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15.3 Doeblin-Itō formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
15.4 Fokker-Planck equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
15.5 An abstract class of stochastic processes . . . . . . . . . . . . . . . . . . . . 434

15.5.1 Generators and carré du champ operators . . . . . . . . . . . . . . . 434
15.5.2 Perturbation formulae . . . . . . . . . . . . . . . . . . . . . . . . . . 437

15.6 Jump diffusion processes with killing . . . . . . . . . . . . . . . . . . . . . 439
15.6.1 Feynman-Kac semigroups . . . . . . . . . . . . . . . . . . . . . . . . 439
15.6.2 Cauchy problems with terminal conditions . . . . . . . . . . . . . . . 440
15.6.3 Dirichlet-Poisson problems . . . . . . . . . . . . . . . . . . . . . . . 442
15.6.4 Cauchy-Dirichlet-Poisson problems . . . . . . . . . . . . . . . . . . . 447

15.7 Some illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
15.7.1 One-dimensional Dirichlet-Poisson problems . . . . . . . . . . . . . . 450
15.7.2 A backward stochastic differential equation . . . . . . . . . . . . . . 451

15.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

16 Nonlinear jump diffusion processes 463
16.1 Nonlinear Markov processes . . . . . . . . . . . . . . . . . . . . . . . . . . 463

16.1.1 Pure diffusion models . . . . . . . . . . . . . . . . . . . . . . . . . . 463
16.1.2 Burgers equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
16.1.3 Feynman-Kac jump type models . . . . . . . . . . . . . . . . . . . . 466
16.1.4 A jump type Langevin model . . . . . . . . . . . . . . . . . . . . . . 467

16.2 Mean field particle models . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
16.3 Some application domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 470



Contents xv

16.3.1 Fouque-Sun systemic risk model . . . . . . . . . . . . . . . . . . . . 470
16.3.2 Burgers equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
16.3.3 Langevin-McKean-Vlasov model . . . . . . . . . . . . . . . . . . . . 472
16.3.4 Dyson equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

16.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

17 Stochastic analysis toolbox 481
17.1 Time changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
17.2 Stability properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
17.3 Some illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

17.3.1 Gradient flow processes . . . . . . . . . . . . . . . . . . . . . . . . . 483
17.3.2 One-dimensional diffusions . . . . . . . . . . . . . . . . . . . . . . . 484

17.4 Foster-Lyapunov techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 485
17.4.1 Contraction inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 485
17.4.2 Minorization properties . . . . . . . . . . . . . . . . . . . . . . . . . 486

17.5 Some applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
17.5.1 Ornstein-Uhlenbeck processes . . . . . . . . . . . . . . . . . . . . . . 487
17.5.2 Stochastic gradient processes . . . . . . . . . . . . . . . . . . . . . . 487
17.5.3 Langevin diffusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

17.6 Spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
17.6.1 Hilbert spaces and Schauder bases . . . . . . . . . . . . . . . . . . . 490
17.6.2 Spectral decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 493
17.6.3 Poincaré inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

17.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

18 Path space measures 501
18.1 Pure jump models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

18.1.1 Likelihood functionals . . . . . . . . . . . . . . . . . . . . . . . . . . 504
18.1.2 Girsanov’s transformations . . . . . . . . . . . . . . . . . . . . . . . 505
18.1.3 Exponential martingales . . . . . . . . . . . . . . . . . . . . . . . . . 506

18.2 Diffusion models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
18.2.1 Wiener measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
18.2.2 Path space diffusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
18.2.3 Girsanov transformations . . . . . . . . . . . . . . . . . . . . . . . . 509

18.3 Exponential change twisted measures . . . . . . . . . . . . . . . . . . . . . 512
18.3.1 Diffusion processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
18.3.2 Pure jump processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

18.4 Some illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
18.4.1 Risk neutral financial markets . . . . . . . . . . . . . . . . . . . . . . 514

18.4.1.1 Poisson markets . . . . . . . . . . . . . . . . . . . . . . . . 514
18.4.1.2 Diffusion markets . . . . . . . . . . . . . . . . . . . . . . . 515

18.4.2 Elliptic diffusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
18.5 Nonlinear filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

18.5.1 Diffusion observations . . . . . . . . . . . . . . . . . . . . . . . . . . 517
18.5.2 Duncan-Zakai equation . . . . . . . . . . . . . . . . . . . . . . . . . 518
18.5.3 Kushner-Stratonovitch equation . . . . . . . . . . . . . . . . . . . . 520
18.5.4 Kalman-Bucy filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
18.5.5 Nonlinear diffusion and ensemble Kalman-Bucy filters . . . . . . . . 523
18.5.6 Robust filtering equations . . . . . . . . . . . . . . . . . . . . . . . . 524
18.5.7 Poisson observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

18.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527



xvi Contents

V Processes on manifolds 533

19 A review of differential geometry 535
19.1 Projection operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
19.2 Covariant derivatives of vector fields . . . . . . . . . . . . . . . . . . . . . . 541

19.2.1 First order derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 543
19.2.2 Second order derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 546

19.3 Divergence and mean curvature . . . . . . . . . . . . . . . . . . . . . . . . 547
19.4 Lie brackets and commutation formulae . . . . . . . . . . . . . . . . . . . . 554
19.5 Inner product derivation formulae . . . . . . . . . . . . . . . . . . . . . . . 556
19.6 Second order derivatives and some trace formulae . . . . . . . . . . . . . . 559
19.7 Laplacian operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
19.8 Ricci curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
19.9 Bochner-Lichnerowicz formula . . . . . . . . . . . . . . . . . . . . . . . . . 568
19.10Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

20 Stochastic differential calculus on manifolds 579
20.1 Embedded manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
20.2 Brownian motion on manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 581

20.2.1 A diffusion model in the ambient space . . . . . . . . . . . . . . . . 581
20.2.2 The infinitesimal generator . . . . . . . . . . . . . . . . . . . . . . . 583
20.2.3 Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . . . 584

20.3 Stratonovitch differential calculus . . . . . . . . . . . . . . . . . . . . . . . 584
20.4 Projected diffusions on manifolds . . . . . . . . . . . . . . . . . . . . . . . 586
20.5 Brownian motion on orbifolds . . . . . . . . . . . . . . . . . . . . . . . . . 589
20.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

21 Parametrizations and charts 593
21.1 Differentiable manifolds and charts . . . . . . . . . . . . . . . . . . . . . . 593
21.2 Orthogonal projection operators . . . . . . . . . . . . . . . . . . . . . . . . 596
21.3 Riemannian structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
21.4 First order covariant derivatives . . . . . . . . . . . . . . . . . . . . . . . . 602

21.4.1 Pushed forward functions . . . . . . . . . . . . . . . . . . . . . . . . 602
21.4.2 Pushed forward vector fields . . . . . . . . . . . . . . . . . . . . . . . 604
21.4.3 Directional derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 606

21.5 Second order covariant derivative . . . . . . . . . . . . . . . . . . . . . . . 609
21.5.1 Tangent basis functions . . . . . . . . . . . . . . . . . . . . . . . . . 609
21.5.2 Composition formulae . . . . . . . . . . . . . . . . . . . . . . . . . . 612
21.5.3 Hessian operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

21.6 Bochner-Lichnerowicz formula . . . . . . . . . . . . . . . . . . . . . . . . . 617
21.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

22 Stochastic calculus in chart spaces 629
22.1 Brownian motion on Riemannian manifolds . . . . . . . . . . . . . . . . . . 629
22.2 Diffusions on chart spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
22.3 Brownian motion on spheres . . . . . . . . . . . . . . . . . . . . . . . . . . 632

22.3.1 The unit circle S = S1 ⊂ R2 . . . . . . . . . . . . . . . . . . . . . . . 632
22.3.2 The unit sphere S = S2 ⊂ R3 . . . . . . . . . . . . . . . . . . . . . . 633

22.4 Brownian motion on the torus . . . . . . . . . . . . . . . . . . . . . . . . . 634
22.5 Diffusions on the simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
22.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637



Contents xvii

23 Some analytical aspects 639
23.1 Geodesics and the exponential map . . . . . . . . . . . . . . . . . . . . . . 639
23.2 Taylor expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
23.3 Integration on manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645

23.3.1 The volume measure on the manifold . . . . . . . . . . . . . . . . . . 645
23.3.2 Wedge product and volume forms . . . . . . . . . . . . . . . . . . . 648
23.3.3 The divergence theorem . . . . . . . . . . . . . . . . . . . . . . . . . 650

23.4 Gradient flow models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
23.4.1 Steepest descent model . . . . . . . . . . . . . . . . . . . . . . . . . 657
23.4.2 Euclidian state spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 658

23.5 Drift changes and irreversible Langevin diffusions . . . . . . . . . . . . . . 659
23.5.1 Langevin diffusions on closed manifolds . . . . . . . . . . . . . . . . 661
23.5.2 Riemannian Langevin diffusions . . . . . . . . . . . . . . . . . . . . . 662

23.6 Metropolis-adjusted Langevin models . . . . . . . . . . . . . . . . . . . . . 665
23.7 Stability and some functional inequalities . . . . . . . . . . . . . . . . . . . 666
23.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669

24 Some illustrations 673
24.1 Prototype manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673

24.1.1 The circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
24.1.2 The 2-sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
24.1.3 The torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678

24.2 Information theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
24.2.1 Nash embedding theorem . . . . . . . . . . . . . . . . . . . . . . . . 681
24.2.2 Distribution manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 682
24.2.3 Bayesian statistical manifolds . . . . . . . . . . . . . . . . . . . . . . 683
24.2.4 Cramer-Rao lower bound . . . . . . . . . . . . . . . . . . . . . . . . 685
24.2.5 Some illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685

24.2.5.1 Boltzmann-Gibbs measures . . . . . . . . . . . . . . . . . . 685
24.2.5.2 Multivariate normal distributions . . . . . . . . . . . . . . 686

VI Some application areas 691

25 Simple random walks 693
25.1 Random walk on lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693

25.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693
25.1.2 Dimension 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693
25.1.3 Dimension 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694
25.1.4 Dimension d ≥ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694

25.2 Random walks on graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694
25.3 Simple exclusion process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
25.4 Random walks on the circle . . . . . . . . . . . . . . . . . . . . . . . . . . . 695

25.4.1 Markov chain on cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 695
25.4.2 Markov chain on circle . . . . . . . . . . . . . . . . . . . . . . . . . . 696
25.4.3 Spectral decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 696

25.5 Random walk on hypercubes . . . . . . . . . . . . . . . . . . . . . . . . . . 697
25.5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
25.5.2 A macroscopic model . . . . . . . . . . . . . . . . . . . . . . . . . . 698
25.5.3 A lazy random walk . . . . . . . . . . . . . . . . . . . . . . . . . . . 698

25.6 Urn processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699
25.6.1 Ehrenfest model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699



xviii Contents

25.6.2 Pólya urn model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
25.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701

26 Iterated random functions 705
26.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705
26.2 A motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
26.3 Uniform selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708

26.3.1 An ancestral type evolution model . . . . . . . . . . . . . . . . . . . 708
26.3.2 An absorbed Markov chain . . . . . . . . . . . . . . . . . . . . . . . 709

26.4 Shuffling cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
26.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
26.4.2 The top-in-at-random shuffle . . . . . . . . . . . . . . . . . . . . . . 712
26.4.3 The random transposition shuffle . . . . . . . . . . . . . . . . . . . . 713
26.4.4 The riffle shuffle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716

26.5 Fractal models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719
26.5.1 Exploration of Cantor’s discontinuum . . . . . . . . . . . . . . . . . 720
26.5.2 Some fractal images . . . . . . . . . . . . . . . . . . . . . . . . . . . 723

26.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725

27 Computational and statistical physics 731
27.1 Molecular dynamics simulation . . . . . . . . . . . . . . . . . . . . . . . . . 731

27.1.1 Newton’s second law of motion . . . . . . . . . . . . . . . . . . . . . 731
27.1.2 Langevin diffusion processes . . . . . . . . . . . . . . . . . . . . . . . 734

27.2 Schrödinger equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737
27.2.1 A physical derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 737
27.2.2 Feynman-Kac formulation . . . . . . . . . . . . . . . . . . . . . . . . 739
27.2.3 Bra-kets and path integral formalism . . . . . . . . . . . . . . . . . . 742
27.2.4 Spectral decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 743
27.2.5 The harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . . . 745
27.2.6 Diffusion Monte Carlo models . . . . . . . . . . . . . . . . . . . . . . 748

27.3 Interacting particle systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 749
27.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749
27.3.2 Contact process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751
27.3.3 Voter process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751
27.3.4 Exclusion process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752

27.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753

28 Dynamic population models 759
28.1 Discrete time birth and death models . . . . . . . . . . . . . . . . . . . . . 759
28.2 Continuous time models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762

28.2.1 Birth and death generators . . . . . . . . . . . . . . . . . . . . . . . 762
28.2.2 Logistic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
28.2.3 Epidemic model with immunity . . . . . . . . . . . . . . . . . . . . . 764
28.2.4 Lotka-Volterra predator-prey stochastic model . . . . . . . . . . . . 765
28.2.5 Moran genetic model . . . . . . . . . . . . . . . . . . . . . . . . . . . 768

28.3 Genetic evolution models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
28.4 Branching processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770

28.4.1 Birth and death models with linear rates . . . . . . . . . . . . . . . 770
28.4.2 Discrete time branching processes . . . . . . . . . . . . . . . . . . . 772
28.4.3 Continuous time branching processes . . . . . . . . . . . . . . . . . . 773

28.4.3.1 Absorption-death process . . . . . . . . . . . . . . . . . . . 774



Contents xix

28.4.3.2 Birth type branching process . . . . . . . . . . . . . . . . . 775
28.4.3.3 Birth and death branching processes . . . . . . . . . . . . . 777
28.4.3.4 Kolmogorov-Petrovskii-Piskunov equation . . . . . . . . . . 778

28.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780

29 Gambling, ranking and control 787
29.1 Google page rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
29.2 Gambling betting systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 788

29.2.1 Martingale systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788
29.2.2 St. Petersburg martingales . . . . . . . . . . . . . . . . . . . . . . . 789
29.2.3 Conditional gains and losses . . . . . . . . . . . . . . . . . . . . . . . 791

29.2.3.1 Conditional gains . . . . . . . . . . . . . . . . . . . . . . . 791
29.2.3.2 Conditional losses . . . . . . . . . . . . . . . . . . . . . . . 791

29.2.4 Bankroll management . . . . . . . . . . . . . . . . . . . . . . . . . . 792
29.2.5 Grand martingale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794
29.2.6 D’Alembert martingale . . . . . . . . . . . . . . . . . . . . . . . . . 794
29.2.7 Whittacker martingale . . . . . . . . . . . . . . . . . . . . . . . . . . 796

29.3 Stochastic optimal control . . . . . . . . . . . . . . . . . . . . . . . . . . . 797
29.3.1 Bellman equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797
29.3.2 Control dependent value functions . . . . . . . . . . . . . . . . . . . 802
29.3.3 Continuous time models . . . . . . . . . . . . . . . . . . . . . . . . . 804

29.4 Optimal stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807
29.4.1 Games with fixed terminal condition . . . . . . . . . . . . . . . . . . 807
29.4.2 Snell envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809
29.4.3 Continuous time models . . . . . . . . . . . . . . . . . . . . . . . . . 811

29.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812

30 Mathematical finance 821
30.1 Stock price models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821

30.1.1 Up and down martingales . . . . . . . . . . . . . . . . . . . . . . . . 821
30.1.2 Cox-Ross-Rubinstein model . . . . . . . . . . . . . . . . . . . . . . . 824
30.1.3 Black-Scholes-Merton model . . . . . . . . . . . . . . . . . . . . . . . 825

30.2 European option pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826
30.2.1 Call and put options . . . . . . . . . . . . . . . . . . . . . . . . . . . 826
30.2.2 Self-financing portfolios . . . . . . . . . . . . . . . . . . . . . . . . . 827
30.2.3 Binomial pricing technique . . . . . . . . . . . . . . . . . . . . . . . 828
30.2.4 Black-Scholes-Merton pricing model . . . . . . . . . . . . . . . . . . 830
30.2.5 Black-Scholes partial differential equation . . . . . . . . . . . . . . . 831
30.2.6 Replicating portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . 832
30.2.7 Option price and hedging computations . . . . . . . . . . . . . . . . 833
30.2.8 A numerical illustration . . . . . . . . . . . . . . . . . . . . . . . . . 834

30.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835

Bibliography 839

Index 855



http://www.taylorandfrancis.com


0
Introduction

A brief discussion on stochastic processes
These lectures deal with the foundations and the applications of stochastic processes also
called random processes.

The term "stochastic" comes from the Greek word "stokhastikos" which means a skillful
person capable of guessing and predicting. The first use of this term in probability theory
can be traced back to the Russian economist and statistician Ladislaus Bortkiewicz (1868-
1931). In his paper Die Iterationen published in 1917, he defines the term "stochastik" as
follows: "The investigation of empirical varieties, which is based on probability theory, and,
therefore, on the law of the large numbers, may be denoted as stochastic. But stochastic is
not simply probability theory, but above all probability theory and its applications".

As their name indicates, stochastic processes are dynamic evolution models with random
ingredients. Leaving aside the old well-known dilemma of determinism and freedom [26, 225]
(solved by some old fashion scientific reasoning which cannot accommodate any piece of
random "un-caused causations"), the complex structure of any "concrete" and sophisticated
real life model is always better represented by stochastic mathematical models as a first level
of approximation.

The sources of randomness reflect different sources of model uncertainties, including
unknown initial conditions, model uncertainties such as misspecified kinetic parameters, as
well as the external random effects on the system.

Stochastic modelling techniques are of great importance in many scientific areas, to
name a few:

• Computer and engineering sciences: signal and image processing, filtering and inverse
problems, stochastic control, game theory, mathematical finance, risk analysis and rare
event simulation, operation research and global optimization, artificial intelligence and
evolutionary computing, queueing and communication networks.

• Statistical machine learning: hidden Markov chain models, frequentist and Bayesian
statistical inference.

• Biology and environmental sciences: branching processes, dynamic population models,
genetic and genealogical tree-based evolution.

• Physics and chemistry: turbulent fluid models, disordered and quantum models, sta-
tistical physics and magnetic models, polymers in solvents, molecular dynamics and
Schrödinger equations.

A fairly large body of the literature on stochastic processes is concerned with the prob-
abilistic modelling and the convergence analysis of random style dynamical systems. As
expected these developments are closely related to the theory of dynamical systems, to
partial differential and integro-differential equations, but also to ergodic and chaos theory,

xxi
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differential geometry, as well as the classical linear algebra theory, combinatorics, topology,
operator theory, and spectral analysis.

The theory of stochastic processes has also developed its own sophisticated probabilistic
tools, including diffusion and jump type stochastic differential equations, Doeblin-Itō calcu-
lus, martingale theory, coupling techniques, and advanced stochastic simulation techniques.

One of the objectives of stochastic process theory is to derive explicit analytic type results
for a variety of simplified stochastic processes, including birth and death models, simple
random walks, spatially homogeneous branching processes, and many others. Nevertheless,
most of the more realistic processes of interest in the real world of physics, biology, and
engineering sciences are "unfortunately" highly nonlinear systems evolving in very high
dimensions. As a result, it is generally impossible to come up with any type of closed form
solutions.

In this connection, the theory of stochastic processes is also concerned with the modelling
and with the convergence analysis of a variety of sophisticated stochastic algorithms. These
stochastic processes are designed to solve numerically complex integration problems that
arise in a variety of application areas. Their common feature is to mimic and to use repeated
random samples of a given stochastic process to estimate some averaging type property using
empirical approximations.

We emphasize that all of these stochastic methods are expressed in terms of a partic-
ular stochastic process, or a collection of stochastic processes, depending on the precision
parameter being the time horizon, or the number of samples. The central idea is to approx-
imate the expectation of a given random variable using the empirical averages (in space or
in time) based on a sequence of random samples. In this context, the rigorous analysis of
these complex numerical schemes also relies on advanced stochastic analysis techniques.

The interpretation of the random variables of interest depends on the application. In
some instances, these variables represent the random states of a complex stochastic process,
or some unknown kinetic or statistical parameters. In other situations, the random variables
of interest are specified by a complex target probability measure. Stochastic simulation and
Monte Carlo methods are used to predict the evolution of given random phenomena, as
well as to solve several estimation problems using random searches. To name but a few:
computing complex measures and multidimensional integrals, counting, ranking, and rating
problems, spectral analysis, computation of eigenvalues and eigenvectors, as well as solving
linear and nonlinear integro-differential equations.

This book is almost self-contained. There are no strict prerequisites but it is envisaged
that students would have taken a course in elementary probability and that they have some
knowledge of elementary linear algebra, functional analysis and geometry. It is not possible
to define rigorously stochastic processes without some basic knowledge on measure theory
and differential calculus. Readers who lack such background should instead consult some
introductory textbook on probability and integration, and elementary differential calculus.

The book also contains around 500 exercises with detailed solutions on a variety of
topics, with many explicit computations. Each chapter ends with a section containing a
series of exercises ranging from simple calculations to more advanced technical questions.
This book can serve as a reference book, as well as a textbook. The next section provides
a brief description of the organization of the book.

On page xxxii we propose a series of lectures and research projects which can be devel-
oped using the material presented in this book. The descriptions of these course projects
also provide detailed discussions on the connections between the different topics treated in
this book. Thus, they also provide a reading guide to enter into a given specialized topic.
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Organization of the book
The book is organized in six parts. The synthetic diagram below provides the connections
betweens the parts and indicates the different possible ways of reading the book.

Part I provides an illustrative guide with a series of motivating examples. Each of them
is related to a deep mathematical result on stochastic processes. The examples include
the recurrence and the transience properties of simple random walks, stochastic coupling
techniques and mixing properties of Markov chains, random iterated functional models,
Poisson processes, dynamic population models, Markov chain Monte Carlo methods, and
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the Doeblin-Itō differential calculus. In each situation, we provide a brief discussion on the
mathematical analysis of these models. We also provide precise pointers to the chapters
and sections where these results are discussed in more details.

Part II is concerned with the notion of randomness, and with some techniques to "sim-
ulate perfectly" some traditional random variables (abbreviated r.v.). For a more thorough
discussion on this subject, we refer to the encyclopedic and seminal reference book of Luc
Devroye [92], dedicated to the simulation of nonuniform random variables. Several concrete
applications are provided to illustrate many of the key ideas, as well as the usefulness of
stochastic simulation methods in some scientific disciplines.

The next three parts are dedicated to discrete and continuous time stochastic processes.
The synthetic diagram below provides some inclusion type links between the different classes
of stochastic processes discussed in this book.

 

M O N T E  C A R L O  A N D  
M C M C  M E T H O D S  

M E A N – FI E L D  
P A R T I C L E  M O D E L S  

(d i s c r e t e  t i m e ) 

M A R K O V  C H A I N S  

N O N L I N E A R  
M A R K O V  C H A I N S  

(d i s c r e t e  t i m e ) FE Y N M A N – K A C  
M O D E L S   

(d i s c r e t e  t i m e ) 

FE Y N M A N – K A C  
M O D E L S   

(c o nt i nu o u s  t i m e ) 

M E A N – FI E L D  
P A R T I C L E  M O D E L S  

(c o nt i nu o u s  t i m e ) 

N O N L I N E A R  J UM P  
D I FFUS I O N S  

D I FFUS I O N  
P R O C E S S E S   
(o n m a ni f o l d s ) 

J UM P  D I FFUS I O N S  

D Y N A M I C  S Y S T E M S  
P I E C E W I S E  

D E T E R M I N I S T I C  
P R O C E S S E S  

P UR E  J UM P  
P R O C E S S E S  

D I FFUS I O N  
P R O C E S S E S   

(E u c l i d e a n s pa c e )  

Part III is concerned with
discrete time stochastic processes,
and more particularly with Markov
chain models.

Firstly, we provide a detailed
discussion on the different descrip-
tions and interpretations of these
stochastic models. We also discuss
nonlinear Markov chain models,
including self-interacting Markov
chains and mean field type particle
models.

Then we present a panorama
of analytical tools to study the
convergence of Markov chain mod-
els when the time parameter tends
to ∞. The first class of math-
ematical techniques includes lin-
ear algebraic tools, spectral and
functional analysis. We also
present some more probabilistic-
type tools such as coupling tech-
niques, strong stationary times,
and martingale limit theorems.

Finally, we review the tradi-
tional and the more recent computation techniques of Markov chain models. These tech-
niques include Markov chain Monte Carlo methodologies, perfect sampling algorithms, and
time inhomogeneous models. We also provide a discussion of the more recent Feynman-Kac
particle methodologies, with a series of application domains.

Part IV of the book is concerned with continuous time stochastic processes and stochas-
tic differential calculus, a pretty vast subject at the core of applied mathematics. Never-
theless, most of the literature on these processes in probability textbooks is dauntingly
mathematical. Here we provide a pedagogical introduction, sacrificing from time to time
some technical mathematical aspects.
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Continuous time stochastic processes can always be thought as a limit of a discrete gen-
eration process defined on some time mesh, as the time step tends to 0. This viewpoint
which is at the foundation of of stochastic calculus and integration is often hidden in purely
theoretical textbooks on stochastic processes. In the reverse angle, more applied presenta-
tions found in textbooks in engineering, economy, statistics and physics are often too far
from recent advances in applied probability so that students are not really prepared to enter
into deeper analysis nor pursue any research level type projects.

One of the main new points we have adopted here is to make a bridge between appli-
cations and advanced probability analysis. Continuous time stochastic processes, including
nonlinear jump-diffusion processes, are introduced as a limit of a discrete generation process
which can be easily simulated on a computer. In the same vein, any sophisticated formula
in stochastic analysis and differential calculus arises as the limit of a discrete time mathe-
matical model. It is of course not within the scope of this book to quantify precisely and
in a systematic way all of these approximations. Precise reference pointers to articles and
books dealing with these questions are provided in the text.

All approximations treated in this book are developed through a single and systematic
mathematical basis transforming the elementary Markov transitions of practical discrete
generation models into infinitesimal generators of continuous time processes. The stochas-
tic version of the Taylor expansion, also called the Doeblin-Itō formula or simply the Itō
formula, is described in terms of the generator of a Markov process and its corresponding
carré du champ operator.

In this framework, the evolution of the law of the random states of a continuous time
process resumes to a natural weak formulation of linear and nonlinear Fokker-Planck type
equations (a.k.a. Kolmogorov equations). In this interpretation, the random paths of a given
continuous time process provide a natural interpolation and coupling between the solutions
of these integro-differential equations at different times. These path-space probability mea-
sures provide natural probabilistic interpretations of important Cauchy-Dirichlet-Poisson
problems arising in analysis and integro-partial differential equation problems. The limit-
ing behavior of these functional equations is also directly related to the long time behavior
of a stochastic process.

All of these subjects are developed from chapter 10 to chapter 16. The presentation
starts with elementary Poisson and jump type processes, including piecewise deterministic
models, and develops forward to more advanced jump-diffusion processes and nonlinear
Markov processes with their mean field particle interpretations. An abstract and universal
class of continuous time stochastic process is discussed in section 15.5.

The last two chapters, chapter 17 and chapter 18 present respectively a panorama of
analytical tools to study the long time behavior of continuous time stochastic processes,
and path-space probability measures with some application domains.

Part V is dedicated to diffusion processes on manifolds. These stochastic processes arise
when we need to explore state spaces associated with some constraints, such as the sphere,
the torus, or the simplex. The literature on this subject is often geared towards purely
mathematical aspects, with highly complex stochastic differential geometry methodologies.
This book provides a self-contained and pedagogical treatment with a variety of examples
and application domains. Special emphasis is given to the modelling, the stability analysis,
and the numerical simulation of these processes on a computer.

The synthetic diagram below provides some inclusion type links between the different
classes of stochastic computational techniques discussed in this book.
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Part VI is dedicated to some application domains of stochastic processes, including ran-
dom walks, iterated random functions, computational physics, dynamic population models,
gambling and ranking, and mathematical finance.

Chapter 25 is mainly concerned with simple random walks. It starts with the recurrence
or transience properties of these processes on integer lattices depending on their dimensions.
We also discuss random walks on graphs, the exclusion process, as well as random walks
on the circle and hypercubes and their spectral properties. The last part of the chapter is
dedicated to the applications of Markov chains to analyze the behavior of urn type models
such as the Polya and the Ehrenfest processes. We end this chapter with a series of exercises
on these random walk models including diffusion approximation techniques.

Chapter 26 is dedicated to stochastic processes expressed in terms of iterated random
functions. We examine three classes of models. The first one is related to branching pro-
cesses and ancestral tree evolutions. These stochastic processes are expressed in terms of
compositions of one to one mappings between finite sets of indices. The second one is con-
cerned with shuffling cards. In this context, the processes are expressed in terms of random
compositions of permutations. The last class of models are based on random compositions
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of linear transformations on the plane and their limiting fractal image compositions. We
illustrate these models with the random construction of the Cantor’s discontinuum, and
provide some examples of fractal images such as a fractal leaf, a fractal tree, the Sierpinski
carpet, and the Highways dragons. We analyze the stability and the limiting measures asso-
ciated with each class of processes. The chapter ends with a series of exercises related to the
stability properties of these models, including some techniques used to obtain quantitative
estimates.

Chapter 27 explores some selected applications of stochastic processes in computational
and statistical physics.

The first part provides a short introduction to molecular dynamics models and to their
numerical approximations. We connect these deterministic models with Langevin diffusion
processes and their reversible Boltzmann-Gibbs distributions.

The second part of the chapter is dedicated to the spectral analysis of the Schrödinger
wave equation and its description in terms of Feynman-Kac semigroups. We provide an
equivalent description of these models in terms of the Bra-kets and path integral formalisms
commonly used in physics. We present a complete description of the spectral decomposition
of the Schrödinger-Feynman-Kac generator, the classical harmonic oscillator in terms of the
Hermite polynomials introduced in chapter 17. Last but not least we introduce the reader to
the Monte Carlo approximation of these models based on the mean field particle algorithms
presented in the third part of the book.

The third part of the chapter discusses different applications of interacting particle
systems in physics, including the contact model, the voter and the exclusion process. The
chapter ends with a series of exercises on the ground state of Schrödinger operators, quasi-
invariant measures, twisted guiding waves, and variational principles.

Chapter 28 is dedicated to applications of stochastic processes in biology and epidemiol-
ogy. We present several classes of deterministic and stochastic dynamic population models.
We analyse logistic type and Lotka-Volterra processes, as well as branching and genetic
processes. This chapter ends with a series of exercises related to logistic diffusions, bimodal
growth models, facultative mutualism processes, infection and branching processes.

Chapter 29 is concerned with applications of stochastic processes in gambling and rank-
ing. We start with the celebrated Google page rank algorithm. The second part of the
chapter is dedicated to gambling betting systems. We review and analyze some famous
martingales such as the St Petersburg martingale, the grand martingale, the D’Alembert
and the Whittaker martingales. The third part of the chapter is mainly concerned with
stochastic control and optimal stopping strategies. The chapter ends with a series of exer-
cises on the Monty Hall game show, the Parrondo’s game, the bold play strategy, the ballot
and the secretary problems.

The last chapter, chapter 30, is dedicated to applications in mathematical finance. We
discuss the discrete time Cox-Ross-Rubinstein models and the continuous Black-Scholes-
Merton models. The second part of the chapter is concerned with European pricing options.
We provide a discussion on the modelling of self-financing portfolios in terms of controlled
martingales. We also describe a series of pricing and hedging techniques with some nu-
merical illustrations. The chapter ends with a series of exercises related to neutralization
techniques of financial markets, replicating portfolios, Wilkie inflation models, and life func-
tion martingales.

The synthetic diagram below provides some inclusion type links between the stochastic
processes and the different application domains discussed in this book. The black arrows
indicate the estimations and sampling problems arising in different application areas. The
blue arrows indicate the stochastic tools that can be used to solve these problems. The
red arrows emphasize the modelling, the design and the convergence analysis of stochastic
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methods. The green arrows emphasize the class of stochastic models arising in several
scientific disciplines.
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Preview and objectives

This book provides an introduction to the probabilistic modelling of discrete and continuous
time stochastic processes. The emphasis is put on the understanding of the main mathemat-
ical concepts and numerical tools across a range of illustrations presented through models
with increasing complexity.

If you can’t explain it simply, you don’t understand it well enough.
Albert Einstein (1879-1955).

While exploring the analysis of stochastic processes, the reader will also encounter a
variety of mathematical techniques related to matrix theory, spectral analysis, dynamical
systems theory and differential geometry.

We discuss a large class of models ranging from finite space valued Markov chains to
jump diffusion processes, nonlinear Markov processes, self-interacting processes, mean field
particle models, branching and interacting particle systems, as well as diffusions on con-
straint and Riemannian manifolds.

Each of these stochastic processes is illustrated in a variety of applications. Of course,
the detailed description of real-world models requires a deep understanding of the physical
or the biological principles behind the problem at hand. These discussions are out of the
scope of the book. We only discuss academic-type related situations, providing precise
reference pointers for a more detailed discussion. The illustrations we have chosen are very
often at the crossroads of several seemingly disconnected scientific disciplines, including
biology, mathematical finance, gambling, physics, engineering sciences, operations research,
as well as probability, and statistical inference.

The book also provides an introduction to stochastic analysis and stochastic differential
calculus, including the analysis of probability measures on path spaces and the analysis of
Feynman-Kac semigroups. We present a series of powerful tools to analyze the long time be-
havior of discrete and continuous time stochastic processes, including coupling, contraction
inequalities, spectral decompositions, Lyapunov techniques, and martingale theory.

The book also provides a series of probabilistic interpretations of integro-partial differ-
ential equations, including stochastic partial differential equations (such as the nonlinear
filtering equation), Fokker-Planck equations and Hamilton-Jacobi-Bellman equations, as
well as Cauchy-Dirichlet-Poisson equations with boundary conditions.

Last but not least, the book also provides a rather detailed description of some tradi-
tional and more advanced computational techniques based on stochastic processes. These
techniques include Markov chain Monte Carlo methods, coupling from the past techniques,
as well as more advanced particle methods. Here again, each of these numerical techniques
is illustrated in a variety of applications.

Having said that, let us explain some other important subjects which are not treated in
this book. We provide some precise reference pointers to supplement this book on some of
these subjects.

As any lecture on deterministic dynamical systems does not really need to start with
a fully developed Lebesgue, or Riemann-Stieltjes integration theory, nor with a special-
ized course on differential calculus, we believe that a full and detailed description of
stochastic integrals is not really needed to start a lecture on stochastic processes.

For instance, Markov chains are simply defined as a sequence of random variables indexed
by integers. Thus, the mathematical foundations of Markov chain theory only rely on rather
elementary algebra or Lebesgue integration theory.
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It is always assumed implicitly that these (infinite) sequences of random variables are
defined on a common probability space; otherwise it would be impossible to quantify, nor
to define properly limiting events and objects. From a pure mathematical point of view,
this innocent technical question is not so obvious even for sequences of independent random
variables. The construction of these probability spaces relies on abstract projective lim-
its, the well known Carathéodory extension theorem and the Kolmogorov extension
theorem. The Ionescu-Tulcea theorem also provides a natural probabilistic solution on gen-
eral measurable spaces. It is clearly not within the scope of this book to enter into these
rather well known and sophisticated constructions.

As dynamical systems, continuous time stochastic processes can be defined as the limit
of a discrete generation Markov process on some time mesh when the time step tends
to 0. For the same reasons as above, these limiting objects are defined on a probability
space constructed using projective limit techniques and extension type theorems to define
in a unique way infinite dimensional distributions from finite dimensional ones defined on
cylindrical type sets.

In addition, the weak convergence of any discrete time approximation process to the
desired continuous time limiting process requires us to analyze the convergence of the finite
dimensional distributions on any finite sequence of times. We will discuss these finite
dimensional approximations in some details for jump as well as for diffusion processes.

Nevertheless, the weak convergence at the level of the random trajectories requires us to
ensure that the laws of the random paths of the approximating processes are relatively
compact in the sense that any sequence admits a convergent subsequence. For complete
separable metric spaces, this condition is equivalent to a tightness condition that ensures
that these sequences of probability measures are almost concentrated on a compact subset
in the whole set of trajectories.

Therefore to check this compactness condition we first need to characterize the compact
subsets of the set of continuous trajectories, or of the set of right continuous trajectories
with left hand limits. By the Arzelà-Ascoli theorem, these compact sets are described in
terms of equicontinuous trajectories. Besides the fact that the most of stochastic processes
encountered in practice satisfy this tightness property, the proof of this condition relies on
sophisticated probabilistic tools. A very useful and commonly used to check this tightness
property is the Aldous criterion introduced by D. Aldous in his PhD dissertation and
published in the Annals of Probability in 1978.

Here again, entering in some details into these rather well known and well developed
subjects would cause digression. More details on these subjects can be found in the books

• R. Bass. Stochastic Processes. CUP (2011).

• S. Ethier,T. Kurtz.Markov Processes: Characterization and Convergence. Wiley (1986).

• J. Jacod, A. Shiryaev, Limit Theorems for Stochastic Processes, Springer (1987).

The seminal book by J. Jacod and A. N. Shiryaev is highly technical and presents diffi-
cult material but it contains almost all the limiting convergence theorems encountered in the
theory of stochastic processes. This reference is dedicated to researchers in pure and applied
probability. The book by S.N. Ethier and T. G. Kurtz is in spirit closer to our approach
based on the description of general stochastic processes in terms of their generators. This
book is recommended to anyone interested into the precise mathematical definition of gen-
erators and their regularity properties. The book of R. Bass is more accessible and presents
a detailed mathematical construction of stochastic integrals and stochastic calculus.

The integral representations of these limiting stochastic differential equations (abbrevi-
ated SDE) are expressed in terms of stochastic integrals. These limiting mathematical
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models coincide with the definition of the stochastic integral. The convergence can be made
precise in a variety of well known senses, such as in probability, almost sure, or w.r.t. some
Lp-norms.

Recall that integral description of any deterministic dynamical system is based on the
so-called fundamental theorem of calculus. In the same vein, the integral description
of stochastic processes is now based on the fundamental Doeblin-Itō differential
calculus. This stochastic differential calculus can be interpreted as the natural exten-
sion of Taylor differential calculus to random dynamical systems, such as diffusions
and random jump type processes. Here again the Doeblin-Itō differential calculus
can also be expressed in terms of natural Taylor type expansions associated with a discrete
time approximation of a given continuous type stochastic process.

In the further development of this book, we have chosen to describe in full details these
stochastic expansions for the most fundamental classes of stochastic processes including
jump diffusions and more abstract stochastic models in general state spaces, as well as
stochastic processes on manifolds.

Precise reference pointers to textbooks dedicated to deeper mathematical foundations of
stochastic integrals and the Doeblin-Itō differential calculus are given in the
text.

This choice of presentation has many advantages.
Firstly, the time discretization of continuous time processes provides a natural way to

simulate these processes on a computer.
In addition, any of these simulation techniques also improves the physical and the prob-

abilistic understanding of the nature and the long time behavior of the limiting stochastic
process.

Furthermore, this pedagogical presentation does not really require a strong background
in sophisticated stochastic analysis techniques, as it is based only on discrete time ap-
proximation schemes. As stochastic integrals and the Doeblin-Itō differential
calculus are themselves defined in terms of limiting formulae associated with a discrete
generation process, our approach provides a way to introduce these somehow sophisticated
mathematical objects in a simple form.

In this connection, most of the limiting objects as well as quantitative estimates are gen-
erally obtained by using standard technical tools such as the monotone or the dominated
convergence theorems, Cauchy-Schwartz, Hölder or Minskowski inequalities. Some of
these results are provided in the text and in the exercises. Further mathematical details
can also be found in the textbooks cited in the text.

Last, but not least, this choice of presentation also lays a great foundation for research,
as most of the research questions in probability are asymptotic in nature. In order to
understand these questions, the basic non-asymptotic manipulations need to be clearly
understood.

Rather than pepper the text with repeated citations, we mention here (in alphabetical
order) some other classical and supplemental texts on the full mathematical construction of
stochastic integrals, the characterization and the convergence of continuous time stochastic
processes:

• R. Durrett, Stochastic Calculus. CRC Press (1996).

• I. Gikhman, A. Skorokhod. Stochastic Differential Equations. Springer (1972).

• F.C Klebaner. Introduction to Stochastic Calculus with Applications. World Scientific
Publishing (2012).

• P. Protter. Stochastic Integration and Differential Equations. Springer (2004).
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More specialized books on Brownian motion, martingales with continuous paths, diffu-
sions processes and their discrete time approximations are:

• N. Ikeda, S. Watanabe. Stochastic Differential Equations and Diffusion Processes.
North-Holland Publishing Co. (1989).

• I. Karatzas, S. E. Shreve. Brownian Motion and Stochastic Calculus. Springer (2004).

• P. E. Kloeden, E. Platen. Numerical Solution of Stochastic Differential Equations.
Springer (2011).

• B. Øksendal. Stochastic Differential Equations: An Introduction with Applications.
Springer (2005).

• L. C. G. Rogers, D. Williams. Diffusions, Markov Processes, and Martingales. CUP
(2000).

The seminal book by P. E. Kloeden and E. Platen provides an extensive discussion on the
convergence properties of discrete time approximations of stochastic differential equations.

Other specialized mathematical textbooks and lecture notes which can be useful for
supplemental reading on stochastic processes and analysis on manifolds are:

• K.D. Elworthy. Stochastic Differential Equations on Manifolds. CUP(1982).

• M. Emery. Stochastic Calculus on Manifolds. Springer (1989).

• E.P. Hsu. Stochastic analysis on manifolds. Providence AMS (2002).

Some lecture projects
The material in this book can serve as a basis for different types of advanced undergraduate
and graduate level courses as well as master-level and post-doctoral level courses on stochas-
tic processes and their application domains. As we mentioned above, the book also contains
around 500 exercises with detailed solutions. Each chapter ends with a section containing
a series of exercises ranging from simple calculations to more advanced technical questions.
These exercises can serve for training the students through tutorials or homework.

Running overtime is the one unforgivable error a lecturer can make.
After fifty minutes (one microcentury as von Neumann used to say)
everybody’s attention will turn elsewhere. Gian Carlo Rota (1932-1999).

Introduction to stochastic processes (with applications)

This first type of a lecture course would be a pedagogical introduction to elementary stochas-
tic processes based on the detailed illustrations provided in the first three chapters, chap-
ter 1, chapter 2, and chapter 3. The lectures can be completed with the simulation tech-
niques presented in chapter 4, the Monte Carlo methods discussed in chapter 5, and the
illustrations provided in chapter 6.

The lecture presents discrete as well as continuous time stochastic processes through
a variety of motivating illustrations including dynamic population models, fractals, card
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shuffling, signal processing, Bayesian statistical inference, finance, gambling, ranking, and
stochastic search, reinforcement learning and sampling techniques.

Through a variety of applications, the lecture provides a brief introduction to Markov
chains, including the recurrence properties of simple random walks, Markov chains on per-
mutation groups, and iterated random functions. This course also covers Poisson processes,
and provides an introduction to Brownian motion, as well as piecewise deterministic Markov
processes, diffusions and jump processes.

This lecture course also covers computational aspects with an introduction of Markov
chain Monte Carlo methodologies and the celebrated Metropolis-Hastings algorithm. The
text also provides a brief introduction to more advanced and sophisticated nonlinear stochas-
tic techniques such as self-interacting processes particle filters, and mean field particle sam-
pling methodologies.

The theoretical topics also include an accessible introduction to stochastic differential
calculus. The lecture provides a natural and unified treatment of stochastic processes based
on infinitesimal generators and their carré du champ operators.

This book is also designed to stimulate the development of research projects that offer
the opportunity to apply the theory of stochastic processes discussed during the lectures to
an application domain selected among the ones discussed in this introductory course: card
shuffling, fractal images, ancestral evolutions, molecular dynamics, branching and interact-
ing processes, genetic models, gambling betting systems, financial option pricing, advanced
signal processing, stochastic optimization, Bayesian statistical inference, and many others.

These research projects provide opportunity to the lecturer to immerse the student in
a favorite application area. They also require the student to do a background study and
perform personal research by exploring one of the chapters in the last part of the book
dedicated to application domains. The diagrams provided on page xxiii and on page xxviii
guide the students on the reading order to enter into a specific application domain and
explore the different links and inclusions between the stochastic models discussed during
the lectures.

More theoretical research projects can also be covered. For instance, the recurrence
questions of random walks discussed in the first section of chapter 1 can be further devel-
oped by using the topological aspects of Markov chains presented in section 8.5. Another
research project based on the martingale theory developed in section 8.4 will complement
the discussion on gambling and ruin processes discussed in chapter 2. The discussion on sig-
nal processing and particle filters presented in chapter 3 can be complemented by research
projects on Kalman filters (section 9.9.6), mean field particle methodologies (section 7.10.2),
and Feynman-Kac particle models (section 9.5 and section 9.6).

Other textbooks and lecture notes which can be useful for supplemental reading in
probability and applications during this lecture are:

• P. Billingsley. Convergence of Probability Measures, Wiley (1999).

• L. Devroye. Non-Uniform Random Variate Generation, Springer (1986).

• W. Feller. An Introduction to Probability Theory, Wiley (1971).

• G.R. Grimmett, D.R. Stirzaker, One Thousand Exercises in Probability, OUP (2001).

• A. Shiryaev. Probability, Graduate Texts in Mathematics, Springer (2013).

• P. Del Moral, B. Remillard, S. Rubenthaler. Introduction aux Probabilités. Ellipses
Edition [in French] (2006).
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We also refer to some online resources such as the review of probability theory by
T. Tao, the Wikipedia article on Brownian Motion, and a Java applet simulating
Brownian motion.

Of course it normally takes more than an year to cover the full scope of this course with
fully rigorous mathematical details. This course is designed for advanced undergraduate
to master-level audiences with different educational backgrounds ranging from engineering
sciences, economics, business, mathematical finance, physics, statistics to applied mathe-
matics.

Giving a course for such a diverse audience with different backgrounds poses a signif-
icant challenge to the lecturer. To make the material accessible to all groups, the course
begins with the series of illustrations in the first three chapters. This fairly gentle intro-
duction is designed to cover a variety of subjects in a single semester course of around 40
hours, at a somehow more superficial mathematical level from the pure and applied math-
ematician perspective. These introductory chapters contain precise pointers to specialized
chapters with more advanced mathematical material. Students with deep backgrounds in
applied mathematics are invited to explore deeper into the book, while students with lim-
ited mathematical backgrounds will concentrate on the more elementary material discussed
in chapter 1, chapter 2, and chapter 3.

Discrete time stochastic processes

The second type of lecture course is a pedagogical introduction to discrete time processes
and Markov chain theory, a rather vast subject at the core of applied probability and many
other scientific disciplines that use stochastic models. This more theoretical type course
is geared towards discrete time stochastic processes and their stability analysis. It would
essentially cover chapter 7 and chapter 8.

As in the previous lecture course, this would start with some selected motivating il-
lustrations provided in chapter 1 and chapter 2, as well as from the material provided in
section 3.1, chapter 5 and chapter 6 dedicated to Markov chain Monte Carlo methodologies.

The second part of this course will center around some selected material presented in
the third part of the book dedicated to discrete time stochastic processes. Chapter 7 offers
a description of the main classes of Markov chain models including nonlinear Markov chain
models and their mean field particle interpretations.

After this exploration of discrete generation random processes, at least two possible
different directions can be taken.

The first one is based on chapter 8 with an emphasis on the topological aspects and
the stability properties of Markov chains. This type of course presents a panorama of
analytical tools to study the convergence of Markov chain models when the time parameter
tends to ∞. These mathematical techniques include matrix theory, spectral and functional
analysis, as well as contraction inequalities, geometric drift conditions, coupling techniques
and martingale limit theorems.

The second one, based on chapter 9, will emphasize computational aspects ranging
from traditional Markov chain Monte Carlo methods and perfect sampling techniques to
more advanced Feynman-Kac particle methodologies. This part or the course will cover
Metropolis-Hastings algorithms, Gibbs-Glauber dynamics, as well as the Propp and Wilson
coupling from the past sampler. The lecture would also offer a brief introduction to more
advanced particle methods and related particle Markov chain Monte Carlo methodologies.

The course could be complemented with some selected application domains described in
chapter 25, such as random walks on lattices and graphs, or urn type random walks. Another
strategy would be to illustrate the theory of Markov chains with chapter 26 dedicated to
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iterated random functions and their applications in biology, card shuffling or fractal imaging,
or with the discrete time birth and death branching processes presented in chapter 28.

Several research projects could be based on previous topics as well as on the gambling
betting systems and discrete time stochastic control problems discussed in chapter 29, or
on the applications in mathematical finance discussed in chapter 30.

This course is designed for master-level audiences in engineering, physics, statistics and
applied probability.

Other textbooks and lecture notes which can be useful for supplemental reading in
Markov chains and their applications during this lecture are:

• D. Aldous, J. Fill. Reversible Markov Chains and Random Walks on Graphs (1999).

• S. Meyn, R. Tweedie. Markov Chains and Stochastic Stability, Springer (1993).

• J. Norris. Markov Chains. CUP (1998).

• S.I. Resnick. Adventures in Stochastic Processes. Springer Birkhauser (1992).

We also refer to some online resources such as the Wikipedia article on Markov chains,
and to the Markov Chains chapter in American Mathematical Society’s introductory prob-
ability book, the article by D. Saupe Algorithms for random fractals, and the seminal and
very clear article by P. Diaconis titled The Markov Chain Monte Carlo Revolution.

Continuous time stochastic processes

This semester-long course is dedicated to continuous time stochastic processes and stochastic
differential calculus. The lecture notes would essentially cover the series of chapters 10 to 18.
The detailed description of this course follows essentially the presentation of the fourth part
of the book provided on page xxiv. This course is designed for master-level audiences
in engineering, mathematics and physics with some background in probability theory and
elementary Markov chain theory.

To motivate the lectures, this course would start with some selected topics presented in
the first three chapters, such as the Poisson’s typos discussed in section 1.7 (Poisson pro-
cesses), the pinging hacker story presented in section 2.5 (piecewise deterministic stochastic
processes), the lost equation discussed in section 3.3 (Brownian motion), the formal stochas-
tic calculus derivations discussed in section 3.4 (Doeblin-Itō differential calculus), and the
theory of speculation presented in section 3.5 (backward equations and financial mathemat-
ics).

The second part of the lecture would cover elementary Poisson processes, Markov chain
continuous time embedding techniques, pure jump processes and piecewise deterministic
models. It would also cover diffusion processes and more general jump-diffusion processes,
with detailed and systematic descriptions of the infinitesimal generators, the Doeblin-Itō
differential formula and the natural derivation of the corresponding Fokker-Planck equa-
tions.

The third part could be dedicated to jump diffusion processes with killing and their use
to solve Cauchy problems with terminal conditions, as well as Dirichlet-Poisson problems.
The course can also provide an introduction to nonlinear stochastic processes and their
mean field particle interpretations, with illustrations in the context of risk analysis, fluid
mechanics and particle physics.

The last part of the course would cover path-space probability measures including Gir-
sanov’s type change of probability measures and exponential type martingales, with illus-
trations in the analysis of nonlinear filtering processes, in financial mathematics and in rare
event analysis, including in quantum Monte Carlo methodologies.
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Three different applications could be discussed, depending on the background and the
scientific interests of the audience (or of the lecturer):

• Computational and statistical physics (chapter 27):

The material on interacting particle systems presented in section 27.3 only requires some
basic knowledge on generators of pure jump processes. This topic can also be used to
illustrate pure jump processes before entering into the descriptions of diffusion type
processes.

The material on molecular dynamics simulation discussed in section 27.1 only requires
some knowledge on pure diffusion processes and their invariant measures. We recom-
mend studying chapter 17 before entering into these topics.

Section 27.2 dedicated to the Schrödinger equation is based on more advanced stochastic
models such as the Feynman-Kac formulae, jump diffusion processes and exponential
changes of probability measures. We recommend studying chapter 15 and chapter 18
(and more particularly section 18.1.3) before entering into this more advanced appli-
cation area. Section 28.4.3 also provides a detailed discussion on branching particle
interpretations of Feynman-Kac formulae.

• Dynamic population models (chapter 28):

All the material discussed in this chapter can be used to illustrate jump and diffusion
stochastic processes. Section 28.4.3 requires some basic knowledge on Feynman-Kac
semigroups. It is recommended to study chapter 15 before entering into this topic.

• Stochastic optimal control (section 29.3.3 and section 29.4.3):

The material discussed in this chapter can also be used to illustrate jump and diffusion
stochastic processes. It is recommended to start with discrete time stochastic control
theory (section 29.3.1, section 29.3.2 and section 29.4.2) before entering into more so-
phisticated continuous time problems.

• Mathematical finance (chapter 30):

The sections 30.2.4 to 30.2.7 are essentially dedicated to the Black-Scholes stochastic
model. This topic can be covered with only some basic knowledge on diffusion processes
and more particularly on geometric Brownian motion.

Depending on the selected application domains to illustrate the course, we also recom-
mend for supplemental reading the following references:

• K.B. Athreya, P.E. Ney. Branching Processes. Springer (1972).

• D. P. Bertsekas. Dynamic Programming and Optimal Control, Athena Scientific (2012).

• M. Caffarel, R. Assaraf. A pedagogical introduction to quantum Monte Carlo. In
Mathematical Models and Methods for Ab Initio Quantum Chemistry. Lecture Notes in
Chemistry, eds. M. Defranceschi and C. Le Bris, Springer (2000).

• P. Del Moral. Mean Field Simulation for Monte Carlo Integration. Chapman &
Hall/CRC Press (2013).

• P. Glasserman. Monte Carlo methods in financial engineering. Springer (2004).

• T. Harris. The Theory of Branching Processes, R-381, Report US Air Force (1964) and
Dover Publication (2002).
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• H. J. Kushner. Introduction to Stochastic Control, New York: Holt, Reinhart, and
Winston (1971).

• J.M. Steele. Stochastic Calculus and Financial Applications. Springer (2001).

• A. Lasota, M.C. Mackey. Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics.
Springer (1994).

Stochastic processes on manifolds

This advanced theoretical style course covers the fifth part of the book on stochastic diffu-
sions on (differentiable) manifolds. It essentially covers the chapters 19 to 23. This
course is intended for master-level students as well as post-doctoral audiences with some
background in differential calculus and stochastic processes. The purpose of these series
of lectures is to introduce the students to the basic concepts of stochastic processes on
manifolds. The course is illustrated with a series of concrete applications.

In the first part of the course we review some basics tools of differential geometry,
including orthogonal projection techniques, and the related first and second order cova-
riant derivatives (19). The lectures offer a pedagogical introduction to the main math-
ematical models used in differential geometry such as the notions of divergence, mean
curvature vector, Lie brackets between vector fields, Laplacian operators, and
the Ricci curvature on a manifold. One of the main objectives is to help the students
understand the basic concepts of deterministic and stochastic differential calculus that are
relevant to the theory of stochastic processes on manifolds. The other objective is to show
how these mathematical techniques apply to designing and to analyzing random explorations
on constraint manifolds.

One could end this part of the course with the detailed proof of the Bochner-Lich-
nerowicz formula. This formula is pivotal in the stability analysis of diffusion processes
on manifolds. It connects the second order properties of the generator of these processes in
terms of the Hessian operator and the Ricci curvature of the state space.

The second part of the lecture course could be dedicated to stochastic calculus on em-
bedded manifolds (chapter 20) and the notion of charts (a.k.a. atlases) and paramtrization
spaces (chapter 21):

In a first series of lectures we introduce the Brownian motion on a manifold defined in
terms of the level sets of a smooth and regular constraint function. Then, we analyze the
infinitesimal generator of these models and we present the corresponding Doeblin-Itō dif-
ferential calculus. We illustrate these models with the detailed description of the Brownian
motion on the two-dimensional sphere and on the cylinder. These stochastic processes do
not really differ from the ones discussed in chapter 14. The only difference is that they
evolve in constraint manifolds embedded in the ambient space.

In another series of lectures we describe how the geometry of the constraint manifold
is lifted to the parameter space (a.k.a. chart space). The corresponding geometry on
the parameter space is equipped with a Riemannian scalar product. This main objective
is to explore the ways to link the differential operators on the manifold in the ambient
space to the Riemannian parameter space manifold. We provide some tools to compute the
Ricci curvature in local coordinates and we describe the expression of Bochner-Lichnerowicz
formula in Riemannian manifolds.

Several detailed examples are provided in chapter 22 which is dedicated to stochastic
calculus in chart spaces. We define Brownian motion and general diffusions on Riemannian
manifolds. We illustrate these stochastic models with a detailed description of the Brownian
motion on the circle, the two-dimensional sphere and on the torus. Chapter 24 also offers a
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series of illustrations, starting with a detailed discussion of prototype manifolds such as the
circle, the sphere and the torus. In each situation, we describe the Riemannian metric, the
corresponding Laplacian, as well as the geodesics, the Christoffel symbols and the Ricci
curvature. In the second part of the chapter we present applications in information theory.
We start with a discussion on distribution and Bayesian statistical manifolds and we analyze
the corresponding Fisher information metric and the Cramer-Rao lower bounds. We also
discuss the Riemannian metric associated with Bolzmann-Gibbs models and multivariate
normal distributions.

The course could end with the presentation of material in chapter 23 dedicated to some
important analytical aspects, including the construction of geodesics and the integration
on a manifold. We illustrate the impact of these mathematical objects with the design of
gradient type diffusions with a Boltzmann-Gibbs invariant measure on a constraint manifold.
The time discretization of these models is also presented using Metropolis-adjusted Langevin
algorithms (a.k.a. MALA in engineering sciences and information theory).

This chapter also presents some analytical tools for analyzing the stability of stochastic
processes on a manifold in terms of the second order properties of their generators. The
gradient estimates of the Markov semigroups are mainly based on the Bochner-Lichnerowicz
formula presented in chapter 19 and chapter 21. The series of exercises at the end of this
chapter also provide illustrations of the stability analysis of Langevin models including
projected and Riemannian Langevin processes.

Other specialized mathematical textbooks and lecture notes which can be useful for
supplemental reading during this course in stochastic processes and analysis on manifolds
are presented on page xxxii.

We also refer to some online resources in differential geometry such as the Wikipedia
article on Riemannian manifolds, the very useful list of formulae in Riemannian
geometry, and the book by M. Spivak titled A Comprehensive Introduction to Differential
Geometry (1999). Other online resources in stochastic geometry are:

The pioneering articles by K. Itō Stochastic Differential Equations in a Differentiable
Manifold. [Nagoya Math. J. Volume 1, pp.35–47 (1950)], and The Brownian Motion and
Tensor Fields on Riemannian Manifolds [Proc. Int. Congr. Math., Stockholm (1962)],
and the very nice article by T. Lelièvre, G. Ciccotti, E. Vanden-Eijnden. . Projection of
diffusions on submanifolds: Application to mean force computation. [Communi. Pure Appl.
Math., 61(3), 371-408, (2008)].

Stochastic analysis and computational techniques

There is enough material in the book to support more specialized courses on stochastic
analysis and computational methodologies. A synthetic description of some of these course
projects is provided below.

Stability of stochastic processes

As its name indicates, this course is concerned with the long time behavior of stochastic
processes. This course is designed for master-level audiences in mathematics and physics
with some background in Markov chains theory and/or in continuous time jump diffusion
processes, depending on whether the lectures are dedicated to discrete generation and/or
continuous time models.

Here again the lectures could start with some selected topics presented in the first three
chapters, such as the stabilization of population subject discussed in section 2.1 (coupling
techniques), the pinging hackers subject presented in section 2.5 (long time behavior of
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piecewise deterministic processes), and the discussion on Markov chain Monte Carlo meth-
ods (a.k.a. MCMC algorithms) provided in section 3.1.

To illustrate the lectures on discrete generation stochastic processes, the course would
also benefit from the material provided in chapter 5 and chapter 6 dedicated to Markov
chain Monte Carlo methodologies. Another series of illustrations based on shuffling cards
problems and fractals can be found in chapter 26.

We also recommend presenting the formal stochastic calculus derivations discussed in
section 3.4 (Doeblin-Itō differential calculus) if the course is dedicated to continuous time
processes.

The second part of the course could be centered around the analysis toolboxes presented
in chapter 8 (discrete time models) and chapter 17 (continuous time models). The objec-
tive is to introduce the students to a class of traditional approaches to analyze the long
time behavior of Markov chains, including coupling, spectral analysis, Lyapunov techniques,
and contraction inequalities. The coupling techniques can be illustrated using the discrete
generation birth and death process discussed in section 28.1. The stability of continuous
time birth and death models (with linear rates) can also be discussed using the explicit
calculations developed in section 28.4.1.

The lectures could be illustrated by the Hamiltonian and Lagrangian molecular dynamics
simulation techniques discussed in section 27.1.

The last part of the course could focus on the stability of stochastic processes on mani-
folds if the audience has some background on manifold-valued stochastic processes. It would
essentially cover the sections 23.4 to 23.7. Otherwise, this final part of the course offers a
pedagogical introduction on these models based on the material provided in chapter 19, in-
cluding the detailed proof of the Bochner-Lichnerowicz formula and followed by gradient
estimates discussed in section 23.7.

Other lecture notes and articles which can be useful for supplemental reading on Markov
chains and their applications during this course are:

• S. Meyn, R. Tweedie. Markov Chains and Stochastic Stability, Springer (1993).

• P. Diaconis. Something we’ve learned (about the Metropolis-Hasting algorithm), Bernoulli
(2013).

• R. Douc, E. Moulines, D. Stoffer. Nonlinear Time Series Analysis: Theory, Methods
and Applications with R Examples, Chapman & Hall/CRC Press (2014).

• M. Hairer. Convergence of Markov Processes. Lecture notes, Warwick University (2010).

• A. Katok, B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems.
CUP (1997).

• L. Saloff-Costes. Lectures on Finite Markov Chains. Springer (1997).

• P. Del Moral, M. Ledoux, L. Miclo. Contraction properties of Markov kernels. Proba-
bility Theory and Related Fields, vol. 126, pp. 395–420 (2003).

• F. Wang. Functional Inequalities, Markov Semigroups and Spectral Theory. Elsevier
(2006).

Stochastic processes and partial differential equations

A one-quarter or one-semester course could be dedicated to probabilistic interpretations of
integro-differential equations. This course is designed for master-level audiences in applied
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probability and mathematical physics, with some background in continuous time stochastic
processes and elementary integro-partial differential equation theory.

The course could start with a review of continuous time processes, the description of
the notion of generators, the Doeblin-Itō differential formula and the natural derivation
of the corresponding Fokker-Planck equations. This part of the lecture could follow the
formal stochastic calculus derivations discussed in section 3.4 (Doeblin-Itō differential cal-
culus) and and the material presented in chapter 15 with an emphasis on the probabilistic
interpretations of Cauchy problems with terminal conditions, as well as Dirichlet-Poisson
problems (section 15.6).

The second part of the course could cover chapter 16 dedicated to nonlinear jump diffu-
sions and the mean field particle interpretation of a class of nonlinear integro-partial differ-
ential equations (section 16.2), including Burger’s equation, nonlinear Langevin diffusions,
McKean-Vlasov models and Feynman-Kac semigroups.

The third part of the course could be dedicated to some selected application domains.
The lectures could cover the Duncan-Zakai and the Kushner-Stratonovitch stochastic par-
tial differential equations arising in nonlinear filtering theory (section 18.5), the Feynman-
Kac description of the Schrödinger equation discussed in section 27.2, and the branching
particle interpretations of the Kolmogorov-Petrovskii-Piskunov equations presented in sec-
tion 28.4.3.4.

The last part of the lecture could cover the Hamilton-Jacobi-Bellman equations arising
in stochastic control theory and presented in section 29.3.3.

Other textbooks and lecture notes (in alphabetical order) which can be useful for sup-
plemental reading during this course are:

• M. Bossy, N. Champagnat. Markov processes and parabolic partial differential equations.
Book section in R. Cont. Encyclopedia of Quantitative Finance, pp.1142-1159, John
Wiley & Sons (2010).

• P. Del Moral. Mean field simulation for Monte Carlo integration. Chapman and
Hall/CRC Press (2013).

• E.B. Dynkin. Diffusions, Superdiffusions and PDEs. AMS (2002).

• M.I. Freidlin. Markov Processes and Differential Equations. Springer (1996).

• H.M. Soner. Stochastic representations for nonlinear parabolic PDEs. In Handbook of
differential equations. Evolutionary Equations, volume 3. Edited by C.M. Dafermos
and E. Feireisl. Elsevier (2007).

• N. Touzi. Optimal Stochastic Control, Stochastic Target Problems and Backward Stochas-
tic Differential Equations. Springer (2010).

Advanced Monte Carlo methodologies

A more applied course geared toward numerical probability and computational aspects
would cover chapter 8 and the Monte Carlo techniques and the more advanced particle
methodologies developed in chapter 9. Depending on the mathematical background of the
audience, the course could also offer a review on the stability of Markov processes, following
the description provided on page xxxviii.

Some application-oriented courses and research projects

There is also enough material in the book to support more applied courses on one or two
selected application domains of stochastic processes. These lectures could cover random
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walk type models and urn processes (chapter 25), iterated random functions including
shuffling cards, fractal models, and ancestral processes (chapter 26), computational physics
and interacting particle systems (chapter 27), dynamic population models and branching
processes (chapter 28), ranking and gambling betting martingale systems (chapter 29), and
mathematical finance (chapter 30).

The detailed description of these course projects follows essentially the presentation
of the sixth part of the book provided on page xxvi. The application domains discussed
above can also be used to stimulate the development of research projects. The background
requirements to enter into these topics are also discussed on page xxxvi.

We would like to thank John Kimmel for his editorial assistance, as well as for his
immense support and encouragement during these last three years.

Some basic notation
We end this introduction with some probabilistic notation of current use in these lectures.

We could, of course, use any notation we want; do not laugh at notations;
invent them, they are powerful. In fact, mathematics is, to a large extent,
invention of better notations. Richard P. Feynman (1918-1988).

We will use the symbol a := b to define a mathematical object a in terms of b, or vice
versa. We often use the letters m,n, p, q, k, l to denote integers and r, s, t, u to denote real
numbers. We also use the capital letters U, V,WX, Y, Z to denote random variables, and
the letters u, v, w, x, y, z denote their possible outcomes.

Unless otherwise stated, S stands for some general state space model. These general
state spaces and all the functions on S are assumed to be measurable; that is, they are
equipped with some sigma field S so that the Lebesgue integral is well defined with respect
to (w.r.t.) these functions (for instance S = Rd equipped with the sigma field generated
by the open sets, as well as Nd, Zd or any other countable state space equipped with the
discrete sigma field).

We also often use the letters f, g, h or F,G,H to denote functions on some state space,
and µ, ν, η or µ(dx), ν(dx), η(dx) for measures on some state space.

We let M(S) be the set of signed measures on some state space S, P(S) ⊂ M(S) the
subset of probability measures on the same state space S, and B(S) the set of bounded
functions f : x ∈ S �→ f(x) ∈ R.

We use the notation dx(= dx1 × . . . × dxk) to denote the Lebesgue measure on some
Euclidian space Rk, of some k ≥ 1. For finite or countable state spaces, measures are
identified to functions and we write µ(x), ν(x), η(x) instead of µ(dx), ν(dx), η(dx). The
oscillations of a given bounded function f on some state space S are defined by osc(f) =
supx,y∈S |f(x)− f(y)|.

We also use the proportionality sign f ∝ g between functions to state that f = λg for
some λ ∈ R.

Given a measure η on a state space S and a function f from S into R we set

η(f) =

∫
η(dx)f(x).

For multidimensional functions f : x ∈ S �→ f(x) = (f1(x), . . . , fr(x)) ∈ Rr, for some
r ≥ 1, we also set

η(f) = (η(f1), . . . , η(fr)) and η(fT ) = (η(f1), . . . , η(fr))
T
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where aT stands for the transpose of a vector a ∈ Rr. For indicator functions f = 1A,
sometimes we slightly abuse notation and we set η(A) instead of η(1A):

η(1A) =

∫
η(dx)1A(x) =

∫

A

η(dx) = η(A).

We also consider the partial order relation between functions f1, f2 and measures µ1, µ2

given by
f1 ≤ f2 ⇐⇒ ∀x ∈ S f1(x) ≤ f2(x)

and
µ1 ≤ µ2 ⇐⇒ ∀A ∈ S µ1(A) ≤ µ2(A).

The Dirac measure δa at some point a ∈ S is defined by

δa(f) =

∫
f(x)δa(dx) = f(a).

When η is the distribution of some random variable X taking values in S, we have

η(dx) = P(X ∈ dx) and η(f) = E(f(X)).

For instance, the measure on R given by

η(dx) =
1

2

(
1√
2π

e−x2/2 dx

)
+

1

2

(
1

2
δ0(dx) +

1

2
δ1(dx)

)

represents the distribution of the random variable

X := ε Y + (1− ε)Z

where (ε, Y, Z) are independent random variables with distribution

P(ε = 1) = 1− P(ε = 0) = 1/2

P(Z = 1) = 1− P(Z = 0) = 1/2 and P(Y ∈ dy) =
1√
2π

e−y2/2 dy.

For finite spaces of the form S = {e1, . . . , ed} ⊂ Rd, measures are defined by the weighted
Dirac measures

η =
∑

1≤i≤d

wi δei with wi = η({ei}) := η(ei)

so that
η(f) =

∫
η(dx)f(x) =

∑
1≤i≤d

η(ei)f(ei).

Thus, if we identify measures and functions by the line and column vectors

η = [η(e1), . . . , η(ed)] and f =




f(e1)
...

f(ed)


 (0.1)

we have

ηf = [η(e1), . . . , η(ed)]




f(e1)
...

f(ed)


 =

∑
1≤i≤d

η(ei)f(ei) = η(f).
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The Dirac measure δei is simply given by the line vector

δei =


0, . . . , 0, 1︸︷︷︸

i−th

, 0, . . . , 0


 .

In this notation, probability measures on S can be interpreted as points (η(ei))1≤i≤d in
the (d− 1)-dimensional simplex ∆d−1 ⊂ [0, 1]d defined by

∆d−1 =



(p1, . . . , pd) ∈ [0, 1]d :

∑
1≤i≤d

pi = 1



 . (0.2)

We consider a couple of random variables (X1, X2) on a state space (S1 × S2), with
marginal distributions

η1(dx1) = P(X1 ∈ dx1) and η2(dx2) = P(X2 ∈ dx2)

and conditional distribution

M(x1, dx2) = P(X2 ∈ dx2 | X1 = x1).

For finite spaces of the form S1 = {a1, . . . , ad1} and S2 := {b1, . . . , bd2} ⊂ E = Rd, the
above conditional distribution can be represented by a matrix




M(a1, b1) M(a1, b2) . . . M(a1, bd2
)

M(a2, b1) M(a2, b2) . . . M(a2, bd2
)

...
...

...
...

M(ad1
, b1) M(a2, b2) . . . M(ad2

, bd2
)


 .

By construction, we have

P(X2 ∈ dx2)︸ ︷︷ ︸
=η2(dx2)

=

∫

S1

P(X1 ∈ dx1)︸ ︷︷ ︸
η1(dx1)

×P(X2 ∈ dx2 | X1 = x1)︸ ︷︷ ︸
M(x1,dx2)

.

In other words, we have

η2(dx2) =

∫

S1

η1(dx1) M(x1, dx2) := (η1M) (dx2)

or in a more synthetic form η2 = η1M .
Notice that for the finite state space model discussed above we have the matrix formu-

lation

η2 = [η2(b1), . . . , η2(bd2)]

= [η1(a1), . . . , η1(ad1)]




M(a1, b1) M(a1, b2) . . . M(a1, bd2
)

M(a2, b1) M(a2, b2) . . . M(a2, bd2
)

...
...

...
...

M(ad1
, b1) M(a2, b2) . . . M(ad2

, bd2
)




= η1M.

In this context, a matrix M with positive entries whose rows sum to 1 is also called a
stochastic matrix.
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Given a function f on S2, we consider the function M(f) on S1 defined by

M(f)(x1) =

∫

S2

M(x1, dx2) f(x2) = E (f(X2) | X1 = x1) .

For functions f : x ∈ S2 �→ f(x) = (f1(x), . . . , fr(x)) ∈ Rr we also set

M(f)(x1) =

∫

S2

M(x1, dx2) f(x2) = E (f(X2) | X1 = x1) = (M(fr)(x1), . . . ,M(fr)(x1))

or M(fT )(x1) = (M(fr)(x1), . . . ,M(fr)(x1))
T for multidimensional functions defined in

terms of column vectors.
Here again, for the finite state space model discussed above, these definitions resume to

matrix operations

M(f) =




M(f)(a1)
...

M(f)(ad1
)




=




M(a1, b1) M(a1, b2) . . . M(a1, bd2
)

M(a2, b1) M(a2, b2) . . . M(a2, bd2)
...

...
...

...
M(ad1

, b1) M(a2, b2) . . . M(ad2
, bd2

)







f(b1)
...

f(bd2)


 .

By construction,

η1(M(f)) = (η1M) (f) = η2(f) ⇐⇒ E (E(f(X2)|X1)) = E(f(X2)).

Given some matrices M , M1 and M2, we denote by M1M2 the composition of the
matrices M1 and M2, and by Mn = Mn−1M = MMn−1 the n iterates of M . For n = 0,
we use the convention M0 = Id, the identity matrix on S.

We use the same integral operations for any bounded integral operator. For instance, if
Q(x1, dx2) := G1(x1)M(x1, dx2)G2(x2) for some bounded functions G1 and G2 on S1 and
S2 we set

(ηQ) (dx2) =

∫

S1

η1(dx1) Q(x1, dx2) and Q(f)(x1) =

∫

S2

Q(x1, dx2) f(x2)

for any measure η on S1 and any function f on S2.
When (S, d) is equipped with a metric d, we denote by Lip(S) the set of Lipschitz

functions f such that

lip(f) := sup
x �=y

|f(x)− f(y)|
d(x, y)

< ∞

and BLip(S) = Lip(S)∩B(S) the subset of bounded Lipschitz functions equipped with the
norm

blip(f) := ‖f‖+ lip(f).

In Leibniz notation, the partial derivative of a smooth function f on a product space
S = Rr w.r.t. the i-th coordinate is denoted by

y �→ ∂f

∂xi
(y) = lim

ε↓0
ε−1 [f(y1, . . . , yi−1, yi + ε, yi+1, . . . , yr)− f(y1, . . . , yi−1, yi, yi+1, . . . , yr)]
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with 1 ≤ i ≤ r. We also denote by ∂2f
∂xi∂xj

the second order derivatives defined as above by

replacing f by the function ∂f
∂xj

, with 1 ≤ i, j ≤ r. High order derivatives ∂nf
∂xi1 ...∂xin

are
defined in the same way. We also often use the following synthetic notation

∂xif :=
∂f

∂xi
∂xi,xjf :=

∂2f

∂xi∂xj
and ∂xi1 ,...,xin

f :=
∂nf

∂xi1 . . . ∂xin

as well as ∂2
xi

= ∂xi,xi
, and ∂3

xi
= ∂xi,xi,xi

, and so on for any 1 ≤ i ≤ r. When there is no
confusion w.r.t. the coordinate system, we also use the shorthand

∂i = ∂xi ∂i,j := ∂xi,xj ∂2
i := ∂xi,xi and ∂i1,...,in = ∂xi1 ,...,xin

.

When r = 1 we often use the Lagrange notation

f ′ =
∂f

∂x
f ′′ =

∂2f

∂2x
and f (n) =

∂nf

∂nx

for any n ≥ 0. For n = 0, we use the convention f (0) = f . All of the above partial
derivatives can be interpreted as operators on functional spaces mapping a smooth function
f into another function with less regularity, for instance, if f is three times differentiable f ′

is only twice differentiable, and so on.
We also use integro-differential operators L defined by

L(f)(x) =
∑

1≤i≤r

ai(x) ∂if(x)+
1

2

∑
1≤i,j≤r

bi,j(x) ∂i,jf(x)+λ(x)

∫
(f(y)− f(x)) M(x, dy)

for some functions a(x) = (ai(x))1≤i≤r, b(x) = (bi,j(x))1≤i,j≤r, λ(x) and some Markov
transition M .

The operator L maps functions which are at least twice differentiable into functions with
less regularity. For instance, L maps the set of twice continuously differentiable functions
into the set of continuous functions, as soon as the functions a, b, λ are continuous. Notice
that L also maps the set of infinitely differentiable functions into itself, as soon as the
functions a, b, λ are infinitely differentiable functions. When a = 0 = b, the operator L
resumes to an integral operator and it maps the set of bounded integrable functions into
itself, as soon as the functions a, b, λ are bounded. To avoid repetition, these operators are
assumed to be defined on sufficiently smooth functions. We often use the terms "sufficiently
smooth" or "sufficiently regular" functions to avoid entering into unnecessary discussions
on the domain of definition of these operators.

In theoretical and computational quantum physics, the inner product and more generally
dual operators on vector spaces are often represented using a bra-ket formalism introduced
at the end of the 1930s by P. Dirac [108] to avoid too sophisticated matrix operations (not
so developed and of current use in the beginning of the 20th century).

For finite d-dimensional Euclidian vector spaces Rd, the bras ≺ α | and the kets | β �
are simply given for any α = (αi)1≤i≤d ∈ Rd and β = (βi)1≤i≤d ∈ Rd row and column

≺ α | := [α1, . . . , αd] and | β �:=




β1

...
βd


 ⇒≺ α || β �:=≺ α | β �:=

∑
1≤i≤d

αiβi.
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In much the same way, the product of bra ≺ α | with a linear (matrix) operator Q corre-
sponds to the product of the row vector by the matrix

≺ α | Q := [α1, . . . , αd]




Q(1, 1) Q(1, 2) . . . Q(1, d)
Q(2, 1) Q(2, 2) . . . Q(2, d)

...
... . . .

...
Q(d, 1) Q(d, 2) . . . Q(d, d)


 .

Likewise, the product of a linear (matrix) operator Q with a ket | β � corresponds to the
product of the matrix by the column vector

Q| β �:=




Q(1, 1) Q(1, 2) . . . Q(1, d)
Q(2, 1) Q(2, 2) . . . Q(2, d)

...
... . . .

...
Q(d, 1) Q(d, 2) . . . Q(d, d)







β1

β2

...
βd


 .

Combining these operations, we find that

≺ α |Q| β �= [α1, . . . , αd]




Q(1, 1) Q(1, 2) . . . Q(1, d)
Q(2, 1) Q(2, 2) . . . Q(2, d)

...
... . . .

...
Q(d, 1) Q(d, 2) . . . Q(d, d)







β1

β2

...
βd


 .

Using the vector representation (0.1) of functions f and measures η on finite state spaces
S = {e1, . . . , ed}, the duality formula between functions and measures takes the following
form

≺ η | f �= ηf =
∑

1≤i≤d

η(ei)f(ei) := η(f).

Likewise, for any Markov transition M from E1 = {a1, . . . , ad1
} into E2 := {b1, . . . , bd2

},
and function f on E2 and any measure η1 on E1, we have

≺ η1 | M | f �=≺ η1 | Mf �= η1(Mf) = (η1M) f =≺ η1M | f � .

The bra-ket formalism is extended to differential operations by setting

≺ g | L | f �=

∫
g(x) L(f)(x) dx := 〈g, L(f)〉.

Given a positive and bounded function G on some state space S, we denote by ΨG the
Boltzmann-Gibbs mapping from P(S) into itself, defined for any µ ∈ P(S) by

ΨG(µ)(dx) =
1

µ(G)
G(x) µ(dx). (0.3)

In other words, for any bounded function f on S we have

ΨG(µ)(f) =

∫
ΨG(µ)(dx)f(x) =

µ(Gf)

µ(G)
.

We let µ = Law(X) be the distribution of a random variable X and G = 1A the indicator
function of some subset A ⊂ S. In this situation, we have

ΨG(µ)(f) =
µ(Gf)

µ(G)
=

E(f(X)1A(X))

E(1A(X))
= E (f(X) | X ∈ A) .
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In other words, we have
Ψ1A(µ) = Law(X | X ∈ A).

Let (X,Y ) be a couple of r.v. with probability density p(x, y) on Rd+d′
. With a slight

abuse of notation, we recall that the conditional density p(x|y) of X given Y is given by
the Bayes’ formula

p(x|y) = 1

p(y)
p(y|x) p(x) p(y) =

∫
p(y|x) p(x) dx.

In other words,

µ(dx) := p(x)dx and Gy(x) := p(y|x) ⇒ ΨGy
(µ)(dx) = p(x|y) dx.

Given a random matrix A = (Ai,j)i,j , we denote by E(A) = (E(Ai,j))i,j the matrix of
the mean values of its entries. We slightly abuse notation and we denote by 0 the null real
number and the null matrix. Given some Rd-valued random variables X,Y we denote by
Cov(X,Y ) the covariance matrix

Cov(X,Y ) = E ((X − E(X))(Y − E(Y ))′) .

Sometimes, we will also use the conditional covariance w.r.t. some auxiliary random
variable Z given by

Cov((X,Y ) | Z) = E ((X − E(X))(Y − E(Y ))′ | Z) .

For one-dimensional random variables, the variance of a random variable is given by Var(X) =
Cov(X,X), and

Var(X | Z) = Cov((X,X) | Z) =
1

2
E((X −X ′)2 | Z), (0.4)

where X,X ′ are two independent copies of X given Z. We also use the notation σ(X) to
denote the σ-algebra generated by some possibly multi-dimensional r.v. X on some state
space S. In this case, for any real valued random variable Y , we recall that

E(Y | σ(X)) = E(Y | X)

which has to be distinguished from the conditional expectations w.r.t. some event, say
X ∈ A, for some subset A ∈ σ(X)

E(Y | X ∈ A) = E(Y 1A(X))/E(1A(X)).

We also write X ⊥ Y when a random variable X is independent of Y

X independent of Y =⇒def. X ⊥ Y.

The maximum and minimum operations are denoted respectively by

a ∨ b := max {a, b} a ∧ b := min {a, b} as well as a+ := a ∨ 0 and a− := −(a ∧ 0)

so that a = a+ − a− and |a| = a+ + a−. We also denote by �a� and {a} = a − �a� the
integer part, and respectively the fractional part, of some real number a.

We also use the Bachmann-Landau notation

f(ε) = g(ε) +O(ε) ⇐⇒ lim sup
ε→0

1

ε
|f(ε)− g(ε)| < ∞
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and
f(ε) = g(ε) + o(ε) ⇐⇒ lim sup

ε→0

1

ε
|f(ε)− g(ε)| = 0.

When there is no confusion, sometimes we write o(1) for a function that tends to 0 when
the parameter ε → 0. We also denote by OP (ε) some possibly random function such that

E (|OP (ε)|) = O(ε).

We also use the traditional conventions
∏
∅

= 1
∑
∅

= 0 inf
∅

= ∞ and sup
∅

= −∞.
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An illustrated guide
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1
Motivating examples

This chapter provides an illustrated guide to the topics to be discussed in this book, with a
series of motivating examples. The seemingly simple examples are all related to certain non-
trivial mathematical results on stochastic processes which will be discussed more thoroughly
in a later chapter. The illustrations involve the recurrence and the transience properties of
simple random walks, discussion of some gambling examples, fractals, ancestral evolution
processes, as well as some simple examples of Poisson and Bernoulli processes. In each
case, we refer to a later chapter or section where the related mathematical results will be
discussed in more details.

Since the mathematicians have invaded the theory of relativity,
I do not understand it myself anymore. Albert Einstein (1879-1955).

1.1 Lost in the Great Sloan Wall
In 2214, the quantum field theory and
the general relativity have been successfully
combined within the eleven-dimensional M -
string theory to explain most of the funda-
mental concepts of nature. The Tau Zero
Foundation and the NASA’s Breakthrough
Propulsion Physics Project propose new
interstellar travels on string lattices in
any dimension. Light speed being too slow,
to accelerate the interstellar flights in our
100,000 light years diameter universe, the central idea was to move the time-space
itself instead of moving withinthe space-time.

A famous novel writer, Tony Gonzales, chooses the unlimited random traveling plan to
avoid visiting twice the same places at these superluminal speeds. He starts his trip from
Reykjavik, traveling back and forth randomly in a one-dimensional string stretched between
the universes.

At the end of his "infinite travel", he was so happy to have visited all the places (infinitely
many times) but he was also obliged to come back home an infinite number of times.

A little disappointed, the next summer holidays he chooses to travel on the two-dimensional
string lattice, visiting randomly up/down/right/left every place in the two-dimensional uni-
verse. His trip has exactly the same characteristics and he returns to Reykjavik infinitely
often.

To keep its customer happy, the Tau Zero Foundation offers him a life free trip voucher,
with a special random tour on the three-dimensional Great Sloan Wall advertised in all
the walls of the travel agency gallery.

Tony decides to start this nice trip immediately. After some finite number of returns to

3
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Reykjavik, he wanders off into the infinite universe, visiting every new place only a finite
number of times, but never returns back to his home.

This phenomenon is known as the recurrence of the simple random walks on lattices up
to dimension 2, and the transience of the process in dimensions larger or equal than 3. These
mathematical principles are discussed in section 8.5.2, as well as in 25.1. These elementary
stochastic processes are also called "the drunkard walks". For a more recreational discussion,
we refer the reader to the leisure book of L. Mlodinow [202].

We end this section with an intuitive and more formal derivation of these results. Tony’s
random exploration can be formalized by a simple random walk on the lattice Zd, with the
dimension parameter p = 1, 2, 3. For instance, for d = 1 this random walk is given by

Xn = Xn−1 + Un (1.1)

with the starting stateX0 = 0, and a sequence Un of independent and identically distributed
(abbreviated i.i.d.) random variables (abbreviated r.v.) taking values in {−1, 1} with a
common law

P (Un = 1) = P (Un = −1) = 1/2.

The random walk on Z2 is also defined by

(1.1) with a starting state X0 =

(
0
0

)
, and

a sequence Un of independent and identically
distributed random variables taking values in
the set of the four directional unit vectors

U :=

{(
−1
0

)
,

(
0
−1

)
,

(
1
0

)
,

(
0
1

)}

with common law

∀u ∈ U P (Un = u) = 1/4.

In the same vein, the random walk on Z3 is also defined by (1.1) with a starting state

X0 =




0
0
0


, and a sequence Un of i.i.d. random variables taking values in the set of the

four directional unit vectors

U :=







−1
0
0


 ,




0
−1
0


 ,




0
0
−1


 ,




1
0
0







0
1
0







0
0
1






with common law
∀u ∈ U P (Un = u) = 1/6.

The simulation of these random walks amounts to tossing a coin or a dice with four or six
faces at each time step.

The excursions of the walker between consecutive returns to the origin are independent
random trajectories with the same law. In particular, the durations (Ti)i≥1 of consecutive
excursions are independent copies of some random variable T that represents the length of a
given random excursion. We let N be the number of returns to the origin. By construction,
we have

{N ≥ m} = {(T1 < ∞), . . . , (Tm < ∞)} ⇒ P (N ≥ m) = P(T < ∞)m.
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Recalling that

E (N) =
∑
n≥1

∑n
m=1 1︷︸︸︷
n P(N = n)

=
∑

1≤m≤n

P(N = n) =
∑
1≤m

P(N≥m)︷ ︸︸ ︷∑
m≤n

P(N = n) =
∑
1≤m

P (N ≥ m)

we conclude that

E (N) =
∑
1≤m

P(T < ∞)m < ∞ ⇐⇒ P(T < ∞) < 1 ⇐⇒ P(T = ∞) > 0

E (N) =
∑
1≤m

P(T < ∞)m = ∞ ⇐⇒ P(T < ∞) = 1.

On the other hand, if 0 stands for the origin state in Zd, we also have that

N =
∑
n≥1

10(Xn) =⇒ E(N) =
∑
n≥1

P(Xn = 0 | X0 = 0).

For d = 1, the walker can return to the origin after 2n steps with n up and n down one-step
evolutions. Therefore, we have that

P(X2n = 0 | X0 = 0) =

(
2n
n

) (
1

2

)n (
1

2

)2n−n

=
(2n)!

n!2 22n
.

Using Stirling’s approximation n! �
√
2πn nne−n, we find that

P(X2n = 0 | X0 = 0) � 2
√
πn (2n)2ne−2n 2−2n

2πn n2ne−2n
=

1√
πn

=⇒ E(N) ∼
∑
n≥1

1√
n
= ∞.

In dimension d = 2, both coordinates X(1)
n and X

(2)
n of the random state

X2n =

(
X

(1)
2n

X
(2)
2n

)
∈ Z2

must return to the origin, so that

P
[
X2n =

(
0
0

)
| X0 =

(
0
0

)]
� 1√

πn
× 1√

πn
⇒ E(N) ∼

∑
n≥1

1

n
= ∞.

In much the same vein, in d = 3 dimensions we have

P


X2n =




0
0
0


 | X0 =




0
0
0




 � 1√

πn
× 1√

πn
× 1√

πn
⇒ E(N) ∼

∑
n≥1

1

n1+ 1
2

< ∞.
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1.2 Meeting Alice in Wonderland

To escape the Queen of Hearts’ guards, Alice and the white rabbit run into the following
polygonal labyrinth (with non-communicating edges) starting from doors 1 and 3:

1 2
3

4

5

6

7

8
910

11

12

13

14

15

16
17

What is their chance to meet again (at some vertex)? After only 5 moves, they have more
than a 25% chance to meet. This is increased to 51% after 12 steps, and to more than 90%
after 40 steps.

These come together type principles were fur-
ther developed by J. Lennon on Abbey Road,
in the end of the 1960’s, but their rigorous
analysis certainly goes back to 1938, with the
pioneering work of the French-German prob-
abilist Wolfgang Doeblin [109].

Nowadays, these random walks on graphs
arise in a variety of application domains,
including in the analysis of the web-graph
presented below for ranking websites, to of-
fer personal advertisements and to improve
search recommendations.

The basics of these coupling techniques are developed in section 8.3.1. The above as-
sertions are a simple consequence of the coupling default estimates presented in Equation
(8.39).

We end this section with an intuitive and more formal derivation of these results.
Firstly we observe that the random simulation of Alice’s or the rabbit’s evolution in the

labyrinth amounts to choosing a random number I between 1 and d = 17 at every time
step. If U is a [0, 1]-valued and uniform r.v. we can set

I := 1 + �d U�.

Notice that

I = i ⇐⇒ �d U� = (i− 1) ⇐⇒ (i− 1)

d
≤ U <

i

d
⇒ P(I = i) = P

(
U ∈

[
(i− 1)

d
,
i

d

[)
=

1

d
.
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We let T be the first time Alice and the white rabbit meet. Since they have 1/17 chances
to meet at each time step, we readily check that

∀n ≥ 1 P(T = n) =

(
1− 1

d

)n−1
1

d
with d = 17.

More formally, let Ian and Irn be the locations of Alice and the white rabbit ( the indices of
their doors). By construction, we have

{T = n} =
{
(Ia1 �= Ir1 ), (I

a
2 �= Ir2 ), . . . , (I

a
n−1 �= Irn−1), (I

a
n �= Irn)

}
.

Since the r.v. (Iak , I
r
k)k≥1 are independent, we have

P(T = n) =
[
P(Ia1 �= Ir1 )× . . .× P(Ian−1 �= Irn−1)

]
︸ ︷︷ ︸

(1−1/d)n−1

×P(Ian �= Irn)︸ ︷︷ ︸
=1/d

.

In other words, T is a geometric r.v. with a success parameter 1/d. This implies that

P(T > n) =
∑
k≥n

(
1− 1

d

)k
1

d
=

(
1− 1

d

)n
1

d

∑
k≥0

(
1− 1

d

)k

=

(
1− 1

d

)n

≤ e−n/d.

In the right hand side (r.h.s.) estimate we have used the fact that log (1− x) ≤ −x, for any
x < 1. For instance, we have

(n = 5 and d = 17) ⇒ P(T > 5) = (16/17)
5 ≤ .738 ≤ 74% ⇐⇒ P(T ≤ 5) ≥ 25%.

1.3 The lucky MIT Blackjack Team
Mr. M arrives in a private club in Atlantic City with his MIT blackjack team, intending to
win against the dealer by using their brand new card shuffle tracking techniques [200].

Assuming that a perfectly shuffled deck is fully unpredictable, up to how many riffle
shuffles are required for Mr. M to make some probabilistic predictions? If the number of
random shuffles performed by the dealer is fewer than 5, the chance to make some predictions
is larger than 90%, and larger than 40% after 6 riffle shuffles! The true story of the MIT
blackjack team can be found in the Youtube 1.5h documentary.

Persi Warren Diaconis

These miraculous formulae discovered by the
genius American mathematician Persi War-
ren Diaconis from Stanford University were
reported on January 9th, 1990, in the
New York Times [53] (see for instance the
Youtube video on Coincidences and the
one on Randomness). P. W. Diaconis is
the Mary V. Sunseri Professor of Statis-
tics and Mathematics at Stanford Univer-
sity. He is particularly well known for tack-
ling mathematical problems involving ran-
domness and randomization, such as coin flip-
ping and shuffling playing cards. We also re-
fer to his recent book with R. Graham on
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magical mathematics [106]. He has also de-
veloped numerous important mathematical
results on Markov Chain Monte Carlo mod-
els [96, 97, 98, 99, 100, 101, 102, 103, 104], random walks on finite groups [263], and statistics
such as the the Freedman-Diaconis rule to select the sizes of the bins to be used in a
histogram.

To have a feeling about the main difficulty be-
hind these problems, we notice that the num-
ber of different arrangements of a deck of 52
cards is given by 52! �

√
2π × 52 5252 e−52 ∼

8.053 1067, and for the traditional French
tarot deck with 78 cards by 78! � 1.13 10115.

These large numbers can be related to the
estimated number 1080 of fundamental par-
ticles in the known universe, including sub-
atomic particles. The reader should be con-
vinced that brute force calculation of all the
possible outcomes to estimate probabilities of
some shuffling configurations is often hopeless. On the other hand, besides the fact that
a "theoretically" fully randomized deck is by essence unpredictable, a "normal" card deck
which is not perfectly mixed can be highly predictable.

The theories of card shuffling and more general Markov chains on finite groups arise in
several concrete problems, to name a few:

• Software security and design: simulation of unpredictable deck shuffles in online gaming
or in casino card games (poker, blackjack, and others). Online card gambling sites
often provide a description of their shuffling algorithms. The iPod also uses random
style shuffling, reordering songs as one shuffles a deck of cards so that listeners hear
everything, just once.

• Cryptography: random prime generation, random binary sequences, random ordering
of integers for the design of secure unpredictable random key generators (encrypted
messages must be seen as random from the adversary, but not random for those knowing
the seed of the pseudo random number generator), protection against traffic analysis
using fake random messages.

• Design of random search algorithms of complex combinatorial structures: matching
problems, graph coloring, data association problems. For instance, solving of the trav-
eling salesman problem requires us to explore the spaces of permutations. Each of them
represents a circuit between the different cities.

• Computer sciences: design of random permutations for load balancing or load sharing
protocols between computer workstations, random dynamic reallocation of resources in
communication services (to protect attacks and faults caused by an adversary) [62].

In section 26.4, we introduce the reader to the modeling and the analysis of card shuffling
processes. In the final part, we provide an estimation formula (26.16) which gives an
indication on the predictions discussed above.

We end this section with an intuitive and more formal derivation of some of the results
discussed above. Shuffling cards is intimately related to sequence of random permutations.
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For instance, the permutation

σ =

(
1 2 3 4 . . . 50 51 52
51 4 15 8 . . . 1 7 2

)
(1.2)

can be interpreted as a re-ordering of a deck of the 52 cards with labels 1, 2,. . . , 52. The
first card is the one with label 51, the second one has label 4, and so on, up to the final
card with label 2. In this context, an unpredictable shuffled deck is simply a random deck
with uniform distribution on the set of permutations over 52 cards.

More precisely, the top card of an unpredictable deck can be one of the 52 cards, the
second one (given the first) can be one of the 51 remaining cards, and so on. In other words,
any (random) unpredictable deck occurs with a probability of 1/52!. In this interpretation,
shuffling cards is a way of exploring the set of permutations. For instance, flipping the
positions of two randomly chosen cards is equivalent to compose a given order-permutation
by a random transposition τI,J of two randomly chosen labels I, J . The r.h.s. composition
permutes the values of the cards at location I, J ; and the l.h.s. composition permutes the
location of the cards with values I, J . For instance, for the re-ordered deck (1.2) we have

σ ◦ τ1,2 =

(
1 2 3 4 . . . 50 51 52
4 51 15 8 . . . 1 7 2

)

and

τ1,2 ◦ σ =

(
1 2 3 4 . . . 50 51 52
51 4 15 8 . . . 2 7 1

)

Another strategy to shuffle randomly a deck of cards is to divide the deck of 52 into 2
parts, say 52 = k + (52− k) where k is a binomial r.v. with parameters (n, p) = (52, 1/2).
Then, we assign a sequence of i.i.d. Bernoulli r.v. εl, l = 1, . . . , 52 with parameter 1/2 to
each card. The random numbers R =

∑
1≤l≤52 εl, and respectively L =

∑
1≤l≤52(1 − εl),

represent the number of cards that go to the r.h.s. stack, respectively to the l.h.s. stack
before performing the riffle shuffle. For instance, the following schematic picture shows
a riffle of 7 = 3 + 4 cards cut into packs of 3 and 4 cards associated with the sequence
(0, 1, 1, 0, 1, 1, 0):

0 c1

0 c2

0 c3

1 c4

1 c5

1 c6

1 c7

�

0 c1

1 c4

1 c5

0 c2

1 c6

1 c7

0 c3

Starting from the bottom, first we drop the card c3 from the left hand stack, then the card
c6, c7 from the right hand stack, then c2 from the left hand stack, then c4, c5 from the right
hand stack, and finally the remaining card c1 from the left hand stack.

The time reversed shuffle takes cards with 0’s, 1’s, in the top deck, respectively bottom
deck, without changing their (relative) order. Note that cards with different {0, 1}-labels
are in uniform random relative order, while cards with the same label have the same order
before and after the time reverse shuffle.

Repeating inverse shuffles, we retain and mark the sequence of 0− 1 labels at the back
of each card, so that after n inverse shuffles each card has an n-digit binary number. After
some random number of steps, say T steps, all the cards have distinct labels so that the
deck becomes uniform. These random times T are called strong stationary times and they
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are discussed in section 8.3.3. By construction, if d = 52 stands for the number of cards,
we have

P (T > n) = 1− 2n

2n
× 2n − 1

2n
× 2n − 2

2n
. . .× 2n − (d− 1)

2n

≤ 1− exp

{
−d(d+ 1)

2n+1

[
1 +

1

2n

(
2

3
d+

1

3

)]}
. (1.3)

The estimate stated above is proved in section 26.4.4 (it is based on the fact that −x ≥
log (1− x) ≥ −x − x2, for any 0 ≤ x ≤ 1/2). When d = 52 and n = 12, (1.3) gives
the crude estimate .29, and .01 for n = 14. Using more sophisticated but more powerful
techniques, D. Bayer and P. Diaconis obtained in 1992 the exact variation distances .95,
.61, .33, respectively, .17, for n = 5, n = 6, n = 7, and n = 8 [13].

1.4 Kruskal’s magic trap card

During his lectures, the mathematician and physicist Martin Kruskal proposes to his stu-
dents to play one of his new card tricks. All of his students are aware of the work of D.
Bayer and P. Diaconis [13] on riffle shuffles; therefore they ask their professor to shuffle the
deck of 52 cards 8 times. In this way, they are pretty sure that the order of the cards will
be unpredictable (up to some 17% error distance to the perfectly random sequence).

Martin David Kruskal (1925-2006)

After this pretty long series of shuffles, he
asks one of his students to pick secretly a
number between 1 and 10. Then he starts
displaying the cards one by one. He explains
to his student that the card in the position
he has secretly chosen will be his first secret
card, and its value will be his second secret
number. Counting again starting from this
first secret card, the card in the position of
the second secret number will be his second
secret card, and so on. Repeating this proce-
dure until he runs out of cards, the student
will finally end on his last secret card.

In this counting model, aces are worth 1;
jacks, queens, and kings are worth 5, and the other cards takes their face values. Despite
the initial (almost) perfectly random shuffled deck, and despite the secret initial number
chosen by the student, the professor has more than 80% chance to know the last secret card.
How it is possible? What is the the trick used by Martin Kruskal to find the last secret
card? The answer is simpler than it appears: Picking "secretly" any number between 1 and
10 and following the same procedure, we end up on the same "trap card" 80% of the time.
Much more is true! Starting from 1, one has a chance of more than 85% to find
the same last secret card. In addition, two decks of 52 cards will increase the percentage
of success to 95%. See also a Youtube video explaining the Kruskal’s count.
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Several heuristic-like arguments have been
proposed in the literature to analyze these
probabilities. We refer the reader to the
series of articles [140, 176, 181, 207], and
to the references therein. In these lec-
tures, using Markov chain coupling tech-
niques, some crude estimates are presented
in section 8.3.4.3.

We end this section with the analysis of a
simplified version of the Kruskal’s magic card
trick. The idea is to represent the sequential
counting process as a deterministic dynamical
system evolving in a random environment. Assume that we have 10 possible values (the
value of jack, queen and king is assumed to be 5). Arguing as in (1.2), the values of the
cards are represented by a given random mapping τ : {1, . . . , 52} �→ {1, . . . , 10}, with i.i.d.
random states (τ(k))1≤k≤52 with some common distribution µ on {1, . . . , 10}.

We let Tk be the k-th time the chain hits the value 1.
Suppose the initial state X0 of the counting process starts at a jack, so that X0 = 4+ 1

is the "secret" starting card at the origin. Then, the chain counts backward

X0 = 4 + 1 −→ X1 = 4 −→ X2 = 3 −→ X3 = 2 −→ X4 = 1

so that T1 = 4 and XT1+1 = X5 is the first "secret card", say XT1+1 = 9 + 1 = 10.
More generally, starting at X0 := (d0 + 1) for some d0 ∈ {0, 1, . . . , 9}, we have

X0 := (d0+1) −→ X1 = d0 −→ . . . −→ Xk = (d0+1)−k −→ . . . −→ Xd0 = XT1 = 1.

This shows that T1 = d0 and

XT1+1 = Xd0+1 := d1 ∈ {1, . . . , 10}

is the first "secret card". By construction, we have

XT1+1 = d1 −→ XT1+2 = d1 − 1 −→ . . .

. . . −→ XT1+k = d1 − (k − 1) −→ . . . −→ XT1+d1
= 1 = XT2

with T2 = T1 + d1, and
XT2+1 = d2 ∈ {1, . . . , 10}

is the second "secret card".
Iterating this process, we obtain a sequence of i.i.d. random states

XT1+1, XT2+1, . . . , XTk+1 with a common law µ(y) = P(XT1+1 = y).

The worst case scenario for long excursions between visits of the unit state is to have
d1 = d2 = . . . = d, the maximum value of a card. This shows that on an interval [0, nd] of
time horizon nd, the chain (Xl)l≥0 hits 1 at least n times.

To take the final step, we let (X ′
l)l≥0 be an independent copy of (Xl)l≥0 starting at some

possibly different value and we set

Yk = XTk+1 and Y ′
k = X ′

T ′
k+1

the k-th secret card of each chain.
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One of the chains represents the student’s counting process, and the second one stands
for the professor’s counting process. We let T be the first time the chains agree and hit the
same value. By construction, if we set µ� := inf1≤k≤d µ(k), then we have

P(T > nd) ≤ P(Y1 �= Y ′
1 , . . . , Yn �= Y ′

n) = E (P [(Y1 �= Y ′
1 , . . . , Yn �= Y ′

n) | (Y ′
k)1≤k≤n])

= E


 ∏

1≤k≤n

P [Yk �= Y ′
k | (Y ′

l )1≤l≤n]


 = E


 ∏

1≤k≤n

[1− µ (Y ′
k)]


 ≤ (1− µ�)

n.

When d = 10 and µ(k) = 1/10, for any m = nd = 10n we have

P(T > m) ≤ pm :=

(
1− 1

10

)m/10

.

The graphs of these rather crude estimates are given by the following diagram.
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1.5 The magic fern from Daisetsuzan
His Majesty the Emperor Akihito found a magical fern leaf in the mountains of Daisetsuzan
National Park. With one of his powerful microscopes, he always sees the same pattern. One
of his bright researchers in probability Kiyoshi Itō shows him that this mysterious leaf has
been designed by someone using an elementary molecular-energy bidding only based on four
distinct stippling type rules.

These fractal models were introduced in the begin-
ning of the 1980’s by the mathematician Benoit Man-
delbrot [190]. We also refer the reader to the book of
Michael Field and Martin Golubitsky [126] which has
inspired most of the work in section 26.5, dedicated to
the modeling and the convergence analysis of fractal
objects drawn by iterated random functions.



Motivating examples 13

Since this period, many researchers have observed
the fractal nature of some plants and vegetables such
as the Romansco cabbage, or the nature of some phys-
ical phenomena such as the Von Koch snowflakes, the
atmospheric turbulence, or the planet top layers structures. They are also used in algo-
rithmically fractal arts zooming animations (see for instance YouTube videos on fractal
zooming 1, 2, Fibonacci fractals 3, 4, or "pure" arts style videos 5, 6, and 3d-fractal ani-
mations 7). Nowadays, there is also considerable interest in analyzing the fractal nature of
asset prices evolution in financial markets.

We end this section with a simple illustration of iterated random functions. We consider

a given point A =

(
xA

yA

)
∈ R2 and we set

SA : P =

(
x
y

)
�→ SA(P ) = SA

(
x
y

)
=

(
x+ 2

3 (xA − x)
y + 2

3 (yA − y)

)
=

(
1
3 x+ 2

3 xA
1
3 y + 2

3 yA

)
.

(1.4)
Given a couple of points

P1 =

(
x1

y1

)
and P2 =

(
x2

y2

)

with the Euclidian distance

d(P1, P2) :=
√
(x1 − x2)2 + (y1 − y2)2

we notice that

d(SA(P1), SA(P2)) =
1

3
× d(P1, P2).

We consider the unit square square C = [0, 1]2 with the A edges

A1 =

(
1
1

)
, A2 =

(
1
0

)
, A3 =

(
0
0

)
, A4 =

(
0
1

)
. (1.5)
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By construction, we have

SA1
(C) =

[
2
3 , 1

]
×
[
2
3 , 1

]
SA2

(C) =
[
2
3 , 1

]
×
[
0, 1

3

]
SA3

(C) =
[
0, 1

3

]
×
[
0, 1

3

]
SA4

(C) =
[
0, 1

3

]
×
[
2
3 , 1

]
.

A graphical description of the transformations SAi
is provided in figure 1.1.

FIGURE 1.1: Graphical description of the transformations SAi

Applying SA1
to the 4 squares SAi

(C), i = 1, 2, 3, 4, we obtain 4 new squares inside SA1
(C)

SA1(SA1(C)) =
[
8
9 , 1

]
×
[
8
9 , 1

]
SA1(SA2(C)) =

[
8
9 , 1

]
×
[
2
3 ,

7
9

]
SA1(SA3(C)) =

[
2
3 ,

7
9

]
×
[
2
3 ,

7
9

]
SA1(SA4(C)) =

[
2
3 ,

7
9

]
×
[
8
9 , 1

]
.

A graphical description of the sets SAi
SAj

(C) is provided in figure 1.2.
Iterating the set transformation

S : R ⊂ R2 �→ S(R) = SA1(R) ∪ SA2(R) ∪ SA3(R) ∪ SA4(R) ⊂ R2

we obtain a sequence of decreasing sets

Cn = S(Cn−1) ⊂ Cn−1

with 4n squares with surface 9−n. When n ↑ ∞ this compact set-valued sequence converges
to the Sierpinski fractal subset

Cn = Sn(C) ↓ C∞ = ∩n≥1Cn �= ∅.

It is also readily checked that S is a fixed point of the set transformation

S(C∞) = ∩n≥1S(Cn) = ∩n≥1Cn+1 = ∩n≥2Cn

⇓

S(C∞) = C∞.
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FIGURE 1.2: Graphical description of the sets SAiSAj (C)

1.6 The Kepler-22b Eve

On 5th December 2011, Brian Vastag from theWashington Post revealed that the NASA’s
Kepler mission discovered a new alien planet with just the right temperature for life. This
similar-to-the-Earth planet is named Keppler-22b. It is the best candidate for a life-bearing
new world. See the Youtube videos SkyNews on Earth twin, and the Kelpler-22B, first
confirmed life-sustaining planet for a tour on this planet.

By 2457 this planet has been populated by a thousand selected humans from diverse
countries and different cultures. The individuals have been selected rigorously after a long
series of gene and chromosomes tests to avoid any common genomic ancestry.series of gene and chromosomes tests to avoid any common genomic ancestry.

Ship to Kepler-22b

These individuals have also been chosen
so that they have approximatively the same
reproduction rate. At each generation, say at
every 20 years period, a pool of randomly se-
lected individuals give birth to possibly many
children. The descent lineage of the other
ones is stopped. The reproduction process is
designed so that the total size of the popula-
tion remains almost constant during the ages.
All the individuals have a specific genogram,
i.e., a pictorial display of their family rela-
tionships and medical history.

After 5,500 years, more than a quarter of
the population will belong to the same family! Furthermore, after every period of a thousand
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years this percentage grows from 68%, 86%, 94%, 97%, and finally to 99% after 10,000
years. In other words, 99% of the population are the children of a single ancestral Eve in
the originally selected individuals. How could this happen? How does the ancestral line
disappear during this evolution process?

In the field of human genetics, researchers are very concerned with the genealogical
structure of the population. The Mitochondrial Eve is the matrilineal most recent common
ancestor of all living humans on earth. She is estimated to have lived approximately 140,000
to 200,000 years ago.

We refer the reader to the pedagogical book "The Seven Daughters of Eve" of Bryan
Sykes for more details on these hypothetical stories. See also the Youtube videos We are All
Blacks of Geneticist Bryan Sykes, about the mitochondrial DNA of women, and the genetic
diversity of Africans.

The rigorous analysis of these probabilities is developed in section 26.3, dedicated to
genealogical tree evolution models, random iterated mappings, and coalescent processes.
The numerical illustrations discussed above are direct consequences of the formulae (26.7).

We end this section with a more formal discussion on the simulation and the stochastic
models associated with these ancestral evolution processes.

Assume that we have a population of d individuals with labels S := {1, . . . , d}. At each
time n, some individuals die while other individuals give birth to offsprings. Parents are
selected uniformly in the pool. In other words, at each time step n we sample d i.i.d. r.v.
(An(i))1≤i≤d with uniform distribution on {1, . . . , d}. For each 1 ≤ i ≤ d, An(i) stands
for the label of the parent (at generation (n − 1)) of the i-th individual at generation n.
In other words, the range of the mapping An represents the successful parents with direct
descendants. Notice that An is a random mapping from S into itself; for each state i ∈ S
the value An(i) is chosen uniformly in the set S. For instance, we can set An(i) = 1+�d Ui�,
where (Ui)1≤i≤d is a sequence of i.i.d. [0, 1[-valued uniform random variables.

We assume that the initial population is given by the set of d individuals with label
{1, . . . , d}. A schematic picture of the genealogical evolution process of d = 5 in a time
horizon n = 2 is provided in the following picture.

The Mitochondrial Eve

A1(A2(i)) A2(i)�� i��

1 1
��

1
��2 2

��
2��

3 3�� 3

��

4 4�� 4

��

5 5

��

5��

Notice that the composition of the ran-
dom composition mapping

A1 ◦A2
in law
= A2 ◦A1

represents the ancestors at level 0 of the pop-
ulation of individual at generation n = 2. More generally, the number of ancestors at the
origin is characterized by the cardinality

Cn = Card {(An ◦ . . . ◦A1) (S)}

of the random sets (An ◦ . . . ◦A1)(S), where (Ak)k≥1 stands for a sequence of i.i.d. random
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mappings from S into itself. The central idea is to observe that the Markov chain Cn is
defined for any 1 ≤ p ≤ q ≤ d by the elementary transitions

P(Cn = p | Cn−1 = q) =
1

dq
S(q, p) (d)p

where S(q, p) stands for the number of ways of partitioning {1, . . . , q} into p sets (the Stirling
numbers of the second kind), and (d)p = d!/(q − p)! is the number of one-to-one mappings
from {1, . . . , p} into {1, . . . , d}.

We let T be the first time all the individuals have the same ancestors; that is,

T = inf {n ≥ 0 : Cn = 1} .

In this notation, the estimates discussed above are consequences of the following formula

nm :=

(
m+

7

2

)
d =⇒ P (T > nm) ≤

(
m+

7

2

)
e−m.

In other words, after nm evolution steps the chance for a population of d individuals to have
a common ancestor is larger than 1−

(
m+ 7

2

)
e−m. The proof of this formula is provided

in section 26.3.2 and in exercise 431.

1.7 Poisson’s typos

A young talented fisherman Siméon Denis Poisson was writing a series of essays on fishing
techniques in the Loiret river in the spring season 1823.

There were no powerful spell-checking soft-
ware products at that time, and he was very
concerned with correcting all the misprints
and spelling mistakes. He starts reading the
first two pages, and he already finds four mis-
prints: A bab day of fishing is still better than
a good day at the office. . . . If people con-
centrated on the really importants things in
life, there would be a shortage of fishing poles.
. . .Anyway, a woman who has never sen her
husband fishing, doesn’t known what a patient
man she married.

He assumes that all of these silly misprints were done at a unit rate per half a page
during the typing. After four pages, he made the following rigorous predictions:
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In addition, he also shows rigorously that for any given number of misprints he may
have done on any given number of pages, all these typos will be uniformly placed in the
text. He corrected the first typos, and after reading carefully, several times, the first 300
pages he could not find any misprints. He was very surprised and felt a little lucky. He
really expected to find many typos later in the text. After some calculations, he saw that
the chances to find misprints in the next four pages remain the same as the ones he already
calculated for the very first pages. These intriguing memoryless properties opened his mind
to swap fishing with creating a brand new theory of counting random events.
Siméon Denis Poisson was a famous French mathematician and physicist. He developed
his probability theory in 1837 in his work "Research on the Probability of Judgments in
Criminal and Civil Matters". He introduced a discrete probability distribution for counting
random events arriving independently of one another in a given interval, or in some space-
time window (cf. section 4.6). This distribution is known as the Poisson distribution, and
the counting process is called the Poisson process.

These stochastic models were used to count the number of hits of V1 buzz bombs
launched by the Nazi army on London [52], and the outbreaks of war from 1820 to 1950 [148].
We also mention the "celebrated" statistical analysis of Ladislaus Bortkiewicz. He was
counting the number of cavalrymen deaths due to horse kicks in the Prussian army, covering
the years 1875–1894 and 14 Prussian Cavalry Corps!

Nowadays, many random counting processes are represented by Poisson processes, in-
cluding cellular telephone calls and/or wrong number connections [251], arrival of clients
in a shop, flows of students entering a university building, the number of aircraft arriving
at an airport, the number of claims to an insurance company, and so forth. More recently
they have been used in mathematical finance to model trades in limit order books [32, 209].
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Hawkes process and trade counts

These stochastic models are also used to count and predict arrivals of trains, subways
or buses, cyclones arrivals in the Arctic sea [181]. In physics, they are also used to count
emissions of particles due to radioactive decay by an unstable substance [59], the stream
of photons from an optical modulator, or photons landing on a photodiode in low light
environments.

In engineering sciences, they are used to count the arrival of customers and jobs in com-
munication queueing networks, internet packets at a router, and the number of requests
in web servers [264]. They are also of current use in reliability and risk analysis to model
the number of failures, degradation aging processes, including lifetime of systems. In geo-
physics, they model the random arrival of natural disasters or eco-catastrophes, such as
avalanches, earthquakes, lightnings, wild fires, volcanic eruptions, floods, tsunamis, storms
and hurricanes, and many others [10, 149, 211, 212].

In biology, they are used to count the number of cells chromosome interchanges subjected
to X-ray radiation [44], as well as the number of bacteria and/or red blood cells in a drop
of blood, birth and death counts, survival of endangered species in predator-prey systems,
the location of harmless mutations in a genome (the time axis is here represented by the
length of the genome).

In psychology, these processes are also used to count short or long responses from an
internal clock/pacemaker to stimuli signals [172]. Self-exciting Poisson processes are used
in criminology to model and analyze crimes and gang violence [115, 203, 243]. We refer the
interested reader to the recent article of G. O. Mohlera, and his co-authors on the statistical
analysis of point processes based on residential burglary data provided by the Los Angeles
Police Department [203]. These stochastic models were also used to analyze the temporal
dynamics of violence in Iraq based on civilian death reports data from 2003 to 2007 [192].

More recently, they have even been used as a statistical model for counting the number
of goals or try scores in soccer or rugby games [152].

We refer the reader to section 4.6 and to chapter 10 for the modeling and the analysis
of Poisson processes, as well as to chapter 28 for some workout examples of jump processes
arising in biology and engineering sciences.

We end this section by a more formal brief discussion on Poisson and Bernoulli processes.
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Suppose we are given a discretization tn = nh of some interval [0, t], with a time mesh
parameter h � 0, with 0 ≤ k ≤ �t/h�. These time steps can be interpreted as the letters
or as the words of series of sentences in a book. We assume that misprints arise randomly
according to a sequence of i.i.d. Bernoulli r.v. εhtn with common law

P
(
εhtn = 0

)
= 1− P

(
εhtn = 1

)
= e−λh

for some parameter λ > 0. A misprint at the n-th location is characterized by the event
{εhtn = 1}. We let Th

n indicate the location of the misprints in the text. More formally, we
have that Th

0 = 0 and

Th
n+1 = Th

n + Eh
n with Eh

n := h (1 + �En/h�) .

In the above display, the inter-occurrence of misprints En is a sequence of i.i.d. exponential
r.v. with parameter λ, so that the misprints spacing rate is given by the geometric r.v.

P(Eh
n = k h) = P(k − 1 ≤ En/h < k)

=

∫ kh

(k−1)h

λe−λtdt = e−λ(k−1)h − e−λkh =
(
e−λh

)(k−1) (
1− e−λh

)
.

The number of misprints detected at time t is given by the Bernoulli process

Nh
t =

∑
n≥0

n 1[Th
n ,Th

n+1[
(t) =

�t/h�∑
k=1

εhtk . (1.6)

By construction, for any n ≤ �t/h� we have that

P
(
Nh

t = n
)

=

(
�t/h�
n

) (
1− e−λh

)n
e−λh(�t/h�−n)

=




∏
1≤p<n

(
1− p

�t/h�

)


(
eλh − 1

λh

h�t/h�
t

)n

︸ ︷︷ ︸
−→h↓01

(λt)n

n!
e−λh�t/h�

−→h↓0 P (Nt = n) =
(λt)n

n!
e−λt. (1.7)

This implies that

P (Tn > t) = P (Nt < n) = e−λt
∑

0≤p<n

(λt)p

p!

from which we prove that

P (Tn ∈ dt) = − d

dt
P (Tn > t) = λe−λt


 ∑
0≤p<n

(λt)p

p!
−

∑
0≤p<(n−1)

(λt)p

p!


 = λe−λt (λt)n−1

(n− 1)!
.

We conclude that

P ((T1, . . . , Tn) ∈ d(t1, . . . , tn))

= λ e−λ(tn−tn−1) × λ e−λ(t1−t0) 1t0=0≤t1<...<tn dt1 . . . dtn

=

(
λe−λtn

(λtn)
n−1

(n− 1)!

)

︸ ︷︷ ︸
=P(Tn∈dtn)

×
[
(n− 1)!

tn−1
n

10≤t1<...<tn−1<tndt1 . . . dtn−1

]
.

︸ ︷︷ ︸
=P((T1,...,Tn−1)∈d(t1,...,tn−1) | Tn=tn)
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The above formula shows that the r.v. (T1, . . . , Tn−1) are uniformly distributed in the slot
[0, tn] given the n-th value Tn = tn.

In addition, using (1.6), we readily show that the number of misprints within the time
slot ]s, r] is the same for any time slot of duration (r− s). In addition, it is independent of
the number of misprints in the time slot ]0, s]. More formally, we have

Nh
r −Nh

s =

�r/h�∑
p=�s/h�+1

εhtp
law
= Nh

r−s and Nh
r −Nh

s ⊥ Nh
s .

The same conclusions apply for the limiting Poisson processNt and for the random times Tn.
These are defined in the same way as Nh

t and Th
n , just by replacing Eh

n by En. Convergence
rates can also be developed using the rather elementary estimates

Eh
n ≤ En = h�En/h�+ h {En/h} = Eh

n + h {En/h} ≤ Eh
n + h.

An important memoryless property of the geometric and the exponential random variables
is given below

P
(
Eh
1 > tl + kh | Eh

1 > tl
)

= P
(
Eh
1 > (k + l)h | Eh

1 > lh
)

=
(e−λh)k+l

(e−λh)l
= (e−λh)k = P

(
Eh
n > kh

)

for any k, l ≥ 1, and and s, t ≥ 0

P (E1 > t+ s | E1 ≥ s) =
e−λ(t+s)

e−λs
= e−λt = P (E1 > t) .

The r.v. Eh
1 stands for the first time a misprint occurs in the text. Given there are no

misprints at time tl, the chance to see a misprint after k-text units (words or letters) is the
same as if we were starting a new book from the scratch. Here the time axis is interpreted
as the lengths of sentences with words or letter units. In other important instances, Poisson
processes arise in the stochastic modeling of client arrivals or equipment failures.

The prototype of model is the exponential duration of a light bulb. Given the fact that
the light bulb has not yet burned out at some time s, its future duration is the same as
the one of a brand new light bulb. For both of them, their future duration is given by an
exponential random variable.

The geometric and the exponential statistical nature of these random phenomenons
depends on the problem at hand. For instance, given the fact that a standard light bulb
has not yet burned after 3,000 years, it is difficult to imagine that its future duration is the
same as that of a brand new one. This indicates that the exponential or the geometrical
statistical nature of these light bulbs is questionable for very long time periods. Another
critical illustration of exponential random duration sometimes used in the literature is the
time spent by patients in a general practitioner physician’s office. Given the fact that a
certain patient is still in the office after two days should indicate that something wrong
is going on. At least in this case these random waiting times cannot be considered as
independent exponential random variables.

1.8 Exercises
Exercise 1 (Simple random walk - Mean and variance) Consider the one-dimensional
random walk Xn introduced in (1.1). Compute the quantities E(Xn) and Var(Xn).
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Exercise 2 (Simple random walk - Returns to the origin) Consider the one-dimen-
sional random walk introduced in (1.1). Check that for any n ∈ N we have

P (X2n+1 = 0) = 0 and P (X2n = 0) =

(
2n
n

)
2−2n.

Prove that for any n ≥ m, we also have

P (X2n = 2m) =

(
2n

n+m

)
2−2n.

Exercise 3 (Poisson process) Consider the Poisson process Nt with intensity λ intro-
duced on page 20. Compute E(NsNt) and Cov(Ns, Nt), for any 0 ≤ s ≤ t.

Exercise 4 (Telegraph signal - Poisson process) Consider a telegraph signal Xt tak-
ing values in {−1,+1} starting at X0 = 1 and switching at the arrival times of a Poisson
process Nt with intensity λ introduced on page 20. Express Xt in terms of Nt.

Exercise 5 (Telegraph signal - Correlation function) Consider the random telegraph
signal Xt presented in exercise 4. Assume that E(X0) = 0, E(X2

0 ) = 1, and X0 and Nt are
independent. Compute E(Xt) and E(XtXt+s), for any s ≥ 0.

Exercise 6 (Reflection principle) We consider the simple random walk Xn on the lattice
Z (starting at the origin) given in (1.1). We consider the graph (n,Xn) of the random
walk with the time axis n ≥ 0. We take a couple of points P0 := (n0, xn0) and P1 :=

(n1, xn1) on the same side of the time axis, say P0 and P1 ∈ (N− {0})2. Using a graphical
representation, prove that there is a one-to-one correspondence between the set of paths
from P0 to P1 hitting the time axis at some time n0 < n < n1, and the set of all paths from
P−
0 := (n0,−xn0

) to P1.

Exercise 7 (Coupling) Let p1, p2 be a couple of probability densities on R (with re-
spect to (w.r.t.) the Lebesgue measure dx) such that p1(x) ∧ p2(x) ≥ ρ q(x) for some
probability density q and some parameter ρ ∈]0, 1]. We let ε = (εn)n≥1 be a sequence of
i.i.d. Bernoulli random variables

P(ε1 = 1) = ρ = 1− P(ε1 = 0).

We also consider a sequence of i.i.d. random variables X = (Xn)n≥0 with common proba-
bility density q, and a sequence of i.i.d. random variables Yi := (Yi,n)n≥0 with probability
density

pε,i(x) := (pi(x)− ρq(x))/(1− ρ),

with i ∈ {1, 2}. We assume that (ε,X, Y1, Y2) are independent, and we set

∀i ∈ {1, 2} Zi,n := εn Xn + (1− εn) Yi,n.

Check that (Zi,n)i≥0 are i.i.d. random variables with common probability density pi, for
i = 1, 2. Using the coupling model introduced above, show that Z1,T = Z2,T for some,
possibly random, finite time horizon T .

Exercise 8 (Shuffling cards) We consider a random deck of n cards labelled from 1 to n
so that the order of the cards is unpredictable. The game consists in guessing sequentially
the cards in each position of the deck. We let X be the number of correct guesses. Without
any information during the game, check that E(X) = 1. Next, we assume that we are shown
the card after each (correct or not) guess. Find a guessing strategy for which E(X) � log n.
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Exercise 9 (Fisher and Yates shuffling) Let a = [a(1), . . . , a(n)] be an array of n
elements. The Fisher and Yates algorithm processes all elements one by one. At the i-th
step (with i ≤ n), generate a random integer 1 ≤ j ≤ i and switch elements a(i) and
a(j). By induction w.r.t. the number of steps m ∈ {1, . . . , n}, prove that all the elements
[a(1), . . . , a(m)] are uniformly shuffled, that is,

∀1 ≤ i, j ≤ m P ({a(i) is in the j-th location}) = 1/m.

Exercise 10 (Fractal images) We consider the sequence of independent random vari-
ables

P(εn = 1) = 0.01 P(εn = 2) = 0.85 P(εn = 3) = P(εn = 4) = 0.07

and the affine functions fi(x) = Ai.x+ bi with the matrices and the vectors defined below

A1 =

(
0 0
0 0.16

)
b1 =

(
0
0

)
A2 =

(
0.85 0.04
−0.04 0.85

)
b2 =

(
0
1.6

)

and

A3 =

(
0.2 −0.26
0.23 0.22

)
b3 =

(
0
1.6

)
A4 =

(
−0.15 0.28
0.26 0.24

)
b4 =

(
0

0.44

)
.

Run on a computer the Markov chain with 105 iterations to obtain the fractal image pre-
sented on page 19.
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2
Selected topics

This chapter continues the presentation of guiding examples from the application areas of
stochastic processes. The selected topics include a variety of effects in population dynamics,
reinforcement learning and its unusual traps, and ruin models. Further on, the popular
web-page ranking algorithms are interestingly linked to some stability properties of Markov
chains. Finally, some internet traffic architectures are related to piecewise deterministic
processes. We provide links to the chapters and sections where a more thorough discussion
is accomplished.

The art of doing mathematics consists in finding that special case
which contains all the germs of generality. David Hilbert (1862-1943).

2.1 Stabilizing populations
The last report of the Population Division of the United Nations in 2013 reveals
232 million international migrants living abroad worldwide: "Half of all international mi-
grants lived in 10 countries, with the US hosting the largest number (45.8 million), followed
by the Russian Federation (11 million); Germany (9.8 million); Saudi Arabia (9.1 million);
United Arab Emirates (7.8 million); United Kingdom (7.8 million); France (7.4 million);
Canada (7.3 million); Australia (6.5 million); and Spain (6.5 million)".

The migration flows between the 193
countries (recognized by the United Nations)
could be represented by proportions Mn(i, j)
of residents in a country ci that move every
year, (or any other unit of time: hour, day,
week, or month), to another country cj , with
the country indices i and j running from 1
to 193. The index parameter n represents
the number of the time units. The quanti-
ties Mn(i, j) can also be interpreted as the
"chances" for an individual or the probabil-
ity to go from country ci to country cj .

The population qn(j) of each country cj
at a given time n evolves according to the recursive equations

qn(j) =
∑

1≤i≤193

qn−1(i) Mn(i, j). (2.1)

We can also work with the proportions of the population pn(j) = qn(i)/Nn of each country
cj , where Nn is the (rapidly increasing) current world population given in real time by
Worldometer.

25
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To simplify the presentation, we assume that the number of individuals in the world is
fixed as Nn = N . In other words, the number of individuals in country j at time n is the
sum of all the individuals coming randomly from all the other countries i (including i = j
to take into account the non-migrants in country j).

In this case, the equation (2.1) can be derived from an individual-based evolution model
in which qn−1(i) is the mean number of individuals in the country ci.

At time (n−1), each country ci has mn−1(i) individuals denoted by Iki,n−1 with 1 ≤ k ≤
mn−1(i). Each of these individuals Iki,n−1 moves from ci to cj with probability Mn(i, j). In
other words, the individual Iki,n−1 selects the index Îki,n−1 = j of country cj with probability
Mn(i, j). In this notation, the number of individuals mn(i, j) in country ci migrating to
country cj at time n is given by the random numbers

mn(i, j) :=
∑

1≤k≤mn−1(i)
1j

(
Îki,n−1

)

⇒ E(mn(i, j) | mn−1(i)) = E
(∑

1≤k≤mn−1(i)
1j

(
Îki,n−1

)
| mn−1(i)

)

= mn−1(i) Mn(i, j).

(2.2)

Under our assumption,

mn(j) =
∑

1≤i≤193

mn(i, j)

E (mn(j)) = E


 ∑

1≤i≤193

mn(i, j)


 =

∑
1≤i≤193

E(mn−1(i)) Mn(i, j).

The r.h.s. assertion is a direct consequence of (2.2).
To get one step further in our discussion, suppose that there is always a chance (even

very small), say ε > 0, to move from a country ci to another country cj after (perhaps
very large) m units of time. In this situation, the initial population data q0(i) is not really
important. More precisely, if we start from some wrong data, say q′0(i), after some number
of generations n, the sum of all differences tends to 0 exponentially fast. More precisely, for
certain positive constant B, we have that

∑
1≤i≤193

|q′n(i)− qn(i)| ≤ B (1− ε)n/m

where q′n(i) stands for the solution of (2.1) that starts at q′0(i). In the same vein, assuming
that Mn(i, j) = M(i, j) is roughly constant over time, the population qn(i) of each country
stabilizes exponentially fast to some stationary population π(i)

∑
1≤i≤193

|qn(i)− π(i)| ≤ B (1− ε)n/m.

For instance, suppose that the individuals have a 50% chance to migrate from one
country to another every 5 years. In this case, the populations of all the countries in the
world will have a 50% chance to stabilize after 10 years, and a 97% chance to stabilize after
30 years.

The stationary populations π(i) are the unique solution of the fixed point equation

π(j) =
∑

1≤j≤193

π(i) M(i, j)
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with
∑

1≤i≤193 π(i) = N .
These numbers can be approximated by sampling sequentially random variables Xn ∈

{c1, . . . , c193} mimicking the evolution of a single individual from one country to another

X0 � X1 � X2 � . . . � Xn � . . .

with the transition probabilities

P (Xn = cj | Xn−1 = ci) = M(i, j).

The number π(i)/N is roughly given by the proportion of times the individual visits the
i-th country:

πn(i) :=
1

n

∑
1≤p≤n

1Xp=i =

(
1− 1

n

)
πn−1(i) +

1

n
1Xn=i �n→∞ π(i)/N.

Of course, the individual Xn starting from the i-th country will return eventually to his
initial country. Much more is true, the expected return time is precisely equal to N/π(i).

Under the numerical assumptions described above, what are the chances for two indi-
viduals, say Xn and X ′

n starting from different countries to meet in some country at the
same period of time? The meeting time is again given by the estimate described above.
They will have a 50% chance to meet after 10 years, and a 97% chance after 30 years.

The stochastic modeling techniques discussed above are described in chapter 7 dedicated
to Markov chains and their different interpretations. We also used some analytic estimates
presented in chapter 8. The coupling technology is housed in section 8.3.1.

It is important to notice that the interpretation qn(i)/N = P(Xn = ci) is only valid
when the number of individuals in the whole world does not change. In a more general
situation, each individual Iki,n−1 may die or may give birth to a random number of children
at time n− 1. One way to model this birth and death process is to consider the number of
offsprings Ik,li,n−1, with 1 ≤ l ≤ Nk

i,n−1, where Nk
i,n−1 stands for N-valued r.v. with a given

mean
E
(
Nk

i,n−1

)
= Gn−1(i)

that depends on his or her country’s birth rate.
In this simplified model, the individual Ik,li,n−1 dies when Nk

i,n−1 = 0 or gives no birth
when Nk

i,n−1 = 1.
The resulting model is called a branching process .

population at time (n− 1) after migration

branching
−−−−−−−−−−−→ population at time (n− 1) after birth and death

n-th migration
−−−−−−−−−−−→ population at time n after migration.

We let Îk,li,n−1 be the index of the country chosen by the individual Ik,li,n−1. In this
notation, we have

mn(j, i) =
∑

1≤k≤mn−1(j)

∑
1≤l≤Nk

j,n−1
1i

(
Îk,lj,n−1

)

⇒ E
(
mn(j, i) | mn−1(j), N l

j,n−1, 1 ≤ l ≤ mn−1(j)
)
=

∑
1≤k≤mn−1(j)

Nk
j,n−1 Mn(j, i)

⇒ E (mn(j, i) | mn−1(j)) = mn−1(j) Gn−1(j) Mn(j, i).
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This implies that

Nn =
∑

1≤i≤193 mn(i)

⇒ E (Nn | mn−1(j), 1 ≤ j ≤ 193) =
∑

1≤j≤193 mn−1(j) Gn−1(j)
(2.3)

and
qn(i) := E (mn(i)) =

∑
1≤j≤193

qn−1(j) Gn−1(j) Mn(j, i).

We conclude that

E(Nn) =
∑

1≤i≤193

qn(i) =
∑

1≤j≤193

qn−1(j) Gn−1(j)

= E(Nn)×
∑

1≤j≤193

qn−1(j)∑
1≤k≤193 qn−1(k)

Gn−1(j) .

For constant birth rates Gn(i) = g, for any i and n we have three cases:



g > 1 ⇔ E(Nn) = gn E(N0) ↑ ∞ super-critical
g = 1 ⇔ E(Nn) = E(N0) critical
g < 1 ⇔ E(Nn) = gn E(N0) ↓ 0 sub-critical

The reader may have noticed that

(2.3) =⇒ E
(
Nn

gn
| mn−1(j), 1 ≤ j ≤ 193

)
=

Nn−1

gn−1

⇔ Nn :=
Nn

gn
martingale.

Using martingale theorems, we can show the almost sure convergence Nn →n↑∞ N∞ with
N∞ = 0 or N∞ > 0. Conditionally on non-extinction, g > 1 ⇒ N∞ = ∞. A detailed
presentation of martingale processes and their limit theorems is provided in section 8.4.

2.2 The traps of reinforcement

The Hero of Waterloo pub in Sydney

The interpretation of reinforcement pro-
cesses depends on the application domains
they are used for.

As its name indicates, the reinforcement
of some material is a reparation type process
that strengthens and reinforces its structure.

In behavioral psychology, there are two
types of reinforcement, namely the positive
and the negative reinforcement. Both rein-
forcement processes increase the likelihood
that some positive or negative behavior asso-
ciated with a favorable or non-favorable out-
come occurs more frequently [201].
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In computer sciences reinforcement learning models are reward-based control algorithms.
The "software" agent visiting a solution space receives a reward for any positive action
aiming to maximize a given cumulative reward functional [249].

In all the situations discussed above, a reinforcement process is associated with some
repeated experiment or some repeated outcome.

These reinforced experiments can be modeled by self-interacting processes. The charac-
teristic of these stochastic processes is that the transitions from one state to another depend
on the history and on the way the process has explored the state space.

New South Wales is the Australian state with the largest number of 2100 hotel pubs,
taverns and bars among 3450 total pubs.

A French probabilist who recently arrived to Sydney wants to visit all of its total inter-
nationally known hotel pubs. Every evening he is tempted to look back in the past and to
return to one of the pubs he visited the days before. To avoid visiting too many times the
same place, from time to time he chooses randomly a new pub according to the distribution
of the pubs presented above.

We can use a biased coin tossing to represent the reinforced behavior of the French
tourist. The sequence of reinforced events can be associated to the sequence of head out-
comes. In other words, every evening he flips a coin and when head occurs he looks back
in the past events and returns to one of the previously visited pubs.

More formally, we assume that all the pubs have the same probability to be chosen. In
other words, the distribution of the pubs is given by π(x) = 1/d, for any pub x, where d
stands for the total number of pubs.

We also let ε ∈ [0, 1] be the probability of head, and we denote by Xk the name of the
pub he visited the k-th day. On the n-th evening, the tourist flips the coin. If a head turns
up he comes back randomly to one of the pubs X0, . . . , Xn−1 he has visited the days before.
If he gets a tail he chooses a new pub randomly according to the distribution π of the pubs
discussed above.

If we let X0 = x0 be the first visited pub, then the probability to visit some pub x on
the n-th evening is given by the formula

P (Xn = x) = π(x) + ε αε(n) [1x=x0 − π(x)]

with the error function αε(n)

αε(n) :=
∏

1≤k<n

k + ε

k + 1
.

When the reinforcement rate ε = 0 is null, the tourist will visit the pubs uniformly at any
time n. For a rather weak reinforcement rate, say ε = 1/10, the remainder function αε(n)
lies between the red and the blue lines in the next figure. After one month, the tourist will
visit the pubs almost uniformly.
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If the tourist looks back over the past 50% of the time, he will eventually visit the pubs
almost uniformly only after three months.
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Finally, if he looks 90% of the time back in the past, then even after 2700 years the fluctu-
ations around the desired uniform distribution are of the order of 25%.
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With this strong reinforcement rate, he will eventually succeed to visit the pubs almost
uniformly after more than 2.6 million years.

0 0.2 0.4 0.6 0.8 1

·109

0.12

0.14

0.16

0.18

0.2

0.22

time axis

α
9
/
1
0
(n
)

We leave the reader to find the moral of the story. The quote from the American poet Henry
David Thoreau summarizes the situation in a few words: "Never look back unless you are
planning to go that way." The detailed proofs of these results are provided in section 7.10.1
and in exercise 17.

2.3 Casino roulette

Asheyl Revell visited the Plaza Hotel & Casino, in Las Vegas in the summer of 2004. After
having "some" beers in a London pub with some of his friends, he decided to sell all his
worldly possessions, including his house, his clothes, his car, and his watch, and to risk every-
thing on a single bet on the black color in a casino roulette wheel. This Friday night is a lit-
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tle special, and he suddenly decides to change the color at the last second, and to gamble all
his US$135,300 on a single spin on red.
The event was filmed by Britain’s Sky One television as a
short reality series called Double or Nothing. When the ball
landed on 7 red, Revell collected his winnings of $270,600, and
left a $600 tip. The day after, he decided to play with more
moderation the same strategy with a $100 per bet, and to
stop whenever he won $100, 000, or lost all of his gains.

If the game was fair, he will have 1 chance over 100 to
succeed to win $100, 000 before losing all of his gains. But
the game is slightly biased, since his real chances in the USA
roulette are smaller than 2.96×10−6 (and around 2.504×10−4

if he was playing in Europe).
To understand these numbers, we need to analyze very

carefully the parameters of the problem. In the USA, the roulette wheel has 36 numbers with
red and black colors, but there are also two green blocks with numbers 0 and 00. Thus, the
chance q to win his bet at any time is not 1/2 but

q = 18/(36 + 2) < p = 20/(36 + 2).

The European roulette has the same 36 numbers with red and black colors, but there is
a single green number 0.

The ratio δ = p/q = 1+2/18 is of a partic-
ular importance, since the probabilities PUS

to win b = 100 times an initial unit bet x
before losing all gains are given by

PUS(x) =
δ−(100−x) − δ−100

1− δ−100
.

In addition, the mean duration of the game
is given by the formula

Mean_durationUS(x) =
δ + 1

δ − 1
[100 (1− PUS(x))− (100− x)] .

If Revell was playing a fair game, these quan-
tities would be given by

PUS(x) = x/100 and Mean_duration(x) = x× (100− x).

It is interesting to compare these formulae with their counterparts for the case of the
European roulette. The chance q to win his bet at any time is still not 1/2 but is now equal
to

q = 18/(36 + 1) < p = 19/(36 + 1).

The formulae for the PEurope(x) and the mean duration time Mean_durationEurope(x) are
the same as the ones for the US roulette wheel by replacing δ with δ = p/q = 1 + 1/18.

The probability curves with respect to the starting bet are depicted in the following
picture:
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A zoom in the picture for a bet between 1 and 75 units shows that the US and the
European roulette are not really the same.
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The mean duration time curves with respect to the starting bet are described below:
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The proof of the formula described above relies on martingale theory. We refer the
reader to section 8.4 for an introduction to this subject. The section 8.4.4 is dedicated to
the applications of martingale techniques to the analysis of a gambling model of the same
form as the one discussed above.

2.4 Surfing Google’s waves
In 1996, Larry Page and Sergey Brin were working on a PhD research project on new
web search engines at Stanford University. "Cramming their dormitory room full of cheap
computers, they applied their method to web pages and found that they had hit upon a
superior way to build a search engine. Their project grew quickly enough to cause problems
for Stanford’s computing infrastructure". (The Economist, Enlightenment man, Dec.
(2008) ). They invented a new page ranking algorithm called PageRank which is still the
basis for all of Google’s web search tools. According to Google:

PageRank works by counting the number and quality of links to a page to determine a
rough estimate of how important the website is. The underlying assumption is that more
important websites are likely to receive more links from other websites.

The PageRank U.S. Patent 6, 285, 999 is
not assigned to Google but to Stanford Uni-
versity. The original PageRank algorithm is
related to the so-called random surfer model
on the d = 15 × 109 estimated web pages
(January 2014) visited by a virtual surfer.
At each point in time, the surfer flips a bi-
ased coin with a probability of a head, say
ε = .85 ∈ [0, 1[. If head turns up, he jumps
to one of the outgoing linked pages. Other-
wise, he jumps randomly to a page that is
uniformly chosen on the web.
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We let Xn be the one of d web pages la-
belled by some index i ∈ {1, . . . , d}. We denote by M(i, j) the Markov transition of the
surfer

P (Xn = j | Xn−1 = i) = M(i, j).

After a long surfing period, the surfer is no more affected by the initial starting page

P (Xn = j | X0 = i) = Mn(i, j) −→n→∞ P (X∞ = j) := π(j) (2.4)

and the proportions of visits of each page tend to stabilize to some values
1

n
× Card {0 ≤ p < n : Xp = i} −→n→∞ P (X∞ = i) := π(i). (2.5)

Thus, it is natural to define a new order relation by setting

i ≺ j ⇐⇒ π(i) ≤ π(j).

In addition, using Markov chain theory, we show that

‖Law(Xn)− Law(X∞)‖tv :=
1

2

∑
1≤i≤d

|P (Xn = i)− π(i)| ≤ .85n.
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The formulae (2.4) and (2.5) provide two methods of computing the line vector π. The
first one is called the power method. It consists of multiplying the matrices M up to some
number of times n making sure that the column becomes almost stable. More precisely, we
have

∀i ∈ {1, . . . , d} Mn(i, j) �n↑∞ π(j) ( =⇒ πM = π) .

The second one is based on sampling the evolution of the surfer and counting the proportion
of times the sites i are visited. Since the matrix M is very sparse, the power method is
cheaper (the cost of sparse matrix operations only depends on the number of non null
entries). One difficulty arises from the fact that the power matrix is rather slowly varying
and the number of web pages changes with a speed of around 250, 000 new domain names
every day. For any starting point i ∈ S, one can prove that

∥∥Mn+1(i, .)− π
∥∥
tv

≤ .85× ‖Mn(i, .)− π‖tv .

The detailed proofs of these results and their connections with the stability properties
of Markov chains are provided in section 29.1. How can Google store and update all the
web data? Some answers can be found in the YouTube video on Google data center.
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2.5 Pinging hackers

Kevin Mitnick, and his friend Tsutomu Shimomura sent a communication request to a
Transmission Control Protocol (abbreviated TCP) in Illinois to communicate with a com-
puter on internet. They know that TCP is simply a transmission layer with an architecture
that is free of any security feature, but it includes several congestion algorithms to control
the number of packets that can be transmitted safely.

Kevin is using his favorite packet sniffer to design hacking packets and to sniff the return
traffic. He launches many trains of echo-reply packets with his brand new Ping program
to some randomly chosen targets to select the best host with the smallest dormancy from
his machine. They don’t really want to steal or destroy data, but only to penetrate and
to use several powerful host computers to run their own applications. The main task for
Tsutomu this afternoon is to check the status of the size of the TCP congestion window to
avoid too many timeouts, with lost data segments and/or data receipt acknowledgements.
This window gives the number of data units (also called segments).

Every time he detects a missing segment,
he halves the congestion window. These time-
outs result from their router buffer overflows,
when the maximum capacity of the connec-
tion has been probed.

Otherwise, he tunes the system slowly and
opens a window by the inverse of the current
window size. After some statistical experi-
ments, he checks that the congestion rate is
around 3 timeouts per 4 seconds. Based on
this statistical data, he designs a judicious piecewise deterministic process to predict analyt-
ically the behavior of his protocol. As their name indicates, these stochastic processes are
deterministic between some jump times associated to the timeout periods. Between time-
outs, the size of the congestion window evolves according to the traditional deterministic
dynamical system

dWt

dt
= 1/Wt.

When a timeout occurs, say at some random time T , the size is halved

WT− � WT := WT−/2.

The distance between two timeouts is an exponential random variable with parameter 4/3.
A more thorough discussion of the tools used by Tsutomu to model and analyze this TCP
congestion window is provided in section 13.4. Further details on piecewise deterministic
models can also be found in section 10.5.

In the early connection lifetime, the initial value of congestion window size is quite large,
say in the critical order of 103 segments. This critical effect comes from the very large
number of acknowledged data segments they received in the early stage of their hacking
process. Right after a few tens of seconds, the size of the congestion window stabilizes
extremely fast around these critical values. The limiting average of the square of the window
size is given precisely by 2.

Kevin started analyzing the stochastic model designed by Tsutomu, and found that the
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probability to reach the equilibrium congestion size is given by the following exponential
curve:
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Working a little harder, he shows that the limiting congestion size is given by random
variable

Wt −→t↑∞ W∞ :=
√

3/2

√∑
n≥0

4−n En

where En represent independent standard exponential random variables. In addition, there
is more than a 95% chance to have a size of the congestion window below 4 units; more
precisely, it holds that

P (W∞ ≤ 3.87) ≥ .95.

The details of this probabilistic reasoning are given in section 13.4.

2.6 Exercises
Exercise 11 (Moment generating functions of offspring numbers) We let ϕ(s) :=
E(sX) be the moment generating function of a random number of offsprings X with some
probability distribution p(x) := P(X = x), with x ∈ N. Compute ϕ in the following situa-
tions

• The Bernoulli distribution p(x) = px(1− p)1−x, with p ∈ [0, 1] and x ∈ {0, 1}.

• The binomial distribution p(x) =

(
n
x

)
px(1−p)n−x, with p ∈ [0, 1] and x ∈ {0, . . . , n}

for some n ∈ N.

• The Poisson distribution p(x) = e−λλx/x!, with λ > 0 and x ∈ N.

• The geometric distribution p(x) = (1− p)x−1p, with λ > 0 and x ∈ N− {0}.

Exercise 12 (Population size mean and variance) Consider a branching process in
which every individual in the population gives birth to a random number of offsprings



38 Stochastic Processes

X. We let Nn be the total number of individuals in the population at the n-th genera-
tion. We also consider a sequence (Xi

n)1≤i≤Nn, n≥0 of independent copies of X, so that
Nn+1 =

∑
1≤i≤Nn

Xi
n. Compute the mean and the variance of Nn in terms of the mean

E(X) = m and the variance Var(X) = σ2 of the random variable X. When N0 = 1, show
that

Var(Nn) =

{
n Var(X) when m = 1

Var(X) mn−1 mn − 1

m− 1
when m �= 1.

Exercise 13 (Moment generating functions of population sizes) We let ϕn(s) :=
E(sNn) be the moment generating function of the branching process presented in exercise 12.
Check that ϕn = ϕn−1 ◦ ϕ1, for any n ≥ 1; and ϕn(0) = P(Nn = 0). Compute ϕn for the
Bernoulli offspring distribution introduced in exercise 11 for some p ∈ [0, 1[, and conclude
that

P (Nn = 0) = 1− P(Nn = 1) = pn.

Exercise 14 (Spatial branching process) Consider a positive function i ∈ S �→ G(i) ∈
]0,∞[ and a Markov transition M = (M(i, j))i,j∈S on a finite set S. We let (gin(j))i,j∈S,n∈N
be a sequence of N-valued random variables such that E(gin(j)) = G(j), for each i, j ∈ S
and any n ∈ N. We let f : i ∈ S �→ f(i) ∈ R be some function on S.

• We start with N0 individuals ξ0 := (ξi0)1≤i≤N0
with some common distribution η0 on

S, for some given integer N0 ∈ N − {0}. Given ξ0, each individual ξi0 gives birth to
gi0

(
ξi0
)
offsprings for each 1 ≤ i ≤ N0. At the end of this branching transition we obtain

N1 =
∑

1≤i≤N0
gi0

(
ξi0
)
individuals ξ̂0 := (ξ̂i0)1≤i≤N1

. Check that

E


 ∑

1≤i≤N1

f(ξ̂i0)


 = N0 η0(Gf).

• Given ξ̂0, each offspring ξ̂i0 moves to a new location ξi1 according to the Markov transition
M . Check that

E


 ∑

1≤i≤N1

f(ξi1) | N1, ξ̂0


 =

∑
1≤i≤N1

M(f)(ξ̂i0)

and deduce that

E


 ∑

1≤i≤N1

f(ξi1)


 = N0 η0(Q(f))

with the matrix Q with positive entries Q(i, j) = G(i)M(i, j).

• Given ξ1 := (ξi1)1≤i≤N1
, each individual ξi1 gives birth to gi1

(
ξi1
)
offsprings for each

1 ≤ i ≤ N1. At the end of this branching transition we obtain N2 =
∑

1≤i≤N1
gi1

(
ξi1
)

individuals ξ̂1 := (ξ̂i1)1≤i≤N2 . Check that

E


 ∑

1≤i≤N2

f(ξ̂i1)


 = N0 η0(Q(Gf)).

• Given ξ̂1 := (ξ̂i1)1≤i≤N2 , each offspring ξ̂i1 moves to a new location ξi2 according to the
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Markov transition M . Iterating these branching and exploration transitions we define a
sequence of populations ξn := (ξin)1≤i≤Nn and ξ̂n := (ξ̂in)1≤i≤Nn+1 . Check that

E


 ∑

1≤i≤N2

f(ξi2) | N2, ξ̂1


 =

∑
1≤i≤N2

M(f)(ξ̂i1)

and deduce that

E


 ∑

1≤i≤N2

f(ξi2)


 = N0 η0(Q

2(f)).

Iterating these calculations check that for any n ∈ N we have

E


 ∑

1≤i≤Nn

f(ξin)


 = N0 η0(Q

n(f)).

Exercise 15 (Chinese restaurant process 1) A Chinese restaurant has an infinite
number of tables indexed by the integers N−{0} equipped with some probability distribution
µ. Each table can seat an infinite number of customers. Let α > 0 be a given parameter.
We let Xn be the index of the table chosen by the n-th customer. The first customer enters
and sits at one table, which he chooses randomly, with a distribution µ. With a probability
α

α+n , the (n+1)-th customer chooses a new table randomly, according to the distribution µ;
otherwise he chooses to join one of the occupied tables i ∈ {X1, . . . , Xn} randomly chosen
with the distribution 1

n

∑
1≤p≤n 1Xp(i).

• Write down the probability transition of Xn+1 given (X1, . . . , Xn).

• Find the expected number of different tables occupied by the first n customers.

• Check that

P (Xn+1 = i | X1, . . . , Xn) =
αµ(i) + Vn(i)

α+ n
with Vn(i) =

∑
1≤p≤n

1Xp
(i).

Exercise 16 (Chinese restaurant process 2) Consider the Chinese restaurant pro-
cess presented in exercise 15, with µ(S) = 1 for some finite subset S.

• Check that

P (X1 = x1, . . . , Xn+1 = xn+1) =


 ∏
0≤k≤n

1

α+ k


 ∏

s∈S

∏
0≤k<vn+1(s)

(αµ(s) + k) (2.6)

with vn+1(s) =
∑

1≤p≤(n+1) 1xp(s).

• Compare the above formula with the moments of the Dirichlet distribution given in (4.9).

• Deduce that (Xi)i≥1 can be interpreted as a sequence of independent random variables
on the set S := {1, . . . , d} with probability distribution given by the following formula

∀s ∈ S P (X1 = s | U) = Us with U = (U1, . . . , Ud) ∼ D(αµ(1), . . . , αµ(d)).
(2.7)
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In this situation, given U check that 1
n

∑
1≤p≤n 1Xp

(i) converges almost surely to Ui, as
n ↑ ∞, and we have

E


 1

n

∑
1≤p≤n

1Xp(i) | U


 = Ui and Var


 1

n

∑
1≤p≤n

1Xp(i) | U


 =

1

n
Ui(1− Ui).

Exercise 17 (Self interacting processes) We define sequentially a self-interacting
process Xn evolving on some state space S equipped with a probability measure µ = Law(X0).
Given (X0, . . . , Xn−1), we let Xn be a random variable with a conditional distribution

ε
1

n

∑
0≤p<n

δXp
(dx) + (1− ε) µ(dx)

and we set

ηn = Law(Xn) Sn =
1

n

n−1∑
k=0

δXk
Sn =

1

n

n−1∑
k=0

ηk.

Check that for any bounded function f we have E(Sn(f)) = Sn(f), and

Sn(f) =
n

n+ 1
Sn−1(f) +

1

n+ 1
f(Xn).

For any function f s.t. µ(f) = 0, check that

E(f(Xn+1) | X0, . . . , Xn) = ε Sn(f) and ηn+1(f) = ε Sn(f) ,

and deduce from the above that

Sn(f) = αε(n)× E(f(X0)) with αε(n) :=

n∏
k=1

k + ε

k + 1
.

Prove that
∫ n+1

1

log

(
1− (1− ε)

t

)
dt ≤ logαε(n) ≤

∫ n+2

2

log

(
1− (1− ε)

t

)
dt. (2.8)

Using the estimates
∀x ∈ [0, 1[ − x

1− x
≤ log (1− x) ≤ −x

check that
1

(1 + n/ε)1−ε
≤ αε(n) ≤

1

(1 + n/2)1−ε
.

Exercise 18 (Web surfer) We consider the web surfer Markov chain Xn discussed in
section 2.4. We let ν(i) = 1/d, i ∈ S = {1, . . . , d} be the uniform probability measure on
the web page indexes S, ε ∈ [0, 1[ be a given parameter, and we set

M(i, j) = ε K(i, j) + (1− ε) ν(i) with K(i, j) =
1

Card(Link(i))
1Link(i)(j).

In the above display, Link(i) denotes the set of indexes of the outgoing pages linked to the
page with index i. Using induction on n ≥ 0, prove that osc(Mn(f)) ≤ εn osc(f), for any
function f on S, and deduce that

∀(i, j, k) ∈ Sk lim
n→∞

|P(Xn = k | X0 = i)− P(Xn = k | X0 = j)| = 0.
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Exercise 19 (Transmission protocol) We consider the transmission protocol model Wt

discussed in section 2.5. We let W t = W 2
t /2. Between timeouts, show that dW t

dt = 1. A
discrete time version of W t is given by the Markov chain

Xn = (1− εn) (Xn−1 + h) + εn (Xn−1/4) .

In the above display, h > 0 denotes a small time step, and εn is a sequence of i.i.d. {0,+1}-
valued Bernoulli random variables with a common law

P(ε1 = 1) = p = 1− P(ε1 = 0).

Show that
Xn − 4−

∑
1≤k≤n εk law

= h
∑

0≤k<n

4−
∑

1≤l≤k εl (1− εk+1).

Exercise 20 (Gambler’s ruin problem) We consider the gambler’s ruin problem dis-
cussed in section 2.3. During the game, the total fortune of the gambler Xn at each time n
is described by the Markov chain

Xn = Xn−1 + εn,

where εn stands for a sequence of i.i.d. {−1,+1}-valued Bernoulli random variables with a
common law

P(ε1 = 1) = p = 1− P(ε1 = −1).

We assume that the gambler starts with an initial fortune, say X0 = x ∈ N− {0}, and that
the game ends when either Xn = 0 (running out of money) or Xn = xmax (some maximal
total fortune). We denote by T = inf {n ≥ 0 : Xn ∈ {0, xmax}} the random time at which
the game stops, and P (x) = P(XT = xmax|X0 = x). Note that P (0) = 0 and P (xmax) = 1.
Using a conditioning argument w.r.t. X1, check that

P (x) = p P (x+ 1) + (1− p) P (x− 1) and [P (x+ 1)− P (x)] =
p

q
[P (x)− P (x− 1)]

with q = 1− p and for any 0 < x < xmax. Deduce that

P (x+ 1) =




P (1)
1−

(
q
p

)x+1

1−
(

q
p

) if p �= q

P (1) (x+ 1) if p = q

and for any 0 ≤ x ≤ xmax

P (x) =




1−
(

q
p

)x

1−
(

q
p

)xmax if p �= q

x

xmax
if p = q.



http://www.taylorandfrancis.com


3
Computational and theoretical aspects

In this chapter, we give a historical perspective to the origination of two of the main com-
putational tools used in stochastic analysis: the Monte Carlo methods and the stochastic
calculus. Particular emphasis is put to the Metropolis-Hastings simulation model. Next,
the Kalman filter as a major stochastic algorithm used in engineering sciences and in in-
formation theory is presented in historical context. Furthermore, a moving story about
the origination of the Doeblin-Itō stochastic calculus is told. One of the major application
areas of stochastic calculus is finance. The financial applications are also put in historical
perspective. Starting with Louis Bachelier’s theory of speculation we move forward to give
a first glimpse in option pricing. Much more details and derivations of these topics will be
given in the subsequent chapters and sections and pointers to these are provided across this
chapter.

If one disqualifies the Pythagorean Theorem from contention,
it is hard to think of a mathematical result which is better known
and more widely applied in the world today than "Itō’s Lemma".
Citation from the US National Academy of Science.

3.1 From Monte Carlo to Los Alamos
Monte Carlo is a city in the tiny Principality of Monaco on the Mediterranean Sea, well
known for its famous casino. It attracts a lot of celebrities and avid gamblers. One of them is
the uncle of Stanislaw Ulam, a famous computational physicist from Los Alamos National
Laboratories in the USA.

Nicholas Metropolis

At the other side of the Atlantic ocean, in
the beginning of the 1950’s a small group of
physicists and mathematicians from this lab-
oratory, including Stanislaw Ulam, Nicholas
Metropolis, and John von Neumann, spent
their evenings playing poker with small sums.
During one of these gambling evenings, Nick
Metropolis, a Greek-American with a great
personality, "described what a triumph it was
when he won $10 to John (the author of the
famous treatise on game theory). He bought
this book with $5, and then pasted the other
$5 inside the cover as a symbol of his victory"
(S. Ulam, taken from Wikipedia). Nick
also played the part of a scientist in the
Woody Allen film “Husbands and Wives" in
1992.

43
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During his working days, Nick and his colleagues were focusing on nuclear weapon
projects. In the 1940s, they invented a new stochastic simulation technique coined by John
von Neumann the Monte Carlo Method due to the secrecy of their project and in "honor"
of the uncle of Stanislaw Ulam who had a propensity to gamble [196].

Nowadays, Monte Carlo methods rather refer to a broader class of computer stochas-
tic simulation methods. These methods include independent random sampling of a given
random event with a prescribed probability distribution. However, without any doubt,
the most famous stochastic algorithm is the Metropolis-Hastings model. This model was
developed in the mid-1960s by Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N.
Rosenbluth, Augusta H. Teller, and Edward Teller in their seminal article [198].

Formally, we let π(x) be any type of positive probability density on Rd, for some d ≥ 1.
Starting with a given state x, we propose randomly a new random state y with a positive

probability density P (x, y). Then, we accept the state y with probability

a(x, y) = min

(
1,

π(y)P (y, x)

π(x)P (x, y)

)
.

Otherwise, we stay in x. In both cases, we propose another random state and accept or
reject it following the same policy as before. This process continues in the same way. The
main simplification of the above judicious choice of acceptance-rejection ratio comes from
the fact that it does not depend on the often unknown normalizing constant of the so-
called target density measure π. For instance the normalizing constant of some conditional
distribution is often given by the unknown probability of the conditioning event; hence it is
difficult to obtain this constant.

Other important examples of target measures are the Boltzmann-Gibbs measures de-
scribed in chapter 6 (see for instance section 6.4).

Repeating these two operations, we obtain a sequence of random variables Xn, with
n ∈ N such that

Law(Xn) �n↑∞ π and
1

n

∑
0≤p<n

f(Xp) �n↑∞

∫
f(x) π(x) dx

for any bounded function f on Rd.
The overall probability densityM(x, y) of the transition x � y is given by the probability

of the proposition x � y and the chance to accept the state y. By simple conditioning
argument, for any x �= y we find that

M(x, y) := P (x, y) × min

(
1,

π(y)P (y, x)

π(x)P (x, y)

)

from which we prove that

π(x)M(x, y) = min (π(x)P (x, y), π(y)P (y, x)).

From the symmetry of this formula we obtain the so-called master equation

π(x)M(x, y) = π(y)M(y, x) =⇒
∫

π(x) M(x, y) dx = π(y).

The right hand side formula says that if we start with a random variable with density π(x)
and perform the Metropolis-Hastings transition x � y, the probability of the resulting
random variable is again π(y).
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In probability theory, this property is called the invariance property of π with respect to
the Markov transition M , and the sequence of random states Xn is called a Markov chain
with elementary transitions M .

The numerical analysis of these Markov Chain Monte Carlo methods (abbreviated MCMC)
is directly related to the convergence analysis of Markov chain models towards their invari-
ant measures, as the time parameter tends to ∞.

These questions are discussed in chapter 8. The reader will find a panorama of the
main mathematical techniques involved in the stability analysis of Markov chain models,
including linear algebraic methods, topological and functional methodologies, as well as
more probabilistic approaches based on coupling techniques, strong stationary times, and
martingale theory.

In the last century, stochastic simulation techniques have become some of the most
important numerical techniques in applied sciences.

The rather elementary Metropolis-Hastings method is cited in Computing in Science
and Engineering as one of the top-10 algorithms having the "greatest influence on the
development and practice of science and engineering in the 20th century".

In chapter 9 we provide a review of the main stochastic simulation techniques in prob-
ability and statistics as well as in computational physics in the last decades.

3.2 Signal processing and population dynamics
Rudolf Emil Kalman is a member of the National Academy of Sciences (USA), the National
Academy of Engineering (USA), and the American Academy of Arts and Sciences (USA).
He is a foreign member of the Hungarian, French, and Russian Academies of Science.

On the 19th of February 2008, he received a US$500,000 Charles Stark Draper
Prize in Washington from the US National Academy of Engineering "for the development
and dissemination of the optimal digital technique (known as the Kalman Filter) that
is pervasively used to control a vast array of consumer, health, commercial and defense
products."

For instance, "the Kalman filters have been vital in
the implementation of the navigation systems of US
Navy nuclear ballistic missile submarines, and in the
guidance and navigation systems of cruise missiles
such as the Navy’s Tomahawk missile and the US
Air Force’s Air Launched Cruise Missile.

It is also used in the guidance and navigation
systems of the NASA space shuttle and the attitude
control and navigation systems of the International
Space Station" (taken from Wikipedia).

In a seminal paper published in 1960, Kalman
presented one of the major stochastic algorithms
used in engineering sciences and information theory. In one dimension, the Kalman fil-
ter is associated with a given linear-Gaussian model of the form

{
Xn = a Xn−1 +Wn

Yn = b Xn + Vn
(3.1)

with some given parameters (a, b) ∈ R2 and some independent Gaussian r.v. (X0,Wn, Vn)



46 Stochastic Processes

with mean and variance parameters given respectively by (m0, 0, 0) and (σ2
0 , σ

2, τ2). Apart
from a few technicalities, the multi-dimensional and the time non-homogeneous cases follow
the same line of arguments.

The two equations stated above constitute a filtering problem. The stochastic process
Xn is called the signal. It may represent the evolution of some target such as a missile,
a submarine, or a vehicle. The stochastic process Yn is called the observation sequence.
These random variables are delivered by some sensor such as a radar, sonar, or some global
positioning system (a.k.a. GPS).

For a simplified but more sophisticated and concrete radar filtering model, we refer the
reader to section 6.5.2.

Abusing notation, the objective is to compute sequentially the conditional probability
densities

p(xn | y0, . . . , yn−1) and p(xn | y0, . . . , yn). (3.2)

The states (Xp, Yp)p≤n, being linear combinations of independent Gaussian variables, are
necessarily Gaussian with some mean and variance parameters given by (mn, σ

2
n) and

(m̂n, σ̂
2
n), respectively.

The density on the l.h.s. in (3.2) is called the one step optimal predictor, while the
r.h.s. is called the optimal filter. Using Bayes’ rule, these probability densities are
connected by the product formula

p(xn | y0, . . . , yn) ∝ p(yn | xn)× p(xn | y0, . . . , yn−1). (3.3)

Using the celebrated regression formula that can be traced back to the German and the
French mathematicians Carl Friedrich Gauss and Adrien Marie Legendre in the early
1800s (see [131, 132, 178] as well as section 4.5.2), we find that

m̂n = En(Xn)︸ ︷︷ ︸
=mn

+
Covn(Xn, Yn)

Varn(Yn)
(yn − En(Yn)︸ ︷︷ ︸

=bmn

) (3.4)

where En(.) stands for the conditional expectation w.r.t. the observation sequence
Yp = yp, with p < n.

In addition, we have

Covn(Xn, Yn) := En


(Xn −mn)

b (Xn−mn)︷ ︸︸ ︷
(Yn − b mn)


 = b σ2

n

Varn(Yn) := En

(
(Yn − En(Yn)

2
)

= En

(
(b(Xn −mn) + Vn)

2
)
= b2σ2

n + τ2.

Using (3.4), we also check that

σ̂2
n = E

(
(Xn − m̂n)

2
)

= Varn(Xn)− Covn(Xn, Yn)
2/Varn(Yn).
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This implies that

σ̂2
n = σ2

n − b2 σ4
n

b2σ2
n + τ2

= σ2
n

(
1− b2σ2

n

b2σ2
n + τ2

)
= (b2τ−2 + σ−2

n )−1.

To obtain a recursive algorithm, it remains to find the reverse relation. To this end,
we again apply the Bayes’ rule to check that

p(xn+1 | y0, . . . , yn) =
∫

p(xn+1 | xn)× p(xn | y0, . . . , yn)︸ ︷︷ ︸
=p(xn+1, xn | y0,...,yn)

dxn (3.5)

from which we conclude that

mn+1 = a m̂n

σ2
n+1 = En

(
[Xn+1 −mn+1]

2
)
= En

(
[a(Xn − m̂n) +Wn]

2
)
= a2σ̂2

n + σ2. (3.6)

The so-called Kalman filter reduces to the resulting recursive equations

(mn, σn)
updating

−−−−−−−−−→ (m̂n, σ̂n)
prediction

−−−−−−−−−→ (mn+1, σn+1).

The next picture illustrates one-dimensional Kalman filter associated with σ2 = 1 = τ2.

Unfortunately, most of the filtering problems arising in practice are nonlinear and/or
non-Gaussian. In this context, the pivotal regression updating formula is clearly useless,
and we need to find another strategy to solve these estimation problems.

To this end, an important observation is that formulae (3.3) and (3.5) are always sat-
isfied for any type of filtering model. In probability theory and engineering sciences, these
formulae are called the filtering equations.

One natural way to approximate a given distribution is to consider the empirical measure
associated with a sequence of random variables. Following this idea, let us suppose that we
have designed a sequence of N random particles (ξ1n, . . . , ξ

N
n ) such that in some sense we

have
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p(xn | y0, . . . , yn−1) dxn �N↑∞
1

N

∑
1≤i≤N

δξin(dxn). (3.7)

Then, by (3.3), we have the following approximation

p(xn | y0, . . . , yn) dxn �N↑∞
∑

1≤i≤N

p(yn | ξin)∑
1≤j≤N p(yn | ξjn)

δξin(dxn). (3.8)

Thus, sampling N independent random variables with probability density p(xn | y0, . . . , yn)
is "almost equivalent" to sampling N independent random variables (ξ̂1n, . . . , ξ̂Nn ) with the
discrete probability measure (3.8).

By the law of large numbers, we have

p(xn | y0, . . . , yn) dxn �N↑∞
1

N

∑
1≤i≤N

δξ̂in
(dxn).

The construction of an empirical measure satisfying this approximation property is far
from being unique. For instance, we can also replace the weights by any function Gn(ξ

i
n) ∝

p
(
yn | ξin

)
. Whenever Gn takes values in [0, 1], one can accept every particle ξin with the

probability Gn(ξ
i
n), and set ξ̂in = ξin. The rejected particles are replaced by the same number

of randomly chosen particles w.r.t. the weighted measure defined above.
The random transition (ξ1n, . . . , ξ

N
n ) � (ξ̂1n, . . . , ξ̂

N
n ) can be interpreted in many different

ways.
For instance, it can be interpreted as a selection of the particles ξin with high value of

the likelihood p(yn | ξin).
It can also be seen as a branching process or a birth and death process.
Last, but not least, it can be seen as a acceptance-rejection scheme equipped with a

recycling mechanism.
Now, using (3.5) we have

p(xn+1 | y0, . . . , yn) �N↑∞
1

N

∑
1≤i≤N

p
(
xn+1 | ξ̂in

)
.

Therefore, from each selected particle ξ̂in, we sample a transition of the signal Xn = ξ̂in �
Xn+1 = ξin+1 and we have the empirical approximation

p(xn+1 | y0, . . . , yn) dxn+1 �N↑∞
1

N

∑
1≤i≤N

δξin+1
(dxn+1).

The next animation illustrates the evolution of the genetic type population discussed
above. We also quote at every time step the proportion of accepted individuals in the
acceptance-rejection transition presented above.
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Running back in time, we can trace back the ancestral lines of every individual. The
animation provides a graphical description of the genealogical tree associated with the
dynamic population model.

It is out of the scope of these lectures to discuss the convergence of the occupation mea-
sures of these ancestral lines. We content ourselves by presenting the following important
approximation result

1

N

∑
1≤i≤N

δi-th ancestral line at time n �N↑∞ Law ((X0, . . . , Xn) | Yp = yp, p < n) .

In addition, the product of the proportions of accepted particles converges as N ↑ ∞ to the
density of the observation sequence.
In addition, the product of the proportions of accepted particles converges as N ↑ ∞ to the

Tree of life

The genetic type particle model presented
in (3.7) is often called a particle filter.
These particle models can be interpreted
as a mean field particle interpretation
of Feynman-Kac models. These particle
methodologies and their application domains
are discussed in some details in section 9.6
and in section 9.9 (see for instance 9.9.2 for
nonlinear filtering problems).

3.3 The lost equation

Wolfgang Doeblin was born in Berlin in March 17th 1915, and he spent his first three
years in the German army during the World War I in Saargemünd with his father who
volunteered as a physician. After the war, he moved back to Berlin, but the new Nazi army
put him and his family on their black list. When he was 21 years old, he obtained the French
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nationality. After earning his PhD from the Sorbonne in 1938 with Maurice René Fréchet,
he was enrolled with the French army in the World War II and was sent to the German front.
During the next two wartime years, the young French-German mathematician wrote a series
of works on probability theory. In the winter of 1940, he sent a sealed letter to M. Fréchet
at the Académie of Sciences in Paris containing a new treatise on stochastic calculus. A few
months later, in the little village Housseras, about 100 km from Sarreguemines, he decided
to take his own life rather than be caught as a prisoner of war.

The sealed letter

M. Fréchet forgot to open the letter, and
died in June 1973 in Paris. The general rule of
the French Académie of Sciences is that only
the sender, his relatives, or the Academy of
Sciences itself (after a period of 100 years),
had the permission to open this sealed letter
no. 11668.

In 1991, Bernard Bru, Professor of the
History of Mathematics at the University
René Descartes in Paris, was looking for infor-
mation about Wolfgang’s vitae. In the dusty archive he discovered the letter of W. Doeblin
to M. Fréchet. Doeblin’s brothers, Claude and Stephan, gave him permission to open the
letter. Bernard found an exercise book with a handwritten article on a new stochastic
calculus, rediscovered independently by the famous Japanese mathematician Kiyoshi Itō in
1944.

One of the central questions addressed by
this stochastic calculus is to integrate ran-
dom dynamical systems driven by the Brow-
nian motion. This mysterious stochastic pro-
cess was discovered incidentally in 1827 by
the botanist Robert Brown. When analyz-
ing the sexual relations of plants, he observed
under his microscope the jittery motion of
pollen grains of the plant Clarkia pulchella
when suspended in water. His first hypothesis was that these grains were the equivalent
of a sperm and they were jiggling around just because they were alive. Then he made the
same experiment with dead plants, and concluded that life exists at the microscopic level.

The earliest attempt to model Brownian motion can be traced to T. N. Thiele in
1880, and to Louis Bachelier in 1900 in his PhD thesis The theory of speculation [8], dedi-
cated to the stochastic analysis of stock option markets [255].

Kiyochi Itō

Some years later, in 1905 Albert Ein-
stein [118] and Marian Smoluchowski [244]
also used the fluctuation properties of this
stochastic process to confirm in some way the
existence of atoms and molecules in matter,
gases or fluids. In their model, the chaotic
behavior of these particles (such as pollen
grains, coal dust, atoms, or gas molecules) re-
sults from successive collisions with particles
of their environment.

The mathematical foundations of diffu-
sion processes driven by Brownian motion
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originates with the celebrated work of Kiyoshi
Itō published in Japanese in 1942. The citation from the US National Academy of Science
states:

If one disqualifies the Pythagorean Theorem from contention, it is hard to think of a
mathematical result which is better known and more widely applied in the world today than
"Ito’s Lemma". This result holds the same position in stochastic analysis that Newton’s
fundamental theorem holds in classical analysis. That is, it is the sine qua non of the
subject.

The following animation shows five Brownian particles colliding with a thousand of
smaller particles.

From a purely mathematical point of view, the Brownian process Wt is the continuous-
time analog of the simple random walk: a walker evolves in the real line performing randomly
local steps with amplitude +dx = +

√
dt or −dx = −

√
dt every dt units of time. When the

time step dt tends to 0, we obtain a random process Wt, indexed by the continuous time
parameter t ∈ [0,∞[.

The next figure shows seven different and random realizations of this Brownian process.
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Extending these constructions, we define the following stochastic differential equa-
tions

dXt := Xt+dt −Xt = bt(Xt) dt+ σt(Xt) dWt (3.9)

for some regular functions (b, σ).

Using the rules

dWt × dWt = ±
√
dt×±

√
dt = dt

dt× dt = 0 and dt× dWt = dt ×±
√
dt = 0

for any smooth function f, we have the second order Taylor expansion

df(t,Xt) = f(t+ dt,Xt + dXt)− f(t,Xt)

= ∂tf(t,Xt) dt+ ∂xf(t,Xt) dXt +
1

2
∂2
xf(t,Xt) dXt dXt

= [∂tf(t,Xt) + ∂xf(t,Xt) bt(Xt)

+
1

2
∂2
xf(t,Xt) σ

2
t (Xt)

]
dt+ ∂xf(Xt) σt(Xt) dWt.
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This yields the Doeblin-Itō differential formulae

df(t,Xt) = [∂t + Lt] f(t,Xt) dt+ dMt(f) (3.10)

with the operator Lt and a remainder stochastic process Mt(f) given by

Lt = bt ∂x +
1

2
σ2
t ∂2

x and dMt(f) = ∂xf(t,Xt) σt(Xt) dWt. (3.11)

For a more rigorous description of the Brownian diffusion processes, including a detailed
presentation of the Doeblin-Itō differential calculus, we refer the reader to section 14.1.

By construction, we also have that

E (dMt(f) | Xt) = ∂xf(Xt) σt(Xt)

=0︷ ︸︸ ︷
E (dWt | Xt) = 0 (3.12)

E
(
(dMt(f))

2 | Xt

)
= (∂xf(Xt) σt(Xt))

2 E
(
(dWt)

2 | Xt

)
︸ ︷︷ ︸

=1/2(
√
dt)2+1/2(−

√
dt)2=dt

= (∂xf(Xt) σt(Xt))
2
dt. (3.13)

Without any doubt, this differential calculus is one of the most important tools of the
modern theory of stochastic processes. Next, we present two more or less direct applications
of this result.

When σt = 0, the process Xt reduces to the standard deterministic dynamical system

dXt

dt
=

.
Xt= bt(Xt). (3.14)

In this situation, for time homogeneous functions f(t, x) = f(x), we have

df(Xt) = bt(Xt) f
′(Xt) dt and Mt(f) = 0.

When bt = 0 and σt = 1, for time homogeneous functions f(t, x) = f(x), we find that
Xt = Wt and

df(Wt) =
1

2
f ′′(Wt) dt+ f ′(Wt) dWt.

This implies that

dE (f(Wt)) = E (f(Wt+dt))− E (f(Wt))

= E (df(Wt)) =
1

2
E (f ′′(Wt)) dt.

We let pt(w) be the probability density of the random variable Wt

P (Wt ∈ dw) = pt(w) dw =⇒ E (f(Wt)) =

∫
f(w) pt(w) dw.

From previous calculations, for any smooth function f with compact support, we have that
∫

f(w)
pt+dt(w)− pt(w)

dt
dw =

1

2

∫
f ′′(w) pt(w) dw =

∫
f(w)

1

2
p′′t (w) dw.

The equality on the r.h.s. is proved using integration by parts.
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We conclude that pt satisfies the heat equation ∂tpt =
1
2 ∂2

wpt, whose solution is given
by the Gaussian density

pt(w) =
1√
2πt

exp

(
−w2

2t

)
.

Using the same line of arguments, the probability density pt(x) of the random states Xt

of the general diffusion model presented in (3.9) satisfies the partial differential equation

∂tpt = −∂x (bt pt) +
1

2
∂2
x

(
σ2
t pt

)
. (3.15)

The picture below illustrates the solution pt(x) of the Fokker-Planck equation (3.15)
associated with the pure diffusion process starting at the origin

dX(t) = sin(X(t))dt+ σ dW (t).
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Sampling N independent copies of the diffusion model (3.9), we design the Monte Carlo
approximation model

1

N

∑
1≤i≤N

f(Xi
t) −→N→∞ E (f(Xt)) =

∫
f(x) pt(x) dx.

Next, we present another application of the second order differential formula. For spa-
tially homogeneous functions bt(x) = bt and σt(x) = σt, the diffusion model (3.9) takes the
form

dXt = bt Xt dt+ σt Xt dWt. (3.16)
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If we take f(x) = log(x), we find that

d logXt =
1

Xt
dXt −

1

2

1

X2
t

dXt dXt = bt dt+ σt dWt −
1

2
σ2
t dt.

Integrating over the time interval [0, t], we conclude that

logXt − logX0 =

∫ t

0

(
bs −

1

2
σ2
s

)
ds+

∫ t

0

σsdW.

Taking the exponential, we end up with the so-called geometric Brownian motion formula

Xt = X0 exp

(∫ t

0

(
bs −

1

2
σ2
s

)
ds+

∫ t

0

σs dWs

)
. (3.17)

These non-negative stochastic processes are used in mathematical finance to represent the
evolution of the stock price of a risky asset. The prototype financial model is defined in
terms of some "reference" cash-flow process S(0)

t with a given riskless return rate rt, and
a stochastic risky asset St with return rate bt and volatility σt. These processes are often
defined by the stochastic differential equations

{
dS(0)

t = S(0)
t rt dt

dSt = bt St dt+ σt St dWt.
(3.18)

The deflated risky asset is given by

St = St/S(0)
t = e−

∫ t
0

rsds St/S(0)
t

= S0 exp

(∫ t

0

(
[bs − rs]−

1

2
σ2
s

)
ds+

∫ t

0

σs dWs

)
.

We notice that St is the solution of the deflated stochastic differential equation

dSt = [bt − rt] St dt+ σt St dWt. (3.19)

The values Pt of a self-financing portfolio
(
p
(0)
t , pt

)
are defined by

Pt = p
(0)
t−dt S

(0)
t + pt−dt St︸ ︷︷ ︸

value of the portfolio at time t

= p
(0)
t S(0)

t + pt St︸ ︷︷ ︸
choice of a (self financed) new strategy

.

This implies that

dPt = Pt+dt − Pt =
[
p
(0)
t S(0)

t+dt + pt St+dt

]
−
[
p
(0)
t S(0)

t + pt St

]

= p
(0)
t

(
S(0)
t+dt − S(0)

t

)
+ pt (St+dt − St)

= p
(0)
t dS(0)

t + pt dSt =
[
p
(0)
t rt S(0)

t + ptbt St

]
dt+ ptσt St dWt.

When a security pays dividends or coupons with a return rate αt, the self-financing
portfolio is defined as above by replacing the term dSt by

dSα
t := d

(
e
∫ t
0
αsdsSt

)

= αt Sα
t dt+ e

∫ t
0
αsds dSt = [bt + αt] Sα

t dt+ σt Sα
t dWt.
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We refer the reader to the end of section 18.2.3, as well as to chapter 30 for a more
detailed discussion on the applications of these stochastic processes in pricing European
financial options.

3.4 Towards a general theory
The theory of deterministic or stochastic dif-
ferential equations (abbreviated SDE) plays a
crucial role in pure and applied mathemat-
ics, as well as in physics, biology, finance,
and engineering sciences. In (3.14) and (3.15)
we have seen that standard deterministic dy-
namical systems and some classes of partial
differential equations (abbreviated PDE) can
be encapsulated in the Doeblin-Itō differen-
tial calculus.

The aim of this section is to extend
this stochastic differential calculus to general
stochastic processes, including jump type diffusions and integro-differential equations.

The square field vector (also called the "carré du champ operator") associated with some
differential operator L is defined for any sufficiently smooth function f by the formula

f(x) �→ ΓL(f, f)(x) = L([f − f(x)]2)(x) = L(f2)(x)− 2f(x)L(f)(x). (3.20)

For instance, when L = Lt is the operator defined in (3.11) we find that

ΓLt
(f, f)(x) = bt(x) ∂y[f − f(x)]2| y=x︸ ︷︷ ︸

=0

+ σ2
t (x)

1

2
∂2
y [f − f(x)]2| y=x︸ ︷︷ ︸

=∂y([f−f(x)]∂yf)| y=x=(∂xf(x))
2

= [σt(x)∂xf(x)]
2
. (3.21)

If we set Xt := (Xs)s≤t and Mt := Mt(f), then by (3.13) we find that

E (dMt | Xt) = 0 (3.22)

E
(
(dMt)

2 | Xt

)
= ΓLt

(f, f)(Xt) dt.

The first condition ensures that the stochastic process Mt is a martingale w.r.t. the informa-
tion encapsulated in the increasing sequence of sigma-algebras Ft := σ(Xt) := σ ((Xs)s≤t).

In addition, we have

E
(
(dMt)

2 | Xt

)
= E

(
(Mt+dt −Mt)

2 | Xt

)

= E
(
M2

t+dt | Xt

)
− 2Mt E (Mt+dt | Xt) +M2

t

= E
(
M2

t+dt | Xt

)
−M2

t (by (3.12))

= E
(
M2

t+dt −M2
t | Xt

)
= E

(
dM2

t | Xt

)

with the increments of the square process dM2
t := M2

t+dt − M2
t . This shows that the
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stochastic process

M t := M2
t −

∫ t

0

ΓLt
(f, f)(Xt) dt

has conditionally centered increments

dM t = dM2
t − E

(
dM2

t | Xt

)
=⇒ E

(
dM t | Xt

)
= 0.

In this notation, the Doeblin-Itō differential formulae (3.10) can be rewritten as

df(t,Xt) = [∂t + Lt] f(t,Xt) dt+ dMt(f) (3.23)

with the differential operator Lt defined in (3.11) and

E (dMt(f) | Xt) = 0

E
(
dMt(f)

2 | Xt

)
= ΓLt

(f, f)(Xt) dt.

It may happen that the process Xt jumps at some random times T = t to some locations
Xt−dt = x � Xt = y, randomly chosen w.r.t. some probability measure Mt(x, dy). We
denote by ∆Xt the jump increment given by

∆Xt := Xt −Xt−dt or by the limiting object ∆Xt := Xt −Xt−.

The jump times Tn, with n ≥ 1, are defined sequentially for any n ≥ 1 by some non-
negative rate function λt(x) with the formula

Tn := inf

{
t > Tn−1 s.t. exp

(
−
∫ t

Tn−1

λs(Xs) ds

)
≤ Un

}

with T0 = 0, where Un stands for a sequence of independent and uniform random numbers
on [0, 1]. Formally, on a dt-time mesh, the n-th jump arrives between time t and t+ dt as
soon as we have


 ∏

Tn−1≤s<t

e−λs(Xs) ds


 e−λt(Xt) dt ≤ Un <


 ∏

Tn−1≤s<t

e−λs(Xs) ds


 .

Given the process evolution before the jump, the chance for this to happen is given by the
geometric distribution


 ∏

Tn−1≤s<t

e−λs(Xs) ds




(
1− e−λt(Xt) dt

)
︸ ︷︷ ︸

probability of a jump between t and t+ dt � λt(Xt) dt

These stochastic processes are often called jump-diffusion processes.
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In this situation, formula (3.23) remains valid with the integro-differential operator

Lt(f)(x) = Ldiff
t (f)(x) + Ljump

t (f)(x),

with the diffusion operator

Ldiff
t = bt ∂x +

1

2
σ2
t ∂2

x,

and the jump integral operator

Ljump
t (f)(x) = λt(x)

∫
(f(y)− f(x)) Mt(x, dy).

Next, we provide a formal proof of this assertion and a more explicit description of the
generator Lt and of the remainder term Mt(f) in the Doeblin-Itō formula (3.23). We use
the Taylor expansion

df(t,Xt) = f(t+ dt,Xt + dXt)− f(t,Xt)

= ∂tf(t,Xt) dt+ ∂xf(t,Xt) dXt +
1

2
∂2
xf(t,Xt) dXt dXt

+∆f(t,Xt)−
[
∂xf(t,Xt) ∆Xt +

1

2
∂2
xf(t,Xt) ∆Xt ∆Xt

]
.

The r.h.s. term arises from the fact that

dXt = dXc
t +∆Xt

with the jump term ∆Xt, and the increment

dXc
t := bt(Xt) dt+ σt(Xt) dWt.

The above decomposition means that dXt = dXc
t between the jumps and dXt = ∆Xt as

soon as a jump occurs.

Using the new set of rules

dt×∆Xt = 0 and dWt ×∆Xt = 0

we check that the Taylor expansion stated above is the same as the one discussed
earlier up to an addition jump term

df(t,Xt) = ∂tf(t,Xt) dt+ ∂xf(t,Xt) dX
c
t +

1

2
∂2
xf(t,Xt) dX

c
t dXc

t +∆f(t,Xt)

with the jump increment

∆f(t,Xt) := f(t,Xt)− f(t−, Xt−)

of the function/process f(t,Xt).

Finally, we observe that

∆f(t,Xt) = E (∆f(t,Xt) | Xt) + dMd
t (f)
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with a centered increment

dMd
t (f) := ∆f(t,Xt)− E (∆f(t,Xt) | Xt)

and

E (∆f(t,Xt) | Xt) = E ([f(t,Xt +∆Xt)− f(t,Xt)] | Xt)

= λt(Xt) dt

∫
(f(t, y)− f(t, x)) Mt(x, dy).

The last assertion comes from the fact that the probability that the jump occurs between
times t and t + dt is given by λt(Xt) dt. We conclude that the remainder term dMt(f) in
(3.23) is given by

dMt(f) = dMd
t (f) +

∂f

∂x
(t,Xt) σt(Xt) dWt.

We end this section with a direct application of this formula for jump-diffusion processes
of the form

dXt = bt Xt dt+ σt Xt dWt + ct Xt− dNt

where Nt stands for a unit jump process with dNt = ∆Nt = 1 at rate λt dt. These processes
are called Poisson processes with unit rate.

If we take f(x) = log(x), we find that

d logXt =
1

Xt
dXc

t −
1

2

1

X2
t

dXc
t dXc

t +∆ logXt.

Now, we notice that

∆ logXt = log (Xt− +∆Xt)− logXt− = log

(
1 +

∆Xt

Xt−

)
= log (1 + ct) dNt.

This implies that

d logXt = bt dt+ σt dWt −
1

2
σ2
t dt+ log (1 + ct) dNt.

Integrating over the time interval [0, t], we conclude that

logXt − logX0 =

∫ t

0

(
bs −

1

2
σ2
s

)
ds+

∫ t

0

σsdWs +

∫ t

0

log (1 + cs) dNs.

Taking the exponential, we end up with the so-called geometric Brownian-Poisson motion
formula

Xt = X0 exp

(∫ t

0

(
bs −

1

2
σ2
s

)
ds+

∫ t

0

σs dWs +

∫ t

0

log (1 + cs) dNs

)
.
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3.5 The theory of speculation

Louis Bachelier

Without any doubt, the French math-
ematician Louis Bachelier is the father
of financial mathematics and the theory of
speculation.

As we mentioned in the lost equation sec-
tion, L. Bachelier is also one of the founders of
the study of Brownian motion and of stochas-
tic differential equations. In his PhD thesis
in 1900, he already presented the link be-
tween Markov processes and partial differ-
ential equations (a.k.a. the Fokker-Planck
equations), as well as the connections between the heat equation and the Brownian motion.
His PhD thesis also discusses the option pricing problem and ends with a formula very close
to the Nobel Prize winning solution of the option pricing problem by Fischer Black,
Myron Scholes and Robert Merton in 1997 (a.k.a. the Black-Scholes, the Black-Scholes-
Merton, or simply the Midas equation).

Unfortunately, the mathematical standards of PhDs in France and more particularly at
La Sorbonne University were more focused on pure mathematics such as functional analysis
and integration theory in the spirit of Emile Borel (1871-1956), René Louis Baire (1874-
1932), and Henri Lebesgue (1875-1941). The PhD thesis of L. Bachelier only received
the grade of honorable, but not the mark of très honorable. Probability theory became a
mathematical discipline in France only after 1925, and it is still underestimated by sev-
eral "pure" mathematicians. The rather positive report of Henri Poincaré (1854-1912) on
Louis Bachelier’s thesis illustrates the French viewpoint of probability and its applications:Louis Bachelier’s thesis illustrates the French viewpoint of probability and its applications:

Henri Poincaré

"The subject chosen by Mr. Bachelier is
somewhat removed from those which are nor-
mally dealt with by our applicants. His the-
sis is entitled "Theory of Speculation" and fo-
cuses on the application of probability to the
stock market. First, one may fear that the au-
thor had exaggerated the applicability of prob-
ability as is often done. Fortunately, this is
not the case. In his introduction and further
in the paragraph entitled "Probability in Stock
Exchange Operations", he strives to set limits
within which one can legitimately apply this
type of reasoning. He does not exaggerate the
range of his results, and I do not think he is
deceived by his formulas." (taken from [255])

Nowadays, all of these results can be put in a better shape. As in most problems in
probability theory, the key idea is to design a judicious martingale. To this end, we return
to the Doeblin-Itō differential formulae (3.23). An alternative way to define the generator
Lt is to check that for time homogeneous functions f(t, x) = f(x),

E ( df(Xt) | Xt) = E ( f(Xt+dt)− f(Xt) | Xt) = Lt(f)(Xt) dt. (3.24)
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In terms of the conditional expectations

∀s ≤ t Ps,t(f)(x) = E (f(Xt) | Xs = x)

we have

E ( f(Xt+dt)− f(Xt) | Xt = x) = Pt,t+dt(f)(x)− f(x) = Lt(f)(x) dt. (3.25)

We emphasize that the properties of conditional expectations

Pr,t(f)(Xr) = E (f(Xt) | Xr)

= E


E (f(Xt) | Xs)︸ ︷︷ ︸

=Ps,t(f)(Xs)

| Xr


 = Pr,s(Ps,t(f))(Xr)

for any 0 ≤ r ≤ s ≤ t, translate into the the following property of the integral operators

Pr,t = Pr,sPs,t.

In probability theory, this is called the semigroup property of the operators Ps,t.
In terms of these operators, we can rewrite the equation (3.25) in terms of the forward

or backward formulae

1

dt
[Pt,t+dt − Id] = Lt and/or

1

dt
[Id− Pt−dt,t] = Lt.

We fix a time horizon T , and some function ft(x) and we set

∀t ∈ [0, T ] gt(Xt) := Pt,T (fT )(Xt) = E (fT (XT ) | Xt) .

Combining the Doeblin-Itō differential formulae with

∂tg(x) =
1

dt
[Pt,T (fT )(x)− Pt−dt,T (fT )] (x)

=
1

dt
[Id− Pt−dt,t] (Pt,T (fT ))(x) = −Lt(gt)

we conclude that
dg(t,Xt) = dMt(g) = ∂xg(t,Xt) σt(Xt) dWt.

In summary, we have proved the following result.

For any fixed time horizon T , and for any function ft(x), the stochastic process
g(t,Xt) defined for any t ∈ [0, T ] by

gt(Xt) := Pt,T (fT )(Xt) = E (fT (XT ) | Xt)

= g0(X0) +

∫ t

0

∂xg(s,Xs) σs(Xs) dWs (3.26)

is a martingale ending at gT (XT ) = fT (XT ).

The fundamental theorem of financial mathematics states that the market is tradeable
(i.e., absence of arbitrage opportunities) if and only if the deflated risky assets are martin-
gales w.r.t. some probability measure. This is called the risk neutral measure.
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More precisely, returning to the financial model discussed in (3.18), the deflated risky
assets (3.19) are martingales if, and only if bt = rt. For time homogeneous models (rt, σt) =
(r, σ), these deflated assets are given by the following SDE

dSt = σ St dWt ⇒ E
(
dSt | St

)
= 0.

The value of a self financing portfolio with the number (φt−dt, ψt−dt) of assets (St,S(0)
t )

given by the SDE (3.18) is given by the equation

V (t,St) = φt−dt St + ψt−dt S(0)
t .

By the self financing property, before seeing the next value of the asset St+dt we choose a
new number φt−dt of risky assets St

V (t,St) = φt St + ψt S(0)
t and ψt = e−rt[V (t,St)− ψt St].

This implies that the wealth increments of the portfolio are defined by

dV (t,St) = V (t+ dt,St+dt)− V (t,St)

=
[
φt St+dt + ψt S(0)

t+dt

]
−
[
φt St + ψt S(0)

t

]

= φt dSt + ψt dS(0)
t .

Assuming that the reference cash flow risk free asset starts at one unit, we have

e−rt V (t,St) = φt−dt St + ψt−dt = φt St + ψt

and
e−r(t+dt) V (t+ dt,St+dt) = φt St+dt + ψt.

In other words, in terms of the deflated portfolio we have

V (t, St) := e−rt V (t, ert St) = e−rt V (t,St) ⇒ dV (t, St) = φt dSt.

An option is a security contract that allows the owner to trade the shares of some stock
at a given fixed price (a.k.a. the strike) at a given terminal time (a.k.a. the maturity or
expiration date). A call option gives the right to buy shares, while a put option gives the
right to sell shares. At the expiration date, the owner of a Call can buy the shares at a
lower price than the one given by market at that time. In the same way, the owner of a put
can sell the shares at a higher price than the one proposed by the financial market at that
time. These transactions are referred to as exercising the call or the put option.

The payoff function of a Call with strike K, with an expiration date T is given by

fT (ST ) :=
(
ST − e−rTK

)+
= e−rT (ST −K)

+
. (3.27)

In view of (3.26), a natural strategy is to use a martingale process

V (t, St) = P t,T (fT )(St) = E
((

ST − e−rTK
)+ | St

)

= P 0,T (fT )(S0)︸ ︷︷ ︸
V (0,S0)

+

∫ t

0

∂xP s,T (fT )(Ss)︸ ︷︷ ︸
:=φs

dSs

ending at fT (ST ), with the semigroup P t,T of the deflated risky asset price St.
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The arbitrage free option price is given by the initial value of the deflated portfolio

V (0, S0) = P 0,T (fT )(S0) = E
(
e−rT (ST −K)

+ | S0

)
:= CT (S0,K)

and the number of risky assets (a.k.a. edging strategies) in the replicating portfolio is given
by the derivative of the option prices

φs = ∂xP s,T (fT )(Ss).

In a final step, we recall that the risky asset St is given by the geometric Brownian motion

St := S0 exp

(
σWt −

σ2t

2

)
.

In addition, for any Gaussian r.v. V with mean m and variance τ2, and any
function ϕ we have the change of variable formula

E
(
eV ϕ(V )

)
= em+ τ2

2 E
(
ϕ(V + τ2)

)
. (3.28)

We check this claim using the elementary formula

− 1

2τ2
(v −m)

2
+ v = − 1

2τ2
(
v −

(
m+ τ2

))2
+

(
m+

τ2

2

)
.

Using (3.28), we find the Black-Scholes-Merton formula

CT (x,K) = x G
(
d
(1)
T,K(x)

)
− e−rTK G

(
d
(2)
T,K(x)

)

with G(y) = 1√
2π

∫ y

−∞ e−x2/2 dx, and the functions

d
(1)
T,K(x) =

1

σ
√
T

[
log

( x

K

)
+

(
r +

σ2

2

)
T

]

d
(2)
T,K(x)) = d

(1)
T,K(x)− σ

√
T .

The hedging strategies are easily computed using the following differential formula

∂

∂x
CT (x,K) = G

(
d
(1)
T,K(x)

)
+

1

σ
√
T

[
g
(
d
(1)
T,K(x)

)
− e−rTK

x
g
(
d
(2)
T,K(x)

)]

with the Gaussian density g(x) = G′(x) = 1√
2π

e−x2/2.
We illustrate these formulae with a numerical example. We assume that the current price

of shares of a company is S0 = $100, and you would like to get a call option that allows you
to purchase one share of this company stock for K = $90. The standard deviation of the
daily logarithmic stocks return is 1%, and the annual return of the risk-free stock is 4%.

The next graph provides a description of the call option prices for different values of the
strike and the maturity.
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Using these graphs, we find that the price of the call is $11.355 for T = 90 days, $12.92
for T = 180 days, and $15.76 for T = 365 days.

We can compare these values with the Black-Scholes calculator of the Canadian
Economic Research Institute; $11.3927 for T = 90 days, $12.9899 for T = 180 days, and
$15.8084 for T = 365 days.

The next graph provides a description of a replicating portfolio.

The wealth process represents the values of the portfolio starting with the price of the
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call option and terminating on the payoff function. When the price of the risky asset
goes above the strike, we notice that the number of shares of the risky asset increases. In
this situation, the value of the portfolio also increases to match the final payoff function.
Conversely, when the market price of the risky asset goes below the strike, the value of the
replicating portfolio decreases, and the number of risk free bounds increases. At the end of
the year, the value of the portfolio V (365, S365) � $8 coincides with the "realization" payoff

function
(
$100 e

σW365+365
(
r−σ2

2

)
− $90

)+

= $(98− 90).

More details on these derivations are provided in section 30.2.7, and in section 30.2.8.
We also refer the interested reader to the NASDAQ Option Trading Guide, for more infor-
mation on trading strategies.

3.6 Exercises
Exercise 21 (Gaussian reversible moves) We consider a probability measure on R with
a density π(x) (w.r.t. the Lebesgue measure dx) of the form

π(x) =
1

Z
e−βV (x) λ(x) with λ(x) =

1√
2π

e−x2/2,

where β > 0 stands for a given parameter and V is a positive function on R. We consider
the Metropolis-Hastings algorithm discussed in section 3.1 with a proposal density

P (x, y) =
1√
2πε

exp

[
− 1

2ε

(
y −

√
(1− ε)x

)2
]

for some ε ∈]0, 1]. Check that

λ(x)P (x, y) = λ(y)P (y, x)

for any x, y ∈ R and describe the acceptance rate of the corresponding Metropolis-Hastings
algorithm. Answer the same questions when λ(x) = 1 and P (x, y) = 1√

2π
exp

[
− 1

2 (y − x)
2
]
.

Exercise 22 (Metropolis-Hastings - Simple random walk) We consider the Markov
transition P (x, x+1) = 1/2 = P (x, x−1) on the integer lattice N−{0}, with P (0, 0) = 1/2.
We let π(x) = e−λ λx/x! be the Poisson distribution on x ∈ N with parameter λ > 0.
Describe the transitions of the Metropolis-Hastings algorithm with proposal transition P
(also called the instrumental transition) and with target distribution π.

Exercise 23 (Truncated Markov chain) We consider a π-reversible Markov transition
M(i, j) on a finite set S = {1, . . . , d} w.r.t. some probability distribution π, for some
given d ≥ 1. We let d′ ≤ d and we consider the truncated Markov transition M ′(i, j) on
S′ = {1, . . . , d′} defined by

M ′(i, j) =




M(i, j) for 0 ≤ i �= j ≤ d′

M(i, j) +
∑

k>d′ M(i, k) for 0 ≤ i = j ≤ d′

0 otherwise .

Check that M ′ is π′ reversible w.r.t. the probability measure

∀i ∈ S′ π′(i) := π(i)/
∑
j∈S′

π(j).
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Exercise 24 (Doubly stochastic matrix) We consider a Markov transition M(x, y) on
a finite set S such that

∑
z∈S M(z, y) = 1 =

∑
z∈S M(x, z), for any x, y ∈ S. These are

called doubly stochastic matrices. Check that the uniform measure on S is an invariant
probability measure of M , that is, π = πM .

Exercise 25 We consider the filtering problem
{

Xn = Xn−1 +Wn

Yn = Xn + Vn
(3.29)

with some some independent Gaussian r.v. (X0,Wn, Vn) with mean and variance parameters
given by (m0, 0, 0) and (σ0, σ, τ) ∈]0,∞[3, respectively, and with σ0 ≥ σ. We let mn and
m′

n be the solutions of the Kalman recursion (3.6) starting at m0 and at some erroneous
initial condition m′

0. Prove that

m0 ≥ m′
0 =⇒ ∀n ≥ 0 mn ≥ m′

n

and

|mn −m′
n| ≤

(
τ2

τ2 + σ2

)n

|m0 −m′
0| −→n↑∞ 0.

Exercise 26 Describe the evolution of the particle filter (3.8) associated to the filtering
problem (3.29).

Exercise 27 Applying the Doeblin-Itō formula to the function f(Xt) = logXt prove that
the solution of diffusion equation (3.16) is given by the exponential formula (3.17).

Exercise 28 We let Wt be the Brownian process (starting at the origin) introduced in
section 3.3. Check that

W 2
t = 2

∫ t

0

Ws dWs + t and E(W 2
t ) = t.

Exercise 29 We let Wt be the Brownian process (starting at the origin) introduced in
section 3.3. Check that

W 4
t = 4

∫ t

0

W 3
s dWs + 6

∫ t

0

W 2
s ds and E(W 4

t ) = 3t2 = 6 E
(∫ t

0

W 2
s ds

)
.

Exercise 30 Consider the diffusion process Xt defined in (3.16). Using (3.17) check that
for any α ∈ R we have

E (Xα
t ) = E (Xα

0 ) exp

(
α

∫ t

0

bs ds+
α(α− 1)

2

∫ t

0

σ2
s ds

)
.

Exercise 31 Consider a jump-diffusion process Xt defined on page 57, and let Wt be a
(standard) Brownian motion. Check that

Yt = exp

(∫ t

0

σs(Xs) dWs

)
=⇒ dYt

Yt
=

1

2
σ2
t (Xt) dt+ σt(Xt) dWt

and

Zt = exp

(∫ t

0

σs(Xs) dWs −
1

2

∫ t

0

σ2
s(Xs) ds

)
=⇒ dZt

Zt
= σt(Xt) dWt.
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Exercise 32 Let Wt be a (standard) Brownian motion. Consider the diffusion process
defined by

dXt = (at + bt Xt) dt+ (τt + σt Xt) dWt

for some functions at, bt, τt and σt. For any n ∈ N, we set mn
t := E(Xn

t ). Check the
recursive equations

dmn
t

dt
= n mn

t

(
bt +

(n− 1)

2
σ2
t

)
+ n mn−1

t (at + (n− 1)τtσt) +
n(n− 1)

2
mn−2

t τ2t

for any n ≥ 2.

Exercise 33 Check that the density pt(x) of the random states Xt of the general diffusion
model presented in (3.9) satisfies the partial differential equation given in (3.17).

Exercise 34 A random variable Y is log-normal with parameters (µ, σ2) if Y = eX with
X being standard normal. Let G(.) be the cumulative distribution function of the standard
normal distribution. Show that for any constant K > 0 it holds:

E
[
(Y −K)

+
]
= eµ+σ2/2 G

(
µ+ σ2 − log(K)

σ

)
−K G

(
µ− log(K)

σ

)
.
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4
Simulation toolbox

Part II of the book is concerned with stochastic simulation. In this first, we start with the
classical inversion technique for simulation. This is followed by other popular methods such
as the change of variable and the rejection techniques, and several sampling techniques of
probability measures over a finite set. Most of the contemporary simulation methods are
employed to sample conditional distributions and for this reason, we review conditional
probabilities next. The conditioning principles are then applied in formulating some basic
properties of spatial Poisson point processes. We refer to later chapters for more detailed
discussions.

The generation of random numbers is too important to be left to chance.
Robert R. Coveyou (1915-1996)

4.1 Inversion technique

The inversion simulation technique was
introduced in 1947 by John Von Neu-
mann [113]. We consider a real valued r.v.
with a distribution function given by F (x) =
P (X ≤ x) ∈ [0, 1]. The generalized inverse of
F is given by

F−1(u) = inf {x : F (x) ≥ u}.

For strictly increasing functions F , F−1 coin-
cides with the traditional inverse of the func-
tion F . The inversion technique is based on
a single sample of a uniform r.v. U on [0, 1],
abbreviated U ∼ Unif([0, 1]).

Theorem 4.1.1 For any U ∼ Unif([0, 1]), we have

Law(F−1(U)) = Law(X) and Law(F (X)) = Law(U).

Hint of proof :
We only prove the theorem for strictly increasing functions F . In this situation we have

P
(
F−1(U) ≤ x

)
= P (U ≤ F (x)) = F (x) = P (X ≤ x) .

Inversely, we have

P (F (X) ≤ u) = P
(
X ≤ F−1(u)

)
= F (F−1(u)) = u = P (U ≤ u) .

71



72 Stochastic Processes

This clearly ends the proof of the theorem.

One way to sample a sequence of independent copies (Xp)1≤i≤n of the r.v. X is to set

X1 = F−1(U1), . . . , Xn = F−1(Un)

where (Up)1≤i≤n stands for a sequence of uniform and independent r.v. on [0, 1]. A
schematic of this inversion sampling scheme is provided in figure 4.1. Inversely, if we have
a sequence of independent copies (Xp)1≤i≤n of the r.v. X, then the sequence

U1 = F (X1), . . . , Un = F (Xn)

forms a sequence of uniform and independent r.v. on [0, 1]. This property is sometimes
used in statistics to check whether a sequence of data is distributed according to some
hypothetical distribution.

p(x)

1

0

x

x

F9x)

X1,...,Xn,...

U1,...,Un,...

FIGURE 4.1: Inversion technique

• Exponential distribution : An exponential r.v. X with parameter λ > 0 is defined
by

P (X ∈ dx) = λ e−λx 1[0,∞[(x) dx.

We often write in a more synthetic way X ∼ Exp(λ). A simple calculation gives

∀x ≥ 0 F (x) = P (X ≤ x) = −
∫ x

0

∂

∂y

(
e−λy

)
dy = 1− e−λx.

This implies that

F−1(U) = − 1

λ
log (1− U)

law
= − 1

λ
logU (4.1)

where U stands for a uniform r.v. on ]0, 1[.
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• Discrete distribution : We consider r.v. X taking a finite number of values xi ∈ R,
with probability pi, with 1 ≤ i ≤ d, for some d ≥ 1. In other words, we have

P (X ∈ dy) =
∑

1≤i≤d

pi δxi(dy) (4.2)

where dy stands for an infinitesimal neighborhood of the point x ∈ R, and δa stands for
the Dirac measure at the point a ∈ R. In this situation, we have

F =
∑

1≤i≤d

pi 1[xi,∞[

and
F−1 =

∑
1≤i≤d

xi 1[
∑

1≤j<i pj ,
∑

1≤j≤i pj[.

In particular, for a Bernoulli r.v. with distribution

P (X ∈ dy) = p δ1(dy) + (1− p) δ0(dy)

associated with some (success) probability parameter p ∈ [0, 1], we have F−1 = 1[0,p[.

We also notice that the uniform distribution on a finite set S = {x1, . . . , xd} is
given by (4.2) with pi = 1/d, for each 1 ≤ i ≤ d. In this situation, we have

F−1(u) =
∑

1≤i≤d

xi 1[ i−1
d , i

d [
(u) = x1+�d×u�.

• Counting variables : We consider a sequence of independent Bernoulli r.v. Xn with
parameter p ∈ [0, 1]. In this situation, the date of the first success

T = inf {n ≥ 1 : Xn = 1}

is a geometric r.v. with parameter p; that is,

∀n ≥ 1 P (T = n) = (1− p)n−1 p.

We often write in a more synthetic way T ∼ Geo(p).

We consider a sequence (Um)1≤m≤n of n independent and uniform r.v. on [0, 1]. Then
the counting variable

Yn =
∑

1≤m≤n

1[0,p[(Um)

is a binomial r.v. with parameters (n, p); that is, we have that

∀0 ≤ m ≤ n P (Yn = m) =
n!

m!(n−m)!
pm (1− p)n−m. (4.3)

We often write the binomial distribution in a more synthetic way as Yn ∼ binomial(n, p).
More generally, for any sequence of parameters (pi)1≤i≤d s.t. pi ≥ 0 and

∑
1≤i≤d pi = 1,

the sequence of counting numbers

∀1 ≤ k ≤ n Y k
n =

∑
1≤m≤n

1[p1+...+pk−1,p1+...+pk[(Um)
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forms a multinomial random variable

∀(m1, . . . ,md) ∈ Nd s.t.
∑

1≤i≤d

mi = n

P
(
(Y 1

n , . . . , Y
d
n ) = (m1, . . . ,md)

)
=

n!

m1! . . .md!
pm1
1 . . . pmd

d .

(4.4)

We often write in a more synthetic way multi(n, p1, . . . , pd).

4.2 Change of variables
We recall the well known change of variable integration formula.

For any pair of open subsets D and D′ ⊂ Rd and for any invertible function ϕ that
maps D into D′ and such that ϕ and ϕ−1 are smooth (a.k.a. diffeomorphism) we
have ∫

D

f(x) dx =

∫

D′
f
(
ϕ−1(y)

) ∣∣Jac(ϕ−1)(y)
∣∣ dy

for any bounded function f on Rd. In the above display, Jac(ϕ)(y) = Det
(

∂ϕj

∂xj

)
i,j

stands for the Jacobian of a diffeomorphism ϕ.

We illustrate this formula with the transformation

ϕ(u1, u2) = (a1 + (b1 − a1)u1, a2 + (b2 − a2)u2)

that maps D = [0, 1]2 � (u1, u2) into the cell D′ = ([a1, b1]× [a2, b2]), with a1 < b1 and
a2 < b2. For any pair of independent and uniform r.v. U1 and U2 on [0, 1], we have

E (f(ϕ(U1, U2))) =

∫

D
f(ϕ(u1, u2)) du1du2.

On the other hand, we have

(x1, x2) = ϕ(u1, u2) =⇒ (u1, u2) = ϕ−1(x1, x2) =

(
x1 − a1
b1 − a1

,
x2 − a2
b2 − a2

)

and

du1du2 =

∣∣∣∣
∂u1

∂x1

∂u2

∂x2
− ∂u1

∂x2

∂u2

∂x1

∣∣∣∣× dx1dx2 =
1

(b1 − a1)(b2 − a2)
× dx1dx2.

This implies that

(X1, X2) = (a1 + (b1 − a1)U1, a2 + (b2 − a2)U2)

is a uniform r.v. on [a1, b1]× [a2, b2]; that is, for any bounded function f , we have that

E (f(ϕ(U1, U2))) =
1

(b1 − a1)(b2 − a2)

∫

[a1,b1]×[a2,b2]

f(x1, x2) dx1dx2

= E (f(X1, X2)) .
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Now we consider the Box-Muller transform given by
{

Y1 :=
√

−2 log(U1) cos (2πU2)

Y2 :=
√

−2 log(U1) sin (2πU2).
(4.5)

If we set (Y1, Y2) = ϕ(U1, U2) we have

E (f(ϕ(U1, U2))) =

∫

[0,1]2
f(ϕ(u1, u2)) du1du2.

On the other hand, we have

(u1, u2) = ϕ−1(x1, x2) =

(
e−(y2

1+y2
2)/2,

1

2π
arctan

(
y2
y1

))

so that

du1du2 =

∣∣∣∣
∂u1

∂y1

∂u2

∂y2
− ∂u1

∂y2

∂u2

∂y1

∣∣∣∣× dy1dy2

=

∣∣∣∣−y1
1

1 + (y2/y1)2
1

y1
− y2

1

1 + (y2/y1)2
y2
y21

∣∣∣∣×
1

2π
e−(y2

1+y2
2)/2 × dy1dy2

=
1

2π
e−(y2

1+y2
2)/2 × dy1dy2.

This implies that (Y1, Y2) is a pair of independent and centered Gaussian random vari-
ables with unit variance; that is, for any bounded function f ,

E (f(ϕ(U1, U2))) =

∫

R2

f(y1, y2)
1

2π
e−(y2

1+y2
2)/2 × dy1dy2.

Conversely, for any bounded functions f1 and f2 we have

E
(
f1

(√
Y 2
1 + Y 2

2

)
f2

(
Y1√

Y 2
1 +Y 2

2

, Y2√
Y 2
1 +Y 2

2

))

= E
(
f1

(√
−2 log(U1)

)
f2 (cos (2πU2), sin (2πU2))

)

= E
(
f1

(√
−2 log(U1)

))
× E (f2 (cos (2πU2), sin (2πU2))) .

This shows that the projection on the unit circle of a couple of Gaussian independent r.v.
is uniform on the circle. This result is also true for projection of Gaussians on unit spheres
of any dimension.

4.3 Rejection techniques
We let X be a uniform r.v. on the cell [0, 1]2, and we consider the event A = {X ∈ B}
where B ⊂ [0, 1]2 stands for some subset such that p = P(X ∈ B) > 0. To fix ideas, we
can consider B = {(u, v) ∈ [0, 1]2 : u2 + v2 ≤ 1}. We consider a sequence of independent
uniform random samples (Xn)n≥1 on the unit square [0, 1]2, and we set An = {Xn ∈ B}.
In this situation, if we wait up to the first time n the sample Xn hits the set B we obtain a
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random variable with the conditional distribution of X given the fact that {X ∈ B}. More
formally, we have that

T = inf {n ≥ 1 : Xn ∈ B} ⇒ Law(XT ) = Law (X | X ∈ B) .

The extension of this result to general random events and its proof are provided in the
following theorem.

Theorem 4.3.1 We let X be some r.v. taking values in some state space E, and
A some random event with probability p = P(A) > 0. We consider a sequence of
independent copies (Xn, 1An

)n≥1 of the r.v. (X, 1A). Then we have

T = inf {n ≥ 1 : 1An
= 1} ⇒ Law(XT ) = Law (X | A) .

In addition T is a geometric random variable with parameter p.

Proof :
By construction, we have

P (XT ∈ dx) =
∑
n≥1

P (Xn ∈ dx , T = n)

=
∑
n≥1

P
(
Xn ∈ dx , 1A1 = 0, . . . , 1An−1 = 0, 1An = 1

)

=
∑
n≥1

P (Xn ∈ dx , 1An = 1) P
(
1A1 = 0, . . . , 1An−1 = 0

)
.

Using the fact that (Xn, 1An)
law
= (X, 1A) we conclude that

P (XT ∈ dx) = P (X ∈ dx | 1A = 1)
∑
n≥1

P (1A = 1)× P
(
1A1 = 0, . . . , 1An−1 = 0

)

= P (X ∈ dx | A) ×
∑
n≥1

p (1− p)n−1 = P (X ∈ dx | A) .

This ends the proof of the theorem.

Lemma 4.3.2 We let (X,Y ) be a couple of Rd-valued random vectors with prob-
ability densities (p, q) with respect to the Lebesgue measure dx on Rd. We further
assume that p(x) ≤ Cq(x), for any x ∈ Rd, for some finite constant C(≥ 1). For
any uniform random variable U on [0, 1] we have

A :=

{
U ≤ p(Y )

Cq(Y )

}
⇒ P(A) = 1/C and Law (Y | A) = Law (X) .

Proof :
For any bounded function f we have

E
(
f(Y ) 1

U≤ p(Y )
Cq(Y )

)
= E

(
f(Y ) E

(
1
U≤ p(Y )

Cq(Y )

| Y
))

= E
(
f(Y )

p(Y )

Cq(Y )

)
=

1

C
E(f(X)).
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The end of the proof is clear now.

In the settings of the above lemma, we let Yn be a sequence of independent copies of
the r.v. Y , and for any sequence of independent and uniform r.v. Un on [0, 1] we set

T = inf

{
n ≥ 1 : Un ≤ p(Yn)

Cq(Yn)

}

Combining the above lemma with theorem 4.3.1, we find that

Law (YT ) = Law (Y | A) = Law (X) .

The dominating density q(y) is sometimes called the instrumental distribution. A variety of
examples illustrating this rejection technique are discussed in exercises 42 and 43 provided
in section 4.7.

4.4 Sampling probabilities
This section is concerned with sampling techniques of probability measures over a finite
set. These methodologies are used in Bayesian statistical machine learning, in physics and
chemistry in the modeling of fragmentation (a.k.a aggregation) and coagulation processes,
as well as in the modeling of dynamic population models using stochastic partial differential
equations. We illustrate these stochastic models in the first two situations.

4.4.1 Bayesian inference

We notice that the density of the beta distribution

p(u) =
Γ(a+ b)

Γ(a)Γ(b)
ua−1 (1− u)

b−1
1[0,1](u) (4.6)

with parameters a, b > 0 can be interpreted as a distribution on the set of Bernoulli proba-
bility measures. In the above display, Γ stands for the gamma function

Γ(z) =

∫ ∞

0

tz−1 e−t dt

with the factorial properties Γ(z + 1) = z Γ(z), and Γ(1) = 1. The normalizing constant in
(4.6) comes from the fact that

Γ(a)Γ(b) =

∫ ∞

0

sa−1 e−s

(∫ ∞

s

(t− s)b−1 e−(t−s) dt

)
ds

=

∫ ∞

0

e−t

(∫ t

0

sa−1 (t− s)b−1 ds

)
dt

=

∫ ∞

0

e−t ta+b−1 dt

(∫ 1

0

ua−1 (1− u)b−1 du

)

= Γ(a+ b)

∫ 1

0

ua−1 (1− u)b−1 du.
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More formally, given a realization of some random variable Θ ∼ beta(a, b), we can
define the conditional Bernoulli variable

P (X = 1 | Θ = θ) = 1− P (X = 0 | Θ = θ) = θ. (4.7)

This shows that given Θ, X is a Bernoulli {0, 1}-valued r.v. with parameter θ. In addition,
using the fact that Γ(z + 1) = zΓ(z), we readily check that the marginal distribution of X
is again a Bernoulli random variable

P (X = 1) = 1− P (X = 0) =
a

a+ b
.

We notice that
∀x ∈ {0, 1} P (X = x | Θ = θ) = θx × (1− θ)1−x.

Using Bayes’ rule, we also find that

P (Θ ∈ dθ | X = x) ∝ P (X = x | Θ = θ)× P (Θ ∈ dθ)

∝ θ(a+x)−1 (1− θ)
(b+(1−x))−1

1[0,1](θ).

This implies that the conditional distribution of Θ given a realization of the Bernoulli trial
X = x is given by

Law (Θ | X = x) = Beta (a+ x, b+ (1− x)) .

The multivariate extension of the beta distribution is the Dirichlet distribution defined
on the (d− 1)-dimensional simplex ∆d−1 (introduced in (0.2)) by the formula

p(u1, . . . , ud) =
Γ
(∑

1≤i≤d ai

)
∏

1≤i≤d Γ(ai)


 ∏
1≤i≤d

uai−1
i


 1∆d−1

(u1, . . . , ud). (4.8)

These distributions are often denoted by D(a1, . . . , ad), where (ai)1≤i≤d ∈]0,∞[ are called
the concentration parameters. Let U = (U1, . . . , Ud) ∼ D(a1, . . . , ad), and (mi)1≤i≤d ∈ Nd.
If we set |a| =

∑
1≤i≤d ai and |m| =

∑
1≤i≤d mi, then we have

E(Um1
1 . . . Umd

d ) =
Γ (|a|)∏

1≤i≤d Γ(ai)

∏
1≤i≤d Γ(ai +mi)

Γ (|a|+ |m|)

=


 ∏
1≤i≤d

Γ(ai +mi)

Γ(ai)




[
Γ (|a|)

Γ (|a|+ |m|)

]

=


 ∏
0≤l<|m|

1

|a|+ l


 ∏

1≤i≤d

∏
0≤k<mi

(ai + k) .

Given U we let (Xi)i≥1 be a sequence of independent random variables on the set S :=
{1, . . . , d} with probability distribution given by the following formula

∀s ∈ S P (X1 = s | U) = Us.

By construction, we have

P (X1 = x1, . . . , Xn+1 = xn+1 | U) =
∏
s∈S

Uvn+1(s)
s
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with vn+1(s) =
∑

1≤p≤(n+1) 1xp
(s) (notice that

∑
s∈S vn+1(s) = n+ 1).

P (X1 = x1, . . . , Xn+1 = xn+1) = E

(∏
s∈S

Uvn+1(s)
s

)

=


 ∏
0≤l≤n

1

|a|+ l


 ∏

s∈S

∏
0≤k<vn+1(s)

(as + k) . (4.9)

When a1 = . . . = ad = 1, the Dirichlet measure coincides with the uniform measure on the
simplex ∆d−1. For d = 2, we also have that D(a1, a2) = beta(a1, a2).

These distributions can be sampled easily using gamma distributions and rejection tech-
niques. We refer the reader to the exercises 43, 44, 45, 46 provided in section 4.7.

4.4.2 Laplace’s rule of successions

The French mathematician and astronomer Pierre-Simon Laplace said in 1774 that an
event that has already appeared k times during n experiments, has a chance of (k+1)/(n+2)
to occur in the (n+ 1)-th experiment.

To explain this statement, we start by a sequence of independent {0, 1}-valued Bernoulli
r.v. (Xi)i≥1 with a given success parameter P(Xi = 1) = Θ ∈ [0, 1]. In this case, the r.v.
Xn :=

∑
1≤i≤n Xi represents the number of successes among n trials.

Of course, the success parameter Θ is unknown, so that we assume that it is is uniform
on [0, 1]. In this situation, we have

P
(
Xn+1 = 1 | Xn = k

)
= E

(
E
(
Xn+1 | Θ, Xn = k

)
| Xn = k

)

= E
(
Θ | Xn = k

)
.

Using Bayes’ rule, we find that

P
(
Θ ∈ dθ | Xn = k

)
∝ P

(
Xn = k | Θ = θ

)
1[0,1](θ) dθ

∝ θk (1− θ)n−k 1[0,1](θ) dθ.

This shows that the conditional distribution of Θ given Xn = k is the beta distribution
beta (k + 1, n− k + 1). By (4.6), we conclude that

P
(
Xn+1 = 1 | Xn = k

)

=
Γ(k + 1 + (n− k) + 1)

Γ(k + 1)Γ((n− k) + 1)

∫ 1

0

θk+1 (1− θ)n−k dθ

=
Γ(k + 1 + (n− k) + 1)

Γ(k + 1)Γ((n− k) + 1)

Γ(k + 2)Γ((n− k) + 1)

Γ(k + 2 + (n− k) + 1)
=

k + 1

k + 2 + (n− k)

and therefore

P
(
Xn+1 = 1 | Xn

)
= E

(
Θ | Xn

)
=

(
Xn + 1

)
/ (n+ 2) .

4.4.3 Fragmentation and coagulation

The uniform measure on the simplex ∆d can be easily sampled using the ordered and
uniform statistic (V1, . . . , Vd) on [0, 1] discussed at the end of problem 41 from section 4.7.



80 Stochastic Processes

As its name indicates, an ordered and uniform statistic (V1, . . . , Vd) on [0, 1] is obtained by
ordering a sequence of d independent and uniform samples on [0, 1]. Then we have:

(V1, (V2 − V1), . . . , (Vd − Vd−1), 1− Vd) ∼ Unif (∆d)

where Unif (A) stands for the uniform measure on some subset A ⊂ Rd, for some d.
These uniform distributions can also be interpreted in terms of elementary fragmentation

and coagulation processes [20].
The fragmentation process is defined as follows: Suppose we have a uniform r.v. X =

(X1, . . . , Xd) ∈ ∆d−1. Given this variable, we let I be the integer valued random variable
defined by

∀1 ≤ i ≤ d P (I = i | X ) = Xi.

We sample independently an index I and some U ∼ Unif([0, 1]), and we set

Y = (X1, . . . , XI−1, U ×XI , (1− U)×XI , XI+1, . . . , Xd) ∈ ∆d.

The sequence Y can be seen as a fragmentation of a randomly chosen block of size XI into
two blocks of random sizes U ×XI and (1− U)×XI .

The coagulation process can be seen as a time reversal of the fragmentation process.
Given a uniform r.v. X = (X1, . . . , Xd+1) ∈ ∆d, we choose randomly a couple of integers
(I1, I2) without replacement in the set {1, . . . , d+ 1} and then set

Z = (X1, . . . , XJ1−1, XJ1
+XJ2

, XJ1+1, . . . , XJ2−1, XJ2+1, . . . , Xd+1) ∈ ∆d−1

with J1 = I1 ∧ I2 and J2 = I1 ∨ I2. We end up with Z ∼ Unif(∆d−1).

4.5 Conditional probabilities

4.5.1 Bayes’ formula

Sampling conditional probabilities is one of the most important problems in Bayesian statis-
tics and in applied probability. For instance, suppose that we have a partial and noisy
observation Y of some r.v. X. The estimation of the realization of X that produced a given
observation Y = y amounts to computing the conditional distribution of X given Y . The
amount of information contained in the observation Y depends on the model at hand.

We further assume that (X,Y ) is a R2-valued r.v. with density p(x, y) w.r.t. the
Lebesgue measure dxdy on R2. Slightly abusing notation, we denote by p(x), p(y), the
densities of the r.v. X and Y , and by p(x|y) and p(y|x) the conditional density of X given
Y = y, and the one of Y given X = x. These notations are commonly used in the Bayesian
literature.

The density p(x) is called the prior density, p(y|x) the likelihood function, and
p(x|y) is the posterior density. The Bayes’ formula states that

p(x|y) = 1

p(y)
p(y|x) p(x) with p(y) =

∫
p(y|x) p(x) dx.
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4.5.2 The regression formula

For some classes of prior densities and likelihood functions, the posterior density can be
computed explicitly. For instance, suppose that (W,V ) is a pair of centered independent
Gaussian random variables with variances (σ2, τ2), respectively. We set

X = m+W and Y = aX + V (4.10)

for some parameters m(= E(X)) and a ∈ R. By construction, we have

p(x) ∝ exp

(
− 1

2σ2
(x−m)

2

)
and p(y|x) ∝ exp

(
− 1

2τ2
(y − ax)

2

)
. (4.11)

Expanding the squares we find that

p(x|y) ∝ p(y|x) p(x) ∝ exp

(
− 1

2ρ
(x− (α+ βy))

2

)
(4.12)

for some parameters (α, β, ρ) that depend on (m, a, σ, τ). This shows that the conditional
distribution of X given Y is again Gaussian with

E (X|Y ) = α+ βY

and
E
(
(X − E (X|Y ))

2 |Y
)
= E

(
(X − E (X|Y ))

2
)
= ρ.

Our aim is to find a couple of parameters (α′, β′) such that

E (X|Y ) = α′ + β′(Y − E(Y )).

In this notation, we have α = α′ − β′E(Y ) and β = β′.
Taking the expectations, we readily observe that α′ = E(X). On the other hand, by the

definition of the conditional expectations, we have

E ([X − E (X|Y )] [Y − E(Y )]) = 0.

This yields that
E ([(X − E(X))− β′(Y − E(Y ))] [Y − E(Y )]) = 0.

Using the fact that

Cov(X,Y ) = E ((X − E(X)) (Y − E(Y )))

= E ((X − E(X)) (a(X − E(X))− V )) = aσ2

and
Var(Y ) := E

(
(Y − E(Y ))2

)
= E

(
(a(X − E(X)) + V )2

)
= a2σ2 + τ2

we conclude that β′ = a σ2/(a2σ2 + τ2). Finally, we observe that

ρ = E
(
((X − E(X))− β′(Y − E(Y )))

2
)

= σ2 − β′aσ2 = σ2

(
1− a2σ2

(a2σ2 + τ2)

)
=

(
a2τ−2 + σ−2

)−1
.
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This shows that the random variable

m+
aσ2

(a2σ2 + τ2)
(y − am) +W ′

=
τ2

a2σ2 + τ2
m+

(
1− τ2

a2σ2 + τ2

)
a−1y +W ′

with a centered Gaussian variable W ′ with variance ρ, is distributed according to
the conditional distribution p(x|y).

In statistics,

E (X|Y ) = E(X) +
Cov(X,Y )

Var(Y )
(Y − E(Y ))

is called the regression formula. For nonlinear and/or non-Gaussian models the right hand
side represents the best linear estimator of X based on the observation Y . This formula
coincides with the conditional expectation for linear and Gaussian models.

In signal processing, the parameter

g = aσ2(a2σ2 + τ2)−1

is called the gain. In terms of this parameter, the above equation takes the form

m+ g (y − am) +W ′ and ρ = (1− ga) σ2.

In terms of the Boltzmann-Gibbs transformation (0.3), we have proved that

G(x) = e−
1

2τ2 (y−ax)2 and η(dx) ∝ e−
1

2σ2 (x−m)2dx

⇓

ΨG(η)(dx) ∝ exp

{
− 1

2ρ
(x− [m+ g(y − am)])

2

}
dx.

4.5.3 Gaussian updates

This short section is concerned with the extension of the regression formula to multi-
dimensional Gaussian models.

Definition 4.5.1 We denote by N (m,R) the Gaussian distribution on a d-dimensional
space Rd with mean column vector m ∈ Rd and covariance matrix R ∈ Rd×d

N (m,R)(dx) =
1

(2π)d/2
√
|R|

exp [−2−1(x−m)′R−1(x−m)] dx. (4.13)

Slightly abusing notation, sometimes we denote by

N [m,R] (x) :=
1

(2π)d/2
√
|R|

exp [−2−1(x−m)′R−1(x−m)] (4.14)

the density of a Gaussian distribution w.r.t. the Lebesgue measure dx.

In this notation, the multi-dimensional version of the Gaussian updating formula dis-
cussed above is given by the following proposition.
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Proposition 4.5.2 Given an observation state y ∈ Rq, some matrix A ∈ Rq×p,
and some covariance matrix R0 ∈ Rq×p and some point a ∈ Rq, we have

G(x) := N [Ax+ a;R0] (y) =⇒ ΨG (N (m1, R1)) = N (m2, R2) (4.15)

with
m2 = m1 +G (y − (Am1 + a)) and R2 = (Id−GA)R1

with the gain matrix
G = R1A

′(AR1A
′ +R0)

−1.

Proof :
There are several ways of proving formula (4.15). Next, we present the most elementary
(but rather tedious) proof. There is no loss of generality (replacing y by (y− a)) to assume
that a = 0.

Firstly, we observe that

(A′R−1
0 A+R−1

1 )−1 =
[
I −R1A

′(AR1A
′ +R0)

−1A
]
R1 = (I −GA)R1.

The r.h.s. is immediate. We check the l.h.s. using the fact that
[
I −R1A

′(AR1A
′ +R0)

−1A
]
R1

[
R−1

1 +A′R−1
0 A

]
− I

=
[
I −R1A

′(AR1A
′ +R0)

−1A
] [
I +R1A

′R−1
0 A

]
− I

= −
{
R1A

′(AR1A
′ +R0)

−1A+R1A
′(AR1A

′ +R0)
−1AR1A

′R−1
0 A

}
+R1A

′R−1
0 A

= −R1A
′(AR1A

′ +R0)
−1

{
A+AR1A

′R−1
0 A

}
︸ ︷︷ ︸

{R0+AR1A′}R−1
0 A

+R1A
′R−1

0 A = 0.

Thus, if we set R2 = (I −GA)R1 then it clearly suffices to check that

(x−m1)
′R−1

1 (x−m1) + (y −Ax)′R−1
0 (y −Ax)

= [x− {m1 +G (y −Am1)}]′ (A′R−1
0 A+R−1

1 )× [x− {m1 +G (y −Am1)}] .

We notice that

(x−m1)
′R−1

1 (x−m1) + (y −Ax)′R−1
0 (y −Ax)

= x′ (R−1
1 +A′R−1

0 A
)
x− 2

(
m′

1R
−1
1 x+ y′R−1

0 Ax
)
+ y′R−1

0 y +m′
1R

−1
1 m1

= x′ (R−1
1 +A′R−1

0 A
)
x− 2

(
m′

1R
−1
1 x+ y′R−1

0 Ax
)
+ α(y)

with some function α(y) that only depends on the parameters y. In the same way, we have

[x− {m1 +G (y −Am1)}]′ (A′R−1
0 A+R−1

1 ) [x− {m1 +G (y −Am1)}]

= x′ (R−1
1 +A′R−1

0 A
)
x− 2


m′

1 + (y′ −m′
1A

′)

=G′

︷ ︸︸ ︷
(R0 +AR1A

′)
−1

AR1




×
(
R−1

1 +A′R−1
0 A

)
x+ β(y)
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with some function β(y) that only depends on the parameters y. Thus, it suffices to check
that

m′
1R

−1
1 x+ y′R−1

0 Ax

=
(
m′

1 + (y′ −m′
1A

′) (R0 +AR1A
′)
−1

AR1

) (
R−1

1 +A′R−1
0 A

)
x.

To this end, we observe that

(R0 +AR1A
′)
−1

AR1

(
R−1

1 +A′R−1
0 A

)

= (R0 +AR1A
′)
−1 (

A+AR1A
′R−1

0 A
)

= (R0 +AR1A
′)
−1

(R0 +AR1A
′)R−1

0 A = R−1
0 A.

This implies that(
m′

1 + (y′ −m′
1A

′) (R0 +AR1A
′)
−1

AR1

) (
R−1

1 +A′R−1
0 A

)
x

= m′
1

(
R−1

1 +A′R−1
0 A

)
x+ (y′ −m′

1A
′)R−1

0 Ax = m′
1R

−1
1 x+ y′R−1

0 Ax.

This ends the proof of the proposition.

4.5.4 Conjugate priors

Definition 4.5.3 We say that a class of prior distributions P(X ∈ dx) ∈ P is conjugate
to a class of likelihood distributions P (Y ∈ dy | X = x) ∈ C whenever the conditional dis-
tributions given by the Bayes rule P (X ∈ dx | Y = y) ∈ P. The index parameters x of the
likelihood distributions P (Y ∈ dy | X = x) are sometimes called the hyperparameters.

For instance, the class of Gaussian prior distributions is conjugate with the class of
Gaussian likelihood functions p(y|x) of the form (4.11).

The beta distribution

P(X ∈ dx) ∝ xa−1 (1− x)
b−1

1[0,1](x)

introduced in (4.6) is conjugate to the binomial likelihood function defined by

∀y ∈ {0, . . . , n} P (Y = y | X = x) =

(
n
y

)
xy (1− x)n−y.

We check this claim using the fact that

P (X ∈ dx | Y = y) ∝ xy (1− x)n−y xa−1 (1− x)
b−1

1[0,1](x)

= xa+y−1 (1− x)
b+(n−y)−1

1[0,1](x).

This shows that Law(X | Y ) = beta(a+ y, b+ (n− Y )).
In much the same way, we find that the beta distribution is conjugate to the geometric

distributions defined by

∀y ≥ 1 P (Y = y | X = x) = (1− x)y−1 x

with
P (X ∈ dx | Y = y) ∝ x(a+1)−1 (1− x)

b+(y−1)−1
1[0,1](x).

This shows that Law(X | Y ) = beta(a+1, b+ (Y − 1)). For a more thorough discussion on
conjugate distributions and their applications in Bayesian statistics, we refer to the research
book [19].
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4.6 Spatial Poisson point processes

4.6.1 Some preliminary results

We let M(S) be the set of non-negative measures on some state space S. We consider a
non-negative measure γ on S with bounded and positive mass γ(1) =

∫
γ(dx) > 0. We let

N be an integer valued Poisson random variable with parameter λ = γ(1) with distribution
given by the formula

∀n ≥ 0 P (N = n) :=
λn

n!
e−λ.

We often write in a more synthetic way N ∼ Po(λ). We also denote by X = (Xi)i≥1 a
sequence of independent and identically distributed r.v. with common distribution η(dx) :=
γ(dx)/γ(1). We also assume that N and X are independent.

A simple example illustrating these models is given by the one-dimensional Gaussian
model on S = R

γ(dx) = 10× 1√
2πσ

e−
(x−m)2

2σ2 .

Hence N ∼ Po(10), and Xi are independent Gaussian r.v. with means E(Xi) = m, and
variance Var(Xi) = σ2.

Definition 4.6.1 For any probability distribution µ on S, and any natural number p, we
let

µ⊗p(d(x1, . . . , xp)) = µ(dx1)× . . .× µ(dxp)

be the distribution of p independent r.v. (Y 1, . . . , Y p) ∈ Sp with the common law µ on
S. For any non-negative measure γ on some state space S, we also denote by γ⊗p the
non-negative measure on Sp defined by

γ⊗p(d(x1, . . . , xp)) = γ(dx1)× . . .× γ(dxp).

Definition 4.6.2 The (spatial) Poisson point process X with intensity measure γ
on some state space S is the random measure defined below

X := mN (X) =
∑

1≤i≤N

δXi .

Remark :
Spatial Poisson processes are sometimes called complete spatial randomness (CSR) [22,

107]. They arise in statistical inference in social sciences, biology, pharmacology, as well as
in astronomy. The random states Xi can be interpreted in many different ways, depending
on the application model they describe: locations of trees or nests in a forest, ill individuals
in a given population, invasive bacteria or other species in some environment, as well as
craters in a planet, and multiple targets in advanced signal processing [41, 217].

These random measures are used to model any type of non-interacting events in some
state space (not restricted to spatial patterns only). They can be used to estimate the in-
tensity of events in some region (such as the presence of noisy and partially observed targets
in tracking problems). They are also often used as a null hypothesis of total randomness to
test the presence of some spatial dependence between events.
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Chapter 10 is dedicated to Poisson point processes w.r.t. the time parameter. In
this context, we are given some time horizon say t, and N will be some Poisson
random variable with a given parameter

∫ t

0
λs ds, for some non-negative intensity

parameter λt.
Given N = n, the non-ordered random times Xi are uniform and independent
on [0, t]. The ordered random times (T1, . . . , Tn) can be interpreted as the jump
times of a stochastic process indexed by the time parameter s ∈ [0, t]. We refer
the reader to chapter 10 for further details on these Poisson jump processes. The
spatial version of these stochastic processes is discussed in section 28.4.3.2.

One of the main simplifications of Poisson point processes arises from the fact that their
expectation measure coincides with their intensity measure:

E (X (f)) = E (E (X (f) | N)) = E (Nη(f)) = γ(1)η(f) = γ(f).

Definition 4.6.3 For every sequence of points x = (xi)i≥1 in S, any subset A ⊂ S, and
every p ≥ 0, we denote by mp,A(x) the restriction of the occupation measure mp(x) to the
set A

mp,A(x)(dy) = mp(x)(dy)1A(y) =
∑

1≤i≤p

1A(x
i)δxi(dy).

Lemma 4.6.4 Let (Xj)j≥1 be a sequence of independent Poisson point processes
with intensity measure (γi)i≥1 on some common state space S.
For any d ≥ 1, X is a Poisson point process with intensity measure

∑
1≤i≤d γi if,

and only if, X is equal in law to the Poisson point process
∑

1≤i≤d Xi.

Proof :
By symmetry arguments, for any bounded function F on M(S), and for any d ≥ 1, we have

E


F


 ∑

1≤i≤d

Xi




 = e−

∑
1≤i≤d γi(1)

∑
p1,...,pd≥0

γ1(1)
p1 . . . γd(1)

pd

p1! . . . pd!

×
∫

F


 ∑

1≤i≤d

mpi
(xi)


 ∏

1≤i≤d

η⊗pi

i (dxi)

where dxi = d(x1
i , . . . , x

pi

i ) stands for an infinitesimal neighborhood of a point xi = (x1
i , . . . , x

pi

i ) ∈
Spi . This implies that

E
(
F
(∑

1≤i≤d Xi

))
= e−

∑
1≤i≤d γi(1)

∑
q≥0

1

q!

∑
p1+...+pd=q

q!

p1! . . . pd!
γ1(1)

p1 . . . γd(1)
pd

×
∫

F (mq(y))
(
η⊗p1

1 ⊗ . . .⊗ η⊗pd

d

)
(dy).
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In the above integral dy = d(y1, . . . , yq) stands for an infinitesimal neighborhood of the
point y = (yi)1≤i≤q ∈ Sq. This implies that

E
(
F
(∑

1≤i≤d Xi

))

= e−
∑

1≤i≤d γi(1)
∑
q≥0

(∑d
i=1 γi(1)

)q

q!

∫
F (mq(y))

(∑d
i=1 γi(1) ηi∑d
i=1 γi(1)

)⊗q

(dy).

(4.16)

Therefore
∑

1≤i≤d Xi is a Poisson point process with intensity measure
∑

1≤i≤d γi. In ad-
dition, by (4.16), any Poisson point process with such an intensity measure has the same
law as

∑
1≤i≤d Xi.

The two main direct consequences of this lemma are the following important properties
of Poisson processes:

• Superposition of Poisson processes:

∀i ∈ I Xi independent Poisson with intensity γi

=⇒
∑

i∈I Xi Poisson with intensity
∑

i∈I γi.

• Thinning Poisson processes:
For any sum of independent Poisson processes X =

∑
i∈I Xi with intensities γi,

with i ∈ I, we have

∀i ∈ I Xi =
∑

1≤j≤N

1εj=i δXεi,i and X =
∑

1≤i≤N

δXεi,i

withN = Po
(∑

i∈I γi(1)
)
and an independent sequence of independent r.v. εi with

discrete distribution
∑

j∈I
γj(1)∑
i∈I γi(1)

1j . The last assertion can also be checked
directly from the formula (4.16).

The next result is a direct consequence of Lemma 4.6.4.

Lemma 4.6.5 Let X :=
∑

1≤i≤N δXi be a Poisson point process with intensity measure
γ that is the random measure on S. We consider a measurable subset A ⊂ S, such that
γ(A) > 0. Then, the restriction, or the trace, XA = mN,A(X) of X on the set A is again a
Poisson point process with intensity measure γA(dx) := 1A(x)γ(dx).

In addition, the conditional distribution of X given XA, can be calculated for any bounded
function F on M(S), by the formula

E (F (X ) |XA ) = e−γ(Ac)
∑
p≥0

1

p!

∫
F (XA +mp(x)) γ⊗p

Ac (dx).

In the above integral dx = d(x1, . . . , xp) stands for an infinitesimal neighborhood of the point
x = (xi)1≤i≤p ∈ Sp.
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Proof :
Using the decomposition

γ(dx) = 1A(x)γ(dx) + 1Ac(x)γ(dx) ⇒ γ = γA + γAc

we find that

E (F (XA)) = e−γ(1)
∑
s≥0

1

s!

∫
F (ms,A(x)) (γA + γAc)

⊗s
(dx).

By symmetry arguments, this implies that

E (F (XA))

= e−γ(1)
∑
s≥0

1

s!

∑
p+q=s

s!

p!q!

∫
F (ms,A(x))

[
γ⊗p
A ⊗ γ

⊗(s−p)
Ac

]
(dx),

from which we find that

E (F (XA)) = e−γ(1)
∑
p≥0

1

p!


∑

s≥p

γ(Ac)s−p

(s− p)!




∫
F (mp(x)) γ

⊗p
A (dx)

= e−(γ(E)−γ(Ac))
∑
p≥0

1

p!

∫
F (mp(x)) γ

⊗p
A (dx).

The last assertion is a direct consequence of lemma 4.6.4, applied to d = 2, replacing
(X1,X2) by (XA,XAc). This ends the proof of the lemma.

4.6.2 Conditioning principles

We consider a measure γ ∈ M(S) on some state space S and a Markov transition M from
S into itself. We denote by η(dx) = γ(dx)/γ(1) the normalized probability measure on S.
We let

Z := mN (X,Y ) =
∑

1≤i≤N

δ(Xi,Y i) (4.17)

be the Poisson point process on the product space S2 with intensity measure Γ of the
following form

Γ(d(x, y)) := γ(dx) M(x, dy) = γ(1) η(dx)×M(x, dy).

In other words, N ∼ Po(γ(1)) and given N, Xi, Y i are independent random variables with
common distribution

P
(
(Xi, Y i) ∈ d(x, y)

)
= η(dx)×M(x, dy).

We observe that

P
(
Xi ∈ dx

)
= η(dx) and P

(
Y i ∈ dy | Xi = x

)
= M(x, dy)

from which we check that

P
(
Y i ∈ dy

)
=

∫
P
(
Y i ∈ dy | Xi = x

)
P
(
Xi ∈ dx

)

=

∫
η(dx) M(x, dy) = (ηM)(dy).
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We further assume that the conditional distribution of Xi given Y i = y exists and is given
by a Markov transition

P
(
Xi ∈ dx | Y i = y

)
= M̂(y, dx).

The calculation of these conditional probabilities is based on the Bayes rule described by
the synthetic formula

p(x|y) = 1

p(y)
p(y|x) p(x) with p(y) =

∫
p(y|x) p(x) dx.

In our context, the formula applies to

η(dx) = p(x)dx, M(x, dy) = p(y|x) dy and M̂(y, dx) = p(x|y) dx

when the measures η and the Markov transitions are absolutely continuous w.r.t. the
Lebesgue measures dx and dy on S = Rd.

Example 4.6.6 For instance, for the Gaussian model discussed in (4.11) we have S = R
and

η(dx) =
1√
2πσ2

exp

(
− 1

2σ2
(x−m)

2

)
dx

M(x, dy) =
1√
2πτ2

exp

(
− 1

2τ2
(y − ax)

2

)
dy.

Hence the conditional distribution M̂ is given by the Gaussian density

M̂(y, dx) =
1√
2πσ̂2

exp

(
− 1

2σ̂2
(x− m̂(y))

2

)
dx

with σ̂2 =
(
a2τ−2 + σ−2

)−1, and the linear regression parameter given by

m̂(y) =
τ2

a2σ2 + τ2
m+

(
1− τ2

a2σ2 + τ2

)
a−1y =

(
σ̂

σ

)2

m+

(
1−

(
σ̂

σ

)2
)

a−1y.

By construction, we have

P
(
(Xi, Y i) ∈ d(x, y)

)
= η(dx)×M(x, dy)

= P
(
Xi ∈ dx | Y i = y

)
× P

(
Y i ∈ dy

)
= (ηM)(dy) × M̂(y, dx)

so that
η(dx)×M(x, dy) = (ηM)(dy) × M̂(y, dx). (4.18)

Under our assumptions, using lemma 4.6.5 it is immediate to check that the marginal
random measures given by

X := mN (X) =
∑

1≤i≤N

δXi and Y := mN (Y ) =
∑

1≤i≤N

δY i

are Poisson point processes on S, with intensity measures

γX(dx) := γ(1) η(dx) and γY (dy) := γ(1) (ηM)(dy).

Our next objective is to describe the conditional distributions of the random measures X
w.r.t. Y, and of Y w.r.t. X . Using rather elementary manipulations, we prove the following
lemma.
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Lemma 4.6.7 For any bounded function F on M(S), we have the conditioning
formulae:

E (F (X ) | Y ) =

∫
F (mN (x))

∏
1≤i≤N

M̂(Y i, dxi)

and
E (F (Y) | X ) =

∫
F (mN (y))

∏
1≤i≤N

M(Xi, dyi).

Proof :
Using the Bayes rule (4.18), we prove that for any bounded functions F and G on M(S)

E


F (Y)



∫

G (mN (x))
∏

1≤i≤N

M̂(Y i, dxi)







= e−γ(1)
∑

p≥0
γ(1)p

p! ×
∫

F (mp(y)) G (mp(x))
∏

1≤i≤p

[
(ηM)(dyi)M̂(yi, dxi)

]

= e−γ(1)
∑

p≥0
γ(1)p

p! ×
∫

F (mp(y)) G (mp(x))
∏

1≤i≤p

[η(dx)×M(x, dy)]

= E (F (Y)G(X )) .

By symmetry arguments, the second assertion is a direct consequence of the first one.
This ends the proof of the lemma.

Important remark : The conditional first moments of X given Y are given for any
function f on S by

γ̂(f) := E (X (f) | Y) =
∑

1≤i≤N

∫
f(xi)

∏
1≤i≤N

M̂(Y i, dxi)

=
∑

1≤i≤N

M̂(f)(yi) = YM̂(f).

These conditional intensities can be used to estimate the location of "real" data points in
some region, to evaluate their correlations, or to design some clusters, using the observation
process Y.

Take for example the linear Gaussian model presented in example 4.6.6. Assume that
we have a Poisson observation process Y =

∑
1≤i≤N Y i, with N �= 0. Then we have

E


 1

N

∑
1≤i≤N

Xi | Y


 =

(
σ̂

σ

)2

m+

(
1−

(
σ̂

σ

)2
)

1

N

∑
1≤i≤N

Y i (4.19)

and

N E




 1

N

∑
1≤i≤N

Xi − E


 1

N

∑
1≤i≤N

Xi | Y





2

| Y


 = σ̂2. (4.20)

We refer to exercise 53 for a detailed proof of these assertions.
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4.6.3 Poisson-Gaussian clusters

We return to the Gaussian model discussed in example 4.6.6. We replace the prior distri-
bution η by the mixed Gaussian model

η(dx) = ε η1(dx) + (1− ε) η0(dx)

where ε ∈ [0, 1], and η1 and η0 are Gaussian distributions with mean and variance parame-
ters (m1, σ

2
1) and (m0, σ

2
0). We let N be a Poisson random variable with some parameter,

say λ > 0. We sample N , and independently N independent r.v. (Xi)1≤i≤N with law η.
Each of these points is observed with some noise

Y i = a Xi + V i

where a is a given real number, and V i stands for a sequence of independent centered
Gaussian r.v. with variance τ2. Given the observation process Y =

∑
1≤i≤N δY i we want

to estimate the conditional intensity

γ̂(f) := E (X (f) | Y) .

By construction, we have

P
(
Y i ∈ dy

)
=

∫
η(dx) M(x, dy)

= ε

∫
η1(dx) M(x, dy) + (1− ε)

∫
η0(dx) M(x, dy)

:= ε η1M(dy) + (1− ε) η0M(dy).

The distribution ηiM clearly has a Gaussian density

pi(y) =
1√

2π(a2σ2
i + τ2)

exp

(
− 1

2(a2σ2
i + τ2)

(y − ami)
2

)

so that
P
(
Y i ∈ dy

)
= p(y)dy with p(y) := ε p1(y) + (1− ε) p0(y).

In addition, using Bayes rule, we check that M̂(y, dx) has the density

p(x|y) =
1

p(y)
p(y|x) p(x)

where p(y|x) stands for the Gaussian density of M(x, dy) and p(x) denotes the mixture
Gaussian density of η(dx). A simple calculation shows that

p(x|y) = ε p1(y)

ε p1(y) + (1− ε) p0(y)
p1(x|y) +

(1− ε) p0(y)

ε p1(y) + (1− ε) p0(y)
p0(x|y)

with the Gaussian densities

pi(x|y) :=
1√
2πσ̂2

i

exp

(
− 1

2σ̂2
i

(x− m̂i(y))
2

)
dx

with σ̂2
i =

(
a2τ−2 + σ−2

i

)−1
, and the linear regression parameters given by

m̂i(y) =

(
σ̂i

σi

)2

mi +

(
1−

(
σ̂i

σi

)2
)

a−1y.
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We conclude that

γ̂(dx) =
∑

1≤i≤N

ε p1(Y
i)

ε p1(Y i) + (1− ε) p0(Y i)
p1(x|Y i) dx

+
(1− ε) p0(Y

i)

ε p1(Y i) + (1− ε) p0(Y i)
p0(x|Y i) dx.

When m1 are m0 are far enough (and a �= 0), this (weighted) conditional distribution
allows us to separate or cluster the observations Y i which are close to am1 and the ones
close to am0. The number of observations in each cluster provides an estimate of the initial
number of statesXi that were sampled according to each distribution pi(x). The conditional
distributions allow us to estimate their locations in each cluster.

4.7 Exercises
Exercise 35 (Geometric) We let X be an exponential r.v. with parameter λ = − log (1− p),
with p ∈]0, 1[. Check that Y = 1 + �X� is a geometric r.v. with parameter p.

Exercise 36 (Cauchy) We let X be a Cauchy r.v. with parameter σ > 0; that is,

P (X ∈ dx) =
σ

π

1

σ2 + x2
dx.

Check that

P(X ≤ x) =
1

2
+

1

π
arctan

(x
σ

)
and deduce that X

law
= σ tan

(
π

(
U − 1

2

))

where U denotes a uniform r.v. on [0, 1].

Exercise 37 (Rayleigh) We let X be a Rayleigh r.v. with parameter σ > 0; that is,

P (X ∈ dx) =
x

σ2
e−

x2

2σ2 1[0,∞[(x) dx.

Check that
P(X ≤ x) = 1− e−

x2

2σ2 and X
law
= σ

√
−2 logU

where U stands for a uniform r.v. on [0, 1].

Exercise 38 (Pareto) We let X be a Pareto r.v. with parameters (a, b) ∈ (R×]0,∞[);
that is,

P (X ∈ dx) =
aba

xa+1
1[b,∞[(x) dx.

Check that

P(X ≤ x) = 1−
(
b

x

)a

and X
law
= b U− 1

a

where U stands for a uniform r.v. on ]0, 1].
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Exercise 39 (Triangular) We let X be a triangular r.v. with parameter a ∈]0,∞[; that
is,

P (X ∈ dx) =
2

a

(
1− x

a

)
1[0,a](x) dx.

Check that

P(X ≤ x) =
2

a

(
x− x2

2a

)
and X

law
= a

(
1−

√
U
)

where U stands for a uniform r.v. on ]0, 1].

Exercise 40 (Weibull) We let X be a Weibull r.v. with parameter (a, b) ∈]0,∞[2; that
is,

P (X ∈ dx) =
a

ba
xa−1 e−(x/b)a 1[0,∞[(x) dx.

Check that
P(X ≤ x) = 1− e−(x/b)a and X

law
= b (− logU)

1
a

where U stands for a uniform r.v. on ]0, 1].

Exercise 41 (Uniform ordered statistics) We consider a sequence of independent and
exponential r.v. (En)n≥1 with parameter λ > 0, and for any n ≥ 1 we set

Tn = Tn−1 + En with T0 = 0.

For any bounded function f on [0,∞[n, prove that

E (f(T1, . . . , Tn)) =
∫
[0,∞[n

f(s1, s1 + s2, . . . , s1 + . . .+ sn) λ
ne−λ(s1+...+sn)ds1 . . . dsn.

• Using the change of variable formula

(∀k ≥ 1 tk = s1 + . . .+ sk) ⇐⇒ (∀k ≥ 0 sk = tk − tk−1)

with the convention t0 = 0, we have dsk = dtk, for any 1 ≤ k ≤ n and

E (f(T1, . . . , Tn)) =

∫

t1<t2<...<tn

f(t1, t2, . . . , tn) λ
ne−λtndt1 . . . dtn.

• Using induction, prove that
∫

t1<t2<...<tn<t

dt1 . . . dtn =
tn

n!

and conclude that Tn = E1 + . . .+ En is a gamma r.v. with parameter (n, λ).

P (Tn ∈ dt) =
tn−1

(n− 1)!
× λn e−λt 1[0,∞[(t) dt. (4.21)

This distribution is sometimes called the Erlang distribution with parameter (n, λ). We
often write in a more synthetic way Tn ∼ gamma(n, λ).

• When λ = 1, show that Tn+1 is a gamma r.v. with parameter ((n+ 1), 1); that is,

P (Tn+1 ∈ dt) =
tn

n!
× e−t 1[0,∞[(t) dt. (4.22)
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• For any γ > 0 check that

γn

n!
e−γ =

∫ ∞

γ

∂

∂t

(
− tn

n!
e−t

)
dt and

∂

∂t

(
− tn

n!
e−t

)
= e−t tn

n!
− e−t tn−1

(n− 1)!
.

Deduce from the above that

γn

n!
e−γ = P (Tn+1 > γ)− P (Tn > γ) = P (Tn+1 > γ and Tn ≤ γ)

with the random times Tn defined in (4.22). Conclude that

∀n ≥ 0
γn

n!
e−γ = P (N = n) with N := inf {n ≥ 0 : Tn+1 ≥ γ}.

• Using the fact that

1t1<...<tn+1
λn+1 e−λtn+1dt1 . . . dtn+1

=
(

n!
tnn+1

1t1<...<tn<tn+1
dt1 . . . dtn

)
×
(
λe−λtn+1 (λtn+1)

n

n! 1[0,∞[(tn+1) dtn+1

)

prove that

P ((T1, . . . , Tn) ∈ d(t1, . . . , tn) |Tn+1 = t ) = n!
tn 1t1<...<tn<t dt1 . . . dtn

and conclude that

P
((

T1

Tn+1
, . . . , Tn

Tn+1

)
∈ d(v1, . . . , vn) |Tn+1 = t

)
= n! 10≤v1<...<vn<1 dv1 . . . dvn.

• For any sequence of uniform r.v. (U1, . . . , Un) there exists a permutation σU of the
indices {1, . . . n} s.t.

V1 = UσU (1) ≤ V2 = UσU (2) ≤ . . . ≤ Vn = UσU (n).

Check that

P ((V1, . . . , Vn) ∈ d(v1, . . . , vn) and σU = τ) = 10≤v1<...<vn
dv1 . . . dvn.

Conclude that (
T1

Tn+1
, . . . ,

Tn

Tn+1

)
law
= (V1, . . . , Vn) .

The sequence of r.v. (V1, . . . , Vn) is sometimes called uniform order statistics on [0, 1].

Exercise 42 (Acceptance rejection sampling) We consider the following cases

1) p(x) = 2
π

√
1− x2 1[−1,1](x) q(x) = 1

2 1[−1,1](x)

2) p(x) = 1
π 1{(y1,y2)∈R2 : y2

1+y2
2<1}(x) q(x) = 1

4 1[−1,1]2(x)

3) p(x) = 1√
2π

exp
(
−x2

2

)
q(x) = 1

π(x2+1) .

1. Prove that C = supx∈[−1,1]
p(x)
q(x) = 4

π .
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2. Prove that C = supx∈[−1,1]2
p(x)
q(x) = 4

π .

3. In the third case, check that

∂

∂x
(p/q) (x) =

√
π

2
x (1− x) (1 + x) e−x2/2

and

C = sup
x∈R

(p/q)(x) = (p/q)(1) = (p/q)(−1) =

√
2π

e
.

Exercise 43 (Acceptance rejection sampling - gamma) The density of a gamma(α, λ)
r.v. X with parameters α, λ > 0 is given by

p(x) =
λα

Γ(α)
xα−1 e−λx 1]0,∞[(x).

When α = n ∈ N is an integer number, we have seen in (4.21) that X can be sampled by
summing n independent exponential r.v. with parameter λ > 0. When λ > 1, we can use
the rejection technique with the gamma(�α�, λ− 1) instrumental density

q(x) =
1

Γ(�α�)
x�α�−1 (λ− 1)�α� e−(λ−1)x 1]0,∞[(x).

Prove that
p(x)

q(x)
=

Γ(�α�)
Γ(�α�)

λα

(λ− 1)�α�
xα−�α� e−x 1]0,∞[(x)

and

C = sup
x∈]0,∞[

p(x)

q(x)
=

p(α− �α�)
q(α− �α�)

.

Prove that for any λ > 0, we have that gamma(α, λ) law
= λ × gamma(α, 1). Propose a way

of sampling the distribution gamma(α, λ), when λ ≤ 1.

Exercise 44 (Sums of Gamma) If X ∼ gamma(a, c) and Y ∼ gamma(b, c) are indepen-
dent r.v. with parameters a, b, c > 0, prove that

X + Y ∼ gamma(a+ b, c).

Exercise 45 (Dirichlet beta gamma) If X ∼ gamma(a, c) and Y ∼ gamma(b, c) are
independent r.v. with parameters a, b, c > 0, prove that

X

X + Y
∼ beta(a, b)

where beta(a, b) stands for the Beta distribution with parameter (a, b) defined by the proba-
bility density

p(u) =
Γ(a+ b)

Γ(a)Γ(b)
ua−1 (1− u)

b−1
1[0,1](u). (4.23)

Notice that for a = b = 1 we have p(u) = 1[0,1](u).
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Exercise 46 (Dirichlet and gamma) Let Xi ∼ gamma(ai, c), 1 ≤ i ≤ d be a collection
of independent r.v. with parameters c > 0, and ai > 0, for each 1 ≤ i ≤ d. Prove that

(
X1∑

1≤i≤d Xi
, . . . ,

Xd∑
1≤i≤d Xi

)
∼ D(a1, . . . , ad).

Combining this formula with the one presented in exercise 44 prove that for any (U1, . . . , Ud) ∼
D(a1, . . . , ad), and any 1 ≤ i < j ≤ d, we have the coagulation (a.k.a aggregation) formula

(U1, . . . , Ui−1, Ui + Uj , Ui+1, . . . , Uj , Uj+1, . . . , Ud)

∼ D(a1, . . . , ai−1, ai + aj , ai+1, . . . , aj , aj+1, . . . , ad).

Exercise 47 (Dirichlet - Mean and variance) Let (U1, . . . , Ud) ∼ D(a1, . . . , ad), for
some concentration parameters (ai)1≤i≤d. Prove that

∀1 ≤ i ≤ d E(Ui) =
ai∑

1≤i≤d ai
and E(U2

i ) =
1 + ai

1 +
∑

1≤i≤d ai
× ai∑

1≤i≤d ai
.

Exercise 48 (Bayes’ formula) We consider the partial observation model presented in
(4.6) and (4.7). Suppose that we have n conditionally independent observations (Xi)1≤i≤n

of the parameter Θ. Prove that

E (Θ | (X1 . . . , Xn)) −→n↑∞ Θ.

Exercise 49 (Conditional distribution - Gaussian variables) We consider the par-
tial observation model (4.10). Suppose that we have n conditionally independent observa-
tions

∀1 ≤ i ≤ n Yi = aX + Vi

of the r.v. X, where (Vi)1≤i≤n stands for n independent copies of V . Prove that the
conditional density of X given (Y1, . . . , Yn) is the Gaussian density

p(x | y1, . . . , yn) ∝ exp


− n

2ρn


(x−m)− βn

1

n

∑
1≤i≤n

(yi − am)




2



with the parameters

βn = a σ2n/(a2σ2n+ τ2) → a−1 and ρn =
(
a2τ−2 + σ−2/n

)−1 → τ2/a2.

Deduce that
E (X | (Y1, . . . , Yn)) −→n↑∞ X.

Exercise 50 (Conditional distribution - Bernoulli variables) We let X be a uniform
random variable on [0, 1]. Given X, we let Y = (Yn)n≥1 be a sequence of i.i.d. Bernoulli
random variables with common law

P(Y1 = 1 | X) = X = 1− P(Y1 = 0).

Compute the conditional distribution of X given a sequence of observations (Yk)0≤k≤n.
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Exercise 51 (Gamma and exponential) Prove that the Gamma distributions

P(X ∈ dx) ∝ xa−1 e−b x 1]0,∞[(x) dx

associated with some parameters a, b > 0 are conjugate with the exponential densities
P (Y ∈ y|x) ∝ x e−xy1[0,∞[(y) dy, with c > 0, as well as with the Poisson distributions

∀y ∈ N P (Y = y | X = x) =
xy

y!
e−x.

Exercise 52 (Dirichlet and multinomial) Prove that the Dirichlet probability distri-
butions D(a1, . . . , ad) defined in (4.8) are conjugate with the multinomial distributions
Multi(n, p1, . . . , pn) presented in (4.4).

Exercise 53 Check the formulae (4.19) and (4.20).

Exercise 54 (Gaussian integration by part) We let W be a centered Gaussian random
variable with unit variance. For any differentiable function f such that Wf(W ) and f ′(W )
are integrable check the integration by part formula

E (f ′(W )) = E(Wf(W )).
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5
Monte Carlo integration

The rejection method from the previous chapter serves as a basis for a variety of simulation
algorithms of the importance sampling class of algorithms. These algorithms can be used
to evaluate expected values of functionals with high precision. They form the core of
the sequential Monte Carlo methods and of the mean field particle integration theory.
Applications of the techniques for precise evaluation of tail probabilities, or, similarly, in
rare event simulation, are also presented at the end of the chapter.

A person who never made a mistake never tried anything new.
Albert Einstein (1879-1955).

5.1 Law of large numbers
Monte Carlo integration is a power-

ful numerical technique that uses statisti-
cal and probabilistic techniques for eval-
uating integrals that could not easily be
evaluated analytically. Buffon’s needle
problem is one of the oldest Monte Carlo
integration problems posed in the 18th
century by Georges-Louis Leclerc, Comte
de Buffon. A Youtube video by Dr Tony
Padilla illustrates this experiment using 163
matches. Suppose we are given an integral of
the form

η(f) :=

∫
f(x) η(dx) = E(f(X))

where η(dx) is a probability measure on some state space S, and f is a function from S
into R such that η(|f |) = E(|f(X)|) < ∞.

The central idea is to sample a sequence of independent random copies (Xi)i≥1

of the r.v. X and to use the so-called empirical average estimates

ηN (f) :=

∫
f(x) ηN (dx) =

1

N

∑
1≤i≤N

f(Xi) with ηN :=
1

N

∑
1≤i≤N

δXi . (5.1)

In (5.1) δa stands for the Dirac measure at some point a ∈ S.

99



100 Stochastic Processes

We set
√
N

(
ηN (f)− η(f)

)
:= V N (f) ⇐⇒ ηN (f) = η(f) +

1√
N

V N (f). (5.2)

The r.h.s. formula in the above display can be interpreted as a first order type
decomposition of the random deviations between the empirical measure ηN and
its limiting value η.

In this notation, a simple calculation shows that

E
(
V N (f)

)
= 0 and E

(
V N (f)2

)
= σ2(f) (5.3)

for any function f such that η(f2) < ∞ with

σ2(f) := E
(
f(X)2

)
− E (f(X))

2
= η(f2)− η(f)2

= η([f − η(f)]2) =
1

2

∫
(f(x)− f(y))2 η(dx)η(dy). (5.4)

For any couple of functions (f1, f2) s.t. maxi=1,2 η(|fi|) < ∞, and any N ≥ 1 we also have
the formula

E
(
V N (f1)V

N (f2)
)
= C(f1, f2) (5.5)

with the covariance function

C(f1, f2) := η([f1 − η(f1)]× [f2 − η(f2)])

=
1

2

∫
(f1(x)− f1(y)) (f2(x)− f2(y)) η(dx)η(dy). (5.6)

It is a simple exercise (cf. exercise 56) to prove that

E
(
ηN (f)

)
= η(f) and E

([
ηN (f)− η(f)

]2)
= σ2(f)/N ↓N↑∞ 0 (5.7)

for any function f s.t. η(f2) < ∞.
Working a little harder we prove the following theorem.

Theorem 5.1.1 (Law of large numbers)

E(|f(X)|) < ∞ =⇒ lim
N→∞

ηN (f) = η(f) P− a.s.

This theorem and the fluctuation theorem given below are central in any first course on
stochastic simulation and Monte Carlo methods.

Theorem 5.1.2 (Central limit theorem) For any sequence of functions (fi)1≤i≤d s.t.
E(fi(X)2) < ∞ for any 1 ≤ i ≤ d, as N → ∞ we have the convergence in distribution

(
V N (f1), . . . , V

N (fd)
)

=⇒ (V (f1), . . . , V (fd))

where (V (f1), . . . , V (fd)) is a sequence of centered Gaussian r.v. with covariance function
given for any 1 ≤ i, j ≤ d by

E (V (fi)V (fj)) = η([fi − η(fi)] [fj − η(fj)]).



Monte Carlo integration 101

Hint of proof :
We assume without loss of generality that the functions fi are centered, that is, η(fi) = 0
for any 1 ≤ i ≤ d. We consider a column vector λ := (λ1, . . . , λd)

′ ∈ Rd, the column vector
function f = (f1, . . . , fd)

′, the column random numbers V N (f) =
(
V N (f1), . . . , V

N (fd)
)′,

and we set g = λ′f =
∑

1≤j≤d λj fj .

E
(
eiλ

′V N (f)
)
= E

(
ei

∑
1≤j≤d λj V N (fj)

)
= E

(
eiV

N (g)
)
.

Recalling that V N (g) = 1√
N

∑
1≤j≤N

[
g(Xj)− η(g)

]
and using the fact that η(g) = 0 we

check that

E
(
eiV

N (g)
)

=
(
E
(
e
i
g(X)√

N

))N

�
(
E
(
1 + i

g(X)√
N

− g(X)2

2N

))N

=

(
1− η(g2)

2N

)N

� e−η(g2)/2.

The next step is to observe that

g2 =
∑

1≤j,k≤d

λjλk fjfk ⇒ η(g2) =
∑

1≤j,k≤d

λjλk C(fj , fk) = λ′C(f, f)λ

with the covariance matrix C(f, f) := (C(fi, fj))1≤i,j≤d. The end of the proof is left to the
reader.

Remark : Theorem 5.1.2 is often used in statistical inference to derive confidence
intervals. Notice that V (f)/σ(f) ∼ N(0, 1).

∣∣ηN (f)− η(f)
∣∣ = V N (f)√

N
≤ λ

σ(f)√
N

⇔ V N (f)

σ(f)
≤ λ

so that

P
(
η(f) ∈

[
ηN (f)− λ σ(f)√

N
, ηN (f) + λ σ(f)√

N

])

� P (|N(0, 1)| ≤ λ) = 2
∫ λ

−∞
1√
2π

e−x2/2 dx− 1 � .95 for λ = 1.96.

Remark :
In the settings of theorem 5.1.2, we also have Wick’s formulae

E (V (f1) . . . V (fn)) =
∑

1≤i<n

E


 ∏

1≤j �=i<n

VN (fj)


× E(V (fi)V (fn)) (5.8)

and
E (V (f1) . . . V (f2n)) =

∑
P∈Pn

∏
{i,j}∈P

E (V (fi)V (fj)) . (5.9)

In the above display, Pn stands for the set of (2n)!/(n!2n) partitions of {1, . . . , 2n} into n
partitions of 2 (ordered) indexes. A given partition P ∈ Pn is also called a pairing. Notice
that

(5.8) ⇒ E (V (f1) . . . V (f2n+1)) = 0

and for homogeneous functions fi = f , for any 1 ≤ i ≤ n we have

E
(
V (f)2n+1

)
= 0 and E

(
V (f)2n

)
=

(2n)!

n!2n
E
(
V (f)2

)
. (5.10)

The proof of Wick’s formulae is discussed in exercise 61.
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5.2 Importance sampling

5.2.1 Twisted distributions

The importance sampling technique is closely related to the rejection method discussed in
section 4.3 (cf. lemma 4.3.2). We let (Y,X) be a couple of Rd-valued r.v. with probability
densities (p, q) with respect to the Lebesgue measure dx on Rd. We further assume that
the ratio p(x)/q(x) exists for any x ∈ Rd. We denote by µ(dy) = p(y)dy the distribution of
Y and by η(dx) = q(x)dx the law of X. We assume that η((p/q)2) < ∞.

Our next objective is to estimate the quantities E(f(Y )), for any function f on Rd s.t.
η(|f |2) < ∞, using a sequence of independent random copies (Xi)i≥1 of the r.v. X. In
importance sampling literature, the law of X is sometimes called the importance or the
twisted probability.

To this end, we use the formula

p(y) =
1∫

g(y′) q(y′) dy′
g(y) q(y) with the function g = p/q

to check that the µ and η are related by the (non-linear) transformation

µ(dy) = Ψg(η)(dy) :=
1

η(g)
g(y) η(dy) with η(g) =

∫
g(y) η(dy).

The transformation Ψg is called the Boltzmann-Gibbs transformation associated with the
potential function g. This implies that

E (f(Y )) = µ(f) =

∫
Ψg(η)(dy) f(y) =

1

η(g)

∫
f(y) g(y) η(dy)

= η(fg)/η(g) = E (f(X)g(X))/E (g(X)).

Replacing the law η of X by its empirical approximation ηN discussed in section 5.1, we
construct the following importance sampling approximation

ηN (fg)

ηN (g)
=

∑
1≤i≤N

g(Xi)∑
1≤j≤N g(Xj)

f(Xi) �N↑∞ E (f(Y )) .

5.2.2 Sequential Monte Carlo

In terms of probability measures, we have the weighted approximation

Ψg(η
N ) =

∑
1≤i≤N

g(Xi)∑
1≤j≤N g(Xj)

δXi �N↑∞ µ = Law(Y ). (5.11)

The formula (5.11) shows that the sampling from the l.h.s. discrete probability measure
is "almost" equivalent to that of sampling copies of the r.v. Y . This observation is at the
core of sequential Monte Carlo methods (a.k.a. particle filtering methods) and of the
mean field particle integration theory [39, 66, 67, 111].

We emphasize that these particle estimates do not depend on the normalizing constants
of the densities p and q. This fact is important since the function g = p/q is often known
up to some normalizing constant. When the function g is explicitly known, we can use the
estimate

ηN (fg) :=
1

N

∑
1≤i≤N

g(Xi) f(Xi) �N↑∞ η(fg) = µ(f). (5.12)
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5.2.3 Tails distributions

In this section we give a brief discussion on the use of importance sampling techniques
in rare event simulation. We consider a standard Gaussian r.v. X. Suppose we want to
evaluate the quantity

P (X ∈ [a,∞[) = E
(
1[a,∞[(X)

)
= η(1[a,+∞[)

with the Gaussian distribution η of X. We consider the Monte Carlo approximation (5.1)
associated with independent copies (Xi)i≥1 of X and defined by

ηN (1[a,+∞[) =
1

N

∑
1≤i≤N

1[a,+∞[(X
i).

We check easily that the relative variance of this estimator is given by

E

([
ηN(1[a,+∞[)
P(X∈[a,+∞[) − 1

]2)
=

1

N
P (X ≥ a)

−1
(1− P (X ≥ a)) .

Using Mill’s inequalities (cf. exercise 64)

∀a > 0
1

a+ a−1

1√
2π

e−
a2

2 ≤ P(X ≥ a) ≤ 1

a

1√
2π

e−
a2

2 (5.13)

for large values of a we find the equivalence relation

N E



[
ηN

(
1[a,+∞[

)
P (X ≥ a)

− 1

]2

 � a e

a2

2 . (5.14)

We consider a r.v. Z with Gaussian density

q(x) ∝ e−(x−a)2/2 and we set p(x) ∝ e−x2/2.

We let µ(dx) = q(x)dx be the twisted distribution. We observe that

g(x) := p(x)/q(x) = e
1
2 ((x−a)2−x2) = ea(

a
2−x).

We let µN = 1
N

∑
1≤i≤N δZi be the empirical measure associated with N independent copies

of Z. Using (5.12), we have

µN
(
g 1[a,+∞[

)
�N↑∞ µ

(
1[a,+∞[ g

)
= P(X ≥ a).

It is also easily checked that

N E
([

µN
(
g 1[a,+∞[

)
− µ

(
g 1[a,+∞[

)]2)

= µ
(
g2 1[a,+∞[

)
− µ

(
g 1[a,+∞[

)2
= η

(
g 1[a,+∞[

)
− P(X ≥ a)2.

Now we observe that

η
(
g 1[a,+∞[

)
=

η
(
g 1[a,+∞[

)

η
(
1[a,+∞[

) × η
(
1[a,+∞[

)
= E

(
exp

[
a
(a
2
−X

)]
| X ≥ a

)
× P(X ≥ a)

≤ e−a2/2 × P(X ≥ a) � a P(X ≥ a)2.

In contrast to the exponential rate of the crude Monte Carlo method (5.14), this implies
that the relative variance grows linearly with the parameter a

N E



[
µN

(
g 1[a,+∞[

)
P (X ≥ a)

− 1

]2

 � a.
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5.3 Exercises
Exercise 55 (Empirical random fields) Check that the random and signed measures
V N satisfy the following property

a1 V N (f1) + a2 V N (f2) = V N (a1 f1 + a2 f2)

for any pair (a1, a2) ∈ R2 and any couple of functions (f1, f2) s.t. maxi=1,2 η(|fi|) < ∞.

Exercise 56 (Covariance functionals) Prove formulae (5.5), (5.6), and deduce that

[(5.5) & (5.6)] =⇒
[
(5.3) & (5.4) with C(f, f) = σ2(f)

]
.

Using (5.2), prove (5.7).

Exercise 57 (Importance sampling 1) Consider the couple of Rd-valued random vari-
ables (Y,X) with probability densities (p, q) discussed in the beginning of section 5.2.1. We
wish to estimate E(f(Y )), for some bounded function f on Rd using a sequence of indepen-
dent random copies (Xi)i≥1 of the r.v. X. Prove that

E (f(Y )) = E
(
f(X)

p(X)

q(X)

)
= E


 1

N

∑
1≤i≤N

f(Xi)
p(Xi)

q(Xi)




and

N Var


 1

N

∑
1≤i≤N

f(Xi)
p(Xi)

q(Xi)


 = E

(
f2(Y )

p(Y )

q(Y )

)
− E (f(Y ))

2
.

Exercise 58 (Importance sampling 2) We consider a couple of random walks starting
at the origin and given by

Xn = Xn−1 + Un and Xn = Xn−1 + Un

where Un and Un stand for a sequence of independent Bernoulli random variables on {0, 1}
with

P (Un = 1) = p and P
(
Un = 1

)
= p.

Check that

P (Xn ≥ a) = E


1[a,∞[


 ∑

1≤k≤n

Uk


 ∏

1≤k≤n

Gk(Uk)




for any a ∈ R s.t. a ≤ n, with the potential functions Gk(u) = p
p 1u=1 +

1−p
1−p 1u=0, with

k ≥ 1. Deduce that

P (Xn ≥ a) =

(
1− p

1− p

)n

E

(
1[a,n]

(
Xn

) (
p

1− p
× 1− p

p

)Xn
)
.

Exercise 59 (Chernov estimates)

• Let U be an uniform random variable on {−1,+1}. Check that for any λ > 0 we have

E
(
eλU

)
≤ e

λ2

2 .
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• Let X be an [a, b]-valued random variable for some a < b. Deduce from the above that for
any λ > 0 we have

E
(
eλ(X−E(X))

)
≤ e

λ2(b−a)2

2 .

• Prove that

P (X ≥ E(X) + ρ) ≤ exp

(
− ρ2

2(b− a)2

)
.

Exercise 60 (Bernoulli trials - Chernov estimates) We let (Uk)k≥1 be a sequence
of independent Bernoulli random variables with

∀k ≥ 1 P (Uk = 1) = 1− P (Uk = 0) = pk ∈ [0, 1].

We set Xn =
∑

1≤k≤n Uk, and mn = E(Xn).

• For any ε ≥ 0 and λ > 0 check that

P(Xn ≥ (1 + ε)mn) ≤ e−λ(1+ε)mn E
(
eλXn

)
and E

(
eλXn

)
≤ emn(eλ−1).

• Deduce that

P(Xn ≥ (1 + ε)mn) ≤ ρεmn
ε with ρε := e

(
1− ε

1 + ε

) 1+ε
ε

< 1.

Exercise 61 (Wick’s formula) Prove (5.8) and then (5.9) using an induction w.r.t.
the parameter n.

Exercise 62 (Novikov theorem) Let X = (Xi)1≤i≤r be an r-dimensional centered Gaus-
sian N (0, R) with (r × r) with an invertible covariance matrix R (cf. for instance (4.13)).
We let f be a smooth function on Rr. Check that for any 1 ≤ i ≤ r we have

xj =
1

2

∑
1≤k≤r

Rj,k ∂xk

(
x′R−1x

)
.

Deduce that
E (Xi f(X)) =

∑
1≤k≤r

Rj,k E (∂xk
f(X)) .

Exercise 63 (An almost sure convergence result) Let a = (an)n≥0 and b = (bn)n≥0

be sequences of numbers s.t. limn↑∞ bn = b. Let Xn be a sequence of independent random
variables given by

P (Xn = an) =
1

n1+ε
and P (Xn = bn) = 1− 1

n1+ε

for some ε > 0. Check that 1
n

∑
1≤k≤n Xk →n↑∞ b almost surely.

Exercise 64 (Mill’s inequalities) Check Mill’s inequalities (5.13). For any Gaus-
sian and centered r.v. Xn with unit variance prove that

P
(
|Xn| ≥

√
2(1 + α) log n

)
≤ 1√

πα

1

n1+α

1√
log (n)

for any α > 0, and any n > 1, and deduce that

P
(
∃nα ≥ 1 : ∀n ≥ nα |Xn| ≤

√
2(1 + α) log n

)
= 1.
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Exercise 65 (Birnbaum’s improvement [24]) Show that the l.h.s of Mill’s inequali-
ties (5.13) can be sharpened. It holds:

∀a > 0
2√

4 + a2 + a

1√
2π

e−
a2

2 ≤ P(X ≥ a).

Exercise 66 (A rare event problem) We consider a pair of independent Gaussian
and centered r.v. X = (X1, X2). Suppose we want to evaluate the quantity

P (X ∈ A(a, ε)) = E
(
1A(a,ε)(X)

)
= η(1A(a,ε))

with the Gaussian distribution η of X, and the the indicator function 1A(a,ε) of the set

A(a, ε) = {(x1, x2) ∈ R2 : x2
1 + x2

2 ≥ a and 0 ≤ arctan (x2/x1) ≤ 2πe−b}.

Using the Box-Muller transformation (X1, X2) = ϕ(U1, U2) presented in (4.5), check that

P (X ∈ A(a, ε)) =

∫

[0,1]2
1[0,e−a]×[0,e−b](u1, u2) du1du2 = e−(a+b).

We let (U i
1, U

i
2)i≥1 be a sequence of independent copies of the variable (U1, U2). We consider

the Monte Carlo approximation (5.1) associated with the r.v. Xi = (Xi
1, X

i
2) = ϕ(U i

1, U
i
2)

and defined by

ηN (1A(a,ε)) =
1

N

∑
1≤i≤N

1[0,e−a]×[0,e−b](U
i
1, U

i
2).

Check that the relative variance is given by

N E



[
ηN

(
1A(a,ε)

)

η
(
1A(a,ε)

) − 1

]2

 = ea+b − 1.



6
Some illustrations

In this last chapter of Part II, we show several specific demonstrations of successful ap-
plications of stochastic simulations methods in some scientific disciplines. The simulation
methods are needed and applied as tools to analyse, in a possibly simpler way, some com-
plex stochastic phenomena modelled in physics, biology or in engineering. The discussion
focuses on the description of the models only and the more rigorous mathematical treatment
is dealt with in the further development of the course.

There is no branch of mathematics, however abstract,
which may not some day be applied to phenomena of the real world.
Nikolai Lobatchevsky (1792-1856)

6.1 Stochastic processes
The random simulation techniques developed
in this opening chapter are rather elementary
but they are used as essential steps when sam-
pling more complex random phenomena that
evolve w.r.t. the time parameter.

The discrete time stochastic processes are
defined in terms of a given sequence of ran-
dom variables Xn, indexed by the time pa-
rameter n ∈ N. These r.v. change sequen-
tially and randomly according to some pre-
scribed elementary transitions

X0 � X1 � X2 � . . . � Xn−1 � Xn � . . . (6.1)

These processes are called a Markov chain if the random state Xn at one time n depends
only on the state in the previous time Xn−1. More precisely, this means that the elementary
transitions Xn−1 � Xn between integer time steps (n − 1) � n only depend on Xn−1 as
well as on a given finite number of elementary random variables, but not on the previous
history.

More formally, we assume that Xn takes values in a state space S, and we let Wn be a
sequence of random variables taking values in a space W. In this notation, the elementary
transitions of a Markov process (6.1) are given by an evolution equation of the form

Xn = Fn (Xn−1,Wn)

for a collection of functions Fn from (S × W) into S, and for an initial random state
variable X0. These elementary transitions can be sampled using the simulation toolbox
presented in this chapter. Given a random state Xn−1, we compute the next random state

107
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Xn = Fn (Xn−1,Wn) by sampling sequentially the random variables Wn. The design of
the continuous time version of these stochastic processes is technically more involved but
using an appropriate time discretization scheme it can serve as a discrete generation model.
These continuous time processes and their connections with partial differential equations
are described in some details in the final chapter of these lecture notes.

In the rest of this section, we discuss some important questions related to the effective
simulation and the convergence analysis of stochastic processes and complex probability
measures. This discussion can serve as an introduction to the chapters in the further
development of the course.

6.2 Markov chain models
Most of the theory of Markov processes is concerned with computing the dis-

tributions of the random states, and with analysing the convergence of empirical
time averages when the time parameter tends to ∞. More formally, we need to
make precise the next two assertions:

lim
n→∞

Law(Xn) = Law(X∞) and lim
n→∞

1

n

∑
1≤p≤n

δXp
= Law(X∞).

The first question we focus on is to identify (whenever it exists) the limiting distribution
of the random states of a given stochastic process. The second important question is how
fast the law of the random states converges to its limiting measure as n tends to ∞. Does a
certain central limit theorem, similar to the one we have presented for independent random
sequences, hold for Markov chain models?

In the next chapter, we provide a rather complete discussion on the theory of Monte
Carlo methods, including a variety of illustrative examples borrowed from different scientific
disciplines. For a more leisurely discussion at the undergraduate-level, the reader should
look the recent lectures notes on Markovian modeling by N. Privault [228]. For a more
detailed discussion the reader should consult the research monograph by S. P. Meyn and
R.L. Tweedie [199].

6.3 Black-box type models
The fast developments of probability theory and computer science have presented us with
more realistic and sophisticated stochastic processes to model complex random phenom-
ena arising in physics, biology and other branches of engineering sciences. These stochastic
models are often based on the simulation of high dimensional stochastic processes, including
nonlinear stochastic partial differential equations. The source of randomness often comes
from unknown initial conditions, and from the uncertainties of the models, including un-
known kinetic parameters.

For instance, in reliability and risk analysis of offshore structures in extreme sea con-
ditions, the random inputs of the processes depend on the wave spectra and forecasting
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data, such as temperature profiles, as well as on the model uncertainties. Given these data,
the energy profiles on the offshore platform (boat, gas or petrol-offshore platform) can be
treated as the outputs of a sophisticated partial differential equation based on hydrodynamic
and mechanical principles.

These input-output systems can be interpreted as a black box type model

Inputs = X −→ Numerical codes F −→ Outputs = Y = F (X).

In this case, we are interested in analyzing the set A of some inputs X that make the
ouput Y = F (X) ∈ B hit some reference or critical event. More formally, the objective is
to compute the following quantities

P (X ∈ A) and Law(X | X ∈ A).

These problems are often termed "calibration of propagations of uncertainties" in numerical
codes in computer and numerical sciences. In the example discussed above, the input
random variables X = (Xt)t∈[0,T ] represent the spectral characteristics of the wave as well
as the atmosphere temperature profiles. For instance, a discrete generation perturbation
process with a given temperature reference trajectory (ct)t∈[0,T ] can be represented by an
autoregression model

(Xt − ct) =
√
1− ε (Xt−1 − ct−1) +

√
ε Wt (6.2)

for a parameter ε ∈ [0, 1], and a sequence of independent centered Gaussian r.v. W =
(Wt)t∈[0,T ] with variance σ2. Assuming that X0 = c0, we prove that

∀t ∈ [0, T ] E (Xt) = ct and E
(
(Xt − ct)

2
)
= σ2

(
1− (1− ε)

t
)
. (6.3)

We refer to exercise 67 for a proof of these formulae.
The evolution of the offshore structure w.r.t. the time parameter t ∈ [0, T ] is described

by a random process
Y = (Yt)t∈[0,T ] = (Ft(X))t∈[0,T ] .

In this context, the event of interest is given by A :=
{
x : supt∈[0,T ] Ft(x) ≥ a�

}
, where

a� denotes a suitably chosen critical threshold.
For rare event probabilities smaller than P(X ∈ A) � 10−9 it is hopeless to use the crude

Monte Carlo techniques presented in this chapter. In addition, the importance sampling
methodology discussed in section 5.2 is too intrusive to be feasible, in the sense that it
requires the user to change the evolution of the numerical code which is determined by
precise physical laws and encoded sequentially using grid-type or projective-type numerical
techniques.

Thus, the challenging problem is to design a robust and powerful stochastic search
model that could be used to find the input regions involved in the rare event of interest.
The central idea is to explore gradually the input domains leading to more and more critical
values. These sophisticated stochastic search models belong to the class of Markov chain
Monte Carlo methods (abbreviated MCMC), and particle simulation techniques also called
sequential Monte Carlo methodologies (abbreviated SMC). Roughly speaking, the central
idea of MCMC is to find a Markov chain model (Xn)n≥0 of the form (6.1) with prescribed
limiting distribution

Law(X∞) = Law(X | X ∈ A)

in the space of inputs, say S. In the example discussed in (6.2), the state of inputs is given
by the set of trajectories S = R[0,T ].
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In particle methodologies, we are given a sequence of decreasing gateways An ↓ A and
we run a stochastic population type process (X1

n, . . . , X
N
n ) ∈ SN with a sufficiently large

number N of individuals such that at any time step n, we have

lim
N→∞

1

N

∑
1≤i≤N

δXi
n
= Law(X | X ∈ A).

Some of these advanced stochastic search processes are discussed in the next chapter. For
a more thorough study, we refer to article [68], and research books [5, 39, 66, 67, 111, 134] .

6.4 Boltzmann-Gibbs measures
In computational physics, as well as in stochastic optimization, we are interested in com-
puting Boltzmann-Gibbs distributions associated with an inverse temperature parameter
β.

These distributions have the following form

µβ(dx) =
1

Zβ
e−βV (x) λ(dx) (6.4)

where λ stands for a distribution on a state space S, and V is a function on S.
The parameter β is interpreted as an inverse temperature parameter. It is also
often important to compute the normalizing constants (a.k.a. partition functions
in physics) Zβ = λ

(
e−βV

)
.

6.4.1 Ising model

The Ising model currently used in electromagnetism, statistical mechanics, as well as in
image processing is associated with the state space

S = {−1,+1}E E = {1, . . . , L} × {1, . . . , L}

equipped with the uniform measure λ(x) = 2−L2

. The lattice E is equipped with the
following graph structure

j1 = (i1, i2 + 1) , j2 = (i1 + 1, i2) , j3 = (i1, i2 − 1) , j4 = (i1 − 1, i2)

around some state (i1, i2) ∈ E. In other words, we have

j1

�
j4 ↔ i ↔ j2.

�
j3

Two neighbors i, j ∈ E are denoted by i ∼ i′. The energy of a configuration x ∈ S is given
by the Hamiltonian function

V (x) = h
∑
i∈E

x(i)− J
∑
i∼j

x(i)x(j). (6.5)
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The parameter h ∈ R represents the strength of an external magnetic field, and J ∈ R
reflects the interaction degree between the sites.

6.4.2 Sherrington-Kirkpatrick model

In the Sherrington-Kirkpatrick model introduced in 1975 in their seminal article [241], the
potential function is given by

V (θ, x) :=
∑

1≤i≤j≤d

θi,j x(i) x(j) + h

d∑
i=1

x(i)

where Θi,j are assumed to be i.i.d. centered Gaussian random variables. More general
disordered models can be defined in terms of random mappings Θ : (i, j) ∈ {1, . . . , d}2 �→
θi,j .

Directed polymer models arising in statistical physics are defined in much the same
way. For instance, the micro state of a system consists of d particles xi = (pi, ri), with a
momentum vector pi and a position coordinate ri = (r1i , r

2
i , r

3
i ), with 1 ≤ i ≤ d. The energy

of the system is given by some function

V (x) :=

d∑
i=1

(
1

2m
‖pi‖2 +mgr1i

)

where m represents the mass of the particle, r1i its height, and g is the gravitation constant.
The probability distribution of the physical system at inverse temperature βn is again given
by the Boltzmann-Gibbs measures (6.4), with the Lebesgue measure λ. For a more thorough
discussion on these models, we refer the reader to [54, 90, 91], and to the references therein.

6.4.3 The traveling salesman model

We now present another example of Boltzmann-Gibbs measure arising in operations re-
search. We are given a finite state space Em = {e1, . . . , em} equipped with some metric d.
We can think of a a finite number of cities and the distances between them. One typical
problem known as the traveling salesman problem, consists in finding a way to visit all the
cities by covering minimal traveling distance. We can model a given sequence of visits by a
permutation σ on the index set {1, . . . ,m}. In this situation, the state space S is given by
the set of these permutations equipped with the uniform probability measure λ(σ) = 1/m!,
and an energy function V defined by

V (σ) =
m∑

p=1

d(eσ(p), eσ(p+1)).

It is not difficult to check that

lim
β→∞

µβ(σ) = µ∞(σ) :=
1

Card(V �)
1V �(σ) (6.6)

where Card(V �) stands for the cardinality of the set V � = {σ ∈ S : V (σ) = infS V } of the
optimal traveling strategies (cf. Exercise 68). This result shows that at low temperature
(i.e. β ↑ ∞), the sampling of the distribution µβ amounts to choosing randomly an unknown
optimal solution of the problem.

As the reader may have noticed, the Monte Carlo methodologies described in this
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opening chapter cannot be used to sample exact random configurations according to the
Boltzmann-Gibbs measure.

It is tempting to use the importance sampling strategies developed in section 5.2 to
approximate the target distribution p(σ) = µβ(σ) using certain twisted measure q(σ) on
the state space S. Besides the fact that these importance sampling measures are difficult to
design, the empirical weight functions W (σ) := p(σ)/q(σ) are evaluated at random states
σi visited by sampling according to q(σ). At low temperature, we observe that p(σ) � 0
except for the optimal permutations. Thus, one expects to have a very poor estimation
based on almost null weighted empirical averages using a twisted measure q(σ) that is not
concentrated around the unknown optimal permutations.

One way to solve these problems is to use the MCMC or the SMC methodologies dis-
cussed above. As before, the central idea of MCMC methods is to find a Markov chain
model (Xn)n≥0 of the form (6.1) with prescribed limiting distribution Law(X∞) = µβ on
the set S.

The following pictures illustrate the initial circuit, the best historical circuit, and the
evolution of the lengths of the circuits in the traveling salesman problem (TSP) with 30
cities.
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In particle methodologies, we are given a sequence of increasing parameters βn ↑ β and
we run a stochastic population type process (X1

n, . . . , X
N
n ) ∈ SN with a sufficiently large

number N of individuals s.t. at any time step n, we have

lim
N→∞

1

N

∑
1≤i≤N

δXi
n
= µβn

.

We refer to section 9.4.1 and section 9.9.1 for more detailed discussion on the simula-
tion of these Boltzmann-Gibbs measures using simulated annealing algorithms and more
advanced mean field type interacting MCMC methodologies.

6.5 Filtering and statistical learning

6.5.1 Bayes’ formula

The filtering problem is defined as follows. A sensor (such as a radar, or a sonar) delivers
at each time some partial and noisy observations Yn of an evolving Markov chain Xn on
some state space Rd.

X0 → X1 → X2 → X3 → . . . signal
↓ ↓ ↓ ↓ . . .
Y0 Y1 Y2 Y3 . . . observation.

To fix ideas, we further assume that the observation process Yn takes values in R and

Yn = hn(Xn) + Vn

holds for a function hn from Rd into R, and a sequence of independent and standard
Gaussian r.v. Vn. Given a realization of the chain (X0, . . . , Xn) = (x0, . . . , xn) the random
variables (Y0, . . . , Yn) are independent Gaussian r.v. with mean values (h0(x0), . . . , hn(xn)).
More formally, the density of the observations (Y0, . . . , Yn) given (X0, . . . , Xn) = (x0, . . . , xn)
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is given by

pn((y0, . . . , yn) | (x0, . . . , xn)) ∝
n∏

p=0

exp

(
−1

2
(yp − hp(xp))

2

)

︸ ︷︷ ︸
∝pn(yn|xn)

.

We denote by pn(x0, . . . , xn) (whenever it exists) the density of the random states (X0, . . . , Xn)
w.r.t. some reference measure. To simplify the presentation, we also set xn = (x0, . . . , xn)
and yn = (y0, . . . , yn). We also assume that the random variables (X0, . . . , Xn) have a
density pn(xn) with respect to the product Lebesgue measure on Rd.

In this notation, by applying Bayes’ rule, we get the density of (X0, . . . , Xn)
given the observations (Y0, . . . , Yn) :

pn(xn | yn) =
1

pn(yn)
pn(yn | xn) × pn(xn) (6.7)

with the normalizing constant pn(yn).

In some instances, the signal and the observation processes depend on an unknown and
fixed parameter Θ (such as the variance of the perturbations, or the initial conditions or
some kinetic parameters). In this context, another important question is to compute the
conditional distribution of Θ given the sequence of observations (Y0, . . . , Yn).

When the r.v. Θ has a prior density p(θ), these conditional distributions are given
with some obvious abusive notation by the formula

pn(θ | yn) ∝ pn(yn | θ)× p(θ). (6.8)

We notice that the likelihood functions pn(yn | θ) coincide with the normalizing
constants of the filtering problem discussed above when the parameter θ is given.

We also notice that the conditional distributions (6.7) can also be interpreted as Boltzmann-
Gibbs distributions on the space of trajectories. More formally, we have that

pn(xn | yn) =
1

Zn,yn

e−Vn,yn (xn) λn(xn) (6.9)

with some normalizing constants Zn,yn , and (λn, Vn,yn) given by

λn(xn) = pn(xn) and Vn,yn(xn) = − log pn(yn | xn).

6.5.2 Singer’s radar model

We illustrate this stochastic model with the Singer radar filtering model [240]. In this
context, Xn = (X

(i)
n )1≤i≤3 represents the evolution in R3 of a given target




X
(1)
n −X

(1)
n−1 = εn Wn

X
(2)
n −X

(2)
n−1 = −α X

(2)
n−1 ∆+ β ∆ X

(1)
n

X
(3)
n −X

(3)
n−1 = X

(2)
n ∆.
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The first coordinate X
(1)
n represents the acceleration, the second X

(2)
n the velocity, and the

last one X
(3)
n the position. We can suppose that the viscosity parameters are given by

α = 1 and β = 18, and the initial conditions are given by X
(1)
0 ∼ N (30, σ0), X

(2)
0 and

X
(3)
0 ∼ N (500, σ0), with σ0 ∈ {10, 100}. Here N (m,σ2) denotes the Gaussian distribution

with mean m and variance σ2. The parameter ∆ = 10−2 represents the radar sampling
period. The acceleration periods (εn)n≥1 stand for a collection of independent Bernoulli r.v.
with parameter ∆. Finally, (Wn)n≥1 represent the acceleration amplitudes. For instance,
we can suppose that these r.v. are independent and uniform on [0, 60].

The observations delivered by the radar are given by the equations

∀n ≥ 0 , Yn = X(3)
n +∆ Vn.

Here V = (Vn)n≥1 sequence of independent and centered Gaussian r.v. Vn with variance
σ2
v = 100.
For linear-Gaussian models these conditional distributions can be computed recursively

w.r.t. the time parameter using the filtering equations introduced by R. E. Kalman and R.
S. Bucy in the beginning of the 1960’s [160, 164] (see also [66, 67] for a more recent account
on these filters and their applications). For nonlinear and/or non-Gaussian models, one so-
lution is to find a judicious stochastic simulation technique to sample the Boltzmann-Gibbs
distributions (6.9). By construction we also need to compute these conditional distributions
(6.7) recursively w.r.t. to time parameter.

Since the target distributions change at every time step, the MCMC methodologies
discussed above will require to change the Markov chain model with the prescribed limiting
distribution at every time step. This important drawback, together with the so-called
burning period needed for each chain to approximate its equilibrium limiting measure, shows
that these MCMC methodologies fail to compute recursively the conditional distributions
without a dramatic computational cost. In the reverse angle, the population-based design
of particle and the SMC methodologies allow us to construct a stochastic process that
estimates the conditional distributions (6.7) and (6.8) at every time step.

Some of these advanced stochastic particle processes are discussed in the next chapters.
For a more detailed discussion on these advanced stochastic simulation techniques the reader
could review article [4] and books [66, 67, 111].

6.6 Exercises
Exercise 67 (Autoregression model) We consider the autoregression model presented
in (6.2). Prove that

(Xt − ct) =
√
ε

∑
0≤s<t

(
√
1− ε)s Wt−s

and deduce (6.3).

Exercise 68 Prove the convergence property (6.6).

Exercise 69 (Random walk Metropolis-Hastings) Let p(x) and q(x) = q(−x) be a
couple of probability densities on Rd, for some d ≥ 1. We let π(dx) = p(x)dx be a tar-
get probability distribution on Rd. Write the acceptance ratio of the Metropolis-Hastings
algorithm with proposal transition P (x, dy) = ε−dq((y − x)/ε) dy.
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Exercise 70 (Random walk on a weighted graph) Consider an undirected and con-
nected graph (V, E) with the set of vertices V and the set of edges E. The graph is equipped
with a positive weight function w(x, y) on each edge (x, y) ∈ E. When the vertices x and y
are not connected we set w(x, y) = 0. Assume that 0 <

∑
y∈V w(x, y) < ∞. We consider

the Markov chain Xn on V with probability transitions

M(x, y) =
w(x, y)∑
z∈V w(x, z)

.

We assume that X0 is distributed according to the probability distribution

π(x) =
∑
z∈V

w(x, z)/
∑

u,v∈V
w(u, v).

Check that

π(x) M(x, y) = π(y) M(x, y) and ∀n ≥ 1, ∀x ∈ V P (Xn = x) = π(x).

Exercise 71 (Filtering model) We consider the filtering problem presented in section 6.5.
Using Bayesian notation, we let p(xn+1|xn) the density of Xn+1 given Xn = xn with respect
to the Lebesgue measure dxn. Prove that

p(xn+1 | y0, . . . , yn) =
∫

p(xn+1|xn) p(xn | y0, . . . , yn) dxn

and

p(xn+1 | y0, . . . , yn, yn+1) =
1

p(yn+1|y0 . . . , yn)
p(yn+1|xn+1) p(xn+1 | y0, . . . , yn).

Check that
p(y0 . . . , yn) =

∏
0≤k≤n

∫
p(yk|xk) p(xk | y0, . . . , yk−1) dxk.

Exercise 72 (Ising model) Consider the Boltzmann-Gibbs measure

µβ(x) = Z−1
β exp (−βV (x))

associated with the Ising model in one dimension

S = {−1,+1}{1,...,L} � x = (x(i))i=1,...,L �→ V (x) = −h

L∑
i=1

x(i)− J

L∑
i=1

x(i)x(i+ 1).

We use the periodic boundary condition x(L+ 1) = x(1). Prove that

Zβ = Trace(TL),

with the transfer (symmetric) matrix

T =

(
T (+1,+1) T (+1,−1)
T (−1,+1) T (−1,−1)

)
=

(
eJβ+hβ e−Jβ

e−Jβ eJβ−hβ

)

with entries

T (x(i), x(i+1)) = exp

[
Jβx(i)x(i+ 1) +

hβ

2
(x(i) + x(i+ 1))

]
and Jβ = βJ hβ = hβ.
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Check that

Zβ = λL
+,β

(
1 +

[
λ−,β

λ+,β

]L)
and

1

βL
logZβ →L↑∞

1

β
log λ+,β

with

λ+,β = eJβ cosh (hβ) +

√
e2Jβ cosh (hβ)

2 − 2 sinh(2Jβ)

λ−,β = eJβ cosh (hβ)−
√

e2Jβ cosh (hβ)
2 − 2 sinh(2Jβ).

Exercise 73 (Particle filter) Write the particle filter algorithm (3.7) to solve the Singer
filtering problem discussed in section 6.5.2.

Exercise 74 (Random fields) We let (Un)n≥0 be a sequence of centered and independent
random variables with the same probability distribution on R and such that E(U2

1 ) = 1.
Compute the covariance function C(x, y) = E(V (x)V (y)) of the random fields defined below.

• Random polynomials: V : x ∈ R �→ V (x) =
∑

0≤n≤d Un xn.

• Cosine random field: V : x ∈ R �→ V (x) = U1 cos (ax) + U2 sin (ax).

Exercise 75 (Reproducing Kernel Hilbert Space) We let (Un)n≥0 be the sequence
random variables introduced in exercise 74. Let S be some compact subset of Rd and C(x, y)
be a symmetric function on S2. We further assume that the integral operator

C : f ∈ L2(T ) �→ C(f) ∈ L2(T ) with C(f)(x) =
∫

T

C(x, y) f(y) dy

has positive decreasing eigenvalues λn and respective normalized eigenvectors ϕn, with n ≥
1. In this situation, we have the spectral decomposition

C(x, y) =
∑
n≥1

λn ϕn(x)ϕn(y).

Check that
V (x) =

∑
n≥1

√
λn Un ϕn(x) =⇒ C(x, y) = E(V (x)V (y)).

Exercise 76 (Kriging interpolation - Black-Box metamodels) We let V be a cen-
tered random field on a compact subset S ⊂ Rd, for certain d ≥ 1. We observe a sequence
of n values V (xi) for some states xi ∈ S, with 1 ≤ i ≤ n. We estimate V (x) at x ∈ S by a
linear interpolation

V̂ (x) =
∑

1≤i≤n

wi(x) V (xi)

with weight functions wi that minimize the variance in the sense that

E
[
(V (x)− V̂ (x))2

]
= inf

a1,...,am

E




(V (x)−

∑
1≤i≤n

ai V (xi)




2

.
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• Check that

V̂ (x) = [V (x1), . . . , V (xn)]




C(x1, x1) . . . C(x1, xn)
...

...
...

C(xn, x1) . . . C(xn, xn)




−1 


C(x, x1)
...

C(x, xn)


 .

• Prove that

E
[
(V (x)− V̂ (x))2

]

= C(x, x)− (C(x, x1), . . . , C(x, xn))




C(x1, x1) . . . C(x1, xn)
...

...
...

C(xn, x1) . . . C(xn, xn)




−1 


C(x, x1)
...

C(x, xn)


 .

The function x �→ V̂ (x) can be interpreted as the inputs and outputs of a metamodel rep-
resenting a complex black-box model with a training set of inputs and outputs xi �→ V (xi),
with 1 ≤ i ≤ n.



Part III

Discrete time processes
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7
Markov chains

This chapter introduces the Markov chains as simplest examples of discrete time stochastic
processes. The simplicity may be misleading since by utilizing long enough memory, Markov
chains can be used as the epitome of almost every discrete time stochastic process. Starting
with simple linear chain models, we move on to describe more advanced nonlinear Markov
chain models, including self-interacting Markov chains, mean field particle models, McKean-
Vlasov chains and interacting jump processes.

Goals transform a random walk into a chase.
Mihaly Csikszentmihalyi (1934-)

7.1 Description of the models
Markov chain models where introduced in the
1920s by A.A. Markov (Calculus of Probabil-
ities,) 3rd ed., St. Petersburg, 1913). Infor-
mally a Markov chain is simply a sequence
of random variables evolving with time. The
random states are defined sequentially based
on the current state and some additional ran-
dom variables. The theory of Markov pro-
cesses has led to rather intense activity in
various scientific disciplines, providing nat-
ural probabilistic interpretations of various
random evolution models arising in engineer-
ing, physics, biology and many other scientific
disciplines. A more formal definition is given
below.

Definition 7.1.1 A Markov chain is a sequence of random variables (Xn)n≥0 indexed by
the (integer) time parameter n ∈ N, and taking values in some state space S for which
the conditional distribution of the random state Xn+1 w.r.t. to its past (X0, . . . , Xn) only
depends on the present state Xn. That is, we have

P (Xn+1 ∈ dx | (X0, . . . , Xn)) = P (Xn+1 ∈ dx | Xn) (7.1)

in the sense that for any bounded function f on S,

E (f(Xn+1) | (X0, . . . , Xn)) = E (f(Xn+1) | Xn)

holds. The property (7.1) is called the Markov property. The Markov chain is called ho-
mogeneous whenever the transition probabilities (7.1) do not depend on the time parameter
n.

121
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Of course, with some "large memory", every sequence of random variables Yn taking
values on a possibly different state space En at each time step, and with more sophisticated
correlations, can be encapsulated in a Markov chain by considering the path space models

Xn = (n, (Y0, . . . , Yn)) ∈ S = ∪n≥0 ({n} × (S0 × . . .× Sn)) . (7.2)

Thus, the definition of a Markov chain is implicitly associated with some simple topological
aspects of the state space. We shall return to these questions in section 8.5.4. The latter
section is dedicated to historical and path space models associated with elementary Markov
chains.

Sequences of independent real valued r.v. are clearly Markov chains. However, these
random sequences that do not exhibit any memory, are clearly useless to represent random
evolutions that involve any correlation between the random states. The simplest non-trivial
example with some variability is the two-states S = {0, 1} valued homogeneous Markov
chain model. We will use this elementary example to illustrate the main probabilistic
models used in the theory of Markov chains.

We emphasize that Markov chains can be introduced and interpreted in several equiva-
lent ways, each being related to a specific mathematical model.

In the next sections, we discuss these equivalent formulations. Their extension to more
general finite state space Markov chains follows the same line of arguments; thus their
detailed description is omitted.

For finite space spaces S := {e1, . . . , ed}, a probability measure η on S can be regarded
as a a mapping

η : ei ∈ S �→ η(ei) := pi ∈ [0, 1] s.t.
∑

1≤i≤d

pi = 1.

In other words, a probability measure (η(ei))1≤i≤d can be seen as a point in the (d − 1)-
dimensional simplex ∆d−1 defined in (0.2), and B(S) = RS .

When S = {0, 1}, these identifications are summarized by

P(S) := ∆1 = {(p0, p1) ∈ [0, 1] : p0 + p1 = 1}
= {(u, 1− u) : u ∈ [0, 1]} ⊂ [0, 1]2 and B(S) = R{0,1}.

7.2 Elementary transitions

The first way to introduce a non-trivial homogeneous Markov chain model on a finite or a
countable state space S is to describe the law of the random state Xn+1 given the present
value Xn. These distributions are called Markov transitions, and they are defined by the
following formula

∀x, y ∈ S P (Xn+1 = y | Xn = x) = M(x, y) (7.3)

for some given numbers M(x, y) ∈ [0, 1] such that
∑

y M(x, y) = 1, for any x ∈ S; in
other words, we have M(x, .) ∈ P(S), for any x ∈ S. Note that for any sequence of states
(x0, . . . , xn) ∈ Sn+1 we have

P ((X0, . . . , Xn) = (x0, . . . , xn)) = M(x0, x1) . . .M(xn−1, xn). (7.4)
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In the case S = {0, 1}, we notice that

P (Xn+1 = 0 | Xn = 0) = M(0, 0) = 1− P (Xn+1 = 1 | Xn = 0) = 1−M(0, 1)

P (Xn+1 = 0 | Xn = 1) = M(1, 0) = 1− P (Xn+1 = 1 | Xn = 1) = 1−M(1, 1).

(7.5)

7.3 Markov integral operators
The Markov transition M defined in (7.3) is associated with two integral operators.

The first one maps the set of functions B(S) into itself

M : f ∈ B(S) �→ M(f) ∈ B(S)

using the conditional expectation operator

x �→ E (f(Xn+1) | Xn = x) =
∑
y∈S

M(x, y) f(y) := M(f)(x).

Recalling that

P (Xn+1 = y) =
∑
x∈S

P (Xn+1 = y | Xn = x) P (Xn = x) =
∑
x∈S

P (Xn = x) M(x, y)

we also check the transport formula:

ηn(x) := P (Xn = x) ⇒ ηn+1(y) =
∑
x∈S

ηn(x) M(x, y) := (ηnM) (y).

This shows that M also maps the set P(S) into itself

M : η ∈ P(S) �→ ηM ∈ P(S) with (ηM)(y) :=
∑
x∈S

η(x) M(x, y).

Using (7.4) we clearly have that for any 0 ≤ m ≤ n and any pair of states (xm, xn) ∈ S2

P (Xn = xn | Xm = xm)

=
∑

(xm+1,...,xn)∈Sn−m

M(xm, xm+1) . . .M(xn−1, xn) := M (n−m)(xm, xn)
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with the composition of the operators Mn = Mn−1M = MMn−1 defined by induction
using the formulae

Mn(x0, xn) =
∑

xn−1∈S

Mn−1(x0, xn−1)M(xn−1, xn) =
∑
x1∈S

M(x0, x1)M
n−1(x1, xn).

The above formula is sometimes called the Chapman-Kolmogorov equation. The common
link of Markov chain analysis with the theory of dynamical systems is provided by the
following proposition.

Proposition 7.3.1 The probability distributions ηn of the random states Xn of a
Markov chain taking values in a finite set S are the solutions of a linear dynamical
system in the simplex P(S)

∀n ≥ 1 ηn = ηn−1M. (7.6)

For any 0 ≤ p ≤ n, we have

ηn = ηpM
n−p = η0M

n. (7.7)

Important remark : Proposition 7.3.1 shows that we can reduce the analysis of Markov
chain distributions to manipulations of operators on functions or on probability measures
and their associated linear dynamical system.

7.4 Equilibrium measures
Proposition 7.3.1 shows that (whenever it exists) the limiting distribution

lim
n→∞

ηn = lim
n→∞

Law(Xn) = η∞ (7.8)

satisfies the fixed point equation
η∞M = η∞. (7.9)

We prove this claim taking the limits, as n ↑ ∞ in the evolution equation

ηn︸︷︷︸
→η∞

= ηn−1︸︷︷︸
→η∞

M ⇒ (7.9).

We illustrate these equilibrium measures with the two-states Markov chain model (7.5). In
this situation, the invariant measure is given by

η∞(0) ∝ M(1, 0) and η∞(1) ∝ M(0, 1).

Then we find that

(η∞M)(0) = η∞(0)M(0, 0) + η∞(1)M(1, 0)

∝ M(1, 0)(1−M(0, 1)) +M(0, 1)M(1, 0) = M(1, 0) ∝ η∞(0).
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Definition 7.4.1 Whenever it exists, the solution η∞ of the fixed point equation (7.9) is
called the invariant distribution or the limiting distribution of the Markov chain Xn with
Markov transition M .

Definition 7.4.2 A Markov transition M satisfying the reversibility property

∀x, y ∈ S π(x) M(x, y) = π(y) M(y, x) (7.10)

for some measure π is called a reversible transition w.r.t. the measure π.

For instance the Markov transition of the two-states Markov chain model (7.5) is re-
versible w.r.t. the uniform measure π(0) = π(1) = 1/2 on {0, 1} as soon as M(0, 1) =
M(1, 0).

Proposition 7.4.3 Suppose that a Markov transition M is a reversible transition w.r.t.
some probability measure π. Then π is the invariant measure of the Markov chain with
Markov transition M .

Proof :
We have

(7.10) =⇒ ∀y ∈ S (πM)(y) =
∑
x∈S

π(x) M(x, y) = π(y)
∑
x∈S

M(y, x) = π(y).

This shows that π = πM is a solution of the fixed point equation (7.9).

7.5 Stochastic matrices
For finite and ordered state spaces S = {e1, . . . , ed}, we can identify measures and functions
using the vector notation defined in (0.1)

Mn =




Mn(e1, e1) . . . Mn(e1, ed)
...

...
...

Mn(ed, e1) . . . Mn(ed, ed)


 .

Notice that the entries of each line are [0, 1]-valued and they sum to 1. These matrices are
called stochastic matrices in the literature on finite state space valued Markov chain.

Using the identification of measures and functions with the line and column vectors
discussed in (0.1), we check that

Mn(f) =




Mn(f)(e1)
...

Mn(f)(ed)


 =




Mn(e1, e1) . . . Mn(e1, ed)
...

...
...

Mn(ed, e1) . . . Mn(ed, ed)







f(e1)
...

f(ed)




and

ηM = [(ηM)(e1), . . . , (ηM)(ed)]

= [η(e1), . . . , η(ed)]




Mn(e1, e1) . . . Mn(e1, ed)
...

...
...

Mn(ed, e1) . . . Mn(ed, ed)


 .
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Important remark : Using these matrix formulations of the Markov transition, the
evolution equations (7.6) and (7.7) reduce to matrix operations. This shows that the analysis
of a Markov chain on finite and ordered state spaces reduces to manipulations of finite-
dimensional matrices.

For instance, the Markov transition (7.3) associated with the S = {0, 1} valued Markov
chain (7.5) is identified with the matrix

M =

(
M(0, 0) M(0, 1)
M(1, 0) M(1, 1)

)
.

If we set M(0, 1) = p and M(1, 0) = q, this matrix can also be rewritten as follows:

M =

(
1− p p
q 1− q

)
. (7.11)

Using the fact that

[q, p]

(
1− p p
q 1− q

)
= [q, p]

we conclude that

ηn := Law(Xn) −→ Law(Xn) = [η∞(0), η∞(1)] =

[
q

p+ q
,

p

p+ q

]
. (7.12)

We illustrate this model in the case where p = .2 and q = .1. The state 0 represents city
dwellers, and 1 stands for suburbs dwellers. The transition matrix indicates that during
every unit of time (years for instance) 20% of city dwellers move to suburbs, and 10%
of suburbanites move to the city. In this context, a realization Xn of the Markov chain
represents the random evolution of a given family from the suburbs to the city and vice
versa. Sampling N independent chains Xi

n, will represent the evolution of N individuals
randomly moving between suburbs and city.

7.6 Random dynamical systems
The dynamical system formulation of the Markov chain is related to the effective simulation
of the chain. In principle, any Markov chain can be described inductively by a (non unique)
recursion of the form

Xn+1 = Fn(Xn,Wn) (7.13)

where Wn stands for a sequence of independent random variables taking values on Rd, for
some d ≥ 1.

Important remark : This formulation indicates that the analysis of Markov chain
models of the form (7.13) is intimately related to the analysis of dynamical systems with
random components. We illustrate this remark with a linear Markov chain model and the
two-states Markov chain model presented in (7.5).

7.6.1 Linear Markov chain model

We consider the Rd-valued linear model defined by

∀n ≥ 1 Xn = AnXn−1 +BnWn (7.14)
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whereX0, Wn are Rd-valued independent random variables, and An, Bn are (d×d)-matrices.
We further assume that Wn are centered and we denote by Pn = Cov(Wn,Wn), n ≥ 1 their
covariance matrix; we also set P0 = Cov(X0, X0). Using simple algebraic manipulations, we
find that

Xn = (An . . . A1)X0 +
∑

1≤p≤n

(An . . . Ap+1)BpWp. (7.15)

In (7.15) we have used the dots to indicate descending arrangement of indices. We also
use the convention that An . . . Ap+1 = Id for p = n. Now we conclude from (7.15) that
E(Xn) = (An . . . A1) E(X0) and

Cov(Xn, Xn)

= (An . . . A1)P0 (An . . . A1)
′
+
∑

1≤p≤n (An . . . Ap+1)Bp Pp B′
p (An . . . Ap+1)

′
.

(7.16)

If we denote by X ′
n the solution of the linear system (7.14) evolving with the same

randomness but a different initial variable X ′
0 then

Xn −X ′
n = (An . . . A1) (X0 −X ′

0).

For one-dimensional and time homogeneous models (An, Bn,Cov(Wn,Wn)) = (a, b, σ2)
we find that

|Xn −X ′
n| = |a|n |X0 −X ′

0|
E(Xn) = an E(X0) and Var(Xn) = a2n Var(X0) + (σb)2

∑
0≤p<n

a2p. (7.17)

For instance, when a < 1 and E(X0) = 0 we have E(Xn) = 0 and

Var(Xn) = σ2 b2

1− a2
(
1− a2n

)
→n→∞ σ2 b2

1− a2
.

We also easily check that the Markov chain forgets its initial condition exponentially fast
in the sense that

|Xn −X ′
n| = |a|n |X0 −X ′

0| →n→∞ 0.

7.6.2 Two-states Markov models

For the {0, 1}-valued Markov chain discussed in (7.5), we can choose independent r.v. Wn =
Un uniformly distributed on [0, 1], and set

Xn+1 = Fn(Xn, Un)

:= 1[0,M(Xn,0)[(Un)× 0 + 1[M(Xn,0),1](Un)× 1 = 1[M(Xn,0),1](Un)

with the function

F : (x, u) ∈ S × [0, 1] �→ F (x, u) := 1[M(x,0),1](u).

This dynamical formulation does not really help to analyze the time evolution of the Markov
chain. In this context, the matrix interpretation appears to give a more adequate algebraic
tool to analyze the convergence of this model when the time tends to infinity.
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7.7 Transition diagrams

Markov chains on finite state spaces (with a reasonably large cardinality) are often defined
by the a synthetic transition diagram that expresses all the possible transitions of the chain
in a time step. The transition diagram of the {0, 1}-valued Markov model discussed above
is given by

0M(0,0) ��

M(0,1)

�� 1 M(1,1)��
M(1,0)

�� .

For instance, from state 0 we can move to state 1 with probability M(0, 1), or we can stay
in 0 with probability M(0, 0) = 1−M(0, 1).

We extend easily these constructions to any reasonably large finite set. For instance the
transition matrix




M(1, 1) M(1, 2) M(1, 3)
M(2, 1) M(2, 2) M(2, 3)
M(3, 1) M(3, 2) M(3, 3)




of a {1, 2, 3}-valued Markov chain is given by the following transition diagram

2
��

�� ��
1��

��

�� 3

��

����

.

7.8 The tree of outcomes

One more way of introducing a Markov chain on a given state space, is to consider the tree of
the possible outcomes w.r.t. the time parameter. The tree of outcomes of the {0, 1}-valued
Markov model starting at X0 = 0 is given below
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1

M(1,0)

��
1

M(1,1)

��

M(1,0)

��

0
1

��

��0

��

M(0,1)



M(0,0)

��

0
1

M(1,0)

��

M(0,1)



0

��

M(0,0)
��

M(0,1)



0
1

��



��0

��

M(0,1)

��

Time axis: n = 0 n = 1 n = 2 n = 3 n = 4

.

The conditional probabilities are computed using the product of the transition proba-
bility from the conditional starting point. For instance, we have that

P ((X1, X2, X3) = (1, 1, 0) | X0 = 0) = M(0, 1)M(1, 1)M(1, 0)

and
P ((X2, X3) = (0, 1) | X1 = 0) = M(0, 0)M(0, 1).

7.9 General state space models
The choice of the formulation of a Markov chain depends on the problem at hand, but
it is always preferable to keep in mind the different interpretations discussed in earlier
sections to develop a certain physical or mathematical intuition about the evolution of a
given stochastic process.

For general state space Markov chain models, only the first and the third formulations
are generally used. In this context, the Markov chain is defined in terms of some not
necessarily time homogeneous Markov transitions,

∀x ∈ S P (Xn = xn | Xn−1 = xn−1) = Mn(xn−1, dxn)

where Mn(x, .) stands for some probability measure over the set S. In this general frame-
work, the Markov transitions Mn are associated with two integral operators

E (f(Xn) | Xn−1 = xn−1) =

∫
Mn(xn−1, dxn) f(xn) := Mn(f)(xn−1)

and if we set ηn(dxn) := P (Xn ∈ dxn) , then

ηn+1(dxn+1) =

∫
ηn(dxn) Mn+1(xn, dxn+1) := (ηnMn+1) (dxn+1).
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This transport equation sometimes is written in the more synthetic form

ηn+1 = ηnMn+1 = ηn−1MnMn+1 = . . . = η0M1 . . .Mn+1

with the composition of operators M1 . . .Mn defined inductively using the formulae

(M1 . . .Mn)(x0, dxn) =

∫
(M1 . . .Mn−1)(x0, dxn−1)Mn(xn−1, dxn)

=

∫
M1(x0, dx1) (M2 . . .Mn)(x1, dxn).

Definition 7.9.1 The composition operators

∀0 ≤ p ≤ n Mp,n = Mp+1Mp+1 . . .Mn

are called the semigroup (abbreviated sg) of the Markov chain, with the convention Mn,n =
Id the identity operator, for p = n.

Notice that for any 0 ≤ p ≤ q ≤ n we have

Mp,n = Mp,qMq,n and ηn = ηpMp,n.

We illustrate these abstract models with the Gaussian Markov transitions given by

Mn(xn−1, dxn) =
1√
2πσ2

n

exp {− 1

2σ2
n

(xn − an xn−1)
2} dxn.

This collection of probability measures describes the elementary probability transitions of
the Markov chain defined by the random evolution equation

Xn = an Xn−1 + bn Wn, n ≥ 1 (7.18)

where (an, σn) ∈ R2, bn ∈ R− {0}, and (Wn)n≥1 stands for a sequence of independent and
centered Gaussian r.v. with variance σ2

n > 0.
We note that in this situation, the probability measures of the random trajectories are

given by

P(X1,...,Xn)(d(x1, . . . , xn) | X0 = x0) =

n∏
p=1

Mp(xp−1, dxp)

=




n∏
p=1

1√
2πσ2

pb
2
p

e
−

(xp−apxp−1)2

2σ2
pb2p dxp


 .

This model has the same form as the one-dimensional version of the linear Markov chain
discussed in (7.14). The only difference is that the random sequences Wn are (centered)
Gaussian random variables with variance σ2

n. We further assume that the initial state X0

is a Gaussian random variable.
Since any linear combination of independent Gaussian variables is again a Gaussian

random variable, we conclude that the random states Xn are Gaussian. In addition, if we
take an = a =

√
1− ε (with ε ∈]0, 1]), bn = b =

√
ε, and σn = σ in (7.18) and in (7.17),

then we find that
lim
n→∞

E(Xn) = 0 and lim
n→∞

Var(Xn) = σ2.
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Roughly speaking, this indicates that the limiting invariant measure of the chain is given
by

P(X∞ ∈ dx) =
1√
2πσ2

exp {− 1

2σ2
x2} dx := π(dx).

Much more is true. We easily check that

M(x, dy) =
1√

2πσ2ε
exp {− 1

2σ2ε
(y −

√
1− ε x)2} dx

is reversible w.r.t. the Gaussian measure π in the sense that

π(dx)M(x, dy) = π(dy)M(y, dx). (7.19)

We end this section with a time homogeneous model representing the waiting time of
the occurrence of some independent random events. We let p(i) be a distribution on the
set N − {0}, such that

∑
i≥1 ip(i) < ∞. We consider the Markov transitions on the set of

integers S = N defined by

M(0, i) = p(i) ∀i ≥ 1
M(i, i− 1) = 1 ∀i > 0 otherwise M(i, j) = 0. (7.20)

The transition diagram of the chain is given below:

0 p(1) ��
p(2)

��

p(3)





p(4)





p(5)

		
1�� 2�� 3�� 4�� 5�� . . . .

The parameters p(i) represent the probability that the period between the occurrences of
two events is i units of time. For instance p(1) denotes the probability that the next event
occurs after one unit of time, p(2) denotes the probability that it occurs after 2 units of
time.

The chain Xn represents the time until the occurrence of the next event.
For instance, p(i) can be seen as the probability that a bus arrives after i minutes,

and Xn represents the time till the next bus arrives. If we denote by In a sequence of
independent r.v. with common law p, then Xn can be written in the following form

Xn = (Xn−1 − 1) 1Xn−1 �=0 + 1Xn−1=0 In.

After some elementary computations (cf. exercise 87), we prove that the invariant measure
of Xn is given by

∀i ≥ 1 π(i) =
P(I1 ≥ i)

1 + E(I1)
and π(0) =

1

1 + E(I1)
. (7.21)

Important remark : The above observations show that the equilibrium measures
discussed in section 7.4 and the reversible property presented in definition 7.4.2 are far
from being restricted to finite state space models. The fixed point analysis (7.8) and the
proposition 7.4.3 are also true for general state space models.

A more refined analysis of countable state space models is provided in section 8.5 dedi-
cated to the topological properties of these models.
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7.10 Nonlinear Markov chains

As their name indicates, interacting Markov chains are discrete time stochastic processes
equipped with a particular spatial and/or temporal interaction structure. In this section,
we discuss two different classes of interaction mechanisms, namely spatial and temporal
interaction models.

The second class of models can be interpreted as the random evolution of a population
of a fixed number of N interacting individuals. More precisely, the elementary transitions of
each individual depend on the whole population, and more particularly on the occupation
measure of the population of individuals. This type of interaction is called mean field
interaction to reflect the fact that the individuals interact with the empirical distribution
of the whole population.

7.10.1 Self interacting processes

The elementary transitions of self-interacting processes depend on the history of the process,
and more particularly on the occupation measure of the chain from the origin up to the
present time.

The resulting process can be interpreted as the motion of a single individual evolving
with reinforced learning type strategies. More precisely, every elementary move of the
individual at time n depends on the way it has explored the state space in the past up
to the time horizon n. For instance, a site which has been visited many times can be
more attractive (or repulsive) than other sites. This type of natural positive or negative
reinforcement often arises when a tourist explores randomly some places in a city. In this
context, the individual is often tempted to enter more often in a street, restaurant or pub
that has been visited several times.

More formally, given the historical evolution of the process

Xn := (X0, . . . , Xn)

up to current time n, the transitionXn � Xn+1 depends on the random occupation measure

m(Xn) :=
1

n+ 1

∑
0≤p≤n

δXp
.

We illustrate this class of models with a toy example. Let µ be a given probability
measure on S, and ε ∈ [0, 1] be a reinforcement parameter. We associate with these objects
the self-interacting process defined sequentially by the Markov transitions:

P (Xn+1 ∈ dx | Xn) := ε m(Xn)(dx) + (1− ε) µ(dx). (7.22)

In words, to sample the transition Xn � Xn+1, we flip a coin to determine whether or not
we look back in the past. With a probability ε, the random state Xn+1 chooses randomly
and uniformly one of the values Xp, 0 ≤ p ≤ n. With a probability (1 − ε), the random
state Xn+1 is a fresh new r.v. with distribution µ.

More generally, self-interacting processes are defined in terms of a collection of Markov
transitions Kη(x, dy) indexed by the set P(S) of all probability measures over some state
space S.



Markov chains 133

The elementary transitions Xn � Xn+1 of the self interacting Markov chain asso-
ciated with the collection of transitions Mη are given by the formula

P(Xn+1 ∈ dx | Xn) = Km(Xn)(Xn, dx) (7.23)

with the occupation measure m (Xn) of the historical process Xn at time n given
by

m(Xn) :=
1

n+ 1

∑
0≤p≤n

δXp .

The reader has certainly noticed that Xn is not a Markov chain but the historical process

Xn−1 := (X0, . . . , Xn−1) � Xn := (Xn−1, Xn) = ((X0, . . . , Xn−1), Xn)

always has the Markov property.
For regular Markov chains Mη the occupation measures

Sn = m(Xn−1) =
1

n

n−1∑
k=0

δXk

converge when n tends to ∞ to the fixed point η∞ = Φ(η∞) of the nonlinear transformation
Φ. The fixed point is defined as

Φ : η ∈ P(S) −→ Φ(η) := ηKη ∈ P(S). (7.24)

The proof of this convergence result relies on the stability properties of nonlinear reinforced
Markov chain models. It is far beyond the scope of these lecture notes to present these
sophisticated tools. We refer the interested reader to [77, 78].

In the toy example (7.22) discussed above we have

Φ(η) = ε η + (1− ε) µ =⇒ η∞ = µ.

We also notice that the reinforcement parameter reflects the contraction properties of the
mapping Φ, in the sense that

Φ(η1)− Φ(η2) = ε [η1 − η2].

We refer the reader to exercise 17 for an estimate of the convergence of the law of the
random states Xn to µ, as n tends to ∞.

We end this section with a genetic type self-interacting Markov chain model associated
with a Markov transition M and some ]0, 1]-valued potential function G on some state space
S. The transition of this chain is given by the formula

P(Xn ∈ dy | X0, . . . , Xn−1)

= G(Xn−1) M(Xn−1, dy) + (1−G(Xn−1))

n−1∑
k=0

G(Xk)∑n−1
l=0 G(Xl)

M(Xk, dy).

This evolutionary type model has the same form as (7.23) with the collection of transitions
Kη(x, dz) given by

Kη(x, dz) = G(x) M(x, dz) + (1−G(x))

∫

S

η(dy)
G(y)

η(G)
M(y, dz). (7.25)
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It is a simple exercise to check that the mapping Φ defined in (7.24) is given for any bounded
function f on S by

η(Kη(f)) = η

([
GM(f) + (1−G) η

(
GM(f)

η(G)

)])

= η (GM(f)) + η

(
GM(f)

η(G)

)
− η(G)η

(
GM(f)

η(G)

)

= η

(
GM(f)

η(G)

)
:= Φ(η)(f).

In other words, we have

Φ(η) = ΨG(η)M with ΨG(η)(dx) =
1

η(G)
G(x) η(dx). (7.26)

The r.h.s. transformation ΨG is called the Boltzmann-Gibbs transformation associated with
the potential function G. In this notation, the Markov transition (7.25) takes the following
form

Kη(x, dz) = G(x) M(x, dz) + (1−G(x)) (ΨG(η)M)(dz).

7.10.2 Mean field particle models

These processes are defined in terms of a Markov chain ξn :=
(
ξin
)
1≤i≤N

on some product
state space SN = (S × . . . × S). The index n ∈ N represents the time parameter, and the
number of dimensions N is interpreted as the number of individuals (a.k.a. particles). The
random states in SN are interpreted as a population of N individuals. The elementary
transitions of each individual ξin � ξin+1 depend on the occupation measure of the whole
population defined by

m(ξn) :=
1

N

∑
1≤i≤N

δξin .

More formally, given a collection of Markov transitions Kn+1,η indexed by the time
parameter, and the set P(S) of all probability measures over some state space S,
we have

P (ξn+1 ∈ dx | ξn) :=
∏

1≤j≤N

Kn+1,m(ξn)

(
ξjn, dx

j
)
. (7.27)

In the above display, dx = d(x1, . . . , xN ) := dx1× . . .×dxN stands for an infinites-
imal neighborhood of the point x = (x1, . . . , xN ) in SN . The initial population
ξ0 :=

(
ξi0
)
1≤i≤N

consists of N independent r.v. with some given common law η0.

We consider the sequence of random empirical measures

ηNn = m(ξn) :=
1

N

∑
1≤i≤N

δξin .

Initially, by the law of large numbers discussed in section 5.1, for any function f we have

√
N

(
ηN0 (f)− η0(f)

)
:= V N

0 (f) ⇐⇒ ηN0 (f) = η0(f) +
1√
N

V N
0 (f)
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with the empirical random field V N
0 such that

E
(
V N
0 (f)

)
= 0 and E

(
[V N

0 (f)]2
)
≤ 1

as soon as osc(f) ≤ 1.
In much the same way, the local sampling errors induced by the mean field particle

model (7.27) are expressed in terms of the empirical random field sequence V N
n defined by

V N
n+1 =

√
N

[
ηNn+1 − Φn+1

(
ηNn

)]
.

Here again, we notice that V N
n+1 is alternatively defined by the following stochastic pertur-

bation formulae

ηNn+1 = Φn+1

(
ηNn

)
+

1√
N

V N
n+1. (7.28)

It is a matter of a rather elementary check to see that

E
(
V N
n+1(f) | ξn

)
= 0

E
(
V N
n+1(f)

2 | ξn
)

=

∫
ηNn (dx) Kn+1,ηN

n

[(
f −Kn+1,ηN

n
(f)(x)

)2]
(x)

≤ osc(f)2. (7.29)

Here, the N -particle model can also be interpreted as a stochastic perturbation of the
limiting system

ηn+1 = Φn+1 (ηn) := ηnKn+1,ηn
. (7.30)

In other words, for regular models one can prove that for any bounded function f we have
the almost sure convergence result

lim
N→∞

ηNn (f) = ηn(f).

It is important to observe that ηn can be interpreted as the law of the random
states Xn of the nonlinear Markov chain model defined by

P
(
Xn+1 ∈ dx | Xn

)
= Kn+1,ηn

(
Xn, dx

)
with ηn = Law(Xn). (7.31)

We check this claim by a simple induction with the time parameter. The Markov
chain Xn is called a McKean interpretation of the nonlinear measure valued equa-
tion (7.30).

7.10.3 McKean-Vlasov diffusions

Prototypes of discrete generation and nonlinear Markov-McKean models are given by McKean-
Vlasov-Fokker-Planck diffusion type models arising in fluid mechanics, as well as in mean
field game theory. In dimension d = 1, these non-homogeneous Markov models are given
by an R-valued stochastic process defined by the recursive equation

Xn −Xn−1 = an(Xn−1, ηn−1) + σn(Xn−1, ηn−1) Wn (7.32)
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with ηn−1 := Law(Xn−1). In the above formula, X0 is a r.v. (Wn)n≥0 is a collection of
i.i.d. centered Gaussian random variables with unit variance, and the drift and diffusion
functions are defined by

an(Xn−1, ηn−1) =

∫
an(Xn−1, xn−1) ηn−1(dxn−1)

σn(Xn−1, ηn−1) =

∫
σn(Xn−1, xn−1) ηn−1(dxn−1)

for some regular mappings an and σn. Whenever σn(x, η) ≥ ε, for some ε > 0, the law of
the random states ηn = Law(Xn) satisfies the evolution equation (7.30), with the McKean
transitions given by

Kn,η(x, dy) =
1√

2πσ2
n(x, η)

exp

{
−1

2

(
(y − x)− an(x, η)

σn(x, η)

)2
}

dy.

The mean field particle model (7.27) associated with these McKean-Vlasov models is
defined by the system of N interacting equations

ξin − ξin−1 = an(ξ
i
n−1, η

N
n−1) + σn(ξ

i
n−1, η

N
n−1) W

i
n

=
1

N

∑
1≤j≤N

an(ξ
i
n−1, ξ

j
n−1) +

1

N

∑
1≤j≤N

σn(ξ
i
n−1, ξ

j
n−1) W

i
n

with 1 ≤ i ≤ N . In the above displayed formulae, W i
n stands for N independent copies of

Wn.
A more general class of McKean-Markov chain models on some measurable state space

S is given by the recursive formulae

Xn = Fn(Xn−1, ηn−1,Wn) with ηn−1 := Law(Xn−1). (7.33)

In the above display, Wn is a collection of independent, and independent of (Xp)0≤p<n

random variables taking values in some state space W, and Fn is a measurable mapping
from (S × P(S)×W) into S.

Here again, we easily check that the law of the random states ηn = Law(Xn) satisfies
the evolution equation (7.30) with the McKean transitions

Kn,η(f)(x) = E [f(Fn(x, η,Wn))] .

7.10.4 Interacting jump processes

We illustrate the mean field particle models (7.27) with the non-homogeneous version of
the Markov transitions discussed in (7.25). It is given by

Kn+1,η(u, dw) = Gn(u) Mn+1(u, dw) + (1−Gn(u)) ΨGn(η)Mn+1(dw) (7.34)

for some Markov transitions Mn+1 and some ]0, 1]-valued potential functions Gn on S. In
this context, arguing as in (7.26) we prove that

ηKn+1,η := Φn+1(η) = ΨGn
(η)Mn+1. (7.35)

By construction, it is readily checked that

ΨGn(m(ξn)) :=
∑

1≤i≤N

Gn(ξ
i
n)∑

1≤j≤N Gn(ξ
j
n)

δξin
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and therefore

Kn+1,m(ξn)(u, dw)

= Gn(u) Mn+1(u, dw) + (1−Gn(u))
∑

1≤i≤N
Gn(ξ

i
n)∑

1≤j≤N Gn(ξ
j
n)

Mn+1(ξ
i
n, dw).

In this situation, the mean field model (7.27) can be interpreted as an interacting jump
process transition.

Next, we illustrate the non-uniqueness of Markov transitions Kn+1,η satisfying the com-
patibility condition (7.35). Let ε be any non-negative number such that εGn(x) ∈ [0, 1], for
any x ∈ S, and set

Kn+1,η(u, dw) := εGn(u) Mn+1(u, dw) + (1− εGn(u)) ΨGn
(η)Mn+1(dw)

It is not difficult to check that for any function f on S,

Kn+1,η(f)(u) = εGn(u) Mn+1(f)(u) + (1− εGn(u)) ΨGn(η)Mn+1(f)

and

ηKn+1,η(f) = εη(GnMn+1(f)) + (1− εη(Gn)) ΨGn(η)Mn+1(f)

= Φn+1(η)(f) + εη(GnMn+1(f))− εη(Gn)
η(GnMn+1(f))

η(Gn)
= Φn+1(η)(f).

When ε = 0, the Markov transition Kn+1,η reduces to

Kn+1,η(u, dw) := ΨGn
(η)Mn+1(dw).

In this particular situation, it is readily checked that

Kn+1,m(ξn)(u, dw) :=
∑

1≤i≤N

Gn(ξ
i
n)∑

1≤j≤N Gn(ξ
j
n)

Mn+1(ξ
i
n, dw). (7.36)

The corresponding evolution of the mean field particle model (7.27 ) is given by the genetic
type selection-mutation transitions

P (ξn+1 ∈ dx | ξn) :=
∏

1≤i≤N

∑
1≤j≤N

Gn(ξ
j
n)∑

1≤k≤N Gn(ξkn)
Mn+1(ξ

j
n, dx

i). (7.37)

In the above display, dx = d(x1, . . . , xN ) := dx1 × . . . × dxN stands for an infinitesimal
neighborhood of the point x = (x1, . . . , xN ) in SN . In other words, given ξn the particles
ξn+1 =

(
ξin+1

)
1≤i≤N

are N independent random samples with common distribution

Φn+1(m(ξn))(dw) :=
∑

1≤i≤N

Gn(ξ
i
n)∑

1≤j≤N Gn(ξ
j
n)

Mn+1(ξ
i
n, dw).

We refer the reader to the end of section 9.6 for a more detailed description of these
models in terms of evolutionary type processes.
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7.11 Exercises
Exercise 77 (Reflected Markov chain) Let (Wn)n≥0 be a collection of independent ran-
dom variables with probability distributions (µn)n≥0 on S = Rr, for some r ≥ 1. Let A ⊂ S
be a given subset. Consider the Markov chain starting on A � X0 and defined by

Xn+1 −Xn = (bn(Xn) + σn(Xn) Wn+1) 1A (Xn + bn(Xn) + σn(Xn) Wn+1)

for some collection of functions bn : x ∈ Rr �→ Rr and σn : x ∈ Rr �→ Rr×r. Check that
Xn ∈ A for any n ≥ 0. Compute the Markov transition Mn of the chain Xn in terms of
the Markov transitions Kn of the chain Yn defined by

Yn+1 − Yn = bn(Yn) + σn(Yn) Wn+1.

Exercise 78 (Random walks in a random environment) Let Θ be a [0, 1]-valued ran-
dom variable with distribution µ. Given Θ, we let W be a {−1,+1}-valued Bernoulli random
variable

P(W = +1 | Θ) = 1− P(W = −1 | Θ) = Θ.

Given Θ, we let Wn be a sequence of independent copies of W and we denote by Xn the
random walk

Xn = Xn−1 +Wn

starting at some given X0 = x0. Check that for any εi ∈ {−1,+1} with 1 ≤ i ≤ n we have

P (W1 = ε1, . . . ,Wn = εn | Θ) = Θ
∑

1≤i≤n
1+εi

2 (1−Θ)
n−

∑
1≤i≤n

1+εi
2

and deduce that

P (Θ ∈ dθ | W1, . . . ,Wn) = P
(
Θ ∈ dθ | Wn

)
∝ θWn (1− θ)

n−Wn µ(dθ)

with Wn =
∑

1≤i≤n
1+Wi

2 . Examine the situations where Θ is uniform on [0, 1], and Θ
follows a beta(a, b) distribution with parameters (a, b). Check that in both situations, we
have

E
(
Θ | Wn

)
→n→∞ Θ.

When Θ is a beta(a, b) distribution on [0, 1] check that Wn = [(Xn − x0) + n]/2 and

P (Xn+1 = Xn + 1 | Xn) =
n

a+ b+ n

(Xn − x0) + n

2n
+

a+ b

a+ b+ n

a

a+ b
�n↑∞ Θ.

Exercise 79 (Autoregressive models) A q-th order real valued autoregressive model (ab-
breviated AR(q)), for some given integer q ≥ 1, is defined by a recursion of the form

Yn = a+
∑

1≤p≤q

bp Yn−p + Vn

for any n ≥ q, with some given initial values (Y0, . . . , Yq−1), some parameters a, bk, c,
and a sequence of independent random variables Vn. Check that the column vector Xn =
(Yn, Yn+1 . . . , Yn+q−1)

′ satisfies a linear equation of the form

Xn+1 = c+BXn +Wn+1

for some column vector c ∈ Rq, some (q × q)-matrix and some sequence of Rq-valued inde-
pendent random variables Wn.
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Exercise 80 (Gun fight at OK Corral - Transition probabilities [237])
The Good (G), the Bad (B) and the Ugly (U) cowboys shoot with respective success

probabilities g > u > b ∈ [0, 1]. They draw and fire simultaneously, each of them firing at
the better shot of his opponents. Assuming that there are at least two survivors, the second
round of shooting starts and the gunfight continues, round after round, until there are fewer
than two survivors. Design the transitions of the Markov chain on the space of the alive
shooters at any round.

Exercise 81 (Gun fight at OK Corral - Random state distributions)
We consider the OK Corral gun fight described in exercise 80. We denote by p1(n),

p2(n), p3(n), and p4(n) the probabilities that the states (∅) (i.e., everybody has been killed),
(G), (U), and respectively (B) are reached at time n. We also let q1(n), q2(n) and q3(n) the
probabilities that the states (GB), (UB) and (GUB) are the result of the n-th round. Find
recurrence relations between pi(n+ 1) and (pi(n), qj(n))1≤j≤3 with 1 ≤ i ≤ 4; and between
qi(n+ 1) and (qj(n))1≤j≤3, with i = 1, 2, 3.

Exercise 82 We consider the stochastic matrix

M =
1

2




1 1 0
1
2 1 1

2
0 1 1


 .

Check that for any n ≥ 1 we have

Mn =
1

2n




3
2 +

(
2n−2 − 1

)
2n−1 1

2 +
(
2n−2 − 1

)
2n−2 2n−1 2n−2

1
2 +

(
2n−2 − 1

)
2n−1 3

2 +
(
2n−2 − 1

)


 →n↑∞




1
4

1
2

1
4

1
4

1
2

1
4

1
4

1
2

1
4


 .

Exercise 83 Consider the simple random walk (1.1) discussed in section 1.1.

• Prove that

∀n ≥ m P(Xn = y | Xm = x) = 2−(n−m)

(
n−m

(n−m)+(y−x)
2

)

if (n−m) + (y − x) is even, and 0 otherwise.

• Using the reflection principle presented in exercise 6, prove that for any x, y > 0 and
n ≥ m we have

P(Xn = y , Xk > 0, 0 ≤ k ≤ n | Xm = x)

= 2−(n−m)

[(
n−m

(n−m)+(y−x)
2

)
−
(

n−m
(n−m)−(x+y)

2

)]

if (n−m) + (y − x) is even, and 0 otherwise.

• Deduce that for any z < x ∨ y we have

P(Xn = y , Xk > z, 0 ≤ k ≤ n | Xm = x)

= 2−(n−m)

[(
n−m

(n−m)+(y−x)
2

)
−
(

n−m
(n−m)−(x+y)

2 + z

)] (7.38)

if (n−m) + (y − x) is even, and 0 otherwise.
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• Check that

P(Xn = x , Xk ≥ 0, 0 ≤ k ≤ n | X0 = 0)

= 2−n

[(
n

n+x
2

)
−
(

n
n−x
2 − 1

)](
2−n 1

n+ 1

(
n+ 1
n/2

)
when x = 0

)

and deduce that for any m ≥ 0 we have

P(Xk ≥ 0, 0 ≤ k ≤ 2m | X0 = 0) = 2−2m

(
2m
m

)
.

Exercise 84 Describe the mean field particle model associated with the nonlinear R-valued
Markov chain defined by

Xn = Xn−1 + E(log
(
1 +X

2

n−1

)
) +Wn

with X0 = x0 > 0, and with a sequence Wn of centered, independent and identically dis-
tributed Gaussian random variables s.t. E(W 2

n) = 1.

Exercise 85 Prove (7.15).

Exercise 86 Prove the reversible property (7.19).

Exercise 87 Prove formula (7.21).

Exercise 88 Prove the formulae (7.29).

Exercise 89 Consider the Markov transition on a state space S defined in (7.34). Prove
that for any function f on S we have

Kn+1,η(f) = εGn Mn+1(f) + (1− εGn) ΨGn
(η)Mn+1(f).

Deduce that ηKn+1,η = ΨGn
(η)Mn+1.



8
Analysis toolbox

Following the introduction of some representative Markov chain models in the previous
chapter, we are summarising now the main mathematical tools needed to analyse the con-
vergence properties of Markov chains when the time parameter tends to infinity. There is a
large variety of tools needed in the remaining chapters of the book. They range from simple
tools from linear algebra and elementary probability theory to more advanced methods from
functional analysis. We also present some more specific advanced probabilistic tools such
as coupling, strong stationary times, martingales and martingale limit theorems.

Not everything that can be counted counts,
and not everything that counts can be counted.
Albert Einstein (1879-1955).

8.1 Linear algebra

8.1.1 Diagonalisation type techniques

We return to the {0, 1}-valued Markov chain
model discussed in (7.11). We further as-
sume that all entries of the Markov transi-
tion M are positive (i.e. p∧q > 0). We equip
B({0, 1}) = R{0,1} with the scalar product

〈f1, f2〉 :=
∑

x∈{0,1}

f1(x)f2(x)

for any fi =

(
fi(0)
fi(1)

)
, with i = 1, 2, and

the norm |f1|2 = 〈f1, f1〉. Our next objective
is to compute the diagonal form of M . To this end, we observe that the characteristic
polynomial of M is given by

Det(M − λId) = (λ− 1) (λ− (1− (p+ q))) . (8.1)

This shows that M has two real eigenvalues

λ1 = 1 and λ2 = 1− (p+ q) (= (1− p)− q ≤ 1)

with the normalized eigenvectors ϕi :=

(
ϕi(0)
ϕi(1)

)
, with i = 1, 2, given by

ϕ1 =

(
1/
√
2

1/
√
2

)
and ϕ2 =

(
p/

√
p2 + q2

−q/
√
p2 + q2

)
. (8.2)

141
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We associate with these vectors the change of variable formula

P := (ϕ1, ϕ2) =

(
ϕ1(0) ϕ2(0)
ϕ1(1) ϕ2(1)

)
=

(
1/
√
2 p/

√
p2 + q2

1/
√
2 −q/

√
p2 + q2

)

and its inverse matrix

P−1 =
1

p+ q

(
q
√
2 p

√
2√

p2 + q2 −
√
p2 + q2

)
. (8.3)

By construction, we have that

PD =

(
ϕ1(0) ϕ2(0)
ϕ1(1) ϕ2(1)

)(
λ1 0
0 λ2

)

=

(
λ1 ϕ1(0) λ2 ϕ2(0)
λ1 ϕ1(1) λ2 ϕ2(1)

)
= M

(
ϕ1(0) ϕ2(0)
ϕ1(1) ϕ2(1)

)
= MP

from which we conclude that
M = PDP−1

and therefore

M2 = PDP−1PDP−1 = PD2P−1 ⇒ . . . ⇒ Mn = PDnP−1.

After some elementary computations, we find that

Mn =

(
π(0) π(1)
π(0) π(1)

)
+ λn

2 R (8.4)

with the probability measure π and the matrix R given by

π = [π(0), π(1)] =

[
q

p+ q
,

p

p+ q

]

R =

(
R(0, 0) R(0, 1)
R(1, 0) R(1, 1)

)
=

(
π(1) −π(1)
−π(0) π(0)

)
. (8.5)

In terms of operators acting on functions f =

(
f(0)
f(1)

)
∈ R{0,1}, we have proved the

following proposition.

Proposition 8.1.1 For any f ∈ B({0, 1}) and and x ∈ {0, 1} we have

Mn(f)(x) = π(f) + λn
2 R(f)(x) −→n→∞ π(f) (8.6)

with the matrix R and the probability measure π defined in (8.5).

Taking indicator functions f = 1y of the states y ∈ {0, 1}, we find that

∀x, y ∈ {0, 1} Mn(x, y) = π(y) + λn
2 R(x, y) −→n→∞ π(f).

In other words, the chain forgets its initial condition X0 = x and converges exponentially
fast to the measure π, in the sense that

sup
x∈{0,1}

|P (Xn = y | X0 = x)− π(y)| ≤ λn
2 −→n→∞ 0.

In the r.h.s. upper bound we have used the fact that |R(x, y)| ≤ π(0) ∨ π(1) ≤ 1.
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8.1.2 Perron Frobenius theorem

In section 8.1.1 we developed in some details the decomposition of a two-state Markov chain
transition using its eigenvalue decomposition. The following theorem extends this result to
general finite state space models.

Theorem 8.1.2 (Perron Frobenius) Let M = (M(x, y))x,y∈S be a stochastic
matrix on some finite (non-necessarily ordered) state space S such that Mm has
all entries positive for some m ≥ 1. Then, there exists a unique probability measure
π on S such that ∧x∈Sπ(x) > 0 and

πM = π with for any x, y ∈ S lim
n→∞

Mn(x, y) = π(y).

In addition, 1 is a simple root of the characteristic polynomial of M .

Remark : A detailed proof of this theorem can be found in the book of E. Seneta [239],
and the lecture notes of L. Saloff Costes [236]. It is out of the scope of these lectures to
enter into the details of the proof of this theorem.

To get some intuition, we provide a simple proof for m = 1.

We further assume that the following condition is met

M(x, y) ≥ ε ν(y)

for some ε ∈]0, 1], and x, y ∈ S and some probability measure ν on S such that
ν(y) > 0 for any y ∈ S.

Since the space space S is finite and all entries of M are positive, we can take ε =
Card(S)× infx,y M(x, y), and ν(x) = 1

Card(S)
, the uniform distribution on S.

To get one step further, we observe that

M(x, y) = (1− ε) Mε(x, y) + εν(y)

with the Markov transition

Mε(x, y) :=
M(x, y)− εν(y)

1− ε
.

This implies that

[M(f)(x)−M(f)(y)] = (1− ε) [Mε(f)(x)−Mε(f)(y)] .

On the other hand, for any Markov transition K on S, we have

K(f)(x)−K(f)(y) =
∑
u,v

(f(u)− f(v)) K(x, u)K(y, v) ⇒ osc (K(f)) ≤ osc(f).
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This implies that

osc (M(f)) = (1− ε) osc (Mε(f)) ≤ (1− ε) osc(f).

We conclude that

osc (Mn(f)) ≤ (1− ε) osc
(
Mn−1(f)

)
≤ . . . ≤ (1− ε)n osc(f). (8.7)

This implies that for any starting point x ∈ S and for any bounded function f we have
limn→∞ Mn(f)(x) = π(f) for some probability measure π. Letting n ↑ ∞, we find that

π(f) ←− πMn+1(f) = πMn(M(f)) −→ π(M(f))

from which we conclude that π = πM . We check that ∧x∈Sπ(x) > 0 using the fact that

π(y) =
∑
x∈S

π(x) M(x, y) ≥ ε
∑
x∈S

π(x) ν(y) = ε ν(y) > 0.

This ends the proof of the theorem.

Remark :
We end this section with some comments on the diagonalisation techniques developed

above. Instead of computing the right action eigenfunctions M(ϕi) = λiϕi we can analyze
the left action eigenmeasures πiM = λi πi, with i = 1, 2. We have already checked that the
invariant measure π1 = π is an eigenmeasure πM = λ1 π associated with the eigenvalue
λ1 = 1. It is also not difficult to check that the signed measure

π2 = [π2(0), π2(1)] = [1,−1]

is an eigenmeasure π2M = λ2 π2 associated with the eigenvalue λ2 = 1− (p+ q)

[1,−1]

(
1− p p
q 1− q

)
=

(
(1− p)− q
p− (1− q)

)
= (1− (p+ q)) [1,−1].

Consider the change of variable matrix

Q =

(
π1(0) π1(0)
π2(0) π2(1)

)
=

( q
p+q

p
p+q

1 −1

)
=⇒ Q−1 =

(
1 p

p+q

1 − q
p+q

)
.

By construction, we have
(

λ1 0
0 λ2

)
Q =

(
λ1π1(0) λ1π1(1)
λ2π2(0) λ2π2(1)

)
=

(
π1(0) π1(1)
π2(0) π2(1)

)
M = QM.

This yields the alternative decompositions

M = Q−1DQ =⇒ ∀n ≥ 1 Mn = Q−1DnQ.



Analysis toolbox 145

8.2 Functional analysis

8.2.1 Spectral decompositions

We return to the {0, 1}-valued Markov chain model (7.11) from section 8.1.1. We notice
that

〈ϕ1, ϕ2〉 =
p− q√

2(p2 + q2)
= 0 ⇐⇒ p = q

⇐⇒ M symmetric

=⇒ ϕ2 =
1√
2

(
1
−1

)
and π =

[
1

2
,
1

2

]
.

In this situation, we also find that

P−1 = P ′ =
1√
2

(
1 1
1 −1

)
.

Furthermore, the reversible property (7.10) is also met. By (8.6) we also find that

∀n ≥ 1 ∀x ∈ S Mn(f)(x) = π(f) + λn
2 〈f, ϕ2〉 ϕ2(x). (8.8)

Definition 8.2.1 We let l2(π) be the Hilbert space of functions on some finite
space S equipped with the scalar product

〈f1, f2〉π =
∑
x∈S

π(x)f1(x)f2(x) and the norm |f1|2π = 〈f1, f1〉π.

In the two-states example discussed above, we readily check that

〈f1, f2〉π =
1

2
〈f1, f2〉.

Using the fact that
|
√
2 ϕi|2π = |ϕi|2 = 1

for any i = 1, 2, we show that the functions ψi :=
√
2ϕi form an orthogonal basis of l2(π).

Recalling that ϕ1 is the unit function, we conclude that

Mn(f)(x) = 〈f, ψ1〉π ψ1(x)︸ ︷︷ ︸
=π(f)

+λn
2 〈f, ψ2〉π ψ2(x). (8.9)

In other words

Mn(x, y)/π(y) = 1 + λn
2 ψ2(x)ψ2(y) (= λn

1 ψ1(x)ψ1(y) + λn
2 ψ2(x)ψ2(y)) .

This {0, 1} = Z/2Z-valued Markov chain is a particular example of the Z/mZ-valued ran-
dom walk models discussed in section 25.4. The following spectral decomposition theorem
applies to any reversible Markov transition on some finite state space.
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Theorem 8.2.2 We let M be some reversible Markov transition w.r.t. some prob-
ability measure π on some finite space space S with cardinality d, such that Mm

has all positive entries for some m ≥ 1. In this situation M has a finite set of real
valued eigenvalues λ1 = 1 ≥ λ2 ≥ . . . ≥ λd > −1, and there exists an orthonor-
mal basis of l2(π) made of real valued eigenfunctions (ψi)1≤i≤d of (λi)1≤i≤d, with
ψ1 = 1 being the unit function. Furthermore, for any n ∈ N, we have the spectral
decomposition

Mn(x, y) = π(y) +
∑

1<i≤d

λn
i ψi(x)ψi(y)π(y).

The difference λ2 − λ1 is called the spectral gap.

Proof :
We recall that for any symmetric matrix K(x, y) on some finite space there exists some
matrix P such that PP ′ = Id, and a diagonal matrix D such that K = PDP ′ (this is
a direct consequence of the spectral theorem for matrices). A proof of this result can be
found in any textbook on elementary matrix theory. We let ϕi the column vectors of P .
By construction, we have

PD = (ϕ1, . . . , ϕd)D = (λ1ϕ1, . . . , λdϕd) = K (ϕ1, . . . , ϕd) (= KP )

if and only if K(ϕi) = λiϕi, for any ∀1 ≤ i ≤ d. When K(x, y) =
√
π(x) M(x, y) 1√

π(y)
, we

readily check that

π(x)M(x, y) = π(x)M(x, y)

⇔
√

π(x) M(x, y) 1√
π(y)

=
√
π(y) M(y, x) 1√

π(x)
⇔ K(x, y) = K(y, x).

In addition, the eigenvalues of M are given by ψi(x) =
1√
π(x)

ϕi(x). This follows from the

fact that

1√
π(x)

K(x, y)
√
π(y) = M(x, y) ⇒ M(ψi)(x) =

1√
π(x)

K(ϕi)(x) = λi ψi(x).

We also observe that these functions are orthonormal

〈ψi, ψj〉π = 〈ϕi, ϕj〉 =
∑
x∈S

ϕi(x)ϕj(x) = 1i=j .

Finally, we use the decomposition of the indicator function

1y =
∑

1≤j≤d

〈1y, ψj〉π ψi =
∑

1≤j≤d

π(y) ψi(y) ψi

to prove that

Mn(x, y) = Mn(1y)(x) =
∑

1≤j≤d

π(y) ψi(y) M
n(ψi)(x) =

∑
1≤j≤d

π(y) λn
i ψi(x) ψi(y).

The fact that λd > −1 follows from observing that

‖ψd‖ ≥ ‖M(ψd)‖ = |λd| ‖ψd‖ ⇒ |λd| ≤ 1.
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In addition, if λd = −1 we would have the following contradiction

0
n↑∞←− Mn(ϕd)(x) = (−1)nϕd(x) ⇒ (−1)n → 0.

This ends the proof of the theorem.

Corollary 8.2.3 In the settings of theorem 8.2.2, we have

π(x) |Mn(x, y)− π(y)| ≤ λn
�

√
π(x)(1− π(x))

√
π(y)(1− π(y)) ≤ e−ρ(M)n/4

with
λ� := sup

1<i≤d
|λi| and ρ(M) := 1− λ� ∈]0, 1[.

In addition, we have

∑
y∈S

|Mn(x, y)− π(y)| ≤
[

1

π(x)
M2n(x, x)− 1

]1/2
≤ λn

�

√
1− π(x)

π(x)

The quantity ρ(M) is called the absolute spectral gap.

Proof :
By the Cauchy Schwartz inequality, we have

∣∣∣∣
Mn(x, y)

π(y)
− 1

∣∣∣∣ ≤ λn
�


 ∑
1<i≤d

ψi(x)
2



1/2 

 ∑
1<i≤d

ψi(y)
2



1/2

π(y) = 〈1y, 1y〉π = 〈
∑

1≤j≤d

〈1y, ψj〉π︸ ︷︷ ︸
=π(y)ψi(y)

ψi,
∑

1≤j≤d

〈1y, ψj〉π ψi〉π = π(y)2
∑

1≤j≤d

ψi(y)
2.

This implies that
∑

1≤j≤d

ψi(y)
2 = 1/π(y) ⇒

∑
1<j≤d

ψi(y)
2 = [1− π(y)] /π(y).

Finally, we observe that λn
� = (1−ρ(M))n ≤ e−ρ(M) n, and x(1−x) ≤ 1/4 for any x ∈ [0, 1].

This completes the proof of the first assertion. To check the last one, we use the variance
inequality


∑
y∈S

π(y)f(y)



2

≤
∑
y∈S

π(y)f(y)2 ⇐⇒
∑
y∈S

g(y) ≤


∑
y∈S

π(y)−1 g(y)2



1/2

which is valid for any non negative functions f(y) = g(y)/π(y) on S, to prove that

∑
y∈S

|Mn(x, y)− π(y)| ≤


∑
y∈S

π(y)−1 |Mn(x, y)− π(y)|2


1/2

=


∑
y∈S

π(y)−1 Mn(x, y)2 − 1



1/2

=
[
π(x)−1 M2n(x, x)− 1

]1/2
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In the last assertion we have used the reversibility property

π(x0)M(x0, x1) . . .M(xn−1, xn) = M(x0, x1) . . .M(xn−1, xn)π(xn)

=⇒ π(x0)M
n(x0, xn) = Mn(x0, xn)π(xn)

The second assertion is now a direct consequence of the first estimate. This ends the proof
of the corollary.

Corollary 8.2.4 We equip I = {1, . . . , d} with some probability µ. We let Mi be a set of
Markov transitions on a possibly different state spaces Si, indexed by i ∈ I. We consider
the Markov transition on the product space S =

∏
1≤i≤d Si defined for any x = (xi)1≤i≤d

and any y = (yi)1≤i≤d ∈ S by

M(x, dy) =
∑

i∈I µ(i)
{∏

j∈I−{i} δxj (dyj)
}

Mi(xi, dyi).

In essence, this means that the chain chooses randomly a coordinate, say i, with probabil-
ity µ(i), and performs from the selected site a random move according to Mi (the other
coordinates remain unchanged).

If Mi has an invariant probability measure πi, for each i ∈ I, then π(dx) =
∏

i∈I πj(dxj)
is an invariant probability measure of M(x, dy).

In addition, if Mi has eigenfunctions ϕi with eigenvalues λi, for each i ∈ I, then M
has eigenfunctions

ϕ(x) =
∏
i∈I

ϕi(xi) with eigenvalues λ =
∑
i∈I

µ(i)λi.

Proof :
The first assertion follows from the fact that for any x = (xi)1≤i≤d, we have

∫ ∏
j∈I

πj(dxj) M(f)(x)

=
∑
i∈I

µ(i)

∫ 


∏
j∈I−{i}

πj(dxj)


 (πiM)︸ ︷︷ ︸

=πi

(dxi) f(x)

=

[∑
i∈I

µ(i)

] ∫ ∏
j∈I

πj(dxj)f(x) =

∫ ∏
j∈I

πj(dxj)f(x).

The proof of the second assertion is a direct consequence of the following decomposition

M (ϕ) (x) =
∑
i∈I

µ(i)




∏
i∈I−{i}

ϕj(xj)


 Mi(ϕi)(xi)︸ ︷︷ ︸

=λi ϕi(xi)

=

(∑
i∈I

µ(i) λi

)

∏
j∈I

ϕj(xj)


 = λ ϕ(x).

This ends the proof of the corollary.
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Example 8.2.5 We illustrate this corollary with the Markov transitions on Si = R given
by

Mi(x, dy) = µi(dy)

where µi stands for the law of some random variable Ui with mean E(Ui) = mi. Then we
have

Mi(ϕi) = λi ϕi

for λi = 0 and ϕi(u) = (u −mi), as well as for λi = 1 and ϕi(u) = 1. For any finite set
J ⊂ {1, . . . , d} the functions

ϕJ(x) :=
∏
j∈J

(xi −mi)


=



∏
j∈J

(xi −mi)


×




∏
j �∈J

1







are eigenfunctions associated with the eigenvalues

λJ :=
∑
j �∈J

µ(j) = 1− µ(J).

For more illustrations of this spectral decomposition theorem, we refer the reader to sec-
tion 25.4, and section 25.5. A more detailed discussion on the consequences of these spectral
decompositions can be found in the seminal Saint Flour summer school lectures of Laurent
Saloff-Costes [236].

8.2.2 Total variation norms

Definition 8.2.6 The total variation distance on the set P(S) of probability mea-
sures µ1 and µ2 on some finite state space S is given by

‖µ1 − µ2‖tv =
1

2

∑
x∈S

|µ1(x)− µ2(x)|.

The infimum measure µ1 ∧ µ2 is defined by

[µ1 ∧ µ2] (x) := µ1(x) ∧ µ2(x).

Definition 8.2.7 For a non-necessarily finite state space S, we have

‖µ1 − µ2‖tv =
1

2

∫ ∣∣∣∣
dµ1

dλ
(x)− dµ2

dλ
(x)

∣∣∣∣ λ(dx)

where pi(x) = dµi

dλ (x) stands for the density of the measure µi w.r.t. to some
common (dominating) measure λ; that is, we have

µi(dx) = pi(x) λ(dx).

The infimum measure µ1 ∧ µ2 is defined by

[µ1 ∧ µ2] (dx) := [p1(x) ∧ p2(x)] λ(dx).
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For instance, when the measures µi have a density pi w.r.t. the Lebesgue measure dx
on S = Rr, for some r ≥ 1 we have

‖µ1 − µ2‖tv =
1

2

∫
|p1(x)− p2(x)| dx

[µ1 ∧ µ2] (dx) = [p1(x) ∧ p2(x)] dx.

The choice of the reference measure is not unique. For instance, the distance can also be
expressed in terms of the probability measure λ(dx) = q(x) dx with q(x) := 1

2 [p1(x)+p2(x)]
by the formula

‖µ1 − µ2‖tv =
1

2

∫ ∣∣∣∣
p1(x)

q(x)
− p2(x)

q(x)

∣∣∣∣ q(x) dx.

Example 8.2.8 We let Z be a centered Gaussian r.v. with unit variance E(Z2) = 1.
We consider the distributions µ1 = Law(X1) and µ2 = Law(X2) of the Gaussian r.v.
X1 = m1 + Z and X2 = m2 + Z, with some given parameters m1 ≤ m2. We denote by
p1 and p2 the Gaussian densities of µ1 and µ2. In this notation, the density p1 ∧ p2 of
the infimum measure µ1 ∧ µ2 and its total mass

∫
[p1(x) ∧ p2(x)] dx are illustrated in the

following picture.

x

p1(x) & p2(x)

m1 m2

(m1 + m2)/2

This shows that

‖µ1 − µ2‖tv = 1−
∫
[p1(x) ∧ p2(x)] dx

= 1− [P (m2 + Z ≤ (m1 +m2)/2) + P (m1 + Z ≥ (m1 +m2)/2)]

= 1− [P (Z ≤ −(m1 −m2)/2) + P (Z ≥ (m2 −m1)/2)]

= 1− P [|Z| ≥ (m2 −m1)/2] = P [|Z| < (m2 −m1)/2]

≤ (m2 −m1)
1√
8π

e−(m2−m1)
2/8.

Example 8.2.9 When S = {0, 1}, we observe that

‖µ1 − µ2‖tv =
1

2
(|µ1(0)− µ2(0)|+ |(1− µ1(0))− (1− µ2(0))|)

= |µ1(0)− µ2(0)| = (µ1(0) ∨ µ2(0))− (µ1(0) ∧ µ2(0))

= ([1− µ1(1)] ∨ [1− µ2(1)])− (µ1(0) ∧ µ2(0))

= 1− [(µ1(0) ∧ µ2(0)) + (µ1(1) ∧ µ2(1))] .

In the above two-state model illustration, we also notice that for any function f ∈
B({0, 1}), we have

µ1(f)− µ2(f) = [µ1(0)f(0) + (1− µ1(0))f(1)]− [µ2(0)f(0) + (1− µ2(0))f(1)]

= [µ1(0)− µ2(0)]× (f(1)− f(0)).
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This proves the following proposition for two-state space models.
We note that the proposition also presents several equivalent definitions of the total

variation distance between probability measures.

Proposition 8.2.10 For any probability measures µ1 and µ2 ∈ P(S) on some state space
S, we have

‖µ1 − µ2‖tv = sup {|µ1(f)− µ2(f)| : f s.t. osc(f) ≤ 1} (8.10)

=
1

2
sup {|µ1(f)− µ2(f)| : f s.t. ‖f‖ ≤ 1} (8.11)

= sup {|µ1(A)− µ2(A)| : A ⊂ S}. (8.12)

In addition, we have
‖µ1 − µ2‖tv = 1− [µ1 ∧ µ2] (S). (8.13)

Proof :
The proof of these equivalent descriptions is provided for finite state space models only.
The analysis for general state spaces S equipped with some σ-field S can be found in [66].

We recall that for any subset A ⊂ S, and any measure ν on S we set ν(A) :=
∑

x∈S ν(x).
In this notation, we notice that for any measure ν = µ1 − µ2, with µ1, µ2 ∈ P(S),

ν(S) = µ1(S)− µ2(S) = 1− 1 = 0.

This implies that

ν(S) = ν(S+) + ν(S−) = 0 ⇒ ν(S+) = −ν(S−) (8.14)

with the subsets

S+ := {x ∈ S : ν(x) = µ1(x)− µ2(x) ≥ 0}
S− := {x ∈ S : ν(x) = µ1(x)− µ2(x) < 0}.

In addition, for any x ∈ S we have

ν(x) = ν+(x)− ν−(x) with
{

ν+(x) = ν(x) 1S+(x) (≥ 0)
ν−(x) = −ν(x) 1S−(x) (> 0).

Notice that
(8.14) ⇔ ν+(S) = ν−(S).

Using this decomposition, we have |ν(x)| = ν+(x) + ν+(x) and

2‖ν‖tv =
∑
x∈S

|ν(x)| = ν(S+) + ν(S−) = 2 ν(S+) = 2ν+(S) = 2ν−(S).

This also implies that

2 ‖µ1 − µ2‖tv = ν(S+)− ν(S−) =
∑

µ1>µ2

(µ1(x)− µ2(x)) +
∑

µ2≥µ1

(µ2(x)− µ1(x))

=
∑

µ1>µ2

µ1(x)

︸ ︷︷ ︸
=1−

∑
µ2≥µ1

µ1(x)

−
∑

µ2≥µ1

µ1(x)−
∑

µ1>µ2

µ2(x) +
∑

µ2≥µ1

µ2(x)

︸ ︷︷ ︸
=1−

∑
µ1>µ2

µ2(x)

.
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Hence

‖µ1 − µ2‖tv = 1−


 ∑
µ2≥µ1

µ1(x) +
∑

µ1>µ2

µ2(x)


 = 1−

∑
x∈S

µ1(x) ∧ µ2(x).

This ends the proof of (8.13). On the other hand, for any f ∈ B(S), with osc(f) ≤ 1,

|ν(f)| =
∣∣ν+(f)− ν−(f)

∣∣

=

∣∣∣∣∣∣
∑

x,y∈S

(f(x)− f(y))
ν+(x)

ν+(S)

ν−(y)

ν−(S)

∣∣∣∣∣∣
‖ν‖tv ≤ ‖ν‖tv.

This implies that the l.h.s. of (8.10) is larger than the r.h.s. To prove the reverse
inequality, we observe that osc(1A) ≤ 1 so that

‖ν‖tv ≥ sup
f : osc(f)≤1

|ν(f)| ≥ sup
A⊂S

|ν(A)|.

If we choose A = S+, then we find that

sup
A⊂S

|ν(A)| ≥ ν(S+) = ‖ν‖tv.

This ends the proof of (8.10). Now we turn to the proof of (8.12). If we take fA =
1
2 (1A − 1S−A), we have osc(fA) ≤ 1 and

µ1(fA)− µ2(fA) =
1

2
[(µ1(A)− (1− µ1(A)))− (µ2(A)− (1− µ2(A)))]

= µ1(A)− µ2(A).

This shows that the r.h.s. of (8.12) is upper bounded by the r.h.s. of (8.10). In addition, the
maxima in (8.12) and (8.10) (respectively in (8.11) occurs for the functions fA (respectively
2fA ), with A = S+ = {x : µ1(x) ≥ µ2(x)}, since we have

(µ1 − µ2)(S
+) := ν(S+) = ‖µ1 − µ2‖tv.

This ends the proof of the proposition.

Important remark :
We mention without proof that the set of signed measures M(S) on some state space

S equipped with the total variation norm

‖µ‖tv = sup {|µ(f)| : f s.t. osc(f) ≤ 1} =
1

2
sup {|µ(f)| : f s.t. ‖f‖ ≤ 1}

is a complete Banach space.

8.2.3 Contraction inequalities

Definition 8.2.11 The Dobrushin ergodic coefficient β(M) of a Markov transition
M on S is defined by

β(M) = sup
x,y∈S

‖M(x, .)−M(y, .)‖tv
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We consider the {0, 1}-valued Markov chain model discussed in (7.11). We further as-
sume that all entries of the Markov transitions are positive (i.e., M(x, y) > 0), and we set
B({0, 1}) = R{0,1}, and P({0, 1}) as the set of all probability measures on {0, 1}.

M(f)(0)−M(f)(1)

= [M(0, 0)f(0) +M(0, 1)f(1)]− [M(1, 0)f(0) +M(1, 1)f(1)]

= [M(0, 0)f(0) + (1−M(0, 0))f(1)]− [M(1, 0)f(0) + (1−M(1, 0))f(1)]

= [M(0, 0)−M(1, 0)] [f(0)− f(1)] .

Using the fact that

β(M) = sup
x,y∈S

‖M(x, .)−M(y, .)‖tv = |M(0, 0)−M(1, 0)|

we prove the following proposition for {0, 1}-valued state space models.

Proposition 8.2.12 For any Markov transition on some state space S we have

β(M) = sup
f∈B(S)

osc(M(f))

osc(f)
= sup

f : osc(f)≤1

osc(M(f)).

Proof :
We use the fact that

sup
f : osc(f)≤1

osc(M(f)) = sup
f : osc(f)≤1

sup
x,y∈S

|M(f)(x)−M(f)(y)|

= sup
x,y∈S

sup
f : osc(f)≤1

|M(f)(x)−M(f)(y)|

= sup
x,y∈S

‖M(x, .)−M(y, .)‖tv.

This ends the proof of the proposition.

Extending the arguments we used in (8.7) to general state space models S, we
prove that

[ ∃ ε > 0 : ∀x ∈ S M(x, dy) ≥ ε ν(dy)] ⇒ β(M) ≤ (1− ε). (8.15)

The proof of this result is left as an exercise to the reader (cf. exercise 102).
We illustrate this condition with a series of examples (see also the hit-and-run samplers

on bounded domains discussed in exercise 125):

• Let a be a bounded function on S = R, and let M be the Markov transition associated
with the evolution equation

Xn = a(Xn−1) +Wn
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where Wn stands for a sequence of independent and absolutely continuous r.v. with
common density p(w) = 1

2λ e−λ|w|. In this situation, if we fix a point x0 ∈ S, we have

ν(dy) := M(x0, dy) ≤ M(x, dy) eλ||y−a(x)|−|y−a(x0)|| ≤ M(x, dy) eλ osc(a).

This implies that

M(x, dy) ≥ ε ν(dy) with ε = exp (−λosc(a)).

• We consider a compact set S′ ⊂ S = Rd. Let p(x, y) be some continuous positive function
on (Rd × Rd). The Markov transition M(x, dy) ∝ p(x, y) 1S′(y) dy on S′ satisfies (8.15).
We check this claim using the fact that

√
ε ≤ p(x′, y)

p(x, y)
≤ 1/

√
ε with

√
ε := inf

y∈S′

infx∈S′ p(x, y)

supx′∈S′ p(x′, y)
> 0. (8.16)

These estimates imply (8.15) with ν(dx) ∝ M(x0, dy). This indicates that (8.15) is satis-
fied for any Markov transitions with a positive and continuous density on some compact
space (equipped with some metric). For instance, any regular Markov chain (with transi-
tion densities) evolving in our galaxy satisfies (8.15).

• We assume that there exists a subset A ⊂ S and a positive measure γ s.t. γ(A) > 0 and
for any x ∈ S

M(x, dy) 1A(y) ≥ γ(dy) 1A(y). (8.17)

In this case, we have

M(x, dy) ≥ M(x, dy) 1A(y) ≥ γ(dy) 1A(y) = ε ν(dy)

with
ε = γ(A) and ν(dy) =

γ(dy)1A(y)

γ(A)
.

For instance, the Gaussian transition on S = R defined by

M(x, dy) =
1√

2πσ2(x)
exp

(
− 1

2σ2(x)
(y − a(x))2

)
dy

satisfies (8.17) with A = R as soon as

0 < σ2
min ≤ σ2(x) ≤ σ2

max < ∞ and ‖a‖ := sup
x∈R

|a(x)| < ∞.

We check this claim by using the fact that

y ≥ 0 ⇒ sup
x∈S

(y − a(x))2 ≤ y2 + 2y‖a‖+ ‖a‖2 = (y + ‖a‖)2

y ≤ 0 ⇒ sup
x∈S

(y − a(x))2 ≤ y2 − 2y‖a‖+ ‖a‖2 = (y − ‖a‖)2

and
M(x, dy) ≥ γ(dy) := γ1(dy) + γ2(dy)

with

γ1(dy) =
1√

2πσ2
max

exp

(
− 1

2σ2
min

(y + ‖a‖)2
)

1y≥0 dy

γ2(dy) =
1√

2πσ2
max

exp

(
− 1

2σ2
min

(y − ‖a‖)2
)

1y<0 dy.
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Notice that in this case we have

γ1(1) + γ2(1) =
σmin

σmax
[P (−‖a‖+ σminY ≥ 0) + P (‖a‖+ σminY ≤ 0)]

=
σmin

σmax
[1− P (|Y | ≤ ‖a‖/σmin)] > 0

where Y stands for a standard normal random variable.

We are now in a position to state and to prove the following theorem.

Theorem 8.2.13 For any Markov transitions M,M1,M2 on some state space S,
for any couple of measures µ1, µ2 ∈ P(S), for any function f ∈ B(S), and any
n ∈ N we have

osc(Mn(f)) ≤ β(M)n osc(f) and β(M1M2) ≤ β(M1) β(M2),

as well as
‖µ1M

n − µ2M
n‖tv ≤ β(M)n ‖µ1 − µ2‖tv.

In addition when the regularity condition (8.15) is satisfied we have

‖µ1M
n − µ2M

n‖tv ≤ (1− ε)n ‖µ1 − µ2‖tv →n→∞ 0. (8.18)

In this situation, there exists a unique measure π such that π = πM .

Proof :
We observe that

osc(Mn(f)) = osc
(
M

[
Mn−1(f)

osc(Mn−1(f))

])
× osc(Mn−1(f)).

Since osc
(

Mn−1(f)
osc(Mn−1(f))

)
≤ 1, we conclude that

osc(Mn(f)) ≤

[
sup

g : osc(g)≤1

osc (M(g))

]
× osc(Mn−1(f)) = β(M) × osc(Mn−1(f)).

We prove in the same way that β(M1M2) ≤ β(M1) β(M2). This ends the proof of the first
assertion. The second assertion follows from the fact that

‖µ1M − µ2M‖tv = sup
f :osc(f)≤1

(
osc(M(f))×

∣∣∣∣(µ1 − µ2)

[
M(f)

osc(M(f))

]∣∣∣∣
)

= β(M)× sup
g :osc(g)≤1

|(µ1 − µ2)(g)| = β(M)× ‖µ1 − µ2‖tv

for any Markov transition M . The last assertion is a direct consequence of the fixed point
theorem. This clearly ends the proof of the proposition.
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8.2.4 Poisson equation

We let Xn be a Markov chain on some state space S. We further assume that the Dobrushin
ergodic coefficient of the Markov transition M of the chain Xn is such that

β(Mn) ≤ a e−b n

for some parameters a < ∞, and b > 0, and for any n ≥ 0. In this situation, the chain has
an unique invariant measure π = πM and we have

osc (Mn(f)) ≤ a e−b n

for any f such that osc(f) ≤ 1. Using the fact that

‖Mn(f)− π(f)‖ = ‖Mn(f)− πMn(f)‖ ≤ osc (Mn(f))

we check that the functional series

P (f)(x) =
∑
n≥0

Mn(f)(x)

are well defined bounded functions for any f such that π(f) = 0, and osc (f) ≤ 1. We check
this claim using the fact that

‖P (f)‖ ≤
∑
n≥0

‖Mn(f)− πMn(f)‖ ≤
∑
n≥0

osc (Mn(f)) ≤ a/(1− e−b).

In addition, the functional series solve the Poisson equation

g = P (f) ⇒ [Id−M ](g) = f (8.19)

for any given function f s.t. π(f) = 0.

We check this claim using the fact that

[Id−M ]P (f)(x) =
∑
n≥0

Mn(f)(x)−
∑
n≥1

Mn(f)(x) = f(x).

Sometimes we write

P = [Id−M ]−1 =
∑
n≥0

Mn.

8.2.5 V -norms

Definition 8.2.14 The V -norm on the set of signed measures M(S) (on some
state space S equipped with some σ-field S) associated with some non-negative
function V is defined for any µ ∈ M(S) by

‖µ‖V := ‖µ‖tv + |µ| (V ). (8.20)

In the above display, |µ| = µ+ + µ− stands for the total variation of the measure
µ, defined in terms of the Hahn-Jordan decomposition µ = µ+ − µ− of µ.
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As seen in (8.14), these measures are prescribed by a partition of the state S = S+∪S−,
with the positive µ+ and the negative part µ− of a signed measure µ given by

µ+(dx) = µ(dx)1S+(x) and µ−(dx) = −µ(dx)1S−(x).

We also mention that these measures are alternatively defined by

µ+(A) = sup {µ(B) : B ⊂ A, B ∈ S}
µ−(A) = − inf {µ(B) : B ⊂ A, B ∈ S}

|µ|(A) = sup

{∑
i∈I

|µ(Ai)| : A = ∪i∈IAi finite partition

}
. (8.21)

For more details on these measures, we refer the reader to the seminal book of Paul Richard
Halmos [144]. Using (8.21) for any signed measures µ1 and µ2 we have the triangle inequality

|µ1 + µ2| ≤ |µ1|+ |µ2| (8.22)

from which we readily check that ‖.‖V is a well defined norm on M(S). When V = 0 the
V -norm coincides with the total variation norm discussed in 8.2.10. In this connection, we
recall that

‖µ‖tv = µ(S+) = µ+(S) = µ(S−) = µ−(S) =
1

2
µ ((1S+ − 1S−))

so that

‖µ‖V = ‖µ‖tv + µ+(V ) + µ−(V )

= ‖µ‖tv + µ((1S+ − 1S−)V ) = µ

(
(1S+ − 1S−)

[
V +

1

2

])
.

Definition 8.2.15 We define the V -norm and the V -oscillation of a given func-
tion f by

‖f‖V :=

∥∥∥∥
f

V + 1/2

∥∥∥∥ = sup
x∈S

(
|f(x)|

V (x) + 1/2

)

and
oscV (f) := sup

x,y∈S

(
|f(x)− f(y)|

[V (x) + V (y) + 1]

)
.

Remark :
Notice that

|f(x)− f(y)|
[V (x) + V (y) + 1]

≤ |f(x)|+ |f(y)|
[V (x) + V (y) + 1]

≤ |f(x)|
[V (x) + 1/2]

V (x) + 1/2

[V (x) + V (y) + 1]
+

|f(y)|
[V (y) + 1/2]

V (y) + 1/2

[V (x) + V (y) + 1]

≤ ‖f‖V

from which we conclude that
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oscV (f) ≤ ‖f‖V . (8.23)

When V = 0 we have

osc0(f) = osc(f) and ‖f‖0 = 2 ‖f‖.

Sometimes these V -norm-type quantities are expressed in terms of the functions W =
1/2 + V (x) with

‖f‖W := sup
x∈S

|f(x)|
W (x)

and oscW(f) := sup
x,y∈S

|f(x)− f(y)|
W (x) +W (y)

.

We mention without proof that the set of signed measures M(S) on some state space S
equipped with some V -norm is a complete metric space.

The following result is an extension of proposition 8.2.10 to V -norms.

Proposition 8.2.16 For any µ ∈ M(S) on some state space S, we have

‖µ‖V = sup {|µ(f)| : f s.t. oscV (f) ≤ 1} (8.24)
= sup {|µ(f)| : f s.t. ‖f‖V ≤ 1}. (8.25)

Proof :
For any function f s.t. oscV (f) ≤ 1 we have the decomposition

f(x)− f(y) =

:=f1(x,y)︷ ︸︸ ︷
1

1 + [V (x) + V (y)]
(f(x)− f(y))

+ [V (x) + V (y)]
f(x)− f(y)

1 + [V (x) + V (y)]︸ ︷︷ ︸
=f2(x,y)

with ‖f1‖ ≤ 1, and |f2(x, y)| ≤ [V (x) + V (y)]. This implies that

µ(f) = µ+(f)− µ−(f)

=

∫
(f(x)− f(y))

µ+(dx)

µ+(S)

µ−(dy)

µ−(S)
‖µ‖tv

=

∫
f1(x, y)

µ+(dx)

µ+(S)

µ−(dy)

µ−(S)
‖µ‖tv +

∫
f2(x, y)

µ+(dx)

µ+(S)

µ−(dy)

µ−(S)
‖µ‖tv

from which we prove that

|µ(f)| ≤ ‖µ‖tv +
∫

[V (x) + V (y)]
µ+(dx)

µ+(S)

µ−(dy)

µ−(S)
‖µ‖tv

= ‖µ‖tv + µ+(V ) + µ−(V ) = ‖µ‖V .
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Taking the supremum over all the functions f such that oscV (f) ≤ 1, we check that

sup {|µ(f)| : f s.t. oscV (f) ≤ 1} ≤ ‖µ‖V .

Furthermore we have

‖µ‖V = ‖µ‖tv + µ((1S+ − 1S−)V ) = µ


1S+ + (1S+ − 1S−)V︸ ︷︷ ︸

:=W




with the function W such that
oscV (W ) ≤ 1.

We check this claim using the decomposition

W (x)−W (y) := [1S+(x)− 1S+(y)]

+[1S+(x)− 1S−(x)] V (x) + [1S−(y)− 1S+(y)] V (y).

This implies that

|W (x)−W (y)| := 1 + V (x) + V (y) ⇒ oscV (W ) ≤ 1.

We conclude that
‖µ‖V = µ(W ) with oscV (W ) ≤ 1

and therefore
‖µ‖V ≤ sup {|µ(f)| : f s.t. oscV (f) ≤ 1}.

This ends the proof of (8.24).
Now we turn to the proof of (8.25). Firstly, we observe that

(8.23) ⇒ ‖f‖V ≤ 1 ⇒ oscV (f) ≤ 1. (8.26)

This readily implies that

sup {|µ(f)| : f s.t. ‖f‖V ≤ 1} ≤ sup {|µ(f)| : f s.t. oscV (f) ≤ 1} = ‖µ‖V .

To end the proof, we consider the function

U =
1

2
(1S+ − 1S−) + V (1S+ − 1S−).

We check that

|U(x)| ≤ V (x) + 1/2 ⇒ ‖U‖V ≤ 1

and

µ(U) =
µ+(S) + µ−(S)

2
+ µ+(V ) + µ−(V ) = µ+(S) + µ+(V ) + µ−(V ) = ‖µ‖V .

This implies that

‖µ‖V = µ(U) ≤ sup {|µ(f)| : f s.t. ‖f‖V ≤ 1}.
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8.2.6 Geometric drift conditions

We let M be a Markov transition on some state space S. We further assume that S is a
topological vector space equipped with the Borel σ-field S. We recall that a subset B ⊂ S
is called bounded when every neighborhood A of the null vector state can be inflated to
include the set B; that is,

∃a ∈ R+ B ⊂ a A = {a x : x ∈ A}.

The reader who does not like too much abstraction can restrict the forthcoming discussion
to metric state spaces or to the Euclidian space Rd, with d ≥ 1. In this situation, all the
compact subsets of S are bounded and closed.

The aim of this section is to discuss the following conditions.

Dobrushin local contraction condition:
For any compact subset C ⊂ S, we have

β(C;M) := sup
(x,y)∈C2

‖M(x, .)−M(y, .)‖tv < 1. (8.27)

The quantities β(C;M) are called the Dobrushin local contraction coefficients.

Foster-Lyapunov condition:
There exists some non-negative function W on S with compact subset levels, such
that

M(W ) ≤ ε W + c (8.28)

for some ε ∈ [0, 1[ and some finite constant c < ∞. The function W is called a
Lyapunov function.

Definition 8.2.17 When the Dobrushin local contraction and the Foster-
Lyapunov condition are satisfied, for any R ∈ R+, we set

β(R)(M) = β ({W ≤ R},M) := sup
(x,y) : W (x)∨W (y)≤R

‖M(x, .)−M(y, .)‖tv < 1.

A simple way to check the Dobrushin local contraction condition is to prove that for
any compact subset C ⊂ S, there exists some εC ∈]0, 1] and some probability measure νC
on S such that

∀x ∈ C M(x, dy) ≥ εC νC(dy). (8.29)

In this situation, using the same arguments as the ones we used in (8.7), we prove that

β(C;M) ≤ (1− εC).

In the literature on Markov chain stability, the subsets C satisfying the minorization con-
dition (8.29) are often called "small" sets.

This local contraction condition is satisfied for most of the Markov chains encountered
in practice. For instance, for the Gaussian transition

M(x, dy) =
1√

2πσ2(x)
exp

(
− 1

2σ2(x)
(y − a(x))2

)
dy
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associated with some locally bounded drift and variance functions a and σ2 on S = R we
have

y ≥ 0 ⇒ sup
x∈A

(y − a(x))2 ≤ y2 + 2y‖a‖A + ‖a‖2A = (y + ‖a‖A)2

y ≤ 0 ⇒ sup
x∈A

(y − a(x))2 ≤ y2 − 2y‖a‖A + ‖a‖2A = (y − ‖a‖A)2

for any bounded subset A ⊂ S, with ‖a‖A := supx∈A |a(x)|. We further assume that

∀x ∈ A 0 < σ2
min,A ≤ σ2(x) ≤ σ2

max,A < ∞.

This implies that

M(x, dy) ≥ γ(dy)

:= 1y≥0

(√
2πσ2

max,A

)−1

exp

(
− 1

2σ2
min,A

(y + ‖a‖A)2
)

dy

+1y<0

(√
2πσ2

max,A

)−1

exp

(
− 1

2σ2
min,A

(y − ‖a‖A)2
)

dy ≥ τA ν(dy)

with the probability measure ν(dy) = γ(dy)/γ(1) and the ]0, 1[ valued constant

τA =
σmin,A

σmax,A

[
1−

∫ ‖a‖A/σmin,A

−‖a‖A/σmin,A

1√
2π

e−y2/2 dy

]
.

Using the same lines of arguments as the ones we used in (8.7), this implies that

sup
(x,y)∈A2

‖M(x, .)−M(y, .)‖tv ≤ 1− τA.

More generally, we have the following result.

Proposition 8.2.18 We consider a Markov transition M on some complete separable met-
ric space S such that

M(x, dy) ≥ m(x, y) λ(dy) (8.30)

for some strictly positive Radon measure λ(dy) (i.e., nonempty open balls have positive mea-
sure). We further assume that for any compact set A there exists some positive measurable
function qA such that

inf
x∈A

m(x, y) ≥ qA(y). (8.31)

In this situation, the Dobrushin local contraction condition (8.29) is satisfied. For instance,
the minorization condition (8.31) is met when the functions m(x, y) are lower semicontin-
uous w.r.t. the first variable, and upper semicontinuous w.r.t. the second.

Proof :
We recall that a characteristic of Radon measures is that the measure of a Borel set B is
the supremum of the measures λ(A) of the compact sets A ⊂ B. Thus, if λ is a strictly
positive Radon measure on S, one can always find for every open set B ⊂ S a compact
A ⊂ B such that

λ(A) ≥ (1/2) λ(B) (> 0).

This ensures that λ charges all the compact sets.
It is of course tempting to set infx∈A m(x, y) = qA(y) but it is well known that the
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infimum of an uncountable collection of functions may fail to be measurable. Under the
condition (8.31), we clearly have that

∀x ∈ A M(x, dy) ≥ qA(y) λ(dy) := γA(dy) with γA(1) = λ(qA) > 0.

In this situation, the Dobrushin condition (8.27) is clearly met with

∀x ∈ A M(x, dy) ≥ εA νA(dy)

with
εA = γA(1) > 0 and νA(dy) := γA(dy)/γA(1).

When the density function m(x, y) is lower semicontinuous w.r.t. the first variable and
upper semicontinuous w.r.t. the second variable, there exists some measurable function
hA : y �→ hA(y) such that

inf
x∈A

m(x, y) = m(hA(y), y) := qA(y) > 0.

A proof of this result can be found in [42]. It this situation, the minorization condition
(8.31) is clearly satisfied. This ends the proof of the proposition.

Remark : For instance, the Markov transitions

Pt(x, dy) = e−t
∑
n≥0

tn

n!
Mn(x, dy)

on some metric space S of the continuous time embedding of a Markov chain with transitions
M discussed in section 11.1.2 may not have a density w.r.t. some measure λ(dy), but they
satisfy the condition (8.30) for any t > 0 as soon as Mn satisfies (8.30) for some integer
n ≥ 1.

The Foster-Lyapunov condition ensures that the Markov chain
Xn with transition probabilities M has little chance to escape
from the level sets {W ≤ w} of the function W .

Indeed, we have

(8.28) =⇒ Mn(W ) ≤ εn W + c (1 + ε+ . . .+ εn−1) ≤ εn W + c/(1− ε)

from which we prove the uniform estimate

sup
n≥0

E (W (Xn)) ≤ εn E(W (X0)) + c/(1− ε) ≤ C := E(W (X0)) + c/(1− ε).

Using Markov inequality, when the level sets of W are compact we have

∀ρ > 0 ∃{W ≤ C/ρ} := Aρ compact s.t. sup
n≥0

P (W (Xn) �∈ Aρ) ≤ ρ.
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In the Gaussian model discussed above, we notice that

|a(x)| ≤ ε |x| ⇒ E [ |Xn| |Xn−1 = x ] ≤ ε |x|+ σ2.

In this case, W (x) = |x| satisfies (8.28) with c = σ2.
More generally, suppose that Xn and X ′

n are two not necessarily independent copies of
the transition of the chain starting at x and x0; that is,

M(x, dy) := P (Xn ∈ dy | Xn−1 = x)

M(x0, dy) := P
(
X ′

n ∈ dy | X ′
n−1 = x0

)
= P (Xn ∈ dy | Xn−1 = x0) .

We suppose that the state space S is equipped with a metric d and we have the local
contraction inequality

E
(
d(Xn, X

′
n) | (Xn−1, X

′
n−1) = (x, x0)

)
≤ ε d(x, x0).

Returning to the Gaussian model discussed above, we can take

Xn = a(x) + σ Y and X ′
n = a(x0) + σ Y

where Y stands for a centered Gaussian r.v. with unit variance. In this situation, the local
contraction stated above is met for the Euclidian distance d(x, y) = |x− y| provided that

|a(x)− a(x0)| ≤ ε |x− x0|.

We set W (x) := d(x, x0) for some fixed state x0 ∈ S. Using the triangle inequality

d(Xn, x0)− d(X ′
n, x0) ≤ d(Xn, X

′
n)

we prove that
E
(
d(Xn, x0)− d(X ′

n, x0) | (Xn−1, X
′
n−1) = (x, x0)

)

= M(W )(x)−M(W )(x0) ≤ ε d(x, x0) = ε W (x).

This implies that the Foster-Lyapunov condition is satisfied with

M(W )(x) ≤ ε W (x) + c where c := M(W )(x0).

We end this section with a sufficient condition for the Foster-Lyapunov condition. Sup-
pose there exists a subset A ⊂ S s.t.

{
M(W )(x) ≤ ε W (x) for any x ∈ S −A
M(W )(x) ≤ c for any x ∈ A

(8.32)

then we have

∀x ∈ S M(W )(x) ≤ ε W (x) 1S−A(x) + c 1A(x) ≤ εW + c.

Whenever M(W ) is continuous w.r.t. some metric the condition (8.32) is satisfied as soon
as we can find some compact set A such that

∀x �∈ A M(W )(x) ≤ ε W (x)

for some ε ∈ [0, 1[. In this case (8.32) is satisfied with c = supx∈A |W (x)|.
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8.2.7 V -norm contractions

We let M be a Markov transition on some state space S. In the further development of
this section, we assume that M satisfies the Foster-Lyapunov condition (8.28) and the local
Dobrushin contraction inequality (8.27).

Replacing W by W/c in (8.28) there is no loss of generality to assume that c = 1. In
addition, replacing W by Wε = 1 + ε W ≥ 1 we have

M (Wε) = ε M(W ) + 1 ≤ ε Wε + 1.

Therefore, there is no loss of generality to replace (8.28) by

M(W ) ≤ ε W + 1 for some function W ≥ 1. (8.33)

Definition 8.2.19 We let V be a non-negative function V such that

M(V ) ≤ c1 V + c2

for some c1, c2 ≥ 0. We equip the set of probability measures P(S) on some state
space S with the V -norm. The V -Dobrushin ergodic coefficient βV (M) is defined
by

βV (M) = sup {oscV (M(f)) , f : oscV (f) ≤ 1}

= sup
(x,y)∈S2

‖M(x, .)−M(y, .)‖V
1 + [V (x) + V (y)]

≤ c1 ∨ (1 + 2c2).

The second formulation in the above display is readily checked using the fact that

βV (M) = sup
(x,y)∈S2

sup
f :oscV (f)≤1

|M(f)(x)−M(f)(y)|
1 + [V (x) + V (y)]

.

Using the same arguments as in the proof of theorem 8.2.13 we have the following contraction
inequalities.

Theorem 8.2.20 For any couple of measures µ1, µ2 ∈ P(S), any Markov tran-
sitions M,M1,M2 on S, any function f s.t. oscV (f) < ∞, and any n ∈ N we
have

βV (M
n) ≤ βV (M)n and βV (M1M2) ≤ βV (M1) βV (M2)

as well as

oscV (M(f)) ≤ βV (M) oscV (f) and ‖µ1M − µ2M‖V ≤ βV (M) ‖µ1 − µ2‖V .

In the further development of this section, we assume that the condition (8.33) is satisfied
and we set Vρ = ρ W , for some ρ ∈]0, 1]. Notice that

(8.33) ⇒ M(Vρ) ≤ ε Vρ + ρ.
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In addition, we have the uniform estimate

(Vρ = ρ W and W ≥ 1) ⇒ V −1
ρ M(Vρ) ≤ ε +

ρ

ρW
≤ 1 + ε.

We also notice that for any R ≥ 1 we have

W (x) ≥ R ⇒
{

Vρ(x)
−1 M(Vρ)(x) ≤ ε + 1

W (x) ≤ ε+ 1
R

Vρ(x) = ρ W (x) ≥ ρR
(8.34)

and
W (x) ≤ R ⇒

{
Vρ(x)

−1 M(Vρ)(x) ≤ 1 + ε
ρ ≤ Vρ(x) = ρ W (x) ≤ ρR.

(8.35)

We set

∆ρ(x, y) :=
‖M(x, .)−M(y, .)‖Vρ

1 + Vρ(x) + Vρ(y)
.

By definition of the V -norm, using the triangle inequality (8.22) we prove the following
decomposition

∆ρ(x, y) =
1

1 + Vρ(x) + Vρ(y)
‖M(x, .)−M(y, .)‖tv

+
Vρ(x)

1 + Vρ(x) + Vρ(y)

M(Vρ)(x)

Vρ(x)
+

Vρ(y)

1 + Vρ(x) + Vρ(y)

M(Vρ)(y)

Vρ(y)

≤ 1

1 + Vρ(x) + Vρ(y)
‖M(x, .)−M(y, .)‖tv

+
Vρ(x) + Vρ(y)

1 + Vρ(x) + Vρ(y)

(
M(Vρ)(x)

Vρ(x)
∨ M(Vρ)(y)

Vρ(y)

)
.

When W (x) ∧W (y) ≥ R, using (8.34) we find that

∆ρ(x, y) ≤ 1

1 + Vρ(x) + Vρ(y)
+

Vρ(x) + Vρ(y)

1 + Vρ(x) + Vρ(y)

(
ε+

1

R

)

= 1−
(
1− 1

1 + Vρ(x) + Vρ(y)

) (
1−

(
ε+

1

R

))

from which we conclude that

sup
W (x)∧W (y)≥R

∆ρ(x, y) ≤ 1−
(
1− 1

1 + 2ρR

) (
1−

(
ε+

1

R

))
< 1

for any ρ ∈]0, 1]. Using (8.35) we also find that

sup
W (x)∨W (y)≤R

∆ρ(x, y) ≤ 1

1 + 2ρ
β(R)(M) + 2

ρR

1 + 2ρ
(1 + ε) ≤ β(R)(M) + 4ρR < 1

for any ρ < (1− β(R)(M))/(4R).
Combining these estimates with theorem 8.2.20 we readily prove the following theorem.

Theorem 8.2.21 When the drift condition (8.28) and the local Dobrushin condi-
tion (8.27) are satisfied for some function W and some parameter ε ∈ [0, 1[, there
exist a positive function V such that βV (M) < 1. In this case there exists an unique
invariant measure π = πM and we have the exponential contraction inequality

‖µ1M
n − µ2M

n‖V ≤ βV (M)n ‖µ1 − µ2‖V −→n↑∞ 0.
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In exercise 97 we design a function V such that

βV (M) ≤ 1− 1− β(Rε)(M)

Rε(1 + 2
√
3)

with Rε := 2/(1− ε).

Remark : By definition of βV (M
n), for any function f such that

|f(x)| ≤ 1/2 + V (x) (⇒ |f(x)− f(y)| ≤ 1 + V (x) + V (y))

and for any (x, y) ∈ S we have

|Mn(f)(x)−Mn(f)(y)| ≤ βV (M
n) (1 + V (x) + V (y)) .

This implies that

|Mn(f)(x)− π(f)| ≤
∫

π(dy) |Mn(f)(x)−Mn(f)(y)|

≤ βV (M
n) (1 + V (x) + π(V )) .

8.3 Stochastic analysis

8.3.1 Coupling techniques

8.3.1.1 The total variation distance

Lemma 8.3.1 For any couple of random variables (X,Y ) with law (µ1, µ2) on
some state space S we have

‖µ1 − µ2‖tv ≤ P (X �= Y ) .

Proof :
The proof is a direct consequence of the following assertions

µ1(A)− µ2(A) = P (X ∈ A)− P (Y ∈ A)

= P (X = Y ∈ A, X = Y ) + P (X ∈ A, X �= Y )

−P (Y = X ∈ A, Y = X)− P (Y ∈ A, X �= Y )

= P (X ∈ A, X �= Y )− P (Y ∈ A, X �= Y )

= [P (X ∈ A | X �= Y )− P (Y ∈ A | X �= Y )]× P (X �= Y ) .

Much more is true. The following theorem provides an interpretation of the total vari-
ation distance in terms of the chances of coupling two random variables

Theorem 8.3.2 For any probability measures µ1, µ2 on some state space S we
have

‖µ1 − µ2‖tv = inf {P (X �= Y ) : (X,Y ) s.t. Law(X) = µ1 & Law(Y ) = µ2}.
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Proof :
To avoid unnecessary technicalities, we only prove this theorem for finite state spaces. It
clearly suffices to prove the existence of a pair of r.v. such that P(X �= Y ) = ‖µ1 − µ2‖tv.
We consider the pair of coupled random variables (X,Y ) defined for any x �= y by

P (X = x , Y = y)

= 1
‖µ1−µ2‖tv

(µ1(x)− µ1(x) ∧ µ2(x)) (µ2(y)− µ1(y) ∧ µ2(y))

and for x = y we set
P (X = Y = x) = µ1(x) ∧ µ2(x).

By construction, it is readily checked that P(X �= Y ) = ‖µ1 − µ2‖tv. On the other hand,
using (8.13) we have

∑
x

(µ1(x)− µ1(x) ∧ µ2(x)) = 1−
∑
x

µ1(x) ∧ µ2(x)

=
∑
y

(µ2(y)− µ1(y) ∧ µ2(y)) = ‖µ1 − µ2‖tv

and obviously
(µ1(x)− µ1(x) ∧ µ2(x)) (µ2(x)− µ1(x) ∧ µ2(x)) = 0.

From these observations, we prove that

P (X = x) =
∑
y �=x

P (X = x , Y = y) + P (X = x, Y = x)

= (µ1(x)− µ1(x) ∧ µ2(x))×
(
1− (µ2(x)− µ1(x) ∧ µ2(x))

‖µ1 − µ2‖tv

)

+µ1(x) ∧ µ2(x)

= µ1(x)

and by symmetry arguments P (Y = y) = µ2(y).

Definition 8.3.3 The coupling we have constructed in the proof of the theorem 8.3.2 for
finite state spaces is called a maximal coupling between the distribution Law(X) = µ1 and
Law(Y ) = µ2. In a more simulation-based formulation, it is defined by the equation

P ((X,Y ) = (x, y))

= α(µ1,µ2) p(µ1,µ2)(x) 1x(y) +
(
1− α(µ1,µ2)

)
q(µ1,µ2)(x) q(µ2,µ1)(y)

with the coupling probability α(µ1,µ2) = [µ1 ∧ µ2](S) ∈ [0, 1[ and the probability measures

p(µ1,µ2) :=
[µ1 ∧ µ2]

α(µ1, µ2)
and q(µ1,µ2) :=

µ1 − [µ1 ∧ µ2]

1− α(µ1, µ2)
.
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Definition 8.3.4 The maximal coupling for general state space models is defined
in the same way in terms of the infimum measures presented in definition 8.2.7.
In this situation, the maximal coupling can also be rewritten as

{
X = (1− ε) X ′ + ε Z
Y = (1− ε) Y ′ + ε Z

with independent random variables (ε,X, Y,X ′, Y ′, Z) with distributions

P(ε = 1) = 1− P(ε = 0) =

∫
(p1(x) ∧ p2(x)) λ(dx) := c (8.36)

P (X ′ ∈ dx) = [p1(x)− (p1(x) ∧ p2(x))] λ(dx)/(1− c)

P (Y ′ ∈ dy) = [p2(y)− (p1(y) ∧ p2(y))] λ(dy)/(1− c)

P (Z ∈ dz) = (p1(z) ∧ p2(z)) λ(dz)/c

as soon as the coupling probability c > 0 (otherwise the distributions of X and Y
are absolutely continuous so that ‖µ1 − µ2‖tv = 1) and c < 1 (otherwise µ1 = µ2).

Example 8.3.5 Consider a couple of exponential random variables (X,Y ) = (X1, X2) with
distribution

P(Xi ∈ dx) = µi(dx) = λ e−λ(x−ai) 1[ai,∞[(x)︸ ︷︷ ︸
:=pi(x)

dx︸︷︷︸
:=λ(dx)

for some given parameters 0 ≤ a1 < a2. In this situation, the coupling probability c in
(8.36) is given by

p1(x) ∧ p2(x) = eλ(a2−a1) p2(x) ⇒ c = e−λ(a2−a1) = P (X1 ∈ [a2,∞[) .

In addition, we have

P (X ′ ∈ dx) = 1[a1,a2](x) p1(x) dx/(1− c) = P (X1 ∈ dx | X1 ∈ [a1, a2] )

P (Y ′ ∈ dx) = p2(x) dx = P (Z ∈ dx) and P(X1 = X2) = c = e−λ(a2−a1).

Since p2(x) ≤ eλ(a2−a1)p1(x), the same result can be proved using the acceptance-rejection
technique.

Example 8.3.6 Consider a couple of Bernoulli {0, 1}-valued r.v. (X,Y ) = (X1, X2) with
parameters (p1, p2) ∈ [0, 1]2 such that p2 ≥ p1. We let Law(Xi) = µi, with i = 1, 2. We
check that

‖µ1 − µ2‖tv = |p1 − p2|.
We let (Y1, Y2) be the r.v. on {0, 1}2 defined by the maximal coupling

P ((Y1, Y2) = (0, 0)) = 1− p2 (= inf (1− p1, 1− p2))

P ((Y1, Y2) = (0, 1)) = p2 − p1(
=

1

p2 − p1
((1− p1)− (1− p1) ∧ (1− p2))× (p2 − p1 ∧ p2)

)

P ((Y1, Y2) = (1, 0)) = 0(
=

1

p2 − p1
(p1 − p1 ∧ p2)× ((1− p2)− (1− p1) ∧ (1− p2))

)

P ((Y1, Y2) = (1, 1)) = p1 (= inf (p1, p2)) .
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We readily check that P(Y1 = 0) = 1 − p1 = 1 − P(Y1 = 1) and P(Y2 = 0) = 1 − p2 =
1− P(Y2 = 1) and P(Y1 �= Y2) = p2 − p1 = ‖µ1 − µ2‖tv.

Example 8.3.7 We let (X1, X2) be two random variables on some state space S with dis-
tributions (µ1, µ2), and consider a random variable U on some state space U . We then
consider a couple of random variables

X ′
1 = F (X1, U1) and X ′

2 = F (X2, U2)

where F stands for some function from (U × S) into some possibly different state space
S′, and (U1, U2) are two (non-necessarily independent) copies of of U . Using the coupling
U = U1 = U2, we have

X ′
2 = 1X1=X2 X ′

1 + 1X1 �=X2 F (X2, U) = X ′
1 + 1X1 �=X2 [F (X2, U)− F (X1, U)]

from which we conclude that

P (X ′
1 �= X ′

2) ≤ P (X1 �= X2) .

In other words, if (µ′
1, µ

′
2) stands for the distributions of (X ′

1, X
′
2) we have

‖µ′
1 − µ′

2‖tv ≤ ‖µ1 − µ2‖tv.

8.3.1.2 Wasserstein metric

The following metric extends the coupling interpretation of the total variation distance
presented in theorem 8.3.2

Definition 8.3.8 The Wasserstein distance between two probability measures
µ1, µ2 on some metric space (S, d) is defined by

W(µ1, µ2) = inf {E (d(X,Y )) : (X,Y ) s.t. Law(X) = µ1 & Law(Y ) = µ2}.

This metric is also known as the Vasershtein distance and/or the Kantorovich-
Monge-Rubinstein metric.

If we choose the Hamming distance d(x, y) = 1x �=y, then by theorem 8.3.2 we have
W(µ1, µ2) = ‖µ1 − µ2‖tv. Notice that in this situation, a function f is 1-Lipschitz w.r.t.
the trivial distance d(x, y) = 1x �=y if, and only if, osc(f) ≤ 1.

For more general (separable) metric spaces (S, d), the celebrated Kantorovich-Rubinstein
duality theorem [165] states that

W(µ1, µ2) = sup {|µ1(f)− µ2(f)| : f ∈ Lip(S) s.t. lip(f) ≤ 1}. (8.37)

For any f such that lip(f) ≤ 1 we clearly have that

|µ1(f)− µ2(f)| ≤ E (|f(X)− f(Y )|) ≤ E (d(X,Y ))

for any r.v. (X,Y ) with distributions (µ1, µ2). This implies that the r.h.s. in (8.37) is
upper bounded by W(µ1, µ2). The proof of this reversal inequality is out of the scope of
this chapter. We refer to the book of C. Villani for a more thorough discussion on this
theorem and related optimal transport problems [258].
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Proposition 8.3.9 We have

δ(S) ‖µ1 − µ2‖tv ≤ W(µ1, µ2) ≤ diam(S) ‖µ1 − µ2‖tv

with
0 ≤ δ(S) := inf

x �=y
d(x, y) ≤ diam(S) := sup

x,y
d(x, y) ≤ ∞.

Proof :
We clearly have that

δ(S) 1X �=Y ≤ d(X,Y ) ≤ diam(S) 1X �=Y .

The proposition is now a consequence of the coupling descriptions of the total variation
distance and the Wasserstein metric. This completes the proof of the proposition.

Important remark : When the state space S is finite, a given discrete probability
measure µ =

∑
1≤i≤d pi δxi ∈ P(S) can be interpreted as the number of stones in some

pile (with pi stones of some type xi). In this interpretation, a pair of distributions µ =∑
1≤i≤d pi δxi

and µ′ =
∑

1≤i≤d′ p′i δxi
represents two piles of stones. The balanced control

problem is to find a flow of stones P (i, j) from the pile µ to the pile µ′ that minimizes the
average transportation cost defined by the Wasserstein distance

W(µ1, µ2) = min




d,d′∑
i,j=1

d(xi, xj) P (i, j)


,

with the marginal conditions

p(i) :=

d′∑
j=1

P (i, j) and p′(i) :=

d∑
i=1

P (i, j).

In computer sciences, this metric is known as the earth mover’s distance. In fractal im-
age processing, and in computational biology, the Wasserstein metric is also called the
Hutchinson metric and it is used to measure the similarity between two images or two DNA
sequences [163].

Remark : The bounded Lipschitz distance between the probability measures µ1 and
µ2 is defined by replacing in the r.h.s. of (8.37) the condition lip(f) ≤ 1 by blip(f) :=
‖f‖+ lip(f) ≤ 1 We also mention that this distance metrizes the convergence in distribution
(a.k.a. the convergene in law).

Example 8.3.10 We consider the couple of Gaussian distributions on S = R discussed in
example 8.2.8. We equip R with the distance d(x, y) = |x− y|. In this situation, we have

W(µ1, µ2) ≤ E (|(m1 + Z)− (m2 + Z)|) = |m2 −m1|.

More generally, if we consider the distributions µ1 = Law(X1) and µ2 = Law(X2) of the
Gaussian r.v. X1 = m1+σ1 Z and X2 = m2+σ2 Z, with given positive parameters σ1, σ2,
then we have the crude estimate

W(µ1, µ2) = E (|(m1 −m2) + (σ1 − σ2) Z)|) ≤ |m1 −m2|+ |σ1 − σ2| .



Analysis toolbox 171

Example 8.3.11 We consider the Bernoulli distributions discussed in example 8.2.9. By
symmetry, there is no loss of generality to assume that µ1(1) ≤ µ2(1). In this case the
r.v. X1 and X2 with distribution µ1 and µ2 can be coupled using a single uniform random
variable U on [0, 1] with the following formula

X1 = 1[0,µ1(1)](U) and X2 = 1[0,µ2(1)](U).

Using the fact that

1[0,µ2(1)](U)− 1[0,µ1(1)](U) = 1[µ1(1),µ2(1)](U)

we check that

W(µ1, µ2) ≤ P (U ∈ [µ1(1), µ2(1)]) = µ2(1)− µ1(1) = ‖µ1 − µ2‖tv.

Example 8.3.12 We return to the model discussed in example 8.3.7. We further assume
that S = S′ ⊂ Rd equipped with some norm ‖.‖, and the function F is such that

∫
‖F (x2, u)− F (x1, u)‖ du ≤ a ‖x1 − x2‖ .

In this situation, using the fact that

‖X ′
1 −X ′

2‖ ≤ ‖F (X2, U)− F (X1, U)‖

we prove that
W(µ′

1, µ
′
2) ≤ a W(µ1, µ2).

We end this section with a conditioning property of the Wasserstein distance.

Proposition 8.3.13 We consider a Markov transition M on some state space S.
We assume that

∀(x, y) ∈ S2 W(δxM, δyM) ≤ w(x, y)

for some function w from S2 into R+. In this situation, we have

∀(µ1, µ2) ∈ P(S)2 W(µ1M,µ2M) ≤
∫

µ1(dx) µ2(dy) w(x, y).

Proof :
We let (X,Y ) be a couple of r.v. with distributions (µ1, µ2). Given (X,Y ) = (x, y), we let
(X ′, Y ′) be a couple of r.v. with distributions (δxM, δyM). By construction, we have

|E (f(X ′))− E (f(Y ′))| = |E [E (f(X ′)− f(Y ′) | (X,Y ))]|
≤ E [E [|f(X ′)− f(Y ′)| |(X,Y )]]

≤
∫

P((X,Y ) ∈ d(x, y)) E (d(X ′, Y ′) | (X,Y ) = (x, y)) .

Taking the infimum of all possible couplings of (X ′, Y ′) given (X,Y ) = (x, y) we find

W(µ1M,µ2M) ≤
∫

µ1(dx) µ2(dy) W(δxM, δyM).

This ends the proof of the proposition.
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8.3.2 Stopping times and coupling

Definition 8.3.14 Let Xn be a Markov chain taking values in some state space S. A
stopping time T is a random variable taking values in N∪{∞} such that the events {T = n}
depend only on the X0, . . . , Xn.

Informally, a random time is a stopping time if it does not depend on the future of the
Markov chain. We often use the following immediate consequence of the Markov property
without saying so.

Proposition 8.3.15 (Strong Markov property) For any Markov chain taking values
in some state space S, and for any stopping time T , we have

P (Xn+1 ∈ dxn+1 | T = n, (X0, . . . , Xn) = (x0, . . . , xn)) = P (Xn+1 ∈ dxn+1 | Xn = xn) .

In other words, the Markov chain (XT+n)n≥0 is again a Markov chain but its initial condi-
tion is given by XT .

For instance, the first time a Markov chain on a finite set S hits some subset A,

T = inf {n ≥ 0 : Xn ∈ A}

is a stopping time since {T = n} = {X0 �∈ A, . . . ,Xn−1 �∈ A ,Xn ∈ A}. Notice that T can
also be interpreted as the first exit time of the set B = S −A. The first time a given chain
reaches its maximum X�

n := max0≤p≤n Xp on some interval [0, n] defined by

T ′ = inf {n ≥ 0 : Xp = X�
n}

is not a stopping time since the event

{T ′ = k} = ∩p<k ∪0≤q≤n ∩0≤r≤n {Xk ≥ Xr, Xp < Xq}

depends on the whole sequence of states from the origin up to the terminal time n. Also
notice that last exit or hitting times of the form

T ′′ = max {n ≥ 0 : Xn ∈ A}

for some A ⊂ S are not stopping times since the events {T ′′ = n} also depend on the future
of the chain

{T ′′ = n} = ∩p≥1{Xn ∈ A , Xn+p �∈ A}.

The following proposition is a direct consequence of the coupling lemma stated above.

Proposition 8.3.16 We let Xn and Yn be a couple of Markov chains such that
Xn = Yn for any n after some stopping time T . In this case, we have

‖Law(Xn)− Law(Yn)‖tv ≤ P (Xn �= Yn) ≤ P (T > n) ≤ E(T )/n.

In particular, we have

P(T < ∞) = 1 =⇒ P (T > n) ↓n↑∞ 0 =⇒ ‖Law(Xn)− Law(Yn)‖tv →n↑∞ 0.
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In particular, if (Xn, Yn) are two (non-necessarily independent) copies of the same
Markov chain with Markov transition M and stationary distribution πM = π, we have

Law(Y0) = π =⇒ ‖Law(Xn)− π‖tv ≤ P (T > n)

where T stands for the first time the chains merge (i.e., T = inf {n ≥ 0 : Xn = Yn}). We
can also use the inequality

‖Law(Xn)− Law(Yn)‖tv

≤
∫

P(X0 ∈ dx)P(Y0 ∈ dy) ‖Law(Xn | X0 = x)− Law(Yn | Y0 = y))‖tv

≤ sup
(x,y)∈S2

P (Tx,y > n)

where Tx,y stands for the coupling time of Xn and Yn starting at X0 = x and Y0 = y.

8.3.3 Strong stationary times

This section is concerned with two main probabilistic techniques to quantify the convergence
rate to equilibrium of a regular Markov chain, namely the coupling technique and the
notion of strong stationary times introduced by D. Aldous and P. Diaconis in their seminal
article [2].

Definition 8.3.17 Let Xn be a Markov chain taking values in some state space S with an
invariant measure π. A strong stationary time T (a.k.a strong uniform time) is a stopping
time such that XT and T are independent and Law(XT ) = π.

Notice that the construction of strong stationary times can be seen as a perfect sampling
technique of the invariant stationary measure π of a regular Markov chain.

We illustrate these strong stationary times with the top-in-at-random card shuffle intro-
duced by D. Aldous and P. Diaconis in [2]. This is a rather silly way of shuffling cards but
it is a preliminary toy model to analyze more complex shuffling techniques. In this context,
shuffling cards processes are modelled by a Markov chain Xn taking values in the group
S = G52 of all the permutations σ of the 52 cards. For a more thorough discussion on these
shuffles, we refer the reader to section 26.4. Each transition of the chain consists of taking the
first card and inserting it back at a random position. The invariant measure of this chain is
the uniform distribution π(σ) = 1/52! on G52. We check this claim by considering a uniform
random deck with law π. After the top-in-at-random card shuffle the deck is still uniform.

We let τ be the first time the bottom card reaches the top of the deck, and T = τ + 1.
Clearly T is a stopping time. Furthermore, all the cards below the bottom cards at some
given time are equally likely. In other words, we have Law(XT ) = π. An inductive proof of
this claim is provided in exercise 101.

Theorem 8.3.18 Let Xn be a Markov chain taking values in some state space S with an
invariant measure π. For any strong uniform time T we have

‖Law(Xn)− π‖tv ≤ P(T > n).

Proof :
Using the Markov property, and recalling that {T = p} depends on the r.v. X0, . . . , Xp

only, for any 0 ≤ p ≤ n, we have

P (Xn ∈ A | Xp = xp, T = p) = P (Xn ∈ A | Xp = xp) = Mn−p(xp, A)
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and

E (P (Xn ∈ A | Xp) | T = p) = E
(
Mn−p(1A)(XT ) | T = p

)
= π

(
Mn−p(1A)

)
= π(A).

This implies that

P (Xn ∈ A , T ≤ n) =
∑

0≤p≤n

P (Xn ∈ A | T = p) P(T = p)

=
∑

0≤p≤n

E (P (Xn ∈ A | Xp) | T = p) P(T = p)

= π(A) P (T ≤ n) = π(A) (1− P(T > n)).

Hence we conclude that

P (Xn ∈ A) = P (Xn ∈ A , T ≤ n) + P (Xn ∈ A , T > n)

= π(A) (1− P(T > n)) + P (Xn ∈ A | T > n) P(T > n)

and
P (Xn ∈ A)− π(A) = (P (Xn ∈ A | T > n)− π(A)) P(T > n).

This ends the proof of the theorem.

8.3.4 Some illustrations

8.3.4.1 Minorization condition and coupling

In this section we present a (more probabilistic in spirit) proof of the convergence result
(8.18) presented in the contraction theorem 8.2.13. We let M be a Markov transition on
some state space S satisfying the minorization condition (8.15). We let Mε represent the
Markov transition defined by

Mε(x, dy) =
M(x, dy)− εν(dy)

1− ε
⇔ M(x, dy) = ε ν(dy) + (1− ε)Mε(x, dy).

We let Xn := (Xn, X
′
n) be the Markov transition on S := S2 defined for any

x = (x, x′) by

M(x, dy) = ε

∫
ν(dz)δ(z,z)(dy) + (1− ε) Mε(x, dy)Mε(x

′, dy′)

where dy stands for an infinitesimal neighborhood of the state y = (y, y′).

By construction, we have

M(x, A× S) = ε ν(A) + (1− ε) Mε(x,A) = M(x,A)

and by symmetry M(x, S ×A) = M(y,A). This shows that each chain marginally follows
the same Markov transition M .

Notice that at any time step (n − 1) � n, we flip a coin with heads probability ε. If
the outcome is a head then we set Xn = X ′

n = Un where Un is a r.v. with distribution ν.
Otherwise each of the chains follows its evolution independently according to the common
Markov transition Mε.
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Therefore, the coupling time T = inf {n ≥ 0 : Xn = X ′
n} of the the couple of

chains (Xn, X
′
n) starting at any initial state (x, x′) is such that

P (T > n) ≤ (1− ε)n.

Now we only suppose that Mm satisfies the minorization condition (8.15) for some
m ≥ 1, and we set by

M (m)
ε (x0, dxm) =

Mm(x0, dxm)− εν(dxm)

1− ε
.

Arguing as above, we can define a Markov chain Xkm := (Xkm, X ′
km) on S := S2 with

transition

M (m)((x0, x
′
0), d(xm, x′

m))

:= ε

∫
ν(dz)δ(z,z)(d(xm, x′

m)) + (1− ε) M (m)
ε (x0, dxm)M (m)

ε (x′
0, dx

′
m).

To design a coupling on the random trajectories the main difficulty here comes from the
fact that M

(m)
ε is not the m-step transition of some Markov chain. A natural idea is to

sample random bridges between the coupled random states (Xkm, X ′
km). To this end, we

observe that

M(x0, d(x1, . . . , xm)) := M(x0, dx1)M(x1, dx2)× . . .×M(xm−1, dxm)

= Mm(x0, dxm)×B((x0, xm), d(x1, . . . , xm−1))

with the conditional bridge distribution B((x0, xm), d(x1, . . . , xm−1)) of the bridge path
sequence (X1, . . . , Xm−1) given the initial and the terminal states X0 = x0 and Xm = xm.
With some abusive notation this bridge distribution is given by the formula

B((x0, xm), d(x1, . . . , xm−1)) = M(x0, d(x1, . . . , xm))/Mm(x0, dxm).

In this notation, the coupled bridge model between the random states (Xkm, X ′
km) defined

above is defined by the Markov transition

B ((x0, x
′
0), d((x1, . . . , xm), (x′

1, . . . , x
′
m)))

:= M (m)((x0, x
′
0), d(xm, x′

m)) B((x0, xm), d(x1, . . . , xm−1)) B((x′
0, x

′
m), d(x′

1, . . . , x
′
m−1)).

In this situation, we have

T := inf {n ≥ 0 : Xn = X ′
n} ≤ inf {n = km ≥ 0 : Xkm = X ′

km} := Tm

so that

P (T > n) ≤ P (Tm > m�n/m�) ≤ (1− ε)�n/m� ≤ (1− ε)−1 e−nε/m. (8.38)
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8.3.4.2 Markov chains on complete graphs

We consider a Markov chain with transition M(x, y) = 1/d on a finite and complete graph
with d vertices S := {1, . . . , d}. This chain is reversible with the unique invariant uniform
measure π(x) = 1/d, for any x ∈ S.

The case where d = 5 is described by the following polygon

1

2

34

5

which is equivalent to the following transition diagram
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We let (Xn, Yn) be a couple of independent Markov chains, up to the first time T they
meet. After that time n ≥ T , we set Xn = Yn. The Markov transition of this chain is
defined by

P ((Xn, Yn) = (x′, y′) | (Xn−1, Yn−1) = (x, y))

= 1x=y P (Xn = x′ | Xn−1 = x) + 1x �=y P (Xn = x′ | Xn−1 = x)P (Yn = y′ | Yn−1 = y) .

By construction, T is a geometric r.v. with success parameter 1/d

{T = n} = {X1 �= Y1, . . . , Xn−1 �= Yn−1, Xn = Yn}

⇓

P(T = n) =


 ∏
1≤p<n

P(Xp �= Yp | Xp−1 �= Yp−1)


× P(Xn = Yn | Xn−1 �= Yn−1)

=

(
1− 1

d

)n−1
1

d
.
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This implies that

P (T > n) =

(
1− 1

d

)n ∑
p≥n

(
1− 1

d

)p−n
1

d
=

(
1− 1

d

)n

≤ e−n/d (8.39)

from which we conclude that

‖Law(Xn)− π‖tv ≤ e−n/d.

8.3.4.3 A Kruskal random walk

One natural but simplified way to analyze the Kruskal magic trick discussed in section 1.4
is to consider the Markov chain Xn on the set of integers S = {1, . . . , d}, for some d ≥ 1,
and defined by the elementary transition

M(i, j) = 1S−{1} 1i−1(j) + 11(i) µ(j)

where µ stands for some distribution on S. The initial condition X0 is a r.v. with distribu-
tion µ.

The set S represents the set of values of the cards. In the card counting model discussed
in section 1.4 we have d = 10.The initial value X0 represents the value of the first secret
card, say X0 = 5 if the card is a jack. Starting from this value, the chain counts backward
X1 = 4, X2 = 3, X3 = 2 up to X4 = 1. Then X5 represents the value of the second magic
card, say X5 = 4. Starting from this value, the chain counts backwards X6 = 3, X7 = 2 up
to X8 = 1. Then X9 stands for the third magic card, and so on.

Any realization of the chain (Xk)0≤k≤nd on the time interval [0, nd] hits the state 1 at
least n times, say T1, . . . , Tn(< nd). We check this claim using the fact that the minimal
number of hits is associated with the realization of the chain given by

X0 = d � X1×d−1 = 1 → Xd = d � . . . � Xn×d−1 = 1 → Xnd.

We consider a pair (X1
n, X

2
n)n≥0 of independent copies of (Xn)n≥0, and we let T be the

first time n these chains meet; that is

T = inf
{
n ≥ 0 : X1

n = X2
n

}
.

After the time T , the chains are coupled; that is, we set X1
n = X2

n for any n ≥ T .
We further assume that X1

0 = d0 + 1 for some d0 and we let T1, . . . , Tn be the first n
times the chain X1

k , hits the state 1. By construction, we have

T1 = X1
0 and ∀k ≥ 0 Tk+1 − Tk = X1

Tk+1.

Thus,
(
X1

Tk+1

)
1≤k≤n

are independent r.v. with distribution µ, and these r.v. are indepen-
dent of X2 :=

(
X2

k

)
k≥0

.
Furthermore, it is easily checked that

T > nd =⇒ ∀1 ≤ k ≤ n X1
Tk+1 �= X2

Tk+1.

This implies that

P (T > nd) ≤ E
(
P
(
∀1 ≤ k ≤ n X1

Tk+1 �= X2
Tk+1 | X2

))

= E


 ∏

1≤k≤n

(
1− P

(
X1

Tk+1 = X2
Tk+1 | X2

))





178 Stochastic Processes

from which we conclude that

P (T > nd) ≤ (1− µ�)
n with µ� := inf

1≤i≤d
µ(i).

When µ is the uniform distribution on S, we find that

∀m ≥ d P (T > m) ≤
(
1− 1

d

)m/d

.

The graph of these rather crude estimates when d = 10 is shown below.
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8.4 Martingales

8.4.1 Some preliminaries

Definition 8.4.1 For any R-valued stochastic process Y = (Yn)n≥0, we denote by
∆Yn = Yn − Yn−1 its increments, so that

∀0 ≤ p ≤ q Yn = Yp +
∑

p<q≤n

∆Yq.

To fix ideas, we consider the gambling ruin model

Yn = Y0 +X1 + . . .+Xn ⇒ ∆Yn = Xn (8.40)

where Xn are independent {−1, 0, 1}-valued r.v. with common distribution

P (Xn = −1) = p P (Xn = 0) = q P (Xn = 1) = r

where p, q, r ∈ [0, 1] are s.t. p + q + r = 1. The initial random variable Y0 represents
the initial fortune of the gambler. When Y0 = 0, the process Yn can also be seen as the
cumulative sum of the outcomes of the game.
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Definition 8.4.2 The filtration F = (Fn)n≥0 generated by some Markov chain Xn is the
increasing sequence of of σ-algebras

Fn = σ(X0, X1, . . . , Xn) ⊂ Fn+1

generated by the random state variables from the origin up to the different times horizon.
A stochastic process Y = (Yn)n≥0 on some possibly different state space S′ is said to be
adapted to the filtration F if there exist some functions hn from Sn+1 into S′ s.t.

Yn = hn(X0, . . . , Xn).

In this situation, we use the synthetic notation Yn ∈ Fn.

Remark : Suppose a process Yn is not adapted to filtration F = (Fn)n≥0 generated by
some Markov chain X. We define by Ŷn the sequence of random variables

Ŷn = E (Yn | Fn) = E (Yn | X0, . . . , Xn) .

Recalling that E (Yn | X0, . . . , Xn) = hn(X0, . . . , Xn) for some deterministic function hn,
we check that Ŷn ∈ Fn. This process is called the projection of Y on the filtration F .

In the gambling ruin model (8.40), Fn represents all the information we have collected
with observing the outcomes of the game Xp, from the origin up to the current time n. In
this situation, the cumulative gains Yn−Y0 of the gambler are adapted to the filtration Fn;
that is,

Yn − Y0 = hn(X1, . . . , Xn) = X1 + . . .+Xn ∈ Fn.

In the further development of this chapter we always assume that Fn is the filtration
associated with some Markov chain X = (Xn)n≥0 evolving on some state space S.

Definition 8.4.3 We say that a R-valued stochastic process M = (Mn)n≥0 is a
martingale w.r.t. the filtration F = (Fn)n≥0, or an F-martingale, if we have

Mn ∈ Fn and E (∆Mn | Fn−1) = 0.

The process M is also called a super-martingale, and respectively a sub-martingale
(w.r.t. the filtration F), if we can replace the r.h.s. in the above display by

E (∆Mn | Fn−1) ≤ 0 , and resp. E (∆Mn | Fn−1) ≥ 0.

Important remark : For martingales, we have

E(Mn) = E(Mn−1) + E(∆Mn) = E(Mn−1) = . . . = E(M0).

In addition, for any p < n, we have

Fp ⊂ Fn−1 =⇒ E (Mn | Fp) = E




=Mn−1︷ ︸︸ ︷
E (Mn | Fn−1) | Fp




= E (Mn−1 | Fp) .
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Iterating the argument, we easily prove that

E (Mn | Fp) = E (Mn−1 | Fp) = . . . = E (Mp+1 | Fp) = Mp.

For super-martingales, we have

E(Mn) = E(Mn−1) + E(∆Mn) ≤ E(Mn−1) ≤ . . . ≤ E(M0)

and E (Mn | Fp) ≤ Mp, for any p ≤ n. Finally, for sub-martingales

E(Mn) = E(Mn−1) + E(∆Mn) ≥ E(Mn−1) ≥ . . . ≥ E(M0)

and E (Mn | Fp) ≥ Mp, for any p ≤ n.
In the gambling ruin model (8.40), the process Yn is clearly F-adapted

Yn = Y0 +X1 + . . .+Xn ⇒ ∆Yn = Xn

and we have

E (∆Yn | Fn−1) = E (Xn | X1, . . . , Xn) = E(Xn) = r − p. (8.41)

This shows that Yn is a martingale, resp. super-martingale, resp. sub-martingale, when
r = p (fair game), resp r ≤ p (unfair), resp. r ≥ p (superfair).

Lemma 8.4.4 For any F-adapted real process Y , the process M defined by

Mn = Y0 +
∑

0<p≤n

(∆Yp − E (∆Yp | Fp−1)) (8.42)

is a F-martingale starting at M0 = Y0. In addition, for any F-martingale M , and for any
F-adapted process H

(H •M)n :=
∑

0<p≤n

Hk−1 ∆Mk (8.43)

is a F-martingale starting at the origin (H •M)0 = 0.

Proof :
We simply check that

∆Mn = ∆Yn − E (∆Yn | Fn−1) ⇒ E (∆Mn | Fn−1) = 0

and
∆(H •M)n = Hn−1 ∆Mn

⇒ E (∆(H •M)n | Fn−1) = Hn−1 × E (∆Mn | Fn−1) = 0.

This ends the proof of the lemma.

In the gambling ruin model (8.40), using (8.41) we check that the martingale (8.42) is
given by

Mn = Y0 +
∑

0<k≤n

(∆Yk − (r − p)) = Yn − n(r − p). (8.44)

In the fair game case r = p, and Y0 = 0, this martingale is simply given by

Mn = Yn = X1 + . . .+Xn ⇒ ∆Mn = Xn.
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Notice that any bet size Hn−1 of the gambler at the n-th coup is a deterministic function
hn−1 of the outcomes Xp of the game up to time p < n; that is,

Hn−1 = hn−1(X1, . . . , Xn−1).

In the fair game case p = r, the evolution of the fortune of the gambler using this betting
strategy is given by the martingale

(H • Y )n :=
∑

0<p≤n

Hk−1 ∆Yk =
∑

0<p≤n

Hk−1 Xk. (8.45)

We quote a technical lemma of independent interest that allows us to quantify the
fluctuations of a martingale around the origin.

Lemma 8.4.5 For any martingale Mn w.r.t. the filtration F , and null at the
origin the stochastic processes

M̃n := M2
n − [M ]n and Mn := M2

n − 〈M〉n

with

[M ]n :=
∑

0<k≤n

(∆Mk)
2 and 〈M〉n :=

∑
0<k≤n

E
(
(∆Mk)

2 | Fk−1

)

are martingales (null at the origin) w.r.t. the same filtration.
The processes [M ]n and 〈M〉n are called the quadratic variation, and the predictable
quadratic variation of Mn. The process 〈M〉n is often called the angle bracket of
Mn.

Proof :
For a given a martingale Mn, with increments ∆Mn = Mn −Mn−1, we have

∆(M2)n = M2
n −M2

n−1 = (Mn−1 +∆Mn)
2 −M2

n−1

= (∆Mn)
2 − 2Mn−1 ∆Mn

= (∆Mn)
2
+∆M̃n = E

(
(∆Mn)

2 | Fn−1

)
+∆Mn

with the conditionally centered random variables

∆M̃n = −2Mn−1∆Mn

and
∆Mn :=

[
(∆Mn)

2 − E
(
(∆Mn)

2 | Fn−1

)]
− 2Mn−1∆Mn.

This shows that

M2
n −M2

0 :=
∑

0<k≤n

E
(
(∆Mk)

2 | Fk−1

)
+Mn =

∑
0<k≤n

(∆Mk)
2
+ M̃n

with the martingales

Mn :=
∑

0<k≤n

∆Mk and M̃n :=
∑

0<k≤n

∆M̃k.
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This ends the proof of the lemma.

We next extend lemma 8.4.5 to products of martingales.

Lemma 8.4.6 For any couple of martingales M
(1)
n and M

(2)
n w.r.t. the filtration

F , and null at the origin the stochastic processes

M̃n := M (1)
n M (2)

n −
[
M (1),M (2)

]
n

and Mn := M (1)
n M (2)

n − 〈M (1),M (2)〉n

are martingales (null at the origin) w.r.t. the same filtration, with the quadratic
covariation, and the predictable quadratic covariation of M (1)

n and M
(2)
n defined by

[
M (1),M (2)

]
n
:=

∑
0<k≤n

∆M
(1)
k ∆M

(2)
k

and
〈M (1),M (2)〉n :=

∑
0<k≤n

E
(
∆M

(1)
k ∆M

(2)
k | Fk−1

)
.

When M (1) = M (2) = M we often write [M ] and 〈M〉 instead of [M,M ] and
〈M,M〉.

Proof :
We have the increment decompositions

∆(M (1)M (2))n := M (1)
n M (2)

n −M
(1)
n−1M

(2)
n−1

=
(
M

(1)
n−1 +∆M (1)

n

)(
M

(2)
n−1 +∆M (2)

n

)
−M

(1)
n−1 M

(2)
n−1

= ∆M (1)
n ∆M (2)

n −M
(1)
n−1 ∆M (2)

n −M
(2)
n−1 ∆M (1)

n

= ∆M (1)
n ∆M (2)

n︸ ︷︷ ︸
=∆[M(1),M(2)]

n

+∆M̃n = E
(
∆M (1)

n ∆M (2)
n | Fn−1

)
︸ ︷︷ ︸

=∆〈M(1),M(2)〉n

+∆Mn

with the conditionally centered random variables

∆M̃n = −M
(1)
n−1 ∆M (2)

n −M
(2)
n−1 ∆M (1)

n

and

∆Mn :=
[
∆M (1)

n ∆M (2)
n − E

(
∆M (1)

n ∆M (2)
n | Fn−1

)]
−M

(1)
n−1 ∆M (2)

n −M
(2)
n−1 ∆M (1)

n .

This shows that

M (1)
n M (2)

n −M
(1)
0 M

(2)
0 :=

∑
0<k≤n

∆(M (1)M (2))k

=
∑

0<k≤n

E
(
∆M

(1)
k ∆M

(2)
k | Fk−1

)
+Mn

=
∑

0<k≤n

∆M
(1)
k ∆M

(2)
k + M̃n
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with the martingales

Mn :=
∑

0<k≤n

∆Mk and M̃n :=
∑

0<k≤n

∆M̃k.

This ends the proof of the lemma.

In the gambling ruin model (8.40), the increments of the martingale (8.44) are given by

∆Mn = (∆Yn − (r − p)) = (Xn − ρ) with ρ := E(Xn) = (r − p).

This yields

∆〈M〉n := 〈M〉n − 〈M〉n−1 = E
(
(∆Mn)

2 | Fn−1

)

= Var(Xn) = (r + p)− (r − p)2 = (2p+ ρ)− ρ2,

from which we conclude that

Mn := M2
n − 〈M〉n = [Yn − nρ]

2 −
[
(2p+ ρ)− ρ2

]
n. (8.46)

Notice that

q = 0 ⇒ r = 1− p ⇒ ρ = r − p = 1− 2p

⇒
[
(2p+ ρ)− ρ2

]
= 1− (1− 2p)2 = 4p(1− p) = 4pr.

One direct consequence of the martingale property is an explicit variance formula for the
fortune of the player

E

([
Yn

n
− ρ

]2)
=

1

n

[
(2p+ ρ)− ρ2

] if q=0
=

4pr

n
.

8.4.2 Applications to Markov chains

8.4.2.1 Martingales with fixed terminal values

Let Xn be a Markov chain on a state space S with Markov transitions Mn. We let Fn

be the filtration generated by the Markov chain Xn, and we denote by Mp,n, p ≤ n, the
semigroup of the Markov chain defined for any function f by the formulae

Mp,n(f)(xp) = E (f(Xn) | Xp = xp ) .

Theorem 8.4.7 Given some terminal time horizon n, and some bounded function
fn, the process

0 ≤ p ≤ n �→ M(n)
p := Mp,n(fn)(Xp)

is the unique martingale w.r.t. the filtration Fp, with p ≤ n, with terminal value
M(n)

n = fn(Xn).
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Proof :
The proof of the last assertion is obvious. The martingale property follows from the semi-
group definition. Indeed, for any p < n we have

E
(
M(n)

p+1 | Fp

)
= E (Mp+1,n(fn)(Xp+1) | Xp )

= Mp (Mp+1,n(f)) (Xp) = (MpMp+1,n) (f)(Xp) = Mp,n(f)(Xp) = M(n)
p .

The uniqueness follows from the fact that the values of the martingale are pre-defined by
the terminal value; that is, we have that

E (fn(Xn) | Fp ) = E
(
M(n)

n | Fp

)
= M(n)

p .

This ends the proof of the theorem.

Important remark : The above construction of martingales with a terminal end point is
of current use in mathematical finance, and more precisely in pricing European options. In
this situation, the terminal time condition is called the payoff function, and the martingale
represents the evolution of a given portfolio that starts at the "real" price of an option and
ends at the terminal time to the payoff function associated with the option contract. These
covering portfolios are also called replicating portfolios to emphasize that they "mimic" the
evolution of a given risky stock price to cover its random terminal values. We refer the
reader to section 30.2 for a more thorough discussion on these application domains.

8.4.2.2 Doeblin-Itō formula

For any function f on S we have

f(Xn) := f(X0) +
∑

0<p≤n

∆f(Xp) with ∆f(Xp) = f(Xp)− f(Xp−1).

We denote by Mn(f) the stochastic the process given by

Mn(f) :=
∑

0<p≤n

[∆f(Xp)− E (∆f(Xp)| Fp−1)]

=
∑

0<p≤n

[f(Xp)− E (f(Xp)| Fp−1)] .

It should be clear that this process is a martingale, and the increments are given by

∆Mn(f) := Mn(f)−Mn−1(f) = f(Xn)−Mn(f)(Xn−1).

In addition, we have

E
(
(∆Mn(f))

2 | Fn−1

)
= E

(
([f(Xn)− E (f(Xn)| Fn−1)])

2 | Fn−1

)

= Mn(f
2)(Xn−1)− (Mn(f)(Xn−1))

2
(
≤ osc(f)2

)
.

This shows that the predictable angle bracket of the martingale Mn(f) is given by

〈M(f)〉n :=
∑

0<p≤n

[
Mp(f

2)(Xp−1)− (Mp(f)(Xp−1))
2
]
.
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Definition 8.4.8 The decomposition

f(Xn) := f(X0) +
∑

0<p≤n

E (∆f(Xp)| Fp−1) +Mn(f)

= f(X0) +
∑

0<p≤n

(Mp(f)− f) (Xp−1) +Mn(f) (8.47)

is called the martingale decomposition of the stochastic process f(Xn).

Definition 8.4.9 The generator Ln of the Markov chain Xn with Markov transition and
the carré du champ operator ΓLn are defined by

Ln := Mn − Id : f �→ Ln(f) := Mn(f)− f

and
ΓLn

: (f, g) �→ ΓLn
(f, g) := Ln(fg)− fLn(g)− gLn(f).

Using the fact that Mn = Ln + Id we readily check that

Mn(f
2)− (Mn(f))

2
= Ln(f

2) + f2 − (Ln(f) + f)
2
= ΓLn

(f, f)− (Ln(f))
2
.

The martingale decomposition and the predictable angle bracket of the martingale
Mn(f) computed above are expressed in a natural way in terms of these operators. From
previous considerations we readily prove the following theorem.

Theorem 8.4.10 The Doeblin-Itō formula associated with the Markov chain Xn

is given by the formula

f(Xn) = f(X0) +
∑

0≤p≤n

Lp(f)(Xp−1) +Mn(f) (8.48)

with a martingale Mn(f) with predictable angle bracket

〈M(f)〉n :=
∑

0<p≤n

ΓLp(f, f)(Xp−1)−
∑

0<p≤n

(Lp(f)(Xp−1))
2
.

8.4.2.3 Occupation measures

In the further development of this section, we consider a time homogeneous Markov chain
Xn with Markov transition M on some state space S. The next technical lemma provides
a martingale decomposition of the occupation measure of the chain

πn :=
1

n+ 1

∑
0≤p≤n

δXp
(8.49)

in terms of the solution of the Poisson equation presented in section 8.2.4.
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Lemma 8.4.11 We let Xn be a Markov chain on some state space S satisfying
the regularity properties discussed in section 8.2.4. We denote by π the unique
invariant measure of the chain. For any bounded function f on S we have

1

n+ 1
(g(Xn+1)− g(X0)) = [π(f)− πn(f)] +

1

n+ 1
Mn+1(g) (8.50)

with the (bounded) solution of the Poisson equation (8.19) given by

g =
∑
n≥0

(Mn(f)− π(f)) . (8.51)

Proof :
Recalling that

g =
∑
n≥0

(Mn(f)− π(f)) ⇒ [Id−M ](g) = f − π(f),

we prove that for any p ≥ 0, we have

f(Xp)− π(f) = [Id−M ](g)(Xp) = g(Xp)−M(g)(Xp) = g(Xp)− E (g(Xp+1) | Xp)

= − (g(Xp+1)− g(Xp))︸ ︷︷ ︸
∆g(Xp+1)

+(g(Xp+1)− E (g(Xp+1) | Xp))︸ ︷︷ ︸
=∆Mp+1(g)

.

Taking the sum of the index p, we find the desired decomposition. This ends the proof of
the lemma.

As a direct consequence of the lemma, we have

|E [πn(f)]− π(f)| =
1

n+ 1
|E (g(Xn+1)− g(X0))| ≤ osc(g)/(n+ 1) −→n→∞ 0.

We also notice that
√
n+ 1 [π(f)− πn(f)] = −Mn+1(g)√

n+ 1
− (g(Xn+1)− g(X0)) /

√
n+ 1

= −Mn+1(g)√
n+ 1

+O(1/
√
n).

This implies that

(n+ 1) E
([

[π(f)− πn(f)]
2
])

=
1

n+ 1
E (〈M(g)〉n+1)︸ ︷︷ ︸
≤(n+1) osc(g)2

+o(1/n)

from which we conclude that

E
([

[π(f)− πn(f)]
2
])

= O(1/n). (8.52)

In addition, using the fact that

n−1 E (〈M(g)〉n)

= E


n−1

∑
0<p≤n

[
M(g2)−M(g)2

]
(Xp−1)




= E
(
πn−1(M(g2)−M(g)2)

)
−→n→∞ π

(
M(g2)−M(g)2

)
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and recalling that πM = π, we also have the asymptotic result

(n+ 1) E
([

[π(f)− πn(f)]
2
])

−→n→∞ σ2(f) := π
(
g2
)
− π

(
M(g)2

)
.

Since g satisfies the Poisson equation we have

g = M(g) + (f − π(f)) ⇒ π(g2) = π(M(g)2) + 2 π((f − π(f))M(g)) + π((f − π(f))2).

This implies that

σ2(f) = 2 π((f − π(f))M(g)) + π((f − π(f))2)

= 2
∑
p≥1

π([f − π(f)]Mp[f − π(f)]) + π([f − π(f)]2).

More precise estimates are provided in section 9.1 which is dedicated to a simple proof of
a weak ergodic theorem without using (implicitly) the Poisson equation and sophisticated
martingale tools.

8.4.3 Optional stopping theorems

In practice a player chooses to stop gambling at some possibly large but random time.
Unfortunately, the theorem states that the evolution of a fortune in a fair game up to any
stopping time remains a martingale null at the origin.

In the further development of this section c, c1, c2 stands for some finite constants.

Theorem 8.4.12 (Optional stopping theorem 1) We let M be a martingale,
and T be a stopping time w.r.t. the filtration F generated by some Markov chain.
The stopped process

Mn∧T := Mn 1[n,∞[(T ) +MT 1[0,n[(T ) = Mn 1]n,∞[(T ) +MT 1[0,n](T ) (8.53)

is a martingale w.r.t. F . If Mn is a super-martingale then Mn∧T is also a super-
martingale.

Proof :
We recall that a stopping time is such that {T = n} ∈ Fn, for any n ≥ 0. Since Fn ⊂ Fn+1,
we have

{T ≤ n} = ∪m≤n{T = m} ∈ Fn and {T > n} = Ω− {T ≤ n} ∈ Fn

and
MT 1T≤n =

∑
0≤m≤n

Mm 1T=m∈Fn.

We check this claim by combining the l.h.s. expression in (8.53) with the following condi-
tioning formulas

E
(
M(n+1)∧T | Fn

)
= E

(
Mn+1 1T≥(n+1) +MT 1T<(n+1) | Fn

)

= E (Mn+1 1T>n +MT 1T≤n | Fn)

= E (Mn+1 | Fn) 1T>n +MT 1T≤n.
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By the martingale property, for the r.h.s. expression in (8.53) we conclude that

E
(
M(n+1)∧T | Fn

)
= Mn 1T>n +MT 1T≤n = Mn∧T .

When Mn is a super-martingale we have E (Mn+1 | Fn) ≤ Mn so that

E
(
M(n+1)∧T | Fn

)
≤ Mn 1T>n +MT 1T≤n = Mn∧T .

This shows that Mn∧T is also a super-martingale. This ends the proof of the theorem.

Lemma 8.4.13 Let Mn be a martingale w.r.t. some filtration Fn. For any stopping time
T , any 0 ≤ n ≤ m, and any An ⊂ Fn we have

E(Mn 1An
1T≥n) = E (MT 1An

1n≤T≤m) + E (Mm 1An
1T>m) .

Proof :
We fix n ≥ 0 and we use induction w.r.t. the parameter m ≥ n. For m = n, the result
follows from the fact that

Mn 1T≥n = Mn 1T=n +Mn 1T>n = MT 1T=n +Mn 1T>n. (8.54)

Suppose we have proved the formula for some rank m ≥ n. We use the decomposition

E (Mm+1 | Fm) = Mm and (T > m) ∈ Fm � 1An

⇒ Mm 1An
1T>m = E (Mm+1 | Fm) 1T>m 1An

= E (Mm+1 1An
1T>m | Fm) = E

(
Mm+1 1An

1T≥(m+1) | Fm

)
.

Under the induction hypothesis, this implies that

E(Mn 1An
1T≥n)

= E (MT 1An
1n≤T≤m) + E

(
E
(
Mm+1 1An

1T≥(m+1) | Fm

))

= E (MT 1An 1n≤T≤m) + E
(
Mm+1 1An 1T≥(m+1)

)
︸ ︷︷ ︸

= E (MT 1An
1n≤T≤m) +

||
(
by (8.54)

)

︷ ︸︸ ︷
E
(
MT 1An

1T=(m+1)

)
+ E

(
Mm+1 1An

1T>(m+1)

)
.

The end of the proof follows from the fact

E (MT 1An
1n≤T≤m) + E

(
MT 1An

1T=(m+1)

)
= E

(
MT 1An

1n≤T≤(m+1)

)
.

This ends the proof of the induction step and the proof of the lemma is now completed.
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Theorem 8.4.14 (Optional stopping theorem 2) Whenever a stopped mar-
tingale Mn∧T is s.t. |Mn∧T | ≤ c we have

E(M0) = E(Mn∧T ) −→n↑∞ E
(
lim
n↑∞

Mn∧T

)
= E(MT ). (8.55)

In the same way, we also have

(|Mn∧T | ≤ c1 + c2 T with E(T ) < ∞)

=⇒ E(M0) = E(Mn∧T ) −→n↑∞ E (limn↑∞ Mn∧T ) = E(MT ).
(8.56)

The proofs of (8.55) and (8.56) are based on the dominated convergence theorem.
Observe that

|Mn∧T | ≤
√
c1 and 〈M〉n∧T ≤ c2 T ⇒

∣∣M2
n∧T − 〈M〉n∧T

∣∣ ≤ c1 + c2 T.

Theorem 8.4.15 (A Wald’s type indentity) For any stopped martingale we
have

|Mn∧T | ≤ c

〈M〉n∧T ≤ c T with E(T ) < ∞


 =⇒ E

(
M2

T

)
= E (〈M〉T ) (8.57)

as soon as M0 = 0 = 〈M〉0. In addition, we have

|Mn∧T | ≤ c =⇒ E (〈M〉T ) ≤ c2 (8.58)

Proof :
The assertion (8.57) is proved applying (8.56) to the martingale Nn := M2

n − 〈M〉n. The
second one follows from the fact that the stopped process is a martingale so that

E(M2
n∧T ) = E (〈M〉T∧n) ≤ c2.

Applying Fatou’s lemma we have

E (〈M〉T ) = E( lim
n→∞

〈M〉T∧n) ≤ lim inf
n→∞

E (〈M〉T∧n) ≤ c2.

This ends the proof of (8.58).

For instance, the condition |Mn∧T | ≤ c is clearly met when the martingale starts M0 ∈
[a, b] in some interval [a, b] ⊂ R and T is the first exit time of that interval.

More generally, we have the following theorem.
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Theorem 8.4.16 (Optional stopping theorem) Let Mn be a martingale
w.r.t. a filtration Fn. For any finite stopping time T (i.e. P(T < ∞) = 1),
such that E(|MT |) < ∞, we have

E (Mm 1T>m) →m↑∞ 0 ⇒ E(Mn 1T≥n) = E (MT 1T≥n)

as well as

E(MT ) = E(M0) and E (MT | Fn) 1T<n = Mn 1T<n.

In addition we have

E (|Mn| 1T>n) →n↑∞ 0 ⇒ E(MT | Fn) = Mn.

Proof :
The first assertion is a convergence of the monotone convergence theorem and lemma 8.4.13
applied to An = Ω. In this situation, we also notice that

E(M0) = E (Mn∧T ) =

=E(MT 1T≥n)︷ ︸︸ ︷
E (Mn 1T≥n)+E (MT 1T<n) = E(MT ).

Furthermore, using the decomposition

Mn∧T := Mn 1T≥n +MT 1T<n

we check that

Mn = Mn∧n = E (Mn∧T | Fn) = Mn 1T≥n + E (MT | Fn) 1T<n

⇒ E (MT | Fn) 1T<n = Mn 1T<n.

Now, we move on to the proof of the second assertion. For any An ∈ Fn we have

E (E (MT | Fn) 1An
1n≤T ) = E (MT 1An

1n≤T ) .

It remains to prove that

E (MT 1T≥n 1An
) = E (Mn 1T≥n 1An

) .

Arguing as above, this result is proved by using the monotone convergence theorem and
lemma 8.4.13. We conclude that for any An ∈ Fn we have

E (E (MT | Fn) 1An 1n≤T ) = E (Mn 1An 1n≤T ) .

This implies that
E (MT | Fn) 1n≤T = Mn 1n≤T .

This ends the proof of the theorem.

Important remark : Using the martingale property, it is tempting to deduce that
E(MT | Fn) = Mn on the event T > n. The theorem 8.4.16 indicates that this result may fail
when lim infn→∞ E (|Mn| 1T>n) > 0. This obstacle in applying the conditioning formulae
arises in the analysis of most of the martingale betting systems discussed in section 29.2.
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8.4.4 A gambling model

We consider the gambling model defined in (8.40). The bettor’s profit per unit of time is
represented by a sequence of independent {−1, 1}-valued random variablesXn with common
distribution

P (Xn = −1) = p and P (Xn = 1) = q = 1− p ∈ [0, 1]

and we set E(Xn) = q − p = ρ.

Definition 8.4.17 We fix an initial fortune Y0 = y ∈]a, b[ on some maximal loss or gain
interval ]a, b[∈ N, and we let

Ta,b = inf{n ≥ 0 : Yn ∈]a, b[} = inf{n ≥ 0 : Yn = a or Yn = b}

to be the first time the process Yn exits the open interval ]a, b[ from the left or from the right.

The first result is that the player will reach fortune or ruin in finite time.

Lemma 8.4.18 The exit time Ta,b < ∞ is almost surely finite. Moreover, there exist some
constants α < ∞, and β > 0 such that

sup
y∈]a,b[

P (Ta,b > n | Y0 = y) ≤ α e−βn and sup
y∈]a,b[

E (Ta,b | Y0 = y) ≤ α (1− e−β)−1. (8.59)

Proof :
The r.h.s. of (8.59) comes from the well known formula E(T ) =

∑
n≥0 P(T > n) which is

valid for any integer valued random variable T . When ρ �= 0, we can deduce this result
using the strong law of large numbers

ε(n) :=
1

n
[Yn − E(Yn)] =

1

n

∑
0<k≤n

(Xk − ρ) →n↑∞ 0

almost surely. This implies that

Yn = E(Yn) + n ε(n) = n(ρ+ ε(n)) →n↑∞ sign(ρ) ∞

from which we conclude that Ta,b < ∞, when ρ �= 0.
To prove that the exit time is finite even when ρ = 0, another more general strategy is

to choose a large enough exit time period m ≥ 1 so that

inf
y∈]a,b[

P (Ym �∈]a, b[ | Y0 = y) := ε > 0. (8.60)

Using the fact that

∀y ∈]a, b[ ∃ m(y) ≥ 1 s.t. P
(
Ym(y) ∈ {a, b} | Y0 = y

)
> 0

we check that condition (8.60) is satisfied for any m ≥ maxy∈]a,b[ m(y). In this case, we
have

P (Ta,b > m | Y0 = y) = 1− P (∃n ∈ [1,m] Yn ∈ {a, b} | Y0 = y)

≤ 1− P (Ym ∈ {a, b} | Y0 = y) ≤ 1− ε
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and more generally

P (Ta,b > nm | Ta,b > (n− 1)m, Y0 = y)

= P
(
Ta,b > nm | Y(n−1)m ∈]a, b[, . . . , Y1 ∈]a, b[, Y0 = y

)

= E
[
P
(
Ta,b > nm | Y(n−1)m, . . . , Y1, Y0

)
| Y(n−1)m ∈]a, b[, . . . , Y1 ∈]a, b[ Y0 = y

]
≤ (1− ε).

This implies that for any l = nm+ k, 0 ≤ k < m

P (Ta,b > l) ≤ P (Ta,b > nm | Y0 = y)

≤ P (Ta,b > nm | Ta,b > (n− 1)m, Y0 = y)× P (Ta,b > (n− 1)m | Y0 = y)

≤ (1− ε)× P (Ta,b > (n− 1)m | Y0 = y)

≤ (1− ε)n = (1− ε)−k
(
(1− ε)1/m

)nm+k

≤ (1− ε)−(1−1/m)
(
(1− ε)1/m

)l

.

This clearly ends the proof of the lemma.

Definition 8.4.19 We call the lucky player event

Ωa,b :=
{
YTa,b

= b
}
.

We have seen in (8.44) that it can be directly confirmed that the centered process

Mn = y +
∑

0<k≤n

(Xk − ρ) = Yn − ρn (8.61)

is a martingale.

8.4.4.1 Fair games

Firstly, we examine the case ρ = q − p = 0; that is p = q = 1/2. In this situation, using
(8.46) we have the following martingales

Mn = Yn

Mn = M2
n − 〈M〉n = Y 2

n − n.

By the optional stopping theorem 8.4.12, we have

M0 = y = E
(
MTa,b∧n

)
→n↑∞ E

(
MTa,b

) ρ=0
= E

(
YTa,b

)
.

This implies that

E
(
MTa,b

)
= b P

(
YTa,b

= b
)
+ a

(
1− P

(
YTa,b

= b
))

= y

from which we conclude that

P
(
YTa,b

= b
)
= (y − a)/(b− a).

Having found these probabilities, another valuable bit of information for our player is to
find the expected duration of the game. Arguing as above, we have

M0 = y2 − 0 = E
(
MTa,b∧n

)
→n↑∞ E

(
MTa,b

)
= E

(
Y 2
Ta,b

)
− E (Ta,b) .
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This implies that

E (Ta,b) = (b2 − y2) P
(
YTa,b

= b
)
+ (a2 − y2)

(
1− P

(
YTa,b

= b
))

= (b2 − y2)
(y − a)

(b− a)
+ (a2 − y2)

(b− y)

(b− a)

= (b− y)(y − a)

[
(b+ y)

(b− a)
− (a+ y)

(b− a)

]
= (b− y)(y − a).

8.4.4.2 Unfair games

For unfair games ρ = q− p �= 0, we use the martingale (8.61) and the following exponential
type martingale

En = (p/q)Yn ⇒ ∆En = (p/q)Yn−1+∆Yn − (p/q)Yn−1

= (p/q)Yn−1
(
(p/q)Xn − 1

)
.

It is readily checked that

E
(
(p/q)Xn

)
= (q/p) p+ (p/q) q = p+ q = 1

from which we conclude that

E (∆En | Fn−1 ) = (p/q)Yn−1
[
E
(
(p/q)Xn

)
− 1

]
= 0.

This proves that En is a martingale. Arguing as above, we have

E0 = (p/q)y = E
(
(p/q)XTa,b∧n

)
→n↑∞ E

(
(p/q)XTa,b

)
.

This implies that

(p/q)y = E
(
(p/q)XTa,b

)

= (p/q)b P
(
YTa,b

= b
)
+ (p/q)a

(
1− P

(
YTa,b

= b
))

= (p/q)a +
[
(p/q)b − (p/q)a

]
P
(
YTa,b

= b
)

from which we conclude that

P
(
YTa,b

= b
)
=

(p/q)y − (p/q)a

(p/q)b − (p/q)a
.

To compute the mean duration of the unfair game, we use the martingale Mn = Yn−ρn
discussed in (8.61). Using once again the same line of arguments as above, we find that

M0 = y − 0 = E
(
MTa,b∧n

)
→n↑∞ E

(
MTa,b

)
= E

(
YTa,b

)
− ρ E (Ta,b) .

This implies that

ρ E (Ta,b) = (b− y) P
(
YTa,b

= b
)
+ (a− y)

(
1− P

(
YTa,b

= b
))

= (b− y)

(
1− (p/q)b − (p/q)y

(p/q)b − (p/q)a

)
− (y − a)

(p/q)b − (p/q)y

(p/q)b − (p/q)a

= (b− y)− (b− a)
(p/q)b − (p/q)y

(p/q)b − (p/q)a
.
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Hence we get

E (Ta,b) =
1

q − p

[
(b− y)− (b− a)

(p/q)b − (p/q)y

(p/q)b − (p/q)a

]
.

For unfair games δ := p/q > 1 holds and we have

p = δq = 1− q ⇒ q = 1/(1 + δ) and p = δ/(1 + δ).

In this case, we find that

P
(
YTa,b

= b
)
=

δy − δa

δb − δa
=

δ−(b−y) − δ−(b−a)

1− δ−(b−a)
�b−a↑∞ δ−(b−y)

and

E (Ta,b) =
δ + 1

δ − 1

[
(b− a)

(
1− δ−(b−y) − δ−(b−a)

1− δ−(b−a)

)
− (b− y)

]

�b−a↑∞
δ + 1

δ − 1
(y − a)

[
1− b− a

y − a
δ−(b−y)

]
�b−a↑∞

δ + 1

δ − 1
(y − a).

8.4.5 Maximal inequalities

In the further development of this section Mn stands for a martingale w.r.t. a filtration Fn.

Lemma 8.4.20 For any x > 0, we have

P
(

sup
0≤p≤n

|Mp| ≥ x

)
≤ x−1 E

(
|Mn| 1sup0≤p≤n |Mp|≥x)

)

or equivalently

E
(
|Mn| | sup

0≤p≤n
|Mp| ≥ x

)
≥ x.

Proof :
Let Ta be the first time a martingale exceeds certain level a > 0:

Ta = inf {n ≥ 0 : Mn ≥ a}
(
≤ n ⇔ sup

0≤p≤n
Mp ≥ a

)
.

By construction, we have

E (MTa∧n 1Ta≤n)︸ ︷︷ ︸
=MTa 1Ta≤n

≥ a P (Ta ≥ n) = a P
(

sup
0≤p≤n

Mp ≥ a

)
.

These inequalities are valid for any processes. The martingale property enters here to help
us to prove that

E (Mn∧Ta
1Ta≤n) = E (Mn∧Ta

(1− 1Ta>n)) = E (Mn∧Ta
)︸ ︷︷ ︸

E(Mn)

−E (Mn∧Ta
1Ta>n)︸ ︷︷ ︸

=E(Mn 1Ta>n)

from which we conclude that

E (Mn∧Ta
1Ta≤n) = E (Mn (1− 1Ta>n)) = E (Mn 1Ta≤n) ≤ E

(
M+

n 1Ta≤n

)
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with M+
n := max (0,Mn). Summarizing, we have proved that for any martingale Mn

P
(

sup
0≤p≤n

Mp ≥ a

)
≤ a−1 E

(
M+

n 1Ta≤n

)

P
(

sup
0≤p≤n

(−Mp) ≥ a

)
≤ a−1 E

(
(−Mn)

+ 1T−
a ≤n

)
= a−1 E

(
M−

n 1T−
a ≤n

)

with

T−
a = inf {n ≥ 0 : −Mn ≥ a} ≤ n ⇔ sup

0≤p≤n
(−Mp) ≥ a ⇔ inf

0≤p≤n
Mp ≤ −a.

The second assertion is deduced from the first using the fact that the inverse (−Mn) of a
martingale remains a martingale, and (−Mn)

+ := max (0,−Mn) = − inf (0,Mn) = M−
n .

Adding the two l.h.s. lines, we find that

P
(

sup
0≤p≤n

Mp ≥ a

)
+ P

(
inf

0≤p≤n
Mp ≤ −a

)
= P

(
sup

0≤p≤n
|Mp| ≥ a

)
.

Recalling that |a| = a+ + a− ≥ max (a+, a−), for any a ∈ R, adding the two r.h.s. lines, up
to the multiplicative factor a−1 we get

E
(
M+

n 1Ta≤n

)
+ E

(
M−

n 1T−
a ≤n

)
≤ E

(
|Mn| 1(Ta≤n)∩(T−

a ≤n)

)

= E
(
|Mn| 1(sup0≤p≤n Mp≥a)∩(inf0≤p≤n Mp≤−a)

)

= E
(
|Mn| 1sup0≤p≤n |Mp|≥a)

)
.

This ends the proof of the lemma.

Lemma 8.4.21 For any conjugate numbers 1
p + 1

q = 1, with p > 1, we have

E
(

sup
0≤k≤n

|Mk|p
)

≤ qp E (|Mn|p) .

Proof :
For any non negative real valued r.v. X, and any p > 1, using Fubini’s theorem we have

E (Xp)

=

∫ ∞

0

=yp

︷ ︸︸ ︷[∫ y

0

p xp−1 dx

]
P(X ∈ dy) =

∫

0≤x≤y<∞
p xp−1 dxP(X ∈ dy)

=

∫ ∞

0

p xp−1

[∫ ∞

x

P (X ∈ dy)

]
dx =

∫
p xp−1 P (X ≥ x) dx.

Applying this formula to X = sup0≤p≤n |Mp|, and using lemma 8.4.20 we find that

E
(

sup
0≤k≤n

|Mk|p
)

≤ p

p− 1
E

(
|Mn|

∫ sup0≤k≤n |Mk|

0

(p− 1) xp−1 x−1 dx

)

=
1

1− 1/p
E
(
|Mn| sup

0≤p≤n
|Mp|p−1

)
. (8.62)
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For any conjugate numbers 1
p + 1

q = 1 with p > 1, Hölder’s inequality implies that

E
(
|Mn| sup

0≤k≤n
|Mk|p−1

)
≤ E (|Mn|p)1/p E

(
sup

0≤k≤n
|Mk|qp(1−1/p)

)1/q

= E (|Mn|p)1/p E
(

sup
0≤k≤n

|Mk|p
)1/q

.

Combining this estimate with (8.62) we prove that

E
(

sup
0≤k≤n

|Mk|p
)1−1/q

= E
(

sup
0≤k≤n

|Mk|p
)1/p

≤ q E (|Mn|p)1/p .

This ends the proof of the lemma.

8.4.6 Limit theorems

We recall that the upper and lower limits of a sequence of random variables Mn are given
by the formulae

lim inf
n→∞

Mn = inf
n≥0

sup
m≥n

Mm et lim sup
n→∞

Mn = sup
n≥0

inf
m≥n

Mm.

The existence of the limit is defined by the event

{ω ∈ Ω : lim
n→∞

Mn(ω) exists } = Ω− {ω ∈ Ω : lim sup
n→∞

Mn(ω) > lim inf
n→∞

Xn(ω)}.

with
{lim sup

n→∞
Mn > lim inf

n→∞
Mn} =

⋃

a < b
a, b ∈ Q

{lim sup
n→∞

Mn > b > a lim inf
n→∞

Mn}.

This shows that the sequenceMn will have a limit as n ↑ ∞ with probability 1 if and only
if the number of oscillations between two rational numbers a < b is finite with probability
1.

Let {Tn ; n ≥ 0} the times the process Mn goes above and below some given parameters
a < b; that is,

T0 = 0

T1 = min {n > T0 : Mn ≤ a}
T2 = min {n > T1 : Mn ≥ b}
. . . = . . .

T2m = min {n > T2m−1 : Mn ≥ b}
T2m+1 = min {n > T2m : Mn ≤ a}

. . . = . . .

with the convention inf∅ = +∞. For each n ≥ 1 the number of crossing β
(M)
n ([a, b]) is

defined by

β(M)
n ([a, b]) =

{
0 if T2 > n
max {m ≥ 0 : T2m ≤ n} if T2 ≤ n.
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Lemma 8.4.22 (Doob’s upcrossing lemma) For any sub-martingale (respectively super-
martingale) Mn w.r.t. some Fn, and for any a, b ∈ R, with a < b, we have

E
(
β(M)
n (a, b)

)
≤ E((Mn − a)+)/(b− a)

(
resp. E((b−Mn)

+)/(b− a)
)
.

Proof :
Since M is a super-martingale if and only if (−Mn) is a sub-martingale, and

β(M)
n (a, b) = β(−M)

n (−b,−a),

it clearly suffices to check the lemma for sub-martingales. We also notice that the number
of crossing of the interval [a, b] is the same as the number of crossing the interval [0, b− a]
by the sequence (Mn − a)+. Therefore, we can assume that a = 0 and we need to check
that

E
(
β(M)
n (0, b)

)
≤ E(Mn)/b.

We assume that X0 = 0 (and F0 = {∅,Ω}). For each k ≥ 1 we set

Hk =

{
1 si Tm < k ≤ Tm+1 for m odd
0 si Tm < k ≤ Tm+1 for m even.

By construction, we have

b β(M)
n (0, b) ≤

∑
1≤k≤n

Hk (Mk −Mk−1)

and
{Hk = 1} = ∪m odd ({Tm < k} − {Tm+1 < k}) ∈ Fk−1.

Finally we have

b E
(
β(M)
n (0, b)

)
≤

∑
1≤k≤n

E (1Hk=1 E (Mk −Mk−1|Fk−1))

≤
∑

1≤k≤n

E (E (Mk −Mk−1|Fk−1)) = E (Mn) .

This ends the proof of the lemma.

Theorem 8.4.23 (Doob’s convergence theorem) For any martingale, super-
martingale or sub-martingale Mn s.t. supn≥0 E(|Mn|) < ∞, the almost sure limit
limn→∞ Mn = M∞ exists and we have E(|M∞|) < ∞.

Proof :
By the monotone convergence theorem, for any a < b we have

E
(
lim
n→∞

β(M)
n (a, b)

)
= lim

n→∞
E
(
β(M)
n (a, b)

)

≤ 1

b− a

(
sup
n≥0

E(|Mn|) + |a|+ |b|
)

< +∞.
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This implies that

P
(
lim sup
n→∞

Mn > b > a lim inf
n→∞

Mn

)
= 0

so that limn→∞ Mn = M∞ exists. In addition, by Fatou’s lemma we have E(|M∞|) < ∞.

In the further development of this section Mn stands for a martingale w.r.t. a filtration
Fn.

Theorem 8.4.24 Any martingale Mn such that supn≥0 E(M2
n) < ∞ converges

almost surely to some random variable M∞, as n → ∞, and

lim
n→∞

E
[
|Mn −M∞|2

]
= 0.

Proof :
The existence of the limit is granted by Doob’s convergence theorem. Next, we provide
an alternative analysis based on the completeness of the Hilbert space of square integrable
random variables. Without loss of generality we assume that the martingale is null at the
origin. In this situation, from lemma 8.4.5, we readily check that E(M2

n) is an increasing
sequence and

sup
n≥0

E(M2
n) = sup

n≥0
E([M ]n) = lim

n↑∞
E ([M ]n) =

∑
n≥0

E
(
(∆Mn)

2
)
< ∞.

This implies that

E
(
[M ]m+n − [M ]m

)
=

∑
m<k≤m+n

E
(
(∆Mk)

2
)
≤

∑
m<n

E
(
(∆Mn)

2
)
↓m↑∞ 0.

Hence

E
(
(Mm+n −Mm)

2
)

= E(M2
m+n −M2

m)

= E
(
[M ]m+n − [M ]m

)
↓m↑∞ 0.

This shows that Mn is a Cauchy sequence on the Hilbert space of square integrable random
variables and hence converges to some random variable M∞.

We recall that a sequence of random variables Mn converges almost surely to some
random variable M∞ if and only if supm≥n |Mm−M∞| tends to 0 in probability, as n → ∞.
The proof of this classical result in probability theory is a consequence of the Borel Cantelli
lemma. To check that this condition is satisfied we use Markov’s inequality to prove that
for any ε > 0, and any fixed n, we have

ε2 P
(
sup
m≥n

|Mm −M∞| ≥ ε

)
≤ E

(
sup
m≥n

|Mm −M∞|2
)
.

Our next objective is to prove that the r.h.s. term converges to 0 as n ↑ ∞. Since

|Mm −M∞|2 = |[Mm −Mn] + [Mn −M∞]|2 ≤ 2
[
|Mm −Mn|2 + |Mn −M∞|2

]
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we find that

2−1E
(
sup
m≥n

|Mm −M∞|2
)

≤ E
(
sup
m≥n

|Mm −Mn|2
)
+ E

(
|Mn −M∞|2

)
︸ ︷︷ ︸

→n↑∞0

.

It remains to treat the first summand in the r.h.s. To this end, we notice that by the
monotone convergence theorem

lim
q↑∞

E
(

sup
n≤m≤q

|Mm −Mn|2
)

= E
(
sup
n≤m

|Mm −Mn|2
)

and
sup

n≤m≤q
|Mm −Mn| = sup

0≤p≤q−n
|Mn+p −Mn| = sup

0≤p≤q−n
|M (n)

p |

with the martingale M
(n)
p := Mn+p −Mn, null at the origin. By lemma 8.4.21, we have

E
(

sup
n≤m≤q

|Mm −Mn|2
)

= E
(

sup
0≤p≤q−n

|M (n)
p |2

)

≤ 22 E
(
|M (n)

q−n|2
)

= 22 E
(
|Mq −Mn|2

)
︸ ︷︷ ︸

→q↑∞ E(|M∞−Mn|2)

.

This implies that

E
(
sup
n≤m

|Mm −Mn|2
)

≤ 22 E
(
|M∞ −Mn|2

)
→q↑∞ 0.

This ends the proof of the theorem.

Theorem 8.4.25 For any square integrable martingale (i.e. E(M2
n) < ∞, for any

n ≥ 0), we have the almost sure convergence

lim
n→∞

〈M〉n = ∞ =⇒ lim
n→∞

Mn/〈M〉n = 0.

In addition, we have
∑
n≥1

n−2 E([∆Mn]
2) < ∞ =⇒ lim

n→∞
Mn/n = 0

as well as limn→∞ E
(
(Mn/n)

2
)
= 0.

Important remarks : Before getting into the details of the proof, we quote two direct
but important consequences of this theorem.

• The first one applies to the convergence analysis of the occupation measures (8.49) of
regular Markov chains. Under the assumptions of lemma 8.4.11, the martingale Mn(g)
associated with the (bounded) solution g of the Poisson equation satisfies the hypothesis of
the theorem 8.4.25. We conclude that πn(f) converges almost surely to π(f), as n → ∞,
for any bounded function f . In section 9.1, we provide an elementary proof of a somehow
weaker result without using these sophisticated martingale limit theorems.
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• The second one provides a useful equivalence principle. We consider a random series∑
1≤k≤n ϕk−1 Vk associated with some random variables Vk ∈ Fk with unit mean, and

some possibly random functions ϕk ∈ Fk such that E
(
ϕ2
k

)
< ∞, for any k ≥ 0. In this

situation, we have
1

n

∑
1≤k≤n

ϕk−1 Vk =
1

n

∑
1≤k≤n

ϕk−1 + εn

for some remainder term εn that tends to 0, almost surely as n ↑ ∞, as well as E
(
ε2n
)
→n↑∞ 0.

The proof follows by applying the theorem to the martingale Mn :=
∑

1≤p≤n ϕk−1 (Vk −
1). For instance, if Wk denotes a sequence of independent and centered Gaussian random
variables with unit variance, we have

1

n

∑
1≤k≤n

ϕk−1 [W 2
k − 1] = εn −→n↑∞ 0. (8.63)

Now, we turn back to the proof of the theorem.
Proof of theorem 8.4.25:
There is no loss of generality to assume that M0 = 0. We consider the martingale M ε

n,
null at the origin, with increments given by

∆ M ε
n :=

∆Mn

ε+ 〈M〉n
⇒ ∆〈M ε〉n = E

(
(∆M ε

n)
2 | Fn−1

)
=

∆〈M〉n
(ε+ 〈M〉n)2

.

We notice that

〈M〉1 = ∆〈M〉1

⇒ ∆〈M ε〉1 =
∆〈M〉1

(ε+∆〈M〉1)2
=

∆〈M〉1
(ε+∆〈M〉1)︸ ︷︷ ︸

≤1

1

(ε+∆〈M〉1) (≥ ε)
≤ 1/ε

and

1

ε+ 〈M〉n−1
− 1

ε+ 〈M〉n
=

∆〈M〉n
(ε+ 〈M〉n−1) (ε+ 〈M〉n)

=
∆〈M〉n

(ε+ 〈M〉n)2
(ε+ 〈M〉n)

(ε+ 〈M〉n−1)

≥ ∆〈M〉n
(ε+ 〈M〉n)2

= ∆〈M ε〉n.

This yields the estimate

〈M ε〉n = ∆〈M ε〉1 +
∑

1<p≤n

∆〈M ε〉p

≤ ∆〈M ε〉1 +
∑

1<p≤n

(
1

ε+ 〈M〉p−1
− 1

ε+ 〈M〉p

)

= ∆〈M ε〉1 +
1

ε+ 〈M〉1
− 1

ε+ 〈M〉n
≤ 2/ε.

We conclude that
lim
n→∞

〈M ε〉n = sup
n≥1

〈M ε〉n := 〈M ε〉∞ ≤ 2/ε

and therefore

lim
n→∞

E
(
(M ε

n)
2
)
= sup

n≥1
E
(
(M ε

n)
2
)
= sup

n≥1
E (〈M ε〉n) ≤ E (〈M ε〉∞) ≤ 2/ε.
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By theorem 8.4.24 this implies that M ε
n converges almost surely to some random variable

M ε
∞, as n → ∞. Invoking the Toeplitz-Kronecker lemma we conclude that

Mn

〈M〉n
=

ε+ 〈M〉n
〈M〉n︸ ︷︷ ︸

n→n→∞1

1

ε+ 〈M〉n

∑
1≤p≤n

(ε+ 〈M〉p) ∆M ε
p

︸ ︷︷ ︸
n→n→∞0

.

This ends the proof of the first assertion. The proof of the second one follows the same line
of arguments. Firstly, we use the fact that Mn =

∑
1≤p≤n p

−1 ∆Mp is a square integrable
martingale. By theorem 8.4.24 it also converges almost surely to some random variable Mn,
and

lim
n→∞

E
(
[Mn −M∞]2

)
= 0.

It remains to observe that

1

n
Mn =

1

n

∑
1≤p≤n

p
(
Mp −Mp−1

)
=

1

n

∑
1≤p≤n

[
p Mp − (p− 1) Mp−1 −Mp−1

]

=
1

n
n Mn − 1

n

∑
0≤p<n

Mp = Mn − 1

n

∑
0≤p<n

Mp →n→∞ M∞ −M∞ = 0

almost surely. This ends the proof of the theorem.

We end this section with a fluctuation theorem for martingales with bounded increments.

Theorem 8.4.26 For any martingale Mn such that |M0| ∨ |∆Mn| < c, for some
finite constant c < ∞, we have

lim
n→∞

1

n
〈M〉n = σ2 =⇒ lim

n→∞

Mn√
n

= N(0, σ2).

The convergence in the l.h.s. is a convergence in probability, whereas the conver-
gence in the r.h.s. is a convergence in law to a centered Gaussian random variable.

Hint of proof :
It clearly suffices to prove the result for M0 = 0. We set

φ(t) = exp

(
− t2σ2

2

)
and φn(t) =

∏
1≤p≤n

E
(
exp

(
−it

∆Mp√
n

)
| Fp−1

)
.

Using the approximation formula
∣∣∣eix − (1 + ix− x2

2 )
∣∣∣ ≤ x3

3! (which is valid for any x ∈ R)
we find that

E
(
exp

(
−i

t√
n

∆Mp

)
| Fp−1

)
= 1− t2

n
∆〈M〉p +O(n−(1+ 1

2 ))

= e−
t2

n ∆〈M〉p +O(n−(1+ 1
2 ))

= e−
t2

n ∆〈M〉p (1 +O(n−(1+ 1
2 ))).
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In the second line of the formula we use the fact that e−ε = 1− ε+O(ε2) when ε � 0. This
implies that

φn(t) = e−
t2

n

∑
1≤p≤n ∆〈M〉p (1 +O(n−(1+ 1

2 )))n︸ ︷︷ ︸
→n→∞ 1

−→n→∞ φ(t).

To take the final step, we observe that

Ep = Ep−1 ×
exp

(
− it√

n
∆Mp

)

E
(
exp

(
− it√

n
∆Mp

)
| Fp−1

) =
exp

(
−it

Mp√
n

)

φp(t)

is a martingale starting at 1, for 0 ≤ p ≤ n. This implies that E(En) = E
(

e
−it

Mn√
n

φn(t)

)
= 1

and therefore

E
(
e
−itMn√

n

)
− φ(t) = E


e

−itMn√
n

φn(t)
(φn(t)− φ(t))︸ ︷︷ ︸

→n→∞ 0


 −→n→∞ 0.

This ends the proof of the theorem.

As an illustration, we derive a central limit theorem for the occupation measures

πn :=
1

n+ 1

∑
0≤p≤n

δXp

of time homogeneous Markov chain Xn discussed in section 8.4.2.3. We use the Poisson
decomposition presented in lemma 8.4.11. We recall that

1

n+ 1
(g(Xn+1)− g(X0)) = [π(f)− πn(f)] +

1

n+ 1
Nn+1(g)

where g := P (f) stands for the (bounded) solution of the Poisson equation (8.19) given in
(8.51), and

Nn(g) :=
∑

0<p≤n

[g(Xp)− E (g(Xp)| Fp−1)]

is the martingale with angle bracket given by

〈N (g)〉n :=
∑

0<p≤n

[
M(g2)(Xp−1)− (M(g)(Xp−1))

2
]

where M(x, dy) stands for the Markov transition of the chain Xn. Using (8.52) we have the
L1-convergence

n−1〈N (g)〉n = πn(M(g2))− πn(M(g2))

−→n→∞ π(M(g2))− π(M(g2)) := σ2(g) = σ2(P (f))

with the invariant measure πM = π of the chain.
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We conclude that
πn = π +

1√
n+ 1

V n

with a sequence of random fields V n s.t.

V n(f) −→n→∞ N(0, σ2(P (f))).

We show the last assertion by using the fact that

V n(f) =
√
n+ 1 [πn(f)− π(f)] =

Nn+1(P (f))√
n+ 1︸ ︷︷ ︸

→n→∞N(0,σ2(P (f)))

+O
(

1√
n+ 1

)
.

8.5 Topological aspects

8.5.1 Irreducibility and aperiodicity

When some state regions are not accessible for initialization, the chain cannot forget its
initial condition. In this context, the invariant measure may depend on the initial value
of the chain. For instance the {0, 1, 2, 3, 4} valued Markov chain given by the following
transition diagram cannot access the set A = {2, 3, 4} when starting from B = {0, 1}, and
vice versa.

0��
�� 1 ���� 3

��

�� ��
2��

��

�� 4

��

����

In this situation, any iteration of the Markov transition Mn will have the null entries
Mn(i, j) = 0, for any (i, j) ∈ (A × B) ∪ (B × A). The chain starting at A will have the
same invariant measure as the chain with transition diagram with vertices A; and the one
starting at B will have the have the same invariant measure as the chain with transition
diagram with vertices B. In summary, an elementary obstruction to uniqueness of invariant
measures is when the state space contains regions for which the transition from one into
the other occurs with zero probability.

It may happen that all states communicate while it is impossible to find some n such
that all entries of Mn are positive. For instance, the stochastic matrix associated with the
transition diagram

0 �� 1��

given by M =

(
0 1
1 0

)
is such that M2n+1 = M and M2n = Id. The invariant measure

π = [.5, .5] but Mn(x, y) does not converge to 1/2.
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Definition 8.5.1 When all the states x and y communicate, in the sense that Mn(x, y) > 0
for some n, the chain is said to be irreducible. It is called aperiodic when

GCD {n : Mn(x, x) > 0} = 1

for any x (where GCD stands for greatest common divisor) . Otherwise the chain is said to
be periodic. The chain can be irreducible but periodic. For instance, in the two-state example
discussed above, the chain is irreducible but we have GCD {n : Mn(x, x) > 0} = 2.

Periodicity is clearly not an obstacle to the existence to the invariant measure, but it
prevents convergence to the equilibrium since the state can be partitioned in classes that
we visit only at periodic times.

The aperiodicity combined with the irreducibility implies the existence of an integer m
such that Mm has positive entries.

To check this claim, we use the fact that the {n : Mn(x, x) > 0} � n1, n2 is closed by
addition. Indeed,

Mn1+n2(x, x) =
∑
y∈S

Mn1(x, y)Mn2(y, x) ≥ Mn1(x, x)×Mn2(x, x) > 0

for any x. This implies the existence of n(x) s.t. Mk(x, x) > 0 for any k ≥ n(x). Now, the
irreducibility implies the existence of some l(x, y) such that for any l ≥ l(x, y)

Mk+l(x, y) ≥ Mk+(l−l(x,y))(x, x) M l(x,y)(x, y) > 0.

This shows that for anym ≥ supx,y (n(x) + l(x, y)), the matrixMm > 0 has positive entries.
A natural and very simple way of turning a given Markov chain with transition M into

an aperiodic chain is to consider the chain associated with the elementary transitions

Mε(x, y) = ε1x(y) + (1− ε) M(x, y)

for some ε ∈]0, 1[. We leave the reader to check that the resulting chain is aperiodic and it
has the same invariant measure as M

πM = π =⇒ πMε = π.

Definition 8.5.2 The chain with Markov transition Mε is called the ε-lazy version of the
Markov chain associated with M .

Notice that the 1/2-lazy version of the periodic chain discussed above is equivalent to
sampling independent Bernoulli r.v., and it is immediately at equilibrium in one step.

00 ��

1
�� 1 0��

1

�� � 0.5 ��

.5
�� 1 .5��

.5

��

We end this section with a more probabilistic description of the invariant measure of a
Markov chain in terms of the mean return time to a given state.

Theorem 8.5.3 (Kac’s formula) The invariant measure of an irreducible and aperiodic
Markov chain Xn on a finite space S is given by

π(x) = 1/E (T | X0 = x) (8.64)

where T stands for the first return time to x

T = inf {n ≥ 1 : Xn = x}.
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Proof :
Since S is finite and Xn irreducible we have Px(T < ∞) = 1 and

E


 ∑

0≤n<T

1y(Xn) | X0 = x


 =

∑
m>0

E


 ∑

0≤n<m

1y(Xn) 1T=m | X0 = x




=
∑

0≤n<m

P (Xn = y, T = m| X0 = x)

=
∑
n≥0

∑
m>n

P (Xn = y, T = m| X0 = x)

︸ ︷︷ ︸
=P(Xn=y, T>n| X0=x)

.

This implies that

γx(y) := E


 ∑

0≤n<T

1y(Xn) | X0 = x




=
∑
n≥0

P (Xn = y | T > n, X0 = x) P (T > n | X0 = x) .

This alos implies that

γx(S) :=
∑
y∈S

γx(y) =
∑
n≥0

P (T > n | X0 = x) = E (T | X0 = x) < ∞

and

(γxM)(z) =
∑
y∈S

γx(y) M(y, z)

=
∑
n≥0

∑
y∈S

P (Xn = y | T > n, X0 = x)M(y, z)

︸ ︷︷ ︸
=P(Xn+1=z | T>n, X0=x)

P (T > n | X0 = x)

and therefore

(γxM)(z) =
∑
n≥0

P (Xn+1 = z, T > n, X0 = x)︸ ︷︷ ︸∑
m>n P(Xn+1=z, T=m | X0=x)

=
∑
m>0

∑
0≤n<m

P (Xn+1 = z, T = m| X0 = x)

=
∑
m>0

E


 ∑

0≤n<m

1z(Xn+1) 1T=m | X0 = x


 .

Hence

(γxM)(z) = E


 ∑

1≤n≤T

1z(Xn) | X0 = x




= E


 ∑

0≤n<T

1z(Xn) | X0 = x


 = γx(z).
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The l.h.s. formula follows from the fact that XT = x = X0. We conclude that

∀x ∈ S ηxM = ηx

with the probability measures

ηx(y) = E


 ∑

0≤n<T

1y(Xn) | X0 = x


 /E (T | X0 = x) .

Notice that for x = y, we have γx(x) = 1 so that

ηx(x) = 1/E (T | X0 = x).

Since the invariant measure is unique, we have π(x) = ηx(x). This ends the proof of the
theorem.

8.5.2 Recurrent and transient states

We consider a Markov chain Xn on some countable state space S with Markov transition
M .

Definition 8.5.4 We denote by Nx the number of returns to x:

Nx =
∑
n≥1

1x(Xn) =
∑
n≥1

1Xn
(x).

The potential matrix is the matrix G(x, y) with entries

G(x, y) := E


∑

n≥0

1y(Xn) | X0 = x




= 1x=y + E(Ny | X0 = x) =
∑
n≥0

Mn(x, y).

Definition 8.5.5 A state x is said to be recurrent as soon as the return probability to x
starting from x is 1. Otherwise, the state is said to be transient. A Markov chain is said
to be recurrent when all the states are recurrent.

We notice that the excursions from a given state x to x are independent of each other.
The Markov chain restarts its evolution from that state every time it comes back to that
site. In particular, the duration Tx,n of the n-th excursion, with n ≥ 1, forms a sequence of
independent random variables with common law. This implies that

P(Nx ≥ n | X0 = x)

= P (Tx,1 < ∞, Tx,2 < ∞, . . . , Tx,n < ∞ | X0 = x) = P (Tx,1 < ∞ | X0 = x)
n
.

Now

E(Nx | X0 = x) =
∑
p≥1

p P(Nx = p | X0 = x) =
∑
1≤p

∑
1≤q≤p

P(Nx = p | X0 = x)

=
∑
q≥1

∑
p≥q

P(Nx = p | X0 = x) =
∑
q≥1

P(Nx ≥ q | X0 = x)

=
∑
q≥1

P (Tx,1 < ∞ | X0 = x)
q
.

Summarizing, we have proved the following proposition.
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Proposition 8.5.6

E(Nx | X0 = x) = ∞ ⇐⇒ P (Tx,1 < ∞ | X0 = x) = 1

⇐⇒ G(x, x) = ∞ ⇐⇒ x is recurrent.

For irreducible Markov chains, all the states have the same nature.

To check the last assertion we use the Chapman-Kolmogorov equation to prove that

Mn1+n2+n3(x, x) ≥ Mn1(x, y)Mn2(y, y)Mn3(y, x)

from which we conclude that all series
∑

n≥0 M
n(x, x), with x ∈ S have the same nature.

We let Tx→y the duration of an excursion from x to y. By construction, we have

P(Ny ≥ n | X0 = x)

= P (Tx→y < ∞, Ty,1 < ∞, Ty,2 < ∞, . . . , Ty,n−1 < ∞ | X0 = x)

= P (Tx→y < ∞)× P (Ty,1 < ∞ | X0 = y)
n−1

.

In this situation, we have

E(Ny | X0 = x) =
∑
q≥1

P(Ny ≥ q | X0 = x)

= P (Tx→y < ∞)×
∑
q≥0

P (Ty,1 < ∞ | X0 = y)
q

= P (Tx→y < ∞)× [1 + E(Ny | X0 = y)] .

Summarizing, we have proved the following proposition.

Proposition 8.5.7

y transient ⇐⇒ (∀x E(Ny | X0 = x) < ∞) ⇐⇒ (∀x G(x, y) < ∞) .

Proposition 8.5.8 For irreducible and recurrent Markov chains we have

∀x, y ∈ S P (Tx→y < ∞) = 1.

Proof :
We let Tx be the hitting time of the state x. We observe that

P (Tx→y < ∞) = P (Ty < ∞ | X0 = x)

= P (Ty < ∞, Tx ≤ Ty | X0 = x)

+ P [Ty < Tx(< ∞) | X0 = x]

= E


P (Ty < ∞, | Tx, X0 = x)︸ ︷︷ ︸

=P(Tx→y<∞)

×1Tx≤Ty




+ P [Ty < Tx(< ∞) | X0 = x] .

This implies that

P (Tx→y < ∞) = P (Tx→y < ∞) (1− P [Ty < Tx | X0 = x]) + P [Ty < Tx | X0 = x]
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from which we conclude that

P [Ty < Tx | X0 = x] (1− P (Tx→y < ∞)) = 0.

It remains to check that P [Ty < Tx | X0 = x] > 0. We denote by Rn the successive epochs
of return visits of the state x. Since Rn ≥ Rn−1, we have

P [Ty ≥ Rn | X0 = x] ↓n↑∞ P [Ty = ∞ | X0 = x] = 0

= P [Ty ≥ Rn | Ty ≥ Rn−1, X0 = x]︸ ︷︷ ︸
=P[Ty≥Tx | X0=x]

×P [Ty ≥ Rn−1 | X0 = x]

= P [Ty ≥ Tx | X0 = x]× P [Ty ≥ Rn−1 | X0 = x]

= P [Ty ≥ Tx | X0 = x]
n−1 P [Ty ≥ R1 = Tx | X0 = x] = P [Ty ≥ Tx | X0 = x]

n
.

This clearly implies that P [Ty ≥ Tx | X0 = x] < 1. This ends the proof of the proposition.

Rephrasing the proof of theorem 8.5.3 we have the following theorem.

Theorem 8.5.9 (Kac’s theorem) Let M be the transitions of an irreducible and recur-
rent Markov chain Xn. We let Tx be the first return time to a state x, with x ∈ S. For any
state x, the expected time spent in state y between visits to x

γx(y) := E


 ∑

0≤n<Tx

1y(Xn) | X0 = x


 (8.65)

is an invariant measure of the Markov chain γxM = γx. When the expected return times
are finite E(Tx | X0 = x) =

∑
y γx(y) < ∞ the unique invariant measure of the chain is

given by
π(x) = 1/E (Tx | X0 = x).

Important remark : By construction, we notice that

γx(x) = E


 ∑

0≤n<Tx

1x(Xn) | X0 = x


 = 1.

In addition, using the Chapman-Kolmogorov equation and the irreducibility property, we
have

0 < Mn(x,y)(x, y) = γx(x) M
n(x,y)(x, y) ≤ γxM

n(x,y)(y) = γx(y)

and
γx(y) Mn(y,x)(y, x)︸ ︷︷ ︸

>0

≤ γxM
n(y,x)(x) = γx(x) = 1

for some integers n(x, y) ≥ 1 and n(y, x) ≥ 1. This implies that

∀x, y ∈ S 0 < γx(y) < ∞.

Definition 8.5.10 The (recurrent) states x s.t.

E(Tx | X0 = x) =
∑
n≥1

P (Tx ≥ n | X0 = x) < ∞

are called null recurrent states.
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Important remark : Since

P (Tx ≥ n | X0 = x) ↓n↑∞ 0 ⇒ P (Tx < ∞ | X0 = x) = 1,

the null recurrent states are clearly recurrent states. The null recurrent property depends
on the decay rates.

One can also check that the existence of the invariant probability measure is a sufficient
a necessary condition for all the states to be recurrent positive. To check this claim, we need
the following technical lemma.

Lemma 8.5.11 Let M be the transitions of an irreducible and recurrent Markov chain
Xn. The invariant measure γx defined in (8.65) is the unique invariant measure of M s.t.
γx(x) = 1.

Proof :
For any x ∈ S, we denote by Qx the matrix defined by

Qx(u, v) = 1�=x(u)M(u, v) ⇐⇒ ∀f ∈ B(S) Qx(f)(u) = 1�=x(u)M(f)(u).

By the fixed point equation, for any invariant measure νx s.t. νx(x) = νx(1x) = 1 we
have

νx(f) = νx(1�=xM(f)) + ν(x)M(f)(x) = (νxQx)(f) + δxM(f).

In a more synthetic formulation we have

νx = νxQx + δxM

= (νxQx + δxM)Qx + δxM = νxQ
2
x + δxM (Qx + Id)

= (νxQx + δxM)Q2
x + δxMQx + δxM = νxQ

3
x + δxM

(
Q2

x +Qx + Id
)
.

An elementary induction yields that

νx = νxQ
n
x +

∑
0≤p<n

δxMQp
x.

Notice that for any p ≥ 0 we have

Qp
x(f)(y) = 1 �=x(y) E (f(Xp+1) 1Tx≥p+1 | X1 = y)

and

νnx (f) :=
∑

0≤p<n

δxMQp
x(f) =

∑
0≤p<n

E (f(Xp+1) 1Tx≥p+1 | X0 = x)

= E


 ∑

1≤p≤n

f(Xp) 1Tx≥p | X0 = x


 = E


 ∑

1≤p≤n∧Tx

f(Xp) | X0 = x


 .

This implies that

νnx (x) = E


 ∑

1≤p≤Tx

1x(Xp) 1Tx≤n| X0 = x


+ E


 ∑

1≤p≤n

1x(Xp) 1Tx>n | X0 = x




= P (Tx ≤ n| X0 = x) ↑n↑∞ P (Tx < ∞| X0 = x) = 1.
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In addition, for any y �= x we have

νx(y) ≥ νnx (y) = E


 ∑

0≤p≤n

1y(Xp) 1Tx>p | X0 = x


 ↑n↑∞ γx(y).

To take the final step, we notice that µx(y) := νx(y) − γx(y) ≥ 0 is also an invariant
measure of M , with a null mass at x. Thus, invoking the Chapman-Kolmogorov equation
we have

0 = µx(x) ≥ µx(y) Mn(y,x)(y, x)︸ ︷︷ ︸
>0

=⇒ µx(y) = 0

for some n(y, x) ≥ 1. This proves that νx = γx.

Proposition 8.5.12 An irreducible and recurrent Markov chain Xn has an invariant prob-
ability measure if and only if one of the states is null recurrent. In this situation, all the
states of the chain are null recurrent.

Proof :

When one of the states x is null recurrent, theorem 8.5.9 implies thatXn has an invariant
measure πx(y) = γx(y)/

∑
y γx(y). Inversely, suppose that Xn has an invariant measure,

say π(x) > 0, for all x (by the irreducibility property). In this case, the measure νx(y) =
π(y)/π(x) is an invariant measure such that π(x) = 1, and lemma 8.5.11 implies that
νx = γx so that

E(Tx | X0 = x) =
∑
y

γx(y) =
∑
y

π(y)/π(x) = 1/π(x) =⇒ x is null recurrent.

This shows that all the states all null recurrent. This ends the proof of the proposition.

8.5.3 Continuous state spaces

An example of a real valued Markov chain forgetting its initial condition exponentially fast
is provided by the reversible Gaussian transition (7.19). In this case, the chain is given by
a recursion of the form

Xn =
√
1− ε Xn−1 +

√
ε Wn = (

√
1− ε)n X0 +

√
ε

∑
0≤p<n

(
√
1− ε)p Wn−p

for some ε ∈]0, 1] and some independent centered Gaussian random variables Wn with unit
variance. The r.h.s. formula has been proven in (7.15). In this situation, the invariant
reversible measure is given by the standard normal distribution. For any Lipschitz function
f on R with Lipschitz constant lip(f) ≤ 1 we find that

|Mn(f)(x)−Mn(f)(y)| ≤ (
√
1− ε)n |x− y| .

This implies that

sup
(x,y)∈[a,b]2

|Mn(f)(x)−Mn(f)(y)| ≤ (
√
1− ε)n |b− a|
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for any compact interval [a, b] ⊂ R. In addition, we have that

‖Mn(f)− π(f)‖2L2(π)
:=

∫
π(dx) |Mn(f)(x)− π(f)|2

≤ (
√
1− ε)2n

∫
π(dx)π(dy) |x− y|2 = 2 (

√
1− ε)2n →n→∞ 0.

Important remark : We notice that the Gaussian Markov transition

M(x, dy) ∝ exp

(
−1

2
(x− y)

2

)
dy

is clearly reversible w.r.t. the Lebesgue λ(dx) = dx on R but it cannot be normalized. The
question whether a given reversible measure can be turned into a reversible (probability)
distribution depends on the "size" of the state space and/or on the integrability properties
of the measure at hand. We also notice that the transition restricted to some compact
interval S = [a, b]

M(x, dy) ∝ exp

(
−1

2
(x− y)

2

)
1[a,b](y) dy

satisfies condition (8.16) and (8.15) with ε = exp
(
− (b− a)

2
)
, for any a < b.

8.5.4 Path space models

Definition 8.5.13 In the further development of this section, we fix some parameter p ≥ 0
and we set

Xn = (Xn, Xn+1, . . . , Xn+p).

We notice that Xn is a Markov chain on Sp+1 with Markov transitions given by

M((x0, . . . , xp), d(y1, . . . , yp+1))

= δ(x1,...,xp)(d(y1, . . . , yp)) ×M(yp, dyp+1).

Lemma 8.5.14 The probability measure

π(d(y1, . . . , yp+1)) = π(dy1)M(y1, dy2) . . .M(yp, dyp+1)

is the unique invariant probability measure of the chain Xn; that is,

πM = π.

Proof :
Suppose that the initial state of the chain X0 = (X0, X1, . . . , Xp) is distributed according
to π. In this situation, the marginal distributions of each random state Xq, with 0 ≤ q ≤ p,
coincide with π. On the other hand, the elementary transition of the chain is given by

X0 = (X0, X1, . . . , Xp) � X1 = (X1, . . . , Xp, Xp+1) .

Since Law(X1) = π, we conclude that Law(X1) = π.
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Lemma 8.5.15 The Markov transition Mp satisfies condition (8.15) with

ν(d(y1, . . . , yp+1)) = ν(dy1)M(y1, dy2) . . .M(yp, dyp+1)

if and only if M satisfies (8.15) for some probability measure ν.

Proof :
Using the fact that Xp+1 = (Xp+1, Xp+2, . . . , Xp+p), we prove that

Mp((x0, . . . , xp), d(y1, . . . , yp+1)) = M(xp, dy1) . . .M(yp, dyp+1).

The end of the proof is now clear.

8.6 Exercises
Exercise 90 (Invariant measure - 1) Let Xn be the cyclic random walk on {0, 1, 2, 3}
with Markov transitions given by the matrix

M =




0 1/2 0 1/2
1/2 0 1/2 0
0 1/2 0 1/2

1/2 0 1/2 0


 .

Find the invariant measure of the chain.

Exercise 91 (Invariant measure - 2) Let Xn be a random walk on {0, 1, 2, 3} with Markov
transitions given by the matrix

M =




0 1 0 0
1/2 0 1/2 0
0 1/2 0 1/2
0 0 1 0


 .

Find the invariant measure of the chain.

Exercise 92 (Invariant measure - 3) Let Xn be a random walk on {0, 1, 2, 3} with Markov
transitions given by the matrix

M =




0 1 0 0
1/3 1/3 1/3 0
0 1/3 1/3 1/3
0 0 1 0


 .

Find the invariant measure of the chain.

Exercise 93 (Invariant measure - Reflecting random walk) Let u, v ≥ 0 be a couple
of parameters s.t. u+v = 1. Let Xn be the reflecting random walk on {0, 1, 2, 3} with Markov
transitions given by the matrix

M =




u v 0 0
u/2 v u/2 0
0 u/2 v u/2
0 0 v u


 .

Find the invariant measure of the chain.
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Exercise 94 (Invariant measure - Birth and death process) Let Xn be a random walk
on N with Markov transitions given for any x ≥ 1 by M(x− 1, x) = p = 1−M(x, x− 1) ∈
[0, 1], and M(0, 0) = 1− p. Find the invariant measure of the chain.

Exercise 95 (Invariant measure - Birth and death process - Finite space) Let Xn

be a random walk on {0, 1, . . . , d} with Markov transitions given for any 1 ≤ x ≤ d by
M(x − 1, x) = p = 1 − M(x, x − 1) ∈ [0, 1], M(d, d) = p and M(0, 0) = 1 − p. Find the
invariant measure of the chain.

Exercise 96 Prove the formulae (8.1), (8.2), (8.3), (8.4), and (8.8).

Exercise 97 (Geometric drift contractions) The aim of this exercise is to quantify
more explicitly the geometric drift contraction inequalities discussed in section 8.2.7. We
set Rε := 2/(1− ε), αε := 1− β(Rε)(M), and δ := (1− ε).

• Choosing R = Rε in (8.34) and (8.35), check that

∀ρ ∈]0, 1] sup
W (x)∧W (y)≥Rε

∆ρ(x, y) ≤ 1− 1

2

4ρ(1− ε)

(1− ε) + 4ρ
< 1

and

∀ρ ∈]0, αεδ/8[ sup
W (x)∨W (y)≤Rε

∆ρ(x, y) ≤ 1−
(
αε −

8ρ

1− ε

)
< 1.

• We set u := 4ρ/δ, and

g(u) :=
1

2

4ρ(1− ε)

(1− ε) + 4ρ
=

δ

2

(
1− 1

1 + u

)

h(u) :=

(
αε −

8ρ

1− ε

)
= (αε − 2u) .

Check that these two functions intersect at the point

u =
√
a2 + b− a ∈ [0, b]

with

a :=
1

2

(
1− b+

δ

4

)
≤ 1

2
and b :=

αε

2
.

Prove that for any v ≥ 0 we have

√
1 + v ≥ 1 +

v

2
√
1 + v

and deduce that

g(u) = h(u) ≥ δb

1 + 2
√
3
.

• Deduce from the above that for ρ = uδ/4 we have

βVρ
(M) ≤ 1− (1− ε)(1− β(Rε)(M))

2(1 + 2
√
3)

.



214 Stochastic Processes

Exercise 98 (Invariant measure - Graph formulation) We consider a stochastic ma-
trix with positive entries

M =




p11 p12 p13
p21 p22 p23
p31 p32 p33


 .

For any x ∈ S = {1, 2, 3}, we denote by G(i) the set of all the i-graphs. An i-graph is a set of
directed edges without any loops connecting all the states j � i without cycles to i; and with a
single edge starting from the states j � i. For instance, the set of 1-graphs G(1) = {g1, g2, g3}
with the directed graphs is defined below

2

��

3

��
1

2

��

3��

1

3

��

2��

1
g1 g2 g3

Prove that the unique invariant measure of the chain is given by

π(i) = γ(i)/
∑

1≤j≤3

γ(j) with γ(i) =
∑

g∈G(i)

∏
(k,l)∈g

pk,l.

For instance, for i = 1 we have

γ(1) =
∑

g∈G(1)

∏
(i,j)∈g

pi,j = (p21p31 + p32p21 + p23p31) .

Exercise 99 (Invariant measure - Graph formulation - General case) We con-
sider a Markov transition on some finite state space such that Mm(x, y) > 0, for any
x, y ∈ S, for some m ≥ 1. Prove that the unique invariant measure of the chain is given by

π(x) = γ(x)/
∑
y∈S

γ(y) with γ(x) =
∑

g∈G(x)

∏
(y,z)∈g

M(y, z)

where G(x) stands for the set of x-graphs defined in exercise 98.

Exercise 100 (Eigenvalues formula) We consider the stochastic matrix presented
in exercise 98.

• Prove that the characteristic polynomial P (λ) = Det(M − λI) is given by

P (λ) = (1− λ)
(
λ2 + (1−A)λ+ C

)

with C = 1− (A+B), and

A = p11 + p22 + p33

B = p23p32 + p12p21 + p13p31 − (p11p22 + p11p33 + p22p33) .

• Check that
−1−A

2
= 1− (q12 + q13 + q23)

with the parameters qi,j = (pij + pji)/2.
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• Check that
B = −3 + 4 (q12 + q13 + q23)−D

with
D = 4 (q12q13 + q12q23 + q13q23)− (p21p23 + p12p13 + p31p32) .

• Deduce that (
1−A

2

)2

− C = ∆(q) + δ(p)

with the parameters

∆(q) =
1

2

[
(q12 − q13)

2 + (q12 − q23)
2 + (q13 − q23)

2
]

δ(p) = [p12p13 − q12q13] + [p21p23 − q21q23] + [p31p32 − q31q32] .

• Conclude that the eigenvalues of M are given by λ1 = 1, and

λ2 = (1− (q12 + q13 + q23)) +
√
∆(q) + δ(p)

λ3 = (1− (q12 + q13 + q23))−
√
∆(q) + δ(p)

with the convention
√
−a = i

√
a, for any a ≥ 0.

• In the reversible case, check that δ(p) = 0, and

λ3 ≤ λ2 ≤ λ1 = 1.

Exercise 101 (Top-in-at-random card shuffle) We consider the top-in-at-random
card shuffle discussed on page 173 and in section 26.4. Use an inductive proof to check that
when there are k cards below the original bottom card, all k! orderings of these cards are
equally likely.

Exercise 102 Prove the formulae (8.15) for general state space models.

Exercise 103 (Returns to the origin) We consider a Markov chain Xn on the set of
integers S = N, defined by the elementary transition

M(i, j) = 1S−{0} 1i−1(j) + 10(i) µ(j)

where µ stands for some distribution on S. We also assume that X0 = 0. This Markov
model is a slight modification of the Markov chain discussed on page 177. We let X1

n and
X2

n be two independent copies of Xn, and we let T be the first time n these chains return
to the origin; that is

T = inf
{
n ≥ 1 : X1

n = 0 = X2
n

}
.

• Check that

P(T = 1) = 0 P(T = 2) = µ(1)2 and P(T = 3) = µ(2)2.

• Prove that

(T = 4) = {X1
1 = 3 = X2

1}

∪ {X1
1 = 3 & X2

1 = 1 = X2
3} ∪ {X1

1 = 1 = X1
3 & X2

1 = 3}

and deduce that
P(T = 4) = µ(3)2 + 2µ(3)µ(1)2.
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• Using similar arguments, check that

P(T = 5) = 2µ(1)2µ(2)2

P(T = 6) = 2µ(1)
(
µ(1)2µ(2)2 + µ(1)µ(3)2 + 2µ(3)µ(2)2

)
.

• Compute the above probabilities for the geometric distribution with success parameter p ∈
]0, 1[.

Exercise 104 (Random sums) Let (Xn)n≥0 be a sequence of real valued i.i.d. copies of
a random variable X with finite mean m := E(X) < ∞. We let T be a stopping time (i.e.,
the event {T = n} only depends on (X0, . . . , Xn)) with E(T ) < ∞. Prove that

E


 ∑
1≤n≤T

Xk


 = E(T ) E(X).

We further assume that E(X) = 0 and σ2 := Var(X) < ∞. In this case, check that

E




 ∑

1≤n≤T

Xk




2

 = E(T ) E(X2).

Exercise 105 (Stochastic approximation - 1)
We let ε = (εi)1≤i≤r be some Rr-valued random variable s.t. E(εi) = 0, and E((εi)2) < ∞

for any i ∈ {1, . . . , r}, τ = (τn)n≥0 ∈]0, 1[N a sequence of parameters and V : x ∈ Rr some
function such that

‖V (x)− V (y)‖ ≤ (1− ρ) ‖x− y‖

with the Euclidian norm ‖v‖2 = 〈v, v〉 on Rr, and some ρ ∈]0, 1[. We let x� = V (x�) the
unique fixed point of V . Consider the Markov chain Xn defined by the induction

Xn+1 = Xn + τn [(V (Xn) + εn)−Xn]

with a sequence of independent and copies of ε, and some initial condition. We set Fn =
σ(X0, . . . , Xn).

• Check that

∀i ∈ {1, . . . , r} εin = 0 and
∑
n≥0

τn = ∞ =⇒ lim
n→∞

Xn = x�.

• We set W (x) = 1
2 ‖x− x�‖. Check that

∂W (x�) = 0 and (∂W (x))
T
(V (x)− x) < 0 ∀x �= x�

and deduce that
〈x� − x, V (x)− x〉 ≥ ρ ‖x� − x‖2

and
E
[
‖(V (x) + ε)− x‖2

]
≤ c

(
1 + ‖x� − x‖2

)
for some c < ∞.
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• We further assume that τn ↓n↑ 0 with

∑
n≥0

τn = ∞ and τ2 :=
∑
n≥0

τ2n < ∞.

We set
In = ‖Xn − x�‖2 and Mn := In + c τ2 − c

∑
0≤k<n

τ2k .

Check that
E (In+1 | Fn) ≤ (1− τn (2ρ− τn c)) In + τ2n c

and deduce that Mn is a non negative super-martingale such that supn≥0 E (Mn) < ∞.
Prove the almost sure convergences limn→∞ In = 0 = limn→∞ Mn.

Exercise 106 (Stochastic approximation - 2)
We let ε be some random variable on some state space S, τ = (τn)n≥0 ∈]0, 1[N a sequence

of parameters and U : (x, ε) ∈ Rr × S �→ Rr some function. We also set U(x) = E(U(x, ε))
and we assume that

〈x� − x, U(x)〉 ≥ ρ ‖x� − x‖2

and
E
[
‖U(x, ε)‖2

]
≤ c

(
1 + ‖x� − x‖2

)

for some state x� ∈ Rr s.t. U(x�) = 0 and some finite constant c < ∞. Consider the
Markov chain Xn defined by the induction

Xn+1 = Xn + τn U (Xn, εn)

with τn ↓n↑ 0. Check that

U(x, ε) = U(x) and
∑
n≥0

τn = ∞ =⇒ lim
n→∞

Xn = x�.

We further assume that
∑

n≥0 τn = ∞ and τ2 :=
∑

n≥0 τ
2
n < ∞.. Check the estimates and

the convergence results stated in the second part of exercise 105.
Let W be some function given by W (x) = E(W(x, ε)), for some W : (x, ε) ∈ Rr×S �→ Rr.

We let a ∈ Rr and xa such that W (xa) = a. We further assume that

〈xa − x,W (xa)−W (x)〉 ≥ ρ ‖xa − x‖2

E
[
‖W(xa, ε)−W(x, ε)‖2

]
≤ c

(
1 + ‖xa − x‖2

)
.

Check that
Xn+1 = Xn + τn (a−W(Xn, εn)) −→n→∞ xa.

Exercise 107 (Symmetric random walk - Exponential martingale) We consider the
symmetric random walk Xn =

∑
1≤k≤n Un associated with a sequence of independent and

identically distributed Bernoulli random variables Un s.t. P(Un = 1) = 1/2 = P(Un = 0).
Find parameters (a, b) such that Yn = exp (aXn + bn) is a martingale w.r.t. the filtration
Fn := σ(Up, p ≤ n).
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Exercise 108 (Symmetric random walk - Exit time) We consider the symmetric ran-
dom walk Xn = X0 +

∑
1≤k≤n Un associated with a sequence of independent and identically

distributed Bernoulli random variables Un s.t. P(Un = 1) = 1/2 = P(Un = 0). Let T be the
first time Xn exits the set [−a, a] � X0, for given a ∈ N− {0}. Prove that

P (T > 2a+ n | T > n) ≤ 1− 1

22a
.

Deduce that P(T < ∞) = 1 and E(T ) < ∞.

Exercise 109 (Martingales) We let X be a real valued random variable s.t. E(|X|) < ∞,
and let Y = (Yn)n≥0 be a given Markov chain on some state space S. We let Fn =
σ(Y0, . . . , Yn) be the filtration associated with the chain Y . Prove that the sequence Zn :=
E(X|Fn) is a martingale w.r.t. the filtration Fn.

Exercise 110 (Product martingales) We let X = (Xn)n≥0 be a sequence of i.i.d. ran-
dom variables s.t. E(X1) = 1 We let Fn = σ(X0, . . . , Xn) be the filtration associated with
the sequence X. Prove that the sequence Yn :=

∏
1≤p≤n Xp is a martingale w.r.t. the

filtration Fn.

Exercise 111 (Backward martingale models) Let X = (Xn)n≥0 be a given Markov
chain on some state space S, and let fn be some function on S s.t. E(|fn(Xn)|) < ∞ We
fix some time horizon n ≥ 1. Prove that the sequence Yk := E(fn(Xn)|Xk) is a martingale
w.r.t. the filtration (Fk)0≤k≤n ending at Yn = fn(Xn) for k = n.

Exercise 112 (Lyapunov functions - 1) Let M be the Markov transition of the Rr-
dimensional Markov chain defined by

Xn+1 −Xn = b(Xn) + σ(Xn) Wn

for some functions b from Rr into itself, some functions σ from Rr into the set of square (r×
r)-matrices, and a sequence of centered and independent variables Wn with unit covariance
matrix. We set V (x) = ‖x‖2. Check that

lim sup‖x‖→∞ 2 〈x, b(x)〉+ ‖b(x)‖2 + tr (σ(x)′σ(x)) < 0

=⇒ (∃R > 0 s.t. ∀‖x‖ ≥ R we have M(V )(x)− V (x) ≤ 0)

and
lim sup‖x‖→∞ 2 〈x, b(x)〉+ ‖b(x)‖2 + tr (σ(x)′σ(x)) < −1

=⇒ (∃R > 0 s.t. ∀‖x‖ ≥ R we have M(V )(x)− V (x) ≤ −1) .

Exercise 113 (Lyapunov functions - 2) We consider the Markov chain model and the
Lyapunov function discussed in exercise 112. We further assume that for any sufficiently
large R > 0 we have

〈x, b(x)〉 ≤ −ρ0 ‖x‖2 ‖b(x)‖2 ≤ ρ1 ‖x‖2 and tr (σ(x)′σ(x)) ≤ ρ2 ‖x‖2

for any x �∈ B(0, R) = {y ∈ Rr : ‖y‖ < R} and for some parameters ρi whose values do
not depend on R. Find the best constants ρ0, and ρ1 for linear drift functions b(x) = Ax
associated with a symmetric matrix A. For constant diffusion matrices σ(x) = σ check that
we can choose ρ2 = ε r, where ε stands for the maximal eigenvalue of the symmetric matrix
σ′σ, as soon as R ≥ 1. Check that for any x �∈ B(0, R) we have

ρ0 > (ρ1 + ρ2)/2 =⇒ [M(V )(x)− V (x)] ≤ −
(
ρ0 −

ρ1 + ρ2
2

)
R2.
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Exercise 114 (Super-martingale design) Consider a time homogeneous Markov chain
Xn with Markov transitions M on some state space S. We let TA be the first time Xn hits
some set A ⊂ S. Assume that there exists some non-negative function V s.t. (M(V ) −
V )(x) ≤ −1 for any x ∈ S −A. We set Nn := V (XTA∧n)− V (X0) + (TA ∧ n).

Using the martingale decomposition (8.47) of the process V (Xn), check that

Nn −Nn−1 ≤ MTA∧n(V )−MTA∧(n−1)(V ).

Deduce that Nn is a super-martingale.

Exercise 115 (Return times - Foster-Lyapunov functions) Consider the time homo-
geneous Markov chain Xn discussed in exercise 114. Assume that there exists some non
negative function V s.t. (M(V )− V )(x) ≤ 0 for any x ∈ S −A, and V (x0) ≤ infx∈A V (x).
Using exercise 114, check that

E (V (XTA
) + TA | X0 = x0)− V (x0) ≤ E (Nn | X0 = x0) ≤ E (N0 | X0 = x0) = 0.

Deduce that
E (TA | X0 = x0) ≤ V (x0)/ inf

x∈A
V (x) ≤ 1.

Exercise 116 (Harris recurrent sets) Consider the time homogeneous Markov chain
Xn discussed in exercise 114. Assume that there exists some non negative function V s.t.
(M(V )− V )(x) ≤ 0 for any x ∈ S − A, and the hitting times TC of the sets C = {V > c}
are finite (for any starting state x ∈ S). Using the same reasoning as in exercise 114,
check that Nn := V (XTA∧n) is a super-martingale. Using the optional stopping theorem
(theorem 8.4.12) check that NTC∧n is also a super-martingale. Prove that

V (x) ≥ E (V (XTC∧TA
) 1TA=∞ | X0 = x) ≥ c P (TA = ∞ | X0 = x) .

Deduce that P (TA < ∞ | X0 = x) = 1 for any x ∈ S. The sets A satisfying this property
are called Harris recurrent sets.

Exercise 117 (Positive recurrent set) Consider the time homogeneous Markov chain
Xn discussed in exercise 114. Assume that there exists some non negative function V s.t.
(M(V ) − V )(x) ≤ −1 for any x ∈ S − A. Check that E (TA | X0 = x) ≤ V (x) for any
x ∈ S −A. We let T ′

A = inf {n ≥ 1 : Xn ∈ A}. Check that

∀x ∈ A E (T ′
A | X0 = x) ≤ M(V )(x).

The sets A satisfying the above property are called positive recurrent sets.
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9
Computational toolbox

The toolbox from the previous chapter is extended in this chapter. Whereas in the previous
chapter we were focusing on analytic type tools, the focus in this chapter is on computational
tools. We present a review of traditional Markov chain Monte Carlo methodology, perfect
sampling, and time inhomogeneous Markov chain Monte Carlo models. We also provide an
extensive introduction to the more recent Feynman-Kac particle methodolgy, by giving a
unified treatment of a large set of models with different names and guises scattered around
in a variety of application domains.

Computers are useless.
They can only give you answers.
Pablo Picasso (1881-1973).

9.1 A weak ergodic theorem
We consider a Markov chainXn on some state
space S with a Markov transition that satis-
fies condition (8.15). By the contraction the-
orem 8.2.13, there exists a unique invariant
measure π = πM .

Definition 9.1.1 The occupation measures
of the Markov chain Xn are the random mea-
sures πn defined for any n ≥ 0 by

πn =
1

n+ 1

∑
0≤p≤n

δXp
.

When the distribution of the Markov chain
Xn converges to some invariant measure π, the sampling errors are defined by the empirical
random field V n defined for any function f on S by

V n(f) =
√

(n+ 1) [πn − π] (f)

or in an equivalent perturbation formulation

πn = π +
1√

(n+ 1)
V n.

Theorem 9.1.2 (Weak ergodic theorem) We assume that the Markov transition M
satisfies (8.15). For any f ∈ B(S), with osc(f) ≤ 1, and any initial distribution η0 =
Law(X0), we have the bias and the variance estimates

|E (V n(f))| ≤ 1√
n+ 1

1

1− β(M)
(9.1)

221



222 Stochastic Processes

and
E
(
[V n(f)]

2
)
≤

(
1 +

2

1− β(M)

)
. (9.2)

In addition, we have the first order estimate
∣∣∣∣∣∣
E
(
V n(f)2

)
−


π([f − π(f)]2) + 2

∑
p≥1

π ((f − π(f))Mp(f − π(f)))



∣∣∣∣∣∣

≤ 1

(n+ 1)

5

(1− β(M))2

with the convention that M0 = Id, the identity integral operator.

Important remark :
We emphasize that the weak ergodic theorem can be extended to any Markov chain which
forgets its initial condition sufficiently fast. Condition (8.15) is a rather crude sufficient con-
dition ensuring that the chain forgets its initial condition exponentially fast. For instance,
the weak ergodic theorem is also true when Mp satisfies condition (8.15), for some p ≥ 1
only. In this case, the constants in the r.h.s. of (9.1) differ and they depend on β(Mp)
instead of β(M).
Proof :
We use the decomposition

E (πn(f))− π(f) =
1

n+ 1

∑
0≤p≤n

([η0 − π]Mp) (f)

to prove that

|E (πn(f))− π(f)| =
1

n+ 1

∑
0≤p≤n

‖[η0 − π]Mp‖tv

=
1

n+ 1

∑
0≤p≤n

β(M)p ≤ 1

n+ 1

1

1− β(M)
.

To prove the second assertion, we first notice that for any p < q and any bounded function
f it holds:

E (f(Xp) f(Xq)) = E (f(Xp) E (f(Xq) | Xp))

= E
(
f(Xp) M

q−p(f)(Xp)
)
= (η0M

p) (fMq−p(f)).

Using these relations, we readily check that

(n+ 1)2E
(
[πn(f)− π(f)]

2
)

= E
([∑

0≤p≤n(f(Xp)− π(f))
]2)

=
∑

0≤p≤n

(η0M
p)

[
(f − π(f))2

]

+2
∑

0≤p<q≤n

(η0M
p)

(
(f − π(f))M q−p(f − π(f))

)
.
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On the other hand, for any function f s.t. osc(f) ≤ 1 we have

Mq−p(f − π(f))(x) = M q−p(f)(x)− πMq−p(f).

This implies that

Mq−p(f − π(f))(x) = [δx − η0]M
(q−p)(f)

=⇒ ‖Mq−p(f − π(f))‖ ≤
∥∥[δx − η0]M

(q−p)
∥∥
tv

≤ β(M)q−p.

Therefore ∣∣∣∑0≤p<q≤n (η0M
p) ((f − π(f))Mq−p(f − π(f)))

∣∣∣

≤
∑

0≤p≤n

∑
p<q≤n β(M)q−p ≤ (n+ 1)/(1− β(M)).

The end of the proof of the variance estimate is now clear.
To prove the final assertion, for any function g s.t. osc(g) ≤ 1 we observe that

|(η0Mp) (g)− π(g)| ≤ β(M)p.

This yields that for g of the form g = f − π(f), we have
∣∣∣∣∣∣

1

n+ 1

∑
0≤p≤n

[(η0M
p) (g)− π(g)]

∣∣∣∣∣∣
≤ 1

n+ 1

1

1− β(M)
.

In much the same way,
∣∣∣∑(n−p)

q=1 Mq(f − π(f))−
∑

q≥1 M
q(f − π(f))

∣∣∣

=
∣∣∣∑q>(n−p) M

q(f − π(f))
∣∣∣ ≤ ∑

q>(n−p) β(M)q = β(M)(n−p)+1

1−β(M) .

Thus, if we set

In−p(f) :=

(n−p)∑
q=1

Mq(f − π(f)) and I∞(f) :=
∑
q≥1

Mq(f − π(f))

we have
∣∣∣∑0≤p≤n (η0M

p) ((f − π(f))In−p(f))−
∑

0≤p≤n (η0M
p) ((f − π(f))I∞(f))

∣∣∣

≤ β(M)

1− β(M)

∑
0≤p≤n

β(M)(n−p) ≤ β(M)

[1− β(M)]2
.

On the other hand, we also have the estimate
∣∣∣
[

1
n+1

∑
0≤p≤n (η0M

p) ((f − π(f))I∞(f))
]
− π ((f − π(f))I∞(f))

∣∣∣

= 1
n+1

∣∣∣∑0≤p≤n [η0M
p − πMp] ((f − π(f))I∞(f))

∣∣∣

≤ 2
n+1 ‖I∞(f)‖

∑
0≤p≤n β(M)p ≤ 1

n+1
2

(1−β(M))2 .
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The last assertion comes from the fact that

I∞(f) :=
∑
q≥1

[Mq − πMq](f) ⇒ ‖I∞(f)‖ ≤ 1/(1− β(M)).

We conclude that

(n+ 1)
∣∣∣E

(
[πn(f)− π(f)]

2
)
−
[
π([f − π(f)]2) + 2π ((f − π(f))I∞(f))

]∣∣∣

≤ 1

1− β(M)
+

β(M)

[1− β(M)]2
+

4

(1− β(M))2
=

5

(1− β(M))2
.

This ends the proof of the theorem.

We consider the path space model Xn = (Xn, Xn+1, . . . , Xn+p), with a fixed p ≥ 0
presented in (8.5.13).

Using lemma 8.5.15 we readily prove that the ergodic theorem 9.1 is also true for the
Markov chain Xn.

Corollary 9.1.3 We assume that M satisfies (8.15). In this situation, ss n ↑ ∞, we have
the convergence

πn :=
1

n+ 1

∑
0≤q≤n

δXq
−→n→∞ π

in the sense that for any f ∈ B(Sp+1) :

|E (πn(f))− π(f)| ∨ E
(
[πn(f)− π(f)]

2
)
= O (1/n) .

9.2 Some illustrations

9.2.1 Parameter estimation

Suppose that we are observing the random states Xn of the {0, 1}-valued Markov chain
presented in (7.11), and we want to estimate the parameters p, q.

In (7.12) we have shown that the invariant measure of the chain Xn is given by

π = [π(0), π(1)] =

[
q

p+ q
,

p

p+ q

]
.

By the ergodic theorem 9.1 we know that

πn(10) :=
1

n+ 1

∑
0≤p≤n

10(Xn) −→ π(10) = π(0) =
q

p+ q
.

We also observe that the invariant measure of the chain Xn = (Xn, Xn+1) is given by

π(x, y) = π(x) M(x, y).

By corollary 9.1.3 we have that

πn(1(0,1)) =
1

n+ 1
Card {0 ≤ p ≤ n : (Xp, Xp+1) = (0, 1)} �n↑∞ p

q

p+ q
.
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This implies that
πn(1(0,1))

πn(10)
�n↑∞ p

q

p+ q
× p+ q

q
= p.

If we interpret πn as the (random) distribution of a couple of random variables (Y (n)
1 , Y

(n)
2 ),

then we have

P
(
Y

(n)
2 = 1

∣∣∣Y (n)
1 = 0 , (X0, . . . , Xn)

)
=

πn(1(0,1))

πn(10)
�n↑∞ p.

9.2.2 Gaussian subset shaker

Our next objective is to sample a centered Gaussian random variable Z with unit variance
restricted to some set A, say A =]a, b[, for some −∞ ≤ a < b ≤ ∞. We let λ be the
distribution of Z, and we set

π(dz) :=
1

λ(A)
1A(z) λ(dz) = P (Z ∈ dz | Z ∈ A) .

Of course, we can use the distribution function F (z) = P(Z ≤ z) of the Gaussian random
variable and set

Za,b = F−1 (F (a) + U (F (b)− F (a))) . (9.3)

It is an elementary exercise to check that Law(Za,b) = π (cf. exercise 119). Nevertheless,
the function F requires us to integrate the Gaussian density from −∞ up to any state z,
using some kind of numerical approximation scheme.

Another strategy is to use the rejection simulation technique described in section 4.3.
In this case, we sample a sequence of independent copies of Z and we accept the ones that
hit the desired set A.

Next, we describe an alternative approach based on Markov chain simulation.
We let Zn be a sequence of independent copies of Z. We design a Markov chain with

invariant measure π as follows.
Suppose, a chain with transition K is chosen and that the chain Xn ∈ A at some time

step n ≥ 0. Starting from this point, we set

Yn+1 =
√
1− εn Xn +

√
εn Zn.

If Yn+1 ∈ A we accept the move and we set Xn+1 = Yn+1. Otherwise, we stay in the same
place: Xn+1 = Xn. The Markov transition of the chain Xn � Xn+1 is now given by

M(x, dy) = K(x, dy) 1A(y) + (1−K(1A)(x)) δx(dy)

with K(x, dy) = P(Yn+1 ∈ dy | Xn = x). We claim that

1

n+ 1

∑
0≤p≤n

δXp −→∞ π.

We prove that πM = π as follows. Recalling that the transition K(x, dy) is a reversible
w.r.t. to the Gaussian distribution λ, for any bounded function f on R,

πM(f) ∝ λ(1AM(f))

= λ(1AK(1A f)) + λ(1A(1−K(1A) f)

= λ(K(1A)1A f) + λ(1Af)− λ(1A K(1A) f) = λ(1Af) ∝ π(f).

This clearly implies that π = πM .
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9.2.3 Exploration of the unit disk

Suppose we want to select uniformly a point Z = (X,Y ) in the unit disk

A := {(x, y) ∈ [−1, 1]2 : x2 + y2 ≤ 1}.

Here again, we can use the rejection simulation technique described in section 4.3. In
this case, we sample a sequence of independent random variables on [−1, 1]2 and we accept
the ones that hit the desired set A. Notice that the invariant measure π on A is defined by

π(d(x, y)) ∝ 1A(x, y) dxdy

= 1[−1,1](x) dx 1[−
√
1−x2,+

√
1−x2](y) dy

= 1[−1,1](y) dy 1
[−
√

1−y2,+
√

1−y2]
(x) dx. (9.4)

This implies that

P (Y ∈ dy | X = x) ∝ 1[−
√
1−x2,+

√
1−x2](y) dy

P (X ∈ dx | Y = y) ∝ 1
[−
√

1−y2,+
√

1−y2]
(x) dx.

Pick any initial point (X0, Y0) in A. The next state of the chain (X1, Y1) is defined as
follows. Firstly, we choose uniformly a point X1 on

[
−
√

1− Y 2
0 ,+

√
1− Y 2

0

]
. Then, we

choose uniformly a state Y1 on
[
−
√

1−X2
1 ,+

√
1−X2

1

]
. Iterating these transitions, we

construct a Markov chain evolving inside the the unit disk A

Zn :=

(
Xn

Yn

)
�

(
Xn+1

Yn

)
� Zn+1 =

(
Xn+1

Yn+1

)
. (9.5)

After some elementary computations, we prove that π is the invariant measure of the chain
Zn (see exercise 121). Applying the ergodic theorem, we find that

1

n+ 1

∑
0≤p≤n

δZp
−→n→∞ π.

9.3 Markov Chain Monte Carlo methods

9.3.1 Introduction

Markov chain Monte Carlo algorithms are rather standard stochastic simulation
methods for sampling from a given target distribution, say π, on some state space
S. The prototype of target a measure is given by Boltzmann-Gibbs measures of
the following form

π(dx) = ΨG(λ)(dx) =
1

λ(G)
G(x) λ(dx) (9.6)

where λ denotes a reference probability measure and G is a potential function on
some state space S.
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Several examples have been discussed in section 6.4, section 9.2.2, and section 9.2.3.
The central idea behind MCMC methodologies is to design a judicious Markov transition

M(x, dy), with adequate stability properties, that has the target probability measure π =
πM as its invariant measure. After a rather large number of runs, and when the chain is
sufficiently stable, the ergodic theorem tells us that the occupation measures of the random
states Xn of the chain with Markov transition M approximate π.

9.3.2 Metropolis and Hastings models

The Metropolis-Hastings algorithm is the most famous MCMC model of current use in
practice.

Firstly, we choose a Markov transition K to explore randomly the state S. We further
assume that K(x, dy) and the target measure π(dy) have a density with respect to some
reference probability measure λ(dy), that is,

K(x, dy) = k(x, y) λ(dy) and π(dy) = h(y) λ(dy)

with some density functions k(x, y) and h(y) such that

h(y)k(y, x) = 0 =⇒ h(x)k(x, y) = 0.

We set
G(x, y) :=

h(y)k(y, x)

h(x)k(x, y)

with the convention 0/0 = 0. For more general models, we take

G(x, y) =
π(dy)K(y, dx)

π(dx)K(x, dy)
. (9.7)

For Boltzmann-Gibbs measures π of the form (9.6), it is readily checked that the function
G does not depend on the normalizing constant λ(G), and is given by the formula

G(x, y) =
G(y)

G(x)
× λ(dy)K(y, dx)

λ(dx)K(x, dy)
.

In addition, when the proposal transition K is reversible w.r.t. the measure λ, the function
G takes the simpler form

G(x, y) = G(y)/G(x). (9.8)

Definition 9.3.1 The Metropolis-Hastings model is a Markov chain with µ-
reversible acceptance-rejection style transitions of the following form

M(x, dy) = K(x, dy) a(x, y) + (1−
∫

K(x, dz) a(x, z)) δx(dy). (9.9)

To guarantee the reversibility property, we often chose one of the following accep-
tance rates

a = G/(1 +G) or a = 1 ∧G. (9.10)

The Markov chain with acceptance ratio a = G/(1 +G) is sometimes called the
heat-bath Markov chain sampler. When the proposal transition K(x, .) = ν is
given by some probability measure ν that does not depend on the current state
x, the resulting MCMC sampler is sometimes called an independent Metropolis-
Hastings sampler.
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Theorem 9.3.2 The Metropolis-Hastings transition (9.9) associated with one of
the acceptance rates a given in (9.10) is reversible w.r.t. the target measure π; that
is,

π(dx)M(x, dy) = π(dy)M(y, dx).

Proof :
When a = 1 ∧G, for any x �= y we have

π(dx)M(x, dy) = π(dx)K(x, dy) a(x, y)

= λ(dx) h(x) k(x, y)λ(dy)

{
1 ∧ (h(y)k(y, x))

(h(x)k(x, y))

}

= λ(dx)λ(dy) {(h(x)k(x, y)) ∧ (h(y)k(y, x))} .

This formula is clearly symmetric w.r.t. x and y.
When a = G/(1 +G), for any x �= y we have

a(x, y) =

h(y)k(y,x)
h(x)k(x,y)

1 + h(y)k(y,x)
h(x)k(x,y)

=
h(y)k(y, x)

h(x)k(x, y) + h(y)k(y, x)

and

π(dx)M(x, dy) = π(dx)K(x, dy) a(x, y)

= λ(dx)λ(dy)
(h(y)k(y, x))(h(x)k(x, y))

h(x)k(x, y) + h(y)k(y, x)
.

This formula is again symmetric w.r.t. x and y.

For a detailed discussion on this model, we refer the reader to the pioneering article by N.
Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller [198], the more recent
review article by N. Metropolis [197], and the series of articles by P. Diaconis [99, 100, 102].

The mathematical analysis of this Markov chain model is also well developed. We re-
fer the reader to the series of seminal articles by P. Diaconis and his co-authors [94, 95,
96, 97, 101, 103]. These works reveal fascinating connections between the design and the
performance analysis of MCMC models with powerful pure and applied mathematical tech-
niques, ranging from representation theory, micro-local analysis, log-Sobolev inequalities,
and spectral analysis.

Because these techniques provide very sharp rates of convergence, it is clearly beyond
the scope of this book to review these methods. In the end of this section, we content
ourselves with presenting one of the simplest ways to analyze the convergence of an MCMC
algorithm.

Suppose that K satisfies the minorization condition

Km(x, dy) ≥ ε ν(dy)

for some integer m ≥ 1, some ε ∈]0, 1] and some probability measure ν. In this situation,

Mm(x, dy) ≥ ε′ ν(dy)
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with

ε′ = ε inf
x0�...�xm


 ∏
0≤p<m

a(xp, xp+1)


 .

The r.h.s. infimum is taken over all sequences (x0, . . . , xm) of states in S of length m and
such that

k(xp, xp+1) > 0.

Whenever ε > 0, the Dobrushin contraction coefficient of Mm is s.t. β(Mm) < 1. For a
more detailed discussion on MCMC models, and their stochastic analysis we refer the reader
to the review articles by P. Diaconis [93, 98, 103], and the references therein.

9.3.3 Gibbs-Glauber dynamics

We let π be some target measure defined on some product state space S = (S1 × S2).

We assume that the following disintegration property

π(d(x1, x2)) = π1(dx1) L1,2(x1, dx2) = π2(dx2) L2,1(x2, dx1)

is satisfied with the first, and second marginals, π1 and π2, and the corresponding
conditional probability measures L1,2 and L2,1.

The disintegration theorem ensures that any Borel probability measure π on Radon
spaces can be disintegrated. From a probabilistic view, the disintegration property is equiv-
alent to finding the conditional distributions of one coordinate given the second. In Bayesian
notation, the above disintegration formulae are often expressed as probability densities

p(x1, x2) = p(x1) p(x2|x1) = p(x2) p(x1|x2).

It is important to notice that these disintegration formulae depend on the geometry of the
state space, that is, on the coordinate system on which we express a given probability mea-
sure. Several examples of disintegration formulae are discussed in the further development
of this section. We also refer the reader to section 23.3.1 dedicated to uniform measures on
geometric surfaces, as well as to the series of exercises in the final section of this chapter.

Definition 9.3.3 The Gibbs sampler is the Markov chain with the elementary
transition

M = K1K2

with the transitions Ki given for any i ∈ {1, 2} by

K1((x1, x2), d(y1, y2)) := δx1
(dy1)L1,2(y1, dy2)

K2((x1, x2), d(y1, y2)) := δx2
(dy2)L2,1(y2, dy1).

We can alternatively choose the Markov transitions

M = K2K1 or M =
1

2
K1 +

1

2
K2.
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Theorem 9.3.4 The transitions K1 and K2 are reversible w.r.t. the measure π. In addi-
tion, the Metropolis-Hastings transitions M1, and respectively M2, with proposal transition
K1, and respectively K2, and acceptance rate a = 1 ∧ G with G given by (9.7) have unit
acceptance rate.

Proof :
We check this claim using the fact that

π(d(y1, y2))×K1((y1, y2), d(x1, x2))

= π1(dy1)L1,2(y1, dy2)× δy1
(dx1)L1,2(x1, dx2)

= π1(dy1)δy1
(dx1)︸ ︷︷ ︸

=π1(dx1)δx1 (dy1)

× (L1,2(y1, dy2)L1,2(x1, dx2)) .

This formula is clearly symmetric w.r.t. x = (x1, x2) and y = (y1, y2). Thus, we have

G((x1, x2), (y1, y2)) =
π(d(y1, y2))×K1((y1, y2), d(x1, x2))

π(d(x1, x2))×K1((x1, x2), d(y1, y2))
= 1.

The resulting Markov chain model is often called the Gibbs sampler or the Glauber
dynamics.

Example 9.3.5 The random exploration of the unit disk discussed in section 9.2.3 is the
Gibbs model associated with the disintegration formulae (9.4).

These constructions can be extended to product state spaces of any dimension. More
formally, we let π be some target measure on some state space S = EI , where I stands for
some finite set.

Example 9.3.6 (Graph coloring model) For instance E = {1, . . . , d} can be the set of
colors on the vertices of some graph I = (V, E). When E = {0, 1}, the color 0 can be
interpreted as an empty site, and the color 1 as an occupied site. In this situation, a given
configuration x = (x(i))i∈I can be interpreted as a collection of particles placed on the
vertices i ∈ I s.t. x(i) = 1.

We let X = (Xi)i∈I be some random variable with distribution π on EI . For any fixed
i ∈ I, and any x ∈ EI we set

xI−i = (xj)j∈I−{i} with I − i := {j ∈ I : j �= i}.

We assume that the following disintegration property is satisfied

π(dx) = πI−i(dxI−i)LI−i,i(xI−i, dxi)

with the i-th marginals πi of π and the conditional probability measure

LI−i,i(xI−i, dxi) = P (Xi ∈ dxi | XI−i = xI−i) .

In the above displayed formulae, dx, resp. dxi and dxI−i, stand for an infinitesimal neigh-
borhood of the point x ∈ EI , resp. xi ∈ E and xI−i ∈ EI−i.
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We associate with these models the Markov transitions Ki given for any i ∈ I by

Ki(x, dy) := δxI−i
(dyI−i) LI−i,i(yI−i, dyi). (9.11)

The corresponding Gibbs sampler is the Markov chain with the elementary transition

M =
∏
i∈I

Ki in any order. (9.12)

We can alternatively choose the Markov transitions

M =
1

Card(I)

∑
i∈I

Ki. (9.13)

Arguing as above, one checks that M is reversible w.r.t. π, so that πM = π.

Example 9.3.7 (Subset sampling) We let λ be a reference probability measure on the
set S = EI discussed above. We assume that λ satisfies the disintegration property

λ(dx) = λI−i(dxI−i) PI−i,i(xI−i, dxi)

for some Markov transitions PI−i,i from EI−i into E. For finite state spaces E, we can
consider the product counting measures

λ(x) =
∏
i∈I

λi(xi) with λi(xi) =
1

Card(E)
.

In this situation, we have

λI−i(dxI−i) =
∏
j∈I

λj(xj) and PI−i,i(xI−i, dxi) = λi(xi).

We let π be the Boltzmann-Gibbs measure associated with some subset A ⊂ S = EI and
defined by

π(dx) =
1

λ(A)
1A(x) λ(dx).

For each i ∈ I, we let AI−i be the projection of the set A into the set EI−i defined by
the set of mappings xI−i ∈ EI−i that can be extended to some mapping x ∈ A by choosing
some k ∈ E and setting x(i) = k. In this slightly abusive notation, we let

Ai(xI−i) = {k ∈ E : x ∈ A}.

By construction, we have

1A(x) = 1AI−i
(xI−i)× 1AI−i(xI−i)(xi)

and therefore

π(dx) ∝ 1AI−i
(xI−i) λI−i(dxI−i)︸ ︷︷ ︸
∝ πI−i(dxI−i)

×PI−i,i(xI−i, dxi) 1AI−i(xI−i)(xi)︸ ︷︷ ︸
∝ LI−i,i(xI−i,dxi)

.

The Gibbs sampler associated with the Markov transition (9.12) is defined by a Markov
chain Xn = (Xn(i))i∈I ∈ S = EI .

At time n, we choose randomly a vertex i ∈ I and we set Xn+1(j) = Xn(j) for any
j ∈ I−i. Finally Xn(i) is a random variable with the distribution PI−i,i(xI−i, dxi) restricted
to the set AI−i(xI−i).
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Example 9.3.8 (Graph coloring and hard core models) In the graph coloring model
discussed above, we let A be the set of graph colorings such that two neighbor vertices have
different colors.

When E = {0, 1} the set A can be chosen as to represent the configurations where no
two occupied sites are adjacent (that is, i ∼ j ⇒ x(i)x(j) �= 1). In statistical physics, this
model is often referred to as the hard-core model.

In this context, I − i represents the set of all vertices that differ from the vertex i ∈ I.
Given some coloring xI−i of these vertices I − i, the set Ai(xI−i) coincides with the set of
colors k ∈ E that do not appear in the neighborhood of the vertex i.

When the reference measure λ is given by the product counting measure on the set of
colors, the Markov transition LI−i,i(xI−i, dxi) amounts to choosing uniformly at random
some color k that does not appear in the neighborhood of the vertex i and setting xi = k.

The Gibbs sampler associated with the Markov transition (9.12) is defined by a Markov
chain Xn = (Xn(i))i∈I ∈ S = EI : At time n, we choose randomly a vertex i ∈ I and
we set Xn+1(j) = Xn(j) for any j ∈ I − i. Finally Xn(i) is an uniform r.v. on the set
E −Xn(N(i)), where N(i) denotes the set of all neighbors j of i (that is the vertices j s.t.
(i, j) ∈ E).

Example 9.3.9 (Ising model) We consider the Ising model discussed in section 6.4. In
this context, the target measure is given by the Boltzmann-Gibbs measure on

S = {−1,+1}I I = {1, . . . , L} × {1, . . . , L}

defined by

π(x) =
1

Zβ
e−βV (x) λ(x)

with the uniform measure λ(x) = 2−L2

and the potential function

V (x) = h
∑
i∈I

x(i)− J
∑
i∼j

x(i)x(j).

In this situation, for any fixed i ∈ I we have

π(x) ∝ e−βh x(i)−βJ x(i)
∑

j∼i x(j)

× e−βh
∑

j∈I−i x(j)−βJ
∑

j∼k, j,k∈I−i x(j)x(k).

This implies that

LI−i,i(xI−i;xi) ∝ exp


−βh x(i)− βJ x(i)

∑
j∼i

x(j)


.

More precisely, we have the following spin-site updates

LI−i,i(xI−i; {1}) = 1− LI−i,i(xI−i; {−1})

=
e−βh−βJ

∑
j∼i x(j)

e−βh−βJ
∑

j∼i x(j) + e+βh +βJ
∑

j∼i x(j)

= 1/
(
1 + e2β[h+J

∑
j∼i x(j)]

)
.

To sample the transition x � y w.r.t. the Markov transition Ki given in (9.11), we sample
a uniform r.v. U on [0, 1] and we set

y = F (i)(x)
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with the random function F (i) : x ∈ S → F (i)(x) ∈ S defined by

∀j ∈ I − i F (i)(x)(j) = x(j)

and
F (i)(x)(i) := 1[0,pi(x)[(U)− 1[pi(x),1](U) (9.14)

with
pi(x) := 1/

(
1 + e2β[h+J

∑
j∼i x(j)]

)
. (9.15)

When J < 0, the chance to pick the spin +1 increases as the number j ∼ i that have the
spin +1. This model is called an attractive spin system.

An illustration of the Gibbs sampler can be found in the YouTube video with varying
temperatures.

9.3.4 Propp and Wilson sampler

In the further development of this section M(x, y) stands for an aperiodic and irreducible
Markov transition on some finite set S.

Definition 9.3.10 A random mapping F is said to be M -compatible as soon as we have
for any (x, y) ∈ S2

P (F (x) = y) = M(x, y).

The existence of M -compatible mappings is proved as follows:
Up to a change of label, there is no loss of generality to assume that the state space

S = {1, . . . , d}, with d = Card(S). In this notation, a mapping F is characterized by a
column random vector F = (F (1), . . . , F (d))′.

We let (Ui)1≤i≤d be a sequence of independent and uniform random variables on [0, 1[,
and we set

F (i) =
∑

1≤j≤d

j 1[
∑

1≤k<j M(i,k),
∑

1≤k≤j M(i,k)[(Ui). (9.16)

By construction, the random states (F (i))1≤i≤d are independent r.v. and we have

P (F (i) = j) = P


 ∑

1≤k<j

M(i, k) ≤ Ui ≤
∑

1≤k≤j

M(i, k)


 = M(i, j).

From the above construction, we notice that F is not necessarily a one-to-one mapping.
In this notation, the Markov chain with elementary transition M is defined for any n ≥ 0

by the recursion

Xn+1 = Fn(Xn) = Fn(Fn−1(Xn−1)) = . . . = (Fn ◦ . . . ◦ F1 ◦ F0) (X0)

where Fn, with n ∈ N, stands for a sequence of independent copies of the mapping F .

Definition 9.3.11 Given a sequence of independent copies (Fn)n≥0 of the mapping F , we
let ←−

Fn := F0 ◦ F1 ◦ . . . ◦ Fn
law
= Fn ◦ . . . ◦ F1 ◦ F0 :=

−→
Fn.

We also let
←−
T and

−→
T be the forward and backward coalescent times

←−
T = inf

{
n : Card

( ←−
Fn(S)

)
= 1

}

−→
T = inf

{
n : Card

( −→
Fn(S)

)
= 1

}
law
=

←−
T .
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The backward mapping
←−
Fn is better interpreted as running the chain forward from some

random state X−n up to the state X1

X1 = F0(X0) = F0(F−1(X−1)) = . . . = (F0 ◦ F−1 ◦ . . . ◦ F−n) (X−n) (9.17)

where Fn, with n ∈ Z, stands for independent copies of F . In this situation, the initial
condition is X−n and X1 is the terminal state of the chain after (n+1) forward interactions.

Theorem 9.3.12 Assume that the M -compatible mapping F is chosen so that

P
(←−
T < ∞

)
= 1 = P

(−→
T < ∞

)
. (9.18)

In this situation, the value of
←−−
F←−

T
(x) := Y does not depend on the state variable x and it is

distributed according to the invariant measure of the chain π = πM .

Proof :
By construction the value

←−−
F←−

T
, and a fortiori the one of

←−−
F←−

T
(x) := Y do not depend on the

variable x. This implies that

T ≤ n

⇒ (F0 ◦ F1 ◦ . . . ◦ Fn) (x) = (F0 ◦ F1 ◦ . . . ◦ FT ) ◦ (FT+1 ◦ . . . ◦ Fn(x)) = Y.

We conclude that

P(Y = y)
∞←n←− P ((F0 ◦ F1 ◦ . . . ◦ Fn) (x) = y)

= P ((Fn ◦ . . . ◦ F0) (x) = y)
n→∞−→ π(y).

This ends the proof of the theorem.

The coalescent condition is not satisfied for some M -compatible mappings. For instance
when S = {1, 2} and M(i, j) = 1/2 for any i, j ∈ S it is readily checked that the mapping
F defined by

P ((F (1), F (2)) = (1, 2)) = 1/2 = P ((F (1), F (2)) = (2, 1))

is M -compatible but the above condition is not satisfied. Indeed,

P(F (1) = 1) = 1/2 = P(F (1) = 2) and P(F (2) = 1) = 1/2 = P(F (2) = 2)

but
←−
Fn and

−→
Fn are random permutations of the states {1, 2}.

Nevertheless the mappings defined in (9.16) satisfy the desired condition. To check this
claim, we notice that

P ((F (1), F (2)) = (1, 2)) = P ((F (1), F (2)) = (1, 1))

= P ((F (1), F (2)) = (2, 1))

= P ((F (1), F (2)) = (2, 2)) = 1/4.

Hence

P(F (2) = 1) = P(F (1) = 1) = 1/4 + 1/4 = 1/2 = P(F (1) = 2) = P(F (1) = 2).
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In addition, we have

P
(←−
T ≤ 1

)
≥ P (Card(F ({1, 2})) = 1) = 1/2 > 0 ⇒ P

(←−
T > 1

)
≤ 1/2 < 1.

Recall that

P
(←−
T > n | ←−T > (n− 1)

)

∝ E
(
P
(
Card

(←−−−
Fn−1 ◦ Fn(S)

)
> 1 |

←−−−
Fn−1

)
1Card

(←−−−
Fn−1(S)

)
>1

)

= E


P

(
Card

(←−
F1(S)

)
> 1 |

←−
F0

)
←−
F0=

←−−−
Fn−1︸ ︷︷ ︸

≤1/2

1Card
(←−−−
Fn−1(S)

)
>1


 .

This implies that

P
(←−
T > n

)
= P

(←−
T > n | ←−T > (n− 1)

)
× P

(←−
T > (n− 1)

)
≤ 1/2n

from which we conclude that P
(←−
T < ∞

)
= 1.

Important remarks :
Notice that the Propp and Wilson scheme requires us to store all the values of the

functions Fn. This drawback reflects the main limitation of applying the Propp and Wilson
sampler in large state spaces.

Nevertheless, we can overcome this difficulty when the state space S is equipped with a
partial order with a minimal and a maximal state, xmin ≤ x ≤ xmax, for any x ∈ S. In this
case, the strategy is to find a judicious monotone M -compatible mapping F . Combining
the interpretation (9.17) with the fact that

Card (F0 ◦ F−1 ◦ . . . ◦ F−n) (S) = 1
⇔
(F0 ◦ F−1 ◦ . . . ◦ F−n) (xmin) = (F0 ◦ F−1 ◦ . . . ◦ F−n) (xmax),

we only need to store the values of two chains starting at xmin and xmax. This also shows
that the coalescence property (9.18) of monotone mapping F is granted as soon as the chain
is ergodic.

The drawback is that the desired coalescence may not appear after just some initially
chosen number of n steps. In this case, we need to restart the simulation with a larger
number of steps. In practice we often choose these numbers of the form 2k, with k ≥ 1.

For a more detailed discussion on this simulation technique, we refer the reader to the
book of S. Asmussen, P. W. Glynn [5]. The website of D.B. Wilson on perfect sampling
with Markov chains also contains a rather complete list of references on this subject.

We end this section with some examples of monotone M -compatible mappings.

Example 9.3.13 (The ladder chain) We consider the ladder Markov chain Xn defined
by the following transition diagram

11/2 ��

1/2

�� 2
1/2



1/2

�� . . . . . .
1/2

�� (d− 1)

1/2

 d 1/2��
1/2

�� .



236 Stochastic Processes

We also consider the couple of monotone mappings

F+(x) =

{
x+ 1 for x ∈ {1, . . . , d− 1}

d for x = d

and

F−(x) =

{
1 for x = 1

x− 1 for x ∈ {2, . . . , d− 1}.

Given some uniform r.v. U on [0, 1], we set

F = 1[0,1/2[(U) F− + 1[1/2,1](U) F+.

It is a simple exercise to check that this random mapping is monotone and compatible w.r.t.
the Markov transition M of the ladder chain.

Example 9.3.14 (Ising model) We return to the Ising model discussed in example 9.3.9
and in section 6.4. We equip the state space S = {−1,+1}I , with I = {1, . . . , L}2 with the
partial order

x ≤ y =⇒ ∀i ∈ I x(i) ≤ y(i).

The minimal and maximal states xmin and xmax are clearly given by

∀i ∈ I xmin(i) = −1 and xmax(i) = +1.

We also observe that

x ≤ y ⇒ ∀i ∈ I
∑
j∼i

x(j) ≤
∑
j∼i

y(j).

Thus, when J < 0 the functions F (i) and pi(x) defined in (9.14) and (9.15) are such that

x ≤ y ⇒ ∀i ∈ I pi(x) := 1/
(
1 + e2β[h−|J|

∑
j∼i x(j)]

)
≤ pi(y)

⇒ ∀i ∈ I F (i)(x) ≤ F (i)(y).

Given a sequence of independent functions F (i), with i ∈ I, the functions

F = ◦i∈IF
(i) (in any order) and F =

1

Card(I)

∑
i∈I

F (i)

are monotone and compatible w.r.t. the Gibbs Markov transitions.

9.4 Time inhomogeneous MCMC models

9.4.1 Simulated annealing algorithm

We suppose that we are given a sequence of target measures πn defined in terms of a
sequence of Boltzmann-Gibbs measures

πn(dx) = µβn
(dx) =

1

Zβn

e−βnV (x) λ(dx) (9.19)
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associated with some inverse temperature parameter βn ↑ ∞, some non negative potential
function V and some reference measure λ on some state space S. Several examples of
Boltzmann-Gibbs measures are discussed in section 6.4, including the Ising model and the
traveling salesman problem.

For finite state spaces equipped with the counting measure λ, we have seen in (6.6) that
these measures converge to the uniform measure on the subset of all global minima of the
potential function V , as βn tends to ∞. This shows that the sampling of these measures at
low temperature is equivalent to that of sampling uniformly a state with minimal energy.
Since most of the time these minimal energy states are unknown, it is impossible to sample
Boltzmann-Gibbs measures at low temperature.

One strategy is to consider a sequence of Metropolis-Hastings transitions Mn such that
for any time n we have

µβnMn = µβn ⇐⇒ πnMn = πn.

We recall that the Markov transition Mn associated with a λ-reversible proposition transi-
tion Kn is given by

Mn(x, dy) = Kn(x, dy) an(x, y) +

[
1−

∫
Kn(x, dz) an(x, z)

]
δx(dy) (9.20)

with the acceptance rate

an(x, y) = 1 ∧ e−βn (V (y)−V (x)) = e−βn (V (y)−V (x))+ .

To simplify the presentation, we start with a null inverse temperature parameter β0 = 0,
and a r.v. X0 with distribution η0 = µβ0

= λ. We run a series of m1 MCMC moves with
Markov transition M1

X0

M
m1
1

−−−−−−−−−−−−→ Xm1 .

If m1 is sufficiently large, we expect Xm1
to be approximately distributed according to the

invariant measure π1 = µβ1
of the transition M1. Nevertheless, when β1 is too large, the

acceptance rate a1(x, y) = e−β1(V (y)−V (x)) is almost null for any V (x) < V (y). In other
words, the sequence ofM1-MCMC moves is almost equivalent to a series of gradient-descent-
type transitions. Thus, for large values of β1 we cannot expect to have Law(Xm1) � π1 but
for very large values of the parameter m1.

Thus, the natural idea is to find a judicious schedule (βn,mn) such that the time inho-
mogeneous model

X0

M
m1
1

−−−−−→ Xm1

M
m2
2

−−−−−→ Xm1+m2

M
m3
3

−−−−−→ Xm1+m2+m3 −−−−−→ . . .

explores randomly the state space with

∀n ∈ N Law(Xm1+...+mn
) � πn.

Some illustrations of the evolution of the simulated annealing in the context of the traveling
salesman model discussed in section 6.4.3 can be found in the YouTube video, including
comparisons with greedy style algorithms.

9.4.2 A perfect sampling algorithm

One idea is to introduce an intermediate acceptance-rejection mechanism every time we
change the temperature parameter. For instance, initially we set

X̂0 =

{
X0 with probability e−(β1−β0)V (X0)

c with probability 1− e−(β1−β0)V (X0)
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where c stands for some auxiliary cemetery state. Notice that for any function f on S we
have

E
(
f(X̂0) | X̂0 �= c

)
∝ E

(
E
(
f(X̂0) 1X̂0 �=c | X0

))

= E
(
f(X0) e

−(β1−β0)V (X0)
)

∝
∫

f(x) e−(β1−β0)V (x) e−β0V (x) λ(dx).

This implies that

E
(
f(X̂0) | X̂0 �= c

)
∝

∫
f(x) e−β1V (x) λ(dx) ∝ π1(f).

In much the same way, recalling that β0 = 0 we prove that

P(X̂0 �= c) = λ
(
e−β1V (x)

)
/λ

(
e−β0V (x)

)
= λ

(
e−β1V (x)

)
.

If X̂0 = c then the algorithm stops. Otherwise, by starting from X̂0 = X0, as before, we
run m1 transitions M1 up to some random state Xm1

. Notice that

Law(X̂0 | X̂0 �= c) = π1 =⇒ ∀m1 ≥ 1 Law(Xm1
) = π1.

Then, we accept or reject this state as follows

X̂m1 =

{
Xm1 with probability e−(β2−β1)V (Xm1 )

c with probability 1− e−(β2−β1)V (Xm1 ).

Arguing as above, we find that

Law(X̂m1
| X̂m1

�= c, X̂0 �= c) = π2.

Similarly, we also prove that

P(X̂m1
�= c | X̂0 �= c) = λ

(
e−β2V (x)

)
/λ

(
e−β1V (x)

)
= π1

(
e−(β2−β1)V (x)

)

=⇒ P(X̂m1 �= c) = λ
(
e−β2V (x)

)

as well as
∀m2 ≥ 1 Law(Xm1+m2

) = π2,

whereXm1+m2
stands for the random states of the model afterm2 iterations of the transition

M2, starting from X̂m1
= Xm1

( �= c). As before, when X̂m1
= c the algorithm is stopped.

Iterating this algorithm we obtain a sequence of perfect random samples w.r.t. the target
measures πn, as soon as the states are accepted at every acceptance-rejection transition.
The main drawback of this algorithm is related to the fact that the acceptance rate decreases
exponentially fast to 0; that is,

P(X̂m1+...+mn
�= c) = λ

(
e−βnV (x)

)
↓n↑∞ 0.
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9.5 Feynman-Kac path integration

9.5.1 Weighted Markov chains

We let Pn be the distribution of the random paths

Xn := (X0, . . . , Xn) ∈ Sn := (S0 × . . .× Sn)

of a given reference Markov process Xn, taking values in some state spaces Sn whose values
may depend on the time parameter n. More precisely, if η0 = Law(X0) is the distribution
of the initial random state, then we have

Pn(dx) := P (Xn ∈ dx) = η0(dx0) M1(x0, dx1)× . . .×Mn(xn−1, dxn).

In the above formula, dx = d(x0, . . . , xn) := dx0 × . . . × dxn denotes an infinitesimal
neighborhood of some path sequence x = (x0, . . . , xn) ∈ Sn. Feynman-Kac measures
represent the distributions Pn weighted by a collection of non-negative potential functions
Gn, up to some normalizing constant Zn.

More formally, Feynman-Kac models are defined by the formulae

Qn(dx) :=
1

Zn
Zn(x) Pn(dx) with Zn(x) :=

∏
0≤p<n

Gp(xp). (9.21)

In other words, for any function fn on the path space Sn,

Qn(fn) =

∫
Qn(dx) fn(x) = E (fn(Xn) Zn(X))

∝
∫

fn(x) Zn(x) P (Xn ∈ dx) .

We note that the normalizing constant is also defined by

Zn :=

∫
Zn(x) P (Xn ∈ dx) = E (Zn(X)) .

The measures Qn are well defined on Sn, as soon as Zn �= 0. We refer the reader to
section 9.9 for a series of illustrations of Feynman-Kac models in rare event simulation, in
nonlinear filtering, and in global optimization problems.

To get a step further in our discussion, we also denote by Γn the unnormalized
measures defined by

Γn(dx) = Zn ×Qn(dx) = Zn(x)× Pn(dx). (9.22)

In other words, for any function fn on the path space Sn,

Γn(fn) :=

∫
fn(x) Zn(x) P (Xn ∈ dx) = E (fn(Xn) Zn(X)) .
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Finally, we let γn and ηn be the n-th marginal measures of Γn and Qn. By
construction, for any function fn on Sn we have

ηn(fn) = γn(fn)/γn(1) with γn(fn) = E (fn(Xn) Zn(X)) , (9.23)

as well as the path space formulae

Qn(fn) = Γn(fn)/Γn(1) with Γn(fn) = E (fn(Xn) Zn(X)) (9.24)

for any fn on Sn.

We let X ′
n be a Markov process with elementary transitions M ′

n on state spaces S′
n. We

also denote by G′
n some non-negative potential functions on S′

n.
We further assume that Xn is given by the historical process

Xn = X′
n := (X ′

0, . . . , X
′
n) ∈ Sn := S′

n := (S′
0 × . . .× S′

n) (9.25)

and the potential functions only depend on the terminal state of the trajectory; that is,

Gn(Xn) = Gn (X
′
0, . . . , X

′
n) = G′

n(X
′
n). (9.26)

for some function G′
n on S′

n.
We let Q′

n be Feynman-Kac measures on path space Sn given by

Q′
n(dx

′) :=
1

Z ′
n

Z ′
n(x

′) P′
n(dx

′) with Z ′
n(x

′) :=
∏

0≤p<n

G′
p(x

′
p). (9.27)

In the above display P′
n stands for the distribution of the random paths (X ′

0, . . . , X
′
n). and

dx′ = d(x′
0, . . . , x

′
n) := dx′

0 × . . .× dx′
n denotes an infinitesimal neighborhood of some path

sequence x = (x′
0, . . . , x

′
n) ∈ Sn. We let Γ′

n(dx) = Z ′
n×Q′

n(dx) the unnormalized measures.
Using the fact that

Zn(X) :=
∏

0≤p<n

Gp(Xp) =
∏

0≤p<n

G′
p(X

′
p) =: Z ′

n(X
′) and Zn = Z ′

n

we readily check the formulae

γn = Γ′
n and ηn = Q′

n. (9.28)

9.5.2 Evolution equations

Using the Markov property, we prove that

γn(fn) = E


Gn−1(Xn−1)×

=Mn(fn)(Xn−1)︷ ︸︸ ︷
E (fn(Xn) | Xn−1) Zn−1(X)




= γn−1 (Gn−1Mn(fn)) = γn−1 (Qn(fn)) = [γn−1Qn](fn)
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with the integral operator

Gn−1(xn−1)Mn(xn−1, dxn) = Qn(xn−1, dxn)

⇓

Qn(fn)(xn−1) = Gn−1(xn−1)Mn(fn)(xn−1) and γn(dxn) =

∫
γn−1(dxn−1)Qn(xn−1, dxn).

(9.29)
This clearly implies that

ηn(fn) =
ηn−1(Qn(fn))

ηn−1(Qn(1))
=

γn−1 (Gn−1Mn(fn)) /γn−1(1)

γn−1 (Gn−1) /γn−1(1)

=
ηn−1 (Gn−1Mn(fn))

ηn−1 (Gn−1)
= ΨGn−1

(ηn−1)Mn(fn).

We conclude that γn and ηn satisfy the measure-valued equations

γn = γn−1Qn and ηn = ΨGn−1(ηn−1)Mn (9.30)

with the Boltzmann-Gibbs transformations ΨGn−1 defined in (7.26). Conversely,
the solution of the above equation is given by a Feynman-Kac measure of the form
discussed above.

By construction, for any 0 ≤ p ≤ n we have the evolution formula

γn = γpQp,n ⇐⇒ γn(dxn) =

∫
γp(dxp) Qp,n(xp, dxn)

with linear semigroup Qp,n defined by the induction formula Qp,n = Qp+1Qp+1,n, that is,

Qp,n(xp, dxn) =

∫
Qp+1(xp, dxp+1) Qp+1,n(xp+1, dxn)

=

∫
. . .

∫
Qp+1(xp, dxp+1) Qp+2(xp+1, dxp+2) . . . Qn(xn−1, dxn)

or equivalently, for any bounded measurable function fn on Sn

Qp,n(fn)(xp) =

∫
Qp,n(xp, dxn) fn(xn) = E (fn(Xn) Zp,n(X) | Xp = xp)

with
Zp,n(X) :=

∏
p≤q<n

G(Xq).

It is also important to notice that

γn(1) = E (Gn−1(Xn−1) Zn−1(X))

= γn−1(Gn−1) =
γn−1(Gn−1)

γn−1(1)︸ ︷︷ ︸
=ηn−1(Gn−1)

× γn−1(1).
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In summary, we have proved the product formula

γn(1) = Zn = E (Zn(X)) =
∏

0≤p<n

ηp(Gp), (9.31)

and therefore

γn(fn) = ηn(fn)× γn(1) = ηn(fn)×
∏

0≤p<n

ηp(Gp).

9.5.3 Particle absorption models

In probability theory, particle absorption models are represented by Markov chains evolving
in a deterministic or random environment associated with some absorption rate functions.

The interpretation of the absorption event clearly depends on their application models.
In optical ray propagation problems, the event of interest is related to photon absorp-
tions [229]. In particle physics or in chemistry, the absorption rate is dictated by the energy
of an electronic or macro-molecular configuration.

Absorption and critical type events can also be thought of as network overflows in
complex queueing systems [114] and production systems [223]. Absorbed Markov chains
are also used in web engineering [224] and biochemistry [180], as well as in environmental
analysis [264], and in many other scientific disciplines.

This rather extraordinary variety of application domains is not really surprising, since
all of these absorption models can be represented by a Feynman-Kac model. Inversely, we
emphasize that any Feynman-Kac model (9.21) can be interpreted as the distribution of
the random trajectories of a Markov chain evolving in an absorbing environment.

We consider a collection of measurable state spaces Sn and an auxiliary coffin, or ceme-
tery, state c. We set Sn,c = Sn ∪ {c}. We also denote by Gn some [0, 1]-valued potential
functions on Sn, and Mn+1 some Markov transitions from Sn, into Sn+1. We define an
Sn,c-valued Markov chain Xc

n with two separate killing/exploration transitions:

Xc
n

killing
−−−−−−−−−−−−−−−−−→ X̂c

n

exploration
−−−−−−−−−−−−−−−−−→Xc

n+1. (9.32)

These killing/exploration mechanisms are defined as follows:

• Killing: If Xc
n = c, we set X̂c

n = c. Otherwise the particle Xc
n is still alive. In this case,

with a probability Gn(X
c
n), it remains in the same site, so that X̂c

n = Xc
n; and with a

probability 1−Gn(X
c
n), it is killed, and we set X̂c

n = c.

• Exploration: Once a particle has been killed, it cannot be brought back to life; so if
X̂c

n = c, then we set X̂c
p = Xp = c, for any p > n. Otherwise, the particle X̂c

n ∈ En

evolves to a new location Xc
n+1 in Sn+1, randomly chosen according to the distribution

Mn+1(X
c
n, dxn+1).

Definition 9.5.1 The Markov chain Xc
n defined above is called a Markov chain with the

absorption rates (1−Gn), and the free exploration transitions Mn, on the state spaces Sn.

Notice that the Markov chain Xc
n on the augmented state spaces Sn,c can be inter-

preted as a conventional Markov chain, with a single absorbing state {c}, as soon as
Mn(xn, {xn}) �= 1 for any xn ∈ Sn. Inversely, any Markov chain with a single absorb-
ing state can be represented in this form.
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In branching processes and population dynamics literature, the model Xc
n often repre-

sents the number of individuals of a given species [125, 138, 247]. Each individual can die
or reproduce. The state 0 ∈ Sn = N is interpreted as a trap, or as a hard obstacle, in the
sense that the species disappears as soon as Xc

n hits 0.
Next, we present a Feynman-Kac interpretation of particle absorption models. We

denote by Xn the Markov chain on Sn, with elementary transitions Mn. In this notation,
the Feynman-Kac measures Qn associated with the parameters (Gn,Mn), and defined in
(9.21), represent the conditional distributions of the random paths of a nonabsorbed Markov
particle. To see this claim, we let T be the killing time; that is, the first time at which the
particle enters in the cemetery state

T = inf {n ≥ 0 ; X̂c
n = c}.

By construction, we have

P(T ≥ n) = P(X̂c
0 ∈ S0, . . . , X̂

c
n−1 ∈ Sn−1)

=

∫

S0×...×Sn−1

η0(dx0) G0(x0)
∏

1≤p<n

(Mp(xp−1, dxp)Gp(xp)) .

This shows that the normalizing constants Zn of the Feynman-Kac measures Qn represent
the probability for the particle to be alive at time n− 1; that is,

Zn = P(T ≥ n) = E (Zn(X)) .

In the above display, Xn stands for a Markov chain on Sn, with initial distribution η0 and
elementary Markov transitions Mn.

In the same vein, in terms of the n-th time marginal Feynman-Kac models we have

E(f(Xc
n) 1T≥n) = γn(fn) := E [fn(Xn) Zn(X)] (9.33)

E(f(Xc
n) | T ≥ n) = ηn(fn) := γn(fn)/γn(1). (9.34)

Using these formulae, we also find that

Zn = P(T ≥ n) = γn(1) = E (Zn(X)) =
∏

0≤p<n

ηp(Gp).

More generally, similar arguments yield that it is the distribution of a particle
conditional upon being alive at time n − 1 that is defined by the Feynman-Kac
model introduced in (9.21), that is,

Qn(dx) = P
(
Xc

n ∈ dx | T ≥ n
)

(9.35)

with the historical process

Xc
n := (Xc

0 , . . . , X
c
n).

Inversely, any Feynman-Kac model of the form (9.21) associated with some bounded
potential functions Gn can be interpreted in terms of a particle absorption model. To prove



244 Stochastic Processes

this claim, we further assume that ‖Gn‖ ≤ cn for some finite constant cn < ∞. We let Xc
n

be the Markov chain on Sn,c defined in (9.32) with absorption rate (1−Gn(xn)/cn). By
construction, we readily check that

Qn := Law
(
Xc

n | T ≥ n
)
.

9.5.4 Doob h-processes

We consider the time homogeneous Feynman-Kac model (Γn,Qn), associated with the pa-
rameters (Sn, Gn,Mn) = (S,G,M) on some measurable state space S, defined in (9.21).
We also set

Q(x, dy) := G(x)M(x, dy).

We also assume that G is uniformly bounded above and below by some positive constant,
and the Markov transition M is reversible w.r.t. some probability measure µ on S, with
M(x, .) � µ and dM(x, .)/dµ ∈ L2(µ). We denote by λ the largest eigenvalue of the integral
operator Q on L2(µ), and by h(x) a positive eigenvector

Q(h) = λh.

Under some regularity conditions on (G,M), there exists a constant ρ ≥ 1 such that

1/ρ ≤ h(x)/h(y) ≤ ρ (9.36)

for any x, y ∈ S. For instance, let us suppose that

M(x, dz) ≥ ε M(y, dz) and G(x) ≤ g G(y)

for some ε ∈]0, 1] and some g < ∞. In this situation, we have

Q(h)(x)/Q(h)(y) = h(x)/h(y) ≤ ρ with ρ ≤ g/ε.

The Doob h-process, corresponding to the ground state eigenfunction h defined
above, is a Markov chain Xh

n on S, with initial distribution ηh0 = Ψh(η0), and the
Markov transition

Mh(x, dy) :=
1

λ
× h−1(x)Q(x, dy)h(y) =

M(x, dy)h(y)

M(h)(x)
.

We also denote by ηhn the distribution of the random state Xh
n starting with initial

distribution ηh0 , that is,
Law(Xh

n) = ηhn = ηh0 (M
h)n.

Our next objective is to connect the distribution of the paths of the h-process

P
(
Xh

n ∈ dx
)
= ηh0 (dx0)M

h(x0, dx1) . . .M
h(xn−1, dxn)

with the historical process
Xh

n := (Xh
0 , . . . , X

h
n)

with the Feynman-Kac measures Γn and Qn introduced in (9.21). In the above formula,
dx = d(x0, . . . , xn) := dx0 × . . .× dxn denotes an infinitesimal neighborhood of some path
sequence x = (x0, . . . , xn) ∈ Sn = (S0 × . . .× Sn).
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Firstly, by construction we have

G = λ× h/M(h)

and therefore

Γn(dx) = η0(dx0) Zn(x)
∏

1≤p≤n

M(xp−1, dxp)

= λn η0(dx0) h(x0)





∏
1≤p≤n

M(xp−1, dxp)h(xp)

M(h)(xp−1)





1

h(xn)
.

We conclude that
Γn(dx) = λn η0(h) Ph

n(dx)
1

h(xn)

where Ph
n stands for the law of the historical process

Xh
n = (Xh

0 , . . . , X
h
n).

This clearly implies that

Qn(dx) =
1

E(h−1(Xh
n))

h−1(xn) Ph
n(dx)

with the normalizing constants

Zn = λn η0(h) E(h−1(Xh
n)).

The above formula shows that the sampling of the Feynman-Kac measure Qn reduces
to sampling the h-process Xh

n .

9.5.5 Quasi-invariant measures

Under condition (9.36), using the multiplicative formula (9.31),

1

n
logZn =

1

n

∑
0≤p<n

log ηp(G) = log λ+
1

n
log

(
η0(h) E(h−1(Xh

n))
)

and therefore

log λ− 1

n
log ρ ≤ 1

n
logZn =

1

n

∑
0≤p<n

log ηp(G) ≤ log λ+
1

n
log ρ (9.37)

from which we conclude that

lim
n→∞

1

n

∑
0≤p<n

log ηp(G) = log λ.

In terms of the h-process, the n-th time marginal γn of the Feynman-Kac measures Γn

takes the following form:

γn(f) = λn η0(h) η
h
0 (M

h)n(f/h) = λn η0(h) η
h
n(f/h).
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In terms of particle absorption models we have

Law(Xc
n | T c ≥ n) =

1

E(h−1(Xh
n))

h−1(Xh
n) dPh

n

and
Zn = P (T c ≥ n) = λn η0(h) E(h−1(Xh

n)) −→n↑∞ 0. (9.38)

Whenever it exists, the Yaglom limit of the measure η0 is defined as the limiting measure

ηn −→n↑∞ η∞ (9.39)

of the Feynman-Kac flow ηn, when n tends to infinity. We also say that η0 is a quasi-
invariant measure as we have η0 = ηn, for any time step. When the Feynman-Kac flow ηn
is asymptotically stable, in the sense that it forgets its initial conditions, we also say that
the quasi-invariant measure η∞ is the Yaglom measure.

Quantitative convergence estimates of the limiting formulae (9.39) can be derived using
the stability properties of the Feynman-Kac models. For a more thorough discussion on
these particle absorption models, we refer the reader to the series of articles of the author
with A. Guionnet [74, 75], L. Miclo [81, 82] and A. Doucet [69], as well as the monograph [66].

We end this section with a more precise description of the measures η∞. To simplify
the presentation and avoid some unnecessary technical discussion of the integrability of the
potential function w.r.t. reference measure µ, we further assume that ε ≤ G ≤ ε−1, for some
ε > 0, and that M(x, dy) = m(x, y)µ(dy) for some density function m ∈ L2(µ⊗ µ). In this
situation, Q is a compact self-adjoint operator on L2(µ) = L2(ΨG−1(µ)) (with G−1 = 1/G).
The ΨG−1(µ)-reversibility of Q follows from the fact that for any functions f1, f2 ∈ L2(µ)
we have

ΨG−1(µ) (f1Q(f2)) ∝ µ(f1M(f2)) = µ(M(f1) f2) ∝ ΨG−1(µ) (Q(f1) f2) .

The spectral theorem for compact, self adjoint operators (preserving positivity) allows us to
rewrite any power Qn in terms of a countable (by the compactness property) orthonormal
basis (fi)i≥0 ∈ L2(ΨG−1(µ)) of eigenfunctions associated with a sequence of real eigenvalues
λ0 > λ1 ≥ λ2 ≥ . . . of Q

Qn(x, dy) =
∑
i≥0

λn
i fi(x)fi(y) ΨG−1(µ)(dy) with (λ0, f0) = (λ, h). (9.40)

When the number of eigenvalues λi is infinite they tends to 0 as i → ∞. For finite spaces S
with cardinality d the d eigenvalues (λi)0≤i<d are such that λ0 > λ1 ≥ . . . ≥ λd−1 > −λ0.
It is also readily checked that Mh is reversible w.r.t. πh := ΨhM(h)(µ)

ΨhM(h)(µ)
(
f1M

h(f2)
)
∝ µ((hf1)M(hf2)) = µ(M(hf1) (hf2)) ∝ ΨhM(h)(µ)

(
Mh(f1) f2

)
.

it is also readily checked that

(Mh)n(x, dx′) = πh(dx′) +
∑
i≥1

λ
n

i f i(x) f i(x
′) πh(dx′)

with the L2(π
h)-orthonormal basis functions f i := fi/f0 and the eigenvalues

λi := λi/λ0 s.t. Mh(f i) = λi f i
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Last but not least, we observe that

ηn(f) =
E
(
h−1(Xh

n)f(X
h
n)
)

E (h−1(Xh
n))

�n↑∞
ΨhM(h)(µ)(h

−1f)

ΨhM(h)(µ)(h−1)
=

µ(M(h)f)

µ(M(h))
= ΨM(h)(µ)(f) := η∞(f).

Using the fact that M is µ-reversible, we also find that

µ(M(h)f) = µ(hM(f))

⇒ η∞(f) = ΨM(h)(µ)(f) = Ψh(µ)M(f) =
ΨG−1(µ)(hf)

ΨG−1(µ)(h)
(⇐ h/G ∝ M(h)) .

We also notice that
ΨG (η∞) = Ψh(µ).

Finally using (9.40) we have

λ0 > λ1 =⇒ ηn(f) = η∞(f) +O ((λ1/λ0)
n)

and by (9.31) we find that

1

n
logZn =

1

n
log γn(1) =

1

n

∑
0≤p<n

log ηn(G) = log η∞(G) +O (1/n) = log λ+O (1/n) .

The r.h.s. formula is a consequence of the fact that

η∞(G) = ΨM(h)(µ)(G) =
µ(GM(h))

µ(M(h))
= λ (⇐ G M(h) = λh) .

9.5.6 Cauchy problems with terminal conditions

We return to the Feynman-Kac semigroups introduced in section 9.5.2.

We fix a time horizon n and some function fn on the state space Sn. For any
0 ≤ p ≤ n we set

x ∈ Sp �→ up(x) := Qp,n(fn)(x) = E (fn(Xn) Zn(X) | Xp = x) .

By construction, we have

Qp,n(fn) = Qp+1 (Qp+1,n(fn)) = Gp Mp+1(Qp+1,n(fn)) and Qn,n(fn) = fn.

This shows that up solves the discrete time Cauchy problem with terminal condi-
tion {

up = Gp Mp+1(up+1) for any p < n
un = fn.

(9.41)
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We consider a collection of functions gp on Sp, with p ≤ n and we set

vp = Qp,n(fn) +
∑

p≤q<n

Qp,q(gq) ( ⇒ vn = Qn,n(fn) = fn) .

Using the fact that

q = p ⇒ Qp,q(gq) = gp ⇒
∑

p≤q<n

Qp,q(gq) = gp +
∑

(p+1)≤q<n

Qp+1Qp+1,q(gq)

we readily prove that

vp = Qp+1(Qp+1,n(fn)) + gp +Qp+1


 ∑

(p+1)≤q≤n

Qp+1,q(gq)




= Qp+1(vp+1) + gp.

This shows that vp solves the discrete time Cauchy problem with terminal condition
{

vp = Gp Mp+1(vp+1) + gp for any p < n
vn = fn.

(9.42)

9.5.7 Dirichlet-Poisson problems

We return to the Feynman-Kac semigroups introduced in section 9.5.2. We consider a time
homogeneous model (Gn,Mn, Sn) = (G,M,S), and we let D be some subset of some state
space S.

The Dirichlet-Poisson problem consists with finding a function v on D satisfying
the following equations:

{
v(x) = G(x)M(v)(x) + g(x) for any x ∈ D
v(x) = h(x) for any x �∈ D.

(9.43)

These equations are also called Fredholm integral equations of the second kind.
When v solves (9.43) the stochastic process

Nn = v(Xn) Zn(X) +
∑

0≤p<n

g(Xp) Zp(X) ( =⇒ N0 = v(X0))

is a martingale w.r.t. the σ-fields Fn = σ(Xp , 0 ≤ p ≤ n). To check this claim we use the
fact that

G(Xn−1) M(v)(Xn−1) = v(Xn−1)− g(Xn−1)

to prove that

E (Nn | Fn−1) = G(Xn−1)M(v)(Xn−1) Zn−1(X) +
∑

0≤p<n

g(Xp) Zp(X)

= v(Xn−1) Zn−1(X)

−g(Xn−1) Zn−1(X) +
∑

0≤p<n

g(Xp) Zp(X) = Nn−1.
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Let TD be the exit time of D. Whenever (9.43) is satisfied we have

v(x) = E


h(XTD

) ZTD
(X) +

∑
0≤p<TD

g(Xp) Zp(X) | X0 = x


 (9.44)

as soon as E(NTD
| F0) = N0(= f(X0)). This formula provides an explicit descrip-

tion of the solution of (9.43) in terms of the functions (g, h) and TD. For instance
if (V, g) = (0, 0) and h = 1A for some A ⊂ D we have

v(x) = P(XTD
∈ A | X0 = x).

For null boundary conditions h = 0 the solution

v(x) = E


 ∑

0≤p<TD

g(Xp) Zp(X) | X0 = x




can be approximated using the sequence of finite time horizon functions

vn(x) = E


 ∑

0≤p<TD∧n

g(Xp) Zp(X) | X0 = x


 −→n↑∞ v(x)

=
∑

0≤p<n

E ( 1TD>p g(Xp) Zp(X) | X0 = x) .

In other words, for null boundary conditions h = 0 we have the approximation

vn(x) =
∑

0≤p<n

Q0,p(1Dg)(x) −→n↑∞ v(x)

with the Feynman-Kac semigroup Qp,n defined for any p ≤ n by

Qp,n(f)(x) := E (f(Xn) Zp,n(X) | Xp = x) .

with
Zp,n(X) :=

∏
p≤q<n

(1D(Xq)G(Xq)) .

We also notice that

G ≤ 1 ⇒ |NTD
| ≤ C(g, h) (1 + TD) with C(g, h) = sup

x �∈D
|h(x)| ∨ sup

x∈D
|g(x)|. (9.45)

In the above discussion, we have implicitly assumed that Doob’s stopping theorem 8.4.12
applies so that E(NTD

| F0) = N0(= f(X0)). According to (9.45) the assumptions of theo-
rem 8.4.12 are satisfied as soon asG ≤ 1 and supx∈D E(TD |X0 = x) < ∞. Several examples
of random walks models satisfying this last condition are discussed in section 8.4.4. For
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a more thorough discussion on these stochastic models and their numerical approximation
using particle methods, we refer the reader to section 12.2 of the research monograph [66].

Observe that

G = 1 and h = 0 ⇒ ∀x ∈ D v(x) = g(x)+M(f)(x) = E


 ∑

0≤p<TD

g(Xp) | X0 = x


 .

In addition, if D = S then we have TD = ∞. In this case the solution of the Poisson
equation is given by

v(x) =
∑
n≥0

Mn(g)(x) = E


∑

n≥0

g(Xn) | X0 = x


 .

It is clearly of interest to find conditions on the Markov transition M that ensures that v
is bounded. For M = Id we clearly have v(x) = sign(g(x)) ×∞, where sign(a) stands for
the sign of a ∈ R. Let V be some non-negative function s.t. βV (M) < 1, where βV (M)
stands for the V -Dobrushin ergodic coefficient introduced in definition 8.2.19. Natural
conditions under which βV (M) < 1 are provided in theorem 8.2.21. In this situation, using
theorem 8.2.20 we have the estimate

oscV (g) < ∞ ⇒ oscV (v) ≤


∑
n≥0

βV (M)n


 oscV (g) = oscV (g)/(1− βV (M)) < ∞.

9.5.8 Cauchy-Dirichlet-Poisson problems

We consider a collection of functions (gn, hn) on Sn and we let Dn be subsets of some state
spaces Sn, with n ≥ 0. We consider the Feynman-Kac semigroup Qp,n defined for any p ≤ n
by

Qp,n(f)(x) := E (f(Xn) Zp,n(X) | Xp = x)

= Gp(x) 1Dp
(x) E (f(Xn) Zp+1,n(X) | Xp = x) , (9.46)

with
Zp,n(X) :=

∏
p≤q<n

(Gq(Xq) 1Dq
(Xq)).

Notice that this Feynman-Kac model coincides with the one introduced in section 9.5.2, by
replacing the functions Gn by the product potential function 1DnGn. We let T

(n)
D be the

first time after n the process (Xp)p≥n exits one the sets (Dp)p≥n.

We fix the time horizon n, and for any p ≤ n. We consider the collection of
functions (vp)p≤n defined for any p ≤ n and any x ∈ Sp by

vp(x) = Qp,n(fn1Dn
)(x) +

∑
p≤q<n

Qp,q(gq1Dq
)(x)

+E
(
1
T

(p)
D ≤n

h
T

(p)
D

(X
T

(p)
D

) Z
p,T

(p)
D

(X) | Xp = x
)
.
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By construction, we have
Xn ∈ Dn ⇒ T

(n)
D > n.

This yields

E
(
1
T

(n)
D ≤n

h
T

(n)
D

(X
T

(n)
D

) Z
n,T

(n)
D

(X) | Xn

)

= Gn(Xn) 1Dn(Xn) E
(
1
T

(n)
D ≤n

h
T

(n)
D

(X
T

(n)
D

) Z
n+1,T

(n)
D

(X) | Xn

)
= 0

and therefore

vn = Qn,n(1Dn
fn) = 1Dn

fn ⇒ ∀x ∈ Dn vn(x) = fn(x).

We also observe that
q = p ⇒ Qp,q(1Dq

gq)(x) = 1Dp
gp

⇒
∑

p≤q<n Qp,q(1Dq
gq) = 1Dp

gp +Qp+1

(∑
p+1≤q<n Qp+1,q(1Dq

gq)
)
.

This implies that for any x ∈ Dp

Qp,n(1Dn
fn)(x) +

∑
p≤q<n Qp,q(1Dq

gq)(x)

= Qp+1(Qp+1,n(1Dn
fn)) + gp +Qp+1

(∑
(p+1)≤q≤n Qp+1,q(1Dq

gq)
)
.

(9.47)

In this situation, it is also readily checked that

E
(
1
T

(p)
D ≤n

h
T

(p)
D

(X
T

(p)
D

) Z
p,T

(p)
D

(X) | Xp = x
)

= Gp(x) 1Dp
(x)

∫
Mp+1(x, dy)

× E
(
1
T

(p+1)
D ≤n

h
T

(p+1)
D

(X
T

(p+1)
D

) Z
p+1,T

(p+1)
D

(X) | Xp+1 = y
)
.

In the last assertion we have used the fact that

Xp ∈ Dp =⇒ T
(p)
D ≥ (p+ 1) =⇒ T

(p)
D = T

(p+1)
D .

Combining this result with (9.47) we conclude that

vp(x) = Qp+1(vp+1)(x) + gp(x) for any 0 ≤ p < n and any x ∈ Dp.

In much the same way, we have

(9.46) =⇒ ∀x �∈ Dp ∀p ≤ q ≤ n Qp,n(fn1Dn
)(x) = 0 = Qp,q(1Dq

gq)(x).

On the other hand, we have

∀x �∈ Dp =⇒ T
(p)
D = p (≤ n)

=⇒ E
(
1
T

(p)
D ≤n

h
T

(p)
D

(X
T

(p)
D

) Z
p,T

(p)
D

(X) | Xp = x
)
= hp(x).

We conclude that (vp)p≤n satisfies the Cauchy-Dirichlet-Poisson problem



vp(x) = GpMp+1(vp+1)(x) + gp(x) for any p < n and x ∈ Dp

vp(x) = hp(x) for any p ≤ n and x �∈ Dp

vn(x) = fn(x) for any x ∈ Dn.
(9.48)
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9.6 Feynman-Kac particle methodology

9.6.1 Mean field genetic type particle models

The nonlinear evolution equation (9.30) coincides with the one discussed in (7.35). Thus,
we can solve the equation (9.30) using the genetic type mean field particle model presented
in the end of section 7.10.2.

At each step, each particle ξin−1 evaluates its potential value Gn−1(ξ
j
n−1). With a

probability Gn−1(ξ
i
n−1) it remains in the same location. Otherwise, it jumps to a fresh

new location ξjn−1, chosen randomly, with a probability proportional to Gn−1(ξ
j
n−1). In a

second stage, each particle evolves randomly according to the Markov transition Mn. In the
context of Monte Carlo sampling methods this algorithm can be interpreted as a (biased)
rejection-free Monte Carlo sampler. For a more detailed discussion on these samplers in
the context of MCMC methods we refer to section 9.9.1 dedicated to interacting MCMC
algorithms.

This mean field stochastic algorithm can also be interpreted as a population of individ-
uals mimicking natural evolution mechanisms:

• During a mutation stage, the particles evolve independently of one another, according to
the same probability transitions Mn.

• During the selection stage, each particle evaluates the potential value of its location. The
ones with small relative values are killed, while the ones with high relative values are
multiplied.

From the statistical or stochastic view, these interacting particle systems can be in-
terpreted as a sophisticated acceptance-rejection sampling technique, equipped with an
interacting recycling mechanism.

For a more thorough discussion on the interpretations of Feynman-Kac mean field models
we refer the reader to books [66, 67].

We let
ηNn =

1

N

∑
1≤i≤N

δξin −→N↑∞ ηn (9.49)

be the empirical approximation of ηn associated with the mean field particle model
(7.27) with the Markov transitions (7.34).
In this notation, mimicking (9.31) an unbiased particle approximation of the nor-
malizing constant γn(1) and the unnormalized measures γn are given by the for-
mulae

γN
n (1) :=

∏
0≤p<n

ηNp (Gp) and γN
n (fn) := γN

n (1)× ηNn (fn) −→N↑∞ γn(fn).

(9.50)

These genetic type interacting particle systems have been used with success in a variety
of application domains as heuristic like Monte Carlo schemes since the end of the 1940s. We
quote the pioneering articles by T.E. Harris and H. Kahn [147], published in 1951, and the
one by Enrico Fermi and R.D. Richtmyer in 1948 on resampled type quantum Monte Carlo
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methodologies. To the best of our knowledge, the first rigorous mathematical foundations
of these models were published in 1996 in [64] (see also [65]).

Depending on their application domains the genetic type selection-mutation transitions
discussed above are also known under different guises, with a variety of different names and
terminologies. For instance the r.v. ξin are called samples, particles, individuals, or replica.
To guide the reader in these interdisciplinary literature, in the following table we have tried
to summarize some more or less equivalent formulations of the two-step transitions of the
algorithm discussed above.

Sequential Monte Carlo Sampling Resampling
Particle Filters Prediction Updating

Data Assimilation Forecasting Analysis
Genetic Algorithms Mutation Selection

Evolutionary Population Exploration Branching-selection
Diffusion Monte Carlo Free evolutions Absorption
Quantum Monte Carlo Walker motions Reconfiguration
Sampling Algorithms Transition Proposals Accept-reject-recycle

The selection transition in the r.h.s. column is also termed bootstrapping, spawning,
cloning, pruning, replenish, multi-level splitting, enrichment, go with the winner, quantum
teleportation, etc.

We end this section with a simple proof of the unbiasedness properties of the unnormal-
ized particle measures γN

n .
By construction, we have

E
(
γN
n (fn) | ξ0, . . . , ξn−1

)
= Φn

(
ηNn−1

)
(fn)

∏
0≤p<n

ηNp (Gp).

Notice that

Φn

(
ηNn−1

)
(fn) = Ψn

(
ηNn−1

)
(Mn(fn))

=
ηNn−1(Gn−1Mn(fn))

ηNn−1(Gn−1)
=

1

ηNn−1(Gn−1)
ηNn−1(Qn(fn))

with the integral operator Qn defined in (9.29) and given by

Qn(fn) = Gn−1Mn(fn).

This shows that

E
(
γN
n (fn) | ξ0, . . . , ξn−1

)
= ηNn−1(Qn(fn))

∏
0≤p<(n−1)

ηNp (Gp)

= γN
n−1(Qn(fn)). (9.51)

Iterating the argument, we find that
[
∀p ≤ n E

(
γN
n (fn) | ξ0, . . . , ξp

)
= γN

p (Qp,n(fn))
]
⇒ E

(
γN
n (fn)

)
= γn(fn).

(9.52)
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9.6.2 Path space models

We let X ′
n be a Markov process with elementary transitions M ′

n on state spaces S′
n. We also

denote by G′
n some non-negative potential functions on S′

n. We consider the Feynman-Kac
model (9.23) and (9.28) discussed in section 9.6.

As shown in section 9.5.2 ηn satisfies the nonlinear measure valued equation

ηn = ΨGn−1(ηn−1)Mn (9.53)

where Mn stands for the Markov transition of the historical process given by

Mn(Xn−1, dx
′)

= δXn−1

(
d(x′

0, . . . , x
′
n−1)

)
M ′

n(x
′
n−1, dx

′
n).

In the above display, dx′ = dx′
0 × . . . dx′

n stands for an infinitesimal neighborhood of the
historical path x′ = (x′

0, . . . , x
′
n).

The N -mean field particle model associated with these Feynman-Kac models is defined
in terms of path particles

ξin :=
(
ξi0,n, ξ

i
1,n, . . . , ξ

i
n,n

)
∈ Sn. (9.54)

At each step, each path particle

ξin−1 =
(
ξi0,n−1, ξ

i
1,n−1, . . . , ξ

i
n−1,n−1

)

evaluates its potential value

Gn−1(ξ
j
n−1) = G′

n−1(ξ
j
n−1,n−1).

With a probability Gn−1(ξ
i
n−1) it remains in the same location, and we set ξ̂in−1 = ξin−1.

Otherwise, it jumps to a fresh new path location ξ̂in−1 = ξjn−1 randomly chosen with a
probability proportional to Gn−1(ξ

j
n−1). In a second stage, each selected path particle

ξ̂in−1 =
(
ξ̂i0,n−1, ξ̂

i
1,n−1, . . . , ξ̂

i
n−1,n−1

)

evolves randomly according to the Markov transition of the historical process Mn. In other
words, we set

ξin =



(
ξi0,n, ξ

i
1,n, . . . , ξ

i
n−1,n

)
︸ ︷︷ ︸

=ξ̂in−1

, ξin,n




where ξin,n is a r.v. with distribution M ′
n

(
ξin−1,n, dx

′
n

)
.

By construction, this N -interacting path-particle model coincides with the genealogical
tree evolution of the N -mean field particle model associated with a Feynman-Kac model
with potential function G′

n and the reference Markov chain X ′
n.

Using the same arguments as above and by formula (9.28) we have

ηNn :=
1

N

∑
1≤i≤N

δξin =
1

N

∑
1≤i≤N

δ(ξi0,n,ξi1,n,...,ξin,n)
−→N→∞ ηn = Q′

n. (9.55)



Computational toolbox 255

9.6.3 Backward integration

Next, we present a description of the Feynman-Kac measure Qn on path space defined in
(9.21) in terms of (ηp)0≤p≤n.

We further assume that the Markov transitions Mn are absolutely continuous with
respect to some measures λn on Sn, and for any (xn−1, xn) ∈ (Sn−1 × Sn) we have

Qn(xn−1, dxn) := Gn−1(xn−1) Mn(xn−1, dxn)

= Hn(xn−1, xn) λn(dxn) (9.56)

for some density function Hn.

In this situation, for any f on Sn+1, and for any xn ∈ Sn we have

Qn+1(f)(xn) =

∫
Hn+1(xn, xn+1) f(xn+1) λn+1(dxn+1)

⇒ ηn+1(f) = ΨGn(ηn) (Mn+1(f))

=

∫

Sn+1

[∫

Sn

ηn(dxn)
1

ηn(Gn)
Hn+1(xn, xn+1)

]
f(xn+1) λn+1(dxn+1).

This shows that

ηn+1(dxn+1) =
1

ηn(Gn)
ηn (Hn+1(., xn+1)) λn+1(dxn+1)

from which we prove that

Qn(dx) =
1

Zn
η0(dx0) Q1(x0, dx1) . . . Qn(xn−1, dxn)

=
1∏

0≤p<n ηp(Gp)
η0(dx0)

∏
1≤p≤n

(Hp(xp−1, xp) λp(dxp))

= η0(dx0)
∏

1≤p≤n

(
Hp(xp−1, xp)

ηp−1(Hp(., xp))
ηp(dxp)

)
.

In the above formula, dx = d(x0, . . . , xn) := dx0 × . . . × dxn denotes an infinitesimal
neighborhood of some path sequence

x = (x0, . . . , xn) ∈ Sn = (S0 × . . .× Sn).

This implies that

Qn(dx) = ηn(dxn)

n∏
q=1

Mq,ηq−1(xq, dxq−1) (9.57)

with the collection of backward Markov transitions

Mn+1,ηn
(xn+1, dxn) =

ηn(dxn) Hn+1(xn, xn+1)

ηn (Hn+1(., xn+1))
.
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If we take the unit potential functions Gn = 1, the backward formula (9.57) reduces to
the conventional backward representation of conditional distribution of the random paths
(X0, . . . , Xn−1) given the terminal time Xn; that is,

P ((X0, X1, . . . , Xn−1) ∈d(x0, x1, . . . , xn−1) | Xn = xn)

= Mn,ηn−1
(xn, dxn−1) · · ·M2,η1

(x2, dx1)M1,η0
(x1, dx0).

To the best of our knowledge, these forward-backward representations of Feynman-Kac
measures were introduced by Ruslan L. Stratonovitch in the early 1960s in the context of
nonlinear filtering [246]. For a more thorough discussion on these backward Markov chain
models and their application in advanced signal processing and in hidden Markov chain
problems, we also refer the reader to [110] and to a series of articles of P. Del Moral, A.
Doucet and S.S. Singh [71, 72, 73].

Mimicking the backward Markov chain formula (9.57), the measure Qn can alternatively
be approximated (under the assumption (9.56)) using the backward particle measures

QN
n (dx) = ηNn (dxn)

n∏
q=1

Mq,ηN
q−1

(xq, dxq−1) −→N↑∞ Qn(dx) (9.58)

with the collection of Markov transitions

Mn+1,ηN
n
(xn+1, dxn) =

ηNn (dxn) Hn+1(xn, xn+1)

ηNn (Hn+1(., xn+1))

=
∑

1≤i≤N

Hn+1(ξ
i
n, xn+1)∑

1≤j≤N Hn+1(ξ
j
n, xn+1)

δξin(dxn). (9.59)

For any function fn on the path space Sn we have the unbiasedness property

E


QN

n (fn)
∏

0≤p<n

ηNp (Gp)


 = E (fn(Xn) Zn(X)) := Γn(fn).

We set
ΓN
n (fn) := QN

n (fn)
∏

0≤p<n

ηNp (Gp). (9.60)

To check the unbiasedness property stated above, we notice that

E
(
ΓN
n (fn) | ξ0, . . . , ξn−1

)

= γN
n (1)

∫
Φn

(
ηNn−1

)
(dxn)

{
n∏

q=1

Mq,ηN
q−1

(xq, dxq−1)

}
fn(x0, . . . , xn)

= γN
n−1(1)

∫
(ηNn−1Qn)(dxn) Mn,ηN

n−1
(xn, dxn−1)

{
n−1∏
q=1

Mq,ηN
q−1

(xq, dxq−1)

}
fn(x0, . . . , xn).

Observe that

(ηNn−1Qn)(dxn) = ηNn−1(Hn(., xn)) λn(dxn)

⇒ (ηNn−1Qn)(dxn) Mn,ηN
n−1

(xn, dxn−1) = ηNn−1(dxn−1)Qn(xn−1, dxn).
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This implies that

E
(
ΓN
n (fn) | ξ0, . . . , ξn−1

)

= γN
n (1)

∫
Φn

(
ηNn−1

)
(dxn)

{
n∏

q=1

Mq,ηN
q−1

(xq, dxq−1)

}
fn(x0, . . . , xn)

= γN
n−1(1)

∫
ηNn−1(dxn−1)

{
n−1∏
q=1

Mq,ηN
q−1

(xq, dxq−1)

}
fn−1,n(x0, . . . , xn−1) = ΓN

n−1(Fn−1,n)

with
fn−1,n(x0, . . . , xn−1) =

∫

Sn

Qn(xn−1, dxn) fn(x0, . . . , xn).

Iterating the argument, we prove that

∀p ≤ n E
(
ΓN
n (fn) | ξ0, . . . , ξp

)
= ΓN

p (fp,n) =⇒ E(ΓN
n (Fn)) = Γn(fn)

with the collection of functions

fp,n(x0, . . . , xp) =

∫

Sp+1×...×Sn

Qp+1(xp, dxp+1) . . . Qn(xn−1, dxn) fn(x0, . . . , xn).

9.6.4 A random particle matrix model

The computation of integrals w.r.t. the particle measures QN
n is reduced to summation

over the particle locations ξin. It is therefore natural to identify a population of individuals
(ξ1n, . . . , ξ

N
n ) at time n to the ordered set of indexes {1, . . . , N}. In this framework, the

occupation measures and the functions are identified with the following line and column
vectors

ηNn :=

[
1

N
, . . . ,

1

N

]
and fn :=




fn(ξ
1
n)

...
fn(ξ

N
n )




and the transitions Mn,ηN
n−1

are identified by the (N ×N) matrices

Mn,ηN
n−1

:=




Mn,ηN
n−1

(ξ1n, ξ
1
n−1) · · · Mn,ηN

n−1
(ξ1n, ξ

N
n−1)

...
...

...
Mn,ηN

n−1
(ξNn , ξ1n−1) · · · Mn,ηN

n−1
(ξNn , ξNn−1)


 (9.61)

with the (i, j)-entries

Mn,ηN
n−1

(ξin, ξ
j
n−1) =

Hn(ξ
j
n−1, ξ

i
n)∑N

k=1 Hn(ξkn−1, ξ
i
n)

.

For instance, the Qn-integration of normalized additive linear functionals of the form

fn(x0, . . . , xn) =
1

n+ 1

∑
0≤p≤n

fp(xp) (9.62)

is given by the particle matrix approximation model

QN
n (fn) =

1

n+ 1

∑
0≤p≤n

ηNn Mn,ηN
n−1

Mn−1,ηN
n−2

. . .Mp+1,ηN
p
(fp).
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This Markov interpretation allows computing complex Feynman-Kac path integrals us-
ing simple random matrix operations on finite sets. Roughly speaking, this methodology
allows reducing Feynman-Kac path integration problems on general state spaces to Markov
path integration on finite state spaces, with cardinality N .

9.6.5 A conditional formula for ancestral trees

We let X ′
n be a Markov process with elementary transitions M ′

n on state spaces S′
n. We also

denote by G′
n some non-negative potential functions on S′

n. We consider the Feynman-Kac
model (9.23) and (9.28) discussed in section 9.6.

The mean field particle model ξn =
(
ξin
)
1≤i≤N

associated with these Feynman-
Kac measures is defined as in section 9.6.1. Following the arguments presented in
section 9.6.2, the N path-valued particles ξn = (ξin)1≤i≤N given by

∀1 ≤ i ≤ N ξin =
(
ξi0,n, ξ

i
1,n, . . . , ξ

i
n−1,n, ξ

i
n,n

)
∈ Sn = (S′

0 × . . .× S′
n) (9.63)

represent the ancestral lines of the genetic particle model

ξ′n := (ξ′,in )1≤i≤N = (ξin,n)1≤i≤N ∈ (S′
n)

N

defined in section 9.6.1.

We recall that ξ′n is the mean field particle model associated with the Feynman-Kac
measures (γ′

n, η
′
n) on the path spaces S′

n defined for any function f ′ on S′
n by

η′n(f
′) := γ′

n(f
′)/γ′

n(1) : with γ′
n(f

′) := E (f ′(X ′
n) Z

′
n(X

′)) .

By construction, the particle model ξ′p = ξp,p represents the population of ancestors at level
p of the genealogical tree ξk =

(
ξik
)
1≤i≤N

at every level k = p, . . . , n.

Definition 9.6.1 The set of these ancestors (ξ′p)0≤p≤n is called the complete ancestral
tree (without the genealogical structure) associated with the sequence of genealogical trees
(ξp)0≤p≤n. For any n ≥ 0 we also denote by m(ξn) and m(ξ′n) the empirical measures

m(ξ′n) =
1

N

∑
1≤i≤N

δξ′,in
and m(ξn) =

1

N

∑
1≤i≤N

δξin =
1

N

∑
1≤i≤N

δ(ξi0,n,ξi1,n,...,ξin−1,n,ξ
i
n,n)

.

Notice that m(ξ′n) is the n-th time marginal of m(ξn) on the state space S′
n.

We further assume that the Markov transitions M ′
n are absolutely continuous with

respect to some measures λ′
n on S′

n, and for any x ∈ S′
n−1 we have

Q′
n(x, dy) := G′

n−1(x) M
′
n(x, dy) = H ′

n(x, y) λ
′
n(dy) (9.64)

for some density function H ′
n.

We let
(Q′

n,M′
n,η′

n−1
, η′,Nn ,Q′,N

n )
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the mathematical model defined as the models (Qn,Mn,ηn−1
, ηNn ,QN

n ) discussed in sec-
tion 9.6.3 by replacing

(Gn,Mn, ξn, Hn, Sn) by (G′
n,M

′
n, ξ

′
n, H

′
n, S

′
n).

Definition 9.6.2 Given the complete ancestral tree (ξ′p)0≤p≤n, we let X¥
n be a

random path with the backward particle measure Q′,N
n . Given the genealogical tree

ξn, we let Xn be a random ancestral line with uniform distribution m(ξn).

To simplify the forthcoming analysis, we further assume that the mean field particle
models associated with the Feynman-Kac measures described above are given by the genetic
type particle models (7.37). In this context, we have the following result.

Theorem 9.6.3 Given the complete ancestral tree (ξ′p)0≤p≤n, the sequence of ge-
nealogical trees (ξp)0≤p≤n forms a Markov chain starting at ξ0 = ξ′0. The elemen-
tary transitions of the ancestral lines ξp � ξp+1 given the population of ancestors
ξ′p+1 are given for any function f on Sp+1 by

E
(
f(ξp+1)

∣∣ ξp, ξ′p+1

)

=

∫ 


∏
1≤i≤N

m(ξp)(dx
i
p) H

′
p+1(x

i
p,p, ξ

′,i
p+1)

m(ξ′p)(H
′
p+1(., ξ′,ip+1))


 f

((
xj
p, ξ

′,j
p+1

)
1≤j≤N

)
.

In the above display dxi
p = dxi

0,p × dxi
1,p × . . . × dxi

p,p stands for an infinitesimal
neighborhood of the path xi

p = (xi
q,p)0≤q≤p ∈ Sp. In particular, this implies that

Law
(
Xn

∣∣ (ξ′p)0≤p≤n

)
= Q′,N

n = Law
(
X¥

n

∣∣ (ξ′p)0≤p≤n

)
. (9.65)

Proof :
For any couple of functions f1, f2 on Sp+1, recalling that ξ′k = ξk,k we have

E
(
f1(ξp+1) f2(ξp, ξ

′
p+1) | ξp

)
=

∫ 


∏
1≤i≤N

m(ξp)(dx
i
p) Q

′
p+1(x

i
p,p, dx

′,i
p+1)

m(ξ′p)(G
′
p)




×f1

((
xj
p, x

′,j
p+1

)
1≤j≤N

)
f2

(
ξp,

(
x′,i
p+1

)
1≤i≤N

)
.

To get one step further, we recall that

m(ξp)(dx
i
p) Q

′
p+1(x

i
p,p, dx

′,i
p+1)

= m(ξp)(dx
i
p) H

′
p+1(x

i
p,p, x

′,i
p+1) λ

′
p+1(dx

′,i
p+1)

=
m(ξp)(dx

i
p) H

′
p+1(x

i
p,p, x

′,i
p+1)

m(ξ′p)(H
′
p+1(., x′,i

p+1))
m(ξ′p)(H

′
p+1(., x′,i

p+1)) λ
′
p+1(dx

′,i
p+1)
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and

m(ξ′p)(H
′
p+1(., x′,i

p+1))

m(ξ′p)(G
′
p)

λ′
p+1(dx

′,i
p+1) := Φ′

p+1(m(ξ′p))(dx
′,i
p+1).

This implies that

E
(
f1(ξp+1) f2(ξp, ξ

′
p+1) | ξp

)

=

∫ 


∏
1≤i≤N

Φ′
p+1(m(ξ′p))(dx

′,i
p+1)



 f2

(
ξp,

(
x′,i
p+1

)
1≤i≤N

)

∫ 


∏
1≤i≤N

m(ξp)(dx
i
p) H

′
p+1(x

i
p,p, x

′,i
p+1)

m(ξ′p)(H
′
p+1(., x′,i

p+1))


 f1

((
xj
p, x

′,j
p+1

)
1≤j≤N

)
.

This ends the proof of the theorem.

9.7 Particle Markov chain Monte Carlo methods

9.7.1 Many-body Feynman-Kac measures

We return to the Feynman-Kac models and their particle interpretations presented in sec-
tion 9.5.1 and section 9.6.1. Using the unbiased property (9.52), for any function fn on Sn

we have

E
(
γN
n (fn)

)
= γn(fn) = E (fn(Xn) Zn(X)) with γN

n (fn) := ηNn (fn)×
∏

0≤p<n

ηNp (Gp).

This yields the following result.

For any N ≥ 1 and n ≥ 0, we have the unbiased formula

E


ηNn (fn)

∏
0≤p<n

ηNp (Gp)


 = E


fn(Xn)

∏
0≤p<n

Gp(Xp)


 . (9.66)



Computational toolbox 261

Rewritten in a slightly different way, for any function fn on Sn we have

γn(fn) := E
(
fn(Xn) Zn(X)

)
= E (fn(Xn) Zn(X)) (9.67)

with the Markov chain and the Radon-Nikodym derivatives

Xn :=
(
ξin
)
1≤i≤N

∈ Sn := SN
n and Zn(X) :=

∏
0≤p<n

Gp(Xp)

and the collection of (symmetric) functions fn and Gn on SN
n defined by

fn(Xn) :=
1

N

∑
1≤i≤N

fn(ξ
i
n) and Gn(Xn) :=

1

N

∑
1≤i≤N

Gn(ξ
i
n).

Notice that the Feynman-Kac measures γn and their normalized version ηn on Sn are
defined for any functions fn on Sn by the formulae

ηn(fn) := γn(fn)/γn(1) with γn(fn) := E
(
fn(Xn) Zn(X)

)
. (9.68)

These models are defined as the Feynman-Kac measures (γn, ηn) by replacing (Xn, Gn) by
(Xn, Gn).

Definition 9.7.1 The Feynman-Kac measures (γn, ηn) on the product spaces Sn

defined in (9.68) are called the many-body measures associated with the mean field
particle interpretation Xn = ξn of the Feynman-Kac measures (γn, ηn) on Sn.

From the pure mathematical point of view, the Feynman-Kac measures (γn, ηn) have
exactly the same form as the Feynman-Kac measures (γn, ηn). This observation allows us to

define without further work their particle interpretations, denoted by ξn =
(
ξ
i

n

)
1≤i≤N

∈ S
N

n

for some population size N , using the mean field particle models discussed in section 9.6.1.
Notice that in this situation, each particle ξ

i

n ∈ Sn = SN
n is itself a population of individuals,

with 1 ≤ i ≤ N . These population-based particles are called islands. In this context, the
particle model ξn can be interpreted as a mean field interacting evolution of islands. For a
more detailed discussion on this class of island type particle models, we refer the reader to
the article [256]. It is instructive to notice that for N = 1 the measures (γn, ηn) coincide
with (γn, ηn).

We consider the Feynman-Kac measures (γn, ηn) on the path spaces Sn := (S′
0 × . . .× S′

n)
discussed in section 9.6.2 and section 9.6.5. In this situation, the many-body Feynman-Lac
measures (γn, ηn) associated with the mean field particle interpretation of the Feynman-Kac
measures (γn, ηn) are defined in terms of path-valued particles Xn = ξn = (ξin)1≤i≤N ∈ SN

n .
For each 1 ≤ i ≤ N , ξin is given by the ancestral line (ξip,n)0≤p≤n defined in (9.54). In ad-
dition, by (9.26) the potential functions Gn are now given by

Gn(Xn) =
1

N

∑
1≤i≤N

Gn(ξ
i
n) =

1

N

∑
1≤i≤N

G′
n(ξ

′i
n).

9.7.2 A particle Metropolis-Hastings model

Our next objective is to define an independent Metropolis-Hastings type model with the
target measure ηn defined in (9.68), for some given and fixed time horizon n ≥ 0.
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To this end, it is convenient to extend these measures (γn, ηn) to the path space
measures (Γn,Qn) on Sn = (S0 × . . .×Sn) defined for any function fn on Sn by
the formulae

Qn(fn) := Γn(fn)/Γn(1) with Γn(fn) := E
(
fn(Xn) Zn(X)

)

with the historical process

Xn := (X0, . . . , Xn) ∈ Sn = (S0 × . . .× Sn).

In the further development of this section, we fix the time horizon n and we use the
notation x = (x0, . . . , xn) and y = (y0, . . . , yn) to denote trajectories in the path space Sn.

Rewritten in a Boltzmann-Gibbs form, the measure Qn is defined by

Qn(dx) ∝ Zn(x) Pn(dx) with Pn = Law
(
Xn

)

and Radon-Nikodym derivatives Zn defined by

Zn(x) :=
∏

0≤p<n

Gp(xp).

We consider the Metropolis-Hastings Markov chain (Xk)k≥0 on Sn := Sn with proposal
transition

K(x, dy) = Pn(dy)

and acceptance ratio

a (x, y) = 1 ∧ Qn(dy)K(y, dx)

Qn(dx)K(x, dy)
.

By construction, Xk is a Markov chain with invariant measure Qn. In addition, an elemen-
tary manipulation shows that

a (x, y) = 1 ∧ Zn(y)

Zn(x)
.

The main advantage of this particle MCMC model comes from the fact that

Gp(Xp) →N↑∞ ηp(Gp) =⇒ Zn(X) →N↑∞ γn(1)

so that the acceptance rate of the resulting particle Metropolis-Hastings model
converges to 1 as the size of the particle model N tends to ∞.

9.7.3 Duality formulae for many-body models

We let X ′
n be a Markov process with elementary transitions M ′

n on state spaces S′
n. We also

denote by G′
n some non-negative potential functions on S′

n. We consider the Feynman-Kac
model (γn, ηn) defined in (9.23) and (9.28), and their mean field particle interpretations
ξn discussed in section 9.6.2, section 9.6.3 and in section 9.6.5. The many-body Feynman-
Kac measures (γn, ηn) on Sn = SN

n associated with the mean field particle interpretation
Xn = ξn of the measures (γn, ηn) are defined in (9.68).
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With a slight abuse of notation we denote by Sn the N -symmetric product spaces
SN
n /ΣN , where ΣN stands for the N -symmetric group. In other words, Sn stands for the

set of non-ordered sequences x = (xi)1≤i≤N ∈ SN
n .

In this notation, the Markov transitions of the chain Xn are given by

Mn+1(Xn, dx) := P
(
Xn+1 ∈ dx | Xn

)
=

∏
1≤i≤N

Φn+1(m(Xn))(dx
i).

In the above display, dx = dx1 × . . . × dxN stands for an infinitesimal neighborhood of
x = (xi)1≤i≤N ∈ Sn. The initial condition X0 = (ξi0)1≤i≤N is given by N i.i.d. samples
with common law

η0 := Law(X0) =⇒ η0 := Law(X0) = η⊗N
0 .

By exchangeability arguments, the chain Xn is well defined in the state spaces Sn.
The following technical lemma is pivotal.

Lemma 9.7.2 We have the duality formulae

η0(dx) m(x)(dy) = η0(dy) η
#
y,0(dx) (9.69)

with the collection of probability measures η#y,0 on S0 defined by

η#y,0(dx) =
1

N

∑
1≤i≤N




∏
1≤j �=i≤N

η0(dx
j)


 δy

(
dxi

)
. (9.70)

In the above displayed formulae, dx = dx1 × . . .× dxN stands for an infinitesimal
neighborhood of x = (xi)1≤i≤N ∈ S0 and dy an infinitesimal neighborhood of a
given state y ∈ S0.

Proof :
For any function f on (S0 × S0) and for any 1 ≤ i ≤ N we have

∫
η⊗N
0 (dx) m(x)(dy)f(y, x) =

∫
η⊗N
0 (dx)f(xi, x)

=

∫
η0(dy)

∫ 




∏
1≤j �=i≤N

η0(dx
j)


 δy

(
dxi

)

 f(y, x) =

∫
η0(dy)

∫
η#y,0(dx) f(y, x).

This ends the proof of the lemma.

To get one step further, we consider the integral operators

Qn(xn−1, dxn) = Gn−1(xn−1) Mn(xn−1, dxn).

In the above displayed formulae, dxn = dx1
n× . . .×dxN

n stands for an infinitesimal
neighborhood of xn = (xi

n)1≤i≤N ∈ Sn and xn−1 = (xi
n−1)1≤i≤N is a given state

in Sn−1.
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By construction, we have

Gn−1(xn−1) × Φn (m(xn−1)) (dyn) = (m(xn−1)Qn) (dyn)

where dyn an infinitesimal neighborhood of a given state yn ∈ Sn. We also recall that

Mn(xn−1, dxn) = Φn(m(xn−1))
⊗N (dxn).

Arguing as in the proof of lemma 9.7.2 we prove that

Φn (m(xn−1))
⊗N

(dxn) m(xn)(dyn) = Φn (m(xn−1)) (dyn) M
#

yn,n(xn−1, dxn)

with the Markov transitions M
#

yn,n from Sn−1 into Sn defined by

M
#

yn,n(xn−1, dxn) =
1

N

∑
1≤i≤N





∏
1≤j �=i≤N

Φn (m(xn−1)) (dx
j
n)


 δyn

(
dxi

n

)
.

(9.71)

In summary, we have proved the following result.

Lemma 9.7.3 For any n ≥ 1, we have the duality formula

Qn(xn−1, dxn) m(xn)(dyn) = (m(xn−1)Qn) (dyn) M
#

yn,n(xn−1, dxn). (9.72)

Definition 9.7.4 (Dual mean field model) Given some realization of the his-
torical chain (Xn)n≥0, we let X

#

n be the Markov chain with conditional initial
distribution η#X0,0

and elementary transitions M
#

Xn,n. The process X
#

n is called
the dual mean field model associated with the Feynman-Kac particle model Xn and
the frozen path (Xn)n≥0.

Definition 9.7.5 The historical processes of Xn and X
#

n are defined by

Xn :=
(
X0, . . . , Xn

)
and X

#

n :=
(
X

#

0 , . . . , X
#

n

)
∈ Sn :=

(
S0 × . . .× Sn

)
.

Given the genealogical tree Xn, we also let Xn be a randomly chosen ancestral line
with (conditional) distribution m(Xn).

We are now in position to state and prove the following duality theorem.

Theorem 9.7.6 (Duality theorem) For any n ≥ 0 and any function fn on the
product space (Sn × Sn)

E
(
fn(Xn,Xn) Zn(X)

)
= E

(
fn(X

#

n , Xn) Zn(X)
)
. (9.73)
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Proof :
By (9.72), we have

Qn(xn−1, dxn) m(xn)(dyn) =

∫
m(xn−1)(dyn−1)Qn(yn−1, dyn) M

#

yn,n(xn−1, dxn).

This implies that

Qn−1(xn−2, dxn−1)Qn(xn−1, dxn) m(xn)(dyn)

=

∫
Qn−1(xn−2, dxn−1) m(xn−1)(dyn−1)Qn(yn−1, dyn) M

#

yn,n(xn−1, dxn).

Using (9.72), we deduce that

Qn−1(xn−2, dxn−1)Qn(xn−1, dxn) m(xn)(dyn)

=

∫
m(xn−2)(dyn−2)Qn−1(yn−2, dyn−1) M

#

n−1,yn−1
(xn−2, dxn−1)

×Qn(yn−1, dyn) M
#

yn
(xn−1, dxn).

Iterating backward in time we prove that

η0(dx0)
{∏

1≤p≤n Qp(xp−1, dxp)
}

m(xn)(dyn)

=

∫
η0(dy0)




∏
1≤p≤n

Qp(yp−1, dyp)


 P

#

[y0,...,yn],n(d(x0, . . . , xn))

with the conditional distribution

P
#

[y0,...,yn],n(d(x0, . . . , xn)) := η#y0,0
(dx0)

∏
1≤p≤n

M
#

yp,p(xp−1, dxp).

This ends the proof of the theorem.

We consider the marginal models

X
′
n :=

(
ξin,n

)
1≤i≤N

=
(
ξ′,in

)
1≤i≤N

= ξ′n ∈ S
′
n = (S′

n)
N

and the historical process

X
′
n =

(
X

′
0, . . . , X

′
n

)
∈ S

′
n =

(
S
′
0 × . . .× S

′
n

)
.

In this context, given the historical path Xn = (X ′
0, . . . , X

′
0), the dual process X

#

n

is also given by a path-valued Markov chain

X
#

n =
(
X

#

0,n, . . . , X
#

n,n

)
∈ Sn = SN

n = (S′
0 × . . .× S′

n)
N
.
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In addition, the n-th time marginal process X
′,#
n = X

#

n,n is also a Markov chain
on S

′
n = (S′

n)
N with initial distribution η#X0,0

= η#X′
0,0

and the Markov transitions

M
′,#
X′

n,n
(x′

n−1, dx
′
n) =

1

N

∑
1≤i≤N





∏
1≤j �=i≤N

Φ′
n

(
m(x′

n−1)
)
(dx′j

n )


 δX′

n

(
dx′i

n

)
.

(9.74)

In the above displayed formulae, dx′
n = dx′,1

n × . . . × dx′,N
n stands for an infinitesimal

neighborhood of x′
n = (x′,i

n )1≤i≤N ∈ S
′
n and x′

n−1 = (x′,i
n−1)1≤i≤N a given state in S

′
n−1.

In addition, Φ′
n stands for the one-step Feynman-Kac mapping defined as Φn by replacing

(Gn−1,Mn, Sn) by (G′
n−1,M

′
n, S

′
n).

In this situation, we have

Gn(Xn) = G
′
n(X

′
n) := m(ξ′n)(G

′
n) and Gn(Xn) = G′

n(X
′
n)

and using the conditioning formula (9.65) we readily prove the following corollary of theo-
rem 9.7.6.

Corollary 9.7.7 Under the regularity condition (9.64), for any n ≥ 0 and any
function fn on (S

′
n × Sn)

E
(
fn(X

′
n,Xn) Zn(X)

)
= E

(
fn(X

′
n,X

¥
n) Zn(X)

)

= E
(
fn(X

′,#
n , Xn) Zn(X)

) (9.75)

with the random paths (Xn,X¥
n) introduced in definition 9.6.2, and the historical

process X
′,#
n :=

(
X

′,#
0 , . . . , X

′,#
n

)
.

9.7.4 A couple particle Gibbs samplers

We let πn be the probability measures on (Sn × Sn) defined for any function fn
on (Sn × Sn) by the Feynman-Kac measures

πn(fn) ∝ E
(
fn(Xn,Xn) Zn(X)

)
= E

(
fn(X

#

n , Xn) Zn(X)
)
. (9.76)

The transition probabilities of the Gibbs sampler

(
X(k)

n ,Xn
(k)

)
�

(
X(k+1)

n ,Xn
(k+1)

)

of the target multivariate distribution πn on the product space (Sn × Sn) are described by
the synthetic diagram
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X(k)
n = x

Xn
(k)

= x

}

(1)→

{
X(k+1)

n = x ∼
(
Xn | Xn = x

)

Xn
(k)

= x

}
(2)→

{
X(k+1)

n = x
Xn

(k+1)
= x ∼

(
Xn | Xn = x

)
.

(9.77)

In the above display,
(
Xn | Xn

)
and

(
Xn | Xn

)
is a shorthand notation for the πn-

conditional distributions of Xn given Xn, and Xn given Xn. Notice that the first transition
of the Gibbs sampler reduces to the uniform sampling of an ancestral line. In addition, by
(9.76), the second transition amounts to sampling a genetic particle model with a frozen
ancestral line:

Xn
(k+1)

= x ∼
(
Xn | Xn = x

)
=

(
X

#

n | Xn = x
)
.

By construction (X(k)
n )k≥0 is a Markov chain on Sn with reversible Feynman-Kac

probability measure ηn.

We let π′
n be the probability measures on (S

′
n × Sn) defined for any function fn

on (S
′
n × Sn) by the Feynman-Kac measures

π′
n(fn) ∝ E

(
fn(X

′
n,X

¥
n) Zn(X)

)
= E

(
fn(X

′,#
n , Xn) Zn(X)

)
. (9.78)

The transition probabilities of the Gibbs sampler
(
X¥,(k)

n ,Xn
′,(k))

�
(
X¥,(k+1)

n ,Xn
′,(k+1)

)
(9.79)

of the target multivariate distribution π′
n are defined as above by replacing the

uniform ancestral line sampling by a randomly chosen backward ancestral line.
By construction (X¥,(k)

n )k≥0 is a Markov chain on Sn with reversible Feynman-Kac
probability measure ηn.

9.8 Quenched and annealed measures

9.8.1 Feynman-Kac models

We let Θ be some parameter with distribution λ(dθ) on some state space Ξ. Given Θ, we
consider a Markov chain X ′

n evolving in some state spaces S′
n with an initial condition η′Θ,0,

and some elementary transitions M ′
Θ,n(x

′
n−1, dx

′
n) that depend on the parameter Θ. We

also consider a collection of potential functions G′
θ,n(x

′
n) indexed by θ ∈ Ξ. We let

Xn = (X ′
0, . . . , X

′
n) ∈ Sn = (S′

0 × . . .× S′
n)
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be the historical process of the chain X ′
n and we set

GΘ,n(Xn) := G′
Θ,n(X

′
n).

Definition 9.8.1 We let µn be the Feynman-Kac measures defined for any func-
tion fn on (Ξ× Sn) by

µn(fn) ∝ E(fn(Θ, Xn) ZΘ,n(X)) with ZΘ,n(X) =
∏

0≤p<n

GΘ,n(Xp).

We also consider the quenched measures defined for any function fn on Sn by the
Feynman-Kac formulae

ηθ,n(fn) = γθ,n(fn)/γθ,n(1) with γθ,n(fn) := E (fn(Xn) ZΘ,n(X) | Θ = θ ) .
(9.80)

In a more synthetic form, we have

µn(d(θ, x)) =
λ(dθ) γθ,n(dx)∫
λ(dθ′) γθ′,n(1)

= λn(dθ) ηθ,n(dx) (9.81)

with the probability measures (λn, ηθ,n) defined by

λn(dθ) :=
λ(dθ) γθ,n(1)∫
λ(dθ′) γθ′,n(1)

. (9.82)

We illustrate this rather abstract model with the nonlinear filtering models discussed
in section 6.5.1. In this situation, the potential functions are defined in terms of the the
likelihood functions of the observations Y ′

n given the value of the parameter Θ = θ with a
prior distribution λ(dθ), and the random state of the signal X ′

n = x′
n, that is,

G′
θ,n(x

′
n) ∝ pn(y

′
n | x′

n, θ).

In this context, we have

µn = Law
(
(Θ, Xn) | Y ′

p = y′p , 0 ≤ p < n
)

λn = Law
(
Θ | Y ′

p = y′p , 0 ≤ p < n
)

ηθ,n = Law
(
Xn | Θ = θ, Y ′

p = y′p , 0 ≤ p < n
)

γθ,n+1(1) = p(y′0, . . . , y
′
n|θ). (9.83)

In Bayesian notation, the formulae (9.81) and (9.82) take the form

p(x, θ|y) = p(x, y|θ)
p(y)

p(θ) = p(θ|y) p(x|θ, y) and p(θ|y) = p(y|θ)
p(y)

p(θ)

with the density p(x, θ|y) of the conditional distribution µn of (Xn,Θ) given

Yn−1 := (Y ′
k)0≤k<n = (y′k)0≤k<n = y,
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the density p(x, y|θ) of the conditional distribution γθ,n of (Xn, Yn−1) given Θ = θ, the
density p(θ|y) of the conditional distribution λn of Θ given Yn−1 = y, the density p(θ) of
the prior distribution λ of Θ, the density p(x|θ, y) of the conditional distribution ηθ,n of Xn

given (Θ, Yn−1) = (θ, y), and the density p(y) of the distribution of Yn−1. In this notation,
we also have the Bayes’ formula

p(θ|x, y) = p(y|θ, x)
p(y|x, θ)

p(x|θ)

with the density p(θ|x, y) of the conditional distribution λx,n of Θ given (Xn, Yn−1) = (x, y),
and the density p(x|θ) of the conditional distribution of Θ given Xn = x.

9.8.2 Particle Gibbs models

We further assume that γθ,n ∼ γθ′,n for any couple of parameters θ, θ′ ∈ Ξ.

In this situation, we have

µn(d(θ, x)) = ηn(dx)× λx,n(dθ)

with

λx,n(dθ) := λn(dθ) × dηθ,n(dx)

dηn(dx)
and ηn(dx) :=

∫
λn(dθ) ηθ,n(dx).

In the context of the nonlinear filtering model (9.83), we have

λx,n = Law
(
Θ | Xn = x, Y ′

p = y′p , 0 ≤ p < n
)

and
ηn = Law

(
Xn | Y ′

p = y′p , 0 ≤ p < n
)
.

Suppose we are given a collection of Markov transitions K[1]
θ,n and K[2]

x,n with in-
variant measures ηθ,n and λx,n on Sn and Ξ, that is, we have the fixed point
equations

ηθ,n = ηθ,nK[1]
θ,n and λx,n = λx,nK[2]

x,n.

Given the parameter Θ = θ, the Feynman-Kac measures on path space ηθ,n have exactly
the same forms as the ones discussed in section 9.7.1 and in section 9.7.3. Thus, we can
choose the particle Metropolis-Hastings model discussed in section 9.7.2 or the couple of
particle Gibbs samplers presented in section 9.7.4.

In Bayesian literature, the choice of the Markov transition K[2]
x,n is often dictated by

the model at hand. For hidden Markov chain models with judiciously chosen conjugate
priors, it is also possible to sample directly from λx,n. In other words, we can choose
K[2]

x,n(θ, dθ′) = λx,n(dθ
′). We illustrate this assertion with an elementary R-valued Markov

chain model
X ′

n := b′n(X
′
n−1) +

√
Θ W ′

n
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with a function b′n on R, a sequence of i.i.d. Gaussian centered random variables W ′
n with

unit variance, and some given X ′
0 = x′

0. We also assume that the observation process Y ′
n

has the form
Y ′
n = h′

n(X
′
n) + V ′

n

for some sensor function h′
n on R, and a sequence of i.i.d. Gaussian centered random

variables V ′
n. We consider the historical processes Xn = (X ′

k)0≤k≤n and Yn := (Y ′
k)0≤k≤n.

We further assume that the unknown parameter Θ takes values in R+ := [0,∞[ according
to an inverse gamma distribution

λ(dθ) :=
βα

Γ(α)
θ−(α+1) e−β/θ 1R+(θ) dθ

with a shape parameter α and a scale parameter β; here Γ(α) stands for the gamma function.
In this context, we have

Law (Θ | Xn = x) = Law (Θ | Xn = x, Yn−1 = y ) .

for any observation sequence y = (y′k)0≤k<n.
Using Bayesian notation, for any given sequence x = (x′

k)0≤k≤n we have

λx,n(dθ) ∝ p((x′
0, . . . , x

′
n)|θ) p(θ) dθ

=




∏
1≤k≤n

p(x′
k | x′

k−1, θ)


 p(θ) dθ

∝ 1

θn/2
exp


− 1

2θ

∑
1≤k≤n

(x′
k − bk(x

′
k−1))

2


 θ−(α+1) e−β/θ 1R+

(θ) dθ.

This implies that λx,n is an inverse gamma distribution

λx,n(dθ) ∝ θ−(αn+1) e−βn(x)/θ 1R+
(θ) dθ

with shape and scale parameters

αn := α+ n/2 and βn(x) := β +
1

2

∑
1≤k≤n

(x′
k − b′k(x

′
k−1))

2.

Proposition 9.8.2 The measure µn = µnKn is an invariant probability measure
of the Markov transition Kn defined by

Kn ((θ, x), d(θ
′, x′)) := K[2]

x,n(θ, dθ
′) K[1]

θ′,n(x, dx
′).

Proof :
Notice that
∫

µn(d(θ, x)) Kn ((θ, x
′), d(θ′, x′)) =

∫
ηn(dx)

[∫
λx,n(dθ)K[2]

x,n(θ, dθ
′)

]
K[1]

θ′,n(x, dx
′)

=

∫
ηn(dx)× λx,n(dθ

′)︸ ︷︷ ︸
=λn(dθ′)×ηθ′,n(dx)

K[1]
θ′,n(x, dx

′).
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This implies that
∫

µn(d(θ, x)) Kn ((θ, x
′), d(θ′, x′)) = λn(dθ

′)

∫
ηθ′,n(dx) K[1]

θ′,n(x, dx
′)

= λn(dθ
′) ηθ′,n(dx

′) = µn(d(θ
′, x′)).

This ends the proof of the proposition.

9.8.3 Particle Metropolis-Hastings models

We return to the many-body Feynman-Kac measures discussed in section 9.7.1. Given the
parameter Θ, we let Xn :=

(
ξin
)
1≤i≤N

∈ SN
n be the mean field particle approximation of

the quenched Feynman-Kac measures ηΘ,n defined in (9.80).

Using the unbiasedness properties (9.67) we have

E
(
ZΘ,n(X) | Θ

)
= E (ZΘ,n(X) | Θ) = γΘ,n(1) (9.84)

with the Radon-Nikodym derivatives

ZΘ,n(X) :=
∏

0≤p<n

GΘ,p(Xp) and GΘ,n(Xn) :=
1

N

∑
1≤i≤N

GΘ,n(ξ
i
n).

Definition 9.8.3 We fix the time horizon n ≥ 0, and we let P (θ, dx) be the condi-
tional probability distribution of the historical process Xn = (Xp)0≤p≤n ∈ Sn :=∏

0≤p≤n Sp, given the value of the parameter Θ = θ. We also set

Θ :=
(
Θ,Xn

)
∈ Ξ := (Ξ× Sn) and λ(dθ) := λ(dθ) P (θ, dx).

In the above displayed formula, θ = (θ,x) stands for a given state in Ξ := (Ξ×Sn).

Definition 9.8.4 We let (hp)0≤p≤n be the collection of non-negative functions on
Ξ defined for any θ = (θ, x) with x = (xp)0≤p≤n by the formulae

hp(θ) = Gθ,p(xp) =⇒
∏

0≤p<n

hp(θ) = Zθ,n(x).

Definition 9.8.5 We associate with these objects the Boltzmann-Gibbs measures

λn(dθ) =
1

Zn




∏
0≤p≤n

hp(θ)



 λ(dθ)

with some normalizing constant Zn.

The unbiasedness property (9.84) implies that the θ-marginal of λn coincides with the
probability measure λn defined in (9.82).
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Our next objective is to design a particle Metropolis-Hastings Markov chain with invari-
ant distribution λn. To this end, we let K(θ, dθ′) be a Markov transition on Ξ satisfying
the regularity condition

λ(dθ)K(θ, dθ′) ∼ λ(dθ′)K(θ′, dθ).

We let K(θ, dθ
′
) be the Markov transition on Ξ defined by

K(θ, dθ
′
) = K(θ, dθ′)× P (θ′, dx′).

In the above displayed formula, θ = (θ, x) and θ
′
= (θ′, x′) stands for a couple of

states in the product space Ξ := (Ξ× Sn).

To take the final step, we notice that

λn(dθ
′
)K(θ

′
, dθ)

λn(dθ)K(θ, dθ
′
)
=

∏
0≤p≤n hp(θ

′
)∏

0≤p≤n hp(θ)
× λ(dθ′)K(θ′, dθ)

λ(dθ)K(θ, dθ′)
.

We readily define a Metropolis-Hastings transition with reversible measure λn,
proposal transition K and acceptance rate

a(θ, θ
′
) = 1 ∧




 ∏
0≤p≤n

hp(θ
′
)

hp(θ)


 × λ(dθ′)K(θ′, dθ)

λ(dθ)K(θ, dθ′)


 .

9.9 Some application domains
Feynman-Kac methodologies and their mean field particle interpretations constitute a uni-
versal class of simulation-based stochastic algorithms to sample approximately from any
sequence of probability distributions ηn, n ∈ N, with an increasing complexity.

In section 9.6 we discussed a mean field particle interpretation of any sequence of mea-
sures given by a Feynman-Kac model associated with a potential function Gn and some
reference Markov chain Xn.

In this section, we illustrate these Feynman-Kac formulations with a series of exam-
ples taken from diverse application domains. Further application areas with detailed and
workout examples can be found in the literature [66, 67].

9.9.1 Interacting MCMC algorithms

We let ηn = πn be the sequence of Boltzmann-Gibbs measures discussed in (9.19), and Mn

the sequence of MCMC transitions defined in (9.20). By construction, we have the fixed
point equations

ηn = ηnMn

and the updating formulae

ηn(dx) ∝ e−(βn−βn−1)V (x) e−βn−1V (x) λ(dx) ∝ e−(βn−βn−1)V (x) ηn−1(dx).
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In terms of the Boltzmann-Gibbs transformations defined in (0.3) this formula can be rewrit-
ten as follows:

ηn = ΨGn−1 (ηn−1) with Gn−1 := e−(βn−βn−1)V .

Combining this formula with the fixed point equation we prove that

ηn = ΨGn−1
(ηn−1)Mn. (9.85)

This nonlinear evolution equation coincides with the Feynman-Kac model (9.30) discussed
in section 9.6.

The N -particle approximation of the nonlinear evolution equation (9.85) is defined in
terms of a sequence of N particles evolving with a two genetic type selection-mutation
transitions:

(
Xi

n

)
1≤i≤N

selection
−−−−−−−−−−−−→

(
X̂i

n

)
1≤i≤N

mutation
−−−−−−−−−−−−→

(
Xi

n+1

)
1≤i≤N

.

During the selection stage, for each 1 ≤ i ≤ N , we set

X̂i
n =

{
Xi

n with probability e−(βn+1−βn)V (Xi
n)

X̃i
n with probability 1− e−(βn+1−βn)V (Xi

n)

where X̃i
n is a r.v. with distribution

ΨGn


 1

N

∑
1≤i≤N

δXi
n


 =

∑
1≤i≤N

e−(βn+1−βn)V (Xi
n)

∑
1≤j≤N e−(βn+1−βn)V (Xj

n)
δXi

n
.

During the mutation transition, each selected particle X̂i
n evolves to a new random state

Xi
n+1 chosen with the distribution Mn+1

(
X̂i

n, dx
)
.

Since ηn = ηnMn = ηnM
mn , for any mn ≥ 1,

ηn = ΨGn−1
(ηn−1)M

mn
n . (9.86)

The corresponding N -particle model is defined as above, replacing the mutation transition
Mn by Mmn

n . In all the situations, we have

∀n ∈ N ηNn :=
1

N

∑
1≤i≤N

δXi
n
−→N→ ηn. (9.87)

More generally, suppose we are given a sequence of target measures πn on some state
space S of the following form

ηn(dx) =
1

Zn




∏
0≤p≤n

hp(x)


 λ(dx) (9.88)

for some positive functions hn and some reference measure λ. Choosing hn = e−(βn−βn−1)V

and β0 = 0 = β−1 the measure πn coincides with the Boltzmann-Gibbs measure discussed
above. Arguing as above we have

ηn = ΨGn−1 (ηn−1)Mn with Gn−1 = hn

and for any Markov transition Mn s.t. ηn = ηnMn.
These interacting MCMC samplers belong to the class of biased rejection-free Monte

Carlo samplers.
We illustrate these interacting MCMC models with two examples from operations re-

search and statistical physics.
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• Global optimization: From probabilistic view, one natural way to compute the global
minima of a given non-negative potential function V on some state space is to sample r.v.
with a Boltzmann-Gibbs measure associated with some inverse temperature parameter
βn ↑ ∞. These measures are defined by

ηn(dx) =
1

Zβn

e−βnV (x) λ(dx)

where λ denotes a reference measure on S (such as the Lebesgue measure on Rd, or the
counting measure on some finite space S, or the law of some random variable).

• Partition functions:

Boltzmann-Gibbs measures are also of current use in statistical physics (cf. the Ising
model discussed in section 6.4). In this context, another important quantity to estimate
is the normalizing constant Zn. To this end, we observe that

Zn := λ
(
e−βnV

)

=
λ
(
e−(βn−βn−1)V e−βn−1V

)
λ (e−βn−1V )

× λ
(
e−βn−1V

)

= ηn−1

(
e−(βn−βn−1)V

)
× λ

(
e−βn−1V

)
.

This implies that
Zn/Z0 =

∏
0≤p<n

ηp (Gp)

with the functions Gn defined for any n ≥ 0 by

Gn := exp {−(βn+1 − βn)V }.

An unbiased estimate of the partitions function ratio is given by the product formulae
∏

0≤p<n

ηNp (Gp)

with the N -empirical measures ηNn defined in (9.87).

• Rare event simulation: Most of the rare event simulation problems, including the black-
box type models discussed in section 6.3, can be reduced to studying the probability that
some r.v. X enters in a subset A of some state space S

P (X ∈ A) and Law(X | X ∈ A).

If we consider an decreasing sequence of subsets An ↓ the above problem can be described
by a sequence of Boltzmann-Gibbs measures

ηn(dx) =
1

Zn
1An(x) λ(dx)

where λ stands for the distribution of X. Notice that in this notation the rare event
probabilities coincide with the normalizing constants; that is, we have that

Zn = λ(1An
) = P (X ∈ An) .
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Arguing as above, using the fact that

1An
× 1An−1

= 1An∩An−1
= 1An

we also have that

Zn := λ (1An
)

=
λ
(
1An

1An−1

)

λ
(
1An−1

) × λ
(
1An−1

)

= ηn−1 (1An) × Zn−1.

This implies that

Zn/Z0 =
∏

0≤p<n

ηp (Gp) with ∀n ≥ 0 Gn := 1An
.

Here again, an unbiased estimate of the partitions function ratio is given by the product
formulae

∏
0≤p<n η

N
p (Gp), with the N -empirical measures ηNn defined in (9.87).

The following picture illustrates the empirical histogram of a genetic type particle scheme
with N = 2000 particles in the case λ = N (0, 1) and a terminal level set An = [5,∞[.
The mutation transition of the particles is given by the Gaussian shakers discussed in
section 9.2.2.

The picture below illustrates the particle estimation of the corresponding normalizing
constants.
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9.9.2 Nonlinear filtering models

The filtering model discussed in (6.7) is a Feynman-Kac type (9.21) with

Pn(d(x0, . . . , xn)) = pn(x0, . . . , xn) dx0 . . . dxn

and
∀n ≥ 0 Gn(xn) :=

1√
2π

exp

(
−1

2
(yn − hn(xn))

2

)
.

In the above display, (yn)n≥0 stands for a given and fixed sequence of observations. In this
case,

Qn = Law ((X0, . . . , Xn) | Yp = yp, 0 ≤ p < n) .

In addition, with some obvious abusive notation we have

Zn = pn−1(y0, . . . , yn−1)

with the probability density of the observation sequence

P ((Y0, . . . , Yn−1) ∈ d(y0, . . . , yn−1)) = pn−1(y0, . . . , yn−1) dy0 . . . dyn−1.

9.9.3 Markov chain restrictions

The Feynman-Kac models (9.21) can always be interpreted as the conditional distribution
of a Markov chain w.r.t. some collection of events. For instance, if we consider the indicator
potential functions Gn = 1An

we can readily check that
∏

0≤p<n

Gp(Xp) = 1(A0×...×An−1)(X0, . . . , Xn−1).

This implies that
Zn = P (Xp ∈ Ap, ∀0 ≤ p < n)

and
Qn = Law ((X0, . . . , Xn) | Xp ∈ Ap, ∀0 ≤ p < n) .
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9.9.4 Self avoiding walks

We assume that Xn = (X ′
0, . . . , X

′
n) ∈ Sn = En+1 is the historical process associated with

a simple random walk (abbreviated SRW) evolving in a d-dimensional lattice E = Zd. In
this situation, if we set Gn(Xn) = 1Zd−{X′

0,...,X
′
n−1}(X

′
n) in (9.21), then we find that

Zn = P
(
X ′

p �= X ′
q , ∀0 ≤ p < q < n

)

Qn = Law
(
(X ′

0, . . . , X
′
n) | X ′

p �= X ′
q , ∀0 ≤ p < q < n

)
.

For d = 2, we notice that Zn+1 = 4−n Card(An) with

An :=
{
(x0, . . . , xn) ∈ (Z2)n+1 | ∀0 ≤ k �= l ≤ n |xk − xk−1| = 1 xk �= xl

}
.

The following picture illustrates a sample of the SRW on Z2 on the time horizon [0, 1000]

The following pictures illustrate an ancestral line and a genealogical tree-based particle
model with N = 100 non-intersection on Z2 on the time horizon [0, 1000].
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These particle models have been simulated using the mean field genetic type particle
models presented in section 9.6.1 with the free evolution or mutation associated with the
SRW, and the selection indicator potential functions Gn(Xn) = 1Zd−{X′

0,...,X
′
n−1}(X

′
n).

Using the fact that Card(Ap+q) ≤ Card(Ap)×Card(Aq) and 2n ≤ Card(An) ≤ 4× 3n,
using sub-additivity arguments we find that

c := lim
n→∞

Card(An)
1/n ∈ [2, 3].

To estimate the so-called connectivity constant c (a.k.a. the critical fugacy), we use

ηn(Gn) = P
(
X ′

n �∈ {X ′
0, . . . , X

′
n−1} | ∀0 ≤ p < q < n X ′

p �= X ′
q

)
= Card(An)/ (4 Card(An−1))

and therefore

1

n
log γn(Gn) =

1

n

∑
0≤k≤n

log ηk(Gk) �n↑∞ log (c/4).

The following picture provides an estimate of the connectivity constant with N = 100
particles.
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Self avoiding random walks (abbreviated SAWs) are used in physics to model the evo-
lution of linear and directed polymers. These polymers represent the formation of long
molecules consisting of monomers linked together in a chemical solvent. The location of the
monomers is encoded in the random walk evolution, and the time horizon represents the
length of the molecule. These models can be extended with a little extra work to analyze
polymer models in a confined geometry.

9.9.5 Twisted measure importance sampling

Computing the probability of some events of the form {Vn(Xn) ≥ a}, for some energy-
like function Vn and a given threshold a is often performed using the importance sampling
distribution of the state variable Xn with some multiplicative Boltzmann weight function
exp (βVn(Xn)), associated with an inverse temperature parameter β. These twisted mea-
sures can be described by a Feynman-Kac model (9.21) in transition space by setting

Gn(Xn−1, Xn) = exp {β[Vn(Xn)− Vn−1(Xn−1)]}.

For instance, it is easily checked that

P (Vn(Xn) ≥ a) = E


fn(Xn)

∏
0≤p<n

Gp(Xp)




with the function fn(Xn) = 1Vn(Xn)≥a e−βVn(Xn), and the potential function and the ref-
erence Markov chain

Xn = (Xn, Xn+1) and Gn(Xn) = exp {β(Vn+1(Xn+1)− Vn(Xn))}.

We let Qn be the Feynman-Kac model (9.21) associated with the reference Markov chain
Xn and the potential function Gn In the same vein, we have the Feynman-Kac formulae

E (fn(X0, . . . , Xn) | Vn(Xn) ≥ a) = Qn(Fn,fn)/Qn(Fn,1)

with the function

Fn,fn(X0, . . . , Xn) = fn(X0, . . . , Xn) 1Vn(Xn)≥a e−βVn(Xn).
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9.9.6 Kalman-Bucy filters

9.9.6.1 Forward filters

We consider a Rp+q-valued Markov chain (Xn, Yn) defined by the recursive relations
{

Xn = An Xn−1 + an +Wn , n ≥ 1
Yn = Bn Xn + bn + Vn , n ≥ 0

(9.89)

for some Rp and Rq-valued independent random sequences Wn and Vn, independent of X0,
some matrices An, Bn with appropriate dimensions and finally some (p + q)-dimensional
vector (an, bn). We further assume that Wn and Vn centered Gaussian random sequences
with covariance matrices Rv

n, Rw
n and X0 is a Gaussian random variable in Rp with a mean

and covariance matrix denoted by

X̂−
0 = E(X0) and P̂−

0 = E((X0 − E(X0)) (X0 − E(X0))
′).

Theorem 9.9.1 The one-step predictors and the optimal filters are given by

ηn = Law(Xn | (Y0, . . . , Yn−1)) = N (X̂−
n , P−

n )

η̂n = Law(Xn | (Y0, . . . , Yn−1, Yn)) = N (X̂n, Pn). (9.90)

In the above display, N (., .) stands for the Gaussian distributions discussed in
(4.13). The synthesis of the conditional mean and covariance matrices is carried
out using the traditional Kalman-Bucy recursive updating-prediction equations

(
X̂−

n , P−
n

) updating
−−−−−−−−→

(
X̂n, Pn

) prediction
−−−−−−−→

(
X̂−

n+1, P
−
n+1

)
. (9.91)

The updating transition is given by

X̂n = X̂−
n +Gn (Yn − (BnX̂

−
n + bn)) and Pn = (Id−GnBn)P

−
n (9.92)

with the gain matrix

Gn = P−
n B′

n(BnP
−
n B′

n +Rv
n)

−1.

The prediction transition is given by

X̂−
n+1 = An+1X̂n + an+1 and P−

n+1 = A′
n+1PnAn+1 +Rw

n+1. (9.93)

In addition, the density p(y0, . . . , yn) of the observation sequence (Y0, . . . , Yn)
(w.r.t. the Lebesgue measure dy0 × . . . × dyn) evaluated on the observation path
p(Y0, . . . , Yn) is given by

p(Y0, . . . , Yn) =
∏

0≤k≤n

N (Bk X̂−
k + bk, BkP

−
k B′

k +Rv
k)(Yk) (9.94)

with the density N [m,R] (y) a Gaussian distribution w.r.t. the Lebesgue measure
dy defined in (4.14).
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Proof :
We use induction w.r.t. the time parameter. For n = 0, we have η0 = Law(X0) =

N (X̂−
0 , P−

0 ). In addition, recalling that

p(y0|x0) = N [B0x+ b0;R
v] (y0) and p(x0|y0) =

1

p(y0)
p(y0|x0) p(x0)

using the Gaussian update formula (4.15), we have

Law(X0 | Y0) = N (X̂0, P0)

with the parameters (X̂0, P0) given in (9.92) for n = 0. By construction, we have the linear
Gaussian equation

X1 = A1 X0 + a1 +W1

and

p(x1 | y0) =
∫

p(x1|x0) p(x0|y0) dx0 with p(x0|y0) dx0 = N (X̂0, P0)(dx0).

This clearly implies that

p(x1 | y0) dx1 = N (X̂−
1 , P−

1 )(dx1)

with the parameters (X̂−
1 , P−

1 ) given in (9.93) for n = 0. Assuming the result is true at
some rank n, we check (4.15) and (9.93) using the same proof as above. This ends the proof
of the first assertion.

The proof of (9.94) follows from the fact that

p(y0, . . . , yn) = p(yn|y0, . . . , yn−1)p(y0, . . . , yn−1) =
∏

0≤k≤n

p(yk|y0, . . . , yk−1)

with the conditional density p(yn|y0, . . . , yn−1) of Yn given (Y0, . . . , Yn−1) = (y0, . . . , yn−1).
On the other hand, we have

p(yn|y0, . . . , yn−1) =

∫
p(yn|xn) p(xn|y0, . . . , yn−1) dxn and Yn = Bn Xn + bn + Vn.

This implies that

p(yn|Y0, . . . , Yn−1)dyn = N (Bn X̂−
n + bn, BnP

−
n B′

n +Rv
n)(dyn).

This ends the proof of the theorem.

9.9.6.2 Backward filters

In Bayesian notation, we have the conditional density formulae

p((x0, . . . , xn) | (y0, . . . , yn−1))

= p(xn | (y0, . . . , yn−1)) p(xn−1 | xn, (y0, . . . , yn−1))

×p(xn−2 | xn−1, (y0, . . . , yn−2)) . . . p(x1 | x2, (y0, y1)) p(x0 | x1, y0).
(9.95)
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This shows that

P ((X0, . . . , Xn) ∈ d(x0, . . . , xn) | Yp = yp, p < n)

= ηn(dxn)
∏

1≤k≤n

M̂k,η̂k−1
(xk, dxk−1)

(9.96)

with the (backward) Markov transitions

M̂k,η̂k−1
(xk, dxk−1) = p(xk−1 | xk, (y0, . . . , yk−1)) dxk−1.

Using Bayes’ rule, we also have

M̂k,η̂k−1
(xk, dxk−1) = p(xk−1 | xk, (y0, . . . , yk−1)) dxk−1

∝ p(xk | xk−1) p(xk−1 | (y0, . . . , yk−1)) dxk−1︸ ︷︷ ︸
=η̂k−1(dxk−1)

. (9.97)

Recalling

p(xk−1 | (y0, . . . , yk−1)dxk−1 ∝ p(yk−1|xk−1) p(xk−1 | (y0, . . . , yk−2)dxk−1︸ ︷︷ ︸
=ηk−1(dxk−1)

shows that

M̂k,η̂k−1
(xk, dxk−1) = Mk,ηk−1

(xk, dxk−1) ∝ p(yk−1|xk−1) p(xk | xk−1) ηk−1(dxk−1).

The backward transitions Mk,ηk−1
coincide with the ones discussed in (9.57).

Our next objective is to provide an analytic expression of these Markov transitions. To
this end, we observe that

η̂k−1(dxk−1) = N
(
X̂k−1, Pk−1

)
(dxk−1) and Xk = Ak Xk−1 + ak +Wk.

Applying the updating formula (4.15) to the Bayes’ rule (9.97), we readily check
that

M̂k,η̂k−1
(xk, dxk−1) = N

(
m̃k−1(xk), P̃k−1

)
(dxk−1)

with

m̃k−1(xk) := X̂k−1+G̃k−1 (xk−(AkX̂k−1+ak)) and P̃k−1 = (Id−Gk−1Ak)Pk−1

(9.98)
with the gain matrix

G̃k−1 = Pk−1A
′
k (AkPk−1A

′
k +Rv

k)
−1

= Pk−1A
′
k

(
P−
k

)−1
.

In other words, (9.96) is the distribution of the backward random trajectories

X̃(n)
n → X̃

(n)
n−1 → . . . → X̃

(n)
1 → X̃

(n)
0
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defined by the backward equations

X̃
(n)
k−1 = m̃k−1

(
X̃

(n)
k

)
+ W̃k−1

with X̃
(n)
n ∼ N

(
X̂−

n , P−
n

)
, and a sequence W̃k of i.i.d. centered Gaussian variables with

covariance matrices P̃k.

This also implies that the conditional mean and covariance matrices of this Gaus-
sian linear model

X
(n)

k = E
(
X̃

(n)
k | (Y0, . . . , Yk−1)

)

Σ
(n)
k = E

((
X̃

(n)
k −X

(n)

k

)(
X̃

(n)
k −X

(n)

k

)′
| (Y0, . . . , Yn−1)

)

satisfy the backward recursive formula



X
(n)

k = m̃k

(
X

(n)

k+1

)

Σ
(n)
k = P̃k + G̃k Σ

(n)
k+1G̃′

k = Pk + G̃k

(
Σ

(n)
p+1 − P−

p+1

)
G̃′

k

with final time horizon condition
(
X

(n)

n ,Σ
(n)
n

)
=

(
X̂−

n , P−
n

)
.

The covariance formula follows from the fact that

X̃
(n)
k −X

(n)

k =
[
m̃k

(
X̃

(n)
k+1

)
− m̃k

(
X

(n)

k+1

)]
+ W̃k = G̃k (X̃

(n)
k+1 −X

(n)

k ) + W̃k

and
Pk − G̃k P−

k+1

(
P−
k+1

)−1
Ak+1Pk︸ ︷︷ ︸

:=G̃′
k

=
(
Id− G̃kAk+1

)
Pk = P̃k−1.

9.9.6.3 Ensemble Kalman filters

In the further development of this section, the observation sequence Yn = yn is assumed
to be fixed, with n ≥ 0. In this situation, the Kalman filter is a deterministic sequence of
variables defined by the recursions (9.92) and (9.93).

Definition 9.9.2 We let X̃−
n be a Gaussian random variable with distribution

ηn = N (X̂−
n , P−

n ) and we set

X̃n := X̃−
n +Gn (yn − (BnX̃

−
n + bn + Vn)) (9.99)

with some collection of independent (and independent of X̃−
n ) Gaussian random

variables Vn with distribution N (0, Rv
n).

Lemma 9.9.3 The random variable X̃n defined in (9.99) is a Gaussian random
variable with mean X̂n and covariance matrix Pn.
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Proof :
By construction, X̃n is a Gaussian random variable with mean

E(X̃n) = X̂−
n +Gn (yn − (BnX̂

−
n + bn)) = X̂n

and covariance matrix

E
(
(X̃n − E(X̃n))(X̃n − E(X̃n))

′
)

= (Id−GnBn)P
−
n (Id−GnBn)

′ +GnR
v
nG′

n

= (Id−GnBn)P
−
n = Pn.

The covariance formula follows from

X̃n − E(X̃n) = (Id−GnBn)
(
X̃−

n − X̂−
n

)
−GnVn

and

GnR
v
nG′

n − (Id−GnBn)P
−
n B′

nG′
n = Gn (R

v
n +BnP

−
n B′

n)G′
n − P−

n B′
nG′

n = 0.

This ends the proof of the lemma.

Using the prediction formula (9.93), we also check the following technical lemma.

Lemma 9.9.4 We have

X̃n ∼ N (X̂n, Pn) ⇒ X̃−
n+1 = An+1 X̃n + an+1 +Wn+1 ∼ N (X̂−

n+1, P
−
n+1)

with some Gaussian random variables Wn+1 (independent of X̃n) with distribution
N (0, Rw

n+1).

Given some probability measure η on Rd, we denote by P̃η the covariance matrix defined
by

P̃η := η
(
[ϕ− η(ϕ)] [ϕ− η(ϕ)]

′)

with the column identity vector ϕ(x) = x ∈ Rp. In this notation, the gain matrix Gn can
be rewritten as follows:

Gn = P̃ηn
B′

n(BnP̃ηn
B′

n +Rv
n)

−1 := G̃n,ηn
.

The Kalman filter recursion (9.91) can be interpreted as the evolution of the mean
and the covariance matrix of the nonlinear Markov chain model

X̃−
n

updating/analysis
−−−−−−−−−−−−−−−−−−−→ X̃n := X̃−

n + G̃n,ηn (Yn − (BnX̃
−
n + bn)− Vn)

prediction/forecast
−−−−−−−−−−−−−−−−−−→ X̃−

n+1 = An+1 X̃n + an+1 +Wn+1

starting at some Gaussian random variable X̃−
0 ∼ N (X̂−

0 , P−
0 ). In data assimila-

tion and computer science literature the updating and prediction transitions are
often called the analysis-forecast transitions.



Computational toolbox 285

Note that these Markov chain models belong to the class of nonlinear Markov chain
models (7.31) discussed in section 7.10.2. Their N -mean field particle interpretations (7.27)
are defined in terms of a Markov chain evolving in the product space (Rp)N

(X̃−,i
n )1≤i≤N

analysis
−−−−−−−−→ (X̃i

n)1≤i≤N

forecast
−−−−−−−→

(
X̂−,i

n+1

)
1≤i≤N

. (9.100)

The parameter N stands for the number of particles and the precision of the stochastic
algorithm. We set ηNn := 1

N

∑
1≤i≤N δX̃−,i

n
, we consider a sequence (V i

n,W
i
n)1≤i≤N of inde-

pendent copies of the random variables (Vn,Wn), and we let (X̃−,i
0 )1≤i≤N be N i.i.d. copies

of X̃−
0 .

The evolution of the N -mean field particle model (a.k.a. ensemble Kalman filter)
is defined for any 1 ≤ i ≤ N by the synthetic diagram

X̃−,i
n

updating/analysis
−−−−−−−−−−−−−−−−−−−→ X̃i

n := X̃−,i
n + G̃n,ηN

n
(Yn − (BnX̃

−,i
n + bn)− V i

n)

prediction/forecast
−−−−−−−−−−−−−−−−−−→ X̃−,i

n+1 = An+1 X̃i
n + an+1 +W i

n+1.

The continuous time version of the ensemble Kalman filters discussed above is presented
in some details in section 18.5.5.

9.9.6.4 Interacting Kalman filters

Suppose that at every time step the state of a Markov chain with two coordinates (Θn, Xn)
is partially observed according to the following schematic picture

Θ0 −→ Θ1 −→ Θ2 −→ . . .
↓ ↓ ↓
X0 −→ X1 −→ X2 −→ . . .
↓ ↓ ↓
Y0 Y1 Y2 . . .

(9.101)

We assume that Θn is a Markov chain evolving in some state spaces Ξn. Given a realization
of the chain Θn, we assume that the pair signal observation (Xn, Yn) is given by

{
Xn = An(Θn) Xn−1 + an(Θn) +Wn , n ≥ 1
Yn = Bn(Θn) Xn + bn(Θn) + Vn , n ≥ 0

(9.102)

for some collection of matrices and vectors An(θ), Bn(θ), an(θ), bn(θ), indexed by θ ∈ Ξn, of
the same dimension as the matrices and vectors (An, Bn, an, bn) introduced in (9.89). Using
Bayesian notation, by (9.94) we have

p(y0, . . . , yn|θ0, . . . , θn) =
∏

0≤k≤n

Gk(θk)

with

θk :=
(
θk, X̂

−
k,θ, P

−
k,θ

)

Gk(Θk) := N (Bk(θk) X̂
−
k,θ + bk(θk), Bk(θk)P

−
k,θB

′
k(θk) +Rv

k)(yk)
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where (X̂−
k,θ, P

−
k,θ) stands for the conditional mean and covariance matrix of the forward

Kalman filters. Given (Θ0, . . . ,Θk) = (θ0, . . . , θk), the sequence (X̂−
k,θ, P

−
k,θ) is given by (the

deterministic) forward Kalman filter recursion. Thus, the sequence of variables Θn forms
a Markov chain with some Markov transition Mn and some initial distribution η0. On the
other hand, the posterior distribution

p(d(θ0, . . . , θn)|y0, . . . , yn) ∝ p(y0, . . . , yn|θ0, . . . , θn) p(d(θ0, . . . , θn))

is the (θ0, . . . , θn)-marginal of the Feynman-Kac measures



∏
0≤k≤n

Gk(θk)


× p(d(θ0, . . . , θn)).

The N -mean field particle interpretations of the Feynman-Kac measures defined above can
be interpreted as a sequence of N interacting Kalman filters.

For fixed parameter Θn = Θn−1 := Θ, the posterior distribution of the unknown pa-
rameter Θ is given by

p(dθ|y0, . . . , yn) ∝ p(y0, . . . , yn|θ) p(dθ) with p(y0, . . . , yn|θ) =
∏

0≤k≤n

hk(θ)

and the positive functions

hn(θ) := N (Bn(θ) X̂
−
n,θ + bn(θ), Bn(θ)P

−
k,θB

′
k(θ) +Rv

k)(yk).

These target probability measures have the same form as the ones discussed in (9.88). They
can be approximated using the interacting MCMC methodologies discussed in section 9.9.1.

9.10 Exercises
Exercise 118 (Parameter inference - Direct observation) Suppose that we are
observing the random states Xn of the {0, 1}-valued Markov chain presented in (7.11).
Propose an estimate of the parameter q.

Exercise 119 (Gaussian restrictions) Check that the r.v. defined in (9.3) is dis-
tributed according to the Gaussian distribution restricted to the set [a, b].

Exercise 120 (A random direction Monte Carlo sampler) Consider a Boltzmann-
Gibbs probability measure ν(dx) ∝ e−U(x)dx on R associated with some potential function
U : R �→ R (s.t. the Gibbs measure is well defined). We let µ(dv) be any symmetric
probability measure on R (in the sense that V ∼ µ ⇒ (−V ) ∼ µ).

• We consider the Markov chain Xn = (Vn, Xn) on S = (R×R) with elementary transition
defined for any (x, v) ∈ R2 and any bounded function f on R2 by

Mh(f)(v, x) = f(v, x+ vh) e−(U(x+hv)−U(x))+ + f(−v, x)
(
1− e−(U(x+hv)−U(x))+

)

with some parameter h ∈ R. Check that π(d(v, x)) = µ(dv)×ν(dx) is an invariant measure
of Xn. Discuss the non-uniqueness property of the invariant measure.



Computational toolbox 287

• We denote by Xn = (V n, Xn) the Markov chain on S = (R×R) with elementary transition
defined by

Mh(f)(v, x)

=

∫
f(w, x+ vh) e−(U(x+hv)−U(x))+µ(dw) +

∫
f(w, x)

(
1− e−(U(x+hv)−U(x))+

)
µ(dw).

Check that

Mh = MhK with the transition K(f)(v, x) =

∫
f(w, x) µ(dw).

This shows that the chain Xn is defined as Xn but at each time we regenerate the velocity
component according to the distribution µ. In this situation, the velocity coordinates V n

are independent copies of a random variable W with distribution µ (assuming implicitly
that V 0 ∼ µ). Prove that the second coordinate Xn resumes to a Metropolis-Hastings
sampler with transitions

P (x, dy) := P
(
Xn+1 ∈ dy | Xn = x

)

= P (x, dy) a(x, y) +

(
1−

∫
P (x, dz) a(x, z)

)
δx(dy),

with the proposal transition

P (x, dy) = P (x+W ∈ dy) ,

and the acceptance rate

a(x, y) = e−(U(y)−U(x))+ = min

(
1,

ν(dy)P (y, dx)

ν(dx)P (x, dy)

)
.

The continuous time version of this sampler is discussed in exercise 217 (see also exer-
cise 229).

Exercise 121 (Gibbs sampler on a disk and its boundary) We let M be the Markov
transition of the chain Zn presented in (9.5). Prove that πM = π, where π is the uniform
measure on the unit disk. Describe the Gibbs sampler associated with the uniform target
measure η on the circle {(x, y) : x2 + y2 = 1} given by

η(d(x, y)) =
1

π

1√
1− x2

1]−1,1[(x) dx × 1

2

[
δ−

√
1−x2 + δ√1−x2

]
(dy).

Check that the sampler starting at
(

x
y

)
gets stuck on the four states

{(
x
y

)
,

(
x
−y

)
,

(
−x
−y

)
,

(
−x
y

)}
.

This example shows that Cartesian coordinates only offer two possible directions for the
exploration of the boundary. We refer to exercises 125, 132 and 133 for the design of more
flexible direction free Gibbs samplers and related stochastic billiards processes. We also refer
to section 23.3.1 for other examples of uniform measures on boundary surfaces of embedded
manifolds.
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Exercise 122 (Metropolis-Hastings Poisson sampling) We consider the Poisson dis-
tribution π on N given by

∀x ∈ N π(x) = e−λ λx

x!
for some given λ > 0. We let K be the Markov transition of the simple random walk on N
given by

∀x ∈ N− {0} K(x, y) =
1

2
1x−1(y) +

1

2
1x+1(y).

For x = 0, we let K(0, 1) = 1. Describe the acceptance ratio (9.10) of the Metropolis-
Hastings model with proposal transition K.

Exercise 123 (Metropolis-Hastings Gaussian sampling) We let π(x) be the Gaus-
sian density with mean m and variance σ2. We let K(x, y) be the Gaussian transition

K(x, y) =
1√
2πτ2

exp

(
− 1

2τ2
(y − x)2

)
.

Describe the acceptance ratio (9.10) of the Metropolis-Hastings model with proposal transi-
tion K.

Exercise 124 (Ball walk Metropolis-Hastings sampler) For any given x ∈ Rr we let
Kε(x, dy) be the uniform distribution on the ball B(x, ε) := {y ∈ Rr : ‖x−y‖ ≤ ε} centered
at x with radius ε. Describe a Metropolis-Hastings sampler with proposal transition Kε and
a prescribed target measure π(dx) = p(x) dx with a density p(x).

Exercise 125 (Hit-and-run and direction-free Gibbs samplers [50])
Let X = (Xj)1≤j≤r be a random variable with a probability distribution η(dx) = p(x)dx

having a positive density p(x) w.r.t. the Lebesgue measure dx on Rr, for some r ≥ 1. Let
A be the set of lines A(x, u) := {x+ tu : ‖u‖ = 1} indexed by x ∈ Rr and unit vectors u.
We let ν(du) be the uniform distribution on the unit sphere Sr−1 := {u ∈ Rr : ‖u‖ = 1}.
Let ηx,u(dz) be the restriction of η to the line A(x, u) defined by

ηx,u(dz) =

∫
p(x+ tu) dt∫
p(x+ su) ds

δx+tu(dz).

We consider the Markov transition M(x, dy) defined by

M(x, dy) =

∫
ν(du) ηx,u(dy).

Check that
∀u ∈ Sr−1

∫
η(dx) ηx,u(dz) = η(dz) and ηM = η.

• Design a Markov transition with a target measure η when the density p(x) is supported
by an open bounded subset S ⊂ Rr. For any x �= y we set vx,y := (y − x)/‖y − x‖ ∈ S1.
When r = 2 check that M(x, dy) = m(x, y) dy, with the Lebesgue measure dy on R2 and
the probability density

m(x, y) =
1

π

p(y)

‖x− y‖
/

∫

S(x,vx,y)

p(x+ tvx,y) dt

with S(x, u) := {t ∈ R : x + tu ∈ S}. When p is bounded, check that m(x, y) ≥ ε p(y),
for some parameter ε > 0 whose values do not depend on (x, y). Deduce that

∥∥∥µMn − η
∥∥∥
tv

≤ (1− ε)n ‖µ− η‖tv

for any initial distribution µ on S.
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• Discuss the situation when ν is not necessarily uniform.

• Consider the case ν = 1
r

∑
1≤i≤r δei , where ei = (1i(j))1≤j≤r stands for the r unit vectors

of Rr. Check that

∀1 ≤ i ≤ r ηX,ei = Law (Xi | X−i) with X−i := (X1, . . . , Xi−1, Xi+1, . . . , Xr) .

Compare the resulting sampler with the Gibbs sampler associated with (9.13).

Exercise 126 (Hit-and-run vs Gibbs samplers) Consider some random variable X with
a target measure η(dx) on some state space SX . Let K(x, dy) be a Markov transition from
SX into a possibly different state space SY . We denote by (X,Y ) a random variable with
distribution π(d(x, y)) = η(dx)K(x, dy). Assume that the following reversibility property
(a.k.a. Bayes’ rule) is satisfied

η(dx) K(x, dy) = (ηK)(dy) M(y, dx)

for some Markov transition M(y, dx) from SY into SX . Design a Gibbs sampler with
target measure π = Law(X,Y ). Illustrations of these hit-and-run samplers are discussed in
exercises 127 and 128, see also the survey article [3] for applications to contingency tables,
discrete exponential families, single move Metropolis-Hastings samplers, slice sampling and
burnside processes.

Exercise 127 (Hit-and-run and Gibbs-Glauber samplers) Let X be a real-valued ran-
dom variable with a probability density p(x) > 0 w.r.t. the Lebesgue measure dx. Also let U
be a uniform random variable on {−1,+1} independent of X. We consider the observation
Y = X + U . Check that

P(Y ∈ dy) =
1

2
[p(y + 1) + p(y − 1)] dy and P (Y ∈ dy | X) =

1

2
[δX−1 + δX+1] (dy)

as well as

P (X ∈ dx | Y ) =
p(Y − 1)

p(Y + 1) + p(Y − 1)
δY−1(dx) +

p(Y + 1)

p(Y + 1) + p(Y − 1)
δY+1(dx).

Design a Gibbs sampler with target measure π = Law(X,Y ). Discuss the situation when U
is a uniform random variable on {−h,+h}, for some h > 0. A continuous time version of
this sampler is discussed in exercise 179.

Exercise 128 (Hit-and-run - Conditional distributions [15]) Let X be an Rr-valued
random variable with a probability density p(x) > 0 w.r.t. the Lebesgue measure dx. We
also denote by S = {x ∈ Rr : ‖x‖ ≤ 1} the unit sphere and ∂S = {u ∈ Rr : ‖u‖ = 1}
its boundary equipped with the uniform distribution ν(du). Also let U be a uniform random
variable on ∂S and let T be an R-valued random variable with distribution µ. Assume that
(X,U, T ) are independent. We consider the observation Y = (U,Z) with Z := X + TU .
Check the conditional distribution formulae

P ((U,Z) ∈ d(u, z) | X) = ν(du)

∫
µ(dt) δX+tu(dz)

and
P (Z ∈ dz | U) =

[∫
p(z − tU) µ(dt)

]
dz

as well as
P (X ∈ dx | (U,Z)) =

∫
p (Z − tU) µ(dt)∫
p (Z − sU) µ(ds)

δZ−tU (dx).

Design a Gibbs sampler with target measure π = Law(X,Y ).
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Exercise 129 (Transformation group MCMC 1) Let X be a random variable with the
uniform distribution η(dx) on a bounded open subset S ⊂ Rr. There is no loss of generality
to assume that 0 ∈ S and we equip Rr with the Cartesian coordinates associated with r
unit vectors ei = (1i(j))1≤j≤r of Rr. Let µ be some probability distribution on the special
orthogonal group G = SO(r) (a.k.a. the rotation group). For any matrix g ∈ G we set
g(S) := {g(x) : x ∈ S}, and ηg(dx) ∝ 1g(S)(x) dx, and we let Mg(x, dy) be a Markov
transition on g(S) ⊂ Rr (equipped with the cartesian coordinates) such that ηg = ηgMg. We
consider the Markov transitions on S defined by

Mg(x, dy) =

∫

g(S)

δg(x)(dx
′)

∫

g(S)

Mg(x
′, dy′) δg−1(y′)(dy)

M(x, dy) =

∫

G

µ(dg) Mg(x, dy).

For any x ∈ g(S) we let Tg.x be a random variable with distribution Mg(x, dy) on g(S).
Check that ηg = Law(g(X)) and g−1Tg.g(X)

law
= X. Deduce that η = ηMg and η = ηM .

Discuss the situation where η(dx) ∝ p(x) 1S(x) dx, for some density function p(x) w.r.t.
the Lebesgue measure dx. Discuss the choice of the MCMC transition Mg and extend these
samplers to any target distribution and any group of transformations.

Illustrations of these transformation group MCMC samplers are discussed in exercises 131
and 132.

Exercise 130 (Transformation group MCMC 2) We consider the MCMC sampler dis-
cussed in exercise 129. We further assume that η(dx) has a density p(x) and (G, ν) are
chosen so that g(S) = S for any g ∈ G and

H ∼ ν ⇒ H−1 ∼ ν and ∀g ∈ G H ◦ g ∼ ν.

Let K(x, dg), resp. K(x, dy), be the Markov transition from S into G, resp. S, defined by

K(x, dg) :=
p(g(x)) |∂g(x)/∂x| ν(dg)∫

G
p(h(x)) |∂h(x)/∂x| ν(dh)

K(x, dy) =

∫

G

K(x, dg) δg(x)(dy)

where |∂g(x)/∂x| stands for the Jacobian of x �→ g(x). Check that ηK = η.

Exercise 131 (Hit-and-run vs rotation group MCMC) We consider the rotation group
MCMC sampler discussed in exercise 129 when r = 2 and S = [−1, 1] × [−1, 1]. We let
µ be the uniform distribution on S0(2) associated with the uniform distribution ν(dθ) on
the set of angles [0, 2π]. Following exercise 121, describe some Gibbs samplers with the
target uniform measures ηgθ where gθ stands for the rotation with angle θ. For any i = 1, 2,
g ∈ SO(2) and any x′ ∈ g(S) we let

M (i)
g (x′, dy′) ∝

∫

Ti,g(x′)

dt δx′+tei(dy
′) with Ti,g(x′) := {t ∈ R : x′ + tei ∈ g(S)} .

Check that for any x ∈ S, g ∈ SO(2) and any i = 1, 2 we have

Tg(x) = x+ tei =⇒ g−1Tg.g(x) = x+ t g−1(ei).

Describe the rotation group MCMC on S associated with the collection of Gibbs samplers
on g(S) with probability transition Mg := 1

2

(
M

(1)
g +M

(2)
g

)
, with g ∈ SO(2). Discuss the

connections between this rotation group MCMC and the hit-and-run sampler discussed in
exercise 125.
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Exercise 132 (Direction free Gibbs sampling on boundary surfaces) We consider
the direction free MCMC sampler discussed in exercise 129 and exercise 131. We assume
that r = 2 and the set S is given by the boundary of the cell discussed in exercise 131, that
is,

S = ∂ ([−1, 1]× [−1, 1]) := ({−1, 1} × [−1, 1]) ∪ ([−1, 1]× {−1, 1}) .

Describe different ways of sampling the uniform probability measures

η(d(x1, x2)) ∝ (δ−1(dx1) + δ1(dx1)) 1[−1,1](x2) dx2

+1[−1,1](x1) dx1 (δ−1(dx2) + δ1(dx2))

ηgπ/4
(d(x1, x2)) ∝ 1[0,

√
2](x1) dx1

(
δ−(

√
2−x1)

(dx2) + δ√2−x1
(dx2)

)

+1[−
√
2,0](x1) dx1

(
δ−(

√
2+x1)

(dx2) + δ√2+x1
(dx2)

)
.

Check that for any subset C ⊂ S of length c we have P (X ∈ C) = c/8 where X stands for
a random variable with distribution η of ηgθ , for some θ ∈ [0, 2π]. Following exercises 121
and 131, design some Gibbs samplers with these target uniform measures. Describe the
rotation group MCMC with transition M associated with these objects.

Exercise 133 (Shake-and-bake/Stochastic billiards) When S is given by the bound-
ary of bounded polyhedra the direction free sampler discussed in exercise 132 is equivalent
to the shake-and-bake samplers discussed in [27]. The direction free MCMC discussed above
provides an alternative and simple way of designing stochastic billiards processes as the ones
discussed in [55] and [124]. To illustrate these models, let us suppose that D ⊂ R2 is an
open and smooth convex surface s.t. S = ∂D is the null level set ∂D = ϕ−1({0}) of a con-
tinuously differentiable function s.t. ∂y2ϕ(y1, y2) �= 0 on ∂D. We let ν(du) be the uniform
distribution on the unit sphere S1 := {u ∈ R2 : ‖u‖ = 1}. For any x ∈ S we let n(x) be
the outward pointing unit normal (column) vector to the curve ∂D and we set

rx : u ∈ S1 �→ rx(u) = 1〈u,n(x)〉>0 (Id− 2n(x)n(x)′) (u) + u 1〈u,n(x)〉≤0.

In the above display, (.)′ stands for the transpose operator. Check that rx is the reflection
w.r.t. the tangent line Tx(D) at the surface at x ∈ ∂D. We let S1x be the set of admissible
directions starting from x in the sense that x+ εu ∈ D for some ε ≥ 0; more formally, we
have

S1x := {u ∈ S1 : 〈u, n(x)〉 ≤ 0}.
We let Ux be a random variable with distribution νx(du) ∝ ν(du) 1S1x(u). Consider the
Markov chain on S = ∂D with elementary transition M defined by

M(f)(x) := E (f(x+ t(x, Ux)Ux)) =
1

ν(S1x)

∫

S1x
f(x+ t(x, u)u) 1S1x(u) ν(du)

with the hitting time
t(x, u) := inf {t ≥ 0 : x+ tu ∈ ∂D}.

Check that
M(x, dz) ∝ 1

‖z − x‖

〈
z − x

‖z − x‖
, n(z)

〉
σ(dz)

with the surface measure σ(dz) on S. (hint: using the implicit function theorem
around any hitting point z = (z1, z2), the set S can be seen locally as a graph (z1, h(z1))
of some height function h in Cartesian coordinates. The surface measure σ(dz) expressed
in this parametrization is discussed on page 647.) Discuss the situation S = ∂D = {x ∈
R2 : ‖x‖ = R}.
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Exercise 134 (Knudsen random walk) We consider the stochastic billiard model dis-
cussed in exercise 133. We examine the situation where νx is replaced by the measure

νx,κ(du) ∝ κx(u)νx(du) with κx(u) = −〈u, n(x)〉 = |〈u, n(x)〉| .

Check that

M(x, dz) ∝ 1

‖z − x‖

〈
x− z

‖x− z‖
, n(x)

〉 〈
z − x

‖z − x‖
, n(z)

〉
σ(dz).

Prove that M is reversible w.r.t. σ. Deduce that the uniform measure on S is an invariant
probability measure. The Markov chain associated with the above cosine law of reflection is
often called the Knudsen random walk or the Knudsen stochastic billiard. Further details on
the long time behavior of these stochastic models can be found in [55]. Discuss the situation
S = ∂D = {x ∈ R2 : ‖x‖ = R}.

Exercise 135 (Slice sampling) Let X be an Rr-valued random variable with distribution
η(dx) ∝ p(x)dx for some non-necessarily normalized density p(x) > 0 w.r.t. the Lebesgue
measure dx. Let Y = p(X)U for some uniform random variable U on [0, 1], independent of
X. Check that

P (X ∈ dx | Y ) =
1∫

1p−1([y,∞[)(x′) dx′ 1p−1([y,∞[)(x) dx

and design a Gibbs sampler with target measure π = Law(X,Y ).

Exercise 136 (Hit-and-run and MCMC within Gibbs) Consider the hit-and-run sam-
pler discussed in exercise 126. For each given y ∈ SY let M ′

y(x, dx
′) be a Markov transition

on SX s.t. ∫

SX

M(y, dx) M ′
y(x, dx

′) = M(y, dx′).

Check that η is an invariant measure of the Markov transition K ′ given

K ′(x, dx′) :=

∫
K(x, dy) M ′

y(x, dx
′).

Exercise 137 (Auxiliary variable - MCMC within Gibbs [3]) Let η be the Boltzmann-
Gibbs measure on some state space S given by

η(dx) =
1

Z
exp




∑
1≤i≤r

Vi(x)


 λ(dx)

where λ stands for some reference measure on S and (Vi)1≤i≤r a collection of potential
functions s.t. 0 < Z < ∞. We let (Ui)1≤i≤r be a sequence of independent uniform random
variables on ]0, 1[ and X an independent random variable with distribution η. Consider the
observation sequence Y = (Yi)1≤i≤r with

∀1 ≤ i ≤ r Yi = eVi(X) Ui.

Check that the conditional distribution of Y given X is the uniform distribution on the r-cell∏
1≤i≤r

[
0, eVi(X)

]
. Deduce that

M(y, dx) := P (X ∈ dx | Y ) ∝




∏
1≤i≤r

1[0,eVi(x)](Yi)


 λ(dx).

For each given y let M ′
y(x, dx

′) be a Markov transition on S with invariant measure M(y, dx).
Design a MCMC within Gibbs sampler with target measure η.
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Exercise 138 (Gibbs sampling - Conjugate priors) We let I and J be some finite
sets and (V1, V2) be a couple of independent random variables with inverse Gamma distribu-
tions with shape parameters (ai)i=1,2 and scale parameters (bi)i=1,2, that is, for i ∈ {1, 2},

P(Vi ∈ dx) =
bai
i

Γ(ai)

1

xai+1
exp

(
−bi
x

)
1]0,∞[(x) dx.

Given V1, we let Z be a Gaussian random variable with some given mean m and variance v.
Given (V1, Z), we let (Xi)i∈I be a sequence of i.i.d. Gaussian random variables with mean
Z and variance V1, and (Wi,j)(i,j)∈(I×J) be a sequence of i.i.d. centered Gaussian random
variables with variance V2. We associate with these objects the variance component model

∀(i, j) ∈ (I × J) Yi,j = Xi +Wi,j .

• Given Y = (Yi,j)(i,j)∈(I×J) = (yi,j)(i,j)∈(I×J), Z = z and (V1, V2) = (v1, v2) show that
the X = (Xi)i∈I are independent Gaussian random variables with mean and variance
parameters

(
α ((yi,j)j∈J , v1, v2) , σ

−2(v)
)
i∈I

given by

∀i ∈ I σ−2(v1, v2) =

(
1

v1
+

|J |
v2

)
and α ((yi,j)j∈J , v1, v2) =

z
v1

+ 1
v2

∑
j∈J yi,j

1
v1

+ |J|
v2

.

• Check that the conditional distribution of V1 given X = (Xi)i∈I = x, Y = (Yi,j)(i,j)∈(I×J) =
y and (Z, V2) = (z, v2) coincides with the conditional distribution of V1 given X = x and
Z = z; and it is given by an inverse Gamma distribution with shape parameter A1(a1)
and scale parameter B1(b1, z) given by

A1 =
|I|
2

+ a1 and B1(z) = b1 +
1

2

∑
i∈I

(xi − z)2.

• Check that the conditional distribution of V2 given X = (Xi)i∈I = x, Y = (Yi,j)(i,j)∈(I×J) =
y and (Z, V1) = (z, v1) coincides with the conditional distribution of V2 given Y = y and
X = x; and it is given by an inverse gamma distribution with shape parameter A2(a2)
and scale parameter B2(b2, x, y) given by

A2 =
|I|
2

+ a2 and B2(x, y) = b2 +
1

2

∑
(i,j)∈(I×J)

(yi,j − xi)
2.

• Prove that the conditional distribution of Z given X = (Xi)i∈I = x, Y = (Yi,j)(i,j)∈(I×J) =
y and (V1, V2) = (v1, v2) coincides with the conditional distribution of Z given X = y and
V1 = v1; and it is given by a Gaussian probability with mean and variance (β(x, v1), τ2(v1))
defined by

τ−2(v1) =

(
|I|
v1

+
1

v

)
and β(x, v1) =

(
m

v
+

1

v1

∑
i∈I

xi

)
/

(
|I|
v1

+
1

v

)
.

• Design a Gibbs sampler targeting the conditional distribution of the random variables
(X,Z, V1, V2) given the sequence of observations Y = (Yi,j)(i,j)∈(I×J).

Exercise 139 (Filtering one-dimensional signals) We consider the 1d-nonlinear fil-
tering problem defined by {

Xn = an(Xn−1) +Wn

Yn = bn(Xn) + Vn.
(9.103)

We assume that X0,Wn and Vn are i.i.d. centered Gaussian random variables with unit
variance, and (an, bn) are some possibly nonlinear functions on R.
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• Describe the posterior distributions of Xn and (Xk)0≤k≤n given the sequence of observa-
tions (Yk)0≤k<n in terms of Feynman-Kac measures (Qn, γn, ηn) defined in (9.21) and
(9.23).

• Describe the density of the observations (Yk)0≤k≤n evaluated at some observation path se-
quence (yk)0≤k≤n in terms of the normalizing constants of Feynman-Kac measures (9.23).

• Describe the time evolution of the posterior distributions of Xn given the sequence of
observations (Yk)0≤k<n.

Exercise 140 (Particle filters for one-dimensional signals) We consider the 1d-nonlinear
filtering problem defined in (9.103).

• Design a particle methodology to estimate the conditional probabilities of the random states
Xn given the sequence of observations (Yk)0≤k<n, and propose an unbiased estimate of
the density of the observations (Yk)0≤k≤n.

• Propose a couple of estimates of the the conditional probabilities of the random trajectories
(Xk)0≤k≤n given the sequence of observations (Yk)0≤k<n.

Exercise 141 (Particle filters - Likelihood estimation) We consider the 1d-nonlinear
filtering problem defined in (9.103).

• We further assume that bn(Xn) = cn(Xn) + θ dn(Xn) for some parameter θ ∈ R and for
given functions (cn, dn). We let pθ(y0, . . . , yn) be the density of the observations (Yk)0≤k≤n

associated with a fixed parameter θ. Show that

∂

∂θ
log pθ(y0, . . . , yn) =

E
(
Ln,θ(X0, . . . , Xn)

∏
0≤k≤n Gθ,k(Xk)

)

E
(∏

0≤k≤n Gθ,k(Xk)
)

with the likelihood functions

Gθ,k(xk) ∝ exp

(
−1

2
(yk − ck(Xk)− θdk(Xk))

2

)
(9.104)

and the additive functional

Ln,θ(X0, . . . , Xn) =
∑

0≤k≤n

lθ,k(Xk) with lθ,k(xk) =
∂

∂θ
logGθ,k(xk).

• Propose a couple of particle estimates of
∂

∂θ
log pθ(y0, . . . , yn).

Exercise 142 (Particle filters - Many body particle models) We consider the 1d-
nonlinear filtering problem defined in (9.103).

• Describe the posterior distributions of Xn given the sequence of observations (Yk)0≤k<n

in terms of Feynman-Kac measures (γn, ηn) defined in (9.23).

• Describe the many-body Feynman-Kac measures associated with the mean field particle
interpretation of the measures (γn, ηn).
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Exercise 143 (Particle filters and smoothing) We consider the 1d-nonlinear fil-
tering problem defined by {

X ′
n = an(X

′
n−1) +Wn

Yn = bn(X
′
n) + Vn.

(9.105)

We assume that X ′
0,Wn and Vn are i.i.d. centered Gaussian random variables with unit

variance, and (an, bn) are some possibly nonlinear functions on R.

• Describe the posterior distributions of Xn = (X ′
0, . . . , X

′
n) ∈ Rn+1 given the sequence of

observations (Yk)0≤k<n in terms of the Feynman-Kac measures (γn, ηn) defined in (9.23).

• Compute (γn, ηn) in terms of the occupation measures of the genealogical tree model as-
sociated with a genetic type process.

• Describe the many-body Feynman-Kac measures associated with the mean field particle
interpretation of the measures (γn, ηn).

• Design a particle Metropolis-Hastings algorithm to approximate the posterior distribution
of the signal trajectories Xn = (X ′

0, . . . , X
′
n) ∈ Rn+1 given the sequence of observations

(Yk)0≤k<n.

Exercise 144 (Particle Gibbs-Glauber samplers - Smoothing problems) We con-
sider the 1d-nonlinear filtering problem defined in (9.105).

• Describe the posterior distributions of Xn = (X ′
0, . . . , X

′
n) ∈ Rn+1 given the sequence of

observations (Y ′
k)0≤k<n in terms of Feynman-Kac measures on the path space (γn, ηn).

• Compute (γn, ηn) in terms of the occupation measures of the genealogical tree model as-
sociated with a genetic type process.

• Describe the many-body Feynman-Kac measures associated with the mean field particle
interpretation of the measures (γn, ηn).

• Describe the dual mean field model with frozen trajectory Xn on some given time horizon
n.

• Design a couple of particle Gibbs-Glauber algorithms to approximate the posterior distri-
bution of the signal trajectories Xn ∈ Rn+1 given the sequence of observations (Yk)0≤k<n.
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Part IV

Continuous time processes
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10
Poisson processes

Perhaps the simplest examples of continuous time stochastic processes are the counting
processes. By including a bit more structure into these, we obtain the (homogeneous or in-
homogeneous) Poisson processes and the Bernoulli process. We discuss important properties
of Poisson processes in this chapter, such as the memoryless property and the Doeblin-Itō
formula. Poisson processes and their generalizations have found a variety of applications
and it is important to be able to sample such processes. We briefly discuss the Poisson
thinning simulation technique.

The probability of an event is the reason we have to believe
that it has taken place, or that it will take place.
Siméon Denis Poisson (1781-1840).

10.1 A counting process
We let (En)n≥1 be a sequence of independent expo-
nential random variables with parameter λ > 0, and
we consider the random times

Tn = Tn−1 + En :=
∑

1≤p≤n

Ep with T0 =
∑
∅

= 0.

By construction, we have

P ((T1, . . . , Tn) ∈ d(t1, . . . , tn))

= [1[0,∞)(t1) λ e−λt1 dt1][1[t1,∞)(t2) λ e−λ(t2−t1) dt2]

. . .× [1[tn−1,∞)(tn) λ e−λ(tn−tn−1) dtn].
(10.1)

The random variables can be interpreted as the random arrivals of customers. In this
interpretation Tn is the sum of n first inter-arrival times, so that it corresponds to the
arrival time of the n-th customer.

Definition 10.1.1 The N-valued counting process Nt defined below

t ∈ R+ �→ Nt =
∑
n≥0

1[Tn,∞)(t) =
∑
n≥0

1Tn≤t (10.2)

= sup {n ≥ 1 : Tn ≤ t} = inf {n ≥ 1 : Tn+1 > t} =
∑
n≥0

1[Tn,Tn+1[(t) n

= N0 +
∑

0<Tn≤t

(NTn −NTn−) = N0 +
∑

0<n≤Nt

(NTn −NTn−)

299
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with unit jumps NTn
−NTn− = 1, is called a Poisson process with intensity λ. A randomly

sampled trajectory of this process is provided in figure 10.1.

FIGURE 10.1: Poisson process

Remark : These counting processes can be extended to not necessarily exponential inter-
arrival times. These general counting processes are sometimes called renewal processes.

10.2 Memoryless property
One of the most important properties of the Poisson process is its memoryless property
which is inherited by the exponential inter-times variables.

P (E1 > t+ s | E1 ≥ s) =
P (E1 > t+ s)

P (E1 > s)

= e−λ(t+s)/e−λs = e−λt = P (E1 > t) .

Remark :
The memoryless property of a random variable X implies that the function t �→ P (X > t)
is decreasing, satisfying the functional equation

P (X > t+ s) = P (X > t) P (X ≥ s) .
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This shows that X is an exponential type random variable. In discrete time settings, these
random variables are given by the geometric random variable G with success parameter
p ∈ [0, 1]

P (G > n+m | G > m) = P (G > n+m)/P (G > m)

= (1− p)n+m/(1− p)m = (1− p)n = P (G > n) .

(10.3)

Proposition 10.2.1 The distance Rt from t to the next arrival (after t) after some arrival
epoch does not depend on the Poisson process up to to time t, and Rt is an exponential
random variable with parameter λ.

Proof :
Using the memoryless property of the first exponential E1 (and the fact that {Nt = 0} =
{E1 > t}) we first observe that

P (Rt > r | Nt = 0) = P (E1 > t+ r | E1 > t) = P (E1 > r) = e−λr.

Given Nt = n, and Tn = s(≤ t), the next arrival after t is given by

Tn+1 = Tn + En+1

= s+ En+1 = s+ [Rt + (t− s)]︸ ︷︷ ︸
=En+1

= t+Rt.

Also notice that
{Nt = n , Tn = s} = {En+1 > (t− s) , Tn = s}.

Using the memoryless property of the first exponential En+1, we conclude that

P (Rt > r | Nt = n , Tn = s)

= P (En+1 > r + (t− s) | Nt = n , Tn = s)

= P (En+1 > r + (t− s) | En+1 > (t− s) , Tn = s)

= P (En+1 > r + (t− s) | En+1 > (t− s)) = P (En+1 > r) = e−λr.

This ends the proof of the proposition

Proposition 10.2.1 shows that the Poisson process (Nt+s)s≥0 given the valueNt = n
is a perfect replica of the process (Ns)s≥0 starting at N0 = n; in other words
(Nt+s −Nt) is independent of (Nt −N0) and it has the same distribution as Ns.
This shows that the Poisson process Nt has independent Poisson increments. More
precisely, each of them (Nt−Ns)

law
= Nt−s is a Poisson r.v. with parameter λ(t−s).

10.3 Uniform random times
The Poisson process can be interpreted as counting the number of clients arriving at ex-
ponential inter-arrival times. In this interpretation, the epochs Tn and the Poisson process
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can be easily related using the following properties

{Tn ≤ t} = {Nt ≥ n} and/or {Tn > t} = {Nt < n}.

For instance, the l.h.s. states that the n-arrival event is less than t if and only if the number
of arrivals at time t is greater than n. We also have the following equivalence

{Nt = n} = {Tn ≤ t < Tn+1} = {t < Tn+1} − {t < Tn}.

On the other hand, we have

− ∂

∂t

(
(λt)n

n!
e−λt

)
=

(λt)n

n!
λ e−λt − (λt)n−1

(n− 1)!
λ e−λt.

Recalling that Tn ∼ gamma(n, λ), cf. (4.22) on page 93), we prove that

P (Nt = n) = P (Tn ≤ t < Tn+1) = P (t < Tn+1)− P (t < Tn)

= −
∫ ∞

t

∂

∂s

(
(λs)n

n!
e−λs

)
ds =

(λt)n

n!
e−λt.

This clearly implies that

P (Tn > t) = P (Nt < n) = e−λt
∑

0≤p<n

(λt)p

p!

E(Nt) = λt.

On the other hand, using (10.1) we find that

P ((T1, . . . , Tn) ∈ d(t0, . . . , tn) ; Nt = n)

=

∫ ∞

t

P ((T1, . . . , Tn, Tn+1) ∈ d(t0, . . . , tn, tn+1))

=
(λt)n

n!

∫ ∞

t

λe−λtn+1dtn+1 ×
[
n!

tn
10≤t1≤...≤tn≤t dt1 . . . dtn

]

=
(λt)n

n!
e−λt ×

[
n!

tn
10≤t1≤...≤tn≤t dt1 . . . dtn

]
.

We summarize this discussion with the following proposition.

Proposition 10.3.1 Given Nt = n, the jump times T0, . . . , Tn are uniformly distributed
on [0, t]

P ((T1, . . . , Tn) ∈ d(t0, . . . , tn) | Nt = n) =
n!

tn
10≤t1≤...≤tn≤t dt1 . . . dtn.

10.4 Doeblin-Itō formula
Using the remark at the end of section 10.2 we prove the following result.
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For any time sequence 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn the random variables
(
Nt1 −Nt0 , Nt2 −Nt1 , . . . , Ntn −Ntn−1

)

and independent Poisson random variables with parameters

(λ(t1 − t0), λ(t2 − t1), . . . , λ(tn − tn−1)) .

In addition, the process (Nt − λt)t≥0 is a martingale w.r.t. the filtration Ft =
σ(Ns, s ≤ t).

The Doeblin-Itō formula for Nt is easily deduced from the following telescoping formula

f(Nt)

= f(N0) +
∑

0<Tk≤t(f(NTk
)− f(NTk−))

= f(N0) +
∑

0≤k≤Nt

(f(k)− f(k − 1))

= f(N0) +

∫ t

0

(f(Ns)− f(Ns−)) dNs

= f(N0) +

∫ t

0

(f(Ns− + 1)− f(Ns−)) λ ds+

∫ t

0

(f(Ns− + 1)− f(Ns−)) (dNs − λ ds)

for any function f on R.

This shows that
df(Nt) = L(f)(Nt)dt+ dMt(f)

with the infinitesimal generator

L(f)(x) = λ [f(x+ 1)− f(x)]

and the martingale

dMt(f) = (f(Nt− + 1)− f(Nt−)) (dNt − λdt)

with predictable angle bracket

〈M(f)〉t =
∫ t

0

(f(Ns− + 1)− f(Ns−))
2
λds.

Roughly speaking, the last assertion is due to

dNtdt = 0 = (dt)2 and (dNt)
2 = dNt

⇒ E((dNt − λdt)2 | Ft) = E(dNt | Ft) = λdt

⇒ E
(
dM2

t (f) | Ft

)
= E

(
(dMt(f))

2 | Ft

)
= (f(Nt− + 1)− f(Nt−))

2
λdt.
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10.5 Bernoulli process

We let (En)n≥1 be a sequence of independent exponential random variables with parameter
λ > 0, and we let h > 0 be some time mesh parameter associated with discretization of an
interval [0, t]

t0 = 0 < t1 = h < . . . < tn = nh < . . . < h�t/h� ≤ t (= h�t/h�+ h {t/h}) .

We let εhtn be a sequence of independent Bernoulli random variables with common
law

P
(
εhtn = 0

)
= 1− P

(
εhtn = 1

)
= e−λh.

We associate with these objects the geometric random variables

Th
n+1 = inf

{
tk > Th

n : εhtk = 1
}
= Th

n + Eh
n

with the geometric random variable with success parameter 1− e−λh given by

Eh
n := h inf

{
k > 0 : εhTh

n+hk = 1
}

law
= h (1 + �En/h�) . (10.4)

We refer the reader to exercise 4.7 for the description of the geometric random variable
with success parameter ph,λ = 1 − e−λh in terms of exponential random variables with
parameter − log (1− ph,λ) = λ. We also mention that the random times Th

n+1 can also be
defined sequentially in terms of the decreasing function

γTh
n

: tk ∈
[
Th
n ,∞

[
�→ γTh

n
(tk) :=

∏
Th
n<tp≤tk

e−λh = e−λ(tk−Th
n ),

starting at 0 at the time tk = Th
n and going to 0 as tk ↑ ∞. Given a sequence of uniform

random variables Un on [0, 1], we define Th
n+1 as the first time tk s.t. γTh

n
(tk) ≤ Un+1.

Th
n+1 = inf


tk > Th

n :
∏

Th
n<tp≤tk

e−λh ≤ Un+1





= inf


tk > Th

n :
∑

Th
n<tp≤tk

λh ≥ − logUn+1


 . (10.5)

Recalling that Eh
n+1

law
= h

⌊
− 1

λh logUn+1

⌋
, we find that

Th
n+1 = inf

{
tk > Th

n : (tk − Th
n ) ≥ − 1

λh
logUn+1

}
= Th

n + Eh
n+1.
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We can also check this claim using the fact that

P
(
Th
n+1 = tk | Th

n = tl
)

= P


 ∏

tl<tp≤tk

e−λh ≤ Un+1 <
∏

tl<tp≤tk−1

e−λh | Th
n




=




∏
tl<tp≤tk−1

e−λh




(
1− e−λh

)

= e−λ(tl−tk−1)
(
1− e−λh

)
=

(
e−λh

)(l−k)−1 (
1− e−λh

)
.

Definition 10.5.1 The N-valued counting process Nh
t defined below

t ∈ R+ �→ Nh
t =

∑
n≥0

n 1[Th
n ,Th

n+1[
(t) =

�t/h�∑
p=1

εhtp (10.6)

is called a Bernoulli counting process with success probability 1−e−λh. A randomly
sampled trajectory of this process is provided in figure 10.1.

The interpretation of the geometric in terms of exponential random variables (10.4)
allows coupling of the Bernoulli and the Poisson counting processes. More precisely, we
have

Th
n = Th

n−1 + Eh
n :=

∑
1≤p≤n

Eh
p with Th

0 =
∑
∅

= 0.

Using the fact that
En = h�En/h�+ h {En/h}

we find that
Tn ≤ Th

n = Tn + h
∑

1≤p≤n

(1− {En/h})

︸ ︷︷ ︸
:=τh

n

≤ Tn + nh.

This shows that the Bernoulli process has a τhn -counting delay that tends to 0 as h ↓ 0, but
it is not an obstacle to the convergence in law of the Bernoulli process Nh

t to the Poisson
process Nt, as h ↓ 0. We also recall from (1.7) that

P
(
Nh

t = n
)

=

(
�t/h�
n

) (
1− e−λh

)n
e−λh(�t/h�−n)

=




∏
1≤p<n

(
1− p

�t/h�

)


(
eλh − 1

λh

h�t/h�
t

)n

︸ ︷︷ ︸
−→h↓01

(λt)n

n!
e−λh�t/h�

−→h↓0 P (Nt = n) .

For any s ≤ r we have

Nh
r −Nh

s =

�r/h�∑
p=�s/h�+1

εhtp ⊥ Nh
s
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and for any tp < tq

Nh
tp −Nh

tq =

ph−qh∑
k=1

εhqh+kh
law
=

(p−q)h∑
p=1

εhkh = Nh
tq−tp

so that Nh
r −Nh

s
law
= Nh

r−s.

Using the memoryless property of the Bernoulli and the Poisson processes, we also
prove that

lim
h→0

Law
(
Nh

s1 , . . . , N
h
sn

)
= Law (Ns1 , . . . , Nsn)

for any sequence of times 0 ≤ s1 ≤ . . . ≤ sn, and for any n ≥ 1.

10.6 Time inhomogeneous models

10.6.1 Description of the models

We start with an elementary observation. We let E be an exponential random variable with
unit parameter. We can choose E = − logU , where U is uniform on [0, 1]. For any t ∈ R+

we have

T = inf {t ≥ 0 : tλ ≥ E} =
E
λ

= inf {t ≥ 0 : e−tλ ≤ U} = − 1

λ
logU

law
= Exp(λ).

Definition 10.6.1 We consider a bounded continuous function λ : t :∈ R+ �→ λ(t) =:
λt ∈ R+, and for any s ≤ t, with s, t ∈ R+ we set

¬s(t) =

∫ t

s

λr dr.

We notice that
∀s ≤ t ≤ r ¬s(t) +¬t(r) = ¬s(r).

We let T be the random variable defined by

T := inf

{
t ≥ 0 :

∫ t

0

λs ds ≥ E
}

= inf
{
t ≥ 0 : e−

∫ t
0
λsds ≤ U

}
= inf {t ≥ 0 : ¬0(t) ≥ E} = ¬−1

0 (E).

By construction, T is random time with distribution given by

P (T ≥ t) = P
(
U ≤ e−

∫ t
0
λsds

)

= P(E ≤ ¬0(t)) = e−©0(t) = e−
∫ t
0
λsds.

For any s ≤ t we have the memoryless property

P (T ≥ t | T ≥ s) = P (T ≥ t)/P (T ≥ s) = e−
∫ t
s
λrdr. (10.7)
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In addition, it is easily seen that the distribution of T is given by the formula

P (T ∈ dt) = P
(
¬−1(E) ∈ dt

)
= λt e

−
∫ t
s
λrdr dt.

Definition 10.6.2 We let Tn be a sequence of random times defined by T0 = 0
and

Tn+1 = inf
{
t ≥ Tn :

∫ t

Tn
λs ds ≥ En+1

}

= inf
{
t ≥ Tn : exp

[
−
∫ t

Tn
λsds

]
≤ Un+1

}
= ¬−1

Tn
(En+1)

(10.8)

where En+1 = − logUn+1 is a sequence of independent exponential random vari-
ables with unit parameters (⇒ Un uniform on [0, 1]). The counting process

Nt =
∑
n≥0

1[Tn,Tn+1[(t) n (10.9)

is called an inhomogeneous Poisson process (or non-homogeneous Poisson process)
with intensity (or rate) parameter λt.

Important remark : When the intensity function λt is given by an auxiliary indepen-
dent random process, this is sometimes called the Cox process [58], or a doubly stochastic
Poisson process. There exist also some self-exiting Poisson models in which the intensity
depends on the process itself. For instance λt can be given by some function of the form

λt = αt +
∑
n≥0

1Tn≤t βt−Tn

for some positive and deterministic functions αt, βt. The function αt is a deterministic base
intensity function, and βt is an auxiliary positive and deterministic function that expresses
the influence βt−Tn

of the past events of the Poisson process on the current intensity λt.
When αt = α0 is constant and βt = β0 e−γ t we have

λt = α0 + β0

∑
n≥0

1Tn≤t e
−γ (t−Tn).

These jump models are often called the Hawkes processes [149]. These stochastic models
are of current use in seismology, where they are sometimes called epidemic type aftershock
sequence (ETAS) models [10]. A form of the clustering density used to model earthquake
aftershocks is the so-called Omori-Utsu power law βt = a/bt for some given parameters
a > 0 and b > 1 [211, 212].

Remark : We observe that

¬0(Tn) =

∫ Tn

0

λs ds

=
∑

0≤p<n

∫ Tp+1

Tp

λs ds =
∑

0≤p<n

¬Tn
(Tn+1) =

∑
1≤p≤n

En := T ′
n.
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This implies that

Nt =
∑
n≥0

1[Tn,Tn+1[(t) n

=
∑
n≥0

1[©0(Tn),©0(Tn+1)[(¬0(t)) n =
∑
n≥0

1[T ′
n,T

′
n+1)[

(¬0(t)) n = N ′
©0(t)

with a Poisson process N ′
©0(t)

with unit intensity λt = 1.

We summarize this discussion with the following transfer theorem.

Theorem 10.6.3 For any Poisson processes Nt with intensity λt we have the time
re-scaling properties

Nt = N ′
©0(t)

and N©−1
0 (t) = N ′

t (10.10)

where N ′
t stands for a Poisson process with unit intensity.

Proposition 10.6.4 For any n ≥ 1 we have

P ((T1, . . . , Tn) ∈ d(t1, . . . , tn)) =
∏

1≤p≤n

1[tp−1,∞[(tp) λtp exp

(
−
∫ tp

tp−1

λs ds

)
dtp

with the convention t−1 = 0, for p = 0. In addition, for any n ≥ 0 we have

P (Tn+1 ∈ dt) =

(∫ t

0
λsds

)n

n!
λt exp

(
−
∫ t

0

λs ds

)
dt. (10.11)

Proof :
Using the fact that

Tn+1 = Tn + inf

{
t ≥ 0 :

∫ Tn+t

Tn

λs ds ≥ En

}

we prove that for any tn+1 ≥ tn

P (Tn+1 ≥ tn+1 | Tn = tn) = P
(
En ≥

∫ tn+1

tn

λs ds

)
= exp

(
−
∫ tn+1

tn

λs ds

)

from which we conclude that

P (Tn+1 ∈ dtn+1 | Tn = tn) = 1[tn,∞[(tn+1) λtn+1
exp

(
−
∫ tn+1

tn

λs ds

)
dtn+1.

This ends the proof of the first assertion.
We prove (10.11) by induction w.r.t. the parameter n. For n = 0, the result is immediate.

We assume that the result is true at rank n. In this case, we have

P (Tn+1 ∈ dt) =

∫ t

0

P (Tn+1 ∈ dt | Tn = s)P (Tn ∈ ds)

= λt exp

(
−
∫ t

0

λu du

)
dt

∫ t

0

∂

∂s

(∫ s

0
λudu

)n
n!

ds.

The proof of the proposition is now completed.
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10.6.2 Poisson thinning simulation

The random occupation measures
∑

1≤i≤Nt
δTi

associated with the counting processes
(10.9) and (10.2). can be interpreted in terms of the spatial style point processes discussed
in section 4.6. These measures can be thought as spatial Poisson point processes on the
state space S = R+, with respective intensity functions νt and ν′t defined by

νt(ds) = λs 1[0,t](s) ds νt(ds) =
1∫ t

0
λsds

λs 1[0,t](s) ds

ν′t(ds) = λ 1[0,t](s) ds ν′t(ds) =
1

t
1[0,t](s) ds.

We refer the reader to section 4.6, definition 4.6.2 for a more detailed discussion on these
models. We further assume that the intensity function λs is continuous and upper bounded
by λ, for any s ∈ [0, t]. In this situation, the picture below illustrates the traditional
acceptance-rejection technique for sampling the random times Tn from νt using random
samples T ′

n from ν′t. As the picture shows, the acceptance probability of a random sample,
say Tn = s, from νt is equal to

P (Un ≤ λs) = λs/λ

where Un are independent uniform random variables on [0, λ].

State space S � s ∈ time axis

λ
(s
)
≤

U
ni
fo
rm

r.
v.

on
[0
,λ

]
≤

λ

T ′
1 T ′

2 = T1

T ′
3 = T2

T ′
4 T ′

5 = T3

Important remark : The Poisson thinning simulation technique allows us to sample
the jump times of a non-homogeneous Poisson process on any interval [0, t], as soon as the
intensity is bounded by some homogeneous finite constant. The price to pay for this simpli-
fication is that the time to obtain a random sample from the non-homogeneous model can
be very large. We refer the reader to the exercise 166 for an example of a non-homogeneous
model for which the average first acceptance time on [0, t] tends to infinity when t ↑ ∞.

10.6.3 Geometric random clocks

Using the re-scaling properties (10.10) we have

Nt+h −Nt = N ′
©0(t+h) −N ′

©0(t)
law
= N ′

©0(t+h)−©0(t)
= N ′

©t(t+h).
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This implies that

P (Nt+h −Nt = 1) = ¬t(t+ h) e−©t(t+h) �h→0 λt h

and for any n ≥ 2

P (Nt+h −Nt = n) =
¬t(t+ h)n

n!
e−©t(t+h) = O(hn).

Recalling the memoryless property of these processes, we see that the Poisson process
can be simulated by a time inhomogeneous Bernoulli process on some time mesh tn with
(tn − tn−1) = h with a success probability ph,tn �h→0 λtn h.

To formalize this claim, we let h > 0 be some time mesh parameter associated with
some discretization of some interval [0, t]

t0 = 0 < t1 = h < . . . < tn = nh < . . . < h�t/h� ≤ t (= h�t/h�+ h {t/h}) .

Replacing in (10.8) the integral of the intensity function by its discrete time approximation

¬h
tl
(tn) :=

∑
tl<tm≤tn

λtm h �h↓0 ¬tl(tn) :=

∫ tn

tl

λs ds,

we define a sequence of random times

Th
n+1 = inf


tk ≥ Th

n :
∑

Th
n<tl≤tk

λtl h ≥ En+1


. (10.12)

These random times can be interpreted as the jump times of a time inhomogeneous
Bernoulli counting process defined as in (10.6) with the sequence of independent
Bernoulli random variables

P
(
εhtn = 0

)
= 1− P

(
εhtn = 1

)
= e−λtnh.

More precisely, using the same arguments as in (10.5), we find that

Th
n+1 = inf

{
tk > Th

n : εhtk = 1
}

= inf



tk ≥ Th

n :
∏

Th
n<tp≤tk

e−λtph ≤ Un+1


 . (10.13)

It follows that Nh
tn is an N-valued Markov chain with transition probabilities

P
(
Nh

tn+1
∈ dy | Nh

tn = x
)

= Mh
tn,tn+1

(x, dy)

= e−λtnh δx(dy) +
(
1− e−λtnh

)
δx+1(dy).
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10.7 Exercises
Exercise 145 (Poisson intensity) Let Nt be a Poisson processes with intensity λ > 0.
Check that E(Nt) = λt = Var(Nt) holds.

Exercise 146 (Poisson conditional distributions) Let Nt be a Poisson processes with
intensity λ > 0, and T1, resp. T2 be the first time, resp. the second time of a jump of Nt.

• Find the conditional distribution of T1 given Nt = 1.

• Find the conditional distribution of T1 given Nt = 2.

• Find the conditional distribution of T2 given Nt = 2.

Exercise 147 (Conditioning principles) We let N1(t) and N2(t) two independent Pois-
son processes with respective intensities λ1 and λ2. Compute the probability distribution of
N(t) = N1(t) +N2(t). Find the conditional distribution of N1(t) given N(t).

Exercise 148 (Arrival time distribution) We consider a Bernoulli sequence of i.i.d.
random variables (En)n≥1 with P(E = 1) = 1− P(E0 = 0) = p ∈]0, 1[. We interpret En = 1
as the arrival of some individual at time n. We let Nn :=

∑
1≤k≤n Ek be the number of

arrivals at time n. Find the distribution of the random variables Nn and (Nn − Nm) for
m ≤ n. Describe the distribution of the random vector (Nn1 , Nn2 −Nn1 , . . . , Nnk

−Nnk−1
),

for a sequence 1 ≤ n1 < . . . < nk. Find the distribution of the n-th arrival times Tn.

Exercise 149 (Superposition property) We let N1(t) and N2(t) two independent Pois-
son processes with respective intensities λ1 and λ2. Compute the probability that N1 jumps
n times before N2 jumps m times.

Exercise 150 (Non-homogeneous Poisson formula) We let N1(t) be a Poisson
process with unit intensity λ1 = 1, and let n ∈ N �→ λ(n) be a bounded function. We
associate with these objects the jump process

N2(t) = N2(0) +N1

(∫ t

0

λ(N2(s)) ds

)
.

Describe the jump times T
(2)
n of N2 in terms of the jump times T

(1)
n of N1.

Exercise 151 (Ordered uniform statistics) We consider the random times Tn de-
fined in (10.8). Given Tn+1 = t, check that the sequence (T1, . . . , Tn) forms a re-ordered
sequence of independent random variables with common distribution ∝ 1[0,t](s) λs ds.

Exercise 152 (Poisson stochastic differential equation - 1) We let a ∈ R be some
given parameter. We consider the stochastic process

dXt = a Xt− dNt

starting at some X0 �= 0, where Nt stands for a Poisson process with intensity λ > 0. Check
that

Xt = (1 + a)Nt X0.
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Exercise 153 (Poisson stochastic differential equation - 2) We let t �→ at ∈ R be a
given function. We consider the stochastic process

dXt = at Xt− dNt

starting at some X0 �= 0. Here Nt is a Poisson process with intensity λ > 0. Check that

Xt = X0

∏
0≤s≤t, dNs=1

(1 + as).

Exercise 154 (Poisson stochastic differential equation - 3) We let t �→ at ∈ R
be some given function We consider the stochastic process

dXt = bt Xt− dt+ at Xt− (dNt − λdt)

starting at some X0 �= 0. Here Nt is a Poisson process with intensity λ > 0. Check that

Xt = X0 exp

(∫ t

0

(bs − λas)ds

) ∏
0≤s≤t, dNs=1

(1 + as).



11
Markov chain embeddings

Embedding techniques allow us to calculate continuous time versions of Markov chains. Such
embeddings allow us to study properties of a chain via properties of the related infinitesimal
generators. In this chapter, we provide a detailed theoretical discussion of the embedding
techniques, as well as series of illustrative examples that include spatially inhomogeneous
models and time inhomogeneous models.

Only two things are infinite, the universe and human stupidity,
and I’m not sure about the former.
Albert Einstein (1879-1955).

11.1 Homogeneous embeddings

11.1.1 Description of the models

This section is concerned with the continuous
time version of a Markov chain.

We consider a Markov chain Yn on some
general state space S with a Markov transi-
tion K(x, dy). We let (En)n≥1 be a sequence
of independent exponential r.v. with unit pa-
rameter, and we consider the random times

Tn =
∑

1≤p≤n

Ep

with T0 =
∑

∅ = 0. Notice that

R+ := [0,∞[= ∪n≥0[Tn, Tn+1[.

We let Xt be the Markov process indexed by the continuous time parameter t ∈ R+

and defined by

Xt =
∑
n≥0

1[Tn,Tn+1[(t) Yn = YNt (11.1)

= X0 +
∑

0<Tn≤t

(XTn −XTn−) = X0 +
∑

0<n≤Nt

(XTn −XTn−)

with jumps XTn
−XTn− = Yn. In the above display Nt stands for a Poisson process

Nt with unit intensity. Notice that Xt is a jump process, with the jump times Tn,
and the random positions are prescribed by the Markov chain sequence Yn.

313
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Definition 11.1.1 The continuous time process (11.1) is right-continuous and left-limited
(abbreviated r.c.l.l.) and it is called the continuous time embedding or version of the Markov
chain Yn. The r.c.l.l. property is often referred as the càdlàg property in reference to the
French "continue à droite et limité à gauche". Inversely, the Markov chain Yn is called
the embedded Markov chain (abbreviated EMC) of the continuous time process Xt. The
process Xt is sometimes called the uniform Markov jump process with Poisson clock Nt and
subordinated chain Yn.

11.1.2 Semigroup evolution equations

We consider the operator Pt defined for any bounded function f on S by the expectation
operator

Pt(f)(x) := E(f(Xt) | X0 = x). (11.2)
Notice that for t = 0, we have P0(f)(x) = f(x). In addition, recalling that

E(f(Xt+s) | Xs = x) = E(f(Xt) | X0 = x) = Pt(f)(x)

we find that

Pt+s(f)(x) = E (f(Xt+s)|X0 = x) = E


E(f(Xt+s) | Xs)︸ ︷︷ ︸

Pt(f)(Xs)

|X0 = x


 = Ps(Pt(f))(x).

These properties are often written in terms of the composition
of integral operators:

Ps+t = PsPt with P0 = Id. (11.3)

Theorem 11.1.2 For any t ∈ R+, x ∈ S, and any bounded function f on S, we
have the integral formula

Pt(f)(x) = e−t f(x) +

∫ t

0

e−(t−s) K(Ps(f))(x) ds. (11.4)

In addition, we have the differential formula

∂tPt(f)(x) = L(Pt(f))(x) = Pt(L(f))(x) (11.5)

with the initial condition P0(f)(x) = f(x), for t = 0, and with the integral operator
L defined by

L(f)(x) := K(f)(x)− f(x) =

∫
[f(y)− f(x)] K(x, dy)

= ∂tPt(f)(x)|t=0
= lim

ε↓0

Pε(f)(x)− f(x)

ε
. (11.6)

In addition, the distribution ηt of the random states Xt satisfies the equation

∂tηt(f) = ηt(L(f)). (11.7)
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Proof :
The proof is based on the following decomposition w.r.t. to the first jump time of the
process

Pt(f)(x) = E(f(Xt) 1T1>t | X0 = x) + E(f(Xt) 1T1≤t | X0 = x)

= f(x) P (T1 > t) + E(E (f(Xt) | T1, XT1) 1T1≤t | X0 = x).

(11.8)

By construction, the random variables XT1
= Y1 and T1 are independent; hence

E(g(T1, XT1
) 1T1≤t | X0 = x) =

∫
K(x, dy) E(g(T1, y) 1T1≤t)

=

∫
K(x, dy)

∫ t

0

g(s, y) e−s ds

for any function g on R+ × S. On the other hand, we have

gt(s, y) := E (f(Xt) | T1 = s, Xs = y)

= E (f(Xt) | Xs = y) = E (f(Xt−s) | X0 = y) = Pt−s(f)(y).

This shows that

E(

:=gt(T1,XT1
)︷ ︸︸ ︷

E (f(Xt) | T1, XT1
) 1T1≤t | X0 = x) =

∫
K(x, dy)

∫ t

0

gt(s, y) e
−s ds

=

∫ t

0

[∫
K(x, dy)Pt−s(f)(y)

]

︸ ︷︷ ︸
=K(Pt−s(f))(x)

e−s ds =

∫ t

0

K(Pt−s(f))(x) e
−s ds.

Notice that
∫ t

0

e−s K(Pt−s(f))(x) ds
r=t−s
=

∫ t

0

e−(t−r) K(Pr(f))(x) dr.

The end of the proof of (11.4) is now a direct consequence of the decomposition (11.8).

∂tPt(f)(x) = − e−t f(x) −
∫ t

0

e−(t−s) K(Ps(f))(x) ds+K(Pt(f))(x)

= K(Pt(f))(x)− Pt(f)(x) = L(Pt(f))(x).

This ends the proof of the l.h.s. assertion in (11.5). Taking t = 0 in the l.h.s. of (11.5)
we prove the differential formula (11.6).

The r.h.s. of (11.5) is easily checked using the semigroup (a.k.a. sg) property (11.3),
that is,

1

ε
[Pt+ε(f)− Pt(f)] =

1

ε
[Pε (Pt(f))− Pt(f)]

︸ ︷︷ ︸
→ε↓0L(Pt(f))

= Pt



1

ε
[Pε(f)− f ]

︸ ︷︷ ︸
→ε↓0L(f)


 .

The last assertion is a consequence of the fact that

ηt(f) = E(f(Xt)) = E(E(f(Xt) | X0)) = η0(Pt(f)) =

∫
η0(dx) Pt(f)(x).
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We conclude that for any bounded function f on S we have

∂tηt(f) = η0 (∂tPt(f)) = η0 (Pt(L(f))) = ηt(L(f)).

Remark :
For finite state space, S = {1, . . . , d}, the Markov transitions K(x, y) and generator L(x, y)
are given by matrices

L(f)(x) =
∑
y∈S

[f(y)− f(x)] K(x, y) :=
∑
y∈S

[K(x, y)− 1x(y)]︸ ︷︷ ︸
:=L(x,y)

f(y).

If we set ut(x) := Pt(f)(x), using (11.5) we readily find that ut(x) satisfies the integro-
differential equation

∂tut(x) =

∫
[ut(y)− ut(x)] K(x, dy)

with the initial condition u0(x) = f(x).

Definition 11.1.3 The operator L defined in (11.6) is called the (infinitesimal)
generator of the process Xt defined in (11.1), and Pt is called its semigroup of
integral operators acting on the set of bounded functions. The equations (11.4),
(11.5), (11.6), and (11.7) are often written in the more synthetic forms

Pt = e−t Id +

∫ t

0

e−(t−s) Ps ds and ∂tηt = ηtL (11.9)

as well as

∂tPt = LPt = PtL and L = K − Id = lim
ε↓0

ε−1[Pε − Id]. (11.10)

These integral operator formulations are sometimes called Gelfand-Pettis weak
sense integral equations [34].

The same analysis works if we replace in (11.1) the standard exponential random variable
by an exponential random variable En with some parameter λ > 0. In this situation, the
continuous time embedding of Yn is given by

Xt =
∑
n≥0

1[Tn,Tn+1[(t) Yn = YNt

with the Poisson process Nt with intensity λ, and arrival times Tn.

Notice that the integral formulae (11.4) and (11.9) take the form

Pt = e−λt Id +

∫ t

0

λ e−λ(t−s) KPs ds.

In this case, the differential equations (11.5) meet with the integral generator

L(f)(x) := λ

∫
[f(y)− f(x)] K(x, dy) = lim

ε↓0
ε−1[Pε − Id](f)(x). (11.11)
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In this situation, the function

ut(x) := Pt(f)(x) = E (f(Xt) | X0 = x)

satisfies the integro-differential equation

∂tut(x) = λ

∫
[ut(y)− ut(x)] K(x, dy)

with the initial condition u0(x) = f(x).
In addition, the semigroup of Xt is given by

Pt(f)(x) =
∑
n≥0

E (f(YNt
) | Nt = n, X0 = x ) P (Nt = n)

= e−λt
∑
n≥0

(λt)n

n!
Kn(f)(x). (11.12)

For finite state space models, we have the matrix formulae

Pt = e−λt
∑
n≥0

(λt)n

n!
Kn = e−λt eλKt.

We also notice that P0 = Id and

∂tPt = PtL = LPt ⇒ Pt = etLId =
∑
n≥0

(λt)n

n!
Ln.

11.2 Some illustrations

11.2.1 A two-state Markov process

We illustrate these models with the continuous embedding of the two-state Markov chain

1.5 ��
.5

�� 2.
1��

For indicator functions we have

Pt(1i)(j) = P(Xt = i | X0 = j) = Pt(j, i)

and

L(11)(1) =
∑
y∈S

K(1, y) 11(y) − 11(1) = .5− 1 = −.5

L(11)(2) =
∑
y∈S

K(2, y) 11(y) − 11(2) = 1− 0 = 1.



318 Stochastic Processes

This implies that

∂tPt(i, 1) = ∂tPt(11)(i) = Pt(L(11))(i)

= Pt(i, 1)L(11)(1) + Pt(i, 2)L(11)(2) = −1

2
Pt(i, 1) + Pt(i, 2).

If we choose i = 1, 2, we find that

∂tPt(1, 1) = −1

2
Pt(1, 1) + (1− Pt(1, 1)) = 1− 3

2
Pt(1, 1)

and
∂tPt(2, 1) = −1

2
Pt(2, 1) + (1− Pt(2, 1)) = 1− 3

2
Pt(2, 1).

Therefore

Pt(1, 1) := e−3t/2P0(1, 1) +

∫ t

0

e−3(t−s)/2 ds = e−3t/2 +
2

3
(1− e−3t/2)

= 1− Pt(1, 2)

and
Pt(2, 1) =

2

3
(1− e−3t/2) = 1− Pt(2, 2).

This clearly implies that

Pt =

(
Pt(1, 1) Pt(1, 2)
Pt(2, 1) Pt(2, 2)

)
−→t↑∞

(
2/3 1/3
2/3 1/3

)
=

(
π(1) π(2)
π(1) π(2)

)
.

We observe that π = (π(1), π(2)) is the invariant measure of the embedded Markov chain
with transition matrix K, that is,

πK = (π(1), π(2))

(
K(1, 1) K(1, 2)
K(2, 1) K(2, 2)

)

= (2/3, 1/3)

(
1/2 1/2
1 0

)
= (2/3, 1/3) = π.

11.2.2 Matrix valued equations

Let us assume that S = {1, . . . , d} and let L be the operator

L(f)(j) =
∑
k∈S

(f(k)− f(j)) Q(j, k)

for some matrix Q with positive entries. The positive entries Q(j, k) represent the rates of
the transitions j � k. For a more detailed discussion on these models we refer to section 11.3
and section 11.3.2.

Next we rewrite this generator in terms of the homogeneous Markov chain embeddings
discussed above.

Firstly, we observe that

L(f)(j) = λ(j)
∑
k∈S

(f(k)− f(j)) K(j, k) (11.13)

with
K(j, k) =

Q(j, k)∑
l∈S Q(j, l)

and λ(j) :=
∑
k∈S

Q(j, k).
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In addition, we have

L(f)(j) = λ
∑
k∈S

(f(k)− f(j)) K(j, k)

for any

λ ≥ sup
i∈S

λ(i) and K(i, j) =
λ(i)

λ
K(i, j) +

(
1− λ(i)

λ

)
1i(j).

This generator has exactly the same form as the one discussed in (11.11).

The Markov process Xt with generator L is a jump type process. The jump times Tn

arrive at rate λ. At these jump times times, say Tn, the process is at a given location, say
XTn− = i. With a probability λ(i)

λ , the process jumps to a new state XTn = j randomly
chosen with the probability K(i, j). Otherwise, it stays in the same location XTn

= i.

The self-loops transition represents the probability
(
1− λ(i)

λ

)
of fictitious jumps. The

form of the generator (11.13) suggests a less time consuming sampling technique:

Starting from X0 = i0, we wait an exponential time with parameter λ(i0) and we jump
from i0 to i1 according to the probability K(i0, i1). Then we wait an exponential time with
parameter λ(i1) and we jump from i1 to i2 according to the probability K(i1, i2), and so on.

Further details on these models are provided in section 11.3 dedicated to general spa-
tially inhomogeneous models and in section 11.3.2 covering finite state space models.

In this situation, for any indicator function fi = 1i, we have

ηt(fi) = ηt(i) = P(Xt = i).

As usual, we can identify the measures ηt and the functions f by the row and column vectors

ηt = [ηt(1), . . . , ηt(d)] and f =




f(1)
...

f(d)


 .

In the same way the Markov probability transitions Pt(i, j) = P(Xt = j | X0 = i) are
identified with the transition matrix

Pt =




Pt(1, 1) Pt(1, 2) . . . Pt(1, d)
Pt(2, 1) Pt(2, 2) . . . Pt(1, d)

...
... . . .

Pt(d, 1) Pt(d, 2) . . . Pt(d, d)


 .

In this vector notation, the evolution equations (11.5) and (11.7) can be rewritten in terms
of ordinary differential equations (abbreviated ODE)

∂tPt = LPt = PtL and ∂tηt = ηtL
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with the matrix

L =




L(1, 1) L(1, 2) . . . L(1, d)
L(2, 1) L(2, 2) . . . L(1, d)

...
... . . .

L(d, 1) L(d, 2) . . . L(d, d)




defined by

L(j, i) = L(fi)(j) =
∑
k∈S

(fi(k)− fi(j)) Q(j, k)

= Q(j, i)− 1i(j)
∑
k

Q(j, k) = Q(j, i)− λ(j)1j(i)

= λ(j) [K(j, i)− 1j(i)] .

We also notice that

L(f)(j) =
∑
i∈S

L(j, i)f(i) = λ(j)
∑
i∈S

[K(j, i)− 1j(i)] (f)(i) = λ(j) [K(f)(j)− f(j)].

Example 11.2.1 We consider a mathematician wandering every day between three libraries
with the following transition rate diagram

1Q(1,1) ��
Q(1,2)

�� 2
Q(2,1)��

Q(2,3)
�� 3.

Q(3,2)��
Q(3,3)��

The transition matrix of the embedded Markov chain is given by

K =




Q(1,1)
Q(1,1)+Q(1,2)

Q(1,2)
Q(1,1)+Q(1,2) 0

Q(2,1)
Q(2,1)+Q(2,3) 0 Q(2,3)

Q(2,1)+Q(2,3)

0 Q(3,2)
Q(3,2)+Q(3,3)

Q(3,3)
Q(3,2)+Q(3,3)


 .

The infinitesimal generator L of Xt is given by

L =




λ(1) 0 0
0 λ(2) 0
0 0 λ(3)




×







Q(1,1)
Q(1,1)+Q(1,2)

Q(1,2)
Q(1,1)+Q(1,2) 0

Q(2,1)
Q(2,1)+Q(2,3) 0 Q(2,3)

Q(2,1)+Q(2,3)

0 Q(3,2)
Q(3,2)+Q(3,3)

Q(3,3)
Q(3,2)+Q(3,3)


−




1 0 0
0 1 0
0 0 1






=




Q(1, 1) Q(1, 2) 0
Q(2, 1) 0 Q(2, 3)

0 Q(3, 2) Q(3, 3)


−




λ(1) 0 0
0 λ(2) 0
0 0 λ(3)


 .

11.2.3 Discrete Laplacian

We consider the unit vectors on the integer d-dimensional lattice Zd

∀1 ≤ i ≤ d ei =


0, . . . , 0, 1︸︷︷︸

i-th

, 0, . . . , 0


 and ed+i = −ei.
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The simple random walk on Zd is the Markov chain with transitions

K(x, y) =
1

2d

∑
1≤i≤2d

1x+ei(y).

It can be interpreted as a Markov chain on S = Rd with transitions given for any f ∈ B(S)
by the following formulae

K(f)(x) =
1

2d

∑
1≤i≤d

[f(x+ ei) + f(x− ei)] .

In this situation, the generator L of the continuous time embedding process is
given by

L(f)(x) =
1

2d

∑
1≤i≤d

[f(x+ ei) + f(x− ei)− 2f(x)]

= [K − Id](f)(x) :=
1

2
∆Zd(f)(x).

The generator ∆Zd is called the discrete Laplacian on the lattice Zd.

Our next objective is to increase the jump rates and to decrease the amplitude of the
moves on Rd with some proportional factor h ↓ 0. Given some h > 0, we consider the
Markov chain Y h

n with transitions

Mh(f)(x) =
1

2d

∑
1≤i≤d

[
f(x+

√
dhei) + f(x−

√
dhei)

]

and a Poisson process with intensity λh := h−2. The generator of the continuous time
embedding process is given by the generator

Lh(f)(x) =
1

2dh2

∑
1≤i≤d

[f(x+ hei) + f(x− hei)− 2f(x)]

= λh [Kh − Id](f)(x).

We end this section with a brief discussion on the connection between the discrete and
the continuous Laplacian. To this end, we further assume that f is twice differentiable. In
this situation, for any ε ∈ {−1,+1}, and any i ∈ {1, . . . , d} we have

[f(x+ ε
√
dh ei)− f(x)] =

∂f

∂xi
(x)

√
dh+

d

2

∂2f

∂x2
i

(x) h2 +O(h3).

This implies that

f(x+ hei) + f(x− hei)− 2f(x) = d
∂2f

∂x2
i

(x) h2 +O(h3)

from which we find that

Lh(f)(x) =
1

2

∑
1≤i≤d

∂2f

∂x2
i

(x) +O(h).
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11.3 Spatially inhomogeneous models

We start with a rather elementary proposition.
Proposition 11.3.1 For any positive operator Q(x, dy) on some general state
space S, such that λ(x) := Q(x, S) ≤ λ for any x, and some λ < ∞, we have

∫
[f(y)− f(x)] Q(x, dy) = λ(x)

∫
[f(y)− f(x)] K(x, dy)

= λ

∫
[f(y)− f(x)] K ′(x, dy) (11.14)

with the Markov transitions

K(x, dy) = Q(x, dy)/Q(x, S)

K ′(x, y) =
λ(x)

λ
K(x, dy) +

(
1− λ(x)

λ

)
δx(dy).

The function x �→ λ(x) is often called the jump rate or the holding time of the
state x. The stochastic matrix K is called the Markov transition of the embedded
Markov chain model.

Example 11.3.2 For instance, if we take S = R and Q(x, dy) = 10 × 1√
2π

e−
1
2 (x−y)2dy,

we have λ(x) = 10 and K reduces to the Gaussian transition K(x, dy) = 1√
2π

e−
1
2 (x−y)2dy.

Definition 11.3.3 Take any positive operator Q(x, dy) on some general state space S, such
that λ(x) := Q(x, S) ≤ λ for any x, and for some λ < ∞. Let Yn be a Markov chain with
transition probabilities K(x, dy) = Q(x, dy)/Q(x, S).

• The spatially homogeneous embedding Xt of the Markov chain Yn w.r.t the constant inten-
sity function λ(x) = λ is a process Xt, similar to the one defined in (11.1) but replacing the
exponential random variable with a unit parameter thereby yields some random variable
En with a parameter λ > 0.

• The spatially inhomogeneous embedding of the Markov chain Yn w.r.t the intensity func-
tion λ(x) is the Markov process X ′

t defined sequentially as follows:

1. At time Tn we set X ′
Tn

:= Yn.
2. For a given E ′

n+1 ∼ Exp (λ(Yn)) we set

X ′
t := Yn ∀Tn ≤ t < Tn+1 := Tn + E ′

n+1. (11.15)

Theorem 11.3.4 The spatially inhomogeneous embedding X ′
t w.r.t the intensity

function λ(x) coincides with the spatially homogeneous embedding Xt w.r.t. the
constant intensity λ as soon as λ(x) ≤ λ.
In addition, the semigroup operator (11.2) and the distributions of this process
satisfy (11.5) and (11.7) with L given by (11.14).
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Proof :
Starting from some value, say X0 = x, the first time Tx a "real" jump occurs

X0 = x � XTx = Y ∼ K(x, dy)

in the spatially homogeneous model is clearly given by the formula

Tx := E1 + . . .+ ENx
with Nx = inf {n ≥ 1 : εn = 1}

where εn is a sequence of {0, 1}-valued Bernoulli r.v. with success parameter λ(x)/λ, and
En is a sequence of (independent of εn) independent exponential random variables with
parameter λ.

Recalling that Nx is a geometric random variable with parameter λ(x)/λ, and the sum
of independent exponential random variables is gamma distributed, we prove that for any
bounded function f on R+ we have

E(f(Tx)) = E(E(f(Tx) |Nx)) =
∑
n≥1

E(f(E1 + . . .+ En) |Nx = n) P(Nx = n).

This implies that

E(f(Tx)) =
∑
n≥1

(∫ ∞

0

f(t)
(λt)n−1

(n− 1)!
λ e−λtdt

) (
1− λ(x)

λ

)n−1
λ(x)

λ

=

∫ ∞

0

f(t)


∑
n≥1

1

(n− 1)!

(
λt

(
1− λ(x)

λ

))n−1



︸ ︷︷ ︸
=exp ([λ−λ(x)]t)

λ(x) e−λtdt.

This also implies that Tx is an exponential random variable with parameter λ(x)

Tx ∼ Exp(λ(x)). (11.16)

Using these observations, we define Xt and X ′
t in the same way. This ends the proof of the

theorem.

Important remark : In biology and chemistry, the algorithmic formulation of the process
X ′

t is usually called the Gillespie algorithm.
Inversely, any Markov process X ′

t defined as in theorem 11.3.4 for some rate functions
λ(x) and some Markov transitions K can be interpreted as a continuous embedding of a
discrete Markov chain with Markov transition K or K ′ depending on the choice of jump
rate λ(x) of λ. The times Tx and T ′

x the processes Xt and X ′
t transition away from some

state x are exponential r.v. with rates λ(x) and λ(x) := λ, thus we have

E (Tx) =
1

λ(x)
≥ E (T ′

x) =
1

λ′(x)
=

1

λ
.

This shows that the processX ′
t jumps more often thanXt, but the chance λ(x)/λ to perform

a real jump (i.e., change its value) according to the embedded Markov transition K can be
drastically small if λ is chosen too large.
Important remark : In this situation, the function

ut(x) := Pt(f)(x) = E(f(Xt) | X0 = x)
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satisfies the integro-differential equation

∂tut(x) = λ(x)

∫
[ut(y)− ut(x)] K(x, dy) =

∫
[ut(y)− ut(x)] Q(x, dy)

with the initial condition ut(x) = f(x).

In addition, given an auxiliary bounded function g, the function

vt(x) = E(f(Xt) | X0 = x) +

∫ t

0

E(g(Xt) | Xs = x) ds

= Pt(f)(x) +

∫ t

0

Pt−s(g)(x) ds

satisfies the integro-differential equation

∂tvt(x) = g(x) +

∫
[vt(y)− vt(x)] Q(x, dy)

with the initial condition ut(x)|t=0 = f(x).

11.3.1 Explosion phenomenon

The spatially homogeneous model described in definition 11.3.3 can be extended to not
necessarily bounded intensity functions λ : x ∈ S �→ λ(x) = Q(x, S) < ∞. The generator
of the corresponding process Xt is given by

L(f)(x) = λ(x)

∫
(f(y)− f(x)) K(x, dy) (11.17)

with the Karkov transition K(x, dy) = Q(x, dy)/Q(x, S). Caution is necessary to have a
well defined process. For instance, suppose that S = N and K(x, dy) = δx+1(dy). Then for
any integer n ∈ N we have

L(f)(n) = λ(n) [f(n+ 1)− f(n)]. (11.18)

In this context, the embedded Markov chain in (11.15) is simply given by Yn = n, and
the random times En := (Tn+1 − Tn) are independent exponential random variables with
parameter λ(n). We consider the explosion time

lim
n→∞

Tn = T∞ = sup
n≥0

Tn =
∑
n≥1

En = lim
n→∞

∑
1≤p≤n

Ep
︸ ︷︷ ︸

=Tn

. (11.19)

Definition 11.3.5 Whenever T∞ takes some finite value, we have an infinite number of
jumps accumulating right before that time. In this situation, we say that we have an explo-
sion of the jump process.

Lemma 11.3.6 We have the equivalence

T∞ = ∞ ⇐⇒
∑
n≥1

1

λ(n)
= ∞.
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Proof :
Invoking the monotone convergence theorem, we have

E(T∞) = lim
n→∞

E(Tn) = lim
n→∞

∑
1≤p≤n

1

λ(p)
=

∑
n≥1

1

λ(n)
(11.20)

and

E
(
e−T∞

)
= E

(
e−T∞ 1T∞<∞

)
+ E

(
e−T∞ 1T∞=∞

)

=
∏
n≥0

1

1 + 1
λ(n)

=
1

∏
n≥0

[
1 + 1

λ(n)

] ≤ 1

1 +
∑

n≥1
1

λ(n)

. (11.21)

The last assertion follows from the fact that E(e−En) = 1
1+ 1

λ(n)

, for any n ≥ 1, and
∏

n≥1(1+

ap) ≥
∑

n≥1 an, for any non-negative numbers an. We conclude that

∑
n≥1

1

λ(n)
= ∞ 11.21⇒ P (T∞ = ∞) = 1

11.20⇒
∑
n≥1

1

λ(n)
= ∞.

This ends the proof of the lemma.

The above lemma tells us that if we choose λ(n) = n2 in (11.18), the explosion time is
given by

T∞ =
∑
n≥1

E ′
n/λn

where E ′
n are independent exponential random variables with unit parameters. By construc-

tion, this random time is almost surely finite so that Xt ↑ ∞ as t ↑ ∞.
More generally, for the jump times Tn of a general jump process Xt with generator

(11.17), rephrasing the proof of the lemma, we readily prove that

E (T∞ | XTn
, n ≥ 0) =

∑
n≥1

1

λ(XTn
)

E
(
e−T∞ | XTn

, n ≥ 0
)

=


1 +

∑
n≥1

1

λ(XTn
)



−1

.

This yields the following almost sure equivalence principle

T∞ = ∞ ⇐⇒
∑
n≥1

1

λ(XTn)
= ∞.

The following theorem allows us to quantify the deviation of these random times w.r.t.
the time horizon and their mean values.

Theorem 11.3.7 We associate with a sequence of independent exponential random vari-
ables En with unit parameter and a sequence an of [0, 1]-valued real numbers, the random
times

T a
n :=

∑
1≤p≤n

ap Ep.



326 Stochastic Processes

In this situation, for any t ≥ 0 we have the exponential deviation estimates

P
(
T a
n − E (T a

n )

Var(T a
n )

≥ t

)
≤ exp

(
−Var(T a

n )
(√

t+ 1− 1
)2)

(11.22)

with the mean and variance parameters

E (T a
n ) =

∑
1≤p≤n

ap and Var(T a
n ) =

∑
1≤p≤n

a2p.

In other words, the probability of the event
∑

1≤p≤n

ap Ep ≤ |a|n,1 + t+ 2|a|n,2
√
t (11.23)

is larger than 1− e−t, with |a|n,1 :=
∑

1≤p≤n ap and |a|2n,2 :=
∑

1≤p≤n a
2
p.

Proof :
We start with the proof of this result for n = 1, and a1 = 1. We observe that

∀t ∈ [0, 1[ ϕ(t) := E
(
et(E1−1)

)
=

e−t

1− t
= eL0(t) ≤ eL1(t)

with

L0(t) := −t− log (1− t) = t2


∑

p≥0

tp

p+ 2


 ≤ L1(t) := t2

∑
p≥0

tp =
t2

1− t
.

This implies that for any x > 0 and any t ∈ [0, 1[, we have

P (E1 − 1 ≥ x) = P
(
et(E1−1) ≥ etx

)
≤ e−tx ϕ(t) = e−(tx−L0(t)).

Taking the infimum over t ∈ [0, 1[, we prove that

P (E1 ≥ 1 + x) ≤ e−L�
0(x) ≤ e−L�

1(x)

with
L�
0(x) := sup

t∈[0,1[

(tx− L0(t)) ≥ L�
1(x) := sup

t∈[0,1[

(tx− L1(t)).

Our next objective is to compute the function L�
1. Using the fact that

L1(t) = −(t+ 1) +
1

1− t
⇒ L′

1(t) = −1 +
1

(1− t)2

we readily check that

∂t (tx− L1(t)) = (x+ 1)− 1

(1− t)2

= 0 ⇐⇒ t = t(x) := 1− 1√
1 + x

∈ [0, 1[.

Notice that

t(x)2

1− t(x)
=

(√
x+ 1− 1

)2
x+ 1

√
1 + x

=

(√
x+ 1− 1

)2
√
x+ 1

=
(√

x+ 1− 1
) (

1− 1√
x+ 1

)
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and

x t(x) = x

(
1− 1√

1 + x

)

=
(√

1 + x− 1
) x√

1 + x
=

(√
1 + x− 1

) (√
1 + x− 1√

1 + x

)
.

This clearly implies that

L�
1(x) = t(x)x− L1(t(x)) =

(√
1 + x− 1

)2

and therefore
P (E1 ≥ 1 + x) ≤ e−(

√
1+x−1)

2

.

By simple manipulations, we find that

y = L�
1(x) =

(√
1 + x− 1

)2 ⇒ x = (1 +
√
y)2 − 1 = y + 2

√
y = (L�

1)
−1

(y)

from which we conclude that

P (E1 ≥ 1 + y + 2
√
y) ≤ e−y.

Now, we turn to the proof of (11.23). We set

T a
n :=

∑
1≤p≤n

ap Ep and T
a

n = T a
n − E (T a

n ) =
∑

1≤p≤n

ap (Ep − 1) .

Using the fact that 0 ≤ tap ≤ t < 1, as soon as t ∈ [0, 1[, we prove that

φn(t) := E
(
etT

a
n

)
=

∏
1≤p≤n

E
(
etap (Ep−1)

)

= exp


 ∑

1≤p≤n

L0(apt)


 ≤ exp


 ∑

1≤p≤n

L1(apt)




≤ exp
(
σn(a)

2 t2/(1− t)
)

with σn(a)
2 := Var(T a

n ) = |a|2n,2. This implies that

P
(
T

a

n ≥ x
)

= P
(
etT

a
n ≥ etx

)

≤ exp

(
−tx+ σn(a)

2 t2

1− t

)
= exp

(
−σn(a)

2

[
tx

σn(a)2
− L1(t)

])
.

Taking the infimum over t ∈ [0, 1[, we prove that

P (T a
n − E (T a

n ) ≥ x) ≤ exp

(
−σn(a)

2 L�
1

(
x

σn(a)2

))

= exp

(
−σn(a)

2

(√
1 +

x

σn(a)2
− 1

)2
)
.

This ends the proof of (11.22). Now we turn to the proof of (11.23). We first notice that

y

σn(a)2
= L�

1

(
x

σn(a)2

)
⇐⇒ x = σn(a)

2 (L�
1)

−1

(
y

σn(a)2

)
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and
σn(a)

2

(
y

σn(a)2
+ 2

√
y

σn(a)2

)
= y + 2σn(a)

√
y.

Hence we conclude that

P (An ≥ mn(a) + y + 2σn(a)
√
y) ≤ e−y.

This ends the proof of the theorem.

11.3.2 Finite state space models

It is also important to observe that for any matrix with positive entries Q(x, y) indexed by
a finite set x, y ∈ S = {1, . . . , d} with bounded mass λ(x) :=

∑
y Q(x, y) ≤ λ < ∞, we have

the decompositions
∑
y∈S

[f(y)− f(x)] Q(x, y) = λ(x)
∑
y∈S

[f(y)− f(x)] K(x, dy)

= λ
∑
y∈S

[f(y)− f(x)] K ′(x, dy)

with the stochastic matrices K(x, y) := Q(x, y)/
∑

y∈S Q(x, y) and

K ′(x, y) :=
λ(x)

λ
K(x, y) +

(
1− λ(x)

λ

)
1x(y).

Notice that the jump rate or the holding time of the state x is now given by the sum
λ(x) := Q(x, S) =

∑
y∈S Q(x, y) ≤ λ. In this context, Q(x, y) may be called the local rate

of the transition x � y.
These local rates induce another interpretation of the continuous time process in terms

of "alarm type" jump times:

• When the process XTn
= x enters in some state x at some jump time Tn, all the states

y ∈ S (including y = x) start an exponential alarm En,x,y ∼ Exp(Q(x, y)).

• When the first alarm goes off

Tn+1 := Tn + inf
y∈S

En,x,y = Tn + En,x,Yn,x

for some state Yn,x, then the process Xt jumps to this state XTn+1 = Yn,x.

This algorithmic description coincides with the one discussed above since

inf
y
En,x,y

law
= Exp(

∑
y

Q(x, y)) = Exp(λ(x)).

It remains to check that the state Yn,x = y is distributed according to K(x, y). We check
this claim using the decomposition

P (infy∈S En,x,y = En,x,z ; infy∈S En,x,y > t)

= P (∀y ∈ S En,x,y ≥ En,x,z > t)

=

∫ ∞

t

Q(x, z)e−λ(z)s



∫ ∞

s

. . .

∫ ∞

s

∏
y �=x

Q(x, y)e−Q(x,y)sy dsy




︸ ︷︷ ︸
=P(∀y∈S−{x} En,x,y≥s)

ds.
(11.24)
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Recalling that

P (∀y ∈ S − {x} En,x,y ≥ s) =
∏

y∈S−{x}

P (En,x,y ≥ s)

=
∏

y∈S−{x}

e−Q(x,y)s = e−
∑

y∈S−{x} Q(x,y)s

we conclude that

(11.24) = Q(x, z)

∫ ∞

t

e−
∑

y Q(x,y)s ds =
Q(x, z)∑
y Q(x, y)

× P
(
inf
y∈S

En,x,y > t

)
.

We see that Yn,x does not depend on the first alarm time, and it is distributed with the
desired Markov transition

P
(
inf
y∈S

En,x,y = En,x,z | inf
y∈S

En,x,y > t

)
=

Q(x, z)∑
y Q(x, y)

= K(x, z).

Important remark : The same analysis works for countable state space models, but
obviously it is impossible to store a countable number of exponential random clocks.

11.4 Time inhomogeneous models

11.4.1 Description of the models

Definition 11.4.1 We let Tn be the random jump times (10.8) of a time inhomogeneous
Poisson process Nt with intensity λt. We consider a Markov chain Yn on some general state
space S with a Markov transition K(x, dy), and we let Xt be the Markov process indexed by
the continuous time parameter t ∈ R+ and defined by

Xt =
∑
n≥0

1[Tn,Tn+1[(t) Yn = YNt
. (11.25)

The Markov process Xt is the continuous time embedding of the Markov chain Yn associated
with the intensity function λt. Inversely, the Markov chain Yn is the embedded Markov chain
(abbreviated EMC) of the continuous time process Xt.

Important remark : In section 10.6, specifically dedicated to spatial Poisson point pro-
cesses, we discuss effective simulation techniques of these time inhomogeneous models for
bounded and continuous intensity functions λt (cf. proposition 11.4.4).

Definition 11.4.2 The semigroup of the Markov process Xt is defined for any s ≤ t and
any f ∈ B(S) by the conditional expectations

Ps,t(f)(x) = E(f(Xt) | Xs = x).

We also denote by ηt the distribution of the random states Xt.
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Theorem 11.4.3 The sg of Xt satisfies the integral equation

Ps,t = e−
∫ t
s
λr dr Id +

∫ t

s

λr e−
∫ r
s
λu du KPr,t dr. (11.26)

In addition, we have

∂tPs,t = Ps,tLt ∂sPs,t = −LsPs,t and ∂tηt = ηtLt (11.27)

with the initial condition Ps,s = Id, for s = t, and the integral operator Lt defined
for any f ∈ B(S) by

Lt(f)(x) := λt

∫
[f(y)− f(x)] K(x, dy)

= lim
s→t

1

t− s
[Ps,t(f)(x)− f(x)] . (11.28)

Proof :
The proof follows essentially the same lines of arguments as the proof of theorem 11.1.2;
thus, it is just sketched. For any s ∈ R+, we let Ts,1 be the random time defined by

Ts,1 = inf

{
t ≥ s :

∫ t

s

λs ds ≥ E
}
.

We have

Ps,t(f)(x) = E(f(Xt) | Xs = x)

= E(f(Xt) 1Ts,1>t | Xs = x) + E(f(Xt) 1Ts,1≤t | Xs = x)

= f(x) e−
∫ t
s
λrdr + E(E

(
f(Xt) | Ts,1, XTs,1

)
1Ts,1≤t | X0 = x).

In this situation, we have

gs,t(r, y) := E (f(Xt) | Ts,1 = r, Xr = y) = Pr,t(f)(y)

so that

E(

=gs,t(Ts,1,XT1,s
)︷ ︸︸ ︷

E
(
f(Xt) | Ts,1, XTs,1

)
1Ts,1≤t | X0 = x)

=

∫
K(x, dy)

∫ t

s

Pr,t(f)(y) λr e−
∫ r
s
λu du dr.

This ends the proof of the first assertion.
On the other hand, we have

∂sPs,t(f)(x) = λs (Ps,t(f)(x)−KPs,t(f)(x)) = −Ls(Ps,t(f))(x).

This implies that

− 1

t− s
[Ps,t(f)(x)− f(x)] =

1

t− s

∫ t

s

∂rPr,t(f)(x)dr = − 1

t− s

∫ t

s

Lr(Pr,t(f))(x) dr
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from which we conclude that

lim
s→t

1

t− s
[Ps,t(f)(x)− f(x)] = Lt(f)(x).

Using the decomposition

Ps,t+ε(f)(x)− Ps,t(f)(x)

ε
= Ps,t

[
Pt,t+ε(f)− f

ε

]
(x)

we also check that

∂tPs,t(f)(x) = Ps,t(Lt(f))(x).

The proof of the last assertion follows the one for (11.7). This ends the proof of the theorem.

Important remark : We fix a time horizon t and we set

us(x) := Ps,t(f)(x)

for any s ≤ t. Then using (11.27) we find that us(x) satisfies the integro-differential equation

∂sus(x) + λs

∫
[us(y)− us(x)] K(x, dy) = 0

with the terminal condition ut(x) = f(x).
Important remark : In terms of integral operators, the limit (11.28) is sometimes rewrit-
ten in the following form

lim
s→t

1

t− s
[Ps,t − Id] = Lt := λt (K − Id). (11.29)

11.4.2 Poisson thinning models

We associate with the Poisson point process T ′
n defined on page 309 the continuous time

Markov process X ′
n defined as follows:

At the jump times T ′
n = t, with a probability λt/λ the process X ′

t = x jumps to a
random state x � Y ∼ K(x, dy); otherwise it stays in the same location. Arguing as in
the proof of theorem 11.4.3, we can check that its semigroup P ′

s,t satisfies the equation

P ′
s,t = e−λ(t−s) Id +

∫ t

s

λ e−λ(r−s) KrPr,t dr

with the Markov transitions

Kt(x, dy) :=
λt

λ
K(x, dy) +

(
1− λt

λ

)
δx(dy).

In addition, the laws of the random states η′t = Law(X ′
t), and the sg P ′

s,t satisfy the forward
and backward equations (11.27) with the generator

Lt(f)(x) := λ

∫
[f(y)− f(x)]

(
λt

λ
K(x, dy) +

(
1− λt

λ

)
δx(dy)

)

= λt

∫
[f(y)− f(x)] K(x, dy).

The following proposition is now a direct consequence of this thinning property of the
Poisson processes discussed above.
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Proposition 11.4.4 The Markov process X ′
t coincides with the Markov process Xt defined

in (11.25).

Important remark : We emphasize that this (exact) sampling technique is based on the
Poisson thinning properties discussed on page 309. Following the important remark we
made in section 10.6.2, these sampling strategies can be really inefficient when 1

t

∫ t

0
(λs/λ)

tends to 0, as t ↑ ∞ (cf. exercise 166).

11.4.3 Exponential and geometric clocks

We let h > 0 be some time mesh parameter associated with some discretization of some
interval [0, t]

t0 = 0 < t1 = h < . . . < tn = nh < . . . < h�t/h� ≤ t. (11.30)

We let Xh
t be the Markov process

Xh
t =

∑
n≥0

1[Th
n ,Th

n+1[
(t) Yn

defined as in (11.25) by replacing the random jump times Tn defined in (10.8) by the discrete
time approximation times Th

n defined in (10.12). We recall that the random jump times Th
n

can be seen as the jump times of a time inhomogeneous Bernoulli counting process (10.13),
that is,

Th
n+1 = inf

{
tk > Th

n : εhtk = 1
}

where εhtn is a sequence of independent Bernoulli r.v. with a common law

P
(
εhtn = 0

)
= 1− P

(
εhtn = 1

)
= e−λtnh.

This shows that Xh
tn is an S-valued Markov chain with transition probabilities

P
(
Xh

tn+1
∈ dy | Xh

tn = x
)

= Ph
tn,tn+1

(x, dy)

= e−λtnh δx(dy) +
(
1− e−λtnh

)
K(x, dy).

In terms of integral operators, we have the equivalent synthetic formulation

Ph
tn,tn+1

= e−λtnh Id+
(
1− e−λtnh

)
K.

We observe that for any time t, we have

1

h

[
Ph
t,t+h − Id

]
=

1

h

(
1− e−λth

)
[K − Id] →h→0 Lt = λt (K − Id).

This equation provides another interpretation of the formula (11.29). The convergence
of these discrete time models to the limiting continuous time processes is discussed in
chapter 12, dedicated to general pure jump models (compare theorem 12.3.1).

11.5 Exercises
Exercise 155 (Feynman-Kac measures - Embedded Markov chains) Let Xt be a
Markov process on some state space S with infinitesimal generator L given by

L(f)(x) = λ

∫
(f(y)− f(x)) K(x, dy)
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for some parameter λ > 0 and some Markov transition K(x, dy) on S. Let V : x ∈ S �→
V (x) ∈ S be some bounded potential function. We let γt be the Feynman-Kac measure on
S defined for any bounded function f on S by

γt(f) = E
(
f(Xt) exp

(∫ t

0

V (Xs) ds

))
.

We let (Tn)n≥0 be the jump times of a Poisson process Nt with intensity λ. For any n ≥ 0,
check that

E

(
f(XTn) exp

(∫ Tn

0

V (Xs) ds

)
| (T0, . . . , Tn)

)

= E


f(Yn)

∏
0≤k<n

e(Tk+1−Tk)V (Yk) | (T0, . . . , Tn)




as well as

E

(
f(XTn) exp

(∫ Tn

0

V (Xs) ds

))
= E


f(Yn)

∏
0≤k<n

eEkV (Yk)




where Y = (Yn)n≥0 is a Markov chain with transition probability K starting at Y0 = X0,
and E = (En)n≥0 is a sequence of independent exponential random variables with parameter
λ; we assume that Y and E are independent. Prove that

E
(
f(Xt) exp

(∫ t

0

V (Xs) ds

)
| Nt = n

)

= E


f(Yn) exp





t−

∑
0≤k<Nt

Ek


V (Yn)




∏
0≤k<Nt

eEkV (Yk)




with a Poisson random variable Nt with parameter (λt) independent of the sequence E.

Exercise 156 (A soliton-like jump process [154]) We let q(u) be a probability density
of a random variable U on the positive axis [0,∞[. We consider the solution pt : x ∈ R �→
pt(x) ∈ R of the evolution equation

∂tpt(x) = −pt(x) +

∫ x

−∞
q(x− y) pt(y) dy

with some initial condition p0(x) given by some probability density on R. We set ηt(dx) =
pt(x)dx. Check that

∂tηt(f) = ηt(L(f))

with the generator

L = K − Id (with K(x, dy) = 1[x,∞[(y) q(y − x) dy)

of a jump process Xt. Describe the embedded Markov chain Yn. We consider (whenever
they exist) the Laplace transforms φt(λ) := E(eλXt) and ϕ(λ) := E(eλU ). Find an explicit
expression of φt in terms of ϕ. When U is an exponential random variable with some
parameter α > 0, describe the law of Yn and compute the Markov transitions of Xt.
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Exercise 157 (Telegraph process) We consider a Markov process Xt taking values in
S = {1, 2}. It switches from 1 to 2 at rate λ(1) > 0 and from 2 to 1 at rate λ(2) > 0. De-
scribe the infinitesimal generator of the process Xt and compute the probability distributions
η(i) = P(Xt = i), for any i ∈ S. Furthermore, we let π be the probability distribution on S

defined by π(1) = 1− π(2) = λ(2)
λ(1)+λ(2) , with λ := λ(1) + λ(2). Check that

sup
i∈S

|ηt(i)− π(i)| = λ−1 exp (−λt) |λ(1)η0(1)− λ(2)(1− η0(1))| .

Exercise 158 (Birth and death process) We consider a Markov process Xt taking val-
ues in S = N with infinitesimal generator L defined for any function f on N and any
x ∈ N− {0} by

L(f)(x) = λ+(x) (f(x+ 1)− f(x)) + λ−(x) (f(x− 1)− f(x))

for some functions λ+(x), λ−(x) ≥ 0 s.t. λ−(0) = 0 and
∑

x≥0

∏
0≤y<x

λ+(y)
λ−(y+1) < ∞. Find

a probability distribution π on S such that πL = 0.

Exercise 159 (Poisson Process) The formula (10.2) shows that Nt can be interpreted as
a continuous time embedding of the N-valued Markov chain Xn with the one-step transitions

K(n,m) = 1n+1(m).

Describe the generator L of the process Nt. We let ηt = Law(Nt). Using the evolution
equation of ηt in terms of the generator L, check that ηt(n) =

(λt)n

n! e−λt.

Exercise 160 (Poisson Processes - Birth and death process) Let Nt and N ′ be two
independent Poisson processes with respective intensity λ and λ′. Describe the generator
of the process Xt = Nt − N ′

t. Check that Xt = YN ′′
t

where N ′′
t is a Poisson process with

intensity λ′′ = (λ+ λ′) and Yn a random walk with Markov transitions

P(Yn+1 = Yn + 1 | Yn) =
λ

λ+ λ′ = 1− P(Yn+1 = Yn − 1 | Yn).

We assume that N0 = N ′
0 and we let ηt(x) = P(Xt = x), with x ∈ Z. Check that

∂tηt(x) = λ (ηt(x− 1)− ηt(x)) + λ′ (ηt(x+ 1)− ηt(x)) .

We let gt(z) = E(zXt) be the moment generating function of Xt. Check that

gt(z) = e−(λ+λ′)t e(λz+λ′z−1)t.

Exercise 161 (Compound Poisson process) We let λ > 0 be a parameter and Y be a
random variable on R with some probability measure µ(dy), s.t. E(Y 2) < ∞. A compound
Poisson process is defined by

Xt =
∑

1≤n≤Nt

Yn

where Nt is a Poisson process with intensity λ and Yn is a sequence of independent copies
of Y , independent of Nt. Find the infinitesimal generator of Xt. Next, assume that Yn are
centered Gaussian random variables. Describe the cumulative function P(Xt ≤ x) in terms
of the cumulative function P(Y ≤ y).
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Exercise 162 (Yule process)
Consider a branching process in which each individual splits independently into two

offsprings after independent exponentially distributed clocks with common parameter λ > 0.
We let Xt be the number of individuals in a branching process starting with one individual,
and T1 be the first time the first individual splits, and we let Tn represent the time interval
between the (n− 1)-th split and the n-th one.

• Describe the probability distribution of the sequence of variables (Tn)n≥1.

• Describe the probability distribution of the n-th splitting time Tn =
∑

1≤k≤n Tk.

• Describe the probability distribution of Xt in terms of Tn, deduce E(Xt) and

∀n ≥ 1 P(Xt = n) = e−λt ×
(
1− e−λt

)n−1
.

Exercise 163 (Poisson martingales) We let a ∈ R, b > −1, λ > 0 be some param-
eters, Nt be a Poisson process with intensity λ, and Ft = σ(Ns, s ≤ t). Check that the
following stochastic processes are martingales w.r.t. the sigma-fields Ft.

M
(1)
t := Nt − λt M

(2)
t :=

(
M

(1)
t

)2

− λt

M
(3)
t := exp (aNt − λt (ea − 1)) M

(4)
t := (1 + b)Nt e−λbt.

Exercise 164 (First-in-first-out queueing process) We consider a single one line server
queue with Poisson arrival rate λ1. The service times for each customer in the order of
arrival are represented by i.i.d. exponential random variables Sn with parameter λ2. We as-
sume that these service times Sn are independent of the Poisson arrival process. We let Xt

be the number of customers in the system (i.e., in the arrival queue and in the service area).
Describe the evolution of the stochastic process Xt in terms of a Markov chain embedding.

Exercise 165 (Multi-server queueing processes) We return to the exercise 164 and
we assume that we have a ≥ 1 servers working in parallel (and a single arrival queue).
Describe the evolution of the stochastic process Xt in terms of a Markov chain embedding.

Exercise 166 (Poisson thinning) We return to the Poisson thinning techniques pre-
sented on page 309. We consider a sequence of independent random variables Un on [0, λ],
and we let At be the first integer k such that

At = inf
{
k ≥ 1 : Uk ≤ λT ′

k

}
.

Check that At is a geometric random variable with success probability given by the area ratio∫ t

0
λsds/(λt). When λt = e−t, check that for any choice of λ ≥ λt, we have limt→∞ E(At) =

∞.

Exercise 167 (Explosion times) We consider a jump process (Xt)t∈[0,1[ with generator

∀t ∈ [0, 1[ Lt := λt (K − Id) with the intensity λt = 1/(1− t)

for some Markov transitions K(x, dy) on R. Check that the jump times Tn of Xt are defined
by the recursion

∀n ≥ 1 Tn = (1− Un) + Un Tn−1 ∈ [0, 1]
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with T0 = 0, and a sequence Un of independent copies of some uniform random variable U
on [0, 1[. Deduce that

∀p ≥ 0 E ((1− Tn)
p
) = (p+ 1)−n and Tn →n→∞ T∞ = 1.

The exercise 208 analyses non explosive and time homogeneous regenerative jump processes
associated with the Markov transition K(x, dy) = δ0(dy).

Exercise 168 (Explosion time concentration inequalities)
We consider the random times defined in (11.19), for some λn ≥ 1. Using theo-

rem 11.3.7, check that

P


Tn ≤

∑
1≤p≤n

λ−1
p + t+ 2

√ ∑
1≤p≤n

λ−2
p

√
t


 ≥ 1− e−t.

• In the explosive case (i.e.
∑

p≥1 λ
−1
p < ∞), check that

P
(
Tn ≤ |λ|1 + t+ 2|λ|2

√
t
)
≥ 1− e−t

for any t ≥ 0, with

|λ|22 :=
∑
p≥1

λ−2
p ≤ E(T∞) := |λ|1 :=

∑
p≥1

λ−1
p < ∞.

• Deduce from the above that

P
(
T∞ ≤ t+ E(T∞)(1 + 2

√
t)
)
≥ 1− e−t (11.31)

for any t ≥ 0. Show that T∞ ≤ 10.35 with a probability larger than 95%. Compare this
estimate with the one obtained using Markov’s inequality

P (T∞ ≥ t) ≤ t−1 E (T∞) .

• We consider the non-explosive case (i.e.,
∑

p≥1 λ
−1
p = ∞). When λn = 1 check that

P
(
Tn ≤ n+ t+ 2

√
nt
)
= P

(√
Tn ≤

√
n+

√
t
)
≥ 1− e−t

for any t ≥ 0. Prove that the seventh jump time occurs before 20 units of time, with
a probability 95%; and the 103-th jump occurs before 1.1113 103 units of time, with a
probability larger than 95%.



12
Jump processes

Pure jump processes generalize Poisson processes with jumps. The semigroup evolutions for
these pure jump processes have analytic form and possess simple discrete time approxima-
tions. We formulate basic statements about the error of these approximations. Furthermore,
we study in details the Doob-Meyer decompositions for both discrete and continuous time
models, and present the main optional stopping theorems. These results are used to formu-
late the all important Doeblin-Itō formula (a.k.a. Itō lemma) for smooth transformations
of general continuous time pure jump models. At the end of the chapter, we investigate the
stability properties of the time homogeneous jump processes.

Jump, and you will find out how to unfold your wings as you fall.
Ray Bradbury (1920-2012).

12.1 A class of pure jump models
We consider a collection of Markov transi-
tions Kt(x, dy) on a state space S, and a col-
lection of bounded intensity functions λt(x),
indexed by t ∈ R+. We also assume that the
mappings t �→ Kt(f)(x) and t �→ λt(x) are
Lipschitz continuous for any x and for any
function f ∈ B(S).

We associate with these objects the càdlàg
Markov process Xt defined sequentially as
follows. We let En = − logUn be a se-
quence of independent exponential random
variables with unit parameters (⇒ Un uni-
form on [0, 1]).

At the origin, the process starts at some
initial state X0 = x0, and we set T0 = 0.

1. We assume that the process is defined on the interval [0, Tn]. After the time Tn

the process remains constant

∀Tn ≤ s < Tn+1 Xs := XTn
(12.1)

up to the random jump time Tn+1 defined by

Tn+1 = inf

{
t ≥ Tn :

∫ t

Tn

λs (Xs) ds ≥ En+1

}
.

337
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2. At the time Tn+1, the jump of the processXTn+1− � XTn+1
is defined by choosing

a random state with the Markov transition at that time,

XTn+1
∼ KTn+1

(
XTn+1−, dx

)
.

When Kt(x, dy) = δx+1(dy) only positive and unit jumps occur. The corresponding Xt

reduces to a Poisson process with jump intensity λt(Xt).

We also have the telescoping sum

Xt = X0 +
∑

0<Tn≤t

(XTn −XTn−) (12.2)

with jumps XTn
− XTn− defined in terms of a random variables XTn

with con-
ditional distribution KTn

(XTn−, dx) given the value of the process XTn− at the
jump time Tn.

When the intensity function λt(x) ≤ λ is upper bounded by some parameter λ, using
the Poisson thinning techniques, we can replace λt(x) by the parameter λ in the above
description. Likewise, we can replace the Markov transitions Kt by

Kλ
t (x, dy) :=

λt(x)

λ
Kt(x, dy) +

(
1− λt(x)

λ

)
δx(dy).

Important remark : This reformation of the process is based on the Poisson thinning
properties discussed on page 309. As we mention in section 10.6.2, in practical situations
these sampling strategies can be really inefficient (compare with exercise 166).

12.2 Semigroup evolution equations

By construction, for any s ≥ t we have

P
(
Tn+1 ∈ dt ,XTn+1

∈ dy | Tn = s, XTn
= x

)

= λt(x) exp

(
−
∫ t

s

λr(x) dr

)
dt

︸ ︷︷ ︸
P(Tn+1∈dt | Tn=s,XTn=x)

Kt(x, dy)︸ ︷︷ ︸
P(XTn+1

∈dy | Tn+1=t, XTn=x).

In the same vein, if T (s) is the first jump time after time s, we have

P
(
T (s) ∈ dt ,XT (s) ∈ dy | Xs = x

)

= λt(x) exp

(
−
∫ t

s

λr(x) dr

)
1s≤t dt

︸ ︷︷ ︸
P(T (s)∈dt | Xs=x)

× Kt(x, dy)︸ ︷︷ ︸
P(XT (s)∈dy | T (s)=t, Xs=x).
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This yields the formula

P
(
T (t) ∈ dt ,Xt+dt ∈ dy | Xt = x

)
= λt(x) dt Kt(x, dy). (12.3)

Last but not least, we also observe that for any t ≥ s we have

P
(
T (s) > t | Xs = x

)
= exp

(
−
∫ t

s

λr(x) dr

)
1s≤t. (12.4)

We check this claim by using the fact that

P
(
T (s) > t | Xs = x

)
=

∫∞
t

P
(
T (s) ∈ du | Xs = x

)
du

=

∫ ∞

t

λu(x) exp

(
−
∫ u

s

λr(x) dr

)
du = −

∫ ∞

t

∂

∂u
exp

(
−
∫ u

s

λr(x) dr

)
du.

We let Ps,t and ηt be the semigroup and and the law of random states of the process Xt

introduced in definition 11.4.2.

Arguing as in the proof of theorem 11.4.3, we have the integral formula

Ps,t(f)(x)

= exp

[
−
∫ t

s

λr(x)dr

]
f(x)

+

∫ t

s

λr(x) exp

[
−
∫ r

s

λu(x) du

]
(KrPr,t)(f)(x) dr.

In addition, we have

∂tPs,t = Ps,tLt ∂sPs,t = −LsPs,t and ∂tηt(f) = ηtLt(f) (12.5)

with the initial condition Ps,s = Id for s = t, and with the integral operator Lt

defined for any f ∈ B(S) by

Lt(f)(x) := λt(x)

∫
[f(y)− f(x)] Kt(x, dy)

= lim
s→t

1

t− s
[Ps,t(f)(x)− f(x)] . (12.6)
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By (12.2), for any function f and any s < t we also have the telescoping sum

f(Xt) = f(Xs) +
∑

s<Tn≤t

(f(XTn
)− f(XTn−)) . (12.7)

Roughly speaking this formula implies that

f(Xt) = f(X0) +

∫ t

0

(f(Xs+ds)− f(Xs)) .

Taking the expectations we have

(12.3) ⇒ E [(f(Xs+ds)− f(Xs)) | Xs ] = λs(Xs) ds
∫

(f(y)− f(Xs)) Ks(Xs, dy)
= Ls(f)(Xs) ds. ⇒ (12.5)

12.3 Approximation schemes
This section is concerned with the discrete time approximation of these models.

Using the modeling techniques developed in section 11.4.3, a natural way to ap-
proximate these models on a discrete time mesh (11.30) is to consider the Markov
chain

P
(
Xh

tn+1
∈ dy | Xh

tn = x
)

= Ph
tn,tn+1

(x, dy)

= e−λtn (x)h δx(dy) +
(
1− e−λtn (x)h

)
Ktn(x, dy).

(12.8)

We have

Ph
tn,tn+1

− Id =
(
1− e−λtnh

)
[Ktn − Id] = h Ltn +O(h2).

On the other hand, using elementary Taylor first order expansion, we get

Ps,s+h(f) = Ps,s(f) + ∂tPs,t(f)|t=s h+O
(
h2

)
(12.9)

= Ps,s(f) + Ps,s(Ls(f)) +O
(
h2

)
. (12.10)

Recalling that Pt,t = Id, we also have that

Pt,t+h = Id+ h Lt +O(h2). (12.11)

Extending the Taylor expansion at the n-th order, we find that

Pt,t+h = Id+ h Lt +
h2

2!
L2
t + . . .+

hn

n!
Ln
t +O(hn+1) (12.12)

where Ln
t denotes the n-th iterate of the operator Lt.

It is out of the scope of these lectures to provide a detailed review on the convergence
analysis of these discretized models to their limiting continuous time version. We simply
quote the following general local perturbation theorem.
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Theorem 12.3.1 We let Ph
tp,tn be the semigroup of a discrete time model defined

at a time mesh (11.30), with tp ≤ tn. We also consider the semigroup Ps,t of a
continuous time model, with s ≤ t. We assume that for any n ∈ N we have

Ph
tn,tn+1

= Id+ h Ltn +O(h1+ε) = Ptn,tn+1 (12.13)

for some ε > 0, and some infinitesimal generators Lt, with t ∈ R+. For any time
steps tp = h�s/h� ≤ tn = h�t/h�, we have the first order approximation formulae

Ph
tp,tn = Ptp,tn +O (hε) and ηhtn = ηtn +O (hε)

as soon as ηh0 = η0 +O (hε).

Proof :
Under our assumptions, we have

[
Id− Ptp,tp+1

]
= −Ltp h+O

(
h2

)
.

This implies that
[
Ph
tp,tp+1

− Ptp,tp+1

]
=

[
Ph
tp,tp+1

− Id
]
−
[
Ptp,tp+1 − Id

]
= O(h2).

To take the final step, we consider the interpolating path

p ∈ [0, n] �→ Ph
0,tpPtp,tn

starting at P0,tn and ending at Ph
0,tn , with the corresponding telescoping sum

Ph
0,tn − P0,tn =

∑
0≤tp<tn

[
Ph
0,tp+1

Ptp+1,tn − Ph
0,tpPtp,tn

]
.

We observe that

Ph
0,tp+1

Ptp+1,tn − Ph
0,tpPtp,tn = Ph

0,tp

[
Ph
tp,tp+1

− Ptp,tp+1

]
Ptp+1,tn = O

(
h1+ε

)
.

This clearly implies that

Ph
0,tn − P0,tn = nh O (hε) = tn O (hε) = O (hε) .

The same analysis applies to the interpolating path

q ∈ [p, n] �→ Ph
tp,tqPtq,tn

starting at Ptp,tn and ending at Ph
tp,tn ,. The last assertion is a direct consequence of the

fact that η0 = ηh0 and of the semigroup property

ηhtn = η0P
h
0,tn and ηtn = η0P

h
0,tn .

This ends the proof of the theorem.
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We extend the discrete generation process Xh
tn to a continuous time process (Xh

t )t≥0

with càdlàg random trajectories by setting

∀n ≥ 0 ∀t ∈ [tn, tn+1[ Xh
t = Xh

tn . (12.14)

We denote by Ph
s,t the corresponding semigroup defined for any s ≤ t.

For any s < t with (t− s) > h we have

0 ≤ t− h�t/h� < h ⇒ h�s/h� ≤ s < h�t/h� ≤ t

⇒ Ph
h�s/h�,s = Id = Ph

h�t/h�,t ⇒ Ph
s,t = Ph

h�s/h�,h�t/h�.

On the other hand, using (12.11), for any s ≤ t we readily check that

Ph�s/h�,h�t/h� = Ps,t +O (h) .

We summarize the above discussion with the following direct corollary of theorem 12.3.1.

Corollary 12.3.2 For any s1 < s2 with (s2 − s1) > h we have

Ph
s1,s2 = Ps1,s2 +O (h) .

More generally, for any finite sequence of times s1 < . . . < sn with a sufficiently small
h we have the finite dimensional approximation

∏
1≤i<n

Ph
si,si+1

(xi, dxi+1) =
∏

1≤i<n

Psi,si+1
(xi, dxi+1) +O (h) .

We end this section with a series of important observations.
Firstly, we mention that the approximation theorem 12.3.1 is not restricted to discrete

time approximation schemes. It also applies to analyze the convergence of sg Ph
tn,tn+1

satisfying condition (12.13) on any time mesh sequence.
Secondly, the reader should be convinced that the theorem can be extended to approxi-

mations of any order. We refer to exercice 190 for high order discrete time schemes for pure
jump models.

12.4 Sum of generators
In various situations, a Markov process is often introduced as a stochastic process with
generator of the form

Lt(f)(x) :=

∫
[f(y)− f(x)] Qt(x, dy)

for some positive integral operator Qt. Assuming that λt(x) := Qt(x, S) > 0 this generator
has exactly the same form as the one discussed in (12.6) withKt(x, dy) = Qt(x, dy)/Qt(x, S).
Thus, we can apply the discrete time approximation techniques developed in this section to
sample the process Xt.
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In some important practical situations, the operator Qt is often given by the sum of
positive operators Q

(i)
t , indexed by some finite set I. Here again, we have the equivalent

formulations

Lt(f)(x) :=
∑
i∈I

∫
[f(y)− f(x)] Q

(i)
t (x, dy)

=
∑
i∈I

λt(i, x)

∫
[f(y)− f(x)] K

(i)
t (x, dy) (12.15)

= λ(x)

∫
[f(y)− f(x)] Kt(x, dy)

with the intensity functions

λt(i, x) = Q
(i)
t (x, S) > 0 and λ(x) =

∑
i∈I

λt(i, x),

with the Markov transitions

K
(i)
t (x, dy) = Q

(i)
t (x, dy)/Q

(i)
t (x, S)

and with

Kt(x, dy) =
∑
i∈I

λt(i, x)∑
j∈I λt(j, x)

K
(i)
t (x, dy).

The final step consists in noting that the decomposition formula (12.15) gives a definition
of Lt in terms of the sum of generators

Lt =
∑
i∈I

L
(i)
t with L

(i)
t (f)(x) := λt(i, x)

∫
[f(y)− f(x)] K

(i)
t (x, dy).

Proposition 12.4.1 For any collection of discrete time approximation sg P
(h,i)
tn,tn+1

satisfy-
ing the condition (12.13)

P
(h,i)
tn,tn+1

= Id+ h L
(i)
tn +O(h2),

the composition sg defined below also satisfies (12.13):

Ph
tn,tn+1

=
∏
i∈I

P
(h,i)
tn,tn+1

in any order. (12.16)

Proof :
We check this claim using the fact that

∏
i∈I

P
(h,i)
tn,tn+1

=
∏
i∈I

(
Id+ h L

(i)
tn +O(h2)

)
= Id+ h

∑
i∈I

L
(i)
tn +O(h2).

This ends the proof of the proposition.
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12.5 Doob-Meyer decompositions

12.5.1 Discrete time models

In the further development of this section, Xh
tn stands for the discrete time model with

transitions (12.8).

Definition 12.5.1 We let Fh
tn = σ

(
Xh

tp , 0 ≤ tp ≤ tn

)
be the increasing sequence of σ-

fields generated by the Markov chain Xh
tn .

Fh
t0 ⊂ Fh

t1 ⊂ . . . ⊂ Fh
tn ⊂ Fh

tn+1
⊂ . . .

For any function f ∈ B(S), we let ∆f(Xh)tn be the increments given for any n ≥ 0 by

∆f(Xh)tn := f(Xh
tn)− f(Xh

tn−1
).

For n = 0, we use the convention ∆f(Xh)t0 := f(Xh
t0).

Definition 12.5.2 We let Lh
tn−1

be the integral operators

Lh
tn−1

=
1

h

[
Ph
tn−1,tn − Id

]
= Ltn−1

+O(h).

Definition 12.5.3 The square field vector (also called the "carré du champ operator") as-
sociated with the operators L = Lh

tn−1
or L = Ltn−1

is

ΓL(f, g)(x) = L((f − f(x))(g − g(x)))(x)

= L(fg)(x)− f(x)L(g)(x)− g(x)L(f)(x). (12.17)

Theorem 12.5.4 For any tn > t0 we have

∆f(Xh)tn = Lh
tn−1

(f)(Xh
tn−1

) h+∆Mtn(f)

with a random variable ∆Mtn(f) such that E
(
∆Mtn(f) | Xh

tn−1

)
= 0, and

Var
(
∆Mtn(f)| Xh

tn−1
= x

)
= h ΓLh

tn−1
(f, f)(x)−

(
h Lh

tn−1
(f)(x)

)2

.

More generally, for any couple of functions f, g we have

E
(
∆Mtn(f) ∆Mtn(g)

∣∣∣ Xh
tn−1

= x
)
= h ΓLh

tn−1
(f, g)(x)−

(
h Lh

tn−1
(f)(x)

)(
h Lh

tn−1
(g)(x)

)
.

Proof :
Firstly, we observe that

∆f(Xh)tn = E
(
∆f(Xh)tn | Fh

tn−1

)
+
[
∆f(Xh)tn − E

(
∆f(Xh)tn | Fh

tn−1

)]

= [Ph
tn−1,tn − Id](f)(Xh

tn−1
) + ∆Mtn(f)
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with the random variables

∆Mtn(f) :=
[
∆f(Xh)tn − E

(
∆f(Xh)tn | Xh

tn−1

)]
= f(Xh

tn)− E
(
f(Xh

tn) | X
h
tn−1

)
.

These random variables are clearly conditionally centered given Xh
tn−1

. In addition, it is
also clear that

E
(
∆Mtn(f)

2
∣∣∣ Fh

tn−1

)
= Var

(
f(Xh

tn)| X
h
tn−1

)
= Γh

Lh
tn−1

(f, f)(Xh
tn−1

)

with

Γh
Lh

tn−1

(f, f)(x) := Ph
tn−1,tn(f

2)(x)− Ph
tn−1,tn(f)(x)

2

= f2(x) + h Lh
tn−1

(f2)(x)−
(
f(x) + h Lh

tn−1
(f)(x)

)2

= h
[
Lh
tn−1

(f2)− 2f Lh
tn−1

(f)
]
(x)−

(
h Lh

tn−1
(f)(x)

)2

.

This ends the proof of the first assertion. The second formula can be proved by polarization.
Next, we provide an alternative proof. Arguing as above for any couple of functions f, g we
have

E
(
∆Mtn(f) ∆Mtn(g)

∣∣∣ Fh
tn−1

)
= Γh

Lh
tn−1

(f, g)(Xh
tn−1

)

with

Γh
Lh

tn−1

(f, g)(x) := Ph
tn−1,tn(fg)(x)− Ph

tn−1,tn(f)(x) P
h
tn−1,tn(g)(x)

= (fg)(x) + h Lh
tn−1

(fg)(x)

−
(
f(x) + h Lh

tn−1
(f)(x)

)(
g(x) + h Lh

tn−1
(g)(x)

)

= h
[
Lh
tn−1

(fg)− f Lh
tn−1

(g)− g Lh
tn−1

(f)
]
(x)

−
(
h Lh

tn−1
(f)(x)

)(
h Lh

tn−1
(g)(x)

)
.

This ends the proof of the theorem.

Definition 12.5.5 We say that Atn , respectively Mtn , is a predictable process, respectively
a martingale process w.r.t. the filtration Fh

tn , n ≥ 0, when we have

E
(
Atn | Fh

tn−1

)
= Atn and respectively E

(
Mtn | Fh

tn−1

)
= Mtn−1

.

The following decomposition is more or less a direct consequence of the above theorem.

Corollary 12.5.6 For any n ≥ 0, we have the decomposition

f(Xh
tn) = f(Xh

t0) +Ah
tn(f) +Mh

tn(f) (12.18)

with the stochastic processes

Ah
tn(f) =

∑
t0<tp≤tn

Lh
tn−1

(f)(Xh
tn−1

) h and Mh
tn(f) =

∑
t0<tp≤tn

∆Mh
tp(f).
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The stochastic processes Ah
tn(f) and Mh

tn(f) are called the predictable and the martingale
parts of Xh

tn . The decomposition (12.18) is called the Doob-Meyer decomposition of the
process f(Xh

tn).

Proof :

For any function f ∈ B(S), we clearly have

f(Xh
tn) = f(Xh

t0) +
∑

t0<tp≤tn

(
f(Xh

tp)− f(Xh
tp−1

)
)
=

∑
t0≤tp≤tn

∆f(Xh)tp .

This implies (12.18) with the stochastic processes Ah
tn(f) and Mh

tn(f) defined by

Ah
tn(f) =

∑
t0<tp≤tn

=∆Ah
tp

(f)

︷ ︸︸ ︷
E
(
∆f(Xh)tp | Xh

tp−1

)

Mh
tn(f) =

∑
t0<tp≤tn

[
∆f(Xh)tp − E

(
∆f(Xh)tp | Xh

tp−1

)]
︸ ︷︷ ︸

=∆Mh
tp

(f)

.

The end of the proof is now a direct consequence of theorem 12.5.4. This ends the proof of
the corollary.

12.5.2 Continuous time martingales

It is convenient to extend the class of martingale processes discussed in section 8.4 to
continuous time processes. When studying continuous time processes Xt defined on some
probability space (Ω,P,G), we need to consider filtrations F = (Ft)t≥0 indexed by the
continuous time parameter t ∈ [0,∞[. For instance Ft = σ(Xs, s ≤ t) contains the
information on the process up to a given time horizon. Jump type processes Xt and related
martingales have càdlàg trajectories.

Roughly speaking, for càdlàg processes Xt, the σ-field Ft− = σ(Xs, s < t) contains
information on the process from the origin up to the left limit Xt−. In the reverse angle,
Ft = Ft+ = σ(Xs, s ≤ t) contains information on the process from the origin up to the
right hand side limit Xt = Xt+.

The more rigorous construction and the continuity analysis of these filtrations for general
càdlàg stochastic processes is rather technical. For technical reasons it is commonly assumed
that the filtration is right continuous and complete, in the sense that Ft = Ft+ := ∩h≥0Ft+h,
and all subsets of P-null sets are in F0. The left limits are defined by Ft− := ∨s<tFs (the
smallest σ-field containing Fs for all s < t).

Analogous to the discrete time case (cf. section 8.3.2) stopping times w.r.t. a right
continuous filtration Ft are random times T s.t. {T < t} ∈ Ft, for all t ≥ 0. For instance, let
Xt be a càdlàg stochastic processes taking values in Rr, and let Ft the associated canonical
right continuous and complete filtration. For a given (measurable) subset B ⊂ Rr, the
random hitting time T = inf {t ≥ 0 : Xt ∈ B} is an F-stopping time as soon as B is an
open set. The result is also true for closed sets but the process needs to have continuous
trajectories. Inversely any stopping time can be seen as a hitting time. These results are
based on the Début theorem; the proof of this result is quite technical, thus it is omitted.
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In this context, the extension of definition 12.5.5 to continuous time processes takes the
following form.

Definition 12.5.7 We say that a process At, respectively Mt, is F-predictable,
respectively an F-martingale, if we have

E(At | Ft−) = At and respectively ∀s ≤ t E(Mt | Fs) = Ms.

As in the discrete time case (cf. definition 8.4.3), M is also called a super-
martingale, and respectively a sub-martingale (w.r.t. the filtration F), if we can
replace the r.h.s. in the above display by

E(Mt | Fs) ≥ Ms , and resp. E(Mt | Fs) ≤ Ms.

Definition 12.5.8 We let Ft be an increasing sequence of σ-fields. An Ft-
martingale Mt is a real valued stochastic process such that for any s ≤ t

E (Mt |Fs ) = Ms.

The angle bracket 〈M (1),M (2)〉t of a couple of martingales M
(1)
t and M

(2)
t is an

F-predictable process such that

M
(1)
t M

(2)
t − 〈M (1),M (2)〉t is an Ft-martingale.

When M
(1)
t = M

(2)
t = Mt we often write 〈M〉t instead of 〈M,M〉t.

Important remark : For any martingale Mt we have

E
(
(Mt+dt −Mt)

2 | Ft

)
= E

(
M2

t+dt | Ft

)
− 2Mt E (Mt+dt | Ft) +M2

t

= E
(
M2

t+dt | Ft

)
−M2

t

= E
(
M2

t+dt −M2
t | Ft

)
= E

(
dM2

t | Ft

)
.

In much the same way, for any couple of martingales M (1)
t and M

(2)
t we have

E
((

M
(1)
t+dt −M

(1)
t

)(
M

(2)
t+dt −M

(2)
t

)
| Ft

)

= E
(
M

(1)
t+dtM

(2)
t+dt | Ft

)
−M

(1)
t E

(
M

(2)
t+dt | Ft

)
−M

(2)
t E

(
M

(1)
t+dt | Ft

)
+M

(1)
t M

(2)
t

= E
(
M

(1)
t+dtM

(2)
t+dt | Ft

)
−M

(1)
t M

(2)
t = E

(
M

(1)
t+dtM

(2)
t+dt −M

(1)
t M

(2)
t | Ft

)

with the product increments

d(M (1)M (2))t := M
(1)
t+dtM

(2)
t+dt −M

(1)
t M

(2)
t and dM2

t := M2
t+dt −M2

t .
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This yields the decomposition

M
(1)
t+dtM

(2)
t+dt −M

(1)
t M

(2)
t

= M
(1)
t

(
M

(2)
t+dt −M

(2)
t

)
︸ ︷︷ ︸

martingale increment

+M
(2)
t

(
M

(1)
t+dt −M

(1)
t

)
)

︸ ︷︷ ︸
martingale increment

+
(
M

(1)
t+dt −M

(1)
t

)(
M

(2)
t+dt −M

(2)
t

)

= E
((

M
(1)
t+dt −M

(1)
t

)(
M

(2)
t+dt −M

(2)
t

)
| Ft

)
+Martingale increments,

with the predictable quadratic rules,

E
(
d(M2

t ) | Ft

)
= E

(
(dMt)

2 | Ft

)

E
(
d(M (1)M (2))t | Ft

)
= E

(
dM

(1)
t dM

(2)
t | Ft

)
. (12.19)

Last but not least, suppose the martingales M
(i)
t = M

(i),c
t + M

(i),d
t are decomposed into

martingales M (i),c
t with continuous trajectories and martingales M (i),d

t with discontinuous
trajectories such that

(
M

(i),c
t+dt −M

(i),c
t

)(
M

(j),d
t+dt −M

(j),d
t

)
= 0

for any i, j ∈ {1, 2}. In this situation, we have
(
M

(1)
t+dt −M

(1)
t

)(
M

(2)
t+dt −M

(2)
t

)

= dM
(1),c
t dM

(2),c
t +

(
M

(1),d
t+dt −M

(1),d
t

)(
M

(2),d
t+dt −M

(2),d
t

)

= d〈M (1),c,M
(2),c
t 〉t +∆

[
M (1),d,M (2),d

]
t
+ dM

(1),c
t dM

(2),c
t − E

(
dM

(1),c
t dM

(2),c
t | Ft

)
︸ ︷︷ ︸

martingale increment

with the square bracket pure jump process
[
M (1),d,M (2),d

]
t
:=

∑
s≤t

∆M (1)
s ∆M (2)

s .

If we set
[
M (1),M (2)

]
t
:= 〈M (1),c,M (2),c〉t +

∑
s≤t

∆M (1)
s ∆M (2)

s , (12.20)

we conclude that

M
(1)
t M

(2)
t −

[
M (1),M (2)

]
t

is a martingale.
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12.5.3 Optional stopping theorems

This section provides a brief discussion on the extension to continuous time of the stopped
martingales with respect to some stopping times discussed in section 8.4.3. Random times
T are called stopping times with respect to some filtration F := (Ft)t≥0 when we have
{T ≤ t} ∈ Ft for any t ∈ [0,∞[. In the further development of this section c, c1 and c2
stand for some finite constants. The continuous time version of theorem 8.4.12 is given
below.

Theorem 12.5.9 (Optional stopping theorem 1)

Every stopped martingale Mt∧T w.r.t. some F-stopping time is again an F-
martingale.

As in (8.55), applying the dominated convergence theorem we also prove the following
theorem.

Theorem 12.5.10 (Optional stopping theorem 2) Whenever the stopped
martingale Mt∧T is s.t. |Mt∧T | ≤ c we have

E(M0) = E(Mt∧T ) −→t↑∞ E
(
lim
t↑∞

Mt∧T

)
= E(MT ). (12.21)

We also have

|Mt∧T | ≤ c1 + c2 T with E(T ) < ∞

=⇒ E(M0) = E(Mt∧T ) −→t↑∞ E (limn↑∞ Mt∧T ) = E(MT ).
(12.22)

Last but not least, applying (12.22) to the martingale Nt := M2
t − 〈M〉t, we prove the

theorem.

Theorem 12.5.11 (A Wald’s type identity) For any stopped martingale we
have

|Mt∧T | ≤ c

〈M〉t∧T ≤ c T with E(T ) < ∞


 =⇒ E

(
M2

T

)
= E (〈M〉T )

as soon as M0 = 0 = 〈M〉0. In addition, we have

|Mt∧T | ≤ c =⇒ E (〈M〉T ) ≤ c2. (12.23)
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12.6 Doeblin-Itō-Taylor formulae
In the further development of this section, Xt stands for the continuous time jump model
introduced in section 12.1, and Xh

tn its discrete time version on a time mesh (11.30) with
the Markov transitions (12.8).

At time tn = h 〈t/h〉 ↑ t, as h ↓ we have the increment approximation

df(Xt) � ∆f(Xh)tn = Lh
tn−1

(f)(Xh
tn−1

) h+∆Mh
tn(f) (by theorem 12.5.4)

� Lt(f)(Xt) dt+ dMt(f)

with a martingale Mt(f) w.r.t. the σ-field

Ft = σ (Xs, s ≤ t) �h↓0 Fh
tn

generated by the stochastic process Xt.

By lemma 8.4.6, for any couple of functions (f, g) we also have the martingale approxi-
mations

Mh
tn(f) M

h
tn(g)− 〈Mh(f),Mh(g)〉tn � Mt(f) Mt(g)− 〈M(f),M(g)〉t

with the angle bracket

〈Mh(f),Mh(g)〉tn − 〈Mh(f),Mh(g)〉tn−1

= E
(
∆Mh

tn(f)∆Mh
tn(g) | F

h
tn−1

)
= Cov

(
∆Mtn(f),∆Mtn(g) | Xh

tn−1

)

= h ΓLh
tn−1

(f, g)(Xh
tn−1

)−
(
h Lh

tn−1
(f)(Xh

tn−1
)
)(

h Lh
tn−1

(g)(Xh
tn−1

)
)

(by th. 12.5.4)

� ΓLt
(f, g)(Xt) dt := d〈M(f),M(g)〉t.

In other words the stochastic process

t �→ Mt(f)Mt(g)− 〈M(f),M(g)〉t (12.24)

is a martingale with the angle bracket 〈M(f),M(g)〉t defined by the integral for-
mula

〈M(f),M(g)〉t =
∫ t

0

d〈M(f),M(g)〉s =
∫ t

0

ΓLs(f, g)(Xs) ds.

When f = g, we often write 〈M(f)〉t instead of 〈M(f),M(f)〉t.
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Working a little harder, we can prove the following theorem (a.k.a. Doeblin-Itō formula
or Itō lemma).

Theorem 12.6.1 For any smooth functional t �→ ft = f(t, .) ∈ B(S), we have

df(t,Xt) = (∂t + Lt) f(t,Xt) dt+ dMt(f) (12.25)

with a martingale Mt(f) null at the origin and such that

M2
t (f)− 〈M(f)〉t := M2

t (f)−
∫ t

0

ΓLs
(fs, fs)(Xs) ds

is a martingale, with the square field operator given by

ΓLt
(f, f)(x) = λt(x)

∫
[f(y)− f(x)]2 Mt(x, dy).

We observe that a Poisson process Xt = Nt with intensity λt is a pure jump process
with generator

Lt(f)(x) = λt [f(x+ 1)− f(x)].

Applying theorem 12.6.1 to the identity function f(Nt) = Nt, we find that

The stochastic process

Mt := Nt −
∫ t

0

λs ds

is a martingale with angle bracket given by d〈M〉t = λt dt.

We can alternatively use

E (dNt | Ft) = P (Nt+dt −Nt = 1 | Ft) = λt dt

to check that
E (dMt | Ft) = E (dNt − λtdt | Ft) = 0.

In addition, using (12.19), we have

E
(
d(M2

t ) | Ft

)
= E

(
(dMt)

2 | Ft

)
= E

(
(dNt)

2 | Ft

)
= E (dNt | Ft) = λt dt.

12.7 Stability properties

12.7.1 Invariant measures

We consider a time homogeneous jump process Xt on some state space S with generator

L(f)(x) = λ(x)

∫
[f(y)− f(x)] K(x, dy) (12.26)
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with a bounded intensity function λ(x) ≤ λmax for some finite λmax < ∞, and some Markov
transition K. We set

Kλ(x, dy) =
λ(x)

λmax
K(x, dy) +

(
1− λ(x)

λmax

)
δx(dy) ⇒ L = λmax [Kλ − Id]. (12.27)

By construction, the sg of Xt is given by

Pt(f)(x) = E (f(Xt) | X0 = x)

=
∑
n≥0

E (f(Xt) 1Nt=n | X0 = x) = e−λmaxt
∑
n≥0

(tλmax)
n

n!
Kn

λ (f)(x)

where Nt is a Poisson process with intensity λmax.

Lemma 12.7.1 Whenever they exist (and they are unique), the invariant proba-
bility measures π, respectively πλ, of the Markov transitions K, respectively Kλ,
are connected for any f ∈ B(S) by the formula

πλ(f) = π(f/λ)/π(1/λ) and we have πλL(f) = 0. (12.28)

Proof :
The l.h.s. follows from the following observations:

πK = π ⇒ πλ(Kλ(f)) ∝ π

(
1

λ
(λK(f) + (1− λ)f)

)
= πK(f) + π(f/λ)− π(f)

= π(f/λ) ∝ πλ(f).

We also notice that

πλKλ = πλ ⇒ πλ(λK(f)) = πλ(Kλ(f))− πλ((1− λ)(f))

= πλ(λf) ⇒ π(f) ∝ πλ(λf).

The r.h.s. of (12.28) is now immediate. This ends the proof of the lemma.

Definition 12.7.2 A probability measure π on some state space S is invariant
w.r.t. some time homogeneous Markov semigroup Pt = P0,t if we have πPt = π,
for any t ≥ 0.

Proposition 12.7.3 The invariance property is also characterized in terms of the
generator L of the semigroup:

π is Pt-invariant ⇐⇒ (∀t ≥ 0 πPt = π) ⇐⇒ πL = 0.

Proof :
We check this claim using

π

(
Pt − Id

t

)
→t↓0 πL and Pt = Id+

∫ t

0

LPs ds.
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Definition 12.7.4 The measure π is reversible w.r.t. Pt if we have

π(dx) Pt(x, dy) = π(dy) Pt(y, dx)

or equivalently, for any pair of functions (f, g) ∈ B(S)2

∀t ≥ 0 π(fPt(g)) = π(Pt(f)g) ⇐⇒ π(fL(g)) = π(L(f)g).

By lemma 12.7.1 the invariant probability measures of jump processes with generator
L given in (12.26) are directly connected to those of the Markov chain with probability
transitions Kλ described in (12.27).

We summarize this result with the series of equivalences

πK = π ⇐⇒ πλ = πλKλ ⇐⇒ πλL = 0. (12.29)

In addition, πλ is reversible w.r.t. Pt if and only if πλ is reversible w.r.t. Kλ. This
reversibility property is also equivalent to the fact that π is K-reversible.

12.7.2 Dobrushin contraction properties

There are several ways to transfer the stability properties of the embedded discrete Markov
chain Xλ

n with transition Kλ to the stability of the continuous time model Xt.
Next, we present three possible routes. The first one is expressed in terms of the Do-

brushin ergodic coefficient β(K) of a Markov transition K introduced in definition 8.2.11.
The second one is expressed in terms of the V -Dobrushin local contraction coefficient
βV (Kλ) presented in definition 8.2.19. The third one is related to coupling techniques.

Theorem 12.7.5 • We assume that there exists some m ≥ 1 s.t. β(Km
λ ) < 1. In this

situation, for any t ≥ 0, we have the exponential estimate

β(Pt) ≤
1

β(Km
λ )1−1/m

exp
[
−tλmax

(
1− β(Km

λ )
1
m

)]
. (12.30)

• We assume that βV (K
m
λ ) < 1 for some m ≥ 1 and some function V ≥ 0. In this situation,

for any t ≥ 0, we have the exponential estimate

βV (Pt) ≤
1

βV (Km
λ )1−1/m

exp
[
−tλmax

(
1− βV (K

m
λ )

1
m

)]
. (12.31)

We further assume that 0 < λmin ≤ λ ≤ λmax, and that K satisfies the Foster-Lyapunov
condition (8.28) for some ε ∈ [0, 1[, some finite c < ∞, and some function W ≥ 0. In
this situation, Kλ satisfies the Foster-Lyapunov condition (8.28) with

Kλ(W ) ≤
(
1− λmin

λmax
(1− ε)

)
W + c. (12.32)

In addition, if Kλ satisfies the Dobrushin local contraction condition (8.27), there exists
some function V s.t. βV (Kλ) < 1.
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Proof :

Firstly, we prove (12.30). For any function f such that osc(f) ≤ 1, using theorem 8.2.13
we have

osc
(
Knm+p

λ (f)
)
≤ β(Km

λ )nosc(Kp
λ(f)) ≤ β(Km

λ )n.

osc (Pt(f)) ≤ e−λmaxt
∑
n≥0

(tλmax)
n

n!
osc (Kn

λ (f))

= e−tλmax

∑
n≥0

∑
0≤p<m

(tλmax)
nm+p

(nm+ p)!
osc

(
Knm+p

λ (f)
)

≤ e−tλmax

∑
n≥0

∑
0≤p<m

(tλmax)
nm+p

(nm+ p)!
β(Km

λ )n.

When β(Km
λ ) = 0, the result is obvious. When β(Km

λ ) > 0, we observe that

(tλmax)
nm+p

(nm+ p)!
β(Km

λ )n =
(tλmaxβ(K

m
λ )

1
m )nm+p

(nm+ p)!

1

β(Km
λ )p/m

≤ (tλmaxβ(K
m
λ )

1
m )nm+p

(nm+ p)!

1

β(Km
λ )1−1/m

.

This implies that

osc (Pt(f)) ≤ e−tλmax

β(Km
λ )1−1/m

∑
n≥0

1

n!

(
tλmaxβ(K

m
λ )

1
m

)n

=
1

β(Km
λ )1−1/m

exp
[
−tλmax

(
1− β(Km

λ )
1
m

)]
.

This ends the proof of (12.30).
To prove (12.31) we use theorem 8.2.21 to check that

‖Pt(x, .)− Pt(y, .)‖V ≤ e−λmaxt
∑
n≥0

(tλmax)
n

n!
‖Kn

λ (x, .)−Kn
λ (y, .)‖V

≤ e−λmaxt
∑
n≥0

(tλmax)
n

n!
βV (K

n
λ ) ‖δx − δx‖V

= e−λmaxt
∑
n≥0

(tλmax)
n

n!
βV (K

n
λ ) (1 + V (x) + V (y)) .

This implies that

βV (Pt) ≤ e−λmaxt
∑
n≥0

(tλmax)
n

n!
βV (K

n
λ ).

The end of the proof of (12.31) follows the same arguments as the ones we used in the proof
of (12.30). The proof of (12.32) is a consequence of

Kλ(W ) =
λ

λmax
K(W ) +

(
1− λ

λmax

)
W

≤
[
ε

λ

λmax
+

(
1− λ

λmax

) ]
W +

λ

λmax
c ≤

[
1− λmin

λmax
(1− ε)

]
W + c.
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The last assertion is a consequence of theorem 8.2.21.
The proof of (12.33) is a direct consequence of the fact that

‖Law(Xt | X0 = x)− Law(Xt | X0 = y)‖tv = sup
osc(f)≤1

|Pt(f)(x)− Pt(f)(y)|

and
|Pt(f)(x)− Pt(f)(y)|

≤ e−λmaxt
∑

n≥0
(tλmax)

n

n! |Kn
λ (f)(x)−Kn

λ (f)(y)|

= e−λmaxt
∑

n≥0
(tλmax)

n

n!

∥∥Law(Xλ
n | X0 = x)− Law(Y λ

n | Y0 = y)
∥∥
tv
.

This ends the proof of the theorem.

Theorem 12.7.6 • We let Tλ
x,y be a coupling time of two copies Xλ

n and Y λ
n of

the Markov chain with Markov transition Kλ starting at Xλ
n = x and Y λ

n = y.
We assume that

P
(
Tλ
x,y ≥ n

)
≤ aλ(x, y) exp (−bλn)

for some finite function aλ(x, y) < ∞ and some positive constant bλ ∈]0, 1[. In
this situation, we have

‖Law(Xt | X0 = x)− Law(Xt | X0 = y)‖tv

≤ aλ(x, y) exp
(
−λmaxt(1− e−bλ)

)
.

(12.33)

• Assume that Km satisfies the minimization condition (8.15) for some integer
m ≥ 1 and some parameter ε. Also assume that 0 < λmin ≤ λ(x) ≤ λmax < ∞
for some parameters λmin and λmax. In this situation, there exists a coupling
of two copies Xt and X ′

t of the process with generator L with a coupling time T
such that

P (T > t) ≤ (1− εm)−1 e−ρmt (12.34)

with εm := ε× (λmin/λmax)
m and ρm := λmax

(
1− e−εm/m

)
.

Proof :

The first result is now a direct consequence of the coupling proposition 8.3.16. If Km

satisfies the minimization condition (8.15) for some integer m ≥ 1 and some ε, then Km
λ

also satisfies this condition with ε replaced by εm. We couple the stochastic processes Xt

and X ′
t starting at different states X0 = x and X ′

0 = x′ using the jump times of a common
Poisson process Nt with intensity λmax. At these random times we use the coupled bridge
chains (Yn, Y

′
n) with transitions Kλ (starting at Y0 = x and Y ′

0 = x′) discussed in the end
of section 8.3.4.1. We let Tc the coupling time of (Xt, X

′
t) and Td the coupling time of

(Yn, Y
′
n). By (8.38) we have

P (T > t) ≤ P(Td > Nt) ≤ (1− εm)−1 E
(
e−Ntεm/m

)
= (1− εm)−1 e−λmaxt(1−e−εm/m).

This ends the proof of the theorem.
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We illustrate the continuous coupling inequality (12.33) with the Markov transition M
on a finite and complete graph with d vertices S := {1, . . . , d} discussed in (8.39). We
assume that λt = λmax = λ (so that Mλ = M). Combining (12.33) with (8.39), we readily
check that

‖Law(Xt | X0 = x)− Law(Xt | X0 = y)‖tv ≤ e−λt(1−e−1/d) �d↑∞ e−tλ/d.

12.8 Exercises
Exercise 169 Let Nt be a Poisson process with intensity λ > 0 (starting at the origin
N0 = 0), and Xt be the solution of the stochastic differential equation

{
dXt = −2Xt dNt

X0 = 1.

Describe the generator of the process Xt. Check that Xt = (−1)Nt .

Exercise 170 We consider a pure jump process Xt ∈ S = {0, 1} with generator L defined
by

L(f)(0) = λ(0) (f(1)− f(0)) and L(f)(1) = λ(1) (f(0)− f(1))

for some positive intensities λ(0), λ(1) > 0. Check that

ηt(0) =
λ(1)

λ(0) + λ(1)
+ e−(λ(0)+λ(1))t

(
η0(0)−

λ(1)

λ(0) + λ(1)

)
.

Exercise 171 (Compound Poisson process - Mean and variance) We consider the
compound Poisson process Xt discussed in exercise 161. Applying the Doeblin-Itō formula
(12.25) to f(x) = x check that

Xt = λ E(Y ) t+Mt

with a martingale Mt w.r.t. Ft = σ(Xs, s ≤ t), with angle bracket 〈M〉t = λ E(Y 2) t..
Deduce that

E (Xt) = −λ E(Y ) t and Var (Xt) = λ E(Y 2) t.

We further assume that E(Y ) = 0 = E(Y 3). Applying the Doeblin-Itō formula (12.25) to
f(x) = x2 compute E

(
X2

t

)
and Var

(
X2

t

)
.

Exercise 172 (Jump processes - Unit vector representation) Let S := {ei , 1 ≤
i ≤ r} be an orthonormal basis of some vector space V equipped with some inner prod-
uct 〈v, w〉. For instance if V = Rr is equipped with the Euclidian inner product 〈x, y〉 =∑

1≤i≤r xiyi we can choose the r unit column vectors ei = (1i(j))1≤j≤r. Let
(
N i,j

t

)
1≤i�=j≤r

be r(r − 1) Poisson processes with intensity λ(i, j) ≥ 0. Let Xt be given by the stochastic
differential equation

{
dXt =

∑
1≤i�=j≤r (ei − ej) 〈ej , Xt〉 dN (i,j)

t

X0 ∈ {e1, . . . , er}.

Check that Xt ∈ S and describe its generator. We let ηt be the row vector ηt = [ηt(1), . . . , ηt(r)]
with entries ηt(i) = P(Xt = ei). Describe the evolution of ηt in matrix form.
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Exercise 173 (Classical coupling - Jump processes) Consider a jump process Xt on
some state space S with generator L given by

L(f)(x) :=

∫
[f(y)− f(x)] Q(x, dy)

for some bounded and positive integral operator Q We let Zt = (Xt,Yt) be the jump process
on S := (S × S) with generator L defined for any bounded F on S

L(F )(x, y) = 1x �=y [L(F (x, .))(y) + L(F (., y))(x)] + 1x=y

∫
[F (y, y)− F (x, x)] Q(x, dy).

Check that Xt and Yt have the same law as Xt.

Exercise 174 (Basic coupling - Jump processes) Consider the jump process Xt dis-
cussed in exercise 173. We further assume that Q(x, dy) = q(x, y) λ(dy) has a density w.r.t.
some reference measure λ on S. We let Zt = (Xt,Yt) be the jump process on S := (S × S)
with generator L defined for any bounded F on S

L(F )(x, y) =

∫
[F (z, z)− F (x, y)] (q(x, z) ∧ q(y, z)) λ(dz)

+

∫
[F (z, y)− F (x, y)] (q(x, z)− q(y, z))+ λ(dz)

+

∫
[F (x, z)− F (x, y)] (q(y, z)− q(x, z))+ λ(dz).

Check that Xt and Yt have the same law as Xt.

Exercise 175 (Jump process - Invariant measure) Let Xt be a jump type process evolv-
ing in some state space S with an infinitesimal generator of the form

L(f)(x) = λ

∫
(f(x′)− f(x)) K(x, dx′)

for some intensity parameter λ > 0 and some Markov transition K on S satisfying the
minorization condition Km(x, dx′) ≥ ε ν(dx′) for some probability measure ν and some
parameter ε > 0 and some integer m ≥ 1. Check that Xt has an unique invariant measure
π and

sup
x∈S

‖Law(Xt | X0 = x)− π‖tv ≤ c1 e−c2 t

for some non negative constants (c1, c2).

Exercise 176 (Pure jump Markov chain samplers) Let λ(dx) be some probability mea-
sure on some state space S and let V be some non-negative function on S s.t. λ(e−V ) ∈
]0,∞[. Let Xt be a jump type process evolving in some state space S with an infinitesimal
generator of the form

L(f)(x) = λ(x)

∫
(f(x′)− f(x)) K(x, dx′)

for some intensity rate function λ(x) ∝ eV (x) and some Markov transition K s.t. λK = λ.
Check that π(dx) ∝ e−V (x) λ(dx) is L-invariant. When K is λ-reversible, check that π is
L-reversible.



358 Stochastic Processes

Exercise 177 (Jump process - Feynman-Kac formulae) We consider the pure jump
process Xt discussed in exercise 175. Let V be some non-negative energy type potential
function on S. For any β > 1 we let γ[β]

t be the Feynman-Kac measures defined for any
function f on S by

η
[β]
t (f) = γ

[β]
t (f)/γ

[β]
t (1) with γ

[β]
t (f) = E

[
f(Xt) exp

(
−β

∫ t

0

V (Xs) ds

)]
.

Compute the derivative ∂t log γ
[β]
t (1) and check that

1

t
log

[
γ
[β]
t (1)

]1/β
=

1

t

∫ t

0

η[β]s (V ) ds.

Assume that η[β]t converges to some limiting probability measure η
[β]
∞ such that

∣∣∣∣
1

t

∫ t

0

η[β]s (V ) ds− η[β]∞ (V )

∣∣∣∣ ≤
cβ
t

for some finite constant cβ (see for instance (27.21), exercises 308, 446, and 447 for more
a more thorough discussion on this condition as well as workout examples). Check that

C−1
β e−tη[β]

∞ (V ) ≤
[
γ
[β]
t (1)

]1/β
≤ Cβ e−tη[β]

∞ (V ) with Cβ = ecβ .

Exercise 178 (1-dimensional Kramer-Moyal expansion) Consider an R-valued pure
jump process Xt with generator

Lt(f)(x) =

∫
(f(x+ u)− f(x)) gt(x, u) du

for some regular rate function gt. Assume that ηt = Law(Xt) has a density ηt(dx) =
pt(x) dx w.r.t. the Lebesgue measure dx.

• Check that

Lt(f)(x) =

∫
(f(y)− f(x)) qt(x, y) dy with qt(x, y) := gt(x, y − x).

• Prove that

∂tpt(x) =

∫
[pt(y) qt(y, x)− pt(x) qt(x, y)] dy.

• Using the Taylor’s expansion,

pt(x− z) gt(x− z, z) = pt(x) gt(x, z) +
∑
n≥1

(−1)n

n!
zn ∂n

x (pt(x)gt(x, z))

check the Kramer-Moyal expansion

∂tpt =
∑
n≥1

(−1)n

n!
∂n
x (αn

t pt)

with the collection of conditional jump moment functionals

αn
t (x) :=

∫
zn gt(x, z) dz = E [ (∆Xt)

n | Xt− = x] /dt.

In the above display ∆Xt denotes the jump amplitude increment ∆Xt = Xt −Xt−.
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Exercise 179 Consider a probability distribution η(dx) = p(x)dx having a density p(x) > 0
w.r.t. the Lebesgue measure dx on R. Let Xt be the jump process with generator

Lh(f)(x) = λ

[
(f(x+ h)− f(x))

p(x+ h)

p(x) + p(x+ h)
+ (f(x− h)− f(x))

p(x− h)

p(x) + p(x− h)

]

for some h �= 0. Check that η is an Lh-invariant measure (i.e. ηLh = 0). A discrete
generation Gibbs-type version of this sampler is discussed in exercise 127.

Exercise 180 (Multidimensional Kramer-Moyal expansion) Consider an Rr-valued
pure jump process Xt with generator

Lt(f)(x) =

∫
(f(x+ u)− f(x)) gt(x, u) du

for some regular rate function gt on Rr+r. Assume that ηt = Law(Xt) has a density
ηt(dx) = pt(x) dx w.r.t. the Lebesgue measure dx = dx1 × . . . × dxr on Rr. In this
situation, check that the Kramer-Moyal expansion

∂tpt =
∑
n≥1

(−1)n

n!

∑
1≤i1,...,in≤r

∂xi1 ,...,xin

(
αi1,...,in
t pt

)

with the collection of conditional jump moment functionals

αi1,...,in
t (x) :=

∫
zi1 . . . zin gt(x, z) dz = E


 ∏

1≤k≤r

∆Xik
t | Xt− = x


 /dt.

In the above display ∆Xi
t denotes the jump amplitude increment ∆Xi

t = Xi
t −Xi

t− of the
i-th coordinate. When these moments are null (or negligible) for m > 2, check that the
Kramer-Moyal expansion resumes to the Fokker-Planck equation

∂tpt = −
∑

1≤i≤r

∂xi

(
αi
t pt

)
+

1

2

∑
1≤i,j≤r

∂xi,xj

(
αi,j
t pt

)
.

Exercise 181 (Compound Poisson process - Exit times) We consider the compound
Poisson process Xt discussed in exercise 161 and in exercise 171. We further assume that
E(Y ) = 0 and we denote by TD the first time Xt exits the set D = [−a, a](� 0 = X0), for
some a > 0. Applying theorem 12.5.9 to the martingale presented in exercise 171 check that

E (TD) ≤ a2/(λE(Y 2)).

We let Xx
t = x +Xt be the compound Poisson process starting at some x ∈ D, and T x

D be
its exit time from D. Check that

E(T x
D) ≤ (a2 − x2)/(λE(Y 2)).

Exercise 182 (Queueing system) Consider a queueing system with d servers. Cus-
tomers arrive at rate λ1 > 0 and the servers’ service times are independent identically
distributed exponential random variables with parameter λ2 > 0. Customers wait in line
before accessing the first free server.

• Describe the evolution of the Markov process Xt representing the number of customers
being served in the system.
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• Describe the infinitesimal generator of Xt and the invariant measure π of Xt.

Exercise 183 (M/M/1 Queue) Consider a queueing system with a single server. Cus-
tomers arrive at rate λ1 > 0 and the server’s service times are independent and identically
distributed exponential random variables with parameter λ2 > 0. Customers wait in line in
a buffer of infinite size before accessing the server. The server serves the customers one at
a time according to a first-come/first-served rule.

• Describe the evolution of the Markov process Xt representing the number of customers in
the system.

• Describe the infinitesimal generator of Xt and the invariant measure π of Xt.

Exercise 184 (M/M/m Queue) Customers arrive at rate λ1 > 0 in a queueing system
with m servers with a common service rate λ2 > 0. Customers wait in a single buffer before
accessing in the first free server.

• Describe the evolution of the Markov process Xt representing the number of customers
being served in the system.

• Describe the infinitesimal generator of Xt and the invariant measure π of Xt.

Exercise 185 (Kac’s model of gases) We consider the velocities Xt =
(
Xi

t

)
1≤i≤N

of N interacting particles on S = R. At rate Nλ, a pair of particles (i, j) is chosen at
random and their velocities (Xi

t−, X
j
t−) are changed to new values

(Xi
t , X

j
t ) =

(
cos (θ) Xi

t + sin(θ) Xj
t ,− sin (θ) Xi

t + cos(θ) Xj
t

)

with a randomly chosen angle θ on [0, 2π[. Write the infinitesimal generator of Xt in
terms of an embedded discrete time Markov chain model. Show that the total kinetic energy∑

1≤i≤N (Xi
t)

2 is preserved.

Exercise 186 (Maximum principle) We let L be the infinitesimal generator of a pure
jump process on some state space S. For any bounded function f on S prove that

f(x�) = sup
x∈S

f(x) =⇒ L(f)(x�) ≤ 0.

Exercise 187 (Dirichlet forms) We consider a jump process Xt on a finite state space
S, with infinitesimal generator L defined in (12.26), and a semigroup Pt. We assume that
Xt has an unique invariant probability measure π and we set

Varπ(f) = π((f − π(f))2) and E (f, g) := −π(fL(g)).

The functional E is called the Dirichlet form associated with L and π. Prove that

−∂tπ(fPt(g))|t=0
= E (f, g) and − 1

2
∂tVarπ(Pt(f)) = E (Pt(f), Pt(f))

and

Pt(f) →t→∞ π(f) =⇒ Varπ(f) = −2

∫ ∞

0

E (Pt(f), Pt(f)) dt.
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Exercise 188 (Poincaré inequality) We return to the exercise 187. We say that π
satisfies a Poincaré inequality for some parameter a > 0 if we have

a

2
Varπ(f) ≤ E (f, f)

for any function f on S (see also exercise 258 in the context of diffusion processes). Check
that this condition is equivalent to the exponential variance decay property of the semigroup

Varπ(Pt(f)) ≤ e−at Varπ(f).

Exercise 189 (Ising model) We let S = {−1,+1}V with some finite undirected graph
(V, E). The set V denotes the set of vertices and E is the set of edges. For any pair of vertices
v1, v2 ∈ V, we set v1 ∼ v2 when (v1, v2) ∈ E (and (v, v) �∈ E and v1 ∼ v2 ⇒ (v1, v2) =
(v2, v1)). For any x = (x(v))v∈V ∈ S, u ∈ V and ε ∈ {−1,+1} we set

xv,ε = (xv,ε(u))u∈V with xv,ε(u) :=

{
x(u) for u �= v
ε for u = v.

We consider the S-valued process Xt that jumps from x to y ∈ S at a rate

Q(x, y) =
∑

v∈V,ε∈{−1,+1}

qε(v, x) 1xv,ε(y) with qε(v, x) = 1 ∧ exp

(
2εβ

∑
u∼v

x(u)

)
.

We also let πβ be the Boltzmann-Gibbs measure given by

πβ(x) =
1

Zβ
exp (−βH(x)) with the Hamiltonian function H(x) =

∑
(v1,v2)∈E

x(v1)x(v2)

and the normalizing constant Zβ :=
∑

x∈S exp (−βH(x)).

• Prove that
H(x) = |E| − 1

2

∑
(v1,v2)∈E

(x(v1)− x(v2))
2
.

• Check that πβ(x)Q(x, y) = πβ(y)Q(y, x) and deduce that πβ is an invariant measure of the
pure jump process Xt described above (in the sense that Law(X0) = πβ ⇒ Law(Xt) = πβ).

Exercise 190 (High order discrete time schemes)
The approximation theorem 12.3.1 can be extended to any order by considering discrete

time sg Ph
tn,tn+1

of the form

Ph
tn,tn+1

:=
∑

0≤p≤m

1

p!
hp Lp

tn (12.35)

for some integer m ≥ 1. For pure jump processes with generator (12.6), we need to find
some sufficiently small h s.t. λt(x) ≤ 1/h, for any x ∈ S. In this situation, check that

Ph
tp,tn = Ptp,tn +O (hm) .

Describe the sg (12.35) when m = 1 and m = 2. In the general case, prove that

Ph
tn,tn+1

=
∑

0≤p≤m

αh
tn(p) M

p
tn

with some probability measure αh
tn on the set of integers {0, . . . ,m}.
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Exercise 191 We let Nt be a Poisson process with a continuous intensity function λt.
We denote by Ft = σ(Ns , s ≤ t) the σ-field generated by the Poisson process Ns, up to time
t. We also consider a parameter ε > −1, and a càdlàg process ϕt adapted to the filtration
Ft, in the sense that ϕt is Ft-measurable for any t ≥ 0. Check that the following processes
are martingales:

dMt = dNt − λtdt dMt = dM2
t − dNt

dM t := ϕt− dMt dM̃t = dM
2

t − ϕ2
t− λ2

t dt

Et = exp

(∫ t

0

ϕs−dNs −
∫ t

0

λs [eϕs− − 1] ds

)

Eε
t = (1 + ε)Nt exp

(
−ε

∫ t

0

λs ds

)
.

Hint: Use the decomposition Et+dt/Et = eϕt−dNt−λt (eϕt−−1)dt and the fact that dNt =
Nt+dt −Nt is a Poisson random variable with intensity λtdt.



13
Piecewise deterministic processes

The piecewise deterministic processes studied in this chapter are jump type stochastic pro-
cesses whose trajectories between the jumps are deterministic. They may arise when approx-
imating the solution of a dynamical system via time discretization. They also arise naturally
when the constant evolution model between jumps of a pure jump process is replaced by
some deterministic flow of a dynamical system. Application areas of such processes include
ruin theory, communication networks, queuing theory, biochemistry and bacterial popu-
lation growth. We describe the evolution semigroups and the infinitesimal generators, as
well as the Doeblin-Itō formulae for these processes. At the end of the chapter, we provide
a thorough discussion of applications in the transmission control protocol (TCP) used to
control the information transmission in internet applications.

Anyone who attempts to generate random numbers
by deterministic means is, of course, living in a state of sin.
John von Neumann (1903-1957).

13.1 Dynamical systems basics

13.1.1 Semigroup and flow maps

We consider a real valued (and deterministic)
dynamical system

dxt

dt
= at(xt) (13.1)

associated with some well behaving Lipschitz
function a : (t, x) ∈ R �→ at(x) ∈ R so that
(13.1) has a unique solution over the entire
time axis.

Definition 13.1.1 The flow map of (13.1) is
given by the family of mappings x �→ ϕs,t(x), with s ≤ t, where ϕs,t(x) is the solution of
(13.1) starting from some state xs = x at time s. The evolution semigroup of (13.1) is
defined by the operators Ps,t acting on the space of bounded functions by the formula

f �→ Ps,t(f) = f ◦ ϕs,t.

By construction, for any s ≤ r ≤ t and x ∈ R we have the semigroup (sg) properties

ϕs,t = ϕr,t ◦ ϕs,r and Ps,rPr,t = Ps,t.

The r.h.s. formula is a consequence of the fact that

Ps,r(Pr,t(f)) = Ps,r(f ◦ ϕr,t) = f ◦ ϕr,t ◦ ϕs,r = f ◦ ϕs,t = Ps,t(f).

363
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We further assume that

ϕs,t+ε(x) = ϕs,t(x) +O(ε) and ϕs+ε,t(x) = ϕs,t(x) +O(ε) (13.2)

for some function O(ε) that may depend on the parameters s, t, x, and that

ϕs,t(x) = ϕs,t(y) +O (|x− y|)

for some function O(ε) that may depend on the parameters t, x.
These conditions ensure the continuity of the evolution sg; for instance, we have

Ps,t+ε(f)(x) −→ε→0 Ps,t(f)(x) ←−ε→0 Ps+ε,t(f)(x).

A detailed discussion of the conditions and hypotheses under which these properties hold
would require an excursion to the theory of differential equations beyond what is appropriate
for these lecture notes. We can make these hypotheses plausible by considering the tradi-
tional flow maps of linear dynamical systems. Given a couple of regular bounded Lipschitz
functions αt and βt, the function

x �→ ϕs,t(x) := exp

(∫ t

s

αu du

)
x+

∫ t

s

exp

(∫ t

r

αu du

)
βr dr

= exp

(∫ t

s

αu du

)[
x+

∫ t

s

exp

(
−
∫ r

s

αu du

)
βr dr

]

is the general solution of the linear system

∀s ≤ t
dxt

dt
= at(xt) = αtxt + βt

with the initial condition xs = x. In this situation, conditions (13.2) are satisfied as soon
as the functions αt and βt are Lipschitz continuous w.r.t. the time parameter. We notice
that

|ϕs,t(x)− ϕs,t(y)| ≤ e‖α‖(t−s) |x− y|.

In addition, we also have

ϕs,t+ε(x) = exp
(∫ t+ε

t
αu du

)

×
[
ϕs,t(x) + exp

(∫ t

s
αu du

) ∫ t+ε

t
exp

(
−
∫ r

s
αu du

)
βr dr

]

from which we conclude that

ϕs,t+ε(x)− ϕs,t(x) =
[
exp

(∫ t+ε

t
αu du

)
− 1

]
ϕs,t(x)

+ exp
(∫ t+ε

s
αu du

) ∫ t+ε

t
exp

(
−
∫ r

s
αu du

)
βr dr.

Using the rather crude upper bound |ea−eb| ≤ |a−b| e|a|∧|b| which is valid for any a, b ∈ R,
we prove that

ε−1 |ϕs,t+ε(x)− ϕs,t(x)| ≤ ‖α‖e1∧(‖α‖) |ϕs,t(x)|+ e‖α‖((t−s)+1) exp (‖α‖((t− s) + 1)) ‖β‖ .

In further developments, we always assume that the flow maps are well defined ϕs,t(x)
for any s ≤ t and any x.
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For strongly nonlinear systems, it may happen that the solution is not defined at any
time or on any initial states. For instance, the solution of the quadratic system

∀s ≤ t
dxt

dt
= at(xt) = x2

t (13.3)

starting at xs = x at time t = s is given by

ϕs,t(x) =
x

1− x (t− s)
.

When x > 0, the solution is defined for any t ∈
[
s, s+ 1

x

[
with an explosion limt→ts(x) ϕs,t(x) =

∞ at time ts(x) = s+ 1
x . If x < 0, the solution is defined for any t ≥ s and converges to 0

as t ↑ ∞.

For smooth functions f we have

∂tPs,t(f)(x) = ∂tf(ϕs,t(x))

= ∂tf

(
x+

∫ t

s

ar(ϕs,r(x)) dr

)
= at(ϕs,t(x)) ∂xf(ϕs,t(x)).

In terms of the first order differential operators

f �→ Lt(f) = at ∂xf.

we have proved the forward evolution equation

∂tPs,t(f) = Ps,t(Lt(f)). (13.4)

In much the same way, we have the backward evolution equation

∂sPs,t(f) = −Ls(Ps,t(f)). (13.5)

To prove these claims we can use the following decompositions

1

ε
[Ps+ε,t − Ps,t] = −1

ε
[Ps,s+ε − Id]Ps+ε,t (13.6)

and
− 1

ε
[Ps−ε,t − Ps,t] = −1

ε
[Ps−ε,s − Id]Ps,t, (13.7)

as well as
1

ε
[Ps,t+ε − Ps,t] = Ps,t

(
1

ε
[Pt,t+ε − Id]

)
. (13.8)
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For instance, we have

Ps−ε,s(f)(x)− f(x) = f

(
x+

∫ s

s−ε

au(ϕs−ε,u(x))du

)
− f(x)

= ∂xf(ϕs−ε,s(x))

∫ s

s−ε

au(ϕs−ε,u(x))du+O(ε2).

Using the fact that

au(ϕs−ε,u(x)) = as−ε(ϕs−ε,s−ε(x)) +O(ε) = as−ε(x) +O(ε)

we conclude that

ε−1 [Ps−ε,s − Id] (f)(x) = as−ε(x) ∂xf(ϕs−ε,s(x)) +O(ε) −→ε→0 Ls(f)(x).

13.1.2 Time discretization schemes

To get some feasible solution of the evolution equation (13.1), we often need to resort to a
discrete time approximation scheme on some time mesh sequence on some interval [0, t]

t0 = 0 < t1 = h < . . . < tn = nh < . . . < h�t/h� ≤ t

with some time mesh parameter h > 0.
It is clearly beyond the scope of these lectures to review all the basic time discretization

techniques of dynamical systems. Trying not to obscure the main ideas, we assume for
simplicity that there exists a discrete time approximation ϕh

s,t(x) of the flow ϕs,t(x)

ϕh
tn,tn+1

(x) = Fh
tn,tn+1

(
ϕh
tn−1,tn(x)

)
(13.9)

for functions Fh
s,t, such that for any s we have

ϕh
s,s+h(x) = ϕs,s+h(x) +O(h2) (13.10)

for a function o(h2) that may depend on x.
We also assume that suph>0 sup0≤tn≤t

∣∣ϕh
0,tn(x)

∣∣ < ∞ for any x ∈ R. For instance, we
can choose the traditional Euler approximation of the equation (13.1)

ϕh
s,s+h(x) = x+ as(x) h := Fh

s,s+h (x) .

In this situation, we have

ϕs,s+h(x)− ϕh
s,s+h(x) =

∫ s+h

s

[ar (ϕs,r(x))− as(x)] dr.

For bounded and Lipschitz functions (t, x) �→ at(x), we readily prove that

∣∣ϕh
s,s+h(x)− ϕs,s+h(x)

∣∣ ≤ l(a)

[
h2 +

∫ s+h

s

|ϕs,r(x)− x| dr

]

≤ l(a)[1 + ‖a‖] h2.

This inequality follows from the fact that

|ϕs,r(x)− x| =
∣∣∣∣
∫ r

s

au(ϕs,u(x)) du

∣∣∣∣ ≤ ‖a‖ (r − s).
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To convince the reader that these rather crude assumptions suffice to approximate the
flow map on any interval, we end this section with a brief discussion around this theme.
Using the telescoping sum

ϕh
0,tm(x)− ϕ0,tm(x) =

∑
0≤n<m

[
ϕtn+1,tm(ϕh

0,tn+1
(x))− ϕtn,tm(ϕh

0,tn(x))
]

and the sg property ϕtn,tm = ϕtn+1,tm ◦ ϕtn,tn+1
, we readily prove that

∣∣ϕh
0,tm(x)− ϕ0,tm(x)

∣∣

≤
∑

0≤n<m l(ϕ)
∣∣∣ϕh

tn,tn+1
(ϕh

0,tn(x))− ϕtn,tn+1
(ϕh

0,tn(x))
]

︸ ︷︷ ︸
=h O(h)

.

This implies that ∣∣ϕh
0,tm(x)− ϕ0,tm(x)

∣∣ ≤ O(h) l(ϕ) tm.

13.2 Piecewise deterministic jump models

13.2.1 Excursion valued Markov chains

We use the framework and the notation introduced in section 12 and in section 13.1 dedi-
cated to pure jump processes and dynamical systems.

Definition 13.2.1 A piecewise deterministic Markov process (abbreviated
PDMP) on S = R is defined as a pure jump process introduced in chapter 12
by replacing the constant evolution model between the jumps (12.1) by the deter-
ministic flow of the dynamical system

∀Tn ≤ s < Tn+1 Xs := ϕTn,s (XTn
) . (13.11)

The extension of this definition to more general state space models S is immediate.

Remark : Piecewise deterministic Markov processes were introduced by M.H.A. Davis [63]
in 1984. Since then, these stochastic models have been used in several application domains,
including ruin theory [117], communication networks and queueing theory [35], biochem-
istry, neuronal function models, bacterial population growth [43], and geosciences [211].

The piecewise deterministic jump model can be defined in terms of a simple discrete
generation Markov chain in the space of excursions.

We start the process X0 = x0 at an initial location at time T0 = 0, and we wait up to
the time

T1 = inf

{
t ≥ T0 :

∫ t

T0

λs(ϕT0,s(XT0)) ds ≥ E1
}
.

At that time we have defined the random excursion

X0 = ( T0, ϕT0,s(XT0
), s ∈ [T0, T1[ )
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up to the time T1 (excluded). Then, we sample a random variable

XT1 � KT1 (ϕT1,s(XT0), dx) .

We wait up to the first time

T2 = inf

{
t ≥ T1 :

∫ t

T1

λs(ϕT1,s(XT1)) ds ≥ E2
}
.

At that time we have defined the random excursion

X1 = ( T1, ϕT1,s(XT1
), s ∈ [T1, T2[ )

and so on. A synthetic description of these two excursions is given in the following picture.

time axis

R

T0 T1

In summary, given the excursion

Xn = ( Tn, ϕTn,s(XTn
), s ∈ [Tn, Tn+1[ )

up to the terminal time

Tn+1 = inf

{
t ≥ Tn :

∫ t

Tn

λs(ϕTn,s(XTn
)) ds ≥ En

}

we randomly sample a jump

XTn+1− � XTn+1
� KTn+1

(ϕTn,s(Yn), dx) .

Starting from this location, we consider the next excursion up to time Tn+2

Xn+1 =
(
Tn+1, ϕTn+1,s(XTn+1), s ∈ [Tn+1, Tn+2[

)
.

The resulting stochastic process Xn is a Markov chain in excursion spaces.
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By construction, for any s ≥ t we have

P
(
Tn+1 ∈ dt ,XTn+1

∈ dy | Tn = s, XTn
= x

)

= λt(ϕs,t(x)) exp

(
−
∫ t

s

λr(ϕs,r(x)) dr

)
dt

︸ ︷︷ ︸
P(Tn+1∈dt | Tn=s, XTn=x)

Kt(ϕs,t(x), dy)︸ ︷︷ ︸
P(XTn+1

∈dy | Tn+1=t, Tn=s, Xs=x).

(13.12)

For PDMP, the telescoping sums (12.2) and (12.2) take the form

Xt = Xs +

∫ t

s

ar(Xr) dr +
∑

s<Tn≤t

(XTn −XTn−) (13.13)

f(Xt) = f(Xs) +

∫ t

s

Lr(f)(Xr) dr +
∑

s<Tn≤t

(f(XTn)− f(XTn−)) .

13.2.2 Evolution semigroups

Unless otherwise stated we always assume that the mappings

(t, x) �→ λt(x) (t, x) �→ ϕs,t(x) and (t, x) �→ Kt(f)(x) (13.14)

are smooth functions, for any s ∈ [0,∞[ and f ∈ B(R). The term “smooth" is used to
describe functions which have bounded derivatives of arbitrary order. These regularity
conditions can be relaxed using appropriate domains of definitions. We have chosen these
strong conditions to clarify the presentation and to concentrate on the stochastic modeling
rather than on sophisticated analytical considerations.

The following proposition is the extended version of theorem 11.4.3 to PDMP. In contrast
to the pure jump model discussed in section (11.4) we already mention that the forthcoming
result cannot be used to derive directly the backward or the forward evolution equations of
the sg of the PDMP.

Proposition 13.2.2 The sg of the PDMP process, defined for any s ≤ t by

Ps,t(f)(x) = E (f(Xt) | Xs = x) ,

maps smooth functions into smooth functions, and it satisfies the equation

Ps,t(f)(x) = f(ϕs,t(x)) e
−

∫ t
s
λu(ϕs,u(x))du

+

∫ t

s

λu(ϕs,u(x)) e
−

∫ u
s

λr(ϕs,r(x))dr (KuPu,t)(f)(ϕs,u(x)) du.

(13.15)

Proof :
We have the decomposition

Ps,t(f)(x) = E (f(Xt) 1T s>t | Xs = x) + E (f(Xt) 1T s≤t | Xs = x)
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with the first time of the jump after time s, and starting at x at that time

T s = inf

{
t ≥ s :

∫ t

s

λr(ϕs,r(x)) dr ≥ En
}

E (f(Xt) 1T s>t | Xs = x) = f(ϕs,t(x)) P (T s > t | Xs = x)

= f(ϕs,t(x)) exp

(
−
∫ t

s

λr(ϕs,r(x)) dr

)
.

On the other hand, we have

E (f(Xt) 1T s≤t | Xs = x) = E
(
E (f(Xt) | T s, XT s)︸ ︷︷ ︸ 1T s≤t | Xs = x

)

= E




||︷ ︸︸ ︷
PT s,t(f)(XT s) 1T s≤t | Xs = x


 .

Using (13.12) we prove that

E (f(Xt) 1T s≤t | Xs = x)

=

∫ t

s

[∫

S

Ku(ϕs,u(x), dy)Pu,t(f)(y)

]
λu(ϕs,u(x)) e

−
∫ u
s

λr(ϕs,r(x))drdu.

The fact that smooth functions are stable under the action of the sg is a consequence of the
decomposition (13.15) and of the hypothesis (13.14). This ends the proof of the proposition.

Definition 13.2.3 For any intensity function λ, we let Pλ
s,t with s ≤ t be defined

by

Pλ
s,t(f)(x) := f(ϕs,t(x)) exp

(
−
∫ t

s

λu(ϕs,u(x))du

)
. (13.16)

For the null intensity function λt = 0, we notice that

P 0
s,t(f)(x) := f(ϕs,t(x)) = P 0

s,r(P
0
r,t(f))(x) := P 0

r,t(f)(ϕs,r(x))

so that

Pλ
s,t(f) = P 0

s,t(f) exp

[
−
∫ t

s

P 0
s,u (λu) du

]
. (13.17)

Proposition 13.2.4 For any s ≤ t, and for any bounded function f , we have

Ps,t(f) = Pλ
s,t(f) +

∫ t

s

Pλ
s,u(λuKuPu,t(f)) du. (13.18)

In addition, we have the integral formula

Pλ
s,t(f) = P 0

s,t(f)−
∫ t

s

Pλ
s,r(λrP

0
r,t(f)) dr.
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Proof :
Formula (13.18) is a direct consequence of (13.15). To check the second claim, we use the
fact that

∂te
−

∫ t
s
λu(ϕs,u(x))du = −λt(ϕs,t(x)) e

−
∫ t
s
λu(ϕs,u(x))du

from which we find the integral formula

e−
∫ t
s
λu(ϕs,u(x))du = 1−

∫ t

s

λr(ϕs,r(x)) e
−

∫ r
s
λu(ϕs,u(x))du dr.

This implies that

Pλ
s,t(f)(x) = P 0

s,t(f)(x)−
∫ t

s

λr(ϕs,r(x)) P
0
r,t(f)(ϕs,r(x)) e

−
∫ r
s
λu(ϕs,u(x))du dr.

This ends the proof of the proposition.

13.2.3 Infinitesimal generators

We let ηt = Law(Xt) be the distribution of the random states Xt of the PDMP. By con-
struction, we have

∀s ≤ t ηt = ηsPs,t. (13.19)

Theorem 13.2.5 For any s ≤ t, and for any smooth function f , we have

∂tP
λ
s,t(f) = Pλ

s,t(L
λ
t (f)) and ∂sP

λ
s,t(f) = −Lλ

s (P
λ
s,t(f)) (13.20)

with the first order differential operator

Lλ
t (f) = at ∂xf − λt f (13.21)

and the drift function defined in (13.1). In addition, we have

∂tηt(f) = ηt(Lt(f))

∂tPs,t(f) = Ps,t(Lt(f)) and ∂sPs,t(f) = −Ls(Ps,t(f)) (13.22)

with the infinitesimal generator

Lt = L0
t + λt [Kt − Id]. (13.23)

Proof :
The proof of the first assertion in (13.20) is a direct consequence of the deterministic forward
evolution equation (13.4) combined with (13.19). Indeed, combining these two results we
have

∂tP
λ
s,t(f)(x) = [at(ϕs,t(x)) ∂xf(ϕs,t(x))− f(ϕs,t(x)) λt(ϕs,t(x)) ] e

−
∫ t
s
λu(ϕs,u(x))du.
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To check the r.h.s. of (13.20), by (13.17) firstly we notice that

L0
s

(
Pλ
s,t(f)

)
= as

∂Pλ
s,t(f)

∂x

= exp

[
−
∫ t

s

P 0
s,u (λu) (x) du

]

×
[
L0
s

(
P 0
s,t(f)

)
− P 0

s,t(f)(x)

∫ t

s

L0
s(P

0
s,u (λu))(x) du

]
.

By (13.17) and the deterministic backward evolution equation (13.5) we also have

∂sP
λ
s,t(f) = e−

∫ t
s
P 0

s,u(λu)(x) du

[
∂sP

0
s,t(f)− P 0

s,t(f) ∂s

∫ t

s

P 0
s,u (λu)

]

= e−
∫ t
s
P 0

s,u(λu) du

[
−L0

s(P
0
s,t(f)) + P 0

s,t(f)

∫ t

s

L0
s(P

0
s,u (λu))

]

+ λs exp

[
−
∫ t

s

P 0
s,u (λu) (x) du

]
P 0
s,t(f).

This shows that
∂sP

λ
s,t(f) = −

[
L0
s

(
Pλ
s,t(f)

)
− λs(x)P

λ
s,t(f)

]
.

Now we derive the proof of the r.h.s. of (13.22). Using (13.18), we find that

∂sPs,t(f) = ∂sP
λ
s,t(f) +

∫ t

s

∂sP
λ
s,u(KuPu,t(f)) du

︸ ︷︷ ︸
=−Lλ

s (Ps,t(f))

−KsPs,t(f).

This implies that

∂sPs,t(f) = −
[
L0
s(Ps,t(f))− λsPs,t(f) +KsPs,t(f)

]
= −Ls(Ps,t(f)).

The proof of the l.h.s. of (13.22) follows from the following arguments

∂tPs,t(f) = lim
ε→0

−1

ε
[Ps,t−ε − Ps,t] (f)

= lim
ε→0

Ps,t−ε

(
− 1

−ε
[Pt−ε,t − Id]

)
(f) = Ps,t(Lt(f)).

This ends the proof of the theorem.

13.2.4 Fokker-Planck equation

We let Xt be a PDMP associated with a deterministic flow

dxt = at(xt) dt

on Rr, for some r ≥ 1. Here at = (ait)1≤i≤r stands for some smooth vector field from S = Rr

into itself. In this situation, the first order generator L0
t takes the form

L0
t (f) =

∑
1≤i≤r

ait ∂xi(f).
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We further assume that Kt(y, dx) = mt(y, x) dx and ηt(dx) = pt(x)dx have a density w.r.t.
the Lebesgue measure dx on Rr. In this situation, using (13.22) we have

∫
f(x) ∂tpt(x) dx

=
∑

1≤i≤r

∫
ait(x) ∂xi(f)(x) pt(x) dx+

∫
λt(x) (f(y)− f(x)) mt(x, y) pt(x) dx dy.

Notice that
∫

λt(x) (f(y)− f(x)) mt(x, y) pt(x) dx dy

=
∫

f(x)
{[∫

mt(y, x) λt(y) pt(y) dy
]
− λt(x) pt(x)

}
dx.

For compactly supported functions f we also have the the integration by part formula
∫

ait(x) ∂xi
(f)(x) pt(x) dx = −

∫
f(x) ∂xi

(aitpt)(x) dx.

Combining these two formulae we obtain
∫

f(x) ∂tpt(x) dx

=
∫

f(x)
[
−
∑

1≤i≤r ∂xi
(aitpt)(x) +

{[∫
mt(y, x) λt(y) pt(y) dy

]
− λt(x) pt(x)

}]
dx

for any smooth and compactly supported function f .

This yields the Fokker-Planck equation

∂tpt(x) = L�
t (pt)(x) (13.24)

:= −
∑

1≤i≤r

∂xi(a
i
tpt)(x) +

[∫
mt(y, x) λt(y) pt(y) dy

]
− λt(x) pt(x).

The dual ®-type notation is due to

〈pt, Lt(f)〉 = 〈L�
t (pt), f〉 with the inner product 〈f, g〉 =

∫
f(x) g(x) dx

associated with some vector spaces of functions satisfying some regularity properties.
The invariant and reversible measures of time homogeneous PDMP (with (at, λt, Lt) =

(a, λ, L)) are defined as in definition 12.7.2 and definition 12.7.4. Proposition 12.7.3 is also
valid for PDMP processes. In particular, if an invariant measure π(dx) = p(x)dx has a
density p(x) w.r.t. the Lebesgue measure dx on Rr, we have

(13.24) ⇒ L�(p) = 0.

13.2.5 A time discretization scheme

We let h > 0 be a time mesh parameter associated with some discrete time discretization
of an interval [0, t]

t0 = 0 < t1 = h < . . . < tn = nh < . . . < h�t/h� ≤ t. (13.25)
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We also consider a discrete time approximation ϕh
tp,tn(x) of the flow ϕtp,tn(x), tp ≤ tn (we

refer the reader to section 13.1.2, formula (13.9) for a discussion on these discrete generation
models). The semigroup P 0

tp,tn associated with this discrete generation deterministic model
is given by the one-step Dirac transitions

P 0,h
tn,tn+1

(x, dy) = δϕh
tn,tn+1

(x)(dy).

Using (13.10), we have

1

h

[
P 0,h
t,t+h − Id

]
(f)(x) =

1

h

[
f
(
ϕh
t,t+h(x)

)
− f(x)

]

=
1

h
[ϕt,t+h(x)− x] ∂xf(x)

︸ ︷︷ ︸
−→h→0L0

t (f)(x)

+O(h)

with the first order infinitesimal generators L0
t defined in section 13.2.3. This implies that

P 0,h
t,t+h = Id+ h L0

t ++O(h2). (13.26)

The jump terms of the PDMP are defined in terms of sequence of independent expo-
nential r.v. En = − logUn with unit parameters (⇒ Un uniform on [0, 1]).

The discrete time approximation PDMP Xh
tn , n ∈ N, of the PDMP process Xt

defined in (13.11) can be interpreted as jump type Markov chain on time steps tn.
• Between the jumps times Th

n and Th
n+1, the process evolves according to the

deterministic flow of the discrete time model

∀Th
n ≤ tk < Th

n+1 Xh
tk

:= ϕh
Th
n ,tk

(
Xh

Th
n

)
.

• Mimicking the formula (10.12), the (n+ 1)-th jump time is defined by

Th
n+1 = inf


tk ≥ Th

n :
∑

Th
n<tl≤tk

λtl

(
ϕh
Th
n ,tl

(Xh
Th
n
)
)

h ≥ En+1


. (13.27)

• At the time Th
n+1, we sample a random variable

Xh
Tn+1

∼ KTh
n+1

(
ϕh
Th
n ,Th

n+1

(
Xh

Th
n

)
, dx

)
.

Definition 13.2.6 The jump process Xh
tn , n ∈ N, is called the discrete time version of

the PDMP (abbreviated h-PDMP) associated with the time mesh (13.25). We let ηhtn =
Law(Xh

tn) be the distribution of the random states Xh
tn of the PDMP. By construction, we

have
∀tp ≤ tn ηhtn = ηhtpP

h
tp,tn (13.28)

with the semigroup Ph
tp,tn of the h-PDMP defined for any bounded function f by the condi-

tional expectation operators

Ph
tp,tn(f)(x) = E

(
f(Xh

tn)
∣∣∣ Xh

tp = x
)
.
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Once again, these random times can be interpreted as the jump times of a stochastic
time inhomogeneous Bernoulli process with the sequence of independent Bernoulli random
variables

P
(
εhtn+1

= 0
∣∣Xh

t0 , . . . , X
h
tn

)
= 1− P

(
εhtn+1

= 1
∣∣Xh

t0 , . . . , X
h
tn

)

= exp
(
−λtn+1

(
ϕh
tn,tn+1

(Xh
tn)

)
h
)
.

More precisely, using the same arguments as in (10.5), we find that

Th
n+1 = inf

{
tk > Th

n : εhtk = 1
}

= inf


tk ≥ Th

n :
∏

Th
n<tl≤tk

e
−λtl

(
ϕh

Th
n ,tl

(Xh

Th
n
)

)
h
≤ Un+1



 . (13.29)

We see that the Xh
tn is a Markov chain. Given Xh

tn = x, we sample a {0, 1}-valued
Bernoulli r.v. εhtn+1

with success probability

1− exp
(
−λtn+1

(
ϕh
tn,tn+1

(x)
)
h
)

and a random variable Y h
tn+1

∼ Ktn+1

(
ϕh
tn,tn+1

(x) , dy
)
. Then we set

Xh
tn+1

=
(
1− εhtn+1

)
ϕh
tn,tn+1

(x) + εhtn+1
Y h
tn+1

.

In summary, we have proved the following proposition.

Proposition 13.2.7 The elementary Markov transitions of the h-PDMP are
given by

Ph
tn,tn+1

= P 0,h
tn,tn+1

Sh
tn,tn+1

,

that is, as the composition of the Dirac transition P 0,h
tn,tn+1

with the jump type
transition

Sh
tn,tn+1

(x, dy) = e−λtn+1
(x)h δx(dy) +

(
1− e−λtn+1

(x)h
)

Ktn+1
(x, dy) .

We end this section with the version of theorem 12.3.1 and corollary 12.3.2 for PDMP
processes.
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Theorem 13.2.8 For any time t ∈ R+, we have

Ph
t,t+h = Id+ h Lt +O(h2) = Pt,t+h (13.30)

on the set of smooth functions. In addition, for any time steps tp = h�s/h� ≤ tn =
h�t/h�, we have the first order approximation formulae

Ph
tp,tn = Ptp,tn +O (h) .

For any finite sequence of times s1 < . . . < sn and a sufficiently small h we have the
finite dimensional approximation

∏
1≤i<n

Ph
si,si+1

(xi, dxi+1) =
∏

1≤i<n

Psi,si+1
(xi, dxi+1) +O (h)

where Ph
s1,s2 stands for the continuous time semigroup of the process Xh

t defined in
(12.14).

Proof :
The proof of the first assertion follows from the following decompositions

h−1
[
Sh
t,t+h − Id

]
= h−1

(
1− e−λt+h(x)h

)
[Kt+h − Id] = λt [Kt − Id] +O(h).

Using (13.26), we conclude that

h−1
[
Ph
t,t+h − Id

]
= h−1

[
P 0,h
t,t+h − Id

]
Sh
t,t+h + h−1

[
Sh
t,t+h − Id

]
= Lt(f) +O(h)

with Lt := L0
t + λt [Kt − Id].. This shows that the condition (12.13) in theorem 12.3.1 is

satisfied for the PDMP models discussed in this section. The l.h.s. expansion in (13.30)
has been checked in (13.30). The r.h.s. expansion in (13.30) is proved by combining (13.22)
with the first order Taylor expansion presented in (12.10). The end of the proof of the
theorem is then a direct consequence of theorem 12.3.1 and the proof of corollary 12.3.2.

Remark : In contrast to the pure jump situation discussed in chapter 12, we observe that
the generator Lt in (13.30) is a first order differential operator so that the approximation
formulae discussed above such as (13.30) are only valid on sufficiently smooth functions.
Following the proof of theorem 12.3.1 we need to ensure that the semigroup Ps,t maps
smooth functions into smooth functions. One strategy to check this condition is to use the
perturbation techniques and the semigroup series expansions discussed in section 15.5.2 and
exercises 285 through 287.

13.2.6 Doeblin-Itō-Taylor formulae

Using the same notation as in section 12.5.1, we have the discrete time Doeblin-Itō-Taylor
formula

∆f(Xh)tn = f(Xh
tn)− f(Xh

tn−1
) = Lh

tn−1
(f)(Xh

tn−1
) h+∆Mtn(f)

with the integral operators

Lh
tn−1

= h−1
[
Ph
tn−1,tn − Id

]
= Ltn−1

+O(h) (⇐= (13.30))
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and a martingale increment ∆Mtn(f) (w.r.t. the σ-fields Fh
tn = σ

(
Xh

tm : tm ≤ tn
)
) such

that
E
(
∆Mtn(f) | Xh

tn−1

)
= 0

and
Var

(
∆Mtn(f)| Xh

tn−1
= x

)
= h ΓLh

tn−1
(f, f)(x)−

(
h Lh

tn−1
(f)(x)

)2

.

In the above display, ΓLh
tn−1

denotes the square field vector that we defined in 12.5.4. The
continuous time version is defined using the same lines of argument as the ones we used in
section 12.5.2. In the context of real valued PDMP, we have the following theorem.

The definitions of continuous time martingales and their angle brackets are provided in
section 12.5.2.

Theorem 13.2.9 For any smooth function f , we have

df(Xt) = Lt(f)(Xt) dt+ dMt(f)

with a martingale Mt(f) (w.r.t. the σ-fields Ft = σ (Xs : s ≤ t)) null at the
origin and such that

Mt(f)
2 − 〈M(f)〉t with 〈M(f)〉t :=

∫ t

0

ΓLs
(f, f)(Xs) ds

is a martingale.

13.3 Stability properties

13.3.1 Switching processes

We let Xt = (X1
t , X

2
t ) ∈ S := Rr=r1+r2 = (Rr1 × Rr2) := S1 × S2 be a PDMP associated

with a deterministic flow xt = ϕs,t(xs), defined for any t ≥ s by the dynamical equations
{

dx1
t = at(xt) dt

x2
t = x2

s

on Rr1+r2 , for some r1, r2 ≥ 1 and some smooth vector field at = (ait)1≤i≤r1 . In this
situation, the second component of the deterministic flow does not change between the
jump times Tn. In the reverse angle, let us assume that the Markov transition Mt is defined
by

Kt((x
1, x2), d(y1, y2)) = δx1(dy1) K

(2)
t ((x1, x2), dy2) (13.31)

where d(y1, y2) stands for an infinitesimal neighborhood of the state variable (y1, y2) ∈
(Rr1 × Rr2). In this situation, the first component of the PDMP does not change during
the jump. Only the second switching coordinate x2 � y2 changes according to some Markov
transition K

(2)
t ((x1, x2), dy2) from Rr into Rr2 . By construction the infinitesimal generator

of Xt is given for any x = (x1, x2) ∈ (S1 × S2) with x1 = (x1
i )1≤i≤r1 ∈ S1 := Rr1 by

L(f)(x) =
∑

1≤i≤r1

ait(x) (∂x1
i
f)(x) + λt(x)

∫
(f(x1, y2)− f(x1, x2)) K

(2)
t (x, dy2).
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We further assume that

K
(2)
t (x, dy2) = m

(2)
t (x, y2) ν(dy2) and ηt(dx) = pt(x

1, x2) dx1ν(dx2)

have a density w.r.t. the Lebesgue measure dx1 on Rr1 and some measure ν on S2.
In this situation, using (13.22) we have

∫
f(x) ∂tpt(x) dx

1ν(dx2)

=

∫ 
 ∑
1≤i≤r1

∫
ait(x) ∂x1

i
(f)(x1, x2) pt(x

1, x2) dx1


 ν(dx2)

+

∫
λt(x)

∫
(f(x1, y2)− f(x)) m

(2)
t (x, y2) ν(dy2) pt(x) dx

1ν(dx2).

Notice that
∫

f(x1, y2)

[∫
m

(2)
t ((x1, x2), y2) λt(x

1, x2) pt(x
1, x2) ν(dx2)

]
dx1 ν(dy2)

=

∫
f(x1, x2)

[∫
m

(2)
t ((x1, y2), x2) λt(x

1, y2) pt(x
1, y2) ν(dy2)

]
dx1 ν(dx2).

For compactly supported functions x1 �→ f(x1, x2) we also have the the integration by part
formula
∑

1≤i≤r1

∫
ait(x) ∂x1

i
(f)(x1, x2) pt(x

1, x2) dx1 = −
∑

1≤i≤r

∫
f(x1, x2) ∂x1

i
(aitpt)(x

1, x2) dx1.

Combining these two formulae we obtain
∫

f(x) ∂tpt(x) dx
1ν(dx2)

= −
∫

f(x)


 ∑
1≤i≤r1

∂x1
i
(aitpt)(x

1, x2)


 dx1ν(dx2)

+

∫
f(x)

[∫
m

(2)
t ((x1, y2), x2) λt(x

1, y2) pt(x
1, y2) ν(dy2)− λt(x) pt(x)

]
dx1 ν(dx2).

This yields the Fokker-Planck equation

∂tpt(x) = L�
t (pt)(x) (13.32)

:= −
∑

1≤i≤r1

∂x1
i
(aitpt)(x)

+

∫
m

(2)
t ((x1, y2), x2) λt(x

1, y2) pt(x
1, y2) ν(dy2)− λt(x) pt(x).
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We can derive the same analysis replacing Rr2 by some abstract state space S2 equipped
with some measure ν. We further assume that ν is the uniform distribution on some state
space S2 and

K
(2)
t ((x1, x2), dy2) = ν(dy2) =⇒ m

(2)
t ((x1, y2), x2) = 1.

In this situation we have

(13.32) ⇐⇒ ∂tpt(x) = −
∑

1≤i≤r

∂x1
i
(aitpt)(x)+

∫
λt(x

1, y2) pt(x
1, y2) ν(dy2)−λt(x) pt(x).

13.3.2 Invariant measures

We consider a time homogeneous switching model (at, λt) = (a, λ) with some drift function
at(x

1, x2) = a(x2) that does not depend on the first coordinate and such that

∀1 ≤ i ≤ r1

∫
ai(x2) ν(dx2) = 0.

We set π(dx) = q(x1, x2) dx1 ν(dx2) with some probability density function q(x1, x2) =
q(x1) that only depends on the first coordinate and we choose a jump intensity λ such that

λ(x1, x2) q(x1, x2) = λ�(x1)−
∑

1≤i≤r1

ai(x2) ∂x1
i
q(x1) ≥ 0

for some sufficiently large function

λ�(x1) ≥ max


 ∑

1≤i≤r1

ai(x2) ∂x1
i
q(x1), 0


.

We refer to exercise 219 for a more concrete illustration of these intensity rate functions.
In this case, we have

∫ [
λ(x1, y2) q(x1, y2)− λ(x1, x2) q(x1, x2)

]
ν(dy2)

=

∫ 
λ�(x1)−

∑
1≤i≤r1

ai(y2) ∂x1
i
(q)(x1)− λ�(x1) +

∑
1≤i≤r1

ai(x2) ∂x1
i
(q)(x1)


 ν(dy2)

=
∑

1≤i≤r1

ai(x2) ∂x1
i
(q)(x1) =

∑
1≤i≤r1

∂x1
i
(aiq)(x1, x2) ⇒ πL = 0.

We conclude that π is an invariant probability measure of the PDMP with infinitesimal
generator L. We refer to exercises 213 to 219 for worked-out examples of switching processes
with given target distributions.

13.4 An application to Internet architectures

13.4.1 The transmission control protocol

As its name indicates, the transmission control protocol (abbreviated TCP) is a sophisti-
cated reliability protocol used by most Internet applications to control the transmission
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of information. More than 50% of Internet traffic uses TCP. Loosely speaking, computer
applications often break long messages into very small pieces called datagrams, and wrap
them into a collection of packets called IP transmission units. TCP defines the packaging of
the messages and the rules of sending and reading them. Each host maintains a congestion
window that measures the number of data units (also called segments). A data unit is set
as the maximum segment size allowed on that connection [155, 227].

When the receiver TCP detects a missing segment, the size of the congestion window
is decreased by some proportionality factor (1 + α) ∈]0, 1[, for some α ∈] − 1, 0[ (say half
of the size (1 + α) = .5 for α = −.5). Otherwise, every time a segment is well received
(and the corresponding acknowledgement receipt reaches the sender) the window is slowly
opened by a proportion β ∈]0, 1[ of the inverse of the current window size. We assume that
all the packets are equal to the maximal system size. We refer the reader to the pioneering
articles of T. J. Ott and his co-authors [215, 216] for a more thorough discussion on these
models.

We consider a time mesh sequence tn = nh, with n ∈ N, and a given time step h ∈]0, 1[.
The timeout probabilities are supposed to be small, so that we further assume that the
probabilities of a segment loss at every time step have the form

ph = 1− e−λh = λh+O(h2)

for some given rate λ > 0.
We let εtn be a sequence of independent Bernoulli random variables with a common law

P
(
εhtn = 0

)
= 1− P (εtn = 1) = e−λh.

The congestion window size Wh
tn at time tn is given by the Markov chain:

Wh
tn = (1− εtn)

(
Wh

tn−1
+ hβ/Wh

tn−1

)
+ εtn

(
(1 + α)Wh

tn−1

)
.

The initial condition Wh
t0 = w0 is usually set to an unit of the maximal system size.

∆Wh
tn := Wh

tn −Wh
tn−1

= (1− εtn) βh/Wh
tn−1

+ εtn αWh
tn−1

.

We let Th
n be the jump times (10.4) of the Bernoulli process associated with the εhtn . Between

the jumps times, we have

Th
n < tk < Th

n+1

Wh
tk

−Wh
tk−1

tk − tk−1
=

β

Wh
tk−1

.

At the jump time Th
n+1, we have

∆Wh
Th
n+1

= Wh
Th
n+1

−Wh
Th
n+1−h = αWh

Th
n+1−h.

Taking the limits when h ↓ 0, we have seen in section 10.5 that the random times Th
n

converge to the random times Tn of a Poisson process with intensity λt = λ. From previous
considerations, Wh

tn converge (in law) to the continuous time jump process given by

Tn < t < Tn+1
dWt

dt
=

β

Wt
.

At the jump time Tn+1, we have

∆WTn+1
= WTn+1

−WTn+1− = αWTn+1− ⇒ WTn+1
= (1 + α) WTn+1−.
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We let Xt be the process defined by

Xt :=
1

2β
W 2

t .

Between the jumps times, we have

dXt

dt
=

1

β
Wt

dWt

dt
= 1

and at the jump times

XTn+1 −XTn+1− =
1

2β

[
W 2

Tn+1
−W 2

Tn+1−

]

= ρ XTn+1− with ρ := (1 + α)2. (13.33)

Using the same reasoning as above, a discrete time approximation of this process is given
by the Markov chain

Xh
tn = (1− εtn)

(
Xh

tn−1
+ h

)
+ εtn

(
ρXh

tn−1

)
.

13.4.2 Regularity and stability properties

We now turn to studying the long time behavior of these TCP models. Firstly, we observe
that

Xh
tn = an Xh

tn−1
+ bn

= anan−1 Xh
tn−2

+ anbn−1 + bn = . . . = Atn Xh
t0 + Btn

with

Atn :=

[
n∏

p=1

ap

]
and Btn :=

∑
1≤p≤n


 ∏
n≥q>p

aq


 bp

and the collection of random variables

an := (εtnρ+ (1− εtn)) = ρεtn and bn := (1− εtn)h.

We notice that

E(an) = ρ
(
1− e−λh

)
+ e−λh < 1 and E(bn) = he−λh.

This implies that Atn converges almost surely exponentially fast to 0, as n ↑ ∞ in the sense
that

P (Atn > ε) ≤ ε−1 E(Atn) = ε−1
[
ρ

(
1− e−λh

)
+ e−λh

]n −→n↑∞ 0

for any ε > 0.
Note that we also have

Law ((a1, . . . , ap+1, . . . , an), (b1, . . . , bp, . . . , bn))
=
Law ((an, . . . , an−p, . . . , a1), (bn, . . . , bn−p+1, . . . , b1)) .

Therefore, we have

Btn =
∑

1≤p≤n

bp [ap+1 . . . an]
law
=

∑
1≤p≤n

[a1 . . . an−p] b(n−p)+1

=
∑

0≤q<n

[a1 . . . aq] bq+1 := Btn . (13.34)
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We also have the almost sure convergence

Btn −→n↑∞ B∞ := lim
n→∞

∑
0≤q<n

[a1 . . . aq] bq+1 =
∑
q≥0

[a1 . . . aq] bq+1.

We check this claim using the fact that B∞ ≥ Btn , and for any ε > 0, we have

P
(
B∞ −Btn > ε

)
≤ ε−1 E

(
B∞ −Btn

)

and
E
(
B∞ −Btn

)

= he−λh
∑

q≥n

[
ρ

(
1− e−λh

)
+ e−λh

]q

= he−λh
[
ρ

(
1− e−λh

)
+ e−λh

]n
/
[
(1− e−λh)(1− ρ)

]
−→n↑∞ 0.

We conclude that

Law
(
Xh

tn

)
= Law

(
Atn Xh

tn +Btn

)
−→n↑∞ Law

(
B∞

)
.

In addition, if Xh
tn and Y h

tn denote two solutions that start from two different positive
initial values Xh

0 = x and Y h
0 = y, we have the almost sure exponential forgetting property
[
Xh

tn − Y h
tn

]
= Atn [x− y] −→n↑∞ 0.

In addition, in terms of the Wasserstein distance introduced in section 8.3.1.2, we have

W
(
Law

(
Xh

tn

)
,Law

(
Y h
tn

))
≤

[
ρ

(
1− e−λh

)
+ e−λh

]n |x− y|.

We notice that

ρ
(
1− e−λh

)
+ e−λh ��h�0

ρλh+ (1− λh) = 1− λh(1− ρ).

Recalling that log (1− x) ≤ −x, for any x ∈ [0, 1], and tn = hn we conclude that
[
ρ

(
1− e−λh

)
+ e−λh

]n ≤ exp (−λtn(1− ρ)).

To take the final step, we observe that

E
(
B∞

)
= he−λh

∑
q≥0

(
ρ

(
1− e−λh

)
+ e−λh

)q

=

[
eλh − 1

h
(1− ρ)

]−1 (
−→h↑0 [λ(1− ρ)]−1

)
.

Using proposition 8.3.13, we also have

W
(
Law

(
Xh

tn

)
,Law

(
B∞

))
≤

[
ρ

(
1− e−λh

)
+ e−λh

]n E(|x−B∞|)

≤
[
ρ

(
1− e−λh

)
+ e−λh

]n
[
x+

[
eλh − 1

h
(1− ρ)

]−1
]
.

This implies that

W
(
Law

(
Xh

tn

)
,Law

(
B∞

))
≤ exp (−λtn(1− ρ))

[
x+ [λ (1− ρ)]

−1
]
.
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In the last r.h.s. estimate, we have used the fact that eλh−1
λh ≥ 1. If we choose the parameters

(λ, α, ) = (4/3,−1/2), we find that ρ = (1 + α)2 = 1/4 and λ(1 − ρ) = 1. In this case we
have E

(
B∞

)
= 1, and

W
(
Law

(
Xh

tn

)
,Law

(
B∞

))
≤ exp (−tn) (x+ 1) .

When the time step unit h is expressed in milliseconds, say h = 10−3, the jump times of
the Bernoulli process are associated with geometric random variables Eh

n = Th
n − Th

n−1 =
h [1 + �En/h�], where En denotes an exponential random variable with parameter λ = 4/3.
In this case, the timeouts arrive in the average every

E
(
Eh
n

)
= h/ph =

(
1− e−λh

h

)−1

�h↓ λ−1 = 3/4 s.

13.4.3 The limiting distribution

Rewriting the random variables Btn from (13.34) in terms of the Bernoulli sequence, we
have

Btn :=
∑

t0=0≤tq<tn

ρ
∑tq

tk=t1
εtk

(
1− εtq+1

)
h.

With a slight abuse of notation (dropping the h index), we let Ntk and Tk be the Bernoulli
process given by

Ntk =

k∑
l=1

εtl

and its jump times defined by

Tk+1 = inf
{
tp > Tk : εtp = 1

}

with T0 = 0. In this notation, we have

Btn =

kn∑
l=1

∑
Tl−1≤tq<Tl

ρ
∑tq

tk=t1
εtk

(
1− εtq+1

)
h+

∑
Tkn<tq<tn

ρ
∑tq

tk=t1
εtk

(
1− εtq+1

)
h

where kn denotes the index of the last jump time that happened earlier than tn. This
implies that

Btn =

kn∑
l=1

ρl−1
∑

Tl−1≤tq<Tl

h+ ρkn

∑
Tkn<tq<tn

h =

kn∑
l=1

ρl−1 (Tl − Tl−1) + ρkn (tn − Tkn).

To take the final step, we observe that kn tends to infinity as tn ↑ ∞

kn = Ntn−h =

tn−h∑
tp=t0=0

εtp −→n↑∞ ∞.

Using this observation, we conclude that

Btn −→n↑∞ B∞ =
∑
l≥0

ρl (Tl+1 − Tl).
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Recalling that the Bernoulli inter-arrival times (Tl+1 − Tl) are proportional to independent
geometric random variables (cf. (10.4)) we have

B∞ =
∑
l≥0

ρl (1 + �El/h�) h −→h↑0
∑
l≥0

ρl El

where El are independent exponential r.v. with parameter λ. Using the formula (11.31)
obtained in exercise 168, we have

P
(
B∞ ≤ 3 + (1 + 2

√
3)/(λ(1− ρ))

)
≥ 1− e−3 ≥ 0.95. (13.35)

When λ = 4/3 and ρ = 1/4 we have λ(1− ρ) = 1 and

P
(
B∞ ≤ 2(2 +

√
3)
)
≥ 0.95.

If we set W 2
∞/2 = B∞ then we find that

P
(
W∞ ≤ 2

√
2 +

√
3

)
≥ 0.95.

13.5 Exercises
Exercise 192 (Shot noise processes) We consider the compound Poisson process Xt

discussed in exercise 161. We consider a sequence of time steps ti ≤ ti+1 and we set

Ct =
∑

1≤n≤Nt

ea(t−tn) Yn.

Describe the stochastic differential equation of Ct in terms of Xt. Find the infinitesimal
generator of Ct.

Exercise 193 (PDMP stochastic differential equations) We consider the ordinary dif-
ferential equation

dxt = a(xt) dt (13.36)

for a regular function a on S = R. We let b be a bounded function on R and Nt be a Poisson
process with intensity λ > 0. We associate with these objects the stochastic differential
equation

dXt = a(Xt) dt+ b(Xt) dNt. (13.37)

We assume that the flow map ϕs,t(x) (cf. definition 13.1.1) of the deterministic system
(13.40) is explicitly known. Propose an algorithm to sample the stochastic process (13.37).
Compute the infinitesimal generator of Xt.

Exercise 194 We consider the stochastic differential equation

dXt = a Xt dt+ b Xt dNt. (13.38)

with a Poisson process Nt with intensity λ > 0 and some parameters (a, b) ∈ R. Describe
the infinitesimal generator of Xt. Compute the solution of Xt in terms of the jump times
Tn of the Poisson process Nt.
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Exercise 195 (Poisson intensity formulations) We consider the ordinary differential
equation (13.40) and we denote by N(t) a Poisson process with unit intensity λ = 1 > 0.
Let b denote a bounded positive function on R.

We associate with these objects the following stochastic process:

Xt = X0 +

∫ t

0

a(Xs) ds +N

(∫ t

0

b(Xs) ds

)
. (13.39)

We assume that the flow map ϕs,t(x) (cf. definition 13.1.1) of the deterministic system
(13.40) and the integrals

∫ t

s
b(ϕs,r(x))dr are explicitly known. Propose an algorithm to

sample the stochastic process (13.39). Compute the infinitesimal generator of Xt.

Exercise 196 (Growth-fragmentation models) The size Xt of a cell grows continu-
ously at a rate a(Xt), for some positive function a on R. Its size Xt = x is decreased to y
according to some Markov transition K(x, dy) at a rate λ(Xt). Describe the infinitesimal
generator of Xt.

Exercise 197 (Degrowth-production models) The quantity Xt of a chemical product
in the body is degraded continuously at a rate a(Xt) for some positive function a on R. A
random amount y is added to Xt = x according to a Markov transition K(x, dy), at a rate
λ(Xt). Describe the infinitesimal generator of Xt.

Exercise 198 (Storage process) Let Xt be a real valued PDMP with generator

L(f)(x) = −ax ∂xf(x) + λ

∫
[f(x+ y)− f(x)] ν(dy)

for some positive parameter a, λ > 0 and some probability measure ν on R. Describe
the evolution of Xt in terms of a sequence (Yn)n≥1 of independent random variables with
common law ν and a sequence (Zn)n≥1 of independent exponential random variables with
parameter λ.

Exercise 199 (Storage process - Mean values) Consider the PDMP Xt discussed in
exercise 198, and let m :=

∫
y ν(dy). Check that

E(Xt)− (λm/a) = e−at (E(X0)− λm/a) −→t→∞ 0.

Exercise 200 (Storage process - Laplace transform) Consider the PDMP Xt dis-
cussed in exercise 198 and set gt(u) = E

(
euXt

)
. Describe the evolution equation of gt in

terms of the Laplace transform h(u) = E
(
euY

)
of a random variable Y with distribution ν.

We assume that h(u) is defined for any u ≤ u0 for some u0 > 0. Check that

∂tgt(u) = −au ∂ugt(u) + gt(u) V (u) with V (u) = λ [h(u)− 1] .

Prove that the moment generating function gt(u) is given by the Feynman-Kac formula

gt(u) = exp

(∫ t

0

V
[
e−asu

]
ds

)
.

Let V be such that ∂u log V (u) = V (u)/u. Check that

gt(u) =
(
V (u)/V

(
e−atu

))1/a
.

Examine the situation ν(dy) = b e−by 1[0,∞[(y) dy, for some b > 0. Prove that

gt(u) −→t↑∞ g∞(u) = (1− u/b)
−λ/a

.

Deduce that the invariant probability measure of Xt is given by the Laplace distribution
with shape (λ/a) and rate b.
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Exercise 201 (Storage process - Stability properties - Coupling) Consider the pair
of PDMP Xx

t and Xy
t discussed in exercise 198 and starting at x and y ∈ [0,∞[. Consider

the Wasserstein metric W(µ1, µ2) associated with the distance d(x, y) = |x− y| discussed in
section 8.3.1.2. Prove that

W (Law(Xx
t ),Law(X

y
t )) ≤ e−at |x− y|.

Exercise 202 (Storage process - Stability properties - Total variation [186])
Consider the pair of PDMP Xx

t and Xy
t discussed in exercise 201. Assume that the

processes share the same jump times Tn and the jump amplitudes are defined in terms
of a sequence of independent random variables with common exponential law ν(dy) =
b e−by 1[0,∞[(y) dy, for some given b > 0. Using the maximal coupling technique discussed
in example 8.3.5, describe a coupling such that

P
(
Xx

Tn
= Xy

Tn
|
(
Xx

Tn−, X
y
Tn−

))
= exp

(
−b

∣∣Xx
Tn− −Xy

Tn−
∣∣).

Deduce that at any time t s.t. Nt > 0 the chance of coupling is given by

P
(
Xx

TNt
= Xy

TNt
|
(
Xx

TNt−
, Xy

TNt−

))
≥ 1− b |x− y| e−aTNt−.

Using theorem 8.3.2 check that

‖Law(Xx
t )− Law(Xy

t )‖tv ≤ e−λt + b |x− y| E
(
e−aTNt 1Nt>0

)
.

Given Nt = n, we recall that Tn/t has the same law as the maximum max1≤i≤n Ui of n
uniform random variables Ui on [0, 1] (cf. exercise 41). Check that

E
(
e−aTNt 1Nt>0

)
=

∫ 1

0

e−atu E
(
Nt u

Nt−1
)
du =

λ

(λ− a)

[
e−at − e−λt

]

as soon as λ �= a. Conclude that

‖Law(Xx
t )− Law(Xy

t )‖tv ≤ e−λt +
λb

(λ− a)

[
e−at − e−λt

]
|x− y| .

Exercise 203 (Minorization condition) We let Xt be a PDMP on S = Rr associated
with some regular deterministic flow maps ϕs,t(x), a jump rate λt(x) and Markov transitions
Kt(x, dy) describing the jumps from x to y. We assume that

∀x ∈ S λ� ≤ λt(x) ≤ λ� and Kt(x, dy) ≥ ε νt(dy)

for some positive and finite parameters λ� ≥ λ� > 0 and ε > 0, and some probability
measure νt(dy) on Rr. Using the integral formula (13.15) check that the semigroup Ps,t,
s ≤ t, satisfies the minimization condition

∀x ∈ S ∀s < t Ps,t(x, dy) ≥ εs,t νs,t(dy)

for some probability measure νs,t and some εs,t > 0 s.t.

(t− s) ≥ (log 2)/λ� ⇒ εs,t ≥
ε

2

λ�

λ�
.

Using theorem 8.2.13 check the contraction inequality

‖µ1Pt,t+nh − µ2Pt,t+nh‖tv ≤
(
1− ε

2

λ�

λ�

)n

‖µ1 − µ2‖tv

for any t ≥ 0 and n ≥ 0, and any probability measures µ1, µ2 on S, as soon as h ≥ (log 2)/λ�.
Deduce that Xt has an unique invariant measure π.
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Exercise 204 (Switching processes - Generator) We let Sj = Rrj , with rj ≥ 1, and
aj = (aij)1≤j≤rj be a collection of product state spaces and some regular functions aj Sj �→ R
indexed by a finite set J � j. Between the jumps, a process Xs = (Is, Xs) follows the
ordinary differential equation

dXs = aIs(Xs) ds and Is = I0 (13.40)

for s ≥ 0. At a rate λ(Is, Xs) it jumps to a new state, chosen randomly according to some
Markov transition K((Is, Xs), d(i, y)) on S := ∪j∈J({j} × Sj). Describe the infinitesimal
generator of Xt.

Exercise 205 (Switching processes - Feynman-Kac formulae) The switching process
discussed in this exercise and the next two is a slight extension of the model presented in [17].
We consider the pure jump process Xt discussed in exercise 175 and the Feynman-Kac mea-
sures (γ

[β]
t , η

[β]
t ) associated with some potential function V discussed in exercise 177. Let

Xt = (Xt, Yt) ∈ S = (S × Rr), for some r ≥ 1, be a switching process with generator

L(F )(x, y) =
∑

1≤i≤r

ai(x, y) ∂yi
F (x, y) + L(F (., y))(x)

for some given drift functions ai(x, y). We assume that X0 and Y0 are independent. We
equip Rr with the scalar product 〈x, y〉 =

∑
1≤j≤r xjyj and the Euclidian norm ‖x‖2 :=

〈x, x〉, and we assume that the drift functions are chosen so that

∀(x, y, z) ∈ (S × Rr × Rr) 〈a(x, y)− a(x, z), y − z〉 ≤ −V (x) ‖y − z‖2 .

Check that

‖Yt‖ ≤ e−
∫ t
0
V (Xs)ds ‖Y0‖+

∫ t

0

e−
∫ t
s
V (Xu)du ‖a(Xs, 0)‖ ds.

Using the generalized Minkowski inequality (cf. for instance lemma 5.1 in [70]) check
that for any β ≥ 1 we have

E
[
‖Yt‖β

]1/β
≤ Cβ

[
e−tη[β]

∞ (V ) E
(
‖Y0‖β

)1/β

+ Cβ

∫ t

0

e−(t−s)η[β]
∞ (V )

(
η[β]s (fβ)

)1/β

ds

]

with the function f(x) = ‖a(x, 0)‖ and some finite constants Cβ. When f is uniformly
bounded by some constant a�, deduce that

E
[
‖Yt‖β

]1/β
≤ Cβ e−tη[β]

∞ (V ) E
(
‖Y0‖β

)1/β

+ C2
β a�

(
1− e−tη[β]

∞ (V )
)
.

In addition, when infx∈Rr V (x) = V� > 0 prove the almost sure estimate

‖Yt‖ ≤ e−
∫ t
0
V (Xs)ds ‖Y0‖+ (a�/V�)

(
1− e−

∫ t
0
V (Xu)du

)
≤ ‖Y0‖ ∨ (a�/V�) .

Exercise 206 (Switching processes - Coupling 1) Consider the switching process dis-
cussed in exercise 205. Assume that a� := supx∈S ‖a(x, 0)‖ < ∞ and infx∈Rr V (x) = V� >
0. We couple the stochastic processes Xt = (Xt, Yt) and X ′

t = (Xt, Y
′
t ) starting at different

states X0 = (x, y) and X ′
0 = (x, y′) (using with the same first coordinate process Xt). Check

that for any parameter β > 0 we have

E
(
‖Yt − Y ′

t ‖
β | (Y0, Y

′
0) = (y, y′), X0 = x

)
≤ Z0,t(x) ‖y − y′‖β
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with the Feynman-Kac normalizing partition function Zs,t(x) defined for any 0 ≤ s ≤ t by

Z(β)
s,t (x) := E

(
exp

(
−β

∫ t

s

V (Xs) ds

)
| X0 = x

)
.

Exercise 207 (Switching processes - Coupling 2) Consider the switching process
discussed in exercise 205. Assume that a� := supx∈S ‖a(x, 0)‖ < ∞ and infx∈Rr V (x) =
V� > 0. We couple the stochastic processes Xt = (Xt, Yt) and X ′

t = (X ′
t, Y

′
t ) starting at

different states X0 = (x, y) and X ′
0 = (x′, y′) using the coupling described in the second

statement of theorem 12.7.6. To be more precise, we couple the first components (Xt, X
′
t)

until their coupling time T , and we set Xt = X ′
t for any t ≥ T . Prove that for any parameter

β > 0 there exist some constants c and δβ > 0 such that

E
(
‖Yt − Y ′

t ‖
β | (Y0, Y

′
0) = (y, y′), (X0, X

′
0) = (x, x′)

)

≤ c exp (−δβt)
[
‖y‖β ∨ ‖y′‖β ∨ (a�/V�)

β
]
.

Exercise 208 (Regenerative processes) We consider a real valued PDMP Xt with gen-
erator

L(f)(x) = λ (f(0)− f(x)) + f ′(x)

for some parameter λ > 0. Using the integral formula (13.15), find an explicit description
of the conditional probability of Xt given it starts at the origin. Extend this formula to
PDMP Xt with generator

Lt(f)(x) = λ (f(0)− f(x)) + bt(x) f
′(x)

for some some smooth and bounded drift function bt. This exercise can be complemented with
exercise 167 on the analysis of time inhomogeneous regenerative processes with explosions.

Exercise 209 (A random 2-velocity process [128, 159]) We let Xt be a homo-
geneous pure jump process taking values in {−1, 1}. At some rate λ(Xt), the process Xt

changes its sign. Given some smooth functions a and b > |a| on R we set

dYt

dt
= a(Yt) +Xt b(Yt).

Describe the generator of the process Zt = (Xt, Yt). Assume that (Xt, Yt) has a density
given by

∀x ∈ {−1, 1} P(Xt = x , Yt ∈ dy) = pt(x, y) dy.

We set

q+t (y) = pt(1, y) + pt(−1, y) q−t (y) = pt(1, y)− pt(−1, y).

Describe the evolution equations of the functions (pt(1, y), pt(−1, y)) and (q+t (y), q
−
t (y)).

Discuss the fixed points of the equation governing the evolution of the density q+t (y) of the
random state Yt. Discuss the situation λ(1) = λ(−1), a = 0 and 0 <

∫∞
c

b−1(y)dy < ∞ for
some constant c.

Exercise 210 (Switching processes - Marginal distributions) We consider the switch-
ing process Xt = (X1

t , X
2
t ) discussed in section 13.3.1. Find the evolution equations of the

marginal probability measures

p1t (x
1) =

∫
pt(x

1, x2) ν(dx2) and p2t (x
2) =

∫
pt(x

1, x2) dx1.



Piecewise deterministic processes 389

Exercise 211 (Biochemical reaction network) We consider a biochemical reaction
network with nc chemical reactions among ns species (Si)1≤i≤ns





∑
1≤i≤ns

ai,j Si →
∑

1≤i≤ns
bi,j Sj

j = 1, . . . , nc

where ai,j and bi,j are non-negative integers. These parameters are often called the sto-
ichiometric coefficients of the reaction; ai,j represents the number of molecules of species
Si consumed in the j-th reaction, and bi,j represents the number of molecules of species Si

produced in the j-th reaction. We denote by Xt = (Xi
t)1≤i≤ns the number of molecules of the

species (Si)1≤i≤ns
at time t. We assume that the j-th reaction occurs according to a count-

ing Poisson process with reaction rate λj(Xt) = κj

∏
1≤i≤ns

(
ai,j
Xi

t

)
, for a certain reaction

rate parameter κj, with 1 ≤ j ≤ nc. Describe the process Xt in terms of nc independent
Poisson processes with unit intensity.

Exercise 212 (Gene expression) We let X1
t be a {0, 1} valued random variable repre-

senting the state ("off" or "on") of a given gene at some time t. We let X2
t be the quantity

of protein or mRNA produced by the gene at time t. We assume that X1
t switches between 0

and 1 at rates λ1(X
2
t ) (for transitions 1 � 0) and λ2(X

2
t ) (for transitions 0 � 1). When the

gene expression is "on", i.e., when X1
t = 1, the gene produces protein at a rate λ3(X

2
t ), and

it is degraded at a rate λ4(X
2
t ). Describe the process Xt = (X1

t , X
2
t ) in terms of independent

Poisson processes with unit intensity.

Exercise 213 (Mesquita bacterial chemotaxis process) In his PhD dissertation [195],
A. R. Mesquita proposes a PDMP model to analyze the chemotactic activity of the bacte-
ria Escherichia coli. The process Xt = (Ut, Vt) ∈ S := (R2 × S) represents the loca-
tion Ut of the cell and its velocity/orientation Vt ∈ S in the unit one-dimensional sphere
S = {v = (v1, v2) ∈ R2 : ‖v‖22 := v21 + v22 = 1} (thus assuming constant unit velocity
variations). The deterministic flow dUt/dt = a(Ut, Vt) represents the exploration of the
cell in terms of its velocity, for some drift function a : (R2 × S) → R2. The velocity
component Vt changes with some rate λ(Xt) that may depend on the location and the speed
of the cell. When the system Xt = (Ut, Vt) = (u, v) jumps only the velocity component is
changed (u, v) � (u,w). The new velocity is chosen according to some Markov transition
K((u, v), dw) from S into S. Describe the infinitesimal generator of the process Xt on S.

Exercise 214 (PDMP process - Invariant measures) We return to the Mesquita bac-
terial chemotaxis process discussed in exercise 213. We further assume that the drift
function a(u, v) = a(v) only depends on the velocity of the cell. We also assume that
K((u, v), dw) = ν(dw) with the uniform measure ν on S with ν(a) = 0. Find some jump
intensity such that Xt has an invariant measure of the form π(d(u, v)) ∝ q(u) du ν(dv)
where q(u) stands for some given smooth density of nutrients in the environment of the cell.

Exercise 215 (PDMP with bi-Laplace invariant measure [129]) We consider the sto-
chastic process Xt = (Xt, Yt) on S = ({−1,+1}×R) with generator L defined for any suffi-
ciently regular function f on S (smooth w.r.t. the second coordinate) and for any (ε, y) ∈ S
by

L(f)(ε, y) = ε ∂yf(ε, y) + (a+ (b− a) 1εy>0) (f(−ε, y)− f(ε, y))

for some parameters 0 < a < b. Check that π(d(x, y)) = 1
2 (δ−1 + δ+1)(dx) × ν(dy) is an

invariant measure of Xt.
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Exercise 216 (Double telegraph - Bouncy particle samplers [230, 30]) Consider a
Boltzmann-Gibbs probability measure ν(dy) ∝ e−V (y)dy on R associated with some non-
negative potential function V . We consider the stochastic process Xt = (Xt, Yt) taking
values in S = ({−1,+1} ×R) with generator L defined for any sufficiently regular function
f on S (smooth w.r.t. the second coordinate) and for any (ε, y) ∈ S by

L(f)(ε, y) = ε ∂yf(ε, y) + (ε∂yV (y))+ (f(−ε, y)− f(ε, y)).

Check that π(d(x, y)) = 1
2 (δ−1 + δ+1)(dx) × ν(dy) is an invariant measure of Xt. The

multidimensional case is discussed in exercise 219. The non-uniqueness property of the
invariant measure is discussed in exercise 216.

Exercise 217 (Bouncy particle samplers [230, 30]) Consider a Boltzmann-Gibbs prob-
ability measure ν(dx) ∝ e−U(x)dx on R associated with some potential function U : R �→ R
(s.t. the Gibbs measure is well defined). We let µ(dv) be any symmetric probability measure
on R (in the sense that V ∼ µ ⇒ (−V ) ∼ µ).

We consider the stochastic process Xt = (Vt, Xt) taking values in S = (R × R) with
generator L defined for any sufficiently regular function f on S (smooth w.r.t. the second
coordinate) and for any (v, x) ∈ S by

L(f)(v, x) = a v ∂xf(v, x) +
(
a v eU(x)∂xe

−U(x)
)
−

(f(−v, x)− f(v, x))

for some given parameter a ∈ R. Check that π(d(v, x)) = µ(dv) × ν(dx) is an invariant
measure of Xt. Compare this stochastic process with the one discussed in exercise 216.
Discuss the non-uniqueness property of the invariant measure. The discrete time version of
this sampler is discussed in exercise 120 (see also exercise 229).

Exercise 218 (Mesquita MCMC samplers) Consider a Boltzmann-Gibbs probability
measure ν(dx) ∝ e−U(x)dx on R associated with some potential function U : R �→ R
(s.t. the Gibbs measure is well defined). Let µ(dv) be any probability measure on R
and a : v ∈ R �→ a(v) ∈ R be some given drift function s.t. µ(a) = 0. We also let
α : R �→ [0,∞[ be some intensity function.

We consider the stochastic process Xt = (Vt, Xt) taking values in S = (R × R) with
generator L defined for any sufficiently regular function f on S (smooth w.r.t. the second
coordinate) and for any (v, x) ∈ S by

L(f)(v, x) = a(v) ∂xf(v, x) + λ(v, x)

∫
(f(w, x)− f(v, x)) µ(dw),

with the jump intensity

λ(v, x) = α(x) + sup
w∈R

(
a(w) eU(x)∂xe

−U(x)
)
−
(
a(v) eU(x)∂xe

−U(x)
)
.

Check that π(d(v, x)) = µ(dv)× ν(dx) is an invariant measure of Xt. Discuss the choice of
the tuning intensity function α.

Exercise 219 (Rejection-free Monte Carlo and bouncy particle samplers [30, 222])
We equip Rr with the scalar product 〈x, y〉 =

∑
1≤i≤r xiyi and the Euclidian norm ‖x‖ =

〈x, x〉1/2. Let ∂V = (∂xi
V )

′
1≤i≤r be the gradient column vector field associated with some

non-negative smooth function V on Rr s.t. Z :=
∫

e−V (x) dx ∈]0,∞[ (recall that v′ stands
for the transpose of a vector v). We set U = ∂V/ ‖∂V ‖ and A = (I − 2UU ′), where I
denotes the identity matrix on Rr.
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Check that A is an (r × r)-orthogonal matrix field (A(x) = A(x)′ and A(x)2 = I) and
for any x, y ∈ Rr we have

〈U(x), A(x)y〉 = −〈U(x), y〉 and 〈U(x), A(x)y〉+ − 〈U(x), y〉+ = −〈U(x), y〉.

Deduce that
〈∂V (x), A(x)y〉+ − 〈∂V (x), y〉+ = −〈∂V (x), y〉.

We denote by ν some spherically symmetric probability distribution on Rr (for instance a
Gaussian centered distribution with unit covariance matrix). Let π be the Boltzmann-Gibbs
distribution on R2 given by

π(d(x1, x2)) =
1

Z
e−V (x1) dx1 ν(dx2).

Consider the switching model Xt =
(
X1

t , X
2
t

)
. discussed in section 13.3.1 and sec-

tion 13.3.2 with r1 = r2 = r. Assume that the drift function, the jump intensity and the
jump transition in (13.31) are given by

at(x
1, x2) = x2 λ(x1, x2) = 〈∂V (x1), x2〉+ and K

(2)
t ((x1, x2), dy2) = δA(x1)x2(dy2).

Describe the infinitesimal generator L of the process Xt.
Check that

∫
π(dx) λ(x)

[
f
(
x1, A(x1)x2

)
− f (x)

]
= −

∫
π(dx) 〈∂V (x1), x2〉 f(x)

and ∫
π(dx)

∑
1≤i≤r

x2
i ∂x1

i
f(x) =

∫
π(dx) 〈∂V (x1), x2〉 f(x).

Deduce that πL = 0. Discuss the non-uniqueness property of the invariant distribution of
Xt.
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14
Diffusion processes

This chapter is devoted to the classical theory of diffusion processes and of stochastic differ-
ential equations driven by Brownian motion. It starts with the introduction of the Brownian
process as a limiting stochastic process on a time mesh sequence of independent Rademacher
random variables. The connection to the heat equation is discussed next. The Doeblin-Itō
formula and its various applications in stochastic differential calculus are discussed in great
details and is used to derive the Fokker-Planck equation for the density of the random
states. The univariate results are extended to the case of multivariate diffusions at the end
of the chapter.

These motions were such as to satisfy me, after frequently repeated observation,
that they arose neither from currents in the fluid, nor from its gradual evaporation,
but belonged to the particle itself.
Robert Brown (1773-1858).

14.1 Brownian motion

14.1.1 Discrete vs continuous time models

It is beyond the scope of this section to de-
scribe in full details the construction of the
Brownian motion and the stochastic integrals
w.r.t. to the induced random measure on the
time axis. We have chosen to present these
continuous time stochastic processes from the
practitioner’s point of view, using simple ar-
guments based on their discrete approxima-
tions. The definitions of continuous time fil-
trations, predictable processes, martingales
and their angle brackets are provided in sec-
tion 12.5.2.

For a more thorough and rigorous discussion on these probabilistic models, we refer the
reader to the seminal books by Daniel Revuz and Marc Yor [231], Ioannis Karatzas and
Steven Shreve [161], as well as the book by Stewart Ethier and Thomas Kurtz [122], and
the one by Bernt Øksendal [213].

The simplest way to introduce the Brownian process is to consider a virtual individual
evolving on the real line performing randomly local steps with amplitude +∆X or −∆X
every ∆t units of time, in such a way that [∆X]2 = ∆t. For instance, he moves to the right
with step +∆X = +10−p or to the left with step −∆X = +10−p, every ∆t = 10−2p units
of time. As a result, his local speed ∆X/∆t = 10p tends to infinity as p ↑ ∞.

393
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FIGURE 14.1: Discrete Brownian motion, with ∆t = 10−4.

To formalize these stochastic processes, we consider a time mesh sequence tn = nh,
with n ∈ N, and a given time step h ∈]0, 1[.

Wh
0 = 0 and ∆Wh

tn = Wh
tn −Wh

tn−1
= εtn

√
h ,

with a sequence of independent random variables with a common law

P(εtn = +1) = P(εtn = −1) =
1

2
.

By construction, we have

∆Wh
tn ×∆Wh

tn = h

E(∆Wh
tn | Wh

t0 , . . . ,W
h
tn−1

) = 0.

To get one step further in the analysis of the limiting model, we observe that for any s ≤ t,
and for any bounded and uniformly continuous function r �→ ϕr on R+,

∑
0<p≤�t/h�

ϕtp−1

(
∆Wh

tp

)2

=
∑

0<p≤�t/h�

ϕtp−1
(tp − tp−1)

=

∫ h�t/h�

0

ϕs ds +
∑

0<p≤�t/h�

∫ tp

tp−1

[
ϕtp−1

− ϕr

]
dr

−→h→0

∫ t

0

ϕs ds.

In addition, we have

Wh
h�t/h� −Wh

h�s/h� =
∑

�s/h�<p≤�t/h�

∆Wh
tp

(
⊥ Wh

h�s/h�

)

=
√
h(�t/h� − �s/h�)︸ ︷︷ ︸

→h↓0
√
t−s


 1√

�t/h� − �s/h�

∑
�s/h�<p≤�t/h�

εtp


 .
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Invoking the central limit theorem, we prove the following theorem.
Theorem 14.1.1 As the time step h tends to 0, we have the following convergence
in law

(
Wh

h�s/h� , Wh
h�t/h� −Wh

h�s/h�

)
→h→0 (Ws, (Wt −Ws)) (14.1)

where Ws and (Wt−Ws) are independent and centered Gaussian r.v. with variance
s, and t− s.

Arguing as in the proof of theorem 14.1.1 we can show that the sequence of increments

(
Wt1 −Wt0 , . . . ,Wtn −Wtn−1

)

and independent centered Gaussian random variables with variances (t1− t0, . . . , tn− tn−1),
for any sequence of time steps t0 ≤ . . . ≤ tn. It can also be shown that the random paths
t �→ Wt are almost surely continuous.

Definition 14.1.2 The limiting stochastic process Wt defined above is called the
(standard) Brownian motion, or the Wiener process. The Brownian motion Wt

is characterized by the continuity of the paths and the Gaussian properties stated
above.

In addition, for any bounded and uniformly continuous function g on (R+×R) we
have the almost sure convergence results

∑
0<p≤�t/h�

g
(
tp−1,Wtp−1

) (
Wtp −Wtp−1

)
−→h→0

∫ t

0

g(s,Ws) dWs

and

∑
0<p≤�t/h�

g
(
tp−1,Wtp−1

) (
Wtp −Wtp−1

)2 −→h→0

∫ t

0

g(s,Ws) ds. (14.2)

The proof of the last assertion (14.2) is a consequence of the equivalence principle (8.63),
combined with the almost sure convergence result

∑
0<p≤�t/h�

g
(
tp−1,Wtp−1

)
h −→h→0

∫ t

0

g(s,Ws) ds.

14.1.2 Evolution semigroups

The evolution semigroup (sg)

Ph
tp,tn(f)(x) = E

(
f(W h

tn) | W
h
tp = x

)
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of the Markov chain Wh
tn is defined in terms of the one step transitions

Ph
tn,tn+1

(f)(x) = E
(
f(Wh

tn+1
) | Wh

tn = x
)
= E

(
f(x+ εtn+1

√
h)
)

=
1

2

(
f(x−

√
h) + f(x+

√
h)
)
.

For smooth functions, using a second order Taylor expansion we find that

Ph
tn,tn+1

(f)(x) = f(x) +
h

2
∂2
xf(x) +O(h3/2).

By theorem 14.1.1,
Wt −Ws

law
=

√
t− s W1.

This shows that the evolution sg of the Brownian motion is given by

Ps,t(f)(x) = E (f(Wt) | Ws = x)

= E (f(Ws + (Wt −Ws)) | Ws = x) = E
(
f(x+

√
t− sW1)

)
.

For smooth and bounded functions, using a second order Taylor expansion we find that

f(x+
√
hW1) = f(x) +

√
hW1 f ′(x) +

h

2
W 2

1 f ′′(x) +OP (h
1+1/2).

This also implies that

Pt,t+h(f)(x) = E
(
f(x+

√
hW1)

)
= f(x) +

h

2
∂2
xf(x) +O(h1+1/2).

Combining these expansions with theorem 12.3.1 we prove the following theorem.

Theorem 14.1.3 For any t ≥ 0, we have the first order operator expansion

Ph
t,t+h = Id+ h L+O(h1+1/2) = Pt,t+h with L =

1

2
∂2
x. (14.3)

In addition, for any time steps tp = h�s/h� ≤ tn = h�t/h�, we have the first order
approximation formulae

Ph
tp,tn = Ptp,tn +O

(
h1/2

)
.

Important remark : In view of the Gaussian nature of the limiting process (14.1), an
alternative approximation of Wt on a given time mesh is given by

∆W
h

tn = W
h

tn −W
h

tn−1
=

√
tn − tn−1 ×Wn =

√
h Wn (14.4)

where Wn stands for a sequence of independent and centered Gaussian random variables.
Notice that ∆W

h

tn

law
= Wtn −Wtn−1

.
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14.1.3 The heat equation

The connection between the heat equation and the Brownian motion is described by the
following proposition.

Proposition 14.1.4 The laws of the random states of the Brownian motion are
given for any function f on R by

E(f(Wt)) =

∫

R
f(x) pt(x) dx︸ ︷︷ ︸

P(Wt∈dx)

with pt(x) =
1√
2πt

exp

(
−x2

2t

)
.

The measure pt(x)dx is the weak solution (in the sense of distributions) of the heat
equation starting at δ0 given by

∂tpt =
1

2
∂2
xpt.

Proof :
We need to check that

∫

R
f(x) ∂tpt(x) dx =

1

2

∫

R
f(x) ∂2

xpt(x) dx

for any smooth function with compact support, and
∫
R f(x) p0(x) dx = f(0). We check

this claim by using

∂tpt(x) =
1√
2πt

(
− 1

2t
+

x2

2t2

)
e−

x2

2t =
1

2

(
x2

t2
− 1

t

)
pt(x)

and
1

2
∂2
xpt(x) = −1

2
∂x

(x
t
pt(x)

)
=

1

2

(
x2

t2
− 1

t

)
pt(x).

This ends the proof of the proposition.

We end this section with an alternative proof of the heat equation based on a second
order Taylor expansion. To clarify the presentation, we fix a smooth bounded function f
vanishing at the infinity and we set m(t) = E(f(Wt)). By construction, we have

∂t E(f(Wt)) �
m(t+∆t)−m(t)

∆t
=

E[f(Wt +∆Wt)− f(Wt)]

∆t

with
∆Wt = (Wt+∆t −Wt) for some time step ∆t � 0.

Using a second order expansion of the function f at the random state Wt, we find that

∆f(Wt) := f(Wt +∆Wt)− f(Wt)

= ∂xf(Wt) ∆Wt +
1

2
∂2
xf(Wt) [∆Wt]

2 +O((∆Wt)
3) (14.5)

where O((∆Wt)
3) denotes a random function such that

E
(∣∣O((∆Wt)

3)
∣∣) ≤ C E((

√
∆t)3) ≤ C ∆t

√
∆t
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for some finite constant C < ∞ whose values only depend on the function f . Using the fact
that

E (∂xf(Wt) ∆Wt | Wt) = 0

and
E
(
∂2
xf(Wt) [∆Wt]

2 | Wt

)
= ∂2

xf(Wt)×∆t

we conclude that

1

∆t
E[f(Wt +∆Wt)− f(Wt)] = E

(
1

2
∂2
xf(Wt)

)
+ o(1)

with a certain deterministic function o(1) that converges to 0, as ∆t tends to 0.

14.1.4 Doeblin-Itō-Taylor formula

Our next objective is to further develop in a rather informal way the Taylor expansion
(14.5). We assume that all the derivatives of f are bounded at any order. From the
previous analysis, we have the decomposition

∆f(Wt) =
1

2
∂2
xf(Wt) ∆t +∆Mt(f) + εt(∆t) ∆t+O((∆Wt)

3)

with the martingale increment

∆Mt(f) = ∂xf(Wt) ∆Wt s.t. E (∆Mt(f) | Wt) = 0

and the remainder term

εt(∆) =
1

2
∂2
xf(Wt)

(
[∆Wt]

2

∆t
− 1

)

such that ∑
0≤tn≤∆t�t/∆t�

εtn(∆) ∆t −→∆t↑∞ 0.

The proof of this assertion is a consequence of the equivalence principle (8.63). We also
observe that Mt(f)

2 −∆〈M(f)〉t is a martingale with the increments of the angle bracket
process given by

E
(
(∆Mt(f))

2 | Wt

)
= (∂xf(Wt))

2
∆t

:= 〈M(f)〉t+∆t − 〈M(f)〉t := ∆〈M(f)〉t.

Finally, we observe that

L =
1

2
∂2
x ⇒ ΓL(f, f)(x) = L((f − f(x))2)(x) = (∂xf)

2

where ΓL stands for the "carré du champ operator" introduced in definition 12.5.3. Working
a little harder, we prove the Doeblin-Itō lemma for Brownian motion.

Lemma 14.1.5 For any smooth and bounded function f , we have

df(Wt) = L(f)(Wt) dt+ dMt(f)
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with the 1d-Laplacian generator L = 1
2 ∂2

x, and the martingale

Mt(f) =

∫ t

0

∂xf(Ws) dWs

with angle bracket given by

〈M(f)〉t :=
∫ t

0

ΓL(f, f)(Xs) ds =

∫ t

0

(∂xf(Ws))
2
ds.

When the function f(t, x) depends on the time parameter, we have

df(t,Wt) = [∂t + L] (f)(t,Wt) dt+ dMt(f).

In this case, the martingale part is defined by

Mt(f) =

∫ t

0

∂xfs(Ws) dWs

and its angle bracket given by

〈M(f)〉t :=
∫ t

0

ΓL(fs, fs)(Xs) ds =

∫ t

0

(∂xfs(Ws))
2
ds.

We also mention that proposition 14.1.4 can be deduced directly from the Doeblin-Itō
lemma. If we set ηt = Law(Wt), taking the expectations in the formulas of lemma 14.1.5,
we have

dηt(f) = dE(f(Wt)) = E(L(f)(Wt)) dt = ηt(L(f)) dt.

This implies that
∂tηt(f) = ηt(L(f)).

Since ηt(dx) = pt(x) dx, this implies that
∫

f(x) ∂tpt(x) dx =
1

2

∫
∂2
xf(x) pt(x) dx =

1

2

∫
f(x) ∂2

xpt(x) dx

for any smooth functions f with bounded derivatives and compact support. The last equa-
tion is proved by a double integration by parts formula.

We end this section with a couple of applications of Doeblin-Itō differential calculus.

Example 14.1.6 If we choose f(x) = x2/2, we have

f ′(x) = x and f ′′(x) = 1 ⇒ 1

2
d(W 2

t ) = Wt dWt +
1

2
dt.

This implies that

1

2
W 2

t =
1

2

[
W 2

t −W 2
0

]
=

1

2

∫ t

0

d(W 2
s ) =

∫ t

0

Ws dWs +
1

2
(t− 0).

Hence
1

2

∫ t

0

d(W 2
s ) �=

∫ t

0

Ws dWs =
1

2

(
W 2

t − t
)
.
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Example 14.1.7 If we choose the exponential functions f(t, x) = eσx−
1
2 σ2t, we have

∂xf = σ f and
1

2
∂2
xf =

σ2

2
f = − ∂tf

from which we conclude that

df(t,Wt) = σ f(t,Wt) dWt.

We can rewrite in slightly different terms:

Xt := X0 f(t,Wt) = X0 eσWt−σ2

2 t ⇐⇒ dXt = σ Xt dWt.

In the literature on stochastic processes, this formula is sometimes called the Doléan-Dade
exponential formula for the Brownian motion. In mathematical finance, this process is also
called the geometric Brownian motion. This formula can also be rewritten in the following
form:

eσWt−σ2

2 t = X0 + σ

∫ t

0

eσWs−σ2

2 s dWs. (14.6)

In mathematical finance, this geometric Brownian motion is often used to model the random
evolution of asset prices.

We let Ft = σ(Ws : 0 ≤ s ≤ t) the σ-field generated by the Brownian motion. By
construction, for any s ≤ t we have

E (Wt | Fs) = Ws and E
(
(Wt −Ws)

2 | Fs

)
= (t− s).

This shows that Wt is a martingale w.r.t. Ft. In addition, the stochastic process

Mt := W 2
t − 〈W 〉t with the angle bracket 〈W 〉t = t

is a martingale w.r.t. Ft. The last assertion is a consequence of

W 2
t −t = (Ws+(Wt−Ws))

2−(t−s)−s ⇒ Mt−Ms = (Wt−Ws)
2−(t−s)+2Ws(Wt−Ws)

and
E
(
Wt −Ws)

2 − (t− s) + 2Ws(Wt −Ws) | Fs

)

= E
(
Wt −Ws)

2 | Fs

)
− (t− s) + 2WsE ((Wt −Ws) | Fs) = 0.

Inversely, we have the following important characterization property.

Theorem 14.1.8 (Levy’s characterization of Brownian motion) Any
martingale Wt w.r.t. some filtration Ft with continuous paths and angle bracket
〈W 〉t = t is a Brownian motion.

Proof :
The proof follows the arguments provided in example 14.1.7. Applying the Doeblin-Itō
lemma to the function f(t,Wt) = eaWt−a2t/2 we have

df(t,Wt) = −a2

2
eaWt−a2t/2 dt+ a eaWt−a2t/2 dWt +

1

2
a2 eaWt−a2t/2 dt = a f(t,Wt) dWt.
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This shows that Xt = f(t,Wt) is a martingale w.r.t. some filtration Ft. Therefore we have

E(f(t,Wt) | Fs) = f(s,Ws) ⇐⇒ E
(
ea(Wt−Ws) | Fs

)
= e−a2(t−s)/2.

This shows that (Wt − Ws) is independent of Ws and it is a centered Gaussian random
variable with variance (t− s). This ends the proof of the theorem.

14.2 Stochastic differential equations

14.2.1 Diffusion processes

We consider a time mesh sequence tn = nh, with n ∈ N, and a given time step h ∈]0, 1[. In
view of theorem 14.1.1, The increments ∆Wtn+1

= Wtn+1
−Wtn of the Brownian motion Wt

on this time mesh form a sequence of independent and centered Gaussian random variables
with variance h.

Given a couple of bounded smooth functions bt and σt, we let Xh
tn be the real

valued Markov chain given by the recursive equations

∆Xh
tn+1

:= Xh
tn+1

−Xh
tn = btn(X

h
tn) h+ σtn(X

h
tn) ∆Wtn+1

. (14.7)

We denote by Fh
tn the filtration generated by the Markov chain

Fh
tn = σ

(
Xh

tp , tp ≤ tn

)
= σ

(
Xh

0 , ∆Wtp , tp ≤ tn
)
.

Under rather weak regularity conditions on the drift and the diffusion functions
bt and σt, the Markov chain Xh

tn converges, as h tends to 0 (in the weak and the
strong sense) to a continuous time diffusion process

dXt = bt(Xt) dt+ σt(Xt) dWt, (14.8)

with Xh
0 = X0.

These continuous time processes are called diffusion models. As for deterministic dy-
namical systems discussed in section 13.1, the existence and the uniqueness of the solution
of the stochastic differential equation (14.8) at any time and for any initial condition require
some regularity property on the drift and the diffusion functions bt and σt. As usual when
the functions (bt, σt) are Lipschitz, the system (14.8) has a unique solution at least for short
time periods. The existence of the solution for all time horizon is ensured for instance under
linear type growth conditions uniformly w.r.t. the time horizon. The exercise 236 provides
an example of a diffusion equation with a non-unique solution.

Besides the fact that the discrete time model (14.7) is well defined for any h, even
for h = 100−100100

100

, the continuous time stochastic model (14.8) involves the random
measures dWt that cannot be handled using classical integrations w.r.t. the usual measure
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of time dt. The meaning of (14.8) is that the discrete time process (Xh
t )t≥0 converges to

some limiting process (Xt)t≥0 as h ↓ 0 such that

Xt = X0 +

∫ t

0

bs(Xs) ds+

∫ t

0

σs(Xs) dWs.

Most of the continuous time diffusion processes encountered in applications are well
defined for any starting point and for any time horizon. As for deterministic dynamical
systems, (13.3) let us provide a strongly nonlinear example where things may go wrong.
Applying the Doeblin-Itō formula to the function

∀w �= x0 f(w) = x0/(1− wx0) ⇒ f ′(w) = f(w)2 and
1

2
f ′′(w) = f(w)f ′(w) = f(w)3

we readily check that Xt = f(Wt) = X0/(1−WtX0) and Xt = 0 satisfy the equation

dXt = X3
t dt+ X2

t dWt

starting at X0. When X0 �= 0, the solution is defined up to the first time T the Brownian
motion starting at the origin hits the set

[
1
X0

,+∞
[
(when X0 > 0) or

]
−∞, 1

X0

]
when

X0 < 0. The explosion time T can be analyzed but the solution is not defined after this
random time horizon.

For a more thorough discussion on these regularity conditions we refer the reader to
books referenced in the beginning of section 14.1. For more details on the convergence of
discrete time models to continuous time models, we refer the reader to the pioneering and
seminal articles of P. E. Kloeden and E. Platen [169, 170, 171].

14.2.2 Doeblin-Itō differential calculus

We denote by Ft the filtration generated by the Brownian motion

Ft = σ (Xs, s ≤ t) = σ (X0, Ws −Wr, r ≤ s ≤ t) .

Using the rules

dt× dt = 0 dWt × dWt = dt and dt× dWt = 0

for any smooth function f we have

df(t,Xt) = ∂tf(t,Xt) dt+ ∂xf(t,Xt) dXt +
1

2
∂2
xf(t,Xt) dXtdXt

= [∂tf(t,Xt) + ∂xf(t,Xt) bt(Xt)

+
1

2
∂2
xf(t,Xt) σ

2
t (Xt)

]
dt+ ∂xf(Xt) σt(Xt) dWt.

This yields an informal proof of the extended version of lemma 14.1.5 to general diffusion
models.
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Theorem 14.2.1 For any smooth and bounded function f(t, x), we have

df(t,Xt) = [∂t + Lt] (f)(t,Xt) dt+ dMt(f) (14.9)

with the infinitesimal generator

Lt = bt ∂x +
1

2
σ2
t ∂2

x (14.10)

and the Ft martingale

Mt(f) =

∫ t

0

∂xf(s,Xs) σs(Xs) dWs. (14.11)

In addition, the angle bracket of Mt(f) is given by

〈M(f)〉t :=
∫ t

0

ΓLs(f(s, .), f(s, .))(Xs) ds =

∫ t

0

(σs(Xs) ∂xf(s,Xs))
2
ds

(14.12)
where ΓLt

stands for "carré du champ operator" introduced in definition 12.5.3.

Important remark : As a direct consequence of theorem 14.2.1, we have

E(Mt(f)
2) = E

([∫ t

0

σs(Xs)∂xf(s,Xs) dWs

]2)

= E(〈M(f)〉t) = E
(∫ t

0

(σs(Xs) ∂xf(s,Xs))
2
ds

)
.

More generally, we have the following proposition.

Proposition 14.2.2 For any regular function g(s, x) the stochastic process

(g ·W )t :=

∫ t

0

g(s,Xs) dWs

is an Ft-martingale with angle bracket

〈(g ·W )〉t =
∫ t

0

g(s,Xs)
2 ds.

In addition, if g(s, x) = g(s) is a deterministic homogeneous function, then (g ·W )t is a
centered Gaussian r.v. with variance function 〈(g ·W )〉t =

∫ t

0
g(s)2 ds.

Hint of proof :
The martingale property follows from the fact that

d (g ·W )t = (g ·W )t+dt − (g ·W )t = g(t,Xt) dWt

and
E (g(t,Xt) dWt | Ft) = g(t,Xt) E ((Wt+dt −Wt) | Ft) = 0.



404 Stochastic Processes

Applying (12.19) to the martingale

Mt = (g ·W )t =⇒ dMt = g(t,Xt) dWt

=⇒ E
(
(dMt)

2 | Ft

)
= g(t,Xt)

2 dt

we find that
E
(
d
(
M2

t

)
− g(t,Xt)

2 dt | Ft

)
= E (dNt | Ft) = 0

with

Nt := M2
t −

∫ t

0

g(s,Xs)
2 ds.

This ends the proof of the first assertion.
When g(s, x) = g(s) is a deterministic homogeneous function, using the Doeblin-Itō

differential rule we have

e−u (g·W )t deu (g·W )t = u g(t,Xt) dWt +
u2

2
g2(t) dt

for any u ∈ R. This implies that

∂tE
(
eu (g·W )t

)
=

u2

2
g2(t) E

(
e−u (g·W )t

)
.

Hence we conclude that
E
(
eu (g·W )t

)
= e

u2

2

∫ t
0
g2(s)ds.

This ends the proof of the proposition.

By proposition 14.2.2,

E

([∫ t

0

g(s,Xs) dWs

]2)
= E

(∫ t

0

g(s,Xs)
2 ds

)
.

Next we provide an alternative but informal proof. For any r ≤ s we have

E (g(r,Xr)g(s,Xs) dWr dWs | Fs)

= g(s,Xr)g(s,Xs) dWr × E ( (Ws+ds −Ws) | Fs) = 0

and for r = s

E
(
g(s,Xs)

2 (dWs)
2
)
= E

(
g(s,Xs)

2
)
ds.

This implies that

E

([∫ t

0

g(s,Xs) dWs

]2)
=

∫ t

0

∫ t

0

E (g(s,Xr)g(s,Xs) dWr dWs)

=

∫ t

0

E
(
g(s,Xs)

2
)
ds.

We end this section with an alternative proof of the theorem based on the discrete time
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approximation model. To simplify the presentation, we further assume that f is homoge-
neous w.r.t. the time parameter. In this situation, arguing as in (14.5), for any smooth and
bounded function f we have

∆f(Xh
tn+1

) := f(Xh
tn +∆Xh

tn+1
)− f(Xh

tn)

= ∂xf(X
h
tn) ∆Xh

tn+1
+

1

2
∂2
xf(X

h
tn)

[
∆Xh

tn+1

]2
+OP (h

1+1/2),
(14.13)

where OP (h
1+1/2) denotes a random function such that

E
(∣∣∣OP (h

1+1/2)
∣∣∣
)
= O(h1+1/2).

Developing the square in (14.13), we have

∆f(Xh
tn+1

) = Ltn(f)(X
h
tn) h+∆Mh

tn+1
(f) +OP (h

1+1/2)

with the Fh
tn -martingale increments

∆Mh
tn+1

(f) := Mh
tn+1

(f)−Mh
tn(f) = ∂xf(X

h
tn) σtn(X

h
tn) ∆Wtn+1 .

This implies that

f(Xh
tn) = f(Xh

0 ) +

∫ tn

0

Lτh(s)(f)(X
h
τh(s)

) ds+Mh
tn+1

(f) +OP (h
1/2)

with τh(s) = tn, for any tn ≤ s < tn+1, with n ≥ 0.

We also observe that the stochastic process

tn �→ Mh
tn(f)

2 − 〈Mh(f)〉tn

is a martingale with the increments of the angle bracket process given by

∆〈Mh(f)〉tn+1
= 〈Mh(f)〉tn+1

− 〈Mh(f)〉tn = E
((

∆Mh
tn+1

(f)
)2

| Fh
tn

)

=
(
∂xf(X

h
tn)

)2
σ2
tn(X

h
tn) h = ΓLtn

(f, f)(Xh
tn) h.

The proof of the last assertion follows the same lines as in (3.21).
Letting h tends to 0, we prove the Doeblin-Itō differential formula (14.9).

14.3 Evolution equations

14.3.1 Fokker-Planck equation

We let pt be the probability density of the random states Xt; that is,

P (Xt ∈ dx) = pt(x) dx := ηt(dx).
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Using (14.9), we have

∂tηt(f) = ηt(Lt(f)).

Rewritten in terms of the density pt(x), for any smooth function f with compact support
we have

∫
f(x) ∂tpt(x) dx =

∫ (
bt(x) f

′(x) +
1

2
σ2
t (x)f

′′(x)

)
pt(x) dx

=

∫
f(x)

[
−∂x (bt(x) pt(x)) +

1

2
∂2
x

(
σ2
t (x)pt(x)

)]
dx.

The last assertion is proved using an elementary integration by parts technique. We sum-
marize the above discussion with the following theorem.

Theorem 14.3.1 The density of the random states satisfies the Fokker-Planck
equation

∂tpt = L�
t (pt) with L�

t (pt) := −∂x (bt pt) +
1

2
∂2
x

(
σ2
t pt

)
.

14.3.2 Weak approximation processes

The evolution semigroup

Ph
tp,tn(f)(x) = E

(
f(Xh

tn) | X
h
tp = x

)

of the Markov chain Xh
tn defined in (14.7) is defined in terms of the one-step transitions

Ph
t,t+h(f)(x) = E

(
f(x+ bt(x) h+ σt(x)

√
h W1)

)
.

For smooth functions, using a second order Taylor expansion we find that

f(x+ bt(x)h+ σt(x)
√
h W1)

= f(x) + f ′(x) (bt(x) h+ σt(x)
√
h W1)

+ 1
2 (bt(x) h+ σt(x)

√
h W1)

2 f ′′(x) +OP (h
1+1/2)

= f(x) + f ′(x) bt(x) h+ 1
2 σ2

t (x) h W 2
1 f ′′(x) + f ′(x) σt(x)

√
h W1 +OP (h

1+1/2).

This implies that

Ph
t,t+h(f)(x) = f(x) + Lt(f)(x) h+O(h1+1/2)

with the infinitesimal generator Lt defined in (14.10).
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On the other hand, by theorem 14.2.1 the sg Ps,t of Xt satisfies

Pt,t+h(f)(x) = f(x) +

∫ t+h

t

E (Ls(f)(Xs) | Xt = x) ds.

We check this claim using the fact that

f(Xt+h) = f(Xt) +

∫ t+h

t

Ls(f)(Xs)dr +Mt+h(f)−Mt(f)

with E (Mt+h(f)−Mt(f) | Ft) = 0.
Applying theorem 14.2.1 to the function (s, x) �→ g(s, x) := Ls(f)(x), with t ≤ s, we

find that

Ls(f)(Xs) = Lt(f)(Xt) +

∫ s

t

[∂r + Lr] (g)(r,Xr) dr +Ms(g)−Mt(g).

Using the fact that

E (Ms(g)−Mt(g) | Ft) = 0 and
∫ s

t

[∂r + Lr] (g)(r,Xr) dr = O(s− t)

we conclude that

Pt,t+h(f)(x) = f(x) + Lt(f)(x) h+O(h2). (14.14)

Combining these expansions with theorem 12.3.1 we prove the following theorem.

Theorem 14.3.2 For any t ≥ 0, we have the first order operator expansion

Ph
t,t+h = Id+ h Lt +O(h1+1/2) = Pt,t+h. (14.15)

In addition, for any time steps tp = h�s/h� ≤ tn = h�t/h�, we have the first order
approximation formulae

Ph
tp,tn = Ptp,tn +O

(
h1/2

)
.

For any finite sequence of times s1 < . . . < sn we also have the finite dimensional
approximation

∏
1≤i<n

Ph
si,si+1

(xi, dxi+1) =
∏

1≤i<n

Psi,si+1
(xi, dxi+1) +O

(
h1/2

)

where Ph
s1,s2 stands for the continuous time semigroup of the process Xh

t defined by
interpolation:

∀t ∈ [tn, tn+1] Xh
t := Xh

tn + bt
(
Xh

tn

)
(t− tn) + σt

(
Xh

tn

)
(Wt −Wtn) .

Notice that the interpolated model is coupled to the limit one by the same Brownian
motion and the same initial condition. This allows us to derive Lp-type bounds under natu-
ral Lipchitz conditions on (bt, σt) using Gronwall’s type techniques. These approximations
are often called strong approximations. In other instances, it may be hard to couple a
given Markov chain Xh

tn to its limiting diffusive process, and we prefer to use the càdlàg
continuous time embedding (12.14).
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In this context, following the Taylor’s expansions discussed above, a natural and simple
way to ensure (14.15) is to check that

E
((
Xh

tn+h −Xh
tn

)
| Xh

tn = x
)

= bt(x) h+O(h1+1/2) (14.16)

E
((

Xh
tn+h −Xh

tn

)2 | Xh
tn = x

)
= σ2

t (x) h+O(h1+1/2)

E
(∣∣Xh

tn+h −Xh
tn

∣∣3 | Xh
tn = x

)
= O(h1+1/2) as soon as tn = n�t/h�.

For a more thorough discussion of weak approximation of diffusion processes and more
general sufficient conditions we refer to [174].

14.3.3 A backward stochastic differential equation

Combining (14.14) with the decompositions (13.6) and (13.7), we prove the following theo-
rem.

Theorem 14.3.3 We have the forward and backward evolution equations

∂tPs,t(f) = Ps,t(Lt(f)) and ∂sPs,t(f) = −Ls(Ps,t(f)).

In addition, for any fixed time horizon T and any smooth function g(t, x) the
stochastic process

t ∈ [0, T ] �→ Yt := Pt,T (gT )(Xt) (14.17)

is a martingale ending at YT = gT (XT ).

Proof :
Applying theorem 14.2.1 to the function f(t, x) = Pt,T (gT )(x) we find that

dYt = df(t,Xt) = dPt,T (gT )(Xt) = dMt(f)

with the martingale Mt(f) defined in (14.11). We prove this claim using the fact that

[∂t + Lt] (f) = ∂tPt,T (gT ) + LtPt,T (gT ) = 0.

This ends the proof of the theorem.

The proof of the above theorem also shows that for any t ∈ [0, T ] we have the
backward stochastic differential equation

dYt = σt(Xt) Ut dWt with Ut := ∂xPt,T (gT )(Xt).

By construction, the above backward stochastic differential equation (abbreviated
BSDE) has the terminal condition YT = fT (XT ). More sophisticated BSDEs based
on backward Feynman-Kac semigroups are discussed in section 15.7.2.
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14.4 Multidimensional diffusions

14.4.1 Multidimensional stochastic differential equations

The description of d-dimensional diffusions follows the same line of arguments as in the
one-dimensional case.

Definition 14.4.1 A d-dimension Brownian motion Wt =
(
W i

)
1≤i≤d

is a sequence of
independent copies of a one-dimensional Brownian motion.

A d-dimensional diffusion Xt =
(
Xi

t

)
1≤i≤d

is given by d stochastic differential equations

dXi
t = bit(Xt) dt+

∑
1≤j≤d

σi
j,t(Xt) dW

j
t (14.18)

with some regular functions bit and σi
j,t. In vector notation, we have

d




X1
t
...

Xd
t


 =




b1t (Xt)
...
bdt (Xt)


 dt+




σ1
1,t(Xt) · · · σ1

d,t(Xt)
...

σd
1,t(Xt) · · · σd

d,t(Xt)


 d




W 1
t
...

W d
t




or in a more synthetic formulation

dXt = bt(Xt) dt+ σt(Xt) dWt.

We apply the rules

dt× dt = 0 dW i
t × dW j

t = 1i=j dt and dt× dW i
t = 0.

To simplify the presentation, we set

∂i := ∂xi =
∂

∂xi
and ∂i,j := ∂xi,xj =

∂2

∂xi∂xj
.

In this notation, we have

df(Xt) = f(Xt + dXt)− f(Xt) =

d∑
i=1

∂if(Xt) dX
i
t +

1

2

d∑
i,j=1

∂i,jf(Xt) dX
i
tdX

j
t .

Using the fact that

dXi
tdX

j
t =

∑
1≤k,l≤d

σi
k,t(Xt) σ

j
l,t(Xt) dW

k
t dW

l
t

and applying the rules dW k
t × dW l

t = 1k=l dt, and dt× dW i
t = 0, we conclude that

dXi
tdX

j
t =

∑
1≤k≤d

σi
k,t(Xt) σ

j
k,t(Xt) dt = ai,jt (Xt) dt
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with the symmetric d× d-matrix valued function

at = σt(σt)
′ ⇔ ∀i, j ai,jt (x) := (σt(σt)

′)
i,j

(x) =
∑

1≤k≤d

σi
k,t(x)σ

j
k,t(x).

This yields the Doeblin-Itō differential formula

df(Xt) = Lt(f)(Xt) dt+ dMt(f)

with the operator Lt defined by the formula

Lt :=

d∑
i=1

bit ∂i +
1

2

d∑
i,j=1

ai,jt ∂i,j . (14.19)

The martingale term is

dMt(f) :=
∑

1≤j≤d


 ∑
1≤i≤d

∂if(Xt) σ
i
j,t(Xt)


 dW j

t

with the angle bracket

d〈M(f)〉t :=
∑

1≤j≤d


 ∑
1≤i≤d

σi
j,t(Xt)∂if(Xt)



2

dt = ΓLt(f, f)(Xt) dt.

The last assertion follows from the fact that

E
(
d
(
M2

t (f)
)
| Ft

)

= E
(
M2

t+dt(f)−M2
t (f) | Ft

)
= E

(
(Mt(f) + dMt(f))

2 −M2
t (f) | Ft

)

= 2Mt(f)

=0︷ ︸︸ ︷
E (dMt(f) | Ft)+E

(
(dMt(f))

2 | Ft

)
= E

(
(dMt(f))

2 | Ft

)

=
∑

1≤j,k≤d


 ∑
1≤i≤d

σi
j,t(Xt) ∂if(Xt)




 ∑
1≤i′≤d

σi′

k,t(Xt) ∂i′f(Xt)


 dW j

t dW
k
t︸ ︷︷ ︸

1j=k dt

=
∑

1≤j≤d


 ∑
1≤i≤d

σi
j,t(Xt) ∂if(Xt)



2

dt
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with Ft = σ(Xs, s ≤ t). We also have the carré du champ decompositions

ΓLt
(f, f)(x)

= Lt

[
(f(.)− f(x))2

]
(x) =

∑
1≤i,j≤d

ai,jt (x) ∂j [(f(.)− f(x)) ∂i(f − f(x))] (x)

=
∑

1≤i,j≤d

∑
1≤k≤d

σi
k,t(x)σ

j
k,t(x) ∂jf(x) ∂if(x) =

∑
1≤k≤d


 ∑

1≤i≤d

σi
k,t(x)∂if(x)




2

.

The infinitesimal generator (14.19) of the diffusion process (14.18) is sometimes
rewritten in the following form

Lt(f) = bTt ∇f +
1

2
Tr

(
at∇2f

)

with the row vector bTt =
(
bit
)
1≤i≤d

, the column gradient vector ∇f = (∂if)
T
1≤i≤d,

and the Hessian matrix ∇2f = (∂i,jf)1≤i,j≤d.

Important remark : Using the same arguments as in the one-dimensional case, the semi-
group of the multidimensional diffusion Ps,t also satisfies the forward and backward evo-
lution equations stated in theorem 14.3.3. In addition, the backward evolution stochastic
process Mt := Pt,T (fT )(Xt), with t ∈ [0, T ], is a martingale ending at some given function
fT (XT ).

14.4.2 An integration by parts formula

Applying the Doeblin-Itō differential rule to the function f(X1
t , X

2
t ) = X1

t X
2
t we find that

d
(
X1

t X
2
t

)
= df(X1

t , X
2
t )

= ∂1f(X
1
t , X

2
t ) dX

1
t + ∂2f(X

1
t , X

2
t ) dX

2
t

+
1

2
(∂1,2 + ∂2,1) f(X

1
t , X

2
t ) dX1

t dX
2
t

= X1
t dX2

t + X2
t dX1

t + dX1
t dX

2
t .

This yields the integration by parts formula

d
(
X1

t X
2
t

)
= X1

t dX2
t + X1

t dX2
t + dX1

t dX
2
t . (14.20)

This integration by parts formula is clearly valid for any diffusion processes X1
t and X2

t

(since we can always write the pair process (X1
t , X

2
t ) in terms of a diffusion equation of the

form (14.18)). We can also show that the stochastic process 〈M1,M2〉t defined by

d〈M1,M2〉t :=
∑

1≤k≤d

σ1
k,t(Xt) σ

2
k,t(Xt) dt := dX1

t dX
2
t
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is the angle bracket of the product M1
t M

2
t of the martingales

dM i
t =

∑
1≤j≤d

σi
j,t(Xt) dW

j
t

in the sense that M1
t M

2
t − 〈M1,M2〉t is a martingale.

14.4.3 Laplacian and orthogonal transformations

Definition 14.4.2 The infinitesimal generator LW = 1
2

∑
1≤i≤r ∂2

i of an r-
dimensional Brownian motion Wt =

(
W i

t

)
1≤i≤r

∈ Rr is called the (Euclidian)
Laplacian.

Given some orthogonal matrix O on Rr we set Xt = OWt. We recall that an orthogonal
matrix O = (O1, . . . , Or)

′ is a square matrix with orthonormal row vectors Oi = (Qi
i)1≤j≤r

w.r.t. the Euclidian scalar product 〈x, y〉 =
∑

1≤i≤r xiyi on Rr. In matrix form, this
property reads O′O = OO′ = Id, where Id stands for the identity matrix.

Using the Doeblin-Itō differential formula (14.19) we check that the generators LW and
LX = LOW of Wt and Xt coincide

LX =
1

2

∑
1≤i,j≤r

(OO′)i,j ∂i,j =
1

2

∑
1≤i≤r

∂2
i = LW ⇔ LOW = LW .

In terms of stochastic increments, we have the matrix formula

dXt = OdWt ⇒ (dXt)
′dXt = (dWt)

′O′OdWt = (dWt)
′dWt = Id× dt.

If we set

g(x) = f(Ox) = f(O1x, . . . , Orx) = f(〈O1, x〉, . . . , 〈Or, x〉),

we have

∂ig(x) =
∑

1≤k≤r

(∂kf)(Ox) ∂i(〈Ok, x〉) =
∑

1≤k≤r

(∂kf)(Ox) Oi
k

=⇒ ∂2
i g(x) =

∑
1≤k,l≤r

(∂k,lf)(Ox) Oi
kO

i
l

=⇒
∑

1≤i≤r

∂2
i g(x) =

∑
1≤k,l≤r

(∂k,lf)(Ox) 〈Ok, Ol〉︸ ︷︷ ︸
=1k=l

=
∑

1≤k≤r

(∂2
kf)(Ox).

In summary we have proved the orthogonal invariance theorem.

Theorem 14.4.3 We have the invariance property of the Brownian motion and the Lapla-
cian under orthogonal transformations

LOW = LW ,
∑

1≤i≤r

∂2
i (f(Ox)) =

∑
1≤k≤r

(∂2
kf)(Ox) , (OdWt)

′
(OdWt) = Id× dt.

(14.21)

Illustrations of these invariance properties are provided in exercises 240 and 241.
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14.4.4 Fokker-Planck equation

In multidimensional settings, the probability density

P (Xt ∈ dx) = pt(x) dx := ηt(dx)

of the random states Xt on Rd satisfies the Fokker-Planck equations

∂tηt(f) = ηt(Lt(f)) and ∂tpt = L�
t (pt)

with the dual operator

L�
t (pt) = −

d∑
i=1

∂i
(
bit pt

)
+

1

2

d∑
i,j=1

∂i,j

((
σt(σt)

T
)
i,j

pt

)
.

14.5 Exercises
Exercise 220 (Covariance function) Let Wt be a (standard) Brownian motion. Com-
pute the covariance function Cov(Ws,Wt), for any s ≤ t.

Exercise 221 (Brownian mixtures) Let (W i
t )i∈I be a collection of independent Brown-

ian motions indexed by some parameter i in some countable set I. Consider a collection of
parameters (ai)i∈I . Prove that the process Wt :=

∑
i∈I ai W

i
t is a Brownian motion if and

only if
∑

i∈I a
2
i = 1.

Exercise 222 (Correlations) Let W 1
t ,W

2
t be two independent Brownian motions. Con-

sider the Brownian motion Wt defined by

Wt = εW 1
t +

√
1− ε2 W 2

t

for some given parameter ε ∈ [0, 1] (cf. exercise 221 to check that Wt is a Brownian motion).
Compute the covariance functions Cov(W 1

s ,Wt).

Exercise 223 (Brownian paths given a terminal condition) Consider the stochastic
process

Xt = X0 + b t+ σ Wt

for some X0 and a Brownian motion Wt (starting at the origin). Let tn be a given time
mesh with time step tn − tn−1 = ε, with t0 = 0. prove that the conditional densities of the
sequence of state (Xt1 , . . . , Xtn−1

) given (X0, Xtn) = (x0, xn) are given by

pt1,...,tn−1
(x1, . . . , xn−1 | x0, xn) ∝ exp


− 1

2σ2

∑
1≤k≤n

(
xk − xk−1√

ε

)2

.

Deduce that

Law
(
(Xs)s∈[0,t] | X0 = x,Xt = y

)
= Law

(
(x+ σ Ws)s∈[0,t] | x+ σ Wt = y

)
.
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In mathematical finance the diffusion Xt discussed above is sometimes called the Bachelier
model.

Exercise 224 (Poisson approximations) Let Nt and N ′
t be two independent Poisson

processes with intensity λ > 0. We let Xt be the real valued stochastic process starting at
the origin Xt = 0 and defined by the stochastic differential equation

dXt =
1√
2λ

(dNt − dN ′
t) .

Describe the infinitesimal generator L of Xt and check that

L(f)(x) =
1

2
f ′′(x) +O

(
λ−1/2

)
.

Check that (Xt −Xs) is independent of Xs for any s ≤ t and we have

E(Xt −Xs) = 0 and E
(
(Xt −Xs)

2
)
= (t− s).

For any α ∈ R prove that
lim
λ→∞

logE(eαXt) = α2t/2.

Exercise 225 (Brownian averages) Let Wt be a Brownian motion. Check that

Wt =
1

t

∫ t

0

Ws ds+
1

t

∫ t

0

s dWs.

Exercise 226 (Gaussian martingales - 1) Let Wt be a Brownian motion. Check that

Mt =
1

2
t2 Wt −

∫ t

0

s Ws ds

is a martingale w.r.t. Ft = σ(Ws, s ≤ t). Compute its angle bracket 〈M〉t.

Exercise 227 (Gaussian martingales - 2) Let Wt be a Brownian motion and f a smooth
function. Check that

Mt := f(t) Wt −
∫ t

0

f ′(s) Ws ds =

∫ t

0

f(s) dWs.

Deduce that Mt is a martingale w.r.t. Ft = σ(Ws, s ≤ t). Compute its angle bracket 〈M〉t.

Exercise 228 (Metropolis-Hastings samplers [133]) Let π(dx) ∝ e−V (x)dx be a prob-
ability measure on R associated with a smooth and bounded potential function V with
first and second bounded derivatives. Let tn be a given time mesh with a fixed time step
(tn+1 − tn) = h > 0. Consider the Metropolis-Hastings transition given by

Mh(x, dy) = Ph(x, dy) a(x, y) +

(
1−

∫
Ph(x, dz) a(x, z)

)
δx(dy)

with the acceptance rate a(x, y) = min
(
1, e−(V (y)−V (x))

)
and the (symmetric) Markov tran-

sition Ph of the Brownian motion Wt between between time tn and tn+1 (cf. for instance
(14.4)). We let Xh

tn the chain with transitions Mh, and X
h

tn the chain with transitions Mh

defined as Mh by replacing a(x, y) by the acceptance rate

a(x, y) = min
(
1, e−∂xV (x)(y−x)

)
.



Diffusion processes 415

• Check that for any u, v ∈ R we have

|min (1, eu)−min (1, ev)| ≤ 1− e−|u−v| ≤ |u− v|

and deduce that

|a(x, y)− a(x, y)| ≤ |V (y)− V (x)− ∂xV (x)(y − x)| ≤ c |x− y|2

for some finite constant c < ∞.

• Prove that

sup
f :osc(f)≤1

∥∥(Mh −Mh

)
(f)

∥∥ ≤ c h and sup
f :lip(f)≤1

∥∥(Mh −Mh

)
(f)

∥∥ ≤ c h1+1/2.

Exercise 229 (Random direction and bouncy particle samplers) We consider the
random direction Monte Carlo sampler discussed in exercise 120. We assume that the
potential function U and its first and second derivatives are bounded. Check that for any
sufficiently regular function f we have

h−1 [Mh(f)(v, x)− f(v, x)] = v ∂xf(v, x) + (v ∂xU(x))+ (f(−v, x)− f(v, x)) +O(h).

Exercise 230 (Metroplis-Hastings sampler and Langevin diffusion [133]) We
consider the Metropolis-Hastings models discussed in exercise 228.

• Check that for any p ≥ 1 we have

sup
x∈R

∣∣∣∣
∫ (

Mh −Mh

)
(x, dy) |y − x|p

∣∣∣∣ ≤ c h1+ p
2 for some finite constant c < ∞.

• Suppose that ∂xV (x) ≥ 0. Check that
∫

(y − x) Ph(x, dy) a(x, y) =
√
h E

(
W1 1W1>0

[
e−

√
h ∂xV (x) W1 − 1

])

= −h

2
∂xV (x) +O(h1+1/2).

Prove that the last expansion is also met when ∂xV (x) ≤ 0.

• Suppose that ∂xV (x) ≥ 0. Check that

h−1

∫
(y − x)2 Ph(x, dy) a(x, y) = 1− E

(
W 2

1 1W1>0

[
1− e−

√
h ∂xV (x) W1

])

= 1 +O(h1/2).

Prove that the last expansion is also true when ∂xV (x) ≤ 0.

• Deduce that Xh
tn and X

h

tn satisfy the regularity conditions (14.16) with bt = −2−1∂xV and

σt = 1. Deduce that the processes Xh
tn and X

h

tn weakly converge, as h ↓ 0, in the sense of
finite distributions to the stochastic flow (a.k.a. Langevin diffusion) given by the equation

dXt = −2−1∂xV (Xt)dt+ dWt.
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Exercise 231 (Heat-bath Markov chain sampler [133]) defined as the Markov tran-
sition Mh discussed in exercise 228 by replacing a(x, y) by the acceptance rate

b(x, y) =
eV (x)−V (y)

1 + eV (x)−V (y)
= eV (x)−V (y) 1

1 + eV (x)−V (y)
=

1

1 + eV (y)−V (x)
.

We denote by Kh and Kh the transitions defined as Kh by replacing b by the acceptance
rates

b(x, y) =

[
1

2
+

1− e(V (y)−V (x))

4

]
1V (y)−V (x)≤0

+e−(V (y)−V (x))

[
1

2
+

1− e−(V (y)−V (x))

4

]
1V (y)−V (x)>0

and b(x, y) defined as b(x, y) by replacing (V (y) − V (x)) by ∂xV (x)(y − x) in the above
expression. Check that ∣∣∣b(x, y)− b̂(x, y)

∣∣∣ ≤ c |x− y|2

with b̂ = b or b̂ = b, for some finite constant c. Deduce that

sup
f :osc(f)≤1

∥∥∥
(
Kh − K̂h

)
(f)

∥∥∥ ≤ c h and sup
f :lip(f)≤1

∥∥∥
(
Kh − K̂h

)
(f)

∥∥∥ ≤ c h1+1/2

with K̂h = Kh or K̂h = Kh.

Exercise 232 (Heat-bath Markov chain sampler and diffusion limit [133]) We

consider the heat-bath Markov chain samplers
(
Y h
tn , Y

h

tn , Y
h

tn

)
with the Markov transitions

(
Kh,Kh,Kh

)
discussed in exercise 231. When ∂xV (x) ≥ 0, prove that

∫
(y − x) Ph(x, dy) b(x, y)

=
√
h E

(
W1 1W1≥0

[
e−

√
h ∂xV (x)W1 − 1

] [
1

2
− e−

√
h ∂xV (x)W1 − 1

4

])
.

Following the arguments provided in the solution of exercise 230, check that these three
processes weakly converge, as h ↓ 0, in the sense of finite distributions to the Langevin
diffusion

dXt = −4−1∂xV (Xt) dt+ 2−1/2 dWt.

Exercise 233 (Exit times - 1) Let Wt be a Brownian motion on R (starting at the ori-
gin). We let TD be the first time it exits the interval D = [−a, a], for some a > 0. Applying
(12.23) check that

E(TD) ≤ a2.

The Brownian motion starting at some x ∈ D is given by W x
t = x+Wt. We let T x

D be the
first time it exits the interval D � x. Check that

E(T x
D) ≤ (a2 − x2).
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Exercise 234 (Exit times - 2) Let Wt be an r-dimensional Brownian motion (starting
at the origin), and let D be some open and bounded subset of Rr. We let Tx be the first
time W x

t := x +Wt exits the set D � x. We denote by diam(D) := sup(x,y)∈D ‖x− y‖ the
diameter of D. Check that

P (Tx < 1) ≥ P (‖W1‖ > diam(D)) := ε > 0.

Prove that
sup
x∈D

P (Tx ≥ n) ≤ (1− ε)n

by induction w.r.t. the parameter n ≥ 1. Check that that for any p ≥ 1 we have

E (T p
x ) = p

∫ ∞

0

P (Tx ≥ s) sp−1 ds

and deduce that supx∈D E (T p
x ) < ∞.

Exercise 235 (Time-changed Brownian motion) Let Wt be a (standard) Brown-
ian motion and a : t �→ a(t) ∈ R be a function s.t. b(t) :=

∫ t

0
a2(s)ds < ∞ for any t ≥ 0.

Consider the diffusion dXt = a(t)dWt starting at X0 = 0. Check that Xt is a Gaussian
process with independent increments. Compute the mean and the variance of (Xt − Xs),
for 0 ≤ s ≤ t. Deduce that the diffusion Xt starting at X0 = 0 has the same law as the
time-changed Brownian motion W〈X〉t .

Exercise 236 (Non-uniqueness of solution) Apply the Doeblin-Itō formula to the func-
tion f(Wt) = (a + 1

3 Wt)
3 and deduce the non-uniqueness of the solution of the following

stochastic differential equation

dXt =
1

3
X

1/3
t dt+X

2/3
t dWt.

Exercise 237 Let Wt be a Brownian motion. We consider the diffusion process

dXt = t−1 Xt dt+ t dWt

with the initial condition X1 = x1, and with t ∈ [1,∞[. Solve this equation by applying the
Doeblin-Itō formula to the function f(t, x) = x/t.

Exercise 238 Let Wt be a Brownian motion and a : t ∈ [t0,∞[ �→]0,∞[ some positive
and smooth function, for some parameter t0 ≥ 0. We consider the diffusion process

dXt = − (log a)
′
(t) Xt dt+ a(t)−1 dWt

with some given initial condition Xt0 = xt0 , and with t ∈ [t0,∞[. Solve this equation.

Exercise 239 (Levy’s characterization of Brownian motion) Let (W i
t )1≤i≤n be a col-

lection of n independent Brownian motions. Let a = (ai)1≤i≤n be some given parameters
in R s.t. |a|22 :=

∑
1≤i≤n a

2
i ∈]0,∞[. Check that

W a
t = |a|−1

2

∑
1≤i≤n

ai W
i
t

in law
= Wt

where Wt stands for a standard Brownian motion on R.



418 Stochastic Processes

Exercise 240 (Rotational invariance of Brownian motion) We let Rα be the 2d-rotation
matrix of an angle α ∈ [0, 2π] given by

Rα =

(
cos (α) − sin (α)
sin (α) cos (α)

)
.

We let Wt =
(
W 1

t ,W
2
t

)′ be a 2d-Brownian motion. Check that the stochastic process Xt =
RθWt has the same law as a 2d-Brownian motion. Show that the generators LX and LW

of Xt and Wt coincide. Prove that

fα(x) = f(Rαx) ⇒ LW (fθ)(R−αx) = LW (f)(x).

Exercise 241 (Reflection invariance of Brownian motion) We consider a line lα pass-
ing through the origin in R2 and making an angle α with the (0, x) axis. We let Rα be the
2d-reflexion matrix w.r.t. lα given by

Rα =

(
cos (2α) sin (2α)
sin (2α) − cos (2α)

)
.

We let Wt =
(
W 1

t ,W
2
t

)′ be a 2d-Brownian motion. Check that the stochastic process Xt =

RθWt has the same law as a 2d-Brownian motion. Show that the generators LX and LW

of Xt and Wt coincide. Prove that

fα(x) = f(Rαx) ⇒ LW (fθ)(Rαx) = LW (f)(x).

Exercise 242 ((0,1)-valued diffusion) Let Wt be a (standard) Brownian motion. We
let Xt be defined by the stochastic differential equation starting at x ∈]0, 1[ and given by

dXt = Xt(1−Xt)

(
1

2
−Xt

)
dt+Xt(1−Xt) dWt.

Check that Yt := log (Xt/(1−Xt)) has the same law as a Brownian motion Wt starting at
W0 = log (x/(1− x)).

Exercise 243 (Brownian rotations) Apply the Doeblin-Itō formula to the couple of func-
tions f(Wt) = a cos(Wt) and g(Wt) = b sin(Wt), for given parameters a, b, and compute
the solution of the stochastic differential equation

{
dXt = − 1

2 Xt dt− a
b Yt dWt

dYt = − 1
2 Yt dt+

b
a Xt dWt.

Solve the equation

dXt = −1

2
Xt dt−

b

a

√
(a−Xt)(a+Xt) dWt.

Exercise 244 (Hyperbolic Brownian motions) Apply the Doeblin-Itō formula to the
functions f(Wt) = a cosh(αWt) and g(Wt) = b sinh(αWt), for given parameters a, b, α,
and compute the solution of the stochastic differential equation

{
dXt = 2−1α2 Xt dt+ α b−1a Yt dWt

dYt = 2−1α2 Yt dt+ α a−1b Xt dWt.

Exercise 245 (Scaling properties) Let Wt be a (standard) Brownian motion, and
let α > 0 be a given parameter. Show that the stochastic processes Wα

t := 1
α Wα2t and

W−
t = tW (1/t) are again (standard) Brownian motions.
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Exercise 246 (Reflection principle) Let T be the first time a standard Brownian
motion Wt (starting at 0) hits the set A = [a,∞[, for some a > 0. Knowing that after time
T the Brownian motion is equally likely to move up or down from WT = a, check that

P(T ≤ t) = 2 P(Wt > a) =

√
2

πt

∫ ∞

a

exp

(
−x2

2t

)
dx.

Exercise 247 (Coupling diffusions) We consider an Rr-valued diffusion process Xt with
generator

Lt(f)(x) =
∑

1≤i≤r

bit(x) ∂xif(x) +
1

2

∑
1≤i,j≤r

(σt(x)σ
′
t(x))

i,j
∂xi,xjf(x)

for some regular vector fields bt and some regular matrices σt. We let Zt = (Xt,Yt) be the
(Rr × Rr)-valued diffusion with generator

Lt(F )(x, y) = L(F (., y))(x) + L(F (x, .))(y) + ∑
1≤i,j≤r

τt(x, y)
i,j ∂xi,yjF (x, y)

for some symmetric and regular (r× r)-matrix field τ . When τt(x, y) = 0 check that Xt and
Yt have the same law as Xt. When τt(x, y) = 2−1 [σt(x)σ

′
t(y) + σt(y)σ

′
t(x)], check that L is

the generator of the diffusion
{

dXt = bt(Xt) dt+ σt(Xt) dWt

dYt = bt(Yt) dt+ σt(Yt) dWt

with the same r-dimensional Brownian motion Wt. Deduce that Xt and Yt have the same
law as Xt.

Exercise 248 (Coupling diffusions by reflections) We equip Rr with the scalar prod-
uct 〈x, y〉 =

∑
1≤i≤r xiyi and the Euclidian norm ‖x‖2 = 〈x, x〉. For any x �= 0 we set

U(x) = x/‖x‖ the column vector associated with the projection on the unit sphere. Con-
sider the diffusion

{
dXt = bt(Xt) dt+ σt(Xt) dWt

dYt = bt(Yt) dt+ σt(Yt)
[
I − 2 U (Xt − Yt)U (Xt − Yt)

′]
dWt

for some regular r-column vector fields bt, some regular (r × r)-matrix fields σt, and some
r-dimensional Brownian motion Wt. In the above display, I stands for the (r × r)-matrix.
Check that

Vt :=

∫ t

0

[
I − 2 U (Xt − Yt)U (Xt − Yt)

′]
dWt

is an r-dimensional Brownian motion. Deduce that Xt and Yt have the same law as Xt,
and compute the generator of (Xt,Yt).

Exercise 249 (Maximum of Brownian motion) Consider a one-dimensional Brown-
ian motion Wt (starting at the origin) and set W �

t := sup0≤s≤t Wt. Let Ty be the first time
it reaches the value y so that {Ty ≤ t} = {W �

t ≥ y}. Check that for any ε > 0, y ≥ 0 and
y > x+ ε we have

P (W �
t ≥ y , Wt ∈ [x, x+ ε]) = P (Wt − y ∈ [x− y, x− y + ε] , Ty ≤ t)

= P (Wt ∈ [2y − x− ε, 2y − x]) .
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Deduce that

P (W �
t ≥ y | Wt ∈ [x, x+ ε]) =

P (Wt ∈ [2y − x− ε, 2y − x])

P (Wt ∈ [x, x+ ε])

and
P (W �

t ≥ y | Wt = x) = exp [−2y(y − x)/t].

Exercise 250 (Supremum of Brownian motion with drift) Consider a one-dimensional
diffusion Xt discussed in exercise 223 and set X�

t := sup0≤s≤t Xt. Let Ty the first time Xt

reaches the value y so that {Ty ≤ t} = {X�
t ≥ y}. Using exercise 223 and exercise 249

check that for any y ≥ x we have

P (X�
t ≥ y | Xt = x) = exp

[
−2y(y − x)/(σ2t)

]
.

Check that for any y ≥ 0 we have

P (X�
t ≥ y | X0 = 0) = exp

[
2yb/σ2

]
P
(
W1 ≥ [y + bt] /(σ

√
t)
)

+P
(
W1 ≥ [y − bt] /(σ

√
t)
)
.

Exercise 251 (Infimum of a Brownian motion with drift) Consider a 1-dimensional
diffusion Xt discussed in exercise 250 and set X�,t := inf0≤s≤t Xt. Check that for any y ≤ 0
we have

P (X�,t ≤ y | X0 = 0) = exp
[
2yb/σ2

]
P
(
W1 ≤ [y + bt] /(σ

√
t)
)

+P
(
W1 ≤ [y − bt] /(σ

√
t)
)
.

Exercise 252 We let Ut :=
2
π arctan (a(Wt + b)) ∈ [−1, 1], for some parameters a, b and a

Brownian motion Wt. Check that Ut satisfies the stochastic differential equation

dUt = −2a2

π
cos3

(π
2
Ut

)
sin

(π
2
Ut

)
dt+

2a

π
cos2

(π
2
Ut

)
dWt.

Exercise 253 (Correlated Brownian motions) We let Ft be the filtration gener-
ated by three independent Brownian motions W

(i)
t , with i = 1, 2, 3. We let Ut be a [−1, 1]-

valued diffusion defined by

dUt = bt(Ut)dt+ σt(Ut)dW
(1)
t

for some regular functions bt, σt. We set

W t :=

∫ t

0

Us dW (2)
s +

∫ t

0

√
1− U2

s dW (3)
s .

For any s ≤ t, check that

E(W t −W s | Fs) = 0 and E
(
(W t −W s)

2
)
= t− s

and

E
(
W t W

(2)
t

)
= E

(∫ t

0

Us ds

)
.

By Lévy’s characterization, these properties ensure that W t is again a Brownian motion.
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Exercise 254 (Squared Bessel process) We let Wt =
(
W i

t

)
1≤i≤n

be n independent
Brownian motions for some n ≥ 1, and we set

Xt = ‖Wt‖2 :=
∑

1≤i≤n

(W i
t )

2 and dW t := 1Xt �=0

∑
1≤i≤n

W i
t√
Xt

dW i
t .

• For any λ > 0, and s < t, check that

E
(
e−λXt | Fs

)
= (1 + 2λ(t− s))

−n/2
exp

(
− λXs

1 + 2λ(t− s)

)

with Fs = σ(W i
r , 0 ≤ r ≤ s 1 ≤ i ≤ n), and deduce that P(Xt = 0 | Fs) = 0.

• Check that W t is a martingale with continuous trajectories and predictable angle bracket
〈W 〉t = t (by Lévy’s characterization, these properties ensure that W t is again a Brownian
motion).

• Prove that
dXt = 2

√
Xt dW t + n dt.

Exercise 255 (Ornstein-Uhlenbeck process [214]) We consider the Ornstein-Uhlenbeck
process given by

dXt = a (b−Xt) dt+ σ dWt

where a > 0, b and σ > 0 are fixed parameters, and Wt is a Brownian process.

• Check that the density pt(x) of the random states Xt satisfies the Fokker-Planck equation

∂tpt = a ∂x ((x− b) pt(x)) +
σ2

2
∂2
x (pt) .

• Applying the Doeblin-Itō lemma to the function f(t, x) = eat x, check that

Xt = e−at X0 + b
(
1− e−at

)
+ σ

∫ t

0

e−a(t−s) dWs.

• Check that

E(Xt | X0) = e−at X0 + b
(
1− e−at

)
−→t→∞ b

Var(Xt | X0) =
σ2

2a

(
1− e−2at

)
−→t→∞

σ2

2a

and

P(Xt ∈ dy | X0 = x)

=
√

a
πσ2(1−e−2at) exp

(
− a

σ2 (1−e−2at) [y − (e−at x+ b (1− e−at))]
2
)
dy.

In mathematical finance, Xt is also called the Vasicek model [254]. This stochastic process
represents the evolution of the interest rates. The parameter b stands for the long term
asymptotic level, a is the speed of reversion, and σ denotes the stochastic volatility. Notice
that this interest rate model allows negative values.



422 Stochastic Processes

Exercise 256 (Ornstein-Uhlenbeck process - Estimation of moments) We consider
the Ornstein-Uhlenbeck process discussed in exercise 255. Using exercise 235, check that

Xt
law
= e−at X0 + b

(
1− e−at

)
+ e−at Wc(t)

law
= e−at X0 + b

(
1− e−at

)
+

√
d(t) W1,

with the time change c(t) = σ2

2a

(
e2at − 1

)
and d(t) := σ2

2a

(
1− e−2at

)
. Using the Gaussian

moments formula (5.10) check that

E
([

Xt −
[
e−at X0 + b

(
1− e−at

)]]2n) ≤
(
σ2

2a

)n
(2n)!

n!2n
and sup

t≥0
E
(
X2n

t

)
< ∞.

(14.22)

Exercise 257 We let A be an (r1 × r1)-matrix with all eigenvalues having a negative real
part, for some r1 ≥ 1. We let Wt be some r2-dimensional Brownian motion and B some
(r1 × r2)-matrix. Consider the r1-dimensional diffusion given in matrix form by the differ-
ential equation

dXt = AXt dt+B dWt

starting at some r1-dimensional Gaussian random variable X0 with mean and covariance
matrix (m0, P0). Prove that Xt is an r1-dimensional Gaussian random variable X0 with
mean and covariance matrix (mt, Pt) given by

mt = eAt m0 →t→∞ 0

and

Pt = eAt P0 eA
′t +

∫ t

0

esA BB′ esA
′
ds →t→∞ P∞ :=

∫ ∞

0

esA BB′ esA
′
ds.

In the above display 0 stands for the origin in Rr1 . Check that
.
P t= APt + PtA

′ +BB′ and AP∞ + P∞A′ +BB′ = 0.

In the above display 0 stands for the null (r1 × r1)-square matrix.

Exercise 258 (Poincaré inequality) Consider the Ornstein-Uhlenbeck process Xt

introduced in exercise 255 with a = 1, b = 0, and σ2 = 2. We set εt = e−2t. We also
let π be the centered Gaussian distribution with unit variance. Check that

Xt
law
=

√
εt X0 +

√
1− εt W1

and describe the infinitesimal generator L of Xt. We let Pt(f)(x) = E(f(Xt) | X0 = x) be
the corresponding Markov semigroup. For any smooth functions f1, f2, check that

π (f1 Pt(f2)) = π (Pt(f1) f2)

and
π (f1 L(f2)) = π (L(f1) f2) = −E (f ′

1(W1)f
′
2(W1)) .

We consider the Dirichlet form E(f1, f2) = −π (f1 L(f2)) associated with L and π (see also
exercise 187 in the context of finite state space models). Check that

∂xPt(f)(x) = e−t Pt (f
′) (x) and E (Pt(f), Pt(f)) = e−2t π

[
(Pt (f

′))
2
]
≤ ‖f ′‖2L2(π)

.

Check the formulae stated in exercise 187 and exercise 188. Deduce the Poincaré inequality

Varπ(f) ≤ E (f, f) = ‖f ′‖2L2(π)
and check that Varπ(Pt(f)) ≤ e−2t Varπ(f).
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Exercise 259 (Poincaré inequality - Exponential distribution)
We let

π(dx) = 1[0,∞[(x) e
−x dx

be the exponential distribution on S := [0,∞[.

• Check that for any function f with compact support on S we have

Varπ(f) := π[(f − π(f))2] ≤ π[(f − f(0))2].

• For any function f with compact support on S s.t. f(0) = 0 prove that

π(f2) ≤ 2π(ff ′) ≤ 2π(f2)1/2 π((f ′)2)1/2.

• Deduce the Poincaré inequality

Varπ(f) ≤ 4 ‖f ′‖L2(π)
.

Exercise 260 (Diffusion - bi-Laplace invariant measure) Consider the real-valued dif-
fusion process

dXt = −λ

2
sign(Xt) dt+ dWt

where sign(x) stands for the sign of x ∈ R, λ > 0 and Wt a Brownian motion. Describe the
generator L of Xt and check that its invariant measure is the Laplace distribution π(dx) =
λ
2 e−λ|x|dx (i.e. πL(f) = 0 for any smooth compactly supported function l).

Exercise 261 (Square of Ornstein-Uhlenbeck processes) We consider a couple of in-
dependent Ornstein-Uhlenbeck processes given by

dUt = −Ut dt+ dBt and dVt = −Vt dt+ dB′
t

where Wt,W
′
t are independent Brownian processes. Check that the process

Xt = U2
t + V 2

t

has the same law as the Cox-Ingersoll-Ross diffusion process defined by the equation

dXt = 2(1−Xt) dt+ 2
√
Xt dWt.

(Here Wt is a Brownian process.)

Exercise 262 (Cox-Ingersoll-Ross diffusion) We let π(dx) = 1[0,∞[(x) e−x dx be
the exponential distribution on S := [0,∞[. Consider the diffusion process

dXt = 2(1−Xt) dt+ 2
√
Xt dWt

where Wt is a Brownian process.

• Describe the generator of Xt and check that for any smooth functions f1, f2 we have

π (f1 L(f2)) = π (L(f1) f2) .

• Prove that the Dirichlet form E(f1, f2) := −π (f1 L(f2)) is given by the formula

E(f1, f2) = 2 π(gf ′
1f

′
2) with the function g(x) := x.
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Exercise 263 Let Wt be a (standard) Brownian motion. Consider the diffusion process
defined by

dYt = (at + bt Yt) dt+ (τt + σt Yt) dWt

for some functions at, bt, τt and σt. Consider the diffusion process Xt defined in (3.16)
(or alternatively in (3.17)) and starting at X0 = 1. Check that the stochastic process
Zt := Yt/Xt satisfies the diffusion equation

Xt dZt = (at − τtσt) dt+ τt dWt.

Deduce that

Yt = e0,t Y0 +

∫ t

0

es,t (as − σsτs) ds+

∫ t

0

es,t τs dWs

with the exponential process

es,t = exp

(∫ t

s

(
br −

σ2
r

2

)
dr +

∫ t

s

σr dWr

)
.

In mathematical finance, the process Yt associated with the parameters (at, bt) = (aµ,−a)
and (τt, σt) = (0, σ) is also called the mean reverting geometric Brownian motion.

Exercise 264 (Brownian bridge-1) Let Wt be a (standard) Brownian motion. For
any 0 < s < t, prove that Ws − s

t
Wt is independent of Wt. Compute the conditional

expectation E(Ws | Wt) and the conditional variance Var(Ws | Wt). Find the distribution
of Ws given Wt = 0. Check that the process Vt = Wt − tW1, with t ∈ [0, 1], is independent
of the terminal random variable W1 of the Brownian motion. The process Vt is called a
Brownian bridge with V1 = 0 = V0.

Exercise 265 (Brownian bridge-2) We fix a couple of parameters a, b ∈ R, and a time
horizon t. We consider the stochastic process given by

∀s ∈ [0, t] dXs =
b−Xs

t− s
ds+ dWs.

Applying the Doeblin-Itō formula to the function f(s,Xs) =
Xs − b

t− s
, check that

∀0 ≤ r ≤ s ≤ t Xs =
t− s

t− r
Xr +

s− r

t− r
b +

∫ s

r

t− s

t− u
dWu.

Check that Xt = b and compute the distribution of Xs given Xr.

Exercise 266 (Milstein scheme) We consider the one-dimensional diffusion

dXt = b(Xt)dt+ σ(Xt)dWt

with some smooth functions b and σ with bounded derivatives at any order. Prove that

Xt+h −Xt = b(Xt) h+ σ(Xt) (Wt+h −Wt)+
1

2
σ′(Xt)σ(Xt)

[
(Wt+h −Wt)

2 − h
]
+Rt,t+h

with a second order remainder term Rt,t+h such that E
(
|Rt,t+h|2

)1/2

≤ c h3/2 for some
finite constant c < ∞.



15
Jump diffusion processes

Jump diffusion processes introduced in this chapter represent an extension of the piecewise
deterministic processes introduced in chapter 13. Informally, the deterministic flows between
the jumps of the piecewise deterministic process are replaced by the diffusion processes
introduced in chapter 14. We discuss the Doeblin-Itō differential calculus for these processes
and use it to derive the Fokker-Planck equation. Further on, we introduce jump diffusion
processes with killing in terms of Feynman-Kac semigroups. At the end of the chapter,
we show in some details the usefulness of these models for solving some classes of partial
differential equations.

Mathematics is the art of giving the same name to different things.
Jules Henri Poincare (1854-1912).

15.1 Piecewise diffusion processes

As we mentioned in the introduction of
chapter 14 dedicated to pure diffusion pro-
cesses, it is beyond the scope of this chap-
ter to describe in full details the construction
of jump-diffusion processes and stochastic in-
tegrals w.r.t. to the induced random mea-
sure on the time axis. We have chosen to
present these continuous time stochastic pro-
cesses from the practitioner’s point of view,
using simple arguments based on their dis-
crete approximations. For a more thorough
and rigorous discussion on these probabilistic
models, we refer the reader to the seminal book by Stewart Ethier and Thomas Kurtz [122].

We also refer the reader to section 12.5.2 for the definitions of continuous time filtrations,
predictable processes, martingales and their angle brackets.

Jump diffusion processes (abbreviated JDP) are defined as the piecewise deterministic
jump models discussed in section 13.2, replacing the deterministic flow between the jumps
by the diffusion process. More formally, we have the following definitions.

Definition 15.1.1 For any s ∈ R+ and x ∈ Rd we denote by

t ∈ [s,∞[ �→ ϕs,t (x) ∈ Rd

the solution of the SDE (14.18) starting at x at time t = s. The mappings ϕs,t (x) are called
the stochastic flow of the diffusion process (14.18).

A d-dimensional jump diffusion process with jump intensity function λt(x) and jump

425
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amplitude transition Kt(x, dy) is defined as a pure jump process introduced in chapter 12
by replacing the constant evolution model between the jumps (12.1) by the stochastic flow of
the diffusion process

∀Tn ≤ s < Tn+1 Xs := ϕTn,s (XTn
) . (15.1)

Important remark : Jump diffusion processes represent the most general class of Marko-
vian stochastic processes encountered in practice. For null diffusion functions σt = 0, JDP
models reduce to PDMP processes. In addition, when the drift function bt = 0 is also null,
the JDP processes reduces to pure jump models with intensity λt(x) and jump amplitude
transition Kt(x, dy).

15.2 Evolution semigroups
By construction, for any s ≥ t we have

P
(
Tn+1 ∈ dt ,XTn+1

∈ dy | Tn = s, ϕs,r (x) , r ≥ s
)

= λt(ϕs,t(x)) exp

(
−
∫ t

s

λr(ϕs,r(x)) dr

)
dt

︸ ︷︷ ︸
P(Tn+1∈dt | Tn=s, ϕs,r(x), r≥s)

× Kt(ϕs,t(x), dy)︸ ︷︷ ︸
P(XTn+1

∈dy | Tn+1=t, ϕs,r(x), r≥s).

(15.2)

In the same vein, if T (s) is the first jump time after time s, we have

P
(
T (s) ∈ dt ,XT (s) ∈ dy | Xs, ϕs,r (Xs) , r ≥ s

)

= λt(ϕs,t(Xs)) exp

(
−
∫ t

s

λr(ϕs,r(Xs)) dr

)
1s≤t dt

︸ ︷︷ ︸
P(T (s)∈dt | Xs, ϕs,r(Xs), r≥s)

× Kt(ϕs,t(Xs), dy)︸ ︷︷ ︸
P(XT (s)∈dy | T (s)=t, ϕs,r(Xs), r≥s).

(15.3)

This yields the formula

P
(
T (t) ∈ dt ,Xt+dt ∈ dy | Xt

)
= λt(Xt) dt Kt(Xt, dy).

Last but not least, we also observe that for any t ≥ s we have

P
(
T (s) > t | Xs, ϕs,r (Xs) , r ≥ s

)
= exp

(
−
∫ t

s

λr(ϕs,r(Xs)) dr

)
1s≤t. (15.4)
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We check this claim by using the fact that

P
(
T (s) > t | Xs, ϕs,r (Xs) , r ≥ s

)
=

∫ ∞

t

P
(
T (s) ∈ du | Xs, ϕs,r (Xs) , r ≥ s

)
du

=

∫ ∞

t

λu(ϕs,u(Xs)) exp

(
−
∫ u

s

λr(ϕs,r(Xs)) dr

)
du

= −
∫ ∞

t

∂

∂u
exp

(
−
∫ u

s

λr(ϕs,r(Xs)) dr

)
du.

Definition 15.2.1 For any intensity function λ, we let Pλ
s,t and Ps,t with s ≤ t denote the

semigroup (sg) defined by

Pλ
s,t(f)(x) := E

[
f(ϕs,t(x)) exp

(
−
∫ t

s

λu(ϕs,u(x))du

)]

Ps,t(f)(x) = E (f(Xt) | Xs = x) . (15.5)

For the null intensity function, the sg P 0
s,t is the evolution sg of the d-dimensional diffusion

Xt =
(
Xi

)
1≤i≤d

defined in (14.18)

P 0
s,t(f)(x) = E [f(ϕs,t(x))] .

If T (s) stands for the first time of a jump of the process with intensity λu after
time s, we have the formula

Pλ
s,t(f)(x) = E

[
f(ϕs,t(x)) exp

(
−
∫ t

s

λu(ϕs,u(x))du

)]
= E [f(ϕs,t(x)) 1T s>t] .

(15.6)

We check this claim by combining a simple conditioning argument with the fact that

(15.4) =⇒ E [1T s>t | Xs, ϕs,r (Xs) , r ≥ s] = exp

(
−
∫ t

s

λu(ϕs,u(x))du

)
.

Extending the arguments to diffusion processes, all the results presented in sec-
tion 13.2.2, section 13.2.3, and section 13.2.6 remain valid by replacing the gener-
ators Lλ

t and Lt defined in (13.21) and (13.23) by the generators

Lλ
t (f) = L0

t (f)− λt f Lt = L0
t + λt [Kt − Id] := Lc

t + Ld
t (15.7)

with the infinitesimal generator of the continuous d-dimensional diffusion

Lc
t := L0

t =

d∑
i=1

bit ∂i +
1

2

d∑
i,j=1

(
σt(σt)

T
)
i,j

∂i,j , (15.8)

and the generator associated with the discontinuous jump process

Ld
t := λt [Kt − Id]. (15.9)
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Given a couple of JDP (X1
t , X

2
t ), we also have the easily checked integration by parts

formula

d
(
X1

t X
2
t

)
= X1

t+dtX
2
t+dt −X1

t X
2
t

=
(
X1

t + dX1
t

) (
X2

t + dX2
t

)
−X1

t X
2
t

= X1
t dX2

t + X2
t dX1

t + dX1
t dX

2
t .

On the other hand, for i = 1, 2 we have

dXi
t = bit(X

i
t)dt+ σi

t(X
i
t) dW

i
t︸ ︷︷ ︸

=dXc,i
t

+∆Xi
t

for some drift and diffusion functions with appropriate dimensions, and some di-dimensional
Brownian motion W i

t . The term ∆Xi
t = Xi

t+dt −Xi
t represents the jump of the process at

time t.

Using the rules
dt×∆Xi

t = 0 = ∆Xi
t × dW j

t

implies that
dX1

t dX
2
t = dXc,1

t dXc,2
t +∆X1

t ∆X2
t .

A discrete time approximation model on some time mesh sequence tn, with time step h,
is defined using the same constructions as the ones we used in section 13.2.5, by considering
the semigroup

P 0,h
tn,tn+1

(f)(x) = E
(
f
(
ϕh
tn,tn+1

(x)
))

with the discrete time approximation of the diffusion (14.18) on the time step [tn, tn+1[

ϕh
tn,tn+1

(x) = x+ btn(x) h+ σt(x)
√
h W1.

The extension of the weak approximation theorem 14.3.2 to JDP processes is
proved using the same arguments as the ones we used in the proof of theorem 13.2.8.

15.3 Doeblin-Itō formula
We denote by Ft the filtration generated by the d-dimensional Brownian motion Wt and
the random times Tn and the jump-amplitudes ∆XTn := XTn − XTn− of the process Xt;
that is, we have that

Ft = σ (Xs, s ≤ t) = σ (X0, Ws −Wr, Tn, ∆XTn , r ≤ s ≤ t, Tn ≤ t) .

The definition of a martingale w.r.t. the increasing sequence of σ-fields Ft is provided in
section 12.5.2. To simplify the presentation, we also set

∂i := ∂xi =
∂

∂xi
and ∂i,j := ∂xi,xj =

∂2

∂xi∂xj
.
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Expanding a Taylor series and applying the chain rules presented in section 14.4,
for twice continuously differentiable functions f on R+ × Rd we have

df(t,Xt) = f(t+ dt,Xt + dXt)− f(t,Xt)

= ∂tf(t,Xt)dt +

d∑
i=1

∂if(Xt) dX
i
t +

1

2

d∑
i,j=1

∂i,jf(Xt) dX
i
tdX

j
t

+∆f(t,Xt)−




d∑
i=1

∂if(Xt) ∆Xi
t +

1

2

d∑
i,j=1

∂i,jf(Xt) ∆Xi
t∆Xj

t


 .

(15.10)

The r.h.s. term follows from the decomposition

dXi
t = dXc,i

t +∆Xi
t

with the jump term ∆Xi
t , and the increment

dXc,i
t := bit(Xt) dt+

∑
1≤j≤d

σi
j,t(Xt) dW

j
t

of the continuous process

Xc,i
t := Xi

0 +

∫ t

0

bit(Xs) ds+
∑

1≤j≤d

∫ t

0

σi
j,s(Xt) dW

j
s .

In this context, the quadratic term is interpreted as the increment of the covariation
process

dXi
tdX

j
t =

(
σt(σt)

T
)
i,j

(Xt) dt+∆Xi
t∆Xj

t

:= d
[
Xi, Xj

]
t
= d〈Xc,i, Xc,j〉t +∆Xi

t∆Xj
t

with
d〈Xc,i, Xc,j〉t = dXc,i

t dXc,j
t =

(
σt(σt)

T
)
i,j

(Xt) dt.

Rewritten in terms of the continuous and jump parts of the process, the Doeblin-Itō formula
(15.10) takes the form

df(t,Xt) = ∂tf(t,Xt)dt +

d∑
i=1

∂if(Xt) dX
c,i
t

+
1

2

d∑
i,j=1

∂i,jf(Xt) dX
c,i
t dXc,j

t +∆f(t,Xt). (15.11)

To take the final step, using (15.3) we check that

∆f(t,Xt) = E (∆f(t,Xt) | Ft) + ∆f(t,Xt)− E (∆f(t,Xt) | Ft)︸ ︷︷ ︸
:=dMd

t (f)
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with the predictable jump amplitude

E (∆f(t,Xt) | Ft) = λt(Xt) dt

∫
(f(t, y)− f(t,Xt)) Kt(Xt, dy),

and the martingale increment dMd
t (f).

In summary, we have proved the following result.

We have the Doeblin-Itō formula

df(t,Xt) = [∂t + Lt] (f)(t,Xt) dt+ dMt(f) (15.12)

with the infinitesimal generator

Lt =

d∑
i=1

bit ∂i +
1

2

d∑
i,j=1

(
σt(σt)

T
)
i,j

∂i,j

︸ ︷︷ ︸
:=Lc

t

+λt [Kt − Id]︸ ︷︷ ︸
:=Ld

t

(15.13)

acting on the set D(L) of twice differentiable functions with bounded derivates.
The martingale increment dMt(f) = dMc

t(f) + dMd
t (f), with the discontinuous

and the continuous parts is given by

dMd
t (f) = ∆f(t,Xt)− E (∆f(t,Xt) | Ft)

dMc
t(f) =

d∑
i,j=1

∂if(Xt) σ
i
j,t(Xt) dW

j
t .

We recall that the angle bracket 〈M〉t (a.k.a. the predictable quadratic variation) of a
given martingale Mt w.r.t. some filtration Ft is the predictable stochastic process 〈M〉t
s.t. M2

t − 〈M〉t is a martingale. By construction, arguing as in the discrete time case, the
angle bracket of Mt(f) (w.r.t. the filtration Ft) is the sum

〈M(f)〉t = 〈Mc(f)〉t + 〈Md(f)〉t

of the angle brackets of the martingales Mc
t(f) and Md

t (f) given by

〈Mc(f)〉t =

d∑
i,j=1

∫ t

0

E
(
(dMc

s(f))
2 | Fs

)
=

d∑
j=1

∫ t

0

(
d∑

i=1

∂if(Xs) σ
i
j,s(Xs)

)2

ds

(15.14)

and

〈Md(f)〉t =

∫ t

0

E
(
(dMd

s(f))
2 | Fs

)
=

∫ t

0

E
(
(∆Md

s(f))
2 | Fs

)

=

∫ t

0

E
(
(∆f(s,Xs))

2 | Fs

)

=

∫ t

0

λs(Xs)

[∫
(f(s, y)− f(s,Xs))

2
Ks(Xs, dy)

]
ds.

(15.15)
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These angle brackets can be rewritten in a more synthetic form

〈M(f)〉t =
∫ t

0

ΓLs
(f(s, .), f(s, .))(Xs) ds

in terms of the carré du champ operators

ΓLt
(f, f)(x) := Lt((f − f(x))2)(x)

= Lt(f
2)(x)− 2f(x)Lt(f)(x) = ΓLc

t
(f, f)(x) + ΓLd

t
(f, f)(x).

We can also show that

Mt(f)Mt(g)− 〈M(f),M(g)〉t is a martingale (w.r.t. the filtration Ft)

with the angle bracket

d〈M(f),M(g)〉t = E (dMt(f)dMt(g) | Xt) = ΓL(f, g)(Xt) dt

defined in terms of the carré du champ operators

ΓLt
(f, g)(x) = Lt((f − f(x))(g − g(x)))(x) �h↓0

[Pt,t+h − Id][(f − f(x))(g − g(x))]

h
(x).

We notice that the carré du champ is non-negative since we have

ΓLt
(f, f)(x) �h↓0

[Pt,t+h − Id][(f − f(x))2]

h
(x) =

Pt,t+h[(f − f(x))2]

h
(x) ≥ 0.

Using the same arguments as in the pure diffusion or as in the pure jump cases (see for
instance the decompositions (13.7) and (13.8)), the semigroup of the multidimensional jump-
diffusion Ps,t also satisfies the forward and backward evolution equations stated in theo-
rem 14.3.3; that is,

∂tPs,t(f) = Ps,t(Lt(f)) and ∂sPs,t(f) = −Ls(Ps,t(f)). (15.16)

In addition, the backward evolution stochastic process Mt := Pt,T (fT )(Xt), with t ∈ [0, T ],
is a martingale ending at some given function fT (XT ).
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It is also important to notice that the finite sum of a collection of jump generators
Ld,i
t = λ

(i)
t [K

(i)
t − Id], with i ∈ I, for some finite set I can be rewritten in terms

of a single jump generator
∑
i∈I

Ld,i
t = λt [Kt − Id] := Ld

t (15.17)

with jump intensity and Markov jump amplitude transitions

λt =
∑
i∈I

λ
(i)
t and Kt(x, dy) =

∑
i∈I

λ
(i)
t (x)∑

j∈I λ
(j)
t (x)

K
(i)
t (x, dy).

We check this claim using the elementary decomposition
∑
i∈I

Ld,i
t (f)(x) =

∑
i∈I

λ
(i)
t (x)

∫
(f(y)− f(x)) K

(i)
t (x, dy)

:= λt(x)

∫
(f(y)− f(x))

∑
i∈I

λ
(i)
t (x)∑

i∈I λ
(i)
t (x)

K
(i)
t (x, dy).

In this situation the jump diffusion process discussed in (15.1) is defined in terms of
jump times Tn with intensity λt, that is,

Tn+1 = inf

{
t ≥ Tn :

∫ t

Tn

λu(Xu) du ≥ En+1

}

with a sequence En of independent exponential random variables with unit parameters. At
any jump time, say Tn, we select an index εn ∈ I with the discrete probability measure on
I defined by

∑
i∈I

λ
(i)
Tn−(XTn−)∑

j∈I λ
(j)
Tn−(XTn−)

1i

and we perform a jump amplitude XTn− � XTn
by sampling a random variable XTn

with
distribution K

(εn)
Tn−(XTn−, dy).

Following the discussion provided in section 12.4, the jump process discussed above
can be interpreted as the superposition of Card(I) jump processes with intensities(
λ
(i)
t

)
i∈I

. To be more precise, for each i ∈ I and any n ≥ 0 we set

τ in+1 := inf
{
k > τ in : εk = i

}

with τ i0 = 1. By the superposition principle of Poisson processes, the random times
Tτ i

n
occur with the intensity λ

(i)
t , that is,

Tτ i
n+1

law
= inf

{
t ≥ Tτ i

n
:

∫ t

Tτi
n

λ(i)
u (Xu) du ≥ E(i)

n+1

}
(15.18)

with a sequence E(i)
n of independent exponential random variables with unit pa-

rameter.
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For smooth functions f we also have

∂tPs,t(f) = Ps,t(Lt(f)) ⇒
d2

dt2
Ps,t(f) = ∂tPs,t(Lt(f)) = Ps,t(L

2
t (f))

with L2
t (f) = Lt(Lt(f)). Iterating this formula, we prove that

dn

dtn
Ps,t(f) = Ps,t(L

n
t (f))

with the n-th composition operator

Ln
t = Ln−1

t ◦ Lt = Lt ◦ Ln−1
t .

Consequently, we can use Taylor’s expansion to check that

Ps,t(f) =
∑
n≥0

(t− s)n

n!

dn

dtn
Ps,t(f)|t=s

=
∑
n≥0

(t− s)n

n!
Ln
s (f) := e(t−s)Lsf.

For time homogeneous models Lt = L, this formula is sometimes rewritten in terms of the
exponential operator

P0,t(f) := Pt(f) :=
∑
n≥0

tn

n!
Ln(f) := etLf. (15.19)

We let ηt = Law(Xt). For any smooth function f on Rd, we also notice that

(15.12) ⇒ ηt(f) = E(f(Xt)) = E(X0)) +

∫ t

0

E(Ls(f)(Xs)) ds

= η0(f) +

∫ t

0

ηs(Ls(f)) ds

⇔ ∂tηt(f) = ηt(Lt(f)).

In a more synthetic way, the above equation takes the form

∂tηt = ηtLt. (15.20)

15.4 Fokker-Planck equation
We further assume that Kt(x, dy) = mt(x, y) dy and the law of the random states

P (Xt ∈ dx) = pt(y) dy

have smooth densities mt(x, y), and pt(y) w.r.t. the Lebesgue measure dy on Rd. In this
case, pt satisfies the Fokker-Planck equation

∂tpt(x) = L�
t (pt)(x) = Lc,�

t (pt)(x) + Ld,�
t (pt)(x) (15.21)



434 Stochastic Processes

with the dual operators of the generators discussed in (15.13)

Lc,�
t (pt) = −

d∑
i=1

∂i
(
bit pt

)
+

1

2

d∑
i,j=1

∂i,j

((
σt(σt)

T
)
i,j

pt

)

and
Ld,�
t (pt) =

(∫
pt(y) λt(y) mt(y, x) dy

)
− pt(x) λt(x).

The Fokker-Planck type integro-differential equation (15.21) is sometimes rewrit-
ten in the form

∂tpt(x) + div (bt pt)−
1

2
∇2 :

(
σt(σt)

T pt
)
−Θt(pt) = 0,

with the operators

div (bt pt) :=

d∑
i=1

∂i (bt,i pt)

∇2 :
(
σt(σt)

T pt
)

=
d∑

i,j=1

∂i,j

((
σt(σt)

T
)
i,j

pt

)

Θt(pt) :=

∫
pt(y) λt(y) [mt(y, x) dy − δx(dy)] .

15.5 An abstract class of stochastic processes

15.5.1 Generators and carré du champ operators

We let Xt be some stochastic process on some state space S. The state space S
may be discrete, continuous, or can be the product of a continuous state space
with a discrete one, and so on.
The stochastic process Xt can be homogeneous or not, it may contain a diffusion
part and jumps, or it can be a pure jump process or a sum of jump processes.
In all cases, the generator and the corresponding carré du champ operators are
defined in terms of the semigroup Ps,t(f)(x) = E(f(Xt) | Xs = x), s ≤ t by the
formulae

Lt(f)(x) �h↓0
[Pt,t+h − Id]f

h
(x) =

E ((f(Xt+h)− f(Xt)) | Xt = x)

h

and

ΓLt
(f, g)(x) = Lt(fg)(x)− fLt(g)(x)− gLt(f)(x).
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The carré du champ operator can be represented in many ways:

ΓLt
(f, g)(x) = Lt(fg)(x)− fLt(g)(x)− gLt(f)(x)

= Lt((f − f(x))(g − g(x)))(x)

�h↓0
[Pt,t+h − Id][(f − f(x))(g − g(x))]

h
(x)

=
Pt,t+h[(f − f(x))(g − g(x))]

h
(x)

=
E ((f(Xt+h)− f(Xt))(g(Xt+h)− g(Xt)) | Xt = x)

h
.

Of course, the above formulae are valid for sufficiently regular functions f . For instance,
for diffusion processes, Lt is a second order differential operator only defined on twice
differentiable functions. For piecewise deterministic models, Lt is a first order differential
operator defined on differentiable functions, and so on. The set of these regular functions
D(L) depends on the nature of the stochastic process, and it is called the domain of the
generator.

For sufficiently regular functions f(t, x) we have the Doeblin-Itō formula

df(t,Xt) = [∂t + Lt] (f)(t,Xt) dt+ dMt(f) (15.22)

for a collection of martingalesMt(f) (w.r.t. Ft = σ(Xs, s ≤ t)) with angle bracket
defined for any f(t, x) and g(t, x) by the formulae

〈M(f),M(g)〉t =
∫ t

0

ΓLs
(f(s, .), g(s, .))(Xs) ds.

Combining the definition of the carré du champ operator with the application of
the Doeblin-Itō formula (15.22) to the product of functions h(t, x) = f(t, x)g(t, x),
we have

dh(t,Xt) = [∂t + Lt] (fg)(t,Xt) dt+ dMt(fg)

= [f(t,Xt) [∂t + Lt] (g)(t,Xt) + g(t,Xt) [∂t + Lt] (f)(t,Xt)] dt

+ ΓLt(f(t, .), g(t, .))(Xt) dt+ dMt(fg). (15.23)

In other words, for regular functions (f, g) we have the integration by part formula

Lt(fg) = fLt(g) + gLt(f) + ΓLt
(f, g). (15.24)
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We also have the integration by part formulae

dh(t,Xt)

= f(t,Xt) dg(t,Xt) + g(t,Xt) df(t,Xt) + df(t,Xt) dg(t,Xt)

= {f(t,Xt) (∂t + Lt) g(t,Xt) + g(t,Xt) (∂t + Lt) f(t,Xt) + ΓLt
(f(t, .), g(t, .))(Xt)} dt

+f(t,Xt) dMt(g) + g(t,Xt) dMt(f) + {dMt(f)dMt(g)− E (df(t,Xt) dg(t,Xt) | Xt)} .

In the last assertion, we used the fact that

E (df(t,Xt) dg(t,Xt) | Xt) (= E (dMt(f) dMt(g) | Xt))

= E ([f(t+ dt,Xt+dt)− f(t,Xt)] [g(t+ dt,Xt+dt)− g(t,Xt)] | Xt)

= E ([f(t,Xt+dt)− f(t,Xt)] [g(t,Xt+dt)− g(t,Xt)] | Xt) +O((dt)2)

= ΓLt(f(t, .), g(t, .))(Xt) dt
(
+O((dt)2)

)
.

In other words, we have the martingale increment formulae

{dMt(f)dMt(g)− E (dMt(f) dMt(g) | Xt)}

= dMt(fg)− f(t,Xt) dMt(g)− g(t,Xt) dMt(f).

Let Ps,t, s ≤ t be the Markov semigroup of Xt and we set ηt = Law(Xt). Applying the
Doeblin-Itō formula to the function f(s, x) = Ps,t(ϕ)(x) w.r.t. s ∈ [0, t], we find that

dPs,t(ϕ)(Xs) = − (∂sPs,t(ϕ)) (Xs) ds+Ls(Ps,t(ϕ))(Xs) ds+ dMs(P.,t(ϕ)) = dMs(P.,t(ϕ))
with a martingale Ms(P.,t(ϕ)) with angle bracket

∀s ∈ [0, t] 〈M(P.,t(ϕ)),M(P.,t(ϕ))〉s =
∫ s

0

(ΓLτ
(Pτ,t(ϕ), Pτ,t(ϕ)) (Xτ ) dτ.

This implies that for any 0 ≤ s1 ≤ s2 ≤ t we have

E
(
[Ps2,t(ϕ)(Xs2)− Ps1,t(ϕ)(Xs1)]

2 | Xs1

)

= E
[
(Ms2(P.,t(ϕ))−Ms1(P.,t(ϕ)))2 | Xs1

)
=

∫ s2
s1

Ps1,τ [ΓLτ (Pτ,t(ϕ), Pτ,t(ϕ))] (Xs1) dτ.

Choosing (s1, s2) = (0, t) and applying the expectations, we conclude that

E
(
[ϕ(Xt)− P0,t(ϕ)(X0)]

2
)
=

∫ t

0

ητ [ΓLτ
(Pτ,t(ϕ), Pτ,t(ϕ))] dτ.

Using the fact that η0 [P0,t(ϕ)] = ηt(ϕ) we also have the formula

ηt

(
[ϕ− ηt(ϕ)]

2
)
= η0

(
[P0,t(ϕ)− ηt(ϕ)]

2
)
+

∫ t

0

ητ [ΓLτ
(Pτ,t(ϕ), Pτ,t(ϕ))] dτ.
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15.5.2 Perturbation formulae

Let X
(1)
t and X

(2)
t be a couple of Markov processes evolving in some state space S with

generators L(1)
t and L

(2)
t . We let P (1)

s,t and P
(2)
s,t the Markov semigroup of X(1)

t and X
(2)
t .

We consider the Markov process Xt with generator Lt = L
(1)
t + L

(2)
t and we let Ps,t

be its Markov semigroup. We further assume that all the semigroups Ps,t, P
(1)
s,t and P

(2)
s,t

satisfy the forward and backward equations (15.16).

In this situation, for any r ≤ t we have the Gelfand-Pettis perturbation formulae:

Pr,t = P
(1)
r,t +

∫ t

r

Pr,sL
(2)
s P

(1)
s,t ds = P

(1)
r,t −

∫ t

r

P (1)
r,s L

(2)
s Ps,t ds. (15.25)

Proof :
We check these formulae using the interpolating integral operators Pr,sP

(1)
s,t and P

(1)
r,s Ps,t,

with r ≤ s ≤ t. For instance, we have

∂s

([
Pr,sP

(1)
s,t

]
(f)

)
= [∂sPr,s]

(
P

(1)
s,t (f)

)
+ Pr,s

(
∂sP

(1)
s,t (f)

)

= [Pr,sLs]
(
P

(1)
s,t (f)

)
+ Pr,s

(
−L(1)

s P
(1)
s,t (f)

)

= Pr,s

(
Ls − L(1)

s

)
P

(1)
s,t (f).

These equations are of course valid for sufficient regular functions f on S depending on the
form of the generators L(1)

t and L
(2)
t . In addition, it is implicitly assumed that P (1)

s,t (f) are

sufficiently regular so that Ls

(
P

(1)
s,t (f)

)
is well defined.

This implies that

Pr,t(f)− P
(1)
r,t (f) =

∫ t

r

∂s

([
Pr,sP

(1)
s,t

]
(f)

)
ds =

∫ t

r

Pr,sL
(2)
s P

(1)
s,t (f) ds.

The second assertion is proved by symmetry arguments. This ends the proof of (15.25).

Suppose that X(2)
t is a pure jump process with generator

L
(2)
t (f)(x) = λt(x)

∫
[f(y)− f(x)] Kt(x, dy) (15.26)

for some jump rate λt(x) and some Markov transition Kt(x, dy). In this case (15.25) implies
that

Pr,t(f) = P
(1)
r,t (f) +

∫ t

r

P (1)
r,s (λs [Ps,t(f)−Ks (Ps,t(f))]) ds.

Between jump times at rate λt the process Xt evolves as X
(1)
t . Following the analysis

presented in section 15.2, we let T s be the first jump time of Xt with rate λt, that is

T s := inf

{
r ≥ s :

∫ r

s

λu(Xu)du ≥ E
}
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where E stands for an exponential random variable with unit parameter. Arguing as in
section 13.2.2 we have

Ps,t(f)(x) = E (f(Xt) 1T s>t | Xs = x) + E (f(Xt) 1T s≤t | Xs = x)

= E
(
f(X

(1)
t ) exp

[
−
∫ t

s

λr(X
(1)
r )dr

]
| X(1)

s = x

)

+E (KT s (PT s,t(f)) (XT s−) 1T s≤t | Xs = x)

and

E (gT s(XT s−) 1T s≤t | Xs = x)

= E




∫ t

s

gr(X
(1)
r ) λr

(
X(1)

r

)
exp

[
−
∫ r

s

λu

(
X(1)

u

)
du

]
dr

︸ ︷︷ ︸
=P

(
T s∈dr | X

(1)
u ,s≤u≤r

)

| X(1)
s = x



.

This implies that

Ps,t(f)(x)

= E
(
f(X

(1)
t ) exp

[
−
∫ t

s
λr(X

(1)
r )dr

]
| X(1)

s = x
)

+E
[∫ t

s

Kr (Pr,t(f)) (X
(1)
r ) λr

(
X(1)

r

)
exp

[
−
∫ r

s

λu

(
X(1)

u

)
du

]
dr | X(1)

s = x

]
.

This yields the semigroup decomposition

Ps,t(f) = Qs,t(f) +

∫ t

s

Qs,r [λrKr (Pr,t(f))] dr (15.27)

with the Feynman-Kac semigroup

Qs,t(f)(x) := E
(
f(X

(1)
t ) exp

[
−
∫ t

s

λr(X
(1)
r )dr

]
| X(1)

s = x

)
.

When λt(x) = λ is a constant function, the perturbation formula (15.27) reverts to

Ps,t(f) = e−λ(t−s) P
(1)
s,t (f) +

∫ t

s

λ e−λ(r−s) P (1)
s,r [Kr (Pr,t(f))] dr. (15.28)
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15.6 Jump diffusion processes with killing

15.6.1 Feynman-Kac semigroups

We return to the definition of a jump diffusion process given in (15.1) but we replace the
stochastic diffusion flow by a jump diffusion process ϕs,t (x). Notice that in this situation
the random paths t ∈ [s,∞[ �→ ϕs,t (x) of the stochastic flow are càdlàg. To avoid confusion
we denote by Vt the jump rate of this new jump diffusion process. In this situation, the
developments of section 15.2 remain valid if we replace λt by Vt. In particular, (15.6) takes
the form

PV
s,t(f)(x) := E

[
f(ϕs,t(x)) exp

(
−
∫ t

s

Vu(ϕs,u(x))du

)]
= E

[
f(ϕs,t(x)) 1T s(x)>t

]

where T (s) stands for the first jump time of the process with the intensity Vu after time s
(discarding the possible jump times of the càdlàg paths of the stochastic flow t ∈ [s,∞[ �→
ϕs,t (x)). More precisely, we have

T (s)(x) = inf

{
t ≥ s :

∫ t

s

Vu(ϕs,u (x)) du ≥ E
}

(15.29)

where E denotes some exponential random variable with unit parameter. We have not said
anything about what happens when the jump occurs. Let us add a cemetery state c to the
state space S := Rd and set Sc := Rd ∪ {c}. We extend any function f to Sc by setting
f(c) = 0. This convention prevents the existence of the unit function on Sc.

When the jump with intensity Vt occurs we place the process in c. In other words, at
the first jump time T with intensity Vt we kill the process by placing it to the cemetery
state c, and we set Xc

t = c for any t ≥ T . This clearly amounts to choosing the amplitude
transitions Kt(x, dy) = δc(dy). Notice that the Markov semigroup PV

s,t of Xc
t and the one

Ps,t of the jump diffusion process Xt associated with the stochastic flow Xt := ϕ0,t (x) are
connected by the formula

1S(x) P
V
s,t(x, dy) 1S(y) = 1S(x) Ps,t(x, dy) 1S(y)

1S(x) P
V
s,t(x, {c}) = 1S(x) (1− Ps,t(x, S))

and clearly PV
s,t({c}, S) = 0 and PV

s,t({c}, {c}) = 1.
By construction, the generator of the killed process Xc

t on Sc is defined by

∀x ∈ S LV
t (f)(x) = Lt(f)(x) + Vt(x) (f(c)− f(x)) = Lt(f)(x)− Vt(x) f(x) (15.30)

and Lc
t(f)(c) = 0, where Lt stands for the generator of Xt.

As usual, we have the forward and backward equations

∂tP
V
s,t(f) = PV

s,t(L
V
t (f)) and ∂sP

V
s,t(f) = −LV

s (P
V
s,t(f)). (15.31)

The forward equation can be checked directly using the fact for any s ≤ t we have

Zs,t := e−
∫ t
s
Vr(Xr)dr f(Xt)− f(Xs)−

∫ t

s

e−
∫ r
s
Vu(Xu)du LV

r (f)(Xr) dr

=

∫ t

s

e−
∫ r
s
Vu(Xu)du dMr(f) (15.32)
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with the martingale

Mt(f) = f(Xt)− f(X0)−
∫ t

0

Ls(f)(Xs)ds.

By applying the Doeblin-Itō formula w.r.t. the time parameter τ we have

dZs,τ = e−
∫ τ
s

Vr(Xr)dr ([−Vτ (Xτ )f(Xτ ) + Lτ (f)(Xτ )]dτ + dMτ (f))

−e−
∫ τ
s

Vu(Xu)du LV
τ (f)(Xτ ) dτ

= e−
∫ τ
s

Vr(Xr)dr dMτ (f).

This implies that

Zs,t = Zs,t − Zs,s =

∫ t

s

dZs,τ =

∫ t

s

e−
∫ τ
s

Vr(Xr)dr dMτ (f).

We conclude that

E(Zs,t | Xs) = 0 ⇒ PV
s,t(f)(x) = f +

∫ t

s

PV
s,r

(
LV
r (f)

)
dr ⇒ ∂rP

V
s,r(f) = PV

s,r

(
LV
r (f)

)
.

We refer to exercise 294 for more details on the time evolution equations of Feynman-Kac
measures.

By construction, for any x ∈ S we have the Feynman-Kac semigroup formulae

PV
s,t(f)(x) = E (f(Xc

t ) | Xc
s = x) = E (f(Xt) 1T (s)>t | Xs = x)

= E
(
f(Xt) exp

(
−
∫ t

s

Vu(Xu)du

)
| Xs = x

)
(15.33)

with the first jump time T (s) := T (s)(Xs) after time s defined in (15.29).

Important remark : The same formulae remain valid if we consider an abstract Markov
process Xt with some generator Lt on some state space S. This claim should be clear from
the proof of the forward equation given above.

The semigroup property in (15.33) can be used to derive the backward evolution equation
from the forward equations.

More precisely we have

−h−1
[
PV
s−h,t − PV

s,t

]
= −h−1

[
PV
s−h,s − Id

]
PV
s,t →h→0 − LsP

V
s,t

as well as

h−1
[
PV
s+h,t − PV

s,t

]
= h−1

[
Id− PV

s,s+h

]
PV
s+h,t →h→0 − LsP

V
s,t.

15.6.2 Cauchy problems with terminal conditions

Observe that

exp

(
−
∫ t

s

Vu(Xu)du

)
= 1−

∫ t

s

Vu(Xu) exp

(
−
∫ u

s

Vv(Xv)dv

)
du.
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This yields the integral decomposition

PV
s,t(f) = E

(
f(Xt) exp

(
−
∫ t

s

Vu(Xu)du

)
| Xs = x

)

= E
(
f(Xt)

[
1−

∫ t

s

Vu(Xu) exp

(
−
∫ u

s

Vv(Xv)dv

)
du

]
| Xs = x

)

= Ps,t(f)−
∫ t

s

PV
s,u (VuPu,t(f)) du. (15.34)

By (15.31), for any given t and some given terminal condition ft, the function

s ∈ [0, t] �→ us = PV
s,t(ft)

satisfies the Cauchy problem with terminal condition
{

∂sus + Ls(us) = Vs us ∀s ∈ [0, t]
ut = ft.

(15.35)

In the reverse direction, if (15.35) admits a solution us with 0 ≤ s ≤ t, then us = PV
s,t(ft).

To check this claim, we fix the time s, and for any t ≥ s we set

∀s ≥ t Yt := ut(Xt) e
−

∫ t
s
Vr(Xr)dr.

By applying the Doeblin-Itō formula (w.r.t. the time parameter t, with s fixed) we get

dYt = e−
∫ t
s
Vr(Xr)drdut(Xt) + ut(Xt) de

−
∫ t
s
Vr(Xr)dr

= e−
∫ t
s
Vr(Xr)drdut(Xt)− Vt(Xt) ut(Xt) e

−
∫ t
s
Vr(Xr)dr dt.

Recalling that

dut(Xt) = (∂t + Lt)ut(Xt)dt+ dMt(u) = Vt(Xt) ut(Xt) dt+ dMt(u) ⇐ (15.35)

for some martingale Mt(u), we conclude that dYt = e−
∫ t
s
Vr(Xr)dr dMt(u) is a martingale.

This implies that

E
(
ut(Xt) e

−
∫ t
s
Vr(Xr)dr | Xs = x

)
= E(Yt | Xs = x) = E(Ys | Xs = x) = us(x).

Recalling that ut(Xt) = ft(Xt), we conclude that us = PV
s,t(ft).

We fix a time horizon t and we consider the integrated Feynman-Kac model defined
for any s ∈ [0, t] by

vs(x) := PV
s,t(ft) +

∫ t

s

PV
s,r(gr) dr

= E
(
ft(Xt) e

−
∫ t
s
Vr(Xr)dr +

∫ t

s

gr(Xr) e
−

∫ r
s
Vu(Xu)du | Xs = x

)

for some given function (s, x) ∈ ([0, t]× S) �→ gs(x) ∈ R.
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In this case, we have

∂v

∂s
= −LV

s

(
PV
s,t(f)

)
−
∫ t

s

LV
s (P

V
s,r(gr)) dr − gs = LV

s (vs)− gs.

This shows that v : (s, x) ∈ ([0, t]×S) �→ vs(x) satisfies the Cauchy problem with
terminal condition

{
∂svs + Ls(vs) + gs = Vs vs ∀s ∈ [0, t]

vt = ft.
(15.36)

For a more thorough discussion on these killed processes, Feynman-Kac semigroups and
their applications in physics and more precisely in the spectral analysis of Schrödinger
operators, we refer the reader to chapter 27 (see for instance section 27.2).

We end this section with a discrete time approximation of (15.36) based on the discrete
time models discussed in (9.42). We consider a time mesh sequence tp with some time step
δ = tn − tn−1, and we consider the discrete time model (9.42) with

Gp = e−Vtpδ = 1− Vtpδ +O(δ2) and Mp = Id+ Ltp δ +O(δ2). (15.37)

We also replace in (9.42) the functions gp and fn by the function gtp δ and ftn , and we let
vtp the solution of (9.42). In this notation (9.42) takes the form

vtp =
(
1− Vtpδ

) (
vtp+1 + Ltp(vtp+1)δ

)
+ gtp δ +O(δ2)

=
(
1− Vtpδ

) (
vtp+1

+ Ltp(vtp)δ
)
+ gtp δ +O(δ2)

=
(
1− Vtpδ

)
vtp+1

+ Ltp(vtp)δ + gtp δ +O(δ2)

with the terminal condition vtn = ftn . Rearranging the terms, the above equation takes
the form

(
vtp+1

− vtp
)
/δ + Ltp(vtp) + gtp = Vtp +O(δ2)/δ →δ↓0 equation (15.36).

15.6.3 Dirichlet-Poisson problems

We let D be some open subset of S = Rd. We consider a couple of functions (g, V ) and the
generator L of some jump diffusion process on S, and some function h on S −D.

The Dirichlet-Poisson problem consists with finding a smooth continuous function
v on S and satisfying the following equations:

{
L(v)(x) + g(x) = V (x)v(x) for any x ∈ D

v(x) = h(x) for any x �∈ D.
(15.38)

Without any boundary conditions we have D = S = Rd (and (h, S −D) = (0, ∅)).
In this situation the Dirichlet-Poisson problem (15.38) reduces to the Poisson equa-
tion

L(v) + g = V v. (15.39)
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When L is the generator of a pure diffusion process Xt, the trajectories of Xt are contin-
uous. In this situation the Dirichlet-Poisson problem (15.38) reduces to finding a smooth
continuous function v on D = D ∪ ∂D, where ∂D stands for the boundary of the open set
D, satisfying the equations

{
L(v)(x) + g(x) = V (x)v(x) for any x ∈ D

v(x) = h(x) for any x ∈ ∂D.
(15.40)

Arguing as in the end of section 15.6.2, the Dirichlet-Poisson problem (15.38) can be
approximated by the discrete time model (9.43). To be more precise, we consider a time
mesh sequence tp with some time step δ = tn − tn−1, and we consider the discrete time
model (9.43) with g replaced by gδ and

G = e−V δ = 1− V δ +O(δ2) and M = Id+ L δ +O(δ2). (15.41)

With a slight abuse of notation we let v be the corresponding solution of (9.43). In this
notation (9.43) takes the form

v(x) = (1− V (x)δ) (v(x) + L(v)(x)δ) + g(x)δ +O(δ2)

= (1− V (x)δ) v(x) + L(v)(x)δ + g(x)δ +O(δ2)

for any x ∈ D. This clearly implies that

∀x ∈ D L(v)(x) + g(x) = V (x) v(x) +O(δ2)/δ →δ↓0 equation (15.40).

We further assume that V is a non-negative function on D. The solving of this problem
is based on a stopping procedure of the martingale starting at N0 = v(X0) defined by

Nt := e−
∫ t
0
V (Xs)ds v(Xt) +

∫ t

0

e−
∫ s
0

V (Xr)dr {−L(v)(Xs) + V (Xs) v(Xs)} ds

=

∫ t

0

e−
∫ s
0

V (Xr)dr dMs(v)
(
=⇒ dNt = e−

∫ t
0

V (Xr)dr dMt(v)
)

with the martingale dMt(v) := dv(Xt)− L(v)(Xt) dt.

Let TD be the (first) time Xt exits the set D. Whenever (15.38) is satisfied we
have

v(x) = E

(
e−

∫ TD
0 V (Xs)ds h(XTD

) +

∫ TD

0

e−
∫ s
0

V (Xr)dr g(Xs) ds | X0 = x

)

(15.42)
as soon as E(NTD

| F0) = N0(= v(X0)). This formula provides an explicit de-
scription of the solution of (15.38) in terms of the functions (g, h) and TD. For
instance, if (V, g) = (0, 0) and h = 1A with A ⊂ D, we have

v(x) = P(XTD
∈ A | X0 = x).

Without any boundary conditions we have D = S = Rd (and (h, S −D) = (0, ∅))
so that TD = ∞ and the solution of the Poisson equation (15.39) is given by

v(x) = E
(∫ ∞

0

e−
∫ s
0

V (Xr)dr g(Xs) ds | X0 = x

)
. (15.43)
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In the above display, we have implicitly assumed that TD is a well defined stopping time
(cf. section 12.5.2).

For instance we have

(15.38) with L =
1

2

∑
1≤i≤d

∂2
xi

and (V, g) = (0, 0) =⇒ v(x) = E (h(x+WTD
))

where Wt stands for a d-dimensional Brownian motion.

In addition, for any closed ball B := B(x, ε) ⊂ D, with center x ∈ D and radius ε > 0,

E (h(x+WTB
+ (WTD

−WTB
)) | x+WTB

) = v(x+WTB
) ⇒ v(x) = E (v(x+WTB

)) .

Invoking the rotational invariance of the Brownian motion, we note that x+WTB
is uniformly

distributed on the boundary ∂B of B. This shows that

∀ρ ∈ [0, ε] v(x) =

∫

∂B(x,ρ)

v(y) µ∂B(x,ρ)(dy) ⇒ v(x) =

∫

B(x,ε)

v(y) µB(x,ε)(dy) (15.44)

where µ∂B(x,ρ), respectively µB(x,ε), stands for the uniform measure on the sphere S(x, ρ) :=
∂B(x, ρ), respectively on the ball B(x, ε).

The r.h.s. formula in (15.44) is proved by integrating the radii ρ ∈ [0, ε] of the boundary
spheres ∂B(x, ρ) with the uniform measure on [0, ε]. We can check this radial integration by
simply recalling that a uniform point in B(x, ε) is obtained by sampling a uniform radius ρ
between 0 and ε and sampling randomly a state in the corresponding sphere S(x, ρ)). This
is called the mean value property.

A function v satisfying the mean value property for every ball inside the domain D is
called a harmonic function on D.

We also notice that

|NTD
| ≤ C(g, h) (1 + TD) with C(g, h) = sup

x∈S−D
|h(x)| ∨ sup

x∈D
|g(x)|. (15.45)

In the above discussion, we have implicitly assumed the continuous time version of the
Doob’s stopping theorem 8.4.12 presented in section 8.4.3.

Theorem 15.6.1 (Doob’s stopping theorem) The stopped process t �→ Mt∧T of an
Ft-martingale Mt w.r.t. some stopping time T is also an Ft-martingale. In addition, a
stochastic process Mt is an Ft-martingale if and only if E(MT ) = E(M0) for any finite
stopping time s.t. E (|MT |) < ∞.

Proof :
The detailed proof of this theorem follows the same arguments as those of theorem 8.4.12
and theorem 8.4.16 thus it is only sketched. We only prove that the r.h.s. of the last
assertion implies that Mt is a martingale. To this end, we choose 0 ≤ s ≤ t and some event
A ∈ Fs. We clearly have

T = s 1A + t 1Ac ⇒ MT = Ms 1A +Mt 1Ac = Mt − 1A (Mt −Ms).
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Using the fact that E(MT ) = E(M0) = E(Mt) we conclude that

(∀A ∈ Fs E ((Mt −Ms) 1A) = 0) ⇐⇒ E(Mt | Fs) = Ms.

This ends the proof of the theorem.

By theorem 15.6.1, using (15.45) we have

E (TD | X0 = x) < ∞ =⇒ E(NTD
| X0 = x) = v(x).

In the reverse angle, by choosing (g, h, V ) = (1, 0, 0) the function (15.42) takes the
form

v(x) = E (TD | X0 = x) .

In other words, the computation of mean exit times (a.k.a. mean confinement
times) requires to solve the Dirichlet problem

{
−L(v)(x) = 1 for any x ∈ D

v(x) = 0 for any x ∈ ∂D.
(15.46)

For instance, for a one-dimensional rescaled Brownian motion Xt = x+
√
2 Wt starting

at some x ∈ D =]a, b[, we have −L(v) = −v′′ = 1. In this situation, (15.46) reverts to

v′′ = −1 with v(a) = 0 = v(b).

The solution is clearly given by the quadratic polynomial

v(x) =
1

2
(a− x) (b− x) 1[a,b](x) = E

(
T]a,b[ | X0 = x

)
.

Notice that this formula coincides with the estimate discussed in exercise 233. For more
general one-dimensional diffusions with generator

L(f) = b f ′ +
1

2
σ2 f ′′

with a smooth drift and diffusion functions (b, σ), the strategy is to introduce the function

α(x) =

∫ x

a

2b

σ2
(y) ⇒ 1

2
σ2 e−α (eα f ′)

′
= L(f).

This shows that we need to solve the equation

1

2
σ2 e−α (eα v′)

′
= −1.

The solution is given by

v′(y) = e−α(y)
[
c1 − 2

∫ y

a
σ−2(z) eα(z) dz

]

v(x) = 1[a,b](x)
{
c2 +

∫ x

a
e−α(y)

[
c1 − 2

∫ y

a
σ−2(z) eα(z) dz

]
dy

}
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with the constants c1, c2 given by the boundary conditions v(a) = c2 = 0 and

v(b) = 0 = c1

∫ b

a

e−α(y) dy − 2

∫ b

a

e−α(y)

∫ y

a

σ−2(z) eα(z) dz dy

=⇒ c1 = 2

∫ b

a

e−α(y)

∫ b

a
e−α(y′) dy′

[∫ y

a

σ−2(z) eα(z) dz

]
dy.

This implies that

E
(
T]a,b[ | X0 = x

)
= 2 1]a,b[(x)

×
∫ x

a

e−α(y)

[∫ b

a

e−α(z)

∫ b

a
e−α(z′) dz′

{∫ z

a

σ−2(s) eα(s) ds−
∫ y

a

σ−2(t) eα(t) dt

}
dz

]
dy.

Most of the time we only need to ensure that E (TD | X0 = x) < ∞. In this situation,
we can use the following simple criteria.

Lemma 15.6.2

∃ w s.t. sup
x∈D

L(w)(x) ≤ −1 and oscD(w) := sup
(x,y)∈D2

|w(x)− w(y)| < ∞

=⇒ sup
x∈Rd

E (TD | X0 = x) ≤ oscD(w).

(15.47)

Proof :
To check this claim, it clearly suffices to assume that X0 ∈ D. Using the fact that the
stopped process

w(Xt∧TD
)− w(X0)−

∫ t∧TD

0

L(w)(Xs)ds ≥ (t ∧ TD) + w(Xt∧TD
)− w(X0)

is a martingale starting at the origin, we check that

E (t ∧ TD | X0) ≤ w(X0)− E (w(Xt∧TD
) | X0) ≤ oscD(w).

Passing to the limit t ↑ ∞ with Fatou’s lemma ends the proof of the desired estimate.

For instance, for time homogeneous and pure diffusion processes with a generator
L = Lc given in (15.13) (with σt = σ and bt = b) we have

∃1 ≤ i ≤ d s.t. min
x∈D

(σσT )i,i(x) > 0 =⇒ sup
x∈Rd

E (TD | X0 = x) < ∞.

To check this claim, we let α := minx∈D(σσT )i,i(x) > 0, β := maxx∈D |bi(x)|, δ :=

minx∈D xi, δ′ = maxx∈D xi and we set w(x) := −c1 e−c2xi ∈ [−c1 e−c2δ, 0], for some
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non-negative parameters (c1, c2), and any x ∈ D. Observe that

−L(w) = c1 c2 e−c2xi

(
1

2
(σσT )i,i c2 − bi

)

≥ c1 e−c2δ
′
(
1

2
αc22 − βc2

)
= c1 e−c2δ

′ α

2

[(
c2 −

β

α

)2

−
(
β

α

)2
]
≥ 1

for well chosen parameters (c1, c2). For instance, this lower bound is satisfied for c2 =

(1 +
√
2) β/α and any c1 ≥ 2α β−2 e(1+

√
2)βδ/α. This ends the proof of the desired esti-

mate.

A weaker condition is discussed in exercise 290.
It is important to observe that we have not discussed the uniqueness properties of the

solution of (15.39). For instance when (h, g, S − D) = (0, 0, ∅) the Feynman-Kac formula
(15.43) only provides a null solution v = 0 to the equation Lv = V v, while all constant
functions v satisfy this equation. In exercise 299 we provide a non-trivial example of diffusion
and quadratic potential functions V for which a solution o Lv = V v is given by Bessel
functions of the first kind.

For diffusion generators L and constant potential functions V (x) = λ, with (h, g) = (0, 0)
but ∂D �= ∅, the Poisson-Dirichlet equation (15.38) takes the form

{
L(v)(x) = λ v(x) for any x ∈ D

v(x) = 0 for any x ∈ ∂D.

These Dirichlet equations are related to the spectrum of the operator L subject to a null
boundary condition. Another important class of equations arising in physics is given by the
same type of equation with Neuman boundary conditions

{
L(v)(x) = λ v(x) for any x ∈ D

〈∇v(x), N⊥(x)〉 = 0 for any x ∈ ∂D

where N⊥(x) stands for the outward unit normal to the boundary, and ∇v(x) stands for
the gradient of the function v. These two problems are directly related to an integration
by parts formula on manifolds discussed in (23.21). We refer to exercise 303 for a simple
illustration of these models for a 1d-Laplacian on an interval.

15.6.4 Cauchy-Dirichlet-Poisson problems

We let D be some open subset of S = Rd. We consider some functions (ft, gt) and Vt on S,
and some function ht on S −D.

The Cauchy-Dirichlet-Poisson problem consists of finding a smooth functional mapping
v : (s, x) ∈ ([0, t] × S) �→ vs(x), with a fixed time horizon t satisfying the following
equations:




∂svs(x) + Ls(vs)(x) + gs(x) = Vs(x)vs(x) for any (s, x) ∈ ([0, t]×D)
vs(x) = hs(x) for any (s, x) ∈ ([0, t]× S −D)
vt(x) = ft(x) for any x ∈ D.

(15.48)
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As in (15.40), when L is the generator of a pure diffusion process Xt, the trajectories of Xt

are continuous. In this situation, the Cauchy-Dirichlet-Poisson problem (15.48) reduces to
find a smooth continuous function v : (s, x) ∈ ([0, t] × D) �→ vs(x), with D = D ∪ ∂D,
where ∂D stands for the boundary of the set D, satisfying the equations



∂svs(x) + Ls(vs)(x) + gs(x) = Vs(x)vs(x) for any (s, x) ∈ ([0, t]×D)
vs(x) = hs(x) for any (s, x) ∈ ([0, t]× ∂D)
vt(x) = ft(x) for any x ∈ D.

(15.49)

Arguing as in the end of section 15.6.2, the Cauchy-Dirichlet-Poisson problem (15.48)
can be approximated by the discrete time model (9.48) using the potential functions and
the Markov transitions (15.37) on some time mesh.

Suppose that (15.48) has a solution vs, with 0 ≤ s ≤ t. We fix the time s, and for any
t ≥ s we set

Yt := vt(Xt) e
−

∫ t
s

Vr(Xr)dr +

∫ t

s

gr(Xr) e
−

∫ r
s

Vu(Xu)du dr.

By applying the Doeblin-Itō formula (w.r.t. the time parameter t, with s fixed) we clearly
have

dYt = e−
∫ t
s

Vr(Xr)dr [dvt(Xt)− vt(Xt) Vt(Xt) + gt(Xt)]

= e−
∫ t
s

Vr(Xr)dr [∂tvt + Lt(vt) + gt − vtVt] (Xt)︸ ︷︷ ︸
=0

dt+ e−
∫ t
s

Vr(Xr)dr dMt(v),

with the martingale dMt(v) = dvt(Xt) − [∂tvt + Lt(vt)] (Xt)dt. This shows that (Yt)t≥s

with s fixed is a martingale. We consider the stopped martingale Y
t∧T

(s)
D

, with the first exit

time of the domain D by (Xt)t≥s (after time s). We implicitly assume that T
(s)
D is a well

defined stopping time (cf. section 12.5.2).
The martingale property implies that

E
(
Y
t∧T

(s)
D

| Xs = x
)
= E

(
Y
s∧T

(s)
D

| Xs = x
)
= vs(x).

On the other hand, we have

Y
t∧T

(s)
D

= v
t∧T

(s)
D

(X
t∧T

(s)
D

) e−
∫ t∧T

(s)
D

s Vr(Xr)dr +
∫ t∧T

(s)
D

s
gr(Xr) e

−
∫ r
s

Vu(Xu)du dr

= 1
T

(s)
D >t

=ft(Xt)︷ ︸︸ ︷
vt(Xt) e−

∫ t
s
Vr(Xr)dr

+1
T

(s)
D ≤t

=h
T

(s)
D

(X
T

(s)
D

)

︷ ︸︸ ︷
v
T

(s)
D

(X
T

(s)
D

) e−
∫ T

(s)
D

s Vr(Xr)dr +
∫ t∧T

(s)
D

s
gr(Xr) e

−
∫ r
s

Vu(Xu)du dr

and ∫ t∧T
(s)
D

s

gr(Xr) e
−

∫ r
s

Vu(Xu)du dr =

∫ t

s

1
T

(s)
D >r

gr(Xr) e
−

∫ r
s

Vu(Xu)du dr.
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Whenever (15.48) is satisfied we have

vs(x) = E
(
1
T

(s)
D >t

ft(Xt) e
−

∫ t
s
Vr(Xr)dr | Xs = x

)

+ E
(∫ t

s

1
T

(s)
D >r

gr(Xr) e
−

∫ r
s

Vu(Xu)du dr | Xs = x

)

+ E
(
1
T

(s)
D ≤t

h
T

(s)
D

(X
T

(s)
D

) e−
∫ T

(s)
D

s Vr(Xr)dr | Xs = x

)
.

In particular for (g, h) = (0, 0), the solution (whenever it exists) of (15.48) is given
for any (s, x) ∈ ([0, t]× S) by the Feynman-Kac semigroup Qs,t defined by

vs(x) = Qs,t(ft)(x) := E
(
1
T

(s)
D >t

ft(Xt) e
−

∫ t
s
Vr(Xr)dr | Xs = x

)
. (15.50)

In addition, for time homogeneous functions ft = f we have the forward and
backward semigroup formulae

∂sQs,t(f)(x) = −LV
s (Qs,t(f)) (x) and ∂tQs,t(f)(x) = Qs,t

(
LV
t (f)

)
(x)
(15.51)

for any x ∈ D and s ≤ t, with the boundary conditions

Qs,s(f)(x) = f(x) = Qt,t(f)(x) and Qs,t(f)(x) = 0 as soon as x �∈ D.

In the above display LV
t stands for the Schrödinger operator defined in (15.30).

Proof :
The semigroup property in (15.50) follows from the fact that

∀0 ≤ s ≤ r ≤ t Zs,t := 1
T

(s)
D >t

e−
∫ t
s
Vτ (Xτ )dτ = Zs,r × Zr,t.

The backward equation in (15.51) is a reformulation of (15.49); the forward equation is
checked using the semigroup property

h−1 [Qs,t+h −Qs,t] = Qs,t

{
h−1 [Qt+h−h,t+h − Id]

}
→h→0 Qs,tL

V
t .

This ends the proof of (15.51).

Here again we have implicitly assumed the continuous time version of Doob’s stopping
theorem 8.4.12 presented in section 8.4.3. We leave the reader to find regularity conditions
justifying the above developments following the discussion provided in section 15.6.3.
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15.7 Some illustrations

15.7.1 One-dimensional Dirichlet-Poisson problems

This section provides explicit description of the solution of the Dirichlet-Poisson problem
(15.38) for one-dimensional diffusion processes on some bounded open interval D =]c1, c2[
(with boundary ∂D = {c1, c2}), when g = 0. We further assume that the generator of the
process has the form

L(f) = b f ′ +
1

2
σ2 f ′′

for some functions (b, σ) on R with σ(x) > 0 for any x ∈ [c1, c2].

We fix some constant c ∈ R and we set

s(x) := exp

[
−
∫ x

c

2b(y)

σ2(y)
dy

]
and S(x) =

∫ x

c

s(y)dy.

In this situation, by (15.38) for any x ∈]c1, c2[ we have

σ2(x) s(x)

(
1

s(x)

)′

= b(x)

and

1

2
σ2(x) s(x)

(
1

s(x)
v′(x)

)′

=
1

2
σ2(x) s(x)

(
1

s(x)

)′

v′(x) +
1

2
σ2(x) v′′(x)

= b(x) v′(x) +
1

2
σ2(x) v′′(x) = 0.

(
1

s(x)
v′(x)

)′

= 0 =⇒ 1

s(x)
v′(x) = α

=⇒ v′(x) = α s(x) ⇒ v(x) = α S(x) + β

for some constants α, β defined by the boundary conditions

v(c1) = α S(c1) + β = h(c1)
v(c2) = α S(c2) + β = h(c2)

}
⇒

{
α = h(c2)−h(c1)

S(c2)−S(c1)

β = h(c1)− h(c2)−h(c1)
S(c2)−S(c1)

S(c1).

We conclude that

v(x) = E (h(XTD
) | X0 = x) = h(c1) +

S(x)− S(c1)

S(c2)− S(c1)
(h(c2)− h(c1)) .
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In particular, when h = 1c2 we find that

v(x) = P (XTD
= c2 | X0 = x) =

S(x)− S(c1)

S(c2)− S(c1)
.

In addition, we have

σ = 1 b = 0 = c =⇒ s(x) = 1 ⇒ S(x) = x ⇒ v(x) = P (WTD
= c2 | X0 = x) =

x− c1
c2 − c1

where Wt stands for a Brownian motion on R.

15.7.2 A backward stochastic differential equation

Suppose that the reference process Xt of the Feynman-Kac semigroup (15.50) is a one-
dimensional diffusion with generator (14.10). In this situation, applying theorem 14.2.1 to
the function vs(x) = Qs,t(ft)(x) (with a fixed time horizon t) and recalling that

LV
s (vs) = Ls(vs)− vsVs ⇒ (∂s + Ls) vs = −LV

s (vs) + Ls(vs) = vsVs,

we find that

dvs(Xs) = (∂s + Ls) vs(Xs) ds+ ∂xvs(Xs) σs(Xs) dWs

= Vs(Xs) vs(Xs) ds+ ∂xvs(Xs) σs(Xs) dWs.

Thus, if we set
Ys = vs(Xs) and Us := ∂xvs(Xs),

we obtain the backward stochastic differential equation

∀s ∈ [0, t] dYs = Vs(Xs) Ys ds+ σs(Xs) Us dWs

with the terminal condition Yt = ft(Xt).

15.8 Exercises
Exercise 267 (Levy processes) We consider a Poisson process Nt with intensity λ > 0,
a Brownian motion Wt starting at the origin, and a sequence of independent and identically
distributed random variables Y = (Yn)n≥1 with common distribution µ on R. We assume
that (Nt,Wt, Y ) are independent. Propose a simple way to sample the Levy process

Xt = a t+ b Vt + c Wt with Vt :=
∑

1≤n≤Nt

Yn

for some given parameters (a, b, c) on a time mesh t0 = 0 ≤ t1 < . . . < tm ≤ t of a finite
horizon interval [0, t]. Compute the characteristic function φXt(u) := E(eiuXt) in terms of
φY (u) := E(eiuY ) and the parameters (a, b, c, t).
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Exercise 268 (Exponential Levy processes) We consider the Levy process Xt discussed
in exercise 267 and we set Zt = Z0 eXt , for some random variable Z0 independent of Xt.
Check that

dZt = Zt

(
a+

c2

2

)
dt+ c Zt dWt + Zt dUt with Ut =

∑
1≤n≤Nt

(
ebYn − 1

)
.

Exercise 269 (Generators of Levy processes) Describe the infinitesimal generators LX
t

and LZ
t of the Levy processes Xt and Zt discussed in exercises 267 and 268.

Exercise 270 (Doeblin-Itō formula) Consider the R-valued jump-diffusion process given
by

dXt = at(Xt) dt+ bt(Xt) dWt + ct(Xt) dNt

with some regular functions at, bt, ct on R. In the above display, Nt is a Poisson process
with intensity λt(Xt) and Wt is a Brownian motion (starting at the origin). We assume
that these processes are independent. Write the Doeblin-Itō formula for a smooth function
f(t,Xt).

Exercise 271 (Generator of jump diffusion processes) Consider the Rr-valued
jump diffusion process given by

dXt = at(Xt) dt+ bt(Xt) dWt + ct(Xt) dNt

with some regular functions at on Rr, and (r×r)-matrices bt(x), ct(x). In the above display,
Wt is an r-dimensional Brownian motion (starting at the origin), and Nt = (N i

t )1≤i≤r is
a column vector of independent Poisson processes N i

t with intensity λi
t(Xt), in the sense

that the exponential random variables (15.18) governing their jumps are independent. We
assume that these exponential random variables are independent of Wt. Write the generator
of the process Xt.

Exercise 272 (Variance - Local carré du champ decompositions) Let Xt be a Markov
process with generator Lt on some state space S. We let Ps,t the semigroup of Xt, with
s ≤ t, and we assume that Ps,t satisfies the forward and backward evolution equations
(15.16). We fix a time horizon t ≥ 0. We let ηt = Law(Xt). Check that the process
s ∈ [0, t] �→ Ms := Ps,t(f)(Xs) is a martingale w.r.t. Fs = σ(Xr, r ≤ s). Deduce that for
any sufficiently regular functions f we have

ηt
[
(f − ηt(f))

2
]
= η0

[
(P0,t(f)− η0 [P0,t(f)])

2
]
+

∫ t

0

ηs (ΓLs(Ps,t(f), Ps,t(f))) ds.

Exercise 273 (Law of large numbers - Carré du champ operators) Consider a
Markov process Xt with a generator Lt on some state space S. We let Ps,t, with s ≤ t be the
Markov semigroup of Xt and we set ηt = Law(Xt). We let ξt := (ξit)1≤i≤N be N indepen-
dent copies of Xt and we set Xt :=

∑
1≤i≤N δξit . Describe the Doeblin-Itō formula (15.22)

to the Markov process ξt ∈ SN on functions of the form f(t, ξt) = F (t,Xt(ϕ)), where ϕ is
a regular function on S and F (t, u) a regular function from [0,∞[×R into R.

• Prove that
E
([

N−1 Xt(ϕ)− ηt(ϕ)
]2)

= N−1 ηt

(
[ϕ− ηt(ϕ)]

2
)
.
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• Check that
dXt(ϕ) = Xt(Lt(ϕ)) dt+ dM

(1)
t (ϕ)

with a martingale M
(1)
t (ϕ) w.r.t. Ft = σ(ξs, s ≤ t) with angle bracket

∂t

〈
M (1)(ϕ),M (1)(ϕ)

〉
t
= Xt (ΓLt(ϕ, ϕ)) .

• Applying the Doeblin-Itō formula to the function f(s, x) =
∑

1≤i≤N Ps,t(ϕ)(xi) w.r.t.

s ∈ [0, t] prove that M (2)
s := Xs(Ps,t(ϕ)) is a martingale w.r.t. Fs, with angle bracket

∂s

〈
M (2)(ϕ),M (2)(ϕ)

〉
s
= Xs (ΓLs(Ps,t(ϕ), Ps,t(ϕ))) .

Deduce that

E
(
[Xt(ϕ)−X0(P0,t(ϕ))]

2
)
= N E

(
[ϕ(Xt)− P0,t(ϕ)(X0)]

2
)

and
E
(
[Xt(ϕ)−N ηt(ϕ)]

2
)
= N ηt

(
[ϕ− ηt(ϕ)]

2
)
.

• Check that

d (Xt(ϕ))
2
= [2 Xt(ϕ) Xt(Lt(ϕ)) + Xt (ΓLt

(ϕ, ϕ))] dt+ dM
(3)
t (ϕ)

with a martingale M
(3)
t (ϕ).

• Applying the Doeblin-Itō formula to the function f(s, x) =
(∑

1≤i≤N Ps,t(ϕ)(xi)
)2

w.r.t.
s ∈ [0, t], prove that

d (XsPs,t(ϕ))
2
= Xs (ΓLs(Ps,t(ϕ), Ps,t(ϕ)) ds+ dM (4)

s (ϕ)

with a martingale M
(4)
t (ϕ). Deduce that

E
(
(Xt(ϕ))

2
)
− E

(
(X0P0,t(ϕ))

2
)
= N E

(
[ϕ(Xt)− P0,t(ϕ)(X0)]

2
)

and
E
(
(Xt(ϕ))

2
)
= N2 (ηt (ϕ))

2
+N ηt

(
[ϕ− ηt(ϕ)]

2
)
.

Exercise 274 (Coupled jump diffusion processes - 1) We consider a jump diffu-
sion process Xt := (X1

t , X
2
t ) ∈ (Rr1 × Rr2) defined by the stochastic differential equations

{
dX1

t = a1t (X
1
t ) dt+ b1t (X

1
t ) dW

1
t + c1t (X

1
t ) dN

1
t

dX2
t = a2t (Xt) dt+ b2t (Xt) dW

2
t + c2t (Xt) dN

2
t

with ri-dimensional Brownian motions W i
t and Poisson processes N i

t with intensity λ1
t (X

1
t ),

respectively λ2
t (Xt). with some column vectors a1t (x

1), a2t (x), c1t (x
1), c2t (x) and matrices

b1t (x
1), b2t (x) with appropriate dimensions. The Brownian motions and the exponential

random variables (15.18) governing the Poisson jumps are assumed to be independent. Write
the generator of the processes X1

t and Xt.
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Exercise 275 (Coupled jump diffusion processes - 2) We consider the jump dif-
fusion process Xt := (X1

t , X
2
t ) ∈ (Rr1 × Rr2) discussed in exercise 274. We assume that

N1
t = (N1,j

t )1≤i≤r1 , respectively N2
t = (N2,j

t )1≤i≤r2 , is a column vector with independent
Poisson entries with intensities λ1,j

t (X1
t ), respectively λ2,j

t (Xt). In this situation, c1t (x
1),

and c2t (x) are (r1 × r1)-matrices and respectively (r2 × r2)-matrices. Write the generator of
the processes X1

t and Xt.

Exercise 276 (Flashing diffusions - Generator) We let Xt be a homogeneous pure jump
process taking values in {0, 1}. Given Xt we let Yt be the r-dimensional diffusion process

dYt = bt(Yt) dt+Xt σt(Yt) dWt.

In the above display, bt(y) and σt denote a smooth r-column vector and a smooth (r × r)-
matrix, respectively, and Wt is an r-dimensional Brownian motion, independent of Xt.
Write the generator of the processes Xt and Zt = (Xt, Yt). As mentioned in [185, 235],
these flashing diffusion models appear in transport phenomena in sponge-type structures.

Exercise 277 (Flashing diffusions - Fokker-Planck equation) We consider the
flashing diffusion process Zt := (Xt, Yt) ∈ ({0, 1} × Rr) discussed in exercise 276. Assume
that (Xt, Yt) has a density given by

∀x ∈ {0, 1} P(Xt = x , Yt ∈ dy) = pt(x, y) dy

where dy stands for the Lebesgue measure on Rr. Describe the (coupled) evolution equation
of the densities pt(0, y) and pt(1, y).

Exercise 278 (Merton’s jump diffusion model) We let Nt be a Poisson process with
intensity λ, and {Yn} be a sequence of i.i.d. random copies of a real valued random variable
Y . Consider the compound Poisson process Zt =

∑
1≤n≤Nt

(Yn − 1), and the R-valued
jump-diffusion process given by

dXt = a Xt dt + b Xt dWt +Xt dZt

with some parameters a, b ∈ R. We assume that Yn, Nt and the Brownian motion Wt are
independent. Compute the exact solution of this stochastic differential equation. We assume
that Yn = eVn for a sequence Vn of i.i.d. random variables. Check that

Xt = X0 exp



[
a− b2

2

]
t+ b Wt +

∑
1≤n≤Nt

Vn


.

Exercise 279 (Integration by parts) We let Nt be a Poisson process with intensity λ >

0, Wt be Brownian motion, and a
(i)
t (x), b

(i)
t (x), c

(i)
t (x) some given functions. We consider

the stochastic process Xt = (X
(1)
t , X

(2)
t ) defined for any i = 1, 2 by

{
dX

(i)
t = a

(i)
t (Xt) dt+ b

(i)
t (Xt) dNt + c

(i)
t (Xt) dWt

i = 1, 2.

Check that

X
(1)
t X

(2)
t = X

(1)
0 X

(2)
0 +

∫ t

0

X(1)
s dX(2)

s +

∫ t

0

X(2)
s dX(1)

s +
[
X(1), X(2)

]
t
+ 〈X(1), X(2)〉t

with the processes
[
X(1), X(2)

]
t
and 〈X(1), X(2)〉 defined by

[
X(1), X(2)

]
t
=

∫ t

0

b(1)s (Xs)b
(2)
s (Xs) dNs and 〈X(1), X(2)〉 =

∫ t

0

c(1)s (Xs)c
(2)
s (Xs) ds.
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Exercise 280 (Diffusions on circles) We consider a Poisson process Nt with intensity
λ > 0 and a Brownian motion Wt starting at the origin. We let Zt := (Xt, Yt) be the
two-dimensional diffusion given by the stochastic differential equations

{
dXt = −Xt dt+

√
2 Yt dWt + a(Zt) Xt dNt

dYt = −Yt dt−
√
2 Xt dWt + a(Zt) Yt dNt

for some function a from R2 into R. We let ‖Zt‖ =
√
X2

t + Y 2
t . Check that

d‖Zt‖2 = ‖Zt‖2
[
(1 + a(Zt))

2 − 1
]
dNt.

When
a(Zt) = −1 + ε

√
1 + b(Zt)/‖Zt‖2

for some ε ∈ {−1,+1} and some function b from R2 into R, prove that

d‖Zt‖2 = b(Zt) dNt

for any Zt �= (0, 0). Deduce that that the process Zt evolves on circles between the jump
times of Nt.

Exercise 281 (Regularity properties) We let Xt = X0 + σ Wt, for some initial
state X0, some parameter σ > 0 and a one-dimensional Brownian motion. We consider a
non-necessarily smooth function ft on R and we fix some final time horizon t. Check that
the function

us(x) = E [ft(Xt) | Xs = x] = E
[
ft

(
x+ σ

√
t− s W1

)]

is smooth for any s < t and it satisfies the backward equation

∂sus +
1

2
σ2∂2

xus = 0

for any s ∈ [0, t], with the terminal condition ut = ft.

Exercise 282 (Martingale design) We let Xt be some stochastic process on some state
space S with generator Lt. For ay regular functions f(t, x) and g(t, x) check that

Mt := f(t,Xt)g(t,Xt)− f(0, X0)g(t,X0)

−
∫ t

0

[f(s, .) [∂s + Ls] g(s, .) + g(s, .) [∂s + Ls] f(s, .) + ΓLs
(f(s, .), g(s, .))] (Xs) ds

is a martingale (w.r.t. Ft = σ(Xs, s ≤ t)). Deduce that

f(t,Xt) e
−λt − f(0, X0) +

∫ t

0

e−λs [λ f(s, .)− [∂s + Ls] f(s, .)] (Xs) ds

is a martingale for any λ ∈ R.

Exercise 283 (Feynman-Kac martingales) We consider the Feynman-Kac semigroup
(15.33) associated with some Markov process Xt with a generator Lt on some state space
S, and some bounded and non-negative functions Vt on S. We let f(t, x) be some regular
function on ([0,∞[×S) (the required regularity depends on the nature of the generator Lt;
for instance second order differential operators Lt act on twice differentiable functions on
S = Rd) and we set

Zs,t(f) := e−
∫ t
s
Vr(Xr)dr f(t,Xt)− f(s,Xs)−

∫ t

s

e−
∫ r
s
Vu(Xu)du

(
∂r + LV

r

)
f(r,Xr) dr
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for any s ≤ t. Check that for any s the process (Zs,t)t∈[s,∞] is a martingale w.r.t. Ft :=
σ(Xr, s ≤ t). Deduce that

∂t
(
PV
s,t(f(t, .))) = PV

s,t((∂t + LV
t )f(t, .)).

Exercise 284 (Semigroup series expansions - 1) Consider the perturbation model dis-
cussed in section 15.5.2. Using (15.25) check that for any r ≤ s0 we have

Pr,s0 =
∑
n≥0

∫ s0

r

. . .

∫ sn−1

r

P (1)
r,snL

(2)
sn P (1)

sn,sn−1
. . . L(2)

s1 P (1)
s1,s0 dsn . . . ds1.

By convention, the term of order n = 0 in the above series is equal to P
(1)
r,s0 .

Exercise 285 (Semigroup series expansions - 2) Consider the perturbation model dis-
cussed in section 15.5.2 with the jump generator (15.26). Check that

Ps,t = Qs,t +

∫ t

s

Qs,rKrPr,t dr

with the Feynman-Kac semigroup Qs,t defined in (15.27) and the integral operator Kr(f) =
λrKr(f). Check that for any r ≤ s0 we have

Ps0,t =
∑
n≥0

∫ t

s0

. . .

∫ t

sn−1

Qs0,s1Ks1Qs1,s2 . . .KsnQsn,t dsn . . . ds1.

By convention, the term of order n = 0 in the above series is equal to Qs0,t.

Exercise 286 (Semigroup series expansions - 3) Consider the perturbation model dis-
cussed in exercise 285 with a spatially homogeneous jump rate function λt(x) = λt. Prove
that for any r ≤ s0 we have

Ps0,t =
∑
n≥0

λn e−λ(t−s0)

∫ t

s0

. . .

∫ t

sn−1

P (1)
s0,s1Ks1P

(1)
s1,s2 . . .KsnP

(1)
sn,t dsn . . . ds1.

Exercise 287 (Feynman-Kac semigroup series expansions) Consider a Feynman-Kac
semigroup Qs,t associated with some reference Markov process Xt with sg Ps,t, and potential
functions Wt on some state space S; that is, for any s ≤ t we have

Qs,t(f)(x) = E
(
f(Xt) exp

(∫ t

s

Wu(Xu)du

)
| Xs = x

)
.

We denote by W t the multiplication operator W t(f) = Wtf . Arguing as in the proof of
(15.34) check that

Qs,t = Ps,t +

∫ t

s

Qs,s1W s1Ps1,t ds1.

Prove that for any r ≤ s0 we have

Qr,s0 =
∑
n≥0

∫ s0

r

. . .

∫ sn−1

r

Pr,snW snPsn,sn−1
. . .W s1Ps1,s0 dsn . . . ds1.

By convention, the term of order n = 0 in the above series is equal to Ps0,t.
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Exercise 288 (Feynman-Kac martingales - Switching processes [121]) We let S1 =
Z/mZ = {0, 1, . . . ,m− 1} be the cyclic group equipped with the addition i+ j mod(m), and
S2 some state space. We consider a potential function v : i ∈ S1 �→ v(i) ∈ R. We extend v
to the product space S = (S1 × S2) by setting V (i, y) = v(i), for any x = (i, y) ∈ (S1 × S2).
Let Xt = (It, Yt) be a Markov process on the product space S = (S1 ×S2) with infinitesimal
generator defined for any regular functions f on (S1 × S2) and any x = (i, y) ∈ (S1 × S2)
by

L(f)(x) = Li(f(i, .))(y) + w(i) (f(i+ 1, y)− f(i, y))

where Li stands for a collection of generators indexed by i ∈ S1, and w(i) ≥ 0 some rate
functions on S1. We set

〈v, It〉 :=
∑
i∈S1

v(i) I
i

t(i) with I
i

t(i) :=

∫ t

0

1Is=i ds

and

Lv−w
i (f(i, .)) := Li(f(i, .))(y) + (v(i)− w(i)) f(i, y).

Check that

〈v, It〉 =
∫ t

0

V (Xs) ds

and deduce that the process

Zt(f) = e〈v,It〉 f(Xt)− f(X0)−
∑
i∈S1

∫ t

0

e〈v,Is〉

×
[
w(i) f(i+ 1, Ys) + Lv−wf(i, Ys)

]
1Is=i ds

is a martingale w.r.t. Ft := σ(Xr, s ≤ t).

Exercise 289 (Feynman-Kac switching processes [121]) We consider the Feynman-
Kac switching process discussed in exercise 288. We let f(i, y), 0 ≤ i < m be the collection
of functions defined by the induction

f(0, .) := g

w(0) f(1, .) := −Lv−wf(0, .)
... =

...
w(m− 2) f(m− 1, .) := −Lv−wf(m− 2, .) = (−1)m−1

(
Lv−w
m−2 . . .L

v−w
0

)
(g)

for some initial condition g. We let h be the function defined by

h := −w(m− 1) f(0, .)− Lv−wf(m− 1, .) = (−1)m
(
Lv−w
m−1 . . .L

v−w
0

)
(g)− w(m− 1) g.

Check that

e〈v,It〉 f(It, Yt)− f(I0, Y0) +

∫ t

0

e〈v,Is〉 h(Ys) 1Is=m−1 ds

is a martingale (w.r.t. Ft := σ(Xr, s ≤ t)).
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Exercise 290 (Diffusion exit times) Consider the diffusion processes Xt with generator
Lt = Lc

t given in (15.13), starting at X0 ∈ D for some bounded open subset D of Rd. We let
TD the first time Xt exits D. Assume that for any x = (xi)1≤i≤d ∈ D, any y = (yi)1≤i≤d ∈
Rd and any t ≥ 0 we have

∑
1≤i,j≤d

(
σt(x)σ

T
t (x)

)
i,j

yi yj ≥ ρ ‖y‖21

for some ρ, with the L1-norm ‖y‖21 =
∑

1≤i≤d |yi|. Also assume that

‖b‖D = max
1≤i≤d

sup
t≥0

sup
x∈D

|bit(x)| < ∞ and set wc,y(x) := −c exp


−

∑
1≤i≤d

yi xi


.

for some non-negative parameters c and (yi)1≤i≤d, and for any x ∈ D

• Check that

−Lt(wc,y)(x) ≥ c e−‖y‖1δ ‖y‖1 [ρ‖y‖1 − ‖b‖D]

with δ = max1≤i≤d supx∈D xi.

• Prove that

‖y‖1 = ρ−1 [1 + ‖b‖D] and c = e‖y‖1δ ‖y‖−1
1 ⇒ −Lt(wc,y)(x) ≥ 1.

Using lemma 15.6.2 deduce that supx∈Rd E (TD | X0 = x) ≤ oscD (wc,y).

Exercise 291 (Martingale stopping) Let Mt be a martingale w.r.t. some filtration Ft

with angle bracket 〈M,M〉t s.t. |〈M,M〉t − 〈M,M〉s| 1s∨t≤T ≤ c |t− s|, for some constant
c, and some stopping time T s.t. E(T ) < ∞. Check that Mt∧T is a Cauchy sequence in
L2(P) and deduce that Mt∧T converges in L2(P) to MT and E(MT ) = 0. Apply this result
to the martingale

Mt =

∫ t

0

Xs dWs

where Wt is a one-dimensional Brownian motion and Xs some real valued stochastic process
adapted to Ft = σ(Ws, s ≤ t) (in the sense that Xt is an Ft-measurable random variable)
s.t. |Xt∧T | ≤ c for some finite constant c.

Exercise 292 (Cauchy problem with terminal condition) We consider the semigroup
Ps,t of a jump diffusion process with generator Lt on Rr, for some r ≥ 1. We let f : (t, x) ∈
([0,∞[×Rr) �→ ft(x) ∈ R and g : (t, x) ∈ ([0,∞[×Rr) �→ gt(x) ∈ R be some smooth and
bounded functions. We fix the time horizon t and for any s ∈ [0, t] we set

vs(x) = Ps,t(ft)(x) +

∫ t

s

Ps,u(gu)(x) du = E
(
f(Xt) +

∫ t

s

gu(Xu) du | Xs = x

)
.

Using the backward equation (15.16) check that vs satisfies the integro-differential equation

∀s ∈ [0, t] ∂svs + Lsvs + gs = 0

with terminal condition vt = ft.
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Exercise 293 (Cauchy problem with initial condition) We consider a time homoge-
neous Markov process Xt with generator L on some state space S. We let f and g be a
couple of regular functions on S. Check that

wt(x) := E
(
f(Xt) +

∫ t

0

gs(Xt−s) ds | X0 = x

)

satisfies the equation
∂twt = Lwt + gt

with the initial condition w0 = f .

Exercise 294 (Killed processes - Feynman-Kac semigroups) We consider the Feyn-
man-Kac semigroup Qs,t := PV

s,t presented in (15.33), and we let η0 = Law(X0). We in-
troduce the positive measures γt and their normalized version ηt defined for any bounded
function f on Rd by

ηt(f) = γt(f)/γt(1) and γt(f) := E
(
f(Xt) exp

(
−
∫ t

0

Vu(Xu)du

))
.

Check that

∀s ≤ t γt = γsQs,t and γt(1) := exp

(
−
∫ t

0

ηs(Vs) ds

)
.

Deduce that for any bounded and smooth function f on Rd we have

∂tηt(f) = ηt(Lt(f)) + ηt(f)ηt(Vt)− ηt (fVt) .

Exercise 295 (Embedded Markov chains) Consider the processes (Xt, X
(1)
t , X

(2)
t ) dis-

cussed in section 15.5.2 with the generator of X(2)
t given by the jump generator (15.26).

Between these jump times the process evolves (as X
(1)
t ) according to the generator L

(1)
t .

We let Tn be the jump times of the process Xt arriving at rate λt(Xt). We assume that
Tn ↑ ∞ (a.k.a. no explosion). Describe the Markov transition K of the Markov chain
Yn = (Tn, XTn

).
For time homogeneous models check that K((s, x), d(t, y)) does not depend on the param-

eter s. Describe the Markov transition M of the Markov chain Zn = XTn . Examine the
time homogeneous situation with a constant rate function λ(x) = λ > 0.

Exercise 296 (Embedded Markov chain - Stability) Consider the time homogeneous
embedded Markov chains discussed in exercise 295. Assume that λ� ≤ λ(x) ≤ λ� for some
positive and finite parameters λ� and λ�. Also assume that K(x, dy) ≥ ε ν(dy) for some
ε > 0 and some probability measure ν on S. Check that the Markov transition M of the
embedded chain Zn = XTn

satisfies the minimization condition

M(x, dy) ≥ (λ�/λ
�) ν(dy).

Deduce that the law of Zn converges exponentially fast to a unique invariant measure π =
πM.

Exercise 297 (Embedded Markov chain - Invariant measures) Consider the time ho-
mogeneous embedded Markov chains discussed in exercise 296. Consider the integral oper-
ator Q defined by

Q =

∫ ∞

0

Qt dt

(
⇔ ∀(f, x) Q(f)(x) =

∫ ∞

0

Qt(f)(x) dt

)
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with the Feynman-Kac semigroup

Qt(f)(x) = E
(
f(X

(1)
t ) exp

(
−
∫ t

0

λ(X(1)
s ) ds

)
| X(1)

0 = x

)
.

Check that M(f) = Q(λK(f)). Using the evolution equations (15.31) check that M− Id =
QL and deduce that the the invariant probability measure µ of Xt and the one π of XTn are
connected by the formula µ(f) = π(Q(f))/π(Q(1)).

Exercise 298 (Hit-and-run jump processes) Let Xt be a Markov process evolving in
some state space S. When Xt it some subset D ⊂ S it jumps according to some Markov
transition Kt(x, dy) from D into S −D. We set LD

s = Ks − Id. Between these jumps Xt

evolves as a stochastic process with generator Lt. Let Tn be the n-th time the process Xt

hits the set D, with the convention T0 = 0, and we set µD :=
∑

n≥1 δTn−. Prove that

f(Xt)− f(X0)−
∫ t

0

[
Ls(f)(Xs) ds+ LD

s (f)(Xs) µ
D(ds)

]

is a martingale. For time homogeneous models (Lt,Kt, L
D
t ) = (L,K,LD) and functions f

s.t. f = K(f), check that f(Xt)− f(X0)−
∫ t

0
Ls(f)(Xs) ds is a martingale.

Exercise 299 (Bessel functions) We consider the generator L of the diffusion pro-
cess

dXt = Xt dt+
√
2 Xt dWt

with a Brownian motion Wt. We consider the potential function V (x) = (n−x)(n+x), for
some integer n ≥ 0. Check that a solution of the Poisson equation L(v) = v V is given by
the n-th Bessel function

Bn(x) :=
(x
2

)n ∑
i≥0

(−1)i

i!(n+ i)!

(x
2

)2i

.

Exercise 300 (Average survival time) We let Wt a one-dimensional Brownian motion
(starting at the origin), and we set Xt = X0 +Wt for some initial condition X0. Let D be
an open and bounded subset of R. We let TD be the (first) time Xt exits the set D. Check
that the solution of the Dirichlet-Poisson problem

{
1
2∂

2
xv(x) = −g(x) for any x ∈ D
v(x) = 0 for any x ∈ ∂D

is given by

v(x) = E

(∫ TD

0

g(Xs) ds | X0 = x

)
.

Deduce that the solution of
{

1
2∂

2
xv(x) = −1 for any x ∈ D
v(x) = 0 for any x ∈ ∂D

is given by v(x) = E(TD | X0 = x).
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Exercise 301 (Biharmonic functions) Let D be an open and bounded subset of Rr, for
some r ≥ 1, and (f, g) a couple of functions on the boundary ∂D. We also let Wt be an
r-dimensional Brownian motion (starting at the origin), and we set Xt = X0+Wt for some
initial condition X0. Check that

Nt(u) = u(Xt)− u(X0)− tL(u)(Xt) +

∫ t

0

s L2(u)(Xs)ds with L :=
1

2

∑
1≤i≤r

∂2
xi

is a martingale w.r.t. Ft = σ(Xs, s ≤ t). We let TD be the first time Xt exits D. Deduce
that the solution of the problem

{
L2u(x) = 0 if x ∈ D

(u(x), Lu(x)) = (f(x), g(x)) if x ∈ ∂D

is given by
u(x) = E (f(XTD

)− TD g(XTD
) | X0 = x) .

Exercise 302 (Brownian motion - Exit time distribution) Let Wt be Brownian mo-
tion and W0 = 0 ∈ D =] − a, a[⊂ R for some a > 0. We let T x

D be the first time
Xt := x + σ Wt exits the interval D � x. Using (15.50) check that the solution of the
Cauchy problem




∂tvt(x) = 2−1σ2 ∂2
xvt(x) for any (t, x) ∈ ([0,∞[×]− a, a[)

v0(x) = 1 for any x ∈]− a, a[
vt(x) = 0 for any x ∈ {+a,−a}

is given by
vt(x) = P(TD > t | X0 = x).

Check that the solution of the above problem is given by the formula

vt(x) =
4

π

∑
n≥0

(−1)n

2n+ 1
cos

(
(2n+ 1)

π

2

x

a

)
exp

(
−σ2

2

(
(2n+ 1)

π

2

1

a

)2

t

)
.

Exercise 303 (Dirichlet and Neuman boundary conditions on an interval) We con-
sider the generator L = ∂2

x of a rescaled Brownian motion Xt :=
√
2 Wt. We let D = [0, a]

to be some compact interval for some a > 0.

• Check that

vn(x) := sin (nπx/a) ⇒ L(vn) = λn vn with λn = −(nπ/a)2

and vn(x) = 0 for any x ∈ ∂D = {0, a}, with n ≥ 1.

• Check that

vn(x) := cos (nπx/a) ⇒ L(vn) = λn vn with λn = −(nπ/a)2

and v′n(x) = 0 for any x ∈ ∂D = {0, a}, with n ≥ 1.

Exercise 304 (Dirichlet and Neuman boundary conditions on a cell) We consider
the generator L = ∂2

x1
+ ∂2

x2
of a rescaled Brownian motion Xt :=

√
2 (W 1

t ,W
2
t ). We let

D = ([0, a1]× [0, a2]) be a cell in R2 for some a1, a2 > 0.
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• Check that for any n = (n1, n2) ∈ (N− {0})2 and x = (x1, x2) ∈ D we have

vn(x) := sin (n1πx1/a1) sin (n2πx2/a2)

⇒ L(vn) = λn vn with λn = −
[
(n1π/a1)

2 + (n2π/a2)
2
]

and vn(x) = 0 for any x ∈ ∂D.

• Check that for any n = (n1, n2) ∈ (N− {0})2 and x = (x1, x2) ∈ D we have

vn(x) = cos (n1πx1/a1) cos (n2πx2/a2)

⇒ L(vn) = λn vn with λn = −
[
(n1π/a1)

2 + (n2π/a2)
2
]

and 〈∇v(x), N⊥(x)〉 = 0 for any x ∈ ∂D.

Exercise 305 (Heat equation - Boundary conditions - 1) Let Wt be Brownian mo-
tion and W0 = 0 ∈ D =]0, a[⊂ R for some a > 0. We let T x

D be the first time Xt := x+σ Wt

exits the interval D � x. Using (15.50) check that the solution of the Cauchy problem



∂tvt(x) = 2−1σ2 ∂2
xvt(x) for any (t, x) ∈ ([0,∞[×]0, a[)

v0(x) = f for any x ∈]0, a[
vt(x) = 0 for any x ∈ {0, a}.

is given by
vt(x) = E (1TD>t f(Xt)| X0 = x) .

Check that the solution of the above problem is given by the formula

vt(x) =
∑
n≥1

[
2

a

∫ a

0

f(x) sin (nπx/a) dx

]
eσ

2λnt/2 sin (nπx/a)

with λn := − (nπ/a)
2. Examine the situations f(x) = sin (x) with a = π, and f(x) =

x(1− x) with a = 1.

Exercise 306 (Heat equation - Boundary conditions - 2) Consider the diffusion model
discussed in exercise 305 with a = 1. We let Qt be the Feynman-Kac semigroup

Qt(f)(x) = E (f(Xt) 1TD>t | X0 = x0) =

∫ 1

0

qt(x, y) f(y) dy

defined for any x ∈ D and any function f . In the above display, we assumed implicitly that
Qt has a density function qt(x, y) w.r.t. the Lebesgue measure dy. Check that

∂tqt(x, y) =
1

2
∂2
yqt(x, y)

with the boundary conditions qt(x, 0) = qt(x, 1) = 0. Check that

qt(x, y) =
∑
n≥1

exp
[
−(nπσ)2 t/2

]
sin (nπx) sin (nπy).



16
Nonlinear jump diffusion processes

The results from the previous chapter 15 are extended now to nonlinear Markov processes
in section 16.1 and their mean field particle interpretations in section 16.2. The usefulness
of these models is illustrated by some applications in systemic risk analysis as demonstrated
in the description of the Fouque-Sun model and also in fluid mechanics and particle physics.

Great things are done by a series of small things brought together.
Vincent Van Gogh (1853-1890).

16.1 Nonlinear Markov processes

We let Xt be a jump diffusion process
on Rd, with the infinitesimal generator Lt

defined in (15.13). We recall that ηt =
Law(Xt) satisfies the equation (15.20). We
further assume that the parameters

(bt, σt, λt,Kt) =
(
bt,ηt

, σt,ηt
, λt,ηt

,Kt,ηt

)

depend on the distribution ηt. With a slight
abuse of notation, we let Lt,ηt be the opera-
tor defined as Lt by replacing (bt, σt, λt,Kt)

by
(
bt,ηt

, σt,ηt
, λt,ηt

,Kt,ηt

)
. For instance, given some functions b̃t and σ̃t on (Rd)2, we can

choose
bt,ηt

(x) =

∫
b̃t(x, y) ηt(dy) and σt,ηt

(x) =

∫
σ̃t(x, y) ηt(dy). (16.1)

We further assume that these functionals are sufficiently regular so that the process Xt with
generator Lt,ηt is a well defined stochastic process on Rd. In this context, ηt = Law(Xt)
satisfies the nonlinear evolution equation

d

dt
ηt(f) = ηt(Lt,ηt(f)) (16.2)

for any smooth function f on Rd. The process Xt is often called a McKean interpretation
of the nonlinear equation (16.2).

16.1.1 Pure diffusion models

For pure diffusion processes (that is when λt,ηt
= 0) with a drift and diffusion functionals

(bt,ηt
, σt,ηt

) given in (16.1), Lt,ηt
is the infinitesimal generator of the nonlinear diffusion

463
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model Xt =
(
X

i

t

)
1≤i≤d

is given for any 1 ≤ i ≤ d by

dX
i

t =

[∫
b̃it(Xt, y) ηt(dy)

]
dt+

∑
1≤j≤d

[∫
σ̃i
j,t(Xt, y) ηt(dy)

]
dW j

t . (16.3)

In the above formula,
(
W i

)
1≤i≤d

is a d-dimension Brownian motion. In flip mechanics and
applied probability literature, these models are often called McKean-Vlasov diffusions.

16.1.2 Burgers equation

We consider the nonlinear model (16.3) on R with

b̃t(x, y) = 1[x,∞[(y) and σ̃t(x, y) = σ > 0.

In this situation, the law of the random states

P
(
Xt ∈ dx

)
= pt(y) dy

has a smooth density pt(y) w.r.t. the Lebesgue measure dy on Rd. In addition, in this
context pt satisfies the Fokker-Planck equation (15.21) given by

∂pt
∂t

= −∂x (Vt pt) +
1

2
∂x,xpt

with
Vt(x) :=

∫
b̃t(x, y) ηt(dy) =

∫ ∞

x

pt(y)dy =⇒ ∂xVt = −pt.

This implies that

∂tpt = −∂t∂xVt = −∂x ∂tVt

= −∂x (Vt pt) +
σ2

2
∂x,xpt = ∂x

[
Vt ∂xVt − σ2

2
∂x,xVt

]
.

In other words, Vt satisfies the Burgers equation

∂tVt = −Vt ∂xVt +
σ2

2
∂x,xVt. (16.4)

Our next objective is to provide a more explicit description of Vt. To this end, we recall
that the solution of the heat equation

∂tqt =
σ2

2
∂x,xqt

is given by the Gaussian density qt(x) =
1√

2πσ2t
exp

(
− x2

2σ2t

)
. We denote by

Ut(x) :=

∫
U0(y) qt(x− y) dy

the transport equation associated with the heat equation. Next, we show that

Vt = −σ2∂x log(qt)
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is a solution of the Burgers equation (16.4). To check this claim, we observe that

Vt = −σ2 ∂xqt
qt

⇒ Vt∂xqt + qt∂xVt = −σ2∂x,xqt

⇒ V 2
t − σ2∂xVt = σ4 ∂x,xqt

qt

⇒ 2Vt∂xVt − σ2∂x,xVt = σ4∂x

(
∂x,xqt
qt

)
.

We also notice that

σ2∂x

(
∂x,xqt
qt

)
= σ2 ∂x,x,xqt

qt
− σ2 ∂xqt

qt

∂x,xqt
qt

= σ2 ∂x,x,xqt
qt

+ Vt
∂x,xqt
qt

= − 2

σ2
∂tVt.

The last assertion follows from the fact that

∂tVt = −σ2∂t

(
1

qt
∂xqt

)
= σ2 1

q2t
∂tqt ∂xqt − σ2 1

qt
∂x∂tqt

=
σ2

2

(
∂x,xqt
qt

σ2 ∂xqt
qt

− σ2 ∂x,x,xqt
qt

)

= −σ2

2

(
∂x,xqt
qt

Vt + σ2 ∂x,x,xqt
qt

)
.

This shows that Vt = −σ2∂x log(qt) satisfies (16.4), so that Vt = −σ2∂x log(Ut) also satisfies
the Burgers equation (16.4).

We also observe that

V0 = −σ2∂x log(U0) ⇒ ∂xU0 = − 1

σ2
V0 U0 ⇒ U0(x) = U0(0)× exp

{
− 1

σ2

∫ x

0

V0(y)dy

}
.

By a simple integration by part, this implies that

∂xUt(x) =

∫
U0(y) ∂xqt(x− y) dy

= − U0(0)√
2σ2πt

∫
e−

1
σ2

∫ y
0

V0(z)dz ∂ye
− (x−y)2

2σ2t dy

=
U0(0)√
2σ2πt

∫
∂y

(
e−

1
σ2

∫ y
0

V0(z)dz
)

e−
(x−y)2

2σ2t dy

and
−σ2∂xUt(x) =

U0(0)√
2σ2πt

∫
V0(y) e

− 1
σ2

∫ y
0

V0(z)dz− (x−y)2

2σ2t dy

from which we conclude that

Vt(x) = −σ2∂x log(Ut)(x) =

∫
V0(y) e

− 1
σ2

∫ y
0

V0(z)dz− (x−y)2

2σ2t dy
∫
e−

1
σ2

∫ y
0

V0(z)dz− (x−y)2

2σ2t dy
.

This shows that

Vt(x) =
E
(
1]−∞,0](x+ σWt) e

− 1
σ2

∫ x+σWt
0 1]−∞,0](y)dy

)

E
(
e−

1
σ2

∫ x+σWt
0 1]−∞,0](y) dy

) .
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16.1.3 Feynman-Kac jump type models

We consider the nonlinear jump model associated with drift-diffusion functions

(̃bt(x, y), σ̃t(x, y)) = (bt(x), σt(x))

that only depend on the first coordinate, and a jump part given by

λt,ηt
(x) := Vt(x) and Kt,ηt

(x, dy) = ηt(dy).

In this situation, we have

Lt,ηt
(f)(x) = Lc

t(f)(x) + Vt(x)
∫

(f(y)− f(x)) ηt(dy)

⇒ d

dt
ηt(f) = ηt (Lt,ηt

(f)) = ηt [L
c
t(f)− Vt[f − ηt(f)]] = ηt [L

c
t(f)− [Vt − ηt(Vt)]f ] ,

(16.5)
with the generator Lc

t defined in (15.13).

We consider the Feynman-Kac measures

γt(f) := η0
(
PV
0,t(f)

)
= E

(
f(Xt) exp

{
−
∫ t

0

Vs(Xs)ds

})

with the semigroup PV
0,t defined in (15.5) with λt = Vt. In the above formula,

Xt = ϕ0,t(X0) denotes a diffusion process with infinitesimal generator Lc
t := L0

t

and initial distribution Law(X0) = η0.
We let ηt be the normalized distribution defined for any bounded function f on
Rd by

ηt(f) := γt(f)/γt(1).

Using the equation (13.20), which is valid for jump diffusion processes with the operator
Lλ
t defined in (15.7) (following the remark we made on page 427), we have

d

dt
γt(f) = γt [L

c
t(f)− Vtf ] . (16.6)

We also notice that
d

dt
log γt(1) =

1

γt(1)
E
(
Vt(Xt) e

−
∫ t
0
Vs(Xs)ds

)
= γt(Vt)/γt(1) = ηt(Vt).

This implies that

γt(1) = exp
{
−
∫ t

0
ηs(Vs) ds

}

=⇒ ηt(f) = E
(
f(Xt) exp

{
−
∫ t

0
[Vs(Xs)− ηs(Vs)] ds

})

as well as

γt(f) = ηt(f)× exp

{
−
∫ t

0

ηs(Vs) ds

}
. (16.7)
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By replacing Vt by [Vt − ηt(Vt)] in (16.6), we prove that the normalized measure ηt
satisfies (16.5). We can alternatively apply the forward evolution equations (15.31) to the
measures γt(f) := η0

(
PV
0,t(f)

)
with the initial condition η0 = δx.

The flow of measures ηt = Law(Xt) can be interpreted as the distributions of the random
states Xt of a jump type Markov process.

Between the jumps, Xt follows the diffusion Xt with generator Lc
t . At jump times

Tn, occurring with the stochastic rate Vt(Xt), the process XTn− � XTn jumps to a new
location, randomly chosen with the distribution ηTn−(dy).

The same formulae remain valid if we consider a Markov process Xt with some
generator Lt on some state space S. In this situation, Vt is a non-negative potential
function on S and we also have the nonlinear evolution equations

∂tγt(f) = γt(L
V
t (f))

∂tηt(f) = ηt(Lt(f)) + ηt(Vt)ηt(f)− ηt(Vtf) = ηt (Lt,ηt
(f)) (16.8)

with the collection of generators

LV
t (f) = Lt(f)−Vtf and Lt,ηt(f)(x) = Lt(f)(x)+V (x)

∫
(f(y)−f(x)) ηt(dy).

For a more detailed discussion on these models and their applications in physics and molec-
ular chemistry, we refer to chapter 27. Section 15.6.1 also provides an interpretation of
Feynman-Kac measures in terms of jump diffusion processes with killing. We also refer to
exercises 307 and 308 for an analytic description of these measures for two-state models.

16.1.4 A jump type Langevin model

We consider a non-homogeneous overdamped Langevin diffusion on an energy landscape
associated with a given energy function V ∈ C2(Rd,R+) on S = Rd, for some d ≥ 1. This
model is defined by the following diffusion equation

dXt = −βt ∇V (Xt) +
√
2 dBt

where ∇V denotes the gradient of V , β is an inverse temperature parameter, and Bt is a
standard Brownian motion on Rd. The infinitesimal generator associated with this contin-
uous time process is given by the second order differential operator

Lc
βt

= −βt ∇V · ∇+¥

with the Laplacian operator ¥ =
∑

1≤i≤d ∂i,i.
Under some regularity conditions on V , for any fixed βt = β, the diffusion Xt is geo-

metrically ergodic with an invariant measure given by

dπβ =
1

Zβ
e−βV dλ (16.9)

where λ denotes the Lebesgue measure on Rd, and Zβ is a normalizing constant. When the
inverse temperature parameter βt depends on the time parameter t, the time inhomogeneous
diffusion Xt has a time inhomogeneous generator Lβt

.
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We further assume that πβ0
= Law(X0), and we set β′

t :=
dβt

dt . By construction, we have

d

dt
πβt(f) = β′

t (πβt(V )πβt(f)− πβt(fV )) and πβtLβt = 0.

This implies that πβt
satisfies the Feynman-Kac evolution equation in (16.5) (by replacing

Vt by β′
tV ). More formally,

d

dt
πβt(f) = πβt (Lβt(f)) + β′

t (πβt(V )πβt(f)− πβt(fV ))

from which we conclude that

πβt(f) = ηt(f) := γt(f)/γt(1) with γt(f) := E
(
f(Xt) exp

(
−
∫ t

0

β′
s V (Xs)ds

))
.

(16.10)
It is also easily checked that

γt(1) := E
(
exp

(
−
∫ t

0

β′
s V (Xs)ds

))
= exp

(
−
∫ t

0

β′
s ηs(V )ds

)
= Zβt/Zβ0 .

This formula is known as the Jarzinsky identity [48, 49, 157, 158]. In statistical physics,
the weight functions

Vt(X) =

∫ t

0

β′
s V (Xs) ds

represent the out-of-equilibrium virtual work of the system at the time horizon t.
In summary, we have described a McKean interpretation of Boltzmann-Gibbs measures

(16.9) associated with some non-decreasing inverse cooling schedule. In this situation, the
flow of measures

ηt := πβt
= Law(Xt)

can be interpreted as the distributions of the random states Xt of a jump type Markov
process. Between the jumps, Xt follows the Langevin diffusion equation (23.32). At jump
times Tn, with the stochastic rate β′

tVt(Xt), the process XTn− � XTn
jumps to a new site,

chosen randomly according to the distribution ηTn−(dy).

16.2 Mean field particle models
The N -mean field particle interpretation associated with the nonlinear evolution equation
(16.2) is of a Markov chain ξ

(N)
t := (ξ

(i,N)
t )1≤i≤N on the product state space (Rd)N , with

infinitesimal generator defined, for sufficiently regular functions F on (Rd)N , by the formulae

Lt(F )(x1, . . . , xN ) :=
∑

1≤i≤N

L
(i)
t,m(x)(F )(x1, . . . , xi, . . . , xN ). (16.11)

In the above display, m(x) := 1
N

∑
1≤i≤N δxi denotes the occupation measure of the pop-

ulation x = (xi)1≤i≤N ∈ (Rd)N ; and for any probability measure η on Rd, L
(i)
t,η stands for

the operator Lt,η acting on the function xi �→ F (x1, . . . , xi, . . . , xN ) (the other coordinates
(xj)j �=i being fixed). In other words, every individual ξit follows a jump diffusion model
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defined as the McKean process Xt by replacing the unknown measures ηt by their particle
approximations ηNt = 1

N

∑N
j=1 δξ(j,N)

t
.

Assuming that the size of the population N is fixed, to simplify notation we often
suppress the upper index N and write ξt := (ξit)1≤i≤N instead of ξ(N)

t := (ξ
(i,N)
t )1≤i≤N .

Using (16.5), the generator associated with the Feynman-Kac jump process discussed in
section 16.1.3 is given for any sufficiently regular function F by the formula

L
(i)
t,m(x)(F )(x1, . . . , xN )

:=
∑

1≤i≤N

L
c,(i)
t (F )(x1, . . . , xi, . . . , xN ) +

∑
1≤i≤N

Vt(x
i)

×
∫ [

F (x1, . . . , xi−1, y, xi+1, . . . , xN )− F (x1, . . . , xi, . . . , xN )
]
m(x)(dy)

(16.12)
with m(x) := 1

N

∑N
j=1 δxj . By construction, between jumps the particles evolve indepen-

dently as a diffusion process with generator Lc
t . At rate Vt, the particles jump to a new,

randomly selected location in the current population.
Using Ito’s formula we have

dF (ξt) = Lt(F )(ξt) dt+ dMt(F )

for some martingale Mt(F ) with predictable increasing process defined by

〈M(F )〉t :=
∫ t

0

ΓLs (F, F ) (ξs) ds.

We recall that the carré du champ operator ΓLs
associated to Ls is defined by

ΓLs
(F, F ) (x) := Ls

[
(F − F (x))

2
]
(x) = Ls(F

2)(x)− 2F (x)Ls(F )(x).

For empirical test functions of the form

F (x) = m(x)(f) =
1

N

N∑
i=1

f(xi)

with some sufficiently smooth function f , we find that

Ls(F )(x) = m(x)(Ls,m(x)(f))

ΓLs
(F, F ) (x) =

1

N
m(x)

(
ΓLs,m(x)

(f, f)
)
. (16.13)

From this discussion, it should be clear that

ηNt :=
1

N

∑
1≤i≤N

δξit =⇒ dηNt (f) = ηNt (Lt,ηN
t
(f)) dt+

1√
N

dMN
t (f) (16.14)

with the martingale
MN

t (f) =
√
N Mt(F ). (16.15)

The predictable angle bracket is given by

〈MN (f)〉t :=

∫ t

0

ηNs

(
ΓLs,ηN

s
(f, f)

)
ds.

From the r.h.s. perturbation formulae (16.14), we conclude that ηNt “almost solves," as
N ↑ ∞, the nonlinear evolution equation (16.2).
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For instance, for the Feynman-Kac jump process discussed above and in sec-
tion 16.1.3, using (16.7) we have

ηNt (f) �N↑∞ ηt(f)

γN
t (f) := ηNt (f)× exp

{
−
∫ t

0

ηNs (Vs) ds

}
�N↑∞ γt(f). (16.16)

We can also check that γN
t (f) is unbiased (in the sense that E

(
γN
t (f)

)
= γt(f)).

For a more thorough discussion on these continuous time models, we refer the reader to
the review article [76], and the references therein.

16.3 Some application domains

16.3.1 Fouque-Sun systemic risk model

We consider the log-monetary reserves (ξit)1≤i≤N of N banks. The inter-bank exchanges
(borrowing and lending) are represented by the diffusion equation

dξit =
α

N

∑
1≤j≤N

(ξjt − ξit) dt+ σ dW i
t

where (W i
t )1≤i≤N are N independent Brownian motions, and α and σ are fixed parameters.

This model is the mean field approximation of the nonlinear process (16.3) associated with
the parameters

b̃t(x, y) = α× (y − x) σ̃t(x, y) = σ and λt(x) = 0.

The model has been introduced by J.P. Fouque and L.H. Sun in [130] (see also [40] for a
mean field game interpretation of this model). Simulations show that stability is created
by increasing the parameter α. Nevertheless the systemic risk is also increased when α is
large.

The following two graphs illustrate Euler type discrete time approximations of the model
with 10 banks when α = 100 and α = 0, respectively.
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16.3.2 Burgers equation

The mean field particle interpretation of the Burgers model from section 16.1.2 is given for
any 1 ≤ i ≤ N by the interacting diffusion equations:

dξit =
1

N

∑
1≤j≤N

1[ξit,∞[(ξ
j
t ) dt+ σ dW i

t

where again (W i
t )1≤i≤N are N independent Brownian motions. In this case, we have

V N
t (x) :=

1

N

∑
1≤j≤N

1[x,∞[(ξ
j
t ) �N↑∞ V (x).

The following graphs illustrate these three approximations. The top l.h.s graph compares
the exact solution with the mean field particle estimate based on Euler type scheme with
N = 100 particles and a ∆t = .01 time step. The top r.h.s. represents the exact values on
the simulated states, and the bottom graph compares the crude Monte Carlo method with
the exact solution.
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16.3.3 Langevin-McKean-Vlasov model

The Langevin-McKean-Vlasov model is a stochastic gradient process on R associated with
some smooth energy function V , coupled with an attraction or repulsion force around
ensemble averages. This model is defined by N interacting diffusion processes

dξi(t) = −β ∂xV (ξit)dt+ α


 1

N

∑
1≤j≤N

ξjt − ξit


 dt+ σ dW i

t

with (W i
t )1≤i≤N being N independent Brownian motions, and α, β and σ as fixed param-

eters. This model was introduced by S. Herrmann, and J. Tugaut in [151] and coincides
with the mean field particle interpretation of the nonlinear model (16.1) on R with

b̃t(x, y) = −β V ′(x) + α× (y − x) σ̃t(x, y) = σ > 0 and λt(x) = 0.

The following graphs illustrate the time evolution Langevin-McKean-Vlasov model with
a double well potential with α = −7, and N = 50 particles.
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16.3.4 Dyson equation

In nuclear physics, the statistical properties of the spectrum of quantum systems can be
analyzed using the nonlinear Dyson equations




dλi(t) =
1

N

∑
j �=i

1

λi(t)− λj(t)
dt+

√
2

N
dW i

t

1 ≤ i ≤ N

with some initial conditions λ1(0) < . . . < λN (0) and N independent Brownian motions
(W i

t )1≤i≤N .

This mean field type particle model is slightly different from the nonlinear processes
discussed in these lectures. One can show (cf. exercises 5.3.2 through 5.3.4 in [86]) that
λ1(t) < . . . < λN (t) coincide with the eigenvalues of the symmetric Gaussian matrices

Ai,i(t) = W i(t)/
√
N/2 et Ai,j(t) = Aj,i(t) = W i,j(t)/

√
N.

In the above display Wi,j , 1 ≤ i < j ≤ N and W i
t , 1 ≤ i ≤ N , stand for N(N + 1)/2

independent Brownian motions on the real line.

The following illustrates the time evolution of N = 30 eigenvalues of the matrices A(t)
on the interval [0, 1].
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16.4 Exercises
Exercise 307 (Feynman-Kac particle models) We let Xt be a Markov process on S =
{0, 1} with some infinitesimal generator L defined by

L(f)(0) = λ(0) (f(1)− f(0)) and L(f)(1) = λ(1) (f(0)− f(1))

for some rate function λ on S. We consider a potential function V : x ∈ {0, 1} �→ [0,∞[.
We let γt, ηt be the Feynman-Kac measures defined by

ηt(f) = γt(f)/γt(1) with γt(f) = E(f(Xt) exp

(
−
∫ t

0

V (Xs)ds

)
).

Using (16.8), check the evolution equations

∂tγt(f) = γt
(
LV (f)

)
and ∂tηt(f) = ηt (Lηt(f))

with the Schrödinger operator LV = L− V , and the collection of jump type generators

Lη(f)(0) = L(f)(0) + V (0) (f(1)− f(0)) η(1)

Lη(f)(1) = L(f)(1) + V (1) (f(0)− f(1)) η(0).

Describe the evolution of the nonlinear jump process Xt ∈ S = {0, 1} with generator Lηt
.

Describe the mean field particle model associated with this nonlinear process. Provide an
interpretation of these models in terms of an epidemic process. The state 1 represents the
infected individuals, while 0 represents the susceptible ones.

Exercise 308 (Feynman-Kac two-state models - Explicit formulae) Consider the
Feynman-Kac model discussed in exercise 307. Check that ηt(0) satisfies the Riccati equa-
tion

∂tηt(0) = a ηt(0)
2 − b ηt(0) + c

with the parameters

a := [V (0)− V (1)] and b := a+ c+ λ(0) with c := λ(1).

We assume that a ≥ 0 so that a, b, c ≥ 0. Check that b2 ≥ 4ac.
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• When a = 0 check that

ηt(0) = P(Xt = 0) = e−bt η0(0) +
c

b

(
1− e−bt

)
.

• When c = 0, and (b ≥)a > 0, check that the solution is given by

ηt(0) = e−bt η0(0)

1− a
b η0(0) (1− e−bt)

.

Notice that we have two solutions: one ηt(0) = 0 ⇒ ηt(1) = 1 corresponding to the
absorbing state 1 when η0(1) = 1, and a non-null one when η0(1) < 1.

• Assume that a ∧ c > 0 (⇒ b ≥ a+ c > 0).

– When b2 = 4ac, check that a = c = b/2 and

ηt(1) = 1− ηt(0) =
η0(1)

1 + aη0(1) t
.

– When b2 > 4ac, check that

ηt(0) +
z2
a

=
(
η0(0) +

z2
a

) (z2 − z1) e
−(z2−z1)t

(aη0(0) + z2) e−(z2−z1)t − (aη0(0) + z1)︸ ︷︷ ︸
>0

with

z1 = −1

2

(
b+

√
b2 − 4ac

)
≤ z2 = −1

2

(
b−

√
b2 − 4ac

)
< 0.

Prove that − z2
a ∈ [0, 1] and − z1

a > 1.

This exercise can be completed with the exercises 446 and 447 dedicated to application of
these formulae to the computations of quasi-invariant measures.

Exercise 309 (Nonlinear switching models) We consider a nonlinear evolution equa-
tion in the 2d-simplex {

∂tut = −a(ut) ut + b(ut) vt
∂tvt = a(ut) ut − b(ut) vt

for some positive functions a, b and some initial condition u0 + v0 = 1 with u0, v0 ≥ 0. We
let ηt be the probability distribution on S = {0, 1} defined by ηt(0) = ut and ηt(1) = vt, and
we set λ(ηt, 0) := a(ut) and λ(ηt, 1) := b(ut). Check that

∂tηt(f) = ηt(Lηt
(f))

for any function f on S with the generator

Lηt
(f)(0) = λ(ηt, 0) (f(1)− f(0)) and Lηt

(f)(1) = λ(ηt, 1) (f(0)− f(1)).

Describe the evolution of the nonlinear jump process Xt ∈ S = {0, 1} with generator Lηt
.

Describe the mean field particle model associated with this nonlinear process. Discuss the
cases (λ(ηt, 0), λ(ηt, 1)) = (ηt(1), ηt(0)) and (λ(ηt, 0), λ(ηt, 1)) = (ηt(0), ηt(1)).
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Exercise 310 (McKean-Vlasov equation) We let a(u) be some function on R. We
consider the solution pt : x ∈ R �→ pt(x) ∈ R of the integro-differential evolution equation

∂tpt(x) = ∂2
xpt − ∂x (pt (pt ® a))

with some initial condition p0(x) given by some probability density on R. In the above
display, (pt ® a) stands for the convolution operation (pt ® a)(x) =

∫
a(x− y) pt(y) dy. We

set ηt(dx) = pt(x)dx. Check that

∂tηt(f) = ηt(Lηt(f))

for any smooth and compactly supported function f , with the collection of diffusion gener-
ators

Lηt
(f)(x) = ∂2

xf(x) + b(x, ηt) ∂xf(x) with b(x, ηt) =

∫ ∫
a(x− y) ηt(dy).

Describe the evolution of the nonlinear diffusion process Xt with generator Lt,ηt
. De-

scribe the mean field particle model associated with this nonlinear process. Show that the
Fouque-Sun systemic risk model discussed in section 16.3.1 corresponds to the case σ =

√
2,

and a(u) = αu, for some parameters α. Check that in this case the nonlinear model has the
same form as the Ornstein-Uhlenbeck process discussed in exercise 255 with a = −α and
b = E(X0).

Exercise 311 (Nonlinear soliton-like jump process [154]) We let q(u) be some prob-
ability density of some random variable U on the positive axis [0,∞[, and h(.) be some
function on R. We consider the solution pt : x ∈ R �→ pt(x) ∈ R of the evolution equation

∂tpt(x) = −H(x, pt) pt(x) +

∫ x

−∞
q(x− y) H(y, pt) pt(y) dy

with some initial condition p0(x) given by some probability density on R and

H(x, pt) :=

∫ +∞

x

h

(
y −

∫ +∞

−∞
z pt(z) dz

)
pt(y) dy.

We set ηt(dx) = pt(x)dx and we consider the Markov transitions and the jump intensities

M(x, dy) = 1[x,∞[(y) q(y−x) dy and λ(x, ηt) =

∫ +∞

x

h

(
y −

∫ +∞

−∞
z pt(z) dz

)
ηt(dy).

Check that
∂tηt(f) = ηt(Lηt(f))

with the collection of jump generators

Lηt
(f)(x) = λ(x, ηt)

∫
(f(y)− f(x)) M(x, dy).

Describe the evolution of the nonlinear jump diffusion process Xt with generator Lt,ηt
.

Describe the mean field particle model associated with this nonlinear process. Discuss the
case h = 1. As underlined by Max-Olivier Hongler in [154], the mean field model can be
interpreted as a pool of interacting agents subject to mutual imitation. Their interaction is
measured by their relative position w.r.t. their empirical average. The interacting jump rate
encapsulates two different features. The first one can be seen as imitation or go-with-the-
winner type mechanism. Leader agents on the right of the state space attract laggards that
try to imitate them. The jump rate also measures the barycentric range modulation between
the agents.
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Exercise 312 (Opinion dynamics [56]) We consider the collection of generators Lη in-
dexed by probability measures on S = Rd defined for any bounded function f on S and for
any x ∈ S by the formula

Lη(f)(x) =

∫
(f((1− ε)x+ εy)− f(x)) κ(x, y) η(dy)

with confidence parameter ε ∈ [0, 1] and some bounded interacting density k(x, y) ≥ 0. We
consider the weak solution ηt of the equation

∂tηt(f) = ηt(Lηt(f)).

Describe the evolution of the nonlinear jump diffusion process Xt with generator Lηt
.

Describe the mean field particle model associated with this nonlinear process. Examine
the situations

κ(x, y) = 1[0,R](‖x− y‖) and κ(x, y) = exp
(
−‖x− y‖2/σ2

)

for some parameters R, σ > 0. The model corresponding to the l.h.s. function κ is called
the Deffuant-Weisbuch model.

Exercise 313 (Interacting agents dynamics - Quantitative estimates [56]) Consider
the opinion dynamic model discussed in exercise 312 with symmetric densities k(x, y) =
k(y, x). We set f1(x) = x and f2(x) = ‖x‖2. We assume that η0(f1) = 0 and η0(f2) < ∞.
Check that ηt(f1) = 0 and ηt(f2) ≤ η0(f2), for any t ≥ 0. When κ = 1 prove that

ηt(f2) = e−2ε(1−ε)t η0(f2) and ‖ηt(f)‖ ≤ ‖η0(f)‖+ (1− ε) (2η0(f2))
1/2

for any Lipschitz function ‖f(x)− f(y)‖ ≤ ‖x− y‖.

Exercise 314 (Rank-based interacting diffusions) We consider the solution pt : x ∈
R �→ pt(x) ∈ R of the evolution equation

∂tpt = −∂x (bpt
pt) +

1

2
∂2
x

(
σ2
pt

pt
)

with some initial condition p0(x) given by some probability density on R. In the above
display, the drift and diffusion functions (bpt , σpt) are defined by

bpt(x) = α

(∫ x

−∞
pt(y) dy

)
and σpt(x) = β

(∫ x

−∞
pt(y) dy

)

for some smooth functions (α, β) on R. We set ηt(dx) = pt(x)dx and we set

Bηt
(x) = α

(∫ x

−∞
ηt(dy)

)
and Dηt

(x) = β

(∫ x

−∞
ηt(dy)

)
.

Check that for smooth functions f with compact support we have

∂tηt(f) = ηt(Lηt
(f))

with the collection of diffusion generators

Lηt
= Bηt

∂x +
1

2
D2

ηt
∂2
x.

Describe the evolution of the nonlinear diffusion process Xt with generator Lt,ηt
. Describe

the mean field particle model associated with this nonlinear process.
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Exercise 315 (Granular media equations) Let Vi : Rr �→ R, i = 1, 2 be a couple
of smooth potential functions on Rr, for some r ≥ 1. We also let Wt = (W i

t )1≤i≤r be
r-dimensional Brownian motions and σ some (r × r)-matrix. Describe the generator and
the mean field approximation of the nonlinear diffusion equation

dXt =

[
∂V1(Xt) +

∫
∂V2(Xt − x) P(Xt ∈ dx)

]
dt+ σ(X) dWt

where ∂F = (∂xi
F )1≤i≤r stands for the gradient column vector of a smooth function F on

Rr. In the above display, Wt stands for an r-dimensional Brownian motion and σ(x) some
(r × r)-mtarix. We assume that P(Xt ∈ dx) = pt(x) dx has a density pt(x) w.r.t. the
Lebesgue measure dx on Rr. Describe the evolution equation of pt.

Exercise 316 (Membrane potential of interacting neurons [87]) The membrane po-
tentials of N -interacting neurons ξt = (ξit)1≤i≤N ∈ [0,∞[ are represented by a Markov
process on [0,∞[N with infinitesimal generator

L(f)(x)

=
∑

1≤i≤N

λ(xi)
(
f(x+ ρi1/N (x))− f(x)

)
+

∑
1≤i≤N

a


xi −

1

N

∑
1≤j≤N

xj


 ∂xif(x)

for some parameter a > 0, some rate function λ(u) ≥ 0 and the jump amplitude functions
ρi1/N defined by

ρi1/N (x) = (ρij,1/N (x))1≤j≤N with ρij,1/N (x) = 1i�=j
1

N
− 1i=j xi.

The coordinates ξit represent the membrane potential of the i-th neuron. The jump term
in the generator represents the random spikes of the neuron. At some rate λ(xi) the i-th
neuron sets its energy to 0 and gives the other neurons a small quantity of energy 1/N . The
first order differential term represents the transport equation of the electrical synapses. The
value of each neuron potential tends to reach the average potential of the neurons. We let
G be the generator

G(f)(x) =
∑

1≤i≤N

λ(xi)
(
f(x+ ρi0(x))− f(x)

)

+
∑

1≤i≤N


a


xi −

1

N

∑
1≤j≤N

xj


+

1

N

∑
1≤i≤N

λ(xi)


 ∂xi

f(x).

For empirical functions f(x) = 1
N

∑
1≤i≤N ϕ(xi), for some bounded and smooth functions

ϕ check that

L(f)(x) = G(f)(x) +O
(

1

N

)
and G(f)(x) = m(x)

(
Lm(x)(ϕ)

)

with the collection of generators Lη indexed by probability measures η on [0,∞[ and defined
by

Lη(ϕ)(u) = λ(u) (ϕ(0)− ϕ(u)) +

[
a

(
u−

∫
v η(dv)

)
+

∫
λ(v) η(dv)

]
ϕ′(u).

We let ηt be the solution of the nonlinear equation

∂tηt(ϕ) = ηt(Lηt
(ϕ))
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starting from some probability measure η0 on S = [0,∞[, for any bounded and smooth
functions ϕ. Describe a nonlinear Markov process Xt with distribution ηt on S.

Exercise 317 (Feynman-Kac particle models - 1) We consider the Feynman-Kac mea-
sures ηt discussed in exercise 294. Check that

∂tηt(f) = ηt(Lt,ηt
(f)) with Lt,ηt

(f)(x) := Lt(f)(x) + Vt(x)

∫
(f(y)− f(x)) ηt(dy).

Describe the evolution of the nonlinear jump diffusion process Xt with generator Lt,ηt
.

Describe the mean field particle model associated with this nonlinear process.

Exercise 318 (Feynman-Kac particle models - 2) We let ηt be the Feynman-Kac mea-
sures ηt defined as in exercise 294 by replacing Vt by −Vt. Check that

∂tηt(f) = ηt(Lt,ηt
(f)) with Lt,ηt

(f)(x) := Lt(f)(x) +

∫
(f(y)− f(x)) Vt(y) ηt(dy).

Describe the evolution of the nonlinear jump diffusion process Xt with generator Lt,ηt
.

Describe the mean field particle model associated with this nonlinear process.

Exercise 319 (Mean field particle models) We consider the generator (16.11) of a
mean field particle model. Check the formulae (16.13).

Exercise 320 (Interacting jump Langevin model) We consider the Feynman-Kac in-
terpretation (16.10) of the jump Langevin process presented in section 16.1.4. Describe the
mean field particle model of the sequence of non-homogeneous Bolztmann-Gibbs measures
πβt

defined in (16.9).
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17
Stochastic analysis toolbox

This chapter summarises some analytical tools that are frequently used when studying the
asymptotic behaviour of continuous time stochastic processes as the time parameter tends
to infinity. We start with the change of time technique. The time change method is used as
a simple rule to transfer the invariance property of probability measures for jump diffusion
processes. We also describe Foster-Lyapunov conditions and related Dobrushin contraction
inequalities. Section 17.5 shows a series of application examples of Lyapunov functions
for different classes of diffusion processes. Section 17.6 discusses more advanced functional
and spectral analysis techniques, including a derivation of the Poincaré inequality. These
techniques are applied to investigate the exponential decays to equilibrium.

Beauty is the first test: there is no permanent place
in the world for ugly mathematics.
Godfrey H. Hardy (1877-1947).

17.1 Time changes

We let Xt be a jump diffusion process
with generator L on some state space S. We
consider a function a on S taking values in
[ε, 1/ε], for some ε > 0. We set

At :=

∫ t

0

1

a(Xs)
ds

and denote its inverse map by
τt := A−1(t) (with τ0 = 0) .

By construction, we have

A′
t = 1/a(Xt) and Aτt = t ⇒ τ ′t = 1/A′(τt) = a(Xτt) ⇒ τt =

∫ t

0

a(Xτs) ds.

On the other hand, for any sufficiently regular function f we have

f (Xτt)− f(X0) =

∫ τt

0

L(f)(Xs) ds+Mτt(f)

for some martingaleMs(f) (w.r.t. the filtration Fs). Changing the time integration variable
s � u in the above display, we have

s = τu =

∫ u

0

a(Xτr ) dr ⇒ ds = a(Xτu) du ⇒
∫ τt

0

L(f)(Xs) ds =

∫ t

0

a(Xτu) L(f)(Xτu) du.

481
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If we set Yt = Xτt and Nt(f) = Mτt(f), this implies that

f (Yt)− f(Y0) =

∫ t

0

a(Yu) L(f)(Yu) du+Nt(f)

for the martingale Ns(f) associated with the filtration Gs = Fτs . In summary we have
proved the following time change property.

X with generator LX

At :=

∫ t

0

1/a(Xs) ds





⇒ Yt = XA−1
t

with generator LY = a×LX .

(17.1)

For instance, if a(x) = a is a constant function, At = t/a ⇒ A−1
t = at. In this case,

Yt = Xat has a generator given by LY = a× LX .

17.2 Stability properties

A probability measure π on some state space S is invariant w.r.t. some time
homogeneous Markov semigroup Pt = P0,t if we have πPt = π, for any t ≥ 0.
The invariance property is also characterized in terms of the generator L of the
semigroup:

π is Pt-invariant ⇐⇒ (∀t ≥ 0 πPt = π) ⇐⇒ πL = 0.

We also say that π is L-invariant.

We check this claim by using the formulae

π

(
Pt − Id

t

)
→t↓0 πL and Pt = Id+

∫ t

0

LPs ds.

The measure π is reversible w.r.t. Pt or w.r.t. L if we have

π(dx) Pt(x, dy) = π(dy) Pt(y, dx)

or equivalently, for any pair of sufficiently regular functions f, g

∀t ≥ 0 π(fPt(g)) = π(Pt(f)g) ⇐⇒ π(fL(g)) = π(L(f)g). (17.2)

We also say that π is L-reversible.

The invariant measures of pure jump processes with a generator Ld = λ [M − Id] have
been discussed in section 12.7.1. In (12.29) we characterized these limiting measures in
terms of the invariant measure of the Markov transition M and the jump rate function λ.
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By (17.1) the jump rate λ can be interpreted as a time change of the process with generator
L = [M − Id]. We recall that this process is a continuous time embedding of the Markov
chain with transition probability M .

The following proposition provides a simple rule to transfer the invariance property of
given probability measures through a time change procedure.

Proposition 17.2.1 Let L be the generator of some jump diffusion process and
π some probability measure on some state space S. We let a be a positive function
on S s.t. π

(
a−1

)
< ∞, with a−1 = 1/a. We consider the generator La and the

probability measure πa defined for any sufficiently regular function f on S by the
formulae

La(f) = a L(f) and πa(f) = π
(
a−1f

)
/π

(
a−1

)
.

It is readily checked that
πa(fLa(g)) = π(fL(g)) (17.3)

for any sufficiently regular functions f and g on S This shows that π is L-
invariant, respectively L-reversible, if and only if πa is La-invariant, respectively
La-reversible.

We end this section with a simple property which can be used to design and combine
stochastic processes with a prescribed invariant measure.

Proposition 17.2.2 Let (L1, L2) be a couple of generators of some stochastic
processes on some state space S and let π be some probability measure on S. If we
set L = L1 + L2, then we have the following properties:

π L1 − reversible and L2 − reversible ⇒ π L− reversible
π L1 − invariant and L2 − invariant ⇒ π L− invariant. (17.4)

The proofs of these two elementary properties are left to the reader. Notice that (17.4)
allows us to combine MCMC samplers with a given target probability measure. Further-
more, adding a generator to a given MCMC sampler may improve the stability properties
of the simulation process.

For instance, using the perturbation formulae (15.27) discussed in section 15.5.2, the
semigroup Ps,t associated with the generator L = L1+L2 satisfies the minorization property
(8.15) as soon as the semigroup P

(1)
s,t satisfies this property and L2 is any jump generator

with a bounded intensity.

17.3 Some illustrations

17.3.1 Gradient flow processes

We consider a diffusion generator on Rd of the following form

L(f) = eV
∑

1≤i≤d

∂xi

(
e−V ∂xi

f
)
= −

∑
1≤i≤d

∂xi
V ∂xi

f +
∑

1≤i≤d

∂2
xi
f
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for some function V on Rd s.t.
∫

e−V (x) dx ∈]0,∞[, where dx stands for the Lebesgue
measure on Rd. The first formulation of L in the above display is sometimes called the
Sturm-Liouville formulation of the generator.

For any smooth functions f, g with compact support on Rd using a simple integra-
tion by parts procedure we have

∫
e−V (x) g(x) L(f)(x) dx =

∑
1≤i≤d

∫
g(x) ∂xi

(
e−V (x) ∂xi

f
)
(x) dx

= −
∑

1≤i≤d

∫
e−V (x) ∂xi

g(x) ∂xi
f(x) dx.

This simple observation clearly implies that the probability measure

π(dx) ∝ e−V (x) dx is L-reversible. (17.5)

These gradient flow diffusions are discussed in further details in section 23.4, along with
manifold valued models.

17.3.2 One-dimensional diffusions

The two properties discussed above allow us to characterize the invariant measures
of one-dimensional diffusion processes with generators of the form

L(f) = b f ′ +
1

2
σ2 f ′′

for some functions (b, σ) on R such that
∫
S

2σ−2(x) e
∫ x
c

2b(y)σ−2(y) dydx ∈]0,∞[,
for some constant c ∈ R and S = σ−1(]0,∞[). In this situation, the probability
measure

π(dx) ∝ 1S(x) σ
−2(x) exp

[∫ x

c

2b(y)σ−2(y) dy

]
dx is L-reversible. (17.6)

In addition, we have the Sturm-Liouville formula

L(f)(x) =
1

2
σ2(x) e

−
∫ x
c

2b(y)

σ2(y)
dy

∂x

(
e
∫ x
c

2b(y)

σ2(y)
dy

∂xf

)
(x). (17.7)

The proof is rather elementary. By (17.3) it clearly suffices to consider the case where
σ =

√
2 so that

L(f) = b f ′ + f ′′ = V ′ f ′ + f ′′ with V (x) =

∫ x

0

b(y)dy.

By (17.5) we conclude that π is L-reversible. The proof of (17.7) is immediate. Notice that
for any functions (f, g) with compact support, by a simple integration by parts formula we
find that

−2π(fL(g)) =

∫
σ2(x) (∂xf)(x) (∂xg)(x) π(dx) = π (ΓL(f, g))



Stochastic analysis toolbox 485

with the carré du champ operator ΓL(f, g) = L(fg) − fL(g) − gL(f) associated with the
operator L.

Several illustrations of this formula for Pearson type diffusion processes are provided in
exercises 321 to 328.

17.4 Foster-Lyapunov techniques

17.4.1 Contraction inequalities

We start with a general result that allows us to apply the V -norm contraction techniques
we developed in section 8.2.7.

We consider the semigroup (sg) Pt = Ps,s+t, for any s ≥ 0, of a time homogeneous
Markov process on some state space S satisfying the evolution equations (13.22) for some
infinitesimal generator L acting on a domain D(L) of sufficiently regular functions.

Theorem 17.4.1 We assume that there exists some non-negative function W ∈ D(L) on
S such that

L(W ) ≤ −a W + c (17.8)

for some parameters a > 0, and c ≥ 0. Then for any t > 0, the Markov transition Pt

satisfies the Foster-Lyapunov condition (8.28)

Pt(W ) ≤ εt W + ct with εt =
1

1 + at
with ct = c t.

In addition, if Pt satisfies the Dobrushin local contraction condition (8.27) for any t > 0,
there exists an unique invariant measure π = πM . Furthermore, for any h > 0 there
exists some positive function V s.t. βV (Ph) < 1. In particular, we have the exponential
contraction inequality

‖Ph�t/h�(x, .)− π‖V ≤ βV (Ph)
�t/h� (1 + V (x) + π(V )).

Proof :
Using (13.22) we have

Pt(W ) = W +

∫ t

0

Ps(L(W )) ds

≤ W +

∫ t

0

[−a Ps(W ) + c] ds = W + ct− a

∫ t

0

Ps(W )ds.

On the other hand, through integration by parts we have
∫ t

0

Ps(W )ds = [s Ps(W )]
t
0 −

∫ t

0

s
d

ds
Ps(W ) ds

= t Pt(W )−
∫ t

0

s Ps(L(W )︸ ︷︷ ︸
≤c

) ds ≥ t Pt(W )− ct2/2.

This implies that

Pt(W ) ≤ W + ct− a
(
t Pt(W )− ct2/2

)
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from which we conclude that

Pt(W ) ≤ 1

1 + at
W + ct

1 + at/2

1 + at
≤ 1

1 + at
W + ct.

The last assertion is a direct consequence of the theorem 8.2.21 applied to the Markov
transition Pnh = Pn

h . This ends the proof of the theorem.

Remark : Replacing in (17.8) W by W + b for some b > 0 we find that

L(W + b) = L(W ) + b L(1)︸︷︷︸
=0

= L(W ) ≤ −a (W + b) + (c+ ab).

This shows that without loss of generality we can assume that (17.8) is met for some function
W ≥ b, for some b > 0.

On the other hand, using the fact that

(17.8) with c > 0 ⇒ L

(
W

c

)
≤ −a

W

c
+ 1,

we can also assume without loss of generality that (17.8) is met for some non-negative
function W ≥ 0, with c = 1.

Last, but not least it suffices to check that there exists a subset A ⊂ S such that

∀x ∈ S −A W−1(x)L(W )(x) ≤ −a and ∀x ∈ A L(W )(x) ≤ c.

In this situation, it is readily checked that

L(W ) = W−1L(W )1S−A W + L(W ) 1A ⇒ L(W ) ≤ −a W + c. (17.9)

For instance, when S is equipped with some norm ‖.‖, and L(W ) is continuous, it suffices
to find a sufficiently large radius R such that

∀‖x‖ ≥ R W−1(x)L(W )(x) ≤ −a. (17.10)

17.4.2 Minorization properties

We mention that any sg Pt on S = Rd satisfies the Dobrushin local contraction condition
(8.27) for any t > 0 as soon as the Markov transitions Pt(x, dy) = pt(x, y) dy have contin-
uous densities (x, y) �→ pt(x, y) > 0 w.r.t. the Lebesgue measure dy. Much more is true.
Rephrasing proposition 8.2.18 we have:

Proposition 17.4.2 We assume that the sg Pt satisfies the minorization property

Pt(x, dy) ≥ qt(x, y) dy (17.11)

for some function qt(x, y) that is lower semicontinuous w.r.t. the first variable, and upper
semicontinuous w.r.t. the second. In this situation the sg Pt satisfies the Dobrushin local
contraction condition (8.27) for any t > 0.

Proposition 17.4.3 We consider a d-dimensional jump diffusion process with jump inten-
sity function λ(x), jump amplitude transition M(x, dy) and a stochastic flow ϕs,t (x). We
assume that the sg P 0

t of the stochastic flow satisfies the minorisation condition (17.11) for
some q0t (x, y). When the intensity function λ is bounded, the sg Pt of the jump diffusion
model satisfies (17.11) with

Pt(x, dy) ≥ e−‖λ‖t q0t (x, y) dy.
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Proof :
The proof is a direct consequence of the integral formula (13.18) (which is valid for jump
diffusion processes following the remark given on page 427) and the definition (15.5) of the
sg Pλ

t . Indeed, by (13.18) we have

Pt(f) = Pλ
t (f) +

∫ t

0

Pλ
u (λMPt−u(f)) du

≥ Pλ
t (f) ≥ e−‖λ‖t P 0

t (f)

for any non-negative function f . This clearly ends the proof of the proposition.

17.5 Some applications

It is far beyond the scope of these lectures to discuss in full details the absolute continuity
properties of Markov semigroups. A brief discussion is provided in section 18.4.2. For a
more detailed discussion we refer the reader to [57, 143, 161], and the references therein.

In this section we present examples of Lyapunov functions for some classes of diffusion
processes.

17.5.1 Ornstein-Uhlenbeck processes

The infinitesimal generator of the Ornstein-Uhlenbeck process is given by

L := −
d∑

i=1

ai xi ∂i +
1

2

d∑
i,j=1

(
σ(σ)T

)
i,j

∂i,j

with some deterministic covariance matrix σ and a collection of parameters ai < ∞. In this
situation, the sg Pt(x, dy) = pt(x, y) dy has smooth densities (x, y) �→ pt(x, y) > 0 w.r.t.
the Lebesgue measure dy [143]. When amin = ∧1≤i≤dai > 0, we can choose the Lyapunov
function

W (x) =
1

2
‖x‖2 :=

1

2

∑
1≤i≤d

x2
i .

L(W )(x) = −
d∑

i=1

ai x
2
i +

1

2
Trace

(
σ(σ)T

)

≤ − 2 amin W (x) + Trace
(
σσT

)
.

17.5.2 Stochastic gradient processes

The infinitesimal generator of the stochastic gradient process is given by

L := −
d∑

i=1

∂iV ∂i +
1

2

d∑
i=1

∂i,i
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with a smooth function V behaving as ‖x‖α with α ≥ 1 at infinity; that is, there exists
some sufficiently large radius R such that for any ‖x‖ ≥ R we have

d∑
i=1

|∂i,iV (x)| ≤ c1 ‖x‖α−2 and
d∑

i=1

(∂iV (x))
2 ≥ c2 ‖x‖2(α−1)

for some constants c1 < ∞ and c2 > 0. More generally, potentials s.t. lim‖x‖→∞ V (x) = ∞
and e−βV ∈ L1(dx), for any β > 0 are called confining potentials. Under these conditions,
the stochastic gradient process is ergodic with the unique invariant measure given by the
Gibbs probability measure

π(dx) = Z−1 e−2−1V (x) dx.

The normalizing constant Z is often called the partition function. Further details on these
processes are provided in section 23.4 dedicated to stochastic flows in Euclidian and Rie-
mannian manifolds.

In this situation, the sg Pt(x, dy) = pt(x, y) dy has smooth densities (x, y) �→ pt(x, y) > 0
w.r.t. the Lebesgue measure dy [143]. In addition, we can choose the Lyapunov function

W (x) = exp (2εV )

for any ε ∈]0, 1[. To check this claim, we observe that

W−1L(W )

= −2ε
∑d

i=1 (∂iV )
2
+ 1

2

∑d
i=1

(
4ε2 (∂iV )

2
+ 2ε∂i,iV

)
≤ −2ε

[
(1− ε) ‖∇V ‖2 − 1

2 ¥V
]
.

Under our assumptions, for any ‖x‖ ≥ R > [c1/(2c2)]
1/α we have

(1− ε) ‖∇V ‖2 − 1

2
¥V ≥ (1− ε)c2 ‖x‖2(α−1) − c1

2
‖x‖α−2

= ‖x‖α−2
[
c2 ‖x‖α − c1

2

]

≥ Rα−2
[
c2 Rα − c1

2

]
> 0.

We conclude that (17.10) holds with a := 2εRα−2
[
c2 Rα − c1

2

]
.

17.5.3 Langevin diffusions

We consider the R2-valued stochastic process Xt = (qt, pt) defined by
{

dqt = β pt

m dt

dpt = −β
(

∂V
∂q (qt) +

σ2

2
pt

m

)
dt+ σ dWt

(17.12)

with some positive constants β,m, σ, a Brownian motionWt, and a smooth positive function
V on R such that for sufficiently large R we have

|q| ≥ R q
∂V

∂q
(q) ≥ δ

(
V (q) + q2

)

for some positive constant δ. This condition is clearly met when V behaves as q2α for
certain α ≥ 1 at infinity, that is, when there exists some sufficiently large radius R such
that for any |q| ≥ R we have

q
∂V

∂q
(q) ≥ c1 q2α and c2 q2α ≥ V (q).
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Here c1 < ∞ and c2 > 0 are suitably chosen constants.
The generator of the process (17.12) is defined by

L(f)(q, p) = β
p

m

∂f

∂q
− β

(
∂V

∂q
+

σ2

2

p

m

)
∂f

∂p
+

σ2

2

∂2f

∂p2
.

We let W (q, p) be the function on R2 defined by

W (q, p) =
1

2m
p2 + V (q) +

ε

2

(
σ2

2
q2 + 2pq

)
with ε <

σ2

2m
.

Recalling that 2pq ≤ p2 + q2, we prove that

W (q, p) ≤ 1

2

(
1

m
+ ε

)
p2 +

ε

2

(
σ2

2
+ 1

)
q2 + V (q)

≤ C�(ε)
(
p2 + q2 + V (q)

)

with

C�(ε) := max

{
1

2

(
1

m
+ ε

)
,
ε

2

(
σ2

2
+ 1

)
, 1

}
.

On the other hand, we have

L(W ) = β
p

m

(
∂V

∂q
+ ε

σ2

2
q + ε p

)

−β

(
∂V

∂q
+

σ2

2

p

m

) ( p

m
+ ε q

)
+

σ2

2m

= −β

[
1

m

(
σ2

2m
− ε

)
p2 + ε q

∂V

∂q

]
+

σ2

2m
.

Under our assumptions, this implies that for any |q| ≥ R we have

L(W ) ≤ −β

[
1

m

(
σ2

2m
− ε

)
p2 + ε δ

(
V (q) + q2

)]
+

σ2

2m

≤ −C�(ε, δ)
(
p2 + q2 + V (q)

)
+

σ2

2m

with

C�(ε, δ) := β min

{(
1

m

(
σ2

2m
− ε

)
, ε δ

)}
.

We conclude that for any |q| ≥ R we have

(W−1L(W ))(q, p) ≤ −
C�(ε, δ)

(
p2 + q2 + V (q)

)
− σ2

2m

W (q, p)

≤ −
C�(ε, δ)

(
p2 + q2 + V (q)

)
− σ2

2m

C�(ε) (p2 + q2 + V (q))

= −C�(ε, δ)

C�(ε)
+

σ2

2mC�(ε)

1

p2 + q2 + V (q)

≤ −
[
C�(ε, δ)

C�(ε)
− σ2

2mC�(ε)

1

p2 + q2

]

≤ −
[
C�(ε, δ)

C�(ε)
− σ2

2mC�(ε)

1

p2 +R2

]
.
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Choosing R sufficiently large to satisfy

|p| ≥ R and |q| ≥ R

⇒ C�(ε,δ)
C�(ε) − σ2

2mC�(ε)
1

p2+q2 ≥ C�(ε,δ)
C�(ε) − σ2

2mC�(ε)
1

R
2
+R2

≥ C�(ε,δ)
2C�(ε) > 0,

we conclude that (17.9) is met with the set

A = {|p| ∧ |q| < R ∨R}

and the parameter a = C�(ε, δ)/(2C
�(ε)) > 0; that is,

|p| ∧ |q| ≥ R ∨R ⇒ (W−1L(W ))(q, p) ≤ −a.

17.6 Spectral analysis

17.6.1 Hilbert spaces and Schauder bases

Suppose we are given a generator L of a jump diffusion process and probability
measure π on some state space S which is L-reversible. We let Pt be the Markov
semigroup of the stochastic process Xt with generator L.
We denote by EL(f, g) the Dirichlet bilinear form defined on sufficiently smooth
functions by the formula

EL(f, g) = π(f(−L)(g)) =
1

2
π (ΓL(f, g))

with the carré du champ operator associated to L (the r.h.s. formula in the above
display comes from the fact that πL = 0).

The required regularity properties on (f, g) depend on the state space S and the gen-
erator L. The prototype of one-dimensional reversible process is the Ornstein-Uhlenbeck
diffusion on S = R given by

dXt = −2 Xt dt+
√
2 dWt (17.13)

with a Brownian motion Wt. By (17.5), the generator L of Xt and its reversible probability
measure are given by

L(f)(x) = −2x ∂xf(x) + ∂2
xf(x) = ex

2

∂x

(
e−x2

∂xf
)
(x) and π(dx) =

1√
π

e−x2

dx.

(17.14)
In this situation, for any smooth functions (f, g) with compact support by an integration
by parts,

EL(f, g) = −
∫

π(dx) f(x) L(g)(x) dx (17.15)

= − 1√
π

∫
f(x) ∂x

(
e−x2

∂xg
)
(x) dx =

∫
π(dx) ∂x(f)(x)∂xg(x) dx.
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We further assume that the Hilbert space L2(π) equipped with the scalar prod-
uct 〈f, g〉π = π(fg), has a complete orthonormal basis of sufficiently smooth
eigenfunctions (ϕn)n≥0 associated with the eigenvalues (λn)n≥0 of (−L), with
0 ≤ λn ≤ λn+1 for any n ≥ 0, and

∑
n≥0 e

−λn < ∞. In other words, for any
n ≥ 0 and any f ∈ L2(π),

L(ϕn) = −λn ϕn and f =
∑
n≥0

〈f, ϕn〉π ϕn (17.16)

where the convergence of the r.h.s. series in the above display is in L2(π). In
other words, (ϕn)n≥0 is dense in L2(π). Complete orthogonal bases for an infinite
dimensional Hilbert space are called Schauder bases.

It is important to notice that

L(1) = 0 ⇒ (λ0 = 0 and ϕ0(x) = 1) ⇒ f = π(f)+
∑
n≥1

〈f, ϕn〉π ϕn. (17.17)

This yields the variance formula

Varπ(f) := π[(f − π(f))2]

=
∑
n≥1

〈f, ϕn〉2π ≤ λ−1
1

∑
n≥1

λn 〈f, ϕn〉2π (⇐ λn ↑) . (17.18)

We illustrate this rather abstract model with our prototype Gaussian model (17.13).
We let Hn be the Hermite polynomials defined by the generating function

St(x) = e2tx−t2 =
∑
n≥0

tn

n!
Hn(x). (17.19)

The orthogonality property of the functions ϕn = Hn is easily checked in terms of St.
Indeed, we clearly have the decompositions

π(SsSt) =
1√
π

∫
e2(s+t)x−s2−t2 e−x2

dx = e2st
1√
π

∫
e−(x−(t+s))2 dx = e2st

=
∑
n≥0

2n
(st)n

n!
=

∑
m,n≥0

tnsm

n!m!
π (HnHm) ⇒ π (HnHm) = 1m=n 2n n!

The claim that the normalized Hermite polynomials 2n/2
√
n! Hn form an orthonormal

Schauder basis of L2(π) can be found in any textbook on Hilbert spaces. For the convenience
of the reader we sketch this elementary proof. The key ingredient is to prove that the
only functions f(x) that are orthogonal to all Hermite polynomials are the null functions
(almost everywhere). Since any polynomial can be expressed as a finite linear combination
of Hermite polynomials, it is equivalent to show that the functions that are orthogonal to all
monomials (xn)n≥0 are the null functions. Notice that the entire function on the complex
plane z ∈ T defined by

F (z) =

∫
f(x) exz π(dx) =

∑
n≥0

zn

n!

∫
f(x) xn π(dx)



492 Stochastic Processes

is holomorphic (i.e., differentiable in the complex domain in a neighborhood of every point
z) and is null on the real line z = y ∈ R as soon as f is orthogonal to all monomials (xn)n≥0.
The interchange of the summation and the integration in the above display is ensured by
the monotone convergence theorem. This implies that F is also null on the whole complex
plane. On the other hand F (−iy) = 0 is the Fourier transform of the function e−x2

f(x)

evaluated as y. Taking the Fourier inverse we check that e−x2

f(x) = 0 almost everywhere,
from which we readily conclude that f(x) = 0 almost everywhere.

Using ∂te
−(t−x)2 = −∂xe

−(t−x)2 ⇒ (∂n
t e

−(t−x)2)t=0 = (−1)n∂n
x e

−x2

, we also have

St(x) = ex
2

e−(t−x)2 = ex
2 ∑

n≥0

(−1)n∂n
x e

−x2 tn

n!
=

∑
n≥0

Hn(x)
tn

n!
.

This yields the Rodrigues formula

Hn(x) = (−1)n ex
2

∂n
x e

−x2

.

We also notice that

∂tSt(x) = 2(x− t) St(x) =
∑
n≥0

tn

n!
[2x Hn(x)− 2n Hn−1(x)]

=
∑
n≥0

tn

n!
Hn+1(x) ⇒ Hn+1(x) = 2x Hn(x)− 2n Hn−1(x)

with the convention H−1 = 0 and

∂xSt(x) = 2t St(x) = 2
∑
n≥1

tn

n!
nHn−1(x)

=
∑
n≥0

tn

n!
∂xHn(x) ⇒ ∂xHn = 2nHn−1.

This yields

Hn+1(x) = 2x Hn(x)− ∂xHn(x) and ∂xHn+1 = 2(n+ 1)Hn

from which we prove that

2(n+ 1)Hn = ∂xHn+1 = ∂x (2xHn − ∂xHn) = 2Hn + 2x∂xHn − ∂2
xHn.

Hence
∂2
xHn − 2x∂xHn = L(Hn) = −λn Hn with λn = 2n. (17.20)

This shows that (17.16) is satisfied with ϕn = 2n/2
√
n! Hn and λn = 2n.

Using the Sturm-Liouville formulation (17.14) of the generator L, we readily check
the Sturm-Liouville formulation of the Hermite polynomials

(17.20) ⇐⇒ − 1

2
ex

2

∂x

(
e−x2

∂xHn

)
(x) = nHn(x).
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17.6.2 Spectral decompositions

We quote some direct consequences of (17.16). Firstly, we have

d

dt
Pt(ϕn) = Pt(L(ϕn)) = −λn Pt(ϕn) ⇒ Pt(ϕn) = e−λntϕn.

This implies that

Pt(f) =
∑
n≥0

〈f, ϕn〉π Pt(ϕn) =
∑
n≥0

e−λnt 〈f, ϕn〉π ϕn.

By (17.17) we obtain the spectral decomposition of the Markov semigroup

Pt(f) = π(f) +
∑
n≥1

e−λnt 〈f, ϕn〉π ϕn.

The spectral decomposition of the generator L is obtained using the same types
of arguments. By (17.16) and (17.17) we clearly have the spectral decompositions

L(f) =
∑
n≥1

λn 〈f, ϕn〉π ϕn with λn = −λn

and

EL(f, g) =
1

2
π (ΓL(f, g)) = 〈f, (−L)(g)〉π =

∑
n≥1

λn 〈g, ϕn〉π 〈f, ϕn〉π . (17.21)

The spectral decomposition formula of L is sometimes written in the form

L(f) =
∑
n≥0

λn Eλn
(f) with Eλn

(f) = 〈f, ϕn〉π ϕn.

We introduce the projection valued measures A �→ EA(f) on the Borel subsets A ⊂ R
defined by

EA(f) =
∑
n≥0

1A(λn) 〈f, ϕn〉π ϕn :=

∫
1A(λ) dEλ(f).

In this notation, we have

L(f) =

∫
λ dEλ(f) or in a more synthetic form L =

∫
λ dEλ.

Notice that

EA(EB(f)) =
∑
n≥0

1A(λn) 〈EB(f), ϕn〉π ϕn

=
∑

m,n≥0

1A(λn) 1B(λm) 〈ϕm, ϕn〉π︸ ︷︷ ︸
=1m=n

〈f, ϕm〉π ϕn = EA∩B(f).
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17.6.3 Poincaré inequality

Combining (17.21) with (17.18) we obtain the Poincaré inequality

λ1 Varπ(f) ≤ EL(f, f) =
1

2
π (ΓL(f, f)) (17.22)

for any smooth and compactly supported function f .

A simple semigroup derivation shows that

1

2

d

dt
π
[
(Pt(f))

2
]

= π

[
Pt(f)

∂

∂t
Pt(f)

]
= π [Pt(f) L (Pt(f))]

= −1

2
π (ΓL [Pt(f), Pt(f)]) ≤ −λ1 π

(
(Pt(f))

2
)

for any function f such that π(f) = 0.

This clearly implies the exponential decay to equilibrium

π
[
(Pt(f)− π(f))

2
]
≤ e−2λ1t π

[
(f − π(f))2

]
. (17.23)

In the reverse direction, suppose that (17.23) holds for some constant λ1. In this case,
recalling that

Pε(f) = f + L(f) ε + o(ε) and ≤ e−2λ1ε = 1− 2λ1ε+ o(ε)

for any centered function f s.t. π(f) = 0, by (17.23),

π
(
f2

)
+ 2 π(fL(f)) ε + o(ε) = π(f2)− 2 EL(f, f) + o(ε) ≤ (1− 2λ1ε) π

(
f2

)
+ o(ε).

After some elementary manipulations, this implies that

EL(f, f) ≥ λ1 π
(
f2

)
.

In other words, the exponential decay to equilibrium (17.23) is equivalent to the
Poincaré inequality (17.22) for some constant λ1. The best constant is clearly the
lowest eigenvalue λ1 of the spectral decomposition of L presented in (17.16).

For instance, using (17.13), (17.15) and (17.20) we obtain without further work the
Poincaré inequality for the Gaussian distribution

π(dx) =
1√
π

e−x2

dx ⇒ 2 Varπ(f) ≤ π
(
(f ′)2

)
.

We readily recover the Poincaré inequality discussed in exercise 258 for the rescaled
Gaussian distribution

π(dx) =
1√
2π

e−x2/2 dx =⇒ Varπ(f) ≤ π((f
′
)2) (17.24)
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for any smooth and compactly supported function f . We check this claim using

π(f2) =

∫
π(dx) f2(x/

√
2) dx and π

(
(f ′)2

)
=

∫
π(dx) f ′

(
x/

√
2
)2

dx

for any function f s.t. π(f) = 0. If we set f(x) = f(x/
√
2) we clearly have

√
2 f

′
(x) =

f ′(x/
√
2) from which we conclude that

2

∫
π(dx) f(x)2 dx ≤ 2

∫
π(dx) f

′
(x)2 dx ⇐⇒ (17.24).

For more general rescaling properties, we refer the reader to exercise 329.

17.7 Exercises
Exercise 321 (Gaussian processes) Consider the diffusion process

dXt = −(α+ β Xt) dt+ τ dWt (17.25)

for some parameters (α, β, τ) ∈ R×]0,+∞[2 and a Brownian motion Wt. Using (17.6) find
the reversible measure of Xt.

Exercise 322 (Landau-Stuart diffusions) Consider the one-dimensional Landau-Stuart
diffusion process

dXt = α Xt (1−X2
t ) dt+

√
2 τ Xt dWt (17.26)

with some reflecting and diffusion parameters α and τ ∈ [0,∞[ s.t. τ2 < α, and a Brownian
motion Wt. Using (17.6) find the stationary measure of the process Xt starting in ]0,∞[.

Exercise 323 (Gamma distributions) Consider the diffusion process

dXt = −(α+ β Xt) dt+
√
τ2 + ρ Xt dWt (17.27)

with X0 > m := − τ2

ρ , and some parameters (α, β, τ, ρ), with α < 0, and β, ρ > 0, and a
Brownian motion Wt. Using (17.6) find the reversible measure of Xt. Compare this model
with the diffusion process discussed in exercise 262.

Exercise 324 (Square root processes) Consider the diffusion Xt defined in (17.27).
Find the evolution equation of Yt := (Xt − m). We further assume that γ = nρ/4, for
some integer n ≥ 1. We consider a sequence Ut =

(
U

(1)
t , . . . , U

(n)
t

)
of n independent

Ornstein-Uhlenbeck processes of the following form

∀1 ≤ i ≤ n dU
(i)
t = −β

2
U

(i)
t dt+

√
ρ

2
dW

(i)
t

with n independent Brownian motion W
(i)
t . Find the evolution equation of Zt := ‖Ut‖2 =∑

1≤i≤n(U
(i)
t )2. Deduce that Y law

= Z and X
law
= m+ Z.
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Exercise 325 (Jacobi processes - Beta distributions) Consider the diffusion process

dXt = −(α+ β Xt) dt+
√
τ2 (Xt − γ1) (γ2 −Xt) dWt (17.28)

with X0 ∈ S := [γ1, γ2], and some parameters (α, β, τ, γ1, γ2), with γ1 < γ2 and α + βγ1 <
0 < α+ βγ2. Using (17.6) find the reversible measure of Xt. Examine the situations:

(γ1, γ2) = (0, 1) β > 0 − α/β = m ∈]0, 1[ and τ2 = 2βν with ν > 0

as well as the models:

• (α, β) = (0, 1), τ2 = 2 and (γ1, γ2) = (−1, 1).

• (α, β) = (0, 2), τ2 = 2 and (γ1, γ2) = (−1, 1).

In these two cases, write the equations, the generator, and the reversible probability measure
of the corresponding [−1, 1]-valued diffusion processes.

Exercise 326 (Inverse gamma distributions) Consider the diffusion process given by
the equation

dXt = −(α+ β Xt) dt+ τXt dWt (17.29)

with X0 ∈ S :=]0,∞[, and some parameters (α, β, τ) with τ > 0 and α < 0. Using (17.6)
find the reversible measure of Xt.

Exercise 327 (Fisher distributions) Consider the diffusion process given by the equa-
tion

dXt = −(α+ β Xt) dt+
√
τ2 (Xt + γ1) (Xt + γ2) dWt (17.30)

with X0 ∈ S :=] − γ1,∞[. and some parameters(α, β, τ, γ1, γ2), s.t. α/β < γ1 < γ2 and
2β + τ2 > 0. Using (17.6) find the reversible measure π of Xt. Let X be a random variable
with distribution π. Find the distribution of the random variable

Y =
d2
d1

(
X + γ1

δ

)
with d1/2 =

2β

τ2

γ1 − α
β

γ2 − γ1
> 0 and d2/2 = 1 + 2β/τ2 > 0.

Examine the situation

(γ1, γ2) = (0, 1) β > 0 − α/β = m > 0 and τ2 = 2βν with ν > 0.

Exercise 328 (Student distribution) Consider the Student diffusion process given by
the equation

dXt = −(α+ β Xt) dt+
√
τ2 ((α+ β Xt)2 + γ2) dWt (17.31)

with X0 ∈ S = R, and some parameters (α, β, τ, γ)), with β > 0. Using (17.6) find the
reversible measure π of Xt.

Exercise 329 (Rescaled Hermite polynomials) We consider a function h on R such
that h′(x) > 0 for any x ∈ R. We denote by πh the probability measure πh(dx) ∝
h′(x) e−h2(x) dx. We consider the Ornstein-Uhlenbeck generators

Lh(f) := (h′)−2 Lh(f) with Lh := f ′′ −
(
h2 + log h′)′ f ′.

We also denote by Hn := Hn ◦ h the h-rescaling of the Hermite polynomials Hn defined in
(17.19).
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• Check that the sequence of functions 2n/2
√
n! Hn forms an orthonormal basis of L2(πh).

• Find the reversible probability measure of the generators Lh and Lh, and check that

∀n ≥ 1 Lh(Hn) = −2n Hn.

• Find the reversible probability measure π of the generator L defined by

L(f) := − (ax+ b) f ′ +
1

2
σ2 f ′′

for some parameters (a, b, σ2) with a > 0. Prove that the functions

Ĥn (x) := 2n/2
√
n! Hn

(√
a

σ2

(
x+

b

a

))

form an orthonormal basis of L2(π) s.t. L̂h(Ĥn) = −na Ĥn.

Exercise 330 (Laguerre polynomials) We consider the generalized Laguerre polynomi-
als In defined by the generating function

St(x) =
∑
n≥0

In(x)
tn

n!
= (1− t)−(α+1) e−

xt
1−t

for any 1 + α > 0, x ≥ 0 and t �= 1. We also consider the gamma distribution

π(dx) =
1

Γ(α+ 1)
1[0,∞[(x) x

α e−x dx

and the differential operator

L(f)(x) = x f ′′(x) + ((α+ 1)− x) f ′(x)

of the [0,∞[-valued diffusion process

dXt = ((α+ 1)−Xt) dt+
√
2Xt dWt

with X0 > 0. This diffusion process belongs to the class of square root processes discussed
in exercise 323.

• Check the Sturm-Liouville formula

L(f) = x−α ex ∂x
(
xα+1 e−x ∂x(f)

)
.

• We set tm := m
m+1 , for m ≥ 0. Check that e−mx = (m+1)−(α+1)

∑
n≥0 In(x) tnm

n! and for
any u �= 1 we have

1

(1− u)α+1
=

∑
n≥0

Γ(α+ n+ 1)

Γ(α+ 1)Γ(n+ 1)
un.

• Prove that

(1− t)2 ∂tSt(x) + (x− (α+ 1)(1− t)) St(x) = 0 = (1− t) S′t(x) + t St(x).
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• Deduce that for any n ≥ 0 we have

((n+ 1) In − In+1)
′

= (n+ 1) In
x In(x) + (n+ α) (n In−1(x)− In(x)) = (n+ 1) In(x)− In+1(x).

• Prove that

I0(x) = 1 I1(x) = ((α+ 1)− x) and I2(x) = (x− (α+ 2))
2 − (α+ 2).

• Check that

π (SsSt) =
1

(1− st)1+α
=

∑
n≥0

Γ(α+ n+ 1)

Γ(α+ 1)Γ(n+ 1)
(st)n

and

π (InIm) = 1m=n
Γ(α+ n+ 1)Γ(n+ 1)

Γ(α+ 1)
.

Deduce that ϕn :=
√

Γ(α+1)
Γ(α+n+1)Γ(n+1) In is a Schauder basis of the Hilbert space L2(π).

• Prove that ϕn are the eigenfunctions of (−L) associated with the eigenvalues λn = n.

• Check the Sturm-Liouville and Rodrigues formula:

In(x) = ex x−α∂n
x

(
e−x xn+α

)
and − x−α ex ∂x

(
xα+1 e−x ∂xIn

)
(x) = nIn(x).

Exercise 331 (Tchebyshev polynomials) We consider the Tchebyshev polynomials Tn

on S = [−1, 1] defined by the generating function

St(x) =
∑
n≥0

Tt(x) t
n =

1− tx

1− 2tx+ t2
and we set π(dx) := 1]−1,1[(x)

1

π

1√
1− x2

dx.

We also consider the generator L of the S = [−1, 1]-valued diffusion Xt discussed at the end
of exercise 325 and given

dXt = −Xt dt+
√
2(1−X2

t ) dWt ⇒ L(f)(x) = −x f ′(x) + (1− x2) f ′′(x).

• Using the series (1−teiθ)−1 =
∑

n≥0 (teiθ)n, with t ∈]0, 1[ check that Tn(cos θ) = cos (nθ),
for any θ ∈]0, π[.

• Check that

xTn(x) =
1

2
(Tn+1(x) + Tn−1(x)) (and xT0(x) = T1(x)) .

By induction w.r.t. the degree n, check that xn =
∑

0≤k≤n ak,n Tk(x), for some parame-
ters (ak,n)0≤k≤n. Prove that

√
2 Tn forms a Schauder basis of L2(π).

• Check that

−L(Tn)(x) = −
√
1− x2 ∂x

(√
1− x2 ∂xTn(x)

)
= λnTn(x) with the eigenvalue λn = n2.
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Exercise 332 (Legendre polynomials) We consider the Legendre polynomials on S =
[−1, 1] defined by the Rodrigues formula

Jn =
(−1)n

2nn!
∂n
xJn with Jn(x) = (1− x2)n.

We also let π(dx) = 2−1 1[−1,1](x)dx be the uniform probability distribution on the interval
[−1, 1]. We let L be the generator of the diffusion process Xt on S = [−1, 1] defined by

dXt = −2Xt dt+
√
2(1−X2

t ) dWt.

This model belongs to the class of Jacobi processes discussed in exercise 325.

• Check that (1− x2) J ′
n(x) + 2nxJn(x) = 0. Using the Leibniz formula

∂n
x (fg) =

∑
0≤m≤n

n!

(n−m)!m!
∂n−m
x f ∂m

x g (17.32)

check the spectral properties and the Sturm-Liouville formulae

−L (Jn) = − ∂x
(
(1− x2) ∂xJn

)
= λnJn with the eigenvalue λn = n(n+ 1).

• Prove that
√
2n+ 1 Jn forms a Schauder basis of L2(π).

• Check that the generating function of the Legendre polynomials is given for any x ∈]0, 1[
and |t| < 1 by the formula

1√
(1− 2xt+ t2)

=
∑
n≥0

Jn(x) tn.
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18
Path space measures

Continuous time stochastic processes are de-
fined in terms of a sequence of random vari-
ables Xt with a time index t taking values
in the uncountable continuous time axis R+.
As a result, proving the existence and the
uniqueness of their distribution on the set of
trajectories requires some sophisticated prob-
abilistic and analytic tools. In contrast with
discrete time stochastic processes, we have no
explicit descriptions of these probability mea-
sures.

Nevertheless, apart from some mathemat-
ical technicalities, the analysis of these path space measures often follows the same con-
struction as in the discrete time case. Furthermore, despite the informal derivation of our
constructions, all the formulae presented in this section are mathematically correct.

Path space measures are not only of pure mathematical interest. They are commonly
used in engineering sciences, in statistical machine learning, in reliability analysis, as well
as in mathematical finance. Most of these applications are in Bayesian inference, maxi-
mum likelihood estimation, importance sampling techniques and Girsanov type change of
probability measures.

We have chosen to guide the reader’s intuition and for this reason alone we present a
rather informal discussion of the path space models and their applications.

If you find a path with no obstacles, it probably doesn’t lead anywhere.
Frank A. Clark (1860-1936).

18.1 Pure jump models
We start with a pure jump process Xt with intensity function λt(x) and a jump amplitude
transition Mt(x, dy) on some state space S. In other words, Xt is a stochastic process with
infinitesimal generator

Lt(f)(x) = λt(x)

∫
[f(y)− f(x)] Mt(x, dy).

We let (Tk)k≥0 be the sequence of jump times of Xt, with the convention T0 = 0, and we
assume that X0 = ω0 for some ω0 ∈ S.

The random trajectories of the process on some time interval [0, t] are càdlàg paths

ω : s ∈ [0, t] �→ ωs ∈ S

501
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with a finite number, say n, of jump epochs tk ∈ [0, t], k ≤ n, defined by the fact that
∆ωtk �= 0, with k ≤ n. In addition, between the jumps the trajectory remains constant, in
the sense that ωs = ωtk , for any s ∈ [tk, tk−1[. We let D([0, t], S) be the set of all the càdlàg
paths from [0, t] into S, and D0([0, t], S) the subset of the càdlàg piecewise constant paths,
with a finite number of jump times.

By construction, we have

P
(
(Tk+1, XTk+1

) ∈ d(tk+1, ωtk+1
) | (Tk, XTk

) ∈ d(tk, ωtk)
)

= λtk+1
(ωtk) exp

(
−
∫ tk+1

tk
λs(ωtk) ds

)
dtk+1 ×Mtk+1

(ωtk , dωtk+1
)

and

P (Tn+1 ≥ t | (Tn, XTn
) ∈ d(tn, ωtn) ) = exp

(
−
∫ t

tn

λs(ωtn) ds

)
.

In the above formula, dtk and dωtk denote infinitesimal neighborhoods of the points
tk ∈ [0, t] and ωtk ∈ S.

Further on, we denote by (tk)1≤k≤n ∈ [0, t]n the jump times of a trajectory ω = (ωs)s≤t ∈
D0([0, t], S). Recalling that ωs = ωtk , for any s ∈ [tk, tk+1[, we have the following construc-
tion.

The path space distribution of X = (Xs)s≤t is defined for any ω = (ωs)s≤t ∈
D0([0, t], S) by

P (X ∈ dω)

:= P ((T1, XT1
) ∈ d(t1, ωt1), . . . , (Tn, XTn

) ∈ d(tn, ωtn) , Tn+1 ≥ t)

= exp

(
−
∫ t

0

λs(ωs−) ds

)
×

∏
s≤t : ∆ωs �=0

[λs(ωs−) ds Ms(ωs−, dωs)] .

(18.1)

One direct consequence of this result is the conditional distribution formula

P ((Xr)s≤r≤t ∈ d(ωs)s≤r≤t) | (Xr)0≤r<s = (ωr)0≤r<s )

= P ((Xr)s≤r≤t ∈ d(ωs)s≤r≤t) | Xs− = ωs− )

= exp

(
−
∫ t

s

λr(ωr−) dr

)
×

∏
s≤r≤t : ∆ωr �=0

[λr(ωr−) dr Mr(ωr−, dωr)] .
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Theorem 18.1.1 There exists a unique path space measure P on Ω :=
D([0,∞[,R) such that its restrictions to every time mesh sequence are given by
(18.1). This path space measure is the distribution of the (canonical) pure jump
process

X = (Xs)s∈[0,t] : ω ∈ Ω �→ X(ω) = (Xs(ω))s∈[0,t] = (ωs)s∈[0,t] ∈ D([0,∞[,R).

With a slight abuse of notation, it is defined by the path space measures Pt on
Ωt := D([0, t],R) given by

Pt(dω) := exp

(
−
∫ t

s

λr(ωr−) dr

)
×

∏
s≤r≤t : ∆ωr �=0

[λr(ωr−) dr Mr(ωr−, dωr)] .

Proof :
One strategy is to consider the set of path sequences indexed by rationals and taking values
in the compact space R = R ∪ {∞}:

Ω := D([0,∞[∩ Q,R) :=
∏
t∈Q

R =
{
(ωs)s∈Q : ωs ∈ R ∀s ∈ Q

}
.

By construction the product space Ω is a compact metrizable state space. Then, we interpret
the measures P defined in (18.1) as positive linear functionals on the space C(Ω) of real
valued continuous functions over ΩQ s.t. P(1) = 1. For any F ∈ C(Ω), that depends only
on the values of ω on some mesh sequence tn ∈ Q,

P(F ) =

∫
F (ω) P (X ∈ dω)

with the measure P defined in (18.1). This proves the existence and the consistency of these
measures on the subspace Cfinite(Ω) of functions that depend only on the values of ω on
some finite mesh sequence tn ∈ Q. Since Cfinite(Ω) is dense in C(Ω), invoking the Stone-
Weierstrass theorem, we conclude that there exists a unique extension to the set C(Ω). This
ends the proof of the theorem.

The Poisson process with time non-homogeneous intensity λt corresponds to the situa-
tion where Mt(x, dy) = δx+1(dy) and λt(x) = λt.

In this case, for any ω ∈ D0([0, t], S), such that ∆ωtk = 1, with k ≤ n, we have

P (X ∈ dω) = exp

(
−
∫ t

0

λs ds

)
×

∏
s≤t : ∆ωs �=0

[λs ds]

= exp

(
−
∫ t

0

λs ds+

∫ t

0

log (λs) dωs

)
dt1 . . . dtn. (18.2)

The corresponding path space measure on ω ∈ D0([0, t], S) is called the Poisson measure.
For time homogeneous models, this formula also reduces to

P (X ∈ dω) = e−λt λn dt1 . . . dtn

= e−λt λωt dt1 . . . dtn.
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18.1.1 Likelihood functionals

We let Λ be some positive valued random variable. Given Λ = λ, we let X = (Xs)s≤t be a
Poisson process with intensity λ. Combining

P (X ∈ dω | Λ = λ) = e−λt λωt dt1 . . . dtn

with the Bayes rule, we find that the conditional distribution of Λ given a realization

X = (Xs)s≤t = (ωs)s≤t = ω

of the Poisson process is given by the formula

P [Λ ∈ dλ | X = ω] ∝ exp (L (λ | ωt))× P (Λ ∈ dλ)

with the log likelihood function

L (λ | ωt) := −λt + ωt log λ.

We observe that the maximum value of the log-likelihood function is given by

∂

∂λ
L (λ | ωt) = −t + ωt

1

λ
= 0 ⇔ λ = ωt/t.

We let Θ = (Θ1,Θ2) be some positive valued random variables. Given Θ = θ = (θ1, θ2),
we let X = (Xs)s≤t be a time non-homogeneous Poisson process with power law intensity
function λt = θ1θ2t

θ2−1. Then we have

P (X ∈ dω | Λ = λ) = exp

(
−
∫ t

0

λs ds

)
×


 ∏
1≤k≤n

λtk


 dt1 . . . dtn

= exp
(
−θ1t

θ2
)
× (θ1θ2)

n


 ∏
1≤k≤n

tθ2−1
k


 dt1 . . . dtn.

Using the Bayes rule, we find that the conditional distribution of Θ given a real-
ization (Xs)s≤t = (ωs)s≤t of the Poisson process is given by

P [Θ ∈ dθ | X = ω] ∝ exp [L (θ | ω)]× P (Θ ∈ dθ)

with the log likelihood function

L (θ | ω) := −θ1t
θ2 + ωt log (θ1θ2) + (θ2 − 1)

∑
1≤k≤ωt

log tk.

Maximum value of the log-likelihood function is delivered by the point θ that represents
a root of the equation system




∂
∂θ1

L (θ | (ωs)s≤t) = −tθ2 + ωt

θ1
= 0 ⇐⇒ ωt = θ1t

θ2

=
∂

∂θ2
L (θ | (ωs)s≤t) = − θ1 tθ2︸ ︷︷ ︸

=ωt

log t+ ωt

θ2
+ log

(∏
1≤k≤n tk

)
= 0.
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This implies that

θ̂2 = ωt

(
log

tωt∏
1≤k≤n tk

)−1

= ωt


 ∑

1≤k≤n

log
t

tk




−1

and

θ̂1 = ωt exp

(
− 1

1− 1
ωt

∑
1≤k≤ωt

log tk
log t

)

are the maximum likelihood estimators.

18.1.2 Girsanov’s transformations

We let (Xt, X
′
t) be a pair of pure jump processes with positive intensity functions (λt(x), λ

′
t(x)),

and jump amplitude transitions (Mt(x, dy),M
′
t(x, dy)) on some state space S.

We further assume that Mt and M ′
t have a densities mt and m′

t with respect to some
measure ν on S; that is,

Mt(x, dy) = mt(x, y) ν(dy) and M ′
t(x, dy) = m′

t(x, y) ν(dy).

For instance, all the Gaussian transitions on S = R are absolutely continuous w.r.t. the
Lebesgue measure ν(dx) = dx.

In this situation, the path space measures of

X = (Xs)s≤t and X ′ = (X ′
s)s≤t

are defined for any ω = (ωs)s≤t ∈ D0([0, t], S) (with jump times (tk)1≤k≤n ∈ [0, t]n) by the
formulae

P (X ∈ dω)

= exp

(
−
∫ t

0

λs(ωs−) ds

)
×

∏
s≤t : ∆ωs �=0

[λs(ωs−) ds ms(ωs−, ωs) ν(dωs)]

and

P (X ′ ∈ dω)

= exp

(
−
∫ t

0

λ′
s(ωs−) ds

)
×

∏
s≤t : ∆ωs �=0

[λ′
s(ωs−) ds m′

s(ωs−, ωs) ν(dωs)] .

It is readily checked that

P (X ′ ∈ dω) = Z(ω)× P (X ∈ dω) (18.3)

with the function

Z(ω) = exp

(
−
∫ t

0

[λ′
s − λs] (ωs−) ds

)

×
∏

s≤t : ∆ωs �=0

[
λ′
s(ωs−)

λs(ωs−)

m′
s(ωs−, ωs)

ms(ωs−, ωs)

]
.
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The above formula is called the Girsanov change of measure or Girsanov transfor-
mation. It is often written for any function F on the path space D0([0, t], S) as

E (F ((X ′
s)s≤t)) = E (F ((Xs)s≤t) Zt) (18.4)

with the exponential stochastic processes Zt defined by

Zt = exp

(
−
∫ t

0

[λ′
s − λs] (Xs−) ds

)

×
∏

0≤s≤t : ∆ωs �=0

[
λ′
s(Xs−)

λs(Xs−)

m′
s(Xs−, Xs)

ms(Xs−, Xs)

]
.

Writing P and P′ the path space measures on Ω := D([0,∞[,R) with time marginals
Pt(dω) := P ((Xs)s≤t ∈ dω) and P′

t(dω) := P ((X ′
s)s≤t ∈ dω), the Girsanov formula

(18.4) takes the following form

P′
t (dω) = Zt(ω)× Pt (dω) ⇐⇒ dP′

t

dPt
(ω) := Zt(ω).

18.1.3 Exponential martingales

The Poisson processes (Xt, X
′
t) = (Nt, N

′
t) with time non-homogeneous intensity (λt, λ

′
t)

correspond to the situation where

Mt(x, dy) = M ′
t(x, dy) = δx+1(dy) and (λt(x), λ

′
t(x)) = (λt, λ

′
t).

In this situation, for any ω ∈ D0([0, t], S), such that ∆ωtk = 1, with k ≤ n, we have

Z(ω) = exp

[
−
∫ t

0

[λ′
s − λs] ds+

∫ t

0

log (λ′
s/λs) dωs

]
.

Sometimes, we also rewrite this function in the following form

Z(ω) = exp

(
−
∫ t

0

[λ′
s − λs] ds

) ∏
0≤s≤t

(
1 +

(
λ′
s

λs
− 1

)
∆ωs

)
.

We also have that

Zt = exp

[
−
∫ t

0

[λ′
s − λs] ds+

∫ t

0

log (λ′
s/λs) dNs

]

= exp

(
−
∫ t

0

[λ′
s − λs] ds

) ∏
0≤s≤t

(
1 +

(
λ′
s

λs
− 1

)
∆Ns

)
.

In terms of the martingale

dMλ
t =

(
λ′
t

λt
− 1

)
(dNt − λtdt) =

(
λ′
t

λt
− 1

)
dNt

︸ ︷︷ ︸
∆Mλ

t

− (λ′
t − λt) dt
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we also have the exponential formula

Zt = eM
λ
t

∏
0≤s≤t

((
1 + ∆Mλ

s

)
e−∆Mλ

s

)
.

We also notice that

Zt+dt − Zt = Zt

(
e(M

λ
t+dt−Mλ

t )−∆Mλ
t
(
1 + ∆Mλ

t

)
− 1

)

= Zt

(
e−(λ

′
t−λt)dt [1 + ∆Mλ

t

]
− 1

)

= Zt

(
[1− (λ′

t − λt) dt]
[
1 + ∆Mλ

t

]
− 1

)

= Zt

(
∆Mλ

t − (λ′
t − λt) dt

)
= Zt dM

λ
t .

This implies that
dZt = Zt dM

λ
t . (18.5)

In this notation, the change of measure formula (18.4) takes the following form.

Theorem 18.1.2 (Girsanov’s theorem) For any t ≥ 0, and any functional F on D0([0, t],R)
we have

E (F ((Ns)s≤t) Zt) = E (F ((N ′
s)s≤t)) (18.6)

with the martingale dZt = Zt dM
λ
t defined by the exponential formula

Zt = exp
(
Mλ

t

) ∏
0≤s≤t

{(
1 + ∆Mλ

s

)
exp

(
−∆Mλ

s

)}

and with the martingale increments

dMλ
t =

(
λ′
tλ

−1
t − 1

)
(dNt − λt dt) .

Remark : If we interpret dZt = Zt−Zt−dt, it is preferable to write dZt = Zt− dMλ
t . In our

notational system, we interpret dZt = Zt+dt − Zt so that dZt = Zt dMλ
t is a well defined

infinitesimal increment.
For time homogeneous models (λt, λ

′
t) = (λ, λ′), this formula also reduces to

Z(ω) = e(λ−λ′)t × (λ′/λ)
ωt ⇐⇒ Zt = e(λ−λ′)t × (λ′/λ)

Nt .

18.2 Diffusion models

18.2.1 Wiener measure

The random trajectories of a Brownian process on some time interval [0, t] are continuous
paths

ω : s ∈ [0, t] �→ ωs ∈ R.

We let C([0, t], S) be the set of continuous trajectories from [0, t] into R.
We consider a time mesh sequence tn = nh, with n ∈ N, and a given time step ∆t :=
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h ∈]0, 1[. By construction, the path space distribution of W = (Wtk)0≤k≤n is defined for
any ω = (ωs)s≤tn ∈ C([0, tn],R) by

P (W ∈ dω)

:= P (Wt1 ∈ dωt1 , . . . , Wtn ∈ dωtn)

=
1

(2π∆t)n/2
exp


−1

2

∑
1≤k≤n

(
∆ωtk

∆t

)2

∆t


 dωt1 . . . dωtn .

(18.7)

Here we denote ∆ωtk = ωtk − ωtk−1
, 1 ≤ k ≤ n.

Since the path space measure of W := (Ws)s≤t is supported by the set of functions
ω = (ωs)s≤t that are nowhere differentiable, we cannot pass in the limit ∆t → 0 in the above
formula. Nevertheless, using the same lines of arguments as in the proof of theorem 18.1.1,
we have the following theorem.

Theorem 18.2.1 There exists a unique path space measure P on C([0,∞[,R) such that its
restrictions to every time mesh sequence are given by (18.7). This path space measure is
the distribution of the Brownian motion W = (Ws)s≥0, and it is called the Wiener measure
on the set of continuous trajectories Ω := C([0,∞[,R). The set Ω equipped with the Wiener
measure P is called the Wiener space.

18.2.2 Path space diffusions

To simplify the presentation, we restrict ourselves with a one-dimensional diffusion Xt

defined by the SDE
dXt = b(Xt) dt+ dWt (18.8)

with some regular homogeneous function b.
We denote by Xh

tn the discrete approximation model on some time mesh defined in
(14.7). We assume that Xh

0 = x0 = X0 = W0, for some given x0 ∈ R.
By construction, the the path space distribution of Xh = (Xh

tk
)0≤k≤n is defined for any

ω = (ωs)s≤tn ∈ C([0, tn],R) s.t. ω0 = x0 by

P
(
Xh ∈ dω

)

:= P
(
Xh

t1 ∈ dωt1 , . . . , Xh
tn ∈ dωtn

)

=
1

(2π∆t)n/2
exp


−1

2

∑
1≤k≤n

[
∆ωtk

∆t
− b(ωtk−1

)

]2
∆t


 dωt1 . . . dωtn .

It is now readily checked that

P
(
Xh ∈ dω

)
:= Zh(ω)× P (W ∈ dω)

with the density function

Dh(ω) = exp


 ∑

1≤k≤n

b(ωtk−1
) ∆ωtk − 1

2

∑
1≤k≤n

b2(ωtk−1
) ∆t


.
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Choosing tn = h�t/h�, and taking the limit h = ∆t → 0, we obtain the path space measure
of the diffusion process X = (Xs)s≤t on C([0, t],R)

P (X ∈ dω) := D(ω)× P (W ∈ dω) (18.9)

with the density function

D(ω) = exp

( ∫ t

0

b(ωs) dωs −
1

2

∫ t

0

b2(ωs) ds

)

called the Cameron Martin formula or Girsanov’s theorem for diffusion processes.

If P′ stands for the distribution of X = (Xs)s≤t and P for W = (Ws)s≤t, the above
result takes the form

P′(dω) = D(ω)× P (dω) ⇐⇒ dP′

dP
(ω) := D(ω).

Under P, the trajectories are distributed like those of a Brownian motion W =
(Ws)s≤t (starting at x0). Defining P′ as above, the trajectories are distributed like
the ones of the diffusion X = (Xs)s≤t. We often say say under P′ the Brownian
motion becomes a diffusion with a drift function b (starting at x0).

18.2.3 Girsanov transformations

As in the pure jump case, this formula is often rewritten as follows.

For any function F on the path space C([0, t],R) we have

E (F ((Xs)s≤t)) = E (F ((Ws)s≤t) D ((Ws)s≤t)) (18.10)

with a density function D on the path space C([0, t],R) defined by

Zt := D ((Ws)s≤t) = exp

(∫ t

0

b(Ws) dWs −
1

2

∫ t

0

b2(Ws) ds

)
.

Formula (18.10) is valid when the Brownian motion Ws and the diffusion Xs start
at the same location W0 = X0.

Notice that

Zt = eUt with Ut :=

∫ t

0

b(Ws) dWs −
1

2

∫ t

0

b2(Ws) ds.

Combining the Doeblin-Itō formula with

dUt = b(Wt) dWt −
1

2
b(Wt)

2 dt and dUtdUt = b(Wt)
2 dW 2

t = b(Wt)
2 dt,



510 Stochastic Processes

we prove that Zt is a martingale with increments given by

dZt = eUt dUt +
1

2
eUt dUtdUt = Zt b(Wt) dWt.

Theorem 18.2.2 (Girsanov’s theorem) We let Xt be the diffusion process defined in
(18.8). For any t ≥ 0, and any functional F on C([0, t],R) we have

E (F ((Xs)s≤t) Ut) = E (F ((Ws)s≤t)) (18.11)

with the martingale
dUt = Ut b(Xt) dWt

given by the exponential formula

Ut = exp

(
−
∫ t

0

b(Xs) dWs −
1

2

∫ t

0

b2(Xs) ds

)
.

Formula (18.11) is valid when the Brownian motion Ws and the diffusion Xs start at the
same location W0 = X0.

Proof :
We first observe that

−
∫ t

0

b(Xs) dWs −
1

2

∫ t

0

b2(Xs) ds = −
∫ t

0

b(Xs) dXs +
1

2

∫ t

0

b2(Xs) ds.

We check this claim using the fact that

dXt = b(Xt) dt+ dWt =⇒ dWt = dXt − b(Xt) dt

=⇒ b(Xt) dWt = b(Xt) dXt − b2(Xt) dt.

Replacing in (18.10) the function F ((Xs)s≤t) by the function

F ((Xs)s≤t) exp
(
−
∫ t

0
b(Xs) dWs −

∫ t

0
b2(Xs) ds

)

= F ((Xs)s≤t) exp
(
−
∫ t

0
b(Xs) dXs +

1
2

∫ t

0
b2(Xs) ds

)

we find that

E
(
F ((Xs)s≤t) exp

(
−
∫ t

0
b(Xs) dWs − 1

2

∫ t

0
b2(Xs) dr

))

= E
(
F ((Xs)s≤t) exp

(
−
∫ t

0
b(Xs) dXs +

1
2

∫ t

0
b2(Xs) ds

))
.

The end of the proof is now a direct consequence of (18.10). This ends the proof of the
theorem.
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If P′ stands for the distribution of X = (Xs)s≤t and Pt for the distribution of
W = (Ws)s≤t, the above result takes the form

P (dω) = D−1(ω)P′(dω) = ⇐⇒ dP
dP′ (ω) := D−1(ω).

Under P′ the trajectories are distributed like those of the diffusion X = (Xs)s≤t.
Defining P as above, the trajectories are distributed like those of a Brownian motion
W = (Ws)s≤t. We often say say under P the diffusion becomes a Brownian motion
(without any drift function). With a slight abuse of notation, we often write

dP
dP′ = Ut = exp

(
−
∫ t

0

b(Xs) dWs −
1

2

∫ t

0

b2(Xs) ds

)

(
= exp

(
−
∫ t

0

b(Xs) dXs +
1

2

∫ t

0

b2(Xs) ds

))

instead of

dP
dP′ (ω) = D−1(ω) = exp

(
−
∫ t

0

b(ωs) dωs +
1

2

∫ t

0

b2(ωs) ds

)
.

Important remark : The theorem 18.2.2 and formula (18.9) can be extended to d-
dimensional non-homogeneous diffusions

dXt = bt(Xt) dt+R
1/2
t dWt (18.12)

where Wt is a d-dimensional Brownian motion (i.e., Wt =
(
W i

t

)
1≤i≤d

with d independent
Brownian motions W i

t , 1 ≤ i ≤ d), and bt is a function taking values in Rd. We also assume
that the diffusion matrix functional t �→ R

1/2
t is smooth and invertible.

In this situation, the formulae (18.9), (18.10), and (18.11) are valid, replacing in the
r.h.s. of (18.9), (18.10), and (18.11) the Brownian motion Ws by a Brownian motion with
increments R1/2

s dWs, with the Radon-Nikodym derivatives

Zt = D ((Ws)0≤s≤t) = exp

(∫ t

0

bs(Ws)
′R−1

t dWs −
1

2

∫ t

0

〈
bs(Ws), R

−1
s bs(Ws)

〉
ds

)

and

Ut = exp

(
−
∫ t

0

bs(Xs)
′R

−1/2
t dWs −

1

2

∫ t

0

〈
R−1/2

s bs(Xs), R
−1/2
s bs(Xs)

〉
ds

)

= exp

(
−
∫ t

0

bs(Xs)
′ R−1

s dXs +
1

2

∫ t

0

〈
bs(Xs), R

−1
s bs(Xs)

〉
ds

)
.

The last assertion is implied by the following decompositions

−bt(Xt)
′ R−1

t dXt +
1
2

〈
bt(Xt), R

−1
t bt(Xt)

〉
dt

= −bt(Xt)
′ R−1

t

(
bt(Xt) dt+R

1/2
t dWt

)
+ 1

2

〈
bt(Xt), R

−1
t bt(Xt)

〉
dt

= −bt(Xt)
′ R

−1/2
t dWt − 1

2

〈
bt(Xt), R

−1
t bt(Xt)

〉
︸ ︷︷ ︸

=
〈
R

−1/2
t bt(Xt),R

−1/2
t bt(Xt)

〉
dt.
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18.3 Exponential change twisted measures
We let Xt be a Markov process on some state space S with infinitesimal generator Lt. We
recall that for any sufficiently regular function f(t, x) we have

df(t,Xt) =

[
∂

∂t
+ Lt

]
(f)(t,Xt)dt+ dMt(f)

with some martingale Mt(f) with an angle bracket

d〈M(f)〉t = ΓLt
(f(t, .), f(t, .))(Xt) dt.

We also consider a collection of sufficiently smooth positive functions ht, and we
set

Mh
t := h−1

0 (X0)ht(Xt) exp

(
−
∫ t

0

[
h−1
s (∂s + Ls)hs

]
(Xs)ds

)

with h−1
t = 1/ht. Using Doeblin-Itō formula (15.12), we prove that Mh

t is a unit
mean positive martingale.

More precisely, we have

dMh
t = Mh

t

{(
h−1
t (∂tht + Lt(ht))

)
(Xt) dt+ h−1

t (Xt)dMt(h)
}

(18.13)

−Mh
t [∂tht + h−1

t Lt(ht)](Xt) dt

= h−1
t (Xt)M

h
t dMt(h). (18.14)

We let Xh be the process defined by the change of probability measure

E
(
F ((Xh

s )s≤t)
)
= E

(
F ((Xs)s≤t) M

h
t

)
. (18.15)

The conditional expectations w.r.t. (Xh
r )r≤s, with s ≤ t are given by the formula

E
(
F1((X

h
r )r≤s) F2((X

h
r )s≤r≤t)

)
= E

(
F1((X

h
r )r≤s) E

(
F2((X

h
r )s≤r≤t) | (Xh

r )r≤s

) )
.

On the other hand, using the Markov property we have

E
(
F1((X

h
r )r≤s) F2((X

h
r )s≤r≤t)

)

= E
(
F1((Xr)r≤s)M

h
s E

(
F2((Xr)s≤r≤t)M

h
t /M

h
s | Xs

) )

= E
(
F1((Xr)r≤s)M

h
s Ph

s,Xs
(F2)

)
= E

(
F1((X

h
r )r≤s) Ph

s,Xh
s
(F2)

)

with the functional

Ph
s,x(F2) := E

(
F2((Xr)s≤r≤t)M

h
t /M

h
s | Xs = x

)

= h−1
s (x) E (F2((Xr)s≤r≤t) ht(Xt)

× exp

(
−
∫ t

s

h−1
s (Xs)(∂s + Ls)(hs)(Xs)ds

)
| Xs = x

)
.



Path space measures 513

This implies that

E
(
F2((X

h
r )s≤r≤t) | (Xh

r )r≤s

)
= E

(
F2((X

h
r )s≤r≤t) | Xh

s

)
= Ph

s,Xh
s
(F2).

To get one step further, for any sufficiently regular function f on S, combining (18.14)
with Doeblin-Itō formula we prove that

d(f(Xt)M
h
t ) = Mh

t

df(Xt)︷ ︸︸ ︷
(Lt(f)(Xt)dt+ dMt(f))+f(Xt)

=dMh
t︷ ︸︸ ︷

h−1
t (Xt)M

h
t dMt(h)

+E
(
df(Xt)dM

h
t | (Xs)s≤t

)
+ df(Xt)dM

h
t − E

(
df(Xt)dM

h
t | (Xs)s≤t

)
︸ ︷︷ ︸

:=Mt

for some martingale Mt. On the other hand, we have

E
(
df(Xt)dM

h
t | (Xs)s≤t

)
= E

(
dMt(f)dM

h
t | (Xs)s≤t

)

= h−1
t (Xt)M

h
t E (dMt(f)dM(h)t | (Xs)s≤t)

= h−1
t (Xt)M

h
t d〈M(h),M(f)〉t

= Mh
t

(
h−1
t ΓLt(ht, f)

)
(Xt) dt.

This yields

f(Xt+dt) M
h
t+dt/M

h
t − f(Xt) =

(
f(Xt+dt)M

h
t+dt − f(Xt)M

h
t

)
/Mh

t

=
[
Lt(f) + h−1

t ΓLt
(ht, f)

]
(Xt)dt+ dM̃t

for some martingale M̃t. In particular, this implies that
1
dt

[
E
(
f(Xh

t+dt) | Xh
t = x

)
− f(x)

]

= 1
dt

[
E
(
f(Xh

t+dt) M
h
t+dt/M

h
t | Xt = x

)
− f(x)

]

�dt↓0 L
[h]
t (f)(x) := Lt(f)(x) + h−1

t (x)ΓLt
(ht, f)(x).

This shows that Xh
t has an infinitesimal generator

L
[h]
t (f) := Lt(f) + h−1

t ΓLt
(ht, f). (18.16)

18.3.1 Diffusion processes

For the diffusion generator Lt = Lc
t defined in (15.8), using (15.14) we have

L
[h]
t (f) =

d∑
i=1

bh,it ∂if +
1

2

d∑
i,j=1

(
σt(σt)

T
)
i,j

∂i,j ,

with the drift functions bh,it defined for any 1 ≤ i ≤ d by

bh,it := bit +

d∑
k=1

(
σtσ

T
t

)k
i
∂k log ht


with

(
σtσ

T
t

)k
i
=

d∑
j=1

σk
j,tσ

i
j,t


 .
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18.3.2 Pure jump processes

For the jump generator Lt = Ld
t defined in (15.9), using (15.15) we find that

L
[h]
t (f)(x) = Lt(f)(x) + λt(x)

∫
(f(y)− f(x))

(
ht(y)

ht(x)
− 1

)
St(x, dy)

= λh
t (x)

∫
(f(y)− f(x)) Mh

t (x, dy)

with the jump intensity and transition kernels

λh
t := λt h

−1
t Mt(h) and Mh

t (x, dy) :=
Mt(x, dy) ht(y)

Mt(h)(x)
.

18.4 Some illustrations

18.4.1 Risk neutral financial markets

Path space measures and Girsanov’s theorem are some of the most useful results of stochas-
tic analysis in financial engineering applications. The fundamental theorem of financial
mathematics states that the market is tradeable (i.e., there are no arbitrage opportunities)
if and only if the deflated risky assets are martingales w.r.t. some probability measure Q.
This Q is called the risk neutral measure.

18.4.1.1 Poisson markets

Suppose we are given the evolution of a risky asset price in a Poisson market in terms of
an SDE of the form

dSt = bt St dt+ σt St dNt

for some volatility type function σt > 0, and some return rate function bt < rt, where rt
stands for the exponential return of the riskless asset.

In the above display, Nt stands for a Poisson process with intensity function λt.
The Poisson process (Ns)s∈[0,t] and the corresponding stochastic process (Ss)s∈[0,t] are

defined on a probability space Ω equipped with some probability measure, say P (for in-
stance, we can choose the Poisson measure defined in (18.2)). We define an equivalent
measure on Ω by setting for any measurable subset A ⊂ Ω

Q(A) = EQ (1A) := EP (1A Zt)

with the exponential martingale

Zt = exp

[
−
∫ t

0

[
rs − bs
σs

− λs

]
ds+

∫ t

0

log

(
rs − bs
σs λs

)
dNs

]
.

By (18.6), for any functional F on D0([0, t],R) we have

EQ (F (Ns)s≤t)) = EP (F ((Ns)s≤t) Zt) = EP (F ((N ′
s)s≤t))

where N ′
s stands for a Poisson process with intensity function λ′

s =
rs−bs
σs

.
Thus, if we set

dMt = dNt −
(
rt − bt
σt

)
dt,
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we find that

dSt = bt St dt+ σt St dNt

= bt St dt+ σt St (dMt + σ−1
t (rt − bt) dt)

= rt St dt+ σt St dMt.

This shows that under Q the stock price satisfies the Q-SDE evolution equation

dSt = rt St dt+ σt St dMt

for some Poisson martingale process

dMt = dNt −
(
rt − bt
σt

)
dt.

As a direct consequence, the Q-dynamics of the deflated risky asset price defined in (3.19)
is given by the martingale increments

dSt = σt St dMt.

18.4.1.2 Diffusion markets

Suppose we are given the evolution of a risky asset price in terms of an SDE of the form

dSt = bt St dt+ σt St dWt

for some return rate function bt and volatility deterministic function σt. The Brownian
motion (Ws)s∈[0,t] and the stochastic process (Ss)s∈[0,t] are defined on a probability space
Ω equipped with some probability measure, say P. We define an equivalent measure on Ω
by setting for any measurable subset A ⊂ Ω

Q(A) = EQ (1A) := EP (1A Ut)

with the exponential martingale

Ut = exp

(
−
∫ t

0

(
bs − rs
σs

)
dWs −

1

2

∫ t

0

(
bs − rs
σs

)2

ds

)
.

We set
dMs =

1

σs
(bs − rs) ds+ dWs.

By theorem 18.2.2, for any functional F on C([0, t],R) we have

EQ (F ((Ms)s≤t)) = EP (F ((Ms)s≤t) Ut) = EP (F ((Ws)s≤t)) .

This shows that (Xs)s≤t is a Brownian motion with variance parameter σ = 1 under the
measure Q. We end up with

dSt = bt St dt+ σt St dWt

= bt St dt+ σt St (dMt − σ−1
t (bt − rt) dt)

= rt St dt+ σt St dMt.

Here again, the Q-dynamics of the deflated risky asset price defined in (3.19) is given by
the martingale increments

dSt = σt St dMt.
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18.4.2 Elliptic diffusions

We consider the d-dimensional diffusion process Xt =
(
Xi

)
1≤i≤d

defined for any 1 ≤ i ≤ d

by the stochastic differential equations

dXi
t = bit(Xt) dt+

∑
1≤j≤d1

σi
j,t(Xt) dW j

t

or in vector notation

dXt = bt(Xt) dt+
∑

1≤j≤d1

σj,t(Xt) dW j
t .

Notice that these d-dimensional equations have the same form as the one discussed in (14.18)
except that the number d1 of Brownian motions Wt =

(
W i

t

)
1≤i≤d1

may be less than d.
For sufficiently regular drift functions bt, and for a positive diffusion matrix-valued

function at = σtσ
′
t satisfying the uniform ellipticity condition

∀u = (ui)1≤i≤d

∑
1≤i,j≤d

ai,j
t (x) ui uj ≥ ε ‖u‖2 (18.17)

for some ε, the random states Xt have a smooth density w.r.t. the Lebesgue measure on
Rd.

We illustrate these models with the d = d1 + d2-dimensional diffusion process Xt =
(Xt, Yt) ∈ Rd1+d2 , given by

{
dXt = bt(Xt, Yt) dt+ dWt

dYt = ct Xt dt ⇔ Yt = y0 +
∫ t

0
cs Xs ds

(18.18)

with some initial value y0 ∈ Rd2 , some functions bt taking values in Rd1 and some d2 × d1-
matrix ct = (ci,jt )1≤i≤d2,1≤j≤d1

mapping Rd1 into Rd2 . In this situation, we have

Xi
t =

{
Xi

t for i ∈ {1, . . . , d1}
Y i−d1
t for i ∈ {d1 + 1, . . . , d1 + d2}

and

bit(x, y) =

{
bit(x, y) for i ∈ {1, . . . , d1}∑

1≤j≤d1
ci−d1,j
t xj for i ∈ {d1 + 1, . . . , d1 + d2}

and
σi
t,j(x, y) =

{
1i=j for i, j ∈ {1, . . . , d1}
0 for (i, j) ∈ {d1 + 1, . . . , d1 + d2} × {1, . . . , d1}.

The form of the σi
t,j coefficients above implies

ai,j
t (x, y) =

{
1i=j for i, j ∈ {1, . . . , d1}
0 for (i, j) ∈ {d1 + 1, . . . , d1 + d2} × {1, . . . , d1}.

It is not difficult to check that the uniform ellipticity condition (18.17) fails for this class of
multidimensional diffusions.

By applying Girsanov’s theorem to the non-homogeneous diffusions (18.12), for any
t ≥ 0, and any functional F on C([0, t],Rd1)× C([0, t],Rd2) we have

E (F ((Xs)s≤t, (Ys)s≤t) Ut) = E

(
F

(
(Ws)s≤t,

(
y0 +

∫ s

0

cr Wr dr

)

0≤s≤t

))
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and

E (F ((Xs)s≤t, (Ys)s≤t) ) = E

(
F

(
(Ws)s≤t,

(
y0 +

∫ s

0

cr Wr dr

)

0≤s≤t

)
Zt

)

with

logZt =

∫ t

0

bs

(
Ws, y0 +

∫ s

0

cr Wr dr

)
dWs

− 1
2

∫ t

0

∥∥bs
(
Ws, y0 +

∫ s

0
cr Wr dr

)∥∥2 ds

and

Ut = exp

(
−
∫ t

0

bs(Xs, Ys)
′ dWs −

1

2

∫ t

0

‖bs(Xs, Ys)‖2 ds

)
.

For instance, when d1 = d2, y0 = 0 and ct = Id, we have

E (F ((Xs)s≤t, (Ys)s≤t) ) = E

(
F

(
(Ws)s≤t,

(∫ s

0

Wr dr

)

0≤s≤t

)
Zt

)
.

In this situation, the law of the random paths [(Xs)s≤t, (Ys)s≤t] has a density Zt w.r.t. the
distribution of the Gaussian random paths

Law

[
(Ws)s≤t,

(∫ s

0

Wr dr

)

0≤s≤t

]
.

With a little extra work, this result implies that the law of the random states (Xt, Yt) is
absolutely continuous w.r.t. the law of the Gaussian r.v. (Wt,

∫ t

0
Wsds). This clearly implies

that (Xt, Yt) has a density pt(x, y) w.r.t. the Lebesgue measure on Rd. For smooth drift
functions bt, we can also show that pt(x, y) is smooth.

18.5 Nonlinear filtering

18.5.1 Diffusion observations

We consider a two-dimensional diffusion process (Xt, Yt) of the form
{

dXt = b(Xt) dt + σ(Xt) dWt

dYt = h(Xt) dt + dVt
(18.19)

with some regular functions (b, h, σ) and a couple of independent Brownian motions (Vt,Wt).
The Markov process Xt represents some signal partially observed by the process Yt. The h
is called the sensor function. The Brownian motion Vt represents the perturbations of the
sensor measurements. To simplify the presentation, we assume that Y0 = 0.

We fix some time horizon, say t > 0. The random paths (X,Y ) = ((Xs)0≤s≤t, (Ys)0≤s≤t)
are defined on the product space Ω := (C([0, t],R)× C([0, t],R)). Given the random path
X = ω1 ∈ C([0, t],R), the observation trajectories Y are given by Y0 = 0 and

dYs = h(ω1(s)) ds+ dVs.
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The sensor function h(ω1(t)) is now purely deterministic. We let V = (Vs)0≤s≤t. In this
notation, by the Cameron Martin density formula (18.9) the conditional distribution of Y
given X = ω1 is defined by

P (Y ∈ dω2 | X = ω1) = Z(ω)× P (V ∈ dω2)

with the density function Z defined for any ω = (ω1, ω2) ∈ Ω by the formula

Z(ω) = exp

( ∫ t

0

h(ω1(s)) dω2(s)−
1

2

∫ t

0

h2(ω1(s)) ds

)
.

This yields the change of probability formula

P ((X,Y ) ∈ d(ω1, ω2)) = P (Y ∈ dω2 | X = ω1)× P (X ∈ dω1)

= Z(ω)× [P (X ∈ dω1)P (V ∈ dω2)] .

If we set

P0 ((X,Y ) ∈ d(ω1, ω2)) := P (X ∈ dω1)× P (V ∈ dω2)

the above formula takes the form

P ((X,Y ) ∈ dω) = Z(ω)× P0 ((X,Y ) ∈ dω) .

Notice that under P0 the process X is unchanged but Y becomes a Brownian motion
independent of X. In probability theory, this is often called the Kallianpur-Striebel formula.

Finally, using Bayes’ rule we obtain the conditional distribution

P (X ∈ dω1 | Y = ω2) ∝ Z(ω1, ω2) P (X ∈ dω1) (18.20)

or equivalently

P (X ∈ dω1 | Y ) ∝ exp

( ∫ t

0

h(ω1(s)) dYs −
1

2

∫ t

0

h2(ω1(s)) ds

)
P (X ∈ dω1) .

18.5.2 Duncan-Zakai equation

Taking the t-marginal of the conditional distribution (18.20) for any bounded func-
tion f on R we have

ηt(f) := E (f(Xt) | (Ys)0≤s≤t) = γt(f)/γt(1)

with the random non-negative measures γt defined by

γt(f) =

∫
f(ω1(t)) exp

( ∫ t

0

h(ω1(s)) dYs −
1

2

∫ t

0

h2(ω1(s)) ds

)
P (X ∈ dω1) .

Since we have assumed that Y0 = 0, we have γ0 = η0 = Law(X0).
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This formula is often written in the following form

γt(f) = EX

(
f(Xt) exp

( ∫ t

0

h(Xs) dYs −
1

2

∫ t

0

h2(Xs) ds

))

where the lower index X in the expectation EX (.) underlines the fact that the
observation trajectories (Ys)0≤s≤t are not integrated.

Applying the Doeblin-Itō formula to

Zt := eHt with Ht =

∫ t

0

h(Xs) dYs −
1

2

∫ t

0

h2(Xs) ds (18.21)

we find that

dZt = eHt dHt +
1

2
eHt dHtdHt

= Zt

(
h(Xt) dYt −

1

2
h2(Xt) dt+

1

2
h2(Xt) dt

)
= Zt h(Xt) dYt.

We let L be the generator of the diffusion Xt. Using the integration by part formula

d(f(Xt)Zt) = Zt df(Xt) + f(Xt) dZt + df(Xt) dZt

= Zt L(f)(Xt) dt+ f(Xt) Zt h(Xt) dYt + Zt dMt(f)

with the martingale increment dMt(f) = df(Xt) − L(f)(Xt)dt = f ′(Xt)σ(Xt)dWt. In the
last assertion we used the fact that dVt × dWt = 0.

We conclude that

dγt(f) = dEX(f(Xt)Zt)

= EX (Zt L(f)(Xt)) dt+ EX (f(Xt) Zt h(Xt)) dYt

= γt(L(f)) dt+ γt(fh) dYt.

In summary, we have proved that γt satisfies the Zakai stochastic partial differential
equation

dγt(f) = γt(L(f)) dt+ γt(fh) dYt (18.22)

with the initial condition γ0 = η0 = Law(X0).

Applying the Doeblin-Itō formula to log γt(1) we also have

d log γt(1) =
1

γt(1)
dγt(1)−

1

2

1

γt(1)2
dγt(1)dγt(1)

=
γt(h)

γt(1)
dYt −

1

2

γt(h)
2

γt(1)2
dt = ηt(h) dYt −

1

2
ηt(h)

2 dt.

In the second line of the above display, we used dYtdYt = dVtdVt = dt, and L(1) = 0.

This yields the exponential formula

γt(1) = exp

[∫ t

0

ηs(h) dYs −
1

2

∫ t

0

ηs(h)
2 ds

]
.
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18.5.3 Kushner-Stratonovitch equation

We have proved that

ηt(f) = EX

(
f(Xt) exp

( ∫ t

0

(h(Xs)− ηs(h)) dYs −
1

2

∫ t

0

(
h2(Xs)− ηs(h)

2
)
ds

))
.

On the other hand, we also have

(h(Xs)− ηs(h)) dYs − 1
2

(
h2(Xs)− ηs(h)

2
)
ds

= (h(Xs)− ηs(h)) (dYs − ηs(h)ds)− 1
2

[(
h2(Xs)− ηs(h)

2
)
− 2 (h(Xs)− ηs(h)) ηs(h)

]
ds

= (h(Xs)− ηs(h)) (dYs − ηs(h)ds)− 1
2 (h(Xs)− ηs(h))

2
ds.

This yields the implicit formula

ηt(f)

= EX

(
f(Xt) exp

[∫ t

0
(h(Xs)− ηs(h)) [dYs − ηs(h)ds]− 1

2

∫ t

0
(h(Xs)− ηs(h))

2
ds
])

.

This formula shows that ηt is defined as γt by replacing h by (h− ηt(h)) and dYt by the
so-called innovation process (dYt − ηt(h)dt).

Using the same proof as the one of the Zakai equation, we prove that the normal-
ized conditional distribution ηt (a.k.a. the optimal filter) satisfies the Kushner-
Stratonovitch equation

dηt(f) = ηt(L(f)) dt+ ηt(f(h− ηt(h)) (dYt − ηt(h)dt) (18.23)

with the initial condition η0 = Law(X0).

Important remark : The Bayes’ formula (18.20), the Duncan-Zakai equation (18.22) as
well as the Kushner-Stratonovitch equation (18.23) can be extended to Markov processes
Xt with some generator Lt on some state space and to any r-dimensional non-homogeneous
diffusion observation processes of the form

dYt = ht(Xt) dt+R
1/2
t dVt. (18.24)

In the above display, Vt is an r-dimensional Brownian motion (i.e. Vt =
(
V i
t

)
1≤i≤r

with r

independent Brownian motions V i
t , 1 ≤ i ≤ r), and ht : x ∈ S �→ ht(x) = (hi

t(x))1≤i≤r ∈
Rr is a function taking values in Rr. We also assume that the symmetric matrix functional
t �→ R

1/2
t is smooth and invertible, and Y0 = 0.

In this situation, the Bayes’ formula (18.20) remains valid with

Z(ω1, ω2) := exp

( ∫ t

0

hs(ω1(s))
′R−1

s dω2(s)−
1

2

∫ t

0

〈
hs(ω1(s)), R

−1
s hs(ω1(s))

〉
ds

)
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with the transposition hs(ω1(s))
′ of the column vector hs(ω1(s)) and the Euclidian norm

‖hs(ω1(s))‖2 =
∑

1≤i≤r

(
hi
s(ω1(s))

)2. In this situation, the change of probability measure
Zt defined in (18.21) takes the form

Zt := exp

( ∫ t

0

hs(Xs)
′R−1

s dYs −
1

2

∫ t

0

〈
hs(Xs), R

−1
s hs(Xs)

〉
ds

)

and satisfies the evolution equation

dZt = Zt ht(Xt)
′ R−1

t dYt.

In much the same way, the Duncan-Zakai and the Kushner-Stratonovitch formula, are given
by the evolution equations

dγt(f) = γt(Lt(f)) dt+ γt(fht)
′R−1

t dYt

dηt(f) = ηt(Lt(f)) dt+ ηt(f(ht − ηt(ht))
′R−1

t (dYt − ηt(ht)dt). (18.25)

In the above formulae, ηt(ht), γt(fht), and ηt(f(ht − ηt(ht)) stand for the column vectors
with entries ηt(hi

t), γt(fhi
t), and ηt(f(h

i
t − ηt(h

i
t)), with 1 ≤ i ≤ r.

We also have the exponential formula

γt(1) = exp

[∫ t

0

ηs(hs)
′R−1

s dYs −
1

2

∫ t

0

〈
ηs(hs), R

−1
s ηs(hs)

〉
ds

]
.

18.5.4 Kalman-Bucy filters

Consider a linear Gaussian filtering model of the following form
{

dXt = (At Xt + at) dt + R
1/2
1,t dWt

dYt = (Ct Xt + ct) dt + R
1/2
2,t dVt.

(18.26)

In the above display, (Wt, Vt) is an (r1 + r2)-dimensional Brownian motion, X0 is a r1-
valued Gaussian random vector with mean and covariance matrix (E(X0), P0) (independent
of (Wt, Vt)), the symmetric matrix functionals t �→ R

1/2
1,t and t �→ R

1/2
2,t are smooth and

invertible, At is a square (r1 × r1)-matrix, Ct is an (r2 × r1)-matrix, at is a given r1-
dimensional column vector and ct is an r2-dimensional column vector, and Y0 = 0. The
infinitesimal generator of Xt is given by the second order differential operator

Lt(f)(x) =
∑

1≤i≤r1


at(i) +

∑
1≤j≤r1

At(i, j)xj


 ∂xi

f(x) +
1

2

∑
1≤i,j≤r1

R1,t(i, j) ∂xi,xj
f(x).

For each 1 ≤ i ≤ r1, we set fi(x) = xi. In this notation, we have

Lt(fi) = at(i) +
∑

1≤j≤r1

At(i, j)fj .

The Kushner-Stratonovitch equation (18.25) applied to these monomial functions takes the
form

dηt(f) = (Atηt(f) + at) dt+ Pηt
C ′

tR
−1
2,t (dYt − (Ctηt(f) + ct) dt)

= (Atηt(f) + at) dt+ Pηt C ′
tR

−1
2,t

[
Ct (f(Xt)− ηt(f)) dt + R

1/2
2,t dVt

]
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with the column vectors f = (fi)1≤i≤r1 and ηt(f) = (ηt(fi))1≤i≤r1
and the covariance

matrix

Pηt = ηt [(f − ηt(f))(f − ηt(f))
′] = [ηt((fi − ηt(fi))(fj − ηt(fj))]1≤i,j≤r1

= E
(
[f(Xt)− ηt(f)] [f(Xt)− ηt(f)]

′ | σ(Ys, s ≤ t)
)

= E
(
[f(Xt)− ηt(f)] [f(Xt)− ηt(f)]

′)
.

The last assertion comes from the fact that (Xt, Yt) is a linear Gaussian process. On the
other hand,

f(Xt) = Xt ⇒ df(Xt) = (Atf(Xt) + at) dt + R
1/2
1,t dWt.

We set ft = f − ηt(f) and ft,i = fi − ηt(fi). In this notation, we have the equation

dft(Xt) = Atft(Xt) dt + R
1/2
1,t dWt − Pηt

C ′
tR

−1
2,t

[
Ct ft(Xt) dt + R

1/2
2,t dVt

]

=
[
At − Pηt C ′

tR
−1
2,t Ct

]
ft(Xt) dt+ R

1/2
1,t dWt − Pηt C ′

tR
−1/2
2,t dVt.

Using the matrix differential formula

d [ft(Xt)ft(Xt)
′] = ft(Xt) dft(Xt)

′ + dft(Xt) ft(Xt)
′ + dft(Xt) dft(Xt)

′
︸ ︷︷ ︸

=[R1,t+PηtC
′
tR

−1
2,tCtPηt ]dt

we prove that

d [ft(Xt)ft(Xt)
′]

=
{
ft(Xt)ft(Xt)

′ [
At − Pηt

C ′
tR

−1
2,t Ct

]′
+
[
At − Pηt

C ′
tR

−1
2,t Ct

]
ft(Xt)ft(Xt)

′

+[R1,t + Pηt
C ′

tR
−1
2,tCtPηt

]
}
dt

+ ft(Xt)
(
R

1/2
1,t dWt − Pηt C ′

tR
−1/2
2,t dVt

)′
+
(
R

1/2
1,t dWt − Pηt C ′

tR
−1/2
2,t dVt

)
ft(Xt)

′.

Taking the expectation we find that

∂tPηt
= Pηt

[
At − Pηt

C ′
tR

−1
2,t Ct

]′
+
[
At − Pηt

C ′
tR

−1
2,t Ct

]
Pηt

+ [R1,t + Pηt
C ′

tR
−1
2,tCtPηt

]

= Pηt
A′

t +AtPηt
+R1,t − Pηt

C ′
tR

−1
2,tCtPηt

.

If we set X̂t := ηt(f) and Pt := Pηt
, we obtain the Kalman-Bucy filter equations

{
dX̂t =

(
At X̂t + at

)
dt+ Pt C

′
tR

−1
2,t

(
dYt −

(
CtX̂t + ct

)
dt
)

∂tPt = PtA
′
t +AtPt +R1,t − PtC

′
tR

−1
2,tCtPt

(18.27)

with the initial conditions (X̂0, P0) given by the mean and covariance matrix
(E(X0), P0) of the initial condition X0 of the signal (since we have assumed that
Y0 = 0; otherwise the initial condition is given by the regression formula).
The quadratic evolution equation of the covariance matrices Pt belong to the class
of Riccati equations.
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18.5.5 Nonlinear diffusion and ensemble Kalman-Bucy filters

We return to the linear Gaussian filtering model (18.26) discussed in section 18.5.4. We use
the same notation as in section 18.5.4.

We fix an observation path y = (yt)t≥0 and we consider the nonlinear diffusion process

dXt =
(
At Xt + at

)
dt + R

1/2
1,t dW t + Pηt

C ′
tR

−1
2,t

(
dyt −

(
(CtXt + ct)dt+R

1/2
2,t dV t

))

(18.28)
where (W t, V t) is an (r1+r2)-dimensional Brownian motion and X0 is a r1-valued Gaussian
random vector with mean and covariance matrix (E(X0), P0) (independent of (W t, V t)).
We also assume that (X0,W t, V t) are independent of the observation path. In the above
formula, Pηt

stands for the covariance matrix

Pηt
= ηt [(f − ηt(f))(f − ηt(f))

′] with ηt := Law(Xt).

By construction, we have

dE
(
Xt

)
=

(
At E

(
Xt

)
+ at

)
dt+ Pηt C ′

tR
−1
2,t

(
dyt −

(
CtE

(
Xt

)
+ ct

)
dt
)
. (18.29)

We set X̃t := Xt − E
(
Xt

)
. In this notation we have

dX̃t =
[
At − Pηt

C ′
tR

−1
2,tCt

]
X̃t dt + R

1/2
1,t dW t − Pηt

C ′
tR

−1/2
2,t dV t.

This implies that

d
(
X̃tX̃

′
t

)
=

[
At − PηtC

′
tR

−1
2,tCt

]
X̃tX̃

′
t dt +

[
R

1/2
1,t dW t − Pηt C ′

tR
−1/2
2,t dV t

]
X̃ ′

t

+X̃tX̃
′
t

[
At − Pηt

C ′
tR

−1
2,tCt

]′
dt + X̃t

[
R

1/2
1,t dW t − Pηt

C ′
tR

−1/2
2,t dV t

]′

+
[
R1,t + Pηt C ′

tR
−1
2,tCtPηt

]
dt.

Taking the expectations, we find that

∂tPηt
= AtPηt

+ Pηt
A′ +R1,t − Pηt

C ′
tR

−1
2,tCtPηt

. (18.30)

The evolution equations (18.29) and (18.30) coincide with the Kalman-Bucy equations
(18.27).

The ensemble Kalman filter coincides with the mean field particle interpretation of the
nonlinear diffusion process (18.28). More precisely, we sample N copies ξ0 =

(
ξi0
)
1≤i≤N

of
X0 and we consider the Mckean-Vlasov type interacting diffusion process
{

dξit =
(
At ξ

i
t + at

)
dt+R

1/2
1,t dW

i

t + PηN
t
C ′

tR
−1
2,t

(
dYt −

(
(Ctξ

i
t + ct)dt+R

1/2
2,t dV

i

t

))

i = 1, . . . , N

with the empirical measures ηNt := 1
N

∑
1≤i≤N δξit . In the above formula, (W

i

t, V
i

t)1≤i≤N

stands for N independent copies of (W t, V t).
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For a more detailed discussion on nonlinear diffusion processes and their mean field
particle interpretations, we refer the reader to chapter 16 and section 7.10.2 dedicated to
their discrete time version. The discrete time version of the ensemble-Kalman filters is
presented in some details in section 9.9.6.3. We also refer to the articles [83, 84, 85] and the
references therein for stability and uniform propagation of chaos properties of these mean
field particle samplers.

18.5.6 Robust filtering equations

We return to the two-dimensional filtering model (Xt, Yt) discussed in (18.19). Recall that

dh(Xt) = L(h)(Xt) dt+ dMt(h)

with some martingale Mt(h) (w.r.t. σ(Xs, s ≤ t)). Using the integration by part formula,
we find that

h(Xt)dYt = d(h(Xt)Yt)− Ytdh(Xt)

= d(h(Xt)Yt) +
[
eYthL(e−Yth)

]
(Xt) dt+ d logMh

t (Y )

with the exponential process Mh
t (Y ) defined by the following formula

d logMh
t (Y ) := −YtdMt(h)−

[
eYthL(e−Yth) + YtL(h)

]
(Xt)dt.

Notice that the stochastic integration w.r.t. dYt has been removed and Mh
t (y) depends only

on the observation path y = (ys)0≤s≤t.

logMh
t (y) = −

∫ t

0

ys dMs(h)−
∫ t

0

[
eyshL(e−ysh) + ysL(h)

]
(Xs) ds

For smooth observation paths, we have

d (yth(Xt)) = (∂t + L) (yth(.)) dt+ yt dMt(h)

and
eythL(e−yth) + ytL(h) = eyth (∂t + L) (e−yth) + (∂t + L) (yth).

This yields
−yt dMt(h) = (∂t + L) (yth(.))(Xt) dt− d (yth(Xt))

and therefore

d logMh
t (y) = −yt dMt(h)−

[
eythL(e−yth) + ytL(h)

]
(Xt)dt

= −
[
eyth (∂t + L) (e−yth)

]
(Xt)dt− d (yth(Xt)) .

This shows that

Mh
t (y) = exp

(
−yth(Xt) + y0h(X0) −

∫ t

0

[
eysh (∂s + L) (e−ysh)

]
(Xs)ds

)

= h−1
0 (X0)ht(Xt) exp

{
−
∫ t

0

[
h−1
s (∂s + L) (hs)

]
(Xs)ds

}

with the function
ht(x) := exp (−yth(x)). (18.31)
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This implies that

γt(f) = EX

(
f(Xt)M

h
t (y) exp

(
yth(Xt)− y0h(X0) +

∫ t

0

Vs(Xs)ds

))

with the random potential function Vt defined by

Vt = eythL(e−yth)− h2/2. (18.32)

Finally, using (18.15) and (18.16) we obtain the Feynman-Kac representation of
γt in terms of the function ht and the potential function Vt defined in (18.31) and
(18.32); that is,

γt(f) = η0(h0) EX

(
f(Xh

t )h
−1
t (Xh

t ) exp

(∫ t

0

Vs(X
h
s )ds

))

where Xh
t has an infinitesimal generator

L
[h]
t (f) := L(f) + h−1

t ΓL(ht, f)

and initial distribution Law(Xh
0 ) = Ψh0(η0) with η0 = Law(X0).

The Feynman-Kac formula stated above does not require any regularity property on
the observation path and it does not involve any stochastic integration w.r.t. dYt. We
recall that continuously differentiable trajectories are dense in the set of all continuous
paths equipped with the uniform norm. Thus, using smooth approximations (see for in-
stance lemma 4.2 in [81]), the Feynman-Kac representation we obtained is also valid for any
continuous observation paths.

18.5.7 Poisson observations

We consider a two-dimensional stochastic process (Xt, Yt). The process Xt has some gen-
erator Lt and it evolves on some state space S. We fix the time horizon t, and we let Ω1 be
the set of random trajectories of X = (Xs)0≤s≤t.

Given a realization of the process X = (Xs)0≤s≤t = ω1 ∈ Ω1, the observation process Ys

is a Poisson process with intensity λs(ω1(s)), with s ∈ [0, t]. The random paths (X,Y ) =
((Xs)0≤s≤t, (Ys)0≤s≤t) are defined on the product space Ω := (Ω1 ×D([0, t],R)).

We let N = (Ns)0≤s≤t be a Poisson process with unit intensity.
See the discussion on the Poisson processes provided in section 18.1.3, and Girsanov

theorem 18.1.2. Using (18.3) and replacing (λs, λ
′
s) by (1, λs(ω1(s))) , we have the formula:

P (Y ∈ dω2 | X = ω1) = Z(ω1, ω2) P (N ∈ dω2)

with the density function Z defined for any ω = (ω1, ω2) by the formula

Z(ω) = exp

[∫ t

0

[1− λs(ω1(s))] ds+

∫ t

0

log (λs(ω1(s))) dω2(s)

]
.

This yields the change of probability formula

P ((X,Y ) ∈ d(ω1, ω2)) = P (Y ∈ dω2 | X = ω1)× P (X ∈ dω1)

= Z(ω)× [P (X ∈ dω1)P (N ∈ dω2)] .
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Finally, using the Bayes rule, we obtain the conditional distribution

P (X ∈ dω1 | Y = ω2) ∝ Z(ω1, ω2) P (X ∈ dω1) (18.33)

or equivalently

P (X ∈ dω1 | Y )

∝ exp
[∫ t

0
[1− λs(ω1(s))] ds+

∫ t

0
log (λs(ω1(s))) dYs

]
P (X ∈ dω1) .

Taking the t-marginal of the conditional distribution for any bounded function f on R
we have

ηt(f) := E (f(Xt) | (Ys)0≤s≤t) = γt(f)/γt(1).

The random non-negative measures γt defined by this formula are often written in the form

γt(f) = EX (f(Xt) Zt) with Zt = exp

[∫ t

0

[1− λs(Xs)] ds+

∫ t

0

log (λs(Xs)) dYs

]

where the lower index X in the expectation EX (.) underlines the fact that the observation
trajectories (Ys)0≤s≤t are not integrated. By (18.6) we have

dZt = Zt (λt(Xt)− 1) (dYt − dt) .

This implies that

Zt = 1 +

∫ t

0

Zs (λs(Xs)− 1) (dYs − ds)

from which we prove that

γt(f) = EX

(
f(Xt)

[
1 +

∫ t

0

Zs (λs(Xs)− 1) (dYs − ds)

])

= E(f(Xt)) +

∫ t

0

γs (Ps,t(f)(λs − 1)) (dYs − ds) .

Here Ps,t stands for the semigroup of Xt. In differential form, we have proved that

dγt(f) = E(Lt(f)(Xt)) dt+ γt (f(λt − 1)) (dYt − dt)

+

[∫ t

0

γs (Ps,t(Lt(f))(λs − 1)) (dYs − ds)

]
dt

= γt(Lt(f)) dt+ γt (f(λt − 1)) (dYt − dt) .

In summary, we obtain the Duncan-Zaikai equation

dγt(f) = γt(Lt(f)) dt+ γt (f(λt − 1)) (dYt − dt) .

Notice that

dγt(1) = γt ((λt − 1)) (dYt − dt) = γt(1) (ηt(λt)− 1) (dYt − dt) .
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This implies that

γt(1) = exp

[∫ t

0

(1− ηs(λs)) ds+

∫ t

0

log (ηs(λs)) dYs

]
.

This yields the normalized exponential formula

Zt := Zt/γt(1)

= exp

[
−
∫ t

0

(λs(Xs)− ηs(λs)) ds+

∫ t

0

log (λs(Xs)/ηs(λs)) dYs

]
.

Replacing in (18.5) (λ′
s, λs) by (λs(Xs), ηs(λs)) we check that

dZt = Zt

[(
λt(Xt)− 1

)
dYt − (λt − ηt(λt)) dt

]

= Zt

(
λt(Xt)− 1

)
(dYt − ηt(λt) dt) with λt = λt/ηt(λt).

This shows that Zt is defined as Zt by replacing λt by the normalized intensities λt and
dYt − dt by the innovation process dYt − ηt(λt)dt.

Using the same proof as the one for the Zakai equation, we prove that the normal-
ized conditional distributions ηt (a.k.a. the optimal filter) satisfies the Kushner-
Stratonovitch equation

dηt(f) = ηt(Lt(f)) dt+ ηt

[
f

(
λt

ηt(λt)
− 1

)]
(dYt − ηt(λt) dt) (18.34)

= [ηt(Lt(f)) + ηt (f (ηt(λt)− λt))] dt+ ηt

[
f

(
λt

ηt(λt)
− 1

)]
dYt.

18.6 Exercises
Exercise 333 We consider a Brownian process Wt starting at the origin. For any b ∈ R
and any time horizon t, check that

E
[
F
(
(Ws)s∈[0,t]

)
Z

(b)
t

]
= E

[
F
(
(Ws + bs)s∈[0,t]

)]
with Z

(b)
t = exp

[
b Wt −

b2

2
t

]
.

Prove that Z(b)
t is a martingale w.r.t. Ft = σ(Ws, s ≤ t).

Exercise 334 Consider the one-dimensional diffusion Xt starting at the origin and dis-
cussed in exercise 223. Using exercise 223 check that

E
[
F
(
(Xs)s∈[0,t]

)]
= exp

[
− t

2

(
b

σ

)2
]
E
{
F
(
(σ Ws)s∈[0,t]

)
exp

[(
b

σ

)
Wt

]}
.

Exercise 335 Consider the one-dimensional diffusion Xt starting at the origin and dis-
cussed in exercise 334. Using exercise 334 check that

E

[
F
(
(Xs)s∈[0,t]

)
exp

{
−
(
b

σ

)
Wt −

t

2

(
b

σ

)2
}]

= E
[
F
(
(σ Ws)s∈[0,t]

)]
.
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Exercise 336 We consider the one-dimensional diffusion process

dXt = bt dt+ σt dWt and dW t = σt dWt

starting at W 0 = X0, with some Brownian motion Wt. Check that

E (F ((Xs)s≤t) Ut) = E
(
F
(
(W s)s≤t

))

with

Ut := exp

(
−
∫ t

0

(
bs
σs

)
dWs −

1

2

∫ t

0

(
bs
σs

)2

ds

)
.

Exercise 337 (Conditional expectations - Change of measures) We let P and P′ be
a couple of probability measures on a measurable space (Ω,F) equipped with a σ-field F and
such that

E′(X) =

∫
X(ω) P′(dω) =

∫
X(ω) Z(ω) P(dω) = E (XZ)

for any random variable X on (Ω,F), and for some positive random variable Z s.t. E(Z) =
1. The random variable Z is sometimes written Z = dP′/dP and it is called the Radon-Ni-
kodym derivative of P′ w.r.t. P. We let G ⊂ F be a smaller σ-field on Ω. (For instance
F = σ(U, V ) may be generated by a couple of random variables (U, V ) on Ω and G = σ(U)
may be the information contained in the first coordinate only.) We let E′ (X|G) be the
conditional expectation of X w.r.t. G on the probability space (Ω,F ,P′). Check that

E′ (X|G) = E(ZX|G)/E(Z|G).

Exercise 338 We let (Vs)s∈[0,t] be a Brownian motion on R, and hs a given regular func-
tion. We set dYs := hsds+ dVs, with s ∈ [0, t] Check that

E (F ((Vs)s≤t)) = E
(
F ((Ys)s≤t) exp

(
−
∫ t

0

hs dYs +
1

2

∫ t

0

h2
s ds

))

and

E (F ((Ys)s≤t)) = E
(
F ((Vs)s≤t) exp

(∫ t

0

hs dVs −
1

2

∫ t

0

h2
s ds

))
.

Exercise 339 (Wonham filter) We let Xt be a Markov process on a finite space S =
{1, . . . , n}, for some n ≥ 1, with generator

Lt(f)(i) =
∑

1≤j≤n

(f(j)− f(i)) Qt(i, j)

for some matrices Qt with non-negative entries. Let Yt be the observation process given by

dYt = ht(Xt) dt + σt dVt

for some regular functions ht from S into R, a Brownian motion Vt, and some function
σt > 0. We set ηt(i) = P(Xt = i | Yt), where Yt = σ(Ys, s ≤ t). Describe the evolution
equation of the random vector

ηt = [ηt(1), . . . , ηt(n)] .
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Exercise 340 (Wonham filter - Telegraphic signal) We let Xt be a Markov process
on a finite space S = {0, 1} switching from one state to another with a given intensity
θ > 0. Let Yt be the observation process given by

dYt = Xt dt + dVt

with a Brownian motion Vt. We set ηt(1) := P(Xt = 1 | Yt), where Yt = σ(Ys, s ≤ t).
Using exercise 339, check that

dηt(1) = λ (1− 2ηt(1)) dt+ ηt(1)(1− ηt(1)) (dYt − ηt(1) dt).

Exercise 341 (Kalman filter) Consider a two-dimensional linear Gaussian signal/observation
model of the form {

dXt = (A Xt + a) dt + σ1 dWt

dYt = (C Xt + c) dt + σ2 dVt.
(18.35)

In the above display, (Wt, Vt) is a two-dimensional Brownian motion, X0 is a real val-
ued Gaussian random vector with mean and covariance matrix (E(X0), P0) (independent
of (Wt, Vt)), σ1, σ2 > 0, (A, a) and (C, , c) are some given parameters, and Y0 = 0. De-
scribe the Kalman-Bucy filter associated with this estimation problem. Discuss the situation
C = 0. When C �= 0 check that the Kalman-Bucy filter is given by

{
dX̂t =

(
A X̂t + a

)
dt+QtC

−1
(
dYt −

(
CX̂t + c

)
dt
)

.
Qt = −Q2

t + 2AQt +B2,

with B := C(σ1/σ2) �= 0 and Q0 = (C/σ2)
2
P0. Prove that

Qt = z2 −
(z2 −Q0)e

−(z2−z1)t(z2 − z1)

(z2 −Q0) e−(z2−z1)t + (Q0 − z1)

and ∫ t

0

(A−Qs) ds ≤ − (z2 − z1)t

2
+ log (1 + |z2/z1|)

with
z1 := A−

√
A2 +B2 < 0 < z2 := A+

√
A2 +B2.

Exercise 342 (Martingales - Change of measures) We let (Ms)s∈[0,t] be a martingale
w.r.t. some filtration (Fs)s≤t on some probability space (Ωt,Ft,Pt). we let P′

t be another
probability measure on (Ωt,Ft) defined by Zt = dP′

t/dPt for some non-negative martingale
(Zs)s≤t w.r.t. some filtration (Fs)s≤t on (Ωt,Ft,Pt). In other words, we have E(Zt|Fs) =
Zs for any s ≤ t and

E′
t (X) :=

∫
X(ω) P′

t(dω) =

∫
X(ω) Zt(ω) Pt(dω) := Et (X Zt)

for any random variable X on (Ωt,Ft). Using exercise 337, check that for any s ≤ t

E′(Mt | Fs) = Ms ⇐⇒ E(MtZt|Fs) = ZsMs.

This shows that (Ms)s∈[0,t] is a martingale (w.r.t. (Fs)s≤t) on (Ωt,Ft,P′
t) if and only if

(MsZs)s∈[0,t] is a martingale (w.r.t. (Fs)s≤t) on (Ωt,Ft,Pt). In this situation check that

E′(Mt | Fs) = Z−1
s E(MtZt|Fs).
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Exercise 343 (Martingale transformations) We consider the martingale (Ms)s≤t

and the change of probability model discussed in exercise 342. Using exercise 342, check
that

M ′
s := Ms −

∫ t

0

Z−1
s+ d [Z,M ]s

is a martingale on (Ωt,Ft,P′
t).

Exercise 344 (Martingale transformations - Diffusions) Consider a Brownian
motion (Ws)s≤t on (Ωt,Pt) and the change of probability Zt = dP′

t/dPt with the non-
negative martingale (Zs)s≤t defined in (18.10). Using exercise 343, check that W ′

s =
Ws −

∫ s

0
b(Wr) dr, with s ∈ [0, t], is a martingale on (Ωt,Ft,P′

t).

Exercise 345 (Martingale transformations - Poisson process) Consider a Poisson
process (Ns)s≤t with unit intensity λs = 1 on (Ωt,Pt) and the change of probability Zt =
dP′

t/dPt with the non-negative martingale (Zs)s≤t defined in (18.4) with m = m′ and some
regular intensity function λ′

s. Using exercise 343, check that M ′
s =

∫ s

0
1

λ′
r(Nr)

dNr − s,
with s ∈ [0, t], is a martingale on (Ωt,Ft,P′

t). Deduce that N ′
s = Ns −

∫ s

0
λ′
r(Nr) dr is a

martingale on (Ωt,Ft,P′
t).

Exercise 346 (Exponential martingales) We let f be a bounded function on R, g
be a bounded function taking values in ]− 1,∞[ and Nt be a Poisson process with intensity
λ, and Ft = σ(Ns, s ≤ t). Check that the following processes are Ft-martingales:

M
(1)
t := exp

(∫ t

0

f(s) dNs − λ

∫ t

0

(ef(s) − 1)ds

)

M
(2)
t := exp

(∫ t

0

log (1 + g(s)) dNs − λ

∫ t

0

g(s)ds

)
.

Exercise 347 (Girsanov’s theorem) We let f be a bounded function on R, Wt be a
Brownian motion, and Ft = σ(Ws, s ≤ t). Check that the following process is an Ft-
martingale:

Mt = exp

(∫ t

0

f(s)dWs −
1

2

∫ t

0

f(s)2ds

)
.

Exercise 348 (Importance sampling - Twisted processes) We let Xt be a Markov
process on S with infinitesimal generator Lt defined on some domain D(L) of functions
(for instance we can take S = Rd, for some d ≥ 1, with the infinitesimal generator (15.13)
acting on the set D(L) of twice differentiable functions with bounded derivates). We let
η0 = Law(X0). We consider some sufficiently smooth functions ϕ ∈ D(L). For any bounded
function F on the set of paths (Xt)0≤s≤t, check the Feynman-Kac formula

E(F ((Xs)s≤t)) = E(ϕ(X0)) E
(

F ((Xϕ
s )s≤t) ϕ(X

ϕ
t )

−1 exp

(∫ t

0

V ϕ
s (Xs)ds

))

with the potential function V ϕ
t = ϕ−1Lt(ϕ), with a stochastic process Xϕ

t with initial distri-
bution ηϕ0 = Ψϕ(η0), and with the infinitesimal generator defined for any sufficiently regular
function g by

L
[ϕ]
t (g) = Lt(g) + ϕ−1 ΓLt

(ϕ, g). (18.36)

The Xϕ
t is called the twisted process. Illustrations are provided in section 18.3.1 and in

section 18.3.2 in the context of diffusion and pure jump processes.
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Exercise 349 (Trial and guiding wave functions) We consider the stochastic models
described in exercise 348. We further assume that Lt = L is homogeneous w.r.t. the time
parameter. We let V be a regular energy function on S. Prove that for any bounded function
f on S we have

E
(
f(Xt) exp

(
−
∫ t

0

V (Xs)ds

))
= η0(ϕ) E

(
f(Xϕ

t ) ϕ(X
ϕ
t )

−1 exp

(
−
∫ t

0

V ϕ(Xs)ds

))

with the potential function

V ϕ = ϕ−1H(ϕ) and the Hamiltonian operator H(g) := −L(g) + V g.

Exercise 350 (Twisted process reversibility) We consider a generator L that is re-
versible w.r.t. some measure µ (in the sense of (17.2)). Check that the twisted generator
L[ϕ](g) = L(g) + ϕ−1 ΓL(ϕ, g) is reversible w.r.t. Ψϕ2(µ).
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Part V

Processes on manifolds
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19
A review of differential geometry

As its name indicates, differential geometry is a field of mathematics concerned with
differential and integral calculus on differentiable manifolds This chapter summarises some
basic tools that are frequently used to design and analyze the behavior of stochastic processes
in constraint type manifolds, including parametric type Riemannian manifolds.

We start with brief discussion on projection operators and symmetric bilinear forms on
finite dimensional vector spaces. The second part of the chapter is dedicated to first and
second covariant derivatives of functions and vector fields. We also present more advanced
operators such as the divergence, the Lie bracket, the Laplacian, and the Ricci curvature.
The end of the chapter is concerned with the Bochner-Lichnerowicz formula and several
change-of-variable formulae. The local expressions of these geometric objects and formulae
in a given parametric space are discussed in chapter 21. The Bochner-Lichnerowicz formula
is used in section 23.7 to analyze the stability properties of diffusions on manifolds.

And since geometry is the right foundation of all painting, I have decided to teach
its rudiments, and principles to all youngsters eager for art.
Albrecht Durer (1471-1528).

19.1 Projection operators

We let V = Vect (V1, . . . , Vp) ⊂ Rr be
a p-dimensional vector space with a (not
necessarily orthonormal) basis (V1, . . . , Vp) ∈

(Rr)p, with the column vectors Vi =




V 1
i
...
V r
i


,

with 1 ≤ i ≤ p ≤ r. We equip V with the Eu-
clidean inner product

gi,j := 〈Vi, Vj〉 = V T
i Vj =

∑
1≤k≤r

V k
i V k

j = tr(ViV
T
j )

and the corresponding Euclidian norm ‖W‖22 = 〈W,W 〉, for any W ∈ V. The matrix g is
called the Gramian matrix or the Gram matrix associated with the p vectors (V1, . . . , Vp).
In geometry literature, g is sometimes written as

g = Gram (V1, . . . , Vp) .
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We let gi,j be the entries of the inverse g−1 of the matrix g = (gi,j)1≤i,j≤p and we set

V = [V1, . . . , Vp] and V T :=




V T
1
...

V T
p


 =⇒ g = V TV. (19.1)

Proposition 19.1.1 The orthogonal projection

πV : W ∈ Rr �→ πV(W ) ∈ V

on V is given by the matrix

πV = V g−1V T =⇒ πV(W ) =
∑

1≤i≤p

〈 ∑
1≤j≤p

gi,jVj ,W

〉
Vi.

The r.h.s. formula is implied by the fact that

g−1V T =




∑
1≤j≤p g

1,jV T
j

...∑
1≤j≤p g

p,jV T
j


 =⇒ g−1V TW =




∑
1≤j≤p g

1,jV T
j W

...∑
1≤j≤p g

p,jV T
j W


 .

For any vector W1,W2 we notice that

〈πV(W1),W2〉 =
∑

1≤i,j≤r

gi,j 〈W1, Vi〉 〈Vj ,W2〉.

In particular, for any W1,W2 ∈ V we have

〈W1,W2〉 =
∑

1≤i,j≤r

gi,j 〈W1, Vi〉 〈Vj ,W2〉. (19.2)

Definition 19.1.2 Given a collection of vectors (Wi)1≤i≤k we
set

πV ([W1, . . . ,Wk]) = [πV(W1), . . . , πV(Wk)] .

In this notation, for any W1,W2 ∈ Rr, we observe that

W1W
T
2 :=

[
W 1

2 W1, . . .W
r
2 W1

]
=⇒ πV(W1W

T
2 ) =

[
W 1

2 πV(W1), . . .W
r
2 πV(W1)

]
= πV(W1)W

T
2 .

In summary, we have proved that

πV(W1W
T
2 ) = πV(W1)W

T
2 .



A review of differential geometry 537

If we choose an orthonormal basis (U1, . . . , Up) ∈ (Rr)p we have

Vi =
∑

1≤j≤p

〈Vi, Uj〉Uj = [U1, . . . , Up]︸ ︷︷ ︸
U




UT
1
...

UT
p




︸ ︷︷ ︸
UT

Vi := UUTVi =⇒ V = UP

with

P = UTV =




〈U1, V1〉 . . . 〈U1, Vp〉
...

〈Up, V1〉 . . . 〈Up, Vp〉




from which we conclude that

V g−1V T = V (V TV )−1V T

= UP ((UP )TUP )−1(UP )T = UP (PTUTUP )−1(UP )T

= UP (PTP )−1PTUT = UPP−1(PT )−1PTUT = UUT .

This shows that the projection matrix πV =
(
πk
V,l

)
1≤k,l≤r

does not depend on the choice

of the basis of the vector field V, and we have

πV = πT
V and πVπV = πV ⇒ ∀1 ≤ k, l ≤ r

∑
1≤i≤r

πi
V,lπ

i
V,k = πk

V,l.

The entries πj
i of the matrix π := πV can be expressed in terms of the basis vectors Vk

by the formula

ei :=




0
...
0
1
0
...
0




(i-th) ⇒ πi :=




π1
i
...
πr
i


 = π(ei) =

∑
1≤l≤p


 ∑
1≤k≤p

gk,l V i
k


 Vl ∈ V. (19.3)

For any vector field W ∈ V , we notice that

(19.3) ⇒
∑

1≤i≤p

W i πi =
∑

1≤l≤p


 ∑
1≤k≤p

gl,k 〈Vk,W 〉


 Vl = π(W ) = W.

This yields the following decomposition.

For any 1 ≤ i ≤ r and vector field W ∈ V we have

W =
∑

1≤i≤p

W i πi and πi =
∑

1≤k,l≤p

gk,l V i
k Vl. (19.4)
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Definition 19.1.3 We let B : V×V �→ R be a symmetric bilinear form. The trace
of B is defined by

tr(B) =
∑

1≤i≤p

B(V i, V i)

where V i stands for an orthonormal basis of V w.r.t. the Euclidian inner product.

The vectors V i can be obtained from Vi using a Gram-Schmidt procedure. A symmetric
bilinear form B : V × V �→ R on V is expressed in terms of some linear form b : V �→ V
defined for any W1,W2 ∈ V by

B(W1,W2) = 〈b(W1),W2〉 = 〈W1, b(W2)〉.

The form b is a non necessarily symmetric matrix on Rr but its action on the vector space
V is symmetric. It is said to be positive semi-definite when we have

∀W ∈ V B(W,W ) = 〈b(W ),W 〉 ≥ 0. (19.5)

Notice that V equipped with the inner product can be interpreted as a finite dimensional
Hilbert space. In this context, the famous Riesz-Fischer theorem ensures that there is a
one-to-one correspondence between bilinear forms B and linear operators b on V. Thus, we
often identify B with b; for instance we set tr(B) = tr(b). Whenever B is symmetric, the
linear form b is self adjoined and we can find an orthonormal basis V i such that b(V i) = λiV i

for some collection of (possibly equal) eigenvalues λ1 ≥ . . . ≥ λp. For positive semi-definite
forms (19.5) ensures that λi ≥ 0, for any 1 ≤ i ≤ p.

The spectral decomposition of b (a.k.a. Schmidt decomposition) is given by the formula

W =
∑

1≤i≤p

〈V i,W 〉 V j ∈ V ⇒ b(W ) =
∑

1≤i≤p

λi 〈V i,W 〉 V j .

Observe that b2 = b ◦ b ⇒ b2(V i) = λi b(V i) = λ2
i Vi.

The trace of b is independent of the choice of the basis vectors and thus we have the
formulae

tr(b) =
∑

1≤i≤p

λi and tr(b2) =
∑

1≤i≤p

λ2
i . (19.6)

In this situation, we also have

Vi =
∑

1≤k≤p

〈
Vi, V k

〉
V k and gi,j = 〈Vi, Vj〉 =

∑
1≤k,l≤p

〈
Vi, V k

〉 〈
Vj , V l

〉
.

The trace of B expressed in the basis vectors Vi takes the form

tr(B) =
∑

1≤i,j≤p

gi,jB(Vi, Vj) =
∑

1≤i,j≤p

gi,j〈b(Vi), Vj〉. (19.7)

We check this claim recalling that

B(Vi, Vj) =
∑

1≤k,l≤p

〈
Vi, V k

〉 〈
Vj , V l

〉
B
(
V k, V l

)

and ∑
1≤i,j≤p

gi,j
〈
Vi, V k

〉
Vj = V k
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from which we prove that

∑
1≤i,j≤p

gi,jB(Vi, Vj) =
∑

1≤k,l≤p


 ∑
1≤i,j≤p

gi,j
〈
Vi, V k

〉 〈
Vj , V l

〉

 B

(
V k, V l

)

=
∑

1≤k,l≤p

〈
V k, V l

〉
B
(
V k, V l

)
= tr(B).

This ends the proof of the assertion.

We let B1 and B2 : V × V �→ R be a pair of bilinear forms defined for any W1,W2 ∈ V
by

∀i = 1, 2 Bi(W1,W2) = 〈bi(W1),W2〉 for some linear mapping bi : V �→ V.

Notice that
〈b1

(
V 1

)
, b2

(
V 2

)
〉 = 〈V 1, b1b2

(
V 2

)
〉 = 〈V 2, b2b1

(
V 1

)
〉.

This leads to the following definition of the trace type inner product.
Definition 19.1.4 We equip the space of symmetric bilinear forms with the
Hilbert-Schmidt inner product

〈B1, B2〉 :=
∑

1≤i≤p

〈b1
(
V i

)
, b2

(
V i

)
〉 = 〈b1, b2〉 = tr (b1b2) (19.8)

and the corresponding norm ‖B‖ =
√

〈B,B〉 = ‖b‖ =
√
〈b, b〉 = tr(b2) where V i

stands for an orthonormal basis of V w.r.t. the Euclidian inner product.

We also recall the operator norm inequality

‖B‖2 := ‖b‖2 := sup { ‖b(W )‖2 : W ∈ V s.t. ‖W‖2 = 1} ≤ ‖B‖ (19.9)

for any bilinear form B on V associated with some linear form b on V.
We check this claim using an orthonormal basis V i of V. We assume that B is associated

with some linear mapping b : V �→ V, so that

W =
∑

1≤i≤p

〈W,V i〉 V j ⇒ b(W )
∑

1≤i≤p

〈W,V i〉 b(V j).

By the triangle inequality and the Cauchy-Schwartz inequality,

‖b(W )‖2 ≤
∑

1≤i≤p

∣∣〈W,V i〉
∣∣ ‖ b

(
V i

)
‖2

≤


 ∑

1≤i≤p

‖b
(
V i

)
‖22




1/2

=


 ∑

1≤i≤p

〈b
(
V i

)
, b

(
V i

)
〉




1/2

= ‖B‖

since
∑

1≤i≤p

∣∣〈W,V i〉
∣∣2 = 1 = ‖W‖2.

The Hilbert-Schmidt inner product expressed in the basis vectors Vi takes the form

〈B1, B2〉 :=
∑

1≤i,j≤p

gi,j〈b1 (Vi) , b2 (Vj)〉 = tr(b1b2). (19.10)
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We check this claim recalling that

bl (Vi) =
∑

1≤k≤p

〈
Vi, V k

〉
bl
(
V k

)

〈b1 (Vi) , b2 (Vj)〉 =
∑

1≤k,l≤p

〈
Vi, V k

〉 〈
Vj , V l

〉
〈b1

(
V k

)
, b2

(
V l

)
〉

and ∑
1≤i,j≤p

gi,j
〈
Vi, V k

〉
Vj = V k

from which we prove that

∑
1≤i,j≤p gi,j 〈b1 (Vi) , b2 (Vj)〉

=
∑

1≤k,l≤p

[∑
1≤i,j≤p gi,j

∑
1≤k,l≤p

〈
Vi, V k

〉 〈
Vj , V l

〉]
〈b1

(
V k

)
, b2

(
V l

)
〉

=
∑

1≤k,l≤p

〈
V k, V l

〉
〈b1

(
V k

)
, b2

(
V l

)
〉 = 〈B1, B2〉.

This ends the proof of the assertion.

Notice that

(19.4) ⇒ tr(B) =
∑

1≤k,l≤r

∑
1≤i,j≤p

gi,j V k
i V l

j B(πk, πl) =
∑

1≤k,l≤r

πl
k B(πk, πl).

In much the same way we check that

〈B1, B2〉 :=
∑

1≤i,j≤r

πj
i 〈b1 (πi) , b2 (πj)〉 and tr(B) =

∑
1≤i,j≤r

πj
i 〈b(πi), πj〉 .

(19.11)

Suppose that b is associated with some matrix b = (bi,j)1≤i,j≤r acting on the basis
vectors Vi of V. In this situation, we have

∑
1≤k,l≤p

gk,l 〈b(Vk), Vl〉 =
∑

1≤i,j≤r


 ∑
1≤k,l≤p

gk,l V i
kV

j
l


 bi,j

=
∑

1≤i,j≤r

πi,j bi,j .

If bk stands for some matrix bk = (bk(i, j))1≤i,j≤r we have

〈B1, B2〉 =
∑

1≤i,j≤r

b1(i, j) π
i
j bT2 (j, i).
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In summary, we have proved that

tr(b) = tre(πb) and 〈B1, B2〉 = tre(b1πbT2 ) = tre(πbT1 b2) (19.12)

where tre(A) =
∑

1≤i≤r Ai,i stands for the trace of a matrix A on the Euclidian
space Rr. Notice that

tr(πb) = tre(πb) and tr(bπ) = tre(bπ)

and for symmetric matrices b1, b2 we have

〈πb1, πb2〉 = tre((πb1) (πb2)).

We end this section with some well known trace inequalities.

For any symmetric positive semi-definite bilinear form B on V associated with
some linear form b on V we have the estimates

1

p
(tr(b))2 ≤ tr(b2) = 〈b, b〉2 = ‖b‖2 ≤ (tr(b))2 . (19.13)

These formulae are direct consequences of (19.6). For instance

λi ≥ 0 ⇒


 ∑

1≤i≤p

λ2
i


 ≤


 ∑

1≤i≤p

λi




2

and


1

p

∑
1≤i≤p

λi




2

≤ 1

p

∑
1≤i≤p

λ2
i .

19.2 Covariant derivatives of vector fields
We further assume that we are given a collection of smooth vector functionals (a.k.a. vector
fields) Vi : x ∈ Rr �→ Vi(x) ∈ Rr and V ⊥

j : x ∈ Rr �→ V ⊥
j (x) ∈ Rr, with 1 ≤ i ≤ p and

1 ≤ j ≤ q = r − p such that

Rp+q = Vect (V1, . . . , Vp)︸ ︷︷ ︸
=V

⊥
+ Vect

(
V ⊥
1 , . . . , V ⊥

q

)
︸ ︷︷ ︸

=V⊥

, (19.14)

in the sense that

∀x ∈ Rr Rp+q = Vect (V1(x), . . . , Vp(x))︸ ︷︷ ︸
=V(x)

⊥
+ Vect

(
V ⊥
1 (x), . . . , V ⊥

q (x)
)

︸ ︷︷ ︸
=V⊥(x)

.

The vector fields Vi do not need to be defined on the whole Euclidian space Rr. The analysis
developed in the forthcoming section and chapter is based on local differential calculus only,
so that the vector fields need only be defined on some open subset of S ⊂ Rr or on some
manifold S embedded in Rr. In these settings, the mapping Vi : x ∈ S ⊂ Rr �→ Vi(x) the
velocity field of a particle moving on a manifold with a velocity vector Vi(x) at some visited
state x. We have chosen S = Rr to simplify the presentation and to avoid unnecessary
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technicalities. We slightly abuse notation and we let V be the set of these vector fields. In
the further development of this chapter we shall assume without further mentioning that

∀1 ≤ i, j ≤ p ∀1 ≤ k ≤ r
∑

1≤m≤r

V m
i ∂xmV k

j =
∑

1≤m≤r

V m
j ∂xmV k

i . (19.15)

Two important examples where (19.15) holds follow below:

• The condition is clearly satisfied when Vi = ei (and V ⊥
j = ep+j), where ei stands for the

unit vectors (19.3).

• When the vector fields Vi have the form Vi = (∂θiψ)φ := (∂θiψ) ◦ φ for some smooth
parametrization mapping ψ : θ ∈ Rp �→ ψ(θ) ∈ Rr with some inverse φ : x ∈ Rr �→
φ(x) ∈ Rp s.t. (φ ◦ ψ)(x) = x we have the formula

∑
1≤m≤r

V m
i ∂xm

V k
j =

∑
1≤m≤r

(∂θiψ
m)φ ∂xm

([
∂θjψ

k
]
φ

)
(19.16)

=
[
∂θi

([(
∂θjψ

k
)
φ

]
◦ ψ

)]
φ
=

[
∂θi∂θjψ

k
]
φ
=

[
∂θj∂θiψ

k
]
φ
.

This shows that (19.15) is also met in this case.

– When p = r the mapping ψ can be interpreted as a change of coordinates.
– When r > p the mapping ψ represents a local parametrization of a manifold of

dimension p embedded in Rr.

We mention that the commutation condition (19.15) ensures that the vector fields V(x)
form a Lie algebra. These important geometric properties are discussed in section 19.4.
When (19.15) is satisfied, we can also define a symmetric and natural second order derivation
on vector fields in V. These second order models are introduced in section 19.2.2. The
symmetry property is discussed in section 19.4.

In this case (19.15) is clearly satisfied. When working with the basis vector fields of the
orthogonal space V⊥, we shall assume that the following condition is satisfied.

∀1 ≤ i ≤ q ∀1 ≤ k, l ≤ r ∂xk
V ⊥,l
i = ∂xl

V ⊥,k
i . (19.17)

This condition is clearly satisfied for gradient type vector field models V ⊥
i = ∂ϕi associated

with some smooth constraint type functions ϕi on Rr. These models are discussed in
section 20.1.

We also consider the coordinate projection mappings

∀1 ≤ i ≤ r χi : x = (x1, . . . , xr) ∈ Rr �→ χi(x) = xi. (19.18)

In the further development of this chapter, to clarify the presentation, we suppress the
dependency on the state x. In this simplified notation,

〈Vi, V
⊥
j 〉 = 0 ∀ 1 ≤ i ≤ p and ∀ 1 ≤ j ≤ q.

By construction, for any vector field we have

W = π(W ) + πV⊥(W ) with π := πV . (19.19)

Notice that π := and π⊥ := πV⊥ are smooth matrix functionals and

π⊥(W ) =
∑

1≤i≤q

〈 ∑
1≤j≤q

gi,j⊥ V ⊥
j ,W

〉
V ⊥
i (19.20)

with the entries gi,j⊥ of the inverse g−1
⊥ of the matrix g⊥ = (g⊥,i,j)1≤i,j≤p given by

g⊥,i,j := 〈V ⊥
i , V ⊥

j 〉.



A review of differential geometry 543

19.2.1 First order derivatives

Definition 19.2.1 Given a smooth function F and a smooth vector field W =


W 1

...
W r


 on Rr, for any 1 ≤ i ≤ r we set

∂F :=




∂x1
F
...

∂xr
F


 ∂xi

W :=




∂xi
W 1

...
∂xi

W r


 and ∂W :=

[
∂W 1, . . . , ∂W r

]
.

The Euclidean gradient operator ∂ : F �→ ∂F maps smooth functions to vector fields
∂F : x �→ (∂F )(x) that encapsulate information about the change of the function F w.r.t.
infinitesimal variations of the individual coordinates xi of the state x = (x1, . . . , xr)

T .

Definition 19.2.2 We consider the operators

∂W (F ) :=
∑

1≤k≤r

W k ∂xk
(F ) = WT∂F = 〈W,∂F 〉 and ∇ := π∂.

and their extension to vector fields defined by

∂W1
(W2) =




∂W1
W 1

2
...

∂W1
W r

2


 and ∇W1

(W2) := π∂W1
(W2).

In this notation, the commutation condition (19.15) takes the form

∀1 ≤ i, j ≤ p ∂Vi
(Vj) = ∂Vj

(Vi).

Definition 19.2.3 The Christoffel symbols Ck
i,j are defined by the projection co-

ordinates of ∂Vi(Vj) in the basis Vk, that is,

∇Vi
(Vj) :=

∑
1≤k≤r

Ck
i,j Vk ⇐⇒ Ck

i,j :=
∑

1≤l≤r

gk,l 〈Vl, ∂Vi
(Vj)〉 = Ck

j,i. (19.21)

The symmetry property is a direct consequence of the commutation condition
(19.15). In differential geometry, the symmetry of the Christoffel symbols Ck

i,j

ensures that the covariant derivative is without torsion.

We return to the model discussed in (19.16). Recall that the vector fields Vi have the
form Vi = (∂θiψ)φ for some smooth parametrization mapping ψ : θ ∈ Rp �→ ψ(θ) ∈ Rr

with an inverse φ : x ∈ Rr �→ φ(x) ∈ Rp. In this situation we have

∂Vi
(Vj) =

[
∂θi∂θjψ

]
φ
⇒ Ck

i,j :=
∑

1≤l≤r

gk,l 〈(∂θlψ)φ ,
[
∂θi∂θjψ

]
φ
〉.
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In the same way we have

∂Vi
(F ) =

∑
1≤m≤r

(∂θiψ
m)φ ∂xm

F = (∂θif)φ (19.22)

with f := F ◦ ψ and

∇F =
∑

1≤i,j≤r

gi,j ∂Vi
(F ) Vj =

∑
1≤i,j≤r

gi,j (∂θif)φ
(
∂θjψ

)
φ
.

We clearly have the linearity property

∂f1W1+f2W2 = f1 ∂W1 + f2 ∂W2 =⇒ ∇f1W1+f2W2 = f1 ∇W1 + f2 ∇W2 (19.23)

for any functions fi and any vector fields Wi.

Given a smooth curve

C : t ∈ [0, 1] �→ C(t) =
(
C1(t), . . . , Cr(t)

)T ∈ Rr

starting at some state C(0) = x ∈ Rr, with a velocity vector field W , we have

d

dt
F (C(t)) =

∑
1≤k≤r

W k(C(t)) ∂xk
(F )(C(t)) = (∂W (F )) (C(t)) = 〈W (C(t)), (∂F )(C(t))〉.

The function ∂W (F ) is called the directional derivative of F w.r.t. the vector field W . The
r.h.s. equation makes clear the dependency of the gradient on the inner product structure
on Rr. If A((∂F )(x),W (x)) represents the angle between (∂F )(x) and W (x) we have

∂W (F )(x) = ‖(∂F )(x)‖ ‖W (x)‖ cos (A((∂F )(x),W (x))).

When W (x) is perpendicular to (∂F )(x), the rate of change of (∂F )(x) in the direction
W (x) is null. In contrast, the rate of change of (∂F )(x) in the direction W (x) is maximal
when W (x) is parallel to (∂F )(x).

The covariant derivative (w.r.t. the vector space V)

∇F := π (∂F ) = ∂F − π⊥(∂F ) (19.24)

expresses the changes of the function F w.r.t. vectors W ∈ V:

∀W ∈ V 〈∂F,W 〉 = 〈π (∂F ) ,W 〉 = 〈∇F,W 〉 .
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In terms of the basis vector fields Vi of V we clearly have

∇F = π (∂F ) =




∂π1(F )
...

∂πr (F )




=
∑

1≤i,j≤p gi,j 〈Vi, ∂F 〉 Vj =
∑

1≤i,j≤p gi,j ∂Vi
(F ) Vj ∈ V.

(19.25)

Choosing F = χi we have

∂χi = ei =⇒ ∇χi = π(ei) = πi (19.26)

with the projection mappings χi and the unit vectors ei defined in (19.18) and
(19.3). In this notation, we have the formula

∇F =
∑

1≤i≤r

πi ∂xiF. (19.27)

The formula (19.27) can be checked in various ways. For instance,

f(x) = f (χ1, . . . , χr) (x) ⇒ ∂f =
∑

1≤m≤r

∂xm
(f) ∂χm ⇒ ∇f =

∑
1≤m≤r

∂xm
(f) ∇χm︸ ︷︷ ︸

=πm

.

Using (19.25) and (19.27) we check the inner product formulae

〈∇F1,∇F2〉 =
∑

1≤i,j≤r

〈πi, πj〉 ∂xiF1 ∂xiF2 =
∑

1≤i,j≤p

gi,j ∂ViF1 ∂Vj (F2). (19.28)

By construction, we also readily check that

∂(FW ) = ∂F WT + F ∂W (19.29)

and

∇(FW ) = π∂(FW )

= π
(
∂F WT

)
+ π (F ∂W ) = π (∂F ) WT + F π (∂W ) .

In a similar way, for any vector fields W1,W2 we have

∂W1
(FW2) = F ∂W1

(W2) + ∂W1
(F ) W2 ⇒ ∇W1

(FW2) = F ∇W1
(W2) +∇W1

(F ) W2.

We summarize this discussion with the following proposition.

Proposition 19.2.4 For any vector fields W,W1,W2 on Rr and any smooth func-
tion we have

∇(FW ) = ∇F WT + F ∇W and ∇W1(FW2) = F ∇W1(W2) +∇W1(F ) W2.
(19.30)



546 Stochastic Processes

When W ∈ V, ∇W is given by the matrix

∇W = π
[
∂W 1, . . . , ∂W r

]
=




∂π1
W 1, . . . , ∂π1

W r

...
...

...
∂πr

W 1, . . . , ∂πr
W 1


 =




(∂π1
W )T

...
(∂πr

W )T


 .

(19.31)

For any W1,W2 ∈ V, by the linearity property (19.23) we observe that

πi =
∑

1≤k,l≤p gk,l Vk V i
l

⇒
∑

1≤k,l≤p gk,l 〈∂Vk
W1,W2〉 Vl =




〈∂π1W1,W2〉
...

〈∂πr
W1,W2〉


 =




(∂π1W1)
TW2

...
(∂πrW1)

TW2


 = (∇W1)W2.

This yields for any W1,W2 ∈ V the matrix formula
∑

1≤k,l≤p

gk,l 〈∇Vk
W1,W2〉 Vl = (∇W1)W2. (19.32)

19.2.2 Second order derivatives

We notice that

∇F = π∂F = πT∂F =




πT
1
...
πT
r


 ∂F =




∂π1
F
...

∂πr
F


 .

This yields the following Hessian representation formula of the second order co-
variant derivative

∇2F = ∇(∇F ) = [∇∂π1
F, . . . ,∇∂πr

F ] =




∂π1
∂π1

F . . . ∂π1
∂πr

F
...

...
...

∂πr
∂π1

F . . . ∂πr
∂πr

F


 .

(19.33)
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Lemma 19.2.5 For any vector field W,W1,W2 ∈ V, using (19.3) and (19.4) we
check that

W =
∑

1≤i≤p

W i πi ⇒
∑

1≤i≤p

W i ∂πi
= ∂W and

∑
1≤i≤p

W i ∇πi
= ∇W

and ∑
1≤i≤p

∂W1

(
W i

2

)
∂πi

(F ) = 〈∇W1
(W2),∇F 〉.

In addition, we have
∑

1≤i,j≤r

W i
1 ∂πi∂πj (F ) W j

2 = 〈W1,∇W2∇F 〉. (19.34)

Proof :
The first formula is a direct consequence of (19.4). To prove the second one we notice that

∑
1≤i≤p

∂W1

(
W i

2

)
∂πi

(F ) = 〈∂W1
W2,∇F 〉 = 〈∇W1

W2,∇F 〉.

By construction for any 1 ≤ k, l ≤ r we also have

∑
1≤j≤r


 ∑

1≤i≤r

V i
k ∂πi


 ∂πj (F ) V j

l =
∑

1≤j≤r

∂Vk
((∇F )j) V j

l = 〈∂Vk
(∇F ), Vl〉 = 〈∇Vk

(∇F ), Vl〉.

Recalling that W i
k =

∑
1≤m,n≤p g

m,n〈Vm,Wk〉 V i
n for any k = 1, 2, we check that

∑
1≤i,j≤r

W i
1 ∂πi∂πj (F ) W j

2 = 〈W1,∇W2(∇F )〉.

This ends the proof of the lemma.

19.3 Divergence and mean curvature

We return to the setting of section 19.2. For q = 1, we have g⊥ =
∥∥V ⊥

1

∥∥2, g−1
⊥ =

∥∥V ⊥
1

∥∥−2

and

π⊥(W ) =
〈
V

⊥
1 ,W

〉
V

⊥
1 = V

⊥
1 V

⊥,T

1 W =
V ⊥
1 V ⊥,T

1

V ⊥,T
1 V ⊥

1

W with V
⊥
1 =

V ⊥
1∥∥V ⊥
1

∥∥ .

In this particular case, we have the following result.
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Proposition 19.3.1 We have the formula

tr (∇π⊥(W )) = 〈H,W 〉 (19.35)

with the mean curvature vector H defined by

H = div⊥
(
V

⊥
1

)
V

⊥
1

= −
∑

1≤k≤r


 ∑

1≤l≤r

∂πl
πl
k


 ek = −

∑
1≤k≤r

tr (∇πk) ek (19.36)

with
div⊥

(
V

⊥
1

)
:=

∑
1≤i≤r

∂xi

(
V

⊥,i

1

)

and the unit vectors ei on ⊂ Rr defined in (19.3).

To check this assertion, we use the fact that

∂π⊥(W ) = ∂
(〈

V
⊥
1 ,W

〉)
V

⊥,T

1 +
〈
V

⊥
1 ,W

〉
∂V

⊥
1

from which we prove that

∇π⊥(W ) = π∂π⊥(W ) = π
(
∂
〈
V

⊥
1 ,W

〉)
V

⊥,T

1 +
〈
V

⊥
1 ,W

〉
π
(
∂V

⊥
1

)
.

To analyze the r.h.s. term, we observe that

π
(
∂V

⊥
1

)
=

[
∂V

⊥,1

1 , . . . , ∂V
⊥,r

1

]
−
[
π⊥

(
∂V

⊥,1

1

)
, . . . , π⊥

(
∂V

⊥,r

1

)]
.

On the other hand,

tr
(
π
(
∂
〈
V

⊥
1 ,W

〉)
V

⊥,T

1

)
=

〈
π
(
∂
〈
V

⊥
1 ,W

〉)
, V

⊥
1

〉
= 0

and
tr
(
π
(
∂V

⊥
1

))
=

∑
1≤i≤r

∂xi
V

⊥,i

1 − tr
[
π⊥

(
∂V

⊥,1

1

)
, . . . , π⊥

(
∂V

⊥,r

1

)]
.

Finally, we check that

tr
[
π⊥

(
∂V

⊥,1

1

)
, . . . , π⊥

(
∂V

⊥,r

1

)]
= tr

[〈
V

⊥
1 , ∂V

⊥,1

1

〉
V

⊥
1 , . . . ,

〈
V

⊥
1 , ∂V

⊥,r

1

〉
V

⊥
1

]

=
∑

1≤i≤r

〈
V

⊥
1 , ∂V

⊥,i

1

〉
V

⊥,i

1

=
∑

1≤j≤r

V
⊥,j

1

∑
1≤i≤r

∂xjV
⊥,i

1 V
⊥,i

1

=
∑

1≤j≤r

V
⊥,j

1

〈
∂xj

V
⊥
1 , V

⊥
1

〉

=
1

2

∑
1≤j≤r

V
⊥,j

1 ∂xj

〈
V

⊥
1 , V

⊥
1

〉
= 0.
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This ends the proof of (19.35).
Our next objective is to extend this formula to any dimensional vector spaces V⊥ spanned

by a given basis of vector fields V ⊥
i , 1 ≤ i ≤ q. In this general situation, we have

π⊥(W ) =
∑

1≤i≤q

〈 ∑
1≤j≤q

gi,j⊥ V ⊥
j ,W

〉
V ⊥
i

⇒ ∂π⊥(W ) =
∑

1≤i≤q


∂

〈 ∑
1≤j≤q

gi,j⊥ V ⊥
j ,W

〉
 V ⊥,T

i +
∑

1≤i≤q

〈 ∑
1≤j≤q

gi,j⊥ V ⊥
j ,W

〉
∂V ⊥

i

⇒ ∇π⊥(W ) =
∑

1≤i≤q

π


∂

〈 ∑
1≤j≤q

gi,j⊥ V ⊥
j ,W

〉
 V ⊥,T

i +
∑

1≤i≤q

〈 ∑
1≤j≤q

gi,j⊥ V ⊥
j ,W

〉
∇V ⊥

i .

Using the fact that

tr


π


∂

〈 ∑
1≤j≤q

gi,j⊥ V ⊥
j ,W

〉
 V ⊥,T

i


 =

〈
π


∂

〈 ∑
1≤j≤q

gi,j⊥ V ⊥
j ,W

〉
 , V ⊥

i

〉
= 0

we prove the following result.

Proposition 19.3.2 We have the formula

tr (∇π⊥(W )) =
∑

1≤i≤q

〈 ∑
1≤j≤q

gi,j⊥ V ⊥
j ,W

〉
tr
(
∇V ⊥

i

)

=

〈 ∑
1≤j≤q


 ∑
1≤i≤q

gi,j⊥ tr
(
∇V ⊥

i

)

V ⊥

j ,W

〉
. (19.37)

We also observe that

∇V ⊥
i = π∂V ⊥

i = ∂V ⊥
i − π⊥∂V

⊥
i

=
[
∂V ⊥,1

i , . . . , ∂V ⊥,r
i

]
−
[
π⊥∂V

⊥,1
i , . . . , π⊥∂V

⊥,r
i

]

with

π⊥∂V
⊥,j
i =

∑
1≤k≤q

〈 ∑
1≤l≤q

gk,l⊥ V ⊥
l , ∂V ⊥,j

i

〉
V ⊥
k .

This yields

tr
(
∇V ⊥

i

)
=

∑
1≤m≤r

∂xm
V ⊥,m
i −

∑
1≤m≤r

∑
1≤k,l≤q

gk,l⊥

〈
V ⊥
l , ∂V ⊥,m

i

〉
V ⊥,m
k

and therefore

∑
1≤i≤q

gi,j⊥ tr
(
∇V ⊥

i

)
=

∑
1≤i≤q

gi,j⊥


 ∑
1≤m≤r

∂xm
V ⊥,m
i −

∑
1≤m≤r

∑
1≤k,l≤q

gk,l⊥

〈
V ⊥
l , ∂V ⊥,m

i

〉
V ⊥,m
k


 .
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Under the condition (19.17) we have
〈
∂xiV

⊥
k , V ⊥

l

〉
=

∑
1≤j≤r

∂xi
V ⊥,j
k V ⊥,j

l

=
∑

1≤j≤r

V ⊥,j
l ∂xjV

⊥,i
k = ∂V ⊥

l
V ⊥,i
k =

〈
∂V ⊥,i

k , V ⊥
l

〉

and 〈
∂V ⊥

j
V ⊥
k , V ⊥

l

〉
=

∑
1≤i≤r

V i
j

〈
∂xiV

⊥
k , V ⊥

l

〉

=
∑

1≤i,i′≤r

V i
j ∂xi

V ⊥,i′

k V ⊥,i′

l =
∑

1≤i,i′≤r

V i
j ∂x′

i
V ⊥,i
k V ⊥,i′

l

=
∑

1≤i,i′≤r

V ⊥,i′

l ∂x′
i
V ⊥,i
k V i

j =
〈
∂V ⊥

l
V ⊥
k , V ⊥

j

〉
. (19.38)

Using the fact that

∂xj
(g⊥,k,m) = ∂xj

〈
V ⊥
k , V ⊥

m

〉
=

〈
∂xj

V ⊥
k , V ⊥

m

〉
+
〈
V ⊥
k , ∂xj

V ⊥
m

〉

we have

∂V ⊥
j
(g⊥,k,m) =

〈
∂V ⊥

j
V ⊥
k , V ⊥

m

〉
+
〈
∂V ⊥

j
V ⊥
m , V ⊥

k

〉
(19.39)

=
〈
∂V ⊥

m
V ⊥
k , V ⊥

j

〉
+
〈
∂V ⊥

k
V ⊥
m , V ⊥

j

〉
=

〈
∂V ⊥

m
V ⊥
k + ∂V ⊥

k
V ⊥
m , V ⊥

j

〉
.

In addition, for any 1 ≤ k, l,m ≤ q we have
〈
∂V ⊥

m
V ⊥
k , V ⊥

l

〉
=

∑
1≤i≤r

V ⊥,i
m

〈
∂xiV

⊥
k , V ⊥

l

〉
=

∑
1≤i≤r

V ⊥,i
m

〈
∂V ⊥,i

k , V ⊥
l

〉
. (19.40)

This yields
∑

1≤i≤q

gi,j⊥ tr
(
∇V ⊥

i

)
=

∑
1≤i≤q

∑
1≤m≤r

gi,j⊥ ∂xm
V ⊥,m
i

−
∑

1≤i,k,l≤q

gi,j⊥ gk,l⊥

∑
1≤m≤r

V ⊥,m
k

〈
∂V ⊥,m

i , V ⊥
l

〉

=
∑

1≤i≤q

∑
1≤m≤r

gi,j⊥


 ∂xm

V ⊥,m
i −

∑
1≤k,l≤q

gk,l⊥

〈
∂V ⊥

k
V ⊥
i , V ⊥

l

〉 .

(19.41)

To get one step further in our discussion, we need to recall some basic facts about the
differentiation of the determinants of invertible matrices. We let

ε �→ A(ε) =




A1
1(ε) . . . A1

r(ε)
...

...
...

Ar
1(ε) . . . Ar

r(ε)




be a smooth (r×r)-invertible matrix functional. The co-factor expansion of the determinant
of A(ε) along the i-th row is given by the formula

det(A(ε)) =
∑

1≤j≤r

Ai
j(ε) C

i
j(ε) =⇒ Ci

j(ε) =
∂det(A)
∂Ai

j

(ε)
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where Ci
j(ε) denotes the co-factor of the entry Ai

j(ε). This co-factor is obtained by multi-
plying by (−1)i+j the determinant of the minor of the entry in the i-th row and the j-th
column. We recall that this (i, j)-minor is the determinant of the sub-matrix deduced from
A(ε) by deleting the i-th row and j-th column.

The inverse of the matrix A(ε) is defined by

A−1(ε) =
1

det(A(ε))




C1
1 (ε) . . . Cr

1(ε)
...

...
...

C1
r (ε) . . . Cr

r (ε)


 =

1

det(A(ε))
CT (ε).

This leads quickly to the following result.

Proposition 19.3.3 The Jacobi formula for the derivative of the determinant is
given by

d

dε
(det(A(ε))) =

∑
1≤i,j≤r

∂det(A)

∂Ai
j

(ε)
dAi

j(ε)

dε
=

∑
1≤i≤r

∑
1≤j≤r

(CT (ε))ji

(
dA(ε)

dε

)i

j

= tre
(
CT (ε)

dA(ε)

dε

)

= det(A(ε)) tre
(
A−1(ε)

dA(ε)

dε

)
.

For any smooth vector field W on Rr we set

div⊥ (W ) =
1√

det(g⊥)

∑
1≤m≤r

∂xm

(√
det(g⊥) W

m
)
. (19.42)

We have

1√
det(g⊥)

∂xm

(√
det(g⊥) W

m
)

=
1√

det(g⊥)
∂xm

(√
det(g⊥)

)
Wm + ∂xm

(Wm)

=
1

2det(g⊥)
∂xm

(det(g⊥)) Wm + ∂xm
(Wm)

=
1

2
tr
(
g−1
⊥ ∂xmg⊥

)
Wm + ∂xm (Wm)

=
1

2

∑
1≤k,l≤q

gk,l⊥ ∂xm
g⊥,k,l W

m + ∂xm
(Wm)

from which we find that

1√
det(g⊥)

∂xm

(√
det(g⊥) W

m
)
=

∑
1≤k,l≤q

gk,l⊥
〈
∂xmV ⊥

k , V ⊥
l

〉
Wm + ∂xm (Wm) .
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On the other hand, we have

∑
1≤j≤q

g⊥,i,j gj,k⊥ = 1i=k ⇒
∑

1≤j≤q

g⊥,i,j ∂xmgj,k⊥ = −
∑

1≤j≤q

(∂xmg⊥,i,j) gj,k⊥

⇒
∑

1≤i,j≤q

gl,i⊥ g⊥,i,j ∂xm
gj,k⊥

= ∂xmgl,k⊥ = −
∑

1≤i,j≤q

gl,i⊥ gk,j⊥ ∂xmg⊥,i,j .

Applying these formulae to W =
∑

1≤j≤q g
i,j
⊥ V ⊥

j we find that

div⊥
(∑

1≤j≤q g
i,j
⊥ V ⊥

j

)

=
∑

1≤j,k,l≤q

gi,j⊥ gk,l⊥

∑
1≤m≤r

V ⊥m
j

〈
∂xm

V ⊥
k , V ⊥

l

〉

−
∑

1≤j≤q

∑
1≤m≤r

V ⊥,m
j

∑
1≤k,l≤q

gi,k⊥ gj,l⊥ ∂xm
g⊥,k,l +

∑
1≤j≤q

gi,j⊥

∑
1≤m≤r

∂xm
V ⊥,m
j .

Using (19.38) we obtain

div⊥


 ∑

1≤j≤q

gi,j⊥ V ⊥
j


 =

∑
1≤j≤q

gi,j⊥

〈 ∑
1≤k,l≤q

gk,l⊥ ∂V ⊥
l
V ⊥
k , V ⊥

j

〉

−
∑

1≤j≤q

gi,j⊥

∑
1≤k,l≤q

gk,l⊥ ∂V ⊥
k
g⊥,j,l +

∑
1≤j≤q

gi,j⊥

∑
1≤m≤r

∂xmV ⊥,m
j .

Using (19.39) we have

∑
1≤k,l≤q

gk,l⊥ ∂V ⊥
k
(g⊥,j,l) =

∑
1≤k,l≤q

gk,l⊥

〈
∂V ⊥

k
V ⊥
j , V ⊥

l

〉
+

〈 ∑
1≤k,l≤q

gk,l⊥ ∂V ⊥
k
V ⊥
l , V ⊥

j ,

〉
.

Combining this formula with (19.41) we conclude that

div⊥
(∑

1≤j≤q g
i,j
⊥ V ⊥

j

)

=
∑

1≤j≤q

gi,j⊥


 ∑
1≤m≤r

∂xmV ⊥,m
j −

∑
1≤k,l≤q

gk,l⊥

〈
∂V ⊥

k
V ⊥
j , V ⊥

l

〉 =
∑

1≤j≤q

gi,j⊥ tr
(
∇V ⊥

j

)
.

(19.43)
Finally, using (19.37) we prove the following result.
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Proposition 19.3.4 We have the formula

tr (∇π⊥(W )) = tr ((π∂π⊥)W ) = 〈H,W 〉 (19.44)

with the mean curvature vector

H =
∑

1≤i≤q

div⊥


 ∑

1≤j≤q

gi,j⊥ V ⊥
j


 V ⊥

i

= −
∑

1≤k≤r


 ∑

1≤l≤r

∂πl
πl
k


 ek = −

∑
1≤k≤r

tr (∇πk) ek. (19.45)

Definition 19.3.5 We let div(W ) be the divergence of a vector
field W defined by

div(W ) = tr (∇W ) .

Using (19.64), we have

div(W ) = tr (∇π(W )) + tr (∇π⊥(W )) .

Choosing W =
∑

1≤j≤q g
i,j
⊥ V ⊥

j , for some 1 ≤ i ≤ q, we have

div


 ∑

1≤j≤q

gi,j⊥ V ⊥
j


 = tr


∇


 ∑

1≤j≤q

gi,j⊥ V ⊥
j






= div⊥


 ∑

1≤j≤q

gi,j⊥ V ⊥
j


 =

∑
1≤j≤q

gi,j⊥ div
(
V ⊥
j

)
.

We check this claim using the fact that

∇


 ∑

1≤j≤q

gi,j⊥ V ⊥
j


 =

∑
1≤j≤q

∇
(
gi,j⊥ V ⊥

j

)

=
∑

1≤j≤q

∇
(
gi,j⊥

)
V ⊥,T
j +

∑
1≤j≤q

gi,j⊥ ∇V ⊥
j

so that

div


 ∑

1≤j≤q

gi,j⊥ V ⊥
j


 =

∑
1≤j≤q

〈
∇
(
gi,j⊥

)
, V ⊥

j

〉
+

∑
1≤j≤q

gi,j⊥ tr
(
∇V ⊥

j

)

=
∑

1≤j≤q

gi,j⊥ tr
(
∇V ⊥

j

)
.
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By (19.66) we have

div(W ) = tr (∇W ) =
∑

1≤k≤r

∂πk
W k (19.46)

= tr (∇π(W )) +

〈 ∑
1≤i≤q

div⊥


 ∑

1≤j≤q

gi,j⊥ V ⊥
j


 V ⊥

i ,W

〉
. (19.47)

19.4 Lie brackets and commutation formulae
At this level of generality, it is important to notice that the bilinear form on V ×V induced
by the Hessian matrix with entries

(
∂πi∂πj (F )

)
1≤i≤j≤r

has no reason to be symmetric. Our
next objective is show that the commutation property (19.15) ensures the symmetry of this
bilinear form. To this end, we need to introduce some new mathematical objects.

Definition 19.4.1 The Lie bracket [W1,W2] of any two vector fields W1 and W2

is the vector field defined by

[W1,W2] = ∂W1
(W2)− ∂W2

(W1) =




∂W1
(W 1

2 )− ∂W2
(W 1

1 )
...

∂W1(W
r
2 )− ∂W2(W

r
1 )




or alternatively by the formula

(∂W1∂W2 − ∂W2∂W1) (F ) = ∂[W1,W2](F ).

The set V of vector fields x �→ W (x) ∈ V(x) is called a Lie algebra when [W1,W2] ∈
V for any W1,W2 (or equivalently [Vi, Vj ] ∈ V, for any 1 ≤ i, j ≤ p).

Proposition 19.4.2 The commutation condition (19.15) is equivalent to the fact
that [Vi, Vj ] = 0 for any 1 ≤ i, j ≤ p. In this case, the set V of vector fields
x �→ W (x) ∈ V(x) is a Lie algebra in the sense that [W1,W2] ∈ V for any W1,W2.

Proof :
The first assertion is immediate. To check the second, we assume that Wk =

∑
1≤i≤p vik Vi,

for some coordinate functions vik. A simple calculation shows that

[W1,W2] = ∂W1(W2)− ∂W2(W1)

=
∑

1≤i,j≤p v
i
1v

j
2 [∂Vi(Vj)− ∂Vj (Vi)]︸ ︷︷ ︸

=0

+
∑

1≤i≤p[∂W1(v
i
2)− ∂W2(v

i
1)] Vi ∈ V.
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Theorem 19.4.3 For any function F and any vector fields W1,W2 ∈ V we have

[W1,W2] = ∂W1
(W2)− ∂W2

(W1) = ∇W1
(W2)−∇W2

(W1) ∈ V (19.48)

and
〈W2,∇W1

(∇F )〉 = 〈W1,∇W2
(∇F )〉. (19.49)

The matrix
(
∂πi

∂πj
(F )

)
1≤i≤j≤r

is symmetric; that is, for any 1 ≤ k, l ≤ p we have

∑
1≤i,j≤r

V i
k ∂πi∂πj (F ) V j

l =
∑

1≤i,j≤r

V i
l ∂πi

∂πj
(F ) V j

k

= 〈Vk,∇Vl
∇F 〉 = 〈Vl,∇Vk

∇F 〉. (19.50)

This yields for any W1,W2 ∈ V the symmetric bilinear formulation of the second
covariant derivative

∇2F (W1,W2) =
∑

1≤i,j≤r

W i
1 ∂πi

∂πj
(F ) W j

2

= WT
1 ∇2FW2 = WT

2 ∇2FW1

= 〈W1, (∇2F )W2〉 = 〈(∇2F )W1,W2〉
= 〈W1,∇W2

∇F 〉 = 〈∇W1
∇F,W2〉 (19.51)

with the Hessian matrix ∇2F matrix introduced in (19.33). In addition, we have

〈(∇2F1)W1, (∇2F2)W2〉 = 〈∇W1∇F1,∇W2∇F2〉. (19.52)

Proof :
The first assertion is a direct consequence of proposition 19.4.2. To check (19.49) we use
the decompositions

∂W1∂W2(F ) = ∂W1〈W2,∇F 〉 =
∑

1≤i≤r

W i
2

(
∂W1(∇F )i

)
+
(
∂W1W

i
2

)
(∇F )i

= 〈W2, ∂W1(∇F )〉+ 〈∇F, ∂W1W2〉 = 〈W2,∇W1(∇F )〉+ 〈∇F, ∂W1W2〉.

This implies that

(∂W1∂W2 − ∂W2∂W1) (F ) = 〈W2,∇W1(∇F )〉 − 〈W1,∇W2(∇F )〉+ 〈∂W1W2 − ∂W2W1,∇F 〉
= 〈W2,∇W1(∇F )〉 − 〈W1,∇W2(∇F )〉+ 〈[W1,W2],∇F 〉.

Now (19.49) follows from the fact that

(∂W1
∂W2

− ∂W2
∂W1

) (F ) = ∂[W1,W2](F ) = 〈[W1,W2], ∂F 〉〈[W1,W2],∇F 〉.

Formula (19.50) is a direct consequence of (19.34) and (19.48). To check the last assertion
we use

Wk =
∑

1≤i,j≤p

gi,j〈Vi,Wk〉 Vj ⇒ ∇Wk
=

∑
1≤i,j≤p

gi,j〈Vi,Wk〉 ∇Vj
.

This implies

〈W1,∇W2(∇F )〉 =
∑

1≤i,j,k,l≤p

gi,jgk,l〈Vi,W1〉〈Vk,W2〉

=〈Vl,∇Vj
(∇F )〉︷ ︸︸ ︷

〈Vj ,∇Vl
(∇F )〉 .
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The end of the proof of (19.51) is now clear. We check (19.52) using the decomposition

〈∇W1
∇F1,∇W2

∇F2〉 =
∑

1≤i,j≤p

gi,j 〈∇W1
∇F1, Vi〉〈∇W2

∇F2, Vj〉.

Using (19.51) we find that

〈∇W1
∇F1,∇W2

∇F2〉 =
∑

1≤i,j≤p

gi,j 〈∇Vi
∇F1,W1〉〈∇Vj

∇F2,W2〉

=
∑

1≤i,j≤p

gi,j 〈(∇2F1)(W1), Vi〉〈(∇2F2)(W2), Vj〉

= 〈(∇2F1)W1, (∇2F2)W2〉.

This ends the proof of the theorem.

Corollary 19.4.4 For any W ∈ V we have the commutation property

[∇,∇W ](F ) = (∇W )∇F (19.53)

with the bracket [∇,∇W ] = ∇∇W −∇W∇. In addition we have the formula

〈∇∇W (F1),∇F2〉+ 〈∇∇W (F2),∇F1〉

= ∇W 〈∇F1,∇F2〉+ (∇F1)
T
(
(∇W ) + (∇W )T

)
∇F2.

(19.54)

Proof :
Using (19.32) and (19.51) we check that

∇∇WF = ∇〈W,∇F 〉
=

∑
1≤i,j≤p

gi,j ∂Vi
〈W,∇F 〉 Vj

=
∑

1≤i,j≤p

gi,j (〈∇ViW,∇F 〉+ 〈∇Vi∇F,W 〉) Vj = (∇W )∇F +∇W∇F.

This ends the proof of the first assertion. The formula (19.53) is a direct consequence of
the decomposition

〈∇∇W (F1),∇F2〉 = 〈∇W∇F1,∇F2〉+ (∇F2)
T (∇W )∇F1.

This ends the proof of the corollary.

19.5 Inner product derivation formulae

For any vector fields W1,W2,W3 ∈ V we have

∂W1
〈W2,W3〉 = 〈W1,∇〈W2,W3〉〉

= 〈W3,∇W1
W2〉+ 〈W2,∇W1

W3〉. (19.55)
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We check this formula using the fact that

∂W1
〈W2,W3〉 = 〈W1, ∂〈W2,W3〉〉 = 〈W1,∇〈W2,W3〉〉

= 〈∂W1
W2,W3〉+ 〈W2, ∂W1

W3〉
= 〈∇W1

W2,W3〉+ 〈W2,∇W1
W3〉.

Using (19.25) and (19.51), we also notice that

∇〈∇F1,∇F2〉 =
∑

1≤i,j≤p

gi,j ∂Vi(〈∇F1,∇F2〉) Vj

=
∑

1≤i,j≤p

gi,j (〈∇Vi
∇F1,∇F2〉+ 〈∇F1,∇Vi

∇F2〉) Vj

=
∑

1≤i,j≤p

gi,j (〈∇∇F2
∇F1, Vi〉+ 〈∇Vi,∇∇F1

∇F2〉) Vj

= ∇∇F2
∇F1 +∇∇F1

∇F2.

In summary, for any W ∈ V and any smooth functions F1, F2 we have the formulae

∇〈∇F1,∇F2〉 = ∇∇F2
∇F1 +∇∇F1

∇F2 (19.56)

and
∂W 〈∇F1,∇F2〉 = 〈∇∇F2

∇F1 +∇∇F1
∇F2,W 〉. (19.57)

Several algebraic and analytic formulae can be derived using (19.52) and (19.56). For
instance,

‖∇〈∇F1,∇F2〉‖2

= 〈∇〈∇F1,∇F2〉,∇〈∇F1,∇F2〉〉

= 〈∇∇F2
∇F1,∇∇F2

∇F1〉+ 2 〈∇∇F1
∇F2,∇∇F2

∇F1〉〈∇∇F1
∇F2,∇∇F1

∇F2〉

= 〈(∇2F1)∇F2, (∇2F1)∇F2〉+ 〈(∇2F2)∇F1, (∇2F2)∇F1〉+ 2〈(∇2F1)∇F2, (∇2F2)∇F1〉

=
∥∥(∇2F1)∇F2

∥∥2 + ∥∥(∇2F2)∇F1

∥∥2 + 2〈(∇2F1)∇F2, (∇2F2)∇F1〉.

Using (19.9) we obtain the following estimates

‖∇〈∇F,∇F 〉‖ = 2
∥∥(∇2F )∇F

∥∥
≤ 2 ‖∇2F‖2 ‖∇F‖2 ≤ 2 ‖∇2F‖ ‖∇F‖2 . (19.58)

Using (19.26) the formulae (19.49) and (19.55) applied to the projection vector fields πi

take the following form.
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Corollary 19.5.1 For any 1 ≤ i, j, k ≤ r we have the formula

〈πk,∇πi
πj〉 = 〈πi,∇πk

πj〉+ 〈[πi, πk], π⊥(ej)〉 (19.59)

with the unit vectors ei defined in (19.3). For any 1 ≤ i, j, k ≤ k, we also have the
commutation formulae

∇〈πi, πj〉 = ∇πi
πj +∇πj

πi and 〈πk,∇πi
πj〉 = 〈πi,∇πk

πj〉. (19.60)

In addition, we have

∂πi
〈πj , πk〉 = 〈πi,∇〈πj , πk〉〉 = 〈πi,∇πj

πk +∇πk
πj〉 (19.61)

as well as
1

2
∂πi

〈πj , πk〉 = 〈πi,∇πj
πk〉+

1

2
(〈 [πk, πj ] , πi〉 (19.62)

and

〈
πi,∇πj

πk

〉
+

1

2
〈πk, [πj , πi]〉 = ∂πj

〈πi, πk〉 −
1

2
∂πk

〈πi, πj〉 . (19.63)

Proof :
Applying (19.49) to F = χj , W1 = πi, and W2 = πk we check (19.59). Using (19.26) and
(19.51) we find that

〈πk,∇πi
πj〉 = 〈πk,∇πi

∇χj〉 = 〈πi,∇πk
∇χj〉 = 〈πi,∇πk

πj〉.

On the other hand, recalling that πk ∈ V for any k, we have

∂πi
(〈πj , πk〉) = 〈∂πi

πj , πk〉+ 〈πj , ∂πi
πk〉

= 〈∇πi
πj , πk〉+ 〈πj ,∇πi

πk〉 = 〈∇πk
πj , πi〉+ 〈πi,∇πj

πk〉.

The last assertions are direct consequences of (19.61). To check the first one, we use following
decompositions

1

2
∂πi

〈πj , πk〉 =
1

2
〈πi,∇πj

πk +∇πk
πj〉 = 〈πi,∇πj

πk〉+
1

2
〈πi,∇πk

πj −∇πj
πk〉.

The end of the proof follows now from

〈πi,∇πk
πj −∇πj

πk〉 = 〈πi, ∂πk
πj − ∂πj

πk〉 and ∂πk
πj − ∂πj

πk = [πk, πj ] .

The second assertion is a consequence of (19.61) and the following decomposition

〈πi,∇πj
πk〉 = ∂πj

〈πi, πk〉 − 〈πk,∇πj
πi〉

1

2
∂πk

〈πi, πj〉 =
1

2
〈πk,∇πiπj +∇πjπi〉

= 〈πk,∇πjπi〉+
1

2
〈πk,∇πiπj −∇πjπi〉.

Recalling that

〈πi,∇πj
πk −∇πk

πj〉 = 〈πi, ∂πj
πk − ∂πk

πj〉 and ∂πj
πk − ∂πk

πj = [πi, πj ]
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we find that

〈πk,∇πj
πi〉+

1

2
〈πk, [πi, πj ]〉 =

1

2
∂πk

〈πi, πj〉.

This clearly implies that

〈πi,∇πj
πk〉 =

(
∂πj

〈πi, πk〉 −
1

2
∂πk

〈πi, πj〉
)
+

1

2
〈[πi, πj ] , πk〉.

This ends the proof of the corollary.

19.6 Second order derivatives and some trace formulae

For any vector field W on Rr we have

(19.19) =⇒ ∂W = ∂π(W ) + ∂π⊥(W ) =⇒ ∇W = ∇π(W ) +∇π⊥(W ). (19.64)

On the other hand, we have

π(W ) =




π1
1 . . . π1

r
...

...
...

πr
1 . . . πr

r







W 1

...
W r


 =




∑
1≤k≤r π

1
k W k

...∑
1≤k≤r π

r
k W k




and therefore

∂π(W ) =

=


 ∑
1≤k≤r

∂
(
π1
k W k

)
, . . . ,

∑
1≤k≤r

∂
(
πr
k W k

)



=


 ∑
1≤k≤r

W k ∂π1
k, . . . ,

∑
1≤k≤r

W k ∂πr
k


+


 ∑
1≤k≤r

π1
k ∂W k, . . . ,

∑
1≤k≤r

πr
k ∂W k




=
∑

1≤k≤r

W k
[
∂π1

k, . . . , ∂π
r
k

]
+




∂x1
W 1 . . . ∂x1

W r

...
...

...
∂xrW

1 . . . ∂xrW
r







π1
1 . . . πr

r
...

...
...

π1
r . . . πr

r




=
∑

1≤k≤r

W k ∂πk +
[
∂W 1, . . . , ∂W r

]
π =

∑
1≤k≤r

W k ∂πk + (∂W )π.

This yields the formula

∇π(W ) = π∂π(W ) =
∑

1≤k≤r

W k ∇πk + π∂Wπ (19.65)
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with the matrix

π∂Wπ =




∑
1≤l≤r π

1
l

∑
1≤k≤r π

1
k ∂xl

W k, . . . ,
∑

1≤l≤r π
1
l

∑
1≤k≤r π

r
k ∂xl

W k

...
...

...∑
1≤l≤r π

r
l

∑
1≤k≤r π

1
k ∂xl

W k, . . . ,
∑

1≤l≤r π
r
l

∑
1≤k≤r π

r
k ∂xl

W k


 .

On the other hand, we have the equivalent formulations

tr (π∂Wπ) =
∑

1≤k,l≤r


 ∑

1≤i≤r

πi
lπ

i
k


 ∂xl

W k (19.66)

=
∑

1≤k,l≤r

πl
k ∂xl

W k = tr (π∂W ) (19.67)

= tr (∇W ) =
∑

1≤k≤r

∂πk
W k.

We recall that ∇W is given by the matrix

∇W = π∂W =
[
π(∂W 1), . . . , π(∂W r)

]
=

[
∇W 1, . . . ,∇W r

]

= πT∂W =




πT
1
...
πT
r


 [

∂W 1, . . . , ∂W r
]
=




∂π1W
1, . . . , ∂π1W

r

...
...

...
∂πr

W 1, . . . , ∂πr
W r


 .

In much the same way, we have the formula

∇πk = π∂πk = πT∂πk

=




πT
1
...
πT
r



[
∂π1

k, . . . , ∂π
r
k

]
=




∂π1
π1
k, . . . , ∂π1

πr
k

...
...

...
∂πr

π1
k, . . . , ∂πr

πr
k


 .

Recalling that

∂πi
χj =

∑
1≤k≤r

πk
i ∂xk

χj = πj
i = πi

j

and using (19.51) and (19.63) we prove the following proposition.
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Proposition 19.6.1 For any 1 ≤ k ≤ r we have the Hessian formula

∇πk = ∇2χk =




∂π1π
1
k, . . . , ∂π1π

r
k

...
...

...
∂πr

π1
k, . . . , ∂πr

πr
k


 =




∂π1∂π1χk, . . . , ∂π1∂πrχk

...
...

...
∂πr

∂π1
χk, . . . , ∂πr

∂πr
χk




with ∇2 := ∇∇ and the projection mappings χk defined in (19.18). In addition,
we have

∇πk(πi, πj) := πT
i ∇πk πj = 〈πi,∇πj

πk〉 = 〈πj ,∇πi
πk〉

=

(
∂πj 〈πi, πk〉 −

1

2
∂πk

〈πi, πj〉
)
+

1

2
〈 [πi, πj ] , πk〉

(19.68)

and the trace formulae

〈∇πk,∇πl〉 =
∑

1≤i,j≤r

πj
i 〈∇πk (πi) ,∇πl (πj)〉 (⇐ (19.11))

= = tre
(
π (∇πl)

T∇πk

)
. (⇐ (19.12))

Using (19.65) we readily check that

tr (∇π(W )) =
∑

1≤k≤r

W k tr (∇πk) +
∑

1≤k≤r

∂πk
W k

=
∑

1≤k≤r

W k tr (∇πk) + tr (π∂W ) =
∑

1≤k≤r

W k tr (∇πk) + tr (∇W )

and

(19.64) =⇒ tr (∇W ) = tr (∇π(W )) + tr (∇π⊥(W ))
=

∑
1≤k≤r W

k tr (∇πk) + tr (∇W ) + tr (∇π⊥(W )) .

Using (19.47) we find the orthonormal divergence formula

tr (∇π⊥(W )) = −
∑

1≤k≤r

W k tr (∇πk)

=

〈 ∑
1≤i≤q

div⊥


 ∑

1≤j≤q

gi,j⊥ V ⊥
j


 V ⊥

i ,W

〉
.

In other words, we recover the trace formula

tr (∇πk) = −
∑

1≤i≤q

div⊥


 ∑

1≤j≤q

gi,j⊥ V ⊥
j


 V ⊥,k

i = Hk

with the mean curvature vector H discussed in (19.36).
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19.7 Laplacian operator
We return to the settings of section 19.2. Choosing W = ∂F in (19.65) we prove the
following result.

Proposition 19.7.1 We have the second covariant derivative formula

∇2F =
∑

1≤k≤r

∂xk
(F ) ∇πk + π∂2Fπ (19.69)

and the Laplacian formula

∆F := tr
(
∇2F

)
= tr

(
π∂2F

)
+

∑
1≤k≤r

∂xk
F tr (∇πk) (19.70)

with ∇2F = ∇(∇F ), and the Hessian matrix ∂2F = (∂xk,xl
F )1≤k,l≤r.

This shows that

tr
(
∇2F

)
=

∑
1≤i≤r

∂2
πi
F = tr

(
π∂2F

)
+

∑
1≤k≤r

∂xk
F tr (∇πk) .

Using (19.44), we also have

∆F = tr
(
∇2F

)

=
∑

1≤i≤r

∂2
πi
F = tr

(
π∂2F

)
− 〈H, ∂F 〉 = tr

(
π∂2F

)
− ∂HF

=
∑

1≤k,l≤p

gk,l 〈Vk,∇Vl
∇F 〉 =

∑
1≤k,l≤p

gk,l ∇2F (Vk, Vl) (19.71)

with the mean curvature vector H ∈ V⊥ defined in (19.45), and the basis vector
fields Vi of V defined in (19.14). In addition we have the formula

〈∇2F1,∇2F2〉 =
∑

1≤k,l≤p

gk,l 〈∇Vk
∇F1,∇Vl

∇F2〉 (19.72)

with the Hilbert-Schmidt inner product defined in (19.8).

The formulae (19.71) and (19.72) are consequences of the fact that BF = ∇2F can be seen
as the bilinear form on V defined by its action on the basis random fields

BF (Vk, Vl) = ∇2F (Vk, Vl) := V T
k ∇2F Vl

=
∑

1≤i,j≤r

V i
k ∂πi

∂πj
(F ) V j

l = 〈Vk,∇Vl
(∇F )〉 ⇐ (19.34)

= 〈Vk, bF (Vl)〉 with bF (Vl) = ∇Vl
(∇F ) = ∇2(Vl).
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The result is now a direct consequence of the trace formulae (19.7) and (19.10). Notice that

(19.13) =⇒ 1

p
(∆F )2 ≤

∥∥∇F 2
∥∥2 = 〈∇2F,∇2F 〉 ≤ (∆F )2. (19.73)

In terms of the projection mappings χi defined in (19.18) and (19.3) we have

∆χi = tr (∇πi) = tr
(
∇2χi

)
= −Hi. (19.74)

For any function F on Rn and any sequence f = (f1, . . . , fn) of functions fi on
Rr, with 1 ≤ i ≤ n, we have the change of variable formula

∇(F (f)) =
∑

1≤m≤n

(∂xm
F ) (f) ∇fm. (19.75)

In addition, using (19.69) we have

∇2(F (f)) =
∑

1≤m≤n

(∂xmF ) (f) ∇2fm +
∑

1≤m,m′≤n

(
∂xm,xm′F

)
(F ) ∇fm(∇fm′)T

(19.76)
and therefore

∆(F (f)) =
∑

1≤m≤n

(∂xmF ) (f) ∆fm +
∑

1≤l,m≤n

(∂xl,xmF ) (f) 〈∇fl,∇fm〉 . (19.77)

19.8 Ricci curvature

Definition 19.8.1 The curvature operator/tensor R is defined for any vector
fields W1,W2 by the formulae

R (W1,W2) := [∇W1 ,∇W2 ]−∇[W1,W2]. (19.78)

The linearity properties of the curvature tensor are summarized in the following technical
lemma.

Lemma 19.8.2 For any smooth functions F1, F2, F3 and any W1,W2,W3 ∈ V we have

R(F1W1, F2W2)(F3W3) = F1F2F3 R(W1,W2)(W3) (19.79)

and for any W ∈ V we have

R(W1 +W,W2) = R(W1,W2) +R(W,W2)

R(W1,W2 +W ) = R(W1,W2) +R(W1,W )

R(W1,W2)(W3 +W ) = R(W1,W2)(W3) +R(W1,W2)(W ). (19.80)
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Proof :
Using (19.30) we have

∇W2
(FW3) = F ∇W2

(W3) + ∂W2
(F ) W3

and

∇W1
∇W2

(FW3)

= F ∇W1∇W2(W3) + ∂W1(F )∇W2(W3) + ∂W2(F ) ∇W1W3 + ∂W1∂W2(F ) W3.

This implies that

[∇W1 ,∇W2 ] (FW3) = F [∇W1 ,∇W2 ] (W3) +∇[W1,W2](F ) W3.

The r.h.s. term in the above display follows from the fact that ∂[W1,W2](F ) = ∇[W1,W2](F ).
Recalling that

∇[W1,W2](FW3) = F ∇[W1,W2](W3) + ∂[W1,W2](F ) W3

we conclude that
R(W1,W2)(FW3) = F R(W1,W2)(W3).

Using (19.30) we also check that

∇FW1∇W2(W3) = F ∇W1∇W2(W3)

∇W2∇FW1(W3) = ∇W2 (F ∇W1(W3))

= F ∇W2∇W1(W3) + ∂W2(F ) ∇W1(W3)

from which we find that

[∇FW1
,∇W2

] = F [∇W1
,∇W2

]− ∂W2
(F ) ∇W1

.

In a similar way, for any function G we have

∂FW1
∂W2

(G) = ∂FW1
∂W2

(G)

∂W2
∂FW1

(G) = ∂W2
(F∂W1

(G))

= ∂W2
∂W1

(G) + ∂W2
(F ) ∂W1

(G).

Hence we find that

∂[FW1,W2](G) = (∂FW1∂W2 − ∂W2∂FW1) (G)

= ∂F [W1,W2](G)− ∂W1∂W2
(F )(G).

Combining this with (19.23) we prove that

[FW1,W2] = F [W1,W2]− ∂W2(F ) W1 ⇒ ∇[FW1,W2] = F ∇[W1,W2] − ∂W2(F ) ∇W1

from which we conclude that R(FW1,W2) = F R(W1,W2), and by symmetry arguments
R(W1, FW2) = F R(W1,W2). This ends the proof of (19.79). The proof of (19.80) is a
direct consequence of the linearity properties (19.23). The last assertion is immediate. This
completes the proof of the lemma.
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Definition 19.8.3 The Ricci curvature is the trace Ric (W1,W2) of the linear forms W �→
Ric (W,W1) (W2) + Ric (W,W2) (W1) defined by

Ric (W1,W2) := 2−1
∑

1≤k,l≤p

gk,l 〈Vk, R (Vl,W1) (W2) +R (Vl,W2) (W1)〉. (19.81)

The linearity property is a direct consequence of lemma 19.8.2, that is,

Ric (F1W1 + F2W2,W3) = F1 Ric (W1,W3) + F2 Ric (W2,W3) .

Combining this lemma with (19.26) and (19.27) we prove the formula

Ric (∇F1,∇F2)

=
∑

1≤i,j≤p


 ∑
1≤k≤p

gi,k ∂Vk
F1




 ∑
1≤l≤p

gj,l ∂Vl
F2


 Ric (Vi, Vj)

=
∑

1≤k,l≤p

∂Vk
F1 ∂Vl

F2

∑
1≤i,j≤p

(
gk,i Ric (Vi, Vj) g

j,l
)
.

(19.82)

In the same way, recalling that Vi =
∑

1≤k≤r V k
i πk and πi =

∑
1≤k,l≤p g

l,k V i
k Vl we

also have

Ric (Vi, Vj) =
∑

1≤k,l≤r

V k
i V l

j Ric (πk, πl)

Ric (πi, πj) =
∑

1≤k,k′≤p

V i
k V j

k′

∑
1≤l,l′≤p

(
gk,lRic (Vl, Vl′) g

l′,k′
)
. (19.83)

In the parametrization model discussed in (19.16), Ric (Vi, Vj) can be interpreted as the
expression of the Ricci curvature in the local coordinates induced by the mappings ψ from
Rp into some manifold S. One particular important class of manifolds arising in physics
satisfies the following property

Ric (Vi, Vj) = ρ 〈Vi, Vj〉 (19.84)

for some constant ρ. These are called Einstein manifolds. For instance, the 2-sphere
discussed in section 24.1.2 satisfies (19.84) with ρ = 1. The Euclidian space which is flat
(.e. gi,j = 1i=j) also satisfies (19.84) with ρ = 1. In this situation, using (19.83), we have

(19.84) ⇐⇒ R(πi, πj) = ρ πj
i =⇒ Ric (∇F1,∇F2) = ρ 〈∇F1,∇F2〉 . (19.85)

Recalling that
∇F =

∑
1≤k≤p

gi,k ∂Vk
F1 Vl

we prove the following formula.

Ric (∇F1,∇F2) =
∑

1≤i,j≤r

(∇F1)
i
(∇F2)

j Ric (πi, πj) . (19.86)



566 Stochastic Processes

Proposition 19.8.4 For any 1 ≤ i, j, k ≤ p we have the first Bianchi identity (a.k.a.
algebraic Bianchi identity)

R(Vi, Vj)(Vk) +R(Vj , Vk)(Vi) +R(Vk, Vi)(Vj) = 0. (19.87)

In addition we have

R(Vi, Vj)(Vk) = −R(Vj , Vi)(Vk) and 〈R (Vi, Vj) (Vk), Vl〉 = −〈Vk, R (Vi, Vj) (Vl)〉 .
(19.88)

Proof :
We recall that

[Vi, Vj ] = ∇Vi
(Vj)−∇Vj

(Vi) = 0 ⇒ ∇Vk
∇Vi

(Vj)−∇Vk
∇Vj

(Vi) = ∇Vk
([Vi, Vj ]) = 0

so that
[
∇Vi

,∇Vj

]
(Vk) +

[
∇Vj

,∇Vk

]
(Vi) + [∇Vk

,∇Vi
] (Vj)

=
[
∇Vi

∇Vj
(Vk)−∇Vj

∇Vi
(Vk)

]
+
[
∇Vj

∇Vk
(Vi)−∇Vk

∇Vj
(Vi)

]
+ [∇Vk

∇Vi
(Vj)−∇Vi

∇Vk
(Vj)]

= ∇Vi
([Vj , Vk]) +∇Vj

([Vk, Vi]) +∇Vk
([Vi, Vj ]) = 0.

This ends the proof of the first assertion. The l.h.s. formula in (19.88) follows from

R(Vi, Vj)(Vk) =
[
∇Vi ,∇Vj

]
(Vk) = −R(Vj , Vi)(Vk).

We also have

〈R(Vi, Vj)(Vk), Vl〉 =
〈
∇Vi

∇Vj
(Vk), Vl

〉
−
〈
∇Vj

∇Vi
(Vk), Vl

〉
.

On the other hand
〈
∇Vi

∇Vj
(Vk), Vl

〉
= ∂Vi

〈
∇Vj

(Vk), Vl

〉
−
〈
∇Vj

(Vk),∇Vi
Vl

〉

and 〈
∇Vj

(Vk), Vl

〉
= ∂Vj

〈Vk, Vl〉 −
〈
Vk,∇Vj

(Vl)
〉
.

This implies that
〈
∇Vi

∇Vj
(Vk), Vl

〉
= ∂Vi

∂Vj
〈Vk, Vl〉 − ∂Vi

〈
Vk,∇Vj

Vl

〉
−
〈
∇Vj

Vk,∇Vi
Vl

〉

from which we prove that

〈R(Vi, Vj)(Vk), Vl〉

= ∂Vj
〈Vk,∇Vi

Vl〉+
〈
∇Vi

Vk,∇Vj
Vl

〉
− ∂Vi

〈
Vk,∇Vj

Vl

〉
−
〈
∇Vj

Vk,∇Vi
Vl

〉

=
〈
Vk,∇Vj

∇Vi
Vl

〉
−
〈
Vk,∇Vi

∇Vj
Vl

〉
=

〈
Vk,

[
∇Vj

,∇Vi

]
(Vl)

〉
= −〈R (Vi, Vj) (Vl), Vk〉 .

This ends the proof of the proposition.
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Proposition 19.8.5 The Ricci curvature parameters Ric (Vi, Vj) = Ri,j = Rj,i are defined
by the functions

Ri,j =
∑

1≤m,n≤p

[
Cn

i,j Cm
m,n − Cn

i,m Cm
j,n

]
+

∑
1≤m≤p

[
∂Vm

Cm
i,j − ∂Vj

Cm
i,m

]
,

with the Christoffel symbols introduced in (19.21). In addition we have

Ri,j =
∑

1≤m≤p

Rm
i,m,j =

∑
1≤m≤p

Rm
j,m,i

with

Rm
k,i,j :=

∑
1≤n≤p

[
Cn

j,k Cm
i,n − Cn

i,k Cm
j,n

]
+

[
∂Vi

(Cm
j,k)− ∂Vj

(Cm
i,k)

]
. (19.89)

Proof :
Firstly, we observe that

∇Vi
∇Vj

(Vk) =
∑

1≤l≤p

∇Vi

(
Cl

j,k Vl

)
=

∑
1≤l≤p

(
Cl

j,k ∇Vi
(Vl) + ∂Vi

(Cl
j,k) Vl

)

=
∑

1≤m≤rp


 ∑
1≤l≤r

Cl
j,k Cm

i,l + ∂Vi(C
m
j,k)


 Vm.

This yields
[
∇Vi ,∇Vj

]
(Vk)

=
∑

1≤m≤p


 ∑
1≤n≤r

[
Cn

j,k Cm
i,n − Cn

i,k Cm
j,n

]
+

[
∂Vi

(Cm
j,k)− ∂Vj

(Cm
i,k)

]

 Vm

from which we check that

R(Vi, Vj)(Vk) =
[
∇Vi

,∇Vj

]
(Vk) =

∑
1≤m≤p

Rm
k,i,j Vm

〈R (Vi, Vj) (Vk), Vl〉 =
∑

1≤m≤p

gl,m Rm
k,i,j := Rl,k,i,j . ⇐ (19.88)

Also notice that
∑

1≤l≤p

gi,l Rl,k,i,j =
∑

1≤l,m≤p

gi,l gl,m Rm
k,i,j = Ri

k,i,j .

On the other hand we have

(19.88) ⇒ Rl,i,j,k = Ri,l,j,k ⇒
∑

1≤i,l≤p

gi,lRl,i,j,k = −
∑

1≤i,l≤p

gi,l Ri,l,j,k = 0. (19.90)

The Bianchi formula (19.87) ensures that

Rl,k,i,j +Rl,i,j,k +Rl,j,k,i = 0 = Rl,k,i,j +Rl,i,j,k −Rl,j,i,k ⇐ (19.88)
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∑
1≤l≤p

gi,l (Rl,k,i,j +Rl,i,j,k −Rl,j,i,k) = 0 = Ri
k,i,j +


 ∑

1≤l≤p

gi,lRl,i,j,k


−Ri

j,i,k.

By (19.90), this clearly implies the symmetric formula

∀1 ≤ j, k ≤ p
∑

1≤i≤p

Ri
j,i,k =

∑
1≤i≤p

Ri
k,i,j

from which we deduce that
∑

1≤i,l≤p

gi,l 〈Vl, R(Vi, Vj)(Vk)〉 =
∑

1≤i,l≤p

gi,l Rl,k,i,j =
∑

1≤i≤p

Ri
k,i,j =

∑
1≤i≤p

Ri
j,i,k

for any indices 1 ≤ j, k ≤ p. We conclude that

Ric (Vi, Vj) := 2−1
∑

1≤k,l≤p

gk,l 〈Vk, R (Vl, Vi) (Vj) +R (Vl, Vj) (Vi)〉

=
∑

1≤k,l≤p

gk,l 〈Vk, R (Vl, Vi) (Vj) =
∑

1≤m≤p

Rm
i,m,j =

∑
1≤m≤p

Rm
j,m,i.

This ends the proof of the proposition.

19.9 Bochner-Lichnerowicz formula
Definition 19.9.1 Given some some functional operator L, we denote by ΓL and Γ2,L the
operators defined for any smooth functions F1, F2 on Rr by the formulae

ΓL(F1, F2) := L(F1F2)− F1 L(F2)− F2 L(F1)

Γ2,L(F1, F2) := L (ΓL(F1, F2))− ΓL(F1, L(F2))− ΓL(L(F1), F2). (19.91)

The operators ΓL and Γ2,L defined in (19.91) are often called the carré du champ and the
gamma-two associated with the operator L.

As expected with second order differential operators, the following proposition shows
that Γ∆ is a symmetric bilinear form on smooth functions.

Theorem 19.9.2 (Bochner-Lichnerowicz formula) For any smooth func-
tions F1, F2 on Rr we have

L :=
1

2
∆ =⇒ ΓL(F1, F2) = 〈∇F1,∇F2〉.

In addition, we have the Bochner-Lichnerowicz formula

Γ2,L(F1, F2) =
〈
∇2F1,∇2F2

〉
+ Ric (∇F1,∇F2) . (19.92)

Proof :
We readily check that

∇(F1F2) = F1 ∇F2 + F2 ∇F1.
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Using (19.30) this implies that

∇Vl
∇(F1F2) = ∇Vl

(F1 ∇F2) +∇Vl
(F2 ∇F1)

= F1 ∇Vl
(∇F2) + F2 ∇Vl

(∇F1) + ∂Vl
(F1) ∇F2 + ∂Vl

(F2) ∇F1.

Recalling ∇Vl
(∇F ) = 〈Vl, ∂F 〉 = 〈Vl,∇F 〉 implies that

〈Vk,∇Vl
∇(F1F2)〉

= F1 〈Vk,∇Vl
∇F1〉+ F2 〈Vk,∇Vl

∇F1〉+ (〈Vl,∇F1〉 〈Vk,∇F2〉+ 〈Vl,∇F2〉 〈Vk,∇F1〉) .

Recalling (19.2) shows that

Γ∆(F1, F2) = 2
∑

1≤k,l≤p

gk,l 〈Vl,∇F1〉 〈Vk,∇F2〉 = 2 〈∇F1,∇F2〉.

Using (19.56) we have

∆〈∇F1,∇F2〉 =
∑

1≤k,l≤p

gk,l 〈Vk,∇Vl
∇〈∇F1,∇F2〉〉

=
∑

1≤k,l≤p

gk,l 〈Vk,∇Vl
∇∇F1

∇F2〉+
∑

1≤k,l≤p

gk,l 〈Vk,∇Vl
∇∇F2

∇F1〉.

On the other hand, we have

∇Vl
∇∇F1

= ∇∇F1
∇Vl

+∇[Vl,∇F1] +
(
[∇Vl

,∇∇F1
]−∇[Vl,∇F1]

)

= ∇∇F1
∇Vl

+∇[Vl,∇F1] +R (Vl,∇F1) .

This implies that

∆〈∇F1,∇F2〉

=
∑

1≤k,l≤p

gk,l
〈
Vk,

(
∇∇F1∇Vl

+∇[Vl,∇F1]

)
∇F2

〉

+
∑

1≤k,l≤p

gk,l
〈
Vk,

(
∇∇F2

∇Vl
+∇[Vl,∇F2]

)
∇F1

〉
+ 2 Ric (∇F1,∇F2) .

We observe that

∂∇F1
〈Vk,∇Vl

∇F2〉 = 〈∇F1,∇〈Vk,∇Vl
∇F2〉〉

= 〈Vk,∇∇F1
∇Vl

∇F2〉+ 〈∇∇F1
Vk,∇Vl

∇F2〉.

⇒ 〈Vk,∇∇F1
∇Vl

∇F2〉 = 〈∇F1,∇〈Vk,∇Vl
∇F2〉〉 − 〈∇∇F1

Vk,∇Vl
∇F2〉. (19.93)

On the other hand, we have

∂∇F1
〈Vj , Vk〉 = ∂∇F1

(gj,k) = 〈∇F1, ∂gj,k〉 = 〈∇F1,∇gi,j〉
= 〈∇∇F1

Vj , Vk〉+ 〈Vj ,∇∇F1
Vk〉.

By symmetry arguments, this clearly implies that for any 1 ≤ i, l ≤ r

∑
1≤j,k≤p

gi,j gk,l 〈Vj ,∇∇F1
Vk〉 =

1

2

∑
1≤j,k≤p

gi,j gk,l 〈∇F1,∇gj,k〉

= −1

2

∑
1≤j,k≤p

gj,k gk,l 〈∇F1,∇gi,j〉 = −1

2
〈∇F1,∇gi,l〉.
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In the last assertion we used

∇


 ∑

1≤j≤p

gi,jgj,k


 = 0 =

∑
1≤j≤p

gi,j∇gj,k +
∑

1≤j≤p

gj,k∇gi,j and
∑

1≤k≤p

gj,k gk,l = 1j=l.

Using (19.2), we have

〈∇∇F1
Vk,∇Vl

∇F2〉 =
∑

1≤i,j≤p

gi,j 〈∇Vl
∇F2, Vi〉 〈∇∇F1

Vk, Vj〉

from which we find the decomposition

∑
1≤k,l≤p

gk,l〈∇∇F1
Vk,∇Vl

∇F2〉 =
∑

1≤i,l≤p


 ∑
1≤j,k≤p

gi,j gk,l〈∇∇F1
Vk, Vj〉


 〈∇Vl

∇F2, Vi〉

= −1

2

∑
1≤i,l≤p

〈∇F1,∇gi,l〉 〈∇Vl
∇F2, Vi〉. (19.94)

Combining this result with (19.93) we check that
∑

1≤k,l≤p g
k,l〈Vk,∇∇F1

∇Vl
∇F2〉

=
∑

1≤i,l≤p g
i,l〈∇F1,∇〈Vk,∇Vl

∇F2〉〉+ 1
2

∑
1≤i,l≤p〈∇F1,∇gi,l〉 〈∇Vl

∇F2, Vi〉

=
〈
∇F1,∇

[∑
1≤i,l≤p gi,l 〈Vk,∇Vl

∇F2〉
]〉

− 1
2

∑
1≤i,l≤p〈∇F1,∇gi,l〉 〈∇Vl

∇F2, Vi〉.

We conclude that
∑

1≤k,l≤p

gk,l〈Vk,∇∇F1
∇Vl

∇F2〉 = 〈∇F1,∇∆F2〉 −
1

2

∑
1≤i,l≤p

〈∇F1,∇gi,l〉 〈∇Vl
∇F2, Vi〉.

(19.95)
Using the Hessian formula (19.51) we have the commutation property

〈Vk,∇[Vl,∇F1]∇F2〉 = 〈[Vl,∇F1] ,∇Vk
∇F2〉

= 〈∇Vl
(∇F1)−∇∇F1

(Vl),∇Vk
∇F2〉

= 〈∇Vl
∇F1,∇Vk

∇F2〉 − 〈∇∇F1
Vl,∇Vk

∇F2〉.

Using (19.94) and (19.72) we prove that
∑

1≤k,l≤p g
k,l〈Vk,∇[Vl,∇F1]∇F2〉

=
∑

1≤k,l≤p g
k,l〈∇Vl

∇F1,∇Vk
∇F2〉+ 1

2

∑
1≤i,l≤p〈∇F1,∇gi,l〉 〈∇Vl

∇F2, Vi〉

= 〈∇2F1,∇2F2〉+ 1
2

∑
1≤i,l≤p〈∇F1,∇gi,l〉 〈∇Vl

∇F2, Vi〉.

(19.96)

Combining (19.95) and (19.96) we conclude that
∑

1≤k,l≤p

gk,l
〈
Vk,

(
∇∇F1

∇Vl
+∇[Vl,∇F1]

)
∇F2

〉
= 〈∇F1,∇∆F2〉+ 〈∇2F1,∇2F2〉.

This ends the proof of the theorem.
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Corollary 19.9.3 We let L be the second order operator defined by

L =
1

2
∆ −∇W (19.97)

for some vector field W ∈ V. In this situation, we have ΓL = Γ 1
2∆

and

Γ2,L(F1, F2) =
〈
∇2F1,∇2F2

〉
+ Ric (∇F1,∇F2) + 2 (∇W )sym (∇F1,∇F2) (19.98)

with the symmetric bilinear form (∇W )sym induced by the matrix

(∇W )sym =
1

2

(
(∇W ) + (∇W )T

)
.

In particular, for covariant gradient vector fields W = ∇V, we have

L(F ) =
1

2
∆(F ) − 〈∇V,∇F 〉

and

Γ2,L(F1, F2) =
〈
∇2F1,∇2F2

〉
+ Ric (∇F1,∇F2) + 2 ∇2V (∇F1,∇F2) . (19.99)

Proof :
Since ΓL measures the derivation rule defects, we clearly have ΓL = Γ 1

2∆
. To verify the

second assertion we use the easily checked decomposition

Γ2,L(F1, F2)− Γ2, 12∆
(F1, F2) = 〈∇∇WF1,∇F2〉+ 〈∇∇WF2,∇F1〉 − ∇W 〈∇F1,∇F2〉.

The end of the proof is now a direct consequence of the commutation property (19.54). The
second assertion is a direct consequence of (19.98) since

(∇F1)
T
(
∇2V + (∇2V )T

)
∇F2 = 2 ∇2V (∇F1,∇F2) .

This ends the proof of the corollary.

Using (19.77), we readily check the following change of variable formula.
Proposition 19.9.4 Let L be the diffusion generator defined in (19.97). For any
function F on Rn and any sequence f = (f1, . . . , fn) of functions fi on Rr with
1 ≤ i ≤ n, we set F = F (f). In this notation, we have

L(F) =
∑

1≤m≤n

(∂xm
F ) (f) L(fm) +

1

2

∑
1≤l,m≤n

(∂xl,xm
F ) (f) ΓL(fl, fm). (19.100)

Applying the Bochner-Lichnerowicz formula (19.92) to the coordinate mappings F1 = χi

and F2 = χj (or directly using (19.3)) and recalling that ∇χi = πi and ∆χi = tr (∇πi) =
−Hi (cf. (19.74), we check that

Ric (πi, πj) + 〈∇πi,∇πj〉 =
1

2

{
∆〈πi, πj〉+

〈
πi,∇Hj

〉
+
〈
πj ,∇Hi

〉}
.

The next theorem provides a more explicit description of the operator Γ2,L in terms of the
projection matrix π.
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Theorem 19.9.5 When L := 1
2 ∆, for any 1 ≤ i, j ≤ r we have

Γ2,L(χi, χj) = Ric (πi, πj) + 〈∇πi,∇πj〉 =
1

2

{
∆πj

i + ∂πi
(Hj) + ∂πj

(Hi)
}

and

Γ2,L(F1, F2) = tr (∇∂F1 ∇∂F2) +
∑

1≤i,j≤r

Γ2,L(χi, χj) ∂xiF1 ∂xjF2 (19.101)

+
∑

1≤i,j,k≤r

∇πk(πi, πj)
(
∂xk

F1 ∂xi,xj
F2 + ∂xk

F2 ∂xi,xj
F1

)
.

In addition, the same formula holds when we can replace the term ∇πk(πi, πj) in the above
display by

(
∂πjπ

i
k − 1

2 ∂πk
πi
j

)
.

Proof :
Firstly we observe that

∇F =
∑

1≤i≤r

∂xi
(F ) πi ⇒ ∇Vk

∇F =
∑

1≤i≤r

∂xi
(F ) ∇Vk

πi +
∑

1≤i≤r

∂Vk
(∂xi

F ) πi.

Using (19.72) implies that
〈
∇2F1,∇2F2

〉

=
∑

1≤k,l≤p

gk,l 〈∇Vl
∇F1,∇Vl

∇F2〉

=
∑

1≤i,j≤r

∂xi
F1 ∂xj

F2

∑
1≤k,l≤p

gk,l 〈∇Vk
∇χi,∇Vl

∇χj〉

+
∑

1≤i,j≤r

∂xi
F1

∑
1≤k,l≤p

gk,l ∂Vl

(
∂xj

F2

)
〈∇Vk

πi, πj〉

+
∑

1≤i,j≤r

∂xj
F2

∑
1≤k,l≤p

gk,l ∂Vk
(∂xi

F1) 〈πi,∇Vl
πj〉

+
∑

1≤i,j≤r

∑
1≤k,l≤p

gk,l ∂Vk
(∂xi

F1) ∂Vl

(
∂xj

F2

)
〈πi, πj〉.

Recalling that
∑

1≤k,l≤p

gk,l V m
k V n

k = πm
n Vk =

∑
1≤i≤r

V i
k πi and 〈πi, πj〉 = πi

j

we obtain the following decomposition
〈
∇2F1,∇2F2

〉

=
∑

1≤i,j≤r

∂xiF1 ∂xjF2 〈∇πi,∇πj〉+
∑

1≤i,j,m,n≤r

πm
n ∂xiF1 ∂xn,xjF2 〈∇πmπi, πj〉

+
∑

1≤i,j,m,n≤r

πm
n ∂xn,xi

F1 ∂xj
F2 〈πi,∇πm

πj〉+
∑

1≤i,j,m,n≤r

πm
n ∂xm,xi

F1 πj
i ∂xj ,xn

F2.
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Using
∑

1≤m≤r π
m
n πm = πn, we also check that

〈
∇2F1,∇2F2

〉
=

∑
1≤i,j≤r

∂xiF1 ∂xjF2 〈∇πi,∇πj〉+
∑

1≤i,j≤r

(
π∂2F1

)
i,j

(
π∂2F2

)
j,i

+
∑

1≤i,j,k≤r

(
∂xk

F1 ∂xi,xj
F2 + ∂xk

F2 ∂xi,xj
F1

)
=∇πk(πi,πj)︷ ︸︸ ︷
〈∇πiπk, πj〉 .

By (19.68) and

∇F =
∑

1≤i≤r

∂xi
(F ) πi ⇒ Ric (∇F1,∇F2) =

∑
1≤i,j≤r

∂xi
F1 ∂xj

F2 Ric (πi, πj)

we conclude that

Γ2,L(F1, F2) =
〈
∇2F1,∇2F2

〉
+ Ric (∇F1,∇F2)

=
∑

1≤i,j≤r

∂xiF1 ∂xjF2

=Γ2,L(χi,χj)︷ ︸︸ ︷
(〈∇πi,∇πj〉+ Ric (πi, πj))+tr (∇∂F1 ∇∂F2)

+
∑

1≤i,j,k≤r

(
∂xk

F1 ∂xi,xj
F2 + ∂xk

F2 ∂xi,xj
F1

) (
∂πj

πi
k − 1

2
∂πk

πi
j

)
.

This ends the proof of the theorem.

Definition 19.9.6 We consider the operator ΥL defined for any smooth functions Fi on
Rr, with i = 1, 2, 3, by the formula

ΥL(F3)(F1, F2) := Γ2,L(F1F2, F3)− F1 Γ2,L(F2, F3)− F2 Γ2,L(F1, F3). (19.102)

Proposition 19.9.7 When L := 1
2 ∆, for any smooth functions Fi, with i = 1, 2, 3, we

have

1

2
ΥL(F3)(F1, F2) =

(
∂2F3 + (∂F3)

T∇2χ
)
(∇F1,∇F2)

= ∇2F3 (∇F1,∇F2) , (19.103)

with the bilinear form

(∂F3)
T∇2χ :=

∑
1≤i≤r

∂xi
F3 ∇πi.

We consider a sequence of smooth functions fk = (fk,i)1≤i≤nk
on Rr, and Fk(x1, . . . , xnk

)

on Rnk , and we set Fk = Fk(fk) = Fk(fk,1, . . . , fk,nk
), with k = 1, 2. In this situation, we

have the change of variable formulae

ΓL(F1,F2) =
∑

1≤i≤n1

∑
1≤k≤n2

(∂xi
F1) (f1) (∂xk

F2) (f2) ΓL(f1,i, f2,k)
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and

Γ2,L(F1,F2)−
∑

1≤i≤n1

∑
1≤k≤n2

(∂xi
F1) (f1) (∂xk

F2) (f2) Γ2,L(f1,i, f2,k)

=
∑

1≤i,j≤n1

∑
1≤k,l≤n2

(
∂xi,xj

F1

)
(f1) (∂xk,xl

F2) (f2) ΓL (f1,i, f2,l) ΓL (f1,j , f2,k)

+
1

2

∑
1≤i≤n1

∑
1≤k,l≤n2

(∂xiF1) (f1) (∂xk,xl
F2) (f2) ΥL(f1,i) (f2,k, f2,l)

+
1

2

∑
1≤k≤n2

∑
1≤i,j≤n1

(∂xk
F2) (f2)

(
∂xi,xj

F1

)
(f1) ΥL(f2,k) (f1,i, f1,j) .

Proof :
The first assertion is a direct consequence of (19.75). The proof of the second is based on
the well known formula

∂2(F1F2) = F1 ∂2F2 + F2 ∂2F1 + ∂F1(∂F2)
T + ∂F2(∂F1)

T .

This implies that

tr
(
π∂2(F1F2) π∂

2F3

)
= F1 tr

(
π∂2F2 π∂2F3

)
+ F2 tr

(
π∂2F1 π∂2F3

)

+tr
(
π∂F1(∂F2)

T π∂2F3

)
+ tr

(
π∂F2(∂F1)

T π∂2F3

)
.

We readily check that

tr
(
π∂F1(∂F2)

T π∂2F3

)
= tr

(
π∂F1(π∂F2)

T ∂2F3

)

= 〈∇F1, (∂
2F3) ∇F2〉 = tr

(
π∂F2(∂F1)

T π∂2F3

)
.

On the other hand, recalling that
∑

1≤i≤r (∂xi
F ) πi = ∇F, we have

∑
1≤i,j,k≤r

∂xk
F3 ∇πk(πi, πj) ∂xi

F1 ∂xj
F2 =

∑
1≤k≤r

∂xk
F3 ∇πk(∇F1,∇F2) .

The end of the proof of the first assertion is now clear. The second covariant derivative
formula (19.103) is a direct consequence of (19.69).

Fk = Fk(fk) = Fk(fk,1, . . . , fk,nk
) ⇒ ∂Fk =

∑
1≤i≤nk

(∂xi
Fk) (fk) ∂fk,i.

Arguing as before, we have the matrix formula

∂2Fk =
∑

1≤i,j≤nk

(
∂xi,xj

Fk

)
(fk) ∂fk,i∂f

T
k,j +

∑
1≤i≤nk

(∂xi
Fk) (fk) ∂

2fk,i.
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This implies that

tr (∇∂F1 ∇∂F2)

=
∑

1≤i,j≤n1

∑
1≤k,l≤n2

(
∂xi,xj

F1

)
(f1) (∂xk,xl

F2) (f2) tr
(
∇f1,i∂f

T
1,j ∇f2,k∂f

T
2,l

)

+
∑

1≤i,j≤n1

∑
1≤k≤n2

(
∂xi,xjF1

)
(f1) (∂xk

F2) (f2) tr
(
∇f1,i∂f

T
1,j π∂2f2,k

)

+
∑

1≤i≤n1

∑
1≤k,l≤n2

(∂xi
F1) (f1) (∂xk,xl

F2) (f2) tr
(
∇f2,k∂f

T
2,l π∂

2f1,i
)

+
∑

1≤i≤n1

∑
1≤k≤n2

(∂xiF1) (f1) (∂xk
F2) (f2) tr (∇∂f1,i ∇∂f2,k) .

Notice that

tr
(
∇f1,i∂f

T
1,j ∇f2,k∂f

T
2,l

)
= tr

(
∇f2,k∂f

T
2,l∇f1,i∂f

T
1,j

)

= 〈∂f2,l,∇f1,i〉 〈∂f2,k,∇f1,j〉 = 〈∇f2,l,∇f1,i〉 〈∇f2,k,∇f1,j〉
= ΓL (f1,i, f2,l) ΓL (f1,j , f2,k)

and

tr
(
∇f1,i∂f

T
1,j π∂2f2,k

)
= tr

(
∇f1,i

(
π∂fT

1,j ∂2f2,kπ
))

=
〈
∇f1,i, ∂

2f2,k∇f1,j
〉
= ∂2f2,k (∇f1,i,∇f1,j) .

Arguing as above we check that

Γ2,L(F1,F2)−
∑

1≤i≤n1

∑
1≤k≤n2

(∂xi
F1) (f1) (∂xk

F2) (f2) Γ2,L(f1,i, f2,k)

=
∑

1≤i,j≤n1

∑
1≤k,l≤n2

(
∂xi,xj

F1

)
(f1) (∂xk,xl

F2) (f2)ΓL (f1,i, f2,l) ΓL (f1,j , f2,k)

+
∑

1≤i≤n1

∑
1≤k,l≤n2

(∂xi
F1) (f1) (∂xk,xl

F2) (f2)


∂2f1,i +

∑
1≤m≤r

∂xm
f1,i ∇πm


 (∇f2,k,∇f2,l)

+
∑

1≤k≤n2

∑
1≤i,j≤n1

(∂xk
F2) (f2)

(
∂xi,xj

F1

)
(f1)


∂2f2,k +

∑
1≤i≤r

∂xm
f2,k ∇πm


 (∇f1,i,∇f1,j) .

This completes the proof of the proposition.
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19.10 Exercises
Exercise 351 (Euclidian space) We consider the two-dimensional euclidian space R2 =

V = Vect(e1, e2) generated by the unit vectors e1 =

(
1
0

)
and e2 =

(
0
1

)
. Describe the

covariant derivatives ∇F , ∇2F and the Laplacian ∆F of a smooth function F on R2.

Exercise 352 (Bochner-Lichnerowicz formula in Euclidian spaces) We consider the
two-dimensional euclidian space R2 = V discussed in exercise 351. For a smooth function
F on R2 check that

1

2
∆
(
‖∇F‖2

)
= tr

(
∇2F ∇2F

)
+

1

2
〈∇F,∇(∆F )〉 .

Exercise 353 (Carré de champ operator) We consider first and second order genera-
tors L1 and L2 defined (on smooth functions f on Rr) by L = L1 + L2, with the first and
second order operators

L1(f) :=
∑

1≤i≤r

bi ∂i(f) and L2(f) :=
1

2

∑
1≤i,j≤r

ai,j ∂i,j(f)

for some drift function b = (bi)1≤i≤r and some symmetric matrix functional a = (ai,j)1≤i,j≤r

on Rr. Check that
L1(fg) = f L1(g) + g L1(f)

and

L2(fg) = f L2(g) + g L2(f) + ΓL2
(f, g) with ΓL2

(f, g) :=
∑

1≤i,j≤r

ai,j ∂if ∂jg

for smooth functions (f, g). Deduce that

L(fg) = f L(g) + g L(f) + ΓL(f, g) with ΓL(f, g) = ΓL2(f, g).

To avoid complex summation formulae, we recommend Einstein notation and write bi ∂i
and ai,j ∂i,j instead of

∑
1≤i≤r bi ∂i and

∑
1≤i,j≤r ai,j ∂i,j.

Exercise 354 (Change of variable formulae) We consider the differential operator L
discussed in exercise 353. Check that (f, g) �→ ΓL(f, g) is a symmetric bilinear form satis-
fying the property

ΓL(f, gh) = g ΓL(f, h) + h ΓL(f, g).

We consider collections of smooth functions f =
(
f i
)
1≤i≤n

and g =
(
gj
)
1≤j≤m

on Rr, and
some smooth functions F (x1, . . . , xn) and G(x1, . . . , xm) on Rn and Rm, for some m,n ≥ 1.
We also set

F (f) = F (f1, . . . , fn) and G(g) = G(g1, . . . , gm).

Check that
ΓL (F (f), G(g)) =

∑
1≤k≤n

∑
1≤l≤m

(∂kF )(f)(∂lG)(g) ΓL(f
k, gl)

and
L(F (f)) =

∑
1≤k≤n

(∂kF )(f) L(fk) +
1

2

∑
1≤k,l≤n

(∂k,lF )(f) ΓL(f
k, f l).
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Exercise 355 (Gamma-two operator) We consider the differential operator L discussed
in exercise 353 and exercise 354. Check that

∑
1≤i,j≤r

ai,j ∂if L(∂jg) =
∑

1≤k≤r

bk ΓL(f, ∂kg) +
1

2

∑
1≤k,l≤r

ak,l ΓL(f, ∂k,lg).

Deduce that

ΓL(f, L(g)) + ΓL(g, L(f)) +
∑

1≤i,j≤r

ai,j [ΓL(∂if, ∂jg)− L(∂if∂jg)]

=
∑

1≤i≤r


{ΓL(b

i, f) ∂ig + ΓL(b
i, g) ∂if

}
+

1

2

∑
1≤j≤r

{
ΓL(a

i,j , f) ∂i,jg + ΓL(a
i,j , g) ∂i,jf

}

 .

Prove the formula

L (ΓL(f, g))−
∑

1≤i,j≤r

ai,j L (∂if∂jg)

=
∑

1≤i,j≤r

[
L
(
ai,j

)
∂if ∂jg + ΓL

(
ai,j , ∂jg

)
∂if + ΓL

(
ai,j , ∂if

)
∂jg

]

and deduce that

Γ2,L(f, g) =
∑

1≤i,j≤r

L
(
ai,j

)
∂if ∂jg −

∑
1≤i≤r

{
ΓL(b

i, f) ∂ig + ΓL(b
i, g) ∂if

}

+
∑

1≤i,j≤r

{ [
ΓL

(
ai,j , ∂ig

)
∂jf + ΓL

(
ai,j , ∂if

)
∂jg

]

−1

2

[
ΓL(a

i,j , f) ∂i,jg + ΓL(a
i,j , g) ∂i,jf

]}
+

∑
1≤i,j≤r

ai,j ΓL(∂if, ∂jg).

Exercise 356 (Gamma-two operator - Explicit formula) We consider the differen-
tial operator L discussed in the exercises 353 through 355. Check the explicit formula

Γ2,L(f, g) =
∑

1≤i,j≤r


L

(
ai,j

)
−

∑
1≤l≤r

[
ai,l ∂lb

j + aj,l ∂lb
i
]

 ∂if ∂jg

+
∑

1≤i,j,k≤r

∑
1≤l≤r

[
ak,l ∂la

i,j − 1

2
ai,l ∂la

k,j

]
[∂if ∂j,kg + ∂ig ∂j,kf ]

+
∑

1≤i,j,k,l≤r

ai,j ak,l ∂i,kf ∂j,lg.

(19.104)

Exercise 357 (Hessian operator) We consider the differential operator L discussed in
the exercises 353 through 355. Check the formula

ΥL(f)(g, h) := Γ2,L(f, gh)− h Γ2,L(f, g)− g Γ2,L(f, h)

= ΓL (g,ΓL(f, h)) + ΓL (h,ΓL(f, g))− ΓL (f,ΓL(g, h)) .



578 Stochastic Processes

Exercise 358 (Hessian operator - Explicit formula) We consider the differential op-
erator L discussed in the exercises 353 through 356. Check the explicit formula

ΥL(f)(g, h)

=
∑

1≤i,j,k,l≤r

((
ak,l ∂la

i,j − 1

2
ai,l ∂la

k,j

)
∂if + ai,j ak,l ∂i,lf

)
(∂jg ∂kh+ ∂jh ∂kg) .

Exercise 359 (Projection matrix) We consider the plane V = {(x1, x2, x3) ∈ R3 : x1+
x2 + x3 = 0}. Find an orthogormal basis (U1, U2) of the two-dimensional vector space V
and compute the orthogonal projection matrix πV .

Exercise 360 (Normal vector fields) We consider a smooth level surface S = {x =
(x1, x2, x3) ∈ R3 : ϕ(x) = 0}, with a continuous gradient x ∈ R3 �→ (∂ϕ)(x) which is
non-null at any point x ∈ S of the surface. Prove that the vector (∂ϕ)(x) is orthogonal to
each tangent vector at any state x ∈ S. Find the equations of the tangent planes to the
following surfaces at some point x = (x1, x2, x3) ∈ S:

• The hyperboloid ϕ(x) = x2
1 − x2

2 − x2
3 − 4 = 0.

• The circular cone ϕ(x) = x2
1 + x2

2 − x2
3 = 0.

Exercise 361 (Parametric surfaces) Find the equation of the tangent plane and the sur-
face unit vector of the torus given by the parametrization

ψ (θ) =




(R+ r cos(θ1)) cos(θ2)
(R+ r cos(θ1)) sin(θ2)

r sin(θ1)


 with r < R

at some point ψ(θ) = x = (x1, x2, x3).

Exercise 362 (Monge parametrization) We consider a surface

S = {x = (x1, x2, x3) ∈ R3, ϕ(x) = 0 ∈ R2}

with ϕ(x) = h(x1, x2) − x3 and some height function θ = (θ1, θ2) ∈ R2 �→ h(θ) ∈ R. Give
two natural tangent vectors V1(x), V2(x) and an orthogonal vector V ⊥

1 (x) at some point
x = (x1, x2, x3) = (x1, x2, h(x1, x2)) ∈ S. Describe the metrics g(x) = (gi,j(x))1≤i,j≤2 and
g⊥(x) on the tangent space Tx(S) = Vect(V1(x), V2(x)) and the orthogonal space T⊥

x (S) =
Vect(V ⊥

1 (x)).

Exercise 363 We consider the surface S presented in the exercise 362. Describe the pro-
jection matrices π(x) and π⊥(x) on Tx(S) and on T⊥

x (S) in terms of derivatives of the
height function and in terms of the vector (∂ϕ)x.

Exercise 364 We consider the surface S presented in the exercise 362. Describe the co-
variant derivative (∇F )(x) of a smooth function F on S with respect to the tangent space
Tx(S). Compute the mean curvature vector H(x) and deduce a formula for the Laplacian
∆F in terms of H(x).



20
Stochastic differential calculus on manifolds

This chapter is concerned with the construction of Brownian motion and more general
diffusion processes evolving in constraint type manifolds. These stochastic processes are
defined in terms of projection of Euclidian Brownian motions and multidimensional diffu-
sions adjusted by mean curvature drift functions. We also discuss the Doeblin-Itō formula
associated with these manifold valued diffusions in the ambient space. The chapter also
provides a brief introduction to the Stratonovitch differential calculus. We illustrate these
probabilistic models with a variety of concrete examples, including Brownian motion and
diffusions on the sphere, the cylinder, the simplex or the more general orbifold. The expres-
sions of these stochastic diffusions on local coordinates and parameter spaces are discussed
in chapter 22.

A circle is a round straight line with a hole in the middle.
Mark Twain (1971-1910).

20.1 Embedded manifolds
In this section we briefly recall some ter-
minology that is used frequently in geome-
try and differential calculus. We only con-
sider submanifolds S of dimension p which
are "smooth subsets" of the ambient Euclid-
ian space Rp+q, for some q ≥ 1. The case
q = 1 corresponds to hypersurfaces (a.k.a.
hypermanifolds). We let

ϕ : x ∈ Rr=p+q �→ ϕ(x) = (ϕ1(x), . . . , ϕq(x))
T ∈ Rq

be a smooth function with a non empty and connected null-level set S := ϕ−1(0) s.t.

∀x ∈ S rank (∂ϕ(x)) = rank (∂ϕ1(x), . . . , ∂ϕq(x)) = q.

We consider a smooth curve C : t ∈ [0, 1] �→ C(t) =
(
C1(t), . . . , Cr(t)

)T ∈ S starting at
some state C(0) = x ∈ S, with a velocity vector field W , that is,

dC

dt
=

(
dC1

dt
, . . . ,

dCr

dt

)T

= W (C(t)) =
(
W 1(C(t)), . . . ,W r(C(t))

)T
.

By construction, we have

∀1 ≤ i ≤ q
d

dt
ϕi(C(t)) =

∑
1≤j≤r

(
∂xj

ϕi

)
(C(t)) W j(C(t)) = 0.

579
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For t = 0, this implies that

〈∂ϕi(x),W (x)〉 =
∑

1≤j≤r

(
∂xjϕi

)
(x) W j(x) = 0 ⇐⇒ W (x) ∈ ker (∂ϕi(x)) .

We let Tx(S) be the vector space spanned by the kernels ker (∂ϕi(x)) of the gradient vectors
∂ϕi(x), with 1 ≤ i ≤ q, that is,

Tx(S) = Vect (∪1≤i≤qker (∂ϕi(x))) .

Under our assumptions, we have

Rr = Tx(S)
⊥
+ T⊥

x (S) with T⊥
x (S) = Vect (∂ϕ1(x), . . . , ∂ϕq(x)) .

This implies that Tx(S) is a p-dimensional vector space, so that S is a p-dimensional
manifold embedded in the ambient space Rr.

Definition 20.1.1 We let π(x) be the orthogonal projection from Rr into Tx(S),
and H(x) be the mean curvature vector given by

H =
∑

1≤i≤q

div⊥


 ∑

1≤j≤q

gi,j⊥ ∂ϕj


 ∂ϕi.

Here

g−1
⊥ =

(
gi,j⊥

)
1≤i,j≤q

and g⊥ = (g⊥,i,j)1≤i,j≤q = (〈∂ϕi, ∂ϕj〉)1≤i,j≤q

where div⊥ (.) denotes the divergence operator defined in (19.42). We also recall
from (19.45) that

∀1 ≤ k ≤ r Hk = −
∑

1≤i,j≤r

πi
j∂xi

πj
k = −

∑
1≤j≤r

∂πj
πk
j ⇔ HT = −

∑
1≤j≤r

∂πj
πj

with the vector fields πj on Rr defined by the column vectors

∀1 ≤ j ≤ r πj :=




π1
j
...
πr
j


 .

By construction, we also notice that

∀1 ≤ i ≤ q ∂ϕi ∈ T⊥(S) =⇒ ∇ϕi = π(∂ϕi) = 0. (20.1)

In the case of orthogonal constraints

〈∂ϕi, ∂ϕj〉 = 1i=j ‖∂ϕj‖2 ⇒ gi,j⊥ = 1i=j ‖∂ϕj‖−2 ⇒ H =
∑

1≤i≤q

div⊥

(
∂ϕi

‖∂ϕi‖2

)
∂ϕi.
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In addition, by (19.42), we find the computationally useful formula

q = 1 ⇒ H = div⊥

(
∂ϕ1

‖∂ϕ1‖2

)
∂ϕ1 =


 ∑
1≤m≤r

∂xm

(
∂xm

ϕ1

‖∂ϕ1‖

)
 ∂ϕ1

‖∂ϕ1‖
. (20.2)

In the special case of the sphere S = Sp ⊂ Rp+1, with p = r − 1, we use

ϕ(x) = ‖x‖ − 1 ⇒ ∂ϕ(x) = x/‖x‖ and π(x) = Id− ∂ϕ(x)∂ϕ(x)T = Id− xxT

xTx
. (20.3)

In this situation, for any x �= 0 we have

H(x) =


 ∑
1≤m≤r

∂xm

(
xm√

x2
1 + . . .+ x2

r

)
 x√

x2
1 + . . .+ x2

r

= (r − 1)
x

‖x‖2
= (r − 1)

x

xTx
.

(20.4)
We check this claim by using

∂xm

(
xm√

x2
1 + . . .+ x2

r

)
=

1√
x2
1 + . . .+ x2

r

[
1− x2

m

(x2
1 + . . .+ x2

r)

]

⇒ div⊥

(
∂ϕ

‖∂ϕ‖2

)
=

1

‖x‖
∑

1≤m≤r

∂xm

(
xm

‖x‖

)
=

1

‖x‖2
∑

1≤m≤r

(
1− x2

m

‖x‖2

)
=

r − 1

‖x‖2
.

For p = 2, the projection on the unit sphere can also be represented in terms of the cross
product

π(x)W (x) =
x

‖x‖
∧Wx

x∈S2
= x ∧Wx =




x2W
3(x)− x3W

2(x)
W 1(x)x2 −W 2(x)x1

x1W
2(x)− x2W

1(x)


 . (20.5)

In much the same way, the cylinder of unit radius on R2 is given ϕ(x1, x2, x3) =√
x2
1 + x2

2 − 1 = 0. In this case, we have

∂ϕ(x) =
1√

x2
1 + x2

2




x1

x2

0


 , π(x) = Id− ∂ϕ(x)∂ϕ(x)T =




x2
2

x2
1+x2

2
− x1x2

x2
1+x2

2
0

− x1x2

x2
1+x2

2

x2
1

x2
1+x2

2
0

0 0 1




(20.6)
and

H(x) =

( ∑
m=1,2

∂xm
(∂xm

ϕ)(x)

)
∂ϕ(x) =

1

x2
1 + x2

2




x1

x2

0


 .

20.2 Brownian motion on manifolds

20.2.1 A diffusion model in the ambient space

We consider the embedded manifold S = ϕ−1(0) described in section 20.1. We let π and H
be the projection matrix and the mean curvature vector described in definition 20.1.1.
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We let Xt =




X1
t
...

Xr
t


 be the Rr-valued diffusion defined by

dXt = −1

2
H(Xt) dt+ π(Xt) dBt (20.7)

where Bt stands for a standard r-dimensional Brownian motion. The process Xt

is called the Brownian motion on the manifold S = ϕ−1(0).

In the special case of the sphere S = Sp ⊂ Rr=p+1 we have

dXt = −r − 1

2

Xt

XT
t Xt

dt+

(
Id− XtX

T
t

XT
t Xt

)
dBt. (20.8)

In terms of the cross product (20.5) we have

dXt = −r − 1

2

Xt

XT
t Xt

dt+
Xt√
XT

t Xt

∧ dBt.

The graph below illustrates a realization of a Brownian motion on a unit sphere.

−0.5

0

0.5

−0.
−0.

−0.
−0.2

0
0.2

0.
0.

0.

−1

−0.

−0.

−0.

−0.2

0

0.2

0.

0.

0.

1

xy

z

Using (20.6), the Brownian motion on the cylinder with unit radius is given by




dX1
t = − 1

2
X1

t

(X1
t )

2+(X2
t )

2 dt+
(

(X2
t )

2

(X1
t )

2+(X2
t )

2 dB1
t − X1

t X
2
t

(X1
t )

2+(X2
t )

2 dB2
t

)

dX2
t = − 1

2
X2

t

(X1
t )

2+(X2
t )

2 dt+
(
− X1

t X
2
t

(X1
t )

2+(X2
t )

2 dB1
t +

(X1
t )

2

(X1
t )

2+(X2
t )

2 dB2
t

)

dX3
t = dB3

t .

(20.9)
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The graph below illustrates a realization of a Brownian motion on a cylinder of unit
radius.
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20.2.2 The infinitesimal generator

Recalling that π = πT , for any 1 ≤ k ≤ r we have

dXk
t = −1

2
Hk(Xt) dt+

∑
1≤j≤r

πk
j (Xt) dB

j
t =

∑
1≤j≤r

[
1

2
∂πj

(πk
j )(Xt) dt+ πk

j (Xt) dB
j
t

]
.

Notice that

dXk
t dX

l
t

∑
1≤i,j≤r

πk
i (Xt)π

l
j(Xt) dB

i
tdB

j
t �

∑
1≤i≤r

(πk
i π

l
i)

︸ ︷︷ ︸
:=(ππT )kl

(Xt) dt = πk
l (Xt) dt.

Using Ito’s formula, for any smooth function F on Rr we have

dF (Xt) =
∑

1≤k≤r

∂xk
(F )(Xt) dX

k
t +

1

2

∑
1≤k,l≤r

∂xk,xl
(F )(Xt) dX

k
t dX

l
t

= 〈∂F (Xt), dXt〉+
1

2
tr
(
∂2F (Xt) dXtdX

T
t

)

= 〈∂F (Xt), dXt〉+
1

2
tr
(
π(Xt)∂

2F (Xt)
)
dt = L(F )(Xt) dt+ dMt(F ).

The infinitesimal generator L is defined by

L(F ) =
1

2

[
tr
(
π∂2F

)
− ∂HF

]
=

1

2

∑
1≤j≤r

∂2
πj
F

=
1

2
∆(F ) =

1

2
tr
(
∇2F

)
. (⇐= (19.70) and (19.71))
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The martingale Mt(F ) is given by

dMt(F ) = 〈(∂F )(Xt), π(Xt)dBt〉 = 〈π(Xt)(∂F )(Xt), dBt〉 = 〈(∇F )(Xt), dBt〉

=
∑

1≤j≤r


 ∑
1≤k≤r

πk
j ∂xk

(F )


 (Xt) dB

j
t =

∑
1≤j≤r

∂πj
(F )(Xt) dB

j
t .

Using (20.1), we check that Xt ∈ S for any t, as soon as X0 ∈ S. More precisely, we
have

F = ϕi ⇒ ∇F = 0

⇒ dMt(F ) = 〈(∇F )(Xt), dBt〉 = 0 & L(F ) =
1

2
tr (∇(∇F )) = 0

⇒ ϕi(Xt) = ϕ(X0) = 0.

Thus, (20.8) can be rewritten as follows

dXt = −r − 1

2
Xt dt+

(
Id−XtX

T
t

)
dBt.

20.2.3 Monte Carlo simulation

In practice, the sampling of the diffusion process (20.7) requires a discrete time approx-
imation of a sort. For instance, Euler type approximation on a time mesh (tn)n≥0 with
(tn − tn−1) = ε � 0 is given by the equation

Xε
tn −Xε

tn−1
= −1

2
H(Xε

tn−1
) (tn − tn−1) + π(Xε

tn−1
)
√

tn − tn−1 Bn

where Bn stands for a sequence of i.i.d. centered and normalized Gaussian r.v. on Rr. Un-
fortunately these schemes do not ensure that Xε

tn stays in the manifold S. For deterministic
dynamical systems, we often handle this issue by projecting each step on the manifold

Xε
tn = projS

(
Xε

tn−1
− 1

2
H(Xε

tn−1
) (tn − tn−1) + π(Xε

tn−1
)
√

tn − tn−1 Bn

)
.

Another strategy is to use a description of the stochastic process in some judicious chart
space. Manifold parametrizations and chart spaces are discussed in chapter 21. We also
refer the reader to chapter 22 for an overview of stochastic calculus on chart spaces.

20.3 Stratonovitch differential calculus
We recall that an r-dimensional stochastic differential equation of the form

dXt = b(Xt) dt+ σ(Xt) dBt

can be rewritten as a Stratonovitch differential equation

∂Xt =


b− 1

2

∑
1≤j≤r

∂σj
(σj)

T


 (Xt) ∂t+ σ(Xt) ∂Bt (20.10)
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with the vector fields σj on Rr defined by the column vectors

∀1 ≤ j ≤ r σj :=




σ1
j
...
σr
j


 =⇒ ∂σj

(σj)
T
=




∂σj
σ1
j

...
∂σjσ

r
j


 .

In other words,

∀1 ≤ k ≤ r ∂Xk
t =


bk − 1

2

∑
1≤j≤r

∂σj
σk
j


 (Xt) ∂t+

∑
1≤j≤r

σk
j (Xt)∂B

j
t .

An heuristic but constructive derivation of these formulae is given below. The Stratonovich
and the Itō increments are connected by

bk(Xt) ∂t = bk
(
Xt +

1

2
dXt

)
× dt and σk

j (Xt) ∂B
j
t = σk

j

(
Xt +

1

2
dXt

)
× dBj

t

with the middle state of the increment of Xt given by

Xt +Xt+dt

2
:= Xt +

1

2
dXt.

Using this rule, we have

bk(Xt) ∂t+
∑

1≤j≤r

σk
j (Xt) ∂B

j
t

� bk
(
Xt +

1

2
dXt

)
× dt+

∑
1≤j≤r

σk
j

(
Xt +

1

2
dXt

)
× dBj

t

= bk(Xt)× dt+
∑

1≤j≤r

σk
j (Xt) dB

j
t +

1

2

∑
1≤j≤r

∑
1≤i≤r

(
∂xi

σk
j

)
(Xt)× dXi

tdB
j
t + . . .

= bk(Xt)× dt+
∑

1≤j≤r

σk
j (Xt) dB

j
t +

1

2

∑
1≤j≤r

(
∂σj

σk
j

)
(Xt) dt.

The last assertion is a consequence of

dXi
tdB

j
t =

∑
1≤l≤r

σi
l(Xt) dB

l
tdB

j
t = σi

j(Xt) dt.

Thus, the Stratonovitch formulation of (20.7) is given by

∂Xt = π(Xt) ∂Bt.

In much the same way, using

(
∂πj

F
)
(Xt) ∂B

j
t =

(
∂πj

F
)(

Xt +
1

2
dXt

)
dBj

t

=
(
∂πj

F
)
(Xt) dBj

t +
1

2

∑
1≤l≤r

∂xl

(
∂πj

F
)
(Xt) dX l

tdB
j
t
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and

∑
1≤l≤r

∂xl

(
∂πj

F
)
(Xt) dX l

tdB
j
t =

∑
1≤l≤r

∂xl

(
∂πj

F
)
(Xt)

∑
1≤m≤r

πl
m(Xt) dB

m
t dBj

t

=


 ∑
1≤l≤r

πj
l (Xt) ∂xl

(
∂πjF

)
(Xt)


 dt = ∂2

πj
F (Xt) dt

we prove that

(
∂πjF

)
(Xt) ∂B

j
t =

(
∂πjF

)
(Xt) dBj

t +
1

2

(
∂2
πj
F
)
(Xt) dt.

Therefore

(
∂πj

F
)
(Xt) dBj

t =
(
∂πj

F
)
(Xt) ∂B

j
t −

1

2

(
∂2
πj
F
)
(Xt) dt.

Hence the Stratonovitch formulation of the equation

dF (Xt) = L(F )(Xt) dt+
∑

1≤j≤r

(
∂πj

F
)
(Xt) dB

j
t

is given by

∂F (Xt) =


L(F )− 1

2

∑
1≤j≤r

∂2
πj
F


 (Xt) dt+

∑
1≤j≤r

(
∂πjF

)
(Xt) ∂B

j
t

=
∑

1≤j≤r

(
∂πj

F
)
(Xt) ∂B

j
t =

∑
1≤k≤r

(∂xk
F ) (Xt)

∑
1≤j≤r

πk
j (Xt) ∂B

j
t

=
∑

1≤k≤r

∂xk
F (Xt) ∂X

k
t = 〈(∂F )(Xt), ∂Xt〉 .

20.4 Projected diffusions on manifolds

We consider the embedded manifold S = ϕ−1(0) described in section 20.1. We let π and H
be the projection matrix and the mean curvature vector described in definition 20.1.1.
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We let Xt =




X1
t
...

Xr
t


 be the Rr-valued diffusion defined by

dXt = π(Xt) (b(Xt)dt+ σ(Xt) dBt)−
1

2
Hσ(Xt) dt (20.11)

= b(Xt)dt+

[
σ(Xt) dBt −

1

2
Hσ(Xt) dt

]

with
σ(x) = π(x)σ(x) and b(x) = π(x)b(x)

where Bt stands for a standard r-dimensional Brownian motion,

σ =




σ1
1 . . . σ1

r
...

...
...

σr
1 . . . σr

r


 and Hσ(x) = −




∑
1≤j≤r ∂σj

σ1
j

...∑
1≤j≤r ∂σj

σr
j


 . (20.12)

Using (20.10), the Stratonovitch formulation of the above equation is given by

∂Xt = b(Xt) ∂t+ σ(Xt) ∂Bt.

In this situation, we have

dXtdX
T
t = σ(Xt) dBt dB

T
t σ(Xt)

T =
(
σσT

)
(Xt).

This yields the following result.

Theorem 20.4.1 For any smooth function F on Rr, we have the Ito formula:

dF (Xt) = 〈∂F (Xt), dXt〉+
1

2
tr
(
∂2F (Xt) dXtdX

T
t

)

= 〈∂F (Xt), dXt〉+
1

2
tr
((
σσT

)
(Xt)∂

2F (Xt)
)
dt

= L(F )(Xt) dt+ dMt(F )

with the infinitesimal generator

L(F ) = ∂bF +
1

2

[
tr
((
σσT

)
∂2F

)
− ∂Hσ

F
]

and the martingale

dMt(F ) = 〈∂F (Xt), σ(Xt)dBt〉 = 〈∇F (Xt), σ(Xt)dBt〉 .
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To get one step further in our discussion, we notice that

tr
((
σσT

)
(x)∂2F (x)

)

=
∑

1≤k,l≤r ∂xk,xl
(F )(x)

(
σ(x)σT (x)

)k
l
=

∑
1≤j,k,l≤r σk

j (x)σ
l
j(x) ∂xk,xl

(F )(x)

=
∑

1≤j≤r

∑
1≤k≤r σ

k
j (x) ∂xk

(∑
1≤l≤r σ

l
j ∂xl

F
)
(x)

−
∑

1≤l≤r

{∑
1≤j≤r

[∑
1≤k≤r σ

k
j (x) ∂xk

(
σl
j

)
(x)

]}
∂xl

F

=
∑

1≤j≤r ∂σj

(
∂σjF

)
(x) + ∂HσF (x).

This implies that

L(F ) = ∂b(F ) +
1

2

∑
1≤j≤r

∂2
σj
(F ) = 〈b,∇F 〉+ 1

2
tr
(
σT∇ σT∇F

)
.(20.13)

The r.h.s. formulation follows from the fact that

σT∂F =




∑
1≤k≤r σ

k
1∂xk

F
...∑

1≤k≤r σ
k
r∂xk

F




=⇒ ∂
(
σT∂F

)
=

[∑
1≤k≤r ∂

(
σk
1∂xk

F
)
, . . . ,

∑
1≤k≤r ∂

(
σk
r∂xk

F
)]

=




∑
1≤k≤r ∂x1

(
σk
1∂xk

F
)

. . .
∑

1≤k≤r ∂x1

(
σk
r∂xk

F
)

...
...∑

1≤k≤r ∂xr

(
σk
1∂xk

F
)

. . .
∑

1≤k≤r ∂xr

(
σk
r∂xk

F
)




=⇒ σT
(
∂
(
σT∂F

))
=




∑
1≤k,l≤r σ

l
1∂xl

(
σk
1∂xk

F
)

. . .
∑

1≤k,l≤r σ
l
1∂xl

(
σk
r∂xk

F
)

...
...∑

1≤k,l≤r σ
l
r∂xl

(
σk
1∂xk

F
)

. . .
∑

1≤k,l≤r σ
l
r∂xl

(
σk
r∂xk

F
)


 .

This yields

tr
(
σT∂ σT∂F

)
= tr

(
σT∇ σT∇F

)
=

∑
1≤j≤r

∑
1≤k,l≤r

σl
j∂xl

(
σk
j ∂xk

F
)
=

∑
1≤j≤r

∂2
σi
(F ).

Using (20.1), we check that Xt ∈ S for any t, as soon as X0 ∈ S. More precisely,
we have

F = ϕi ⇒ ∇F = 0

⇒
{

dMt(F ) = 〈(∇F )(Xt), σ(Xt)dBt〉 = 0
L(F ) = 〈b,∇F 〉+ 1

2 tr
(
σT∇ σT∇F

)
= 0

⇒ ϕi(Xt) = ϕ(X0) = 0.
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20.5 Brownian motion on orbifolds
We let S = ϕ−1(0) ⊂ Rr=p+1 be some hypersurface, and we let π and H be the projection
matrix and the mean curvature vector described in definition 20.1.1. We consider a subgroup
H of the orthogonal group O(r) on Rr, acting on S, such that

∀h ∈ H ∀x ∈ S hx ∈ S (=⇒ ϕ(x) = ϕ(hx)) .

The prototype of a model we have in mind as a toy example is the unit sphere

S = Sp =


x = (xi)

T
1≤i≤r : ϕ(x) :=

√ ∑
1≤i≤r

x2
i − 1 = 0



 ⊂ Rp+1

and the group action induced by the subgroup

O :=



h =




ε1 0 . . . 0
0 ε2 . . . 0
...

...
...

0 0 . . . εr


 : ∀1 ≤ i ≤ r εi ∈ {−1, 1}




. (20.14)

In the case of the sphere, the quotient manifold is isomorphic to the positive orthant S/H =
S ∩ Rr

+

〈hx, hy〉 = xThThy = xT y = 〈x, y〉.

Quotient manifolds defined by the orbit space S/H are often called orbifolds.
By construction, we have

ϕh(x) := ϕ(hx) =⇒ ∂xi
(ϕh)(x)

=
∑

1≤k≤r

(∂xk
ϕ) (hx) ∂xi


 ∑

1≤j≤r

hj
k xj




=
∑

1≤k≤r

hj
k (∂xk

ϕ) (hx) =
∑

1≤k≤r

(hT )kj (∂xk
ϕ) (hx)

=⇒ (∂ϕh)(x) = h−1(∂ϕ)(hx) = hT (∂ϕ)(hx)

=⇒ ‖(∂ϕh)(x)‖2 = 〈(∂ϕh)(x), (ϕh)(x)〉

= (∂ϕ)(hx)ThhT (∂ϕ)(hx) = (∂ϕ)(hx)T (∂ϕ)(hx)

= ‖(∂ϕ)(hx)‖2 .

This shows that the unit normal at hx is given by

h
(∂ϕh)(x)

‖(∂ϕh)(x)‖
=

(∂ϕ)(hx)

‖(∂ϕ)(hx)‖
.

On the other hand, under our assumptions we have

ϕh(x) := ϕ(hx) = ϕ(x) =⇒ (∂ϕh)(x)

‖(∂ϕh)(x)‖
=

(∂ϕ)(x)

‖(∂ϕ)(x)‖
.
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This implies that

h
(∂ϕh)(x)

‖(∂ϕh)(x)‖
= h

(∂ϕ)(x)

‖(∂ϕ)(x)‖
=

(∂ϕ)(hx)

‖(∂ϕ)(hx)‖
from which we prove that

π(x) = Id− (∂ϕ)(x)

‖(∂ϕ)(hx)‖
(∂ϕ)(x)T

‖(∂ϕ)(x)‖

=⇒ hπ(x)hT = Id− h
(∂ϕ)(x)

‖(∂ϕ)(x)‖

(
h

(∂ϕ)(x)

‖(∂ϕ)(x)‖

)T

= Id− (∂ϕ)(hx)

‖(∂ϕ)(hx)‖
(∂ϕ)T (hx)

‖(∂ϕ)(hx)‖
=⇒ hπ(x)hT = π(hx).

(20.15)

On the other hand, we have

(∂ϕh)

‖(∂ϕh)‖
(x) = hT (∂ϕ)(hx)

‖(∂ϕ)(hx)‖
=

∂ϕ

‖(∂ϕ)‖
(x)

⇒ ∂xm

[
(∂xmϕh)(x)

‖(∂ϕh)(x)‖

]
=

∑
1≤j≤r h

m
j ∂xm

[
(∂xj

ϕ)(hx)

‖(∂ϕ)(hx)‖

]
= ∂xm

[
(∂xmϕ)
‖(∂ϕ)‖

]
(x)

=
∑

1≤j≤r

hm
j

∑
1≤k≤r

∂xk

[
(∂xj

ϕ)

‖(∂ϕ)‖

]
(hx) ∂xm


 ∑

1≤i≤r

hi
kxi




=
∑

1≤j≤r

hm
j hm

k

∑
1≤k≤r

∂xk

[
(∂xj

ϕ)

‖(∂ϕ)‖

]
(hx).

Taking the sum over m, this implies that

∑
1≤j≤r

=1j=k︷ ︸︸ ︷
 ∑
1≤m≤r

hm
j (hT )km


 ∑

1≤k≤r

∂xk

[
(∂xj

ϕ)

‖(∂ϕ)‖

]
(hx) =

∑
1≤m≤r

∂xm

[
(∂xm

ϕ)

‖(∂ϕ)‖

]
(x)

=⇒
∑

1≤m≤r

∂xm

[
(∂xm

ϕ)

‖(∂ϕ)‖

]
(hx) =

∑
1≤m≤r

∂xm

[
(∂xm

ϕ)

‖(∂ϕ)‖

]
(x).

(20.16)

Combining this result with (20.2) we conclude that

h H(x) =


 ∑
1≤m≤r

∂xm

(
∂xm

ϕ

‖∂ϕ‖

)
(x)


 h

[
∂ϕ

‖∂ϕ‖
(x)

]

=


 ∑
1≤m≤r

∂xm

(
∂xm

ϕ

‖∂ϕ‖

)
(hx)


 (∂ϕ)(hx)

‖(∂ϕ)(hx)‖
⇒ h H(hTx) = H(x).

We let Xt be the Brownian motion on S defined in (20.7). Using (20.15) and (20.16),
for any h ∈ H we have

Yt = hXt ⇒ dYt = hdXt = −1

2
hH(hT (hXt)) dt+ hπ(Xt)h

T hdBt

= −1

2
H(Yt) dt+ π(Yt) dB

(h)
t (20.17)



Stochastic differential calculus on manifolds 591

where B
(h)
t is a standard r-dimensional Brownian motion. Roughly speaking, this result

shows that all the stochastic processes in the same orbit

OrbH(X) = {(hXt)t≥0 : h ∈ H}

differ only by changing their driving Brownian motion. This coupling technique allows us
to define in a unique way the Brownian motion on the quotient manifold S/H.

20.6 Exercises
Exercise 365 (Brownian motion on the graph of a curve) We consider the graph of
a curve in the plane R2 defined by

S =
{
x = (x1, x2) ∈ R2 : x2 = h(x1)

}

for some smooth height function h. Describe the tangent space Tx(S) and the orthogonal
space T⊥

x (S) at a point x ∈ S. Compute the projection matrix π(x) on Tx(S) and the mean
curvature vector H(x) at any state x ∈ S. Describe the diffusion equation of a Brownian
motion on the graph of the function h.

Exercise 366 (Brownian motion on an ellipsoid) We consider an ellipsoid S, embed-
ded in R3, centered at the origin and defined by the equation

(
x1

a1

)2

+

(
x2

a2

)2

+

(
x3

a3

)2

= 1

for some parameters ai > 0, with i = 1, 2, 3. Describe the equation of the Brownian motion
on the surface of this ellipsoid.

Exercise 367 (Brownian motion - Monge parametrization) Describe the Brownian
motion on the surface S presented in the exercise 362.

Exercise 368 (Stratonovitch calculus) We consider the one-dimensional diffusion given
by the stochastic differential equation

dXt = b(Xt) dt+ σ(Xt) dWt

where Wt stands for a Brownian motion on the real line. Write the Stratonovitch formula-
tion of this equation.

Exercise 369 (Stratonovitch calculus for solving stochastic equations) We consider
the one-dimensional diffusion given by the stochastic differential equation

dXt = aXt + bXt dWt

where Wt stands for a Brownian motion, a, b are parameters, and X0 > 0. Check that the
Stratonovitch formulation of this equation is given by

∂ logXt =

(
a− b2

2

)
∂t+ b ∂Wt ⇒ log (Xt/X0) =

(
a− b2

2

)
t+ b Wt.
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Exercise 370 (Stratonovitch Geometric Brownian motion) We consider the one-dimensional
Stratonovitch differential equation

∂Xt = a Xt ∂t+ b Xt ∂Wt

where Wt stands for a Brownian motion on the real line, and X0 > 0. Write the corre-
sponding (Itō sense) stochastic diffusion equation and check that

log (Xt/X0) = a t+ b Wt.

Exercise 371 (Projected pure diffusions) We consider the R3-valued diffusion dYt =
σ(Yt)dBt associated with an R3-dimensional Brownian motion Bt and with some regular
function σ : y ∈ R3 �→ σ(y) ∈ R3×3. Construct the projection Xt of Yt on the surface S
presented in the exercise 362. Describe the Itō formula for some function F (Xt).

Exercise 372 (Brownian motion on a p-sphere) Describe the evolution of the Brow-
nian motion on the sphere S = Sp ⊂ Rp+1.

Exercise 373 (Stratonovitch diffusion) Describe the Stratonovitch formulation of the
R3-valued diffusion

dXt = − Xt

XT
t Xt

dt+

(
Id− XtX

T
t

XT
t Xt

)
dBt (20.18)

on the unit sphere S = S2, with an R3-dimensional Brownian motion Bt.

Exercise 374 (Time discretisation) Propose a discrete time numerical simulation on a
time mesh (tn)n≥0 with (tn − tn−1) = ε � 0 of the Brownian motion on the sphere S = S2
described in (20.18).



21
Parametrizations and charts

This chapter is concerned with differentiable manifolds and with their parametrization.
Most of the chapter is devoted to expressing the geometrical objects and formulae pre-
sented in chapter 19 to the parameter space. The geometry of the manifold in the ambient
space is expressed in the space of parameters in terms of a Riemannian geometry. These
mathematicical models are essential for designing diffusions on parameter spaces associ-
ated with a given constraints manifold. From the numerical viewpoint, these stochastic
processes are easier to handle than the diffusion on ambient spaces as soon as we find a
judicious parametrization of the manifold.

Geometry is not true, it is advantageous.
Jules Henri Poincare (1854-1912).

21.1 Differentiable manifolds and charts
Differentiable manifolds can be described locally by some smooth parametrization func-
tion on some open subset. The set of these parametrization functions forms a chart
(a.k.a. atlas). We only consider embedded manifolds of some dimension p which are
smooth subsets of the ambient Euclidian space Rp+q, for some q ≥ 1 (equipped with the
cartesian coordinates) defined by a non-empty and connected null-level set S := ϕ−1(0) of
some regular function ϕ from Rp+q into Rq. We refer to section 20.1 for a detailed discussion
on these geometrical objects.

Definition 21.1.1 We denote by

ψ : θ ∈ Sψ ⊂ Rp �→ ψ(θ) =
(
ψ1(θ), . . . , ψr(θ)

)T ∈ S ⊂ Rr (21.1)

a given smooth parametrization of S, with a well defined smooth inverse mapping

φ = ψ−1 : x ∈ S �→ φ(x) =
(
φ1(x), . . . , φp(x)

)T ∈ Sφ ⊂ Rp.

To clarify the presentation, we fur-
ther assume that the manifold S can be
parametrized by a single map ψ, and thus
with a single chart coordinate. At the end
of this section, we provide a discussion about
more general situations.

By construction, we have

∀1 ≤ l ≤ q ∀θ ∈ Sψ ϕl(ψ(θ)) = 0

593
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⇓

∂θj (ϕl ◦ ψ) (θ) =
∑

1≤k≤r

(∂xk
ϕl) (ψ(θ)) ∂θiψ

l(θ) = 〈(∂ϕl) (ψ(θ)), ∂θiψ(θ)〉 = 0

⇓
∀x ∈ S 〈∂ϕl(x), (∂θiψ) (φ(x))〉 = 0.

Further on, we set

(∂θiψ)φ : x ∈ S �→ (∂θiψ)φ (x) := (∂θiψ) (φ(x)) ∈ Tx(S)

and (
∂φi

)
ψ

: θ ∈ Sψ �→
(
∂φi

)
ψ
(θ) =

(
∂φi

)
(ψ(θ)) ∈ Rr.

In this notation, we have shown that

T (S) = Vect
(
(∂θ1ψ)φ , . . . ,

(
∂θpψ

)
φ

)

in the sense that

∀x ∈ S Tx(S) = Vect
(
(∂θ1ψ)φ (x), . . . ,

(
∂θpψ

)
φ
(x)

)
.

We let ei be the unit vectors on Sψ(⊂ Rp) defined by

∀1 ≤ i ≤ p ei =




0
...
0
1
0
...
0




← i-th term. (21.2)

We end this section with an alternative description of the vector fields (∂θiψ)φ. For each
1 ≤ i ≤ p, we let ci(t) = φ(x) + t ei be a curve in Sψ with starting point φ(x) and velocity
ei and

Ci(t) = ψ (φ(x) + t ei)

is the pushed forward curve in the manifold S with velocity

dCi

dt
(0) =

∑
1≤j≤p

(
∂θjψ

)
φ
(x) eji = (∂θiψ)φ (x).

In differential geometry, these vector fields in Tx(S) are often denoted using the
somehow misleading notation

∂

∂θi
|x := (∂θiψ)φ (x). (21.3)

The main reason for this strange notation will become clear in section 21.3 (see
formula (21.17)).
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We end this section with some comments on the parametrization of manifolds.
It may happen that the manifold S cannot be parametrized by a single mapping φ (21.1).

In this situation, we need to resort to a collection of parametrizations (φi∈I , Si∈I)i∈I between
some open subsets Si covering S = ∪i∈Si onto some open parametric subsets Sψi ⊂ Rp.
The collection (φi∈I , Si∈I)i∈I is called an atlas or a chart on the manifold. The mappings
φj ◦ ψi : φi(Si ∩ Sj) �→ φj(Si ∩ Sj) are called the transition maps of the atlas. The
regularity of the transition maps characterizes the regularity of the manifold, for instance,
a Ck-manifold is a manifold which can be equipped with an atlas whose transition maps
are Ck-differentiable (i.e., k-times continuously differentiable). Of course, the existence of
atlases requires a manifold equipped with some topology with well defined open subsets.

For instance, suppose we have parametrizations

ψ1 : θ ∈ φ1(S1 ∩ S2) ⊂ Rp �→ ψ2(θ) ∈ S1 ∩ S2 ⊂ Rr

ψ2 : α ∈ φ2(S1 ∩ S2) ⊂ Rp �→ ψ2(α) ∈ S1 ∩ S2 ⊂ Rr

with transition maps
φ2 ◦ ψ1 : φ1(S1 ∩ S2) �→ φ2(S1 ∩ S2).

In this situation, for any θ ∈ φ1(S1 ∩ S2),

ψ1 = ψ2 ◦ (φ2 ◦ ψ1) ⇒ ∂θiψ1 =
∑

1≤j≤p

∂ (φ2 ◦ ψ1)
j

∂θi
∂αj

ψ2.

This formula is often written for any state x ∈ (S1 ∩ S2) in the synthetic form

∂

∂θi
|x =

∑
1≤j≤p

∂αj

∂θi
(φ1(x))

∂

∂αj
|x . (21.4)

The partition of unity patching technique:
For locally compact and completely separable manifolds (i.e., second-countable)
every open neighborhood of a point x ∈ S can be covered with a finite number of
open sets Si. The resulting chart forms a locally finite covering of the manifold.
In addition, there exist some smooth mappings

εi : x ∈ M �→ εi(x) ∈ [0, 1] such that ε−1
i (]0, 1]) ⊂ Si and

∑
i∈I

εi = 1.

The set of mappings (εi)i∈I is called a partition of unity for the locally finite chart
(φi∈I , Si∈I)i∈I (cf. for instance [260], theorem 1.11). This clearly implies that for
any function F on M we have

F =
∑
i∈I

Fi with the functions Fi := εi F with support ⊂ Si. (21.5)

These decompositions allow us to reduce the analysis to manifolds S = Si equipped
with a single parametrization (φ, ψ) = (φi, φ

−1
i ) and patch if need arises by using

a partition of unity.
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21.2 Orthogonal projection operators

Definition 21.2.1 We let g = (gi,j)1≤i,j≤p be the (p×p)-matrix field on Sψ defined
by

∀1 ≤ i, j ≤ p gi,j :=
〈
∂θiψ, ∂θjψ

〉
(21.6)

in the sense that

∀θ ∈ Sψ gi,j(θ) :=
〈
∂θiψ(θ), ∂θjψ(θ)

〉
.

Observe that

ψ =




ψ1

...
ψr


 ⇒ ∂ψ =

(
∂ψ1, · · · , ∂ψr

)
=




(∂θ1ψ)
T

...(
∂θpψ

)T




and
(∂ψ)

T
=

(
∂θ1ψ, · · · , ∂θpψ

)
.

This yields the Gram matrix formulae

g = (∂ψ) (∂ψ)
T and

√
det(g) =

√
det

(
(∂ψ) (∂ψ)

T
)
. (21.7)

In geometry literature the determinant of the matrix g = Gram
(
∂θ1ψ, · · · , ∂θpψ

)
is called the Gramian. When p = r we have the formula

√
det(g) = |det (∂θ1ψ, · · · , ∂θrψ)| .

In differential geometry, one often uses the notation for the metric g in local coor-
dinate frames

g = gi,j dθi ⊗ dθj or simply as g = gi,j dθidθj ,

with the Einstein summation convention and the dual forms dθi ∈ T �(Sψ) of the
vector fields ∂

∂θi
∈ T (Sψ) introduced in (21.3).

In this notation, the metric of the Euclidian space S = R2, equipped with the Euclidian
metric and with the canonical parametrization

ψ : x = (x1, x2) ∈ R2 �→ ψ(x) = x ⇒ ∂x1
ψ =

(
1
0

)
and ∂x2

ψ =

(
0
1

)
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is given by g = (dx1)
2 + (dx2)

2. The manifold R2 ∩ {x = (x1, x2) : x2 > 0} can be
parametrized by the polar coordinates

ψ : θ = (θ1, θ2) ∈ Sψ = R× [0, 2π] �→ ψ(θ) =

{
ψ1(θ) = θ1 cos(θ2)
ψ2(θ) = θ1 sin(θ2).

(21.8)

The change of coordinates happens by the differential rules

dψ1(θ) = ∂θ1ψ
1 dθ1 + ∂θ2ψ

1 dθ2 = cos(θ2) dθ1 − θ1 sin(θ2) dθ2

dψ2(θ) = ∂θ1ψ
2 dθ1 + ∂θ2ψ

2 dθ2 = sin(θ2) dθ1 + θ1 cos(θ2) dθ2.

These formulae are often written in the following synthetic form

dxi := dψi(θ) and
∂xi

∂θj
:= ∂θjψ

i ⇒ dxi :=
dxi

∂θj
dθj

with the Einstein summation convention. In this notation, we have

(dx1)
2 + (dx2)

2 = [cos(θ2) dθ1 − θ1 sin(θ2) dθ2]
2
+ [sin(θ2) dθ1 + θ1 cos(θ2) dθ2]

2

= (dθ1)
2 + θ21 (dθ2)

2.

Definition 21.2.2 The push forward of the scalar product g on T (S) is the matrix
field on S given by

gφ = (gφ,i,j)1≤i,j≤p = (gi,j ◦ φ)1≤i,j≤p .

Observe that
gφ,i,j(x) :=

〈
(∂θiψ(θ))φ(x) ,

(
∂θjψ(θ)

)
φ(x)

〉

with the tangent vector fields

x ∈ S �→ (∂θiψ(θ))φ(x) := ((∂θiψ(θ)) ◦ φ) (x) ∈ Tx(S).

By construction, the projection of any vector field W on Rr onto T (S) is given by

π(W ) =
∑

1≤i≤p

〈 ∑
1≤i≤p

gi,jφ

(
∂θjψ

)
φ
,W

〉
(∂θiψ)φ with g−1 = (gi,j)1≤i,j≤p,

(21.9)

in the sense that

π(x)(W (x)) =
∑

1≤i≤p

〈 ∑
1≤i≤p

gi,jφ (x)
(
∂θjψ

)
φ
(x),W (x)

〉
(∂θiψ)φ (x).

We let Wψ = W ◦ψ be the pull back vector field on the parameter space, and denote by
πψ(θ) = π(ψ(θ)) = π(x) the orthonormal projection functional onto Tx(S) with x = ψ(θ).
In this notation,

πψ(θ)(Wψ(θ)) =
∑

1≤i≤p

〈 ∑
1≤i≤p

gi,j(θ)
(
∂θjψ

)
(θ),Wψ(θ)

〉
(∂θiψ) (θ)
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or in a more synthetic form

πψ(Wψ) =
∑

1≤i≤p

〈 ∑
1≤i≤p

gi,j ∂θjψ,Wψ

〉
∂θiψ.

By construction, for any 1 ≤ i, j ≤ p,

φi(ψ(θ)) = θi ⇒ ∂θj

(
φi ◦ ψ

)
)(θ) =

∑
1≤k≤r

(
∂xk

φi
)
ψ
(θ) ∂θjψk(θ)

=
〈(

∂φi
)
ψ
(θ), ∂θjψ(θ)

〉
= 1i=j

so that

∀x ∈ S
〈(

∂φi
)
(x), (∂θjψ)φ (x)

〉
= 1i=j .

This implies that

∇φi = π
(
∂φi

)
=

∑
1≤k≤p

〈 ∑
1≤l≤p

gk,lφ (∂θlψ)φ , ∂φ
i

〉
(∂θkψ)φ

=
∑

1≤k≤p

gi,kφ (∂θkψ)φ (21.10)

and ∑
1≤i≤p

gφ,j,i ∇φi =
∑

1≤k≤p

∑
1≤i≤p

gφ,j,i g
i,k
φ (∂θkψ)φ = (∂θjψ)φ .

By construction, we have
〈(

∇φi
)
, (∂θjψ)φ

〉
= 1i=j and

〈
∇φi,∇φj

〉
= gi,jφ . (21.11)

We check these claims using

〈(
∇φi

)
, (∂θjψ)φ

〉
=

∑
1≤k≤p

gi,kφ gφ,k,j = 1i=j (21.12)

and

〈
∇φi,∇φj

〉
=

∑
1≤k,l≤p

gi,kφ gj,lφ

〈
(∂θkψ)φ , (∂θlψ)φ

〉

=
∑

1≤k≤p

gi,kφ

∑
1≤l≤p

gj,lφ gφ,l,k = gi,jφ .

In summary, we have the following result.
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Proposition 21.2.3 The vector fields ∇φi form a new basis of T (S)

T (S) = Vect
(
∇φ1, . . . ,∇φp

)
with the scalar product

〈
∇φi,∇φj

〉
= gi,jφ

and the change of basis formulae are given by

(∂θiψ)φ =
∑

1≤j≤p

gφ,i,j ∇φj and ∇φi =
∑

1≤j≤p

gi,jφ (∂θjψ)φ . (21.13)

Expressed in these new basis vector fields, the orthogonal projection operators π
take the form

π(W ) =
∑

1≤i≤p

〈 ∑
1≤j≤p

gφ,i,j ∇φj ,W

〉
∇φi.

The property (21.12) ensures that
(
∇φi

)
1≤i≤p

and
(
(∂θiψ)φ

)
1≤i≤p

form a biorthogonal

system. These constructions together with the differential formula (21.44) can be used to
define the dual forms of vector fields.

Notice that

W =
∑

1≤i≤p

V i
φ (∂θiψ)φ =⇒ ∀1 ≤ i ≤ p V i

φ =
〈
W,∇φi

〉
.

Rewritten in a slightly different form we have

π(W ) =
∑

1≤j≤p

〈
∇φj ,W

〉 ∑
1≤i≤p

gφ,j,i ∇φi

=
∑

1≤j≤p

〈
∇φj ,W

〉
(∂θjψ)φ . (21.14)

21.3 Riemannian structures
We consider a smooth curve in the parameter space

c : t ∈ [0, 1] �→ c(t) =
(
c1(t), . . . , cp(t)

)T ∈ Sψ

starting at some parameter state c(0) = θ ∈ Sψ, with a velocity vector field V (∈ Rp). That
is,

dc

dt
=

(
dc1

dt
, . . . ,

dcp

dt

)T

= V (c(t)) =
(
V 1(c(t)), . . . , V p(c(t))

)T
.

The function c is called an integral curve of V (a.k.a. V -integral curve). By construction,
C(t) := ψ(c(t)) is a smooth curve on S and we have

∀1 ≤ i ≤ q
dC

dt
=

d

dt
ψ(c(t)) =

∑
1≤i≤p

(∂θiψ) (c(t)) V
i(c(t)).
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For t = 0, this implies that

dC

dt
(0) =

∑
1≤i≤p

V i
φ(x) (∂θiψ)φ(x)

with
x = ψ(θ) ⇔ θ = φ(x) and V i

φ(x) = V i(φ(x)).

In other words, C is an integral curve of the vector field

W (x) =
∑

1≤i≤p

V i
φ(x) (∂θiψ)φ(x) .

For any smooth function F = f ◦ φ on S we have

d

dt
F (C(t)) =

∑
1≤k≤r

W k(C(t)) (∂xk
F )(C(t)) = ∂W (F )(C(t))

=
∑

1≤j≤p

V j(c(t))
∑

1≤k≤r

(∂xk
F )(ψ(c(t)))

(
∂θjψ

k
)
(c(t))

=
∑

1≤j≤p

V j(c(t))
(
∂θj (F ◦ ψ)

)
(c(t))

=
∑

1≤j≤p

V j(c(t))
(
∂θjf

)
(c(t)) = ∂V (f)(c(t)) =

d

dt
f(c(t)). (21.15)

This shows that

d

dt
F (C(t)) = ∂W (F )(C(t)) = ∂V (f)(c(t)) =

d

dt
f(c(t))

t=0
=⇒ ∂WF = (∂V f) ◦ φ.

(21.16)

Vector fields can also be interpreted as differential operators

W : F �→ W (F ) = ∂W (F ) = WT∂F = 〈W,∂F 〉 .

In this interpretation, rewritten in terms of (21.3), we have

(
∂θj (F ◦ ψ)

)
φ
=

∑
1≤k≤r

(
∂

∂θi

)k

(∂xk
F ) =

〈
∂

∂θi
, ∂F

〉
=

∂

∂θi
(F )

and therefore

∀x ∈ S W (x) =
∑

1≤i≤p

V i
φ(x)

(
∂

∂θi

)
|x ⇔ W =

∑
1≤i≤p

V i
φ

∂

∂θi
. (21.17)

In this synthetic notation,

W (F ) =
∑

1≤i≤p

V i
φ

∂

∂θi
(F ) =

∑
1≤i≤p

V i
φ ∂θi(f) with f = F ◦ ψ ⇔ F = f ◦ φ.
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This induces a one-to-one linear mapping between the tangent spaces Tθ(Sψ) of the
parameter space and the tangent space Tψ(θ)(S) on the manifold S. This mapping
is called the push forward of the vector fields on Tθ(Sψ) into Tψ(θ)(S), and it is
given by

(dψ) : V ∈ T (Sψ) �→ (dψ) (V ) :=
∑

1≤i≤p

V i (∂θiψ) ∈ Tψ(S),

in the sense that

(dψ)θ : V (θ) ∈ T (Sψ) �→ (dψ)θ (V (θ)) :=
∑

1≤i≤p

V i(θ) (∂θiψ) (θ) ∈ Tψ(θ)(S).

Alternatively, we have

(dψ)φ : Vφ ∈ Tφ(Sψ) �→ (dψ)φ (Vφ) :=
∑

1≤i≤p

V i
φ (∂θiψ)φ ∈ T (S),

in the sense that

(dψ)φ(x) : V (φ(x)) = Vφ(x)

∈ Tφ(x)(Sψ)

�→ (dψ)φ(x) (Vφ(x)) :=
∑

1≤i≤p V i
φ(x) (∂θiψ)φ (x)

∈ Tx(S).

Finally, we notice that

W = (dψ)φ(Vφ) =
∑

1≤i≤p

V i
φ (∂θiψ)φ ⇒

〈
∇φj ,W

〉
=

∑
1≤i≤p

V i
φ

〈
∇φj , (∂θiψ)φ

〉
= V j

φ .

Thus, for any W ∈ T (S) we have

Vφ = (dψ)−1
φ (W ) =




(∇φ1)T

...
(∇φp)T


W.

The parameter space Sψ ⊂ Rp is free of any constraints and we have

Tθ(Sψ) = Vect (e1, . . . , ep)

with the unit vectors defined in (21.2).
In this notation, (dψ) maps the basis functions ei of Tθ(Sψ) into the basis functions

(∂θiψ) of Tψ(θ)(S), that is,

(dψ) (ei) = (∂θiψ) and (dψ)−1
φ (∂θiψ) = ei.

It is also essential to notice that

〈(dψ) (V1), (dψ) (V2)〉 =
∑

1≤i≤p

V i
1 gi,j V j

2 = V T
1 g V2.
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Thus, if we equip the tangent space Tθ(Sψ) with the scalar product

〈V1, V2〉g =
∑

1≤i≤p

gi,j V i
1V

j
2 ,

the description of T (S) in the chart φ is given by

(Wk)ψ = (dψ)(Vk) ⇒ 〈(dψ) (V1), (dψ) (V2)〉 =
∑

1≤i≤p

V i
1V

j
2 gi,j .

In summary,
〈V1, V2〉g = 〈(W1)ψ, (W2)ψ〉 .

More formally, the (linear) pushed forward mappings (dψ)θ are smooth isomor-
phisms between the inner product spaces

(
Tθ(Sψ), 〈., .〉g(θ)) and (

Tψ(θ)(S), 〈., .〉).
The scalar product induced by g on the tangent space T (Sψ) of the parameter
space Sψ is called the Riemannian scalar product. This construction equips the
tangent space

T (Sψ) = Vect(e1, . . . , ep) = Rp

with the inner product
〈ei, ej〉g =

〈
∂θiψ, ∂θjψ

〉
. (21.18)

In the above display, ei : θ ∈ Rp �→ ei(θ) stands for the unit basis vector fields on
Rp defined in (21.2); where ei(θ) stands for the unit vector attached to the state
θ ∈ Rp.

21.4 First order covariant derivatives

21.4.1 Pushed forward functions

Smooth functions F on S are the push forwards of functions f on Sψ, and inversely
functions f on the parameter space are the pull backs of functions F on S using
the relations

F = f ◦ φ and f = F ◦ ψ.

As a rule, we use the letters F and W to denote functions, and vector fields on S
and f, V to denote functions and vector fields on the parameter space Sψ.
We also denote by Fψ = F ◦ψ, resp. Wψ = W ◦ψ, and fφ = f ◦φ, resp. Vφ = V ◦φ,
the pull back of W , resp. F , and V , resp. f , w.r.t. ψ and φ.

In this notation, differentials of push forward functions are given by

∂θi(Fψ) =
∑

1≤j≤r

(
∂xj

F
)
ψ

∂θiψ
j = (∂θiψ)

T
(∂F )ψ

in terms of (21.3).
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In much the same way, differentials of pull back functions are given by the formula

∂xi
(fφ) =

∑
1≤j≤p

(
∂θjf

)
φ

∂xi
φj ⇔ (∂fφ)ψ =

∑
1≤j≤p

∂θjf
(
∂φj

)
ψ
.

Therefore, we have the following result.

Proposition 21.4.1 We have the formulae

(∇F )ψ = πψ(∂F )ψ =
∑

1≤j≤p

(
∂θjf

)
πψ

(
∂φj

)
ψ

=
∑

1≤j≤p

(
∂θjf

)
(∇φj)ψ =

∑
1≤i≤p


 ∑
1≤j≤p

gi,j
(
∂θjf

)

 ∂θiψ (21.19)

=
∑

1≤i≤p

(∇gf)
i
∂θiψ = dψ (∇gf) (21.20)

with the vector field ∇gf on Sψ given by

∇gf :=




∑
1≤j≤p g

1,j
(
∂θjf

)
...∑

1≤j≤p g
p,j

(
∂θjf

)


 = g−1∂f. (21.21)

The last assertion follows from the change of basis formula (21.13). It is also instructive to
observe that

∇gf =
∑

1≤i≤p

〈
∑

1≤j≤p

gi,j ej , ∂f〉 ei =
∑

1≤i≤p


 ∑
1≤i≤p

gi,j ∂θjf


 ei and

(
∇φi

)j
ψ
=

(
∇gψ

j
)i
.

Furthermore, using (21.11) for any

F = f ◦ φ and W = (dψ)φ (Vφ)

we have

〈∇F,W 〉 =
∑

1≤i,j≤p

V i
φ

(
∂vjf

)
φ

〈
∇φj , (∂θiψ)φ

〉

=
∑

1≤i≤p

V i
φ (∂vif)φ = 〈(∂f)φ, Vφ〉 .

In much the same way, we have

〈(∇F )ψ,Wψ〉 =
∑

1≤i,j≤p

(∇g(f))
i
V j 〈∂θiψ, ∂θjψ〉

=
∑

1≤i,j≤p

gi,j (∇g(f))
i
V j = 〈∇gf, V 〉g = 〈∂f, V 〉 .
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In terms of directional derivatives, we have

(∂W (F )) ◦ ψ = 〈(∇F )ψ,Wψ〉 = 〈∇gf, V 〉g = 〈∂f, V 〉 = ∂V (f). (21.22)

In particular, for functions F1 = f1 ◦ φ and F2 = f2 ◦ φ we have

〈∇F1,∇F2〉 =
〈
(∇gf1)φ , (∇gf2)φ

〉
gφ

(
=

〈
(∂f1)φ , (∂f2)φ

〉
g−1
φ

)
. (21.23)

We consider the coordinate projection mappings

χi := ψi ◦ φ : x ∈ Rr �→ χi(x) =
(
ψi ◦ φ

)
(x) = xi ∈ R

εi := φi ◦ ψ : θ ∈ Rp �→ εi(θ) =
(
φi ◦ ψ

)
(θ) = θi ∈ R. (21.24)

Notice that φi = εi ◦ φ and ψi = χi ◦ ψ, Applying (21.19) to the functions f = εi = φi ◦ ψ
and F = χi = ψi ◦ φ using (21.20) we find that

(
∇φi

)
ψ
= dψ

(
∇gε

i
)

and (∇χi)ψ = dψ
(
∇gψ

i
)

with ∇gε
i = gi =




gi,1

...
gi,p


 .

It is also readily checked that

∇gf =
∑

1≤i≤p

∂θif ∇gεi =⇒ ∀1 ≤ j ≤ r ∇gψ
j =

∑
1≤i≤p

∂θiψ
j ∇gεi.

We also have the differential product rule

∇g(f1f2) = f1 ∇gf2 + f2 ∇gf1. (21.25)

By (21.14) we have

π(W ) =
∑

1≤j≤p

〈
∇φj ,W

〉
(∂θjψ)φ (21.26)

=




∑
1≤j≤p

〈
∇φj ,W

〉 (
∂θjψ1

)
φ

...∑
1≤j≤p

〈
∇φj ,W

〉
(∂θjψr)φ


 = [∇χ1, . . . ,∇χr] W.

21.4.2 Pushed forward vector fields

We consider the push forward Wx on Tx(S) of a vector field V on T (Sψ) given by the
formula

W (x) = (dψ)φ(x) (Vφ(x)) :=
∑

1≤j≤p

V j
φ (x)

(
∂θjψ

)
φ
(x).
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We have

V j
φ = V j ◦ φ =⇒ ∂xk

(
V j
φ

)
(x) =

∑
1≤l≤p

(
∂θlV

j
)
(φ(x))

(
∂xk

φl
)
(x)

and
∂xk

((
∂θjψ

i
)
φ

)
(x) =

∑
1≤l≤p

(
∂θl,θjψ

i
)
(φ(x))

(
∂xk

φl
)
(x).

Rewritten in a more synthetic way,

∂xk
V j
φ =

∑
1≤l≤p

(
∂θlV

j
)
φ

∂xk
φl

∂xk

(
∂θjψ

)
φ

=
∑

1≤l≤p

(
∂θl,θjψ

)
φ

∂xk
φl.

This implies that

∂xk
W i =

∑
1≤j≤p

[
∂xk

(V j
φ )

(
∂θjψ

i
)
φ
+ V j

φ ∂xk

(
∂θjψ

i
)
φ

]

=
∑

1≤j,l≤p

[(
∂θlV

j
)
φ

(
∂θjψ

i
)
φ
+ V j

φ

(
∂θl,θjψ

i
)
φ

]
∂xk

φl.

In vector form, we have

∂W i =
∑

1≤j,l≤p

[(
∂θlV

j
)
φ

(
∂θjψ

i
)
φ
+ V j

φ

(
∂θl,θjψ

i
)
φ

]
∂φl

and
∂W =

∑
1≤j,l≤p

[(
∂θlV

j
)
φ

∂φl
(
∂θjψ

)T
φ
+ V j

φ ∂φl
(
∂θl,θjψ

)T
φ

]
.

This implies that

∇W = π(∂W )

=
∑

1≤j,l≤p

[(
∂θlV

j
)
φ

∇φl
(
∂θjψ

)T
φ
+ V j

φ ∇φl
(
∂θl,θjψ

)T
φ

]

=
∑

1≤j,k,l≤p

gl,kφ

[(
∂θlV

j
)
φ

(∂θkψ)φ
(
∂θjψ

)T
φ
+ V j

φ (∂θkψ)φ
(
∂θl,θjψ

)T
φ

]
.

Taking the trace, we obtain

tr (∇W ) =
∑

1≤j,k,l≤p

gl,kφ

[(
∂θlV

j
)
φ

gφ,k,j + V j
φ

〈
(∂θkψ)φ ,

(
∂θl,θjψ

)
φ

〉]

=
∑

1≤j≤p

(
∂θjV

j
)
φ
+

1

2

∑
1≤j,k,l≤p

gl,kφ V j
φ

(
∂θj 〈∂θkψ, ∂θlψ〉

)
φ
.

This yields

tr (∇W )ψ =
∑

1≤j≤p

∂θjV
j +

∑
1≤j≤p

V j 1

2

∑
1≤k,l≤p

gl,k ∂θjgk,l.
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We also have the formula
∑

1≤k,l≤p

gl,k ∂θjgk,l = tr
(
g−1∂θjg

)
=

1

det(g)
∂θj (det(g)) =

2√
det(g)

∂θj

(√
det(g)

)

(21.27)

from which we prove the following proposition.

Proposition 21.4.2 We have the formula

div (W )ψ := tr (∇W )ψ =
∑

1≤j≤p

1√
det(g)

∂θj

(√
det(g) V j

)
:= divg(V ). (21.28)

In particular, choosing W = ∇F = (dψ)φ (∇g(f))φ , we have

(∆F )ψ = div (∇F )ψ := tr
(
∇2F

)
ψ

(21.29)

=
∑

1≤j≤p

1√
det(g)

∂θj


√

det(g)
∑

1≤i≤p

gj,i ∂θif


 := divg(∇gf).

21.4.3 Directional derivatives

We let W1,W2 be a couple of vector fields in T (S). We let V1, V2 be their pull back vector
fields so that

Wk ◦ ψ = (dψ) (Vk) :=
∑

1≤j≤p

V j
k ∂θjψ

for any k = 1, 2. We let C1 be a W1-integral curve, that is,

dC1

dt
(t) = W1 (C1(t)) ⇒

d

dt
F (C1(t)) =

∑
1≤k≤r

W k
1 (C1(t)) (∂xk

F )(C1(t)) = ∂W1(F )(C1(t)).

We recall from (21.15) that

∂W1
(F ) ◦ ψ =

∑
1≤j≤p

V j
1 ∂θj (F ◦ ψ) = ∂V1

(F ◦ ψ) = 〈∇g(F ◦ ψ), V1〉g . (21.30)

Notice that

(∂W1
(∂W2

(F ))) ◦ ψ = (∂W1
(F2)) ◦ ψ with F2 ◦ ψ =

∑
1≤j≤p

V j
2 ∂θj (F ◦ ψ)

= ∂V2
(F ◦ ψ)

= ∂V1
(F2 ◦ ψ)) = ∂V1

(∂V2
(F ◦ ψ))

=
∑

1≤i,j≤p

V i
1 ∂θi(V

j
2 ) ∂θj (F ◦ ψ) +

∑
1≤i,j≤p

V i
1V

j
2 ∂θi,θj (F ◦ ψ) .

(21.31)
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Definition 21.4.3 The directional derivative of the vector field W2 along the
curve C1 is given by

d

dt
W2(C1(t)) =




d
dtW

1
2 (C1(t))
...

d
dtW

r
2 (C1(t))


 =




(
∂W1W

1
2

)
(C1(t))

...
(∂W1

W r
2 ) (C1(t))


 := ∂W1(W2)(C1(t))

with

∂W1
(W2) =




∂W1
W 1

2
...

∂W1
W r

2


 ⇒ ∂W1

(W2) ◦ ψ =




∂V1
(W 1

2 ◦ ψ)
...

∂V1
(W r

2 ◦ ψ)


 .

Using

∂V1
(W k

2 ◦ ψ) =
∑

1≤i≤p

V i
1 ∂θi


 ∑
1≤j≤p

V j
2 ∂θjψ

k




=
∑

1≤i,j≤p

V i
1 ∂θi(V

j
2 ) ∂θjψ

k +
∑

1≤i≤p

V i
1 V j

2 ∂θi,θjψ
k

we conclude that

∂W1(W2) ◦ ψ =
∑

1≤i,j≤p

V i
1 ∂θi(V

j
2 ) ∂θjψ +

∑
1≤i≤p

V i
1 V j

2 ∂θi,θjψ.

The directional covariant derivative is defined by taking the projection on the tangent space
T (S)

∇W1W2 = π (∂W1(W2)) =
∑

1≤i,j≤p

V i
1,φ

(
∂θiV

j
2

)
φ

(
∂θjψ

)
φ
+

∑
1≤i≤p

V i
φ,1 V j

φ,2 π
((

∂θi,θjψ
)
φ

)

or equivalently

(∇W1
W2)◦ψ = πψ

(
(∂W1

(W2))ψ

)
=

∑
1≤i,j≤p

V i
1

(
∂θiV

j
2

)
∂θjψ+

∑
1≤i≤p

V i
1 V j

2 πψ

((
∂θi,θjψ

))
.

Definition 21.4.4 The Christoffel symbols are the coordinate functions Ck
i,j de-

fined by

πψ

((
∂θi,θjψ

))
=

∑
1≤k≤p

〈 ∑
1≤l≤p

gk,l ∂θlψ, ∂θi,θjψ

〉

︸ ︷︷ ︸
:=Ck

i,j

∂θkψ. (21.32)
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In this notation, we have

(∇W1W2) ◦ ψ =
∑

1≤k≤p


 ∑
1≤i≤p

V i
1

(
∂θiV

k
2

)
+

∑
1≤i,j≤p

Ck
i,j V i

1 V j
2


 ∂θkψ

(21.33)

=
∑

1≤k≤p


 ∑
1≤i≤p

V i
1



(
∂θiV

k
2

)
+

∑
1≤j≤p

Ck
i,j V j

2





 ∂θkψ

= (dψ) (∇g,V1
V2)

with the Riemannian directional derivative

∇g,V1
V2 =




∑
1≤i≤p V i

1

{(
∂θiV

1
2

)
+
∑

1≤j≤p C
1
i,j V j

2

}

...∑
1≤i≤p V i

1

{
(∂θiV

p
2 ) +

∑
1≤j≤p C

p
i,j V j

2

}


 . (21.34)

In terms of the unit vectors ei on Rp we have

∇g,eiej = Ci,j :=




C1
i,j
...

Cp
i,j


 . (21.35)

This also shows that
(
∇W1

(∂θlψ)φ

)
◦ψ =

∑
1≤i,k≤p

Ck
i,l V

i
1 ∂θkψ =⇒

(
∇(∂θi

ψ)
φ

(
∂θjψ

)
φ

)
◦ψ =

∑
1≤k≤p

Ck
i,j ∂θkψ.

On the other hand, we have

ci1(t) = φi(C1(t)) ⇒
.
c
i

1 (t) = ∂W1(φ
i)(C1(t)) =

∑
1≤j≤p V j

1 (c1(t)) ∂θj
(
φi ◦ ψ

)
(c1(t))︸ ︷︷ ︸

=1i=j

= V i
1 (c1(t)).

Thus, using (21.33), we find that

(∇W1
W2) (C1(t))

=
∑

1≤k≤p


 ∑
1≤i≤p

.
c
i

1 (t)
(
∂θiV

k
2

)
(c1(t)) +

∑
1≤i,j≤p

Ck
i,j(c1(t))

.
c
i

1 (t) V j
2 (c1(t))


 (∂θkψ) (c1(t))

=
∑

1≤k≤p


 d

dt
(V k

2 (c1(t)) +
∑

1≤i,j≤p

Ck
i,j(c1(t))

.
c
i

1 (t) V j
2 (c1(t))


 (∂θkψ) (c1(t)).
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In differential geometry, the above formula is sometimes expressed in terms of the linear
differential operator
DW2

dt
(t) :=

(
∇.

C1(t)
W2

)
(C1(t))

=
∑

1≤k≤p


 d

dt
(V k

2 (c1(t)) +
∑

1≤i,j≤p

Ck
i,j(c1(t))

.
c
i

1 (t) V j
2 (c1(t))


 (∂θkψ) (c1(t))

=
∑

1≤j≤p

[
d

dt
(V j

2 (c1(t))
(
∂θjψ

)
(c1(t))

+V j
2 (c1(t))

∑
1≤i,k≤p

Ck
i,j(c1(t))

.
c
i

1 (t) (∂θkψ) (c1(t))




=
∑

1≤j≤p

[
d

dt
(V j

2 (c1(t))
(
∂θjψ

)
(c1(t)) + V j

2 (c1(t))
(
∇.

C1(t)
(∂θlψ)φ

)
(C1(t))

]

= (dψ)c1(t)

(
∇

g,
.
c1
V2

)
(c1(t)).

We say that the vector field V (t) = V2(c1(t)) is parallel along the curve C1(t) = C(t) =
ψ(c(t)), with c(t) = c1(t) if we have

DV

dt
(t) :=

(
∇

g,
.
cV2

)
(c(t)) =

.
V (t) +

∑
1≤i,j≤p

Ci,j(c(t))
.
c
i
(t) V j(t) = 0 , (21.36)

with the column vector function Ci,j =




C1
i,j
...

Cp
i,j


. In other words, we have the linear

ordinary equation w.r.t. the coordinates V j(t) given for any 1 ≤ k ≤ p by
.
V k (t) +

∑
1≤i,j≤p

Ck
i,j(c(t))

.
c
i
(t) V j(t) = 0.

Note that for any fixed initial vector field V ′, there always exists a vector field curve V : t ∈
[0, 1] �→ V (t) ∈ Rp parallel to c(t) s.t. V (0) = V ′. In this case, we also say that V (1) = V ′′

is obtained from V (0) = V ′ by parallel transport along the curve c. Replacing [0, 1] by [s, t],
we obtain the following definition:

parallc,s,t : V ′ ∈ Tc(s)Sφ �→ parallc,s,t(V
′) = V (c(t)) ∈ Tc(s)Sφ (21.37)

where V (c(τ)), τ ∈ [s, t], is a unique vector field on (c(τ)), τ ∈ [s, t], such that

V (c(s)) = V ′ and
(
∇

g,
.
cV2

)
(c(τ)) = 0.

21.5 Second order covariant derivative

21.5.1 Tangent basis functions

We recall from (21.10) that
(∇φi)ψ =

∑
1≤k≤p

gi,k ∂θkψ.
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Notice that
∂θm

(
(∇φi)ψ

)
=

∑
1≤k,l≤p

(
∂θm(gi,k) ∂θkψ + gi,k ∂θm,θkψ

)
. (21.38)

Using the differential rule (19.30) we also prove that

∇2φi =
∑

1≤k≤p

[
∇
(
gi,kφ

)
(∂θkψ)

T
φ + gi,kφ ∇

(
(∂θkψ)φ

)]
.

Notice that

∂xl

(
gi,kφ

)
= ∂xl

(
gi,k ◦ φ

)
=

∑
1≤m≤p

(
∂θmgi,k

)
φ

∂xl
φm ⇒ ∂

(
gi,kφ

)
=

∑
1≤m≤p

(
∂θmgi,k

)
φ

∂φm

from which we derive that

∇
(
gi,kφ

)
= π

(
∂
(
gi,kφ

))
=

∑
1≤m≤p

(
∂θmgi,k

)
φ

∇φm.

On the other hand, we have

∂xm

((
∂θkψ

l
)
φ

)
=

∑
1≤i≤p

(
∂θi,θkψ

l
)
φ

∂xm
φi

⇒ ∂
((

∂θkψ
l
)
φ

)
=

∑
1≤i≤p

(
∂θk,θiψ

l
)
φ

∂φi

⇒ ∇
((

∂θkψ
l
)
φ

)
=

∑
1≤i≤p

(
∂θk,θiψ

l
)
φ

∇φi.

This implies that

∂
(
(∂θkψ)φ

)
=

[
∂
((

∂θkψ
1
)
φ

)
, . . . , ∂

(
(∂θkψ

r)φ

)]

⇒ ∇
(
(∂θkψ)φ

)
=

[
∇
((

∂θkψ
1
)
φ

)
, . . . ,∇

(
(∂θkψr)φ

)]
=

∑
1≤m≤p ∇φm (∂θk,θmψ)

T
φ .

Using (21.38), we conclude that

∇2φi =
∑

1≤m≤p

∇φm ∂θm

((
∇φi

)T
ψ

)
(21.39)

=
∑

1≤k,m≤p

[(
∂θmgi,k

)
φ

∇φm (∂θkψ)
T
φ + gi,kφ ∇φm (∂θk,θmψ)

T
φ

]

and

tr
(
∇2φi

)
=

∑
1≤k,m≤p

[(
∂θmgi,k

)
φ

〈
∇φm, (∂θkψ)φ

〉
+ gi,kφ

〈
∇φm, (∂θk,θmψ)φ

〉]

=
∑

1≤m≤p




〈
∇φm,

∑
1≤k≤p

(
∂θmgi,k

)
φ
(∂θkψ)φ +

∑
1≤k≤p

gi,kφ (∂θk,θmψ)φ

〉
 .

Using (21.38) this formula can be rewritten as follows

tr
(
∇2φi

)
ψ
=

∑
1≤m≤p

〈
(∇φm)ψ , ∂θm

(
(∇φi)ψ

)〉
.
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Using
∇φm =

∑
1≤l≤p

gm,l
φ (∂θlψ)φ =⇒

〈
∇φm, (∂θkψ)φ

〉
= 1m=k

we also have the following formulae.

(∆φi)ψ = tr
(
∇2φi

)
ψ

=
∑

1≤m≤p

∂θmgi,m +
∑

1≤k≤p

gi,k
∑

1≤m,l≤p

gm,l 〈∂θlψ, ∂θk,θmψ〉

=
∑

1≤j≤p

∂θjg
i,j +

1

2

∑
1≤j≤p

gi,j
∑

1≤k,l≤p

gk,l ∂θjgk,l

=
∑

1≤j≤p

1√
det(g)

∂θj

(√
det(g) gi,j

)
= div

(
∇φi

)
ψ
. (21.40)

The last assertion is a direct consequence of (21.28) when applied to the vector field

W = ∇φi =
∑

1≤j≤p

gi,jφ

(
∂θjψ

)
φ

=⇒
〈
(∇φi)ψ, ∂θmθlψ

〉
=

∑
1≤j≤p

gi,j
〈
∂θjψ, ∂θmθlψ

〉
= Ci

m,l.

(21.41)

We end this section with a formula relating ∆φi to the Christoffel symbols introduced
in (21.32). Firstly, we observe that

∑
1≤m≤m

∂θp
〈
(∇φm)ψ, (∇φi)ψ

〉
=

∑
1≤m≤p

∂θmgi,m. (21.42)

On the other hand, we have
∑

1≤m≤p ∂θm
〈
(∇φm)ψ, (∇φi)ψ

〉

=
∑

1≤m≤p

〈
∂θm ((∇φm)ψ) , (∇φi)ψ

〉
+
∑

1≤m≤p

〈
(∇φm)ψ , ∂θm

(
(∇φi)ψ

)〉

=
∑

1≤m,l≤p

〈
∂θm

(
gm,l ∂θlψ

)
, (∇φi)ψ

〉
+
(
∆φi

)
ψ

=
∑

1≤m,l≤p ∂θmgm,l
〈
∂θlψ, (∇φi)ψ

〉
+
∑

1≤m,l≤p g
m,l

〈
∂θmθlψ, (∇φi)ψ

〉
+
(
∆φi

)
ψ
.

Combined with (21.41) and (21.42), this implies that
∑

1≤m≤p

∂θmgi,m =
∑

1≤m≤p

∂θmgm,i +
∑

1≤m,l≤p

gm,l
〈
∂θmθlψ, (∇φi)ψ

〉
︸ ︷︷ ︸

=Ci
m,l

+
(
∆φi

)
ψ
.

Using (21.40), we conclude that

(
∆φi

)
ψ
= −

∑
1≤m,l≤p

gm,l Ci
m,l = div

(
∇φi

)
ψ
=

∑
1≤j≤p

1√
det(g)

∂θj

(√
det(g) gi,j

)
.

(21.43)
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21.5.2 Composition formulae

Suppose we are given a function F = f ◦ φ on S. By (21.20) we have

∇F = ∇(f ◦ φ) =
∑

1≤j≤p

(
∂θjf

)
φ

∇φj (21.44)

and
F =

(
∂θjf

)
φ
= (∂θjf) ◦ φ =⇒ ∇

((
∂θjf

)
φ

)
=

∑
1≤i≤p

(
∂θi,θjf

)
φ

∇φi.

Using the differential rule (19.30) we find that

∇2F =
∑

1≤j≤p

[
∇
((

∂θjf
)
φ

) (
∇φj

)T
+
(
∂θjf

)
φ

∇2φj
]
.

By (21.39), this yields the second covariant derivative formula

∇2(f ◦ φ) =
∑

1≤i,j≤p

(
∂θi,θjf

)
φ

∇φi
(
∇φj

)T
+

∑
1≤j≤p

(
∂θjf

)
φ

∇2φj

=
∑

1≤i,j≤p

[(
∂θi,θjf

)
φ

∇φi
(
∇φj

)T
+
(
∂θjf

)
φ

∇φi
[
∂θi

((
∇φj

)T
ψ

)]
φ

]
.(21.45)

We also readily check that

tr
(
∇2F

)
=

∑
1≤i,j≤p

(
∂θi,θjf

)
φ

〈
∇φi,∇φj

〉
+

∑
1≤j≤p

(
∂θjf

)
φ

tr
(
∇2φj

)

=
∑

1≤i,j≤p

gi,jφ

(
∂θi,θjf

)
φ

+
∑

1≤j≤p

(
∂θjf

)
φ

tr
(
∇2φj

)
.

This yields the Laplacian formula

∆(f ◦ φ) := tr
(
∇2(f ◦ φ)

)

=
∑

1≤i,j≤p

gi,jφ

(
∂θi,θjf

)
φ

+
∑

1≤j≤p

(
∂θjf

)
φ

∆φj . (21.46)

Using (21.43) we also have

∆(f ◦ φ) := tr
(
∇2(f ◦ φ)

)

=
∑

1≤l,m≤p

gl,mφ


 (∂θl,θmf)φ −

∑
1≤j≤p

Cj
φ,l,m

(
∂θjf

)
φ


 (21.47)

with the Christoffel symbols Cj
φ,l,m = Cj

l,m ◦ φ.

Hence we prove the following result.
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Proposition 21.5.1 We have a divergence formulation of the Riemannian Lapla-
cian:

(∆(f ◦ φ))ψ

=
∑

1≤i≤p


 ∑
1≤j≤p

gi,j∂θi(∂θjf) +
1√

det(g)

∑
1≤j≤p

∂θi

(√
det(g) gi,j

)
∂θjf




=
∑

1≤i≤p

1√
det(g)

∂θi


√

det(g)
∑

1≤j≤p

gi,j ∂θjf


 := divg (∇g(f)) := ∆g(f).

(21.48)

In terms of the coordinate mappings εi introduced in (21.24), we have χi ◦ φ = φi

and
∆gεi = (∆φi)ψ and (∆χi)ψ = ∆gψ

i.

For any couple of functions f1 and f2, we quote the following formula

divg (f1 ∇gf2) = f1 divg (∇gf2) + 〈∇gf1,∇gf2〉g. (21.49)

We check this claim using

∂θi

(√
det(g) f1

∑
1≤j≤p g

i,j ∂θjf2

)

= f1 ∂θi

(√
det(g)

∑
1≤j≤p g

i,j ∂θjf2

)
+ ∂θi (f1)×

√
det(g)

∑
1≤j≤p g

i,j ∂θjf2

and

∑
1≤i≤p

∂θif1
∑

1≤i,j≤p

gi,j ∂θjf2 =
∑

1≤i,j≤p

gi,j ∂θif1 ∂θjf2 = 〈∂f1, ∂f2〉g−1 = 〈∇gf1,∇gf2〉g.

21.5.3 Hessian operators

We end this section with an Hessian interpretation of the second covariant derivative ∇2F .
We let W1,W2 be a couple of vector fields in T (S). We let V1, V2 be their pull back vector
fields so that

Wk ◦ ψ = (dψ) (Vk) :=
∑

1≤m≤p

V m
k ∂θmψ
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for any k = 1, 2. Using (21.45) we prove that

WT
1 ∇2F W2

=
∑

1≤m,m′≤p

V m
φ,1V

m′

φ,2

∑
1≤i,j≤p

(
∂θi,θjf

)
φ

=1m=i︷ ︸︸ ︷
(∂θmψ)

T
φ ∇φi

=1m′=j︷ ︸︸ ︷(
∇φj

)T (
∂θm′ψ

)
φ

+
∑

1≤m,m′≤p

V m
φ,1V

m′

φ,2

∑
1≤i,j≤p

(
∂θjf

)
φ

(∂θmψ)
T
φ ∇φi

︸ ︷︷ ︸
=1m=i

[
∂θi

((
∇φj

)T
ψ

)]
φ

(
∂θm′ψ

)
φ︸ ︷︷ ︸

=−Cj

φ,i,m′

The assertion in the r.h.s. follows from

∂θi



(
∇φj

)T
ψ
(∂θmψ)

︸ ︷︷ ︸
=1m=j


 = 0 ⇒ ∂θi

((
∇φj

)T
ψ

)
( ∂θmψ) = −

(
∇φj

)T
ψ

(∂θi,θmψ) = −Cj
i,m.

This yields

WT
1 ∇2F W2 =

∑
1≤m,m′≤p

V m
φ,1V

m′

φ,2


(∂θm,θm′ f

)
φ
−

∑
1≤j≤p

Cj
φ,m,m′

(
∂θjf

)
φ




= V T
φ,1 (Hessg(f))φ Vφ,2.

Equivalently, we have the following result.

Proposition 21.5.2 We have the formula
(
WT

1 ∇2F W2

)
ψ

= 〈W1,∇2F W2〉 = V T
1 Hessg(f) V2

= 〈V1,Hessg(f) V2〉 = 〈V1,∇2
gf V2〉g,

with the Hessian matrix field Hessg(f) = ((Hessg(f))m,m′)1≤m,m′≤p on Sψ with
entries

(Hessg(f))m,m′ = ∂θm,θm′ f −
∑

1≤j≤p

Cj
m,m′ ∂θjf

and the Riemannian second covariant derivative

∇2
g(f) = g−1Hessg(f)

[
⇒ 〈V1,∇2

gf V2〉g = V T
1 g

(
g−1Hessg(f)

)
V2 = V T

1 Hessg(f) V2

]
.

(21.50)

By (21.47), if we set F = f ◦ φ, we also have the Laplacian formula

∆(F ) ◦ ψ = tr
(
∇2F

)
◦ ψ = div (∇F ) ◦ ψ

= tr
(
∇2

gf
)
= divg (∇g(f)) = ∆g(f).

In differential calculus literature, the above formulae are sometimes written in the following
form (

∇2F
)
(W1,W2) := 〈W1,∇2F W2〉 = 〈V1,∇2

gf V2〉g :=
((
∇2

gf
)
(V1, V2)

)
◦ φ



Parametrizations and charts 615

or using the Hessian symbol

Hess(F ) (W1,W2) :=
(
∇2F

)
(W1,W2) =

((
∇2

gf
)
(V1, V2)

)
◦ φ := (Hessg(f)(V1, V2)) ◦ φ.

The bilinear form induced by the matrix g−1Hessg(f) acts on the tangent space T (Sψ) =
Vect(e1, . . . , ep) = Rp equipped with the inner product (21.18) with the unit basis vectors
ei on Sψ(⊂ Rp) defined in (21.2).

In this situation, we have the Hilbert-Schmidt inner product formula

f1 = F1 ◦ ψ f2 = F2 ◦ ψ

⇒ 〈∇2F1,∇2F2〉 =
∑

1≤k,l≤p

gk,l
〈
∇2

gf1(ek),∇2
gf2(el)

〉
g

= tr
(
∇2

gf1 ∇2
gf2

)
:= 〈∇2

gf1,∇2
gf2〉g

(21.51)

with the Hilbert-Schmidt inner product defined in (19.8).

In view of (21.31) and (21.33) we also have

(∂W1
(∂W2

(F ))) =
∑

1≤m,m′≤p

V m
φ,1

(
∂θmV m′

2

)
φ

(
∂θm′ f

)
φ

+
∑

1≤m,m′≤p

V m
φ,1V

m′

φ,2

(
∂θm,θ′

m
f
)
φ
,

∇W1
W2 =

∑
1≤m′≤p


 ∑
1≤m≤p

V m
φ,1

(
∂θmV m′

2

)
φ

+
∑

1≤m,j≤p

Cm′

φ,m,j V m
φ,1 V j

φ,2


 (

∂θm′ψ
)
φ
.

Since
(∂θkψ)

T
(∂F )ψ =

∑
0≤l≤r

(∂xl
F )ψ ∂θkψ

l = ∂θk (F ◦ ψ) = ∂θkf

we find that

(∇W1
W2)

T
∂F

=
∑

1≤m,m′≤p

V m
φ,1

(
∂θmV m′

2

)
φ

(
∂θm′ f

)
φ
+

∑
1≤m,m′≤p

V m
φ,1 V m′

φ,2

∑
1≤j≤p

Cj
φ,m,m′

(
∂θjf

)
φ
.

We recover the fact that

WT
1 ∇2F W2 = (∂W1

(∂W2
(F )))− (∇W1

W2)
T
∂F = (∂W1

(∂W2
(F )))− 〈∇W1

W2, ∂F 〉
= (∂W1

(∂W2
(F )))− 〈∇W1

W2,∇F 〉 = 〈W2,∇W1
∇F 〉 .

By (21.30), for and F = f ◦ φ we have

∂W1
(F ) ◦ ψ = 〈∇gf, V1〉g = ∂V1

(f).
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On the other hand,

〈W2,W3〉 = 〈V2, V3〉g ◦ φ ⇒ (∂W1 〈W2,W3〉) ◦ ψ = ∂V1 〈V2, V3〉g
and by (21.34) we prove that

〈∇W1
W2,W3〉 ◦ ψ = 〈(dψ) (∇g,V1

V2) , (dψ) (V3)〉 = 〈∇g,V1
V2, V3〉g .

We conclude that

∂V1
〈V2, V3〉g = 〈∇g,V1

V2, V3〉g + 〈V2,∇g,V1
V3〉g .

We give some comments on the parallel transport technique introduced in (21.36). We
let c1(t) be a given curve in Sφ with

.
c1 (t) = V1(c1(t)), and Ui : t ∈ [0, 1] �→ Ui(t) =

Vi(c1(t)) ∈ Rp two parallel vectors to c(t) s.t. Ui(0) = Vi(c1(0)), with i = 2, 3. In this
situation, using (21.36) we have

d

dt
〈V2(c1(t)), V3(c1(t))〉g(c1(t)) =

(
∂V1

(
〈V2, V3〉g

))
(c1(t))

=
(
〈∇g,V1V2, V3〉g + 〈V2,∇g,V1V3〉g

)
(c1(t)) = 0.

This shows that the parallel transport is an isometry

〈V2(c1(0)), V3(c1(0))〉g(c1(0)) = 〈V2(c1(1)), V3(c1(1))〉g(c1(1)) . (21.52)

Using (21.35) we readily check that

∂ei 〈ej , ek〉g = ∂θigj,k

= 〈Ci,j , ek〉g + 〈ej , Ci,k〉g =
∑

1≤l≤p

gk,l C
l
i,j +

∑
1≤l≤p

gj,l C
l
i,k

the unit vectors ei on Rp. This implies that

∂θjgi,k =
∑

1≤l≤p

gk,l C
l
i,j +

∑
1≤l≤p

gi,l C
l
j,k

∂θkgi,j =
∑

1≤l≤p

gj,l C
l
i,k +

∑
1≤l≤p

gi,l C
l
j,k.

Hence after simple addition, we get

∂θkgi,j + ∂θjgi,k − ∂θigj,k = 2
∑

1≤l≤p

gi,l C
l
j,k.

This yields the formula

Cm
j,k =

1

2

∑
1≤i≤m

gm,i
(
∂θkgi,j + ∂θjgi,k − ∂θigj,k

)
. (21.53)
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21.6 Bochner-Lichnerowicz formula
Using (19.22) and (19.82), the Ricci curvature is given in terms of the basis vector fields
(∂θiψ)φ by the formula

f1 = F1 ◦ ψ f2 = F2 ◦ ψ

=⇒ Ric (∇F1,∇F2) =
∑

1≤i,j≤p (∇gf1)
i
φ (∇gf2)

j
φ Ric ((∂θiψ)φ, (∂θiψ)φ)

:= Ricg (∇gf1,∇gf2) ◦ φ

with
Ric (∂θiψ, ∂θiψ) = Ri,j ◦ ψ

=
∑

1≤m,n≤p

[
Cn

i,j Cm
m,n − Cn

i,m Cm
j,n

]
+

∑
1≤m≤p

[
∂θmCm

i,j − ∂θjC
m
i,m

]

and the Christoffel symbols Cn
i,j defined in (21.32). (If we use the definition (19.21) with

the tangent vector fields Vi = (∂θiψ)φ ∈ T (S), the above formula is satisfied by replacing
Cn

i,j by the expression Cn
i,j ◦ ψ in the coordinate system ψ.)

The computation of the matrix R in terms of the Christoffel symbols is rather elementary
but can be tedious to derive. Next, we provide a natural matrix decomposition to compute
R. We consider the matrices

Ck :=




C1
k,1 . . . C1

k,p
...

...
...

Cp
k,1 . . . Cp

k,p


 and E :=




tre(C1C1) . . . tre(C1Cp)
...

...
...

tre(CpC1) . . . tre(CpCp)


 .

We also set

t(C) :=




tre(C1)
...

tre(Cp)


 and B :=




〈C1,1, t(C)〉 . . . 〈C1,p, t(C)〉
...

...
...

〈Cp,1, t(C)〉 . . . 〈Cp,p, t(C)〉




and finally the differential matrices

T :=




∂θ1tre(C1 . . . ∂θptre(C1)
...

...
...

∂θ1tre(Cp) . . . ∂θptre(Cp)


 and S =




div(C1,1) . . . div(C1,p)
...

...
...

div(Cp,1) . . . div(Cp,p)




with

Ci,j =




C1
i,j
...

Cp
i,j


 and div(Ci,j) =

∑
1≤k≤p

∂θk(C
k
i,j).

In this notation, we have the matrix formulation of the Ricci curvature

R ◦ ψ = B − E + S − T (21.54)

with the matrices (B,E, S, T ) defined above.
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To check this decomposition we simply observe that
∑

1≤n≤p

Cn
i,j

∑
1≤m≤p

Cm
n,m =

∑
1≤n≤p

Cn
i,j tr(Cn) = 〈Ci,j , t(C)〉

∑
1≤n≤p

∑
1≤m≤p

Cn
i,m Cm

j,n =
∑

1≤n≤p

(CiCj)n,n = tre (CiCj)

∑
1≤m≤p

∂θmCm
i,j = div(Ci,j) and

∑
1≤m≤p

∂θj (C
m
i,m) = ∂θj tre(Ci) = Ti,j .

A detailed analysis of the Ricci curvature of the sphere and the torus is provided in
section 24.1.2 and in section 24.1.3.

We also notice that

Ricg(∇gεi,∇gεi) =
∑

1≤k,l≤p

=gi,k

︷ ︸︸ ︷
(∇gεi)

k
(∇gεj)

l Ric (∂θkψ, ∂θiψ) =
(
g−1Rg−1

)
i,j

with the coordinate projection mappings εi introduced in (21.24). This yields

∇gf =
∑

1≤i≤p ∂θif ∇gεi

Ricg (∇gf1,∇gf2) =
∑

1≤i,j≤p

∂θif1 ∂θjf2 Ricg(∇gεi,∇gεi) = 〈∇gf1, R ∇gf2〉.

Rephrasing theorem 19.9.2 on the Riemannian manifold we obtain the following theorem.

Theorem 21.6.1 (Bochner-Lichnerowicz formula) For any smooth func-
tions f1, f2 on Rp of we have

Lg =
1

2
∆g =⇒ ΓLg (f1, f2) = 〈∇gf1,∇gf2〉g.

In addition, we have

Lg〈∇gf1,∇gf2〉g = 〈∇gf1,∇gLgf2〉g + 〈∇gf2,∇gLgf1〉g
+
[〈
∇2

gf1,∇2
gf2

〉
g
+ Ricg (∇gf1,∇gf2)

]
.

(21.55)

Rewritten in terms of Γ2,Lg
, we have the synthetic formula

Γ2,Lg
(f1, f2) =

〈
∇2

gf1,∇2
gf2

〉
g
+ Ricg (∇gf1,∇gf2) . (21.56)

Our next objective is to provide a more explicit description of Γ2,Lg
in terms of the

inverse g−1 of the metric.
To this end, we first notice that

Cm
j,k = −1

2

∑
1≤i≤m

(
gi,j ∂θkg

m,i + gi,k ∂θjg
m,i + gm,i ∂θigj,k

)
.
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This implies that

∑
1≤j≤p

gα,jCm
j,k = −1

2


 ∂θkg

m,α +
∑

1≤i,j≤p

(
gk,i g

α,j ∂θjg
m,i − gm,i gk,j ∂θig

α,j
)

 .

These decompositions readily imply the following formula.
(
g−1Cmg−1

)
α,β

=
∑

1≤j,k≤p

gα,j gβ,k Cm
j,k

= −1

2

(
∂gβgm,α + ∂gαgm,β − ∂gmgα,β

)
, (21.57)

with the Christofell symbol matrix Cm :=
(
Cm

i,j

)
1≤i,j≤p

and the operators ∂gi

defined by
∀1 ≤ i ≤ p ∂gif :=

∑
1≤j≤p

gi,j ∂θjf
(
= (∇gf)

i
)
.

We also have the matrix decomposition formula

∇2
gf = g−1∂2f −

∑
1≤m≤p

g−1Cm ∂θmf = ∇g∂f −
∑

1≤m≤p

∇2
gεm ∂θmf.

In this notation we have a more explicit form of the Hilbert-Schmidt inner product
formulae

〈∇2
gf1,∇2

gf2〉g

= 〈∇g∂f1 ∇g∂f2〉g +
∑

1≤m,n≤p

〈∇2
gεm,∇2

gεn〉g ∂θmf1 ∂θnf2

+
∑

1≤α,β,m≤p

(
∂gβgm,α − 1

2
∂gmgα,β

) [
∂θmf1 ∂θβ ,θαf2 + ∂θmf2 ∂θβ ,θαf1

]

(21.58)
and

〈∇g∂f1 ∇g∂f2〉g =
∑

1≤i,j≤p

∂gi∂θjf1 ∂gj∂θif2 =
∑

1≤i,j≤p

gi,j ΓLg

(
∂θif1, ∂θjf2

)
.

To check (21.58) we use (21.51) to obtain the following decomposition

〈∇2
gf1,∇2

gf2〉g

= 〈∇g∂f1 ∇g∂f2〉g +
∑

1≤m,n≤p

〈∇2
gεn,∇

2
gεn〉g︷ ︸︸ ︷

tr
(
g−1Cmg−1Cn

)
∂θmf1 ∂θnf2

−
∑

1≤m≤p tr
(
g−1Cmg−1 ∂2f2

)
∂θmf1 −

∑
1≤m≤p tr

(
g−1Cmg−1 ∂2f1

)
∂θmf2.
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By (21.57) we conclude that

tr
(
g−1Cmg−1 ∂2f2

)
=

∑
1≤α,β≤p

(
g−1Cmg−1

)
α,β

∂θβ ,θαf2

= −1

2

∑
1≤α,β≤p

(
∂gβgm,α + ∂gαgm,β − ∂gmgα,β

)
∂θβ ,θαf2

= −
∑

1≤α,β≤p

(
∂gβgm,α − 1

2
∂gmgα,β

)
∂θβ ,θαf2.

The end of the proof of (21.58) is now clear.

Theorem 21.6.2 For any 1 ≤ i, j ≤ p we have

Γ2,Lg
(εi, εj) =

〈
∇2

gεi,∇2
gεj

〉
g
+ Ricg(∇gεi,∇gεj) = Lg(g

i,j)− ∂gj bi − ∂gibj

with the drift vector field

bi :=
1√

det(g)

∑
1≤i≤p

∂θi

(√
det(g) gi,j

)
.

For any smooth functions f1, f2 we have the formula

Γ2,Lg
(f1, f2)

= Γ2,Lg
(εi, εj) ∂θif1 ∂θjf2 + 〈∇g∂f1 ∇g∂f2〉g

+
∑

1≤i,j,k≤p

(
∂gkgi,j − 1

2
∂gigj,k

) [
∂θif1 ∂θj ,θkf2 + ∂θif2 ∂θj ,θkf1

]
.

(21.59)

Proof :
We have

∇gf =
∑

1≤i≤p ∂θif ∇gεi

⇒ Ricg (∇gf1,∇gf2) =
∑

1≤i,j≤p ∂θif1 ∂θjf2 Ricg(∇gεi,∇gεi).

Using (21.56) and (21.58) we check (21.59). On the other hand, we have

Γ2,Lg (εi, εj) = Lg〈∇gεi,∇gεj〉g − 〈∇gεi,∇gLgεj〉g − 〈∇gεj ,∇gLgεi〉g
=

〈
∇2

gεi,∇2
gεj

〉
g
+ Ricg(∇gεi,∇gεj).

Using (21.48) we check that
∆gf = tr

(
g−1∂2f

)
+ ∂bf

with the differential operators

tr
(
g−1∂2f

)
:=

∑
1≤i,j≤p

gi,j ∂θi,θjf and ∂bf :=
∑

1≤i≤p

bi ∂θif.
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This implies that

〈∇gεi,∇gεj〉g = gi,j ⇒ Lg〈∇gεi,∇gεj〉g =
1

2
tr
(
g−1∂2gi,j

)
+ ∂bg

i,j

and
Lgεi = bi ⇒ 〈∇gεj ,∇gLgεi〉g = ∂gj bi.

The proof of the theorem is now completed.

The reader may have noticed that the Riemannian derivatives and the Bochner formula
have the same form as discussed in chapter 19. We end this section with a discussion on the
correspondence principles between these geometrical objects. Suppose we are given some
positive definite and symmetric matrix g = (gi,j)1≤i,j≤p with functional entries gi,j : θ ∈
Rp �→ R. Firstly, we recall that parameter space Sψ ⊂ Rp discussed in this chapter is free
of any constraints and we have

Tθ(Sψ) = Vect (e1, . . . , ep)

with the unit vectors fields discussed in (21.18). We recall that we distinguish ei(θ) from
ei(θ

′) for different states θ and θ′. We equip this vector space with the scalar product
〈ei(θ), ej(θ)〉g(θ) = gi,j(θ). In this context, the Riemannian versions of the r projection
vector fields πi = ∇χi discussed in (19.3), (21.24) and (19.26) are given by

∀1 ≤ i ≤ p
∑

1≤k,l≤p

gk,l eik el = gi = ∇gεi

with the p coordinate mappings εi defined in (21.24). The Riemannian version of the second
covariant derivative ∇2F is given by ∇2

gf , and its action is defined by

∇2
gf(V1, V2) = 〈V1,∇2

gf V2〉g = 〈V1, Hessg(f) V2〉.

The Riemannian versions of the r derivatives ∇2χi are defined by the p derivatives ∇2
gεj ,

and so on. In this notation, we observe that

∇2
gεj = gj ⇒ ∂∇2

gεj
=

∑
1≤k≤p

gj,k ∂θk and 〈∇gεi,∇gεj〉g = gi,j .

This yields the formulae

∂gkgi,j − 1

2
∂gigj,k = ∂∇gεk〈∇gεi,∇gεj〉g −

1

2
∂∇gεi〈∇gεj ,∇gεk〉g

and

∇2
gεi (∇gεj ,∇gεk) = 〈gj , Hessg(εi) gk〉 = −

(
g−1Cig−1

)
j,k

=
1

2

(
∂gkgi,j + ∂gjgi,k − ∂gigj,k

)
.

The above formulae are the Riemannian versions of (19.63) and (19.68). This shows that
the formula (21.59) is the Riemannian version of (19.101).

Definition 21.6.3 We consider the operator ΥLg
defined for any smooth functions fi on

Rp, with i = 1, 2, 3, by the formula

ΥLg
(f3)(f1, f2) := Γ2,Lg

(f1f2, f3)− f1 Γ2,Lg
(f2, f3)− f2 Γ2,Lg

(f1, f3). (21.60)
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Proposition 21.6.4 For any smooth functions fi, with i = 1, 2, 3, we have the Hessian
formula

1

2
ΥLg

(f3)(f1, f2) =
(
∂2f3 + (∂f3)

T∇2
gε
)
(∇gf1,∇gf2) (21.61)

= Hessg(f3) (∇gf1,∇gf2) (21.62)

with the bilinear form
(∂f3)

T∇2
gε :=

∑
1≤i≤p

∂θif3 ∇2
gεi.

We consider a sequence of smooth functions fk = (fk,i)1≤i≤nk
on Rp, and Fk(x1, . . . , xnk

),
and we set Fk = Fk(fk) = Fk(fk,1, . . . , fk,nk

), with k = 1, 2. In this situation, we have the
change of variable formula

Γ2,Lg
(F1,F2)−

∑
1≤i≤n1

∑
1≤k≤n2

(∂xi
F1) (f1) (∂xk

F2) (f2) Γ2,Lg
(f1,i, f2,k)

=
∑

1≤i,j≤n1

∑
1≤k,l≤n2

(
∂xi,xj

F1

)
(f1) (∂xk,xl

F2) (f2) ΓLg
(f1,i, f2,l) ΓLg

(f1,j , f2,k)

+
1

2

∑
1≤i≤n1

∑
1≤k,l≤n2

(∂xi
F1) (f1) (∂xk,xl

F2) (f2) ΥLg
(f1,i) (f2,k, f2,l)

+
1

2

∑
1≤k≤n2

∑
1≤i,j≤n1

(∂xk
F2) (f2)

(
∂xi,xj

F1

)
(f1) ΥLg

(f2,k) (f1,i, f1,j) .

Proof :

The proof follows the same lines of arguments as the arguments in proposition 19.9.7,
and thus it is only sketched below. The formula (21.61) is based on

∇gf =
∑

1≤i≤p ∂θif ∇gεi

⇒ ∇2
gεi (∇gf1,∇gf2) =

∑
1≤j,j≤p ∇2

gεi (∇gεj ,∇gεk) ∂θjf1 ∂θkf2

= 1
2

∑
1≤j,k≤p

(
∂gkgi,j + ∂gjgi,k − ∂gigj,k

)
∂θjf1 ∂θkf1

and
∑

1≤i,j,k,l≤p

gi,k gj,l ∂θk,θlf3 ∂θif1∂θjf2 =
∑

1≤k,l≤p

∂θk,θlf3 (∇gf1)
k

(∇gf2)
l

=
(
∂2f3

)
(∇gf1,∇gf2) .

To check (21.62) we use
(
∂2f3 +

∑
1≤i≤p ∂θif3 ∇2

gεi

)
(∇gf1,∇gf2)

=
∑

1≤j,k≤p ∂θjf1∂θkf2

[
∂2f3(∇gεj ,∇gεk) +

∑
1≤i≤p ∂θif3 ∇2

gεi(∇gεj ,∇gεk)
]

=
∑

1≤j,k≤p ∂θjf1
(
g−1

(
∂2f3 − Ci

)
g−1

)
j,k

∂θkf2 = (∇gf1)
THessg(f3)∇gf2.



Parametrizations and charts 623

The proof of the last assertion follows exactly the same arguments as the ones provided in
the proof of proposition 19.9.7 and thus it is omitted. This ends the proof of the proposition.

21.7 Exercises
Exercise 375 (Product derivative formula) We consider the Laplacian ∆g associated
with some Riemannian metric g and defined in (21.46). Check the formula

Γ∆g
(f1, f2f3) = f2 Γ∆g

(f1, f3) + f3 Γ∆g
(f1, f2) .

Exercise 376 (Hessian operator) We consider the Laplacian ∆g associated with some
Riemannian metric g and defined in (21.46). Check the formula

Υ∆g (f1)(f2, f3) := Γ2,∆g (f1, f2f3)− f2 Γ2,∆g (f1, f3)− f3 Γ2,∆g (f1, f2)

= Γ∆g

(
f2,Γ∆g (f1, f3)

)
+ Γ∆g

(
f3,Γ∆g (f1, f2)

)
− Γ∆g

(
f1,Γ∆g (f2, f3)

)
.

Exercise 377 (Parametric surfaces) Find a parametrization ψ of the surfaces S defined
by:

• The elliptic paraboloid
(x1

a

)2

+
(x2

b

)2

=
x3

c
, for some given parameters a, b, c.

• The hyperbolic paraboloid
(x2

a

)2

−
(x1

b

)2

=
x3

c
, for some given parameters a, b, c.

• The sphere x2
1 + x2

2 + x2
3 = r2, for some radius r.

• The p-sphere in Rp+1 : x2
1 + . . .+ x2

p+1 = r2, for some radius r.

• The cylinder x2
1 + x2

2 = r2 and x3 ∈ R, for some radius r.

Describe the tangent spaces Tx(S) at the states x ∈ S.

Exercise 378 (Orthogonal projections) Describe the normal unit vectors and the or-
thogonal projections on the tangent spaces Tx(S) of the surfaces discussed in exercise 377.

Exercise 379 (Riemannian structures) Describe a Riemannian scalar product on the
tangent spaces T (Sψ) associated with the parametrization ψ of the surfaces S discussed in
exercise 377.

Exercise 380 (Projection matrices) Find the orthogonal projection matrices on the tan-
gent spaces T (S) of the surfaces S discussed in exercise 377.

Exercise 381 (Riemannian gradient) Compute the Riemannian gradient ∇gf of a smooth
function f on the parametrization space Sψ associated with the parametrization ψ of the sur-
faces S discussed in exercise 377.
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Exercise 382 (Second covariant derivative) Compute the Riemannian second covari-
ant derivative ∇2

gf of a smooth function f on the unit sphere S2 = {(x1, x2, x3) ∈ R3 : x2
1+

x2
2+x2

3 = 1} equipped with the spherical coordinates. Check that the corresponding Rieman-
nian Laplacian on the unit sphere is defined by

∆g(f) =
1

sin (θ1)
∂θ1 (sin (θ1) ∂θ1f) +

1

sin2 (θ1)
∂2
θ2(f).

Exercise 383 We consider the cone S ∈ R3 defined by the equation

S :=

{
x = (x1, x2, x3) ∈ R3 : x3 ≥ 0 and a x3 =

√
x2
1 + x2

2

}

for some given parameter a > 0. We consider polar parametrization is given by the function

ψ : θ = (θ1, θ2) ∈ [0,∞[×[0, 2π] �→ ψ(θ1, θ2) =




a θ1 cos (θ2)
a θ1 sin (θ2)

θ1


 ∈ S.

Compute the Riemannian gradient ∇g and the Hessian ∇2
g. Deduce that the corresponding

Riemannian Laplacian on the cone is defined by

∆g = (1 + a2)−1∂2
θ1f + a−2θ−2

1 ∂2
θ2f + (θ1(1 + a2))−1 ∂θ1f.

Exercise 384 (Ellipsoid) We consider the ellipsoid S embedded in R3, centered at the
origin and defined by the equation

(
x1

a1

)2

+

(
x2

a2

)2

+

(
x3

a3

)2

= 1

for some parameters a1 ≥ a2 ≥ a3 > 0. We equip S with the spherical parametrization
defined by

ψ(θ1, θ2) =




a1 sin(θ1) cos(θ2)
a2 sin(θ1) sin(θ2)

a3 cos(θ1)




with the restrictions Sψ = {(θ1, θ2) : θ1 ∈ [0, π], θ2 ∈ [0, 2π]}. Compute the Riemannian
gradient ∇g and the Hessian ∇2

g.

Exercise 385 (Surface of revolution) We consider the surface of revolution S resulting
from rotating the graph of a smooth positive function z �→ y = u(z) around the (0, z) axis.
We parametrize S using the coordinate system

ψ (θ1, θ2) ∈ Sψ := ([a, b]× [0, 2π]) �→ ψ(θ1, θ2) =




u(θ1) cos (θ2)
u(θ1) sin (θ2)

θ1


 ∈ S

for some given parameters a < b. Check that the Riemannian gradient operator on the
surface is given by the formula

∇g =
(
1 + (∂θ1u(θ1))

2
)−1

∂θ1 + u(θ1)
−2 ∂θ2 .

Compute the Hessian ∇2
g and deduce that the Laplacian operator ∆g is given by the formula

∆g =
1

1 + (∂θ1u)
2 ∂2

θ1 +
1

u2
∂2
θ2 +

1

1 + (∂θ1u)
2 ∂θ1 log

(
u/

√
1 + (∂θ1u)

2

)
∂θ1 .
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Exercise 386 (Surface of revolution - Rotating a cosinus) Apply exercise 385 to the
function u(z) = c+cos z, for some given parameter c ∈]−1,∞[. Check that the Riemannian
gradient operator is given by the formula

∇g =
(
1 + sin2(θ1)

)−1
∂θ1 + (c+ cos(θ1))

−2 ∂θ2 .

Prove that the Riemannian Laplacian on this surface is defined by

∆g =
1

1 + sin2 (θ1)
∂2
θ1 +

1

(c+ cos (θ1))2
∂2
θ2

− sin (θ1)

1 + sin2 (θ1)

(
cos (θ1)

1 + sin2 (θ1)
+

1

c+ cos (θ1)

)
∂θ1 .

Exercise 387 (Catenoid - Rotating a catenary) Apply exercise 385 to the function
u(z) = cosh z (:= (ez + e−z)/2). Check that the corresponding Riemannian gradient and
Laplacian operators on the surface are given by the formulae

∇g = cosh−2 (θ1) (∂θ1 + ∂θ2) and ∆g = cosh−2 (θ1)
(
∂2
θ1 + ∂2

θ2

)
.

Exercise 388 (Tangential and normal accelerations) We consider some parametriza-
tion ψ : θ = (θ1, θ2) ∈ Sψ �→ ψ(θ) ∈ S = ϕ−1(0) of some surface S ⊂ R3 associated with
the null level set of a function ϕ : R3 �→ R. To simplify notation, we write Ck

i,j instead of
Ck

i,j ◦ ψ the Christoffel symbols expressed in the parameter space Sψ. We let the N⊥ be the
unit normal field to the surface N⊥ = ∂ϕ

‖∂ϕ‖ .

• Check the Gauss equations

∂θi,θjψ =
∑
k=1,2

Ck
i,j ∂θkψ +Ωi,j n⊥

with the matrix Ω =
(
Ωi,j

)
1≤i,j≤2

of the orthogonal component entries

Ωi,j =
〈
∂θi,θjψ, n

⊥〉 and n⊥ = N⊥ ◦ ψ = (+/−)× ∂θ1ψ ∧ ∂θ2ψ

‖∂θ1ψ ∧ ∂θ2ψ‖
.

• We let t ∈ [0, 1] �→ α(t) = (α1(t), α2(t)) ∈ Sψ be some curve in the parameter space and
we set c(t) = ψ(α(t)) the corresponding curve on the surface S. Prove that

c′(t) = α′
1(t) (∂θ1ψ)α(t) + α′

2(t) (∂θ2ψ)α(t) and c′′(t) = c′′tan(t) + c′′⊥(t)

with the tangential and the normal acceleration

c′′tan(t) :=
∑
k=1,2


α′′

k(t) +
∑

1≤i,j≤2

Ck
i,j(α(t)) α

′
i(t) α

′
j(t)


 (∂θkψ)α(t) ∈ Tc(t)(S)

c′′⊥(t) :=


 ∑

1≤i,j≤2

Ωi,j(α(t)) α′
i(t) α

′
j(t)


 n⊥(α(t)) ∈ T⊥

c(t)(S).

Exercise 389 (Tangential and normal curvature) We consider the surface model dis-
cussed in exercise 388. We introduce the arc length

ω(t) =

∫ t

0

‖c′(u)‖ du and its inverse τ = ω−1

and the time changed curve c(s) = c(τ(s)).
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• Check that

c′(s) =
c′(τ(s))

‖c′(τ(s))‖
and Tc(s)(S) = Vect

(
c′(s), c′(s) ∧N⊥

c(s)

)
.

• Prove that

c′′(s) =
c′′(τ(s))

‖c′(τ(s))‖2
− 1

‖c′(τ(s))‖2
〈c′′(τ(s)), c′(s)〉 c′(s).

• Deduce that

‖c′′(s)‖2 = κ2
tan(c(s)) + κ2

⊥(c(s)) := κ2(c(s))

with the tangential and the normal curvature

κtan(c(s)) :=

∥∥∥∥
c′′tan(τ(s))

‖c′(τ(s))‖2

∥∥∥∥ and κ⊥(c(s)) :=

∥∥∥∥
c′′⊥(τ(s))

‖c′(τ(s))‖2

∥∥∥∥ .

Exercise 390 (Principal, Gaussian and mean curvature) We consider the surface model
discussed in exercises 388 and 389, and we set φ = ψ−1. Check that the normal curvature
at a given point of the curve c(s) in the surface is given by the formula

κ⊥(c(s)) :=

∥∥∥∥
c′′⊥(τ(s))

‖c′(τ(s))‖2

∥∥∥∥ = Rc(s)(α
′
1(τ(s)), α

′
2(τ(s)))

with the polynomial ratio

Rx(v1, v2) =

∑
1≤i,j≤2 Ωi,j(φ(x)) vi vj∑
1≤i,j≤2 gi,j(φ(x)) vi vj

.

Find the minimal and maximal curvatures k1 and k2 at a given point x of the surface S
(w.r.t. the velocities parameters (v1, v2)). Show that the mean and Gaussian curvature are
given by

κmean :=
k1 + k2

2
=

1

2
tr(S) and κGauss := k1k2 = det(S)

with the shape matrix S = g−1Ω (a.k.a. the Weingarten map).

Exercise 391 (Weingarten’s equations [261]) We consider the surface model discussed
in exercises 388 through 390. Check that

∀i, j = 1, 2 Ωi,j = −
〈
∂θjψ, ∂θin

⊥〉

and deduce the Weingarten’s equations

∀i = 1, 2 ∂θin
⊥ = −

∑
l=1,2

Sl,i ∂θlψ

with the shape matrix S defined in exercise 390.

Exercise 392 (Peterson-Codazzi-Mainardi equations) We consider the surface model
discussed in exercises 388 through 391. To simplify notation, we slightly abuse through it
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and write Ck
i,j, Rm

i,j,k and Ri,k instead of Ck
i,j ◦ ψ,Rm

i,j,k ◦ ψ and Ri,k ◦ ψ in the chart co-
ordinate ψ of the Christoffel symbols and in the Ricci curvature coefficients Rm

i,j,k and Ri,k

introduced in (19.89). Prove that

∂θk,θi,θjψ

=
∑

m=1,2


∂θkCm

i,j +
∑
l=1,2

Cl
i,jC

m
l,k − Ωi,j Sm,k


 ∂θmψ +


∂θkΩi,j +

∑
l=1,2

Cl
i,j Ωl,k


 n⊥.

Deduce the Peterson-Codazzi-Mainardi equations

Rm
i,j,k = Ωi,k Sm,j − Ωi,j Sm,k and ∂θjΩ

i,k − ∂θkΩ
i,j =

∑
l=1,2

[
Cl

i,j Ωl,k − Cl
i,k Ωl,j

]
.

Prove the Theorema Egregium

κscalar := tr(g−1R) = 2 κGauss =
1

det(g)

∑
i�=j

∑
m=1,2

gi,m Rm
j,i,j .
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22
Stochastic calculus in chart spaces

This chapter is concerned with the design of Brownian motion and diffusion processes in
local coordinate systems. The expressions of these processes in ambient spaces are discussed
in chapter 20. We also discuss the Doeblin-Itō formula associated with these diffusion
processes in Riemannian manifolds. Several illustrations are discussed including Brownian
motion on the sphere, on the torus, and on the simplex.

If only I had the theorems! Then I should find the proofs easily enough.
Georg Friedrich Bernhard Riemann (1826-1866).

22.1 Brownian motion on Riemannian manifolds

We let Θt =




Θ1
t
...
Θp

t


 be the Rp-diffusion

on the parameter space Sφ defined for any
1 ≤ i ≤ p by the diffusion equation

dΘi
t =

1

2

(
∆φi

)
ψ
(Θt) dt+

(
∇φi

)T
ψ
(Θt) dBt

= −
∑

1≤j,k≤p

gj,k(Θt) C
i
j,k(Θt) dt+

(
∇φi

)T
ψ
(Θt) dBt (⇐ (21.43))

(22.1)
where Bt stands for a standard r-dimensional Brownian motion. In the above display, Cn

i,j

stands for the Christoffel symbols defined in (21.32). In this situation, we notice that

dΘtdΘ
T
t =




(
∇φ1

)T
ψ

...
(∇φp)

T
ψ


 (Θt) dBtdB

T
t

((
∇φ1

)
ψ
, . . . , (∇φp)ψ

)
(Θt)

=




(
∇φ1

)T
ψ

(
∇φ1

)
ψ

. . .
(
∇φ1

)T
ψ
(∇φr)ψ

...
...

(∇φr)
T
ψ

(
∇φ1

)
ψ

. . . (∇φr)
T
ψ (∇φr)ψ


 (Θt) dt.
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This yields

dΘtdΘ
T
t =




〈(
∇φ1

)
ψ
,
(
∇φ1

)
ψ

〉
. . .

〈(
∇φ1

)
ψ
, (∇φr)ψ

〉

...
...〈

(∇φr)ψ ,
(
∇φ1

)
ψ

〉
. . .

〈
(∇φr)ψ , (∇φr)ψ

〉


 (Θt) dt = g−1(Θt) dt.

Thus, by using the Ito formula we prove the following theorem.

Theorem 22.1.1 For any smooth function f on Rp we have

df(Θt) =
∑

1≤i≤p

∂θi(f)(Θt) dΘ
i
t +

1

2

∑
1≤i,j≤p

∂θi,θj (f)(Θt) dΘ
i
tdΘ

j
t

= L(f)(Θt)dt+ dMt(f).

The generator L associated with the diffusion process Θt is given by

L(f) =
1

2


 ∑
1≤i≤p

∂θif
(
∆φi

)
ψ
+

∑
1≤i,j≤p

∂θi,θj (f)
〈(

∇φi
)
ψ
,
(
∇φj

)
ψ

〉

=
1

2


 ∑
1≤i≤p

∂θif
(
∆φi

)
ψ
+

∑
1≤i,j≤p

gi,j ∂θi,θjf




=
1

2
∆g(f) =

1

2
divg (∇g(f)) . (⇐ (21.48)) (22.2)

The martingale term Mt(f) is defined by

dMt(f) =
∑

1≤i≤p

∂θi(f)(Θt)
(
∇φi

)T
ψ
(Θt) dBt.

Using (21.44) and (21.46) we find that
∑

1≤i≤p

(∂θif)φ
(
∇φi

)T
= ∇(f ◦ φ) = ∇F

L(f) ◦ φ =
1

2
∆(f ◦ φ) = ∆(F ) with F = f ◦ φ.

Therefore, if we set Xt = ψ(Θt) ⇒ Θt = φ(Xt) we find that

df(Θt) = d(f ◦ φ)(Xt) = dF (Xt) =
1

2
∆(F )(Xt)dt+ dMt(F )

with the martingale
dMt(F ) = (∇F )T (Xt) dBt.
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Choosing f = ψk ⇒ F = ψk ◦ φ = χk (cf. (21.24)) we find that

π(Xt) dBt =




(
∇χ1

)T
...

(∇χr)
T


 (Xt) dBt.

This yields

dXk
t = dψk(Θt) =

1

2
∆(χk)(Xt) dt+ (∇χk)T (Xt) dBt

= −1

2
Hk(Xt) dt+

∑
1≤j≤r

πk
j (Xt) dB

j
t . (⇐ (21.26)) (22.3)

22.2 Diffusions on chart spaces
Starting from the equation (22.3), if we set Θi

t = φi(Xt), we find that

(21.19) ⇒ ∇χk = ∇(ψk ◦ φ) =
∑

1≤j≤p

(
∂θjψ

k
)
φ

∇φj

⇒ (∇χk)T (Xt) dBt =
∑

1≤j≤p

(
∂θjψ

k
)
φ

(∇φj)T (Xt) dBt

=
∑

1≤j≤p

(
∂θjψ

k
)
φ

〈
∇φj(Xt), dBt

〉

and

dXk
t dX

l
t =

∑
1≤i,j≤p

(
∂θiψ

k
)
φ

(
∂θjψ

l
)
φ

〈
∇φi(Xt), dBt

〉 〈
∇φj(Xt), dBt

〉

=
∑

1≤i,j≤p

(
∂θiψ

k
)
φ

(
∂θjψ

l
)
φ

〈
∇φi(Xt),∇φj(Xt)

〉
dt.

Therefore, by using Ito’s formula we have

dφi(Xt)

=
∑

1≤k≤r

(
∂xk

φi
)
(Xt)

[
1

2
∆(χk)(Xt) dt+ (∇χk)T (Xt) dBt

]

+
1

2

∑
1≤k,l≤r

(
∂xl,xk

φi
)
(Xt)

∑
1≤m,n≤p

(
∂θmψk

)
φ

(
∂θnψ

l
)
φ

〈∇φm(Xt),∇φn(Xt)〉 dt.

Notice that

∑
1≤k≤r

(
∂xk

φi
)
(∇χk)T =

∑
1≤j≤p


 ∑
1≤k≤r

(
∂xk

φi
) (

∂θjψ
k
)
φ


 (

∇φj
)T (22.4)

=
∑

1≤j≤p

(
∂θj

(
φi ◦ ψ

))
φ

(
∇φj

)T
=

(
∇φi

)T (
⇐ (φi ◦ ψ)(v) = vi

)
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and using (21.46) we have

∆(χk) = ∆(ψk ◦ φ) =
∑

1≤m,n≤p

〈∇φm,∇φn〉
(
∂θm,θnψ

k
)
φ

+
∑

1≤j≤p

(
∂θjψ

k
)
φ

∆φj .

This implies that
∑

1≤k≤r

(
∂xk

φi
)
∆(χk) +

∑
1≤k,l≤r

(
∂xl,xk

φi
) ∑

1≤m,n≤p

(
∂θmψk

)
φ

(
∂θnψ

l
)
φ

〈∇φm,∇φn〉

=
∑

1≤m,n≤p

〈∇φm,∇φn〉

×


 ∑
1≤k≤r

(
∂xk

φi
) (

∂θm,θnψ
k
)
φ
+

∑
1≤k,l≤r

(
∂xl,xk

φi
) (

∂θmψk
)
φ

(
∂θnψ

l
)
φ




+
∑

1≤j≤p

∑
1≤k≤r

(
∂xk

φi
) (

∂θjψ
k
)
φ
∆φj

=
∑

1≤m,n≤p

〈∇φm,∇φn〉
(
∂θm,θn(φ

i ◦ ψ)
)
φ
+

∑
1≤j≤p

(
∂θj (φ

i ◦ ψ)
)
φ
∆φj = ∆φi.

Therefore
∀1 ≤ i ≤ p dφi(Xt) =

1

2

(
∆φi

)
(Xt)dt+

(
∇φi

)T
(Xt)dBt. (22.5)

Letting Θt := φ(Xt) ⇒ Xt = ψ(Θt), we arrive at the equation of the Brownian
motion on the Riemannian manifold:

dΘi
t =

1

2

(
∆φi

)
ψ
(Θt) dt+

(
∇φi

)T
ψ
(Θt) dBt, (22.6)

where Bt stands for a standard r-dimensional Brownian motion on Rr.

22.3 Brownian motion on spheres

22.3.1 The unit circle S = S1 ⊂ R2

The unit circle can be described in terms of the polar coordinates mapping

ψ(θ) =

(
cos(θ)
sin(θ)

)
.

It can be easily checked (cf. (24.1) and (24.2)) that

(∇φ)ψ = ∂θψ =

[
− sin(θ)
cos(θ)

]
and (∆φ)ψ = 0.
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Hence (22.1) is equivalent to

dΘt = (∇φ)Tψ(Θt) dBt = − sin (Θt) dB
1
t + cos (Θt) dB

1
t := dBt.

Notice that Bt is itself a standard Brownian motion

dBtdBt =
(
cos2 (Θt) + sin2 (Θt)

)
dt = dt.

22.3.2 The unit sphere S = S2 ⊂ R3

The 2-sphere can be parametrized by the spherical coordinates mapping

ψ(θ) =




sin(θ1) cos(θ2)
sin(θ1) sin(θ2)

cos(θ1)


 .

In this situation, we can check (cf. also (24.3) and (24.4))

(∇φ1)ψ(θ) =




cos(θ1) cos(θ2)
cos(θ1) sin(θ2)

− sin(θ1)


 (∇φ2)ψ(θ) =

1

sin(θ1)




− sin(θ2)
cos(θ2)

0




(∆φ1)ψ(θ) = cot(θ1) (∆φ2)ψ(θ) = 0.

As a consequence, we have:

(22.1)

⇐⇒




dΘ1
t =

1

2
cot(Θ1

t ) dt

+
[
cos (Θ1

t )
(
cos (Θ2

t )dB
1
t + sin (Θ2

t )dB
2
t

)
− sin (Θ1

t ) dB
3
t

]

:=
1

2
cot(Θ1

t ) dt+ dB
1

t

dΘ2
t =

1

sin(Θ1
t )

[
− sin (Θ2

t ) dB
1
t + cos (Θ2

t ) dB
2
t

]
:=

1

sin(Θ1
t )

dB
2

t .

Notice that
dB

1

tdB
2

t = 0 and dB
1

tdB
1

t = dt = dB
2

tdB
2

t

so that (22.1) can be rewritten as



dΘ1
t =

1

2
cot(Θ1

t ) dt+ dB1
t

dΘ2
t =

1

sin(Θ1
t )

dB2
t .

The computation of the generator
1

2
∆g of this diffusion readily yields the formula

of the Laplacian on the unit 2-sphere

∆g(f) = cot(θ1) ∂θ1(f) + ∂2
θ1(f) +

1

sin2(θ1)
∂2
θ2(f)

=
1

sin (θ1)
∂θ1 (sin (θ1) ∂θ1f) +

1

sin2(θ1)
∂2
θ2(f).
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22.4 Brownian motion on the torus
The 2-torus is the null level set of the function

ϕ(x) =

(
R−

√
x2
1 + x2

2

)2

+ x2
3 − r2

with r < R. It can be parametrized by the spherical coordinates mapping

ψ (θ) =




(R+ r cos(θ1)) cos(θ2)
(R+ r cos(θ1)) sin(θ2)

r sin(θ1)


 .

In this situation, we can check (cf. section 24.1.3)

(∇φ1)ψ(θ) = r−1




− sin(θ1) cos(θ2)
− sin(θ1) sin(θ2)

cos(θ1)




(∇φ2)ψ(θ) = (R+ r cos(θ1))
−1




− sin(θ2)
cos(θ2)

0




(∆φ1)ψ(θ) = − sin(θ1)

r(R+ r cos(θ1))
and (∆φ2)ψ(θ) = 0.

Hence (22.1) is equivalent to



dΘ1
t = − sin(Θ1

t )

2r(R+ r cos(Θ1
t ))

dt

+ 1
r

[
− sin (Θ1

t )
(
cos (Θ2

t ) dB
1
t + sin (Θ2

t ) dB
2
t

)
+ cos (Θ1

t ) dB
3
t

]

dΘ2
t =

1

(R+ r cos(Θ1
t ))

[
− sin (Θ2

t ) dB
1
t + cos (Θ2

t ) dB
2
t

]
.

We set

dB
1

t = − sin (Θ1
t )

(
cos (Θ2

t ) dB
1
t + sin (Θ2

t ) dB
2
t

)
+ cos (Θ1

t ) dB
3
t

dB
2

t = − sin (Θ2
t ) dB

1
t + cos (Θ2

t ) dB
2
t .

It is readily checked that

dB
1

tdB
2

t = 0 and dB
1

tdB
1

t = dt = dB
2

tdB
2

t

so that (22.1) can be rewritten as

(22.1) ⇐⇒




dΘ1
t := − sin(Θ1

t )

2r(R+ r cos(Θ1
t ))

dt+
1

r
dB1

t

dΘ2
t =

1

(R+ r cos(Θ1
t ))

dB2
t .

An illustration of a realization of a Brownian motion on the torus is provided in the illus-
tration below.
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22.5 Diffusions on the simplex
We return to the Brownian motion on the orbifold S/H = Sp ∩ Rr=p+1

+ discussed in sec-
tion 20.5. The positive orthant of the sphere is in bijection with the p-simplex

Simplex(p) = {θ = (θi)1≤i≤r ∈ Rr
+ :

∑
1≤i≤r

θi = 1}.

One diffeomorphism is given by the square mapping

x = (xi)
T
1≤i≤r ∈ Sp ∩ Rr=p+1

+
Ξ−→ Ξ(x) =

(
x2
1, . . . , x

2
r

)T ∈ Simplex(p)
(√

θ1, . . . ,
√

θr

)T

= Ξ−1(θ) ∈ Sp ∩ Rr=p+1
+

Ξ−1

←− θ = (θi)
T
1≤i≤r ∈ Simplex(p).

Notice that
∂xk

Ξi = 2 1k=i x
i =⇒ 1

2
∂xk,xl

Ξi = 1k,l=i. (22.7)

Using (20.3), the projection π(x) onto Tx(Sp ∩ Rr=p+1
+ ) is given by

x = Ξ−1(θ)

⇒ π(x) = Id− (∂ϕ)(x)
‖(∂ϕ)(x)‖

(∂ϕ)(x)T

‖(∂ϕ)(x)‖

=




1− x2
1

‖x‖2 −x1x2

‖x‖ −x1x3

‖x‖ . . . −x1xr

‖x‖

−x2x1

‖x‖ 1− x2
2

‖x‖2 −x2x3

‖x‖ . . . −x2xr

‖x‖
...

...
...

...
...

−xrx1

‖x‖ −xrx2

‖x‖ . . . . . . 1− x2
r

‖x‖




=




1− θ1∑
1≤j≤r θj

−
√
θ1

√
θ2∑

1≤j≤r θj
−

√
θ1

√
θ3∑

1≤j≤r θj
. . . −

√
θ1

√
θr∑

1≤j≤r θj

−
√
θ2

√
θ1∑

1≤j≤r θj
1− θ2∑

1≤j≤r θj
−

√
θ2

√
θ3∑

1≤j≤r θj
. . . −

√
θ2

√
θr∑

1≤j≤r θj

...
...

...
...

...
−

√
θr

√
θ1∑

1≤j≤r θj
−

√
θr

√
θ2∑

1≤j≤r θj
. . . . . . 1− θr∑

1≤j≤r θj




.



636 Stochastic Processes

In addition, using (20.4), the mean curvature vector H on the sphere is given by

x = Ξ−1(θ) ⇒ Hi(x) = p
xi

xTx
= p

√
θi∑

1≤l≤r θl
.

We let Xt be the Brownian motion on the positive orthant defined in (20.17). We recall
that

dXk
t = −1

2
Hk(Xt) dt+

∑
1≤j≤r

πk
j (Xt) dB

j
t ⇒ dXk

t dX
k
t =


 ∑
1≤j≤r

πk
j π

l
j


 (Xt) dt.

Applying the Ito formula to

Θt = Ξ(Xt) ⇔ Ξ−1(Θt) = Xt =

(√
Θ1

t , . . . ,
√

Θr
t

)

we find that

dΘi
t =

∑
1≤k≤r

(
∂xk

Ξi
) (

Ξ−1(Θt)
)


−1

2
Hk(Ξ−1(Θt)) dt+

∑
1≤j≤r

πk
j (Ξ

−1(Θt)) dB
j
t




+
1

2

∑
1≤k,l≤r

(
∂xk,xl

Ξi
) (

Ξ−1(Θt)
)


 ∑
1≤j≤r

πk
j π

l
j


 (Ξ−1(Θt)) dt

= 2
√

Θi
t


−1

2
Hi(Ξ−1(Θt)) dt+

∑
1≤j≤r

πi
j(Ξ

−1(Θt)) dB
j
t




+


 ∑
1≤k≤r

πi
kπ

i
k


 (Ξ−1(Θt)) dt.

The last assertion is a direct consequence of (22.7). To take the final step, we observe that

∑
1≤k≤r

(
πi
k(Ξ

−1(θ))
)2

=

(
1− θi∑

1≤j≤r θj

)2

+
θi∑

1≤j≤r θj

∑
1≤k≤r, k �=i

θk∑
1≤j≤r θj

= 1− 2
θi∑

1≤j≤r θj
+

θi∑
1≤j≤r θj

∑
1≤k≤r

θk∑
1≤j≤r θj

= 1− θi∑
1≤j≤r θj

and

∑
1≤j≤r

πi
j(Ξ

−1(Θt)) dB
j
t =

(
1− Θi

t∑
1≤j≤r Θ

j
t

)
dBi

t −
∑

1≤j≤r, j �=i

√
Θi

t

√
Θj

t∑
1≤j≤r Θ

j
t

dBj
t

= dBi
t −

∑
1≤j≤r

√
Θi

t

√
Θj

t∑
1≤j≤r Θ

j
t

dBj
t .
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We conclude that

dΘi
t =

(
−p

Θi
t∑

1≤l≤r Θ
l
t

+

(
1− Θi

t∑
1≤j≤r Θ

j
t

))
dt

+2
√
Θi

t


dBi

t −
∑

1≤j≤r

√
Θi

t

√
Θj

t∑
1≤j≤r Θ

j
t

dBj
t




=

(
1− r

Θi
t∑

1≤j≤r Θ
j
t

)
dt+ 2

√
Θi

t


dBi

t −
∑

1≤j≤r

√
Θi

t

√
Θj

t∑
1≤j≤r Θ

j
t

dBj
t


 .

It is instructive to notice that

dΘi
tdΘ

j
t

= 4
√
Θi

tΘ
i
t

[(
1i=j −

√
Θi

t

√
Θj

t∑
1≤l≤r Θl

t

)
+

(
−
√

Θi
t

√
Θj

t∑
1≤j≤r Θj

t

+
∑

1≤k≤r
Θk

t∑
1≤l≤r Θl

t

√
Θi

t

√
Θj

t∑
1≤l≤r Θl

t

)]
dt

= 4
√
Θi

tΘ
i
t

[(
1i=j −

√
Θi

t

√
Θj

t∑
1≤l≤r Θl

t

)]
dt = 4Θi

t

(
1i=j − Θj

t∑
1≤l≤r Θl

t

)
dt.

22.6 Exercises
Exercise 393 (The Laplacian in polar coordinates) We consider the polar coordinates
on S = R2 discussed in (21.8). Check the formulation of the Laplacian in polar coordinates

∆g =
1

θ1
∂θ1 + ∂2

θ1 +
1

θ21
∂2
θ2 .

Exercise 394 (The Laplacian in spherical coordinates) We consider the spherical co-
ordinates on S = R3 given by

ψ(θ) =




ψ1(θ) = θ1 sin (θ2) cos(θ3)
ψ2(θ) = θ1 sin (θ2) sin(θ3)
ψ3(θ) = θ1 cos (θ2).

Check the formulation of the Laplacian in spherical coordinates

∆g =
2

θ1
∂θ1 +

1

θ21
cot (θ2) ∂θ2 + ∂2

θ1 +
1

θ21
∂2
θ2 +

1

θ21 sin
2 (θ2)

∂2
θ3 .

Exercise 395 (Brownian motion on the ellipsoid) We consider the ellipsoid S em-
bedded in R3 and equipped with the spherical coordinates discussed in exercise 384. Describe
the Brownian motion on S.

Exercise 396 (Brownian motion on a cone) We consider the cone S embedded in R3

and equipped with the coordinate system discussed in exercise 383. Describe the Brownian
motion on S. Check that the generator Lg of the above diffusion coincides with half of the
Laplacian operator presented in exercise 383.
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Exercise 397 (Brownian motion on a surface of revolution - 1) We consider the sur-
face of revolution S embedded in R3 and equipped with the coordinate system discussed in
exercise 385. Describe the Brownian motion on S.

Exercise 398 (Brownian motion on a surface of revolution - 2) We consider the sur-
face of revolution S associated with the function u(z) = c+cos z, for some given parameter
c ∈] − 1,∞[. We equip the surface with the coordinate system discussed in exercise 385.
Describe the Brownian motion on S.

Exercise 399 (Brownian motion on the Riemannian helicoid) We consider the he-
licoid S parametrized by the function

ψ : (θ1, θ2) ∈ Sψ :=]a, b[×[0, 2π] �→ ψ(θ1, θ2) =




θ1 cos (θ2)
θ1 sin (θ2)

θ2


 ∈ S = ψ (Sψ)

for some given parameters −∞ ≤ a < b ≤ +∞. Describe the Brownian motion on S in
the coordinate chart defined by ψ. Check that the Laplacian on the helicoid is given in this
chart by the operator

∆g = ∂2
θ1 +

1

1 + θ21
∂2
θ2 +

θ1
1 + θ21

∂θ1 .

Exercise 400 (Brownian motion on the helicoid - ambient space) Check that the pa-
rametrization discussed in exercise 399 provides a chart coordinate of the helicoid in the
ambient space defined as the null level set S = ϕ−1(0) of the smooth function

ϕ(x1, x2, x2) = x2 cos (x3)− x1 sin (x3).

Describe the Brownian motion in the helicoid in the ambient space R3.

Exercise 401 (Brownian motion on the catenoid) We consider the catenoid revolu-
tion surface discussed in exercise 387. Check that the Brownian motion on this surface is
given by the diffusion equation

dΘ1
t =

1

cosh (Θ1
t )

dB1
t and dΘ2

t =
1

cosh (Θ1
t )

dB2
t ,

where (B1
t , B

2
t ) stands for a couple of independent Brownian motions on R.

Exercise 402 (Brownian motion on the unit circle) Describe the Brownian motion
on the unit circle equipped with the polar coordinates.

Exercise 403 (Brownian motion on the unit 2-sphere) Describe the Brownian mo-
tion on the unit 2-sphere equipped with the spherical coordinates.

Exercise 404 (Brownian motion on the unit p-sphere) Find a direct description on
the ambient space of the Brownian motion on the unit p-sphere.

Exercise 405 (Brownian motion on cylinder) Find a direct description on the ambi-
ent space of the Brownian motion on the cylinder.

Exercise 406 (Brownian motion on the Torus) Describe the Brownian motion on the
unit 2-torus equipped with the spherical coordinates.

Exercise 407 (Brownian motion on the Simplex) Describe the Brownian motion on
the p-simplex.



23
Some analytical aspects

The chapter presents some key analytical tools used to study the behaviors of stochastic
processes on manifolds. The first part is concerned with the notion of a geodesic and with
the construction of a distance on a manifold. We use these mathematical objects to derive
a Taylor type expansion of functions around two states related by a geodesic. The second
part of the chapter provides a review of the integration theory on manifolds. We present
some pivotal integration formulae such as the divergence theorem and Green’s identities.
These integration formulae allow us to derive the weak formulation of the time evolution of
the distribution of random states of stochastic processes evolving on a manifold.

The third part of the chapter is dedicated to gradient flows and to Langevin type dif-
fusions in Euclidian and Riemannian manifolds. The final part of the chapter is concerned
with the stability properties of diffusions on manifolds in terms of the Ricci curvature using
the Bochner-Lichnerowicz formulae presented earlier in chapter 19 and in chapter 21.

A great deal of my work is just playing with equations and seeing what they give.
Paul A. M. Dirac (1902-1984).

23.1 Geodesics and the exponential map

Definition 23.1.1 The distance between two
states x, y ∈ S on a manifold equipped with
some parametrization ψ is defined in a chart
coordinate by the formula

d (x, y) = inf

∫ b

a

∥∥.c (t)∥∥
g(c(t))

dt

where the infimum is taken over all paramet-
ric curves

c : t ∈ [a, b] �→ c(t) ∈ Sψ

s.t. φ(c(a)) = x, and φ(c(b)) = y, and
∥∥.c (t)∥∥2

g(c(t))
:=

〈.
c (t),

.
c (t)

〉
g(c(t))

=
∑

1≤i,j≤p

gi,j(c(t))
.
c
i
(t)
.
c
j
(t).

We notice that
∥∥.c (t)∥∥2

g(c(t))
=

〈 ∑
1≤i≤p

.
c
i
(t) (∂θiψ)c(t) ,

∑
1≤j≤p

.
c
j
(t) (∂θiψ)c(t)

〉

=
〈 .
C (t),

.
C (t)

〉
=

∥∥∥ .C (t)
∥∥∥
2

with C(t) = ψ(c(t)).

639
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Definition 23.1.2 The length of some curve C : t ∈ [a, b] �→ C(t) = ψ(c(t)) ∈ S
is given by the integral

∫ b

a

‖C(t)‖ dt =

∫ b

a

∥∥.c (t)∥∥
g(c(t))

dt.

To understand this definition better, we simply notice that

‖c(t+ dt)− c(t)‖g(c(t)) �
∥∥.c (t)∥∥

g
dt

⇒
∑

a≤t≤b ‖c(t+ dt)− c(t)‖g(c(t)) dt �
∫ b

a

∥∥.c (t)∥∥
g(c(t))

dt.

Definition 23.1.3 The energy of a given curve c is given by

E(c) =
1

2

∫ b

a

∥∥.c (t)∥∥2
g(c(t))

dt =

∫ b

a

L
(
c(t)

.
c (t)

)
dt

with the Lagrangian

L(c,
.
c) :=

1

2

∥∥.c∥∥2
g(c)

=
∑

1≤i,j≤p

gi,j(c)
.
c
i.
c
j
.

To find the extremal curves, we let cε(t) = c(t)+ εc′(t) be an ε-perturbation of c, with some
curve c′(t) s.t. c′(a) = 0 = c′(b). For any t ∈ [a, b], we have

d

dε
L(cε(t),

.
cε (t))|ε=0 =

〈
(∂cL)(c(t),

.
c (t)), c′(t)

〉
+
〈
(∂.cL)(c(t), .c (t)), .c′ (t)

〉

with the gradients

(∂cL) =




(∂c1L)
...

(∂cpL)


 and (∂.cL) =




(∂.
c
1L)
...

(∂.cpL)


 .

An integration by part w.r.t. the time parameter yields
∫ b

a

〈
(∂.cL)(c(t), .c (t)), .c′ (t)

〉
dt

=
[〈
(∂.cL)(c(t), .c (t)), c′(t)

〉]b
a
−
∫ b

a

〈
d
dt

[
(∂.cL)(c(t), .c (t))

]
, c′(t)

〉
dt.

This implies that for any perturbation c′ we have

d

dε
E(cε)|ε=0 =

∫ b

a

〈
(∂cL)(c(t),

.
c (t))− d

dt

[
(∂.cL)(c(t), .c (t))

]
, c′(t)

〉
dt.

This implies that the extremal curves must satisfy the Euler-Lagrange differential equation
of calculus of variations

(∂cL)(c(t),
.
c (t)) =

d

dt

[
(∂.cL)(c(t), .c (t))

]
. (23.1)
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In our context, we have

∂ckL =
∑

1≤i,j≤p

(∂θkgi,j) (c)
.
c
i .

c
j

and

∂.
c
kL = 2

∑
1≤i≤p

gk,i
.
c
i

⇒ d

dt

[
(∂.

c
kL)(c(t),

.
c (t))

]

= 2
∑

1≤i,j≤p

(
∂θjgk,i

)
(c(t))

.
c
i
(t)

.
c
j
(t) + 2

∑
1≤i≤p

gk,i(c(t))
..
c
i
(t).

Thus, the Euler-Lagrange equations take the form

(23.1) ⇔ ∀1 ≤ k ≤ p
∑

1≤i≤p

gk,i(c(t))
..
c
i
(t)

=
∑

1≤i,j≤p

[
1

2
(∂θkgi,j) (c(t))−

(
∂θjgk,i

)
(c(t))

] .
c
i
(t)

.
c
j
(t).

This yields the following result.

Proposition 23.1.4 For any 1 ≤ p ≤ m, we have the formula

..
c

m
(t) =

∑
1≤i,k≤p

gm,k(c(t)) gk,i(c(t))
..
c

i
(t)

=
∑

1≤i,j≤p


 ∑

1≤k≤p

gm,k

[
1

2
∂θkgi,j − ∂θjgk,i

]
 (c(t))

.
c
i
(t)

.
c
j
(t).

Next, we express this formula in terms of the Christoffel symbols Ck
i,j introduced in (21.32).

Firstly, we notice that

〈
∂θlψ, ∂θi,θjψ

〉
= ∂θi

〈
δθlψ, δθjψ

〉
−
〈
∂θiθlψ, ∂θjψ

〉
= ∂θigl,j −

〈
∂θiθlψ, ∂θjψ

〉

⇒ Ck
i,j = Ck

j,i

=
∑

1≤l≤p gk,l
〈
∂θlψ, ∂θi,θjψ

〉

=
∑

1≤l≤p gk,l ∂θigl,j −
∑

1≤l≤p gk,l
〈
∂θlθiψ, ∂θjψ

〉
.
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Thus, for any symmetric functionals f i,j = f j,i, 1 ≤ i, j ≤ p, on Sψ we have

∑
1≤i,j≤p

Cm
i,j f i,j

=
∑

1≤i,j≤p

f i,j
∑

1≤k≤p

gm,k ∂θigk,j −
∑

1≤i,j≤p

f i,j
∑

1≤k≤p

gm,k
〈
∂θkθiψ, ∂θjψ

〉

= −
∑

1≤i,j≤p

∑
1≤k≤p

gm,k

[
1

2
∂θkgi,j − ∂θigk,j

]
f i,j .

We conclude that

∀1 ≤ m ≤ p
..
c
m

(t) = −
∑

1≤i,j≤p

Cm
i,j

.
c
i
(t)

.
c
j
(t).

The solution of these equations gives a curve that minimizes the distances between two states
φ(x) and φ(y) in the parameter space. These curves c(t) and their mapping C(t) = ψ(c(t))
into the manifold S are called the geodesics.

It is instructive to observe that the velocity vector C(t) = ψ(c(t)) of a given curve on S
is given by the formula

dC

dt
(t) =

∑
1≤i≤p

(∂θiψ) (c(t))
.
c
i

t .

Thus, its acceleration takes the form

d2C

dt2
(t) =

∑
1≤i≤p

(∂θiψ) (c(t))
..
c
i

t +
∑

1≤i,j≤p

(
∂θj ,θiψ

)
(c(t))

.
c
i

t

.
c
j

t .

Taking the orthogonal projection on the tangent plane TC(t)(S), we have

π(C(t))

(
d2C

dt2
(t)

)
=

∑
1≤i≤p

(∂θiψ) (c(t))
..
c
i

t +
∑

1≤i,j≤p

π
[(
∂θj ,θiψ

)
(c(t))

] .
c
i

t

.
c
j

t

=
∑

1≤m≤p


 ..

c
m

t +
∑

1≤i,j≤p

Cm
i,j(c(t))

.
c
i

t

.
c
j

t


 (∂θmψ) (c(t)) = 0

from which we find that

∀1 ≤ m ≤ p
..
c
m

t +
∑

1≤i,j≤p

Cm
i,j(c(t))

.
c
i

t

.
c
j

t= 0. (23.2)

This shows that the acceleration vector of the geodesics is orthogonal to the tangent place
T (S). In other words, the speed geodesic vector

.
c (t) is parallel to the curve c(t) (cf.

(21.36)).
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By the existence and uniqueness theorem of solutions of ordinary differential equa-
tions, given a tangent vector field W (x) ∈ Tx(S), for any x = ψ(θ) ∈ S there exists
unique geodesics Cx(t) with velocity vector W (x) = dCx

dt (0) at the origin and start-
ing at x = Cx(0). The geodesics cφ(x)(t) = φ(Cx(t)) and Cx(t) associated with a
given velocity vector Vφ(x) and Wx = (dψ)φ(x)(Vφ(x)) are denoted in terms of the
exponential maps

Cx(t) := Expx(tW ) and cθ(t) := Expθ(tV ).

23.2 Taylor expansion

Given a smooth function f on the parameter space Sψ, we have

d

dt
f (cθ(t)) =

∑
1≤i≤p

(∂θif) (cθ(t))
.
c
i

θ (t)

=
∑

1≤i≤p

(∂θif) (cθ(t))
.
c
i

θ (t) := ∂.cθ(t)
(f) (cθ(t))

=
〈.
cθ (t), (∂f) (cθ(t))

〉
=

〈.
cθ (t),∇gf (cθ(t))

〉
g(cθ(t))

. (23.3)

Notice that this first order formula is valid for any curve cθ(t) with velocity vector

.
cθ (t) =

(.
c
i

θ (t)
)
1≤i≤p

with
.
c
i

θ (t) :=
dciθ
dt

(t).

Whenever cθ(t) is a geodesic for t = 0 we have

.
cθ (0) = V (θ) ⇒ d

dt
f (Expθ(tV ))|t=0 = 〈V (θ) ,∇gf (θ)〉g(θ) .

In much the same way, for a geodesic curve we have

d2

dt2
f (cθ(t)) =

∑
1≤i,j≤p

(
∂θi,θjf

)
(cθ(t))

.
c
i

θ (t)
.
c
j

θ (t) +
∑

1≤i≤p

(∂θif) (cθ(t))
..
c
i

θ (t)

=
∑

1≤k,l≤p


(∂θk,θlf) (cθ(t)) −

∑
1≤i≤p

Ci
k,l(c(t)) (∂θif) (cθ(t))


 .

c
k

θ (t)
.
c
l

θ (t)

= 〈.cθ (t),∇2
gf(cθ(t))

.
cθ (t)〉g(cθ(t)). (23.4)

Thus, for t = 0 we have

d2

dt2
f (Expθ(tV ))|t=0 = V T (θ) g ∇2

gf(θ) V
T (θ) = 〈V (θ),∇2

gf(θ) V (θ)〉g(θ).
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Theorem 23.2.1 For regular vector fields V this yields the Taylor expansion

f (Expθ(tV )) = f(θ) + t 〈V (θ) ,∇gf (θ)〉g(θ) +
t2

2
〈V (θ),∇2

gf(θ) V (θ)〉g(θ) +O(t3)

or equivalently

f (Expθ(V )) = f(θ) + 〈V (θ) ,∇gf (θ)〉g(θ) +
1

2
〈V (θ),∇2

gf(θ) V (θ)〉g(θ) +O
(
‖V ‖3

)
.

Letting F = f ◦φ, and using the fact that Expθ(V ) = φ (Expx(W )) when θ = φ(x)
and W = (dψ)φ(Vφ), the above formula takes the form

F (Expx(W )) = F (x)+〈W (x) ,∇F (x)〉+ 1

2

〈
W (x), (∇2F )(x)W (x)

〉
+O

(
‖W‖3

)
.

We end this section with some Taylor expansions with integral remainders.

Using (23.3) we have the first order expansion

f (cθ(t))− f (θ) =

∫ t

0

〈.
cθ (t),∇gf (cθ(s))

〉
g(cθ(s))

ds.

Applying (21.22) to the pushed forward velocity vectors
.
Cx (s) = (dψ)cθ(t)

(.
cθ (t)

)
implies that

F (Cx(t))− F (x) =

∫ t

0

〈 .
Cx (s),∇F (Cx(s))

〉
ds. (23.5)

As mentioned above, these first order formulae are valid for any curves Cx(t) =
ψ (cθ(t)) (not necessarily geodesics).

By (23.4) we also have the first order Taylor expansion

d

ds
f (cθ(s)) = 〈V (θ) ,∇gf (θ)〉g(θ) +

∫ s

0

〈.cθ (r),∇2
gf(cθ(r))

.
cθ (r)〉g(cθ(r)) dr (23.6)

from which we find the second order expansion

f (cθ(t)) = f (θ) +

∫ t

0

d

ds
f (cθ(s)) ds

= f (θ) + t 〈V (θ) ,∇gf (θ)〉g(θ)

+

∫ t

0

[∫ s

0

〈.cθ (r),∇2
gf(cθ(r))

.
cθ (r)〉g(cθ(r)) dr

]
ds.

Recalling that
∫ t

0

(∫ s

0

a(r) dr

)
ds = t

∫ t

0

a(s) ds−
∫ t

0

a(s) ds =

∫ t

0

a(s) (t− s) ds
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we prove the second order Taylor expansion with integral remainder for geodesics with
prescribed initial velocity vectors

f (cθ(t)) = f (θ) + t 〈V (θ) ,∇gf (θ)〉g(θ) (23.7)

+

∫ t

0

〈.cθ (s),∇2
gf(cθ(s))

.
cθ (s)〉g(cθ(s)) (t− s) ds.

Combining (21.22) with proposition 21.5.2 implies that

F (Cx(t)) = F (x) + t 〈W (x),∇F (x)〉 (23.8)

+

∫ t

0

〈
.
Cx (s),∇2F (Cx(s))

.
Cx (s)〉 (t− s) ds.

23.3 Integration on manifolds

23.3.1 The volume measure on the manifold

Heuristically, for manifolds S with dimension

p = 1 = dim(Tx(S)) = dim(Vect((∂θiψ)φ(θ))

the volume element µS(dx) at some state x = ψ(θ) reduces the length lengthS(ψ(δθ)) of
the ψ-image curve ψ(δθ) of an infinitesimal interval

δθ := [θ, θ + dθ] ∈ Sψ ⊂ R,

that is,
ψ(δθ) � ψ(θ + dθ)− ψ(θ) � (∂θψ) (θ) dθ

so that

µS(dx) = lengthS(ψ(δθ)) � ‖ψ(θ + dθ)− ψ(θ)‖
� ‖(∂θψ) (θ)‖ dθ =

√
〈(∂θψ) (θ), (∂θψ) (θ)〉 dθ.

More rigorously, for any function F with compact support we have
∫

S

F (x) µS(dx) =

∫

Sψ

f(θ)
√

〈(∂θψ) (θ), (∂θψ) (θ)〉 dθ with f = F ◦ ψ.

In larger dimensions, the ψ-image ψ(δθ) of a cell δθ =
∏

1≤i≤p[θi, θi + dθi] ∈ Sψ ⊂ Rp is
given by

ψ(δθ) � ψ(θ + dθ)− ψ(θ) �
∑

1≤i≤p

(∂θiψ) (θ) dθi

= (dψ)






∑
1≤i≤p

εi ei : εi ∈ [0, dθi]





 = (dψ)


 ∏

1≤i≤p

[0, dθi]
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with the unit vectors ei in Rp, 1 ≤ i ≤ p. We recall that (dψ)(ei) = ∂θi , for any 1 ≤ i ≤ p.
On the other hand, by the change of variables formula

Vol


(dψ)


 ∏

1≤i≤p

[0, dθi]




 � det ((dψ)(θ))

∏
1≤i≤p

dθi

︸ ︷︷ ︸
=dθ

= det ((dψ)(θ)) dθ.

Recalling that
√
det (ATA) = det (A), and Ai,j = 〈Aei, ej〉 for any (p × p)-matrix A, we

have

det ((dψ)(θ)) =
√
det ((dψ)(θ)T (dψ)(θ))

=
√
det (〈(dψ)(θ)T (dψ)(θ)ei, ej〉)1≤i,j≤p

=
√
det (〈(dψ)(θ)ei, (dψ)(θ)ej〉)1≤i,j≤p

=
√
det

(〈
(∂θiψ) (θ),

(
∂θjψ

)
(θ)

〉)
1≤i,j≤p

=
√
det (g(θ)).

In summary, for any function F with compact support,
∫

S

F dµS :=

∫

S

F (x) µS(dx) =

∫

Sψ

f(θ)
√

det (g(θ)) dθ with f = F ◦ ψ.

If we set
µg(dθ) =

√
det (g(θ)) dθ

the above formulae can be rewritten in a more synthetic form

µS(F ) :=

∫

S

F dµS =

∫

Sψ

f(θ) µg(dθ) := µg (f) . (23.9)

For instance, the arc length on the circle S = S1 := {(x, y) ∈ R2 : x2 + y2 = 1}

equipped with the polar coordinates ψ(θ) =
(

cos (θ)
sin (θ)

)
, θ ∈ [0, 2π[, is given by

∂θψ(θ) =

(
− sin (θ)
cos (θ)

)
⇒ ‖∂θψ(θ)‖ = 1 ⇒ µg(dθ) = dθ.

In cartesian coordinates, using the change of variables

θ = arccosx ⇒ ∂x arccosx = − 1√
1− x2

we have

f = F ◦ ψ

⇒
∫ 2π

0

f(θ) dθ =

∫ π

0

f(θ)dθ +

∫ 2π

π

f(θ)dθ

=

∫ 1

−1

F (x,
√
1− x2)

dx√
1− x2

+

∫ 1

−1

F (x,−
√
1− x2)

dx√
1− x2

.
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Notice that in cartesian coordinates the uniform distribution η(d(x, y)) of a random point
(X,Y ) in S = S1 takes the form

η(d(x, y)) =
1

π

1√
1− x2

1]−1,1[(x) dx

︸ ︷︷ ︸
× 1

2

[
δ−

√
1−x2 + δ√1−x2

]
(dy)

︸ ︷︷ ︸
= P(X ∈ dx) × P (Y ∈ dy | X = x) .

The arc length of a curve of the form

C =

{
ψ(θ) =

(
r(θ) cos (θ)
r(θ) sin (θ)

)
∈ R2 : θ ∈ [θ1, θ2]

}

is given by

∂θψ(θ) =

(
cos (θ)∂θr(θ)− r(θ) sin (θ)
sin (θ)∂θr(θ) + r(θ) cos (θ)

)

⇒ ‖∂θψ(θ)‖2 = (∂θr(θ))
2
+ (r(θ))

2 ⇒ µg(dθ) =

√
(∂θr(θ))

2
+ (r(θ))

2
dθ.

In much the same way, the arc length of the graph of a function h : R �→ R

C =

{
ψ(θ) =

(
θ

h(θ)

)
∈ R2 : θ ∈ [θ1, θ2]

}

is given by

∂θψ(θ) =

(
1

∂θh(θ)

)

⇒ ‖∂θψ(θ)‖2 = 1 + (∂θf(θ))
2 ⇒ µg(dθ) =

√
1 + (∂θh(θ))

2
dθ.

In terms of cartesian coordinates, the uniform distribution η(d(x, y)) of a random point

(X,Y ) ∈ C =

{
ψ(θ) =

(
x

h(x)

)
∈ R2 : x ∈ [x1, x2]

}
takes the form

η(d(x, y)) ∝
√
1 + (∂xh(x))

2
1[x1,x2](x) dx︸ ︷︷ ︸ × δh(x)(dy)︸ ︷︷ ︸

∝ P(X ∈ dx) × P (Y ∈ dy | X = x) .

Line segments correspond to linear height functions h(θ) = aθ + b, for some a, b ∈ R.
In this case, we find that µg(dθ) =

√
1 + a2 dθ. It is instructive to see that the arc length

computation resumes to the Pythagoras theorem
[∫ θ2

θ1

µg(dθ)

]2

=
(
1 + a2

)
(θ2 − θ1)

2
= (θ2 − θ1)

2
+ (a (θ2 − θ1))

2
.

In terms of cartesian coordinates, the uniform distribution η(d(x, y)) of a random point
(X,Y ) ∈ {(x, y) : y = ax+ b , x ∈ [x1, x2]} takes the form

η(d(x, y)) =
1

(x2 − x1)
1[x1,x2](x) dx

︸ ︷︷ ︸
× δax+b(dy)︸ ︷︷ ︸

= P(X ∈ dx) × P (Y ∈ dy | X = x) .
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We end this section with a couple of important observations.
Firstly, in the above construction, we have implicitly assumed that the manifold S can

be parametrized by a single map ψ, and thus with a single chart coordinate. In a more
general situation, using the patching technique presented in (21.5),

µS(F ) :=

∫

S

F dµS =
∑
i∈I

∫

Si

Fi dµSi
=

∑
i∈I

∫

Sψi

fi(θ) µgψi
(dθ) := µg (f) (23.10)

with Fi ◦ ψi := fi and with the Riemannian metric gψi
on the parameter space Sψi

defined
by the formula

gψi,k;l = 〈∂θkψi, ∂θlψi〉.

Last, but not least, we fix some state x = φ(θ) ∈ S and we consider the parallelotope
manifold formed by the vectors (∂θiψ)φ(x) given by

Px =





∑
1≤i≤p

εi (∂θiψ)φ(x) : ε := (εi)1≤i≤p ∈ [0, 1]p


 .

The manifold P is clearly parametrized by the mapping

ψ(ε) =
∑

1≤i≤p

εi (∂θiψ)φ(x) ⇒ ∂εiψ = (∂θiψ)φ(x) and
〈
∂εiψ, ∂εjψ

〉
= gi,j(φ(x)).

Applying (23.9) to (S, ψ, Sψ) = (Px, ψ, [0, 1]
p) and using (21.7) we find that

Vol (Px) =
√

det (g(φ(x))) =
√
det

(
(∂ψ) (∂ψ)

T
)

(23.11)

with the matrix formed by the generating column vectors

(∂ψ)
T
=

(
∂θ1ψ, · · · , ∂θpψ

)
. (23.12)

In other words, the Gramian det (g(φ(x))) is the square of the volume of the
parallelotope P(W ) formed by the vectors Wi := (∂θiψ)φ(x), with 1 ≤ i ≤ p.
When p = r we have the formula

Vol (Px) =
√

det (g(φ(x))) =
∣∣∣det

(
(∂θ1ψ)φ(x) , · · · , (∂θrψ)φ(x)

)∣∣∣ .

23.3.2 Wedge product and volume forms

This section provides an algebraic interpretation of volume elements in terms of wedge
products, also called exterior products.

Wedge products can also be used to compute determinants and volumes of parallelotopes
( a.k.a. p-dimensional parallelopipeds) generated by some independent vectors. We let

Px(W1, . . . ,Wp)) =


x+

∑
1≤i≤p

wp Wp : w = (wi)1≤i≤p ∈ [0, 1]p
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be the parallelotope with a basis edge at x and formed by a collection of of p column
independent vectors (Wi)1≤i≤p in Rr. When x = 0, we simplify notation and we write
P(W ) instead of P0(W ).

We equip the space of p-exterior products with the inner product defined by the duality
formula

¨ W1 ∧ . . . ∧Wp, V1 ∧ . . . ∧ Vp ©:= det
[
(〈Wi, Vj〉)1≤i,j≤p

]

between the p-exterior products (W1∧ . . .∧Wp) and (V1∧ . . .∧Vp) of p vectors in any vector
space equipped with some inner product 〈., .〉. We also consider the norm

|||W1 ∧ . . . ∧Wp|||2 =¨ W1 ∧ . . . ∧Wp,W1 ∧ . . . ∧Wp © .

With the introduced notation, we can also check the volume formula

|||W1 ∧ . . . ∧Wp||| =

√
det

[
(〈Wi,Wj〉)1≤i,j≤p

]
= Volume (P(W1, . . . ,Wp))(23.13)

using simple induction w.r.t. the parameter p. For p = 1 the result is clear. Suppose the
result has been proved for some p. The new vector Wp+1 can be written as

Wp+1 = W⊥
p+1 +

∑
1≤i≤p

ai Wi for some ai ∈ R and for any i we have W⊥
p+1 ⊥ Wi.

By construction, we have

∣∣∣∣∣∣W1 ∧ . . . ∧Wp ∧W⊥
p+1

∣∣∣∣∣∣2 = det
(
(〈Wi,Wj〉)1≤i,j≤p

)
〈W⊥

p+1,W
⊥
p+1〉

= Volume (P(W1, . . . ,Wp)) × ‖W⊥
p+1‖

= Volume (P(W1, . . . ,Wp,Wp+1)) .

In the above display, we used the easily checkable Lagrange indentity

‖U ∧ V ‖2 + |〈U, V 〉|2 = ‖U‖2 × ‖V ‖2

for U = W1 ∧ . . .∧Wp and V = W⊥
p+1. For a proof of this formula, we refer to exercise 409.

This ends the proof of (23.13).
We let ei the r unit vector in Rr. Arguing as above, it is also readily checked that

W1 ∧ . . . ∧Wp =
∑

1≤i1<...<ip≤r wi1,...,ip

(
ei1 ∧ . . . ∧ eip

)

=⇒ |||W1 ∧ . . . ∧Wp|||2 =
∑

1≤i1<...<ip≤r w
2
i1,...,ip

for some parameters wi1,...,ip .



650 Stochastic Processes

Observe that Wi = W (ei) with the matrix W = (W1, . . . ,Wp) generated by the
column vectors Wi. In this notation, we have

P(W1, . . . ,Wp) = W (P(e1, . . . , ep))

as well as the volume formulae

|||W (e1) ∧ . . . ∧W (ep)||| =

√
det

[
(〈W (ei),W (ej)〉)1≤i,j≤p

]

=
√

det(WTW ) = Volume (P(W (e1), . . . ,W (ep)))

and therefore

Volume (W (P(e1, . . . , ep))) =
√
det(WTW )×Volume (P(e1, . . . , ep))

if p = r
= |det(W )| ×Volume (P(e1, . . . , ep)) .(23.14)

We let ϕ : θ ∈ Sψ �→ ϕ(θ) ∈ S = ψ (Sψ) be some differentiable function on some open
parameter set Sψ ⊂ Rp. The change of variables formula discussed in section 23.3.1 takes
the form

Volume (ψ(Pθ(ε1 e1, . . . , εp ep)))

=
√
det((∂ψ) (θ) (∂ψ) (θ)T )×Volume

(
Pψ(θ)(ε1 e1, . . . , εp ep)

)
+ o (ε)

with ε = mini εi and the matrix (∂ψ)(θ) formed by the generating column vectors (∂θiψ) (θ)
defined in (23.12). In terms of integrals, formula (23.9) is sometimes rewritten in the
following form

∫

S

F (x) dx1 ∧ . . . ∧ dxr =

∫

Sψ

F (ψ(θ))
√

det((∂ψ) (θ) (∂ψ) (θ)T ) dθ1 ∧ . . . ∧ dθr.

23.3.3 The divergence theorem

We consider the push forward W = (dψ)φ(Vφ) ∈ T (S) and F = f ◦ ψ of a smooth vector
field V and a smooth function f on some open parametric space Sψ (so that S is also an
open subset of Rp). We further assume that either f or V has compact support so that f or
V is null at the boundary, whenever it exists, of the parametric space Sψ. In other words,
F or W is compactly supported in the chart φ = ψ−1 : S �→ Sψ.

By construction (cf. (21.16)),

W ∈ T (S) ⇒ 〈W,∇F 〉 = 〈W,∂F 〉 = ∂WF = (∂V f) ◦ φ = 〈V, ∂f〉 ◦ φ

and ∫

S

〈W,∇F 〉 dµS =

∫

Sψ

〈V (θ), (∂f)(θ)〉
√
det (g(θ)) dθ

=

∫

Sψ

〈V (θ), (∇gf)(θ)〉g(θ) µg(dθ)

with
µg(dθ) =

√
det (g(θ)) dθ.
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Applying a simple integration by part formula (recalling that V and f have compact support
on the open set Sψ), we prove that

∫

Sψ

〈V (θ), (∂f)(θ)〉
√
det (g(θ)) dθ =

∑
1≤i≤p

∫

Sψ

V i(θ) ∂θi(f)(θ)
√

det (g(θ)) dθ

= −
∑

1≤i≤p

∫

Sψ

f(θ) ∂θi

[√
det (g(θ)) V i(θ)

]
dθ

= −
∫

Sψ

f(θ)
1√

det (g(θ))

∑
1≤i≤p

∂θi

[√
det (g(θ)) V i(θ)

]

︸ ︷︷ ︸
=divg(V )(θ)

√
det (g(θ)) dθ.

This implies that
∫

S

〈W,∇F 〉 dµS = −
∫

Sψ

f(θ) divg(V )(θ)
√
det (g(θ)) dθ

= −
∫

Sψ

f(θ) divg(V )(θ) µg(dθ).

On the other hand, using (21.28),

divg(V )(θ) = tr (∇W )ψ = div (W ) ◦ ψ.

Here again we have implicitly assumed that the manifold S can be parametrized by a single
map ψ. In a more general situation, using the patching technique presented in (21.5) and
(23.10), we have

∫

S

〈W,∇F 〉 dµS =
∑
i∈I

∫

Si

〈Wi,∇F 〉 dµSi

= −
∑
i∈I

∫

Sψi

fi(θ) divgψi
(Vi)(θ) µgψi

(dθ)

with

fi = (εiF ) ◦ ψi and Wi = εiW = (dψi)φi(εi Vi,φi) with Vi,φi = εi Vφi .

Hence we proved the result:

Theorem 23.3.1 If either F or W is compactly supported on
S, we have the divergence formula

∫

S

F div (W ) dµS = −
∫

S

〈W,∇F 〉 dµS . (23.15)

We quote a series of direct consequences of this integration-by-part formula:
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• On closed manifolds (i.e., compact without boundaries), choosing F = 1, we have
∫

S

div (W ) dµS = 0.

• Choosing W = F1 ∇F2 and F = F3, with either W or F with compact support we have
∫

S

div (F1 ∇F2) F3 dµS = −
∫

S

〈F1 ∇F2, ∂F3〉 dµS

= −
∫

S

F1 〈∇F2, ∂F3〉 dµS = −
∫

S

F1 〈∇F2,∇F3〉 dµS .

The r.h.s. assertion arises from

∇F2 ∈ T (S) =⇒ 〈∇F2, ∂F3〉 = 〈∇F2, π (∂F3)〉 = 〈∇F2,∇F3〉 .

• Choosing F1 = 1 in the above formula, and combining (21.23) with (21.29), we prove
Green’s first identity; that is, for any smooth functions (F1, F2) with (at least one with)
compact support,
∫

S

∆(F1) F2 dµS =

∫

S

div (∇F1) F2 dµS = −
∫

S

〈∇F1,∇F2〉 dµS =

∫

S

F1 ∆(F2) dµS

=

∫

Sψ

∆g(f1) f2 dµg =

∫

S

divg (∇gf1) f2 dµg

= −
∫

Sψ

〈∇gf1,∇gf2〉g dµg =

∫

Sψ

f1 ∆g(f2) dµg.

• On closed manifolds, choosing F2 = 1 in the above formula, we find that for any smooth
function F ∫

S

∆(F ) dµS = 0.

We further assume that S is an open manifold with smooth boundaries ∂S s.t. S = S∪∂S
is compact. We also assume that these manifolds are oriented in the sense that there is
a consistent choice of oriented tangent vectors, or equivalently all changes of coordinates
associated with the transition maps have positive Jacobian determinants. These properties
ensure a consistent choice of unit outward-pointing normal vector fields (a.k.a. unit exte-
rior normal fields) at every point of the boundary manifold. For surfaces this property is
equivalent to the well-known right-hand rule to define the three-dimensional orientation.

Arguing as above, we have
∫

S

〈W,∇F 〉 dµS =

∫

Sψ

〈V (θ), (∂f)(θ)〉
√
det (g(θ)) dθ

= −
∫

Sψ

f(θ) divg(V )(θ) µg(dθ)

+

∫

Sψ

∑
1≤i≤p

∂θi

[
f(θ)

√
det (g(θ)) V i(θ)

]
dθ.
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Stokes’ theorem implies that
∫

Sψ

∑
1≤i≤p

∂θi

[
f(θ)

√
det (g(θ)) V i(θ)

]
dθ

=

∫

Sψ

divg(fV )(θ) µg(dθ) =

∫

S

div (F W ) dµS

Stokes’ theo
=

∫

∂S

〈FW,N⊥〉 dµ∂S =

∫

∂S

F 〈W,N⊥〉 dµ∂S

whereN⊥ stands for the outward unit normal field to ∂S. In summary, we have the following
integration formula.

Theorem 23.3.2 The divergence formula, sometimes also called Gauss’ theorem,
is given by

∫

S

F div (W ) dµS = −
∫

S

〈W,∇F 〉 dµS +

∫

∂S

F 〈W,N⊥〉 dµ∂S , (23.16)

with the outward unit normal field N⊥ to the boundary ∂S.

The detailed proof of Stokes’ theorem can be found in any textbook on differential geom-
etry. Most of these books are based on advanced differential calculus including differential
forms techniques. For the convenience of the reader, we provide a simple and short proof
in dimension 3 based on standard integration calculus that can be easily extended to larger
dimensions. We consider three-dimensional vector fields W ∈ R3 and three-dimensional
simple manifolds of the form S = S1 = S2 = S3(= S1 ∩ S2 ∩ S3) with

S1 =
{
x ∈ R3 : (x2, x3) ∈ D1 and h+

1 (x2, x3) ≤ x1 ≤ h+
1 (x2, x3)

}

S2 =
{
x ∈ R3 : (x1, x3) ∈ D2 and h−

2 (x1, x3) ≤ x2 ≤ h+
2 (x1, x2)

}

S3 =
{
x ∈ R3 : (x1, x2) ∈ D3 and h−

3 (x1, x2) ≤ x3 ≤ h+
3 (x1, x2)

}
.

In the above display, the regions D1, D2 and D3 stand respectively for the projection of
our solid region S on the (0, x2, x3), (0, x1, x3) and respectively (0, x1, x2); and h

+/−
i stands

for some smooth functions. In the further development, we use the decomposition W =∑
1≤i≤3 W i ei of W on the unit basis vector fields ei of R3.
We observe that
∫

S

∂x1
W 1 dµS =

∫

D1

[
W 1

(
h+
1 (x2, x3), x2, x3

)
−W 1

(
h−
1 (x2, x3), x2, x3

)]
dµD1

.

On the other hand, we have the boundary decomposition

∂S = ∂−
1 S ∪ ∂0

1S ∪ ∂+
1 S

where ∂
+/−
1 S stands for the graphs of the functions (x2, x3) ∈ D1 �→ h+

1 (x2, x3) and ∂0
1S =

∂S−
(
∂−
1 S ∪ ∂+

1 S
)
the remaining surface (whenever it is not empty) that connects the front

and back surfaces ∂+
1 S and ∂−

1 S of the boundary. By construction, ∂0
1S ⊂ (∂D1 × R) so

that the the outward pointing orthogonal vector fields N0,⊥
1 ⊥ e1 on the boundary ∂+

1 S.
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The parametrization of ∂+/−
1 S is clearly given by the functions

ψ
−/−
1 : (x2, x3) ∈ D1 �→ ψ

−/+
1 (x2, x3) :=


 h

−/+
1 (x2, x3)

x2

x3


 .

The outward pointing orthogonal vector fields on the boundary ∂−
1 S are given by the usual

formula

N−,⊥
1 = −∂x2

ψ−
1 ∧ ∂x3

ψ−
1 = −




∂x2
h−
1

1
0


 ∧




∂x3
h−
1

0
1


 =




−1
∂x2

h−
1

∂x3
h−
1


 .

In much the same way, the outward pointing orthogonal vector fields on the boundary ∂+
1 S

are given by the usual formula

N+,⊥
1 = ∂x2ψ

+
1 ∧ ∂x3ψ

+
1 =




∂x2
h+
1

1
0


 ∧




∂x3
h+
1

0
1


 =




1
−∂x2

h+
1

−∂x3h
+
1


 .

We let N⊥ = 1∂−
1 S N−,⊥

1 + 1∂0
1S

N0,⊥
1 + 1∂+

1 S N+,⊥
1 be the the outward pointing

orthogonal vector fields on ∂S. Recalling that N0,⊥
1 ⊥ e1 we find that

∫

∂S

W 1
〈
e1, N

⊥〉 dµ∂S

=

∫

∂+
1 S

W 1
〈
e1, N

+,⊥
1

〉
dµ∂+

1 S +

∫

∂−
1 S

W 1
〈
e1, N

−,⊥
1

〉
dµ∂−

1 S

=

∫

D1

[
W 1

(
h+
1 (x2, x3), x2, x3

)
−W 1

(
h−
1 (x2, x3), x2, x3

)]
µD1

(d(x2, x3)).

This yields
∫

∂S

W 1
〈
e1, N

⊥〉 dµ∂S

=

∫

D1

∫ h+
1 (x2,x3)

h−
1 (x2,x3)

(∂x1
W 1)(x1, x2, x3) dx1 µD1

(d(x2, x3)) =

∫

S

(∂x1
W 1) dµS .

We prove in the same way that
∫

∂S

W i
〈
ei, N

⊥〉 dµ∂S =

∫

S

(∂xi
W i) dµS

for any i = 1, 2, 3. This ends the proof of (23.16) when F = 1.

We illustrate the divergence theorem in terms of parametrizations of the manifold and
its boundary. We consider the open disk of radius R > 0 given by

S = {(x1, x2) ∈ R2 : x2
1 + x2

2 < R} =⇒ ∂S = C := {(x1, x2) ∈ R2 : x2
1 + x2

2 = R},
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equipped respectively (when we extract the state (0, R) to S and ∂S) with the polar coor-
dinates ψ and ψ∂ defined by

ψ(θ1, θ2) =

(
R(1− θ1) cos (θ2)
R(1− θ1) sin (θ2)

)
and ψ∂(θ2) = ψ(0, θ2) (23.17)

with (θ1, θ2) ∈ Sψ := (]0, 1[× ∈]0, 2π[). In this situation, we observe that ψ ({0} × Cψ∂
) =

C = ∂S with the parametric space Cψ∂
=]0, 2π[. Also notice that

∂θ1ψ = −
(

R cos (θ2)
R sin (θ2)

)
⊥ ∂θ2ψ = −

(
−R(1− θ1) sin (θ2)
R(1− θ1) cos (θ2)

)

yields the volume measure on the disk

g =

(
〈∂θ1ψ, ∂θ1ψ〉 〈∂θ1ψ, ∂θ2ψ〉
〈∂θ2ψ, ∂θ1ψ〉 〈∂θ2ψ, ∂θ2ψ〉

)
=

(
R2 0
0 R2(1− θ1)

2

)
.

The surface measure on the circle reduces to

g∂ = 〈∂θ2ψ∂ , ∂θ2ψ∂〉 = R2.

For F = 1 and W (x) = 1
2

(
x1

x2

)
⇒ div (W ) = 1 we readily find the surface of the disk

∫

S

dµS =

∫

∂S

〈W,N⊥〉 dµ∂S

=
R2

2

∫ 2π

0

〈(
cos (θ2)
sin (θ2)

)
, n⊥(θ2)

〉
dθ2 = πR2 (23.18)

with the outward pointing unit normal n⊥(θ2) = N⊥(ψ∂(θ2)) =

(
cos (θ2)
sin (θ2)

)
.

Notice that any vector fields W on S can be expressed in terms of the local coordinates
ψ by the formula

W ◦ ψ = V 1 ∂θ1ψ + V 2 ∂θ2ψ.

We clearly have

∂θ1ψ = −R N⊥ ◦ ψ =⇒
〈
W ◦ ψ,N⊥ ◦ ψ

〉
= −R V 1. (23.19)

The computation of the vector fields V i can be done using the formula (21.14). Also observe
that for any θ1 ∈ [0, 1[ we have

ψ(θ1, 0) = R(1− θ1)

(
1
0

)
= ψ(θ1, 2π) ⇒ W ◦ ψ(θ1, 0) = W ◦ ψ(θ1, 2π) (23.20)

⇒ ∀i = 1, 2 V i(θ1, 0) = V i(θ1, 2π).

In this situation, using (23.19) and (23.20),
∫

S

divg(V ) dµS = R2

∫ π

0

∫ 2π

0

[
∂θ1

(
(1− θ1)V

1
)
+ ∂θ2

(
(1− θ1)V

2
)]

dθ1dθ2

=

∫ 2π

0

(−R V 1(0, θ2))︸ ︷︷ ︸
=〈W◦ψ∂ ,N⊥◦ψ∂〉(θ2)

Rdθ2︸ ︷︷ ︸
µg∂

(dθ2)

+

∫ 1

0

(1− θ1)
[
V 2(θ1, 2π)− V 2(θ1, 0)

]
︸ ︷︷ ︸

=0

dθ2
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from which we conclude that

∫

S

div(W ) dµS =

∫

Sψ

divg(V ) dµg

=

∫

Cψ∂

〈
W ◦ ψ∂ , N

⊥ ◦ ψ∂

〉
dµg∂ =

∫

∂S

〈W,N⊥〉 dµ∂S .

Arguing as above, we prove the integration by part formula
∫

S

∆(F1) F2 dµS =

∫

S

div (∇F1) F2 dµS (23.21)

= −
∫

S

〈∇F1,∇F2〉 dµS +

∫

∂S

F2 〈∇F1, N
⊥〉 dµ∂S .

For a given smooth function F , the quantity 〈∇F,N⊥〉 is called the normal deriva-
tive. In differential geometry, with some abuse of notation, this derivative is often
denoted by

∇N⊥F := 〈∇F,N⊥〉 or as
∂F

∂N⊥ := 〈∇F,N⊥〉. (23.22)

We also have Green’s identity
∫

S

(∆(F1) F2 −∆(F2) F1) dµS =

∫

∂S

〈(F2 ∇F1 − F1 ∇F2) , N
⊥〉 dµ∂S .

In the Riemannian manifold (a.k.a. in local coordinates), these formulae take the fol-
lowing form.

Theorem 23.3.3 For any smooth functions f1, f2, we have the divergence formula
∫

Sψ

∆g(f1) f2 dµg

= −
∫

Sψ

〈∇gf1,∇gf2〉g dµg +

∫

(∂S)ψ∂

(F2)ψ∂
〈(∇F1)ψ∂

, N⊥
ψ∂

〉 dµg∂ .
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In particular, this yields Green’s identity
∫

Sψ

(∆g(f1) f2 −∆g(f2) f1) dµg

=

∫

(∂S)ψ∂

〈((F2)ψ∂
(∇F1)ψ∂

− (F1)ψ∂
(∇F2)ψ∂

) , N⊥
ψ∂

〉 dµg∂ .

In the above display, µg∂ stands for the volume measure on the parameter
space (∂S)ψ∂

of the boundary ∂S equipped with some chart or parametrization
ψ∂ : (∂S)ψ∂

�→ ∂S. We have also used the synthetic notation N⊥
ψ∂

= (N⊥ ◦ ψ∂),
(∇Fi)ψ∂

= (∇Fi) ◦ ψ∂ , and (Fi)ψ∂
= Fi ◦ ψ∂ .

Once again we implicitly assumed that the manifold S and its boundary ∂S can be
parametrized by a single map ψ and ψ∂ . More general situations can be handled using the
patching technique presented in (21.5) and (23.10).

23.4 Gradient flow models

23.4.1 Steepest descent model

As their name indicates, stochastic gradient flow models are the stochastic versions of the
well known steepest descent dynamical systems. Suppose we are given a manifold S. The
steepest descent evolution equation in a chart

φ : x ∈ S �→ φ(x) ∈ Sφ ⊂ Rp

is given by the dynamical system .
θt= −(∇gV )(θt)

with the Riemannian vector field gradient defined in (21.21). For Euclidian state spaces
S = Rp, the chart reduces to the identity mapping φ(x) = θ = x = φ−1(θ), and ∇gV = ∂V
is the traditional gradient.

We further assume that the manifold S = ϕ−1(0) is the null level set of a smooth function
ϕ : x ∈ Rr=p+q �→ Rq s.t. rank(∂ϕ(x)) = q, for any x ∈ Rr. Then for any 1 ≤ l ≤ q we
have

d

dt
ϕl(ψ(θt)) =

∑
1≤i≤p

(∂θi(ϕl ◦ ψ)) (θt)
.
θ
i

t

= −
∑

1≤i,j≤p

gi,j(θt)
∑

1≤k≤r

(∂xk
ϕl) (ψ(θt))

(
∂θiψ

k
)
(θt)

(
∂θjV

)
(θt)

= −
∑

1≤i,j≤p

gi,j(θt) 〈(∂ϕl) (ψ(θt)), (∂θiψ) (θt)〉︸ ︷︷ ︸
=0

(
∂θjV

)
(θt).

This shows that the gradient flow keeps the state xt in the constraint manifold at
any time t as soon as we start in the desired manifold. More formally, we have

x0 = ψ(θ0) ∈ S ⇒ ∀t ≥ 0 xt = ψ(θt) ∈ S.
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We also notice that

d

dt
V (θt) = −

∑
1≤i≤p

gi,j(θt) (∂θiV ) (θt)
(
∂θjV

)
(θt)

= −〈(∇gV )(θt), (∇gV )(θt)〉g(θt) = −
〈.
θt,

.
θt

〉
g(θt)

= −
∥∥∥.θt

∥∥∥
g(θt)

⇒ V (θt) ↓ .

23.4.2 Euclidian state spaces

We start with an elementary example. The distribution

π(dx) ∝ e−
x2

2σ2 dx

on R is reversible w.r.t. the Ornstein-Uhlenbeck semigroup Pt associated with the generator

L(f)(x) = − x

σ2
∂xf(x) + ∂2

xf(x).

A simple way to check this claim is to rewrite the generator as

L(f)(x) = e
x2

2σ2 ∂x

(
e−

x2

2σ2 ∂xf
)
(x).

By a simple integration by parts, we have
∫

e−
x2

2σ2 f(x) L(g)(x) dx =

∫
f(x) ∂x

(
e−

x2

2σ2 ∂xg
)
(x) dx

= −
∫

∂xf(x) e
− x2

2σ2 ∂xg(x) dx

=

∫
∂x

(
e−

x2

2σ2 ∂xf
)
(x) g(x) dx

=

∫
e−

x2

2σ2 L(f)(x) g(x) dx.

More generally, we let S be a finite set,

V : x = (xi)i∈S ∈ E = RS �→ V (x) ∈ [0,∞[

be a sufficiently smooth function that tends to infinity sufficiently fast when one of the
coordinates of x tends to infinity and σ, β ∈]0,∞[ be some given parameters.

The Boltzmann Gibbs measure

π(dx) ∝ e−
2β

σ2 V (x) λ(dx) (23.23)

where λ stands for the Lebesgue measure on E, is reversible w.r.t. the semigroup
Pt associated with the generator

L = −β ∇V · ∇+ 1
2 σ2 ¥

⇐⇒ L(f)(x) = 1
2 σ2

∑
i∈S ∂2

xi
f(x)− β

∑
i∈S ∂xi

V (x) ∂xi
f(x).

(23.24)
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Here again, a natural way to check this claim is to rewrite the generator as

L(f)(x) =
1

2
σ2 e2β/σ

2 V (x)
∑
i∈S

∂xi

(
e−2β/σ2 V (x) ∂xi

f
)
(x) (23.25)

and use an integration by part to check the desired reversibility property. The
stochastic gradient diffusion with generator L is given by

dXt = −β ∇V (Xt) dt+ σ dBt (23.26)

where Bt = (Bi
t)i∈S stands for a sequence of independent Brownian motions on

R. The stochastic process Xt is reversible w.r.t. the invariant probability measure
π(dx).

The reversibility property is clearly satisfied if we replace L by αL, for some given
parameter α > 0. The corresponding process Xt (with generator αL) is defined as in (23.26)
by replacing (β, σ2/2) by (αβ, ασ2/2). In particular, the reversibility property w.r.t. the
measure (23.23) is preserved if we replace (σ2/2, β) by

(
1, 2β

σ2

)
in (23.24). Notice that in

this case the proportionality factor is given by α−1 = 1
2 σ2 and the corresponding diffusion

is given by
dXt = −2β σ−2 ∇V (Xt) dt+

√
2 dBt.

23.5 Drift changes and irreversible Langevin diffusions
This section is concerned with drift changes that preserve the target measure but not the
reversibility property. We let S = ∪1≤i≤nSi be a partition of some finite set S. We consider
the potential function

V : x = (xi)i∈Si
∈ E = (R)S �→ V (x) =

∑
1≤i≤n

βi Vi(xi) ∈ [0,∞[

associated with a collection of parameters βi ≥ 0 and some sufficiently smooth functions

Vi : xi = (xi,j)j∈Si
∈ Ei = (R)Si �→ Vi(xi) ∈ [0,∞[.

We let L =
∑

1≤i≤n (Li + L−i) with the couple of generators (Li, L−i) defined by

Li(f)(x) : =
1

2
σ2
i e

2βi
σ2
i

Vi(xi) ∑
j∈Si

∂xi,j

(
e
− 2βi

σ2
i

Vi(xi)
∂xi,j

f

)
(x)

=
1

2
σ2
i

∑
j∈Si

∂2
xi,j

f(x)− βi

∑
j∈Si

∂xi,jVi(xi) ∂xi,jf(x)

and

L−i(f)(x) =


 ∑
k∈{1,...,n}−{i}

αk,i(xk)
∑
j∈Sk

∂xk,j
Vk(xk)


 ∑

j∈Si

∂xi,jf(x)

for some functions αk,j(xk). We set

∂xi
f(x) :=

∑
j∈Si

∂xi,j
f(x) πi(dxi) ∝ e−

∑
1≤i≤n βiVi(xi) λ(dxi)
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and
π(dx) ∝ e−

∑
1≤i≤n βiVi(xi)λ(dx).

It is now easy to check that for any k �= i and any function f with compact support, we
have
∫

e−βiVi(xi) αk,i(xk) ∂xk
Vk(xk) ∂xif(x) dxi

=

∫
πi(dxi) f(x) αk,i(xk) ∂xk

Vk(xk) ∂xi
Vi(xi)

⇒
∫

π(dx) L−i(f)(x) =

∫
π(dx) f(x)


 ∑
k∈{1,...,n}−{i}

αk,i(xk) ∂xk
Vk(xk)


 ∂xi

Vi(xi).

We conclude that

∑
1≤i≤n


 ∑
k∈{1,...,n}−{i}

αk,i(xk) ∂xk
Vk(xk)


 ∂xi

Vi(xi) = 0 ⇒ πL = 0. (23.27)

Let us examine some consequence of these results. We let E = E1 × E2 with E1 = RS

and E2 = RS for some finite set S. A generic state is defined by (x, y) ∈ (E1 × E2) with
x = (xi)i∈S and y = (yi)i∈S . We consider the generators

L1 :=
1

2
σ2
1

∑
i∈S

∂2
xi

−
∑
i∈S

[
α(1,1)(x, y)∂xiV1(x) + α(1,2)(y)∂yiV2(y)

]
∂xi

L2 : =
1

2
σ2
2

∑
i∈S

∂2
yi
−
∑
i∈S

[
α(2,1)(x)∂xi

V1(x) + α(2,2)(x, y)∂yi
V2(y)

]
∂yi

.

These generators rewritten in a slightly different form read as

L1 :=

[
1

2
σ2
1

∑
i∈S

∂2
xi

−
∑
i∈S

α(1,1)(x, y)∂xi
V1(x) ∂xi

]
− α(1,2)(y)

∑
i∈S

∂yi
V2(y) ∂xi

L2 : =

[
1

2
σ2
2

∑
i∈S

∂2
yi
−
∑
i∈S

α(2,2)(x, y)∂yi
V2(y) ∂yi

]
− α(2,1)(x)

∑
i∈S

∂xi
V1(x) ∂yi

.

In this situation, applying (23.27) to n = 2, we prove the following result.

Proposition 23.5.1 The Boltzmann Gibbs measure

π(d(x1, x2)) ∝ e−β1V1(x1)−β2V1(x2) λ(dx1) λ(dx2)

is an invariant measure of the semigroup associated with the generator L = L1+L2

as soon as the following conditions are satisfied:

∀i = 1, 2 α(i,i) =
1

2
σ2
i βi and α(1,2) + α(2,1) = 0.
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23.5.1 Langevin diffusions on closed manifolds

We consider the projected diffusion model (20.11) associated with a gradient b = ∂V of
some smooth function V : Rr �→ R. In the further development of this section, we assume
that the manifold S is smooth and closed (such as the sphere or the torus).

When σ = Id, we have Hσ = H and π(x)∂V (x) = ∇V (x) so that (20.11) can be
interpreted as the projection on the manifold of the Langevin diffusion; that is, we
have

dXt = π(Xt) (−∂V (Xt)dt+ dBt)−
1

2
H(Xt) dt

= −∇V (Xt) dt+

[
π(Xt) dBt −

1

2
H(Xt) dt

]
. (23.28)

In this particular situation, the generator (20.13) of Xt is given by

L(F ) =
1

2
∆F − 〈∇V,∇F 〉

(
with ∆F = tr

(
∇2F

))

=
1

2
e2V div

(
e−2V ∇F

)
.

The divergence formulation given above is checked using the fact that

∇
[
e−2V ∇F

]
= ∇

[
e−2V

]
[∇F ]

T
+ e−2V ∇ [∇F ]

and
∇
[
e−2V

]
= −2 e−2V ∇V

so that

div
(
e−2V ∇F

)
= tr

(
∇
[
e−2V ∇F

])

= −2 e−2V tr
(
∇V [∇F ]

T
)
+ e−2V tr ( ∇ [∇F ])

= −2 e−2V 〈∇V,∇F 〉+ e−2V ∆F.

The end of the proof is now clear.
For any smooth function F and any smooth vector field W ∈ T (S), we have

∫

S

F div (W ) dµS = −
∫

S

〈W,∇F 〉 dµS

where µS denotes the volume measure on S. This integration by part divergence theorem
(23.16) is proved in section 23.3.

We let η be the Boltzmann-Gibbs measure on S defined by

dη =
1

Z
e−2V dµS ,

with Z being a normalizing constant.
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Here we implicitly assumed that e−2V dµS ∈]0,∞[. In this notation,

2 Z
∫

S

F1 L(F2) dη =

∫

S

F1 e2V div
(
e−2V ∇F2

)
e−2V dµS

=

∫

S

F1 div
(
e−2V ∇F2

)
dµS

= −
∫

S

〈
e−2V ∇F2,∇F1

〉
dµS = −

∫

S

〈∇F1,∇F2〉 e−2V dµS .

This implies the reversibility property of L w.r.t. η. More precisely, we have the
formula

∫

S

F1 L(F2) dη = −1

2

∫

S

〈∇F1,∇F2〉 dη =

∫

S

L(F1) F2 dη.

23.5.2 Riemannian Langevin diffusions

We consider the projected Langevin diffusion model (23.28), and we set φ(Xt) = Θt. In
this situation,

dXk
t = −(∇χk)T (Xt)∂V (Xt) dt+

1

2
∆(χk)(Xt) dt+ (∇χk)T (Xt) dBt.

Arguing as in the proof of (22.5) and using Ito’s formula we have

dφi(Xt) = −
∑

1≤k≤r

(
∂xk

φi
)
(Xt)(∇χk)T (Xt) ∂V (Xt) dt

+
1

2

(
∆φi

)
(Xt)dt+

(
∇φi

)T
(Xt)dBt

= −
(
∇φi

)T
(Xt)(∂V )(Xt) dt+

1

2

(
∆φi

)
(Xt)dt+

(
∇φi

)T
(Xt) dBt. (⇐ (22.4))

Using the fact that Xt = ψ(Θt), we arrive at the equation

∀1 ≤ i ≤ q dΘi
t =

[
−
(
∇φi

)T
ψ
(Θt) (∂V )ψ(Θt) +

1

2

(
∆φi

)
ψ
(Θt)

]
dt+

(
∇φi

)T
ψ
(Θt) dBt.

Using (21.40) and (21.41), we can express these Riemannian Langevin equations in terms
of the Riemannian inner product g as follows:

(
∆φi

)
ψ

=
∑

1≤j≤p

1√
det(g)

∂θj

(√
det(g) gi,j

)

(
∇φi

)T
ψ

(∂V )ψ =
∑

1≤j≤p

gi,j
〈(
∂θjψ

)
, (∂V )ψ

〉

dΘi
tdΘ

j
t =

(
∇φi

)T
ψ
(Θt) dBtdB

T
t

(
∇φj

)
ψ
(Θt) =

〈(
∇φi

)
ψ
(Θt),

(
∇φj

)
ψ
(Θt)

〉
dt

= gi,j(Θt) dt =

〈 ∑
1≤k≤p

√
g−1

i

k(Θt) dB
k
t ,

∑
1≤l≤p

√
g−1

j

l (Θt) dB
l
t

〉
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with
〈(
∂θjψ

)
, (∂V )ψ(θ)

〉
=

∑
1≤k≤r

(
∂θjψ

k
)
(θ) (∂xk

V )ψ(θ)

= ∂θj (V ◦ ψ) (θ) =
(
∂θjU

)
(θ), where U = V ◦ ψ.

This yields

dΘi
t = −

∑
1≤j≤p

gi,j
(
∂θjU

)
(Θt) dt

+


 ∑
1≤k≤p

√
g−1

i

k(Θt) dB
k
t +

1

2

∑
1≤j≤p

1√
det(g(Θt))

∂θj

(√
det(g) gi,j

)
(Θt) dt




= − (∇gU)
i
(Θt) dt+ dB

i

t

with the d-dimensional Brownian motion Bt on the Riemannian manifold (a.k.a. in local
coordinates) defined for any 1 ≤ i ≤ p by

dB
i

t =
∑

1≤k≤p

√
g−1

i

k(Θt) dB
k
t +

1

2

∑
1≤j≤p

1√
det(g(Θt))

∂θj

(√
det(g) gi,j

)
(Θt) dt. (23.29)

Here
√
g−1

i

k denotes the (i, k)-entry of the square root matrix
√

g−1 of

g−1
(
=

√
g−1

√
g−1

)
.

Notice that

1
2

∑
1≤j≤p

1√
det(g)

∂θj

(√
det(g) gi,j

)

= 1
2

∑
1≤j≤p ∂θj

(
gi,j

)
+ 1

4

∑
1≤j≤p gi,j tr

(
g−1∂θjg

)
.

This shows that
dΘt = − (∇gU) (Θt) dt+ dBt. (23.30)

Alternatively, in terms of the potential function U ′ defined by

e−2U ′
:= e−2U

√
det(g) ⇐⇒ U ′ = U − 1

4
log det(g(θ))

we have

dΘt =

=−(∇gU
′)︷ ︸︸ ︷

− (∇gU) +
1

4

∑
1≤j≤p

gi,j tr
(
g−1∂θjg

)

(Θt)dt

+
1

2

∑
1≤j≤p

∂θj
(
gi,j

)
(Θt) dt+

∑
1≤k≤p

√
g−1

i

k(Θt) dB
k
t .

(23.31)
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Arguing as in (22.2), and recalling that

〈∂f,∇gU〉 = 〈∇gf,∇gU〉g ,

we check that the generator L of Θt is given by

L(f) = −〈∇gf,∇gU〉g +
1

2
∆g(f) = −〈∇gf,∇gU〉g +

1

2
divg (∇g(f))

= −〈∇gf,∇gU〉g +
1

2

∑
1≤i≤p

1√
det(g)

∂θi

(√
det(g) (∇gf)

i
)

(⇐ (21.48))

=
1

2
e2U

∑
1≤i≤p

1√
det(g)

∂θi

(
e−2U

√
det(g) (∇gf)

i
)
.

The above Sturm-Liouville formula can be rewritten in terms of the divergence
operator

L(f) = 1

2
e2U divg

(
e−2U ∇g(f)

)
.

We consider the Riemannian volume measure µg and the Boltzmann-Gibbs measure η
on Sψ defined by

µg(dθ) =
√

det(g(θ)) dθ and η(dθ) =
1

Z
e−2U(θ) µg(dθ) =

1

Z
e−2U ′(θ) dθ,

with the normalizing constant

Z =

∫
e−2U(θ) µg(dθ) =

∫
e−2U ′(θ) dθ.

For any smooth functions f1, f2 with compact support, using a simple integration by
parts we have
∫

f1(θ) L(f2)(θ) e−2U(θ) µg(dθ) = −1

2

∑
1≤i≤p

∫
∂θi(f1)(θ) (∇gf2)

i(θ) e−2U(θ) µg(dθ)

= −1

2

∫
〈(∇gf1)(θ), (∇gf2)(θ)〉g(θ) e

−2U(θ) µg(dθ).

This shows that L is reversible w.r.t. η, that is,
∫

f1(θ) L(f2)(θ) η(dθ) = −1

2

∑
1≤i≤p

∫
〈(∇gf1)(θ), (∇gf2)(θ)〉g(θ) η(dθ)

=

∫
L(f1)(θ) f2(θ) η(dθ).
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23.6 Metropolis-adjusted Langevin models
The choice of the time discretization schemes is extremely important. For instance, a simple
Euler type discretization model may fail to transfer the desired regularity properties of the
continuous model to the discrete time model.

We illustrate this assertion with a discussion on an overdamped Langevin diffusion on
an energy landscape associated with a given energy function V ∈ C2(Rd,R+) on E = Rd

for some d ≥ 1. This model is defined by the diffusion equation

dXt = −β ∇V (Xt) +
√
2 dWt (23.32)

where ∇V denotes the gradient of V , β is an inverse temperature parameter, and Wt

is a standard Brownian motion on Rd. The infinitesimal generator associated with this
continuous time process is given by the second order differential operator

Lβ = −β ∇V · ∇+¥.

Under some regularity conditions on V , the diffusion X ′
t is geometrically ergodic with an

invariant measure given by

dπβ =
1

Zβ
e−βV dλ,

where λ stands for the Lebesgue measure on Rd, and Zβ is a normalizing constant.
As usual, in the continuous time framework, to find some feasible solution we need to

introduce a time discretization scheme. To this end, we let Wn+1 be a sequence of centered
and standardized Gaussian variables on Rd.

Firstly, starting from some random state Xn, we propose a random state Yn+1

using the Euler scheme

Yn+1 = Xn − β ∇V (Xn)/m+
√

2/m Wn+1. (23.33)

Then, we accept this state Xn+1 = Yn+1 with probability

1 ∧
(
e−β(V (Yn+1)−V (Xn)) × pm(Yn+1,Xn)

pm(Xn,Yn+1)

)
.

Otherwise, we stay in the same location Xn+1 = Xn.

In the above display, the function pm denotes the probability density of the Euler scheme
proposition

pm(x, y) =
1

(4π/m)d/2
exp

(
−m

4
‖y − x+ β ∇V (x)/m‖2

)
.

The resulting Markov chain model Xn is often referred to as the Metropolis-adjusted
Langevin algorithm (abbreviated (MALA)). One of the main advantages of the above con-
struction is that the Markov chain Xn is reversible w.r.t. to πβ , and it has the same fixed
point πβ as the continuous time model. Without the acceptance-rejection rate, the Markov
chain (23.33) reduces to the standard Euler approximation of the Langevin diffusion model
(23.32). In this situation, the Markov chain may even fail to be ergodic, when the vector
field ∇V is not globally Lipschitz [232, 191]. We refer the reader to [31, 135, 232, 233, 262]
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for further details on the stochastic analysis of these Langevin diffusion models. We also
mention that the Euler scheme diverges in many cases, even for uniformly convex functions
V . At the cost of some additional computational effort, a better idea is to replace (23.33)
by the implicit backward Euler scheme given by

Yn+1 + β ∇V (Yn+1)/m = Xn +
√
2/m Wn+1.

23.7 Stability and some functional inequalities
We let S = ϕ−1(0) ⊂ Rr=p+1 be some hypersurface, and we let π and H be the projection
matrix and the mean curvature vector described in definition 20.1.1. We assume that
T (S) = Vect (V1, . . . , Vp) for some basis vector fields satisfying the commutation property
(19.15). We let L be a second order operator of the form

L =
1

2
∆ −∇W

for some vector field W on T (S). In this situation, we recall that

ΓL(F, F ) = 〈∇F,∇F 〉 .

We let Pt be the transition semigroup associated with the Markov process on S with gen-
erator L, that is,

Pt(F )(x) = E(F (Xt) | X0 = x) and
∂

∂t
Pt(F ) = LPt(F ).

This implies that

∂

∂t
ΓL [Pt(F ), Pt(F )] =

∂

∂t
〈∇Pt(F ),∇Pt(F )〉

= 2 〈∇Pt(F ),∇L(Pt(F ))〉 = 2 ΓL [Pt(F ), L(Pt(F ))]

and therefore

L (ΓL [Pt(F ), Pt(F )])− ∂

∂t
ΓL [Pt(F ), Pt(F )] = Γ2,L [Pt(F ), Pt(F )] . (23.34)

We consider the interpolating function

s ∈ [0, t] �→ a(s) := PsΓL [Pt−s(F ), Pt−s(F )]

between

a(0) = ΓL [Pt(F ), Pt(F )] = ‖∇Pt(F )‖2 and a(t) = PtΓL [F, F ] = Pt

(
‖∇F‖2

)
.

By (23.34) we have
a′(s) = Ps (Γ2,L [Pt−s(F ), Pt−s(F )]) .

Using the Bochner-Lichnerowicz formula presented in (19.98) we have

Γ2,L(F, F ) =
∥∥∇2F

∥∥2 + Ric (∇F,∇F ) + 2 (∇W )sym (∇F,∇F ) (23.35)
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with the symmetric bilinear form (∇W )sym defined in (19.98) and the Ricci curvature of the
manifold discussed in section 19.8.

Assuming that

∃ρ > 0 : Γ2,L(F, F ) ≥ ρ ΓL(F, F ) ⇒ a′(s) ≥ ρ a(s) ⇒ a(0) ≤ e−ρt a(t)
(23.36)

we readily conclude that

‖∇Pt(F )‖2 ≤ e−ρt Pt

(
‖∇F‖2

)
.

The l.h.s. condition in (23.36) allows us to apply Grownwall’s inequality based on the
key Bochner-Lichnerowicz formula. In probability and statistic literature, this condition is
often called the Bakry-Emery criterion [9].

Rewritten in terms of ΓL we have proved that

ΓL (Pt(F ), Pt(F )) ≤ e−ρt Pt (ΓL (F, F )) . (23.37)

We consider the interpolating sequence

t ∈ [0, t] �→ â(s) := Ps

(
(Pt−s(F ))

2
)

between
â(0) := (Pt(F ))

2 and â(t) := Pt

(
F 2

)
.

It is readily checked that

â′(s) =
∂Ps

∂s

(
(Pt−s(F ))

2
)
+ Ps

(
∂

∂s
(Pt−s(F ))

2

)

= Ps

(
L
[
(Pt−s(F ))

2
])

− 2Ps (Pt−s(F ) L [Pt−s(F )])

= Ps (ΓL [Pt−s(F ), Pt−s(F )]) ≤ e−ρ(t−s) Pt (ΓL (F, F )) . ⇐ (23.37)

This yields the Poincaré inequality for the Markov semigroup

Pt

(
F 2

)
− (Pt(F ))

2 ≤ 1

ρ

[
1− e−ρt

]
Pt (ΓL (F, F )) .

Suppose that Pt(F ) →t→∞ π(F ) for some invariant measure π = πPt (⇒ πL = 0). In
this situation, we check that π satisfies the Poincaré inequality

π
(
F 2

)
− (π(F ))

2 ≤ 1

ρ
π
[
‖∇F‖2

] (
=

1

ρ
π (ΓL (F, F ))

)
. (23.38)

Following the development provided in section 17.6, let us examine some more or less
direct consequences of (23.38). A simple derivation shows that

d

dt
π
[
(Pt(F ))

2
]

= 2 π

[
Pt(F )

∂

∂t
Pt(F )

]
= 2 π [Pt(F ) L (Pt(F ))]

= −π (ΓL [Pt(F ), Pt(F )]) (⇐ πL = 0)

≤ −ρ π
(
(Pt(F ))

2
)

⇐ (23.38)
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for any function F such that π(F ) = 0.

This clearly implies the exponential decay to equilibrium

π
[
(Pt(F )− π(F ))

2
]
≤ e−ρt π

[
(F − π(F ))2

]
.

For a further discussion on Poincaré inequalities and their applications in the stability
analysis of Markov processes, we refer the reader to exercise 258 in the context of the
Ornstein-Uhlenbeck process, and to exercise 259 for exponential limiting distributions.

For instance, the regularity condition in the l.h.s. of (23.35) is met when the
bilinear forms induced by Ric and (∇W )sym satisfy the minorization condition

Ric (∇F,∇F ) + 2 (∇W )sym (∇F,∇F ) ≥ ρ 〈∇F,∇F 〉 = ρ ΓL(F, F ). (23.39)

In view of (19.86), this condition is also met when the smallest eigenvalues λ(x) of
the matrices Ric (πi(x), πj(x)) + (∇W )sym(x) are lower bounded by some param-
eter ρ. Using (19.85) this minorization condition is also satisfied for any Einstein
manifold. For gradient vector fields W = ∇V , the regularity condition (23.39) is
expressed in terms of the bilinear form induced by second covariant derivative of
the function V , that is,

Ric (∇F,∇F ) + 2 ∇2V (∇F,∇F ) ≥ ρ 〈∇F,∇F 〉 .

Notice that
(23.39) ⇒ Γ2,L(F, F ) ≥ ρ ΓL(F, F ) +

∥∥∇2F
∥∥2

which by (19.58) yields

Γ2,L(F, F )− ρ ΓL(F, F ) ≥
∥∥∇2F

∥∥2 ≥ 1

4

‖∇〈∇F,∇F 〉‖2

‖∇F‖22

or equivalently

Γ2,L(F, F )− 1

4

‖∇〈∇F,∇F 〉‖2

‖∇F‖22
≥ ρ ΓL(F, F ). (23.40)

In probability theory, the norm ‖∇〈∇F,∇F 〉‖ is often rewritten in terms of the ΓL

bilinear form

‖∇〈∇F,∇F 〉‖2 = 〈∇〈∇F,∇F 〉,∇〈∇F,∇F 〉〉 = ΓL(〈∇F,∇F 〉, 〈∇F,∇F 〉)
= ΓL (ΓL (F, F ) ,ΓL (F, F )) .

In this notation, we have the equivalent inequality

Γ2,L(F, F )− 1

4

ΓL (ΓL (F, F ) ,ΓL (F, F ))

ΓL (F, F )
≥ ρ ΓL(F, F ).

By applying the formula (19.100) to the function h(u) =
√
u, for any 0 ≤ s ≤ t we find
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that
L {h [ΓL (Pt−s(F ), Pt−s(F ))]}

= 1
2

1√
ΓL(Pt−s(F ),Pt−s(F ))

L (ΓL (Pt−s(F ), Pt−s(F )))

− 1√
ΓL(Pt−s(F ),Pt−s(F ))

1
4
ΓL[ΓL[Pt−s(F ),Pt−s(F )],ΓL[Pt−s(F ),Pt−s(F )]]

ΓL(Pt−s(F ),Pt−s(F )) .

Using the interpolating function

a(s) := Ps (h [ΓL (Pt−s(F ), Pt−s(F ))])

between

a(0) =
√
ΓL [Pt(F ), Pt(F )] = ‖∇Pt(F )‖ and a(t) = Pt

√
ΓL [F, F ] = Pt (‖∇F‖)

we find that

a′(s) = Ps (L {h [ΓL (Pt−s(F ), Pt−s(F ))]})

− 1
2 Ps

(
1√

ΓL(Pt−s(F ),Pt−s(F ))
ΓL [Pt−s(F ), L(Pt−s(F ))]

)

= 1
2 Ps

(
1√

ΓL(Pt−s(F ),Pt−s(F ))

×
{
Γ2,L [Pt−s(F ), Pt−s(F )]− 1

4
ΓL[ΓL[Pt−s(F ),Pt−s(F )],ΓL[Pt−s(F ),Pt−s(F )]]

ΓL(Pt−s(F ),Pt−s(F ))

})
.

Using (23.40) we find that 2 a′(s) ≥ ρ a(s) from which we deduce that

(23.39) =⇒ ‖∇Pt(F )‖ ≤ e−ρ t/2 Pt (‖∇F‖) .

23.8 Exercises
Exercise 408 (Gradient flows - Gradient estimates) We let W ∈ T (S) be a vector
field on the tangent space of some manifold S embedded in Rr, for some r ≥ 1. We let
t ∈ [0,∞[ �→ Cx(t) be some curve in S starting at some location Cx(0) = x and such that.
Cx (t) = W (Cx(t)). For any smooth function F on Rr check that

1

2
∂t‖∇F (Cx(t))‖2 =

〈
∇F (Cx(t)), (∇2F )(Cx(t)) W (Cx(t))

〉
.

We further assume that W = −∇F for some smooth function s.t. ∇2F ≥ λ Id (in the
sense that 〈W,∇2F (W )〉 ≥ λ 〈W,W 〉, for any W ∈ T (S)). In this situation, check that

‖∇F (Cx(t))‖ ≤ e−λt ‖∇F (x)‖.

Deduce that
0 ≤ F (x)− F (Cx(t)) ≤

1

2λ
‖∇F (x)‖2.
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Exercise 409 (Lagrange indentity) We consider r-dimensional vectors U =
(
U i

)
1≤i≤r

and V =
(
V i

)
1≤i≤r

∈ Rr. Prove that

U ∧ V =
∑

1≤i<j≤r

(
U iV j − U jV i

)
(ei ∧ ej)

with the r unit basis vectors (ei)1≤i≤r of Rr. Deduce the Lagrange identity

‖U ∧ V ‖2 + |〈U, V 〉|2 = ‖U‖2 × ‖V ‖2 .

Exercise 410 (Volume of parallepiped) We consider the parallepiped P(W1,W2,W3)
in R3 formed by three independent vectors W1,W2,W3 ∈ R3. Check the volume formula

Volume (P(W1,W2,W3)) = |〈W1 ∧W2,W3〉| = |det (W1,W2,W3)〉| .

Exercise 411 (Geodesics on the sphere) Describe the geodesics on the unit 2-sphere
(we can use the Christoffell symbols associated with spherical coordinates derived in sec-
tion 24.1.2).

Exercise 412 (Arc length of a curve) We consider a surface S ⊂ R3 parametrized by
a function θ = (θ1, θ2) ∈ Sψ �→ ψ(θ) =

(
ψi(θ)

)
1≤i≤3

. Compute the arc length s =∫ b

a
‖C(t)‖ dt of some curve C : t ∈ [a, b] �→ C(t) ∈ S in terms of the Riemannian

scalar product g associated with the parametrization ψ. Compute the lengths L(C, [a, b]) of
a curve C : t ∈ [a, b] �→ C(t) = ψ(c(t)) ∈ S on the cylinder S defined by x2

1 + x2
2 = r and

x3 ∈ R, equipped with the polar parametrization

θ = (θ1, θ2) �→ ψ(θ) =




ψ1(θ) = r cos(θ1)
ψ2(θ) = r sin(θ1)
ψ3(θ) = θ2

in terms of the velocity vector of a curve c(t) in Sψ. Compute the length of the curves
C0(t) = ψ(β, rαt), C1(t) = ψ(αt, β) and C2(t) = ψ(αt2, β) for given parameters α, β.

Exercise 413 (Surface of the disk) We consider the disk S and its polar coordinates ψ
on Sψ =]0, 1[×]0, 2π[ discussed in (23.17). We let W ∈ T (S). Using (21.14) compute the
vector field V ∈ T (Sψ) such that

W ◦ ψ = V 1 ∂θ1ψ + V 2 ∂θ1ψ.

When W (x) = 1
2

(
x1

x2

)
deduce that

∫
Sψ

divg(V ) dµg = π R2.

Exercise 414 (Volume of 3-ball) We consider the 3-dimensional ball and the 2-sphere
boundary

B = {x = (x1, x2, x3) : x2
1+x2

2+x3
3 ≤ r2} ⇒ ∂B = S = {x = (x1, x2, x3) : x2

1+x2
2+x3

3 = r2}

for some radius r > 0. Applying the divergence theorem (23.16) to the vector field W (x) =
1
3 (x1, x2, x3)

T compute the volume of the 3-ball given by

µB (B) =
∫

S
〈W,N⊥〉 dµS =

4r3π

3
.

Check that µB (B) = r
3 µS (S), and µS (S) = 4r2π.
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Exercise 415 (Volume and surface measures) We parametrize the 3-ball B discussed
in exercise 414 with the spherical coordinates

ψ0(θ0, θ1, θ2) =




r(1− θ0) sin(θ1) cos(θ2)
r(1− θ0) sin(θ1) sin(θ2)

r(1− θ0) cos(θ1)




with (θ0, θ1, θ2) ∈ ([0, 1] × [0, π] × [0, 2π[). We also denote by ψ(θ1, θ2) = ψ0(0, θ1, θ2) the
spherical parametrization of the sphere S = ∂B. We denote by g and g∂ the corresponding
Riemannian metric on B and its boundary ∂B. Check that

µg(d(θ0, θ1, θ2)) = r (1− θ0)
2 dθ0 µg∂ (d(θ1, θ2)) with µg∂ (d(θ1, θ2)) := r2 sin(θ1)dθ1dθ2.

We let n⊥(θ1, θ2) be the unit outward pointing normal to the sphere at the point ψ(θ1, θ2).
Check that

µg(d(θ0, θ1, θ2)) =
〈
−∂θ0ψ0, n

⊥〉 dθ0 × ‖(∂θ1ψ0 ∧ ∂θ2ψ0)‖ dθ1dθ2.

Exercise 416 (Gauss theorem for the ball) We consider the 3-ball B discussed in ex-
ercise 414 with the spherical coordinates presented in exercise 415. We use the same notation
as in exercise 415. Using (21.14) check that any vector field W on B takes the form

W ◦ ψ0 = V 0 ∂θ0ψ0 + V 1 ∂θ1ψ0 + V 2 ∂θ2ψ0

for some vector field V =
(
V i

)
0≤i≤2

on the product space ([0, 1] × [0, π] × [0, 2π]). Check
that 〈

(W ◦ ψ) (θ1, θ2),
(
N⊥ ◦ ψ

)
(θ1, θ2)

〉
= −r V 0(0, θ1, θ2)

where stands for the unit outward-pointing normal vector field to the sphere S = ∂B. Prove
that

∀i = 0, 1, 2 V i(θ0, θ1, 0) = V i(θ0, θ1, 2π).

Without using Gauss’ theorem, show that
∫ 2π

0

[∫ π

0

[∫ 1

0

∂θ0

(
V 0

√
det(g)

)
dθ0

]
dθ1

]
dθ2

= −r3
∫ 2π

0

[∫ π

0

V 0(0, θ1, θ2) sin (θ1)dθ1

]
dθ2.

Deduce Gauss’ theorem
∫

Bψ0

divg(V ) dµg =

∫

∂B
〈W,N⊥〉 dµ∂B.

Exercise 417 (Langevin equation) The velocity of a one-dimensional particle Xt of
mass m in a viscous medium is represented by the Langevin diffusion process

m dXt = − b Xt dt + σ dWt

where Wt stands for the standard Brownian motion. The parameter b is the friction coeffi-
cient. The latter depends on the geometry of the particle and the viscosity of the medium.
The Brownian motion represents the random force.

• Find an explicit representation of Xt in terms of t and (Ws)s≤t.
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• Describe the invariant probability measure of the diffusion Xt.

• We let W be the Wasserstein distance associated with the metric d(x, y) = |x − y| (cf.
definition 8.3.8). Check that

W (Law(Xt), π) ≤ e−t(b/m)

(
E(X0) +

σ2

2mb
e−(b/m)t

)
.

Exercise 418 (Projected Langevin equation) We let µS be the volume measure on the
unit sphere S2 = {(x1, x2, x3) ∈ R3, x2

1+x2
2+x2

3 = 1} and π be the Boltzmann-Gibbs measure
on S defined by

dπ =
1

Z
e−2xTAx dµS

for some normalizing constant Z < ∞ and some matrix A. Find a diffusion equation on
S2 with reversible measure π.

Exercise 419 (Riemannian Langevin equation) We let µg be the Riemannian volume
measure on the unit sphere S2 equipped with the spherical coordinates

ψ : θ = (θ1, θ2) ∈ Sψ = ([0, π]× [0, 2π])

�→ ψ(θ1, θ2) = (sin(θ1) cos(θ2), sin(θ1) sin(θ2), cos(θ1)) .

We let η be the Boltzmann-Gibbs measure on Sψ defined by

η(d(θ1, θ2)) =
1

Z
e−2ψ(θ)TAψ(θ) sin(θ1) dθ1dθ2

for some normalizing constant Z < ∞ and some matrix A. Find a diffusion equation on
Sψ with reversible measure η.

Exercise 420 (Kinetic Langevin diffusion) Let UX and UV be some non-negative and
smooth potential functions on R s.t.

∫
e−UX(x) dx and

∫
e−UV (v) dv ∈]0,∞[. We let

(πX , πV ) be the Boltzmann-Gibbs probability measures given by πX(dx) ∝ e−UX(x)dx and
πV (dv) ∝ e−UV (v)dv. For any given ε ∈ {−1,+1}, we let X ε

t := (Xt, Vt) be the diffusion
given by {

dXt = ε ∂vU
V (Vt) dt

dVt = −
[
∂vU

V (Vt) + ε ∂xU
X(Xt)

]
dt+

√
2 dWt

where Wt stands for a Brownian motion. Compute the generator Lε of X ε
t . Check that

π(gLε(f)) = π(fL−ε(g)) and deduce that π(d(x, v)) = πX(dx)πV (dv) is Lε-invariant. Ap-
plications of these kinetic Langevin samplers in computational physics are discussed in sec-
tion 27.1.2 (see also section 23.4.2 for a more detailed discussion on these non-reversible
kinetic samplers).



24
Some illustrations

The first part of this chapter presents some illustrations of the main mathematical objects
and geometrical models discussed in earlier chapters. We provide worked out and detailed
examples of chart and parametric spaces for some classical manifolds such as the circle,
the sphere and the torus. In each case, we present a detailed derivation of the mean
curvature vectors, the Riemannian metrics, the geodesics, the Christoffel symbols, and the
Ricci curvature. The second part of the chapter presents selected applications of Riemannian
geometry to statistics and physics.

It is always more easy to discover and proclaim general principles than to apply them.
Winston S. Churchill (1874-1965).

24.1 Prototype manifolds

24.1.1 The circle

The prototype of hypermanifold is the

unit circle S = S1 ⊂ R2 � x =

(
x1

x2

)
de-

scribed as the null level set S = ϕ−1(0) of the
function

ϕ(x) = (x2
1+x2

2−1)/2 ⇒ (∂ϕ)(x) = x =

(
x1

x2

)
.

The orthogonal projection π⊥ onto the nor-
mal axis T⊥

x (S) = Vect ((∂ϕ)(x)) at x ∈ S is
given by the formula

π⊥(x) =
(∂ϕ) (x) (∂ϕ)

T
(x)

(∂ϕ) (x)T (∂ϕ) (x)
=

xxT

xTx
=

1

x2
1 + x2

2

(
x2
1 x1x2

x2x1 x2
2

)
,

and the orthogonal projection on Tx(S) is defined by π(x) = Id − π⊥(x). The (mean)
curvature vector H defined by (20.2) on the circle is simply

∀x �= 0 H(x) =


 ∑
1≤m≤2

∂xm

(
xm√
x2
1 + x2

2

)
 x√

x2
1 + x2

2

=
x

‖x‖2
.
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We check this claim using

∂x1

(
x1√

x2
1 + x2

2

)
=

1√
x2
1 + x2

2

[
1− x2

1

(x2
1 + x2

2)

]

⇒ div⊥

(
∂ϕ

‖∂ϕ‖2

)
=

∑
1≤m≤2

∂xm

(
xm√
x2
1 + x2

2

)
=

1√
x2
1 + x2

2

.

The circle S−{(1, 0)} can be parametrized by the polar angle mapping ψ : θ ∈]0, 2π[ �→
S − {(1, 0)}

ψ(θ) =

(
cos(θ)
sin(θ)

)
=⇒ (∂θψ)(θ) =

(
− sin(θ)
cos(θ)

)

so that

Tx(S) = Vect
(
(∂θψ)φ(x)

)
with (∂θψ)φ(x) =

(
− sin(θ)
cos(θ)

)

θ=φ(x)

=

(
−x2

x1

)
.

The Riemannian metric on Sψ =]0, 2π[ ⇒ T (Sψ) = R = Vect(1) reduces to

g(θ) = 〈(∂θψ)(θ), (∂θψ)(θ)〉 = 1 = g(θ)−1 ⇒ (∇φ)ψ = ∂θψ. (24.1)

Using (19.71) and (19.42) for any smooth function F on S � x we have

div⊥ (∂ϕ) = ∂x1
(∂x1

ϕ) + ∂x2
(∂x2

ϕ) = 2

and therefore
1

2
∆F = tr

(
π∂2F

)
− 〈∂ϕ, ∂F 〉 .

In addition, we have

(∂θ,θψ)(θ) = −
(

cos(θ)
sin(θ)

)
∈ T⊥(S) ⇒ C1

1,1 = 0 and (∆φ)ψ = 0. (24.2)

The geodesics cθ(t) := Expθ(tV ), with V (θ) ∈ R are given by
..
c θ (t) = 0 ⇒ .

cθ (t) = V (θ)

⇒ cθ(t) = t V (θ) + θ ⇒ Cx(t) = ψ(cθ(t)) =

(
cos(t V (θ) + θ)
sin(t V (θ) + θ)

)
.

24.1.2 The 2-sphere

The unit sphere S = S2 ⊂ R3 � x =




x1

x2

x3


 is described as the null level set S = ϕ−1(0)

of the function ϕ(x) = (x2
1 + x2

2 + x2
3 − 1)/2. Now

(∂ϕ)(x) = x =




x1

x2

x3




and we notice that (∂ϕ)(x) is the unit normal at any state x ∈ S. Thus, the orthogonal
projection π⊥ onto the normal axis T⊥

x (S) = Vect ((∂ϕ)(x)) at x ∈ S is given by the formula

π⊥(x) = (∂ϕ) (x) (∂ϕ)
T
(x) = xxT =




x2
1 x1x2 x1x3

x2x1 x2
2 x2x3

x3x1 x2x2 x2
3
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and the orthogonal projection on Tx(S) is defined by

π(x) = Id− π⊥(x) =




1− x2
1 −x1x2 −x1x3

−x2x1 1− x2
2 −x2x3

−x3x1 −x2x2 1− x2
3


 .

The sphere S can be parametrized by the spherical coordinates mapping ψ : θ = (θ1, θ2) ∈
([0, π]× [0, 2π[) �→ S

ψ(θ) =




sin(θ1) cos(θ2)
sin(θ1) sin(θ2)

cos(θ1)


 = (∂ϕ)ψ(θ).

The first coordinate θ1 is called the colatitude angle (a.k.a. zenith or normal angle or
inclination, the latitude is the angle (π2 − θ1)), and the second θ2 is called the azimuthal
angle. We have

∂θ1ψ(θ) =




cos(θ1) cos(θ2)
cos(θ1) sin(θ2)

− sin(θ1)




and

∂θ2ψ(θ) =




− sin(θ1) sin(θ2)
sin(θ1) cos(θ2)

0


 = − sin(θ1)




sin(θ2)
− cos(θ2)

0




so that

∂θ1ψ(θ) ∧ ∂θ2ψ(θ) = sin(θ1)




sin(θ1) cos(θ2)
sin(θ1) sin(θ2)

cos(θ1)


 = sin(θ1) (∂ϕ)ψ(θ) ∈ T⊥(S).

This implies that

Tx(S) = Vect
(
(∂θ1ψ)φ(x), (∂θ2ψ)φ(x)

)
and T⊥

x (S) = Vect ((∂ϕ) (x)) .

The Riemannian metric on Sψ = ([0, π]× [0, 2π[) is given by

g1,1(θ) = 〈(∂θ1ψ)(θ), (∂θ1ψ)(θ)〉 = 1

g2,2(θ) = 〈(∂θ2ψ)(θ), (∂θ2ψ)(θ)〉 = sin2(θ1)

g1,2(θ) = g2,1(θ) = 〈(∂θ1ψ)(θ), (∂θ2ψ)(θ)〉 = 0.

Up to the top and bottom points (θ1 ∈ {0, π}), we have

g−1(θ) =

(
1 0
0 sin−2(θ1)

)
.

Our next objective is to compute the Christoffel symbols Cn
i,j introduced in (21.32). To this

end, we notice that

∂θ1,θ2ψ(θ) =




− cos(θ1) sin(θ2)
cos(θ1) cos(θ2)

0


 = cos(θ1)

sin(θ1)
× ∂θ2ψ(θ)

⇒ C1
1,2 = 0 = C1

2,1 and C2
1,2(θ) = C2

2,1(θ) =
cos(θ1)
sin(θ1)

.
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In much the same way, we have

∂θ1,θ1ψ(θ) =




− sin(θ1) cos(θ2)
− sin(θ1) sin(θ2)

− cos(θ1)


 = −(∂ϕ)ψ(θ) ⇒ ∀k ∈ {1, 2} Ck

1,1 = 0

∂θ2,θ2ψ(θ) =




− sin(θ1) cos(θ2)
− sin(θ1) sin(θ2)

0


 = − sin(θ1)




cos(θ2)
sin(θ2)

0


 .

In addition, it is readily checked that

∂θ2,θ2ψ(θ) ⊥ ∂θ2ψ(θ) ⇐⇒ 〈∂θ2,θ2ψ(θ), ∂θ2ψ(θ)〉 = 0 ⇒ C2
2,2 = 0

and
C1

2,2(θ) = 〈∂θ2,θ2ψ(θ), ∂θ1ψ(θ)〉 = − sin(θ1) cos(θ1) = −1

2
sin (2θ1).

To compute the Ricci curvature R of the sphere, we use the matrix decomposition
(21.54). In this situation,

C1 =

(
0 0
0 cot (θ1)

)
and C2 =

(
0 − 1

2 sin (2θ1)
cot (θ1) 0

)
⇒ t(C) =

(
cot (θ1)

0

)
.

This implies that

T =

(
− 1

sin2 (θ1)
0

0 0

)
.

We also readily check that

C1C1 =

(
0 0
0 cot2 (θ1)

)
, C1C2 =

(
0 0

cot2 (θ1) 0

)
, C2C1 =

(
0 − cos2 (θ1)
0 0

)

and C2C2 = −
(

cos2 (θ1) 0
0 cos2 (θ1)

)
. Taking the traces of each of these matrices we

find that

E =

(
cot2 (θ1) 0

0 −2 cos2 (θ1)

)
.

On the other hand, we have

C1,1 =

(
0
0

)
, C1,2 = C2,1 =

(
0

cot (θ1)

)
and C2,2 =

(
− 1

2 sin (2θ1)
0

)
.

This implies that

B =

(
0 0
0 − cos2 (θ1)

)
, div(C1,1) = 0 = div(C1,1) and div(C2,2) = 1− 2 cos2 (θ1)

from which we find

S =

(
0 0
0 1− 2 cos2 (θ1)

)
.

Combining together, we conclude that

R ◦ ψ = B − E + S − T =

(
1 0
0 sin2 (θ1)

)
.
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Notice that R = g. Riemannian manifolds with Ricci curvatures proportional to the metric
are called Einstein spaces or Einstein manifolds.

Using (21.43),

(∆φ1)ψ(θ) = −
∑

1≤i,j≤2

C1
i,j(θ) g

i,j(θ) = −
C1

2,2(θ)

sin2(θ1)
=

cos(θ1)

sin(θ1)
= cot (θ1),

(∆φ2)ψ(θ) = 0 (24.3)

and by (21.10) we have

(∇φ1)ψ(θ) =
∑

1≤j≤2

g1,j(θ)
(
∂θjψ

)
(θ) = (∂θ1ψ) (θ)

(∇φ2)ψ(θ) =
∑

1≤j≤2

g2,j(θ)
(
∂θjψ

)
(θ)

=
1

sin2(θ1)
(∂θ2ψ) (θ) =

1

sin(θ1)




− sin(θ2)
cos(θ2)

0


 . (24.4)

The geodesics cθ(t) := Expθ(tV ) =

(
c1θ(t)
c2θ(t)

)
, with V (θ) ∈ R2 satisfy the differential

equations 


..
c
1

θ (t) = sin(c1θ(t)) cos(c
1
θ(t))

.
c
2

θ (t)
.
c
2

θ (t)

..
c
2

θ (t) = −2
cos(c1θ(t))

sin(c1θ(t))

.
c
1

θ (t)
.
c
2

θ (t)

with initial conditions
cθ(0) = θ and

.
cθ (0) = V (θ).

These equations cannot be solved explicitly, and we need to resort to some numerical ap-
proximation. The second equation can be rewritten as

d

dt

(.
c
2

θ (t) sin2(c1θ(t))
)

=
..
c
2

θ (t) sin2(c1θ(t)) + 2 sin(c1θ(t)) cos(c
1
θ(t))

.
c
1

θ (t)
.
c
2

θ (t)

= −2
cos(c1θ(t))

sin(c1θ(t))
sin2(c1θ(t))

.
c
1

θ (t)
.
c
2

θ (t)

+2 sin(c1θ(t)) cos(c
1
θ(t))

.
c
1

θ (t)
.
c
2

θ (t) = 0.

This shows that .
c
2

θ (t) sin2(c1θ(t)) =
.
c
2

θ (0) sin2(c1θ(0)).

The geodesics Cx(t) := Expx(tW ) have a more explicit description given by the equations

Expx(tW ) = cos (t‖W (x)‖) x+ sin (t‖W (x)‖) W (x)

‖W (x)‖
.

We readily check that Cx(t) satisfies the required conditions

.
Cx (t) =

[
− sin (t‖W (x)‖) x+ cos (t‖W (x)‖) W (x)

‖W (x)‖)

]
‖W (x)‖ t=0

= W (x)

and
Cx(t) ∈ S2 =⇒

..
Cx (t) = −‖W (x)‖2 Cx(t) ∈ T⊥(S2) ⇒ π

(..
Cx (t)

)
= 0.
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24.1.3 The torus

The torus T can be seen as a surface of revolution obtained by revolving a circle

C(R, r) =








R
0
0


+




r cos(θ1)
0

r sin(θ1)


 : θ1 ∈ R




of radius r and center x1 = R > r about the symmetry x3-axis. The Cartesian coordinates
of the torus are parametrized by the function

ψ : θ =

(
θ1
θ2

)
∈ R2 �→ ψ (θ) =




(R+ r cos(θ1)) cos(θ2)
(R+ r cos(θ1)) sin(θ2)

r sin(θ1)


 .

Alternatively, T = ϕ−1(0) can be represented as the null level set of the function

ϕ : x =




x1

x2

x3


 ∈ R3 �→ ϕ(x) =

(
R−

√
x2
1 + x2

2

)2

+ x2
3 − r2.

After some elementary manipulations, we find that

∂θ1ψ(θ) =




−r sin(θ1) cos(θ2)
−r sin(θ1) sin(θ2)

r cos(θ1)


 , ∂θ2ψ (θ) = (R+ r cos(θ1))




− sin(θ2)
cos(θ2)

0




and

R−
√

x2
1+x2

2√
x2
1+x2

2

x1
x=ψ(θ)
= −r cos(θ1)

(R+r cos(θ1))
(R+ r cos(θ1)) cos(θ2) = −r cos(θ1) cos(θ2)

=⇒ ∂ϕ(x) = 2




−x1
R−

√
x2
1+x2

2√
x2
1+x2

2

−x2
R−

√
x2
1+x2

2√
x2
1+x2

2

x3




x=ψ(θ)
= 2r




cos(θ1) cos(θ2)
cos(θ1) sin(θ2)

sin(θ1)


 .

In addition, we have

∂θ1ψ(θ) ⊥ ∂θ2ψ(θ) (⇔ 〈∂θ1ψ(θ), ∂θ2ψ(θ)〉 = 0)

‖∂θ1ψ(θ)‖ = r2 and ‖∂θ2ψ(θ)‖ = (R+ r cos(θ1))
2

and

∂θ2ψ(θ) ∧ ∂θ1ψ(θ) =




−(R+ r cos(θ1)) sin(θ2)
(R+ r cos(θ1)) cos(θ2)

0


 ∧




−r sin(θ1) cos(θ2)
−r sin(θ1) sin(θ2)

r cos(θ1)




= r(R+ r cos(θ1))




cos(θ1) cos(θ2)
cos(θ1) sin(θ2)

sin(θ1)


 .

This shows that

g(θ) =

(
r2 0
0 (R+ r cos(θ1))

2

)
and g−1(θ) =

(
r−2 0
0 (R+ r cos(θ1))

−2

)

=⇒
√
det(g(θ)) = r(R+ r cos(θ1)).
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Using (21.10) we have

(∇φ1)ψ(θ) = r−2 (∂θ1ψ)(θ)

(∇φ2)ψ(θ) = (R+ r cos(θ1))
−2 (∂θ2ψ)(θ)

and
〈
(∇φ1)ψ(θ), (∇φ2)ψ(θ)

〉
= 0〈

(∇φ1)ψ(θ), (∇φ1)ψ(θ)
〉

= r−2 and
〈
(∇φ2)ψ(θ), (∇φ2)ψ(θ)

〉
= (R+ r cos(θ1))

−2.

By (21.40), we also find that

(∆φ1)ψ(θ) =
1

r(R+ r cos(θ1))
∂θ1

(
r(R+ r cos(θ1)) r

−2
)
= − sin(θ1)

r(R+ r cos(θ1))

(∆φ2)ψ(θ) =
1

r(R+ r cos(θ1))
∂θ2

(
r(R+ r cos(θ1)) (R+ r cos(θ1))

−2
)
= 0.

Our next objective is to compute the Christofell symbols (21.32). In our situation, we
have

C1
i,j = g1,1

〈
∂θ1ψ, ∂θi,θjψ

〉

C2
i,j = g2,2

〈
∂θ2ψ, ∂θi,θjψ

〉
.

Firstly, we observe that

∂θ1,θ1ψ(θ) = −




r cos(θ1) cos(θ2)
r cos(θ1) sin(θ2)

r sin(θ1)


 and ∂θ2,θ2ψ (θ) = −(R+ r cos(θ1))




cos(θ2)
sin(θ2)

0


 .

In much the same way, we find that

∂θ1,θ2ψ (θ) = ∂θ2,θ1ψ (θ) = r sin(θ1)




sin(θ2)
− cos(θ2)

0


 .

Using elementary calculations, we find that

〈∂θ1,θ1ψ, ∂θ1ψ〉 =

〈


r cos(θ1) cos(θ2)
r cos(θ1) sin(θ2)

r sin(θ1)


 ,




r sin(θ1) cos(θ2)
r sin(θ1) sin(θ2)

−r cos(θ1)



〉

= 0

〈∂θ1,θ1ψ, ∂θ2ψ〉 = −(R+ r cos(θ1))

〈


r cos(θ1) cos(θ2)
r cos(θ1) sin(θ2)

r sin(θ1)


 ,




− sin(θ2)
cos(θ2)

0



〉

= 0.

This implies that C1
1,1 = 0 = C2

1,1. We also have

〈∂θ2,θ2ψ, ∂θ1ψ〉 = (R+ r cos(θ1))

〈


cos(θ2)
sin(θ2)

0


 ,




r sin(θ1) cos(θ2)
r sin(θ1) sin(θ2)

−r cos(θ1)



〉

= r(R+ r cos(θ1)) sin(θ1)
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and

〈∂θ2,θ2ψ, ∂θ2ψ〉 = −(R+ r cos(θ1))
2

〈


cos(θ2)
sin(θ2)

0


 ,




− sin(θ2)
cos(θ2)

0



〉

= 0.

This implies that

C2
2,2 = 0 and C1

2,2 = r−1 (R+ r cos(θ1)) sin(θ1).

On the other hand, we have

〈∂θ1,θ2ψ, ∂θ1ψ〉 = −r sin(θ1)

〈


sin(θ2)
− cos(θ2)

0


 ,




r sin(θ1) cos(θ2)
r sin(θ1) sin(θ2)

−r cos(θ1)



〉

= 0

and

〈∂θ1,θ2ψ, ∂θ2ψ〉 = r(R+ r cos(θ1)) sin(θ1)

〈


sin(θ2)
− cos(θ2)

0


 ,




− sin(θ2)
cos(θ2)

0



〉

= −r(R+ r cos(θ1)) sin(θ1).

This shows that

C2
1,2 = g2,2 〈 ∂θ2ψ, ∂θ1,θ2ψ〉 = − r sin(θ1)

R+ r cos(θ1)
and C1

1,2 = 0.

We conclude that the only nonzero Christoffell symbols are given by

C1
2,2 = r−1 (R+ r cos(θ1)) sin(θ1) and C2

1,2 = C2
2,1 = − r sin(θ1)

R+ r cos(θ1)
.

To compute the Ricci curvature R of the sphere, we use the matrix decomposition
(21.54). In this situation, we have

C1 =

(
0 0

0 − r sin (θ1)
R+r cos (θ1)

)
and C2 =

(
0 r−1 sin (θ1)(R+ r cos (θ1))

− r sin (θ1)
R+r cos (θ1)

0

)
.

This implies that

t(C) =

(
− r sin (θ1)

R+r cos (θ1)

0

)
and T =

(
− r cos (θ1)

R+r cos (θ1)
−
(

r sin (θ1)
R+r cos (θ1)

)2

0

0 0

)
.

We also readily check that

C1C1 =

(
0 0

0
(

r sin (θ1)
R+r cos (θ1)

)2

)
, C1C2 =

(
0 0(

r sin (θ1)
R+r cos (θ1)

)2

0

)
, C2C1 =

(
0 − sin2 (θ1)
0 0

)

and C2C2 =

(
− sin2 (θ1) 0

0 − sin2 (θ1)

)
.Taking the traces of each of these matrices we

find that

E =

( (
r sin (θ1)

R+r cos (θ1)

)2

0

0 −2 sin2 (θ1)

)
.
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On the other hand, we have

C1,1 =

(
0
0

)
, C1,2 = C2,1 =

(
0

− r sin (θ1)
R+r cos (θ1)

)
, C2,2 =

(
r−1 sin (θ1)(R+ r cos (θ1))

0

)
.

This implies that

B =

(
0 0
0 − sin2 (θ1)

)
div(C1,1) = 0 = div(C1,1)

and

div(C2,2) =
1

r
cos (θ1) (R+ r cos (θ1))− sin2 (θ1)

from which we find

S =

(
0 0
0 1

r cos (θ1) (R+ r cos (θ1))− sin2 (θ1)

)
.

Combining together, we conclude that

R ◦ ψ = B − E + S − T =

(
r cos (θ1)

R+r cos (θ1)
0

0 1
r cos (θ1) (R+ r cos (θ1))

)

=
cos (θ1)

r(R+ r cos (θ1))
g.

This shows that the curvature is null on the top and bottom circles of the torus. The
curvature is positive outside the torus and negative inside.

24.2 Information theory

24.2.1 Nash embedding theorem

In differential geometry, a (smooth) Riemannian manifold (S, g) is a real state space S
equipped with a smooth inner product g on the tangent space T (S); that is, for any θ ∈ S,
and any vector fields θ �→ Vi(θ) ∈ Tθ(S) the mapping

θ �→ 〈V1(θ), V2(θ)〉g(θ)

is a smooth function. This geometric Riemannian structure allows us to define various geo-
metric notions such as angles, lengths of curves, volumes, curvatures, gradients of functions
and divergences of vector fields.

The Nash embedding theorem states that every Riemannian manifold with dimension p
can be (locally) isometrically embedded into some ambient Euclidean space with sufficiently
high dimension r ( but r ≤ 2p+ 1). The isometric embedding problem amounts to finding
a function ψ : θ ∈ S �→ ψ(θ) ∈ Rr such that

gi,j(θ) :=
〈
∂θiψ, ∂θjψ

〉
=

∑
1≤k≤r

∂θiψ
k(θ)∂θjψ

k(θ).
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24.2.2 Distribution manifolds

When S = Sψ = φ(S) is the parameter space of a given manifold S as discussed in (21.1)
the natural Riemannian inner product is given by the matrix field (21.6).

The space of discrete distributions S := P(E) on a finite set E = {1, . . . , r} is represented
by the p = (r − 1)-dimensional simplex

Simplex(p) = {z = (zi)1≤i≤r ∈ Rr
+ : ϕ(z) :=

∑
1≤i≤r

zi − 1 = 0}.

The tangent space Tz(S) at each point z is given by

∂ϕ =




1
...
1


 ⇒ Tz(S) =

{
W (z) ∈ Rr : zk = 0 ⇒ W k(z) = 0

and 〈W (z), ∂ϕ(z)〉 =
∑

1≤k≤r W
k(z) = 0

}
.

The Fisher information metric on Tz(S) is defined by the inner product

∀W1(z),W2(z) ∈ Tz(S) 〈W1(z),W2(z)〉h(z) =
∑

1≤k≤r

W k
1 (z)

zk

W k
2 (z)

zk
zk.

For instance, for r = 3 we have

Tz(S) := Vect


e1(z) :=




1
0
−1


 , e2(z) :=




0
1
−1




 .

In this case, for any z = (zk)1≤k≤3 s.t. zk > 0 for any k = 1, 2, 3, we have

h1,1(z) = 〈e1(z), e1(z)〉h(z) =
1

z1
+

1

z3
, h1,2(z) = h2,1(z) = 〈e1(z), e2(z)〉h(z) =

1

z3

h2,2(z) = 〈e2(z), e2(z)〉h(z) =
1

z2
+

1

z3
.

More generally, let E be some measurable space equipped with some reference
measure λ. The tangent space Tµ

(
Pλ(E)

)
of the set of probability measures

Pλ(E) := {µ ∈ P(E) : µ ¨ λ } � µ

given by

Tµ

(
Pλ(E)

)
=

{
ν ∈ P(E) : ν ¨ µ s.t.

∫ (
dν

dµ

)2

dµ < ∞ and ν(1) = 0

}

is equipped with the Fisher inner product

∀W1(µ),W2(µ) ∈ Tµ(Pλ(E)) 〈W1(µ),W2(µ)〉h(µ) :=
∫

dW1(µ)

dµ

dW2(µ)

dµ
dµ.

(24.5)
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24.2.3 Bayesian statistical manifolds

Riemannian manifolds also arise in a natural way in Bayesian statistics and in information
theory. To describe with some precision these statistical models, we let

µθ(dy) := Pθ(y) λ(dy) (24.6)

be a collection of distributions on some state space E, equipped with a reference measure
λ(dy), and indexed by some parameter θ on some space S ⊂ Rp of dimension p. We assume
that S is equipped with some probability measure of the form

µ′(dθ) = P ′(θ) λ′(dθ)

where λ′(dθ) is some reference measure on S. The probability measure µ′ can be seen as
the prior distribution of some unknown random parameter Θ. Given Θ = θ, µθ(dy) denotes
the distribution of some partial and noisy random observation Y of the parameter Θ. In
this interpretation, the function

P (θ, y) = P ′(θ) Pθ(y)

represents the density of the random vector (Θ, Y ) w.r.t. the reference measure λ ⊗ λ′ on
S × E. We consider the parametrization mapping

ψ : θ ∈ S �→ ψ(θ) = µθ ∈ PS(E) = {µθ ∈ P(E) : θ ∈ S } ⊂ Pλ(E)

and we equip PS(E) with the Fisher metric (24.5) induced by Pλ(E). Notice that for any
1 ≤ i ≤ p we have

(∂θiψ)(θ) = ∂θiµθ

with the signed measure
∂θiµθ(dy) := ∂θiPθ(y) λ(dy)

on E with null mass:
∫

Pθ(y) λ(dy) = 1 ⇒ ∀1 ≤ i ≤ p

∫
∂θiPθ(y) λ(dy) = 0.

The tangent space

Tθ (S) = Vect (ei, i = 1, . . . , p) with ei =




0
...
0
1
0
...
0




←− i− th coordinate

is mapped on the tangent space Tµθ
(PS(E)) by using the push forward mapping

(dψ)θ : V (θ) =
∑

1≤i≤p V
i(θ) ei(θ)

∈ Tθ (S)

�→ (dψ)θ (V (θ)) =
∑

1≤i≤p V i(θ) (∂θiψ)(θ).

∈ Tµθ
(PS(E)) .



684 Stochastic Processes

The Fisher information metric g on the parameter space S induced by the metric
h on PS(E) is defined for any 1 ≤ i, j ≤ p by

gi,j(θ) :=
〈
(∂θiψ)(θ), (∂θjψ)(θ)

〉
h(µθ)

=

∫
∂θiPθ(y)

Pθ(y)

∂θjPθ(y)

Pθ(y)
Pθ(y) λ(dy)

=

∫
∂θi logPθ(y) ∂θj logPθ(y) Pθ(y) λ(dy)

= E
(
∂θi logPΘ(Y ) ∂θj logPΘ(Y ) | Θ = θ

)
.

The Fisher metric can alternatively be defined by

∫
Pθ(y) λ(dy) = 1 ⇒

∫
∂θi logPθ(y) Pθ(y) λ(dy) = 0

⇒ gi,j(θ) =

∫
∂θi logPθ(y) ∂θj logPθ(y) Pθ(y) λ(dy)

= −
∫ (

∂θj ,θi logPθ(y)
)
Pθ(y) λ(dy)

= −E
(
∂θj ,θi logPΘ(Y ) | Θ = θ

)
.

We end this section with a connection between the Fisher metric and the relative Boltz-
mann entropy. We fix a parameter θ� ∈ S and we consider the Boltzmann entropy

Bθ�(θ) = Ent (µθ� | µθ) = −
∫

log
Pθ(y)

Pθ�(y)
Pθ�(y) λ(dy).

We have

∂θi logPθ(y) =
1

Pθ(y)
∂θiPθ(y)

∂θj ,θi logPθ(y) = − 1

Pθ(y)2
∂θjPθ(y)∂θiPθ(y) +

1

Pθ(y)
∂θj ,θiPθ(y)

from which we conclude that

(∂θiBθ�) (θ�) = −
∫

1

Pθ�(y)
∂θiPθ�(y) Pθ�(y) λ(dy) = −

∫
∂θiPθ�(y) λ(dy) = 0

and

(
∂θj ,θiBθ�

)
(θ�) =

∫
1

Pθ�(y)2
∂θjPθ�(y)∂θiPθ�(y) Pθ�(y)λ(dy)−

∫
∂θj ,θiPθ�(y)λ(dy)

=

∫
∂θjPθ�(y)

Pθ�(y)

∂θjPθ�(y)

Pθ�(y)
Pθ�(y)λ(dy) = gi,j(θ

�).
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This shows that

Ent (µθ� | µθ) =
1

2

∑
1≤i,j≤p

gi,j(θ
�) (θi − θ�i )(θj − θ�j ) +O(‖(θ − θ�)‖3)

=
1

2
(θ − θ�)T g(θ�)(θ − θ�) +O(‖(θ − θ�)‖3).

The above formula shows that the Fisher matrix g(θ) encapsulates the infinitesimal
changes of the model distribution µθ w.r.t. an infinitesimal fluctuation of the model
parameter θ.

24.2.4 Cramer-Rao lower bound

Suppose we are given an unbiased estimator Θ̂ = (ϕi(Y ))1≤i≤p of the parameter θ =
(θi)1≤i≤p associated with an observation r.v. Y with distribution (24.6), that is,

∀1 ≤ i ≤ p E
(
ϕi(Y )

)
= θi.

The score function is defined by the gradient function

Scoreiθ(Y ) := ∂θi logPθ(Y ).

Recalling that
E
(
Scoreiθ(Y )

)
= 0

and using the Cauchy-Schwartz inequality, we find that

E
([

Scoreiθ(Y )
]2)1/2

×Var(ϕj(Y ))1/2

≥ E
([

Scoreiθ(Y )− E
(
Scoreiθ(Y )

)] [
ϕj(Y )− E

(
ϕj(Y )

)])

= E
(
Scoreiθ(Y )ϕj(Y )

)
=

∫
ϕj(y) ∂θi logPθ(y) Pθ(y) λ(dy)

=

∫
ϕj(y) ∂θiPθ(y) λ(dy) = ∂θiE(ϕj(Y )) = ∂θiθ

j = 1i=j .

This implies that
Var(ϕj(Y )) ≥ 1/gj,j(θ).

The quantity 1/gj,j(θ) gives the Cramer-Rao lower bound for the variance of an unbiased
estimator of θi.

24.2.5 Some illustrations

24.2.5.1 Boltzmann-Gibbs measures

We consider a collection of Boltzmann-Gibbs measures associated with a potential function
V on some state space E, and indexed by some real valued parameter θ:

µθ(dy) =
1

Zθ
e−θV (y) λ(dy).
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In this situation, we have

∂θPθ(y) = − 1

Z2
θ

∂θ(Zθ) e
−θV (y) +

1

Zθ
∂θ(e

−θV (y))

= (µθ(V )− V (y)) Pθ(y) =⇒ ∂θ logPθ = (µθ(V )− V ).

Hence

g(θ) = g1,1(θ) =

∫
[µθ(V )− V (y)]

2
µθ(dy) = µθ(V

2)−µθ(V )2.

24.2.5.2 Multivariate normal distributions

We consider the collection of distributions µθ indexed by a parameter θ ∈ S ⊂ Rp and given
by

µθ(dy) =
1

√
2π

dY √
det(C(θ))

exp

(
−1

2
(y −m(θ))TC(θ)−1(y −m(θ))

)
dy,

where dy =
∏

1≤i≤dY dyi stands for an infinitesimal neighborhood of y = (yi)1≤i≤dY ∈ RdY

.

In this situation, we have

gi,j(θ
�)

θ=θ�

= ∂θi,θjEnt (µθ� | µθ)

θ=θ�

= ∂θim(θ�)TC(θ�)−1∂θjm(θ�) +
1

2
tr
(
∂θjC(θ�) C(θ�)−1 (∂θiC(θ�))C(θ�)−1

)
.

(24.7)

In particular, for dY = 1, and p = 2 with m(θ) = θ1 ∈ R and C(θ) = θ2 ∈]0,∞[ we have

g1,1(θ) =
1

θ2

g1,2(θ) = g2,1(θ) = 0 and g2,2(θ) =
1

2θ22
.

The corresponding Riemannian gradient compensates for the fact that an infinitesimal
change of a parameter in a Gaussian model µθ with small variance θ2 has more pronounced
effects:

(∇gf)(θ) = θ2 ∂θ1f + 2θ22 ∂θ2f.

To check (24.7), we observe that

Ent (µθ� | µθ) =
1

2

[
log det

(
C(θ�)−1C(θ)

)

+

∫ {(
(y −m(θ))TC(θ)−1(y −m(θ))

)
− (y −m(θ�))TC(θ�)−1(y −m(θ�))

}
µθ�(dy)

]

= 1
2

[
log det

(
C(θ�)−1C(θ)

)

+E
{(

(Y −m(θ))TC(θ)−1(Y −m(θ))
)
− (Y −m(θ�))TC(θ�)−1(Y −m(θ�))

}]
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with
Y = m(θ�) + C(θ�)1/2 Z where Z ∼ N(0, IddY ×dY )

E
(
ZAZT

)
=

∑
1≤i,j≤dY

E(ZiAi,j Zj) =
∑

1≤i,j≤dY

Ai,i = tr(A).

We recall that for any invertible symmetric positive definite matrix A, its spectral decom-
position A = UDUT holds with an orthogonal diagolizing matrix U and a diagonal matrix
D. Given this spectral decomposition, the square root

A1/2 = U
√
DUT

of A can be defined. This square root is symmetric and invertible, and we have

A−1/2A1/2 = Id AA1/2 = A1/2A and A1/2A−1A1/2 = Id.

We also recall that for any couple of matrices A and B with suitable numbers of rows and
columns such that both tr(AB) and tr(BA) exist, we have

tr(AB) = tr(BA).

Hence
tr(A1/2(BA1/2)) = tr(BA) = tr(AB).

Using these formulae, it is readily checked that

E
(
(Y −m(θ�))TC(θ�)−1(Y −m(θ�))

)
= E

(
ZT C(θ�)1/2 C(θ�)−1C(θ�)1/2 Z

)

= E
(
ZTZ

)
= dY

and

E
(
(Y −m(θ))TC(θ)−1(Y −m(θ))

)

= E
([

(m(θ�)−m(θ)) + C(θ�)1/2Z
]T

C(θ)−1
[
(m(θ�)−m(θ)) + C(θ�)1/2Z

])

= (m(θ�)−m(θ))TC(θ)−1(m(θ�)−m(θ)) + E
(
ZTC(θ�)1/2C(θ)−1C(θ�)1/2Z

)

= (m(θ�)−m(θ))TC(θ)−1(m(θ�)−m(θ)) + tr
(
C(θ�)1/2C(θ)−1C(θ�)1/2

)

= (m(θ�)−m(θ))TC(θ)−1(m(θ�)−m(θ)) + tr
(
C(θ�)C(θ)−1

)
.

We conclude that

2 Ent (µθ� | µθ) = log det
(
C(θ�)−1C(θ)

)
+ (m(θ�)−m(θ))TC(θ)−1(m(θ�)−m(θ))

+
[
tr
(
C(θ�)C(θ)−1

)
− dY

]
.

For any index 1 ≤ i ≤ p, we have

∂θi log det
(
C(θ�)−1C(θ)

)
=

1

det (C(θ�)−1C(θ))
∂θi log det

(
C(θ�)−1C(θ)

)

= tr
((

C(θ�)−1C(θ)
)−1

∂θiC(θ�)−1C(θ)
)

= tr
(
C(θ)−1∂θiC(θ)

)
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so that
∂θi

(
log det

(
C(θ�)−1C(θ)

)
+
[
tr
(
C(θ�)C(θ)−1

)
− dY

])

= tr
(
C(θ)−1∂θiC(θ)− C(θ�)C(θ)−1 (∂θiC(θ))C(θ)−1

) θ=θ�

= 0.

The second term in the trace formula is obtained using

∂εA(ε)−1 = −A(ε)−1 (∂εA(ε)) A(ε)−1

for any smooth functional ε �→ A(ε) in the space of invertible matrices. We check this claim
by:

∂ε
∑
j

Ai,j(ε)A
j,k(ε) = 0 ⇒

∑
j

Ai,j(ε)∂εA
j,k(ε) = −

∑
j

∂εAi,j(ε)A
j,k(ε)

=
∑
i,j

Al,i(ε)Ai,j(ε)∂εA
j,k(ε) = −

∑
i,j

Al,i(ε)∂εAi,j(ε)A
j,k(ε)

where A(ε)−1 =
(
Ai,j(ε)

)
i,j

and A(ε) = (Ai,j(ε))i,j .
We also have that

∂θi,θj
(
log det

(
C(θ�)−1C(θ)

)
+
[
tr
(
C(θ�)C(θ)−1

)
− dY

])

= tr
{[(

∂θjC(θ)−1
)
∂θiC(θ) + C(θ)−1∂θi,θjC(θ)

]

−C(θ�)
[(
∂θjC(θ)−1

)
(∂θiC(θ))C(θ)−1

+C(θ)−1
(
∂θi,θjC(θ)

)
C(θ)−1 + C(θ)−1 (∂θiC(θ)) ∂θjC(θ)−1

]}

θ=θ�

= −tr
(
C(θ�)

(
∂θjC(θ�)−1

)
(∂θiC(θ�))C(θ�)−1

)

= tr
(
∂θjC(θ�) C(θ�)−1 (∂θiC(θ�))C(θ�)−1

)
.

In much the same way,

∂θi
(
(m(θ�)−m(θ))TC(θ)−1(m(θ�)−m(θ))

)

= −2∂θim(θ)TC(θ)−1(m(θ�)−m(θ)) +
(
(m(θ�)−m(θ))T∂θiC(θ)−1(m(θ�)−m(θ))

)

θ=θ�

= 0.

Therefore

∂θi,θj
(
(m(θ�)−m(θ))TC(θ)−1(m(θ�)−m(θ))

)

= 2 ∂θim(θ)TC(θ)−1∂θjm(θ)

−2
[(
∂θiθjm(θ)

)T
C(θ)−1 + (∂θim(θ))

T
∂θjC(θ)−1 + ∂θjm(θ)T∂θiC(θ)−1

−1

2
(m(θ�)−m(θ))T∂θi,θjC(θ)−1

]
(m(θ�)−m(θ))

θ=θ�

= 2 ∂θim(θ�)TC(θ�)−1∂θjm(θ�).



Some illustrations 689

We conclude that
∂θjEnt (µθ� | µθ)

θ=θ�

= 0.

This ends the proof of the desired formula.
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Part VI

Some application areas
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25
Simple random walks

This chapter discusses two important classes of random walk type processes which are
frequently used in applied probability. The first class of models relates to random walks on
lattices and graphs. The second one is related to urn processes, such as the Ehrenfest and
the Polya urn models.

All knowledge degenerates into probability.
David Hume (1711-1776).

25.1 Random walk on lattices

25.1.1 Description

We let S be the d-dimensional lattice
S = Zd, equipped with the equivalence rela-
tion x ∼ y iff x and y are nearest neighbors.
Notice that any state x ∈ Zd has 2d near-
est neighbors denoted by N (x). The simple
random walk (abbreviated SRW) on the d-
dimensional lattice S = Zd is defined by the
Markov transition

M(x, y) =
1

2d
1N (x)(y).

The SRW on Zd is sometimes called the drunkard’s walk to emphasize that the evolution
of the chain resembles the movement of a drunkard who stumbles at random from a bar to
another bar. We can think of the origin as the home of the drunkard. In what follows we
show that the drunkard returns infinitely often to each bar and is at home when d = 1, 2.
However, in dimension d = 3, he will return home only a finite (random) number of times
and then wander off in the universe of bars (visiting each one a finite number of times only).

25.1.2 Dimension 1

In dimension d = 1, the chain Xn moves at each step randomly to the right or to the left
with a probability 1/2. Starting from any state, say X0 = 0, we need an even number of
steps, say (2n), to come back to the initial location, so that

P (X2n = 0 | X0 = 0) =

(
2n
n

) (
1

2

)2n

=
2n!

n!2
2−2n.

693
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Using Stirling formula n! �
√
2πn nne−n we find that

P (X2n = 0 | X0 = 0) �
√
4πn (2n)2ne−2n

2πn n2ne−2n
2−2n =

1√
πn

. (25.1)

We let N0 =
∑

n≥1 10(Xn) be the number of returns to 0. The expected number of returns
to the origin is infinite:

E(N0 | X0 = 0) =
∑
n≥1

P(Xn = 0 | X0 = 0)

=
∑
n≥1

P(X2n = 0 | X0 = 0) =
∑
n≥1

1√
πn

= ∞.

By symmetry arguments, the analysis remains the same if we change the initial state. Since
the mean returns are infinite, all states are recurrent.

25.1.3 Dimension 2

In the planar lattice Z2, both coordinates of the excursion starting at (0, 0) must be null at
the same time in order to return to the origin. This implies that

P (X2n = (0, 0) | X0 = (0, 0)) � 1√
πn

× 1√
πn

=
1

πn
.

For a detailed proof of this result, we refer to exercise 426. Denote by T1 the duration of
the first return to the origin. In this situation, we have

E(N0 | X0 = 0) = ∞ and P (T1 < ∞) = 1.

Hence for d = 2 we say that the SRW is recurrent.

25.1.4 Dimension d ≥ 3

In larger dimensions d ≥ 3, we have

P (X2n = (0, . . . , 0) | X0 = (0, . . . , 0)) � 1

(πn)d/2

so that
E(N0 | X0 = 0) < ∞ and P (T1 < ∞) < 1.

For a detailed proof of this result for d = 3, we refer to exercise 426. In this situation, we
say that the SRW is transient.

A more detailed discussion on the long time behavior of the SRW in terms of the di-
mension is provided in section 8.5 dedicated to the analysis of Markov chains on countable
state spaces.

25.2 Random walks on graphs
Random walks on graphs extend the simple random walk on the lattice Zd. To simplify the
presentation, we consider only random walks on finite graphs in the sense that the number
of vertices is finite.
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We consider a finite graph G = (E ,V), where V stands for the set of vertices and
E ⊂ (V × V) a set of edges. We further assume that G is non-oriented (i.e. E is symmetric),
and there are no self-loops (i.e. E is anti-reflexive). We let d(x) be the degree of a vertex
x ∈ V (i.e. d(x) = Card {y ∈ V : (x, y) ∈ E}). The d(x) can be interpreted as the number
of neighbors of the site x. We also assume that there are no isolated vertices, in the sense
that d(x) > 0 for any x ∈ V.

Random walks Xn on G are defined by the Markov transitions

M(x, y) =
1

d(x)
ax,y

where ax,y stands for the adjacency matrix (i.e. ax,y = 1 iff (x, y) ∈ E). Since the graph is
unoriented, the matrix ax,y is symmetric so that

d(x) M(x, y) = ax,y = ay,x = d(y) M(y, x).

This shows that M is reversible w.r.t. the probability measure

π(x) =
d(x)∑
y∈V d(y)

.

25.3 Simple exclusion process
The simple exclusion process can be represented by a random walk on the set S = {0, 1}V ,
where V stands for some set of vertices of some finite graph G = (V, E) of the same form as
the one discussed in section 25.2. The value of the state 1 at some site i ∈ V is interpreted
as the existence of a particle at site i, while the null value 0 encodes the fact that there
are no particles at that site. Let x = (x(i))i∈V . The Markov transition of the chain Xn

is defined as follows. Given some state Xn we pick an edge (i, j) ∈ E at random, and we
interchange the values of the end points. More formally, we have

M(x, y) =
∑

(i,j)∈E

1

Card( E )
1E((i, j)) 1x(i,j)(y)

with the mapping x �→ x(i,j) defined below:

∀k ∈ V − {i, j} xi,j(k) = x(k) and
(
xi,j(i), xi,j(j)

)
= (x(j), x(i)) .

25.4 Random walks on the circle

25.4.1 Markov chain on cycle

The random walk on the cycle S = Z/mZ is defined by the Markov transitions

M(x, y) =




1
2 if y = x+ 1 mod(m)
1
2 if y = x− 1 mod(m)
0 otherwise.
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For instance for m = 4, we have S = Z/4Z = {0, 1, 2, 3} and M alternatively represented
by the stochastic matrix

M =




0 .5 0 .5
.5 0 .5 0
0 .5 0 .5
.5 0 .5 0


 .

It is easy to check that

π = [π(0), π(1), π(2), π(3)]] =

[
1

4
,
1

4
,
1

4
,
1

4

]

is the invariant measure of the chain.
We can alternatively define this walk by the recursion

Xn = Xn−1 + Un mod(m)

where Un stands for a sequence of independent uniform r.v. on {+1,−1}.

25.4.2 Markov chain on circle

We can also identify the states Z/mZ with the m-roots of unity {up : 0 ≤ p < m}, with
u = e2iπ/m; more formally

∀0 ≤ k < m k �→ uk

is a bijection between these sets.
In this interpretation, the Markov chain Xn explores randomly the set S = {up : 0 ≤

p < m}, with u = e2iπ/m with the elementary Markov transition defined for any x ∈ S by

P (Xn = x | Xn−1 = y) =
1

2
1ux(y) +

1

2
1u−1x(y) := M(x, y).

Since π(x)M(x, y) = π(y)M(y, x) is reversible w.r.t. the uniform distribution π(x) = 1/m,
we conclude that πM = π. Our next objective to derive a complete description of the
spectral representation of the random walk on the circle (cf. theorem 8.2.2).

25.4.3 Spectral decomposition

We consider the collection of power functions

∀0 ≤ k < m ϕk : x ∈ S �→ ϕk(x) = xk,

M(ϕk)(x) =
1

2
ϕk(ux) +

1

2
ϕk(u

−1x)

=
ukxk + u−kxk

2
=

uk + u−k

2
xk.

This clearly implies that

∀0 ≤ k < m M(ϕk) = λk ϕk with λk := cos (2πk/m).

Since the eigenvalues λk are real, the real parts and the imaginary parts of ϕk defined by

∀0 ≤ l < m ψk(u
l) := ϕk+ϕk

2 (ul) = cos (2πkl/m)

φk(u
l) := ϕk−ϕk

2i (ul) = sin (2πkl/m)
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are real valued eigenfunctions. We check this claim using

M(ψk) =
1

2


M(ϕk) + M(ϕk)︸ ︷︷ ︸

=M(ϕk)=λkϕk


 = λkψk

M(φk) =
1

2i


M(ϕk) −M(ϕk)︸ ︷︷ ︸

=−M(ϕk)=−λkϕk


 = λkφk.

For k = 0, we notice that λ0 = 1, and ϕ0 = 1 = ψ0. Note that

m = 2m′ ⇒ λm′ := cos (π) = −1.

This shows that when m is even the chain is periodic, and we cannot expect to have
convergence to the invariant measure (otherwise, the entries of Mm would be positive and
by theorem 8.2.2 −1 would not be an eigenvalue). This is a consequence of the fact that for
even numbers m the chain is periodic. According to the comments provided in section 8.5.1,
we have Mn(x, x) > 0 only for n ∈ 2m′N so that the chain starting at x will never visit
the states at odd distances. On the contrary, when m is odd, the chain is aperiodic and
irreducible, and the spectral gap is positive.

Last, but not least, using the orthonormal properties

〈ϕk1
, ϕk2

〉π = π(ϕk1
ϕk2

) =
∑

0≤l<m

π(ul) e
2iπlk1

m e−
2iπlk2

m

=
1

m

∑
0≤l<m

e
2iπl(k1−k2)

m = 1k1=k2

we check that the real valued eigenfunctions ψk form an orthonormal basis of l2(π).

25.5 Random walk on hypercubes

25.5.1 Description

The random walk Xn = (Xi
n)1≤i≤d on the hypercube S = {0, 1}d is defined by the Markov

transition
M(x, y) =

∑
1≤i≤d

µ(i) 1x(i)(y)

for some probability measure µ on {1, . . . , d}, with the mapping x �→ x(i) defined below:

∀k �= i x(i)(k) = x(k) and x(i)(i) = 1− x(i).

We can check that M is reversible w.r.t. the product of the Bernoulli distributions on {0, 1}

π(x) =
∏

1≤i≤d

(
1

2
10(x(i)) +

1

2
11(x(i))

)
.

We check this claim using the fact that this law is the distribution of independent Bernoulli
random variables X := (X1, . . . , Xd), and for any 1 ≤ i ≤ d, the sequence X(i) has the
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same law as X. This can can be interpreted as the location of d molecules in two adjacent
boxes. The number 1 indicates that the molecule is in the first box, and the number 0
indicates that it is not in the first box (i.e., it is in the second box).

25.5.2 A macroscopic model

Before adding more details about the spectral properties of the random walk on the hyper-
cube, let us discuss the process that tracks the number of 1’s in the sequence Xn:

Xn :=
∑

1≤i≤d

Xi
n. (25.2)

By construction,

E
(
f(Xn+1) | Xn

)
=

(∑
i: Xi

n=1 µ(i)
)
f(Xn − 1) +

(∑
i: Xi

n=0 µ(i)
)
f(Xn + 1).

When µ is the uniform probability, for any function f on {1, . . . , d} we find that

E
(
f(Xn+1) | Xn

)
=

Xn

d
f(Xn − 1) +

d−Xn

d
f(Xn + 1).

This shows that Xn is a Markov chain with transitions

M(k, l) =
k

d
1k−1(l) +

d− k

d
1k+1(l) (25.3)

associated with the transition diagram with reflection boundaries

0
1 �� 1

1/d
��

(d−1)/d �� 2
2/d

��
(d−2)/d �� 3

3/d
�� ... (d− 1)

1/d  d.
1  

We notice that d−k
d > k

d when k < d/2. This shows that the chain is more likely to move
to the right up to the state k < d/2. Inversely, when the chain is on the r.h.s. of d/2 > k
it is more likely to move back. We also see that the chain is irreducible, but periodic with
period 2, so that we cannot expect good convergence properties. The mid-point acts like a
central force attracting the random states of the chain. The eigenvalues λk = 1− 2k

d , with
0 ≤ k ≤ d and the corresponding Krawtchouk orthonormal polynomial w.r.t. the binomial
distribution can be found using sophisticated combinatorial analysis (see for instance [175]).
Notice that λd = −1 indicates that the chain is periodic.

25.5.3 A lazy random walk

We consider the 1/2-lazy version of the random walk on the hypercube S = {0, 1}d defined
by

M ′(x, y) =
∑

1≤i≤d

µ(i)

(
1

2
1x(i) +

1

2
1x

)
(y) =

∑
1≤i≤d

µ(i)
1

2

∑
ε∈{0,1}

1
x
(i)
ε
(y)

with the mapping x �→ x(i) defined as:

∀k �= i x(i)
ε (k) = x(k) and x(i)

ε (i) = ε (1− x(i)) + (1− ε) x(i).

Therefore, we can rewrite this Markov transition as

M ′(x, y) =
∑

1≤i≤d

µ(i)



∏
j �=i

1x(j)(y(j))


 Mi(x(i), y(i)) (25.4)
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with the Bernoulli transition

Mi(u, v) = ν(v) =
1

2
10(v) +

1

2
11(v).

Using example 8.2.5, for any J ⊂ {1, . . . , d}, the functions ϕJ(x) :=
∏

j∈J(x(j) − .5) are
eigenfunctions associated with the eigenvalues λJ = 1−µ(J). In particular, when J = {j},
ϕJ(x) := (x(j)− .5) are eigenfunctions associated with the eigenvalues λJ = 1−µ(j), and
we have the partial order property

J1 ⊂ J2 ⇒ λJ1 ≥ λJ2

so that the absolute spectral gap defined in corollary 8.2.3 is given by

ρ�(M) = 1− sup
1<i≤d

(1− µ(i)) = inf
1≤i≤d

µ(i).

We refer the reader to exercise 425 for the computation of the lazy version of the chain.

25.6 Urn processes

25.6.1 Ehrenfest model

A collection of d balls is distributed in a couple of urns U , V. We select a ball randomly
from a given urn and we place it in the other urn. The number of balls Bn in U is a Markov
chain taking values in S = {1, . . . , d} with transition probabilities defined for any k ∈ S by

P (Bn = l | Bn−1 = k) = M(k, l) :=
d− k

d
1k+1(l) +

k

d
1k−1(l).

The associated transition diagram is given on page 698. We consider the ε-lazy version
associated with the parameter ε = 1

d+1 and the Markov transitions

Mε(k, l) :=
1

d+ 1
1k(l) +

d− k

d+ 1
1k+1(l) +

k

d+ 1
1k−1(l)

and the corresponding transition diagram with reflecting boundaries

0

1
(d+1)

�� d
(d+1) �� 1

1
(d+1)

��
1

(d+1)

��
(d−1)
(d+1) �� 2

1
(d+1)

��
2

(d+1)

�� ... (d− 1)

1
(d+1)

�� 1
d+1  d

1
(d+1)

��
d

(d+1)
  

.

We also observe that the invariant measure πM = π = πMε of the chain is given by the
binomial distribution

π(k) =

(
d
k

)
2−d. (25.5)

To check this claim, we notice that
(

d
k

)
M(k, l) = (d− 1)!

(
1

(d−l)!(l−1)! 1k(l − 1) + 1
(d−(l+1))!l! 1k(l + 1)

)
.
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This yields

∑
0≤k≤b

(
d
k

)
M(k, l) = (d− 1)!

l + (d− l)

(d− l)!l!
=

d!

(d− l)!l!
=

(
d
l

)
.

Notice that the chain Bn can be interpreted as a projection of the random walk on
the hypercube using (25.3). It can also be seen as a birth and death chain with a death
rate Bn/b that depends on the size of the population. In the early days of statistical
mechanics, Paul and Tatiana Ehrenfest introduced in 1907 this rather elementary model to
analyze the thermodynamic equilibrium of gas molecules passing from one container into
another through a hole [116]. In these settings, the number of molecules may be of order
d � 1023, also known as Avogadro’s number. The Ehrenfest model can be interpreted as
the macroscopic version of the microscopic model associated with the random walk on the
hypercube discussed in section 25.5. Notice that the microscopic model is reversible, but
the macroscopic model is not reversible.

Another interpretation is to count the number of fleas jumping from one dog to another.
In this case, Bn stands for the number of fleas on the first dog. In this model, we count one
jump per unit of time from one of the dogs.

25.6.2 Pólya urn model

We consider an urn that contains b black balls and w white balls. We choose a ball from this
this urn randomly and return it with c additional balls of the color drawn. More formally, if
(Bn,Wn) counts the number of black and white balls in the urn, the transition probabilities
of this chain are given by

P ((Bn+1,Wn+1) = (k, l) | (Bn,Wn) = (b, w)) = b
b+w 1(b+c,w)(k, l) + w

b+w 1(b,w+c)(k, l).

Notice that the total number of balls in the urn Nn := Bn +Wn at time n is given by

Nn = Nn−1 + c = . . . = N0 + n c.

We have
(

n
k

)
possible ways of drawing k black balls in n different trials. Starting with

(b, w) black and white balls, at each of these times, say pl ∈ {1, . . . , n}, with l = 1, . . . , k,
we have (b+ (l − 1)c) black balls in an urn with ((b+ w) + plc) balls. This shows that the
the chance to pick a black ball at a given time pl is (b+ (l − 1)c)/((b+ w) + plc).

It is also important to notice that any event with a specific ordering of the k black and
l white balls in the k + l = n trials has the same probability

[∏
0≤l<k(b+ lc)

] [∏
0≤l<n−k(w + lc)

]
∏

0≤l<n((b+ w) + lc)
.

This implies that

P (Bn = k | (B0,W0) = (b, w)) =

(
n
k

) [∏
0≤l<k

(
b
c + l

)] [∏
0≤l<n−k

(
w
c + l

)]

∏
0≤l<n

(
(b+w)

c + l
) .
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Recalling that Γ(z + 1) = zΓ(z), this implies that

P (Bn = k | (B0,W0) = (b, w))

=

(
n
k

)
Γ
(
b
c + k

)
× Γ

(
w
c + (n− k)

)

Γ
(
b
c

)
Γ
(
w
c

) ×

(
Γ
(
b+w
c + n

)

Γ
(
b+w
c

)
)−1

=

(
n
k

)
Γ
(
b
c + k

)
Γ
(
w
c + (n− k)

)

Γ
(
b+w
c + n

) ×

(
Γ
(
b
c

)
Γ
(
w
c

)

Γ
(
b+w
c

)
)−1

.

This can be written as

P (Bn = k | (B0,W0) = (b, w)) =

∫ 1

0

(
n
k

)
uk (1− u)

(n−k)
p( b

c ,
w
c )
(u) du

with the density p(α,β) of the beta(α, β) distribution defined in (4.6). We conclude that

P (Bn = k | (B0,W0) = (b, w)) =

∫ 1

0

qn,u(k) p( b
c ,

w
c )
(u) du

with the binomial distribution with parameters (n, u) defined by

qn,u(k) =

(
n
k

)
uk (1− u)

(n−k)
= P


 ∑

1≤i≤n

11(Yi) = k | U( b
c ,

w
c )

= u


 .

Here U( b
c ,

w
c )

∼ beta
(
b
c ,

w
c

)
; and given U( b

c ,
w
c )

= u, (Yi)i≥1 is a collection of independent
Bernoulli {0, 1}-valued r.v. with

P
(
Yi = 1 | U( b

c ,
w
c )

= u
)
= 1− P

(
Yi = 0 | U( b

c ,
w
c )

= u
)
= u.

In summary, we have proved that

P (Bn = k | (B0,W0) = (b, w)) = E


P


 ∑

1≤i≤n

11(Yi) = k | U( b
c ,

w
c )




 .

Further details on Pólya urn models can be found in the book of H. Mahmoud [189]; see
also exercice 427.

25.7 Exercises
Exercise 421 (Goldstein-Kac process [136, 159]) We let ε be a {0, 1}-valued, and U
be {−1, 1}-valued, Bernoulli random variables

P(ε = 0) = e−a = 1− P(ε = 1) and P(U = 1) = e−a = 1− P(U = −1)

for some a > 0. We let εn and Un be sequences of independent copies of ε and U . We
set Nn =

∑
1≤k≤n εn, Xn = U1 . . . Un and ∆Yn := Yn − Yn−1 = v (−1)Nn with some
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given velocity parameter v ∈ R. Check that (Xn, Yn) is a Markov chain taking values in
S = ({−1, 1} × R) and describe its Markov transition K. When a = log 2 and v = v0t,
check that

wt(y) := E(g(Yn+1) | (Xn, Yn) = (1, y))

satisfies the wave equation

∂2
tw = v20∂

2
yw with the initial conditions w0 = g and ∂tw|t=0 = 0.

We denote by Kh the Markov transition associated with the parameters v = bh and
a = λh. Check that

Kh(f) = f + L(f)h+O(h2)

with the jump generator

L(f)(x, y) := b ∂yf(x, y) + λ [f(−x, y)− f(x, y)].

Describe the evolution of the Markov process (Xt,Yt) with generator L. Compare this
stochastic process with the random 2-velocity process discussed in exercise 209.

Exercise 422 (Telegraph equation [136, 159]) Consider the Goldstein-Kac process dis-
cussed in exercise 421. Assume that (Xt,Yt) has a density given by

∀x ∈ {−1, 1} P(Xt = x , Yt ∈ dy) = pt(x, y) dy.

We set

q+t (y) = pt(1, y) + pt(−1, y) q−t (y) = pt(1, y)− pt(−1, y).

The function b× q−t (y) is sometimes called the current and it is denoted by jt(y) = b q−t (y).
Describe the evolution equations of the functions (pt(1, y), pt(−1, y)) and (q+t (y), q

−
t (y)).

Check that
∂tq

+ = −∂yj and ∂tj + 2λ j = −b2 ∂yq
+.

Prove that q+t (y) satisfies the telegraph equation

∂2
t q

+ + 2λ ∂tq
+ = b2 ∂2

yq
+

and compute E(Y2
t ). In the fluid mechanics and biology literature, this equation is sometimes

called the macroscopic telegrapher’s equation. For a detailed study on more general models
we refer to exercise 209.

Exercise 423 (The Walk on Sphere method [205]) We let Wt be an r-dimensional
brownian motion starting at the origin 0 ∈ Rr, we also set Xt := X0 + Wt and L :=
2−1

∑
1≤i≤r ∂

2
xi
. Consider a bounded open domain D ⊂ Rr with a regular boundary ∂D,

and let TD be the first time Xt hits the set ∂D starting from X0 ∈ D. Check that the
solution of the Dirichlet-Poisson problem

{
L(v)(x) = 0 for any x ∈ D

v(x) = h(x) for any x ∈ ∂D

is given by
v(x) = E (h(XTD

) | X0 = x) .

Let S(x, ρ) ⊂ Rr be an (r−1)-dimensional sphere centered at some state x ∈ Rr with radius
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ρ > 0. We let TS(x,ρ) be the first time the process Xt hits the sphere S(x, ρ). Check that
XTS(x,ρ)

is uniformly distributed on the sphere S(x, ρ).
Starting from a given state x ∈ D, we let S(x) ⊂ D be the maximal sphere included in

D. We also let M(x, dy) be the distribution of an uniform state on the sphere S(x). The
random walk Xn starting at some X0 = x ∈ D with Markov transitions M is called the
walk-on-sphere algorithm. When the random state Xn gets too close to ∂D we project Xn

on D. The resulting random state has approximatively the same law as XTD
.

Exercise 424 (Markov chain Polya urn model) We consider the Pólya urn model from
section 25.6.2, with c = 1. Write the Markov chain evolution of the number of black balls
Bn in terms of i.i.d. uniform random variables Un on [0, 1].

Exercise 425 (Lazy processes) Describe the Markov transitions of the counting pro-
cess (25.2) associated with the lazy version (25.4) of the random walk on the hypercube.
Check that the probability measure π defined in (25.5) is the unique invariant measure of
the chain and that for any k ∈ S we have

E(Tk | X0 = k) =
k!(b− k)!

b!
2k.

Here Tk denotes the first return time to k. Compute the expected return time to the empty
urn when we have b = 100 balls.

Exercise 426 (Return to origin) We consider the random walk in the lattice Zd as
presented in section 25.1.1.

• When d = 2, prove that

P (X2n = (0, 0) | X0 = (0, 0)) =
∑

0≤k≤n

(2n)!

k!2(n− k)!2

(
1

4

)2n

and deduce that
P (X2n = (0, 0) | X0 = (0, 0)) � 1

πn
.

• When d = 3, prove that

P (X2n = (0, 0, 0) | X0 = (0, 0, 0)) =
∑

0≤k+l≤n

2n!

k!2l!2(n− k − l)!2

(
1

6

)2n

and deduce that
P (X2n = (0, 0, 0) | X0 = (0, 0, 0)) ≤ c/n3/2

with some positive constant c.

Exercise 427 (Polya urn model) We consider the Pólya urn model as discussed in
section 25.6.2. We let (Xi)1≤i≤n be the {0, 1}-valued random variables defined by Xi = 1 iff
a black ball is drawn at the i-th trial. Prove that for any function f on the set of outcomes
{0, 1}n we have

E (f(X1, . . . , Xn) | (B0,W0) = (b, w)) = E
(
E
(
f(Y1, . . . , Yn) | U( b

c ,
w
c )

))
.

Check that
E
(

Bn

Bn +Wn
| Fn−1

)
=

Bn−1

Bn−1 +Wn−1
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with Fn−1 = σ ((B0,W0), (X1, . . . , Xn−1)). Also, prove that for any t ∈ R,

lim
n→∞

E
(
e

itBn
Bn+Wn | (B0,W0) = (b, w)

)
= E

(
eitU(b/c,w/c)

)
.

Exercise 428 (Diffusion approximation) We consider the Pólya urn model as discussed
in section 25.6.2 with c = 1, and we let Xt be rescaled continuous process Xt =

B�Nt
N+�Nt� ,

and we set ∆hXt := Xt+h − Xt, for some time step h. For h = 1/N and N sufficiently
large, check that

E (∆hXt | Xt) = 0,

E
(
(∆hXt)

2 | Xt

)
=

1

N

Xt(1−Xt)

(1 + t)2
h (1− εt(N))

for some function εt(N) ∈ [0, 2/N ]. Compare Xt with the non-homogeneous neutral Wright-
Fisher diffusion process

dYt =
1

1 + t

√
Yt(1− Yt)

N
dVt,

with Vt denoting a standard Brownian motion.

Exercise 429 (Coupon collector problem) We sample with replacement from an
urn with d numbered balls S = {1, . . . , d}. We denote by Xn the S-valued sequence repre-
senting the label of the ball drawn at the n-th trial. For each 1 ≤ i ≤ d, we let An(i) =
{∀1 ≤ p ≤ n : Xp ∈ S − {i}} denote the event "the ball i has not been drawn after n
trials". Prove that

∀1 ≤ i ≤ d P (An(i)) =

(
1− 1

d

)n

.

We let T be the first time n all the balls have been drawn. Prove that

P (T > n) ≤ d

(
1− 1

d

)n

and P (T > d log (d) +md) ≤ e−m.

Exercise 430 (Brownian motion on torus) The Brownian motion on the one-dimensional
torus T := R/ (2πZ) can be defined by the equivalence class W t = {Wt + 2kπ : k ∈ Z} of
a one-dimensional Brownian motion Wt. We let µ(dw) = 1

2π 1[0,2π](w) dw be the uniform
distribution on T. We consider the mapping

ψ : θ ∈ T �→ ψ(θ) = eiWt ∈ C = {x = (x1, x2) ∈ R2 : x2
1 + x2

2 = 1}.

For any function F on C with ‖F‖ ≤ 1 we set f = F ◦ ψ. Check that

E (F (ψ(Wt)) | W0 = w0) =

∫ 2π

0

f(v) pt(v − w0) dv := Pt(f)(w0)

with the probability density

pt(v) :=
1√
2πt

∑
n∈Z

e−
1
2t (v+2nπ)2 =

1

2π

∑
n∈Z

E
(
e−inWt

)
einv.

The r.h.s. equality follows from the Poisson summation formula. Deduce that

‖Pt(f)− µ(f)‖ ≤
∑
n≥1

e−n2t/2 →t→∞ 0.



26
Iterated random functions

This chapter is dedicated to stochastic processes defined in terms of iterations of random
functions. We illustrate these models in biology with ancestral type evolution processes,
as well as in combinatorics and group theory with card shuffling techniques. The last
part of the chapter is concerned with a series of iterated random processes arising in the
construction and the analysis of fractal images.

Trust everybody, but cut the cards.
Finley Peter Dunne (1867-1936).

26.1 Description

We consider a finite collection A of func-
tions f from some Banach state space S into
S equipped with some probability measure Γ.
In other words, Γ is the law of some random
variable F taking values in the finite set F

∀f ∈ A P (F = f) = Γ(f)

with a finite collection of numbers Γ(f) ∈
[0, 1], indexed by S � f and such that (s.t.)
Γ(S) :=

∑
f∈A Γ(f) = 1.

Remark : Without loss of generality, we assume that A = {fi : i ∈ I} is a family of
functions indexed by some finite set I and

P (F = fi) = Γ(fi) = ν(i) (26.1)

where ν is a probability measure on the index set I.
We further assume that A ⊂ F is a subset of a Banach space F of functions from S into

S which is stable by the composition of functions f ◦ g ∈ F , for any f, g ∈ F (i.e., F has a
semiring structure w.r.t. the operations (+,×, ◦)).

Definition 26.1.1 Iterated random functions are defined by an F-valued Markov chain
using the forward formula

Xn = Xn−1 ◦ Fn = F0 ◦ F1 ◦ . . . ◦ Fn (26.2)

or the backward formula

Xn = Fn ◦Xn−1 = Fn ◦ Fn−1 ◦ . . . ◦ F0. (26.3)

In the above display, (Fn)n≥1 denotes a sequence of independent random copies of F , and
X0 = F0 stands for some initial function F0 ∈ F .

705
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Notice that

Law (Fn ◦ Fn−1 ◦ . . . ◦ F0) = Law (F0 ◦ F1 ◦ . . . ◦ Fn) .

In the example (26.1), the Markov chain Xn(x) defined by (26.3) and starting at the identity
function F0(x) = x can be written as follows:

X0(x) = x � X1(x) = fI1(x) � X2(x) = fI2 (fI1(x))

� . . . � Xn(x) = fIn (. . . (fI1(x)) . . .) ,

where I1, I2, . . . are independent draws from ν. The Markov transitions of the chain Xn(x)
are given by

M(x, dy) =
∑
i∈I

ν(i) δfi(x)(dy).

Important remark : The Markov property for the function-valued Markov chains
Xn = Xn−1 ◦ fIn or Xn = fIn ◦ Xn−1 is clear. In the second case, it is also true for the
chain Xn(x) = fIn(Xn−1(x)) taking values on S and starting at some state x. In this
situation, sometimes we slightly abuse the notation and we denote by Xn instead of Xn(x)
the random states in S of the chain starting at the constant function F0(y) := x. When
there is no confusion, we often denote by Xn the random states in S of the chain starting at
the random constant function F0(y) := X0. Here X0 is a random variable taking values in S.

As usual, we are interested in the limiting behavior (whenever it exists) of these Markov
chains. More precisely, we would like to know whether there are limiting measures such
that for any starting state x, and for any B ⊂ S,

ηn(B) := P(Xn(x) ∈ B) −→ η∞(B)

and for any starting state X0 = f0 and for any B ⊂ F

Γn(B) = P(Xn ∈ B) −→ Γ∞(B).

For the convergence of the chain Xn in the set of random functions, we refer the reader to
exercise 438.
Remark :

The set F = C(Rd,Rd) can be equipped with a Banach space norm

‖f‖F =
∑
k≥1

2−k ‖f‖Kk
with ‖f‖Kk

:= sup
x∈Kk

|f(x)| (26.4)

where Kk ⊂ Kk+1 is a sequence of strictly increasing compact sets covering Rd = ∪k≥1Kk.
In this situation, we can extend the measure Γ to the state space F of the Markov chain
Xn by considering the discrete measure

Γ(df) =
∑

1≤i≤d

ν(i) δfi(df)

in the sense that for any bounded measurable function H on F , we have the Lebesgue
integral

E (H(F )) =

∫
H(f) Γ(df) =

∑
i∈I

ν(i) H(fi).

When I ⊂ R is not necessarily finite and is equipped with some probability measure ν, we
have

E (H(F )) =

∫
H(f) Γ(df) =

∫
H(fu) ν(du).
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26.2 A motivating example
Suppose that S = [−2, 2] and A = {f−1, f+1} consists of two functions

f−1(x) =
1

2
x− 1 and f+1(x) =

1

2
x+ 1.

We equip the set I = {−1,+1} with the uniform measure ν(−1) = ν(+1) = 1/2. We can
see that the Markov chain (26.3) is defined by

Xn(x) = fIn (Xn−1(x)) =
1

2
Xn−1(x) + In

where In is a {−1,+1}-Bernoulli r.v. with parameter 1/2. We denote by M the Markov
transition of the chain. Note that

f−1([−2, 2]) = [−2, 0] and f+1([−2, 2]) = [0, 2] ⇒ ∀x ∈ [−2, 2] Xn(x) ∈ [−2, 2].

Elementary computations show that

Xn(x) =

(
1

2

)2

Xn−2(x) +
1

2
In−1 + In

= . . . =

(
1

2

)n

x+
∑

0≤p<n

1

2p
In−p.

On the other hand, since (I1, I2, . . . , In)
Law
= (In, . . . , I2, I1), we have

∑
0≤p<n

1

2p
In−p

Law
=

∑
0≤p<n

1

2p
Ip+1 →n↑∞

∑
p≥0

Ip+1

2p
:= X∞.

From these observations, we check that X∞ ∈ [−2, 2] and

Law(Xn(x)) →n↑∞ Law (X∞) = π. (26.5)

We also notice that for any uniform r.v. I0 on I = {−1,+1} we have

1

2
X∞ + I0 =

∑
p≥0

Ip+1

2p+1
+ I0

law
=

∑
p≥0

Ip+2

2p+1
+ I1 =

∑
p≥1

Ip+1

2p
+ I1 = X∞.

This implies that π = πM .
In addition, using the fact that lip(fi) = 1/2, we prove that

W(Law(Xn(x)),Law(Xn(y))) ≤ 2−n |x− y|.

Using proposition 8.3.13 we also readily check that

W(Law(Xn(x)), π) = W(δxM
n, πMn) ≤ 2−n

∫
π(dy) |x− y|.

Hence
sup

x∈[−2,2]

W(Law(Xn+2(x)), π) ≤ 2−n.
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Since S has a bounded diameter diam(S) := supx,y |x− y| = 4, using proposition 8.3.9 and
proposition 8.3.13 we readily check that

sup
µ∈P(S)

∥∥µMn+4 − π
∥∥
tv

≤ 2−n.

This shows that distribution of the random states Xn converges exponentially fast to the
unique invariant measure π. We let Ua,b be a uniform r.v. on [a, b]. Recalling that

U[a,b]
law
= a+ (b− a) U0,1,

we check that

f−1(U−2,2)
law
=

1

2
(−2 + 4 U0,1)− 1 = −2 + 2U0,1

law
= U−2,0

f+1(U−2,2)
law
=

1

2
(−2 + 4 U0,1) + 1 = −2U0,1

law
= U0,2

from which we conclude that
π = Law(U−2,2).

Another illustration of these Bernoulli type iterated functions is provided in exercise 439.
In the next sections, we discuss three more typical examples arising in the literature on

random iterated functions.

26.3 Uniform selection

26.3.1 An ancestral type evolution model

We discuss an elementary Markov chain that represents the ancestral genetic type evolution
of d individuals S = {1, . . . , d}. At each time n, the i-th individual chooses independently
its parent type in the previous generation.

More formally, at the first generation, we sample d uniform random variables A1(i),
1 ≤ i ≤ d, with common distribution

∀1 ≤ j ≤ d P (A1(1) = j) = . . . = P (A1(d) = j) =
1

d

∑
1≤i≤d

1i(j) = 1/d.

The index A1(i) can be interpreted as the ancestral type of the individual i at the first level,
or equivalently A1(i) can be seen as the parent of the individual i. This transition can be
summarized by the following diagram:

Selected types at level n = 0 ←− Individual at n = 1.
A1(i) ←− i

At the second iteration, the i-th individual of type changes independently and randomly
its type by choosing a new type in S. The ancestral tree of the individuals at levels n = 0, 1, 2
are encoded in the following diagram:

n = 0 ←− n = 1 ←− n = 2.
A1(A2(i)) ←− A2(i) ←− i

Notice that A2(i) can be interpreted as the ancestral type at level n = 1 of the individual
i (at the current level n = 2); and A1(A2(i)) is the ancestral type at level n = 0 of the i-th
individual.
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A1(A2(i)) A2(i)�� i��

1 1
��

1
��2 2

��
2��

3 3�� 3

��

4 4�� 4

��

5 5

��

5.��

The evolution of the genealogical tree based structure of the ancestral types of the
individuals can be summarized by the following synthetic diagrams:

[A1(i), i] � [A1(A2(i)), A2(i), i] � [A1(A2(A3(i))), A2(A3(i)), A3(i), i] .

Notice that the sequence of random variables An := (An(1), . . . , An(d)) is a r.v. with a
law given for any a = (a(1), . . . , a(d)) ∈ SS by

P (An = (a(1), . . . , a(d)))

= P (An(1) = a(1))× . . .× P (An(1) = a(d))

= 1
d

∑
1≤b(1)≤d 1b(1)(a(1))× . . .× 1

d

∑
1≤b(d)≤d 1b(d)(a(d))

= 1
dd

∑
(b(1),...,b(d))∈SS 1(b(1),...,b(d))(a(1), . . . , a(d))

= 1

Card(SS)

∑
b∈SS 1b(a) := Γ(a)

where Γ represents the the uniform probability measure on the set A = F = SS given by

∀a ∈ F Γ(a) =
1

Card(SS)
=

1

dd
.

The sampling of An consists in choosing randomly (with replacement) d indices I1, . . . , Id
in the set {1, . . . , d} and then setting A(j) = Ij , with 1 ≤ j ≤ d. In other words, we sample
d random variables I1, . . . , Id with the uniform distribution 1

d

∑
1≤i≤d 1i on {1, . . . , d}.

We also recall that we can equivalently use d uniform random variables Ui on [0, 1] and
then set Ii = 1 + �d Ui�, for each 1 ≤ i ≤ d.

26.3.2 An absorbed Markov chain

We let |a| be the cardinality of the set a(S), and we consider the partial order relation

b2 ≤ b1 ⇔ ∃a ∈ A : b2 = a ◦ b1.

We will use the term b2 is below b1 to refer to this relation.
We also denote by S(q, p) the number of ways of partitioning q states into p blocks, and

by (d)p = d!/(d− p)! the number of one-to-one mappings from p states into d states.

Remark : In the combinatorics literature, S(q, p) is called the Stirling number of the second
kind. For instance S(q, q) = 1, and S(q, q − 1) = q(q − 1)/2 (dividing q elements into q − 1
sets amounts of dividing q into q − 2 sets of size 1, and one set of size 2).

Suppose that |b1| = p1. By construction, the following assertions are satisfied:
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• |b2| = p2 ≤ p1, so that b1(S) contains p1 states i1, . . . , ip1
, and b2(S) contains p2 states

j1, . . . , jp2

• The mappings b2 below b1 are defined by mapping the states i1, . . . , ip1
to the set {1, . . . , d},

so that there are exactly dp1 mappings b2 below b1. We check this claim using the fact that
any choice of mapping from j �∈ {i1, . . . , ip1} to {1, . . . , d} does not change the construction
of a given b2 associated with some mapping from i1, . . . , ip1

to {1, . . . , d}.

• Given some b1 s.t. |b1| = p1, there are S(p1, p2)× (d)p2 mappings b2 with |b2| = p2 ≤ p1
such that b2 ≤ b1.

Each partition π = {π(1), . . . , π(p2)} of the p1 states in b1(S) into p2 blocks is combined
with one of the (d)p2

one-to-one mappings from the partition indexes {1, . . . , p2} into
{1, . . . , d}.

The following diagram illustrates these observations when p1 = 3 ≥ p2 = 2, and π(1) =
{2} π(2) = {4, 5}.

b2(i) = a(b1(i)) b1(i)�� i��

1 1

��

1
��2 2

��
2��

3 3�� 3

��

4 4�� 4��

5 5

��

5.��

A useful general observation for iterated random functions is that the time reversed
chain has the same law as the forward chain. More formally, for any n ≥ 1,

Law (A1 ◦A2 ◦ . . . ◦An) = Law (An ◦An−1 ◦ . . . ◦A1) .

This observation allows us to analyze the genealogical structure of the process backward
in time in terms of the Markov chain

Bn = An ◦An−1 ◦ . . . ◦A1 ⇒ Bn = An ◦Bn−1 ≤ Bn−1

with initial condition B0 = Id ∈ A. In terms of genealogy, this Markov chain represents
the ancestral branching process from the present generation running backward into the
past. In this interpretation, the mapping An represents the way the individuals choose
their parents in the previous ancestral generation. The range of An represents successful
parents with direct descendants, whereas the range of Bn represents successful ancestors
with descendants in all the generations through terminal time.

In view of previous observations, eventually the sequential composition of random map-
pings becomes constant after some sufficiently large time. To see why, we consider the
Markov chain defined for any p ≤ q ≤ d by

P (|Bn| = p | |Bn−1| = q) =
1

dq
S (q, p) (d)p.

We also observe that 1 is an absorbing state, i.e. P (|Bn| = 1 | |Bn−1| = 1) = 1.
We let ∂A the set of the d constants mappings, that is

∂A = {a ∈ A : |a| = 1}.
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We are interested in the random variable T that represents the time to most recent common
ancestor of an initial population with |B0| individuals.

T = inf {n ≥ 1 : Bn ∈ ∂A} = inf {n ≥ 1 : |Bn| = 1 }.

Of course, if one of the Ap ∈ ∂A, for some p ≤ n, we have Bn ∈ ∂A. This yields the rather
crude estimate

P (T > n) ≤ P (∀1 ≤ p ≤ n Ap �∈ ∂A)

=
∏

1≤p≤n

(1− P (Ap ∈ ∂A)) =

(
1− d

dd

)n

≤ e−n/dd−1

.

This implies that P (T < ∞) = 1. In addition, by symmetry arguments BT is uniformly
distributed in the set ∂A.

Using remark 26.3.2, we have

P (|Bn| �= q | |Bn−1| = q) = 1− (d)q
dq

= 1− d(d− 1) . . . (d− (q − 1))

dq

= 1−
∏

1≤k<q

(
1− k

d

)

≤ 1−
(
1− q − 1

d

)q−1

≤ (q − 1)2

d
.

In the last assertion we used 1− an = (1− a) (1+ a+ a2 + . . .+ an−1) ≤ n(1− a), which is
valid for any 0 ≤ a ≤ 1, and any n ∈ N. Recalling that log (1− x) ≤ −x, for any x ∈ [0, 1[,
we also have the estimate

P (|Bn| �= q | |Bn−1| = q) = 1−
∏

1≤k<q

(
1− k

d

)

= 1− e
∑

1≤k<q log (1− k
d )

≥ 1− e−
1
d

∑
1≤k<q k = 1− e−

q(q−1)
2d .

We consider the Markov chain

P (Rn = p | Rn−1 = q) =
(d)q
dq

1p=q +

(
1− (d)q

dq

)
1p=q−1. (26.6)

This chain has the same chance to stay in its position, and whenever it changes its values
it decreases only by a unit. This indicates that the first time T ′ it reaches the absorbing
state 1, is larger than T in the sense that

P (T > n) ≤ P (T ′ > n) ≤ n

d
exp

[
−
(
n

d
− 7

2

)]
. (26.7)

A detailed proof of the r.h.s. estimate is provided in exercise 431. For a more thorough
discussion on the long time behavior of these Markov chain models, we refer the reader to
[80].
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26.4 Shuffling cards

26.4.1 Introduction

Most card shuffling can be interpreted as a Markov chain taking values in the symmetric
group Gd, that is, in the set of all the d! permutations of d cards S := {1, . . . , d}, for some
d ≥ 1.

This section is mainly taken from the seminal article of D. Aldous and P. Diaconis [2]
(see also the book by D. A. Levin and Y. Peres [182], for a more recent and updated
treatment on Markov chains and mixing times). The forthcoming analysis also originates
from this article. We also refer the reader to section 8.3.1 on p. 173 for a presentation of
the key notion of strong stationary times and their use to derive quantitative estimates for
the convergence to equilibrium of a given Markov chain.

26.4.2 The top-in-at-random shuffle

As its name indicates, the top-in-at-random shuffle takes the first card of a deck and inserts
it at a uniformly chosen random position. One way to model this shuffle by iterated random
functions is to consider the set F = Gd, and the set A of the d cycles ci = (i i− 1 . . . 2 1),
with 1 ≤ i ≤ d defined by

ci(i) = i− 1 ci(i− 1) = i− 2 . . . ci(2) = 1 ci(1) = i

and ci(k) = k for any k > i, equipped with the uniform distribution

Γ(ci) = 1/d.

The cycle permutations ci are described in a synthetic diagram below.

ci(j) j��

1

top in i-th site

��

2

2

��

3
...

...

i− 2 i− 1

i− 1

��

i

i

��

1

i+ 1 i+ 1

...
...

d d

We let γ be a random variable with distribution Γ. The top-in-at-random shuffle is
represented as the Gd-valued Markov chain

Xn = Xn−1 ◦ γn = γ1 ◦ . . . ◦ γn = cI1 ◦ . . . ◦ cIn . (26.8)

Here γn = cIn stands for a sequence of independent random copies of γ = cI , and X0 = Id
denotes the identity permutation.
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We let T = 1 + τ , where τ is the first time the original bottom card reaches the top of
the deck.

T = T1 + . . .+ Td−1 + Td (26.9)

where Td = 1, and for any 1 ≤ i < d, Ti stands for the number of times required for the
bottom card to rise from position i to position i+1. We start counting from the bottom of
the deck. When the bottom card is at position i, the chance for the randomly inserted top
card to be inserted below i is i/d. This shows that Ti ∼ Geo( i

d ), that is,

P (Ti = k) =

(
1− i

d

)k−1
i

d
.

In addition the random variables Ti are clearly independent.

Remark : This model is intimately related to the coupon collector problem discussed in
exercise 429. Assuming that the collector gets one out of d distinct coupons with equal
probability 1/d, the time it takes to obtain the first coupon is Td = 1, the time to see
the second Td−1 is a geometric random variable with parameter (d− 1)/d, the time to see
the third Td−2 is a geometric random variable with parameter (d− 2)/d, and by induction
the time Td−(i−1) to see the i-th coupon is a geometric random variable with parameter
(d− (i− 1))/d, for each 1 ≤ i ≤ d. The total time T coincides with the sum defined above.

In this interpretation, we have

P(T > n)

≤ P (∪1≤i≤d {the i-th coupon does not appear in the first n trials})

=
∑

1≤i≤d P ({the i-th coupon does not appear in the first n trials})

=
∑

1≤i≤d

(
d−1
d

)n ≤ d e−n/d.

This implies that
P(T > d log (d) + n d) ≤ d e− log (d))−n = e−n

and by theorem 8.3.18 we conclude that

‖Law(Xd log d+nd)− π‖tv ≤ e−n.

Here π denotes the invariant uniform distribution π(σ) = 1/d! of the shuffling Markov chain
(26.8) on Gd. We refer the reader to exercise 432 for the analysis of the mean and variance
of T .

26.4.3 The random transposition shuffle

In the random transposition shuffle, we randomly pick two cards and exchange their posi-
tions. One way to model this shuffle by iterated random functions is to consider the set
A = T := {τi,j ∈ Gd : 1 ≤ i < j ≤ d}, the subset of transpositions τi,j of the indexes i, j;
that is, τi,j(i) = j, τi,j(j) = i, and τi,j(k) = k for any k ∈ S − {i, j}, equipped with the
uniform distribution

Γ(τi,j) =
2

d(d− 1)
.

In this case, Γ is the distribution of the random variable γ defined by

P (γ = τi,j) = Γ(τi,j) =
2

d(d− 1)
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for any 1 ≤ i < j ≤ d. The sampling of γ consists of choosing randomly (without replace-
ment) two indices I, J in the set {1, . . . , d} and then setting γ = τI,J . Then we can define
the Gd-valued Markov chain

Xn = Xn−1 ◦ γn = γ1 ◦ . . . ◦ γn = τI1,J1 ◦ . . . τIn,Jn (26.10)

where γn = τIn,Jn
denotes a sequence of independent random copies of γ = τI,J , and

X0 = Id denotes the identity permutation.
Using τ2i,j = Id, we see that the Markov transition is clearly reversible

M(σ, σ ◦ τi,j) = P (Xn = σ ◦ τi,j | Xn−1 = σ)

= P (Xn = σ | Xn−1 = σ ◦ τi,j) = M(σ ◦ τi,j , σ).

This shows that the invariant probability measure of the chain is the uniform distribution
π(σ) = 1/d! on Gd. Recalling that any permutation can be written as a composition of
elementary transpositions, this Markov chain Xn is irreducible.

We consider the lazy (and aperiodic) chain associated with the random variable γ defined
by

∀i �= j P (γ = τi,j) = Γ(τi,j) =
2

d2

and P (γ = Id) = 1/d (recall that (d(d− 1)/2) 2/d2 + 1/d = 1).
When cards are numbered {c1, . . . , cd} := {1, . . . , d}, an equivalent way of shuffling the

cards is to choose at any time n a card label Ln := i with the left hand, and a position
Rn = j with the right hand, and then switch the card i with the card in position j, so that

Xn = Xn−1 ◦ τ(Ln,Rn).

Next, we consider two decks Xn and X ′
n = X ′

n−1 ◦τ(L′
n,R

′
n)

that start from a different initial
configuration Xn = x0 �= x′

0 = X ′
0, and evolve with the same random transposition shuffles

(Ln, Rn) = (L′
n, R

′
n), up to the first time T they coincide XT = X ′

T . After that time, we
have Xn = X ′

n.
We let Nn be the number of alignments, that is, the number of cards that occupy the

same location in the decks Xn and X ′
n. We can prove that

Nn+1 ≥ Nn + εn (26.11)

with a {0, 1}-value random variable εn with distribution given by

P (εn+1 = 1 | Nn) ≥
d−Nn

d︸ ︷︷ ︸
chance to choose
a non aligned card

× d−Nn

d︸ ︷︷ ︸
chance to choose
a non aligned position

.

This implies that

d
n↑∞←− d−

(
1− 1

d

)n

(d−N0) ≤ E (Nn | N0) ≤ d. (26.12)

A detailed proof of these claims can be found in exercise 434.
The initial state N0 depends on the initial configuration of the deck. Obviously the

largest coupling time occurs when the initial configurations are such that N0 = 0.
The coupling time of the chains is decomposed as follows

T = T1 + . . .+ Td
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where T1 is the first time n s.t. Nn = 1, T2 is the first time n s.t. Nn = 2, and Ti is the
first time n s.t. Nn = i. In this situation, Ti (⇒ NTi = i), is a geometric random variable
with success parameter ((d− (i− 1))/d)

2; This implies that

E (Ti+1) = (d/(d− i))
2 ⇒ E(T ) = d2

∑
0≤i<d

(
1

(d− i)

)2

.

Hence we conclude that

E(T ) = d2
∑

1≤i≤d

1

i2
≤ d2 π2/6.

Using proposition 8.3.16, we conclude that

∥∥Law(Xn(πd)2/6)− π
∥∥
tv

≤ 1

n

where π denotes the invariant uniform distribution π(σ) = 1/d! of the lazy version of the
Markov chain (26.10) on Gd.

Our next objective is to design a judicious strong stationary time to improve this esti-
mate. We start with a deck of d unmarked cards, and we mark them following the next
step at each random transposition shuffle. At each step, we assume that the left and right
hands independently pick uniformly a card, say Ln and Rn, and we mark the card Rn when

• Ln is marked and Rn is unmarked

• or when Ln = Rn is unmarked.

Notice that Rn remains unmarked if and only if the left hand card Ln is marked, the right
hand Rn is unmarked and Ln �= Rn.

Notice that each time a card is marked, it is uniformly ordered in the set of the cards we
have marked so far. Thus, the first time T all the cards are marked is a strong stationary
time. A more detailed and formal proof of this assertion is provided in exercise 433.

We let T0 = 1. For any 1 ≤ i < d, we let Ti be the number of transpositions after the i-th
card is marked, until the (i+ 1) card is marked (including the time of marking the second
card). We can check that the random variables (Ti)1≤i<d are independent, geometrically
distributed with success parameters

pi =
i× (d− (i− 1))

d2
(26.13)

and
T =

∑
0≤i<d

Ti =⇒ E(T ) ≤ 2d(1 + log d). (26.14)

A detailed proof of this result is provided in exercise 433; see also exercise 435 for the
estimation of E(T ).

By theorem 8.3.18 we conclude that

∥∥Law(X2d(1+log d)n)− π
∥∥
tv

≤ 1

n
.

Here π denotes the invariant uniform distribution π(σ) = 1/d! of the lazy version of the
Markov chain (26.10) on Gd.
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26.4.4 The riffle shuffle

This real shuffle consists of dividing the deck into two packs of roughly d/2 cards each.
For instance, we can cut the pack of d cards according to the binomial distribution with
parameter 1/2. In other words, the probability to get a pack of d = k+ (d− k) cards to be

cut just after the k-th card is
(

d
k

)
× 2−d.

Then these two packs are interwoven randomly. (We mention that a perfect interwoven
card-by-card shuffle, when done by a good magician, is not random at all.)

The randomness of the shuffle is characterized by a sequence (ε1, . . . , εd) of {0, 1}-
valued independent Bernoulli random variables with probability 1/2. The number of L :=∑

1≤k≤d(1 − εk) of 0’s represents the number of cards that go to the l.h.s. stack, and the
number R =

∑
1≤k≤d εk of 1’s shows how many cards go to the r.h.s stack before performing

the riffle. Notice that the decomposition d = L+R represents the binomial cut of the deck
with parameter 1/2.

The order of the 0’s and 1’s in the sequence (ε1, . . . , εd) characterizes the order the cards
fall when riffling the two stacks. The 0’s corresponds to cards in the left hand stack, and
the 1’s to cards the right hand stack. Each of these sequences (ε1, . . . , εd) corresponds to a

unique riffle shuffle. Thus, given the binomial numbers (L,R) = (k, d−k), there are
(

d
k

)

possible riffles, one of which (0, . . . , 0, 1, . . . , 1) is the identity. Thus, the total number of
possible riffle shuffles is given by

1 +
∑

0≤k≤d

((
d
k

)
− 1

)
= 2d − d.

In addition, the probability of any cut followed by any possible riffle is 2−d.
For instance, the following schematic picture shows a riffle associated with the sequence

(0, 1, 1, 0, 0, 1, 1, 0)
0
0
0
0
1
1
1
1

�

0
1
1
0
0
1
1
0

Assuming that the original sequence of ordered 8 cards is (c1, . . . , c8), this "real" riffle of
the two stacks starts from the bottom, dropping first the card c4 from the left hand stack,
then the card c8, c7 from the right hand stack, then c3, c2 from the left hand stack, then
c6, c5 from the right hand stack, and finally the remaining card c1 from the left hand stack.

c1 c2 c3 c4 c5 c6 c7 c8
0 1 1 0 0 1 1 0
c1 c5 c6 c2 c3 c7 c8 c4

cσ−1(1) cσ−1(2) cσ−1(3) cσ−1(4) cσ−1(5) cσ−1(6) cσ−1(7) cσ−1(8)

The new order of the cards (1, 4, 5, 8, 2, 3, 6, 7) after the riffle is described by the following
permutation

σ = Σ(0, 1, 1, 0, 0, 1, 1, 0) :=

(
1 2 3 4 5 6 7 8
1 4 5 8 2 3 6 7

)
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with the usual position and value encoding

j = σ(i) = position of the card ci (originally in position i)
cσ−1(j) = value of the card in position j (originally with value cj).

Notice that these permutations have two rising sequences

σ(1) < σ(2) < σ(3) < σ(4) and σ(5) < σ(6) < σ(7) < σ(8)

except for the identity (0, . . . , 0, 1, . . . , 1) which has only one.
We also observe that the mapping Σ : ε ∈ {0, 1}d �→ Σ(ε) ∈ Gd is bijective. We

consider a uniform random variable γ in the set of 2d permutations R = Σ({0, 1}d) ∈ Gd.
The iteration of the riffle shuffle discussed above is described by the Markov chain model

Xn = Xn−1 ◦ γn = γ1 ◦ . . . ◦ γn

where γn denotes a sequence of independent random copies of γ, and X0 = Id is the identity
permutation.

Notice that at the forth step of the above interleaving,

c1 c2 c3 c4 c5 c6 c7 c8
0 1 1 0 0 1 1 0
c1 c5 c6 c2 c3 c7 c8 c4

cσ−1(1) cσ−1(2) cσ−1(3) cσ−1(4) cσ−1(5) cσ−1(6) cσ−1(7) cσ−1(8)

we have 3 cards {c1, c2, c3} on the left hand stack, and 2 cards {c5, c6} in the right hand
pack (since the cards c7, c8, c9 have already fallen). Since the Bernoulli random variables
that model the riffle are independent, the chance that the next card is dropped from the
right hand pack to the right hand stack is 2/(2 + 3)

P


ε5 = 1 |

∑
1≤i≤5

εi = 2


 =

P
(
ε5 = 1 ,

∑
1≤i≤4 εi = 1

)

P
(∑

1≤i≤5 εi = 2
)

=
1

2

(
4
1

)
2−4

(
5
2

)
2−5

=
4!

3!1!
× 3!2!

5!
= 2/5.

The time reversed shuffle consists in labeling at random all cards with 0’s and 1’s using
independent Bernoulli random variables with parameter 1/2. Then, we pull out the cards
with label 0’s with their relative order (maintaining the cards with label 1’s with their
relative order). We place the cards with label 0 on the top of the stack of cards with
label 1, keeping them in their relative order. In other words, the inverse shuffle takes
cards with 0’s, respectively 1’s, in the top deck, respectively bottom deck, without changing
their order. For instance, the reversed riffle associated with the sequence defined above
(0, 1, 1, 0, 0, 1, 1, 0) is given by

c′1 c′2 c′3 c′4 c′5 c′6 c′7 c′8
c1 c5 c6 c2 c3 c7 c8 c4
0 1 1 0 0 1 1 0

c1 c2 c3 c4 c2 c3 c6 c7

c′1 c′4 c′5 c′8 c′2 c′3 c′6 c′7
c′σ(1) c′σ(2) c′σ(3) c′σ(4) c′σ(5) c′σ(6) c′σ(7) c′σ(8)
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Notice that the new order of the cards (1, 6, 5, 2, 3, 7, 8, 4) after the inverse riffle (0, 1, 1, 0, 0, 1, 1, 0)
is described by:

σ′ =

(
1 2 3 4 5 6 7 8
1 5 6 2 3 7 8 4

)
= σ−1.

Repeating inverse shuffles from a given configuration, we retain and mark the sequence
of 0 − 1 labels at the back of each card, so that after n inverse shuffles each card has a n-
digit binary number. Notice that the labels at each step are assigned uniformly at random.
Cards with distinct labels are in uniform random relative order, while cards with the same
label are in the same order as the origin. An example of three successive inverse shuffles is
provided below

0 c1

1 c2

1 c3

0 c4

0 c5

1 c6

1 c7

0 c8

�

01 c1

01 c4

00 c5

01 c8

11 c2

10 c3

10 c6

11 c7

�

001 c5

101 c3

101 c6

010 c1

010 c4

010 c8

111 c2

111 c7

�

0100
0101
0100
0011
1010
1011
1110
1110

. . . / . . .

From previous observations, we notice that when all cards have distinct labels, their
relative order is uniform. This shows that

T = inf{n ≥ 1 : all cards have distinct label} (26.15)

is a strong stationary time.
At each step n, we have a collection of d digit binary numbers of size n. In addition,

the labels of cards are independent. Since there are 2n possible n-digit numbers, the chance
that T ≤ n is the same as the probability, when putting randomly d balls into 2n boxes, to
get at most one ball in each box. We can also interpret the balls as students in a classroom
where each box represents a different birthday:

P (T > n) = 1− 2n

2n
× 2n − 1

2n
× 2n − 2

2n
. . .× 2n − (d− 1)

2n
= 1−

∏
1≤i≤d

(
1− i

2n

)
.

Recalling that −x ≥ log (1− x) ≥ −x−x2, for any 0 ≤ x ≤ 1/2 (since 1+2x ≥ 1/(1−x) =
1 + x/(1− x) ≥ 1 for such x), we have

∑
1≤i≤d

log

(
1− i

2n

)
≥ − 1

2n

∑
1≤i≤d

i− 1

4n

∑
1≤i≤d

i2

= −d(d+ 1)

2n+1
− 1

4n
d(d+ 1)(2d+ 1)

6

for any n ≥ 1 such that (i/2n ≤) d/2n ≤ 1/2. This implies that for any n such that 2n ≥ 2d,
we have

P (T > n) ≤ 1− exp

{
−d(d+ 1)

2n+1

[
1 +

1

2n

(
2

3
d+

1

3

)]}
.

Using theorem 8.3.18, we conclude that

‖Law(Xn)− π‖tv ≤ 1− exp

{
−d(d+ 1)

2n+1

[
1 +

1

2n

(
2

3
d+

1

3

)]}
. (26.16)
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If we choose n such that 2n ≥ a (d+ 1)2 with a such that 1− e−
1
a ≤ 1

b for a given b ≥ 1,

d(d+ 1)

2n+1

[
1 +

1

2n

(
2

3
d+

1

3

)]
≤ 1

2a

[
1 +

d

2n

]

≤ 1

2a

[
1 +

1

a

]
≤ 1

a
.

We find that P (T > n) ≤ 1/b. Using

d/2n ≤ 1/2 ⇒ 1 +
1

2n

(
2

3
d+

1

3

)
≤ 1 +

d

2n
≤ 3/2

and the inequality e−x ≥ 1− x, for x ≥ 0, we obtain the rather crude estimates

‖Law(Xn)− π‖tv ≤ 3d(d+ 1)

4 2n
≤ (d+ 1)2

2n
≤ 1

a
.

These estimates lead us to the conclusion that
∥∥Law(X1+�log2 a+2 log2 (d+1)�)− π

∥∥
tv

≤ 1/a

with log2 a := log a/ log 2 (so that 2log2 a = elog2 (a)×log 2 = elog a = a, for any a > 0).
The computation of the mean E(T ) is presented in exercise 437.

26.5 Fractal models
Fractal forms are highly symmetric objects. They can be described in terms of random
iterations of affine type functions on the Euclidian space Rd, for a fixed dimension d ≥ 1.

In the further development of this section, we let F := C(S, S) be the set of continuous
functions from some subset S ⊂ Rd into itself. We consider a collection of d × d matrices
Ai and d dimensional vectors bi, indexed by a finite set I and we set

A = {fi : i ∈ I} with ∀i ∈ I fi(x) := Aix+ bi.

We equip I with a distribution ν and we set

∀i ∈ I Γ(fi) = ν(i) and Γ (F −A) = 0.

In this situation, the sampling of a random variable F with distribution Γ on A consists
of randomly choosing an index I in the set I with probability ν(I), and then setting F = fI .
The corresponding iterated random functions are defined by an F-valued Markov chain

Xn = FIn ◦Xn−1 = FIn ◦ FIn−1
◦ . . . ◦ FI1 ◦ F0

where (In)n≥1 is a sequence of independent random copies of I, and X0 = F0 is an initial
function F0 ∈ F .

For instance, if I = {0, 1} then ν(1) = 1 − ν(0). In this case, we flip a coin with
probability of a head ν(1) to randomly choose a function in A = {f0, f1}. More formally,
we sample a Bernoulli random variable

P (I = 1) = 1− P(I = 0) = ν(1) and we set F = fI .
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In this situation, we have

Xn =
(
1[0,ν(1)[(Un) f1(Xn−1) + 1[ν(1),1](Un) f0(Xn−1)

)

where (Un)n≥1 is a sequence of independent uniform random variables on [0, 1].

26.5.1 Exploration of Cantor’s discontinuum

A Cantor discontinuum subset of [0, 1] is a closed and nowhere dense and non-empty subset
of the unit interval. Thus, the Lebesgue integral of this set is equal to zero. These "almost"
empty fractal sets were introduced in 1883 by the German mathematician Georg Cantor [38].

The Cantor ternary discontinuum is defined in terms of 1/3-Lipschitz transformations
on S = [0, 1]

f0(x) =
x

3
and f1(x) =

x+ 2

3
=

2

3
+ f0(x).

We notice that

f0(S) =

[
0,

1

3

]
and f1(S) =

2

3
+ f0(S) =

[
2

3
, 1

]

⇓

f0(S) ∪ f1(S) =

[
0,

1

3

]
∪
[
2

3
, 1

]
�= [0, 1]

so that the set [0, 1] is not a fixed point of the set mapping

f : A ⊂ S �→ f(A) = f0(A) ∪ f1(A).

A graphical description of the iterated mapping fn is provided in figure 26.1.

FIGURE 26.1: Cantor discontinuum
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For instance,

S1 = f(S) =

[
0,

1

3

]
∪
[
2

3
, 1

]

S2 = f2(S) = f(S1) =

[
0,

1

9

]
∪
[
2

9
,
1

3

]
∪
[
6

9
,
7

9

]
∪
[
8

9
, 1

]

S3 = f3(S) = f(S2)

=

[
0,

1

27

]
∪
[
2

27
,
1

9

]
∪
[
6

27
,
7

27

]
∪
[
8

27
,
1

3

]
∪
[
2

3
,
19

27

]

∪
[
20

27
,
21

27

]
∪
[
8

9
,
25

27

]
∪
[
26

27
, 1

]
.

This shows that the subsets

S = S0 = [0, 1] ⊃ Sn−1 ⊃ f(Sn−1) = Sn = fn(S0) = ∪2n

k=1Sk,n

are decomposed into 2n intervals (Sk,n)k=1,...,2n with length 3−n.

When n ↑ ∞, this decreasing sequence converges to the Cantor ternary discontinuum
non-empty set

Sn = fn(S0) ↓ I∞ = ∩n≥1Sn �= ∅.

This set is the fixed point of the transformation f

f(S∞) = ∩n≥1f(Sn) = ∩n≥1Sn+1 = ∩n≥2Sn = S∞.

The complementary subset

Cn = Sc
n = ∪n

k=1

(
∪2k−1

l=1 Ck,l

)

is defined in terms of 2k−1 disjoint intervals (Jk,l)l=1,...,2k−1 with length 3−k, with k =
1, . . . , n. A Jn and Jk,l are depicted in figure 26.2.
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FIGURE 26.2: Complement of Cantor discontinuum

This implies that

Full-length(Jn) = 1−
(
2

3

)n

↑ Full-length(J∞) = 1 when n ↑ ∞

=⇒ Full-length(In) ↓ Full-length(I∞) = 0. (26.17)

A proof of this result is provided in exercise 440.
Our random walker moves sequentially in the set Sn ⊂ S = [0, 1]

Xn = fεn(Xn−1) =
1

3
Xn−1 +

2

3
εn

starting from some state X0 ∈ [0, 1], where εn is a sequence of independent random variables
with distribution

P(εn = 0) = P(εn = 1) =
1

2
.

An elementary computation shows that

Xn =
1

3n
X0 +

2

3

n−1∑
k=0

εn−k

3k
(26.18)

law
=

1

3n
X0 +

2

3

n−1∑
k=0

εk
3k

→n↑∞ X∞ :=
2

3

∑
n≥0

εn
3n

.

From these observations, we check that

X∞ ∈ S∞ =




2

3

∑
k≥0

αk

3k
: αk ∈ {0, 1}
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(cf. exercise 440) and
Law(Xn(x)) →n↑∞ Law (X∞) := π.

In addition, using lip(fi) = 1/3 we prove that

W(Law(Xn(x)),Law(Xn(y))) ≤ 3−n |x− y|.

Using proposition 8.3.13 we also readily check that

W(Law(Xn(x)), π) = W(δxM
n, πMn) ≤ 3−n

∫
π(dy) |x− y|

from which we conclude that

sup
x∈[0,1]

W(Law(Xn(x)), π) ≤ 3−n.

Since S has a bounded diameter diam(S) := supx,y |x − y| = 1, by using proposition 8.3.9
and proposition 8.3.13 we readily check that

sup
µ∈P(S)

‖µMn − π‖tv ≤ 3−n.

By the ergodic theorem,

1

n

n∑
p=1

ϕ(Xp) −→
∫

S∞

ϕ(x) π(dx)

for any function ϕ on the Cantor continuum set S∞. For instance, for any A ⊂ [0, 1]

1

n

n∑
p=1

ϕ(Xp) =
Card{1 ≤ p ≤ n : Xp ∈ A }

n
�n↑∞ π (A) = P(X∞ ∈ A).

26.5.2 Some fractal images

The analysis of iterated random functions on the plane follows essentially the same lines
of arguments as those used in the one-dimensional case. In this section, we merely present
some illustrations of fractal images without any convergence analysis.

An example of a fractal leaf.
We consider a sequence of independent Bernoulli random variables

P(εn = 1) = 1− P(εn = 0) = 0.2993.

For each i ∈ {0, 1}, choose the affine functions fi(x) = Ai.x+ bi with the matrices and the
vectors

A0 =

(
+0.4000 −0.3733
+0.0600 +0.6000

)
b0 =

(
+0.3533
+0.0000

)

and

A1 =

(
−0.8000 −0.1867
+0.1371 +0.8000

)
b1 =

(
+1.1000
+0.1000

)
.

Running the Markov chain with 105 iterations we obtain the fractal image in figure 26.3.
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FIGURE 26.3: Second example of fractal leaf

A fractal tree We consider a sequence of independent uniform random variables εn on
the set I = {1, 2, 3}. For each i ∈ {1, 2, 3}, we choose the affine functions fi(x) = Ai.x+ bi
with the matrices and the vectors defined below

A1 =

(
0 0
0 c

)
b1 =

(
1/2
0

)

A2 =

(
r cos(ϕ) −r sin(ϕ)
r sin(ϕ) r cos(ϕ)

)
b2 =

(
1
2 − r

2 cos(ϕ)
c− r

2 sin(ϕ)

)

and
A3 =

(
q cos(ψ) −r sin(ψ)
q sin(ψ) r cos(ψ)

)
b3 =

(
1
2 − q

2 cos(ψ)
3c
5 − q

2 sin(ψ)

)

with the parameters

c = 0.255, r = 0.75, q = 0.625

ϕ = −π

8
, ψ =

π

5
, |X0| ≤ 1.

Running the Markov chain with 105 iterations we obtain the fractal image 26.4.

FIGURE 26.4: Fractal tree
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Sierpinski carpet
We consider a sequence of independent uniform random variables εn on the set I =

{1, 2, 3}. For each i ∈ {1, 2, 3}, we choose the affine functions fi(x) = Ai.x + bi with the
matrices and vectors

A1 = A2 = A3 =

(
1/2 0
0 1/2

)

and

b1 =

(
0
0

)
b2 =

(
1/2
0

)
and b3 =

(
1/4√
3/4

)
�

(
0, 250
0, 433

)
.

Running the Markov chain with 105 iterations we obtain the fractal image in figure 26.5
given below.

FIGURE 26.5: Sierpinski carpet

Heighways dragons
We consider a sequence of independent uniform random variables εn on the set I = {1, 2}.

For each i ∈ {1, 2}, we choose the affine functions fi(x) = Ai.x+ bi with the matrices and
the vectors defined below

A1 =

(
1/2 −1/2
1/2 1/2

)
, A2 =

(
−1/2 −1/2
1/2 −1/2

)
, b1 =

(
0
0

)
, b2 =

(
1
0

)

.
Running the Markov chain with 105 iterations we obtain the fractal image in figure 26.6.

26.6 Exercises
Exercise 431 (Adsorbed Markov chain) We consider the Markov chain presented
in (26.6), and we let Tq→(q−1) be the random time to move from state q to q − 1, for any
2 < q ≤ d.

• We let N be any geometric random variable N with success probability α ∈]0, 1[. Check
that for any 0 ≤ t < −d log (1− α) we have

E(et(N−1)/d) =
α

1− (1− α)et/d
.
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FIGURE 26.6: Heighways dragons

• Check that Tq→(q−1) is a geometric random variable with success probability
(
1− (d)q

dq

)
.

Prove that

E
(
et

T ′−(R0−1)
d | R0

)
=

∏
1≤q<R0

E
(
et

Tq+1→q−1

d

)

and for any 0 ≤ t < q(q−1)
2

E
(
et

Tq→(q−1)−1

d

)
=

1− βq

1− βq et/d
with βq :=

(d)q
dq

≤ e−
q(q−1)

2d .

• Consider for any x > 0 the function

f : x ∈
[
0, e−t/d

]
�→ 1− x

1− x et/d
.

Check that f is increasing and deduce that

1− βq

1− βq et/d
≤ 1− e−

q(q−1)
2d

1− e−
q(q−1)

2d et/d
.

• Consider for any x > 0 the function

g : y ∈ [0, x] �→ g(y) = x
(
1− ey−x

)
+ (y − x)

(
1− e−x

)
.

Check that g(y) ≥ 0, for any y ∈ [0, x] and deduce the convexity property

ex ≤ 1 + x
ex − ey

x− y
.

Applying this inequality to x = q(q−1)
2d ≥ y = t/d, check that on the event R0 > 1

∀t ∈ [0, 1[ E
(
et

T ′−(R0−1)
d | R0

)
=

∏
1≤q<R0

1

1− t
q(q+1)/2

.
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• Deduce from the above that for any 0 ≤ t < 1

E
(
et

T ′−(R0−1)
d | R0

)

≤ h(t) := E
(
et

∑
1≤q<∞

2
q(q+1)

Eq

)
=

∏
q≥1

1
1− t

q(q+1)/2

where Eq is a sequence of independent exponential random variables with unit parameter.

• Prove that
P
(

T ′−(R0−1)
d ≥ n | R0

)
≤ e−tn h(t)

and deduce that

P ( T ′ ≥ m | R0 ) ≤ ae inf
t∈[0,1[

e−mt/d

1− t
= a

m

d
e−(m/d−1). (26.19)

Here a :=
∏

q≥2
1

1− 1
q(q+1)/2

.

• Using (−x ≥) log (1− x) ≥ −x− x2, for any 0 ≤ x ≤ 1/2 (cf. page 718), check that

P ( T ′ ≥ m | R0 = q ) ≤ m

d
exp

[
−
(
m

d
− 5

2

)]
.

Exercise 432 (The top-in-at-random shuffle) We consider the top-in-at-random
card shuffle discussed on page 173 and in section 26.4. We let T = 1 + τ , where τ is the
first time the original bottom card reaches the top of the deck. Using the decomposition
(26.9), prove that

d log (d+ 1) ≤ E(T ) ≤ d(1 + log d) and Var(T ) ≤ 2d2.

Exercise 433 (Random transposition shuffle I)
The following exercise is taken from the book of D. A. Levin and Y. Peres [182]. We let

T be the stopping time associated to the first time all cards are marked in the transposition
shuffle introduced on page 715. Prove that T is a strong stationary time.

Exercise 434 We consider the coupled Markov chains described on page 714. Check
(26.11) and (26.12).

Exercise 435 We consider the strong stationary time T defined in (26.14). Prove that

E(T ) ≤ 2d log d+ αd+ β and ‖Law(Xn)− π‖tv ≤ 2d log d+ d+ 1

n

for some finite constants α and β. Here π is the invariant uniform distribution π(σ) = 1/d!
of the shuffling Markov chain (26.10) on Gd.

Exercise 436 (Random transposition shuffle II) We let T be the stopping time
associated with the first time all cards are marked in the transposition shuffle introduced
on page 715. Check the decomposition (26.14) of T , and prove that the random vari-
ables (Ti)1≤i<d are independent geometrically distributed with success parameters defined
in (26.13).
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Exercise 437 Compute the mean E(T ) of the strong stationary time T introduced in
(26.15).

Exercise 438 We consider the example (26.5). We equip the set F of all continuous
functions from R into itself with the norm ‖f‖F defined in (26.4) with the compact intervals
Kk = [−k, k]. Check that

‖Xn − Yn‖F = 2−(n−1)

with the constant (random) function

Yn(x) =
∑

0≤p<n

1

2p
In−p

Law
=

∑
0≤p<n

1

2p
Ip+1 = Zn →n→∞ Z∞.

Prove that for any F ∈ F and any ε > 0, we have

lim
n→∞

P (‖Xn+1 − F‖F ≤ ε) = P (‖Z∞ − F‖F ≤ ε) .

Exercise 439 (A uniform excursion) We consider the couple of transformations (f0, f1)
of the unit interval S = [0, 1], which associate to a given x ∈ S the states at mid-distance
to the boundaries:

f0(x) = x+
0− x

2
=

x

2
and f1(x) = x+

1− x

2
= f0(x) +

1

2
.

• Compute the Lipschitz constants lip(fi), and the sets fi(S) for i = 0, 1.

• The corresponding iterated random functions are defined by

Xn = fεn(Xn−1) =
1

2
Xn−1(x) +

εn
2

where X0 is some random variable on S, and εn are independent Bernoulli random vari-
ables with P(εn = 0) = P(εn = 1) = 1

2 . Check that

Xn(x) →n↑∞ X∞ :=
∑
n≥1

εn
2n

law
=

1

2
X∞ +

ε0
2
.

• Prove that X∞ is a conversion to base 2 of a uniform random number U on [0, 1], and
U

law
= fε1(U).

• We let M be the Markov transition of the iterated random process Xn. Check that

sup
µ∈P(S)

W(µMn, π) ≤ 2−n.

Exercise 440 (Cantor discontinuum set) Check formulae (26.17) and (26.18). Deduce
from (26.18) that

Sn =

{
1

3n
x0 +

2

3

n−1∑
k=0

αk

3k
: x0 ∈ [0, 1] and αk ∈ {0, 1}

}
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and

S∞ =





2

3

∑
k≥0

αk

3k
: αk ∈ {0, 1}



 .

We further assume that X0 is uniformly chosen in S0 = [0, 1]. Check that

P(Xn ∈ dx) =

(
3

2

)n

1Sn(x) dx.
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27
Computational and statistical physics

This chapter is dedicated to some applications of stochastic processes in computational
and statistical physics. The first part is concerned with molecular dynamics simulation and
Langevin type diffusion processes. The second part of the chapter presents some applications
of the Feynman-Kac path integration theory to quantum mechanics and the computation
of the ground states of Schrödinger operators. The last part of the chapter is dedicated to
interacting particle systems.

If quantum mechanics hasn’t profoundly shocked you,
you haven’t understood it yet.
Niels Bohr (1885-1962).

27.1 Molecular dynamics simulation

27.1.1 Newton’s second law of motion

Molecular dynamics simulation is concerned
with the analysis of the fluctuations and with
the conformal changes of proteins and nucleic
acids in biological molecules. The central
problem is understanding the macroscopic
properties of a molecule through the simula-
tion of a microscopic system of atomic inter-
acting particles in a given force field model.
More formally, we consider the microscopic
evolution of a many-body system formed by
k atomic particles in the Euclidian space E =
R3 with possibly k different masses m = (mi)1≤i≤k. Their spatial positions and their ve-
locities are denoted by the letters q = (qi)1≤i≤k, and p = (pi)1≤i≤k. These particles move
under the influence of some external forces Fi(q) according to the Newton’s second law

mi
d2qi
dt2

= Fi(q). (27.1)

The velocity vector

pi =




p1i
p2i
p3i


 = mi

dqi
dt

= mi




dq1i
dt
dq2i
dt
dq3i
dt




is called the particle moment of the system, and the couple x = (q, p) is called the phase
vector.

731



732 Stochastic Processes

We further assume that the force field is conservative in the sense that

F (q) = −∇qV (q) =

(
−∂V

∂qi
(q)

)

1≤i≤k

for some interparticle potential function V : Ek → R. In this situation, we can reformulate
the evolution equations (27.1) in terms of the Hamiltonian or energy functional

H(q, p) =

k∑
i=1

‖pi‖2

2mi
+ V (q1, . . . , qk) (27.2)

with 



dqi
dt

=
pi
mi

=
∂H

∂pi
(q, p)

dpi
dt

= Fi(q) = −∂V

∂qi
(q) = −∂H

∂qi
(q, p).

(27.3)

We notice that these evolution equations are time reversible in the sense that they have
the same form if we consider the time transformation τ(t) = −t. In other words, the
microscopic physics does not depend on the direction of the time flow. We also notice the
conservation property

d

dt
H(q, p) =

k∑
i=1

[
∂H

∂qi
(q, p)

dqi
dt

+
∂H

∂pi
(q, p)

dpi
dt

]
= 0. (27.4)

In the above display we have used the conventions

∂H

∂qi
=

(
∂H

∂q1i
,
∂H

∂q2i
,
∂H

∂q3i

)
and

dqi
dt

=




dq1i
dt
dq2i
dt
dq3i
dt




, (27.5)

and

∂H

∂pi
=

(
∂H

∂p1i
,
∂H

∂p2i
,
∂H

∂p3i

)
and

dpi
dt

=




dp1i
dt
dp2i
dt
dp3i
dt




. (27.6)

We also mention that for k = 1 and if V (q) = l
2 q2, for some l ≥ 0, the system (27.3)

reduces to the linearized pendulum

dq

dt
=: q′ =

p

m
dp

dt
=: p′ = −kq




⇒ d2q

dt2
+ ω2q = 0 with ω =

√
l

m
.

The solution of this system takes the form

q(t) = q(0) cos (ωt) +
q′(0)

ω
sin (ωt).
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Solid and liquid states of rare-gas elements with closed shell configurations only involve
particles interacting with weak van der Waals bonds in terms of the pair-potential function

V (q1, . . . , qk) =
∑

1≤i<j≤k

VLJ(‖qj − qi‖)

with the Lennard-Jones potential functions

VLJ(r) = 4ε

[(τ
r

)12

−
(τ
r

)6
]
. (27.7)

The parameter ε represents the depth of the potential well, and τ is the finite distance
at which the interaction potential becomes null. Notice that

inf
r
VLJ(r) = VLJ(2

1/6τ) = −ε.

We say that for r ≥ 21/6τ the potential is attractive, and it is repulsive for r < 21/6τ .
The term (τ/r)

12 describes the short range Pauli repulsion forces due to overlapping
electron orbitals, while the term (τ/r)

6 represents the attraction and the van der Waals
dispersion forces at long range distances.

The repulsion term has no real theoretical foundations and it is sometimes replaced
by the Buckingham exponential-6 potential exp (−r/τ). To avoid the degeneracy of the
Lennard-Jones potential at short range distances, we often use cut-off techniques. For
instance, we can replace VLJ(r) by

V LJ(r) = (VLJ(r)− VLJ(rc)) 1r<rc

or by
V LJ(r) = (VLJ(r)− VLJ(rc)− V ′

LJ(rc)(r − rc)) 1r<rc

for some well chosen cut-off radius rc. The so-called Wayne-Chandler-Anderson potential
is given by

rc = 21/6τ =⇒ V WCA(r) = V LJ(r) = (VLJ(r) + ε) 1r<21/6τ .

A very nice molecular dynamics simulation of supercritical water using the flexible
simple-point-charge water model (a.k.a. the SPC water model) by MDSimulator can be
found on YouTube.

The potential energy is a complicated function of the k atomic particles and we cannot
expect to find an analytic solution of the system of equations (27.3). All the discrete
integration schemes are based on the fact that the positions qi(t) and the velocities vi(t) =
(pi(t)/mi) of the particle can be approximated by a Taylor expansion

qi(t+ dt) = qi(t) + vi(t) dt+
1

2
ai(t) dt

2 + . . .

vi(t+ dt) = vi(t) + ai(t) dt+ . . .

The accelerations are always given by

ai(t) = m−1
i Fi(q(t)) = −m−1

i

∂V

∂qi
(q) with q(t) = (qi(t))1≤i≤k.
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• The Verlet algorithm [257] is based on the approximations

qi(t+ dt) = qi(t) + vi(t) dt+
1

2
ai(t) dt

2

qi(t− dt) = qi(t)− vi(t) dt+
1

2
ai(t) dt

2.

Summing these two equations, we find that

qi(t+ dt) = 2qi(t)− qi(t− dt) + ai(t) dt
2.

• The Leap-frog algorithm uses the approximations

qi(t+ dt) = qi(t) + vi

(
t+

1

2
dt

)
dt

vi

(
t+

1

2
dt

)
= vi

(
t− 1

2
dt

)
+ ai(t) dt.

In this algorithm, we first compute the velocities at time t+ 1
2 dt to calculate qi(t+ dt).

The velocities at time t are approximated by

vi(t) =
1

2

[
vi

(
t+

1

2
dt

)
+ vi

(
t− 1

2
dt

)]
.

• The velocity Verlet algorithm [250] uses the approximations

qi(t+ dt) = qi(t) + vi(t) dt+
1

2
ai(t) dt

2

vi(t+ dt) = vi(t) +
1

2
(ai(t) + ai(t+ dt)) dt.

• The Beeman’s algorithm [14] uses the approximations

qi(t+ dt) = qi(t) + vi(t) dt+
1

2

(
4

3
ai(t)−

1

3
ai(t− dt)

)
dt2

vi(t+ dt) = vi(t) +
1

2

(
2

3
ai(t+ dt) +

5

3
ai(t)−

1

3
ai(t− dt)

)
dt

or
vi(t+ dt) = vi(t) +

1

2

(
5

6
ai(t+ dt) +

8

6
ai(t)−

1

3
ai(t− dt)

)
dt.

27.1.2 Langevin diffusion processes

We associate with the Hamiltonian function (27.2) the canonical measures on the phase
space

µβ(dx) =
1

Zβ
e−βH(x) dx. (27.8)

Here Zβ is a normalizing constant, dx = d(q, p) = dq × dp denotes the Lebesgue measure
on R3k+3k, and x = (q, p) denotes a given point in the phase space. We also consider the
q-marginal measures

µβ(dq) =
1

Zβ

e−βV (q) dq (27.9)
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where Zβ is a normalizing constant, and dq is the Lebesgue measure on the position space
R3k. In this notation, the measure µβ is given by the product formula

µβ(d(q, p)) =


 ∏
1≤i≤k

1√
2πmi/β

e
−β

p2i
2mi dpi


 µβ(dq).

The Boltzmann-Gibbs measures µβ and µβ can be interpreted as the invariant measures
of the Langevin type stochastic dynamics




dqi = β

pi/mi︷ ︸︸ ︷
∂H

∂pi
(q, p) dt

dpi = − β

[
∂H

∂qi
(q, p) + σ2 ∂H

∂pi
(q, p)

]

︸ ︷︷ ︸
= ∂V

∂qi
(q)+σ2 pi/mi

dt+ σ
√
2 dW i

t

(27.10)

and respectively of

dqi = −β
∂V

∂qi
(q) dt+

√
2 dW i

t . (27.11)

Here (W i
t )1≤i≤k represent k independent standard Brownian motions W i

t =
(
W i,j

t

)
1≤j≤3

on R3.
The additional external Brownian forces represent the fluctuations of the many-body

system, balanced by dissipative and viscous damping forces. In both cases, using the ar-
guments presented in section 18.4.2 we can show that the Markov evolution semigroups of
these diffusions have a density w.r.t. the Lebesgue measure on R3k or on R3k+3k. The
fact that these densities are smooth relies on more sophisticated stochastic analysis tools,
including Malliavin calculus and differential geometry [57, 143, 161].

We check that µβ , and µβ are the invariant measures of these diffusion models using the
infinitesimal generators of the diffusion processes (27.10) and (27.11), given respectively on
the set of smooth function f on R3k+3k by the formulae

Lβ(f) = β

k∑
i=1

[
∂H

∂pi

∂f

∂qi
−
(
∂H

∂qi
+ σ2 ∂H

∂pi

)
∂f

∂pi

]
+ σ2

k∑
i=1

∂2f

∂p2i

and for any smooth function g on R3k by

Lβ(g) = −β

k∑
i=1

∂V

∂qi

∂g

∂qi
+

k∑
i=1

∂2g

∂q2i
= eβV

k∑
i=1

∂

∂qi

(
e−βV ∂g

∂qi

)
.

In the above display, we slightly abuse the notation by dropping the transposition operator
(.)′ in the differential of the functions f and g. For instance, by using the conventions (27.5)
and (27.6),

∂H

∂pi

∂f

∂qi
:=

∂H

∂pi

(
∂f

∂qi

)′

=
∂H

∂p1i

∂f

∂q1i
+

∂H

∂p2i

∂f

∂q2i
+

∂H

∂p3i

∂f

∂q3i
.

To simplify the presentation, we denoted by ∂2

∂p2
i
the Laplacian operator on R3; that is,

∂2f

∂p2i
=

∂2f

∂(p1i )
2
+

∂2f

∂(p2i )
2
+

∂2f

∂(p3i )
2
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and

∂

∂qi

(
e−βV ∂g

∂qi

)
:=

∂

∂q1i

(
e−βV ∂g

∂q1i

)
+

∂

∂q2i

(
e−βV ∂g

∂q2i

)
+

∂

∂q3i

(
e−βV ∂g

∂q3i

)
.

In this stochastic framework, the conservation properties (27.4) take the following form.

Lemma 27.1.1 For any β ∈ R, we have

µβLβ = 0 and µβLβ = 0.

In addition µβ is Lβ-reversible, in the sense that for any smooth couple of functions (g, h)

with compact support on R3k we have

µβ

(
g Lβ(h)

)
) = µβ

(
Lβ(g) h

)
.

Proof :
By a simple integration by parts formula, for any smooth function f with compact support
on R3k+3k we check that

∫
e−βH(x) Lβ(f)(x) dx

= −β
∑k

i=1

∫
f(x) ∂

∂qi

(
e−βH ∂H

∂pi

)
(x) dx

+β
∑k

i=1

∫
f(x) ∂

∂pi

(
e−βH

(
∂H
∂qi

+ σ2 ∂H
∂pi

))
(x) dx

+σ2
∑k

i=1

∫
f(x) ∂2

∂p2
i

(
e−βH

)
(x) dx.

This implies that

µβ (Lβ(f))

=
∑k

i=1 µβ

{
f

[(
β2 ∂H

∂pi

∂H
∂qi

− β ∂2H
∂qi∂pi

)
− β2 ∂H

∂pi

(
∂H
∂qi

+ σ2 ∂H
∂pi

)]}

+
∑k

i=1 µβ

{
f

[
β
(

∂2H
∂qi∂pi

+ σ2 ∂2H
∂p2

i

)
− σ2β ∂2H

∂p2
i
+ σ2β2

(
∂H
∂pi

)2
]}

= 0.

In much the same way, for any smooth functions (g, h) with compact support on R3k, we
find that

∫
e−βV (q)g(q) Lβ(h)(q) dq =

k∑
i=1

∫
g(q)

∂

∂qi

(
e−βV ∂h

∂qi

)
(q) dq

= −
k∑

i=1

∫
e−βV (q) ∂g

∂qi
(q)

∂h

∂qi
(q) dq

=

k∑
i=1

∫
h(q)

∂

∂qi

(
e−βV ∂g

∂qi

)
(q) dq.

This clearly ends the proof of the lemma.
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Important remark : The stability properties of the Langevin models
(27.10) and (27.11) can be analyzed using the tools developed in section 17.2, section 17.5,
and section 18.4.2. More precisely, we first check that the semigroup Pt of these diffusion
models has a smooth density w.r.t. the Lebesgue measure. This will ensure that Pt sat-
isfies the Dobrushin local contraction condition (8.27) for any t > 0 (notice that (27.10)
has the same form as the diffusion model (18.18)). The second step is to find a judicious
Lyapunov function satisfying the condition (17.8). By theorem 17.4.1, these two properties
imply that the laws of the random states of the Langevin models (27.10) and (27.11) con-
verge exponentially fast, as the time parameter tends to infinity, to the invariant measures
(27.8) and (27.9). Nevertheless, to the best of our knowledge, the Lyapunov functions de-
veloped in the literature on Langevin diffusions require that the potential functions behave
as polynomials at infinity. These techniques cannot be used to analyze the Lennard-Jones
potential functions presented in (27.7). The only work in this direction seems to be the
article by B. Cooke, J.C. Mattingly, S.A. McKinley, and S.C. Schmidler [57] on a reduced
two-dimensional Langevin diffusion model.

27.2 Schrödinger equation

27.2.1 A physical derivation

The Schrödinger equation is the quantum mechanics version of the Newton’s second law
of motion of classical mechanics (the mass times the acceleration equals the sum of the
forces). This equation represents the wave function (a.k.a. the quantum state) evolution
of a physical system, including molecular, atomic, subatomic, macroscopic systems like the
universe [238].

The following physical derivation of the Schrödinger equation is taken from the lecture
notes of James Cresser from the Department of Physics and Astronomy of Macquarie Uni-
versity, Sydney. In 1924 de Broglie made the hypothesis that if light waves of frequency ω
behave as a population of particles of energy E = �ω, massive particles with energy E can
also behave like waves of frequency ω = E/�. Here � denotes the Planck constant. More
precisely, the wave function of a free particle of momentum p = �k and energy

E =
p2

2m
= �ω ⇒ E =

k2�2

2m
=

p2

2m

has the form

ψ(t, x) = ψ0 ei(kx−ωt).

This wave function is the result of two waves traveling in the x and t directions.
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An elementary computation shows that

∂xψ = ik ψ ⇒ − �2

2m
∂2
xψ = k2

�2

2m
ψ =

p2

2m
ψ = E ψ

and
i�∂tψ = �ω ψ = E ψ

from which we conclude that

− �2

2m
∂2
xψ = E ψ = i�∂tψ

and

i� ∂tψ = − �2

2m
∂2
xψ.

Extending these wave functions to particle motions in a potential energy V (x), the
energy E is the sum of the kinetic and the potential energies

E =
p2

2m
+ V (x).

Assuming that the above equations are valid in this case, we obtain the time dependent
Schrödinger wave equation

i�∂tψ = E ψ =
p2

2m
ψ + V ψ = − �2

2m
∂2
xψ + V ψ.

Inversely, the solutions of the form ψ(t, x) = α(t) ψ0(x) of the time dependent Schrödinger
wave equation

i�∂tψ = − �2

2m
∂2
xψ + V ψ

satisfy

i� ∂t logα(t) =
1

ψ0(x)

[
− �2

2m
∂2
x ψ0(x) + V ψ0(x)

]
.
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Since the r.h.s. and l.h.s. do not depend on the parameters t and x, there is a constant E
such that

i� ∂tα(t) = E α(t)
�2

2m ∂2
x ψ0(x)− V (x)ψ0(x) = −E

}
⇔

{
α(t) = exp (−iEt/�) α(0)

∂2
xψ0(x) = 2m

�2 [V (x)− E] ψ0(x).

The second formula in the above equation is called the stationary or time independent
Schrödinger equation.

27.2.2 Feynman-Kac formulation

Rewritten in a slightly different form, the Schrödinger wave equation takes the form

i�∂tψ = −LV (ψ)

with the Schrödinger operator

LV =
�2

2m
∂2
x − V.

A formal change of time coordinate t = iτ/� and u(τ, x) = ψ(iτ/�, x) transforms the above
into a heat type equation

∂τu = LV (u). (27.12)

In physics, this change of coordinate is sometimes called a Wick rotation of the time axis,
and the resulting equation is often referred to as the Schrödinger equation in imaginary
time.

The equation (27.12) is sometimes written in terms of the Hamiltonian operator H =
−LV , that is,

∂τu = LV (u) ⇔ ∂τu = −H(u). (27.13)

Definition 27.2.1 We consider a time homogeneous stochastic process Xτ on a state space
S with infinitesimal generator L acting on some domain of functions D(L). We denote by
Qτ the integral operator defined for any bounded function f on S by the formula

Qτ (f)(x) := E
(
f(Xτ ) e

−
∫ τ
0

V (Xs)ds | X0 = x
)
. (27.14)

In the further development of this section we implicitly assume that Qτ (D(L)) and L(D(L))
are subsets of D(L). This condition depends on the regularity property of the generator
L. For jump type infinitesimal generators, this condition holds for any bounded potential
function with D(L) = B(S). For diffusion type infinitesimal generators on S = Rd, this
condition holds for twice differentiable functions D(L) = C2

b (S) and for bounded smooth
potential functions.

Proposition 27.2.2 We have the semigroup (sg) property

∀s, t ≥ 0 Qs+t = QsQt and Q0 = Id. (27.15)

In addition, the following evolution is satisfied for any f ∈ D(L)

∂τQτ (f) := Qτ (L
V (f)) = LV (Qτ (f)). (27.16)

In particular, the function u(τ, x) := Qτ (f)(x) satisfies the equation

∂τu = LV (u) = −H(u) with LV = L− V = −H. (27.17)

The operator Qt is sometimes termed a Feynman-Kac propagator and it is often written in
the exponential form Qt = e−tH.
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Proof :
For any s ≤ τ , using the Markov property, we prove that

Qτ (f)(x) = E


E

(
f(Xτ ) e

−
∫ τ
s

V (Xr)dr | Xs

)
︸ ︷︷ ︸

=Qτ−s(f)(Xs)

e−
∫ s
0
V (Xr)dr| X0 = x


 .

This yields the sg property (27.15). Now we turn to the proof of (27.16). We use the
decomposition

Qτ+dτ (f)(x)−Qτ (f)(x)

= E
(
f(Xτ+dτ )

(
e−

∫ τ+dτ
0

V (Xs)ds − e−
∫ τ
0

V (Xs)ds
)

| X0 = x
)

+E
(
(f(Xτ+dτ )− f(Xτ )) e−

∫ τ
0

V (Xs)ds | X0 = x
)
.

The first term on the r.h.s. is given by

E
(
f(Xτ+dτ )

(
e−

∫ τ+dτ
0

V (Xs)ds − e−
∫ τ
0

V (Xs)ds
)

| X0 = x
)

= E
(
f(Xτ+dτ ) e

−
∫ τ
0

V (Xs)ds
(
e−

∫ τ+dτ
τ

V (Xs)ds − 1
)

| X0 = x
)

� E
(
(−V )(Xτ ) f(Xτ ) e

−
∫ τ
0

V (Xs)ds | X0 = x
)

dτ = Qτ ((−V )f) dτ

and the second one is given by

E
(
(f(Xτ+dτ )− f(Xτ )) e−

∫ τ
0

V (Xs)ds
)

= E
(
(E (f(Xτ+dτ ) | Xτ )− f(Xτ )) e−

∫ τ
0

V (Xs)ds
)

= E
(
L(f)(Xτ ) e

−
∫ τ
0

V (Xs)ds
)

dτ = Qτ (L(f)) dτ.

This ends the proof of the first assertion. The r.h.s. of formula (27.16) follows from the fact
that

Qτ+dτ = QdτQτ =⇒ Qτ+dτ −Qτ = [Qdτ − Id]︸ ︷︷ ︸
� LV dτ

Qτ .

This ends the proof of the proposition.

We end this section with a series of important comments related to the Feynman-Kac
models discussed above.

• The integral operators Qτ can be made more explicit by using the following formulae

E
(
f(Xτ ) e

−
∫ τ
0

V (Xs)ds | X0 = x
)

= E
(
E
(
e−

∫ τ
0

V (Xs)ds | X0, Xτ

)
f(Xτ ) | X0 = x

)

=

∫
E
(
e−

∫ τ
0

V (Xs)ds | X0 = x, Xτ = y
)

P (Xτ ∈ dy | X0 = x)
︸ ︷︷ ︸

:=Qτ (x,dy)

f(y).
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• Using the sg property (27.15), the function u(t, x) := Qt(f)(x) satisfies the transport
equation

u(s+ t, x) :=

∫
Qs(x, dy) u(t, y).

In physics, the Feynman-Kac sg is also called the Green function or the Feynman-Kac
propagator.

• The extension to time inhomogeneous model is given for any s ≤ t by the formula

Qs,t(f)(x) = E
(
f(Xt) e

−
∫ t
s
V (Xr)dr | Xs = x

)
.

For time homogeneous models, we have Qs,t = Q0,t−s := Qt−s with the integral operator
Qτ defined in (27.14).

• The path space version of these models is given by the Boltzmann-Gibbs measures

dQt :=
1

Zt
e−

∫ t
0
V (Xs)ds dPt (27.18)

where dPt denotes the distribution of the paths of the reference Markov process (Xs)0≤s≤t.
When X0 = x, for any function Ft of the paths (Xs)0≤s≤t we have

Qt(Ft) =

∫
Ft ((xs)0≤s≤t) Qt (d(xs)0≤s≤t)

∝
∫

Ft ((xs)0≤s≤t) e−
∫ t
0
V (xs)ds Pt (d(xs)0≤s≤t) .

We end this section with a brief discussion on the description of the Hamiltonian op-
erator (27.13) associated with a molecule in quantum physics. In this context, a state
x = ((xa,i)1≤i≤Na , (xe,j)1≤j≤Ne) represents the locations xi

a of Na atom nuclei, and the
locations xj

e of Ne electrons (we assume that each atom has the same number of electrons)
w.r.t. a Cartesian reference frame. The (exact non-relativistic, time-independent molecular)
Hamiltonian (27.13) is now given by

H = −L+ �−1V with L :=
�
2

∑
1≤i≤Na

1

ma,j
∂2
xa,i

︸ ︷︷ ︸
:= L(a) nuclear kinetic energy

+
�
2

∑
1≤i≤Ne

1

me,j
∂2
xe,i

︸ ︷︷ ︸
:= L(e) electronic kinetic energy

where ma,j stands for the mass of the j-th nuclei, me,i stands for the mass of the i-th
electron, and � is the Planck constant. The potential function is defined in terms of repulsive
or attractive Coulomb forces

V (x) :=
1

2

∑
1≤i<j≤Na

za,iza,j
‖xa,i − xa,j‖

︸ ︷︷ ︸
nuclear repulsion

+
∑

1≤i<j≤Ne

e2

‖xe,i − xe,j‖
︸ ︷︷ ︸

electronic repulsion

− 1

2

∑
1≤i≤Na

∑
1≤j≤Ne

za,ie
2

‖xa,i − xe,j‖
︸ ︷︷ ︸

electron-nuclear attraction

for some non-negative atomic numbers za,i. The nuclei are much heavier than elec-
trons (for instance, the proton mass (1.67 10−27 kg) is 1800 times larger than the mass
of the electron (9.31 10−31 kg)); in the Born-Oppenheimer approximation [28] the nuclei
(xa,i)1≤i≤Na

are fixed parameters, and we reduce the problem to the electronic configuration
x = ((xe,j)1≤j≤Ne) associated with the Hamiltonian operator H = −L(e) + V . In physics,
the Schrödinger (imaginary time) equation is often written as

� ∂tut(x) = � L(ut)(x)− V (x)ut(x).

In this situation, the Hamiltonian operator is defined as above by replacing H by �H =
−�L+ V .



742 Stochastic Processes

27.2.3 Bra-kets and path integral formalism

In theoretical and computational physics, the state space S is generally the Euclidian space
S = Rd. We further assume that

η0(dx) = P(X0 ∈ dx) = µf (dx) := f(x) dx

for density function f on Rd. We consider the Feynman-Kac measures

γt(ϕ) = η0(Qt(ϕ)) = E
[
ϕ(Xt) exp

(
−
∫ t

0

V (Xs)ds

)]
with η0 = Law(X0)

and the left and right actions of the integral operator Qt defined on measures and functions

µ �→ µQt and g �→ Qt(g).

When P(Xt ∈ dy | X0 = x) has a density pt(x, y) w.r.t. the Lebesgue measure dy, we have

Qt(x, dy) = qt(x, y)dy with qt(x, y) = E
(
exp

{
−
∫ t

0

V (Xs)ds

}
| Xt = y

)
pt(x, y).

(27.19)
In computational and theoretical physics, these functional operations are often written

in terms of bra-kets

η0(dx) = P(X0 ∈ dx) = µf (dx) := f(x) dx ⇒ γt = η0Qt = µfQt =≺ f |e−tH

as well as

Qt(g) = e−tH |g � so that γt(g) = η0Qt(g) = µfQt(g) =≺ f |e−tH|g � .

As in (27.19), we further assume that the semigroup Qt(x, dy) of the Hamiltonian oper-
ator

H = −LV = −L+ V

has a density qt(x, y) w.r.t. the Lebesgue measure dy. In this context, the density qt(x, y)
is written as

qt(x, y) =≺ x|e−tH|y � or qt(x, y) =≺ δx|e−tH|δy �

so that ∫
dx f(x) qt(x, y) g(y) dy =

∫
≺ x|e−tH|y � f(x) g(y) dxdy.

Representing functions formally on the basis of delta functions

”f(.) =
∫

f(x) δx(.) dx” in the sense that ∀y ∈ Rd ”

∫
f(x) δx(y)︸ ︷︷ ︸

=1x=y

dx = f(y)”

and using the linearity of the brackets, we arrive at the formal expression

≺ f |e−tH|g � = ≺
(∫

f(x) δx(.) dx
)

|e−tH|
(∫

g(y) δy(.) dy
)

�

=

∫
f(x) g(y) ≺ δx|e−tH|δy � dxdy =

∫
≺ x|e−tH|y � f(x) g(y) dxdy.
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In this notation, we have

≺ f1|e−tH|f2 � =

∫
f1(x) ≺ x|e−tH|y � f2(y) dxdy

=

∫
(µf1Qt)(dy) f2(y) =

∫
µf1(dx) Qt(f2)(x) = µf1Qt(f2).

Dividing [0, n∆t] = [0, tn] into n intervals ([0,∆t] ∪ . . . ∪ [(n− 1)∆t, n∆t]) of length ∆t,
the semigroup property Qt+s = QtQs implies that

Qn∆t(x0, dxn) =
︷ ︸︸ ︷
(Q∆t . . . Q∆t)

n times
(x0, dxn)

=

[∫
q∆t(x0, x1) . . . q∆t(xn−1, xn) dx1 . . . dxn−1

]
dxn

=



∫ 




∏
0≤k<n

≺ xk|e−∆t H|xk+1 �


 dx1 . . . dxn−1


 dxn.

Whenever Xt =
√

�
m Wt with some Brownian motion Wt and some parameter �,m > 0,

replacing V by 1
� V in (27.19) we have

≺ xk|e−∆t H|xk+1 � �∆t↓0 e−
V (xk)

� ∆t p∆t(xk, xk+1) =

√
m

2π�∆t
e
− 1

�

[
m
2

(
xk+1−xk

∆t

)2
+V (xk)

]
∆t

.

In this situation, the discrete time approximation of the integral operator Qt is given by
the formula

Qn∆t(x0, dxn) �∆t↓0

[∫ (√
m

2π�∆t

)n

e−
1
� Sn(x0,...,xn)∆t dx1 . . . dxn−1

]
dxn

with the so-called Euclidian action functional

Sn(x0, . . . , xn) =
∑

0≤k<n

[
m

2

(
xk+1 − xk

∆t

)2

+ V (xk)

]
.

Taking formally the limit∆t ↓ 0, the density qt(x, y) is often written in the physics literature
as a path integral

qt(x, y) =

∫ xt=y

x0=x

e−
1
� St(x) Dx with St(x) =

∫ t

0

{m

2

.
x
2

s +V (xs)
}

ds.

27.2.4 Spectral decompositions

We further assume that L is a self adjoint operator on L2(Rd) (equipped with the scalar
product 〈f, g〉 =

∫
f(x)g(x)dx), defined on some proper domain of functions D(L), that is,

〈f, L(g)〉 = 〈L(f), g〉

for any f, g ∈ D(L). In this situation, the Schrödinger operator LV = L − V is again a
self adjoint operator on L2(Rd) (under appropriate regularity conditions on V , for instance
by assuming that V is a bounded function). An important consequence of the self-adjoint
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property is that there exists a sequence of non-negative eigenvalues 0 ≤ E0 ≤ E1 ≤ . . . and
a corresponding set of orthonormal eigenfunctions ϕi, i ≥ 0, such that the integral operator
Qt has the spectral representation

Qt(x, dy) =
∑
i≥0

e−tEi ϕi(x)ϕi(y) dy. (27.20)

Therefore, by expanding the initial condition in the basis functions ϕi

f =
∑
i≥0

〈f, ϕi〉 ϕi(x)

we find that

Qt(f)(x) =

∫
Qt(x, dy) f(y)

=
∑
i,j≥0

e−tEi 〈f, ϕj〉 ϕi(x) 〈ϕi, ϕj〉︸ ︷︷ ︸
=1i=j

=
∑
i≥0

e−tEi 〈f, ϕi〉 ϕi(x).

By (27.16), we also have

∂

∂t
Qt(f) = −

∑
i≥0

Ei e
−tEi 〈f, ϕi〉 ϕi

=
∑
i≥0

e−tEi 〈f, ϕi〉 LV (ϕi) = LV (Qt(f)).

Choosing f = ϕi, we conclude that for any i ≥ 0

H(ϕi) = Ei ϕ
H:=−LV

⇐⇒ LV (ϕi) = −Ei ϕi.

and therefore
〈ϕi, L

V (ϕi)〉 = −Ei ⇐⇒ 〈ϕi,H(ϕi)〉 = Ei.

For simplicity, we further assume that E0 < E1. In this case we have

Qt(f)(x) �t↑∞ e−tE0 〈f, ϕ0〉 ϕ0(x).

This implies that for any starting point x we have

− 1

t
logQt(1)(x) −→t↑∞ E0 and

Qt(f)(x)

Qt(1)(x)
�t↑∞

〈f, ϕ0〉
〈1, ϕ0〉

. (27.21)

For a more detailed discussion on the rate of convergence, we refer the reader to exercises 443
and 444.

Similar spectral decompositions can be derived when we replace L2(Rd) by some separa-
ble Hilbert space L2(µ) equipped with the scalar product 〈f, g〉 =

∫
f(x)g(x)µ(dx), where

µ stands for some measure on some state space S. In this situation L is the infinitesimal
generator of some process Xt evolving in S and V is a potential function on S. Under some
appropriate regularity conditions (compact and Hilbert-Schmidt) the operator (−LV ) has
a set of eigenvalues Ei and L2(µ) is equipped with an orthonormal basis of functions ϕi.
The eigenvalues Ei may be complex but the Perron-Frobenious theorem (for finite spaces)
or the Krein-Rutman theorem (for infinite dimensional spaces) ensure that 0 ≤ E0 ≤ Ei.
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27.2.5 The harmonic oscillator

The harmonic oscillator is the prototype of physical model for which we can compute ex-
plicitly the spectrum of the operator H := −LV acting on smooth functions of L2(Rp).

The harmonic oscillator is defined by choosing

V (x) = k x2/2 L :=
�2

2m

∂2

∂x
⇒ LV = �2

2m
∂2

∂x − k x2/2

= �2

2m
∂2

∂x − 1
2 mω2 x2 with ω =

√
k
m ,

for some non-negative k.

We let ϕn be the eigenfunctions of LV associated with the respective eigenvalues

En = �
(
n+

1

2

)
ω ⇐⇒ 2mEn

�2

(
�2

mk

)1/2

=
2En

�ω
= (2n+ 1)

LV (ϕn) = −Enϕn ⇐⇒ ϕ′′
n(x) =

(
mk

�2
x2 − 2mEn

�2

)
ϕn(x).

Notice that (
mk

�2

)1/4

=
1√
�

(
m

(
k

m

)1/2
)1/2

=

√
mω

�
.

We set

ψn(x) := ϕn

((
mk

�2

)−1/4

x

)
⇐⇒ ϕn(x) = ψn

(√
mω

�
x

)
.

We have

ψ′
n(x) =

(
mk

�2

)−1/4

ϕ′
n

((
mk

�2

)−1/4

x

)

ψ′′
n(x) =

(
mk

�2

)−1/2

ϕ′′
n

((
mk

�2

)−1/4

x

)

=

(
�2

mk

)1/2

mk

�2

((
mk

�2

)−1/4

x

)2

− 2mEn

�2


 ψn(x).
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This shows that

ψ′′
n(x) = (x2 − (2n+ 1)) ψn(x).

Our next objective is to express these eigenfunctions in terms of the Hermite polynomials.

We recall that the Hermite polynomials can be defined using the Rodrigues formula

Hn(x) = (−1)n ex
2 dn

dxn
e−x2

. (27.22)

Notice that

H′
n(x) :=

dHn

dx
(x) = 2x(−1)n ex

2 dn

dxn
e−x2

+ (−1)n ex
2 dn+1

dxn+1
e−x2

= 2xHn(x)−Hn+1(x) ⇔ Hn+1(x) = 2xHn(x)−H′
n(x). (27.23)

This formula shows that Hn is a polynomial of degree n with a leading coefficient 2n so
that dnHn

dxn (x) = 2n n!. In addition, combining (27.22) with an integration by part, for any
m < n we find that

∫
e−x2

Hm(x)Hn(x) dx = (−1)n
∫

Hm(x)
dn

dxn
e−x2

dx =

∫
dn

dxn
Hm(x)

︸ ︷︷ ︸
=0

e−x2

dx = 0

and for m = n

∫
e−x2

H2
n(x) dx =

∫
dn

dxn
Hn(x)

︸ ︷︷ ︸
=2nn!

e−x2

dx = 2nn!

∫
e−x2

dx = 2nn!
√
π.

Working a little more, one deduces that the set of functions

H̃n(x) := (2nn!
√
π)−1/2 e−x2/2Hn(x)

forms an orthonormal basis of L2(R).

We recall the Leibniz formula

dn

dxn
(fg) := (fg)(n) =

∑
0≤k≤n

(
n
k

)
f (k)g(n−k).
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This formula is proved by induction w.r.t. the parameter n as follows:

(fg)(n+1) =
∑

0≤k≤n

(
n
k

)
f (k+1)g((n+1)−(k+1)) +

∑
0≤l≤n

(
n
l

)
f (l)g(n+1−l)

=
∑

1≤l≤n

[(
n

l − 1

)
+

(
n
l

)]

︸ ︷︷ ︸
=


 n+ 1

l




f (l)g(n+1−l) +

(
n
n

)
f (n+1) +

(
n
0

)
g(n+1).

Applying this formula to f(x) = −2x and g(x) = e−x2

we find that

dn+1

dxn+1
e−x2

=
dn

dxn
(−2xe−x2

)

=

(
n
0

)
(−2x)

dn

dxn
e−x2

+

(
n
1

)
(−2)

dn−1

dxn−1
e−x2

= −2x
dn

dxn
e−x2

− 2n
dn−1

dxn−1
e−x2

and therefore
Hn+1(x) = 2xHn(x)− 2nHn−1(x). (27.24)

Combining (27.23) and (27.24), we have

2xHn(x)− 2nHn−1(x) = 2xHn(x)−H′
n(x) ⇒ H′

n = 2nHn−1 ⇒ H′′
n = 2nH′

n−1

and therefore

H′
n(x) = 2xHn(x)−Hn+1(x) ⇒ H′′

n(x) = 2Hn(x) + 2xH′
n(x)−H′

n+1(x)
= 2Hn(x) + 2xH′

n(x)− 2(n+ 1)Hn(x)
= 2xH′

n(x)− 2nHn(x).
(27.25)

We set
Hn(x) := e−x2/2Hn(x) ⇐⇒ Hn(x) = ex

2/2 Hn(x).

Using

H′
n(x) = ex

2/2
[
xHn(x) +H′

n(x)
]

H′′
n(x) = ex

2/2
([

Hn(x) + xH′
n(x) +H′′

n(x)
]
+ x

[
xHn(x) +H′

n(x)
])

= ex
2/2

[
(1 + x2)Hn(x) + 2xH′

n(x) +H′′
n(x)

]

we check that

(27.25) ⇔ 0 = H′′
n(x)− 2xH′

n(x) + 2nHn(x)

= ex
2/2

[[
(1 + x2)Hn(x) + 2xH′

n(x) +H′′
n(x)

]

−2x
[
xHn(x) +H′

n(x)
]
+ 2nHn(x)

]

= ex
2/2

[
H′′

n(x) + ((2n+ 1)− x2)Hn(x)
]
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and
H′′

n(x) = (x2 − (2n+ 1)) Hn(x).

This shows that ψn(x) = Hn(x) and therefore

ϕn(x) ∝ ψn

(√
mω

�
x

)
= Hn

(√
mω

�
x

)
= e−

x2

2
mω
� Hn

(√
mω

�
x

)
.

Finally, we obtain the orthornormal basis of eigenfunctions by setting

ϕn(x) :=

√
1

2nn!
√
π

(mω

�

)1/4

exp

[
−x2

2

mω

�

]
Hn

(√
mω

�
x

)
.

The numerical solving of the eigenvalues problem for general potential functions V (x)
can be done using the software Maltalb Chebfun software (based on one-dimensional
dynamical system integrations). The figure below illustrates the first 10 eigenstates.

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

h =  0.1      10 eigenstates

27.2.6 Diffusion Monte Carlo models

The discrete time version of the Feynman-Kac model (27.18) is given by the formula

dQn :=
1

Zn
e−

∑
0≤p<n Vp(Xp) dPn

=
1

Zn





∏
0≤p<n

Gp(Xp)


 dPn with Gp = e−Vp (27.26)

where Pn is the probability distribution of the paths (X0, X1, . . . , Xn) of a discrete time
Markov chain model Xn, with n ∈ N. The discrete time approximations of the continuous
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time models on a time mesh sequence tn are defined by the Feynman-Kac formulae (27.26).
These approximations are obtained by utilizing the approximation

∫ tn

0

V (Xs)ds =
∑

0≤p<n

∫ tp+1

tp

V (Xs)ds �
∑

0≤p<n

V (Xtp) (tp+1 − tp).

In this notation, for any function Ftn of the discretized paths (Xtp)0≤p<n we have

Ztn ×Qtn(Ftn) �
∫
Ftn(xt0 , . . . , xtn)

× e−
∑

0≤p<n V (Xtp ) (tp+1−tp) P ((Xt0 , . . . , Xtn) ∈ d(xt0 , . . . , xtn)) .

For reversible models on S = Rd, the discrete time version of (27.21) is given by

− 1

n
logZn −→t↑∞ E0 and ηn(f) �n↑∞

〈f, ϕ0〉
〈1, ϕ0〉

where ηn denotes the n-th marginal of the probability measure Qn from (27.26).
The Feynman-Kac distributions (27.26) and their normalizing constants Zn (a.k.a. par-

tition functions) can be computed using the mean field particle models developed in sec-
tion 9.6. In computational physics these particle methods are called diffusion Monte Carlo
methods. For a more detailed discussion on these models, we refer the reader to [66, 67].

27.3 Interacting particle systems

27.3.1 Introduction

Interacting particle systems are diffusion type or jump type stochastic processes that de-
scribe the evolution of a population of interacting individuals. The mean field processes
from section 7.10.2 are specific examples of interacting particle systems. In this situation,
each individual interacts with the occupation measure of the whole population. Another
important class of interacting particle systems is defined in terms of jump type processes
that describe the evolution of a collection of individuals in a configuration space of the form
EΛ, where Λ is a countable or a finite graph and E is a compact metric space.

More formally, we consider a finite set E, and a regular lattice Λ equipped with some
equivalence relation p ∼ q. For instance, if Λ = (V, E) is an undirected graph, we can choose
the neighborhood distance between vertices p, q ∈ V given by the edge connections:

p ∼ q ⇐⇒ (p, q) ∈ E .

We can also choose a finite subset of Zd, or Λ = (Z/mZ)d, for some dimension d ≥ 1 and
some cycle integer m, equipped with the distance ρ(p, q). In this case, we can choose

p ∼ q ⇐⇒ ρ(p, q) ≤ a

for a given parameter a ∈ R+. For instance, for Γ = [−n, n]∩Z we can choose the distance
ρ(p, q) = |p− q|, and set a = 1. Then we will have

p ∼ q ⇐⇒ |p− q| ≤ 1.
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The state space S = EΛ is often called the configuration space. A given state or
configuration is a mapping

x : p ∈ Λ �→ x(p) ∈ E.

The set E depends on the application model. We can choose {0, 1} to label vacant or
occupied vertices or sites; or E = {−1,+1} to label the spin of a site in a magnetic model.
We can choose E = {0, s1, . . . , sk} to label the vacant site and the k different species in a
biological system.

With a slight abuse of notation, we write ∼ for the equivalence relation on S induced
by the one on Λ. This equivalence is given by

y ∼ x ⇐⇒ ∃(p, e) ∈ (Λ× E) s.t. y = xp,e

with the configuration xp,e ∈ S = EΛ deduced from x by changing the value x(p) by e, that
is,

xp,e(q) =

{
x(q) if q �= p

e if q = p.

We associate with a given matrix Q(x, y), x, y ∈ S, such that Q(x, S) > 0, the generator of
a Markov process

L(f)(x) =
∑
y∼x

Q(x, y) (f(y)− f(x))

= λ(x)
∑
y∈S

[f(y)− f(x)] M(x, y) (27.27)

with
λ(x) =

∑
y∼x

Q(x, y) and M(x, y) = Q(x, y)/Q(x, S).

By construction, given a configuration x ∈ S the matrix Q(x, y) only charges the configu-
rations y in the vicinity of x. These are the configurations y that only differ from x at one
given site p ∈ Λ taking some possibly different value e ∈ E.

Identifying x with a vector x = (x(p))p∈Λ, we see that

L(f) (x) =
∑

(p,e)∈(Λ×E)

λe (p, x) (f(xp,e)− f(x))

with the intensity function
λe (p, x) = Q (x, xe,p) .

The Markov process evolves as follows.
Starting from a configuration x, all the possible neighboring configurations y ∼ x (that

only differ from x at one site) start an exponential alarm with parameter

Q(x, y) = Q (x, xe,p) = λe (p, x)

for each y of the form xe,p, for some p ∈ Λ and some e ∈ E. When the first alarm goes off
for some configuration y = xe,p, we change the value x(p) by e. We refer to section 11.3.2,
for a more thorough discussion of these jump processes.

Further details about this class of interacting particle systems can be found in the
seminal work of T. Liggett [183, 184]. We also refer the reader to [51, 153], dedicated to
invasion models and to the long-time behavior of these particle models.
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27.3.2 Contact process

The contact process is defined on the state space S = {0, 1}Λ, with a finite subset Λ ⊂ Zd

λ0 (p, x) = x(p) rd and λ1 (p, x) = (1− x(p)) rb
∑
q∼p

x(q).

Each particle at site p (i.e., x(p) = 1) dies at rate rd

x(p) = 1
rate rd

−−−−−−−−−→ x0,p(p) = 0.

On the contrary, every hole p (i.e. x(p) = 0) produces an offspring at a rate rb
∑

q∼p x(q)
that depends on the number of particles x(q) = 1 around its vicinity (i.e. with q ∼ p)

x(p) = 0
rate rb

∑
q∼p x(q)

−−−−−−−−−−−−−−−−→ x1,p(p) = 1.

The contact process can also be interpreted as a model of the spread of an infection.
The 0 codes a healthy individual and 1 is a code for an infected individual. The infected
individuals x(p) = 1 recover at a rate rd, and the healthy ones become infected at a rate that
depends on the number of infected neighbors. In other words, infected individuals infect
their neighbors independently at rate rd. We also notice that the increase of the number
of infections increases the infection rate (since a given non-infected individual has more
infected neighbors). Nevertheless the fully healthy configuration x = 0 (i.e., s.t. x(p) = 0,
for any p) is stable.

The contact process is also of considerable interest in physics, where it provides simplified
models for the analysis of directed percolation and Reggeon field theory. We refer the reader
to [16, 139] and the references therein.

27.3.3 Voter process

The voter model is defined in the same way on the state space S = {1, . . . , r}Λ with the
following rate function

∀i ∈ E = {1, . . . , r} λi (p, x) = 1x(p)�=i ci
∑
q∼p

1i(x(q)).

In words, the state space E is interpreted as a set of opinions. Every individual changes his
opinion to x(p) = i, with a rate λi (p, x) that depends on the number of individuals at his
vicinity with opinion i.

When r = 2, we can also choose the rate functions such that

Q(x, xp) =
∑
q∼p

P (p, q) 1�=x(p)(x(q))

for some Markov transition P (p, q) on Λ, and with the change of opinion mapping

xp(q) =

{
x(q) if q �= p

3− x(p) if q = p.

Then the generator L takes the form

L(f) (x) =
∑
p∼q

P (p, q) 1�=x(p)(x(q)) (f(xp)− f(x)) .
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In this situation, at a unit rate, every individual p chooses a site q with probability
P (p, q), then he adopts his opinion. At any time, the configuration state x of the process
can be partitioned into two sets: the set of individuals p with the first opinion, and the set
of all the others:

x−1({1}) := {p ∈ Λ : x(p) = 1} and x−1({2}) := {p ∈ Λ : x(p) = 2}.

Any jump x �→ xp of the process flips the individual p ∈ x−1 ({x(p)}) into the set x−1 ({3− x(p)}),
that is,

x(p) = 1 � xp(p) = 3− x(p) = 3− 1 = 2

and
x(p) = 2 � xp(p) = 3− x(p) = 3− 2 = 1.

The resulting process can be interpreted in many ways: invasions between countries, immi-
gration rates, and others.

27.3.4 Exclusion process

The exclusion process was introduced by Frank Spitzer in 1970 in [245]. We have E = {0, 1}.
The 1’s are interpreted as particles and the 0’s as holes. The generator of the exclusion
process is defined as in (27.27) with the equivalence relation

y ∼ x ⇐⇒ ∃(p, q) ∈ Λ2 : y = xp,q.

In the above display, xp,q stands for the (p, q)-transposition mapping associated with x.
This mapping is given by

S = {0, 1}Λ � xp,q : r ∈ {0, 1} �→ xp,q(r) =




x(p) if r = q
x(q) if r = p
x(r) if r �∈ {p, q}.

We further assume that
x = y ⇒ Q(x, y) = 0.

This implies that jumps x � y = xp,q only occur when

(y(p), y(q)) = (x(q), x(p)) ∈ {(1, 0), (0, 1)}.

Since 0’s are interpreted as non-occupied sites, we also add the condition

x(p) = 0 ⇒ Q(x, xp,q) = 0.

Then the generator L is given by

L(f)(x) =
∑

p,q : (x(p),x(q))=(1,0)

Q(x, xp,q) (f(xp,q)− f(x)) .

When the rate function Q(x, xp,q) = P (p, q) is associated with a Markov transition P (p, q)
on the sites space Λ, we have

L(f)(x) =
∑
x∼y

M(x, y) (f(y)− f(x))

with the Markov transition

M(x, y) :=
∑

p,q : (x(p),x(q))=(1,0)

P (p, q) 1xp,q (y).
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By construction, the number of particles does not change during the evolution of the
particle system. The interaction between the particles is the result of the exclusion process
that permits only jumps to holes.

When the initial configuration has no holes, the system is stopped. Also, if the system is
empty, there are no particle births. This shows that the states x = 1 and x = 0 are stable,
in the sense that the algorithm is stopped as soon as it enters one of these configurations.

27.4 Exercises
Exercise 441 (Klein-Kramers equation) The evolution of a Brownian particle with
mass m in a presence of an external gravity potential Ut(x) is given by the diffusion

{
dXt = Vt dt
dVt = −

(
α Vt +m−1 ∂xUt(Xt)

)
dt+ σ dWt

where Wt stands for a one-dimensional Brownian motion. In the above display, the column
one vector Yt := (Xt, Vt)

′ denotes the position and the velocity of the particle, and α, σ > 0
are some parameters. Assume that Yt has a density pt(y) w.r.t. the Lebesgue measure
dy = dxdv around a state y = (y1, y2) = (x, v). Check the Klein-Kramers equation

m∂tpt = −mv ∂xpt + ∂xUt ∂vpt + α ∂v [m v pt + κT ∂vpt]

with σ2/α := 2κT/m. In physics, the diffusion discussed above is sometimes written in a
somewhat abusive Newtonian form

m
d2Xt

dt2
= −mα

dXt

dt
− ∂xUt(Xt) +m σ

dWt

dt
.

Exercise 442 (Smoluchowski equation) The overdamped limit of the Newton-Langevin
equation discussed in exercise 441 is given by the diffusion

α dXt = −m−1 ∂xUt(Xt) dt+ σ dWt

where Wt is a one-dimensional Brownian motion. Assume that Xt has a density pt(x) w.r.t.
the Lebesgue measure dx. Check the Smoluchowski equation

mα ∂tpt = ∂x (pt ∂xUt) + κ T ∂2
xpt

with ασ2 = 2κT/m. In physics, this equation is sometimes rewritten as

∂tpt = −∂xJ with the probability current − αJ := m−1pt ∂xUt + κ m−1 T ∂xpt.

Exercise 443 (Normalized Schrödinger semigroups) We consider the Schrödinger op-
erator LV = L − V and the integral operator Qt discussed in section 27.2.4. We assume
that E1 > E0. Using the spectral decomposition (27.20) check that for any f ∈ L2(Rd) and
for any x ∈ Rd we have

Qt(f)(x)

Qt(1)(x)
− 〈f, ϕ0〉

〈1, ϕ0〉
= O

(
e−t(E1−E0)

)
.
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Exercise 444 (Unnormalized Schrödinger semigroups) Let L be the infinitesimal gen-
erator of some process Xt evolving in some state space S equipped with some probability
measure µ, and let V be some potential function on S. Assume that (−LV ) := −L + V
has a countable set of eigenvalues Ei and L2(µ) is equipped with an orthonormal basis of
eigenfunctions ϕi. Check that for any f ∈ L2(µ) we have

Qt(f) =
∑
i≥0

e−Eit 〈f, ϕi〉 ϕi and µ
(
Qt(f)

2
)1/2 ≤ e−E0t µ(f2)1/2.

For a finite space S, check that

sup
‖f‖≤1

‖Qt(f)‖ ≤ c e−E0t and e−‖V ‖t ≤ ‖Qt(1)‖ ≤ c e−E0t for some c < ∞.

Exercise 445 (ϕ0-processes) We let Xt be a stochastic process on Rd with a self-adjoint
infinitesimal generator L on L2(Rd) and an initial distribution η0 = Law(X0). Let V be
some bounded function on Rd. We associate with these objects the Feynman-Kac measures
(γt, ηt) defined for any bounded function f by the formulae

ηt(f) :=
γt(f)

γt(1)
with γt(f) = E

(
f(Xt) exp

{
−
∫ t

0

V (Xs) ds

})
. (27.28)

We let −E0 be the top eigenvalue of the Hamiltonian operator H = −LV and ϕ0 be the
corresponding eigenfunction (see section 27.2.4). We assume that ϕ0 is a smooth function
s.t. ϕ0(x) > 0 for any x ∈ Rd and η0(ϕ0) < ∞. Check that

γt(f) = eE0t η0(ϕ0) E
(
ϕ−1
0 (Xϕ0

t ) f(Xϕ0

t )
)

and ηt(f) =
E
(
ϕ−1
0 (Xϕ0

t ) f(Xϕ0

t )
)

E
(
ϕ−1
0 (Xϕ0

t )
)

with the Markov process Xϕ0

t having initial distribution η
[ϕ0]
0 = Ψϕ0(η0) and infinitesimal

generator
L[ϕ0](f) = L(f) + ϕ−1

0 ΓL(ϕ0, f). (27.29)

For d = 1 and L = 1
2∂

2
x, check that Xϕ0

t satisfies the Langevin diffusion equation

dXϕ0

t = (∂x logϕ0) (X
ϕ0

t ) dt+ dWt

where Wt is a Brownian motion on the real line.

Exercise 446 (Feynman-Kac quasi-invariant measures) We consider the Feynman-
Kac models (27.28) associated with a stochastic process Xt on some state space S with a
self-adjoint infinitesimal generator L on L2(µ), for some reference measure µ on S. Check
that

d

dt
ηt(f) = ηt(Lηt

(f)) with Lηt
(f)(x) = L(f)(x) + V (x)

∫
[f(y)− f(x)] ηt(dy).

We consider the Schrödinger operator LV := L − V and the Hamiltonian H := −LV . We
assume there exists some positive energy E0 and some function ϕ0 such that H(ϕ0) = E0ϕ0

and µ(ϕ0) < ∞. Check that H is reversible w.r.t. µ, and for any sufficiently smooth
function (depending on the differential order of the generator L) we have

η∞ := Ψϕ0
(µ) =⇒ η∞(Lη∞(f)) = 0 and E0 = η∞(V ).
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Exercise 447 (Quasi-invariant measures - 2-state-model) Consider the Feynman-
Kac model discussed in exercises 307 and 308. Check that limt→∞ P(Xt = x) = µ(x) with
the L-reversible probability measure

µ(0) = 1− µ(1) = λ(1)/λ(0) + λ(1).

Also check that in all cases limt→∞ ηt(x) = η∞(x) for some probability measure on S =
{0, 1}. We let ϕ0 be some function on S such that

H(ϕ0) := (−LV )(ϕ0) = η∞(V ) ϕ0 with E0 = η∞(V ).

We also consider the probability π0 = Ψϕ0
(µ) on S = {0, 1} as soon as µ(ϕ0) > 0. Check

that the eigenvalues LV (ϕ) = −E ϕ of LV are given by

E1 = V (1)− z1 ≥ E0 = V (1)− z2

with the parameters (z1, z2) defined in exercise 308. Prove that

λ(0)λ(1) + E0E1 = (λ(0) + V (0))× (λ(1) + V (1))

E0 + E1 = (λ(0) + V (0)) + (λ(1) + V (1)) .

• When λ(0) > λ(1) = 0, and V (0) > V (1), check that

E0 = V (1) < E1 = V (0) + λ(0), λ(0) ϕ0(1) = (E1 − E0) ϕ0(0), η∞ = µ = π0 = 1{1}

as well as (ϕ1(0), ϕ1(1)) ∈ (R× {0}) and

1

t
log γt(1) = η∞(V ) +

1

t
log

[
1 +

V (1)− V (0)

E1 − E0
η0(0)

(
1− e−(E1−E0)t

)]
.

Check that π0Lπ0
= 0.

• Assume that V (0) > V (1) and λ(1) > 0.

– When λ(1) = V (0)− V (1) > 0 and λ(0) = 0 check that

E0 = E1 = V (0) and η∞ = µ = 1{0}

as well as

1

t
log γt(1) = η∞(V )− 1

t
log (1 + (V (0)− V (1)) η0(1) t).

Check that η∞Lη∞ = 0 and (ϕ0(0), ϕ0(1)) ∈ ({0} × R) ⇒ µ(ϕ0) = 0.
– When V (0) > V (1) and λ(0), λ(1) > 0 check that

η∞(0) =
1

2

[
1 +

λ(0) + λ(1)

V (0)− V (1)

]
−

√(
1

2

[
1 +

λ(0) + λ(1)

V (0)− V (1)

])2

− λ(1)

V (0)− V (1)

and

1

t

∫ t

0

ηs(V )ds

= η∞(V ) +
1

t
log

[
(E1 − E0)/(V (1)− V (0))

(η0(0)− η∞(0))
(
1− e−(E1−E0)t

)
+ (E1 − E0)/(V (1)− V (0))

]
.
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Check that
ϕ0(1)

ϕ0(0)
=

λ(0) + (V (0)− V (1)) + z2
λ(0)

=
λ(1)

λ(1) + z2
> 0

and
ϕ1(1)

ϕ1(0)
=

λ(0) + (V (0)− V (1)) + z1
λ(0)

=
λ(1)

λ(1) + z1
< 0

as well as π0 (Lπ0(f)) = 0 and π0 = η∞, for any function f on S. Prove the
orthogonality formula µ(ϕ0ϕ1) = 0.

Exercise 448 (Schrödinger equation with quadratic potential) Check that

ψ(t, x) = α(t) ψ0(x) with α(t) = exp

(
− i

2

√
k

m
t

)
and ψ0(x) = c exp

(
−x2

2

√
km

�2

)

satisfies the Schrödinger equation

i�∂tψ(t, x) = − �2

2m
∂2
xψ(t, x) + V (x)ψ(t, x) with V (x) =

km

2
x2.

Exercise 449 (Twisted guiding waves) Consider the Feynman-Kac model (γt, ηt) dis-
cussed in exercise 446. We let XϕT

t be the ϕT process associated with a trial energy func-
tion (a.k.a. guiding or trial wave function) denoted by ϕT and the initial distribution
η
[ϕT ]
0 = ΨϕT (η0). We assume that ψT is chosen so that the process XϕT

t is well defined.
Prove that

γt(f) = η0(ϕT ) E
(
ϕ−1
T (XϕT

t ) f(XϕT
t ) exp

(
−
∫ t

0

VT (X
ϕT
s )ds

))

with the trial ground state energy (a.k.a. local energy) VT given by

VT := V − ϕ−1
T L(ϕT ) = ϕ−1

T H(ϕT ).

Check that L[ϕT ] is reversible w.r.t. Ψϕ2
T
(µ). As underlined in [37], "the role of the trial

function ϕT is to guide the stochastic walkers (a.k.a. particles) in the important regions
(regions corresponding to an important contribution to the averages)." For a more detailed
discussion on the choice of the trial waves functions in quantum systems, we also refer the
reader to the review article by M. D. Towler [253].

Exercise 450 (Variational principle) Consider the Feynman-Kac twisted models dis-
cussed in exercise 449. We assume that L2(µ) is equipped with an orthonormal basis of
eigenfunctions (ϕi)i≥0 corresponding to the eigenvalues 0 ≤ E0 ≤ E1 ≤ . . . of the Hamilto-
nian operator H. We let 〈f, g〉 = µ(fg) be the inner product on L2(µ). Check the variational
principles

Ψϕ2
T
(µ)(VT ) ≥

〈ϕ0,H(ϕ0)〉
〈ϕ0, ϕ0〉

= E0 = inf
ϕ∈L2(µ)

〈ϕ,H(ϕ)〉
〈ϕ, ϕ〉

= Ψϕ2
0
(µ)(V0) ⇐ V0 := ϕ−1

0 H(ϕ0).

Exercise 451 (Contact process) Consider the contact process ξt ∈ S := {0, 1}Λ dis-
cussed in section 27.3.2. For any given state q ∈ Λ we set

fq : x ∈ {0, 1}Λ �→ fq(x) = x(q).
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We let ηt(dx) be the distribution of the interacting particle model ξt. Check that

∂tηt(fq) = ηt(L(fq)) = −rd ηt(fq) + rb
∑
p∼q

∫
ηt(dx) fp(x) (1− fq(x)) .

We set µt(q) = ηt(fq). Prove that

∂tµt(q) = −rd µt(q) + rb
∑
p∼q

µt(p)(1− µt(q))−
∑
p∼q

Covt(p, q)

with the covariance function

Covt(p, q) :=
∑
p∼q

∫
ηt(dx) (fp(x)− ηt(fp)) (fq(x)− ηt(fq)).

For regular homogeneous lattices,

∀p, q ∈ Λ ηt(fq) = ηt(fp) := zt and ‖{s ∈ Λ : s ∼ p}‖ = ‖{s ∈ Λ : s ∼ q}‖ := n(≥ 1).

Check that
.
zt= −rd zt+rb n zt(1−zt)−nVart(p) with the variance function Vart(p) := Covt(p, p).

Exercise 452 (Contact process - Mean field approximations) We consider the con-
tact process process discussed in exercise 451. We further assume that Vart(p) = 0. In this
situation, check the quadratic mean field rate equation

.
zt= −rd zt + rb n zt(1− zt).

Solve this equation when λ := rb/rd ∈
]

1
2n ,

1
n

[
. Show that limt→∞ zt =

1
nλ − 1 (∈ [0, 1]).

Exercise 453 (Ising model - Interacting particle system) Consider a configuration
space of the form S = {−1, 1}Λ with a finite regular lattice Λ ⊂ Rd, for some d ≥ 1. We
equip S with the Boltzmann-Gibbs measure

π(x) =
1

Z
exp−β H(x)

with some normalizing constant Z, some inverse temperature parameter β and a Hamilto-
nian function

H : x = (x(p))p∈Λ ∈ S = {−1, 1}Λ �→ H(x) = −1

2

∑
(p,q)∈Λ2

j(p−q) x(p)x(q)−
∑
p∈Λ

h(p) x(p).

In the above display, j : Rd �→ R stands for some symmetric interacting potential function
s.t. j(0) = 0 and the function h : Rd �→ R represents some external field. We consider a
jump type interacting particle system Xt on S with generator L defined for any function f
on S by

L(f)(x) =
∑
p∈Λ

λ(p, x) (f(xp)− f(x)) with xp(q) =

{
x(q) if q �= p

−x(q) if q = p.

Describe the evolution equations of Pt(x, y) = P(Xt = y | X0 = x). We choose

λ(p, x) =
e−βv(p,x)x(p)

eβv(p,x) + e−βv(p,x)
with v(p, x) = h(p) +

∑
q∈Λ−{p}

j(p− q) x(q).

Check that π is L-reversible.
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28
Dynamic population models

This chapter is dedicated to applications of stochastic processes to biology and more par-
ticularly to dynamic populations and evolutionary processes. We start with a presentation
of discrete generation birth and death type processes. The second part of the chapter pro-
vides a discussion on the connections between deterministic type models (such as logistic or
Lotka-Volterra type dynamical systems) and their stochastic versions expressed in terms of
individual based models. The last part of the chapter is dedicated to discrete and continuous
time branching and interacting processes.

Evolution is the fundamental idea in all of life science,
in all of biology.
Bill Nye (1955-).

28.1 Discrete time birth and death models
In discrete time settings, a birth and death
process is a Markov chain in the set of integers
S = N with Markov transitions given for any
x ∈ N by

M(x, y) = p(x) 1x+1(y) + q(x) 1x−1(y)

+ (1− (p(x) + q(x)) 1x(y).

Here p and q are non-negative functions from
N in [0, 1] such that p(x) + q(x) ≤ 1, for any
x ∈ N, with the boundary condition q(0) = 0.
The condition p(0) > 0 can be interpreted as
the probability of a restart of a population
after extinction. When p(x) + q(x) < 1 for
some x > 0, we have M(x, x) > 0 and the
chain is aperiodic. If p(0) = 0, the chain is absorbed at the state 0; in other words it stays
with a null population at any time after extinction.

In the further development of this section, we assume that p(0) > 0 and

Z :=
∑
x≥0

{
x∏

y=1

p(y − 1)

q(y)

}
< ∞.

For time homogeneous models p(x) = p and q(x) = q and this condition is equivalent to a
larger death rate:

p < q ⇐⇒
∑
x≥0

(p/q)x =
q

q − p
< ∞. (28.1)

759
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In addition, using
(
p

q

)x

M(x, x+ 1) =

(
p

q

)x

p =

(
p

q

)x+1

× q =

(
p

q

)x+1

M(x+ 1, x)

we see that M is reversible w.r.t. the (invariant) geometric distribution

∀x ∈ N π(x) =

(
p

q

)x (
1− p

q

)
> 0.

Let us discuss the existence of an invariant measure πM = π that charges all states in the
general situation. Notice that π solves the fixed point equation if and only if

π(0) = (πM)(0) = π(0) M(0, 0) + π(1)M(1, 0)

= π(0)(1− p(0)) + π(1)q(0) ⇐⇒ π(0)p(0) = π(1)q(0)

and for any x ≥ 1

π(x) = (πM)(x)

= π(x− 1) M(x− 1, x) + π(x) M(x, x) + π(x+ 1) M(x+ 1, x)

= π(x− 1) p(x− 1) + π(x+ 1) q(x+ 1) + π(x) (1− p(x)− q(x)).

Rewritten in a slightly different form, this means

π(x+ 1) q(x+ 1) + π(x− 1) p(x− 1) = π(x) (p(x) + q(x)). (28.2)

This helps us to prove that

π(x+ 1) q(x+ 1)− π(x) p(x) = π(x) q(x)− π(x− 1) p(x− 1)

= . . . = π(1) q(1)− π(0) p(0) = 0.

This relationship clearly implies that

π(x+ 1) =
p(x)

q(x+ 1)
π(x) = . . . =

{
x∏

y=0

p(y)

q(y + 1)

}
π(0). (28.3)

Recalling that

∑
x≥0

π(x) = 1 =
∑
x≥1

{
x∏

y=1

p(y − 1)

q(y)

}
π(0) + π(0) =

∑
x≥0

{
x∏

y=1

p(y − 1)

q(y)

}
π(0),

we find that the fixed point is necessarily given by

Z < ∞ ⇔ ∀x ∈ N π(x) =
1

Z

{
x∏

y=1

p(y − 1)

q(y)

}
> 0.

Conversely, using (28.3) we can also check that M is reversible w.r.t. π, that is,

π(x)M(x, x+ 1) = π(x)p(x) = π(x+ 1)q(x) = π(x+ 1)M(x+ 1, x).

This ensures that π = πM . By the remark 8.5.2, this condition ensures that all the states
are null recurrent and using Kac’s theorem 8.5.9,
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Z/

{
x∏

y=1

p(y − 1)

q(y)

}
= E (Tx | X0 = x) .

We denoted by Tx the hitting time of a state x. For the time homogeneous models discussed
in (28.1), we have

p < q ⇐⇒ E (Tx | X0 = x) = (q/p)
x+1 1

(q/p)− 1
.

As shown in the figure below, the coupling/merging time of two independent birth and
death chains Xn and X ′

n

T = inf {n : Xn = X ′
n}

starting at two different locations X0 = x0 �= x′
0 = X ′

0 arises before both chains hit the
origin

T ≤ T0 ∨ T ′
0

time axis

N

Xt

X ′
t

T T0 T ′
0

We conclude that

P (T ≥ n) ≤ P (T0 ∨ T ′
0 ≥ n) ≤ P (T0 ≥ n) + P (T ′

0 ≥ n) .

Using the proposition 8.3.16 we readily see that

lim
n→∞

‖Law(Xn)− Law(X ′
n)‖tv = 0.

For a more detailed discussion on this chain, we refer to exercise 462.
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28.2 Continuous time models

28.2.1 Birth and death generators

These generators are Markov on S := Z, with

L(f)(x) = λb(x)[f(x+ 1)− f(x)] + λd(x)[f(x− 1)− f(x)]

for some positive functions λb and λd on R. We can rewrite this generator as a pure jump
model:

L(f)(x) = λ(x)

∫
(f(y)− f(x)) M(x, dy)

with
λ(x) = λb(x) + λd(x)

and
M(x, dy) :=

λb(x)

λ(x)
δx+1(dy) +

λd(x)

λ(x)
δx−1(dy).

28.2.2 Logistic processes

The deterministic logistic model, also called the Verhulst-Pearl model, is given by
the equation

dx

dt
(t) = λ x(t)

(
1− x(t)

K

)
. (28.4)

The state variable x(t) can be interpreted as the population size. The parameter
K stands for the carrying capacity and the size of the system, and λ represents
the intrinsic growth rate.

Using the fraction decomposition

1

x(1− x/K)
=

1

x
+

1/K

(1− x/K)

for any x �∈ {0,K}, we find that

(28.4) ⇐⇒ dx

x(1− x/K)
= λdt

⇐⇒ dx

x
+

1

K

dx

(1− x/K)
= d(λt)

⇐⇒ d(log x)− d log (1− x/K) = d log

(
x

1− x/K

)
= d(λt)

⇐⇒ − log

(
x(t)

1− x(t)
K

)
+ log

(
x(0)

1− x(0)
K

)
= λt.

This implies that

(28.4) ⇐⇒ log

(
1

x(t)
− 1

K

)
= −λt+ log

(
1

x(0)
− 1

K

)

⇐⇒ 1

x(t)
=

1

K
+ e−λt

(
1

x(0)
− 1

K

)
.
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We conclude that the solution of (28.4), starting at x(0) �∈ {0,K}, is given by the formula

∀t ∈ R x(t) =
Kx(0)

x(0) + [K − x(0)] e−λt
.

The mathematical model (28.4) encapsulates dynamical systems of the form

dx

dt
(t) = λ1 x(t)

(
1− α1

x(t)

N

)
− λ2 x(t)

(
1 + α2

x(t)

N

)
(28.5)

with λ1 > λ2 ≥ 0, and α1, α2 ≥ 0, such that α1 ≤ 1, and λ1α1+λ2α2 ≥ (λ1−λ2).

Indeed, using the fact that

λ1 x
(
1− α1

x
N

)
− λ2 x

(
1 + α2

x
N

)

= x
(
[λ1 − λ2]− [λ1α1 + λ2α2]

x
N

)
= [λ1 − λ2] x

(
1− λ1α1+λ2α2

λ1−λ2

x
N

)

we find that (28.5) reduces to (28.4) with

λ = λ1 − λ2 > 0 and 0 ≤ K = N
λ1 − λ2

λ1α1 + λ2α2
≤ N.

One way to incorporate the interaction with the environment and the model uncertainties
is to consider the stochastic diffusion model

dXt = λ Xt

(
1− Xt

K

)
dt+ σ dWt

for some diffusion coefficient σ ≥ 0 and some standard Brownian motion Wt on the real
line.

Another strategy is to describe the evolution of each individual in the system.

The individual-based stochastic version of the logistic model is defined in terms
of a birth and death jump type model Xt with a state space N. The generator is
defined for any function f on S and for any x ∈ S by

L(f)(x) = λbirth(x) (f(x+ 1)− f(x)) + λdeath(x) (f(x− 1)− f(x)) (28.6)

with

λbirth(x) = λ1 x
(
1− α1

x

N

)
+

and λdeath(x) = λ2 x
(
1 + α2

x

N

)
.

Notice that 0 is the absorbing state 0 and N is reflecting boundary at N when
α1 = 1.

By construction, when α1 = 1, we have λbirth(x) ≥ 0 for any x ∈ S := {0, . . . , N}, and
λbirth(0) = λbirth(N) = 0. In this situation, starting with some X0 ∈ S for any function f
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on R, we have

d

dt
E(f(Xt))

= E(L(f)(Xt)) = λ1 E
(
X(t)

(
1− α1

X(t)
N

)
[f(Xt + 1)− f(Xt)]

)

+λ2 E
(
Xt

(
1 + α2

Xt

N

)
[f(Xt − 1)− f(Xt)]

)
.

Choosing f(Xt) = Xt ⇒ [f(Xt + 1)− f(Xt)] = 1 = −[f(Xt − 1)− f(Xt)], we find that

d

dt
E(Xt) = λ1 E

(
X(t)

(
1− α1

X(t)

N

))
− λ2 E

(
Xt

(
1 + α2

Xt

N

))

� λ1 E (X(t))

(
1− α1

E(X(t))

N

)
− λ2 E (Xt)

(
1 + α2

E(Xt)

N

)

− 1

N
(λ1α1 + λ2α2) Var(Xt).

This shows that the deterministic dynamical system (28.7) does not take into account the
variance of Xt.

We end this section with an illustration of the stochastic logistic model in epidemiology.
In this context Xt represents the number of infected individuals. It is a Markov model on a
finite set S = {0, 1, . . . , N}, where N denotes the total number of individuals. Its generator
is given by

L(f)(x) = λinfect(x) [f(x+ 1)− f(x)] + λrecover(x) [f(x− 1)− f(x)]

with the infection and the recovery rates

λinfect(x) = α N2 x

N

(
1− x

N

)
and λrecover(x) = β N

x

N
.

The rates are associated with some non-negative constants α, β. The infection rate λinfect(x)
depends on the proportion x

N of infected individuals and on the proportion
(
1− x

N

)
of non-

infected ones. Every infected individual (in a pool of x) remains infected with an exponential
rate β.

28.2.3 Epidemic model with immunity

This model is Markov on a finite set S = {0, 1, . . . , d}, where d denotes the total number
of individuals. The state of the Markov chain Xt = (Yt, Zt) represents the number Yt of
infected individuals and the number Zt of immune individuals. The evolution of Xt is given
by the jump generator

L(f)(y, z) = α1 d2
y

d

(
1− y

d
− z

d

)
[f(y + 1, z)− f(y, z)]

+α2 d
y

d
[f(y − 1, z + 1)− f(y, z)]

+α3 d
z

d
[f(y, z − 1)− f(y, z)].



Dynamic population models 765

28.2.4 Lotka-Volterra predator-prey stochastic model

The deterministic Lotka-Volterra dynamical system is given by
{

x′ = a x− bxy
y′ = −c y + dxy

(28.7)

for some parameters a, b, c, d > 0. The first coordinate xt represents the number of preys and
yt the number of predators (such as rabbits and foxes, respectively). In the above system,
bxtyt indicates the prey death rate and axt indicates the prey birth rate. Similarly, the
terms dxtyt and cyt represent the predator birth and death rates, respectively. The rates of
change of the populations are proportional to their sizes. The food supply of the predators
depends on the size of the prey population. In this model, the environmental interaction is
not taken into account. One way to enter the interaction is to add noise to the model. The
noise perturbations are also used to model the uncertainties of the mathematical model.
One natural strategy is to consider the following two-dimensional diffusion:

{
dXt = [a Xt − b XtYt] dt+ σ1,1X

2
t dW

1
t + σ1,2XtYt dW

2
t

dYt = [−c Yt + d Xt Yt] dt+ σ2,2Y
2
t dW

2
t + σ2,2XtYt dW

1
t ,

with some independent Brownian motions W 1
t and W 2

t .
The above models do not provide any information about the evolution of each individual

in the system. The individual-based stochastic model is defined by a pure jump Markov
process (Xt, Yt) on R2 with an infinitesimal generator

L(f)(x, y)

= λprey-death(x, y) (f(x− 1, y)− f(x, y)) + λprey-birth(x) (f(x+ 1, y)− f(x, y))

+λpred-death(y) (f(x, y − 1)− f(x, y)) + λpred-birth(x, y) (f(x, y + 1)− f(x, y))

with the jump intensities

λprey-death(x, y) = bxy λprey-birth(x) = ax
λpred-death(y) = cy λpred-birth(x, y) = dxy.

By construction, for any function f on R2, we have

d

dt
E(f(Xt, Yt))

= E(L(f)(Xt, Yt))

= b E (XtYt[f(Xt − 1, Yt)− f(Xt, Yt)]) + a E (Xt[f(Xt + 1, Yt)− f(Xt, Yt)])

+c E (Yt[f(Xt, Yt − 1)− f(Xt, Yt)]) + d E (XtYt[f(Xt, Yt + 1)− f(Xt, Yt)]) .

Choosing f(Xt, Yt) = Xt ⇒ [f(Xt + 1, Yt)− f(Xt, Yt)] = 1 = −[f(Xt − 1, Yt)− f(Xt, Yt)],
we find that

d

dt
E(Xt) = a E (Xt)− b E (XtYt)

= a E (Xt)− b E (Xt)E (Yt)− b Cov(Xt, Yt).
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Choosing f(Xt, Yt) = Yt ⇒ [f(Xt, Yt + 1) − f(Xt, Yt)] = 1 = −[f(Xt, Yt − 1) − f(Xt, Yt)],
we find that

d

dt
E(Yt) = d E (XtYt)− c E (Yt)

= d E (Xt)E (Yt)− c E (Yt) + d Cov(Xt, Yt).

This shows that the deterministic dynamical system (28.7) does not take into account
the covariance between Xt and Yt.

To understand better the behavior of the Lotka-Volterra model, we end this section with
a discussion on the phase diagram of the dynamical system (28.7). Firstly, using the change
of variables

τ = a t, u =
d

c
x and v =

b

a
y

we find that
dτ = a dt du =

d

c
dx and dv =

b

a
dy.

This allows us to reduce the system to the following equations

du

dτ
=

d

ac

dx

dt
=

d

ac
(a x− bxy) =

d

c
x−

(
b

a
y

)(
d

c
x

)
= u (1− v).

In much the same way, we have

dv

dτ
=

b

a2
dy

dt
=

b

a2
(−c y + dxy) = − c

a

(
b

a
y

)
+

c

a

(
b

a
y

)(
d

c
x

)
= − c

a
v (1− u)

from which we conclude that
dv

dτ
= −α v (1− u) with α =

c

a
.

The corresponding dynamical system is given by
{

u′ = u (1− v)
v′ = −α v (1− u).

The stationary states are given by

u (1− v) = 0 and v (1− u) = 0

¬

(u, v) = (u0, v0) := (0, 0) and (u, v) = (u1, v1) := (1, 1).

To understand the behavior of this system, we notice that the integral curves are defined
by the equations:

dv

du
=

dv/dτ

du/dτ
=

g(u, v)

f(u, v)

with
g(u, v) = −α v (1− u) and f(u, v) = u (1− v).

The nullclines, sometimes called zero-growth isoclines, are defined by

g(u, v) = −α v (1− u) = 0 ⇐⇒ u = 1 or v = 0

and
f(u, v) = u (1− v) = 0 ⇐⇒ u = 0 or v = 1.

At the intersecting states of these lines, the trajectory of the system has a vertical tangent
(f(u, v) = 0) or a horizontal tangent (g(u, v) = 0).
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To be more precise, we have

dv

du
=

−α v (1− u)

u (1− v)
=

−α (1/u− 1)

(1/v − 1)
.

Using an elementary analysis of the functions

u �→ −α (1/u− 1) and v �→ 1

(1/v − 1)

we obtain the following sign diagram
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Following the tangent vector field at every state of the system trajectory, we obtain the
following phase diagram.

28.2.5 Moran genetic model

This model is Markov on a finite set S = {0/d, 1/d, . . . , d/d}, where d is the total number
of individuals. The state Xt of the Markov chain represents the proportion x ∈ [0, 1] of
alleles of type A in a genetic model with alleles A and B. The evolution of Xt is given by
the jump generator

L(f)(x) =

(
d
2

)
x(1− x) [f(x+ 1/d)− f(x)]

+

(
d
2

)
x(1− x) [f(x− 1/d)− f(x)].

Notice that this generator can be rewritten as

L(f)(x) = λ

∫
[f(y)− f(x)] M(x, dy)

with the jump rate λ =

(
d
2

)
and the Markov transition

M(x, dy)

= x(1− x) δx+1/d(dy) + d x(1− x) δx−1/d(dy) + (1− [x2 + (1− x)2]) δx(dy).

The probability to stay in the same proportion is determined from the fact that 1 = (x +
(1− x))2 = x2 + (1− x)2 + 2x(1− x).

Using an elementary Taylor second order decomposition for large population sizes d and
for a twice continuously differentiable function f , we find that

f(x+ 1/d)− f(x) = f ′(x)/d+
1

2
f ′′(x)/d2 +O(1/d3).
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This implies that

L(f)(x) =
d(d− 1)

2
x(1− x) ([f(x+ 1/d)− f(x)] + [f(x− 1/d)− f(x)])

=
1

2
x(1− x) f ′′(x) +O(1/d).

28.3 Genetic evolution models

The cells of most organisms contain a specific hereditary material called DNA (deoxyribonu-
cleic acid). The DNA is a double helix formed with base pairs attached to a sugar-phosphate
backbone. These base pair sequences encode information in terms of four chemical bases:
A (adenine), C (cytosine), G (guanine), and T (thymine). For instance, the human DNA
has 3 billion bases, and 99% of these codes are common to all of us.

Proteins are sophisticated and complex molecules in cells that serve different function-
alities. For instance, messenger proteins transmit signals to coordinate biological processes
between cells, tissues, or organs.

Most of the genes in the cell produce these functional molecules. This chemical process
converting DNA to RNA (ribonucleic acid) to proteins is decomposed into two steps: tran-
scription and translation. The process is often called "central dogma" to reflect that it is
one of the fundamental principles of molecular biology.

During the transcription process, the information stored in the DNA of the gene is
transferred to a messenger molecule in the cell nucleus called mRNA . We assume that a
given gene produces mRNA molecules at a constant rate λ1 w.r.t. some time unit, e.g.,
hours.

During the translation process, the mRNA interacts with a ribosome which reads the
sequence of mRNA bases. A transfer RNA called tRNA assembles the protein. We further
assume that the molecules fabricate proteins P at rate λ2. The mRNA and the proteins
are degraded at rate λ3, and resp. λ4. The evolution of the process is summarized by the
following diagram

Gene λ1−→ Gene+mRNA
mRNA λ2−→ mRNA+ Proteins
mRNA λ3−→ ∅ and Proteins λ4−→ ∅.

We assume that the number of genes in the system is constant over time, and we write
Xt = (Yt, Zt) for the N2-valued process of the number Yt of mRNA molecules and the
number Zt of proteins.

L(f)(y, z) = λ1 [f(y + 1, z)− f(y, z)] + λ2y [f(y, z + 1)− f(y, z)]

+λ3y [f(y − 1, z)− f(y, z)] + λ4z [f(y, z − 1)− f(y, z)].

We observe that the last three rates are null as soon as both the number the molecules and
the number of proteins vanish. This ensures that the process stays in N2.
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28.4 Branching processes

28.4.1 Birth and death models with linear rates

We consider a population of individuals who die at a rate of rd, and divide into two offsprings
at a rate of rb. We assume that these mechanisms are independent from one individual to
another. The total size of the population Xt is a Markov process Xt on S = N with the
generator given by

L(f)(x) = λb(x)[f(x+ 1)− f(x)] + λd(x)[f(x− 1)− f(x)]

with λb(x) = rbx and λd(x) = rdx.

Pt(x, y) = P (Xt = y | X0 = x)

= E (fy(Xt) | X0 = x) = Pt(fy)(x) with fy = 1y.

Notice that the extinction probability, starting with a single individual, is given by

e(t) := Pt(1, 0) = Pt(f0)(1)

and its evolution is given by the forward equation

d

dt
Pt(1, 0) =

d

dt
Pt(f0)(1) = Lt(Pt(f0))(1)

= rb[Pt(f0)(2)− Pt(f0)(1)] + rd [Pt(f0)(0)− Pt(f0)(1)]

= rbPt(2, 0) + rd Pt(0, 0)︸ ︷︷ ︸
=1

−[rb + rd] Pt(1, 0).

On the other hand, for any x ∈ N we have

Pt(x, 0) = Pt(1, 0)
x.

For x = 0, the result is obvious. This claim is a consequence of the independence between
the individual branching processes. Starting the branching process from x individuals is
equivalent to starting the branching process x times with a single individual. This implies
that

e′(t) = rbe(t)
2 + rd − [rb + rd] e(t)

= (e(t)− 1) (rbe(t)− rd) = rb (e(t)− 1)(e(t)− τ) with τ = rd/rb

and with the initial condition e(0) = P0(1, 0) = 0.
When rd = rb = r, we set

er(t) := e(t/r).

The main simplification of this scaling follows from

e′r(t) = e′(t/r)/r = 1 + e(t/r) [e(t/r)− 2]

= 1 + er(t)(er(t)− 2)

= (er(t)− 1)2 with er(0) = 0.

This implies that
(
− 1

er − 1

)′

=
e′r

(er − 1)2
= 1 ⇒ 1

er(0)− 1
− 1

er(t)− 1
= t.
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It follows that
1

er(t)− 1
= −(1 + t) ⇒ er(t) = 1− 1

1 + t
.

We conclude that
e(t) = 1− 1

1 + rt
.

When rd �= rb, we set

e(t) := e(t/rb) ⇒ de′ = (e− 1)(e− τ) dt.

Now we use
1

τ − 1

[
1

x− τ
− 1

x− 1

]
=

1

(x− τ)(x− 1)

to prove that

dt =
de′

(e− 1)(e− τ)
=

1

τ − 1

[
de′

e− τ
− de′

e− 1

]

=
1

τ − 1
d

(
log

e− τ

e− 1

)
.

This implies that

log
e(t)− τ

e(t)− 1
− log

e(0)− τ

e(0)− 1︸ ︷︷ ︸
=log (τ)

= (τ − 1)(t− 0)

from which we prove that

e(t)− τ

e(t)− 1
= τ exp ((τ − 1)t) = 1 +

1− τ

e(t)− 1
.

We conclude that
e(t) = 1− 1− τ

1− τ exp ((τ − 1)t)

and
e(t) = 1− 1− τ

1− τ exp ((rd − rb) t)
.

When rd > rb, we have τ > 1 and conclude that the system collapses exponentially fast

e(t) = 1− τ − 1

τ exp ((rd − rb) t)− 1
�t↑∞ 1− exp (−(rd − rb) t) ↑t↑∞ 1.

When, on the contrary, rd < rb holds, we have τ < 1 and

e(t) = 1− 1− τ

1− τ e−(rb−rd) t

= 1−
[
1− τe−(rb−rd)t

]
− τ(1− e−(rb−rd)t)

1− τ e−(rb−rd) t

= τ
e(rb−rd)t − τ − (1− τ)

e(rb−rd)t − τ
= τ

(
1− 1− τ

e(rb−rd)t − τ

)
.

Hence in this case we conclude that the survival of the system increases exponentially fast
to τ

0 ≤ τ − e(t) =
τ (1− τ)

e(rb−rd)t − τ
�t↑∞ τ (1− τ)e−(rb−rd)t ↓t↑∞ 0.
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28.4.2 Discrete time branching processes

We denote by S = ∪p≥0S
p the state space of a branching process with individuals taking

values on some measurable state space S. The integer p ≥ 0 represents the size of the
population. It is implicitly assumed that the product spaces Sp are the p-symmetric product
spaces (i.e., the orders of the states (x1, . . . , xp) ∈ Sp are not important), and test functions
on Sp are symmetric. For p = 0 we use the convention S0 := {c}, where c stands for an
auxiliary cemetery state.The state c is an isolated point and functions f on S are extended
to S ∪ c by setting f(c) = 0.

We let Mn(x, dy), with n ≥ 1, be a sequence of Markov transitions from S into inself,
and we denote by (gin(x))i≥1,x∈S,n≥0 a collection of integer number-valued random variables
with uniformly finite first moments. We further assume that for any x ∈ S and any n ≥ 0,
(gin(x))i≥1 are identically distributed, and we set

Gn(x) := E(gin(x)).

Our branching process is defined as follows. We start at some point x0 with a single
particle, that is p0 = 1 and ζ0 = ζ10 = x0 ∈ Sp0 = S. This particle branches into p̂0
offsprings ζ̂0 = (ζ̂10 , . . . , ζ̂

p̂0

0 ) ∈ Sp̂0 , with p̂0 = g10(ζ
1
0 ).

Each of these individuals explores randomly the state space S, according to the transition
M1. At the end of this mutation step, we have a population of p1 = p̂0 particles ζi1 ∈ S with
distribution M1(ζ̂

i
0, .), i = 1, . . . , p1. Then each of these particles ζi1 branches into g11(ζ

i
1)

offsprings. At the end of this transition, we have p̂1 particles ζ̂1 = (ζ̂11 , . . . , ζ̂
p̂1

1 ) ∈ Sp̂1

1 , with
p̂1 =

∑p1

i=1 g
i
1(ζ

i
1).

Then each of these individuals explores randomly the state space S, according to the
transition M2, and so on.

Whenever the system dies, p̂n = 0 at a given time n, we set ζ̂q = ζq+1 = c, and
p̂q = pq+1 = 0, for any q ≥ n.

By construction, we have pn+1 = p̂n, and
∑p̂n

i=1 f(ζ̂
i
n) =

∑pn

i=1 g
i
n(ζ

i
n) f(ζin), for any

function f ∈ Bb(S). If we consider the random measures

Xn =

pn∑
i=1

δζi
n

and X̂n =

p̂n∑
i=1

δζ̂i
n
,

we find that

E(X̂n(f) | ζn) = Xn(Gn f) and E(Xn+1(f) | ζ̂n) = X̂n(Mn(f)).

This clearly implies that

E(Xn+1(f) | ζn) = Xn(GnMn+1(f)).

We readily conclude that the first moments of the branching distributions Xn are
given by the Feynman-Kac model

E(Xn(f)) = Ex0


f(Xn)

∏
0≤k<n

Gk(Xk)


 := γn(f).

Here Xn is a Markov chain on S with Markov transitions Mn. In this inter-
pretation, the mean number of individuals in the current population is given by
E(Xn(1)) = γn(1).
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In probability theory, the stochastic process Xn is called a branching Markov chain. The
long-time behavior of these branching models, their connections with particle absorption
models, and their applications in physics and biology are rapidly developing subjects in
probability theory. We refer the reader to a series of articles [6, 5, 7, 23, 33, 156, 167, 168,
206], to more recent studies [1, 12, 18, 36, 88, 89, 146, 242], and to the references therein.

28.4.3 Continuous time branching processes

As their discrete time analogue, continuous time branching processes ξt take values in the
state space S = ∪p≥0S

p presented in section 28.4.2. The generator of a branching process
is defined for any sufficiently regular function F on S and any x = (x1, . . . , xp) ∈ Sp by the
a jump type generator

Lt(F )(x) = Lm
t (F )(x) + Lb

t(F )(x). (28.8)

The mutation generator
Lm
t (F )(x) =

∑
1≤i≤p

L
(i)
t (F )(x)

represents the independent evolution of the particles between the branching transitions with
some generator Lt. The upper index L

(i)
t means that the generator Lt only acts on the i-th

coordinate xi �→ F (x1, . . . , xi, . . . , xp). The branching generator is a jump process in S
given by

Lb
t(F )(x) = λt(x)

∫

S
(F (y)− F (x)) Kt(x, dy)

for some branching rate function λt(x) and some Markov transitions Kt(x, dy) on the set
S.

The state c is an absorbing state so that Kt(c, dy) = δc(dy) and Lb
t(F )(c) = 0 =

Lm
t (F )(c) (recall the convention

∑
∅ = 0).

Let ξt is be the Markov process with generator Lt. By the Doeblin-Itō formula, for
sufficiently regular functions F (t, x) on ([0,∞[×S) we have

dF (t, ξt) = (∂t + Lt)F (t, ξt) dt+ dMt(F ) (28.9)

with a collection of martingales Mt(F ) with angle-bracket defined in terms of the carré du
champ operators ΓLt

associated with the generators Lt and given by the formulae

〈M(F ),M(F )〉t =
∫ t

0

ΓLs(F (s, .), F (s, .))(ξs) ds. (28.10)

Some important classes of functions F are given by

F (t, ξt) = Xt(f) with the occupation measures Xt :=
∑

1≤i≤Nt

δξit (28.11)

where Nt stands for the size of the system at time t.
The branching transitions Kt(x, dy) often take the form

Kt(x, dy) =
∑

1≤i≤p

α
(i)
t (x)

∑
q≥0

ρ
(i)
t (x, q)

∫

S∪{c}
K

(i)
t ((x, q), du) δxi

q(u)
(dy)

with

xi
q(u) =


x1, . . . , xi−1, u, . . . , u︸ ︷︷ ︸

q−times

, xi+1, . . . , xp


 ∈ S(p−1)+q
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for any x = (x1, . . . , xp) ∈ Sp, for some p ≥ 1. In the above display, α(i)
t (x) is a probability

measure on the index i ∈ {1, . . . , p}; ρ(i)t (x, q) is a probability measure on the index q ∈ N,
and K

(i)
t ((x, q), du) is a Markov transition from (S ×N) into (S ∪{c}). In this construction

when q = 0, the function ρ
(i)
t (x, 0) stands for the probability of extinction of the i-th

individual. In this situation, we take the convention K
(i)
t ((x, 0), du) = δc(du).

At a rate λt(x), an individual with label i is selected in the pool x = (x1, . . . , xp) with
probability α

(i)
t (x). Then we chose randomly a number of individuals q with probability

ρ
(i)
t (x, q). If q = 0, the i-th individual dies. Otherwise, we select a state u with probability

K
(i)
t ((x, q), du); and we replace the i-th individual by q copies of u.
In the next sections, we illustrate these models with two important examples. Further

examples can be found in the article [79].

28.4.3.1 Absorption-death process

In the further development of this section we discuss the branching generator Lb,−
t associated

with the parameters:

λt(x) =
∑

1≤i≤p

Ut(xi) α
(i)
t (x) =

Ut(xi)∑
1≤j≤p Ut(xj)

and ρ
(i)
t (x, q) = 1q=0

for some positive function Ut on S and for any x = (x1, . . . , xp) ∈ Sp, for some p ≥ 1. In
this situation, each individual xi dies at rate Ut(xi). We denote by Lb,− the corresponding
branching generator.

For functions of the form

F (x) = p m(x)(ϕ) =
∑

1≤j≤p

f(xj) with the empirical measures m(x) =
1

p

∑
1≤i≤p

δxi

for any x = (x1, . . . , xp) ∈ Sp, for some p ≥ 1, we have

K
(i)
t (F )(x, 0)− F (x) = −f(xi)

=⇒ Lb,−
t (F )(x) = λt(x) [Kt(F )(x)− F (x)] = −

∑
1≤i≤p

Ut(xi) f(xi) = −p m(x)(Utf).

Using

L
(i)
t (F )(x) = Lt(f)(xi) =⇒ Lm

t (F )(x) =
∑

1≤i≤p

Lt(f)(xi) = p m(x)(Lt(f))

we conclude that

F (x) = p m(x)(ϕ) =⇒ Lt(F )(x) = p m(x)(Lt(f))− p m(x)(Utf).

Recalling that

ΓLb,−
t

(F, F )(x) = λt(x)

∫

S
(F (y)− F (x))2 Kt(x, dy)

and using ∫
K

(i)
t ((x, 0), dy)[F (y)− F (x)]2 = f(xi)

2

we also find that

ΓLb,−
t

(F, F )(x) = p m(x)(Utf
2).



Dynamic population models 775

Recalling that
ΓLm

t
(F, F )(x) = p m(x) (ΓLt(f, f))

we conclude that

ΓLt
(F, F )(x) = ΓLm

t
(F, F )(x) + ΓLb,−

t
(F, F )(x) = p m(x) (ΓLt

(f, f)) + p m(x)(Utf
2).

By applying (28.9) to the functions (28.11), we find that

dXt(f) = [Xt(Lt(f))−Xt(Utf)] dt+ dMt(f)

with a collection of martingales Mt(f) with angle bracket given by the formulae

〈M(f),M(f)〉t =
∫ t

0

[
Xs (ΓLt(f, f)) + Xs(Usf

2)
]
ds.

We quote a direct consequence of this result. Note

γt(f) := E (Xt(f)) ⇒ ∂tγt(f) = γt(Lt(f))− γt(Utf).

We further assume that the initial configuration (ξi0)1≤i≤N0
is given by N0 independent

random variables with some common law η0 on S, for some given non-random N0 ≥ 1. In
this situation, we have

γ0(f) := E (X0(f)) = N0 E(f(X0)) = N0 η0(f).

These first moment measures coincide with the Feynman-Kac measures discussed in sec-
tion 16.1.3 (see also section 15.6.1, exercise 294, exercises 317 and 318, and section 27.2.2).
We have

γt(f) := E (Xt(f)) = N0 E
[
f(Xt) exp

{
−
∫ t

0

Us(Xs) ds

}]

whereXt is a Markov process with generator Lt on S with initial distribution η0 = Law(X0).

28.4.3.2 Birth type branching process

The simplest example of birth type branching process ξt is given by the spontaneous birth
type generator

Lb,0
t (F )(x) = µ(1)

∫

S

(F (x, y)− F (x)) µ(dy)

where µ stands for some non-negative measure on S and µ(dy) = µ(dy)/µ(1) the normalized
probability measure. At rate µ(1) a new individual is added to the population. Thus at
any time t the number of individuals is given by a Poisson process Nt with rate µ(1). Given
Nt = n, the population ξt =

(
ξ1t , . . . , ξ

n
t

)
is formed by n independent random variables with

common law µ. This spatial Poisson process is the continuous time version of the discrete
generation model discussed in section 4.6. Observe that for any x = (x1, . . . , xp) ∈ Sp, we
have

F (x) = p m(x)(ϕ) =⇒ Lb,0
t (F )(x) = µ(f) and ΓLb,0

t
(F, F )(x) = µ(f2).

By applying (28.9) to the functions (28.11), we find that

dXt(f) = [Xt(Lt(f)) + µ(f)] dt+ dMt(f)
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with a collection of martingales Mt(f) with angle-bracket given by the formulae

〈M(f),M(f)〉t =
∫ t

0

[
Xs (ΓLt

(f, f)) + µ(f2)
]
ds.

In the further development of this section we discuss the branching generator Lb,+
t

associated with the parameters:

λt(x) =
∑

1≤i≤p Vt(xi) α
(i)
t (x) = Vt(xi)∑

1≤j≤p Vt(xj)

ρ
(i)
t (x, q) = 1q=2 K

(i)
t ((x, 2), du) = δxi

(du)

for some positive function Vt on S, and for any x = (x1, . . . , xp) ∈ Sp, for some p ≥ 1. In this
situation, each individual xi duplicates at rate Vt(xi). We denote by Lb,+ the corresponding
branching generator.

For functions of the form

F (x) = p m(x)(ϕ) =
∑

1≤j≤p

f(xj)

we have

K
(i)
t (F )(x, 2)− F (x) = f(xi)

=⇒ Lb,+
t (F )(x) = λt(x) [Kt(F )(x)− F (x)] =

∑
1≤i≤p

Vt(xi) f(xi) = p m(x)(Vtf).

This implies that

F (x) = p m(x)(ϕ) =⇒ Lt(F )(x) = p m(x)(Lt(f)) + p m(x)(Vtf).

Arguing as above, we also find that

ΓLb
t
(F, F )(x) = p m(x)(Vtf

2)

and

ΓLt
(F, F )(x) = ΓLm

t
(F, F )(x) + ΓLb,+

t
(F, F )(x) = p m(x) (ΓLt

(f, f)) + p m(x)(Vtf
2).

After applying (28.9) to the functions (28.11), we find that

dXt(f) = [Xt(Lt(f)) + Xt(Vtf)] dt+ dMt(f)

with a collection of martingales Mt(f) with angle bracket given by the formulae

〈M(f),M(f)〉t =
∫ t

0

[
Xs (ΓLs

(f, f)) + Xs(Vsf
2)
]
ds.

Arguing as above, we have the Feynman-Kac formulae

γt(f) = E (Xt(f)) = N0 E
[
f(Xt) exp

{∫ t

0

Vs(Xs) ds

}]

whereXt is a Markov process with generator Lt on S with initial distribution η0 = Law(X0).
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28.4.3.3 Birth and death branching processes

Consider the generator defined by

Lt = Lm
t + Lb,−

t + Lb,0
t + Lb,+

t

with the generators Lb,−
t , Lb,0

t and Lb,+
t introduced in section 28.4.3.1 and section 28.4.3.2.

The state space S can be interpreted as a trait space. The first generator Lm
t represents

the mutation transitions of the traits of the individuals. The function u ∈ S �→ Ut(u) ∈
[0,∞[ represents the rate of natural death of an individual with traits u, while u ∈ S �→
Vt(u) ∈ [0,∞[ represents the rate of natural birth of an individual with traits u.

The applications of these branching processes to model the microscopic behavior of
individual trait-based models have been studied intensively by Nicolas Champagnat and
his co-authors [45, 46, 47]. We also refer the reader to the earlier developments [60, 61, 64,
66, 79, 81] (and references therein) discussing applications branching processes including
fixed population size processes in evolutionary computing, physics and chemistry, stochastic
optimization, and nonlinear filtering.

The Doeblin-Itō formula presented in (28.9) and (28.10) is satisfied with the carré du
champ operators ΓLt

ΓLt
(F, F )(x) = ΓLm

t
(F, F )(x) + ΓLb,−

t
(F, F )(x) + ΓLb,0

t
(F, F )(x) + ΓLb,+

t
(F, F )(x).

Arguing as above, we find that

dXt(f) = [Xt(Lt(f)) + Xt((Vt − Ut)f) + µ(f)] dt+ dMt(f)

with a collection of martingales Mt(f) with angle bracket given by the formulae

〈M(f),M(f)〉t =
∫ t

0

[
Xs (ΓLt(f, f)) + Xs((Ut + Vt)f

2) + µ(f2)
]
ds.

When µ = 0, we have

γt(f) := E (Xt(f)) = N0 E
[
f(Xt) exp

{∫ t

0

(Vs − Us)(Xs) ds

}]
(28.12)

whereXt is a Markov process with generator Lt on S with initial distribution η0 = Law(X0).
We also notice that

∂tE (〈M(f),M(f)〉t) = γt
(
ΓLt

(f, f) + (Ut + Vt)f
2)
)
.

From the computational viewpoint, the simulation of these branching processes often in-
volves extinctions and explosions of the number of particles when the time horizon increases.
For instance, starting from a given state X0 = x0, with time homogeneous birth and death
rate functions (Ut, Vt) = (U, V ), and without mutations, the mean population size is given
by

γt(1) = E(Nt) = N0 exp {(V − U)(x0) t} →t→∞




∞ if V (x0) > U(x0)
N0 if V (x0) = U(x0)
0 if V (x0) < U(x0).

When µ �= 0 we have

γt(f) := E (Xt(f)) ⇒ ∂tγt(f) = γt(Lt(f)) + γt((Vt − Ut)f) + µ(f).
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The solution is given by

γt(f) = γ0Q0,t(f) +

∫ t

0

µQs,t(f) ds

with the Feynman-Kac semigroup

Qs,t(f)(x) = E
[
f(Xt) exp

{∫ t

s

(Vr − Ur)(Xr) dr

}
| Xs = x

]
.

Using the mean field particle approximations (16.16) or preferably (for computational pur-
poses) their discrete time versions discussed in section 16.2 and section 9.6, we can estimate
these first moment distributions γt (a.k.a. intensity measures) using a particle model with
fixed population sizes Nt = N0 := N . For a more detailed study on these spatial branching
processes, we refer the reader to the exercises 463 through 465.

28.4.3.4 Kolmogorov-Petrovskii-Piskunov equation

The Kolmogorov-Petrovskii-Piskunov equation [173], also known as the Fisher’s equation
was introduced in 1937 by A.N. Kolmogorov, I.G. Petrovskii, N.S. Piskunov in [173] and
by R.A. Fisher in [127]. This dynamic population model describes the spatial spread of
an advantageous allele. In this section we provide an interpretation of these equations
in terms of branching processes discussed in section 28.4.3, following the ideas of H.P.
McKean [187, 188].

Consider the branching process generators (28.8) with a jump intensity λt defined for
any x = (x1, . . . , xp) ∈ Sp by

λt(x) = p λ and Kt(x, dy) :=
1

p

∑
1≤i≤p

∑
k≥1

αt,k δθk
i (x)

(dy)

for some parameter λ ≥ 0, some probability α = (αt,k)k≥1 on N−{0} and with the functions

θki (x) =


x1, . . . , xi−1, xi, . . . , xi︸ ︷︷ ︸

k-times

, xi+1, . . . , xp


 .

The process ξt evolves as follows. At a rate λ, each individual ξit dies and instantly gives
birth to k offsprings with a probability pk. Between the branching times, each individual
evolves independently as a Markov process with generator Lt.

We let ξxt =
(
ξx,it

)
1≤i≤Nx

t

be the branching process starting from p individuals (x1, . . . , xp).

Since there are no interactions between the individuals we have

ξxt
law
=

(
ξx1
t , . . . , ξ

xp

t

)
.

Thus, recalling that we are working with the p-symmetric product spaces and symmetric
test functions, the Markov semigroup Ps,t of the branching process ξt satisfies the product
formula

Ps,t(f)(x1, . . . , xp) =

∫

Sp

Ps,t(x1, dy1)× . . .× Ps,t(xp, dyp) f(y1, . . . , yp).

In particular, for regular polynomial/product test functions of the form

∀p ≥ 0 ∀x = (x1, . . . , xp) ∈ Sp f(x) =
∏

0≤i≤p

g(xi)


=

∏
0≤i≤p

f(xi)
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for some [0, 1]-valued function g on S, we have

∀1 ≤ i ≤ p yi = (yi,1, . . . , yi,pi
) ∈ Spi ⇒ f(y1, . . . , yp) =

∏
1≤i≤p

∏
0≤j≤pi

g(yi,j) =
∏

1≤i≤p

f(yi)

from which we prove that

Ps,t(f)(x1, . . . , xp) =
∏

1≤i≤p

Ps,t(f)(xi)

as soon as Ps,t(f)(x) < ∞, for any x ∈ S. We also notice that

Kr(f)(x) =
1

p

∑
1≤i≤p

∑
k≥1

αr,k f(θki (x)) =
1

p

∑
1≤i≤p


∑
k≥1

αr,k f(xi)
k


 ∏

1≤j �=i≤p

f(xj).

By the perturbation formula (15.28):

Ps,t(f)(x) = e−λ(t−s) P(1)
s,t (f)(x) +

∫ t

s

λ e−λ(s−r) P(1)
s,r [Kr (Pr,t(f))] (x) dr (28.13)

with the Markov semigroup P(1)
s,t of the process ξ

(1)
t with generator Lm

t (corresponding to
independent motions with generator Lt). By construction, for polynomial/product test
functions we have

P(1)
s,t (f)(x1, . . . , xp) =

∏
1≤i≤p

P
(1)
s,t (f)(xi)

where P
(1)
s,t stands for the semigroup of Lt. Choosing p = 1, this implies that for any x ∈ S

we have

Ps,t(f)(x) = e−λ(t−s)


P (1)

s,t (f)(x) +

∫ t

s

λ eλ(t−r)


∑
k≥1

αr,k P (1)
s,r ([Pr,t(f)]

k)(x)


 dr


 .

Taking the derivative w.r.t. s we find that

∂sPs,t(f)(x) = λ Ps,t(f)(x)− LsPs,t(f)(x)− λ
∑
k≥1

αs,k [Ps,t(f)] (x)
k

= −


LsPs,t(f)(x) + λ

∑
k≥1

αs,k

(
[Ps,t(f)] (x)

k − Ps,t(f)(x)
)

 .

We fix the final time horizon t and some [0, 1]-valued function f s.t. Ps,t(f)(x) < ∞ exists
for any x ∈ S and s ∈ [0, t]. We also set u : (s, x) ∈ ([0, t]× S) �→ us(x) = Ps,t(f)(x). In
this notation, we have proved that

∂sus + Lsus + λ
∑
k≥1

αs,k

(
uk
s − us

)
= 0

for any s ≤ t, with a regular terminal condition ut = f . For time homogeneous models
(Ls, αs) = (L, α), we have Ps,t(f)(x) = P0,t−s(f)(x) := vt−s(x) with

∂tvt = Lvt + λ
∑
k≥1

αk

(
vkt − vt

)

for any t ≥ 0, with the initial condition v0 = f .
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The case αk = 1k=2, λ = 1 and L = 1
2 ∂2

x yields the Kolmogorov-Petrovskii-Piskunov
equations (a.k.a. KPP equations)

∂tvt =
1

2
∂2
xvt +

(
v2t − vt

)
. (28.14)

Further details on these equations can be found in exercises 467 through 469.

28.5 Exercises
Exercise 454 (Logistic diffusion process 1) We consider the one-dimensional diffusion

dXt = Xt (λ−Xt) dt+ σ Xt dWt

where Wt stands for a Brownian motion, λ and σ are positive parameters. Show that the
solution has the form

Xt =
Yt

1 +
∫ t

0
Ysds

(28.15)

for some geometric Brownian motion Yt. Deduce that X0 = Y0 ≥ 0 ⇒ Yt ≥ Xt ≥ 0, for
any time t ≥ 0.

Exercise 455 (Logistic diffusion process 2) We consider the one-dimensional diffusion

dXt = a Xt

(
1− Xt

b

)
dt+ σ Xt dWt

where Wt stands for a Brownian motion and (a, b, σ) are positive parameters. Show that
the solution has the form

Xt =
Yt

1 + a
b

∫ t

0
Ysds

with Yt = X0 exp

((
a− σ2

2

)
t+ σ Wt

)
. (28.16)

Exercise 456 (Logistic model - Birth and death process) Consider the determinis-
tic logistic model (28.5) with α1 = 1. Check that

x(t) = x(0) + (+1)

∫ t

0

λ1 x(s)

(
1− x(s)

N

)
ds+ (−1)

∫ t

0

λ2 x(s)

(
1 + α2

x(s)

N

)
ds.

We let N1
t and N2 be two independent Poisson processes with unit intensity. Describe the

generator of the process

Xt = X(0) + (+1) N1

(∫ t

0

λ1 X(s)

(
1− X(s)

N

)
ds

)

+(−1)N2

(∫ t

0

λ2 X(s)

(
1 + α2

X(s)

N

)
ds

)
.

Exercise 457 (Bimodal growth diffusion) We consider the one-dimensional diffusion

dXt = a Xt

(
1− X2

t

b

)
dt+ σ Xt dWt

where Wt is a Brownian motion and (a, b, σ) are positive parameters. Find an explicit
solution by applying the Doeblin-Itō formula to f(Xt) = X2

t .
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Exercise 458 (Facultative mutualism systems) We consider the mutualism system be-
tween two species {

x′
t = xt ((a1 + b1,2yt)− b1,1xt)
y′t = yt ((a2 + b2,1xt)− b2,2yt) .

(28.17)

These equations cannot be solved explicitly. Propose a stochastic version and a numerical
simulation of this model.

Exercise 459 (SIS model) We consider the SIS infection model between susceptible in-
dividuals xt and infected individuals yt for a population of size N, defined by

{
x′
t = −λc

N xy + (λb + λr) y

y′t = λc

N xy − (λb + λr) y.
(28.18)

The parameter λc stands for the contact rate between the two populations, λr stands for the
recovery rate of the infected individuals, and λb is the birth rate. The initial state is chosen
so that x0 + y0 = N . These equations cannot be solved explicitly. Propose a stochastic
version and a numerical simulation of this model.

Exercise 460 (Lotka-Volterra predator-prey - Birth and death process) Consider
the deterministic Lotka-Volterra predator-prey model (28.7). Check that
(

x(t)
y(t)

)
=

(
x(0)
y(0)

)
+

[∫ t

0

a x(s) ds

] (
1
0

)
+

[∫ t

0

b x(s)y(s) ds

] (
−1
0

)

+

[∫ t

0

c y(s) ds

] (
0
−1

)
+

[∫ t

0

d x(s)y(s) ds

] (
0
1

)
.

We let (N i
t )1≤i≤4 be four independent Poisson processes with unit intensity. Describe the

generator of the process
(

X(t)
Y (t)

)

=

(
X(0)
Y (0)

)
+ N1

[∫ t

0
a X(s) ds

] (
1
0

)
+ N2

[∫ t

0
b X(s)Y (s) ds

] (
−1
0

)

+N3
[∫ t

0
c Y (s) ds

] (
0
−1

)
+ N4

[∫ t

0
d X(s)Y (s) ds

] (
0
1

)
.

Exercise 461 (Kolmogorov equation) We consider the Kolmogorov equation defined
for any x ∈ N− {0} by

d

dt
pt(x) = (a1 (x− 1) + b) pt(x− 1) + a2 (x+ 1) pt(x+ 1)− [b+ (a1 + a2) x] pt(x),

and for x = 0 by
d

dt
pt(0) = −b pt(0) + a2 pt(1),

with some positive parameters a1, a2 and b ≥ 0. Find a stochastic process Xt such that
Law(Xt) = pt. When a1 < a2, describe the invariant measure of this process.

Exercise 462 (Birth and death chain) The aim of this exercise is to analyze the chance
for α(x) to hit the origin when starting from certain state X0 = x ∈ N = S, that is, to find
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the probability of extinction of the population starting with x individuals. Let T be the first
time the chain hits the origin. Check that

α(x) = p(x) α(x+ 1) + q(x)α(x− 1) + α(x)(1− p(x)− q(x))

(28.19)

and deduce that

α(y + 1) = 1− (1− α(1))

y∑
x=0

{
x∏

y=1

q(y)

p(y)

}
. (28.20)

We let W :=
∑

x≥0

{∏x
y=1

q(y)
p(y)

}
∈]0,∞].

• Prove that W = ∞ ⇒ α(y) = 1 for any y ∈ N.

• If W < ∞, check that for any choice of α(1) ≥ 1−W−1, (28.20) is a [0, 1]-valued solution
of (28.19).

• For any other solution β(x) to (28.19) s.t. β(0) = 1, check that for any x > 0,

β(x) = M(x, 0) +
∑
y1≥0

M(x, y1)1�=0(y1)β(y1)

and deduce that

β(x) = P (T ≤ n | X0 = x) + E (1T>n β(Xn) | X0 = x)

≥ P (T ≤ n | X0 = x) ↑n↑∞ α(x).

Conclude that the extinction probability α(x) coincides with the minimal solution.

Exercise 463 (Branching intensity measures) Consider the intensity measures γt of
the birth and death branching process defined in (28.12) without spontaneous branching
(µ = 0). We set Wt := Vt−Ut. We denote by ηt the normalized probability measures defined
by ηt(f) = γt(f)/γt(1).

• Check that

γt(1) = exp

{∫ t

0

ηs(Ws) ds

}

and

ηt(f) = E
(
f(Xt) exp

{∫ t

0

[Ws(Xs)− ηs(Ws)] ds

})
.

• Check that for any s ≤ t we have γt = γsQs,t, with the Feynman-Kac semigroup

Qs,t(f)(x) = E
(
f(Xt) exp

{∫ t

s

Wr(Xr) dr

}
| Xs = x

)
.

• Prove that

∂sQs,t(f) = −LW
s (Qs,t(f)) with the Schrödinger operator LW

s (f) = Ls(f) +Wsf .
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• Prove that
∂tηt(f) = ηt (Lt,ηt(f))

with the collection of generators

Lt,ηt
(f) = Lt(f)(x) + Ut(x)

∫
(f(y)− f(x)) ηt(dy) +

∫
(f(y)− f(x)) Vt(y) ηt(dy).

• Describe the evolution of the nonlinear jump diffusion process Xt with generator Lt,ηt
.

Describe the mean field particle model associated with this nonlinear process.

Exercise 464 (Spontaneous branching - Renormalized measures [67]) Consider the
intensity measures γt of the birth and death branching process defined in (28.12) with non-
necessarily null spontaneous branching. We denote by ηt the normalized probability measures
defined by ηt(f) = γt(f)/γt(1). Check that

{
∂tγt(1) = γt(1) ηt(Wt) + µ(1)

∂tηt(f) = ηt

((
Lt,ηt

+ L0
t,γt(1),ηt

)
(f)

)

with the jump type generator

L0
t,γt(1),ηt

(f)(x) = (µ(1)/γt(1))

∫
(f(y)− f(x)) µ(dy)

and the collection of generators Lt,ηt presented in exercise 463. Describe the mean field
particle model associated with this nonlinear process.

Exercise 465 (Law of large numbers - Branching processes) Consider the in-
tensity measures of the birth and death branching process defined in (28.12) and further
discussed in exercise 463. We let ξ(i)t := (ξi,jt )1≤i≤Nt

be the branching process starting at
ξi0, for each 1 ≤ i ≤ N0 (or equivalently the particles with ancestor ξi0 at the origin), and
we set

∀1 ≤ i ≤ N0 X i
t :=

∑
1≤i≤Nt

δξi,jt
and X t =

1

N0

∑
1≤i≤N0

X i
t .

We assume that ξ0 =
(
ξi0
)
1≤i≤N0

are N0 independent random copies of X0.

• Check that
E
([

X t(ϕ)− γt(ϕ)
]2)

=
1

N0
E
([

X 1
t (ϕ)− γt(ϕ)

]2)
.

• We further assume N0 = 1.

– Prove that
dXt(ϕ) = Xt

(
LW
t (ϕ)

)
dt+ dM

(1)
t (ϕ)

with a martingale M
(1)
t (ϕ) w.r.t. Ft = σ(ξs, s ≤ t) with angle bracket

∂t

〈
M (1)(ϕ),M (1)(ϕ)

〉
t
= Xt

[
ΓLt(ϕ, ϕ) + (Ut + Vt) ϕ

2
]
.

– Deduce that

E(Nt) = 1 when Ut = Vt

E(Nt) ≥ eεt when Vt ≥ Ut + ε
E(Nt) ≤ e−εt when Vt ≤ Ut − ε for some ε ≥ 0.
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– For any fixed time horizon t, prove that M (2)
s (ϕ) := Xs(Qs,t(ϕ)) is a martingale for

s ∈ [0, t] with angle bracket

∂s

〈
M (2)(ϕ),M (2)(ϕ)

〉
s
= Xs

[
ΓLs(Qs,t(ϕ), Qs,t(ϕ)) + (Us + Vs) (Qs,t(ϕ))

2
]
.

– Deduce that

E
(
[Xt(ϕ)−X0(Q0,t(ϕ))]

2
)

=

∫ t

0

γs

[
ΓLs(Qs,t(ϕ), Qs,t(ϕ)) + (Us + Vs) (Qs,t(ϕ))

2
]
ds.

– Compute the derivative of the function s �→
(
γs

(
[Qs,t(ϕ)]

2
))

and check that

E
(
[Xt(ϕ)− γt(ϕ)]

2
)
= γt

(
ϕ2

)
− γt (ϕ)

2
+ 2

∫ t

0

γs

(
Vs (Qs,t(ϕ))

2
)

ds.

• Deduce that

N0 E
([

X t(ϕ)− γt(ϕ)
]2)

= γt
(
ϕ2

)
− γt (ϕ)

2
+ 2

∫ t

0

γs

(
Vs (Qs,t(ϕ))

2
)

ds.

Exercise 466 (First moments of KPP equation) We consider the spatial branching
process ξt =

(
ξit
)
1≤i≤Nt

discussed in section 28.4.3 with the branching generator presented
in section 28.4.3.4. We assume that the model is time homogeneous (Lm

t , Lt, λt, αt) =
(Lm, Lt, λ, α) and the branching distribution is chosen so that α :=

∑
k≥1 αk k < ∞ and

σ2 := λ
∑

k≥1 αk (k − 1)2 < ∞. We let Xt be the occupation measures defined in (28.11),
and for any regular function f on S we set γt(f) := E (Xt(f)). Check that

dXt(f) = Xt(L(f)) + λ Xt(f) (α− 1) dt+ dMt(f)

with a collection of martingales Mt(f) with angle bracket given by the formulae

∂t 〈M(f),M(f)〉t =
[
Xt (ΓL(f, f)) + σ2 Xt(f

2)
]
.

Deduce that
dNt = λ Nt (α− 1) dt+ dMt

with a martingale Mt with angle bracket given by the formulae

∂t 〈Mt,Mt〉t = σ2 Nt.

Check that

γt(f) := N0 eλ(α−1)t E [f(Xt)] and
1

t
logE(Nt/N0) = λ (α− 1) .

Examine the Kolmogorov-Petrovskii-Piskunov model discussed in (28.14).

Exercise 467 (Brownian branching process - KPP equation) Consider a branching
process ξt =

(
ξit
)
1≤i≤Nt

starting with a single Brownian motion starting at the origin. At
unit rate each particle splits into two particles. Between these branching times, the particles
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evolve independently according to Brownian motions. For any function f on R, using the
developments of section 28.4.3.4, check that

vt(x) = E


 ∏

1≤i≤Nt

f
(
x+ ξit

)



satisfies the Kolmogorov-Petrovskii-Piskunov equations (28.14) with the initial condition
v0 = f , for any given regular [0, 1]-valued function f .

Exercise 468 (Brownian branching process - Right-most particle) Consider the Brow-
nian branching process discussed in exercise 467. Check that

vt(x) = P
(

sup
1≤i≤Nt

ξit ≤ x

)

satisfies the the Kolmogorov-Petrovskii-Piskunov equation (28.14) , with the initial condition
v0 = 1[0,∞[. Deduce that the function vt : x ∈ R �→ [0, 1] is strictly increasing from 0 to 1.
Check that for any ε ∈]0, 1[ there exists some xε(t) such that vt(xε(t)) = ε.

Exercise 469 (Binary fission process - Generating function) Consider the Brown-
ian branching process discussed in exercise 467. Check that the function gt(r) := E

(
rNt

)
,

with r ∈]0, 1[ satisfies the equation

∂tgt(r) = gt(r) (gt(r)− 1) .

Deduce that

E
(
rNt

)
=

re−t

(1− r) + re−t
.

When r ≥ 1, check that the solution blows up at the time tb = − log (1− 1/r).
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29
Gambling, ranking and control

This chapter is dedicated to some applications of stochastic processes in gambling theory
and in operations research. We start with a brief discussion of the Google page rank
algorithm and of ranking techniques based on the limiting behavior of Markov chains. The
second part of the chapter is concerned with gambling betting systems and with martingale
theory. We present and analyse a series of famous martingales such as the St. Petersburg
technique, the grand martingale, and the D’Alembert and the Whittacker martingales. The
last part of the chapter is dedicated to stochastic optimal control. We discuss discrete and
continuous time control problems, as well as optimal stopping techniques.

If you must play, decide upon three things at the start:
the rules of the game, the stakes, and the quitting time.
Chinese Proverb.

29.1 Google page rank

Internet search engines are based on rank-
ing algorithms. They rank the pages of the
Web and display them on the screen accord-
ing to the order of their relative importance.
The Google page rank model is based on two
natural principles. The first one states that
the more pages link to a given page, the more
important the page. The second one states
that a given page is more important when
more important pages link to it.

More formally, we let d � 15× 109 be the
estimated number of Web pages in January
2015, and we set S = {1, . . . , d}. We equip S
with the uniform counting distribution µ(i) = 1/d, for any i ∈ S. Google uses a Web spider
bot called Googlebot to count these links.

For any given Web page i ∈ S, we let di be the number of outgoing links from i. We
denote by P (i, j), with i, j ∈ S, the normalized hyperlink

P (i, j) =

{
1
di

if j is one of the di outgoing links
0 if di = 0 (a.k.a. a dangling node).

By construction, P = (P (i, j))i,j is a stochastic matrix. Thus, its elements can be inter-
preted as the probabilities for elementary transitions of a Markov chain evolving on the set
of all Web pages. P is a sparse matrix and the resulting Markov chain is not irreducible

787
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nor aperiodic. One way to turn this model into a regular Markov chain model is to consider
the Markov transitions

M(i, j) = ε P (i, j) + (1− ε) µ(j)

for some parameter ε ∈ [0, 1[. The parameter ε reflects how likely is a Web navigator to
restart a search by following the ranks of the pages. The matrix M is called the Google
matrix associated with the damping factor ε.

It is an elementary exercise to check thatM leads to an irreducible and aperiodic Markov
chain as soon as ε ∈ [0, 1[. In addition, we have the minorization condition

M(i, j) ≥ (1− ε) µ(j).

This implies that the Dobrushin ergodic coefficient β(M) of M satisfies the condition
β(M) ≤ ε. By theorem 8.2.13, we conclude that

‖µ1M
n − µ2M

n‖tv ≤ εn ‖µ1 − µ2‖tv

for any probability measures µ1, µ2 on S.
We let Xn be the Markov chain with elementary transition M starting at some random

state X0 with a distribution η0. By the fixed point theorem, this implies that there exists
a unique probability measure π = πM and

‖Law(Xn)− π‖tv ≤ εn ‖η0 − π‖tv.

The page rank is now defined by the order induced by the invariant measure π =
(π(i))i∈S

i ≺ j ⇐⇒ π(i) ≤ π(j).

The rationale behind these constructions is that an individual wandering for a long time
around the Web according to this Markov chain, after a long time, is not directly affected
by the start of the navigation. The proportions of visits of the Web pages i are almost equal
to π(i). Thus, the higher this probability, the higher the rank of the page [218].

29.2 Gambling betting systems

29.2.1 Martingale systems

In probability theory, martingales refer to fair games in the sense that the average gain given
the past information is always null for all gambling strategies we use. This terminology was
introduced in 1939 by Jean Ville, but its literal origin comes from the early ages of casino
gambling in the 18th century in France. In these early times, the terminology martingale
was used to refer to the winning gambling style strategies. Most of the time, the idea was to
increase the stake so that when we win eventually we would recover all our losses and would
even gain profit. Martingales are also used by traders in financial markets, as well as by
governments to define and control (when possible) some political and economical strategies.
The interpretations of these stochastic processes depend on the application domain but they
follow the same mathematical rules. We refer the reader to section 8.4. It is dedicated to
the mathematical theory of martingale stochastic processes. In this section, we review some
classical martingale gambling systems. For a more thorough discussion on this subject, we
refer the reader to the book of S.N. Ethier [122] which is dedicated to the probabilistic
aspects of gambling.
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We recall the gambling model discussed in section 8.4.4. We assume that Xn are inde-
pendent {−1, 1}-valued random variables with common distribution

P (Xn = −1) = p and P (Xn = 1) = q = 1− p ∈ [0, 1].

The fortune of the gambler presented in (8.45) is given by the discrete time stochastic
process

Mn = M0 +
∑

1≤k≤n

Hk−1 Xk. (29.1)

In this formula, Hk−1 ∈ Fk−1 := σ (X1, . . . , Xk−1) denotes the betting strategy of the player
at any time k. We recall thatMn is a martingale, respectively super-martingale, respectively
sub-martingale, when p = q (fair game), respectively p > q (unfair), respectively p < q
(superfair). In each of these cases, we have

E (∆Mn | Fn−1) := Hn−1 E(Xn)

=




0 if q = 1/2 (martingale = fair game)
− Hn−1 |q − p| if 1/2 > q (super-martingale = unfair )
+ Hn−1 |q − p| if q > 1/2 (sub-martingale = superfair).

The initial random variable M0 represents the gambler’s fortune at the beginning of the
game in given units, e.g., the number of dollars.

29.2.2 St. Petersburg martingales

In a classic martingale, gamblers always increase their bets after each loss. One way to
recover all the previous losses is of course to bet the double of all losses until we win, and
then leave the game. When using this strategy, the first win would recover all previous
losses and win an extra profit that equals the amount of the previous losses.

This strategy is known as the St. Petersburg paradox.
In this section we formalize and analyze the above martingale. If we let T be the first

time we win the game,

T := inf{m ≥ 1 : Xm = 1} > n ⇐⇒ X1 = X2 = . . . = Xn = −1,

then on the event (T > n), the betting strategy at the (n+ 1)-th bet can be written as

Hn = 2 (H0 +H1 + . . .+Hn−1) 1T>n

= 3Hn−1 1T>n = 3n−1 H1 1T>n = 2× 3n−1 H0 1T>n (29.2)

for any n ≥ 1. The last assertion is obvious:

Hn−1 = 2 (H0 +H2 + . . .+Hn−2)

⇒ Hn = 2 ((H0 +H2 + . . .+Hn−2) +Hn−1) = 3Hn−1 = . . . = 3n−1 H1

and H1 = 2H0 on the event (T > n). We notice that the accumulated bets are given by

H0 + . . .+Hn−1 = H0


1 + 2

[
1 + 3 + . . .+ 3n−2

]
︸ ︷︷ ︸

=(3n−1−1)/2


 = 3n−1 H0.
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Therefore the fortune of the player MT at the end of the game is given by the formula

MT −M0 = (HT−1 × 1 + (H0 + . . .+HT−2)× (−1)) 1T≥2 +H0 1T=1

= [2(H0 + . . .+HT−2)− (H0 + . . .+HT−2)] 1T≥2 +H0 1T=1

= [H0 + . . .+HT−2] 1T≥2 +H0 1T=1

= 3T−2 H0 1T≥2 +H0 1T=1.

This shows that
MT = M0 + 3(T−2)+ H0.

The duration of this game is a geometric random variable with success parameter q

P (T = n) = P (X1 = X2 = . . . = Xn−1 = −1, Xn = 1) = pn−1 q.

We see that the duration of the game is quite short

P (T ≤ n) = q
∑

1≤k≤n

pk−1 = q (1− pn) /(1− p) = 1− pn.

Notice that
E(T ) =

∑
n≥1

P(T ≥ n) =
∑
n≥1

pn = 1/(1− p) = 1/q.

This clearly implies that T is almost surely finite. For instance, for fair games p = 1/2, the
mean duration is of two bets only, and the probability that T > 3 is less than (1/2)3 =
12.5%.

For p �= 1/3, we have

E
(
3(T−2)+ 1T≤n

)
= P (T = 1) +

∑
2≤k≤n

3k−2 P(T = k)

= q


1 + p

∑
0≤k≤n−2

(3p)k


 = q

(
1 + p

(3p)n−1 − 1

3p− 1

)

and

E
(
3(T−2)+ | T ≤ n

)
=

1− p

1− pn

(
1 + p

(3p)n−1 − 1

3p− 1

)
.

For p = 1/3, we find that

E
(
3(T−2)+ | T ≤ n

)
=

2

3(1− (1/3)n)

(
1 +

(n− 1)

3

)
.

This shows that for super-fair games

p < 1/3 ⇒ E
(
3(T−2)+

)
= lim

n↑∞
E
(
3(T−2)+ 1T≤n

)
= q

(
1 +

p

1− 3p

)

but for most of the fair games

p ≥ 1/3 ⇒ E
(
3(T−2)+

)
= lim

n↑∞
E
(
3(T−2)+ 1T≤n

)
= ∞ = E(MT ).
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29.2.3 Conditional gains and losses

29.2.3.1 Conditional gains

In all situations we have

E (MT | M0, H0, T ≤ n) = M0 + H0 E
(
3(T−2)+ | T ≤ n

)

=





M0 + H0
1−p
1−pn

(
1 + p (3p)n−1−1

3p−1

)
if p �= 1/3

M0 + H0
2/3

1−(1/3)n

(
1 + (n−1)

3

)
for p = 1/3.

This shows for for most of the fair games (i.e., p > 1/3) the average conditional profit can
be huge whenever T occurs before a given period

E (MT | M0, H0, T ≤ n) = M0 + H0
1− p

1− pn

(
1 + p

(3p)n−1 − 1

3p− 1

)
.

For instance, for the US roulette red color bet game discussed in section 2.3, we have
p = 20/38 � .526. The curve n �→ E (MT | M0, H0, T ≤ n) of the expected profits when
M0 = 1 and H0 = 1 for the first 20 bets is given below:
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29.2.3.2 Conditional losses

Unfortunately, we need a large amount of money in the beginning of the game. More
precisely, in the rather unlikely event T > n (with probability pn), we have

Mn 1T>n = (M0 − (H0 + . . .+Hn−1)) 1T>n = (M0 − 3n−1 H0) 1T>n

so that the average losses are given by

E (Mn | T > n) = (M0 − 3n−1 H0).

The following curve shows n �→ E (MT | M0, H0, T > n) the expected losses when M0 =
$10, 000 and H0 = 1 for the first 10 red color bets in US roulette:
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This shows that the player cannot gamble more than 8 or 9 steps without requiring a huge
loan.

29.2.4 Bankroll management

We have not discussed the view of the casino. Like any bookmaker, a casino knows that
bankruptcy is a possible outcome even if a game was not really fair for the gambler. To
avoid martingale betting systems, a casino often uses table limits to control the maximum
and the minimum bets a player can play. Major strip casinos in Las Vegas usually offer
some tables with a $10,000 maximum (except three tables at Caesar’s Palace which permit
bets up to $50,000).

In this connection, it is interesting to notice that there are still no such table limits
in financial markets which follow the same stochastic evolution models. Rogue traders
can become extremely rich, but they can also provoke huge bankruptcy orders such as the
largest bankruptcy filing in U.S. history, with Lehman holding over $600 billion in assets.
Of course, governmental reserve banks will contribute to stabilising these random effects by
printing money resources or more indirectly through general inflation.

We now come back to the gambling model’s interpretation. Even if there are no table
limits, any casino has a fixed amount of resources, say K = $3l−2, for some possibly large
l > 2.
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In this context, even when H0 = 1, the maximum number of the times Tc ≥ 2 the casino
can play is given by

3(Tc−2) H0 = 3l−2 ⇒ Tc = l.

The expected gain of the game is given by

E
(
min

(
3(T−2)+ ,K

))

= q
(
1 +

∑
2≤k≤l min

(
3(k−2), 3l−2

)
pk−1

)
+ 3l−2 P (T > l)

= q
(
1 + p

∑
0≤k≤l−2 (3p)k

)
= q

(
1 + p (3p)l−1−1

3p−1

)
+ 3l−2 pl.

The curve below describes the expected value for the US roulette game discussed above.
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29.2.5 Grand martingale

The grand martingale is defined similarly to the St Petersburg martingale except that (29.2)
is replaced by:

Hn = (2 Hn−1 +H0) 1T>n

= (2 (2 Hn−2 +H0) +H0) 1T>n =
(
22 Hn−2 + 2H0 +H0

)
1T>n

= . . .

=
(
2n−1 H1 + (2n−2 + 2n−2 + . . .+ 2 + 1)H0

)
1T>n

=
(
2n−1 (2H0 +H0) +H0 (2n−1 − 1)

)
1T>n

=
(
2n+1 − 1

)
H0 1T>n.

In the event T > n, we have

H0 +H1 + . . .+Hn−1

= H0

[
(21 − 1) +

(
22 − 1

)
+
(
23 − 1

)
+ . . .+ (2n − 1)

]

= H0 ((2n+1 − 1)− (n+ 1)).

This implies that

MT −M0

= [HT−1 − (H0 + . . .+HT−2)] 1T≥2 +H0 1T=1

=
[
H0 (2T − 1)−H0 ((2T − 1)− T )

]
1T≥2 +H0 1T=1

= H0 T 1T≥1

and
Mn 1T>n = (M0 − (H0 + . . .+Hn−1)) 1T>n

= (M0 − [(2n+1 − 1)− (n+ 1)] H0) 1T>n.

In this situation, the expected profits are given by

E (MT | M0, H0) = M0 +H0 E (T ) = M0 +H0/q

and the expected conditional losses are given by

E (MT | M0, H0, T > n) = M0 − [(2n+1 − 1)− (n+ 1)] H0.

29.2.6 D’Alembert martingale

The D’Alembert martingale is sometimes called the pyramid betting system. The name
originates from the famous French 18th century mathematician Jean le Rond D’Alembert.
The betting strategy is very simple. After a loss, we increase the bet by one unit (we can
use the initial bet as an unit). After a win, we decrease the bet by one unit. More formally,
on the event (T > n), D’Alembert bets at the (n+ 1)-th epoch are given by

Hn = Hn−1 −Xn H0
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for any n ≥ 1. This shows that

Hn = [Hn−1 −Xn H0] = [1− (X1 +X2 + . . .+Xn)] H0.

As a result, the relative fortune of the player is given by

Rn := (Mn −M0)/H0 =

n∑
l=1


1− (

∑
1≤k<l

Xk)


 Xl =

n∑
k=1

Xk −
∑

1≤k<l≤n

XkXl.

Hence we obtain for the expected value:

E (Rn) = (q − p)n

[
1− n− 1

2
(q − p)

]

= −2n

(
1

2
− q

) [
1 + (n− 1)

(
1

2
− q

)]
.

For instance, for the US roulette red color bet game discussed in section 2.3, we have
1/2− q = 1/2− 18/38 ≥ 0.0263. The expected relative losses are depicted below.
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In the event (T > n), this formula shows that Hn = (1+n) H0. To simplify the presentation,
we further assume that H0 = 1. Then, in the event (T > n), the losses are given by

Mn −M0 =

n∑
p=1

Hp−1 Xp = −
n∑

p=1

p = −n(n+ 1)/2.

This yields
E (Mn −M0 | T > n) = −n(n+ 1)/2.

In addition, at the time of winning we have

MT −M0 = (HT−1 − (H0 + . . .+HT−2)) 1T≥2 + 1T=1

= (T − (1 + 2 + . . .+ (T − 1))) 1T≥2 + 1T=1

= T [1− (T − 1)/2].

This shows that

E (MT −M0) = E(T )− 1

2
E(T (T − 1)) = − 1

q2
(1 + (1− q)) < 0.
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29.2.7 Whittacker martingale

The Whittacker martingale refers to a progressive betting system whereby you bet the two
latest bets until you win. The objective is to pull back the losses faster when you win. This
betting system is often played on even money bets on roulette (even or odd or red or black,
or other even strategies).

More formally, starting with two initial bets H0 and H1, the (n+ 1)-th bet is given by

∀n ≥ 2 Hn = Hn−1 +Hn−2.

To get a more explicit expression for the cumulative bet, we recall that the solution of the
above recurrence equation has the form

Hn = a1 tn1 + a2 tn2

with (t1, t2) being the solutions of the characteristic polynomial function

tn = tn−1 + tn−2 ⇔ t2 − t− 1 = (t− 1/2)2 − 5/4 = 0

⇔ (t1, t2) =

(
1−

√
5

2
,
1 +

√
5

2

)
.

We observe that t1t2 = −1, t1+t2 = 1 and t2−t1 =
√
5. We can easily check directly

that these functions satisfy the desired equation:
(
a1 tn−1

1 + a2 tn−1
2

)
+
(
a1 tn−2

1 + a2 tn−2
2

)

= a1
(
tn−1
1 + tn−2

1

)
︸ ︷︷ ︸

=tn1

+a2
(
tn−1
2 + tn−2

2

)
︸ ︷︷ ︸

=tn2

.

The constants (a1, a2) are computed in terms of the initial condition (H0, H1)

{
a1 + a2 = H0

a1t1 + a2t2 = H1

}

⇔
{

H0 = a1 + a2
H1 = (a1 + a2)t1 + a2(t2 − t1) = H0t1 + a2(t2 − t1)

}
.

This implies that

a2 =
H1 −H0t1
t2 − t1

≥ 0 and a1 = H0 −
H1 −H0t1
t2 − t1

=
H0t2 −H1

t2 − t1
.

Hence we get

Hn =
H0t2 −H1

t2 − t1
tn1 +

H1 −H0t1
t2 − t1

tn2

= H1
tn2 − tn1
t2 − t1

−H0t1t2
tn−1
2 − tn−1

1

t2 − t1

and since t1t2 = −1 holds we get

Hn = H0
tn−1
2 − tn−1

1

t2 − t1
+H1

tn2 − tn1
t2 − t1

.
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When we start with the same bets H0 = H1 = 1, the sequence Hn = Hn−1 +Hn−2 is
given by the Fibonacci numbers

H0 = 1, H1 = 1 H2 = 2, H3 = 3, H4 = 5, H5 = 8, H6 = 13, H7 = 21 . . .

A more synthetic form is given by Binet’s formula

Hn =
(tn−1

2 + tn2 )− (tn−1
1 + tn1 )

t2 − t1
=

tn+1
2 − tn+1

1√
5

�n↑∞
(1 +

√
5)n+1

2n+1
√
5

.

By construction, in the event T > n we have

H0 +H1 + [H2 + . . .+Hn−1]

= (a1 + a2) + (a1t1 + a2t2)

+
[
(a1t

2
1 + a2t

2
2) + . . .+ (a1t

n−1
1 + a2t

n−1
2 )

]

= a1
1− tn1
1− t1

+ a2
tn2 − 1

t2 − 1
.

Using the fact that
(1− t1)(t2 − 1) = −t1t2 + (t1 + t2)− 1 = 1

and (t2 − 1) = −t1(⇔ (1− t1) = t2) we conclude that

H0 +H1 + [H2 + . . .+Hn−1] = −a1t1(1− tn1 ) + a2(t
n
2 − 1)

= a2t
n+1
2 + a1t

n+1
1 − (a1t1 + a2t2)

= a2t
n+1
2 + a1t

n+1
1 −H1.

This shows that

MT −M0

=


 HT−1︸ ︷︷ ︸

=HT−3+HT−2

− (H0 + . . .+HT−2)


 1T≥4

+(H0 +H1)1T=3 +H1 TT=2 +H0 1T=1

= − (H0 + . . .+HT−4) 1T≥4 + (H0 +H1)1T=3 +H1 TT=2 +H0 1T=1.

In particular, this calculation demonstrates that the player will always lose if the success
happens after the fourth bet. The strategy is then to follow this betting system up to the
first time we hopefully recover some positive amount of money.

29.3 Stochastic optimal control

29.3.1 Bellman equations

A controlled Markov chain Xn evolving in some state spaces Sn is associated with a collec-
tion of Markov transitions Mun,n+1(xn, dxn+1) that depend on a control parameter un ∈ Un
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on some given control space Un, that is,

Mun,n+1(Xn, dxn+1) := Pun
(Xn+1 ∈ dxn+1 | Xn)

for some probability measure Pun that depends on the parameter un ∈ Un. We assume
that X0 is a random variable with a given distribution η0 on S0. In engineering sciences,
controlled Markov chains are also called Markov decision processes and the control space
un is known as the set of feasible or admissible actions or inputs. This model can be
extended to situations where the control spaces Un = Un(xn) depend on the given state of
the chain Xn = xn. Deterministic discrete time dynamical systems are particular examples
of controlled Markov chain models.

We illustrate these rather abstract models with the gambling model presented by Sheldon
M. Ross in [234]. Let εn be a sequence on independent Bernoulli {0, 1}-valued random
variables with success probability P(εn = 1) = 1−P(εn = 0) = pn representing the winning
probability at the n-th game. At every time (n+1) the gambler chooses to bet a proportion
un ∈ Un := [0, 1] of his cumulated earnings denoted by Xn. When εn+1 = 1, he gets back
αn+1 × (unXn) units; otherwise he loses his bet.

After the (n+ 1)-th bet, his fortune is given by the controlled Markov chain

Xn+1 = Xn + εn+1 αn+1 unXn − (1− εn+1) unXn = [(1− un) + (1 + αn+1) εn+1 un ] Xn

with some initial fortune X0 = x0. In this situation, the Markov transitions are given by

Mun,n+1(Xn, dx) = pn+1 δ(1+αn+1un)Xn
(dx) + (1− pn+1) δ(1−un)Xn

(dx).

Given the fortune Xn = xn, the n-th proportion un = vn(xn) ∈ [0, 1] of the bet by the
player may also depend on the given fortune xn.

A regular function
vn : xn ∈ Sn �→ vn(xn) ∈ Un

is called a control chart, a feedback control, or sometimes a Markov policy. We
let Vn be the set of control charts. For any k ≤ n we set Vk,n the set of feedback
controls v = (vl)k≤l≤n ∈

∏
k≤l≤n Vl. This abstract framework allows us to consider

historical Markov processes

Xn = (X ′
0, . . . , X

′
n) ∈ Sn = (S′

0 × . . .× S′
n) (29.3)

associated with a Markov chain X ′
n evolving in some state spaces S′

n. In this
situation, the feedback control vn(xn) may depend on the historical trajectory
xn = (x′

0, . . . , x
′
n).

The distribution of the trajectories of the Markov chain starting at X0 = x0

associated with a collection of controls v = (vk)0≤k≤n ∈ V0,n is defined by

Pv ((X1, . . . , Xn+1) ∈ d(x1, . . . , xn+1) | X0 = x0)

= Mv0(x0),1(x0, dx1)Mv1(x1),2(x1, dx2) . . .Mvn(xn),n+1(xn, dxn+1).
(29.4)

Sometimes we use the superscript
(
X

(v)
l

)
0≤l≤n

to emphasize that the controlled

Markov process is associated with some given v = (vl)0≤l<n ∈ V0,n−1.
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With a slight abuse of notation, for any feedback control vn ∈ Vn we also write
Mvn,n+1(xn, dxn+1) for the Markov transition Mvn(xn),n(xn, dxn+1). In this notation, using
(29.4) for any k < l ≤ (n+ 1) we have

Pv (Xl ∈ dxl | Xk = xk)

=
(
Mvk,k+1Mvk+1,k+2 . . .Mvl−1,l

)
(xk, dxl)

:=

∫

Sk+1×···×Sl−1

Mvk(xk),k+1(xk, dxk+1) . . .Mvl−1(xl−1),l(xl−1, dxl).

At any time k, given the value of the chain, say Xk = xk, the objective is to
maximize the average of some function fn(Xn) at a given time horizon, say n ≥ 1.
More formally, the objective is to maximize at every step k the value function

Vk(xk) := sup
v∈Vk,n−1

Ev(fn(Xn) | Xk = xk). (29.5)

Depending on the application domains, the function fn is also called the payoff (financial
mathematics), the reward (reinforcement learning and operations research), the perfor-
mance or the utility function (engineering sciences) or the gain criterion. The function
(−fn) can also be thought of as a cost or some type of energy consumption function.

The function Vk is also called the optimal or the expected (n − k) steps to go value or
the return function.

We use backward reasoning w.r.t. the time parameter k ≤ n:
At the terminal time k = n, we have the boundary condition Vn = fn. When k = (n−1)

we have

Vn−1(xn−1) = sup
v∈Vn−1

Ev(fn(Xn) | Xn−1 = xn−1)

= sup
v∈Vn−1

Mv,n(fn)(xn−1) = sup
u∈Un−1

Mu,n(fn)(xn−1).

In the last assertion, we implicitly assumed that supremums in the formulae are attained,
that is, there exists some optimal feedback control v�n−1 ∈ Vn−1, or equivalently some
optimal control value v�n−1(xn−1) = u�

n−1 ∈ Un−1 for every given state xn−1 ∈ Sn−1. In
this case,

Vn−1(xn−1) = Mv�
n−1,n

(fn)(xn−1) =

∫

Sn

Mv�
n−1(xn−1),n(xn−1, dxn) fn(xn). (29.6)

When k = (n− 2) we have

Vn−2(xn−2) = sup
v∈Vn−2,n−1

Ev(fn(Xn) | Xn−2 = xn−2)

= sup
u∈Un−2

sup
v∈Vn−1

Mu,n−1(Mv,n(fn))(xn−2).

It is important to observe that u ∈ Un−2 is a control parameter in the set Un−2, while
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v ∈ Vn−1 is a feedback control v : xn−1 ∈ Sn−1 �→ v(xn−1) ∈ Un−1. This yields the
formula

Mu,n−1(Mv,n(fn))(xn−2)

=

∫
Mu,n−1(xn−2, dxn−1) Mv(xn−1),n(xn−1, dxn) fn(xn).

If we choose the optimal feedback v = v�n−1 defined in (29.6) we have

supw∈Vn−1
Mu,n−1(Mw,n(fn))(xn−2)

≥ Mu,n−1(Mv�
n−1,n

(fn))(xn−2) = Mu,n−1(Vn−1)(xn−2). ⇐= (29.6)

In the reverse angle, we have

sup
w∈Vn−1

Mu,n−1(Mw,n(fn))(xn−2) ≤ Mu,n−1

(
sup

w∈Vn−1

Mw,n(fn)

)
(xn−2)

= Mu,n−1(Vn−1)(xn−2).

This implies that

Vn−2(xn−2) = sup
u∈Un−2

Mu,n−1(Vn−1)(xn−2) = sup
v∈Vn−2

Mv,n−1(Vn−1)(xn−2).

In the r.h.s. formula we implicitly assumed that supremum is attained, that is, there exists
some optimal feedback control v�n−2 ∈ Vn−2, or equivalently some optimal control value
v�n−2(xn−2) = u�

n−2 ∈ Un−1 for every given state xn−2 ∈ Sn−2.

Iterating this reasoning backward in time, we obtain the Bellman (optimality)
backward equation

Vl(xl) = sup
u∈Ul

Eu (Vl+1(Xl+1) | Xl = xl) = sup
u∈Ul

Mu,l+1 (Vl+1) (xl) (29.7)

with 0 ≤ l < n and the terminal (a.k.a. boundary) condition Vn = fn. In addition,
the optimal strategy in (29.5) is obtained by applying sequentially from time l = k
to the final time l = (n − 1) the optimal control charts xl �→ vl(xl) computed in
the one-step backward recursion (29.7).

Definition 29.3.1 We consider the collection of sub-martingales (Vk(v))0≤k≤n

w.r.t. to F (v)
k = σ

(
X

(v)
l , l ≤ k

)
indexed by v = (vl)0≤l<n ∈ V0,n−1 and defined

by
∀0 ≤ k ≤ n Vk(v) := Vk

(
X

(v)
k

)
. (29.8)

The sub-martingale property is a direct consequence of (29.7). We have

Evl

(
Vl+1(v) | F (ν)

l

)
= Evl

(
Vl+1(X

(v)
l+1) | X

(v)
l

)
≤ Vl

(
X

(v)
l

)
= Vl(v)

with the equality if and only if νl is the the optimal control chart xl �→ vl(xl) computed in
the one-step backward recursion (29.7).
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In other words we have the equivalent martingale optimality principle by which

Vk(v) is an F (v)
k −martingale ⇐⇒ v is an optimal control chart. (29.9)

The derivation of the Bellman equation presented above is intuitive and natural but
rather formal. A more rigorous mathematical formulation of abstract stochastic control
problems on measurable state and control spaces including the Bellman equation requires
a sophisticated measure-theoretic framework to ensure that the cost functions Vk and the
optimal control charts are appropriately measurable. In this book we implicitly assume that
the supremum in the Bellman equation (29.7) is achieved for any given state by some well
defined optimal feedback control.

In much the same way, taking the supremum inside an expectation over an uncountable
state space may require the use of outer expectations and probabilities. It is clearly not
within the scope of this book to enter into these technical considerations. For more details
on these intricate measure theoretic issues we refer the reader to the seminal book [21] by
D. P. Bertsekas and S. E. Shreve, the one by O. Hernandez-Lerma and J.B. Lasserre [179],
the more recent articles by N. El Karoui and X. Tan [119, 120], and the research monograph
by N. Touzi [252].

We return to the Ross gambling model discussed earlier in this chapter. We assume
that terminal returns are time homogeneous Vn(x) = fn(x) = f(x) := log x and for any
u ∈ Un = U = [0, 1] we have

Mu,n (Vn) (x) = Mu,n (f) (x)

= pn log ((1 + αnu)x) + (1− pn) log ((1− u)x) = f(x) + gn(u)

with
gn(u) = pn log (1 + αnu) + (1− pn) log (1− u).

Notice that

∂ugn(u) = pn
αn

1 + αnu
− 1− pn

1− u
=

(pn − u)α− (1− pn)

(1− u)(1 + αnu)
= 0

as soon as

pn αn(1− u) = (1− pn) (1 + αnu) ⇔ u = rn := pn − α−1
n (1− pn) (≤ 1).

We set qn = 1 − pn. Whenever αn ≤ qn/pn, the function u ∈ [0, 1] �→ gn(u) is decreasing
and its maximum on [0, 1] is attained when u = 0. Whenever αn > qn/pn, the function
u ∈ [0, 1] �→ gn(u) is increasing on [0, rn] and decreasing on [rn, 1]. In this situation, its
maximum on [0, 1] is attained when u = rn. This implies that

Vn−1(x) = sup
u∈[0,1]

Mu,n (f) (x) = f(x) + gn (u
�
n) with u�

n−1 = 1αn>qn/pn
rn.

Iterating this reasoning, we check that

∀0 ≤ k ≤ n Vk(x) = f(x) +
∑

k<l≤n

gl (u
�
l ) .
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29.3.2 Control dependent value functions

We extend the framework discussed in section 29.3.1 to control dependent value functions
of the form

Fn(X, v) :=
∑

0≤l<n

gl(Xl, vl(Xl)) + fn(Xn) (29.10)

for some functions gl on (Sl × Ul) and for any v = (vl)0≤l<n ∈ V0,n−1. We consider the
backward interpolation functions

∀0 ≤ k ≤ n ∀v ∈ Vk,n−1 Fk,n(X, v) :=
∑

k≤l<n

gl(Xl, vl(Xl)) + fn(Xn)

from F0,n(X, v) = Fn(X, v) to the terminal payoff Fn,n(X, v) = fn(Xn). Sometimes we
slightly abuse the notation and write Fk,n(X, v) instead of Fk,n(X, vk,n−1) for any v =
(vl)0≤l<n ∈ V0,n−1 and vk,n−1 = (vl)k≤l<n.

In this situation, at any time k, given the value of the chain, say Xk = xk, the
objective is to maximize at every step k the value function

Vk(xk) := sup
v∈Vk,n−1

Ev (Fk,n(X, v) | Xk = xk) . (29.11)

Arguing as in (29.7) we obtain the Bellman (optimality) backward equation

Vl(xl) = sup
u∈Ul

[gl(xl, u) + Eu(Vl+1(Xl+1) | Xl = xl)]

= sup
u∈Ul

[gl(xl, u) +Mu,l+1 (Vl+1) (xl)] (29.12)

with 0 ≤ l < n and the terminal (a.k.a. boundary) condition Vn = fn. In addition,
the optimal strategy in (29.5) is obtained by applying sequentially from time l = k
to the final time l = (n − 1) the optimal control charts xl �→ vl(xl) computed in
the one-step backward recursion (29.12) (see for instance exercise 471).

Proof :
We check this claim using a backward induction. For l = n we clearly have Vn = fn. For
l = (n− 1), we have

Vn−1(xn−1) := sup
v∈Vn−1

Eu(Fn−1,n(X, v) | Xn−1 = xn−1)

= sup
u∈Un−1

[gn−1(xn−1, u) + Eu(fn(Xn) | Xn−1 = xn−1)]

= sup
u∈Un−1

[gn−1(xn−1, u) +Mu,n(fn)(xn−1)] .

Here again we have implicitly assumed the existence of some optimal feedback control
v�n−1 ∈ Vn−1, or equivalently some optimal control value v�n−1(xn−1) = u�

n−1 ∈ Un−1 for
every given state xn−1 ∈ Sn−1. In this case, we have

Vn−1(xn−1) = gn−1(xn−1, v
�
n−1(xn−1)) +Mv�

n−1,n
(fn)(xn−1).
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When k = (n− 2) we have

Vn−2(xn−2) = sup
(u,v)∈Vn−2,n−1

[
gn−2(Xn−2, u) + E(u,v)(Fn−1,n(X, v) | Xn−2 = xn−2)

]

= sup
u∈Un−2

[
gn−2(Xn−2, u) + sup

v∈Vn−1

E(u,v)(Fn−1,n(X, v) | Xn−2 = xn−2)

]
.

This yields the formula

Vn−2(xn−2) = sup
u∈Un−2

[
gn−2(xn−2, u) + sup

v∈Vn−1

E(u,v)(Fn−1,n(X, v) | Xn−2 = xn−2)

]
.

Arguing as in section 29.3.1 we have

supv∈Vn−1
E(u,v)(Fn−1,n(X, v) | Xn−2 = xn−2)

= supv∈Vn−1
Eu( Ev [Fn−1,n(X, v) | Xn−1] | Xn−2 = xn−2)

≥ Eu

(
Ev�

n−1

[
Fn−1,n(X, v�n−1) | Xn−1

]
| Xn−2 = xn−2

)

= Eu ( Vn−1(Xn−1) | Xn−2 = xn−2) .

On the other hand, we have

Eu( Ev [Fn−1,n(X, v) | Xn−1] | Xn−2 = xn−2)

≤ Eu( supw∈Vn−1
Ew [Fn−1,n(X,w) | Xn−1] | Xn−2 = xn−2)

= Eu( Vn−1(Xn−1) | Xn−2 = xn−2).

We conclude that

sup
v∈Vn−1

Eu,v(Fn−1,n(X, v) | Xn−2 = xn−2) = Eu(Vn−1(Xn−1) | Xn−2 = xn−2).

This implies that

Vn−2(xn−2) = sup
u∈Un−2

[gn−2(xn−2, u) + Eu(Vn−1(Xn−1) | Xn−2 = xn−2)] .

Iterating this reasoning backward in time we readily check (29.12). This ends the proof of
(29.12).

Using the same arguments as in the proof of (29.9), we check that the collection
of processes (Vk(v))0≤k≤n indexed by ν ∈ V0,n−1 and defined by

∀0 ≤ k ≤ n Vk(v) =
∑

0≤l<k

gl(X
(v)
l , vl) + Vk

(
X

(v)
k

)
, (29.13)

forms a sub-martingale w.r.t. to F (v)
k = σ

(
X

(v)
l , l ≤ k

)
and satisfy the martingale

optimality principle stated in (29.9).
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29.3.3 Continuous time models

In continuous time, a controlled Markov process Xt on some state space S is defined in
terms of a collection of infinitesimal generators Lu,t indexed by a control parameter u ∈ U
on some given control space U . For instance, the collection of partial differential operators

Lu,t(ϕ)(x) = bt(x, u) ∂xϕ(x) +
1

2
σ2
t (x, u) ∂

2
xϕ(x) + λt(x, u)

∫
(ϕ(y)− ϕ(x)) Ku,t(x, dy)

(29.14)
indexed by u ∈ U = R is associated to the infinitesimal generators Lt,ut

of a one-dimensional
jump diffusion Xt, for some control function ut.

At rate λt(Xt, ut) the process jumps from Xt− to Xt randomly chosen with some given
probability Kut,t(Xt−, dy). Between the jumps, Xt evolves according to the stochastic
differential equation

dXt = bt(Xt, ut) dt+ σt(Xt, ut) dWt

where Wt stands for a Brownian motion and bt and σt stand for some regular drift and
diffusion functions. We assume that X0 is a random variable with a given distribution η0
on S.

We let Vs,t be the set of feedback controls v : (r, x) ∈ ([s, t]× S) �→ vr(x) ∈ U ,
with s ≤ r ≤ t. Sometimes we slightly abuse the notation and write Lv,r(ϕ)(x)

instead of Lv(x),r(ϕ)(x). We also use the superscript X
(v)
s to emphasize that the

controlled Markov process is associated with some given v ∈ V0,t.

We consider control dependent value functions of the form

Fs,t(X,u) :=

∫ t

s

gr(Xr, ur) dr + ft(Xt) (29.15)

for any control mapping u = (ur)r∈[s,t] from [s, t] into U . For s = 0 we set F0,t(X,u) =
Ft(X,u).

We assume the existence of a discrete time approximation Xh
tn of the process Xt on

some time mesh 0 ≤ tn ≤ tn+1 with time step (tn+1 − tn) = h, and we let

Ph
u,tn

(
Xh

tn , dx
)
:= Pu

(
Xh

tn+1
∈ dx | Xh

tn

)
(29.16)

be the one-step probability transitions of the processXh
tn indexed by some control parameter

u ∈ U . Also assume that

h−1
[
Ph
u,tn − Id

]
= Lu,tn +O (h)

or equivalently
Ph
u,tn(ϕ) = ϕ+ Lu,tn(ϕ) h +O

(
h2

)
(29.17)

for some sufficiently regular functions ϕ. The discrete time approximations of the value
functions (29.15) are given by

Fh
tn(X

h, u) :=
∑

0≤k<n

gtk(X
h
tk
, utk) h+ ftn(X

h
tn). (29.18)

By (29.12) the Bellman equation associated with the discrete time model is given by

V h
tl
(x) = sup

u∈U

[
gtl(x, u) h+ Ph

u,tl+1

(
V h
tl+1

)
(x)

]
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with the terminal condition V h
tn = ftn . By (29.17) we have

−h−1
[
V h
tl+1

(x)− V h
tl
(x)

]
= sup

u∈U

[
gtl(x, u) + Ltl+1,u

(
V h
tl+1

)
(x) +O (h)

]
.

Taking formally the limit as h ↓ 0 with tl ↓ s we find that the value function

lim
h↓0

V h
tl
(x) = Vs(x) = sup

v∈Vs,t

Ev (Fs,t(X, v) | Xs = x)

satisfies the equation

− ∂sVs(x) = sup
u∈U

[gs(x, u) + Lu,s (Vs) (x)] (29.19)

with terminal condition Vt = ft. As in the discrete time case, the optimal strategy
is obtained by applying the optimal control charts x �→ vs(x) computed in the one-
step backward recursion (29.19) (see for instance exercise 473 and exercise 476).

We also readily check the optimality principle:

Vs1(x) = sup
v=(v1,v2)∈Vs1,s2×Vs2,t

Ev1

(∫ s2

s1

gs(Xs, v1,s(Xs)) ds

+ Ev2 (Fs2,t(X, v2) | Xs2) | Xs1 = x)

= sup
v∈Vs1,s2

Ev

(∫ s2

s1

gs(Xs, vs(Xs)) ds+ Vs2 (Xs2) | Xs1 = x

)
. (29.20)

Using the same arguments as in the proof of (29.9) and (29.13), we check that the
collection of processes (Vs(v))0≤s≤t defined by

Vs(v) =

∫ s

0

gr(X
(v)
r , vr(X

(v)
r )) dr + Vs(X

(v)
s ) (29.21)

is a sub-martingale w.r.t. to F (v)
s = σ

(
X

(v)
r , r ≤ s

)
and satisfies the martingale

optimality principle

Vs(v) is an F (v)
s −martingale ⇐⇒ v is an optimal control chart. (29.22)
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For the jump diffusion model (29.14), the Bellman equation (29.19) takes the form
of a Hamilton-Jacobi-Bellman equation

∂sVs(x) +Hs

(
x, Vs, ∂xVs, ∂

2
xVs

)
= 0 (29.23)

(abbreviated HJB equation) with the terminal condition Vt = ft and the Hamil-
tonian functional

Hs (x, h0, h1, h2)

= sup
u∈U

{
gs(x, u) + bs(x, u) h1(x) +

1

2
σ2
s(x, u) h2(x)

+λs(x, u) [Ku,s(h0)(x)− h0(x)] } .

As in the discrete time case, it is clearly beyond the scope of this section to provide a
detailed discussion on the fully rigorous mathematical derivation of these limiting operations
but ample discussions can be found in the stochastic control theory textbooks, for instance,
the research monograph by N. Touzi [252]. The existence and the analysis of the solutions of
Hamilton-Jacobi-Bellman equations requires study of the highly technical theory of viscosity
solutions.

Despite its mathematical elegance and its usefulness in analyzing the Hamilton-Jacobi-
Bellman equations, this theory is not really used to solve concrete optimization problems.
In practice, when possible, we solve or approximate the solution of the Hamilton-Jacobi-
Bellman equation and check that the resulting feedback controls are optimal. This technique
is sometimes called the verification argument.

We also mention that deterministic and continuous time dynamical systems are partic-
ular examples of continuous time stochastic control problems.

We illustrate these rather abstract models using a pure diffusion control process with a
generator

Lu,s(f)(x) = (bs(x) + u) ∂xf(x) +
1

2
σ2 ∂2

xf(x).

We consider the value function (29.15) with gs(x, u) = hs(x) − u2/2, with u ∈ U := R,
and some regular negative functions hs and ft(x). In this situation, the Hamilton-Jacobi-
Bellman equation (29.23) takes the form

∂sVs(x) + sup
u∈R

(
hs(x)−

u2

2
+ (bs(x) + u) ∂xVs(x) +

1

2
σ2 ∂2

xVs(x)

)
= 0.

The optimal feedback control is clearly given by

u = vs(x) := ∂xVs(x).

It remains to solve the Hamilton-Jacobi-Bellman equation. To this end, we observe that

∂sVs + hs + bs ∂xVs +
1

2

[
σ2 ∂2

xVs + (∂xVs)
2
]
= 0.

We use the Cole-Hopf transformation

qs := exp
(
Vs/σ

2
)

⇐⇒ Vs = σ2 log qs

=⇒ ∂sVs = σ2q−1
s ∂sqs and ∂xVx = σ2q−1

s ∂xqx
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as well as
σ2∂2

xVs = σ4q−1
s ∂2

xqs − σ4q−2
s (∂xqx)

2 = σ4q−1
s ∂2

xqs − (∂xVx)
2.

This implies that

−σ2q−1
s ∂sqs = −∂sVs = hs + bs ∂xVs +

1

2

[
σ2 ∂2

xVs − (∂xVs)
2
]

= hs + bs σ2 q−1
s ∂xqx +

1

2
σ4 q−1

s ∂2
xqs.

We conclude that
−∂sqs = bs ∂xqx +

1

2
σ2 ∂2

xqs + σ−2hs qs

for any 0 ≤ s ≤ t, with the terminal condition qt := exp
(
Vt/σ

2
)
= exp

(
ft/σ

2
)
. This

equation can be rewritten as
−∂sqs = L(qs) + hs qs

with the potential function hs = σ−2hs and the infinitesimal generator L of the diffusion
process

dYs = bs(Ys) ds+ σ dWs.

The solution of this equation is given by the Feynman-Kac formula

qs(y) = Qs,t

[
eft

]
(y) := E

[
exp

(
f t(Yt)

)
exp

(∫ t

s

hr(Yr)dr

)
| Ys = y

]

with f t = σ−2ft. We refer the reader to section 15.6.1, section 9.6 and section 16.1.3 for
more thorough discussions on these Feynman-Kac semigroups, including their discrete time
and particle interpretations. When hs(x) = 0, the solution of the Hamilton-Jacobi-Bellman
equation (29.23) reduces to the conditional expectation

qs(y) = Ps,t

[
exp

(
f t

)]
(y) := E

[
exp

(
f t(Yt)

)
| Ys = y

]

with the Markov semigroup Ps,t of Ys. For linear diffusion processes and quadratic functions
ft and hs, the Feynman-Kac integration formulae can be solved explicitly. See exercises 473
through 476 For more general models we often need to resort to some additional approxima-
tion schemes. Further details on these Feynman-Kac values functions in multidimensional
settings can be found in exercise 480.

29.4 Optimal stopping

29.4.1 Games with fixed terminal condition

We consider a real valued martingale Yn equipped with a σ-field Fn := σ (Y0, . . . , Yn). We
assume that Yn can take only two possibly random values an and bn given Fn−1, that is,

P(Yn = an | Fn−1) = 1− P(Yn = bn | Fn−1).

We illustrate this model with two examples. The first is

Yn = ε0 + . . .+ εn = Yn−1 + εn
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where εn denotes a sequence of centered independent random variables taking two possible
values un and vn. We readily check that

σ (Y0, . . . , Yn) = σ (ε0, . . . , εn) and (an, bn) = (Yn−1 + un, Yn−1 + vn).

The second example is given by the random product model

Yn = (1 + ε0)× . . .× (1 + εn) = Yn−1 × (1 + εn)

with 1 + un ≤ 1 + vn. In this situation, (an, bn) = (Yn−1(1 + un), Yn−1(1 + vn)).

As in (29.1), we consider the Fk-martingale

∀0 ≤ k ≤ n Mk := M0 +
∑

1≤l≤k

Hl−1 Xl with Xl = ∆Yl = Yl − Yl−1.

Our next objective is to find a player betting strategy Hk that ends at a fixed
terminal condition

Mn = fn(Y0, . . . , Yn)

with some given function fn on Rn+1.

One natural way to solve this martingale control problem is to consider the sequence of
functions Vk on Rk+1 defined by the backward induction

∀0 ≤ k < n Vk(y0, . . . , yk) = E (Vk+1(y0, . . . , yk, Yk+1) | (Y0, . . . , Yk) = (y0, . . . , yk))

with the terminal condition Vn(y0, . . . , yn) = fn(y0, . . . , yn). It is seen immediately that

Vk(Y0, . . . , Yk) = E (Vk+1(Y0, . . . , Yk+1) | (Y0, . . . , Yk))

is a martingale. Therefore, if we can find a a betting strategy Hk such that

Vk(Y0, . . . , Yk) = Mk ⇔ Vk(Y0, . . . , Yk)−Vk−1(Y0, . . . , Yk−1) = Mk−Mk−1 = Hk−1 (Yk−Yk−1)

with the initial condition V0(Y0) = M0, the problem will be solved. Notice that the r.h.s.
in the above formula is satisfied as soon as

{
Hk−1 (ak − Yk−1) = Vk(Y0, . . . , Yk−1, ak)− Vk−1(Y0, . . . , Yk−1)
Hk−1 (bk − Yk−1) = Vk(Y0, . . . , Yk−1, bk)− Vk−1(Y0, . . . , Yk−1).

Subtracting the two equations, we find

Hk−1 =
Vk(Y0, . . . , Yk−1, bk)− Vk(Y0, . . . , Yk−1, ak)

bk − ak
.
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29.4.2 Snell envelope

We let Zk be the successive gains of the player in a game equipped with a filtration Fk

on some fixed horizon k ≤ n. For instance, we can choose fk to be a collection of non-
negative functions on a given space S, and a Markov chain Xk on the state space S with
Fk = σ(X0, . . . , Xn). Then we define

Zk = fk(Xk). (29.24)

We can extend these models to Markov chains Xk evolving in some state spaces Sk that
may depend on the time parameter. In this situation, the payoff functions fk are defined
on the state spaces Sk. This general framework allows us to consider without further work
the historical processes Xn = (X ′

0, . . . , X
′
n) ∈ Sn = (S′)n+1 and payoff functions fn(Xn) =

fn (X
′
0, . . . , X

′
n) that depend on the random trajectories of a given controlled Markov chain

X ′
k evolving in some state spaces S′. The optimal stopping problems associated with the

history-dependent payoff functions

fn (Xn) :=
∑

0≤l<n

g′l(X
′
l) + f ′

n(X
′
n) (29.25)

and

fn (Xn) :=


 ∏
0≤l<n

g′l(X
′
l)


× f ′

n(X
′
n) (29.26)

for some non-negative functions f ′
l , g

′
l on S′ are discussed in exercises 488 and 489.

At any time k ∈ {0, . . . , n} the player tries to stop the game at some Tk ≥ k using the
information Fk he has at that time with the goal to maximize the expected gain given by
the Snell envelope

Uk := sup
T∈Tk

E (ZT | Fk) . (29.27)

In the above display, Tk stands for the set of stopping times (n ≥)T ≥ k adapted to the
filtration Fk.

One way to solve this problem is to consider the sequence of stopping times defined
using the backward induction

Tk = k 1Zk≥E(ZTk+1
| Fk) + Tk+1 1Zk<E(ZTk+1

| Fk)

with the terminal condition Tn = n.

We use backward induction to check that these stopping times satisfy the optimal stop-
ping problem. Since Tn is reduced to T = n, we clearly have at the final horizon n :

ZTn
= Zn = E(ZTn

| Fn) = sup
T∈Tn

E (ZT | Fn) .

Suppose that
E
(
ZTk+1

| Fk+1

)
= sup

T∈Tk+1

E (ZT | Fk+1)

at some k < n. By definition of Tk we have

ZTk
= Zk 1Zk≥E(ZTk+1

| Fk) + ZTk+1
1Zk≤E(ZTk+1

| Fk).
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Taking the conditional expectation w.r.t. Fk, this implies that

E(ZTk
| Fk) = Zk 1Zk≥E(ZTk+1

| Fk) + E(ZTk+1
| Fk) 1Zk≤E(ZTk+1

| Fk).

Hence we get
Zk ∨ E(ZTk+1

| Fk) = E(ZTk
| Fk) ≤ sup

T∈Tk

E (ZT | Fk) . (29.28)

Finally, for any T ∈ Tk we observe that

T = k 1T=k + (T ∨ (k + 1)) 1T≥(k+1)

with
{T = k} , {T ≥ (k + 1)} ∈ Fk and (T ∨ (k + 1)) ∈ Tk+1 ⊂ Tk.

Thus, taking the expectation w.r.t. Fk we have

E(ZT | Fk) = Zk 1T=k + E
(
ZT∨(k+1) | Fk

)
1T≥(k+1)

= Zk 1T=k + E
(
E
[
ZT∨(k+1) | Fk+1

]
| Fk

)
1T≥(k+1)

≤ Zk 1T=k + E

(
sup

S∈Tk+1

E [ZS | Fk+1] | Fk

)
1T≥(k+1)

= Zk 1T=k + E
(
E(ZTk+1

| Fk+1) | Fk

)
1T≥(k+1).

This yields the upper bound

E(ZT | Fk) ≤ Zk ∨ E
(
ZTk+1

| Fk

)
⇒ sup

T∈Tk

E(ZT | Fk) ≤ Zk ∨ E
(
ZTk+1

| Fk

)
. (29.29)

Combining (29.28) and (29.29) we conclude that

Uk := sup
T∈Tk

E(ZT | Fk) = E (ZTk
| Fk)

= Zk ∨ E
(
ZTk+1

| Fk

)
= Zk ∨ E

(
E(ZTk+1

| Fk+1) | Fk

)

= Zk ∨ E (Uk+1 | Fk) ≥ Zk.

In summary, the Snell envelope Uk is defined by the backward induction

Uk = Zk ∨ E (Uk+1 | Fk) (29.30)

starting at Un = Zn.

The optimal stopping time strategy is now given by

Tk := inf {l ∈ {k, k + 1, . . . , n} : Ul = Zl}. (29.31)

We check this claim using

Tk = k 1Zk ≥ E(Uk+1 | Fk)︸ ︷︷ ︸
Uk=Zk

+ Tk+1 1Zk < E(Uk+1 | Fk)︸ ︷︷ ︸
Uk > Zk︸ ︷︷ ︸

Uk=E(Uk+1|Fk)

.
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Applying (29.30) to the stochastic model (29.24), the Snell envelope Uk = Vk(Xk)
is solved using the functions Vk defined by the backward induction

Vk(xk) = fk(xk) ∨ E(Vk+1(Xk+1) | Xk = xk) (29.32)

with the terminal condition Vn = fn.

29.4.3 Continuous time models

We consider a Markov process Xt on some state space S associated with some infinitesimal
generators Lt. As in (29.33), the goal is to maximize the expected gain given by the Snell
envelope

Vs(x) := sup
T∈Ts

E (fT (XT ) | Xs = x) . (29.33)

In the above display, Tt stands for the set of admissible stopping times (t ≥)T ≥ s, and ft
stands for some payoff function. As in section 29.3.3, we further assume the existence of a
discrete time approximation Xh

tn of the process Xt on some time mesh 0 ≤ tn ≤ tn+1 with
time step (tn+1 − tn) = h, and we let Ph

tn be the discrete time semigroup (29.16)

Ph
tn

(
Xh

tn , dx
)
:= P

(
Xh

tn+1
∈ dx | Xh

tn

)
.

We assume that
Ph
tn(ϕ) = ϕ+ Ltn(ϕ) h +O

(
h2

)
.

By (29.32) the Snell envelope Vs is solved by the backward induction

Vtk(x) = ftk(x) ∨ Ph
tk+1

(
Vtk+1

)
(x)

= ftk(x) ∨
[
Vtk+1

(x) + Ltk+1

(
Vtk+1

)
(x) h +O

(
h2

)]
.

This implies that

0 = (Vtk − ftk) ∧
{[
h−1 (Vtk − Vtk+h)− Ltk+1

(
Vtk+1

)
+O (h)

]
h
}

� (Vs − fs)︸ ︷︷ ︸
≥0

∧{− [∂s + Ls] (Vs) h }

as soon as tk → s as h ↓ 0. Since Vs ≥ fs we have

Vs > fs ⇒ − [∂s + Ls] (Vs) = 0 < (Vs − fs)

as well as
Vs = fs ⇒ − [∂s + Ls] (Vs) ≥ 0 = (Vs − fs)

(otherwise we arrive at the contradiction

0 = 0 ∧ {− [∂s + Ls] (Vs) h } < − [∂s + Ls] (Vs) h < 0).

This yields the backward dynamic programming equation

(Vs − fs) ∧ {− [∂s + Ls] (Vs)} = 0

with the terminal condition Vt = ft.
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29.5 Exercises
Exercise 470 (Optimal allocation portfolio) Self financing portfolios can be described
by a one-dimensional stochastic differential equation of the form

dXt = (Xt − ut) at dt + ut [bt dt+ σt dWt]

for some regular non-negative functions t �→ (at, bt, σt). The functions at and bt represent
the return rates of the non-risky asset and of the risky one. The function σt stands for
the volatility of the market. The control ut represents the amount of risky asset invested at
any time t. The objective is to maximize at every time s ∈ [0, t] the expected power utility
function

Vs(x) := sup
v∈Vs,t

E (Xα
t 1Xt≥0 | Xs = x)

for some given final time horizon t, some given relative risk aversion coefficient α ∈]0, 1[,
and the set Vs,t of feedback controls v : (r, x) ∈ ([s, t]× [0,∞[) �→ vr(x) ∈ [0,∞[, with
s ≤ r ≤ t. Describe the HJB equation (29.19) associated with this stochastic control problem.
Check that Vs(x) = βs xα 1x≥0 for some functions s ∈ [0, t] �→ βs and find the optimal
feedback control.

Exercise 471 (Linear quadratic control - Discrete time) Check the square comple-
tion formula

u′Ru+ 2 u′Sx =
[
u+R−1Sx

]′
R
[
u+R−1Sx

]
− x′S′R−1Sx

which is valid for any column vectors u ∈ Rr, x ∈ Rq, any symmetric and invertible (r× r)-
matrix R, and any (r × q)-matrix S. In addition, when R is negative definite, deduce that

sup
u∈U

[u′Ru+ 2 u′Sx] = −x′S′R−1Sx

and the supremum is attained for u = v(x) = −R−1Sx. Let Wn = (W i
n)1≤i≤p be a sequence

of independent Rp-valued random variables with E(W i
n) = 0 and E(W i

nW
j
n) = 1i=j, for any

1 ≤ i, j ≤ p. Consider the linear controlled Rq-valued Markov chain

Xn = AnXn−1 +Bnun−1 + CnWn

with un ∈ Un = U := Rr, and matrices (An, Bn, Cn) with appropriate dimensions. Consider
the stochastic control problem (29.10) with

fn(x) = x′Pnx and gl(x, u) = x′Qlx+ u′Rlu

for some definite negative and symmetric square matrices (Pn, Ql, Rl) with appropriate di-
mensions. Check that

∀0 ≤ k ≤ n Vk(x) := x′Pkx+ αk

for some symmetric and negative definite (q×q)-matrices Pk, and a sequence of parameters
αk with null terminal condition αn = 0 (so that Vn = fn) satisfying the backward equations

Pk = Qk +A′
k+1Pk+1

[
Id−Bk+1

[
Rk +B′

k+1Pk+1Bk+1

]−1
B′

k+1Pk+1

]
Ak+1

αk = αk+1 + tr
(
C ′

k+1Pk+1Ck+1

)
.
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In the above display, Id is a (q × q)-identity matrix and tr(A) stands for the trace of a
matrix A (we also recall that tr(AB) = tr(BA)). Prove that the optimal policy is given by
the feedback control

vk (x) := −
[
Rk +

(
B′

k+1Pk+1Bk+1

)]−1 (
B′

k+1Pk+1Ak+1

)
x.

Exercise 472 (Martingale optimality principle - Discrete time) Consider the stochas-
tic control problem discussed in exercise 471. Check that the stochastic process

∀0 ≤ k ≤ n Vk(v) := αk +X ′
kPkXk +

∑
0≤l<k

[
X ′

lQlXl + vl (Xl)
′
Rlvl (Xl)

]

defined in terms of the chain

Xl+1 = Al+1Xl +Bl+1vl (Xl) + Cl+1Wl+1

is a martingale w.r.t. to Fk = σ (Xl, l ≤ k) ending at Vn(v) = X ′
nPnXn, as soon as vl is

the optimal control feedback computed in exercise 471.

Exercise 473 (Linear quadratic control - Continuous time) Let Wt = (W i
t )1≤i≤p

be a p-dimensional Brownian motion. Consider the linear controlled Rq-valued diffusion

dXt = (AtXt +Btut) dt+ CtdWt

with ut ∈ U := Rr, and matrices (At, Bt, Ct) with appropriate dimensions. Consider the
stochastic control problem (29.15) with

ft(x) = x′Ptx and gs(x, u) = x′Qsx+ u′Rsu

for some negative definite and symmetric square matrices (Pt, Qs, Rs) with appropriate di-
mensions and with an invertible matrix Rs. Prove that the solution of the Bellman equation
(29.19) has the form

∀0 ≤ s ≤ t Vs(x) := x′Psx+ αs

for some symmetric and negative definite (q × q)-matrices Ps and some parameters αs

satisfying the backward equations

−∂sPs = Qs +A′
sPs + PsAs − PsBsR

−1
s B′

sPs

−∂sαs = tr (C ′
sPsCs)

with the boundary terminal condition αt = 0. Prove that the optimal policy is given by the
feedback control

vs(x) = −R−1
s (B′

sPs)x.

Exercise 474 (Linear quadratic control - Examples) We consider the linear quadratic
control problem discussed in exercise 473. Examine the one-dimensional case

1. As = Bs = Cs = Qs = Rs = 1 and a null terminal condition Pt = 0.

2. As = Qs = 0, Bs = Cs = 1, Pt = P (< 0), Rs = R(< 0). Check that

Vs(v) = −R log

(
R

R+ P (t− s)

)
+

RP X2
s

R+ P (t− s)
+R

∫ s

0

[
PXr

R+ P (t− r)

]2
dr

is a martingale w.r.t. to Fk = σ (Xl, l ≤ k) ending at Vt(v) = PtX
2
t .
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Exercise 475 (Martingale optimality principle - Continuous time) Consider the stochas-
tic control problem discussed in exercise 473. Check that the stochastic process

∀0 ≤ k ≤ n Vs(v) := αs +X ′
sPsXs +

∫ s

0

[
X ′

rQrXr + vr (Xr)
′
Rrvr (Xr)

]
dr

defined in terms of the chain

dXs = (AsXs +Bsvs(Xs)) dt+ CsdWs

is a martingale w.r.t. to Fs = σ (Xr, r ≤ s) ending at Vt(v) = X ′
tPtXt as soon as vs is the

optimal control feedback computed in exercise 473.

Exercise 476 (Bilinear quadratic control) Let Wt be a one-dimensional Brownian mo-
tion. Consider the linear controlled one-dimensional diffusion

dXt = (AtXt +Btut + Ct) dt+ (atXt + btut + ct) dWt

with ut ∈ U := R, and some parameters (At, Bt, Ct) and (at, bt, ct). We consider the
stochastic control problem (29.15) with

ft(x) = Ptx
2 and gs(x, u) = Qsx

2 +Rsu
2 + Ss x u

for some negative parameters (Pt, Qs, Rs) with Rs < 0 and some Ss ∈ R. Prove that the
solution of the Bellman equation (29.19) has the form

∀0 ≤ s ≤ t Vs(x) := Psx
2 + βsx+ αs

for parameters (Ps, βs, αs) satisfying some backward equation. Check that the optimal policy
is given by the feedback control

vs(x) = −x
(asbs +Bs)Ps + Ss/2

Rs + b2sPs
− bscsPs +Bsβs/2

Rs + b2sPs
.

Exercise 477 (Path integral optimization - Discrete time) We extend the framework
discussed in section 29.3.2 to value functions of the form

Fn(X, v) :=
∑

0≤l<n

Zl(X, ν) gl(Xl, vl)+Zn(X, ν) fn(Xn) with Zl(X, ν) :=
∏

0≤k<l

zk(vk, Xk)

for some non-negative functions zk on (Uk×Sk). Check that Fn = F0,n with the interpolating
functions

Fk,n(X, v) :=
∑

k≤l<n

Zk,l(X, ν) gl(Xl, vl) + Zk,n(X, ν) fn(Xn)

and the Radon-Nikodym derivatives Zk,n(X, ν) := Zn(X, ν)/Zk(X, ν). Prove that these
interpolating functions satisfy the backward equation

Fk,n(X, v) = gk(Xk, vk) + zk(vk, Xk) Fk+1,n(X, v)

with the terminal condition Fn,n = fn. Prove that

Vk(x) := sup
v∈Vk,n−1

Ev (Fk,n(X, v) | Xk = x)

= sup
u∈Uk

[gk(x, u) + zk(u, x) Mu,k+1 (Vk+1) (x)].



Gambling, ranking and control 815

Exercise 478 (Path integral optimization - Continuous time) We extend the frame-
work discussed in section 29.3.3 to value functions of the form

Ft(X,u) :=

∫ t

0

Zs(X,u) gs(Xs, us) ds+Zt(X,u) ft(Xt) with Zs(X,u) := e
∫ s
0
Hr(ur,Xr)dr

for some functions Hs on (U × S) and for any control mapping u = (us)s∈[0,t] from [0, t]
into U . We fix a time horizon t and consider the value functions

Vs(x) := sup
v∈Vs,t

Ev

(∫ t

s

Zs,r(X,u) gr(Xr, vr(Xr)) dr + Zs,t(X,u) ft(Xt) | Xs = x

)

with Zs,t(X,u) = Zt(X,u)/Zs(X,u), and any s ≤ t. Following the derivation of the Bellman
equation (29.19) presented in section 29.3.3 and exercise 477, check that Vs satisfies the
backward equation

−∂sVs(x) = sup
u∈U

[
gs(x, u) + LH

s,u (Vs) (x)
]

with terminal condition Vt = ft and the Schrödinger operator

LH
s,u(ϕ)(x) = Ls,u(ϕ)(x) +Hs(u, x) ϕ(x).

Exercise 479 (Optimality Bellman equation) We let Vs be some smooth function sat-
isfying the optimality principle (29.20). Using the Doeblin-Itō formula check that

Ev

(∫ s2

s1

[∂sVs(Xs) + gs(Xs, vs(Xs)) + Lvs,s(Vs)(Xs)] ds | Xs1 = x

)
≤ 0

for any 0 ≤ s1 ≤ s2 ≤ t and any control v ∈ Vs1,s2 , with the equality on optimal control
policies. Deduce the Bellman equation (29.19).

Exercise 480 (Feynman-Kac value functions) Let Wt = (W i
t )1≤i≤r be an r-dimensional

Brownian motion. Consider the r-dimensional diffusion

dXt = bt(Xt) dt+ σt(Xt) (ut dt+ dWt)

for some regular drift and diffusion functionals bt and σt with appropriate dimensions,
and a control function ut ∈ Rr. We consider the value function (29.15) with gs(x, u) =
hs(x) +

1
2 u′Rsu, for some invertible and negative definite matrix Rs and some regular

negative functions hs and ft(x). Check that the value function Vs satisfies the Hamilton-
Jacobi-Bellman equation

−∂sVs = hs + (∂Vs)
′ bs −

1

2
(∂Vs)

′σsR
−1
s σ′

s(∂Vs) +
1

2
tr
(
σ′
s∂

2Vsσs

)

for any s ≤ t (with the terminal condition Vt = ft), and the optimal feedback control is
given by

vs(x) = −R−1
s σs(x)

′(∂Vs)(x).

Assume that Rs = λ Id, for some λ < 0, where Id stands for the (r × r)-identity matrix.
Following the argments given at the end of section 29.3.3, check that

Vs = −λ log qs

with qs defined by the Feynman-Kac formula

qs(y) = E
[
exp

(
f t(Yt)

)
exp

(∫ t

s

hr(Yr)dr

)
| Ys = y

]
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with the functions f t = −λ−1ft and hs = −λ−1hs, and the r-dimensional diffusion process

dYs = bs(Ys) ds+ σs(Ys) dWs.

Exercise 481 (Optimal stopping - Minimization problems) Consider the optimal stop-
ping problem defined in section 29.4.2 by replacing the maximization problem (29.33) by
minimization problems

Uk := inf
T∈Tk

E (fT (XT ) | Fk)

for some given cost functions fk(Xk). Describe the Snell envelope and the optimal stopping
rules associated with this problem.

Exercise 482 (Cayley-Moser optimal stopping problem [204]) We consider the
optimal stopping problem discussed in section 29.4.2. We assume that (Xk)0≤k≤n is a
sequence of independent and identically distributed real valued random variables with some
distribution µ and the payoff or reward functions are given by fk(x) = x, with 0 ≤ k ≤ n.
Check that the Snell envelope (29.32) is given by Vn−k(x) = x ∨ mk, for any 0 ≤ k ≤ n,
with the sequence of numbers m = (mk)0≤k≤n given by

mk+1 = E (X ∨mk)

with the initial condition m0 = −∞ (so that m1 = E(X)). Describe the optimal stopping
strategy. Examine the situations where µ is the uniform distribution on [0, 1] and where
(Xk)0≤k≤n have exponential distribution with some parameter λ > 0.

Exercise 483 (Parking problem [193]) We drive in a street where parking places
are indexed by the integer lattice N. We let (Xk)k≥0 be a sequence of independent copies of
a Bernoulli random variable X defined by

P(X = 1) = 1− P(X = 0) = p

for some p ∈ [0, 1[. The events {Xk = 0}, respectively {Xk = 1}, mean that the k-th
parking place is available, respectively occupied by some car. We fix a given time horizon n
representing a given target destination, say a pub. If we arrive to n-th parking place and it is
filled, we choose the next first available place. Parking at the k-th place (if available) requires
us to walk (n−k)-units to the pub. We cannot park if the place is filled; in this situation the
cost is (+∞) as the car will be towed away. Consider the cost functions (fk)0≤k≤n defined
by

∀0 ≤ k < n fk(Xk) = (n− k) 1Xk=0 +∞ 1Xk=1

and the terminal average cost

fn(Xn) = 0 1Xn=0 +


∑
k≥1

k P [∩1≤l<k(Xn+l = 1) ∩ (Xn+k = 0)]


 1Xn=1.

Describe the optimal stopping rules at any rank 0 ≤ k ≤ n.

Exercise 484 (Myopic stopping rules - Monotone problems) We consider the
optimal stopping problem defined in section 29.4.2. The one-stage look-ahead stopping rule
(a.k.a. myopic rule) is defined by the non-optimal stopping time S given by

S = inf {n ≥ 0 : fn(Xn) ≥ E (fn+1(Xn+1) | Xn)}.
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We further assume that the optimal stopping problem is monotone in the sense that

fn−1(Xn−1) ≥ E (fn(Xn) | Xn−1) ⇒ fn(Xn) ≥ E (fn+1(Xn+1) | Xn)

for any time n ≥ 1. Several examples of monotone optimal stopping problems are discussed
in exercise 485, exercise 486, and exercise 487. We fix a given time horizon, say n ≥ 0.
Check that S = T0, with the optimal stopping time T0 defined in (29.31). In other words,
check that the myopic rule is an optimal stopping time.

Exercise 485 (Burglar problem) At each of its attempts, a burglar has a probability
p ∈ [0, 1] to be caught by police and lose his accumulated earnings; otherwise he enters a
house and brings back an amount of money represented by a non-negative random variable
W with a finite expectation E(W ) = w. Let ε be a {0, 1}-valued Bernoulli random variable
with success probability P(ε = 1) = p ∈ [0, 1[ (the event {ε = 1} represents a successful
burglary). We assume that ε is independent of X. We consider the Markov chain

Xn =
(
X1

n, X
2
n

)
,

starting at X0 = (1, 0) and defined by

X1
n := εn X1

n−1 and X2
n := X2

n−1 +Wn

where (εn,Wn) represent independent copies of (ε,W ). We let Fn = σ(Xk, k ≤ n). The
payoff function is defined by

fn(Xn) = X1
nX

2
n.

Check that fn(Xn) ≥ εn fn−1(Xn−1) and

fn(Xn)− E (fn+1(Xn+1) | Fn) = (1− p) fn(Xn)− p w X1
n.

Deduce that the optimal stopping problem is monotone and check that the best strategy for
the burglar is to stop as soon as the accumulated earnings are at least pw/(1− p).

Exercise 486 (Asset-selling problem) The offers to buy a given asset are repre-
sented by a sequence of independent copies Wn of a non-negative random variable W with
some given distribution µ on R+. We let Fn = σ(Wk, k ≤ n). The trader is allowed to
recall at any time n past offers, and pays amount of a units at each time a new offer is
made before he decides to stop and sell the asset. The maximum of all offers at each time
n and the payoff functions are given by

Xn = Xn−1 ∨Wn and fn(Xn) = Xn − na

with the initial condition X0 = −∞(= f0(X0)). Check that the optimal stopping problem is
monotone and find the best stopping strategy. Examine the situations where W is an expo-
nential random variable with parameter λ > 0, or a uniform random variable on [w1, w2],
for some w1 ≤ w2.

Exercise 487 (Proofreading problem) The number of misprints in a given book follows
a Poisson random variable N with a parameter λ > 0. The number of detected misprints
at the (n + 1)-th proofreading is a binomial random variable Wn+1 with sample size Nn =(
N −

∑
1≤k≤n Wk

)
and a given detection probability p ∈]0, 1[. Check that the conditional

distribution of Nn given Fn = σ(W1, . . . ,Wn) is a Poisson distribution with parameter
λ(1 − p)n. We let Xn = (W 1

n , . . . ,W
2
n). The cost of each proofreading and each misprint
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left are given respectively by some non-negative parameters a1 and a2. Check that the total
cost after the n-th proofreading is given by

fn(Xn) := E (na1 + (N −Xn) a2 | Xn) = na1 + λ(1− p)na2.

Check that the optimal stopping problem is monotone. Prove that the optimal stopping time
on any finite horizon problem is given by

S = inf {n ≥ 0 : λp(1− p)n ≤ a1/a2}.

Exercise 488 (Path dependent payoff - 1) We consider the optimal stopping problem
in path space (29.25). Check that the Snell envelope Vk defined in (29.32) has the form

Vk(xk) = Vk(x
′
0, . . . , x

′
k) =

∑
0≤l<k

g′l(x
′
l) + V ′

k(x
′)

for any historical path xk = (x′
0, . . . , x

′
k) ∈ Sk, with the functions V ′

k on S′ defined by the
backward induction

V ′
k(x

′
k) = f ′

k(x
′
k) ∨

[
g′k(x

′
k) + E(V ′

k+1(X
′
k+1) | X ′

k = x′
k)
]

(29.34)

with the terminal condition V ′
n = f ′

n.

Exercise 489 (Path dependent payoff - 2) We consider the optimal stopping problem
in path space (29.26). Check that the Snell envelope Vk defined in (29.32) has the form

Vk(xk) = Vk(x
′
0, . . . , x

′
k) =


 ∏
0≤l<k

g′l(x
′
l)


 × V ′

k(x
′)

for any historical path xk = (x′
0, . . . , x

′
k) ∈ Sk, with the functions V ′

k on S′ defined by the
backward induction

V ′
k(x

′
k) = f ′

k(x
′
k) ∨

[
g′k(x

′
k)× E(V ′

k+1(X
′
k+1) | X ′

k = x′
k)
]

(29.35)

with the terminal condition V ′
n = f ′

n.

Exercise 490 (Kelly criterion [166]) Consider the gambling model discussed in (29.1)
with q ≥ p (fair or favorable game). We assume that the betting strategy Hn = αMn is a
proportion α ∈ [0, 1] of the fortune Mn of the gambler. Check that

Mn = M0

∏
1≤k≤n

(1 + α Xk)

and compute the growth rate Ln(α) =
1
n log (Mn/M0) and its limit L∞(α) = limn→∞ Ln(α).

Check that L∞(α) is maximized for α = α� = E(X) and compute the maximal winning rate
L∞(α�). Answer the same questions when the fortune of the gambler is given by

Mn+1 = Mn + (1− α) Mn r + α Mn Xn+1

where r ∈]0, 1[ stands for the return rate of some riskless asset (discuss the two cases
(1− r)/(1 + r) ≤ p/q, resp. (1− r)/(1 + r) ≥ p/q corresponding to a more favorable return
on the riskless asset, resp. on the game).
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Exercise 491 (Monty Hall game show) In the Monty Hall show, we present three doors
with a new car behind one only of them (and nothing (or a goat) behind the other ones). The
contestant chooses a door without opening it. Monty opens one door and shows that there
is nothing behind it. The contestant has the opportunity to keep the door selected initially
or switch. What is the best strategy?

Suppose now that we have 1000 doors with a new car behind one of them, and the host
opens 998 doors with nothing behind them. Compute the probability that the car is behind
the door selected by the contestant and the probability that the car is behind the other door.
What is the best strategy?

Exercise 492 (Gambler’s ruin) We consider a random walk Xn on Z that increases or
decreases randomly by c units each time. We interpret Xn as the capital of a gambler, we
choose two integers a, b ∈ N, and assume that X0 = 0. The gambler is ruined if he loses a
dollars and wins if he earns b dollars. We let T represent the random time when the player
is ruined or wins. Check that Yn := X2

n − c2n is a martingale with respect to the filtration
Fn := σ(X0, . . . , Xn), and find an upper bound on E(T ).

Exercise 493 (Parrondo’s game [221]) In a game (G1) we win +1 with some prob-
ability 1

2 − ε and lose −1 with a probability 1
2 + ε, for some ε ∈ [0, 1/10[ The game (G2)

depends on whether capital is a multiple of some number m, say m = 3. If it is the case,
you win +1 with some probability pm = 1

10 − ε and lose −1 with a probability qm = 9
10 + ε.

Otherwise, you win +1 with some probability p = 3
4 − ε and lose −1 with a probability

q = 1
4 + ε.

• We consider the game (G2). We let Xn be the fortune of the player at time n and set
Yn = Xn mod(3) ∈ {0, 1, 2}. Express the probability P (n) to win game (G2) at a time
n in terms of the law of the random states Xn. Describe the invariant measure π of the
chain and check that the game (G2) is asymptotically fair for ε = 0 and unfair for ε > 0.

• In the game (G3) we flip a coin and play (G1) or (G3). Check that for a sufficiently small
ε the probability to win after long runs is strictly larger than 50%.

Exercise 494 (Bold play strategy) Consider a player in a red-and-black betting system
who wants to achieve a given fortune a. We let p and q represent the corresponding proba-
bilities to win and to lose in a red-and-black bet. Using the bold play strategy, at each time
n the gambler bets either his fortune Yn if Yn ≤ a/2 or the amount needed to achieve the
target gain a − Yn if Yn ≥ a/2. For unfair games q > p, this bold strategy is optimal in
the sense that it gives the maximal probability to win a given fortune with varying bet sizes.
Rewrite this strategy in terms of the rescaled fortune of the gambler Xn = Yn/a on [0, 1].
Show that the probability P (y) = Q(y/a) to reach a after starting with some initial fortune
y(∈ [0, a]) is defined in terms of the function Q on [0, 1] given by

Q(x) :=

{
p Q(2x) if x ≤ 1/2

p+ q Q(2x− 1) if 1/2 ≤ x ≤ 1,

with the boundary conditions (Q(0), Q(1)) = (0, 1). Compute Q(i/2n) for i ≤ 2n and
n = 1, 2, 3.

Exercise 495 (Ballot problem) Two candidates A and B received a and b votes in
an election with a ≥ nb for some integer n ≥ 1. The objective is to compute the number of
ways Nn(a, b) the ballots can be ordered so that a ≥ nb. A permutation is said to be "good"
if A is ahead of B by a factor of at least n, and it is said to be "bad" otherwise.
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• We let Xk the difference of A votes and B votes after counting 0 ≤ k ≤ (a + b) votes,
and set Mk := Xn−k

n−k . Check that Mk is a martingale with respect to the filtration
σ(M0, . . . ,Mk). Find the probability that candidate A is always ahead while processing
(a+ b)-votes.

• We interpret the ballot permutation as a path in the lattice (N×Z) starting at (0, 0), with
votes for A expressed by up-steps (1, 1) and votes for B as down steps (1,−n) . The
axis (0, x) = N is interpreted as the time, and (0, y) = Z the state space of the states
of the path. Paths in the (0, x)-axis are "good" while paths going below (0, x) (ending or
crossing) are "bad". We let P be the number of good paths. Down-steps starting above
(0, x) and ending on or below are called "bad" steps. We let Pk be the set of trajectories
with the first bad step ending k units below (0, x), with 0 ≤ k ≤ n. Find Card(Pn) and
prove that Card(Pn) = Card(Pk) holds for any k. Deduce that

Nn(a, b) = Card(P) =

(
a+ b
a

)
− (n+ 1)

(
a+ b− 1

a

)
=

a− nb

a+ b

(
a+ b
a

)
.

• Notice that Nn(a, 0) = 1 and Nn(nb, b) = 0 for any a, b > 0, and check that they satisfy
the above formula. For a > nb > 0, find a recurrence relation between Nn(a, b) and the
quantities Nn(a− 1, b) and Nn(a, b− 1). Prove the formula using induction.

Exercise 496 (Secretary problem) Consider n candidates whose qualifications are
ranked by some indices q1 > . . . > qn (the best being q1), applying for one only available
position of a secretary in some company. They are interviewed sequentially in a random
order and we denote by Y1, . . . , Yn the corresponding qualifications (note that (Y1, . . . , Yn) is
a random permutation of their qualifications (q1, . . . , qn)). The selection committee accepts
or rejects the applicants based on their rank, with the objective to select the best one. We
let Xk :=

∑
1≤l≤k 1Yk<Yl

be the (random) relative rank of the k-th applicant among the first
k interviewed applicants. We let T be the stopping time of the selection process. We want
to maximize the probability P(YT = q1) w.r.t. the information generated sequentially by the
observations (X1, . . . , Xn).

• Find the distribution of the random variables Xk.

• Check that P(Yk = q1 | X1, . . . , Xk) = fk(Xk) with the function fk : x ∈ {1, . . . , n} �→
fk(x) = 1x=1 (k/n), and deduce that P(YT = q1) = E(fT (XT )).

• Check that

sup
T∈Tn

P(YT = q1) = V1(1) =
mn − 1

n

(
1

n− 1
+ . . .+

1

mn
+

1

mn − 1

)

where mn ∼ e−1n is the first and unique value 2 ≤ k ≤ n such that 1
k+

1
k+1+. . .+ 1

n−1 ≤ 1.

• Describe the corresponding Snell envelope and solve the optimal stopping time problem.



30
Mathematical finance

This chapter is dedicated to applications of stochastic processes in mathematical finance,
and more particularly to option pricing problems. We discuss several models such as the
binomial, the Cox-Ross-Rubinstein and the celebrated Black-Scholes-Merton model. The
last part of the chapter is concerned with European option pricing techniques and the design
of self-financing and replicating portfolios.

The way to make money is to buy when blood is running in the streets.
John D. Rockefeller (1839-1937).

30.1 Stock price models

30.1.1 Up and down martingales

The up and down evolution of the price
of a risky asset in a neutral financial market
is defined in terms of a martingale Sn with
respect to some filtration Fn such that

Pn := P
(
Sn = Dn | Fn−1

)

Qn := P
(
Sn = Un | Fn−1

)

for two random up and down variables
(Un, Dn) s.t. Dn < Sn−1 < Un. The fil-
tration Fn represents the information available on the financial market. This discrete time
model represents the evolution of the price between time units such as weeks, days, hours,
or milliseconds. The figure below demonstrates the possible paths in the evolution of the
price driven by this simplistic model.

821
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The random variables Dn and Un represent the evolution up or down of the price of the
underlying asset. From the martingale property

E
(
Sn | Fn−1

)
= Pn Dn +Qn Un = Sn−1

we see that the random probabilities (Pn, Qn) need to be chosen so that

Pn Dn + (1− Pn) Un = Un − Pn(Un −Dn) = Sn−1.

Therefore, they are necessarily given by

Pn =
Un − Sn−1

Un −Dn
and Qn =

Sn−1 −Dn

Un −Dn
.

The stock price is usually defined as an exponential random walk

Sn = S0 × E1 × . . .× En = Sn−1 En. (30.1)

The walk starts at some strictly positive constant S0, and is governed by a sequence of
independent random variables En with a unit mean taking two possible values 0 < dn <
1 < un. These deterministic coefficients are called the up or down factors.

In this context, the martingale Sn is also a Markov chain. In addition, the information
available on the financial market at any time n is encapsulated in the the filtration Fn

associated to this Markov chain

Fn = σ(S1, . . . ,Sn) = σ(S0, E1, . . . ,Sn). (30.2)

On the other hand, it is readily checked that

Dn = Sn−1 × dn and Un = Sn−1 × un

with the respective deterministic probabilities Pn = pn and Qn = qn s.t

Pn =
Un − Sn−1

Un −Dn
=

un Sn−1 − Sn−1

un Sn−1 − dn Sn−1

=
un − 1

un − dn

and

Qn =
Sn−1 −Dn

Un −Dn
=

Sn−1 − dn Sn−1

un Sn−1 − dn Sn−1

=
1− dn
un − dn

.
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s0

s0d1

s0d1d2
u2−1u2−d2

s0d1u21−d2

u2−d2u
1−1u

1−d
1

s0u1

s0u1d2

u2−1u2−d2

s0u1u21−d2

u2−d2

1−d1

u1−
d1

Example 30.1.1 For instance, if dn = 1 − 10−2 < 1 < un = 1 + 10−2 for all n, then
Pn = Qn = 1/2. When the current asset price Sn−1 = $100, there are 50% chances that
the price will go up to Sn = $100× (1+10−2) = $101 and 50% chances that it will go down
to Sn = $100× (1− 10−2) = $99.

In practice the random variables En are often expressed as the ratio between the returns
of the {d′n, u′

n}-valued risky asset∆Wn and the returns of a riskless bond. The latter returns
are known with certainty in advance (e.g. from a money market account) and are called
risk free returns:

En =
1 +∆Wn

1 + rn
.

In this situation, the filtration (30.2) is also given by

Fn = σ(∆W1, . . . ,∆Wn) = σ(S1, . . . ,Sn).

The martingale condition now takes the form

E(En | Fn) =
1 + E (∆Wn | Fn)

1 + rn
= 1 ⇐⇒ E (∆Wn | Fn) = rn.

This shows that

0 < dn =
1 + d′n
1 + rn

< 1 < un =
1 + u′

n

1 + rn
⇐⇒ d′n < rn < u′

n

as soon as −1 < d′n < u′
n. The l.h.s. is called the "no-arbitrage" condition. It is meant

to underline that we cannot choose between the returns of the risky or the riskless asset to
achieve arbitrage. In this notation, we have

Pn =
un − 1

un − dn
=

1+u′
n

1+rn
− 1

1+u′
n

1+rn
− 1+d′

n

1+rn

=
u′
n − rn

u′
n − d′n

and Qn =
rn − d′n
u′
n − d′n

.

By definition of the returns of the assets, the evolution of the riskless asset S(0)
n is given

by the deterministic model

S(0)
n = S(0)

n−1 (1 + rn) ⇔ ∆S(0)
n := S(0)

n − S(0)
n−1 = S(0)

n−1 rn
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while the evolution of the risky asset is given by a Markov chain

Sn = Sn−1 (1 + ∆Wn) ⇔ ∆Sn := Sn − Sn−1 = Sn−1 ∆Wn. (30.3)

In this context, the filtration (30.2) coincides with the one associated with the random
returns of the risky assets, or equivalently with the one associated with the prices Sn, that
is,

Fn = σ(∆W1, . . . ,∆Wn) = σ(S1, . . . ,Sn).

The stock price is given by the deflated price formula

Sn = Sn−1
1 + ∆Wn

1 + rn
= Sn/S(0)

n (30.4)

Sn =
∏

1≤k≤n

(
1 + d′k
1 + rk

)εk (
1 + u′

k

1 + rk

)1−εk

(30.5)

with a sequence of independent {0, 1}-valued Bernoulli random variables with a law

P (εk = 1) = Pk and P (εk = 0) = Qk.

30.1.2 Cox-Ross-Rubinstein model

The evolution of the price of an asset is often described on some time mesh sequence tn
with a small time step (tn − tn−1) = h. In this case, the returns of the riskless asset are
often given by the exponential functions

1 + rn+1 = ertnh.

The random returns of the risky asset are also given by Bernoulli type models

1 + ∆Wn+1 = eεnσtn

√
h

for some {−1,+1}-valued random variables εn. The positive parameter σtn

√
h is called the

standard deviation of returns in a time step h. The parameter σtn is called the volatility of
the market.

We clearly have the formula

Sn = S0 exp


−

∑
1≤k≤n

rtk−1
h+

∑
1≤k≤n

εk σtk−1

√
h


. (30.6)

By construction, we also have that

Pn = P (εn = −1 | Fn) and Qn = P (εn = +1 | Fn) .

Furthermore, in this context, the martingale

E (1 + ∆Wn+1 | Fn) = 1 + rn+1

takes the form:
Pn e−σtn

√
h + (1− Pn) e

+σtn

√
h = ertnh.
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This shows that

Pn =
eσtn

√
h − ertnh

eσtn

√
h − e−σtn

√
h

and Qn =
ertnh − e−σtn

√
h

eσtn

√
h − e−σtn

√
h

as soon as we have
σtn > rtn

√
h.

Expanding these exponentials and neglecting the terms of smaller order, we find that

Qn �

(
rtn − σ2

tn

2

)
h+ σtn

√
h

2σtn

√
h

=
1

2

(
1 +

(
rtn −

σ2
tn

2

) √
h

σtn

)
.

Therefore Pn := 1
2

(
1−

(
rtn − σ2

tn

2

) √
h

σtn

)
.

For constant parameters (rtn , σtn) = (r, σ), the formula (30.6) reduces to the Cox-Ross-
Rubinstein binomial model

Sn = S0 exp
(
−nrh+ σ

√
h εn

)
with εn =

∑
1≤k≤n

εk. (30.7)

With the same constant parameters we also have (Pn, Qn) = (P,Q) with

P :=
1

2

(
1−

(
r − σ2

2

) √
h

σ

)
:= 1−Q.

30.1.3 Black-Scholes-Merton model

The objective of this section is to analyze the limiting Cox-Ross-Rubinstein model when
the time step h tends to 0. To clarify the presentation, we set

P =
1

2
(1− α) Q =

1

2
(1 + α) with α :=

(
r − σ2

2

) √
h

σ
.

In this notation, we have
E(εn) =

∑
1≤k≤n

E(εk) = nα

as well as

Var(εn) =
∑

1≤k≤n

E([εk − α]
2
)

=
n

2

[
(−1− α)2(1− α) + (1− α)2(1 + α)

]

=
n

2
(1− α)(1 + α) [(1 + α) + (1− α)] = n (1− α2).

Invoking the central limit theorem, as n ↑ ∞ we have the following weak approximation

σ
√
h

(εn − nα)√
n(1− α2)

� σ
√
h W1.
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Here W1 denotes a standard normal random variable. This implies that

σ
√
h εn � σ

√
h n α+ σ

√
(1− α2)

√
nh W1

= h n

(
r − σ2

2

)
+ σ

√√√√1−

((
r − σ2

2

) √
h

σ

)2√
nh W1

� h n

(
r − σ2

2

)
+ σ

√
nh W1.

When n = � t
h�, we find the weak approximation

σ
√
h εn −→h→0 t

(
r − σ2

2

)
+ σ

√
t W1︸ ︷︷ ︸

law
= Wt

where Wt is the Brownian motion at time t starting at the origin (compare (14.1), sec-
tion 14.1).

We write Sh

tn = Sn for the martingale defined in (30.7) on some time mesh sequence
tn, with time step h. From previous approximations, the limiting evolution of the
stock prices is given by

Sh

h� t
h � −→h→0 St := S0 exp

(
σWt −

σ2t

2

)

= e−rt

(
S0 exp

(
σWt + t

(
r − σ2

2

)))

with the initial condition Sh

0 = S0. The r.h.s. formula is the continuous time
version of the deflated discrete time formula (30.4).

The process

St := S0 exp

(
σWt + t

(
r − σ2

2

))
(30.8)

is called the Black-Scholes model or the geometric Brownian motion. In the mathematical
finance literature, it is also called Black-Scholes-Merton model, in reference to their pio-
neering articles [25, 194]. We refer the reader to the example of SDE (14.6) discussed in
section 14.1.

30.2 European option pricing

30.2.1 Call and put options

The payoff function of a call with strike K and an expiration date n is given by

fn(Sn) :=
(
Sn −Kn

)+
(30.9)
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with the deflated strike
Kn := K

∏
1≤k≤n

(1 + rk)
−1.

In the above display, rk denotes the risk free returns of a secure and riskless reference asset
or financial bond, and Sn is the price of the underlying risky asset. As its name indicates,
the payoff function represents the cost of the contract for the seller if the owner exercises
the option. For instance,

Sn ≤ Kn =⇒ fn(Sn) = 0.

This means that the owner of the option will prefer to buy the shares at price Sn directly
in the market. If the opposite inequality holds, the prices are higher in the market, and
the cost of the option will be the difference between the deflated market price Sn and the
deflated strike K

∏
1≤k≤n(1 + rk)

−1.
The non-deflated payoff function is given by

fn(Sn) =


 ∏
1≤k≤n

(1 + rk)



−1

(Sn −K)
+

with the stock price presented in (30.3) and defined by

Sn :=


 ∏
1≤k≤n

(1 + rk)


 Sn.

Example 30.2.1 The payoff function associated with a Sn = $30 stock price, with risk free
rate r = .05% per year, over a 10-year term n = 10, and exercise/strike price K = $28 is
given by

fn(Sn) = (1.05)−10 (30− 28)
+ � $1.2278.

In much the same way, the payoff function of a put with strike K and an expiration date n
is

fn(Sn) :=
(
Sn −Kn

)−
. (30.10)

In this situation,
Sn ≥ Kn =⇒ fn(Sn) = 0.

This means that the owner of the option will prefer to sell the shares at price Sn directly
in the market.

30.2.2 Self-financing portfolios

Of course, the seller of a contract (a.k.a. the option writer) will ask for some fee or premium
in exchange for his financial option. The portfolio of the seller has some number bk of
updated risky assets Sk, and some number of (updated) risk free assets (with unit value)
at any time k.

Thus, at any time k, portfolio value is given by the formula

Pk(b) := ck−1 + bk−1 Sk.

A negative bk corresponds to short (uncovered) sales of |bk| assets, while a positive
bk corresponds to a purchase of a number bk of assets.
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Before the new market price is announced, the investor selects a new self-financing
(ck, bk) (using all the information Fk he has on the past) such that

Pk(b) := ck−1 + bk−1 Sk = ck + bk Sk.

Of course, it suffices to choose some bk and set

ck = Pk(b)− bk Sk.

This shows that the value of such self-financing portfolio depends only on the number of
shares of the risky asset.

When the market prices Sk+1 are finally announced, the value of the updated portfolio
is now given by

Pk+1(b) := ck + bk Sk+1.

From the self-financing property, it is essential to observe that the increments of the portfolio
are given by

∆Pk+1(b) = Pk+1(b)− Pk(b)

= bk ∆Sk+1 with ∆Sk+1 = Sk+1 − Sk.

We proved that a self-financing portfolio associated with a management strategy
of b = (bk)0≤k<n risky assets at any time k is given by the martingale

∀0 ≤ l ≤ n Pl(b) := P0(b) +
∑

1≤k≤l

bk−1 ∆Sk. (30.11)

30.2.3 Binomial pricing technique

The strategy of the option writer is to find some initial portfolio value P0(b) such that there
exists a self-financing strategy b for which the terminal value of the portfolio is precisely
the payoff function, that is, Pn(b) = fn(Sn). This minimal initial value is called the price
of the option.

As shown in (7.2), without loss of generality, we can assume that Sn is also a Markov
process. For instance, we can consider the exponential random walk model in (30.1) or
the time homogeneous Cox-Ross-Rubinstein binomial model in (30.7). To simplify the
presentation, we consider the exponential model (30.4), and suppose that the initial value
of the price is a known deterministic value S0 = x0.

In this situation, from theorem 8.4.7, we know that the unique martingale M(n)
p that

ends at fn(Sn) is given by

∀0 ≤ p ≤ n M(n)
p = E

(
fn(Sn) | Fp

)
.

Thus, we already know that the price Cn of the option is given by

Cn = E
(
fn(Sn) | S0 = x0

)
.

Under our assumptions Sk is a Markov chain, we thus have

M(n)
k = E

(
fn(Sn) | Sk

)
:= V(n)

k (Sk)



Mathematical finance 829

with the collection of functions

∀0 ≤ k ≤ n V(n)
k (x) := E

(
fn(Sn) | Sk = x

)
.

By construction, we have V(n)
n = fn. The possible values of Sn at time n can be interpreted

as the branches of a binomial type of tree, taking into consideration all the possible states
(30.5) when we vary at each time step εk = 0 and εk = 1, for k ≤ n.

Using the martingale property, we compute the values of V(n)
n−1 for all possible values of

Sn−1 using the formula

V(n)
n−1(Sn−1) := E

(
fn(Sn) | Sn−1

)

= fn

(
Sn−1

1 + d′n
1 + rn

)
u′
n − rn

u′
n − d′n

+fn

(
Sn−1

1 + u′
n

1 + rn

)
rn − d′n
u′
n − d′n

.

Iterating backward in time, these functions can be computed using the formula

V(n)
k (Sk) := E

(
V(n)
k+1(Sk+1) | Sk

)

= V(n)
k+1

(
Sk

1 + d′k+1

1 + rk+1

)
u′
k+1 − rk+1

u′
k+1 − d′k+1

+V(n)
k+1

(
Sk

1 + u′
k+1

1 + rk+1

)
rk+1 − d′k+1

u′
k+1 − d′k+1

.

Coming back to the martingale portfolio of the option writer (30.11), and recalling that the
martingale with the fixed terminal condition fn(Sn) is unique, we find that the price of the
option is given by

V(n)
0 (S0) = V(n)

0 (x0) = P0(b).

In addition, we have

∆Pk+1(b) = bk ∆Sk+1 = ∆V(n)
k+1(Sk+1) = V(n)

k+1

(
Sk+1

)
− V(n)

k (Sk).

Recalling that

Sk+1 ∈
{
Sk

1 + d′k+1

1 + rk+1
, Sk

1 + u′
k+1

1 + rk+1

}

we conclude that the management strategy bk satisfies the equations

bk Sk

(
1 + d′k+1

1 + rk+1
− 1

)
= V(n)

k+1

(
Sk

1 + d′k+1

1 + rk+1

)
− V(n)

k (Sk)

bk Sk

(
1 + u′

k+1

1 + rk+1
− 1

)
= V(n)

k+1

(
Sk

1 + u′
k+1

1 + rk+1

)
− V(n)

k (Sk).

Subtracting these two equations we find that

bk =
V(n)
k+1

(
Sk

1+u′
k+1

1+rk+1

)
− V(n)

k+1

(
Sk

1+d′
k+1

1+rk+1

)

Sk

(
1+u′

k+1

1+rk+1
− 1+d′

k+1

1+rk+1

) .
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For the time homogeneous Cox-Ross-Rubinstein model (30.7) from section 30.1.2,
these equations take the following form :

bk =
V(n)
k+1

(
Sk exp

(
−rh+ σ

√
h
))

− V(n)
k+1

(
Sk exp

(
−rh− σ

√
h
))

Sk

(
exp

(
−rh+ σ

√
h
)
− exp

(
−rh− σ

√
h
)) .

30.2.4 Black-Scholes-Merton pricing model

In section 30.1.3 we introduced the Black-Scholes-Merton model as the continuous time
version of a discrete binomial pricing model. In these continuous time settings, the risky
asset St is given by the geometric Brownian motion

St := S0 exp

(
σWt −

σ2t

2

)
, (30.12)

where Wt is the Brownian motion at time t. We have seen in (14.6) that St is the solution
of the SDE

dSt = σ St dWt. (30.13)

We let Ps,t, with 0 ≤ s ≤ t be the transition semigroup (sg) of St defined for any bounded
function ϕ by the formula

Ps,t(ϕ)(x) := E
(
ϕ(St) | Ss = x

)
.

We recall that the infinitesimal generator L of St is given for any smooth function ϕ by

L(f)(x) =
σ2

2
x2 f ′′(x).

Recall that
∂

∂s
Ps,t(ϕ)(x) = −L

(
Ps,t(ϕ)

)
(x).

Using the Doeblin-Itō formula

dϕ(s,Ss) =

(
∂

∂s
+ L

)
ϕ(s,Ss) ds+

∂ϕ

∂x
(s,Ss) dSs.

Applying this differential formula to

ϕ(s,Ss) = Ps,T (fT )(Ss)

for some function fT with s ≤ T (and a fixed time horizon T ), for any s (≤ T ) we have

dPs,T (fT )(Ss) =
∂Ps,T (fT )

∂x
dSs.
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Integrating from s = 0 to s = t, we conclude that

Pt,T (fT )(St) = P0,T (fT )(S0) +

∫ t

0

∂Ps,T (fT )

∂x
(Ss) dSs. (30.14)

For t = T, we find the self-financing portfolio formula

fT (ST ) = P0,T (fT )(S0) +

∫ T

0

∂Ps,T (fT )

∂x
(Ss) dSs.

30.2.5 Black-Scholes partial differential equation

In this section we provide a brief discussion on the connections between the deflated semi-
group formulae (30.14) and the more classical Black-Scholes partial differential equation.
As in section 30.2.2, the strategy is to find a self-financing portfolio on some time mesh
sequence

Ptk(b) := ctk−1
+ btk−1

Stk = ctk + btk Stk � Ptk+1
(b) := ctk + btk Stk+1

.

The management strategy of b = (btk)0≤k<n risky assets at any time tk is given by the
martingale

∀0 ≤ tl ≤ tn Ptl(b) := P0(b) +
∑

0≤tk≤tl

btk−1
∆Stk . (30.15)

The undeflated version of these portfolios is given by

V (t, St) = bt St + ct e
rt

with
St := ertSt and ct = e−rt[V (t, St)− bt St].

In this case we have

Pt(b) = Pt,T (fT )(St) = e−rt V (t, St) = e−rt V (t, ertSt).

In other words, the undeflated portfolio function V (t, x) is given by

e−rt V (t, ertx) = Pt,T (fT )(x) ⇐⇒ V (t, x) = ert Pt,T (fT )(e
−rt x).

By the l.h.s. formula, we have

∂V

∂x
(t, x) = ert

∂Pt,T (fT )

∂x
(e−rt x) e−rt =

∂Pt,T (fT )

∂x
(e−rt x)

and
∂2V

∂x2
(t, x) = e−rt ∂2Pt,T (fT )

∂x2
(e−rt x).

Recalling that

∂Pt,T (fT )

∂t
(y) = −L(Pt,T (fT ))(y) = −σ2

2
y2

∂2Pt,T (fT )

∂y2
(y)
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we prove that

∂

∂t
V (t, x) = r V (t, x) + ert

∂Pt,T (fT )

∂t
(e−rt x)

+ert
∂Pt,T (fT )

∂x
(e−rt x) × ∂(e−rt x)

∂t

= r V (t, x)− σ2

2
x2 erte−2rt ∂2Pt,T (fT )

∂x2
(e−rt x)

−r x
∂Pt,T (fT )

∂x
(e−rt x)

= r V (t, x)− σ2

2
x2 ∂2V

∂x2
(t, x)− r x

∂V

∂x
(t, x).

We conclude that V satisfies the so-called Black-Scholes partial differential equa-
tion

∂V

∂t
(t, x) +

σ2

2
x2 ∂2V

∂x2
(t, x) + r x

∂V

∂x
(t, x) = r V (t, x)

for any 0 ≤ t ≤ T , with the terminal condition VT = fT .

30.2.6 Replicating portfolios

The continuous time version of the payoff function (30.9) of a call with a strike K and an
expiration date T is given by

fT (ST ) :=
(
ST −KT

)+
with the updated strike KT = Ke−rT . (30.16)

The term e−rT is sometimes called the deflator. The portfolio of the writer of the call option
replicating the evolution of the option price is now given by the martingale

∀0 ≤ t ≤ T Pt(b) := P0(b) +

∫ t

0

bs dSs (30.17)

with the initial price P0(b) = CT of the call given by

CT (x0,K) = P0,T (fT )(x0) = E
(
fT (ST ) | S0 = x0

)

= E
((

x0 eσWT−σ2T
2 −Ke−rT

)+
)
.

Using

ST := St e
σ(WT−Wt)−σ2(T−t)

2 and KT = Kt e
−r(T−t)

we also find that the price of the option with maturity T , given the value of the stock at
time t, is given by the semigroup formula

Pt(b) = Pt,T (fT )(x) = E
(
fT (ST ) | St = x

)
= CT−t(x,Kt).

Comparing (30.17) with (30.14), we conclude that the hedging strategy bs is given
by

bs =
∂Ps,T (fT )

∂x
(Ss) =

∂

∂x
CT−s(x,Ks)|x=Ss

.
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30.2.7 Option price and hedging computations

The computation of a price relies on elementary manipulations of Gaussian random vari-
ables.

We recall that

VT = σWT − σ2T

2

is a Gaussian random variable with mean mT = −σ2T
2 and variance τ2T = σ2 T .

Thus, if we set vT = Ke−rT

x0
, using (3.28), we have

CT (x0,K)/x0 = E
((
eVT − vT

)
1VT≥log (vT )

)

= E
(
eVT 1VT≥log (vT )

)
− vT P (VT ≥ log (vT ))

= emT+
τ2
T
2 P

(
VT + τ2T ≥ log (vT )

)
− vT P (VT ≥ log (vT )) .

Notice that
mT + τ2T /2 = 0 and log vT = −rT + log (K/x0).

Using the survival function F (z) := P(Z ≥ z) = P(−Z ≥ z) = P(Z ≤ −z) := G(−z) of a
standard normal random variable, we can express

CT (x0,K) = x0 emT+
τ2
T
2 F

(
1

τT

[
−(mT + τ2T ) + log vT

])

−x0vT F

(
1

τT
[−mT + log vT ]

)

= x0 F

(
− 1

σ
√
T

[
log

(x0

K

)
+

(
r +

σ2

2

)
T

])

−e−rTK F

(
− 1

σ
√
T

[
log

(x0

K

)
+

(
r − σ2

2

)
T

])
.

Finally, we have proved that

CT (x,K) = x G
(
d
(1)
T,K(x)

)
− e−rTK G

(
d
(2)
T,K(x)

)

with

d
(1)
T,K(x) =

1

σ
√
T

[
log

( x

K

)
+

(
r +

σ2

2

)
T

]

d
(2)
T,K(x)) = d

(1)
T,K(x)− σ

√
T .

In addition, the hedging strategies are easily computed using the differential for-
mula

∂

∂x
CT (x,K) = G

(
d
(1)
T,K(x)

)

+
1

σ
√
T

[
g
(
d
(1)
T,K(x)

)
− e−rTK

x
g
(
d
(2)
T,K(x)

)]
,

with the Gaussian density g(x) = G′(x) = 1√
2π

e−x2/2.
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30.2.8 A numerical illustration

We assume that the current price of shares of a company is S0 = $100, and you would
like to get a call option that allows you to purchase one share of this stock for K = $90.
The standard deviation of the daily logarithmic stocks return is σ = 1%, and the annual
return rannual of the risk free stock is 4% (i.e., a daily return r =

(
(1.04)1/365 − 1

)
, so that

(1 + r)365 = 1 + 4
100 = rannual). The annualized volatility σannual is computed with the

formula σannual = σ×
√
365 � 19.1%, or sometimes with the formula σannual = σ×

√
252 =

15.87% when we consider only the 252 working days of the year.
The current stock price is defined by the geometric Brownian motion

St = ert St with St := S0 exp

(
σWt −

σ2t

2

)

and the option price with maturity T is given by

CT (x,K) = e−rT E

((
x e

σWT+T
(
r−σ2

2

)
−K

)+
)

= x G
(
d
(1)
T,K(x)

)
− e−rTK G

(
d
(2)
T,K(x)

)

with the functions

d
(1)
T,K(x) =

1

σ
√
T

[
log

( x

K

)
+

(
r +

σ2

2

)
T

]

d
(2)
T,K(x)) = d

(1)
T,K(x)− σ

√
T .

A graphical description of the call option prices for different values of the strike and the
maturity is provided on page 63.

The wealth of the replicating portfolio is given by

Pt(b) = e−rt V (t, St)

= CT−t(St,Kt)

= St G
(
d
(1)
T−t,Kt

(St)
)
− e−r(T−t)Kt G

(
d
(2)
T−t,Kt

(St)
)
.

This shows that the wealth of a replicating portfolio is given by

V (t, St) = St G
(
d
(1)
T−t,K(St)

)
− e−r(T−t)K G

(
d
(2)
T−t,K(St)

)
.

The last assertion follows from d
(1)
T−t,Kt

(St) = d
(1)
T−t,K(St).

Our next objective is to compute the number of risk free shares and the number of shares
of risky stock. To this end, we recall that the replicating portfolio is defined by

V (t, St) = bt St + ct e
rt

with the number of risk free bonds

ct = e−rt[V (t, St)− bt St]

and the number of shares of the risky asset

bt =
∂CT−t

∂x
(St,Kt) =

∂CT−t

∂x
(St,K)

= G
(
d
(1)
T−t,K(St)

)

+
1

σ
√
T − t

[
g
(
d
(1)
T−t,K(St)

)
− e−r(T−t)K

St
g
(
d
(2)
T−t,K(St)

)]
.
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A graphical description of a replicating portfolio is provided on page 65.

30.3 Exercises
Exercise 497 (Neutralization of market) We consider a deflated risky stock price (Sk)0≤k≤n

in a market model with two periods n = 2. Assume that the initial price S0 = s0 is given
and the prices S1 ∈ {s0,1, s0,2} and S2 ∈ ∪(i,j)∈{(0,1),(0,2)}{s(i,j),1, s(i,j),2} can take only two
possible values with

s(0,1) < s0 < s(0,2) s(0,1),1 < s0,1 < s(0,1),2 and s(0,2),1 < s0,2 < s(0,2),2.

Design the Markov transitions of the chain Sk such that Sk is a martingale with respect to
the natural filtration Fk = σ(Sl, 0 ≤ l ≤ k). The probability measure under which Sk is a
martingale is called the neutral probability.

Exercise 498 (Black-Scholes model - 1) Consider the Black-Scholes model St discussed
in (30.8). Check that

dSt = rStdt+ σStdWt.

Exercise 499 (Black-Scholes model - 2) Consider the Black-Scholes model St discussed
in (30.8). We let α ≥ 1, β > 0, and we assume that S0 = 1. Compute the probability of the
event {Sαt ≥ Sβ

t } in terms of a Gaussian distribution function.

Exercise 500 (Black-Scholes model - 3) Consider the Black-Scholes model St discussed
in (30.8). Check that for any s ≤ t we have

E (St | Fs) = er(t−s) Ss

with the σ-field Fs = σ(Wu , u ≤ s).

Exercise 501 (Call-put parity formula) The prices of a European call and put options
with maturity T and strike K are given by the formulae

P call
T := E

(
(ST −KT )

+ | S0

)
and P put

T := E
(
(ST −KT )

− | S0

)

with the geometric Brownian motion St discussed in section 30.2.4 and the updated strike
KT = e−rTK, for some r ≥ 0. Check the call-put parity formula

P call
T − P put

T = S0 −KT .

Exercise 502 (Replicating portfolios) We consider the neutral 2-periods market dis-
cussed in exercise 497. We consider a call option with the payoff function

f(S2) =
(
S2 −K

)+
= max

(
0,
(
S2 −K

))

with some deflated strike K = (1 + r)−2K and some K > 0. Find the functions

Vk(s) := E
(
f(S2) | Sk = s

)

for k = 0, 1, 2 using a backward recursion. We let Pk(b) be a self-financing portfolio with a
management strategy (bk)k=0,1 defined for any k ≤ 2 by

Pk(b) = P0(b) +
∑

1≤l≤k

bl−1 ∆Sl with ∆Sl = Sl − Sl−1.

Find the initial value P0(b) of the portfolio and the management strategy (b0, b1) such that
P2(b) = f(S2). Discuss the price of the call option.
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Exercise 503 (Wilkie inflation model) We let Ln = logRn be the logarithm of some
retail price index Rn at year n. The force In = log (Xn/Xn−1) of the inflation over the
year n is given by the stochastic equation

In = a+ b (In−1 − a) + σ Wn

with a sequence of i.i.d. centered Gaussian random variables with unit variance and param-
eters a, b, σ ∈ [0, 1[.

Exercise 504 (Life function martingales) We let Ln be the number of people alive, rel-
ative to an original cohort with no new entrants, at age n. As age increases, the number
of people alive decreases. We let ln be the expected number of lives at age n. Assuming
independent of lives, given Ln, Ln+1 is a binomial random variable with parameters Ln and

ln+1/ln. For some given parameter α > 0, check that Mn =
(
1 + α

ln

)Ln

is a martingale
w.r.t. the filtration Fn generated by the variables (L0, . . . , Ln).

Exercise 505 (Cox-Ross-Rubinstein model) In time homogeneous settings, the for-
mula (30.6) can be rewritten as

Sh

tn+h = Sh

tn exp
(
−rh+ εnσ

√
h
)

with a collection of independent {−1,+1}-valued Bernoulli random variables with a common
law

ph = P (εn = −1) =
eσ

√
h − erh

eσ
√
h − e−σ

√
h

qh = P (εn = +1) =
erh − e−σ

√
h

eσ
√
h − eσ−

√
h
.

We let Th be the Markov transition of the chain Sh

tn on a time step h. For any bounded
function f we have

Th(f)(x) = f (x yh) ph + f (x zh) qh

with
yh = e−rh−σ

√
h and zn = x e−rh+σ

√
h.

Prove that

lim
h→0

Th(f)(x)− f(x)

h
=

σ2

2
f ′′(x) x2 := L(f)(x),

with the infinitesimal generator L of the geometric Brownian motion (14.6).

Exercise 506 (Pricing zero-coupon bonds) Consider a spot interest rate Xt given by
some diffusion

dXt = bt(Xt) dt+ σt(Xt) dWt

for some regular functions (bt, σt), some Brownian motion Wt, and some initial condition
X0 = x0. The price of a zero-coupon bond with maturity time t given the spot rate Xs = x
at some time s ∈ [0, t] is given by the Feynman-Kac formula

qs(x) := E
(
exp

[
−
∫ t

s

V (Xr) dr

]
| Xs = x

)
with V (x) = x.
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Check that (s, x) ∈ ([0, t]× R) �→ qs(x) satisfies the backward equation

∂sqs = − (Ls(qs)− V qs) = −LV
s (qs) with the Schrödinger operator LV

s = Ls − V

with the terminal boundary condition qt = 1 and the generator Ls of the process Xs. Using
the exercise 255, provide an explicit formula in the following situations

1) dXt = b dt+ σ dWt and 2) dXt = a (b−Xt) dt+ σ dWt

for some parameters (a, b, σ).

Exercise 507 (Dupire’s formula) Consider a stock price given by the one-dimensional
diffusion

dXt = rt(Xt) Xt dt+ σt(Xt) Xt dWt

with some Brownian motion Wt, some regular interest rate drift function rt, and some
regular volatility diffusion function σt(> 0). Consider a final time horizon t and a payoff
function ft. Describe the backward evolution equation of the price of the option given by

∀s ∈ [0, t] us(x) := Qs,t(ft)(x)

with the Feynman-Kac semigroup Qs,t defined for any regular function f by

Qs,t(f)(x) = E
(
exp

(
−
∫ t

s

rτ (Xτ ) dτ

)
ft(Xt) | Xs = x

)
.

We further assume that the integral operator Qs,t has a density qs,t(x, y) w.r.t. the Lebesgue
measure, that is,

Qs,t(f)(x) =

∫
qs,t(x, y) f(y) dy.

Describe the forward evolution equation of the function (t, y) ∈ ([s,∞[×R) �→ qs,t(x, y) (in
the weak sense). Consider the payoff function ft(x) = (x−K)+ associated with a European
call option with a given strike K, and set

vs,t(x, y) := E
(
exp

(
−
∫ t

s

rτ (Xτ ) dτ

)
(Xt − y)+ | Xs = x

)
.

Check that ∂2
yvs,t(x, y) = qs,t(x, y).



http://www.taylorandfrancis.com
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Conditional distribution, 80, 96
Conditional expectation, xlvii
Confining potential, 488
Congestion, 36
Congestion window, 380
Conjugate distributions, 82, 97
Conjugate numbers, 195
Conjugate priors, 84
Connectivity constant, 278
Contact process, 751
Continuous time embedding, 313, 314, 329
Contraction, 152
Contraction theorem, 221
Control chart, 798
Coordinate projections, 542
Cosine law of reflection, 292
Cost function, 799
Coulomb forces, 741
Counting process, 299
Counting random variable, 73
Coupling, 6, 45, 166, 172, 176, 355

diffusions, 419
jump processes, 357

Coupling time, 12, 27
Coupon collector problem, 713
Covariance functional, 100
Covariance matrix, 101
Covariant derivative, 544

first order, 541, 602
second order, 562, 609

Covariation process, 429
Cox process, 307
Cox-Ingersoll-Ross diffusion, 423
Cox-Ross-Rubinstein model, 824
Cramer-Rao lower bound, 685
Critical fugacy, 278
Cross product, 581
Cryptography, 8
Curvature, 568
Cylinder, 581

D’Alembert martingale, 794
D’Alembert, Jean le Rond, 794
Data association, 8
Deflated asset, 62
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Deflated stochastic differential equation, 55
Deflator, 832
Degrowth-production models, 385
Desintegration property , 229
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Diagonalisation, 141
Diffeomorphism, 74
Differential geometry, 535
Differential operator, 53

first order, 365
second order, 396, 403, 467

Diffusion markets, 515
Diffusion Monte Carlo methods, 748, 749
Diffusion operator, 58
Diffusion process, 54, 393
Diffusions on chart spaces, 631
Diffusions on manifolds, 535
Diffusions on the simplex, 635
Dirac measure, xlii
Directed polymer, 279
Directional derivative, 544, 606
Dirichlet boundary conditions, 447
Dirichlet form, 360, 422
Dirichlet problem, 247, 248
Dirichlet random variable, 78, 96, 97
Dirichlet-Poisson problem, 248, 442
Discrete Laplacian, 320, 321
Discrete random variable, 73
Disordered models, 111
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Divergence operator, 580
Divergence theorem, 650
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Dobrushin local contraction coefficient, 160
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376, 398, 402, 428, 583
Doléan-Dade exponential formula, 400
Domain of generators, 435
Dominating density, 77
Doob h-process, 244
Doob’s convergence theorem, 197
Doob’s upcrossing lemma, 197
Doob-Meyer decomposition, 346
Double telegraph process, 390
Doubly stochastic Poisson process, 307

Drunkard’s walk, 693
Dual forms, 596
Dual mean field model, 264
Duncan-Zakai equation, 518
Dupire formula, 837
Dynamic population models, 759
Dynamical system, 36, 53, 363
Dyson equation, 473

Edging strategies, 63
Eigenmeasure, 144
Eigenvalue, 141
Eigenvector, 141
Einstein manifold, 565, 677
Einstein notation, 576
Einstein summation convention, 596
Einstein, Albert, 50
Electron-nuclear attraction, 741
Electronic repulsion, 741
Elementary transition, 122
Ellipsoid, 591
Elliptic diffusions, 516
Embedded manifolds, 579
Embedded Markov chain, 314, 329, 459
Empirical average, 99
Energy functional, 732
Enrichment, 253
Ensemble Kalman filters, 283, 523
Epidemic model with immunity, 764
Equilibrium measure, 124
Ergodic theorem, 221
Erlang random variable, 93
Euclidian distance, 13
Euclidian gradient operator, 543
Euclidian space, xli, 160

inner product, 535
metric, 597

Euler approximation, 366
European option, 56, 184
European option pricing, 826
European roulette, 32
Evolution equations, 240, 314, 338
Exclusion process, 752
Excursions, 11
Exit time, 172
Expectation of matrices, xlvii
Expectation operator, 314
Expiration date, 62
Exploration, 242
Exploration of the unit disk, 226
Exponential change of measures, 512
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Exponential map, 639
Exponential martingale, 530
Exponential random variable, 20, 72, 92
Exterior product, 648
Extinction probability, 782
Extremal curve, 640

Facultative mutualism system, 781
Failure time, 21
Fair game, 32, 192
Feedback control, 798
Feynman-Kac

semigroup, 439, 459
semigroup series expansions, 456

Feynman-Kac formula, 530
Feynman-Kac jump process, 466, 469
Feynman-Kac measures, 239, 252, 254, 267,

279, 739, 748
branching processes, 772, 782
Embedded Markov chains, 332
intensity measures, 782
normalizing constants, 239
particle models, 474, 479
Product formulae, 245
two state models, 474

Feynman-Kac propagator, 741
Filtering, 113, 517
Filtering equation, 47
Finite dimensional approximation, 342, 375,

407
Finite graph, 695
Finite state space model, 328
First order deviation, 100
First-in-first-out queue, 335
Fisher distribution, 496
Fisher information metric, 684
Fisher’s equation, 780
Fixed point, 14, 125, 133
Flashing diffusions, 454
Flow map, 363
Fluctuation of martingales, 181
Fokker-Planck equation, 54, 405, 406, 413,
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Forecasting, 253
Forward and backward equations, 408, 431,

439
Forward filters, 280
Foster-Lyapunov condition, 160, 485
Fouque-Sun systemic risk model, 470
Fréchet, Maurice, 50
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Fractal leaf, 723
Fractal models, 719
Fractal tree, 724
Fragmentation, 77
Fredholm integral equations, 248
French tarot, 8
Frozen path, 264

Gain parameter, 82
Gambler’s ruin, 819
Gambling betting systems, 788
Gambling model, 191
Games with fixed terminal condition, 807
Gamma random variable, 93, 95
Gamma-two operator, 568
Gauss’ equations, 625
Gauss, Carl Friedrich, 46
Gaussian curvature, 626
Gaussian distribution, 54
Gaussian integration by part, 97
Gaussian process, 495
Gaussian random variable, 75
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Gaussian updates, 82
Gelfand-Pettis equations, 316, 437
Gene expression, 389
Genealogical tree, 49, 258
Genealogical tree evolution, 254
Genealogy, 16
Generalized inverse, 71
Generator, 58
Genetic algorithm, 48, 137, 252, 267, 278
Genetic evolution models, 769
Geodesics, 639, 677

on sphere, 670
Geometric Brownian motion, 55, 400, 826,

834
Geometric Brownian-Poisson process, 59
Geometric clock, 332
Geometric drift condition, 160
Geometric ergodicity, 467
Geometric random variable, 21, 73, 76
geometric random variable, 7
Gibbs sampler, 229, 230, 266
Gibbs-Glauber dynamics, 229
Gillespie algorithm, 323
Girsanov transformation, 505, 506, 509
Glauber dynamics, 230
Global optimization, 274
Global positioning system, 46
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Google matrix, 34, 788
Google PageRank, 34, 787
Gradient flow, 657
Gradient vector, 411
Gram matrices, 535, 596, 648
Gramian, 535, 596, 648
Grand martingale system, 794
Granular media equations, 478
Graph coloring, 8
Graph coloring model, 230, 232
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Green function, 741
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Hahn-Jordan decomposition, 156
Hamiltonian, 732, 806
Hamiltonian operator, 739
Hamiltonian systems, 731
Hard core model, 232
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Heat equation, 397
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Hermite polynomials, 496, 746
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Historical processes, 245
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Holding time, 322
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Hyperparameters, 84
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Instrumental distribution, 77
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spectrum, 447
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Lazy Markov chain, 204, 714
Lazy random walk, 698
Leap-frog algorithm, 734
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Legendre polynomials, 499
Legendre, Adrien Marie, 46
Leibniz formula, 746
Lennard-Jones potential, 733
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Lie algebra, 554
Lie bracket, 554, 560
Life function martingale, 836
Likelihood distribution, 80
Likelihood function, 84, 504
Limiting distribution, 124, 383
Linear Gaussian model, 45, 82, 90
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Linear quadratic control, 812
Linear quadratic optimization, 813
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Log-Sobolev inequalities, 228
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Logistic process, 762, 780
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Lotka-Volterra model, 765
Lyapunov function, 160, 487
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M/M/m queue, 360
Macroscopic model, 698
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Mandelbrot, Benoit, 12
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embedding, 313
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restrictions, 276

Markov chain Monte Carlo, 110, 226
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Martingale, 28, 53, 56, 61, 178, 179, 346,
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Matrix representation, xliii
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Maximal inequalities, 194
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Merton, Robert, 60
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diffusion approximation, 416
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diffusion approximation, 414, 415
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Metropolis-Hastings transition, 44, 237
Micro-local analysis, 228
Midas equation, 60
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Monge parametrization, 578
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Multivariate normal distributions, 686
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Nash embedding theorem, 681
Neuman boundary conditions, 447
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Newton’s second law, 731, 737
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Nonlinear jump diffusion process, 463
Nonlinear Markov chain, 132
Nonlinear Markov process, 463
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Normal derivative, 656
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Opinion dynamics, 477
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Particle Gibbs sampler, 269
Particle Markov chain Monte Carlo, 260
Particle Metropolis-Hastings algorithm, 271
Particle Metropolis-Hastings model, 261
Particle techniques, 110
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Partition function, 110, 488, 749
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Path dependent payoff, 818
Path space models, 211, 254, 501, 742
Payoff function, 799, 826, 827
Pearson diffusions, 485
Perfect sampling algorithm, 237
Performance function, 799
Permutation, 8
Perron-Frobenius theorem, 143
Phase space, 734
Phase vector, 731
Piecewise deterministic processes, 363
Ping program, 36
Poincaré inequality, 361, 422, 667
Poincaré, Henri, 60
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Poisson point process, 85
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Poisson random variable, 85, 94, 97
Poisson thinning simulation, 309, 331
Poisson time rescaling, 308
Poisson, Siméon Denis, 17
Poisson-Gaussian clusters, 91
Polar coordinates, 597
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Population dynamics, 45, 134
Portfolio, 62
Positive recurrent set, 219
Posterior distribution, 80
Power method, 35
Power utility function, 812
Predator-prey model, 765
Predictable part, 346
Predictable quadratic variation, 181
Prediction, 253
Principal curvature, 626
Prior distribution, 80
Projected diffusions on manifolds, 586
Projected Langevin equation, 672
Projection matrix, 537
Projection operators, 535
Proofreading problem, 817
Proportionality, xli
Propp and Wilson sampler, 233
Proton mass, 741
Pruning, 253
Pseudo random numbers, 8
Pull back
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scalar product, 597
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Put option, 62, 826
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Quadratic variation, 181
Quantum Monte Carlo, 253
Quantum state, 737
Quantum systems, 473
Quantum teleportation, 253
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Quotient manifold, 589

R.c.l.l. property, 314
Radar, 46
Radial integration, 444
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Random dynamical system, 126
Random particle matrix model, 257
Random process, xxi
Random transposition shuffle, 713
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Random walk
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Rare event simulation, 103, 274
Rayleigh random variable, 92
Reaction rate, 389
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Recycling mechanism, 48
Reflected Markov chain, 138
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Regenerative processes, 388
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Reinforcement process, 28, 132
Reinforcement rate, 29
Rejection technique, 75
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Renewal process, 300
Replenish, 253
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Resampling, 253
Return function, 799
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Reward function, 799
Riccati equation, 474, 522

Ricci curvature, 563
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Riemannian gradient, 623
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Riemannian Langevin equation, 672
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Riemannian second covariant derivative,
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Riskless return rate, 55
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Robust filtering equation, 524
Rodrigues formula, 746
Rosenbluth, Arianna, 44
Rosenbluth, Marshall, 44
Rotation group MCMC, 290
Ruin process, 33, 41, 178

Scaling properties, 418
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Scholes, Myron, 60
Schrödinger equation, 737
Schrödinger equation in imaginary time,

739
Schrödinger operator, 739, 743
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Segments, 36, 380
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Selection transition, 137
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Self interacting process, 132
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Shot noise process, 384
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Simple exclusion process, 695
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Singer radar model, 114
SIS model, 781
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Smoluchowski, Marian, 50
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Square root process, 495
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State space model, 129
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Stationary Schrödinger equation, 739
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Stirling number of second kind, 709
Stirling’s approximation, 5
Stochastic approximation, 216
Stochastic billards, 291
Stochastic calculus, 50
Stochastic differential equation, 52, 401
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Stochastic gradient process, 487
Stochastic matrix, xliii, 125
Stochastic partial differential equation, 519
Stochastic process, xxi
Stochastic simulation, xxii, 44, 226
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Stock price, 55
Stock price models, 821
Stoichiometric coefficients, 389
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Storage model, 385
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Strong Markov property, 172
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Student distribution, 496
Sturm-Liouville formulation, 484
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Sum of generators, 342
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Tail distributions, 103
Tangent basis functions, 609
Tangent space, 579, 594, 599, 602, 673, 678
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Taylor expansion, 52, 58
Taylor expansion on manifolds, 644
Tchebyshev polynomials, 498
Telegraph equation, 702
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Teller, Augusta, 44
Teller, Edward, 44
Temperature parameter, 467
Theory of speculation, 60
Thinning Poisson processes, 87
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Top-in-at-random shuffle, 712
Topological vector space, 160
Torsion, 543, 568
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Total variation distance, 151, 166
Tradeable market, 61
Trading strategy, 66
Trait space, 777
Transient state, 206, 694
Transition diagram, 128, 699
Transmission control protocol, 36, 379
Transmission unit, 380
Traveling salesman problem, 111
Traveling waves, 737
Tree of outcomes, 128
Trial and guiding wave functions, 531
Triangular random variable, 93
Twisted distributions, 102
Twisted processes, 530
Twisted-guiding waves, 756
Two-state Markov model, 127, 141, 317

Ulam, Stanislaw, 43
Unbiased, 260
Uncertainties propagation, 109
Unfair game, 32, 193
Uniform distribution, 724
Uniform ellipticity condition, 516
Uniform Markov jump process, 314
Uniform random variable, 71
Uniform variable on the circle, 75
Unit vector representation, 356
Up and down martingales, 821
Updating, 253
Urn process

diffusion approximation, 704
Ehrenfest model, 699
Polya model, 700

USA Roulette, 32

V-norm contraction, 164
V-norms, 156
V-oscillation, 157
van der Waals bonds, 733
Variational principle, 756
Vasicek model, 421
Velocity vector field, 579
Verhulst-Pearl model, 762
Verification argument, 806
Verlet algorithm, 734
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Volatility, 55, 824
Volume forms, 648
Volume measure, 647

von Neumann, John, 43
Voter process, 751

Wald’s identity, 189, 349
Walk on Sphere method, 702
Walkers, 253
Wasserstein metric, 169
Wealth increment, 62
Web page, 34
Web surfer, 34
Wedge product, 648
Weibull random variable, 93
Weighted Dirac measure, xlii
Weighted empirical measures, 102
Weingarten map, 626
Weingarten’s equations, 626
Whittacker martingale, 796
Wick rotation of the time, 739
Wick’s formula, 101, 105
Wiener measure, 507, 508
Wiener process, 395
Wiener space, 508
Wilkie inflation model, 836
Wonham filter, 528
Wright-Fisher diffusion, 704

Yaglom measure, 246
Yule process, 335

Zakai equation, 518
Zenith, 675
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