<12.
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By the transformation A(x) = %mxz, the range Ry =[0.8,1.2] of X is transformed to
the range Ry =[0.32m, 0.72m] of Y. Since

_ 2
xX(y)=h 1<y)=/g, =I5 veRn

and fy(x) is constant in Ry, equation (4.3) yields
o)== . L 032m<y<0.72m.

Jom B
The mean kinetic energy of the body with mass m is
J_ 0.7J_2m |
E() = | yfy()dy = Y —=dy
‘/7 0.32m W
__25 |:gy3/2:|0.72m |:(0 72 m)3/2 0.32 m)3/2:|
Jam L3 0.32m 3F
so that E(Y) = 0.506 m O

h(x)

Figure 4.1 Nonmonotone /(x)

Nonmonotone /(x) Equations analogous to (4.1) to (4.2) can also be established for
nonmonotone functions A(x).
As a special case, let us assume that y = 4(x) assumes an absolute maximum at x = x
(Figure 4.1). More exactly, let
hx) = h1(x) for x <xo,

ho(x) for x> xg,
where /1 (x) and /,(x) are strictly increasing and strictly decreasing, respectively, in
their respective domains of definition. Then the random event "Y < y" with Y = A(X)
can be written in the following form:

HYSyH — th(x) Syll U l'hz(x) Syn
(Figure 4.1). Hence,
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Fy(y) = P(h(X) <y) = P(h)(X) < y)+ P(hy(X) <)
= P(X<hy () + P(X> by ().
Thus, F'y(y) can be represented as
Fy(y)=Fx(h,'0)+1-Fx(hy' (), »€Ry. (4.6)

Differentiating Fy(y) and letting x| = h;l(y) and x) = hgl(y) yields the probability
density of Y-

, Y€ Ry 4.7)

_ axy axy
Sy)=fxx1 ) ‘ o | o) ‘ o
This representation of fy(y) is also valid if A(x) assumes at x =x( an absolute mini-
mum.

Example 4.4 A lawn sprinkler moves the direction of its nozzle from horizontal to
perpendicular, i.e., within the angular area from 0 to n/2, with constant angular velo-
city. Possible rotation movements of the nozzle do not play any role in what follows.
It has to be checked, whether in this way the lawn, assumed to be a horizontal plane,
is evenly irrigated, i.e., every part of the lawn receives on average the same amount
of water per unit time.

(x,z)-coordinates are introduced in that plane, in which the trajectory of a water drop
is embedded. The nozzle is supposed to be in the origin (0,0) of this plane. It is known
from physics that a drop of water, which leaves the nozzle at time 0 with velocity s
and angle a to the lawn, is at time ¢ at location (air resistance being negelected)

xX=stcosa, z=stsino — %gtz,
where ¢ is such that z > 0, and g denotes the gravitational constant:
g=6.6726- 10" m3kg=1s72.
As soon as z becomes 0, the drop of water lands. This happens at time

95 &
tL—ngm(x.

. 700
trajectory

45°

a 20°

lawn
O X x 0 X

Figure 4.2 Trajectory of a water drop ~ Figure 4.3 Trajectories of several drops
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The corresponding x-coordinate is (Figure 4.2)
x; =asin2o0 with a=s%/g,

since sin2o = 2 sina.cosa. From this results the well-known fact that under the as-
sumptions stated, a drop of water, just as any other particle, flies farthest if the start
angle is 450 (Figure 4.3). Since the nozzle moves with constant angular velocity, the
start angle of a drop of water leaving the nozzle at a random time point is a random
variable o with density
2

Jalw)=%, 0<a< g, (4.8)
i.e. a is uniformly distributed in the interval [0, n/2]. The lawn, under the irrigation
policy adopted, will be evenly irrigated if and only if the random landing point

X=asin2a
with range Ry = [0, a] has a uniform distribution in the interval [0, /2] as well. This
seems to be unlikely, and the probabilistic analysis will confirm this suspicion.

h(o) fx()

a

hi(o) ha(ou)

2n

a

0 . N 0
0 Z o 5 0 x a
Figure 4.4 Graph of A(a) = asin2a Figure 4.5 'Irrigation density’

The function x = A(a) = a sin2a, 0 < o < /2, assumes its absolute maximum «a at the
location o = /4 (Figure 4.4). The function x = A(a) = 41(a) is strictly increasing in
[0, f], and x = i(a) = hy(a) is strictly decreasing in the interval [%, §]~ In view of this,
forall0<x<a,

o = h]l(x) = % arcsin %,
oy = hgl(x) =7- % arcsin % .
Differentiation with regard to x yields

doy
dx

day
dx

= S S
2a.1—(xla)?

Now (4.7) and (4.8) yield

fxx) =2

2
T

1 1
+
2a/1- (x/a)? 2a,1 - (x/a)2
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so that the final result is
2

ma,l 1 - (x/a)? ’

This density tends to « if x — a (Figure 4.5). Therefore, the outer area to be irrigat-
ed will get more water than the area next to the nozzle. A 'fair' irrigation can only be
achieved with varying angular speed of the nozzle. (Note that in order to be in line
with the adequate (x,z)-system of coordinates used in this example, the roles of the
variables x and y in formulas (4.3) and (4.7) have been taken over by a and x,
respectively.) a

0<x<a.

Sx(x)=

The derivation of the density fy(y) for Y= A(X) (formulas (4.3) and (4.7) was done
in two basic steps:

1) The distribution function Fy(y) is expressed in terms of Fx.
2) The distribution function F'y(y) is differentiated.

For nonmonotonic functions y = A(x) it is frequently more convenient, instead of me-
ticulously following (4.7), to do these two steps individually, tailored to the respec-
tive problem. This will be illustrated by the following example.

A

Figure 4.6 Parabola y = x2

Example 4.5 X has both distribution function and density Fx(x) and fx(x) in the
range Ry = (-0, +0). The density of Y =X 2 is to be determined.

The parabola y = x2 assumes its absolute minimum at x = 0 so that it is clearly not a
monotonic function. The random event 'Y <y " happens if and only if (Figure 4.6)

- o X<+ g .
Hence, Fy(y) = P(— [y <X<+ [y) so that, by equation (2.5), page 42,
Fy(y)=Fx(Jy)—Fx(=/y).
Differentiation yields

fr) = ﬁ[fx(ﬁ) ~fx- )], 0<y<e.
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In particular, for an N(0, 1)-distributed random variable X, the density of ¥ = X2 is

fr)= | ez L2 | oL 02 gy con,

xS

This is the density of a y 2-distribution (chi-square distribution) with one degree of
freedom. O

Note A random variable X has a chi-square distribution with n degrees of freedom (or, equiva-
lently, with parameter n) if it has density
n
n_]
*—xZ e, 0<x<oo, n=1,2,.., 4.9
0=l — (4.9)

where the Gamma function I'(-) is defined by formula (2.75), page 75.

Mean Value of Y According to formula (2.51), the mean value E(Y) of a random
vari- able Y with density fy(y) is

EQY) =], vfy(0)dy.
If Y has structure Y = 4(X) with a strictly monotone function y = A(x), then, by (4.3),

BN = [, nfh™ )| 5|

Substituting y = A(x) and x = A~ 1(y), respectively, yields
E(Y)= ij h(x) fx(x) dx. (4.10)

Hence, knowledge of fy(y) is not necessary for obtaining £(Y). We already made use
of'this in chapters 2 and 3 when determining moments, variance, and other parameters.

Continuation of Example 4.3 The mean kinetic energy E(Y) of the body has to be
calculated by formula (4.10). Since the density of X is

fx(x) =5 =25, 08<x<12,

the mean kinetic energy is

1.2
E(Y) = E( mx2)=%mE(X2) m g x> 2.5dx
371.2 125 3 3
—125m| 5] " = 2m[123-08%] = 0506 m. O

Continuation of Example 4.4 The mean x-coordinate of the random landing point
X =asin2a of a drop of water will be calculated by formula (4.10): Since the density
of a is given by (4.8),

/2
EQ0) =a [ (sin2a) 2 do = 2] L cos 2a]g — Daln ~ 0.6366. ]
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4.1.2 Random Numbers

Computers, even scientific calculators, are equipped with software for the generation
of random numbers, i.e., a computer can randomly pick numbers from the interval
[0,1]. More exactly, a computer can generate or simulate arbitrarily frequently and
independently of each other realizations of a random variable X, which has a uniform
distribution in the interval [0, 1]. The result of n successive, independent simulations
is a set of numbers

{x1,X%2,..sxn}, x; € [0,1]. (4.11)

This set is called a sequence of random numbers or, more precisely, a sequence of
random numbers generated from a [0, 1]-uniform distribution. In applications, how-
ever, one will only in rare cases directly need random numbers simulated from a uni-
form distribution. Hence the following problem needs to be solved:

Problem Let X have a uniform distribution in the interval [0, 1]. Does there exist a
function y = h(x), 0 <x <1, with property that the random variable Y= A4(X) has a
desired distribution function F(y)?

By asuumption, the distribution function of X is

0 for x<1,
Fx(x)= x for 0<x<1, (4.12)
1 for x>1.

The function, which solves the problem, is simply 7 = F~!, where F~! is the inverse
function of F, i.e. F~! (F(y)) =y forall y € Ry. This can be seen as follows:

For Y=F~1(X), taking into account (4.12),

P(Y<y) = P(F'(X) £ ) = PX < F()) = F(F(v)) = F(y).
Thus, Y= F~1(X) has indeed the desired distribution function Fy(y) = F(y). This re-
sult is summarized in the following theorem (compare to formula (4.1)):

Theorem 4.1 Let X be a uniformly in [0, 1] distributed random variable with distribu-
tion function Fx(x), and F(y) be a strictly monotone, but otherwise arbitrary distribu-
function. Then the random variable ¥ = F~1(X) has distribution function

Fy(y) = F().

Vice versa, if X is a random variable with distribution function F x(x), then ¥ = F x(X)
has a uniform distribution in [0, 1]. u

Now it is obvious, how to generate from the sequence of random numbers (4.11),
simulated from a [0, 1]-uniform distribution, a sequence of random numbers, which
is simulated from a probability distribution given by Fy(y) :

1,725y} With vy, =F(x)), i=1,2,..,n. (4.13)



164 APPLIED PROBABILITY AND STOCHASTIC PROCESSES

The set of numbers (4.13) will be called simply a sequence of random numbers from
a probability distribution given by Fy(y). If, for instance, Fy(y) is the distribution
function of a Weibull distributed random variable, then (4.13) is called a sequence of
Weibull distributed random numbers; analogously, there are sequences of normally
distributed random numbers and so on.

Of course, these numbers are not random at all, but are realizations of a random varia-
ble Y with distribution function Fy(y). More precisely: The sequence (4.13) of real
numbers yi,V7,...,vn 18 generated by the outcomes of n independent repetitions of a
random experiment with random outcome Y.

In the literature, the terminology 'to simulate a sequence of random numbers from a
given distribution' is used equivalently to 'simulate a random variable with a given
probability distribution', e.g., to 'simulate an exponenially distributed random varia-
ble' or to 'simulate a normally distributed random variable'.

Example 4.6 Based on a random variable X, which has a uniform distribution in the
interval [0, 1], a random variable Y is to be generated, which has an exponential dis-
tribution with parameter A :

F()=P(Y<y)=1-e, y>0.
First, the equation x = 1 —e™ has to be solved for y:

y=F'x)=—1 In(1-x), 0<x<1.

Hence, the random variable
Y=F1(X)=—5 In(1-X)

has an exponential distribution with parameter A. Thus, if the sequence (4.11) of uni-
formly in [0, 1]-distributed random numbers is given, the corresponding sequence of
exponentially with parameter A distributed random numbers is

{J’la)’Zsma)’n},
where y; = F7l(x;) == In(1 —x;), i=1,2,..,n. O

It is not always possible to find an explicit formula for the inverse function F~! of F.
For instance, if F(y) is the distribution function of a normal distribution with parame-
ters p and 62, then the equation

, w-w?
x=FQy)= 1 j e 207 4y
V21 G ~»
cannot explicitely solved for y. However, given the x;, the numerical calculation of

the corresponding y;, i.e., the numerical calculation of a sequence of normally distri-
buted random numbers, is no problem at all.
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Generalization Let Y and Z be two random variables with strictly monotone distribu-
tion functions Fy(y) and Fz(z), respectively. Is there a function z = /() so that

Z=nY)?
This function can be derived by twofold application of theorem 4.1: According to this
theorem, the random variable X = Fy(Y) has a uniform distribution in [0,1]. Hence,
again by this theorem, the random variable F }1 (X) has distribution function F'y so
that the desired function z = A(y) is
2= F7 (Fy()).

Thus, if Z=F }1 (Fy(Y)), then Y has distribution function F'y, and Z has distribution
function Fz(z).

Example 4.7 Let Y and Z be two random variables with distribution functions
Fy()=1-e7,y>0, and Fy(z)= Jz, 0<z< 1.
For which function z = A(y) is Z=h(Y)?
The random variable
X=Fy)=1-¢7
with realizations x, 0 < x < 1, is uniformly distributed in [0,1]. Moreover,
F 21 (x) = x2.
Hence, the desired function is
z=h()=(1-e?)?, y>0,
so that there is the following relationship between Y and Z:

z=(1-e7)", O

Discrete Random Variables Sequences of random numbers of type (4.11), simulat-
ed from a uniform distribution in [0, 1], can also be used to simulate sequences of
random numbers from discrete random variables.
For instance, if Y is a random variable with range Ry = {-3,—1,+1,+3} and probabi-
lity distribution

{P(Y=-3)=0.2, P(Y=-1)=0.1, P(Y=41)=04, P(Y=+3) = 0.3},
then sequences of random numbers from this probability distribution can be simulat-
ed from a random variable X, which has a uniform distribution in [0,1], as follows:

-3 for 0.0<X<0.2,
-1 for 0.2<X<0.3,
+1 for 0.3<X<0.7,
+3 for 0.7<X<1.0.
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This representation of Y is not unique, since the assignment of subintervals of [0,1]
to the values of Y only requires that the length of subintervals correspond to the res-
pective probabilities. So, another, equivalent representation of ¥ would be, e.g.,

-3 for 0.8<X<0.2,
-1 for 0.7<X<0.8,
+1 for 0.0<X<0.4,
+3 for 0.4<X<0.7.

The method of simulating sequences of random numbers from a given distribution
based on sequences of uniformly in [0,1]-distributed random numbers is, for obvious
reasons, called the inverse transformation method. There are a couple of other simu-
lation techniques for generating sequences of random numbers, e,.g. the failure or
hazard rate method and the rejection method. They do, however, not fit in the frame-
work of section 4.1.

One question still needs to be answered: How are sequences of random numbers from
a [0,1]-uniform distribution generated?

It can be done manually by repeating a Laplace random experiment (page 12) with
outcomes 0,1,...,9 several times. For instance, 10 balls, with respective numbers 0, 1,
...,9 attached to them, are put into a bowl. A ball is randomly selected. Its number i;
is the first decimal. The ball is returned to the bowl. After shaking it, a second ball is
randomly drawn from the bowl; its number i, is the second decimal, and so on.
When having done this m-times, the number

0.iip-im
has been generated. After having repeated this procedure » times, a sequence of n in
[0,1] uniformly distributed random numbers has been simulated. Or, by repeating the
Laplace experiment 'flipping a coin' with outcomes 'l' (head) or '0' (tail) m times, one
obtains a binary number with m digits. Decades ago, researchers would obtain [0,1]-
uniformly distributed sequences of random numbers from voluminous tables of ran-
dom numbers.
Note In what follows, the attribute '[0,1]-uniform(ly)' will be omitted.

But how are nowadays sequences of random numbers generated by a computer? The
answer is quite surprising: Usually by deterministic algorithms. From the numerical
point of view, these algorithms are most efficient. But they only yield sequences of
pseudo-random numbers. Extensive statistical tests, however, have established that
sequences of pseudo-random numbers, when properly generated, have the same statis-
tical properties as sequences of (genuine) random numbers, i.e., sequences of pseudo-
random numbers and sequences random numbers cannot be distinguished from each
other.

There are three basic properties, which any sequences of (pseudo-) random numbers
X1,X2,...,x, for sufficiently large » must fulfill:
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1) The x1,x3,...,x, are in [0,1] uniformly distributed in the sense that every subinter-
val of [0,1] of the same length contains about the same number of x;.

2) Within the sequence x1,x3,...,x, no dependencies can be found. In particular, the
structure of any subsequence (denoted as ss) of x1,x7,...,x, does not contain any in-
formation on any other subsequence of x{, x5, ...,x,, which is disjoint to ss.

3) The sequence x1,x7, ...,x, is not periodic, i.e., there is no positive integer p with
property that there exists an element x;, of this sequence with x, = x| and after x, the
numbers develop in the same way as from the start, i.e.,

X1,X2, 5 Xp =X1, xp+1 =X2, xp+2 =X3, ~~~)x2p =X1,00
In this case, the sequence xp,x»,...,x, would consist of identical subsequences of
length p (only the last one is likely to be shorter).

Congruence Method This method is probably mostly used by random number gene-
rators (of computers) to produce sequences of pseudo-random numbers.

Starting with a nonnegative integer z; (the seed) a sequence of pseudo-random num-
bers x1,x7,... with
x;=zi/m, i=1,2,.. (4.14)
is generated as follows:
zipy1 =(az;+b)modm, i=1,2,... (4.15)
with integers a, b, and m, which in this order are called factor, increment, and module,
a>0,b>20,m>0.

Note The relation z=ymodm (read: z is equal to y modulo m) between three numbers z, y,
and m means that z is the remainder, which is left after the division of y by m.

Each of the figures z; generated by (4.15) is an element of the set {0,1,...,m—1}.
Thus, the sequence {z;} must have a finite period p with p <m, Therefore, the
algorithm has to start with an m as large as possible or necessary, respectively, so that
with re- gard to the respective application a sufficiently large sequence of random
numbers has been generated before the sequence reaches length p. The specialized
literature gives recommendations how to select the parameters a, b, and z| to make
sure that the generated sequences of pseudo-random numbers have the properties 1
to 3 listed above.

If b =0, then the algorithm is called the multiplicative congruence method, and for
b >0 it is called the linear congruence method.

Example 4.8 Let a =21, b =153, m =256, and z; = 101. The corresponding recur-
sive equations (4.15) are
zis1 =(21z;+53)mod 256, i=1,2,.... (4.16)

The first seven equations are
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25 =(21-101 +53)mod 256 = 2174 mod 256 = 126,
z3 = (21 - 126 + 53)mod 256 = 2699 mod 256 = 139,
z4 = (21 - 139 + 53)mod 256 = 2972 mod 256 = 156,
z5=(21- 156 +53)mod 256 = 3329 mod 256 = 1,
z6=(21-1+53)mod256 =74 mod256 =74,
z7=(21-74 +53)mod 256 = 1607 mod 256 = 71,
zg = (2171 +53)mod 256 = 1544 mod 256 = 8.

The corresponding first eight numbers in the sequence of pseudo-random numbers
calculated by x; = z;/256 are

x1 =0.39453; x,=0.49219; x3=0.54297; x4 =0.60938;

x5 =0.00391; x4=0.28906; x7=0.27734; xg=0.03125.

Of course, with a sequence of eight pseudo-random numbers one cannot confirm that
the sequence generated by (4.16) and (4.14) satisfies the three basic properties above.
This example and the following one can only explain the calculation steps. O

Mid-Square Method From a 2k-figure integer z; one generates the subsequent fig-
ure z;;; by identifying it with the middle 2k figures of z2. If z? has less than 2k
figures, then the missing ones will be replaced with 0 at the front of z%. The figure z;
yields the decimals of the pseudo-random number x; after the point. The specialized
literature gives hints how to select z; and k so that the generated sequence of
pseudo-random numbers x1,Xx5, ...,x, fulfills the basic properties 1 to 3 listed above.

Example 4.9 Let k=2 and z; =4567. The first 7 numbers of the corresponding se-
quences {z;} and {x;} are

21 =4567 23 =20857489 x| =0.4567

20 =8574  z3=73513476  x,=0.8574

23=5134  z3=26357956  x3=0.5134

z4 =3579 zﬁ =12809241 x4 =0.3579

z5 =8092 Z% =65480464  x5=0.8092

26=4804  z§=23078416  x=0.4804

z7=0784 z% =00614656  x7=0.0784

It is obvious that after sufficiently many steps one must return to an x; already obtain-
ed before. This is because the total number of 4-figure integers is 10000. Hence, with
regard to this example, the generated sequence x,x», ... of pseudo-random numbers
must have a period p not exceeding 10 000. O



4 FUNCTIONS OF RANDOM VARIABLES 169

The generation of random numbers is the basis for computer-aided modelling (simu-
lation) of complex stochastic systems in industry, economy, military, science, huma-
nity, or other areas in order to determine properties or relevant parameters of these
systems. Such properties/parameters are, for instance, productivity, stability, availa-
bility, safety, efficiency criteria, mean values, variances, state probabilities, ... . By
computer-aided simulation, systems can be qualitatively and quantitatively evaluated,
which in view of their complexity or lack of input data and other information cannot
be analyzed by only using analytical methods. Simulation considerably reduces costly
and time consuming experiments, which otherwise have to be carried out under real-
life conditions. The application of computer-aided simulation is facilitated by special
software packages.

4.2 FUNCTIONS OF SEVERAL RANDOM VARIABLES

4.2.1 Introduction

A rectangle with side lengths a and b has the area A = ab. In view of random meas-
urement errors one has only the random side lengths X and Y, which give for A the
random estimate A =XY. If this rectangle is the base of a cylinder with random
height Z, then a random estimate of its volume is V is V=AZ=XYZ

If instead of the exact values of voltage J and resistance R in view of random fluctua-
tions only the random values V and R are given and if the conditions for Ohm's law
are fulfilled, then instead of the exact Value of the corresponding amperage / = V/R,
one has only the random estimate 1=VIR.

Has an investor per year the random profits (losses) from shares, bonds, and funds X,
Y, and Z, respectively, then her/his annual total profit (loss) will be P =X+ Y+ Z.

If the signal sin Y with random Y has been sent and will have its its amplitude (= 1)
randomly distorted to X during transmission, then the receiver obtains the message

XsinY.

Consists a system of two subsystems with respective random lifetimes X and Y and
fails it as soon as the first subsystem fails, then its lifetime is min(X; Y). If this system
only fails if when both subsystems are down, then its lifetime is max(X, Y). These are
examples for functions of two or more random variables which motivate the subject
of the rest of this chapter.

The following sections 4.2.2 to 4.2.6 essentially deal with functions of two random
variables Z = h(X,Y). If the generalization to functions of an arbitrary number of
random variables Z=h(X{,X>,...,Xn) is straightforward, then the corresponding
results will be given. This is usually only then the case when the X, X>,..., X, are
independent.
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4.2.2 Mean Value

The random vector (X, ¥) have the joint density fy y(x,y) and range Ry y given by
the normal region with regard to the x-axis

Ryy={(xy); a<x<b,y1(x) <y <yr(x)}

(Figure 3.1, page 123). Let z = A(x,y) be a function on Ryy and Z=h(X,Y). Then,
by formula (3.59), the mean value of Z, provided its existence, is defined as

E@)= [} 220 he, ) f (e, ) dyd. (4.17)

Since outside of Ry y the joint density is 0, it is not wrong to write this mean value as
+o0 [+

E@)= [ [ heey) [y ) dye.
For the calculation of E(Z) this formula may not help very much, since in each case
the bounds prescribed by Ry y have to be inserted.
If the random variables X and Y are discrete with respective ranges Ry = {xq, X1, ...},
Ry=1{y9,¥1,...}, and joint distribution

{rij :P(szl‘, Y:yj’ i,j: O, 1,...},

then E(Z) =220 220 h(x1,)) 7. (4.18)

Example 4.10 The random vector (X, ¥) has a uniform distribution in the rectangle
Ryy=1{0<x<m, 0<y<1}. The mean value of the random variable Z = X'sin(XY)
has to be calculated.

Since a rectangle is a normal region, formula (4.17) is directly applicable with
Jxy(x,y)=1/n for all (x,y) € Ry y and h(x,y) = xsin(xy):

E(Z)= jg I(I) xsin(xy) % dydx = % jg x(jé xsin(xy) dy) dx

1
- %Jg x([_%(xy)}o) dx = %Jg x(1 - cosx) dx = x[x —sinx].

Hence, E(Z) = 1. O

Example 4.11 A target, which is positioned in the origin (0,0) of the (x,y)-coordinate
system is subject to permanent artillery fire. The random x-coordinate X and the ran-
dom y-coordinate Y of the impact marks of the shells are independent and identical as
N(0, 62)-distributed random variables. (The assumption E(X) = E(Y) =0 means that
there are no systematic deviations from the target.)

Let Z be the random distance of an impact mark to the target (origin). The aim is to
determine the probability distribution of Z and E(Z).
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A
y impact
’
o/ ® 5
0 x -

Figure 4.7 Impact mark and polar coordinates

By (2.81) and (3.13), the joint probability density of (X, Y) is

2 2 x2y?
1 ) 1 - 1 - 2
: e o —0 <X,y <400,

e 20 e 262

J2n o J2n o 2162 ’
Since the distance of the impact mark to the target is Z= 4 X2 + Y2, the distribution
function of Z is principally given by

Sxy(x,y) =

x2+y2

Fyz)=P(Z<z)= I ¢ 22 dydy. (4.19)

27162

{(e), Jx24p2 <z}

To facilitate the evaluation of this double integral, a transition is made to polar coor-
dinates (special curvilinear coordinates, page 123) according to Figure 4.7:

x=rcosqg, y=rsing or r= /x> +y?, (pzarctan¥

A

: o _ & sine P —sino. 2 =
with or = COSQ, 7o =-Tsing, 7o =sinQ, 55=rcos¢.

The corresponding functional determinant is (page 123)

| | 2% -

oY)\ _|oror| _ cos@ sing | 5 o

‘5(}’,(;)) o ‘ —rsing rcos@ ‘ r(cosQ)” +r(sing)” =r.
09 0

Integrating over the full circle {(x,y), ,/xz +y2 <z} in (4.19) is, in polar coordinat-
es equivalent to integrating over the area [0 <r <z, 0 <o <2m]. By (3.17), page 123,
the integral (4.19) reduces to

2 22

P I

re :2dr=1-e 202, z20.

i
L se 2’ rdodr=

2no c

L
2

oy

Fyz)=]
0

S

This is a Weibull-distribution with parameters f =2 and 0 = ﬁ o, 1.e., the random
variable Z is Rayleigh-distributed. Hence, by formula (2.78), its mean value is

E(Z)=J2 6 [(1.5)~ 1.2533 . O
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4.2.3 Product of Two Random Variables

Let (X, Y) be a random vector with joint probability density fx y(x,y), and
Z=XY.

The distribution function of Z is given by

Fa)= [[  fryGy)ddy
{ () xy<z}
with (see Figure 4.8)

{(r,y); xp<z}={-0<x<0, 2 <y<oo}U{0<x<o0, —co<y< ).

Hence,
Fr@) =" 177 fey@advde+ 37 [7 fy@y)dy.
Differentiation with regard to z yields the probability density of Z:
£ =1, (=1) forte Dde+ ]2 L fror (e 2 dv.
This representation can be simplified to
J2@ =77 |3 frr@ Ddx, z e (o0, +90). (4.20)
For nonnegative X and Y,

0 (z/
Fz@) =" 3" frytey)dydx, 220,

@=L oy Hae, 220 @21)

1
X

=N

Figure 4.8 Derivation of the distribution function of a product

Example 4.12 The random vector (X, ¥) has the joint density
Jxy(x,y)= 6x2y, 0<x,y<1.

Since both X and Y are nonnegative, formula (4.21) can be applied to determine the
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density of Z=XY: Since z/x < 1,
fz(Z)Z,[z1 L6x?-Zydx=6z(1-2), 0<z<1.

The calculation of the mean value of Z yields
471

E(Z):jéz[6z(1—z)]dz:6[§—zﬂo -1

The marginal distribution densities of (X, ¥) are
fx(x)=3x3, 0<x<1, and fy(y)=2y, 0<y<I.
Hence, fxy(x,y)=fx(x)-fy(y) so that X and Y are independent. O

4.2.4 Ratio of Two Random Variables

Let (X, Y) be a random vector with joint probability density fy y(x,y), and

Y
Z==.
X

The distribution function of Z is given by

Fzz)=  [[  fuy@y)dedy
(o) t<z)

with (Figure 4.9)
{(x,y); })—: Sz} ={-0<x<0,zx<y <o} U{0<x <00, —00<y<Lzx}.
Hence
F2@ =] [17 oy dyde+ [(7 7 foy(ey)dvas.
Differentiation with regard to z yields the probability density of Z:

f22) =[xl fxy (x,20) dx. (4.22)

A
7)\)} y=2zx Y
z>0 | z<0
y=zx
> X 0 > X

Figure 4.9 Derivation of the distribution function of a ratio
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In case of nonnegative X and Y,
F2)=[3" 5" feyGey)dydx, 220,

fA) =[x fxy@zx)dx, z20. (4.23)
Example 4.13 The random vector (X, ¥) has the joint density
fry@y)=rpe M) x>0,p>0; A >0, pu>0. (4.24)

The structure of this joint density implies that X and Y are independent and have
exponential distributions with parameters A and p, respectively. Hence, the density
of the ratio Z=Y/X is

f7(2) = fzo xApe MDY gy 2>,
A slight transformation yields

f(z) = ﬁ—ﬁ [7 x (et n)e C-1ava, 220,

The integral is the mean value of an exponentially distributed random variable with
parameter A + pz. Therefore,
A

z)=————, z20, 4.25
140 = o (4.25)
A
FZ(Z) - 1 7\‘ + uza
This is the Lomax distribution (page 93). O

Example 4.14 A system has the random lifetime (= time to failure) X. After a failure
it is replaced with a new system. It takes ¥ time units to replace a failed system. Thus,
within a (lifetime-replacement) cycle, the random fraction during which the system is
operating, is
X
A=—"—.
X+Y
A is called the availability of the system (in a cycle). Determining the distribution
function of 4 can be reduced to determining the distribution function of the ratio
Z=Y/X since
- —pl XL —1_plY 1=
FA(t)—P(ASt)—P(X+Y St) =1 P(X < )
Hence,
Fu(f)=1 —FZ(%), 0<t<1.
Differentiation with respect to ¢ yields the probability density of 4:

fay=L1z(5). 0<isi.
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Specifically, if the joint density of (X, Y) is given by (4.24) then f,(z) is given by
(4.25) so that we again get a Lomax distribution:

Ap At
= ——+— F ()= 0<t<l.
fA() [(ka)H»u]z > A() (7\1_}1)[_'_“9

For A # p, the mean value of 4 is (easily obtained by formula (2.52), page 64)

. A A
E(A)—H_}L[l+u_l}lnu.

In particular, let A/u = 1/4. Then the probability that the system availability assumes
a value between 0.7 and 0.9 is

P0.7<A<09)=F4(0.9) - F4(0.7) = 7955 - 720==0.324.

In view of E(X) = 1/A and E(Y) = 1/u the assumption A/u = 1/4 implies that the mean
lifetime of the system is on average four times larger than its mean replacement time.
Hence, one would expect that the mean availability of the system is 0.75. But the true
value is slightly lower: £E(4) = 0.717.

If A = p, then 4 is uniformly distributed over [0, 1]. In this case, E(4) = 1/2. O

4.2.5 Maximum of Random Variables

Let (X, Y) be a random vector with joint density fy y(x,y) and
Z =max(X, Y).

The random event 'Z < z' occurs if and only if both X and Y assume values which do
not exceed z. Hence (Figure 4.10),

Fz(2)=P(Z<z)=P(X<z,Y<z)=["_ [ fyy(x,y)dxdy.

A
y
|2 e
| |
| |
| o = >
|
< |
| |

Figure 4.10 Integration region for the maximum

Example 4.15 The random vector (X, ¥) has a Marshall-Olkin distribution with joint
distribution function given by (3.27): For A; >0, A, >0, A >0, and x,y >0,

Fyy(x,y)=1- e~ M+ x _ p=(hatM)y 4 p—hix—Aoy-Amax(x,y)
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so that
P(Z>z)=1—- Fy(z)=1-Fyxy(z,2) = e M7 o=(hath)z _ p=(hitha+h)z.
Hence, by formula (2.52), page 64, the mean value of Z=max(X, Y) is

_ 1 L
2 e T v Tl ey per g

As a practical application, if a system consists of two subsystems with respective life-
times X and Y, and the systems fails when both subsystems have failed, then its mean
lifetime is given by (4.26). In particular, in case of independent, identically distribut-
ed lifetimes X and Y (i.e., A =0, A1 =Aj):

E@Z)=72.

In this case, a 'spare' system increases the mean system life by the factor 1.5. O

(4.26)

Now the random variables X, X>, ..., X, are assumed to be independent with distribu-
tion functions Fy,(z) = P(X; <z), i=1,2,...,n. Let

Z=max{X,Xp,....Xn}. 4.27)
Since the random event "Z < z" occurs if and only if

X1 <2, Xy <z,..., X, <2,

and the events 'X; < z' are independent, the distribution function of Z is
Fz(2)=Fx,(2) - Fx,(2) - Fx, (). (4.28)

Example 4.16 A system consists of # subsystems 51,57, ...,5,. All of them start oper-
ating at time point =0 and fail independently of each other. The system operates as
long as at least one of its subsystems is operating. Thus, » — 1 out of the »n subsystems
are virtually spare systems. Hence, if X; denotes the lifetime of subsystem s;, then
the lifetime Z of the system is given by (4.27) and has distribution function (4.28). In
engineering reliability, systems like that are called parallel systems. Its failure behav-
ior is illustrated by Figure 4.11. Each of the n edges in the graph with parallel edges
depicted there symbolizes a subsystem. The system works if and only if there is at
least one 'operating edge', which connects entrance node en and exit node ex.

As a special case, let us assume that the lifetimes X; are identically exponentially dis-
tributed with parameter A :

Fx(x)=1-e?,1>0,i=1,2,..n.

Figure 4.11 Illustration of parallel system
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Then the system lifetime has distribution function Fz(z) = (1 — e’kz)”, z2>0, so that
the mean system lifetime is

Ez) =]y [1-(1-e?5)"]dz.
The substitution x =1 —e*7 yields

1l 1=x" 1 [l —
EZ)=5 |y T dx:XIO [1+x+---+x” 1]a’x.

Hence, E(Z):%[1+%+...+ﬂ.

Because of the divergence of the harmonic series £2, 1/i, an arbitrary large mean sys-
tem lifetime can be achieved by installing a sufficient number of subsystems. O

4.2.6 Minimum of Random Variables

Let the random vector (X, Y) have the joint density fy y(x,y), and let Z=min(X, Y)

have distribution function F(z) = P(Z <z). Then, by integrating over the hatched
area in Figure 4.12,

Fz= [ foyededy=[_ [7 fyy(x,y)dxdy.

{(xy); x<z,y<z}
Integrating over the non-hatched area yields
FA2)=P(Z>z)=P(X>zY>z)=[" [ fy y(x.y) dxdy.

For independent X and 7,

F(z)=Fx(2) - Fy(2).

Figure 4.12 Integration region for the minimum

Example 4.17 A system consists of two subsystems with respective lifetimes X and Y.
The system fails as soon as the first subsystem fails. Then Z = min(X, ¥) is the mean
lifetime of the system. Let, for instance, the random vector (X, ¥) have the Gumbel-
distribution (3.28) with parameters A = A, = 1 and parameter A, 0 <A < 1. Then,

F 2)=P(Z>z)=e 27727 730,
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Figure 4.13 Decrease of the mean lifetime ford — 1

and, by formula (2.52), the mean lifetime is
E@)=]; e 0520z,

Figure 4.13 shows the graph of the mean lifetime depending on A . With increasing
dependence between X and Y (A — 1), the mean lifetime decreases almost linearly
from 0.5 (independence) to about 0.38. (The correlation coefficient between X and Y
is given at page 138.) O

Now let X1,X>,...,Xn be independent random variables and
Z==Hﬁn{)ﬁ,ﬁb,”qk%}.
Then, P(Z>x)=P(X| >z, X3 >z,..., X3 > z) so that
F7(2)=P(Z>z)=Fy,(2) Fx,(2): - Fy, (2). (4.29)
Thus, the distribution function of the minimum of » independent random variables is
Fz(2)=P(Z<z)=1-Fx,(2) - Fx,(z)-- Fx,(2). (4.30)

Generalizing example 4.17, if a system, consisting of n independently operating sub-
systems s1,57,...,5,, starts operating at time z = 0 and fails as soon as one of its sub-
systems fails, then its survival function is given by (4.29). In Figure 4.14, if the chain
between entrance node en and exit node ex of the graph is interrupted by a failed sub-
system, then the system as a whole fails. In reliability engineering, systems like this
are called series systems. If, in particular, the lifetimes of the subsystems are identic-
ally exponentially distributed with parameter A, then Fz(z) =e ™, z>0, and the
corresponding mean system lifetime is £(Z) = 1/An. Every installation of another sub-
system decreases both the survival probablity and the mean lifetime of a series system.
For instance, if one subsystem survives the interval [0,1] with probability e = 0.99,

then 100 of such subsystems in series survive this interval only with probability

0.99100 ~ 0.37. Therefore, in technological designs, combinations of parallel and
series systems are preferred. |

S S2 Sn
en——0@ --—- 06—0 ¢x

Figure 4.14 Illustration of a series system
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4.3 SUMS OF RANDOM VARIABLES

4.3.1 Sums of Discrete Random Variables

Mean Value of a Sum The random vector (X, ¥) with discrete components X and Y
has the joint distribution

{rij=PX=x;nY=y;; i,j=0,1,..},
and the marginal distributions
pi=PX=x)=XZr;,
q;=P(Y=y) =Xy rij.
Then the mean value of the sum Z=X+7Y is
E(Z) =270 2 0(x; +Yrij
=ZoxiZiS0 rij+ X0y Zic0 Iij

=X 20x;ipi+ 27204,

Thus,
EX+Y)=EX)+E(). (4.31)
By induction, for any discrete random variables X, X», ..., Xn,
E(X1+Xp+--+Xy)=E(X))+EX) + -+ E(Xy). (4.32)

Distribution of a Sum Let X and Y be independent random variables with common
range R = {0, 1, ...} and probability distributions

pi=PX=i;i=0,1,..} and {g;=P(Y=j; j=0,1,..}.
Then,
P(Z=k) =P(X+Y=k) =Xty P(X=0)P(Y=k—i).
Letting r;, = P(Z=k) yields for all £=0,1, ...
Tk =P0qk+P19k1 % " +Prq0-

Thus, according to formula (2.114) at page 98, the discrete probability distribution
{rp; k=0,1,...} is the convolution of the probability distributions of X and Y. The
z-transforms of X and Y are defined by (2.110):

My(2)=Ziopiz',

My(z) =20 q;7".
By (2.116),

Myz(2) = Mx(z) My(z). (4.33)
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The z-transform M z(z) of the sum Z=X+Y of two independent discrete

random variables X and Y with common range R ={0,1,...} is equal to the
product of the z-transforms of X and Y.

By induction, if Z= X| + X, +--- + X, with independent X;, then
Mz(z) = My, (2) My, (2)---My,(2). (4.34)

Example 4.18 Let Z= X + X, +--- + X, be a sum of independent random variables,
where X; has a Poisson distribution with parameter A;; i=1,2,...,n, i.e.,

Ak
P(X;=k)= k—;e-%', k=0,1,...
The z-transform of X; is (page 91)
My (z) =D, (4.35)
From (4.34),
My(z) = e ithot - +hp) (z-1)

The functional structure of Mz(z) is the same as the one of My, (z). Thus, the sum of

independent, Poisson distributed random variables has a Poisson distribution, the
parameter of which is the sum of the parameters of the Poisson distributions of these
random variables. (This way of reasoning is only possible, because, as pointed out in
section 2.5, to every probability distribution there belongs exactly one z-transform
and vice versa.) a

Example 4.19 Let Z= X| + X, +--- + X, be a sum of independent random variables,
where X; has a binomial distribution with parameters n; and p;, i=1,2,...,n,i.e.,

P(X;=k)= (’};)pf(l —p) R k=0,1,..,n;.
Then (page 98), the z-transform of X; is
My,(2) = [piz+1-pi]™.
Hence, the z-transform of the sum is
My =ipiz+1-p1".
Under the additional assumption that

pi=p, i=12,..,n,
this representation of the z-transform of Z simplifies to

Mz(Z) — [pZ+ 1 _p]111+n2+---+nn.

Comparing this Mz(z) with My, (z) shows that in case of p; =p the sum Z has again
a binomial distribution, but with parameters p and n| +ny +---+ny. O
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4.3.2 Sums of Continuous Random Variables

4.3.2.1 Sum of Two Random Variables

Distribution The random vector (X, Y) have the joint density fx y(x,y). Based on this
information, the distribution function Fz(z) = P(Z < z) of the sum Z= X+ Y has to be
determined.

Figure 4.15 Integration region for the sum

Figure 4.15 illustrates the situation: Those realizations (x,y) of (X, Y), which satisfy
the condition x +x <z or y <z —x, respectively, are in the hatched area. If the vector
(X, Y) assumes such a realization, then the random event 'X+ Y <z' occurs. Hence,
F7(z) is given by the double integral

Fz(2)= [0 [77 fyoy(x,y) dyd.

Differentiation with regard to z yields the density of Z:

F2@) =L [ [7 fyCe ) dyde = [ 77 L[ £y y(x, ) dydx
so that f7(2)= J.:rzfx y(x,z—x) dx. (4.36)

If X and Y are nonnegative, then fx y(x,y) is 0 for x <0 and/or y <0. In this case,

only such x and z—x can contribute to the integral in (4.36), which satisfy x >0 and
z—x 2 0. Hence,

f2(2) = [ Ly, z=x) dx. (4.37)

If X and Y are independent, then fy y(x,y) =fx(x) - fy(y) so that in this case formulas
(4.36) and (4.37) become

12@) = [ 3@ fy(z =) dx, (4.38)
f2) = [ fx@) fy(z - x) dx. (4.39)
These integrals are the convolutions of fy and fy (formulas (2.125) and (2.126)).

The density of the sum of two independent random variables X and Y is the
convolution of the densities of X and Y.
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By formula (2.127), the Laplace transform of the density of the sum of two independ-
ent random variables X and Y is equal to the product of their Laplace transforms:

S2(8) =fx(s) - fr(s)- (4.40)
The distribution function of Z for independent X and Y one simply gets by integrating

the density f(z) given by (4.38) and (4.39), respectively. A heuristic approach is the
following one: On condition Y =y the distribution function of Z=X+7Y is

Fz(Z<z|Y=y)=P(X+y<z2)=P(X<z-y)=Fx(z-Y).
Since dF' y(y) = fy(y) dy is the 'probability’ of the event 'Y = ' (see comment after for-
mula (2.50), page 61),

F(2)=["" Fx(z=»)fy(y) dy, (4.41)
or Fz)=["7 Fx(z—y)dFy(y). (4.42)
For nonnegative X and Y the formulas (4.41) and (4.42) become

F2) = [ Fx(z=y)fy()dy. (4.43)

F(z) = [ Fx(z=y)dFy(). (4.44)

In the terminology used so far, the intergral in (4.41) is the convolution of the func-
tions Fy and fy. The integral (4.42), however, is called the convolution of the distri-
bution functions Fy and F'y. Of course, the roles of X and Y can be exchanged in for-
mulas (4.36) to (4.44) since X+ Y=Y+ X.

Example 4.20 It is assumed that the random vector (X, ¥) has a uniform distribution
overthe square [0 <x<T,0<y<T], ie.

UT?, 0<x,y<T
0, otherwise

Sxy(x,y) = {

By theorem 3.1, this assumption implies that X and Y are independent and in the inter-
val [0, T'] uniformly distributed random variables. Hence, formula (4.39) is applicable
for determining the density of Z=X+7Y:

z 1
Oﬁdx, 0<z<T

f22) = |7 fxy(e,z—x)dx = .
b [T, Lax, T<z<or
T

Therefore,

= 0<z<T

PR
Jz(2)= :
F(ZT—Z), T<z<L2T

Figure 4.16 shows the graph of f7(z). It motivates the name triangular distribution.
But it is also called Simpson distribution. The corresponding distribution function is
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Figure 4.16 Density of the triangular distribution

1(5)2 0<z<T
2\7) > sz=

Fz(2) = Ion(”)du: %"(E_ZLT)_L T<z<2T'

The symmetry of the density with regard to x = T implies that £(Z) = T. Hence,
E(2) = E(X) + E(Y). O
Example 4.21 Let the random vector (X, ¥) have the joint density
Fxy,y) =Ape R x>0, 3> 0; A>0, u>0.

From example 4.13 we know that X and Y are independent and have exponential dis-
tributions with parameters A and p, respectively. Hence, formula (4.39) is applicable
to determine the density of the sum Z =X+ 7Y

f7(2)= j(z) A e’kxu e ME) gy =) u e’“zj.(z) e gy
Two cases have to be considered separately:
DA=p: f7(2)=A2ze ™2, z2>0.
This is an Erlang distribution with parameters A and n = 2 (page 75).

. _Mro—- A
2) A # W fZ(Z)—H[@ HZ—e Z:|, z>0.
The mean value of Z=X+Y is (A # 1)
Ap
E@2)=[7 2fs(a)dz = 7 U zedz - [ zedz |
=5+ =EQO+EQ). O

Mean Value of a Sum In the previous two examples, the mean value of a sum
proved to be equal to the sum of the mean values of the terms. This is generally true,
whether X and Y are independent or not (but £(X) and E(Y) must be finite):

EX+Y)=["7 ["2(x+y) fry(x,y) dydx

=[x 72 ey dvdx+ [y [T fy(x,y) dxdy

= J‘tzx( J_rz Sxy(x,y) d)’) dx+szy(ffz Sxy(x,y) dx) dy.
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Now, by using properties (3.11) of the joint density,
B+ 1) =["7x fe(ydx+ [ v fy(v) dy = EQ) + EQD). (4.45)

The mean value of the sum of two random variables is equal to the sum of their
mean values.

Variance of a Sum To present the variance of the sum Z=X+7Y in a convenient
way, we need again the concept of the covariance between X and Y as defined by
(3.37) or (3.38) (page 135):

Cov(X,Y) = E([X- EX)] - [Y - E(Y))).
By definition (2.60) of the variance,
Var(Z) = E(Z— E(Z))* = EX+ Y~ E(X) — E(Y))?
= E(IX~ EQO]+[Y - E(Y)))?
= E(X - E(X))? +2E([Y - EN] E(LY = E(V)]) + E(Y - E(Y)).
Hence, the variance of the sum is

Var(X+7Y) = Var(X)+ 2Cov(X, Y) + Var(Y). (4.46)
If X and Y are independent, then Cov(X, Y) = 0. In this case,
Var(X+7Y) = Var(X) + Var(Y). (4.47)

The variance of the sum of two independent random variables is equal to the sum
of their variances.

Bivariate Normal Distribution Let the random vector (X, Y) have a bivariate normal
distribution with parameters

Ux, ly, Ox, Gy, and p; —oo <y, Uy <o, 6x>0,6,>0, —1<p<l1.
Then (X, Y) has the joint density (page 131)

! 1 (eu)? C-p)0-1y) | 0—1y)? ) ]
=—1 - 2 .
Jarey) ZHGXG},W exp { 2(1—P2)K o2 P~ 5wy * ob

To determine the density f7(z) of Z= X+ Y, formula (4.36) has to be applied. Letting
u=x—px and v=z—pyx—py
yields f7(z) in the form

+00
_ 1 1 (ﬁ _ u(v—u) (vu)z\}
J2&)= Zﬂcxcym _'[o exp{ 2(1—P2)KG§ 2p ooy T ol J du.

The following transformation in the integrand of this formula requires some routine
effort, but will prove to be advantageous:
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W uv-u) (-w)’ % +2pCyGy + Gy 2S5 tPSy 1
o2 OxOy 03 o2 G; c xq% G;
2 2 2
|ox +2pGxGy + Oy Gy + POy 1-p2 5

= u- vl + V2.
GGy 2 2
Gy O +2p51Gy + 7 Ok +2pGxGy + 0y

Now this expression is inserted into the integrand and after having done this the fol-
lowing substitution is done:

[ 2 2
1 Gx +2pcxCy + Gy Gy +pCy
2 GxGy ! 2 5
1-p Gy,/Ox +2pCxGCy + Oy

These transformations result in the following form for f(z):

( 2 Yo
f72(2) = 1 exp v | e 24,
2 2 2(0‘2+2 GxO +62) —%0
2n,/ox +2pcxGy + 0y x T2pCxGCy + Oy

Since E:: e*2dt= [2m , the final result is

( -2 )
f72(2) = 1 exp L— gz My~ Hy) 3 J , —w<z<w  (4.48)
‘/275 (G,% +2p0x0'y+0}2;) 2(ox +2pox0cy + o))

Comparing f(z) with the density (2.81) of the one-dimensional normal distribution
verifies the following corollary from (4.48):

If the random vector (X,Y) has a two-dimensional normal distribution with
parameters

Ux, Uy, Ox, Oy, and p; —o0 <y, Uy <o, 6x>0,0,>0, —1<p<1,
then the sum Z =X+ Y has a one-dimensional normal distribution with parameters

E(Z)=ux +py and Var(2) = 0% +2poxCy + G)%. (4.49)

The Laplace transform of any N(p, o2) distributed random variable is, by formula
(2.129), page 102,

}(S) _ e*“S‘F%GzSZ )

If X and Y are independent, then the Laplace transform of Z is the product of the Lap-
lace transforms of X and Y:

2.2

A 1 22 1 1 2 2N 2
fZ(S)ze_HXHEGXS _e—uys+§cys :e—(ux+uy)s+§(cx+csy)s )

This proves once more that the sum Z =X+ Y of two independent, normally distribut-
ed random variables X and Y is normally distributed with parameters

E(Z) = px + 1y and Var(Z) = 62 + 62, i.e. Z= N(ux + 1y, 62 +G3).  (4.50)
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Example 4.22 Let X and Y be the annual profits Bobo makes from her investments in
equities and bonds, respectively. She has analyzed her profits over a couple of years,
and knows that the random vector (X,Y) has a bivariate normal distribution with
parameters (in $, influence of inflation eliminated)

px = 2160, py = 3420, ox = 1830, 63 = 2840, and p =—0.28.
(1) What probability distribution has Bobo's total profit Z= X+ ¥?
(2) What is the probability that her total 'profit' is actually negative?

(1) According to (4.46), Z has a normal distribution with parameters
1z = 5580, 6% = 6% +2pGxGy + G2 = 8 504068
so that 6, = 2916.

(2) P(Z<0)= P(Zggfgo < —%) ~ ®(-1.91) ~ 0.028. O

Continuation of Example 3.7 (page 131) The daily consumptions of tap water X
and Y of two neighboring towns have a bivariate normal distribution with parameters
ty =y = 16[103 m3], 6x =06, =2[103m3], and p=0.5.

What is the probability that the total daily tap water consumption Z = X+ Y of the two
towns exceeds the amount of 36 [103 m3], which is the maximal amount manageable
by the municipality?

Z has a normal distribution with parameters
1z =32 [103m3] and o2 = 6% +2p6x6y + 03 = 12[10° m®]
so that 6, ~ 3.464. Hence,

(Z-3236-32
P(Z>36)‘P(3.464 ” 3464

)zd)(—l.ISS)zO.124. O

4.3.2.2 Sum of n > 2 Random Variables

In this section, X;; i=1,2,...,n; are random variables with respective distribution
functions, densities, mean values, and variances

2 .
Fi(x;), filxy), ni = E(X;), and o; =Var(X;); i=1,2,....n.

The joint density of X =(X7,X5,...,X»n) is denoted as fx(x1,x2,...,xx). All mean
values and variances are assumed to be finite. The covariance between X; and X; is
according to (3.37) defined as

Cov(X;, X)) = E(IX; — E(X)][X; - E(X;]).
The sum of the X; is again denoted as Z =X +X,+:--+ Xy, and its distribution
function and density as Fz(z) and f(z).
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Mean Value of a Sum
EZ)=EX|+Xp+--+ Xp)=E(X))+E(Xp)+ -+ E(X»n). 4.51)

The mean value of the sum of n (discrete or continuous) random variables
is equal to the sum of the mean values of these random variables.

This can be proved analogously to formula (4.45) by making use of the relationship
(3.54) between fx and the fy, or simply by induction starting with formula (4.45):

If, for instance, the mean value E(X| + X, + X3) has to be determined, let
X=X{+X; and Y=Xj;
and apply (4.45) as follows:
E(X) + X5 +X3) = E(X) + E(Y)
= E(X) +X2) + E(X3)
= E(X1) + E(X2) + E(X3).

Variance of a Sum The variance of the sum Z = Z;’ZI X; of n random variables X;
results from its representation as

Var(2) = E(Z - B(Z))? = E([X) — E(X1)] + [X2 = EX)] ++ - + [Xn — ECXa)])°.
Since
Cov (X}, X;) = Var(X;) and Cov(X;, X)) = Cov(X},X;),
the generalization of formula (4.46) is
Var(z;’zl X,-) =iy Var(X) +2 X 1=y Cov (X, X)). (4.52)
Thus, for uncorrelated X,
Var(X1+ Xy + -+ Xp) = Var(Xy) + Var(Xp) + - - - + Var(Xy). (4.53)

The variance of a sum of uncorrelated random variables is equal to the sum
of the variances of these random variables.

Let ay,ay,- -, a, be any sequence of finite real numbers. Then, by (2.54) and (2.61),
E(SL) 0, ;) = Siy o EOXG), (4.54)
Var(z,’-’zl aiX,-) =YL 0t Var(X)+2 21y i oy o Cov(X;, X)), (4.55)
If the X; are uncorrelated, the latter formula simplifies to

Var(z?zl a,-X,-) =25 o Var(X;). (4.56)
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Now let us interpret a sequence {X|,X>,...,X} of independent, identically as X dis-
tributed random variables as a random sample taken from X, i.e., a random experiment
with outcome X is repeated » times. Mean value and variance of X and, hence, of all
the X; are E(X) = pu and Var(X) = 62, Then formulas (4.54) and (4.56) simplify to

E(E?zl X,-) =npu, Var(zlr-’zl Xl-) =no?. (4.57)
Under the same assumptions, application of (4.54) and (4.56) to the arithmetic mean
X=33TiL1 X
yields with a; = 1/n
EX)=p and Var(X) = "72 (4.58)

Note Formulas (4.51) to (4.58) hold both for discrete and continuous random variables.

Definition 4.1 A function 6 = é(Xl ,X5,...,Xn) of asample { X, X>,..., X, } taken from
a random variable X is called an unbiased estimator of a parameter 0 of X if

E@®)=0. °

Parameters can, e.g., be 0 =p=EX), 0= o= =Var(X), or 6= B in case of the beta
or Weibull distribution. The left formula of (4.58) shows that 0 =X is an unbiased
estimator of © = = E(X). Verbally, when estimating the mean value of X by X, only
random deviations of X from p = E(X) can be observed, no systematic ones. In addi-
tion, the right formula in (4.58) shows that with increasing number of measurements
the accuracy of X as estimator for p improves since Var(X) tends to 0 if n — .

After having done the n repetitions of the random experiment, a sequence of real
numbers {x{,x7,...,X;} has been obtained, i.e., X; =x;; i=1,2,...,n. This sequence
gives empirical estimators for p and 62:

-_1 1 -
¥=y it x, 2= 2L (-0,
Now, as announced after formula (3.48), page 143, we are in a position to justify the

factor ﬁ in the formula for s2.

Theorem 4.2 Let {X|, X5, ..., X, } be a random sample from a random variable X with
0 < 62 = Var(X) < ». Then the random sample function

§2=-L 3" (x;-X)2

n—1
is an unbiased estimator of 62 = Var(X).
Proof We have to prove E(S2) = 2. For this reason, S is written in the form

s2=-Lyt x?- X (4.59)

n—-1
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In what follows, use will be made of the independence of the X}, and their identical
distribution as X:

E(X; - X)) = E(X,) - E(X)) = [EQO1? for i # .
Then
E(SL x2) = nEx?) (4.60)
so that only the second moment of X has to be determined:

-2, 1 2 1
EX")= n—zE(Z?zl X,.) = n—zE(ZZj:l X, Xj)
( )
1 2 1
= _ZE(Z?:I Xl- ) + _ZELZZJ:I Xi )(]J
n n i#f
1 2 n—1 2
Substituting this result and (4.60) into (4.59) gives
E(8?)=02. [

Distribution of a Sum The density of the sum Z =X + X5 +--- + X}, of n independ-
ent, continuous random variables X; is obtained by repeated application of (4.36),
page 181. To do this in an efficient way, next the convolution symbol '*' will be intro-
duced: For any two integrable functions f and g, their convolution is denoted as

frg@=[""fz-xgx)dx=["" gz —x) f(x)dx = g * £ (). (4.61)

Thus, the convolution product is commutative, i.e.
fxg@)=g*/f(2),
just as the product of two real numbers: a-b="5-a.

The convolution of the densities fy,, fx,, ..., fx, is obtained by repeated application
of (4.61): Firstly, fx, *fY, is calculated. Then the convolution of fy, with fx, *fx,
is determined to obtain fy, *fy, *fy, and so on. The final result is the probability
density of Z:

J7(2) =[x, *fx, * - *fx,(2). (4.62)

In particular, if the X; are identically distributed with density /', then f is the n-fold
convolution of fwith itself or, equivalently, the nth convolution power f*™(z) of f.

F*)(z) can be recursively obtained as follows:
[ O@=["7 D -x)f)dx, (4.63)
i=2,3,.,n; £ D) =f).
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For nonnegative random variables X;, this formula becomes
0@ =7 M De-x)f(x)dx, z20. (4.64)

From (4.40), by induction: The Laplace transform of the density f; of the sum of n
independent random variables Z=X| +X, +---+ X, is equal to the product of the
Laplace transforms of these random variables:

L(f7) = L(fx,) L(fx,) -~ L(fx,)- (4.65)
The convolution of the distribution functions Fy, and Fy, is defined by (4.42) as
Fy, *Fx,2) =[] Fx,G-»)dFx,(0). (4.66)

The repeated application of (4.66) yields the distribution function of the sum Z of the
n independent random variables X, X>, ..., X;; in the form

Fz(Z)=FX1 *FXZ *-“*FXH(Z). (467)

In particular, if the X; are independent and identically distributed with distribution
function F, then Fz(z) is equal to the nth convolution power of F:

Fy(z) = F*(2). (4.68)
F7(z) can be recursively obtained from
F*O@) =7 F*D(z - x)dF(x); (4.69)

n=23,.; FFOx) =1, FFOx) = Fx).
If the X; are nonnegative, then (4.69) becomes
F*O() = [ F*D (@ - x) dF(x). (4.70)

The convolution powers of any order n can explicitely be given for the Erlang distri-
bution and for the normal distribution.

Erlang Distribution Let the random variables X| and X, be independent and expo-
nentially distributed with parameters A and A, :

L) =g,
Fy(x)=1-e% x>0, i=1,2.
Formula (4.37) yields the density of Z=X| +X> :
fA2) =[5 My e 2 p e dx
= Klkze_)‘zz“.(z) e~ M=h2)x gy

At this stage, two cases have to be treated separately:
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DAy =Ay=A: f2(2)=A2ze2, z20. 4.71)
This is the density of an Erlang distribution with parameters » =2 and A (page 75).
)M = Ay

M oz
fZ(z)z}L —7»2(6 22— 12), z20.

Now let X1,X»,...,Xn Dbe independent, identically distributed exponential random
variables with density f(x)=Ae™*; x> 0. The Laplace transform of £ is (page 101)

f (s) = s+ k
Hence, by (4.65), the Laplace transform of the density of Z=X| + X, +--- + X}, is

2= (2)"

The pre-image of this Laplace transform is

(7\, )n 1
@) =14 - e

(Verify this by calculating the Laplace transform of f(z).) This is the density of an
Erlang distribution with parameters » and A. Hence, the density of an Erlang distribu-
tion with parameters n and A is the n¢h convolution power of the density of an expo-
nential distribution f(x) = Ae™*, which is an Erlang distribution with the parameters
n=1andA.

z2>0,

Normal Distribution Let X; and X, be two independent, normally distributed ran-

dom variables: X| = N(u, G%), X; = N(pz,ci). Then we know from formula (4.50)

that Z = X| + X, is normally distributed with parameters p| + 1, and cs% + cs% :

Z=N(u + Mz,G% +G§).
By induction: the sum of # independent random variables X; = N(y;, G?) ,
Z=X1+Xp+ -+ Xy,
is normally distributed with parameters
EZ)=py+po+---+p, and Var(Z)zc%+c%+~-~+c%,

or, more concise,

2
Z= N(zj?:l Wi, I, o ) : (4.72)

In terms of the density,
2

)
1 1 l’ll

exp —00 <z < 400,
2n(2’? | cf)

=

J7(2) =
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In terms of the convolution,
2@ =fx, *fx, * - */x, (@)
If the X; are identically distributed as X = N(u, 52), then each X; has density
C(x-w)?
fxx) = 1 e 202 , —00<Xx<+0,

f2nc

and f7 is the n th convolution power of fy :

(= nw)?
2= =——e 20 | _0<x<iom,

J2nn o

Example 4.23 (1) The daily power consumption X and Y of two customers has a bi-
variate normal distribution with parameters

px =200, py =300, 6x =26, 6, =32[in 103kWh), and p = 0.6.
Calculate a) the probability that the daily total consumption Z =X+ Y of the two cus-
tomers is between 450 and 550, and

b) the probability of the same event as under a), but on condition that X and Y are
independent.

(2) Determine the probability that the daily total consumption of 10 independent cus-
tomers, each of them has a daily consumption of X as given under (1), is between
1950 and 2050.

(1) a) By (4.49), the daily total consumption of the two customers has mean value
E(Z)=200+300 =500
and variance/standard deviation

Var(Z) = 62 +2p6xGy +062 =262 +2-0.6 - 26 - 32 +322 = 2698.4

JVar(Z) =51.95.
The desired probability is

P(450 < Z < 550) = @(M) _ @(_450 - 500)

so that

51.95 51.95
= (0.92) — ©(~0.92) = 24(0.92) — 1
=0.664.

b) Since X and Y are independent, p = 0. Hence,
Var(Z) = o3 + 03 =262 +322=1700 and [Var(Z) =41.23.

Therefore, the desired probability is obtained as follows:
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550—500) (450 =500
41.23 ) CD( 4123 )
= ®(1.213) - O(-1.213) = 2d(1.213) - 1

=0.774.

P(450 < Z < 550) = q)(

(2) According (4.72), the daily total consumption of 10 independent customers has a
normal distribution with parameters

E(Z)=10-200 = 2000, Var(Z)=10-26%=6760, [Var(Z) =82.22.
Therefore, the desired probability is

2050 —2000) ~ q)( 1950 — 2000)
82.22 82.22

= (0.608) — D(=0.608) = 2(0.608) — 1
=0.456. m|

P(1950 < Z < 2050) = q>(

Example 4.24 A bulk goods freighter has to be loaded with at least 2000 ¢ of iron ore.
The ore arrives by goods wagons, whose load weights X, X, --- are independent
and have an N(50, 64)-distribution.

How many wagons are needed to make sure that the freighter can be loaded with the
required minimum load with a probability of at least 0.99?

Let Z, =X + X5 + --- + X;. n has to be determined as the smallest integer with pro-
perty P(Z, > 2000) > 0.99. This relation is equivalent to
P(Z, <2000)<0.01. 4.73)
By (4.72), Z, = N(50n, 64n). The corresponding standardization is
Zn—50n
8Jn
Hence, (4.73) can be written in the equivalent form

2000 —50n 2000 —50n
S Jn ):fb( 8 /n jS0.0l.
The 0.01-percentile of the standard normal distribution is -2.32, i.e.,
®(-2.32) =0.01.

Hence, relation (4.73) is equivalent to

2000 —50n 50n—2000

8 i <-2.32 or 8 /it
By squaring and some simple algebra these relations are seen to be equivalent to
(n—40.069)2>5.5 or n>42.41.

Hence, at least 43 waggons are needed. O

Y =N(0,1)=

P(Z, < 2000) = P( Yo <

>2.32.
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4.3.3 Sums of a Random Number of Random Variables

Frequently, sums of a random number of random variables have to be investigated.
For instance, the total claim size an insurance company is confronted with a year is
the sum of a random number of random individual claim sizes. The total repair cost a
machine causes a year is the sum of random number of random repair costs, the in-
crease of a population a year is determined by the random number of individuals pro-
ducing children and the random number of children produced by an individual, etc.

Wald's Identities Let {X|, X»,...} be a sequence of independent random variables,
which are identically distributed as X with E(X) < c. Let further NV be a positive, in-
teger-valued random variable, which is independent of all X7, X5, ... Then mean value
and variance of the sum Z= X| +X, +---+ Xy are given by Wald's identities:

E(Z) = E(X) - EIN), (4.74)
Var(Z) = Var(X) E(N) + [E(X)]? Var(N). 4.75)
The proof of these relations is easily done by conditioning:
E(Z)y=Xp EX] +Xy+-+Xy|N=n)P(N = n)
=%, EXy + Xy + -+ X)) P(N=n) = 2,21 E(X) P(N = n)
= E(X) X2y nP(N=n) = E(X) - E(N).
This proves (4.74). To verify (4.75), the second moment of Z is determined:
E(Z®) =X, E(Z3|N = n) P(N = n)
=Y E(X) + Xy + -+ Xn]2) P(N = n).
By making use of formula (2.62), page 67,
E(Z%) = S {Var(Xy + Xy + -+ Xn) + [E(X| + Xy + -+ Xn)]2} P(N = )
=Xt {nVar(X) +n? [EQX))?} P(N =n)
= Var(X) X, n P(N =) + [EQ)P L2y n?P(N=n)
= Var(X) E(N) + [E(X)]* E(N?).

Hence,
Var(Z) = E(Z*) - [E(Z))?
= Var(X) E(N) + [E(X)]* E(N?) - [EX) I [E(V)]*
= Var(X) E(N) + [E(X)]? Var(N).
This is the identity (4.75).

Wald's identities (4.74) and (4.75) remain valid if the assumption that N is independ-
ent of all X; is somewhat weakened by introducing the concept of a stopping time.
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Definition 4.2 (stopping time) A positive, integer-valued random variable N is said
to be a stopping time for the sequence of independent random variables {X|, X»,...}
if the occurrence of the random event 'N =n' is completely determined by the finite
sequence X1, X»,...,Xn, and, therefore, independent of all X, {,X,42,..., n=>1. ®

Note A random event 4 is said to be independent of a random variable X if the indicator varia-
ble of 4 is independent of X (see also example 3.14, page 146).

Sometimes, a stopping time defined in this way is called a Markov time, and only a
finite Markov time is called a stopping time. (A random variable Y is said to be finite
if P(Y <) = 1. In this case, E(Y) < ©.)

The notation 'stopping time' can be motivated as follows: The X, X5, ... are observed
one after the other. As soon as the event 'N =n' occurs, the observation is stopped,
i.e., the X,,.1, X,,12,... will not be observed.

Theorem 4.3 Let {X;, X»,...} be a sequence of random variables, which are identi-
cally distributed as X with E(X) <o, and let N be a finite stopping time for this
sequence. Then

E(2) = E(X) - E(N). (4.76)
Proof Let binary random variables Y; be defined as follows:
lLif N>i
Y;= 0ifN<i T 1,2,....

The event 'Y; = 1" occurs if and only if no stopping has been done after the observa-
tion of the i — 1 random variables X1, X5,...,X;_1. Since N is a stopping time, Y; is
independent of the X;, X;,{,.... Moreover,

E(Yl) = P(NZ l) and E(Xl Yl) = E(XZ)E(YZ)

so that
B X)) = BEE X V)
=X BXG) E(Y) = E(X) L1 E(Y))
=EX) 22| P(N>i).
Now formula (2.9) at page 46 implies (4.76). ]

Example 4.25 a) Let X; =1 if i ¢4 flipping a fair coin yields 'head' and X; =0 if the
outcome is 'tail'. The X; are independent and identically distributed as

| 1 if head occurs,
“ | =1 if tail occurs.

Then, a finite stopping time for the sequence X, X», ... is
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N=min{n; X1+Xp+---+X,=10}. “4.77)
Since E(X) = 1/2,
E(Xy+Xy+--+Xy) = ENN).
According to the definition of N,
X1 +Xp+---+Xy=10
so that E(N) = 20.

b) Let X; =1 if the ith flipping a fair coin yields 'head' and X; = —1 otherwise. Then
N given by (4.77) is again a finite stopping time for X|, X»,.... A formal application
of Wald's equation yields

EX1+ X+ +Xy)=EX) - E(N).

The left hand side of this equation is equal to 10. The right hand side contain the fac-
tor E(X) = 0. Therefore, Wald's equation (4.76) is not applicable. O

4.4 EXERCISES

4.1 In a game reserve, the random position (X, Y) of a leopard has a uniform distribu-
tion in a semicircle with radius » = 10 km (figure). Determine E(X) and E(Y).

A
Y 10

ﬂ N\

-10 0o X 10 °°*

Illustration to Exercise 4.1

4.2) From a circle with radius R = 9 and center (0,0) a point is randomly selected.

(1) Determine the mean value of the distance of this point to the nearest point at the
periphery of the circle.

(2) Determine the mean value of the geometric mean of the random variables X and

Y, ie E(JXY).

4.3) X and Y are independent, exponentially with parameter A = 1 distributed random
variables. Determine

(1) EX-1Y),
(2) E(IX-Y]), and
(3) distribution function and density of Z=X-7Y.
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4.4) X and Y are independent random variables with
EX)=E(Y)=5, Var(X)=VarY)=9, and let U=2X+3Y and V'=3X-2Y.
Determine E(U), E(V), Var(U), Var(V'), Cov(U, V), and p(U, V).

4.5) X and Y are independent, in the interval [0,1] uniformly distributed random vari-
ables. Determine the densities of

(1) Z=min(X, Y), and (2) Z= X Y.

4.6) X and Y are independent and N(0, 1)-distributed. Determine the density f(z) of

Z=XY.
Which type of probability distributions does f7(z) belong to?

4.7) X and Y are independent and identically Cauchy distributed with parameters
A =1 and p =0, i.e. they have densities (page 74)

1_1 1_1
Sx¥)=% 75 fY(V)zE@» —00 <X,y <+0.
Verify that the sum Z =X+ Y has a Cauchy distribution as well.

4.8) The joint density of the random vector (X, Y) is
f@y)=6x%y, 0<x,y<l.
Determine the distribution density of the product Z=X7Y.

4.9) The random vector (X, Y) has the joint density
fry,y)=2e ) for 0 <x <y <o,
Determine the densities of Z = max(X, ¥) and Z = min(X, Y).

4.10) The resistance values X, Y, and Z of 3 resistors connected in series are assumed
to be independent, normally distributed random variables with respective mean val-
ues 200, 300, and 500 [€2], and standard deviations 5, 10, and 20 [Q].

(1) What is the probability that the total resistance exceeds 1020 [Q]?

(2) Determine that interval [1000 — ¢, 1000 + €] to which the total resistance belongs
with probability 0.95.

4.11) A supermarket employs 24 shopassistants. 20 of them achieve an average daily
turnover of $ 8000, whereas 4 achieve an average daily turnover of $§ 10 000. The
corresponding standard deviations are $ 2400 and $ 3000, respectively. The daily
turnovers of all shopassistants are independent and have a normal distribution. Let Z
be the daily total turnover of all shop-assistants.

(1) Determine E(Z) and Var(Z).
(2) What is the probability that the daily total turnover Z is greater than $ 190 000?
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4.12) A helicopter is allowed to carry at most 8 persons given that their total weight
does not exceed 620kg. The weights of the passengers are independent, identically
normally distributed random variables with mean value 76kg and variance 324kg?.

(1) What are the probabilities of exceeding the permissible load with 7 and 8 passen-
gers, respectively?

(2) What would the maximum total permissible load have to be to ensure that with
probability 0.99 the helicopter will be allowed to fly 8 passengers?

4.13) Let X be the height of the woman and Y be the height of the man in married
couples in a certain geographical region. By analyzing a sufficiently large sample, a
statistician found that the random vector (X, ¥) has a joint normal distribution with
parameters

E(X) =168 cm, Var(X) = 64cm?, E(Y)=175cm, Var(Y)=100cm?, p = 0.86.
(1) Determine the probability P(X > Y) that in married couples in this area a wife is
taller than her spouse.
(2) Determine the same probability on condition that there is no correlation between
X and 7, and interprete the result in comparison to (1).

Hint If you do not want to use a statistical software package, make use of the fact that the de-
sired probability has structure P(X > Y) = P(X+ (-Y) > 0) and apply formula (4.48), page185.

4.14) A target, which is located at point (0,0) of the (x,y)- coordinate system, is sub-
ject to permanent shellfire. The random coordinates X and Y of the hitting point of a
shell are independent and identically as N(0, 62)-distributed.

(1) Determine the distribution function Fz(z) of the random distance Z of a hitting
shell (identified with its midpoint) to the target at (0,0). To what distribution type
belongs F'z(z)?

(2) Determine E(Z).



CHAPTER 5

Inequalities and Limit Theorems

5.1 INEQUALITIES

5.1.1 Inequalities for Probabilities

Inequalities in probability theory are useful tools for estimating probabilities and mo-
ments of random variables if their exact calculation is only possible with extremely
high effort or is even impossible in view of incomplete information on the underlying
probability distribution. In what follows, all occurring mean values and variances are
assumed to be finite.

Inequality of Chebyshev (also called Bienaymeé-Chebyshevinequality) For any ran-
dom variable X with mean value p = E(X), variance o2 = Var(X), and for any € >0,

62
P(|X—p| 28)38—2. (5.1)
To prove (5.1), assume for convenience that X has density f(x). Then,

2 =[Ta-wHwdz [ @-w)dx

{x> ‘X—}L‘ZS}
> [ eXf(x)dy = e2P(|X—p| 2 ¢).
{x, fe—plze}
This proves the two-sided Chebyshev inequality (5.1). The following one-sided Che-
byshev inequality is proved analogously:

62
PX-p=>¢g)<
c2+e

5
Corollary By letting € = nc, one gets from formula (5.1) no-rules:
P(|X—p| > no) < 1/n? or P(|X—p| <nc)>1-1/n?. (5.2)

Example 5.1 The height X of trees in a forest stand has mean value p=20m and
standard deviation ¢ = 2m. To obtain an upper limit of the probability that the height
of a tree differs at least 4m from p, Chebyshev's inequality (5.1) is applied:

P(|X-20]| >4)<4/16 = 0.250.
For the sake of comparison, assume that the height of trees in this forest stand has a

normal distribution. Then the exact probability that the height of a tree differs at least
4m from p is
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P(IX—=20] = 4) = P(X—20 > 4) + P(X— 20 < —4) = 2 D(=2) = 0.046 .

In this case Chebyshev's inequality gives a rather rough upper bound. On the other
hand, this inequality requires little input. O

Example 5.2 Let X, X5, ..., X, be the outcomes of n Bernoulli trials (pages 49, 51),
with p =1/6, i.e.
1 with probability 1/6, n
;= . . dX=21 X
! {O with probability 5/6, an Zizt Xi
X can be interpreted as the number of the occurrences of "6" when tossing a fair die n
times. By making use of the Chebyshev inequality, the smallest integer n = ny with
property
‘X 1‘ >0.01) <0.05 forall n>nq
has to be found. Note that X/n is the relative frequency of the occurrence of "6"
when tossing the die » times. Since X has a binomial distribution with

p=EX)=np=n/6 and Var(X)=np(1l —p) = 5n/36.
X/n has mean 1/6 and variance 62 = Var(X/n) = —Var(X) = ——. This implies

P(|%(—é| 20.01) smso.os.

Hence, + <n sothat ng=27778. |
(0.01)2:36:0.05

Inequalities of Gauss Let X be a continuous random variable with p = £(X) and uni-
modal density with mode x,,. Then the Gauss inequalities are

P(X—p|28) < 4M £>0. (5.3)
9 (e~ lu-xml)’
P(X = x| 28)<9i[62+(u—xm)2], £>0. (5.4)

(5.3) is also called Camp-Meidell inequality.

For p = x,,, in particular for symmetric densities with symmetry center L, the inequal-
ities (5.3) and (5.4) are identical. In this case one obtains an improvement of the Che-
byshev inequality (but under the additional assumptions of the Gauss inequalities):

P(|X—u| =€) < (20/3¢)?. (5.5)

Corollary By letting € = nc and assuming unimodality with p = x,, one gets from
formula (5.3) or (5.4) nc-rules:

P(X—p|2n0)< 2 or P([X—p|<no)>1-—2; n=1,2,..  (5.6)
9n?2 9n
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Table 5.1 compares the lower bounds for the probabilities P(|X — | < nc), which are
given by the no-rules (5.2) and (5.6), respectively, with the exact probabilities of the
events '|X—pu| <nc',n=1,2,...,5, if Xhas a normal distribution N(y, 62) .

P(|X-p| <no) n=1 n=2 n=3 n=4 n=>5

Chebyshev inequality >0 >0.750 | >0.889 | >0.938 | >0.960
Gauss inequality >0.556 | >0.889 | >0.951 |>0.972 |>0.982
Normal distribution =0.683 |=0.955 [=0.997 |>0.999 |>0.999

Table 5.1 Lower bounds (5.2) and (5.6) and exact values for normal distribution

Inequalities of Markov Type Let y = 4(x) be a nonnegative, strictly increasing func-
tion on [0, ). Then, for any € > 0, the general Markov inequality is

E(h1X))

P(XI 20 <=1

(5.7)
(5.7) is proved as follows:
Eh(XD) = "7 h(yDf ) dy
> [ h(lyD o) dy+ [ 5 h(lyD ) dy

>h<|e|>j 2 f@)dy+h(leh| S fp)dy

=h(e) P(1X] 2 &),

which is equivalent to (5.7). Letting h(x) = x%, a > 0, inequality (5.7) yields Markov's
inequality as such:

P12 5 < 22D,

From (5.8) Chebyshev's inequality is obtained by letting a = 2 and replacing X with
X—.

If h(x) = e, b > 0, Markov's inequality (5.7) yields an exponential inequality:
P(X] 2 8) < b2 E( D) (5.9)

(5.8)

Markov's inequality (5.8) and the exponential inequality (5.9) are usually superior to
Chebyshev's inequality, since, given X and ¢, their right-hand sides can be minimized
with respect to a and b. On the other hand, to determine the mean values in formulas
(5.8) and (5.9), the probability distribution of X needs to be known. But in this case
the exact value of the desired probability P(|X] > €) can be calculated anyway. Hence,
application of (5.8) and (5.9) makes sense only if the expected values involved are
known from whatsoever source (expert opinions) or they are estimated based on a
sample taken from X, i.e., the random experiment with output X is independently re-
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peated n times to get a sequence of values of X: x1,x»,...,x,. For instance, the mean
value m = E(JX|?%) occurring in (5.8) would have to be estimated by the arithmetic
mean of the |x;|”
1 a
m— X 1 |xl|
If the variance o2 in (5.1) is unknown, it also has to be estimated from a sample
{X1,%2,....,xn}. The estimator is

1 g7 3 -
s2=ani:1(xi_x)2 with x——Z, 1 Xi-

Continuation of Example 5.1 Let us check whether the upper bound of Chebyshev's
inequality (5.1) can by improved by (5.8) if X has a normal distribution with mean p
and standard deviation ¢ = 2.

For a = 1, the mean value E(|X - p|“) becomes (see page 79),

E(X—u]) = Ec ~0.798 -2 = 1.596.

Hence, (5.8) yields

P(X - | > 4) < 2D E(\X uh _ 1596

=0.399.
This is a worse result than the one given by Chebyshev s inequality (a = 2).
Now let @ = 4. Then (see page 83, note that X — p has mean value 0)
4
E(X—ul*) = py = B(QX- ") = 36*.
Hence, (5.8) yields

S8 1875,

E(X-plh
P(|X_H|24)Sa—4 44 256

This is a substantial improvement of the bound given by Chebyshev's inequality. O

5.1.2 Inequalities for Moments

Inequalities of Chebyshev Let functions g(x) and A(x) be either both nonincreasing
or both nondecreasing. Then,

E[g(X)] E[A(X)] < E[g(X) h(X)]. (5.10)
If g is nonincreasing and 4 nondecreasing or vice versa, then
E[g(X)]E[h(X)] 2 E[g(X) h(X)].
As an important special case, let
g(x)=x"and h(x)=x%; r,s>0.
Then, from (5.10),
E(X")E(XSD) < E(x7)).
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Inequality of Schwarz
[E(XYDI* < E(X1) EQY ). (5.11)

Hélder's Inequality Let 7 and s be positive numbers satisfying % + % =1. Then

E(IX YD) < [EQX D IE( Y915 (5.12)
For r = s =2, Holder's inequality implies the inequality of Schwarz.

Inequality of Minkovski (Triangle Inequality) Forr>1,
[E(X+ Y1 < LEXT Y+ (B (5.13)

Inequality of Jensen Let i(x) be a convex (concave) function. Then, for any X,
<
h(E(X)) (g) E(h(X)). (5.14)

In particular, if X is nonnegative and 4(x) =x? (convex for ¢ > 1 and @ <0, concave
for0<a<1), h(x)=e* (convex), and A(x) = Inx (concave), the respective inequal-
ities of Jensen are

[EXN]?<EX* fora>1ora<0,
[EX)]?>EX?) forO<a<],

X < E(eX) , (5.15)
InEX) = E(InX).

Example 5.3 To get an impression on the sharpness of the inequalities of Schwarz
and Minkowski, let us consider a random vector (X, Y) with joint density

fxyy)=x+y, 0<x,y<1,
and marginal densities (see example 3.5, page 129)
fxx)=x+172, fy(»)=y+1/72; 0<x,y<1.
Schwarz inequality: The second moment of X is
E(X?) = [y x2(x+ 1/2) dx = 5/12.
For symmetry reasons, E(Y?)=5/12 as well. Thus, (5.11) yields
[E(XY)]? <0.174

so that the upper bound for E(XY) is 0.417. For the sake of comparison, the exact
value of E(X7Y) is

EXY) :jé jé xy(x+y)dxdy=2 I(l) jéxzy dxdy=0.333.
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Minkovsky inequality: For r = 1, inequality (5.13) is trivial (left- and right-hand side
are equal). Let » =2. Then (5.13) becomes

JEX+Y)? < JEX?) + [E()?.

Since E(X?2) = E(Y?) = 5/12, an upper bound for J E(X+ Y)? is 1.291:
JEX+Y)? <1.291.
For the sake of comparison:

101
EX+ Y)2 = JO _[O(x2 +2xy +y2)(x +y)dxdy

= J(l) j(l) o3+ 3x2y + 3xy2 +y)dxdy

_['(L 3.2 3) _1,1,1.1_3
—J0(4+y+2y +y7)dy =g+t3+5+t7=7

Hence, |E(X+Y)? =1.225. O

5.2 LIMIT THEOREMS

5.2.1 Convergence Criteria for Sequences of Random Variables

There are three large classes of limit theorems in probability theory: 1) The laws of
the large numbers, 2) the central limit theorem and its numerous modifications, and
3) the local limit theorems. The laws of the large numbers are essentially statements
on the convergence behavior of arithmetic means of random variables. They constit-
ute the theoretical foundation of statistical methods for the estimation of parameters
of probability distributions based on samples. They also have applications in simula-
tion procedures for the numerical solutions of stochastic and even deterministic prob-
lems. The central limit theorem justifies the application of the normal distribution as
distribution of random variables, which are known to arise by the additive superposi-
tion of numerous random influences. Local limit theorems investigate the conver-
gence of probability densities of continuous random variables and the convergence
of the probabilities P(X = x;) of discrete random variables X.

Limit theorems in probability theory are subject to certain convergence criteria for
sequences of random variables, which next have to be introduced (even if in a more
or less heuristic way).

1) Convergence in Probability A sequence of random variables { X1,X»,...} con-
verges in probability towards a random variable X if for all € > 0,

lim P(|X;-X| >¢)=0. (5.16)
1—>00
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2) Convergence in Mean A sequence of random variables { X, X5, ...} with
property
E(|X;)<oo; i=1,2,..
converges in mean towards a random variable X if
nlglgoEdXi -X])=0 and E(|X]) <. (5.17)

3) Mean Square Convergence A sequence of random variables { X1, X>, ...} with
E(X|*)<o0; i=1,2,...,
converges in mean square or in square mean towards a random variable X if

lim E(|X; ~X|*) =0 and E(|X]?) < . (5.18)

4) Convergence with Probability 1 A sequence of random variables { X, X>,...}
converges with probability 1 or almost sure towards a random variable X if

P(lim X;=X)=1.
1—>00

5) Convergence in Distribution Let the random variables X; have the distribution
functions Fy (x); i=1,2,.... Then { X|,X5,...} converges towards a random varia-
ble X with distribution function Fx(x) in distribution if, for all points of continuity x
of Fx(x),

lim Fy,(x) = lim P(X; <x) = P(X<x) = Fx(x).

1—>0 1—>0

Figure 5.1 Relations between the convergence criteria 1-5.

Figure 5.1 shows the implications between the convergence critria. The integers refer
to the respective convergence criteria listed above.

Under additional assumptions, the opposite implications may be true as well (in what
follows, the notation X, — X refers to the convergence criterion k above):

5 . . . 1 . .
1) If X;, > c is true with a finite constant ¢, then X, — ¢, i.e., in case of a constant
limit, convergence in probability and convergence in distribution are equivalent.

1 . . .
2) If X, — X is true, then there exists a subsequence {Xy,, Xu,,...} of the given se-

4
quence {X1, X,...} sothat X;;, &> X fori— oo.
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5.2.2 Laws of Large Numbers

5.2.2.1 Weak Laws of Large Numbers
There are weak and strong laws of large numbers. They essentially deal with the con-
vergence behavior of arithmetic means X,, for n — oo, where

- _ 1
Xn = n er":l X;.
Definition 5.1 A sequence of random variables {X|,X>,...} satisfies the weak law of

large numbers if there exists a sequence of real numbers {ai,ay,...} so that the
sequence {X; —aj, Xo —a>,...} converges in probability towards 0. [

A direct consequence of the Chebyshev's inequality (5.1) is the following version of
the weak law of large numbers.

Theorem 5.1 Let { X|,X5,...} be a sequence of independent, identically distributed
random variables with finite mean p and variance 2. Then the sequence of arithmetic
means {X|, X»,...} converges in probability towards p, i.e., for all € > 0,

nh_r)l(}O P(|X,, —p.| > s) =0.
Proof In view of Var(X,) = 6%/n, Chebyshev's inequality (5.1) yields
— G2
P(|X,,—u| >s) <o (5.19)
ne
Letting n — o proves the theorem. u

Bernoulli's Weak Law of the Large Numbers The first version of the weak law of
the large numbers can be found in Bernoulli (1713), the first textbook on probability
theory. Jacob Bernoulli considered the limit behavior of the sequence {X|,X>,...},
where the X; are the indicator variables for the occurrence of a random event 4 in a
series of n independent trials:

1 if 4 occurs,

X = S 21,2,
i=10 otherwise. |

The sum Z;, = Z;’zl X; is the number of occurrences of the random event A4 in this
series, and the arithmetic mean

A 5 1
pn(d) =Xy =5 X1 X;

is the relative frequency of the occurrence of event 4 in a series of » trials. From sec-
tion 2.2.2, page 51, we know that Z,, has a binomial distribution with parameters n
and p = P(A) so that

E(Zy))=np and Var(Z,)=np(1—p).
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Therefore, the relative frequency p,(4) has mean value
E(pn() = 5 Ty EX) = 5 (1 P(A)) = P(A) =p
and variance
N 1+
Var (pata)) =252,
Now, applying (5.1) to the sequence { p{(4), p2(4),...} yields for all € > 0,

2

Pu(d) = PA)| > 8) <292 50 as 0 — oo,
ne
This proves Bernoulli's weak law of the large numbers:

The relative frequency pn(A) of the occurrence of the random event A in a series
of n independent trials converges to p = P(A) in probability as n — o :

Jim py(4) = P(A).
Two more variants of the weak law of the large numbers will be added.

Theorem 5.2 (Chebyshev) Let { X|,X>,...} be asequence of (not necessarily inde-
pendent) random variables X; with finite means u; = E(X;); i = 1,2,.... On condition

lim Var(X;) =0,

—0

the sequence {X| — 1, Xp —p,...} converges in probability towards 0. u

The following theorem does not need assumptions on variances. Instead, the pairwise
(not the complete, page 145) independence of the sequence { X1,X>,...} is required,

i.e., X; and X; are independent for i # /.

Theorem 5.3 (Chintchin) Let { X|,X>5,...} be a sequence of pairwise independent,
identically distributed random variables with finite mean p. Then the corresponding
sequence of arithmetic means {X 1,X2, } converges in probability towards 1. u

5.2.2.2 Strong Laws of Large Numbers

These laws of the large numbers are called strong, since the almost sure convergence
implies the convergence in probability (Figure 5.1). Thus, almost sure convergence is
a stronger property than convergence in probability.

Definition 5.2 A sequence of random variables { X1,X>,...} satisfies the strong law
of the large numbers if there is a sequence of real numbers { aq,a,,...} so that the
sequence {X| —a, Xp —an,...} converges with probability 1 towards 0:

P(lim (X;—a;)=0) = 1. °
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If a sequence of random variables satisfies the strong law of the large numbers with a
sequence of real numbers { ay,as,...}, then it satisfies the weak law of the large num-
bers with the same sequence of real numbers. The converse is generally not true. Here
two versions of the strong law of the large numbers are given.

Theorem 5.4 (Kolmogorov) Let { X|,X,,...} be asequence of independent, identic-

ally distributed random variables with finite mean p. Then the sequence of arithmetic
means {X 1,X2, } converges with probability 1 towards . |

Theorems 5.4 implies that the sequence of relative frequencies { p;(4), p2(A4), ...}
also converges towards p = P(4) with probability 1. Thus, Bernoulli's law of the

large numbers is both weak and strong. The following theorem abandons the
assumption of identically distributed random variables.

Theorem 5.5 (Kolmogorov) Let { X1,X5,...} be a sequence of independent random
variables with parameters p; = E(X;) and G? =Var(X;); i=1,2,... On condition
Zii(oil)? <o,
the sequence {Y, Y>,...} with
Y =Xy _%Z?:I Hi
converges with probability 1 towards 0. u

5.2.3 Central Limit Theorem

The central limit theorem provides theoretical reasons for the significant role of the
normal distribution in probability theory and its applications. Intuitively, it states that
arandom variable, which arises from additive superposition of many random influenc-
es with none of them being dominant, has approximately a normal distribution. The
simplest version of the central limit theorem is the following one:

Theorem 5.6 (Lindeberg and Lévy) Let Z, =X, +X,+---+X, be the sum of n
independent, identically distributed random variables X; with finite mean E(X;)=p
and finite variance Var(X;) = 02, and let S); be the standardization of Z,, i.e.

g _Zn—nu
" oynm
X
: __1 —u?2 g _
Then, lim P(Sy <x) = N JOO e 2dy = d(x),

where ®(x) is the distribution function of the standard normal distribution N(0,1). B
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Corollary Under the conditions of theorem 5.6, Z, has for sufficiently large n
appro- ximately a normal distribution with mean value np and variance no?:

Zn = N(np, no?). (5.20)
Thus, Z, is asymptotically normally distributed as n — . The fact that Z, has mean
value np and variance nc? follows from (4.57), page 188.

As a rule of thumb, (5.20) gives satisfactory results if # > 20. Sometimes even n > 10
is sufficient. The following theorem shows that the assumptions of theorem 5.6 can
be partially weakened.

Theorem 5.7 (Lindeberg and Feller) Let Z,, = X| + X, +---+ X;; be the sum of in-
dependent random variables X; with densities fy, (x), finite means u; = E(X;), and
finite variances Glz = Var(X;). Let further S, be the standardization of Z;, :

Zn—E(Zn)  Zn—TiiWi

[Var(Zy) £ o2

Then the limit relation
1

J2rn

is uniformly true for all x and Var(Z,) has the properties

. . O
nlglgo JVar(Zy) — o and lim max [Wj -0 (5.22)

N0 j=12,..n

X
lim P(S, <x) = d(x) = _L e 124y (5.21)

if and only if the Lindeberg condition

Jim 7o X J (0= 1) fi (v = 0
=1 {x, |x—u;|>e . Var(Z,) }
is fulfilled for all € > 0. u

The properties (5.22) imply that no term X; in the sum dominates the rest and that
for n — o the contributions of the X; to the sum uniformly tend to 0. Under the
assumptions of theorem 5.6, the X; a priori have this property.

Example 5.4 Weekdays a car dealer sells on average one car (of a certain make) per
p =2.4 days with a standard deviation of ¢ = 1.6.

1) What is the probability that the dealer sells at least 35 cars a quarter (75 weekdays)?
Let X;;i=1,2,..., X9 =0 be the time span between selling the (i — 1) th and the ith
car. Then Z, =X| + X, +---+ X, 1is the time point, at which the nth car is sold (sel-
ling times assumed to be negligibly small). Hence, the probability P(Z35 < 75) has to
be determined.
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If the X; are assumed to be independent, then
E(Z35)=35-2.4=84 and Var(Z3s)=35-1.6% =89.6.
In view of (5.20), Z35 has approximately an N(84, 89.6)-distribution. Hence,

75-84

T ) = (-0.95)=0.171.

P(Z35 < 75) ~ CD(

2) How many cars 7n,,;, the dealer does have to stock at least at the beginning of a

quarter to make sure that every customer can immediately buy a car with a probabili-
ty of not smaller than 0.95?

1 =N, 1s the smallest n with property that
P(Z,.1>75)>0095.
Equivalently, 7,,;, is the smallest n with property

75-2.4 (n+1)
< <
P(Z,.:1 £75)<0.05 or CI)(—l.Gm

Since the 0.05-percentile of an N(0, 1)-distribution is x( g5 = —1.64, the latter inequal-
ity is equivalent to

75-24(n+1)

1.64n+1

Hence, 1, =37. O

) <0.05.

<-1.64 or (n-30.85)%>37.7.

Normal Approximation to the Binomial Distribution Any binomially with param-
eters n and p distributed random variable Z, can be represented as the sum of n in-
dependent (0,1)-random variables of structure

1 with probability p,

X; =
" 10 with probability 1 —p’

<p=<l
Thus, Z, =X + X, +--- + X, so that the assumptions of central limit theorem 5.6 are
fulfilled with u=p and 62 = np(1-p):

EZpy)=np, Var(Zy,)=np(1-p). (5.23)
A corollary of theorem 5.6 is

Theorem 5.8 (Central limit theorem of Moivre-Laplace) 1f the random variable X
has a binomial distribution with parameters » and p, then, for all x,

Zn— np _ 1 )JC' e—uz/Zdu ) ]

lim P| ——<
o [,/np(l—m x] J2n
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03

02

0.1

Figure 5.2 Approximation of the normal distribution to the binomial distribution

As a special case of formula (5.20), Z,, has approximately a normal distribution:

Zn=N(np, np(1-p)).
Thus,

L .
) . iy+5—np i1—5—np o
P(i1£Z,<ip)=D -0 ; 0<i1<ip<n.

Jnp(1-p) Jnp(1-p)

(5.24)

) (n)l i i+%—np i—%—np .
P(Z,=10)= l.p(l—p) ~O m ) m , 0<i<n.

The term +1/2 is called continuity correction. It improves the accuracy of the approx-
imation, since a discrete distribution is approximated by a continuous one. Because
the distribution function of Z, has only jumps at integers i, there is

Fz,()=Fz,(i+3), i=0,1,..n.

The approximation formulas (5.24) are the better the larger # is and the closer p is to
1/2. Because the normal distribution is used to approximate the distribution of a non-
negative random variable, the condition

E(Zn) 23 [Var(Z,) (5.25)

should be satisfied (see page 79, there written as 1 > 3c) to make sure the approx-
imation yields satisfactory results. In view of (5.23), this condition is equivalent to
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Thus, for p = 1/2, only 10 summands may be sufficient to get good approximations,
whereas for p=0.1 the number » required is at least 82. In practice the following
rules of thumb will usually do:

E(Zy) =np > 35 and/or Var(Z,) = np(1 —p) > 10.

Continuation of Example 2.5 (page 52) From a large delivery of calculators a sam-
ple of size n =100 is taken. The delivery will be accepted if there are at most four
defective calculators in the sample. The average rate of defective calculators from
the producer is known to be 2%.

1) What is the probability P, that the delivery will be rejected (producer's risk)?

2) What is the probability C,; to accept the delivery although it contains 7% defec-
tive calculators (consumer's risk)?

1) The underlying binomial distribution has parameters » = 100 and p = 0.02 :
pi=P(Z190=1i)= (“}0)(0.02)1'(0.98)100—[, i=0,1,...,100.

The random number Z1 of defective calculators in the sample has mean value and
standard deviation

E(Z100) =2 and [Var(Zy9p) = +100-0.02-0.98 =1.4.
This gives for the exact value
Pyisk=1-po—p1—-p2-p3—p4=0.051
the approximative value

Zyi2  5-2-0.5
Pk = P(Zn 25) zP(W > T)

=1-®(1.786) = 1 —0.962
=0.038.

This approximative value is not satisfactory since p is too small. Condition (5.26) is
far from being fulfilled.

2) In this case, p =0.07 so that
E(ZIOO) =7 and VaV(Zloo) =2.551.

This gives for C,y the approximative value

Zn=T _ 4-7+0.5
Crisk = P(Z100 <4) =P(m < ﬁ) = ®(-1.176)
=0.164.
The exact value is 0.163.

Taking into account the continuity correction proved essential both for calculating
the approximative values of P,;y and C,s. a
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Normal Approximation to the Poisson Distribution From example 4.18 (page 180)
or from Theorem 7.7 (page 285) we know that the sum of independent, Poisson dis-
tributed random variables has a Poisson distribution, the parameter of which is the
sum of the parameters of the Poisson distributions of these random variables. This
implies that every Poisson with parameter A distributed random variable X can be
represented as a sum Z, of n independent, identically Poisson with parameter A/n
distributed random variables X;:

X=Zp=X1+Xp+--+Xy, n=1,2,..., (5.27)
with
k
PX;=k) = %e—(m); k=0,1,...,
and EX)=Var(X)=2; i=1,2,..n.

Random variables X (or, equivalently, their probability distributions), which can be represent-
ed for any integer n > 1 as the sum of » independent, identically distributed random variables,
are called infinitely divisible. Other probability distributions, which have this property, are the
normal, the Cauchy, and the gamma distribution.

X as given by the sum (5.27) is Poisson distributed with parameters
EX)=X\ and Var(X)=A.

Since the sum representation (5.27) satisfies the assumptions of the central limit the-
orem 5.6, X has approximately the normal distribution

X~ N, Fyx) =~ q)(?‘%)

so that, using the continuity correction 1/2 as in case of the normal approximation to
the binomial distribution,

i+3-1 i1—3-1
Piy SX<ip)~ @ —2— | -] —=—|,
(U 2) Tr T

s ®i+%—x (Di—%—x
W= ) )

Since the distribution of a nonnegative random variable is approximated by the nor-
mal distribution, analogously to (5.25), the assumption

EX)=L>3 [Var(X) =3Jh

has to be made. Hence, the normal approximation to the Poisson distribution can only
be expected to yield good results if A > 9.

(5.28)
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Continuation of Example 2.8 (page 56). Let X be the random number of staff of a
company being on sick leave a day. Long-term observations have shown that X has a
Poisson distribution with parameter A = E(X) = 10.

What is the probability that the number of staff being on sick leave a day is 9, 10, or
11?7 The normal approximation to this probability is

( : 11+%—1o 9—%—10
PO<X<I)~®| —2 | —p| —2—
J10 J10

= D(0.474) — D(-474) = 2 D(0.474) — 1
= 0.364.

This value almost coincides with the exact one, which is 0.3639. Again, making use
of the continuity correction is crucial for obtaining a good result. The approximation
for p1g, for instance, is

101 10 @(10@—10) cI)(10—;—10] 20(0.158)— 1
Pro=%0¢ ¥ T )T Um0 )T 08)
=0.1255.

The exact value is 0.1251. O

5.2.3 Local Limit Theorems

The central limit theorems investigate the convergence of distribution functions of
sums of random variables towards a limit distribution function. The local limit theo-
rems consider the convergence of probabilities P(Z =x;) towards a limit probability
if Z is the sum of discrete random variables, or they deal with the convergence behav-
ior of the densities of sums of continuous random variables. This section presents
three theorems of this type without proof.

Theorem 5.9 (Local limit theorem of Moivre-Laplace) The random variable X have
a binomial distribution with parameters n and p:

=) =bGisnp) = (1) pi(1-py s =01,

Then,

2
. . 1 1 i—np
lim § /np(1—p) b(i;n,p)— exp| —= | — =0.
n—e J2n 20 [np(1=p)

The convergence is uniform with regard to i =0, 1, ..., n. u
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Theorem 5.9 implies that for sufficiently large n an acceptable approximation for the
probability b(i; n,p) is

(5.29)

2
. 1 1 i—np
blisnp) v~ exp| -1 | 22| |,
) e Tty 2(./np(1—p)]

Theorem 5.10 (Poisson approximation to the binomial distribution) If the parame-
ters n and p of the binomial distribution tend to oo and 0, respectively, in such a way
that their product np stays constant A, A > 0, then

- N A
nlgnwb(l,n,p)—i!e ;0 i=0,1,....

p—0
np=h

Proof From the definition of the binomial coefficient ('l') (see formula (1.5)),
binp) _n—1+1 _p np ( 1)( P )
= . = —\1-< /|l 5.30
b(i—1;n,p) i I-p i(l1-p) i/\1-P (5-30)
After having taken the limit, the b(i;n,p) can no longer depend on » and p, but are
only functions of i and A, which are denoted as A(i, A). From (5.30),

hm{ b(i;n,p) }_ hG,N)
no | bi—Linp))  hi-La) i’
p—0
np=»\

i=1,2,..

Therefore, the limit probabilities of the binomial distribution satisfy
h(i,x):%h(z‘— L) i=1,2,..
Fori=1 and i =2, this functional equation becomes
A(1,A)=Ah(0,1) and A(2,\) = %h(l,k) = 72“—2!}1(0,7»).
Induction yields
h(i,\) = i‘—: h(0,2).
The normalizing condition (2.6) at page 43 gives the still unknown constant #(0,1):
SZo 1) =h0.0) Z2o B =h0, 1)t =1
so that 4(0, 1) = e~*. This completes the proof o.f the theorem:

h(i,k):%e—l; i=0,1,.. n

Note: The result of this theorem is formula (2.40) at page 57.
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Example 5.5 Let X have a binomial distribution with parameters n = 12 and p = 0.4.
For the exact probability
pa= (142) (0.4)4(0.6)% = 0.2128

the local limit theorem (5.29) yields the appoximative value

1 1 ( 4-12x0.4 )
~ exp| -5 | —=—=—= |[=0.2104,
ba J2n J12x0.4%0.6 ]{ 2\ /12x0.4x0.6 }

whereas the central limit theorem (5.24) provides the approximative value

( 4+112x04 j ( 4-1-12x04 j
pa=®@ -
J 12x0.4x0.6 V12x0.4%0.6
=®(-0.17680 — O(-0.7660) = 0.2149.
The Poisson approximation with np = 4.8 gives the worst result:
4
P % 48— 0.1820. m|

To formulate the next local limit theorem for sums of discrete random variables, the
following definition is needed:

Definition 5.3 A discrete random variable X, which for given real numbers ¢ and b
with >0, can only take on values of the form

Xp=a+kb; k=0,£1,12, .., (5.31)
is called lattice distributed. The corresponding probability distribution of X is called
a lattice distribution. The largest constant b, which allows the representation of all
realizations of X by (5.31), is called the lattice constant of X or its probability distri-
bution. Specifically, a lattice distribution with a = 0 is an arithmetic distribution. ®

Lattice distributed random variables obviously include all integer-valued random var-
iables as geometrically, binomially, and Poisson distributed random variables.

Theorem 5.11 (Gnedenko) Let {X,X,,...} be a sequence of independent, identi-
cally lattice distributed random variables with values (5.31), finite mean value p,
finite, positive variance 02, and

Pu(m)=PX1+Xo+ - +Xy =na+mb), m=0,£1,12,....

Then the following limit relation is true uniformly in m if and only if b is the lattice
constant of the X1, X5, ... :

) cJn 1 1(an+mb—pun 2 3
nll_I)IC}o{ A Pn(m)—mexp{—z(vj :' }—0. |
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Finally, a local limit theorem is given which deals with the convergence of the densi-
ty of sums of random variables.

Theorm 5.12 (Gnedenko) Let {X,X,,...} be a sequence of independent, identically
distributed, continuous random variables with bounded density, mean value p = 0, and
positive, finite variance 62. If f;(x) denotes the density of

l 2’;1 X is

c/n L

then f,(x) converges uniformly in x to the density of the standard normal distribution:

1 e—xz/Z

J2n ’

,}glgofn(x)=®(x)= — 0 <X <+00. u

5.3 EXERCISES

5.1) On average, 6% of the citizens of a large town suffer from severe hypertension.
Let X be the number of people in a sample of » randomly selected citizens from this
town which suffer from this disease.

(1) By making use of Chebyshev's inequality find the smallest positive integer 7,
with property
P(

1X~0.06] >0.01)<0.05 forall n with 1> 1.

(2) Find a positive integer n;, satisfying this relationship by using theorem 5.6.

5.2) The measurement error X of a measuring device has mean value £(X)=0 and
variance Var(X) =0.16. The random outcomes of » independent measurements are
X1,X3,....,Xn, 1.e., the X; are independent, identically as X distributed random variab-
les.

(1) By the Chebyshev's inequality, determine the smallest integer n = n,;, with pro-
perty that the arithmetic mean of » measurements differs from E(X) =0 by less than
0.1 with a probability of at least 0.99.

(2) On the additional assumption that X is continuous with unimodal density and
mode x,; =0, solve (1) by applying the Gauss inequality (5.4).

(3) Solve (1) on condition that X = N(0,0.16).

5.3) A manufacturer of TV sets knows from past experience that 4% of his products
do not pass the final quality check.

(1) What is the probability that in the total monthly production of 2000 sets between
60 and 100 sets do not pass the final quality check?

(2) How many sets have at least to be produced a month to make sure that at least
2000 sets pass the final quality check with probability 0.9?
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5.4) The daily demand for a certain medication in a country is given by a random var-
iable X with mean value 28 packets per day and with a variance of 64. The daily de-
mands are independent of each other and distributed as X.

(1) What amount of packets should be ordered for a year with 365 days so that the
total annual demand does not exceed the supply with probability 0.99?

(2) Let X; be the demand atday i = 1,2, ..., and

Xvn = % g:lX['.

Determine the smallest integer # = n,;, so that the probability of the occurrence of
the event

| X, —28] >0.02

does not exceed 0.05.

5.5) According to the order, the rated nominal capacitance of condensers in a large
delivery should be 300 puF. Their actual rated nominal capacitances are, however,
random variables X with

E(X) =300 and Var(X) = 144.

(1) By means of Chebyshev's inequality determine an upper bound for the probability
of the event 4 that X does not differ from the rated nominal capacitance by more than
5%.

(2) Under the additional assumption that X is a continuous random variable with uni-
modal density and mode x,; = 300, solve (1) by means of the Gauss inequality (5.4).

(3) Determine the exact probability on condition that
X=N(300, 144).

(4) A delivery contains 600 condensers. Their capacitances are independent and iden-
tically distributed as X. The distribution of X has the same properties as stated under
(2). By means of the Gauss inequality (5.4) give a lower bound for the probability
that the arithmetic mean of the capacitances of the condensers in the delivery differs
from E(X) =300 by less than 0.01.

5.6) A digital transmission channel distorts on average 1 out of 10 000 bits during
transmission. The bits are transmitted independently of each other.

(1) Give the exact formula for the probability of the random event 4 that amongst 100
sent bits there are at least 80 bits distorted.

(2) Determine the probability of 4 by approximation of the normal distribution to the
binomial distribution.

5.7) Solve the problem of example 2.4 (page 51) by making use of the normal approx-
imation to the binomial distribution and compare with the exact result.
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5.8) Solve the problem of example 2.6 (page 54) by making use of the normal approx-
imation to the hypergeometric distribution and compare with the exact result.

5.9) The random number of asbestos particles per 1mm?> in the dust of an industrial
area is Poisson distributed with parameter A = 8.

What is the probability that in 1em?> of dust there are
(1) at least 10 000 asbestos particles, and
(2) between 8000 and 12 000 asbestos particles (including the bounds)?

5.10) The number of e-mails, which daily arrive at a large company, is Poisson dis-
tributed with parameter

A =22400.
What is the probability that daily between between 22 300 and 22 500 e-mails arrive?

5.11) In 1kg of a tapping of cast iron melt there are on average 1.2 impurities.
What is the probability that in a 1000kg tapping there are at least 1400 impurities?
The spacial distribution of the impurities in a tapping is assumed to be Poisson.

5.12) After six weeks, 24 seedlings, which had been planted at the same time, reach
the random heights X, X>, ..., X4, which are independent, identically exponentially

distributed as X with mean value p = 32¢m.
Based on the Gauss inequalities, determine
(1) an upper bound for the probability that the arithmetic mean

differs from p by more than 0.06 cm,
(2) alower bound for the probability that the deviation of X4 from p does not exceed
0.06¢cm.

5.13) Under otherwise the same assumptions as in exercise 5.12, only 6 seedlings had
been planted. Determine

(1) the exact probability that the arithmetic mean

- 1+6
X6=gEi=1Xi

exceeds 1 =32c¢m by more than 0.06 cm (Hint: Erlang distribution),

(2) by means of the central limit theorem, determine a normal approximation to the
probability

P(Xg —32>0.06).

Give reasons why the approximation may not be satisfactory.
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5.14) The continuous random variable X is uniformly distributed on [0, 2].
(1) Draw the graph of the function
pe)=P(X-1] z¢)
independenceof £,0<e< 1.
(2) Compare this graph with the upper bound for the probability
P(IX-1|2¢)
given by the Chebyshev inequality, 0 <e < 1.
(3) Try to improve the Chebyshev upper bound for
P(lX-1]2¢)
by the Markov upper bound (5.8) for a =3 and a = 4.



PART 11

Stochastic Processes

CHAPTER 6

Basics of Stochastic Processes

6.1 MOTIVATION AND TERMINOLOGY

A random variable X is the outcome of a random experiment under fixed conditions.
A change of these conditions will influence the outcome of the experiment, i.e. the
probability distribution of X will change. Varying conditions can be taken into ac-
count by considering random variables which depend on a deterministic parameter ¢:
X =X(¢). This approach leads to more general random experiments than the ones de-
fined in section 1.1. To illustrate such generalized random experiments, two simple
examples will be considered.

Example 6.1 a) At a fixed geographical point, the temperature is measured every day
at 12:00. Let x; be the temperature measured on the ith day of a year. The value of
x; will vary from year to year and, hence, it can be considered a realization of a ran-
dom variable X;. Thus, X; is the (random) temperature measured on the ith day of
a year at 12:00. Apart from random fluctuations of the temperature, the X; also de-
pend on a deterministic parameter, namely on the time, or, more precisely, on the day
of the year. However, if one is only interested in the temperatures X7, X,, X3 on the
first 3 days (or any other 3 consecutive days) of the year, then these temperatures are
at least approximately identically distributed. Nevertheless, indexing the daily tem-
peratures is necessary, because modeling the obviously existing statistical dependence
between the daily temperatures requires knowledge of the joint probability distribu-



222 APPLIED PROBABILITY AND STOCHASTIC PROCESSES

tion of the random vector (X, X, X3). This situation and the problems connected
with it motivate the introduction of the generalized random experiment daily meas-
urement of the temperature at a given geographical point at 12:00 during a year. The
random outcomes of this generalized random experiment are sequences of random
variables {X|,X>,...,X365} with the X; being generally neither independent nor

identically distributed. If on the ith day temperature x; has been measured, then the
vector (x1,x7,...,X365) can be interpreted as a function x = x(f), defined at discrete
time points ¢, ¢ € [1,2,...,365] : x(¢) =x; for t=1i. Vector (x1,x7,...,X365) is a real-
ization of the random vector (X1, X5, ..., X365).

b) If a sensor graphically records the temperature over the year, then the outcome of
the measurement is a continuous function of time #: x =x(¢), 0 <7< 1, where x(¢) is
realization of the random temperature X(#) at time ¢ at a fixed geographical location.
Hence it makes sense to introduce the generalized random experiment continuous
measurement of the temperature during a year at a given geographical location. It
will be denoted as {X(¢), 0<¢<1}.

A complete probabilistic characterization of this generalized random experiment re-
quires knowledge of the joint probability distributions of all possible random vectors

X(t1), X(t2), s X(tn)); 0< () <ta<--<tn<1; n=1,2,...

This knowledge allows for statistically modelling the dependence between the X(z;)
in any sequence of random variables X(¢), X(¢»), ...,X(¢s). It is quite obvious that
for small time differences ;.1 —¢; there is a strong statistical dependence between
X(¢;) and X(¢;.1). But there may also be a dependence between X(#;) and X(#;,) for
large time differences 5, —¢; due to the inertia of weather patterns over an area. O

Example 6.2 The deterministic parameter, which influences the outcome of a random
experiment, needs not be time. For instance, if at a fixed time point and a fixed obser-
vation point the temperature is measured along a vertical of length L to the earth's
surface, then one obtains a function x = x(4), 0 < 4 < L, which obviously depends on
the distance / of the measurement point to the earth's surface. But if the experiment
is repeated in the following years under the same conditions (same time, location,
and measurement procedure), then, in view of the occurrence of nonpredictable
influences, different functions x = x(#) will be obtained. Hence, the temperature at
distance / is a random variable X(/4) and the generalized random experiment measur-
ing the temperature along a vertical of length L, denoted as {X(h), 0 <h <L}, has
outcomes, which are real functions of 4: x =x(h), 0 <h < L.

In this situation, it also makes sense to consider the temperature in dependence of both
h and the time point of observation ¢: x =x(h,f); 0 <h <L, t>0. Then the observa-

tion x depends on a vector of deterministic parameters:

x=x(0), 0 =(h,1).
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In this case, the outcomes of the corresponding generalized random experiment are
surfaces in the (4,1,x)-space. However, this book only considers one-dimensional
parameter spaces.

A
x(d)
5.05

5.00 \\/

4.95 -

\4
SN

0 1 2 3 4 5 6 7 8 9 10

Figure 6.1 Random variation of the diameter of a nylon rope

An already 'classical' example for illustrating the fact that the parameter need not be
time is due to Cramer, Leadbetter (1967): A machine is supposed to continuously
produce ropes of length 10m with a given nominal diameter of 5 mm. Despite main-
taining constant production conditions, minor variations of the rope diameter can
technologically not be avoided. Thus, when measuring the actual diameter x of a sin-
gle rope at a distance d from the origin, one gets a function x = x(d) with 0 <d < 10.
This function will randomly vary from rope to rope. This suggests the introduction of
the generalized random experiment continuous measurement of the rope diameter in
dependence on the distance d from the origin. If X(d) denotes the diameter of a ran-
domly selected rope at a distance d from the origin, then it makes sense to introduce
the corresponding generalized random experiment

{X(d), 0<d <10}
with outcomes x = x(d), 0 <d <10 (Figure 6.1). O

In contrast to the random experiments considered in chapter 1, the outcomes of which
are real numbers, the outcomes of the generalized random experiments, dealt with in
examples 2.1 and 2.2, are real functions. Hence, in the literature such generalized
random experiments are frequently called random functions. However, the terminol-
ogy stochastic processes is more common and will be used throughout the book. In
order to characterize the concept of a stochastic process more precisely, further nota-
tion is required: Let the random variable of interest X depend on a parameter ¢, which
assumes values from a set T: X=X(?), t € T. To simplify the terminology and in
view of the overwhelming majority of applications, in this book the parameter ¢ is
interpreted as time. Thus, X(?) is the random variable X at time ¢ and T denotes the
whole observation time span. Further, let Z denote the set of all values the random
variables X(¢) can assume for all ¢ € T.
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Stochastic Process A family of random variables {X(¢), ¢t € T} is called a stochastic
process with parameter space T and state space Z. .

If T is a finite or countably infinite set, then {X(¢), t € T} is called a stochastic pro-
cess in discrete time or a discrete-time stochastic process. Such processes can be
written as a sequences of random variables {X7, X5,...} (example 6.1 a). On the
other hand, every sequence of random variables can be thought of a stochastic process
in discrete time. If T is an interval, then {X(¢), t € T} is a stochastic process in contin-
uous time or a continuous-time stochastic process. A stochastic process {X(¢), t € T}
is said to be discrete if its state space Z is a finite or a countably infinite set, and a sto-
chastic process {X(¢), t € T} is said to be continuous if Z is an interval. Thus, there
are discrete stochastic processes in discrete time, discrete stochastic processes in con-
tinuous time, continuous stochastic processes in discrete time, and continuous stoch-
astic processes in continuous time. Throughout this book the state space Z is usually
assumed to be a subset of the real axis.

If the stochastic process {X(#), t € T} is observed over the whole time period T, i.e.
the values of X(¢) are registered for all # € T, then one obtains a real function
x=x(), teT.

Such a function is called a sample path, a trajectory, or a realization of the stochastic
process. In this book the concept sample path is used. The sample paths of a stochas-
tic process in discrete time are, therefore, sequences of real numbers, whereas the
sample paths of stochastic processes in continuous time can be any functions of time.
The sample paths of a discrete stochastic process in continuous time are piecewise
constant functions (step functions). The set of all sample paths of a stochastic process
with parameter space T is, therefore, a subset of all functions over the domain T.

In engineering, science, and economics there are many time-dependent random phe-
nomena which can be modeled by stochastic processes: In an electrical circuit it is
not possible to keep the voltage strictly constant. Random fluctuations of the voltage
are for instance caused by thermal noise. If v(¢) denotes the voltage measured at time
point ¢, then v = v(¢) is a sample path of a stochastic process { /(f), t >0} where V(¢)
is the random voltage at time ¢ (Figure 6.2). Producers of radar and satellite support-
ed communication systems have to take into account a phenomenon called fading.

A
Av(t)

0 t

Figure 6.2 Voltage fluctuations caused by random noise
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This is characterized by random fluctuations in the energy of received signals caused
by the dispersion of radio waves as a result of inhomogeinities in the atmosphere and
by meteorological and industrial noise. Both meteorological and industrial noise cre-
ate electrical discharges in the atmosphere which occur at random time points with
randomly varying intensity. 'Classic' applications of stochastic processes in economics
are modeling the fluctuations of share prices, rendits, and prices of commodities over
time. In operations research, stochastic processes describe the development in time
of the 'states' of queueing, inventory, and reliability systems. In statistical quality con-
trol, they model the fluctuation of quality criteria over time. In medicine, the develop-
ment in time of 'quality parameters' of health as blood pressure and cholesterol level
as well as the spread of epidemics are typical examples of stochastic processes.

Important impulses for the development and application of stochastic processes came
from biology: stochastic models for population dynamics from cell to mammal level,
competition models (predator-prey), capture-recapture models, growth processes,
and many more.

6.2 CHARACTERISTICS AND EXAMPLES

From the mathematical point of view, the given heuristic explanation of a stochastic
process needs to be supplemented. Let F#(x) be the distribution function of X(¢):
Fix)=PX(¥)<x), teT.
The family of the one-dimensional distribution functions
{Fi(x),t € T}

is the one- dimensional probability distribution of {X(¢), t € T}. In view of the statis-
tical dependence, which generally exists between the X(¢{), X(¢2), ..., X(¢») for any
t1,12,...,tn , the family of the one-dimensional distribution functions {F(x), t € T}
does not completely characterize a stochastic process (see examples 6.1 and 6.2).
A stochastic process {X(¢), t € T} is only then completely characterized if for all pos-
itive integers n = 1,2, ..., for all n-tuples {¢1,7,,...,t»} with ¢; € T, and for all vectors
{x1,x2,...,xn} with x; € Z, the joint distribution function of the random vector
X(t1),X(tp), ..., X(tn)) is known:

Firtgentn(1,X2, cesXn) = POXE) S 31, X(02) S22, Xtn) Sx). (6.1)
The set of all these joint distribution functions defines the probability distribution of

the stochastic process. For a discrete stochastic process, it is generally simpler to cha-
racterize its probability distribution by the probabilities

P(X(t)) € 41, X(tp) € 4y, ..., X(tn) € An)

forall ¢1,¢7,....,ty witht; e T and4; cZ; i=1,2,...,n;, n=1,2,....
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Trend Function Assuming the existence of E(X(¢)) for all ¢t € T, the trend or trend
function of the stochastic process {X(f), t € T} is the mean value of X(¢) as a function
of t:

m(t) = E(X(¢)), teT. (6.2)
Thus, the trend function of a stochastic process describes its average development of
the process in time. If the densities f;(x) = dF(x)/dx exist, then
mt)=["xfx)dx, teT.

Covariance Function The covariance function of a stochastic process {X(¢), t € T}
is the covariance between the random variables X(s) and X{(¢) as a function of s and .
Hence, in view of (3.37) and (3.38), page 135,

C(s, ) = Cov(X(s),X(1) = E([X(s) —m(s)] [X()) —m(D)])); s,te T, (6.3)
or
C(s,t) = E(X(s) X(?)) — m(s)m(?); s,te T. (6.4)
In particular,
C(2, 1) = Var(X(1)). (6.5)
The covariance function is a symmetric function of s and :
C(s, ) = C(t,5). (6.6)
Since the covariance function C(s, ?) is a measure for the degree of the statistical de-
pendence between X(s) and X(¢), one expects that
lim C(s,7) =0. (6.7)

\Fs \ —>00

Example 6.3 shows that this need not be the case.

Correlation Function The correlation function of {X(¢), t € T} is the correlation
coefficient p(s,?) = p(X(s),X(¢)) between X(s) and X(f) as a function of s and .
According to (3.43),

Cov(X(s),X(?))

JVar(X(s) [Var(X(t)

p(s,f) = (6.8)

The covariance function of a stochastic process is also called autocovariance func-
tion and the correlation function autocorrelation function. This terminology avoids
mistakes, when dealing with covariances and correlations between X(s) and Y(¢) for
different stochastic processes {X(¢), t € T} and {¥(¢), t € T}. The cross covariance
function between these two processes is defined as

Cls, 1) = Cov (X(s), Y(1)) = E(IX(s) - mx(s)] [Y() ~my(@)]); s,t€T, (69)

with mx(¢) = E(X(¢)) and my(¢) = E(Y(¢)). Correspondingly, the cross correlation
function between the processes {X(f), t € T} and {¥(¢), t € T} is
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Cov (X(s), Y(¥))
JVar(X(s) [Var(Y(t)

As pointed out in section 3.1.3 (page 139), the advantage of the correlation coefficient
to the covariance is that it allows for comparing the (linear) dependencies between
different pairs of random variables. Being able to compare the dependency between
two stochastic processes by their cross-correlation function is important for processes,
which are more or less obviously dependent as, for instance, the development in time
of air temperature and air moisture or air temperature and CO, content of the air.

p(s,7) = (6.10)

Semi-variogram The semi-variogram or, shortly, variogram of a stochastic process
{X(®), t € T} is defined as

1
Y(s.0) = 5 ELX(0) = X)) (6.11)
as a function of s and #; s, ¢ € T. The variogram is obviously a symmetric function in
s and t: y(s, 1) =y(t,5).

The concept of a variogram has its origin in geostatistics for describing properties of
random fields, i.e., stochastic processes, which depend on a multi-dimensionally
deterministic parameter t, which refers to a location, but may also include time.

Example 6.3 (cosine wave with random amplitude) Let
X(f) = A coswt,
where 4 is a nonnegative random variable with E(4) < c. The process {X(¢), > 0}
can be interpreted as the output of an oscillator which is selected from a set of identi-
cal ones. (Random deviations of the amplitudes from a nominal value are technolog-
ically unavoidable.) The trend function of this process is
m(f) = E(A) cos wt.

By (6.4), its covariance function is
C(s, 1) = E([A cos ws][A4 cos of]) — m(s)m(t)

= [E(4%) - (E(4))*](cos ws)(cos(w)).
Hence,
C(s,?) = Var(A4)(cos s)(cos mf).

Obviously, the process does not have property (6.7). Since there is a functional rela-
tionship between X(s) and X(¢) for any s and ¢, X(s) and X(¢) cannot tend to become
independent for |£—s| — 0. Actually, the correlation function p(s,?) between X(s)
and X(¢) is equal to 1 for all (s, 7). O

The stochastic process considered in example 6.3 has a special feature: For a given
value a that the random variable 4 has assumed, the process develops in a strictly
deterministic way. That means, by only observing a sample path of such a process
over an arbitrarily small time interval, one can predict the further development of the
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Figure 6.3 Pulse code modulation

sample path with absolute certainty. (The same comment refers to examples 6.6 and
6.7.) More complicated stochastic processes arise when random influences continu-
ously, or at least repeatedly, affect the phenomenon of interest. The following exam-
ple belongs to this category.

Example 6.4 (pulse code modulation) A source generates symbols 0 or 1 independ-
ently with respective probabilities p and 1 - p. The symbol '0' is transmitted by send-
ing nothing during a time interval of length one. The symbol 'l' is transmitted by
sending a pulse with constant amplitude @ during a time unit of length one. The source
has started operating in the past. A stochastic signal (sequence of symbols) generated
in this way is represented by the stochastic process {X(?), ¢ € (-0, +0)} with

+00

X(t):”:Z_OOAnh(t—n), n<t<n+l1, (6.12)

where the 4,; n=0,11,%2,...; are independent binary random variables defined by

4 = 0 with probability p,
" a with probability 1-p,

and A(?) is given by

1 for 0<t<1
h(t) = ’
® { 0 elsewhere.

For any ¢,
0 with probability D,

X = {a with probability 1 -—p.

For example, the section of a sample path x = x(¢) plotted in Figure 6.3 is generated
by the following partial sequence of a signal:

---10110071---.

The role of the function A(%) is to keep X(¢) at level 0 or 1, respectively, in the inter-
vals [n,n+1). Note that the time point =0 coincides with the beginning of a new
transmission period. The process has a constant trend function:

m(f)=a- PX(H) = a)+0 - PX(H) = 0) = a(1 — p).



6 BASICS OF STOCHASTIC PROCESSES 229

Forn<s,t<n+1; n=0,%1,12, ..,
E(X()X(2)) = E(X(s)X()|X(s) = a) - P(X(s) = @)
+ E(X(s)X()|X(s) = 0) - P(X(s) = 0)
=a’(1-p).
Therefore,
Cov(X(s), X(1)) = a*(1 —p)—a*(1 = p)® =a’p(1 —p) for n<s,t<n+1.

Ifm<s<m+1landn<t<n+1withm#n, then X(s) and X(¢) are independent ran-
dom variables. Hence, the covariance function of {X(¢), ¢ € (—o0,+0)} is

azp(l —-p) for n<s,;t<n+1; n=0,£1,4£2,...
0 elsewhere

Cs, 1) = {

Although the stochastic process analyzed in this example has a rather simple struc-
ture, it is of considerable importance in physics, electrical engineering, and commu-
nication; for more information, see e.g. Gardner (1989). A modification of the pulse
code modulation process is considered in example 6.8. As the following example
shows, the pulse code modulation is a special shot noise process. O

Example 6.5 (shot noise process) At time points 7y, pulses of random intensity 4,
are induced. The sequences {71, T5,...} and {4,A4,,...} are assumed to be discrete-

time stochastic processes with properties
1) With probability 1, 7; < T <--- and nh_r)rgo Ty =00,
2) EAn)<o;n=1,2,....

In communication theory, the sequence {(Tn,4,); n=1,2,...} is called a pulse pro-
cess. (In section 7.1, it will be called a marked point process.) The function A(f), the
response of a system to a pulse, has properties

h(f)=0 fort<0 and lim A(f)=0. (6.13)
t—0
The stochastic process {X(¢), ¢ € (-, +)} defined by
X(0)= 2oy Anh(t=Ty) (6.14)

is called a shot noise process or just shot noise. It quantifies the additive superposition
of the responses of a system to pulses. The factors A4, are sometimes called am-
plitudes of the shot noise process. In many applications, the 4, are independent, iden-
tically distributed random variables, or, as in example 6.4, even constant.

If the sequences of the 7, and 4, are doubly infinite,
{Tp; n=0,£1,+2,...} and {4,; n=0,£1,%12,...},

then the shot noise process {X(?), t € (—o,+0)} is defined as
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X)) =221 Ay h(t - Ty). (6.15)

A well-known physical phenomenon, which can be modeled by a shot noise process,
is the fluctuation of the anode current in vacuum tubes (fube noise). This fluctuation
is caused by random current impulses, which are initiated by emissions of electrons
from the anode at random time points (Schottky effect); see Schottky (1918). The
term shot noise has its origin in the fact that the effect of firing small shot at a metal
slab can be modeled by a stochastic process of structure (6.15). More examples of
shot noise processes are discussed in chapter 7, where special assumptions on the
underlying pulse process are made. O

6.3 CLASSIFICATION OF STOCHASTIC PROCESSES

Stochastic processes are classified with regard to properties which reflect, e.g., their
dependence on time, the statistical dependence of their developments over disjoint
time intervals, and the influence of the history or the current state of a stochastic
process on its future evolvement. In the context of example 6.1: Has the date any
influence on the daily temperature at 12:00? (That need not be the case if the meas-
urement point is near to the equator.) Or, has the sample path of the temperature in
January any influence on the temperature curve in February? For reliably predicting
tomorrow's temperature at 12:00, is it sufficient to know the present temperature or
would knowledge of the temperature curve during the past two days allow a more
accurate prediction? What influence has time on trend or covariance function?
Special importance have those stochastic processes for which the joint distribution
functions (6.1) only depend on the distances between ¢; and ¢;,, i.e., only the relative
positions of #{,1,...,¢t; to each other have an impact on the joint distribution of the
random variables X(t1),X(¢,), ..., X(¢n).

Strong Stationarity A stochastic process {X(¥), t € T} is said to be strongly station-
ary or strictly stationary if for alln = 1,2, ..., for any real 7, for all n-tuples
(t1,tp,..rty) witht; e Tand t;+41€T; i=1,2,..,m;

and for all n-tuples (x,x2,...,xn) , the joint distribution function of the random vec-
tor (X(¢1),X(#2), ...,X(¢n)) has property

Fti oty tn(X1,X2, s Xn) = Ftj1, ty41,, ta41(X15,X2,5 000 X)), (6.16)

That means, the probability distribution of a strongly stationary stochastic process is
invariant against absolute time shifts. In particular, by letting » = 1 and ¢ = ¢, proper-
ty (6.16) implies that Fy(x) = Fr(x) for all t with arbitrary but fixed ¢ and x. That
means F'(x) actually does not depend on . Hence, for strongly stationary processes
there exists a distribution function F(x), which does not depend on ¢, so that

Fi(x)=F(x) forallt € Tand x € Z. (6.17)
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Hence, trend and variance function of {X(¢), t € T} do not depend on ¢ either:
m(t) = EX(1)) =m, Var(X(1)) = o2 (6.18)

(given that the parameters m and o2 exist). The trend function of a strongly station-
ary process is, therefore, a parallel to the time axis, and the fluctuations of its sample
paths around the trend function experience no systematic changes with increasing ¢.

What influence has the strong stationarity of a stochastic process on its covariance
function?

To answer this question, the special values n =2, ¢t; =0, t, =¢—s, and T =s are sub-
stituted in (6.16). This yields for all s < ¢,

FO,tfs(xlax2) = FS,l(xl’x2)9

i.e. the joint distribution function of the random vector (X5, X;), and, therefore, the
mean value of the product X;X;, depend only on the difference Tt =¢—s, and not on
the absolute values of s and ¢. Hence, by formulas (6.4) and (6.18), C(s, f) must have
the same property:

C(s,t)=C(s, s +1) = C(0, 1) = C(7).

Thus, the covariance function of strongly stationary processes depends only on one
variable:

C(1) = Cov(X(s),X(s+ 1)) forall s € T. (6.19)

Since the covariance function C(s,?) of any stochastic process is symmetric in the
variables s and ¢, the covariance function of a strongly stationary process is a sym-
metric function with symmetry center T =0, i.e. C(t) = C(—7) or, equivalently,

C(r)=C(Il). (6.20)

In practical situations it is generally not possible to determine the probability distribu-
tions of all possible random vectors {X(¢1), X(¢»), -+, X(¢4)} in order to check whether
a stochastic process is strongly stationary or not. But the user of stochastic processes
is frequently satisfied with the validity of properties (6.18) and (6.19). Hence, based
on these two properties, another concept of stationarity had been introduced. It is,
however, only defined for second-order processes:

Second-Order Process A stochastic process {X(¢), t € T} is called a second-order
process if

E(X2(t)) < forall t e T. (6.21)

The existence of the second moments of X(7) as required by assumption (6.21) implies
the existence of the covariance function C(s, ¢) for all s and ¢, and, therefore, the exist-
ence of the variances Var(X(¢)) and mean values E(X(¢)) forallz € T (see inequality
of Schwarz (5.11), page 195). (In deriving (6.20) we have implicitly assumed the
existence of the second moments E(X2(¢)) without referring to it.)
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Weak Stationarity A stochastic process {X(¢), t € T} is said to be weakly station-
ary if it is a second order process and has properties (6.18) and (6.19):

)m(t)=m forallzeT.

2) C(t) = Cov(X(s),X(s + 1)) foralls e T.

From (6.18) with =0 :

Var(X(0)) = C(0) = 2. (6.22)
The covariance function C(t) of weakly stationary process has two characteristic pro-
perties (without proof):
1) |C(v)| < o2 forall 1,
2) C(7) is positive semi-definite, i.e. for all n, all real numbers ay,as,...,a,, and for
all t1,t0,...,tn; t; € T,

2:'1:1 Zj}"l:l a,-ajC(tl- —fj) > O

A strongly stationary process is not necessarily weakly stationary, since there are
strongly stationary processes, which are not second order processes. But, if a second
order process is strongly stationary, then, as shown above, it is also weakly stationary.
Weakly stationary processes are also called wide-sense stationary, covariance statio-
nary, or second-order stationary.

Further important properties of stochastic processes are based on properties of their
increments:

The increment of a stochastic process {X(¢), t € T} with respect to the interval [7],77)
is the difference X(#p) — X(¢}).

Hence, the variogram y(s, ) as defined by (6.11) is a half of the second moment of the
increment X(¢) — X(s).

Homogeneous Increments A stochastic process {X(¢), t € T} is said to have homo-
geneous or stationary increments if for arbitrary, but fixed ¢1,7; € T the increment
X(ty + 1) —X(¢1 + 1) has the same probability distribution for all values of t with pro-
pertyt1j+te T, tp+1eT.

An equivalent definition of processes with homogeneous increments is:

The stochastic process {X(?), ¢ € T} has homogeneous increments if the probability
distribution of the increments X(#+1)—X(f) does not depend on ¢ for any fixed
T, t,t+teT.

Thus, the development in time of a stochastic process with homogeneous increments
in any interval of the same length is governed by the same probability distribution.
This motivates the term stationary increments.

A stochastic process with homogeneous (stationary) increments need not be station-
ary in any sense.
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Taking into account (6.22), the variogram of a stochastic process with homogene-
ous increments has a simple structure:

¥(s,5+7) = %E[(X(s) ~Xs+1)Y]

= 2 EI((X(s) = m) = (X(s +7) =m)*]

= % E[(X(s) — m)? — 2 (X(s) — m) (X(s + T) — m)) + (X(s +T) — m)?]

1 » 1 2
=-o°-C(1)+50
2 ®© 2
so that
Y1) =0 - C(v).
Therefore, in case of a process with homogeneous increments, the variogram does
yield additional information on the process compared to the covariance function.

Independent Increments A stochastic process {X(?), ¢ € T} has independent incre-
ments if for all n = 2,3, ... and for all n-tuples (¢1, 1, ....,tn) Witht| <ty <--- <ty,

t; € T, the increments

X(tp) = X(11), X(t3) = X(t2), -+, X(tn) = X(ty-1)
are independent random variables.
The meaning of this concept is that the development of the process in an interval I has
no influence on the development of the process on intervals, which are disjoint to I.
Thus, when the price of a share is governed by a process with independent increments

and there was sharp increase in year n, then this information is worthless with regard
to predicting the development of the share price in year n+1.

Gaussian Process A stochastic process {X(¢), t € T} is a Gaussian process if the
random vectors (X(¢1), X(¢), ..., X(¢;)) have a joint normal (Gaussian) distribution
for all n-tuples (¢1,¢2,....,tn) Wwith ¢; € Tandt) <tp <---<tp; n=1,2,....

Gaussian processes have an important property:
| A Gaussian process is strongly stationary if and only if it is weakly stationary.
Gaussian processes will play an important role in Chapter 11.

Markov Process A stochastic process {X(?), t € T} has the Markov(ian) property if
for all (n+ 1)-tuples (¢1,¢,...,t541) With¢; € T and t| <ty <---<t,,1, and for any
A;cZ;i=12,..,n+1;

P(X(ty41) € Ap |X(tn) € An, X(ty-1) € Ap_1,...,X(t1) € A1)
= P(X(ty11) € Ayt [X(2) € An). (6.23)
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The Markov property can be interpreted as follows: If #,,; is a time point in the
future, #, the present time poin,t and, correspondingly, #,7;,...,¢,,_1 are time points
in the past, then the future development of a process having the Markov property
does not depend on its evolvement in the past, but only on its present state. Stochas-
tic processes having the Markov property are called Markov processes.

A Markov process with finite or countably infinite parameter space T is called a dis-
crete-time Markov process. Otherwise it is called a continuous-time Markov process.
Markov processes with finite or countably infinite state spaces Z are called Markov
chains. Thus, a discrete-time Markov chain has both a discrete state space and a dis-
crete parameter space. Deviations from this terminology can be found in the literature.

Markov processes play an important role in all sorts of applications, mainly for four
reasons: 1) Many practical phenomena can be modeled by Markov processes. 2) The
input necessary for their practical application is generally more easy to provide than
the necessary input for other classes of stochastic processes. 3) Computer algorithms
are available for numerical evaluations. 4) Stochastic processes {X(f), t € T} with
independent increments and parameter space T =[0,0) always have the Markov
property. The practical importance of Markov processes is illustrated by numerous
examples in chapters 8 and 9.

Theorem 6.1 A Markov process is strongly stationary if and only if its one-dimen-
sional probability distribution does not depend on time, i.e., if there exists a distribu-
tion function F(x) with

Fi(x) = P(X({) <x) = F(x) forall teT. n

Thus, condition (6.17), which is necessary for any a stochastic process to be strongly
stationary, is necessary and sufficient for a Markov process to be strongly stationary.

Mean-Square Continuous A second order process {X(¢), ¢ € T} is said to be mean
-square continuous at pointt =ty € T if

lim E([X(19 + k) — X(10)]*) = 0. (6.24)
h—0

The process {X(?), t € T} is said to be mean-square continuous in the region Ty,
Ty < T, if it is mean-square continuous at all points ¢ € Ty.

According to section 5.2.1 (page 205), the convergence used in (6.24) is called con-
vergence in mean square. There is a simple criterion for a second order stochastic
process to be mean-square continuous at ¢ :

A second order process {X(t), t € T} is mean-square continuous at ty if and only
if its covariance function C(s,t) is continuous at (s, ) = (¢, Z().

As a corollary from this statement:

A weakly stationary process {X(t), t € (—o0,+0)} is mean-square continuous in
(—o0,+) if and only if it is mean-square continuous at time point t = 0.
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The following two examples make use of two formulas from trigonometry:

cosa cosfP = %[COS(B —a)+cos(a+P)],

cos(f—a) =cosa cosf+sina sinf.

Example 6.6 (cosine wave with random amplitude and random phase) In modify-
ing example 6.3, let

X(t) = A cos(ot+ D),

where A4 is a nonnegative random variable with finite mean value and finite variance.
The random parameter @ is assumed to be uniformly distributed over [0,27] and in-
dependent of A. The stochastic process {X(¢), t € (-, +x)} can be thought of as the
output of an oscillator, selected from a set of oscillators of the same kind, which have
been turned on at different times (see, e.g., Helstrom (1989)). Since

1 (2 1 ro: 2

E(cos(wt + D)) = 5 On cos(ot+ @) dop = ﬁ[sm(mt—i- (p)]On =0,
the trend function of this process is identically zero:
m(t) = 0.
Its covariance function is
C(s,?) = E{[A cos(ws + D)][4 cos(wt+ D)]}

=E4?) i Lz)n cos(ws + @) cos(w?+ @) do

= E(4?) i Ién %{cos o(t—s)+cos[o(s+1)+2¢]} do.

The first integrand is a constant with respect to integration. Since the integral of the
second term is zero, C(s, t) depends only on the difference t=¢—=s:

C(7) = 3 E(4?) cos wr.
Thus, the process is weakly stationary. O

Example 6.7 Let the stochastic process {X(f), t € (—»,+0)} be is defined by
X(t) = Acoswt+ Bsinwt,
where A and B are two uncorrelated random variables satisfying
E()=EB)=0 and Var(4)=Var(B)=oc2 <.
Since Var(X(t)) = 62 < o for all t, {X(¢), t € (—0,+0)} is a second order process. Its
trend function is identically zero: m(f) = 0. Thus,
C(s, 1) = E(X(s) X(2)).
For 4 and B being uncorrelated, E(4B) = E(4) E(B). Hence,
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C(s, 1) = E(A2cos ws cos of + BZsin ws sin of)
+ E(AB cos ws sin ot + AB sin ms cos of)
=62 (cos ®s cos®f + sin s sin o)

+ E(AB) (cos ms sin f + sin s cos mf)

=o2cosm(t—ys).

Thus, the covariance function depends only on the difference t=¢—s:
C(t)=c%cosot
so that the process {X(?), t € (—o,+x)} is weakly stationary. O

Example 6.8 (randomly delayed pulse code modulation) Based on the stochastic
process {X(?), t € (—o,+)} defined in example 6.4, the stochastic process
{Y(¢), t € (—o0,40)} with Y(¢)=X(t-2)

is introduced, where Z is uniformly distributed over [0, 1]. When shifting the sample
paths of the process {X(¢), t € (—o,+0)} Z time units to the right, one obtains the
corresponding sample paths of the process { Y(¢), t € (—o0,+)}. For instance, shifting
the section of the sample path, shown in Figure 6.3, Z =z time units to the right yields
the corresponding section of the sample path of the process{¥(?), ¢ € (—oo,+)} de-
picted in Figure 6.4.

The trend function of the process {¥(¢), t € (—o,+0)} is
m(f)=a(l—p).
To determine the covariance function, let B = B(s,f) denote the random event that
X(s) and X(¢) are separated by a switching pointn+Z; n=0,£1,£2,.... Then
P(B)=lt—s|, P(B)=1-|t—s]|.
The random variables X{(s) and X(¢) are independent if |¢—s| > 1 and/or B occurs.
Therefore,
C(s,t)=0 if |[t—s| > 1 and/or B occurs.

If [t—s| <1, X(s) and X(¢) are only then independent if B occurs. Hence, the covar-
iance function of { ¥(¢), t € (—o0,+w0)} given |t—s| < 1 can be obtained as follows:

Figure 6.4 Randomly delayed pulse code modulation
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€@ a’p(1-p)

> T

-1 +1

Figure 6.5 Covariance function of the randomly delayed pulse code modulation

Cs, f) = E(X(s) X(1)| B)P(B) + E(X(s) X(1)| B) P(B) — m(s) m(%)
= E(X(s)) E(X(9)) P(B) + E(LX(s)]?) P(B) — m(s) m(?)
= [a(1 - p)]*|t=s] +a*(1 = p)(1 = lt=s]) — [a(1 - p)]*.
Finally, with T = f—s, the covariance function becomes

2
_Jatp(l=p)(1—It])  for |t] <1
= {0 elsewhere

The process {¥(¢), t € (—o,+0)} is weakly stationary. Analogously to the transition
from example 6.3 to example 6.6, stationarity is achieved by introducing a uniformly
distributed phase shift in the pulse code modulation of example 6.4. O

6.4 TIME SERIES IN DISCRETE TIME

6.4.1 Introduction

All examples in sections 6.2 and 6.3 dealt with stochastic processes in continuous
time. In this section, examples for discrete-time processes are considered, which are
typical in time-series analysis. The material introduced in the previous sections is
extended and supplemented with time-series specific terminology and techniques.

A time series is a realization (trajectory, sample path) of a stochastic process in dis-
crete time {X(¢{),X(#,),...}. The time (parameter) space T of this process is finite,
ie. T={ty,tp,...,tn}, or only a finite piece of a trajectory of a stochastic process
with unbounded time space T = {¢},?,,...} has been observed. Thus, a time series is
simply a sequence of real numbers

X15X25.e05Xn
with property that the underlying stochastic process has assumed value x; at time ¢;:
X(t)=x;=x(t;); i=1,2,...,n.
Frequently it is assumed that the #1, 75, ..., #,; are equidistant, i.e.,
t;=1iAt; i=1,2,..,n.

If the underlying stochastic process {X(¢), ¢ € T} is a process in continuous time, it
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also can give rise to a time series in discrete time, simply by scanning the state of the
process at discrete (possibly equidistant) time points. As with stochastic processes,
the parameter 'time' in time series need not be the time. Time series occur in all areas,
where the development of economical, physical, technological, biological, etc. pheno-
mena is controlled by stochastic processes. Hence, with regard to application of time
series, it can be referred to the introduction of this chapter. Figures 6.1 and 6.2 are
actually time series plots. When analyzing time series, the emphasis is on numerical
aspects how to extract as much as possible information from the time series with
regard to trend, seasonal, and random influences as well as prediction and to a lesser
extent on theoretical implications regarding the underlying stochastic process.

In elementary time series analysis, the underlying stochastic process {X(?), t € T} is
assumed to have a special structure: X(f) is given by the additive superposition of
three components:

X(¢) = T(6) + S(¢) + R(D), (6.25)

where 7(7) is the trend of the time series and S(7) is a seasonal component. Both T(¢)
and S(¢) are deterministic functions of 7, whereas R(?) is a random variable, which, in
what follows, is assumed to have mean value E(R(¢)) = 0 for all ¢#. The seasonal com-
ponent captures periodic fluctuations of the observations as they commonly arise
when observing e.g. meterological parameters as temperature and rainfall against the
time. This means that a single observation of the process {X(#), € T} made at time ¢
has structure

x(t) =T+ S +r(@), (6.26)
where r(¢) is a realization of the random variable R(?).

As a numerical example for a time series, Table 6.1 shows the average of the daily
maximum temperatures per month in Johannesburg over a time period of 24 months
(in°C) and Figure 6.6 the corresponding time series plot. The effect of a seasonal
component is clearly visible.

It may make sense to add other deterministic components to the model (6.25), for
instance, a component which takes into account short-time cyclic fluctuations of the
observations, e.g. systematic fluctuations of the temperature during a day or long-time
cyclic changes in the electromagnetic radiation of the sun due to the 33-year period
of sunspot fluctuations. It depends on what information is wanted. If the averages of
the daily maximum temperatures are of interest, then the fluctuations of the tempera-
ture during a day are not relevant. If the oxygen content in the water of a river is
measured against the time, then two additional components in (6.25), namely the
water temperature and the speed of the running water, should be included. This short
section is based on the model (6.25) for the structure of a time series.

The reader will have noticed that the term trend has slightly different meanings in
stochastic processes and in time series analysis:

a) The trend of a stochastic process {X(¢), ¢ € T} is the mean value m(f) = E(X(¢)) as
a function of time. Hence, a stochastic process of structure (6.25) has trend function



6 BASICS OF STOCHASTIC PROCESSES 239

Monthi | 1 2 3 4 5 6 7 8 9 10 | 11 | 12
X; 26.3 (25.6 (24.3 (22.1 [19.1 |[16.5 [16.4 [19.8 [22.8 |25.0 (25.3 |26.1
Monthi | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24
X 27.4 (263 (24.8 [22.4 [18.6 [16.7 [15.9 {20.2 {23.4 (24.2 [25.9 [27.0

Table 6.1 Monthly average maximal temperature in Johannesburg

1 1 1 ] ] ]
1 23 45 6 7 8 910 111213141516 17 18 19 20 21 22 23 24
month
Figure 6.6 Time plot to Table 6.1

m(t) = T(t) + S(¢),
since, by assumption, E(R(¢)) = 0.

b) In time series analysis, the trend 7(¢) gives information on the average develop-
ment of the observations in the longrun. More exactly, the trend of a time series can
principally be obtained by excluding all possible sources of variations of the observa-
tions (deterministic and random ones in model (6.25)). Later numerical methods are
proposed how to do this.

Note If 7(¢) is a parallel to the z-axis, then the time series analysts say 'the time series has no
trend'. This terminology should not be extended to the trend functions m(f) of stochastic pro-
cesses. A constant trend function is after all a trend function as well.

6.4.2 Smoothing of Time Series

Smoothing techniques are simple and efficient methods to partially or completely
'level out' deterministic and/or random fluctuations within observed time series, and
in doing this they provide information on the trend 7(¢) of a time series. The idea
behind smoothing is a technique, which is well-established in the theory of linear
systems, and which is denoted there as filtration. Its basis is a linear filter, which
transforms a given time series {x;} = {x¢,x1,...,xn} of length n+ 1 into a sequence
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{yl} = {ya’y(l+19-~'3yn—b}

of length  + 1 —q — b as follows:

k+b
Y= % Wwigx;; k=a,a+1,.,n—b; 0<a,b<n, 6.27)
i=k—a
or

Vi=WoaXj—g + W g1 Xjegel T -+ WpXjap s k=a,a+1,..,n—b.

The parameter w; are the weights assigned to the respective observations x;, whereas
the interval [—a, b] determines the bandwidth of the filter. The weights will usually
be positive, but can also be negative. They must satisty the normalizing condition
T wi=1. (6.28)
To illustrate the filter, let a =5 = 2. Then (6.27) becomes
Vi =W2Xpp tW_1Xj] + WX+ W Xjy ] + W2 Xpp2.
Thus, y; is calculated as the sum of those weighted values, which the time series
{x;} assumes at time points k—2, k—1, k, k+1, and k+ 2. It is obvious that in this
way a 'smoother’ sequence than {x;} is generated, i.e. {y;} will exhibit fewer fluctu-
ations, and its fluctuations will have on average smaller amplitudes than {x;}. Depend-
ing on the aim of smoothing, bandwidth and weights have to be chosen accordingly.
If the aim is to level out periods of seasonal influence in order, e.g., to get information
on the trend of {x;}, then a large bandwidth must be applied. The weights w; should
generally be chosen in such a way that the influence of the x; on the value of y; de-
creases with increasing timely distance |¢; —¢;| of x; to yy.

Moving Averages A simple special case of (6.27) is to assume a = b and

1 = —b,—b+1,-- b
wimd 2BeT for i=—b,~b+1,---,b—1,b,

0 otherwise.

This case is denoted as M.A4.(2b+1). The corresponding bandwidth is [-b,+b] and
comprises 2b + 1 time points.

Special cases: 1) If b= 1, then yy is calculated from three observations (M.A4.(3)):
Vi = % [h—1 +Xg + Xt ]-
2) If =2, then yy is calculated from 5 observations (M.4.(5)):
Vi = % [Xf—2 +Xj—1 + X+ X1 +Xpr2]-

Frequently, the time point £ is interpreted as the presence, so that time points smaller
than & belong to the past and time points greater than £ to the future. Particularly inter-
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esting is the case when y, is calculated from the present value and past values of {x;}.
This case is given by (6.27) with b = 0. For instance, with a = 2 and equal weights,
1
V=3 Xk Xp1 +Xp2]-

In this case it makes sense to interpret y; as a prediction of the unknown value x4, 1.

Smoothing with the Discrete Epanechnikov Kernel The Epanechnikov kernel is
given by bandwidth [-b, b] and weights

-2
wy=|1-—2 ¢ for i=0, £1,..,+b.
(b+1)?2

The factor ¢ makes sure that condition (6.28) is fulfilled:

[, b@b+5 1!
C‘[” 3b+1) } '

For instance, if =2, then ¢ = 0.257 and y,, is given by
V=W X W X | T WOXf+ W Xfey] + W2 X2
=[0.556x}_o 4+ 0.889x3_1 +x; +0.889x,1 +0.556x,,0]c.

This filter is convenient for numerical calculations: 1) Its input is fully determined by
its bandwidth parameter b, and 2) the weights have the symmetry property w_; = w;.
Moreover, the observation x; has the strongest impact on y;, and the impact of the
x; on y; becomes smaller with increasing distance of #; to ;. The larger the param-
eter b, the stronger is the smoothing effect.

Exponential (Geometrical) Smoothing This type of smoothing uses all the 'past'
values and the "present" value of the given time series {xg, x{,...,x»} to calculate y;
from the observations x4, X4_q,...,xq in the following way:

yi=re()xp+A(1 =) xpy + -+ A (1= e(k)xg, k=0,1,..,n, (6.29)
where the parameter A satisfies 0 <A < 1. Hence, the weights are
w_;=A(1=N)ck) for i=k,k—1,..,1,0.

The bandwidth limitation a = a(k) = k+ 1 depends on &, whereas b =0. The factor
c(k) ensures that condition (6.28) is fulfilled (apply formula (2.18) with x =1 -1):

- 1
W)=y R (6.30)

Since ¢(0) = 1/A and ¢(1) = 1/M(2 — 1), smoothing starts with yy = x, and
Y1 =gy 1 xg =50 [xg + (1= W) x].

A strong smoothing of {x;} will be achieved with small values of A since in this case
even the 'more distant' values have a nonnegligible effect on y;. To achieve the
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k 2 4 6 8 10 12 14 16 18 | 20 | 22
A=02 (2.778(1.694[1.355(1.202{1.120(1.074(1.046(1.029|1.018|1.012{1.007
A=04 [1.563]|1.149|1.049(1.017]|1.006{1.002{1.001|1.000{1.000|1.000|1.000

Table 6.2 Convergence of c(k) towards 1 with increasing k

desired result, one should try different values of A . As a rule of thumb, start with a
value between 0.1 and 0.3.

Table 6.2 shows that even for fairly small values of A the factor c(k) tends to 1 rather
fast. Therefore, in particular when smoothing large time series (which possibly origi-
nated in the 'distant past'), c(k) =1 is frequently assumed to be true right from the
beginning, i.e., for all k=0,1,.... Under this assumption, equation (6.29) can be
written in the recursive form

V= hxg+ (L= W)ye s Yo =x0, k=1,2,..,m. (6.31)

Table 6.3 gives some principal guidelines about the choice of A when smoothing.

Effect of the choice of A on: A large A small
Smoothing little strong
Weights of distant observations small large
Weights of near observations large small

Table 6.3 Choice of A in exponential smoothing

Table 6.4 shows once more the original time series {x;} from Table 6.1, the respec-
tive sequences {y; } obtained by M.A4.(3), by the Epanechnikov kernel (Ep) with b = 2,
and by exponential smoothing with A = 0.6 and (6.31), starting with y| =x; (Ex 0.6).
Figure 6.7 illustrates the results for exponential smoothing and for the Epanechnikov
approach. With the parameters selected, the sequences {y;} essentially follow the
seasonal (periodic) fluctuations, but cleary, the original time series has been
smoothed.

Short-Time Forecasting The recursive equation (6.31) provides an easy and effi-
cient possibility for making short-time predictions: Since y; only depends on the
observations x; made at time points before or at time %, y; can be considered an
estimate of the value the time series {x;} will assume at time point £+ 1. If this
estimate is denoted as X, |, equation (6.31) can be rewritten as

X1 =Axg+ (1= Xjy 5 yo=x0, k=1,...,n.

This equation contains all the information on the development of the time series up to
time point &, and gives an estimate of the value of the next observation at time £+ 1.
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Month i 1 2 3 4 5 6 7 8 9 10 | 11 | 12

X; 26.3 (25.6 (243 (22.1 [19.1 |16.5 [16.4 [19.8 [22.8 [25.0 [25.3 (26.1
MA3 25.4124.0 (21.8 [19.2 [17.3 [17.6 [19.7 [22.5 [24.4 [25.5 [26.3
Ep b=2 23.6 [22.6 [19.5 [18.3 [18.5 (20.0 (22.1 (24.0 (25.4 (26.1

Ex 0,6 (263 (25.9 (249 (23.2 {20.7 [18.2 [17.1 [18.7 [21.2 [23.5 [24.6 |25.5
Monthi | 13 | 14 | 15 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24
X; 27.4 (263 (24.8 (224 |18.6 [16.7 [15.9 |20.2 |23.4 |24.2 |125.9 |27.0
MA3 (266 (262 |124.5 (21.9 [19.2 |17.1 [17.6 |19.8 |22.6 [24.5 |25.7
Epb=2 |26.2 [25.6 |24.1 [21.8 [19.5 [18.3 [18.5 (20.0 [22.1 (24.2
Ex 0.6 |26.6 |26.4 |25.4 [23.6 [20.6 [18.3 [16.9 [18.9 [21.6 [23.2 [24.9 {26.2

Table 6.4 Data from Table 6.1 and the effect of smoothing

AOC — original time series
27 — expon
25 —> Epan
23
21+
191
17
15+
| | | 1 1 1 1 | | | | | 1 | | | | | | | 1 | | >
1 23 456 7 8 910 111213141516 17 18 19 20 21 22 23 24
month

Figure 6.7 Time series plot for Tables 6.1 and 6.4

6.4.3 Trend Estimation

To obtain information on the trend 7(¢) of a time series by smoothing methods, the
bandwidths of the M.A4. technique and of the Epanechnikov kernel must be sufficient-
ly large to be able to filter out seasonal (periodic) fluctuations. The time series given
by Table 6.1, as with most other meterological and many economical time series, has
a period of 12 months. Thus, good smoothing results can be expected with M.A4.b with
b >12. In case of exponential smoothing, the parameter A needs to be small enough
to achieve good smoothing results. All these techniques require sufficiently long time
series with respect to the length of the periods of seasonal influences.

Smoothing techniques, however, do not yield the trend as a (continuous) function. But
they give an indication which type of continuous function can be used to model the
trend best. In many cases, a linear trend function
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T(f)= o+ Pt (6.32)

will give a satisfactory fit, at least piecewise. Thus, when the original time series {x;}
has been smoothed to a time series without seasonal component {y;), then the
problem of fitting a linear trend function to {y;} is equivalent to determining the
empirical regression line to the values {y;}. According to formulas (3.46), page 143,
estimates for the coefficients o and P are

=

il(yi S GE) :lzlyifi —-nyt

b= . B=y-ai, (6.33)

n _ T n R
> (t; —1)2 Y2 -ni?
i=1 i=1

where the y; just as the x; belong to the time points #;. For estimations of more com-
plicated trend functions, i.e. polynomial ones of higher order than 1, the use of a
statistical software package is recommended.

Removing the seasonal influences from a time series of structure (6.26) led to the
time series {y;}. The next step might be to eliminate the influence of the trend from
the time series as well. In many cases this can be achieved, at least approximately, by
going over from the time series {y;} to the time series {r;} with

ri=y; 1), i=1,2,..,n, (6.34)
where 7(¢;) is the value of the trend at time #; (obtained by smoothing the sequence
{yi}). Thus, {r;} ={ry,r2,...,rn} is the time series, which arises from the original
time series {x;} by eliminating both seasonal influences and trend. Hence, fluctua-
tions within the sequence {r;} are purely due to random influences on the develop-
ment of a time series. The sequence {r;} is frequently assumed to be the trajectory of
a weakly stationary discrete-time stochastic process {R(¢1),R(¢2), ...,R(¢n)}. The next
section deals with some stationary discrete-time stochastic processes {R(f), t € T},
which are quite popular in time series analysis as models for the random component
in time series.

Example 6.9 Let us again consider the time series of Table 6.1. This series is too
short for long-time predictions of the development of the monthly average maximum
temperatures in Johannesburg, but it is suitable as a numerical example. To eliminate
the seasonal fluctuations, the M.A4.(13) technique is applied. Table 6.5 shows the re-
sults. For instance, the values y7 and yg in the smoothed series {y7,y7, ...,y 18} are

v7= 0 x = 126342564243 4221+ 19.1+16.5+16.4

+19.84+22.8+25.0+253+26.1+27.4) =228,

Vis =5 X x; = 15(26.1+27.44263+24.8+22.4 4 18.6+ 16.7

+15.9+20.2+23.4+242+259+27.0)=23.0.
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monthi| 7 8 9 10 11 12 13 14 15 16 17 18

Vi 22.8 1228 (228 22,6 223 (222 (221|224 227 (228|229 |23.0
1(t;) 224|225 (225 (225|226 (226 |22.6 |22.6 |22.7 (227|227 |229
r; 04 (03]03]01(-03(-04]-05/)-021]00]01]02]0.1

Table 6.5 Results of a time series analysis for the data of Table 6.1

The time points ¢; in Table 6.5 refer to the respective month, i.e. t; =7, i=7,8, ..., 18,
so that

y=L 2 y=22,6 and 1=L 218 i= 125,

Table 6.5 supports the assumption that the trend of the time series {x;} in the interval
[7, 18] is a linear one. By (6.33), estimates of its slope and intercept are & = 0.0308
and 3 = 22.215. Hence, the linear trend of this time series between =7 and =18 is

T(#) = 0.0308 1 +22.215, 7<¢<18. (6.35)

Letting t=7,2, ..., 18 yields the third row in Table 6.5 and the fourth row contains the
effects r; = y; — T(¢;) of the 'purely random component' R(f). Figure 6.8 shows the
'smoothed values' y; and the linear trend (6.35) obtained from these values. O

Figure 6.8 Linear trend and M.M.(13)-smoothed values for example 6.9

Some statistical procedures require as input time series which are sample paths of
(weakly) stationary stochastic processe (see section 6.4.4). If the time series {x;} has
trend 7(¢), then the underlying stochastic process cannot be stationary. By replacing,
however, the original time series {x;} with

i=x; =T, i=1,2,....,n},
one frequently gets a time series, which is at least approximately the sample path of a
discrete-time stationary process. At least, the time series {y;} has no trend.

For getting into theory and applications of time series, the text Chatfield (2012) is
recommended. Other recent books are e.g. Madsen (2008) and Prado, West (2010).
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6.4.4 Stationary Discrete-Time Stochastic Processes

This section deals with some discrete-time stochastic processes and their stationary
representations, which play an important role in time series analysis. They are de-
signed as models for the underlying mathematical structure of stochastic processes,
which generate the observed time series, or at least as models for their random com-
ponents. Knowledge of this structure is particularly essential for the prediction of not
yet observed values and for analyzing stochastic signals in communication theory.
The models are related to smoothing techniques, but now the x; are no longer real
numbers observed over a time interval, but time-dependent random variables pointed
out before, discrete-time stochastic processes are actually sequences of random varia-
bles. Hence, in what follows they are written as {..., X_»,X_1,Xg,X],X>3,...} if the

process started 'in the past', and {X(, X1, ...} or {X|,X>,...} otherwise.

Purely Random Sequence Let {..., X_»,X |,Xy,X1,X>,...} be a sequence of inde-
pendent random variables, which are identically distributed as X with
E(X)=0 and Var(X)=oc>. (6.36)
The trend function of this sequence is identically equal to 0:
m()=0; t=0,+1,+2,....

The covariance function of the purely random sequence is

0 fors=t
C(s,0) = ’
©9) {62 for s=¢,
or, letting t =1 -3,
2
c- fort=0,
= { 0 fort#0. (6.37)

The purely random sequence is also called discrete white noise. If, in addition, the X;
are normally distributed, then {..., X_5,X_1,X0,X1,X>2,...} is called a Gaussian
discrete white noise. The purely random sequence is the most popular discrete-time
stochastic process for modelling a random noise, which superimposes an otherwise
deterministic time-dependent phenomenon. An example for this is the stochastic
process given by (6.25). Its components S(f) and 7(¢) are deterministic.

Sequence of Moving Averages of Order n. Notation: M.A4.(n). Let the random var-
iable Y; be given by

Yi=Yioci X t=0,%£1,%2, .;
where n is a positive integer, cg,cq,...,cy are finite real numbers, and {X;} is the
purely random sequence with parameters (6.36) for all r=0,+1,42,.... Thus, the
random variable Y; is constructed from the 'present' X; and from the » 'preceding'
random variables X,_1,X; 5 ..., X+—n. This is again the principle of moving averages
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introduced in the previous section fo ther realizations of the X;. In view of (4.56),
page 187,

n

Var(Y)=o2Y ¢? <o, 1=0,+1,42, ..,

i=0
sothat {Y;, t=0,£1,42, ...} is a second-order process. Its trend function is identically
equal to 0:

m(t)=E(Y;)=0 for t=0,£1,£2,....

For integer-valued s and ¢,

Cls, ) = E(Ys Yy) = Eq s ciXS_,} : { 5 ckXt_kD
=0 k=0

=

n n
= E(Z 2 ¢ csz—iXt—k) :
i=0 k=0

Since E(X,;_;X,_;) =0 for s—i#¢—k, the double sum is 0 when |¢—s| > n. Other-
wise there exist i and k so that s —i = — k. In this case C(s, ) becomes

2
Cis,t)=E X CiC| i Xy
0<i<n
0<|t=s|+i<n

2n—\t—s\
=6 Z CiClp—s|+i -

Letting t =t —s, the covariance function C(s, ) = C(t) becomes

(6.38)

(1) = Gz[cocm +C1Cgj41 + - +Cpojrjcn] for 0< 1| <n
0 for It >n °

Thus, the sequence of moving averages {Y;, t=0,%1,%2,... } is weakly stationary.

Special case: Let c¢; = P L T i=0,1,...,n. Then the sequence M.A4.(n) becomes

+

h<

1 n
A > X, =041 42, ..,

- n+1 i=0
and the covariance function (6.38) simplifies to

2
G—(l —nll) for 0< |t <n,

_Jn+1 +1
o) = 0 for |t| >n.
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Sequence of Moving Averages of Unbounded Order. Notation: M.A4.(w). Let

0

Yi= X ciX,y; t=0,%21,%£2, ..., (6.39)

i=0
where {X;} is the purely random sequence with parameters (6.36), and the c; are real
numbers.

Remark The random sequence {Y;, t=0,%1,%2,...} defined in this way is sometimes called a
linear stochastic process.

To guarantee the convergence of the infinite series (6.39) in mean square, the ¢; must
satisfy

S 2
> ? <. (6.40)
i=0

From (6.38), the covariance of the sequence M.A4.(x) is
C(t)=02X ciclsis T=0,£1,%2, ... (6.41)
i=0
In particular, the variance of Y; is

Var(Y)) = C(0) =62 X ¢?; 1=0,41,42, ...
i=0

If the doubly infinite sequence of real numbers

{"'7 ¢c2,C_1,€0,C1,C2, }
satisfies the condition

> c? <o,
j=—00

then the doubly infinite series of random variables

(Y2, Y 1, Y0, Y1, Y2, ..}
defined by

o0
Yi= X ¢ Xy, t=0,41,42, .., (6.42)
i=

is also weakly stationary, and it has covariance function
0
C(t)=0% X ¢;clgpis T=0,£1,%2,..
i=—00

and variance
o0
Var(Y))=c2 X c%; r=0,%21,42, ...
j=—00

In order to distinguish between the sequences of structure (6.39) and (6.42), they are
called one- and two-sided sequences of moving averages, respectively.
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Autoregressive Sequence of Order 1 (Notation: AR(1)) Let a and b be finite real
numbers with |a| < 1. Then a doubly infinite series {Y¥;} is recursively generated by
the equation

Y[ZCZYt_l-l-bX[; t=0,£1,£2,..., (643)
where {X;} is the purely random sequence with parameters (6.36). (Note the analogy
to the recursive equation (6.31).) Thus, the 'present' state ¥; depends directly on the

preceding one Y, | and on a random noise term b.X; with mean value 0 and variance
b252. The n-fold application of (6.43) yields

n—1
Yi=a"Yipn+b 20 a'X, ;. (6.44)
i=
This formula shows that the influence of a past state Y, on the present state ¥; on
average decreases as the distance n between Y, and Y; increases. Hence it can be
anticipated that the solution of the recurrent equation (6.43) is a stationary process.
This stationary solution is obtained by letting # tend to infinity in (6.44): Since there
holds nli)rg a"=0,

Yi=bY a'X,;, t=0,+1,%2,.... (6.45)
=0

i=
The doubly infinite random sequence {Y;; t=0,£1,42,...} generated in this way is
called a first-order autoregressive sequence or an autoregressive sequence of order 1
(shortly: AR(1)). This sequence is a special case of the random sequence defined by
(6.38), since letting there ¢; = ba' makes the sequences (6.38) and (6.45) formally
identical. Moreover, condition (6.40) is fulfilled:

0 . 0 A b2

2X(a)? =b?Y a?'=—— <.

i=0 i=0 1-a?
Thus, an autoregressive sequence of order 1 is a weakly stationary sequence. Its co-
variance function is given by formula (6.41) with ¢; = ba' :

C(t)=(bo)?2 X ald™i = (bo)2all Y 4%
=0 i=0
so that

2
C(‘E)=—29m; T:O,il,iZ,....
—a

Autoregressive Sequence of Order r (Notation: AR(r)) In generalization of the re-
cursive equation (6.43), let for a given sequence of real numbers a;,ay,...,a, with
finite a; and finite integer » random variables Y; be generated by

YtzalYt_l+a2Yt_2+-~~+arYt7r +bXt, (646)

where {X;} is a purely random sequence with parameters (6.36). The sequence
{Ys; t=0,£1,42,... } is called an autoregressive sequence of order r.
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It is interesting to investigate whether analogously to the previous example a weakly
stationary sequence

Yi=X20c; Xy (=0,41,42, ..., (6.47)
exists, which is solution of (6.46). Substituting (6.47) into (6.46) yields a linear alge-
braic system of equations for the unknown parameters c; :

co= b
Ccl—aicop= 0
Cyp—ajicyp—azcpo= 0

—ajc,_1——arcog=0

ci—aici1——arci_,=0; i=r+1,r+2,--

It can be shown that a nontrivial solution {cq,c, -} of this system exists, which
satisfies condition (6.40) if the absolute values of the solutions y1,y», ...,y of the al-
gebraic equation

y—ayy = —a,y-a,=0 (6.48)

are all less than 1, i.e., they are within the unit circle. (Note, this is solely a property
of the sequence ay,as,...,ar.) In this case, the sequence {¥;; t=0,£1,£2,...} given
by (6.47) is a weakly stationary solution of (6.46).

Special Case r =2 Let y; and y, be the solutions of
yi-ajy-ay=0 (6.49)

with |y;| <1 and |y,| < 1. Then, without proof, the covariance function of the cor-
responding weakly stationary autoregressive sequence of order 2 is

for y1 =y,

[t|+1 It]+1
_ (1 _yl)y -( yz) L
C(1) = C(0) 02— )0 +7132) ; t=0,%£1,%2,..., (6.50)

and for Y1=yY2=Yo

( yO ) Il .
C(7) = C(0) L1+ | IJy0 ; 1=0,21,42, .., (6.51)
1 +y0
where the variance C(0) = Var(Y;) both in (6.50) and (6.51) is
1 —daj

¢0) = (bo)*.

(1+a)| (1-a2)*~ai ]
If the solutions of (6.49) are complex, say,

—i®

y1=y0e'® and y =yge
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with real numbers yy and o, then the covariance function assumes a more conven-
ient form than (6.50):

C(r) = C0) aysin(olt| +B); T=0,%1,%2, .,

where
2
_ 1 _ (1 +y0 \
o= and f3 = arctan S tano |
sin B 1-y5

If y1 =yy =0, then this representation of C(t) is identical to (6.51).

Example 6.10 Consider an autoregressive sequence of order 2 given by
Y1=0.6Y,1-0.05Y;»+2Xs; t=0,£1,12,....

with 62 = Var(X) = 1. It is obvious that the influence of ¥,_; on ¥; is small compar-
ed to the influence of Y, | on Y;. The corresponding algebraic equation (6.49) is

2 -0.6y+0.05=0.

The solutions are y; = 0.1 and y; = 0.5. The absolute values of y; and y, are smal-
ler than 1 so that the random sequence, generated by (6.46), is weakly stationary. Its
covariance is obtained from (6.50):

C(1)=7.017(0.5)/" = 1.063 (0.1)!; ©=0,+1,%2,....

As expected, with increasing |t| = |¢—s], i.e, with increasing timely distance between
Y, and Y, the covariance is decreasing. The variance has for all ¢ the value

Var(Y;) = C(0) = 5.954. O

Autoregressive Mean Average (r, s)-Models. (Notation: ARMA(r, s)). Let the ran-
dom sequence {Y;; t=0,+1,%2,...} be generated by

Yi=4+a1Y 1 +arY o+ +ar Yy (6.52)
+bo Xi+b1 X+ +bs X,

where {X;} is the purely random sequence with parameters (6.36). It can be shown
that (6.52) also generates a stationary random sequence {Y;} if the absolute values of
the solutions of the algebraic equation (6.48) are less than 1.

The practical work with ARMA-models and its special cases is facilitated by the use
of statistical software packages. Important problems are: Estimation of the parameters
a; and b; in (6.46) and (6.52), estimation of trend functions, detection and quantifica-
tion of possible cyclic, seasonal, and other systematic influences. In particular, reliable
predictions are only possible if structure and properties of the random component
{R(f),t € T} as stationarity, Markov property, and other properties not taken into
account in this short section are known.
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6.5 EXERCISES

6.1) A stochastic process {X(¢), ¢ > 0} has the one-dimensional distribution
(Fi(x) = PX(7) <x) = 1 — e~ x>0, ¢> 0.

Is this process weakly stationary?

6.2) The one-dimensional distribution of a stochastic process {X(), ¢ > 0} is

1 X _(u—w)2
Fi)=PXO <)== [ e ' du
v —0

with u>0, 0> 0; x € (—0+ ).

Determine its trend function m(¢) and, for p =2 and 6 = 0.5, sketch the functions
yi@®=m(H)+ JVar(X(¥)) and y,(t)=m(t)— [/ Var(X(®)) .

6.3) Let X(¢) = 4 sin(wt+ D), where 4 and @ are independent, non-negative random
variables with @ uniformly distributed over [0, 27] and E(4) < co.

(1) Determine trend, covariance, and correlation function of {X(¢), ¢ € (—o0,+x®)}.

(2) Is the stochastic process {X(¢), ¢t € (—o,+0)} weakly and/or strongly stationary?

6.4) Let X(f) = A(f) sin(wt+ @) where A(f) and ® are independent, non-negative
random variables for all #, and let ® be uniformly distributed over [0, 27].

Verify: If {A(?), t € (—o0,+0)} is a weakly stationary process, then the stochastic pro-
cess {X(¢), t € (—o,+m)} is also weakly stationary.

6.5) Let {aj,ap,...,an} be a sequence of real numbers, and {®,D;,...,D,} be a
sequence of independent random variables, uniformly distributed over [0, 27].

Determine covariance and correlation function of the process {X(f), t € (—o0,+0)}
given by
X(0) =21~ ajsin(w+ ;).

6.6)* A modulated signal (pulse code modulation) {X(¢), t € (—o0,+0)} is given by
X(t) =213 An h(t—n),
where the A, are independent and identically distributed random variables which
can only take on values —1 and +1 and have mean value 0. Further, let
1 for 0<t<1/2

h(t) = 0 elsewhere
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(1) Sketch a possible sample path of the stochastic process {X(?), t € (—o0,+©)}.

(2) Determine the covariance function of this process.

(3) Let Y(¢) = X(t—Z), where the random variable Z has a uniform distribution over
[0,1].

Is {¥(f), t € (—0,+0)} a weakly stationary process?

6.7) Let {X(¢), t € (—o0,4+0)} and {Y(¢), t € (—o,+x)} be two independent, weakly
stationary stochastic processes, whose trend functions are identically 0 and which
have the same covariance function C(t).

Verify: The stochastic process {Z(), t € (—o,+x)} with
Z(t) = X(t) cos ot — Y(¢) sin ot

is weakly stationary.

6.8) Let X(¢) =sin®@ ¢, where @ is uniformly distributed over the interval [0, 27].
Verify: (1) The discrete-time stochastic process {X(¢); t=1,2,...} is weakly, but not
strongly stationary

(2) The continuous-time stochastic process {X(?), >0} is neither weakly nor strong-
ly stationary.

6.9) Let {X(?), t € (—o0,+0)} and { ¥(¢), t € (—o0,+0)} be two independent stochastic
processes with trend and covariance functions

mx(2), my(r) and Cx(s,1), Cyl(s,1),
respectively. Further, let
U(t) = X(0) + Y(¢) and V(#) = X(1) - Y(?), t € (—o0,+00).
Determine the covariance functions of the stochastic processes {U(¥), t € (—o0,+x)}

and {¥(¢), t € (—o0,+0)}.

6.10) The following table shows the annual, inflation-adjusted profits of a bank in the
years between 2005 to 2015 [in $10°].

Year 1(2005)| 2 3 4 5 6 7 8 9 10 11
Profitx; | 0.549 |1.062 |1.023 [1.431 [2.100 {1.809 {2.250 |3.150 (3.636 |3.204 |4.173

(1) Determine the smoothed values {y;} obtained by applying M.4.(3).
(2) Based on the y;, determine the trend function (assumed to be a straight line).

(3) Draw the original time series plot, the smoothed version based on the y;, and the
trend function in one and the same Figure.
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6.11) The following table shows the production figuresx; of cars of a company over
a time period of 12 years (in 103).

Yeari| 1 2 3 4 5 6 7 8 9 10 11 12
X; 3.08 | 3.40 | 4.00 | 5.24 | 7.56 [10.68[13.7218.3623.20 (28.36 |34.68 |40.44

(1) Draw a time series plot. Is the underlying trend function linear?
(2) Smooth the time series {x;} by the Epanechnikov kernel with bandwidth [-2,+2].

(3) Smooth the time series {x;} by exponential smoothing with parameter A = 0.6
and predict the output for year 13 by the recursive equation (6.31).

6.12) Let Y;=0.8Y,1+Xs; t=0,%1,£2,..., where {X;;t=0,£1,£2,...} is the
purely random sequence with parameters E(X;) = 0 and Var(X;) = 1.

Determine the covariance function and sketch the correlation function of the autore-
gressive sequence of order 1 {Y;; t=0,+1,£2,...}.

6.13) Let an autoregressive sequence of order 2 {Y;; t=0,%1,£2,...} be given by
Y/ —1.6Y,1+0.68Y,,=2X;; t=0,£1,42,...,
where {X;; t=0,%1,12,...} is the same purely random sequence as in the previous
exercise.
(1) Is the the sequence {Y;; t=0,£1,£2, ...} weakly stationary?

(2) Determine its covariance and correlation function.

6.14) Let an autoregressive sequence of order 2 {¥;; t=0,11,%2,...} be given by
Y;—0.8Y,_1—0.09Y,,=X;; t=0,+1,%£2, ...

where {X;; t=0,%1,%2,...} is the same purely random sequence as in exercise (6.12).
(1) Check whether the sequence {Y;; t=0,%1,%2,...} is weakly stationary. If yes,
then determine its covariance function and its correlation function.

(2) Sketch its correlation function and compare its graph with the one obtained in ex-
ercise (6.12).



CHAPTER 7

Random Point Processes

7.1 BASIC CONCEPTS

A point process is a sequence of real numbers {¢},1,,...} with properties

t1<tp<--- and lim¢; =+o0. (7.1)

1—> 0

That means, a point process is a strictly increasing sequence of real numbers, which
does not have a finite limit point. In practice, point processes occur in numerous situ-
ations: arrival time points of customers at service stations (workshops, filling stations,
supermarkets, ...), failure time points of machines, time points of traffic accidents,
occurrence of natural disasters, occurrence of supernovas,.... Generally, at time point
t; a certain event happens. Hence, the ¢; are called event times. With regard to the ar-
rival of customers at service stations, the ¢; are also called arrival times. If not stated
otherwise, the assumption ¢ > 0 is made.
Although the majority of applications of point processes refer to sequences of time
points, there are other interpretations as well. For instance, sequences {¢{,#,,...} can
be generated by the location of potholes at a road. Then ¢; denotes the distance of the
i th pothole from the beginning of the road. Or, the location is measured, at which a
beam, which is randomly directed at a forest stand, hits trees. (This is the base of the
Bitterlich method for estimating the total number of trees in a forest stand.) All these
applications deal with finite lengths (time or other). To meet assumption (7.1), they
have to be considered finite samples from the respective point processes.

A point process {t1,t,,...} can equivalently be represented by the sequence of its
interevent (interarrival) times

{yvi,y2,..y with y; =t;—t;,_1; i=1,2,...; tg = 0.

Counting Process Frequently, the event times are of less interest than the number of
events, which occur in an interval (0,¢], ¢ > 0. This number is denoted as n(f):

n(t) = max {n, t, <t}.

For obvious reasons, {n(#), t >0} is said to be the counting process belonging to the
point process {¢1,%3,...}. Here and in what follows, it is assumed that more than one
event cannot occur at a time. Point processes with this property are called simple. The
number of events, which occur in an interval (s, ], s < ¢, is

n(s, t) = n(f) — n(s).
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To be able to count the number n(4) of events which occur in an arbitrary subset 4
of [0,0) the indicator function of the event '#; belongs to A' is introduced:

1 iffl'GA

I;(A) = L.
i) 0 otherwise

(7.2)

Then,
n(d) =20 Ii(4).

Example 7.1 Let a finite sample from a point process be given:
S= {2,4,10,18,24,31,35,38,40,44,45,51,57,59}.

These figures indicate the times (in seconds) at which within a time span of a minute
cars pass a speed check point. In particular, in the interval 4 = (30,45]

n(30,45)=n(45)-n(30)=11-5=6
cars passed this check point. Or, in terms of the indicator function of the event
A=(30,45],
I31(A4) = I35(4) = I33(A4) = 140(4) = 144(4) = I45(4) = 1,
I;(4)=0 fori e S\A.
Hence,

n(30,45) = $20 [i(4) = S I(4) = 6. O

Recurrence Times The forward recurrence time of a point process {¢{,f,,...} with
respect to time point ¢ is defined as
a(t)y=tyy —t for ty<t<t,; n=0,1,.., 1t =0. (7.3)
Hence, a(?) is the time span from ¢ (usually interpreted as the 'presence') to the occur-
rence of the next event. A simpler way of characterizing a(?) is
a(t) = I+l — t. (7.4)
tn(p) 1s the largest event time before 7 and #,,(;)41 is the smallest event time after z.

The backward recurrence time b(f) with respect to time point ¢ is
b(t)=t—tyy) . (7.5)

Thus, b(¢) is the time which has elapsed from the last event time before ¢ to time .

Marked Point Processes Frequently, in addition to their arrival times, events come
with another piece of information. For instance: If ¢; is the time point the ith custom-
er arrives at a supermarket, then the customer will spend there a certain amount of
money m; . If ¢; is the failure time point of a machine, then the time (or cost) m; ne-
cessary for repairing the machine may be assigned to ¢;. If #; denotes the time of the
ith bank robbery in a town, then the amount m; the robbers got away with is of in-
terest. If #; is the arrival time of the ith claim at an insurance company, then the size
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m; of this claim is important to the company. If #; is the time of the ith supernova in
a century, then its light intensity m; is of interest to astronomers, and so on. This
leads to the concept of a marked point process: Given a point process {¢1,¢7,...}, a
sequence of two-dimensional vectors

{(t1,my), (t2,m2), ...} (7.6)

with m; being element of a mark space M 1is called a marked point process. In most
applications, as in the four examples above, the mark space M is a subset of the real
axis (—oo, + o) with the respective units of measurements attached.

Random Point Processes Usually the event times are random variables. A sequence
of random variables {7, T, ...} with

Ty<Ty<--- and P(lim T;=+0)=1 7.7)
1—> 0

is a random point process. By introducing the random interevent (interarrival) times
Yl':Ti_Ti—l; i= 1,2,...; T()ZO,

a random point process can equivalently be defined as a sequence of positive random
variables {Y1, Y5, ...} with property

P( lim, >ioY;=0)=1.

With the terminology introduced in section 6.1, a random point process is a discrete-
time stochastic process with state space Z = [0,+o0). Thus, a point process (7.1) is a
sample path (realization) of a random point process. A random point process is called
simple if at any time point ¢ not more than one event can occur.

Recurrent Point Processes A random point process {7, T>,...} is said to be recur-
rent if its corresponding sequence of interarrival times {Y1, Y»,...} is a sequence of
independent, identically distributed random variables. The most important recurrent

point processes are homogeneous Poisson processess and renewal processes (sections
7.2 and 7.3).

Random Counting Processes Let

N({)=max{n, Ty <t}
be the random number of events occurring in the interval (0, 7]. Then the continuous-
time stochastic process {N(?), t > 0} with state space Z = {0, 1,...} is called the ran-
dom counting process belonging to the random point process {71, T, ...}. Any count-
ing process {N(f), ¢t > 0} has properties
1) N(0) =0,
2) N(s) < N(?) for s<t,
3)For any s, ¢+ with 0 <5 <¢, the increment N(s, ) = N(f) — N(s) is equal to the num-
ber of events which occur in (s, £].
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Conversely, every stochastic process {N(f), >0} in continuous time having these
three properties is the counting process of a certain random point process {7, 7>, ...}.
Thus, from the statistical point of view, the stochastic processes

{TI’TZ""}9 {Y19Y2""}7 and {N(t)ﬂtzo}
are equivalent. For that reason, a random point process is frequently defined as a con-
tinuous-time stochastic process {N(¢), > 0} with properties 1 to 3. Note that
N(¥) = N0, 7).
The most important characteristic of a counting process {N(¢), t > 0} is the probabil-
ity distribution of its increments N(s, £) = N(f) — N(s) , which determines for all inter-
vals [s,1), s <t, the probabilities
pir(s,0)=P(N(s,t)=k); k=0,1,....

The mean numbers of events in (s, 7] is

m(s, £) = m(t) — m(s) = E(N(s, 1)) = Zqeo kp (s, ). (7.8)
With i) = pi(0,2),
the trend function of the counting process {N(¢),¢ >0} is
m(t) = E(N() = o kpi(t), ¢=0. (7.9)

A random counting process is called simple if the underlying point process is simple.
Figure 7.1 shows a possible sample path of a simple random counting process.

Note In what follows the attribute 'random' is usually omitted if it is obvious from the notation
or the context that random point processes or random counting processes are being dealt with.

Definition 7.1 (stationarity) A random point process {7, 7»,...} is called station-

ary if its sequence of interarrival times { Y, Y5, ...} is strongly stationary (section 6.3,

page 230), that is if for any sequence of integers i1, 5, ...,i; With property
1<ij<ip<--<ip, k=1,2,...

and forany t=0, 1,2, ..., the joint distribution functions of the following two random
vectors coincide:

{Yilﬂyiza"'vyik} and {Yi1+‘59 Yi2+‘C""’ Yik+’t}' L4
A
n(t)
Of —_—
—_—
41 — |
L ‘
—_—
2 — o |
o o
! | | ! ! ) t
0 3l iy 13 Iy 15 t6

Figure 7.1 Sample path of a simple counting process
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It is an easy exercise to show that if the sequence {Y{, Y5,...} is strongly stationary,
the corresponding counting process {N(¢), >0} has homogenecous increments and
vice versa. This implies the following corollary from definition 7.1:

Corollary A point process {T'|,75,...} is stationary if and only if its corresponding
counting process {N(¢), t > 0} has homogeneous increments.

Therefore, the probability distribution of any increment N(s,?) of a stationary point
process depends only on the difference t=1¢—s:

pir(t)=PWN(s,s+1)=k); k=0,1,..; >0, t>0. (7.10)
Thus, for a stationary point process,
m(t)=m(s,s+1)=m(s+1)—m(s) foralls>0,7t>0. (7.11)

For having increasing sample paths, neither the point process {7, 75, ...} nor its cor-
responding counting process {N(?), > 0} can be strongly or weakly stationary as de-
fined in section 6.3. In particular, since only simple point processes are considered,
the sample paths of {N(¢), ¢ > 0} are step functions with jump heights equal to 1.

Remark Sometimes it is more convenient or even necessary to define random point
processes as doubly infinite sequences

{0 T2, T1,T0, T1, T2, ...},

which tend to infinity to the left and to the right with probability 1. Then their sample
paths are also doubly infinite sequences: {..., f_»,#1,%9,%1,%2, ...} and only the incre-
ments of the corresponding counting process over finite intervals are finite.

Intensity of Random Point Processes For stationary point processes, the mean num-
ber of events occurring in [0, 1] is called the intensity of the process and will be de-
noted as A. By making use of notation (7.9),

A=m(1) =2 kpi(1). (7.12)

In view of the stationarity, A is equal to the mean number of events occurring in any
interval of length 1:

A=m(s,s+1), s=0.
The mean number of events occurring in any interval (s, ] of length t =¢—s is
m(s,f) =A(t—s) =1,
Given a sample path {¢1,7;,...} of a stationary random point process, A is estimated
by the number of events occurring in [0, /] divided by the length of this interval:
A=n@t.

In example 7.1, an estimate of the intensity of the underlying point process (assumed
to be stationary) is A = 14/60 ~ 0.233.



260 APPLIED PROBABILITY AND STOCHASTIC PROCESSES

In case of a nonstationary point process, the role of the constant intensity A is taken
over by an intensity function A(f). This function allows to determine the mean num-
ber of events m(s, ) occurring in an interval (s,¢] : For any s, with 0 < s <1,

m(s,0) = [ A(x) dx.

Specifically, the mean number of events in [0, ] is the trend function of the corre-
sponding counting process:

m(t) = m(0,0) = [{ A(x)dx, 1>0. (7.13)

Hence, for At — 0,

Am(f) = M{) At + o(AY), (7.14)
so that for small A¢ the product A(f) At is approximately the mean number of events
occurring in (¢,¢+ At]. Another interpretation of (7.14) is: If At is sufficiently small,

then A(¢) Atis approximately equal to the probability of the occurrence of an event in
the interval [¢,¢+ At]. Hence, the intensity function A(¢) is the arrival rate of events
attime ¢. (For Landau's order symbol o(x), see equation (2.100), page 8§9.)

Random Marked Point Processes Let {77,7,,...} be a random point process with
random marks M; assigned to the event times 7;. Then the sequence

{(T1,M1), (T2, M3), ...} (7.15)
is called a random marked point process. Its (2-dimensional) sample paths are given
by (7.6). The shot noise process {(Tx,4n); n=1,2,...} considered in example 6.5 is
a special marked point process.

Random marked point processes are dealt with in full generality in Matthes et al.
(1974); see also Stigman (1995).

Compound Stochastic Processes Let {(T;,M), (Tp,M>),...} be a marked point

process and {N(f), t>0} be the counting process belonging to the point process
{T,T5,...}. The stochastic process {C(?), >0} defined by

0 for 0<¢t< T

M
Z,-:(lt)Mi for t>T

C(t) =

is called a compound, cumulative, or aggregate stochastic process, and C(¢) is called
a compound random variable. According to the underlying point process, there are
e.g. compound Poisson processes and compound renewal processes. If {T, T,, ..}

is a claim arrival process and M; the size of the ith claim, then C(?) is the total claim
amount in [0,#). If 7; is the time of the ith breakdown of a machine, and M; is the
corresponding repair cost, then C(¢) is the total repair cost in [0, £).
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7.2 POISSON PROCESSES

7.2.1 Homogeneous Poisson Processes

7.2.1.1 Definition and Properties

In the theory of stochastic processes, and maybe even more in its applications, the
homogeneous Poisson process is just as popular as the exponential distribution in
probability theory. Moreover, there is a close relationship between the homogeneous
Poisson process and the exponential distribution (theorem 7.2).

Definition 7.2 (homogeneous Poisson process) A counting process {N(¢), >0} is a
homogeneous Poisson process with intensity A, A > 0, if it has properties

1) N(0)=0,
2) {N(f), t 2 0} is a stochastic process with independent increments, and

3) its increments N(s,?) = N(t) — N(s), 0 < s <¢, have a Poisson distribution with pa-
rameter A(f—5):

P(N(s, 1) = i) = (M’ S)) e M), 20,1, (7.16)
or, equivalently, introducing the length 1T =t—us of the interval [s, ], forall t> 0,
( T)’ .
P(N(s,s+1)=1)= M.oi=0,1,.... (7.17)
[ J

Formula (7.16) implies that the homogeneous Poisson process has homogeneous
increments. Thus, the corresponding Poisson point process {T1,T5,...} is stationary
in the sense of definition 7.1

Theorem 7.1 A counting process {N(¢), t > 0} with N(0) =0 is a homogeneous Pois-
son process with intensity A if and only if it has the following properties:

a) {N(¢), t> 0} has homogeneous and independent increments.
b) The process is simple, i.e. P(N(t,t+h)>2) =o(h).
c) PIN(t,t+h)y=1)=Ah+o(h).

Proof To prove that definition 7.2 implies properties a), b,) and c), it is only neces-
sary to show that a homogeneous Poisson process satisfies properties b) and c).

b) The simplicity of the Poisson process easily results from (7.17):

P(N(t,t+h) > 2) = e M » (Kf,’) —32h2e S, b <A2h% = o(h).
=2 .

i=0 (i +2)!
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¢) Another application of (7.17) and the simplicity of the Poisson process imply that
P(N(t,t+h)=1)=1-P(N(t,t+h)=0)—P(N(t,t+ h) > 2)
=l-eMyoh)y=1-(1-Lh)+o(h)
=Ah+o(h).
Conversely, it needs to be shown that a stochastic process with properties a), b), and

c¢) is a homogeneous Poisson process. In view of the assumed homogeneity of the
increments, it is sufficient to prove the validity of (7.17) for s = 0. Letting

pit)=P(NO,n=i)=P(N()=i); i=0,1,...
it is to show that
i
p,-(t)z%e*f; i=0,1,... (7.18)

From a),

pot+h)=PN(t+h)=0)=PN({) =0, N(t,t+h)=0)

=P(N(t) = 0) P(N(t,t+h) = 0) = po(D) po(h) .
In view of b) and c¢), this result implies
po(t+h)=po()(1 = 1h)+o(h)

or, equivalently,

polt+h)—po®) _
P -

Taking the limit as # — 0 yields

—Apo(f) +o(h).

Po(®) ==Apo(@).-
Since po(0) =1, the solution of this differential equation is
po(y=e, >0,
so that (7.18) holds for i = 0.
Analogously, fori > 1,
pit+h)=P(N(t+h)=1i)
=P(N(H) =i, N(t+h)—N@) =0)+ P(N(t) =i—1, N(t+ h) - N({) = 1)

Wh s PONG) =k, N(t+ 1)~ N(@t) = i — k).
Because of ¢), the sum in the last row is o(%). Using properties a) and b),

pilt+h)=pi(Opo(h)+pi-1(Op1(h) +o(h)

= pi®) (1 =1 h) +p;_y () M +o(h),

or, equivalently,
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(t+h)—p;
PALEDZDOD i 0]+ o).

Taking the limit as # — 0 yields a system of linear differential equations in the p;(?):
/ .
PiO==rpi(0-pi-1(]; i=12,...
Starting with po(¢) = e ™M the solution (7.18) is obtained by induction. u
The practical importance of theorem 7.1 is that the properties a), b), and c) can be
ver- ified without any quantitative investigations, only by qualitative reasoning based
on the physical or other nature of the process. In particular, the simplicity of the

homo- geneous Poisson process implies that the occurrence of more than one event
at the same time point has probability 0.

Note Throughout this chapter, those events, which are generated by a Poisson process, will be
called Poisson events.

Let {T1,T,,...} be the point process, which belongs to the homogeneous Poisson
process {N(t), t > 0}, i.e. Ty, is the random time point at which the nth Poisson event
occurs. The obvious relationship

Tp <t ifandonlyif N(t)>n (7.19)
implies
P(Ty, <t)=P(N(f) 2 n). (7.20)
Therefore, T, has the distribution function
0 i
Fr,()=P(N()2n)= X (};—?e’m; n=1,2,... (7.21)
i=n :

Differentiation of F'7, (f) with respect to ¢ yields the density of T, :

S, = he MY @ Che M3 M

i=n (= 1! i=n 1!
On the right-hand side of this equation, all terms but one cancel:
0"
an(t)zk(n_l)!e ; 120, n=1,2,.... (7.22)

Thus, T\, has an Erlang distribution with parameters #» and A (page 75). In particular,
T'| has an exponential distribution with parameter A, and the interarrival (interevent)
times ¥;=T7;-T;_1;i=1,2,...; To =0, are independent and identically distributed
as T'1. Moreover,

Tn=2:'1:1 Yi.

These results yield the most simple and, at the same time, the most important charac-
terization of the homogeneous Poisson process:
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Theorem 7.2 Let {N(f), >0} be a counting process and { Y}, Y5,...} be the corres-
ponding sequence of interarrival times. Then {N(f), t > 0} is a homogeneous Poisson
process with intensity A if and only if the Y, Y»,... are independent, exponentially
with parameter A distributed random variables. u

The random counting process {N(¢),t > 0} is statistically equivalent to both its corre-
sponding point process {T,T>,...} of event times and the sequence of interarrival
times {Yq,Y>,....}. Hence, {T;,T5,...} and {Y,Y>,...} are also called Poisson pro-
cesses.

Example 7.2 From previous observations it is known that the number of traffic acci-
dents N(¢) in an area over the time interval [0, ) can be modeled by a homogeneous
Poisson process {N(¢), t > 0}. On an average, there is one accident within 4 hours, i.e.
the intensity of the process is A = 0.25 [ 1].

(1) What is the probability p of the event (time unit: hour)

"at most one accident in [0, 10), at least two accidents in [10, 16), and no
accident in [16, 24)"?

This probability is
p=PN10)-N(0) <1, N(16) = N(10) =2, N(24)-N(16) =0).

In view of the independence and the homogeneity of the increments of {N(¢), t > 0},
p can be determined as follows:

p = P(N(10) — N(0) < 1) P(N(16) — N(10) > 2) P(N(24) — N(16) = 0)
= P(N(10) < 1) P(N(6) > 2) P(N(8) = 0).
Now,
P(N(10) < 1) = P(N(10) = 0) + P(N(10) = 1)
=e 02510402510 702510 = 0.2873,
P(N(6)22)=1-¢0256_025.6.¢0256 = 04422,
P(N(8) = 0) = ¢ 0258 = 0,1353.
Hence, the desired probability is
p=00172.

(2) What is the probability that the second accident occurs not before 5 hours?

Since T, the random time to the occurrence of the second accident, has an Erlang
distribution with parameters n =2 and A = 0.25,

P(Ty>5)=1-Fr,(5)=e%2%5(1+0.25-5)
so that P(T > 5) = 0.6446 . m|
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The following examples make use of the hyperbolic sine and cosine functions:

X X X
—e ef+e
> coshx:—2 s

. ex
sinh x = X € (=00, +00).

Example 7.3 (random telegraph signal) A random signal X(f) has structure
X@t)=Y()NO, >0, (7.23)

where {N(f), t>0} is a homogeneous Poisson process with intensity A and Y is a
binary random variable with

PY=1)=PY=-1)=1/2,
which is independent of N(¥) for all #. Signals of this structure are called random tele-
graph signals. Random telegraph signals are basic modules for generating signals of
more complicated structure. Obviously, X(f)=1 or X(¥) =—1, and Y determines the
sign of X(0). Figure 7.2 shows a sample path x = x(f) of the process {X(¢), £>0} on
condition Y=1and T, =t,; n=1,2,....
{X(®), t= 0} is a weakly stationary process. To see this, firstly note that

|X()|?> =1<ow forallz>0.

Hence, {X(f), t>0} is a second-order process. With
(1) = ()N,
its trend function is m(¢) = E(X(¢)) = E(Y) E(I(?)). Since E(Y) =0,
m(f) = 0.

It remains to show that the covariance function C(s,f) of this process depends only
on |z —s|. This requires knowledge of the probability distribution of 1(¢):

A transition from /(f) = -1 to I(f) =+1 or, conversely, a transition from /(f) =+1 to
I(f) = —1 occurs at those time points, at which Poisson events occur:

P(I(t) = 1) = P(even number of jumps in (0, £])

o (22
—e M @~ = e Mcosh AL

=0 (20)!
A
x(?)
1 I | el T 1 f 1
0 o n 2 h s s !
1 L 1 —

Figure 7.2 Sample path of the random telegraph signal
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Analogously,
P(I(f) =-1) = P(odd number of jumps in [0, 7])

© 2i+1
At (M) _ M
P —(2i+ i =e¢ Mginh At.

Hence the mean value of 1(¢) is
ElI(n]=1-PU(7)=1)+(=1) - PU() =-1)
= ¢ M[cosh At — sinh Af] = e 2,
Since
C(s, 1) = Cov [X(s), X(1)]
= E[(X(s) X(1)] = E[Y I(s) YI(1)]
= E[Y? I(s) I(1)] = E(Y?) E[I(s) I(1)]
and E(Y?2) =1, the covariance function of {X{(¢), >0} has structure
C(s,0) = E[I(s) [(D)] .
In order to evaluate C(s, ¢), the joint distribution of (/(s), /(f)) has to be determined:
From (1.22), page 24, and the homogeneity of the increments of {N(¢), t > 0}, assum-

ings <t

P11 =PU(s)=1, (1) = 1) = P(U(s) = YP(I() = 1|1(s) = 1)

= ¢ Mcosh As P(even number of jumps in (s, 7])
= e Mcosh Ase ™ cosh A(1—s)
= e Mcosh As cosh A(t—s).

Analogously,

P11 =PUs)=1L11H=-1) = e ™M coshAs sinh A(—s),

p_11=PU(s)=-1,[(t)=1) =e M sinh As sinh A(t—s),

P11 =P((s)=-1,I(f) =-1) = e sinh Ls cosh A(t—s).
Now

E[U()(D]=p11+P-1-1-P1-1—P-11,

so that

Cs,f)=e2M9) | 5 <1,
Since the roles of s and ¢ can be changed,
C(s, 1) = e 2Mi=sl

Hence, the random telegraph signal {X(¢), > 0} is a weakly stationary process. [
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Theorem 7.3 Let {N(f), t>0} be a homogeneous Poisson process with intensity A .
Then the random number of Poisson events, which occur in the interval (0,s] on con-
dition that exactly n events occur in (0,¢], s<¢; i=0,1,...,n; has a binomial distri-
bution with parameters p = s/t and n.

Proof In view of the homogeneity and independence of the increments of the Poisson
process {N(?), t > 0},

P(N(s) = i|N(t) = n) = P(N(s) = i, N(t) = n)

P(N(f) =n)
_ P(N(s) =i, N(s,t) =n—1)
- P(N() = n)
@)’ e (=)™ o Mi=9)
_P(NGs)=D)P(N(s,)=n—1) il (n—i)!
) PON(D) =) - Iy
n!
_(n)(s)! s
_(i)(;) (1—;) ; i=0,1,..,n. (7.24)
This proves the theorem. u

7.2.1.2 Homogeneous Poisson Process and Uniform Distribution

Theorem 7.3 implies that on condition ' N(f) = 1' the random time 7' to the first and

only event occurring in [0, ¢] is uniformly distributed over this interval, since, from
(7.24), for s < ¢,

P(Ty <s|Ty <8) = P(N(s) = 1|N(t) = 1) = ~_;
This relationship between the homogeneous Poisson process and the uniform distri-

bution is a special case of a more general result. To prove it, the joint probability
density of the random vector (7,75, ..., Tn) is needed.

Theorem 7.4 The joint probability density of the random vector (71, T3, ..., Tx) is

f(ll,tz,...,ln) ={

Ale~Mn  for 0Lt <tp <<ty

0 elsewhere (7.25)

Proof For 0 <t <t , the joint distribution function of (7, T,) is
t
P(Ty <1y, Tr <1p) = [ P(Ty <11y =0) fr, () dt.
By theorem 7.2, the interarrival times
YizTi_Tl'fl; = 1,2,...,

are independent, identically distributed random variables, which have an exponential
distribution with parameter A.
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Hence, since T1 =Y,
P(Ty <1y, To<ty) =[( P(Ty <11y = 1) he™Mdt.
Given 'T'| =t', the random events
'"To<ty' and 'Yy <ty —t'
are equivalent. Thus, the desired two-dimensional distribution function is

Flt1,0)= P(Ty <), Ty < 1) = [/ (1 - e M270) ke Mt

=1 [y (e —eM2) .

Therefore,
F(t1,tp) =1 —e M —the_)”tz , 11 <ty

Partial differentiation yields the corresponding two-dimensional probability density

Me M2 for 0<t) <ty
t = .
S, 1) {O elsewhere

The proof of the theorem is now easily completed by induction. u

The formulation of the following theorem requires a result from the theory of ordered
samples: Let {X|,X>,...,X»} be a random sample taken from X, i.e. the X; are in-
dependent, identically as X distributed random variables. The corresponding ordered
sample is denoted as

(X1, X5, X)), 0SX]<X; <o <X

Given that X has a uniform distribution over [0,x], the joint probability density of
the random vector {X7,X5,.... X5} is

nl/x", 0<x]<xy<--<x;<x, (7.26)
0, elsewhere.

[T x5 x0) = {

For the sake of comparison: The joint probability density of the original (unordered)
sample {X|,X,,..., X} is

1/x", 0<x;<x,

(7.27)
0o elsewhere.

f(xl,xz,...,xn)z{

Theorem 7.5 Let {N(¢), >0} be a homogeneous Poisson process with intensity A,
and let 7; be i th event time; i=1,2,...; Tg =0. Given N(¥) =n; n=1,2,..., the ran-

dom vector {T1,T>5,...,Tn} has the same joint probability density as an ordered ran-

dom sample taken from a uniform distribution over [0, £].
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Proof By definition, for disjoint, but otherwise arbitrary subintervals [z;,¢; + /;] of
[0, 7], the joint probability density of {7, T»,..., T} on condition N(¢)=n is

f(tl > t2’ ] tnlN(t) = }’l)

_ lim P(tl' < Ti < ti+hi; i= 1,2,...,n|N(t) = I’l)
B max(hy,hy,....,h,)—0 h1h2~ ~hp ’

Since the event ' N(f) = n'is equivalent to T, <t < T,41,
P(ll’ < Ti < ti+hi; i= 1,2,,71|N(t) = n)

P(ti < Ti < ti+hi9 i=1,2,..,n; t< T,,H_])
P(N(t) = n)

o tpth, tai-1th,_| ty+hy
I AL Mt e dx gy
t tn In-1 1

(M') oM
n

~hihy b We ™ hyhyechy ;

(7;:')n e—kt "

Hence, the desired conditional joint probability density is

n!
— 0t <t <ty <t
[ty ntu|NOy=n) =1 " tsfzsrrsin=h (7.28)
0, elsewhere.
Apart from the notation of the variables, this is the joint density (7.26). u

The relationship between homogeneous Poisson processes and the uniform distribu-
tion proved in this theorem motivates the common phrase that a homogeneous
Poisson process is a purely random process, since on condition N(f) = n, the event
times 7'y, 75, ..., Tn are 'purely randomly' distributed over [0, 7].

Example 7.4 (shot noise) Shot noise processes have been formally introduced in
example 6.5 (page 229). Now an application is discussed in detail:

In the circuit, depicted in Figure 7.3, a light source is switched on at time t=0. A
current pulse is initiated in the circuit as soon as the cathode emits a photoelectron
due to the light falling on it. Such a current pulse can be quantified by a function ()
with properties
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JE

- cathode

Figure 7.3 Photodetection circuit (Example 7.4)

W6)20, h(t)=0 for t<0 and [ h(t)dt <. (7.29)

Let T, T5,... be the sequence of random time points, at which the cathode emits
photoelectrons and {N(¢), >0} be the corresponding counting process. Then the
total current flowing in the circuit at time ¢ is

X(O) =221 h(t=T). (7.30)
In view of the properties (7.29) of A(¢), X(¢) can also be written in the form
N()
X(ty=2) h(t-T;).

In what follows, {N(?), > 0} is assumed to be a homogeneous Poisson process with
parameter A. For determining the trend function of this shot noise {X(¢), > 0}, note
that according to theorem 7.5, on condition ' N(f) = n', the T, T, ..., T, are uniform-
ly distributed over [0, /]. Hence,

E(h(t=T))IN@) =) =+ [{ h(t=x)dx = % [{ hx) .
Therefore,
EX()|N(@) = n) = E( Sy h(t—T)| N = n)
=" E(h(t—T)IN(t) = n) = (% [ Ao dx) n.
The total probability rule (1.7) yields
E(X(1)) = X0 EX()|N(1) = n) PN(2) = n)

_1q & D"
_7joh(x)dxn§on7e

= (L] e ) Ev@) = (L ]1 heey ) sy
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Therefore, the trend function of this shot noise process is
m(t) =1 h(x)dx. (7.31)

In order to obtain its covariance variance function, the mean value E(X(s) X(¢)) has to
be determined:

E(X()X(1)) = 2 ;=1 E[h(s — Ty h(t = T))]
=XiL1 E(h(s— T h(t—T}))

> E[ h(s - T h(t-T)) ).
ij=1,i#f :

Since, on condition 'N(¢) =n', the T, T5, ..., T are uniformly distributed over [0, #],

E(h(s = Ty h(t=T)IN@) = n) = 1 [§ (s ~x)h(t - x)d.
Fors<t,

E(h(s = T;) h(t—T;)|N(®) = n) = % Jg h(x)h(t—s+x)dx.
By theorem 7.5, on condition 'N(f) = n' the T'(, T», ..., Ty are independent. Hence,

E(h(s — T)) h(t— T))IN(t) = n) = E(h(s — T,)IN(t) = n) E(h(t — T))|N(t) = n)
= G [ At —x)dx) G A h(t—x)dx)
= (¢ i peya) (4 ).
Thus, for s < 7,
E(X(s) X()|N(t) = n) = G [ A)A(t =5+ ) dx) n
+ G [y h(x)dx) (% A h(x)dx) (n-1)n.
Applying once more the total probability rule,
E(X(s) X(£)) = G [ hGoh(t—s+x) dx) E(N(H))

+ (L5 neoya) (]2 ey ae) [EQV2(0) - By .

Making use of equations (7.31) and (6.4), page 226, as well as
EN(#) =\t and E(N?(1)) = Lt (Mt +1),
yields the covariance function:

Cls, )= fy h)h(t—s+x)dx, s<t.



272 APPLIED PROBABILITY AND STOCHASTIC PROCESSES

More generally, for any s and ¢, C(s, ) can be written in the form

s, 1) = 2[5 h@) bl —s] +x) dx. (7.32)

Letting s = ¢ yields the variance of X(¥) :
Var(X()) = A [y h2(x)dx.

If s tends to infinity in such a way that |t| = ¢ — s stays constant, trend and covariance
function become

m= XJ;O h(x)dx,
C(t) = k_[;o h(x)h(|t| +x)dx. (7.33)

These two formulas are known as Cambell’s theorem. They imply that, for large ¢,
the shot noise process {X(¢), >0} is approximately weakly stationary. For more
general formulations of this theorem see Brandt et. al. (1990) and Stigman (1995).

If the current impulses induced by photoelectrons have random intensities 4;, then
the total current flowing in the circuit at time ¢ is

X0 =30 4ih(-T).

If the A; are identically distributed as A4 with E(42) < oo, independent of each other,
and independent of all 7}, then determining trend and covariance function of this
generalized shot noise {X(¢), > 0} does not give rise to principally new problems:

m(f) = L E(A)[ h(x)dx, (7.34)
s, 1) = WEAD)[T O b (|51 +x) dx. (7.35)

If the process of inducing current impulses by photoelectrons has already been oper-
ating for an unboundedly long time (the circuit was switched on a sufficiently long
time ago), then the underlying shot noise process {X(¢), t € (—,+x)} is given by

X=X 2 A;h(t-T;).

In this case the process is a priori stationary. O

Example 7.5 Customers arrive at a service station (service system, queueing system)
according to a homogeneous Poisson process {N(f), t> 0} with intensity A. Hence,
the arrival of a customer is a Poisson event. The number of servers in the system is as-
sumed to be so large that an incoming customer always will find an available server.
Therefore, the service system can be modeled as having an infinite number of servers.
The service times of all customers are assumed to be independent random variables,
which are identically distributed as Z.
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Let G(t) = P(Z < f) be the distribution function of Z, and X(¢) be the random number
of customers in the system at time ¢, X(0) = 0. The aim is to determine the state prob-
abilities p;(t) of the system:

pit)=PX(H)=i); i=0,1,..; t>0.

A customer arriving at time x is still in the system at time ¢, ¢>x, with probability
1 — G(t—x), i.e. its service has not yet been finished by ¢. Given N(¢) = n, the arrival
times Ty, T, ..., Ty of the n customers in the system are, by theorem 7.4, independent

and uniformly distributed over [0, #]. For calculating the state probabilities, the order
of the T; is not relevant. Thus, the probability that any of the n customers, who arriv-
ed in [0,7], is still in the system at time ¢ is

p(t) =4 (1 - G(t-x) Lax = %jg(l — G))dx.
Since, by assumption, the service times are independent of each other,
PO =iV =m = (") OV T -pO]" ™ i=0,1,..0m
By the total probability rule (1.24),

pit)= 3 POXO) = [IN(@t) = n) - PON(D) = )

=3 (") worn-por - EEe

This is a mixture of binomial distributions with regard to a Poisson structure distribu-
tion. Thus, from example 2.24, page 93, if there the parameter A is replaced with A ¢,
the state probabilities of the system are

i
pi(t) = %e‘“ﬂ”; i=0,1,....

Hence, X(7) has a Poisson distribution with parameter
E(X(1)) = Ltp(1)
so that the trend function of {X(?), >0} becomes
m(0) = [{(1 - G(x))dx, >0
For ¢ — oo the trend function tends to

lim m(r) = g—g (7.36)

where E(Y) = 1/A is the mean interarrival time and E(Z) the mean service time of a
customer:

E(Z)=[;(1-G(x))dx.
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By letting p = E(Z2)/E(Y), the stationary state probabilities of the system become
i
pi=lim p,(=eP, i=0,1,... (7.37)
t—0 i!
If Z has an exponential distribution with parameter p, then
t A -
m(t) = 7‘.(0 e Wy = H(l —eTHh,

In this case, p = AM/p. O

7.2.2 Nonhomogeneous Poisson Processses

In this section a stochastic process is investigated, which, except for the homogeneity
of its increments, has all the other properties listed in theorem 7.1. Abandoning the
assumption of homogeneous increments implies that a time-dependent intensity func-
tion A = A(f) takes over the role of A. This leads to the concept of a nonhomogene-
ous Poisson process. As proposed in section 7.1, the following notation will be used:

N(s,f) = N(H)— N(s), 0<s <t
Definition 7.3 A counting process {N(¢), > 0} with N(0) =0 is called a nonhomo-
geneous Poisson process with intensity function \(f) if it has properties
(1) {M(¥), t = 0} has independent increments,
(2) P(N(t,t+h) > 2) = o(h),
3) P(N(t,t+h)=1) =M h+o(h). °

Three problems will be considered:
1) Computation of the probability distribution of its increments N(s, ?):

pi(s,))=P(N(s,H)=1); 0<s<t, i=0,1,....

2) Computation of the probability density of the random event time 7; (time point at
which the i-th Poisson event occurs).

3) Computation of the joint probability density of (T, To,....,Tx); n=1,2,....
1) In view of the assumed independence of the increments, for 4 > 0,
pols,t+h)=P(N(s,t+h)=0)
=P(N(s,£) =0, N(t,t+ h)=0)
=P(N(s,t) =0) - P(N(t,t+h)=0)
= po (s, ) [1 =) h+o(h)].
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Thus,
pO(Sst+h})l _pO(sat) :—7\.(1‘)]90(5, t)+$ )

Letting 4 — 0 yields a partial differential equation of the first order:

0
32008, 0) = =MD po(s, ).
Since N(0) =0 or, equivalently, py(0,0) = 1, the solution is
pols, 1) = e AO=AGI, (7.38)

where
A() = [ Muydu; x>0 (7.39)

Starting with pq(s,?), the probabilities p;(s,?) for i > 1 can be determined by induc-
tion:

AWD-A@)]
p,-(s,t)=[(t)i¢e_[/\(’)_/\(s)]; i=0,1,2,.... (7.40)

In particular, the absolute state probabilities
pit)=pi(0,1) = P(N(?) = i)
of the nonhomogeneous Poisson process at time ¢ are

A i
O g,

pilt)=—— i=0,1,2,.... (7.41)

Hence, the mean number of Poisson events m(s, f) = E(N(s,f)) occurring in the inter-
val (s,2], s <t,is

m(s,t) = A(t) — A(s) = Ii M) dx . (7.42)
In particular, the trend function m(¢) = m(0,¢) of {N(¢),t >0} is

m(f) = A(t) = [ Mx)dx, 0.

2) Let F'7 (f) = P(T1 <t) be the distribution function and f7,(#) the probability den-

sity of the random time 7'; to the occurrence of the first Poisson event. Then

po@=po(0,)=P(Ty >0)=1-Fr(9).
From (7.38),
po(t)=e A,
Hence,
Fr,0)=1-e0,  fr =MD, t20. (7.43)
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A comparison of (7.43) with formula (2.98) (page 88) shows that the intensity func-
tion A(¢) of the nonhomogeneous Poisson process {N(¢), > 0} is identical to the fail-
ure rate belonging to 7';. Since

Fr, ()= P(Ty <1)= PON() 2 n),

the distribution function of the » th event time 7, is

Fr,(f) = » %f)]le—m, n=1,2,... (7.44)

i=n
Differentiation with respect to ¢ yields the probability density of 7, :

AD]™!

an(t)z[(n_l)! Me2D: 1>0, n=1,2,.... (7.45)

Equivalently,

By formula (2.52), page 64, and formula (7.44), the mean value of 7}, is
0
E(Tw)= | e—A@[ P [Al(’)] J (7.46)
0 i=0 :

Hence, the mean time
E(Yn)=E(Tn)— E(Ty-1)
between the (n — 1) th and the nth event is

E(Yy)= 1), — [ A0 e Odr; n=1,2,. (7.47)

Letting A(f)=A and A(t) =)\t yields the corresponding characteristics for the
homogeneous Poisson process, in particular E(Y,) = 1/A.

3) The conditional probability P(T, < t,|T1 =11) is equal to the probability that at
least one Poisson event occurs in (¢1,%,], ¢ <tp. Thus, from (7.40),

Fr,(t2l t1) = 1 =po(t1,t2) = 1 — e TAC-ACD], (7.48)
Differentiation with respect to ¢, yields the corresponding probability density:
sz(tzl )= }.(Iz)e_[A(IZ)_A(“)] , 01t <ty

By (3.19), page 128, the joint probability density of (7,75) is

M) f1,(t2) for 1 <ty
elsewhere °

f(tlatZ) {
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Starting with f(¢,¢;) , one inductively obtains the joint density of (7,75, ..., Tn) :

MEDME2) - Mtgo1)f1,(tn) for 0< 1) <ty <---<ty,

0, elsewhere. (7.49)

f(t15127 ...,tn) = {
This result includes as a special case formula (7.25).

As with the homogeneous Poisson process, the nonhomogeneous Poisson counting
process {N(?), t > 0}, the corresponding point process {7, T>,...} of Poisson event
times, and the sequence of interevent times {Y, Y»,...} are statistically equivalent
stochastic processes.

A
60
Me)
40+
20
0 ! | | | ! L5y

5 6 7 8 9 10 11

Figure 7.4 Intensity of the arrival of cars at a filling station

Example 7.6 From historical observations it is known that the number of cars arriv-
ing for petrol at a particular filling station weekdays between 5:00 and 11:00 a.m.
can be modeled by a nonhomogeneous Poisson process {N(¢),#>0} with intensity
function (Figure 7.4)

MO =10+354(—5)e B 5<r<1l.

1) What is the mean number of cars arriving for petrol weekdays between 5:00 and
11:00? According to (7.42), this mean number is

ENG, 1) = [ a0y de=[6 (10435418 ) ar
=[10¢- 141,675 ]° = 200.
0

2) What is the probability that at least 90 cars arrive for petrol weekdays between
6:00 and 8:00? The mean number of cars arriving between 6:00 and 8:00 is

[Erdi=[(10+35.41e %) ds

- [mr— 141.6 e*fz/gﬁ -99.



278 APPLIED PROPABILITY AND STOCHASTIC PROCESSES

Hence, the random number of cars N(6,8) = N(8) — N(6) arriving between 6:00 and
8:00 has a Poisson distribution with parameter 99 so that the desired probability is

© n
P(N(6,8)>90)= X % 0099
n=90 1
By using the normal approximation to the Poisson distribution (page 213):

o0
> 9% 099 —@[MJ ~1-0.1827.
n=90 7! J99
Therefore,

P(N(6,8) > 90) = 0.8173. m|

7.2.3 Mixed Poisson Processes

Mixed Poisson processes had been introduced by J. Dubourdieu (1938) for modeling
claim number processes in accident and sickness insurance. In view of their flexibili-
ty, they are now a favorite point process model for many other applications. A recent
monograph on mixed Poisson processes is Grandell (1997).

Let {N(¢), t>0} be a homogeneous Poisson process with intensity A. To explicitly
express the dependence of this process on A, in this section the notation { N, (¢), > 0}
for the process {N(¢), t > 0} is adopted. The basic idea of Dubourdieu was to consid-
er ) a realization of a positive random variable L, which is called the (random) struc-
ture or mixing parameter. Correspondingly, the probability distribution of L is called
the structure or mixing distribution (section 2.4, pages 92 and 94).

Definition 7.4 Let L be a positive random variable with range R;. Then the count-
ing process { Ny (f), t > 0} is said to be a mixed Poisson process with structure param-
eter L if it has the following properties:

(1) {Ny|;=(®), t= 0} has independent, homogeneous increments for all A € Ry.

i
(2) PNy () =0)= 0;—?57” forallh e R;, i=0,1,.... L]

Thus, on condition L =A, the mixed Poisson process is a homogeneous Poisson
process with parameter A:

{Np =@, t =0} = {Ny(¥), t =2 0}.

The absolute state probabilities p;(f) = P(N(f) =i) of the mixed Poisson process at
time ¢ are

P(NL(t)zi):E((];—?[e‘“j; i=0,1,.... (7.50)
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If L is a discrete random variable with P(L =A;)=m;; k=0,1,...; then
P(N(f)=1)= kﬁjjo (kl"—f)[ e Ml . (7.51)
In applications, a binary structure parameter L is particularly important. In this case,
P(NL(t)zi)zO”j‘—")ie—wn+(7‘i2—f)ie—w(1 —-7) (7.52)
forO<m<1, Ay #Ay.

The basic results, obtained in what follows, do not depend on the probability distri-
bution of L. Hence, for convenience, throughout this section the assumption is made
that L is a continuous random variable with density f7(A). Then,

pi(t)= T%)ie*“ﬁ(k)dk; i=0,1,...
o i

Obviously, the probability po(f) = P(Ny(f) =0) is the Laplace transform of f7 (L)
with parameter s = ¢ (page 99):
po®=fL(@®)=EEet=[7e™ fL0)dN.

The i th derivative of p((?) is

d'po(t) _

d't

Therefore, all state probabilities of a mixed Poisson process can be written in terms
of po(9):

Py O =20 e fr () .

p,-(t)zP(NL(t)=i)=(—l)i%pg)(t); i=1,2,.. (7.53)

Mean value and variance of Ny (¢) are (compare with the parameters of the mixed
Poisson distribution given by formulas (2.108), page 94):
E(Np() =tE(L), Var(Np(t))=tEL)+t*Var(L). (7.54)

The following theorem lists two important properties of mixed Poisson processes.

Theorem 7.6 (1) A mixed Poisson process {Ny(¢), >0} has homogeneous incre-
ments.

(2) If L is not a constant (i.e. the structure distribution is not degenerate), then the
increments of the mixed Poisson process { Ny (f), t> 0} are not independent.

Proof (1) Let 0=1¢y <ty <---<ty; n=1,2,.... Then, for any nonnegative integers
i19i29"-3in9
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PN (tp_1+t, tp+1v)=1ip; k=1,2,...,n)

=y PNticr + 7. tx+ 1) =i k=12, .n)f (L) d )

= [ PONw(tiets t) = igs k=12, .n)fL (A)d L

= P(N(tje1s ty) = i k=1,2,...,n).
(2)Let0<¢] <ty <t3. Then,
P(Np(t1,t2) =iy, Np(t2,13) = ip)

= [ PINL(t1,12) = i1, No(t2.13) = i) fr (M) d

=g PONV(t1.02) = 1) P(Nw(t2,13) = i) L () d
#[§ PWNa(t1.02) =i)fL (M) d [ P(Na(t2.13) = i2) 1 () d
=P(Np(t1,t2) =i1) P(NL(12,13) = i2).

This proves the theorem if the mixing parameter L is a continuous random variable.
If L is discrete, the same pattern applies. u

Multinomial Criterion Let 0 =¢5 <#; <---<ty; n=1,2,.... Then, for any nonneg-
ative integers iy,ip,....,ip Withi=ij+ip+---+iy,

P(N[(ti1, ty) =i k=1,2,...n|Np(tn) = i)

i (tl)il(t2_tl)izln(l‘n—tn—l)i"
=) (B e (7.55)

Interestingly, this conditional probability does not depend on the structure distribu-
tion (compare to theorem 7.5). Although the derivation of the multinomial criterion
is elementary, it is not done here (Exercise 7.17).

As an application of the multinomial criterion (7.55), the joint distribution of the in-
crements Ny (0,7) =Ny (f) and Ny (¢,¢t+ 1) will be derived:

P(N7(t)=1i, Ni(t,t+71)=k)
= P(N; () =il Np(t+1) =i+ k) P(NL(t+7T) =i+ k)

(i+k) i [X(t+r)]l+k e
- li!k! (#) (t+’c) £ (i+k)! e )fL(}")d}‘u

Hence, the joint distribution is for i,k =0, 1, ...

P(N;(0,6) =i, Ny(t,t+71) = k)—'—k' jo Ak e ) () dh. (7.56)
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Since a mixed Poisson process has dependent increments, it is important to get infor-
mation on the nature and strength of the statistical dependence between two neigh-
boring increments. As a first step into this direction, the mean value of the product of
the increments Ny(f)= Nz(0,7) and Ny(t,t+t) has to be determined. From for-
mula (7.56),

E(INL(0] [NL(t.1 + D)) = f‘, > lk"T [ ik @) 1 () d
i=1 k=1 k! <0

g 0§ 0ok
o =0 i! k=0 k!

e—?» (t+r)fL (}\') dn

— i1 J‘;O 320 A2 et Te kB £ (W) d

=tt [ A2 f(0)d
so that
E(INL()] [NL(t,t +T)]) = tT E(L?). (7.57)

Hence, in view of formula (6.4), page 226,
Cov(Np(r), Nr(t,t+0t) =ttVar(L).

Thus, two neighboring increments of a mixed Poisson process are positively corre-
lated. Consequently, a large number of events in an interval will on average induce a
large number of events in the following interval ('large' relative to the respective
lengths of these intervals). This property of a stochastic process is also called posi-
tive contagion.

Polya Process A mixed Poisson process with a gamma distributed structure parame-
ter L is called a Polya process (or Polya-Lundberg process).

Let the gamma density of L be

fr(h) = F%a)w—l e Pt >0, a>0, p>0.

Then, proceeding as in example 2.24 (page 95) yields

PN =i)=[7 (’;? At B( )wx—le—ﬁm

_T(+a) 1B
i1T(0) (B+r)ite

Hence,

P ==(1"

1;“)( j(Bij i=0,1,.. (7.58)
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Thus, the one-dimensional distribution of the Pdlya process { Nz (), t >0} is a nega-
tive binomial distribution with parameters » = o and p =¢/(B+¢). In particular, for
an exponential structure distribution (o0 = 1), Ny (¢) has a geometric distribution with
parameter p = ¢/(t+ p).

To determine the n-dimensional distribution of the Pdlya process the multinomial cri-
terion (7.55) and the absolute state distribution (7.58) are used:

ForO=1tg <ty <---<tp; n=1,2,...and iy =0,
P(Np(ty) =i k=1,2,...,n)
= P(Ni(ty) = ig; k=1,2,...nIN(tn) = in ) P(NL(tn) = in)
= P(NL(tie1s t) =ik — i3 k= 1,2, onINL(tn) = in) P(NL(tn) = in)

- in! ﬁ(fk—fk—l)ik‘i’f*Ifin—1+ocV t Y B\
0 (g —ig)! kel & Ui S B+n/) B/

After some algebra, the n-dimensional distribution of the Polya process becomes

P(Np(ti) = ig; k=1,2,...,n)

Z = 2

:HZ=1(ik_ik—1)! in KB"’l‘n B+tn J

For the following three reasons its is not surprising that the Pélya process is increas-
ingly used for modeling real-life point processes, in particular customer flows:

1) The finite dimensional distributions of this process are explicitly available.
2) Dependent increments occur more frequently than independent ones.

3) The two free parameters o and 3 of this process allow its adaptation to a wide var-
iety of data sets.

Example 7.7 An insurance company analyzed the incoming flow of claims and found
that the arrival intensity A is subject to random fluctuations, which can be modeled
by the probability density f7(A) of a gamma distributed random variable L with mean
value E(L)=0.24 and variance Var(L) =0.16 (unit: working hour). The parameters
o and B of this gamma distribution are obtained from

E(L)=024=a/B, Var(L)=0.16=0a/p>.
Hence, a =0.36 and 3 = 1.5. Thus, L has density

00 = (1.5)0-36 2064 ,~(15% 3 50
L (0.36) ’ '
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In time intervals, in which the arrival rate was nearly constant, the flow of claims be-
haved like a homogeneous Poisson process. Hence, the insurance company modeled
the incoming flow of claims by a Polya process { Ny (f), t> 0} with the one-dimen-

sional probability distribution

P i 0.36
oo -0-(1-0) (k) (5™ -0

By (7.54), mean value and variance of Ny (f) are
E(NL(H))=0.241, Var(Ni(f))=0.241+0.161¢2.

As illustrated by this example, the Pdlya process (as any other mixed Poisson process)
is a more appropriate model than a homogeneous Poisson process with intensity
A = E(L) for fitting claim number developments, which exhibit an increasing variabi-
lity with increasing ¢. O

Doubly Stochastic Poisson Process The mixed Poisson process generalizes the
homogeneous Poisson process by replacing its parameter A with a random variable
L. The corresponding generalization of the nonhomogeneous Poisson process leads
to the concept of a doubly stochastic Poisson process. A doubly stochastic Poisson
process {Np()(?), 120} can be thought of as a nonhomogeneous Poisson process

the intensity function A(f) of which has been replaced with a stochastic process
{L(?), t > 0} called intensity process. Thus, a sample path of a doubly stochastic Pois-
process {Ny(,)(¢), t> 0} can be generated as follows:

1) A sample path {\(f), 1> 0} of a given intensity process {L(#), >0} is simulated
according to the probability distribution of {L(?), > 0}.

2) Given {A(?), 20}, the process {Ny)(#), 720} evolves like a nonhomogeneous
Poisson process with intensity function A(%).

Thus, a doubly stochastic Poisson process {Ny.y(¢), 1> 0} is generated by two inde-
pendent 'stochastic mechanisms'.

The absolute state probabilities of the doubly stochastic Poisson process at time ¢ are
PN P rear ).
PN =1) = EKUO Lydx]'e im0l (7.60)

In this formula, the mean value operation 'E' eliminates the randomness generated by
the intensity process in [0, 7].

The trend function of {Ny (), t =0} is
m(?) :E(jg L(x) dx) =Jo E(L(x))dx, t>0.

A nonhomogeneous Poisson process with intensity function A(f) = E(L(f)) can be
used as an approximation to the doubly stochastic Poisson process {Np(.)(?), ¢ 2 0}.
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The doubly stochastic Poisson process becomes
1. the homogeneous Poisson process if L(¢) is equal to a constant A for all #> 0,
2. the nonhomogeneous process if L(¢) is a deterministic function A(¢), ¢ > 0,

3. the mixed Poisson process if L(#) is a random variable L, which does not depend
ont.

The two 'degrees of freedom', a doubly stochastic Poisson process has, make this pro-
cess a universal point process model. The term 'doubly stochastic Poisson process'
was introduced by R. Cox, who was the first to investigate this class of point proces-
ses. Hence, these processes are also called Cox processes. For detailed treatments
and applications in engineering, insurance, and in other fields see Snyder (1975) and
Grandell (1997).

7.2.4 Superposition and Thinning of Poisson Processes

7.2.4.1 Superposition

Assume that a service station recruits its customers from » independent sources. For
instance, a branch of a bank serves customers from » different towns, or a car work-
shop repairs and maintains » different makes of cars, or the service station is a water-
ing place in a game reserve, which is visited by » different species of animals. Each
town, each make of cars, and each species generates its own arrival process. Let

(Ni(), t20}; i=1,2,...n,

be the corresponding counting processes. Then, the total number of customers arriv-
ing at the service station in [0, #] is

Nt =N () +Ny(O)+---+ Nu(f).

{N(?), t>0} can be thought of as the counting process of a marked point process,
where the marks indicate from which source the customers come.
On condition that {N;(¢), t>0} is a homogeneous Poisson process with parameter
A;; i=1,2,...,n, what type of counting process is {N(?), > 0}?
From example 4.18 (page 180) it is known that the z-transform of MN(¢) is

M) = o~ (ihot 40, 1 (z-1).
Therefore, N(¢) has a Poisson distribution with parameter

M +ho+--+An)t.

Since the counting processes {/N;(¢), t > 0} have homogeneous and independent incre-
ments, their additive superposition {N(t), t > 0} also has homogeneous and independ-
ent increments. This proves the following theorem.
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Theorem 7.7 The additive superposition {N(¢), >0} of n independent, homogen-
eous Poisson processes {N;(f), >0} with intensities A;; i=1,2,...,n; is a homo-
geneous Poisson process with intensity

A=Ai+hy+ - +An u

Quite analogously, if {N;(¢), t>0} are independent nonhomogeneous Poisson pro-
cesses with intensity functions A;(¢); i=1,2,...,n; then their additive superposition
{N(?), t > 0} is a nonhomogeneous Poisson process with intensity function

MO =A@+ X2+ +Xn(0).

7.2.4.2 Thinning

There are many situations, in which not superposition, but the opposite operation,
namely thinning or splitting, of a Poisson process occurs. For instance, a cosmic par-
ticle counter registers only o-particles and ignores other types of particles, a reinsur-
ance company is only interested in claims, the size of which exceeds, say, one million
dollars, or a game ranger counts only the number of rhinos, which arrive at a water-
ing place per day. Formally, a marked point process {(T1,M1), (T2, M>),...} atrrives
and only events with special marks will be taken into account. It is assumed that the
marks M; are independent of each other and independent of {7{,75,...}, and that
they are identically distributed as

_ | my with probability 1-p

M= . ..
my with probability  p

>

i.e., the mark space only consists of two elements: M = {m,m,}. In this case, there
are two different types of Poisson events: type 1-events (attached with mark m ) and
type 2-events (attached with mark m,).

Of what kind is the arising point process if only type 1-events are counted?

Let Y be the first event time with mark m, . If # < T, then there is surely no type 2-

event in [0,7], and if T, <t< T, , then there are exactly n events in [0,¢] and

(1—=p)" is the probability that none of them is a type 2 -event. Hence,
P(Y>1)=P0<t<T\)+ 2y P(Typ<t<Tpip)(1-p)t.

Since P(Tn <t < Tyy1)=PN() =n),

VR Y ey _
P(Y>t)=e +n§1(”! e )(l p)"

S [A(1-p) 1"
—e Myt 3L (,f)] :e—m+e—m[ex(1—p)t_1}

n=1 :
Hence,

P(Y>1)=e P! 1>0. (7.61)
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Hence, the interevent times between type 2-events have an exponential distribution
with parameter pA. Moreover, in view of our assumptions, these interevent times are
independent. By changing the roles of type 1- and type 2-events, theorem 7.2 implies
theorem 7.8:

Theorem 7.8 Consider a homogeneous Poisson process {N(f), > 0} with intensity
A and two types of Poisson events 1 and 2, which occur independently with respec-
tive probabilities 1 —p and p. Then N(f) can be represented in the form

M) = N1(0) + N (1),
where {N|(¢), t>0} and {N,(f), >0} are two independent homogeneous Poisson
processes with (1 —p)A and p A, which count only type 1- and type 2-events, respec-
tively. ]

From this theorem one obtains by induction the following corollary, which is the ana-
logue to theorem 7.7:

Corollary Let {(T1,M),(T>,M>),...} be a marked point process with the marks M;
being independent of each other and identically distributed as M:

PM=m)=p;; i=1,2,...n, Zo1p;i=1.
The underlying point process {71, T3, ...} is assumed to be Poisson with intensity A .

If only events with mark m; are counted, then the arising point process is a Poisson
process with intensity Ap;, i=1,2,...,n.

Nonhomogeneous Poisson Process Now the situation is partially generalized by
assuming that the underlying counting process {N(?),#>0} is a nonhomogeneous
Poisson process with intensity function A(f). The ithPoisson event occurring at time
T; comes with a random mark M;, where the {M,M,,...} are independent and
have the following probability distribution:

_ | my  with probability 1-p(?)

M. =
' |my with probability  p(?)

giventhat 7;=+¢; i=1,2,....

Note that the M; are no longer identically distributed. Again, an event coming with
mark m; is called a fype i-event, i=1,2.

Let Y be the time to the first occurrence of a type 2-event, G(¢) = P(Y < ¢) its distri-
bution function, and G(¢) = 1 — G(¢). Then the relationship

P(t< Y <t+At|Y > 1) = p(t) M1) At + o(Af)
implies
1 G+A)-G@) o(Af)
% T A =pO)M1) + A7

Letting Af tend to 0 yields
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G'(1)
—= =p(H) Mo).
G0 pOMD)
By integration,
Gl = e T0PMWE 5 o (7.62)

If p(x) =p, then (7.62) becomes (7.61).

Theorem 7.9 Given a nonhomogeneous Poisson process {N(¢),t > 0} with intensity
function A(f) and two types of events 1 and 2, which occur independently with respec-
tive probabilities 1 —p(¢) and p(?) if ¢ is an event time. Then N(¢) can be represented
in the form

N(&) = N1() +N2(0),

where {N(),t>0} and {N,(f),>0} are independent nonhomogeneous Poisson
processes with intensity functions (1 —p(£))A(f) and p(£)A(f), which count only type
1- or type 2-events, respectively. ]

7.2.5 Compound Poisson Processes

Let {(T;,M;); i=1,2,...} be amarked point process, where {T;; i=1,2,...} isaPois-
son point process with corresponding counting process {N(¢), ¢ > 0}. Then the stoch-
astic process {C(?), t > 0} defined by

N(b)
C() = 2%) M;
1=

with My =0 is called a compound (cumulative, aggregate) Poisson process.

Compound Poisson processes occur in many situations:

1) If T; is the time point at which the i th customer arrives at an insurance company
and M; is its claim size, then C(¢) is the total claim amount the company is confronted
with in the time interval [0, £].

2) If T; is the time of the i th breakdown of a machine and M; the corresponding re-
pair cost, then C(¢) is the total repair cost in [0, 7].

3) If T; is the time point the i th shock occurs and M; the amount of (mechanical)
wear, which this shock contributes to the degree of wear of an item, then C(¢) is the
total wear the item has experienced up to time ¢. (For the brake discs of a car, every
application of the brakes is a shock, which increases their degree of mechanical wear.
For the tires of the undercarriage of an aircraft, every takeoff and every touchdown is
a shock, which diminishes their tread depth.)
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In what follows, {N(?), > 0} is assumed to be a homogeneous Poisson process with
intensity A. If the M; are independent and identically distributed as M and independ-
ent of {T,T5,...}, then {C(¥), t> 0} has the following properties:

1) {C(?), t 2 0} has independent and homogeneous increments.
2) The Laplace transform of C(?) is

Ci(s) =" 1[M(s)-1] (7.63)
where M(s) = E(e™M)

is the Laplace transform of M. The proof of (7.63) is straightforward: By (2.118) at
page 99,

Culs) = E(e—s C(z)) _ E(e—s (M0+M1+M2+---+MN(,))
o0
— Z E(e*S (M0+M1+M2+...+Mn) P(N(t) = n)
n=0
-3 E(e—sM) 0D ki i § [MM@]”
— n! =0 n!
_ oM[M(s)-1]
From &t(s), all the moments of C(f) can be obtained by making use of (2.119). In
particular, mean value and variance of C(¥) are

E(C(t)) = M E(M),  Var(C(f)) = Lt E(M?). (7.64)

Hint These formulas can also be derived by formulas (4.74) and (4.75), page 194.

Now the compound Poisson process is considered on condition that M has a Bernoulli
distribution:

3 { 1 with probability  p
~ |0 with probability 1 -p °

Then M+ M, +---+ M, as asum of independent and Bernoulli distributed random
variables is binomially distributed with parameters » and p (page 49). Hence,

P(C(H=k) = 28:1 P(My+M+---+My = klN([) =n) P(N(f) = n)
_ Z ( )p (1 )n—k (M)

This is a mixture of bmomlal distributions with regard to a Poisson structure distribu-
tion. Hence, by example 2.24 (page 93), C(f) has a Poisson distribution with parame-
terApt:

n
P(C(t) = k) = @%’)e—w; k=0.1,....



7 RANDOM POINT PROCESSES 289

Corollary If the marks of a compound Poisson process {C(¢), > 0} have a Bernoulli
distribution with parameter p, then {C(), > 0} arises by thinning a homogeneous
Poisson process with parameter A.

If the underlying counting process {N(?), ¢ > 0} is a nonhomogeneous Poisson process
with intensity function A(¢) and integrated intensity function A(f) =] 6 A(x) dx, then
(7.63) and (7.64) become in this order

(}t(s) _ eA(t)[I\A/I(s)—l]’
E(C(1)) = A(f) E(M), (7.65)
Var(C(1)) = A(f) E(M?).

Again, these formulas are an immediate consequence of (4.74) and (4.75).

7.2.6 Applications to Maintenance

The nonhomogeneous Poisson process is an important mathematical tool for model-
ing and optimizing the maintenance of technical systems with respect to cost and reli-
ability criteria by applying proper maintenance policies (strategies). Maintenance
policies prescribe when to carry out (preventive) repairs, replacements, inspections,
or other maintenance measures. Repairs after system failures usually only tackle the
causes which triggered off the failures. A minimal repair performed after a failure
enables the system to continue its work but it does not affect the failure rate (2.56)
(page 88) of the system. In other words, after a minimal repair the failure rate of the
system has the same value as immediately before a failure. For example, if a failure
of a complicated electronic system is caused by a defective plug and socket connec-
tion, then removing this cause of failure can be considered a minimal repair. Preven-
tive replacements (renewals) and preventive repairs are not initiated by system fail-
ures, but they are carried out to prevent or at least to postpone future failures. Preven-
tive minimal repairs make no sense with regard to the survival probability of systems.

Minimal Repair Policy Every system failure is (and can be) removed by a minimal
repair.

Henceforth it is assumed that all renewals and repairs take only negligibly small times
and that, after completing a renewal or a repair, the system immediately resumes its
work. The random lifetime 7= T'| of the system has probability density f(¢), distribu-
tion function F(¢), survival probability F(¢) = 1 — F(¢), and failure rate A(?).

Theorem 7.10 A system is subject to a minimal repair policy. Let T; be the time at
which its i th failure (minimal repair) takes place. Then the sequence {7, T,...} is a
nonhomogeneous Poisson process, the intensity function of which is given by the
failure rate A(f) of the system.
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Proof The first failure of the system, which starts working at time ¢ = 0, occurs at the
random time 7'= 7| with density

fr @) =r)eD; t>0.

The same density one gets from (7.45) or (7.49) for n=1. Now let us assume that a
failure (minimal repair) occurs at time point 71 =¢1. Then the failure probability of
the system in [#{,¢,) with #| < ¢, is nothing else than the conditional failure probabil-
ity of a system, which has survived the interval [0,¢;] (in either case the system has
failure rate A(¢1) at time ¢1 ). Hence, by formula (2.98):

P(T, < 12|T1 = ll) =1 —e_[A(t2+tl)_A([1)] .

But this is formula (7.48) and just as there it can be concluded that the joint density
of the random vector (7, T3) is given by (7.49) with n = 2. Finally, induction yields
that the joint density of the random vector (7, T3, ..., T») is for all n = 1,2, ... given
by (7.49), where A(?) is the failure rate of the system. u

The minimal repair policy provides the theoretical fundament for analyzing a number
of more sophisticated maintenance policies including preventive replacements. To
justify preventive replacements, the assumption has to be made that the underlying
system is aging, i.e. its failure rate is increasing (pages 87—89).

The criterion for evaluating the efficiency of maintenance policies will be the average
maintenance cost per unit time over an infinite time span. To establish this criterion,
the time axis is partitioned into replacement cycles, i.e. into the times between two
neighboring replacements. Let L; be the random length of the i th replacement cycle
and C; the total random maintenance cost (replacement + repair cost) in the i th re-
placement cycle. It is assumed that the L; are independent and identically distributed
as L. This assumption implies that a replaced system is as good as the previous one
(‘as good as new') from the point of view of its lifetime. The C; are assumed to be
independent, identically distributed as C, and independent of the ;. Then the main-
tenance cost per unit time over an infinite time span is

1 n
- TLG . 52 G
K= lim =120 lim 4= —— 'nl L.
n—o0 21’:1 Li n— : Zizl Li
The strong law of the large numbers implies
E(©)
K=—+=. 7.66
E(L) (7.66)
For the sake of brevity, K is referred to as the (long-run) maintenance cost rate. Thus,
the maintenance cost rate is equal to the mean maintenance cost per cycle divided by
the mean cycle length. In what follows, ¢, denotes the cost of a preventive replace-
ment, and ¢, is the cost of a minimal repair; cp, ¢, constants.

Policy 1 A system is preventively replaced at fixed times T, 21, .... Failures between
replacements are removed by minimal repairs.
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This policy reflects the common approach of preventively overhauling complicated
systems after fixed time periods whilst in between only the absolutely necessary re-
pairs are done. With this policy, all cycle lengths are equal to t so that in view of
(7.65) the mean cost per cycle is equal to c¢p +cmA(t). Hence, the corresponding
maintenance cost rate is

A replacement interval T = 1, which minimizes K (1), satisfies the condition
TAMT) = A(T) =cplem .
If A(¢) tends to infinity as ¢ — oo, then there exists a unique solution T =t* of this
equation. The corresponding minimal maintenance cost rate is
Ki(t*) = cm Mt*).

Policy 2 A system is replaced at the first failure which occurs after a fixed time .
Failures which occur between replacements are removed by minimal repairs.

This policy makes use fully of the system lifetime so that, from this point of view, it
is preferable to policy 1. The partial uncertainty, however, about the times of replace-
ments leads to larger replacement costs than with policy 1. The replacement is no lon-
ger purely preventative so that its cost are denoted as ¢,. Thus, in practice the mainte-
nance cost rate of policy 2 may actually exceed the one of policy 1 if ¢, is sufficiently
larger than the ¢, used in policy 1. The residual lifetime 7 of the system after time
point T, when having survived interval [0, t], has according to (2.93) mean value

__1L {7
u(t) = 5 lFr(x) dx. (7.67)

The mean maintenance cost per cycle is ¢, + ¢ A(T), and the mean replacement cycle
length is T+ p(t) so that the corresponding maintenance cost rate is

cr+cemA(T)
T+ (1)
An optimal t = t* satisfies the necessary condition dK»(t)/dt =0, i.e.,

[A(‘C)-ﬁ-%—l}}l(‘t):’t.

Kr(v) =

Example 7.8 Let the system lifetime 7 have a Rayleigh distribution with failure rate
M(f) = 21/62. The corresponding mean residual lifetime of the system after having sur-

vived [0, 1] is
u(t) = eﬁe(”e)z{l —CI)(@T) } )

If6 =100 [h’l], cm=1,and ¢, =5, the optimal parameters are
= 180[h], Kp(t*)=0.0402. O
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Policy 3 The first n — 1 failures are removed by minimal repairs. At the time point 7',
of the nth failure, a replacement is carried out.
The random cycle length is [ = 7, . Hence, the maintenance cost rate is
cr+(m—1cm

E(Ty) ’
where the mean cycle length E(7},) is given by (7.46). By analyzing the behavior of
the difference K3(n) — K3(n— 1), an optimal n = n* is seen to be the smallest integer
n satisfying

K3(n) =

E(Tw)—=[n—1+crleml EYp) 20, n=1,2,.., (7.68)

where the mean time E(Y,) between the (n-1)th and the nth minimal repair is given
by formula (7.47).

Example 7.9 Let the system lifetime 7 have a Weibull distribution:

Ao =5 (g) P A= (g) P s (7.69)

Under this assumption condition (7.68) becomes
Bn—[n—1+cr/cm]20.

Hence, if ¢ > ¢y,
N | Y 7
n* _Hﬁ—l (Cm 1)H+l,

where ||x|| is the largest integer being less or equal to x. (If x <0, then |x|| = 0.) If the
aging process of the system proceeds fast (3 large), then n* is small. |

7.2.7 Applications To Risk Analysis

Random point processes are key tools for quantifying the financial risk in virtually all
branches of industry. This section uses the terminology for analyzing the financial
risk in the insurance industry. A risky situation for an insurance company arises if it
has to pay out a total claim amount, which exceeds its total premium income plus
initial capital. To be able to establish the corresponding mathematical risk model, next
the concept of a risk process has to be introduced: An insurance company starts its
business at time # = 0. Claims arrive at random time points 7, 7, ... and come with
the respective random claim sizes M, M>,.... Thus, the insurance company is sub-
jected to a random marked point process

(T, M)),(T2,M3),...},
called risk process. The two components of the risk process are the claim arrival pro-

cess {T1,T,,...} and the claim size process {M,M>,,...}. Let {N(¢), t>0} be the
random counting process, which belongs to the claim arrival process. Then the total
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claim size C(#), the company is faced with in the interval [0, 7], is a compound random
variable of structure

N() .
C(t) = Yo M; if N(H=1, (7.70)
0 if M(#)=0.
The compound Poisson process
[ca), 1= 03

is the main ingredient of the risk model to be analyzed in this section.

To equalize the loss caused by claims and to eventually make a profit, an insurance
company imposes a premium on its clients. Let k(¢) be the total premium income of
the insurance company in [0, #]. In case C(¢) < k(f), the company has made a profit of

k(1) - C()
in the interval [0,f] (not taking into account staff and other running costs of the
company).

With an initial capital or an initial reserve x, which the company has at its disposal at
the start, the risk reserve at time ¢ is defined as

R(®) =x+x()—C(?) (7.71)
The corresponding (stochastic) risk reserve process is {R(t), t > 0}. If the sample

path of {R(?), t> 0} becomes negative at a time point #,, the financial expenses of
the company in [0, #,] exceed its available capital of x+«(z) at the time point ¢,

This leads to the definition of the ruin probability p(x) of the company:
p(x) = P(there is a positive, finite ¢ so that R(?) < 0). (7.72)

Correspondingly, the non-ruin probability or survival probability of the company is

q(x)=1-px).
These probabilities refer to an infinite time horizon. The ruin probability of the com-
pany with regard to a finite time horizon t is

p(x, 1) = P(there is a finite ¢ with 0 < ¢ < tso that R(¢) < 0).

The ruin probabilities p(x) and p(x, t) decrease with increasing initial capital x.
Since ruin can only occur at the arrival time points of claims (Figure 7.5), p(x) and
p(x,T) can also be defined in the following way:

p(x) = P(there is a positive, finite integer # so that R(7) < 0). (7.73)
p(x, T) = P(there is a positive, finite integer n with 7, <t so that R(7},) < 0),
where R(T,) is understood to be R(T, +0), i.e. the value of the risk reserve process
at time point 7, includes the effect of the » th claim.

Note In the actuarial literature, claim sizes are frequently denoted as U;, the initial capital as
u, and the ruin probability as y(u).



294 APPLIED PROPABILITY AND STOCHASTIC PROCESSES

wo | 1

Figure 7.5 Sample path of a risk process leading to ruin

In this section, the problem of determining the ruin probability is dealt with under the
so-called 'classical assumptions:'

1) {M(?), t 2 0} is a homogeneous Poisson process with parameter A.

2) The claim sizes M1, M>,... are independent, identically as M distributed random
variables. They are independent of the 7', 7, ....

3) The premium income is a linear function in #: k(f) = k¢. The constant parameter k
is called the premium rate.

4) The time horizon is infinite (t = ).

Under asumptions 1 and 2, risk analysis is subjected to a homogeneous portfolio, i.e.
claim sizes are independent, differences in the claim sizes are purely random, and the
arrival rate of claims is constant. For instance, consider a portfolio which only includ-
es policies covering burgleries in houses. If the houses are in a demarcated area, have
about the same security standards and comparable valuables inside, then this portfolio
may be considered a homogeneous one. Generally, an insurance company tries to es-
tablish its portfolios in such a way that they are approximately homogeneous. Regard-
less of the terminology adopted, the subsequent risk analysis will not apply to an
insurance company as a whole, but to its basic operating blocks, the homogeneous
portfolios.

By assumption 1 and theorem 7.2, the interarrival times between neighboring claims
are independent and identical as Y distributed random variables, where Y has an ex-
ponential distribution with parameter A = 1/pu. The mean claim size is denoted as v :

p=EY) and v=EWM). (7.74)
By (7.64), under the assumptions 1 and 2, the trend function of the total claim size
process {C(f), t> 0} is a linear function in time:

E(C(1) = ﬁt, 1> 0. (7.75)

This justifies assumption 3, namely a linear premium income in time.
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In the longrun, an insurance company, however large its initial capital may be, can-
not be successful if the average total claim cost in any interval [0, 7] exceeds the
premium income in [0, f]. Hence, in what follows the assumption
Kkpu—v>0 (7.76)

is made. This inequality requires that the average premium income between the arrival
of two neighboring claims is larger than the mean claim size. The difference k u—v
is called safety loading and will be denoted as o:

o=Ku—V.
Let distribution function and density of the claim size be

B(y)=P(M<y) and b(y)=dB(y)/dy.

Derivation of an Integro-Differential Equation for ¢(x) To derive an integro-dif-
ferential equation for the survival probability, consider what may happen in the time
interval [0, Af] :
1) No claim arrives in [0, Af]. Under this condition, the survival probability is

q(x + KA.

This is because at the end of the interval [0, Af] the capital of the company has in-
creased by kA7 units. So the 'new' initial capital at time point Af is x + K At.

2) One claim arrives in [0, Af] and the risk reserve remains positive. Under this condi-
tion, the survival probability is
X+K At

0 qx+xAt—=y)b(y)dy .
To understand this integral, remember that 'b(y) dy' can be interpreted as the 'probab-
ility' that the claim size is equal to y (see comment after formula (2.50) at page 61).

3) One claim arrives in[0, Af] and the risk reserve becomes negative (ruin occurs).
Under this condition, the survival probability is 0.

4) At least two claims arrive in [0, Af]. Since the Poisson process is simple, the pro-
bability of this event is o(Af).

To get the unconditional survival probability, the conditional survival probabilities
1 —4 have to be multiplied by the probabilities of their respective conditions and
added. By theorem 7.1, the probability that there is one claim in [0, Af], is
P(N(0,A?) = 1) = LAt + o(AY),
and, correspondingly, the probability that there is no claim in [0, Af] is
P(N(0,Af) =0) =1—-AAt+ o(Af).
Therefore, given the initial capital x,

q(x) =[1 =LAt + o(AD)] g(x + K AF)

X+K At

+[1At+o(An] [

q(x+xAt—y)b(y)dy + o(At).
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From this, letting 4 = kAtz, by some simple algebra,

q(x+h X h h
G200 &gy [ g h-y) by dy+ A2
Assuming that g(x) is differentiable, letting 2 — 0 yields
') = 2[4~ [} g~ by dv]. (7.77)

A solution can be obtained in terms of Laplace tran§forms, since the integral in (7.77)
is the convolution of g(x) and b(y): Let g(s) and b(s) be the Laplace transforms of
q(x) and b(y), respectively. Then, applying the Laplace transformation to (7.77),
using its properties (2.123) and (2.127) (page 100) and replacing A with 1/p yields a
simple algebraic equation for g(s)

$4(5)-9(0) = 7z [ 4) ~ () b(s) .
Solving for g(s) gives
1

B B — q(0). (7.78)
s=xp 1= 0()]

q(s) =

This representation of g(s) involves the survival probability of the company ¢(0) on
condition that it has no initial capital.

Example 7.10 Let the claim size M have an exponential distribution with mean value
E(M) =v. Then M has density

b(y) = e, y 20,
so that

1
vs+1°

l;(s) = 'f;o eV % e_(l/v)ydy =

Inserting l;(s) in (7.78) gives the Laplace transform of the survival probability:

A vs+1
=Wt L0 px.
q(s) s (vs 1) = vs g(0)px
By introducing the coefficient
_HRV_ 6 gcac<l, (7.79)

pK T OpK?
q(s) simplifies to

1= o o e,

s+a/v VS s+alv

Retransformation yields (Table 2.5, page 105)

o

g =[5+ L-Le g0 (7.80)
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If the company has infinite initial capital, then it can never experience ruin. Therefore,
q(©) =1 so that, from (7.80), survival and ruin probability without initial capital are

q(0)=a and p(0)=1-a. (7.81)
This gives the final formulas for the survival- and ruin probability:

o [0}
g =1-(1-o)e vV, pr)=(1-a)e V" . (7.82)

Figure 7.6 shows the graph of the ruin probability in dependence on the initial capital
x[$10%] for o =0.1 and & = 0.2. In both cases, v = 0.4[$10%]. From (7.79) one gets
that for oo = 0.1 the safety loading is 6 =0.04, and fora =0.2 itis 6 =0.1. O

> x[$104]

Figure 7.6 Comparison of ruin probabilities for example 7.10

Cramér-Lundberg Approximation If the explicit retransformation of g(s) as given
by (7.78) is not possible for a given claim size distribution, then the Cramér-Lundberg
approximation for the ruin probability p(x) is an option to get reliable information on
the ruin probability if the initial capital x is large compared to the mean claim size:

P~ e, (7.83)
where the Lundberg-coefficient r is defined as solution of the equation
1 o 5
Rfo e"VB()dy=1, (7.84)

and the parameter vy is given by
1 [ >
y= ﬁjo ye'VB(y)dy.

Note that in view of (7.84) ﬁ e”Y B(y) can be interpreted as the probability density
of a nonnegative random variable, and the parameter y is the mean value of this ran-
dom variable (for a proof of (7.83) see, e.g., Grandell (1991)).

A solution r of equation (7.84) exists if the probability density of the claim size b(y)
has a 'short tail' to the right, which implies that large values of the claim size occur
fairly seldom.
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It is interesting to compare the exact value of the ruin probability under an exponen-
tial claim size distribution (7.82) with the corresponding approximation (7.83): For

B)=1-e My y>0,
equation (7.84) becomes
1

-r

J.;O e—(l/v—r)y dy =

T THe

v

so that » = a/v. The corresponding parameter y is

_ Lo —(Nv-Ry g, 1 o _ ye—(1V=r)y
Y uKJ.O ye dy uK(l/v—r)IOy(l/v r)e dy

_ 1

= —-
pk (1/v—r)

After some simple algebra:

Z=1
py = 1o

By comparing (7.82) and (7.83):

The Cramér-Lundberg approximation gives the exact value of the ruin probability
if the claim sizes are exponentially distributed.

Lundberg Inequality Assuming the existence of the Lundberg exponent r as defined
by equation (7.84), the ruin probability is bounded by e~ :

px)<e™X, (7.85)
This is the famous Lundberg inequality. A proof will be given in chapter 10, page
490, by applying martingale techniques.

Both F. Lundberg and H. Cramér did their pioneering research in collective risk analysis in the
first third of the twentieth century; see Lundberg (1964).

Example 7.11 As in example 7.10, let v = 0.4 [$10%], but M is assumed to have a
Rayleigh distribution:

Bo)=PM>y)=e 00" ;>0

Since v=EM) =0,n/4 =0.4, the parameter & must be equal to 0.8/ /7 . Again the
case o = 0.1 is considered, i.e. uk = 4/9 = 0.4 and 6 = 2/45 = 0.04. The corresponding

Lundberg exponent is solution of %J;O eV e T 108) g y =1, which gives

r=0398 and y=3 7039y ~n0708) 4y = 02697,

Figure 7.7 shows the graphs of the Cramér-Lundberg approximation (7.83) and the
upper bound (7.85) for the ruin probability p(x) in dependency of the initial capital x:
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p(x) = 0.9316- 7 0398x  p(x) < 0398x x>0,

Although (7.83) yields best results only for large x, the graph of the approximation is
everywhere lower than the upper bound (7.85). The dotted line shows once more the
exact ruin probability for exponentially distributed claim sizes with the same mean
and o—values as in Figure 7.6. Obviously, the di