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Tribute to Dr. Edward G. Schilling

Before this text went into publication, Dr. Edward G. Schilling (Ed), the book’s principal author,
passed away. He left behind many dear friends and loved ones, but also a legacy in the field of
acceptance sampling. Dr. Harold F. Dodge, one of Ed’s professors at Rutgers, is known as the father
of acceptance sampling due to his pioneering work in the field. Dr. Dodge mentored his young
protégé and wrote papers with him on acceptance sampling while Ed was at Rutgers. Little did
Dr. Dodge know that Ed would become a pioneer and mentor himself in shaping what the world
now knows today as modern acceptance sampling. This book is a testimony to not only the work of
Dodge, Romig, and others, but also to a larger extent the work done by Dr. Schilling and others to
shape the field and extend it in ways that the early pioneers had perhaps envisioned but did not
pursue. Ed’s work does not lie entirely in the statistical literature, but rather he also played an
integral role in the development of acceptance sampling standards with the Department of Defense,
ISO TC 69, ANSI=ASQ, and ASTM. For this body of work, Dr. Edward G. Schilling should be
known as the father of modern acceptance sampling. As a former student, a colleague at RIT and on
the ISO TC 69 and ASTM E11 Committees, and co-author with Ed on two books, I feel that I have
lost a very dear friend. Of course, I can’t feel the loss that his family does losing a wonderful
husband and father, but I feel honored to have known such a great man.

Dean V. Neubauer
� 2008 by Taylor & Francis Group, LLC.
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O Fortune, variable
as the moon,
always dost thou
wax and wane.
Detestable life,
first dost thou mistreat us
and then, whimsically,
thou heedest our desires.
As the sun melts the ice,
so dost thou dissolve
both poverty and power.

— Carl Orff, Carmina Burana
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TABLE T18.2 H-108 Table 2A–1—life test sampling plan code designation
TABLE T18.3 H-108 Table 2B–1—master table for life tests terminated

upon occurrence of preassigned number of failures
TABLE T18.4 H-108 Table 2C–1 (b)—master table for life tests terminated

at preassigned time: testing without replacement
(values of T=u0 for a¼ 0.05)

TABLE T18.5 H-108 Table 2C–2 (b)—master table for life tests terminated
at preassigned time: testing with replacement
(values of T=u0 for a¼ 0.05)

TABLE T18.6 H-108 Table 2D–1 (b)—master table for sequential life tests (a¼ 0.05)
TABLE T18.7 H-108 Table 2C–5—master table for proportion failing before specified

time. Life test sampling plans for specified a, b, and p1=p0
TABLE T18.8 TR3 Table 1—table of values for percent truncation, (t=m)� 100
TABLE T18.9 TR7 Table 1A—100t=m ratios at the acceptable quality level

(normal inspection) for the MIL–STD–105E plans
TABLE T18.10 TR7 Table 1B—100t=m ratios at the limiting quality level

for the MIL–STD–105E plans: consumer’s risk¼ 0.10
TABLE T18.11 TR7 Table 1C—100t=m ratios at the limiting quality level

for the MIL–STD–105E plans: consumer’s risk¼ 0.05
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Preface to This Edition

So why does another edition of this acceptance sampling text make sense? For one reason, it is
important to mention the paucity of research and publication in acceptance control that took place in
the last two decades of the twentieth century—the life of the first edition. This is the result of a
serious misunderstanding of the role of acceptance sampling in quality and process control. Thus,
that period of time provides the fewest references in this edition. Nonetheless, there has been a
resurgence of interest in this field in the twenty-first century.

In fact, the inevitable passage of time and the events associated with it have made the second
edition of this book desirable. International trade has become the hallmark of a global economy.
However, in many cases the producer has become increasingly removed from the consumer, not
only by distance but also by language, culture, and governmental differences. This has accentuated
the need for economic appraisal of material as it passes from border to border through the global
maze. State-of-the-art knowledge of the methodology of sampling and its advantages and limitations
is essential in such an environment.

At the same time, corporate culture has changed in response to an intensely competitive business
environment. Manufacturers must protect the quality of their products in the most efficient and
economic way possible. Judicious use of acceptance control can supplement and support applica-
tions of statistical process control. Used alone it provides a proven resource for the evaluation of
products.

From a global perspective, the International Organization for Standardization (ISO) has
contributed greatly in recent years. As derivatives of MIL-STD-105E and MIL-STD-414, their
(ISO 2859 and ISO 3951) standards are part of a series that have been created to address the
role that acceptance sampling plays when dealing with the flow of products, with an emphasis on
the producer’s process. Both attributes and variables plans comprise the series. This edition covers
these standards while tracing their origins to 105 and 414. This includes conversion to the new
definition of acceptable quality level and changes in the switching rules. Credit-based sampling
plans originated in Europe and are the subject of a new section in this edition. These developments
are intended to enhance the use of acceptance control in international trade.

In a highly competitive environment, acceptance sampling plans must be appropriately applied.
This edition stresses the role of sampling schemes with switching roles in making sampling more
efficient when dealing with a flow of lots. An increased number of derivative plans are dealt with
from a historical perspective to simplify comparison and understanding. MIL-STD-105E and MIL-
STD-414 are taken as the principal standards in that regard as they remain constant and, while
discontinued by the military, are still used extensively for domestic application (e.g., ASTM E2234
conforms to MIL-STD-105E). The conversion of MIL-STD-414 to ANSI=ASQ Z1.9 is highlighted,
and scheme properties of Z1.9 emphasized. Variables plans matching the Dodge–Romig attributes
plans are also addressed. The ASTM version of 105E (E2234) is now included, along with their
version of TR7 (E2555), which has expanded tables for application of TR7.

One of the changes in corporate culture is the demand for c¼ 0, the so-called accept zero plans.
The legal implications of higher acceptance numbers are said to require this.

Although such plans have been shown to have serious disadvantages (R¼ 44.9), the demand for
them is considerable. In Chapter 17, this edition provides a more extensive discussion of accept zero
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plans, especially TNT, credit based, the Nelson monograph for c¼ 0, and MIL-STD-1916, along
with the quick switching system and the simplified grand lot plans. MIL-STD-1916 receives
extensive coverage since it is new to this edition and provides a variety of c¼ 0 plans. Chapter 19
includes a discussion of how to set quality levels.

These are a few of the changes that are made in this edition. Another more important change is
having Dean V. Neubauer as coauthor. I am extremely pleased by this addition and by the level of
expertise he brings to this edition and to the field.

We wish to thank our editor David Grubbs at Taylor & Francis Group for his patience and
understanding as we put in more time than expected in preparing this new edition. We would also
like to thank our project coordinator, Jessica Vakili and project editor, Rachael Panthier at Taylor &
Francis Group, for their efforts in producing this new edition.

Finally, and certainly not least, we must thank our wives, Jean and Kimberly, for all their love and
patience as we toiled on this edition. Without their understanding, this book would not have been
possible.

Edward G. Schilling
Dean V. Neubauer
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Note from the Series Editor for the First Edition

The use of acceptance sampling has grown tremendously since the Dodge and Romig sampling
inspection tables were first widely distributed in 1944. During this period many people have
contributed methods and insights to the subject. One of them is the author of this book, which
might better be identified as a compendium of acceptance sampling methods. The American Society
for Quality Control has recognized Dr. Schilling’s contributions by awarding him the Brumbaugh
Award four times, first in 1973 and again in 1978, 1979, and 1981. This award is given each year to
the author whose paper is published either in the Journal of Quality Technology or in Quality
Progress, and which, according to the American Society for Quality Control committee, has made
the largest single contribution to the development of industrial applications of quality control.

Dr. Schilling has been employed both as an educator and as an industrial statistician. This vast
experience qualifies him to write this treatise in a manner that few others would have been able to.
Beginners will find much of interest in this work, while those with experience will also find many
interesting items because of its encyclopedic coverage.

I am very pleased with the completeness and clarity exhibited in this book, and it is with great
pleasure that I recommend it to others for their use.

D.B. Owen
Southern Methodist University

Dallas, Texas
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Foreword to the First Edition

As we enter the 1980s, the field of quality control finds new responsibilities thrust upon it. The
public is demanding products free from defects, and often making these demands in costly court
cases. Management is demanding that all departments contribute to technical innovation and cost
reduction while still continuing to justify its own costs. The quality control specialist is caught like
others in this tight spot between perfect performance and minimum cost. He or she needs all the help
that fellow professionals can give, and Edward Schilling’s book is a worthy contribution. Written by
one of the foremost professionals in this field, it is comprehensive and lucid. It will take its place as a
valuable reference source in the quality control specialist’s library.

My own first contact with a draft of the book came when I was teaching a quality control course
to industrial engineers. Over the semester I found myself turning to this new source for examples,
for better explanations of standard concepts, and for the many charts, graphs, and tables, which are
often difficult to track down from referenced works. Acceptance sampling is not the whole of
statistical quality control, much less the whole of quality control. But Dr. Schilling has stuck to his
title and produced a book of second-level depth in this one area, resisting the temptation to include
the other parts of quality control to make a ‘‘self-contained work.’’ The added depth in this approach
makes this book a pleasure for a teacher to own and will make it a pleasure for students to use. This
is one book that any student should take into the world where knowledge is applied to the solution
of problems.

Colin G. Drury
Department of Industrial Engineering

SUNY at Buffalo
Buffalo, New York
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Preface to the First Edition

The methods of statistical acceptance sampling in business and industry are many and varied. They
range from the simple to the profound, from the practical to the infeasible and the naive. This book
is intended to present some of the techniques of acceptance quality control that are best known and
most practical—in a style that provides sufficient detail for the novice, while including enough
theoretical background and reference material to satisfy the more discriminating and knowledgeable
reader. The demands of such a goal have made it necessary to omit many worthwhile approaches;
however, it is hoped that the student of acceptance sampling will find sufficient material herein to
form a basis for further explorations of the literature and methods of the field.

While the prime goal is the straightforward presentation of methods for practical application in
industry, sufficient theoretical material is included to allow the book to be used as a college level
text for courses in acceptance sampling at a junior, senior, or graduate level. Proofs of the material
presented for classroom use will be found in the references cited. It is assumed, however, that the
reader has some familiarity with statistical quality control procedures at least at the level of Irving
W. Burr’s Statistical Quality Control Methods (Marcel Dekker, Inc., New York, 1976). Thus, an
acceptance sampling course is a natural sequel to a survey course at the level suggested.

The text begins with a fundamental discussion of the probability theory necessary for an
understanding of the procedures of acceptance sampling. Individual sampling plans are then
presented in increasing complexity for use in the inspection of single lots. There follows a
discussion of schemes that may be applied to the more common situation of a stream of lots from
a steady supplier. Finally, specific applications are treated in the areas of compliance sampling and
reliability. The last chapter is concerned with the administration of acceptance control and, as such,
is intended as a guide to the user of what sampling plan to use (and when). Readers having some
familiarity with acceptance sampling may wish to read the last chapter first, to put into context the
methods presented.

This book views acceptance quality control as an integral and necessary part of a total quality
control system. As such, it stands with statistical process quality control as a bulwark against poor
quality product, whose foundations are rooted deep in mathematics but whose ramparts are held
only by the integrity and competence of its champions in the heat of confrontation.

It is fitting that this book on acceptance sampling should begin with the name of Harold F. Dodge.
His contributions have been chronicled and are represented in the Dodge Memorial Issue of the
Journal of Quality Technology (Vol. 9, No. 3, July 1977). Professor Dodge, as a member of that
small band of quality control pioneers at the Bell Telephone Laboratories of the Western Electric
Company, is considered by some to be the father of acceptance sampling as a statistical science.
Certainly, he nurtured it, lived with it, and followed its development from infancy, through
adolescence, and on into maturity. In no small way he did the same for the author’s interest in the
field, as his professor and his friend.

Edward G. Schilling
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Chapter 1

Introduction

Dodge (1969b, p. 156) has indicated that in the early days of the development of military
standards during World War II, a distinction became apparent between acceptance sampling
plans, on the one hand, and acceptance quality control, on the other. The former are merely specific
sampling plans, which, when instituted, prescribe conditions for acceptance or rejection of the
immediate lot inspected. The later may be compared to process quality control, which utilizes
various indicators (such as control charts) and strategies (such as process capability studies) to
maintain and improve existing levels of quality in a production process. In like manner, acceptance
quality control exploits various acceptance-sampling plans as tactical elements in overall strategies
designed to achieve desired ends. Such strategies utilize elements of systems engineering, industrial
psychology, and, of course, statistics and probability theory, together with other diverse disciplines,
to bring pressures to bear to maintain and improve the quality levels of submitted product. For
example, in the development of the Army Ordnance sampling tables in 1942, Dodge (1969b, p. 156)
points out that

basically the ‘‘acceptance quality control’’ system that was developed encompassed the
concept of protecting the consumer from getting unacceptably defective material, and
encouraging the producer in the use of process quality control by varying the quantity
and severity of acceptance inspections in direct relation to the importance of the
characteristics inspected, and in inverse relation to the goodness of the quality level
as indicated by those inspections.

The resulting tables utilize not just one sampling plan, but many in a scheme for quality
improvement.

This book stresses acceptance quality control in recognition of the importance of such systems as
a vital element in the control of quality. There is little control of quality in the act of lot acceptance
or rejection. While the utilization of sampling plans in assessing lot quality is an important aspect of
acceptance sampling, it is essentially short run in effect. The long-run consequences of a well-
designed system for lot acceptance can be more effective where applicable. Thus, an individual
sampling plan has much effect of a long sniper, while the sampling scheme can provide a fusillade
in the battle for quality improvement.

Acceptance Quality Control

Individual sampling plans are used to protect against irregular degradation of levels of quality in
submitted lots below that considered permissible by the consumer. A good sampling plan will also
protect the producer in the sense that lots produced at permissible levels of quality will have a good
chance to be accepted by the plan. In no sense, however, is it possible to ‘‘inspect quality into the
product.’’ In fact, it can be shown (Mood 1943) that if a producer continues to submit to the
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consumer product from a process with a constant proportion defective, lot after lot, simple
acceptance or rejection of the lots submitted will not change the proportion defective the consumer
will eventually receive. The consumer will receive the same proportion defective as was in the
original process.

This idea may be simply illustrated as follows. Suppose you are in the business of repackaging
playing cards. You have an abundance of face cards (kings, queens, and jacks) and so submit an
order to the printer for 5000 cards having an equal selection of nonface cards. Any face cards, then,
can be considered as defectives if they are found in the shipment. The cards are supposed to come to
you in packages of 50 resembling standard 52-card decks. Unknown to you, the printer has mixed
up your order and is simply sending standard decks. Your sampling plan is to accept the deck if a
sample of one card is acceptable. The lot size is actually, of course, 52.

What will be the consequences? Nearly 12 of the 52 cards in a standard deck are face cards; so
the probability of finding a face card on one draw is 12=52¼ 0.23, or 23%. This means that
in 100 decks examined there should be roughly 23 rejections. Suppose these rejected decks are
thrown into the fire, what will be the proportion of face cards in the accepted material? Why 23%, of
course, since all the decks were the same. Thus, the sampling plan had no effect on the quality of
the material accepted while the process proportion defective remained constant. The proportion
defective accepted is the same as if no inspection had ever been performed.

Suppose, instead, the printer had become even more mixed up. The printer fills half the order with
ordinary playing cards and the other half with cards from pinochle decks. Pinochle decks are
composed of 48 cards, half of which (or 24) are face cards. The printer ships 50 ordinary decks
(2600 cards) and 50 pinochle decks (2400 cards). Inspection of the 50 ordinary decks by the same
plan will reject about 23%, or about 12 of them. The remaining 38 will pass and be put into stock.
Of the 50 pinochle decks, however, half will be rejected and so 25 will go into stock.

Some calculation will show that, with no sampling (i.e., 100% lot acceptance), the stock would
consist of

(12� 50)þ (24� 50) ¼ 1800

face cards out of a total stock of 5000 cards, or

1800
5000

� 100 ¼ 36:0%

face cards.
Using the sampling plan, simple and ineffective as it was, the stock would consist of

(12� 38)þ (24� 25) ¼ 1056

face cards out of a total stock of

(52� 38)þ (48� 25) ¼ 3176

or

1056
3176

� 100 ¼ 33:2%

face cards.
Thus, quality can be improved by the imposition of a sampling plan in the face of fluctuation in

proportion defective since it will tend to selectively screen out the highly defective material relative
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to the better lots. Clearly, a larger improvement could have been made in the above example if a
more discriminating sampling plan had been used.

Now, consider the imposition of some rules beyond the single-sampling plan itself. Suppose the
rejected decks are 100% inspected with any face cards found being replaced with nonface cards.
Then, in the last part of the example, the number of face cards in stock would be 1056 out of 3176 as
before, since they came from the accepted lots. But, since the 36 rejected lots would have been
replaced with perfect product the stock would be increased by 50� 36¼ 1800 cards to a level of
4976 cards. The stock would now consist of

1056
4976

� 100 ¼ 21:2%

face cards. Here we have a substantial improvement in the level of quality even when using an
extremely loose plan in the context of a sampling strategy—in this case what is called a rectification
scheme.

Finally, suppose if complete 100% inspection were instituted. It is generally conceded that no
screening operation is 100% effective and, in the real world 100% inspection of a large number of
units may be only about 80% effective according to Juran (1999). If this is the case, about 20% of
the defective cards will be missed and the final stock will contain

1800� 0:20 ¼ 360

defectives, or a percent defective of

360
5000

� 100 ¼ 7:2%

at a cost of examining all 5000 cards. Even 100% inspection will not necessarily eliminate defective
items once they are produced.

Thus it is that sampling strategies can be developed to attain far more protection than the
imposition of a simple sampling plan alone. What is required, of course, is a continuing supply of
lots from the same producer to allow the strategy to be effective. It is for this reason that there are
two basic approaches to acceptance quality control, depending upon the nature of the lots to be
inspected. A continuing supply of lots from the same producer is most effectively treated by a
sampling scheme. A single lot, unique in itself, is treated by sampling plans designed for use with an
‘‘isolated lot.’’ This distinction is fundamental to acceptance sampling, and even the basic prob-
ability distributions used in the two cases are not the same. We speak of Type A sampling plans and
probabilities when they are to be used with a single lot and Type B when used in the context of a
continuing series of lots produced from the same supplier’s process. Effective acceptance quality
control will utilize the schemes and plans of acceptance sampling to advantage in either case.

Acceptance Control and Process Control

Acceptance sampling procedures are necessarily defensive measures, instituted as protective
devices against the threat of deterioration in quality. As such, they should be set up with the aim
of discontinuance in favor of process control procedures as soon as possible.

Process quality control is that aspect of the quality system concerned with monitoring
and improving the production process by analysis of trends and signals of quality problems or
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opportunities for the enhancement of quality. Its methods include various types of control charts,
experiment designs, response surface methodologies, evolutionary operations, and other procedures
including, on occasion, those of acceptance sampling. These methods are an essential adjunct for
effective acceptance control since

1. Quality levels for selecting an appropriate sampling procedure should be determined from
control chart analysis to ascertain what minimum levels the producer can reasonably and
economically guarantee and what maximum levels can be tolerated by the consumer’s process
or will fulfill the consumer’s wants and needs.

2. Acceptance sampling procedures should be set up to ‘‘self-destruct’’ after a reasonable period
in favor of process controls on the quality characteristic in question. Simultaneous use of
acceptance quality control and process quality should eventually lead to improvement in
quality levels to the point that regular application of acceptance sampling is no longer needed.

Thus, at the beginning and at the end of an acceptance sampling procedure, process quality control
plays an important part.

Process Quality Control

With the invention of the control chart by Shewhart in 1924, process quality control had gained
its most valuable tool as well as its genesis. When samples are taken periodically on a process, the
average of the samples will tend to cluster about some overall average, or process level, as long as
the process is not affected or changed to some new average, or level. Such changes in process level
may be intentional or completely inadvertent and unexpected. The control chart is essentially a
means for determining and signaling when the process level has actually shifted to a new level in the
face of chance variation in sample results. Observations are collected in what are called rational
subgroups. These are taken to maximize the opportunity to show the source of a change in the
process.

The Shewhart chart consists simply of three parallel lines: two outside lines, called upper and
lower control limits, and a center line. An example of such a chart is given in Figure 1.1. It shows
Shewhart’s first control chart and the memorandum that accompanied it (Olmstead 1967, p. 72). In
practice, sample results are plotted on the chart in sequence. The center line reflects the average of
the data, while the control limits are calculated to have a high probability (usually 331:1 odds) of the
sample data being contained between them if the process is stable. It is, then, very unlikely
(3 chances in 1000) that a point will plot outside the limits when the process is running well. In
this event it can safely be left alone. If the process level shifts, however, points will plot outside the
limits, indicating the need for corrective action on the process. In some cases the points may plot
outside the limits in a favorable direction. This is an indication of the possibility for process
improvement when the source of the process change is detected. The control chart, then, provides
control of a process in the face of measurement and other sources of variation in the sense that it
shows when the process has significantly degraded or improved. This provides a timely opportunity
for assessment of the reasons for the change and hence for positive action on the process.

A control chart, in control for 20 or 30 samples, that is, with all the points plotted within the
limits, is usually considered evidence of a stable process. The center line of such a chart may be
taken as a measure of the process average and used as an input to an acceptance sampling plan.
Charts out of control, that is, with points outside the limits, are an indication of lack of stability.
Such charts can be interpreted to mean that the overall average will not give a true representation of
the data plotted on the chart.
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Case 18013

WAS-724-5-16-24-FQ

MR. R. L. JONES:-

 A few days ago, you mentioned some of the problems
connected with the development of an acceptable form of in-
spection report which might be modified from time to time, in
order to give at a glance the greatest amount of accurate in-
formation.
 The attached form of report is designed to indicate
whether or not the observed variations in the percent of de-
fective apparatus of a given type are significant; that is,
to indicate whether or not the product is satisfactory.  The
theory underlying the method of determining the significance
of the variations in the value of p is somewhat involved when
considered in such a form as to cover practically all types
of problems.  I have already started the preparation of a
series of memoranda covering these points in detail.  Should
it be found desirable, however, to make use of this form of
chart in any of the studies now being conducted within the
Inspection Department, it will be possible to indicate the
method to be followed in the particular examples.

W. A. SHEWHART.

Enc.:
Form of Report.

FIGURE 1.1: The first Shewhart control chart. (Reprinted from Olmstead, P.S., Ind. Qual.
Control, 24, 72, 1967. With permission.)
Process control engineers and inspectors have at their disposal many auxiliary methods for the
analysis of control charts which are used for early detection of an out of control condition before a
point plots outside the limits. They are also used to isolate evidence of the nature of the ‘‘assignable
cause’’ of an out of control point. These methods, covered in the literature of statistical quality
control, should be utilized by qualified individuals to determine the fundamental causes of process
shifts before evidence from control charts which are out of control is used in setting up an
acceptance sampling plan.

Instructions for constructing a control chart will be found in any basic text on quality control
(Burr 2005). Excellent discussion will be found in Wescott (1959) and Knowler (1946), while
factors for determining limits are given in the American Society for Testing and Materials (2002).
A few factors of the control chart are given in the Appendix Table T1.1 for the convenience of the
reader who is familiar with control chart construction and interpretation.
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Still another procedure in process quality control is the process optimization study. As defined by
Mentch (1980) such studies include

1. Process performance check. A grab sample to estimate the characteristics of the process at a
given time.

2. Process performance evaluation. An analysis of past data by control chart methods, which is
used to estimate process capability, limits the process performance if the process were to
remain in a constant state of control.

3. Process capability study. An ongoing, real-time, study of the process including correction of
assignable causes to bring the process into a state of control so that estimates of process
capability can actually be realized or surpassed.

4. Process improvement study. Basic modification of the process through designed experi-
ments and other means when existing process capability is not sufficient to meet required
specifications.

Process capability has been defined by Ekvall and Juran (1974, pp. 9–16) as follows: ‘‘Process
capability is the measured, inherent reproducibility of the product turned out by a process.’’ It is of
utmost importance in acceptance sampling since, in no event, should the requirements of a sampling
procedure exceed the producer’s process capability. When this happens, either a new supplier
should be selected or the specifications should be changed. In like manner, it is sometimes the
case that a consumer’s process can tolerate variation in raw material beyond design requirements
imposed by engineering. This provides the opportunity for widening the specifications, with
associated economic advantages. It is important to determine what variables must be controlled
either through acceptance control or through process control to achieve a desirable steady-state
process level in the consumer’s process. Process optimization studies (on the real process as
installed) can do this, frequently with large cost savings in the process.

Two important aspects of process quality control, control charts, and process capability studies
have been discussed. It should be recognized that successful application of the principles of
acceptance control requires intimate knowledge of process control. The reader is well advised to
consult basic texts on the subject to take full advantage of the synergism that can be achieved by
simultaneous application of both forms of quality control.

Background of Acceptance Quality Control

Development of the statistical science of acceptance sampling can be traced back to the formation
of the Inspection Engineering Department of Western Electric’s Bell Telephone Laboratories in
1924. The department comprised of H. F. Dodge, R. B. Miller, E. G. D. Paterson, D. A. Quarles,
and W. A. Shewhart. Later, H. G. Romig, P. S. Olmstead, and M. N. Torrey became members of
the group. It was directed initially by R. L. Jones with G. D. Edwards becoming its second and long-
term director. Applications to shop operations at the Western Electric Hawthorne plant in Chicago
were later formalized in 1926 by the formation of the Western Electric Committee on Rating
of Quality of Telephone Products and a special committee on Inspection Statistics and Economy.
Early members of these committees included J. A. Davidson, A. B. Hazard, M. E. Berry, E. D. Hall,
J. M. Juran, C. A. Melsheimer, S. M. Osborne, C. W. Robbins, W. L. Robertson, and W. Bartkey
(consultant).
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Out of this group and its lineage came the following early developments among others.

1924 The first control chart
1925–1926 Terminology of acceptance sampling (consumer’s risk, producer’s risk,

probability of acceptance, OC curves, lot tolerance percent defective,
average total inspection, double sampling, Type A and Type B risks);
Lot tolerance percent defective (LTPD) sampling tables

1927 Average outgoing quality limit (AOQL) sampling tables; multiple sampling
1928 Demerit rating system

The 1930s saw applications of acceptance sampling withinWestern Electric and elsewhere. A Joint
Committee for the Development of Statistical Applications in Development and Manufacturing was
formed in 1930 by the American Society of Mechanical Engineers, ASTM, American Institute of
Electrical Engineers, American Statistical Association, and American Mathematical Society with
W. A. Shewhart as chairperson. By the mid-1930s Pearson (1935) had developed British Standards
Institution Standard Number 600, Application of Statistical Methods to Industrial Standardization
and Quality Control, which helped incite interest in England. Also, in England, Jennett and Welch
(1939) published their paper on variables plans entitled, ‘‘The control of proportion defective as
judged by a single quality characteristic varying on a continuous scale.’’Meanwhile, in the same year
in the United States, Romig (1939) submitted his doctoral dissertation to Columbia University on
‘‘Allowable averages in sampling inspection,’’ presenting variables sampling plans along the lines of
the Dodge–Romig tables which had been in use in Western Electric for some time.

The early 1940s saw publication of the Dodge and Romig (1941) ‘‘Sampling inspection
tables,’’ which provided plans based on fixed consumer risk (LTPD protection) and also plans for
rectification (AOQL protection) which guaranteed stated protection after 100% inspection of
rejected lots.

With the war, quality control and, particularly, acceptance sampling came of age. This included
the development by the Army’s Office of the Chief of Ordnance (1942) of Standard Inspection
Procedures of which the Ordnance sampling tables, using a sampling system based on a designated
acceptable quality level (AQL), were a part. The development of the system was largely due to
G. D. Edwards, H. F. Dodge, and G. R. Gause, with the assistance of H. G. Romig and M. N. Torrey.
This work later developed into the Army Service Forces (ASF) tables of 1944 (U.S. Department of
the Army, 1944).

In this period, Dodge (1943) developed an acceptance sampling plan which would perform
rectification inspection on a continuous sequence of product guaranteeing the consumer protection
in terms of the maximum average quality the consumer would receive (AOQL protection). Also,
Wald (1943) put forward his new theory of sequential sampling as a member of the Statistical
Research Group, Columbia University (1945), which later published applications of Wald’s work.
This group was responsible for some outstanding contributions during the war. Its senior scientific
staff consisted of K. J. Arnold, R. F. Bennett, J. H. Bigelow, A. H. Bowker, C. Eisenhart, H. A.
Freeman, M. Friedman, M. A. Girshick, M. W. Hastay, H. Hotelling, E. Paulson, L. J. Savage,
G. J. Stigler, A. Wald, W. A. Wallis, and J. Wolfowitz. Their output consisted of advancements in
variables and attributes sampling in addition to sequential analysis. Some of these are documented
in the Statistical Research Group, Columbia University (1947) under the title Techniques of
Statistical Analysis. They were active in theoretical developments in process quality control, design
of experiments, and other areas of industrial and applied statistics as well. Out of the work of the
Statistical Research Group came a manual on sampling inspection prepared for the U.S. Navy Office
of Procurement and Material. Like the Army Ordnance Tables, it was a sampling system also based
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on specification of an AQL and later published by the Statistical Research Group, Columbia
University (1948) under the title Sampling Inspection. In 1949, the manual became the basis for
the Defense Department’s nonmandatory Joint Army–Navy Standard JAN-105; however, a com-
mittee of military quality control specialists had to be formed to reach a compromise between JAN-
105 and the ASF tables. This resulted in MIL-STD-105A issued in 1950, and subsequently revised
as 105B, 105C, 105D, and 105E. The Statistical Research Group had considered development of a
set of variables plans to match the AQL attributes system it had set forth in the Navy manual.
However, the group was disbanded on September 30, 1945 before it was possible to construct such
tables. Fortunately, the Office of Naval Research supported preparation of such a work at Stanford
University resulting in the book by Bowker and Goode (1952) which was a milestone in the
development of variables sampling plans. The work of the Statistical Research Group has been
documented by Wallis (1980).

Work in the area of acceptance sampling did not end with World War II. Many, if not most, of the
procedures presented in this book were developed later. This brief history, however, has been
presented to place the rest of the book in context so that each method discussed can, in some sense,
be traced to its natural origins. More detailed accounts of the history and development of acceptance
sampling will be found in Dodge (1969a–c; 1970a) and in a series of papers published by the
American Statistical Association (1950) under the title Acceptance Sampling.

Top 10 Reasons for Acceptance Sampling

While much has been written about the need for process control as a means of reducing the
dependency on acceptance sampling, the reality is that sampling will never go away. Here are the
top 10 reasons why acceptance sampling is still necessary:

1. Tests are destructive, necessitating sampling. It is obviously counterproductive to use 100%
sampling with a destructive test. While all the defective material might be eliminated, all the
good material would be eliminated as well, leaving nothing to sell.

2. Process not in control, necessitating sampling to evaluate product. An out-of-control condi-
tion implies erratic behavior which cannot be predicted. Therefore, to evaluate the product it is
necessary to take a random sample of total production after the fact.

3. 100% sampling is inefficient, 0% is risky. The efficiency of 100% inspection has been
estimated at around 80% in screening product. No inspection provides any assurance.
Under sampling, rejected lots rather than individual defective pieces are returned, getting
management’s attention.

4. Special causes may occur after process inspection. Process control ends when the control
chart is plotted, but the product moves on and is affected by subsequent causes on its way to
the customer. Sampling final or incoming product provides assurance against problems
occurring after the process is completed.

5. Need for assurance while instituting process control. The process must operate for some time
to implement control charts and achieve control. The product produced in this period of
unknown control must be evaluated. Sampling is a way to evaluate this product and provide
information useful in the start-up of process control.
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6. Rational subgroups for process control may not reflect outgoing quality. Rational subgroups
are set up to indicate stability of the process (or lack thereof), not for evaluating the totality of
product produced. Random sampling of product provides an accurate representation of the
population sampled.

7. Deliberate submission of defective material. Real-world experience has shown that pressures
of production or profit may lead to fraud. Sampling can help prevent and detect this.

8. Process control may be impractical because of cost, or lack of sophistication of personnel. It
is sometimes not cost-effective to institute process control, yet the product needs to be
evaluated. Sampling is also easier to implement.

9. 100% inspection does not promote process=product improvement. Often 100% inspection is
used as an excuse for not evaluating and controlling the underlying process. Sampling with
feedback of information often leads to process improvement.

10. Customer mandates sampling plan. Customers may insist on mandatory sampling procedures,
which must be met.
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Problems

1. Distinguish between acceptance sampling and acceptance control.

2. Explain why installation of a sampling plan is futile if the level of quality is poor but stable
and cannot be improved.

3. Distinguish between Type A and Type B sampling plans.

4. Distinguish between process quality control and acceptance quality control. How is process
quality control used in acceptance sampling?

5. What are the odds of an incorrect signal of a process change on a conventional Shewhart
chart?

6. What are the four constituents of a process optimization study?

7. Define process capability.

8. What was one of G.D. Edward’s principal contributions to quality control?

9. Which came first, the control chart or AOQL sampling plans? Where were they developed?

10. Who invented continuous sampling plans? When?
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Chapter 2

Probability and the Operating Characteristic Curve

Undoubtedly the most important single working tool in acceptance quality control is probability
theory itself. This does not mean that good quality engineers have to be accomplished probabilists or
erudite mathematical statisticians. They must be aware, however, of the practical aspects of
probability and how to apply its principles to the problem at hand. This is because most information
in quality control is generated in the form of samples from larger, sometimes essentially infinite,
populations. It is vital that the quality engineers have some background in probability theory. Only
the most basic elements are presented here.

Probability

It is important to note that the term probability has come to mean different things to different
people. In fact, these differences are recognized in defining the probability, for there is not just one
but at least three important definitions of the term. Each of them gives insight into the nature of
probability itself. Two of them are objectivistic in the sense that they are subject to verification,
while the third is personalistic and refers to the degree of belief of an individual.

Classical Definition

‘‘If there be a number of events of which one must happen and all are equally likely, and if any
one of a (smaller) number of these events will produce a certain result which cannot otherwise
happen, the probability of this result is expressed by the ratio of this smaller number to the whole
number of events’’ (Whitworth 1965, rule IV). Here probability is defined as the ratio of favorable to
total possible equally likely and mutually exclusive cases.

Example. There are 52 cards in a deck of which 4 are aces. If cards are shuffled so that they are
equally likely to be drawn, the probability of obtaining an ace is 4=52¼ 1=13.

This is the definition of probability which is familiar from high school mathematics.

Empirical Definition

‘‘The limiting value of the relative frequency of a given attribute, assumed to be independent of
any place selection, will be called ‘the probability of that attribute . . . ’.’’ (von Mises 1957, p. 29).
Thus, probability is regarded as the ratio of successes to total number of trials in the long run.

Example. In determining if a penny was in fact a true coin, it was flipped 2000 times resulting in
1010 heads. An estimate of the probability of heads for this coin is .505. It would be expected that
this probability would approach 1=2 as the sequence of tosses was lengthened if the coin were true.

This is the sort of probability that is involved in saying that Casey has a .333 batting average.
It implies that the probability of a hit in the next time at bat is approximately 1=3.
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Subjective Definition

‘‘Probability measures the confidence that a particular individual has in the truth of a particular
proposition, for example, the proposition that it will rain tomorrow’’ (Savage 1972). Thus prob-
ability may be thought of as a degree of belief on the part of an individual, not necessarily the same
from one person to another.

Example. There is a high probability of intelligent life elsewhere in the universe.
Here we have neither counted the occurrences and nonoccurrences of life in a number of

universes, nor sampled universes to build up a ratio of trials. This statement implies a degree of
belief on the part of an individual who may differ considerably from one individual to another.

These definitions have immediate applications in acceptance quality control. Classical probability
calculations are involved in the determination of the probability of acceptance of a lot of finite size,
where all the possibilities can be enumerated and samples taken therefrom. Empirical probabilities
are used when sampling from a process running in a state of statistical control. Here, the process
could conceivably produce an uncountable number of units so that the only way to get at the
probability of a defective unit is in the empirical sense. Subjective probabilities have been used in
the evaluation of sampling plans, particularly under cost constraints. They reflect the judgment of an
individual or a group as to the probabilities involved. While sampling plans have been derived
which incorporate subjective probabilities, they appear to be difficult to apply in an adversary
relationship unless the producer and the consumer can be expected to agree on the specific
subjective elements involved.

There are many sources for information on probability and its definition. Some interesting
references of historic value are Whitworth (1965) on classical probability, von Mises (1957) on
empirical probability, and the Savage (1972) work on subjective probability. Since the classical and
empirical definitions of probability are objectivistic and can be shown to agree in the long run, and
since the empirical definition is more general, the empirical definition of probability will be used
here unless otherwise stated or implied. When subjective probabilities are employed their nature will
be specifically pointed out.

Random Samples and Random Numbers

Random samples are those in which every item in the lot or population sampled has an equal
chance to be drawn. Such samples may be taken with or without replacement. That is, items may be
returned to the population once drawn, or they may be withheld. If they are withheld, the probability
of drawing a particular item from a finite population changes from trial to trial. Whereas, if the items
are replaced or if the population is uncountably large, the probability of drawing a particular item
will not change from trial to trial. In any event, every item should have an equal opportunity for
selection on a given trial, whether the probabilities change from trial to trial or not.

This may be illustrated with a deck of cards. There are 52 cards, one of which is the ace of spades.
Sampling without replacement, the probability of drawing the ace of spades on the first draw is 1 out
of 52, while on the second draw it is 1 out of the 51 cards that remain, assuming it was not drawn on
the first trial. If the cards were replaced as drawn, the probability would be 1 out of 52 on any draw
since there would always be 52 cards in the deck.

Note that if the population is very large, the change in probability when samples are not replaced
will be very small and will remain essentially the same from trial to trial. In a raffle of 100,000
tickets the chances of being drawn on the first trial is 1 in 100,000 and on the second trial 1 in
99,999. Essentially, 0.00001 in each case. Few raffles are conducted in which a winning ticket is
replaced for subsequent draws.
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At the core of random sampling is the concept of equal opportunity for each item in the
population sampled to be drawn on any trial. Sometimes special sampling structures are used
such as stratified sampling in which the population is segmented and samples are taken from the
segments. Formulas exist for the estimation of population characteristics from such samples. In any
event, equal opportunity should be provided within a segment for items to be selected.

To guarantee randomness of selection, tables of random numbers have been prepared. These
numbers have been set up to mimic the output of a truly random process. They are intended to occur
with equal frequency but in a random order. Appendix Table T2.1 is one such table. To use the
random number tables

1. Number the items in the population.

2. Specify a fixed pattern for the selection of the random numbers (e.g., right to left, bottom to
top, every third on a diagonal).

3. Choose an arbitrary starting place and select as many random numbers as needed for the
sample.

4. Choose as a sample those items with numbers corresponding to the random numbers selected.

The resulting sample will be truly representative in the sense that every item in the population will
have had an essentially equal chance to be selected.

Sometimes it is impractical or impossible to number all the items in a population. In such cases
the sample should be taken with the principle of random sampling in mind to obtain as good a
sample as possible. Avoid bias, avoid examining the samples before they are selected. Avoid
sampling only from the most convenient location (the top of the container, the spigot at the bottom,
etc.). In one sampling situation, an inspector was sent to the producer’s plant to sample the product
as a boxcar was being loaded, since it was impossible to obtain a random sample thereafter. Such
strategies as these can help provide randomness as much as the random sampling tables themselves.

Counting Possibilities

Evaluation of the probability of an event under the classical definition involves counting the
number of possibilities favorable to the event and forming the ratio of that number to the total of
equally likely possibilities. The possibilities must be such that they cannot occur together on a single
draw; that is, they must be mutually exclusive. There are three important aids in making counts of
this type: permutations, combinations, and tree diagrams.

Suppose a lot of three items, each identified by a serial number is received, two of which are
good. The sampling plan to be employed is to sample two items and accept the lot if no defectives
are obtained. Reject if one or more are found. Thus, the sampling plan is n¼ 2 and c¼ 0, where n is
the sample size and c represents the acceptance number or maximum number of defectives allowed
in the sample for acceptance of the lot.

If the items are removed from the shipping container one at a time, we may ask in how many
different orders (permutations) the three items can be removed from the box. Suppose the serial
numbers are the same except for the last digit which is 5, 7, and 8, respectively. Enumerating the
orders we have

578 875
758 857
785 587
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The formula for the number of permutations of n things taken n at a time is

Pn
n ¼ n! ¼ n(n� 1)(n� 2) . . . 1

where n!, or n factorial, is the symbol for multiplications of the number n by all the successively
smaller integers down to one. Thus

1! ¼ 1

2! ¼ 2(1) ¼ 2

3! ¼ 3(2)(1) ¼ 6

4! ¼ 4(3)(2)(1) ¼ 24

and so on. It is important to note that we define

0! ¼ 1

In the example, we want the number of permutations of 3 things taken 3 at a time, or

P3
3 ¼ 3! ¼ 3(2)(1) ¼ 6

which agrees with the enumeration.
In how many orders can we select the two items for our sample? Enumerating again:

57 87
75 85
78 58

The formula for the number of permutations of n things taken r at a time is

Pn
r ¼

n!

(n� r)!

Clearly the previous formula for Pn
n is a special case of this formula. To determine the number of

permutations of three objects taken two at a time we have

P3
2 ¼

3!
(3� 2)!

¼ 3!
1!

¼ 3(2)(1)
1

¼ 6

This makes sense and agrees with the previous result since the last item drawn is completely
determined by the previous two items drawn and so does not contribute to the number of possible
orders (permutations).

Now, let us ask how many possible orders are there if some of the items are indistinguishable
one from the other. For example, disregarding the serial numbers, we have one defective item
and two good ones. The good items are indistinguishable from each other and we may ask in
how many orders can we draw one defective and two good items. The answer may be found in
the formula for the number of permutations of n things, r of which are alike (good) and (n� r) are
alike (bad).

Pn
r,(n�r) ¼

n!

r!(n� r)!
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and for example, the answer is

P3
2,(2�1) ¼ P3

2,1 ¼
3!
2!1!

¼ 3(2)(1)
2(1)(1)

¼ 3

Enumerating them we have

B G G

G B G

G G B

The reader may notice the similarity of the formula

Pn
r,(n�r) ¼

n!

r!(n� r)!

and the classic formula for the number of combinations (groups) which can be made from n things
taken r at a time. The formula is

Cn
r ¼

n!

r!(n� r)!

and shows how many distinct groups of size r can be formed from n distinguishable objects. If we
phrase the question, ‘‘in how many ways can we select two objects (to be the good ones) out of
three,’’ we have

Good Bad

Group 1 57 8
75 8

Group 2 78 5
87 5

Group 3 85 7
58 7

or

C3
2 ¼

3!
2!(3� 2)!

¼ 3!
2!1!

¼ 3

Thus we see

Pn
r,(n�r) ¼ Cn

r

In general, the combinatorial formula may be used to determine the number of groupings of various
kinds. For example, the number of ways (groups) to select 4 cards from a deck of 52 to form hands
of 4 cards (where order is not important) is

13 17 25 1

C52
4 ¼ 52!

4! 48!
52 � 51 � 50 � 49 � 48!
4 � 3 � 2 � 1 � 48! ¼ 270,725

////
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Using the classical definition of probability, then, the probability of getting a hand containing all
four aces is

P(four aces) ¼ number of four ace hands

number of four card hands
¼ 1

270,725

Here we have counted groups where order in the group is not important.
In the same way, probabilities can be calculated for use in evaluating acceptance sampling plans.

The plan given in the earlier example was sample size 2; accept when there are no defectives in the
sample. That is n¼ 2 and c¼ 0. To evaluate the probability of acceptance when there is one
defective in the lot of N¼ 3, we would proceed as follows:

1. To obtain probability of acceptance, we must count the number of samples in which we would
obtain 0 defectives in a sample of 2.

2. The probability is the quantity obtained in step 1 divided by the total number of samples of 2
that could possibly be obtained.

Then

1. To obtain samples of 2 having no defectives, we would have to select both items from the two
items which are good. The number of such samples is C2

2 ¼ 1.

2. There are C3
2 ¼ 3 different unordered samples. So the probability of accepting Pa with this

sampling plan is

Pa ¼ C2
2

C3
2

¼ 1
3

The third tool in counting possibilities in simple cases such as this is the tree diagram. Figure 2.1
shows such a diagram for this example, for the acceptance (A) and rejection (R) of samples of
good (G) and bad (B) pieces. Each branch of the tree going downward shows a given sample
permutation. We see that 1=3 of these permutations lead to lot acceptance. Counting the permuta-
tions we have

P3
2 ¼

3!
1!

¼ 6

possible samples, of which

P2
2 ¼

2!
0!

¼ 2
Start

BFirst draw

Second draw

Acceptance decision

G

G G G BB

R R R A R A

G

G

FIGURE 2.1: Tree diagram.
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lead to acceptance. Then, the probability of acceptance is

Pa ¼ P2
2

P3
2

¼ 2
6
¼ 1

3

which shows that the probability of acceptance can be obtained by using either permutations or
combinations.

Probability Calculus

There are certain rules for manipulating probabilities which suffice for many of the elementary
calculations needed in acceptance control theory. These are based on recognition of two kinds of events.

Mutually exclusive events. Two events are mutually exclusive if, on a single trial, the occurrence of
one of the events precludes the occurrence of the other.

Independent events. Two events are stochastically independent if the occurrence of them on a trial
does not change the probability of occurrence of the other on that trial.

Thus the events head and tail are mutually exclusive in a single trial of flipping a coin. They are
also not independent events since the occurrence of either on a trial drives the probability of
occurrence of the other on that trial to zero.

In contrast the events ace and heart are not mutually exclusive in drawing cards since they can
occur together in the ace of hearts. Further, they are also independent since the probability of
drawing an ace is 4=52¼ 1=13. If you know that a heart was drawn, the probability of the card being
also an ace is still 1=13. Note that the events face card and queen are not independent. The
probability of drawing a queen is 4=52¼ 1=13; however, if you know a face card was drawn, the
probability of that card being a queen is now 4=12¼ 1=3.

Trials are sometimes spoken of as being independent. This means the sampling situation is such that
the probabilities of the events being investigated do not change from trial to trial. Flips of a coin are
such as this in that the odds remain 50:50 from trial to trial. If cards are drawn from a deck and not
replaced the trials are dependent, however. Thus, the probability of a queen of hearts is 1=52 on thefirst
draw from a deck, but it increases to 1=51 on the second draw assuming it was not drawn on the first.

Kolmogorov (1956) has developed the entire calculus of probabilities from a few simple axioms.
Crudely stated and somewhat condensed, they are as follows:

1. The probability of an event, E, is always positive or zero, never negative: P(E) � 0.

2. The sumof the probabilities of events in the universeU, or population towhichEbelongs, is one:

P(U) ¼ 1:

3. If events A and B are mutually exclusive, the probability of A or B occurring is

P(A or B) ¼ P(A)þ P(B)

From the axioms, the following consequences can be obtained:

4. The probability of an event must be less than or equal to one, never greater than one: P(E)� 1.

5. The probability of the null set (no event occurring) is zero: P(no event)¼ 0.
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6. The probability of an event not occurring is the complement of the probability of the event:

P(not E) ¼ 1� P(E)

The most useful rules in dealing with probabilities are the so-called

General rule of addition. Shows the probability of A or B occurring on a single trial.

P(A or B) ¼ P(A)þ P(B)� P(A and B)

Clearly, if A and B are mutually exclusive, the term P(A and B)¼ 0 and we have the so-called
special rule of addition.

P(A or B) ¼ P(A)þ P(B)

for A and B mutually exclusive

General rule of multiplication. Shows the probability of A and B both occurring on a single trial
where P(BjA) is the conditional probability of B given A is known to have occurred

P(A and B) ¼ P(A)P(BjA)
¼ P(B)P(AjB)

Clearly, if A and B are independent, the factor P(BjA)¼P(B) since the probability of B is
unchanged even if we know A has occurred (similarly for P(AjB). We then have the so-called
special rule of multiplication

P(A and B) ¼ P(A)P(B), A and B independent

This is sometimes used as a test for the independence of A and B since if the relationship holds, A
and B are independent.

These rules can be generalized to any number of events. The special rules become

P(A or B or C or D) ¼ P(A)þ P(B)þ P(C)þ P(D), A, B, C, D mutually exclusive

P(A and B and C and D) ¼ P(A)P(B)P(C)P(D), A, B, C, D independent

and so on. These are especially useful since they can be employed to calculate probabilities over
several independent trials. The general rule for addition is

P(A or B or C or D) ¼ P(A)þ P(B)þ P(C)þ P(D)

� P(AB)� P(AC)� P(AD)� P(BC)� P(BD)� P(CD)

þ P(ABC)þ P(ABD)þ P(ACD)þ P(BCD)� P(ABCD)

alternating additions and subtractions of subtractions of each higher level of joint probability, while
that for multiplication becomes

P(A and B and C and D) ¼ P(A)P(BjA)P(CjAB)P(DjABC)
when there are four events. Each probability multiplied is conditional on those which went before.

These rules may be illustrated using the example given earlier involving the computation of
the probability of acceptance Pa of a lot consisting of 3 units when one of them is defective and the
sampling plan is n¼ 2, c¼ 0. Acceptance will occur only when both the items in the sample are
good. If we assume random samples are drawn without replacement, the events will be dependent
from trial to trial. We need the probability of a good item on the first draw and a good item on the
second draw.
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Let A¼ {event good on first draw} and B¼ {event good on second draw}
then

P(A) ¼ 2
3

P(BjA) ¼ 1
2

since there are only two pieces left on the second draw. Applying the general rule of multiplication:

Pa ¼ P(A)P(BjA) ¼ 2
3

1
2

� �

¼ 1
3

which agrees with the result of the previous section.

Pa ¼ C2
2

C3
2

¼ 1
3

Now, what if the items were put back into the lot after inspection and the next sample drawn?
This is a highly unusual procedure in practice, but serves as a model for some of the probability
distributions developed later. It simulates an infinite lot 1=3 defective since, using this method of
inspection the lot would never be depleted. Under these conditions the special rule of multiplication
could be employed since the events would be independent of each other from trial to trial. We obtain

Pa ¼ P(A)P(B) ¼ 2
3

2
3

� �

¼ 4
9

This makes sense since the previous method depleted the lot and made it more likely to obtain the
defective unit on the second draw.

Further, suppose two such lots are inspected using the procedure of sampling without replace-
ment. What is the probability that at least one will be accepted? That is, what is the probability that
one or the other will be passed? Here, let C¼ {event first lot is passed} and D¼ {event second lot is
passed}, then the probability both lots are passed is

P(C and D) ¼ 1
3

1
3

� �

¼ 1
9

using the special rule of multiplication since they are inspected independently. Then the probability
of at least one passing is

P(C or D) ¼ P(C)þ P(D)� P(C and D)

¼ 1
3
þ 1
3
� 1
9
¼ 5

9

The probability of not having at least one lot pass is

P(both fail) ¼ 1� P(C or D) ¼ 1� 5
9
¼ 4

9

which could have been calculated using the special rule of multiplication as

P(both fail) ¼ [1� P(C)] [1� P(D)]

¼ 2
3

2
3

� �

¼ 4
9
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Finally, suppose there are five inspectors: V, W, X, Y, Z, each with the same probability of selection.
The lot is to be inspected. What is the probability that the inspector chosen is X, Y, or Z? Since in
this case the use of the inspectors is mutually exclusive, the special rule of addition may be used

P(X or Y or Z) ¼ P(X)þ P(Y)þ P(Z)

¼ 1
5
þ 1
5
þ 1
5

¼ 3
5

These are a few of the tools of probability theory. Fortunately, they have been put to use by theorists
in the design of the methods of acceptance quality control to develop procedures which do not
require extensive knowledge of the subject for application. These methods are presented here in
subsequent chapters. Nevertheless, to gain a true appreciation for the subtleties of acceptance
sampling, a sound background in probability theory is invaluable.

Operating Characteristic Curve

A fundamental use of probability with regard to acceptance sampling comes in describing the
chances of a lot passing sampling inspection if it is composed of a given proportion defective. The
very simplest sampling plan is, of course, as follows:

1. Sample one piece from the lot.

2. If the sampled piece is good, accept the lot.

3. If the sampled piece is defective, reject the lot.

This plan is said to have a sample size n of one and an acceptance number of zero since the sample
must contain zero defectives for lot acceptance to occur; otherwise, the lot will be rejected. That is,
n¼ 1, c¼ 0. Now, if the lot were perfect, if would have no chance of rejection since the sample
would never contain a defective piece. Similarly, if the lot were completely bad there would be no
acceptances since the sample piece would always be defective. But what if the lot were mixed
defective and good? This is where probability enters in. Suppose one-half of the lot was defective,
then the chance of drawing out a defective piece from the lot would be 50:50 and we would have
50% probability of acceptance. But it might be one-quarter defective leading to a 75% chance for
acceptance, since there are three-quarters good pieces in the lot. Or again, the lot might be three-
quarters defective leading to a 25% chance of finding a good piece. Since the lot might be any of a
multitude of possible proportions defective from 0 to 1, how can we describe the behavior of this
simple sampling plan? The answer lies in the operating characteristic (OC) curve which plots the
probability of acceptance against possible values of proportion defective. The curve for this
particular plan is shown in Figure 2.2.

We see that for any proportion defective p, the probability of acceptance Pa is just the comple-
ment of p; that is

Pa ¼ 1� p

This is only true of the plan n¼ 1, c¼ 0. Thus the OC curve stands as a unique representation of the
performance of the plan against possible alternative proportions defective. A given lot can have only
one proportion defective associated with it. But we see from the curve that lots which have a
proportion defective greater than 0.75 have less than a 25% chance to be accepted and those lots
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FIGURE 2.2: OC curve, n¼ 1, c¼ 0.
with less than 0.25 defective pieces will have greater than a 75% chance of pass. The OC curve
gives at a glance a characterization of the potential performance of the plan, telling how the plan will
perform for any submitted fraction defective.

Now consider the plan n¼ 5, c¼ 0. The OC curve can be easily constructed using the rules for
manipulation of probabilities given above. First, however, let us assume we are sampling from a
very large lot or better yet from the producer’s process so the probabilities will remain essentially
independent from trial to trial. Note that the probability of acceptance Pa for any proportion
defective p can be computed as

Pa ¼ (1� p)(1� p)(1� p)(1� p)(1� p)

¼ (1� p)5

since all the pieces must be good in the sample of 5 for lot acceptance. To plot the OC curve we
compute Pa for various values of p

p (1� p) Pa

.005 .995 .975

.01 .99 .951

.05 .95 .774

.10 .90 .590

.20 .80 .328

.30 .70 .168

.40 .60 .078

.50 .50 .031

and graph the result as in Figure 2.3.
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FIGURE 2.3: OC curve, n¼ 5, c¼ 0.
We see from Figure 2.3 that if the producer can maintain a fraction defective less than .01 the
product will be accepted 95% of the time or more by the plan. If product is submitted which is 13%
defective, it will have 50:50 chance of acceptance, while product which is 37% defective has only a
10% chance of acceptance by this plan. It is conventional to designate proportions defective having
a given probability of acceptance as probability points. Thus, a fraction defective having probability
of g is shown as pg. Particular probability points may be designated as follows:

Pa Term Abbreviation Probability Point

.95 Acceptable quality level AQL p.95

.50 Indifference quality IQ p.50

.10 Lot tolerance percent defective
(10% limiting quality)

LTPD [LQ(.10)] p.10

Designation of these points gives a quick summary of plan performance. The term acceptable
quality level (AQL) is commonly used as the 95% point of probability of acceptance, although most
definitions do not tie the term to a specific point on the OC curve and simply associate it with a
‘‘high’’ probability of acceptance. The term is used here as it was used by the Columbia Statistical
Research Group in preparing the Navy (1946) input to the JAN-STD-105 standard. LTPD refers to
the 10% probability point of the OC curve and is generally associated with percent defective. The
advent of plans controlling other parameters of the distribution led to the term limiting quality (LQ),
usually preceded by the percentage point controlled. Thus, ‘‘10% limiting quality’’ is the LTPD.

The OC curve is often viewed in the sense of an adversary relationship between the producer and
the consumer. The producer is primarily interested in insuring that good lots are accepted while the
consumer wants to be reasonably sure that bad lots will be rejected. In this sense, we may think of a
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producer’s quality level (PQL) and associated producer’s risk a and a consumer’s quality level
(CQL) with associated consumer’s risk b. Viewed against the OC curve the PQL and CQL appear as
in Figure 2.4.

Plans are often designated and constructed in terms of these two points and the associated risks.
As indicated above, the risks are often taken as a¼ .05 for the producer’s risk and b¼ .10 for the
consumer’s risk.

The OC curve sketches the performance of a plan for various possible proportions defective. It is
plotted using appropriate probability functions for the sampling situation involved. The probability
functions are simply formulas for the direct calculation of probabilities which have been developed
using the appropriate probability theory.
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Problems

1. A lot of 50 items contains 1 defective unit. If one unit is drawn at random from the lot, what is
the probability that the lot will be accepted if c¼ 0?

2. A bottle of 500 aspirin tablets is to be randomly sampled. The tablets are allowed to drop out
one at a time to form a string, those coming out first at one end, those last at the other.
A random number from 1 to 1000 is selected and divided by 2, rounding up. The tablet in the
corresponding numerical position is selected. Is this procedure truly random?

3. Two out of six machines producing bottles are bad. The bottles feed in successive order into
groups of six which are scrambled during further processing and packed in six-packs. In how
many different orders can the two defective bottles appear among the six?

4. Six castings await inspection. Two of them have not been properly finished. The inspector will
pick two and look at them. How many groups of two can be formed from the six castings?
How many groups of two can be formed from the two defective castings? What is the
probability that the inspector will find both castings looked at are bad?

5. Form a probability tree to obtain the probability that the inspector will find both castings bad
in Problem 4.

6. Use the probability calculus to find the probability that the inspector will find two bad castings
in selecting two. Why is it not 2=6� 2=6¼ 4=36¼ 1=9? What is the probability that they are
both good? What is the probability that they are both the same? What type events allow these
probabilities to be added?

7. At a given quality level the probability of acceptance under a certain sampling plan is .95.
If the lot is rejected the sampling plan is applied again, ‘‘just to be sure,’’ and a final decision is
made. What is the probability of acceptance under this procedure?

8. Draw the OC curve for the plan n ¼ 3, c¼ 0. What are the approximate AQL, IQ, and LTPD
values for this plan?

9. In a mixed acceptance sampling procedure two types of plans are used. The first plan is used
only to accept. If the lot is not accepted, the second plan is used. If both type plans have
PQL¼ .03, CQL¼ .09 with a¼ .05 and b¼ .10. What is the probability of acceptance of the
mixed procedure when the fraction defective is .09?

10. At the IQ level the probability of acceptance is .5. In five successive independent lots, what is
the probability that all fail when quality is at the IQ level? What is the probability that all pass?
What is the probability of at least one failure?
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Chapter 3

Probability Functions

Many sampling situations can be generalized to the extent that specific functions have proved
useful in computing the probabilities associated with the operating characteristic curve and other
sampling characteristics.

These are functions of a random variable X which take on specific values x at random with a
probability evaluated by the function. Such functions are of two types:

Frequency function. Gives the relative frequency (or density) for a specific value of the random
variable X. It is represented by the function f(x).

Distribution function. Gives the cumulative probability of the random variable X up to and
including a specific value of the random variable. It can be used to obtain probability over a
specified range by appropriate manipulation. It is represented by F(x).

In the case of a discrete, go-no-go, random variable,

f (x) ¼ P(X ¼ x)

and the distribution function is simply the sum of the values of the frequency function up to and
including x

F(x) ¼
XX

i¼0

f (x), X discrete

When X is continuous, i.e., a measurement variable, it is the integral from the lowest possible
value of X, taken here to be �1, up to x:

F(x) ¼
ðx

�1
f (t)dt, X continuous

where the notation

ðb

a

f (t)dt

may be thought of as representing the cumulative probability of f(t) from a lower limit of a to an
upper limit of b. In either case, these functions provide a tool for assessment of a sampling plans and
usually have been sufficiently well tabulated to avoid extensive mathematical calculation.
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The probability functions can be simply illustrated by a single toss of a six-sided die. Here the
random variable X is discrete and represents the number of spots showing on the upward face of the
die. It takes on the values 1, 2, 3, 4, 5, and 6. This is called the sample space. Since the probability of
any of these values is constant, namely 1=6, the frequency function is

f (x) ¼ 1
6
, x ¼ 1, 2, 3, 4, 5, 6

and the distribution function is

F(x) ¼
Xx

i¼1

1
6
¼ x

6

With these it is possible to determine the probability of rolling a 1

f (1) ¼ 1
6

or of getting a result of 3 or less

F(3) ¼ 3
6

Values of the random variable over a range may be found by subtraction. Thus, the probability
of throwing a 4 or a 5 is

P(4 or 5) ¼ P(X � 5)� P(X � 3)

¼ F(5)� F(3) ¼ 5
6
� 3
6
¼ 2

6

Probability Distributions

Using the frequency function, it is possible to find the distribution of probabilities over all
possible values of the random variable X. The frequency function and the distribution function
may then be displayed in tabular form as follows:

X f(x) F(x)

1 1=6 1=6
2 1=6 2=6
3 1=6 3=6
4 1=6 4=6
5 1=6 5=6
6 1=6 6=6

When plotted, the probability distribution is shown in terms of its frequency function in Figure 3.1
and in terms of its distribution function in Figure 3.2.
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FIGURE 3.1: Frequency function for die.
Now consider a continuous distribution. An example might be the position of the second hand of
watches when they stop. The distribution of these values could be assumed to be rectangular in the
interval from 0 to 60. The frequency function of such a distribution is

f (x) ¼ 1
60

, 0 � x < 60

and its distribution function is

F(x) ¼ x

60
, 0 � x < 60

If measured close enough, there is an infinity of possible positions at which the second hand might
stop (e.g., 47.2186327 . . . s). The probability of stopping exactly at any given position, specified to
an infinity of possible decimal places, is infinitesimally small. This is why the frequency function is
often referred to as a probability density function in the continuous case. It shows density, not
probability. This is true for all continuous distributions. The distribution function cannot be obtained
0 1 2 3 4 5 6 x

1/6

2/6

3/6

4/6

5/6

6/6

F(
x)

FIGURE 3.2: Distribution function for die.
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FIGURE 3.3: Frequency function for watch stoppage.
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FIGURE 3.4: Distribution function for watch stoppage.
by summing the values of the frequency function in the same sense as with discrete data but requires
use of the calculus. Thus

F(x) ¼
ðx

0

f (t)dt

F(x) ¼
ðx

0

1
60

dt

F(x) ¼ x

60
, 0 � x < 60

A plot of the probability distribution is given in Figure 3.3 and a graph of the distribution function is
given in Figure 3.4. Such graphs are useful in visualizing the shape, nature, and properties of
distribution functions.

Measures of Distribution Functions

There are several important measures of distribution functions which show location and spread of
the distribution. The most important measure of location, or central tendency, is the first moment of
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the distribution, or its mean (center of gravity). It gives the arithmetic average of the values in the
distribution and is its expected value. The mean of a distribution is calculated as follows.

m ¼
X

all x

xf (x), discrete distribution

or

m ¼
ð1

�1
xf (x)dx, continuous distribution

where the limits for the continuous distribution are taken at the extreme values of X.
For the discrete distribution of the results of a toss of the die, we have

m ¼ 1
1
6

� �

þ 2
1
6

� �

þ 3
1
6

� �

þ 4
1
6

� �

þ 5
1
6

� �

þ 6
1
6

� �

¼ 3:5

while for the distribution of the second hand

m ¼
ð60

0

x
1
60

dx ¼ x2

2(60)

�
�
�
�
�

60

0

¼ 3600
120

¼ 30

Note, that for a finite population of size N,

m
Sx

N

Other measures of location of a distribution are the median (middle value) and the mode (most
frequency occurring value).

The standard deviation stands as the primary measure of the spread of a distribution. It is the
square root of the second central moment about the mean (moment of inertia). For discrete data, it is
calculated as

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S(x� m)2f (x)
q

For continuous data, the variance or square of the standard deviation is calculated as

s2 ¼
ð1

�1
(x� m)2f (x)dx

so

s ¼
ffiffiffiffiffi
s2

p
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The standard deviation is the root-mean-square average deviation of an observation from the mean.
In this sense, it can be considered to measure the average distance of an observation from the mean.

For the results of the die, we have

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1� 3:5)2
1
6

� �

þ (2� 3:5)2
1
6

� �

þ (3� 3:5)2
1
6

� �

þ (4� 3:5)2
1
6

� �

þ (5� 3:5)2
1
6

� �

þ (6� 3:5)2
1
6

� �

v
u
u
u
u
u
u
t

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:25þ 2:25þ 0:25þ 0:25þ 2:25þ 6:25

6

r

¼
ffiffiffiffiffiffiffiffiffi
17:5
6

r

¼ 1:71

Note that for a finite population of size N,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S(x� m)2

N

s

The standard deviation of the continuous distribution of stopping times of the second hand is

s2 ¼
ð60

0

(x� 30)2
1
60

dx

¼
ð60

0

(x2 � 60xþ 900)
1
60

dx

¼ x3

180
� 60x2

120
þ 900x

60

�
�
�
�

60

0

¼ 603

180
� 603

120
þ 900(60)

60
¼ 1200� 1800þ 900

¼ 300

so

s ¼
ffiffiffiffiffiffiffiffi
300

p
¼ 17:3

The other principal measure of spread used in acceptance sampling is the range (the difference
between the highest and the lowest observed values). This is not usually applied to populations, but
rather to measure the spread in sample data. The primary measures of sample location and spread are
the sample mean (X) and the sample standard deviation (s). The appropriate formulas for a sample of
size n are

X ¼ Sx

n
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and

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S(x� �x)2

n� 1

s

The n� 1 denominator in the standard deviation formula can be shown to be necessary to make the
expected (mean) value of s2 equal to s2 when the sample variances are averaged over all possible
samples of size n from the population. Often sample estimates are denoted with a carat over the
symbol for the parameter. Thus, for example, we have ŝ¼ s with measurements data and use the
symbol p̂ to represent an estimate of p from attributes data.

Hypergeometric Distribution

The hypergeometric distribution is fundamental to much of acceptance sampling. It is applicable
when sampling an attribute characteristic from a finite lot without replacement. Here

N¼ lot size, N> 0
p ¼ proportion defective in the lot, p¼ 0, 1=N, 2=N, . . . , 1
q ¼ proportion effective in the lot, q¼ 1� p
n ¼ sample size, n¼ 1, 2, . . . , N
x ¼ number of occurrences, x¼ 0, 1, 2, . . . , n

Its frequency function is

f (x) ¼ CNp
x CNq

n�x

CN
n

where, because of discreteness in the lot, the proportion defective is restricted to one of the values
p¼ 0, 1=N, 2=N, 3=N, . . . , 1. A recursion formula to obtain successive values of the hypergeometric
distribution is

f (xþ 1) ¼ (n� x)(Np� x)

(xþ 1)(Nqþ x� nþ 1)
f (x)

The hypergeometric was, in fact, the distribution used in Chapter 2 to obtain the probability of a
four-card hand of aces; there

N ¼ 52, p ¼ 4
52

, q ¼ 48
52

, n ¼ 4

Now

Np ¼ 52
4
52

¼ 4

and

Nq ¼ 52
48
52

¼ 48
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where
Np is the number of defective units in the lot
Nq is the number of effective units in the lot

The formula gives

f (4) ¼ C4
4C

48
0

C52
4

F(4) ¼
4!
4!0!

48!
0!48!

52!
4!48!

¼ 4!48!
52!

¼ 4 � 3 � 2 � 1
52 � 51 � 50 � 49 ¼ 1

270725

and we see the usefulness of a ready-made probability function in solving a problem.
Again, in the acceptance sampling problem of Chapter 2, the plan n¼ 2, c¼ 0 was applied to a lot

of size 3 containing 1 defective. Since sampling was without replacement, the hypergeometric
distribution is applicable. Here

N ¼ 3, Np ¼ 1, Nq ¼ 2, n ¼ 2

and

f (0) ¼ C1
0C

2
2

C3
2

¼
1!
0!1!

2!
2!0!

3!
2!1!

¼ 1 � 1
3

¼ 1
3

as before.
In this simple problem, it may be perfect to completely specify the distribution for 0 or 1

defectives in a sample of 2. Using the recursion formula, we can list out the distribution as

x p(x)

0 1=3
1 2=3

since f(1) may be obtained from f(0) by

f (1) ¼ f (0þ 1) ¼ (2� 0)(1� 0)
(0þ 1)(2þ 0� 2þ 1)

1
3
¼ 2

1
3

� �

¼ 2
3

For the hypergeometric distribution, the mean is

m ¼ np ¼ 2
1
3

� �

¼ 2
3

Thus, we would expect to get an average of two defective units in every three draws.
The standard deviation is

s ¼ ffiffiffiffiffiffiffiffi
npq

p
ffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N � 1

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3
1
3

� �
2
3

� �s ffiffiffiffiffiffiffiffiffiffiffi
3� 2
3� 1

r

¼
ffiffiffi
1
3

r

¼ :577
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which represents the average distance of an observation from the mean using the root-mean-square
average. Since the mean is 2=3, we see that one-third of the observations (which are zeros) deviate
from the mean by 2=3 and two-thirds of the observations, the ones, deviate from the mean by 1=3.
Taking the arithmetic average we obtain the mean deviation (MD)

MD ¼ (1=3)(2=3)þ (2=3)(1=3)
(1=3)þ (2=3)

¼ 4
9
¼ :444

Also, if we had used the mode as an average, the modal deviation (MOD) is

MOD ¼ 1
3
¼ :333

The median deviation is also .333. And so the standard deviation can be seen to be just one method
of computing the average distance of an observation from the mean.

Binomial Distribution

Undoubtedly the most used distribution in acceptance sampling is the binomial. It complements
the hypergeometric in the sense that it is employed when sampling an attributes characteristic from
an infinite lot (or process) or from a finite lot when sampling with replacement. Here

n¼ sample size, n> 0
p¼ proportion defective, 0 � p � 1
q¼ proportion effective, q¼ 1� p
x¼ number of occurrences, x¼ 0, 1, 2, . . . , n

Its frequency function is

f (x) ¼ Cn
xp

x(1� p)n�x ¼ Cn
xp

xqn�x

The mean of the binomial distribution is

m ¼ np

and its standard deviation is

s ¼ ffiffiffiffiffiffiffiffi
npq

p

Values of the frequency function can be calculated recursively using the formula:

f (xþ 1) ¼ (n� x)

(xþ 1)
p

q
f (x)

As an illustration of the binomial distribution, consider the sampling plan n¼ 5, c¼ 0 presented in
Chapter 2. In setting up such a plan it may be desirable to obtain the distribution of the number of
defectives in a sample of 5 when p is at the producer’s process average proportion defective, say
p¼ .01. We have

f (0) ¼ C5
0(:01)

0(1� :01)5 ¼ 5!
0!5!

(1)(:99)5 ¼ :951
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Similarly

f (1) ¼ C5
1(:01)

1(1� :01)5�1 ¼ 5!
1!4!

(:01)(:99)4 ¼ 5(:01)(:961) ¼ :048

and using the recursion formula for f(2)

f (2) ¼ f (1þ 1) ¼ (5� 1)
(1þ 1)

:01
:99

(:048) ¼ :001

so that the distribution of the number defective is

x f(x)

0 .951
1 .048
2 .001
3 .000
4 .000
5 .000

It is apparent that it is highly unlikely to obtain 3, 4, or 5 defectives in application of this plan. Such
a result would be a clear indication that the process proportion defective is higher than .01.

For this distribution, the mean is

m ¼ 5(:01) ¼ :05

and the standard deviation is

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5(:01)(:99)

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
:0495

p
¼ :22

It should be noted that in using tables for this distribution, it is possible to use 1� p as an argument
instead of p and vice versa. This is done using the relationship:

B(xjn, p) ¼ 1� B(n� x� 1jn, 1� p)

where B(xjn, p) is read as the binomial distribution function evaluated at x given parameters n and p.
Thus, for example, B(1j5, .01)¼ .999 which may be obtained as

B(1j5, :01) ¼ 1� B(3j5, :99)

¼ 1�
X3

x¼0

C5
x (:99)

x(:01)n�x

¼ 1� C5
0(:99)

0(:01)5 þ C5
1(:99)

1(:01)4 þ C5
2(:99)

2(:01)3 þ C5
3(:99)

3(:01)2
� �

¼ :999

The Larson (1966) nomograph for the binomial distribution is extremely useful in acceptance
sampling applications (Figure 3.5). The probability of c or fewer successes in a sample of n for
� 2008 by Taylor & Francis Group, LLC.
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FIGURE 3.5: Larson binomial nomograph. If p is less than .01, set kp on the p-scale and n=k on
the n-scale, where k¼ 0.01=9, rounded upward conveniently. (From Larson, H.R., Ind. Qual.
Control, 23(6), 273, 1966. With permission.)
a specific proportion defective p is characterized by a single line on the chart. The point representing
p is set on the left scale, the pair of values n and c determine a point in the grid, and the cumulative
probability P(x � c) is read from the right scale. Thus, when p¼ .25, the plan n¼ 20, c¼ 6 has
P(x� 6)¼ .79, which is, of course, the probability of acceptance. A straight line connecting any two
of the points representing p, (n, c) or P(X � c) will give the third. Thus, the Larson nomograph
is a very versatile tool for use in evaluating acceptance-sampling plans.
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Poisson Distribution

The Poisson distribution is used in calculating the characteristics of sampling plans which specify
a given number of defects per unit such as the number of defective rivets in an aircraft wing or the
number of stones allowed in a piece of glass of a given size. The parameter in the Poisson
distribution is simply m. Here

m¼mean number of defects, m> 0
x ¼ number of occurrences, x¼ 0, 1, 2, . . .

and its frequency function

f (x) ¼ mxe�m

x!

where e¼ 2.71828 . . . . Values of e�x are shown in Appendix Table T3.1. The mean and standard
deviation are simply

m ¼ m, s ¼ ffiffiffiffi
m

p

Successive values of the Poisson distribution can be calculated using the recursion formula:

f (xþ 1) ¼ m

xþ 1
f (x)

Suppose an importer of glassware wishes to insure that the process average of his supplier is no
more than a specified two bubbles per piece. The number of bubbles would be expected to vary from
piece to piece. The Poisson distribution can be used to determine how the number of bubbles per
piece would vary if the producer maintained the agreed upon average. Evaluating the Poisson
distribution in this case, we obtain

f (0) ¼ 20e�2

0!
¼ e�2 ¼ :1353

f (1) ¼ 21e�2

1!
¼ 2e�2 ¼ :2707

f (2) ¼ 22e�2

2!
¼ :2707

and so on. Using the recursion relationship, subsequent values can be obtained. For example,

f (3) ¼ f (2þ 1) ¼ 2
3
(:2707) ¼ :1805

f (4) ¼ f (3þ 1) ¼ 2
4
(:1805) ¼ :0902

f (5) ¼ f (4þ 1) ¼ 2
5
(:0902) ¼ :0361

f (6) ¼ f (5þ 1) ¼ 2
6
(:0361) ¼ :0120

P(X > 6) ¼ 1� :1353� :2707 � :2707� :1805� :0902� :0361� :0120 ¼ :0045
� 2008 by Taylor & Francis Group, LLC.



Note that there is no upper limit on the number of bubbles that could be obtained, so that the
probability distribution is

x f(x)

0 .1353
1 .2707
2 .2707
3 .1805
4 .0902
5 .361
6 .0120
>6 .0045

We see that pieces with more than six bubbles would be very rare, occurring less than half a percent of
the time. On the average we would expect two bubbles per piece with a standard deviation of

s ¼
ffiffiffi
2

p
¼ 1:41

A very useful tool in determining Poisson probabilities is the Thorndyke chart (Figure 3.6). This
chart shows probability of x or less on the vertical axis and gives values of m on the horizontal axis.
To use the chart, a vertical line is drawn at m for the Poisson distribution to be evaluated. Its
intersection with the curves for x¼ 0, 1, 2, . . . , determines the cumulative probability of x or less
defects when read on the probability axis horizontally from the intersection. This chart was
developed by Thorndyke (1926) and was subsequently modified by Dodge and Romig (1941).

f-Binomial Distribution

The f-binomial distribution is well known as an approximation of the binomial; however, it is
useful as a distribution in its own right. It describes the distribution of defects in random samples
without replacement from a finite population containing a known number of defects (Schilling
2005). Here

N ¼ lot size, N > 0
n ¼ sample size, n> 0
D ¼ number of defects in the lot, D � 0
x ¼ number of occurrences, 0 � x � D

Its frequency function is

f (x) ¼ D

x

� �
n

N

� 	x N � n

N

� �D�x

A recursion formula to obtain successive values of the f-binomial distribution is

f (xþ 1) ¼ D� x

xþ 1

� �
n

N � n

� 	
f (x)
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where, of course

f (0) ¼ N � n

N

� �D

For the f-binomial distribution, the mean is

m ¼ Dn

N

and the standard deviation is

s ¼ ffiffiffiffi
m

p
ffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N

r

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N � n)=N

p
acts as a finite population correction factor to the usual Poisson infinite

population standard deviation,
ffiffiffiffi
m

p
.

The properties of the f-binomial can be found from the conventional binomial distribution using
the following relations:

Binomial f-Binomial

n D
p n=N
x x

As an example, suppose there are two defects in a lot of 10. A sample of 4 is taken from the lot.
Then, using the recursion formula where N¼ 10, n¼ 4, and D¼ 2, we have

f (0) ¼ N � n

N

� �D

¼ 10� 4
10

� �2

¼ :36

f (1) ¼ f (0þ 1)

¼ D� x

xþ 1

� �
n

N � n

� 	
f (0)

¼ 2� 0
0þ 1

� �
4

10� 4

� �

(0:36)

¼ 2
1

� �
4
6

� �

(0:36)

¼ 0:48

f (2) ¼ f (1þ 1)

¼ 2� 1
1þ 1

� �
4

10� 4

� �

(0:36)

¼ 1
2

� �
4
6

� �

(0:48)

¼ 0:16
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Also, the mean of this distribution is

m ¼
XD

x¼0

xf (x) ¼ 0(0:36)þ 1(0:48)þ 2(0:16) ¼ 0:80

or

m ¼ Dn

N
¼ (2)(4)

10
¼ 0:80

and the variance is

s2 ¼
XD

x¼0

(x� m)2f (x) ¼ (0� 0:80)2(0:36)þ (1� 0:80)2(0:48)þ (2� 0:80)2(0:16) ¼ 0:48

or

s ¼ ffiffiffiffi
m

p
ffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N

r

¼
ffiffiffiffiffiffiffiffiffi
0:80

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 4
10

r

¼ 0:6928

and

s2 ¼ (0:6928)2 ¼ 0:48

Negative Binomial Distribution

It is sometimes necessary to determine the number of random trials required to obtain a given
number of defectives. The negative binomial is the probability distribution which is used to obtain
the probability of a given number of trials up to and including the xth defective. The parameters of
the negative binomial distribution are similar to those of the binomial itself. Here

n¼ number of trials to and including the xth defective, n � x
p¼ proportion defective, 0 � p � 1
q¼ proportion effective, q¼ 1� p
x¼ number of occurrences, x¼ 1, 2, . . . ,

Its frequency function may be represented as b�1(njx, p) so that

f (n) ¼ b�1(n x, p) ¼ Cn�1
x�1p

xqn�x
�
�

with a mean of

m ¼ x

p

and a standard deviation of

s ¼
ffiffiffiffiffi
xq

p
p
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Successive values of the negative binomial distribution may be calculated using the recursion
relation:

f (nþ 1) ¼ q
n

n� xþ 1
f (n)

The negative binomial gives the number of trials to a fixed number of successes, rather than the
number of successes in a fixed number of trials as does the binomial. The term negative binomial
relates to the fact that the successive values of the frequency function can be determined from an
expansion of

1
p
� q

p

� ��x

which, of course, is of the binomial form.
Sometimes called the Pascal or Pólya distribution, the cumulative negative binomial is related

to the cumulative binomial by the relation:

Xn

i¼x

Ci�1
x�1p

xqi�x ¼ 1�
Xx�1

i¼0

Cn
i p

iqn�i

which shows that the negative binomial distribution function for up to n trials to obtain x successes
is equal to the complement of the binomial distribution function for x� 1 successes in n trials. Using
B�1(njx, p) for the negative binomial distribution function and B(xjn, p) for the binomial distribution
function, we have

B�1(njx, p) ¼ 1� B(x� 1jn, p)

and individual terms are simply

b�1(njx, p) ¼ x

n
b(x n, p)j

Consider the sampling plan which was used earlier to illustrate the binomial distribution when
p¼ .01. Namely, n¼ 5, c¼ 0. Suppose we wish to calculate the probability of 1, 2, 3, 4, 5, or more
trials before finding a defective in random samples from a large lot. Using the negative binomial
distribution, we have

f (1) ¼ C1�1
1�1(:01)

1(:99)1�1

¼ C0
0(:01)(1)

¼ 1(:01)(1) ¼ :01

also

f (2) ¼ C2�1
1�1(:01)

1(:99)2�1

¼ C1
0(:01)(:99)

¼ 1(:01)(:99) ¼ :0099
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and tabulating the probability of 3 and 4 trials before finding a defective using the recursion
formula:

f (3) ¼ (:99)
2

2� 1þ 1
(:0099) ¼ :0098

f (4) ¼ (:99)
2

3� 1þ 1
(:0098) ¼ :0097

and finally

f (5) ¼ C5�1
1�1(:01)

1(:99)4

¼ 1(:01)1(:99)4 ¼ :0096

so that

p(>5) ¼ 1� :01� :0099� :0098� :0097� :0096 ¼ :951

and the distribution is

n F(n)

1 .01
2 .0099
3 .0098
4 .0097
5 .0096
>5 .951

The expected number of trials to a defective is

m ¼ 1
:01

¼ 100

and the standard deviation of the number of trials on which the first defective occurs is

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1(:99)
:01

r

¼ 99:5

which indicates a large spread in the number of trials to a defective.
As a check on the probability distribution, we may observe

B�1(njx, p) ¼ 1� B(x� 1jn, p)
B�1(5j1, :01) ¼ 1� B(0j5, :01)

:049 ¼ 1� :951

¼ :049

where the binomial probability was calculated previously in the discussion of binomial probabilities.
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Exponential and Continuous Distributions

Continuous distributions are extremely useful in acceptance sampling, although somewhat more
complicated and restrictive in their use. Sampling plans based on attributes data are typically
nonparametric by nature; that is, it is not necessary to know the shape or parameters of the
distribution of any measurements involved to use an attributes plan. This is not generally true for
the variables sampling plans which are based on measurements (variables) data. These distributions
are usually continuous and require specification of shape and parameters, such as measures of
location and spread. We will consider two such distributions, the exponential and the normal. We
shall also consider the Weibull family of distributions which includes the exponential as a special
case and which can be used to approximate the normal.

The exponential distribution is used extensively in evaluating acceptance plans for reliability and
life testing. It is distinguished by a constant failure rate. That is, the probability of future failure is
constant regardless of how long a unit has been in operation. The parameter of this function is
simply m. Here

m¼mean of the distribution, m> 0
x ¼measurement distributed, x � 0

and its frequency (density) function is

f (x) ¼ 1
m
e�x=m

The density is not as useful as the frequency function for discrete distributions. As a matter of fact,
evaluation of this function will not lead to the probability associated with any given point in the
continuum, since the probability of a point is zero. Consequently, the density function must be
integratedover a rangeofpossible valuesof the argument toobtain aprobability.Thismaybeexpressed
in terms of the distribution function. The distribution function for the exponential distribution is

F(x) ¼
ðx

0

1
m
e�t=m dt ¼ �m

m
e�t=m

�
�
�
x

0
¼ �e�t=m þ 1

and

F(x) ¼ 1� e�x=m

The mean of the exponential distribution is, of course, m¼m, while, simply enough, its standard
deviation is s¼m. Many problems involving the exponential distribution are couched in terms of its
(constant) failure rate l which is simply

l ¼ 1
m

Consider a requirement that the mean life of a power transistor must be greater than 5000 h. That is,
its failure rate (h�1) must be less than

l ¼ 1
5000

¼ :0002
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Suppose a random unit is tested for 500 h. What is the probability that it will fail in that period
if it comes from a process with mean life of exactly 5000 h?

F(500) ¼ 1� e�500=5000

¼ 1� e�0:1

¼ 1� :905 ¼ :095

where the value of e�0.1 was obtained from Appendix Table T3-1. Both the mean and the standard
deviation of this distribution are 5000 h.

Values of the distribution function of the exponential distribution may be found by using the
Thorndyke chart (Figure 3.6) for the Poisson distribution. Enter with a value of m on the horizontal
axis equal to the absolute value of the exponent in the exponential distribution and read the
cumulative probability associated with x¼ 0. This is e�m, which when subtracted from 1 gives
the exponential distribution function. A check of that chart will show that in entering the x-axis with
a value of 0.1 and reading the y value for the curve c¼ 0, a value of roughly .905 is obtained,
subtracting from 1 gives .095. This agrees with the previous calculation.

Weibull Distribution

The Weibull distribution may be thought of as a generalization of the exponential distribution
incorporating parameters for location, spread, and shape. The distribution is defined for positive
values of x, starting at 0. The location parameter g adjusts the distribution to start at a value g, other
than 0. The scale parameter h or characteristic life is the x value for which F(x� g)¼ .6321 for any
Weibull shape. The shape parameter b gives the distribution flexibility in shape so that it can be
used to fit a variety of empirical and theoretical failure distributions. Here

g ¼ location (minimum life) parameter, g> 0
h¼ scale parameter, h> 0
b¼ shape parameter, b> 0
x ¼measurement distributed, x � g

The frequency (density) function is

f (x) ¼ b

h

x� g

h

� �b�1

e�[(x�g)=h]b

with distribution function

F(x) ¼ 1� e�[(x�g)=h]b

The mean of the distribution is

m ¼ g þ hG 1þ 1
b

� �
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and its standard deviation

s ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G 1þ 2
b

� �

� G2 1þ 1
b

� �s

where G(x) is the gamma function such that

G(x) ¼
ð1

0

e�t tx�1dt ¼ (x� 1)!

the factorial function for x� 1, if x is a positive integer.
The exponential distribution is a special case of the Weibull distribution when b¼ 1. It will be

seen that when this is the case and the location parameter g¼ 0, m¼h the mean occurs at the point
at which F(x)¼ .6321. Also s¼h.

The shape parameter b allows the distribution to take on a variety of shapes as shown in Figure
3.7. Specifically, we have

Exponential distribution: b¼ 1
Rayleigh distribution: b¼ 2
Approximate normal distribution: b¼ 3.44

The value b¼ 3.44 is given as the value of the shape parameter approximating a normal distribution
in the sense that when b¼ 3.44 the median and the mean of the distribution are equal to each other.
When g¼ 0 and g¼ 1 this distribution has a mean m¼ .899 and standard deviation s¼ .289. Thus,
normal data x 0 with mean m0 and standard deviation s 0 should plot approximately as a straight line
on Weibull probability paper with b¼ 3.44 when transformed using

x ¼ :289
x0 � m0

s0 þ :889
0
0

1.0

2.0

f (
x)

1.0

b = 0.5

b = 1

b = 2

b = 3

b = 4

2.0 3.0 x

FIGURE 3.7: Weibull frequency (density) function for various values of shape parameters,
b(g¼ 0, h¼ 1).
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with inverse

x0 ¼ s0 x� :899
:289

� �

þ m0

The failure rate of the exponential distribution is constant. The failure rate for the Weibull
distribution is decreasing for values of the shape parameter b< 1 and increases for b> 1. Of
course, when b¼ 1 the failure rate is constant. Since the failure rate changes over the possible
values of x (life), it is quoted in terms of the instantaneous failure rate at any chosen value of x. This
is called the hazard rate h(x), where

h(x) ¼ b

h

x� g

h

� �b�1

Reliability specifications for use in acceptance sampling are sometimes written in terms of the
hazard rate.

Suppose the example given for the exponential distribution is regarded as a special case of the
Weibull distribution. The specified mean in that case was 5000 h and we have

g ¼ 0, h ¼ 5000, b ¼ 1

so that the probability of a failure before 500 h is

F(500) ¼ 1� e�[(500�0)=5000]1 ¼ :095

as before.

Normal Distribution

No area of statistics seems to have escaped the impact of the normal distribution. This is certainly
true of acceptance sampling where it forms the basis of a large number of variables acceptance
sampling plans. It has pervaded other areas of acceptance sampling as well.

The normal distribution is completely specified by two parameters m and s. Here

m¼mean, �1<m<1
s ¼ standard deviation, s> 0
x ¼measurement distributed, �1< x<1

Its frequency function is

f (x) ¼ 1

s
ffiffiffiffiffiffi
2p

p e�
1
2[(x�m)=s]2

Unlike the exponential and the Weibull distributions, no closed form formula can be obtained for the
distribution function. Expressed as an integral, it is

F(x) ¼ 1

s
ffiffiffiffiffiffi
2p

p
ðx

�1
e�

1
2[(t�m)=s]2dt

and is shown cumulated over the standard normal frequency function in Figure 3.8.
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FIGURE 3.8: Standard normal frequency (density) function (m¼ 0, s¼ 1).
Fortunately, values of the distribution function may be obtained from tables of the standard
normal distribution as given in Appendix Table T3-2. The table is for the specific standard normal
distribution with m¼ 0, s¼ 1. It is tabulated in terms of standard normal deviates, z, which are
simply the x values for the standard normal distribution. To use the table to obtain probabilities at
specific values of x for other normal distributions (i.e., with different means and standard devi-
ations), it is necessary to transform the x values into the z values given by the table by using
the formula:

z ¼ x� m

s

Similarly, if an x value is desired which has a given probability, the probability may be found in the
body of the table in terms of z and the x value obtained using the transformation:

x ¼ mþ zs

For example, suppose bolts are manufactured by a process having a mean of 50 mm and a standard
deviation of .1 mm. The distribution of bolt lengths conforms to the normal distribution, that is

m ¼ 50 mm, s ¼ 0:1 mm

If it is desired to determine what proportion of the bolts have lengths less than 49.8 mm (which is, of
course, the probability of obtaining such a bolt in a random sample), we have

z ¼ 49:8� 50
0:1

¼ �2

and using Appendix Table T3-2

P(Z � �2) ¼ :0228

so

P(X � 49:8) ¼ :0228

Similarly, to determine what length is exceeded by 10% of the bolts, we have

P(Z � 1:282) ¼ :90
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and this would give 10% above the value z¼ 1.282. Accordingly

x ¼ 50þ 1:282(:1) ¼ 50:1282

The probability of obtaining a result between any two specified values may be found by
subtracting cumulative probabilities. For example, 80% of the bolts (symmetric about the mean)
lie between

z ¼ 1:282 (90% below)

and

z ¼ �1:282 (10% below)

or between 49.8718 and 50.1282 mm. We also find that the proportion of bolts between 49.9 mm
(z¼�1) and 50.3 mm (z¼þ3) is

z Cumulative Probability

3 .9987
�1 .1587

.84

or 84% of the bolts.
Certainly, a large share of the importance of the normal distribution in statistics lies in the central

limit theorem which can be stated as follows:
Central limit theorem. Let f(x) be any frequency (density) function of a population with finite

mean m and standard deviation s. Let X be the mean of a random sample of n from the population.
Then the frequency function of X approaches the normal distribution with mean m and standard
deviation s=

ffiffiffi
n

p
as n increases without bound.

The theorem is proved in most basic mathematical statistics texts such as in Mood and Graybill
(1973).

It is important to realize that the population distribution is unspecified—the theorem holds for any
underlying population having a finite mean and standard deviation. Thus, for any population we can
say that the distribution of sample means will be approximately normal with

mX ¼ m

sX ¼ s
ffiffiffi
n

p

as the sample size n becomes large. How closely the distribution of sample means is said to
approach normality depends, of course, on the shape of the underlying distribution and the
magnitude of n. Shewhart (1931) has demonstrated empirically and Schilling and Nelson (1976)
have shown mathematically that in many applications a sample size of 5 is adequate, 9 is good, and
25 is excellent, in assuring a normal distribution of sample means from a variety of fairly well-
behaved underlying distributions. Naturally, when the underlying distribution is normal, the nor-
mality of the distribution of sample means is assured.

Suppose samples of size n¼ 25 are taken from the population of bolts (m¼ 50 mm, s¼ 0.1)
mentioned previously. Then

mX ¼ 50

sX ¼ 0:1
ffiffiffiffiffi
25

p ¼ 0:02
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and, for instance, we can state that 95% of the possible sample averages from this population
will be

x ¼ 50þ 1:65(0:02) ¼ 50:03 mm

Summary of Distributions

A summary of the probability distributions presented in this chapter is given in Table 3.1 for
quick reference, the table shows the frequency (density) function, distribution function, mean,
standard deviation, restrictions on the parameters, domain, and use of each distribution.

Tables of Distributions

Many useful tables have been generated for the evaluation of the probability distribution shown
here. A convenient notation for the range of the argument of the tables is x(y)z which indicates the
values move from x in increments of y up to z. A few of the tables applicable in acceptance sampling
are the following.

Hypergeometric Tables

Lieberman and Owen (1961) give tables of the hypergeometric frequency and distribution
functions tabulated in the following notation:

N ¼ lot size
n ¼ sample size
k ¼ number defectives in lot (Np here)
x ¼ argument
P(x)¼ value of distribution function (F(x) here)
p(x) ¼ value of frequency function ( f(x) here)

The tables are complete for N � 50 and require interpolation thereafter up to a maximum lot size of
N¼ 2000. Sufficient values are tabulated through N¼ 50 to use the relation:

F(N, n, k, x) ¼ F(N, k, n, x)

that is

Xx

i¼0

Ck
i C

N�k
n�i

CN
n

¼
Xx

i¼0

Cn
i C

N�n
k�i

CN
k

to allow reversing the roles of k and n in obtaining values from the tables. Other symmetries which
may be utilized are

F(N, n, k, x) ¼ F(N,N � n,N � k,N � n� k þ x)

¼ 1� F(N, n,N � k, n� x� 1)

¼ 1� F(N,N � n, k, k � x� 1)

All these relationships apply to the frequency functions also.
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TABLE 3.1: Distribution useful in acceptance sampling.

Distribution Frequency Function
Distribution
Function Mean Standard Deviation Restrictions Use

Hypergeometric f (x) ¼ CNp
x CNq

n�x

CN
n

F(x) ¼P
x

i¼0
f (i)

np ffiffiffiffiffiffiffiffi
npq

p ffiffiffiffiffiffiffi
N�n
N�1

q N> 0
n¼ 1, 2, . . . , N
p¼ 0, 1=N, 2=N, . . . , 1
q¼ 1� p
x¼ 0, 1, 2, . . . , n

Sampling defectives from finite
lot without replacement

Binomial f (x) ¼ Cn
xp

xqn�x F(x) ¼P
x

i¼0
f (i) np

ffiffiffiffiffiffiffiffi
npq

p
n> 0
0 � p � 1
q¼ 1� p
x¼ 0, 1, 2, . . . , n

Sampling defectives from infinite
lot or process

Sampling defectives from finite
lot with replacement

Poisson f (x) ¼ mxe�m

x!
F(x) ¼P

x

i¼0
f (i) m

ffiffiffiffi
m

p
m> 0
x¼ 0, 1, 2, . . .

Sampling defects from area of
infinite opportunity for
occurrence, with mean
occurrence m

f-Binomial f (n) ¼ CD
x

n
N


 �x
1� n

N


 �D�x
F(x) ¼P

x

i¼0
f (i) Dn

N
ffiffiffiffi
m

p ffiffiffiffiffiffiffi
N�n
N

q
N> 0
n> 0
D � 0
0 � x � D

Sampling defects without
replacement from finite area of
opportunity containing D defects

Negative
binomial

f (n) ¼ Cn�1
x�1p

xqn�x F(x) ¼P
n

i¼0
f (i) x

p

ffiffiffiffi
xq

p
p n � x

0 � p � 1
q¼ 1� p
x¼ 0, 1, 2, . . .

For number units, n, sampled up
to and including the xth success

Exponential f (x) ¼ 1
m e

�(x=m) F (x)¼ 1� e�(x=m) m m m> 0
x � 0

Life distribution for units with
constant failure rate l¼ 1=m

Weibull f (x) ¼ b
h

x�g
h

� 	b�1
e�((x�g)=h)b F(x) ¼ 1� e�((x�g)=h)b g þ hG 1þ 1

b

� 	
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G 1þ 2
b

� 	
� G2 1þ 1

b

� 	r

g> 0
h> 0
b> 0
x � g

Family of life distribution with
decreasing (b< 1), constant
(b¼ 1), or increasing (b> 1)

hazard rate h(x) ¼ b
h

x�g
h

� 	b�1

Normal f (x) ¼ 1
s
ffiffiffiffi
2p

p e�(1=2)((x�m)=s)2 F(x) ¼ Ð x�1 f (t)dt m s �1<m<1
s> 0

Common underlying
measurement distribution

Distribution of sample means
�1< x<1 Useful as approximation
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Binomial Tables

Three tables which cover the binomial distributions are

1. U.S. Department of Commerce (1950) gives values of the binomial frequency function as

f (r) ¼ Cn
r p

rqn�r

and the cumulative probabilities from r to n, that is

1� F(r � 1) ¼
Xn

s¼r

Cn
s p

sqn�s

These are given for the following values:

p ¼ :01(:01):50, q ¼ 1� p, n ¼ 2(1)49, r ¼ 0(1)(n� 1)

2. Romig (1953) gives values of f(x) and F(x) for p¼ .01(.01) .50,

q ¼ 1� p, n ¼ 50(5)100, x up to F(x) ¼ :99999

3. Harvard University Computation Laboratory (1955) also presents tables of the cumulative
binomial distribution from r to n, that is

1� F(r � 1) ¼ B(r, n, p)
Xn

x¼r

Cn
xp

x(1� p)n�x

for ranges of p between .01 and .50 with r¼ 0(1)n and n¼ 1(1)50(2)100(10)200(20)500(50)
1000.

Procedures and examples useful in applying binomial tables have been given by Nelson
(1974). Of course, the binomial tables may easily be used to determine values of the
f-binomial distribution using the relation of the parameters given earlier in the discussion of
the f-binomial.

Poisson Tables

Molina (1942) has tabulated the Poisson distribution in terms of its frequency function:

f (x) ¼ axe�a

x!

and cumulative distribution from c to 1,

1� F(c� 1) ¼
X1

x¼c

axe�a

x!

for

m ¼ a ¼ :001(:001):01(:01):30(:10)15(1)100
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Another useful set of tables has been prepared by the Defense Systems Department, General Electric
Co. (1962). They tabulate

f (x) ¼ Uxe�U

x!

and the cumulative distribution

F(x) ¼
Xx

r¼0

Ure�U

r!

over an extensive range from U¼ 0.0000001 to U¼ 205.

Negative Binomial Tables

Williamson and Bretherton (1963) present values of the negative binomial in terms of

k¼ successes (x here)
n¼ nonsuccesses (n� x here)
p¼ probability of success

for a total of n*¼ nþ k trials to reach the kth success where n* is the values of n as presented in the
formula for the negative binomial distribution given here. They give the frequency function:

f (n*� k) ¼ P(n) ¼ Cnþk�1
k�1 piqn

and distribution function:

F(n*� k) ¼ F(n) ¼
Xn

r¼0

Crþk�1
k�1 pkqr

Thus, to find the number of trials n* to get the kth success, it is necessary to look up the probability
under p, k, and n¼ n*� k.

Probabilities associated with successive values of n are given for selected combinations of p and k
from p¼ .05, k¼ 0.1(0.1)0.5 up to p¼ .95, k¼ 2(2)50(10)200.

Exponential and Weibull Tables

Since the exponential and the Weibull are continuous distributions with an explicit distribution
function in closed form:

Exponential: F(x) ¼ 1� e�x=m

Weibull: F(x) ¼ 1� e�[(x�g)=h]b

It is only necessary to obtain tables of e�x to evaluate them. Such tables are available in any
mathematical handbook such as the US Department of Commerce (1964). Many hand calculators
have such values built-in. Appendix Table T3-1 gives selected values of e�x.
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Normal Distribution Tables

U.S. Department of Commerce (1953) gives extensive tables of the standard normal distribution
showing values of the frequency (density) function:

f (x) ¼ 1
ffiffiffiffiffiffi
2p

p e�x2=2

and cumulative probabilities from �x to þx as

F(x)� F(�x) ¼ 1
ffiffiffiffiffiffi
2p

p
ðx

�x

e�x2=2dx

for x¼ 0(.0001)1(.001)7.800 and above and also from x to 1

1� F(x) ¼ 1
ffiffiffiffiffiffi
2p

p
ð1

x

e�x2=2dx

for x¼ 6(.01)10.

Summary

Examples of some of these tables are given in the appendix; they include

Appendix
Table Distribution Source Shows Range

T3-2 Normal Burr (1953) F(z) z¼�3.59(.01)3.59
T3-3 Hypergeometric Lieberman and

Owen (1961)
F(x), f(x) N¼ 1(1)10

T3-4 Binomial Harvard University
Computing
Laboratory (1955)

1�F(r� 1) n¼ 1(1)33

T3-5 Poisson Molina (1942) 1�F(c� 1) np¼ .001–10.0

If possible, the reader should learn to use the tables cited or similar tables in conjunction with work
in acceptance sampling. The small set of tables compiled by Odeh et al. (1977) will be found
particularly useful. Many other tables present values of these and other probability distributions
together with information useful in acceptance sampling. These include Owen (1962), Beyer (1968),
and Burington and May (1970) among others. While computers and hand calculators will readily
produce specific values, considerable insight into the nature of these distributions can be had by
reference to these tables. Also, the introductory material in the tables frequently contains informa-
tion on the distributions not readily available elsewhere.
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Useful Approximations

The complexity of the hypergeometric distribution, and to some extent the binomial, makes it
necessary to approximate these distributions at times with other, more tractable distributions.
Fortunately, rules have been derived which, when adhered to, insure that reasonably good approx-
imations will be obtained. Naturally, such rules depend upon just how close one distribution is
expected to come to another. A schematic chart showing some distribution functions approximating
the hypergeometric distribution and the binomial is presented in Figure 3.9.

The hypergeometric may be approximated by the ordinary p-binomial when the sample size is
less than 10% of the population size. When the sample represents more than 10% of the population
the f-binomial may be used for calculations involving a proportion defective, p< .10.

The f-binomial is the standard p-binomial with the sampling proportion f¼ n=N used as p and the
number of defectives in the population Np used as the sample size n. The frequency function then
becomes

f (x) ¼ CNp
x

n

N

� 	x
1� n

N

� 	Np�x

Probabilities may be obtained using tables for the standard p-binomial with

p ¼ n

N
, n ¼ Np
p-Binomial

f (x) = Cx
n  px  qn-x 

n
N

None
f-Binomial

p <_ 0.1 p > 0.1

<_ 0.1

np < 5

Poisson

m = np

np >_ 5

Hypergeometric

f (x) = 
Cn-xCx

Np

CN
n

Nq

f (x) = Cx
Np (   )x (1-   )Np-x n

N
n
N

n
N

> 0.1

Normal
m = np
s = npq

FIGURE 3.9: Distributions approximating the hypergeometric and binomial. Note: For popula-
tion of size N containing M defectives: p¼M=N, q¼ 1�M=N.
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The rationale for the f-binomial approximation may be developed as follows:

f (x) ¼ CNp
X CN�Np

n�x

CN
n

¼ CNp
x

(N � Np)!

(n� x)!(N � Np� nþ x)!

n!(N � n)!

N!

¼ CNp
x

(N � n)(N � n� 1) � � � (N � n� (Np� x)þ 1)
N(N � 1) � � � (N � Npþ 1)

n!

(n� x)!

¼ CNp
x

N � n

N

N � n� 1
N � 1

� � �N � n� (Np� x)þ 1
N � (Np� x)þ 1

� �

� n

N � (Np� x)

n� 1
N � (Np� x)� 1

� � � n� xþ 1
N � Npþ 1

� �

since it can be shown that for b> a,

a

b
>

a� 1
b� 1

substitute the first ratio for each succeeding ratio in the first brackets and n=N for each ratio
in the second brackets to obtain

f (x) < CNp
x

N � n

N

� �Np�x n

N

� 	x

or

f (x) < CNp
x 1� n

N

� 	Np�x n

N

� 	x

which is the f-binomial.
Note that the approximation could be improved by substituting the ratio n=(N�Np) in the second

brackets, but the binomial tables could no longer be used in determining the relevant probabilities.
For proportions defective greater than a tenth when the sampling proportion is greater than 10%

of the population, the hypergeometric itself should be used.
It has been pointed out by Guenther (1973) that the Wise (1954) approximation can be used

effectively with binomial tables in the derivation of hypergeometric sampling plans. This approxi-
mation to the hypergeometric consists of using the cumulative binomial distribution with

p ¼ 2Np� x

2N � nþ 1

to come very close to the hypergeometric values. Details of its use in the development of a sampling
plan will be found in Guenther (1977). Another excellent approximation is that of Sandiford (1960).

In turn, the binomial distribution may be approximated by the Poisson distribution for p small and
n large (roughly when the product np is less than 5). This is done by looking up Poisson
probabilities of x successes when the mean of the Poisson distribution is m¼ np.
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When the product np is greater than 5, the binomial distribution may be approximated by the
normal distribution with

m ¼ np, s ¼ ffiffiffiffiffiffiffiffi
npq

p

Note that nq must also be greater than 5. However, in acceptance sampling, it is usually the case that
q> p. Here, the normal cumulative probability is taken over a region corresponding to the number
of successes desired. In approximating a discrete distribution, such as the binomial, with a
continuous distribution, such as the normal, it is necessary to use a ‘‘continuity’’ correction. Since
the probability of a point in a continuous distribution is zero, it is necessary to approximate each
discrete number of successes by a band on the x-axis going out from the number one-half units on
each side as shown in Figure 3.10. Thus, the probability of x successes or less would be found as the
area up to xþ 1=2 under the normal curve. The probability of x or more successes would be the area
above x� 1=2, and so on.

To illustrate these approximations, let us take a case where the sampling proportion is equal to a
tenth. Suppose the lot size is 100, the sample size is 10, p¼ .1, and we desire the probability of 2 or
fewer defectives. Using appropriate formulas, tables or a computer, we get

Hypergeometric: Owen (N¼ 100, n¼ 10, k¼ 1, x¼ 2)

F(2) ¼ :93998

Binomial: Harvard (n¼ 10, p¼ .10, x¼ 2)

F(2) ¼ :92981

Poisson: Molina (np¼ 10(.1)¼ 1, x ¼ 2)

F(2) ¼ :91970

f-Binomial:

F(2) ¼
X2

i¼0

C10
i (:1)i(:9)10�i
Probability
of exactly

x successes

x −1/2 x+ 1/2
x

FIGURE 3.10: Continuity correction.
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Harvard (n¼ 10, p ¼ .10, x¼ 2)

F(2) ¼ :92981

Normal:

m ¼ np ¼ 10(:1) ¼ 1

s ¼ ffiffiffiffiffiffiffiffi
npq

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10(:1)(0:9)

p
¼ 0:95

z ¼ 2:5� 1
0:95

¼ 1:58

F(2) ¼ :9428

All the approximations were fairly close to the hypergeometric value. Actually, the normal was used
for illustrative purposes only since it should not usually be used to approximate the binomial when
np is less than 5. This is an indication of the utility of these approximations.

Tests of Fit

It is not enough to assume a distribution to hold in real-life applications of statistics. Statistics
is not like mathematics where correct answers are derived from the assumptions. In statistics,
the assumptions must be correct and must describe the physical situation adequately before correct
answers will be obtained. For this reason, it is not enough to assume a distribution holds to be
correct. Enough real data should be analyzed to assume the assumption is correct.

Frequently, underlying distributions of measurements are characterized by probability models. In
these cases, it is necessary to assure that the data conform to the model used. Methods have been
developed to test if particular distributions are applicable. These include probability plots, x2 tests of
goodness of fit, the Kolmogorov–Smirnov test, the Wilk–Shapiro test, and others. Sample size
considerations are quite important in acceptance sampling since large sample sizes are needed to
detect aberrations in the tails of the distribution where the defective material is likely to be found. It
is important that those applying acceptance quality control procedures be familiar with these tests
and procedures and apply them to real data before assuming any distribution shape applies. They are
discussed in most basic texts on applied statistics.

The probability plot is one of the most useful and versatile of the tests of fit. It involves
plotting the ordered observations from a sample on special paper against the cumulative
percentage at which the individual ordered observations stand in the sample. In this way, an
empirical cumulative probability distribution plot for the sample is obtained. Estimates can be
made from this plot and its shape can be used as an indication of the underlying probability
distribution which gave rise to the sample. Special probability papers transform the axis
representing cumulative percentage in such a way that if the sample came from the distribution
represented by the paper selected, the points will plot roughly in a straight line. Papers can
be obtained to represent a variety of distributions, the normal and Weibull probably being the
most common. Directions for the construction of normal probability paper have been given by
Nelson (1976).
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Plotting positions can readily be determined using the formula:

P̂(i) ¼ i� (1=2)
n

(100)

which gives the approximate probability of obtaining a values less than x(i). Then, the individual
ordered points x(i) are plotted against their empirical cumulative frequency (usually in percent)
estimated by p̂(i). A straight-line plot is an indication that the underlying distribution of measure-
ments is that of the paper on which the points are plotted. Substantial departures from a straight-line
indicate that the distribution for the paper may not apply. A straight-line fit through a straight-line
plot can be used to make estimates of the parameters of the underlying distribution. On normal
probability paper, the mean is estimated from the 50th percentile of the empirical plot. Similarly,
the standard deviation can be obtained as half the difference between the 16th and the 84th
percentile values.

For example, consider the following data taken from MIL-STD-414. The specifications
for electrical resistance of a certain electrical component is 650.0� 30 V. Suppose the values
of sample resistance in a sample of 10 are as follows: 643, 651, 619, 627, 658, 670, 673, 641,
638, and 680 V. A probability plot for these data appears in Figure 3.11, which plots the following
points
620

1

5
10

20

50

80

90
95

99

L

2s

630 640 650 660 670 680
U

x

P̂

ˆ

m̂

FIGURE 3.11: Probability plot.
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Order (i) x(i) p̂(i)

1 619 5
2 627 15
3 638 25
4 641 35
5 643 45
6 650 55
7 651 65
8 658 75
9 670 85
10 673 95
A straight-line plot is obtained. A line drawn through the points allows the following estimates to be
made (on a plot having a more detailed resistance scale):

m̂ ¼mean¼ 647.5
ŝ ¼ standard deviation¼ 17.5
PL ¼ percent below lower specification¼ 6%
PU¼ percent above upper specification¼ 3%
PT ¼ total out of specification¼ 9%

Actually, for these data

�x ¼ 647:0, s ¼ 17:2

and so the probability plot provided very good estimates of the population parameters in this case,
close to those obtained by the usual computational methods. Using �x and s to estimate the percent
out of specification limits

zU ¼ U � �x

s
¼ 680� 647

17:2
¼ 1:92

giving 2.74% above the upper limit and defining zL as in MIL-STD-414

zL ¼ �x� L

s
¼ 648� 620

17:2
¼ 1:57

giving 5.82% below the lower limit. This gives a point estimate of 8.56% out of specifications
which is very close to that obtained from the probability plot.

The Weibull distribution is particularly useful in reliability analysis and associated sampling
plans. Weibull (1951) first used plots of the Weibull distribution. Later versions and refinements in
analysis were developed by Kao (1959), Nelson (1967), and Nelson and Thompson (1971). The
reader is referred to these papers for a discussion of the Weibull probability plot and its uses. An
extensive book on probability papers has been prepared by King (1971). Shapiro (1980) has
prepared an in-depth manual on testing normality and other distributional assumptions for the
American Society for Quality Control. An excellent introductory text on probability plots has
been written by Nelson (1979) and appears in the same series.
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Problems

1. A trial lot of 100 candles is received from a new supplier. Five candles are checked to be sure
that the wick extends properly above the body. One is found to be defective. What is the
probability of 1 or less defective candles in a sample of 5 if 2 candles were defective in the lot?
How many would you expect? What would be the standard deviation of the number observed
in a sample of 5?

2. If the vendor in Problem 1 maintains a quality of 2% defective, what is the probability of 1 or
less defective candles in a sample of 5 from a very large lot? How many would you expect?
What would be the standard deviation of the number observed in a sample of 5? Check your
answer with the Larson nomograph.

3. A spot welder is expected to produce not more than two defective welds in a shift’s
production. If the process average were actually two defective welds per shift, what is the
probability of obtaining two or fewer bad welds on a given shift? Check your answer with the
Thorndyke chart. Why is the answer not one-half? What would be the standard deviation of
the number of bad welds per shift?

4. A continuous sampling plan starts by inspecting i successive units. If no defectives are found a
switch to sampling inspection is made. If i¼ 5, what is the probability of finding a defective
on the fifth trial if the proportion defective submitted to the plan is .05? What is the mean
number of trials to the second defective?

5. The life of a transistor follows the exponential distribution with mean life m¼ 10,000 h. What
is the probability of a unit failing before 20,000 h? What is the standard deviation of the
transistor’s lifetime?

6. Express Problem 5 in terms of the parameters of the Weibull distribution. What is the
probability of a lifetime less than or equal to 10,000 h?

7. Bottles are to be filled with 1 L of liquid. The amount of fill is normally distributed with
standard deviation s¼ 0.01 L. The mean fill is set at m¼ 1.03 L to minimize the possibility of
underfill. To check on the overfill, the contents are poured into a container marked with a
‘‘narrow limit’’ at 1.005 L. What is the probability of observing a fill less than 1.005 L when
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the process mean is actually at 1.03 L? What is the probability of one such indication in a
sample of 3?

8. A new supplier submits a test lot of rods the length of which is specified to an average of
3� 0.001 m. The rods are to be welded together so that the average length is important. The
distribution of lengths is unknown, but a sample of nine rods yields a mean X¼ 3.001 m. Is
such a result likely if the standard deviation of this type of product is s¼ 0.0003 m and the
mean is 3 m?

9. Suppose samples of 5 are to be taken from a lot of 25 for a simple nondestructive test. If the
fraction defective is 0.08, what approximation is appropriate for the hypergeometric distribu-
tion? What is the probability of 1 or fewer defectives in a sample of 5?

10. A probability plot is to be made of the weight of 500 pieces to check for normality. The 80th
ordered observation is 24 while observation 420 is 48. If the fitted line passes through both
these points, estimate the standard deviation. Estimate the mean.
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Chapter 4

Concepts and Terminology

The fundamental tool for analysis of a sampling plan is the operating characteristic (OC) curve.
Two types of curves are recognized:

Type A. Sampling from an individual (or isolated) lot, showing probability that the lot will be
accepted plotted against lot proportion defective.

Type B. Sampling from a process (such as the producer’s process, which produced the lot),
showing proportion of lots which will be accepted plotted against process proportion
defective.

Naturally, the probability distributions utilized in plotting these types of OC curves are inherently
different. They also depend upon the measure in which quality is expressed. These include:

Attributes. A dichotomous (two classes) classification of units into defective and nondefective.
For example, number of defective units in a sample of 100 units.

Counting. An enumeration of occurrences of a given characteristic per given number of units
counted. For example, number of defects per 100 units in the population.

Variables. The measurement of some characteristic along a continuous scale. For example,
diameter of a circular casting as measured in centimeters.

The distinction is made between defect (an imperfection great enough to be counted) and
defective (a unit containing one or more defects, which could be rejected for any one of them).

The probability distributions appropriate for the derivation of OC curves of the two types are
shown in Table 4.1. The form of these distributions and their properties are shown in Table 3.1.

For variables data the applicable distribution is that of the variable as it would appear to
the inspector, that is, including piece-to-piece variation, measurement error, changes in environ-
mental conditions, and the like. There are means available for separating these sources of error
and controlling them. Such methods are addressed in texts on design of experiments, such as
Hicks (1999) or Anderson and McLean (1974), and in texts on process quality control, such
as Ott et al. (2005).

Differences in the OC curves associated with these different type plans may be illustrated by the
sampling plan

N ¼ lot size ¼ 20

n ¼ sample size ¼ 10

c ¼ acceptance number ¼ 1

Using the methods of Chapter 2, it is possible to compute the different OC curves. The results are
shown in Table 4.2.
� 2008 by Taylor & Francis Group, LLC.



TABLE 4.1: Probability distributions for OC curves.

Characteristic Type A Type B

Attribute Hypergeometric Binomial
Count f-binomial Poisson
Measurement Applicable continuous distribution

of measurement involved
We see from the Type A values in Table 4.2 that with the hypergeometric and f-binomial sampling
plans n¼ 10, c¼ 1, it is impossible to fail if the lot is 5% defective or 5 defects per 100 units when the
lot size is 20. Why? Because for the lot of 20 to be 5% defective it would contain just one defective,
and one defective is allowable under the plan. In fact, for a finite lot size, only a limited number of
percents defective or defects per 100 units can be formed, in this case 0, 5, 10, 15, . . . , 95, 100.

The Type B OC curve is not so restricted. In fact, the producer’s process could have been running
at any percent defective when the lot of 20 was formed. The Type B OC curve views the lot of 20 as
a sample from the producer’s process and the sample of 10 as a subsample of the same process. In
this way, it is reasonable to address the probability of acceptance for any percent defective from 0 to
100 when using a Type B OC curve.

Finally, if the number of defects is counted in a lot of 20 items the count could easily exceed 20
since one item can have one or more defects. Note that this is not the case for either of the Type A
sampling situations which deal with defectives or with defects. The number of defectives could
neither exceed 20, the lot size, nor could the number of defects exceed some finite number. A count
of defects is often expressed in terms of ‘‘defects per 100 units.’’ In this form the measure of quality
is analogous to ‘‘percent defective,’’ which is also based on 100. However, as noted, defects per 100
units may exceed 100 in Type B situations. For instance, if we knew the lot of 20 had 3 defective
pieces in it with 4, 10, and 12 defects each, the lot would, in total, contain 26 defects—even though
it composed of only 20 pieces and had only 3 defectives. The mean number of defects per unit in
such a situation would be 1.3. The mean number of defects per 10 pieces would be 13, and since a
sample size of 10 was specified. The Poisson distribution with a mean m¼ 13 would be used to
TABLE 4.2: Probabilities of acceptance for hypergeometric,
f-binomial, binomial, and Poisson (N¼ 20, n¼ 10, c¼ 1).

Percent
Defective

Type A
Hypergeometric

Type A
f-Binomial

Type B
Binomial

Type B
Poisson

5 1 1 .914 .910
10 .763 .750 .736 .736
15 .500 .500 .544 .558
20 .291 .312 .376 .406
25 .152 .188 .244 .287
30 .070 .109 .149 .199
35 .029 .062 .086 .136
40 .010 .035 .046 .092
45 .003 .020 .023 .061
50 .001 .011 .011 .040
55 .005 .027
60 .002 .017
65 .001 .011
70 .007
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calculate the probability of acceptance in such a case. It should be pointed out that the defects per
unit probabilities of acceptance in Table 4.2 were computed using a mean value of

m ¼ p� 10
100

since the value p is interpreted as defects per 100 units so that p¼ 5 defects per 100 units implies
p=100¼ .05 defects per unit, which gives

10p
100

¼ 0:5 defects per 10 units

A plot of the four OC curves is given in Figure 4.1, identified by the first letter of their names.
Note how the curves are fairly well superimposed for small p and then diverge as p becomes

large. This shows the use of these distributions as approximations when p is small. Also the shape of
the Type A (hypergeometric and f-binomial) curves is quite different from that of the Type B
(binomial and Poisson) curves, since the sample represents a large proportion (50%) of the lot.
These curves also illustrate the conservative nature of the approximations since they tend to
underestimate for high probability of acceptance and overestimate for low probability of acceptance.
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FIGURE 4.2: OC and ARL curves for Type B plan (n¼ 10, c¼ 1 using binomial distribution).
Average Run Length of Type B Plans

Average run length (ARL) has been used extensively to describe the effectiveness of process control
procedures. It gives an indication of the expected number of samples until a decision ismade. Schilling
(2005) has proposed that thismeasure is a natural descriptor of TypeB sampling plans aswell. TheOC
curve is easily augmented by the addition of ARL values corresponding to the selected ‘‘percent lots
accepted’’ shown on the Y-axis or by construction of an ARL axis parallel to it (Figure 4.2).

ARL is easily calculated as a function of probability of acceptance (Pa) using the mean of the
geometric distribution of run length, namely

ARL ¼ 1
1� Pa

Once calculated, these values can then be exhibited in a table of the corresponding values of Pa and
ARL, such as Table 4.3 provided by Schilling (2005), or from few key values committed to memory.
Table 4.4 is such a table. Note that it applies to OC curves of process control procedures as well.

The addition of ARL values to Type B OC curves should help distinguish Type A and Type B
applications, since the presence of ARL values in Type B OC curves emphasizes the unique nature
of such plans when applied to a series of lots. This should contribute greatly to an understanding of
these considerations in the selection of a sampling plan.

Sample Size and Lot Size

Reference to the formulas for the binomial, the Poisson, and the various continuous distributions
will indicate that they do not contain any reference to lot size. Only in the hypergeometric and
f-binomial distributions will such a parameter be found. Even then, the effect of lot size on the OC
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TABLE 4.4: Type A probability of acceptance using
the hypergeometric distribution (n¼ 10, c¼ 1).

% N¼ 20 N¼ 60 N¼ 100 N¼1
5 1 .931 .923 .914
10 .763 .741 .738 .736
15 .500 .533 .538 .544
20 .291 .354 .363 .376
25 .152 .219 .229 .244
30 .070 .126 .136 .149
35 .029 .067 .075 .086
40 .010 .033 .039 .046

TABLE 4.3: Conversion
of Pa to ARL.

Pa (%) ARL

99 100.0
95 20.0
90 10.0
80 5.00
70 3.33
60 2.50
50 2.00
40 1.67
30 1.43
20 1.25
10 1.11
5 1.05
1 1.01
curve is minimal when a small proportion (say less than 10%) of the lot is used up in taking the
sample. This is illustrated in Table 4.3, which shows the probability of acceptance for the plan
n¼ 10, c¼ 1 when the lot size is 20, 60, 100, and 1.

A plot of the OC curves would show little difference among the curves except when N¼ 20. It is
apparent that the probabilities change substantially with lot size only when the sample represents a
large portion of the lot (say from 1=2 to 1=6). Changes are slight when the sample is a small fraction
of the lot (for 1=10 and less). Also note that the values for N¼1, calculated from the binomial
distribution, are conservative in approximating the hypergeometric for smaller lot sizes in that they
underestimate Pa for lower percents defective and overestimate for high percents defective. Thus,
use of the binomial distribution in constructing a Type A OC curve when the fraction of the lot
sampled is reasonably low will not only give fairly close answers but tends to be conservative as
well. Similar results can be obtained for the Poisson approximation to the binomial distribution, and
f-binomial approximation to the hypergeometric distribution.

As might be expected, changes in sample size for a given lot size will, however, have a substantial
effect on the protection afforded by a plan. Table 4.5 shows the probability of acceptance for plans
with sample size 5, 10, and 15 from a lot of size 20 with acceptance number c¼ 1 for Type A
(hypergeometric) probabilities.

The effect of sample size is somewhat less pronounced for Type B (binomial) probabilities;
however, Table 4.6 gives an example similar to Table 4.4 but with infinite lot size.
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TABLE 4.6: Type B probability of acceptance
using the binomial distribution (c¼ 1).

% n¼ 5 n¼ 10 n¼ 15

5 .977 .914 .829
10 .919 .736 .549
15 .835 .544 .319
20 .737 .376 .167
25 .633 .244 .080
30 .528 .149 .035
35 .428 .086 .014
40 .337 .046 .005

TABLE 4.5: Type A probability of acceptance using
the hypergeometric distribution (N¼ 20, c¼ 1).

% n¼ 5 n¼ 10 n¼ 15

5 1 1 1
10 .947 .763 .447
15 .860 .500 .140
20 .751 .291 .032
25 .634 .152 .005
30 .517 .070 —

35 .406 .029 —

40 .307 .010 —

TABLE 4.7: Type A probability of acceptance using
the hypergeometric distribution (N¼ 20, n¼ 10).

% c¼ 0 c¼ 1 c¼ 2

5 .500 1 1
10 .237 .763 1
15 .105 .500 .895
20 .043 .291 .709
25 .016 .152 .500
30 .005 .070 .314
35 .002 .029 .175
40 — .010 .085
The most dramatic effect on the probability of acceptance, however, comes with changing
acceptance numbers. Even the inherent shape of the OC curve is changed in going from
one acceptance number to another. This can be seen in Table 4.7, which shows the effect of
changing the acceptance number for a plan with N¼ 20, n¼ 10.

It should be clear, then, that the two principal determinants of the OCs of a sampling plan are
acceptance number and sample size. Lot size plays a very minor role in determining protection even
when sampling sizable proportions of the lot. This is contrary to intuitive belief and should be
constantly borne in mind by the practicing quality control engineer in setting up sampling plans
and sampling schemes. Often a relationship of lot size to sample size is specified (even by MIL-
STD-105E), but this is for logistic and economic purposes and not primarily for purposes of
enhancing the protection afforded by the plan.
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TABLE 4.8: Type B probability of acceptance using
the binomial distribution (c=n¼ .1).

% n¼ 10, c¼ 1 n¼ 20, c¼ 2 n¼ 40, c¼ 4

5 .914 .925 .952
10 .736 .677 .629
15 .544 .405 .263
20 .376 .206 .076
25 .244 .091 .016
30 .149 .035 .003
35 .086 .012 —

40 .046 .004 —

TABLE 4.9: Type A probability of acceptance using the hypergeometric
distribution when sample size is proportionate to lot size.

% N¼ 20, n¼ 10, c¼ 0 N¼ 40, n¼ 20, c¼ 0 N¼ 100, n¼ 50, c¼ 0

5 .500 .244 .028
10 .237 .053 .001
15 .105 .010 —

20 .043 .002 —

25 .016 — —

30 .005 — —

35 .002 — —

TABLE 4.10: Effect of lot size on acceptance (order of 1000).

Lot
Size

Number
Lots

Proportion
Lots Accepted

Expected Number
Lots Accepted

Expected
Pieces Accepted

20 50 .50 25 500
40 25 .243 6.075 243
100 10 .028 0.28 28
We may ask what is the effect of maintaining the acceptance number as a constant proportion of
the sample size. Table 4.8 compares three plans which keep the acceptance number at 10% of the
sample size. These plans are in no sense equivalent. The protection afforded by n¼ 40, c¼ 4 is
much higher than the other plans. This can be seen by comparing the plans’ protection at, say, 20%
defective. An acceptance number of 4 can, in fact, give more protection than an acceptance number
of 2 provided that the sample size is increased accordingly.

In some operations, it has become customary to specify sample size as a proportion of the lot size.
Take a 10% sample, let us say, usually with an acceptance number, c¼ 0. Since the OCs of a plan are
dependent principally on sample size, not lot size, this means that large lots with large samples will
be accepted much less often than small lots with small sample sizes at the same percent defective.

This is illustrated in Table 4.9 which shows the protection afforded by such a plan. For lots of size
20, 5% defective material has a 50% chance to be accepted, while for lots of 100 only a 2.8% chance
of acceptance is provided. An unscrupulous supplier has an incentive to provide small lots as can be
seen in Table 4.10, which shows the results of shipping 5% defective material in different lot sizes.
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The protection afforded both parties by a plan such as this is clearly dependent upon lot size and
is not a rationally determined criterion for protection.

Effect of Inspection Error

No inspection is perfect all the time. Indeed, it is generally recognized that 100% inspection is
much less than 100% effective in screening out defective items. Studies have indicated that, in the face
of monotony and fatigue, only about 80% of the defectives will be detected (Juran and Gryna 1970).
The reasons for inspection inaccuracy have been detailed by Juran (1962, pp. 8–25) as follows:

1. Willful errors which include

a. Criminal acts such as fraud and collusion

b. Falsification for personal convenience of the inspector

2. Intermediate errors due to bias, rounding off, overzealousness, etc.

3. Involuntary errors due to blunder, fatigue, and other forms of human imperfection

In particular, flinching, or failure to call a defect when it is close to the specification, is a common
source of error of what Juran calls the intermediate type.

It should be pointed out that errors can go either way. An overzealous inspector can easily flinch
by calling good product bad. Harsh supervision, the mood of the moment, and the psychological and
even physical environment can cause marginal and even less than marginal decisions to be
incorrectly made.

Sample inspection is also subject to the same type of inspection error. While an advantage of
sampling is a reduction of the number of pieces subject to repetitive examination, the same
circumstances and motivations exist which may lead to inspector inaccuracy. The result is an
inaccurate representation of the quality submitted.

Suppose product is submitted which is of fraction defective p. The inspector misclassifies the
product as shown in Table 4.11.

The Statistical Research Group, Columbia University (1948, p. 23) presents the following
formula for the apparent level of quality p* when the true incoming level defective is p.

p* ¼ p1(1� p)þ p(1� p2)

This follows from the rightmost column of Table 4.11. When the true fraction defective is small
and the proportion of defectives which are missed is not large, we have

p* ¼ p1 þ p
TABLE 4.11: Proportions defective misclassified.

Inspector Classification

Actual Condition Nondefective Defective

Nondefectives 1� p1 p1
Defectives p2 1� p2

p1, proportion nondefective classified as defectives; p2, proportion
defective classified as nondefectives.
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Similarly when the chance of misclassification of a nondefective item is small

p* ¼ p(1� p2)

It is often the case that errors will go one way or the other, although both types of misclassifica-
tion at the same time are possible. For example, suppose due to an error in configuration control the
inspector received a print of a symmetric part which was reversed left to right. Unfortunately the
written material was on another sheet and the mistake went undetected so that the area of acceptance
became that of rejection and vice versa. Then

p1 ¼ 1, p2 ¼ 1

and

p* ¼ 1(1� p)þ p(1� 1) ¼ 1� p

That is, the apparent level of defective material would be the actual proportion nondefective.
The formula works equally well for screening or sampling inspection. In screening it gives the

apparent level of quality after 100% inspection. In sampling it gives the apparent level of quality as
seen by the inspector. The OC curve can be entered in terms of p* rather than p to find the
probability of acceptance in the face of inspection error. Unfortunately, p1 and p2 are rarely known
but provide a means for analysis of the possible effect of this type of error. Methods of estimating
inspector bias in visual inspection have been discussed by Schilling (1961).

Rectification

Much of the effect of the imposition of a sampling plan depends upon the disposition of the
product after it is inspected. Accepted lots go to the consumer. Rejected lots may be handled in a
number of ways as follows:

Destroyed. No effect on overall quality if producer continues to submit at a constant level of
quality. Positive effect if quality levels fluctuate nonrandomly from lot to lot.

Resubmitted. No effect on overall quality if producer continues to submit at a constant level of
quality.

Screened. Quality of rejected lots improved within the limits of inspection error. Properly done
100% inspection of rejected lots would transform each rejected lot into a perfect one. As a
result the overall level of quality as seen by the consumer would improve.

Acceptance sampling schemes which incorporate 100% inspection of rejected lots are called
‘‘rectification’’ schemes. Formulas are available for calculating the average outgoing quality (AOQ)
from such schemes. This is the long-run average quality shipped to the consumer under 100%
inspection of rejected lots, assuming any defective item found is replaced by a good one. The
average is taken over all lots, good and bad, so that assuming no inspection error,

AOQ ¼ pPa 1� n

N

� �
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since the only defectives transmitted to the consumer would be in the accepted lots (rejected lots
having been made perfect). The average proportion defective the consumer would receive then is
made up of fraction defective p received a proportion Pa of the time and fraction defective 0 received
a proportion 1�Pa of the time. But, for all lots, defective items found in the sampling inspection are
also replaced by good ones so that the remaining proportion defective is

p
N � n

N

� �

and

AOQ ¼ pPa

N � n

N

� �

þ 0(1� Pa)
N � n

N

� �

¼ pPa

N � n

N

� �

¼ pPa 1� n

N

� �

and when the sample size is very small in proportion to the lot size n=N ~ 0, so that the formula
becomes

AOQ ¼ pPa

The maximum value of AOQ over all possible values of fraction defective, which might be
submitted is called the AOQ limit (AOQL). It represents the maximum long-term average fraction
defective that the consumer can see under operation of the rectification plan.

It is sometimes necessary to determine the average amount of inspection per lot in the application
of such rectification schemes, including 100% inspection of rejected lots. This average, called the
average total inspection (ATI), is made up of the sample size n on every lot plus the remaining
(N� n) units on the rejected lots, so that

ATI ¼ nþ (1� Pa)(N � n)

¼ Panþ (1� Pa)N

Consider the sampling plan n¼ 10, c¼ 1 used on a continuing supply of lots of size 20 from the
same producer, that is, in a Type B sampling situation. Clearly rectification plans are meaningless on
isolated lots, even though they might be 100% inspected if rejected, because there is no long-term
average involved. The Type B probabilities of acceptance have already been calculated and are
listed in Table 4.12, which shows the calculation of the AOQ and the ATI. The operations involved
are indicated in the last row.

It is apparent that the ATI curve starts at 10, the sample size, when p¼ 0 since no lots are 100%
inspected and rises to 20 when p¼ 1.0 since all lots will be rejected and 100% inspected when the
lots are completely defective. The ATI curve is shown in Figure 4.3.

The AOQ curve starts at 0 when p¼ 0 since no rectification is necessary. It rises to a maximum of
around 4.1% defective and then declines as more and more 100% inspection takes place. When lots
are completely defective, they are all rectified and the AOQ is again zero.

The AOQL for this plan can be seen to be around 4.1% defective. We define pM as the incoming
defective at which AOQ reaches its maximum, that is, the AOQL occurs when the incoming fraction
defective is pM. Then examining the region close to p¼ .15 as in Table 4.13 it is apparent that the
AOQL is .041 to three-place accuracy and it occurs at pM¼ .15. The consumer will never
experience a long-term average fraction defective greater than .41, although the average may be
considerably higher in the short run. The AOQ curve is given in Figure 4.4.
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TABLE 4.12: Calculation of AOQ and ATI (N¼ 20, n¼ 10, c¼ 1).

p Pa (1� n=N) AOQ (1�Pa) (N� n) ATI

.00 1.000 .5 .000 0 10

.05 .914 .5 .023 0.86 10.86

.10 .736 .5 .037 2.64 12.64

.15 .544 .5 .041 4.56 14.56

.20 .376 .5 .038 6.24 16.24

.25 .244 .5 .030 7.56 17.56

.30 .149 .5 .022 8.51 18.51

.35 .086 .5 .015 9.14 19.14

.40 .046 .5 .009 9.54 19.54

.45 .023 .5 .005 9.77 19.77

.50 .011 .5 .003 9.89 19.89
(A) (B) (C) (D)¼ (A)(B)(C) (E) (F)¼ nþ (E)
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FIGURE 4.3: ATI curve (N¼ 20, n¼ 10, c¼ 1).

TABLE 4.13: Determination of AOQL.

p Pa (1� n=N) AOQ

.13 .620 .5 .0403

.14 .582 .5 .0407

.15 .544 .5 .0408

.16 .508 .5 .0406

.17 .473 .5 .0402
(A) (B) (C) (D)¼ (A) (B) (C)
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FIGURE 4.4: AOQ curve (N¼ 20, n¼ 10, c¼ 1).
Curtailment

Just as there are many procedures for disposing of a lot, there are different ways to treat the
sample itself. Consider the following possibilities for a single-sampling plan with sample size n and
acceptance number c:

1. Complete inspection. All items in the sample of n are inspected.

2. Semicurtailed inspection. The inspection is stopped when the number of defectives found
exceeds the acceptance number. All units are inspected if the lot is accepted.

3. Fully curtailed inspection. The inspection is stopped when the number of defectives found
exceeds the acceptance number c or the number of nondefectives is found to exceed n�c. In
short, the inspection is stopped once a decision can be made.

Under curtailment, the number of units actually inspected becomes a random variable. There are
formulas which can be used to determine the average sample number (ASN) for such procedures.
This is the mean number of items inspected per lot. The formulas for a single-sampling plan as given
by the Statistical Research Group, Columbia University (1942, p. 212) are

1. Semicurtailed

ASNc ¼ nF(cjn)þ cþ 1
p

(1� F(cþ 1 nþ 1))j

2. Fully curtailed

ASNfc ¼ n� c

q
F(cjnþ 1)þ cþ 1

p
(1� F(cþ 1 nþ 1))j

where F(xjn) denotes the probability of x or fewer defectives in a sample of n.
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Curtailment of single-sampling plans is usually not recommended because of the difficulty in
estimating the process average from such data. Such procedures are quite common with double- or
multiple-sampling plans where the first sample may be inspected fully and later samples curtailed.

An unbiased process average proportion defective from fully curtailed single sample data may be
estimated using the method of Girshick et al. (1946) as

Lot rejected: p̂ ¼ c

U � 1

Lot accepted: p̂ ¼ d

U � 1

where
c is the acceptance number
d is the number defectives found
U is the number units inspected

With semicurtailed inspection, the formula becomes

Lot rejected: p̂ ¼ c

U � 1

Lot accepted: p̂ ¼ d

U

For example, suppose the sampling plans n¼ 10, c¼ 1 were to be used with semicurtailed
inspection and the second defective was found as the sixth item inspected. Inspection would stop
since it is obvious that the lot would be rejected. An estimate of the process average would be

p̂ ¼ 1
6� 1

¼ :20

Calculation of the ASN if the fraction defective were actually .20, using the binomial distribution
gives

ASNc ¼ 10F(1j10)þ 2
:20

(1� F(2j11))
¼ 10(:3758)þ 10(:3826) ¼ 7:584

This indicates that semicurtailment would give an average saving of 2.416 units per inspection at the
cost of some precision in estimating the process average.

The concept of ASN is very useful in determining the average number of samples that will be
inspected in using more advanced sampling plans. In double-sampling plans, for example, the
second sample is taken only if results from the first sample are not sufficiently definitive to lead to
acceptance or rejection outright. In such a situation the inspection may be concluded after either one
or two samples are taken and so the concept of ASN is necessary to evaluate the average magnitude
of inspection in the long run.

Tolerance and Confidence Intervals

Specifications are sometimes written in terms of tolerance intervals. This is particularly true in
applications of acceptance sampling in the reliability and life-testing areas. Tolerance intervals
specify limits which are estimated to contain a specified proportion of the population p with given
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confidence g. Confidence intervals merely estimate a range within which a population parameter is
expected to lie with a given confidence g. Both kinds of intervals are available for attributes- and
variables-type sampling.

An example of a specification of this type is the following: At least a proportion p of the
population must be acceptable with a confidence level (coefficient) of g. (Or, more simply stated:
100p percent reliability with 100g percent confidence.)

In testing a lot to this type of specification, Type B probabilities are used, since the specification
refers to the population produced by the producer’s process—not the specific lot. Now just one test
of conformance to the specification will be made to accept or reject the lot. The term ‘‘confidence’’ is
taken to mean that, whatever method is used, it is to give the correct result in approving a lot, as
equaling or exceeding the specified reliability (100p percent), more than 100g percent of the time in
repeated applications. The test on a particular lot will be either correct or incorrect in a single
application. But, in the long run, it will accept lots having at least a proportion p nondefective at
least a proportion g of the time. In this sense an accepted lot can be viewed with g confidence as
having p or greater proportion of units conforming to the specification.

To illustrate, consider an example given by Mann et al. (1974, p. 374) rephrased as follows:
Suppose that n¼ 20 and the observed number of failures is x¼ 1. What is the reliability p of the
units sampled with 90% confidence? Here p is unknown and g is to be .90. It is necessary to obtain

Pr[q0 � p0] � :90

where p0 is a lower tolerance limit of q0, the fraction conforming in the population. For a binomial
distribution such as this, the tolerance limit problem resolves itself into finding a lower confidence
limit on q0 in the population sampled. The binomial tables give

X20

i¼2

C20
i piq20�i ¼ :900þ

with p¼ .181 and with corresponding q¼ .819. So

P(q � :819) ¼ :90

and the lower tolerance limit is p¼ .819.
An alternative approach is to find the reliability or the confidence desired directly from the OC

curve. This may be done through the use of the relation

p ¼ 1� p, g ¼ 1� Pa

The Type B OC curve for the plan n¼ 20, c¼ 1 is shown in Figure 4.5.
We see that for

Pa ¼ 1� g ¼ 1� :90 ¼ :10

the corresponding p value from the OC curve is .181. Therefore, as before, the estimated reliability
from the sample is

p ¼ 1� p ¼ 1� :181 ¼ :819

These relationships can also be employed to find a sampling plan to be used with specifications of
the tolerance interval type. Suppose the life of a tire is specified to be such that 87% of the
population must last more than 20,000 mi. with 75% confidence. Here we have

Pa ¼ 1� g ¼ 1� :75 ¼ :25
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FIGURE 4.5: Type B OC curve (n¼ 20, c¼ 1).
and

p ¼ 1� p ¼ 1� :87 ¼ :13

Then it is clear that the plan n¼ 20, c¼ 1 would satisfy this requirement since for p¼ .129
the Pa¼ .25.

Note that when specifications are stated in terms of tolerance intervals, only one point on the OC
curve is specified. Thus, the plan n¼ 10, c¼ 0 also satisfies the requirements of the tire example but
does not offer the producer as much protection against good lots being rejected.

It should be pointed out that this type of problem may also be solved using measurements and a
variables sampling plan with a reduction in sample size. The procedure involved is much the same
and will be discussed under variables sampling plans.

Levels and Risks

It is usually desirable to set up a sampling plan with both the producer’s and consumer’s interests
in mind. This benefits both since their interests are not mutually exclusive and are in fact to a large
extent compatible as seen in Table 4.14. While the producer and consumer risks are fairly well
defined in terms of good product rejected and bad product accepted, respectively, each has an
interest in having reasonable levels maintained for the other.

Since specification of two points may be used to define an OC curve, it is often desirable to
specify these points in terms of the producer and the consumer. Thus we have
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TABLE 4.14: Producer and consumer interests.

Producer Consumer

Good lots rejected Good product lost (producer risk) Potential higher cost
Bad lots accepted Potential customer dissatisfaction Paid for bad product

(consumer risk)
Producer’s quality level (PQL). A level of quality, which should be passed most of the time. The
state of the art almost always prohibits this from being a fraction defective of zero.

Producer’s risk (PR). The risk of having PQL material rejected by the plan.

Consumer’s quality level (CQL). A level of quality, which should be rejected most of the time.

Consumer’s risk (CR). The risk of having CQL material accepted by the plan.

It is customary (though not necessary) to designate the producer’s risk as .05 indicating Pa¼ .95
at the PQL and the consumer’s risk as .10 to give Pa¼ .10 at the CQL. This value of the CQL in
percent is called the lot tolerance percent defective (LTPD) for 10% limiting quality of the plan.
Figure 4.6 shows the location of these points on the OC curve for n¼ 20, c¼ 1. While the PR and
CR may take on any values, if the traditional values are taken, we have for n¼ 20, c¼ 1:
PQL¼ .018, PR¼ .05, CQL¼ .181, CR¼ .10.

In addition to these points, a third important point on the curve is defined as

Indifference quality (IQ) level. The point where the producer and the consumer share a 50%
probability of acceptance.
PQL CQL

CR

PR

P a

1.00

0.50

0

1−a

b

p
IQ

FIGURE 4.6: PQL, CQL, PR, CR (n¼ 20, c¼ 1).
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This point characterizes the plan in the sense of equal risk, although it is unlikely that the
producer will stay in business if 50% of the lots are rejected. Rather, the IQ quantifies the area of
vagueness or indifference between the consumer and the producer.

Use of these points to describe sampling plans allows for ready development and characterization
of them. This is particularly true when the nature of Type A and Type B plans is considered. The
principal measure of Type A plans is the indifference quality (IQ) at which the probability of
acceptance is split equally between the interests of the producer and the consumer. The slope of the
OC curve is then a subsidiary but important consideration measuring the discrimination of the plan.
This can be seen in the work of Hamaker (1950).

Type B plans however are driven by their process orientation. As such, the ARL becomes an
important consideration along with percent lots accepted. Experience over the years has led to
values of 95% and 10% for producer’s risk and consumer’s risk, respectively. This amounts to 1 lot
in 20 rejected in error when quality is good and 1 lot in 10 accepted in error when quality
deteriorates. Corresponding ARLs are an average of 20 lots inspected until a lot at the PQL is
rejected in error and an average of 1.11 lots inspected until a lot at the CQL is accepted. These
values are summarized as follows:
.

Percent of Lots Accepted ARL

PQL 95 20
IQ 50 2
CQL 10 1.05

It will be seen then that they represent the producer’s and consumer’s interests quite well and that
they give good coverage of the region of interest.

Choosing Quality Levels

Consider the term acceptance sampling as it applies to choosing quality levels, and take particular
note of its reference to acceptance not rejection. One of the common tenets of sampling is that the
supplier is honorable and wishes to do the right thing within the bounds of ordinary commerce. It is
assumed that quality is generally good and that bad lots are an aberration and not a practice, usually.
If this were not so, the consumer needs a new supplier and possibly 100% inspection until one is
found. Sampling plans are intended to validate the acceptability of the lot and alert those concerned
of any departure from acceptable norms so that corrective action can be undertaken. This is an
important consideration in determining where quality levels should be set. Certain levels of risk
have become more and more common.

The consumer’s risk is of primary interest in Type A situations, and is often set at 10% at the CQL.
That level of risk has borne the test of time having been incorporated as the LTPD as early as 1923 in
the development of sampling plans at Western Electric. Indeed, Dodge and Romig (1944, p. 32) point
out that their tables ‘‘are based on a consumer’s risk of 0.10, a value found in most practices.’’

The producer’s risk is of prime importance in developing and evaluating Type B plans. Use of 5%
for the producer’s risk at the AQL has become quite conventional, also meeting the test of time.
This goes back at least to the Columbia University Statistical Research Group (1948, p. 145) in
acknowledging ‘‘use of the 95% point is quite common.’’ When a flow of lots is considered, this
implies a rejection rate, in error, of 1 lot in 20 at the PQL which seems quite reasonable when other
alternatives are investigated.
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The remaining risks are often carried over between the types. While a consumer’s risk of 10% is
used as a key measure of Type A plans and a producer’s risk of 5% is key to Type B plans, the
choice of 5% producer’s risk for Type A plans and 10% consumer’s risk for Type B plans has
become quite common.

Once values are assigned, PQL andCQL split the OC curve into three regions as in Figure 4.10. The
PQL is the maximum value in a region of acceptance in which the producer’s risk is less than or equal
to the value specified. The CQL is the minimum in a region of rejection for which the consumer’s risk
is less than or equal to the value specified. Between these two regions is an area of indifference in
which acceptance or rejection is largely a matter of chance. The PQL then represents the worst quality
that can be tolerated on a long-term basis, while the CQL represents the lower limit on quality, which
must be rejected. The PQL should be set at the state of the art or worse if that can be tolerated. The
CQL should be set with regard to the conditions surrounding potentially defective product. Thus, the
producer’s risk may be in parts per million, but the consumer’s risk in percent if parts per million
failures would be expected to generate defective product in the magnitude of percent—for example,
failure of one head on a five-headed parts per million machine would produce 20% defective.

The four values (PQL, PR, CQL, and CR) provide a useful characterization of sampling plans and
can be regarded as particularly important points on the OC curve. Nevertheless it is important to
point out that other values of risk may be desirable. For example, values of consumer’s risk of 5%
are sometimes used in reliability plans to match customary ways to express specifications in that
field. The choice of levels should always be made with the resulting OC curve in mind.

The choice of quality levels (CQL and PQL) with which to construct a sampling plan must be
made considering the seriousness of the defects to which it is applied, OCs of the resulting sampling
plan, economic consequences in terms of sample size, ability of the producer to meet the levels, and
needs of the consumer, which must be met. The construction of any sampling plan involves a trade-
off of these items.

As mentioned earlier, no acceptance control procedure should be instituted without reference to
as much process control information as is available. Necessary and obtainable quality levels must be
determined so that the acceptance sampling scheme employed is a cost-effective compromise in the
interest of both the producer and the consumer. The best tool in choosing quality levels is a well-
designed control chart and possibly process optimization studies to see what levels can economic-
ally be met.

Acceptance control should not be thought of as a policing operation but rather as the first step
toward mutually acceptable process controls to maximize the cost-effectiveness of both approaches.
This may allow eventual use of surveillance inspection to detect any departure from agreed on levels
at minimal cost to both parties.

Classification of Defects

Defect types are not all of the same concern. Dodge and Torrey (1956) have pointed out that this
is because

1. Defects of different kinds are not all equally serious.

2. Defects of the same kind differ in seriousness according to the extent of departure from
specified limits or standards.

Accordingly, defects are sometimes classified into groups which reflect their seriousness. Quality
levels for sampling inspection are set accordingly. One such classification has been given by the
Statistical Research Group (1948, p. 82)
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Major. Will cause failure of the item to function as intended.

Minor. Will impair the efficiency, shorten the lifetime, or otherwise reduce the value of the item.

Irregularity. A departure from good workmanship not affecting the performance or life of an item.

Sometimes an additional category is added reflecting concern for product safety. Using the
definition of MIL-STD-414, for example, this may be

Critical. Could result in hazardous or unsafe conditions for individuals using or maintaining the
product.

A leak or a flat spot might be a major defect in a tire. A blemish could be a major defect while an
illegible letter in the brand name may be an irregularity. Clearly a weak spot or damaged cord that
could lead to a blowout would be a critical defect. It is essential that any classification of defects be
carefully and explicitly defined before it is used.

Measures of Sampling Plans: Terminology

A distinction may be made between product which is definitely objectionable to the consumer
on the one hand and product which fails to meet specifications on the other. While it is hoped that
these categories overlap, they need not always coincide. This can be seen in Table 4.15. Also
specifications imposed on a product, its subassemblies and constituents may be essentials to the
production operation and its efficiency, but have no relation to the quality of the product as
perceived by the consumer. Thus, parts may be restricted to certain dimensions for the efficient
operation of a feed mechanism in production but have no relation whatsoever to quality as measured
by the ultimate consumer. For this reason, recent documents dealing with terminology in quality
control have attempted to make a distinction between satisfying the ultimate user and satisfying the
specifications. For example, the ISO 3534-2 Standard (2006) entitled Statistics—Vocabulary and
Symbols—Part 2: Applied Statistics defines the following:

Defect. Nonfulfillment of a requirement related to an intended or specified use.
In other words, a departure of a quality characteristic from its intended level or state that occurs

with a severity sufficient to cause an associated product or service not to satisfy intended
normal, or reasonably forseeable, usage requirements.

Defective. Item with one or more defects.
In other words, a unit of product or service containing at least one defect, or having several

imperfections that in combination cause the unit to fail to satisfy intended normal, or reasonably
forseeable usage requirements. (The word defective is appropriate for use when a unit
of product or service is evaluated in terms of customer usage [as contrasted with conformance
to specifications])
TABLE 4.15: Specifications and defects.

Product Performance

Specifications Nondefective Defective

Met OK Need tighter specifications
Not met May loosen specifications OK
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Nonconformity. Nonfulfillment of a requirement.
In other words, a departure of a quality characteristic from its intended level or state that occurs

with a severity sufficient to cause an associated product or service not to meet a specification
requirement.

Nonconforming unit. Unit with one or more nonconformities.
In other words, a unit of product or service containing at least one nonconformity.

Clearly, the term defective is also appropriate for use in the handling of components and materials
internal to a production operation since one operation supplying material to another would take on
the roles of producer and consumer, respectively. In such a situation, a part not meeting specifica-
tions would be viewed as a defective by the consuming operation while it may be regarded as a
nonconforming unit by the supplier, since the same part might go to a user internally or externally
who would find it capable of satisfying usage requirements.

Since acceptance sampling is usually presented in terms of an adversarial relationship between a
producer and a consumer, and since, in most applications, interest in acceptance sampling is
centered on satisfaction of usage requirements on the part of the consumer, the terms defect and
defective will be used here with the understanding that the terms nonconformity and nonconforming
unit should be used when evaluating an item against a specification when no evaluation is being
made of its intended use internally or externally to the producer.

In summary, then, a sampling plan may be assessed, at any given incoming proportion defective
p, by five basic measures as defined in the ISO 3534-2 Standard (2006).

1. Probability of acceptance (Pa). Probability that, when using a given acceptance sampling
plan, a lot will be accepted when the lot or process is of a specific quality level.
In other words, ‘‘The probability that a lot will be accepted under a given sampling plan.’’
A plot of Pa against p comprises the OC curve. Such curves are of two types:

Type A. Plots the probability that a lot will be accepted against the proportion defective in the
lot inspected.

Type B. Plots the proportion of lots that will be accepted against the proportion defective in
the producer’s process, which gives rise to the lot inspected.

2. ASN. Average sample size inspected per lot in reaching decisions to accept or not to accept
when using a given acceptance sampling plan.
In other words, ‘‘The average number of sample units per lot used for making decisions
(acceptance or nonacceptance).’’ ASN is meaningful in Type B sampling situations. A plot of
ASN against p is called the ASN curve for the plan.

3. AOQ. Expected average quality level of outgoing product for a given value of incoming
product quality.
In other words, ‘‘The expected quality of outgoing product following the use of an acceptance
sampling plan for a given value of incoming product quality.’’ This is normally calculated
only when rejected lots are 100% inspected since otherwise AOQ¼ p for a stream of lots all of
incoming product quality p. AOQ is meaningful in Type B sampling situations. A plot of
AOQ against p is called the AOQ curve of the plan.

4. AOQL. Maximum AOQ over all possible values of incoming product quality level for a given
acceptance sampling plan and rectification of all nonaccepted lots unless specified otherwise.
In other words, ‘‘For a given acceptance sampling plan, the maximum AOQ over all possible
levels of incoming quality.’’ This may be seen as the maximum point on the AOQ curve.
The proportion defective at which the AOQL occurs is denoted as pM. AOQL is sometimes
shown as pL.
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5. ATI. Average number of items inspected per lot including 100% inspection of items in
nonaccepted lots.
In other words, ‘‘The average number of units inspected per lot based on the sample size for
accepted lots and all inspected units in nonaccepted lots.’’ Thus, ATI is the total average
number of units inspected for lots including sample units and units involved in 100%
inspection as required. ATI is meaningful in Type B sampling situations. A plot of ATI
against p is called the ATI curve of the plan.

Graphs of Measures

The principal measures of sampling plans are usually presented in the form of graphs which show
at a glance how the plan will perform against various possible values of proportion defective. Since
knowledge of the incoming fraction defective is usually not available (otherwise there would be no
sense to sample), the graphs allow for rational matching of the plan to the sampling situation. They
portray performance against good and bad quality. This allows selection of a plan on the basis of its
protection and other measures of performance without knowing the exact fraction defective to which
the plan will actually be applied.

Four such (Type B) curves are illustrated the plan N¼ 20, n¼ 10, c¼ 1:

OC curve. Shows probability of acceptance plotted against possible values of proportion
defective. It is used in assessing the protection afforded by the plan (Figure 4.7).

ASN curve. Shows ASN plotted against possible values of proportion defective. Used with plans
involving several sampling stages, it shows how average sample size varies as incoming
quality changes. It is used in assessing the inspection requirements for the plan in the absence
of rectification (Figure 4.8).
0
0

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P a

0.10 0.20 0.30 0.40 0.50
 p

FIGURE 4.7: OC curve (n¼ 10, c¼ 1).
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FIGURE 4.8: ASN curve (n¼ 10, c¼ 1).
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AOQ curve. Shows AOQ plotted against possible values of proportion defective. The AOQ at the
curve’s maximum is the AOQL. The proportion defective at which it occurs is labeled pM. It is
used in evaluating the effect on average quality going to the consumer after 100% inspection
of rejected lots, to determine the level of assurance afforded to the consumer by a rectification
procedure. The magnitude of the AOQL is sometimes represented as pL (Figure 4.9).

ATI curve. Shows ATI plotted against possible values of proportion defective. Used with
rectification procedures it indicates overall inspection requirements for the total procedure
(Figure 4.10).
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FIGURE 4.10: ATI curve (N¼ 20, n¼ 10, c¼ 1).
Knowledge of these component measures of sampling plans allows the quality engineer to properly
prescribe the plan appropriate to the sampling situation.

Specifying a Plan

Discriminating use of sampling procedures demands knowledge and specification of the charac-
teristics of the plans to be employed. A primary consideration is the protection afforded to both the
producer and consumer. Since two points may be used to characterize the OC curve, it is customary
to specify:

p1¼ PQL
p2¼CQL
a ¼ producer risk
b ¼ consumer risk

For single-sampling attributes plans, 1�a and b can be determined directly from the distribution
function of the probability distribution involved. Figure 4.11 shows the relation of these quantities
to the OC curve. Also shown are the region of acceptance, indifference, and rejection defined by
these points. Quality levels of p1 or better are expected to be accepted most of the time (�1�a) by
the plan depicted. Quality levels of p2 or worse are expected to be rejected most of the time (�1�b)
while intermediate levels will experience decreasing probability of acceptance as levels move from
p1 to p2. Occasionally, only one set of parameters (p1, a) or (p2, b) is specified. When this is done,
any plan having an OC curve passing through the points meets the criterion. A single-sampling
attributes plan may be specified by any two of the following: (p1, a), (p2, b), n, c. It may also be
determined by specifying AOQL and one of the other values listed. The operating ratio R¼ p2=p1 is
often used to characterize sampling plans. The operating ratio varies inversely with the acceptance
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FIGURE 4.11: Relation of p1, p2, 1�a, and b to the OC curve.
number and may be used to derive individual plans for given values of a and b. Unless otherwise
stated, a is usually taken to be .05 and b taken to be .10 since these values have become traditional
in acceptance sampling having satisfied the test of long-term usage.

The chapters that follow will be primarily devoted to presenting the operating procedure
for implementing various sampling plans and schemes together with means for determining Pa,
ASN, AOQ, AOQL, and ATI under full and curtailed sampling. In general, except where explicitly
stated, Type B measures will be given since they also act as conservative approximations to the
Type A results.
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Problems

1. A new firm sends a lot of 100 to qualify as a supplier of circuit boards for use in an electronic
assembly. The previous supplier had a process average of 10% defective. In inspecting the lot,
what type plan should apply: Type A or Type B? What probability distribution is the correct
one for constructing the OC curve of the plan selected if specifications are in terms of percent
defective? What probability distribution should be used if the specifications are in terms of
defects per 100 units?

2. Consider the plan n¼ 4, c¼ 0 used on lots of size 8. Draw the Type A and Type B OC curves.
Compute the probability of acceptance at p¼ .125, .25, .375, .50 as a minimum.

3. In Problem 2, the lot size is raised to 16 but the plan n¼ 4, c¼ 0 is retained. What are the
Type A probabilities of acceptance at p¼ .125, .25, .375, .50? How would these probabilities
change if the lot size were made still larger?

4. A special military radio is specified to have less than 1 defect in 50 units. How many defects
would be expected in a sample size of 100 units? What is the probability of 0, 1, 2, 3 defects in
100 units if quality were exactly at the specified level? What is the probability of acceptance if
two defects were allowed in a sample of 100?

5. The plan n¼ 5, c¼ 1 is being used on the inspection of tires for a minor defect on a series of
lots. The process average has been 12.5% defective for some time. The defect is hard to find
and is missed 20% of the time. Draw the effective OC curve accounting for the inspection
error. Use the points p¼ .125, .25, .375, .50 at a minimum for the true fraction defective.

6. If rejected lots are 100% inspected in Problem 2, draw the AOQ curve. Should Type A or
Type B probabilities be used? Compute AOQ for p¼ .125, .25, .375, .50 at a minimum.

7. Draw the ATI curve for Problem 6. Compute ATI for p¼ .125, .25, .375, .50 at a minimum.

8. The sampling plan n¼ 15, c¼ 2 is being used for inspection of gaskets as received. If the
incoming process fraction defective is .10 and the plan is curtailed only after finding the third
defective gasket, what is the ASN?

9. If a lot is rejected after 11 units are inspected in Problem 8, what is the estimated fraction
defective.

10. For the plan n¼ 32, c¼ 1, 12.2 defects per 100 units will be rejected 90% of the time, while
1.66 defects per 100 units will be accepted 90% of the time. If PR¼CR¼ .10, what are the
PQL and CQL for this plan expressed in defects per unit?
� 2008 by Taylor & Francis Group, LLC.
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Chapter 5

Single Sampling by Attributes

The single-sampling plan is a basic to all acceptance sampling. The simplest form of such a plan
is single sampling by attributes which relates to dichotomous situations, i.e., those in which
inspection results can be classified into only two classes of outcomes. This includes go, no-go
gauging procedures as well as other classifications, such as measurements in or out specifications.
Applicable to all sampling situations, the attributes single-sampling plan has become the benchmark
against which other sampling plans are judged. It is employed in inspection by counting the number
of defects found in the sample (Poisson distribution) or evaluating the proportion defective from
processes or large lots (binomial distribution) or from individual lots (hypergeometric distribution).
Single sampling is undoubtedly the most used of any sampling procedures.

Operation

Implementation of an attributes single-sampling plan is very simple. It involves taking a random
sample of size n from a lot of size N. The sample may be intended to represent the lot itself (Type A
sampling) or the process used to produce the lot (Type B sampling). The number of defectives (or
defects) d found is compared to an acceptance number c. If the number found is less than or equal to
c, the lot is accepted. If the number found is greater than c, the lot is rejected. The operation of the
plan is illustrated in Figure 5.1.

Selection

Tables of single-sampling attributes plans are available. Perhaps the two best-known sources are
military standard MIL-STD-105E (1989) and its derivatives as well as the Dodge and Romig tables
(1959). These will be discussed in later chapters. The use of such tables as a collection of individual
plans provides ease of selection on the basis of the operating characteristics (OC) and other
measures classified therein.

Analytic procedures are also available for determining the so-called two-point single-sampling
plans for specified values of

p1¼ producer’s quality level (PQL)
p2¼ consumer’s quality level (CQL)
a ¼ producer’s risk (PR)
b ¼ consumer’s risk (CR)



Accept Reject

Sample n

d <_ c d > c

FIGURE 5.1: Procedures for single sampling by attributes.
where

R ¼ p2
p1
¼ operating ratio

Five such procedures will be set forth here. They relate to the derivation of plans as indicated in
Table 5.1.

When constructing a plan for defects, rather than defectives, with these procedures use p as the
number of defects per unit. The tables of unity values and the Thorndyke chart may then be used
directly, where n is simply the sample size, i.e., number of units sampled.

Tables of Poisson Unity Values

Factors for construction of single-sampling plans are available in the literature which is based on
the Poisson distribution and which provide excellent approximations to the binomial sampling
TABLE 5.1: Procedures for determining single-sampling plans.

Type Plan Method Use

Type B (defectives)
(defects)

Tables of Poisson
unity values

Tables for derivation of plan given operating
ratio R for tabulated values of a, b, and c.
Poisson approximation to binomial for
defectives. May be used as exact for defects.

Type B (defectives) Binomial nomograph Nomograph for derivation of plan given
a, b, p1, p2. Uses binomial distribution
directly. Hence, exact for defectives.

Type A (defectives) f-Binomial nomograph Uses binomial nomograph to derive Type A
plans given a, b, p1, p2 through f-binomial
approximation to hypergeometric distribution.
Given lot size, it gives approximate plan for
defectives.

Type B (defects)
(defectives)

Thorndyke chart Procedure for use of Thorndyke chart for
Poisson distribution to derive plan given
a, b, p1, p2. Exact for defects. Approximate
for defectives through Poisson approximation
to binomial.

Type A (defectives) Hypergeometric tables Iterative procedure for derivation of exact
hypergeometric plan given N, a, b, p1, p2
using the Lieberman–Owen tables of
hypergeometric distributions.



situation as well. These include the original approach of Peach and Littauer (1946) together with the
work of Grubbs (1949) and Cameron (1952) and the tabulations by the U.S. Army Chemical Corps
Engineering Agency (1953). These so-called unity values are expressed as the product np, where
n¼ sample size and p¼ proportion defective. When dealing with defects, p¼ defects per unit. The
unity values can be easily used to construct and evaluate plans on the basis of the operating ratio.
Appendix Tables T5.1 and T5.2 present the values for single-sampling attributes plans developed by
Cameron (1952). Additional sets of unity values for matched sets of single, double, and multiple
plans have been developed by Schilling and Johnson (1980) and are presented in Appendix Table
T6.1. They may be used in the customary situation in which a¼ .05 and b¼ .10. Other risk levels
associated with p1 and p2 will also be found in the Cameron (1952) tables. The values for other risk
levels are used in a manner identical to those for the conventional levels of a and b. The theory of
construction of unity values is explained by Duncan (1986).

To derive a plan having a¼ .05 and b¼ .10, determine the operating ratio R¼ p2=p1. Appendix
Table T5.1 lists values of R corresponding to various acceptance numbers c and risks a and b. The
value of c tabulated closest to the desired value of R for the indicated risks is the acceptance number
to be used. Choose a value of R from the table equal to or just less than the value desired, to be
conservative, in terms of guaranteeing both risks. To find the sample size n, divide np1 by p1.
Always round up in obtaining the sample size.

Appendix Table T5.2 shows probability of acceptance associated with various unity values for
the plans and acceptance numbers given in Appendix Table T5.1. This table may be used to evaluate
the OC curve of any single-sampling attributes plan. Unity values are shown for various acceptance
numbers c tabulated in columns by probability of acceptance p(A). Simply divide the unity values
for a given acceptance number by the sample size of the plan to get values of p and find the
probability of acceptance for these values from the column headings.

For example, for a¼ .05 and b¼ .10, suppose it is desired to have p1¼ .018 and p2¼ .18 so that
R¼ 10. Then for the value of R listed (10.96) in Appendix Table T5.1, the acceptance number is
shown to be c¼ 1. The sample size is .355=.018¼ 19.7 which rounds up to 20. The plan is n¼ 20,
c¼ 1. If the probability of acceptance is to be evaluated for Pa¼ .10, use Appendix Table T5.2 to
find the corresponding p¼ 3.89=20¼ .194. Also, the indifference quality for this plan is
1.678=20¼ .084.

In a similar manner, 13 points on the OC curve can be described using Appendix Table T5.2 to
obtain the following:
.

Pa p Pa p

.995 .103=20¼ .005 .500 1.678=20¼ .084

.990 .149=20¼ .007 .250 2.693=20¼ .135

.975 .242=20¼ .012 .100 3.890=20¼ .194

.950 .355=20¼ .018 .050 4.744=20¼ .237

.900 .532=20¼ .027 .025 5.572=20¼ .279

.750 .961=20¼ .048 .010 6.638=20¼ .332
.005 7.430=20¼ .372
The procedure described holds the PR exactly because the PQL was used to obtain the sample
size, while the CR can vary slightly from the specified value when sample size is rounded. It will
seldom be possible to hold both risks exactly. If the CR is to be held at the expense of the PR, obtain
np.10 corresponding to P(A)¼ .10 from Appendix Table T5.2 and divide by p2 to obtain the
sample size. If the result differs from the sample size using p1, use the larger sample size, or if
only one p1 and p2 is of primary interest, use the sample size associated with the value of interest.



Binomial Nomograph

The Larson (1966) nomograph presented earlier as Figure 3.5 can also be used to derive single-
sampling attributes plans. Given p1, p2, a and b, plot p1 and p2 on the left scale for proportion
defective shown as ‘‘probability of occurrences on a single trial (p).’’ Then plot 1�a and b on the
right scale for probability of acceptance shown as ‘‘probability of c or fewer occurrences in n trials
(p).’’With a straight edge, connect the points: p1 with 1�a and p2 with b. At the intersection of the
lines, read the sample size n and the acceptance number c from the grid.

The nomograph can also be used to evaluate the OC curve of a plan. To do this, plot the point
(n, c) on the grid. Locate the position of each value of probability of acceptance to be evaluated on
the right p scale. Then draw a line from p through (n, c) and read the corresponding fraction
defective p on the left scale. The procedure can be reversed to find the value of probability of
acceptance for a given value of proportion defective set on the left scale.

For example, suppose a¼ .05, b¼ .10, p1¼ .018, and p2¼ .18. The derivation of the plan n¼ 20,
c¼ 1 is shown in Figure 5.2. The dotted line shows an indifference quality of p¼ .08 for this
plan.

The Larson nomograph is based on the binomial distribution and so will allow direct evaluation
of Type B plans for fraction defective. It allows derivation and evaluation of plans for values of
probability of acceptance not shown in the Cameron tables. It provides a reasonable and conserva-
tive approximation for the derivation of plans when the hypergeometric distribution should apply
and the binomial approximation to the hypergeometric distribution is appropriate.

f-Binomial Nomograph

Ladany (1971) has provided a method for adapting the Larson binomial nomograph for use
in deriving Type A plans for finite lot of size N when the f-binomial approximation to the
hypergeometric distribution applies. This is when the sampling ratio F¼ n=N> 0.1 and the fraction
defective p � .1. Other approximations are listed in Figure 3.9. A somewhat more complicated
direct method for deriving Type A plans using the Lieberman and Owen (1961) tables is given later
in this chapter.
p2 = 0.18

0.95 = 1 – α

0.50

0.10 = β

Pa

0.08

p1 = 0.018

p

FIGURE 5.2: Larson’ nomograph for n¼ 20, c¼ 1.
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FIGURE 5.3: f-Binomial application of nomograph.
To use the binomial nomograph in this context, for specified, p1, p2, a, b, determine two
psuedosample sizes:

n1 ¼ p1N, n2 ¼ p2N

and consider two lines, simultaneously drawn, as in Figure 5.3.

Line A from b on the right scale, through the intersection c (to be determined) with the n2 line
on the grid.

Line B from 1�a on the right scale and the intersection of the same c with n1 line on the grid.

When the two lines intersect on the left scale and have identical values of c at n2 for line A and n1 for
B, respectively, the plan has been determined. For the value of c specified, the value of the sampling
fraction F¼ n=N can be read at the point of intersection on the left scale. Multiplication of this value
of F by the lot size will give the sample size n.

Ladany (1971) suggests the use of a thread or rubber band at b and 1�a on the right scale which,
when looped around a stylus and run up and down the left scale, would provide a flexible
representation of the two lines. In any event, practice with the method soon makes the use of two
transparent rulers adequate for the purpose.

The procedure may, of course, also be used to evaluate the Type A probability of acceptance for
the plan specified by N, n1, c, for a given value of p as follows:

1. Locate the point representing c and n¼Np on the gird.

2. Locate the value of n=N on the left (p) axis.

3. Draw a line through these points. The intersection of this line with the right (p) scale will
indicate the cumulative probability of acceptance for the value of p.

Clearly, the procedure could be reversed to find the value of p corresponding to a given value of
probability of acceptance. This would involve drawing a line from Pa on the right scale to n=N on
the left. The intersection of the line with the curve for the acceptance constant c involved gives Np.
Division of this value by N gives p.



For example, suppose lot size is N¼ 20 and it is desired to develop a Type A plan having a¼ .24,
b¼ .30, p1¼ .10, p2¼ .20. Then we have n1¼ 20(.10)¼ 2 and n2¼ 20(.20)¼ 4. The binomial
nomograph would appear as in Figure 5.3.

Line A passes from .30 through (n2¼ 4, c¼ 1) to p¼ .50. Line passes from p¼ .76 through
(n1¼ 2, c ¼ 1) to p¼ .50. The lines intersect at .50 on the left axis and so the plan has sampling
fraction F¼ n=N¼ .50. Hence, since N¼ 20, we find n¼ 10 and the plan is N ¼ 20, n¼ 10, c¼ 1.
The indifference quality level may be evaluated using the dotted line in Figure 5.3 as Np ¼ 3 so that
p¼ 3=20¼ .15. This is exactly the value obtained for the plan in Table 4.2 using the tables of
Lieberman and Owen (1961).

It should be noted that the discrete nature of the hypergeometric distribution precludes certain
fractions defective from occurring. This should be considered throughout in application of the
binomial nomograph in this way.

Thorndyke Chart

Although somewhat more complicated than Larson’s binomial nomograph, the Thorndyke (1926)
chart, as given in Dodge and Romig (1959), may be used to derive a single-sampling attributes plan.
This chart, presented earlier as Thorndyke chart (Figure 3.6), uses cumulative Poisson probabilities
on the ordinate and unity values np on the abscissa. Curves for various acceptance numbers are
shown. The procedure, adapted from Burgess (1948), is as follows:

1. Project an imaginary horizontal line from b.

2. Place the bottom edge of a piece of paper on the line so that the bottom left corner of the paper
lies above np¼ 1.

3. Project an imaginary horizontal line from 1�a on the ordinate and mark its intersection with
the paper on the vertical left edge.

4. Project an imaginary vertical line from the unity value equal to the operating ratio R desired up
to the bottom edge of the paper and mark the paper at the point of intersection.

5. Slide the bottom edge of the paper along the line projected from b until a single c curve most
nearly passes through both the 1�a and the Rmarks on the paper at the same time. This is the
value of c for the sampling plan.

6. For this value of c, read the value of np corresponding to 1�a or the value of np
corresponding to b. Division of either of these unity values by p1 or p2, respectively, will
give the sample size for the plan. Unless one risk is specifically to be held, use the larger of the
two sample sizes or choose an appropriate compromise intermediate value.

For use in determining the plans for defects, simply substitute the desired values of defects per unit
for p in the above procedure.

To illustrate this method, suppose it is desired to have a¼ .05, b¼ .10, p1¼ .018, p2¼ .18. The
corresponding operating ratio is R¼ 10. The resulting Thorndyke chart is shown in Figure 5.4 and
shows the appropriate acceptance number to be c¼ 1. The curve for c¼ 1 shows np.95¼ .36 and
np.10¼ 3.8. Dividing these by p1 and p2, respectively, we obtain n¼ 20 and n ¼ 21. If the PR is to
be held, the plan n¼ 20, c¼ 1 would be used.

The Thorndyke chart is based on Poisson probabilities and so like Cameron’s tables serves as a
good approximation to the binomial distribution for defectives and is exact in dealing with defects
per unit. It provides a procedure for determining a plan based on the Poisson distribution for values
not tabulated in the tables which employ unity values.
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FIGURE 5.4: Thorndyke chart to derive plan: a¼ 0.05, b¼ 0.10, p1¼ .018, p2¼ .18. (a) Con-
struction of slide and (b) derivation of plan.
Hypergeometric Tables

When sampling from a single (isolated) lot, the construction of a sampling plan is complicated by
the computationally cumbersome hypergeometric distribution. The computer can be a real help here.
Alternatively, when the situation is such that the approximations shown in Figure 3.9 are appropri-
ate, they should be used. This may be thought of as substituting the appropriate Type B OC curve
for the approximating distribution in place of that of the Type A plan which uses the hypergeo-
metric. Alternatively, Ladany’s approach to the use of the binomial nomograph may be employed.

If the approximations are not appropriate or an exact solution is required, an iterative method may
be used as outlined below. It requires that tables of the hypergeometric distribution, such as those of
Lieberman and Owen (1961), be available. If they are not available, recourse must be made to the
computer or in simple problems to hand calculation. The procedure for selecting a Type A plan
using the hypergeometric distribution is as follows:

1. Specify PQL¼ p1, PR¼a, CQL¼ p2, CR¼b.

2. Use approximations of Figure 3.9 if appropriate to develop an analogous Type B plan.

3. Use hypergeometric tables to obtain a plan as follows:

a. Determine a binomial plan n*, c* which meets the desired specifications.

b. For a given lot size, N, determine the number defective in the lot D1¼Np1 corresponding
to the PQL and D2¼Np2 corresponding to CQL. Start at n¼ n* and c¼ c* and iterate
through the hypergeometric tables, alternating D2 and D1 between successively lower
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sample sizes and acceptance numbers until a minimum sample size plan meeting the
specifications is obtained. This involves simultaneously satisfying the inequalities:

F(x) � 1�a at D1

F(x) � 1�b at D2

c. Iterate as follows:
n D2 x F(x) N n D1 x F(x)

n* D2 c* b1 ! N n* D1 c* (1�a)1
na D2 ca b2  N na D1 ca (1�a)2
nb D2 cb b3 ! N nb D1 cb (1�a)3

� � � � � � � � � � � � � � � � � � � � � � � � � � � � �
nk D2 ck bk � b ! N nk D1 ck (1 – a)k � 1�a
Having started with the binomial plan, which because of its conservative nature assures b1 � b
and (1�a)1 � 1�a, lower the sample size until the inequalities are violated. Next lower the
acceptance number and again successively drop the sample size until it is confirmed that the
inequalities do not hold. Repeat this process until an acceptance number is found for which a
sample size cannot be obtained satisfying the inequalities. The plan identified for the next higher
acceptance number is the hypergeometric plan satisfying the specifications. In general, probability
of acceptance is lowered by increasing n and lowering c with consequent decrease in b and 1�a.

To illustrate the method, suppose a hypergeometric plan is to be selected having p1¼ .10,
p2¼ .20, a¼ .24, b¼ .30 with lot size 20. From the Larson nomogram, the binomial plan satisfying
these specifications is n¼ 17, c¼ 2. Using the Lieberman and Owen (1961) tables for

D1 ¼ :1(20) ¼ 2

D2 ¼ :2(20) ¼ 4

the following results are obtained against the specified

b ¼ :30 1� a ¼ :76
teps N n D2 x F(x) N n D1 x F(x) Plan

20 17 4 2 .0877 20 17 2 2 1.0000
20 15 4 2 .2487 20 15 2 2 1.0000 n¼ 15, c¼ 2
20 14 4 2 .3426 20 14 2 2 1.0000
20 15 4 1 .0320 20 15 2 1 .4474
20 12 4 1 .1531 20 12 2 1 .6526
20 9 4 1 .3746 20 9 2 1 .8105
20 10 4 1 .2910 20 10 2 1 .7632 n¼ 10, c¼ 1
20 10 4 0 .0433 20 10 2 0 .2368
20 9 4 0 .0681 20 9 2 0 .2895

0 20 8 4 0 .1022 20 8 2 0 .3474
The plan is n¼ 10, c¼ 1. This is the same plan which obtained by the Ladany f-binomial adaptation
of the Larson nomograph. In step 1, the binomial plan was used. Sample size was reduced to obtain
the plan n¼ 15, c¼ 2 in step 2, which satisfies the inequalities but which has not been shown to be
optimum in terms of sample size. Step 3 confirms the plan in step 2. Step 4 lowers the acceptance



number, while steps 5 through 8 lead to the plan n¼ 10, c¼ 1. Steps 9 and 10 confirm that no plan
exists for the next lower acceptance number.

These results could be obtained using a computer or possibly a programmable calculator. Also,
the strategy employed can be used in the development of other types of sampling plans. Using a
slightly different approach, Guenther (1969) has outlined a general iterative procedure by which
two-point plans can be obtained from binomial, hypergeometric, or Poisson tables.

Measures

The performance of single-sampling attributes plans may be characterized by the measures given
in Table 5.2. These may be evaluated using the binomial or Poisson distributions as appropriate to
the sampling situation. Care must be exercised in the use of the hypergeometric distribution due to
the depletion of the lot as samples are taken. The formulas should be modified accordingly. The
distributions are listed in Table 3.1. The x and y values for calculation of the average outgoing
quality limit (AOQL) are explained in Chapter 14 and are given in Appendix Table T14.1 based on
the Poisson model. The approximation y� 0.4(1.25cþ 1) shown for y was developed by Schilling
for acceptance numbers of 5 or less. The notation F(cjn) indicates the probability of c or fewer
defectives in a sample of n. The frequency function f(cjn) is interpreted accordingly.

To illustrate application of these formulas, suppose the measures of the plan n¼ 20, c¼ 1 are
desired when sampling from a succession of lots of size N¼ 120. They are to be calculated using
Type B (binomial) probabilities when the incoming proportion defective is p¼ .18.

Probability of acceptance:

Pa ¼ F(1j20) ¼ C20
0 (:18)0(:82)20 þ C20

1 (:18)1(:82)19

¼ :019þ :083 ¼ :102

Average sample number (ASN):
Full inspection, ASN¼ 20
Semicurtailed

ASNc ¼ 20F(1j20)þ 1þ 1
:18

[1� F(2j21)]

¼ 20(:102)þ 2
:18

[1� :244] ¼ 10:44

Fully curtailed

ASNfc ¼ 20� 1
1� :18

F(1j21)þ 1þ 1
:18

[1� F(2j21)]

¼ 20� 1
1� :18

(:087)þ 1þ 1
:18

[1� :244] ¼ 10:42

Average outgoing quality (AOQ):
Defectives found replaced

AOQ ¼ :18(:102)
120� 20

120

� �

¼ :015



TABLE 5.2: Measures of single-sampling attributes plans.

Measure Formula

Probability of acceptance Pa¼F(cjn)
ASN Full inspection

ASN¼ n

Semicurtailed

ASNc ¼ nF(cjn)þ cþ 1
p

[1� F(cþ 1jnþ 1)]

Fully curtailed

ASNfc ¼ n� c

1� p
F(cjnþ 1)þ cþ 1

p
[1� F(cþ 1jnþ 1)]

AOQ Defectives found replaced

AOQ ¼ pPa

N � n

N

� �

Defectives not replaced

AOQ ¼ pPa

N � n

N � np

� �

Approximate (n=N small)

AOQ ffi pPa

AOQLa Defectives found replaced with good

AOQL ¼ y

n

N � n

N

� �

Defectives not replaced

AOQL ¼ y

n

N � n

N � np

� �

Approximate (n=N small)

AOQL ¼ y

n

ffi :4
n
(1:25(cþ 1)) for c � 5

AOQL occurs at

pM ¼ x

n

ATI ATI ¼ nþ (1� Pa)(N � n)

¼ nPa þ N(1� Pa)

a x, y values given in Appendix Table T14.1.
Defectives not replaced

AOQ ¼ :18(:102)
120� 20

120� 20(:18)

� �

¼ :016



Approximate

AOQ ¼ :18(:102) ¼ :018

AOQL:
Defectives found replaced

AOQL ¼ :8400
20

120� 20
120

� �

¼ :035

Defectives not replaced

AOQL ¼ :8400
20

120� 20
120� 20(:18)

� �

¼ :036

Approximate

AOQL ¼ :8400
20
¼ :042

AOQL occurs at

pM ¼ 1:62
20
¼ :081

Average total inspection (ATI):

ATI ¼ 20þ (1� :102)(120� 20) ¼ 109:8

These calculations illustrate the value of the approximations shown and how little the measures are
affected by the variations shown in inspection technique. The formulas could also be evaluated for
defects per unit using the Poisson model.
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Problems

1. Construct single-sampling plans to the following specifications given in proportion defective
with PR .05 and CR .10:

a. PQL¼ .04, CQL¼ .21

b. PQL¼ .03, CQL¼ .13

c. PQL¼ .02, CQL¼ .06

Use the following techniques

a. Poisson unity values

b. Binomial nomograph

c. Thorndyke chart

Compare results.

2. Plot the Type B OC curve for the following single-sampling plans using Pa¼ .95, .75, .50,
.25, .10 at a minimum for plotting positions.

a. n¼ 13, c¼ 1

b. n¼ 32, c¼ 0

c. n¼ 1125, c¼ 2

Use the following techniques

a. Poisson unity values

b. Binomial nomograph

c. Thorndyke chart

Compare results.



3. Obtain a Type A plan for lot size 200 with PQL¼ .025 and CQL¼ .125 with risks a¼ .05 and
b¼ .10 use

a. Binomial nomograph

b. Hypergeometric tables (optional)

Determine the points Pa¼ .75, .50, .25 on the OC curve.

4. Derive a defects per unit plan having PQL¼ 1.1 and CQL¼ 12.2 defects per hundred units for
risks a¼ .05 and b¼ .10. What is the indifference quality for this plan?

5. If lots are received in quantities of 1000, obtain the AOQ and ATI at the following points for
the plans given in Problem 2 above and find the AOQL of each.

a. Pa¼ .95

b. Pa¼ .50

c. Pa¼ .10

6. Use the binomial nomograph to derive and compare the OC curves of the plans n¼ 5,
c ¼ 0, 1, at Pa¼ .95, .50, .10. Plot the AOQ and ATI curves for these plans for lots of size
200. Find their AOQL.

7. Use unity values to derive and compare the OC curves for sample sizes 5 and 10 for c¼ 1 at
Pa¼ .95, .50, .10. Plot the AOQ and ATI curves for these plans for lots of size 200. Find their
AOQL. Use a¼ .05 and b¼ .10.

8. Use the Larson nomograph to derive a binomial sampling plan satisfying the specifications
p1¼ .03, p2¼ .09, a¼ .05, b¼ .10. Then find the appropriate hypergeometric plan for use
with a lot of N¼ 500. This illustrates the importance of considerations of lot size when the
sampling fraction is high.

9. Using the Thorndyke chart, derive a plan to satisfy the conditions of Problem 8 and compare
with the results for that problem. Why is the sample size highest using the Thorndyke chart?

10. For even degrees of freedom, it is well known that the complement of the cumulative
distribution function for the Poisson can be determined from x2=2 with degrees of freedom
2cþ 2. Using this fact, derive the unity values for c¼ 3? [Hint: See Cameron (1952).]





Chapter 6

Double and Multiple Sampling by Attributes
Double- and multiple-sampling plans reflect the tendency of many experienced inspectors to give
a questionable lot an additional chance. Thus, in double sampling if the results of the first sample are
not definitive in leading to acceptance or rejection, a second sample is taken which then leads to a
decision on the disposition of the lot. This approach makes sense, not only as a result of experience,
but also in the mathematical properties of the procedure. For one thing, the average sample number
(ASN) can usually be made to be less for a double-sampling plan than for a single-sampling plan
with the same protection.

A natural extension of double sampling is to allow further additional samples to be taken to
achieve even more discrimination in the disposition of a lot. Such procedures are called multiple-
sampling plans when, as with double sampling, the last sample is constructed to force a decision at
that point. That is, for a specific last sample (say the kth sample) it is so arranged that rk¼ akþ 1,
where rk is the rejection number and ak is the acceptance number. Thus, double sampling is simply a
special case of multiple sampling where k¼ 2.

Multiple-sampling plans allow even more flexibility and still further reduction in average sample
size over double-sampling plans, but are often found to be difficult to administer because of the
complexity of handling and recording all the samples required. As an example of the reduction in
sample size that can be obtained, MIL-STD-105E (Code H, 1.5 AQL [acceptable quality level],
normal inspection) shows that for plans matched to the single-sampling plan n¼ 50, c¼ 2, the ASN
at the 95th percentile is

Plan ASN

Single 50
Double 43
Multiple 35

This is typical of the efficiency in sampling which may be generated by the use of double- and
multiple-sampling procedures. Efficiency of this sort may be costly, however, in terms of admin-
istration, since there is an increasingly variable workload in going from single to double to multiple
sampling. These plans offer an additional dimension to the application of sampling plans, however,
by providing increased economy and flexibility when properly applied.

Double- and multiple-sampling plans are said to be matched to single-sampling plans when their
operating characteristic (OC) curves coincide. The inherent shape of a multiple-sampling OC curve
is, however, different from that of a single-sampling OC curve. Hence, plans are often matched at
two points, usually at p.95 and p.10.

Inspection is often curtailed, that is, inspection is stopped after reaching a decision, or semicurtailed,
that is stopped only on a decision to reject. In either case the first sample is almost always inspected in
full so that estimates and records kept on the first sample will have a consistent sample size. Usually the
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ASN is assessed at the producer’s quality level (PQL), since this should be the sustained normal level of
the operation of the plan if no problems occur.

Operation

Double Sampling

Application of a double-sampling plan requires that a first sample of size n1 be drawn at random
from the lot (usually assumed large). The number of defectives d is counted and compared to the
first sample acceptance number a1 and rejection number r1.

If d1 � a1, the lot is accepted
If d1 � r1, the lot is rejected
If a1< d1< r1, a second sample is taken

If needed, a second sample of size n2 is drawn. The number of defectives d2 contained in the second
sample is determined. The total number of defectives

D2 ¼ d1 þ d2

is compared to the acceptance number a2 and the rejection number r2 for the second sample. In
double sampling r2¼ a2þ 1 to insure a decision on the second sample.

If D2 � a2, the lot is accepted
If D2 � r2, the lot is rejected

The operation of the plan is shown in Figure 6.1.

Multiple Sampling

Multiple sampling involves the inspection of specific lots on the basis of from 1 to k successive
samples as needed tomake a decision. InMIL-STD-105E, k is taken as 7, that is, themultiple-sampling
Sample n1

Sample n2

Accept Reject

a1 < d1 < r1

D2  = d1 + d2 <_ a2 D2  = d1 + d2 >_ r2

d1 >_ r1d1 <_ a1

FIGURE 6.1: Procedure for double sampling by attributes.
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plans contained therein must reach a decision by the seventh sample. Multiple-sampling plans are
usually presented in tabular form:

Sample Sample Size
Cumulative
Sample Size

Acceptance
Number

Rejection
Number

1 n1 n1 a1 r1
2 n2 n1þ n2 a2 r2
..
. ..

. ..
. ..

. ..
.

k nk n1þ n2þ � � � þ nk ak rk¼ akþ 1

To start the procedure, a sample of n1 is randomly drawn from a lot of size N and the number of
defectives d1 in the sample is counted.

If d1 � a1, the lot is accepted
If d1 � r1, the lot is rejected
If a1< d1< r1, another sample is taken

If subsequent samples are needed, the first sample procedure is repeated sample by sample. For each
sample, the total number of defectives found at any stage (say the ith)

Di ¼
Xi

j¼1

dj

is compared with the acceptance number ai and the rejection number ri for that stage until a decision
is made. Since, for the last (kth) sample, rk¼ akþ 1, a decision must be made by the kth sample.
Sometimes acceptance is not allowed at the early stages of a multiple-sampling plan; however,
rejection can take place at any stage. When acceptance is not allowed the symbol # is used for the
acceptance number. The operation of the plan is shown in Figure 6.2.
Selection

A convenient source of single-, double-, and multiple-sampling plans will be found in the
MIL-STD-105E tables and its derivatives. The OC curves and other measures presented in these
tables can be used to select an appropriate plan. Matched single- and double-sampling plans are
also given in the Dodge and Romig (1959) tables. These sets of tables will be discussed in later
chapters.

Procedures are also available for determining double- and multiple-sampling plans using Poisson
unity values in a manner similar to single-sampling plans. These require specification of p1 (PQL),
p2 (CQL), a (producer’s risk), and b (consumer’s risk) and calculation of the operating ratio
R¼ p2=p1. Double- and multiple-sampling plans also require specification of the relationship of
the successive sample sizes, that is, a multiple m where for double sampling n2¼mn1.

Duncan (1986) has provided a compilation of unity values and operating ratios for double and
multiple sampling as developed by the U.S. Army Chemical Corps Engineering Agency (1953). The
double-sampling plans are for m¼ 1 and m¼ 2, respectively, with the rejection numbers constant
for both samples. That is

r1 ¼ r2 ¼ a2 þ 1
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Sample n1

Sample n2

Sample n1

Sample nk

Accept Reject

a1 < d1 < r1

a2 < D2 < r2

a1 < D1 < r1D1  = Σ dj <_ a1

d1 >_ r1d1 <_ a1

D2  = d1 + d2 <_ a2
D = d1 + d2 >_ r

D1  = Σ dj  >_ r1
i

j=1

Dk  = Σ dj  >_ rk
k

j=1

i

j=1

Dk  = Σ dj <_ ak
k

j=1

FIGURE 6.2: Procedure for multiple sampling by attributes.
The multiple-sampling unity values are presented in terms of plans in which the sample size at each
stage is equal, i.e.,

n1 ¼ n2 ¼ � � � ¼ ni ¼ � � � ¼ nk

The Chemical Corps plans are not in matched sets and do not utilize acceptance numbers corre-
sponding to MIL-STD-105E.

Appendix Table T6.1 was developed by Schilling and Johnson (1980) for the construction and
evaluation of matched sets of single-, double-, and multiple-sampling plans. It may be used to derive
individual plans to meet specified values of fraction defective and probability of acceptance. It may
also be employed to match the scheme performance of the MIL-STD-105E system to that of an
individual plan. The tables extend into the range of low probability of acceptance useful in
reliability, safety, and compliance testing.

The unity values np listed in Appendix Table T6.1 are based on MIL-STD-105E acceptance and
rejection numbers. Values of n are for the first sample sizes; succeeding samples in double and
multiple plans are all equal and of size n. The plans are numbered by the corresponding single-
sampling acceptance number and a letter (S, D, M) showing the type of plan: single, double, multiple.
Two sets of double and multiple plans are included in addition to those fromMIL-STD-105E to cover
operating ratios R¼ 33 and R¼ 22 to facilitate matching an individual plan to the MIL-STD-105E
system. No single-sampling plan has an operating ratio in this range. To obtain the operating ratio
R¼ 20 the double-sampling plan requires n2¼ 5n1 and is the only plan in Appendix Table T6.1
in which first and second sample sizes are not equal. Supplementary plans, not in MIL-STD-105E,
are included to provide a complete set of plans to match single-sampling acceptance numbers from
0 to 15. The table is for a¼ .05 and b¼ .10. Its use is similar to that of the Cameron (1952) tables
for single sampling including applications to plans to inspect defects per unit.
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To construct a given plan

1. Decide if single, double, or multiple sampling is to be used.

2. Specify

p1 ¼ PQL (Pa ¼ :95)

p2 ¼ CQL (Pa ¼ :10):

3. Form the operating ratio

R ¼ p2
p1

:

4. Choose a plan having acceptance numbers associated with an operating ratio just less than or
equal to R.

5. Determine the sample size as

n ¼ np2
p2

:

Round up in determining the sample size.

6. The plan consists of the acceptance numbers and sample size chosen.

7. The OC curve may be drawn by dividing the values of np shown for the plan by the sample
size to obtain values of p associated with the values of probability of acceptance listed.

8. The ASN curve may be drawn by multiplying the values of ASN=n shown by the sample size
and plotting the resulting values of ASN against the p values obtained for the corresponding
probability of acceptance.

The formula for sample size n is presented showing division by p2 to ensure the consumer’s risk is
maintained. Alternatively n¼ np1=p1 as in the Cameron tables. The value of np1 can be found under
probability of acceptance .95 for the plan. If values of sample size differ between these two
formulas, the probability of acceptance will be exact at the value of p associated with the value of
n actually used and approximate for the other value of p. Sometimes a convenient intermediate
sample size may be chosen.

For example, suppose a double-sampling plan is desired having 95% probability of acceptance at
p1¼ .01 and 10% probability of acceptance at p2¼ .05.

1. Double sampling is to be used.

2. p1¼ .01, p2¼ .05

3. R ¼ :05
:01 ¼ 5

4. The operating ratio is R¼ 4.40 for the plan, giving acceptance numbers

Ac 1, 4; Re 4, 5

5. So

n1 ¼ 4:398
:05

’ 87:96 � 88
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This holds p2 exactly while p1¼ .011. Note that if p1 is to be held

n1 ¼ 1:000
:01

¼ 100

and at this sample size p2 will be .044.

6. Using n¼ 88, the plan is

Sample Sample Size Cumulative Sample Size Ac Re

1 88 88 1 4
2 88 176 4 5

7. OC curve is found by dividing the values of np shown by 88 to obtain

Pa P Pa p

.99 .007 .10 .050

.95 .011 .05 .058

.90 .014 .01 .077

.75 .020 .005 .086

.50 .028 .001 .105

.25 .038 .0005 .114
.0001 .134

8. The ASN curve is found by multiplying the values of ASN=n1 shown by 88 and plotting against
the values of p obtained for corresponding probabilities of acceptance in step 7 to obtain

p ASN P ASN

.007 94.4 .050 113.8

.011 109.6 .058 106.6

.014 115.8 .077 95.4

.020 125.0 .086 92.7

.028 129.4 .105 89.5

.038 124.4 .114 88.9
.134 88.3

Appendix Table T6.1 can be used to find matching single (R¼ 4.89) and multiple (R¼ 4.67) plans.
They are

Sample Sample Size Cumulative Sample Size Ac Re

Single
1 134 134 3 4

Multiple
1 33 33 # 3
2 33 66 0 3
3 33 99 1 4
4 33 132 2 5
5 33 165 3 6
6 33 198 4 6
7 33 231 6 7
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FIGURE 6.3: OC curves for single, double, and multiple matched plans.
where # indicates no acceptance allowed on the first sample. These plans are matched about as well
as those in MIL-STD-105E. Their OC and ASN curves are found in a similar manner to those of the
single-sampling plan.

The OC curves of these single-, double-, and multiple-plans are shown in Figure 6.3. Their ASN
curves are presented in Figure 6.4.

As a further illustration, suppose a plan is desired having a PQL of 1.78 defects per 100 units and
a CQL of 19.5 defects per 100 units with risk a¼ .05 and b¼ .10. Converting to defects per unit,
p1¼ .0178 and p2¼ .195, so that

R ¼ :195
:0178

¼ 10:96

Appendix Table T6.1 shows that the plans 1S, 1D, and 1M are an appropriate set of matched plans.

Single sampling: n¼ 3.89=.195¼ 19.95~20, Ac¼ 1, and Re¼ 2.
Double sampling: n¼ 2.49=.195¼ 12.77~13, Ac¼ 0, 1, and Re¼ 2, 2.
Multiple sampling: n¼ .917=.195¼ 4.70~5, Ac¼ #, #, 0, 0, 1, 1, 2, and Re¼ 2, 2, 2, 3, 3, 3, 3.

Also, the indifference quality level occurs at the following values of defects per unit with the
associated ASN shown:

Single sampling: p.50¼ 1.678=20¼ .084, ASN¼ 1(20)¼ 20.
Double sampling: p.50¼ 1.006=13¼ .077, ASN¼ 1.368(13)¼ 17.8.
Multiple sampling: p.50¼ .416=5¼ .083, ASN¼ 3.640(5)¼ 18.2.
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FIGURE 6.4: ASN curves for single, double, and multiple matched plans.
The PQLs and CQLs for these matched plans are

PQL¼ p.95 CQL¼ p.10

Single .355=20¼ .018 3.890=20¼ .195
Double .207=13¼ .016 2.490=13¼ .192
Multiple .103=5 ¼ .021 .917=5 ¼ .183

The plans shown correspond directly to the MIL-STD-105E, Code F, 2.5 AQL normal plan.

Measures

Double Sampling

The measures of performance of double-sampling plans are given in Table 6.1. Binomial
or Poisson probabilities are appropriate in their evaluation depending on the sampling situation.
These probability distributions are listed in Table 3.1. As an illustration of application of these
formulas, suppose the measures of the plan n1¼ n2¼ 13; a1¼ 0, a2¼ 1; r1¼ r2¼ 2 are to be
evaluated when sampling from a succession of lots of size N¼ 120. Calculations are to be made
using the binomial distribution in a Type B sampling situation when the incoming proportion
defective is p¼ .18.
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TABLE 6.1: Measures of double-sampling attributes plans.

Measure Formula

Probability of
acceptance

Pa ¼ Pa1 þ Pa2 , where Pai is Pa for ith sample

¼ F(a1jn1)þ
Xr1�1

d1¼a1þ1

f (d1jn1)F(a2 � d1jn2)

ASN Full inspection:

ASN¼ n1þ n2 (F(r1� 1jn1)�F(a1jn1))
Semicurtailed:

ASNC ¼ n1 þ
Pr1�1

d1¼a1þ1
f (d1jn1) r2�d1

p þ n2F(a2 � d1jn2)
h

� r2�d1
p

� �
F(r2 � d1jn2 þ 1)

i

AOQ Defectives found replaced with good

AOQ ¼ pPa1
N�n1
N

� �þ pPa2
N�n1�n2

N

� �

Defectives not replaced

AOQ ¼ pPa1
N�n1
N�n1p

� �
þ pPa2

N�n1�n2
N�n1p�n2p

� �

Approximate (n=N small)

AOQ ’ pPa

AOQL (Approximate) Determine n* and c* as followsa

1. Average cumulative sample sizes to obtain n*
2. Average all acceptance and rejection numbers to obtain c*

Obtain value of y using c*

AOQL ’ y
n

N�n*
N

� �

ATI ATI ¼ n1P1 þ (n1 þ n2)P2 þ N(1� Pa)

¼ n1 þ n2(1� Pa1)þ (N � n1 � n2)(1� Pa)

a Approximationmatching double to single plans given in Schilling et al. (1978). Value of y given in Appendix Table T14.1.
Probability of acceptance:

Pa ¼ F(0j13)þ f (1j13)F(0j13)
¼ C13

0 :180(:82)13 þ C13
1 :181(:82)12 C13

0 :180(:82)13
� �

¼ :076þ :216 [:076]

¼ :076þ :016 (Note:Thus Pa1 ¼ :76 and Pa2 ¼ :016)

¼ :092

Average sample number:
Full inspection

ASN ¼ 13þ 13 (F(1j13)� F(0j13))
¼ 13þ 13(:292� :076)

¼ 15:8
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Semicurtailed

ASNC ¼ 13þ f (1j13) 2� 1
:18

þ 13F(0j13)� 2� 1
:18

F(1j14)
� 	

¼ 13þ :216[5:56þ 13(:076)� 5:56(:253)]

¼ 14:1

Average outgoing quality (AOQ):
Defectives found replaced

AOQ ¼ :18(:076)
120� 13

120


 �

þ :18(:016)
120� 13� 13

120


 �

¼ :012þ :002 ¼ 0:014

Defectives not replaced

AOQ ¼ :18(:076)
120� 13

120� 13(:18)


 �

þ :18(:016)
120� 13� 13

120� 13(:18)� 13(:18)


 �

¼ :012þ :002 ¼ 0:014

Approximate

AOQ ’ :18(:092) ’ :017

Average outgoing quality limit (AOQL):

n* ¼ 13þ 26
2

¼ 19:5 � 20

c* ¼ 0þ 2þ 1þ 2
4

¼ 1:25 � 1

y¼ .8400 (from Appendix Table T14.1)

AOQL ’ 0:8400
20

120� 20
120


 �

’ :035

Average total inspection:

ATI ¼ 13(:076)þ (13þ 13)(:016)þ 120(1� :092)

¼ :99þ :42þ 108:96 ¼ 110:37

These measures are useful in the characterization of this double-sampling plan for p¼ .18. Repeated
calculations for various values of proportion defective would allow construction of the curves
describing plan performance.

Multiple Sampling

The measures of performance of multiple-sampling plans are given in Table 6.2. They apply, of
course, to double-sampling plans as well. The binomial or Poisson probability distributions are
appropriate for their evaluation depending on the sampling situation involved and the degree of
approximation desired. These probability distributions are listed in Table 3.1.
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TABLE 6.2: Measures of multiple-sampling attributes plans.

Measure Formula

Pa
Pa ¼

Pk

j¼1
Aj

where Aj is probability of acceptance on the jth stage
(for explicit formula, see Table 6.3)

ASN Full Inspection

ASN ¼P
k

j¼1

Pj

m¼1
nmTj

where Tj is probability of termination on the jth stage
Semicurtailed
See Table 6.3

AOQ Defectives found replaced with good

AOQ ¼P
k

j¼1

N�
Pj

m¼1

nm

N

0

B
@

1

C
ApAj

Defectives not replaced

AOQ ¼P
k

j¼1

N�
Pj

m¼1

nm

N�p
Pj

m¼1

nm

0

B
@

1

C
ApAj

Approximate (n=N small)

AOQ¼ pPa

AOQLa

(approximate)
Determine n* and c* as follows:

1. Average cumulative sample sizes to obtain n*
2. Average all acceptance and rejection numbers to obtain c*

(Use �1 when acceptance is not allowed at a stage.)
Obtain value of y using c*

AOQL ’ y
n*

N�n*
N

� �

ATI ATI ¼ N(1� Pa)þ
Pk

j¼1

Pj

m¼1
nmAj

a Approximation matching single to multiple plan given in Schilling et al. (1978). Values of y given in
Appendix Table T14.1.
As an illustration of the application of these formulas, consider the plan

Stage 1: n1¼ 10 a1¼ # r1¼ 2
Stage 2: n2¼ 10 a2¼ 0 r2¼ 2
Stage 3: n3¼ 10 a3¼ 1 r3¼ 2

where # denotes no acceptance allowed at the first stage. Suppose the plan is to be evaluated at p¼ .01
for application to lots of size 350. Calculations are to be made using Poisson probabilities as an
approximation to the binomial for a Type B sampling situation. Note that for np¼ (10) (.01)¼ 0.1,

f (0j10)¼ .905 F(0j10)¼ .905 1�F(0j10)¼ .095
f (1j10)¼ .090 F(1j10)¼ .995 1�F(1j10)¼ .005
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FIGURE 6.5: Probability tree evaluating multiple-sampling plan.
Probably the best way to portray the evaluation of a multiple-sampling plan is with a probability
tree as shown in Figure 6.5.

The results of Figure 6.5 give the following probabilities.

Stages Accept, Aj Reject, Rj Terminate, Tj Indecision, Ij

1 0 .005 .005 .995
2 .819 .013 .832 .162
3 .148 .016 .164 0
Total .967 .034 1.001 x

This listing of the probabilities associated with the tree shows the probability of accepting (Aj),
rejecting (Rj), terminating (Tj), and indecision (Ij) at each stage. It is constructed simply as the totals
of the acceptance, rejection, and indecision probabilities shown at that stage of the tree. Termination
is the sum of acceptance and rejection and acts as a check since the termination column must sum
to one.

Using the tree and the formulas of Table 6.2 for p¼ .01, it is possible to obtain

Probability of acceptance:

Pa ¼ A1 þ A2 þ A3

¼ 0þ :819þ :148 ¼ :967

Average sample number:

ASN ¼ n1T1 þ (n1 þ n2)T2 þ (n1 þ n2 þ n3)T3
¼ 10(:005)þ 20(:833)þ 30(:164) ¼ 21:6
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Average outgoing quality:
Defectives found replaced with good,

AOQ ¼ p
N � n1

N


 �

A1 þ N � n1 � n2
N


 �

A2 þ N � n1 � n2 � n3
N


 �

A3

� 	

¼ :01
350� 10

350


 �

0þ 350� 20
350


 �

0:819þ 350� 30
350


 �

:148

� 	

¼ :01[:772þ :135] ¼ :009

Defectives not replaced,

AOQ ¼ p
N � n1
N � pn1


 �

A1 þ N � n1 � n2
N � p(n1 þ n2)


 �

A2 þ N � n1 � n2 � n3
N � p(n1 þ n2 þ n3)


 �

A3

� 	

¼ :01
350� 10

350� :01(10)


 �

0þ 350� 20
350� :01(20)


 �

0:819þ 350� 30
350� :01(30)


 �

:148

� 	

¼ :01[:773þ :135] ¼ :009

Approximate,

AOQ ¼ pPa ¼ :01(:967) ¼ :0097

Average outgoing quality limit:

n* ¼ 10þ 20þ 30
3

¼ 20

c* ¼ �1þ 0þ 1þ 2þ 2þ 2
6

¼ 6
6
¼ 1

AOQL ¼ y

n*
N � n*

N


 �

¼ 0:8400
20

350� 20
350


 �

¼ :040

Average total inspection:

ATI ¼ N(1� Pa)þ n1A1 þ (n1 þ n2)A2 þ (n1 þ n2 þ n3)A3

¼ 350(1� :967)þ 10(0)þ 20(:819)þ 30(:148)

¼ 11:55þ 16:38þ 4:44 ¼ 32:37

These values measure the performance of this multiple-sampling plan when p¼ .01. From calcula-
tions at other levels of proportion defective the relevant curves characterizing the plan can be drawn.

The OCs and other measures of double- and multiple-sampling plans can also be computed using
the control table concept originated by the Statistics Research Group (1948). The control table for a
plan having acceptance numbers

Sample Ac Re

1 # 2
2 0 3
3 2 4
4 3 4

is shown in Figure 6.6. Sample numbers are listed across the top, while the accumulated number of
defectives is shown on the side. The squares represent possible events in the operation of the
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Sample

Sample

Plan

n1
n2
n3
n4

n
#
0
2
3

Ac
2
3
4
4

Re

Total

1 2 3 4

p12(1 − F (2|n3)) +
p22(1 − F (1|n3))=

p01(1 − F (2|n2))+
p11(1 − F (1|n2))=

p01  f (2|n2)+
p11  f (1|n2)=

p01  f (1|n2)+
p11  f (0|n2)=

p01  f (0|n2)=

p12  f (1|n3)+
p22  f (0|n3)=1 − F (1|n1) =

f (1|n1) =

f (0|n1) =

Accept Aj A1 = 0 A2 = p02

R1 = P21

p01 + p11 p12+ p22 p33 0 x

T1 = A1 + R1 T2 = A2 + R2 T3 = A3 + R3 T4 = A4 + R4 1.0

R2 = P32 R3 = P43 R4 = P44

A3 = p23 A4 = p34 ∑Aj

∑RjReject Rj

Terminate Tj

Indecision Ij

p12  f (2|n3)+
p22  f (1|n2)= p33  f (0|n4)=

P43

P32

P21

p11

p01 p02

p12

p22 p23

p33 p34

P44

p33(1 − F (1|n4)) =

1 2 3 4

1

0

2

3

4

Defectives

FIGURE 6.6: Control table format.
sampling plan. The boundary of the figure is comprised of the squares leading to acceptance or
rejection. If no acceptance decision is possible at a state, the double boundary square is omitted as in
the first sample of Figure 6.6. The top right square in Figure 6.6, for example, represents as
accumulation of at least four defectives on the fourth sample. A double square represents a state
at which termination of the plan would occur with acceptance or rejection. Bottom double squares
show acceptance, whereas top double squares show rejection. Since top square probabilities indicate
rejection, they are cumulative at or exceeding the number shown. They are shown as capital letters
(P), as opposed to individual probabilities shown as small letters (p). They are the only squares
which use cumulative probabilities.

To fill out the figure proceed as follows:

1. Under sample 1, fill in the appropriate probabilities of each event.

Defective Probability Action Symbol for State

0 f(0jn1) No decision p01
1 f(1jn1) No decision p11
�2 1�F(1jn1) Reject P21
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2. Under sample 2, fill in the appropriate probabilities of each event as the sum of the joint
probabilities of events leading to that state.

Approach

Defective
First

Sample
Second
Sample Symbol Probability Action

0 0 0 p02 ¼ p01 f (0jn2) Accept
1 0 1 p12 ¼ p01 f (1jn2)þ p11 f (0jn2) No decision

1 0
2 0 2 p22 ¼ p01 f (2jn2)þ p11 f (1jn2) No decision

1 1
3 0 �3 P32 ¼ p01(1�F(2jn2))

þ p11(1�F(1 j n2))
Reject

1 �2

3. Under sample 3, fill in the appropriate probabilities of each event as the sum of the joint
probabilities of events leading to that state.

Approach

Defective
Second
Sample

Third
Sample Symbol Probability Action

2 1 1 p23 ¼ p12 f (1jn3) Accept
2 0 þ p22 f (0jn3)

3 1 2 p33 ¼ p12 f (2jn3) No decision
2 1 þ p22 f (1jn3)

4 1 �3 P43 ¼ p12(1�F(2jn3)) Reject
2 �2 þ p22(1�F(1jn3))

4. Under sample 4, fill in the appropriate probabilities of each event as the sum of the joint
probabilities of events leading to that state.

Approach

Defective
Third
Sample

Fourth
Sample Symbol Probability Action

3 3 0 p34 ¼ p33 f (0jn4) Accept
4 3 �1 P44 ¼ p33(1�F(0jn4)) Reject

The probability of acceptance is simply the sum of the probabilities shown in the squares leading to
acceptance

Pa ¼ p02 þ p23 þ p34

The probability of rejection can similarly be found as the sum of the probabilities of the squares
leading to rejection

P(rej) ¼ P21 þ P32 þ P43 þ P44

Clearly the probability of acceptance and rejection must add to one.
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TABLE 6.3: Explicit formulas for measures of multiple-sampling plans.

Measure Formula

Pa
Pa¼F(a1jn1)þ

Xr1�1

d1¼a1þ1

f (d1jn1)
"

F(a2�d1jn2)þ
Xr2�1

d2¼a2�d1þ1

f (d2jn2)
"

���

���
"

F(aj�Dj�1jnj)þ
Xrj�1

dj¼aj�Dj�1þ1

f (djjnj)
"

���

���
"

F(ak�1�Dk�2jnk�1)þ
Xrk�1�1

dk�1¼ak�1�Dk�2þ1

f (dk�1jnk�1)

"

F(ak�Dk�1jnk)
#

���
#

���
#

where Dj ¼
Pj

i¼1
di and cumulative probabilities with negative arguments are taken

to be zero.
Use ai¼�1 if no acceptance is allowed at stage i.

ASN Full inspection

ASN¼ n1þ I1[n2þ I2 [n3þ I3 [� � �[nkþ 0] � � �] ] ]
where Ij is probability of no decision at stage j.
Semicurtailed inspection (equal sample sizes)

ASNC ¼
Xk

j¼1

(nj)Tj þ
Xk�1

j¼1

Xrj�1

i¼ajþ1

(nj)pij(1� F(rjþ1 � i� 1jn� 1))

�
Xk

j¼2

Xrj�1�1

i¼aj�1þ1

(nj)pi(j�1)(1� F(rj � i� 1jn� 1))

þ
Xk�1

j¼1

Xrj�1

i¼ajþ1

pij
(rjþ1 � i)

p
(1� F(rjþ1 � ijn))

where Tj and pij are taken from the control table and the first sample is always fully inspected.
Use ai¼�1 if no acceptance is allowed at a stage.
A summary table similar to the listing of probabilities for the probability tree approach to the
evaluation of the multiple plan may be developed for the control table and is shown at the bottom of
Figure 6.6. Using the summary table it is possible to evaluate the measures given in Table 6.2 just as
was done with the probability tree. The control table may also be used to evaluate explicit formulas
for probability of acceptance and ASN as given in Table 6.3.

As an example of the control table approach, consider again the multiple plan

n Ac Re

10 # 2
10 0 2
10 1 2

The appropriate control table is shown in Figure 6.7.
The results of the summary table are within rounding error of those for the listing of probabilities

obtained from the probability tree, and will give the same results for the measures as given in Table
6.2. Using the control table to evaluate the explicit formulas given in Table 6.3 for this plan, we obtain
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Sample

Sample
Total1 2 3

10

10

10

2

1

1 2 3

0

n
#
0
1

Ac
2
2
2

Re

Defectives
p01(1 − F (1|10)) +
p11(1 − F (0|10)) =

p01  f (1|10) +
p11  f (0|10) =

p01  f(0|10) =
(0.905) (0.905) =

p12  f (0|10) =
0.163(0.905) =

p12 (1 − F(0|10)) =
0.163(0.095) =

P21 = 0.005

p11 = 0.090 P12 = 0.163 p13 = 0.148

p01= 0.905 p02 = 0.819

P22 = 0.013 P23 = 0.015

0.905 (0.005) +
0.090 (0.095) =

(0.905) (0.090) +
(0.090) (0.905) =

Accept Aj A1 = 0

R1 = 0.005 R2 = 0.013 R3 = 0.015

T1 = 0.005 T2 = 0.832 T3 = 0.163 1.000

x

0.033

I1 = 0.995 I2 = 0.163 I3 = 0

A2 = 0.819 A3 = 0.148 0.967

Reject Rj

Terminate Tj

Indecision Ij

FIGURE 6.7: Control table illustration.
Probability of acceptance:

Pa ¼ F(#jn1)þ
Xr1�1

d1¼a1þ1

f (d1jn1) F(a2 � d1jn2)þ
Xr2�1

d2¼a2�d1þ1

f (d2jn2)[F(a3 � D2jn3)]
" #

¼ F(�1j10)þ
X2�1

d1¼�1þ1

f (d1j10) F(0� d1j10)þ
X2�1

d2¼0�d1þ1

f (d2j10)[F(1� D2j10)]
" #

¼ 0þ
X1

d1¼0

f (d1j10) F(0� d1j10)þ
X1

d2¼1�d1

f (d2j10)[F(1� D2j10)]
" #

¼ 0þ f (0j10) F(0j10)þ f (0j10) f (1j10) F(1� 1j10)
þ f (1j10) F(�1j10)þ f (1j10) f (0j10) F(1� 1j10)
þ f (1j10) f (1j10) F(�1j10)
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¼ 0þ (:905)(:905)þ (:905)(:090)(:905)

þ 0þ (:090)(:905)(:905)þ 0

¼ :819|{z}
A2

þ :074þ :074|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
A3

¼ :967

Average sample number:
Full inspection

ASN ¼ n1 þ I1[n2 þ I2[n3]]

¼ 10þ :995[10þ :163[10]]

¼ 21:57

Semicurtailed inspection

ASNC ¼
X3

j¼1

(10j)Tj þ
X2

j¼1

Xrj�1

i¼ajþ1

(10j)pij(1� F(rjþ1 � i� 1j9))

�
X3

j¼2

Xrj�1�1

i¼aj�1þ1

(10j)pi(j�1)(1� F(rj � i� 1j9))

þ
X2

j¼1

Xrj�1

i¼ajþ1

pij
rjþ1 � i

p


 �

1� F(rjþ1 � ij10)� �

¼ [10T1 þ 20T2 þ 30T3]

þ 10p01(1� F(1j9))þ 10p11(1� F(0j9))½
þ 20p12(1� F(0j9))�
� 20p01(1� F(1j9))þ 20p11(1� F(0j9))½
þ30p12(1� F(0j9))�

þ p01
2
p


 �

(1� F(2j10))þ p11
1
p


 �

(1� F(1j10))
�

þ p12
1
p


 �

(1� F(1j10))
	

¼ [10(:005)þ 20(:832)þ 30(:163)]

þ [10(:905)(:0038)þ 10(:090)(:0861)þ 20(:163)(:0861)]

� [20(:905)(:0038)þ 20(:090)(:0861)þ 30(:163)(:0861)]

þ (:905)
2
:01


 �

(:0002)þ :090
1
:01


 �

(:0047)þ :163
1
:01


 �

(:0047)

� 	

¼ 21:51

Further Considerations

Unity values np presented in Appendix Table T6.1 were derived by Schilling and Johnson (1980)
using the theory of unity values as presented by Duncan (1974, pp. 187–188). They are based on the
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Poisson distribution and can be used to approximate binomial-sampling plans were the Poisson
approximation to the binomial distribution applies. Since the probability of acceptance and the ASN
can be shown to be a function of np for a given set of acceptance criteria and ratio of subsample
sizes, it is possible to vary np1 and np2 in such a way that the ratio R¼ p2=p1 remains unchanged
while the value of n changes. Thus, any member of the set of plans having operating ratio R may be
used to generate unity values, values of np when n¼ 1, by simply dividing the values of np
associated with its OC by n. A similar argument holds for the values ASN=n.
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Problems

1. Construct double-sampling plans to the following specifications given in proportion defective
with producer’s risk .05 and consumer’s risk .10.

a. PQL¼ .039, CQL¼ .210

b. PQL¼ .029, CQL¼ .130

c. PQL¼ .019, CQL¼ .060

2. Construct the multiple-sampling plans corresponding to those obtained in Problem 1. Com-
ment on the match.

3. Plot the Type B OC curve for the following double-sampling plan using Pa¼ .95, .50, .10 at a
minimum for plotting positions

n: 8, 8

Ac: 0, 1

Re: 2, 2
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�

4. Plot the Type B OC curve for the following multiple-sampling plan using Pa¼ .95, .50, .10 at
a minimum for plotting positions

n: 3, 3, 3, 3, 3, 3, 3

Ac: #, #, 0, 0, 1, 1, 2

Re: 2, 2, 2, 3, 3, 3, 3

5. If lots are received in quantities of 1000, obtain ASN, AOQ, and ATI at the minimum plotting
positions for the plan given in Problem 3 and draw the curves.

6. If lots are received in quantities of 1000, obtain ASN, AOQ, and ATI at the minimum plotting
positions for the plan given in Problem 4 and draw the curves.

7. At present, the single-sampling plan n¼ 35, c¼ 3 is being used in acceptance inspection of
incoming material from a very good supplier. What double and multiple plans may be
substituted? How much would be gained thereby?

8. Use the approximation for determining AOQL to find what single-sampling plan matches the
double- and multiple-sampling plans of Problems 3 and 4. Is this confirmed by the Schilling–
Johnson table?

9. What is the ASN under curtailed inspection at p¼ .025 for the plan given in Problem 3? Using
the formula for a double-sampling plan, is the curtailment worthwhile at this fraction
defective?

10. Regard the plan given in Problem 3 as a multiple-sampling plan and construct the control table
at p¼ .025 to evaluate the probability of acceptance and the ASN.
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Chapter 7

Sequential Sampling by Attributes

Single, double, and multiple plans assess one or more successive samples to determine lot
acceptability. The most discriminating acceptance sampling procedure involves making a decision
as to disposition of the lot or resample successively as each item of the sample is taken. Called
sequential sampling, these methods may be regarded as multiple-sampling plans with sample size
one and no upper limit on the number of samples to be taken. It can be shown that the sequential
approach provides essentially optimum efficiency in sampling, that is an average sample number
(ASN) as low as possible (Wald 1947, p. 35). For example, in comparing average sample sizes for
plans matched to the Military Standard 105E (MIL-STD-105E) single-sampling plan n¼ 50, c ¼ 2,
we have at p¼ .017 (chosen as the 95th percentage point)

Plan ASN

Single 50
Double 43
Multiple 35
Sequential 33.5

Sequential plans are often applied where sample size is critical so that a minimum sample must be
taken. They are somewhat harder to administer than multiple sampling plans since in specific
applications the amount of inspection effort is not determined until the sample is taken. The
possibility of taking one sample at a time must exist; in some operations this would be exceedingly
difficult or impossible. Also the operating procedure requires an astute and trusted inspector since it
is somewhat more demanding than single, double, or multiple sampling.

Operation

Under sequential sampling, samples are taken, one at a time, until a decision is made on the lot or
process sampled. After each item is taken a decision is made to (1) accept, (2) reject, or (3) continue
sampling. Samples are taken until an accept or reject decision is made. Thus, the procedure is open
ended, the sample size not being determined until the lot is accepted or rejected. The ASN of the
plan provides a benchmark as to the expected sample size in any given application.

The plan is often implemented using a chart as shown in Figure 7.1 in which the cumulative
number of defectives found is plotted against the number of individual samples taken where

k ¼ number of sample items taken
dk¼ number of defectives found by the kth sample item
Y2¼ skþ h2¼ reject limit at kth sample
� 2008 by Taylor & Francis Group, LLC.



Continue

Accept
k

y1 = sk – h1

y2 = sk + h2

Reject
dk

0

h2

h1

FIGURE 7.1: Sequential acceptance plot.
Y1¼ sk� h1 is the acceptance limit at kth sample
h1, h2¼ intercepts
s¼ slope (not a standard deviation)

When the plot of the cumulative number of defectives found crosses the acceptance or rejection limit
lines, the lot is disposed of appropriately. Clearly, no acceptance is possible until the acceptance line
Y1 crosses the k-axis. The operation of the plan is shown diagrammatically in Figure 7.2.

The procedure described is called unit sequential sampling since items are drawn unit by unit.
Occasionally, group sequential procedures are used in which groups of items are successively drawn
(e.g., 10 at a time), inspected, and assessed against the acceptance and rejection limits at the
successive accumulated values of k. This is often done for inspection convenience.When the physical
circumstances of the inspection do not dictate a group size, an expeditious approach suggested by
Cowden (1957) is to make the group size equal to the number of samples necessary to allow the first
possibility of acceptance. That is, the value of k is just beyond the intersection of the acceptance line Y1
with the k-axis in Figure 7.1. Group sequential plans are often listed in the form of amultiple-sampling
plan showing cumulative sample size with acceptance and rejection numbers for each group. Of
course, the listing must remain open ended. When rounding acceptance and rejection numbers
obtained from the sequential acceptance plot, it is desirable to round the acceptance number upward
and the rejection number downward tominimize the difference between the group sequential plan and
the unit sequential plan from which it is derived. Of course, when the acceptance numbers and
rejection numbers are integers for the unit sequential plan at the successive values of k corresponding
Start

Sample 1 unit

dk >_ Y2dk < _ Y1 Y1 <  dk < Y2

Accept Resample Reject

FIGURE 7.2: Procedure for sequential sampling by attributes.
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to the multiples of group size, the measures of the group and unit sequential plans will correspond.
This will occur when h1, h2, and 1=s are integers.

Selection

Sequential sampling plans have been tabulated by the Statistical Research Group (1945). A table
of plans based on their results is given in Appendix Table T7.1, which shows the following
characteristics for a variety of plans when a¼ .05 and b¼ .10

p1 ¼ producer’s quality level (PQL)
p2 ¼ consumer’s quality level (CQL)
h1 ¼ acceptance intercept
h2 ¼ rejection intercept
s ¼ slope
n0 ¼ number of samples prior to possibility of acceptance
n1 ¼ number of samples prior to possibility of rejection
np1¼ASN at PQL
ns ¼ASN at proportion defective equal to s
np2¼ASN at CQL

Using these values, sequential plans for attributes inspection can be readily set up and characterized.
Formulas for the construction and evaluation of sequential plans for arbitrary values of p1, p2,

a, and b have been derived by Wald (1947) and the Statistical Research Group (1945). The
formulas are as follows:

h1 ¼ log [(1� a)=b]

log ( p2=p1)þ log [(1� p1)=(1� p2)]

h2 ¼ log [(1� b)=a]

log ( p2=p1)þ log [(1� p1)=(1� p2)]

s ¼ log [(1� p1)=(1� p2)]

log ( p2=p1)þ log [(1� p1)=(1� p2)]

Either common or natural logarithms can be used in these computations provided they are consistent.
Then, the acceptance and rejection lines are determined as

Y1 ¼ sk � h1 (acceptance) Y2 ¼ sk � h2 (rejection)

and then plotted as shown in Figure 7.1. These formulas are sometimes expressed as

h1 ¼ b

g1 þ g2
¼ b

G

h2 ¼ a

g1 þ g2
¼ a

G

s ¼ g2
g1 þ g2

¼ g2
G

for computational convenience where
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a ¼ log
1� b

a

b ¼ log
1� a

b

g1 ¼ log
p2
p1

g2 ¼ log
1� p1
1� p2

G ¼ g1 þ g2

Appendix Table T7.2 gives values of a and b tabulated for selected values of a and b. Appendix
Table T7.3 shows values of g1 and g2 for selected values of p1 and p2.

For example, suppose a sequential plan is desired having p1¼ .018, p2¼ .18, a¼ .05, b¼ .10.
Appendix Table T7.1 does not list such a plan so the formulas must be used. Here

h1 ¼ log [(1� :05)=:10]
log (:18=:018)þ log [(1� :018)=(1� :18)]

¼ log 9:5
log 10þ log 1:1976

¼ 0:907

h2 ¼ log [(1� :10)=:05]
log (:18=:018)þ log [(1� :018)=(1� :18)]

¼ log 18
log 10þ log 1:1976

¼ 1:164

s ¼ log [(1� :018)=(1� :18)]
log (:18=:018)þ log [(1� :018)=(1� :18)]

¼ log 1:1976
log 10þ log 1:1976

¼ 0:0726

so the lines of acceptance and rejection are

Y1 ¼ 0:0726k � 0:907

Y2 ¼ 0:0726k þ 1:164

The plot appears as Figure 7.3 which also shows the plot of sample results if the second and fifth
items were defective leading to rejection and cassation of sampling at the fifth item sampled.
Reject

Continue

Accept

y1

y2

1 2 3
−1

0

1

2

dk

4 5 6 7 8 9 10 11 12 k

FIGURE 7.3: Sequential graph.
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Measures

Measures of selected values of the ASN are given for the plans in Appendix Table T7.1. These
include n0, n1, np1, ns, and np2. The operating characteristic (OC) curvemay be sketched from the given
values of a, b, p1, and p2. They are based on Type B sampling as all of the measures are given here.

General formulas exist for probability of acceptance and ASN. To use these formulas, we employ
the auxiliary variable h, where�1< h<1, h 6¼ 0, then for any arbitrarily selected value of h, a
point (p,Pa) on the OC curve can be calculated (Wald 1947) as

p ¼ 1� [(1� p2)=(1� p1)]h

(p2=p1)
h � [(1� p2)=(1� p1)]h

with

Pa ¼ [(1� b)=a]h � 1

[(1� b)=a]h � [b=(1� a)]h

Given the combination p and Pa, we have the general formula for ASN

ASN ¼ Pa log [b=(1� a)]þ (1� Pa) log [(1� b)=a]

p log (p2=p1)þ (1� p) log [(1� p2)=(1� p1)]

and for large lot size relative to sample size

AOQ ¼ pPa

Specifically, when h¼�1, �1, 0, 1, 1, the formulas given in Table 7.1 are obtained. For
example, for the plan p1¼ .018, p2¼ .180, a¼ .05, b¼ .10 where it was found that h1¼ 0.907,
h2¼ 1.164, s¼ 0.0726, the following measures are obtained using Table 7.1.

p Pa ASN AOQ

0 1 12.5 0
.018 .95 14.7 .017
.0726 .562 15.7 .041
.18 .10 8.9 .018

1 0 1.3 0
TABLE 7.1: Sequential sampling by attributes for
proportion defective points on the OC, ASN, and AOQ
curves.

P Pa ASN AOQ

0 1 h1
s 0

p1 1�a (1�a)h1�ah2
s�p1

(1�a)p1

S h2
h1þh2

h1h2
s(1�s)

sh2
h1þh2

p2 b (1�b)h2�bh1
p2�s bp2

1 0 h2
1�s 0
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These values are usually sufficient for a crude sketch of the OC, ASN, and average outgoing quality
(AOQ) curves.

Sequential Sampling for Defects per Unit

Occasionally, sequential sampling procedures are required for defects per unit. Note that the
unit employed need not be an individual piece but may be several pieces considered together.
MIL-STD-105E is in terms of ‘‘defects per hundred.’’ The following theory applies whatever the
unit as long as it is defined beforehand.

A sequential chart for defects per unit is much like the chart for proportion defective in that it
plots the sum of the defects found against k, the sample number. The PQL and CQL are, of course,
in terms of mean defects per unit, m1 and m2, respectively, where m2>m1. The parameters for the
decision lines are as follows using common logarithms:

h1 ¼ log [(1� a)=b]

logm2 � logm1

h2 ¼ log [(1� b)=a]

logm2 � logm1

s ¼ m2 � m1

2:3026( logm2 � logm1)

Values of operating parameters for such a plan are given in Table 7.2.
The computer is an obvious ally in the application of sequential plans. It can internalize the

appropriate cumulative data and evaluate the acceptance or rejection unit by unit (or group by
group) as the data are collected. The operator may be alerted by various signaling devices, or by
printing the sequential diagram as needed. Selection and evaluation of sequential plans are also
facilitated by the ease of calculation that the computer supplies. Thus, the future of sequential
sampling is assured by the computer and more extensive application can be expected.

The sequential methods presented here are based on the likelihood ratio test of the simple hypothesis

H0: p0 ¼ p1
H1: p0 ¼ p2

The theoretical development and application of sequential methods will be found in Wald (1947)
and Wetherill (1986). Proofs associated with these procedures are fairly straightforward and are
developed and presented in detail in these texts.
TABLE 7.2: Sequential sampling by attributes for defects per unit
points on the OC and ASN curves.*

Mean Defects per Unit Pa ASN

0 1 h1
s

m1 1�a (1�a)h1�ah2
s�m1

S h2
h1þh2

h1h2
s

m2 b (1�b)h2�bh1
m2�s

Note: The form of the chart and its operation are the same as that shown for
proportion defective.

� 2008 by Taylor & Francis Group, LLC.



References

Cowden, D. J., 1957, Statistical Methods in Quality Control, Prentice-Hall, Englewood Cliffs, NJ.
Statistical Research Group, Columbia University, 1945, Sequential analysis of statistical data: applications,

AMP Report 30.2R, Columbia University, New York.
Wald, A., 1947, Sequential Analysis, John Wiley & Sons, New York.
Wetherill, G. B., 1986, Sequential Methods in Statistics, 3rd ed., Chapman & Hall, London.

Problems

1. Construct a sequential sampling plan such that p1¼ .04 and p2¼ 20 with a¼ .05 and b¼ .10.

2. Construct a sequential sampling plan such that p1¼ .07 and p2¼ .30 with a¼ .05 and b¼ .10.

3. Construct a sequential sampling plan such that p1¼ .02 and p2¼ .06 with a¼ .05 and b¼ .10.

4. Compare the results for Problems 1 through 3. What is the effect of increasing the slope?
What is the effect of decreasing the slope? What is the effect of increasing h2? What is the
effect of increasing h1?

5. Plot the Type B OC curve for the following sequential sampling plan using s and a minimum
of two other plotting points. Assume p1¼ .05, p2¼ .10, a¼ .05, and b¼ .10.

Y2 ¼ 0:0723k þ 3:8682

Y1 ¼ 0:0723k � 3:0129

What is the ASN at these points?

6. The plan

Y2 ¼ 0:0656k þ 1:9481

Y1 ¼ 0:0656k � 1:5174

has p1¼ .03 and p2¼ .12 at 1�a¼ .95, b¼ .10.
Compute the ASN and AOQ at these points.

7. MIL-STD-105E, Code L, 1.5 acceptable quality level (AQL) shows m1 ¼ 1 defect per 100
units at Pa¼ .95 and m2¼ 5.9 defects per 100 units at Pa¼ .10. Construct a sequential chart in
terms of defects per 100 units which matches this plan.

8. Determine the ASN at m1 and m2 for the plan developed in Problem 7.

9. What is the minimum number of samples leading to acceptance in Problem 7?

10. Using the formulas devise a sequential sampling plan having the following characteristics:
p1¼ .01, p2¼ .06, a¼ .05, and b¼ .10.
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Chapter 8

Variables Sampling for Process Parameter
Specifications are frequently written in terms of statistical parameters which describe the product
to be inspected. For attributes inspection, the parameter to be controlled is, of course, the proportion
nonconforming in the lot or process. When specifications are written in term of measurements, other
parameters may be of importance, such as the average (mean) level of a certain characteristic of the
process which produced the units to be inspected, or in some instances its standard deviation. This
implies Type B sampling. Examples of such specifications are mean life of a lamp, average amount
of discharge of an impurity into a stream, average emission of carbon monoxide from cars of a
certain make and model, and the standard deviation of an electrical test on semiconductors for use in
a ballistic missile. Specifications of this type are in contrast to those on the individual measurements
themselves which relate to individual units of product; variable sampling plans for such specifica-
tions will be covered in a later chapter.

It is characteristic of specifications on a process parameter that certain levels are acceptable and
should be protected from rejection, while other levels are objectionable and should be rejected by
the plan. This was recognized by Freund (1957) when he distinguished two critical levels:

u1: Acceptable process level (APL). A process level which is acceptable and should be accepted
most of the time by the plan.

u2: Rejectable process level (RPL). A process level which is rejectable and should be rejected
most of the time by the plan.

Here, u is taken to be the parameter specified.
In a manner analogous to attributes plans, the probability of acceptance for each of these levels is

defined as

a¼ probability of rejection at the APL (producer’s risk)
1�a¼ probability of acceptance at the APL
b¼ probability of acceptance at the RPL (consumer’s risk)

Most variables acceptance sampling plans for process parameter can be specified in terms of these
levels and risks.

Single Sampling for Process Parameter

Standard statistical tests of hypotheses form the basis for the methodology of single sampling by
variables for process parameters. In fact, such plans are simply tests of hypotheses. Thus, the
statistical tests shown in Table 8.1 may be employed as sampling plans in this context. They are
used as one- or two-sided tests depending on whether the parameter is to be controlled against
specifications on one or both sides. The operation of such tests is described in standard statistical
texts such as Bowker and Lieberman (1959). Sample sizes are critical in acceptance sampling
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TABLE 8.1: Statistical tests of hypotheses.

Parameter Specified Condition Test Statistic

Mean (m0) m0 specified, s known Normal z-test z ¼ �X�m0
s�X

¼ �X�m0

s=
ffiffi
n

p

m0 specified, s unknown Student’s t-test t ¼ �X�m0
s�X

¼ �X�m0

s=
ffiffi
n

p

Standard deviation (s0) s0
2 specified x2-test x2 ¼ (n� 1) s

s0

� �2
applications and may be determined from the appropriate power or operating characteristic (OC)
curves of the test. The power curve shows probability of rejection plotted against hypothetical
values of process parameter. Its complement is the OC curve. These curves for variables plans for
process parameter are usually plotted against the standardized displacement of the parameter from
the APL (m1) such as

d ¼ (m� m1)=s

or

l ¼ s2=s2
1

Sample size for two-point plans can be determined from the standardized displacement of the RPL
(m2) from the APL (m1). For the tests mentioned, this is as follows:

Test Displacement

z-test, t-test d0 ¼ jm2�m1j
s ¼ jRPL�APLj

s

x2-test l0 ¼ s2
2

s2
1
¼ RPL

APL

Figure 8.1 shows typical OC curves. For a set of curves with the specified a risk, the sample size is
found from the curve passing through (or nearest to) the intersection of d0 or l0, plotted on the
horizontal axis, and b, plotted on the vertical axis. If no curve passes through this point, crude
interpolation may be necessary. Frequently a 5% producer’s risk and a 10% consumer’s risk is
employed. OC curves are given in the appendix tables for a¼ .05. They include the following:

Appendix Tables Tests

T8.1 One-sided normal z-test
T8.2 Two-sided normal z-test
T8.3 One-sided Student’s t-test
T8.4 Two-sided Student’s t-test
T8.5 One-sided x2-test

For example, suppose mean life of a lamp was specified by the manufacturer as 1000 h (APL),
while the customer wished to be sure to reject shipments of lamps having a mean life of 800 h
(RPL). The standard deviation of life is not known but is expected to be in the order of 200 h. A one-
sided t-test is appropriate since the implied specification on mean life is one-sided, i.e., m not less
than 1000 h. The standardized displacement is
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FIGURE 8.1: Typical OC curves.
d0 ¼ jRPL� APLj
s

¼ j800� 1000j
200

¼ 1

If risks are set at a¼ .05 and b¼ .10, the OC curve for the one-sided t-test shows that a sample
size of n¼ 10 is required. A sample of 10 would be selected from the lot and the t-test applied,
accepting or rejecting the lot as the null hypothesis is accepted or rejected.

Acceptance Control Charts

A natural extension of a standard test of hypothesis on individual lots is to plot the results for
successive lots in control chart form. This serves to allow trend and runs analysis on a continuing
series of lots and affords the acceptance control engineer all the advantages of the control chart
technique. The critical value for the test serves as the acceptance control limit (ACL). Lots which
plot inside the ACL are accepted. Those which plot outside are rejected.

This idea was fist proposed by Freund (1957) in a celebrated paper which later won the
Brumbaugh Award from the American Society for Quality Control as the best technical contribution
of the year. A two-sided chart appears as in Figure 8.2. A one-sided chart would consist of the upper
half or lower half of the chart shown depending upon the direction in which the mean is to be
controlled. Of course, the APL and RPL do not appear on a chart in application. Only the ACL and
the nominal center line (NCL) are shown in actual use. The NCL is, of course, halfway between the
ACL in the two-sided case.

The initial work on the acceptance control chart has been primarily with standard deviation
known. Freund (1957, p. 14) points out that: ‘‘It is implied that a and b risks will be selected for the
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d

Upper rejectable process level, RPL
Upper acceptance control limit, ACL

Upper acceptable process level, APL
Nominal center line, NCL
Lower acceptable process level, APL

Lower acceptance control limit, ACL
Lower rejectable process level, RPL

d

Lot number

X

FIGURE 8.2: Acceptance control chart.
APL and RPL values respectively and that s will be known from past experience or estimated in the
usual control chart manner from the R or s computed from about 20 samples.’’ Clearly the measure
of variability must have been in control for 20 or more samples to assure the stability implicit in a
known standard deviation application. The acceptance control chart is easily set up by using
appropriate formulas.

If ACL¼ acceptance control limit, za¼ standard normal deviate cutting off an area of a in upper
tail, zb¼ standard cutting off an area of b in upper tail, and d¼ distance ACL lies from APL in
direction of RPL, then

n ¼ (za þ zb)s

RPL� APL

� �2

d ¼ za
za þ zb

�
�
�
�RPL� APL

�
�
�
�

where the sign of jRPL�APLj is regarded as always positive. The distance, d, and its relation to the
ACL, APL, and RPL is shown in Figure 8.2.

Freund has derived special factors which facilitate the determination of the ACL. They allow
computation of the limits either from the APL as before or alternatively from the RPL as a baseline.
Using g to represent the risk, the factors are

Factor (A) Measure of Variability (V)

A0,g s known

A1,g �s ¼ 1
k S

ffiffiffiffiffiffiffiffiffiffiffiffiffi
S(X��X)2

n

q
for k lots with n samples

A2,g
�R ¼ 1

k S R for k lots with n samples

A3,g �s ¼ 1
k S

ffiffiffiffiffiffiffiffiffiffiffiffiffi
S(X��X)2

n�1

q
for k lots with n samples

Appendix Table T8.6 gives the Freund A factors or various values of a and b. To use the A factors
the sample size must be calculated from the formula as above. For any of the factors Ag with
corresponding measure of variability, V, we have

Lower Limit Upper Limit

ACL¼APL�AaV ACL¼APL þAaV
ACL¼RPLþAbV ACL¼APL�AbV

It can be seen directly that d¼AaV.
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TABLE 8.2: Minimum D values before correction terms need be used.

a Risk Minimum D1 Minimum D2 a Risk Minimum D1 Minimum D2

.05 2.5 .851 .005 3.2 .619

.01 3.0 .670 .001 3.5 .409
In a two-sided situation, the ACL may be so close to the nominal value (NCL) as to force
consideration of both tails of the distribution of sample means simultaneously. To assess the need
for special correction terms (CT) in this situation, compute

D1 ¼
ffiffi
n

p
(ACL�NCL)

s ¼ deviation of upper ACL from NCL in terms of s�X or, alternatively,

D2 ¼
ffiffi
n

p
(APL�NCL)

s ¼ deviation of upper APL from NCL in terms of s�X

depending on whether the ACL themselves or the acceptable process level (APL) has already been
specified. Apply the CTs found in Appendix Table T8.7 if the value D1 or D2 calculated is less than
the value shown in Table 8.2. If a CT is necessary, it can be found in Appendix Table T8.7
corresponding to the value of D1 or D2 calculated. The A factor of Appendix Table T8.6 is
then multiplied by the CT to obtain a new A factor to be used in this two-sided situation. Application
of the new A factor proceeds as before. Alternatively, the CT can be used in the formulas for n and d
as follows:

n ¼ [(CT)za þ zb]s

RPL� APL

� �2

d ¼ (CT)za
(CT)za þ zb

jRPL� APLj

Freund (1957) presents the theory behind acceptance control charts as well as many excellent
examples. The following is an adaptation of one such example.

Bottles are filled with 10 cm3 of a solution. The amount of solution is to be maintained
within � 0.5 cm3 with less than 0.1% of the bottles outside the specification. It is desired to
reject if more than 2.5% of the bottles are under- or overfilled. A sample is to be taken of each half
hour’s production to be plotted against an acceptance control chart having a¼ .05 and b¼ .10.
The standard deviation has been estimated from control charts as s¼ .10 and fill is normally
distributed.

Using normal distribution theory to estimate the APL and RPL, we obtain the upper speci-
fication:

RPL ¼ USL� z:025s ¼ 10:5� 1:96(:10) ¼ 10:30

APL ¼ USL� z:001s ¼ 10:5� 3:09(:10) ¼ 10:19

and the lower specification:

APL ¼ LSLþ z:001s ¼ 9:5þ 3:09(:10) ¼ 9:81

RPL ¼ LSLþ z:025s ¼ 9:5þ 1:96(:10) ¼ 9:70
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The sample size for a¼ .05, b¼ .10 is

n ¼ (za þ zb)s

RPL� APL

� �2

¼ (1:645þ 1:282) � 10
10:30� 10:19

� �2
’ 7

For a nominal value of 10

D2 ¼
ffiffiffi
7

p
(10:19� 10:0)

:10
¼ 5:03

and so no CT for double specification limits is needed. Then

d ¼ za
za þ zb

�
�RPL� APL

�
� ¼ 1:645

1:645þ 1:282

�
�9:70� 9:81

�
� ¼ 0:062

Note that, for sample size n¼ 7, the Freund A factor from Appendix Table T8.6 is 0.622 and
d¼A0,.05 s¼ .622 (.10)¼ .062 as it should be.

The acceptance control chart can be set up accordingly and means of samples of size 7 plotted
against the acceptance limits to determine the acceptance of subsequent lots. A control chart for
variability should also be instituted to detect any change in standard deviation from the known
value.
Sequential Plans for Process Parameter (s Known)

When sample size must be kept to an absolute minimum, sequential plans also provide an
excellent approach in sampling against specified process parameters. These plans are used on
variables data in a manner analogous to sequential plans for attributes. A greater variety of
sequential charts are available for variables, however, since the attributes sequential test is usually
limited to a one-sided test against an increase in proportion nonconforming over that specified
as the producer’s quality level. Separate sequential tests for variables are available for various
parameters against an upper specification limit, a lower specification limit, or double specification
limits. As in attributes testing, a cumulative statistic, Y, is plotted against the number of samples
taken.

In testing against an upper specification limit, the decision lines for the sequential plot are of
the same form as for attributes, namely the rejection line: Y2¼ h2þ sk and the acceptance line:
Y1¼�h1þ sk. Formulas for the acceptance constants h1, h2, and s for testing the mean and variance
against an upper specification limit are given in Table 8.3 together with those for the average sample
number (ASN) at APL, s, and RPL. Formulas for attributes testing are also given in Table 8.3 for
reference. In using the table, all computations should be made consistently in common or natural
logarithms with the factor L adjusted accordingly. The form of the sequential chart for an upper
specification limit is that of Figure 8.3. Sommers (1979) has pointed out a simple relation between
sequential plans and single-sampling plans for the mean. Given a known standard deviation single-
sampling plan using a sample of n to test m1 against an upper limit m2 (i.e., m2>m1) with risks
a¼ .05 and b¼ .10, the matching sequential plans has parameters
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TABLE 8.3: Formulas for single upper-limit sequential plans for process parameter (for common logs, L¼ 2.3026; for natural logs, L¼ 1).

Test Plot (Y) h1 h2 s APL s RPL

Mean Y¼SXi

¼ Sum
of observations

Lb s2

m2�m1

La s2

m2�m1

m2þm1
2 Pa¼ 1�a Pa ¼ h2

h1þh2
Pa¼b

APL¼m1

RPL¼m2

ASN ¼ (1�a)h1�ah2
s�m1

ASN ¼ h1 h2
s2 ASN ¼ (1�b)h2�bh1

m2�s

Variance Y¼S(Xi�m)2 Pa¼ 1�a Pa ¼ h2
h1þh2

Pa¼b
APL ¼ s2

1 If m unknown
plot

2Lb s2
1 s

2
2

s2
2 �s2

1

2La s2
1 s

2
2

s2
2�s2

1

L log
s2
2

s2
1

� �
s2
1s

2
2

s2
2�s2

1 ASN ¼ (1�a)h1�ah2
s�s2

1
ASN ¼ h1h2

2s2
ASN ¼ (1�b)h2�bh1

s2
2�s

RPL ¼ s2
2

Y0 ¼S(Xi�X)2

against k0 ¼ k� 1

Proportion
defective

Y¼Sdi¼
Total defective

b
g1þg2

a
g1þg2

g2
g1þg2

Pa¼ 1�a

ASN ¼ (1�a)h1�ah2
s�p1

Pa ¼ h2
h1þh2

ASN ¼ h1h2
s(1�s)

Pa¼b

ASN ¼ (1�b)h2�bh1
p2�sAPL¼ p1

RPL¼ p2
Defects per
unit

Y¼Sdi¼Total
defective in
k units

b
(logm2�logm1)

a
(logm2�logm1)

m2�m1
L( logm2�logm1)

Pa¼ 1�a

ASN ¼ (1�a)h1�ah2
s�m1

Pa ¼ h2
h1þh2

ASN ¼ h1h2
s

Pa¼b

ASN ¼ (1�b)h2�bh1
m2�sAPL¼m1

RPL¼m2

a¼ log 1�b
a

� 	
b ¼ log 1�a

b

� �
g1 ¼ log p2

p1

� �
g2 ¼ log 1�p1

1�p2

� �
Upper
specification

Lower
specification

Rejection line
Y2¼ h2þ sk

Rejection line
Y 0
2 ¼ �h2 þ sk

Acceptance line
Y1¼�h1þ sk

Acceptance line
Y 0
1 ¼ h1 þ sk

�
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FIGURE 8.3: Sequential variables chart: upper specification limit.
h1 ¼ :7693s
ffiffiffi
n

p

h2 ¼ :9877s
ffiffiffi
n

p

s ¼ m1 þ 1:4632
s
ffiffiffi
n

p

or

s ¼ m2 � 1:4632
s
ffiffiffi
n

p

ASN(m1) ¼ :4657n

ASN(s) ¼ :7598n

ASN(m2) ¼ :5549n

This provides for an immediate assessment of the efficiency of sequential sampling as against single
sampling for the mean.

In testing against a lower specification limit, the acceptance and rejection regions are, of course,
reversed. This gives rise to new decision lines, namely the rejection line: Y 0

2 ¼ �h2 þ sk and the
acceptance line: Y 0

1 ¼ h1 þ sk where the values of the acceptance constants are the same as those
given in Table 8.3 for the upper limit. The formulas given for ASN also remain the same as for the
upper limit but must be taken in absolute value. The results for the decision lines can be seen to
come about from interchanging m1 with m2 and a with b in the formulas for the upper limit thus
reversing the roles of h1 and h2. These changes can also be made in Sommers’ formulas for use with
a lower limit (m2<m1) by interchanging m1 with m2 in s and h1 with h2. The formulas for ASN
remain the same. The form of the chart for a lower limit is shown in Figure 8.4.

In general, when testing the mean against either an upper or a lower specification limit using the
formulas of Table 8.3 for h1, h2, and s, it can be shown that the following relations hold for
probability of acceptance and ASN for any given value of m except m¼ s.

w ¼ m2 þ m1 � 2m
m2 � m1
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FIGURE 8.4: Sequential variables chart: lower specification limit.
so that

Pa ¼ [(1� b)=a]w � 1
[(1� b)=a]w � [b=(1� a)]w

and

ASN ¼
Ls2 log [(1� b)=a]

m2 � m1


 �

2m� m2 � m1

2


 �

þ
[(1� b)=a]w � 1

[(1� b)=a]w � [b=(1� a)]w


 �
Ls2 log [b=(1� a)]� Ls2 log [(1� b)=a]

m2 � m1


 �

2m� m2 � m1

2


 �

where L¼ 1 when natural logarithms are used and L¼ 2.3026 using common logarithms.
When m¼ s,

Pa ¼ log [(1� b)=a]

log [(1� b)=a]þ log [(1� a)=b]

ASN ¼ L2s2 log [(1� b)=a] log [(1� a)=b]

(m2 � m1)
2

These relations are useful in constructing the OC and ASN curves.
For example, for m1¼ 1, m2¼ 1.2, with a¼ .025 and b¼ .10, we have the following results

for a value of the mean m¼ 1 with s¼ .1 using natural logarithms
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w ¼ 1:2þ 1� 2(1)
1:2� 1

¼ 1

Pa ¼ [:9=:025]1 � 1

[:9=:025]1 � [:1=:975]1
¼ :975

ASN ¼
1(:01) log [:90=:025]

1:2� 1


 �

2� 1:2� 1
2


 �

þ
[:90=:025]1 � 1

[:90=:025]1 � [:10=:975]1


 �
1(:01) log [:10=:975]� 1(:01) log [:90=:025]

1:2� 1


 �

2� 1:2� 1
2


 �

¼ :1792þ [:975] [� :2930]
�:1

¼ 1:065

Occasionally, it may be necessary to plot linear function of the quality characteristic being
measured. This is often done to adjust the slope or scale of the chart to practical proportions.
Suppose

Y ¼
X

x

has been plotted and it is desired to plot

Y* ¼
X

(axþ b)

Then the equation for the upper limit decision lines become

Y*2 ¼ ah2 þ (asþ b)k

Y*1 ¼ �ah1 þ (asþ b)k

so that, in effect

h*2 ¼ ah2

h*1 ¼ ah1

s* ¼ asþ b

For example, if the slope of the chart is too steep, it may be adjusted by subtracting a constant, C,
from the points plotted to obtain

Y* ¼ x� C

whereupon the equations for the decision lines become

Y*2 ¼ h2 þ (s� C)k

Y*1 ¼ �h1 þ (s� C)k
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For a test of the mean, the constant C is often chosen equal to the APL. This places the APL at Y¼ 0.
When C¼ s, the sequential chart will have horizontal limits. When C is larger than s, the chart will
slope downward. That is, s*¼ s�C will be negative. Such an effect will be observed when m1, the
APL, is subtracted from the individual observations to be plotted on a chart testing against a lower
specification limit on the mean. This is because

s* ¼ s� m1

¼ m1 þ m2

2
� m1

¼ m2 � m1

2

which will be negative in testing against a lower specification limit and positive in testing against
an upper specification limit. Note that, in this case, the decision lines for the lower limit case can
be found from the upper limit lines with the same a, b, and jm1�m2j using the relations rejection
line: Y 0

2 ¼�Y2¼ h2� sk and acceptance line: Y 0
1 ¼ �Y1 ¼ h1 � sk. The form of such a chart will

be seen in Figure 8.5 for a lower specification limit where Y¼ x�m1. The form for an upper limit
chart using this adjustment is that of Figure 8.3 when Y¼ x�m1.

A chart for testing double specification limits on the mean can be constructed as the
superimposition of individual upper and lower specification limit charts. Such a chart is illustrated
in Figure 8.6.

A zero baseline is obtained for plotting the double specification limits chart by cumulating

Y ¼
X

(x� m1)

This provides a common abscissa for the constituent upper and lower specification limit charts. The
APL, m1, is taken halfway between the upper and lower RPL so that

m1 ¼
upper RPLþ lower RPL

2

Accept

Continue

Reject

0

Y

k

Y �
2

Y �
1

FIGURE 8.5: Adjusted sequential variables chart: lower specification limit.
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FIGURE 8.6: Sequential variables chart: double specification limits.
and the a risk is apportioned half to each plan so that each is set up using a=2. The formulas must be
corrected for subtraction of the constant, m1.

As an example of application of such a double-limit sequential plan, suppose parts are received
which are to have a plastic coating of thickness 1 mm� .2 mm. If it is expensive and possibly
destructive to measure the thickness of the coating, a sequential test is in order. Here there is a
double specification limit involving the construction of two sequential pans, for the upper and lower
limit respectively, which will then be combined into a single chart for application of the plan.
Taking the APL to be halfway between the two RPLs

Lower RPL ¼ m0 ¼ :8 mm

APL ¼ m1 ¼ 1 mm

Upper RPL ¼ m2 ¼ 1:2 mm

Suppose the standard deviation is known to be s¼ .1 mm. The plot must be adjusted by subtracting
the APL from each observation so that C¼ 1.

If conventional values of a¼ .05, b¼ .10 are to be used, the a risk in each plan is a¼ .025.
The derivation of the upper limit plan using common logarithms is

a ¼ log
1� b

a

� �

¼ log
:9

:025

� �

¼ 1:5563

b ¼ log
1� a

b

� �

¼ log
:975
:10

� �

¼ 0:9890

h1 ¼ Lbs2

m2 � m1
¼ 2:3026(0:9890)(:1)2

1:2� 1:0
¼ 0:1139

h2 ¼ Las2

m2 � m1
¼ 2:3026(1:5563)(:1)2

1:2� 1:0
¼ 0:1792

s ¼ m2 þ m1

2
¼ 1:2þ 1:0

2
¼ 1:1
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which leads to the limit lines

Y2 ¼ :1792þ (1:1� 1)k ¼ :1792þ 0:1k

Y1 ¼ �:1139þ (1:1� 1)k ¼ �:1139þ 0:1k

For this plan, the operating properties are: at APL (m¼ 1 mm),

Pa ¼ 1� :025 ¼ :975

ASN ¼ (1� :025)(:1139)� :025(:1792)
1:1� 1:0

¼ 1:07

at s (m¼ 1.1 mm),

Pa ¼ :1792
:1139þ :1792

¼ :6114

ASN ¼ (:1139)(:1792)

(:1)2
¼ 2:04

at RPL (m¼ 1.2 mm),

Pa ¼ :10

ASN ¼ (1� :1)(:1792)� :1(:1139)
1:2� 1:1

¼ 1:50

If successive samples were 1.1, 1.15, 1.0, and 0.95, the sequential chart would appear as in Figure
8.7 for a test against the upper limit only. Exploiting the symmetry, the relations

Y 0
2 ¼ �Y2 Y 0

1 ¼ �Y1
Accept

1 2 3 4 5 6

Y1 = –0.1139 + 0.1k

Y2 = 0.1792 + 0.1k

k

Reject

∑ 
(x

–1
)

+0.1792

–0.1139

0

FIGURE 8.7: Upper limit chart, a¼ .025, b¼ .10.
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Accept

1 2 3 4 5 6 k

Reject

∑ 
(x

–1
)

0.1139

–0.1792

0

Y �1 = 0.1139 – 0.1k

Y �2 = –0.179 2 – 0.1k

FIGURE 8.8: Lower limit chart, a¼ .025, b¼ .10.
can be used to obtain the decision lines for testing the lower limit. Using the same data as before, the
lower limit chart appears as in Figure 8.8 with

Y 0
1 ¼ :1139� 0:1k (accept) Y 0

2 ¼ �:1792 � 0:1k (reject)

Clearly, for this chart also, the ASN at the APL is still 1.07 while the ASN at the RPL is, by
symmetry, 1.50. For a test against the double specification limits 1.0� .2 mm, the charts are
superimposed as in Figure 8.9.

Sequential Plans for Process Parameter (s Unknown)

The preceding methods are for the case when the standard deviation is known. When this is not
the case, the methods of Barnard (1946) may be employed. Appendix Table T8.8 gives boundary
values defining decision lines for a plot against successive values of k of the statistic

Y ¼ S(X � m1)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(X � m1)

2
p

This is a sequential version of the one-sample t-test against an upper specification limit, that
is, where the RPL is greater than the APL. In this case we have m2>m1 and m2¼m1þDs or
D¼ (m2�m1)=s where D forms one of the arguments in the table of Barnard’s values. The table
also gives values of
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Accept

Accept

1 2 3 4 5 6 k

Reject

Reject

∑ 
(x

–1
)

0.5

0.4

0.3

0.2

0.1

–0.1

–0.2

–0.3

–0.4

–0.5

0

FIGURE 8.9: Double specification limit chart, a¼ .05, b¼ .10.
k1¼ smallest number of values of reaching a decision at APL
k2¼ smallest number of values of reaching a decision at RPL
�k1¼ASN at APL
�k2¼ASN at RPL

Values in brackets indicate that no decision is allowed at the given value of k.
For a test of a lower specification limit, that is, when the RPL is less than the APL, proceed as

follows:

1. Reverse signs of tabulated boundary values of decision lines Y1 and Y2.

2. Reverse acceptance and rejection regions.

Charts for lower and upper specification limits may be combined to test a double specification limit
in a manner analogous to that used when the standard deviation was known. Such a chart is
illustrated in Figure 8.10.

As an example of application of the Barnard procedure, consider the previous coating data.
Suppose the standard deviation was not known and a chart testing against the upper limit was to be
prepared. Assume a¼b¼ .05 is to be used where

m1 ¼ 1:0 mm m2 ¼ 1:2 mm

The standard deviation is roughly approximated as s¼ .1 so that

D ¼ 1:2� 1:0
:1

¼ 2
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Reject

Reject

Accept
Continue

Continue

Y

Y2

k

+4

+3

+2

+1

0

–1

–2

–3

–4

Accept

Y �1

Y�2

Y1

FIGURE 8.10: Barnard sequential chart.
The necessary calculations are as follows:

(1) (2) (3) (4) (5) (6) (7) Decision Limits

k X X�m1 S(X�m1) (X�m1)
2 S(X�m1)

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(X � m1)

2
q

Y¼ (4)=(7) Y1 Y2

1 1.10 .10 .10 .01 .01 .10000 1
2 1.15 .15 .25 .0225 .0325 .18028 1.387 0.37 (1.56)
3 1.00 0 .25 0 .0325 .18028 1.387
4 0.95 �.05 .20 .0025 .0350 .18708 1.069 1.03 1.82

The plot appears as in Figure 8.11. This test would lead to continued sampling on the fourth sample
without a decision.

Cumulative Sum Charts

It is sometime desirable to plot the results of sampling inspection in the form of cumulative sum
charts. Originated by Page (1954), their construction has been described by Barnard (1959) and
amplified by Johnson and Leone (1962). The charts consist of a sequential plot to which a V-mask is
applied point by point to assess the significance of the plot against a specified value of the APL.
A typical such mask is shown in Figure 8.12. Rejection occurs if any of the previous points plotted
lie outside the angle defined by the notch of the V-mask when the last point plotted is positioned a
horizontal distance d from the vertex of the angle of the notch. The mask is determined by two
dimensions: the distance d and the angle of the notch 2u.
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Not for decision

Accept

Y1

1 2

–2

–1

0

1

2

Y

3 4 5 6 7 8 k

FIGURE 8.11: Example of a Barnard sequential t-test with a¼ .05, b¼ .05.
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Johnson (1961) has shown that the chart may be regarded ‘‘ . . . as (roughly) equivalent to the
application of the sequential probability ratio test in reverse.’’ Thus, the notch of the V-mask
corresponds to the trapezoidal shape formed by the ordinate and the rejection lines of a sequential
graph. This is illustrated in Figure 8.12, which shows the two-sided sequential graph corresponding
to the V-mask.
d

Y1

h2
q

d

q

Y �1

Y �2

–h�2

h�2

Y2

Y

h2

FIGURE 8.12: Typical cusum chart.



Using this notion of equivalence, the following relationships may be employed to convert the
sequential parameters given in Table 8.3 to the dimensions of the V-mask:

tan u ¼ s, d ¼ h2
s

Also, the ‘‘average run length’’ of points to a rejection is of interest in application of the cusum
chart. This is analogous to the ASN of the sequential procedure. An approximation to the ARL,
using sequential parameters, can also be developed from the results of Johnson and Leone (1962).
We find that at the APL

ARL ¼ h2
APL� s

Since a cumulative sum chart cannot ‘‘accept’’ as such, the action rule is ‘‘not to reject’’ during
continuation. Rejection occurs only when the V-mask is violated. The CR is taken to the zero for
this approximation. Also, the approximation should not be used when the indicated ARL is 5 or less.

For example, in testing the mean

ARL ¼ h2
m2 � s

so that with some algebra and the formulas of Table 8.3,

ARL ¼ 2 log [(1� b)=a]s2

(m2 � m1)
2

and if b is taken to be zero,

ARL ¼ �2 log [a]s2

(m2 � m1)
2

So that when d¼ (m2�m1)=s¼ .5 and a¼ .05, then ARL¼ 23.97, while the value calculated by
Johnson and Leone (1962) is 24.0.

These results assume the unit length of the vertical and horizontal scales are plotted 1:1. For
a scale using k units of length for the ordinate for one unit length of the abscissa, d remains
unchanged; however, the angle of the mask becomes u¼ s=k. Naturally, the sequential formulas
for a linear transformation of the points plotted S(axþ b) may be used to determine the
sequential parameters when a cusum chart is plotted using a transformed sum for scaling or
other purposes.

Another variation on the cumulative sum involves a sequential plot with horizontal limits. This
may be obtained simply by subtracting the slope s from each point plotted before it is added to the
cumulative sum. The result is a horizontal sequential chart with limits h2 and �h1 and an NCL of
zero. An interesting procedure for the use of such a chart in a one-sided test has been given by Kemp
(1962). A modification of his approach using a horizontal one-sided sequential chart derived from
the formulas given in Table 8.3 is as follows:

1. Set an upper limit at h2 and a lower boundary at 0.

2. Do not cumulate on the chart until an observation has been found to exceed s.
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–
s)
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k

FIGURE 8.13: Modified Kemp procedure.
3. When an observation exceeds s, calculate and plot the cumulative sum S(X� s) on the chart
until

a. The cumulative sum S(X� s) exceeds h2. In this case, reject the process level as signifi-
cantly greater than the APL.

b. The cumulative sum S(X� s) returns to zero. In this case, discontinue cumulation and
return to step 2.

Such a chart is shown in Figure 8.13. The action rules for this chart are the same as those for the
cusum chart. Modifications of the procedure include the corresponding sequential test against a
lower limit on the process level and use of the full chart with both the acceptance and rejection
regions defined. Kemp (1962) has also suggested that, for a plot of S(X� s) without limits, a
significant upward change in process level is simply indicated when the distance between the lowest
point on the plot and the last point plotted is greater than h2.

Cumulative sum charts and their variations offer many possibilities for the quality control
engineer in acceptance quality control as well as process quality control. The reader is referred to
Burr (1976), Johnson and Leone (1977), Duncan (1974), Wetherill (1977), and the literature cited
for more details on this interesting method. An excellent treatment of the philosophy of application
of the cusum chart will be found in Craig (1969).

A detailed exposition of sequential methods for variables and attributes will be found in Wald
(1947) and Wetherill (1975).
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Problems

1. In purchasing high-pressure cylinders, determine the sample size needed to assure that the
process level does not differ by more than 1 psi from nominal when the standard deviation
is .5 psi. Use a¼ .05, b¼ .10.

2. What test would be employed to determine if the variability in lengths of leads is at the
specified level of 6 cm? Suppose the standard deviation of a sample of 15 is 7 cm, should the
lot be rejected? Use a¼ .05.

3. An acceptance control chart is to be used in lot acceptance of a series of shipments of glass
tubes. The tubes are to average not less than 90 cm in length. The feed mechanism in the
customer’s process would jam if the tubes are less than 87 cm. The standard deviation is
known to be 1.5 cm. Construct the appropriate chart. Successive lot means are 90, 89, 88, 90,
87, 91, 92, 89. Which lots should be rejected? Use a¼ .05, b¼ .10.

4. If tubes averaging more than 92 cm in length were also to be rejected in Problem 3, what
sample size would be required for an acceptance control chart with double limits having
a¼ .005?

5. What is the meaning of seven successive points on the side of the NCL of an acceptance
control chart?

6. The specification on the maximum average weight of a certain construction material is 400 lb;
however, if the average weight exceeds 408 lb the design must be changed. The standard
deviation is 8 lb. Set up a sequential chart to check the weight of incoming lots of the material.
Take a¼ .025, b¼ .10. Should the lot be accepted if the results from a lot are 397, 400, 385,
388, 404, 410, 411, 395, 394, 400?

7. Suppose it is decided that it is important for the material in Problem 6 also not to be less than
392 lb. on the average. Construct a two sided sequential chart with a¼ .05, b¼ .10. Plot the
sequential results.
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8. It is suspected that the standard deviation in Problem 6 no longer equals 8. If it has increased
to 10, the lot should be rejected. Using a¼ .05, b¼ .10 construct a sequential chart for the
variance. If successive values of (Xi �m)2 are calculated from the data of Problem 6, what is
the decision after the last lot shown?

9. Using a¼ .05, b¼ .05, what conclusion can be drawn from the data of Problem 6 when the
standard deviation is unknown? Draw the sequential plot.

10. Convert the parameters of Problem 7 to those of a cusum V-mask.
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Chapter 9

Bulk Sampling
Most of the literature on acceptance sampling relates to the inspection of discrete units of product.
For each unit an associated quality characteristic is determined. This may be either an attribute
determination of acceptability (go, no-go) or a measurement of some kind taken on each unit in the
sample. However, another type of product, which consists of material in bulk form, may be
distinguished. The bulk sampling problem has been described by Bicking (1967) as follows:

Bulk materials are essentially continuous and do not consist of populations of discrete,
constant, indentifiable, unique units or items that may be drawn into the sample. Rather,
the ultimate sampling units must be created, at the time of sampling, by means of some
sampling device. The size and form of the units depend upon the particular device
employed, how it is used, the nature, condition, and structure of the material, and other
factors.

Bulk sampling may address issues such as the inspection of 100 ton of coal, sampling a truck filled
with gasoline, or the assessment of the natural gas contained in a particular storage tank. Sampling
units might then be a shovel full of coal (whose size depends on the shovel), a sampling bottle full of
gasoline (the amount depending on the capacity of the sampling bottle), or a sampling probe
delivering gas to a container (of some size and at some pressure). The important point is that the
sample is constructed, not gathered up.

The objectives of bulk sampling have been given by Bicking (1978, p. 304) as follows:

1. Characterization of the material in place (as in a natural deposit) as to location, amount,
content, or value

2. Characterization of a material as to grade, need for further processing, or destination

3. Control during processing

4. Acceptance on a lot-to-lot basis

5. Determination of weight or content for purposes of taxation or payment

6. Determination of properties that must be known so that the end use will be appropriate

7. Experimentation and analysis to determine future sampling procedures or uses of the material

Here, emphasis will be placed on the fourth objective, that of lot acceptance. As such, bulk sampling
may generally be regarded as a form of variables sampling for process parameter.

Various devices have been developed to take samples of bulk materials. These have been aptly
described by Bicking (1968, 1978). Their proper use, however, depends upon knowledge of any
stratification in the material to be sampled. Sampling approaches in the presence of stratification have
also been discussed by Bicking (1967). Consider, for example, a shipment of milk contained in a
cylindrical tank car. Vertical samples may represent strata disproportionally because of differences in
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TABLE 9.1: Developing a standard sampling method.

1. Make clear the purpose of sampling.
a. What is the population from which the sample will be taken?
b. What information is required about the population; the mean, the variance,

and the precision desired in the estimate?
c. On what criterion will acceptance of the lot be based?
d. What action is to be taken to dispose of a rejected lot?

2. Specify the population and investigate the history of a lot.
a. Is the process that produced the lot in a state of control?
b. Is the definition of the lot size in conformity with the desires of the producer and the

consumer?
c. Are the methods of handling and storage properly considered in determining the lot size?

3. Study the measurement error.
a. Separate the measurement error from the sampling error.
b. Compare the relative sizes of these two sources of error.

4. Estimate the several variances due to the process (within-lots and between-lots).
5. Prepare the sampling instruction, guarding against the following defects:

a. Lack of clarity in purpose of sampling.
b. Lack of specific enough instructions for taking increments.

(‘‘Take a representative sample’’ and ‘‘take a random sample’’ are not specific enough.)
c. Unsuitable containers for the samples.
d. Failure to provide methods for checking sampling error, reliability, or measurement

precision and bias.
e. Unsuitable methods for handling and reducing the sample in the laboratory.

6. Control the sampling operation.
a. Train the samplers.
b. Control the operation of the plan through check samples.

7. Periodically review the sampling instructions to provide for any changes in the process.

Source: Reproduced from Bicking, C.A., Mater. Res. Stand., 7(2), 103, 1967. With permission.
horizontal dimension from top to bottom. The cylinder is wider in the middle. Furthermore, without
mixing, it may be very important to be sure that the layer of cream is appropriately represented.

In all bulk sampling, the population sampled must be appropriately defined. Duncan (1962) has
discussed this in detail. It should be pointed out that it is most advantageous to sample bulk material
when it is moving, as on a conveyor belt, in free fall, etc. Steps in developing a standard sampling
method as given by Ishikawa (1958) are shown in Table 9.1.

Construction of the Sample

The essential continuity of bulk materials allows parts of a sample to be blended or mixed
together to form a composite. The composite is then tested once, rather than individual tests on its
constituent parts. This is a physical way to average the composited samples. Suppose three samples of
coal were taken from a coal car on a siding as it was being unloaded. If ash content was to be
determined, three separate analyses could be performed. Alternatively, the three samples might be
mixed and blended into one composite sample. An analysis of the composite should yield the same
result as the average of the three distinct samples. Lots, however, would be any measure of variation.
� 2008 by Taylor & Francis Group, LLC.



Random sampling

Random
samples

Duplicate
tests

Duplicate tests

A B C D E F G H A B

A B

C D E F G H I J K L

Stratified sampling
Lot

1 2 3 4 1 2 3 1 2 34 5 6

Compositing
of samples

Lot Lot

Composite

Zone
I

Zone
II

Zone
III

FIGURE 9.1: Types of sampling. (Reprinted from Bicking, C.A., Mater. Res. Stand., 7(2), 99,
1967. With permission.)
Often when the population is known to consist of several different subdivisions which may give
different results with respect to the quality characteristic measured, all the subdivisions, or strata,
are deliberately included in the sample. This is called stratified sampling. When the subdivisions are
sampled we have cluster or multistage sampling. In any such procedure, which deviates from simple
random sampling, care must be taken to properly weigh the sample results so that the effect of a
result is proportional to its probability of occurring. This usually involves proportional allocation. It
will be assumed here that all samples are proportionally allocated. A comparison of types of
sampling is shown in Figure 9.1.

In bulk sampling, lots (or populations) of bulk material are regarded as being composed of
mutually exclusive subdivisions or segments. Sometimes obvious segments occur, when the
material comes in boxes or bags. Sometimes, however, the segments must be artificially created
by superimposing imaginary grids over the material or by other means of real or synthetic division.
Segments may be further subdivided into increments for sampling within a segment. In sampling
theory, segments are often called primary units, while increments are called secondary units.

Segments are treated in amanner similar to the units in discrete sampling. Their average is considered
as an estimate of the average of the lot and their variability as a measure of variation on which to
construct the standard error of the estimate of the lot mean.With bulk material, however, the possibility
for additional sampling within a segment exists. Furthermore, the total variation observed may be
broken into components of variance which estimate the amount of variation that may be attributed to
various stages in the sampling process. Prior estimation of these components allows for the determin-
ation of optimum sample size and for limits of error in situations in which the sampling strategy
precludes replicate observations. For example, the segments may be sampled giving a variance
between segments. Increments may be taken within segments to give a variance between increments,
or sampling variance. The material from each increment or from a composite of increments may then
be reduced to the desired particle size by crushing or grinding and the amount of material cut down
by quartering to obtain one or more test units of a size just sufficient for laboratory test of the quality
characteristic. This gives rise to the so-called reduction variance. The tests themselves contribute a
variance due to testing. A model* for the total variance in the lot as broken into components is

s2
T ¼ s2

1 þ s2
2 þ s2

3 þ s2
4

* The conventional bulk sampling model reverses the roles of s2
3 and s2

4; however, the model given provides consistency of
enumeration when there is no compositing, i.e., when s2

4 ¼ 0.
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where
sT
2 is the total variance in the lot

s1
2 is the between segment variance

s2
2 is the between increment variance within segments

s3
2 is the testing variance

s4
2 is the reduction variance

The last term in the model will be regarded as also containing variation from all sources not
explicitly shown in the model.

Frequently samples may require no reduction or the reduction variance s4
2 may be assumed to be

as small as essentially zero and omitted from the model. The variation due to reduction will then
appear as part of the testing variance. These components of variance are often assumed constant
across the lot from segment to segment. As with all assumptions in sampling, however, it is
appropriate to check that it is true before setting up a new plan. This is usually done by control chart.

Duncan (1962) has distinguished two distinct populations which may be conceptualized and
tested through these procedures: populations created by the act of sampling from what is called
Type A bulk material with nondistinguishable segments, and populations having preexisting
elements from what is called Type B bulk material with distinguishable segments. An example
of the former (Type A material) is a pile of coal. An example of the latter (Type B material) is a lot
consisting of 500 bags of fertilizer. With Type A material, segments and increments must be
artificially defined within the totality of all the product submitted. With Type B material, the
natural segments would be divided into increments for sampling within segments. Bicking (1967)
points out that ‘‘Type B materials represent a transition between piece part sampling and sampling
Type A materials.’’
Estimation

Bulk sampling is primarily used to estimate the lot mean with a given degree of precision. The
resulting estimate may be sufficient in itself, or it may be used to determine lot acceptance. The
magnitude of the standard error of the mean, and hence the precision of the estimate, can, of course,
be controlled by the number of samples taken. If, in multistage sampling of a lot of size N, the
number of segments sampled is n1, the number of increments taken within a segment is n2, while n3
tests are made on each increment, the variance of the lot sample mean computed from all
observations will be composed as follows:

s2
X
¼ s2

1

n1
1� n1

N

� �
þ s2

2

n1n2
þ s2

3

n1n2n3

where
s1
2 is the variance between segments

s2
2 is the variance between increments within segments

s3
2 is the variance between tests within increments

Now this equation is applicable when increments or even segments are composited. Compositing,
however, may lead to an inability to estimate some, or all, of the components of variance from the
sample. It is a useful device when estimates of these variabilities are not needed, when the
components of variance are known.
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Much is revealed by the partition of the variance of the sample mean. For example, in sampling
homogeneous liquids, s2

2¼ 0 since the increments are all equal. Also, if n1¼N, as in stratified
sampling, the first term goes to zero since the population of segments is exhausted. Furthermore, for
given magnitudes of s1

2, s2
2, and s3

2, values of n1, n2, and n3 may be determined by trial and error to
find a combination which will reduce sX

2 to a desired magnitude. Means of samples of this size will
give the desired precision on X whether composited or averaged over individual tests as long as
initial estimates of the magnitudes of the components of variance hold.

For example, suppose bags of argol are to be sampled by a split tube thief or trier, and it is
known that

s2
1 ¼ :21, s2

2 ¼ :31

If testing cost is high so that one test is to be made on each increment and if reduction variance is
assumed negligible, we have

s2
X
¼ s2

1

n1
þ s2

2

n1n2

where s2
2 will now include testing error since the later will not be independently estimated. To

determine a plan which will give a 95% confidence of estimating the mean to within 0.4, using the
appropriate z value of 1.96 from the normal distribution, we must have

zsX ¼ 0:4

sX ¼ 0:4
1:96

¼ 0:2

s2
X
¼ :04

A few possible combinations of n1 and n2 to give the desired sX are shown in Table 9.2, where

s2
X
¼ :21

n1
þ :31
n1n2

Of the values shown n1¼ 10 and n2¼ 2 come closest to the desired s2
X
¼ .04 with the smallest

number of segments. Note that any combination of n1 and n2 giving s2
X
� .04 is acceptable.

It can be shown (Davies 1960, p. 111) that for a two-stage plan (n1 segments, n2 increments)
costing c1 to sample a segment and c2 to sample an increment from a segment, an economically
optimum plan can be developed. For a lot with N segments, where the cost of testing is the same for
TABLE 9.2: Possible combinations of n1 and n2.

n1 n2 sX
2

9 1 .058
2 .041

10 1 .052
2 .036

11 1 .047
2 .033
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segments or increments, the most economical sample sizes with which to estimate the lot mean to
within �E with 1�a confidence are found as

n2 ¼
ffiffiffiffiffiffiffiffiffi
c1s2

2

c2s2
1

s

with

n1 ¼
N s2

2 þ n2s2
1

� �

Nn2 E=za=2
� �2 þ n2s2

1

where za=2 is the standard normal deviate associated with the confidence level to be incorporated in
the two-sided estimate. For essentially infinite lot sizes the above formula for n1 becomes

n1 ¼ s2
2 þ n2s2

1

n2(E=za=2)
2

Using the previous example on argol, if c1 was known to be $31 and c2 was $21, the sample sizes
required would be

n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:31
:21

21
31

� �s

¼ 1

and

n1 ¼ :31þ 1(:21)

1(:4=1:96)2

¼ 12:5 � 13

The plan to minimize cost in this case is n1¼ 13, n2¼ 1. The total cost of this plan would be

c ¼ $31(13)þ $21(13)(1) ¼ $676

and result in a standard error of estimate

sX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:21
13

þ :31
13

r

¼
ffiffiffiffiffiffiffi
:04

p
¼ :2

The plan n1¼ 10, n2¼ 2 would cost

c ¼ $31(10)þ $21(10)(2) ¼ $730

to produce a standard error to estimate of

sX ¼
ffiffiffiffiffiffiffiffiffi
:036

p
¼ :19

Both plans would meet the desired precision in estimating the lot mean.
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Sampling of bulk material can be used most effectively when the components of variance are
known. Knowledge of these values can allow estimation of the standard error of the mean of the lot
even when extensive compositing results in one test result on the lot. Estimation of these compon-
ents is straightforward. Let

X is the lot mean from n1 segments
X1 is the segment mean from n2 increments
X2 is the increment mean from n3 tests
X3 is the test result

then the mean squares used in constructing the estimates are

MS1 ¼
P

(X1 � X)2

n1 � 1

MS2 ¼
P

(X2 � X1)
2

n1(n2 � 1)

MS3 ¼
P

(X3 � X2)
2

n1n2(n3 � 1)

with degrees of freedom n1, n2, and n3. Estimates of the components of variance can be determined,
regarding N as infinite, as follows:

Estimate of the testing component s3
2 is s3

2¼MS3 with

v3 ¼ n1n2(n3 � 1)

Estimate of the increment within segment component s2
2 is s2

2¼MS2� (s3
2=n3) with

n2 ¼
s22
� �2

1=(n1(n2 � 1))ð Þ(MS2=1)2 þ 1=(n1n2(n3 � 1))ð Þ(MS3=n3)
2

Estimate of the between segment component s1
2 is s1

2¼MS1 �(s2
2=n2) �(s3

2=n2n3) with

n1 ¼
s21
� �2

1=(n1 � 1)ð Þ(MS1=1)2 þ (1=v2) s22=n2
� �2 þ (1=v3) s23=n1n2

� �2

The above estimates of degrees of freedom are obtained using the Satterthwaite (1946) approxima-
tion and will usually be found to be conservative. They should be rounded down to obtain integral
values of degrees of freedom. Clearly, when the components of variance are known, they may be
regarded as having infinite degrees of freedom.

The mean squares MS1, MS2, and MS3 can be used to construct a nested analysis of variance
table to display the variances involved as shown in Table 9.3. The multipliers shown with the mean
squares and the components of variance are necessary because analysis of variance is usually
performed on observation total rather than means as shown here. For a discussion of analysis of
variance performed using means, with ancillary techniques, see Schilling (1973).

The standard error of the sample mean can be estimated as

sX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1
1� n1

N

� �
þ s2

2

n1n2
þ s2

3

n1n2n3

s
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TABLE 9.3: Analysis of variance table for nested sampling.

Source Sum of Squares
Degrees of
Freedom

Mean
Square

Components
of Variance Estimated

by Mean Square

Between segments n2n3(n1� 1)MS1 n1� 1 n2n3MS1 n2n3s1
2þ n3s2

2þs3
2

Increments
within segments

n1n3(n2� 1)MS2 n1(n2� 1) n3MS2 n3s2
2þs3

2

Tests within
increments

n1n2(n3� 1)MS3 n1n2(n3� 1) MS3 s3
2

when the components of variance are known. When they are estimated, the formula for estimation
becomes

sX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

1� n1
N

� �
þ s22
n1n2

þ s23
n1n2n3

s

with approximate degrees of freedom roughly

nX ¼ sX
2

� �2

(1=v1) 1� (n1=N)ð Þ2 s21=n1
� �2þ(1=v2) s22=n1n2

� �2 þ (1=v3) s23=n1n2n3
� �2

again obtained from the Satterthwaite (1946) approximation. This repeated use of the approximation
leads to a crude but often useful estimate of the degrees of freedom.

As pointed out by Duncan (1974b), the standard error of the mean can also be obtained directly
from the standard deviation of the segment results when they are available. The estimate applies
even if some of the segments have been composited to give the results, or in the face of other
compositing or reduction within segments. The price of compositing the segments is, of course, a
reduction in degrees of freedom. This estimate is usually the only one available when dealing with
unique lots. The estimate is

sX ¼ 1
ffiffiffiffiffi
n1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

(X1 � X)2

n1 � 1

s

¼
ffiffiffiffiffiffiffiffiffi
MS1

n1

r

with degrees of freedom n1¼ n1� 1.
It is sometimes necessary to estimate the variability within the lot. This is usually done by taking

a sample constructed using n1 segments, one increment from each segment, one test per increment.
It is recommended that at least 10 segments be selected as a sample. No compositing is allowed. The
estimate is

sX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

(X1 � X)2

n1 � 1

s

with degrees of freedom n¼ n1� 1. The value of sX is then used to characterize the lot with respect
to variation in the lot and is also useful in determining the sample size. Note that the components of
variance associated with this measure are

s2
X ¼ s2

1 þ s2
2 þ s2

3
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TABLE 9.4: Percent potassium bitartrate in shipment of argol.

Trierful

Bag 1 2 Mean Standard Deviation

1 86.37 86.46 86.42 .0636
2 87.50 86.36 86.93 .8061
3 85.75 86.05 85.90 .2121
4 87.09 87.38 87.24 .2051
5 87.31 86.78 87.04 .3748
6 85.85 85.75 85.80 .0707
7 86.46 85.44 85.95 .7212
8 84.62 86.16 85.39 1.0889
9 86.41 86.26 86.34 .1061
10 85.44 86.46 85.95 .7212
Mean 86.28 86.31 86.296
Standard deviation .8938 .5350 .6080

Source: Reproduced from Tanner, L. and Lerner, M., Economic accumulation of variance data in
connection with bulk sampling, ASTM STP 114, American Society for Testing and Materials,
Philadelphia, PA, 1951, 9. With permission.
As an example of the application of these estimation techniques, consider the data of Table 9.4 from
a two-stage bulk sampling plan presented by Tanner and Lerner (1951), which shows a sample
taken from a shipment of argol.

Here N is large relative to n1 so that the finite population correction is not necessary. Also there is
only one test per sample, so that s2

2 includes the variability of testing and the model for the variance
of the lot sample mean is

s2
X
¼ s2

1

10
þ s2

2

10(2)

where s3
2 and s4

2 are not shown in the model since they cannot be estimated from this sample design.
Now,

MS1 ¼ (86:42� 86:296)2 þ (86:93� 86:296)2 þ � � � þ (85:95� 86:296)2

10� 1
¼ :36967

and

MS2 ¼ (86:37� 83:42)2 þ (86:46� 86:42)2 þ � � � þ (86:46� 86:95)2

10(2� 1)

¼ :3124

so that

s2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
:3124

p
¼ :5589
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with

n2 ¼ 10(2� 1) ¼ 10

and

s1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

:36967� 3124
2

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:21347

p
¼ :4620

with

n1 ¼ (:21347)2

(1=9)(:36967=1)2 þ (1=10)(:3124=2)2

¼ 2:58 � 2

The standard error of the mean may then be estimated as

sX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
10

þ s22
10(2)

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:2135
10

þ :3124
20

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:03697

p
¼ :1923

with degrees of freedom

nX ¼ (:03697)2

(1=2)(:21347=10)2 þ (1=10)(:3124=20)2
¼ 5:4

This is a conservative approximation since

sX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
10

þ s22
20

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
10

MS1 �MS2

2

� �

þMS2

20

s

¼
ffiffiffiffiffiffiffiffiffi
MS1

10

r

and MS1 has exactly 9 degrees of freedom as can be seen from the formula for its calculation. This
estimate can also be obtained directly from the bag (segment) mean as

sX ¼ 1
ffiffiffiffiffi
10

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(86:42� 86:296)2 þ (86:93� 86:296)2 þ � � � þ (85:95� 86:296)2

10� 1

s

¼ 1
ffiffiffiffiffi
10

p
ffiffiffiffiffiffiffiffiffi
MS1

p
¼ :1923

with, of course, 9 degrees of freedom. An estimate of this sort would be the only available method
for determining the standard error of the mean from a unique lot and is obviously useful regardless
of compositing within the segments.
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A 95% confidence interval for the mean would be

X � tsX
86:3� 2:26(:1923)

86:296� :43

An estimate of the variability in the lot can be obtained using the results of, say, the trierful 1. This
gives

sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(86:37� 86:28)2 þ (87:50� 86:28)2 þ � � � þ (85:44� 86:28)2

10� 1

s

¼ :8938

with

v ¼ 9

Any estimate of this sort contains bag variation, trier variation within bags, any trier reduction
variation, and the testing error. In an experiment such as this a number of alternatives would be
available for compositing. Some of them are

1. No compositing. In the case of a unique lot or for a pilot study to determine the components of
variance to be used in continuing series of lots, this option provides the most information
about the variability involved. This estimate of the mean has standard error

sX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

10
þ s2

2

20

r

The standard error can be estimated from the sample using the method given in the example
above.

2. Composite the trier samples. Here 10 analyses would be required each having a variance

s2 ¼ s2
1 þ

s2
2

2

but the resulting standard error the mean would be

s2
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
10

s2
1 þ

s2
2

2

� �s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

10
þ s2

2

20

r

as before. This standard error could be checked using

sX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10
10

P
(x1 � x)2

10� 1

s

This estimate is useful with unique lots. In that case, this estimate of the standard error of the
mean would provide 9 degrees of freedom.
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3. Composite the odd and even segments (bags) respectively into two samples. This would result
in two values which would be averaged to produce the estimated lot mean. Each of these
values would have a variance

s2 ¼ s2
1

5
þ s2

2

10

but the resulting average of the two results would still have

sX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

s2
1

5
þ s2

2

10

� �s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

10
þ s2

2

20

r

However, now the standard error could be checked from the segment means with 1 degree of
freedom as

sX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2

P
(xi � x)2

2� 1

s

¼ R

2

where R is the range of the two readings. This is quite useful on a continuing series of lots
since it provides a check that the variability has not changed from that predicted from the
components of variance.

4. Composite entire sample. With one analysis this would show just one value—the estimated
mean of the lot. No estimate of standard error would be available from the sample but known
components of variance could be used to estimate the standard error if available and if there
were confidence that they had not changed since they were obtained. The standard error of the
mean would be determined as

sX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

10
þ s2

2

20

r

This procedure can sometimes be used on a continuing series of lots.

Thus, various strategies are available for compositing depending upon the structure of the sample,
cost and feasibility constraints, the desired precision of the estimate, the available information, and
the ingenuity of the individual designing the procedures (for further discussion, see Davies 1954).

Sampling Plans

The sampling plans that have been suggested for use with bulk materials are essentially variables
plans for process parameter. Indeed, if segments are of equal size, the results for the segments can be
used with the plans given in Table 8.1 as if the segments were individual units of product. Bulk
sampling is, however, somewhat more complicated and is distinguished by exploiting the essential
continuity of the basic material in the lot in the development of more complex and informative
sampling plans. The method of sampling and compositing must be considered in assessing the
overall results. For this reason, tables of bulk sampling plans are not available since the plans must
be tailored to the individual sampling situation and the analytical methods used.
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Bicking (1970) has enumerated the following steps in setting up a sampling plan:

1. State the problem for which an estimate is desired.

2. Collect information on the relevant properties of the material (average properties, components
of variance in the properties).

3. Consider various approaches, taking into account cost, precision, and difficulties.

4. Evaluate these plans in terms of cost of sampling and testing, delay, supervisory time, and
convenience.

5. Select a plan.

6. Reconsider the preceding steps.

Consider a test of the mean of a lot against some specified value. The statistic t¼ (x�U)=sX would
be used for an upper limit where U plays the role of m0 in Table 8.1. Similarly L acts as m0 when a
lower limit is involved. Once the mean of the lot is estimated by X and its standard error sX
determined, the resulting value of t is compared to the relevant upper tail critical value from the
t-distribution to determine the disposition of the lot (lower tail for a lower specification limits). Note
that the problem of setting special test specification limits, which takes into account measurement
error, has been addressed by Grubbs and Coon (1954).

In the earlier example, suppose a lower specification limit on the average percent potassium
bitartrate in the lot was L¼ 87% with a producer’s risk of a¼ .05. Using the sample results,

t ¼ X � L

sX

t ¼ 86:3� 87
:19

¼ �3:68

Comparison to the critical value of t¼�1.83 with 9 degrees of freedom shows �3.68 is less than
�1.83 and the lot should be rejected. This test was made on the lower tail of the t-distribution since a
lower specification limit was involved. A diagram showing the application of the test is the test
given in Figure 9.2, where X¼ L at t¼ 0. In practice, the consumer’s risk involved in such
an assessment would be incorporated in determining the sample size. Note that the upper tail of
the t-distribution could have been used if the statistic were calculated as t¼ (L� x)sX .

In discrete sampling, measurements are taken directly on well-defined units of product; however,
in bulk sampling, the continuous nature of the bulk within a segment allows for considerable
flexibility for sampling within a segment in an attempt to characterize it with respect to the quality
characteristic. A wide range of sampling techniques have been, and may be, employed. For example,
–3.68 –1.83 0 t

FIGURE 9.2: The t-test for purity of liquid.
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stratified sampling (see Bennett and Franklin 1954, p. 482), multistage sampling (see Deming 1950,
p. 160), ratio estimation (see Deming 1950, p. 183), systematic sampling (see Bicking 1967), and
interpenetrating subsamples from a stream of product (see Duncan 1974b, p. 25A-9) are a few among
others. It should be pointed out that, in the literature of sampling, segments are referred to as primary
units, increments as secondary units, and tests often as tertiary units. Procedures are also available for
the assessment of bulk quality characteristics in terms of proportions as well as measurements. It is
important to caution that chemical measurements are frequently expressed in units of proportion or
percent but should be analyzed as measurement data; for example, percent carbon monoxide in the
exhaust of a car. The statistical analysis of proportions refers to an actual count of a discrete
characteristic within a sample of a given size, for example, number of black grains in a sample of
100 grains of sand.

The various sampling techniques available in the literature of sampling theory (see, for example,
Cochran 1953; Deming 1950; Williams 1978) lead to an estimate of the lot or population mean
(or proportion) with its standard error, together with its associated degrees of freedom. These are
readily available together with formulas for confidence interval estimation. For use in acceptance
sampling, the estimated parameter and its standard error of estimate may be substituted in the criteria
of Table 8.1 and used to test conformance of specifications. Furthermore, the procedures of sequential
sampling and acceptance control charts given in Chapter 8 can also be used in straightforward fashion
once the estimate of the lot mean and its standard error and degrees of freedom are determined.
Sequential plans can be used on the segment means to arrive at an early decision on the lot.

An adaptation and modification of the basic procedure of ASTM Standard E-300-03 (American
Society for Testing and Materials, 2004) will be given to illustrate the nature and application of
specific bulk sampling plans. While intended for sampling of industrial chemicals, the procedure is
easily generalized to other bulk sampling situations. For a complete discussion of the method of
ASTM E-300-03 refer to the standard, also see Bicking (1970). Note that this procedure involves
sampling for process parameter with a risk of rejection when the process is at the specification limit,
which acts as m1.
Simple Random Sampling of a Unique Lot (Components
of Variance Unknown)

Unique lots present a problem in bulk sampling because some or all of the components of
variance associated with the inspection of the lot will, in general, be unknown. Further, the
variability of the lot will also be unknown, requiring an initial preliminary estimate before sample
size can be determined.

Assume a unique lot is to be sampled for lot acceptance against a lower specification limit L. The
producer’s risk is to be a¼ .05, while the consumer’s risk is to be b¼ .10. Values of u1 (acceptable
quality level) and u2 (rejectable quality level) are given. The procedure is as follows:

1. Take preliminary sample of n1* segments (n1* � 10) at random from the lot. Use one
increment per segment with one test per increment. In other words, use one test unit per
segment sampled.

2. Compute

X * ¼P
n1*

i¼1
Xi

n1*
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�

and

s* ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn1*

i¼1
(Xi � X *)2

n1*� 1

v
u
u
u
t

3. Calculate

d ¼ L� u2
s*

and determine sample size n1 required from the operating characteristic (OC) curve for the t-test.

4. Randomly select an additional n1 � n1* units from the lot then pool them with those of the
previous sample. Compute

X ¼
Pn1

i¼1
Xi

n1

and

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn1

i¼1
(Xi � X)2

n1 � 1

v
u
u
u
t

so that

sX ¼ s
ffiffiffiffiffi
n1

p

5. Check the adequacy of the sample size selected by recomputing

d ¼ L� u2
s

and rereading the OC curve to obtain a new estimate of sample size. If this estimate exceeds n1
by more than 20%, obtain additional units as necessary to reach the indicated sample size. Use
the increased sample size as n1 and return to step 4. Otherwise, proceed to step 6.

6. Using the final estimates of X and sX calculate

t ¼ L� X

sX

and compare this statistic to the upper .05 critical value of the t-distribution with n1� 1 degrees
of freedom. If the calculated value exceeds the critical value, reject the lot. Otherwise, accept.

7. In dealing with an upper specification limit proceed as above using the formulas

d ¼ u2 � U

s

t ¼ X � U

sX
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8. For double specification limits, check to be sure that

U � L > 6sX

If not, take additional samples to raise the sample size to

n1 � 6s
U � L

� �2

Then test the upper and lower limits separately as above, rejecting if either test rejects the lot.

As an example of the application of this procedure let us return to the evaluation of the percent
potassium bitartrate given above. Suppose in that case u1¼ L¼ 87% and u2¼ 86%. Using the
sample results from trierful 1 for an initial sample of 10 segments,

X * ¼ 86:28, s* ¼ :8938

with 9 degrees of freedom. Then

d ¼ 87� 86
:8938

¼ 1:12

The OC curve shows that a sample size of 10 is required, hence no further samples are required, and

sX ¼ :8938
ffiffiffiffiffi
10

p ¼ :2826

so

t ¼ 87� 86:28
:2826

¼ 2:55

tested against a critical value of 1.83 with 9 degrees of freedom. Since 2.55> 1.83 the lot would be
rejected.

Sampling from Stream of Lots

As in discrete sampling, inspection frequently takes place on a steady stream of product produced
by the same supplier. Assuming the process to be in control, a pilot study on the initial product can
be used to estimate the components of variance. From these estimates, appropriate bulk sampling
plans can be developed. Of course these estimates must be checked during application of the
procedure to be sure that they continue to hold.

A procedure for a pilot study to estimate the relevant components of variance and to assess their
stability is suggested in ASTM E-300-03. A modification and adaptation of the procedure is given
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here to outline the detailed analysis necessary before a bulk sampling procedure can set up on a
stream of lots. The procedure estimates

s1
2 is the variance between segments (batch variability)

s2
2 is the variance between increments within segments (sampling variability within batches)

s3
2 is the testing variance (variability between tests)

s4
2 is the reduction variance (variability introduced by reduction of gross sample to test unit size)

Estimation of Testing and Reduction Variances

1. Take 20 increments from each of five segments. Make 20 composites from the sets of five of
the 1st, 2nd, 3rd, . . . , 20th increments across segments. Make two tests on each composite.

2. Prepare two control charts using standard procedures available in any textbook on statistical
quality control, such as Burr (1976), Duncan (1974a), or Grant and Leavenworth (1972), as
follows:

a. Chart I: Range chart on the differences of the two tests on each increment to test the
stability of the testing variance

b. Chart II: Moving range chart on the means of the 20 composites to test stability of the
reduction variance

3. If both of these charts exhibit a state of control, estimate the testing and reduction variances.
Let X4¼ composite mean, X3¼ test result, and X¼mean of all measurements; then

MS3 ¼
PP

(X3 � X4)
2

20(2� 1)

MS4 ¼
P

(X4 � X)2

20� 1)

so that

s3
2 ¼ MS3

s4
2 ¼ MS4 �MS3

2

These estimates are used in the estimation of the variances between segments and between
increments.

Estimation of Segment and Increment Variances

1. Take two increments from each of 25 successive segments produced by the process.

2. Make a single test on each of the 50 increments under uniform conditions (same time,
equipment, operator, etc.).

3. Prepare three control charts using standard procedures as follows:

a. Chart III: Range chart on difference of results from two increments from each segment to
check the stability of within segment variance
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b. Chart IV: X chart for segment means to check the stability of process from segment to
segment with respect to trend, runs, etc.

c. Chart V: Moving range chart for segment means to check the stability of variance of
segments

4. If the charts all show evidence of control, without exception, the components of variance may
be determined. As before, let X¼ grand mean, X1¼ segment mean, and X2¼ increment mean;
then

MS1 ¼
P

(X1 � X)2

25� 1

MS2 ¼
P

(X2 � X1)
2

25(2� 1)

so that

s22 ¼ MS2 � s23

s21 ¼ MS1 �MS2

2

Note that s4
2 is not subtracted from s22 since there is no reduction in the sense of compositing in

this part of the procedure.

The stability and magnitude of the components of variance having now been determined, it is
possible to apply the acceptance procedure to the stream of lots. The procedure suggested by ASTM
E-300-73 is based on the results of two composite samples obtained from each lot. The lot is taken
to be composed of N¼ n1 segments all of which are of equal size and sampled to produce a stratified
sample of the lot. A sample of n2 increments is taken from each segment where n2 is chosen to be an
even number. If Type A bulk material is to be sampled, n1n2 random increments are taken directly
from the lot. The odd and even increments from within segments are separately composited to form
two composites A and B. Two tests are made on each composite. The components of variance
model for the variance of the mean from this procedure is

s2
X
¼ s2

1

n1
þ s2

2

n1n2
þ s2

3

4
þ s2

4

2

In testing against a lower specification limit, L, on the lot mean, the following procedure is
employed given the values of the acceptable process level u1¼ L, the rejectable process level u2,
producer’s risk a¼ .05, and consumer’s risk b¼ .10.

Application of Plan to Stream of Lots

1. Given n1¼N, n3¼ 2, n4¼ 2, determine n2 as

n2 ¼ s22
n1 (L� u2)

2=8:567
� �� s12=n1ð Þ � s32=4ð Þ s42=2ð Þ� �

where 8.567¼ (zaþ zb)
2. Round up to an even integer. For a test of an upper specification

limit, substitute u2�U for L� u2 in the above formula.
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2. Perform a check on the validity of the components of variance using two control charts:

a. Chart VI: Range chart of differences between the two tests made on each composite. Use

UCL: 3.686s3

CL: 1.128s3

LCL: 0

which employ standard control chart factors for the range. This is a continuation of chart I
above to check if the testing variance is stable at the estimated level. Proceed if both points
plot within the limits and chart exhibits a state of control. Otherwise, revert to the methods
for a unique lot.

b. Chart VII: Range chart of the difference between the mean values of the A and B
composites. The chart checks the stability of the other components of variance. Its
limits are

UCL: 3:686

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ 2s22
n1n2

þ s23
2
þ s24

s

CL: 1:128

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ 2s22
n1n2

þ s23
2
þ s24

s

LCL: 0

Proceed only if the point plots within the limits and the chart exhibits a state of control.
Otherwise, revert to the methods for a unique lot.

3. Estimate the standard error of the mean by

sX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n1n2

þ s23
4
þ s24

2

s

4. Accept for single specification limits if: (a) for lower specification limit X � L� 1.645sX or
(b) for upper specification limit X � Uþ 1.645sX . For double specification limits, the
acceptance procedure is as follows. If

(U � L) � 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n1n2

þ s23
4
þ s24

2

s

discontinue inspection since specification limits are too close to be assessed at this sample
size. Otherwise, proceed to test both upper and lower specification limits separately. Reject if
either test fails. Accept if both pass.

To illustrate application of this procedure, consider the concentration of an ingredient in ship-
ments of a certain chemical compound. The average level of the ingredient is not to exceed 10%.
Shipments consist of six bags each containing 50 lb of the material. The customer does not wish to
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accept any material if the process average from which the sample was taken exceeds 12%. It is
known that

s1
2¼ 1.0¼ variance of bags

s2
2¼ 1.9¼ variance of samples within bags

s3
2¼ 0.8¼ variance of testing

s4
2¼ 0¼ reduction variance (assumed zero)

The plan is applied as follows:

1. Given n1¼ 6, n3¼ 2 with the reduction variance assumed negligible. Then, the number of
increments needed from each bag will be

n2 ¼ 1:9

6 (12�10)2

8:567 � 1:0
6 � 0:8

4

� �

¼ 3:16 � 4

From a shipment of six bags, four increments are taken from each. The first and third
increments from each of the bags are composited into composite A while the second and
fourth increments from each of the bags are composited into composite B. Two tests are made
on composite A and two tests on composite B. Results are

Composite A Composite B

Test 1 8.3 8.8
Test 2 8.2 8.7

with an overall mean X¼ 8.5.

2. The differences

RA ¼ 8:3� 8:2 ¼ :1

RB ¼ 8:8� 8:7 ¼ :1

are plotted on a range chart to check the stability of the testing variance. Similarly, the mean
values of the two composites

XA ¼ 8:25, XB ¼ 8:75

are used to obtain the range of composite means

RX ¼ 8:75� 8:25 ¼ 0:5

which is plotted on a range chart to check the stability of the other components of variance
using an upper control limit of

3:686

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0
6

þ 2(1:9)
6(4)

þ 0:8
2

þ 0

r

¼ 3:14
� 2008 by Taylor & Francis Group, LLC.



a center line of

1:128

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0
6

þ 2(1:9)
6(4)

þ 0:8
2

þ 0

r

¼ 0:96

and a lower control limit of 0. Both tests are in control.

3. The standard error of the mean is

sX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0
6

þ 1:9
6(4)

þ 0:8
4

þ 0

r

¼ :67

4. Since

X < 10þ 1:645(:67)

8:5 < 11:1

the lot is accepted.
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Problems

A shipment of crushed raw material is received in five special railroad cars, each with two
compartments believed filled separately, which dump from the bottom. It is to be tested for an
impurity which is specified to be less than 5%. Levels of 7% or more cannot be tolerated by the
customer’s progress. Risks of a¼ .05 and b¼ .10 are deemed reasonable.

1. If the components of variance were unknown, how might the preliminary sample be taken?

2. If, in the preliminary sample, X¼ 5.0% and s¼ 3%, what additional sample size is necessary?
How should these be taken?

3. Final estimates are X¼ 5.5% and s¼ 2%. Should the shipment be accepted?

4. Additional information was gathered on 20 increments from the first five segments (compart-
ments) in an effort to estimate the testing and reduction variances. The results were MS3¼ .7
and MS4¼ .45. What are the estimates of the testing and reduction variances?

5. Successive shipments are made. After 25 compartments have each been sampled twice,
control charts confirmed the stability of the data. The segment and increment mean squares
were MS1¼ 4.75 and MS2¼ 2.2. Estimate the segment and increment variances.

6. Present the mean squares given in Problem 5 in the form of an analysis of variance table.

7. A shipment of eight railroad cars is received. On the basis of results from Problems 4 and 5,
how many increments should be taken from each compartment if odd and even increments
from each compartment are composited and two tests are made on each composite?

8. If the grand mean of the results from the eight cars was X¼ 5.9, should the shipment be
accepted?

9. What would be the standard deviation of a single observation from the shipment from
Problem 8? Construct a 95% confidence interval for the lot mean in Problem 8.

10. If the lot mean is to be estimated within �1% in Problem 7, when the cost of sampling a
segment is equal to that of an increment, what are the most cost-effective segment and
increment sample sizes disregarding any testing or reduction variance?
� 2008 by Taylor & Francis Group, LLC.



Chapter 10

Sampling by Variables for Proportion
Nonconforming
The distinction between discrete and continuous variables involves good grammar as well as
good statistics. We state how many we have of a discrete variable and how much when the variable
is continuous. We may be interested in how many cans of soup were underweight by as much as a
milligram; or how many rivets were off center by as much as 0.5 mm. These statements imply that
continuous (measurement) variables can be subjected to an attributes (go no-go) type test simply by
counting the number of items in a sample beyond some limit. Thus, attributes sampling plans could
be applied in these two cases.

Alternatively, if the shape of the underlying distribution of individual measurements were known,
acceptance sampling could be performed directly on the measurements themselves. Such procedures
form the basis for variables sampling plans for proportion nonconforming and, when applicable,
provide a considerable savings in sample size.

The basic idea of variables sampling for proportion nonconforming is to show that the sample
results are sufficiently far within the specification limit(s) to assure the acceptability of the lot with
reasonable probability.

Variables plans involve comparing a statistic, such as the mean X, with an acceptance limit A in
much the same way that the number nonconforming, d, is compared to an acceptance number, c, in
attributes plans. A comparison of the procedures involved in variables and attributes sampling plans
is shown in Figure 10.1.

Some of the advantages of variables sampling are as follows:

1. Same protection with smaller sample size than attributes

2. Feedback of data on process which produced the units

3. More data available in waiver situations

4. Extent of conformity of each unit given weight in application of the plan

5. Increased likelihood of errors in measurement being detected

Some of the disadvantages of variables sampling are as follows:

1. Dependence of results on correctness of assumption of shape of underlying distribution of
measurements

2. Applicable to one (only) characteristic at a time

3. Higher inspection cost per unit

4. Higher clerical cost per unit

5. Possibility of no nonconforming unit found to show to producer after rejection
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X > AX <_ A
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A

FIGURE 10.1: Comparison of attributes and variables sampling. (a) Attributes, single sampling;
(b) Variables, single sampling (upper specification limit). (Reprinted from Schilling, E.G., Qual.
Progr., 7(5), 16, 1974b. With permission.)
The principal advantage of variables plans over attributes is reduction in sample size. For example,
in comparing average sample sizes for plans matched to the single-sampling attributes plan n¼ 50,
c¼ 2 we have, for a single specification limit:

Plan Average Sample Number (ASN)

Single attributes 50
Double attributes 43
Multiple attributes 35
Sequential attributes 33.5
Variables (s unknown) 27
Variables (s known) 12

Specification Limits

Specification limits can be of two types. A single specification limit implies only one boundary
value for acceptability, either upper U or lower L. Thus, a measurement does not conform to the
specification limit if

X > U

for an upper specification limit, or if

X < L

for a lower specification limit. Double specification limits place both upper and lower boundary
values on the acceptability of a measurement. That is, the measurement X is acceptable if and only if

L � X � U
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Assumptions and Theory

Probably the most important consideration in applying variables sampling plans is the require-
ment that the shape of the underlying distribution of measurements to which the plan is to be applied
must be known and stable. This means that probability plots or statistical tests on past data must
show that the distribution of measurements involved actually is that assumed by the plan. Control
chart evidence also is desirable to indicate its stability. For a known distribution, it is the underlying
distribution of measurements which relates the proportion of units outside the specification limit to a
fixed position of the population mean of the measurements. Variables plans for process parameter
may then be used to confirm or deny that the population mean is in the proper position. In a crude
way, this is how variables sampling works. In fact, some plans are devised in just this way. It must
be emphasized that the underlying distribution must be known to be that assumed by the plan for
variables sampling to be properly applied.

The basic theoretical nature of the variables acceptance sampling plans is illustrated in Figure
10.2, which involves an upper specification limit and assumes the underlying distribution of
individual measurements to be normal. If the procedure of Figure 10.1 is applied, the mean X
of a sample of n measurements is compared to an acceptance limit A and the lot accepted if X is
not greater than A. Figure 10.2 shows that if the distribution of individual measurements is as
shown, with s known, a proportion p of the product above the upper specification limit U
implies the mean of the distribution must be fixed at the position indicated by m. Sample means
of size n then would be distributed about m as shown and so the probability of obtaining an X not
greater than A is as indicated by the shaded area in the diagram. Published plans for known
standard deviation often are given in terms of sample size and k, the distance in units of the
standard deviation, between the (upper) specification limit U and the acceptance limit A. From
Figure 10.2 we see

k ¼ U � A

s
¼ zU � zA
k

ks

ks

zA zU z

UA

UA

Distribution of
sample means

Probability of
acceptance on

variables sample

Distribution of
individuals

Original units
of measurement

Transformed
z units

x

p

m

O

FIGURE 10.2: Distributions in variables sampling. (Reprinted from Schilling, E.G., Qual.
Progr., 7(5), 16, 1974b. With permission.)
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FIGURE 10.3: Comparison of OC curves. For variables, V, n¼ 7, and k¼ 1.44. For attributes, A,
n¼ 20, and c¼ 1.
for the distribution of individual measurements positioned as shown where the z values are
taken from the standard normal table. The situation is analogous, but reversed, for a lower
specification limit.

Using Figure 10.2 and normal probability theory, the probability of acceptance Pa can be
calculated for various possible values of p, the proportion nonconforming. Figure 10.3 shows the
operating characteristic (OC) curve of the variables plan n¼ 7, k¼ 1.44 for known standard
deviation compared to that of the attributes plan n¼ 20, c¼ 1. OC curves of variables plans are
generally considered to be Type B.

It can be seen that the two OC curves are well matched, that is they give about the same
protection. The variables plan, however, uses only about a third as large a sample size as
the attributes plan. Thus, the variables plan appears superior. It must be remembered, however,
that the superiority of the variables plan rests on assumption of the normality of the underlying
distribution of the measurements. If this assumption cannot be justified, the variables plans
may give unreliable results and recourse must be either to an attributes or to a mixed variables–
attributes plan.

The danger involved in using a variables plan which assumes normality when, in fact, the
underlying distribution of individual measurements is actually nonnormal is illustrated in Figure
10.4. This shows the proportion of the product beyond z standard deviation units from the mean to
be heavily dependent on the shape of the distribution. A variety of distributions is represented by
various shape parameters for the family of Weibull distributions. Note that the tail area beyond three
standard deviations is over 2% for a Weibull distribution with shape parameter 0.5, while it is 0.13%
for a normal distribution.
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FIGURE 10.4: Curves of upper tail areas of several Weibull distributions. (Reprinted from
Schilling, E.G., Qual. Progr., 7(5), 16, 1974b. With permission.)
Operation

X Method

The simplest application of variables plans for proportion nonconforming is when a single
specification limit is involved and the standard deviation is known. In this case, a straightforward
procedure, which we shall call the X method, may be employed. It requires that the sample size and
an acceptance constant k be specified and that s be known. An acceptance limit A for X is set a
distance ks within the specification limit. The procedure, then, is as shown in Table 10.1.

k Method

The X method is actually a special case of what is called the k method. The procedure involved in
the k method is shown in Table 10.2. The more general k method may be used when the standard
deviation is not known simply by substituting the sample standard deviation
TABLE 10.1: X method.

Lower Specification Limit Upper Specification Limit

1. Set A¼ Lþ ks 1. Set A¼U� ks
2. Select a random sample of size n 2. Select a random sample of size n
3. Compute X 3. Compute X
4. If X � A, accept the lot; if X<A,

reject the lot
4. If X � A, accept the lot; if X>A,

reject the lot
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TABLE 10.2: k method (given n, k).

Lower Specification Limit Upper Specification Limit

1. Select a random sample of size n 1. Select a random sample of size n
2. Compute z¼ (X� L)=s, for s known

or z¼ (X� L)=s, for s unknown
2. Compute z¼ (U�X)=s, for s known

or z¼ (U�X)=s, for s unknown
3. If z � k, accept the lot; if z< k, reject the

lot
3. If z � k, accept the lot; if z< k, reject the lot

4. Equivalently, if X� ks � L, accept the lot;
ifX� ks< L, reject the lot. Ifs is unknown,
use appropriate values of n and k with
X� ks as above

4. Equivalently, if Xþ ks � U, accept the lot;
ifXþ ks>U, reject the lot. Ifs is unknown,
use appropriate values of n and k with
Xþ ks as above
s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

(x� �x)2

n� 1

s

for s in the known standard deviation procedure and choosing an appropriate value of k and sample
size n for the unknown standard deviation case. It may be applied in two alternative but equivalent
ways as shown in Table 10.2.

It can be seen that the X method is a special case of the k method, since for a lower specification
limit acceptance would occur if

X � ks � L

X � Lþ ks

X � A

Also, note that A is a fixed constant only if s is known and so the kmethod is the only real alternative
for the case of unknown standard deviation. The X method, however, offers a simpler approach for lot
acceptance when it is applicable. It can be directly presented diagrammatically as in Figure 10.1.
A diagrammatic representation of the relationship between the X and kmethods, when s is known as
presented by Schilling in Juran (1999) Quality Control Handbook, is given in Figure 10.5.

Double Specification Limits

When double specification limits are involved, the procedure of implementing variables sampling
plans becomes somewhat more complicated. This is because, when variability is large relative to the
distance between the lower and upper specification limits, it is possible to have a significant
proportion of product outside both specification limits at the same time. Clearly, if the specification
limits are sufficiently far apart, two separate single specification limit plans may be used since the
occurrence of product outside either of the limits will be mutually exclusive. That is, product may be
outside one or the other of the specification limits, but not both.

When the standard deviation is known, a simple procedure, modified from that suggested by
Duncan (1974) may be used to determine if two separate single specification limit plans may be
used. Suppose a plan is to be instituted with producer’s quality level, PQL¼ p1 and consumer’s
quality level, CQL¼ p2. The method is as follows:

1. Compute zp¼ (U� L)=2s.

2. Find p* from the normal table as the upper tail area corresponding to zp. This is the minimum
proportion nonconforming outside one of the specification limits.
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FIGURE 10.5: X and k methods compared. (a) U� ks method. (b) Xþ ks method. (Reprinted
with permission from J.M. Juran, Ed., Quality Control Handbook, 5th Edn. McGraw-Hill, New
York, 1999. Section 25, Sampling by Variables by E.G. Schilling.)
3. Criteria

a. If 2p* � p1=2, use two single-limit plans.

b. If p1=2< 2p* � p1, the specifications may be too close to prevent nonconformities on both
sides when the distribution is centered. Using normal probability theory, determine the
split of proportion nonconforming outside the upper limit pU and outside the lower limit
pL, which will sum to p1 as the distribution is moved between the specifications. Use the
larger of these two proportions as p1 in two single-limit plans together with specified p2.

c. If p1< 2p*< p2, the specifications of the plans must be reconsidered.

d. If 2p* � p2, the product should be rejected outright.

For example, suppose a plan is desired to check on the resistance of a certain electrical device. The
specifications are U¼ 100 V and L¼ 90 V with p1¼ .01 and p2¼ .05. The standard deviation is
known to be 1.5 V. Then
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1. zp¼ (100�90)=2(1.5)¼ 3.33.

2. From the normal table p*¼ .0004.

3. Since .0008< p1=2¼ .005, two single-sided plans are appropriate.

When the standard deviation is unknown, the double specification limit problem becomes still more
difficult since there are two random quantities to be considered in the acceptance decision: the mean
X and the standard deviation s. In such a situation, it is customary to check the sample standard
deviation against the maximum value before proceeding to check against two separate single-limit
plans. The so-called maximum standard deviation (MSD) becomes part of the acceptance procedure.
It may be approximated as follows from a procedure suggested by Wallis (1950):

1. Find the upper tail normal area p** corresponding to zp* ¼ k.

2. Find zp** corresponding to a normal upper tail area of p**=2.

3. Maximum standard deviation is MSD ’ (U � L)=2zp**.

The acceptance criteria for double specification limits then adds the following initial check to the
procedure for two single-limit plans:

Check (s) against MSD:

a. If s � MSD, use two separate single specification limit plans.

b. If s>MSD, reject the lot since the standard deviation is too large to be consistent with the
acceptance criteria.

The idea can be expressed graphically as shown in Figure 10.6. The sample standard deviation is
plotted against the sample mean. The x-axis, the MSD, and the two single-sided acceptance
sampling criteria (Xþ ks¼U and X� ks¼ L) form an acceptance polygon. If the point (X,s) plots
within the polygon, the lot should be accepted. If not, the lot is rejected.

Actually, the polygon shown is an approximation of a more accurate acceptance region, the
development of which was attributed by Wallis (1950) to Kenneth J. Arnold. The region is defined
by the points (X0,Y 0) such that for any two proportions p00 and p0

00 summing to p** corresponding to
zp* ¼ k:
L

MSD

Reject

AcceptReject Reject

sL = – l
k

L
k

s

U
x

x sU = +l
k

U
kx

FIGURE 10.6: Acceptance polygon.
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X
0 ¼

Uzp00 þ Lzp000
zp00 þ zp000

s0 ¼ U � L

zp00 þ zp000

Given a point (X0,s0) on one side of the ‘‘polygon,’’ of course the symmetric point for a given s0 is

X
00 ¼ U þ L� X

0

Such a polygon is shown in Figure 10.6 in dotted lines. The dotted curve will intersect the straight
sides of the original polygon at approximately

s ¼ U � L

3þ k

It can be seen that the first polygon approximation to the acceptance region is slightly loose in that it
overstates the acceptance region. The solution for s0 at X0 ¼ (Uþ L)=2 results in the approximation
for MSD given above.

Wallis (1950) outlined the method for determining the more accurate acceptance region as follows:

1. Determine n and k from the usual one-sided procedures (given in the following section on
Selection, Formulas subsection).

2. Find the indifference quality p**, which is the probability that a standard normal deviate will
exceed zp* ¼ k.

3. Divide p** into two parts p01 and p02 such that p01 þ p02 ¼ p**. Each pair p01 and p02 leads to a
point on the acceptance region boundary.

4. Find z1 and z2 as normal deviates corresponding to the upper tail areas p01 and p
0
2, respectively.

5. Substitute each pair, z1 and z2, into the equation

X
0 ¼ Uz1 þ Lz2

z1 þ z2

s0 ¼ U � L

z1 þ z2

6. Plot enough points to define the acceptance region.

For example, consider the unknown standard deviation plan

n ¼ 13, k ¼ 1:44

to be applied against the previous specifications for resistance, U¼ 100 V, L¼ 90 V. The accept-
ance polygon would appear as in Figure 10.7.

The polygon is constructed as follows:

1. The two acceptance lines are

sL ¼ 1
k
X � L

k
¼ :694X � 62:5

sU ¼ � 1
k
X þ U

k
¼ �:694X þ 69:4
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FIGURE 10.7: Acceptance polygon: Example.
2. The MSD is determined as

a. zp* ¼ 1:44; so p** ¼ :0749.

b. p**
2 ¼ :0375; so zp** ¼ 1:78.

c. MSD¼ (U� L)=2zp**¼ 10=[2(1.78)]¼ 2.809.

3. The two single specification lines will intersect when

X ¼ U þ L

2
¼ 100þ 90

2
¼ 95

which corresponds to a height (s) of

s ¼ �:694(95)þ 69:4 ¼ 3:47

4. The lines are drawn to obtain the polygon.

Using Wallis method, the more accurate acceptance region can be obtained using the tabulation
shown in Table 10.3 given p**¼ .075.

Selection

Tables

Extensive tables of variables plans for proportion nonconforming and defective will be found
in the well-known military standard MIL-STD-414 (United States Department of Defense, 1957).
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TABLE 10.3: Polygon derived by Wallis method.

(1) (2) (3) (4) (5) (6) (7) (8) X ¼ UþL
2

þ U�L
2 (7)p01 p02 z1 z2 (3)þ (4) (3)� (4) (6)=(5) 2=(5) s ¼ U�L

2 (8)

.0375 .0375 1.78 1.78 3.56 0 0 .5618 95.00 2.809

.0325 .0425 1.85 1.72 3.57 0.13 .0364 .5602 95.18 2.801

.0275 .0475 1.92 1.67 3.59 0.25 .0696 .5571 95.35 2.786

.0225 .0525 2.00 1.62 3.62 0.38 .1050 .5525 95.52 2.762

.0175 .0575 2.11 1.58 3.69 0.53 .1436 .5420 95.72 2.710

.0125 .0625 2.24 1.53 3.77 0.71 .1883 .5305 95.94 2.652

.0075 .0675 2.43 1.49 3.92 0.94 .2398 .5102 96.20 2.551

.0025 .0725 2.81 1.46 4.27 1.35 .3162 .4684 96.58 2.342

.0001 .0749 3.89 1.44 5.33 2.45 .4597 .3752 97.30 1.876
The OC curves presented therein can be used to select a plan appropriate to the sampling
situation. MIL-STD-414 and its derivatives will be discussed in a later chapter. Procedures for
variables plans assuring lot tolerance percent defective (LTPD) or average outgoing quality
limit (AOQL) protection have been developed by Romig (1939) and are presented in his PhD
dissertation.

Appendix Table T10.2, computed by Sommers (1981), gives acceptance criteria for single-
sampling variables plans as well as matched double-sampling variables plans (discussed later).
Sample sizes are shown for standard deviation known (ns) and unknown (ns) for a given acceptance
constant (k). The table is indexed by PQL and CQL with a¼ .05 and b¼ .10. Plans were derived
using the computational formulas given below. The Wallis approximation was used for standard
deviation unknown plans.

The selection of p1 and p2 values used by Sommers was made to be the same as those used by the
Statistical Research Group, Columbia University (1947) in a similar tabulation to facilitate a
comparison with sequential plans. As an example of the use of Appendix Table T10.2, it will be
seen that for p1¼ .01 and p2¼ .05 with a¼ .05 and b¼ .10 the following plans are given:

Known standard deviation: n¼ 19, k¼ 1.94

Unknown standard deviation: n¼ 54, k¼ 1.94

Matching binomial attributes and narrow limit plans have been tabulated by Schilling and Sommers
(1981) for the same selection of p1 and p2 values and appear with the single-sampling variables
plans in Appendix Table T13.3.

Formulas

The acceptance criteria for variables plans may be readily determined from computational
formulas for n and k. In these formulas the standard normal deviates, z, represent

zp1 ¼ Area of p1 in upper tail

zp2 ¼ Area of p2 in upper tail

za ¼ Area of a in upper tail

zb ¼ Area of b in upper tail
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The values of k and n are obtained from the following formulas. It will be seen that the formula for
n depends upon the state of knowledge of the standard deviation. Results should always be
rounded up.

k ¼ zp2za þ zp1zb
za þ zb

for s known

n ¼ za þ zb
zp1 � zp2

� �2

for s unknown

n ¼ za þ zb
zp1 � zp2

� �2

1þ k2

2

� �

The latter formula is due to Wallis (1947) and corrects the sample size found for s known by the
factor (1þ k2=2) obtained from the noncentral t-distribution. Although this is an approximation, it is
surprisingly accurate and certainly adequate for practical purposes. It can be shown to be extremely
accurate when compared to the exact values obtained using the noncentral t-distribution. This can be
seen from Appendix Table T10.3 prepared by the Columbia Statistical Research Group, Columbia
University (1947, p. 65) for unknown standard deviation plans where both approximate and exact
PQL and CQL are given.

Suppose p1¼ .018 and p2¼ .18. For a¼ .05 and b¼ .10, the formulas give

k ¼ 0:92(1:64)þ 2:10(1:28)
1:64þ 1:28

¼ 1:44

for s known

n ¼ 1:64þ 1:28
2:10� 0:92

� �2

¼ 6:12 � 7

and for s unknown

n ¼ 1:64þ 1:28
2:10� 0:92

� �2

1þ 1:442

2

� �

¼ 6:12(2:04) ¼ 12:5 � 13

Jacobson Nomograph for Plan Selection

A nomograph also exists for determining variables plans for proportion nonconforming. Due to
Jacobson (1949), it can be used in a manner similar to that of Larson (1966) for attributes plans. It is
based on the Wallis formula. It is shown in Figure 10.8. To use the nomograph to derive a plan,
given p1, p2, a, and b, proceed as follows for the case of s unknown:
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0.18 0.95
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0.018

p
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FIGURE 10.9: Application of Jacobson nomograph.
1. Connect p1 on the left fraction defective axis with (1�a) on the right probability of
acceptance axis.

2. Connect p2 on the left fraction defective axis with b on the right probability of acceptance
axis.

3. From the point of intersection of the two lines, read the sample size n and the acceptance
constant k.

When the standard deviation is known, the nomograph can be employed to derive a plan as
follows:

1. Draw the two lines and obtain the point of intersection as above and read the value of k.

2. Draw a line through the point of intersection parallel to the left and right vertical axes and read
the value of n at the intersection of this line with the bottom sample size scales on the chart
(i.e., where k¼ 0). This follows since for k¼ 0, the Wallis formula reduces to that of the
known standard deviation plan.

Figure 10.9 shows the derivation of the s known plan k¼ 1.44, n¼ 7 when p1¼ .018, p2¼ .18,
a¼ .05, and b¼ .10. The dotted line shows the location of the sample size of 13 for the plan when
the standard deviation is unknown.

Measures

Jacobson Nomograph for Operating Characteristics

The Jacobson nomograph shown in Figure 10.8 may be used to derive the OC curve for a
variables plan for proportion nonconforming. The procedure differs slightly between the case of
standard deviation known and that of standard deviation unknown. The method is as follows for a
plan specified by n and k.
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Standard deviation unknown

1. Locate the point (n,k).

2. Locate the proportion nonconforming p on the left fraction defective axis.

3. Intersection of a line through the two points with the right axis gives the probability of
acceptance.

4. The process may be reversed to give the proportion nonconforming associated with a given
probability of acceptance.

Standard deviation known

1. Locate the sample size, on the bottom sample size axis (i.e., where k¼ 0).

2. Draw a line through the sample size parallel with the right and left vertical axes.

3. Intersection of the line drawn with the appropriate curve for k gives the point (n,k) for the
known standard deviation case.

4. Follow the unknown standard deviation procedure from step 2.

It will be observed that the two lines drawn in Figure 10.9 may be regarded as representative of the
procedure for the unknown standard deviation plan n¼ 13, k¼ 1.44 or for the known standard
deviation plan n¼ 7, k¼ 1.44, respectively. They show the 10th and 95th percentage points of the
OC curve.

Calculation: s Known

When the standard deviation is known, calculation of OC curves for variables plans may be
performed using the normal distribution. Referring to Figure 10.2, which describes the X method,
we see that for any given proportion nonconforming p, the population mean m must be a fixed
distance zUs from the upper specification limit. Also, the distance from the population mean to the
acceptance limit A is zAs, where

zU¼ standard normal deviate for the distribution of individual measurements corresponding to
proportion nonconforming in the upper tail

zA¼ standard normal deviate for the distribution of individual measurements corresponding to
the acceptance limit A

As noted previously, k¼ zU� zA; so zA¼ zU� k.
To find the probability of acceptance, the probability of obtaining a mean below A must be

determined. But, means are distributed according to the distribution of sample means which is also
shown in Figure 10.2. To get the probability of acceptance, the distance between A and m must be
found in terms of the standard deviation of the distribution of sample means. Recall

sX ¼ s
ffiffiffi
n

p

so

ffiffiffi
n

p
sX ¼ s
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and the distance zA between m and A in terms of the standard deviation of individuals may be used to
obtain the distance in terms of the standard deviation of means since

zAs ¼ ffiffiffi
n

p
zA

s
ffiffiffi
n

p ¼ �zAsX

where the conventional bar denoting average is used to indicate that �zA is from the distribution of
sample means. We then have

�zA ¼ ffiffiffi
n

p
zA or �zA ¼ ffiffiffi

n
p

(zU � k)

Thus, for any given value of p, the probability of acceptance can be determined as follows for an
upper specification limit

1. Determine zU from p.

2. Obtain zA¼ zU� k.

3. Convert zA to the distribution of sample means as �zA ¼ ffiffiffi
n

p
zA.

4. The probability of a normal variate exceeding �zA is the probability of rejection. Its comple-
ment, the probability of a result less than �zA, is the probability of acceptance.

For a lower specification limit, this becomes

1. Determine zL from p.

2. Obtain zA¼ zLþ k.

3. Convert zA to the distribution of sample means as �zA ¼ ffiffiffi
n

p
zA.

4. The probability of a normal variate equal to or exceeding �zA is the probability of acceptance.
Its complement, the probability of a result less than �zA, is the probability of rejection.

For example, consider the plan n¼ 7, k¼ 1.44; Table 10.4 shows the computation of the probability
of acceptance and compares the results to the attributes plan n¼ 20, c¼ 1. A plot of both OC curves
was given in Figure 10.3.
TABLE 10.4: Calculation of probability of acceptance: n¼ 7, k¼ 1.44.

Proportion Nonconforming
Probability of
Acceptance

P zU zA¼ zU� k �zA ¼ ffiffiffi
n

p
zA Pr¼ (1�Pa) Pa¼ (1�Pr) n¼ 20, c¼ 1

.0075 2.43 0.99 2.62 .0044 .9956 .99

.018 2.10 0.66 1.75 .0401 .9599 .95

.027 1.93 0.49 1.30 .0968 .9032 .90

.048 1.66 0.22 0.58 .2810 .7190 .75

.083 1.39 �0.05 �0.13 .5517 .4483 .50

.129 1.13 �0.31 �0.82 .7939 .2061 .25

.181 0.91 �0.53 �1.40 .9192 .0808 .10

.216 0.78 �0.66 �1.75 .9599 .0401 .05

.289 0.56 �0.88 �2.33 .9901 .0099 .01
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Calculation: s Unknown

As suggested by Wallis (1950), the OC curve for an unknown standard deviation plan,
specified by k and ns, can be approximated by using the known standard deviation procedure
above with

n ¼ ns
1þ k2=2

or, using a slightly more accurate form of the Wallis (1947) approximation to relate the sample sizes
of known (ns) and unknown (ns) standard deviation plans

ns ¼ ns
1þ k2ns=2(ns � 1)ð Þ

So that, if z1�Pa
denotes the upper tail standard normal deviate corresponding to the probability of

rejection (1�Pa), Wallis (1947) gives the following relation:

zA ¼ zU � k ¼ z1�Pa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ns

þ k2

2(ns � 1)

s

Note that, the standard normal deviate corresponding to the probability of acceptance is

zPa
¼ �z1�Pa

When the standard deviation is unknown, exact calculation of the OC curve becomes less straight-
forward. The statistic (shown here for an upper specification limit)

t ¼ U � X

s

has a Student’s t-distribution only for 50% nonconforming. For all other values of proportion
nonconforming, the statistic is distributed by the noncentral t-distribution, the distribution involved
in calculating the OC curve when the standard deviation is unknown.

For a variate t which can be expressed as

t ¼ zþ d
ffiffiffiffi
w

p

where
z is the distributed standard normal (m¼ 0, s¼ 1)
w is the distributed x2=f with f degrees of freedom independent of z
d is a constant

The noncentral t-probability distribution function has been expressed by Resnikoff and Lieberman
(1957) as

P( f ,d, t0)¼ f !

2( f�1)=2G( f =2)
ffiffiffiffiffiffi
pf

p
ðt0

�1
e�(1=2)( f d2)=( fþt2) f

( f þ t2)

� �( fþ1)=2 ð1

0

v f

f !
e�(1=2) v�dt=

ffiffiffiffiffiffiffi
fþt2

p� �2
dv dt
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where
f is the degrees of freedom in t
d is the noncentrality parameter
t is the random variate

Resnikoff and Lieberman (1957) have extensively tabulated the noncentral t-distribution. A sample
page is shown as Figure 10.10. For a noncentrality parameter d ¼ ffiffiffiffiffiffiffiffiffiffiffi

f þ 1
p

Kp, they give values of
the distribution function

Pr(t=
ffiffiffi
f

p
� x)

tabulated by p and x, where
Kp¼ standard normal deviate exceeded with probability p
To use the noncentral t-distribution to obtain the probability of acceptance when the standard

deviation is unknown, the acceptance criterion may be expressed as

U � X

s
� k

ffiffiffi
n

p U � X

s

� �

� ffiffiffi
n

p
k

and

ffiffiffi
n

p
(U � m)

s
�

ffiffiffi
n

p
(X � m)

s

� �
s

s
� ffiffiffi

n
p

k

The left-hand side of the inequality is distributed noncentral t with

f ¼ n� 1

d ¼
ffiffiffi
n

p
(U � m)

s
¼ ffiffiffi

n
p

zU

so that the probability of acceptance is simply

Pa ¼ Pr(t �
ffiffiffi
n

p
k)

and since tables are for t=
ffiffiffi
f

p
we have*

Pa ¼ 1� Pr

t
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p �
ffiffiffiffiffiffiffiffiffiffiffi
n

n� 1

r

k

� �

¼ 1� Pr n� 1,
ffiffiffi
n

p
zU,

ffiffiffiffiffiffiffiffiffiffiffi
n

n� 1

r

k

� �

Hence, using the Resnikoff–Lieberman tables, proceed as follows to evaluate the operating
characteristics of an upper specification limit plan specified by n and k for proportion nonconform-
ing p.

* Note that this relation allows the Jacobson nomograph to be used in reverse to obtain approximate values for the noncentral
t-distribution by using n ¼ f þ 1; k ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1=n

p
; tp ¼ d=

ffiffiffiffiffiffiffiffiffiffiffi
f þ 1

p
; 1� P( f , d, t) ¼ Pa:
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12

x 0.2500 0.1500 0.1000 0.0650 0.0400 0.0250 0.0100 0.0040 0.0025 0.0010

–0.50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
–0.45 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
–0.40 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
–0.35 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
–0.30 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

–0.25 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
–0.20 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
–0.15 0.0017 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
–0.10 0.0029 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
–0.05 0.0047 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.00 0.0075 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.05 0.0119 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.10 0.0184 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.15 0.0279 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.20 0.0413 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.25 0.0594 0.0022 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.30 0.0832 0.0039 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.35 0.1134 0.0067 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.40 0.1503 0.0110 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.45 0.1939 0.0177 0.0016 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.50 0.2435 0.0273 0.0030 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.55 0.2983 0.0407 0.0052 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.60 0.3567 0.0587 0.0088 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.65 0.4173 0.0820 0.0143 0.0016 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
0.70 0.4784 0.1109 0.0223 0.0030 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

0.75 0.5383 0.1456 0.0336 0.0052 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000
0.80 0.5958 0.1858 0.0488 0.0087 0.0010 0.0001 0.0000 0.0000 0.0000 0.0000
0.85 0.6496 0.2310 0.0685 0.0141 0.0018 0.0002 0.0000 0.0000 0.0000 0.0000
0.90 0.6992 0.2803 0.0930 0.0217 0.0032 0.0004 0.0000 0.0000 0.0000 0.0000
0.95 0.7439 0.3326 0.1227 0.0323 0.0055 0.0008 0.0000 0.0000 0.0000 0.0000

1.00 0.7837 0.3866 0.1572 0.0464 0.0091 0.0015 0.0000 0.0000 0.0000 0.0000
1.05 0.8185 0.4412 0.1963 0.0644 0.0143 0.0028 0.0001 0.0000 0.0000 0.0000
1.10 0.8487 0.4952 0.2394 0.0866 0.0217 0.0047 0.0002 0.0000 0.0000 0.0000
1.15 0.8745 0.5476 0.2856 0.1133 0.0317 0.0077 0.0003 0.0000 0.0000 0.0000
1.20 0.8964 0.5976 0.3341 0.1442 0.0447 0.0120 0.0006 0.0000 0.0000 0.0000

1.25 0.9148 0.6445 0.3839 0.1792 0.0612 0.0182 0.0012 0.0001 0.0000 0.0000
1.30 0.9302 0.6879 0.4341 0.2177 0.0813 0.0265 0.0021 0.0001 0.0000 0.0000
1.35 0.9429 0.7276 0.4836 0.2593 0.1052 0.0373 0.0035 0.0002 0.0001 0.0000
1.40 0.9534 0.7635 0.5319 0.3031 0.1329 0.0510 0.0056 0.0004 0.0001 0.0000
1.45 0.9621 0.7956 0.5781 0.3484 0.1641 0.0679 0.0087 0.0008 0.0002 0.0000

1.50 0.9691 0.8240 0.6220 0.3944 0.1984 0.0881 0.0131 0.0014 0.0004 0.0000
1.55 0.9749 0.8491 0.6629 0.4405 0.2356 0.1115 0.0190 0.0024 0.0007 0.0001
1.60 0.9796 0.8709 0.7009 0.4859 0.2749 0.1382 0.0267 0.0038 0.0013 0.0001
1.65 0.9834 0.8900 0.7357 0.5300 0.3159 0.1679 0.0365 0.0059 0.0021 0.0003
1.70 0.9865 0.9064 0.7674 0.5725 0.3579 0.2004 0.0486 0.0089 0.0034 0.0005

1.75 0.9890 0.9205 0.7959 0.6129 0.4003 0.2352 0.0633 0.0129 0.0052 0.0008
1.80 0.9911 0.9326 0.8215 0.6509 0.4426 0.2719 0.0805 0.0182 0.0078 0.0013
1.85 0.9927 0.9429 0.8443 0.6864 0.4842 0.3099 0.1005 0.0250 0.0113 0.0021
1.90 0.9941 0.9517 0.8645 0.7192 0.5248 0.3489 0.1230 0.0335 0.0159 0.0033
1.95 0.9952 0.9592 0.8824 0.7495 0.5639 0.3884 0.1480 0.0440 0.0219 0.0050

2.00 0.9961 0.9655 0.8980 0.7771 0.6013 0.4278 0.1753 0.0564 0.0293 0.0073
2.05 0.9968 0.9709 0.9117 0.8021 0.6367 0.4667 0.2047 0.0711 0.0384 0.0104
2.10 0.9974 0.9754 0.9237 0.8248 0.6701 0.5049 0.2359 0.0879 0.0493 0.0144
2.15 0.9978 0.9792 0.9341 0.8452 0.7013 0.5419 0.2685 0.1069 0.0622 0.0194
2.20 0.9982 0.9825 0.9431 0.8634 0.7302 0.5776 0.3022 0.1280 0.0770 0.0258

2.25 0.9985 0.9852 0.9510 0.8797 0.7569 0.6116 0.3367 0.1511 0.0939 0.0335
2.30 0.9988 0.9875 0.9577 0.8942 0.7815 0.6439 0.3716 0.1761 0.1127 0.0427
2.35 0.9990 0.9894 0.9636 0.9071 0.8040 0.6744 0.4066 0.2028 0.1335 0.0535
2.40 0.9992 0.9910 0.9686 0.9184 0.8245 0.7030 0.4414 0.2310 0.1561 0.0661
2.45 0.9993 0.9924 0.9730 0.9285 0.8431 0.7297 0.4756 0.2603 0.1804 0.0803

DEGREES OF FREEDOM  
p

FIGURE 10.10: Resnikoff–Lieberman table. (Reprinted from Resnikoff, G.J. and Lieberman,
G.J., Tables of the Non-Central t-Distribution, Standard University Press, Stanford, CA, 1957, 327.
With permission.)
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1. Degrees of freedom are f¼ n� 1; select the table of the probability integral with f degrees of
freedom.

2. Compute
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=(n� 1)

p
k; this is x in the table.

3. For the value of p given and x calculated, obtain the probability of rejection P(R) from the
table.

4. The complement is the probability of acceptance Pa¼ 1�P(R).

For example, consider the plan n¼ 13, k¼ 1.44 to be evaluated at p ¼ .025.

1. f¼ 13� 1¼ 12

2. x ¼
ffiffiffiffi
13
12

q
(1:44) ¼ 1:50

3. P(R) ¼ .0881

4. Pa ¼ .9119

This value may be obtained from Figure 10.10.
For reasons of symmetry, evaluation of the OC curve for a lower specification limit plan is

analogous. It will be seen that the specification limit (upper or lower) does not appear in the steps for
determining the probability of acceptance. The procedure will work for either.

Double Specification Limits

Evaluation of the probability of acceptance in the two-sided specification limit case is analogous
to the single specification limit procedure when the standard deviation is known. This amounts to an
evaluation of the probability of rejection and the proportion nonconforming outside each of the
specification limits over various fixed positions of the population mean. Their sum gives values of
p and Pa, which may be plotted as the OC curve.

Consider the earlier double specification limit example in which U¼ 100 V, L¼ 90 V, and
suppose s¼ 2.0. The plan n¼ 7, k¼ 1.44 is to be applied to both specification limits. The double
specification limit analog to Table 10.3 would appear as does Table 10.5, where pU and pL simply
represent the proportion nonconforming outside U and L, respectively. The OC curve would appear
as Figure 10.11.

When the standard deviation is unknown complications in deriving the OC curve arise. The curve
becomes a narrow band of possible values for probability of acceptance. A special procedure has
been developed, however, utilizing a minimum variance unbiased estimate of the proportion
nonconforming in the lot. Called the M method, it is the only procedure recommended by MIL-
STD-414 for use with double specification limits. The procedure and the corresponding operating
characteristics will be discussed later in this chapter.

Measures of Performance

In addition to the probability of acceptance, there are other measures of performance of variables
plans for proportion nonconforming, such as average outgoing quality (AOQ) and average total
inspection (ATI), since these measures are functions based on the OC curve, the formulas for AOQ
and ATI remain the same as in attributes inspection as shown in Table 5.1,

AOQ ’ pPa
� 2008 by Taylor & Francis Group, LLC.



TABLE 10.5: Calculation of probability of acceptance: double specification limits (known standard deviation s¼ 2; n¼ 7, k¼ 1.44).

Upper Specification Limit Lower Specification Limit

m zU ¼ U�m
s pU zA¼ zU� k �z ¼ ffiffiffiffiffi

nz
p

A P(R) zL ¼ m�L
s pL zA¼ zL� k �z ¼ ffiffiffiffiffi

nz
p

A P(R) p P(R) P(A)

90 5.0 0 3.56 9.42 0 0 .5000 �1.44 �3.81 .9999 .5000 .9999 .0001
91 4.5 0 3.06 8.10 0 0.5 .3085 �0.94 �2.49 .9936 .3085 .9936 .0064
92 4.0 0 2.56 6.77 0 1.0 .1587 �0.44 �1.16 .8770 .1587 .8770 .1230
93 3.5 .0002 2.06 5.45 0 1.5 .0668 0.06 0.16 .4364 .0670 .4761 .5239
94 3.0 .0013 1.56 4.13 0 2.0 .0228 0.56 1.48 .0694 .0241 .0694 .9306
95 2.5 .0062 1.06 2.80 .0026 2.5 .0062 1.06 2.80 .0026 .0124 .0052 .9948
96 2.0 .0228 0.56 1.48 .0694 3.0 .0013 1.56 4.13 0 .0241 .0694 .9306
97 1.5 .0668 0.06 0.16 .4364 3.5 .0002 2.06 5.45 0 .0670 .4761 .5239
98 1.0 .1587 �0.44 �1.16 .8770 4.0 0 2.56 6.77 0 .1587 .8770 .1230
99 0.5 .3085 �0.94 �2.49 .9936 4.5 0 3.06 8.10 0 .3085 .9936 .0064
100 0 .5000 �1.44 �3.81 .9999 5.0 0 3.56 9.42 0 .5000 .9999 .0001
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0.02 0.07 0.16 0.31 0.50
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FIGURE 10.11: OC curve: double specification limits, s known.
and

ATI ¼ nPa þ N(1� Pa)

AOQL must, however, be evaluated from the AOQ curve. A crude approach to find the AOQL of a
variables plan would be to use that of a matching attributes single-sampling plan. The match must
necessarily be very good in the region of the AOQL. Because of the difference in the inherent shape
of the OC curves of variables and attributes plans however such as approach would have to be
regarded as only a very rough approximation.

As an example, consider the known standard deviation plan n¼ 7, k¼ 1.44. For p¼ .18, we have
Pa¼ .08. Hence, for lots of size N¼ 120

AOQ ’ pPa ¼ :18(:08) ¼ :014

while

ATI ¼ nPa þ N(1� Pa)

¼ 7(:08)þ 120(:92) ¼ 110:96

Further, since the plan is matched to the attributes plan n¼ 20, c¼ 1, a crude measure of the AOQL
would be that of the attributes plan PM¼ .036. Actually, calculation of AOQ over the range of Table
10.4 would indicate that this is not far from the actual value.
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M Method

Occasionally, it is desirable to base lot acceptance on estimates of the proportion nonconforming
in the lot. This provides those administering the inspection with ancillary information which is
meaningful to those not familiar with statistical methods. An estimate of this sort can be made under
attributes inspection simply by dividing the number of nonconformances or defectives d found by
the sample size n, to obtain an unbiased estimate of the proportion nonconforming in the lot. This
estimate would then be compared to the constant c=n to determine lot acceptance. When variables
procedures are employed, more sophisticated methods of estimation must be used. Such a procedure
has been developed by Lieberman and Resnikoff (1955), which involves the use of a uniform
minimum variance unbiased estimate of the lot proportion nonconforming p in the acceptance
sampling criteria. Using X and s (or s), a standard normal deviate Q is obtained which is then
adjusted and employed to estimate p. A comparison of the equivalent k andM methods for variables
and attributes is shown in Figure 10.12.

The procedure for application of the M method when the standard deviation is known is given in
Table 10.6.

When the standard deviation is known, M may be found as
M ¼
ð1

k
ffiffiffiffiffiffiffiffiffiffiffiffi
n=(n�1)

p
1
ffiffiffiffiffiffi
2p

p e�t2=2 dt

TABLE 10.6: M method standard deviation known (given n, M).

Lower Specification Limit Upper Specification Limit

1. Select a random sample of size n 1. Select a random sample of size n
2. Compute X 2. Compute X
3. Compute 3. Compute

QL ¼ �X�L
s

ffiffiffiffiffiffi
n

n�1

p
QU ¼ U��X

s

ffiffiffiffiffiffi
n

n�1

p

and obtain and obtain

p̂L ¼ Ð1QL

1ffiffiffiffi
2p

p e�
t2
2 dt p̂U ¼ Ð1QU

1ffiffiffiffi
2p

p e�
t2
2 dt

from tables. from tables.
This gives a minimum variance
unbiased estimate of p.

This gives a minimum variance
unbiased estimate of p.

4. If 4. If
p̂L < M accept

p̂L > M reject

p̂U < M accept

p̂U > M reject

Attributes

k Method d ≤ c

≤p = Q == Md
n

c
n

z = ≥ kσ
U – X–

M Method

Variables

⇒ p ≤ Mσ
U – X–

FIGURE 10.12: Equivalent criteria for acceptance (sample of n). (From Schilling, E.G., Qual.
Progr., 7(5), 19, 1974b. With permission.)
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so that M is simply the upper normal tail for zM ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=(n� 1)

p
. Note also, that the estimated

proportion nonconforming is simply the upper normal tail area corresponding to QU or QL.
When the standard deviation is unknown, the noncentral t-distribution is involved in the estima-

tion procedure, which leads to incorporation of values from the incomplete beta function in the
estimate of p. The incomplete beta function is defined as

Ix(a,b) ¼ G(aþ b)

G(a)G(b)

ðx

0

va�1(1� v)b�1 dv
0 � x � 1
a > 0
b > 0

(

and may be evaluated using the computer or from special tables, such as those by Pearson (1968) or,
in special cases by its relation to the binomial distribution

Ix(a,b) ¼ 1� Fbin(a� 1jp ¼ x, n ¼ aþ b� 1)

or

Fbin(yjp,n) ¼ Ix¼p(a ¼ yþ 1, b ¼ n� y)

A page from the Pearson (1968) tables for the cumulative function Ix (p,q) is shown in Figure 10.13.
For example, we have from the table

I:31(14,14) ¼ :0191640

When the standard deviation is unknown, the basic procedure for the M method is the same as that
shown for s known in Table 10.6 using s in the denominator of Q so that

QU ¼ U � X

s
, QL ¼ X � L

s

The estimation procedure then becomes

p̂U ¼ IX(a,b)

where

x ¼ max 0 ,
1
2
� 1
2
QU

ffiffiffi
n

p
n� 1

� �

a ¼ b ¼ n

2
� 1

and

p̂L ¼ IX(a,b)

where

x ¼ max 0,
1
2
� 1
2
QL

ffiffiffi
n

p
n� 1

� �

a ¼ b ¼ n

2
� 1
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0.10
x

p =

B(p,q) =

14

0.3561 0481 × 1/106

x = 0.10–0.70
q = 14

p = 14–19

15

0.1780 5241 × 1/106

16

0.9209 6072 × 1/105

17

0.4911 7905 × 1/105

18

0.2693 5625 × 1/105

19

0.1515 1289 × 1/105

0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20

0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.30

0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.40

0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.50

0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59
0.60

0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69
0.70

.0000 001

.0000 004

.0000 009

.0000 023

.0000 053

.0000 114

.0000 232

.0000 451

.0000 840

.0001 505

.0002 603

.0004 357

.0007 079

.0011 186

.0017 227

.0025 906

.0038 098

.0054 872

.0077 498

.0107 453

.0146 415

.0196 246

.0258 962

.0336 688

.0431 604

.0545 876

.0681 578

.0840 603

.1024 577

.1234 768

.1472 002

.1736 584

.2028 244

.2346 087

.2688 580

.3053 548

.3438 207

.3839 219

.4252 770

.4674 668

.5100 463

.5525 576

.5945 434

.6355 607

.6751 941

.7130 675

.7488 543

.7822 851

.8131 542

.8413 213

.8667 127

.8893 184

.9091 878

.9264 229

.9411 698

.9536 104

.9639 519

.9724 173

.9792 367

.0000 001

.0000 002

.0000 006

.0000 015

.0000 035

.0000 075

.0000 153

.0000 300

.0000 565

.0001 022

.0001 786

.0003 024

.0004 972

.0007 954

.0012 406

.0018 895

.0028 145

.0041 060

.0058 736

.0082 480

.0113 810

.0154 452

.0206 321

.0271 494

.0352 165

.0450 585

.0568 991

.0709 528

.0874 151

.1064 535

.1281 977

.1527 306

.1800 799

.2102 116

.2430 256

.2783 531

.3159 570

.3555 356

.3967 279

.4391 231

.4822 716

.5256 976

.5689 143

.6114 385

.6528 057

.6925 850

.7303 914

.7658 968

.7988 385

.8290 244

.8563 352

.8807 239

.9022 118

.9208 825

.9368 734

.9503 658

.9615 740

.9707 346

.0000 001

.0000 002

.0000 004

.0000 010

.0000 023

.0000 051

.0000 105

.0000 207

.0000 391

.0000 714

.0001 261

.0002 157

.0003 585

.0005 799

.0009 149

.0014 097

.0021 247

.0031 364

.0045 398

.0064 503

.0090 047

.0123 619

.0167 023

.0222 258

.0291 489

.0376 996

.0481 117

.0606 167

.0754 351

.0927 668

.1127 809

.1356 048

.1613 152

.1899 290

.2213 963

.2555 957

.2923 324

.3313 385

.3722 780

.4147 531

.4583 149

.5024 763

.5467 265

.5905 478

.6334 320

.6748 975

.7145 044

.7518 685

.7866 721

.8186 725

.8477 057

.8736 881

.8966 138

.9165 484

.9336 209

.9480 132

.9599 475

.0000 001

.0000 003

.0000 007

.0000 016

.0000 036

.0000 074

.0000 146

.0000 279

.0000 514

.0000 915

.0001 580

.0002 651

.0004 333

.0006 907

.0010 758

.0016 390

.0024 458

.0035 789

.0051 404

.0072 539

.0100 652

.0137 436

.0184 800

.0244 858

.0319 886

.0412 272

.0524 450

.0658 810

.0817 611

.1002 864

.1216 229

.1458 901

.1731 506

.2034 010

.2365 648

.2724 881

.3109 378

.3516 034

.3941 031

.4379 922

.4827 758

.5279 236

.5728 872

.6171 186

.6600 889

.7013 066

.7403 338

.7768 004

.8104 145

.8409 698

.8683 479

.8925 170

.9135 271

.9315 008

.9466 222

.0000 001

.0000 002

.0000 005

.0000 012

.0000 026

.0000 054

.0000 107

.0000 205

.0000 380

.0000 682

.0001 188

.0002 011

.0003 317

.0005 338

.0008 395

.0012 918

.0019 470

.0028 777

.0041 748

.0059 503

.0083 385

.0114 979

.0156 106

.0208 816

.0275 361

.0358 154

.0459 706

.0582 549

.0729 146

.0901 777

.1102 430

.1332 674

.1593 544

.1885 428

.2207 979

.2560 042

.2939 618

.3343 861

.3769 115

.4210 989

.4664 475

.5124 096

.5584 088

.6038 596

.6481 886

.6908 548

.7313 691

.7693 114

.8043 435

.8362 190

.8647 875

.8899 950

.9118 786

.9305 579

.0000 001

.0000 002

.0000 006

.0000 015

.0000 036

.0000 083

.0000 179

.0000 362

.0000 699

.0001 239

.0002 285

.0003 905

.0006 454

.0010 346

.0016 129

.0024 500

.0036 333

.0052 692

.0074 840

.0104 244

.0142 565

.0191 640

.0253 448

.0330 071

.0423 632

.0536 230

.0669 863

.0826 346

.1007 226

.1213 695

.1446 518

.1705 958

.1991 730

.2302 954

.2638 151

.2995 240

.3371 573

.3763 986

.4168 872

.4582 276

.5000 000

.5417 724

.5831 128

.6236 014

.6628 427

.7004 760

.7361 849

.7697 046

.8008 270

.8294 042

.8553 482

.8786 305

.8992 774

.9173 654

.9330 137

.9463 770

.9576 368

.9669 929

.9746 552

.9808 360

.9857 435

FIGURE 10.13: Tables of the incomplete b function. (Reproduced from Pearson, E.S., Tables
of the Incomplete Beta-Function, 2nd ed., Cambridge University Press, London, 1968, 296. With
permission.)
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For single specification limits, the M and k methods can be shown to be equivalent for a given
sample size with

k ¼ (n� 1)(1� 2BM)
ffiffiffi
n

p

BM ¼ 1
2

1� k

ffiffiffi
n

p
n� 1

� �

where BM is defined such that

IBM

n� 2
2

,
n� 2
2

� �

¼ M

100

for M expressed in percent.
The M method is unique for double specification limits since the sum of the estimates of p above

and below specification limits gives the total estimated proportion nonconforming, that is

p̂L þ p̂U ¼ p̂

This total estimate p̂ can be compared toM to determine the acceptance of the lot. Under the uniform
minimum variance unbiased estimation technique, borders for an acceptance polygon can be found
by finding a k equivalent to M and using the formulas for the k method. The acceptance region itself
will be found to be slightly different than that given by Wallis and is defined by the points (X0,s0)
resulting from the simultaneous solution of

X ¼
U 1� 2Bp00

	 

� L 2Bp

00
0
� 1

	 


2 1� Bp00 � Bp
00
0

	 


s ¼ U � L

2 1� Bp00 � Bp
00
0

	 


ffiffiffi
n

p
n� 1

� �

where

M ¼ p** ¼ p00 þ p0
00

When the k method is to be used with double specification limits without the benefit of a polygon, a
more refined estimate of the MSD may be obtained using the method of Lieberman and Resnikoff
(1955). We have, for a given value of M,

MSD ¼
ffiffiffi
n

p
2(1� 2BM=2)(n� 1)

(U � L)

To obtain BM=2, a value of x from the incomplete b distribution must be found such that

IX
n� 2
2

,
n� 2
2

� �

¼ M

2
1

100

� �

Then BM=2¼ x and the above formula for MSD can be evaluated. This is the method used in
MIL-STD-414.

As an example to show the relation of the k and M methods, consider the plan n¼ 30, k¼ 2.00,
which is listed in MIL-STD-414 as the Code J, 0.65 AQL normal plan. Using the relation given
above, M is such that
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BM ¼ 1
2

1� k

ffiffiffi
n

p
n� 1

� �

¼ 1
2

1� (2:00)

ffiffiffiffiffi
30

p

29

� �

¼ :311

It is then necessary to evaluate the incomplete b distribution to obtain the value of M since

IBM

n� 2
2

,
n� 2
2

� �

¼ M

100

I:311(14,14) ¼ :0197

by interpolation from Figure 10.13. Using the binomial relation

I:311(14,14) ¼ 1� Fbin(13jp ¼ :311, n ¼ 27)

¼ 1� :9803 ¼ :0197

by linear interpolation in the Department of Commerce (1950) binomial tables. So

M

100
¼ :0197 M ¼ 1:97

MIL-STD-414 shows M¼ 1.98. The difference is due to rounding.
Furthermore, the maximum standard deviation associated with this plan is

MSD ¼
ffiffiffi
n

p
2(1� 2BM=2)(n� 1)

(U � L)

For M¼ 1.98, it is necessary to find IX(14,14). By linear interpolation from Figure 10.13, or using
the binomial relation

I:288(14,14) ’ :0099

hence

MSD ¼
ffiffiffiffiffi
30

p

2(1� 2(:288))(29)
(U � L) ¼ :223(U � L)

and MIL-STD-414 gives this value for the MSD of this plan.

Plans Based on Sample Range

In practice, it is often desirable to substitute the sample range for the sample standard deviation in
applying variables plans for proportion nonconforming or process parameter. The range has several
desirable properties and is used extensively in quality control. Among them are

1. Commonly understood

2. Quick to compute
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3. Easy to explain

4. Easy to verify

5. Easy and inexpensive to compute

The chief disadvantage of the range is the loss of efficiency resulting from its use. This can be
compensated by increasing the sample size. Use of the average range of m random subgroups of size
nR taken from the original sample also improves the efficiency somewhat. The d2* factor developed
by Duncan (1955) can be used to estimate the standard deviation as

ŝ ¼ R

d2*

This estimate has the same bias as s. Accordingly the following procedure can be used if the average
range is to be substituted for s in a given variables sampling plan which requires a sample size of ns.
Normality of the underlying observations is assumed.

1. Select the subgroup size to be used (subgroups of size 5 are often used, although 8 is
considered to be optimum).

2. Determine the equivalent sample size for the range plan. If the original plan using s had
sample size ns, the number of subgroups m of size nR in the range plan will be approximately

m ’ ns � 1
:9(nR � 1)

This value of m is conservative when rounded upward.

3. Substitute R=d2* for s in the original sampling plan, where

d2* ’ d2 1þ 0:2778
m(nR � 1)

� �

and d2 is the standard control chart factor for subgroups of size nR.

4. Use the original sampling plan as given with the decision criteria, using the statistic and
sample size as modified above.

The above approximation to Duncan’s d2* factor from Schilling (1973) has been found to be quite
sufficient for practical purposes. The formula for m uses Ott’s (1967) approximation

nR ¼ :9m(nR � 1)

for degrees of freedom of the range, nR. More accurate values for d2* and the degrees of freedom
associated with the average range estimate of s as given by Nelson (1975) will be found in Appendix
Table T10.1. The values of the constant difference (c.d.) found at the bottom of Nelson’s table can
be used to determine degrees of freedom for numbers of samples not listed as

n0 ¼ n þ (c:d:)(k0 � k)

where degrees of freedom n0 are required for k0 samples of n, but only n for k samples of n is listed.
Thus, using k¼ 20, the degrees of freedom for 25 samples of 5 are

n0 ¼ 72:7þ 3:62(25� 20) ¼ 90:8 � 91:
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Ott’s approximation gives

nR ¼ :9(25)(5� 1) ¼ 90

Example
Consider the following example taken from MIL-STD-414.
The specifications for electrical resistance of a certain electrical component is 650.0� 30V. A lot

of 100 items is submitted for inspection . . . with AQL¼ 2.5%. . . . Suppose the values of sample
resistance in the order reading from left to right are as follows:

643, 651, 619, 627, 658, 670, 673, 641, 638, 650

For these data

X ¼ 647

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S(X � X)2

n� 1

s

¼ 17:22

Let us assume that standard deviation was unknown and it was desired to institute a plan based on
average range. The first step in determining an average range plan would be to develop the
appropriate plan for variability unknown using the sample standard deviation. For this example,
take p2¼ .215. Then, for the standard deviation plan

p1 ¼ :025, a ¼ :05

p2 ¼ :215, b ¼ :10

so

k ¼ zp2za þ zp1zb
za þ zb

¼ 0:79(1:645)þ 1:96(1:282)
1:645þ 1:282

¼ 1:30

ns ¼ za þ zb
zp1 � zp2

� �2

1þ k2

2

� �

¼ 1:645þ 1:282
1:96� 0:79

� �2

1þ 1:302

2

� �

¼ 11:5 � 12

and to find MSD

a. p** corresponding to zp* ¼ k ¼ 1:30 is p**¼ .0968

b. zp** corresponding to p**=2¼ .0484 is zp** ¼ 1:66

c. so MSD ’ (U � L)=2zp** ¼ (680� 620)=(2(1:66)) ¼ 18:07

In applying this plan, for s¼ 17.22 and X¼ 647 as indicated in the example

1. s¼ 17.22 � MSD¼ 18.07

2. TU¼ (U�X)=s¼ (680� 647)=17.22¼ 1.92> k¼ 1.30

3. TL¼ (X� L)=s¼ (647� 620)=17.22¼ 1.57> k¼ 1.30
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and since all three acceptance criteria are met, the lot would be accepted. To convert the above plan
for use of the average range

1. Use subgroup size nR¼ 5 (arbitrarily).

2. Number of subgroups m:

m ¼ ns � 1
:9(nR � 1)

¼ 10� 1
:9(5� 1)

¼ 9
3:6

¼ 2:5 � 3

3. Substitute ~R=d2* for s in above acceptance criteria, where

d2* ’ d2 1þ :2778
m(nR � 1)

� �

¼ 2:326 1þ :2778
3(5� 1)

� �

¼ 2:38

Note that Nelson’s table (Appendix Table T10.1) gives d2* ¼ 2:38 with 11.1 degrees of
freedom in contrast to the 9 degrees of freedom that would have been obtained under the
standard deviation plan with five fewer observations.

The average range plan then requires a sample of three random subgroups of size 5 each. Assume
the following values are obtained:

643 670 651
651 673 627
619 641 670
627 638 641
658 650 650

Then

X ¼ 647:27

R ¼ 39þ 35þ 43
3

¼ 39

so the acceptance criteria become

1.
R

d2*
� MSD

R � d2* MSD ¼ MAR

39 � 2:38(18:07) ¼ 43:0

where MAR is the maximum allowable range which serves the same purpose as the maximum
standard deviation.

2. TU ¼ U � X

R=d2*
¼ 680� 647:27

39=2:38
¼ 2:00 > k ¼ 1:30

3. TL ¼ X � L

R=d2*
¼ 647:27� 620

39=2:38
¼ 1:66 > k ¼ 1:30

and the lot is accepted.
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Many production situations demand the simplicity and utility of the use of the range. Even hand
calculators that can calculate s directly will not supplant the intuitive understanding and familiarity,
which operators and inspectors have for the range as a measure of spread. It is important that users
of acceptance sampling techniques have an understanding of the basic approach. The range can
contribute much in this regard.

Double Sampling by Variables

As in the case of attributes sampling plans, savings in average sample size can be achieved by
using double-sampling plans. Indications are that a reduction in average sample number to about
80% of a single-sampling unknown standard deviation plan is possible for single sample sizes
greater than 25. Such plans are presented by Bowker and Goode (1952) and follow the same
procedure as in attributes double sampling with variables acceptance criteria in place of the familiar
first and second sample acceptance and rejection numbers.

A variables double-sampling plan is specified for the case of standard deviation unknown by

n1¼ first sample size
n2¼ second sample size
ka¼ first sample acceptance constant
kr¼ first sample rejection constant
kt¼ second sample acceptance constant

Primes are added to the acceptance constants to give k0a, k
0
r, and k0t for use when the standard

deviation is known.
To apply a double-sampling plan to a single specification limit

1. Draw the first sample of n1 and calculate X1 and s1 from the data.

2. Compute

TU1
¼ U � X1

s1

for an upper specification limit, and

TL1 ¼
X1 � L

s1

for a lower specification limit.

3. Test first sample

TU1 � ka or TL1 � ka accept

TU1 � kr or TL1 � kr reject

kr < TU1 < ka or kr < TL1 < ka resample

4. Draw the second sample of n2 from the lot. Combine the data with that from the first sample to
obtain the total sample. Calculate
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Xt ¼
P

X1 þ
P

X2

n1 þ n2

st ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n1 þ n2)

P
X2
1 þ

P
X2
2

� �� P
X1 þ

P
X2ð Þ2

(n1 þ n2)(n1 þ n2 � 1)

s

5. Compute

TUt
¼ U � Xt

st

for an upper specification limit, and

TLt
¼ Xt � L

st

for a lower specification limit.

6. Test combined total sample

TUt
� kt or TLt

� kt accept

TUt
< kt or TLt

< kt reject

When the standard deviation is known, the procedure is the same with s1 and st replaced by s. In the
case of double specification limits, test against both specification limits as above rejecting if
indicated by any of the tests. In addition, calculate MSD values from kr and kt, respectively, using
the method of Wallis to obtain MSD1 and MSDt. Reject if s1>MSD1 or st>MSDt.

Bowker and Goode (1952) have tabulated double-sampling plans for standard deviation known and
unknown. They also give information on the operating characteristics and AOQL of the plans. Note that
in their tabulation, Bowker and Goode (1952) define AQL to be the 95th percentile of the OC curve.

The following is an example of application given by Bowker and Goode (1952) in presenting
their double-sampling plans. A manufacturer purchases stud bolts which are to have a minimum
tensile strength of 125,000 lb.=in.2. The plan

n1 ¼ 8 n2 ¼ 16

ka ¼ 3:041 kr ¼ 1:344 kt ¼ 2:245

is to be used with standard deviation unknown. The measurements for a first and second sample are
shown in Table 10.7. Applying the plan

1. X1¼ 129062 s1¼ 1522

2. TL1¼
129062� 125000

1522
¼ 2:67

3. 2.67< ka¼ 3.041 cannot accept

2.67> kr¼ 1.344 cannot reject

Must resample

4. Xt¼ 129688 st¼ 1647

5. TLt
¼ 129688� 125000

1647
¼ 2:85

6. 2.85> kt¼ 2.245 accept
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TABLE 10.7: Tensile strength of stud bolts.

Item
Ultimate Strength

(lb.=in.2) Item
Ultimate Strength

(lb.=in.2)

First sample Second sample
1 129,500 9 129,500
2 131,000 10 131,000
3 128,500 11 129,500
4 126,500 12 128,000
5 130,000 13 129,000
6 130,500 14 127,000
7 127,500 15 132,500
8 129,000 16 130,500

17 129,000
18 130,000
19 133,000
20 129,000
21 131,500
22 130,000
23 132,000
24 128,500

Source: Reproduced from Bowker, A.H. and Goode, H.P., Sampling Inspection by
Variables, McGraw-Hill, New York, 1952, 95. With permission.
Sommers (1981) has obtained two-point double-sampling variables plans, which provide minimum
average sample number when the proportion nonconforming is at the PQL. The plans are given in
Appendix Table T10.2 and cover the values of p1 and p2 for a¼ .05 and b¼ .10 which were tabulated
by the Statistical Research Group, Columbia University (1947). The plans presented are for n1¼ n2 and
kt¼ kr; hence only n1, ka, and kr are shown. Sample sizes are given as ns and ns for known and
unknown standard deviation, respectively. Average sample numbers are represented in a similar
manner. For known standard deviation plans, k0a ¼ ka and k0t ¼ k0r ¼ kr. Given these constraints,
Sommers used an adaptation of the Wallis approximation together with an iterative procedure to
minimize ASN at the specified p1. Appendix Table T10.2 also presents a set of matched single-
sampling plans for each p1 and p2. For example, when p1¼ .01, p2¼ .05, a¼ .05, and b¼ .10.

Known standard deviation: n1¼ 13, n2¼ 13, k0a ¼ 2:09, and k0r ¼ k0r ¼ 1:87

Unknown standard deviation: n1¼ 36, n2¼ 36, ka¼ 2.09, and kr¼ kt¼ 1.87

The average sample numbers for these plans are 14.9 and 41.5 for known and unknown standard
deviation, respectively. The matched single-sampling plans have sample sizes 19 and 54. This is
indicative of the type of average sample size reduction possible through double-sampling variables
plans.

Tolerance Intervals and Variables Plans for Percent Nonconforming

The use of tolerance intervals in attributes sampling was discussed earlier. Tolerance intervals
constructed from variables data can be used in a similar way as a medium for lot acceptance and
reliability assessment.
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The form in which reliability specifications are written, i.e., requirements of p reliability with g
confidence, fosters the use of tolerance intervals in this regard. This is natural since a tolerance
interval guarantees that at least a stated proportion p of the population is contained within the limits
of the interval with l confidence. Therefore, a tolerance interval, constructed from the data, which is
entirely within the specification limits shows that the requirements have been met with the
corresponding confidence. A tolerance interval which overlaps the specification limits is evidence
that the requirements have not been met, provided

a. The p and g used are reasonably exact (not gross inequalities).

b. Sample size has been chosen to take the PR into account.

Unless these conditions are checked, judgment should be withheld as to whether the lot should
be rejected.

As shown earlier, specifications in terms of reliability can be converted into the usual quality
control notation through the relations

p ¼ 1� p, g ¼ 1� Pa

Thus, the tolerance interval approach has found application in acceptance sampling as well as
reliability.

We shall be concerned here with tolerance intervals on measurements. An underlying normal
distribution is assumed. It should be pointed out that when all population parameters are known, a
tolerance interval having g¼ 1 can be obtained from the normal distribution itself. For example, a
resistor having m¼ 10 V and s¼ 1 V will have 95% of the population within

m� 1:96 s

or

8:04 to 11:96 V

This tolerance interval is constructed with 100% confidence, so that if the specification limits are
8.0–12.0 V and a reliability of 95% is required, the product should be accepted. This is true even if
less confidence, say g¼ 90% was originally specified. Specification of a confidence value always
means at least the stated amount for lot acceptance.

When population parameters are unknown, 100% confidence can rarely be achieved short of
100% inspection. Even then we cannot often be 100% confident of the inspection procedure.
Estimates must be substituted for population parameters, confidence levels set, and more sophisti-
cated procedures, often based on the noncentral t-distribution, employed. When parameters are
unknown, a typical one-sided variables tolerance interval is of the form

X þ ks

for an upper tolerance limit, or

X � ks

for a lower tolerance limit. A two-sided interval may be expressed as

X � ks
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It will be recalled that the acceptance criteria for the k method in the variables procedure were
precisely

X þ ks < U

or

X � ks > L

for one-sided plans, with corresponding criteria for the two-sided case.
An extensive set of tables of tolerance limit factors and associated criteria has been published by

Odeh and Owen (1980). The resulting tabulation is useful in acceptance sampling and reliability
applications. The contents of the tables is described in Table 10.8.

Odeh–Owen Tables 1, 3, and 7 are primarily intended for tolerance and confidence interval
estimation. Their Table 7 provides confidence limits for the tail areas of the normal distribution
using the procedure of Owen and Hua (1977). The Odeh–Owen Tables 8, 9, and 10 are useful
in implementing a screening strategy in which the proportion of variable Y above a lower specifi-
cation limit L is improved by screening on a related variable X. By selecting out a proportion b
of the population in which X>mx� zbsx the proportion of Y above L is raised from g to d. Of
course, the effectiveness of the procedure depends on the strength of the correlation r between X and
Y. However, it presents a useful alternative for screening when tests are destructive as, for example,
in life tests. This type of screening strategy is described in Owen et al. (1975).

Tables 2, 5, and 6 are intended to be used directly in acceptance sampling. Table 2 presents one-
sided k factors and sample sizes for specified a, b, p1, and p2. Table 5, reproduced here as Appendix
Table T10.4, shows two-sided equal-tailed k values for specified P¼ p2 and b ¼ .10. To use the
table with specified PR (say at a¼ .05), it is necessary to use the Wallis formula to determine the
sample size and then improve the approximation by selecting k from the Odeh–Owen table.

For example, suppose a plan is desired having p1¼ .005, p2¼ .10, a¼ .05, b¼ .10. It is to be used
to check the length of Kovar leads which are specified to be 9 cm� .05 mm. Using theWallis formula

k ¼ za=2z2 þ zbz1
za=2 þ zb

¼ 1:96(1:28)þ 1:28(2:58)
1:96þ 1:28

¼ 1:79

n ¼ za=2 þ zb
z1 � z2

� �2

1þ k2

2

� �

¼ 1:96þ 1:28
2:58� 1:28

� �2

1þ 1:792

2

� �

¼ 16:2 � 17

The Odeh–Owen Table 5 shows that, for p2¼ .10 and sample size 17, a more accurate value of k
would be 1.95. This will hold the CQL of .10. The sampling plan is

Sample size: n¼ 17

Accept if: 8.95 � X� 1.95 s and Xþ 1.95 s � 9.05

Reject if: X� 1.95 s< 8.95 or 9.05<Xþ 1.95 s

Sometimes the CQL is specified to be different for the lower and upper tails. In this case, the Odeh–
OwenTable 6 reproduced here asAppendix Table T10.5 is used for specified pL and pU in the lower and
upper tails, respectively; here also b¼ .10. More extensive values are given in Odeh–Owen Table 1.
Again theWallis formula is used to obtain the approximate sample size associatedwith a specified PRa.
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TABLE 10.8: Content of Odeh–Owen tables of tolerance limits.

Tables Content Application

1 Factors for one-sided tolerance
limits (k by g, n, P¼p)

One-sided variables plans with one risk
specified
One-sided tolerance intervals for reliability
estimation

2 Sample size for one-sided sampling
plans (n, k by a, b, p1, p2)

One-sided variables plans with both risks
specified

3 Two-sided (central) tolerance limits
to control both tails equally
(k by g, n, P¼p)

Two-sided tolerance intervals for estimation
with equal tails

4 Two-sided (noncentral) tolerance
limits to control tails separately
(k by g, n, P¼p)

Two-sided tolerance intervals for estimation
with nonequal tails

5 Two-sided sampling plan factors
to control equal tails
(k by g¼ .90, n, p)

Two-sided equal tails variables plans with
b¼ .10 (only) specified
May be used with two risks by approximating
n with Wallis formula (use a=2). Then find k
from Table 5

6 Two-sided sampling plan factors
to control tails separately
(k by g¼ .90, n, p)

Two-sided unequal tails variables plans with
b¼ .10 (only specified)
May be used with two risks by approximating
n with Wallis formula (use a=2). Then find kL
and kU for lower and upper limits separately
from Table 6

7 Confidence limits for proportion
in tail of normal distribution

Lower confidence limit on proportion of
product above lower specification limit.
Shows proportion above L tabulated by
confidence¼h, n, and K¼ (X� L)=s

8 Screening proportion–population
parameters known (b by d, g, r)

Proportion measurement Y above L is g. Y to
be screened on concomitant variable X. mx,
my, sx, sy, r known. Proportion Y above L
may be raised from g to d by selecting all X
above mx� zbsx where b is proportion of
population which all will be selected

9 Screening proportion—population
parameters unknown
(b by f, d, g, r)

Same as Table 8 for g, d, r known and X,
sx used as estimates from preliminary sample
with f degrees of freedom

10 Confidence limits on the
correlation coefficient

Confidence limits for r. Shows upper, lower,
and two-sided confidence limits given n,
sample R¼ r, and risk a
Used with Table 9 and r is unknown

Source: From Jacobson, L.J., Ind. Qual. Control, 63, 23, 1949. With permission.
Suppose longer leads could be tolerated by the process better than shorter leads in the above
example so that the CQL was broken into two parts, pL¼ .025 against the lower specification and
pU¼ .05 against the upper specification, still with the PQL, p1¼ .005 with risks a¼ .05 and
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TABLE 10.9: Calculation of k and n for lower and upper specification limits.

Lower Specification Limit Upper Specification Limit

k ¼ za=2zL þ zbz1
za=2 þ zb

¼ 1:96(1:96)þ 1:28(2:58)
1:96þ 1:28

¼ 2:20

k ¼ za=2zU þ zbz1
za=2 þ zb

¼ 1:96(1:64)þ 1:28(2:58)
1:96þ 1:28

¼ 2:01

n ¼ 1þ k2

2

� �
za=2 þ zb
z1 � zL

� �2

¼ 1þ 2:22

2

� �
1:96þ 1:28
2:58� 1:96

� �2

¼ 93:4

n ¼ 1þ k2

2

� �
za=2 þ zb
z1 � zU

� �2

¼ 1þ 2:012

2

� �
1:96þ 1:28
2:58� 1:64

� �2

¼ 35:9
b¼ .10. Using the Wallis formula with zL and zU corresponding to pL and pU' k and n are calculated
for the lower and upper specification limits shown in Table 10.9.

Since only one sample size can be taken, it will be necessary to take a sample size of approxi-
mately 94. This might be rounded to 100 for administrative purposes. The Odeh–Owen Table 6
shows for n¼ 100; kL¼ 2.203, and kU¼ 1.861. The sampling plan is

Sample size: n ¼ 100

Accept if: 8:95 < X � 2:20 s and X þ 1:86 s < 9:05

Reject if: X � 2:20 s < 8:95 or 9:05 < X þ 1:86 s

This proceduremay be used as a substitute for theMmethod and is somewhat simpler for inspectors to
understand and use. Of course, the Odeh–Owen Table 2 can be used for one-sided specification limits.

The theory of the use of tolerance limits in sampling inspection has been described in detail by
Owen (1964, 1967), Owen and Frawley (1971), and Owen et al. (1972). Earlier tables of tolerance
factors in the quality control literature include Lieberman (1958) and Zobel (1958). Tables of
tolerance limits based on the range have been given by Bingham (1962) and Owen et al. (1971).
Nelson (1977) has discussed tolerance intervals in which the mean and standard deviation are
estimated by separate samples.

Sequential Plans for Proportion Nonconforming

Availability and ease of calculation has made sequential sampling plans a natural choice when
expensive or difficult inspection is to be performed. An operator may be alerted by various signaling
devices and displays of the sequential plan called up as needed. Sample sizes can be substantially
reduced when variables sequential plans for proportion nonconforming are utilized.

When the standard deviation is known, a simplified relationship between sequential plans for the
mean and single sampling variables plans, given by Sommers (1979, personal communication
with the author), can be used to easily obtain sequential variables plans for proportion nonconform-
ing with a ¼ .05 and b ¼ .10 for specified p1 and p2. Once a known standard deviation variables
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plan for proportion nonconforming has been obtained to these specifications, its parameters
ns, k can be converted to those of a sequential plan for an upper specification limit by using the
relations:*

h1 ¼ :7693s
ffiffiffi
n

p
s

h2 ¼ :9877s
ffiffiffi
n

p
s

s ¼ U � ks � :1818
s
ffiffiffi
n

p

with

ASN(p1) ¼ :4657ns, ASN(p2) ¼ :5549ns

Thus, the sequential plan matching the known standard deviation plan ns¼ 7, k¼ 1.44 has
parameters

h1 ¼ 2:04s, h2 ¼ 2:61s, s ¼ U � 1:51s

with

ASN (p1 ¼ :018) ¼ 3:26, ASN (p2 ¼ :180) ¼ 3:88

This approach may be applied to a lower satisfaction limit using the procedures outlined in Chapter
8, where s can be calculated from the lower specification limit as

s ¼ Lþ ks þ :1818
s
ffiffiffi
n

p

Further Considerations

Derivation of n, k Formulas

When the standard deviation is known, the formulas which give n and k as a function of fixed p1,
p2, a, and b are easily derived. Figure 10.14 will be used as motivation for the algebra involved. It
supposes an upper specification limit U and is based on the X method.

To obtain n, if we regard the z values as representing upper tail probability points

U � A ¼ ks

¼ m1 þ z1s � (m1 þ zas�X) (1)

¼ m2 þ z2s � (m2 � zbs�X) (2)

Since Equations (1) and (2) equal each other,

* The formula for s is obtained from that given by Sommers (1979) by using the relation

m1 ¼ U � z1s ¼ U� (k þ za=
ffiffiffi
n

p
)s:
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p1

p2

x

x

A

a

b

m1

m2

m1 + z1– a m1 + z1 ssX

U

m2 + zβ m2 + z2 ssX

FIGURE 10.14: Derivation of variables plan.
z1s � za
s
ffiffiffi
n

p ¼ z2s þ zb
s
ffiffiffi
n

p

(za þ zb)
1
ffiffiffi
n

p ¼ (z1 � z2)

n ¼ za þ zb
z1 � z2

� �2

To obtain k

ks ¼ m1 þ z1s � m1 þ za
s
ffiffiffi
n

p
� �

k ¼ z1 � za
ffiffiffi
n

p or k ¼ z2 þ zb
ffiffiffi
n

p

So carrying further

k
ffiffiffi
n

p
za

¼ z1
ffiffiffi
n

p
za

� 1

and

k
ffiffiffi
n

p
zb

¼ z2
ffiffiffi
n

p
zb

þ 1
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so, adding

k
ffiffiffi
n

p
za

þ k
ffiffiffi
n

p
zb

¼ z1
ffiffiffi
n

p
za

þ z2
ffiffiffi
n

p
zb

k
za þ zb
zazb

� �

¼ z1zb þ z2za
zazb

k ¼ z1zb þ z2za
za þ zb

The formula may be developed equally well using a lower specification limit.
The derivation of the formulas when the standard deviation is not known is more complicated and

is given by Wallis (1947) who developed the formulas. An excellent discussion of approximations
of the type proposed by Wallis, their application, and their efficiency in relation to indifference
quality has been given by Hamaker (1979).

Need for Normality

The plans discussed in this chapter are based on the assumption of normality of the underlying
measurements. While Jennett and Welch (1939) have argued that they may give roughly correct
results when applied to distributions other than normal, extreme care must be taken in such
circumstances. Certainly when dealing with small values of proportion nonconforming, i.e., the
tails of the distribution, the validity of the assumption of normality is critical.

Plans may be derived for underlying distributions other than normal. Owen (1969) has presented
an excellent paper in this regard.
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Problems

1. Given the following specifications

p1 ¼ :006 1� a ¼ :95

p2 ¼ :057 b ¼ :10
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�

derive the following variables plans for percent nonconforming

a. X method�s known, s ¼ .08

b. k method�s unknown

by formula and from the Jacobson nomograph.

2. The upper specification limit for the response time for a certain emergency warning device is
7 s. They are known to be normally distributed. A sample of 10 such devices yields the
following results: 6.82, 6.85, 6.70, 6.73, 6.89, 6.95, 6.96, 6.80, 6.79, and 6.85. Apply the plan
obtained in Problem 1 to these data.

3. Convert the results of Problem 1a to the M method and apply the plan to the results of
Problem 2.

4. Determine the value of M to be used with Problem 1b. What is the estimated proportion
nonconforming if U¼ 1000, X¼ 973, s¼ 9, n¼ 30? Should the lot be accepted?

5. Convert the plan of Problem 1b to a plan using the range with subgroups of 5.

6. Maximum and minimum specifications for hardness of a certain material are 69 and 60 when
read on a certain scale. Construct an unknown standard deviation plan to the following
specifications:

p1 ¼ :011� a ¼ :95

p2 ¼ :14b ¼ :10

7. If the results of sampling a lot from Problem 6 yielded 63.0, 64.5, 64.0, 62.5, 63.0, 70.0, 71.0,
61.0, 60.0, 67.5, 66.5, 64.0, and 68.0. Should the lot be accepted?

8. Using the tolerance interval approach, assess the results of Problem 7.

9. Would the double-sampling plan n1¼ 10, n2¼ 10, ka¼ 2.51, kr¼ 1.58, kt¼ 2.05 lead to a
second sample on the basis of Problem 2 results?

10. Draw the OC curve for the sampling plan given in Problem 1a. What is the indifference
quality level?
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Chapter 11

Attributes Sampling Schemes

Sampling Schemes

The sampling plans presented in the foregoing chapters provide the basis for more sophisticated
sampling designs. Sampling plans are frequently used in consort to produce levels of protection not
attainable by any of the component plans individually. Such combinations of sampling plans are
called sampling schemes or sampling systems. The International Organization for Standardization
(ISO) in ISO 3534-2 (2006) has defined them as follows:

Acceptance sampling plan—a plan which states the sample sizes to be used and the associated
criteria for lot acceptance.

Acceptance sampling scheme—a combination of acceptance sampling plans with switching rules
for changing from one plan to another.

Acceptance sampling systems—a collection of acceptance sampling plans or acceptance sam-
pling schemes together with criteria by which appropriate plans or schemes may be chosen.

The sampling scheme then consists of a set of plans which are selected to be used as indicated by
a set of switching rules. These rules allow the user to go from one plan to another in a prescribed
fashion to obtain levels of performance not available from using just one plan. A switching rule is
defined by ISO 3534-2 (2006) as

Switching rule—an instruction within a sampling scheme for changing from one acceptance-
sampling plan to another of greater or lesser severity of sampling based on demonstrated
quality history.

Sampling plans are the basic elements of sampling schemes, while sampling systems may be
considered to involve a grouping of one or more sampling schemes.

Quick Switching Systems

As a simple example of a sampling scheme, consider the quick switching system (QSS) proposed
by Romboski (1969). Probably the most straightforward of all sampling schemes is his QSS-1 plan
which proceeds as follows.
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Given:

n ¼ sample size of tightened and normal plans

cN ¼ acceptance number under normal inspection

cT ¼ acceptance number under tightened inspection

PN¼ probability of acceptance under normal sampling plan

PT ¼ probability of acceptance under tightened sampling plan

Utilize the switching rules:

1. Start using the normal inspection plan.

2. Switch to the tightened inspection plan immediately after a rejection.

3. When on tightened inspection, switch to normal inspection immediately after accepting a lot.

4. Alternate back and forth as dictated by these rules.

It is immediately obvious that there must be a flow of lots for the scheme to be applied. Schemes
require Type B sampling plans and are not intended for Type A sampling involving single lots since
the switching rules are applied to a sequence of lots over time. Also, note that there are three
operating characteristic (OC) curves involved here, namely, those for the tightened plan, the normal
plan, and their combination in the composite OC curve for the scheme. Romboski (1969) calculates
the scheme probability of acceptance, Pa, as

Pa ¼ PT

1� PNð Þ þ PT

Now suppose we use n¼ 20, c¼ 0 as the tightened plan and n¼ 20, c¼ 1 as the normal plan. These
plans have a lot tolerance percent defective (LTPD) of 11.5% and 19.5%, respectively, using the
Poisson approximation. When combined in a quick switching format, the resulting LTPD is
12.64%—close to the c¼ 0 plan. Also, the tightened and normal plans have an acceptable quality
level (AQL) (Pa¼ 0.95) of 0.255% and 1.77%, respectively, while the quick switching-combined
AQL is 1.54%—close to the c¼ 1 plan. Thus, the scheme has captured the best features of both of
its constituents. Furthermore, the operating ratio of the quick switching scheme is 8.21 while the
component plans have operating ratios of 44.9 and 10.9, respectively. So the scheme is more
discriminating than either of its components.

As a check on our computations, we may wish to compare the composite probability
of acceptance for the LTPD of 0.1264 using Romboski’s formula and Poisson probabilities.
We have

PT ¼ F(n ¼ 20, c ¼ 0, p ¼ 0:1264, np ¼ 2:528) ¼ 0:0798

PN ¼ F(n ¼ 20, c ¼ 1, p ¼ 0:1264, np ¼ 2:528) ¼ 0:2816

QSS Pa ¼ 0:0798
(1� 0:2816)þ 0:0798

¼ 0:10

as it should be. The QSS is discussed in detail in Chapter 17.
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TNT Plans

The QSS maintains the same sample size for both tightened and normal inspection, varying the
acceptance number to achieve different probabilities of acceptance. A related sampling scheme,
the tightened-normal-tightened (TNT) plans proposed by Calvin (1977), maintains the same accept-
ance number for the tightened and normal plans while varying the sample size between them. This is
especially useful when c¼ 0 plans are required since it provides operating ratios on the order of 23,
much less than that in using a c¼ 0 plan alone. The schemes are applied as follows:

1. Start on tightened inspection using the plan (n,cT).

2. Switch to normal inspection when t consecutive lots are accepted and then use the normal
plan (n,cN).

3. Switch to tightened inspection when 2 out of sþ 1 lots are rejected. Use the plan (n,cN)

4. Go to step 2.

The TNT plans are discussed more extensively in Chapter 17. Note that the combination t¼ 5
and s¼ 4 provides a switching procedure close to that in MIL-STD-105E and its derivatives. The
105 series (MIL-STD-105A through MIL-STD-105E) has a long history dating back to World War
II. This acceptance sampling system is, without doubt, the most used and most copied set of
standards in the world.

MIL-STD-105E and Derivative Standards

The Military Standard-105 (MIL-STD-105) series of standard is an outgrowth of statistical
contributions to the war effort in World War II. It came from a need for a sampling system which
did not require 100% inspection for use in testing munitions and for other destructive tests. The
result was the Army Service Forces inspection tables which came out in 1942 and 1943. Improve-
ment led to MIL-STD-105A, B, . . . , E in subsequent years. The Army discontinued the support for
military statistical standards on February 27, 1995 proposing the civilian standards. Meanwhile,
other standards writing bodies, such as the American National Standards Institute (ANSI), the ISO,
and the International Electrotechnical Commission, developed their own derivatives of 105 as
civilian standards. MIL-STD-105E, the last of the seminal series, will be discussed here and
differences with these derivative standards will be indicated. MIL-STD-105E is, after all, regarded
as a classic system worldwide.

Many sampling schemes are included in what are called AQL systems. AQL refers to the
acceptable quality level,* i.e., what has been called the producer’s quality level in single sampling
plans. These systems are intended to be applied to a stream of lots. Such plans specify an upper limit
on quality, the AQL, not to be exceeded by the producer without the penalty of an excessive number
of rejected lots. That is, for levels of quality less than the AQL, rejection will be relatively
infrequent, say less than 1 in 10, while for levels of quality in excess of the AQL, rejections will
be more frequent, say more than 1 in 10. This is achieved by switching back and forth between

* In more recent attribute sampling standards, the AQL is referred to as the acceptance quality limit.
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normal, tightened, and reduced plans included in the system. Tighter plans are used when quality
levels are shown to be poor, while looser plans involving smaller sample sizes are utilized when
quality is shown to be good. Over a continuing supply, schemes can be devised to incorporate the
best properties of the plans included as elements. Frequently, schemes are selected within a system
in relation to the lot size involved.

Military Standard 105E (p. 2) defines the AQL as follows:

When a continuous series of lots is considered, the AQL is the quality level which, for
the purposes of the sampling inspection, is the limit of a satisfactory process average.

The definition of AQL in acceptance sampling has created controversy over the years because of the
implication that nonzero levels of quality are acceptable. Accordingly, the ISO has changed the
acronym AQL to stand for acceptance quality limit, defined as the ‘‘worst tolerable quality level.’’ It
is evident that the meanings of the two definitions are essentially the same. Since the terms are in
transition, we will generally use the acronym AQL wherever possible, and depend on the text to
highlight any differences from the definitions presented above.

Military Standard 105E (1989) is not a sampling plan. It is a sampling system. As such,
it combines several individual sampling plans in schemes constructed to employ economic,
psychological, and operational means to motivate the producer to sustain the quality at levels
less than or equal to the AQL. The procedure for switching between plans is essential to the
system; it is so designed as to exert pressure on the producer to take corrective action when quality
falls below prescribed levels and to provide rewards, in terms of reduced sample size, for quality
improvement.

The standard ties together sets of three attributes sampling plans, each at a different level of
severity, into a unified procedure for lot acceptance through the use of its switching rules. These
action rules determine the level of severity to be employed depending on the level of quality
previously submitted. Thus, inspection of a succession of lots is intended to move among the
specified set of tightened, normal, and reduced sampling plans as quality levels degenerate or
improve. Switching between tightened and normal plans is made mandatory by the standard, while
the use of reduced plans is optional.

The MIL-STD-105E system, as such, does not allow for application of individual plans without
the use of the switching rules, since such an approach can lead to serious loss of protection from that
achieved when the system is properly applied. Quality levels are specified in terms of AQL for the
producer, while consumer protection is afforded by the switching rules which lead to tighter plans
when quality is poor. The operation of MIL-STD-105D has been described in detail by Hahn and
Schilling (1975), and is the subject of several military and international handbooks. The D and E
versions of MIL-STD-105 exhibit minor editorial changes while the tables are essentially the same;
however, the rule for discontinuing inspection was modified from 10 lots on tightened to 5
rejections while on tightened inspection.

When an isolated lot is to be inspected, special tables of limiting quality (LQ) are presented in the
standard. Used in such instances, MIL-STD-105E merely represents a convenient collection of
individual plans indexed by the LQ table. In no sense, however, is this the use for which the MIL-
STD-105E system was designed.

Unfortunately, the standard may sometimes be misused, particularly in nonmilitary applications,
through the selection and use of normal plans only—disregarding the tightened and reduced plans,
and the switching rules. This deprives the consumer of the protection provided by the tightened plan
when quality is poor, and it foregoes the advantage to the producer of smaller sample sizes and
slightly increased protection afforded by the reduced plan when quality is good.

The operation of MIL-STD-105E is straightforward. Lot sizes are linked to sample size by a
system of code letters. Matched sets of single, double, and multiple plans provide a complete choice
among these types of plans in application. The average sample size of double and multiple plans can
be arrived at from average sample number (ASN) curves which are given. MIL-STD-105E also
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FIGURE 11.1: Structure of MIL-STD-105E.
contains tables presenting the average outgoing quality limit (AOQL) resulting from the use of its
normal plans together with 100% inspection of rejected lots. Complete sets of OC curves and
probability points of the normal and tightened plans are contained in the standard.

The standard is written in terms of inspection for defectives (expressed in percent defective) and
also for defects (expressed in defects per 100 units). The approach and operation of the scheme is
the same for both and so they will be used interchangeably here for economy of presentation. Their
measures of performance, however, are based on different probability distributions (binomial and
Poisson) and so they must be addressed separately where operating characteristics and other
measures are concerned.

The structure of MIL-STD-105E is shown in Figure 11.1.

Operation

Proper use of the MIL-STD-105E sampling system demands close attention and adherence to the
rules for switching among the sets of three plans (tightened, normal, and reduced) which are
presented. In doing so, the producer receives adequate protection against excessive rejections
when quality is better than the AQL, while the consumer receives increased protection when quality
is running worse than the AQL. The operation of the switching rules is shown in Figure 11.2.

An MIL-STD-105E scheme always starts with the normal inspection plan. The plan continues to
be used until sufficient evidence is generated to indicate that a switch to the tightened or the reduced
� 2008 by Taylor & Francis Group, LLC.



Preceding 10 lots
  accepted, with
Total defectives less than
  limit number, and
Production steady, and
Approved by responsible
  authority

Reduced Normal Tightened

Start

Two out of five
 consecutive
lots rejected

Five consecutive lots
accepted

Discontinue
inspection

Total of five
lots

rejected on
tightened

Lots rejected, or
Lots accepted but defects
  found lies between Ac and
  Re of plan, or
Production irregular or
Other conditions warrant

FIGURE 11.2: Switching rules for MIL-STD-105E. (Reprinted from Schilling, E.G. and Sheesley,
J.H., J. Qual. Technol., 10, 77, 1978; Schilling, E.G. and Johnson, L.I., J. Qual. Technol., 12(4), 220,
1980; Schilling, E.G. and Sommers, D.J., J. Qual. Technol., 13(2), 83, 1981. With permission.)
plan is appropriate. Note that MIL-STD-105E makes use of the reduced plan optional. Although for
full economic benefit of the procedure, it should be utilized where possible.

A switch to tightened inspection roughly involves moving to the acceptance criteria of the next
lower AQL category while retaining the sample size used in the normal plan. This results in a more
stringent plan with less consumer’s risk at the expense of increased producer’s risk. Tightened
inspection is imposed when two out of five consecutive lots are rejected on original inspection.
Normal inspection is reinstated when five consecutive lots are accepted on original inspection.

A switch to reduced inspection involves changing both the sample size and the acceptance
number. Sample size is roughly reduced two sample size code letter categories below that originally
used for normal inspection. The final acceptance and rejection numbers are separated by a gap. If
the number of defectives found falls in the gap, the lot is accepted but the scheme reverts to the normal
plan on the next lot. The gap is used to prevent rejection of a lot on reduced inspection when it might
be accepted under normal inspection. Otherwise the acceptance and rejection numbers are used in
the conventional manner on reduced inspection. A shift is made to reduced inspection when

1. The preceding 10 lots have been accepted on original inspection under normal sampling.

2. The total number of defectives from the preceding 10 lots is less than or equal to the limit
numbers given in Table VIII of the standard. Results from all samples (not just first samples)
should be used if double or multiple sampling is employed.

3. Production must be steady.

4. Reduced inspection is considered desirable by responsible authority.

MIL-STD-105E Table VIII is reproduced here as Appendix Table T11.1. To use the table, the
accumulated sample size from the last 10 lots is entered and the limit number read from the AQL.
When the accumulated sample size is not sufficient for reduced inspection, additional lots must be
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taken until a limit number can be obtained from the table. Clearly, the additional lots must be from
the same uninterrupted sequence.

Normal inspection must be reinstated from reduced when

1. A lot is rejected.

2. The results of inspection of a lot fall in the gap between the reduced acceptance and rejection
numbers.

3. Production becomes irregular or delayed.

4. Other conditions warrant.

MIL-STD-105E was intended to be used with a continuing series of lots or batches. However,
occasionally specific plans may be selected from the standard and used without the switching rules.
This is not the intended application ofMIL-STD-105E and its use in this way should not be referred to as
inspection under MIL-STD-105E. When employed in this manner, the standard simply represents a
repository for a collection of individual plans indexed by AQL. In this sense, AQL has no operational
meaning and the operating characteristics and other measures of a plan so chosen must be assessed
individually for that plan from the tables of performance provided inMIL-STD-105E. It is a convenience
to the user that tables are provided to be used in this way. They are described in the following section.

Selection

The selection of a set of tightened, normal, and reduced plans from MIL-STD-105E is fairly
straightforward. The key elements in the selection of a plan are lot size and AQL. The definition of a
lot is often governed by the operational situation and the available information. Lots may be
composed of the material delivered at one time, or produced in the same time (a day or a month),
or that made under a particular set of operating conditions (raw material, operator, etc.).
The standard suggests that ‘‘as far as practicable, each lot should consist of units of product
manufactured under essentially the same conditions and at essentially the same time.’’ A quest for
homogeneity tends toward small lots, while large lots are desirable in allowing for larger sample
sizes with greater discrimination between good and bad quality. Thus, determination of lot size is
often a compromise frequently settled by practical considerations.

The AQL is central to the entire MIL-STD-105E system. It must be set with due consideration for
the producer’s process capability and the consumer’s need for a reasonable quality level relative to
the state of the art. The ideal AQL would be set in terms of process capability studies to determine
the reasonable levels and costs of quality for the producer’s process as well as the tolerance of the
consumer to changes in quality level and the associated costs. An excellent discussion of process
capability studies will be found in Mentch (1980).

A further consideration in the determination of AQLs is defect class. MIL-STD-105E uses the
defect classification:

Critical: likely to result in hazardous or unsafe conditions
Major: likely to result in failure or to reduce the usability materially
Minor: not likely to reduce the usability materially

AQLs are usually assigned to each category with each defect type in the category counted against
the category AQL.
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Ultimately, the AQL to be used in sampling must be determined by negotiation between the
producer and the consumer with due consideration of the trade-offs in both a physical and economic
sense. The sequence of steps involved in the selection of a set of plans from MIL-STD-105E is
shown in Figure 11.3.

Once the lot size and AQL have been determined, a set of sampling plans can be found. The lot
size is used to enter Table I of the standard, reproduced here as Appendix Table T11.2. A sample
size code letter is then obtained appropriate to the inspection level to be used. Inspection Level II is
normally used unless some other inspection level is specified. Inspection Levels I and III allow for
control of discrimination (lower or higher) depending on past history and operating circumstances.
The special inspection levels, S-1 through S-4, are generally used with expensive or destructive tests
where sample size is at a premium and more extensive inspection is not economic or not warranted
on the basis of past history and the intent of application of the plan.

The advantages and disadvantages of single-, double-, and multiple-sampling plans have previ-
ously been discussed. Single-sampling plans are easy to administer and understand. Double-
sampling plans allow for a reduction in average sample size at the expense of the possibility of
taking an additional sample. Multiple-sampling plans are somewhat difficult to administer, but
provide the greatest economy in terms of average sample size. The choice, again, depends on the
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Step

Preparatory

Determine criteria

Single sampling MIL-STD-105E

Table IIB

Table IIIB

MIL-STD-105E

Table IVB

Accept if total
defects ≤ Ac

Reject if total
defects ≥ Re

Accept if total
defects ≤ Ac

Reject if total
defects ≥ Re

See Figure 11.2 for switching rules

Accept if total
defects ≤ Ac

Reject if total
 defects ≥ Re
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  switch if total
  defects on final
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MIL-STD-105E

MIL-STD-105E

Table IIA

Table IIIA

MIL-STD-105E

Table IVA

MIL-STD-105E

MIL-STD-105E

Table IIC

Table IIIC

MIL-STD-105E
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MIL-STD-105E

Double sampling

Multiple sampling

Decision Rules

Switching

Determine Sample Size Code Letter From
Lot Size and Inspection Level (II)

Tightened Normal Reduced

MIL-STD-105E Table I

FIGURE 11.4: Application of MIL-STD-105E.
operational situation and the experience and reliability of the inspection personnel involved. MIL-
STD-105E does provide ASN curves to help in the allocation of inspection effort when double- and
multiple-sampling plans are involved.

Once the sampling procedure has been selected, a set of plans is found in the appropriate tables of
the standard. Figure 11.4 shows how the sampling plans are selected and gives the decision rules to
be applied in application of the plan.

The master tables for plan selection are reproduced herein the Appendix as follows:
Appendix Table MIL-STD-105E Table Content

T11.1 Table VIII Limit number for reduced inspection
T11.2 Table I Sample size code letters
T11.3 Table IIA Single sampling, normal inspection
T11.4 Table IIB Single sampling, tightened inspection
T11.5 Table IIC Single sampling, reduced inspection
T11.6 Table IIIA Double sampling, normal inspection
T11.7 Table IIIB Double sampling, tightened inspection
T11.8 Table IIIC Double sampling, reduced inspection
T11.9 Table IVA Multiple sampling, normal inspection
T11.10 Table IVB Multiple sampling, tightened inspection
T11.11 Table IVC Multiple sampling, reduced inspection
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These tables completely specify the plans included in MIL-STD-105E. In selection of specific plans
from the tables, however, it must be emphasized that the vertical arrows direct the user to a
completely new set of acceptance criteria; that is, both the sample size and acceptance number of
the indicated plan must be used in satisfying the intent of the arrow.

Measures

MIL-STD-105E contains detailed tables showing the measures of performance of individual
plans. This includes

Appendix Table MIL-STD-105E Table Content

T11.12 Table VB AOQL for normal plans
T11.13 Table VIA AOQL for tightened plans
T11.14 Table VIA LQ in percent defective for Pa¼ 10%
T11.15 Table VIB LQ in defects=100 units for Pa¼ 10%
T11.16 Table VIIA LQ in percent defective for Pa¼ 5%
T11.17 Table VIIB LQ in defects=100 units for Pa¼ 5%
T11.18 Table IX ASN curves for double and multiple sampling
T11.19 Table X OC curves and probability points for plans by

code letter (Code F only)

These tables are presented here as Appendix Tables T11.12 through T11.19 as indicated above.
The distinction between percent defective and defects per 100 units is particularly important when

dealing with operating characteristics and other measures of performance. Since Type B operating
characteristics are involved, the binomial distribution is exact in assessing the percent defective, while
the Poisson distribution is employed in determining the defects per 100 units. This is carried out
throughMIL-STD-105E and appears explicitly in Table X. The Poisson distribution, however, is used
as an approximation to the binomial except for AQLs of 10.0 or less and sample sizes of 80 or less.
This simplifies the presentation somewhat with little loss of accuracy. The AOQL tables are based on
the Poisson distribution as are the ASN curves.

The tables of operating characteristics and other measures are fairly self-explanatory; however,
certain features should be pointed out:

1. AOQL factors are approximate in Table V and can be corrected by multiplying by
(1 – [sample size=lot or batch size])

2. ASN curves in Table IX are selected by the single sample size acceptance number c. The
vertical axis is then interpreted in proportion to the single sample size n at the top, and
the horizontal axis in terms of unity values np. As a result a comparison of single, double,
andmultiple average sample sizes can bemade for anymatched set in the standard. For example,
for Code F, 2.5% AQL, the single-sampling plan is n¼ 20, c¼ 1. Using the c ¼ 1 set of curves,
the vertical axis becomes 0, 5, 10, 15, 20 and the horizontal axis 0, .05, .10, .15, .20. The double
and multiple plans, then, have approximately the same average sample size at a proportion
defective of about p¼ .10, that is, where np¼ 2. The arrows show the position of the AQL,
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obviously at proportion defective .025 for the plan n¼ 20, c¼ 1. This is made possible by the
fact that for a given single-sampling acceptance number, the product (n�AQL) is constant for
all sample sizes.

Scheme Properties

The OC curves and other measures of performance given in MIL-STD-105E relate to the perform-
ance of the constituent individual plans and so can be used to assess its operation at any given stage or
to determine how the plans will perform in moving from normal to tightened or reduced inspection.
This is helpful in determining the AQLs. Unfortunately, the standard does not give measures of
performance of the system as a whole, including the switching rules. Detailed tables of scheme
performance patterned after the MIL-STD-105E tables cited above have been prepared by Schilling
and Sheesley (1978). They are based on the work of Stephens and Larson (1967) and Burnett (1967),
which did much to develop the theory of evaluation of scheme characteristics. They are also included
in the ANSI=ASQZ1.4 standard, which is the ANSI equivalent ofMIL-STD-105E.While the original
work was done with MIL-STD-105D, the results apply to MIL-STD-105E since discontinuation of
inspection was not included in the evaluation.

A representation of the Schilling–Sheesley tables is given in the appendix as follows:

Appendix
Scheme Table

MIL-STD-105E
Individual Plans Table Content

T11.20 Table XI MIL-STD-105E scheme AOQL
T11.21 Table XII MIL-STD-105E scheme LQ for Pa¼ 10%
T11.22 Table XIII MIL-STD-105E scheme LQ for Pa¼ 5%
T11.23 Table XIV, XV MIL-STD-105E scheme Pa, ASN, AOQ,

ATI (Code F only)

The first three tables correspond directly to those given only for the individual normal, and tightened
plans in MIL-STD-105E. The fourth is an example of the complete listing of measures by code letter
and provides values for examples to follow. They characterize the performance of the standard when
it is properly used, with the switching rules.

In application of the MIL-STD-105E system, it is intended that a switch to tightened inspection
with possible discontinuation of inspection will, in the case of poor quality, provide a psychological
and economic incentive for the producer to improve the level of quality submitted in actual applica-
tion, this may or may not be the case. When used in internal inspection to take advantage of the
increased protection and economy afforded by the switching procedure, a scheme may be used with
no intention to discontinue the inspection. Further, in early stages of process development, producers
may expect to have a large proportion of lots rejected and it may be impossible to improve the process
given the state of the art. MIL-HDBK-53 (1965) points out that, when inspection is discontinued, ‘‘If
the supplier otherwise has an excellent quality history for similar products, the specified AQL should
be investigated.’’ Thus, the AQL and not the process may be changed. It is quite possible, however, as
pointed out by Stephens and Larson (1967) that ‘‘the actual behavior of the process under the
influence of the sampling procedure may be . . . very dynamic.’’
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In discussing the problem of evaluating the performance of a sampling system, such as MIL-
STD-105E, which may itself induce such process changes, Stephens and Larson

. . . adopt a somewhat simpler model which is tractable and which permits relative
comparisons to be made between different plans or . . . different sets of plans . . . which
allows an evaluation of the operating behavior of the system of plans for different values
of fraction defective. This is the same type of approach taken in the presentation of an
ordinary OC curve for a sampling plan.

The same approach has also been used by Pabst (1963) and by Dodge (1965). A producer would not
usually be expected to operate at the LQ level of any simple sampling plan or complex sampling
scheme for very long without taking action of one kind or another. However, ordinary OC curves do
not reflect such actions.

The Stephens–Larson model as evaluated by Schilling and Sheesley (1978) does not incorporate
considerations of possible process changes resulting from psychological pressures inherent in the use
of the switching rules or discontinuation of inspection. After discontinuation, the Schilling–Sheesley
tables essentially assume the restart under tightened inspection with no change in fraction defective.
Thus, the term scheme performance, as used with respect to the scheme OC curve, has a very special
meaning. It refers to how the MIL-STD-105E system of switching rules would operate at a given
process level under the assumption that the process stays at that level even after discontinuation of
inspection. Thus, discontinuation does not play a part in the Schilling–Sheesley evaluation and so the
values apply regardless of the rules for discontinuation. It should be noted that this gives a conser-
vative worst-case description of the performance of a scheme in the sense that, if psychological
pressures were operative, the probability of acceptance at low levels of fraction defective would be
increased while probability of acceptance at high levels of fraction defective would be decreased
relative to the values given by Schilling and Sheesley.

The compilation of complete tables of measures of scheme performance allows the following
approximate procedure to the used when the stream of consecutive lots, on which MIL-STD-105E is
based, is broken to produce an isolated lot (known not to be the part of the stream) or a short
sequence of lots of a unique character.

1. Obtain the LQ for the scheme at Pa¼ 10% from Schilling–Sheesley (Appendix Table
T11.21), using the appropriate AQL and sample size code letter.

2. Select the plan from the MIL-STD-105E LQ table with Pa¼ 10% (Appendix Table T11.14,
T11.15), which has the LQ of the scheme at the AQL listed.

This procedure will guarantee about the same protection on the isolated lot as would have been
obtained under the use of the switching rules with the continuing series of lots. A more refined
approach is given later.

Implementation of MIL-STD-105E

The implementation of MIL-STD-105E is probably best explained by example. Suppose the
producer and the consumer agree on an AQL of 2.5% and lot sizes are expected to be N¼ 100.
Inspection Level II will be used since no other inspection level was agreed upon. Using the lot size
of 100 and inspection Level II, the sample size code letter table (Appendix Table T11.2) gives Code
F. Using the master tables for tightened, normal, and reduced inspection, we find the following set
of matched single, double, and multiple plans to apply.
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Code F, 2.5 AQL

Tightened Normal Reduced

n Ac Re n Ac Re n Ac Re

Single 32 1 2 20 1 2 8 0 2
Double 20 0 2 13 0 2 5 0 2

20 1 2 13 1 2 5 0 2
Multiple 8 # 2 5 # 2 2 # 2

8 # 2 5 # 2 2 # 2
8 0 2 5 0 2 2 0 2
8 0 3 5 0 3 2 0 3
8 1 3 5 1 3 2 0 3
8 1 3 5 1 3 2 0 3
8 2 3 5 2 3 2 1 3
The plans under tightened inspection are found by the use of the arrow which directs the user to the
next set of sample sizes and acceptance numbers. The symbol # in multiple sampling indicates that
no acceptance decision can be made at that stage of the sampling plan. Notice that the final
acceptance and rejection numbers under reduced inspection differ by more than 1, thus showing
the gap that can lead to lot acceptance with a switch to normal inspection.

Suppose single samplings were used. The first lot would be inspected using the plan n¼ 20,
c¼ 1. This plan would continue in use on subsequent lots until a switch was called for. At that time
the plan n¼ 32, Ac¼ 1, Re¼ 2 or n¼ 8, Ac¼ 0, Re¼ 2 would be used depending on whether
switch was to tightened or reduced inspection. For example, consider the following sequence of lot
acceptance (A) and rejection (R).

A A R A A A R R A R A A A A A A A A A A A A A A A A A A A A R

Inspection would start using the normal plan. At the second rejection, a switch to tightened
inspection is instituted since two out of five lots are rejected under normal inspection. Tightened
inspection continues until the 15th lot signals a switch to normal. A switch to reduced is called for
after 10 lots are accepted under normal inspection. However, the total number of defectives in
the last 10 lots must be less than the limit number of 2 found in MIL-STD-105E Table VIII for
200 accumulated sample units. If one defective was found the switch would be made, only to revert
back to normal inspection with the rejection at the end of the sequence. This, of course, assumes the
other conditions for switching were met.

The measures of performance of these individual plans are easily found from the tables given in
the Appendix. They are

AOQL (normal)¼ 4.2% (3.4% corrected)
AOQL (tightened)¼ 2.6% (1.8% corrected)
10% LQ (normal, percent)¼ 18%
10% LQ (normal, defects)¼ 20 defects per 100 units
5% LQ (normal, percent)¼ 22%
5% LQ (normal, defects)¼ 24 defects per 100 units
ASN at AQL (double) ’ 15
ASN at AQL (multiple) ’ 18

MIL-STD-105E Table X for Code F reproduced here as Appendix Table T11.19 shows probability
points for tightened and normal inspection for percent defective. The plan n¼ 8, c¼ 1 was similarly
evaluated for reduced inspection. Appendix Table T11.23 shows the probability points of the resulting
scheme as a whole as computed by Schilling and Sheesley (1978). They may be compared as follows:
� 2008 by Taylor & Francis Group, LLC.



Pa Normal Tightened Reduced Scheme

.99 0.75 0.475 2.00 0.978

.95 1.80 1.13 4.64 1.85

.90 2.69 1.67 6.88 2.47

.75 4.81 3.01 12.1 3.66

.50 8.25 5.19 20.1 5.40

.25 12.9 8.19 30.3 8.21

.10 18.1 11.6 40.6 11.6

.05 21.6 14.0 47.1 14.0

.01 28.9 19.0 58.8 19.0
Notice that scheme performance is slightly looser than the normal inspection plan for levels of
quality well below the AQL but is much tighter for levels of quality above the AQL. In fact,
scheme performance is close to that of the tightened plan at or below the indifference quality level.
This illustrates the advantage of using the scheme over any of its individual component plans. This
can also be seen in the composite OC curve shown in Figure 11.5.

Since different sample sizes are involved in the plans constituting the scheme for a given code
letter and AQL, the sample size for the scheme can only be represented as an expected value. This
is the ASN for the scheme. Although the scheme OC curve shows minimal increase in probability
of acceptance over that for the normal plan alone when quality is good, the reduction in the ASN
in that region is substantial because of the possibility of going to reduced inspection. This may be
seen in the ASN curve for Code F, 2.5% AQL, shown in Figure 11.6. The sample sizes for the
component plans are also indicated.

When rectification is employed, the average outgoing quality level for the scheme is much
improved over levels reported for the normal inspection plan, although they are not as low as that
2 4
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FIGURE 11.5: Scheme OC curves, Code F, 2.5% AQL. (Reprinted from Schilling, E.G. and
Sheesley, J.H., J. Qual. Technol., 10, 79, 1978. With permission.)
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given of the tightened plan. This can be seen for Code F, 2.5% AQL in the AOQ curve shown in
Figure 11.7.

Average total inspection is given as a guide to determine the inspection effort requirements when
rectification is used with an MIL-STD-105E scheme. A plot of the ATI curve for Code F, 2.5%
AQL, is given in Figure 11.8.

Curves such as those shown can easily be constructed from the tables presented by Schilling and
Sheesley (1978).

A comparison of single, double, and multiple plans for Code F, 2.5% AQL, indicates that the OC
curves of the schemes using these sampling procedures are about as well matched as those of the
constituent individual plans. This can be seen in Table 11.1. It also suggests that savings in sample
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FIGURE 11.7: Scheme AOQ curves, Code F, 2.5% AQL. (Reprinted from Schilling, E.G. and
Sheesley, J.H., J. Qual. Technol., 10, 80, 1978. With permission.)
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size may result when using double or multiple plans with the switching procedure, particularly
below AQL levels of percent defective.

Thus, there are significant advantages in the use of the switching rules to achieve operating
characteristics and other measures of performance not attainable through individual sampling plans.

Matching Individual Sampling Plans to MIL-STD-105E
System Performance

Occasionally, it is necessary or economically desirable to abandon the scheme aspect of MIL-
STD-105E in favor of a single-sampling plan. This may be because a unique or isolated lot and not a
continuing stream is to be inspected. It may be that the stream of lots is too short to provide effective
use of the MIL-STD-105E switching rules. When this is the case, the sampling plan for normal
inspection is sometimes incorrectly selected to be used alone without the switching rules. This
results in less consumer protection than would be afforded by the use of the overall scheme. A more
conservative approach for the consumer would be to use the tightened plan alone, but this can result
in an objectionably high level of rejection for the producer of quality at or better than the AQL. For
example, for Code H, 1.5% AQL, the scheme will accept 1.59% defective quality 95% of the time
and reject 7.56% defective 90% of the time. The normal plan will accept 1.59% defective 81% of
the time while the tightened plan will reject 7.56% defective 73% of the time.

It is possible to use the unity values developed by Schilling and Johnson (1980) shown in Appendix
Table T6.1 to derive a unique individual sampling plan to match the scheme performance of MIL-
STD-105E. The plan obtained will usually require a larger sample size than that given for the normal
plan since protection under the scheme is better than under the normal plan taken alone. The
difference in sample size reflects the advantage in protection obtained by using the switching rules.

Appendix Table T11.24 from Schilling and Johnson (1980) shows values of the operating ratio R
for the AQL code letter combinations of the MIL-STD-105E system. It was derived from the
tabulations of MIL-STD-105E scheme performance by Schilling and Sheesley (1978) and includes
switching among tightened, normal, and reduced plans. Appendix Table T11.21, from Schilling and
Sheesley (1978), shows the LTPD (LQ¼ 10%) associated with code letter-AQL combinations of
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TABLE 11.1: Scheme Pa and ASN compared to normal plan only for single, double, and multiple sampling (code F, 2.5% AQL).

Probability of Acceptance ASN

Scheme Normal only Scheme Normal only

P Single Double Multiple Single Double Multiple Single Double Multiple Single Double Multiple

0.978 99 98.5 99.6 98.4 98.0 98.9 14.6 11.7 8.7 20 14.5 16.4
1.85 95 93.2 96.4 94.8 93.5 96.1 19.1 15.9 16.3 20 15.5 17.4
2.47 90 87.2 92.1 91.4 89.4 93.1 21.5 18.3 19.0 20 16.1 17.9
3.66 75 70.6 77.6 83.5 80.3 85.5 26.2 23.3 24.0 20 17.0 18.7
5.40 50 46.7 49.2 70.6 66.1 71.9 30.8 26.9 28.2 20 17.7 19.1
8.21 25 23.9 22.4 50.3 45.4 49.4 32.0 26.4 25.1 20 18.0 18.5
11.6 10 10.4 8.1 30.8 27.1 28.2 32.0 24.5 20.4 20 17.5 16.7
14.0 5 5.7 3.8 20.8 18.3 18.1 32.0 23.2 17.8 20 16.9 15.2
19.0 1 1.6 0.8 8.4 7.7 6.6 32.0 21.4 14.1 20 15.6 12.4

Source: Reprinted from Schilling, E.G. and Sheesley, J.H., J. Qual. Technol., 10, 82, 1978. With permission.
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the MIL-STD-105E system. To use Tables T11.24 and T-21 to obtain a unique plan having the
performance of an MIL-STD-105E scheme:

1. Decide if single, double, or multiple sampling is to be used.

2. Use Table T11.24 to obtain the appropriate MIL-STD-105E scheme operating ratio.

3. Use Table T11.21 to obtain the LTPD resulting from the use of the MIL-STD-105E scheme.

4. Use this operating ratio and a value of p2 equal to the LTPD to determine a matching
individual plan from Appendix Table T6.1.

For example, if MIL-STD-105E specifies Code F, 2.5% AQL, a matching individual sampling plan
must have R¼ 6.70 and LTPD¼ 12.2%, when the Poisson approximation to the binomial is used.
A single, double, or multiple plan may be selected. Application of Appendix Table T6.1 produces
the following possibilities using plans 2S, 2D, and 2M.

Sample Sample

Sample Size Ac Re Sample Size Ac Re

Single 1 44 2 3 Multiple 1 12 # 2
2 12 0 3
3 12 0 3

Double 1 28 0 3 4 12 1 4
2 28 3 4 5 12 2 4

6 12 3 5
7 12 4 5

Any of these plans will provide scheme performance protection equivalent to the MIL-STD-105E,
Code F, 2.5% AQL scheme. It should be noted that the average sample size for the MIL-STD-105E
scheme at the AQL is about 22, while the single-sampling plan to match the scheme has sample size
44. This illustrates the advantage of the use of the switching rules which are incorporated in MIL-
STD-105E. Also, use of the normal inspection plan alone, without the switching rules, would result
in an operating ratio of 10.96, and in considerably less consumer protection than that of the scheme
or of the plan derived above to match the scheme.

Appendix Table T11.25 may also be used in reverse to find an MIL-STD-105E sampling scheme
to match an individual sampling plan. The procedure is as follows:

1. Find the operating ratio of the individual plan.

2. Find the LTPD of the individual plan.

3. Locate the diagonal of Table T11.24 showing operating ratios just less than or equal to that of
the given plan.

4. On the corresponding diagonal in Table T11.21, find the sample size-code letter combination
which has the desired LTPD for the MIL-STD-105E scheme.

5. Use this MIL-STD-105E scheme, with the switching rules, in lieu of the individual plan.

For example, the plan n¼ 20, c¼ 2 has an operating ratio of 6.5 with 26.6% LTPD, using the Poisson
approximation to the binomial. Table T11.24 shows values of R close to 6.5 on the second diagonal.
The second diagonal of Table T11.21 gives LTPD¼ 19.4 for Code E, 4.0 AQL, which is closest to
that desired. Use of this code letter-AQL combination, with the switching rules, will give an average
sample size of about 15 at the AQL with the same scheme performance as the plan n¼ 20, c¼ 2.
� 2008 by Taylor & Francis Group, LLC.



Occasionally the acceptance criteria of an MIL-STD-105E plan must be altered to meet the
operating conditions. Suppose it is necessary to destructively sample 13 units under Code E, 1.0
AQL, normal inspection, from a shipment of 84 units randomly packed a dozen to a box. The units
are to be resold and it is desirable to reduce the sample size to 12 so that 7 full cartons will remain
after sampling. To assess the effect of a sample size of 12

1. The original normal plan from MIL-STD-105E is n¼ 13, c¼ 0.

2. The operating ratio of the normal plan is R¼ 44.9 with p1¼ .004 and p2¼ .177.

3. If sample size 12 is used with the same acceptance number, we have from Appendix Table T6.1

p1 ¼ :0513
12

¼ :004

and

p2 ¼ 2:303
12

¼ :192

If the slight degradation in consumer protection can be tolerated by the consumer, a switch to the
plan n¼ 12, c¼ 0 may be reasonable.

Thus, since matched MIL-STD-105E criteria are used in the Schilling–Johnson (1980) tables,
they can be employed to assess the effect of any changes from the nominal sample sizes given in that
standard to other values made necessary by operating conditions, or to compensate for such changes.
Individual sampling plans can also be derived to match MIL-STD-105E scheme performance for use
under conditions inwhich switching is difficult or impossible. These tables also provide unity values for
very low probability of acceptance for use in reliability, safety, and compliance sampling. Sufficient
values are given to allow the OC and ASN curves to be evaluated as necessary.

MIL-STD-105 Derivatives

MIL-STD-105A was issued in 1950 with subsequent minor changes in MIL-STD-105B (1958)
and MIL-STD-105C (1961). In 1963, a major revision was undertaken resulting in MIL-STD-105D.
With some editorial changes MIL-STD-105E was issued in 1989. Unfortunately, the U.S. Depart-
ment of Defense discontinued the series of military standards on February 27, 1995 with the
objective of utilizing the civilian standards as a cost savings. In doing so, they canceled the premier
acceptance sampling standard around the world.

Meanwhile other standards writing bodies developed spin-offs from the 105 series. Until the
discontinuation of MIL-STD-105E, these were largely simply copies, page for page, of the current
version of MIL-STD-105E. However, since the discontinuation of MIL-STD-105E, these civilian
standards have represented the 105 concept, keeping the probabilities of acceptance as close as
possible to 105E. These include American Society for Testing and Materials (ASTM) International,
the American Society for Quality (ASQ), the ANSI, and the ISO. Examples of these standards are as
follows.

ANSI=ASQ Standard Z1.4
It is an American national standard with direct lineage to MIL-STD-105E. It is recommended by

the U.S. Department of Defense as the replacement to MIL-STD-105E. It is best used in house and
in domestic transactions.
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ASTM International Standard E2234
It is an ASTM standard which maintains the MIL-STD-105E content as closely as possible. It is

intended to provide a source for use in conjunction with ASTM and other standards which directly
reference MIL-STD-105E. It is best used in testing in a laboratory environment and with method-
ology in support of other standards.

ISO Standard 2859-1
It is an ISO international standard (1974a, 1974b) which incorporates modifications of the original

MIL-STD-105 concepts which reflect the state of the art. It is best used in international trade.
ISO 2859-1 has undergone substantial modification from MIL-STD-105E, while ASTM E2234

and ANSI=ASQ Z1.4 have been subject to minor changes, none of which involved the tables central
to the operation of the system. Figure 11.9 summarizes some of these changes.

ISO has also developed a series of schemes in support of the AQL system in ISO 2859-1. These
include:

ISO 2859-1 sampling schemes indexed by acceptance quality limit (AQL) for lot-by-lot inspection
This is the ISO version of MIL-STD-105 and presents the basic tables and subsidiary matter for

the sampling system.

ISO 2859-2 sampling plans indexed by limiting quality (LQ) for isolated lot inspection
Procedures and tables are presented for sampling isolated lots.
Characteristics
Switch to
  tightened
Switch from
  tightened

Switch to reduced

Switch from
  reduced

Reduced table
gap
Discontinuation of
  inspection
Terminology

Defect
  classification

Arrows between
  Ac = 0 and Ac = 1

Double

Multiple

AQL

MIL-STD-105E
Two of five consecutive
  lots rejected

Five consecutive lots
  accepted
10 lots accepted and
  passes limit number
Lot rejected
Sample rejects in gap
  between Ac and Re
Gap between Ac
  and Re
Five lots rejected on
  tightened
Defect
Defective
Limiting quality

Critical
Major
Minor
Arrows only

Same as 105E

Seven stages

Acceptable quality
  level

ANSI/ASQ Z1.4
Two of five consecutive
  lots rejected

Five consecutive lots
  accepted
10 lots accepted and
  passes limit number
Lot rejected
Sample rejects in gap
  between Ac and Re
Gap between Ac
  and Re
Five lots rejected on
  tightened
Nonconformity
Nonconforming unit
Limiting quality

Group A
Group B
Group C
Arrows only

Same as 105E

Seven stages

Acceptance quality
  limit

ASTM E2234
Two of five consecutive
  lots rejected

Five consecutive lots
  accepted
10 lots accepted and
  passes limit number
Lot rejected
Sample rejects in gap
  between Ac and Re
Gap between Ac
  and Re
Five lots rejected on
  tightened
Defect
Defective
Limiting quality

Critical
Major
Minor
Arrows only

Same as 105E

Seven stages

Acceptance quality
  limit

ISO 2859-1
Two of five consecutive
  lots rejected

Five consecutive lots
  accepted
Complicated
  switching score >30
Lot rejected

Plans changed and
  gap eliminated
Five lots rejected on
  tightened
Nonconformity
Nonconforming item
Consumer’s risk
Quality
Class A
Class B
Class C
Arrows or fractional
  acceptance number
  plans with
  complicated 
  acceptance score
  when lot size varies
Some plans changed
  for better ASN
Changed to five
  stages
Acceptance quality
  limit

FIGURE 11.9: Differences between major AQL standards.
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ISO 2859-3 skip-lot sampling procedures
Skip-lot sampling procedures are presented to be used with ISO 2859-1.

ISO 2859-4 procedures for assessment of declared quality levels
This standard provides procedures, particularly useful in reviews and audits, for the assessment of

declared quality levels.

ISO 2859-5 system of sequential sampling plans indexed by acceptance quality limit (AQL) for lot
by lot inspection

Sequential sampling plans are given matching the plans of ISO 2859-1, which allow the 2859-1
system to be applied using the sequential plans.

ISO 2859-10 introduction to the ISO 2859 series of standards for sampling for inspection by attributes
This is a general introduction to the ISO 2859 series and provides insight into the application of

the plans in the series.
It should be noted that this series of standards is predicated on the concept of a flow of lots, with

the exception of Procedure A of ISO 2859-2. They assume a Type B sampling distribution utilizing
the binomial and Poisson distributions accordingly.

MIL-STD-1916 (1996) DOD preferred methods for acceptance of product
MIL-STD-1916 is not a derivative of MIL-STD-105. Indeed, it presents a unique approach

utilizing a combination of an evaluation of the quality management system, with the use of a
statistical sampling plan as an alternative. A matched set of c¼ 0 attributes, variables, and
continuous sampling schemes is given, to be used with a set of straightforward switching rules on
a flow of lots. MIL-STD-1916 is addressed in detail in Chapter 17.

Further Considerations

The background of MIL-STD-105E and its development out of the 105 series is given in an
excellent paper by Pabst (1963). It explains some of the intricacies of the system and its develop-
ment. The theory behind the structure of the MIL-STD-105E tables is well presented in a paper by
Hill (1973). A detailed explanation of the procedural aspects of the use of the system is given by
Hahn and Schilling (1975). An extensive and informative investigation of the properties of MIL-
STD-105E schemes is presented in a paper by Stephens and Larson (1967). Scheme properties are
also investigated by Schilling and Sheesley (1978), and measures of performance tabulated.

Based on his work with Torrey on continuous sampling plans, Dodge (1965) has pointed out
that the scheme OC curve resulting from the combination of two plans into a scheme using the
MIL-STD-105E normal-tightened (only) switching rules is easily determined. Consider a normal
plan N and tightened plan T so combined. Then, at a given proportion defective with associated
probabilities of acceptance PaN and PaT respectively, the system probability of acceptance is
determined by calculating

a ¼ 2� P4
aN

1� PaNð Þ 1� P4
aN

� �

b ¼ 1� P5
aT

1� PaTð ÞP5
aT

Then a=(aþ b) represents the proportion of the time the plan will be on normal inspection and
b=(aþ b) represents the proportion of time the plan will be on tightened inspection, so that
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Pa ¼ aPaN þ bPaT

aþ b

(Those familiar with CSP-2 will recognize: a¼ fv, b¼ u, i¼ 5, k¼ 4.)
For example, if under Code F, 2.5 AQL, the reduced procedure is not used, the scheme

probability of acceptance at the AQL may be determined from the plans

N: n ¼ 20 c ¼ 1 PaN ¼ :9118

T: n ¼ 32 c ¼ 1 PaT ¼ :8097

as

a ¼ 2� :91184

(1� :9118)(1� :91184)
¼ 48:05

b ¼ 1� :80975

(1� :8097):80975
¼ 9:844

Pa ¼ 48:05(:9118)þ 9:844(:8097)
48:05þ 9:844

¼ :894

Note that the Dodge formula gives scheme performance of MIL-STD-105E when only the normal
and tightened plans are used and reduced inspection is omitted.
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Problems

1. MIL-STD-105E 1.0% AQL is specified and a lot of 390 pieces is to be inspected. Find the
associated set of normal, tightened, and reduced plans for

a. Single sampling

b. Double sampling

c. Multiple sampling

2. The exact AOQL for the scheme represented in Problem 1 is 0.93%. What is the AOQL of the
constituent?

a. Normal plan

b. Tightened plan

What does this suggest as a rough measure of the AOQL of the tightened plan? Of the
scheme?

3. What is the LQ for Pa¼ 10% for the tightened and normal plans of Problem 1?

a. Percent defective

b. Defects per 100 units

4. Which type of plan (single. double, multiple) gives minimum average sample size at the AQL
for the tightened plan of Problem 1?

5. What action should be taken if, after a switch, the sixth lot is the first lot rejected (and the switch
was to)?

a. Normal inspection

b. Tightened inspection

c. Reduced inspection
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6. For the scheme, Code F, 4.0 AQL, what are the following properties of the scheme for defects
per 100 units?

a. Probability of acceptance at the AQL

b. b. ASN at the AQL

c. AOQL

d. Average total inspection for lots of size 120 at the AQL

7. What is the probability of having a succession of 10 lots rejected on tightened inspection after
a switch is made if the process is running?

a. The indifference quality level of the tightened plan

b. The LTPD of the tightened plan

8. The reduced plan for Code C, 10% AQL is n¼ 2, Ac¼ 0, Re¼ 2. What is the probability of
simultaneously accepting a lot but switching back to normal inspection if the producer’s
process is running at 10% defective?

9. The sample sizes in MIL-STD-105E are in a geometric progression with ratio 101=5. What
would be the next single sample size after S in the tightened table if Code T were added? What
would be the acceptance number for Code T and 0.015 AQL? What would be the approximate
AOQL?

10. A contract requires MIL-STD-105E, 4.0 AQL. A single isolated lot of size N¼ 140 is to be
inspected. Derive a single-sampling plan which will match the performance of the MIL-STD-
105E scheme specified by the contract. What MIL-STD-105E scheme will afford performance
equivalent to the plan n¼ 14, c¼ 3?
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Chapter 12

Variables Sampling Schemes

Sampling schemes are not restricted to attributes. They may be composed of variables plans as
well. Thus, it was that Military Standard 414 (MIL-STD-414) was issued on June 11, 1957. It has
since become a classic companion standard to MIL-STD-105 and has been used throughout the
world.

The protection afforded by this standard is roughly matched to MIL-STD-105A. However,
modifications in the tables incorporated in the MIL-STD-105D version upset the match somewhat.
Commander Gascoine of the British Navy showed how to restore the balance and his simple method
has been incorporated into civilian sampling systems. The MIL-STD-414 sampling system will be
discussed in depth here as an example of a classic variables system, and its relation to other systems
will be indicated.

On April 1, 1996 the Department of Defense reentered standards development with MIL-STD-
1916 which contains variables, attributes, and continuous sampling together with process control. It
is presented in depth in Chapter 17 and will also be discussed here.

MIL-STD-414

Unlike MIL-STD-105E, MIL-STD-414 is a sampling system utilizing variables inspection. It was
devised by the military, as a consumer, to be used to assess the percent defective beyond contractual
limits. Since it is a sampling system, it incorporates switching rules to move from normal to
tightened or reduced inspection and return to achieve consumer protection. These switching rules
must be used if the standard is to be properly applied. The switching rules differ somewhat from
those used in MIL-STD-105E. The standard assumes underlying normality of the distribution of the
measurements to which it is applied and is intended to be used with a steady stream of lots.

MIL-STD-414 allows for the use of three alternative measures of variability: known standard
deviation (s), estimated standard deviation (s), or average range of subsamples of five (R). If the
variability of the process producing the product is known and stable, it is profitable to use s. The
choice between s and R when s is unknown is an economic one. The range requires larger sample
sizes but is easier to compute and understand. Operating characteristic (OC) curves given in
the standard are based on the use of s, the s and R plans having been matched as closely as possible
to those using s.

The basic statistic to be calculated in applying MIL-STD-414 may be considered to be the
standardized distance from the sample mean to the specification limit. For an upper specification
limit U, when s is known

tU ¼ U � X

s
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When s is unknown

tU ¼ U � X

s

or

tU ¼ U � X
�R

is substituted depending on the measure of variability chosen. A comparison of tU to the acceptance
constant k will show whether the sample mean is or is not in the region of acceptance.

MIL-STD-414 offers an alternate procedure to use the acceptance constant k; the M method
discussed in Chapter 10. This involves using a statistic similar to those above to estimate proportion
defective in the lot and is referred to in the standard as Form 2. The k method, involving a simple
comparison of t to k to determine the acceptability, is called Form 1. Form 2 is the preferred
procedure since the switching rules cannot be applied unless the fraction defective p̂ of each lot is
estimated from the sample.

MIL-STD-414 is complex. It consists of sections indexed by measure of variability, type of
specification (single or double) and form number of the acceptance procedure. Only Form 2 is
officially available for the case of double specification limits. The standard’s structure is shown in
Figure 12.1.

Application of MIL-STD-414 follows the pattern of MIL-STD-105E. Note that MIL-STD-414
and MIL-STD-105E plans are not matched. The classification of defects used in MIL-STD-414 is
the same as that used in MIL-STD-105E: critical, major, and minor. Sample sizes are determined
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FIGURE 12.1: Content of MIL-STD-414. (Asterisk [*] indicates tables for estimating p and
criteria for tightened and reduced inspection.) (Reprinted from Schilling, E.G., Qual. Prog., 7(5),
19, 1974. With permission.)
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from lot size and acceptable quality level (AQL) and, after choosing the measure of variability to be
used and the form of acceptance procedure, appropriate acceptance constants are obtained from the
standard.

MIL-STD-414 has a liberal supply of excellent examples. The reader should refer to the standard
for detailed numerical examples of its application.

The necessary assumption of a known, stable underlying normal distribution of individual
measurements inherent in the MIL-STD-414 variables plans is a serious limitation in their applica-
tion. Use of MIL-STD-414 plans without investigating the true nature of the underlying distribution
is foolhardy, for the results can be very bad indeed.

Nonetheless, sensible evaluation of the nature of the underlying distribution and implementation
of prudent procedures to insure stability can provide sufficient justification for use of MIL-STD-
414. This is particularly true for in-process and final inspection where the distribution of the process
producing the product is not beyond the control or investigation of those applying the plan. The
rewards for painstaking, thorough analysis are great in terms of sample size and worthwhile
information on the process involved.

Operation

Since it is a sampling system, proper use of MIL-STD-414 requires diligent use of the switching
rules. It is with this procedure that protection is afforded by both the producer and the consumer
through tightening and relaxing the severity of inspection consistent with the demonstrated
performance of the producer. The operation of the switching rules is shown schematically in
Figure 12.2.

An MIL-STD-414 sampling scheme always starts on normal inspection, which is continued until
a switch to tightened or reduced inspection is warranted. Normal inspection is reinstituted when the
conditions justifying tightened or reduced inspection can be shown to apply no longer. The
switching rules of MIL-STD-414 are such that the probability of switching from normal to tightened
or reduced inspection, respectively, is <.005 when quality is running at the level of the AQL.

An important part of the switching procedure is the estimated percent defective in each lot,
obtained using the M method of Chapter 10 from tables given as part of Form 2 of the standard.
The estimated process average, which is the mean of these percents defective, is also employed
in switching.

A switch to tightened inspection involves changing the acceptance criterion to the next lower
AQL category, while retaining the sample size associated with the code letter involved. This leads to
decreased consumer’s risk at the expense of an increase in the producer’s risk. Tightened inspection
is instituted under the following conditions:

1. More than T of the last 10 lots (or such other number of lots as designated) have estimates of
percent defective, obtained through use of the M method (Form 2), exceeding the AQL.

2. The process average obtained from the estimated percents defective of the last 10 lots (or such
other number of lots as designated) is greater than the AQL.

Values of T are given in each of the sections (see Figure 12.1) for application against the last 5, 10,
or 15 lots, which has been designated. If the sample size code letter is not the same for all the
previous lots, the table of T is entered using the code letter of the smallest sample size involved. As
an example MIL-STD-414 Table B.6, which gives T values for the standard deviation section, is
presented as Appendix Table T12.1.
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FIGURE 12.2: MIL-STD-414 normal-tightened-reduced. (Reprinted from Schilling, E.G., Qual.
Prog., 7(5), 18, 1974. With permission.)
Normal inspection is reinstated from tightened when

The estimated process average of the last 10 lots (or such other number of lots as
designated) is equal to or less than the AQL.

A switch to reduced inspection involves changing both the sample size and the acceptance criteria to
obtain a reduction in the sample size. This reduction is typically around 40%. The producer’s risk is
decreased slightly thereby while the consumer’s risk is increased. Reduced inspection is instituted when

1. Production is at a steady rate.

2. The preceding 10 lots (or such other number of lots as designed) have been accepted
under normal inspection.
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3. The estimated percent defective for each of the preceding 10 lots (or such other number of lots
as designated) is less than the applicable lower limit number tabulated. Or, for certain plans
having small sample size and low AQL, the estimated lot percent defective must be zero for a
specified number of consecutive lots.

Values of the lower limit number (or number of consecutive lots) are given in each of the sections
(see Figure 12.1) for application against the preceding 5, 10, or 15 lots, whichever has been
designated. As an example, MIL-STD-414 Table B.7 showing limit numbers for reduced inspection
is presented in Appendix Table T12.2.

Normal inspection is reinstated from reduced when

1. A lot is rejected.

2. The estimated process average from the last 10 lots (or such other number of lots as is
designated) is greater than the AQL.

3. Production becomes irregular or delayed.

4. Other conditions warrant that normal inspection should be instituted.

These switching rules are somewhat more complicated than those of MIL-STD-105E and are
patterned after those used in MIL-STD-105A. Nevertheless, their use is economically effective in
reducing sample size with increased protection over that which could be achieved by use of single
plans alone.

The process average is defined as the average percent defective, based upon a group of lots
submitted for original inspection. It is constructed using estimates of percent defective from a
specific number of preceding lots from first submissions only. Product known to have been
produced under atypical conditions is excluded from the estimated process average. Normally, it
is computed as the arithmetic mean of the estimated percents defective from the last 10 lots unless
some other number of lots have previously been designated.

Selection

The selection of a set of plans for normal, tightened, and reduced inspection is more complicated
in MIL-STD-414 than in MIL-STD-105E in that MIL-STD-414 offers complete sets of plans and
procedures for each of three methods for estimated variability. In fact, MIL-STD-414 could easily
be separated into three self-contained standards each based on its own measure of variability, ŝ. As
seen in Figure 12.1, they are

Standard deviation method (Section B)

ŝ ¼ s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
(Xi � X)2

n� 1

v
u
u
u
t

Range method (Section C)

ŝ ¼
�R

d*2
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Variability known (Section D)

ŝ ¼ s

Section A applies to each measure of variability and presents a general description of the sampling
plans, gives AQL ranges to be covered in the standard, supplies sample size code letters, and
presents OC curves.

Obtaining a plan from MIL-STD-414 involves more than selection of a measure of variability,
however. The sequence for selection of a set of plans is given in Figure 12.3.

First, the underlying distribution of measurements to which the plan is to be applied should be
checked for normality. This involves probability plots, statistical goodness-of-fit tests, control
charts, and other statistical procedures as appropriate. MIL-STD-414 assumes a normal distribution
of measurements and this assumption needs to be constantly verified during application of the
standard, because the central limit theorem does not apply.

As in application of MIL-STD-105E, the lot size and AQL must be determined. If the AQL
chosen is not one of those used to index MIL-STD-414 plans, Table A.1 of Section A allows for
Start

Check normality of
individual measurements

Determine lot
size and AQL

Determine form
of acceptance procedure

Form 1
(k method)

Decide measure
of variability

Select plan
as in

section D

s s s sR R

Select plan
as in

section B

Select plan
as in

section C

Check OC curves to
insure protection

is as desired

Apply plan

Apply
switching

rules

Select plan
as in

section D

Select plan
as in

section B

Select plan
as in

section C

Decide measure
of variability

Form 2
(M method)

FIGURE 12.3: Check sequence for selecting a plan from MIL-STD-414. (Reprinted from
Juran, J.M., Quality Control Handbook, 5th ed., McGraw-Hill, New York, 1999. With permission;
Section 25, Sampling by Variables by E.G. Schilling, p. 25–15.)
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conversion to one of the specified values. Fortunately, the AQL values given in MIL-STD-414 are
the same as those used in MIL-STD-105E. As in MIL-STD-105E, lot size is used to determine the
sample size code letter using Table A.2 of Section A. Five inspection levels are given. Since
assignment of code letters to lot size ranges is primarily based on economic and other nonstatistical
considerations in Type B sampling situations, the alternative inspection levels in both systems
provide some flexibility in this regard. Unlike MIL-STD-105E, inspection level IV is normally used
unless some other inspection level is specified. Also the lot size ranges are not the same in the two
standards. Tables A.1 and A.2 of MIL-STD-414 are reproduced here in the Appendix as Tables
T12.3 and T12.4, respectively.

The choice between the k method (Form 1) and the M method (Form 2) is an important initial
decision. These methods are described in Chapter 10. For single specification limits, Form 1 is more
straightforward. Values of the maximum standard deviation (MSD) and maximum allowable range
(MAR) are provided in the standard for use of the k method with double specification limits. These
are useful when a plan is to be plucked out of the standard to be used singly and not as part of an
MIL-STD-414 scheme. However, MIL-STD-414 recognizes only the M method (Form 2) when the
standard is to be applied to double specification limits. Furthermore, the switching rules cannot be
used unless Form 2 tables and procedures are used. Therefore, Form 2 is to be recommended for use
with an MIL-STD-414 scheme if only for reasons of economy of effort. Form 1 is easier to explain
and administer, however, and the associated sampling plans are recommended if individual plans
are to be taken from the standard and used not as MIL-STD-414, but separately as individual
variables plans for proportion nonconforming.

It is, of course, necessary to select a measure of variability to be used. If control charts have
confirmed the existence and consistency of a known standard deviation, variability known (Section
D) will be the most economic source of sampling plans. If the standard deviation is unknown (but
the distribution shape consistently stays normal), plans using the standard deviation method (Section
B) or the range method (Section C) may be chosen. The range plans are easier to explain, calculate,
and understand than those using sample standard deviation but are also less efficient. Calculators
and the computers have facilitated the computation of the standard deviation. The choice should be
made in keeping with the sampling situation and the competence of the inspection personnel.

Having made these decisions, the specific set of normal, tightened, and reduced plans is selected
from the standard. Vertical arrows shown in the table are used in the same manner as those in MIL-
STD-105E. Figure 12.4 from Schilling (1974) shows how the plans are implemented once they have
been selected. The sample size and acceptance criteria are obtained from appropriate tables. The
statistics associated with a specific plan are then computed. These are listed in Figure 12.4 and are
explained by worked examples in each section of MIL-STD-414. The statistic is compared directly
to the acceptance criteria in the manner of the k method when using Form 1. Form 2 requires
estimation of the percent defective in the lot to obtain the percent estimated to be above an upper
specification limit pU or below a lower limit pL. This is done from special tables. The total estimated
percent defective is then compared to M taken from the Form 2 table for acceptance or rejection
when applied to double specification limits.

Detailed examples of the selection of plans from MIL-STD-414 and their operation are given in
later sections of this chapter.

Measures

Only the OC curves are given as measures of the plans contained in MIL-STD-414. These are for
individual plans and not for the scheme as a whole. Since the plans for the standard deviation, range,
and variability known methods are matched, and the k and M methods are equivalent for single
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FIGURE 12.4: Application of MIL-STD-414. (Reprinted from Schilling, E.G., Qual. Prog., 7(5),
20, 1974. With permission.)
specification limits, only one set of OC curves is given. These are for the standard deviation method.
The others are assumed sufficiently well matched to be represented by those shown. The OC curve
of the plan Code F, 2.5% AQL is shown in Figure 12.5.

The OC curves of MIL-STD-414 may be used to select individual plans to be used outside the
MIL-STD-414 sampling system. In this case, the OC curve desired is found and the acceptance
criteria determined from the corresponding table of normal plans. In no sense should the resulting
plan be referred to as an MIL-STD-414 plan, since MIL-STD-414 implies full use of the sampling
system based on the switching rules. Nevertheless, it is a natural compendium of variables plans for
proportion nonconforming and can be used to effectively select individual plans for special applications.

Implementation of Form 2

Implementation of MIL-STD-414 is best shown by example. Since Form 2, the M method, is the
preferred procedure in that the switching rules are based on its estimates, it will be presented first.
Also, the standard deviation method is used since the range method and variability known involve
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FIGURE 12.5: MIL-STD-414 OC curve for Code F, standard deviation method. (MIL-STD-414,
Table A.3, p. 11.)
only slight modifications of the procedure (see Figure 12.4). Double specification limits are shown
since the single specification limit procedure follows from that given. Consider the following
example, adapted from MIL-STD-414 (p. 69).

The specifications for electrical resistance of a certain electrical component is 650.0� 30V. A lot
of 100 items is submitted for inspection with AQL¼ 2.5% for the upper and AQL¼ 1% for the
lower specification limits. Suppose the values of sample resistances are as follows: 643, 651, 619,
627, 658, 670, 673, 641, 638, and 650.

Assume that the electrical resistances of this device have been shown to be normally distributed.
In fact, these data were plotted on normal probability paper in Chapter 3. The sample size code letter
table (Table T12.4) shows Code F to apply under inspection level IV, which is used unless some
other level is specified. The master table for normal and tightened inspection (Table T12.5) and the
master table for reduced inspection (Table T12.6) give the following criteria for the plans involved
in the MIL-STD-414 sampling scheme

1% AQL 2.5% AQL

Tightened n¼ 10, M¼ 2.17 n¼ 10, M¼ 4.77
Normal n¼ 10, M¼ 3.26 n¼ 10, M¼ 7.29
Reduced n¼ 4, M¼ 5.50 n¼ 4, M¼ 16.45

Since the scheme starts on normal inspection, we will illustrate application of the normal plan.
We find

X ¼ 647 s ¼ 17:2

The quality indices are

QL ¼ (X � L)

s
¼ 647� 620

17:2
¼ 1:57

QU ¼ (U � X)

s
¼ 680� 647

17:2
¼ 1:92
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Using the table for estimating the lot percent defective (Table T12.7), the values of QL and QU and
the sample size are cross tabulated to give estimates of percent defective of

Lower specification: pL ¼ 4:92

Upper specification: pU ¼ 1:62

Overall: p ¼ pL þ pU ¼ 6:54

These estimates are compared against the respective critical values of M, to obtain

pL ¼ 4:92 > ML ¼ 3:26 Reject

pU ¼ 1:62 < MU ¼ 7:29 Accept

p ¼ 6:54 < MU ¼ 7:29 Accept

The lot is rejected since the lower estimated percent defective does not meet the acceptance criterion
M. When there are different AQLs for the lower and upper specifications, it is necessary to test the
upper and lower estimated percent defective separately. Furthermore, the total estimated percent
defective p is tested against the value of M associated with the larger AQL.

These estimates of percent defective are slightly smaller than those obtained using the probability
plot of Chapter 4, due to estimation by the minimum variance-unbiased technique. This procedure is
somewhat more complicated than the procedure required if both specification limits had the same
AQL. Suppose the AQL of 1.0% applied to both specification limits. Then the acceptance procedure
would simply be to compute the total estimated percent defective and compare it to the value of M
for 1.0% AQL. That is

p ¼ 6:54 > M ¼ 3:26

and the lot would be rejected. The OC curve for such a plan will be found in Figure 12.5 labeled
1.0% AQL. The OC curves for different AQLs on the lower and upper specification limits are not
given since they would depend upon the split of percent defective between the specifications.

Having rejected the lot, the estimated value of p¼ 6.54 would be entered into the process average
to be utilized in the switching procedure.

Implementation of Form 1

As an illustration of Form 1, a single specification limit will be used, since the standard does not
advocate use of the k method with double specification limits. However, if a Form 1 plan is to be
used with double specification limits, the MSD can be found from the table of values of F for MSD
(Table T12.10). It gives values of F which are used to compute the MSD as

MSD ¼ F(U � L)

where U and L are the upper and lower specification limits. The plan is applied to each specification
limit separately if s � MSD. Of course the lot is rejected if s>MSD.

Consider the following example, adapted from MIL-STD-414 (p. 69).
The specification for minimum electrical resistance of a certain electrical component is 620 V.

A lot of 100 items is submitted for inspection with an AQL¼ 1.0%. Suppose the values of sample
resistances are as follows: 643, 651, 619, 627, 658, 670, 673, 641, 638, and 650.
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Assume that the electrical resistances of this component have been shown to be normally
distributed. The sample size code letter table (Table T12.4) shows Code F to apply using Inspection
Level IV, which is used unless some other level is specified. The master tables for normal and
tightened inspection (Table T12.8) and the master table for reduced inspection (Table T12.9) give
the following criteria for the plans involved in the MIL-STD-414 sampling scheme, Form 1.

Tightened: n ¼ 10, k ¼ 1:84

Normal: n ¼ 10, k ¼ 1:72

Reduced: n ¼ 4, k ¼ 1:34

The switching rules begin with normal inspection, and so the normal inspection plan will be
illustrated here. In application of the normal plan, we have

X ¼ 647 s ¼ 17:2

tL ¼ (X � L)

s
¼ 647� 620

17:2
¼ 1:57

and since 1.57< 1.72, the lot is rejected. The MSD is, of course, not used with single specifica-
tion limits.

To use the switching rules, the estimated percent defective must be determined. This is done
using the Form 2 criteria and tables under the M method. From the previous example of imple-
mentation of Form 2, we have pL¼ 4.92% with the same data. This is the value that would be
entered into the computations of the process average and compared to appropriate criteria for
application of the switching rules.

Implementation of Plans for Range and Variability Known

Implementation of Forms 1 and 2 under the range method or variability known is very much like
that under the standard deviation method. The principle change is in the statistic to be compared to
the acceptance criteria. For Form 1, the statistic remains essentially the same as that for the standard
deviation method with R or s substituted for s (see Figure 12.4). When Form 1 is to be used with
double specification limits, the MAR, which serves the same purpose as the MSD, is calculated from
f factors given in the standard to obtain

MAR ¼ f (U � L)

in a manner similar to the procedure used with s. For Form 2, the statistic is changed by the addition
of a constant so that R=c or s=v is substituted for s (see Figure 12.4). Here

c ¼ d*2 v ¼
ffiffiffiffiffiffiffiffiffiffiffi
n

n� 1

r

where d*2 is the adjusted d2 factor developed by Duncan (1955). This is necessary in order to obtain
the minimum variance unbiased estimate of p characteristic of the M method.
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In all range plans, R is the average range of subsamples of 5 in the sample of n. Units are assigned
to the subsamples in the order in which they are drawn (assuming random sampling). Naturally, for
small samples not divisible by 5 the range of the full sample is used (i.e., 3, 4, and 7).

Aside from these changes, the procedures for implementation of plans for the three measures are
essentially the same.

Match between MIL-STD-414 and MIL-STD-105E

In 1976, the American National Standards Institute (ANSI) Committee Z-1 on Quality Assurance
recommended that a revision of the ANSI version of MIL-STD-414 be made incorporating some of
the suggestions made by Gascoigne (1976) resulting from his work on British Defence Standard
(05-30=1) and with the International Organization for Standardization (ISO). Principal among these
was a method for adjusting the code letter of the ANSI version of MIL-STD-414 to make its OC
curves roughly match those of the ANSI version of MIL-STD-105D (ANSI Z1.4 1971) at the
adjusted code letter and AQL. Revision of the ANSI version of MIL-STD-414 (ANSI Z1.9) was
accomplished by the American Society for Quality Control Standards Group and it now appears as
ANSI Z1.9 (2003). Table 12.1 shows the match between the revised ANSI Z1.9 (2003) code letter,
the MIL-STD-414 code letter, and the corresponding code letter of MIL-STD-105D. (A comparison
with MIL-STD-105E would be identical.) Plans with these code letters are roughly matched and
will allow switching between variables and attributes plans within the code letters shown at a given
AQL. To preserve the match, MIL-STD-414 AQLs 0.04, 0.065, and 15.00 should not be used and
were dropped from ANSI Z1.9 (2003). For example, MIL-STD-105D, Code J, 1.5 AQL is roughly
matched to MIL-STD-414, Code K, 1.5 AQL which matches ANSI Z1.9 (2003), Code J, 1.5 AQL.

Other changes in ANSI Z1.9 (2003) from the earlier version identical to MIL-STD-414 included
an update of terminology and changes in the switching rules, inspection levels and other features to
TABLE 12.1: Matching the lettersa.

MIL-STD-105D
(ANSI Z1.4 1971) MIL-STD-414 ANSI Z1.9 (2003)
Code Letter Code Letter Code Letter

B B B
C C C
D D D
E E E
F F F
G G G
H H H
H I I
J K J
K M K
L N L
M O M
N P N
P Q P
a Delete MIL-STD-414 AQLs: 0.04, 0.065, 15.00.
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match MIL-STD-105D. Standards Z1.4 and Z1.9 may be obtained from the American Society
for Quality (ASQ). Schilling and Sheesley (1984) have addressed scheme properties of the
variables standard ANSI=ASQ Z1.9, producing tables patterned after those of Chapter 11. Their
use is identical.

Conversion of MIL-STD-414 to ANSI=ASQ Z1.9

By following the method of Commander Gascoine, the tables of MIL-STD-414 are easily
converted into the tables of ANSI=ASQ Z1.9. The procedure is as follows:

1. Eliminate the MIL-STD-414 rows corresponding to Codes J and K, and reletter the remaining
code letters so that MIL-STD-414 code letters K, M, N, O, P, and Q become J, K, L, M, N,
and P.

2. Eliminate the columns corresponding to AQLs 0.04, 0.065, and 15.00.

3. Use the resulting table with the ANSI=ASQ Z1.4 switching rules.

This is the original procedure used to produce the ANSI=ASQ Z1.9 tables in 1980. It should be
noted that a few of the values are slightly off as the result of recomputation over the years, but they
are so slight as to be of little consequence in practical application. The match with MIL-STD-105E
is quite good as will be seen in the tables of differences contained in Section E of the ANSI=ASQ
Z1.9 tables. Figure 12.6 demonstrates this change.

MIL-STD-414 Derivatives

MIL-STD-414 was issued on June 11, 1957 and has not undergone any major changes since.
However, this classic standard was the precursor of several derivative standards, most notably
ANSI=ASQ Z1.9 and ISO 3951-1.

ANSI=ASQ Z1.9

A United States national standard, ANSI=ASQ Z1.9 represents an effort to unify variables and
attributes sampling systems by providing a reasonable match between a modified MIL-STD-414
and MIL-STD-105. This was done using the Gascoine technique. Other changes included making
the inspection levels coincide between the two standards and adopting the switching rules and lot
size ranges of MIL-STD-105. Other editorial changes were made as appropriate. ANSI=ASQ Z1.9,
then, is a companion standard to the ANSI=ASQ Z1.4 attributes standard. Given the lot size and
AQL, it is possible to move between the two standards with the same code letter and AQL.

The procedures and structure of ANSI=ASQ Z1.9 are essentially the same as for MIL-STD-414.
The excellent set of examples in MIL-STD-414 has been retained and will lead the user through
application of the Z1.9 standard. The ANSI=ASQ Z1.9 standard is an excellent vehicle for in-house
use and stands as the national standard to be employed internally to the United States.
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FIGURE 12.6: Conversion of Table B.1 in MIL-STD-414 to create the corresponding table in
ANSI=ASQ Z1.9.
ISO 3951-1

Part 1 of a set of five variables standards, ISO 3951-1 is the international version of MIL-STD-414.
Early versions were close to ANSI=ASQ Z1.9. In 2005, the standard underwent a major revision,
including adjustment of the tables to produce plans more closely matched to the plans of ISO 2859-1.
At that time, the range method was eliminated from the standard.

This standard is unique in its approach to variables plans in that it includes graphical acceptance
curves of the form shown in Chapter 10. The axes of the curves are converted to (X,s) and the
inspector simply plots X and s on the curve to determine if it is in the region of acceptance or
rejection. Given point A on the x axis and point B on the y axis, the transformations are

s ¼ a(U � L)

X ¼ b(U � L)þ L

A comparison of the procedure for ANSI=ASQ Z1.9 with ISO 3951-1 is shown in Table 12.2. Note
that ISO 3951-1 does not carry the M method used in ANSI=ASQ Z1.9, and uses the k method
essentially for single specification limits and the graphical technique for double specification limits.
ISO 3951-1 is best used in international trade.
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TABLE 12.2: Procedure and application of ANSI=ASQ Z1.9 and ISO 3951-1.

Z1.9 (MIL-STD-414) ISO 3951-1

Double Specifications

STEP Section Form 1 Form 2 Section Single Specification Separate AQLs Combined AQL

Preparatory — Obtain k and n
from appropriate
tables

Obtain M and n
from appropriate
tables

Section 14 Obtain k and n
from appropriate
tables

Obtain k and n
from appropriate
tables

Obtain appropriate
acceptance curvea

Determine
criteria

Section B (s)
zU ¼ U � �X

s

zL ¼
�X � L

s

QU ¼ U � �X

s

QL ¼
�X � L

s

Section 15
QU ¼ U � �X

s

QL ¼
�X � L

s

Plot (s,X) and
compare to

�XU ¼ U � kUs
�XL ¼ Lþ kLs

Reject if s>
MSD¼ f(U� L)
otherwise, plot

s
U�L ,

�X�L
U�L

� �
on

diagram
Section C (R) zU ¼ U � �X

�R

zL ¼
�X � L
�R

QU ¼ (U � �X)
�R

QL ¼ (�X � L)
�R

— — — —

Section D (s) zU ¼ U � �X

s

zL ¼
�X � L

s

QU ¼ (U � �X)vc

s

QL ¼ (�X � L)v

s

Section 16 QU ¼ U � �X

s

QL ¼
�X � L

s

Compare X to

�XU ¼ U � kUs
�XL ¼ Lþ kLs

Use separate
AQL procedure

Estimation — — Enter table with n
and QU or QL to
get pU or pL

— — — —

Action Single
specification

Accept if zU � k
or zL � k

Accept if pU � M
or pL � M

Single
specification

Accept if QU � k
or QL � k

Accept if X � XU

or X � XL

—

Double
specification

Accept ifb zU � k
and zL � k and
s � MSD
or R �MAR

Accept if
pUþ pL � M

Double
specification

Accept only
if QU � k
or QL � k

Separate AQL’s:
Accept only if
XL � X � XU

Accept if point
plotted is inside
diagram

a Special procedure is used for sample size 3 or 4.
b Not official procedure.
c Scale factor; v ¼ ffiffiffiffiffiffi

n
n�1

p
:
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ISO has also developed a series of schemes in support of the AQL system in ISO 3951-1 and
patterned after the ISO 2859 series. These include:

ISO 3951-1 Specification for single sampling plans indexed by acceptance quality limit (AQL) for
lot-by-lot inspection of a single quality characteristic and a single AQL

This is the ISO version of MIL-STD-414 and ANSI=ASQ Z1.9 and provides the basic tables and
subsidiary matter for the sampling system.

ISO 3951-2 General specification for single sampling plans indexed by acceptance quality limit
(AQL) for lot-by-lot inspection of independent quality characteristics

This is a complex standard containing univariate and multivariate procedures addressing circum-
stances not covered by ISO 3951-1 for both the variability known and unknown. The multivariate
methods presented are for independent quality characteristics.

ISO 3951-3 Double sampling schemes indexed by acceptance quality limit (AQL) for lot-by-lot
inspection

This standard is complementary to the double sampling plans of ISO 2859-1 and addresses
circumstances not covered there. It is quite complicated and includes both univariate and multivari-
ate methods for independent quality characteristics.

ISO 3951-4 Procedures for assessment of declared quality levels
The plans presented in this standard have been matched to those of ISO 2859-4. It is the variables

analog of that standard. Note that this is a single test and does not involve a sampling system as do
the other parts of ISO 3951.

ISO 3951-5 Sequential sampling plans indexed by acceptance quality limit (AQL) for inspection by
variables (known standard deviation)

This standard presents variables sequential sampling plans matched to the attributes sequential
plans of the ISO 2859-5 standard. It takes full advantage of the economics of sequential variables
plans in terms of minimal sample size.

As in the attributes plans, with the exception of ISO 3951-4, the ISO 3951 series is primarily intended
to be usedwith a continuing series of lots, utilizing the switching rules as prescribed. The assumptions of
variables sampling should be carefully considered in any application of variables plans.

Further Considerations

An excellent description of the theory behind MIL-STD-414 has been given by Lieberman and
Resnikoff (1955) in the Journal of the American Statistical Association. Much of this material was
later presented in a detailed technical report onMIL-STD-414 published by the Assistant Secretary of
Defense (1958). These works give a detailed technical description of the background of the standard.
A classic review of MIL-STD-414 was undertaken by Kao (1971) and appears in the Journal of
Quality Technology. In a two part series, Duncan (1975) and Bender (1975) described the history and
matching of MIL-STD-414 to other national and international standards including MIL-STD-105D.
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Problems

1. MIL-STD-414, 1.0% AQL is specified and a lot of 390 pieces is to be inspected. Find the
associated set of single-sided Form 1 normal, tightened, and reduced plans when the standard
deviation is unknown and estimated by s.

2. If the upper specification limit was 130, determine the acceptability of a lot for the plans of
Problem 1 if X¼ 110, s¼ 10.

3. MIL-STD-414, 1.0% AQL is specified and a lot of 390 pieces is to be inspected. Find the
associated set of two-sided Form 2 normal, tightened, and reduced plans when the standard
deviation is unknown and estimated by s.

4. If the upper and lower specification limits are 130 and 90, respectively, determine the
acceptance under the plans found in Problem 3 if X¼ 110, s¼ 10.

5. If Form 1 is to be used with the double specification limits of Problem 4, what is the MSD?
Would s¼ 10 pass the MSD?

6. What is the LTPD of the plan Code F, 0.4 AQL? What is its indifference quality?

7. What action should be taken under Code G, 4.0 AQL normal inspection if 7 of 10 lots have
estimated percent defective greater than the AQL and the process average of the last 10 lots
exceeds the AQL? What would be the minimum possible process average under these
circumstances? Is it possible to switch to reduced inspection under these conditions?
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8. What MIL-STD-414 plan would roughly match MIL-STD-105D, Code K, 0.65 AQL?

9. Suppose range plans are substituted for the standard deviation plans of Problem 4. The criteria
for the normal range plan is n¼ 30, M¼ 2.81, and c¼ 2.353. Compute QU when X¼ 110,
R¼ 23.53. If the corresponding pU¼ 1.88, should the lot be accepted?

10. Suppose the standard deviation was known and the inspection of Problem 4 was to be applied.
The criteria for the normal standard deviation known plan is n¼ 9,M¼ 2.59, and v¼ 1.061. If
X¼ 110, s¼ 10.61, should the lot be accepted? Use upper tail percentages of the normal
distribution as estimates of pU and pL.
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Chapter 13

Special Plans and Procedures

A variety of plans and procedures have been developed for special sampling situations involving
both measurements and attributes. Only a few of them can be shown here. Each is tailored to do
a specific job under prescribed circumstances. They range from a simplified variables approach
involving no calculations to a more technically complicated combination of variables and attri-
butes sampling in a so-called mixed plan. They provide useful options in the application of
acceptance sampling plans to unique sampling situations.

No-Calc Plans

Since variables plans for percent nonconforming usually assume an underlying normal distri-
bution of measurements, probability plots would seem to be a natural tool for acceptance sampling.
Such plots can provide a visual check on the normality of the distribution involved, while at the
same time affording an opportunity to estimate the fraction nonconforming in the lot (see Chapter
3). Probability plots can also be used directly for lot acceptance. Such a plan has been developed by
Chernoff and Lieberman (1957). It assumes underlying normality of individual measurements.
Although its results are approximate, it requires no calculations and can be used in inspection
situations where mathematical calculation is out of the question. The authors of the plan point out
(see section ‘‘Lot plot plans’’) that ‘‘No-Calc is not a replacement for the usual variables procedures
when a contract between two parties exists and calls for inspection by variables.’’ Nevertheless, it is
particularly useful for internal in-process acceptance inspections and the like.

The No-Calc procedure is matched to MIL-STD-414 (United States Department of Defense,
1957). Plans are identified by code letter and AQL. The operating characteristic (OC) curves of
MIL-STD-414 approximate those of No-Calc and can be used to select a plan. Sample sizes are, of
course, limited to the MIL-STD-414 sequence which appears in the No-Calc tables. For a given
sample size, the No-Calc procedure is as follows:

1. Plot the sample results on normal probability paper using the No-Calc plotting positions of
Appendix Table T13.1 when n � 20; when n> 20 use the approximation

p̂(i) ¼ i� (1=2)
n

� 100

2. If the points do not plot roughly in a straight line, discontinue the procedure on the grounds
that the underlying population may not be normal.

3. Estimate the underlying normal distribution by drawing a straight line through the points.
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4. Locate the specification limits on the x-axis and use the straight line to estimate the percent
nonconforming beyond the single or double specification limits. Call this estimate p̂.

5. Obtain the critical value of p* from Appendix Table T13.2.

6. If p̂ � p*, accept the lot, if p̂> p*, reject the lot.

Clearly p* plays the role of M in MIL-STD-414, while p̂ acts as pL, pU, or pT.
To illustrate the application of the No-Calc plan, consider the following example.
The specification for minimum electrical resistance of a certain electrical component is 620 V.

A lot of 100 items is submitted for inspection with an AQL¼ 1.0%. A 10% limiting quality of 15%
is desired. Suppose values of sample resistances are as follows: 643, 651, 619, 627, 658, 670, 673,
641, 638, and 650 V.

A search through the OC curves of MIL-STD-414 shows Code F, 1.0% AQL is closest to the
specifications of the plan. Its 10% limiting quality is just about 15%, while Code E and Code G
differ substantially from that at 1.0% AQL. Reference to Appendix Table T13.2 shows that a sample
size of 10 should be taken with a critical value of p*¼ 3.88. Plotting positions are obtained from
Appendix Table T13.1 and associated with the observations as follows:

Order (i) X(i) P(i)

1 619 4.4
2 627 16.4
3 638 26.2
4 641 35.8
5 643 45.3
6 650 54.7
7 651 64.2
8 658 73.8
9 670 83.6
10 673 95.6

The probability plot appears as Figure 13.1. It estimates that 6% of the underlying distribution is
below the lower specification limit of 620 V. Since

p̂ ¼ 6:0 > p* ¼ 3:88

the lot is rejected. It is interesting to note that this is the same estimate obtained from the probability
plot of Chapter 3 and illustrates how good the approximation

p̂(i) ¼ iþ (1=2)
n

is even with a reduced amount of data.
The No-Calc plan can easily be implemented in the shop by drawing a vertical decision line at the

specification limit (in the example 620 V). On this line mark the critical value p* (3.88 here). Label
the line below p* as ‘‘accept’’ and above p* as ‘‘reject.’’ Take the action indicated by the intersection
of the probability plot line with the decision line. Care should be taken so that the decision line does
not prejudice drawing the probability plot line.
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FIGURE 13.1: Probability plot.
Lot Plot Plans

Probably no acceptance sampling procedure has more intuitive appeal for inspectors than the lot
plot method, developed by Dorian Shainin at the Hamilton Standard Division of United Aircraft
Company. Shainin (1950) published an extensive introduction and description of the plan in
Industrial Quality Control. The reader is well advised to study his paper for the details of the
method. Its wide acceptance attests to its appeal and value in practical applications. Detailed
examples of its use in various companies have also been given by Shainin (1952).

Lot plot uses a constant sample size of 50 observations. It is based on the construction of the
histogram of the sample. The mean and the standard deviation are estimated and the resulting ‘‘3s’’
limits used as an acceptance criterion when compared to the specification limits. It serves as a
particularly useful tool in the introduction of statistical acceptance sampling techniques and in
applications where more sophisticated methods are inappropriate or not likely to be well received.
As Shainin (1952) has pointed out, with the lot plot method, ‘‘ . . . it was possible to bring the method
of analysis down to where anyone who can read a micrometer can be taught in less than a week to
analyze lot plots completely.’’

The original procedure utilizes the Pearson–Tippett method to estimate the standard deviation
from 10 ranges of 5 obtained from subsamples of the 50 observations. We shall present a variation
of lot plot, due to Ashley (1952), which was applied at the Bendix Aviation Corporation. This
method calculates the standard deviation directly from the frequency distribution itself, thus
avoiding use of the range. This preserves all the qualities intended by Shainin but leads to somewhat
more rapid calculation, possible computerization, and no need to order the observations into
subgroups as taken.
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FIGURE 13.2: Example of completed modified lot plot form. (Reprinted from Ashley, R.L., Ind.
Qual. Control, 8(5), 30, 1952. With permission.)
A completed modified lot plot form appears as Figure 13.2. After completing the heading, the
form is filled in from left to right as follows:

1. A sample of 50 is taken.

2. The mean of the first five observations is used to locate the center of the distribution. Enter this
value in the leftmost column next to the value of 0 in the second column, suitably rounded to
obtain a nice starting point.

3. Mark off the cells above and below the center value. Individual measurements (cell width of
1) are desirable but not necessary. If cells of width other than 1 are to be used, enter the cell
midpoints above and below the middle cell. Shainin suggests a cell width roughly equal to
one-fourth the range of the first five observations.

4. Each observation is tallied by a check mark in the space provided. This will automatically
provide a histogram of the sample.

5. If the histogram appears to be obviously nonnormal, stop and investigate the cause.

6. Tally for each row is recorded in the F column. The numbers at the top of the grid facilitate the
count.

7. The FX column is filled in as the product of the F and X values shown for each row.
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8. The FX2 column is filled in as the product of the F and X2 values shown for each row.

9. The sum of the FX column is recorded in the upper right box. When the sum is multiplied by
0.02, the result is a coded X recorded in the second box.

10. The sum of the FX2 column is recorded in the third box on the right. When the value is
multiplied by 0.02, the result is recorded in the fourth box.

11. Table 13.1 is then used to estimate 3s. The coded X (second box) is entered at the top and
.02SFX2 (fourth box) is entered at the side. The resulting closest tabulated value estimates 3s
and is entered in the fifth box. If the table does not cover the values obtained, the estimate of
3s of the Xs can be calculated from the formula:

3s ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

:02SFX2 � X
2

q

12. The cell width w is entered in the sixth box. If it is necessary to estimate the mean m̂ and
standard deviation ŝ in units of the original measurement, use

m̂ ¼ wX

bs ¼ w(3s)
3

¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

:02SFX2 � X
2

q

To assess the acceptability of the lot, the upper lot limit (ULL) and lower lot limit (LLL) as well
as the specifications are drawn on the chart. To draw these limits,

1. Using the X column (second and twenty-fourth columns) draw a horizontal line at the coded
X. This is an estimate of the mean of the distribution and can be decoded simply by reading
the corresponding value from the cell midpoints recorded (first column).

2. Mark a distance 3s (fifth box) in terms of the X column above and below the coded X. These
are the lot limits, LLL and ULL. They may be read in terms of the original measurements
simply by extending them to the cell midpoints (column 1) and reading off the appropriate
values.

3. Draw the specification limits on the chart in terms of the cell midpoints (column 1).

The acceptance criteria are

1. Lot limits within specification limits, accept.

2. Lot limits outside specification limits.

a. Count the number of X spaces by which the lot limit exceeds the specification limit. Call
this E.

b. Compute

Z ¼ 3 1� E

3s

� �

where the 3s value is taken from the fifth box.
� 2008 by Taylor & Francis Group, LLC.



TABLE 13.1: 3s Values for lot plot.

X Values to Nearest Tenth

.02SFX2 .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 .1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

.0

.5 2.1 2.1 2.0 1.9 1.7 1.5 1.1 .3
1.0 3.0 3.0 2.9 2.9 2.7 2.6 2.4 2.1 1.8 1.3
1.5 3.7 3.7 3.6 3.6 3.5 3.4 3.2 3.0 2.8 2.5 2.1 1.6 .7
2.0 4.2 4.2 4.2 4.1 4.1 4.0 3.8 3.7 3.5 3.3 3.0 2.7 2.2 1.7 .6
2.5 4.7 4.7 4.7 4.7 4.6 4.5 4.4 4.3 4.1 3.9 3.7 3.4 3.1 2.7 2.2 1.5
3.0 5.2 5.2 5.2 5.1 5.1 5.0 4.9 4.8 4.6 4.4 4.2 4.0 3.7 3.4 3.1 2.6 2.0 1.0
3.5 5.6 5.6 5.6 5.5 5.5 5.4 5.3 5.2 5.1 4.9 4.7 4.5 4.3 4.0 3.7 3.4 2.9 2.3 1.5
4.0 6.0 6.0 6.0 5.9 5.9 5.8 5.7 5.6 5.5 5.4 5.2 5.0 4.8 4.6 4.3 4.0 3.6 3.2 2.6 1.9
4.5 6.4 6.4 6.3 6.3 6.2 6.2 6.1 6.0 5.9 5.8 5.6 5.4 5.2 5.0 4.8 4.5 4.2 3.8 3.4 2.8 2.1 .9
5.0 6.7 6.7 6.7 6.6 6.6 6.5 6.5 6.4 6.3 6.1 6.0 5.8 5.7 5.5 5.2 5.0 4.7 4.4 4.0 3.5 3.0 2.3 1.2
5.5 7.0 7.0 7.0 7.0 6.9 6.9 6.8 6.7 6.6 6.5 6.4 6.2 6.0 5.9 5.6 5.4 5.1 4.8 4.5 4.1 3.7 3.1 2.4 1.4
6.0 7.3 7.3 7.3 7.3 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.4 6.2 6.0 5.8 5.6 5.3 5.0 4.6 4.2 3.8 3.2 2.5 1.5
6.5 7.6 7.6 7.6 7.6 7.6 7.5 7.4 7.4 7.3 7.2 7.0 6.9 6.7 6.6 6.4 6.2 6.0 5.7 5.4 5.1 4.7 4.3 3.9 3.3 2.6 1.5
7.0 7.9 7.9 7.9 7.9 7.8 7.8 7.7 7.7 7.6 7.5 7.3 7.2 7.1 6.9 6.7 6.5 6.3 6.1 5.8 5.5 5.2 4.8 4.4 3.9 3.3 2.6
7.5 8.2 8.2 8.2 8.2 8.1 8.1 8.0 7.9 7.9 7.8 7.6 7.5 7.4 7.2 7.1 6.9 6.7 6.4 6.2 5.9 5.6 5.3 4.9 4.5 4.0 3.4
8.0 8.2 8.1 8.0 7.9 7.8 7.7 7.5 7.4 7.2 7.0 6.8 6.5 6.3 6.0 5.7 5.3 5.0 4.5 4.0
8.5 8.2 8.1 8.0 7.8 7.7 7.5 7.3 7.1 6.9 6.6 6.4 6.1 5.7 5.4 5.0 4.5
9.0 8.3 8.1 8.0 7.8 7.6 7.4 7.2 7.0 6.7 6.4 6.1 5.8 5.4 5.0
9.5 8.2 8.1 7.9 7.7 7.5 7.3 7.0 6.8 6.5 6.2 5.8 5.4
10.0 8.2 8.0 7.8 7.6 7.3 7.1 6.8 6.6 6.2 5.8
10.5 8.3 8.1 7.9 7.6 7.4 7.1 6.8 6.5 6.2
11.0 8.2 7.9 7.7 7.4 7.2 6.9 6.5
11.5 8.2 8.0 7.7 7.5 7.2 6.9
12.0 8.3 8.0 7.8 7.5 7.2
12.5 8.3 8.1 7.8 7.5
13.0 8.3 8.1 7.8
13.5 8.3 8.1

Source: Reprinted from Ashley, R.L., Ind. Qual. Control, 8(5), 31, 1952. With permission.
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c. Estimate the proportion of product out of specification as the upper normal tail area
corresponding to Z. This may be done graphically by the inspector simply by providing
normal probability paper having a straight line drawn which corresponds to the standard
normal distribution. A suitable table could also be provided.

d. If the estimated value is less than a predetermined allowable value, accept the lot.

e. Otherwise, reject the lot.

The method suggested here for estimating the proportion out of specification has been found by the
authors to be accurate enough for most practical purposes. Clearly, lot plot could be easily
computerized, but is presented here in its original form for historical reasons and because of its
popularity.

Narrow-Limit Gauging

The predominance of attributes type data in industry attests to the economic advantages of
collecting go no-go data over recording specific variables data. Gauging is often to be preferred
over measurement. This is because it takes less skill to gauge properly, is faster, less costly, and has
become something of a tradition in certain industries. As put by Ladany (1976),

Variables sampling plans have the known advantage, over sampling plans for attributes,
of requiring a much smaller sample size . . . This is due to the possibility of utilizing
more effectively quantitative data as opposed to qualitative data. The statistical advan-
tage may be out-weighed by economic considerations, since the cost of inspecting a
unit, using a simple go-no-go gage, is often much lower than the cost of determining the
exact value of the critical characteristic variable by a measuring instrument.

Narrow-limit sampling plans (sometimes called compressed limit plans) effectively bridge the
gap between variables and attributes procedures by utilizing go-no-go gauges setup on the principles
of variables inspection. Originated in England by Dudding and Jennett (1944), they were introduced
into the United States by Mace (1952). Ott and Mundel (1954) did much to extend the theory and
application of the procedure. The narrow-limit plans were initially regarded as a process control
device as evidenced by the title, Quality Control Chart Technique When Manufacturing to a
Specification, used by Dudding and Jennett. Nevertheless, narrow-limit plans provide an excellent
technique for acceptance sampling in that they are based on the same assumptions as known
standard deviation variables plans for proportion nonconforming but require little calculation and
are easier to use.

The basic idea is a simple one. Since the sample size required by an attributes plan is related
inversely to the size of the proportion nonconforming, it is required to detect, a pseudospecification,
or narrow limit, is set inside the specification limits. The sampling plan is set up on the number of
items failing the narrow limit rather than the specification limit itself. Since the relationship between
the pseudo and the actual proportions nonconforming is strictly monotonically increasing, the one
can be used to control the other. This is then done by using the narrow limit. These plans assume the
standard deviation s to be known and the underlying distribution of measurements to be normal. Of
course, when the specification limits are more than 6s apart, individual narrow-limit plans can be
applied on each side of double specification limits.
� 2008 by Taylor & Francis Group, LLC.



Using the notation of Ott and Mundel (1954), narrow-limit gauge (NLG) plans are specified by
three quantities:

n is the sample size.

c is the acceptance number for units allowed outside the narrow-limit gauge.

t is the compression constant, the narrow limit is set ts inside the specification limit.

To implement a plan,

1. Check to be sure that the underlying distribution of measurements is consistently normal using
probability plots, tests of fit, control charts, etc., on past data.

2. For a single upper specification limit U or a lower specification limit L set the narrow-limit
gauge at

U � ts or Lþ ts

When double specification limits are at least 6s apart, individual narrow-limit plans can be
applied to each of the specification limits separately.

3. Take a random sample of size n.

4. Gauge to the narrow limit. Items outside the narrow limit are treated as nonconforming to the
narrow-limit gauge. Items inside the narrow limit are treated as conforming.

5. Accept if the number nonconforming to the narrow-limit gauge is less than or equal to c;
otherwise, reject.

It should be noted that changes in the criteria for acceptance affects the OC curve of the narrow-limit
gauging procedure in different ways:

n increased ! plan tightened

c increased ! plan loosened

t increased ! plan tightened

A large value of t can lead to rejections even when p¼ 0. Ott and Mundel have found a compression
constant of

t ¼ 1

to be very good in practice with moderately small sample sizes. OC curves for several plans having
t¼ 1 are shown in Figure 13.3.

The OC curve of a narrow-limit plan is relatively easy to compute. Figure 13.4 shows diagram-
matically the principle behind its computation.

Assuming an underlying normal distribution of measurements, each value of proportion non-
conforming p will be associated with a fixed position of the mean m. If we let

Zg ¼ standard normal deviation having area g in the upper tail

then the specification limit will be a distance zps from the mean. Also, the narrow-limit gauge will
be a distance ts from the specification limit, or a distance zgs from the mean. Hence, we have
� 2008 by Taylor & Francis Group, LLC.
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FIGURE 13.3: OC curves for NLG plans with t¼ 1. (Reprinted from Ott, E.R. and Mundel, A.B.,
Ind. Qual. Control, 10(5), 30, 1954. With permission.)
Zg ¼ Zp � t

The proportion of units outside the narrow-limit pg is the upper tail normal area cut off by zg. The
sampling plan will then be applied to a proportion pg when the proportion p is out
of the specification limit. The calculations are summarized in Table 13.2 which illustrates finding
the probability of acceptance for the plan n¼ 15, c¼ 2, t¼ 1 using the Poisson probabilities
to approximate the binomial. Care should be taken to be sure that the Poisson approximation
applies. If not, the binomial distribution should be used directly. It will be seen that these values
are shown on the OC curve of Figure 13.3.

The following procedure may be utilized to derive narrow-limit gauge plans when the
Poisson approximation applies. Refer to Figure 13.4 for a diagrammatic representation of the
procedure.
NLG

pg

p

x

zg s

zg s

SPEC

m

fs

FIGURE 13.4: Narrow-limit distribution.
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TABLE 13.2: Calculation of probability of acceptance for n¼ 15, c¼ 2, t¼ 1.

Proportion Out
of Specification, p zp

s Units,
zg¼ zp� t

Proportion Out
of NLG, pg npg Poisson, Pa

.005 2.58 1.58 .057 0.86 .94

.03 1.88 0.88 .189 2.84 .46

.08 1.405 0.405 .341 5.12 .12
Given

p1¼ producer’s quality level

p2¼ consumer’s quality level

a ¼ producer’s risk

b ¼ consumer’s risk

t ¼ compression constant

1. Determine ZP1
and ZP2

.

2. Compute Zg1¼ Zp1� t and Zg2¼ Zp2� t.

3. Obtain upper tail areas pg1 and pg2.

4. Compute the operating ratio

R ¼ pg2,1
pg2,1

5. Determine standard acceptance sampling plan n, c with risks a, b, and operating ratio R.

6. The narrow-limit plan is specified as n, c, and t.

For example, suppose the following plan is desired:

p1¼ .005, a¼ .05, t¼ 1.0

p2¼ .08, b¼ .10

1. Z.005¼ 2.576 and Z.08¼ 1.405

2. Zg1¼ 1.576 and Zg2¼ 0.405

3. pg1¼ .0575 and pg2¼ .3427

4. R ¼ :3427
:0575 ¼ 5:96

5. Use of the table of unity factors gives c¼ 2, n¼ 14.2 ~ 15

6. The plan is n¼ 15, c¼ 2, t¼ 1

It can be confirmed that the desired characteristics were essentially obtained by reference to Table
13.2, which was used to compute the OC curve of this plan. Use of the unity values requires that the
Poisson approximation to the binomial apply to both values of npg.
� 2008 by Taylor & Francis Group, LLC.



It is frequently desirable to obtain an optimum narrow-limit plan with regard to sample size. For p1,
p2, a, and b, specified as before, Ladany (1976) has developed an iterative procedure for the construction
of such a plan. It utilizes a special nomograph based on the Larson (1966) nomograph for the binomial
distribution. The nomograph is shown in Figure 13.5. It should be noted that in Ladany’s notation

t ¼ DZ

Steps in the application of the procedure are as follows:

1. Connect p1 and p2 on the variables sampling plan axis (middle axis, right side) with (1�a)
and b, respectively, on the probability axis (right half) using two straight lines.

2. Read the corresponding s known variables plan sample size, from the horizontal axis on top,
directly above the point of intersection of the two lines. This serves as an extreme lower bound
for the narrow-limit sample size.

3. Locate p1 and p2 on the binomial sampling plan axis (middle axis, left side) and connect with
(1�a) and b, respectively, on the probability axis (right side). Using the Larson nomogrpah
read the sample size n0 and acceptance number c0 from the grid. This is the plan that would
apply without the narrow limit. That is, when t¼ 0.

4. Select a trial value of t, say t1. From p1 move down the slanted DZ (¼ t) axis a distance of t1.
Read over horizontally to obtain pg1 on the binomial sampling plan axis (middle axis, left
side). Similarly, move down from p2 on the slanted DZ (¼ t) axis a distance t and read over to
get pg2. For example, moving from p2¼ .08 a distance t¼ 1.0 on the diagonal scale and
reading across gives pg2¼ .343, which is the same value obtained in Table 13.2.

5. Connect pg1 and pg2 on the binomial sampling plan scale with 1�a and b, respectively, on the
probability scale. The intersection of these two lines gives the value of n and c which will
provide the desired risks with t¼ t1.

6. Select another value of t and determine the values of n and c for it as in steps 4 and 5.

7. Continue the iterative procedure until the last derived narrow-limit plan starts to increase in
sample size, with no indication that sample size may be further reduced, or until pg2 exceeds
0.50.

The s known sample size provides a rough indication of how close the iterative procedure is to
optimum. Naturally, the variables sample size will never be reached; however, the narrow-limit gauge
should reduce the sample size by roughly 80% of the difference between attributes and variables.

It is best to keep a running table of the results of the iterations. Note that this table could also be
developed by changing t in the tabular method presented earlier. Ladany (1976) gives the following
example:

p1¼ .02, a¼ .05

p2¼ .08, b¼ .10

The nomograph for the example is shown in Figure 13.6. We see that

1. Initial lines are shown dotted from .02 on the probability scale to .95 and from .08 to .10 on
the variables sampling plan scale. They cross at point 0.

2. The s known sample size is n¼ 20.
� 2008 by Taylor & Francis Group, LLC.
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FIGURE 13.6: Use of the Ladany nomograph of narrow-limit gauging sampling plans for solution of example. (Reprinted from Ladany, S.P., J. Qual.
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3. Points .02 and .08 on the binomial axis are connected to .95 and .10 on the probability axis to
give the plan n¼ 98, c¼ 4 when t¼ 0.

4. A trial value of t¼ 0.3 is selected. Moving from .02 on the binomial axis down the diagonal
DZ(¼ t) axis a distance 0.3 and reading over gives pg1¼ .04. Similarly, moving from .08 on
the binomial axis down the diagonal DZ(¼ t) axis, a distance 0.3 and reading over gives
pg2¼ .135.

5. Connecting pg1 and pg2 with a and b on the probability axis and reading the Larson grid gives
n¼ 67, c¼ 5 as the plan when t¼ 0.3.

6. The next value of t selected is t¼ 0.65 and the procedure starts again.

7. The nomogram is used iteratively to produce Table 13.3. The procedure stops at t¼ 1.405
since at that value pg2¼ .50.

Hence the optimum narrow-limit plan for these conditions is n¼ 31, c¼ 11, t¼ 1.405.
Use of the Larson nomograph constrains the Ladany procedure to values of pg � .50. Schilling

and Sommers (1981) have computed tables of optimal narrow-limit plans based on the binomial
distribution through an iterative procedure not subject to this constraint. Appendix Table T13.3
shows narrow-limit plans which have minimum sample size tabulated by producer’s quality level p1
and consumer’s quality level p2 for fixed a¼ .05 and b¼ .10. Also shown are matched binomial
attributes plans and the single variables plans which appear in Appendix Table T10.2. All the plans
in Appendix Tables T10.2 and T13.3 are matched and tabulated using the same values of p1 and p2.
In assessing narrow-limit plans, comparison should be made with known standard deviation
variables plans since the standard deviation is assumed known for both procedures.

As an example of the use of Appendix Table T13.3, consider the example used with the Ladany
nomograph:

p1¼ .02, a¼ .05

p2 ¼ .08, b¼ .10

These specifications result in the following plans:

Attributes: n¼ 97, c¼ 4

Narrow limit: n¼ 31, c¼ 15, t¼ 1.69

Variables (s known): n¼ 21, k¼ 1.69

Variables (s unknown): n¼ 50, k¼ 1.69
TABLE 13.3: Iterative use of ladany nomogram.

Iteration t pg1 pg2 n c
Point Number
in Figure 13.6

0 0 .02 .08 98 4 1
1 .30 .04 .135 67 5 2
2 .65 .08 .225 48 7 3
3 .95 .135 .325 38 8 4
4 1.215 .200 .425 33 10 5
5 1.405 .258 .500 31 11 6
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This narrow-limit plan differs slightly from that given by Ladany since, for the plan developed from
the nomogram, the a and b risks are not held exactly because of the constraint pg2 � .050. For the
Ladany plan, a¼ .079 and b¼ .075 whereas, using the Schilling–Sommers table a¼ .052 and
b¼ .101.

In this example, the narrow-limit plan affects a two-thirds reduction in sample size relative to
attributes, compared to an 80% reduction using the variables plan. Advantages of narrow-limit plans
over variables are

1. No calculations for the inspector

2. Ease and accuracy in collecting the data

3. Ease of understanding and use

Of course less information is generated by the narrow-limit plans for possible feedback in
acceptance control.

Schilling and Sommers (1981) found that a simple heuristic approximation can be used to
develop an optimal narrow-limit plan from the known standard deviation variables plan having
the same p1, p2, a, and b. If the variables plan has sample size nv and acceptance constant k, the
parameters

n ¼ 1:5nv, t ¼ k

c ¼ :75nv � :67

provide an excellent approximation to the optimal narrow-limit plan. This can be confirmed from
the results of the preceding example. Using this procedure, an approximation of the known standard
deviation plan n¼ 21, k¼ 1.69 is

n ¼ 31:5 � 32, t ¼ 1:69

c ¼ 15:08 � 15

which is very close to the optimal narrow-limit plan.
Tables of optimal narrow-limit plans matching the MIL-STD-105E (United States Department of

Defense 1989) normal, tightened, and reduced tables are also presented by Schilling and Sommers
(1981). This allows use of these narrow-limit plans as substitutes for the attributes plans given in the
standard when the assumptions of narrow-limit gauging are met. Use with the MIL-STD-105E AQL
system and its switching rules allows for significant reductions in scheme sample size.

The tables of optimal narrow-limit plans matching MIL-STD-105E are given here as follows:

Appendix Table T13.4: Tightened inspection optimal narrow-limit plans for MIL-STD-105E

Appendix Table T13.5: Normal inspection optimal narrow-limit plans for MIL-STD-105E

Appendix Table T13.6: Reduced inspection optimal narrow-limit plans for MIL-STD-105E

The OC curves of the resulting plans closely follow those of the counterpart attributes plans from
MIL-STD-105E. Thus, when substituted for the attributes plans the operating characteristics and
other measures of the narrow-limit plans are essentially the same as those given in that standard. The
following tables from MIL-STD-105E can be used directly to assess their properties.

MIL-STD-105E Table V-A: Average outgoing quality (AOQ) limit factors for normal inspection

MIL-STD-105E Table V-B: AOQ limit factors for tightened inspection
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MIL-STD-105E Table VI-A: Limiting quality for which Pa¼ 10%

MIL-STD-105E Table VII-A: Limiting quality for which Pa¼ 5%

MIL-STD-105E Table X-A: Tables for sample size code letter

The MIL-STD-105E average sample size Table IX is not represented among these tables since
average sample sizes using narrow-limit plans will be much less than those given in MIL-STD-105E
and, further, the narrow-limit plans shown are for single sampling only. When the AQL sampling
scheme which MIL-STD-105E represents is properly used (with the switching rules), the average
sample number (ASN) for the overall scheme using the narrow-limit plans can be computed. This
has been tabulated using the approach of Schilling and Sheesley (1978) for the overall tightened-
normal-reduced scheme except that the limit numbers for switching to reduced inspection were not
utilized in the tabulation. The resulting average sample sizes are shown in Appendix Table T13.7 for
the case when the process is running at the AQL. Probabilities of acceptance for the scheme at the
AQL are also shown in Appendix Table T13.7.

When the MIL-STD-105E system is applied using narrow-limit plans, the switching rules and
other procedures may be used directly. Use of the limit numbers in switching to reduced inspection
poses a problem, however, in that gauging is to the narrow limit and not to the specification limit.
Accordingly, units not conforming to the narrow limit would have to be regauged to determine the
number of defectives (or nonconformances to the specification limit) in the sample to compare to the
limit numbers. Also, the sample sizes are reduced to such an extent by using narrow-limit plans that
it would take considerably more than 10 lots to accumulate a sample large enough to use the limit
numbers for reduced inspection in Table VIII of MIL-STD-105E. It is recommended that the limit
numbers be dropped from the switching procedure. As stated by Schilling and Sheesley (1978),
‘‘The effect of the limit numbers for reduced inspection on the operating characteristics is minimal.
Yet they serve as an impediment to easy use of the switching rules.’’

Use of the switching rules with narrow-limit plans can result in a significant decrease in average
sample size. For example, with Code M, 1.5% AQL, the sample size for attributes plans drops from
315 for the normal plan alone to 268 for the scheme with the switching rules. When narrow-limit
plans are substituted in the scheme, the average sample size drops even further from 79 for the
normal plan alone to 50.5 when the switching rules are used.

As an example of the use of narrow-limit plans in the MIL-STD-105E system, consider the plan
Code F, 2.5% AQL. A comparison of MIL-STD-105E attributes plans with their narrow-limit
counterparts is shown in Table 13.4. Here, the scheme average sample size is 21.5 at the AQL using
the attributes plans and 8.6 when the narrow-limit plans are substituted.

It should be noted that the acceptance criteria for reduced plans under MIL-STD-105E show a
gap between the acceptance and rejection numbers. Sample results falling in this gap initiate
a switch back to normal inspection although the lot itself is accepted under the reduced plan.
When the tables for the narrow-limit plans were prepared, the plan at the attributes rejection number
was matched at Pa¼ .95 and Pa¼ .10 and made optimum. The plan for the corresponding attributes
acceptance number was then matched as closely as possible at Pa¼ .10 using the sample size, n, and
compression constant, t, from the plan derived from the rejection number.
TABLE 13.4: Narrow-limit plans substituted for attribute plans
in MIL-STD-105E, code F, 2.5 AQL.

Attributes as Given Narrow-Limit Counterparts

Normal n¼ 20, Ac¼ 1, Re¼ 2 n¼ 9, Ac¼ 4, Re¼ 5, t¼ 1.43
Tightened n¼ 32, Ac¼ 1, Re¼ 2 n¼ 11, Ac¼ 5, Re¼ 6, t¼ 1.67
Reduced n¼ 8, Ac¼ 0, Re¼ 2 n¼ 6, Ac¼ 1, Re¼ 4, t¼ 1.07
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The assumption of normality upon which the narrow-limit plans presented are based is an
important consideration in application. Preliminary investigation by Schilling and Sommers
(1981) showed increasing sensitivity to the assumption with small p (large t). The risks may differ
considerably from those specified by the plan depending on the degree of nonnormality. The
standard deviation must, of course, be known and stable.

As an extreme illustration, suppose the plan n¼ 31, c¼ 15, t¼ 1.69 was set up to be used with a
standard normal distribution of product. This implies p1¼ .02 has .95 probability of acceptance
and p2¼ .08 has .10 probability of acceptance. If the distribution subsequently changed to that of a
t-distribution with one degree of freedom (i.e., the symmetrical thick-tailed Cauchy distribution)
with an appropriate location parameter and an interquartile range the same as the assumed normal
distribution, p1¼ .103 would have .95 probability of acceptance while p2¼ .139 would have .10
probability of acceptance. Thus, it is very important that the normal assumption be verified and
monitored in the use of narrow-limit plans.

With variables sampling, the sampling data currently obtained could be used to set up control
charts for checking on known variability and the continued validity of the normality assumption.
Control charts using gauging techniques have been discussed by Ott and Mundel (1954) and
Stevens (1948).

Narrow-limit plans provide an excellent vehicle for sample size reduction when properly used in
applications in which a normal distribution is assumed and where s has been accurately estimated.
Their use with the MIL-STD-105E scheme switching rules can lead to still further reductions in
sample size and utilization of that standard in situations in which the attributes sample sizes required
by the standard would be prohibitive. They provide a useful and viable alternative in a continuing
effort to attain maximum quality at minimum costs. In the words of Ott and Mundel (1954), ‘‘The
advantages which are inherent in a program of quality control require an appreciation of its
philosophy, an understanding of its techniques, and provision for competent management of the
program.’’ Used in such an environment, narrow-limit plans are an excellent tool for quality
assessment and control.

Mixed Variables—Attributes Plan

The choice between acceptance sampling by attributes and variables has commonly been
considered a first step in the application of sampling plans to specific problems in industry. The
dichotomy is more apparent than real, however, since other alternatives exist in the combination of
both attributes and variables results to determine the disposition of the lot. One such procedure is the
so-called mixed variables–attributes sampling plan. It is, in essence, a double-sampling procedure
involving variables inspection of the first sample and subsequent attributes inspection if the
variables inspection of the first sample does not lead to acceptance.

As early as 1932, Dodge (1932) suggested that variables criteria be used in the first stage (only) of
a double-sampling plan ‘‘ . . . for judging the results of a first sample and for determining when a
second, substantially large sample should be inspected before rejecting the lot.’’ Such procedures are
now called mixed or variables–attributes sampling plans. The double-sampling feature distinguishes
these plans from single-sampling plans using both variables and attributes criteria as proposed by
Woods (1960) and Kao (1966).

Mixed variables–attributes sampling differs from the ordinary double-sampling procedure in
the sense that only acceptance can take place as a result of the application of the variables plan
to the first sample. If acceptance is not indicated, a second sample is drawn, acceptance or rejection
then being determined on an attribute basis. Use of variables on the first sample with attributes on
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FIGURE 13.7: Operation of a mixed plan. (Schilling, E.G., Mixed variables-attributes sampling,
the independent case, Transactions of the 18th Annual Conference on Quality Control at Rutgers,
The State University, New Brunswick, NJ, 1966, p. 83.)
the second sample combines the economy of variables for quick acceptance on the first sample with
the broad nonparametric protection of attributes sampling when a questionable lot requires a second
sample. Schematically, the procedure is shown in Figure 13.7.

Mixed plans are of two types, so-called independent and dependent plans. Independent mixed
plans do not incorporate first sample results in the assessment of the second sample, that is,
decisions on the two samples are kept independent. Dependent mixed plans combine the results
of the first and second samples in making a decision if a second sample is necessary; thus the second
sample decision is dependent on first sample results. In describing mixed variables–attributes plans,
Bowker and Goode (1952, p. 8) indicate that ‘‘Under this procedure, a sample is drawn and
inspected on a variables basis . . . if the action indicated is rejection an additional sample is drawn.
This additional sample is inspected on an attribute basis, and the final decision concerning disposal
of the lot is made on the basis of the attribute plan.’’

Their discussion of mixed plan is, for the most part, limited to the independent case; that is, to
plans in which the attributes procedure, when called for, is applied to the results of the second
sample only. This keeps the probabilities of acceptance of the variables and attributes components
of the plan independent. Schilling (1966) has provided procedures for deriving independent mixed
plans given two points on the OC curve. In contrast, the so-called dependent mixed plan is one in
which attributes data arising from both the first and second samples are combined for testing when
the attributes procedure is employed. This makes the probabilities of acceptance of the variables and
attributes parts of the plan dependent. Dependent plans have been examined by Gregory and
Resnikoff (1955), Savage (1955), and Schilling and Dodge (1969).

Independent mixed plans maintain stochastic independence between the probabilities of the
variables and attributes constituents of the procedure. Bowker and Goode (1952) suggest that
independent plans have conventionally been carried out as follows:

1. Obtain first sample.

2. Test the first sample against a given variables-acceptance criterion.

a. Accept if the test meets the variables criterion.

b. Resample if the test fails to meet the variables criterion.

3. Obtain a second sample if necessary (per 2b).

4. Test the second sample (only) against a given attributes criterion and accept or reject as
indicated by the test.
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Dependent mixed plans are those in which the probabilities of the variables and attributes
constituents of the procedure are made dependent. The dependent procedure, as proposed by Savage
(1955), can be summarized as follows:

1. Obtain first sample.

2. Test the first sample against a given variables-acceptance criterion.

a. Accept if the test meets the variables criterion.

b. If the test fails to meet the variables criterion,

i. Reject if the number nonconforming in the first sample exceeds a given attributes
criterion.

ii. Otherwise resample.

3. Obtain a second sample if necessary (per 2bii).

4. Test the results for the first and second samples taken together against the given attributes
criterion and accept or reject as indicated by the test.

Note that this procedure can be generalized by providing for the use of different attributes criteria
in steps 2 and 4. Such a generalized dependent mixed plan has been presented by Schilling and
Dodge (1967a).

The dependent plan provides the optimal procedure in terms of the size of ASN associated
with the plan. Attention will be directed here to mixed plans for the case of single specification
limit, known standard deviation, when a normal distribution of product is assumed. Gregory
and Resnikoff (1955) have examined the case of dependent plans with standard deviation
unknown, while Bowker and Goode (1952) provide an approximation useful in estimating the
OC curve of such plans. Adams and Mirkhani (1976) have derived an approach to standard
deviation unknown when c¼ 0 and examine the effect of nonnormality on combined variables–
attributes plans.

Advantages and Disadvantages of Mixed Plans

The assumption of normality inherent in most variables-acceptance procedures has proved to be
both their strength and their undoing. Perturbations in the production process or screening of
nonconforming product may make otherwise normally distributed product anything but normal.
Whatever the potential source of nonnormality, the possibility of submission of such product to
standard variables plans is a serious consideration weighing against their use except under condi-
tions where normality is well assured. Nonetheless, the reduction in sample size attendant with
variables plans makes them particularly inviting.

The mixed variables–attributes plan achieves some of the reduction of sample size associated
with a variables plan without some of the related disadvantages. The mixed procedure appeals to
the psychology of inspectors by giving a questionable lot a second chance. In rejecting lots, it is
also often a decided psychological or legal advantage to show actual defectives to the producer,
a feature which can be had only by rejecting on an attribute basis. Truncated and nonnormal
distributions cannot be rejected for poor variables results alone, but only on the basis of defective
or nonconforming units found in the attribute sample. Furthermore, with regard to acceptance–
rejection decisions, the effect of changes in shape of distribution can be minimized by accepting
only on variables evidence so good as to be practically beyond question for most distributions which
might reasonably be presented to the plan. Thus, mixed plans provide a worthwhile alternative
to variables plans used alone.
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The principal advantage of a variables–attributes plan over attributes alone is a reduction
in sample size for the same protection. The variables aspect of the mixed plan also allows for a
far more careful analysis of the distribution of product presented to the plan than would be
possible with attributes inspection alone. Variables control charts kept on this data can provide
information on the variability and stability of product from lot to lot. Control charts
should normally be used in conjunction with acceptance sampling procedures involving variables
inspection.

With small first samples, the mixed plan provides an excellent form of surveillance inspection
on product which is generally expected to be of good quality but which may, at times,
show degradation. A small variables first sample can be employed to accept at relatively low
values of proportion nonconforming and the second attributes sample is then used to provide a
definitive criterion for disposition of the lot if it is not accepted on the first sample.

Unfortunately, mixed plans do not provide the same protection against nonnormality for
acceptance as they do for rejection, since product is accepted at the first stage of the plan on a
variables basis. It is possible, however, to minimize this disadvantage for product well within
specification by designing the plan in such a way as to accept on a variables basis only product
with distribution located far enough from the specification limit so that reasonable changes in the
shape of the distribution will not cause appreciable changes in proportion nonconforming. In this
way, a tight variables criterion could be employed to minimize the effect of changes in shape of
distribution on the OC curve of the plan (see Schilling 1967).

In application, it is also conceivable that mixed plans might be more difficult to administer either
than variables plans or attributes plans alone. As with all plans using variables criteria, a separate
mixed plan must be developed for each characteristic to which it is applied. Any increase
in complexity would, however, probably be compensated for by the advantages of the mixed
procedure.

Generalized Mixed Dependent Procedure

Given an upper specification limit, the inspection procedure for the application of a single
specification limit U, known standard deviation s, dependent mixed plan has been generalized by
Schilling and Dodge (1969) by allowing for two acceptance numbers. Symmetry obviates the
necessity for parallel consideration of a lower specification limit. The first acceptance number c1
is applied to the attributes results of the first sample after rejection by variables and before a second
sample is taken. The second acceptance number c2 is applied to the combined first and second
sample attributes results. As a special case, the two acceptance numbers may be made the same; this
is the plan proposed by Savage (1955). Providing for the use of different acceptance numbers
increases the flexibility and potential of the dependent mixed plan. Of the several methods of
specifying the variables constituent of known standard deviation variables plans, the X method
involving designation by sample size n1 and acceptance limit on the sample average A is used here
since it simplifies the notation somewhat. Note that A¼U� ks for upper specification limit and
standard variables-acceptance factor k.

Let

N ¼ lot size
n1¼ first sample size
n2¼ second sample size
A ¼ acceptance limit on sample mean (X)
c1¼ attributes acceptance number on first sample
c2¼ attributes acceptance number on second sample
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Then, the generalized plan would be carried out in the following manner:

1. Determine the parameters of the mixed plan: n1, n2, A, c1, and c2.

2. Take a random sample of n1 from the lot.

3. If the sample average X � A, accept the lot.

4. If the sample average X>A, examine the first sample for the number of defectives d1 therein.

5. If d1> c1, reject the lot.

6. If d1 � c1, take a second random sample of n2 from the lot and determine the number of
defectives d2 therein.

7. If in the combined sample of n¼ n1þ n2, the total number of defectives d¼ d1þ d2 is such
that d � c2, accept the lot.

8. If d> c2, reject the lot.

When semicurtailed inspection is employed the procedure remains the same, except that, if c2 is
exceeded at any time during the inspection of the second sample, inspection is stopped at once and
the lot rejected.

Measures: Independent Mixed Plan

The four principal curves which describe the properties of an acceptance sampling plan for
various proportions nonconforming are the OC curve, the ASN curve, the average total inspection
(ATI) curve, and the AOQ curve. The operation of mixed plans cannot be properly assessed until
these curves, for given values of the true proportion nonconforming, are defined. In particular,
attention will be directed here to type B OC curves (i.e., sampling from a process).

Let

n1 ¼ first sample size
n2 ¼ second sample size
V 0 ¼ probability of acceptance under variables plan (with sample size n1)
A0 ¼ probability of acceptance under attributes plan (with sample size n2)
p ¼ proportion nonconforming in process

Then, the probability of acceptance and other measures of independent mixed plans can be
developed by analogy to attributes sampling (Schilling 1966) for a lot of size N as

Pa¼V0 þ (1�V0)A0

ASN¼ n1þ (1�V0)n2

ASNc ¼ n1 þ (1� V 0)ASNc
*

AOQ ’ pPa

ATI¼ n1V0 þ (n1þ n2) (1�V0)A0 þ (N) (1�V0) (1�A0)

where ASNc
* is the ASN under semicurtailed inspection for the attributes plan.
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It is important to note that these equations for independent plans hold whatever the nature of the
variables or attributes sampling plans involved. Any variables plan (using range or standard
deviation) can be combined with any attributes plan (single or multiple) using the independent
procedure, provided, of course, that the underlying assumptions of the two plans are appropriate to
the situation to which the mixed plan is to be applied. Also, the probabilities of acceptance, V0 and
A0, are usually readily available since they can be read directly from the OC curves of the variables
and attributes plans used.

The assumption of a known underlying distribution inherent in variables sampling would
seem to indicate sufficient knowledge of the underlying process to allow use of known standard
deviation variables plans in most applications. The possibility of a process generating product with
a distribution of constant shape but frequent changes in variability suggests that unknown standard
deviation plans may sometimes be in order. The appropriate selection should, of course, be
made subsequent to investigation of the stability of the distribution from lot to lot as revealed
by a control chart and by examinations of the shape of the distribution and its constancy. As
with variables plans, mixed plans should not be used ‘‘in the blind’’ with product of unknown
history. Unknown standard deviation plans are easily derived and measures determined for the
independent case using the above procedure. A method for assessing the operating measures
of unknown standard deviation dependent mixed plans when c¼ 0 is given by Adams and
Mirkhani (1976).

For example, consider the independent variables–attributes plan:

Variables: n1¼ 7 k¼ 1.44
Attributes: n2¼ 20 c¼ 1

The probability of acceptance has previously been calculated for the two constituents of the
independent mixed plan (see Chapters 5 and 10). For example, when p¼ .18, it was found for a
lot size of 120 that
Measure Variables Plan Attributes Plan

Probability of acceptance V 0 ¼ .08 A0 ¼ .10
ASN 7 20
ASN (semicurtailed) — 10.44
AOQ (approximate) 0.014 0.018
ATI (N¼ 120) 111.0 109.8
AOQ limit 0.036 0.036

So for the independent mixed plan

Pa ¼ :08þ (1� :08):10 ¼ :172

ASN ¼ 7þ (1� :08)20 ¼ 25:4

ASNc ¼ 7þ (1� :08)10:44 ¼ 16:6

AOQ ¼ pPa ¼ :18(:172) ¼ 0:031

ATI ¼ 7(:08)þ (7þ 20)(1� :08)(:10)þ (120)(1� :08)(1� :10) ¼ 102:4

Thus, although probability of acceptance and ASNs are higher for this proportion nonconforming,
the other measures AOQ and ATI are improved over the attributes plan taken alone.
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TABLE 13.5: Formulas for measures of dependent mixed plans.

Measure Formulas

Pa Pa ¼ P(�X � A)þP
c1

i¼0

Pc2�i

j¼0
Pn1 (i, X > A)P( j; n2)

ASN ASN ¼ n1 þ n2
Pc1

i¼0
Pn1 (i, �X > A)

ASNc ASNc ¼ n1 þ
Pc1

i¼0
Pn1 (i, �X > A)

c2 � iþ 1
p

Xn2þ1

k¼c2�iþ2

P(k; n2 þ 1)þ n2
Xc2�i

j¼0

P(j; n2)

" #

ATI ATI ¼ ASNþ (N � n1)
Pn1

i¼c1þ1
Pn1 (i, �X > A)þ (N � n1 � n2)

�
�
1� Pa �

Pn1

i¼c1þ1
Pn1 (i, X > A)

�

AOQ AOQ ¼ p

N
P(X � A)(N � n1)þ (Pa � P(X � A))(N � n1 � n2)
� �

Source: Reprinted from Schilling, E.G. and Dodge, H.F., Technometrics, 11(2), 344, 1969. With permission.
Note: Except for ASN, all formulas are the same with or without curtailed inspection.
Measures: Dependent Mixed Plan

Formulas for the measures of the generalized dependent mixed plan as given by Schilling and
Dodge (1969) are shown in Table 13.5

where
P(Y) is the probability of Y
Pn(Y,W) is the probability of Y and W in a sample of n
Pn(YjW) is the probability of Y given W in a sample of n
P(i,n) is the probability of i defectives in a sample of n
p is the population (process) fraction defective

Since s is assumed known, it is possible to evaluate the expressions shown in Table 13.5 using
tables of Pn(i, X>A) for a standard normal universe, i.e., m¼ 0, s¼ 1. Such values are given in
Appendix Table T13.8 for first sample size n1¼ 5. To accomplish this, the value of Pn(i, X>A) for
a particular application can be found by transforming the variates involved to standard normal
deviates by the use of the familiar z-transformation. This expresses the departure of given values
from the population mean in units of the (known) standard deviation. Thus, an upper specification
limit U is expressed as zU, where

zU ¼ U � m

s

and m is the population mean of a normal distribution such that fraction defective p of the said
distribution exceeds the upper specification limit U (see Figure 13.8). Thus

Pn ¼ (i, X > A) ¼ Pn(i, �z > zA)

where �z and zA are standard normal deviates such that

�z ¼ X � m

s
, zA ¼ A� m

s

The tables in the appendix are entered with these values for the mean and the acceptance limit.
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FIGURE 13.8: Relationship of k and A. (Reprinted from Schilling, E.G. and Dodge, H.F.,
Technometrics, 11(2), 346, 1969. With permission.)
The values shown in the appendix were calculated using the method given in Schilling and Dodge
(1966). Similar tables for sample sizes 4–10 are presented in Schilling and Dodge (1967b) and for
sample sizes 11–20 when c¼ 0 in Schilling and Dodge (1967c).

Figure 13.8 shows the relationship of k and A for a given distribution of product with mean
m associated with fraction nonconforming p. It also displays the role of the transformed variables
zA and zU.

Mixed plans have been discussed in terms of the X method mentioned above since this simplifies
the notation somewhat. Variables plans specified in terms of the other methods can be converted to
the X method using the k method

A ¼ U � ks

or the M method

A ¼ U �
ffiffiffiffiffiffiffiffiffiffiffi
n� 1
n

r

ks,

k such that
Ð1
k 1=

ffiffiffiffiffiffi
2p

p	 

e�t2=2 dt ¼ M=100 in the notation of MIL-STD-414, respectively.

In combining any two variables and attributes plans in a dependent mixed plan, the formulas of
Table 13.5 define the probability of acceptance, or OC curve, and associated measures of the
combined plan. Note that the formulas simplify greatly when c1¼ 0.

To illustrate the inspection procedure to be followed and the methods to be used in determining
the properties of a mixed-acceptance sampling plan, consider the following example.

Suppose the plan

n1 ¼ 5, k ¼ 1:5

n2 ¼ 20, c1 ¼ 1, c2 ¼ 2

is to be applied to the lot-by-lot acceptance inspection of a particular kind of device. The
characteristic to be inspected is the operating temperature of the device, for which there is a
specified upper limit of 209.08F. For this characteristic, the standard deviation of the process is
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known to be 4.08F, based on past experience substantiated by a control chart. What inspection
procedure should be followed and what are the properties of this plan?

For this example,

U¼ 209.08F

s¼ 4.08F

A¼U� ks¼ 209.0� 1.5(4.0)¼ 203.08F

The procedure would be carried out as follows:

Step Results

1. Determine parameters of plan n1¼ 5, n2¼ 20, A¼ 203.0, c1¼ 1, c2¼ 2
2. Take sample of n1¼ 5 from lot First sample results: 205, 202, 208,

198, 207
3. If X � A, accept the lot X¼ 204; not � A¼ 203.0, so

go to next step
4. If X>A, examine first sample

for number of defectives d1 therein
No sample value>U¼ 209.0;
so d1¼ 0

5. If d1> c1, reject the lot d1¼ 0, not> c1¼ 1; so go to next step
6. If d1 � c1, take second sample of n2¼ 20

and determine number nonconforming
or defective d2 therein

Second sample results: 3 nonconforming
in n2¼ 20; so d2¼ 3

7. If in combined sample, total nonconforming
or defective d¼ d1þ d2 � c2, accept the lot

d¼ d1þ d2¼ 0þ 3¼ 3, not � c2¼ 2;
so go to next step

8. If d> c2, reject the lot d¼ 3> c2¼ 2; reject the lot

Suppose the probability of acceptance Pa and associated measures are to be calculated for fraction
nonconforming p¼ .02. Then, since the distribution is normal, p¼ .02 implies the distribution of
individuals will be as indicated in Figure 13.9, and from a normal probability table we find
zU¼ 2.05 for p¼ .02. Thus

zA ¼ zU � k ¼ 2:05� 1:5 ¼ 0:55
p = 0.02

k = 1.5

Transformed
units

Original units
of measurement

z

x

UA

ks = 6.0

m

20
9.

0

20
3.

0

20
0.

8

2.
050.
550

FIGURE 13.9: Distribution of individuals when p¼ .02, known s¼ 4.0. (Reprinted from
Schilling, E.G. and Dodge, H.F., Technometrics, 11(2), 341, 1969. With permission.)
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Then, the following are the probability of acceptance and associated measures of the plan given
above.

1. Probability of acceptance (at p¼ .02)

Pa ¼ P(X � A)þ
Xc1

i¼0

Xc2�i

j¼0

Pn1(i, X > A)P( j; n2)

¼ P z � ffiffiffiffiffi
n1

p
zAð Þ þ P5 0, �z > zAð Þ

X2

j¼0

P( j; 20)þ P5 1, �z > zAð Þ
X1

j¼0

P(j; 20)

¼ P z �
ffiffiffi
5

p
(0:55)

� �
þ P5(0, �z > 0:55)

X2

j¼0

P( j; 20)þ P5(1, �z > 0:55)
X1

j¼0

(j; 20)

¼ :8907þ :0693(:9929)þ :037(:9401)

¼ :9943

2. ASN (at p¼ .02)

ASN ¼ n1 þ n2
Xc1

i¼0

Pn1 (i, X > A)

¼ 5þ 20
X1

i¼0

P5(i, �z > zA)

¼ 5þ 20
X1

i¼0

P5(i, �z > 0:55)

¼ 5þ 20[:0693þ :037]

¼ 7:126

3. ASN under semicurtailed inspection (at p¼ .02)

ASNc ¼ n1 þ
Xc1

i¼0

Pn1(i, X > A)
c2 � iþ 1

p

Xn2þ1

k¼c2�iþ2

P k; n2 þ 1ð Þ þ n2
Xc2�i

j¼0

P j; n2ð Þ
" #

¼ 5þ
X1

i¼0

P5(i, �z > 0:55)
2� iþ 1

:02

X20þ1

k¼2�iþ2

P(k; 20þ 1)þ 20
X2�i

j¼0

P( j; 20)

" #

¼ 5þ :0693
3� 0
:02

X21

k¼4�0

P(k; 21)þ 20
X2�0

j¼0

P( j; 20)

" #

þ :037
3� 1
:02

X21

k¼4�1

P(k; 21)þ 20
X2�1

j¼0

P( j; 20)

" #

¼ 5þ :0693[150(:0007)þ 20(:9929)]þ :037[100(:0081)þ 20(:9401)]

¼ 7:109
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4. ATI, for lot size N¼ 1000 (at p¼ .02)

ATI¼ ASNþ N� n1ð Þ
Xn1

i¼c1þ1

Pn1(i, X > A)þ N� n1� n2ð Þ
�

1�Pa�
Xn1

i¼c1þ1

Pn1(i, X > A)

�

¼ 7:126þ (1000� 5)
X5

i¼1þ1

P5(i, �z> 0:55)þ (1000� 5� 20)

�
�

1� :9943�
X5

i¼1þ1

P5(i, �z> 0:55)

�

but

X5

i¼2

P5(i, X > A) ¼ P(X > A)�
X1

i¼0

P5(i, X > A)

X5

i¼2

P5(i, �z > 0:55) ¼ P z >
ffiffiffi
5

p
(0:55)

� �
�
X1

i¼0

P5(i, �z > 0:55)

¼ :1093� (:0693þ :0370)

¼ :0030

so

ATI ¼ 7:126þ 995(:003)þ 975(1� :9943� :003)

¼ 7:126þ 2:985þ 2:632

¼ 12:743

5. AOQ, for lot size N¼ 1000 (at p¼ .02)

AOQ ¼ p

N
[P(X � A)(N � n1)þ (Pa � P(X � A))(N � n1 � n2)]

¼ :02
1000

P z � ffiffiffiffiffi
n1

p
zAð Þ(1000� 5)þ :9943� P z � ffiffiffiffiffi

n1
p

zAð Þð Þ(1000� 5� 20)½ �
¼ :00002[:8907(995)þ (:9943 � :8907)(975)]

¼ :0197

MIL-STD-414 Dependent Mixed Plans

Dependent mixed variables–attributes plans are, in fact, specified for use in MIL-STD-414 in
paragraphs A9.2.2 to A9.4.2 reproduced as follows:

A9.2.2 Mixed variables–attributes inspection. Mixed variables–attributes inspection is inspec-
tion of a sample by attributes, in addition to inspection by variables already made of a
previous sample, before a decision as to acceptability or rejectability of a lot can be made.
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A9.3 Selection of sampling plans. The mixed variables–attributes sampling plan shall be selected
in accordance with the following:

A9.3.1 Select the variables sampling plan in accordance with Section B, C, or D.

A9.3.2 Select the attributes sampling plan from MIL-STD-105 . . . using a single sampling
plan and tightened inspection. The same AQL value(s) shall be used for the attributes
sampling plan as used for the variables plan of paragraph A9.3.1.

(Additional sample items may be drawn, as necessary, to satisfy the requirements for sample
size of the attributes sampling plan. Count as a defective each sample item falling outside of
specification limit(s).)

9.4 Determination of acceptability. A lot meets the acceptability criterion if one of the following
conditions is satisfied:

Condition A. The lot complies with the appropriate variables acceptability criterion of Section
B, C, or D.

Condition B. The lot complies with the acceptability criterion of . . .MIL-STD-105.

A9.4.1 If Condition A is not satisfied, proceed in accordance with the attributes sampling plan
to meet Condition B.

A9.4.2 If Condition B is not satisfied, the lot does not meet the acceptability criterion.

To illustrate the method for determining the OC curve of a combination of two such plans, suppose
the following two plans are combined after the manner of MIL-STD-414:

MIL-STD-414, Code F (AQL¼ 4.0): n¼ 5, k¼ 1.20

MIL-STD-105D (United States Department of Defense, 1963), Code F (AQL¼ 4.0 tightened):
n¼ 20, c¼ 1

Note that in combining these published plans in the manner of MIL-STD-414, the second sample
size is n2¼ 15 in the calculations since 5 units are contributed by the first sample to the attributes
determination.

Let c1¼ c2¼ 1. The combined type B OC curve would be derived as follows:

1. The formula is

Pa ¼ P(X � A)þ
X1

i¼0

X1�i

j¼0

P5(i, X > A)P(j; 15)

2. Computation then proceeds in the same manner as the example above. For example, to obtain
the probability of acceptance when p¼ .05,

Pa ¼ P z � ffiffiffiffiffi
n1

p
zAð Þ þ P5(0, �z > zA)

X1

j¼0

P(j; 15)þ P5(1,�z > zA)P(0; 15)

¼ P z �
ffiffiffi
5

p
(0:44)

� �
þ P5(0, �z > 0:44)

X1

j¼0

P(j; 15)þ P5(1, �z > 0:44)P(0; 15)

¼ :8374þ :0649(:8290)þ :079(:4633)

¼ :928
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Comparison of Independent and Dependent Mixed Plans

A comparison can be made between independent and dependent plans which have essentially the
same OC curve. A criterion for comparison is the ASN of the two plans. The probability of
acceptance and ASN of an independent mixed plan can be calculated as

Pa ¼ Pn1 (X � A)þ Pn1(X > A)
Xc2

j¼0

P( j; n2)

ASN ¼ n1 þ n2Pn1(X > A)

Now, it can be shown (Schilling and Dodge 1967a) that if the two plans have the same first stage
variables plan and attributes acceptance number c2 (where for the dependent plan c1� c2), the second
sample size of the independent plan will be greater than that of the dependent plan.

Therefore, for the same probability of acceptance, i.e., the same OC curve, the independent plan
requires a larger second sample size. But even if the second sample size of the dependent plan is
kept the same as that of the independent plan, the ASN of the dependent plan will be lower since

ASN (Independent) � ASN (Dependent)

n1 þ P(X > A)n2 � n1 þ n2
Pc1

i¼0
Pn1 i, X > A
	 


P(X > A) � Pc1

i¼0
Pn1(i, X > A)

Thus, the dependent plan is superior to the independent plan in terms of the same protection with a
smaller sample size.

The difference in ASN can become quite large if particularly bad quality is submitted to the plan
and if, as seems customary, the independent plan has no provision for rejection on an attributes basis
immediately after taking the first sample and before taking the second sample. Thus, in the event of
poor quality the attributes plan is utilized to a greater extent in the independent scheme than in the
dependent procedure with further possible increase in the ASN.

As an example of the superiority of dependent plans, consider the following:

n1 ¼ 5, k ¼ 2, n2 ¼ 20, c1 ¼ c2 ¼ 0

The probability of acceptance and ASNs were calculated for the specified mixed plan, assuming it to
be carried out in dependent and independent form. A comparison of the results for the dependent
and independent procedures is shown in Table 13.6.

Comparison of Mixed with Other Type Plans

As an indication of the relative merit of mixed plans, variables plans and single- and double-
sampling attributes plans were matched as closely as possible by Schilling and Dodge (1967a) to the
same dependent mixed plan

n1 ¼ 5, k ¼ 2

n2 ¼ 20, c1 ¼ c2 ¼ 0
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TABLE 13.6: Comparison of Pa and ASN
for a specified mixed plan applied in dependent and
independent form: n1¼ 5, n2¼ 20, k¼ 2, c1¼ c2¼ 0.

Dependent Independent

p Pa ASN Pa ASN

.005 .980 6.7 .991 6.9

.01 .931 8.9 .958 9.6

.02 .794 12.5 .849 14.1

.05 .415 16.4 .493 20.8

.10 .119 15.8 .169 23.9

.15 .032 13.6 .054 24.7

.20 .008 11.5 .016 24.9
at the two points

p1 ¼ :008, Pa ¼ :953

p2 ¼ :107, Pa ¼ :098

which lie on the OC curve of the mixed plan. Because of inherent differences in the shape of the
various OC curves, exact matches could not be obtained; however, all the plans obtained show
probability of acceptance within �0.015 of the mixed plan at these points. The results are shown in
Table 13.7.

Comparison of the ASN at these points for various plans gives a rough indication of the
advantages of mixed plans against either single- or double-sampling attributes plans. Also, it
would appear that for low-percents nonconforming the ASN for the mixed plan approaches that
of the variables plan as illustrated in the following tabulation:

Probability of Acceptance ASN

p ~ 0 p¼ .005 p¼ .01 p ~ 0 p¼ .005 p¼ .01

Dependent mixed 1.0 .980 .931 5.0 6.7 8.9
Variables 1.0 .979 .922 6 6 6
Single attributes 1.0 .985 .947 37 37 37
Double attributes 1.0 .977 .922 21.0 25.0 28.2
TABLE 13.7: Comparison of various plans to match: p1¼ .008, Pa¼ .953; p2¼ .107, Pa¼ .098.

Probability of Acceptance ASN

Plan Criteria p¼ .008 p¼ .107 p¼ .008 p¼ .107

Dependent mixed n1¼ 5, k¼ 2
n2¼ 20,
c1¼ c2¼ 0

.953 .098 8.1 15.5

Variables n¼ 6, k¼ 1.75 .947 .106 6 6
Attributes (single) n¼ 37, c¼ 1 .965 .083 37 37
Attributes (double) n1¼ 21, c1¼ 0

n2¼ 42, c2¼ 1
.947 .095 27.0 30.8
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This is reasonable, since if perfect product (within the constraint of the assumption of normality)
were submitted to both plans, it would be accepted on the first stage of the mixed procedure
resulting in an ASN of 5 compared to the variables ASN of 6.

References

Adams, R. M. and K. Mirkhani, 1976, Combined Variables=Attributes Plans—Sigma Unknown, American
Society for Quality Control Annual Technical Conference Transactions, Toronto, pp. 292–300.

Ashley, R. L., 1952, Modification of the lot plot method, Industrial Quality Control, 8(5): 30–31.
Bowker, A. H. and H. P. Goode, 1952, Sampling Inspection by Variables, McGraw-Hill, New York.
Campbell, G. A., 1923, Probability curves showing Poisson exponential limit, Bell System Technical Journal, 2

(1): 95–113.
Chernoff, H. and G. J. Lieberman, 1957, Sampling inspection by variables with no calculations, Industrial

Quality Control, 13(7): 5–7.
Dodge, H. F., 1932, Statistical control in sampling inspection, American Machinist, October: 1085–1088;

November: 1129–1131.
Dudding, B. P. and W. J. Jennett, 1944, Control Chart Technique When Manufacturing to a Specification,

British Standards Institution, London.
Gregory, G. and G. J. Resnikoff, 1955, Some Notes on Mixed Variables and Attributes Sampling Plans,

Technical Report No. 10, Applied Mathematics and Statistics Laboratory, Stanford University,
Stanford, CA.

Kao, J. H. K., 1966, Single-Sample Attri-Vari Plans for Item-Variability in Percent Defective, American
Society for Quality Control Annual Technical Conference Transactions, New York, pp. 743–758.

Ladany, S. P., 1976, Determination of optimal compressed limit gaging sampling plans, Journal of Quality
Technology, 8(4): 225–231.

Larson, H. R., 1966, A nomograph of the cumulative binomial distribution, Industrial Quality Control, 23(6):
270–278.

Mace, A. E., 1952, The use of limit gauges in process control, Industrial Quality Control, 8(4): 24–31.
Ott, E. R. and A. B. Mundel, 1954, Narrow limit gaging, Industrial Quality Control, 10(5): 2–9.
Savage, I. R., 1955, Mixed Variables and Attributes Plans: The Exponential Case, Technical Report No. 23,

Applied Mathematics and Statistics Laboratory, Stanford University, Stanford, CA.
Schilling, E. G., 1966, Mixed variables-attributes sampling, the independent case, Transactions of the

18th Annual Conference on Quality Control, Rutgers, The State University, New Brunswick, NJ,
pp. 82–89.

Schilling, E. G., 1967, A general method for determining the operating characteristics of mixed variables-
attributes sampling plans, single sided specification, standard deviation known, PhD dissertation,
Rutgers, The State University, New Brunswick, NJ.

Schilling, E. G. and H. F. Dodge, 1966, On some joint probabilities useful in mixed acceptance sampling,
Technical Report No. N-26, Rutgers, The State University Statistics Center, New Brunswick, NJ.

Schilling, E. G. and H. F. Dodge, 1967a, Dependent mixed acceptance sampling plans and their evaluation,
Technical Report No. N-27, Rutgers, The State University Statistics Center, New Brunswick, NJ.

Schilling, E. G. and H. F. Dodge, 1967b, Tables of joint probabilities useful in evaluating mixed acceptance
sampling plans, Technical Report No. N-28, Rutgers, The State University Statistics Center, New
Brunswick, NJ.

Schilling, E. G. and H. F. Dodge, 1967c, Supplement to tables of joint probabilities, Technical Report No.
N-29, Rutgers, The State University Statistics Center, New Brunswick, NJ.

Schilling, E. G. and H. F. Dodge, 1969, Procedures and tables for evaluating dependent mixed acceptance
sampling plans, Technometrics, 11(2): 341–372.

Schilling, E. G. and J. H. Sheesley, 1978, The performance of MIL-STD-105D under the switching rules,
Journal of Quality Technology, Part 1, 10(2): 76–83; Part 2, 10(3): 104–124.

Schilling, E. G. and D. J. Sommers, 1981, Two-point optimal narrow limit plans with applications to MIL-
STD-105D, Journal of Quality Technology, 13(2): 83–92.
� 2008 by Taylor & Francis Group, LLC.



Shainin, D., 1950, The Hamilton standard lot plot method of acceptance sampling by variables, Industrial
Quality Control, 7(1): 15–34.

Shainin, D., 1952, Recent lot plot experiences around the country, Industrial Quality Control, 8(5): 20–29.
Stevens, W. L., 1948, Control by gauging, Journal of the Royal Statistical Society, Series B, 10(1): 54–108.
United States Department of Defense, 1957, Military standard, sampling procedures and tables for inspection

by variables for percent defective (MIL-STD-414), U.S. Government Printing Office, Washington, D.C.
United States Department of Defense, 1963, Military standard, sampling procedures and tables for inspection

by attributes (MIL-STD-105D), U.S. Government Printing Office, Washington, D.C.
United States Department of Defense, 1989, Military standard, sampling procedures and tables for inspection

by attributes (MIL-STD-105E), U.S. Government Printing Office, Washington, D.C.
Woods, W. M., 1960, Variables inspection procedures which guarantee acceptance of perfectly screened

lots, Technical Report No. 47, Applied Mathematics and Statistics Laboratory, Stanford University,
Stanford, CA.

Problems

1. A Code H, 1.0 AQL, MIL-STD-414 plan is to be used in in-process inspection. If a No-Calc
plan is to be substituted, what is the plotting position of the largest value in the sample? If the
largest value is exactly at the upper specification limit, should the lot be accepted?

2. A modified lot plot form was drawn up for 50 observations of coating weight of instrument
pins. It was found that m̂ ¼ 15 mg and ŝ ¼ 1 mg. The lot limit exceeded the specification
limit by 1 space. Estimate the fraction nonconforming. Cell width is 1. Should the lot be
accepted if it is important to have less than .01 nonconforming?

3. The plan n¼ 10, c¼ 0, t¼ 1.5 is applied to an upper specification limit U¼ 110. The standard
deviation is known to be s¼ 6. If the largest value in the sample is 102, should the lot be
accepted?

4. Sketch the OC curve of the narrow-limit plan n¼ 5, t¼ 1.92, c¼ 2 through the points for
p¼ .0025, .034, and .109. Compare to MIL-STD-105E, Code F, .65 AQL. Use Poisson and
binomial probabilities. Why are the two closer using binomial probabilities?

5. Use the Ladany nomogram to obtain an optimumplanwhen p1¼ .03, p2¼ .12,a¼ .05,b¼ .010.

6. Find tightened, normal, and reduced optimum narrow-limit plans which match those for the
MIL-STD-105E, Code H, 1.0 AQL scheme.

7. Suppose MIL-STD-414 normal and MIL-STD-105D tightened unknown standard
deviation plans for Code F, 4.0 AQL, are to be combined in a mixed sampling procedure.
The plans are

MIL-STD-414: n¼ 10, k¼ 1.23

MIL-STD-105E: n¼ 20, Ac¼ 1, Re¼ 2

Calculate the following measures for p¼ .04 when the plans are combined to form an
independent mixed plan:

a. Probability of acceptance

b. ASN

c. AOQ
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8. To conform to the procedure for combining mixed plans recommended in MIL-STD-414, a
dependent mixed plan should be used. Compute the measures of Problem 7 for p¼ .05 when
the Code G, 0.65 AQL, known standard deviation plan n¼ 5, k¼ 1.88, from MIL-STD-414 is
combined with the corresponding tightened plan from MIL-STD-105E, n¼ 32, c¼ 0, in a
dependent mixed procedure. Note that, for the MIL-STD-414 method, the total combined
second sample size would be 32 so that n2¼ 27.

9. Using the relationship developed by Campbell (1923)

np0 ¼ cþ 2
3

compute the indifference quality level for n¼ 100, c¼ 0, 1, 2, 3, 4, 5. Compare with the
values obtained from the Schilling–Johnson table.

10. Devise a narrow-limit plan with p1¼ .01, p2¼ .06, a¼ .05, and b¼ .10. What are the
parameters of a matching single-sampling attribute plan?
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Chapter 14

Series of Lots: Rectification Schemes

Although it is impossible to inspect quality into the product, it is possible to use 100% inspection
or screening operations in such a way as to ensure with known probability that levels of quality in
lots outgoing from an inspection station will not, either individually or on the average, exceed
certain levels. Often this is done with minimum average total inspection (ATI). Schemes that utilize
this concept are

Lot tolerance percent defective (LTPD) schemes: Specify LTPD protection on each lot. Assum-
ing screening of rejected lots, the sampling plan is selected to make ATI a minimum at a
projected process average level of percent defective.

Average outgoing quality limit (AOQL) schemes: Specify AOQL protection for the lots. Assum-
ing screening of rejected lots, the sampling plan is selected to make ATI a minimum at the
projected process average level of percent defective.

In rectification schemes, 100% inspection of rejected lots with replacement of defective units with
good ones, or equivalent screening, is assumed.

The LTPD plans are useful when the producer desires LTPD protection on individual lots with
the intention of screening rejected material in a large sequence of lots. The purpose is to minimize
the total amount of inspection, including the screening, by using a plan with the lowest possible
ATI. This is particularly suitable for internal in-process sampling where the costs of screening can
be borne by the component responsible for producing the product. Also, on final inspection these
plans provide LTPD protection for the consumer while the producer, who may do the screening,
keeps the overall testing costs to a minimum.

The AOQL plans are concerned with the series of lots as a whole. They do not focus on individual
lots, but guarantee that the average outgoing quality (AOQ) will not exceed a certain specified
amount. Thus the consumer is assured that the average quality level received will not exceed the
AOQL in the long run. The producer, or the inspection agency, achieves minimum inspection.
Again, these plans are useful in in-process or incoming inspections to guarantee outgoing quality
levels regardless of the quality coming into the inspection station.

Note that a specification of LTPD is much more severe than that of AOQL. When operating at
the LTPD level of percent defective, the AOQ will be about 10% of the LTPD specified. Thus,
a 4% LTPD is much tighter than a 4% AOQL. With plans of this type, the actual AOQ should
generally be less than half to two-thirds the value of the AOQL. A 1.5% AOQL implies that the
producer must hold about a 1.0% process level to avoid excessive rejections and consequent
screening.

Special procedures have been developed for application lot by lot to provide LTPD or AOQL
protection. Like the AQL in the MIL-STD-105E or MIL STD-414 AQL schemes, the AOQL or
LTPD becomes the index for such rectification schemes. Two of these, the Dodge–Romig scheme
and the Anscombe rectifying inspection scheme will be presented here. The selection of a simple
AOQL plan will first be discussed.
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Single-Sampling AOQL Plan

It is sometimes desirable to quickly select and compare AOQL plans without regard to process
average levels or minimization of inspection. For a single-sampling attributes plan, the AOQL can
easily be determined from a graph developed by Altman (1954).

The Altman diagram, which assumes sample size to be small relative to lot size (<10%), is shown
in Figure 14.1. It is based on the Poisson distribution. The diagram allows the comparison of n, c,
and AOQL for various plans to achieve the combinations desired. For specified AOQL and sample
size, the diagram gives the appropriate acceptance number, c. For example, suppose limitations on
inspection staff are such that a sample size of about 20 is deemed feasible while an AOQL of 4% is
desired. Lot size is large. Cross-reference of these two criteria on the graph indicates that an
acceptance number of c¼ 1 is appropriate. The plan becomes n¼ 20, c¼ 1.

Dodge–Romig Sampling Scheme

Rectification schemes stand among the earliest examples of sampling schemes as such. They
precede the development of AQL schemes by well over a decade. The celebrated Dodge–Romig
(Dodge and Romig 1941) tables are an excellent example of such early efforts. Developed by
Harold F. Dodge and Harry G. Romig at Bell Telephone Laboratories in the late 1920s through
the 1930s, they were first published in the Bell System Technical Journal in the early 1940s.
The tables were published in book form in 1944 with the revised second edition coming forth
in 1959.

There are two sets of tables:

LTPD single- and double-sampling plans which minimize ATI for values of LTPD¼ 0.5%,
1.0%, 2.0%, 3.0%, 4.0%, 5.0%, 7.0%, 10.0%

AOQL single- and double-sampling plans which minimize ATI for values of AOQL¼ 0.1%,
0.25%, 0.5%, 0.75%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0%, 4.0%, 5.0%, 7.0%, 10.0%

The LTPD tables are set up to minimize ATI based on Type B probabilities while maintaining
LTPD protection (shown as pt%) determined from Type A probabilities, since the lot size is
specified. The AOQL tables utilize Type B probabilities in determining both ATI and AOQL.
Thus, the same plan may appear in different lot size ranges in the AOQL and LTPD tables. The
disparity represents the difference in use of the scheme in protecting individual lots (Type A) or
providing protection on the process producing the lots (Type B). The Type A probability used
applies to the middle of the lot size range shown and so is exact for that value only. LTPDs are
always calculated using Type A probabilities in the Dodge–Romig scheme.

Both sets of tables require knowledge of the process average percent defective to achieve an
optimum plan to minimize ATI. This implies that the producer, or the incoming inspection station,
must keep adequate records and control charts to properly assess the process average.

The tables are set up such that if the process average is not known, they can be entered at the
highest level of process average percent defective shown in the table. In such a situation, the
protection desired will be guaranteed with a somewhat less than optimum plan until the necessary
information can be developed.

In general, with rectification sampling plans, larger lot sizes result in less overall inspection. Too
large a lot size, of course, may preclude effective random sampling. Also such plans may actually
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30, 1954. With permission.)
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provide an incentive to improve the quality by forcing the producer to incur screening costs on lots
of poor quality.

It is important to note that the Dodge–Romig tables contain an appendix with an excellent
collection of binomial operating characteristic (OC) curves for some of the most commonly used
plans, including

c¼ 0, n¼ 2(1)15, 16(2)34, 35(5)50, 50(10)100, 100(20)200, 200(50)500

c¼ 1, n¼ 3(1)20, 20(2)50, 50(5)95, 90(10)200, 200(20)500

c¼ 2, n¼ 5(1)20, 20(2)36, 30 (5)100, 100(10)160, 160(20)280, 250(50)500

c¼ 3, n¼ 8(1)19, 20(2)36, 35(5)75, 70(10)200, 200(20)300, 300(50)500

where X(Y)Z indicates that the curves start at X and progress in increments of Y up to Z. OC curves
of the AOQL single- and double-sampling plans specified in the tables are also given.

Operation

All the plans contained in the Dodge–Romig tables assume 100% inspection of rejected lots. For
plans indexed by LTPD or AOQL, the operation of the scheme is as indicated in Figure 14.2.

The Dodge–Romig work is more than just tables. It describes the mathematical development
behind the plans presented together with much practical material on the application of sampling
plans and the meaning of OC curves and other measures. The content is structured as indicated in
Figure 14.3.

Selection

The tables are indexed in two sets by LTPD or AOQL, respectively. Plans are selected on the
basis of lot size and process average. The sets of tables are entered at the specific value of LTPD or
AOQL and the plan determined by cross-referencing process average and lot size. If the process
average is not known, the largest value of process average appearing in the table is used until
adequate information can be developed. Plans are available for single or double sampling. The
tables give the sample sizes and acceptance criteria and also show the value of the measure not
specified, i.e., AOQL if LTPD is specified and vice versa. A check sequence for the selection of a
Dodge–Romig plan is given in Figure 14.4.
Screen lot
and ship

Apply
sampling

plan

Accept Reject

Flow of
lots

FIGURE 14.2: Operation of Dodge–Romig plans.

� 2008 by Taylor & Francis Group, LLC.
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Examples of the Dodge–Romig (Dodge and Romig 1959) tables and OC curves are shown here
as follows:

Table Dodge–Romig Table Content

Table 14.1 Appendix 6 4% AOQL single-sampling plans
Table 14.2 Appendix 7 4% AOQL double-sampling plans
Table 14.3 Appendix 4 4% LTPD single-sampling plans
Table 14.4 Appendix 5 4% LTPD double-sampling plans

To exemplify the use of these tables and figures, suppose a plan is desired having 4% AOQL with
lot size 250 and process average percent defective 1.6%.

Tables 14.1 and 14.2 give the following plans which will guarantee AOQ <4% defective with
minimum ATI.

AOQL single sampling (Table 14.1)

n ¼ 20, c ¼ 1, LTPD ¼ 19%

AOQL double sampling (Table 14.2)

Sample Size
Cumulative Sample

Size (n1þ n2)
Acceptance
Number

Rejection
Number

n1¼ 16 16 c1¼ 0 c2þ 1¼ 3
n2¼ 18 34 c2¼ 2 c2þ 1¼ 3

LTPD¼ 17.4%
� 2008 by Taylor & Francis Group, LLC.
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FIGURE 14.4: Check sequence for selecting Dodge–Romig plan.
The rejection number for both samples in double sampling is always 1 more than the acceptance
number for the second sample, c2. Also, the second size is not kept at a constant ratio of the first
sample size. It varies. In MIL-STD-105E, n1¼ n2.

LTPD plans afford more protection on individual lots and so require larger sample sizes. If 4%
LTPD were specified (rather than 4% AOQL) with lot size 250 and process average percent
defective 1.6%, we would have from Tables 14.3 and 14.4:

LTPD single sampling (Table 14.3)

n ¼ 85, c ¼ 1, AOQL ¼ 0:71%

LTPD double sampling (Table 14.4)

Sample Size
Cumulative
Sample Size

Acceptance
Number

Rejection
Number

n1¼ 60 60 c1¼ 0 c2þ 1¼ 4
n2¼ 90 150 c2¼ 3 c2þ 1¼ 4

AOQL¼ 0.84%
� 2008 by Taylor & Francis Group, LLC.



TABLE 14.1: Dodge–Romig single-sampling table for AOQL¼ 4%.

Process Average

0% to 0.08% 0.09% to 0.80% 0.81% to 1.60% 1.61% to 2.40% 2.41% to 3.20% 3.21% to 4.00%

Lot Size n c pt% n c pt% n c pt% n c pt% n c pt% n c pt%

1–10 All 0 — All 0 — All 0 — All 0 — All 0 — All 0 —

11–50 8 0 23.0 8 0 23.0 8 0 23.0 8 0 23.0 8 0 23.0 8 0 23.0
51–100 8 0 24.0 8 0 24.0 8 0 24.0 8 0 24.0 17 1 21.5 17 1 21.5
101–200 9 0 22.0 9 0 22.0 19 1 20.0 19 1 20.0 19 1 20.0 19 1 20.0
201–300 9 0 22.5 9 0 22.5 20 1 19.0 20 1 19.0 31 2 16.8 31 2 16.8
301–400 9 0 22.5 20 1 19.1 20 1 19.1 32 2 16.2 32 2 16.2 43 3 15.2
401–500 9 0 22.5 20 1 19.1 20 1 19.1 32 2 16.3 32 2 16.3 44 3 14.9
501–600 9 0 22.5 20 1 19.2 20 1 19.2 32 2 16.3 45 3 14.6 60 4 12.9
601–800 9 0 22.5 20 1 19.2 33 2 15.9 33 2 15.9 46 3 14.3 60 4 13.0
801–1,000 9 0 22.5 21 1 18.3 33 2 16.0 46 3 14.3 60 4 13.0 75 5 12.2
1,001–2,000 9 0 22.5 21 1 18.4 34 2 15.6 47 3 14.1 75 5 12.2 105 7 11.0
2,001–3,000 9 0 22.5 21 1 18.4 34 2 15.6 60 4 13.2 90 6 11.3 125 8 10.4
3,001–4,000 21 1 18.4 21 1 18.4 48 3 13.8 65 4 12.2 110 7 10.7 155 10 9.8
4,001–5,000 21 1 18.5 34 2 15.7 48 3 13.9 80 5 11.6 110 7 10.8 175 11 9.5
5,001–7,000 21 1 18.5 34 2 15.7 48 3 13.9 80 5 11.6 125 8 10.4 210 13 9.0
7,001–10,000 21 1 18.5 34 2 15.7 65 4 12.3 95 6 11.1 145 9 9.8 245 15 8.6
10,001–20,000 21 1 18.5 34 2 15.7 65 4 12.3 110 7 10.8 195 12 9.0 340 20 7.9
20,001–50,000 21 1 18.5 49 3 13.6 80 5 11.6 145 9 9.8 250 15 8.5 460 26 7.4
50,001–100,000 21 1 18.5 49 3 13.6 95 6 11.1 165 10 9.6 310 18 8.0 540 30 7.1

Source: Reprinted from Dodge, H.F. and Romig, H.G., Sampling Inspection Tables, Single and Double Sampling, 2nd ed., John Wiley & Sons, New York, 1959, 202. With permission.
n, sample size; c, acceptance number; ‘‘All’’ indicates that each piece in the lot is to be inspected; pt, lot tolerance percent defective with a consumer’s risk (PC) of 0.10.
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TABLE 14.2: Dodge–Romig double-sampling table for AOQL¼ 4.0%.

Process Average

0% to 0.08% 0.09% to 0.80% 0.81% to 0.60%

Trial 1 Trial 2 Trial 1 Trial 2 Trial 1 Trial 2

Lot Size n1 c1 n2 n1þ n2 c2 pt% n1 c1 n2 n1þ n2 c2 pt% n1 c1 n2 n1þ n2 c2 pt%

1–10 All 0 — — — — All 0 — — — — All 0 — — — —

11–50 8 0 — — — 23.0 8 0 — — — 23.0 8 0 — — — 23.0
51–100 12 0 7 19 1 22.0 12 0 7 19 1 22.0 12 0 7 19 1 22.0
101–200 13 0 8 21 1 21.0 13 0 8 21 1 21.0 15 0 17 32 2 18.0
201–300 13 0 9 22 1 20.5 16 0 18 34 2 17.4 16 0 18 34 2 17.4
301–400 14 0 8 22 1 20.0 16 0 19 35 2 17.0 18 0 28 46 3 15.5
401–500 14 0 8 22 1 20.0 16 0 19 35 2 17.0 19 0 28 47 3 15.3
501–600 16 0 19 35 2 17.0 16 0 19 35 2 17.0 19 0 29 48 3 15.1
601–800 16 0 20 36 2 16.7 16 0 20 36 2 16.7 19 0 30 49 3 14.9
801–1,000 16 0 20 36 2 16.7 16 0 20 36 2 16.7 20 0 45 65 4 13.8
1,001–2,000 17 0 19 36 2 16.6 19 0 31 50 3 14.8 21 0 44 65 4 13.6
2,001–3,000 17 0 19 36 2 16.6 19 0 31 50 3 14.8 21 0 44 65 4 13.6
3,001–4,000 17 0 20 37 2 16.5 19 0 31 50 3 14.8 22 0 58 80 5 13.0
4,001–5,000 17 0 20 37 2 16.5 19 0 31 50 3 14.8 22 0 58 80 5 13.0
5,001–7,000 17 0 20 37 2 16.5 19 0 31 50 3 14.8 22 0 58 80 5 13.0
7,001–10,000 17 0 20 37 2 16.5 19 0 36 55 3 14.6 23 0 57 80 5 12.7
10,001–20,000 17 0 20 37 2 16.5 21 0 44 65 4 13.6 23 0 72 95 6 12.0
20,001–50,000 17 0 20 37 2 16.5 21 0 44 65 4 13.6 43 1 92 135 8 10.6
50,001–100,000 17 0 20 37 2 16.5 23 0 62 85 5 12.5 44 1 106 150 9 10.3

Source: Reprinted from Dodge, H.F. and Romig, H.G., Sampling Inspection Tables, Single and Double Sampling, 2nd ed., John Wiley & Sons, New York, 1959, 215. With permission.
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TABLE 14.3: Dodge–Romig single-sampling table for LTPD¼ 4.0%.

Process Average

0% to 0.04% 0.05% to 0.40% 0.41% to 0.80% 0.81% to 1.20% 1.21% to 1.60% 1.61% to 2.00%

Lot Size n c
AOQL
(%) n c

AOQL
(%) n c

AOQL
(%) n c

AOQL
(%) n c

AOQL
(%) n c

AOQL
(%)

1–35 All 0 0 All 0 0 All 0 0 All 0 0 All 0 0 All 0 0
36–50 34 0 0.35 34 0 0.35 34 0 0.35 34 0 0.35 34 0 0.35 34 0 0.35
51–100 44 0 0.47 44 0 0.47 44 0 0.47 44 0 0.47 44 0 0.47 44 0 0.47
101–200 50 0 0.55 50 0 0.55 50 0 0.55 50 0 0.55 50 0 0.55 50 0 0.55
201–300 55 0 0.57 55 0 0.57 85 1 0.71 85 1 0.71 85 1 0.71 85 1 0.71
301–400 55 0 0.58 55 0 0.58 90 1 0.72 120 2 0.80 120 2 0.80 145 3 0.86
401–500 55 0 0.60 55 0 0.60 90 1 0.77 120 2 0.87 150 3 0.91 150 3 0.91
501–600 55 0 0.61 95 1 0.76 125 2 0.87 125 2 0.87 155 3 0.93 185 4 0.95
601–800 55 0 0.62 95 1 0.78 125 2 0.93 160 3 0.97 190 4 1.0 220 5 1.0
801–1,000 55 0 0.63 95 1 0.80 130 2 0.92 165 3 0.98 220 5 1.1 255 6 1.1
1,001–2,000 55 0 0.65 95 1 0.84 165 3 1.1 195 4 1.2 255 6 1.3 315 8 1.4
2,001–3,000 95 1 0.86 130 2 1.0 165 3 1.1 230 5 1.3 320 8 1.4 405 11 1.6
3,001–4,000 95 1 0.86 130 2 1.0 195 4 1.2 260 6 1.4 350 9 1.5 465 13 1.6
4,001–5,000 95 1 0.87 130 2 1.0 195 4 1.2 290 7 1.4 380 10 1.6 520 15 1.7
5,001–7,000 95 1 0.87 130 2 1.0 200 4 1.2 290 7 1.5 410 11 1.7 575 17 1.9
7,001–10,000 95 1 0.88 130 2 1.1 230 5 1.4 325 8 1.5 440 12 1.7 645 19 1.9
10,001–20,000 95 1 0.88 165 3 1.2 265 6 1.4 355 9 1.6 500 14 1.8 730 22 2.0
20,001–50,000 95 1 0.88 165 3 1.2 295 7 1.5 380 10 1.7 590 17 2.0 870 26 2.1
50,001–100,000 95 1 0.88 200 4 1.3 325 8 1.6 410 11 1.8 620 18 2.0 925 29 2.2

Source: Reprinted form Dodge, H.F. and Romig, H.G., Sampling Inspection Tables, Single and Double Sampling, 2nd ed., John Wiley & Sons, New York, 1959, 184. With permission.
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TABLE 14.4: Dodge–Romig double-sampling table for LTPD¼ 4.0%.

Process Average

0.81% to 1.20% 1.21% to 1.60% 1.61% to 2.00%

Trial 1 Trial 2 AOQL Trial 1 Trial 2 AOQL Trial 1 Trial 2 AOQL
Lot Size n1 c1 n2 n1þ n2 c2 (%) n1 c1 n2 n1þ n2 c2 (%) n1 c1 n2 n1þ n2 c2 (%)

1–35 All 0 — — — 0 All 0 — — — 0 All 0 — — — 0
36–50 34 0 — — — 0.35 34 0 — — — 0.35 34 0 — — — 0.35
51–75 40 0 — — — 0.43 40 0 — — — 0.43 40 0 — — — 0.43
76–100 50 0 25 75 1 0.46 50 0 25 75 1 0.46 50 0 25 75 1 0.46
101–150 55 0 30 85 1 0.55 55 0 30 85 1 0.55 55 0 30 85 1 0.55
151–200 60 0 55 115 2 0.68 60 0 55 115 2 0.68 60 0 55 115 2 0.68
201–300 60 0 65 125 2 0.75 60 0 90 150 3 0.84 60 0 90 150 3 0.84
301–400 65 0 95 160 3 0.86 65 0 95 160 3 0.86 65 0 120 185 4 0.92
401–500 65 0 100 165 3 0.92 65 0 130 195 4 0.96 105 1 140 245 6 1.0
501–600 65 0 135 200 4 1.0 105 1 145 250 6 1.1 105 1 175 280 7 1.1
601–800 65 0 140 205 4 1.0 105 1 185 290 7 1.2 105 1 210 315 8 1.2
801–1,000 110 1 155 265 6 1.2 110 1 210 320 8 1.2 145 2 230 375 10 1.3
1,001–2,000 110 1 195 305 7 1.3 150 2 240 390 10 1.5 180 3 295 475 13 1.6
2,001–3,000 110 1 260 370 9 1.4 185 3 305 490 13 1.6 220 4 410 630 18 1.7
3,001–4,000 150 2 255 405 10 1.5 185 3 340 525 14 1.6 285 6 465 750 22 1.8
4,001–5,000 150 2 285 435 11 1.6 185 3 395 580 16 1.7 285 6 520 805 24 1.9
5,001–7,000 150 2 320 470 12 1.6 185 3 435 620 17 1.7 320 7 585 905 27 2.0
7,001–10,000 150 2 325 475 12 1.7 220 4 460 680 19 1.9 320 7 645 965 29 2.1
10,001–20,000 150 2 355 505 13 1.7 220 4 495 715 20 1.9 350 8 790 1140 35 2.2
20,001–50,000 150 2 420 570 15 1.7 255 5 575 830 24 2.0 385 9 895 1280 40 2.3
50,001–100,000 150 2 450 600 16 1.8 255 5 665 920 27 2.1 415 10 985 1400 44 2.4

Source: Reprinted from Dodge, H.F. and Romig, H.G., Sampling Inspection Tables, Single and Double Sampling, 2nd ed., John Wiley & Sons, New York, 1959, 192. With permission.
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This dramatically shows the difference in sample size which can result from specifying AOQL or
LTPD. It is vital to select the proper measure for the sampling situation when applying rectification
schemes of this type as with all sampling plans.

Schilling et al. (2002) have developed a set of tables of variables plans (known and unknown
standard deviation) which match the attributes plans of the Dodge–Romig tables. A representative
set is shown in Table 14.5 for 4% AOQL.

As in the previous example, suppose a 4% AOQL is desired for lot sizes of 200 when the process
is running at about 1.6% defective. The matching variables plans from Table 14.5 are

Variability known: n¼ 8, k¼ 1.40, LTPD¼ 17.2%

Variability unknown: n¼ 13, k¼ 1.42, LTPD¼ 18.9%

These plans indicate the advantage of variables plans when compared to the matched attributes plan:

Attributes: n¼ 20, c¼ 1

Of course, the price is in the more stringent assumptions of the variables plans.

Measures

OC curves are given for all AOQL single- and double-sampling plans. The binomial OC curves
for selected single-sampling plans are also shown for reference. To illustrate the curves, Figures
14.5 and 14.6 show the OC curves for the AOQL single- and double-sampling plans of the previous
example. Figure 14.7 gives an example of the OC curves from the collection of binomial OC curves
given by Dodge and Romig.

Further Considerations

Sampling plans meeting the Dodge–Romig criterion for minimum ATI can be derived using
procedures developed by Dodge and Romig (1929) for LTPD plans and by Dodge and Romig
(1941) for AOQL plans. These papers provide the basis and proofs underlying the technical
development of the Dodge–Romig (Dodge and Romig, 1959) tables. The technical background of
these plans is interesting and informative. The Dodge–Romig plans minimize ATI for both the
LTPD and AOQL plans.

For the LTPD plans

ATI ¼ nþ (N � n) 1�
XC

i¼0

e�n�p(n�p)i

i!

 !

is minimized subject to

:10 ¼
XC

i¼0

CNpt
i CN(1�pt)

n�i

CN
i

Thus, the LTPD is calculated using (Type A) hypergeometric probabilities (or approximations
thereto) since LTPD is on individual lots. The AOQL, however, is determined using the (Type B)
Poisson approximation to the binomial distribution since AOQL has meaning only in terms of a
series of lots from a process.
� 2008 by Taylor & Francis Group, LLC.



TABLE 14.5: Dodge–Romig variables plans for AOQL¼ 4.0% variability known.

Process Average

0% to 0.08% 0.081% to 0.80% 0.81% to 1.60% 1.61% to 2.40% 2.41% to 3.20% 3.21% to 4.0%

Lot Size n k pt% n k pt% n k pt% n k pt% n k pt% n k pt%

1–10 1 1.58 38.1 2 1.34 33.2 2 1.34 33.2 2 1.34 33.2 2 1.34 33.2 2 1.34 33.2
11–50 2 1.46 29.1 3 1.39 25.7 4 1.36 23.5 5 1.35 21.9 6 1.34 20.8 7 1.33 20.0
51–100 2 1.47 28.7 4 1.39 22.8 5 1.38 21.1 7 1.37 18.8 9 1.37 17.4 11 1.37 16.4
100–200 2 1.48 28.5 4 1.40 22.4 7 1.39 18.3 9 1.39 16.7 12 1.40 15.2 16 1.41 13.9
201–300 3 1.42 24.7 5 1.40 20.5 8 1.40 17.2 11 1.41 15.4 15 1.42 13.8 20 1.43 12.7
301–400 3 1.42 24.7 5 1.40 20.5 8 1.40 17.1 12 1.42 14.8 17 1.43 13.1 24 1.45 11.8
401–500 3 1.43 24.7 5 1.40 20.4 9 1.41 16.4 13 1.42 14.3 19 1.44 12.6 27 1.46 11.3
501–600 3 1.43 24.7 6 1.40 19.0 9 1.41 16.3 14 1.43 13.9 21 1.45 12.1 30 1.47 10.9
601–800 3 1.43 24.6 6 1.40 19.0 10 1.41 15.6 16 1.44 13.2 24 1.46 11.5 35 1.48 10.3
801–1,000 3 1.43 24.6 6 1.40 19.0 11 1.42 15.1 17 1.44 12.9 26 1.47 11.2 39 1.49 9.9
1,001–2,000 3 1.43 24.6 7 1.41 17.8 13 1.43 14.1 21 1.46 11.9 34 1.49 10.2 57 1.52 8.8
2,001–3,000 4 1.41 22.1 8 1.41 16.9 14 1.44 13.7 24 1.47 11.3 40 1.51 9.6 70 1.54 8.3
3,001–4,000 4 1.41 22.1 8 1.41 16.9 15 1.44 13.3 25 1.48 11.1 44 1.51 9.3 81 1.55 8.0
4,001–5,000 4 1.41 22.1 8 1.41 16.9 16 1.45 13.0 27 1.48 10.8 47 1.52 9.1 91 1.56 7.7
5,001–7,000 4 1.41 22.1 9 1.42 16.1 17 1.45 12.7 29 1.49 10.6 53 1.53 8.8 107 1.57 7.4
7,001–10,000 4 1.41 22.1 9 1.42 16.1 18 1.45 12.4 32 1.49 10.2 59 1.54 8.5 126 1.58 7.1
10,001–20,000 4 1.41 22.1 10 1.42 15.5 20 1.46 12.0 37 1.51 9.8 72 1.55 8.1 173 1.60 6.6
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20,001–50,000 5 1.41 20.3 11 1.43 14.9 23 1.47 11.4 45 1.52 9.2 92 1.57 7.6 254 1.62 6.2
50,001–100,000 5 1.41 20.3 12 1.43 14.4 26 1.48 10.9 51 1.53 8.9 108 1.58 7.3 331 1.63 5.9
1–10 3 1.55 40.9 3 1.55 40.9 3 1.55 40.9 3 1.55 40.9 4 1.26 39.1 4 1.26 39.1
11–50 4 1.64 31.1 6 1.44 27.1 7 1.40 25.8 8 1.37 24.8 9 1.34 24.0 10 1.32 23.4
51–100 5 1.55 27.9 7 1.45 24.6 9 1.41 22.6 11 1.38 21.1 13 1.37 20.1 14 1.36 19.7
100–200 5 1.57 27.5 8 1.45 22.9 12 1.41 19.7 15 1.40 18.3 18 1.39 17.2 22 1.39 16.2
201–300 6 1.52 25.4 9 1.44 21.7 13 1.42 18.9 18 1.41 16.9 22 1.41 15.8 27 1.40 14.9
301–400 6 1.52 25.4 10 1.44 20.8 15 1.42 17.8 20 1.42 16.1 26 1.42 14.8 32 1.42 13.9
401–500 6 1.52 25.3 10 1.44 20.7 16 1.42 17.3 22 1.42 15.5 29 1.42 14.2 37 1.43 13.2
501–600 6 1.53 25.3 11 1.44 19.9 17 1.42 16.9 23 1.43 15.2 31 1.43 13.8 41 1.44 12.7
601–800 7 1.49 23.7 11 1.44 19.8 18 1.43 16.5 26 1.43 14.5 36 1.44 13.0 48 1.45 11.9
801–1,000 7 1.49 23.7 12 1.44 19.1 19 1.43 16.1 28 1.44 14.0 40 1.45 12.5 55 1.46 11.4
1,001–2,000 7 1.50 23.7 14 1.44 18.0 23 1.44 14.9 36 1.46 12.7 54 1.47 11.2 81 1.49 10.0
2,001–3,000 8 1.48 22.4 15 1.44 17.5 26 1.45 14.2 41 1.46 12.2 64 1.49 10.6 101 1.51 9.3
3,001–4,000 8 1.48 22.4 16 1.44 17.0 28 1.45 13.8 45 1.47 11.8 72 1.50 10.2 118 1.52 8.9
4,001–5,000 8 1.48 22.4 16 1.44 17.0 29 1.45 13.6 48 1.48 11.5 78 1.50 9.9 133 1.53 8.6
5,001–7,000 9 1.46 21.3 17 1.44 16.6 31 1.45 13.3 52 1.48 11.2 89 1.51 9.5 159 1.54 8.2
7,001–10,000 9 1.46 21.3 18 1.44 16.2 34 1.46 12.9 58 1.49 10.8 101 1.52 9.2 191 1.56 7.8
10,001–20,000 10 1.45 20.4 20 1.44 15.6 39 1.47 12.3 69 1.50 10.2 127 1.54 8.6 269 1.58 7.2
20,001–50,000 11 1.45 19.7 23 1.44 14.8 46 1.48 11.6 85 1.51 9.6 168 1.56 8.0 412 1.60 6.6
50,001–100,000 11 1.45 19.7 25 1.45 14.3 51 1.48 11.2 98 1.52 9.2 202 1.57 7.6 555 1.62 6.2

Source: Schilling, E.G., Sheesley, J.H. and Anselmo, K.J., Qual. Eng., 14(3), 435, 2002. With permission.
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FIGURE 14.5: OC curves, single-sampling plans: AOQL¼ 4.0%. (Reprinted from Dodge, H.F.
and Romig, H.G., Sampling Inspection Tables, Single and Double Sampling, 2nd ed., John Wiley &
Sons, New York, 1959, 94. With permission.)
For the AOQL plans, it is necessary to maximize AOQ to find the

AOQL ¼ PL ¼ max p
(N � �I)

N

� �

which will occur when �I, the average number of units inspected in a lot, is at a minimum.
Substituting the formula for ATI in place of �I

AOQL ¼ max p� p

N
nþ (N � n) 1�

XC

i¼0

e�n�p(n�p)i

i!

 !" #" #

which can be shown to be

AOQL ¼ max p
N � n

N

� � XC

i¼0

e�n�p(n�p)i

i!

 !" #

and it is obvious that all the probabilities in this calculation involve the Poisson approximation to the
binomial (Type B). Differentiating and setting the results equal to 0 gives

AOQL ¼ x
N � n

Nn

� � XC

i¼0

e�xxi

i!

 !

where x¼ npM, and pM represents the value of p at which the AOQL occurs.
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FIGURE 14.6: OC curves, double-sampling plans: AOQL¼ 4.0%. (Reprinted from Dodge, H.F.
and Romig, H.G., Sampling Inspection Tables, Single and Double Sampling, 2nd ed., John Wiley &
Sons, New York, 1959, 151. With permission.)
Then

AOQL ¼ y
1
n
� 1
N

� �

where

y ¼ x
XC

i¼0

e�xxi

i!

which is shown by Dodge and Romig to equal

y ¼ e�xxcþ2

c!

and finally

n ¼ yN

NpL þ y
� 2008 by Taylor & Francis Group, LLC.
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Dodge, H.F. and Romig, H.G., Sampling Inspection Tables, Single and Double Sampling, 2nd ed.,
John Wiley & Sons, New York, 1959, 173. With permission.)
It follows that

npL ¼ y 1� n

N

� �

Values of x and y are given in Appendix Table T14.1. Use of these values with the acceptance
number which gives minimum �I (Figure 14.11) forms the basis of the Dodge–Romig AOQL
plans.

Constructing LTPD Plan with Minimum ATI

To find an LTPD plan which will achieve minimum ATI Imin, proceed as follows:

1. Given lot size (N), LTPD, and process average proportion defective (�p). Define
pt¼LTPD=100¼ tolerance fraction defective.

2. Enter Figure 14.8, with the ratio �p=pt on the x-axis and the product ptN on the y-axis, to find
the acceptance region which will make ATI a minimum. Use this acceptance number c.

3. Enter Figure 14.9 with the product ptN on the x-axis and read the product (ptn) on the y-axis
from the appropriate curve for c.

4. Divide (ptn) by pt to obtain n.
� 2008 by Taylor & Francis Group, LLC.
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FIGURE 14.8: Dodge–Romig curves for finding the acceptance number. (Reprinted from Dodge,
H.F. and Romig, H.G., Sampling Inspection Tables, Single and Double Sampling, 2nd ed., John
Wiley & Sons, New York, 1959, 14. With permission.)
5. The plan n, c will give the LTPD protection desired on each lot with minimum ATI.

6. The minimum ATI can be found from Figure 14.10 by finding the point corresponding to
�p=pt on the x-axis and ptN on the y-axis and interpolating between the closest curves
to obtain pt(ATI)¼ ptImin on the right axis. Division of pt(ATI) by pt gives the ATI that will
minimize ATI.

For example, suppose N¼ 250, �p¼ .016, and LTPD¼ 4%; so pt¼ .04. Then �p=pt¼ 0.4 and
ptN¼ 10, so that Figure 14.8 shows c¼ 2. Entering Figure 14.9 with ptN ¼ 10 and reading from
c¼ 2 gives ptn¼ 4.5 so that n¼ 4.5=.04¼ 112.5. The plan is n¼ 113, c¼ 2. Entering Figure 14.10
the point (0.4, 10) is nearest to the curve for pt(ATI)¼ 5.7 (interpolating) and so
ATImin¼ 5.7=.04¼ 142.5 ~ 143.
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FIGURE 14.9: Dodge–Romig curves for finding the size of the sample. (Reprinted from Dodge,
H.F. and Romig, H.G., Sampling Inspection Tables, Single and Double Sampling, 2nd ed., John
Wiley & Sons, New York, 1959, 15. With permission.)
Constructing AOQL Plan with Minimum ATI

To find an AOQL plan which minimizes ATI of accepted samples plus 100% inspection of
rejected lots, proceed as follows:

1. Given lot size (N), AOQL (PL), and process average proportion defective (�p).

2. Calculate the ratio �k ¼ �p=pL and the product �M ¼ �pN.

3. Enter Figure 14.11 with �k on the x-axis and �M on the y-axis to find the acceptance number
region which will make ATI a minimum. Use the acceptance number c.

4. Use Appendix Table T14.1 to find the values of x and y specified for the c value obtained
in step 3.

5. Compute

n ¼ yN

pLN þ y

6. The plan n, c will give the AOQL specified with minimum ATI. The AOQL will occur at

npM ¼ x

so that

PM ¼ x

n
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FIGURE 14.10: Dodge–Romig curves for finding the minimum amount of inspection per lot.
(Reprinted from Dodge, H.F. and Romig, H.G., Sampling Inspection Tables, Single and Double
Sampling, 2nd ed., John Wiley & Sons, New York, 1959, 16. With permission.)
For example, suppose we take AOQL¼ 4%; so pL¼ .04, lot size N¼ 250, and process average
�p¼ .016. Then �k¼ .016=.04¼ 0.4 and �M¼ .016(250)¼ 4. Hence, from Figure 14.11, c¼ 1. Appen-
dix Table T14.1 shows y¼ 0.84 and x¼ 1.62,

n ¼ :84(250)
:04(250)þ :84

¼ 19:4 � 20

The plan is n¼ 20, c¼ 1, and the AOQL will occur at

pM ¼ 1:62
20

¼ :08
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FIGURE 14.11: Dodge–Romig curves for determining the acceptance number, c; AOQL protec-
tion. (Reprinted from Dodge, H.F. and Romig, H.G., Sampling Inspection Tables, Single and
Double Sampling, 2nd ed., John Wiley & Sons, New York, 1959, 40. With permission.)
at �p¼ .016, the ATI will be

ATI ¼ nPa þ N(1� Pa)

¼ 20(:959)þ 250(:041)

¼ 29:4
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Anscombe Rectifying Inspection Procedure

F.J. Anscombe (1949) has presented an adaptable, easy-to-use, inspection procedure which is
appropriate in guaranteeing an LTPD and AOQL in a sequence of inspections. The method does not
rely on 100% inspection of rejected lots. Rather, successive samples are taken on each lot until a
stopping rule is satisfied and the lot accepted, or until the lot is exhausted. The stopping rule is set in
such a way that poor lots will, in general, be extensively sampled while good lots will require
minimal sampling. It assumes that any defective items found will be replaced with effective ones.
The LTPD is guaranteed with minimum ATI.

Operation

The procedure, in thewords (notation slightlymodified*) ofAnscombe (1949, p. 193), is as follows:

From a batch of N articles, a first sample of f1N articles is inspected, and then further
samples of f2N articles each. Defective articles found are removed or replaced by good
ones. Inspection ceases after the first sample if no defectives have been found, or after
the second sample if altogether one defective has found, or, generally, after the (rþ 1)th
sample if altogether r defectives have been found. Inspection is continued until either
this stopping rule operates or the whole batch is inspected.

This ingenious procedure may be summarized as follows:

Sample (i) Sample Size Acceptance Number (ci¼ i� 1)

1 f1N 0
2 f2N 1
3 f2N 2
..
. ..

. ..
.

k f2N k� 1

Selection

The parameters of these plans are f1 and f2. These quantities and associated measures have been
tabulated exactly by Anscombe (1949) and are exemplified in Table 14.6, which is a part of the original
Table IV of the Anscombe paper. Anscombe’s notation compares to that of this book as follows:

Anscombe Present Notation

Zt ptN
« b
a f1
b f2
A ASN
N N
Y �pN
AOQL (N)AOQL
Y* (last column) (N)pM

* Anscombe’s original a and b are given here as f1 and f2 after the manner of Duncan (1974).
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TABLE 14.6: Anscombe rectifying inspection schemes for lot tolerance Zt¼ ptN with risk «¼b¼ .10.

Scheme Average Sample Size (A=N) for Y Equal to

a b 0 1 2 3 4 5 6 8 10 12 AOQL Y*

Zt¼ 5, «¼ 0.10
.3690 .1900 . .369* .439* .536 .674 . 1.4 3
.4238 .0982 . .424 .465 .515* .576* .650 .743 . 1.8 5
.4773 .0639 . .477 .508 .542 .581 .626* .677 .737 .890 . 1.9 6
.5241 .0459 . .524 .548 .574 .603 .635 .670* .709 .800 .916 . 2.0 7
.5642 .0348 . .564 .584 .605 .627 .652 .678 .706* .769 .844 .935 . 2.1 8
.5986 .0275 . .599 .615 .632 .651 .670 .691 .713 .760* .815 .877 . 2.2 9
.6283 .0223 . .628 .642 .657 .672 .688 .705 .723 .761 .802 .849 . 2.2 10
.6540 .0185 . .654 .666 .679 .692 .705 .719 .734 .765 .799 .835 . 2.2 11
.6767 .0155 . .677 .687 .698 .709 .721 .733 .745 .771 .798* .828 . 2.2 12

Zt¼ 10, «¼ 0.10
.2057 .1694 . .206* .241* .287 .352 .444 .569 .677 .820 .897 .940 . 2.8 5
.2337 .0967 . .234 .256 .283* .316* .356* .406 .469 . 3.7 7
.2669 .0686 . .267 .285 .306 .330 .357 .389* .427* .526 .673 . 4.3 9
.3002 .0530 . .300 .316 .334 .353 .375 .400 .427* .495 .584 .708 . 4.6 10
.3323 .0429 . .332 .347 .362 .379 .397 .418 .440 .492* .556 .639 . 4.9 11
.3625 .0357 . .363 .375 .389 .404 .420 .438 .456 .499 .549* .610 . 5.1 13
.3908 .0304 . .391 .403 .415 .429 .443 .458 .474 .510 .552 .601 . 5.2 14
.4170 .0262 . .417 .428 .439 .452 .464 .478 .492 .523 .559 .599* . 5.3 15
.4414 .0229 . .441 .452 .462 .473 .485 .497 .510 .537 .568 .602 . 5.4 16

Source: Reprinted from Anscombe, F.J., J. Roy. Stat. Soc. (Ser. A), 112(Pt. II), 202, 1949. With permission.
* Indicates minimum ratio for column.

�
2008

by
T
aylor

&
F
rancis

G
roup,

L
L
C
.



In the notation of this book, the heading of Anscombe’s first table would appear as follows:

Scheme ASN=N for N�p Equal to

f1 f2 0 1 2 3 4 5 6 8 10 12 (N)AOQL (N)pM
Npt¼ 5, b¼ .10

Tables are given for b¼ .10 and b¼ .01 by Anscombe; however, only the table for b¼ .10
(i.e., LTPD protection) is shown here.

Anscombe’s tables are indexed by limiting quality Zt¼Npt and associated risk «¼b. They show
the ratio of average sample number to lot size, that is ASN=N for various values of Y¼ �pN. The
value of ASN=N which appears in bold type (denoted by asterisk here) is the minimum ratio for the
column. That is minimum ATI, since for these plans

ASN ¼ ATI

Also shown are values of N(AOQL) and NpM for each plan. The original tables are in terms of
number defective in the lot, and not proportion defective. Accordingly, the values shown must be
suitably transformed by multiplying or dividing by the lot size to obtain the conventional values.

To find a plan having a desired AOQL, computeN(AOQL) and search the second last column of the
Anscombe tables for the desired value. This will not guarantee minimum ATI for the AOQL given.

To use Table 14.6 to guarantee a specified LTPD¼ pt for estimated fraction defective �p, proceed
as follows:

1. Enter the table with Zt¼Npt and «¼b¼ .10.

2. Find the column corresponding to Y¼N�p.

3. The value of ASN=N in bold type (denoted by asterisk here) indicates the row for minimum
ATI. Use the values of a¼ f1 and b¼ f2 obtained from the row.

4. Multiply ASN=N by N to obtain ASN. Divide the value of AOQL shown by N to put it in
terms of fraction defective. Similarly, divide the corresponding value of Y by N to obtain pM.

For example, if a plan is desired having 4% LTPD with lot size 250 for process average percent
defective 1.6%, we have

1. Zt¼ 250(.04)¼ 10 and «¼b¼ 0.10

2. Y¼ 250(.016)¼ 4

3. Bold (asterisk) ASN=N¼ .356; so f1¼ .2337 and f2¼ .0967

4. Measures are as follows:

ASN ¼ :356(250) ¼ 89

AOQL ¼ 3:7=250 ¼ :015

PM ¼ 7=250 ¼ :028

Sample sizes will be

f1(N) ¼ :2337(250) ¼ 58:4 � 59

f2(N) ¼ :0967(250) ¼ 24:2 � 25
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Application of this plan would involve a first sample of 59 followed by successive samples
of 25. Inspection would be terminated if at any time the accumulated number of defectives is
less than the number of samples minus 1, or when lot is exhausted. The plan would appear
as follows:

Sample
Sample
Size

Cumulative
Sample Size

Cumulative Acceptance
Number

1 59 59 0
2 25 84 1
3 25 109 2
..
. ..

. ..
. ..

.

k 25 59þ 25(k� 1) k� 1

Measures

The following approximate measures of scheme performance have been given by Anscombe.
They may be used whenever

p <
1� f1
f2N

1. Average sample number

ASN ¼ N
f1

1� pNf2
� f1f 22 pN

(1� pNf2)
3

� �

2. Average outgoing quality at p

AOQ ¼ p 1� f1
1� pNf2

þ f1f2
(1� pNf2)

3

� �

3. Average outgoing quality limit

AOQL ¼ 1
N

1� ffiffiffiffi
f1

pð Þ2
f2

þ 1
ffiffiffiffi
f1

p � 1

" #

which is attained at

pM ¼ 1
N

1� ffiffiffiffi
f1

p
f2

þ 3

2
ffiffiffiffi
f1

p � 1

� �

For example, for the plan derived above where LTPD¼ 4%, N¼ 250, �p¼ .16, we obtained
f1¼ .2337, f2¼ .0967. Hence at �p¼ .016,
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ASN ¼ 250
:2337

1� :016(250)(:0967)
� :2337(:0967)2(:016)(250)

(1� (:016)(250)(:0967))3

� �

¼ 85:8

AOQ ¼ :016 1� :2337
1� :016(250)(:0967)

þ :2337(:0967)

(1� (:016)(250)(:0967))3

� �

¼ :011

AOQL ¼ 1
250

1� ffiffiffiffiffiffiffiffiffiffiffi
:2337

p	 
2

:0967
þ 1

ffiffiffiffiffiffiffiffiffiffiffi
:2337

p � 1

" #

¼ :015

pM ¼ 1
250

1� ffiffiffiffiffiffiffiffiffiffiffi
:2337

p

:0967
þ 3

2
ffiffiffiffiffiffiffiffiffiffiffi
:2337

p � 1

� �

¼ :030

Credit-Based Schemes

Although most rectification plans are based on the asymptotic behavior of application repeated in
the marketplace, credit-based plans reflect the current state of the marketplace while guaranteeing an
AOQL. Credit-based schemes depend on the credit principle as put forth by Klaassen (2001). Credit
is defined as the total number of items accepted since the last rejection. These plans provide a useful
alternative in conjunction with accept zero, i.e., c¼ 0, applications. The basic plan proceeds as
follows:

1. Specify: AOQL¼ a and set credit, k, to 0

2. Choose sample size from

n ¼ N

(k þ N)aþ 1

where
N is the lot size
k is the accumulated credit
a is the AOQL desired

3. Apply plan

4. Update the credit on the basis of sampling results

a. PASS: Increase credit by adding the lot size to k

b. FAIL: Set the credit to k¼ 0

If k is already 0, screen both the lot and the sample

If k already exceeds 0, exercise option to scrap, screen, or return lot to supplier

c. Return to (2) above
� 2008 by Taylor & Francis Group, LLC.



Start

Specify a = AOQL

Set credit k = 0

Determine N = lot size

Apply accept zero plan
n, c = 0

Pass

K = K + N K = 0

Screen lot
and sample

Optionally:

K > 0

Fail

Determine sample size

n = N
(k + N )a + 1

  Screen lot
  Scrap lot
  Return lot
   to supplier

FIGURE 14.12: Check sequence for obtaining a credit-based accept zero plan.
A check sequence for obtaining a credit-based accept zero scheme is given in Figure 14.12.
Occasionally it may be desirable to put an upper limit or cap, k0, on the credit, thus freezing the

sample size. This is accomplished by using as a modified credit update in the formula. The sample
size formula then becomes

n ¼ N

min k,k0ð Þ þ Nf gaþ 1

As an example of the application of the credit-based scheme, suppose three lots of size 100 have
already passed and an AOQL of 1.0 is desired. Then

N¼ 100

k¼ 300

a¼ 0.01
� 2008 by Taylor & Francis Group, LLC.



hence

n ¼ 100
(300þ 100)0:01þ 1

¼ 100
5

¼ 20

and the plan is n¼ 20, c¼ 0. Now if the lot passes, credit will be increased to 400 and the
procedure starts over. If, however, the lot fails, its disposition is optional between scrapping,
screening, or returning to the supplier; however, credit will be reset to 0. Note that if credit was
at 0, the lot, including the sample, would have been screened and the acceptable items sent to the
marketplace.

Credit-based plans reflect the nature of the market in which they are applied. They provide an
imaginative accept zero approach for a series of lots. As such, sample sizes are automatically
adjusted to accommodate for what is in the field, while preserving the AOQL. They are an excellent
alternative for situations in which the product is of very good quality as confirmed by relatively
small sample sizes.
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Problems

1. Using the Altman diagram find the AOQLs associated with the following plans:

a. n¼ 50, c¼ 1

b. n¼ 80, c¼ 1

c. n¼ 20, c¼ 0

2. From the Altman diagram, derive a plan for AOQL¼ 5% when sample size must be restricted
to 30 or less.
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3. Find Dodge–Romig single- and double-sampling plans for AOQL¼ 4.0% for the lot sizes and
process average percents defective shown.

a. N¼ 125, �p¼ 1%

b. N¼ 1250, �p¼ 1%

c. N¼ 5500, �p unknown

4. Find Dodge–Romig LTPD plans for LTPD¼ 4% meeting the specifications given in
Problem 3.

5. Construct an LTPD plan for N¼ 1250, pt¼ 4% when the process average is at 1% defective.
What is the minimum ATI for this plan?

6. Construct an AOQL plan for N¼ 1250, pL¼ 4% when the process average is at 1% defective.
At what fraction defective will the AOQL occur?

7. A lot of size 125 is to be screened using the Anscombe procedure. LTPD protection of pt¼ .04
is desired, while the process average �p¼ .008. Construct the appropriate Anscombe scheme.
What is its average sample number, the AOQL, and the point at which the AOQL occurs?

8. What Dodge–Romig single-sampling plan corresponds to the Anscombe plan developed in
Problem 8? Find the minimum amount of inspection per lot from Figure 14.10 and compare to
the ASN of the Anscombe plan.

9. Using f1¼ .300 and f2¼ .053, verify the values given in the table for Zt¼ 10, «¼ .10 when
N�p¼ 0.

10. Suppose four lots of size 50 have already passed and an AOQL of 2.0 is desired. Determine
the credit-based scheme that should be used.
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Chapter 15

Continuous Sampling Plans

In the sampling of some processes, lots are not clearly defined. In a sense, lot size is N¼ 1, since
units are produced item by item. Examples might be cars coming off an assembly line, soft drink
bottles from a continuous glass ribbon machine, or welded leads emanating from a welding
operation. Yet average outgoing quality limit (AOQL) and perhaps some form of lot tolerance
percent defective (LTPD) protection may be desired. Sometimes in such situations, it is possible to
artificially define a lot, such as the production of an hour, a shift, a day, or a week. This is often quite
arbitrary, however, and other alternatives exist.

Emanating from the original CSP-1, published by Dodge (1943), several different continuous
sampling plans have been developed to deal with this situation, usually with AOQL protection.
They apply to a steady stream of individual items from the process and require sampling of a
specified fraction, f, of the items in order of production, with 100% inspection of the flow at
specified times. Several such plans have been described in detail by Stephens (1980) in a manual
prepared for the American Society for Quality Control.

Special measures of performance apply to continuous plans, they include

AOQ¼ average outgoing quality
AOQL¼ average outgoing quality limit
Pa¼ average fraction of production accepted under sampling
AFI¼ average fraction of production inspected

The AOQ and AOQL are previously defined. The symbol Pa is used to denote the average fraction
of production accepted under sampling since in concept Pa implies the probability of an item
being accepted on a sampling basis (whether included in the sample or not). In this sense, Pa will
be seen to be analogous to the lot-by-lot probability of acceptance under rectification. AFI indicates
the average fraction of product actually inspected including items inspected during sampling or in
screening. Then

Pa ¼ 1� AFI

1� f

Dodge Continuous Plans

Dodge CSP-1

The most celebrated continuous sampling plan and the plan which undoubtedly has received the
most application is also the original—the Dodge CSP-1 plan. It is carried out on a stream of product,
with items inspected in order of production. The procedure is as follows:
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Defective
found
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Defective
found

No defective
found

No defective
found

FIGURE 15.1: Dodge CSP-1 procedure.
1. Specify sampling fraction ( f ) and clearing interval (i).

2. Begin 100% inspection.

3. After i units in succession have been found without a defective, start sampling inspection.

4. Randomly inspect a fraction f of the units.

5. When a defective is found, revert to 100% inspection (step 2).

A diagrammatic representation of CSP-1 will be found in Figure 15.1.
A detailed discussion of the Dodge CSP-1 plan and its relation to other approaches for the

sampling of a steady stream of product is given in Dodge (1947).
The Dodge CSP-1 plan and its later modifications CSP-2 and CSP-3 (see below) use a special

measure to evaluate protection against spottiness, that is, surges of highly defective product.
Based on a finite production run of 1000 units pt% is the percent defective in a consecutive run
of 1000 units for which the probability of remaining under sampling is 10% for a sample of f.
It shows the percent defective which will result in a 90% chance of reverting to 100% inspection
within a run of 1000 consecutive units.

The notation here is a somewhat deceptive, in that pt% is not the LTPD of the continuous plan.
Burr (1976) has shown that, if f is the fraction sampled in a CSP-1 plan,

:10 ¼ 1� pt%
100

� �1000f

which gives

pt% ¼ 100 1� (:10)
1

1000f

h i

a function of f only.
If the LTPD is to be determined in terms of a 10% probability of acceptance Pa as defined above

for continuous plans, we find, for CSP-1, when Pa¼ .10
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LTPD ¼ 100 1� f

9þ f

� �1=i
" #

which is a function of both f and i.
Both of these equations can be solved using logarithms. For example, for the CSP-1 plan f¼ .1,

i¼ 38, and pt% ¼ 2:3% while LTPD¼ 11.2%.
A particular CSP-1 plan is determined by the values of f and i selected. The choice of f and i, of

course, depends on the value of AOQL and possibly the protection against spotty quality desired
for the plan. Dodge presented a simple diagram, shown in Figure 15.2, to be used in setting these
quantities. Values of f are given on the left axis while values of pt% are given on the right. Values of
i are shown on the abscissa. The curves represent various levels of AOQL in percent so that any
curve defines alternative f and i to obtain the AOQL. The corresponding pt% can be read from the
right axis.

For example, if an AOQL of 2.9% is desired with protection against spotty quality of 2.3% we
have, from the diagram, i¼ 38 and f¼ .10. This would result in 100% inspection until 38 units
are found good in succession with random sampling of 10% of the units thereafter until a defective
is found.

The Dodge CSP-1 plan provides AOQL protection for most practical conditions; however, when
the process is not in a state of control, instances may be found where the AOQL may be exceeded.
This was pointed out by Wald and Wolfowitz (1945). Subsequently, Lieberman (1953) showed that
the Dodge CSP-1 procedure absolutely guarantees an unlimited AOQL (UAOQL) of

UAOQL ¼ (1=f )� 1
(1=f )þ i

when defective items are replaced with good items.
For the plan f¼ .1, i¼ 38, this becomes

UAOQL ¼ (1=:1)� 1
(1=:1)þ 38

¼ :188

which is considerably worse than the nominal AOQL of 2.9%. Under this highly conservative
approach, i would have to be 301 to guarantee a 2.9% UAOQL. Fortunately, the nominal AOQL of
2.9% will hold in most practical situations and so can safely be used to characterize the plan. When
defective items are not replaced, the UAOQL guaranteed becomes

UAOQL ¼ 1� f

f (i� 1)þ 1

as given by Banzhaf and Brugger (1970). This would give UAOQL¼ .191 for the plan f¼ .1, i¼ 38
when defectives are not replaced.

Dodge–Torrey CSP-2 and CSP-3

H.F. Dodge and M.N. Torrey later improved upon CSP-1 somewhat, particularly with regard to
the occurrence of an occasional stray random defective (CSP-2) and, in addition, with regard to
‘‘spotty’’ quality (CSP-3). That is, short bursts of bad quality. In the Dodge and Torrey (1951) paper,
they proposed to extend the CSP-1 procedure by changing the steps given above for CSP-1 as
follows:
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No defective
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FIGURE 15.3: Dodge CSP-1, 2, and 3 procedures.
For CSP-2,

Step 5. When a defective is found, continue sampling for k successive sample units. If
no defective is found in the k samples, continue sampling on a normal basis (step 4). If a
defective is found in the k samples, revert to 100% inspection immediately (step 2).

For CSP-3,

Step 5. Same as CSP-2, except, in addition, begin step 5 as follows: When a defective is
found, inspect the next 4 units, if an additional defective is found revert to 100%
inspection (step 2); otherwise, continue sampling for k . . . .

The other steps remain the same in each procedure. A flowchart for the CSP-1, 2, and 3
procedures is given in Figure 15.3, which highlights the differences between them.

Since CSP-3 is a very slight modification of CSP-2, the curves for finding f and i for CSP-2 are used
also for CSP-3, as a very good approximation. A set of curves is presented in Dodge and Torrey
(1951) for CSP-2 for the case when k¼ i. These curves are given in Figure 15.4. They are employed in
a manner identical to those for CSP-1. In fact the CSP-1 curves are superimposed on the diagram as
dotted lines. We find the CSP-2 plan f¼ .1, i¼ 50 gives an AOQL of 2.9% as did the CSP-1 plan
previously discussed. The value of pt% for this plan is about 4.2% higher than the value of 2.3% from
the CSP-1 plan because of the increased difficulty of reverting to 100% inspection under CSP-2.
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Torrey, M.N., Ind. Qual. Control, 7(5), 9, 1951. With permission.)
CSP-2 can also be shown to guarantee an AOQL even when the process is not in a state of
control. The upper limit on AOQL, as given by Banzhaf and Brugger (1970), when defective items
are not replaced, is

UAOQL ¼ 2(1� f )

if þ 2(1� f )

This formula may also be used as an upper limit on the AOQL of CSP-3.
The operating characteristic (OC) curves of continuous plans are expressed in terms of the percent

of total production accepted on a sampling basis (100Pa) plotted against incoming values of percent
defective. A set of such curves from the Dodge and Torrey (1951) paper is given in Figure 15.5.

Measures of CSP-1, 2, and 3

Formulas are available to more precisely determine the various measures of CSP plans for
incoming proportion defective p, where q¼ 1� p and

u, average number of units inspected on a 100% inspection basis

u ¼ 1� qi

pqi
(CSP-1, CSP-2)

v, average number of units passed during sampling inspection

v ¼ 1
fp

(CSP-1)

v ¼ 2� qk

fp 1� qkð Þ (CSP-2)

The formulas are as follows:

Average fraction inspected
F, average fraction of total product inspected in the long run,

F ¼ uþ fv

uþ v
(CSP-1, CSP-2)
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Specifically,

F ¼ f

f þ qi(1� f )
(CSP-1)

F ¼ f 1� qið Þ 1� qk
� �þ qif 2� qk

� �

f 1� qkð Þ 1� qið Þ þ qi 2� qkð Þ (CSP-2)

F ¼ f

f 1� qið Þ2þqi 2� qið Þ (CSP-2, k ¼ i)

F ¼ f 1� qið Þ 1� qkþ4
� �þ fqi þ 4fpqi þ fqiþ4 1� qk

� �

f 1� qið Þ 1� qkþ4ð Þ þ qi þ 4fpqi þ qiþ4 1� qkð Þ (CSP-3)

AOQ (defectives replaced by good)

pA¼AOQ, average outgoing quality
AOQ¼ p[1�F] (defectives replaced with good)

Specifically,

AOQ ¼ p
(1� f )qi

f þ (1� f )qi

� �

(CSP-1)

AOQ ¼ p
(1� f )qi(2� qk)

f 1� qið Þ 1� qkð Þ þ qi 2� qkð Þ
� �

(CSP-2)

AOQ ¼ p
(1� f )qi 2� qið Þ

f þ (1� f )qi 2� qið Þ
� �

(CSP-2, k ¼ i)

AOQ ¼ p
(1� f )qi 1þ q4 � qkþ4

� �

f 1� qið Þ 1� qkþ4ð Þ þ qi 1þ q4 � qkþ4ð Þ þ 4fpqi

� �

(CSP-3)

AOQ (defectives removed but not replaced by good)
pA0 ¼AOQ0, average outgoing quality

AOQ0 ¼ p(1� F)

(1� pF)
¼ AOQ

qþ AOQ

Specifically,

AOQ0 ¼ p
(1� f )qi

fqþ (1� f )qi

� �

(CSP-1)

AOQ0 ¼ p
(1� f )qi(2� qi)

fqþ (1� f )qi(2� qi)

� �

(CSP-2, k ¼ i)

The AOQL may be found by the differentiation–iteration technique used by Dodge (1943) or by
trial and error. The relationship between pL, the AOQL, and the point at which it occurs pM is

AOQL ¼ pL ¼ (iþ 1)pM � 1
i

so that

pM ¼ 1þ ipL
iþ 1
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These formulas can be used to calculate specific measures for a given CSP plan. As an example,
consider the CSP-1 plan f¼ .1, i¼ 38 evaluated at p¼ .054. We have

q ¼ :946

u ¼ 1� :94638

(:054)(:94638)
¼ 134:148

v ¼ 1
(:1)(:054)

¼ 185:185

Average fraction inspected

F ¼ 134:148þ :1(185:185)
134:148þ 185:185

¼ :478

or alternatively,

F ¼ :1
:1þ :94638(:9)

¼ :478

AOQ (with replacement)

AOQ ¼ :054(1� :478) ¼ :028

or alternatively,

AOQ ¼ :054
(:9)(:94638)

:1þ :9(:94638)

� �

¼ :028

AOQ (without replacement)

AOQ0 ¼ :054(1� :478)
(1� :054(:478))

¼ :028
:946þ :028

¼ :029

or alternatively,

AOQ0 ¼ :054
:9(:94638)

:1(:946)þ :9(:94638)

� �

¼ :029

The AOQL will occur at

pM ¼ 1þ 38(:029)
38þ 1

¼ :054

giving, of course

AOQL ¼ (39)(:054)� 1
38

¼ :029
� 2008 by Taylor & Francis Group, LLC.



Now consider the CSP-2 plan such that f¼ .1, i¼ 50, k¼ 50 evaluated at p¼ .054. We have

q ¼ :946

u ¼ 1� :94650

:054(:94650)
¼ 278:682

v ¼ 2� :94650

:1(:054)(1� :94650)
¼ 382:676

Average fraction inspected

F ¼ 278:682þ :1(382:676)
278:682þ 382:676

¼ :479

or alternatively,

F ¼ :1(1� :94650)(1� :94650)þ :94650(:1)(2� :94650)
:1(1� :94650)(1� :94650)þ :94650(2� :94650)

¼ :479

or when k¼ i,

F ¼ :1

:1(1� :94650)2 þ :94650(2� :94650)
¼ :479

AOQ (with replacement)

AOQ ¼ :054(1� :479) ¼ :028

or alternatively,

AOQ ¼ :054
:9(:94650)(2� :94650)

:1(1� :94650)(1� :94650)þ :94650(2� :94650)

� �

¼ :028

or when k¼ i,

AOQ ¼ :054
:9(:94650)(2� :94650)

:1þ :9(:94650)(2� :94650)

� �

¼ :028

AOQ (without replacement)

AOQ0 ¼ :054(1� :479)
1� :054(:479)

¼ :028
:946þ :028

¼ :029

or when k¼ i,

AOQ0 ¼ :054
:9(:94650)(2� :94650)

:1(:946)þ :9(:94650)(2� :94650)

� �

¼ :029

The AOQL for this plan should also be .029. Hence it should occur at pM¼ .054 as before for the
CSP-1 plan.
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Finally, evaluating the corresponding CSP-3 plan f¼ .1, i¼ 50, k¼ 50, we have

F ¼ :1(1� :94650)(1� :94654)þ :1(:94650)þ 4(:1)(:054)(:94650)þ :1(:94654)(1� :94650)
� �

:1(1� :94650)(1� :94654)þ :94650þ 4(:1)(:054)(:94650)þ :94654(1� :94650)ð Þ ¼ :508

and with replacement of defectives

AOQ ¼ :054(1� :508) ¼ :027

or alternatively,

AOQ¼ :054
:9(:94650)(1þ :9464� :94654)

:1(1� :94650)(1� :94654)þ :94650(1þ :9464� :94654)þ 4(:1)(:054)(:94650)

� �

¼ :027

The AOQL for this plan should also be .029. This too should occur at pM¼ .054.

Stopping Rules and Selection of CSP-1 Plans

Occasionally, it may become obvious that the process level of fraction defective has moved
upward from nominal levels. This is exhibited by excessively long sequences of 100% inspection.
It is for such an eventuality that stopping rules, rules which indicate when the process should be
stopped for corrective action, were devised. Such rules have been extensively investigated by
Murphy (1959a). The rules studied by Murphy are summarized in Table 15.1.

Typical of the stopping rules is the so-called rule r which involves stopping as soon as r defective
units are found in any screening sequence. We shall consider only this rule here.

To uniquely determine r for a given CSP-1 plan having

f ¼ fraction inspected
i ¼ clearing interval
A ¼AOQL¼ pL
pM¼ proportion defective at AOQL

it is necessary to specify
E¼ average number of units produced between successive stops when p¼ pM recalling

pM ¼ 1þ i(AOQL)

iþ 1
TABLE 15.1: Stopping rules for CSP-1 plans.

Rule (n*� i) Stop as soon as a defective unit is found in any one screening sequences after
the sequence has exceeded n*� i units.

Rule (r) Stop as soon as a specified number r of defective units are found in any one
screening sequences.

Rule (N, R) Stop as soon as a specified number R of defective units are found in any
block of a specified number N of inspected units. (Blocks do not overlap.)

Rule (n*) Stop as soon as a specified number n* of units have been inspected in any one
screening sequences without ending it.

Source: Reprinted from Murphy, R.B., Ind. Qual. Control, 16(5), 10. 1959a. With permission.
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Note that for large values of i (say greater than 100)

pM ’ 1
iþ 1

þ AOQL

Algebraically manipulating the formulas given by Murphy we find that to assure an interval between
stops of E at proportion defective pM it is necessary to set

r ¼ � log (1� f þ EFA)

log ((F � f )=F)

using any base for the logarithms employed.
Thus, for the plan f¼ .1, i¼ 38 with AOQL¼ .029, we have

f ¼ .1
i ¼ 38
A ¼ .029
pM¼ .054
F ¼ .478

so for an interval between stops of say 2i¼ 76, so that E¼ 76 and

r ¼ � log (1� :1þ 76(:478)(:029))
log ((:478� :1)=:478)

r ¼ � log 1:9535
log :7908

¼ �:2908
�:1019

¼ 2:85 � 3

As we have seen, the Dodge charts give a wide variety of choice of f and i for a given AOQL.
Murphy (1959b) has presented a way to uniquely define a CSP-1 plan given

A ¼AOQL
P0 ¼ producer’s nominal quality level
F0 ¼ fraction inspected at producer’s nominal quality level

For a given AOQL this allows the producer to specify a quality level which is to have minimal
inspection. P0 is chosen to be a fraction defective which is to require a reasonably small fraction
inspected F0 when quality is at the specified level. The procedure given by Murphy is as follows for
plans where (P0 <A)

1. Calculate

B ¼ A� P0

2:3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� A)(1� P0)

p

and

H ¼ (1� F0)(1� P0)B
AF0

2. Using the graph given by Murphy (Figure 15.6) find the value of C corresponding to H.

3. Then i¼C=B.

4. Find f from the Dodge chart for CSP-1 (Figure 15.2).
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16(6), 20, 1959b. With permission.)
Murphy gives, as an example, the selection of a plan having A¼ .10, P0 ¼ .05, and F0 ¼ .10. We have

B ¼ :10� :05

2:3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(0:90)(0:95)

p ¼ :0235

and

H ¼ (:90)(:95)(:0235)
(:10)(:10)

¼ 2:01

C ¼ 0:34 (from Figure 15:6)

i ¼ 0:34
:0235

¼ 14:5 � 15

f ¼ :043 (from Figure 15:2)

So the plan having the desired characteristics is

f ¼ :043 i ¼ 15

Note that for a plan selected in this way, it is possible to compute a value of r for the stopping rule
which will give an interval between stops of E0 when quality is at the producer’s nominal quality
level P0 by using the formula

r ¼ � log 1þ E0P0F0(1� P0)i
� �

log 1� (1� P0)i
� �
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Any base logarithms may be used. For the plan just selected in the example, if E0 ¼ 10,000, we have

r ¼ � log (1þ 10,000(:05)(:10)(1� :05)15)

log (1� (1� :05)15)

¼ � log (24:1646)
log (:5367)

¼ �1:3832
�:2703

¼ 5:12 � 5

Multilevel Plans

In an ingenuous extension of the Dodge CSP-1 concept, Lieberman and Solomon (1955)
conceived the idea of sampling fewer items as quality gives increasing evidence of being acceptable.
This notion resulted in the so-called multilevel plan (MLP), which reduces the sampling frequency
as successively more product is passed without finding a defective. This involves less inspection
than CSP-1 under certain conditions to achieve the same AOQL. The AOQL given for the
multilevel plans assumes that the production process is in control as in the Dodge plans.

Based on a Markov chain approach, the plans thus produced may be characterized theoretically as
a random walk with reflecting barriers.

The procedure, allowing the possibility of infinite levels, is as follows:

1. Specify

i ¼ clearing interval

f ¼ initial sampling frequency

k0¼maximum number of levels to be used

2. Set k¼ 1 and begin 100% inspection.

3. After i units in succession have been found without a defective, sample at a rate of f k.

4. If i sampled units are found free of defects, increase k by one and go to step 3. However, k
must not exceed k0, that is k � k0.

5. If a defective is found, decrease k by one and go to step 3. If k¼ 0, go to step 2.

While the number of levels in a multilevel plan may be unrestricted, that is k0¼1, it is often
desirable to stop the progression of levels at a certain number of stages. For this reason, a value of k0
may be specified at the outset, which k is not allowed to exceed. Thus we have two-level plans
(k0¼ 2), three-level plans (k0¼ 3), and so forth. It should be noted that when k0¼ 1, the multilevel
plan reduces to the Dodge CSP-1 plan.

A schematic representation of the multilevel plan is presented in Figure 15.7.
Lieberman and Solomon have provided charts, similar to those of CSP-1, to determine the values

of f and i for specified AOQL. Figure 15.8 shows curves for the infinite-level plans (k0¼1) as solid
lines, as contrasted with the Dodge CSP-1 equivalent (k0¼ 1) as dotted lines. Figure 15.9 gives the
AOQL curves for a two-level plan (k0¼ 2).

For example, it can be seen from Figure 15.9 that the two-level multilevel plan i¼ 38, f¼ .10
has an AOQL of 4% compared to a 2.9% AOQL for a CSP-1 plan with the same f and i.
� 2008 by Taylor & Francis Group, LLC.
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FIGURE 15.7: Multilevel procedure.
From Figure 15.8 an infinite-level plan having 4% AOQL and a clearing interval of i¼ 38 would
require f¼ .27.

For an infinite-level plan with defective units replaced by good items, measures can be deter-
mined as follows at fraction defective p for a plan having AOQL¼A.
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FIGURE 15.8: Multilevel AOQL curves for k0¼ 1, 1. (Reprinted from Lieberman, G.J. and
Solomon, H., Ann. Math., Stat., 26, 696, 1955. With permission.)
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FIGURE 15.9: Multilevel AOQL curves for two-level plan, k0¼ 2. (Reprinted from Lieberman,
G.J. and Solomon, H., Ann. Math., Stat., 26, 698, 1955. With permission.)
Initial sampling frequency

f ¼ (1� A)i

1� (1� A)i

Average outgoing quality limit

AOQL ¼ 1� f

1þ f

� �1=i

Fraction defective pM at which AOQL occurs

pM ¼ AOQL

Average fraction inspected

F1 ¼ (1� A)=(1� p)ð Þi � 1

(1� A)=(1� p)ð Þi�2(1� A)i
, p > A

F1 ¼ 0, p � A

Average outgoing quality

AOQ1 ¼ p(1� F1)

Thus, for the infinite level plan i¼ 38, f¼ .27 having AOQL¼ .04, we have

f ¼ (1� :04)38

1� (1� :04)38
¼ :27

with

AOQL ¼ 1� :27
1þ :27

� �1=38

¼ :04
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which occurs at

pM ¼ :04

The AFI at fraction defective p¼ .041 is

F1 ¼ (1� :04)=(1� :041)ð Þ38 � 1

(1� :04)=(1� :041)ð Þ38 � 2(1� :04)38

¼ 1:0404 � 1
1:0404� :4240

¼ :066

and

AOQ1 ¼ :041(1� :066) ¼ :038

Note that the AFI at p¼AOQL¼ .04 is

AFI ¼ F ¼ 0

hence

AOQ1 ¼ :04(1� 0) ¼ :04

The mathematical development of multilevel plans is described in the Lieberman and Solomon
(1955) paper. In discussing the advantages of the multilevel procedure, the authors state (p. 686) that
their purpose was ‘‘ . . . to consider an extension of Dodge’s first plan which (a) allows for smoother
transition between sampling inspection and 100% inspection, (b) requires 100% inspection only
when the quality submitted is quite inferior, and (c) allows for a minimum amount of inspection
when quality is definitely good.’’ Burr (1976) has pointed out, however, that f must be fairly large
‘‘ . . . in order to avoid extremely low fractions on higher powers of f. This makes the saving small at
f or even f 2, and the multilevels make scheduling of workloads difficult.’’

In any event, the multilevel procedure provides a useful alternative in the application of
continuous sampling plans and has found application, ‘‘to a variety of products, ranging from
EAM cards to very complicated equipment . . . with substantial savings,’’ as reported by Ireson and
Biedenbender (1958).

Tightened Multilevel Plans

A set of tightened multilevel plans has been developed by Derman et al. (1957). They offered
‘‘three generalizations of MLP, accomplished by altering the manner in which the transition can
occur . . . ’’. One of these, the simplest, will be discussed here. It is the tightest and has been
labeled MLP-T.

The MLP-T plan is simply a multilevel plan which requires a switch all the way back to 100%
inspection, at any level, whenever a defective unit is found. This provides quick rectification in
the event of a shift in quality.

Measures for the MLP-T infinite level plan when defectives are replaced with effective units are
Average fraction inspected

F ¼ 1� ((1� p)i=f )

1� (1� p)i
f > (1� p)i

f ¼ 1 f � (1� p)i
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Average outgoing quality

AOQ ¼ p(1� p)i

1� (1� p)i
1� f

f

� �

f > (1� p)i

AOQ ¼ p f � (1� p)i

Average outgoing quality limit

AOQL ¼ 1� f 1=i

with

pM ¼ AOQL

For the infinite level plan i¼ 38, f¼ .27 at p¼ .04, we have

f ¼ :27 > (1� p)i ¼ :21

so

F ¼ 1� (1� :04)38=27
� �

1� (1� :04)38
¼ :273

AOQ ¼ :04(1� :04)38

1� (1� :04)38
1� :27
:27

� �

¼ :029

AOQL ¼ 1� :271=38 ¼ :034

and

pM ¼ :034

Here we see AFI is increased over the corresponding multilevel plan while the AOQ at p¼ .04 and
the AOQL are decreased by the quick return at 100% inspection.

Block Continuous Plans

Both the multilevel and the Dodge continuous plans basically assume a steady flow of production
with no attempt to segregate the product into lots or segments. While either of these procedures
may be carried on by sampling at random a fraction f units from successive segments of a given size,
special plans have been designed for this purpose and may be characterized as block continuous
plans. These plans divide the sequence of production into successive blocks, taking a prescribed
sample from each block. A specified proportion of the block is screened once a signal for 100%
inspection is given. Block continuous plans are easily adapted to the inspection of successive lots
and are useful when the process itself generates natural segments. It should be noted that while the
Dodge plans essentially fix both i and f, the multilevel plans fix i but allow the fraction inspected to
vary with the level of the plans. The block continuous plans typically sample one unit from a group
of items of specified size (that is f fixed) and allow the clearing interval to vary. Action is usually
taken on the cumulative number of defectives found.

Wald–Wolfowitz Plan

The first block continuous plans were proposed by Wald and Wolfowitz (1945). Of the three
plans they proposed, only one will be discussed here, their statistical process control (SPC) plan.
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They divide the production flow into segments of size N0 which are sampled by taking one item
from groups of size 1=f to achieve a sampling frequency of f. The plan is applied as follows for
specified N0, M*, and f.

1. Demark the flow of production into segments of fixed size N0.

2. Break each segment into fN0 groups of size k¼ 1=f.

3. Start with partial inspection of one item from each group.

4. Continue accumulating the sum of defectives found, Sd, until.

a. M* defectives are found, then begin 100% inspection of the remainder of the segment
starting with the next group.

b. The segment has been completely partially inspected.

5. Repeat the procedure anew on the next segment.

A schematic representation of the procedure is given in Figure 15.10.
This procedure can be adapted to the inspection of a sequence of lots by substituting the word lot

for the word segment in the above steps. In such applications, it is often convenient to draw
successive samples from the entire lot rather than from individual groups. In this case, a sample
of fN0 items is taken successively at random from the lot. As soon as the number of defectives found
equals M* sampling is discontinued. At this point, if the M*th defective occurred on the N0th
sample, an additional (N0� (1=f )N0) units are 100% inspected and the lot is released. If fN0 items
are sampled without reaching M* defectives, the lot is also released. This procedure guarantees the
same UAOQL as the procedure for sampling from groups.

The Wald–Wolfowitz procedure guarantees the AOQL regardless of the state of control of the
process. For this plan, when defectives are replaced with good items:

UAOQL ¼ M*(1� f )

fN0
Start

Inspect next production
segment of N0 items

Randomly sample 1 unit
from next group of 1/f
items within segment

Inspect 100%
of remainder
of segment

Σd >_ M* Σd < M*

f N0
sampled

< f N0
sampled

Accept
group

FIGURE 15.10: Wald–Wolfowitz SPC procedure.
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so that, given UAOQL¼A, N0, and f, a plan can be set up using

M* ¼ AfN0

(1� f )

Other measures of these plans at fraction defective p are
Average fraction inspected

AFI ¼ F ¼ 1� A

p
þ (1� f )

pfN0

XM*�1

i¼0

(M*� 1) C fN0
i

	 

pi(1� p) f N0�i

Average outgoing quality

AOQ ¼ A 1� 1
M*

XM*�1

i¼0

(M*� i) C
f N0
i

	 

pi(1� p) f N0�i

" #

As an example of application, consider setting up a plan which is to have UAOQL¼A¼ .029 and
f¼ .1 for production segments of N0¼ 310. Then

M* ¼ :029(:1)310
(1� :1)

¼ :999 � 1

The plan would be applied to segments of 310 units. From each segment one unit would be sampled
from each of .1(310)¼ 31 groups of size 1=.1¼ 10. As soon as a defective was found in a segment,
the remaining groups in the segment would be 100% inspected before starting afresh with the next
segment. For this plan at fraction defective p¼ .054

AFI ¼ 1� :029
:054

þ (1� :1)
:054(:1)310

(1) C31
0

� �
:0540(1� :054)31

¼ 1� :537þ :538(:179) ¼ :559

AOQ ¼ :029 1� 1
1
(1) C31

0

� �
:0540(1� :054)31

� �

¼ :029(1� :179) ¼ :024

Girshick Plan

M.A. Girshick (1954) has provided a modification of the Wald–Wolfowitz approach which
avoids the necessity for segmenting production, but which achieves essentially the same result.
The procedure is as follows for specified f, m, and N:

1. Divide the flow of production up into groups of size 1=f.

2. Start with partial inspection of one item from each group.

3. Cumulate the number of defective Sd and the number of samples taken, n.

4. When the cumulative number of defectives equals m, compare the number of samples
inspected to the integer N.
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5. a. If n � N, product previously inspected is confirmed as good.

b. If n<N, 100% inspect the next N� n groups [that is (N� n) (1=f) units] replacing
defectives with good.

6. Start anew.

The Girshick procedure guarantees

UAOQL � (1� f )m

N

regardless of the state of control of the process. It will be seen that this is essentially amodification of the
Wald–Wolfowitz SPC plan withN¼ fN0 andm¼M*. To set up such a plan,N should be small enough
that 100% inspection can reasonably be performed if necessary. Then for a givenUAOQL¼A, f, andN,

m ¼ NA

(1� f )

If UAOQL¼ .29, f¼ .1, and N¼ 310, the plan is essentially the same as the Wald–Wolfowitz
example above if

m ¼ 310(:029)
(1� :1)

’ �10

without the necessity for setting up arbitrary divisions on the flow of production. The Girshick
(1954) monograph presents the mathematical characterization and measures of the procedure.

Considering block continuous plans in general, it would seem that the Wald–Wolfowitz plans are
particularly well suited where lot inspection is involved or when the production stream is naturally
divided into segments of a given size. The Girshick plan would appear to be quite good for a
continuous flow of product might be set aside as required for screening without the need for
immediate 100% inspection as would be required in the Dodge or multilevel plans.

MIL-STD-1235B

Military standard 1235B entitled Single and Multi-level Continuous Sampling Procedures and
Tables for Inspection by Attributes is a collection of continuous sampling plans indexed by
acceptable quality level (AQL). Like MIL-STD-105E, it was discontinued in 1995; however, it is
a superb collection of continuous sampling plans. An excellent source of the relevant theory and
tables will be found in Stephens (2001). The standard takes care to point out in its definition of AQL
that ‘‘For continuous sampling plans, the AQL is an index to the plans, and has no other meaning.’’
The AQL index is used to tie the standard to contractual levels of protection incorporated in
contracts involving MIL-STD-105E, MIL-STD-414, and other such sampling plans. It is not an
AQL plan and has no switching rules.

Since continuous sampling plans are usually used, specified, and indexed by AOQL, the AOQL of
the plans given in MIL-STD-1235B is always shown together with the AQL index. In fact, the plans
included were chosen to match, as well as possible, representative values of the scheme AOQLs of the
MIL-STD-105E plans having the AQL index shown. Reference to Appendix Table T11-20 shows the
scheme AOQLs range from 2.9 to 3.2 over the 2.5 AQL column for nonzero acceptance numbers.*

* The MIL-STD-105E system AOQLs were calculated using tightened-normal switching only and so correspond only
roughly to the Schilling and Sheesley (1978) values given in Appendix Table T11–20, which incorporates switching to
reduced inspection also.
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TABLE 15.2: Type and purpose of MIL-STD-1235B plans.

Section Plan Type Purpose

2 CSP-1 Standard CSP-1 plan Simple, popular, easy to use and
administer

3 CSP-F CSP-1 procedure with parameters
modified for application to
sequence of specified length

Smaller clearing intervals for short
production runs or when long
clearing intervals are impractical

4 CSP-2 Standard CSP-2 plan Provides against stray defectives
and gives warning that screening
crew may be needed

5 CSP-T Tightened three-stage multilevel plan
with modified sampling frequencies

Permits reduction of sampling
frequency ( f) when superior
quality is demonstrated

6 CSP-V Modified CSP-1 procedure with
shortened clearing interval if
previous i units free of defectives

Permits reduction of clearing
interval (i) when superior quality
is demonstrated
Thus, the continuous plans indexed under 2.5 AQL in MIL-STD-1235B show AOQL values of
2.9%. In this way the results of the MIL-STD-1235B plans correspond to the results of the MIL-
STD-105E system when MIL-STD-105E is used to guarantee AOQLs per paragraphs 11.3 and 11.4
of that standard.

Five different types of continuous plans are given in MIL-STD-1235B. The user has the option of
selecting the plan which is the most suitable for the inspection situation involved. The plans included
are CSP-1, CSP-2, CSP-F, CSP-T, and CSP-V. These plans are characterized in Table 15.2.

Of course, CSP-1 and CSP-2 are the standard plans used in the standard way. The CSP-F plan is
intended for use with short production runs, short periods of production within a production interval
(defined by the standard to be a period of homogeneous quality such as a shift, but at most a day).
The criteria are adjusted to account for a finite period of production, N items in length. The CSP-T
plans are tightened multilevel plans incorporating three levels. They are modified from those of
Lieberman and Solomon (1955) and Derman et al. (1957) after the manner of Guthrie and Johns
(1958) in that the sampling frequency is cut in half from level to level, rather than by powers of f as in
the conventional multilevel plans. As a multilevel plan, CSP-T allows a reduction in sampling
frequency as quality improves, reducing the amount of sampling necessary. It is sometimes desirable
to cut the clearing interval rather than sampling frequency with improved quality, particularly when
the sampling inspector cannot be switched to other work. The screening crewwill then have less to do.
The CSP-V plans are designed to do just this by reducing the clearing interval if evidence of superior
quality exists.

The structure of MIL-STD-1235B is shown in Figure 15.11. Tables of f and i are provided
for each type of plan. In addition, except for CSP-F, tables of S values are also given as criteria to
allow termination of excessively long periods of screening. The stopping rule employed is the
‘‘rule n*� i’’ of Murphy (1959a). That is, clearing is stopped as soon as a defective is found in any
one screening sequence exceeding S units. Clearing is started anew at the beginning of the clearing
interval after corrective action has been taken.

MIL-STD-1235B also provides for the possibility of a check inspection of screened lots. If the
check inspector finds one defective, the customer is to be notified and corrective action taken on the
screening crew. If two defectives are found, product acceptance may be suspended.

A diagrammatic representation of the application of MIL-STD-1235B is presented in
Figure 15.12, which gives a check sequence for the operation of the standard. This can be used to
insure that the standard is properly employed.
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FIGURE 15.11: Structure of MIL-STD-1235B.
To illustrate the application of MIL-STD-1235B, consider its use to obtain a CSP-T plan to
be employed on a contract specifying an AQL of 0.65% with the production interval expected
to be about 5000 units. The operation of the CSP-T plan is illustrated in Figure 5-A of the standard
and given here as Figure 15.13. Table 1 of the standard, shown here as Table 15.3, indicated that Code
H may be used. Values of f, i, and S can be obtained from Tables 5-A and 5-B of MIL-STD-1235B,
which correspond to Tables 15.4 and 15.5. They show that the plan to be employed should be

f ¼ 1=25
i ¼ 217
S¼ 1396

It should be emphasized that AQL is used here as an index only. In fact, the plan given has an
AOQL equal to 0.79%. Note that, if AOQL protection is desired, an appropriate plan can be selected
from the tables simply by using the AOQL listed with any desired value of f to find the correspond-
ing value of i. The value of S for such a plan can also readily be located if a stopping rule is to be
employed. For example, the MIL-STD-105E, Code F, 2.5% AQL system has an AOQL of 2.9%
from Appendix Table T11-20. If a CSP-T plan is to be employed having equal AOQL protection
with a sampling frequency of, say, f¼ .2, we find the plan f¼ .2, i¼ 29 to be appropriate. For this
plan S¼ 93.

The theoretical development of the standard and particularly the CSP-F, CSP-T, and CSP-V plans
was largely accomplished by Banzhaf and Brugger of the U.S. Army, Armament Procurement and
Supply Agency, Product Quality Evaluation Division, using a Markov chain approach; their work
on the original MIL-STD-1235 standard has already been cited (Banzhaf and Brugger, 1970). The
theoretical background of the Dodge CSP-1 and CSP-2 plans has already been given. CSP-F
developed out of the Markov chain approach to CSP-1 formula derivation presented by Roberts
(1965) and the study by Lasater (1970) of the theory and performance of CSP-1 when applied to a
finite number of units.
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Start

Determine AQL index
to be used

Determine number units
in production interval

Determine period N
for which plan

is to apply

Obtain  f, i and S from
tables in applicable section

Apply plan using given  f, i

If number screened
exceeds S, inspection
may be suspended for

corrective action 
If check inspector

finds defect in
screened product,

consumer notified and
corrective action taken

on screening crew

If check inspector
finds second defect,
product acceptance
may be suspended

Screening crew
starts new count

of defect-free units

Clearing i

Sampling f 

Product shipped

Obtain sampling frequency
code letter

Choose type continuous
plan desired

CSP-1 CSP-F CSP-2 CSP-T CSP-V

FIGURE 15.12: Check sequence for applying MIL-STD-1235B.
Measures of the plans incorporated in MIL-STD-1235B are presented in a companion document,
MIL-STD-1235A-1, Appendices A–D. All plans included in MIL-STD-1235B are represented
except for the CSP-F plans. For each plan, curves are given for AOQ, AFI, and OC. These are
defined by MIL-STD-1235A-1, Appendices A–D as

The AOQ for a particular process average is the long run expected percentage of defective
material in the accepted material, if the associated sampling plan is followed faithfully
(Figure 15.14).

The AFI is the fraction of product that will be inspected over the long run if the process average
is a particular value (Figure 15.15).
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The screening crew inspects 100% of the units.

Start

When i consecutive units are found free of the
defects concerned

The screening crew is released from 100% inspection
and the sampling inspector inspects a fraction, f, of the
units, where the units are selected in a random manner.

If the sampling inspector
finds one of the 

defects concerned

If the sampling inspector
finds one of the 

defects concerned

The sampling inspector begins inspecting a fraction,
f/2, of the units, which are selected in a random manner.

The sampling inspector begins inspecting a fraction,
f/4, of the units, which are selected in a random manner.

When the sampling inspector finds one of the defects concerned

If the sampling inspector
finds i consecutive sample
units are free of the defects

concerned

If the sampling inspector
finds i consecutive sample
units are free of the defects

concerned

FIGURE 15.13: Procedure for CSP-T plans. (From United States Department of Defense,
Military Standard, Single and Multi-Level Continuous Sampling Procedures and Tables for Inspec-
tion by Attributes, MIL-STD-1235B, U.S. Government Printing Office, Washington, DC, 1981, 41.)

TABLE 15.3: Sampling frequency code letters.

Number of Units in
Production Interval

Permissible
Code Letters

2–8 A, B
9–25 A through C
26–90 A through D
91–500 A through E
501–1200 A through F
1201–3200 A through G
3201–10,000 A through H
10,001–35,000 A through I
35,001–150,000 A through J
150,001–up A through K

Source: United States Department of Defense, Military Standard,
Single and Multi-Level Continuous Sampling Procedures and
Tables for Inspection by Attributes, MIL-STD-1235B, U.S.
Government Printing Office, Washington, DC, 1981, 7.

� 2008 by Taylor & Francis Group, LLC.



TABLE 15.4: Values of i for CSP-T plans.

Sampling
Frequency
Code Letter

AQLa (%)

f 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10.0

A 1=2 87 58 38 25 16 10 7 5
B 1=3 116 78 51 33 22 13 9 6
C 1=4 139 93 61 39 26 15 11 7
D 1=5 158 106 69 44 29 17 12 8
E 1=7 189 127 82 53 35 21 14 9
F 1=10 224 150 97 63 41 24 17 11
G 1=15 266 179 116 74 49 29 20 13
H 1=25 324 217 141 90 59 35 24 15
I 1=50 409 274 177 114 75 44 30 19
J, K 1=100 499 335 217 139 91 53 37 23

0.53 0.79 1.22 1.90 2.90 4.94 7.12 11.46
AOQL (%)

Source: United States Department of Defense, Military Standard, Single and Multi-Level Continuous Sampling
Procedures and Tables for Inspection by Attributes, MIL-STD-1235B, U.S. Government Printing Office,
Washington, DC, 1981, 42.

a AQLs are provided as indices to simplify the use of this table, but have no other meaning relative to the plans.

T

�

The OC of a continuous sampling plan describe the percent of product accepted during the
sampling phases of the plan over the long run if the process average is a particular value
(Figure 15.16).
ABLE 15.5: Values of S for CSP-T plans.

Sampling
Frequency
Code Letter

AQLa (%)

f 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10.0

A 1=2 159 117 77 52 34 22 13 12
B 1=3 256 197 128 80 59 35 25 18
C 1=4 379 253 167 103 78 43 38 24
D 1=5 444 320 210 130 93 54 43 30
E 1=7 725 460 289 188 137 81 59 34
F 1=10 857 619 398 261 189 104 88 58
G 1=15 1254 900 584 368 376 152 126 84
H 1=25 1885 1396 923 545 421 235 198 122
I 1=50 3283 2477 1604 1013 764 408 374 223
J, K 1=100 5753 4541 2948 1754 1341 708 653 391

0.53 0.79 1.22 1.90 2.90 4.94 7.12 11.46
AOQL (%)

Source: United States Department of Defense, Military Standard, Single and Multi-Level Continuous Sampling
Procedures and Tables for Inspection by Attributes, MIL-STD-1235B, U.S. Government Printing Office,
Washington, DC, 1981, 43.

a AQLs are provided as indices to simplify the use to this table, but have no other meaning relative to the plans.
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Tables for Inspection by Attributes, MIL-STD-1235B, U.S. Government Printing Office, Washington,
DC, 1981, C3.
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FIGURE 15.16: MIL-STD-1235A-1, Appendix C OC curves—CSP-T. (From United States
Department of Defense, Military Standard, Single and Multi-Level Continuous Sampling Proced-
ures and Tables for Inspection by Attributes, MIL-STD-1235B, U.S. Government Printing Office,
Washington, DC, 1981, C3.)
The standard states that ‘‘Curves for CSP-F are not provided, since exact methods for their
determination have not been developed.’’

Illustrations of the MIL-STD-1235A-1, Appendix C curves are given here for the multilevel plan
CSP-T: Code D, 2.5% AQL ( f¼ 1=5, i¼ 29).
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Problems

1. Construct a CSP-1 plan for AOQL¼ 4% which will have a sampling frequency of about 10%.
What is the UAOQL for this plan when defectives are replaced by good units?

2. Find a CSP-2 plan with k¼ i which will afford about the same protection as the plan in
Problem 1. What is its UAOQL when defectives are not replaced with good items?

3. What is the AFI when the proportion defective submitted is .08 for?

a. Problem 1

b. Problem 2

4. Stopping rule r is to be instituted on the plan of Problem 1. Find r if 50 units may be produced
between successive stops when the process proportion defective is such that the AOQL is
realized (i.e., p¼ pM).
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5. Use Murphy’s procedure to find a CSP-1 plan which will have a 5% AOQL with 25% of the
product inspected when the process average is expected to be 1% defective.

6. Find an infinite multilevel plan which will have an AOQL of 4% with an initial sampling
frequency of about 10%. What is the AOQL if it is used as a tightened multilevel plan?

7. Production is boxed in crates of 24 units with 24 crates to a skid. A UAOQL of 6% is desired.
Construct the appropriate Wald–Wolfowitz plan.

8. What would be the parameters of a Girshick plan corresponding to Prob. 7?

9. An MIL-STD-105E scheme is being used with screening of rejected lots to provide AOQL
protection. For the scheme, AQL¼ 6.5 with lots of size 550. A process change mandates a
change to continuous sampling. At present a tightened=normal sample size of 80 is being used
which implies a sample size-lot size ratio of .145 � 1=7. What MIL-STD-1235B, CSP-T, plan
should be used? What should be the maximum number screened before clearing is stopped?

10. Compare the code letters of MIL-STD-1235B to those of MIL-STD-105E. Are they
comparable? That is, if Code J is being used on MIL-STD-105E should J be used on MIL-
STD-1235B?
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Chapter 16

Cumulative Results Plans

Except for continuous sampling plans, the acceptance sampling plans discussed so far have been
applied on an individual lot-by-lot basis. The acceptable quality level (AQL) schemes incorporated
in MIL-STD-105E and MIL-STD-414 do, in fact, utilize the results from the most recent lots as part
of the switching rules, but the acceptance criteria applied to any one lot do not specifically
incorporate the results of the inspection of the immediately preceding lots.

The continuous sampling plans discussed in Chapter 15 require knowledge of the results
from the immediately preceding samples as part of the action rule for any sample inspected.
This is particularly evident in CSP-2 and CSP-3, but applies to all the plans discussed. Thus,
continuous sampling plans are a member of the class of, so-called, cumulative results plans. Other
members include skip-lot plans, chain sampling plans, and the Cone and Dodge (1963) cumulative
results plan. Cumulative results plans, however, usually involve lot-by-lot inspection of a stream of
product. It is the purpose of this chapter to examine these plans as a means of dealing with the
frequent problem of minimizing sample size because of economic constraints while still affording a
reasonable amount of protection.

In general, cumulative results plans require certain assumptions to be met about the nature of the
inspection. As described by Dodge (1955a) in introducing chain sampling plans, these are

1. The lot should be one of a continuing series of supply.

2. Lots should normally be expected to be of the same quality.

3. The consumer should have no reason to believe that the lot to be inspected is poorer than any
of the immediately preceding lots.

4. The consumer must have confidence in the supplier, in that advantage would not be taken of a
good record to slip in a substandard lot.

Under these conditions, it is reasonable to use the record of previous inspections as a means of
reducing the amount of inspection required on any given lots.

Skip-Lot Sampling Plans

SkSP-1

Continuous sampling plans are intended to be applied on individual units produced in sequence
from a continuing source of supply. The principles of continuous sampling can, however, be applied
to individual lots received in a steady stream from a trusted supplier. Just as units are ‘‘skipped’’
during the sampling phase of a continuous sampling plan, so lots may be skipped (and passed) under
� 2008 by Taylor & Francis Group, LLC.



TABLE 16.1: Comparison of CSP-1 and SkSP-1.

CSP-1 (Product Units) SkSP-1 (Lots of a Raw Material)

Series of units Series of lots (or batches)
Inspect a unit Make laboratory analysis of a sample of material
Defective unit (a unit which fails to meet
the applicable specification requirement)

Nonconforming lot (a lot whose sample fails to
meet the applicable specification requirement)

Units in succession found clear of defects Lots in succession found conforming
Incoming % defective: % of incoming
units that are defective

Incoming % defective: % of incoming lots that
are nonconforming

Meaning of 2% AOQL: an average of not
more than 2% of accepted units will be
defective for the characteristics under
consideration

Meaning of 2% AOQL: an average of not more
than 2% of accepted lots will be nonconforming
for the characteristic under consideration

Source: Reprinted from Dodge, H.F., Ind. Qual. Control, 11(5), 4, 1955b. With permission.
an analogous skip-lot plan. It is surprising, but fortuitous, that skip-lotting can actually increase
protection per unit sampled.

The first skip-lot plan, SkSP-1, was introduced by Dodge (1955b) as an adaptation of CSP-1 to the
inspection of raw materials purchased regularly from a common source. Materials are often inspected
using bulk sampling procedures with an output of one laboratory determination per lot. Disposition of
the lot is in accord with whether or not the laboratory determination conforms to specification
requirements. Thus, by regarding each lot of raw material as a single ‘‘unit’’—either conforming or
not conforming to specifications—continuous sampling plans are readily applied. In this case,
however, the average outgoing quality limit (AOQL) provides an upper bound on the average
percentage of accepted lots that will be nonconforming in the long run. Similarly, other measures
of continuous sampling plans may be interpreted as referring to ‘‘lots’’ rather than units. Dodge
(1955b) contrasts CSP-1 and SkSP-1 for 2.0% AOQL in tabular form, shown here as Table 16.1.

The skip-lot procedure may be represented schematically as in Figure 16.1, which presents the
skip-lot concept.

In such applications, rejected lots are not usually 100% inspected or replaced by known good
material. They are simply rejected and disposed of. When this is the case, Dodge (1955b) points out
that i should be increased by one in CSP-1 plans to maintain the protection guaranteed.

While any continuous sampling plan may be used in this application, Dodge (1955b) proposes a
CSP-1 plan with 2% AOQL for general use:

Procedure A-1 (Each nonconforming lot corrected or replaced by a conforming lot.)
i¼ 14, f¼ 1=2

Procedure A-2 (Each nonconforming lot rejected and not replaced by a conforming lot.)
i¼ 15, f¼ 1=2

Other choices of f and i can be made from Figure 15.2 for CSP-1 or by using appropriate means for
other continuous sampling plans.

SkSP-1 plans are implemented as follows, illustrated using procedure A-2 on lots which are
rejected and not replaced.

1. Apply plan separately to each characteristic under consideration. When several characteristics
are involved, try to test at least one characteristic in each lot. That is, lots skipped for one
characteristic should be tested for another so that each lot receives tests on some of the
characteristics.

2. Start by testing each lot consecutively as received until 15 lots in succession are found
conforming.
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FIGURE 16.1: Skip-lot procedure.
3. When 15 lots in succession are found conforming, test only half the lots at random. Accept the
lots not tested.

4. When a lot is rejected, revert to step 2.

This will guarantee that on an average a maximum of 2% of the accepted lots will be nonconform-
ing. Procedure A-1, for use when nonconforming lots are replaced with conforming lots, is the same
with i¼ 14 rather than i¼ 15 as above.

Other skip-lot plans of this sort can easily be devised using the procedures for the continuous
sampling plans of Chapter 15.

SkSP-2

While SkSP-1 was intended to be used in circumstances leading to a simple and absolute go-no-go
decision on each lot, the continuous sampling approach to skipping lots may be utilized when a
standard sampling plan is applied to each lot. When sampling plans are used, a lot is accepted or
rejected with an associated producer’s or consumer’s risk. These risks have been factored into the
skip-lot procedure by Dodge and Perry (1971) in their development of SkSP-2. These plans are
intended to be applied to a series of lots or batches of discrete items which are sampled using a
standard ‘‘reference’’ sampling plan. Two stages of sampling are distinguished:

Normal inspection: Use of the reference plan on every lot as received.

Skipping inspection: Use of the reference plan on a randomly selected fraction f of the
lots. Skipped lots are accepted.

CSP-1 is applied to the inspection results to determine whether normal or skipping inspection is to
be used. The procedure is as follows:

1. Start with normal inspection of each lot using the reference plan.

2. When i consecutive lots have been accepted, switch to skipping inspection, inspecting a
fraction f of the lots at random as received.
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3. When a lot is rejected, switch to normal inspection, step 1.

4. Screen each rejected lot replacing nonconforming units with conforming units.

Thus, an SkSP-2 plan is specified by

1. The reference sampling plan applied to each lot

2. i, the clearing interval

3. f, the sampling frequency

Application of the plan n¼ 20, c¼ 1, i¼ 4, and f¼ .20 would proceed as follows:

1. Inspect consecutive lots using the reference plan n¼ 20, c¼ 1 on each under normal inspec-
tion.

2. When i¼ 4 lots in succession have passed the reference plan, go to skipping inspection.
Inspect at random only a fraction f¼ .20 of the lots using the reference plan on each. Pass the
lots not inspected.

3. When a lot is rejected, revert to normal inspection, step 1.

4. Screen all rejected lots.

Measures of SkSP-2 are analogous to SkSP-1. Let

P¼ probability of acceptance of reference plan

U¼ (1�Pi)=(Pi(1�P)), expected number of lots during normal inspection

V¼ 1=f(1�P), expected number of lots during skipping inspection

Then, measures of the SkSP-2 plan are as follows as derived by Perry (1970) using both a power
series approach, as in the derivation of CSP-1, and Markov chains.

Pa, probability of acceptance (long-run proportion of lots accepted)

Pa ¼ (1� f )Pi þ fP

(1� f )Pi þ f

where
F is the average fraction lots inspected (long-run average fraction of lots inspected)

F ¼ U þ f V

U þ V
¼ f

(1� f )Pi þ f

ASNSK, average sample number (long-run average sample size over lots inspected)

ASNSK ¼ F(ASNR)

where

ASNR is the average sample number of reference plan

For a single-sampling plan (n,c), this becomes

ASNSK ¼ Fn
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TABLE 16.2: Values of lot AOQL2 for given f and i.

F

i 2=3 3=5 1=2 2=5 1=3 1=4 1=5

4 .034 .044 .060 .081 .098 .126 .148
6 .024 .030 .042 .057 .069 .089 .105
8 .018 .023 .032 .044 .053 .069 .081
10 .015 .019 .026 .035 .043 .056 .066
12 .013 .016 .022 .030 .037 .047 .056
14 .011 .014 .019 .026 .031 .041 .048

Source: Reprinted from Perry, R.L., J. Qual. Control, 5(3), 130, 1973. With permission.
AOQL1¼Unit AOQL. Upper bound on the long-run average proportion of outgoing product
units that are defective.

AOQL1 ¼
Y

n

where selected values of Y from Perry (1970) are given in Appendix Table T16.1 for single-
sampling reference plans for various values of c, f, and i (assume type B sampling).
AOQL2¼Lot AOQL. Upper bound on the long-run average proportion of outgoing lots that are

nonconforming, i.e., lots which would have failed the reference plan

AOQL2 ¼ AOQL of CSP-1 plan having same f and i

Values of the lot AOQL2 have been tabulated by Perry (1973a) and are shown in Table 16.2.
Consider the SkSP-2 plan n¼ 20, c¼ 1, i¼ 4, and f¼ .25. Assume an incoming proportion
defective of p¼ .05. For the reference plan, at this fraction defective, P¼ .736. Also the
AOQL¼ .042. The measures of the skip-lot plan are

Probability of acceptance

Pa ¼ (1� :25)(:736)4 þ :25(:736)

(1� :25)(:736)4 þ :25
¼ :860

Average fraction lots inspected

F ¼ :25

(1� :25)(:736)4 þ :25
¼ :532

Average sample number

ASNSK ¼ :532(20) ¼ 10:6

Unit AOQL

AOQL1 ¼ :9861
20

¼ :049

Lot AOQL

AOQL2 ¼ :126
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Thus, at this fraction defective, the probability of acceptance is higher than the reference plan under
skip-lotting, from .736 to .860, while the AOQL is increased only slightly from .042 to .049.

The operating characteristic (OC) curve for the plan n¼ 20, c¼ 1, i¼ 4, and f¼ .25 is given in
Figure 16.2. Also included is the OC curve for a similar plan with i¼ 10 and for the reference plan.
Note that skip-lotting swells the shoulder of the OC curve, improving the producer’s risk, but leaves
the lot tolerance percent defective (LTPD) essentially unchanged from the reference plan. A typical
set of ASN curves is illustrated in Figure 16.3. Note the substantial reductions in ASN in regions of
good quality (p> .5).
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FIGURE 16.3: ASN curves for some skip-lot plans. (Reprinted from Perry, R.L., J. Qual.
Control, 5(3), 127, 1973. With permission.)
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Using unity values from the Poisson distribution, Dodge and Perry (1971) developed a table,
which can be used to easily derive skip-lot plans to match single-sampling plans having acceptance
numbers from 2 to 10. It is presented here as Appendix Table T16.2. It shows alternate skip-lot plans
having a given operating ratio (OR). Of course, the ORs of skip-lot plans cover a wide range of
possible values and are not restricted to those of the single-sampling plans. Additional unity values
have been given by Perry (1970).

To use the Dodge–Perry table, given the OR desired

1. Find the OR listed closest to the OR desired, where OR¼ p.10=p.95.

2. Find the corresponding single-sampling plan for that OR by using the associated acceptance
number c and sample size n found by dividing the value np.95 given for the single-sampling
plan by the value of p.95 used to compute the OR.

3. To find the matched SkSP-2 plan

a. Pick convenient values of f and i listed for the OR given.

b. The reference plan will have the value of c listed and sample size found by dividing the
value of np.95 for the SkSp-2 plan by the value of p.95 used to obtain the OR.

For example, suppose a plan is desired such that p.95¼ .01 and p.10¼ .04. The OR is

OR ¼ :04
:01

¼ 4

1. The closest OR for a single-sampling plan is 4.057.

2. The single-sampling plan closest to OR¼ 4 has c¼ 4 and

n ¼ 1:97
:01

¼ 197

3. A corresponding SkSP-2 plan would have f¼ .5, i¼ 4, with a reference plan having c¼ 3 and
a sample size

n ¼ 1:645
:01

¼ 164:5 � 165

The table shows the ratio of these two sample sizes to be .830.

Of course, Appendix Table T16.2 can be used in a number of ways to derive and evaluate SkSP-2
plans. For example, an SkSP-2 plan matching the single-sampling plan n¼ 200, c¼ 3 has f¼ .2,
i¼ 14, c¼ 2 and a reference plan sample size 73.1% of the matched single-sampling plan, or

n ¼ :731(200) ¼ 146:2 � 147

This utilizes the column of ratios of reference sample sizes of SkSP-2 plans to matched single-
sampling plans. From this column it is apparent that, in matching single-sampling plans, not only are
some lots skipped, but also the sample size and acceptance number of the reference plan applied to
the lots inspected will be less than that of the matched single-sampling plan. This is because, in
SkSp-2 inspection, a tight reference plan is used a fraction of the time to achieve the same result as
consistent application of a looser-matched single-sampling plan. Sizable savings in average sample
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size can be achieved by using SkSp-2 plans. Of course, the gain is achieved by not inspecting all the
lots, which may, at times, be a serious disadvantage.

The skip-lot concept has been extended by Perry (1973b) to achieve greater flexibility in
application by using two stages. Since the skip-lot plans may be derived from any continuous
sampling procedure, not just CSP-1, three procedures are proposed by Perry based on other
continuous plans.

Plan 2L.1. Two-stage plan based on the multilevel plan of Lieberman and Solomon
(1955).

Plan 2L.2. Two-stage plan based on the tightened multilevel plan of Derman et al.
(1957) as extended by Gutherie and Johns (1958).

Plan 2L.3. A unique two-stage plan developed by Perry which determines the sampling
rate on the basis of the number of consecutive lots accepted.

The plans presented allow for any combination of sampling rates to be used, and thus are more
general than those of the conventional multilevel plans which prescribe a geometric relationship
between sampling rates. The details of these plans together with an exposition of their properties are
presented in Perry (1973b).

Chain Sampling Plans

A prime example of the use of cumulative results to achieve a reduction of sample size while
maintaining or even extending protection can be found in the chain sampling plans introduced by
Dodge (1955a). These plans were originally conceived to overcome the problem of lack of
discrimination in c¼ 0 sampling plans. The procedure was developed to ‘‘chain’’ together the
most recent inspections in a way that would build up the shoulder of the OC curve of c¼ 0 plans.
This is especially desirable in situations in which small samples are demanded because of the
economic or physical difficulty of obtaining a sample.

ChSP-1

The original chain sampling inspection procedure as developed by Dodge (1955a) is as follows:

1. From each lot, select a sample of n units.

2. Accept if

a. No defectives are found in the sample.

b. One defective is found in the sample, but no defectives were found in the previous i
samples of n.

3. Reject otherwise.

Specification of n and i completely determines a ChSP-1. The ChSP-1 procedure is illustrated
schematically in Figure 16.4.

The OC curve of the ChSP-1 procedure is shown by Dodge (1955a) to be determined by

Pa ¼ p(0)þ p(1)[p(0)]i
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FIGURE 16.4: ChSP-1 procedure.
where

p(x) ¼ probability of x defectives in a sample of n

Clearly, when i¼1, ChSP-1 reverts to the single-sampling plan having c¼ 0. Thus, for the plan
n¼ 10, i¼ 2 when p¼ .10, we have

p(0) ¼ :3487 p(1) ¼ :3874

so

Pa ¼ :3487þ :3874(:3487)2 ¼ :3958

Of course, average outgoing quality can be found by

AOQ ¼ pPa

which gives

AOQ ¼ :10(:3958) ¼ :04

A comparison of ChSP-1 plans for n¼ 10 and several values of i is shown in Figure 16.5 from
Dodge (1955a). The solid line represents the single-sampling plan n¼ 10, c¼ 0. It illustrates the
shoulder built up on the c¼ 0 OC curve when the chain sampling criterion is imposed. The curve for
i¼ 1 is shown dotted since its use is not recommended by Dodge. Note that in the region of low
probability of acceptance the OC curves for various values of i seem to coincide with the exception
of the curve for i¼ 1.

Chain sampling plans are easily evaluated using Poisson unity values developed by
Soundararajan (1978a). Table 16.3 shows values of np corresponding to various probabilities of
acceptance for values of i from 1 to 6 and for i¼1, which is simply the single-sampling plan with
c¼ 0. Notice that with values of low probability of acceptance the unity values are those of the
� 2008 by Taylor & Francis Group, LLC.



Sample size: 10

Acceptance criterion:
c = 0, except c = 1
if no defects in
immediately preceding
i samples of 10.

ChSP-1 plan
1 = i

2
3

4

5

SS plan
n = 10, c = 0

100

90

80

70

60

50

40

30

20

10

0
0 5 10 15 20

FIGURE 16.5: OC curve for ChSP-1 (n¼ 10; i¼ 1, . . . ,1). (From Dodge, H.F., Ind. Qual.
Control, 11(4), 11, 1955. With permission.)

TABLE 16.3: Unity values for evaluation of ChSP-1 OC curves.

Pa

i 0.99 0.95 0.50 0.10 0.05 0.01

1 0.086 0.207 1.0066 2.490 2.996 4.605
2 0.067 0.162 0.8399 2.325 2.996 4.605
3 0.057 0.139 0.7675 2.303 2.996 4.605
4 0.051 0.124 0.7325 2.303 2.996 4.605
5 0.046 0.114 0.7135 2.303 2.996 4.605
6 0.042 0.106 0.7034 2.303 2.996 4.605
1 0.010 0.051 0.6930 2.303 2.996 4.605

Source: Reprinted from Soundararajan, V., J. Qual. Technol., 10(2), 56, 1978a.
With permission.
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corresponding single-sampling plan having c¼ 0. When divided by sample size, the unity values
give the proportion defective corresponding to the probability of acceptance shown. Thus for the
plan n¼ 10, i¼ 3, we have

Pa p

.99 .0057

.95 .0139

.50 .0768

.10 .2303

.05 .2996

.01 .4605

A table for constructing ChSP-1 plans has also been given by Soundararajan (1978a) and is presented
here as Appendix Table T16.3. Based on Poisson unity values, it allows determination of a ChSP-1 plan
from the desired operating ratio p2=p1. Values of np are given at .95 and .10 probability of acceptance
for! i from 1 to 10 and i¼1. Also the AOQL of the ChSP-1 procedure can be found from sample size
using nAOQL values or from the producer’ quality level p1 using values of AOQL=p1. Further,
the proportion defective pM at which the AOQL occurs can be determined from values of npM.

For example, we find for the plan n¼ 10, i¼ 3, the following properties are given by Appendix
Table T16.3.

Pa ¼ :95 at p ¼ :0139

Pa ¼ :10 at p ¼ :2303

p2=p1 ¼ 16:568

AOQL ¼ 2:798(:0139) ¼ :0389

pM ¼ :0902

It is sometimes desirable to construct a ChSP-1 plan having a specifiedAOQL. For this purpose, Table
16.4 has been developed by Soundararajan (1978a), showing values of sample size n and cumulative
results criterion (CRC) i. We see that an AOQL of .04 is achieved by the plan n¼ 10, i¼ 3.

While Poisson unity values provide an excellent device for constructing plans as an approxima-
tion to the binomial distribution and are exact when dealing with defects, it is sometimes desirable to
TABLE 16.4: ChSP-1 plans having given AOQL.

AOQL (%)

i 0.10 0.25 0.50 0.75 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.0 7.0 8.0 9.0 10.0

1 504 202 101 68 51 34 26 21 17 15 13 12 11 9 8 7 6 5
2 420 168 89 56 42 28 22 17 14 12 11 10 9 7 6 6 5 5
3 389 156 78 52 39 26 20 16 13 12 10 9 8 7 6 5 5 4
4 377 151 76 51 38 26 19 16 13 11 10 9 8 7 6 5 5 4
5 372 149 74 50 38 25 19 15 13 11 10 9 8 7 6 5 5 4
6 369 148 74 50 37 25 19 15 13 11 10 9 8 7 6 5 4 4
7 369 148 74 50 37 25 19 15 13 11 10 9 8 7 6 5 4 4
8 368 148 74 49 37 25 19 15 13 11 10 9 8 7 6 5 4 4
9 368 148 74 49 37 25 19 15 13 11 10 9 8 7 6 5 4 4
10 368 148 74 49 37 25 19 15 13 11 10 9 8 7 6 5 4 4
1 368 148 74 49 37 25 19 15 13 11 10 9 8 7 6 5 4 4

Source: Reprinted from Soundararajan, V., J. Qual. Technol., 10(2), 58, 1978a. With permission.
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have exact tables for the selection of plans based on the binomial distribution itself. Appendix Table
T16.4 from Soundararajan (1978b) gives ChSP-1 plans indexed by AQL (p.95 value) and LTPD
(p.10 value). It shows that, using the binomial distribution, for p.95¼ .015 and p.10¼ .220 the plan
n¼ 10, i¼ 3 would be appropriate. In addition, plans may be constructed for a given AQL=AOQL
combination (AQL¼ p.95) using Appendix Table T16.5 given by Soundararajan (1978b). For an
AQL=AOQL combination of .015=.035, Appendix Table T16.5 gives the plan n¼ 15, i¼ 1, which
should give protection roughly equivalent to the plan n¼ 20, c¼ 1 which has p.95¼ .018 and
AOQL¼ .035. Note the obvious saving in sample size.

Two-Stage Plans

Two-stage chain sampling plans generalizing ChSP-1 have been the subject of extensive work by
H.F. Dodge and K.S. Stephens. These plans provide a generalization of ChSP-1 plans in that two
stages for the implementation of the plan are defined.

1. Restart procedure. The period during which the chain sampling procedure is started or
immediately following a rejection. During this phase, samples of n1 are chained with a
CRC of c1 allowable defectives in the cumulative results. When k1 lots have been accepted,
the normal procedure is instituted.

2. Normal procedure. After k1 lots have been accepted, additional lots are chained until a running
total of k2 lots is reached and maintained. During this period, samples of n2 are taken from
each lot using a CRC of c2 allowable defectives in the cumulative results. The restart
procedure is initiated as soon as a lot is rejected.

This approach as introduced by Dodge and Stephens (1966) can be represented schematically as in
Figure 16.6.

The solution of the operating characteristic problem of the general family of chain sampling plans is
described by Stephens and Dodge (1974). It involves imbedding a Markov chain in the chain sampling
process by an appropriate definition of states. The two-stage plans have been designated by Stephens
and Dodge (1976b) as ChSP (n1, n2)-C1,C2 with k1, k2 separately specified. The original ChSP-1 plan is
equivalent to ChSP (n, n)-0, 1 with i¼ k1¼ k2� 1. The first two-stage plans by Dodge and Stephens
(1966) maintained a constant sample size in both the restart and normal procedures. These plans will be
found designated ChSP-C1, C2 in the literature with n, k1, k2 separately specified. The advantages of
greater generality in the selection of chain sampling parameters are greater flexibility in matching and
use, and, of course, improved the discrimination through the use of the generalized two-stage procedure.

Stephens and Dodge (1976a) have provided a comparison of ChSP-1 and two-stage chain plans
against single- and double-sampling plans. For example, they have found the following to be
matched using k1¼ 1, k2¼ 2, n¼ n1¼ n2¼ 50. Double sampling rejection numbers are c2þ 1 on
both samples.

Chain Sampling Single Sampling Double Sampling

ChSP-1 i¼ 1, n¼ 50 n¼ 85, c¼ 1 n1¼ 40, n2¼ 80 ASN¼ 53.2
c1¼ 0, c2¼ 1

ChSP-0, 2, n¼ 50 n¼ 105, c¼ 2 n1¼ 72, n2¼ 144 ASN¼ 79.2
c1¼ 1, c2¼ 3

ChSP-0, 3, n¼ 50 n¼ 120, c¼ 3 n1¼ 54, n2¼ 108 ASN¼ 79.6
c1¼ 0, c2¼ 4

ChSP-0, 4, n¼ 50 n¼ 135, c¼ 5 n1¼ 69, n2¼ 138 ASN¼ 75.5
c1¼ 1, c2¼ 6
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FIGURE 16.6: Two-stage chain sampling procedure.
The values of ASN shown are for a proportion defective of .005, which had greater than .92
probability of acceptance under the double-sampling plan. Since for fractions defective greater than
.005, the ASN of the double-sampling plans were much higher, the comparison seems favorable to
the chain sampling plans shown.

Deferred Sentencing Schemes

Deferred sentencing schemes were among the earliest of cumulative results plans. They trace their
origins to the British Ministry of Supply when Spalding, Halliday, and Sealey applied the method
during World War II under the name of ‘‘rational sentencing.’’ The term sentencing was regularly
used by the government inspectorates in connection with acceptance of ammunition. Deferred
sentencing involves delay of disposition of questionable lots until subsequent lots have been
inspected.

The scheme has been aptly described and evaluated by Anscombe et al. (1947), who presented
several approaches to this type of sentencing. Their simplest scheme has been the most fully
investigated and is described by them (p. 199) in the following:
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FIGURE 16.7: Simple deferred sentencing scheme.
Sentencing rule. The product, as it leaves the line, is divided into small lots, and one
item is selected from each for test. D and n being given integers, whenever n defective
items are encountered out of D or fewer consecutive lots tested, all the lots consecu-
tively from that giving the first to that giving the nth defective in the cluster are rejected.
Lots not rejected by this rule are accepted.

This simple deferred sentencing scheme is represented diagrammatically in Figure 16.7.
The basic idea is to defer sentencing lots after a defect is found until it can be shown that the

subsequent D� 1 lots are of acceptable quality, which is they give less than n� 1 defectives. When
this is shown, lots are released up to the next defective and the process is repeated. This approach
may be used as a continuous sampling plan on individual items, which does not require screening
and so may be employed with destructive tests. Deferred sentencing is primarily intended, however,
for use with lots of product sufficiently small that one test per lot is reasonable. Note that it is
particularly well suited to bulk sampling applications.

The selection of n and D is facilitated by a table of the percentage points of the product Dp
presented by Anscombe et al. (1947) shown here as Table 16.5.
� 2008 by Taylor & Francis Group, LLC.



TABLE 16.5: Values of Dp having specified probability
of acceptance.

Percent Output Accepted

n 99% 90% 50% 10% 1%

3 .35 .89 2.20 4.5 7.3
4 .63 1.34 2.84 5.3 8.1
5 .97 1.84 3.54 6.1 9.0
6 1.36 2.39 4.28 7.0 10.0
7 1.78 2.96 5.04 7.9 11.0
10 3.25 4.85 7.43 10.8 14.2

Source: Reprinted fromAnscombe,F.J.,Godwin,H.J., andPlackett,R.L.,
J. Roy. Statist. Soc., 9, 200, 1947. With permission.
Using Lagrangian interpolation to determine the p.95 values, the ORs R¼ p.10=p.95 for these plans
are approximately

n R

3 7.5
4 5.7
5 4.4
6 3.8
7 3.4
10 2.7

A graphical representation of Table 16.5 has also been given by Anscombe et al. (1947), which is
shown in Figure 16.8. It gives curves for n plotted by Dp and the percentage of product accepted.
Note that the latter corresponds roughly to Pa and can be used to construct an OC curve for these
schemes.

To use the table, or the figure, n may be chosen to correspond with one of the ORs given. If it is
desired to hold a value of LTPD, say 100pt, the value of Dp corresponding to a proportion of output
accepted of 10% is divided by pt. This gives the value of D be used in the plan. For example, if a
deferred sentencing scheme is to be determined having about the same protection as the plan n¼ 50,
c¼ 5, which has an operating ratio R¼ 3.6 and an LTPD¼ 18.6%, we have

n ¼ 7

D ¼ Dp

pt
¼ 7:9

:186
¼ 42:5 � 43

The plan is implemented by taking one unit from each lot. As long as no defectives are found, the
lots are passed. As soon as a defective is obtained, lots are held. If six or more defectives are
found in the next 42 lots, all lots are rejected up to and including that providing the seventh
defective. If five or less defectives are forthcoming, the first lot is passed together with
all subsequent lots up to the next lot showing a defective. From that point, the procedure is
applied again.

The OC curve for this scheme may be obtained by dividing the values of Dp given in Table 16.5
for n¼ 7 by D¼ 43.
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FIGURE 16.8: Operating characteristics of simple deferred sentencing schemes. (Reprinted from
Anscombe, F.J., Godwin, H.J., and Plackett, R.L., J. Roy. Statist. Soc., 9, 201, 1947. With permission.)
Deferred Sentencing Single Sampling
Pa P n¼ 50, c¼ 5

.99 .041 .036

.90 .069 .063

.50 .117 .113

.10 .184 .186

.01 .256 .262

The chart shown in Figure 16.8 is also very useful for this purpose.
There are many variations possible for the deferred sentencing scheme. Some are given by

Anscombe et al. (1947). In one procedure the lots held for deferred sentencing may extend from
the lot in which a defect is found, forward and back for a number of lots. A double-sampling
approach has been given by Hill et al. (1959), which incorporates into the scheme samples of size
greater than one from a lot. Deferred sentencing is attractive in certain applications where time is not
at a premium and lots can be put aside. However, it suffers from the delay inherent in holding lots
for disposition for any period.

Demerit Rating Plan

The check inspection and demerit rating plan used extensively by Western Electric and described
by Dodge and Torrey (1956) is an audit plan intended to characterize quality levels and to provide
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TABLE 16.6: Sample size for check inspection and demerit rating.

Universe

Heterogeneous Homogeneous

Product

Product Comprising
a Variety of Types

of Different Construction

Product of a Specific Type
or a Group of Types

of Similar Construction

Complex. Construction
subject to variations in
adjustment

n ¼ 2:5
ffiffiffiffiffiffi
2N

p
n ¼ 1:5

ffiffiffiffiffiffi
2N

p

Simple. Construction
nonadjustable or stable

n ¼ 2
ffiffiffiffiffiffi
2N

p
n ¼ ffiffiffiffiffiffi

2N
p

Source: Reprinted from Dodge, H.F. and Torrey, M.N., Ind. Qual. Control, 13(1), 7, 1956. With permission.
a check inspection with relatively small samples. It supplies management with a demerit rating of
defects on specific products and a demerit index of quality across defect and product types. At the
same time, the inspection results necessary for surveillance of quality are used in product accept-
ance. The plan provides continuing surveillance through control charts. Dodge (1962) has recom-
mended its use in conjunction with the CRC plan discussed below. Its successful application in this
regard has been described by Cone and Dodge (1963).

The demerit rating plan is initiated by taking small samples at regular intervals (by shift, day, or
week) across the product and product types to be included. Sample sizes are chosen with regard to
the homogeneity of the universe of product to be sampled and its complexity. For a given quantity
of output N to be represented by the sample, the sample size is chosen as in Table 16.6. These
samples sizes were arrived at empirically and represent the result of 15 years of more experience.

Recognizing differences in the variety and nature of defect types, a classification of defects was
developed as follows:

Class A (very serious) Will surely cause an operating failure
Class B (serious) Will probably cause an operating failure
Class C (moderately serious) May possibly cause an operating failure
Class D (not serious) Minor defect which will not affect operation,

maintenance, or life

These classes are assigned demerits for use in constructing a demerit rating and demerit index in the
operation of the plan. These demerits are

Class A: 100 demerits

Class B: 50 demerits

Class C: 10 demerits

Class D: 1 demerit

Table 16.7 as given by Dodge and Torrey (1956) describes the classification further.
The sample size having been determined, samples are taken periodically over the time for which the

demerit rating is to be constructed. If the number of defects observed in any sample exceeds the
nonconformance criteria given in Table 16.8, a second sample twice as large is taken. If the combined
number of defectives in the first and second samples exceeds the nonconformance criteria, the lot or
batch represented by the samples is rejected subject to action by the proper authority.
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TABLE 16.7: Important aspects of classification of defects.

Defect
Class

Demerit
Weight

Cause Pers.
Injury

Cause Operating
Failure

Cause Intermit.
Op. Trouble
Difficult to

Locate in Field
Cause Subst’d
Performance

Involve Increased
Maintenance

or Decreased Life

Cause Increase
in Instal. Effort by

Customer
Appearance Finish

or Work’ship Defects

A 100 Liable to Will surelya Will surely — — — —

B 50 — Will surelyb — Will surely Will surely Major increase —

Will probably
C 10 — May possibly — Likely to Likely to Minor increase Major
D 1 — Will not — Will not Will not — Minor

Source: Reprinted from Dodge, H.F. and Torrey, M.N., Ind. Qual. Control, 13(1), 8, 1956. With permission.
a Not readily corrected in the field.
b Readily corrected in the field.
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TABLE 16.8: Nonconformance criteria.

No. of Units
in Sample, n

Maximum No. of Defects in Sample

Class A Class B Class C Class D

1–2 0 0 0 0
3–4 0 0 0 1
5–8 0 0 1 1
9–16 0 0 1 2
17–18 0 0 2 3
19–25 0 1 2 3
26–31 0 1 2 4
32–36 0 1 3 4
37–48 1 1 3 5
49–50 1 1 3 6
51–65 1 1 4 6
66–75 1 2 5 7
76–90 1 2 5 8
91–100 1 2 6 9
Over 100 a a a a

Source: Reprinted from Dodge, H.F. and Torrey, M.N., Ind. Qual. Control, 13(1),
9, 1956. With permission.

a Class A¼ 0.0025nþ .150
ffiffiffi
n

p
.

Class B¼ 0.0050nþ .212
ffiffiffi
n

p
.

Class C¼ 0.0200nþ .424
ffiffiffi
n

p
.

Class D¼ 0.0400nþ .600
ffiffiffi
n

p
.

The nonconformance criteria are set at three standard deviations distant from nonconformance
levels (NL) which roughly correspond to AQLs for the class of defects involved in the sense that,
according to Dodge and Torrey (1956), ‘‘ . . . if products are maintained at acceptable quality levels,
the chances of the criteria being exceeded are very remote.’’ These are

Defect Class NL Proportion Defective

A .0025
B .005
C .02
D .04

Thus, the limits become

n(NL)þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n(NL)

p

using Poisson limits for the number of defects.
After the samples for the period have been collected, a demerit rating is calculated as

D ¼ wAdA þ wBdB þ wCdC þ wDdD

where the weights wK are simply the demerits assigned to defects of class K and the number of
defects found in that class is dK. Demerits per unit may be calculated as

U ¼ D

n
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where n is the sample size collected for the period. These values are plotted on control charts
with limits set to reflect a ‘‘standard quality level’’ which represents engineering estimates of what
quality at delivery should be, taking into account considerations of quality and cost. For defect classes
A, B, C, and D, these are represented by mA, mB, mC, and mD, each in terms of defects per unit. A
given unit of product would then have a standard quality level US, in defects per unit, determined as

US ¼ wAmA þ wBmB þ wCmC þ wDmD

This liner combination of Poisson variates has a standard variance factor

CS ¼ w2
AmA þ w2

BmB þ w2
CmC þ w2

DmD

Hence, limits for a control chart showing the sample value of demerits per unit, D, plotted for
samples of n taken each period are

US � 3

ffiffiffiffiffiffi
CS

n

r

When products or dissimilar product types are to be combined to give a quality index for a line, a
department, or plant, the types included should each be weighted to represent the number produced
or other salient considerations. In this case, the overall demerit index I0 is

I0 ¼
P

wiUi=USi

Swi

with

sI0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 1

ni

w2
i

P
wið Þ2

CSi

USið Þ2
 !v

u
u
t

where ni represents the sample size for the period for the ith type. The values I0 are plotted on a
control chart with limits

1� 3sI0

since the expecteddemerits per unit of the index calculated in thisway is 1.Whenall types included in the
index have the same standard value,wi¼ 1, and the index degenerates into a simple ‘‘demerit index’’, I.

An example of the calculation and display of demerits per unit as shown by Dodge and Torrey
(1956) is given in Figure 16.9.

CRC Plan

The necessity for small samples when tests are costly or difficult to administer often reduces
protection to the consumer. In cases of audit inspection and demerit rating, check samples in production,
small lots, and destructive tests; sample sizes of 5 or 10 or even less are common. Under such
circumstances, a CRC can be used to increase the effectiveness of the inspection in protecting the
� 2008 by Taylor & Francis Group, LLC.
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FIGURE 16.9: Example of summary of demerits per unit and control chart. (Reprinted from
Dodge, H.F. and Torrey, M.N., Ind. Qual. Control, 13(1), 10, 1956. With permission.)
consumer. Cone and Dodge (1963) outlined such a plan which has had successful application at the
Sandia Corporation. The procedure as described by Dodge (1962) is as follows:

1. For a given quality characteristic, choose a standard quality level (SQL) which estimates what
quality should be at delivery considering costs and needs of service.

2. Choose a standard acceptance sampling plan for lot acceptance to be used regardless of
whether the CRC plan is also applied.

3. When a lot fails the standard acceptance sampling plan, reject the lot and advise the supplier
that the CRC will apply to subsequent lots.

4. Cumulate the results of the standard acceptance sampling plan over subsequent lots and
compare the results for each lot to the CRC1. A stated moving cumulative sample size m
shall be maintained once attained.
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5. If at any lot, the cumulative results fail to meet the CRC, the immediate lot is rejected and the
process is also declared nonconforming.

6. Declaration of the process as nonconforming entails:

a. Ceasing inspection until the supplier submits written evidence that corrective action has
been taken.

b. Starting a new sequence of cumulative results when inspection is resumed.

c. If inspection is stopped a second time during the period in which the CRC is in force, it is
not resumed until evidence, satisfactory to higher authority, has been furnished.

7. The CRC is continued until a succession of m units has been found to have results equal to or
better than the criterion for discontinuance CRC2. At that time, the supplier is notified that the
CRC has been removed.

To determine the CRC, let

Y¼ statistic generated by standard acceptance sampling plan (p, c, or �X, etc.)
Cum-Y¼ cumulative results moving average
CRC1¼ cumulative results action criterion
CRC2¼ cumulative results discontinuance criterion
YS¼ standard quality level for Y
sYn ¼ standard error of Y for given YS and cumulative sample size n

A specific CRC plan is determined by three constants.

m¼maximum moving sample size
Z1¼multiple of standard deviation for action on the CRC
Z2¼multiple of standard deviation for discontinuance of the CRC

then

CRC1 ¼ YS þ Z1sYn

and

CRC2 ¼ YS þ Z2sYn

Usually Z1 is taken to be 1.65, 2, or 3, while Z2 may be 0 or 1. In application at Sandia, the constants

Z1 ¼ 3 Z2 ¼ 0 m ¼ 100

have been found very effective. Cone and Dodge (1963) describe the favorable experience gener-
ated at Sandia over more than two years.

It should be emphasized that Y, the statistic cumulated, can take many forms. For example,

Y¼ p (fraction defective)
Y¼ u (defects per unit)
Y¼U (demerits per unit)
Y¼ �X (sample mean)
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In all cases, the sampling distributions involved will be those of a known universe with parameters
specified by the standard quality level employed. Thus, the procedure can be adapted to a wide
variety of sampling situations. Troxell (1972) has made an extensive investigation of types of
suspension systems for small sample inspections exemplified by the CRC plan, together with
applications of the procedure to MIL-STD-105E.
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Problems

1. The plan n¼ 50, c¼ 3 is being used in lot-by-lot inspection. Derive an SkSP-2 plan that will
afford the same protection.

2. The SkSP-2 plan n¼ 165, c¼ 3, i¼ 4, and f¼ .5 is being used in sampling inspection of a
continuing series of lots. The reference plan has p.95¼ .008. For this plan, evaluate the
following when the process level is p¼ .008:

a. Probability of acceptance

b. Average fraction lots inspected

c. Average sample number

d. Unit AOQL

e. Lot AOQL

3. Find a single-sampling plan that roughly matches the SkSP-2 plan n¼ 143, c¼ 6, i¼ 12, and
f¼ .5. Also find matching (a) double- and (b) multiple-sampling plans. Compare the ASN of
the single, double, and multiple plans to that of the skip-lot plan for p.95. (Hint: Use the
Dodge–Perry and the Schilling–Johnson tables.)

4. Draw the OC curves for the ChSP-1 plan i¼ 3 and n¼ 20. What is its AOQL? Evaluate the
formula for Pa when p¼ .10.

5. Find a ChSP-1 plan having an AOQL of 6% where, for administrative purposes, i should be
no greater than 2.

6. The MIL-STD-105E system for Code C, 2.5 AQL has an overall operating ratio R¼ 20.14
with an LTPD¼ 28.8%. Find a ChSP-1 plan which will give this protection. What is p.95 for
this plan? What is its AOQL and at what process average does it occur?

7. Find a deferred sentencing plan matching the single-sampling plan n¼ 50, c¼ 3. The OC
curves should match as closely as possible at the LTPD. What is the indifference quality for
the plan?

8. A certain simple component used in one specific product is made at the rate of 10,000
units per month. What should be the sample size per month to be used in a demerit
rating plan?

9. Using the demerit weight given by Dodge and Torrey together with the NL of the defect
classes, in terms of defects per hundred units, compute the standard quality level US and
standard variance factor CS. What would be the control limits on a chart for n¼ 1000? Would
a signal result if for classes A, B, C, D, there were found 0, 2, 1, 4 defectives, respectively, in a
sample of 1000?

10. A CRC for p is set up on the attributes inspection plan n¼ 10, c¼ 1, where Z1¼ 3, Z2¼ 0, and
m¼ 100. The standard quality level is YS¼ .02. After 10 lots have been inspected under the
criterion, one defect has been found, what action should be taken?
� 2008 by Taylor & Francis Group, LLC.



Chapter 17

Compliance Sampling

Consumer protection has always been a prime factor in the construction of industrial acceptance
sampling plans. The methods and procedures presented in this chapter attest to that fact. A typical
example is the set of Dodge–Romig lot tolerance percent defective (LTPD) plans developed as early
as 1929. Increased use of acceptance sampling plans in connection with compliance testing to
government standards, validation testing of supplier’s inspection, and in the verification of
extremely tight standards set by regulatory agencies, original equipment manufacturers, and con-
sumers of all kinds suggests the need for sampling plans especially designed and adapted for this
area of application.

The popularity of c¼ 0 attribute sampling plans is due to the importance of consumer protection
to automotive, pharmaceutical, and other companies who are sensitive to the threat of litigation from
customers who are harmed by nonconforming product. Furthermore, customer satisfaction is
paramount to the retention of market share in a global economy, so compliance sampling is a
vital part of acceptance control for companies who want to remain competitive.

It has been pointed out by M.G. Natrella in Muehlhause et al. (1975) that ‘‘there is a need to
demonstrate the effectiveness of sampling schemes for compliance testing. Such experience, and
related mathematical investigations, is needed for the formulation in general terms of the overall
objectives of sampling schemes, so that the statistician and the regulator—given the standard—can
make and explain an appropriate selection.’’ In the area of compliance testing, and especially for
safety-related items, the following features seem desirable in a sampling plan:

1. Rejection of the lot if any defective items are found in the sample

2. A well-defined relationship between the sampling plan and the size of the lot being inspected

3. A clear indication of the economic impact of the quality levels utilized in the plan

4. Simplicity and clarity in use

In safety and compliance testing, an acceptance number of zero is particularly desirable, since, to the
uninformed, it would appear that the use of any greater acceptance number implies passing lots which
have been shown to have defectives in them. Duncan (1979) points out that in 1972, the National
Highway Traffic Safety Administration proposed to change the rule regulating the performance of
hazard warning flashers to eliminate an acceptance number of c¼ 3. Quoting Duncan (1979, p. 21)

. . . It took the point of view that ‘‘permissible failure rates raise difficult problems of
interpretation and enforcement.’’ It was thus indicated that any sample the agency took
would have to be 100% conformance for the lot to pass. In other words, the acceptance
number would be zero.

The lot sensitive sampling plan (LSP) and tightened-normal-tightened (TNT) plans presented here
are illustrative of plans that are particularly appropriate for use in compliance sampling as well as in
other areas of acceptance control. Plans for verification of quality levels should be capable of
demonstrating compliance to stated levels in as economic a manner as possible. The simplified
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grand lot scheme is particularly useful in this regard since it can be used to provide consumer
protection at very low quality levels while maintaining reasonable protection for the producer.

LSP

The lot sensitive sampling plan (LSP) developed by Schilling (1978) is applicable in general
acceptance sampling and is particularly useful in compliance and safety-related testing. A consumer-
oriented LTPD plan is intended to meet the objectives outlined for compliance testing. Based on the
hypergeometric probability distribution, it gives the proportion of the lot that must be sampled to
guarantee that the fraction defective in the lot is less than a prescribed limit with LTPD protection.

The LSP plan is easy to use and is based on the concept of acceptance with zero defectives in the
sample. It relates the sample size to lot size in a straightforward way and provides, as a baseline, a
minimum sample size for sampling applications, since single-sampling plans allowing acceptance
with one or more defectives in the sample usually require larger sample sizes. The economic impact
of the plan vis-à-vis 100% inspection is shown by the fraction of the lot to be inspected.

The disadvantages of plans allowing no defectives in the sample is, in an economic sense, in
terms of good product rejected because of the severity of the acceptance criteria. Where possible,
various acceptance sampling schemes and strategies should be considered as an alternative to plans
of this type. However, if it is required that no defectives are to be allowed in the sample, the LSP
plan has real advantages, particularly if the inspection is to be carried out on a unique lot.

Procedure

An LSP plan may be derived in the following manner:

1. Specify lot size N.

2. Specify the limiting quality level pt that is to be protected against by the plan.

3. Compute the product D¼Npt.

4. Enter the body of Table 17.1 at the nearest value of D and read the corresponding value of f
as the sum of the associated row and column headings

f ¼ fraction of lot inspected
TABLE 17.1: Values of D¼Npt corresponding to f.

f .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.9 1.0000 0.9562 0.9117 0.8659 0.8184 0.7686 0.7153 0.6567 0.5886 0.5000

.8 1.4307 1.3865 1.3428 1.2995 1.2565 1.2137 1.1711 1.1286 1.0860 1.0432

.7 1.9125 1.8601 1.8088 1.7586 1.7093 1.6610 1.6135 1.5667 1.5207 1.4754

.6 2.5129 2.4454 2.3797 2.3159 2.2538 2.1933 2.1344 2.0769 2.0208 1.9660

.5 3.3219 3.2278 3.1372 3.0497 2.9652 2.8836 2.8047 2.7283 2.6543 2.5825

.4 4.5076 4.3640 4.2270 4.0963 3.9712 3.8515 3.7368 3.6268 3.5212 3.4196

.3 6.4557 6.2054 5.9705 5.7496 5.5415 5.3451 5.1594 4.9836 4.8168 4.6583

.2 10.3189 9.7682 9.2674 8.8099 8.3902 8.0039 7.6471 7.3165 7.0093 6.7231

.1 21.8543 19.7589 18.0124 16.5342 15.2668 14.1681 13.2064 12.3576 11.6028 10.9272

.0 a 229.1053 113.9741 75.5957 56.4055 44.8906 37.2133 31.7289 27.6150 24.4149

Source: Reprinted from Schilling, E.G., J. Qual. Technol., 11(3), 119, 1979. With permission.
a For values of f< .01 use f¼ 2.303=D; for infinite lot size use sample size n¼ 2.33=pt.
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5. The sampling plan is

Sample size ¼ n ¼ fN

Acceptance number ¼ c ¼ 0

Sample size is always rounded up.

The plan is applied as follows:

1. Randomly sample n items for a lot of N items (i.e., sample a fraction f of the lot).

2. Reject if any defective units are found in the sample.

Protection

The use of the LSP plan as outlined provides LTPD protection to the consumer at the limiting
fraction defective pt specified. Specification of LTPD protection is equivalent to a reliability
confidence coefficient of 90%. In other words, we can be 90% confident that a lot that has
passed the plan has a fraction defective less than the value of pt specified (or, equivalently, that
it has a reliability of at least (1� pt)). This statement is made in the sense that in repeated
applications of the plan, lots that are composed of exactly pt fraction defective would be rejected
90% of the time.

To portray the probability of acceptance of the plan, it is possible to approximate the Type B
operating characteristic (OC) curve of the plan showing probability of acceptance Pa plotted against
possible fractions defective p that could occur in the manufacturing process from which the lot
was taken. This may be done using the factors given in Table 17.2 which, when multiplied by
the selected value of pt, will give the approximate fractions defective associated with various
probabilities of acceptance.

Table 17.2 may also be used to approximate the well-known quantities descriptive of the
protection afforded by the plan such as indifference quality, limiting quality, acceptance quality
level (AQL) (defined as having 95% probability of acceptance), and so on, since these quantities are
determined by probability of acceptance. Furthermore, it provides the factors necessary to allow the
derivation of plans having probability of acceptance other than 10% at the specified fraction
defective.

Suppose a plan was desired having approximately 5% probability of acceptance for a specified
fraction defective p*, that is, a plan that would assure passing lots had at least 1� p* reliability with
95% confidence. Table 17.2 can be used to obtain such a plan as follows:
TABLE 17.2: Factors for constructing the OC curve.

Pa p Pa p Pa p Pa p

.999 .00043pt

.995 .00218pt .900 .046pt .100 1.000pt .005 2.300pt

.990 .0044pt .750 .125pt .050 1.301pt .001 2.996pt

.975 .0110pt .500 .301pt .025 1.602pt

.950 .0223pt .250 .602pt .010 2.000pt

Source: Reprinted from Schilling, E.G., J. Qual. Technol., 11(3), 119, 1979. With
permission.
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1. Since Table 17.2 shows p¼ 1.301 pt at Pa¼ .05, set p*¼ 1.301 pt, and solve for pt

pt ¼ p*
1:301

2. Use the value of pt obtained to set up a sampling plan using the standard LSP procedure.

3. Resulting plan will have approximately Pa¼ .05 for fraction defective p*.

It should be noted that, for a stream of successive lots, the average outgoing quality limit (AOQL)
can be approximated for LSP plans as

AOQL ¼ :3679
N

1
f
� 1

� �

Producer’s Risk

Since acceptance is allowed only when no defectives are found in the sample (c¼ 0), the producer
must produce at a fraction defective that is less than about 5% of the level, pt, protected against by the
plan in order to assure a reasonably small probability (about 1 in 10 odds) of good lots being rejected.

Clearly, a perfect lot has 100% probability of acceptance under the LSP plan, since no defectives
can be found in the sample. For such lots the producer’s risk of rejection is 0. Duncan (1977) has
shown that for lots containing only a single defective unit (i.e., lots of fraction defective 1=N) the
probability of acceptance is just

Pa ¼ 1� f

The corresponding producer’s risk of such a lot being rejected is

1� Pa ¼ f

Thus, with a fraction of the lot inspected of f¼ .21 and lot size of 100, as in Example 1, there is a
probability of acceptance of

Pa ¼ 1� :21 ¼ :79

for lots containing a fraction defective

p ¼ 1
100

¼ :01

and a corresponding producer’s risk at that level of fraction defective of

1� Pa ¼ :21

This gives a minimum estimate of the producer’s risk, since a lot containing more than one defective
unit would have a higher probability of rejection. Duncan (1977) has indicated that ‘‘computations
of producer’s risk . . . reveal that . . . plans with zero acceptance numbers . . . can be hard on the
producer unless most of his lots are perfect.’’ It is important to remember that single-sampling
plans that require no defectives in the sample for lot acceptance (such as LSP) should be used only
when the state of the art permits near perfect quality levels to be economically produced.
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Examples of LSP Applications

The following are examples of applications of the LSP plan.

Example 1
A part is received at incoming inspection in lots of 100 items. Protection against a fraction

defective of 10% is desired. The LSP plan is derived as follows:

1. N¼ 100

2. pt¼ .10

3. D¼Npt¼ 100(.10)¼ 10

4. Table 17.1 gives f¼ .21 closest to D¼ 10

5. The sampling plan is

n ¼ :21(100) ¼ 21, c ¼ 0

The plan is implemented in the following way:

1. Randomly sample 21 items from each lot of 100.

2. Reject the lot if any defectives are found; accept otherwise.

If rejected material is 100% inspected with rejected items replaced by good ones, the AOQL
is estimated as

AOQL ¼ :3679
100

1
:21

� 1

� �

¼ :014

Also, from Table 17.2, it is possible to approximate other characteristics of the sampling plan, such as

1. Indifference quality (fraction defective having 50=50 chance of lot acceptance)

IQ ¼ :301pt ¼ :301(:10) ¼ :0301

2. Limiting quality having probability of acceptance of 5% (fraction defective having 5%
probability of acceptance).

LQ ¼ 1:301pt ¼ 1:301(:10) ¼ :1301

3. AQL (defined as fraction defective having 95% probability of acceptance).

AQL ¼ :0223pt ¼ :0223(:10) ¼ :00223

This example illustrates the simplicity of calculation in deriving an LSP plan.

Example 2
In bidding on a new contract, it is necessary to evaluate the consequences of quality requirements

of 1% probability of acceptance at a fraction defective of 2% for products produced in lots of 100.
Thus, p*¼ .02, and

p* ¼ 2:0pt (from Table 17:2)
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pt ¼ p*
2:0

¼ :02
2:0

¼ :01

The resulting sampling plan is derived as follows:

1. N¼ 100

2. pt¼ .01

3. D¼Npt¼ 100(.01)¼ 1.0

4. Table 17.1 gives f¼ .90 closest to D¼ 1.0

5. The sampling plan is

n ¼ :90(100) ¼ 90, c ¼ 0

This plan requires inspection of 90% of every lot, which may or may not be economically
feasible. If this is the case, 100% inspection may be the only practical alternative. The LSP plan thus
makes explicit the economic consequences of sampling in terms of the fraction of each lot to be
inspected.

Example 3
A lot of 10,000 items has been set aside for 100% inspection. It is uneconomical to inspect the lot

if the fraction defective is 7% or more. Derive an LSP plan to test if 100% inspection is practical.

1. N¼ 10,000

2. pt¼ .07

3. D¼Npt¼ 10,000(.07)¼ 700

4. Since f< .01, use

f ¼ 2:303
D

¼ 2:303
700

¼ :0033

5. The sampling plan is

n ¼ fN ¼ :0033(10,000) ¼ 33, c ¼ 0

Further Considerations

As shown by Schilling (1978) derivation of the LSP plans is based on the notion that, for the
hypergeometric distribution, when c¼ 0 with D¼Np defective pieces in the lot, the probability of
acceptance becomes

Pa � 1� n

N

� �Np

Note that this is equivalent to the f-binomial approximation for the hypergeometric when c¼ 0.
Values of D for Table 17.1 are obtained as

D ¼ Npt ¼ log Pa

log (1� f )
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Since

D ¼ np

f

when the Poisson approximation applies

f ¼ 2:303
D

for a probability of acceptance of .10.
A useful set of curves for quick and easy assessment of LSP sample sizes has been given by Hawkes

(1979) which includes levels of consumer protection of .01, .05, .10, .20, and .50. When a sample is
required that is less than 10% of the lot size (D> 22) and, of course, for conceptually infinite
populations, an excellent nomograph for use when c¼ 0, based on the Poisson distribution, has been
prepared by Nelson (1978). This may be employed to obtain confidence limits on reliability from the
results of sampling inspection and to determine the sample size which will give required protection.

TNT Scheme

While LSP plans are intended for application to unique lots, when product is forthcoming in a
stream of lots and a zero acceptance number is to be maintained, the TNT scheme devised by Calvin
(1977) is particularly appropriate. This scheme utilizes two c¼ 0 sampling plans of different sample
sizes together with switching rules to build up the shoulder of the OC curve after the manner of the
switching rules of MIL-STD-105E (United States Department of Defense, 1989). This is done by a
change in sample size rather than acceptance number. Calvin (1977) points out that, while increasing
producer protection, the switching rules have no real effect on LTPDwhich remains essentially that of
the tightened plan. Similar results were shown by Schilling and Sheesley (1978) for MIL-STD-105D
even when switching to reduced inspection was added. The procedure is as follows.

Procedure

A TNT scheme is specified by

n1¼ tightened (larger) sample size
n2¼ normal (smaller) sample size
t ¼ criterion for switching to normal inspection
s ¼ criterion for switching to tightened inspection

It is carried out as follows starting with tightened inspection

1. Inspect using tightened inspection with the larger sample size n1, c¼ 0.

2. Switch to normal inspection when t lots in a row are accepted under tightened inspection.

3. Inspect using normal inspection with the smaller sample size n2, c¼ 0.

4. Switch to tightened inspection after a rejection if an additional lot is rejected in the next
s lots.

A diagrammatic representation of the switching rules for the TNT scheme is shown in Figure 17.1.
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FIGURE 17.1: Switching rules for TNT procedure.
Protection

The TNT plans correspond to the MIL-STD-105E normal-tightened plans when the switching
criteria are set at t¼ 5, s¼ 4. In fact, TNT plans correspond directly to the MIL-STD-105E scheme
(using normal-tightened switching only) when the normal plan has a zero acceptance number.
For example, Code F, 0.65% AQL gives

Normal: n¼ 20, c¼ 0
Tightened: n¼ 32, c¼ 0

which correspond to the TNT plan with t¼ 5, s¼ 4, n1¼ 32, n2¼ 20. Calvin (1977) shows the
scheme probability of acceptance of the TNT plan to be

Pa ¼
P1 1� PS

2

� �
1� Pt

1

� �
1� P2ð Þ þ P2Pt

1 1� P1ð Þ 2� PS
2

� �

1� PS
2

� �
1� Pt

1

� �
1� P2ð Þ þ Pt

1 1� P1ð Þ 2� PS
2

� �

where
P1¼ (1� p)n1 is the probabiliy of acceptance of tightened plan at fraction defective p
P2¼ (1� p)n2 is the probability of acceptance of normal plan at fraction defective p

The average sample number is

ASN ¼ �n ¼ n1 1� PS
2

� �
1� Pt

1

� �
1� P2ð Þ þ n2Pt

1 1� P1ð Þ 2� PS
2

� �

1� PS
2

� �
1� Pt

1

� �
1� P2ð Þ þ Pt

1 1� P1ð Þ 2� PS
2

� �

with average outgoing quality (AOQ) at fraction defective p:

AOQ ¼ pPa

N � �n

N

� �

defectives replaced

and

AOQ ¼ pPa(N � �n)

N � �np� p 1� Pað Þ(N � �n)
defectives not replaced
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FIGURE 17.2: OC curves of TNT plans (t¼ 5, s¼ 4). (Reproduced from Calvin, T.W., TNT zero
acceptance number sampling, American Society for Quality Control Thirty-First Annual Technical
Conference Transactions, American Society for Quality Control, Philadelphia, PA, 1977, p. 37.
With permission.)
The improvement in the operating ratio of a TNT plan over that of its tightened component
(n1¼ n2¼ 20) is shown in Figure 17.2.

Selection

Schilling and Sheesley (1978) have pointed out that ‘‘ . . . the scheme OC curve might be
approximated by the normal OC curve for Pa � 90% and the tightened OC curve for Pa � 50%
with the intermediate region appropriately interpolated.’’ The suggestion is from their work on
MIL-STD-105D which includes switching to reduced inspection and so this approximation should
apply even better to the TNT plans. As an illustration, for the plan n1¼ 20, n2¼ 5, t¼ 5, s¼ 4,
shown in Figure 17.2, for p¼ .01

Pa ¼
:8179 1� :95104ð Þ 1� :81795

� �
(1� :9510)þ :9510 :81795

� �
(1� :8179) 2� :95104ð Þ� �

1� :95104ð Þ 1� :81795ð Þ(1� :9510)þ :81795ð Þ(1� :8179) 2� :95104ð Þð Þ
¼ :943

and for p¼ .11

Pa ¼
:0972 1� :55844ð Þ 1� :09725

� �
(1� :5584)þ :5584 :09725

� �
(1� :0972) 2� :55844ð Þ� �

1� :55844ð Þ 1� :09725ð Þ(1� :5584)þ :09725ð Þ(1� :0972) 2� :55844ð Þð Þ
¼ :097

For n¼ 5, c¼ 0 we have p.95¼ .01 while for n¼ 20, c¼ 0, p.10¼ .11. Thus, it would seem that, at
least when using the analogous MIL-STD-105E switching criterion, a TNT plan can be derived
using n1 from the c¼ 0 plan having the desired LTPD and n2 from a c¼ 0 plan having a producer’s
quality level at Pa¼ .95 equal to a specified value.
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An easy way to find this value is to divide the c¼ 0 unity values for 10% and 95% probability of
acceptance by the desired p.10 and p.95, respectively. Thus, the factors to obtain n1 and n2 are

n1p:10 ¼ 2:303

n2p:95 ¼ :0513

Further, the ratio of sample sizes will be

n1
n2

¼ 44:89
R

where R is the desired operating ratio. For example, to obtain a TNT plan having p.10¼ .11
and p.95¼ .005, we have

n1 ¼ 2:303
:11

¼ 20:9

n2 ¼ :0513
:005

¼ 10:3

and, for the desired R¼ 22,

n1
n2

¼ 44:89
22

¼ 2:04

Thus, the plans n1¼ 20, c¼ 0 having p¼ .109 at Pa¼ .10 and n2¼ 10, c¼ 0 having p¼ .005 at
Pa¼ .95 would appear to suffice to give TNT: t¼ 5, s¼ 4, n1¼ 20, n2¼ 10. And they do as part of
the Calvin (1977) tabulation. Thus, the approach, as suggested by Schilling and Sheesley, can be
used to quickly set up two-point TNT plans.

To find a TNT plan to match the plan n¼ 20, c¼ 1 which has p.95¼ .018 and p.10¼ .18, it is
necessary to find c¼ 0 plans which have these probability points. Using the binomial distribution,
they have sample sizes 3 and 12, respectively. Hence the plan is TNT: t¼ 5, s¼ 4, n1¼ 12, n2¼ 3.
For this plan applied to lots of size N¼ 100 at p¼ .018:

Pa ¼
:8042 1� :94704ð Þ 1� :80425

� �
(1� :9470)þ :9470 :80425

� �
(1� :8042) 2� :94704ð Þ� �

1� :94704ð Þ 1� :80425ð Þ(1� :9470)þ :80425ð Þ(1� :8042) 2� :94704ð Þð Þ

¼ :8042(:006884)þ :9470(:07875)
(:006884)þ (:07875)

¼ :936

ASN ¼ 12(:006884)þ 3(:07875)
:085634

¼ 3:72

AOQ ¼ :018(:936)
100� 3:72

100

� �

¼ :016 with replacement

AOQ ¼ :018(:936)(100� 3:72)
100� 3:72(:018)� :018(1� :936)(100� 3:72)

¼ :016 without replacement
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Soundararajan and Vijayaraghavan (1990) have provided a table of unity values for TNT plans. The
unity values are used in the manner of single, double, and multiple plans given earlier. Their table
appears here as Appendix Table T17.3 and covers the specific case in which the tightened sample
size is twice that of the normal sample size. It is for the special case of k¼ 2. As an example of its
use, suppose it is desired to design a TNT plan having p1¼ .005 and p2¼ .11736 for an operating
ratio of R¼ p2=p1¼ .11736=.005¼ 23.472.

Step Example

1. Select p1 and p2 p1¼ .005, p2¼ .11736
2. Determine the operating ratio R¼ p2=p1 R¼ p2=p1¼ .11736=.005¼ 23.472
3. Find R in Appendix Table T17.3 See table
4. Obtain corresponding parameters

s, t, n2 p1 from row of R
s¼ 4, t¼ 5, n2 p1¼ .04905

5. Calculate n2¼ n2 p1=p1 n2¼ n2p1=p1¼ .04905=.005¼ 9.81� 10
6. Determine n1¼ 2n2 n1¼ 2n2¼ 2(10)¼ 20

So the plan is s¼ 4, t¼ 5, n2¼ 10, n1¼ 20, and c¼ 0. As in the use of unity values discussed earlier,
there are other parameters which can be calculated. For example, the table gives
n2(AOQL)¼ .18707. Hence, the AOQL for example is

AOQL ¼ n2(AOQL)

n2
¼ :18707

10
¼ :018

Other measures are handled in a similar manner. This includes the indifference quality (p0), the point
at which the AOQL occurs (pm), and the relative slope of the OC curve at p0. But remember this
table was developed for k¼ 2.

Quick Switching System (QSS)

The TNT plans offer protection for the producer in situations in which a zero acceptance number
is required on a stream of lots. A similar procedure will be found in the QSS proposed by Dodge
(1967) and studied extensively by Romboski (1969). The system uses immediate switching to
tightened inspection when a rejection occurs under normal inspection. The QSS-1 plan involves an
immediate switch back to normal when a lot is accepted under tightened inspection. Other plans
allow a switch back to normal after two (QSS-2) or three (QSS-3) lots are accepted under tightened
inspection. Figure 17.3 shows how the quick switching system (QSS-1) is applied.

Romboski (1969) has tabulated unity values for a variety of QSS plans. A table for QSS-1 is
given in Appendix Table T17.1. It shows acceptance numbers under normal, cN, and tightened, cT,
inspection for a fixed sample size n on both tightened and normal. The unity values are used exactly
as those for single, double, and multiple plans given earlier. For example, the plan n¼ 20, cN¼ 1,
cT¼ 0 has an operating ratio R¼ 8.213 with

p1 ¼ np:95
20

¼ :308
20

¼ :015

p2 ¼ np:10
20

¼ 2:528
20

¼ :126
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FIGURE 17.3: Quick switching system.
and indifference quality

IQ ¼ np:50
20

¼ 1:146
20

¼ :057

The value h0 given in the table of unity values is the relative slope of the OC curve at the
indifference quality level as defined by Hamaker (1950). Values of probability of acceptance for
the individual normal PN and the tightened PT plans at the indifference quality level for the scheme
are also given.

Note from the example that p1¼ .015 is approximately that of the plan n¼ 20, c¼ 1 which is
.018. However p2¼ .126 approximates that of the plan n¼ 20, c¼ 0 which is .115. Thus, the QSS
plan affects a favorable compromise in protection between its tightened and normal constituents.

Romboski has examined a variety of QSS plans including variations in normal and tightened
sample sizes, acceptance numbers, and switching rules. The TNT plans offer an ingenious applica-
tion of a QSS procedure for the case when the acceptance number is restricted to 0. Thus, the QSS
plans provide another vehicle for improvement of protection in situations in which small sample
sizes are necessary but high levels of protection must be maintained.

MIL-STD-1916

The QSS and TNT procedures illustrate the importance of the sampling scheme approach.
Probably the broadest application of the concept is contained in MIL-STD-1916 (United States
Department of Defense, 1996) issued on April 1, 1996. This standard addresses the importance of
statistical process control (SPC) in modern acceptance control by incorporating an evaluation of the
quality management system along with c¼ 0 attributes sampling, variables sampling, and continu-
ous sampling plans as alternate means of acceptance in one standard. Thus, the standard is unique
since not only is there switching among plans, but different alternate acceptance procedures may be
selected from this standard as well.

Structure

The structure of the MIL-STD-1916 standard is outlined in Figure 17.4. The first three
sections are devoted to housekeeping details and definitions. The fourth section addresses general
� 2008 by Taylor & Francis Group, LLC.
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FIGURE 17.4: Structure of MIL-STD-1916.
considerations in the use of the standard. This includes the choice between an alternate acceptance
method, such as ISO 9000 or MIL-Q-9858, and conventional sampling tables. The fifth section
presents detailed requirements for developing and confirming the adequacy of the quality system if
it is to be used instead of sampling. It also presents the preferred sampling inspection tables and
procedures to be used in lieu of the quality systems approach. The sixth section provides some
administrative notes.

The appendix of MIL-STD-1916 includes some excellent examples of the use of the sampling
tables which facilitate the implementation of the standard.

Operation

MIL-STD-1916 provides two different and distinct means of product acceptance: acceptance by
contractor proposed provision and acceptance by tables. The former requires qualification and
verification of the quality management system associated with the product. The latter relies on
traditional sampling plans for acceptance. The contractor and the customer must make a decision on
which to use at the outset.

If the contractor elects to rely on the quality system to demonstrate acceptability of the product,
quality system documentation including a quality plan will be required showing that the system is
prevention based with a process focus. Evidence of the implementation and effectiveness of the
quality system will be required. This includes evidence of systematic process improvement based on
process control and demonstrated product conformance.

If it is decided to use tables for the acceptance of product, the approach is more conventional.
Given lot size and verification level (VL), a code letter is selected from Appendix Table T17.4
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(Table I of MIL-STD-1916). The standard provides seven VLs with level 7 being the most stringent.
The VLs play a role similar to the AQLs of MIL-STD-105E and allow for adjustment of the severity
of inspection. If no VL is specified, the default levels are

Defect Type Default VL

Critical VII
Major VI
Minor I

Tables are provided for three different sampling schemes: attributes, variables, and continuous. Each
is indexed by VL and code letter. They are matched so it is possible to switch easily from one to
another. All attributes plans in the standard have c¼ 0.

Sampling schemes require switching rules. These are illustrated in Figure 17.5. They are
simple and effective and must be used to ensure that the system will produce the level of protection
desired.

A check sequence for selecting a plan from MIL-STD-1916 is given in Figure 17.6.
 Two out of 5
consecutive lots or
batches rejected
(Tables II and III) or 2
units rejected in ≤5* 
na(N ) inspections
(Table IV)

Five consecutive lots
or batches accepted
(Tables II and III) or no
units rejected in 
last 5* na(T )
inspections (Table IV)

Preceding 10 lots or
batches accepted (tables
II and III) or no units rejected
in last 10* na(N ) inspections
(Table IV)

Production steady

Contractor’s quality
system considered
satisfactoty by government

Reduced inpsection
considered desirable by
government

Lot or batch rejected
(Tables II and III) or a unit is 
rejected (Table IV)

Production irregular

Contractor’s quality
system is unsatisfactory

Other conditions warrant
a return to normal
inspection

Reduced Normal

Start

Tightened

Process
remains on
tightened

Government 
reserves right to
discontinue the

acceptance

FIGURE 17.5: Switching rules.
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Normal: VL column
Tightened: column to left of VL col
Reduced: column to right of VL col

VL is specified in contract or product spec.

Start

Determine lot size

Obtain code entry from Table I

Determine the type of sampling to be used and select the plan

Attributes Variables Continuous

Table IVTable IIITable II

Check the operating characteristics
to insure that protection is as desired

that (Appendix D)

Apply switching rules (Section 5.2.1.3)

FIGURE 17.6: A check sequence for selecting a plan from MIL-STD-1916.
Implementation

Implementation of the sampling aspect of MIL-STD-1916 is accomplished through four tables

Appendix Table MIL-STD-1916 Table Description

T17.4 Table I Code letters
T17.5 Table II Attribute sampling plans
T17.6 Table III Variables sampling plans
T17.7 Table IV Continuous sampling plans

which will be illustrated by example. Figures 1 through 4 of MIL-STD-1916 highlight the use of
these tables. Recall for all attributes plans, c¼ 0.

Assume as in our discussion of MIL-STD-105E that a lot is presented having a lot size of 100 and
(lacking a specified value) VL IV, the default VL is to be used. Table I of the standard gives code A.
Table II specifies na¼ 80, c¼ 0 for the normal inspection plan. The tightened plan is found directly
to the left of the normal plan, namely nt¼ 192, c¼ 0 and the reduced plan to the right of the normal
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plan is nr¼ 32, c¼ 0. Note that columns T and R in Appendix Table T17.4 (Table I in MIL-STD-
1916) provide for tightened and reduced plans when operating with normal VLs VII and I.
Switching rules are as outlined in the standard as shown in Figure 17.5.

The variables plans are addressed in a similar manner and are taken from Appendix Table T17.6
(Table III in MIL-STD-1916). For code A, VL IV we have the normal plan nV¼ 29, k¼ 2.40, and
F¼ .193. Thus, the maximum allowable standard deviation is

smax

U � L
� F

or

smax � F(U � L)

Also, we have for the tightened plan nV¼ 44, k¼ 2.69, F¼ .174 and for the reduced plan
nV¼ 18, k¼ 2.05, F¼ .222.

If continuous sampling is to be used, plans are taken from Appendix Table T17.7 (Table IV in
MIL-STD-1916). The normal plan in the example is f¼ 1=12, i¼ 264. The corresponding tightened
plan is f¼ 2=17, i¼ 527 with a reduced plan of f¼ 1=17, i¼ 125.

For example, we have developed a matched set of three schemes:

Attributes Variables Continuous

Tightened na(T)¼ 192, c¼ 0 nV(T)¼ 44, k¼ 2.69, F¼ .174 f¼ 2=17, i¼ 527
Normal na(N)¼ 80, c¼ 0 nV(N)¼ 29, k¼ 2.40, F ¼ .193 f¼ 1=12, i¼ 264
Reduced na(R)¼ 32, c¼ 0 nV(R)¼ 18, k¼ 2.05, F ¼ .222 f¼ 1=17, i¼ 125

Use of the switching rules is slightly more complicated for the continuous plans. Recall the rule for
going from tightened to normal if five consecutive lots are accepted. This would amount to no
defectives in five times the lot size, since c¼ 0. Thus, the rule for continuous sampling would be to
switch to normal from tightened if no defectives were found in a span of five times the sample size
of the corresponding matched attribute plans. The rules then become

Normal to tightened Two defectives found in a span of 5(na(N)) units
inspected

Tightened to normal No defectives found in a span of 5(na(T)) units
inspected

Normal to reduced No defectives found in a span of 10(na(N)) units
inspected

Reduced to normal A defective unit is found

For our example, the spans become

Normal to tightened 5(80)¼ 400
Tightened to normal 5(192)¼ 960
Normal to reduced 10(80)¼ 800

Of course, other conditions impact the switching rules as well. Refer to Figure 17.5 for these
requirements.
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Measures

MIL-STD-1916 does not present tables of various measures of the sampling plans as does MIL-
STD-105E. However, it is supplemented by a Department of Defense Handbook, Companion
Document to MIL-STD-1916. This handbook presents an exhaustive compilation of graphs and
tables of the properties of the MIL-STD-1916 plans. It includes: OC curves, AOQ curves, AFI
curves, and associated tables. The handbook provides for the VL defaults cited above.

In support of the quality systems approach to acceptance, the handbook discusses in depth various
aspects of a prevention-based quality system which provides a process focus for the quality system.
Various tools are discussed including SPC and other measures of performance.

Further Considerations

MIL-STD-1916 appears as international standard ISO 21247 (2005). The tables are essentially
the same except for minor editorial changes. Measures of performance are also presented in the form
of tables of percentage points and other descriptive material. Schematic diagrams of the switching
rules are also given. Acceptance by supplier-proposed provisions is maintained and detail is
presented.

Simplified Grand Lot Procedure

Acceptance inspection and compliance testing often necessitate levels of protection for both the
consumer and the producer that require large sample sizes relative to lot size. A given sample size
can, however, be made to apply to several lots jointly if the lots can be shown to be homogeneous.
This reduces the economic impact of a necessarily large sample size. Grand lot schemes, as
introduced by Simon (1941), can be used to affect such a reduction. The original grand lot scheme
was later modified by Schilling (1979) to incorporate graphical analysis of means procedures in
verifying the homogeneity of a grand lot. The resulting approach can be applied to attributes or
variables data, is easy to use, provides high levels of protection economically, and can reduce
sample size by as much as 80%. It may be applied to unique ‘‘one-off’’ lots, isolated lots from a
continuing series, an isolated sequence of lots, or to a continuing series of lots.

MIL-STD-105E indicates that lots or batches should be formed in such a way that ‘‘each lot or
batch shall, as far as is practicable, consist of units . . . manufactured under essentially the same
conditions. . . . ’’ This suggests that one way to reduce sample size relative to lot size is to increase
the size of the lot as much as possible within limits of homogeneity of the product included therein.
The grand lot scheme, as originated by Simon, utilizes the power of the control chart to achieve a
drastic reduction in sample size relative to lot size in the application of an acceptance sampling plan
to homogeneous material.

As defined by Simon (1944), ‘‘A lot is an aggregation of articles which are essentially alike.’’ The
control chart is used to distinguish members of what may be considered a grand lot from a collection
of sublots. Thus, the chart becomes the criterion for what is ‘‘alike’’ in Simon’s definition. Use of a
large sample size on the grand lot allows a precision in sampling which would often prove
uneconomical if applied to each sublot separately. Thus, use of plans having low discrimination,
such as c¼ 0 attributes plans, can be avoided.

For example, if the protection desired requires a sample size of 800 on each of eight sublots, a
total of 6400 units would be inspected. If the eight sublots were sufficiently alike to allow
aggregation into a single grand lot, the resulting sample of 800 on the grand lot would amount to
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an 87.5% reduction in sample size with no decrease in protection. In this way, very stringent levels
of quality can be assured with great economy.

The concept of the grand lot has application in a number of areas of acceptance sampling:

1. Verification of the quality of large quantities of material on an acceptance sampling basis to
very stringent quality levels (e.g., sampling for safety-related defects when sample sizes
required are prohibitively large when applied to sublots).

2. Sampling quarantined or returned material to distinguish aberrant sublots and to determine
disposition of the material (e.g., sampling many skids of material which have been rejected by
a customer an unsatisfactory when it is believed that only a few skids may, in fact, be non-
conforming).

3. Acceptance sampling of unique lots (sometimes called one-off lots) or of isolated lots
from a continuing series, when the lot to be inspected may logically be divided into a set of
sublots (e.g., acceptance of an order which is comprised of material produced by several
different identifiable production units; the order may or may not be part of a continuing series).

4. Acceptance sampling of an isolated sequence of sublots which may logically be aggregated
into a grand lot (e.g., acceptance of a week’s production on the basis of results from individual
days [or shifts]).

5. Acceptance sampling of a continuing series of sublots which can be shown to consistently
comprise a grand lot (e.g., acceptance on an open order from a captive supplier).

Not only is the procedure useful in routine inspection of individual lots or series of lots of material,
but it is also especially valuable in surveillance inspection and in compliance testing. The experi-
ence of the U.S. Army, Chemical Corps Material Command, in this regard has been set forth by
Mandelson (1963).

The original grand lot scheme, as proposed by Simon, utilized a control chart approach to
identifying the grand lot, but was complicated by the necessity of including extra procedures for
assessing the compound probabilities associated with a simultaneous comparison of many points
(representing the sublots) against the limits. Conventional control chart limits are set up to be used
one point at a time. While Burr (1953) modified the application of the approach somewhat by using
approximations in place of Simon’s original use of the incomplete beta function, the extra steps
incurred by this part of the method remained. The procedure was simplified still further by Schilling
(1979) by providing graphical control chart limits which automatically account for these compound
probabilities and by incorporating an identical approach for both variables and attributes data. The
simplified procedure is based on the use of the analysis of means limits developed by Ott (1967), Ott
and Lewis (1960), and Schilling (1973a,b). Use of these limits retains the simplicity of the control
chart without recourse to additional steps since they are designed to maintain specified probability
levels when many points are compared to the limits.

Simon’s Approach

The approach suggested by Simon (1941) is essentially as follows:

1. Determine an appropriate sublot sample size.

2. Sample the sublots.

3. Plot the sample results on a control chart of the form shown in Figure 17.7.
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Extreme suspected mavericks

Suspected mavericks

Upper extreme limit

Extreme suspected mavericks
Upper extreme limit

(E)

(E)

(M) Upper maverick limit

(M) Lower maverick limit

Suspected mavericks

Grand lot Average level

FIGURE 17.7: Simon grand lot chart. (Reprinted from Schilling, E.G., J. Qual. Technol., 11(3),
117, 1979. With permission.)
4. Identify any points that plot beyond the extreme limits (E) as ‘‘extreme suspected mavericks.’’
Eliminate these sublots, as outliers, from further consideration as part of the grand lot.
Treat the eliminated lots separately, applying an appropriate sampling plan to each. Recom-
pute the limits until there are no further extreme suspected mavericks outside the extreme
limits (E).

5. Identify any points outside the maverick limits (M) as suspected mavericks. Utilize the
incomplete beta function to determine if the number of maverick points is significantly
large on the basis of the compound probabilities inherent in conventional control limits. If
it is, reject the grand lot hypothesis. (Note, this step is unnecessary when using analysis of
means limits on the control chart, since a single point beyond the maverick limits is sufficient
to reject the grand lot hypothesis when such limits are used.)

6. If the grand lot hypothesis is rejected, test each sublot separately using an appropriate
sampling plan. This plan would normally be the same as that applied to the grand lot if the
grand lot hypothesis had been accepted.

7. If the grand lot hypothesis is accepted, combine the sublots not determined to be extreme
suspected mavericks into a grand lot and apply an acceptance sampling plan sufficient to give
the consumer and the producer the protection desired, taking additional samples as necessary
to complete the sample size required.

This procedure allows application of a very discriminating sampling plan to lots made as large as
possible. The sampling plan applied to the grand lot should afford at least LTPD protection to the
consumer with due consideration for the producer’s risk as evidenced by the OC curve. Application
to large lots allows higher acceptance numbers to be used with larger sample sizes which leads to
better protection for both parties.

In discussing the grand lot approach, Simon (1941) points out that, if the grand lot hypothesis is
rejected, ‘‘ . . . the grand lot judge is called upon to revise the grand-lot grouping, if a logical basis for
regrouping exists, or the grand lot must be abandoned and resort made to individual sampling.’’ This
provides greater flexibility in application, however, regrouping should be allowed only on a
documented rational basis and only with the concurrence of both parties to the acceptance deci-
sion—the producer and the consumer. Simon (1941) also states that ‘‘Very good grand lot
judgments are desirable but not essential to the operation of the system, as very poor ones will
almost inevitably be caught. Poor grand lot judgments result in retesting . . . and serve to decrease the
efficiency of the system.’’
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Simplified Procedure: Attributes

Given a presumptive grand lot made up of k sublots, it is desired to obtain LTPD protection
against a process fraction defective pt.

1. Determine the sublot sample size*, n, as

n ¼ 2:303
pt

Round up.

2. Sample n items from each sublot and determine �p, the estimated fraction defective from the nk
units sampled, as

�p ¼ X

N

where
X is the total number nonconforming
N¼ nk is the total sample size

3. Construct an analysis of means chart in the form of Figure 17.7 where

a. Extreme limits are set at

E: �p� H:002

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p(1� �p)

n

r

b. Maverick limits are set at

M: �p� H:05

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p(1� �p)

n

r

using the Ha factors from Appendix Table T17.2.

4. Eliminate any sublot whose sample proportion plots beyond extreme limits (E) from further
consideration as part of the grand lot. Dispose of such lots separately using an appropriate
sampling plan. Sublots that plot below the lower extreme limit, however, may be accepted if
the grand lot is accepted.

5. Recompute limits on the remaining points until all extreme suspected mavericks have been
eliminated. Then, if any remaining points plot beyond the maverick limits (M), reject the
grand lot hypothesis and test each sublot individually using an appropriate plan on each.

6. If all points lot within the maverick limits (M), accept the grand lot hypothesis and group the
remaining sublots into a grand lot. Apply a standard sampling plan to the grand lot to obtain
the required LTPD protection, using a sample size-acceptance number combination which
will afford reasonable protection for the producer. Take additional samples as necessary to
complete the required sample size.

* As suggested by Simon, this gives roughly 90% probability of obtaining at least one defective in the sublot sample if the
process fraction defective is, in fact, pt. Alternatively, sublot sample size may be determined by sampling a fraction of the
sublot, as obtained from a lot sensitive sampling plan. This relates sample size directly to sublot size and maintains
protection equivalent to the formula given above, with slightly smaller samples. For large sublots, the results will be the
same for both approaches.
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Example: Attributes

Suppose a shipment consisting of 12 cartons, each containing 5000 parts, for use in an assembly
operation, is presented for incoming inspection. The production process can tolerate 2.5% defective,
but quality of 6% or more must be rejected. Inspection is on a go no-go basis. A grand lot plan is to
be used with pt¼ .06.

1. The sublot sample size is determined to be

n ¼ 2:303
:06

¼ 38:4 � 40

2. Sample results are as follows:

Carton Sample Size Defectives Proportion Defective

1 40 1 .025
2 40 2 .050
3 40 2 .050
4 40 5 .125
5 40 0 .000
6 40 4 .100
7 40 3 .075
8 40 1 .025
9 40 7 .175
10 40 2 .050
11 40 1 .025
12 40 1 .025
Total 480 29 .060

Source: Data adapted from Simon, L.E., An Engineer’s Manual of Statistical
Methods, John Wiley & Sons, New York, 1941.

3. Limits are set at

E: :06� 3:60

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:06(:94)

40

r

:06� :135

:0 to :195

M: :06� 2:74

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:06(:94)

40

r

:06� :103

:0 to :163

and the resulting analysis of means chart is shown in Figure 17.8.

4. No sublots are identified as extreme suspected mavericks since none plots beyond the extreme
limit (E). It is, therefore, unnecessary to recompute the limits.

5. Sublot 9 is identified as a suspected maverick since it plots beyond the maverick limit (M). The
grand lot hypothesis is rejected and each sublot must be inspected separately. Using MIL-STD-
105E, it is found from Table VI-A that for an AQL of 2.5% and an LTPD of 5.6%, the plan
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FIGURE 17.8: Analysis of means chart—attributes data. (Reprinted from Schilling, E.G.,
J. Qual. Technol., 11(3), 120, 1979. With permission.)
n¼ 500, c¼ 21 will give the desired protection on an isolated lot. Accordingly, an additional
sample of 460 must be taken from each sublot and the plan applied to the samples of 500.

6. If the grand lot hypothesis had been accepted, results from the individual lots could be
aggregated. A further sample of 20 would be taken at random from the total shipment to
reach the sample size of 500 necessary for application of the MIL-STD-105E plan.

It is interesting to note that rejection of the grand lot hypothesis resulted in inspection of 6000 units;
whereas if the grand lot hypothesis had been accepted, inspection of only 500 units would have been
required. This could have resulted in a 92% decrease in inspection effort; however, the procedure
identified the lack of homogeneity of the cartons, making aggregation deceptive and unwarranted.

Simplified Procedure: Variables

Given a presumptive grand lot made up of k sublots, it is desired to apply a variables sampling
plan for a measurement characteristic, X.

1. Determine the sublot sample size n as

n ¼ 120
k

þ 1

Round up. In none of the case sample less than five items from a sublot.

2. Sample n items from each sublot and compute X and s from each as follows:

Xj ¼ 1
n

Xn

i¼1

Xij

sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 Xij � Xj

� �2

n� 1

s

where Xij is the ith observation of the measurement characteristic from the jth sublot, and
Xj and sj are the sample mean and standard deviation of the jth sublot. Also obtain
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X ¼ 1
k

Xk

j¼1

Xj

ŝ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
k

Xk

j¼1

s2j

v
u
u
t

3. Construct an analysis of means chart for s as in Figure 17.7 where

a. Extreme limits are set at

E: ŝ� H:002
ŝ
ffiffiffiffiffi
2n

p

b. Maverick limits are set at

M: ŝ� H:05
ŝ
ffiffiffiffiffi
2n

p

using the Ha factors of Appendix Table T17.2.

4. Eliminate any sublot whose standard deviation plots beyond the extreme limits (E) from further
consideration as part of the grand lot. Dispose of such sublots separately using an appropriate
sampling plan. Sublots that plot below the lower extreme limit, however, may be accepted if the
grand lot is accepted, provided they are not disqualified on the basis of their mean.

5. Recompute limits on the remaining points until all extreme suspected mavericks have been
eliminated. Then, if any remaining points plot beyond the maverick limits (M), reject the
grand lot hypothesis and test each sublot individually using an appropriate sampling plan.

6. If all remaining points plot within the maverick limits (M), accept the grand lot hypothesis for
the standard deviations and proceed to test the means against the grand lot hypothesis.

7. For the sublots not eliminated as extreme suspected mavericks in testing the standard
deviations and using their estimated grand standard deviation, ŝ, and grand mean, ��X, plot an
analysis of means chart with

a. Extreme limits are set at

E: X � H:002
ŝ
ffiffiffi
n

p

b. Maverick limits set at

M: X � H:05
ŝ
ffiffiffi
n

p

8. Eliminate any sublot whose mean plots beyond extreme limits (E) from further consideration
as part of the grand lot. Dispose of such lots separately. Recompute limits on the remaining
points. However, do not recompute limits for testing s against the grand lot hypothesis.
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9. Recompute limits on the remaining points until all extreme suspected mavericks have
been eliminated. Then, if any remaining points plot beyond maverick limits (M), reject
the grand lot hypothesis and test each sublot individually using an appropriate samp-
ling plan.

10. If all points plot within the maverick limits (M), accept the grand lot hypothesis and group the
remaining sublots into a grand lot. Apply a standard sampling plan to the grand lot to obtain
desired protection. Take additional samples as necessary to complete the required sample size.

Example
An arms wholesaler receives 30 consecutive lots of rounds of ammunition. These lots are to

be tested for muzzle velocity. Specifications require an individual round to be in the range 1670–
1790 ft.=s. A grand lot plan is to be employed.

1. The sublot sample size is

n ¼ 120
30

þ 1 ¼ 5

2. Sample results are as follows:

Lot X s Lot X s

1 1711 16.9 16 1783 20.6
2 1711 16.1 17 1777 3.6
3 1713 15.7 18 1794 6.0
4 1718 10.5 19 1773 14.9
5 1735 4.0 20 1789 21.8
6 1739 10.1 21 1798 6.0
7 1723 15.7 22 1789 11.7
8 1741 6.0 23 1788 15.7
9 1738 4.4 24 1799 12.1
10 1725 12.5 25 1807 17.7
11 1731 10.1 26 1784 4.3
12 1721 7.7 27 1775 15.7
13 1719 17.3 28 1787 12.8
14 1735 15.7 29 1770 6.1
15 1741 5.9 30 1796 19.7

Source: Adapted from Simon, L.E., An Engineer’s Manual of
Statistical Methods, John Wiley & Sons, New York,
1941, p. 367.

X ¼ 52710
30

¼ 1757

ŝ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5123:33

30

r

¼ 13:1
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3. Limits for s are set at

E: 13:1� 3:92
13:1
ffiffiffiffiffi
10

p

13:1� 16:2

0 to 29:3

M: 13:1� 3:09
13:1
ffiffiffiffiffi
10

p

13:1� 12:8

0:3 to 25:9

and the resulting analysis of means chart is shown in Figure 17.9.

4. The analysis of means plot for s shows no extreme suspected mavericks, so the limits need not
be recomputed.

5. There are no suspected maverick lots on the basis of the analysis of means plot for s.

6. The grand lot hypothesis is accepted for standard deviations, and so the means are analyzed next.

7. Limits for X are set at
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FIGURE 17.9: Analysis of means chart—standard deviation. (Reprinted from Schilling, E.G.,
J. Qual. Technol., 11(3), 122, 1979. With permission.)
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E: 1757 � 3:92
13:1
ffiffiffi
5

p

1757 � 23:0

1734:0 to 1780:0

M: 1757 � 3:09
13:1
ffiffiffi
5

p

1757 � 18:1

1738:9 to 1775:1

and the resulting analysis of means chart is shown in Figure 17.10.

8. The analysis of means chart immediately shows a shift at sublot 16. Twenty-one of the
30 points are extreme suspected mavericks.

9. Clearly, the grand lot hypothesis must be rejected. However, it is also evident that
the shipment may be composed of two potential grand lots consisting of sublots 1–15 and
16–30, respectively.

10. The limits may be recalculated for these two groups as follows:
Lots 1–15 (k¼ 15), X¼ 1726.7

E: 1726:7� 3:69
13:1
ffiffiffi
5

p

1726:7� 21:6

1705:1 to 1748:3

M: 1726:7� 2:84
13:1
ffiffiffi
5

p

1726:7� 16:6

1710:1 to 1743:3
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Lots 16–30 (k¼ 15), X¼ 1787.3

E: 1787:3� 3:69
13:1
ffiffiffi
5

p

1787:3� 21:6

1765:7 to 1808:9

M: 1787:3� 2:84
13:1
ffiffiffi
5

p

1787:3� 16:6

1770:7 to 1803:9

The resulting analysis of means plot is shown in Figure 17.11.

11. Figure 17.11 reveals that sublots 1–15 can be considered a grand lot, aggregated, and tested
accordingly. Sublots 16–30, however, cannot be considered to form a grand lot since lots 25
and 29 are suspected mavericks.

12. Assuming the normality of the underlying distribution of measurements, a variables plan from
MIL-STD-414 (United States Department of Defense, 1957) may be selected from the OC
curves to give an AQL of 0.1% and a consumer quality level of 1.0% with 10% probability of
acceptance. Such a plan is Code N, 0.1% AQL, with standard deviation unknown. This
requires a sample size of n¼ 75 with an acceptance constant k¼ 2.66, so no additional
samples are needed. Standard variables acceptance procedures may then be applied separately
to both specification limits, 1670 and 1790, respectively, since they are estimated to be more
than 9 standard deviations apart, allowing a maximum standard deviation of 20.88. The
acceptability criterion is
1
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FIGURE 17.11: Second analysis of means chart—means. (Reprinted from Schilling, E.G.,
J. Qual. Technol., 11(3), 123, 1979. With permission.)
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U � X

ŝ
> k

1790� 1726:7
13:1

> 2:66

4:83 > 2:66
and

X � L

ŝ
> k

1726:7� 1670
13:1

> 2:66

4:33 > 2:66

The acceptability criterion is met and so the grand lot consisting of sublots 1–15 is accepted. Note
that the remaining lots 16–30 must be inspected separately, requiring an additional sample of 1050 if
equivalent protection is to be maintained on each of them. This illustrates the leverage possible from
the formation of a grand lot.

Continuing Series of Lots

In introducing the grand lot plan, Simon (1941, p. 33) pointed out that it can easily be applied to a
continuing series of lots. He also suggested the following approach:

From the first few lots, or at least from the first lot, one must take a large sample in order
to have a reliable estimate of the manufacturer’s general level of quality as measured by
the lot fraction defective . . . From then on, one can treat his successive lots as additional
members of the grand lot, testing each suspected maverick by a large sample to see if its
quality is really satisfactory. However, the occurrence of an extreme suspected maver-
ick or an excessive number of suspected mavericks should result in terminating the
manufacturer’s grand lot and in making him qualify all over again.

This can be carried out using the simplified procedure as follows:

1. Qualify the first 10 lots* using a standard sampling plan with a sample size-acceptance
constant combination sufficient to protect both the consumer and the producer. Sample size
for the qualification must equal or exceed that determined from the sublot sample size
formulas given in the simplified method for attributes or for variables with k¼ 10 lots.

2. Test the grand lot hypothesis on the first 10 lots using an analysis of means plot, as set forth in
the simplified procedure.

3. If any of the 10 lots fail the standard sampling plan, or if the grand lot hypothesis is rejected,
the producer must requalify subsequent lots.

4. If the grand lot hypothesis is accepted, construct a control chart as in Figure 17.7 using probability
limits to test subsequent lots. Use the overall values of �p for attributes or X and ŝ for variables
obtained from the 10 qualification lots to set up the limits. Sample size from each subsequent lot is

Attributes: n ¼ 2:303
pt

, Variables: n ¼ 5

* This conforms to the criterion for switching from normal to reduced inspection under MIL-STD-105E and with the control
chart approach of MIL-STD-105A.
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Limits are set using the formulas given in the simplified procedure employing standard control
limits, so that

H:002 ¼ 3:09

H:05 ¼ 1:96

5. Lots that plot within the extreme limits are accepted. Lots that plot outside the extreme limits
must be tested individually using an appropriate acceptance sampling plan.

6. The producer must requalify if any lot plots outside the extreme limits or if two out of any
successive five points plot outside the maverick limits* in an undesirable direction.

Example
Consider the attributes data given earlier. Suppose these constitute the next 12 from a continuing

series of lots. The producer and the consumer agree to use an AQL of 2.5% and an LTPD of 6%.
Table VI-A of MIL-STD-105E shows that for isolated lots, the plan n¼ 500, c¼ 21 is appropriate.
Suppose sample results on the preceding 10 lots were

Lot Sample Size Number Defective Proportion Defective

�9 500 15 .030
�8 500 10 .020
�7 500 13 .026
�6 500 18 .036
�5 500 15 .030
�4 500 12 .024
�3 500 15 .030
�2 500 13 .026
�1 500 20 .040
0 500 19 .038
Total 5000 150 .030

1. All 10 qualification lots pass the standard plan.

2. The analysis of means plot to test the grand lot hypothesis has limits

E: :03� 3:53

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:03(:97)
500

r

:03� :027

:003 to :057

M: :03� 2:66

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:03(:97)
500

r

:03� :020

:010 to :050

and the resulting analysis of means chart is shown in Figure 17.12.

* This is essentially the same as the criterion for switching to tightened inspection under MIL-STD-105E.
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FIGURE 17.12: Charts for continuing series of lots. (Reprinted from Schilling, E.G., J. Qual.
Technol., 11(3), 125, 1979. With permission.)
3. The analysis of means plot shows that the grand lot hypothesis is accepted, and since the
10 lots passed the standard plan, a control chart can be instituted.

4. Subsequent lots are sampled using a sample size of

n ¼ 2:303
:06

¼ 38:4 � 40

and the resulting fractions defective plotted on a control chart with limits

E: :03� 3:09

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:03(:97)

40

r

:03� :083

0 to :113

M: :03� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:03(:97)

40

r

:03� :053

0 to :083

The control chart for lots 1–4 is also shown in Figure 17.12.

5. Lot 4 plots outside the extreme limit and so it must be subjected to further testing.

6. The grand lot hypothesis is rejected at lot 4 and the producer would now have to requalify
from the beginning of the procedure.
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Further Considerations

Simon’s (1941) original approach to testing the grand lot hypothesis after the extreme suspected
mavericks were eliminated was as follows:

1. Prepare a control chart for the property being tested (p, s, or X) with a specified probability,
Q, of exceeding the maverick limits.

2. Count the actual number of points outside the maverick limits.

3. Test the null hypothesis that the probability of exceeding the limits is equal to that specified,
against an alternate hypothesis that it is greater. This is done by comparing the actual number
of exceedances found against a critical value obtained from the incomplete beta function with
parameter Q, sample size k, and Type I risk a¼ .10.

4. Accept or reject the grand lot hypothesis as this null hypothesis is accepted or rejected.

This part of the procedure was intended to account for the degradation of the Type I risk of a control
chart as the increasing number of points is compared to the limits. It is well known, for example, that
if the probability of one point exceeding the limits is .05, the probability of two points plotted
outside the limits is

1� (:95)2 ¼ :0975

and three points plotted outside the limits is

1� (:95)3 ¼ :1426

and so on.
Schilling (1979) pointed out that the advent of analysis of means procedures for constructing

decision limits, which adjust the limits to take account of the number of points involved in the
comparison, made this part of the original procedure unnecessary. The operation of the grand lot
plan was greatly simplified by straightforward comparison of the points against the analysis of
means limits. The Ha factors are upper bounds for the studentized maximum absolute deviate as
derived by Halperin et al. (1955) which were incorporated into the analysis of means procedure by
Ott (1967), Ott and Lewis (1960), and Schilling (1973a,b). They were computed using a result
attributed to Tukey (1953) in the manner described by Schilling (1973a). As such, the limits apply
regardless of any correlation which might exist between the lots. The values presented are for a Type
I risk of .002 and .05, respectively. This corresponds to the British system of probability limits for
control charts, as presented, for example, by Pearson (1935), which employ these levels of risk for
action and warning limits. The risks are very close to those used by Simon (1941) in his approach to
variables data. They are also used in the simplified procedure with attributes data for reasons of
consistency and uniformity.

The attributes sample size formula for sublots was chosen to conform with Simon’s original
recommendation to allow a 90% probability for at least one defect to occur when product quality
is at the critical level. The formula is based on the Poisson distribution and so is conservative in
cases where the binomial or hypergeometric distributions should apply. Chart limits for attributes
employ the normal approximation to the binomial distribution but should be adequate in practice.

Sample size for variables data was chosen to give an estimate of the standard deviation with
120 degrees of freedom. A study of tables of Ha indicates that 120 degrees of freedom is sufficient
to allow use of Ha factors for standard deviation known (i.e., using df¼1 as an approximation).
This corresponds to the practice of starting a control chart for subgroups of five after 30 points
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have been plotted (120 df) and using the estimate of the standard deviation as if it were known. In
this way, one set of Ha factors could be presented for use with both variables and attributes data.
Note that the values given in Appendix Table T17.2 are for infinite degrees of freedom and
correspond to values of the extreme standardized deviate from the sample mean.

The method for dealing with a continuing series of lots was, of course, initially suggested
by Simon (1941). A straightforward analysis of means is performed on the first 10 lots since they
are simultaneously compared to the decision limits. Thereafter, a control chart with British
probability limits is utilized since subsequent lots will be compared to the limits individually,
one at a time.

The simplified grand lot procedure suggested above can easily be modified to correspond to
operating conditions. Sublots can be recombined to form new presumptive grand lots, where
justified, when the grand lot hypothesis is rejected. Risks can be altered as appropriate
and analysis of means limits computed using factors such as those given by Nelson (1974)
for Schilling’s ha at other probability levels. These may be converted to values of Ha by the
relation:

Ha ¼ ha

ffiffiffiffiffiffiffiffiffiffiffi
k � 1
k

r

While analysis of means is relatively insensitive to nonnormality, as shown by Schilling and Nelson
(1976), special procedures are available for analysis of means when the variate departs substantially
from the normal form and are given in Schilling (1973b). Also, the assumption of shape in a
variables sampling plan can be minimized by performing the analysis of means procedure
with variables data and using attributes to inspect lots not belonging to the grand lot, or indeed,
to inspect the grand lot itself. Thus, the grand lot scheme can employ mixed variables–attributes
procedures as presented by Schilling and Dodge (1969).

The grand lot approach has great potential for increasing the efficiency and economy of
acceptance sampling. The simplified graphical procedure facilitates its use in achieving the wide
application Simon intended.

Nomograph for Samples Having Zero Defectives

Nelson (1978) presented a simple nomograph for obtaining the upper confidence limit on percent
defective for a sample that contained no defectives. This nomograph relies on the Poisson distribu-
tion to compute the upper confidence limit for a given sample size and confidence level. The
relationship is

g ¼ 1� e�npu

where
g is the confidence level
n is the sample size
pu is the upper confidence limit on proportion defective

The nomograph can be found in Appendix Table T17.8. It can be used to obtain an approximate
solution for n, g, or 100pu (given the other two).
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Suppose that a sample of n pieces is taken from a lot of size N which contains more than 1000
pieces, but having no defectives. What would be the upper 90% confidence limit on percent
defective? Using the nomograph, the percent defective would be no greater than 2.3% with 90%
confidence.

Accept on Zero (AOZ) Plans

U.S. Department of Defense Approach

It is appropriate that this chapter began with a discussion of c¼ 0 plans, also known as
zero defective plans, and ends with a discussion of their pros and cons. What is so attractive
about these plans that so many companies require their use? Browsing the Internet with the simple
search ‘‘c¼ 0 sampling plans’’ yields thousands of references including their use in the food
industry, pharmaceutical companies, fisheries, etc. Liuzza and Pap (1999) stated that the U.S.
Department of Defense (DOD) advocated that ‘‘only ‘accept on zero’ (AOZ) plans are to be used
for attributes sampling.’’ Their argument is that many companies have worked hard to recapture
markets, regain profitability, and won quality awards using total quality management (TQM) and
continuous process improvement.

In other words, ‘‘customers have the right to expect quality’’ so AQL-based sampling plans which
allow for nonzero nonconformities are contrary to the message that the DOD wanted people to
receive. This message was intended to encourage vendors to ‘‘monitor, control, and continuously
improve their processes; minimize variability; achieve high capability; and prevent rather than
inspect for nonconformities.’’ The DOD was not saying that MIL-STD-105 did not work, but rather
that it caused users to create a culture where production is judged by the rate at which lots are
accepted rather than striving for 100% compliance. Their argument is that a vendor would typically
argue for a waiver for a failed lot as the result of a statistical aberration and avoid continuous process
improvement.

The DOD initially moved to recommend that product lots be accepted when quality levels were
in parts per million (ppm). Usually, these levels were understood to be from 1 to 100 ppm. The
reaction of many people, particularly those used to AQL levels in percentages, interpreted this
move as no conformities would be allowed for any production lots made for the DOD. Conse-
quently, the DOD adopted the AOZ plans from MIL-STD-1916, which was developed to show its
new view of the business process. MIL-STD-1916 states that process control-based acceptance is
the preferred method, and claims that AOZ sampling plans are used until the vendor can
demonstrate quality in the ppm range. Note that Cross (1984) provided a set of AOQL plans
for ppm applications.

Liuzza and Pap also discuss some misconceptions regarding AOZ plans:

. Zero nonconformities in a sample imply zero nonconformities in the lot. This is incorrect since
a single nonconformity in the lot will not necessarily end up in the sample.

. AOZ sampling requires that the entire lot must be perfect. AOZ sampling requires ppm levels,
not a flawless population. In fact, if a nonconformity does appear in a sample that is not large
the quality level is probably not in the ppm range anyway.

. AOZ sampling plans are inferior because they are not as discriminating as non-AOZ plans.
This is true in the sense that AOZ plans are not AQL-based plans. In fact, the DOD developed
AOZ plans that would not utilize an AQL or LTPD. Simply stated, AOZ plans stated that for
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any sample size no nonconforming unit will be allowed for a lot to be accepted. Furthermore,
the DOD recognizes that it does not want to compare OC curves as it does for non-AOZ plans
based on AQLs.

. Use of AOZ plans for some contracts will result in too many lot rejections. According to MIL-
STD-1916, if a lot fails to pass the AOZ plan it is not necessarily rejected, but rather lot
acceptance is withheld and the vendor is required to take several actions as stated in the
standard.

It is the intent of the DOD to encourage its vendors to pursue continuous improvement and process
controls such that AOZ plans are unnecessary. A 100% conformance is the end goal, and MIL-STD-
1916 makes it clear that any AOZ plan will not be the final word on product acceptance. Of course,
if the vendor does not improve their process then AOZ plans will prevail and result in improved
quality levels due to their fear of excessive lot rejections. Thus, MIL-STD-1916 (and its companion
document MIL-HDBK-1916 [United States Department of Defense, 1999]) puts the utmost import-
ance on process control to achieve quality, while AOZ plans play a secondary role. The DOD did
not popularize AOZ plans. Their development came many years ago.

Squeglia Plans

In 1961, Squeglia developed a set of c¼ 0 plans in an effort to create an alternative to the
widespread use of MIL-STD-105C. In 1963, MIL-STD-105D was created and the c¼ 0 plans were
updated and revised. The plans were based on a match of the c¼ 0 plan LTPD with the LTPD
of the MIL-STD-105D plan with some adjustments. The hypergeometric distribution was used. Of
course, this results in the necessity for the producer to operate at quality levels 1=45 of the LTPD
to have 95% of the lots accepted. Thus, for the lot size (91–150), the MIL-STD-105E plan for
Code F, 2.5% AQL (n¼ 20, c¼ 1) shows an LTPD¼ 18.1% which corresponds with the Squeglia
AOZ plan (n¼ 11, c¼ 0) which has an LTPD¼ 18.7%. In 1965, Squeglia wrote the seminal paper
‘‘Sampling Plans for Zero Defects’’ which led to the publication of his book Zero Acceptance
Number Sampling Plans in 1969. In the book, zero defective plans are presented in detail along with
their respective OC curves. According to Squeglia, a survey conducted in 1983 indicated that the
majority of users of c¼ 0 plans reported an average of 18% savings. In 1989, MIL-STD-105E
superseded MIL-STD-105D.

In the fourth edition of his book, Squeglia (1994) presents his table of c¼ 0 plans along with
another table for small lot sizes. These tables are shown in Tables 17.3 and 17.4, respectively. His
primary argument for the use of c¼ 0 plans is that they result in a lower sample size than the
corresponding MIL-STD-105 plan for the same AQL. For example, suppose a supplier is inspecting
lots of size N¼ 2000 to general inspection level II with a 1.0% AQL under normal inspection. MIL-
STD-105E (or ANSI=ASQC Z1.4) requires a sample size of n¼ 125 with c¼ 3 nonconformities
allowed. Squeglia’s corresponding c¼ 0 plan from Table 17.3 for a lot of N¼ 2000 and an
associated AQL of 1.0% requires only n¼ 42 samples to be taken with c¼ 0 nonconformities
allowed.

Squeglia provided a special sampling plan table in his book for users who work with small lots,
and when the associated AQL they are using is 1.5% and below. This table is presented here as
Table 17.4. Note that for AQLs above 1.5%, Table 17.3 is sufficient for small lot sizes. Squeglia
suggests that if the user works with a broad range of lot sizes along with associated AQLs between
0.25% and 1.5% the small lot sampling Table 17.4 should be used.

According to Squeglia, the DOD issued a notice in the year 2000 that authorized the use of c¼ 0
plans and promoted his book as the state of the art in zero-based sampling plans. However, based on
the paper by Liuzza and Pap (1999), the recommendation was to use a zero-based (AOZ) sampling
plan only on an interim basis—not as an exclusive approach to the control of quality.
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TABLE 17.3: c¼ 0 Sampling plan table.

Index Values (Associated AQLs)

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10.0

Lot Size Sample Size

2 to 8 * * * * * * * * * * * * 5 3 2 2
9 to 15 * * * * * * * * * * 13 8 5 3 2 2
16 to 25 * * * * * * * * * 20 13 8 5 3 2 2
26 to 50 * * * * * * * * 32 20 13 8 5 3 2 2
51 to 90 * * * * * * 80 50 32 20 13 8 7 6 5 4
91 to 150 * * * * * 125 80 50 32 20 13 12 11 7 6 5
151 to 280 * * * * 200 125 80 50 32 20 20 19 13 10 7 6
281 to 500 * * * 315 200 125 80 50 48 47 29 21 16 11 9 7
501 to 1200 * 800 500 315 200 125 80 75 73 47 34 27 19 15 11 8
1201 to 3200 1250 800 500 315 200 125 120 116 73 53 42 35 23 18 13 9
3201 to 10,000 1250 800 500 315 200 192 189 116 86 68 50 38 29 22 15 9
10,001 to 35,000 1250 800 500 315 300 294 189 135 108 77 60 46 35 29 15 9
35,001 to 150,000 1250 800 500 490 476 294 218 170 123 96 74 56 40 29 15 9
150,001 to 500,000 1250 800 750 715 476 345 270 200 156 119 90 64 40 29 15 9
500,001 and over 1250 1200 1112 715 556 435 303 244 189 143 102 64 40 29 15 9

Source: Squeglia, N.L., Zero Acceptance Number Sampling Plans, 4th ed., ASQ Quality Press, Milwaukee, WI, 1994.
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TABLE 17.4: Small lot size supplement table to Table 17.3.

Lot Size Associated AQLsa

0.25 0.40 0.65 1.0 1.5
5 to 10 * * * 8 5
11 to 15 * * 11 8 5
16 to 20 * 16 12 9 6
21 to 25 22 17 13 10 6
26 to 30 25 20 16 11 7
31 to 35 28 23 18 12 8

Source: Squeglia, N.L., Zero Acceptance Number Sampling Plans, 4th ed., ASQ
Quality Press, Milwaukee, WI, 1994.

a Used for small lots when the associated AQL values are 1.5 and below.
* Indicates that the entire lot must be inspected.
AOZ and AQL Plans

While there are people who endorse the use of c¼ 0 plans, there are just as many others who
condemn their use. After all, the OC curve is always convex when c¼ 0, whereas nonzero sampling
plans have a shoulder near p¼ 0. Why is such an OC curve a concern? While such plans are
attractive to the consumer, they carry excessive risks for the producer who must pass on these higher
costs to the consumer. Furthermore, there may be delays in shipment since there will be a large
number of acceptable lots which will not pass inspection when one nonconformity appears in the
sample of an otherwise acceptable lot. As stated previously, when no nonconformities are found the
consumer is led to the belief that the lot is defect-free which is not necessarily true. Baker (1988)
evaluated producer costs associated with Squeglia’s c¼ 0 plans. According to Baker, ‘‘if one were
to use the Squeglia c¼ 0 plans, unless the true process percent defective was substantially better
than the specified AQL, total inspection cost would be significantly higher.’’

Gershon and Christobek (2006) compared the cost of quality between c¼ 0 acceptance plans
and MIL-STD-105E plans. Whereas most people had only evaluated the effect on producer costs, as
stated above, these authors looked at the costs to both the producer and consumer, i.e., the total
costs. The authors identified six factors that affect total costs. These factors are given in Table 17.5.

Gershon and Christobek computed total quality costs using the AOQ and average total inspection
(ATI) curves under the assumption of rectification, i.e., rejected lots are 100% inspected
and conforming units replace all nonconforming units. The producer must know the cost of
inspecting and reinspecting a unit of product. The producer cost is determined by multiplying
TABLE 17.5: Summary of input parameters to total cost of acceptance sampling.

Input Parameter Effect on Total Cost of Sampling Plan

AQL A lower AQL will result in a lower total cost
Sample size Increasing the sample size increases the total cost
Acceptance number Reduction of acceptance sampling number

reduces total costs
Producer inspection cost Reducing the producer cost reduces the total costs
Consumer rectification cost Reducing the consumer cost reduces the total costs
Acceptance sampling plan used c¼ 0 acceptance sampling plans show a reduction of

total cost over the comparable MIL-STD-105E
(ANSI=ASQC Z1.4) acceptance sampling plan

Source: Gershon, M. and Christobek, M., Int. J. Productivity Qual. Manage., 1(3), 272, 2006.
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this inspection=reinspection cost per unit by the ATI. The consumer must know the cost of finding
and removing a nonconforming unit. The consumer cost is determined by multiplying the cost for
the receipt of a nonconforming unit by the AOQ and the lot size. Using this approach of computing
total costs, these authors conclude that despite the lower maximum cost of the Squeglia c¼ 0 plan
the modified shape and location of the total cost curve are also affected by other input parameters
such as the producer and consumer cost. These authors did acknowledge that the c¼ 0 plans
adequately matched the quality of the MIL-STD-105E plans.

Chain Sampling Alternative

So, is there a compromise position between the Squeglia c¼ 0 plan and the correspondingMIL-STD-
105Eplanwith a nonzero acceptance number? Themain concern regarding the c¼ 0 plan is the shape of
its OC curve, which shows a large producer risk particularly for small percent defective levels, i.e., low
values of the AQL. The correspondingMIL-STD-105E plan can closely match the c¼ 0 plan relative to
the consumer risk, but has a much lower associated producer risk. If wewish to reduce the producer risk
associated with the c¼ 0 plan, the answer is simple—use a chain sampling approach.

As an example, consider the supplier who is inspecting lots of size N¼ 2000 to general inspection
level II with a 1.0%AQL and 5.0% LTPD.MIL-STD-105E (or ANSI=ASQCZ1.4) required a sample
size of n¼ 125 with c¼ 3 nonconformities allowed. Squeglia’s corresponding c¼ 0 plan from Table
17.3 for a lot of N¼ 2000 and an associated AQL of 1.0% required only n¼ 42 samples to be taken
with c¼ 0 nonconformities allowed. Now, suppose that a ChSP-1 plan will be usedwith the c¼ 0 plan
to improve the shape of its OC curve. The MIL-STD-105E plan of n¼ 125, c¼ 3 yields a producer
risk of a¼ .037 and a consumer risk of b¼ .124 at a producer’s quality level p1¼ .01 and a
consumer’s quality level of p2¼ .05, respectively. Using these risks and n¼ 42 produces the ChSP-
1 plan of n¼ 42 with i¼ 1. Figure 17.13 shows a comparison of OC curves for the MIL-STD-105E,
c¼ 0, and ChSP-1 sampling plans. The ChSP-1 plan does provide a compromise between the c¼ 0
and MIL-STD-105E plans relative to the producer risk. At the AQL of 1%, the producer risks for the
MIL-STD-105E, c¼ 0 and ChSP-1 plans are .0374, .3443, and .1620, respectively. At an LTPD of
5%, all three sampling plans are matched at .1238, .1160, and .1457, respectively.

Under rectification, the AOQ and ATI curves can be generated to compare these plans. The
AOQL values for the MIL-STD-105E, c¼ 0 and ChSP-1 plans are .0155, .0086, and .0119,
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respectively, as shown in Figure 17.14. Here, it can be seen that the n¼ 125, c¼ 3 plan does
perform better than the other plans at defective levels above the LTPD.

The ATI curves for these plans are shown in Figure 17.15. Due to the higher producer risk of
rejecting acceptable lots, the c¼ 0 plan quickly overtakes the MIL-STD-105E plan. Above the
LTPD, the MIL-STD-105E plan overtakes the other plans but all plans are at 100% inspection for
defective levels above 15%.
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Summary

The strength of c¼ 0 plans is in their small sample size. In an increasingly litigacious society, jury
members may not understand the deceptive logic of AOZ plans. No defect in the sample does not
imply that there are no defects in the lot. A defect in the sample does not mean the lot must be
rejected—it depends upon the sample size. The quality engineer would do well to check with the
OC curves to devise a plan appropriate to the problem at hand.
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Problems

1. A lot 15,000 units is to be tested for a potential safety hazard. An LTPD of .065% is to be
used. Construct an LSP. What is its AOQL?

2. Draw the OC curve of the LSP plan in Problem 1.

3. If the level of .065% defective is to be guaranteed with 95% probability, what should be the
sample size in Problem 1?

4. A series of lots is to be inspected using a TNT plan and it is desired that p.95¼ .01 and
p.10¼ .08. Construct the plan.

5. Compute the probability of acceptance, the ASN and the AOQ when defects are replaced for
the TNT plan in Problem 4 at p¼ .05 when lots are very large.

6. Derive a QSS-1 plan matching the criteria of Problem 4. What is its indifference quality?

7. Product is sold in lots of 10,000. It is necessary to verify that the quality is better than .005
proportion defective so that LTPD¼ 0.5%. However, when p¼ 0.1% defective, 95% of the
lots should be accepted. These criteria would require use of the single-sampling plan
n¼ 1366, c¼ 3. Construct a simplified grand lot plan to achieve these ends.
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8. Samples of 9 units have been taken from each of 15 lots giving X¼ 500 and ŝ¼ 45. Construct
extreme limits and maverick limits to test if the 15 lots constitute a grand lot. Assuming all
sublots fall within the limits, test the grand lot against a lower specification limit of 400 using
the plan n¼ 135, k¼ 2.0.

9. What should be the limits for a test of the grand lot hypothesis on a continuing source of
supply from the vendor in Problem 8?

10. Labels on bottles for a government installation are inspected for missing information. A VL of
V (VL-V) has been specified. During the month of August, the producer makes varying lot
sizes of 500, 1200, 4500, 12,000, 2100, 7500, 750, 3200, 8900, 10,000, and 25,000 bottles,
and chooses to use attributes sampling. For each lot, specify the code letter to be used and
sample size. If the number of nonconforming bottles for these lots (in the above sequence) was
0, 1, 0, 0, 0, 0, 0, 3, 1, 0, and 0, then give the corresponding lot disposition and stage of
inspection (tightened, normal, and reduced) for each lot.
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Chapter 18

Reliability Sampling

Historically, sampling plans have been used to assess the present quality of the material
examined. They are employed to determine the acceptability of the product against specifications
at a given time. This has usually been the time of sale. Of course, the implication is that items
presently acceptable will retain their utilitarian properties upon reaching the consumer. An import-
ant quality characteristic of some products, however, is degradation in use, that is, the useful life of
the product with regard to some property.

The advent of considerations of reliability imposed by high technology programs, such as space
and atomic power, consumerism, and conformance testing to government mandatory standards,
have placed a new dimension on the sampling problem, that of time. Reliability sampling plans are
used to determine the acceptability of the product at some future point in its effective life. This
usually involves some form of life testing.

An Advisory Group on Reliability of Electronic Equipment (AGREE) was formed in 1952 under
the assistant secretary of defense to ‘‘monitor and stimulate interest in reliability matters and
recommend measures which would result in more reliable electronic equipment.’’ AGREE (1957)
defined reliability as follows: ‘‘Reliability is the probability of performing without failure a specified
function under given conditions for a specified period of time.’’ Reliability testing is to provide
assurance of reliability. In this sense, it is not testing what the product is, but rather how it will
operate, over time, in the hands of the consumer. The standard plans discussed so far determine
whether the product is made to specifications. Reliability plans assess how it will perform.

The time dimension implicit in reliability testing is superimposed on the sampling problem as an
additional criterion. Samples must be tested for a specified length of time. When all units are tested
to failure, the standard plans can be utilized to assess the results against specified requirements. If
lifetimes are measured, these results can be used in a variables sampling plan, such as MIL-STD-
414 or its derivatives, provided the distributional assumption of the plan is satisfied. Also, the
number failing before a required time can be used with standard attributes plans in determining the
disposition of the material, e.g., MIL-STD-105E.

In reliability and safety testing, extremely low levels of probability of acceptance are often used.
When a test based on a two-point plan (p1, p2, a, b) has been passed, it is often said that a reliability
of at least p¼ 1� p2 has been demonstrated with g¼ 1�b confidence. Specifications are often
written in this way. Clearly, a variety of plans could satisfy such a requirement on what amounts to
limiting quality (LQ). For example, it follows from the Schilling–Johnson Appendix Table T5.2 that
to demonstrate .9995 confidence of .99 reliability, the plan n¼ 1000, c¼ 1 could be used since, for
c¼ 1, when Pa¼ .0005, np¼ 10.000, and

np

1� p
¼ 10:000

:01
¼ 1000

For a discussion of this type of specification for sampling plans in reliability, see Lloyd and Lipow
(1962, p. 280).

When testing of the sample is terminated before the specified lifetime with some units still
unfailed, however, complications arise. A sample of this sort is called censored, and implies that
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some units were tested without generating failures as such. In this area, the test termination time
should not be used as the failure time for the unfailed units since, clearly, they would probably have
lasted longer, and consequently to do so would bias the results. It is easily seen, from actuarial work,
that mean lifetime would be grossly understated if, in a sample of 100 people, the first death was
used as average lifetime. Yet this is exactly the result if a test is stopped at the first failure and the
termination time used as the failure time of the remaining elements in the sample.

Statistical methods have been developed for use with censored samples. Life tests may be
deliberately terminated after a given number of failures or a specified period and analyzed using
these procedures. This is usually done to speed up the test or for economic considerations. The
methods for dealing with censored data can also be used in situations in which some of the units
have not been tested to failure because of difficulties with the test equipment, units failed for causes
other than those being tested, broken or stolen units, etc.

Censored Sampling

Analysis of censored data can be made with varying degrees of sophistication. One of the most
useful tools in this regard is a properly constructed probability plot. The actual failures observed are
plotted against plotting positions which have been adjusted for the amount and type of censoring in
the sample. This method is based on an empirical determination of the hazard rate h(x), or
instantaneous failure rate, associated with each of the observed failures. The cumulative hazard
rate H(x) may then be transformed into probability plotting positions. The development of the
approach has been aptly described by Nelson (1969) in an American Society for Quality Control
Brumbaugh Award winning paper. The method is as follows for a sample of n:

1. Order the data, including failure and censoring times. Distinguish the censored observations
by marking with an asterisk.

2. Calculate the hazard value h(x) associated with each failure time as the reciprocal of the
number k of units with failure and censoring times greater than or equal to the failure
observed. That is

h ¼ 1
k

3. Cumulate the hazard values to obtain the cumulative hazard value H for each observed failure.
For the ith failure

Hi ¼
Xi

j¼1

hj

4. Convert the cumulative hazard value to a plotting position using the relation

Pi ¼ 1� e�Hi
� �

100

Appendix Table T18.1 is a tabulation of values of Pi for associated 100Hi as calculated by
Sheesley (1974).

5. Make a probability plot on appropriate paper to assess the shape of the life distribution and, if
the points fail on a straight line, to estimate its parameters.
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TABLE 18.1: Probability positions for motorette data.

Ordered
Unit

Hours Run Hazard
h¼ 1=k

Cumulative Hazard Percent Cumulative Probability
k X H¼Sh P¼ (1� e�H)100

1 10 1764 .100 .100 9.5
2 9 2772 .111 .211 19.0
3 8 3444 .125 .336 28.5
4 7 3542 .143 .479 38.1
5 6 3780 .167 .646 47.6
6 5 4860 .200 .846 57.1
7 4 5196 .250 1.096 66.6
8 3 5448a

9 2 5448a

10 1 5448a

a Still running, also known as right censored.
Special hazard probability plot papers are available for this purpose upon which cumulative hazard
may be plotted directly, avoiding steps 4 and 5. Plotting papers for the normal, lognormal,
exponential, Weibull, and extreme value distributions are given by Nelson (1969).

The technique is illustrated by sample data taken from a life test of class B insulation on
small motors, or motorettes as given by Hahn and Nelson (1971). Ten motorettes were tested
at 1708C to obtain information on the distribution of insulation life at elevated temperatures. The
test was stopped at 5448 hwith three motorettes still running. Results on the other seven were, in order
of failure, 1764, 2772, 3444, 3542, 3780, 4860, and 5196. Calculation of the probability positions is
shown in Table 18.1. A normal probability plot of these data is shown in Figure 18.1. Only the actual
failures are plotted. The mean life of this sample of motorettes appears to be about 4400 h.

Because of their frequently long duration, life test are often concluded before all units have failed.
Sometimes this is not done by design. In such situations, the hazard plotting procedure is an
excellent technique for assessing the failure distribution models preparatory to the initiation of a
life test sampling plan. Plotting a substantial number of failures on a variety of probability papers
will give much insight into the probability distribution involved. More sophisticated methods are
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FIGURE 18.1: Probability plot of motorette data.
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of course available and will be found in textbooks on reliability (Locks 1995; Mann et al. 1974;
Nelson 2004).

The unique necessity for a time specification in reliability tests has led to the development of a
number of published sampling procedures. Two will be discussed here and are based on the
exponential and the Weibull distributions, respectively.

Variables Plans for Life Testing and Reliability (Juran, 1999)

Variables sampling plans for life and reliability testing are similar in concept and operation to the
plans previously described. They differ to the extent that, when units are not all run to failure, the length
of the test becomes an important parameter determining the characteristics of the procedure. Further,
time to failure tends to conform naturally to skewed distributions such as the exponential or as
approximated by Weibull. Accordingly, many life test plans are based on these distributions. When
time to failure is normally distributed and all units tested are run to failure, the variables plans assuming
normality, discussed above, apply; attributes plans such as those in MIL-STD-105E may also be used.

Life tests, terminated before all the units have failed, may be

1. Failure terminated. A given sample size, n, is tested until the rth failure occurs. The test is
then terminated.

2. Time terminated. A given sample size, n, is tested until a preassigned termination time, T, is
reached. The test is then terminated.

Furthermore, these tests may be based upon specifications written in terms of one of the following
characteristics:

1. Mean life. The expected life of the product.

2. Hazard rate. Instantaneous failure rate at some specified time, t.

3. Reliable life. Life beyond which some specified proportion of items in the lot or population
will survive.

Several sets of plans are available for the testing of life and reliability. They are illustrated
by presenting two classic plans developed by the U.S. Department of Defense, Handbook H-108
(H-108) and the technical report TR7 (TR7), which cover life data distributed exponentially and
according to the Weibull distribution. TR7 is also available as an American Society for Testing and
Materials (ASTM) standard (E2555-07 Standard Practice for Factors and Procedures for Applying
the MIL-STD-105 Plans in Life and Reliability Inspection).

Tables 18.2 and 18.3 will be found useful in converting life test characteristics. Formulas for
various characteristics are shown in terms of mean life m. Thus, using the tables, it will be found that
a specification of mean life m¼ 1000 h for a Rayleigh distribution (Weibull, b¼ 2) is equivalent to a
hazard rate of .00157 at 1000 h or to a reliable life of 99% surviving at 113 h.

Handbook H-108

Quality Control and Reliability Handbook H-108 is intended to be used with quality character-
istics that are exponentially distributed. Its title, ‘‘Sampling Procedures and Tables for Life and
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TABLE 18.2: Life characteristics for two failure distributions.

Exponential: f (t) ¼ (1=m)e�(t=m)
� �

Weibull: f (t) ¼ (btb�1=hb)e�(t=h)b
h i

, where m¼hG(1þ 1=b) and g¼ [G(1þ 1=b)]b

Life Characteristic Symbol Exponential Weibull

Proportion failing before time t F(t) F(t)¼ 1� e�t=m F(t)¼ 1� e�g(t=m)b

Proportion (r) of population
surviving to time r

rr¼ 1�F(r)¼ r rr¼ e�r=m rr¼ e�g(r=m)b

Mean life or mean time
between failures

m m m

Hazard rate: instantaneous
failure rate at time t

Z(t)¼ h(t) Z(t)¼ 1=m Z(t)¼bgtb�1=mb

Cumulative hazard rate
for period 0 to t

H(t) H(t)¼ t=m H(t)¼ gtb=mb
Reliability Testing,’’ suggests an emphasis on life testing and the standard deals primarily with a
specification of mean life. While the procedures are quite general in application for the exponential
distribution, they will be presented here in terms of the life testing problem.

H-108 is intended to test mean life, u. Two values are specified:

u0¼ acceptable mean life
u1¼ unacceptable mean life

with risks

a¼ producer’s risk
b¼ consumer’s risk

respectively.
A given specific requirement on the mean of the exponential distribution can always be stated in

terms of the proportion, p, of the population failing by a specified time, T. As shown in Table 18.2,
the relation is

p ¼ F(T) ¼ 1� e�T=u
TABLE 18.3: Values of g¼ [G(1þ(1=b))]b for the Weibull distribution.

b 0.0 1.0 2.0 3.0 b g

0.0 1.0000 0.7854 0.7121 0.33 1.8171
0.1 4.5287 0.9615 0.7750 0.7073 0.67 1.2090
0.2 2.6052 0.9292 0.7655 0.7028 1.33 0.8936
0.3 1.9498 0.9018 0.7568 0.6986 1.67 0.8289
0.4 1.6167 0.8782 0.7489 0.6947 3.33 0.6973
0.5 1.4142 0.8577 0.7415 0.6909 4.00 0.6750
0.6 1.2778 0.8397 0.7348 0.6874 5.00 0.6525
0.7 1.1794 0.8238 0.7285 0.6840
0.8 1.1051 0.8096 0.7226 0.6809
0.9 1.0468 0.7969 0.7172 0.6778
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Analogous to the specifications for the mean, in the notation of H-108

p0¼ acceptable proportion of the lot failing before specified time, T
p1¼ unacceptable proportion of the lot failing before specified time, T

with associated risks a and b. Special tables are presented for use with this type of specification in
time terminated tests.

A unique feature of the exponential distribution, constant failure rate, allows testing to be
conducted either.

With replacement: Units are replaced on test as they fail with the replacements also contributing
to total test time and the number of failures.

Without replacement: Units not replaced as they fail.

Beyond a necessary minimum number of units, n, the sample size is not specified since, with
constant failure rate, increasing the number of units on test only decreases the length, or waiting
time, of the test but does not affect the number of failures per unit time. Thus, replacements are
possible without biasing the test. Provision is made in the handbook for both failure terminated and
time terminated tests. Sequential tests are also provided.

The handbook contains a wealth of information on exponential life testing. Its structure is shown
in Figure 18.2, which shows the location of material on each of the three types of plans, including

Chapter 1 Definitions
Chapter 2

Section 2A General description of life test sampling plans
Section 2B Failure terminated plans for mean
Section 2C Time terminated plans for mean and proportion

failing before specified time
Section 2D Sequential plans for mean

Operation

The three different types of tests provided in H-108 are conducted as follows.

Failure Terminated

Place a sample of n units on test. Stop the test at the rth failure. Record the successive failure
times as Xi,n, i¼ 1, 2, . . . , r. Compute the estimated mean life ûr,n as

ûr,n ¼ 1
r

Xr

i¼1

Xi,n þ (n� r)Xr,n

" #

(without replacement)

or

ûr,n ¼ nXr,n

r
(with replacement)

Compare ûr,n to the acceptance constant C.

If ûr,n � C, accept

If ûr,n < C, reject
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Time Terminated

Place a sample of n units on test. Stop the test at time T. If r or fewer failures have occurred,
accept. If more than r failures have occurred, reject.

Sequential

Place a sample of n units on test. Record the successive failure times as Xi,n, i¼ 1, 2, . . . , k.
Compute the total survival time V(t) for k failures at time t as

V(t) ¼
Xk

i¼1

Xi,n þ (n� k)t (without replacement)

or

V(t) ¼ nt (with replacement)

Compare to sequential limits. After the kth failure,

Accept if V(t) � h0 þ ks or V(t) � sr0:

Reject if V(t) � h1 þ ks or k ¼ r0 and V(t) < sr0

where r0 is a truncation criterion for the sequential test. That is, the test is terminated at the r0th
failure and the truncation criterion applied.

Proportion Failing by Specified Time

Conduct a time terminated test (without replacement) as specified by the plan selected.
A summary of the operation of the H-108 test plans is shown in Table 18.4.

Selection

The selection of a plan begins with H-108 Table 2A.1 given in Appendix Table T18.2. To find a
plan, the operating ratio

R ¼ u1
u0

is formed for specified u0 and u1. The sampling plan code designation is then located under the risks
a and b desired. For example, for a¼ .05, b¼ .10 if

u0 ¼ 600 h, u1 ¼ 200 h

so that

R
u1
u0

¼ 200
600

¼ 1
3

Code B-8 would be selected.
Master tables for each type of test give the factors necessary to define the test. Indexed

by sampling plan code, the factors are multiplied by u0 to give the test parameters. The master
tables are
� 2008 by Taylor & Francis Group, LLC.



TABLE 18.4: Operation of H-108.

Step Section B Section C—Parts I, II Section D Section C—Part III

Characteristic Mean
Fraction Failing Before

Specified Time

Type Test Failure Terminated Time Terminated Sequential Time Terminated

Specified T¼ time interval

u0¼ acceptable mean life, a¼ producer’s risk

p0¼ satisfactory fraction
failing in time T

u1¼ unacceptable mean life, b¼ consumer’s risk
p1¼ unsatisfactory
fraction failing in
time T
G¼ failure rate in time T
where p¼GT

Criteria n¼ sample size n¼ sample size n¼ sample size n¼ sample size
r¼ termination number r¼ termination number h0¼ acceptance intercept r¼ termination number
C¼ acceptability constant T¼ termination time h1¼ rejection intercept T¼ termination time

s¼ slope r0¼ truncation criterion
r0¼ truncation criterion

Observation xi,n¼ time of ith failure xr,n¼ time of rth failure xi,n¼ time of ith failure xr,n¼ time of rth failure

Statistics

Without
replacement ûr,n ¼ 1

r

Xr

i¼1

xi,n þ (n� r)xr,n

" #

¼ estimate of mean life

xr,n
V(t) ¼P

k

i¼1
xi,n þ (n� k)t¼ total

survival time at time t with k failures

xr,n

With
replacement

ûr,n ¼ nxr,n
r

¼ estimate of mean life xr,n V(t)¼ nt¼ total survival time at time t
with k failures

xr,n

Accept if V(t) � h0þ ks or V(t) � sr0
Acceptability
criterion

ûr,n � C accept xr,n � T accept Reject if xr,n � T accept
ûr,n < C reject xr,n < T reject V(t) � h1þ ks or k¼ r0 and V(t)< sr0 xr,n< T reject
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Table 2B1 Failure terminated with or without replacement (gives r, C=u0)
Table 2C1 Time terminated without replacement (gives r, T=u0)
Table 2C2 Time terminated with replacement (gives r, T=u0)
Table 2D1 Sequential with or without replacement (gives r0, h0=u0, h1=u0, s=u0)
Selected values from these tables for a¼ .05 are given in Appendix Tables T18.3 through T18.6.
The handbook also gives special tables in which additional plans are indexed by a, b, and R¼ u1=u0
for the failure and time terminated plans.

Time terminated plans for proportion failing before a specified time will be found in H-108 Table
2C5 given in Appendix Table T18.7. It shows values of r and the factor D indexed by a, b, and
R¼ p1=p0 where

n ¼ D

p0

The question of sample size is directly incorporated in time terminated tests which require n to be
specified before a termination time can be determined. For failure terminated plans, this is not the
case. It would be theoretically possible to test, with replacement, one unit at a time until r failures
were generated. This, of course, could take inordinately long. As a result a number of units, n, are
tested simultaneously to speed up the test. Guidance in selecting n for failure terminated tests is
given in H-108, Part II of Section B. Tables presented include
Table 2B.2(a) Expected waiting time indexed by r and n showing ratio

Expected waiting time for r failures in a sample of n

Mean life of lot

Table 2B.2(b) Expected waiting time indexed by r and n¼ kr,
k¼ 1, 2 . . . , 10, and 20 showing ratio

Expected waiting time for r failures in a sample of n ¼ kr

Mean life of lot

Table 2B.3 Expected relative saving in time by increasing sample size
indexed by r and n showing ratio

Expected waiting time for r failures in a sample of n

Expected waiting time for r failures in a sample of r

Table 2B.4 Expected relative saving in time by testing with replacement
indexed by n and r showing ratio

Expected waiting time for r failures in a sample of n
when testing with replacement

� �

Expected waiting time for r failures in a sample of n
when testing without replacement

� �

Sequential plans may also be conducted with a variety of sample sizes. Only minimum sample size
is specified for tests without replacement. As a result, the sample size may also be chosen with
regard to waiting time or economic considerations. Special factors are presented with the sequential
plan to allow the determination of the expected number of failures required for a decision and for
calculation of the expected waiting time with any sample size.
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A check sequence for the utilization of all these tables in determining a sampling plan is shown in
Figure 18.3.

Example of H-108 Application

After the manner of Hahn and Shapiro (1967, p. 107), consider a life test of a large lot of very
expensive batteries. The test is to be conducted such that

u0 ¼ 70 with a ¼ :05

u1 ¼ 7 with b ¼ :10

Then

R ¼ u1
u0

¼ 7
70

¼ :1

and H-108 Table 2A.1 shows Code B-2 to be relevant. Using the appropriate tables, possible test
plans are as follows.

Failure Terminated

H-108 Table 2B.1 gives r¼ 2 and C=u0¼ .178. Hence

C ¼ :178(70) ¼ 12:5

Sample size would be determined from economic considerations. H-108 Table 2B.3 shows waiting
time could be reduced by 61% by using a sample of 4 rather than 2. H-108 Table 2B.4 shows a further
reduction in waiting time by 14% could be affected by testing with replacement. For a lot with mean
life 70 h, H-108 Table 2B.2a shows expected waiting time to be 40.8 h for a sample of 4 tested without
replacement. Suppose a sample of 4 is tested and failures are observed at 10 and 40 h. The test is
stopped with the second failure. If the test was, in fact, conducted without replacement

ûr,4 ¼ 1
2
[50þ 2(40)] ¼ 65

Since 65>C¼ 12.5, the lot is accepted.

Time Terminated

H-108 Table 2C.1b shows r¼ 2 and T=u0¼ .104 for a test of n¼ 2r¼ 4 units without replace-
ment. Here T¼ .104(70)¼ 7.28 h. Suppose a sample of 4 is tested with no failures by 7 h, 17 min.
Since two failures would have been necessary to reject, the lot is accepted.

Sequential

H-108 Table 2D.1b shows for Code B-2,

r0 ¼ 6
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Start

Failure rate G
in period T

specified

Determine
termination number r

and factor D (Table 2C.5)

Fraction p failure
before time T

specified

Mean life q specified

Determine
code designation

(Table 2A.1)

Check OC curve
(Table 2A.2)

Select type plan

Time
terminated

Sequential

Determine
n = D

P0

Apply time terminated
test for time T

without replacement

Failure
terminated

Specify
a, b, q1, q0

Specify
a, b, p1, p0

Convert G to p
p0 = G0T
p0 = G1T

Determine
acceptability

criterion, C/q0
and

termination number,
r, from code
(Table 2B.1)

or
(Table 2B.5)

Determine replacement
policy

Without
replacement

Determine
sample size, n,

and replacement
policy

Expected
waiting time

no replacement
(Table 2B.2a)

or
(Table 2B.2b)

Relative
saving in

waiting time by
increasing

n
(Table 2B.3)

Relative
saving in

n by
replacement
(Table 2B.4)

Specify n
and replacement policy

Determine
termination

time, T;
termination
number, r;
and sample

size n
(Table 2C.1)

or
(Table 2C.3)

Determine
termination

time, T;
termination
number, r;
and sample

size n
(Table 2C.2)

or
(Table 2C.4)

With
replacement

Minimum sample
size is
n = r0

Determine replacement policy

Without replacement

Fix n from
expected waiting

time formulas
2D.9

Check total
survival time Vt

calculation
2D.3.2

Check total
survival time Vt

calculation
2D.4.2

Fix n from
expected waiting

time formulas
2D.9

With replacement

Without
replacement

Check mean life
estimate q̂r,n
calculation

2B.3.2

Check mean life
estimate q̂r,n
calculation

2B.4.2

With
replacement

Apply plan

Obtain expected
waiting time constants
E0(t), Eq1

(t), ES(t), Eq2
(t)

(Table 2D.1)

Determine
acceptance line

constants
h0, h1, s

and truncation
criterion r0

(Table 2D.1)

FIGURE 18.3: Check sequence for selecting plan from H-108.
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h0 ¼ :2254(70) ¼ 15:8

h1 ¼ �:2894(70) ¼ �20:3

s ¼ :2400(70) ¼ 16:8

with expected number of failures to reach a decision

Mean Life Expected Failures to a Decision

0 E0(r)¼ 1.2
u1¼ 7 Eu1

(r)¼ 1.6
s¼ 16.8 Es(r)¼ 1.1
u0¼ 70 Eu0

(r)¼ 0.3

The acceptance and rejection lines are

Acceptance: V(t) ¼ 15:8þ 16:8k

Rejection: V(t) ¼ �20:3þ 16:8k

The usual sequential diagram can be represented in tabular form by solving the equations as
follows:

Failure Reject Accept

1 * 32.6
2 13.3 49.4

where * indicates no rejection can occur on the first failure. Suppose 4 units are placed on test with
replacement. The first failure occurs after 10 h, so that

V(t) ¼ nt ¼ 4(10) ¼ 40

Since V(t)¼ 40 exceeds the acceptance line value of 32.6, the lot is accepted.

Proportion of Lot Failing by Specified Time

The specifications on mean life can be converted to proportion failing by a specified time by use
of the relationship given in Table 18.2. In this case, for T¼ 13

p0 ¼ 1� e�(13=70) ¼ :169

p1 ¼ 1� e�(13=7) ¼ :844

Here

R ¼ p1
p0

¼ :844
:169

¼ 4:99
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FIGURE 18.4: H-108 Table 2A.2: OC curves for life tests terminated upon occurrence of
preassigned number of failures. (From United States Department of Defense, Sampling procedures
and tables for life and reliability testing, Quality Control and Reliability (Interim) Handbook
(H-108), Office of the Assistant Secretary of Defense (Supply and Logistics), Washington, DC,
1960, 2.9.)
H-108 Table 2C.5 gives r¼ 4 and D¼ 1.37 for R¼ 5 with a¼ .05, b¼ .10 so

n ¼ 1:37
:169

¼ 8:1 � 8

For this test 8 units are placed on test for a maximum of 13 h without replacement. If 4 or fewer units
have failed at 13 h, the lot is accepted.

Measures

Operating characteristic (OC) curves are provided in Table 2A.2 of H-108 indexed by life test
sampling plan code designation. The curve for Code B-2 is shown in Figure 18.4. The OC curves
are for failure terminated plans, the curves for sequential plans and time terminated tests are
essentially equivalent.

Further Considerations

The theory and development of the plans contained in H-108 will be found in a comprehensive
two-part paper published by Epstein (1960a,b) in Technometrics.

Technical Report TR7

Defense Department Quality Control and Reliability Technical Report TR7 (1965) provides
procedures and factors for adapting MIL-STD-105E plans to life and reliability testing when a
Weibull distribution of failure times can be assumed. It allows appropriate test truncation times for
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specific reliability criteria to be determined for use of the plans when all units are not run to failure.
The reliability criteria are

1. Mean life m: The expected life of the product

2. Hazard rate Z(t): The instantaneous failure rate at some specified time t

3. Reliable life rr: The life r beyond which some specified proportion r of the items in the
population will survive

Naturally, as with almost all variables criteria, these characteristics require Type B sampling.
All plans in TR7 are based on an underlying Weibull distribution. Its cumulative probability

distribution function may be written as

F t0ð Þ ¼ p0 ¼ P t � t0ð Þ ¼ 1� exp � t0 � g

h

� �b
" #

, t0 � g

with density function

f (t) ¼ b(t � g)b�1

hb
exp � t � g

h

� �b
" #

, t � g

where
g is the location (or threshold) parameter
b is the shape parameter
h is the scale parameter (characteristic life)
m is the mean life

The mean m of the Weibull distribution is at

m ¼ g þ hG 1þ 1
b

� �

with a hazard rate

Z(t) ¼ b

h

� �
t � g

h

� �b�1

and a reliable life

rr ¼ g þ h(�ln r)1=b

The location parameter g is often taken to be zero. This is the case in TR7. When it is not zero, e.g.,
when g¼ g0, then the observations, t, are simply adjusted to t0 ¼ t� g0 so that m0 ¼m� g0 and the
analysis is performed in terms of t0 and m0. Naturally, final results are reported in terms of t and m by
reversing the process, to obtain

t ¼ t0 þ g0, m ¼ m0 þ g0

for final results t0 and m0. The procedures of TR7 are independent of the scale parameter h, and so it
need not be specified.
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Probability plots and goodness of fit tests must be used to assure that individual measurements are
distributed according to the Weibull model. When this distribution is found to be an appropriate
approximation to the failure distribution, methods are available to characterize the product or a
process by estimating the three parameters (g, b, and h) of the Weibull distribution. These methods
include estimates from the probability plots and also point and interval estimates.

The plans are given in TR7 and are based on theoretical material and tables generated in three
previous Defense Department Quality Control and Reliability Technical Reports, each concerned
with a specific reliability criterion used in TR7. These are

Mean Life Criterion, TR3 (1961)
Hazard Rate Criterion, TR4 (1962)
Reliable Life Criterion, TR6 (1963)

These three technical reports, written to be used with MIL-STD-105C, abound in excellent
examples and detailed descriptions of the methods utilized in TR7.

Once specified, the reliability criteria may be converted from one to the other using the
relationships shown in Table 18.2. Mean life will be emphasized here because of its simplicity
and the popularity of that criterion in nondefense life testing.

Mean Life Criterion

Technical Report TR3 (1961) provided plans and procedures for developing and applying the
Weibull plans using mean life m as the criterion for acceptance. The dimensionless ratio t=m is
related to the cumulative probability p0. Values of t or m can easily be determined from the ratio t=m
once the other is specified. Since p0 is the proportion of product failing before time t, it can be used
in the role of ‘‘percent defective’’ in any attributes plan. The relationship of p0 to t=m, then, ties the
percent defective to specified values of test time t and mean life m.

The relationship is straightforward since

p0 ¼ F(t) ¼ 1� e�(t=h)b

and

m ¼ hG
1
b
þ 1

� �

so that

p0 ¼ 1� e�
t
mG

1
bþ1ð Þð Þb

and solving for t=m

t

m
¼ (�ln (1� p0))1=b

G (1=b)þ 1ð Þ

for proportion defective p0 and any associated Pa.
Appendix Table T18.8 taken from TR3 (1961) shows values of the ratio 100(t=m) corresponding

to selected percents defective tabulated for a number of Weibull shape parameters. The table can be
used to develop plans based on mean life or to convert measures of attributes sampling plans,
notably their operating characteristics in terms of mean life.

For example, suppose the plan n¼ 20, c¼ 1 is used in life testing of product with a Weibull shape
parameter b¼ 2. A test termination time of 200 h is employed and the number of failures counted at
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that time. What are the operating characteristics of this plan in terms of mean life? Using the OC
curve of the attributes plan and Appendix Table T18.8 we have

Pa p 100(t=m)¼ k m ¼ 100(200) 1
k

� �

.983 .01 11.31 1768

.940 .02 16.03 1248

.810 .04 22.79 878

.517 .08 32.59 614

.289 .12 40.34 496

.176 .15 45.48 440

.069 .20 53.30 375

.024 .25 60.53 330

Further, suppose an attributes plan is to be derived having a producer’s quality level (PQL) of 1250
h and a consumer’s quality level (CQL) of 400 h with risks a¼ .05 and b¼ .10, respectively. Units
are to be tested for 200 h and it is known that failures are distributed Weibull with b¼ 2. At

PQL: 100
t

m

� �

¼ 100
200
1250

� �

¼ 16

and at

CQL: 100
t

m

� �

¼ 100
200
400

� �

¼ 50

Using Appendix Table T18.8, we have

PQL: p ¼ :02

CQL: p ’ :179

giving an operating ratio of

R ¼ :179
:02

¼ 8:95

and, using the table of unity values, the plan required is n¼ 20, c¼ 1. TR3 contains other tables
which facilitate the development of plans in this way, as do TR4 and TR6 for the other reliability
criteria.

Hazard Rate Criterion

Technical Report TR4 (1962) was patterned after TR3, using the product tZ(t)� 100 in place of
the dimensionless ratio (t=m)� 100. Note that the value of t given is the termination time of the test.
For hazard rates specified for other times, tables were provided to convert the hazard rate specified
into a corresponding hazard rate at termination time of the test. The cumulative probability p0 is
related to tZ(t)� 100 in a manner similar to TR3. Resulting values and classifications useful in
converting any attributes plan to a Weibull life test, where hazard rate is specified, are presented
in TR4.
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Reliable Life Criterion

Technical Report TR6 was also patterned somewhat after its predecessors, TR3, and TR4. It used
the dimensionless quantity (t=r)� 100 in the manner of (t=m)� 100 and tZ(t)� 100 in the previous
reports. The cumulative probability p0 is related to (t=r)� 100 and resulting values and classifica-
tions useful in converting any attributes plan to a Weibull life test where reliable life is specified
were tabulated.

TR7 Tables

TR7 combines the results of the preceding three technical reports in a document specifically
intended to relate MIL-STD-105E to reliability testing where a Weibull distribution of failures can
be assumed. Tables of the appropriate conversion factors are provided for the following criteria:

Table Criterion Conversion Factor

1 Mean life (t=m)� 100
2 Hazard rate tZ(t)� 100
3 Reliable life (r¼ .90) (t=r)� 100
4 Reliable life (r¼ .99) (t=r)� 100

Each table is presented in three parts each of which is indexed by 10 values of b (b¼ 1=3, 1=2, 2=3,
1, 1-1=3, 1-2=3, 2, 2-1=2, 3-1=3, 4). The ASTM standard, E2555, contains tables with additional b
values (1-1=2, 3, 5, 10). The three parts are as follows for each criterion.

Part Tabulation

A Values of the conversion factor corresponding to the AQL
shown in MIL-STD-105E indexed by code letter and AQL

B Values of the conversion factor corresponding to a consumer’s
risk of Pa¼ .10 indexed by code letter and AQL

C Values of the conversion factor corresponding to a consumer’s
risk of Pa¼ .05 indexed by code letter and AQL

An additional table, TR7 Table 2D, allows conversion of a specified hazard rate to the correspond-
ing hazard rate at test truncation time for use with the tables which are in terms of hazard rate at test
truncation time. TR7 Table 2D presents values of Z(t2)=Z(t1) indexed by the ratio of times involved,
t2=t1, and the various shape parameters.

The tables for the mean life criterion are reproduced here as follows.

Appendix Table T18.9 TR7 Table 1A, 100 t=m ratios at the AQL
Appendix Table T18.10 TR7 Table 1B, 100 t=m ratios at the LQ level,

consumer’s risk¼ .10
Appendix Table T18.11 TR7 Table 1C, 100 t=m ratios at the LQ level,

consumer’s risk¼ .05

The structure of TR7 is shown in Figure 18.5.
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TR7

General
description

Master
tables

Table 1
Mean life, m,

conversion factors

Table 1A
100 t/m ratios

by AQL and shape
parameter

Table 2A
100 tZ(t) products
by AQL and shape

parameter

Table 2B
100 tZ(t) products
for 10% consumer
risk by code letter,

AQL and shape
parameter

Table 2C
100 tZ(t) products
for 5% consumer

risk by code letter,
AQL and shape

parameter

Table 2D
Hazard rate ratios
Z(t2)/Z(t1) to find
hazard rate at t2

given hazard rate at
t1, by ratio t2/t1

and shape parameter

Table 1B
100 t/m ratios

for 10% consumer
risk by code

letter, AQL and
shape parameter

Table 1C
100 t/m ratios

for 5% consumer
risk by code

letter, AQL and
shape parameter

Table 3A
100 t/m ratios
 by AQL and

shape parameter
r = 0.90

Table 2
Hazard rate, Z(t),
conversion factors

Table 3
Reliable life, pr,

conversion factors
r = 0.90

Table 3B
100 t/p ratios for

10% consumer risk
by code letter,

AQL and shape
parameter

r = 0.90

Table 3C
100 t/p ratios for
5% consumer risk

by code letter,
AQL and shape

parameter
r = 0.90

Table 4B
100 t/p ratios for

10% consumer risk
by code letter, AQL

and shape parameter
r = 0.99

Table 4A
100 t/p ratios by
AQL and shape

parameter
r = 0.99

Table 4C
100 t/p ratios for
5% consumer risk

by code letter, AQL
and shape parameter

r = 0.99

Table 4
Reliable life, pr,

conversion factors
r = 0.99

FIGURE 18.5: Structure of TR7.

�
2008

by
T
aylor

&
F
rancis

G
roup,

L
L
C
.



Operation

The conversion factors are employed in a manner identical to those presented in TR3, TR4, and
TR6 and can be used to

1. Determine the sample size necessary in testing for a fixed period to a specified value of the test
criterion (mean life, hazard rate, and reliable life) on the basis of desired AQL.

2. Determine the operating characteristics in terms of the test criterion for given test times if an
MIL-STD-105E plan has already been specified.

3. Determine an LQ level plan in terms of test time and MIL-STD-105E criteria for a specified
value of the test criterion.

4. Determine an MIL-STD-105E plan most nearly matching the AQL, 10% LQ, or 5% LQ.

The report gives a detailed explanation with examples of how to reach these ends. A summary of the
operation of TR7 is given in Table 18.5.

A comparison of the criteria for the MIL-STD-105E normal plan, Code F, 2.5% AQL (n¼ 20,
c¼ 1) for the case in which b¼ 2 may be instructive. TR7 gives the following conversion factors:

Limiting Quality

Criterion Factor AQL Pa¼ .10 Pa¼ .05

Percent defective (MIL-STD-105E) p0 � 100 2.50 19.5 23.7
Mean life (t=m)� 100 18.0 50 56
Hazard rate tZ(t)� 100 5.06 40 50
Reliable life (r¼ .90) (t=r)� 100 49 130 150
Reliable life (r¼ .99) (t=r)� 100 159 440 500

These criteria may be used to characterize a specific application. For example, if 125 units are to be
tested for t¼ 10 h, the converted values in terms of the specified criteria become

Limiting Quality

Criterion AQL Pa¼ .10 Pa¼ .05

Percent defective (MIL-STD-105E) 2.50 19.5 23.7
Mean life 55.6 20 17.9
Hazard rate (t¼ 10 h) .00506 .04 .05
Hazard rate at 20 h .01012 .08 .10
Reliable life (r¼ .90) 20.4 7.7 6.7
Reliable life (r¼ .99) 6.3 2.3 2.0

The hazard conversion factors always give the hazard rate at the time of termination of the test. The
hazard rate at 20 h was determined using Table 2D which shows

Z t2ð Þ
Z t1ð Þ ¼ 2:00

when

t2
t1
¼ 2
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TABLE 18.5: Operation of TR7.

Step\Criterion Mean Life Hazard Rate Reliable Life MIL-STD-105E Scheme

Type Test Time Terminated

Specified m0¼ acceptable mean life
m1¼ unacceptable mean life
t¼ test time
b¼ shape parameter

Z0(t0)¼ acceptable hazard
rate at time t0
Z1(t0)¼ unacceptable
hazard rate at time
t0 t¼ test time

b¼ shape parameter

r0¼ acceptable reliable life
for proportion r surviving
r1¼ unacceptable reliable life
for proportion r surviving
r¼ proportion surviving
beyond life r
t¼ test time
b¼ shape parameter

Code Letter from
MIL-STD-105E Table 1

AQL in terms of m, Z(t),
or rr

Shape parameter

Criteria TR7 Table 1.A gives AQL
corresponding to 100 t=m0

TR7 Table 1.B or 1.C gives
code letter corresponding to
AQL and 100 t=m1 for
consumer risk desired

If t 6¼ t0 convert hazard
rates to time t using
TR7 Table 2.D

TR7 Table 2.A gives AQL
corresponding to 100 t Z(t)

TR7 Table 2.B or 2.C gives
code letter corresponding to
AQL and 100 t Z(t) for
consumer risk desired

TR7 Table 3.A or 4.A gives
AQL corresponding to
100 t=r for r specified

TR7 Table 3.B, C or 4.B, C gives
code letter corresponding to
AQL and 100 t=r for r specified
and consumer risk desired

Obtain conversion factor
from Table A of appropriate
section given AQL and
shape parameter

Determine the test time t
algebraically from
conversion factor
and AQL

Check LQ of normal plan
through Tables B and C of
appropriate section

Procedure Single plan—Use criteria from MIL-STD-105E normal plan for code letter and AQL determined
Scheme—Use MIL-STD-105E system with AQL and code letter determined from normal
plan above

Test for time t and apply plan to failures observed

Use MIL-STD-105E scheme
for code letter and AQL

Test for time t and apply
MIL-STD-105E to failures
observed

�
2008

by
T
aylor

&
F
rancis

G
roup,

L
L
C
.



for the case of a Rayleigh distribution, b¼ 2. This is the effect of the linear increasing failure rate
typical of a Rayleigh distribution.

The plans presented in TR7 are, of course, time terminated. The conversion factors given in the
technical report can be used to determine the test termination time directly. Conversely, when an
MIL-STD-105E test is conducted for a specified termination time, t, associated values of the desired
reliability criterion can be found as

Mean life:m ¼ 100
mean factor

� termination time

Hazard: Z(t) ¼ hazard factor

100� termination time

Reliabile life: rr ¼
100

reliable life factor
� termination time

Using the factors, test termination time can be determined from the specified reliability criterion as

Mean life: t ¼ mean factor

100
�mean life

Reliabile life: t ¼ reliable life factor

100
� reliable life

When hazard rate is specified at time t0, the hazard rate must be transformed into the hazard rate at
the specified test termination time t. This may be done through the use of Table 18.6, developed by
Schilling, which shows values of

Q ¼ t2Z t2ð Þ
t1Z t1ð Þ
TABLE 18.6: Value of Q¼ t2Z(t2)=t1Z(t1) corresponding to the ratio t2=t1.

Shape Parameter (b)

t2=t1 1=3 1=2 2=3 1 1–1=3 1–2=3 2 2–1=2 3–1=3 4

1.25 1.08 1.12 1.16 1.25 1.35 1.45 1.56 1.75 2.10 2.44
1.50 1.14 1.22 1.31 1.50 1.72 1.97 2.25 2.76 3.86 5.06
1.75 1.21 1.32 1.45 1.75 2.11 2.54 3.06 4.05 6.46 9.38
2.00 1.26 1.41 1.59 2.00 2.52 3.17 4.00 5.66 10.08 16.00
2.25 1.31 1.50 1.72 2.25 2.95 3.86 5.06 7.59 14.93 25.63
2.50 1.36 1.58 1.84 2.50 3.39 4.61 6.25 9.88 21.21 39.06
2.75 1.40 1.66 1.96 2.75 3.85 5.40 7.56 12.54 29.14 57.19
3.00 1.44 1.73 2.08 3.00 4.33 6.24 9.00 15.59 38.94 81.00
3.25 1.48 1.80 2.19 3.25 4.81 7.13 10.56 19.04 50.85 111.57
3.50 1.52 1.87 2.31 3.50 5.31 8.07 12.25 22.92 65.10 150.06
3.75 1.55 1.94 2.41 3.75 5.83 9.05 14.06 27.23 81.93 197.75
4.00 1.59 2.00 2.52 4.00 6.35 10.08 16.00 32.00 101.59 256.00
4.25 1.62 2.06 2.62 4.25 6.88 11.15 18.06 37.24 124.35 326.25
4.50 1.65 2.12 2.73 4.50 7.43 12.27 20.25 42.96 150.44 410.06
4.75 1.68 2.18 2.83 4.75 7.98 13.42 22.56 49.17 180.15 509.07
5.00 1.71 2.24 2.92 5.00 8.55 14.62 25.00 55.90 213.75 625.00
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To use Table 18.6, obtain the conversion factor from the appropriate table in TR7. Calculate Q0 as

Q0 ¼ 100t0Z t0ð Þ
hazard factor

Locate Q0 in the column for the applicable shape parameter and read the corresponding value of
t2=t1. The required test termination time is

tC
1

t2=t1

� �

Note that if the product t0Z(t0) is less than the factor it may be necessary to convert the hazard rate to
a longer time sufficient to make Q0 larger than 1.

For example, suppose Code F, 2.5% AQL was used with a termination time 500 h. The three
reliability criteria corresponding to the AQL are to be estimated with a shape parameter 2. From
Table A of each section, we have

Reliability Criterion Factor

Mean life (100 t=m) 18.0
Hazard rate (100 tZ(t)) 5.06
Reliable life r¼ .90 (100 t=r) 49.0
Reliable life r¼ .99 (100 t=r) 159

For a 500 h test, these correspond to

Mean life
100
18

� 500 ¼ 2778

Hazard rate (at 500 h)
5:06

100� 500
¼ 0:00010

Reliable life (r ¼ 0:90)
100
49

� 500 ¼ 1020

Reliable life (r ¼ 0:99)
100
159

� 500 ¼ 314

Now, suppose Code F, 2.5% AQL is specified to have 10% LQ for the following reliability criteria.
What would be the test time for each?

Reliability Criterion 10% Limiting Quality

Mean life 1000 h
Reliable life r¼ .99 113 h
Hazard rate at 1000 0.00157

The conversion factors from Table B of each section are

Mean life 50
Reliable life 440
Hazard rate 40
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so that the test termination times are

Mean life t ¼ 50
100

� 1000 ¼ 500 h

Reliable life t ¼ 440
100

� 113 ¼ 497 h

To determine the time necessary for testing the hazard rate, the ratio Q0 is formed

Q0 ¼ 100� 1000� :00157
40

¼ 3:925

Table 18.6 indicates t2=t1¼ 2. Hence, test time will be

t0
1

t2=t1

� �

¼ 1000
1
2

� �

¼ 500 h

Note that all three reliability criteria are equivalent as pointed out earlier in the chapter and they all
lead to the same test termination time (500 h) for use with MIL-STD-105E, Code F, 2.5% AQL.

To select a normal plan from TR7 for specified m1 and m2 given test time t and shape parameter b,
proceed as follows:

1. Compute the ratios 100t=m1 and 100t=m2.

2. Enter TR7 Table 1.A (Appendix Table T18.9) to find the AQL corresponding to the value of
100t=m1 shown under the shape parameter.

3. Enter TR7 Table 1.B (Appendix Table T18.10) if Pa¼ .10 or Table 1.C (Appendix Table
T18.11) if Pa¼ .05 for the CQL. Moving down the column for the shape parameter, find the
point where the AQL found in step 2 matches the ratio 100t=m2 listed in the column. This is
the code letter for the plan.

Use the code letter and AQL to determine the sample size and acceptance number from the normal
plan given in MIL-STD-105E.

Thus, to determine a plan having AQL¼ 2800 h and 10% LQ of 1000 h for a test of 500 h for a
life distribution with shape b¼ 2

1. The ratios for m1 and m2 are 17.9 and 50, respectively.

2. AQL¼ 2.5.

3. Plan is Code F, 2.5 AQL.

The MIL-STD-105E normal plan n¼ 20, c¼ 1 testing for 500 h will give the protection desired.

TR7 with the MIL-STD-105E System

The procedure of TR7 and the preceding three technical reports was intended to facilitate the
development of a single reliability of life test plan using the criteria of an MIL-STD-105 normal
plan. Utilization of TR7 in conjunction with the MIL-STD-105E system and its switching rules
is not described in the technical reports. However, adaptation to use of the switching rules is
straightforward.
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Once the sample size code letter and AQL have been determined together with test time under
the normal plan, the corresponding reduced and tightened acceptance criteria may be substituted
for those of the normal plan appropriate to the switching rules. This leads to greater protection for
both the producer and the consumer. The OC curve of the resulting scheme can be obtained by
adapting the scheme OC curves given by Schilling and Sheesley (1978) to the reliability criterion
used through the conversion factors given in TR3, TR4, and TR6.

For example, in using the switching rules, the normal plan Code F, 2.5 AQL, t¼ 500 h would be
incorporated into a scheme as follows:

Tightened n¼ 32 Ac¼ 1 Re¼ 2 t¼ 500
Normal n¼ 20 Ac¼ 1 Re¼ 2 t¼ 500
Reduced n¼ 8 Ac¼ 0 Re¼ 2 t¼ 500

Here, the MIL-STD-105E limit numbers would not be used in switching to reduced inspection.
Using Appendix Table T18.8 and b¼ 2, the nominal AQL would be

100t
m

¼ 17:95, m ¼ 2786 h

From the Schilling–Sheesley tables (Appendix Table T11.21), the LTPD for scheme performance
would be about 12%, which converts to a mean life of

100t
m

¼ 40:34, m ¼ 1239 h

Note that use of the normal plan alone would result in an LQ of 1000 h, which shows the increased
protection afforded by using the switching rules.

The selection of a plan depends upon the use to which it will be put. If a single plan is to be
obtained, the procedure is simply that of determining a suitable match between the reliability
criterion selected and the normal inspection attributes plans of MIL-STD-105E. If the MIL-STD-
105E system is to be used with the switching rules, an appropriate AQL and code letter combination
must be found (see Table 18.5). Schilling and Sheesley (1978) have shown that the use of the
system can, as a minimum, result in lowering the sample size code letter at least to the next lower
category. This has been incorporated in the check sequence for selecting a plan given in Figure 18.6.
The procedure given is for matching PQL and CQL with the corresponding risks in a two-point
procedure for both a single plan and the MIL-STD-105E scheme.

Further Considerations

The development of TR3, TR4, and TR6 which culminated in Technical Report TR7 was the
outgrowth of the work of H.P. Goode and J.H.K. Kao at Cornell University. Three papers were
published in the Proceedings of the National Symposium on Reliability and Quality Control. These
classic works were Sampling Plans Based on the Weibull Distribution (1961), Sampling Plans and
Tables for Life and Reliability Testing Based on the Weibull Distribution (1962), and Weibull
Tables for Bio-Assaying and Fatigue Testing (1963).

These papers led directly to straightforward application of the Weibull distribution in acceptance
sampling as typified by TR7, which was prepared by Professor Henry P. Goode. An analogous
procedure for variables inspection based on MIL-STD-414 was subsequently developed by Kao
(1964) while at New York University.
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Start

Characterize the Weibull
distribution in terms of

shape parameter b

Choose the consumer risk for
limiting quality, LQ = 0.10 or 0.05

Determine the test time t desired

Hazard rate Z(t)Mean life m

Obtain AQL from
shape and 100 t/m0

(Table 1.A)

Obtain AQL from
shape and 100 tZ(t)

(Table 2.A)

Obtain the  code letter
 from AQL, shape and

100 t/m1
(Table 1.B)

Obtain the code letter
 from AQL, shape and

100 t/m1
(Table 1.C)

Obtain the code letter
 from AQL, shape and

100 tZ(t)
(Table 2.B)

Obtain the code letter
 from AQL, shape and

100 tZ(t)
(Table 2.C)

Specify
Z0(t) = acceptable
            hazard rate
Z1(t) = unacceptable
            hazard rate

Consumer’s risk 0.10
at limiting quality

Consumer’s risk 0.05
at limiting quality

Consumer’s risk 0.10
at limiting quality

Choice of
plan or scheme

Single plan
to be used

MIL-STD-105E scheme
to be used with
switching rules

Apply MIL-STD-105E

Apply normal plan
specified in

MIL-STD-105E
Use next lower

code letter
with same AQL

Consumer’s risk 0.05
at limiting quality

Convert the hazard rate
to test time t if not
previously specified

at that time
(Table 2.D)

Determine the reliability measure in
which to express test: m1Z(t) or pr

Specify
m0 = acceptable
       mean life
m1 = unacceptable
       mean life

FIGURE 18.6: Check sequence for determining the procedure for TR7.
(continued)
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Reliable life pr

Choose the fraction
surviving r= 0.90 or 0.99

Obtain AQL from
shape and 100 t/m

(Table 3.A)

Obtain AQL from
shape and 100 t/p

(Table 4.A)

r = 0.90 r = 0.99

Specify
p0 = acceptable
       reliable life
p1 = unacceptable
       reliable life

Obtain the code letter
 from AQL, shape and

100 t/m
(Table 3.B)

Obtain the code letter
 from AQL, shape and

100 t/m
(Table 3.C)

Obtain the code letter
 from AQL, shape and

100 t/m
(Table 4.B)

Obtain the code letter
 from AQL, shape and

100 t/m
(Table 4.C)

Consumer’s risk 0.10
at limiting quality

Consumer’s risk 0.05
at limiting quality

Consumer’s risk 0.10
at limiting quality

Consumer’s risk 0.05
at limiting quality

FIGURE 18.6 (continued):
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Problems

1. If the eighth observation in the motorette data of Table 18.1 was 6000 h with the other two
units still running, how would the probability plotting positions be changed?

2. If mean life from a Weibull distribution with shape parameter b¼ 3 is m¼ 200 h, what is

a. Proportion failing before 200 h

b. Proportion surviving to 200 h

c. Hazard rate at 200 h

d. Cumulative hazard rate at 200 h

3. H-108 is to be used in a life test where u0¼ 150 h and u1¼ 50 h with a¼ .05 and b¼ .10.
Find the appropriate failure terminated plan. Suppose 16 units are placed on test with
replacement and the eighth failure occurs at 40 h, should the lot be accepted?

4. Find a time terminated test appropriate to the specification of Problem 3. The test is made with
replacement and a sample twice as big as r is used. Should the lot be accepted?

5. Suppose, by mistake, the test of Problem 4 was performed without replacement. Should the lot
be accepted?

6. The government inspector prefers that a sequential plan be used instead of the failure
terminated plan of Problem 3. The data is tested against a sequential plot. What are the
parameters?

a. r0

b. h0

c. h1

d. s

Compute V(t) for the eighth failure. What would this value of V(t) indicate as to the
disposition of the lot?

7. The specifications of Problem 3 are identical to a proportion failing before 30 h of p0¼ .18
and p1¼ .45. Find a plan appropriate to these specifications with a¼ .05 and b¼ .10 if testing
is performed without replacement.

8. Suppose the plan n¼ 32, c¼ 2 is used in life testing with a termination time of 100 h. Use
p.95¼ .025, p.10¼ .15. For a Weibull distribution with b¼ 1.67, what are the values of mean
life having probability of acceptance .95 and .10?
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9. MIL-STD-105E normal plan Code K, 6.5 AQL is being used in the life testing of a Weibull
distribution having a shape parameter of b¼ 2.5 using a termination time of 50 h. Find, in
terms of mean life, the

a. AQL

b. LQ at Pa¼ .10

c. LQ at Pa¼ .05

10. Select a normal sampling plan from MIL-STD-105E having a high probability (AQL) of
passing units with mean life 1500 h and a low probability (LQ at Pa¼ .10) of passing units
with mean life 500 h. The shape parameter of the applicable Weibull distribution is b¼ 1.
Testing is to be for 15 h.
2008 by Taylor & Francis Group, LLC.



Chapter 19

Administration of Acceptance Sampling

Effective acceptance sampling involves more than the selection and application of specific rules
for lot inspection. As an integral part of the quality system, the acceptance sampling plan, applied on
a lot-by-lot basis, becomes an element in the overall approach to maximizing the quality at
minimum cost. Acceptance sampling plans are, after all, action rules and as such must be adapted
in a rational way to current results and the nature and history of the inspection performed. This is
what we have called acceptance control, involving a continuing strategy of selection, application,
and modification of acceptance sampling procedures to a changing inspection environment.

While acceptance sampling is sometimes regarded as a passive procedure for adjudication of
quality, the active role of inspection was recognized early by Dodge. In accepting the Shewhart
Award from the American Society for Quality Control, Dodge (1950, p. 6), pointed out that

Using inspection results as a basis for action on the product at hand for deciding
whether to accept or reject individual articles or lots of product as they come along is,
of course, an immediate chore that we always have with us. However, inspection results
also provide a basis for action on the production process for the benefit of future
product, for deciding whether the process should be left alone or action taken to find
and eliminate disturbing causes.

As such, inspection should involve

1. Good data

2. Quick information

3. Incentives for the producer to provide quality at satisfactory levels

4. Quantity of inspection in keeping with quality history

Indeed, according to Dodge (1950, p. 8),

A product with a history of consistently good quality requires less inspection than one
with no history or a history of erratic quality. Accordingly, it is good practice to include
in inspection procedures provisions for reducing or increasing the amount of inspection,
depending on the character and quantity of evidence at hand regarding the level of
quality and the degree of control shown.

Figure 19.1 illustrates this principle in terms of the extent and nature of quality history. It shows
roughly how representative sampling procedures could be changed as quality history is developed.
It assumes that quality levels have been appropriately set and that other suppliers are available. The
overriding principle in acceptance control is to continually adapt the acceptance procedures to
existing conditions. A control chart on inspection results is an excellent means to monitor the
progress of the inspection or as a check inspection device if more formal procedures have been
discontinued. It will indicate when results show a need for reassessment of inspection procedures.
The stages in the application of a sampling procedure are shown in Table 19.1.
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Little

AQL plan

AQL plan
Rectification

or
LTPD plan

Rectification
or

LTPD plan with
cumulative results

criterion

Cumulative
results
plan

Cumulative
results
plan

Demerit rating
or

remove inspection

Discontinue
acceptance

100%
inspection

Excellent

Average

Almost no (<1%)
lots rejected

Few (<10%)
lots rejected

Many (>_10%)
lots rejectedPoor

Amount Less than
10 lots

More than
50 lots

10–50 lots

Moderate

Quality history

Extensive Criterion
Past

results

FIGURE 19.1: Progression of sampling plans: extent of quality history.
The preparatory phase involves setting the specifications for acceptance sampling and selecting a
plan. When the plan is initiated, care should be taken to train the inspector and to analyze the results
of initial applications so that any discrepancies or problems can be worked out of the procedure.
TABLE 19.1: Life cycle of acceptance control application.

Stage Step Method

Preparatory Choose plan appropriate
to purpose

Analysis of quality system to define
the exact need for the procedure

Determine producer capability Process performance evaluation using
control charts

Determine consumer needs Process capability study using control
charts

Set quality levels and risks Economic analysis and negotiation
Determine plan Standard procedure if possible

Initiation Train inspector Include plan, procedure, records,
and action

Apply plan properly Insure random sampling
Analyze results Keep records and control charts

Operational Assess protection Periodically check quality history
and OC curves

Adjust plan When possible change severity to reflect
quality history and cost

Decrease sample size
if warranted

Modify to use appropriate sampling plans
taking advantage of credibility of supplier
with cumulative results

Phase out Eliminate inspection effort
where possible

Use demerit rating or check inspection
procedures when quality is consistently good
Keep control charts

Elimination Spot check only Remove all inspection when warranted
by extensive favorable history
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Later, analysis of feedback information allows tightening up if necessary, but should be geared
toward a reduction of inspection effort if justified by the history of the application. This may lead to
the use of skip-lotting, chain sampling, acceptance control charts, or other special procedures in the
later stages of the application. Finally, the inspection should be phased out altogether and replaced
by such procedures as a check inspection or a control chart. Sampling plans should be regarded as
stopgap measures, instituted to correct an immediate problem or to give the assurance desired on
present product. The information the plans generate should be used to lessen the need for future
inspection as much as possible. Sampling procedures should be designed to self-destruct at the
appropriate time.

Too often a sampling plan is instituted, not to be changed for years. Too often no one involved
can tell when a plan was originated, why, or to what criteria. ‘‘We’ve always used that plan.’’ ‘‘It
was written on the back of an old envelope when I took over.’’ Or, ‘‘Joe told us to sample in this way
before he retired—you remember Joe . . . ’’ These are clear indications of lack of acceptance control.
Acceptance sampling is not being controlled in such cases—rigor mortis has set in.

It should be evident that the feedback of quality information is essential for a rational system of
acceptance control. Ott (1975, pp. 181–182) has pointed out:

There are two standard procedures that, though often good in themselves, can serve to
postpone careful analysis of the production process:

1. Online inspection stations (100% screening). These can become a way of life.

2. Online acceptance sampling plans which prevent excessively defective lots from
proceeding on down the production line, but have no feedback procedure
included.

These procedures become bad when they allow or encourage carelessness in produc-
tion. It gets easy for production to shrug off responsibility for quality and criticize
inspection for letting bad quality proceed.

Sampling plans cost money to design and implement. They can be used to perform more than a
police function. The information generated is invaluable; it is regrettable that these results are often
simply filed away or never recorded. The institution of a sampling plan should have associated with
it effective procedures for the feedback and utilization of the data resulting from the plan.

Above all, to be effective, a sampling procedure needs to be enforced. There is no clearer signal to
a supplier to relax quality standards than the consistent acceptance by the consumer of substandard
material. A sampling plan that cannot be enforced should be dropped, for such a plan is nothing
more than a costly exercise in futility.

Selection and Implementation of a Sampling Procedure

Sampling plans are the basic tools of acceptance control. As in any field much of the skill of the
artisan is reflected in the ability to select the tools appropriate for the job. The uses of some sampling
plans are quite broad, for example, single sampling by attributes. Others are used to meet a very
specific need, such as H-108.

Table 19.2 presents a list of possible plans to meet varying needs. The two-point plans shown
could be single, double, multiple, or sequential as determined by the requirements of the specific
application. Note that some plans, such as the two-point plans, would fit almost every category.
Table 19.2 is simply suggestive of the type and variety of plans that could be employed for the
purposes shown.
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TABLE 19.2: Selection of plan.

Purpose Supply Attributes Variables

Simple guarantee
of PQLs and CQLs
at stated risks

Unique lot Two-point plan (Type A) Two-point plan
(Type B)

Series of lots Dodge–Romig LTPD,
two-point plan (Type B)

Two-point plan
(Type B)

Maintain level of
submitted quality
at AQL or better

Series of lots MIL-STD-105E,
QSS Plan

MIL-STD-414,
No-Calc plan

Rectification
guaranteeing AOQL
to consumer

Series of lots Dodge–Romig AOQL,
Anscombe plan

Romig variables
plans

Flow of individual
units

CSP-1, 2, 3, multilevel
plan, MIL-STD-1235B

Use measurements
as go–no-go

Flow of segments
of production

Wald–Wolfowitz,
Girshick

Use measurements
as go–no-go

Reduced inspection
after good history

Series of lots Skip-lot, chain, deferred
sentencing

Lot plot, Mixed
variables–attributes,
narrow limit gaging

Check inspection Series of lots Demerit rating Acceptance control
chart

Compliance to
mandatory standards

Unique lot Lot sensitive plan Mixed variables–
attributes with c¼ 0

Series of lots TNT plan Simon grand lot plan

Reliability sampling Unique lot Two-point plan (Type B) H-108, TR7
Series of lots LTPD plan, QSS system,

CRC Plan
TR7 using MIL-
STD-105E
switching rules
The implementation of a specific application is shown by the check sequence given in Figure
19.2. This follows through the stages shown in Table 19.1, but emphasizes the role of feedback in
the continuing application of the plan. Plans may be installed in the areas of receiving inspection,
process inspection, final inspection, or as a check inspection of a small quantity of finished product.
The approach remains much the same in all areas. Of prime importance is the distinction between
two prime purposes for sampling as spelled out in American War Standard Z1.3 (American
Standards Association, 1942):

To provide a basis for action on the product as it comes to the inspector; accept, reject
(or rework).

To provide a basis for action on the process in the interests of future product; leave the
process alone or correct the process.

This distinction will bear on the type of plan installed, how it is administered, and, of course, the
type of operating characteristic (OC) curve calculated to assess its performance.

When a two-point plan is to be employed, a comparison of the administrative aspects of single,
double, multiple, and sequential sampling is shown in Table 19.3. Experience has shown single-
sampling plans to be the most frequently employed while double sampling incorporates most of the
advantages of repeated samples without suffering many of the associated administrative burdens.
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FIGURE 19.2: Check sequence for implementation of sampling procedure.
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TABLE 19.3: Comparison of administrative aspects of single, double, multiple,
and sequential sampling.

Single Double Multiple Sequential

ASN Most Less Still less Least
Number samples per lot One Two Many Most
Maximum number items inspected per lot Least More Even more Most
Variability in amount of inspection None More Even more Most

Source: Adapted from Statistical Research Group, Sampling Inspection, McGraw-Hill, New York, 1948, 35.
Multiple and sequential plans seem less frequently employed because of variability in inspection
load and complexity of administration even though they are, in terms of amount of inspection, the
more efficient procedures.

Determining Quality Levels

Before a sampling plan can be derived, one or more nominal quality levels must be set to define
the protection to be afforded by the plan. These include:

Acceptable Quality Limit (AQL). Maximum fraction defective that, for purposes of acceptance
sampling, can be considered satisfactory as a process average.

Average outgoing quality limit (AOQL). Maximum average outgoing quality to the consumer
under rectification.

Indifference quality (IQ). Level of quality with equal chance of being accepted or rejected.

Lot tolerance percent defective (LTPD). Objectionable level of quality that should be rejected at
least 90% of the time (also 10% limiting quality).

Producer’s quality level (PQL). Level of quality which should be passed most of the time.

Consumer’s quality level (CQL). Level of quality which should be rejected most of the time.

The AQL, AOQL, IQ, and LTPD are used to index many existing acceptance sampling plans and
schemes. Also, the PQL and CQL with associated risks are used in the derivation of two-point plans.
Risks must also be associated with the AQL, IQ, and LTPD; the latter two are fixed at .50 and .10,
respectively, while the former sometimes varies over a range in the order of 0.5%–13% as with
MIL-STD-105E. These nominal quality levels are necessarily fixed by the consumer to meet the
consumer’s needs with due consideration to protecting the reasonable PQLs from rejection. Some-
times this is done unilaterally, but more often by negotiation between the consumer and the
producer. The consumer should be as much interested as the producer in good lots being accepted
from the point of view of scheduling and price.

In determining quality levels, the consumer should attempt to minimize the total cost in terms of
purchase, inspection, assembly, and eventual service. The first two costs increase as more and more
perfection is demanded, while the latter two decrease. The consumer should not expect levels of
quality better than those prevalent in industry without special arrangements with the producer. Since
it is usually not practical to set quality levels for each customer, the producer must choose a level
acceptable to all the intended customers at prices they are willing to pay. The sales, manufacturing,
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quality, and engineering organizations of both the producer and the consumer should participate in
setting quality levels jointly weighing cost, feasibility, and customer acceptance. Quality levels
should be understood by both parties and form part of the purchasing specification either directly or
by reference to recognized standards. It is the producer’s responsibility to perform sufficient
inspection to assure conformance. The consumer, however, should judge the producer’s perform-
ance on the basis of process average where possible and not on the results of a single lot, since
inspection of a single lot will seldom give a meaningful estimate of longer-run performance. These
considerations have been amplified by the Electronic Industries Association (1949). Also, an
excellent discussion of some of the considerations important in setting quality levels has been
given by Hamaker (1949).

Setting AQL

The AQL is usually used as an index of sampling schemes and hence is used with a series of lots.
While the AQL is by nature associated with producer’s risk, its magnitude must be established by
the consumer. It represents the consumer’s estimate of the maximum fraction defective that can be
tolerated for sampling purposes. Higher values are not acceptable. Lower values are desirable. Zero
is seldom attainable at reasonable cost.

The state-of-the-art process average should be the starting point for determining an AQL. This
may be evaluated from past inspection results or by engineering estimate. In this regard, Bowker and
Goode (1952, pp. 41–42) state

The selection of an AQL range depends almost invariably upon a compromise between
the quality that is likely to be submitted by the supplier and the quality that is ideal from
a use standpoint (0 percent defective). The engineering and production staff of the
receiver can estimate the percent defective that can be tolerated from an economic or
technical point of view. The quality level one can reasonably expect from the supplier
can best be determined from experience. In lieu of any experience with the item for
which the plan is selected or with like items, some information might possibly be
obtained from the supplier. An estimate of the quality currently obtainable should be
made as close as possible in terms of percent defective, and if this estimate represents a
satisfactory working quality.

The state-of-the-art process average is not process capability. It should include allowances for
differences between manufacturers and for variations in level of quality by a single manufacturer
over time. It is the level at which quality can be expected to be maintained on a long-term basis, or at
least for as long as the product in question is to be produced. If possible, in setting the AQL, the
consumer should perform a process performance evaluation on the data from previous inspection
results on the same or similar material. Such procedures are outlined by Mentch (1980). In referring
to the use of a process capability estimate from past data to set specifications, Mentch (1980, p. 121)
points out:

This estimate of process capability is based on the assumption that is feasible to bring
the process into control in a technical and economic sense. Since this assumption is not
always true, the use of this estimate of process capability to set specifications is not
advisable. When it is necessary to set a specification to the process capability, this
should be done on demonstrated performance in terms of consistently attainable levels
. . . and not on a collection of historical data adjusted to be ‘‘in control.’’

The way to do this is to analyze the process data over a sufficiently long period to characterize
the overall level of performance. This information is used to set the AQL. Bowker and Goode (1952,
p. 42) suggest:
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If the estimate of incoming quality is better (lower percent defective) than the quality
one is willing to tolerate, and particularly if this estimate represents the best figure from
a number of possible suppliers, it would be wise to make the AQL somewhat higher
than this estimate, so that the acceptance criterion will be less exacting, fewer lots will
be rejected, and costs will be reduced for all concerned. On the other hand, should the
estimate for incoming quality be a higher percentage than the percent defective one can
reasonably accept and use, the AQL class should be set at a lower percentage than the
estimate, provided that the rejection of an excessive number of lots will not hamper the
receiver’s operations.

This latter consequence would probably demand economic concessions to the producer since an
AQL lower than the state-of-the-art process average would demand extensive screening of product.
H-53 (1954, p. 13) points out:

Selecting extremely tight quality levels (low numerical values) might result in prohibi-
tive inspection and end item cost, frequent rejection of products, or possible refusal by
supplier to accept procurement orders or sign contracts. On the other hand, selecting
very liberal quality levels (high numerical values) might result in delivery of large
quantities of unsatisfactory products into the supply system.

Special considerations will, of course, motivate the consumer to move the AQL away from the
state-of-the-art process average. As listed by the Statistical Research Group (1948, p. 84), some of
these are

a. Reduction in value of product occasioned by defectives. Sometimes the loss occasioned by a
defective is so large that if there are more than a small percentage of defectives the product
will be worth less than it costs. In such cases it may be desirable to fix the AQL at or below the
breakeven percentage even if this should involve the rejection of a large proportion of
submitted inspection lots.

b. Class of defects. Major defects ordinarily reduce the value of product more than minor defects.
Consequently the AQL should ordinarily be lower for major defectives that for minor
defectives.

c. Effect of defective product on later processing and assembling. If defective product results in
market waste of material and time during later processing and assembling, the AQL should be
more exacting (lower). The number of items that are assembled may also play a part.

d. Suppliers’ average quality and urgency of demand for product. If the quality that suppliers
can furnish is poor and cannot readily be improved and if output is needed badly, the AQL
may have to be higher than otherwise desired; if it is not higher excessive rejection may occur.
If the suppliers’ average quality can be expected to improve over a period, gradual lowering of
the AQL may be desirable.

e. Kind of defects included in the defects list. In order to permit consistent inspection and to keep
close control over the quality of product submitted, it will sometimes be desirable to include in
the defects list defects whose effect on functioning is questionable, or to define defects more
stringently than is strictly necessary for the use to which the product is to be put. When this is
done, inspection subjects the item to a severer test than the item will receive when it is used and
theAQL should accordingly bemore liberal than if each itemwere subjected to a less severe test.

Further consideration is the number of different types of defects accumulated for test against a single
AQL. Wadsworth (1970) has shown that grouping of defects under a single inspection class (such as
majors) results in an associated decrease in the effective AQL. For example, N independent defect
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type are grouped together, each having fraction defective p, the effective fraction defective P for the
group would be

P ¼ 1� (1� p)N

As a consequence of this formula the AQL for the group, AQLG, might be increased to

AQLG

100
¼ 1� 1� AQLI

100

� �N

where AQLI represents the AQL desired on each individual defect type. This relationship is
represented by Figure 19.3 taken from Wadsworth (1970). The AQL desired for each individual
defect type is entered on the x-axis. The AQL for the group (or class) is read from the y-axis. Thus, if
two defect types are classed as majors, each of which is to have a 4% AQL, the AQL for the class
should be 8%. This follows since

AQL

100
¼ 1� 1� 4

100

� �2

AQL ¼ 7:8%
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FIGURE 19.3: Effect of grouping defects on percent defective. (Reprinted fromWadsworth, H.M.,
J. Qual. Technol., 2, 182, 1970. With permission.)
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Setting AOQL

An AOQL should also reflect the consumer’s need. Of course, this measure of quality is
meaningful only for a series of lots when rejected lots are 100% inspected. Too high an AOQL
will result in an uneconomic level of defective material for the consumer. Too low an AOQL may
cause excessive screening and higher costs particularly if set below the state-of-the-art process
average. Dodge (1945) suggests setting the AOQL about one and one-half times higher than the
state-of-the-art process average to avoid excessive amounts of screening which results when the
process average is equal to the AOQL. Dodge (1948) has described the administration of an AOQL
plan in some detail.

In general it is good practice to have the producer perform any screening of rejected lots—or at
least pay for it. Thus in internal sampling, the receiving department may perform the sampling, but
the producing department should be responsible for the 100% inspection.

Setting IQ

Indifference quality (IQ), or the point of control, can be used as an element in the economic
determination of quality levels as shown by Enell (1954). It is, of course, the level of quality having
50% probability of acceptance, i.e., the 50:50 breakeven point between acceptance and rejection.
Fortunately, the breakeven point between the producer and the consumer is relatively easy to
determine, one of the chief advantages of plans. Hamaker et al. (1950, p. 363) have pointed out that

The point of control may conveniently be interpreted as the point dividing ‘‘good’’ and
‘‘bad’’ lots. Experience has taught that producer and consumer readily agree as to a
suitable choice of this parameter.

Thus, the IQ level can be a useful measure in characterizing a plan.

Setting LTPD (or LQ)

An LTPD (or LQ) may be used as a quality level in inspecting a single lot or it may be used with a
series of lots. It should be borne in mind that LTPD constitutes an extremely pessimistic view of the
protection afforded by a sampling plan. After all, nine to one odds are roughly akin to obtaining three
heads in three flips of a coin. It is not too likely, but it can happen. However, no producer could stay in
business if 90% of the lots were rejected. Hence, the LTPD should be set well beyond the AOQL or
the AQL. In discussing an LTPD plan, Schilling (1978, p. 49) points out that for c¼ 0 plans,

The fraction defective to be protected against by the plan should be set at a level no less
than 22 times the fraction defective that represents the state of the art. When the level to
be protected against is necessarily closer to the state of the art fraction defective,
sampling plans allowing one or more defects in the sample should be used. Thus, for
example, by accepting if the sample contains three or fewer defectives, a single
sampling plan can be derived for which the fraction defective protected against can
reasonably be set at five times the state of the art fraction defective.

Setting the LTPD at least five times the state-of-the-art fraction defective (usually reflected in AQL)
is probably a good rule of thumb.

Dodge and Romig (1959, p. 6) recommend that the LTPD be chosen at a level that will almost
surely be met by every lot. In fact, they suggest:

In choosing a value of LTPD, consider and compare the cost of inspection with the
economic loss that would ensue if quality as bad as the LTPD were accepted often. Even
though the evaluation of economic loss may be difficult, relative values for different
levels of percent defective may often be determined.
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Thus, the LTPD should be carefully chosen to be an extremely pessimistic quality level which
should be rejected most of the time. In a series of independent lots, the probability that two
successive lots would pass at the LTPD level of quality is just 1%.

Relation of Levels

The relation of AQL (when defined as having probability of acceptance of .95), AOQL, IQ, and
LTPD varies among individual plans. Using the Poisson approximation, it is possible to portray this
relation by a modification of the Thorndyke chart. This is shown in Figure 19.4 and can be used
in assessing the effect and interrelationships of these quantities. Here we have drawn additional
curves labeled L and M respectively for pL¼AOQL and pM (the fraction defective at which the
AOQL occurs) on the chart. For example, for higher values of acceptance number, the AOQL of a
single-sampling plan approaches and exceeds the AQL, their being equal at about c¼ 17. Also
when c¼ 17

npL ¼ 11:6

so that, for a plan with sample size 500,

AOQL ¼ 11:6
500

¼ 0:23

The AOQL occurs at

npM ¼ 13:5

so that

pM ¼ 13:5
500

¼ :027

Setting PQL and CQL

The PQL, p1 and the CQL, p2 are used in setting up two-point plans. In general the PQL should be
set much as the AQL is set for sampling schemes; that is, to reflect the state-of-the-art process
average. The CQL, on the other hand should be a conservative level of unacceptable quality set
much as the LTPD. The PQL and CQL are meaningless unless associated producer’s and consumer
risks, a and b, are also quoted. It is a common practice to set a¼ .05 and b¼ .10.

In discussing two-point plans, Peach (1947, p. 27, 333) suggests that

. . .Much as we would like to demand perfection in our purchased materials, such a
demand is not practical. No method of inspection known can enforce such a standard.
The common sense alternative is to decide in advance to tolerate some small proportion
of defective material. This proportion . . . is designated by the symbol p1 or AQL.

In general, p1 should be known to the supplier, and should be part of the specification to
be legally binding . . . This does not apply to p2; indeed, as a matter of policy,
information about p2 should never be given to an outsider. The vendor’s contract sets
a quality standard, which is, or should be p1; his job is to meet that standard. The
customer may, for the sake of economy in inspection, set some high value of p2, thus
taking a considerable risk of accepting sub-standard material; but it is not part of the
vendor’s business to inquire how great this risk is. Such information could only be used
� 2008 by Taylor & Francis Group, LLC.
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to cheat the customer, by enabling the vendor to manufacture, not to the standards of the
contract, but to the loopholes in the customer’s inspection. When a supplier asks a
customer ‘‘How much inspection do you do?,’’ the answer should be ‘‘That information
is confidential’’ or ‘‘100 percent.’’

In safeguarding his own rights, however, the buyer must not prejudice those of the
supplier. If for his own convenience he changes from one inspection plan to another, he
should be careful to keep p1 and a the same; the supplier has a right to demand a fixed
quality standard.

Military Standard 105E (U.S. Department of Defense, 1989) makes a similar point in paragraph 4.4
when it states that ‘‘The selection or use of an AQL shall not imply that the contractor has the right
to supply any defective unit of product.’’

Economic Considerations

Ultimately, the selection of quality levels must be resolved by economic considerations. The
consequences of various possible nominal levels must be weighted against costs, operating charac-
teristics, and other factors. This may be done explicitly or implicitly.

Kavanagh (1946) has provided an in-depth discussion of the procedure for determining the unit
cost of acceptance (in terms of saving by removing a defective) and unit cost of inspection. A simple
model for balancing these costs has been presented by Enell (1954). Suppose costs are quoted on a
per unit basis and

A¼ unit cost of acceptance (i.e., the cost of one defective unit being accepted)
I ¼ cost of inspection of one piece
C¼ cost of repairing or replacing one defective
p ¼ fraction defective in the lot

If R is the unit cost of rejection, then

R ¼ I

p
þ C

which amounts to the cost of inspection to find one defective piece plus the cost of correcting it
when found. At the breakeven point between the cost of acceptance and the cost of rejection

A ¼ R A ¼ I

p
þ C

with an associated fraction defective

pB ¼ I

A� C

at the breakeven point between the costs. But this is also the breakeven point between acceptance
and rejection since when

p < pB
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the cost of rejection must exceed the cost of acceptance. Also, when

p > pB

the cost of acceptance exceeds the cost of rejection. This can be seen in Figure 19.5.
Therefore, pB may be regarded as the IQ since at pB the risk of acceptance and rejection would

reasonably be the same (i.e., 50:50). Single-sampling plans may be set up for this IQ using the
relation

pB ¼ cþ 2=3
n

from the Poisson distribution as discovered by Campbell (1923). This gives

n ¼ cþ 2=3
pB

where either n or c must be fixed before the formula can be used.
Enell, however, suggests that, using MIL-STD-105E, a plan be selected having the indicated IQ

for the sample size code letter associated with the lot size in question. This might be done using the
Schilling and Sheesley (1978) tables and the MIL-STD-105E scheme.

A ¼ $1:00, I ¼ $:026, C ¼ $:50

then

pB ¼ :026
1:00� :50

¼ :052

Suppose lots of 100 are shipped so that Code F would be used. The Schilling–Sheesley tables show
pB¼ .055 is associated with AQL¼ 2.5% for Code F. Hence, the inspector would use Code F, 2.5
AQL for lots of 100.

Other, more sophisticated models for economic determination of quality levels and sampling
plans have, of course, been presented (Smith 1965; Singh and Palanki, 1976; Liebesman 1979).
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Mandatory Standards

Setting quality levels for sampling plans is sometimes regarded in terms of an adversary
relationship between the producer and the consumer. Such a relationship is more apparent than
real, however, and probably made better semantics than sense.

The approach presented here implies consideration by the consumer of both the producer’s and
consumer’s risks in setting up a sampling plan. The producer’s risk must be given due consideration
to protect the availability of supply to the consumer and forestall price increases made necessary by
a demand for unreasonable levels of quality.

The situation is analogous when sampling to mandatory standards for, in effect, the government
represents the consumer. Where necessary, it is, after all, the state-of-the-art fraction defective
which must be improved (not legislated). A cost–benefit analysis is clearly in order in setting
quality levels for mandatory standards. Such an approach and its implications for sampling
to mandatory standards have been discussed in an excellent seminal paper by Muehlhouse et al.
(1975).

Quality levels should be set in terms of the state-of-the-art fraction defective to be of greatest
impact in the marketplace. To do otherwise would be to restrict supply and raise costs through rigid
enforcement of unreasonable levels or to invite manufacturers to cheat on the standard through
nonenforcement of unrealistic demands.

It should be remembered that the quality levels used in sampling are set for cost-effective
inspection and not as targets for performance. They should be changed as appropriate to reflect
improvements in the state-of-the-art fraction defective.

Computer Programs

The administration of acceptance sampling plans has been greatly simplified by the computer.
Databases can provide an excellent source for quality history, while individual computer programs
and packages can be used to set up and evaluate sampling plans and even to sentence individual lots.
Minitab and SAS are examples of packages that are of great value in this regard. Internet users can
use a search engine, such as Google.com or Yahoo.com, by entering ‘‘acceptance sampling
software’’ to see a wide variety of computer programs that are available commercially or as
freeware. One should always be cautious when using computer programs that are not commercially
produced as they may not be sufficiently tested and could contain incorrect calculations.

Computer spreadsheets generated by popular software packages, such as Microsoft Excel, can
also be used to perform necessary computations for a wide variety of sampling plans and construct
needed graphs. The personal computer is a welcomed ally in making acceptance sampling applica-
tions fast and easy—a necessary requisite for application in industry.

Basic Principle of Administration

The need for simplicity and practicality in applications of acceptance sampling cannot
be overstated. In no sense should integrity be sacrificed to expedience or theory to intuition.
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Nevertheless, it is often possible to devise simple, straightforward, theoretically correct methods
which belie the complexity of more elegant procedures. A basic principle which applies to the
administration of sampling plans is that the shop requires methods and procedures that are safe, sure,
swift, and simple.

Unfortunately, straightforward mathematics seems often to lead to complicated procedures
(e.g., MIL-STD-414) while simple methods (e.g., No-Calc) are often found almost intractable
from the viewpoint of mathematical statistics. Nevertheless, the ultimate purpose of acceptance
sampling is lot inspection on the factory floor. The methods must be understood and trusted by
nonstatisticians—inspectors, operators, supervisors, and the like before they are used. With Tukey
(1959) we would agree with Churchill Eisenhart’s definition of the practical power of a procedure as
the product of its mathematical power and the probability that the procedure will be used.

Examples of the importance of simplicity are legion. The use of the range over the standard
deviation in variables sampling is because it is easy to understand and compute. This is also true
with the X, R chart. MIL-STD-105 went from a complicated control chart approach for switching in
the A, B, and C versions to an easy counting rule in MIL-STD-105D and E because of its simplicity.
The intricacy of MIL-STD-414, or its derivatives, has done much to forestall wider application.
Multiple sampling suffers, to a lesser extent, from the same malady.

Acceptance sampling and the accompanying forms, methods, procedures, and presentations must
be made as uncomplicated as possible for successful implementation in industry. Ease of application
is not for the lazy but for the industrious strapped by the tyranny of time. In the words of Dodge
(1973) ‘‘If you want a method or system used, keep it simple.’’
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Problems

1. A variables sampling plan was instituted on the thickness of germanium pellets used in
early transistors. Corrective action resulting from the feedback of information from this
inspection, as plotted on control charts, led to extensive excellent quality history. What action
should be taken?

2. About 100,000 components are manufactured each month for purchase by an original
equipment manufacturer. A certain defect in a component could pose a potential safety
problem. Accordingly, the customer has imposed a requirement that not more than 1 in
100,000 of these components may have the defect with 90% probability. What sampling
procedure should be recommended?

3. Ten defect types are combined in the major defective category. Each has an AQL of 1%. What
should be the combined AQL for the group?

4. If a 2% AOQL has been successfully used for machine screws, what might be a reasonable
AQL¼ p.95 if a sampling scheme is to be used? What might be a reasonable LTPD?

5. Experience has shown c¼ 2 to be a very desirable acceptance number for both producer and
consumer. Using the IQ as a base, from the modified Thorndyke chart. What are the relative
values of AOQL, IQ, and LTPD?

6. A sampling plan is to be instituted on machine screws of a certain type. The unit cost of
acceptance is $60 while the cost of inspecting a piece is $1. The cost to repair a defective unit
is $6. What should be the IQ?

7. Using the results of Problem 5, if c¼ 2 is to be used. What would be reasonable values of the
AQL, AOQL, and LTPD in Problem 6?

8. At present, a sampling inspection plan is applied manually at a cost of $.05 per piece using the
plan n¼ 100, c¼ 2 on lots of 10,000 with a satisfactory level of outgoing quality. A computer
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is available which will perform the inspection on 100% of the product at a cost of $.001 per
piece. Is it economical to purchase the computer? At the cost of inspection would the
installation of the computer be worthwhile?

9. If replacement cost is negligible, we have pB¼ I=A. Using the results of Problem 5, convert
this to a formula for AQL, for LTPD.

10. It has been traditional in some industries to ‘‘take a 10% sample of the lot,’’ implying c¼ 0.
This procedure has often been impugned since protection varies with lot size and to defeat the
plan, it is necessary only to supply smaller lot sizes. If lots rejected under this procedure are
100% inspected, develop a formula for the AOQL from the formula

AOQL ¼ y

n
1� n

N

� �

Does the result confirm or refute the criticism that protection varies with lot size?
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TABLE T1.1: Control chart limits for samples of n.

Plot

Sample Mean X

against Standard
m with s Known

Sample
Mean X

against Past
Data Using
X and s or R

Sample Standard
Deviation against

Standard (Known) s

Sample Range
against Standard

(Known) s

Sample
Standard
Deviation s
or Range R
against Past
Data Using

s or R

Samplea

Proportions
p̂ or Defects per
Unit û against
Standard p or u

Samplea

Proportions
p̂ or Defects per

Unit û against Past
Data Using

p or u

Upper control
limit

mþ 3s=
ffiffiffi
n

p
X þ A3s B6s D2s B4s pþ 3

ffiffiffiffiffiffiffiffiffiffi
p(1�p)

n

q
p� 3

ffiffiffiffiffiffiffiffiffiffi
p(1�p)

n

q

¼mþAs X þ A2R D4R uþ 3
ffiffi
u
n

p
u� 3

ffiffi
u
n

q

Centerline m X c4s d2s s p p
R u u

Lower control
limit

m� 3s=
ffiffiffi
n

p
X � A3s B5s D1s B3s p� 3

ffiffiffiffiffiffiffiffiffiffi
p(1�p)

n

q
p� 3

ffiffiffiffiffiffiffiffiffiffi
p(1�p)

n

q

¼m�As X � A2R D3R u� 3
ffiffi
u
n

p
u� 3

ffiffi
u
n

q

a For defects chart use u with n¼ 1.

n A A2 A3 B3 B4 B5 B6 C4 d2 D1 D2 D3 D4

2 2.121 1.880 2.659 0.000 3.267 0.000 2.606 .7979 1.128 0.000 3.686 0.000 3.267
3 1.732 1.023 1.954 0.000 2.568 0.000 2.276 .8862 1.693 0.000 4.358 0.000 2.575
4 1.500 0.729 1.628 0.000 2.266 0.000 2.088 .9213 2.059 0.000 4.698 0.000 2.282
5 1.342 0.577 1.427 0.000 2.089 0.000 1.964 .9400 2.326 0.000 4.918 0.000 2.115
6 1.225 0.483 1.287 0.030 1.970 0.029 1.874 .9515 2.534 0.000 5.078 0.000 2.004
7 1.134 0.419 1.182 0.118 1.882 0.113 1.806 .9594 2.704 0.205 5.203 0.076 1.924
8 1.061 0.373 1.099 0.185 1.815 0.179 1.751 .9650 2.847 0.387 5.307 0.136 1.864
9 1.000 0.337 1.032 0.239 1.761 0.232 1.707 .9693 2.970 0.546 5.394 0.184 1.816
10 0.949 0.308 0.975 0.284 1.716 0.276 1.669 .9727 3.078 0.687 5.469 0.223 1.777

Source: Adapted from ASQC Standard A1; Definitions, Symbols, Formulas, and Tables for Control Charts, American Society for Quality Control, Milwaukee, WI, 1970. With permission.
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TABLE T2.1: Random numbers.

1368 9621 9151 2066 1208 2664 9822 6599 6911 5112
5953 5936 2541 4011 0408 3593 3679 1378 5936 2651
7226 9466 9553 7671 8599 2119 5337 5953 6355 6889
8883 3454 6773 8207 5576 6386 7487 0190 0867 1298
7022 5281 1168 4099 8069 8721 8353 9952 8006 9045

4576 1853 7884 2451 3488 1286 4842 7719 5795 3953
8715 1416 7028 4616 3470 9938 5703 0196 3465 0034
4011 0408 2224 7626 0643 1149 8834 6429 8691 0143
1400 3694 4482 3608 1238 8221 5129 6105 5314 8385
6370 1884 0820 4854 9161 6509 7123 4070 6759 6113

4522 5749 8084 3932 7678 3549 0051 6761 6952 7041
7195 6234 6426 7148 9945 0358 3242 0519 6550 1327
0054 0810 2937 2040 2299 4198 0846 3937 3986 1019
5166 5433 0381 9686 5670 5129 2103 1125 3404 8785
1247 3793 7415 7819 1783 0506 4878 7673 9840 6629

8529 7842 7203 1844 8619 7404 4215 9969 6948 5643
8973 3440 4366 9242 2151 0244 0922 5887 4883 1177
9307 2959 5904 9012 4951 3695 4529 7197 7179 3239
2923 4276 9467 9868 2257 1925 3382 7244 1781 8037
6372 2808 1238 8098 5509 4617 4099 6705 2386 2830

6922 1807 4900 5306 0411 1828 8634 2331 7247 3230
9862 8336 6453 0545 6127 2741 5967 8447 3017 5709
3371 1530 5104 3076 5506 3101 4143 5845 2095 6127
6712 9402 9588 7019 9248 9192 4223 6555 7947 2474
3071 8782 7157 5941 8830 8563 2252 8109 5880 9912

4022 9734 7852 9096 0051 7387 7056 9331 1317 7833
9682 8892 3577 0326 5306 0050 8517 4376 0788 5443
6705 2175 9904 3743 1902 5393 3032 8432 0612 7972
1872 8292 2366 8603 4288 6809 4357 1072 6822 5611
2559 7534 2281 7351 2064 0611 9613 2000 0327 6145

4399 3751 9783 5399 5175 8894 0296 9483 0400 2272
6074 8827 2195 2532 7680 4288 6807 3101 6850 6410
5155 7186 4722 6721 0838 3632 5355 9369 2006 7681
3193 2800 6184 7891 9838 6123 9397 4019 8389 9508
8610 1880 7423 3384 4625 6653 2900 6290 9286 2396

4778 8818 2992 6300 4239 9595 4384 0611 7687 2088
3987 1619 4164 2542 4042 7799 9084 0278 8422 4330
2977 0248 2793 3351 4922 8878 5703 7421 2054 4391
1312 2919 8220 7285 5902 7882 1403 5354 9913 7109
3890 7193 7799 9190 3275 7840 1872 6232 5295 3148

(continued)
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TABLE T2.1 (continued): Random numbers.

6605 6380 4599 3333 0713 8401 7146 8940 2629 2006
8399 8175 3525 1646 4019 8390 4344 8975 4489 3423
8053 3046 9102 4515 2944 9763 3003 3408 1199 2791
9837 9378 3237 7016 7593 5958 0068 3114 0456 6840
2557 6395 9496 1884 0612 8102 4402 5498 0422 3335

2671 4690 1550 2262 2597 8034 0785 2978 4409 0237
9111 0250 3275 7519 9740 4577 2064 0286 3398 1348
0391 6035 9230 4999 3332 0608 6113 0391 5789 9926
2475 2144 1886 2079 3004 9686 5669 4367 9306 2595
5336 5845 2095 6446 5694 3641 1085 8705 5416 9066

6808 0423 0155 1652 7897 4335 3567 7109 9690 3739
8525 0577 8940 9451 6726 0876 3818 7607 8854 3566
0398 0741 8787 3043 5063 0617 1770 5048 7721 7032
3623 9636 3638 1406 5731 3978 8068 7238 9715 3363
0739 2644 4917 8866 3632 5399 5175 7422 2476 2607

6713 3041 8133 8749 8835 6745 3597 3476 3816 3455
7775 9315 0432 8327 0861 1515 2297 3375 3713 9174
8599 2122 6842 9202 0810 2936 1514 2090 3067 3574
7955 3759 5254 1126 5553 4713 9605 7909 1658 5490
4766 0070 7260 6033 7997 0109 5993 7592 5436 1727

5165 1670 2534 8811 8231 3721 7947 5719 2640 1394
9111 0513 2751 8256 2931 7783 1281 6531 7259 6993
1667 1084 7889 8963 7018 8617 6381 0723 4926 4551
2145 4587 8585 2412 5431 4667 1942 7238 9613 2212
2739 5528 1481 7528 9368 1823 6979 2547 7268 2467

8769 5480 9160 5354 9700 1362 2774 7980 9157 8788
6531 9435 3422 2474 1475 0159 3414 5224 8399 5820
2937 4134 7120 2206 5084 9473 3958 7320 9878 8609
1581 3285 3727 8924 6204 0797 0882 5945 9375 9153
6268 1045 7076 1436 4165 0143 0293 4190 7171 7932

4293 0523 8625 1961 1039 2856 4889 4358 1492 3804
6936 4213 3212 7229 1230 0019 5998 9206 6753 3762
5334 7641 3258 3769 1362 2771 6124 9813 7915 8960
9373 1158 4418 8826 5665 5896 0358 4717 8232 4859
6968 9428 8950 5346 1741 2348 8143 5377 7695 0685

4229 0587 8794 4009 9691 4579 3302 7673 9629 5246
3807 7785 7097 5701 6639 0723 4819 0900 2713 7650
4891 8829 1642 2155 0796 0466 2946 2970 9143 6590
1055 2968 7911 7479 8199 9735 8271 5339 7058 2964
2983 2345 0568 4125 0894 8302 0506 6761 7706 4310
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TABLE T2.1 (continued): Random numbers.

4026 3129 2968 8053 2797 4022 9838 9611 0975 2437
4075 0260 4256 0337 2355 9371 2954 6021 5783 2827
8488 5450 1327 7358 2034 8060 1788 6913 6123 9405
1976 1749 5742 4098 5887 4567 6064 2777 7830 5668
2793 4701 9466 9554 8294 2160 7486 1557 4769 2781

0916 6272 6825 7188 9611 1181 2301 5516 5451 6832
5961 1149 7946 1950 2010 0600 5655 0796 0569 4365
3222 4189 1891 8172 8731 4769 2782 1325 4238 9279
1176 7834 4600 9992 9449 5824 5344 1008 6678 1921
2369 8971 2314 4806 5071 8908 8274 4936 3357 4441

0041 4329 9265 0352 4764 9070 7527 7791 1094 2008
0803 8302 6814 2422 6351 0637 0514 0246 1845 8594
9965 7804 3930 8803 0268 1426 3130 3613 3947 8086
0011 2387 3148 7559 4216 2946 2865 6333 1916 2259
1767 9871 3914 5790 5287 7915 8959 1346 5482 9251

Source: Owen, D.B., in Handbook of Statistical Tables, Addison-Wesley, Reading, MA, 1962, 520–521. With
permission.
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TABLE T3.1: Values of e�x.

Units Place

0 1 2 3 4 5 6 7 8 9

T
en
s=
H
u
n
d
re
d
th
s
P
la
ce

0.00 1.0000 0.3679 0.1353 0.0498 0.0183 0.0067 0.0025 0.0009 0.0003 0.0001
0.05 0.9512 0.3499 0.1287 0.0474 0.0174 0.0064 0.0024 0.0009 0.0003 0.0001
0.10 0.9048 0.3329 0.1225 0.0450 0.0166 0.0061 0.0022 0.0008 0.0003 0.0001
0.15 0.8607 0.3166 0.1165 0.0429 0.0158 0.0058 0.0021 0.0008 0.0003 0.0001
0.20 0.8187 0.3012 0.1108 0.0408 0.0150 0.0055 0.0020 0.0007 0.0003 0.0001
0.25 0.7788 0.2865 0.1054 0.0388 0.0143 0.0052 0.0019 0.0007 0.0003 0.0001
0.30 0.7408 0.2725 0.1003 0.0369 0.0136 0.0050 0.0018 0.0007 0.0002 0.0001
0.35 0.7047 0.2592 0.0954 0.0351 0.0129 0.0047 0.0017 0.0006 0.0002 0.0001
0.40 0.6703 0.2466 0.0907 0.0334 0.0123 0.0045 0.0017 0.0006 0.0002 0.0001
0.45 0.6376 0.2346 0.0863 0.0317 0.0117 0.0043 0.0016 0.0006 0.0002 0.0001
0.50 0.6065 0.2231 0.0821 0.0302 0.0111 0.0041 0.0015 0.0006 0.0002 0.0001
0.55 0.5769 0.2122 0.0781 0.0287 0.0106 0.0039 0.0014 0.0005 0.0002 0.0001
0.60 0.5488 0.2019 0.0743 0.0273 0.0101 0.0037 0.0014 0.0005 0.0002 0.0001
0.65 0.5220 0.1920 0.0707 0.0260 0.0096 0.0035 0.0013 0.0005 0.0002 0.0001
0.70 0.4966 0.1827 0.0672 0.0247 0.0091 0.0033 0.0012 0.0005 0.0002 0.0001
0.75 0.4724 0.1738 0.0639 0.0235 0.0087 0.0032 0.0012 0.0004 0.0002 0.0001
0.80 0.4493 0.1653 0.0608 0.0224 0.0082 0.0030 0.0011 0.0004 0.0002 0.0001
0.85 0.4274 0.1572 0.0578 0.0213 0.0078 0.0029 0.0011 0.0004 0.0001 0.0001
0.90 0.4066 0.1496 0.0550 0.0202 0.0074 0.0027 0.0010 0.0004 0.0001 0.0001
0.95 0.3867 0.1423 0.0523 0.0193 0.0071 0.0026 0.0010 0.0004 0.0001 0.0000
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TABLE T3.2: Cumulative normal probability, F(z).

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

�3.5 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002
�3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
�3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
�3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
�3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007

�3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
�2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
�2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
�2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
�2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036

�2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
�2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
�2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
�2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
�2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143

�2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
�1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
�1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
�1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
�1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455

�1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
�1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
�1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
�1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
�1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170

�1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
�0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
�0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
�0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
�0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451

(continued)
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TABLE T3.2 (continued): Cumulative normal probability, F(z).

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

�0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
�0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
�0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
�0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
�0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
�0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641

þ0.0 .5000 .5040 .5080 .5121 .5160 .5199 .5239 .5279 .5319 .5359
þ0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
þ0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
þ0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
þ0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
þ0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

þ0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
þ0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
þ0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
þ0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
þ1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

þ1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
þ1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
þ1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
þ1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
þ1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441

þ1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
þ1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
þ1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
þ1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767
þ2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

þ2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
þ2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
þ2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
þ2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
þ2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952

þ2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
þ2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
þ2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
þ2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986
þ3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
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TABLE T3.2 (continued): Cumulative normal probability, F(z).

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

þ3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
þ3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
þ3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
þ3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998
þ3.5 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998

Source: Burr, I.W., in Engineering Statistics and Quality Control, McGraw-Hill, New York, 1953. With permission.

� 2008 by Taylor & Francis Group, LLC.



S
chilling/A

cceptan

�
2008

by
T
aylor

&
F
rancis

G
roup,

L
L
C
.

TABLE T3.3: Lieberman–Owen’s table of hypergeometric distribution, F(x) (N¼ 2, n¼ 1 through N¼ 11, n¼ 9.).

N n k x P(x) p(x) N n k x P(x) p(x) N n k x P(x) p(x) N n k x P(x) p

2 1 1 0 0.500000 0.500000 6 2 2 2 1.000000 0.066667 7 4 2 1 0.714286 0.571429 8 3 3 2 0.982143 0.267857
2 1 1 1 1.000000 0.500000 6 3 1 0 0.500000 0.500000 7 4 2 2 1.000000 0.285714 8 3 3 3 1.000000 0.017857
3 1 1 0 0.666667 0.666667 6 3 1 1 1.000000 0.500000 7 4 3 0 0.028571 0.028571 8 4 1 0 0.500000 0.500000
3 1 1 1 1.000000 0.333333 6 3 2 0 0.200000 0.200000 7 4 3 1 0.371429 0.342857 8 4 1 1 1.000000 0.500000
3 2 1 0 0.333333 0.333333 6 3 2 1 0.800000 0.600000 7 4 3 2 0.885714 0.514286 8 4 2 0 0.214286 0.214286
3 2 2 1 1.000000 0.666667 6 3 2 2 1.000000 0.200000 7 4 3 3 1.000000 0.114286 8 4 2 1 0.785714 0.571429
3 2 2 1 0.666667 0.666667 6 3 3 0 0.050000 0.050000 7 4 4 1 0.114286 0.114286 8 4 2 2 1.000000 0.214286
3 2 2 2 1.000000 0.333333 6 3 3 1 0.500000 0.450000 7 4 4 2 0.628571 0.514286 8 4 3 0 0.071429 0.071429
4 1 1 0 0.750000 0.750000 6 3 3 2 0.950000 0.450000 7 4 4 3 0.971428 0.342857 8 4 3 1 0.500000 0.428571
4 1 1 1 1.000000 0.250000 6 3 3 3 1.000000 0.050000 7 4 4 4 1.000000 0.028571 8 4 3 2 0.928571 0.428571

4 2 1 0 0.500000 0.500000 6 4 1 0 0.333333 0.333333 7 5 1 0 0.285714 0.285714 8 4 3 3 1.000000 0.071429
4 2 1 1 1.000000 0.500000 6 4 1 1 1.000000 0.666667 7 5 1 1 1.000000 0.714286 8 4 4 0 0.014286 0.014286
4 2 2 0 0.166667 0.166667 6 4 2 0 0.066667 0.066667 7 5 2 0 0.047619 0.047619 8 4 4 1 0.242857 0.228571
4 2 2 1 0.833333 0.666667 6 4 2 1 0.600000 0.533333 7 5 2 1 0.523809 0.476190 8 4 4 2 0.757143 0.514286
4 2 2 2 1.000000 0.166667 6 4 2 2 1.000000 0.400000 7 5 2 2 1.000000 0.476190 8 4 4 3 0.985714 0.228571
4 3 1 0 0.250000 0.250000 6 4 3 1 0.200000 0.200000 7 5 3 1 0.142857 0.142857 8 4 4 4 1.000000 0.014286
4 3 1 1 1.000000 0.750000 6 4 3 2 0.800000 0.600000 7 5 3 2 0.714286 0.571429 8 5 1 0 0.375000 0.375000
4 3 2 1 0.500000 0.500000 6 4 3 3 1.000000 0.200000 7 5 3 3 1.000000 0.285714 8 5 1 1 1.000000 0.625000
4 3 2 2 1.000000 0.500000 6 4 4 2 0.400000 0.400000 7 5 4 2 0.285714 0.285714 8 5 2 0 0.107143 0.107143
4 3 3 2 0.750000 0.750000 6 4 4 3 0.933333 0.533333 7 5 4 3 0.857143 0.571429 8 5 2 1 0.642857 0.535714

4 3 3 3 1.000000 0.250000 6 4 4 4 1.000000 0.066667 7 5 4 4 1.000000 0.142857 8 5 2 2 1.000000 0.357143
5 1 1 0 0.800000 0.800000 6 5 1 0 0.166667 0.166667 7 5 5 3 0.476190 0.476190 8 5 3 0 0.017857 0.017857
5 1 1 1 1.000000 0.200000 6 5 1 1 1.000000 0.833333 7 5 5 4 0.952381 0.476190 8 5 3 1 0.285714 0.267857
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5 2 1 0 0.600000 0.600000 6 5 2 1 0.333333 0.333333 7 5 5 5 1.000000 0.047619 8 5 3 2 0.821429 0.535714
5 2 1 1 1.000000 0.400000 6 5 2 2 1.000000 0.666667 7 6 1 0 0.142857 0.142857 8 5 3 3 1.000000 0.178571
5 2 2 0 0.300000 0.300000 6 5 3 2 0.500000 0.500000 7 6 1 1 1.000000 0.857143 8 5 4 1 0.071429 0.071429
5 2 2 1 0.900000 0.600000 6 5 3 3 1.000000 0.500000 7 6 2 1 0.285714 0.285714 8 5 4 2 0.500000 0.428571
5 2 2 2 1.000000 0.100000 6 5 4 3 0.666667 0.666667 7 6 2 2 1.000000 0.714286 8 5 4 3 0.928571 0.428571
5 3 1 0 0.400000 0.400000 6 5 4 4 1.000000 0.333333 7 6 3 2 0.428571 0.428571 8 5 4 4 1.000000 0.071429
5 3 1 1 1.000000 0.600000 6 5 5 4 0.833333 0.833333 7 6 3 3 1.000000 0.571429 8 5 5 2 0.178571 0.178571

5 3 2 0 0.100000 0.100000 6 5 5 5 1.000000 0.166667 7 6 4 3 0.571429 0.571429 8 5 5 3 0.714286 0.535714
5 3 2 1 0.700000 0.600000 7 1 1 0 0.857143 0.857143 7 6 4 4 1.000000 0.428571 8 5 5 4 0.982143 0.267857
5 3 2 2 1.000000 0.300000 7 1 1 1 1.000000 0.142857 7 6 5 4 0.714286 0.714286 8 5 5 5 1.000000 0.017857
5 3 3 1 0.300000 0.300000 7 2 1 0 0.714286 0.714286 7 6 5 5 1.000000 0.285714 8 6 1 0 0.250000 0.250000
5 3 3 2 0.900000 0.600000 7 2 1 1 1.000000 0.285714 7 6 6 5 0.857143 0.857143 8 6 1 1 1.000000 0.750000
5 3 3 3 1.000000 0.100000 7 2 2 0 0.476190 0.476190 7 6 6 6 1.000000 0.142857 8 6 2 0 0.035714 0.035714
5 4 1 0 0.200000 0.200000 7 2 2 1 0.952381 0.476190 8 1 1 0 0.875000 0.875000 8 6 2 1 0.464286 0.428571
5 4 1 1 1.000000 0.800000 7 2 2 2 1.000000 0.047619 8 1 1 1 1.000000 0.125000 8 6 2 2 1.000000 0.535714
5 4 2 1 0.400000 0.400000 7 3 1 0 0.571429 0.571429 8 2 1 0 0.750000 0.750000 8 6 3 1 0.107143 0.107143
5 4 2 2 1.000000 0.600000 7 3 1 1 1.000000 0.428571 8 2 1 1 1.000000 0.250000 8 6 3 2 0.642857 0.535714

5 4 3 2 0.600000 0.600000 7 3 2 0 0.285714 0.285714 8 2 2 0 0.535714 0.535714 8 6 3 3 1.000000 0.357143
5 4 3 3 1.000000 0.400000 7 3 2 1 0.857143 0.571429 8 2 2 1 0.964286 0.428571 8 6 4 2 0.214286 0.214286
5 4 4 3 0.800000 0.800000 7 3 2 2 1.000000 0.142857 8 2 2 2 1.000000 0.035714 8 6 4 3 0.785714 0.571429
5 4 4 4 1.000000 0.200000 7 3 3 0 0.114286 0.114286 8 3 1 0 0.625000 0.625000 8 6 4 4 1.000000 0.214286
6 1 1 0 0.833333 0.833333 7 3 3 1 0.628571 0.514286 8 3 1 1 1.000000 0.375000 8 6 5 3 0.357143 0.357143
6 1 1 1 1.000000 0.166667 7 3 3 2 0.971428 0.342857 8 3 2 0 0.357143 0.357143 8 6 5 4 0.892857 0.535714
6 2 1 0 0.666667 0.666667 7 3 3 3 1.000000 0.028571 8 3 2 1 0.892857 0.535714 8 6 5 5 1.000000 0.107143
6 2 1 1 1.000000 0.333333 7 4 1 0 0.428571 0.428571 8 3 2 2 1.000000 0.107143 8 6 6 4 0.535714 0.535714
6 2 2 0 0.400000 0.400000 7 4 1 1 1.000000 0.571429 8 3 3 0 0.178571 0.178571 8 6 6 5 0.964286 0.428571
6 2 2 1 0.933333 0.533333 7 4 2 0 0.142857 0.142857 8 3 3 1 0.714286 0.535714 8 6 6 6 1.000000 0.035714
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TABLE T3.3 (continued): Lieberman–Owen’s table of hypergeometric distribution, F(x) (N¼ 2, n¼ 1 through N¼ 11, n¼ 9.).

N n k x P(x) p(x) N n k x P(x) p(x) N n k x P(x) p(x) N n k x P(x) p(x)

8 7 1 0 0.125000 0.125000 9 5 3 1 0.404762 0.357143 9 7 6 6 1.000000 0.083333 10 5 1 0 0.500000 0.500000
8 7 1 1 1.000000 0.875000 9 5 3 2 0.880952 0.476190 9 7 7 5 0.583333 0.583333 10 5 1 1 1.000000 0.500000
8 7 2 1 0.250000 0.250000 9 5 3 3 1.000000 0.119048 9 7 7 6 0.972222 0.388889 10 5 2 0 0.222222 0.222222
8 7 2 2 1.000000 0.750000 9 5 4 0 0.007936 0.007936 9 7 7 7 1.000000 0.027778 10 5 2 1 0.777778 0.555556
8 7 3 2 0.375000 0.375000 9 5 4 1 0.166667 0.158730 9 8 1 0 0.111111 0.111111 10 5 2 2 1.000000 0.222222
8 7 3 3 1.000000 0.625000 9 5 4 2 0.642857 0.476190 9 8 1 1 1.000000 0.888889 10 5 3 0 0.083333 0.083333
8 7 4 3 0.500000 0.500000 9 5 4 3 0.960317 0.317460 9 8 2 1 0.222222 0.222222 10 5 3 1 0.500000 0.416667
8 7 4 4 1.000000 0.500000 9 5 4 4 1.000000 0.039683 9 8 2 2 1.000000 0.777778 10 5 3 2 0.916667 0.416667
8 7 5 4 0.625000 0.625000 9 5 5 1 0.039683 0.039683 9 8 3 2 0.333333 0.333333 10 5 3 3 1.000000 0.083333
8 7 5 5 1.000000 0.375000 9 5 5 2 0.357143 0.317460 9 8 3 3 1.000000 0.666667 10 5 4 0 0.023810 0.023810

8 7 6 5 0.750000 0.750000 9 5 5 3 0.833333 0.476190 9 8 4 3 0.444444 0.444444 10 5 4 1 0.261905 0.238095
8 7 6 6 1.000000 0.250000 9 5 5 4 0.992063 0.158730 9 8 4 4 1.000000 0.555556 10 5 4 2 0.738095 0.476190
8 7 7 6 0.875000 0.875000 9 5 5 5 1.000000 0.007936 9 8 5 4 0.555556 0.555556 10 5 4 3 0.976190 0.238095
8 7 7 7 1.000000 0.125000 9 6 1 0 0.333333 0.333333 9 8 5 5 1.000000 0.444444 10 5 4 4 1.000000 0.023810
9 1 1 0 0.888889 0.888889 9 6 1 1 1.000000 0.666667 9 8 6 5 0.666667 0.666667 10 5 5 0 0.003968 0.003968
9 1 1 1 1.000000 0.111111 9 6 2 0 0.083333 0.083333 9 8 6 6 1.000000 0.333333 10 5 5 1 0.103175 0.099206
9 2 1 0 0.777778 0.777778 9 6 2 1 0.583333 0.500000 9 8 7 6 0.777778 0.777778 10 5 5 2 0.500000 0.396825
9 2 1 1 1.000000 0.222222 9 6 2 2 1.000000 0.416667 9 8 7 7 1.000000 0.222222 10 5 5 3 0.896825 0.396825
9 2 2 0 0.583333 0.583333 9 6 3 0 0.011905 0.011905 9 8 8 7 0.888889 0.888889 10 5 5 4 0.996032 0.099206
9 2 2 1 0.972222 0.388889 9 6 3 1 0.226190 0.214286 9 8 8 8 1.000000 0.111111 10 5 5 5 1.000000 0.003968

9 2 2 2 1.000000 0.027778 9 6 3 2 0.761905 0.535714 10 1 1 0 0.900000 0.900000 10 6 1 0 0.400000 0.400000
9 3 1 0 0.666667 0.666667 9 6 3 3 1.000000 0.238095 10 1 1 1 1.000000 0.100000 10 6 1 1 1.000000 0.600000
9 3 1 1 1.000000 0.333333 9 6 4 1 0.047619 0.047619 10 2 1 0 0.800000 0.800000 10 6 2 0 0.133333 0.133333
9 3 2 0 0.416667 0.416667 9 6 4 2 0.404762 0.357143 10 2 1 1 1.000000 0.200000 10 6 2 1 0.666667 0.533333
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9 3 2 1 0.916667 0.500000 9 6 4 3 0.880952 0.476190 10 2 2 0 0.622222 0.622222 10 6 2 2 1.000000 0.333333
9 3 2 2 1.000000 0.083333 9 6 4 4 1.000000 0.119048 10 2 2 1 0.977778 0.355556 10 6 3 0 0.033333 0.033333
9 3 3 0 0.238095 0.238095 9 6 5 2 0.119048 0.119048 10 2 2 2 1.000000 0.022222 10 6 3 1 0.333333 0.300000
9 3 3 1 0.773809 0.535714 9 6 5 3 0.595238 0.476190 10 3 1 0 0.700000 0.700000 10 6 3 2 0.833333 0.500000
9 3 3 2 0.988095 0.214286 9 6 5 4 0.952381 0.357143 10 3 1 1 1.000000 0.300000 10 6 3 3 1.000000 0.166667
9 3 3 3 1.000000 0.011905 9 6 5 5 1.000000 0.047619 10 3 2 0 0.466667 0.466667 10 6 4 0 0.004762 0.004762

9 4 1 0 0.555556 0.555556 9 6 6 3 0.238095 0.238095 10 3 2 1 0.933333 0.466667 10 6 4 1 0.119048 0.114286
9 4 1 1 1.000000 0.444444 9 6 6 4 0.773809 0.535714 10 3 2 2 1.000000 0.066667 10 6 4 2 0.547619 0.428571
9 4 2 0 0.277778 0.277778 9 6 6 5 0.988095 0.214286 10 3 3 0 0.291667 0.291667 10 6 4 3 0.928571 0.380952
9 4 2 1 0.833333 0.555556 9 6 6 6 1.000000 0.011905 10 3 3 1 0.816667 0.525000 10 6 4 4 1.000000 0.071429
9 4 2 2 1.000000 0.166667 9 7 1 0 0.222222 0.222222 10 3 3 2 0.991667 0.175000 10 6 5 1 0.023810 0.023810
9 4 3 0 0.119048 0.119048 9 7 1 1 1.000000 0.777778 10 3 3 3 1.000000 0.008333 10 6 5 2 0.261905 0.238095
9 4 3 1 0.595238 0.476190 9 7 2 0 0.027778 0.027778 10 4 1 0 0.600000 0.600000 10 6 5 3 0.738095 0.476190
9 4 3 2 0.952381 0.357143 9 7 2 1 0.416667 0.388889 10 4 1 1 1.000000 0.400000 10 6 5 4 0.976190 0.238095
9 4 3 3 1.000000 0.047619 9 7 2 2 1.000000 0.583333 10 4 2 0 0.333333 0.333333 10 6 5 5 1.000000 0.023810
9 4 4 0 0.039683 0.039683 9 7 3 1 0.083333 0.083333 10 4 2 1 0.866667 0.533333 10 6 6 2 0.071429 0.071429

9 4 4 1 0.357143 0.317460 9 7 3 2 0.583333 0.500000 10 4 2 2 1.000000 0.133333 10 6 6 3 0.452381 0.380952
9 4 4 2 0.833333 0.476190 9 7 3 3 1.000000 0.416667 10 4 3 0 0.166667 0.166667 10 6 6 4 0.880952 0.428571
9 4 4 3 0.992063 0.158730 9 7 4 2 0.166667 0.166667 10 4 3 1 0.666667 0.500000 10 6 6 5 0.995238 0.114286
9 4 4 4 1.000000 0.007936 9 7 4 3 0.722222 0.555556 10 4 3 2 0.966667 0.300000 10 6 6 6 1.000000 0.004762
9 5 1 0 0.444444 0.444444 9 7 4 4 1.000000 0.277778 10 4 3 3 1.000000 0.033333 10 7 1 0 0.300000 0.300000
9 5 1 1 1.000000 0.555556 9 7 5 3 0.277778 0.277778 10 4 4 0 0.071429 0.071429 10 7 1 1 1.000000 0.700000
9 5 2 0 0.166667 0.166667 9 7 5 4 0.833333 0.555556 10 4 4 1 0.452381 0.380952 10 7 2 0 0.066667 0.066667
9 5 2 1 0.722222 0.555556 9 7 5 5 1.000000 0.166667 10 4 4 2 0.880952 0.428571 10 7 2 1 0.533333 0.466667
9 5 2 2 1.000000 0.277778 9 7 6 4 0.416667 0.416667 10 4 4 3 0.995238 0.114286 10 7 2 2 1.000000 0.466667
9 5 3 0 0.047619 0.047619 9 7 6 5 0.916667 0.500000 10 4 4 4 1.000000 0.004762 10 7 3 0 0.008333 0.008333
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TABLE T3.3 (continued): Lieberman–Owen’s table of hypergeometric distribution, F(x) (N¼ 2, n¼ 1 through N¼ 11, n¼ 9.).

N n k x P(x) p(x) N n k x P(x) p(x) N n k x P(x) p(x) N n k x P(x) p

10 7 3 1 0.183333 0.175000 10 9 5 4 0.500000 0.500000 11 5 4 1 0.348485 0.303030 11 7 5 1 0.015152 0.015152
10 7 3 2 0.708333 0.525000 10 9 5 5 1.000000 0.500000 11 5 4 2 0.803030 0.454545 11 7 5 2 0.196970 0.181818
10 7 3 3 1.000000 0.291667 10 9 6 5 0.600000 0.600000 11 5 4 3 0.984848 0.181818 11 7 5 3 0.651515 0.454545
10 7 4 1 0.033333 0.033333 10 9 6 6 1.000000 0.400000 11 5 4 4 1.000000 0.015152 11 7 5 4 0.954545 0.303030
10 7 4 2 0.333333 0.300000 10 9 7 6 0.700000 0.700000 11 5 5 0 0.012987 0.012987 11 7 5 5 1.000000 0.045455
10 7 4 3 0.833333 0.500000 10 9 7 7 1.000000 0.300000 11 5 5 1 0.175325 0.162338 11 7 6 2 0.045455 0.045455
10 7 4 4 1.000000 0.166667 10 9 8 7 0.800000 0.800000 11 5 5 2 0.608225 0.432900 11 7 6 3 0.348485 0.303030
10 7 5 2 0.083333 0.083333 10 9 8 8 1.000000 0.200000 11 5 5 3 0.932900 0.324675 11 7 6 4 0.803030 0.454545
10 7 5 3 0.500000 0.416667 10 9 9 8 0.900000 0.900000 11 5 5 4 0.997835 0.064935 11 7 6 5 0.984848 0.181818
10 7 5 4 0.916667 0.416667 10 9 9 9 1.000000 0.100000 11 5 5 5 1.000000 0.002164 11 7 6 6 1.000000 0.015152

10 7 5 5 1.000000 0.083333 11 1 1 0 0.909091 0.909091 11 6 1 0 0.454545 0.454545 11 7 7 3 0.106061 0.106061
10 7 6 3 0.166667 0.166667 11 1 1 1 1.000000 0.090909 11 6 1 1 1.000000 0.545455 11 7 7 4 0.530303 0.424242
10 7 6 4 0.666667 0.500000 11 2 1 0 0.818182 0.818182 11 6 2 0 0.181818 0.181818 11 7 7 5 0.912121 0.381818
10 7 6 5 0.966667 0.300000 11 2 1 1 1.000000 0.181818 11 6 2 1 0.727273 0.545455 11 7 7 6 0.996970 0.084848
10 7 6 6 1.000000 0.033333 11 2 2 0 0.654545 0.654545 11 6 2 2 1.000000 0.272727 11 7 7 7 1.000000 0.003030
10 7 7 4 0.291667 0.291667 11 2 2 1 0.981818 0.327273 11 6 3 0 0.060606 0.060606 11 8 1 0 0.272727 0.272727
10 7 7 5 0.816667 0.525000 11 2 2 2 1.000000 0.018182 11 6 3 1 0.424242 0.363636 11 8 1 1 1.000000 0.727273
10 7 7 6 0.991667 0.175000 11 3 1 0 0.727273 0.727273 11 6 3 2 0.878788 0.454545 11 8 2 0 0.054545 0.054545
10 7 7 7 1.000000 0.008333 11 3 1 1 1.000000 0.272727 11 6 3 3 1.000000 0.121212 11 8 2 1 0.490909 0.436364
10 8 1 0 0.200000 0.200000 11 3 2 0 0.509091 0.509091 11 6 4 0 0.015152 0.015152 11 8 2 2 1.000000 0.509091

10 8 1 1 1.000000 0.800000 11 3 2 1 0.945455 0.436364 11 6 4 1 0.196970 0.181818 11 8 3 0 0.006061 0.006061
10 8 2 0 0.022222 0.022222 11 3 2 2 1.000000 0.054545 11 6 4 2 0.651515 0.454545 11 8 3 1 0.151515 0.145455
10 8 2 1 0.377778 0.355556 11 3 3 0 0.339394 0.339394 11 6 4 3 0.954545 0.303030 11 8 3 2 0.660606 0.509091
10 8 2 2 1.000000 0.622222 11 3 3 1 0.848485 0.509091 11 6 4 4 1.000000 0.045455 11 8 3 3 1.000000 0.339394
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10 8 3 1 0.066667 0.066667 11 3 3 2 0.993939 0.145455 11 6 5 0 0.002164 0.002164 11 8 4 1 0.024242 0.024242
10 8 3 2 0.533333 0.466667 11 3 3 3 1.000000 0.006061 11 6 5 1 0.067100 0.064935 11 8 4 2 0.278788 0.254545
10 8 3 3 1.000000 0.466667 11 4 1 0 0.636364 0.636364 11 6 5 2 0.391775 0.324675 11 8 4 3 0.787879 0.509091
10 8 4 2 0.133333 0.133333 11 4 1 1 1.000000 0.363636 11 6 5 3 0.824675 0.432900 11 8 4 4 1.000000 0.212121
10 8 4 3 0.666667 0.533333 11 4 2 0 0.381818 0.381818 11 6 5 4 0.987013 0.162338 11 8 5 2 0.060606 0.060606
10 8 4 4 1.000000 0.333333 11 4 2 1 0.890909 0.509091 11 6 5 5 1.000000 0.012987 11 8 5 3 0.424242 0.363636

10 8 5 3 0.222222 0.222222 11 4 2 2 1.000000 0.109091 11 6 6 1 0.012987 0.012987 11 8 5 4 0.878788 0.454545
10 8 5 4 0.777778 0.555556 11 4 3 0 0.212121 0.212121 11 6 6 2 0.175325 0.162338 11 8 5 5 1.000000 0.121212
10 8 5 5 1.000000 0.222222 11 4 3 1 0.721212 0.509091 11 6 6 3 0.608225 0.432900 11 8 6 3 0.121212 0.121212
10 8 6 4 0.333333 0.333333 11 4 3 2 0.975758 0.254545 11 6 6 4 0.932900 0.324675 11 8 6 4 0.575758 0.454545
10 8 6 5 0.866667 0.533333 11 4 3 3 1.000000 0.024242 11 6 6 5 0.997835 0.064935 11 8 6 5 0.939394 0.363636
10 8 6 6 1.000000 0.133333 11 4 4 0 0.106061 0.106061 11 6 6 6 1.000000 0.002164 11 8 6 6 1.000000 0.060606
10 8 7 5 0.466667 0.466667 11 4 4 1 0.530303 0.424242 11 7 1 0 0.363636 0.363636 11 8 7 4 0.212121 0.212121
10 8 7 6 0.933333 0.466667 11 4 4 2 0.912121 0.381818 11 7 1 1 1.00000 0.636364 11 8 7 5 0.721212 0.509091
10 8 7 7 1.000000 0.066667 11 4 4 3 0.996970 0.084848 11 7 2 0 0.109091 0.109091 11 8 7 6 0.975758 0.254545
10 8 8 6 0.622222 0.622222 11 4 4 4 1.000000 0.003030 11 7 2 1 0.618182 0.509091 11 8 7 7 1.000000 0.024242

10 8 8 7 0.977778 0.355556 11 5 1 0 0.545455 0.545455 11 7 2 2 1.000000 0.381818 11 8 8 5 0.339394 0.339394
10 8 8 8 1.000000 0.022222 11 5 1 1 1.000000 0.454545 11 7 3 0 0.024242 0.024242 11 8 8 6 0.848485 0.509091
10 9 1 0 0.100000 0.100000 11 5 2 0 0.272727 0.272727 11 7 3 1 0.278788 0.254545 11 8 8 7 0.993939 0.145455
10 9 1 1 1.000000 0.900000 11 5 2 1 0.818182 0.545455 11 7 3 2 0.787879 0.509091 11 8 8 8 1.000000 0.006061
10 9 2 1 0.200000 0.200000 11 5 2 2 1.000000 0.181818 11 7 3 3 1.000000 0.212121 11 9 1 0 0.181818 0.181818
10 9 2 2 1.000000 0.800000 11 5 3 0 0.121212 0.121212 11 7 4 0 0.003030 0.003030 11 9 1 1 1.000000 0.818182
10 9 3 2 0.300000 0.300000 11 5 3 1 0.575758 0.454545 11 7 4 1 0.087879 0.084848 11 9 2 0 0.018182 0.018182
10 9 3 3 1.000000 0.700000 11 5 3 2 0.939394 0.363636 11 7 4 2 0.469697 0.381818 11 9 2 1 0.345454 0.327273
10 9 4 3 0.400000 0.400000 11 5 3 3 1.000000 0.060606 11 7 4 3 0.893939 0.424242 11 9 2 2 1.000000 0.654545
10 9 4 4 1.000000 0.600000 11 5 4 0 0.045455 0.045455 11 7 4 4 1.000000 0.106061 11 9 3 1 0.054545 0.054545

Source: Reprinted from Lieberman, G.J. and Owen, D.B., in Tables of the Hypergeometric Probability Distribution, Stanford University Press, Stanford, CA, 1961, 33–35. N¼ 10�11 33–35.
With permission.

N ¼ 10� 11

�
2008

by
T
aylor

&
F
rancis

G
roup,

L
L
C
.



TABLE T3.4: Harvard’s table of the binomial distribution, 1�F(r� 1), Pr (x � r | n, p).

n r p¼ 0.01 p¼ 0.02 p¼ 0.03 p¼ 0.04 p¼ 0.05 p¼ 0.06 p¼ 1=16 p¼ 0.07 p¼ 0.08 p¼ 12

1 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.01000 0.02000 0.03000 0.04000 0.05000 0.06000 0.06250 0.07000 0.08000 0.08333

2 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.01990 0.03960 0.05910 0.07840 0.09750 0.11640 0.12109 0.13510 0.15360 0.15972
2 0.00010 0.00040 0.00090 0.00160 0.00250 0.00360 0.00391 0.00490 0.00640 0.00694

3 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.02970 0.05881 0.08733 0.11526 0.14263 0.16942 0.17603 0.19564 0.22131 0.22975
2 0.00030 0.00118 0.00265 0.00467 0.00725 0.01037 0.01123 0.01401 0.01818 0.01968
3 0.00000 0.00001 0.00003 0.00006 0.00013 0.00022 0.00024 0.00034 0.00051 0.00058

4 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.03940 0.07763 0.11471 0.15065 0.18549 0.21925 0.22752 0.25195 0.28361 0.29393
2 0.00059 0.00234 0.00519 0.00910 0.01402 0.01991 0.02153 0.02673 0.03443 0.03718
3 0.00000 0.00003 0.00011 0.00025 0.00048 0.00083 0.00093 0.00130 0.00193 0.00217
4 0.00000 0.00000 0.00000 0.00001 0.00001 0.00002 0.00002 0.00004 0.00005

5 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.04901 0.09608 0.14127 0.18463 0.22622 0.26610 0.27580 0.30431 0.34092 0.35277
2 0.00098 0.00384 0.00847 0.01476 0.02259 0.03187 0.03440 0.04249 0.05436 0.05858
3 0.00001 0.00008 0.00026 0.00060 0.00116 0.00197 0.00222 0.00308 0.00453 0.00509
4 0.00000 0.00000 0.00000 0.00001 0.00003 0.00006 0.00007 0.00011 0.00019 0.00023

5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

6 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.05852 0.11416 0.16703 0.21724 0.26491 0.31013 0.32107 0.35301 0.39364 0.40671
2 0.00146 0.00569 0.01246 0.02155 0.03277 0.04592 0.04949 0.06082 0.07729 0.08309
3 0.00002 0.00015 0.00050 0.00117 0.00223 0.00376 0.00423 0.00584 0.00851 0.00955
4 0.00000 0.00000 0.00001 0.00004 0.00009 0.00018 0.00021 0.00032 0.00054 0.00063

5 0.00000 0.00000 0.00000 0.00000 0.00001 0.00001 0.00002 0.00002
6 0.00000 0.00000 0.00000 0.00000
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7 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.06793 0.13187 0.19202 0.24855 0.30166 0.35152 0.36350 0.39830 0.44215 0.45615
2 0.00203 0.00786 0.01709 0.02938 0.04438 0.06178 0.06647 0.08127 0.10259 0.11006
3 0.00003 0.00026 0.00086 0.00198 0.00376 0.00629 0.00706 0.00969 0.01401 0.01567
4 0.00000 0.00001 0.00003 0.00008 0.00019 0.00039 0.00046 0.00071 0.00118 0.00137

5 0.00000 0.00000 0.00000 0.00001 0.00001 0.00002 0.00003 0.00006 0.00007
6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

8 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.07726 0.14924 0.21626 0.27861 0.33658 0.39043 0.40328 0.44042 0.48678 0.50147
2 0.00269 0.01034 0.02234 0.03815 0.05724 0.07916 0.08503 0.10347 0.12976 0.13890
3 0.00005 0.00042 0.00135 0.00308 0.00579 0.00962 0.01077 0.01470 0.02110 0.02354
4 0.00000 0.00001 0.00005 0.00016 0.00037 0.00075 0.00087 0.00134 0.00220 0.00256

5 0.00000 0.00000 0.00001 0.00002 0.00004 0.00005 0.00008 0.00015 0.00018
6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00001
7 0.00000 0.00000

9 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.08648 0.16625 0.23977 0.30747 0.36975 0.42701 0.44058 0.47959 0.52784 0.54301
2 0.00344 0.01311 0.02816 0.04777 0.07121 0.09784 0.10492 0.12705 0.15832 0.16912
3 0.00008 0.00061 0.00198 0.00448 0.00836 0.01380 0.01541 0.02091 0.02979 0.03315
4 0.00000 0.00002 0.00009 0.00027 0.00064 0.00128 0.00149 0.00227 0.00372 0.00431

5 0.00000 0.00000 0.00001 0.00003 0.00008 0.00010 0.00017 0.00031 0.00038
6 0.00000 0.00000 0.00000 0.00000 0.00001 0.00002 0.00002
7 0.00000 0.00000 0.00000

10 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.09562 0.18293 0.26258 0.33517 0.40126 0.46138 0.47554 0.51602 0.56561 0.58110
2 0.00427 0.01618 0.03451 0.05815 0.08614 0.11759 0.12590 0.15173 0.18788 0.20027
3 0.00011 0.00086 0.00276 0.00621 0.01150 0.01884 0.02101 0.02834 0.04008 0.04448
4 0.00000 0.00003 0.00015 0.00044 0.00103 0.00203 0.00236 0.00358 0.00580 0.00672
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TABLE T3.4 (continued): Harvard’s table of the binomial distribution, 1�F(r� 1), Pr (x � r | n, p).

n r p¼ 0.01 p¼ 0.02 p¼ 0.03 p¼ 0.04 p¼ 0.05 p¼ 0.06 p¼ 1=16 p¼ 0.07 p¼ 0.08 p¼ 1=12

5 0.00000 0.00001 0.00002 0.00006 0.00015 0.00018 0.00031 0.00059 0.00071
6 0.00000 0.00000 0.00000 0.00001 0.00001 0.00002 0.00004 0.00005
7 0.00000 0.00000 0.00000 0.00000 0.00000

11 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.10466 0.19927 0.28470 0.36176 0.43120 0.49370 0.50832 0.54990 0.60036 0.61600
2 0.00518 0.01951 0.04135 0.06923 0.10189 0.13822 0.14775 0.17723 0.21810 0.23201
3 0.00016 0.00117 0.00372 0.00829 0.01524 0.02476 0.02756 0.03698 0.05190 0.05747
4 0.00000 0.00005 0.00023 0.00067 0.00155 0.00304 0.00353 0.00531 0.00854 0.00986

5 0.00000 0.00001 0.00004 0.00011 0.00026 0.00032 0.00054 0.00100 0.00121
6 0.00000 0.00000 0.00001 0.00002 0.00002 0.00004 0.00009 0.00011
7 0.00000 0.00000 0.00000 0.00000 0.00001 0.00001
8 0.00000 0.00000
8 0.00000 0.00000

12 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.11362 0.21528 0.30616 0.38729 0.45964 0.52408 0.53905 0.58140 0.63233 0.64800
2 0.00617 0.02311 0.04865 0.08094 0.11836 0.15954 0.17029 0.20332 0.24868 0.26401
3 0.00021 0.00154 0.00485 0.01073 0.01957 0.03157 0.03507 0.04680 0.06520 0.07201
4 0.00000 0.00007 0.00033 0.00098 0.00224 0.00434 0.00503 0.00753 0.01201 0.01383

5 0.00000 0.00002 0.00006 0.00018 0.00043 0.00052 0.00088 0.00161 0.00193
6 0.00000 0.00000 0.00001 0.00003 0.00004 0.00008 0.00016 0.00020
7 0.00000 0.00000 0.00000 0.00000 0.00001 0.00002
8 0.00000 0.00000

13 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.12248 0.23098 0.32697 0.41180 0.48666 0.55263 0.56786 0.61071 0.66175 0.67734
2 0.00725 0.02695 0.05637 0.09319 0.13542 0.18142 0.19333 0.22978 0.27937 0.29601
3 0.00027 0.00197 0.00616 0.01354 0.02451 0.03925 0.04353 0.05775 0.07987 0.08801
4 0.00001 0.00010 0.00047 0.00137 0.00310 0.00598 0.00691 0.01028 0.01627 0.01868
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5 0.00000 0.00000 0.00003 0.00010 0.00029 0.00067 0.00080 0.00134 0.00244 0.00292
6 0.00000 0.00001 0.00002 0.00006 0.00007 0.00013 0.00027 0.00034
7 0.00000 0.00000 0.00000 0.00000 0.00001 0.00002 0.00003
8 0.00000 0.00000 0.00000

14 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.13125 0.24636 0.34716 0.42533 0.51233 0.57948 0.59487 0.63796 0.68881 0.70423
2 0.00840 0.03103 0.06449 0.10593 0.15299 0.20369 0.21674 0.25645 0.30996 0.32779
3 0.00034 0.00247 0.00767 0.01672 0.03005 0.04778 0.05289 0.06980 0.09583 0.10534
4 0.00001 0.00014 0.00064 0.00185 0.00417 0.00797 0.00919 0.01360 0.02136 0.02446

5 0.00000 0.00001 0.00004 0.00015 0.00043 0.00098 0.00118 0.00197 0.00354 0.00423
6 0.00000 0.00000 0.00001 0.00003 0.00009 0.00012 0.00022 0.00045 0.00056
7 0.00000 0.00000 0.00001 0.00001 0.00002 0.00004 0.00006
8 0.00000 0.00000 0.00000 0.00000 0.00000

15 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.13994 0.26143 0.36675 0.45791 0.53671 0.60471 0.62019 0.66330 0.71370 0.72887
2 0.00963 0.03534 0.07297 0.11911 0.17095 0.22624 0.24038 0.28315 0.34027 0.35916
3 0.00042 0.00304 0.00937 0.02029 0.03620 0.05713 0.06313 0.08286 0.11297 0.12388
4 0.00001 0.00018 0.00085 0.00245 0.00547 0.01036 0.01193 0.1753 0.02731 0.03120

5 0.00000 0.00001 0.00006 0.00022 0.00061 0.00140 0.00168 0.00278 0.00497 0.00592
6 0.00000 0.00000 0.00001 0.00005 0.00015 0.00018 0.00034 0.00070 0.00086
7 0.00000 0.00000 0.00001 0.00002 0.00003 0.00008 0.00010
8 0.00000 0.00000 0.00000 0.00001 0.00001
9 0.00000 0.00000

16 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.14854 0.27620 0.38575 0.47960 0.55987 0.62843 0.64393 0.68687 0.73661 0.75147
2 0.01093 0.03986 0.08179 0.13266 0.18924 0.24895 0.26411 0.30976 0.37015 0.38997
3 0.00051 0.00369 0.01128 0.02424 0.04294 0.06728 0.07421 0.09688 0.13115 0.14349
4 0.00002 0.00024 0.00110 0.00316 0.00700 0.01317 0.01513 0.02211 0.03417 0.03892
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TABLE T3.4 (continued): Harvard’s table of the binomial distribution, 1�F(r� 1), Pr (x � r j n, p).

n r p¼ 0.01 p¼ 0.02 p¼ 0.03 p¼ 0.04 p¼ 0.05 p¼ 0.06 p¼ 1=16 p¼ 0.07 p¼ 0.08 p¼ 1=12

5 0.00000 0.00001 0.00008 0.00031 0.00086 0.00194 0.00232 0.00381 0.00676 0.00803
6 0.00000 0.00000 0.00002 0.00008 0.00022 0.00028 0.00051 0.00104 0.00129
7 0.00000 0.00001 0.00002 0.00003 0.00005 0.00013 0.00016
8 0.00000 0.00000 0.00000 0.00000 0.00001 0.00002
9 0.00000 0.00000

17 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.15706 0.29068 0.40417 0.50041 0.58188 0.65072 0.66618 0.70879 0.75768 0.77218
2 0.01231 0.04459 0.09090 0.14654 0.20777 0.27171 0.28785 0.33616 0.39946 0.42009
3 0.00061 0.00441 0.01339 0.02858 0.05025 0.07818 0.08608 0.11178 0.15027 0.16403
4 0.00002 0.00031 0.00141 0.00401 0.00880 0.01641 0.01882 0.02734 0.04192 0.04763

5 0.00000 0.00002 0.00011 0.00042 0.00116 0.00261 0.00312 0.00509 0.00895 0.01060
6 0.00000 0.00001 0.00003 0.00012 0.00032 0.00040 0.00074 0.00149 0.00185
7 0.00000 0.00000 0.00001 0.00003 0.00004 0.0009 0.00020 0.00026
8 0.00000 0.00000 0.00000 0.00001 0.00002 0.00003
9 0.00000 0.00000 0.00000

18 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.16549 0.30486 0.42205 0.52040 0.60279 0.67168 0.68704 0.72917 0.77706 0.79116
2 0.01376 0.04951 0.10030 0.16069 0.22648 0.29445 0.31150 0.36224 0.42812 0.44943
3 0.00073 0.00521 0.01572 0.03330 0.05813 0.08979 0.09869 0.12749 0.17020 0.18537
4 0.00003 0.00039 0.00177 0.00499 0.01087 0.02012 0.02302 0.03325 0.05059 0.05733

5 0.00000 0.00002 0.00015 0.00057 0.00155 0.00344 0.00411 0.00665 0.01159 0.01369
6 0.00000 0.00001 0.00005 0.00017 0.00046 0.00057 0.00105 0.00209 0.00258
7 0.00000 0.00000 0.00002 0.00005 0.00006 0.00013 0.00030 0.00039
8 0.00000 0.00000 0.00001 0.00001 0.00004 0.00005
9 0.00000 0.00000 0.00000 0.00000
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19 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.17383 0.31877 0.43939 0.53958 0.62265 0.69138 0.70660 0.74813 0.79490 0.80857
2 0.01527 0.05462 0.10996 0.17508 0.24529 0.31709 0.33497 0.38793 0.45604 0.47791
3 0.00086 0.00610 0.01826 0.03840 0.06655 0.10207 0.11199 0.14392 0.19084 0.20737
4 0.00003 0.00049 0.00219 0.00612 0.01324 0.02430 0.02775 0.03985 0.06016 0.06800

5 0.00000 0.00003 0.00020 0.00074 0.00201 0.00444 0.00529 0.00851 0.01471 0.01732
6 0.00000 0.00001 0.00007 0.00024 0.00064 0.00079 0.00144 0.00285 0.00350
7 0.00000 0.00001 0.00002 0.00007 0.00010 0.00020 0.00045 0.00057
8 0.00000 0.00000 0.00001 0.00001 0.00002 0.00006 0.00008
9 0.00000 0.00000 0.00000 0.00001 0.00001

10 0.00000 0.00000

20 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.18209 0.33239 0.45621 0.55800 0.64151 0.70989 0.72494 0.76576 0.81131 0.82452
2 0.01686 0.05990 0.11984 0.18966 0.26416 0.33955 0.35820 0.41314 0.48314 0.50546
3 0.00100 0.00707 0.02101 0.04386 0.07548 0.11497 0.12592 0.16100 0.21205 0.22992
4 0.00004 0.00060 0.00267 0.00741 0.01590 0.02897 0.03302 0.04713 0.07062 0.07962

5 0.00000 0.00004 0.00026 0.00096 0.00257 0.00563 0.00669 0.01071 0.01834 0.02155
6 0.00000 0.00002 0.00010 0.00033 0.00087 0.00108 0.00193 0.00380 0.00465
7 0.00000 0.00001 0.00003 0.00011 0.00014 0.00028 0.00064 0.00082
8 0.00000 0.00000 0.00001 0.00001 0.00003 0.00009 0.00012
9 0.00000 0.00000 0.00000 0.00001 0.00001

10 0.00000 0.00000

21 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.19027 0.34574 0.47252 0.57568 0.65944 0.72730 0.74213 0.78216 0.82640 0.83914
2 0.01851 0.06535 0.12993 0.20440 0.28303 0.36177 0.38112 0.43783 0.50940 0.53205
3 0.00116 0.00813 0.02397 0.04969 0.08492 0.12845 0.14044 0.17865 0.23374 0.25288
4 0.00005 0.00073 0.00322 0.00887 0.01888 0.03413 0.03882 0.05510 0.08193 0.09214
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TABLE T3.4 (continued): Harvard’s table of the binomial distribution, 1�F(r� 1), Pr (x � r j n, p).

n r p¼ 0.01 p¼ 0.02 p¼ 0.03 p¼ 0.04 p¼ 0.05 p¼ 0.06 p¼ 1=16 p¼ 0.07 p¼ 0.08 p¼ 1=12

5 0.00000 0.00005 0.00033 0.00122 0.00324 0.00703 0.00834 0.01326 0.02253 0.02639
6 0.00000 0.00003 0.00013 0.00044 0.00115 0.00143 0.00255 0.00496 0.00606
7 0.00000 0.00001 0.00005 0.00015 0.00020 0.00040 0.00089 0.00113
8 0.00000 0.00000 0.00002 0.00002 0.00005 0.00013 0.00018
9 0.00000 0.00000 0.00001 0.00002 0.00002

10 0.00000 0.00000 0.00000

22 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.19837 0.35883 0.48834 0.59265 0.67647 0.74366 0.75825 0.79741 0.84029 0.85255
2 0.02023 0.07096 0.14021 0.21925 0.30185 0.38370 0.40368 0.46193 0.53476 0.55764
3 0.00134 0.00927 0.02715 0.05588 0.09482 0.14245 0.15548 0.19679 0.25579 0.27614
4 0.00006 0.00088 0.00384 0.01050 0.02218 0.03979 0.04517 0.06375 0.09408 0.10554

5 0.00000 0.00006 0.00042 0.00152 0.00402 0.00866 0.01024 0.01619 0.02728 0.03187
6 0.00000 0.00004 0.00018 0.00058 0.00151 0.00186 0.00330 0.00637 0.00776
7 0.00000 0.00002 0.00007 0.00021 0.00027 0.00055 0.00122 0.00155
8 0.00000 0.00001 0.00003 0.00003 0.00008 0.00019 0.00026
9 0.00000 0.00000 0.00000 0.00001 0.00003 0.00004

10 0.00000 0.00000 0.00000

23 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.20639 0.37165 0.50369 0.60894 0.69264 0.75904 0.77336 0.81159 0.85307 0.86484
2 0.02201 0.07671 0.15065 0.23418 0.32058 0.40530 0.42584 0.48541 0.55920 0.58222
3 0.00152 0.01050 0.03054 0.06242 0.10517 0.15692 0.17100 0.21535 0.27811 0.29960
4 0.00008 0.00104 0.00454 0.01232 0.02581 0.04595 0.05207 0.07307 0.10701 0.11975

5 0.00000 0.00008 0.00052 0.00188 0.00493 0.01053 0.01243 0.01952 0.03262 0.03801
6 0.00000 0.00005 0.00023 0.00075 0.00194 0.00238 0.00420 0.00804 0.00977
7 0.00000 0.00002 0.00009 0.00029 0.00037 0.00074 0.00163 0.00206
8 0.00000 0.00001 0.00004 0.00005 0.00011 0.00027 0.00036
9 0.00000 0.00000 0.00001 0.00001 0.00004 0.00005

10 0.00000 0.00000 0.00000 0.00001
11 0.00000
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24 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.21432 0.38422 0.51858 0.62459 0.70801 0.77350 0.78752 0.82478 0.86482 0.87610
2 0.02385 0.08261 0.16124 0.24917 0.33918 0.42652 0.44756 0.50825 0.58271 0.60577
3 0.00173 0.01183 0.03415 0.06929 0.11594 0.17182 0.18692 0.23426 0.30060 0.32315
4 0.00009 0.00123 0.00532 0.01432 0.02978 0.05260 0.05950 0.08303 0.12070 0.13474

5 0.00000 0.00010 0.00064 0.00230 0.00597 0.01265 0.01490 0.02326 0.03857 0.04482
6 0.00001 0.00006 0.00030 0.00096 0.00245 0.00301 0.00527 0.01001 0.01212
7 0.00000 0.00000 0.00003 0.00013 0.00039 0.00050 0.00098 0.00214 0.00270
8 0.00000 0.00001 0.00005 0.00007 0.00015 0.00038 0.00050
9 0.00000 0.00001 0.00001 0.00002 0.00006 0.00008

10 0.00000 0.00000 0.00000 0.00001 0.00001
11 0.00000 0.00000

25 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 022218 039654 0.53303 0.63960 0.72261 0.78709 0.80080 0.83704 0.87564 0.88642
2 0.02576 0.08865 0.17196 0.26419 0.35762 0.44734 0.46881 0.53040 0.60528 0.62830
3 0.00195 0.01324 0.03796 0.07648 0.12711 0.18711 0.20321 0.25344 0.32317 0.34670
4 0.00011 0.00145 0.00619 0.01652 0.03409 0.05976 0.06746 0.09361 0.13509 0.15044

5 0.00000 0.00012 0.00078 0.00278 0.00716 0.01505 0.01769 0.02745 0.04514 0.05231
6 0.00001 0.00008 0.00038 0.00121 0.00306 0.00375 0.00653 0.01229 0.01484
7 0.00000 0.00001 0.00004 0.00017 0.00051 0.00066 0.00128 0.00277 0.00349
8 0.00000 0.00000 0.00002 0.00007 0.00010 0.00021 0.00052 0.00069
9 0.00000 0.00001 0.00001 0.00003 0.00008 0.00011

10 0.00000 0.00000 0.00000 0.00001 0.00002
11 0.00000 0.00000

26 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.22996 0.40860 0.54703 0.65402 0.73648 0.79986 0.81325 0.84845 0.88558 0.89589
2 0.02772 0.09480 0.18279 0.27921 0.37587 0.46772 0.48956 0.55187 0.62691 0.64981
3 0.00219 0.01475 0.04198 0.08399 0.13863 0.20272 0.21981 0.27283 0.34574 0.37017
4 0.00013 0.00168 0.00714 0.01892 0.03874 0.06740 0.07595 0.10480 0.15014 0.16680
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TABLE T3.4 (continued): Harvard’s table of the binomial distribution, 1�F(r� 1), Pr (x � r j n, p).

n r p¼ 0.01 p¼ 0.02 p¼ 0.03 p¼ 0.04 p¼ 0.05 p¼ 0.06 p¼ 1=16 p¼ 0.07 p¼ 0.08 p¼ 12

5 0.00001 0.00015 0.00094 0.00333 0.00851 0.01773 0.02080 0.03208 0.05234 0.06049
6 0.00000 0.00001 0.00010 0.00047 0.00151 0.00378 0.00462 0.00800 0.01492 0.01797
7 0.00000 0.00001 0.00005 0.00022 0.00067 0.00085 0.00165 0.00353 0.00444
8 0.00000 0.00001 0.00003 0.00010 0.00013 0.00029 0.00070 0.00092
9 0.00000 0.00000 0.00001 0.00002 0.00004 0.00012 0.00016

10 0.00000 0.00000 0.00001 0.00002 0.00002
11 0.00000 0.00000 0.00000

27 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.23766 0.42043 0.56062 0.66786 0.74966 0.81187 0.82492 0.85906 0.89474 0.90456
2 0.02975 0.10108 0.19372 0.29420 0.39390 0.48765 0.50979 0.57263 0.64760 0.67031
3 0.00244 0.01635 0.04620 0.09180 0.15049 0.21862 0.23667 0.29236 0.36823 0.39347
4 0.00015 0.00194 0.00818 0.02152 0.04374 0.07552 0.08494 0.11656 0.16579 0.18375

5 0.00001 0.00018 0.00113 0.00395 0.01002 0.02071 0.02425 0.03717 0.06016 0.06935
6 0.0000 0.00001 0.00013 0.00059 0.00186 0.00462 0.00564 0.00968 0.01791 0.02151
7 0.00000 0.00001 0.00007 0.00029 0.00085 0.00109 0.00209 0.00444 0.00556
8 0.00000 0.00001 0.00004 0.00013 0.00018 0.00038 0.00093 0.00121
9 0.00000 0.00000 0.00002 0.00002 0.00006 0.00017 0.00023

10 0.00000 0.00000 0.00001 0.00003 0.00004
11 0.00000 0.00000 0.00000

28 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.24528 0.43202 0.57380 0.68114 0.76217 0.82316 0.83587 0.86892 0.90316 0.91252
2 0.03182 0.10747 0.20473 0.30915 0.41169 0.50711 0.52949 0.59268 0.66737 0.68984
3 0.00272 0.01805 0.05063 0.09990 0.16266 0.23476 0.25374 0.31198 0.39058 0.41654
4 0.00017 0.00223 0.00932 0.02433 0.04907 0.08410 0.09442 0.12887 0.18198 0.20122
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5 0.00001 0.00021 0.00134 0.00466 0.01171 0.02400 0.02804 0.04273 0.06861 0.07888
6 0.00000 0.00002 0.00016 0.00072 0.00227 0.00559 0.00680 0.01161 0.2129 0.02550
7 0.00000 0.00001 0.00009 0.00036 0.00108 0.00137 0.00263 0.00552 0.00689
8 0.00000 0.00001 0.00005 0.00018 0.00023 0.00050 0.00121 0.00158
9 0.00000 0.00001 0.00002 0.00003 0.00008 0.00023 0.00031

10 0.00000 0.00000 0.00000 0.00001 0.00004 0.00005
11 0.00000 0.00001 0.00001
12 0.00000 0.00000

29 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.25283 0.44338 0.58659 0.69390 0.77406 0.83377 0.84613 0.87810 0.91091 0.91981
2 0.03396 0.11396 0.21580 0.32403 0.42922 0.52607 0.54863 0.61202 0.68624 0.70839
3 0.00301 0.01984 0.05525 0.10827 0.17512 0.25110 0.27098 0.33163 0.41272 0.43932
4 0.00019 0.00255 0.01056 0.02736 0.05475 0.09314 0.10438 0.14168 0.19867 0.21917

5 0.00001 0.00025 0.00158 0.00544 0.01358 0.02761 0.03219 0.04876 0.07768 0.08908
6 0.00000 0.00002 0.00019 0.00088 0.00274 0.00669 0.00813 0.01378 0.02508 0.02994
7 0.00000 0.00002 0.00012 0.00046 0.00135 0.00171 0.00325 0.00678 0.00844
8 0.00000 0.00001 0.00006 0.00023 0.00030 0.00065 0.00156 0.00202
9 0.00000 0.00001 0.00003 0.00005 0.00011 0.00031 0.00041

10 0.00000 0.00000 0.00001 0.00002 0.00005 0.00007
11 0.00000 0.00000 0.00001 0.00001
12 0.00000 0.00000

30 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.26030 0.45452 0.59899 0.70614 0.78536 0.84374 0.85574 0.88663 0.91803 0.92649
2 0.03615 0.12055 0.22692 0.33882 0.44646 0.54453 0.56723 0.63064 0.70421 0.72601
3 0.00332 0.02172 0.06007 0.11690 0.18782 0.26760 0.28833 0.35125 0.43460 0.46174
4 0.00022 0.00289 0.01190 0.03059 0.06077 0.10262 0.11479 0.15498 0.21579 0.23751

5 0.00001 0.00030 0.00185 0.00632 0.01564 0.03154 0.03670 0.05526 0.08736 0.09992
6 0.00000 0.00003 0.00023 0.00106 0.00328 0.00795 0.00963 0.01623 0.02929 0.03487
7 0.00000 0.00002 0.00015 0.00057 0.00167 0.00211 0.00399 0.00825 0.01023
8 0.00000 0.00002 0.00008 0.00030 0.00039 0.00083 0.00197 0.00255
9 0.00000 0.00001 0.00005 0.00006 0.00015 0.00041 0.00055
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TABLE T3.4 (continued): Harvard’s table of the binomial distribution, 1�F(r� 1), Pr (x � r j n, p).

n r p¼ 0.01 p¼ 0.02 p¼ 0.03 p¼ 0.04 p¼ 0.05 p¼ 0.06 p¼ 1=16 p¼ 0.07 p¼ 0.08 p¼ 12

10 0.00000 0.00001 0.00001 0.00002 0.00007 0.00010
11 0.00000 0.00000 0.00000 0.00001 0.00002
12 0.00000 0.00000

31 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.26770 0.46543 0.61102 0.71790 0.79609 0.85312 0.86476 0.89457 0.92459 0.93262
2 0.03839 0.12723 0.23809 0.35351 0.46340 0.56248 0.58526 0.64856 0.72131 0.74272
3 0.00365 0.02369 0.06507 0.12577 0.20075 0.28422 0.30576 0.37081 0.45617 0.48376
4 0.00025 0.00327 0.01335 0.03405 0.06712 0.11252 0.12564 0.16872 0.23330 0.25620

5 0.00001 0.00035 0.00215 0.00729 0.01789 0.03580 0.04158 0.06224 0.09764 0.11138
6 0.00000 0.00003 0.00028 0.00127 0.00390 0.00936 0.01132 0.01896 0.03393 0.04029
7 0.00000 0.00003 0.00018 0.00071 0.00205 0.00258 0.00485 0.00993 0.01229
8 0.00000 0.00002 0.00011 0.00038 0.00050 0.00105 0.00248 0.00319
9 0.00000 0.00001 0.00006 0.00008 0.00020 0.00053 0.00071

10 0.00000 0.00001 0.00001 0.00003 0.00010 0.00014
11 0.00000 0.00000 0.00000 0.00002 0.00002
12 0.00000 0.00000

32 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.27502 0.47612 0.62269 0.72918 0.80629 0.86193 0.87321 0.90195 0.93062 0.93823
2 0.04068 0.13399 0.24927 0.36809 0.48004 0.57992 0.60273 0.66578 0.73758 0.75854
3 0.00399 0.02577 0.07027 0.13488 0.21389 0.30091 0.32323 0.39025 0.47738 0.50534
4 0.00029 0.00368 0.01490 0.03771 0.07381 0.12282 0.13690 0.18287 0.25113 0.27516
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5 0.00002 0.00041 0.00249 0.00836 0.02035 0.04041 0.04684 0.06970 0.10849 0.12345
6 0.00000 0.00004 0.00034 0.00151 0.00460 0.01095 0.01321 0.02199 0.03903 0.04622
7 0.00000 0.00004 0.00023 0.00087 0.00249 0.00313 0.00584 0.01185 0.01462
8 0.00000 0.00003 0.00014 0.00048 0.00063 0.00132 0.00307 0.00395
9 0.00000 0.00002 0.00008 0.00011 0.00026 0.00069 0.00092

10 0.00000 0.00001 0.00002 0.00004 0.00013 0.00019
11 0.00000 0.00000 0.00001 0.00002 0.00003
12 0.00000 0.00000 0.00001
13 0.00000

33 0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1 0.28227 0.48659 0.63401 0.74001 0.81597 0.87022 0.88114 0.90881 0.93617 0.94338
2 0.04303 0.14083 0.26048 0.38253 0.49635 0.59684 0.61963 0.68231 0.75302 0.77352
3 0.00436 0.02793 0.07564 0.14421 0.22719 0.31765 0.34070 0.40954 0.49820 0.52644
4 0.00032 0.00412 0.01656 0.04160 0.08081 0.13351 0.14854 0.19738 0.26923 0.29434

5 0.00002 0.00048 0.00286 0.00954 0.02303 0.04535 0.05247 0.07762 0.11990 0.13609
6 0.00000 0.00004 0.00040 0.00179 0.00539 0.01271 0.01532 0.02533 0.04459 0.05265
7 0.00000 0.00005 0.00028 0.00106 0.00299 0.00376 0.00697 0.01402 0.01725
8 0.00000 0.00004 0.00018 0.00060 0.00079 0.00164 0.00377 0.00484
9 0.00000 0.00003 0.00010 0.00014 0.00033 0.00088 0.00117

10 0.00000 0.00002 0.00002 0.00006 0.00018 0.00025
11 0.00000 0.00000 0.00001 0.00003 0.00005
12 0.00000 0.00000 0.00001
13 0.00000

Source: Reprinted from Harvard University Computing Laboratory, Tables of Cumulative Binomial Probability Distribution, Harvard University Press, Cambridge, MA, 1955, 3–7. With
permission.
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TABLE T3.5: Molina’s table of the Poisson distribution, 1 – F(c� 1),
Pr (x � cja)¼P1

x¼c
axe�a

x! .

c a¼ .001 a¼ .002 a¼ .003 a¼ .004
0 1.0000000 1.0000000 1.0000000 1.0000000
1 .0009995 .0019980 .0029955 .0039920
2 .0000005 .0000020 .0000045 .0000080

c a¼ .005 a¼ .006 a¼ .007 a¼ .008
0 1.0000000 1.0000000 1.0000000 1.0000000
1 .0049875 .0059820 .0069756 .0079681
2 .0000125 .0000179 .0000244 .0000318
3 .0000001 .0000001

c a¼ .009 a¼ .010. a¼ .02 a¼ .03
0 1.0000000 1.0000000 1.0000000 1.0000000
1 .0089596 .0099502 .0198013 .0295545
2 .0000403 .0000497 .0001973 .0004411
3 .000001 .0000002 .0000013 .0000044

c a¼ .04 a¼ .05 a¼ .06 a¼ .07
0 1.0000000 1.0000000 1.0000000 1.0000000
1 .0392106 .0487706 .0582355 .0676062
2 .0007790 .0012091 .0017296 .0023386
3 .0000104 .0000201 .0000344 .0000542
4 .0000001 .0000003 .0000005 .0000009

c a¼ .08 a¼ .09 a¼ .10 a¼ .11
0 1.0000000 1.0000000 1.0000000 1.0000000
1 .0768837 .0860688 .0951626 .1041659
2 .0030343 .0038150 .0046788 .0056241
3 .0000804 .0001136 .0001547 .0002043
4 .0000016 .0000025 .0000038 .0000056

5 .0000001

c a¼ .12 a¼ .13 a¼ .14 a¼ .15
0 1.0000000 1.0000000 1.0000000 1.0000000
1 .1130796 .1219046 .1306418 .1392920
2 .0066491 .0077522 .0089316 .0101858
3 .0002633 .0003323 .0004119 .0005029
4 .0000079 .0000107 .0000143 .0000187

5 .0000002 .0000003 .0000004 .0000006

c a¼ .16 a¼ .17 a¼ .18 a¼ .19
0 1.0000000 1.0000000 1.0000000 1.0000000
1 .1478562 .1563352 .1647298 .1730409
2 .0115132 .0129122 .0143812 .0159187
3 .0006058 .0007212 .0008498 .0009920
4 .0000240 .0000304 .0000379 .0000467

5 .0000008 .0000010 .0000014 .0000018
6 .0000001

� 2008 by Taylor & Francis Group, LLC.



TABLE T3.5 (continued): Molina’s table of the Poisson distribution, 1 – F(c� 1),
Pr (x � cja)¼P1

x¼c
axe�a

x! .

c a¼ .20 a¼ .21 a¼ .22 a¼ .23
0 1.0000000 1.0000000 1.0000000 1.0000000
1 .1812692 .1894158 .1974812 .2054664
2 .0175231 .0191931 .0209271 .0227237
3 .0011485 .0013197 .0015060 .0017083
4 .0000568 .0000685 .0000819 .0000971

5 .0000023 .0000029 .0000036 .0000044
6 .0000001 .0000001 .0000001 .0000002

c a¼ .24 a¼ .25 a¼ .26 a¼ .27
0 1.0000000 1.0000000 1.0000000 1.0000000
1 .2133721 .2211992 .2289484 .2366205
2 .0245815 .0264990 .0284750 .0305080
3 .0019266 .0021615 .0024135 .0026829
4 .0001142 .0001334 .0001548 .0001786

5 .0000054 .0000066 .0000080 .0000096
6 .0000002 .0000003 .0000003 .0000004

c a¼ .28 a¼ .29 a¼ .30 a¼ .4
0 1.0000000 1.0000000 1.0000000 1.0000000
1 .2442163 .2517364 .2591818 .3296800
2 .0325968 .0347400 .0369363 .0615519
3 .0029701 .0032755 .0035995 .0079263
4 .0002049 .0002339 .0002658 .0007763

5 .0000113 .0000134 .0000158 .0000612
6 .0000005 .0000006 .0000008 .0000040
7 .0000002

c a¼ .5 a¼ .6 a¼ .7 a¼ .8
0 1.000000 1.000000 1.000000 1.000000
1 .393469 .451188 .503415 .550671
2 .090204 .121901 .155805 .191208
3 .014388 .023115 .034142 .047423
4 .001752 .003358 .005753 .009080

5 .000172 .000394 .000786 .001411
6 .000014 .000039 .000090 .000184
7 .000001 .000003 .000009 .000021
8 .000001 .000002

c a¼ .9 a¼ 1.0 a¼ 1.1 a¼ 1.2
0 1.000000 1.000000 1.000000 1.000000
1 .593430 .632121 .667129 .698806
2 .227518 .264241 .300971 .337373
3 .062857 .080301 .099584 .120513
4 .013459 .018988 .025742 .033769

(continued)
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TABLE T3.5 (continued): Molina’s table of the Poisson distribution, 1 – F(c� 1),
Pr (x � cja)¼P1

x¼c
axe�a

x! .

5 .002344 .003660 .005435 .007746
6 .000343 .000594 .000968 .001500
7 .000043 .000083 .000149 .000251
8 .000005 .000010 .000020 .000037
9 .000001 .000002 .000005

10 .000001

c a¼ 1.3 a¼ 1.4 a¼ 1.5 a¼ 1.6
0 1.000000 1.000000 1.000000 1.000000
1 .727468 .753403 .776870 .798103
2 .373177 .408167 .442175 .475069
3 .142888 .166502 .191153 .216642
4 .043095 .053725 .065642 .078813

5 .010663 .014253 .018576 .023682
6 .002231 .003201 .004456 .006040
7 .000404 .000622 .000926 .001336
8 .000064 .000107 .000170 .000260
9 .000009 .000016 .000028 .000045

10 .000001 .000002 .000004 .000007
11 .000001 .000001

c a¼ 1.7 a¼ 1.8 a¼ 1.9 a¼ 2.0
0 1.000000 1.000000 1.000000 1.000000
1 .817316 .834701 .850431 .864665
2 .506754 .537163 .566251 .593994
3 .242777 .269379 .296280 .323324
4 .093189 .108708 .125298 .142877

5 .029615 .036407 .044081 .052653
6 .007999 .010378 .013219 .016564
7 .001875 .002569 .003446 .004534
8 .000388 .000562 .000793 .001097
9 .000072 .000110 .000163 .000237

10 .000012 .000019 .000030 .000046
11 .000002 .000003 .000005 .000008
12 .000001 .000001

c a¼ 2.1 a¼ 2.2 a¼ 2.3 a¼ 2.4 a¼ 2.5
0 1.000000 1.000000 1.000000 1.000000 1.000000
1 .877544 .889197 .899741 .909282 .917915
2 .620385 .645430 .669146 .691559 .712703
3 .350369 .377286 .403961 .430291 .456187
4 .161357 .180648 .200653 .221277 .242424

5 .062126 .072496 .083751 .095869 .108822
6 .020449 .024910 .029976 .035673 .042021
7 .005862 .007461 .009362 .011594 .014187
8 .001486 .001978 .002589 .003339 .004247
9 .000337 .000470 .000642 .000862 .001140
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TABLE T3.5 (continued): Molina’s table of the Poisson distribution, 1 – F(c� 1),
Pr (x � cja)¼P1

x¼c
axe�a

x! .

10 .000069 .000101 .000144 .000202 .000277
11 .000013 .000020 .000029 .000043 .000062
12 .000002 .000004 .000006 .000008 .000013
13 .000001 .000001 .000002 .000002

c a¼ 2.6 a¼ 2.7 a¼ 2.8 a¼ 2.9 a¼ 3.0
0 1.000000 1.000000 1.000000 1.000000 1.000000
1 .925726 .932794 .939190 .944977 .950213
2 .732615 .751340 .768922 .785409 .800852
3 .481570 .506375 .530546 .554037 .576810
4 .263998 .285908 .308063 .330377 .352768

5 .122577 .137092 .152324 .168223 .184737
6 .049037 .056732 .065110 .074174 .83918
7 .017170 .020569 .024411 .028717 .033509
8 .005334 .006621 .008131 .009885 .011905
9 .001487 .001914 .002433 .003058 .003803

10 .000376 .000501 .000660 .000858 .001102
11 .000087 .000120 .000164 .000220 .000292
12 .000018 .000026 .000037 .000052 .000071
13 .000004 .000005 .000008 .000011 .000016
14 .000001 .000001 .000002 .000002 .000003
15 .000001

c a¼ 3.1 a¼ 3.2 a¼ 3.3 a¼ 3.4 a¼ 3.5
0 1.000000 1.000000 1.000000 1.000000 1.000000
1 .954951 .959238 .963117 .966627 .969803
2 .815298 .828799 .841402 .853158 .864112
3 .598837 .620096 .640574 .660260 .679153
4 .375160 .397480 .419662 .441643 .463367

5 .201811 .219387 .237410 .255818 .274555
6 .094334 .105408 .117123 .129458 .142386
7 .038804 .044619 .050966 .057853 .065288
8 .014213 .016830 .019777 .023074 .026739
9 .004683 .005714 .006912 .008293 .009874

10 .001401 .001762 .002195 .002709 .003315
11 .000383 .000497 .000638 .000810 .001019
12 .000097 .000129 .000171 .000223 .000289
13 .000023 .000031 .000042 .000057 .000076
14 .000005 .000007 .000010 .000014 .000019

15 .000001 .000001 .000002 .000003 .000004
16 .000001 .000001

c a¼ 3.6 a¼ 3.7 a¼ 3.8 a¼ 3.9 a¼ 4.0
0 1.000000 1.000000 1.000000 1.000000 1.000000
1 .972676 .975276 .977629 .979758 .981684
2 .874311 .883799 .892620 .900815 .908422
3 .697253 .714567 .731103 .746875 .761897
4 .484784 .505847 .526515 .546753 .566530

(continued)
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TABLE T3.5 (continued): Molina’s table of the Poisson distribution, 1 – F(c� 1),
Pr (x � cja)¼P1

x¼c
axe�a

x! .

5 .293562 .312781 .332156 .351635 .371163
6 .155881 .169912 .184444 .199442 .214870
7 .073273 .081809 .090892 .100517 .110674
8 .030789 .035241 .040107 .045402 .051134
9 .011671 .013703 .015984 .018533 .021363

10 .004024 .004848 .005799 .006890 .008132
11 .001271 .001572 .001929 .002349 .002840
12 .000370 .000470 .000592 .000739 .000915
13 .000100 .000130 .000168 .000216 .000274
14 .000025 .000034 .000045 .000059 .000076

15 .000006 .000008 .000011 .000015 .000020
16 .000001 .000002 .000003 .000004 .000005
17 .000001 .000001 .000001

c a¼ 4.1 a¼ 4.2 a¼ 4.3 a¼ 4.4 a¼ 4.5
0 1.000000 1.000000 1.000000 1.000000 1.000000
1 .983427 .985004 .986431 .987723 .988891
2 .915479 .922023 .928087 .933702 .938901
3 .776186 .789762 .802645 .814858 .826422
4 .585818 .604597 .622846 .640552 .657704

5 .390692 .410173 .429562 .448816 .467896
6 .230688 .246857 .263338 .280088 .297070
7 .181352 .132536 .144210 .156355 .168949
8 .057312 .063943 .071032 .078579 .086586
9 .024492 .027932 .031698 .035803 .040257

10 .009540 .011127 .012906 .014890 .017093
11 .003410 .004069 .004825 .005688 .006669
12 .001125 .001374 .001666 .002008 .002404
13 .000345 .000431 .000534 .000658 .000805
14 .000098 .000126 .000160 .000201 .000252

15 .000026 .000034 .000045 .000058 .000074
16 .000007 .000009 .000012 .000016 .000020
17 .000002 .000002 .000003 .000004 .000005
18 .000001 .000001 .000001

c a¼ 4.6 a¼ 4.7 a¼ 4.8 a¼ 4.9 a¼ 5.0
0 1.000000 1.000000 1.000000 1.000000 1.000000
1 .989948 .990905 .991770 .992553 .993262
2 .943710 .948157 .952267 .956065 .959572
3 .837361 .847700 .857461 .866669 .875348
4 .674294 .690316 .705770 .720655 .734974

5 .486766 .505391 .523741 .541788 .559507
6 .314240 .331562 .348994 .366499 .384039
7 .181971 .195395 .209195 .223345 .237817
8 .095051 .103969 .113334 .123138 .133372
9 .045072 .050256 .055817 .061761 .068094
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TABLE T3.5 (continued): Molina’s table of the Poisson distribution, 1 – F(c� 1),
Pr (x � cja)¼P1

x¼c
axe�a

x! .

10 .019527 .022206 .025141 .028345 .031828
11 .007777 .009022 .010417 .011971 .013695
12 .002863 .003389 .003992 .004677 .005453
13 .000979 .001183 .001422 .001699 .002019
14 .000312 .000385 .000473 .000576 .000698

15 .000093 .000118 .000147 .000183 .000226
16 .000026 .000034 .000043 .000055 .000069
17 .000007 .000009 .000012 .000015 .000020
18 .000002 .000002 .000003 .000004 .000005
19 .000001 .000001 .000001 .000001

c a¼ 5.1 a¼ 5.2 a¼ 5.3 a¼ 5.4 a¼ 5.5
0 1.000000 1.000000 1.000000 1.000000 1.000000
1 .993903 .994483 .995008 .995483 .995913
2 .962810 .965797 .968553 .971094 .973436
3 .883522 .891213 .898446 .905242 .911624
4 .748732 .761935 .774590 .786709 .798301

5 .576875 .593872 .610482 .626689 .642482
6 .401580 .419087 .436527 .453868 .471081
7 .252580 .267607 .282866 .298329 .313964
8 .144023 .155078 .166523 .178341 .190515
9 .074818 .081935 .089446 .097350 .105643

10 .035601 .039674 .044056 .048755 .053777
11 .015601 .017699 .020000 .022514 .025251
12 .006328 .007310 .008409 .009632 .010988
13 .002387 .002809 .003289 .003835 .004451
14 .000841 .001008 .001202 .001427 .001685

15 .000278 .000339 .000412 .000498 .000599
16 .000086 .000108 .000133 .000164 .000200
17 .000025 .000032 .000041 .000051 .000063
18 .000007 .000009 .000012 .000015 .000019
19 .000002 .000002 .000003 .000004 .000005

20 .000001 .000001 .000001 .000001

c a¼ 5.6 a¼ 5.7 a¼ 5.8 a¼ 5.9 a¼ 6.0
0 1.000000 1.000000 1.000000 1.000000 1.000000
1 .996302 .996654 .996972 .997261 .997521
2 .975594 .977582 .979413 .981098 .982649
3 .917612 .923227 .928489 .933418 .938031
4 .809378 .819952 .830037 .839647 .848796

5 .657850 .672785 .687282 .701335 .714943
6 .488139 .505015 .521685 .538127 .554320
7 .329742 .345634 .361609 .377639 .393697
8 .203025 .215851 .228974 .242371 .256020
9 .114322 .123382 .132814 .142611 .152763
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TABLE T3.5 (continued): Molina’s table of the Poisson distribution, 1 – F(c� 1),
Pr (x � cja)¼P1

x¼c
axe�a

x! .

10 .059130 .064817 .070844 .077212 .083924
11 .028222 .031436 .034901 .038627 .042621
12 .012487 .014138 .015950 .017931 .020092
13 .005144 .005922 .006790 .007756 .008827
14 .001981 .002319 .002703 .003138 .003628

15 .000716 .000852 .001010 .001192 .001400
16 .000244 .000295 .000356 .000426 .000509
17 .000078 .000096 .000118 .000144 .000175
18 .000024 .000030 .000037 .000046 .000057
19 .000007 .000009 .000011 .000014 .000018

20 .000002 .000002 .000003 .000004 .000005
21 .000001 .000001 .000001 .000001

c a¼ 6.1 a¼ 6.2 a¼ 6.3 a¼ 6.4 a¼ 6.5
0 1.000000 1.000000 1.000000 1.000000 1.000000
1 .997757 .997971 .998164 .998338 .998497
2 .984076 .985388 .986595 .987704 .988724
3 .942347 .946382 .950154 .953676 .956964
4 .857499 .865771 .873626 .881081 .888150

5 .728106 .740823 .753096 .764930 .776328
6 .570246 .585887 .601228 .616256 .630959
7 .409755 .425787 .441767 .457671 .473476
8 .269899 .283984 .298252 .312679 .327242
9 .163258 .174086 .185233 .196685 .208427

10 .090980 .098379 .106121 .114201 .122616
11 .046890 .051441 .056280 .061411 .066839
12 .022440 .024985 .027734 .030697 .033880
13 .010012 .011316 .012748 .014316 .016027
14 .004180 .004797 .005485 .006251 .007100

15 .001639 .001910 .002217 .002565 .002956
16 .000605 .000716 .000844 .000992 .001160
17 .000211 .000254 .000304 .000362 .000430
18 .000070 .000085 .000104 .000126 .000151
19 .000022 .000027 .000034 .000041 .000051

20 .000007 .000008 .000010 .000013 .000016
21 .000002 .000002 .000003 .000004 .000005
22 .000001 .000001 .000001 .000001 .000001

c a¼ 6.6 a¼ 6.7 a¼ 6.8 a¼ 6.9 a¼ 7.0
0 1.000000 1.000000 1.000000 1.000000 1.000000
1 .998640 .998769 .998886 .998992 .999088
2 .989661 .990522 .991313 .992038 .992705
3 .960032 .962894 .965562 .968048 .970364
4 .894849 .901192 .907194 .912870 .918235
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TABLE T3.5 (continued): Molina’s table of the Poisson distribution, 1 – F(c� 1),
Pr (x � cja)¼P1

x¼c
axe�a

x! .

5 .787296 .797841 .807969 .817689 .827008
6 .645327 .659351 .673023 .686338 .699292
7 .489161 .504703 .520084 .535285 .550289
8 .341918 .356683 .371514 .386389 .401286
9 .220443 .232716 .245230 .257967 .270909

10 .131361 .140430 .149816 .159510 .169504
11 .072567 .078598 .084934 .091575 .098521
12 .037291 .040937 .044825 .048961 .053350
13 .017889 .019910 .022097 .024458 .027000
14 .008038 .009072 .010208 .011452 .012811

15 .003395 .003886 .004434 .005042 .005717
16 .001352 .001569 .001816 .002094 .002407
17 .000509 .000599 .000703 .000822 .000958
18 .000182 .000217 .000258 .000306 .000362
19 .000062 .000075 .000090 .000108 .000130

20 .000020 .000024 .000030 .000037 .000044
21 .000006 .000008 .000010 .000012 .000014
22 .000002 .000002 .000003 .000004 .000005
23 .000001 .000001 .000001 .000001 .000001

c a¼ 7.1 a¼ 7.2 a¼ 7.3 a¼ 7.4 a¼ 7.5
0 1.000000 1.000000 1.000000 1.000000 1.000000
1 .999175 .999253 .999324 .999389 .999447
2 .993317 .993878 .994393 .994865 .995299
3 .972520 .974526 .976393 .978129 .979743
4 .923301 .928083 .932594 .936847 .940855

5 .835937 .844484 .852660 .860475 .867938
6 .711881 .724103 .735957 .747443 .758564
7 .565080 .579644 .593968 .608038 .621845
8 .416183 .431059 .445893 .460667 .475361
9 .284036 .297332 .310776 .324349 .338033

10 .179788 .190350 .201180 .212265 .223592
11 .105771 .113323 .121175 .129323 .137762
12 .057997 .062906 .068081 .073526 .079241
13 .029730 .032655 .035782 .039117 .042666
14 .014292 .015901 .017645 .019531 .021565

15 .006463 .007285 .008188 .009178 .010260
16 .002757 .003149 .003586 .004071 .004608
17 .001113 .001288 .001486 .001709 .001959
18 .000426 .000500 .000584 .000680 .000790
19 .000155 .000184 .000218 .000258 .000303

20 .000054 .000065 .000078 .000093 .000111
21 .000018 .000022 .000026 .000032 .000039
22 .000006 .000007 .000009 .000011 .000013
23 .000002 .000002 .000003 .000003 .000004
24 .000001 .000001 .000001 .000001
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TABLE T3.5 (continued): Molina’s table of the Poisson distribution, 1 – F(c� 1),
Pr (x � cja)¼P1

x¼c
axe�a

x! .

c a¼ 7.6 a¼ 7.7 a¼ 7.8 a¼ 7.9 a¼ 8.0
0 1.000000 1.000000 1.000000 1.000000 1.000000
1 .999500 .999547 .999590 .999629 .999665
2 .995696 .996060 .996394 .996700 .996981
3 .981243 .982636 .983930 .985131 .986246
4 .944629 .948181 .951523 .954666 .957620

5 .875061 .881855 .888330 .894497 .900368
6 .769319 .779713 .789749 .799431 .808764
7 .635379 .648631 .661593 .674260 .686626
8 .489958 .504440 .518791 .532996 .547039
9 .351808 .365657 .379559 .393497 .407453

10 .235149 .246920 .258891 .271048 .283376
11 .146487 .155492 .164770 .174314 .184114
12 .085230 .091493 .098030 .104841 .111924
13 .046434 .050427 .054649 .059104 .063797
14 .023753 .026103 .028620 .031311 .034181

15 .011441 .012725 .014118 .015627 .017257
16 .005202 .005857 .006577 .007367 .008231
17 .002239 .002552 .002901 .003289 .003718
18 .000915 .001055 .001215 .001393 .001594
19 .000355 .000415 .000484 .000562 .000650

20 .000132 .000156 .000184 .000216 .000253
21 .000046 .000056 .000067 .000079 .000094
22 .000016 .000019 .000023 .000028 .000033
23 .000005 .000006 .000008 .000009 .000011
24 .000002 .000002 .000002 .000003 .000004

25 .000001 .000001 .000001 .000001

c a¼ 8.1 a¼ 8.2 a¼ 8.3 a¼ 8.4 a¼ 8.5
0 1.000000 1.000000 1.000000 1.000000 1.000000
1 .999696 .999725 .999751 .999775 .999797
2 .997238 .997473 .997689 .997886 .998067
3 .987280 .988239 .989129 .989953 .990717
4 .960395 .963000 .965446 .967740 .969891

5 .905951 .911260 .916303 .921092 .925636
6 .817753 .826406 .834727 .842723 .850403
7 .698686 .710438 .721879 .733007 .743822
8 .560908 .574591 .588074 .601348 .614403
9 .421408 .435347 .449252 .463106 .476895

10 .295858 .308481 .321226 .334080 .347026
11 .194163 .204450 .214965 .225699 .236638
12 .119278 .126900 .134787 .142934 .151338
13 .068731 .073907 .079330 .084999 .090917
14 .037236 .040481 .043923 .047564 .051411
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TABLE T3.5 (continued): Molina’s table of the Poisson distribution, 1 – F(c� 1),
Pr (x � cja)¼P1

x¼c
axe�a

x! .

15 .019014 .020903 .022931 .025103 .027425
16 .009174 .010201 .011316 .012525 .013833
17 .004192 .004715 .005291 .005922 .006613
18 .001819 .002070 .002349 .002659 .003002
19 .000751 .000864 .000992 .001136 .001297

20 .000296 .000344 .000400 .000463 .000535
21 .000111 .000131 .000154 .000180 .000211
22 .000040 .000048 .000057 .000067 .000079
23 .000014 .000017 .000020 .000024 .000029
24 .000005 .000006 .000007 .000008 .000010

25 .000001 .000002 .000002 .000003 .000003
26 .000001 .000001 .000001 .000001

c a¼ 8.6 a¼ 8.7 a¼ 8.8 a¼ 8.9 a¼ 9.0
0 1.000000 1.000000 1.000000 1.000000 1.000000
1 .999816 .999833 .999849 .999864 .999877
2 .998233 .998384 .998523 .998650 .998766
3 .991424 .992080 .992686 .993248 .993768
4 .971907 .973797 .975566 .977223 .978774

5 .929946 .934032 .937902 .941567 .945036
6 .857772 .864840 .871613 .878100 .884309
7 .754324 .764512 .774390 .783958 .793819
8 .627229 .639819 .652166 .664262 .676103
9 .490603 .504216 .517719 .531101 .544347

10 .360049 .373132 .386260 .399419 .412592
11 .247772 .259089 .270577 .282222 .294012
12 .159992 .168892 .178030 .187399 .196992
13 .097084 .103499 .110162 .117072 .124227
14 .055467 .059736 .064221 .068925 .073851

15 .029902 .032540 .035343 .038317 .041466
16 .015245 .016767 .018402 .020157 .022036
17 .007367 .008190 .009084 .010055 .011106
18 .003382 .003800 .004261 .004766 .005320
19 .001478 .001679 .001903 .002151 .002426

20 .000616 .000707 .000811 .000926 .001056
21 .000245 .000285 .000330 .000381 .000439
22 .000094 .000110 .000129 .000150 .000175
23 .000034 .000041 .000048 .000057 .000067
24 .000012 .000014 .000017 .000021 .000025

25 .000004 .000005 .000006 .000007 .000009
26 .000001 .000002 .000002 .000002 .000003
27 .000001 .000001 .000001 .000001

(continued)
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TABLE T3.5 (continued): Molina’s table of the Poisson distribution, 1 – F(c� 1),
Pr (x � cja)¼P1

x¼c
axe�a

x! .

c a¼ 9.1 a¼ 9.2 a¼ 9.3 a¼ 9.4 a¼ 9.5
0 1.000000 1.000000 1.000000 1.000000 1.000000
1 .999888 .999899 .999909 .999917 .999925
2 .998872 .998969 .999058 .999140 .999214
3 .994249 .994693 .995105 .995485 .995836
4 .980224 .981580 .982848 .984033 .985140

5 .948318 .951420 .954353 .957122 .959737
6 .890249 .895926 .901350 .906529 .911472
7 .802177 .810835 .819197 .827267 .835051
8 .687684 .699000 .710050 .720829 .731337
9 .557448 .570391 .583166 .595765 .608177

10 .425765 .438924 .452054 .465142 .478174
11 .305933 .317974 .330119 .342356 .354672
12 .206800 .216815 .227029 .237430 .248010
13 .131624 .139261 .147133 .155238 .163570
14 .079001 .084376 .089978 .095807 .101864

15 .044795 .048309 .052010 .055903 .059992
16 .024044 .026188 .028470 .030897 .033473
17 .012242 .013468 .014788 .016206 .017727
18 .005924 .006584 .007302 .008083 .008928
19 .002731 .003066 .003435 .003840 .004284

20 .001201 .001362 .001542 .001742 .001962
21 .000505 .000579 .000662 .000755 .000859
22 .000203 .000235 .000272 .000314 .000361
23 .000078 .000092 .000107 .000125 .000145
24 .000029 .000034 .000041 .000048 .000056

25 .000010 .000012 .000015 .000018 .000021
26 .000004 .000004 .000005 .000006 .000007
27 .000001 .000001 .000002 .000002 .000003
28 .000001 .000001 .000001

c a¼ 9.6 a¼ 9.7 a¼ 9.8 a¼ 9.9 a¼ 10.0
0 1.000000 1.000000 1.000000 1.000000 1.000000
1 .999932 .999939 .999945 .999950 .999955
2 .999282 .999344 .999401 .999453 .999501
3 .996161 .996461 .996738 .996994 .997231
4 .986174 .987139 .988040 .988880 .989664

5 .962205 .964533 .966729 .968798 .970747
6 .916185 .920678 .924959 .929035 .932914
7 .842553 .849779 .856735 .863426 .869859
8 .741572 .751533 .761221 .770636 .779779
9 .620394 .632410 .644217 .655809 .667180
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TABLE T3.5 (continued): Molina’s table of the Poisson distribution, 1 – F(c� 1),
Pr (x � cja)¼P1

x¼c
axe�a

x! .

10 .491138 .504021 .516812 .529498 .542070
11 .367052 .379484 .391955 .404451 .416960
12 .258759 .269665 .280719 .291909 .303224
13 .172124 .180895 .189876 .199062 .208444
14 .108148 .114659 .121395 .128355 .135536

15 .064279 .068767 .073458 .078355 .083458
16 .036202 .039090 .042139 .045355 .048740
17 .019357 .021098 .022956 .024936 .027042
18 .009844 .010832 .011898 .013045 .014278
19 .004770 .005300 .005877 .006505 .007187

20 .002207 .002476 .002772 .003098 .003454
21 .000976 .001106 .001250 .001411 .001588
22 .000414 .000473 .000540 .000616 .000700
23 .000168 .000194 .000224 .000258 .000296
24 .000066 .000077 .000089 .000104 .000120

25 .000025 .000029 .000034 .000040 .000047
26 .000009 .000011 .000013 .000015 .000018
27 .000003 .000004 .000004 .000005 .000006
28 .000001 .000001 .000002 .000002 .000002
29 .000001 .000001 .000001

c a¼ 10.1 a¼ 10.2 a¼ 10.3 a¼ 10.4 a¼ 10.5
0 1.000000 1.000000 1.000000 1.000000 1.000000
1 .999959 .999963 .999966 .999970 .999972
2 .999544 .999584 .999620 .999653 .999683
3 .997449 .997650 .997836 .998007 .998165
4 .990395 .991076 .991711 .992302 .992853

Source: Reprinted from Molina, E.C., in Poisson Exponential Binomial Limit, Van Nostrand, New York, 1942, 1–11.
With permission.
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TABLE T5.1: Cameron’s table of unity values for constructing single-sampling plans.

Values of p2=p1 for Values of p2=p1 for

c
a¼ .05,
b¼ .10

a¼ .05,
b¼ .05

a¼ .05,
b¼ .01 np1 c

a¼ .01,
b¼ .10

a¼ .01,
b¼ .05

a¼ .01,
b¼ .01 np1

0 44.890 58.404 89.781 0.052 0 229.105 298.073 458.210 0.010
1 10.946 13.349 18.681 0.355 1 26.184 31.933 44.686 0.149
2 6.509 7.699 10.280 0.818 2 12.206 14.439 19.278 0.436
3 4.890 5.675 7.352 1.366 3 8.115 9.418 12.202 0.823
4 4.057 4.646 5.890 1.970 4 6.249 7.156 9.072 1.279
5 3.549 4.023 5.017 2.613 5 5.195 5.889 7.343 1.785
6 3.206 3.604 4.435 3.286 6 4.520 5.082 6.253 2.330
7 2.957 3.303 4.019 3.981 7 4.050 4.524 5.506 2.906
8 2.768 3.074 3.707 4.695 8 3.705 4.115 4.962 3.507
9 2.618 2.895 3.462 5.426 9 3.440 3.803 4.548 4.130
10 2.497 2.750 3.265 6.169 10 3.229 3.555 4.222 4.771
11 2.397 2.630 3.104 6.924 11 3.058 3.354 3.959 5.428
12 2.312 2.528 2.968 7.690 12 2.915 3.188 3.742 6.099
13 2.240 2.442 2.852 8.464 13 2.795 3.047 3.559 6.782
14 2.177 2.367 2.752 9.246 14 2.692 2.927 3.403 7.477
15 2.122 2.302 2.665 10.035 15 2.603 2.823 3.269 8.181
16 2.073 2.244 2.588 10.831 16 2.524 2.732 3.151 8.895
17 2.029 2.192 2.520 11.633 17 2.455 2.652 3.048 9.616
18 1.990 2.145 2.458 12.442 18 2.393 2.580 2.956 10.346
19 1.954 2.103 2.403 13.254 19 2.337 2.516 2.874 11.082
20 1.922 2.065 2.352 14.072 20 2.287 2.458 2.799 11.825
21 1.892 2.030 2.307 14.894 21 2.241 2.405 2.733 12.574
22 1.865 1.999 2.265 15.719 22 2.200 2.357 2.671 13.329
23 1.840 1.969 2.226 16.548 23 2.162 2.313 2.615 14.088
24 1.817 1.942 2.191 17.382 24 2.126 2.272 2.564 14.853
25 1.795 1.917 2.158 18.218 25 2.094 2.235 2.516 15.623
26 1.775 1.893 2.127 19.058 26 2.064 2.200 2.472 16.397
27 1.757 1.871 2.098 19.900 27 2.035 2.168 2.431 17.175
28 1.739 1.850 2.071 20.746 28 2.009 2.138 2.393 17.957
29 1.723 1.831 2.046 21.594 29 1.985 2.110 2.358 18.742
30 1.707 1.813 2.023 22.444 30 1.962 2.083 2.324 19.532
31 1.692 1.796 2.001 23.298 31 1.940 2.059 2.293 20.324
32 1.679 1.780 1.980 24.152 32 1.920 2.035 2.264 21.120
33 1.665 1.764 1.960 25.010 33 1.900 2.013 2.236 21.919
34 1.653 1.750 1.941 25.870 34 1.882 1.992 2.210 22.721
35 1.641 1.736 1.923 26.731 35 1.865 1.973 2.185 23.525
36 1.630 1.723 1.906 27.594 36 1.848 1.954 2.162 24.333
37 1.619 1.710 1.890 28.460 37 1.833 1.936 2.139 25.143
38 1.609 1.698 1.875 29.327 38 1.818 1.920 2.118 25.955
39 1.599 1.687 1.860 30.196 39 1.804 1.903 2.098 26.770
40 1.590 1.676 1.846 31.066 40 1.790 1.887 2.079 27.587
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TABLE T5.1 (continued): Cameron’s table of unity values for constructing single-sampling plans.

Values of p2=p1 for Values of p2=p1 for

c
a¼ .05,
b¼ .10

a¼ .05,
b¼ .05

a¼ .05,
b¼ .01 np1 c

a¼ .01,
b¼ .10

a¼ .01,
b¼ .05

a¼ .01,
b¼ .01 np1

41 1.581 1.666 1.833 31.938 41 1.777 1.873 2.060 28.406
42 1.572 1.656 1.820 32.812 42 1.765 1.859 2.043 29.228
43 1.564 1.646 1.807 33.686 43 1.753 1.845 2.026 30.051
44 1.556 1.637 1.796 34.563 44 1.742 1.832 2.010 30.877
45 1.548 1.628 1.784 35.441 45 1.731 1.820 1.994 31.704
46 1.541 1.619 1.773 36.320 46 1.720 1.808 1.980 32.534
47 1.534 1.611 1.763 37.200 47 1.710 1.796 1.965 33.365
48 1.527 1.603 1.752 38.082 48 1.701 1.785 1.952 34.198
49 1.521 1.596 1.743 38.965 49 1.691 1.775 1.938 35.032

Source: Reprinted from Cameron, J.M., Ind. Qual. Control, 9(1), 38, 1952. With permission.
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TABLE T5.2: Cameron’s table of unity values to determine the probability of acceptance.

c
P(A)¼
.995

P(A)¼
.990

P(A)¼
.975

P(A)¼
.950

P(A)¼
.900

P(A)¼
.750

P(A)¼
.500

P(A)¼
.250

P(A)¼
.100

P(A)¼
.050

P(A)¼
.025

P(A)¼
.010

P(A)¼
.005

0 .00501 .0101 .0253 .0513 .105 .288 .693 1.386 2.303 2.996 3.689 4.605 5.298
1 .103 .149 .242 .355 .532 .961 1.678 2.693 3.890 4.744 5.572 6.638 7.430
2 .338 .436 .619 .818 1.102 1.727 2.674 3.920 5.322 6.296 7.224 8.406 9.274
3 .672 .823 1.090 1.366 1.745 2.535 3.672 5.109 6.681 7.754 8.768 10.045 10.978
4 1.078 1.279 1.623 1.970 2.433 3.369 4.671 6.274 7.994 9.154 10.242 11.605 12.594
5 1.537 1.785 2.202 2.613 3.152 4.219 5.670 7.423 9.275 10.513 11.668 13.108 14.150
6 2.037 2.330 2.814 3.286 3.895 5.083 6.670 8.558 10.532 11.842 13.060 14.571 15.660
7 2.571 2.906 3.454 3.981 4.656 5.956 7.669 9.684 11.771 13.148 14.422 16.000 17.134
8 3.132 3.507 4.115 4.695 5.432 6.838 8.669 10.802 12.995 14.434 15.763 17.403 18.578
9 3.717 4.130 4.795 5.426 6.221 7.726 9.669 11.914 14.206 15.705 17.085 18.783 19.998

10 4.321 4.771 5.491 6.169 7.021 8.620 10.668 13.020 15.407 16.962 18.390 20.145 21.398
11 4.943 5.428 6.201 6.924 7.829 9.519 11.668 14.121 16.598 18.208 19.682 21.490 22.779
12 5.580 6.099 6.922 7.690 8.646 10.422 12.668 15.217 17.782 19.442 20.962 22.821 24.145
13 6.231 6.782 7.654 8.464 9.470 11.329 13.668 16.310 18.958 20.668 22.230 24.139 25.496
14 6.893 7.477 8.396 9.246 10.300 12.239 14.668 17.400 20.128 21.886 23.490 25.446 26.836
15 7.566 8.181 9.144 10.035 11.135 13.152 15.668 18.486 21.292 23.098 24.741 26.743 28.166
16 8.249 8.895 9.902 10.831 11.976 14.068 16.668 19.570 22.452 24.302 25.984 28.031 29.484
17 8.942 9.616 10.666 11.633 12.822 14.986 17.668 20.652 23.606 25.500 27.220 29.310 30.792
18 9.644 10.346 11.438 12.442 13.672 15.907 18.668 21.731 24.756 26.692 28.448 30.581 32.092
19 10.353 11.082 12.216 13.254 14.525 16.830 19.668 22.808 25.902 27.879 29.671 31.845 33.383

20 11.069 11.825 12.999 14.072 15.383 17.755 20.668 23.883 27.045 29.062 30.888 33.103 34.668
21 11.791 12.574 13.787 14.894 16.244 18.682 21.668 24.956 28.184 30.241 32.102 34.355 35.947
22 12.520 13.329 14.580 15.719 17.108 19.610 22.668 26.028 29.320 31.416 33.309 35.601 37.219
23 13.255 14.088 15.377 16.548 17.975 20.540 23.668 27.098 30.453 32.586 34.512 36.841 38.485
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24 13.995 14.853 16.178 17.382 18.844 21.471 24.668 28.167 31.584 33.752 35.710 38.077 39.745
25 14.740 15.623 16.984 18.218 19.717 22.404 25.667 29.234 32.711 34.916 36.905 39.308 41.000
26 15.490 16.397 17.793 19.058 20.592 23.338 26.667 30.300 33.836 36.077 38.096 40.535 42.252
27 16.245 17.175 18.606 19.900 21.469 24.273 27.667 31.365 34.959 37.234 39.284 41.757 43.497
28 17.004 17.957 19.422 20.746 22.348 25.209 28.667 32.428 36.080 38.389 40.468 42.975 44.738
29 17.767 18.742 20.241 21.594 23.229 26.147 29.667 33.491 37.198 39.541 41.649 44.190 45.976

30 18.534 19.532 21.063 22.444 24.113 27.086 30.667 34.552 38.315 40.690 42.827 45.401 47.210
31 19.305 20.324 21.888 23.298 24.998 28.025 31.667 35.613 39.430 41.838 44.002 46.609 48.440
32 20.079 21.120 22.716 24.152 25.885 28.966 32.667 36.672 40.543 42.982 45.174 47.813 49.666
33 20.856 21.919 23.546 25.010 26.774 29.907 33.667 37.731 41.654 44.125 46.344 49.015 50.888
34 21.638 22.721 24.379 25.870 27.664 30.849 34.667 38.788 42.764 45.266 47.512 50.213 52.108
35 22.422 23.525 25.214 26.731 28.556 31.792 35.667 39.845 43.872 46.404 48.676 51.409 53.324
36 23.208 24.333 26.052 27.594 29.450 32.736 36.667 40.901 44.978 47.540 49.840 52.601 54.538
37 23.998 25.143 26.891 28.460 30.345 33.681 37.667 41.957 46.083 48.676 51.000 53.791 55.748
38 24.791 25.955 27.733 29.327 31.241 34.626 38.667 43.011 47.187 49.808 52.158 54.979 56.956
39 25.586 26.770 28.576 30.196 32.139 35.572 39.667 44.065 48.289 50.940 53.314 56.164 58.160

40 26.384 27.587 29.422 31.066 33.038 36.519 40.667 45.118 49.390 52.069 54.469 57.347 59.363
41 27.184 28.406 30.270 31.938 33.938 37.466 41.667 46.171 50.490 53.197 55.622 58.528 60.563
42 27.986 29.228 31.120 32.812 34.839 38.414 42.667 47.223 51.589 54.324 56.772 59.717 61.761
43 28.791 30.051 31.970 33.686 35.742 39.363 43.667 48.274 52.686 55.449 57.921 60.884 62.956
44 29.598 30.877 32.824 34.563 36.646 40.312 44.667 49.325 53.782 56.572 59.068 62.059 64.150
45 30.408 31.704 33.678 35.441 37.550 41.262 45.667 50.375 54.878 57.695 60.214 63.231 65.340
46 31.219 32.534 34.534 36.320 38.456 42.212 46.667 51.425 55.972 58.816 61.358 64.402 66.529
47 32.032 33.365 35.392 37.200 39.363 43.163 47.667 52.474 57.065 59.936 62.500 65.571 67.716
48 32.848 34.198 36.250 38.082 40.270 44.115 48.667 53.522 58.158 61.054 63.641 66.738 68.901
49 33.664 35.032 37.111 38.965 41.179 45.067 49.667 54.571 59.249 62.171 64.780 67.903 70.084

Source: Reprinted from Cameron, J.M., Ind. Qual. Control, 9(1), 39, 1952. With permission.
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TABLE T6.1: Unity values for construction and evaluation of single-, double-, and multiple-sampling plans.

Acceptance
Numbers

R¼
p2=p1

Probability of Acceptance

Plan np2 .99 .95 .90 .75 .50 .25 .10 .05 .01 .005 .001 .0005 .0001

0S Ac¼ 0 44.893 2.303 np .0101 .0513 .105 .288 .693 1.386 2.303 2.996 4.605 5.298 6.908 7.601 9.206
Re¼ 1 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

XD Ac¼ # 1 32.655 1.636 np .0100 .0501 .101 .259 .573 1.053 1.636 2.057 2.995 3.389 4.286 4.668 5.542
Re¼ 1 2 ASN

n1

1.990 1.951 1.904 1.772 1.564 1.349 1.195 1.128 1.050 1.034 1.014 1.009 1.004

XM Ac¼ # # 0 0 1 2 3 33.254 .838 np .00501 .0252 .0508 .132 .294 .539 .838 1.057 1.566 1.788 2.312 2.541 3.071
Re¼ 1 1 2 2 3 4 4 ASN

n1

2.995 2.973 2.941 2.821 2.538 2.119 1.732 1.536 1.271 1.205 1.111 1.086 1.049

XXD
Ac ¼ 0 1

For this plan
only use
n2 ¼ 5n1

2

4

3

5
Re ¼ 2 2

20.193 2.302 np .0459 .114 .176 .347 .713 1.388 2.302 2.993 4.571 5.201 6.815 7.490 9.048
ASN

n1

1.219 1.507 1.737 2.226 2.748 2.732 2.151 1.750 1.237 1.143 1.037 1.021 1.005

XXM Ac¼ # # 0 0 1 2 3 20.204 .891 np .00968 .0441 .0817 .183 .357 .602 .891 1.102 1.593 1.808 2.321 2.546 3.074
Re¼ 1 2 2 2 3 4 4 ASN

n1

3.018 3.067 3.095 3.072 2.834 2.383 1.927 1.685 1.345 1.259 1.135 1.103 1.056

1S Ac¼ 1 10.958 3.890 np .149 .355 .532 .961 1.678 2.693 3.890 4.744 6.638 7.430 9.234 10.000 11.759
Re¼ 2 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

1D Ac¼ 0 1 12.029 2.490 np .0860 .207 .310 .566 1.006 1.661 2.490 3.124 4.649 5.324 6.914 7.604 9.209
Re¼ 2 2 ASN

n1

1.079 1.168 1.228 1.321 1.368 1.316 1.206 1.137 1.045 1.026 1.007 1.004 1.001

1M Ac¼ # # 0 0 1 1 2 8.903 .917 np .0459 .103 .148 .252 .416 .643 .917 1.121 1.602 1.815 2.325 2.549 3.075
Re¼ 2 2 2 3 3 3 3 ASN

n1

3.254 3.501 3.637 3.774 3.640 3.169 2.601 2.270 1.761 1.618 1.388 1.319 1.205
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2S Ac¼ 2 6.506 5.322 np .436 .818 1.102 1.727 2.674 3.920 5.322 6.296 8.406 9.274 11.230 12.053 13.934
Re¼ 3 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

2D Ac¼ 0 3 5.357 3.402 np .363 .635 .827 1.231 1.816 2.566 3.402 3.986 5.290 5.852 7.201 7.810 9.295
Re¼ 3 4 ASN

n1

1.298 1.443 1.511 1.581 1.564 1.450 1.306 1.222 1.097 1.066 1.025 1.016 1.005

2M Ac¼ # 0 0 1 2 3 4 6.244 1.355 np .111 .217 .293 .451 .683 .988 1.355 1.635 2.343 2.671 3.458 3.803 4.602
Re¼ 2 3 3 4 4 5 5 ASN

n1

2.432 2.789 2.983 3.207 3.165 2.776 2.261 1.950 1.470 1.344 1.167 1.122 1.060

3S Ac¼ 3 4.891 6.681 np .823 1.366 1.745 2.535 3.672 5.109 6.681 7.754 10.045 10.978 13.062 13.935 15.922
Re¼ 4 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

3D Ac¼ 1 4 4.398 4.398 np .635 1.000 1.246 1.750 2.465 3.373 4.398 5.130 6.808 7.542 9.270 10.019 11.757
Re¼ 4 5 ASN

n1

1.130 1.245 1.316 1.421 1.470 1.414 1.293 1.211 1.084 1.053 1.017 1.010 1.003

3M Ac¼ # 0 1 2 3 4 6 4.672 1.626 np .200 .348 .446 .642 .910 1.246 1.626 1.901 2.553 2.848 3.566 3.887 4.650
Re¼ 3 3 4 5 6 6 7 ASN

n1

2.461 2.820 3.026 3.286 3.288 2.935 2.450 2.156 1.693 1.559 1.340 1.274 1.163

4S Ac¼ 4 4.058 7.994 np 1.279 1.970 2.433 3.369 4.671 6.274 7.994 9.154 11.605 12.594 14.795 15.711 17.792
Re¼ 5 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

4D Ac¼ 3 5 4.102 6.699 np 1.099 1.633 1.992 2.728 3.789 5.162 6.699 7.762 10.047 10.978 13.062 13.933 15.909
Re¼ 6 6 ASN

n1

1.025 1.077 1.125 1.233 1.341 1.345 1.242 1.164 1.055 1.033 1.009 1.005 1.001

4M Ac¼ # 1 2 3 4 5 6 4.814 2.118 np .266 .440 .558 .798 1.141 1.591 2.118 2.502 3.385 3.763 4.640 5.016 5.884
Re¼ 3 4 4 6 6 7 7 ASN

n1

2.128 2.300 2.417 2.590 2.618 2.384 2.021 1.792 1.427 1.326 1.174 1.132 1.070

(continued)
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TABLE T6.1 (continued): Unity values for construction and evaluation of single-, double-, and multiple-sampling plans.

Acceptance
Numbers

R¼
p2=p1

Probability of Acceptance

Plan np2 .99 .95 .90 .75 .50 .25 .10 .05 .01 .005 .001 .0005 .0001

5S Ac¼ 5 3.550 9.275 np 1.785 2.613 3.152 4.219 5.670 7.423 9.275 10.513 13.109 14.150 16.455 17.411 19.578
Re¼ 6 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

5D Ac¼ 2 6 3.547 5.781 np 1.116 1.630 1.959 2.607 3.490 4.579 5.781 6.627 8.537 9.357 11.253 12.066 13.928
Re¼ 5 7 ASN

n1

1.097 1.199 1.263 1.360 1.405 1.352 1.243 1.171 1.064 1.039 1.012 1.007 1.002

5M Ac¼ # 1 2 3 5 7 9 3.243 2.270 np .490 .700 .830 1.079 1.410 1.814 2.270 2.604 3.411 3.776 4.642 5.017 5.884
Re¼ 4 5 6 7 8 9 10 ASN

n1

2.496 2.906 3.143 3.459 3.516 3.188 2.677 2.347 1.791 1.628 1.367 1.292 1.171

6S Ac¼ 6 3.206 10.532 np 2.330 3.285 3.895 5.083 6.670 8.558 10.532 11.842 14.571 15.660 18.062 19.056 21.302
Re¼ 7 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

6D Ac¼ 3 7 3.217 6.914 np 1.559 2.149 2.525 3.262 4.268 5.519 6.914 7.898 10.087 11.000 13.068 13.936 15.903
Re¼ 8 8 ASN

n1

1.073 1.169 1.243 1.393 1.548 1.608 1.525 1.422 1.203 1.138 1.051 1.032 1.011

6M Ac¼ 0 2 4 5 7 10 11 3.452 3.134 np .604 .908 1.093 1.439 1.894 2.463 3.134 3.645 4.917 5.511 6.983 7.646 9.222
Re¼ 4 5 8 9 10 12 12 ASN

n1

1.584 1.928 2.134 2.425 2.519 2.288 1.902 1.663 1.304 1.211 1.083 1.054 1.018

7S Ac¼ 7 2.957 11.771 np 2.906 3.981 4.656 5.956 7.669 9.684 11.771 13.148 16.000 17.134 19.627 20.655 22.976
Re¼ 8 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

7D Ac¼ 3 8 2.951 7.162 np 1.796 2.427 2.822 3.584 4.599 5.826 7.162 8.093 10.174 11.057 13.085 13.946 15.914
Re¼ 7 9 ASN

n1

1.106 1.215 1.288 1.409 1.492 1.467 1.352 1.262 1.110 1.072 1.024 1.014 1.004

7M Ac¼ 0 1 3 5 7 10 13 2.892 2.959 np .713 1.023 1.200 1.518 1.921 2.403 2.959 3.400 4.686 5.337 6.915 7.604 9.210
Re¼ 4 6 8 10 11 12 14 ASN

n1

2.022 2.586 2.882 3.255 3.325 2.966 2.397 2.019 1.406 1.261 1.091 1.057 1.018
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8S Ac¼ 8 2.768 12.995 np 3.507 4.695 5.432 6.838 8.669 10.802 12.995 14.435 17.403 18.578 21.157 22.218 24.600
Re¼ 9 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

8D Ac¼ 3 11 2.668 8.248 np 2.268 3.092 3.583 4.489 5.628 6.925 8.248 9.121 10.964 11.722 13.470 14.232 16.046
Re¼ 7 12 ASN

n1

1.185 1.335 1.409 1.488 1.478 1.375 1.248 1.176 1.075 1.051 1.019 1.012 1.004

8M Ac¼ 0 2 4 6 9 12 14 2.840 3.314 np .787 1.167 1.375 1.739 2.190 2.720 3.314 3.761 4.936 5.517 6.983 7.646 9.219
Re¼ 4 7 9 11 12 14 15 ASN

n1

1.806 2.320 2.599 2.963 3.063 2.765 2.264 1.934 1.400 1.263 1.093 1.058 1.019

9S Ac¼ 9 2.619 14.206 np 4.130 5.425 6.221 7.726 9.669 11.914 14.206 15.705 18.783 19.999 22.658 23.751 26.198
Re¼ 10 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

9D Ac¼ 5 11 2.587 9.533 np 2.871 3.685 4.184 5.134 6.385 7.893 9.533 10.670 13.152 14.174 16.460 17.412 19.564
Re¼ 12 12 ASN

n1

1.071 1.167 1.243 1.401 1.584 1.694 1.662 1.573 1.328 1.241 1.105 1.071 1.026

9M Ac¼ 1 3 5 8 11 13 15 2.813 4.219 np 1.117 1.500 1.719 2.123 2.659 3.349 4.219 4.924 6.682 7.454 9.239 10.000 11.754
Re¼ 5 8 10 12 14 16 16 ASN

n1

1.526 1.928 2.167 2.521 2.667 2.414 1.937 1.635 1.230 1.145 1.048 1.029 1.009

10S Ac¼ 10 2.497 15.407 np 4.771 6.169 7.021 8.620 10.669 13.020 15.407 16.962 20.145 21.398 24.135 25.257 27.768
Re¼ 11 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

10D Ac¼ 5 12 2.486 9.732 np 3.055 3.914 4.433 5.406 6.663 8.147 9.732 10.822 13.216 14.214 16.472 17.420 19.562
Re¼ 9 13 ASN

n1

1.085 1.183 1.248 1.357 1.426 1.394 1.286 1.206 1.081 1.051 1.016 1.009 1.003

10M Ac¼ 0 3 6 8 11 14 18 2.516 3.927 np 1.144 1.561 1.792 2.199 2.701 3.286 3.927 4.391 5.498 6.003 7.266 7.851 9.303
Re¼ 5 8 10 13 15 17 19 ASN

n1

1.927 2.357 2.602 2.939 3.034 2.750 2.282 1.982 1.501 1.368 1.170 1.118 1.047

(continued)

�
2008

by
T
aylor

&
F
rancis

G
roup,

L
L
C
.



TABLE T6.1 (continued): Unity values for construction and evaluation of single-, double-, and multiple-sampling plans.

Acceptance
Numbers

R¼
p2=p1

Probability of Acceptance

Plan np2 .99 .95 .90 .75 .50 .25 .10 .05 .01 .005 .001 .0005 .0001

11S Ac¼ 11 2.397 16.598 np 5.428 6.924 7.829 9.519 11.668 14.121 16.598 18.208 21.490 22.779 25.590 26.741 29.313
Re¼ 12 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

11D Ac¼ 5 12 2.438 9.766 np 3.165 4.006 4.517 5.477 6.723 8.194 9.766 10.847 13.226 14.221 16.474 17.420 19.566
Re¼ 13 13 ASN

n1

1.101 1.216 1.299 1.463 1.642 1.752 1.737 1.664 1.429 1.332 1.163 1.115 1.047

11M Ac¼ 1 4 7 10 13 16 20 2.567 4.657 np 1.362 1.814 2.074 2.539 3.125 3.834 4.657 5.285 6.847 7.561 9.273 10.022 11.758
Re¼ 6 8 11 14 17 21 21 ASN

n1

1.548 1.912 2.132 2.452 2.575 2.357 1.970 1.726 1.348 1.246 1.101 1.066 1.024

12S Ac¼ 12 2.312 17.782 np 6.099 7.690 8.646 10.422 12.668 15.217 17.782 19.443 22.821 24.145 27.027 28.206 30.836
Re¼ 13 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

12D Ac¼ 6 15 2.289 11.233 np 3.884 4.907 5.507 6.606 7.990 9.580 11.233 12.351 14.781 15.795 18.105 19.080 21.291
Re¼ 10 16 ASN

n1

1.092 1.196 1.261 1.358 1.403 1.353 1.246 1.175 1.068 1.043 1.014 1.008 1.002

12M Ac¼ 0 3 7 10 14 18 21 2.249 4.400 np 1.510 1.956 2.203 2.640 3.172 3.774 4.400 4.828 5.802 6.242 7.372 7.916 9.316
Re¼ 6 9 12 15 17 20 22 ASN

n1

2.215 2.655 2.892 3.203 3.274 2.982 2.516 2.214 1.708 1.555 1.299 1.222 1.102

13S Ac¼ 13 2.240 18.958 np 6.782 8.464 9.470 11.329 13.668 16.310 18.958 20.669 24.139 25.497 28.447 29.652 32.339
Re¼ 14 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

13D Ac¼ 5 14 2.227 10.474 np 3.797 4.704 5.246 6.249 7.520 8.976 10.474 11.474 13.624 14.523 16.608 17.509 19.589
Re¼ 15 15 ASN

n1

1.184 1.332 1.427 1.591 1.750 1.842 1.838 1.789 1.603 1.511 1.312 1.242 1.122

13M Ac¼ 1 3 5 8 11 14 19 2.474 4.298 np 1.244 1.737 1.987 2.408 2.920 3.537 4.298 4.947 6.682 7.454 9.239 10.001 11.752
Re¼ 5 9 12 15 18 20 20 ASN

n1

1.669 2.326 2.691 3.188 3.368 3.009 2.315 1.852 1.266 1.161 1.050 1.030 1.009
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14S Ac¼ 14 2.177 20.128 np 7.477 9.246 10.300 12.239 14.668 17.400 20.128 21.886 25.446 26.836 29.853 31.084 33.824
Re¼ 15 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

14D Ac¼ 7 18 2.176 12.722 np 4.652 5.847 6.534 7.769 9.286 10.989 12.722 13.876 16.345 17.370 19.712 20.707 22.974
Re¼ 11 19 ASN

n1

1.091 1.199 1.263 1.352 1.380 1.317 1.214 1.150 1.058 1.037 1.012 1.007 1.002

14M Ac¼ 1 4 8 12 17 21 25 2.185 5.112 np 1.844 2.340 2.618 3.110 3.708 4.387 5.112 5.632 6.955 7.612 9.279 10.024 11.757
Re¼ 7 10 13 17 20 23 26 ASN

n1

1.916 2.375 2.624 2.952 3.042 2.780 2.350 2.067 1.575 1.424 1.192 1.133 1.053

15S Ac¼ 15 2.122 21.292 np 8.181 10.036 11.135 13.152 15.668 18.487 21.292 23.097 26.743 28.164 31.245 32.501 35.294
Re¼ 16 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

15D Ac¼ 5 16 2.091 11.405 np 4.476 5.455 6.033 7.094 8.419 9.908 11.405 12.381 14.405 15.224 17.088 17.890 19.782
Re¼ 17 17 ASN

n1

1.293 1.463 1.559 1.710 1.838 1.904 1.898 1.861 1.716 1.640 1.459 1.384 1.235

15M Ac¼ 2 7 13 18 23 28 30 2.142 6.795 np 2.553 3.173 3.529 4.167 4.953 5.850 6.795 7.453 8.971 9.658 11.362 12.132 13.948
Re¼ 9 12 16 21 26 31 31 ASN

n1

1.606 1.914 2.089 2.339 2.443 2.301 2.028 1.842 1.507 1.397 1.205 1.148 1.064

18S Ac¼ 18 1.990 24.756 np 10.346 12.442 13.672 15.907 18.668 21.731 24.756 26.692 30.581 32.091 35.353 36.679 39.622
Re¼ 19 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

18D Ac¼ 9 23 1.955 15.524 np 6.559 7.940 8.722 10.111 11.796 13.659 15.524 16.748 19.329 20.391 22.818 23.853 26.219
Re¼ 14 24 ASN

n1

1.120 1.244 1.315 1.412 1.442 1.374 1.260 1.188 1.079 1.052 1.018 1.011 1.003

18M Ac¼ 1 6 11 16 22 27 32 1.990 6.225 np 2.506 3.128 3.462 4.035 4.712 5.460 6.225 6.744 7.917 8.443 9.765 10.381 11.912
Re¼ 8 12 17 22 25 29 33 ASN

n1

2.009 2.443 2.681 2.999 3.087 2.824 2.389 2.107 1.639 1.499 1.270 1.202 1.096
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TABLE T6.1 (continued): Unity values for construction and evaluation of single-, double-, and multiple-sampling plans.

Acceptance
Numbers

R¼
p2=p1

Probability of Acceptance

Plan np2 .99 .95 .90 .75 .50 .25 .10 .05 .01 .005 .001 .0005 .0001

21S Ac¼ 21 1.892 28.184 np 12.574 14.894 16.244 18.682 21.668 24.956 28.184 30.240 34.355 35.947 39.376 40.768 43.850
Re¼ 22 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

21D Ac¼ 11 26 1.882 18.909 np 7.843 9.329 10.170 11.666 13.486 15.510 17.555 18.909 21.792 22.978 25.656 26.777 29.312
Re¼ 16 27 ASN

n1

1.094 1.201 1.268 1.367 1.413 1.363 1.256 1.185 1.075 1.048 1.016 1.009 1.003

21M Ac¼ 2 7 13 19 25 31 37 1.893 7.083 np 3.071 3.741 4.100 4.713 5.440 6.246 7.083 7.664 9.044 9.696 11.367 12.133 13.948
Re¼ 9 14 19 25 29 33 38 ASN

n1

1.912 2.370 2.621 2.962 3.077 2.830 2.392 2.102 1.606 1.457 1.219 1.155 1.065

27S Ac¼ 27 1.757 34.959 np 17.175 19.901 21.469 24.273 27.667 31.365 34.959 37.234 41.757 43.497 47.231 48.740 52.077
Re¼ 28 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

27D Ac¼ 15 34 1.760 22.183 np 10.797 12.605 13.613 15.382 17.504 19.839 22.183 23.727 26.993 28.323 31.292 32.526 35.284
Re¼ 20 35 ASN

n1

1.074 1.170 1.231 1.324 1.367 1.320 1.221 1.156 1.060 1.038 1.012 1.007 1.002

27M Ac¼ 3 10 17 24 32 40 48 1.805 8.738 np 3.936 4.841 5.301 6.050 6.896 7.807 8.738 9.380 10.890 11.586 13.318 14.102 15.968
Re¼ 10 17 24 31 37 43 49 ASN

n1

1.746 2.219 2.484 2.841 2.951 2.688 2.245 1.958 1.490 1.357 1.162 1.112 1.045

30S Ac¼ 30 1.707 38.315 np 19.532 22.445 24.113 27.086 30.667 34.552 38.315 40.691 45.401 47.210 51.085 52.647 56.102
Re¼ 31 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

30D Ac¼ 17 37 1.724 24.257 np 12.177 14.072 15.130 16.995 19.243 21.735 24.257 25.928 29.453 30.876 34.015 35.305 38.169
Re¼ 22 38 ASN

n1

1.063 1.148 1.205 1.297 1.349 1.311 1.216 1.152 1.056 1.035 1.011 1.006 1.002

30M Ac¼ 4 11 19 27 36 45 53 1.708 9.660 np 4.817 5.656 6.096 6.841 7.713 8.669 9.660 10.356 12.058 12.869 14.873 15.756 17.785
Re¼ 12 19 27 34 40 47 54 ASN

n1

1.840 2.320 2.586 2.951 3.084 2.847 2.411 2.114 1.596 1.441 1.206 1.145 1.061
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41S Ac¼ 41 1.581 50.490 np 28.406 31.938 33.938 37.466 41.667 46.171 50.490 53.197 58.528 60.564 64.904 66.648 70.488
Re¼ 42 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

41D Ac¼ 23 52 1.584 31.843 np 17.706 20.108 21.415 23.661 26.284 29.094 31.843 33.620 37.311 38.801 42.131 43.517 46.616
Re¼ 29 53 ASN

n1

1.080 1.183 1.248 1.340 1.375 1.319 1.219 1.155 1.062 1.039 1.013 1.008 1.002

41M Ac¼ 6 16 26 37 49 61 72 1.574 12.617 np 6.942 8.014 8.552 9.435 10.440 11.519 12.617 13.378 15.211 16.076 18.205 19.143 21.306
Re¼ 15 25 36 46 55 64 73 ASN

n1

1.842 2.370 2.660 3.054 3.195 2.938 2.470 2.155 1.613 1.453 1.213 1.151 1.065

44S Ac¼ 44 1.556 53.783 np 30.877 34.563 36.646 40.312 44.667 49.325 53.783 56.573 62.058 64.150 68.607 70.395 74.332
Re¼ 45 ASN

n1

1 1 1 1 1 1 1 1 1 1 1 1 1

44D Ac¼ 25 56 1.561 34.068 np 19.292 21.820 23.192 25.544 28.282 31.209 34.068 35.916 39.750 41.296 44.739 46.166 49.357
Re¼ 31 57 ASN

n1

1.075 1.174 1.237 1.328 1.363 1.309 1.211 1.149 1.058 1.037 1.012 1.007 1.002

44M Ac¼ 6 17 29 40 53 65 77 1.538 13.372 np 7.614 8.695 9.239 10.139 11.168 12.270 13.372 14.112 15.784 16.537 18.424 19.289 21.358
Re¼ 16 27 39 49 58 68 78 ASN

n1

1.971 2.472 2.747 3.127 3.274 3.036 2.582 2.272 1.731 1.565 1.294 1.217 1.101

Source: Reprinted from Schilling, E.G. and Johnson, L.I., J. Qual. Technol. 12(4), 220, 1980. With permission.
Note: # n1¼ n2 � � � nk, # indicates acceptance not allowed at a given stage.
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TABLE T7.1: Statistical research group: table of sequential sampling plans.

p1 p2 a¼ .05 h2 h1 s n0 n1 np1 ns np2 p1 p2 a¼ .05 h2 h1 s n0 n1 np1 ns np2
b b

.0002 .002 .10 1.2543 .9770 .000782 1250 2 148 156 847 .001 .01 .10 1.2504 .9739 .003915 249 2 296 312 169

.0003 .002 .10 1.3618 1.0607 .001038 1022 2 127 139 766 00 00 .50 .9961 .2777 00 71 2 73 71 59
00 .004 .10 1.1143 .8679 .001429 608 2 681 677 356 00 .011 .10 1.2003 .9349 .004178 224 2 261 270 145
00 .005 .10 .9919 .7726 .001790 432 1 459 429 220 00 .013 .10 1.1216 .8736 .004689 187 2 210 210 111
.0005 .002 .10 2.0827 1.6222 .001082 1499 3 246 312 1866 00 .02 .10 .9587 .7467 .006369 118 1 123 113 58
00 00 .50 1.6592 .4625 00 428 2 612 710 652 00 00 .50 .7637 .2129 00 34 1 31 26 20
00 .003 .10 1.6109 1.2547 .001396 899 2 124 154 826 00 .03 .10 .8425 .6562 .008587 77 1 77 65 32
00 00 .50 1.2833 .3577 00 257 2 308 329 288 00 00 .50 .6712 .1871 00 22 1 19 15 11
00 .004 .10 1.3876 1.0808 .001684 642 2 809 892 493 00 .04 .10 .7752 .6038 .01068 57 1 55 44 22
00 00 .50 1.1054 .3081 00 183 2 201 203 172 00 00 .50 .6175 .1721 00 17 1 14 10 8
00 .005 .10 1.2528 .9758 .001956 499 2 594 626 338 00 .05 .10 .7295 .5682 .01269 45 1 43 33 16
00 00 .50 .9980 .2782 00 143 2 147 142 118 00 00 .50 .5811 .1620 00 13 1 11 8 6
00 .006 .10 1.1606 .9040 .002216 408 2 467 475 252 00 .06 .10 .6956 .5418 .01465 37 1 35 26 13
00 00 .50 .9246 .2577 00 117 1 116 108 88 00 00 .50 .5541 .1545 00 11 1 9 6 4
00 .007 .10 1.0925 .8510 .002466 346 2 383 378 198 .0015 .0055 .10 2.2177 1.7274 .003080 561 3 968 1248 753
00 00 .50 .8704 .2426 00 99 1 95 86 69 00 .0085 .10 1.6596 1.2926 .004039 321 2 451 533 306
00 .008 .10 1.0937 .8098 .002709 299 2 325 312 162 00 .0110 .10 1.4437 1.1245 .004775 236 2 304 342 191
00 00 .50 .8282 .2309 00 86 1 81 71 56 00 .0130 .10 1.3313 1.0370 .005336 195 2 239 260 143
00 .009 .10 .9971 .7766 .002946 264 1 281 264 135 00 .0150 .10 1.2479 .9720 .005877 166 2 197 208 112
.00055 .003 .10 1.5138 1.1791 .001653 714 2 947 108 608 00 .01875 .10 1.1365 .8852 .006852 130 2 147 148 79
.001 .004 .10 2.0804 1.6204 .002165 749 3 123 156 932 .0017 .0125 .10 1.4617 1.1385 .005476 208 2 271 306 171
00 .005 .10 1.7914 1.3953 .002487 562 2 831 100 586 .002 .007 .10 2.2980 1.7899 .003993 449 3 795 1034 628
00 00 .50 1.4271 .3978 00 160 2 206 229 205 00 .010 .10 1.7870 1.3918 .004976 280 2 414 502 292
00 .006 .10 1.5396 1.1992 .002941 408 2 547 630 356 00 .013 .10 1.5351 1.1957 .005886 204 2 273 314 177
00 .007 .10 1.4808 1.1534 .003086 374 2 490 555 311 00 .016 .10 1.3806 1.0753 .006748 160 2 201 222 123
00 00 .50 1.1796 .3288 00 107 2 121 126 109 00 .019 .10 1.2741 .9924 .007574 132 2 158 168 92
00 .009 .10 1.3107 1.0209 .003646 281 2 342 368 201 00 .023 .10 1.1732 .9138 .008632 106 2 122 125 67
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.002 .025 .10 1.1339 .8832 .009147 97 2 109 110 59 .005 .015 .10 2.6070 2.0305 .009111 223 3 438 586 364

.0023 .018 .10 1.3649 1.0631 .007875 135 2 169 186 103 00 00 .50 2.0768 .5789 00 64 3 109 133 127

.0025 .007 .10 2.6190 2.0399 .004553 449 3 880 117 731 00 .02 .10 2.0624 1.6064 .01084 149 3 244 309 185
00 00 .50 2.0864 .5816 00 128 3 218 268 255 00 00 .50 1.6430 .4580 00 43 2 60 70 65
00 .01 .10 2.0737 1.6152 .005415 299 3 491 622 372 00 .03 .10 1.5906 1.2389 .01400 89 2 122 143 82
00 00 .50 1.6520 .4605 00 86 2 122 141 130 00 00 .50 1.2671 .3532 00 26 2 30 32 29
00 .015 .10 1.6019 1.2477 .006989 179 2 246 288 164 00 .04 .10 1.3664 1.0643 .01693 63 2 79 87 49
00 00 .50 1.2761 .3557 00 51 2 61 65 57 00 00 .50 1.0886 .3034 00 18 2 20 20 17
00 .02 .10 1.3782 1.0735 .008440 128 2 160 177 98 00 .05 .10 1.2305 .9585 .01970 49 2 58 61 33
00 00 .50 1.0980 .3061 00 37 2 40 40 34 00 00 .50 .9803 .2733 00 14 2 14 14 12
00 .03 .10 1.1502 .8959 .01113 81 2 92 94 50 00 .06 .10 1.1371 .8857 .02237 40 2 45 46 25
00 00 .50 .9163 .2554 00 23 1 23 21 18 00 00 .50 .9059 .2525 00 12 1 11 10 9
00 .04 .10 1.0283 .8009 .01363 59 2 64 61 32 00 .067 .10 1.0868 .8465 .02419 35 2 39 39 21
00 00 .50 .8192 .2283 00 17 1 16 14 11 00 .07 .10 1.0679 .8318 .02496 34 2 37 36 19
00 .05 .10 .9494 .7395 .01603 47 1 48 45 23 00 00 .50 .8507 .2371 00 10 1 9 8 7
00 00 .50 .7563 .2108 00 14 1 12 10 8 .006 .012 .10 4.1338 3.2198 .008659 372 5 1073 1551 1017
00 .06 .10 .8928 .6954 .01834 38 1 39 34 18 00 .018 .10 2.6022 2.0268 .01093 186 3 364 488 303
00 00 .50 .7112 .1983 00 11 1 10 8 6 00 .021 .10 2.2795 1.7755 .01199 149 3 262 342 208
.0027 .025 .10 1.2856 1.0014 .01006 100 2 121 129 71 00 .024 .10 2.0578 1.6028 .01301 124 3 203 257 154
.003 .009 .10 2.6166 2.0380 .005464 373 3 733 981 608 00 .030 .10 1.7690 1.3779 .01496 93 2 136 165 97
00 .014 .10 1.8629 1.4510 .007151 203 2 310 381 224 00 .036 .10 1.5860 1.2353 .01682 74 2 101 119 68
00 .018 .10 1.5996 1.2459 .008390 149 2 205 240 137 00 .042 .10 1.4577 1.1354 .01860 62 2 80 91 51
00 .018 .10 1.5706 1.2233 .008570 143 2 195 226 129 00 .050 .10 1.3347 1.0396 .02091 50 2 62 68 38
00 .022 .10 1.4368 1.1191 .009565 118 2 151 170 95 00 .06 .10 1.2255 .9546 .02368 41 2 48 51 28
00 .026 .10 1.3241 1.0314 .01069 97 2 119 129 71 .0065 .027 .10 2.0004 1.5581 .01443 108 3 174 219 131
00 .030 .10 1.2405 .9662 .01178 83 2 97 103 56 .0075 .015 .10 4.1248 3.2128 .01082 297 5 856 1238 812
00 .035 .10 1.1611 .9044 .01310 70 2 79 81 44 00 00 .50 3.2860 .9160 00 85 4 212 281 284
00 .036 .10 1.1476 .8939 .01336 67 2 76 78 42 00 .02 .10 2.9093 2.2660 .01276 178 3 382 523 330
.005 .01 .10 4.1398 3.2245 .007216 447 5 128 186 1222 00 00 .50 2.3176 .6461 00 51 3 95 119 115
00 00 .50 3.2980 .9193 00 128 4 320 423 427 00 .03 .10 2.0510 1.5975 .01627 99 3 161 205 123
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TABLE T7.1 (continued): Statistical research group: table of sequential sampling plans.

p1 p2 a¼ .05 h2 h1 s n0 n1 np1 ns np2 p1 p2 a¼ .05 h2 h1 s n0 n1 np1 ns np2
b b

.0075 .03 .50 1.6339 .4555 00 28 2 40 46 43 .011 .040 .10 2.1884 1.7046 .02253 76 3 131 169 103
00 .04 .10 1.6930 1.3186 .01950 68 2 97 117 68 00 .048 .10 1.9123 1.4895 .02523 60 2 93 116 69
00 00 .50 1.3487 .3760 00 20 2 24 27 24 00 .056 .10 1.7266 1.3448 .02782 49 2 71 86 50
00 .05 .10 1.4892 1.1599 .02255 52 2 68 78 45 00 .066 .10 1.5632 1.2176 .03095 40 2 54 63 37
00 00 .50 1.1864 .3307 00 15 2 17 18 16 00 .076 .10 1.4446 1.1252 .03398 34 2 43 50 28
00 .06 .10 1.3546 1.0551 .02547 42 2 52 58 32 00 .094 .10 1.2944 1.0082 .03925 26 2 32 35 19
00 00 .50 1.0791 .3008 00 12 2 13 13 11 .0115 .043 .10 2.1391 1.6661 .02397 70 3 118 152 92
00 .07 .10 1.2574 .9794 .02830 35 2 42 45 25 .0118 .1175 .10 1.1986 .9336 .04691 20 2 24 25 14
00 00 .50 1.0017 .2792 00 10 2 10 10 9 .012 .056 .10 1.8224 1.4195 .02872 50 2 75 93 55
00 .08 .10 1.1831 .9215 .03105 30 2 35 36 20 .014 .102 .10 1.3900 1.0827 .04496 25 2 31 35 20
00 00 .50 .9425 .2627 00 9 1 9 8 7 .015 .025 .10 5.5474 4.3209 .01958 221 6 835 1248 842

.01 .02 .10 4.1097 3.2010 .01444 222 5 639 925 607 00 00 .50 4.4193 1.2319 00 63 5 207 284 294
00 00 .50 3.2740 .9126 00 64 4 159 210 212 00 .03 .10 4.0796 3.1776 .02166 147 5 423 612 402
00 .025 .10 3.1027 2.4167 .01639 148 4 335 465 296 00 00 .50 3.2500 .9059 00 42 4 105 139 141
00 00 .50 2.4718 .6890 00 43 3 83 106 104 00 .04 .10 2.8716 2.2367 .02554 88 3 188 258 163
00 .03 .10 2.5829 2.0118 .01824 111 3 216 290 181 00 00 .50 2.2876 .6377 00 25 3 47 59 57
00 00 .50 2.0577 .5736 00 32 3 54 66 63 00 .05 .10 2.3307 1.8153 .02917 63 3 113 149 92
00 .04 .10 2.0397 1.5887 .02172 74 3 120 153 92 00 00 .50 1.8567 .5176 00 18 2 28 34 32
00 00 .50 1.6249 .4529 00 21 2 30 35 32 00 .06 .10 2.0169 1.5710 .03263 49 3 79 100 61
00 .05 .10 1.7510 1.3639 .02499 55 2 81 98 58 00 00 .50 1.6068 .4479 00 14 2 20 23 21
00 00 .50 1.3949 .3888 00 16 2 20 22 20 00 .07 .10 1.8089 1.4089 .03596 40 2 60 74 44
00 .06 .10 1.5678 1.2211 .02811 44 2 60 70 40 00 00 .50 1.4410 .4017 00 12 2 15 17 15
00 00 .50 1.2490 .3482 00 13 2 15 16 14 .02 .03 .10 6.9527 5.4154 .02467 220 8 1027 1565 1073
00 .07 .10 1.4391 1.1209 .03113 37 2 47 53 30 00 00 .50 5.5388 1.5440 00 63 6 255 355 375
00 00 .50 1.1465 .3196 00 11 2 12 12 11 00 .035 .10 5.0264 3.9150 .02682 146 6 508 754 505
00 .08 .10 1.3426 1.0458 .03406 31 2 38 43 24 00 00 .50 4.0042 1.1162 00 42 5 126 171 177
00 00 .50 1.0696 .2982 00 9 2 10 10 8 00 .04 .10 4.0495 3.1541 .02889 110 5 314 455 300

.011 .020 .10 4.7619 3.7090 .01506 247 5 809 119 793 00 00 .50 3.2260 .8992 00 32 4 78 103 105
00 .025 .10 3.4605 2.6954 .01707 158 4 393 556 359 00 .05 .10 3.0509 2.3763 .03282 73 4 164 228 146
00 .032 .10 2.6534 2.0667 .01970 105 3 210 284 177 00 00 .50 2.4305 .6775 00 21 3 41 52 51
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.02 .06 .10 2.5348 1.9743 .03655 55 3 106 142 89 .03 .045 .50 5.4687 1.5244 00 42 6 167 234 247
00 00 .50 2.0193 .5629 00 16 3 26 32 31 00 .05 .10 5.4365 4.2345 .03919 109 6 408 611 413
00 .07 .10 2.2146 1.7250 0.4012 43 3 76 99 61 00 00 .50 4.3309 1.2073 00 31 5 101 139 144
00 00 .50 1.7643 .4918 00 13 2 19 23 21 00 .06 .10 3.9891 3.1071 .04336 72 5 206 299 197
00 .08 .10 1.9941 1.5532 .04359 36 3 58 74 45 00 00 .50 3.1779 .8858 00 21 4 51 68 69
00 00 .50 1.5886 .4428 00 11 2 14 17 16 00 .07 .10 3.2498 2.5312 .04735 54 4 129 182 118
00 .082 .10 1.9578 1.5249 .04427 35 3 56 71 43 00 00 .50 2.5889 .7217 00 16 3 32 41 41
00 .085 .10 1.9071 1.4855 .04528 33 2 52 66 39 00 .08 .10 2.7960 2.1778 .05119 43 3 91 125 80
00 .09 .10 1.8315 1.4265 .04696 31 2 47 58 35 00 00 .50 2.2274 .6209 00 13 3 23 28 28
00 00 .50 1.4590 .4067 00 9 2 12 13 12 00 .086 .10 2.5978 2.0234 .05345 38 3 76 104 66
00 .096 .10 1.7524 1.3650 .04894 28 2 42 51 31 00 .09 .10 2.4864 1.9367 .05493 36 3 69 93 58
00 .10 .10 1.7056 1.3285 .05025 27 2 39 47 28 00 00 .50 1.9808 .5522 00 11 3 17 21 20
00 00 .50 1.3588 .3788 00 8 2 10 11 10 00 .10 .10 2.2601 1.7604 .05857 31 3 55 72 45
00 .114 .10 1.5697 1.2227 .05476 23 2 31 37 22 00 00 .50 1.8005 .5019 00 9 2 14 16 16
00 .172 .10 1.2457 .9703 .07264 14 2 16 18 10 00 .11 .10 2.0864 1.6251 .06213 27 3 45 58 36
00 .178 .10 1.2238 .9532 .07444 13 2 16 17 10 00 00 .50 1.6621 .4633 00 8 2 11 13 13

.021 .037 .10 4.9588 3.8624 .02827 137 6 471 697 467 00 .118 .10 1.9735 1.5371 .06494 24 3 39 50 31
00 .043 .10 3.9090 3.0447 .03074 100 5 277 399 262 00 .12 .10 1.9481 1.5174 .06563 24 3 38 48 29
00 .052 .10 3.0785 2.3978 .03427 70 4 160 223 143 00 00 .50 1.5520 .4326 00 7 2 9 11 10
00 .062 .10 2.5683 2.0004 .03801 53 3 104 140 88 00 .13 .10 1.8350 1.4293 .06908 21 2 32 41 25

.022 .04 .10 4.6890 3.6522 .03014 122 5 398 586 391 00 00 .50 1.4618 .4075 00 6 2 8 9 9
00 .136 .10 1.4856 1.1571 .06370 19 2 25 29 17 00 .15 .10 1.6597 1.2927 .07583 18 2 25 31 18

.0255 .175 .10 1.3812 1.0758 .07958 14 2 18 20 12 00 00 .50 1.3222 .3686 00 5 2 6 7 6
.026 .107 .10 1.9249 1.4993 .05782 26 3 42 53 32 00 .20 .10 1.3831 1.0773 .09220 12 2 15 18 11

00 .115 .10 1.8263 1.4225 .06055 24 2 36 46 28 00 00 .50 1.1018 .3071 00 4 2 4 4 4
.027 .178 .10 1.4068 1.0957 .08208 14 2 18 20 12 .031 .076 .10 3.0609 2.3841 .05036 47 4 109 153 98
.028 .225 .10 1.2510 .9744 .09803 10 2 12 14 8 00 .155 .10 1.6551 1.2891 .07841 16 2 24 30 18
.03 .04 .10 9.6978 7.5535 .03477 218 11 140 218 1524 .032 .057 .10 4.7895 3.7305 .04336 86 5 291 431 289

00 00 .50 7.7256 2.1535 00 62 9 348 496 533 00 .066 .10 3.8048 2.9635 .04707 63 4 174 251 165
00 .045 .10 6.8647 5.3469 .03701 145 8 675 103 707 .033 .145 .10 1.8027 1.4041 .07678 18 2 28 36 22
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TABLE T7.1 (continued): Statistical research group: table of sequential sampling plans.

p1 p2 a¼ .05 h2 h1 s n0 n1 np1 ns np2 p1 p2 a¼ .05 h2 h1 s n0 n1 np1 ns np2
b b

.035 .225 .10 1.3896 1.0823 .1054 11 2 14 16 10 .04 .25 .50 1.1073 .3073 00 3 2 3 3 3
.0375 .155 .10 1.8656 1.4531 .08404 18 3 28 35 22 00 .317 .10 1.1991 .9340 .1412 7 2 8 9 6

.04 .06 .10 6.7767 5.2783 .04936 107 8 499 762 524 .041 .092 .10 3.3497 2.6091 .06333 42 4 103 147 96
00 00 .50 5.3986 1.5049 00 31 6 124 173 183 00 .102 .10 2.9580 2.3040 .06726 35 4 78 109 70
00 .07 .10 4.8876 3.8069 .05369 71 6 246 366 246 .042 .072 .10 5.0636 3.9440 .05574 71 6 254 379 256
00 00 .50 3.8937 1.0854 00 21 5 61 83 86 00 .082 .10 4.0612 3.1633 .05993 53 5 156 228 151
00 .08 .10 3.9287 3.0600 .05785 53 5 152 221 146 00 .195 .10 1.6909 1.3171 .1018 13 2 20 24 15
00 00 .50 3.1298 .8724 00 16 4 38 50 51 .0475 .1975 .10 1.5106 1.4103 .1073 14 3 21 27 17
00 .09 .10 3.3437 2.6044 .06188 43 4 105 150 98 .048 .192 .10 1.8644 1.4522 .1058 14 3 22 29 18
00 00 .50 2.6637 .7425 00 13 3 26 34 34 .049 .16 .10 2.2107 1.7219 .09493 19 3 33 44 28
00 .10 .10 2.9469 2.2953 .06580 35 4 79 110 71 .05 .07 .10 8.0793 6.2929 .05948 106 9 588 909 631
00 00 .50 2.3476 .6544 00 10 3 20 25 25 00 00 .50 6.4363 1.7941 00 31 7 146 206 221
00 .11 .10 2.6583 2.0705 .06963 30 3 62 85 54 00 .08 .10 5.7567 4.4838 .06391 71 7 286 431 294
00 00 .50 2.1177 .5903 00 9 3 15 19 19 00 00 .50 4.5860 1.2784 00 21 5 71 98 103
00 .118 .10 2.4777 1.9299 .07264 27 3 52 71 45 00 .09 .10 4.5820 3.5689 .06819 53 5 174 257 173

.04 .12 .10 2.4378 1.8988 .07339 26 3 50 68 43 00 00 .50 3.6502 1.0175 00 15 4 43 58 60
00 00 .50 1.9421 .5414 00 8 3 12 15 15 00 .10 .10 3.8682 3.0129 .07236 42 5 119 174 115
00 .13 .10 2.2632 1.7628 .07708 23 3 42 56 35 00 00 .50 3.0816 .8590 00 12 4 30 39 40
00 00 .50 1.8030 .5026 00 7 2 10 13 12 00 .11 .10 3.3857 2.6371 .07642 35 4 88 126 83
00 .138 .10 2.1473 1.6725 .08000 21 3 37 49 30 00 00 .50 2.6972 .7519 00 10 3 22 29 29
00 .14 .10 2.1210 1.6520 .08072 21 3 36 47 29 00 .12 .10 3.0361 2.3648 .08040 30 4 69 97 63
00 00 .50 1.6896 .4710 00 6 2 9 11 10 00 00 .50 2.4187 .6742 00 9 3 17 22 22
00 .15 .10 2.0024 1.5597 .08431 19 3 31 40 25 00 .13 .10 2.7699 2.1575 .08430 26 4 56 77 50
00 00 .50 1.5952 .4447 00 6 2 8 9 9 00 00 .50 2.2066 .6151 00 8 3 14 18 17
00 .17 .10 1.8151 1.4137 .09137 16 2 24 31 19 00 .138 .10 2.5982 2.0237 .08738 24 3 48 66 42
00 00 .50 1.4460 .4031 00 5 2 6 7 7 00 .14 .10 2.5598 1.9938 .08815 23 3 46 63 41
00 .20 .10 1.6131 1.2565 .1018 13 2 18 22 13 00 00 .50 2.0392 .5684 00 7 3 11 14 14
00 00 .50 1.2851 .3582 00 4 2 4 5 5 00 .15 .10 2.3891 1.8608 .09193 21 3 39 53 34
00 .23 .10 1.4674 1.1429 .1120 11 2 14 17 10 00 00 .50 1.9032 .5305 00 6 3 10 12 12
00 .25 .10 1.3900 1.0826 .1187 10 2 12 14 9 00 .16 .10 2.2472 1.7503 .09568 19 3 34 45 29

�
2008

by
T
aylor

&
F
rancis

G
roup,

L
L
C
.



.05 .16 .50 1.7902 .4990 00 6 2 8 10 10 .06 .15 .10 2.8422 2.2138 .09897 23 4 50 71 46
00 .17 .10 2.1271 1.6568 .09938 17 3 30 39 25 00 00 .50 2.2642 .6312 00 7 3 12 16 16
00 00 .50 1.6946 .4724 00 5 2 7 9 9 00 .16 .10 2.6437 2.0592 .1029 21 3 43 59 38
00 .20 .10 1.8550 1.4449 .1103 14 3 21 27 17 00 00 .50 2.1061 .5871 00 6 3 11 13 13
00 00 .50 1.4778 .4119 00 4 2 5 6 6 00 .17 .10 2.4791 1.9309 .1067 19 3 37 50 32
00 .23 .10 1.6648 1.2967 .1210 11 2 16 20 13 00 00 .50 1.9749 .5505 00 6 3 9 11 11
00 .25 .10 1.5659 1.2197 .1281 10 2 14 17 11 00 .18 .10 2.3400 1.8226 .1106 17 3 32 43 28
00 00 .50 1.2475 .3477 00 3 2 3 4 4 00 00 .50 1.8642 .5196 00 5 3 8 10 10
00 .317 .10 1.3278 1.0342 .1516 7 2 9 11 7 00 .20 .10 2.1171 1.6490 .1181 14 3 25 34 21
00 .325 .10 1.3058 1.0170 .1544 7 2 9 10 6 00 00 .50 1.6866 .4701 00 4 2 6 8 7

.051 .12 .10 3.1041 2.4177 .08107 30 4 71 101 66 00 .22 .10 1.9452 1.5151 .1256 13 3 20 27 17

.052 .10 .10 4.0947 3.1893 .07361 44 5 131 192 128 00 00 .50 1.5497 .4320 00 4 2 5 6 6
00 .11 .10 3.5580 2.7713 .07771 36 4 95 138 91 00 .25 .10 1.7486 1.3620 .1366 10 3 16 20 13

.0575 .187 .10 2.1725 1.6922 .1116 16 3 28 37 24 00 00 .50 1.3930 .3883 00 3 2 4 5 4
.058 .33 .10 1.3900 1.0827 .1639 7 2 9 11 7 00 .30 .10 1.5179 1.1823 .1548 8 2 11 14 9
.06 .08 .10 9.3483 7.2813 .06956 105 11 675 105 736 00 00 .50 1.2092 .3371 00 3 2 3 3 3

00 00 .50 7.4472 2.0759 00 30 9 167 239 257 .061 .14 .10 3.1463 2.4506 .09567 26 4 63 89 58
00 .09 .10 6.6005 5.1411 .07407 70 8 324 495 341 .062 .12 .10 3.9912 3.1087 .08814 36 5 105 154 103
00 00 .50 5.2582 1.4658 00 20 6 80 112 119 00 .13 .10 3.5436 2.7601 .09227 30 4 81 117 77
00 .10 .10 5.2144 4.0614 .07845 52 6 195 293 199 .063 .2125 .10 2.0800 1.6201 .1251 13 3 23 31 20
00 00 .50 4.1540 1.1579 00 15 5 48 67 70 .065 .245 .10 1.8760 1.4612 .1388 11 3 18 23 15
00 .11 .10 4.3741 3.4069 .08272 42 5 133 196 132 00 .560 .10 .9942 .7744 .2953 3 2 4 4 3
00 00 .50 3.4846 .9713 00 12 4 33 45 46 .07 .09 .10 10.5853 8.2448 .07962 104 1 759 1191 838
00 .12 .10 3.8076 2.9657 .08689 35 5 98 142 95 00 00 .50 8.4327 2.3506 00 30 1 188 271 293
00 00 .50 3.0333 .8455 00 10 4 24 32 33 00 .10 .10 7.4214 5.7805 .08419 69 9 361 556 386
00 .13 .10 3.3981 2.6468 .09098 30 4 76 109 72 00 00 .50 5.9122 1.6480 00 20 7 89 126 135
00 00 .50 2.7071 .7546 00 9 3 19 25 25 00 .11 .10 5.8280 4.5394 .08864 52 7 216 327 224
00 .136 .10 3.2022 2.4942 .09340 27 4 66 94 62 00 00 .50 4.6428 1.2942 00 15 6 53 74 78
00 .14 .10 3.0872 2.4046 .09500 26 4 61 86 56 00 .12 .10 4.8638 3.7884 .09299 41 6 146 218 148
00 00 .50 2.4594 .6856 00 8 3 15 20 20 00 00 .50 3.8747 1.0801 00 12 5 36 50 52

(continued)
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TABLE T7.1 (continued): Statistical research group: table of sequential sampling plans.

p1 p2 a¼ .05 h2 h1 s n0 n1 np1 ns np2 p1 p2 a¼ .05 h2 h1 s n0 n1 np1 ns np2
b b

.07 .13 .10 4.2150 3.2831 .09726 34 5 107 158 106 .08 .14 .10 4.6094 3.5903 .1076 34 6 115 172 117
00 00 .50 3.3579 .9360 00 10 4 26 36 37 00 00 .50 3.6721 1.0236 00 10 5 29 39 41
00 .14 .10 3.7469 2.9185 .1014 29 5 82 120 80 00 .15 .10 4.0839 3.1809 .1118 29 5 89 131 88
00 00 .50 2.9849 .8321 00 9 4 20 27 28 00 00 .50 3.2534 .9069 00 9 4 22 30 31
00 .15 .10 3.3921 2.6421 .1056 25 4 66 95 63 00 .16 .10 3.6861 2.8711 .1160 25 5 71 103 69
00 00 .50 2.7023 .7533 00 7 3 16 22 22 00 00 .50 2.9365 .8186 00 8 4 18 23 24
00 .16 .10 3.1131 2.4248 .1096 23 4 54 77 51 00 .17 .10 3.3738 2.6278 .1202 22 4 58 84 56
00 00 .50 2.4800 .6913 00 7 3 13 18 18 00 00 .50 2.6877 .7492 00 7 4 14 19 19
00 .17 .10 2.8873 2.2489 .1136 20 4 46 64 42 00 .18 .10 3.1214 2.4312 .1243 20 4 49 70 46
00 00 .50 2.3001 .6412 00 6 3 11 15 15 00 00 .50 2.4866 .6931 00 6 3 12 16 16
00 .18 .10 2.7004 2.1033 .1176 18 4 39 55 36 00 .19 .10 2.9127 2.2687 .1283 18 4 42 59 39
00 00 .50 2.1513 .5997 00 6 3 10 12 12 00 00 .50 2.3204 .6468 00 6 3 10 13 14
00 .20 .10 2.4079 1.8755 .1254 15 3 30 41 27 00 .20 .10 2.7370 2.1318 .1323 17 4 36 51 33
00 00 .50 1.9182 .5347 00 5 3 7 9 9 00 00 .50 2.1804 .6078 00 5 3 9 12 12
00 .22 .10 2.1880 1.7042 .1331 13 3 24 32 21 00 .22 .10 2.4564 1.9133 .1403 14 3 28 39 25
00 00 .50 1.7430 .4859 00 4 3 6 7 7 00 00 .50 1.9568 .5455 00 4 3 7 9 9
00 .25 .10 1.9424 1.5129 .1446 11 3 18 24 15 00 .25 .10 2.1510 1.6754 .1520 12 3 21 28 18
00 00 .50 1.5474 .4313 00 3 2 4 5 5 00 00 .50 1.7136 .4777 00 4 3 5 6 6
00 .29 .10 1.7090 1.3311 .1596 9 3 13 17 11 00 .30 .10 1.8121 1.4114 .1713 9 3 14 18 12
00 .30 .10 1.6617 1.2943 .1633 8 2 12 16 10 00 00 .50 1.4436 .4024 00 3 2 3 4 4
00 00 .50 1.3238 .3690 00 3 2 3 4 3 .09 .12 .10 8.9985 7.0089 .1044 68 1 432 675 473

.075 .450 .10 1.2504 .9739 .2249 5 2 6 7 5 00 00 .50 7.1686 1.9983 00 20 9 107 153 165
.08 .10 .10 11.791 9.1844 .08966 103 13 842 132 938 00 .13 .10 7.0040 5.4553 .1089 51 8 255 394 273

00 00 .50 9.3936 2.6185 00 30 11 209 301 328 00 00 .50 5.5796 1.5553 00 15 7 63 89 95
00 .11 .10 8.2205 6.4029 .09429 68 10 397 616 430 00 .14 .10 5.7999 4.5175 .1134 40 7 171 261 179
00 00 .50 6.5488 1.8255 00 20 8 98 140 150 00 00 .50 4.6205 1.2880 00 12 6 42 59 63
00 .12 .10 6.4242 5.0038 .09880 51 8 236 361 249 00 .15 .10 4.9917 3.8880 .1178 34 6 124 187 127
00 00 .50 5.1178 1.4266 00 15 6 58 82 87 00 00 .50 3.9766 1.1085 00 10 5 31 42 45
00 .13 .10 5.3388 4.1584 .1032 41 6 159 240 164 00 .16 .10 4.4100 3.4350 .1221 29 6 95 141 96
00 00 .50 4.2531 1.1856 00 12 5 39 54 57 00 00 .50 3.5132 .9793 00 9 5 23 32 33
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.09 .17 .10 3.9702 3.0924 .1264 25 5 75 111 75 .10 .22 .10 3.1027 2.4167 .1536 16 4 40 58 38
00 00 .50 3.1729 .8817 00 7 4 19 25 26 00 00 .50 2.4718 .6890 00 5 3 10 13 13
00 .18 .10 3.6253 2.8237 .1306 22 5 62 90 60 00 .25 .10 2.6309 2.0492 .1660 13 4 28 39 26
00 00 .50 2.8880 .8050 00 7 4 15 20 21 00 00 .50 2.0959 .5842 00 4 3 7 9 9
00 .19 .10 3.3468 2.6068 .1348 20 4 52 75 50 00 .27 .10 2.4034 1.8720 .1741 11 3 22 31 21
00 00 .50 2.6662 .7432 00 6 4 13 17 17 00 00 .50 1.9147 .5337 00 4 3 6 7 7
00 .20 .10 3.1168 2.4277 .1389 18 4 44 63 42 00 .30 .10 2.1411 1.6677 .1862 9 3 17 24 15
00 00 .50 2.4830 .6921 00 5 3 11 14 15 00 00 .50 1.7057 .4755 00 3 3 4 5 5
00 .22 .10 2.7581 2.1482 .1471 15 4 33 47 31 .12 .15 .10 11.2104 8.7317 .1345 65 1 532 841 596
00 00 .50 2.1972 .6125 00 5 3 8 11 11 00 00 .50 8.9307 2.4895 00 19 1 132 191 208
00 .25 .10 2.3789 1.8529 .1592 12 3 24 33 22 00 .16 .10 8.6486 6.7363 .1392 49 1 311 486 342
00 00 .50 1.8951 .5283 00 4 3 6 7 8 00 00 .50 6.8898 1.9206 00 14 9 77 110 119
00 .30 .10 1.9712 1.5353 .1789 9 3 15 21 13 00 .17 .10 7.1051 5.5341 .1437 39 9 206 319 223
00 00 .50 1.5703 .4377 00 3 2 4 5 5 00 00 .50 5.6602 1.5778 00 11 7 51 73 78

.10 .13 .10 9.7560 7.5989 .1144 67 12 466 732 515 00 .18 .10 6.0712 4.7288 .1483 32 8 148 227 158
00 00 .50 7.7720 2.1665 00 19 9 116 166 180 00 00 .50 4.8365 1.3482 00 10 6 37 52 55
00 .14 .10 7.5677 5.8944 .1190 50 9 274 425 297 00 .20 .10 4.7685 3.7142 .1572 24 6 88 134 92
00 00 .50 6.0287 1.6805 00 15 7 68 97 104 00 00 .50 3.7988 1.0589 00 7 5 22 30 32
00 .15 .10 6.2478 4.8664 .1236 40 8 183 281 194 00 .22 .10 3.9770 3.0977 .1660 19 5 60 89 61
00 00 .50 4.9772 1.3874 00 12 6 45 64 68 00 00 .50 3.1683 .8832 00 6 4 15 20 21
00 .16 .10 5.3625 4.1768 .1280 33 7 132 201 138 00 .25 .10 3.2337 2.5187 .1788 15 4 38 55 37
00 00 .50 4.2720 1.1908 00 10 5 33 46 48 00 00 .50 2.5761 .7181 00 5 4 9 13 13
00 .17 .10 4.7259 3.6810 .1324 28 6 101 151 103 00 .28 .10 2.7581 2.1482 .1915 12 4 27 38 26
00 00 .50 3.7649 1.0495 00 8 5 25 34 36 00 00 .50 2.1972 .6125 00 4 3 7 9 9
00 .18 .10 4.2451 3.3065 .1367 25 5 80 119 81 00 .30 .10 2.5241 1.9660 .1998 10 4 22 31 21
00 00 .50 3.3818 .9427 00 7 4 20 27 28 00 00 .50 2.0108 .5605 00 3 3 5 7 7
00 .19 .10 3.8682 3.0129 .1410 22 5 65 96 65 .15 .19 .10 10.1562 7.9106 .1694 47 1 362 571 405
00 00 .50 3.0816 .8590 00 7 4 16 22 23 00 00 .50 8.0909 2.2554 00 14 1 90 130 141
00 .20 .10 3.5643 2.7762 .1452 20 5 54 80 54 00 .20 .10 8.2984 6.4635 .1741 38 1 238 373 263
00 00 .50 2.8394 .7915 00 6 4 13 18 19 00 00 .50 6.6108 1.8428 00 11 9 59 85 92
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TABLE T7.1 (continued): Statistical research group: table of sequential sampling plans.

p1 p2 a¼ .05 h2 h1 s n0 n1 np1 ns np2 p1 p2 a¼ .05 h2 h1 s n0 n1 np1 ns np2
b b

.15 .22 .10 6.1637 4.8009 .1833 27 8 128 198 138 .20 .24 .10 12.3724 9.6368 .2196 44 1 436 696 498
00 00 .50 4.9102 1.3687 00 8 7 32 45 48 00 00 .50 9.8563 2.7475 00 13 1 108 158 174
00 .25 .10 4.5447 3.5398 .1968 18 6 67 102 70 00 .25 .10 10.0471 7.8256 .2243 35 1 285 452 322
00 00 .50 3.6205 1.0092 00 6 5 17 23 25 00 00 .50 8.0039 2.2311 00 10 1 71 103 112
00 .30 .10 3.2575 2.5372 .2188 12 5 33 48 33 00 .30 .10 5.3625 4.1768 .2477 17 8 77 120 84
00 00 .50 2.5950 .7234 00 4 4 8 11 12 00 00 .50 4.2720 1.1908 00 5 6 19 27 29
00 .35 .10 2.5910 2.0181 .2405 9 4 20 29 19 00 .35 .10 3.7672 2.9342 .2706 11 6 37 56 39
00 00 .50 2.0641 .5754 00 3 3 5 7 7 00 00 .50 3.0011 .8366 00 4 5 9 13 14

Source: Statistical Research Group, Sequential Analysis of Statistical Data: Applications, AMP Report 30.2R, Columbia University, New York, 1945.
Note: Characteristic quantities of sequential tests for the binomial distribution computed for various combinations of p1, p2, a¼ .05, b¼ .10 and .50.
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TABLE T7.2: Statistical research group: table of values of a and b for sequential sampling.

a ¼ log 1�b
a , b ¼ log 1�a

b

a for computing a, b for computing b.n .001 .01 .02 .03 .04 .05 .10 .15 .20 .30 .40

b
fo
r
co
m
p
u
ti
n
g
a,

a
fo
r
co
m
p
u
ti
n
g
b

.001 3.000 2.000 1.699 1.522 1.398 1.301 1.000 .823 .699 .522 .398

.01 2.996 1.996 1.695 1.519 1.394 1.297 .996 .820 .695 .519 .394

.02 2.991 1.991 1.690 1.514 1.389 1.292 .991 .815 .690 .514 .389

.03 2.987 1.987 1.686 1.510 1.385 1.288 .987 .811 .686 .510 .385

.04 2.982 1.982 1.681 1.505 1.380 1.283 .982 .806 .681 .505 .380

.05 2.978 1.978 1.677 1.501 1.376 1.279 .978 .802 .677 .501 .376

.10 2.954 1.954 1.653 1.477 1.352 1.255 .954 .778 .653 .477 .352

.15 2.929 1.929 1.628 1.452 1.327 1.230 .929 .753 .628 .452 .327

.20 2.903 1.903 1.602 1.426 1.301 1.204 .903 .727 .602 .426 .301

.30 2.845 1.845 1.544 1.368 1.243 1.146 .845 .669 .544 .368 .243

.40 2.778 1.778 1.477 1.301 1.176 1.079 .778 .602 .477 .301 .176

Source: Statistical Research Group, Sequential Analysis of Statistical Data: Applications, AMP Report 30.2R,
Columbia University, New York, 1945.

Note: a and b in terms of a and b using common logarithms.
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TABLE T7.3: g1 and g2 in terms of p1 and p2 using common logarithms for sequential sampling.

g1 ¼ log
p2
p1

� �
, g2 ¼ log

1�p1
1�p2

� �

g1 p2

g2 .005 .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 .15 .20

.001 .6990 1.0000 1.3010 1.4771 1.6021 1.6990 1.7782 1.8451 1.9031 1.9542 2.0000 2.1761 2.3010
.0017 .0039 .0083 .0128 .0173 .0218 .0264 .0311 .0358 .0405 .0453 .0701 .0965

.005 .3010 .6021 .7782 .9031 1.0000 1.0792 1.1461 1.2041 1.2553 1.3010 1.4771 1.6021
.0022 .0066 .0111 .0156 .0201 .0247 .0293 .0340 .0388 .0436 .0684 .0947

.01 .3010 .4771 .6021 .6990 .7782 .8451 .9031 .9542 1.0000 1.1761 1.3010
.0044 .0089 .0134 .0179 .0225 .0272 .0318 .0366 .0414 .0662 .0925

.02 .1761 .3010 .3979 .4771 .5441 .6021 .6532 .6990 .8751 1.0000
.0045 .0090 .0135 .0181 .0227 .0274 .0322 .0370 .0618 .0881

.03 .1249 .2218 .3010 .3680 .4260 .4771 .5229 .6990 .8239
.0045 .0090 .0136 .0183 .0230 .0277 .0325 .0574 .0837

.04 .09069 .1761 .2430 .3010 .3522 .3979 .5740 .6990
.0045 .0091 .0138 .0185 .0232 .0280 .0529 .0792

p1 .05 g1
g2

.0792 .1461 .2041 .2553 .3010 .4771 .6021

.0046 .0092 .0139 .0187 .0235 .0483 .0746
.06 .0669 .1249 .1761 .2218 .3979 .5229

.0046 .0093 .0141 .0189 .0437 .0700
.07 .0580 .1091 .1549 .3310 .4559

.0047 .0094 .0142 .0391 .0654
.08 .0512 .0969 .2730 .3979

.0047 .0095 .0344 .0607
.09 .0458 .2218 .3468

.0048 .0296 .0560
.10 .1761 .3010

.0248 .0512
.15 .1249

.0263
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TABLE T8.1: Operating characteristics of the one-sided normal test for a level
of significance equal to 0.05.
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Source: Reprinted from Bowker, A.H. and Lieberman, G.J., Engineering Statistics, Prentice-Hall, Englewood Cliffs,
NJ, 1959, 118. With permission.

TABLE T8.2: Operating characteristics of the two-sided normal test for a level
of significance equal to 0.05.
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Source: Reprinted from Ferris, C.L., Grubbs, F.E., and Weaver, C.L., Ann. Math. Stat., 17, 190, 1946. With
permission.
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TABLE T8.3: Operating characteristics of the one-sided t-test for a level
of significance equal to 0.05.
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Source: Reprinted from Bowker, A.H. and Lieberman, G.J., in Engineering Statistics, Prentice-Hall, Englewood
Cliffs, NJ, 1959, 132. With permission.

TABLE T8.4: Operating characteristics of the two-sided t-test for a level
of significance equal to 0.05.
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Source: Reprinted from Ferris, C.L., Grubbs, F.E., and Weaver, C.L., Ann. Math. Stat., 17, 195, 1946. With
permission.
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TABLE T8.5: Operating characteristics of the one-sided (upper tail) Chi-Squared test
for a level of significance equal to 0.05.
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Source: Ferris, C.L., Grubbs, F.E., and Weaver, C.L., Ann. Math. Stat., 17, 181, 1946.
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TABLE T8.6: Factors for acceptance control limits.

Rejectable process level (RPL)
Acceptance control limit (ACL)
Acceptable process level (APL)

a

b

A0,bs
x= A1,bs−

 = A2,bR−  = A3,b S−

A0,as΄ = A1,as−
 = A2,aR−  = A3,a S−

Factor A0 is used when s0 is known
Factor A1 is used when

�s ¼ 1
m

P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

(X��X)2

n

q

is computed

Factor A2 is used when
�R ¼ 1

m

P
R is computed

Factor A3 is used when

�s ¼ 1
m

P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

(X��X)2

n�1

q

is computed

For n greater than 25,

c2 ffi 4(n� 1)
4n� 1

and c3 ffi 4(n� 1)
4n� 3

.

Nominal value ____________________________________________________________

Acceptable process level (APL)
Acceptance control limit (ACL)
Rejectable process level (RPL) a

b A0,bs΄ = A1,bs−
 = A2,bR−  = A3,b S−

A0,as
x= A1,as−

 = A2,aR−  = A3,a S−

a (b)¼ 5% a (b)¼ 1%

n A0.05 A1.05 A2.05 A3.05 A0.01 A1.01 A2.01 A3.01

2 1.163 2.062 1.031 1.458 1.644 2.915 1.458 2.062
3 0.950 1.313 0.561 1.071 1.343 1.856 0.793 1.515
4 0.822 1.031 0.400 0.893 1.163 1.458 0.565 1.262
5 0.736 0.875 0.316 0.782 1.040 1.237 0.447 1.106

6 0.672 0.773 0.265 0.706 0.950 1.093 0.374 0.998
7 0.622 0.700 0.230 0.648 0.879 0.990 0.325 0.916
8 0.582 0.644 0.205 0.603 0.823 0.911 0.289 0.852
9 0.548 0.600 0.185 0.566 0.775 0.848 0.261 0.800
10 0.520 0.564 0.169 0.535 0.736 0.797 0.239 0.756

11 0.496 0.533 0.156 0.508 0.702 0.754 0.221 0.719
12 0.475 0.507 0.146 0.486 0.671 0.717 0.206 0.687
13 0.456 0.485 0.137 0.466 0.645 0.685 0.193 0.659
14 0.440 0.465 0.129 0.448 0.622 0.657 0.182 0.633
15 0.425 0.447 0.122 0.433 0.601 0.633 0.173 0.612

16 0.411 0.432 0.418 0.581 0.611 0.592
17 0.399 0.418 0.405 0.564 0.591 0.573
18 0.388 0.405 0.394 0.548 0.572 0.557
19 0.377 0.393 0.383 0.533 0.556 0.541
20 0.368 0.382 0.373 0.520 0.540 0.527

21 0.359 0.372 0.364 0.508 0.526 0.514
22 0.351 0.363 0.355 0.496 0.513 0.502
23 0.343 0.355 0.347 0.485 0.502 0.491
24 0.336 0.347 0.339 0.474 0.490 0.480
25 0.329 0.339 0.332 0.465 0.480 0.470
>25 1.645=

ffiffiffi
n

p
1.645=c2

ffiffiffi
n

p
1.645=c3

ffiffiffi
n

p
2.326=

ffiffiffi
n

p
2.326=c2

ffiffiffi
n

p
2.326=c3

ffiffiffi
n

p
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TABLE T8.6 (continued): Factors for acceptance control limits.

a (b)¼ 0.5% a (b)¼ 0.1%

n A0.005 A1.005 A2.005 A3.005 A0.001 A1.001 A2.001 A3.001

2 1.821 3.229 1.614 2.283 2.185 3.874 1.937 2.740
3 1.487 2.056 0.878 1.678 1.784 2.467 1.054 2.013
4 1.288 1.614 0.626 1.398 1.545 1.937 0.751 1.677
5 1.152 1.370 0.495 1.225 1.382 1.644 0.594 1.470

6 1.052 1.211 0.415 1.105 1.262 1.453 0.498 1.326
7 0.974 1.097 0.360 1.015 1.168 1.316 0.432 1.218
8 0.911 1.009 0.320 0.944 1.093 1.211 0.384 1.132
9 0.859 0.939 0.289 0.886 1.030 1.127 0.347 1.063
10 0.815 0.883 0.265 0.837 0.977 1.059 0.316 1.005

11 0.777 0.836 0.245 0.796 0.932 1.002 0.294 0.955
12 0.744 0.794 0.228 0.761 0.892 0.953 0.274 0.913
13 0.714 0.759 0.214 0.730 0.857 0.911 0.257 0.876
14 0.688 0.728 0.202 0.702 0.826 0.874 0.242 0.842
15 0.665 0.701 0.192 0.678 0.798 0.841 0.230 0.813

16 0.644 0.677 0.655 0.773 0.812 0.786
17 0.625 0.654 0.635 0.750 0.785 0.761
18 0.607 0.634 0.617 0.728 0.760 0.740
19 0.591 0.616 0.599 0.709 0.739 0.719
20 0.576 0.599 0.584 0.691 0.718 0.701

21 0.562 0.583 0.569 0.675 0.700 0.683
22 0.550 0.568 0.556 0.659 0.682 0.667
23 0.538 0.556 0.544 0.645 0.667 0.652
24 0.526 0.543 0.532 0.631 0.651 0.638
25 0.515 0.532 0.520 0.618 0.638 0.624
>25 2.576=

ffiffiffi
n

p
2.576=c2

ffiffiffi
n

p
2.576=c3

ffiffiffi
n

p
3.090=

ffiffiffi
n

p
3.090=c2

ffiffiffi
n

p
3.090=c3

ffiffiffi
n

p

Source: Reprinted from Freund, R.A., Ind. Qual. Control, 14, 18, 1957. With permission.
Note: If the acceptance control limits lie so close to the nominal value that two-tail probabilities must be used (within

�2:5 s0=
ffiffiffi
n

p
for a ¼ 5%;�3:0 s0=

ffiffiffi
n

p
for a ¼ 1%; �3:2 s0=

ffiffiffi
n

p
for a ¼ 0:5%; � 3:5 s0=

ffiffiffi
n

p
for a ¼ 0:1%),

refer to Table III for correction terms to be applied to the factors in Table II.
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TABLE T8.7: Correction terms for acceptance control factors.

a¼ 5% a¼ 1% a¼ 0.5% a¼ 0.1%

D1 D2 C.T. D1 D2 C.T. D1 D2 C.F. D1 D2 C.F.

1.960 0 1.1916 2.576 0 1.1072 2.807 0 1.0898 3.291 0 1.0648
1.970 0.100 1.1366 2.589 0.100 1.0700 2.821 0.100 1.0563 3.307 0.100 1.0378
1.999 0.200 1.0935 2.625 0.200 1.0426 2.862 0.200 1.0333 3.352 0.200 1.0202
2.045 0.300 1.0610 2.685 0.300 1.0252 2.922 0.300 1.0179 3.421 0.300 1.0100
2.107 0.400 1.0377 2.757 0.400 1.0134 3.000 0.400 1.0094 3.492 0.400 1.0005
2.182 0.500 1.0223 2.842 0.500 1.0068 3.088 0.500 1.0046 3.500 0.409 1.0004
2.267 0.600 1.0132 2.933 0.600 1.0032 3.181 0.600 1.0021
2.356 0.700 1.0067 3.000 0.670 1.0018 3.200 0.619 1.0018
2.451 0.800 1.0034
2.500 0.851 1.0023

Source: Reprinted from Freund, R.A., Ind. Qual. Control, 14, 19, 1957. With permission.
Notes: When the acceptance control limits are too close to the nominal value (within �2:5 s0=

ffiffiffi
n

p
for a¼ 5%; �3:0 s0=

ffiffiffi
n

p
for a¼ 1%; �3:2 s0=

ffiffiffi
n

p
for a¼ 0.5%; �3:5 s0=

ffiffiffi
n

p
for

a¼ 0.1%), corrections to the factors in Table 8.2 are required since two-tail probabilities must replace the one-tail probabilities otherwise applicable. The factors in Table 8.2 should
be multiplied by the correction term (C.T.).
D1 are the deviations of the acceptance control limit from the nominal value in terms of �s0=

ffiffiffi
n

p
. To be used when the APL values are to be determined from the acceptance

control limits.
D2 are the deviations of the APL values from the nominal value in terms of �s0=

ffiffiffi
n

p
. To be used when the acceptance control limits are to be determined from the APL values.

C.T.¼ ta1
t

where
a1 is the risk of an average from a process centered at the APL value falling outside the nearer acceptance control limit
a2 is the risk of that average falling outside the farther acceptance control limit
a¼a1þa2

ta2¼ 2D2þ ta1
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TABLE T8.8: Boundary values for Barnard’s sequential t-test.
a¼ .05 b¼ .05

D¼ .10 D¼ .25 D¼ .50 D¼ .75 D¼ 1.0 D¼ 1.5 D¼ 2.0 D¼ 3.0

k Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2

2 [�6.96] [�3.90] [2.60] [�2.14] [2.13] �0.47 [1.69] 0.37 [1.56] 0.95 [1.46]
4 [�3.13] [3.01] �1.49 [2.30] �0.53 [2.03] 0.51 1.84 1.03 1.82 1.50 1.85
6 �2.07 [2.73] �0.76 2.20 0.03 2.04 0.91 2.01 1.43 2.06 1.90 2.19
8 [�4.32] [4.24] �1.51 2.56 �0.35 2.16 0.37 2.09 1.23 2.18 1.74 2.29 2.22 2.47
10 [�3.67] [3.91] �1.15 2.46 �0.07 2.16 0.63 2.16 1.49 2.34 2.00 2.49 2.50 2.73

15 �2.72 3.39 �0.57 2.34 0.44 2.23 1.11 2.34 2.01 2.70 2.54 2.94 3.10 3.29
20 [�6.68] �2.17 3.10 �0.21 2.31 0.78 2.33 1.47 2.52 2.42 3.02 2.97 3.32
25 [�5.87] [6.00] �1.77 2.90 0.07 2.30 1.05 2.44 1.76 2.70 2.78 3.32 3.36 3.67
30 �5.27 [5.55] �1.50 2.77 0.29 2.32 1.28 2.55 2.02 2.88 3.09 3.59 3.71 3.99
35 �4.81 5.19 �1.28 2.67 0.48 2.36 1.49 2.66 2.24 3.05 3.38 3.84 4.03 4.29

40 �4.44 4.91 �1.09 2.60 0.65 2.40 1.67 2.76 2.45 3.21 3.64 4.07 4.32 4.57
45 �4.14 4.67 �0.93 2.55 0.79 2.44 1.84 2.87 2.64 3.36 3.89 4.29 4.60 4.83
50 �3.88 4.47 �0.79 2.51 0.92 2.49 1.99 2.97 2.82 3.50 4.12 4.50 4.86 5.08
60 �3.47 4.15 �0.56 2.44 1.16 2.58 2.27 3.17 3.16 3.77
70 �3.16 3.90 �0.37 2.41 1.36 2.68 2.52 3.35 3.45 4.03

80 �2.88 3.70 �0.20 2.39 1.54 2.78 2.76 3.53 3.73 4.27
90 �2.66 3.55 �0.06 2.39 1.71 2.88 2.97 3.71 3.99 4.49
100 �2.47 3.41 0.07 2.39 1.87 2.97 3.17 3.87 4.24 4.70
150 �1.80 2.99 0.57 2.46 2.51 3.42 4.00 4.59 5.27 5.65
200 �1.38 2.77 0.93 2.57 3.03 3.83 4.75 5.23 6.15 6.48

k1 29 12 6 4 3 2 2 2
k2 31 13 7 5 5 4 3 3
�k1 600 100 30 20 10 <10 <10 <5
�k2 600 100 30 20 10 <10 <10 <5
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TABLE T10.1: d2* Factors and degrees of freedom v for estimating the standard deviation for the average range of k samples of n.

R=d2* ! s

No. of Size of Samples, n

Samples, k 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 d2* 1.41 1.91 2.24 2.48 2.67 2.83 2.96 3.08 3.18 3.27 3.35 3.42 3.49 3.55
v 1.00 1.98 2.93 3.83 4.68 5.48 6.25 6.98 7.68 8.35 8.99 9.61 10.2 10.8

2 d2* 1.28 1.81 2.15 2.40 2.60 2.77 2.91 3.02 3.13 3.22 3.30 3.38 3.45 3.51
v 1.92 3.83 5.69 7.47 9.16 10.8 12.3 13.8 15.1 16.5 17.8 19.0 20.2 21.3

3 d2* 1.23 1.77 2.12 2.38 2.58 2.75 2.89 3.01 3.11 3.21 3.29 3.37 3.44 3.50
v 2.82 5.66 8.44 11.1 13.6 16.0 18.3 20.5 22.6 24.6 26.5 28.4 30.1 31.9

4 d2* 1.21 1.75 2.11 2.37 2.57 2.74 2.88 3.00 3.10 3.20 3.28 3.36 3.43 3.49
v 3.71 7.49 11.2 14.7 18.1 21.3 24.4 27.3 30.1 32.7 35.3 37.7 40.1 42.4

5 d2* 1.19 1.74 2.10 2.36 2.56 2.73 2.87 2.99 3.10 3.19 3.28 3.35 3.42 3.49
v 4.59 9.31 13.9 18.4 22.6 26.6 30.4 34.0 37.5 40.8 44.0 47.1 50.1 52.9

6 d2* 1.18 1.73 2.09 2.35 2.56 2.73 2.87 2.99 3.09 3.19 3.27 3.35 3.42 3.49
v 5.47 11.1 16.7 22.0 27.0 31.8 36.4 40.8 45.0 49.0 52.8 56.5 60.1 63.5

7 d2* 1.17 1.73 2.09 2.35 2.55 2.72 2.86 2.99 3.09 3.19 3.27 3.35 3.42 3.48
v 6.35 12.9 19.4 25.6 31.5 37.1 42.5 47.6 52.4 57.1 61.6 65.9 70.0 74.0

8 d2* 1.17 1.72 2.08 2.35 2.55 2.72 2.86 2.98 3.09 3.19 3.27 3.35 3.42 3.48
v 7.23 14.8 22.1 29.2 36.0 42.4 48.5 54.3 59.9 65.2 70.3 75.2 80.0 84.6

9 d2* 1.16 1.72 2.08 2.34 2.55 2.72 2.86 2.98 3.09 3.18 3.27 3.35 3.42 3.48
v 8.11 16.6 24.9 32.9 40.4 47.7 54.5 61.1 67.3 73.3 79.1 84.6 90.0 95.1
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10 d2* 1.16 1.72 2.08 2.34 2.55 2.72 2.86 2.98 3.09 3.18 3.27 3.34 3.42 3.48
v 8.99 18.4 27.6 36.5 44.9 52.9 60.6 67.8 74.8 81.5 87.8 94.0 99.9 106

11 d2* 1.16 1.71 2.08 2.34 2.55 2.72 2.86 2.98 3.09 3.18 3.27 3.34 3.41 3.48
v 9.87 20.2 30.4 40.1 49.4 58.2 66.6 74.6 82.2 89.6 96.6 103 110 116

12 d2* 1.15 1.71 2.07 2.34 2.55 2.72 2.86 2.98 3.09 3.18 3.27 3.34 3.41 3.48
v 10.7 22.0 33.1 43.7 53.8 63.5 72.6 81.3 89.7 97.7 105 113 120 127

13 d2* 1.15 1.71 2.07 2.34 2.55 2.71 2.86 2.98 3.09 3.18 3.27 3.34 3.41 3.48
v 11.6 23.8 35.8 47.3 58.3 68.7 78.6 88.1 97.2 106 114 122 130 137

14 d2* 1.15 1.71 2.07 2.34 2.54 2.71 2.86 2.98 3.08 3.18 3.27 3.34 3.41 3.48
v 12.5 25.7 38.6 51.0 62.8 74.0 84.7 94.9 105 114 123 131 140 148

15 d2* 1.15 1.71 2.07 2.34 2.54 2.71 2.86 2.98 3.08 3.18 3.26 3.34 3.41 3.48
v 13.4 27.5 41.3 54.6 67.2 79.3 90.7 102 112 122 132 141 150 158

20 d2* 1.14 1.70 2.07 2.33 2.54 2.71 2.85 2.98 3.08 3.18 3.26 3.34 3.41 3.48
v 17.8 36.5 55.0 72.7 89.6 106 121 135 149 163 175 188 200 211

30 d2* 1.14 1.70 2.07 2.33 2.54 2.71 2.85 2.97 3.08 3.18 3.26 3.34 3.41 3.47
v 26.5 54.7 82.4 109 134 158 181 203 224 244 263 281 299 316

50 d2* 1.13 1.70 2.06 2.33 2.54 2.71 2.85 2.97 3.08 3.17 3.26 3.34 3.41 3.47
v 44.0 91.0 137 181 224 264 302 338 373 406 438 469 499 527

d2 1.13 1.69 2.06 2.33 2.53 2.70 2.85 2.97 3.08 3.17 3.26 3.34 3.41 3.47
c.d. 0.876 1.82 2.74 3.62 4.47 5.27 6.03 6.76 7.45 8.12 8.76 9.37 9.97 10.54

Source: Reprinted from Nelson, L.S., J. Qual. Technol., 7(1), 48, 1975. With permission.
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TABLE T10.2: Matched single and double, known (s) and unknown (s) standard deviation,
variables sampling plans for values of p1 and p2 with a¼ .05, b¼ .10 (n1¼ n2, kt¼ kr).

Single Double

p1 p2 ns ns k ns ns ka kr ASNs ASNs

.001 .0015 572 3180 3.02 422 2334 3.04 3.01 464.5 2568.5
.002 191 1032 2.97 138 739 3.01 2.95 154.9 829.1
.0025 107 567 2.93 75 391 3.00 2.90 87.5 455.6
.003 74 381 2.90 51 260 2.98 2.86 59.4 302.4
.004 45 226 2.84 33 163 2.92 2.80 36.8 181.2
.005 33 160 2.80 24 115 2.89 2.75 26.8 128.0
.006 26 124 2.77 18 84 2.90 2.70 20.9 97.8
.007 22 102 2.73 15 69 2.90 2.66 17.7 81.8
.008 19 87 2.71 14 64 2.79 2.65 15.1 69.4
.009 17 76 2.68 12 53 2.81 2.61 13.4 59.5
.01 15 67 2.66 10 44 2.88 2.57 12.0 53.1
.012 13 55 2.62 9 39 2.76 2.54 10.0 43.5
.015 11 44 2.57 7 29 2.84 2.46 8.4 35.1
.02 8 34 2.51 6 24 2.65 2.41 6.6 26.4
.025 7 27 2.46 5 19 2.62 2.35 5.5 21.0
.03 6 23 2.41 4 15 2.80 2.26 4.9 18.5
.035 6 20 2.37 4 15 2.53 2.26 4.3 16.3
.04 5 18 2.34 4 15 2.42 2.26 4.2 15.7
.05 5 15 2.28 3 10 2.51 2.14 3.3 11.2
.06 4 13 2.23 3 10 2.32 2.14 3.1 10.5

.0025 .004 357 1678 2.72 286 1337 2.74 2.71 308.1 1439.7
.005 161 736 2.68 111 501 2.74 2.65 132.1 596.0
.006 99 443 2.64 71 313 2.70 2.61 80.6 354.9
.0075 62 267 2.60 45 193 2.66 2.56 50.1 214.2
.01 38 157 2.54 27 111 2.62 2.49 30.1 123.5
.012 29 117 2.50 21 84 2.59 2.44 23.4 93.9
.015 22 85 2.45 15 58 2.58 2.38 17.1 66.4
.02 16 59 2.38 11 41 2.51 2.31 12.2 45.8
.025 12 45 2.33 9 32 2.45 2.25 9.9 35.2
.03 10 37 2.29 7 24 2.51 2.18 8.2 28.2
.035 9 31 2.25 6 20 2.51 2.13 7.1 23.8
.04 8 27 2.21 6 20 2.32 2.13 6.4 21.5
.05 7 22 2.15 5 16 2.26 2.07 5.3 17.1
.06 6 18 2.10 4 12 2.31 1.98 4.4 13.4

.005 .0075 417 1714 2.50 293 1195 2.53 2.48 341.2 1390.6
.01 138 547 2.44 100 391 2.48 2.41 112.0 437.1
.012 85 327 2.40 60 228 2.47 2.36 69.5 263.0
.015 53 196 2.35 39 144 2.41 2.31 43.0 157.6
.02 32 114 2.28 23 81 2.37 2.23 25.6 90.5
.025 23 79 2.23 16 54 2.37 2.16 18.5 62.7
.03 18 61 2.19 13 42 2.32 2.11 14.7 47.8
.035 15 49 2.15 11 35 2.25 2.08 12.0 38.3
.04 13 41 2.11 9 28 2.29 2.02 10.3 32.3
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TABLE T10.2 (continued): Matched single and double, known (s) and unknown (s) standard
deviation, variables sampling plans for values of p1 and p2 with a¼ .05, b¼ .10 (n1¼ n2, kt¼ kr).

Single Double

p1 p2 ns ns k ns ns ka kr ASNs ASNs

.05 10 31 2.05 7 21 2.25 1.95 8.0 24.2

.06 9 25 2.00 6 17 2.17 1.90 6.7 19.0

.07 8 21 1.96 5 14 2.19 1.84 5.7 16.1

.0075 .01 763 2909 2.37 511 1935 2.41 2.36 640.4 2423.7
.012 279 1040 2.33 213 787 2.36 2.32 233.1 860.2
.015 125 450 2.29 91 324 2.33 2.26 101.4 360.2
.02 60 208 2.22 43 146 2.30 2.18 49.2 166.0
.025 39 129 2.17 28 91 2.25 2.12 31.3 102.1
.03 29 92 2.12 20 63 2.25 2.06 23.2 73.3
.035 23 71 2.08 16 49 2.20 2.02 18.0 55.4
.04 19 58 2.05 14 42 2.14 1.99 15.2 45.9
.05 14 42 1.99 10 29 2.13 1.91 11.2 32.7
.06 12 33 1.94 8 22 2.10 1.85 9.0 24.9
.07 10 27 1.90 7 19 2.03 1.81 7.7 20.9
.08 9 23 1.86 6 16 2.01 1.76 6.6 17.7

.01 .015 351 1231 2.24 246 853 2.28 2.22 291.4 1009.5
.02 116 388 2.17 87 289 2.21 2.15 94.7 313.6
.025 64 208 2.12 45 143 2.21 2.08 52.6 166.2
.03 44 137 2.08 31 95 2.16 2.03 35.0 107.5
.035 33 100 2.04 23 69 2.15 1.98 26.5 79.6
.04 26 78 2.00 19 55 2.11 1.94 21.4 62.2
.045 22 64 1.97 15 43 2.13 1.90 17.6 50.7
.05 19 54 1.94 13 36 2.09 1.87 14.9 41.5
.06 15 41 1.89 11 30 1.98 1.83 11.8 32.4
.07 12 33 1.85 9 24 1.96 1.77 9.8 26.3
.08 11 27 1.81 7 18 2.05 1.70 8.3 21.4
.09 9 23 1.77 6 15 2.09 1.65 7.4 18.5
.10 8 20 1.74 6 15 1.87 1.65 6.5 16.3

.015 .02 633 2036 2.11 448 1427 2.14 2.09 544.3 1733.0
.025 195 603 2.05 142 435 2.09 2.03 159.3 487.4
.03 103 309 2.01 75 223 2.06 1.98 84.0 248.6
.035 67 197 1.97 47 135 2.05 1.93 54.3 155.4
.04 49 140 1.93 35 98 2.02 1.89 39.8 111.9
.045 39 107 1.90 27 74 2.01 1.85 31.2 85.7
.05 32 86 1.88 23 62 1.97 1.82 25.8 69.8
.06 23 61 1.82 17 44 1.91 1.77 18.6 48.3
.07 18 46 1.78 13 33 1.90 1.71 14.5 37.0
.08 15 37 1.74 10 24 1.96 1.65 12.0 29.0
.09 13 31 1.70 9 21 1.85 1.62 10.1 23.6
.10 11 26 1.67 8 18 1.82 1.58 8.9 20.2
.11 10 23 1.64 7 16 1.81 1.54 7.9 18.1

(continued)
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TABLE T10.2 (continued): Matched single and double, known (s) and unknown (s) standard
deviation, variables sampling plans for values of p1 and p2 with a¼ .05, b¼ .10 (n1¼ n2, kt¼ kr).

Single Double

p1 p2 ns ns k ns ns ka kr ASNs ASNs

.12 9 20 1.61 6 13 1.89 1.49 7.2 15.6

.13 8 18 1.58 6 13 1.72 1.49 6.5 14.2

.14 8 16 1.56 5 11 1.84 1.43 5.9 13.1

.15 7 15 1.53 5 11 1.69 1.43 5.5 12.1

.02 .03 287 835 1.96 208 600 1.99 1.94 234.5 675.8
.035 147 416 1.92 102 285 1.98 1.89 120.2 334.8
.04 94 259 1.88 66 179 1.95 1.85 75.9 205.8
.045 67 182 1.85 46 122 1.95 1.81 54.8 144.5
.05 52 137 1.82 37 96 1.91 1.78 42.3 110.1
.06 35 89 1.77 25 62 1.87 1.72 28.3 70.4
.07 26 64 1.73 19 46 1.83 1.67 21.2 51.6
.08 21 50 1.69 15 35 1.81 1.62 16.9 39.6
.09 17 40 1.65 12 27 1.82 1.57 13.9 31.5
.10 15 34 1.62 10 22 1.82 1.53 11.8 26.1
.11 13 29 1.59 9 20 1.75 1.50 10.2 22.8
.12 12 25 1.56 8 17 1.72 1.47 9.0 19.2
.13 10 22 1.53 7 15 1.74 1.43 8.1 17.4
.15 9 18 1.48 6 12 1.66 1.38 6.7 13.5
.17 8 15 1.44 5 10 1.69 1.31 5.8 11.7
.20 6 12 1.37 4 8 1.70 1.23 4.8 9.6

.03 .04 506 1333 1.81 411 1077 1.82 1.80 434.6 1138.7
.045 250 643 1.78 185 472 1.81 1.76 206.6 526.6
.05 154 389 1.75 105 261 1.82 1.72 127.7 316.5
.06 81 197 1.70 56 134 1.78 1.66 65.8 156.5
.07 53 124 1.65 37 85 1.74 1.61 42.4 97.7
.08 38 88 1.61 28 63 1.69 1.57 31.0 69.9
.09 30 66 1.58 22 48 1.65 1.53 24.0 52.5
.10 24 53 1.54 17 36 1.67 1.48 19.4 41.3
.11 20 43 1.51 14 29 1.67 1.44 16.3 34.0
.12 18 37 1.48 13 27 1.58 1.42 14.2 29.6
.13 16 32 1.46 11 22 1.59 1.38 12.3 24.8
.15 13 24 1.41 9 17 1.52 1.33 9.8 18.7
.20 8 15 1.30 6 11 1.44 1.20 6.6 12.1
.25 6 11 1.20 4 7 1.61 1.05 5.0 8.7
.30 5 8 1.12 4 7 1.18 1.05 4.1 7.2

.04 .06 224 524 1.64 159 368 1.68 1.62 180.6 417.6
.07 114 258 1.60 83 186 1.64 1.57 91.8 205.0
.08 72 159 1.56 51 110 1.63 1.52 58.4 125.8
.09 51 110 1.52 37 78 1.59 1.48 41.2 87.2
.10 39 82 1.49 28 58 1.57 1.44 31.3 65.1
.11 32 65 1.46 22 44 1.57 1.40 25.3 50.7
.12 26 53 1.43 19 37 1.52 1.37 21.1 41.2
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TABLE T10.2 (continued): Matched single and double, known (s) and unknown (s) standard
deviation, variables sampling plans for values of p1 and p2 with a¼ .05, b¼ .10 (n1¼ n2, kt¼ kr).

Single Double

p1 p2 ns ns k ns ns ka kr ASNs ASNs

.13 22 44 1.40 17 33 1.47 1.35 18.3 35.6

.14 20 38 1.37 14 27 1.48 1.31 15.5 30.0

.15 17 33 1.35 12 22 1.50 1.27 13.7 25.3

.17 14 25 1.30 10 18 1.42 1.23 11.0 19.9

.20 11 19 1.24 8 14 1.35 1.16 8.7 15.2

.25 8 13 1.15 5 8 1.52 1.01 6.3 10.0

.30 6 9 1.06 4 6 1.35 0.92 4.7 7.0

.35 5 7 .98 4 6 1.04 0.92 4.1 6.2

.40 4 6 .91 3 4 1.05 0.80 3.2 4.3

.05 .07 300 660 1.55 204 443 1.60 1.53 246.7 535.4
.08 149 319 1.51 113 239 1.54 1.49 122.3 258.0
.09 93 194 1.47 66 135 1.54 1.44 75.8 154.4
.10 65 133 1.44 46 92 1.52 1.40 52.9 106.1
.11 49 98 1.41 36 70 1.48 1.37 40.0 78.1
.12 39 76 1.38 28 53 1.48 1.33 32.0 60.9
.13 32 62 1.35 23 43 1.45 1.30 25.9 48.6
.14 27 51 1.33 20 37 1.42 1.27 22.2 41.3
.15 24 43 1.30 17 31 1.41 1.24 19.0 34.8
.16 21 37 1.28 15 27 1.38 1.22 16.5 29.9
.17 18 33 1.26 13 23 1.40 1.18 14.8 26.4
.20 14 23 1.19 10 17 1.30 1.12 10.9 18.6
.25 10 15 1.10 7 11 1.21 1.02 7.5 11.9
.30 7 11 1.01 5 8 1.21 0.90 5.6 9.0
.35 6 8 .94 4 6 1.12 0.82 4.4 6.6
.40 5 7 .86 3 4 1.31 0.69 3.7 4.9

Source: Reprinted from Sommers, D.J., J. Qual. Technol., 13(1), 26, 1981. With permission.
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TABLE T10.3: Comparison of approximate and exact values of N and k for variables
sampling plans.

Exact Approximate

N k P2 N k True p1 True p2

(1) (2) (3) (4) (5) (6) (7)

5 0.5445 0.5428 5 0.5150 0.0541 0.5519
10 0.8037 0.3774 10 0.7856 0.0524 0.3830
15 0.9292 0.3033 15 0.9163 0.0517 0.3071
20 1.0083 0.2604 20 0.9983 0.0513 0.2633
25 1.0643 0.2332 25 1.0560 0.0510 0.2344
30 1.1069 0.2119 30 1.1000 0.0509 0.2137
35 1.1409 0.1966 35 1.1348 0.0507 0.1981
40 1.1688 0.1846 40 1.1633 0.0507 0.1859
45 1.1922 0.1748 45 1.1874 0.0506 0.1759
50 1.2125 0.1666 50 1.2082 0.0505 0.1676
65 1.2592 0.1489 64 1.2556 0.0501 0.1500
75 1.2828 0.1404 74 1.2797 0.0501 0.1413
100 1.3264 0.1256 99 1.3241 0.0501 0.1262

Source: Statistical Research Group, Columbia University, Techniques of Statistical Analysis, McGraw-Hill,
New York, 1947, 65. With permission.

Notes: Exact values of k in column (2) have been computed from the noncentral t-distribution, taking p1¼ 0.05,
a¼ 0.01, and N as shown in column (1). The exact values of p2 for which b¼ 0.10 have then been computed
and entered in column (3). From these p2, taking b¼ 0.10, p1¼ 0.05, and a¼ 0.01, approximate values of N
and k were computed from the Wallis approximation. For the approximation the true values of p1 and p2 for
which a¼ 0.01 and b¼ 0.10 have been computed from the noncentral t-distribution.
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TABLE T10.4: Odeh–Owen’s Table 5: two-sided sampling plan factors to control equal tails.

g¼ 0.900

N P¼ 0.20 P¼ 0.10 P¼ 0.05 P¼ 0.025 P¼ 0.02 P¼ 0.01 P¼ 0.005

2 6.987 10.253 13.090 15.586 16.331 18.500 20.486
3 3.039 4.258 5.311 6.244 6.523 7.340 8.092
4 2.295 3.188 3.957 4.637 4.841 5.438 5.988
5 1.976 2.742 3.400 3.981 4.156 4.666 5.136

6 1.806 2.494 3.092 3.620 3.779 4.243 4.669
7 1.721 2.334 2.894 3.389 3.538 3.972 4.372
8 1.666 2.227 2.755 3.227 3.369 3.783 4.164
9 1.626 2.158 2.652 3.106 3.242 3.641 4.009
10 1.595 2.112 2.576 3.012 3.144 3.532 3.888

11 1.570 2.075 2.520 2.938 3.066 3.444 3.792
12 1.550 2.045 2.479 2.879 3.004 3.371 3.712
13 1.533 2.020 2.446 2.833 2.953 3.312 3.646
14 1.519 1.999 2.419 2.796 2.912 3.261 3.589
15 1.506 1.981 2.395 2.767 2.880 3.219 3.541

16 1.496 1.965 2.374 2.742 2.853 3.184 3.499
17 1.486 1.950 2.356 2.720 2.830 3.155 3.463
18 1.478 1.938 2.340 2.701 2.810 3.130 3.433
19 1.470 1.927 2.325 2.683 2.791 3.109 3.406
20 1.463 1.916 2.312 2.667 2.775 3.090 3.383

21 1.457 1.907 2.300 2.653 2.760 3.073 3.364
22 1.451 1.899 2.290 2.640 2.746 3.057 3.346
23 1.446 1.891 2.280 2.628 2.733 3.043 3.330
24 1.441 1.884 2.270 2.617 2.721 3.029 3.315
25 1.437 1.877 2.262 2.606 2.711 3.017 3.301

30 1.419 1.851 2.227 2.565 2.667 2.967 3.245
35 1.406 1.831 2.202 2.534 2.634 2.929 3.203
40 1.396 1.816 2.182 2.510 2.609 2.901 3.171
45 1.387 1.804 2.166 2.491 2.589 2.878 3.146
50 1.381 1.794 2.154 2.476 2.573 2.859 3.124

60 1.370 1.778 2.133 2.451 2.547 2.829 3.091
70 1.362 1.766 2.118 2.433 2.528 2.807 3.066
80 1.356 1.757 2.106 2.418 2.513 2.790 3.047
90 1.351 1.750 2.097 2.407 2.500 2.776 3.031
100 1.347 1.744 2.089 2.397 2.490 2.764 3.018

120 1.341 1.734 2.076 2.382 2.474 2.746 2.997
150 1.334 1.723 2.062 2.365 2.457 2.726 2.975
300 1.317 1.699 2.030 2.326 2.416 2.678 2.922
500 1.309 1.686 2.013 2.306 2.394 2.654 2.895
600 1.306 1.682 2.008 2.300 2.388 2.647 2.887

(continued)
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TABLE T10.4 (continued): Odeh–Owen’s Table 5: two-sided sampling plan factors to control
equal tails.

g¼ 0.900

N P¼ 0.20 P¼ 0.10 P¼ 0.05 P¼ 0.025 P¼ 0.02 P¼ 0.01 P¼ 0.005

700 1.304 1.679 2.005 2.295 2.383 2.641 2.880
800 1.303 1.677 2.002 2.292 2.379 2.637 2.875
900 1.301 1.675 1.999 2.289 2.376 2.633 2.871
1,000 1.300 1.673 1.997 2.286 2.374 2.630 2.868
1,500 1.297 1.668 1.990 2.278 2.365 2.620 2.856

2,000 1.295 1.665 1.986 2.273 2.359 2.614 2.850
3,000 1.292 1.661 1.981 2.267 2.353 2.607 2.842
5,000 1.290 1.657 1.976 2.261 2.347 2.600 2.834
10,000 1.287 1.654 1.971 2.255 2.341 2.593 2.826
1 1.282 1.645 1.960 2.241 2.326 2.576 2.807

Source: Odeh, R.E. and Owen, D.B., in Tables for Normal Tolerance Limits, Sample Plans, and Screening, Marcel
Dekker Inc., New York, 1980, 146.
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TABLE T10.5: Odeh–Owen’s Table 6: two-sided sampling plan factors to control tails separately.

g¼ 0.900

N P¼ 0.20 P¼ 0.10 P¼ 0.05 P¼ 0.025 P¼ 0.02 P¼ 0.01 P¼ 0.005

2 6.987 10.253 13.090 15.586 16.331 18.500 20.486
3 3.039 4.258 5.311 6.244 6.523 7.340 8.092
4 2.295 3.188 3.957 4.637 4.841 5.438 5.988
5 1.976 2.742 3.400 3.981 4.156 4.666 5.136

6 1.795 2.494 3.092 3.620 3.779 4.243 4.669
7 1.676 2.333 2.894 3.389 3.538 3.972 4.372
8 1.590 2.219 2.754 3.227 3.369 3.783 4.164
9 1.525 2.133 2.650 3.106 3.242 3.641 4.009
10 1.474 2.066 2.568 3.011 3.144 3.532 3.888

11 1.433 2.011 2.503 2.935 3.065 3.443 3.792
12 1.398 1.966 2.448 2.872 3.000 3.371 3.712
13 1.368 1.928 2.402 2.820 2.945 3.309 3.645
14 1.343 1.895 2.363 2.774 2.898 3.257 3.588
15 1.321 1.867 2.329 2.735 2.857 3.212 3.538

16 1.301 1.842 2.299 2.701 2.821 3.172 3.495
17 1.284 1.819 2.272 2.670 2.789 3.137 3.456
18 1.268 1.800 2.249 2.643 2.761 3.105 3.422
19 1.254 1.782 2.227 2.618 2.736 3.077 3.391
20 1.241 1.765 2.208 2.596 2.712 3.052 3.363

21 1.229 1.750 2.190 2.576 2.691 3.028 3.338
22 1.218 1.737 2.174 2.557 2.672 3.007 3.315
23 1.208 1.724 2.159 2.540 2.654 2.987 3.293
24 1.199 1.712 2.145 2.525 2.638 2.969 3.273
25 1.190 1.702 2.132 2.510 2.623 2.952 3.255

30 1.154 1.657 2.080 2.450 2.561 2.884 3.180
35 1.127 1.624 2.041 2.406 2.515 2.833 3.125
40 1.106 1.598 2.010 2.371 2.479 2.793 3.082
45 1.089 1.577 1.986 2.343 2.450 2.761 3.047
50 1.075 1.559 1.965 2.320 2.426 2.735 3.018

60 1.052 1.532 1.933 2.284 2.389 2.694 2.973
70 1.035 1.511 1.909 2.256 2.360 2.662 2.940
80 1.022 1.495 1.890 2.235 2.338 2.638 2.913
90 1.011 1.481 1.874 2.217 2.320 2.618 2.891
100 1.001 1.470 1.861 2.203 2.304 2.601 2.873

120 0.986 1.452 1.841 2.179 2.280 2.574 2.844
150 0.970 1.433 1.818 2.154 2.254 2.546 2.813
300 0.931 1.386 1.765 2.094 2.192 2.477 2.739
500 0.910 1.362 1.736 2.062 2.159 2.442 2.701
600 0.904 1.355 1.728 2.053 2.150 2.431 2.689

(continued)
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TABLE T10.5 (continued): Odeh–Owen’s Table 6: two-sided sampling plan factors to control
tails separately.

g¼ 0.900

N P¼ 0.20 P¼ 0.10 P¼ 0.05 P¼ 0.025 P¼ 0.02 P¼ 0.01 P¼ 0.005

700 0.899 1.349 1.722 2.046 2.142 2.423 2.680
800 0.896 1.344 1.717 2.040 2.136 2.417 2.673
900 0.892 1.341 1.712 2.035 2.132 2.411 2.668
1000 0.890 1.338 1.709 2.031 2.127 2.407 2.663
1500 0.881 1.327 1.697 2.018 2.114 2.392 2.646

2000 0.875 1.321 1.690 2.010 2.105 2.383 2.637
3000 0.869 1.314 1.681 2.001 2.096 2.372 2.625
5000 0.863 1.306 1.673 1.991 2.086 2.362 2.614
10000 0.857 1.299 1.665 1.982 2.077 2.351 2.603
1 0.842 1.282 1.645 1.960 2.054 2.326 2.576

Source: Odeh, R.E. and Owen, D.B., Tables for Normal Tolerance Limits, Sample Plans, and Screening, Marcel
Dekker Inc., New York, 1980, 147. With permission.
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TABLE T11.1: MIL-STD-105E Table VIII—limit numbers for reduced inspection.
Number of
Sample Units
from Last 10 Lots
or Batches

Acceptable Quality Level

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

20–29 * * * * * * * * * * * * * * * 0 0 2 4 8 14 22 40 68 115 181
30–49 * * * * * * * * * * * * * * 0 0 1 3 7 13 22 36 63 105 178 277
50–79 * * * * * * * * * * * * * 0 0 2 3 7 14 25 40 63 110 181 301

80–129 * * * * * * * * * * * * 0 0 2 4 7 14 24 42 68 105 181 297
130–199 * * * * * * * * * * * 0 0 2 4 7 13 25 42 72 115 177 301 490
200–319 * * * * * * * * * * 0 0 2 4 8 14 22 40 68 115 181 277 471

320–499 * * * * * * * * * 0 0 1 4 8 14 24 39 68 113 189
500–799 * * * * * * * * 0 0 2 3 7 14 25 40 63 110 181
800–1249 * * * * * * * 0 0 2 4 7 14 24 42 68 105 181

1250–1999 * * * * * * 0 0 2 4 7 13 24 40 69 110 169
2000–3149 * * * * * 0 0 2 4 8 14 22 40 68 115 181
3150–4999 * * * * 0 0 1 4 8 14 24 38 67 111 186

5000–7999 * * * 0 0 2 3 7 14 25 40 63 110 181
8000–12499 * * 0 0 2 4 7 14 24 42 68 105 181
12500–19999 * 0 0 2 4 7 13 24 40 69 110 169

20000–31499 0 0 2 4 8 14 22 40 68 115 181
31500 & Over 0 1 4 8 14 24 38 67 111 186

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Attributes, MIL-STD-105E, U.S. Government Printing Office,
Washington, DC, 1989, 32.
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TABLE T11.2: MIL-STD-105E Table I—sample size code letters.

Special Inspection Levels General Inspection Levels

Lot or Batch Size S-1 S-2 S-3 S-4 I II III

2 to 8 A A A A A A B
9 to 15 A A A A A B C
16 to 25 A A B B B C D

26 to 50 A B B C C D E
51 to 90 B B C C C E F
91 to 150 B B C D D F G

151 to 280 B C D E E G H
281 to 500 B C D E F H J
501 to 1200 C C E F G J K

1201 to 3200 C D E G H K L
3201 to 10000 C D F G J L M
10001 to 35000 C D F H K M N

35001 to 150000 D E G J L N P
150001 to 500000 D E G J M P Q
500001 and over D E H K N Q R

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Attributes, MIL-STD-105E,
U.S. Government Printing Office, Washington, DC, 1989, 13.

�
2008

by
T
aylor

&
F
rancis

G
roup,

L
L
C
.



TABLE T11.3: MIL-STD-105E Table II-A—single-sampling plans for normal inspection (master table).

Sample
Size
Code
Letter

Sample
Size

Acceptable Quality Levels (Normal Inspection)

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re

A 2

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1

¯ ¯

1 2 2 3 3 4 5 6 7 8 10 11 14 15 21 22 30 31
B 3

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1 ¯

¯

1 2 2 3 3 4 5 6 7 8 10 11 14 15 21 22 30 31 44 45
C 5

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1 ¯

¯

1 2 2 3 3 4 5 6 7 8 10 11 14 15 21 22 30 31 44 45 ¯

D 8

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1 ¯

¯

1 2 2 3 3 4 5 6 7 8 10 11 14 15 21 22 30 31 44 45 ¯ ¯

E 13

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1 ¯

¯

1 2 2 3 3 4 5 6 7 8 10 11 14 15 21 22 30 31 44 45 ¯ ¯ ¯

F 20

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1 ¯

¯

1 2 2 3 3 4 5 6 7 8 10 11 14 15 21 22 ¯ ¯ ¯ ¯ ¯ ¯

G 32

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1 ¯

¯

1 2 2 3 3 4 5 6 7 8 10 11 14 15 21 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯

H 50

¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1 ¯

¯

1 2 2 3 3 4 5 6 7 8 10 11 14 15 21 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

J 80

¯ ¯ ¯ ¯ ¯ ¯

0 1 ¯

¯

1 2 2 3 3 4 5 6 7 8 10 11 14 15 21 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

K 125

¯ ¯ ¯ ¯ ¯

0 1 ¯

¯

1 2 2 3 3 4 5 6 7 8 10 11 14 15 21 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

L 200

¯ ¯ ¯ ¯

0 1 ¯

¯

1 2 2 3 3 4 5 6 7 8 10 11 14 15 21 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

M 315

¯ ¯ ¯

0 1 ¯

¯

1 2 2 3 3 4 5 6 7 8 10 11 14 15 21 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

N 500

¯ ¯

0 1 ¯

¯

1 2 2 3 3 4 5 6 7 8 10 11 14 15 21 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

P 800

¯

0 1 ¯

¯

1 2 2 3 3 4 5 6 7 8 10 11 14 15 21 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Q 1250 0 1 ¯

¯

1 2 2 3 3 4 5 6 7 8 10 11 14 15 21 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

R 2000 ¯ ¯ 1 2 2 3 3 4 5 6 7 8 10 11 14 15 21 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Attributes, MIL-STD-105E, U.S. Government Printing Office,
Washington, DC, 1989, 14.

¯

, use first sampling plan below arrow. If sample size equals, or exceeds, lot or batch size, do 100% inspection.

¯, use first sampling plan above arrow.
Ac, acceptance number.
Re, rejection number.
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TABLE T11.4: MIL-STD-105E Table II-B—single-sampling plans for tightened inspection (master table).

Sample
Size
Code
Letter

Sample
Size

Acceptable Quality Levels (Tightened Inspection)

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re

A 2

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 2 2 3 3 4 5 6 8 9 12 13 18 19 27 28
B 3

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1

¯ ¯

1 2 2 3 3 4 5 6 8 9 12 13 18 19 27 28 41 42
C 5

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1

¯ ¯

1 2 2 3 3 4 5 6 8 9 12 13 18 19 27 28 41 42 ¯

D 8

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1

¯ ¯

1 2 2 3 3 4 5 6 8 9 12 13 18 19 27 28 41 42 ¯ ¯

E 13

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1

¯ ¯

1 2 2 3 3 4 5 6 8 9 12 13 18 19 27 28 41 42 ¯ ¯ ¯

F 20

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1

¯ ¯

1 2 2 3 3 4 5 6 8 9 12 13 18 19 ¯ ¯ ¯ ¯ ¯ ¯

G 32

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1

¯ ¯

1 2 2 3 3 4 5 6 8 9 12 13 18 19 ¯ ¯ ¯ ¯ ¯ ¯ ¯

H 50

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1

¯ ¯

1 2 2 3 3 4 5 6 8 9 12 13 18 19 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

J 80

¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1

¯ ¯

1 2 2 3 3 4 5 6 8 9 12 13 18 19 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

K 125

¯ ¯ ¯ ¯ ¯ ¯

0 1

¯ ¯

1 2 2 3 3 4 5 6 8 9 12 13 18 19 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

L 200

¯ ¯ ¯ ¯ ¯

0 1

¯ ¯

1 2 2 3 3 4 5 6 8 9 12 13 18 19 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

M 315

¯ ¯ ¯ ¯

0 1

¯ ¯

1 2 2 3 3 4 5 6 8 9 12 13 18 19 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

N 500

¯ ¯ ¯

0 1

¯ ¯

1 2 2 3 3 4 5 6 8 9 12 13 18 19 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

P 800

¯ ¯

0 1

¯ ¯

1 2 2 3 3 4 5 6 8 9 12 13 18 19 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Q 1250

¯

0 1

¯ ¯

1 2 2 3 3 4 5 6 8 9 12 13 18 19 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

R 2000 0 1 ¯

¯

1 2 2 3 3 4 5 6 8 9 12 13 18 19 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

S 3150 ¯ ¯ 1 2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Attributes, MIL-STD-105E, U.S. Government Printing Office,
Washington, DC, 1989, 15.

¯

, use first sampling plan below arrow. If sample size equals, or exceeds, lot or batch size, do 100% inspection.

¯, use first sampling plan above arrow.
Ac, acceptance number.
Re, rejection number.
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TABLE T11.5: MIL-STD-105E Table II-C—single-sampling plans for reduced inspection (master table).

Sample
Size
Code
Letter

Sample
Size

Acceptable Quality Levels (Reduced Inspection)a

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re

A 2

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1

¯ ¯

1 2 2 3 3 4 5 6 7 8 10 11 14 15 21 22 30 31
B 2

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1 ¯

¯

0 2 1 3 2 4 3 5 5 6 7 8 10 11 14 15 21 22 30 31
C 2

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1 ¯

¯

0 2 1 3 1 4 2 5 3 6 5 8 7 10 10 13 14 17 21 24 ¯

D 3

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1 ¯

¯

0 2 1 3 1 4 2 5 3 6 5 8 7 10 10 13 14 17 21 24 ¯ ¯

E 5

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1 ¯

¯

0 2 1 3 1 4 2 5 3 6 5 8 7 10 10 13 14 17 21 24 ¯ ¯ ¯

F 8

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1 ¯

¯

0 2 1 3 1 4 2 5 3 6 5 8 7 10 10 13 ¯ ¯ ¯ ¯ ¯ ¯

G 13

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1 ¯

¯

0 2 1 3 1 4 2 5 3 6 5 8 7 10 10 13 ¯ ¯ ¯ ¯ ¯ ¯ ¯

H 20

¯ ¯ ¯ ¯ ¯ ¯ ¯

0 1 ¯

¯

0 2 1 3 1 4 2 5 3 6 5 8 7 10 10 13 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

J 32

¯ ¯ ¯ ¯ ¯ ¯

0 1 ¯

¯

0 2 1 3 1 4 2 5 3 6 5 8 7 10 10 13 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

K 50

¯ ¯ ¯ ¯ ¯

0 1 ¯

¯

0 2 1 3 1 4 2 5 3 6 5 8 7 10 10 13 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

L 80

¯ ¯ ¯ ¯

0 1 ¯

¯

0 2 1 3 1 4 2 5 3 6 5 8 7 10 10 13 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

M 125

¯ ¯ ¯

0 1 ¯

¯

0 2 1 3 1 4 2 5 3 6 5 8 7 10 10 13 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

N 200

¯ ¯

0 1 ¯

¯

0 2 1 3 1 4 2 5 3 6 5 8 7 10 10 13 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

P 315

¯

0 1 ¯

¯

0 2 1 3 1 4 2 5 3 6 5 8 7 10 10 13 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Q 500 0 1 ¯

¯

0 2 1 3 1 4 2 5 3 6 5 8 7 10 10 13 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

R 800 ¯ ¯ 0 2 1 3 1 4 2 5 3 6 5 8 7 10 10 13 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Attributes, MIL-STD-105E, U.S. Government Printing Office,
Washington, DC, 1989, 16.

Notes:

¯

, use first sampling plan below arrow. If sample size equals, or exceeds, lot or batch size, do 100% inspection.
a If the acceptance number has been exceeded, but the rejection number has not been reached, accept the lot, but reinstate normal inspection.

¯, use first sampling plan above arrow.
Ac, acceptance number.
Re, rejection number.
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TABLE T11.6: MIL-STD-105E Table III-A—double-sampling plans for normal inspection (master table).

Sample
Size
Code
Letter Sample

Sample
Size

Cumulative
Sample
Size

Acceptable Quality Levels (Normal Inspection)

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re

A

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

* * * * * * * * *

B First 2 2

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

0 2 0 3 1 4 2 5 3 7 5 9 7 11 11 16 17 22 25 31
Second 2 4

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 2 3 4 4 5 6 7 8 9 12 13 18 19 26 27 37 38 56 57

C First 3 3

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

0 2 0 3 1 4 2 5 3 7 5 9 7 11 11 16 17 22 25 31 ¯

Second 3 6

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 2 3 4 4 5 6 7 8 9 12 13 18 19 26 27 37 38 56 57 ¯

D First 5 5

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

0 2 0 3 1 4 2 5 3 7 5 9 7 11 11 16 17 22 25 31 ¯ ¯

Second 5 10

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 2 3 4 4 5 6 7 8 9 12 13 18 19 26 27 37 38 56 57 ¯ ¯

E First 8 8

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

0 2 0 3 1 4 2 5 3 7 5 9 7 11 11 16 17 22 25 31 ¯ ¯ ¯

Second 8 16

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 2 3 4 4 5 6 7 8 9 12 13 18 19 26 27 37 38 56 57 ¯ ¯ ¯

F First 13 13

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

0 2 0 3 1 4 2 5 3 7 5 9 7 11 11 16 ¯ ¯ ¯ ¯ ¯ ¯

Second 13 26

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 2 3 4 4 5 6 7 8 9 12 13 18 19 26 27 ¯ ¯ ¯ ¯ ¯ ¯

G First 20 20

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

0 2 0 3 1 4 2 5 3 7 5 9 7 11 11 16 ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 20 40

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 2 3 4 4 5 6 7 8 9 12 13 18 19 26 27 ¯ ¯ ¯ ¯ ¯ ¯ ¯

H First 32 32

¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

0 2 0 3 1 4 2 5 3 7 5 9 7 11 11 16 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 32 64

¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 2 3 4 4 5 6 7 8 9 12 13 18 19 26 27 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

J First 50 50

¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

0 2 0 3 1 4 2 5 3 7 5 9 7 11 11 16 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 50 100

¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 2 3 4 4 5 6 7 8 9 12 13 18 19 26 27 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

K First 80 80

¯ ¯ ¯ ¯ ¯

* ¯

¯

0 2 0 3 1 4 2 5 3 7 5 9 7 11 11 16 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 80 160

¯ ¯ ¯ ¯ ¯

¯

¯

1 2 3 4 4 5 6 7 8 9 12 13 18 19 26 27 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

L First 125 125

¯ ¯ ¯ ¯

* ¯

¯

0 2 0 3 1 4 2 5 3 7 5 9 7 11 11 16 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 125 250

¯ ¯ ¯ ¯

¯

¯

1 2 3 4 4 5 6 7 8 9 12 13 18 19 26 27 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

M First 200 200

¯ ¯ ¯

* ¯

¯

0 2 0 3 1 4 2 5 3 7 5 9 7 11 11 16 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 200 400

¯ ¯ ¯

¯

¯

1 2 3 4 4 5 6 7 8 9 12 13 18 19 26 27 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

N First 315 315

¯ ¯

* ¯

¯

0 2 0 3 1 4 2 5 3 7 5 9 7 11 11 16 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 315 630

¯ ¯

¯

¯

1 2 3 4 4 5 6 7 8 9 12 13 18 19 26 27 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

P First 500 500

¯

* ¯

¯

0 2 0 3 1 4 2 5 3 7 5 9 7 11 11 16 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 500 1000

¯

¯

¯

1 2 3 4 4 5 6 7 8 9 12 13 18 19 26 27 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Q First 800 800 * ¯

¯

0 2 0 3 1 4 2 5 3 7 5 9 7 11 11 16 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 800 1600 ¯

¯

1 2 3 4 4 5 6 7 8 9 12 13 18 19 26 27 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

R First 125 1250 ¯ ¯ 0 2 0 3 1 4 2 5 3 7 5 9 7 11 11 16 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 125 2500 ¯ ¯ 1 2 3 4 4 5 6 7 8 9 12 13 18 19 26 27 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Attributes, MIL-STD-105E, U.S. Government Printing Office,
Washington, DC, 1989, 17.

¯

, use first sampling plan below arrow. If sample size equals, or exceeds, lot or batch size, do 100% inspection.

¯, use first sampling plan above arrow.
Ac, acceptance number.
Re, rejection number.

*, use corresponding single sampling plan (or alternatively use double sampling plan below, where available).
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TABLE T11.7: MIL-STD-105E Table III-B—double-sampling plans for tightened inspection (master table).

Sample
Size
Code
Letter Sample

Sample
Size

Cumulative
Sample
Size

Acceptable Quality Levels (Tightened Inspection)

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re

A

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* * * * * * * *

B First 2 2

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

0 2 0 3 1 4 2 5 3 7 6 10 9 14 15 20 23 29
Second 2 4

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 2 3 4 4 5 6 7 11 12 15 16 23 24 34 35 52 53

C First 3 3

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

0 2 0 3 1 4 2 5 3 7 6 10 9 14 15 20 23 29 ¯

Second 3 6

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 2 3 4 4 5 6 7 11 12 15 16 23 24 34 35 52 53 ¯

D First 5 5

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

0 2 0 3 1 4 2 5 3 7 6 10 9 14 15 20 23 29 ¯ ¯

Second 5 10

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 2 3 4 4 5 6 7 11 12 15 16 23 24 34 35 52 53 ¯ ¯

E First 8 8

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

0 2 0 3 1 4 2 5 3 7 6 10 9 14 15 20 23 29 ¯ ¯ ¯

Second 8 16

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 2 3 4 4 5 6 7 11 12 15 16 23 24 34 35 52 53 ¯ ¯ ¯

F First 13 13

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

0 2 0 3 1 4 2 5 3 7 6 10 9 14 ¯ ¯ ¯ ¯ ¯ ¯

Second 13 26

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 2 3 4 4 5 6 7 11 12 15 16 23 24 ¯ ¯ ¯ ¯ ¯ ¯

G First 20 20

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

0 2 0 3 1 4 2 5 3 7 6 10 9 14 ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 20 40

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 2 3 4 4 5 6 7 11 12 15 16 23 24 ¯ ¯ ¯ ¯ ¯ ¯ ¯

H First 32 32

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

0 2 0 3 1 4 2 5 3 7 6 10 9 14 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 32 64

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 2 3 4 4 5 6 7 11 12 15 16 23 24 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

J First 50 50

¯ ¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

0 2 0 3 1 4 2 5 3 7 6 10 9 14 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 50 100

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 2 3 4 4 5 6 7 11 12 15 16 23 24 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

K First 80 80

¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

0 2 0 3 1 4 2 5 3 7 6 10 9 14 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 80 160

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 2 3 4 4 5 6 7 11 12 15 16 23 24 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

L First 125 125

¯ ¯ ¯ ¯ ¯

*

¯ ¯

0 2 0 3 1 4 2 5 3 7 6 10 9 14 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 125 250

¯ ¯ ¯ ¯ ¯ ¯ ¯

1 2 3 4 4 5 6 7 11 12 15 16 23 24 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

M First 200 200

¯ ¯ ¯ ¯

*

¯ ¯

0 2 0 3 1 4 2 5 3 7 6 10 9 14 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 200 400

¯ ¯ ¯ ¯ ¯ ¯

1 2 3 4 4 5 6 7 11 12 15 16 23 24 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

N First 315 315

¯ ¯ ¯

*

¯ ¯

0 2 0 3 1 4 2 5 3 7 6 10 9 14 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 315 630

¯ ¯ ¯ ¯ ¯

1 2 3 4 4 5 6 7 11 12 15 16 23 24 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

P First 500 500

¯ ¯

*

¯ ¯

0 2 0 3 1 4 2 5 3 7 6 10 9 14 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 500 1000

¯ ¯ ¯ ¯

1 2 3 4 4 5 6 7 11 12 15 16 23 24 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Q First 800 800

¯

*

¯ ¯

0 2 0 3 1 4 2 5 3 7 6 10 9 14 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 800 1600

¯ ¯ ¯

1 2 3 4 4 5 6 7 11 12 15 16 23 24 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

R First 1250 1250 * ¯

¯

0 2 0 3 1 4 2 5 3 7 6 10 9 14 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 1250 2500 ¯

¯

1 2 3 4 4 5 6 7 11 12 15 16 23 24 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

S First 2000 2000 0 2
Second 2000 4000 1 2

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Attributes, MIL-STD-105E, U.S. Government Printing Office,
Washington, DC, 1989, 18.

¯

, use first sampling plan below arrow. If sample size equals, or exceeds, lot or batch size, do 100% inspection.

¯, use first sampling plan above arrow.
Ac, acceptance number.
Re, rejection number.
*, use corresponding single sampling plan (or alternatively use double sampling plan below, where available).
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TABLE T11.8: MIL-STD-105E Table III-C—double-sampling plans for reduced inspection (master table).

Sample
Size
Code
Letter Sample

Sample
Size

Cumulative
Sample
Size

Acceptable Quality Levels (Reduced Inspection)

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re

A

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

* * * * * * * * *
B

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

* * * * * * * * * *
C

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

* * * * * * * * * * ¯

D First 2 2

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

0 2 0 3 0 4 0 4 1 5 2 7 3 8 5 10 7 12 11 17 ¯ ¯

Second 2 4

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 2 0 4 1 5 3 6 4 7 6 9 8 12 12 16 18 22 26 30 ¯ ¯

E First 3 3

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

0 2 0 3 0 4 0 4 1 5 2 7 3 8 5 10 7 12 11 17 ¯ ¯ ¯

Second 3 6

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 2 0 4 1 5 3 6 4 7 6 9 8 12 12 16 18 22 26 30 ¯ ¯ ¯

F First 5 5

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

0 2 0 3 0 4 0 4 1 5 2 7 3 8 5 10 ¯ ¯ ¯ ¯ ¯ ¯

Second 5 10

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 2 0 4 1 5 3 6 4 7 6 9 8 12 12 16 ¯ ¯ ¯ ¯ ¯ ¯

G First 8 8

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

0 2 0 3 0 4 0 4 1 5 2 7 3 8 5 10 ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 8 16

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 2 0 4 1 5 3 6 4 7 6 9 8 12 12 16 ¯ ¯ ¯ ¯ ¯ ¯ ¯

H First 13 13

¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

0 2 0 3 0 4 0 4 1 5 2 7 3 8 5 10 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 13 26

¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 2 0 4 1 5 3 6 4 7 6 9 8 12 12 16 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

J First 20 20

¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

0 2 0 3 0 4 0 4 1 5 2 7 3 8 5 10 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 20 40

¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 2 0 4 1 5 3 6 4 7 6 9 8 12 12 16 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

K First 32 32

¯ ¯ ¯ ¯ ¯

* ¯

¯

0 2 0 3 0 4 0 4 1 5 2 7 3 8 5 10 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 32 64

¯ ¯ ¯ ¯ ¯

¯

¯

0 2 0 4 1 5 3 6 4 5 6 9 8 12 12 16 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

L First 50 50

¯ ¯ ¯ ¯

* ¯

¯

0 2 0 3 0 4 0 4 1 5 2 7 3 8 5 10 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 50 100

¯ ¯ ¯ ¯

¯

¯

0 2 0 4 1 5 3 6 4 7 6 9 8 12 12 16 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

M First 80 80

¯ ¯ ¯

* ¯

¯

0 2 0 3 0 4 0 4 1 5 2 7 3 8 5 10 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 80 160

¯ ¯ ¯

¯

¯

0 2 0 4 1 5 3 6 4 7 6 9 8 12 12 16 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

N First 125 125

¯ ¯

* ¯

¯

0 2 0 3 0 4 0 4 1 5 2 7 3 8 5 10 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 125 250

¯ ¯

¯

¯

0 2 0 4 1 5 3 6 4 7 6 9 8 12 12 16 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

P First 200 200

¯

* ¯

¯

0 2 0 3 0 4 0 4 1 5 2 7 3 8 5 10 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 200 400

¯

¯

¯

0 2 0 4 1 5 3 6 4 7 6 9 8 12 12 16 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Q First 315 315 * ¯

¯

0 2 0 3 0 4 0 4 1 5 2 7 3 8 5 10 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 315 630 ¯

¯

0 2 0 4 1 5 3 6 4 7 6 9 8 12 12 16 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

R First 500 500 ¯ ¯ 0 2 0 3 0 4 0 4 1 5 2 7 3 8 5 10 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 500 1000 ¯ ¯ 0 2 0 4 1 5 3 6 4 7 6 9 8 12 12 16 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Attributes, MIL-STD-105E, U.S. Government Printing Office,
Washington, DC, 1989, 19.

a If, after the second sample, the acceptance number has been exceeded, but the rejection number has not been reached, accept the lot, but reinstate normal inspection.

¯

, use first sampling plan below arrow. If sample size equals, or exceeds, lot or batch size, do 100% inspection.

¯, use first sampling plan above arrow.
Ac, acceptance number.
Re, rejection number.
*, use corresponding single sampling plan (or alternatively use double sampling plan below, where available).
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TABLE T11.9: MIL-STD-105E Table IV-A—multiple-sampling plans for normal inspection (master table).

Sample
Size
Code
Letter Sample

Sample
Size

Cumulative
Sample
Size

Acceptable Quality Levels (Normal Inspection)

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re

A

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

* * * * * * * * *
B

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

þþ þþ þþ þþ þþ þþ þþ þþ þþ þþ
C

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

þþ þþ þþ þþ þþ þþ þþ þþ þþ þþ ¯

D First 2 2

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

# 2 # 2 # 3 # 4 0 4 0 5 1 7 2 9 4 12 6 16 ¯ ¯

Second 2 4

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

# 2 0 3 0 3 1 5 1 6 3 8 4 10 7 14 11 19 17 27 ¯ ¯

Third 2 6

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 2 0 3 1 4 2 6 3 8 6 10 8 13 13 19 19 27 29 39 ¯ ¯

Fourth 2 8

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 3 1 4 2 5 3 7 5 10 8 13 12 17 19 25 27 34 40 49 ¯ ¯

Fifth 2 10

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 3 2 4 3 6 5 8 7 11 11 15 17 20 25 29 36 40 53 58 ¯ ¯

Sixth 2 12

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 3 3 5 4 6 7 9 10 12 14 17 21 23 31 33 45 47 65 68 ¯ ¯

Seventh 2 14

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

2 3 4 5 6 7 9 10 13 14 18 19 25 26 37 38 53 54 77 78 ¯ ¯

E First 3 3

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

# 2 # 2 # 3 # 4 0 4 0 5 1 7 2 9 4 12 6 16 ¯ ¯ ¯

Second 3 6

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

# 2 0 3 0 3 1 5 1 6 3 8 4 10 7 14 11 19 17 27 ¯ ¯ ¯

Third 3 9

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 2 0 3 1 4 2 6 3 8 6 10 8 13 13 19 19 27 29 39 ¯ ¯ ¯

Fourth 3 12

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 3 1 4 2 5 3 7 5 10 8 13 12 17 19 25 27 34 40 49 ¯ ¯ ¯

Fifth 3 15

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 3 2 4 3 6 5 8 7 11 11 15 17 20 25 29 36 40 53 58 ¯ ¯ ¯

Sixth 3 18

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 3 3 5 4 6 7 9 10 12 14 17 21 23 31 33 45 47 65 68 ¯ ¯ ¯

Seventh 3 21

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

2 3 4 5 6 7 9 10 13 14 18 19 25 26 37 38 53 54 77 78 ¯ ¯ ¯

F First 5 5

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯
¯

# 2 # 2 # 3 # 4 0 4 0 5 1 7 2 9 ¯ ¯ ¯ ¯ ¯ ¯

Second 5 10

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯
¯

# 2 0 3 0 3 1 5 1 6 3 8 4 10 7 14 ¯ ¯ ¯ ¯ ¯ ¯

Third 5 15

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯
¯

0 2 0 3 1 4 2 6 3 8 6 10 8 13 13 19 ¯ ¯ ¯ ¯ ¯ ¯

Fourth 5 20

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯
¯

0 3 1 4 2 5 3 7 5 10 8 13 12 17 19 25 ¯ ¯ ¯ ¯ ¯ ¯

Fifth 5 25

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯
¯

1 3 2 4 3 6 5 8 7 11 11 15 17 20 25 29 ¯ ¯ ¯ ¯ ¯ ¯

Sixth 5 30

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯
¯

1 3 3 5 4 6 7 9 10 12 14 17 21 23 31 33 ¯ ¯ ¯ ¯ ¯ ¯

Seventh 5 35

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯
¯

2 3 4 5 6 7 9 10 13 14 18 19 25 26 37 38 ¯ ¯ ¯ ¯ ¯ ¯

G First 8 8

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

# 2 # 2 # 3 # 4 0 4 0 5 1 7 2 9 ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 8 16

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

# 2 0 3 0 3 1 5 1 6 3 8 4 10 7 14 ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 8 24

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 2 0 3 1 4 2 6 3 8 6 10 8 13 13 19 ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 8 32

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 3 1 4 2 5 3 7 5 10 8 13 12 17 19 25 ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 8 40

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 3 2 4 3 6 5 8 7 11 11 15 17 20 25 29 ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 8 48

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 3 3 5 4 6 7 9 10 12 14 17 21 23 31 33 ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 8 56

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

2 3 4 5 6 7 9 10 13 14 18 19 25 26 37 38 ¯ ¯ ¯ ¯ ¯ ¯ ¯

H First 13 13

¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

# 2 # 2 # 3 # 4 0 4 0 5 1 7 2 9 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 13 26

¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

# 2 0 3 0 3 1 5 1 6 3 8 4 10 7 14 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 13 39

¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯
0 2 0 3 1 4 2 6 3 8 6 10 8 13 13 19 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 13 52

¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯
0 3 1 4 2 5 3 7 5 10 8 13 12 17 19 25 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 13 65

¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 3 2 4 3 6 5 8 7 11 11 15 17 20 25 29 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 13 78

¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 3 3 5 4 6 7 9 10 12 14 17 21 23 31 33 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 13 91

¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

2 3 4 5 6 7 9 10 13 14 18 19 25 26 37 38 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

J First 20 20

¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

# 2 # 2 # 3 # 4 0 4 0 5 1 7 2 9 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 20 40

¯ ¯ ¯ ¯ ¯ ¯

¯

¯

# 2 0 3 0 3 1 5 1 6 3 8 4 10 7 14 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

(continued)
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BLE T11.9 (continued): MIL-STD-105E Table IV-A—multiple-sampling plans for normal inspection (master table).

ample
ize
ode
etter Sample

Sample
Size

Cumulative
Sample
Size

Acceptable Quality Levels (Normal Inspection)

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re

Third 20 60

¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 2 0 3 1 4 2 6 3 8 6 10 8 13 13 19 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 20 80

¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 3 1 4 2 5 3 7 5 10 8 13 12 17 19 25 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 20 100

¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 3 2 4 3 6 5 8 7 11 11 15 17 20 25 29 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 20 120

¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 3 3 5 4 6 7 9 10 12 14 17 21 23 31 33 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 20 140

¯ ¯ ¯ ¯ ¯ ¯

¯

¯

2 3 4 5 6 7 9 10 13 14 18 19 25 26 37 38 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

First 32 32

¯ ¯ ¯ ¯ ¯

* ¯

¯

# 2 # 2 # 3 # 4 0 4 0 5 1 7 2 9 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 32 64

¯ ¯ ¯ ¯ ¯

¯

¯

# 2 0 3 0 3 1 5 1 6 3 8 4 10 7 14 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 32 96

¯ ¯ ¯ ¯ ¯

¯

¯

0 2 0 3 1 4 2 6 3 8 6 10 8 13 13 19 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 32 128

¯ ¯ ¯ ¯ ¯

¯

¯

0 3 1 4 2 5 3 7 5 10 8 13 12 17 19 25 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 32 160

¯ ¯ ¯ ¯ ¯

¯

¯

1 3 2 4 3 6 5 8 7 11 11 15 17 20 25 29 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 32 192

¯ ¯ ¯ ¯ ¯

¯

¯

1 3 3 5 4 6 7 9 10 12 14 17 21 23 31 33 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 32 224

¯ ¯ ¯ ¯ ¯

¯

¯

2 3 4 5 6 7 9 10 13 14 18 19 25 26 37 38 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

First 50 50

¯ ¯ ¯ ¯

* ¯

¯

# 2 # 2 # 3 # 4 0 4 0 5 1 7 2 9 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 50 100

¯ ¯ ¯ ¯

¯

¯

# 2 0 3 0 3 1 5 1 6 3 8 4 10 7 14 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 50 150

¯ ¯ ¯ ¯

¯

¯

0 2 0 3 1 4 2 6 3 8 6 10 8 13 13 19 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 50 200

¯ ¯ ¯ ¯

¯

¯

0 3 1 4 2 5 3 7 5 10 8 13 12 17 19 25 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 50 250

¯ ¯ ¯ ¯

¯

¯

1 3 2 4 3 6 5 8 7 11 11 15 17 20 25 29 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 50 300

¯ ¯ ¯ ¯

¯

¯

1 3 3 5 4 6 7 9 10 12 14 17 21 23 31 33 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 50 350

¯ ¯ ¯ ¯

¯

¯

2 3 4 5 6 7 9 10 13 14 18 19 25 26 37 38 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

First 80 80

¯ ¯ ¯

* ¯

¯

# 2 # 2 # 3 # 4 0 4 0 5 1 7 2 9 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 80 160

¯ ¯ ¯

¯

¯

# 2 0 3 0 3 1 5 1 6 3 8 4 10 7 14 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 80 240

¯ ¯ ¯

¯

¯

0 2 0 3 1 4 2 6 3 8 6 10 8 13 13 19 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 80 320

¯ ¯ ¯

¯

¯

0 3 1 4 2 5 3 7 5 10 8 13 12 17 19 25 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 80 400

¯ ¯ ¯

¯

¯

1 3 2 4 3 6 5 8 7 11 11 15 17 20 25 29 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 80 480

¯ ¯ ¯

¯

¯

1 3 3 5 4 6 7 9 10 12 14 17 21 23 31 33 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 80 560

¯ ¯ ¯

¯

¯

2 3 4 5 6 7 9 10 13 14 18 19 25 26 37 38 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

First 125 125

¯ ¯

* ¯

¯

# 2 # 2 # 3 # 4 0 4 0 5 1 7 2 9 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 125 250

¯ ¯

¯

¯

# 2 0 3 0 3 1 5 1 6 3 8 4 10 7 14 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 125 375

¯ ¯

¯

¯

0 2 0 3 1 4 2 6 3 8 6 10 8 13 13 19 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 125 500

¯ ¯

¯

¯

0 3 1 4 2 5 3 7 5 10 8 13 12 17 19 25 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 125 625

¯ ¯

¯

¯

1 3 2 4 3 6 5 8 7 11 11 15 17 20 25 29 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 125 750

¯ ¯

¯

¯

1 3 3 5 4 6 7 9 10 12 14 17 21 23 31 33 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 125 875

¯ ¯

¯

¯

2 3 4 5 6 7 9 10 13 14 18 19 25 26 37 38 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯



P First 200 200

¯

* ¯

¯

# 2 # 2 # 3 # 4 0 4 0 5 1 7 2 9 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 200 400

¯

¯

¯

# 2 0 3 0 3 1 5 1 6 3 8 4 10 7 14 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 200 600

¯

¯

¯

0 2 0 3 1 4 2 6 3 8 6 10 8 13 13 19 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 200 800

¯

¯

¯

0 3 1 4 2 5 3 7 5 10 8 13 12 17 19 25 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 200 1000

¯

¯

¯

1 3 2 4 3 6 5 8 7 11 11 15 17 20 25 29 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 200 1200

¯

¯

¯

1 3 3 5 4 6 7 9 10 12 14 17 21 23 31 33 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 200 1400

¯

¯

¯

2 3 4 5 6 7 9 10 13 14 18 19 25 26 37 38 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Q First 315 315 * ¯

¯

# 2 # 2 # 3 # 4 0 4 0 5 1 7 2 9 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 315 630 ¯

¯

# 2 0 3 0 3 1 5 1 6 3 8 4 10 7 14 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 315 945 ¯

¯

0 2 0 3 1 4 2 6 3 8 6 10 8 13 13 19 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 315 1260 ¯

¯

0 3 1 4 2 5 3 7 5 10 8 13 12 17 19 25 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 315 1575 ¯

¯

1 3 2 4 3 6 5 8 7 11 11 15 17 20 25 29 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 315 1890 ¯

¯

1 3 3 5 4 6 7 9 10 12 14 17 21 23 31 33 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 315 2205 ¯

¯

2 3 4 5 6 7 9 10 13 14 18 19 25 26 37 38 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

R First 500 500 ¯ ¯ # 2 # 2 # 3 # 4 0 4 0 5 1 7 2 9 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 500 1000 ¯ ¯ # 2 0 3 0 3 1 5 1 6 3 8 4 10 7 14 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 500 1500 ¯ ¯ 0 2 0 3 1 4 2 6 3 8 6 10 8 13 13 19 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 500 2000 ¯ ¯ 0 3 1 4 2 5 3 7 5 10 8 13 12 17 19 25 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 500 2500 ¯ ¯ 1 3 2 4 3 6 5 8 7 11 11 15 17 20 25 29 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 500 3000 ¯ ¯ 1 3 3 5 4 6 7 9 10 12 14 17 21 23 31 33 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 500 3500 ¯ ¯ 2 3 4 5 6 7 9 10 13 14 18 19 25 26 37 38 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Source: From United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Attributes, MIL-STD-105E, U.S. Government Printing Office,
Washington, DC, 1989, 20, 21.

¯

, use first sampling plan below arrow. If sample size equals, or exceeds, lot or batch size, do 100% inspection.

¯, use first sampling plan above arrow (refer to preceding page, when necessary).
Ac, acceptance number.
Re, rejection number.
*, use corresponding single sampling plan (or alternatively use multiple sampling plan below, when available).
þþ, use corresponding double sampling plan (or alternatively use multiple sampling plan below, when available).
#, acceptance not permitted at this sample size.
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TABLE T11.10: MIL-STD-105E Table IV-B—multiple-sampling plans for tightened inspection (master table).

Sample
Size
Code
Letter Sample

Sample
Size

Cumulative
Sample
Size

Acceptable Quality Levels (Tightened Inspection)

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re

A

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* * * * * * * *
B

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

þþ þþ þþ þþ þþ þþ þþ þþ þþ
C

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

þþ þþ þþ þþ þþ þþ þþ þþ þþ ¯

D First 2 2

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

# 2 # 2 # 3 # 4 0 4 0 6 1 8 3 10 6 15 ¯ ¯

Second 2 4

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

# 2 0 3 0 3 1 5 2 7 3 9 6 12 10 17 16 25 ¯ ¯

Third 2 6

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 2 0 3 1 4 2 6 4 9 7 12 11 17 17 24 26 36 ¯ ¯

Fourth 2 8

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 3 1 4 2 5 3 7 6 11 10 15 16 22 24 31 37 46 ¯ ¯

Fifth 2 10

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 3 2 4 3 6 5 8 9 12 14 17 22 25 32 37 49 55 ¯ ¯

Sixth 2 12

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 3 3 5 4 6 7 9 12 14 18 20 27 29 40 43 61 64 ¯ ¯

Seventh 2 14

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

2 3 4 5 6 7 9 10 14 15 21 22 32 33 48 49 72 73 ¯ ¯

E First 3 3

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

# 2 # 2 # 3 # 4 0 4 0 6 1 8 3 10 6 15 ¯ ¯ ¯

Second 3 6

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

# 2 0 3 0 3 1 5 2 7 3 9 6 12 10 17 16 25 ¯ ¯ ¯

Third 3 9

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 2 0 3 1 4 2 6 4 9 7 12 11 17 17 24 26 36 ¯ ¯ ¯

Fourth 3 12

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 3 1 4 2 5 3 7 6 11 10 15 16 22 24 31 37 46 ¯ ¯ ¯

Fifth 3 15

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 3 2 4 3 6 5 8 9 12 14 17 22 25 32 37 49 55 ¯ ¯ ¯

Sixth 3 18

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 3 3 5 4 6 7 9 12 14 18 20 27 29 40 43 61 64 ¯ ¯ ¯

Seventh 3 21

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

2 3 4 5 6 7 9 10 14 15 21 22 32 33 48 49 72 73 ¯ ¯ ¯

F First 5 5

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

# 2 # 2 # 3 # 4 0 4 0 6 1 8 ¯ ¯ ¯ ¯ ¯ ¯

Second 5 10

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

# 2 0 3 0 3 1 5 2 7 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯

Third 5 15

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 2 0 3 1 4 2 6 4 9 7 12 11 17 ¯ ¯ ¯ ¯ ¯ ¯

Fourth 5 20

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 3 1 4 2 5 3 7 6 11 10 15 16 22 ¯ ¯ ¯ ¯ ¯ ¯

Fifth 5 25

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 3 2 4 3 6 5 8 9 12 14 17 22 25 ¯ ¯ ¯ ¯ ¯ ¯

Sixth 5 30

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 3 3 5 4 6 7 9 12 14 18 20 27 29 ¯ ¯ ¯ ¯ ¯ ¯

Seventh 5 35

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

2 3 4 5 6 7 9 10 14 15 21 22 32 33 ¯ ¯ ¯ ¯ ¯ ¯

G First 8 8

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

# 2 # 2 # 3 # 4 0 4 0 6 1 8 ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 8 16

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

# 2 0 3 0 3 1 5 2 7 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 8 24

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 2 0 3 1 4 2 6 4 9 7 12 11 17 ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 8 32

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 3 1 4 2 5 3 7 6 11 10 15 16 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 8 40

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 3 2 4 3 6 5 8 9 12 14 17 22 25 ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 8 48

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 3 3 5 4 6 7 9 12 14 18 20 27 29 ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 8 56

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯
2 3 4 5 6 7 9 10 14 15 21 22 32 33 ¯ ¯ ¯ ¯ ¯ ¯ ¯

H First 13 13

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

# 2 # 2 # 3 # 4 0 4 0 6 1 8 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 13 26

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯
# 2 0 3 0 3 1 5 2 7 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 13 39

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 2 0 3 1 4 2 6 4 9 7 12 11 17 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 13 52

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 3 1 4 2 5 3 7 6 11 10 15 16 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 13 65

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 3 2 4 3 6 5 8 9 12 14 17 22 25 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 13 78

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 3 3 5 4 6 7 9 12 14 18 20 27 29 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 13 91

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

2 3 4 5 6 7 9 10 14 15 21 22 32 33 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

J First 20 20

¯ ¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

# 2 # 2 # 3 # 4 0 4 0 6 1 8 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 20 40

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

# 2 0 3 0 3 1 5 2 7 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 20 60

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 2 0 3 1 4 2 6 4 9 7 12 11 17 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯
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Fourth 20 80

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 3 1 4 2 5 3 7 6 11 10 15 16 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 20 100

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 3 2 4 3 6 5 8 9 12 14 17 22 25 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 20 120

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 3 3 5 4 6 7 9 12 14 18 20 27 29 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 20 140

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

2 3 4 5 6 7 9 10 14 15 21 22 32 33 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

K First 32 32

¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

# 2 # 2 # 3 # 4 0 4 0 6 1 8 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 32 64

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

# 2 0 3 0 3 1 5 2 7 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 32 96

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 2 0 3 1 4 2 6 4 9 7 12 11 17 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 32 128

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 3 1 4 2 5 3 7 6 11 10 15 16 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 32 160

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 3 2 4 3 6 5 8 9 12 14 17 22 25 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 32 192

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

1 3 3 5 4 6 7 9 12 14 18 20 27 29 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 32 224

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

2 3 4 5 6 7 9 10 14 15 21 22 32 33 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

L First 50 50

¯ ¯ ¯ ¯ ¯

*

¯ ¯

# 2 # 2 # 3 # 4 0 4 0 6 1 8 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 50 100

¯ ¯ ¯ ¯ ¯ ¯ ¯

# 2 0 3 0 3 1 5 2 7 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 50 150

¯ ¯ ¯ ¯ ¯ ¯ ¯

0 2 0 3 1 4 2 6 4 9 7 12 11 17 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 50 200

¯ ¯ ¯ ¯ ¯ ¯ ¯

0 3 1 4 2 5 3 7 6 11 10 15 16 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 50 250

¯ ¯ ¯ ¯ ¯ ¯ ¯

1 3 2 4 3 6 5 8 9 12 14 17 22 25 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 50 300

¯ ¯ ¯ ¯ ¯ ¯ ¯

1 3 3 5 4 6 7 9 12 14 18 20 27 29 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 50 350

¯ ¯ ¯ ¯ ¯ ¯ ¯

2 3 4 5 6 7 9 10 14 15 21 22 32 33 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

M First 80 80

¯ ¯ ¯ ¯

*

¯ ¯

# 2 # 2 # 3 # 4 0 4 0 6 1 8 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 80 160

¯ ¯ ¯ ¯ ¯ ¯

# 2 0 3 0 3 1 5 2 7 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 80 240

¯ ¯ ¯ ¯ ¯ ¯

0 2 0 3 1 4 2 6 4 9 7 12 11 17 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 80 320

¯ ¯ ¯ ¯ ¯ ¯

0 3 1 4 2 5 3 7 6 11 10 15 16 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 80 400

¯ ¯ ¯ ¯ ¯ ¯

1 3 2 4 3 6 5 8 9 12 14 17 22 25 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 80 480

¯ ¯ ¯ ¯ ¯ ¯

1 3 3 5 4 6 7 9 12 14 18 20 27 29 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 80 560

¯ ¯ ¯ ¯ ¯ ¯

2 3 4 5 6 7 9 10 14 15 21 22 32 33 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

N First 125 125

¯ ¯ ¯

*

¯ ¯

# 2 # 2 # 3 # 4 0 4 0 6 1 8 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 125 250

¯ ¯ ¯ ¯ ¯

# 2 0 3 0 3 1 5 2 7 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 125 375

¯ ¯ ¯ ¯ ¯

0 2 0 3 1 4 2 6 4 9 7 12 11 17 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 125 500

¯ ¯ ¯ ¯ ¯

0 3 1 4 2 5 3 7 6 11 10 15 16 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 125 625

¯ ¯ ¯ ¯ ¯

1 3 2 4 3 6 5 8 9 12 14 17 22 25 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 125 750

¯ ¯ ¯ ¯ ¯

1 3 3 5 4 6 7 9 12 14 18 20 27 29 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 125 875

¯ ¯ ¯ ¯ ¯

2 3 4 5 6 7 9 10 14 15 21 22 32 33 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

P First 200 200

¯ ¯

*

¯ ¯

# 2 # 2 # 3 # 4 0 4 0 6 1 8 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 200 400

¯ ¯ ¯ ¯

# 2 0 3 0 3 1 5 2 7 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 200 600

¯ ¯ ¯ ¯

0 2 0 3 1 4 2 6 4 9 7 12 11 17 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 200 800

¯ ¯ ¯ ¯

0 3 1 4 2 5 3 7 6 11 10 15 16 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 200 1000

¯ ¯ ¯ ¯

1 3 2 4 3 6 5 8 9 12 14 17 22 25 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 200 1200

¯ ¯ ¯ ¯

1 3 3 5 4 6 7 9 12 14 18 20 27 29 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 200 1400

¯ ¯ ¯ ¯

2 3 4 5 6 7 9 10 14 15 21 22 32 33 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Q First 315 315

¯

*

¯ ¯

# 2 # 2 # 3 # 4 0 4 0 6 1 8 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 315 630

¯ ¯ ¯

# 2 0 3 0 3 1 5 2 7 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 315 945

¯ ¯ ¯

0 2 0 3 1 4 2 6 4 9 7 12 11 17 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 315 1260

¯ ¯ ¯

0 3 1 4 2 5 3 7 6 11 10 15 16 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯
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TABLE T11.10 (continued): MIL-STD-105E Table IV-B—multiple-sampling plans for tightened inspection (master table).

Sample
Size
Code
Letter Sample

Sample
Size

Cumulative
Sample
Size

Acceptable Quality Levels (Tightened Inspection)

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re

Fifth 315 1575

¯ ¯ ¯

1 3 2 4 3 6 5 8 9 12 14 17 22 25 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 315 1890

¯ ¯ ¯

1 3 3 5 4 6 7 9 12 14 18 20 27 29 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 315 2305

¯ ¯ ¯

2 3 4 5 6 7 9 10 14 15 21 22 32 33 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

R First 500 500 * ¯

¯

# 2 # 2 # 3 # 4 0 4 0 6 1 8 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 500 1000 ¯

¯

# 2 0 3 0 3 1 5 2 7 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 500 1500 ¯

¯

0 2 0 3 1 4 2 6 4 9 7 12 11 17 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 500 2000 ¯

¯

0 3 1 4 2 5 3 7 6 11 10 15 16 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 500 2500 ¯

¯

1 3 2 4 3 6 5 8 9 12 14 17 22 25 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 500 3000 ¯

¯

1 3 3 5 4 6 7 9 12 14 18 20 27 29 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 500 3500 ¯

¯

2 3 4 5 6 7 9 10 14 15 21 22 32 33 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

S First 800 800 # 2

Second 800 1600 # 2

Third 800 2400 0 2

Fourth 800 3200 0 3

Fifth 800 4000 1 3

Sixth 800 4800 1 3

Seventh 800 5600 2 3

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Attributes, MIL-STD-105E, U.S. Government Printing Office,
Washington, DC, 1989, 22, 23.

Notes:

¯

, use first sampling plan below arrow. If sample size equals, or exceeds, lot or batch size, do 100% inspection.

¯, use first sampling plan above arrow (refer to preceding page, when necessary).
Ac, acceptance number.
Re, rejection number.
*, use corresponding single sampling plan (or alternatively use multiple sampling plan below, when available).
þþ, use corresponding double sampling plan (or alternatively use multiple sampling plan below, when available).
#, acceptance not permitted at this sample size.
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TABLE T11.11: MIL-STD-105E Table IV-C—multiple-sampling plans for reduced inspection (master table).

Sample
Size
Code
Letter Sample

Sample
Size

Cumulative
Sample
Size

Acceptable Quality Levels (Reduced Inspection)a

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re

A

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

*

¯ ¯

* * * * * * * * *
B

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

* * * * * * * * * *
C

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

* * * * * * * * * * ¯

D

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

þþ þþ þþ þþ þþ þþ þþ þþ þþ þþ ¯ ¯

E

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

þþ þþ þþ þþ þþ þþ þþ þþ þþ þþ ¯ ¯ ¯

F First 2 2

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

# 2 # 2 # 3 # 3 # 4 # 4 0 5 0 6 ¯ ¯ ¯ ¯ ¯ ¯

Second 2 4

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

# 2 # 3 # 3 0 4 0 5 1 6 1 7 3 9 ¯ ¯ ¯ ¯ ¯ ¯

Third 2 6

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 2 0 3 0 4 0 5 1 6 2 8 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯

Fourth 2 8

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 3 0 4 0 5 1 6 2 7 3 10 5 12 8 15 ¯ ¯ ¯ ¯ ¯ ¯

Fifth 2 10

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 3 0 4 1 6 2 7 3 8 5 11 7 13 11 17 ¯ ¯ ¯ ¯ ¯ ¯

Sixth 2 12

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 3 1 5 1 6 3 7 4 9 7 12 10 15 14 20 ¯ ¯ ¯ ¯ ¯ ¯

Seventh 2 14

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 3 1 5 2 7 4 8 6 10 9 14 13 17 18 22 ¯ ¯ ¯ ¯ ¯ ¯

G First 3 3

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

# 2 # 2 # 3 # 3 # 4 # 4 0 5 0 6 ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 3 6

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

# 2 # 3 # 3 0 4 0 5 1 6 1 7 3 9 ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 3 9

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 2 0 3 0 4 0 5 1 6 2 8 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 3 12

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 3 0 4 0 5 1 6 2 7 3 10 5 12 8 15 ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 3 15

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 3 0 4 1 6 2 7 3 8 5 11 7 13 11 17 ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 3 18

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 3 1 5 1 6 3 7 4 9 7 12 10 15 14 20 ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 3 21

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 3 1 5 2 7 4 8 6 10 9 14 13 17 18 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯

H First 5 5

¯ ¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

# 2 # 2 # 3 # 3 # 4 # 4 0 5 0 6 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 5 10

¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

# 2 # 3 # 3 0 4 0 5 1 6 1 7 3 9 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 5 15

¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 2 0 3 0 4 0 5 1 6 2 8 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 5 20

¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 3 0 4 0 5 1 6 2 7 3 10 5 12 8 15 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 5 25

¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 3 0 4 1 6 2 7 3 8 5 11 7 13 11 17 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 5 30

¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 3 1 5 1 6 3 7 4 9 7 12 10 15 14 20 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 5 35

¯ ¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 3 1 5 2 7 4 8 6 10 9 14 13 17 18 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

J First 8 8

¯ ¯ ¯ ¯ ¯ ¯

* ¯

¯

# 2 # 2 # 3 # 3 # 4 # 4 0 5 0 6 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 8 16

¯ ¯ ¯ ¯ ¯ ¯

¯

¯

# 2 # 3 # 3 0 4 0 5 1 6 1 7 3 9 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 8 24

¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 2 0 3 0 4 0 5 1 6 2 8 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 8 32

¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 3 0 4 0 5 1 6 2 7 3 10 5 12 8 15 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 8 40

¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 3 0 4 1 6 2 7 3 8 5 11 7 13 11 17 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 8 48

¯ ¯ ¯ ¯ ¯ ¯

¯

¯

0 3 1 5 1 6 3 7 4 9 7 12 10 15 14 20 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 8 56

¯ ¯ ¯ ¯ ¯ ¯

¯

¯

1 3 1 5 2 7 4 8 6 10 9 14 13 17 18 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

K First 13 13

¯ ¯ ¯ ¯ ¯

* ¯

¯

# 2 # 2 # 3 # 3 # 4 # 4 0 5 0 6 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 13 26

¯ ¯ ¯ ¯ ¯

¯

¯

# 2 # 3 # 3 0 4 0 5 1 6 1 7 3 9 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 13 39

¯ ¯ ¯ ¯ ¯

¯

¯

0 2 0 3 0 4 0 5 1 6 2 8 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯
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TABLE T11.11 (continued): MIL-STD-105E Table IV-C—multiple-sampling plans for reduced inspection (master table).

Sample
Size
Code
Letter Sample

Sample
Size

Cumulative
Sample
Size

Acceptable Quality Levels (Reduced Inspection)a

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re

Fourth 13 52

¯ ¯ ¯ ¯ ¯

¯

¯

0 3 0 4 0 5 1 6 2 7 3 10 5 12 8 15 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 13 65

¯ ¯ ¯ ¯ ¯

¯

¯

0 3 0 4 1 6 2 7 3 8 5 11 7 13 11 17 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 13 78

¯ ¯ ¯ ¯ ¯

¯

¯

0 3 1 5 1 6 3 7 4 9 7 12 10 15 14 20 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 13 91

¯ ¯ ¯ ¯ ¯

¯

¯

1 3 1 5 2 7 4 8 6 10 9 14 13 17 18 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

L First 20 20

¯ ¯ ¯ ¯

* ¯

¯

# 2 # 2 # 3 # 3 # 4 # 4 0 5 0 6 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 20 40

¯ ¯ ¯ ¯

¯

¯

# 2 # 3 # 3 0 4 0 5 1 6 1 7 3 9 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 20 60

¯ ¯ ¯ ¯

¯

¯

0 2 0 3 0 4 0 5 1 6 2 8 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 20 80

¯ ¯ ¯ ¯

¯

¯

0 3 0 4 0 5 1 6 2 7 3 10 5 12 8 15 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 20 100

¯ ¯ ¯ ¯

¯

¯

0 3 0 4 1 6 2 7 3 8 5 11 7 13 11 17 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 20 120

¯ ¯ ¯ ¯

¯

¯

0 3 1 5 1 6 3 7 4 9 7 12 10 15 14 20 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 20 140

¯ ¯ ¯ ¯

¯

¯

1 3 1 5 2 7 4 8 6 10 9 14 13 17 18 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

M First 32 32

¯ ¯ ¯

* ¯

¯

# 2 # 2 # 3 # 3 # 4 # 4 0 5 0 6 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 32 64

¯ ¯ ¯

¯

¯

# 2 # 3 # 3 0 4 0 5 1 6 1 7 3 9 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 32 96

¯ ¯ ¯

¯

¯

0 2 0 3 0 4 0 5 1 6 2 8 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 32 128

¯ ¯ ¯

¯

¯

0 3 0 4 0 5 1 6 2 7 3 10 5 12 8 15 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 32 160

¯ ¯ ¯

¯

¯

0 3 0 4 1 6 2 7 3 8 5 11 7 13 11 17 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 32 192

¯ ¯ ¯

¯

¯

0 3 1 5 1 6 3 7 4 9 7 12 10 15 14 20 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 32 224

¯ ¯ ¯

¯

¯

1 3 1 5 2 7 4 8 6 10 9 14 13 17 18 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

N First 50 50

¯ ¯

* ¯

¯

# 2 # 2 # 3 # 3 # 4 # 4 0 5 0 6 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 50 100

¯ ¯

¯

¯

# 2 # 3 # 3 0 4 0 5 1 6 1 7 3 9 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 50 150

¯ ¯

¯

¯

0 2 0 3 0 4 0 5 1 6 2 8 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 50 200

¯ ¯

¯

¯

0 3 0 4 0 5 1 6 2 7 3 10 5 12 8 15 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯
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Fifth 50 250

¯ ¯

¯

¯

0 3 1 5 1 6 2 7 3 8 5 11 7 13 11 17 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 50 300

¯ ¯

¯

¯

0 3 1 6 3 7 4 9 7 12 10 15 14 20 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 50 350

¯ ¯

¯

¯

1 3 1 5 2 7 4 8 6 10 9 14 13 17 18 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

P First 80 80

¯

* ¯

¯

# 2 # 2 # 3 # 3 # 4 # 4 0 5 0 6 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 80 160

¯

¯

¯

# 2 # 3 # 3 0 4 0 5 1 6 1 7 3 9 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 80 240

¯

¯

¯

0 2 0 3 0 4 0 5 1 6 2 8 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 80 320

¯

¯

¯

0 3 0 4 0 5 1 6 2 7 3 10 5 12 8 15 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 80 400

¯

¯

¯

0 3 0 4 1 6 2 7 3 8 5 11 7 13 11 17 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 80 480

¯

¯

¯

0 3 1 5 1 6 3 7 4 9 7 12 10 15 14 20 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 80 560

¯

¯

¯

1 3 1 5 2 7 4 8 6 10 9 14 13 17 18 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Q First 125 125 * ¯

¯

# 2 # 2 # 3 # 3 # 4 # 4 0 5 0 6 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 125 250 ¯

¯

# 2 # 3 # 3 0 4 0 5 1 6 1 7 3 9 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 125 375 ¯

¯

0 2 0 3 0 4 0 5 1 6 2 8 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 125 500 ¯

¯

0 3 0 4 0 5 1 6 2 7 3 10 5 12 8 15 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 125 625 ¯

¯

0 3 0 4 1 6 2 7 3 8 5 11 7 13 11 17 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 125 750 ¯

¯

0 3 1 5 1 6 3 7 4 9 7 12 10 15 14 20 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 125 875 ¯

¯

1 3 1 5 2 7 4 8 6 10 9 14 13 17 18 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

R First 200 200 ¯ ¯ # 2 # 2 # 3 # 3 # 4 # 4 0 5 0 6 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Second 200 400 ¯ ¯ # 2 # 3 # 3 0 4 0 5 1 6 1 7 3 9 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Third 200 600 ¯ ¯ 0 2 0 3 0 4 0 5 1 6 2 8 3 9 6 12 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fourth 200 800 ¯ ¯ 0 3 0 4 0 5 1 6 2 7 3 10 5 12 8 15 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Fifth 200 1000 ¯ ¯ 0 3 0 4 1 6 2 7 3 8 5 11 7 13 11 17 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Sixth 200 1200 ¯ ¯ 0 3 1 5 1 6 3 7 4 9 7 12 10 15 14 20 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Seventh 200 1400 ¯ ¯ 1 3 1 5 2 7 4 8 6 10 9 14 13 17 18 22 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Attributes, MIL-STD-105E, U.S. Government Printing Office,
Washington, DC, 1989, 24, 25.

a If, after the final sample, use acceptance number has been exceeded, but the rejection number has not been reached, accept the lot, but reinstate normal inspection.
Notes:

¯

, use first sampling plan below arrow. If sample size equals or exceeds, lot or batch size, do 100% inspection.

¯, use first sampling plan above arrow.
Ac, acceptance number.
Re, rejection number.
*, use corresponding single sampling plan (or alternatively use multiple sampling plan below, when available).
þþ, use corresponding double sampling plan (or alternatively use multiple sampling plan below, when available).
#, acceptance not permitted at this sample size.
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TABLE T11.12: MIL-STD-105E Table V-A—average outgoing quality limit factors for normal inspection (single sampling).

Code
Letter

Sample
Size

Acceptable Quality Level

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

A 2 18 42 69 97 160 220 330 470 730 1100
B 3 12 28 46 65 110 150 220 310 490 720 1100
C 5 7.4 17 27 39 63 90 130 190 290 430 660

D 8 4.6 11 17 24 40 56 82 120 180 270 410
E 13 2.8 6.5 11 15 24 34 50 72 110 170 250
F 20 1.8 4.2 6.9 9.7 16 22 33 47 73

G 32 1.2 2.6 4.3 6.1 9.9 14 21 29 46
H 50 0.74 1.7 2.7 3.9 6.3 9.0 13 19 29
J 80 0.46 1.1 1.7 2.4 4.0 5.6 8.2 12 18

K 125 0.29 0.67 1.1 1.6 2.5 3.6 5.2 7.5 12
L 200 0.18 0.42 0.69 0.97 1.6 2.2 3.3 4.7 7.3
M 315 0.12 0.27 0.44 0.62 1.00 1.4 2.1 3.0 4.7

N 500 0.074 0.17 0.27 0.39 0.63 0.90 1.3 1.9 2.9
P 800 0.046 0.11 0.17 0.24 0.40 0.56 0.82 1.2 1.8
Q 1250 0.029 0.067 0.11 0.16 0.25 0.36 0.52 0.75 1.2

R 2000 0.042 0.069 0.097 0.16 0.22 0.33 0.47 0.73

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Attributes, MIL-STD-105E, U.S. Government Printing Office,
Washington, DC, 1989, 26.

Note: For the exact AOQL, the above values must be multiplied by 1� sample size
lot or batch size
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TABLE T11.13: MIL-STD-105E Table V-B—average outgoing quality limit factors for tightened inspection (single sampling).

Code
Letter

Sample
Size

Acceptable Quality Level

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

A 2 42 69 97 160 260 400 620 970
B 3 12 28 46 65 110 170 270 410 650 1100
C 5 7.4 17 27 39 63 100 160 250 390 610

D 8 4.6 11 17 24 40 64 99 160 240 380
E 13 2.8 6.5 11 15 24 40 61 95 150 240
F 20 1.8 4.2 6.9 9.7 16 26 40 62

G 32 1.2 2.6 4.3 6.1 9.9 16 25 39
H 50 0.74 1.7 2.7 3.9 6.3 10 16 25
J 80 0.46 1.1 1.7 2.4 4.0 6.4 9.9 16

K 125 0.29 0.67 1.1 1.6 2.5 4.1 6.4 9.9
L 200 0.18 0.42 0.69 0.97 1.6 2.6 4.0 6.2
M 315 0.12 0.27 0.44 0.62 1.0 1.6 2.5 3.9

N 500 0.074 0.17 0.27 0.39 0.63 1.0 1.6 2.5
P 800 0.046 0.11 0.17 0.24 0.40 0.64 0.99 1.6
Q 1250 0.029 0.067 0.11 0.16 0.25 0.41 0.64 0.99

R 2000 0.018 0.042 0.069 0.097 0.16 0.26 0.40 0.62
S 3150 0.027

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Attributes, MIL-STD-105E, U.S. Government Printing Office,
Washington, DC, 1989, 27.

Note: For the exact AOQL, the above values must be multiplied by 1� sample size
lot or batch size
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TABLE T11.14: MIL-STD-105E Table VI-A—limiting quality (in percent defective) for which Pa¼ 10% (for normal inspection, single sampling).

Code
Letter

Sample
Size

Acceptable Quality Level

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10

A 2 68
B 3 54
C 5 37 58

D 8 25 41 54
E 13 16 27 36 44
F 20 11 18 25 30 42

G 32 6.9 12 16 20 27 34
H 50 4.5 7.6 10 13 18 22 29
J 80 2.8 4.8 6.5 8.2 11 14 19 24

K 125 1.8 3.1 4.3 5.4 7.4 9.4 12 16 23
L 200 1.2 2.0 2.7 3.3 4.6 5.9 7.7 10 14
M 315 0.73 1.2 1.7 2.1 2.9 3.7 4.9 6.4 9.0

N 500 0.46 0.78 1.1 1.3 1.9 2.4 3.1 4.0 5.6
P 800 0.29 0.49 0.67 0.84 1.2 1.5 1.9 2.5 3.5
Q 1250 0.18 0.31 0.43 0.53 0.74 0.94 1.2 1.6 2.3

R 2000 0.20 0.27 0.33 0.46 0.59 0.77 1.0 1.4

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Attributes, MIL-STD-105E, U.S. Government Printing Office,
Washington, DC, 1989, 28.
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TABLE T11.15: MIL-STD-105E Table VI-B—limiting quality (in defects per 100 units) for which Pa¼ 10% (for normal inspection,
single sampling).

Code
Letter

Sample
Size

Acceptable Quality Level

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

A 2 120 200 270 330 460 590 770 1000 1400 1900
B 3 77 130 180 220 310 390 510 670 940 1300 1800
C 5 46 78 110 130 190 240 310 400 560 770 1100

D 8 29 49 67 84 120 150 190 250 350 480 670
E 13 18 30 41 51 71 91 120 160 220 300 410
F 20 12 20 27 33 46 59 77 100 140

G 32 7.2 12 17 21 29 37 48 63 88
H 50 4.6 7.8 11 13 19 24 31 40 56
J 80 2.9 4.9 6.7 8.4 12 15 19 25 35

K 125 1.8 3.1 4.3 5.4 7.4 9.4 12 16 23
L 200 1.2 2.0 2.7 3.3 4.6 5.9 7.7 10 14
M 315 0.73 1.2 1.7 2.1 2.9 3.7 4.9 6.4 9.0

N 500 0.46 0.78 1.1 1.3 1.9 2.4 3.1 4.0 5.6
P 800 0.29 0.49 0.67 0.84 1.2 1.5 1.9 2.5 3.5
Q 1250 0.18 0.31 0.43 0.53 0.74 0.94 1.2 1.6 2.3

R 2000 0.20 0.27 0.33 0.46 0.59 0.77 1.0 1.4

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Attributes, MIL-STD-105E, U.S. Government Printing Office,
Washington, DC, 1989, 29.
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TABLE T11.16: MIL-STD-105E Table VII-A—limiting quality (in percent defective) for which Pa¼ 5% (for normal inspection, single sampling).

Code
Letter

Sample
Size

Acceptable Quality Level

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10

A 2 78
B 3 63
C 5 45 66

D 8 31 47 60
E 13 21 32 41 50
F 20 14 22 28 34 46

G 32 8.9 14 18 23 30 37
H 50 5.8 9.1 12 15 20 25 32
J 80 3.7 5.8 7.7 9.4 13 16 20 26

K 125 2.4 3.8 5.0 6.2 8.4 11 14 18 24
L 200 1.5 2.4 3.2 3.9 5.3 6.6 8.5 11 15
M 315 0.95 1.5 2.0 2.5 3.3 4.2 5.4 7.0 9.6

N 500 0.60 0.95 1.3 1.6 2.1 2.6 3.4 4.4 6.1
P 800 0.38 0.59 0.79 0.97 1.3 1.6 2.1 2.7 3.8
Q 1250 0.24 0.38 0.50 0.62 0.84 1.1 1.4 1.8 2.4

R 2000 0.24 0.32 0.39 0.53 0.66 0.85 1.1 1.5

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Attributes, MIL-STD-105E, U.S. Government Printing Office,
Washington, DC, 1989, 30.
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TABLE T11.17: MIL-STD-105E Table VII-B—limiting quality (in defects per 100 units) for which Pa¼ 5% (for normal inspection,
single sampling).

Code
Letter

Sample
Size

Acceptable Quality Level

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

A 2 150 240 320 390 530 660 850 1100 1500 2000
B 3 100 160 210 260 350 440 570 730 1000 1400 1900
C 5 60 95 130 160 210 260 340 440 610 810 1100

D 8 38 59 79 97 130 160 210 270 380 510 710
E 13 23 37 48 60 81 100 130 170 230 310 440
F 20 15 24 32 39 53 66 85 110 150

G 32 9.4 15 20 24 33 41 53 68 95
H 50 6.0 9.5 13 16 21 26 34 44 61
J 80 3.8 5.9 7.9 9.7 13 16 21 27 38

K 125 2.4 3.8 5.0 6.2 8.4 11 14 18 24

L 200 1.5 2.4 3.2 3.9 5.3 6.6 8.5 11 15
M 315 0.95 1.5 2.0 2.5 3.3 4.2 5.4 7.0 9.6

N 500 0.60 0.95 1.3 1.6 2.1 2.6 3.4 4.4 6.1
P 800 0.38 0.59 0.79 0.97 1.3 1.6 2.1 2.7 3.8
Q 1250 0.24 0.38 0.50 0.62 0.84 1.1 1.4 1.8 2.4

R 2000 0.24 0.32 0.39 0.53 0.66 0.85 1.1 1.5

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Attributes, MIL-STD-105E, U.S. Government Printing Office,
Washington, DC, 1989, 31.
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TABLE T11.18: MIL-STD-105E Table IX—average sample size curves for double and multiple sampling (normal and tightened inspection).

n

3/4 n

1/2 n

1/4 n

00 1 2

Double

Double Double
Double

Double
Multiple

Multiple
Multiple

Multiple

Multiple

3
c = 1 c = 2 c = 3 c = 5 c = 7

4

n

3/4 n

A
ve

ra
ge

 sa
m

pl
e s

iz
e

1/2 n

1/4 n

0

n

3/4 n

1/2 n

1/4 n

0

0 0 4 8 12 16 18 21 2520151050181512963015129630

n � proportion defective

n � proportion defective

n � proportion defective

7 14

30 0 9 18 27 36 403020100 0 0 9 18 27 36 45 5413 26 39 52252015105

n = equivelent single sample size
c = single sample acceptance number
   = AQL for normal inspection

0

c = 8

c = 21 c = 27 c = 30 c = 41 c = 44

c = 10 c = 12 c = 14 c = 18

0 1 2 3 4 5 6 0 0 5 10 0 109631 2 3 4 5 6 7

Double

Double
Double

Double
Double Double

Double
Double

Double
Double

Multiple

Multiple
Multiple

Multiple

M
ultiple

M
ultiple

Multiple

Multiple
Multiple

Multiple

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Attributes, MIL-STD-105E, U.S. Government Printing Office,
Washington, DC, 1989, 33.
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TABLE T11.19: MIL-STD-105E X-F tables for sample size code letter: F.

100
90
80
70
60
50
40
30
20
10

0

100
90
80
70
60
50
40
30
20
10

0 20 40 60 80 100 120 140 16010

0.65

0.050 0.75 14.5 17.5 23.9
0.256 1.80 19.9 23.5 30.8
0.525 2.69 23.3 27.2 35.1
1.43 4.81 29.8 34.2 43.1
3.41 8.25 38.3 43.3 53.3
6.70 12.9 48.4 54.0 65.1

10.9 18.1 58.9 65.0 77.0
13.9 21.6 65.7 72.2 84.8
20.6

1.0 4.0 25
28.9

2.25
4.22
5.64
8.70

13.1
18.7
24.5
28.3

6.5
35.6

4.31
7.13
9.03

12.8
18.1
24.2
30.4
34.4

1.0
42.0

9.75
14.0
16.6
21.6
27.9
34.8
41.5
45.6
53.4

0.051
0.257
0.527
1.44
3.47
6.93

11.5
15.0

1.0
23.0

0.75
1.78
2.66
4.81
8.39

13.5
19.5
23.7

4.0
33.2

2.18
4.09
5.51
8.68

13.4
19.6
26.6
31.5

6.5
42.0

4.12
6.83
8.73

12.7
18.4
25.5
33.4
38.8

10
50.2

8.92
13.1
15.8
21.1
28.4
37.1
46.4
52.6

15
65.5 80.0 87.0 101

40

30.5
38.5
43.2
52.1
63.3
76.1
88.9
97.2

114

37.4
46.2
51.5
61.2
73.3
87.0

101
109
127

51.7
62.2
68.4
79.5
93.3

109
124
133

65
153

62.9
74.5
84.2
93.4

108
125
141
151
172

2.5 4.0 6.5 10 0.65 2.5 4.0 6.5 10 15 25 40 65

20 30 40 50

0.65 15 25 40 652.5 4.0 6.5 10

Pa

99.0
95.0
90.0
75.0
50.0
25.0
10.0

5.0
1.0

Percent of lots
expected to

reaccepted (P0)

CHART F—operating characteristic curves for single sampling plans
(Curves for double and multiple sampling are matched as closely as practicable.)

Quality of submitted lots (p. in percent defective for AQLs   10; in defects per hundred units for AQLs > 10) 
Note:     Figures on curves are acceptable quality levels (AQLs) for normal inspection.

Acceptable quality levels (tightened inspection)

p (in percent defective) p (in defects per hundred units)

TABLE X-F-1: Tabulated values for operating characteristic curves for single sampling plans

Acceptable quality levels (normal inspection)

Note:    Binomial distribution used for percent defective computations; Poisson for defects per hundred units.

(continued)
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TABLE T11.19 (continued): MIL-STD-105E X-F tables for sample size code letter: F.

Type of
sampling

plan

Single 20 0

*

*

*

1

Use Use Use

E H G

Letter Letter Letter
13

26

5

10

15

20

30

25

35

Double

Multiple

Cumu-
lative

sample
size

Less
than
0.65

Less
than
1.0

1.0 1.5 2.5 6.5 15 40 65
Higher

than
65

4.0 10 25

Ac
Re

Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re Ac Re

1 2 2 3 3 4 5 6 7 8 8 9 10 11 12 13 14 15 18 19 21 22

0 2 0 3 1 4 2 5 3 7 3 7 5 9 6 10 7 11 9 14 11 16 13

1 2 3 4 4 5 6 7 8 9 11 12 12 13 15 16 18 19 23 24 26 27 26

# 2 # 2 # 3 # 4 0 4 0 4 0 5 0 6 1 7 1 8 2 9 5

#

#

2 0 3 0 3 1 5 1 6 2 7 3 8 3 9 4 10 6 12 7 14

0 2 0 3 1 4 2 6 2 6 4 9 6 10 7 12 8 13 11 17 13 19

10

15

0 3 1 4 2 5 3 7 5 10 6 11 8 13 10 15 12 17 16 22 19 25 20

1 3 2 4 3 6 5 8 7 11 9 12 11 15 14 17 17 20 22 25 25 29 25

1 3 3 5 4 6 7 9 10 12 12 14 14 17 18 20 21 23 27 29 31 33 30

2 3 4 5 6 7 9 10 13 14 14 15 18 19 21 22 25 26 32 33 37 38 35

20

Acceptable quality levels (normal inspection)

Acceptable quality levels (tightened inspection)

0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65
Higher

than
65

Cumu-
lative

sample
size

= use next preceding sample size code letter for which aceeptance and rejection numbers are available.
= use next subsequent sample size code letter for which acceptance and rejection numbers are available.
= acceptance number.
= rejection number.
= use single sampling plan above (or alternatively use letter J).
= acceptance not permitted at this sample size.
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TABLE T11.20: MIL-STD-105E scheme average outgoing quality limit factors (in defects per 100 units).

Code
Letter

Acceptable Quality Level

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

A (11)
13 30 48 78 130 200 310 450 710 1100

B (6.8)
7.5 19 32 52 84 130 210 300 480 710 1100

C (4.4)
4.7

(12)
12 20 31 51 78 130 180 290 430 660

D (2.8)
2.9

(7.0)
7.0

(13)
12 20 32 49 76 120 180 270 410

E (1.9)
1.9

(4.5)
4.5

(7.5)
7.4

(13)
12 20 30 47 69 110 170 260

F (1.2)
1.2

(2.9)
2.9

(4.9)
4.8

(7.9)
7.8

(14)
13 20 31 45 71

G (.74)
.75

(1.8)
1.8

(3.0)
3.0

(4.9)
4.9

(8.1)
7.9

(13)
13 19 28 45

H (.47)
.47

(1.2)
1.2

(2.0)
2.0

(3.2)
3.1

(5.1)
5.1

(8.0)
7.8

(13)
13 18 29

J (.30)
.30

(.72)
.72

(1.2)
1.2

(2.0)
2.0

(3.2)
3.2

(5.0)
4.9

(7.7)
7.6

(12)
12 18

K .19 .46 .77 1.3 2.1 3.2 4.9 7.2 12

L .12 .29 .48 .78 1.3 2.0 3.1 4.5 7.1

M .075 .18 .31 .50 .80 1.3 2.0 2.9 4.5

N .047 .12 .20 .31 .51 .78 1.3 1.8 2.9

P .030 .072 .12 .20 .32 .49 .76 1.2 1.8

Q .019 .046 .077 .13 .21 .32 .49 .72 1.2

R
.029 .048 .078 .13 .20 .31 .45 .71

Source: Reprinted from Schilling, E.G. and Sheesley, J.H., J. Qual. Technol., 10(3), 106, 1978. With permission.
Note: For a better approximation to the AOQL, the values must be multiplied by (1� normal plan sample size=lot or batch size). Also applicable to percent defective for AQL less than 15

with specific values for percent defective shown in parenthesis.
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TABLE T11.21: MIL-STD-105E scheme limiting quality (in defects per 100 units) for which Pa¼ 10%.

Code
Letter

Acceptable Quality Level

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

A (53.6)
76.7 130 194 266 334 464 650 889 1240 1750

B (36.9)
46.0 77.8 130 177 223 309 433 593 825 1170 1680

C (25.0)
28.8

(40.6)
48.6 77.8 106 134 185 260 356 495 699 1010

D (16.2)
17.7

(26.8)
29.9

(4.6)
48.6 66.5 83.5 116 162 222 309 437 631

E (10.9)
11.5

(18.1)
19.4

(26.8)
29.9

(36.0)
40.9 51.4 71.3 100 137 190 269 388

F (6.94)
7.19

(11.6)
12.2

(18.1)
19.4

(24.5)
26.6

(30.4)
33.4 46.4 65.0 88.9 124

G (4.50)
4.60

(7.56)
7.78

(11.6)
12.2

(15.8)
16.6

(19.7)
20.9

(27.1)
29.0 40.6 55.6 77.4

H (2.84)
2.88

(4.77)
4.86

(7.56)
7.78

(10.3)
10.6

(12.9)
13.4

(17.8)
18.5

(24.7)
26.0 35.6 49.5

J (1.83)
1.84

(3.08)
3.11

(4.77)
4.86

(6.52)
6.65

(8.16)
8.35

(11.3)
11.6

(15.7)
16.2

(21.4)
22.2 30.9

K 1.15 1.94 3.11 4.26 5.34 7.42 10.4 14.2 19.8

L .731 1.23 1.94 2.66 3.34 4.64 6.50 8.89 12.4

M .460 .778 1.23 1.69 2.12 2.94 4.13 5.64 7.86

N .288 .486 .778 1.06 1.34 1.85 2.60 3.56 4.95

P .184 .311 .486 .665 .865 1.16 1.62 2.22 3.09

Q .115 .194 .311 .426 .534 .742 1.04 1.42 1.98

R .123 .194 .266 .334 .464 .650 .889 1.24

Source: Reprinted from Schilling, E.G. and Sheesley, J.H., J. Qual. Technol., 10(3), 107, 1978. With permission.
Note: Also applicable to percent defective for AQL less than 15 with specific values for percent defective shown in parenthesis.
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TABLE T11.22: MIL-STD-105E scheme limiting quality (in defects per 100 units) for which Pa¼ 5%.

Code
Letter

Acceptable Quality Level

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

A (63.2)
99.8 158 237 315 388 526 722 972 1340 1860

B (45.1)
59.9 94.9 158 210 258 350 481 648 890 1240 1770

C (31.2)
37.4

(47.1)
59.3 94.9 126 155 210 289 389 534 745 1060

D (20.6)
23.0

(31.6)
36.5

(47.1)
59.3 78.7 96.9 131 180 243 334 465 665

E (13.9)
15.0

(21.6)
23.7

(31.6)
36.5

(41.0)
48.4 59.6 80.9 111 150 205 286 409

F (8.94)
9.36

(14.0)
14.8

(21.6)
23.7

(28.3)
31.5

(34.4)
38.8 52.6 72.2 97.2 133

G (5.81)
5.99

(9.14)
9.49

(14.0)
14.8

(18.4)
19.7

(22.5)
24.2

(30.1)
32.9 45.1 60.8 83.4

H (3.68)
3.74

(5.79)
5.93

(9.14)
9.49

(12.1)
12.6

(14.8)
15.5

(19.9)
21.0

(27.0)
28.9 38.9 53.4

J (2.37)
2.40

(3.74)
3.79

(5.79)
5.93

(7.66)
7.87

(9.41)
9.69

(12.7)
13.1

(17.3)
18.0

(23.2)
24.3 33.4

K 1.50 2.37 .379 5.04 6.20 8.41 11.5 15.6 21.4

L .951 1.51 2.37 3.15 3.88 5.26 7.22 9.72 13.3

M .599 .949 1.51 2.00 2.46 3.34 4.58 6.17 8.47

N .374 .593 .949 1.26 1.55 2.10 2.89 3.89 5.34

P .240 .379 .593 .787 .969 1.31 1.80 2.43 3.34

Q .150 .237 .379 .504 .620 .841 1.15 1.56 2.14

R
.151 .237 .315 .388 .526 .722 .972 1.33

Source: Reprinted from Schilling, E.G. and Sheesley, J.H., J. Qual. Technol., 10(3), 108, 1978. With permission.
Note: Also applicable to percent defective for AQL less than 15 with specific values for percent defective shown in parenthesis.
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TABLE T11.23: Scheme measures of performance for MIL-STD-105E, code F.

TABLE A4-F-1: Tabulated values for operating characteristic curves for scheme.

Pa

Acceptable Quality Levels (Normal Inspection)

0.65 2.5 4.0 6.5 10 .65 2.5 4.0 6.5 10 15 25 40 65

p (in Percent Defective) p (in Defects per 100 Units)

99.0 0.104 .978 2.94 4.93 10.1 0.104 .958 2.84 4.72 9.41 15.0 25.0 39.5 64.9

95.0 0.357 1.85 4.11 6.94 13.0 0.358 1.82 4.02 6.69 12.3 19.2 30.2 45.7 73.4

90.0 0.571 2.47 4.91 8.24 14.4 0.572 2.45 4.82 8.00 13.8 21.4 33.3 49.7 78.3

75.0 1.11 3.66 6.40 10.4 16.5 1.11 3.66 6.37 10.3 16.2 24.8 38.0 56.0 85.5

50.0 2.22 5.40 8.71 13.6 19.2 2.24 5.46 8.85 13.8 19.5 29.4 44.3 64.2 94.8

25.0 4.24 8.21 12.9 18.7 24.3 4.34 8.43 13.5 19.6 25.6 37.2 54.0 76.1 109

10.0 6.94 11.6 18.1 24.5 30.4 7.19 12.2 19.4 26.6 334 46.4 65.0 88.9 124

5.0 8.94 14.0 21.6 28.3 34.4 9.36 14.8 23.7 31.5 38.8 52.6 72.2 97.2 133

1.0 13.4 19.0 28.9 35.8 42.1 14.4 20.7 33.2 42.0 50.2 65.5 87.1 114 153
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TABLE A4-F-2: Tabulated values for average sample number curves for scheme.

Pa

Acceptable Quality Levels (Normal Inspection)

.65 2.5 4.0 6.5 10 .65 2.5 4.0 6.5 10 15 25 40 65

p (in Percent Defective) p (in Defects per 100 Units)

99.0 9.5 14.6 13.4 15.7 17.9 9.5 14.5 13.2 15.3 16.8 17.8 16.2 15.1 15.7

95.0 14.4 19.1 18.5 19.5 19.9 14.4 19.0 18.3 19.3 19.8 20.0 19.9 19.8 19.9

90.0 18.6 21.5 19.7 19.9 20.0 18.6 21.5 19.6 19.9 20.0 20.0 20.0 20.0 20.0

75.0 26.1 26.2 20.0 20.0 20.0 26.0 26.2 20.0 20.0 20.0 20.0 20.0 20.0 20.0

50.0 31.0 30.9 20.0 20.0 20.0 31.0 30.9 20.0 20.0 20.0 20.0 20.0 20.0 20.0

25.0 32.0 32.0 20.0 20.0 20.0 32.0 32.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0

10.0 32.0 32.0 20.0 20.0 20.0 32.0 32.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0

5.0 32.0 32.0 20.0 20.0 20.0 32.0 32.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0

1.0 32.0 32.0 20.0 20.0 20.0 32.0 32.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
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TABLE A4-F-3: Tabulated values for average outgoing quality curves for scheme (lot size¼ 120).

Pa

Acceptable Quality Levels (Normal Inspection)

.65 2.5 4.0 6.5 10 .65 2.5 4.0 6.5 10 15 25 40 65

p (in Percent Defective) p (in Defects per 100 Units)

99.0 0.88 0.85 2.6 4.2 8.5 0.088 0.83 2.5 4.1 8.0 13 21 34 56

95.0 0.30 1.5 3.3 5.5 10 0.30 1.5 3.2 5.3 9.8 15 24 36 58

90.0 0.44 1.8 3.7 6.2 11 0.44 1.8 3.6 6.0 10 16 25 37 59

75.0 0.65 2.2 4.0 6.5 10 0.66 2.2 4.0 6.5 10 15 24 35 53

50.0 0.83 2.0 3.6 5.7 8.0 0.83 2.0 3.7 5.8 8.1 12 18 27 39

25.0 0.78 1.5 2.7 3.9 5.1 0.80 1.5 2.8 4.1 5.3 7.7 11 16 23

10.0 0.51 0.85 1.5 2.0 2.5 0.53 0.89 1.6 2.2 2.8 3.9 5.4 7.4 10

5.0 0.33 0.51 0.90 1.2 1.4 0.34 0.54 0.99 1.3 1.6 2.2 3.0 4.1 5.6

1.0 0.99 0.14 0.24 0.30 0.35 0.11 0.15 0.28 0.35 0.42 0.55 0.72 0.94 1.3

AOQL 0.85 2.2 4.1 6.6 11 0.86 2.2 4.0 6.5 11 17 26 38 59
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TABLE A4-F-4: Tabulated values for average total inspection curves for scheme (lot size¼ 120).

Pa

Acceptable Quality Levels (Normal Inspection)

.65 2.5 4.0 6.5 10 .65 2.5 4.0 6.5 10 15 25 40 65

p (in Percent Defective) p (in Defects per 100 Units)

99.0 10.5 15.6 14.4 16.7 18.9 10.5 15.5 14.2 16.3 17.8 18.8 17.2 16.1 16.8

95.0 19.5 24.1 23.5 24.5 25.0 19.5 24.0 23.3 24.3 24.8 25.0 24.9 24.8 24.9

90.0 28.5 31.2 29.7 29.9 30.0 28.5 31.1 29.6 29.9 30.0 30.0 30.0 30.0 30.0

75.0 49.2 49.2 45.0 45.0 45.0 49.2 49.2 45.0 45.0 45.0 45.0 45.0 45.0 45.0

50.0 75.4 75.2 70.0 70.0 70.0 75.4 75.2 70.0 70.0 70.0 70.0 70.0 70.0 70.0

25.0 98.0 98.0 95.0 95.0 95.0 98.0 98.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0

10.0 111 111 110 110 110 111 111 110 110 110 110 110 110 110

5.0 116 116 115 115 115 116 116 115 115 115 115 115 115 115

1.0 119 119 119 119 119 119 119 119 119 119 119 119 119 119

Source: Reprinted from Schilling, E.G. and Sheesley, J.H., J. Qual. Technol., 10(3), 114, 1978. With permission.
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TABLE T11.24: Operating ratios for the MIL-STD-105E scheme (R¼ p.10=p.95 calculated using Poisson distribution).

Code
Letter

Acceptable Quality Level

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10 15 25 40 65 100 150 250 400 650 1000

A 30.32 7.43 5.01 4.02 2.72 2.42 2.15 1.95 1.69 1.58

B 23.23 6.71 5.04 3.99 2.72 2.41 2.15 1.95 1.69 1.58 1.46

C 20.14 6.67 4.96 3.98 2.72 2.41 2.15 1.95 1.68 1.57 1.47

D 19.34 6.54 4.81 4.01 2.71 2.42 2.14 1.95 1.68 1.57 1.46

E 20.54 6.88 4.83 4.01 2.72 2.41 2.15 1.94 1.68 1.57 1.46

F 20.08 6.70 4.83 3.98 2.72 2.42 2.15 1.95 1.69

G 20.63 7.01 4.86 3.97 2.72 2.42 2.15 1.94 1.69

H 20.14 6.67 4.96 3.98 2.72 2.41 2.15 1.95 1.68

J 20.51 6.81 4.86 4.01 2.71 2.42 2.14 1.95 1.68

K 20.07 6.64 4.84 4.02 2.71 2.42 2.15 1.94 1.69

L 20.42 6.72 4.83 3.98 2.72 2.42 2.15 1.95 1.69

M 20.18 6.88 4.82 3.98 2.71 2.41 2.15 1.94 1.69

N 20.14 6.67 4.96 3.98 2.72 2.41 2.15 1.95 1.68

P 20.42 6.81 4.81 4.01 2.71 2.42 2.14 1.95 1.68

Q 20.07 6.64 4.84 4.02 2.71 2.42 2.15 1.94 1.69

R 6.72 4.83 3.98 2.72 2.42 2.15 1.95 1.69

Source: Reprinted from Schilling, E.G. and Johson, L.I., J. Qual. Technol., 12(4), 226, 1978. With permission.
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TABLE T12.1: MIL-STD-414 Table B-6—values of T for tightened inspection:
standard deviation method.

Sample Size
Code Letter

Acceptable Quality Levels (in Percent Defective) Number
of Lots.040 .065 .10 .15 .25 .40 .65 1.0 1.5 2.5 4.0 6.5 10.0 15.0

2 3 4 4 4 5
B * * * * * * * * * 4 5 6 7 8 10

5 6 8 9 11 15

2 2 3 3 4 4 4 5
C * * * * * * * 3 4 5 6 7 7 8 10

5 6 7 8 9 10 11 15

2 3 3 3 4 4 4 4 5
D * * * * * * 4 4 5 6 6 7 7 8 10

5 6 7 8 9 10 10 11 15

2 3 3 3 4 4 4 4 4 4 5
E * * * * 4 4 5 5 6 6 7 7 8 8 10

5 6 6 7 8 9 9 10 11 11 15

3 3 3 3 4 4 4 4 4 4 4 5
F * * * 4 5 5 6 6 6 7 7 8 8 8 10

6 6 7 8 8 9 9 10 11 11 11 15

3 3 3 3 3 4 4 4 4 4 4 4 4 4 5
G 4 5 5 5 6 6 6 7 7 7 7 8 8 8 10

6 6 6 7 7 8 9 9 9 10 10 11 11 11 15

3 3 3 3 4 4 4 4 4 4 4 4 4 4 5
H 5 5 5 6 6 6 7 7 7 7 8 8 8 8 10

6 7 7 8 8 9 9 9 10 10 11 11 11 11 15

3 3 4 4 4 4 4 4 4 4 4 4 4 4 5
I 5 6 6 6 6 7 7 7 7 7 8 8 8 8 10

7 7 8 8 9 9 9 10 10 10 11 11 11 11 15

3 4 4 4 4 4 4 4 4 4 4 4 4 4 5
J 6 6 6 6 7 7 7 7 7 8 8 8 8 8 10

8 8 8 9 9 9 10 10 10 11 11 11 11 11 15

4 4 4 4 4 4 4 4 4 4 4 4 4 4 5
K 6 6 6 6 7 7 7 7 8 8 8 8 8 8 10

8 8 9 9 9 9 10 10 10 11 11 11 11 11 15

4 4 4 4 4 4 4 4 4 4 4 4 4 4 5
L 6 6 6 7 7 7 7 7 8 8 8 8 8 8 10

8 9 9 9 9 10 10 10 10 11 11 11 11 11 15

4 4 4 4 4 4 4 4 4 4 4 4 4 4 5
M 6 7 7 7 7 7 7 7 8 8 8 8 8 8 10

9 9 9 9 10 10 10 10 11 11 11 11 11 11 15

4 4 4 4 4 4 4 4 4 4 4 4 4 4 5
N 7 7 7 7 7 7 8 8 8 8 8 8 8 8 10

9 9 10 10 10 10 11 11 11 11 11 11 11 11 15

4 4 4 4 4 4 4 4 4 4 4 4 4 4 5
O 7 7 7 7 7 8 8 8 8 8 8 8 8 8 10

10 10 10 10 10 11 11 11 11 11 11 11 11 11 15

(continued)
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TABLE T12.1 (continued): MIL-STD-414 Table B-6—values of T for tightened inspection:
standard deviation method.

Sample Size
Code Letter

Acceptable Quality Levels (in Percent Defective) Number
of Lots.040 .065 .10 .15 .25 .40 .65 1.0 1.5 2.5 4.0 6.5 10.0 15.0

4 4 4 4 4 4 4 4 4 4 4 4 4 4 5
P 7 7 7 8 8 8 8 8 8 8 8 8 8 8 10

10 10 10 10 11 11 11 11 11 11 11 11 11 12 15

4 4 4 4 4 4 4 4 4 4 4 4 4 4 5
Q 7 8 8 8 8 8 8 8 8 8 8 8 8 8 10

10 11 11 11 11 11 11 11 11 11 11 11 11 12 15

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection
by Variables for Percent Defective, MIL-STD-414, U.S. Government Printing Office, Washington, DC, 1957,
54, 55.

* There are no sampling plans provided in this Standard for these code letters and AQL values.
The top figure in each block refers to the preceding 5 lots, the middle figure to the preceding 10 lots and the bottom figure
to the preceding 15 lots.
Tightened inspection is required when the number of lots with estimate of percent defective above the AQL from the
preceding 5, 10, or 15 lots is greater than the given value of T in the table, and the process average from these lots
exceeds the AQL.
All estimates of the lot percent defective are obtained from Table B.5.
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TABLE T12.2: MIL-STD-414 Table B-7—limits of estimated lot percent defective for reduced inspection: standard deviation method.

Sample Size
Code Letter

Acceptable Quality Levels (in Percent Defective) Number
of Lots.040 .065 .10 .15 .25 .40 .65 1.0 1.5 2.5 4.0 6.5 10.0 15.0

B * * * * * * * * * [42]** [28]** [18]** [12]** [9]**

.77 5
C * * * * * * * [45]** [31]** [22]** [15]** [10]** [7]** 15.00 10

¯ 15

0.00 .74 6.06 5
D * * * * * * [33]** [25]** [18]** [13]** [9]** 4.40 9.96 15.00 10

6.50 10.00 ¯ 15

.00 .00 .13 1.38 4.24 9.09 5
E * * * * [25]** [18]** [14]** [11]** .10 .88 2.65 5.96 10.00 15.00 10

.88 2.49 4.00 6.50 ¯ ¯ 15

¯

.000 .000 .000 .003 .044 .306 1.05 2.81 5.79 10.47 5
F * * * .000 .001 .016 .101 .317 .74 1.80 3.56 6.50 10.00 15.00 10

.002 .029 .123 .369 .81 1.50 2.50 4.00 ¯ ¯ ¯ 15

¯

.000 .000 .000 .002 .011 .047 .136 .323 .84 1.84 3.80 6.86 11.52 5
G .000 .002 .006 .018 .057 .143 .330 .643 1.14 2.23 3.94 6.50 10.00 15.00 10

.003 .010 .028 .062 .151 .315 .626 1.00 1.50 2.50 4.00 ¯ ¯ ¯ 15

.000 .000 .002 .005 .017 .048 .123 .266 .521 1.14 2.24 4.29 7.40 12.07 5
H .004 .010 .023 .048 .111 .225 .445 .785 1.31 2.40 4.00 6.50 10.00 15.00 10

.013 .029 .058 .105 .215 .396 .65 1.00 1.50 2.50 ¯ ¯ ¯ ¯ 15

.001 .002 .006 .014 .037 .083 .185 .360 .653 1.33 2.49 4.59 7.74 12.43 5
I .009 .020 .039 .071 .146 .274 .509 .863 1.39 2.48 4.00 6.50 10.00 15.00 10

.021 .043 .077 .133 .248 .40 .65 1.00 1.50 2.50 ¯ ¯ ¯ ¯ 15

.002 .005 .012 .023 .054 .113 .233 .431 .750 1.47 2.66 4.81 7.98 12.69 5
J .013 .027 .050 .087 .169 .306 .550 .909 1.44 2.50 4.00 6.50 10.00 15.00 10

.027 .052 .089 .146 .25 .40 .65 1.00 1.50 ¯ ¯ ¯ ¯ ¯ 15

(continued)
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TABLE T12.2 (continued): MIL-STD-414 Table B-7—Limits of estimated lot percent defective for reduced inspection: standard deviation method.

Sample Size
Code Letter

Acceptable Quality Levels (in Percent Defective) Number
of Lots.040 .065 .10 .15 .25 .40 .65 1.0 1.5 2.5 4.0 6.5 10.0 15.0

.004 .008 .017 .032 .069 .137 .270 .483 .821 1.57 2.79 4.96 8.15 12.88 5
K .017 .033 .059 .099 .186 .328 .577 .940 1.47 2.50 4.00 6.50 10.00 15.00 10

.032 .058 .097 .15 .25 .40 .65 1.00 1.50 ¯ ¯ ¯ ¯ ¯ 15

.005 .011 .022 .040 .082 .157 .300 .525 .876 1.64 2.88 5.08 8.29 13.03 5
L .020 .038 .065 .108 .199 .343 .596 .961 1.49 2.50 4.00 6.50 10.00 15.00 10

.035 .063 .10 .15 .25 .40 .65 1.00 1.50 ¯ ¯ ¯ ¯ ¯ 15

.008 .016 .030 .052 .102 .187 .345 .587 .959 1.76 3.03 5.27 8.50 13.25 5
M .025 .045 .075 .120 .215 .364 .621 .989 1.50 2.50 4.00 6.50 10.00 15.00 10

.04 .065 .10 .15 .25 .40 .65 1.00 ¯ ¯ ¯ ¯ ¯ ¯ 15

.014 .026 .044 .072 .134 .235 .414 .681 1.082 1.92 3.24 5.52 8.81 13.60 5
N .031 .054 .087 .136 .236 .389 .65 1.00 1.50 2.50 4.00 6.50 10.00 15.00 10

.04 .065 .10 .15 .25 .40 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 15

.018 .032 .053 .085 .153 .261 .453 .733 1.149 2.01 3.36 5.67 8.98 13.80 5
O .034 .058 .093 .143 .245 .40 .65 1.00 1.50 2.50 4.00 6.50 10.00 15.00 10

.04 .065 .10 .15 .25 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 15

.023 .039 .064 .101 1.77 2.96 .501 7.99 1.237 2.13 3.52 5.87 9.22 14.07 5
P .038 .064 .10 .15 .25 .40 .65 1.00 1.50 2.50 4.00 6.50 10.00 15.00 10

.04 .065 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 15

.025 .044 .069 .108 .188 .312 .525 .830 1.276 2.19 3.59 5.96 9.32 14.19 5
Q .04 .065 .10 .15 .25 .40 .65 1.00 1.50 2.50 4.00 6.50 10.00 15.00 10

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 15

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Variables for Percent Defective, MIL-STD-414, U.S. Government
Printing Office, Washington, DC, 1957, 56, 57.

Notes: * There are no sampling plans provided in this Standard for these code letters and AQL values. All AQL and table values, expect those in the brackets, are in percent defective.

¯ Use the first figure in direction of arrow and corresponding number of lots. In each block the top figure refers to the preceding 5 lots, the middle figure to the preceding 10 lots, and the
bottom figure to the preceding 15 lots.
Reduced inspection may be instituted when every estimated lot percent defective from the preceding 5, 10, or 15 lots is below the figure given in the table; reduced inspection for sampling
plans marked (**) in the table requires that the estimated lot percent defective is equal to zero for the number of consecutive lots indicated in brackets. In addition, all other conditions for
reduced inspection, in Part III of Section B, must be satisfied.
All estimates of the lot percent defective are obtained from Table B-5.
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TABLE T12.3: MIL-STD-414 Table A-1—AQL
conversion table.

For Specified AQL Values Falling
within These Ranges

Use this
AQL Value

—to 0.049 0.04
0.050 to 0.069 0.065
0.070 to 0.109 0.10
0.110 to 0.164 0.15
0.165 to 0.279 0.25
0.280 to 0.439 0.40
0.440 to 0.699 0.65
0.700 to 1.09 1.0
1.10 to 1.64 1.5
1.65 to 2.79 2.5
2.80 to 4.39 4.0
4.40 to 6.99 6.5
7.00 to 10.9 10.0
11.00 to 16.4 15.0

Source: United States Department of Defense, Military Standard,
Sampling Procedures and Tables for Inspection by Variables
for Percent Defective (MIL-STD-414), U.S. Government
Printing Office, Washington, DC, 1957, 4.

� 2008 by Taylor & Francis Group, LLC.



TABLE T12.4: MIL-STD-414 Table A-2—sample size code lettersa.

Inspection Levels

Lot Size I II III IV V

3 to 8 B B B B C
9 to 15 B B B B D
16 to 25 B B B C E
26 to 40 B B B D F
41 to 65 B B C E G
66 to 110 B B D F H
111 to 180 B C E G I
181 to 300 B D F H J
301 to 500 C E G I K
501 to 800 D F H J L
801 to 1,300 E G I K L
1,301 to 3,200 F H J L M
3,201 to 8,000 G I L M N
8,001 to 22,000 H J M N O
22,001 to 110,000 I K N O P
110,001 to 550,000 I K O P Q
550,001 and over I K P Q Q

Source: United States Department of Defense, Military Standard, Sampling Procedures
and Tables for Inspection by Variables for Percent Defective (MIL-STD-414),
U.S. Government Printing Office, Washington, DC, 1957, 4.

a Sample size code letters given in body of table are applicable when the indicated
inspection levels are to be used.

� 2008 by Taylor & Francis Group, LLC.



TABLE T12.5: MIL-STD-414 Table B-3—master table for normal and tightened inspection for plans based on variability unknown: standard
deviation method (double specification limit and form 2, single specification limit).

Sample
Size
Code
Letter

Sample
Size

Acceptable Quality Levels (Normal Inspection)

.040 .065 .10 .15 .25 .40 .65 1.00 1.50 2.50 4.00 6.50 10.00 15.00

M M M M M M M M M M M M M M

B 3 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 7.59 18.86 26.94 33.69 40.47
C 4 ¯ ¯ ¯ ¯ ¯ ¯ ¯ 1.53 5.50 10.92 16.45 22.86 29.45 36.90

D 5 ¯ ¯ ¯ ¯ ¯ ¯ 1.33 3.32 5.83 9.80 14.39 20.19 26.56 33.99
E 7 ¯ ¯ ¯ ¯ 0.422 1.06 2.14 3.55 5.35 8.40 12.20 17.35 23.29 30.50
F 10 ¯ ¯ ¯ 0.349 0.716 1.30 2.17 3.26 4.77 7.29 10.54 15.17 20.74 27.57

G 15 0.099 0.186 0.312 0.503 0.818 1.31 2.11 3.05 4.31 6.56 9.46 13.71 18.94 25.61
H 20 0.135 0.228 0.365 0.544 0.846 1.29 2.05 2.95 4.09 6.17 8.92 12.99 18.03 24.53
I 25 0.155 0.250 0.380 0.551 0.877 1.29 2.00 2.86 3.97 5.97 8.63 12.57 17.51 23.97

J 30 0.179 0.280 0.413 0.581 0.879 1.29 1.98 2.83 3.91 5.86 8.47 12.36 17.24 23.58
K 35 0.170 0.264 0.388 0.535 0.847 1.23 1.87 2.68 3.70 5.57 8.10 11.87 16.65 22.91
L 40 0.179 0.275 0.401 0.566 0.873 1.26 1.88 2.71 3.72 5.58 8.09 11.85 16.61 22.86

M 50 0.163 0.250 0.363 0.503 0.789 1.17 1.71 2.49 3.45 5.20 7.61 11.23 15.87 22.00
N 75 0.147 0.228 0.330 0.467 0.720 1.07 1.60 2.29 3.20 4.87 7.15 10.63 15.13 21.11
O 100 0.145 0.220 0.317 0.447 0.689 1.02 1.53 2.20 3.07 4.69 6.91 10.32 14.75 20.66

P 150 0.134 0.203 0.293 0.413 0.638 0.949 1.43 2.05 2.89 4.43 6.57 9.88 14.20 20.02
Q 200 0.135 0.204 0.294 0.414 0.637 0.945 1.42 2.04 2.87 4.40 6.53 9.81 14.12 19.92

.065 .10 .15 .25 .40 .65 1.00 1.50 2.50 4.00 6.50 10.00 15.00

Acceptability Quality Levels (Tightened Inspection)

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Variables for Percent Defective (MIL-STD-414), U.S. Government
Printing Office, Washington, DC, 1957, 45.

All AQL and table values are in percent defective.

¯

Use first sampling plan below arrow, that is, both sample size as well as M value. When sample size equals or exceeds lot size, every item in the lot must be inspected.
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TABLE T12.6: MIL-STD-414 Table B-4—master table for reduced inspection for plans based on variability unknown: standard deviation
method (double specification limit and form 2, single specification limit).

Sample
Size
Code
Letter

Sample
Size

Acceptable Quality Levels (Reduced Inspection)

.040 .065 .10 .15 .25 .40 .65 1.00 1.50 2.50 4.00 6.50 10.00

M M M M M M M M M M M M M

B 3 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 7.59 18.86 26.94 33.69 40.47
C 3 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 7.59 18.86 26.94 33.69 40.47

D 3 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 7.59 18.86 26.94 33.69 40.47
E 3 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 7.59 18.86 26.94 33.69 40.47
F 4 ¯ ¯ ¯ ¯ ¯ ¯ 1.53 5.50 10.92 16.45 22.86 29.45 36.90

G 5 ¯ ¯ ¯ ¯ ¯ 1.33 3.32 5.83 9.80 14.39 20.19 26.56 33.99
H 7 ¯ ¯ ¯ 0.422 1.06 2.14 3.55 5.35 8.40 12.20 17.35 23.29 30.50
I 10 ¯ ¯ 0.349 0.716 1.30 2.17 3.26 4.77 7.29 10.54 15.17 20.74 27.57

J 10 ¯ ¯ 0.349 0.716 1.30 2.17 3.26 4.77 7.29 10.54 15.17 20.74 27.57
K 15 0.186 0.312 0.503 0.8.18 1.31 2.11 3.05 4.31 6.56 9.46 13.71 18.94 25.61
L 20 0.228 0.365 0.544 0.846 1.29 2.05 2.95 4.09 6.17 8.92 12.99 18.03 24.53

M 20 0.228 0.365 0.544 0.846 1.29 2.05 2.95 4.09 6.17 8.92 12.99 18.03 24.53
N 25 0.250 0.380 0.551 0.877 1.29 2.00 2.86 3.97 5.97 8.63 12.57 17.51 23.97
O 30 0.280 0.413 0.581 0.879 1.29 1.98 2.83 3.91 5.86 8.47 12.36 17.24 23.58

P 50 0.250 0.363 0.503 0.789 1.17 1.71 2.49 3.45 5.20 7.61 11.23 15.87 22.00
Q 75 0.228 0.330 0.467 0.720 1.07 1.60 2.29 3.20 4.87 7.15 10.63 15.13 21.11

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Variables for Percent Defective (MIL-STD-414), U.S. Government
Printing Office, Washington, DC, 1957, 46.

All AQL and table values are in percent defective.

¯

Use first sampling plan below arrow, that is, both sample size as well as M value. When sample size equals or exceeds lot size, every item in the lot must be inspected.
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TABLE T12.7: MIL-STD-414 Table B-5—Table for estimating the lot percent defective using standard deviation method.a

QU or
QL

Sample Size

3 4 5 7 10 15 20 25 30 35 40 50 75 100 150 200

0 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
.10 47.24 46.67 46.44 46.26 46.16 46.10 46.08 46.06 46.05 46.05 46.04 46.04 46.03 46.03 46.02 46.02
.20 44.46 43.33 42.90 42.54 42.35 42.24 42.19 42.16 42.15 42.13 42.13 42.11 42.10 42.09 42.08 42.08
.30 41.63 40.00 39.37 38.87 38.60 38.44 38.37 38.33 38.31 38.29 38.28 38.27 38.25 38.24 38.22 38.22
.31 41.35 39.67 39.02 38.50 38.23 38.06 37.99 37.95 37.93 37.91 37.90 37.89 37.87 37.86 37.84 37.84
.32 41.06 39.33 38.67 38.14 37.86 37.69 37.62 37.58 37.55 37.54 37.52 37.51 37.49 37.48 37.46 37.46
.33 40.77 39.00 38.32 37.78 37.49 37.31 37.24 37.20 37.18 37.16 37.15 37.13 37.11 37.10 37.09 37.08
.34 40.49 38.67 37.97 37.42 37.12 36.94 36.87 36.83 36.80 36.78 36.77 36.75 36.73 36.72 36.71 36.71
.35 40.20 38.33 37.62 37.06 36.75 36.57 36.49 36.45 36.43 36.41 36.40 36.38 36.36 36.35 36.33 36.33
.36 39.91 38.00 37.28 36.69 36.38 36.20 36.12 36.08 36.05 36.04 36.02 36.01 35.98 35.97 35.96 35.96
.37 39.62 37.67 36.93 36.33 36.02 35.83 35.75 35.71 35.68 35.66 35.65 35.63 35.61 35.60 35.59 35.58
.38 39.33 37.33 36.58 35.98 35.65 35.46 35.38 35.34 35.31 35.29 35.28 35.26 35.24 35.23 35.22 35.21
.39 3.903 37.00 36.23 35.62 35.29 35.10 35.01 34.97 34.94 34.93 34.91 34.89 34.87 34.86 34.85 34.84

.40 38.74 36.67 35.88 35.26 34.93 34.73 34.65 34.60 34.58 34.56 34.54 34.53 34.50 34.49 34.48 34.47

.41 38.45 36.33 35.54 34.90 34.57 34.37 34.28 34.24 34.21 34.19 34.18 34.16 34.13 34.12 34.11 34.10

.42 38.15 36.00 35.19 34.55 34.21 34.00 33.92 33.87 33.85 33.83 33.81 33.79 33.77 33.76 33.74 33.74

.43 37.85 35.67 34.85 34.19 33.85 33.64 33.56 33.51 33.48 33.46 33.45 33.43 33.40 33.39 33.38 33.37

.44 37.56 35.33 34.50 33.84 33.49 33.28 33.20 33.15 33.12 33.10 33.09 33.07 33.04 33.03 33.02 33.01

.45 37.26 35.00 34.16 33.49 33.13 32.92 32.84 32.79 32.76 32.74 32.73 32.71 32.68 32.67 32.66 32.65

.46 36.96 34.67 33.81 33.13 32.78 32.57 32.48 32.43 32.40 32.38 32.37 32.35 32.32 32.31 32.30 32.29

.47 36.66 34.33 33.47 32.78 32.42 32.21 32.12 32.07 32.04 32.02 32.01 31.99 31.96 31.95 31.94 31.93

.48 36.35 34.00 33.12 32.43 32.07 31.85 31.77 31.72 31.69 31.67 31.65 31.63 31.61 31.60 31.58 31.58

.49 36.05 33.67 32.78 32.08 31.72 31.50 31.41 31.36 31.33 31.31 31.30 31.28 31.25 31.24 31.23 31.22

.50 35.75 33.33 32.44 31.74 31.37 31.15 31.06 31.01 30.98 30.96 30.95 30.93 30.90 30.89 30.87 30.87

.51 35.44 33.00 32.10 31.39 31.02 30.80 30.71 30.66 30.63 30.61 30.60 30.57 30.55 30.54 30.52 30.52

.52 35.13 32.67 31.76 31.04 30.67 30.45 30.36 30.31 30.28 30.26 30.25 30.23 30.20 30.19 30.17 30.17

.53 34.82 32.33 31.42 30.70 30.32 30.10 30.01 29.96 29.93 29.91 29.90 29.88 29.85 29.84 29.83 29.82

.54 34.51 32.00 31.08 30.36 29.98 29.76 29.67 29.62 29.59 29.97 29.55 29.53 29.51 29.49 29.48 29.48

.55 34.20 31.67 30.74 30.01 29.64 29.41 29.32 29.27 29.24 29.22 29.21 29.19 29.16 29.15 29.14 29.13

(continued)

�
2008

by
T
aylor

&
F
rancis

G
roup,

L
L
C
.



TABLE T12.7 (continued): MIL-STD-414 Table B-5—Table for estimating the lot percent defective using standard deviation method.a

QU or
QL

Sample Size

3 4 5 7 10 15 20 25 30 35 40 50 75 100 150 200

.56 33.88 31.33 30.40 29.67 29.29 29.07 28.98 28.93 28.90 28.88 28.87 28.85 28.82 28.81 28.79 28.79

.57 33.57 31.00 30.06 29.33 28.95 28.73 28.64 28.59 28.56 28.54 28.53 28.51 28.48 28.47 28.45 28.45

.58 33.25 30.67 29.73 28.99 28.61 28.39 28.30 28.25 28.22 28.20 28.19 28.17 28.14 28.13 28.12 28.11

.59 32.93 30.33 29.39 28.66 28.28 28.05 27.96 27.92 27.89 27.87 27.85 27.83 27.81 27.79 27.78 27.77

.60 32.61 30.00 29.05 28.32 27.94 27.72 27.63 27.58 27.55 27.53 27.52 27.50 27.47 27.46 27.45 27.44

.61 32.28 29.67 28.72 27.98 27.60 27.39 27.30 27.25 27.22 27.20 27.18 27.16 27.14 27.13 27.11 27.11

.62 31.96 29.33 28.39 27.65 27.27 27.05 26.96 26.92 26.89 26.87 26.85 26.83 26.81 26.80 26.78 26.78

.63 31.63 29.00 28.05 27.32 26.94 26.72 26.63 26.59 26.54 26.54 26.52 26.50 26.48 26.47 26.45 26.45

.64 31.30 28.67 27.72 26.99 26.61 26.39 26.31 26.26 26.23 26.21 26.20 26.18 26.15 26.14 26.13 26.12

.65 30.97 28.33 27.39 26.66 26.28 26.07 25.98 25.93 25.90 25.88 25.87 25.85 25.83 25.82 25.80 25.80

.66 30.63 28.00 27.06 26.33 25.96 25.74 25.66 25.61 25.58 25.56 25.55 25.53 25.51 25.49 25.48 25.48

.67 30.30 27.67 26.73 26.00 25.63 25.42 25.33 25.29 25.26 25.24 25.23 25.21 25.19 25.17 25.16 25.16

.68 29.96 27.33 26.40 25.68 25.31 25.10 25.01 24.97 24.94 24.92 24.91 24.89 24.87 24.86 24.84 24.84

.69 29.61 27.00 26.07 25.35 24.99 24.78 24.70 24.65 24.62 24.60 24.59 24.57 24.55 24.54 24.53 24.52

.70 29.27 26.67 25.74 25.03 24.67 24.46 24.38 24.33 24.31 24.29 24.28 24.26 24.24 24.23 24.21 24.21

.71 28.92 26.33 25.41 24.71 24.35 24.15 24.06 24.02 23.99 23.98 23.96 23.95 23.92 23.91 23.90 23.90

.72 28.57 26.00 25.09 24.39 24.03 23.83 23.75 23.71 23.68 23.67 23.65 23.64 23.61 23.60 23.59 23.59

.73 28.22 25.67 24.76 24.07 23.72 23.52 23.44 23.40 23.37 23.36 23.34 23.33 23.31 23.30 23.29 23.28

.74 27.86 25.33 24.44 23.75 23.41 23.21 23.13 23.09 23.07 23.05 23.04 23.02 23.00 22.99 22.98 22.98

.75 27.50 25.00 24.11 23.44 23.10 22.90 22.83 22.79 22.76 22.75 22.73 22.72 22.70 22.69 22.68 22.67

.76 27.13 24.67 23.79 23.12 22.79 22.60 22.52 22.48 22.46 22.44 22.43 22.42 22.40 22.39 22.38 22.37

.77 26.77 24.33 23.47 22.81 22.48 22.30 22.22 22.18 22.16 22.14 22.13 22.12 22.10 22.09 22.08 22.08

.78 26.39 24.00 23.15 22.50 22.18 21.99 21.92 21.89 21.86 21.85 21.84 21.82 21.80 21.79 21.78 21.78

.79 26.02 23.67 22.83 22.19 21.87 21.70 21.63 21.59 21.57 21.55 21.54 21.53 21.51 21.50 21.49 21.49

.80 25.64 23.33 22.51 21.88 21.57 21.40 21.33 21.29 21.27 21.26 21.25 21.23 21.22 21.21 21.20 21.20

.81 25.25 23.00 22.19 21.58 21.27 21.10 21.04 21.00 20.98 20.97 20.96 20.94 20.93 20.92 20.91 20.91

.82 24.86 22.67 21.87 21.27 20.98 20.81 20.75 20.71 20.69 20.68 20.67 20.65 20.64 20.63 20.62 20.62

.83 24.47 22.33 21.56 20.97 20.68 20.52 20.46 20.42 20.40 20.39 20.38 20.37 20.35 20.35 20.34 20.34

.84 24.07 22.00 21.24 20.67 20.39 20.23 20.17 20.14 20.12 20.11 20.10 20.09 20.07 20.06 20.06 20.05

.85 23.67 21.67 20.93 20.37 20.10 19.94 19.89 19.86 19.84 19.82 19.82 19.80 19.79 19.78 19.78 19.77
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.86 23.26 21.33 20.62 20.07 19.81 19.66 19.60 19.57 19.56 19.54 19.54 19.53 19.51 19.51 19.50 19.50

.87 22.84 21.00 20.31 19.78 19.52 19.38 19.32 19.30 19.28 19.27 19.26 19.25 19.24 19.23 19.22 19.22

.88 22.42 20.67 20.00 19.48 19.23 19.10 19.04 19.02 19.00 18.99 18.98 18.98 18.96 18.96 18.95 18.95

.89 21.99 20.33 19.69 19.19 18.95 18.82 18.77 18.74 18.73 18.72 18.71 18.70 18.69 18.69 18.68 18.68

.90 21.55 20.00 19.36 18.90 18.67 18.54 18.50 18.47 18.46 18.45 18.44 18.43 18.42 18.42 18.41 18.41

.91 21.11 19.67 19.07 18.61 18.39 18.27 18.22 18.20 18.19 18.18 18.17 18.17 18.16 18.15 18.15 18.15

.92 20.66 19.33 18.77 18.33 18.11 18.00 17.96 17.94 17.92 17.92 17.91 17.90 17.89 17.89 17.88 17.88

.93 20.20 19.00 18.46 18.04 17.84 17.73 17.69 17.67 17.66 17.65 17.65 17.64 17.63 17.63 17.62 17.62

.94 19.74 18.67 18.16 17.76 17.57 17.46 17.43 17.41 17.40 17.39 17.39 17.38 17.37 17.37 17.36 17.36

.95 19.25 18.33 17.86 17.48 17.29 17.20 17.17 17.15 17.14 17.13 17.13 17.12 17.12 17.11 17.11 17.11

.96 18.76 18.00 17.56 17.20 17.03 16.94 16.91 16.89 16.88 16.88 16.87 16.87 16.86 16.86 16.86 16.85

.97 18.25 17.67 17.25 16.92 16.76 16.68 16.65 16.63 16.63 16.62 16.62 16.61 16.61 16.61 16.60 16.60

.98 17.74 17.33 16.96 16.65 16.49 16.42 16.39 16.38 16.37 16.37 16.37 16.36 16.36 16.36 16.36 16.36

.99 17.21 17.00 16.66 16.37 16.23 16.16 16.14 16.13 16.12 16.12 16.12 16.12 16.11 16.11 16.11 16.11

1.00 16.67 16.67 16.36 16.10 15.97 15.91 15.89 15.88 15.88 15.87 15.87 15.87 15.87 15.87 15.87 15.87
1.01 16.11 16.33 16.07 15.83 15.72 15.66 15.64 15.63 15.63 15.63 15.63 15.63 15.62 15.62 15.62 15.62
1.02 15.53 16.00 15.78 15.56 15.46 15.41 15.40 15.39 15.39 15.39 15.39 15.38 15.38 15.38 15.38 15.38
1.03 14.93 15.67 15.48 15.30 15.21 15.17 15.15 15.15 15.15 15.15 15.15 15.15 15.15 15.15 15.15 15.15
1.04 14.31 15.33 15.19 15.03 14.96 14.92 14.91 14.91 14.91 14.91 14.91 14.91 14.91 14.91 14.91 14.91
1.05 13.66 15.00 14.91 14.77 14.71 14.68 14.67 14.67 14.67 14.67 14.68 14.68 14.68 14.68 14.68 14.68
1.06 12.96 14.67 14.62 14.51 14.46 14.44 14.44 14.44 14.44 14.44 14.44 14.45 14.45 14.45 14.45 14.45
1.07 12.27 14.33 14.33 14.26 14.22 14.20 14.20 14.21 14.21 14.21 14.21 14.22 14.22 14.22 14.22 14.23
1.08 11.51 14.00 14.05 14.00 13.97 13.97 13.97 13.98 13.98 13.98 13.99 13.99 13.99 14.00 14.00 14.00
1.09 10.71 13.67 13.76 13.75 13.73 13.74 13.74 13.75 13.75 13.76 13.76 13.77 13.77 13.77 13.78 13.78

1.10 9.84 13.33 13.48 13.49 13.50 13.51 13.52 13.52 13.53 13.54 13.54 13.54 13.55 13.55 13.56 13.56
1.11 8.89 13.00 13.20 13.25 13.26 13.28 13.29 13.30 13.31 13.31 13.32 13.32 13.33 13.34 13.34 13.34
1.12 7.82 12.67 12.93 13.00 13.03 13.05 13.07 13.08 13.09 13.10 13.10 13.11 13.12 13.12 13.12 13.13
1.13 6.60 12.33 12.65 12.75 12.80 12.83 12.85 12.86 12.87 12.88 12.89 12.89 12.90 12.91 12.91 12.92
1.14 5.08 12.00 12.37 12.51 12.57 12.61 12.63 12.65 12.66 12.67 12.67 12.68 12.69 12.70 12.70 12.70
1.15 0.29 11.67 12.10 12.27 12.34 12.39 12.42 12.44 12.45 12.46 12.46 12.47 12.48 12.49 12.49 12.50
1.16 0.00 11.33 11.83 12.03 12.12 12.18 12.21 12.22 12.24 12.25 12.25 12.26 12.28 12.28 12.29 12.29
1.17 0.00 11.00 11.56 11.79 11.90 11.96 12.00 12.02 12.03 12.04 12.05 12.06 12.07 12.08 12.08 12.09
1.18 0.00 10.67 11.29 11.56 11.68 11.75 11.79 11.81 11.82 11.84 11.84 11.85 11.87 11.88 11.88 11.89
1.19 0.00 10.33 11.02 11.33 11.46 11.54 11.58 11.61 11.62 11.63 11.64 11.65 11.67 11.68 11.69 11.69

(continued)

�
2008

by
T
aylor

&
F
rancis

G
roup,

L
L
C
.



TABLE T12.7 (continued): MIL-STD-414 Table B-5—Table for estimating the lot percent defective using standard deviation method.a

QU or
QL

Sample Size

3 4 5 7 10 15 20 25 30 35 40 50 75 100 150 200

1.20 0.00 10.00 10.76 11.10 11.24 11.34 11.38 11.41 11.42 11.43 11.44 11.46 11.47 11.48 11.49 11.49
1.21 0.00 9.67 10.50 10.87 11.03 11.13 11.18 11.21 11.22 11.24 11.25 11.26 11.28 11.29 11.30 11.30
1.22 0.00 9.33 10.23 10.65 10.82 10.93 10.98 11.01 11.03 11.04 11.05 11.07 11.09 11.09 11.10 11.11
1.23 0.00 9.00 9.97 10.42 10.61 10.73 10.78 10.81 10.84 10.85 10.86 10.88 10.90 10.91 10.91 10.92
1.24 0.00 8.67 9.72 10.20 10.41 10.53 10.59 10.62 10.64 10.66 10.67 10.69 10.71 10.72 10.73 10.73
1.25 0.00 8.33 9.46 9.98 10.21 10.34 10.40 10.43 10.46 10.47 10.48 10.50 10.52 10.53 10.54 10.55
1.26 0.00 8.00 9.21 9.77 10.00 10.15 10.21 10.25 10.27 10.29 10.30 10.32 10.34 10.35 10.36 10.37
1.27 0.00 7.67 8.96 9.55 9.81 9.96 10.02 10.06 10.09 10.10 10.12 10.13 10.16 10.17 10.18 10.19
1.28 0.00 7.33 8.71 9.34 9.61 9.77 9.84 9.88 9.90 9.92 9.94 9.95 9.98 9.99 10.00 10.01
1.29 0.00 7.00 8.46 9.13 9.42 9.58 9.65 9.70 9.72 9.74 9.76 9.78 9.80 9.82 9.83 9.83

1.30 0.00 6.67 8.21 8.93 9.22 9.40 9.48 9.52 9.55 9.57 9.58 9.60 9.63 9.64 9.65 9.66
1.31 0.00 6.33 7.97 8.72 9.03 9.22 9.30 9.34 9.37 9.39 9.41 9.43 9.46 9.47 9.48 9.49
1.32 0.00 6.00 7.73 8.52 8.85 9.04 9.12 9.17 9.20 9.22 9.24 9.26 9.29 9.30 9.31 9.32
1.33 0.00 5.67 7.49 8.32 8.66 8.86 8.95 9.00 9.03 9.05 9.07 9.09 9.12 9.13 9.15 9.15
1.34 0.00 5.33 7.25 8.12 8.48 8.69 8.78 8.83 8.86 8.88 8.90 8.92 8.95 8.97 8.98 8.99
1.35 0.00 5.00 7.02 7.92 8.30 8.52 8.61 8.66 8.69 8.72 8.74 8.76 8.79 8.81 8.82 8.83
1.36 0.00 4.67 6.79 7.73 8.12 8.35 8.44 8.50 8.53 8.55 8.57 8.60 8.63 8.65 8.66 8.67
1.37 0.00 4.33 6.56 7.54 7.95 8.18 8.28 8.33 8.37 8.39 8.41 8.44 8.47 8.49 8.50 8.51
1.38 0.00 4.00 6.33 7.35 7.77 8.01 8.12 8.17 8.21 8.24 8.25 8.29 8.31 8.33 8.35 8.35
1.39 0.00 3.67 6.10 7.17 7.60 7.85 7.96 8.01 8.05 8.08 8.10 8.12 8.16 8.18 8.19 8.20

1.40 0.00 3.33 5.88 6.98 7.44 7.69 7.80 7.86 7.90 7.92 7.94 7.97 8.01 8.02 8.04 8.05
1.41 0.00 3.00 5.66 6.80 7.27 7.53 7.64 7.70 7.74 7.77 7.79 7.82 7.86 7.87 7.89 7.90
1.42 0.00 2.67 5.44 6.62 7.10 7.37 7.49 7.55 7.59 7.62 7.64 7.67 7.71 7.73 7.74 7.75
1.43 0.00 2.33 5.23 6.45 6.94 7.22 7.34 7.40 7.44 7.47 7.50 7.52 7.56 7.58 7.60 7.61
1.44 0.00 2.00 5.01 6.27 6.78 7.07 7.19 7.26 7.30 7.33 7.35 7.38 7.42 7.44 7.46 7.47
1.45 0.00 1.67 4.81 6.10 6.63 6.92 7.04 7.11 7.15 7.18 7.21 7.24 7.28 7.30 7.31 7.33
1.46 0.00 1.33 4.60 5.93 6.47 6.77 6.90 6.97 7.01 7.04 7.07 7.10 7.14 7.16 7.18 7.19
1.47 0.00 1.00 4.39 5.77 6.32 6.63 6.75 6.83 6.87 6.90 6.93 6.96 7.00 7.02 7.04 7.05
1.48 0.00 .67 4.19 5.60 6.17 6.48 6.61 6.69 6.73 6.77 6.79 6.82 6.86 6.88 6.90 6.91
1.49 0.00 .33 3.99 5.44 6.02 6.34 6.48 6.55 6.60 6.63 6.65 6.69 6.73 6.75 6.77 6.78
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1.50 0.00 0.00 3.80 5.28 5.87 6.20 6.34 6.41 6.46 6.50 6.52 6.55 6.60 6.62 6.64 6.65
1.51 0.00 0.00 3.61 5.13 5.73 6.06 6.20 6.28 6.33 6.36 6.39 6.42 6.47 6.49 6.51 6.52
1.52 0.00 0.00 3.42 4.97 5.59 5.93 6.07 6.15 6.20 6.23 6.26 6.29 6.34 6.36 6.38 6.39
1.53 0.00 0.00 3.23 4.82 5.45 5.80 5.94 6.02 6.07 6.11 6.13 6.17 6.21 6.24 6.26 6.27
1.54 0.00 0.00 3.05 4.67 5.31 5.67 5.81 5.89 5.95 5.98 6.01 6.04 6.09 6.11 6.13 6.15
1.55 0.00 0.00 2.87 4.52 5.18 5.54 5.69 5.77 5.82 5.86 5.88 5.92 9.97 5.99 6.01 6.02
1.56 0.00 0.00 2.69 4.38 5.05 5.41 5.56 5.65 5.70 5.74 5.76 5.80 5.85 5.87 5.89 5.90
1.57 0.00 0.00 2.52 4.24 4.92 5.29 5.44 5.53 5.58 5.62 5.64 5.68 5.73 5.75 5.78 5.79
1.58 0.00 0.00 2.35 4.10 4.79 5.16 5.32 5.41 5.46 5.50 5.53 5.56 5.61 5.64 5.66 5.67
1.59 0.00 0.00 2.19 3.96 4.66 5.04 5.20 5.29 5.34 5.38 5.41 5.45 5.50 5.52 5.54 5.56

1.60 0.00 0.00 2.03 3.83 4.54 4.92 5.09 5.17 5.23 5.27 5.30 5.33 5.38 5.41 5.43 5.44
1.61 0.00 0.00 1.87 3.69 4.41 4.81 4.97 5.06 5.12 5.16 5.18 5.22 5.27 5.30 5.32 5.33
1.62 0.00 0.00 1.72 3.57 4.30 4.69 4.86 4.95 5.01 5.04 5.07 5.11 5.16 5.19 5.21 5.23
1.63 0.00 0.00 1.57 3.44 4.18 4.58 4.75 4.84 4.90 4.94 4.97 5.01 5.06 5.08 5.11 5.12
1.64 0.00 0.00 1.42 3.31 4.06 4.47 4.64 4.73 4.79 4.83 4.86 4.90 4.95 4.98 5.00 5.01
1.65 0.00 0.00 1.28 3.19 3.95 4.36 4.53 4.62 4.68 4.72 4.75 4.79 4.85 4.87 4.90 4.91
1.66 0.00 0.00 1.15 3.07 3.84 4.25 4.43 4.52 4.58 4.62 4.65 4.69 4.74 4.77 4.80 4.81
1.67 0.00 0.00 1.02 2.95 3.73 4.15 4.32 4.42 4.48 4.52 4.55 4.59 4.64 4.67 4.70 4.71
1.68 0.00 0.00 0.89 2.84 3.62 4.05 4.22 4.32 4.38 4.42 4.45 4.49 4.55 4.57 4.60 4.61
1.69 0.00 0.00 0.77 2.73 3.52 3.94 4.12 4.22 4.28 4.32 4.35 4.39 4.45 4.47 4.50 4.51

1.70 0.00 0.00 0.66 2.62 3.41 3.84 4.02 4.12 4.18 4.22 4.25 4.30 4.35 4.38 4.41 4.42
1.71 0.00 0.00 0.55 2.51 3.31 3.75 3.93 4.02 4.09 4.13 4.16 4.20 4.26 4.29 4.31 4.32
1.72 0.00 0.00 0.45 2.41 3.21 3.65 3.83 3.93 3.99 4.04 4.07 4.11 4.17 4.19 4.22 4.23
1.73 0.00 0.00 0.36 2.30 3.11 3.56 3.74 3.84 3.90 3.94 3.98 4.02 4.08 4.10 4.13 4.14
1.74 0.00 0.00 0.27 2.20 3.02 3.46 3.65 3.75 3.81 3.85 3.89 3.93 3.99 4.01 4.04 4.05
1.75 0.00 0.00 0.19 2.11 2.93 3.37 3.56 3.66 3.72 3.77 3.80 3.84 3.90 3.93 3.95 3.97
1.76 0.00 0.00 0.12 2.01 2.83 3.28 3.47 3.57 3.63 3.68 3.71 3.76 3.81 3.84 3.87 3.88
1.77 0.00 0.00 0.06 1.92 2.74 3.20 3.38 3.48 3.55 3.59 3.63 3.67 3.73 3.76 3.78 3.80
1.78 0.00 0.00 0.02 1.83 2.66 3.11 3.30 3.40 3.47 3.51 3.54 3.59 3.64 3.67 3.70 3.71
1.79 0.00 0.00 0.00 1.74 2.57 3.03 3.21 3.32 3.38 3.43 3.46 3.51 3.56 3.59 3.63 3.63

1.80 0.00 0.00 0.00 1.65 2.49 2.94 3.13 3.24 3.30 3.35 3.38 3.43 3.48 3.51 3.54 3.55
1.81 0.00 0.00 0.00 1.57 2.40 2.86 3.05 3.3.16 3.22 3.27 3.30 3.35 3.40 3.43 3.46 3.47
1.82 0.00 0.00 0.00 1.49 2.32 2.79 2.98 3.08 3.15 3.19 3.22 3.27 3.33 3.36 3.38 3.40
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TABLE T12.7 (continued): MIL-STD-414 Table B-5—Table for estimating the lot percent defective using standard deviation method.a

QU or
QL

Sample Size

3 4 5 7 10 15 20 25 30 35 40 50 75 100 150 200

1.83 0.00 0.00 0.00 1.41 2.25 2.71 2.90 3.00 3.07 3.11 3.15 3.19 3.25 3.28 3.31 3.32
1.84 0.00 0.00 0.00 1.34 2.17 2.63 2.82 2.93 2.99 3.04 3.07 3.12 3.18 3.21 3.23 3.25
1.85 0.00 0.00 0.00 1.26 2.09 2.56 2.75 2.85 2.92 2.97 3.00 3.05 3.10 3.13 3.16 3.17
1.86 0.00 0.00 0.00 1.19 2.02 2.48 2.68 2.78 2.85 2.89 2.93 2.97 3.03 3.06 3.09 3.20
1.87 0.00 0.00 0.00 1.12 1.95 2.41 2.61 2.71 2.78 2.82 2.86 2.90 2.96 2.99 3.02 3.03
1.88 0.00 0.00 0.00 1.06 1.88 2.34 2.54 2.64 2.71 2.75 2.79 2.83 2.89 2.92 2.95 2.94
1.89 0.00 0.00 0.00 0.99 1.81 2.28 2.47 2.57 2.64 2.69 2.72 2.77 2.83 2.85 2.88 2.90

1.90 0.00 0.00 0.00 0.93 1.75 2.21 2.40 2.51 2.57 2.62 2.65 2.70 2.76 2.79 2.82 2.83
1.91 0.00 0.00 0.00 0.87 1.68 2.14 2.34 2.44 2.51 2.56 2.59 2.63 2.69 2.72 2.75 2.77
1.92 0.00 0.00 0.00 0.81 1.62 2.08 2.27 2.38 2.45 2.49 2.52 2.57 2.63 2.66 2.69 2.70
1.93 0.00 0.00 0.00 0.76 1.56 2.02 2.21 2.32 2.38 2.43 2.46 2.51 2.57 2.60 2.62 2.64
1.94 0.00 0.00 0.00 0.70 1.50 1.96 2.15 2.25 2.32 2.37 2.40 2.45 2.51 2.54 2.56 2.58
1.95 0.00 0.00 0.00 0.65 1.44 1.90 2.09 2.19 2.26 2.31 2.34 2.39 2.45 2.48 2.50 2.52
1.96 0.00 0.00 0.00 0.60 1.38 1.84 2.03 2.14 2.20 2.25 2.28 2.33 2.39 2.42 2.44 2.46
1.97 0.00 0.00 0.00 0.56 1.33 1.78 1.97 2.08 2.14 2.19 2.22 2.27 2.33 2.36 2.39 2.40
1.98 0.00 0.00 0.00 0.51 1.27 1.73 1.92 2.02 2.09 2.13 2.17 2.21 2.27 2.30 2.33 2.34
1.99 0.00 0.00 0.00 0.47 1.22 1.67 1.86 1.97 2.03 2.08 2.11 2.16 2.22 2.25 2.27 2.29

2.00 0.00 0.00 0.00 0.43 1.17 1.62 1.81 1.91 1.98 2.03 2.06 2.10 2.16 2.19 2.22 2.23
2.01 0.00 0.00 0.00 0.39 1.12 1.57 1.76 1.86 1.93 1.97 2.01 2.05 2.11 2.14 2.17 2.18
2.02 0.00 0.00 0.00 0.36 1.07 1.52 1.71 1.81 1.87 1.92 1.95 2.00 2.06 2.09 2.11 2.13
2.03 0.00 0.00 0.00 0.32 1.03 1.47 1.66 1.76 1.82 1.87 1.90 1.95 2.01 2.04 2.06 2.08
2.04 0.00 0.00 0.00 0.29 0.98 1.42 1.61 1.71 1.77 1.82 1.85 1.90 1.96 1.99 2.01 2.03
2.05 0.00 0.00 0.00 0.26 0.94 1.37 1.56 1.66 1.73 1.77 1.80 1.85 1.91 1.94 1.96 1.98
2.06 0.00 0.00 0.00 0.23 0.90 1.33 1.51 1.61 1.68 1.72 1.76 1.80 1.86 1.89 1.92 1.93
2.07 0.00 0.00 0.00 0.21 0.86 1.28 1.47 1.57 1.63 1.68 1.71 1.76 1.81 1.84 1.87 1.88
2.08 0.00 0.00 0.00 0.18 0.82 1.24 1.42 1.52 1.59 1.63 1.64 1.71 1.77 1.79 1.82 1.84
2.09 0.00 0.00 0.00 0.16 0.78 1.20 1.38 1.48 1.54 1.59 1.62 1.66 1.72 1.75 1.48 1.79

2.10 0.00 0.00 0.00 0.14 0.74 1.16 1.34 1.44 1.50 1.54 1.58 1.62 1.68 1.71 1.73 1.75
2.11 0.00 0.00 0.00 0.12 0.71 1.12 1.30 1.39 1.46 1.50 1.53 1.58 1.63 1.66 1.69 1.70
2.12 0.00 0.00 0.00 0.10 0.67 1.08 1.26 1.35 1.42 1.46 1.49 1.54 1.59 1.62 1.65 1.66
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2.13 0.00 0.00 0.00 0.08 0.64 1.04 1.22 1.31 1.38 1.42 1.45 1.50 1.55 1.58 1.61 1.62
2.14 0.00 0.00 0.00 0.07 0.61 1.00 1.18 1.28 1.34 1.38 1.41 1.46 1.51 1.54 1.57 1.58
2.15 0.00 0.00 0.00 0.06 0.58 0.97 1.14 1.24 1.30 1.34 1.37 1.42 1.47 1.50 1.53 1.54
2.16 0.00 0.00 0.00 0.05 0.55 0.93 1.10 1.20 1.26 1.30 1.34 1.38 1.43 1.46 1.49 1.50
2.17 0.00 0.00 0.00 0.04 0.52 0.90 1.07 1.16 1.22 1.27 1.30 1.34 1.40 1.42 1.45 1.46
2.18 0.00 0.00 0.00 0.03 0.49 0.87 1.03 1.13 1.19 1.23 1.26 1.30 1.36 1.39 1.41 1.42
2.19 0.00 0.00 0.00 0.02 0.46 0.83 1.00 1.09 1.15 1.20 1.23 1.27 1.32 1.35 1.38 1.39

2.20 0.000 0.000 0.000 0.015 0.437 0.803 0.968 1.061 1.120 1.161 1.192 1.233 1.287 1.314 1.340 1.352
2.21 0.000 0.000 0.000 0.010 0.413 0.772 0.936 1.028 1.087 1.128 1.158 1.199 1.253 1.279 1.305 1.318
2.22 0.000 0.000 0.000 0.006 0.389 0.743 0.905 0.996 1.054 1.095 1.125 1.166 1.219 1.245 1.271 1.283
2.23 0.000 0.000 0.000 0.003 0.366 0.715 0.875 0.965 1.023 1.063 1.093 1.134 1.186 1.212 1.238 1.250
2.24 0.000 0.000 0.000 0.002 0.345 0.687 0.845 0.935 0.992 1.032 1.061 1.102 1.154 1.180 1.205 1.218
2.25 0.000 0.000 0.000 0.001 0.324 0.660 0.816 0.905 0.962 1.002 1.031 1.071 1.123 1.148 1.173 1.186
2.26 0.000 0.000 0.000 0.000 0.304 0.634 0.789 0.876 0.933 0.972 1.001 1.041 1.092 1.117 1.142 1.155
2.27 0.000 0.000 0.000 0.000 0.285 0.609 0.762 0.848 0.904 0.943 0.972 1.011 1.062 1.087 1.112 1.124
2.28 0.000 0.000 0.000 0.000 0.267 0.585 0.735 0.821 0.876 0.915 0.943 0.982 1.033 1.058 1.082 1.094
2.29 0.000 0.000 0.000 0.000 0.250 0.561 0.710 0.794 0.849 0.887 0.915 0.954 1.004 1.029 1.053 1.065

2.30 0.000 0.000 0.000 0.000 0.233 0.538 0.685 0.769 0.823 0.861 0.888 0.927 0.977 1.001 1.025 1.037
2.31 0.000 0.000 0.000 0.000 0.218 0.516 0.661 0.743 0.797 0.834 0.862 0.900 0.949 0.974 0.997 1.009
2.32 0.000 0.000 0.000 0.000 0.203 0.495 0.637 0.719 0.772 0.809 0.836 0.874 0.923 0.947 0.971 0.982
2.33 0.000 0.000 0.000 0.000 0.189 0.474 0.614 0.695 0.748 0.784 0.811 0.848 0.897 0.921 0.944 0.956
2.34 0.000 0.000 0.000 0.000 0.175 0.454 0.592 0.672 0.724 0.760 0.787 0.824 0.872 0.895 0.915 0.930
2.35 0.000 0.000 0.000 0.000 0.163 0.435 0.571 0.650 0.701 0.736 0.763 0.799 0.847 0.870 0.893 0.905
2.36 0.000 0.000 0.000 0.000 0.151 0.416 0.550 0.628 0.678 0.714 0.740 0.776 0.823 0.846 0.869 0.880
2.37 0.000 0.000 0.000 0.000 0.139 0.398 0.530 0.606 0.656 0.691 0.717 0.753 0.799 0.822 0.845 0.856
2.38 0.000 0.000 0.000 0.000 0.128 0.381 0.510 0.586 0.635 0.670 0.695 0.730 0.777 0.799 0.822 0.833
2.39 0.000 0.000 0.000 0.000 0.118 0.364 0.491 0.566 0.614 0.648 0.674 0.709 0.754 0.777 0.799 0.810

2.40 0.000 0.000 0.000 0.000 0.109 0.348 0.473 0.546 0.594 0.628 0.653 0.687 0.732 0.755 0.777 0.787
2.41 0.000 0.000 0.000 0.000 0.100 0.332 0.455 0.527 0.575 0.608 0.633 0.667 0.711 0.733 0.755 0.766
2.42 0.000 0.000 0.000 0.000 0.091 0.317 0.437 0.509 0.555 0.588 0.613 0.646 0.691 0.712 0.734 0.744
2.43 0.000 0.000 0.000 0.000 0.083 0.302 0.421 0.491 0.537 0.569 0.593 0.627 0.670 0.692 0.713 0.724
2.44 0.000 0.000 0.000 0.000 0.076 0.288 0.404 0.474 0.519 0.551 0.575 0.608 0.651 0.672 0.693 0.703
2.45 0.000 0.000 0.000 0.000 0.069 0.275 0.389 0.457 0.501 0.533 0.556 0.589 0.632 0.653 0.673 0.684
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TABLE T12.7 (continued): MIL-STD-414 Table B-5—Table for estimating the lot percent defective using standard deviation method.a

QU or
QL

Sample Size

3 4 5 7 10 15 20 25 30 35 40 50 75 100 150 200

2.46 0.000 0.000 0.000 0.000 0.063 0.262 0.373 0.440 0.484 0.516 0.539 0.571 0.613 0.634 0.654 0.664
2.47 0.000 0.000 0.000 0.000 0.057 0.249 0.359 0.425 0.468 0.499 0.521 0.553 0.595 0.615 0.635 0.646
2.48 0.000 0.000 0.000 0.000 0.051 0.237 0.344 0.409 0.452 0.482 0.505 0.536 0.577 0.597 0.617 0.627
2.49 0.000 0.000 0.000 0.000 0.046 0.226 0.331 0.394 0.436 0.466 0.488 0.519 0.560 0.580 0.600 0.609

2.50 0.000 0.000 0.000 0.000 0.041 0.214 0.317 0.380 0.421 0.451 0.473 0.503 0.543 0.563 0.582 0.392
2.51 0.000 0.000 0.000 0.000 0.037 0.204 0.304 0.366 0.407 0.436 0.457 0.487 0.527 0.546 0.565 0.575
2.52 0.000 0.000 0.000 0.000 0.033 0.193 0.292 0.352 0.392 0.421 0.442 0.472 0.511 0.530 0.549 0.558
2.53 0.000 0.000 0.000 0.000 0.029 0.184 0.280 0.339 0.379 0.407 0.428 0.457 0.495 0.514 0.533 0.542
2.54 0.000 0.000 0.000 0.000 0.026 0.174 0.268 0.326 0.365 0.393 0.413 0.442 0.480 0.499 0.517 0.527
2.55 0.000 0.000 0.000 0.000 0.023 0.165 0.257 0.314 0.352 0.379 0.400 0.428 0.465 0.484 0.502 0.511
2.56 0.000 0.000 0.000 0.000 0.020 0.156 0.246 0.302 0.340 0.366 0.386 0.414 0.451 0.469 0.487 0.496
2.57 0.000 0.000 0.000 0.000 0.017 0.148 0.236 0.291 0.327 0.354 0.373 0.401 0.437 0.455 0.473 0.482
2.58 0.000 0.000 0.000 0.000 0.015 0.140 0.226 0.279 0.316 0.341 0.361 0.388 0.424 0.441 0.459 0.468
2.59 0.000 0.000 0.000 0.000 0.013 0.133 0.216 0.269 0.304 0.330 0.349 0.375 0.410 0.428 0.445 0.454

2.60 0.000 0.000 0.000 0.000 0.011 0.125 0.207 0.258 0.293 0.318 0.337 0.363 0.398 0.415 0.432 0.441
2.61 0.000 0.000 0.000 0.000 0.009 0.118 0.198 0.248 0.282 0.307 0.325 0.351 0.385 0.402 0.419 0.428
2.62 0.000 0.000 0.000 0.000 0.008 0.112 0.189 0.238 0.272 0.296 0.314 0.339 0.373 0.390 0.406 0.415
2.63 0.000 0.000 0.000 0.000 0.007 0.105 0.181 0.229 0.262 0.285 0.303 0.328 0.361 0.378 0.394 0.402
2.64 0.000 0.000 0.000 0.000 0.005 0.099 0.172 0.220 0.252 0.275 0.293 0.317 0.350 0.366 0.382 0.390
2.65 0.000 0.000 0.000 0.000 0.005 0.094 0.165 0.211 0.243 0.265 0.282 0.307 0.339 0.355 0.371 0.379
2.66 0.000 0.000 0.000 0.000 0.004 0.088 0.157 0.202 0.233 0.256 0.273 0.296 0.328 0.344 0.359 0.367
2.67 0.000 0.000 0.000 0.000 0.003 0.083 0.150 0.194 0.224 0.246 0.263 0.286 0.317 0.333 0.348 0.356
2.68 0.000 0.000 0.000 0.000 0.002 0.078 0.143 0.186 0.216 0.237 0.254 0.277 0.307 0.322 0.338 0.345
2.69 0.000 0.000 0.000 0.000 0.002 0.073 0.136 0.179 0.208 0.229 0.245 0.267 0.297 0.312 0.327 0.335

2.70 0.000 0.000 0.000 0.000 0.001 0.069 0.130 0.171 0.200 2.20 0.236 0.258 0.288 0.302 0.317 0.325
2.71 0.000 0.000 0.000 0.000 0.001 0.064 0.124 0.164 0.192 0.212 0.227 0.249 0.278 0.293 0.307 0.315
2.72 0.000 0.000 0.000 0.000 0.000 0.060 0.118 0.157 0.184 0.204 0.219 0.241 0.269 0.283 0.298 0.305
2.73 0.000 0.000 0.000 0.000 0.000 0.057 0.112 0.151 0.177 0.197 0.211 0.232 0.260 0.274 0.288 0.296
2.74 0.000 0.000 0.000 0.000 0.000 0.053 0.107 0.144 0.170 0.189 0.204 0.224 0.252 0.266 0.279 0.286
2.75 0.000 0.000 0.000 0.000 0.000 0.049 0.102 0.138 0.163 0.182 0.196 0.216 0.243 0.247 0.271 0.277
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2.76 0.000 0.000 0.000 0.000 0.000 0.046 0.097 0.132 0.157 0.175 0.189 0.209 0.235 0.249 0.262 0.269
2.77 0.000 0.000 0.000 0.000 0.000 0.043 0.092 0.126 0.151 0.168 0.182 0.201 0.227 0.241 0.254 0.260
2.78 0.000 0.000 0.000 0.000 0.000 0.040 0.087 0.121 0.145 0.162 0.175 0.194 0.220 0.233 0.246 0.252
2.79 0.000 0.000 0.000 0.000 0.000 0.037 0.083 0.115 0.139 0.156 0.169 0.187 0.212 0.225 0.238 0.244

2.80 0.000 0.000 0.000 0.000 0.000 0.035 0.079 0.110 0.133 0.150 0.162 0.181 0.205 0.218 0.230 0.237
2.81 0.000 0.000 0.000 0.000 0.000 0.032 0.075 0.105 0.128 0.144 0.156 0.174 0.198 0.211 0.223 0.229
2.82 0.000 0.000 0.000 0.000 0.000 0.030 0.071 0.101 0.122 0.138 0.150 0.168 0.192 0.204 0.216 0.222
2.83 0.000 0.000 0.000 0.000 0.000 0.028 0.067 0.096 0.117 0.133 0.145 0.162 0.185 0.197 0.209 0.215
2.84 0.000 0.000 0.000 0.000 0.000 0.026 0.064 0.092 0.112 0.128 0.139 0.156 0.179 0.190 0.202 0.208
2.85 0.000 0.000 0.000 0.000 0.000 0.024 0.060 0.088 0.108 0.122 0.134 0.150 0.173 0.184 0.195 0.201
2.86 0.000 0.000 0.000 0.000 0.000 0.022 0.057 0.084 0.103 0.118 0.129 0.145 0.167 0.178 0.189 0.195
2.87 0.000 0.000 0.000 0.000 0.000 0.020 0.054 0.080 0.099 0.113 0.124 0.139 0.161 0.172 0.183 0.188
2.88 0.000 0.000 0.000 0.000 0.000 0.019 0.051 0.076 0.094 0.108 0.119 0.134 0.155 0.166 0.177 0.182
2.89 0.000 0.000 0.000 0.000 0.000 0.017 0.048 0.073 0.090 0.104 0.114 0.129 0.150 0.160 0.171 0.176

2.90 0.000 0.000 0.000 0.000 0.000 0.016 0.046 0.069 0.087 0.100 0.110 0.125 0.145 0.155 0.165 0.171
2.91 0.000 0.000 0.000 0.000 0.000 0.015 0.043 0.066 0.083 0.096 0.106 0.120 0.140 0.150 0.160 0.165
2.92 0.000 0.000 0.000 0.000 0.000 0.013 0.041 0.063 0.079 0.092 0.101 0.115 0.135 0.145 0.155 0.160
2.93 0.000 0.000 0.000 0.000 0.000 0.012 0.038 0.060 0.076 0.088 0.097 0.111 0.130 0.140 0.149 0.154
2.94 0.000 0.000 0.000 0.000 0.000 0.011 0.036 0.057 0.072 0.084 0.093 0.107 0.125 0.135 0.144 0.149
2.95 0.000 0.000 0.000 0.000 0.000 0.010 0.034 0.054 0.069 0.081 0.090 0.103 0.121 0.130 0.140 0.144
2.96 0.000 0.000 0.000 0.000 0.000 0.009 0.032 0.051 0.066 0.077 0.086 0.099 0.117 0.126 0.135 0.140
2.97 0.000 0.000 0.000 0.000 0.000 0.009 0.030 0.049 0.063 0.074 0.083 0.095 0.112 0.121 0.130 0.135
2.98 0.000 0.000 0.000 0.000 0.000 0.008 0.028 0.046 0.060 0.071 0.079 0.091 0.108 0.117 0.126 0.130
2.99 0.000 0.000 0.000 0.000 0.000 0.007 0.027 0.044 0.057 0.068 0.076 0.088 0.104 0.113 0.122 0.126

3.00 0.000 0.000 0.000 0.000 0.000 0.006 0.025 0.042 0.055 0.065 0.073 0.084 0.101 0.109 0.118 0.122
3.01 0.000 0.000 0.000 0.000 0.000 0.006 0.024 0.040 0.052 0.062 0.070 0.081 0.097 0.105 0.114 0.118
3.02 0.000 0.000 0.000 0.000 0.000 0.005 0.022 0.038 0.050 0.059 0.067 0.078 0.093 0.101 0.110 0.114
3.03 0.000 0.000 0.000 0.000 0.000 0.005 0.021 0.036 0.048 0.057 0.064 0.075 0.090 0.098 0.106 0.110
3.04 0.000 0.000 0.000 0.000 0.000 0.004 0.019 0.034 0.045 0.054 0.061 0.072 0.087 0.094 0.102 0.106
3.05 0.000 0.000 0.000 0.000 0.000 0.004 0.018 0.032 0.043 0.052 0.059 0.069 0.083 0.091 0.099 0.103
3.06 0.000 0.000 0.000 0.000 0.000 0.003 0.017 0.030 0.041 0.050 0.056 0.066 0.080 0.088 0.095 0.099
3.07 0.000 0.000 0.000 0.000 0.000 0.003 0.016 0.029 0.039 0.047 0.054 0.064 0.077 0.085 0.092 0.096
3.08 0.000 0.000 0.000 0.000 0.000 0.003 0.015 0.027 0.037 0.045 0.052 0.061 0.074 0.081 0.089 0.092
3.09 0.000 0.000 0.000 0.000 0.000 0.002 0.014 0.026 0.036 0.043 0.049 0.059 0.072 0.079 0.086 0.089
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TABLE T12.7 (continued): MIL-STD-414 Table B-5—Table for estimating the lot percent defective using standard deviation method.a

QU or
QL

Sample Size

3 4 5 7 10 15 20 25 30 35 40 50 75 100 150 200

3.10 0.000 0.000 0.000 0.000 0.000 0.002 0.013 0.024 0.034 0.041 0.047 0.056 0.069 0.076 0.083 0.086
3.11 0.000 0.000 0.000 0.000 0.000 0.002 0.012 0.023 0.032 0.039 0.045 0.054 0.066 0.073 0.080 0.083
3.12 0.000 0.000 0.000 0.000 0.000 0.002 0.011 0.022 0.031 0.038 0.043 0.052 0.064 0.070 0.077 0.080
3.13 0.000 0.000 0.000 0.000 0.000 0.002 0.011 0.021 0.029 0.036 0.041 0.050 0.061 0.068 0.074 0.077
3.14 0.000 0.000 0.000 0.000 0.000 0.001 0.010 0.019 0.028 0.034 0.040 0.048 0.059 0.065 0.071 0.075
3.15 0.000 0.000 0.000 0.000 0.000 0.001 0.009 0.018 0.026 0.033 0.038 0.046 0.057 0.063 0.069 0.072
3.16 0.000 0.000 0.000 0.000 0.000 0.001 0.009 0.017 0.025 0.031 0.036 0.044 0.055 0.060 0.066 0.069
3.17 0.000 0.000 0.000 0.000 0.000 0.001 0.008 0.016 0.024 0.030 0.035 0.042 0.053 0.058 0.064 0.067
3.18 0.000 0.000 0.000 0.000 0.000 0.001 0.007 0.015 0.022 0.028 0.033 0.040 0.050 0.056 0.062 0.065
3.19 0.000 0.000 0.000 0.000 0.000 0.001 0.007 0.015 0.021 0.027 0.032 0.038 0.049 0.054 0.059 0.062

3.20 0.000 0.000 0.000 0.000 0.000 0.001 0.006 0.014 0.020 0.026 0.030 0.037 0.047 0.052 0.057 0.060
3.21 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.013 0.019 0.024 0.029 0.035 0.045 0.050 0.055 0.058
3.22 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.012 0.018 0.023 0.027 0.034 0.043 0.048 0.053 0.056
3.23 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.011 0.017 0.022 0.026 0.032 0.041 0.046 0.051 0.054
3.24 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.011 0.016 0.021 0.025 0.031 0.040 0.044 0.049 0.052
3.25 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.010 0.015 0.020 0.024 0.030 0.038 0.043 0.048 0.050
3.26 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.009 0.015 0.019 0.023 0.028 0.037 0.041 0.046 0.048
3.27 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.009 0.014 0.019 0.022 0.027 0.035 0.040 0.044 0.046
3.28 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.008 0.013 0.017 0.021 0.026 0.034 0.038 0.042 0.045
3.29 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.008 0.012 0.016 0.020 0.025 0.032 0.037 0.041 0.043

3.30 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.007 0.012 0.015 0.019 0.024 0.031 0.035 0.039 0.042
3.31 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.007 0.011 0.015 0.018 0.023 0.030 0.034 0.038 0.040
3.32 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.006 0.010 0.014 0.017 0.022 0.029 0.032 0.036 0.039
3.33 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.006 0.010 0.013 0.016 0.021 0.027 0.031 0.035 0.037
3.34 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.006 0.009 0.013 0.015 0.020 0.026 0.030 0.034 0.036
3.35 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.005 0.009 0.012 0.015 0.019 0.025 0.029 0.032 0.034
3.36 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.005 0.008 0.011 0.014 0.018 0.024 0.028 0.031 0.033
3.37 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.005 0.008 0.011 0.013 0.017 0.023 0.026 0.030 0.032
3.38 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.007 0.010 0.013 0.016 0.022 0.025 0.029 0.031
3.39 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.007 0.010 0.012 0.016 0.021 0.024 0.028 0.029
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3.40 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.007 0.009 0.011 0.015 0.020 0.023 0.027 0.028
3.41 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.006 0.009 0.011 0.014 0.020 0.022 0.026 0.027
3.42 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.006 0.008 0.010 0.014 0.019 0.022 0.025 0.026
3.43 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.005 0.008 0.010 0.013 0.018 0.021 0.024 0.025
3.44 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.005 0.007 0.009 0.012 0.017 0.020 0.023 0.024
3.45 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.005 0.007 0.009 0.012 0.016 0.019 0.022 0.023
3.46 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.005 0.007 0.008 0.11 0.016 0.018 0.021 0.022
3.47 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.004 0.006 0.008 0.011 0.015 0.017 0.020 0.022
3.48 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.004 0.006 0.007 0.010 0.014 0.017 0.019 0.021
3.49 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.004 0.005 0.007 0.010 0.014 0.016 0.019 0.020

3.50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.003 0.005 0.007 0.009 0.013 0.015 0.018 0.019
3.51 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.003 0.005 0.006 0.009 0.013 0.015 0.017 0.018
3.52 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.003 0.005 0.006 0.008 0.012 0.014 0.017 0.018
3.53 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.004 0.006 0.008 0.012 0.014 0.016 0.017
3.54 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.004 0.005 0.008 0.011 0.013 0.015 0.016
3.55 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.004 0.005 0.007 0.011 0.012 0.015 0.016
3.56 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.004 0.005 0.007 0.010 0.012 0.014 0.015
3.57 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.005 0.006 0.010 0.011 0.013 0.014
3.58 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.004 0.006 0.009 0.011 0.013 0.014
3.59 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.004 0.006 0.009 0.010 0.012 0.013

3.60 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.004 0.006 0.008 0.010 0.012 0.013
3.61 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.004 0.005 0.008 0.010 0.011 0.012
3.62 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.003 0.005 0.008 0.009 0.011 0.012
3.63 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.005 0.007 0.009 0.010 0.011
3.64 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.004 0.007 0.008 0.010 0.011
3.65 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.004 0.007 0.008 0.010 0.010
3.66 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.004 0.006 0.008 0.009 0.010
3.67 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.004 0.006 0.007 0.009 0.010
3.68 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.002 0.004 0.006 0.007 0.008 0.009
3.69 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.002 0.003 0.005 0.007 0.008 0.009

3.70 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.002 0.003 0.005 0.006 0.008 0.008
3.71 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.005 0.006 0.007 0.008
3.72 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.005 0.006 0.007 0.008
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TABLE T12.7 (continued): MIL-STD-414 Table B-5—Table for estimating the lot percent defective using standard deviation method.a

QU or
QL

Sample Size

3 4 5 7 10 15 20 25 30 35 40 50 75 100 150 200

3.73 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.005 0.006 0.007 0.007
3.74 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.004 0.005 0.007 0.007
3.75 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.004 0.005 0.006 0.007
3.76 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.002 0.004 0.005 0.006 0.007
3.77 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.002 0.004 0.005 0.006 0.006
3.78 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.01 0.002 0.004 0.004 0.005 0.006
3.79 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.004 0.005 0.006

3.80 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.004 0.005 0.006
3.81 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.004 0.005 0.005
3.82 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.004 0.005 0.005
3.83 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.004 0.004 0.005
3.84 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.003 0.003 0.004 0.005
3.85 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.002 0.003 0.004 0.004
3.86 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.004 0.004
3.87 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.004 0.004
3.88 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.004 0.004
3.89 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.003 0.004
3.90 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.003 0.004

a Values tabulated are read in percent.
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TABLE T12.8: MID-STD-414 Table B-1—master table for normal and tightened inspection for plans based on variability unknown: standard
deviation method (single specification limit, form 1).

Sample
Size
Code
Letter

Sample
Size

Acceptable Quality Levels (Normal Inspection)

.04 .065 .10 .15 .25 .40 .65 1.00 1.50 2.50 4.00 6.50 10.00 15.00

k k k k k k k k k k k k k k

B 3 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 1.12 .958 .765 .566 .341
C 4 ¯ ¯ ¯ ¯ ¯ ¯ ¯ 1.45 1.34 1.17 1.01 .814 .617 .393

D 5 ¯ ¯ ¯ ¯ ¯ ¯ 1.65 1.53 1.40 1.24 1.07 .874 .675 .455
E 7 ¯ ¯ ¯ ¯ 2.00 1.88 1.75 1.62 1.50 1.33 1.15 .955 .755 .536
F 10 ¯ ¯ ¯ 2.24 2.11 1.98 1.84 1.72 1.58 1.41 1.23 1.03 .828 .611

G 15 2.64 2.53 2.42 2.32 2.20 2.06 1.91 1.79 1.65 1.47 1.30 1.09 .886 .664
H 20 2.69 2.58 2.47 2.36 2.24 2.11 1.96 1.82 1.69 1.51 1.33 1.12 .917 .695
I 25 2.72 2.61 2.50 2.40 2.26 2.14 1.98 1.85 1.72 1.53 1.35 1.14 .936 .712

J 30 2.73 2.61 2.51 2.41 2.28 2.15 2.00 1.86 1.73 1.55 1.36 1.15 .946 .723
K 35 2.77 2.65 2.54 2.45 2.31 2.18 2.03 1.89 1.76 1.57 1.39 1.18 .969 .745
L 40 2.77 2.66 2.55 2.44 2.31 2.18 2.03 1.89 1.76 1.58 1.39 1.18 .971 .746

M 50 2.83 2.71 2.60 2.50 2.35 2.22 2.08 1.93 1.80 1.61 1.42 1.21 1.00 .774
N 75 2.90 2.77 2.66 2.55 2.41 2.27 2.12 1.98 1.84 1.65 1.46 1.24 1.03 .804
O 100 2.92 2.80 2.69 2.58 2.43 2.29 2.14 2.00 1.86 1.67 1.48 1.26 1.05 .819

P 150 2.96 2.84 2.73 2.61 2.47 2.33 2.18 2.03 1.89 1.70 1.51 1.29 1.07 .841
Q 200 2.97 2.85 2.73 2.62 2.47 2.33 2.18 2.04 1.89 1.70 1.51 1.29 1.07 .845

.065 .10 .15 .25 .40 .65 1.00 1.50 2.50 4.00 6.50 10.00 15.00

Acceptability Quality Levels (Tightened Inspection)

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Variables for Percent Defective (MIL-STD-414), U.S. Government
Printing Office, Washington, DC, 1957, 39.

All AQL values are in percent defective.

¯

Use first sampling plan below arrow, that is, both sample size as well as k value. When sample size equals or exceeds lot size, every item in the lot must be inspected.
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TABLE T12.9: MIL-STD-414 Table B-2—master table for reduced inspection for plans based on variability unknown: standard deviation method
(single specification limit, form 1).

Sample
Size
Code
Letter

Sample
Size

Acceptable Quality Levels (Normal Inspection)

.04 .065 .10 .15 .25 .40 .65 1.00 1.50 2.50 4.00 6.50 10.00

k k k k k k k k k k k k k

B 3 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 1.12 .958 .765 .566 .341
C 3 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 1.12 .958 .765 .566 .341

D 3 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 1.12 .958 .765 .566 .341
E 3 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 1.12 .958 .765 .566 .341
F 4 ¯ ¯ ¯ ¯ ¯ ¯ 1.45 1.34 1.17 1.01 .814 .617 .393

G 5 ¯ ¯ ¯ ¯ ¯ 1.65 1.53 1.40 1.24 1.07 .874 .675 .455
H 7 ¯ ¯ ¯ 2.00 1.88 1.75 1.62 1.50 1.33 1.15 .955 .755 .536
I 10 ¯ ¯ 2.24 2.11 1.98 1.84 1.72 1.58 1.41 1.23 1.03 .828 .611

J 10 ¯ ¯ 2.24 2.11 1.98 1.84 1.72 1.58 1.41 1.23 1.03 .828 .611
K 15 2.53 2.42 2.32 2.20 2.06 1.91 1.79 1.65 1.47 1.30 1.09 .886 .664
L 20 2.58 2.47 2.36 2.24 2.11 1.96 1.82 1.69 1.51 1.33 1.12 .917 .695

M 20 2.58 2.47 2.36 2.24 2.11 1.96 1.82 1.69 1.51 1.33 1.12 .917 .695
N 25 2.61 2.50 2.40 2.26 2.14 1.98 1.85 1.72 1.53 1.35 1.14 .936 .712
O 30 2.61 2.51 2.41 2.28 2.15 2.00 1.86 1.73 1.55 1.36 1.15 .946 .723

P 50 2.71 2.60 2.50 2.35 2.22 2.08 1.93 1.80 1.61 1.42 1.21 1.00 .774
Q 75 2.77 2.66 2.55 2.41 2.27 2.12 1.98 1.84 1.65 1.46 1.24 1.03 .804

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Variables for Percent Defective (MIL-STD-414), U.S. Government
Printing Office, Washington, DC, 1957, 40.

All AQL values are in percent defective.

¯

Use first sampling plan below arrow, that is, both sample size as well as k value. When sample size equals or exceeds lot size, every item in the lot must be inspected.
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TABLE T12.10: MIL-STD-414 Table B-8—values of F for maximum standard deviation (MSD).

Sample Size
Code Letter

Sample
Size

Acceptable Quality Levels (in Percent Defective)

.04 .065 .10 .15 .25 .40 .65 1.00 1.50 2.50 4.00 6.50 10.00 15.00

B 3 .436 .453 .475 .502 .538
C 4 .339 .353 .374 .399 .432 .472 .528

D 5 .294 .308 .323 .346 .372 .408 .452 .511
E 7 .242 .253 .266 .280 .295 .318 .345 .381 .425 .485
F 10 .214 .224 .235 .248 .261 .276 .298 .324 .359 .403 .460

G 15 .182 .188 .195 .202 .211 .222 .235 .248 .262 .284 .309 .344 .386 .442
H 20 .177 .183 .190 .197 .206 .216 .229 .242 .255 .277 .302 .336 .377 .432
I 25 .174 .180 .187 .193 .203 .212 .225 .238 .251 .273 .297 .331 .372 .426

J 30 .173 .179 .185 .192 .201 .210 .223 .236 .249 .270 .295 .328 .369 .423
K 35 .170 .176 .183 .189 .198 .208 .220 .232 .245 .266 .291 .323 .364 .416
L 40 .169 .176 .182 .188 .198 .207 .219 .232 .245 .266 .290 .323 .363 .416

M 50 .166 .172 .178 .184 .194 .203 .214 .227 .241 .261 .284 .317 .356 .408
N 75 .162 .168 .174 .181 .189 .199 .211 .223 .235 .255 .279 .310 .348 .399
O 100 .160 .166 .172 .179 .187 .197 .208 .220 .233 .253 .276 .307 .345 .395

P 150 .158 .163 .170 .175 .185 .193 .206 .216 .230 .249 .271 .302 .341 .388
Q 200 .157 .163 .168 .175 .183 .193 .203 .215 .228 .248 .269 .302 .338 .386

Source: United States Department of Defense, Military Standard, Sampling Procedures and Tables for Inspection by Variables for Percent Defective (MIL-STD-414), U.S. Government
Printing Office, Washington, DC, 1957, 58.

Notes: The MSD may be obtained by multiplying the factor F by the difference between the upper specification limit U and lower specification limit L. The formula is MSD¼F(U�L).
The MSD serves as a guide for the magnitude of the estimate of lot standard deviation when using plans for the double specification limit case, based on the estimate of lot standard
deviation of unknown variability. The estimate of lot standard deviation, if it is less than the MSD, helps to insure, but does not guarantee, lot acceptability.

There is a corresponding acceptability constant in Table B.1 for each value of F. For reduced inspection, find the acceptability constant of Table B.2 in Table B.1 and use the corresponding
value of F.
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TABLE T13.1: Values of plotting positions (pi) to be used in plotting on normal probability
paper for the no-calc procedure.

n p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

2 18.775
3 14.020 50.000
4 10.982 38.288
5 8.940 31.271 50.000
6 7.490 26.485 42.231
7 6.416 22.979 36.620 50.000
8 5.592 20.290 32.350 44.140
9 4.942 18.159 28.979 39.537 50.000
10 4.419 16.426 26.245 35.816 45.282
11 3.988 14.990 23.980 32.740 41.392 50.000
12 3.629 13.779 22.073 30.151 38.125 46.047
13 3.326 12.746 20.444 27.941 35.339 42.682 50.000
14 3.066 11.853 19.036 26.032 32.933 39.779 46.596
15 2.841 11.075 17.807 24.365 30.834 37.248 43.631 50.000
16 2.645 10.390 16.724 22.897 28.985 35.021 41.024 47.010
17 2.473 9.783 15.764 21.595 27.345 33.045 38.712 44.361 50.000
18 2.321 9.241 14.906 20.431 25.879 31.279 36.648 41.996 47.333
19 2.185 8.7545 14.136 19.384 24.561 29.692 34.793 39.872 44.939 50.000
20 2.063 8.3158 13.439 18.438 23.370 28.258 33.110 37.962 42.779 47.589

Source: Reprinted from Chernoff, H. and Lieberman, G.J., Ind. Qual. Control, 13(7), 5, 1957. With permission.
Notes: When i> n=2 use pi¼ 100� pn� iþ 1.
For n> 20 use pi ¼ 2i�1

2n .

TABLE T13.2: Values of maximum estimated percentage defective allowing acceptance
of the lot (p*).

Code
Letter

Sample
Size

AQL

0.40 0.65 1.00 1.50 2.50 4.00 6.50 10.00 15.00

B 3 10.24 13.95 19.35 26.12 35.02
C 4 5.70 7.33 10.12 13.69 18.81 25.13 33.46
D 5 3.97 5.21 6.76 9.38 12.76 17.60 23.60 31.41
E 7 2.49 3.42 4.54 5.93 8.33 11.45 15.96 21.56 28.81
F 10 2.11 2.92 3.88 5.19 7.36 10.23 14.43 19.71 26.48
G 15 1.78 2.56 3.44 4.60 6.66 9.34 13.33 18.36 24.94
H 20 1.62 2.37 3.23 4.31 6.26 8.86 12.74 17.63 24.06
I 25 1.56 2.27 3.11 4.18 6.09 8.63 12.44 17.26 23.65
J 30 1.50 2.19 3.01 4.07 5.94 8.46 12.23 17.00 23.29
K 35 1.40 2.03 2.83 3.82 5.63 8.08 11.74 16.44 22.65
L 40 1.40 2.02 2.83 3.81 5.62 8.05 11.72 16.40 22.61
M 50 1.27 1.81 2.58 3.51 5.22 7.57 11.12 15.69 21.78
N 75 1.13 1.66 2.33 3.23 4.86 7.11 10.54 14.99 20.95
O 100 1.06 1.57 2.22 3.09 4.68 6.87 10.24 14.63 20.52
P 150 0.97 1.45 2.07 2.89 4.42 6.54 9.82 14.11 19.92
Q 200 0.96 1.43 2.05 2.87 4.38 6.49 9.76 14.04 19.84

Source: Reprinted from Chernoff, H. and Lieberman, G.J., Ind. Qual. Control, 13(7), 5, 1957. With permission.
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TABLE T13.3: Matched attributes narrow limit, known (s) and unknown (s) standard deviation
variables plans for values of p1 and p2 with a¼ .05, b¼ .10.

Attributes NL-Gauge Variables

p1 p2 n c n c t ns ns k

.001 .0015 40071 50 855 440 3.06 572 3180 3.02
.002 11729 17 285 135 2.91 191 1032 2.97
.0025 6114 10 160 80 2.94 107 567 2.93
.003 3888 7 110 55 2.91 74 381 2.90
.004 1976 4 67 35 2.92 45 226 2.84
.005 1319 3 49 23 2.75 33 160 2.80
.006 1099 3 38 19 2.80 26 124 2.77
.007 749 2 32 14 2.62 22 102 2.73
.008 655 2 28 14 2.75 19 87 2.71
.009 582 2 25 12 2.68 17 76 2.68
.01 524 2 22 11 2.72 15 67 2.66
.012 318 1 19 8 2.49 13 55 2.62
.015 254 1 15 7 2.58 11 44 2.57
.02 190 1 12 6 2.61 8 34 2.51
.025 152 1 10 5 2.58 7 27 2.46
.03 127 1 9 3 2.13 6 23 2.41
.035 108 1 8 4 2.52 6 20 2.37
.04 56 0 7 3 2.34 5 18 2.34
.05 44 0 6 3 2.48 5 15 2.28
.06 37 0 5 2 2.23 4 13 2.23

.0025 .004 11467 37 533 268 2.73 357 1678 2.72
.005 4689 17 240 113 2.61 161 736 2.68
.006 2743 11 148 71 2.60 99 443 2.64
.0075 1554 7 91 44 2.57 62 267 2.60
.01 789 4 56 28 2.56 38 157 2.54
.012 549 3 42 20 2.47 29 117 2.50
.015 439 3 32 16 2.49 22 85 2.45
.02 261 2 23 12 2.49 16 59 2.38
.025 209 2 18 9 2.40 12 45 2.33
.03 127 1 15 7 2.29 10 37 2.29
.035 108 1 13 6 2.25 9 31 2.25
.04 95 1 12 7 2.53 8 27 2.21
.05 76 1 10 3 1.77 7 22 2.15
.06 63 1 8 4 2.26 6 18 2.10

.005 .0075 8011 50 622 314 2.51 417 1714 2.50
.01 2343 17 206 111 2.54 138 547 2.44
.012 1370 11 128 62 2.37 85 327 2.40
.015 776 7 78 41 2.43 53 196 2.35
.02 394 4 47 22 2.23 32 114 2.28
.025 263 3 34 17 2.27 23 79 2.23
.03 219 3 27 14 2.28 18 61 2.19
.035 149 2 22 10 2.09 15 49 2.15
.04 130 2 19 9 2.11 13 41 2.11

(continued)
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TABLE T13.3 (continued): Matched attributes narrow limit, known (s) and unknown (s)
standard deviation variables plans for values of p1 and p2 with a¼ .05, b¼ .10.

Attributes NL-Gauge Variables

p1 p2 n c n c t ns ns k

.005 .05 104 2 15 8 2.22 10 31 2.05
.06 63 1 12 6 2.11 9 25 2.00
.07 54 1 11 4 1.73 8 21 1.96

.0075 .01 11158 98 1137 571 2.38 763 2909 2.37
.012 3820 37 420 212 2.35 279 1040 2.33
.015 1561 17 186 98 2.36 125 450 2.29
.02 703 9 90 43 2.18 60 208 2.22
.025 416 6 58 29 2.19 39 129 2.17
.03 262 4 43 23 2.24 29 92 2.12
.035 187 3 33 15 2.01 23 71 2.08
.04 164 3 28 12 1.92 19 58 2.05
.05 104 2 21 10 1.99 14 42 1.99
.06 86 2 17 8 1.94 12 33 1.94
.07 74 2 14 6 1.81 10 27 1.90
.08 47 1 12 6 1.96 9 23 1.86

.01 .015 4003 50 525 258 2.22 351 1231 2.24
.02 1170 17 173 85 2.16 116 388 2.17
.025 609 10 96 52 2.24 64 208 2.12
.03 387 7 65 31 2.04 44 137 2.08
.035 261 5 49 24 2.04 33 100 2.04
.04 196 4 39 20 2.07 26 78 2.00
.045 174 4 32 17 2.09 22 64 1.97
.05 131 3 28 14 1.99 19 54 1.94
.06 109 3 22 11 1.95 15 41 1.89
.07 74 2 18 8 1.78 12 33 1.85
.08 64 2 15 7 1.81 11 27 1.81
.09 57 2 13 6 1.78 9 23 1.77
.10 37 1 12 6 1.84 8 20 1.74

.015 .02 5576 98 945 470 2.10 633 2036 2.11
.025 1566 31 290 143 2.04 195 603 2.05
.03 779 17 154 79 2.05 103 309 2.01
.035 468 11 101 52 2.02 67 197 1.97
.04 320 8 73 37 1.97 49 140 1.93
.045 257 7 57 29 1.95 39 107 1.90
.05 207 6 47 24 1.93 32 86 1.88
.06 130 4 34 16 1.79 23 61 1.82
.07 93 3 27 13 1.78 18 46 1.78
.08 81 3 22 11 1.80 15 37 1.74
.09 57 2 19 8 1.57 13 31 1.70
.10 51 2 16 8 1.75 11 26 1.67
.11 47 2 14 7 1.73 10 23 1.64
.12 43 2 13 6 1.61 9 20 1.61
.13 39 2 12 5 1.48 8 18 1.58
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TABLE T13.3 (continued): Matched attributes narrow limit, known (s) and unknown (s)
standard deviation variables plans for values of p1 and p2 with a¼ .05, b¼ .10.

Attributes NL-Gauge Variables

p1 p2 n c n c t ns ns k

.015 .14 36 2 11 4 1.33 8 16 1.56
.15 25 1 10 4 1.41 7 15 1.53

.02 .03 1963 49 429 223 2.01 287 835 1.96
.035 958 26 219 110 1.93 147 416 1.92
.04 584 17 140 67 1.84 94 259 1.88
.045 390 12 100 49 1.84 67 182 1.85
.05 304 10 77 40 1.89 52 137 1.82
.06 193 7 52 26 1.80 35 89 1.77
.07 130 5 39 19 1.73 26 64 1.73
.08 97 4 31 15 1.69 21 50 1.69
.09 86 4 26 13 1.70 17 40 1.65
.10 65 3 22 12 1.79 15 34 1.62
.11 59 3 19 9 1.59 13 29 1.59
.12 43 2 17 8 1.56 12 25 1.56
.13 39 2 15 7 1.53 10 22 1.53
.15 34 2 12 5 1.38 9 18 1.48
.17 30 2 11 4 1.21 8 15 1.44
.20 18 1 9 3 1.09 6 12 1.37

.03 .04 2732 96 756 378 1.81 506 1333 1.81
.045 1283 48 372 177 1.72 250 643 1.78
.05 781 31 230 110 1.70 154 389 1.75
.06 388 17 121 61 1.72 81 197 1.70
.07 233 11 78 39 1.67 53 124 1.65
.08 159 8 57 29 1.66 38 88 1.61
.09 128 7 44 21 1.55 30 66 1.58
.10 90 5 36 18 1.58 24 53 1.54
.11 82 5 30 16 1.64 20 43 1.51
.12 64 4 26 12 1.44 18 37 1.48
.13 59 4 23 10 1.35 16 32 1.46
.15 43 3 18 9 1.48 13 24 1.41
.20 25 2 12 6 1.40 8 15 1.30
.25 20 2 9 5 1.48 6 11 1.20
.30 12 1 7 4 1.48 5 8 1.12

.04 .06 961 48 334 165 1.63 224 524 1.64
.07 462 25 170 84 1.59 114 258 1.60
.08 276 16 108 54 1.57 72 159 1.56
.09 194 12 77 37 1.49 51 110 1.52
.10 139 9 58 29 1.51 39 82 1.49
.11 115 8 47 23 1.46 32 65 1.46
.12 85 6 39 19 1.43 26 53 1.43
.13 78 6 33 17 1.48 22 44 1.40
.14 64 5 28 14 1.42 20 38 1.37

(continued)
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TABLE T13.3 (continued): Matched attributes narrow limit, known (s) and unknown (s)
standard deviation variables plans for values of p1 and p2 with a¼ .05, b¼ .10.

Attributes NL-Gauge Variables

p1 p2 n c n c t ns ns k

.04 .15 51 4 25 12 1.35 17 33 1.35
.17 45 4 20 10 1.37 14 25 1.30
.20 32 3 16 7 1.16 11 19 1.24
.25 20 2 11 5 1.15 8 13 1.15
.30 16 2 9 3 .78 6 9 1.06
.35 14 2 7 4 1.34 5 7 .98
.40 9 1 6 2 .69 4 6 .91

.05 .07 1131 68 448 227 1.57 300 660 1.55
.08 542 35 222 106 1.46 149 319 1.51
.09 333 23 138 71 1.52 93 194 1.47
.10 220 16 97 46 1.39 65 133 1.44
.11 158 12 73 36 1.41 49 98 1.41
.12 125 10 58 28 1.36 39 76 1.38
.13 97 8 48 23 1.33 32 62 1.35
.14 81 7 40 20 1.36 27 51 1.33
.15 68 6 35 19 1.45 24 43 1.30
.16 63 6 30 14 1.24 21 37 1.28
.17 52 5 27 13 1.26 18 33 1.26
.20 38 4 20 10 1.26 14 23 1.19
.25 25 3 14 8 1.37 10 15 1.10
.30 16 2 10 5 1.14 7 11 1.01
.35 14 2 8 4 1.09 6 8 .94
.40 12 2 7 2 .51 5 7 .86

Source: Reprinted from Schilling, E.G. and Sommers, D.J., J. Qual. Technol., 13(2), 84, 1981. With permission.
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TABLE T13.4: Tightened inspection optimal narrow limit plans for MIL-STD-105E.

Sample
Size
Code
Letter

Acceptable Quality Levels (Tightened Inspection)

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10

A n
t
Ac
Re

B n 3
t 0.00
Ac 0
Re 1

C n 3
t 1.19
Ac 1
Re 2

D n 4 6
t 1.14 1.07
Ac 1 3
Re 2 4

E n 5 8 10
t 1.20 1.67 0.98
Ac 1 5 5
Re 2 6 6

F n 5 9 12 14
t 1.92 1.43 1.04 1.02
Ac 2 4 5 7
Re 3 5 6 8

G n 6 11 15 18 22
t 1.92 1.67 1.25 1.02 0.89
Ac 2 5 6 7 10
Re 3 6 7 8 11

H n 7 13 17 21 27 34
t 1.94 2.27 1.65 1.36 1.23 0.99
Ac 2 8 8 9 13 17
Re 3 9 9 10 14 18

J n 7 14 20 25 33 43 53
t 2.48 2.17 1.93 1.71 1.41 1.25 1.01
Ac 3 7 10 12 15 21 26
Re 4 8 11 13 16 22 27

K n 8 16 22 28 38 50 64 79
t 2.79 2.34 2.12 1.96 1.81 1.52 1.34 1.14
Ac 4 8 11 14 20 25 33 42
Re 5 9 12 15 21 26 34 43

L n 9 18 26 32 45 59 76 96
t 3.08 2.37 2.39 2.15 1.98 1.81 1.49 1.26
Ac 5 8 14 16 23 31 36 45
Re 6 9 15 17 24 32 37 46

M n 10 20 29 37 51 69 89 114
t 3.33 2.54 2.33 2.36 2.16 1.93 1.73 1.58
Ac 6 9 13 19 26 34 43 57
Re 7 10 14 20 27 35 44 58

N n 11 22 32 41 57 77 102 134
t 3.56 2.70 2.47 2.40 2.34 2.09 1.90 1.78
Ac 7 10 14 19 29 37 48 66
Re 8 11 15 20 30 38 49 67

(continued)
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TABLE T13.4 (continued): Tightened inspection optimal narrow limit plans for MIL-STD-105E.

Sample
Size
Code
Letter

Acceptable Quality Levels (Tightened Inspection)

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10

P n 11 24 35 45 64 89 118 156
t 3.23 2.96 2.89 2.63 2.45 2.28 2.21 1.97
Ac 5 12 19 22 31 43 61 76
Re 6 13 20 23 32 44 62 77

Q n 12 26 37 49 70 99 132 175
t 3.46 3.00 2.89 2.83 2.75 2.42 2.32 2.22
Ac 6 12 18 25 38 47 65 90
Re 7 13 19 26 39 48 66 91

R n 14 27 41 54 78 109 147 198
t 3.20 3.28 2.91 2.86 2.83 2.75 2.50 2.30
Ac 5 14 18 25 40 59 73 94
Re 6 15 19 26 41 60 74 95

S n 30
t 3.36
Ac 15
Re 16

Source: Reprinted from Schilling, E.G. and Sommers, D.J., J. Qual. Technol., 13(2), 86, 1981. With permission.
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TABLE T13.5: Normal inspection optimal narrow limit plans for MIL-STD-105E.

Sample
Size
Code
Letter

Acceptable Quality Levels (Tightened Inspection)

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10

A n 2
t 0.00
Ac 0
Re 1

B n 3
t 0.00
Ac 0
Re 1

C n 3 5
t 1.19 0.00
Ac 1 1
Re 2 2

D n 4 6 7
t 1.14 1.07 0.48
Ac 1 3 3
Re 2 4 4

E n 5 8 10 11
t 1.20 1.67 0.98 0.61
Ac 1 5 5 5
Re 2 6 6 6

F n 5 9 12 14 17
t 1.92 1.43 1.04 1.02 0.60
Ac 2 4 5 7 8
Re 3 5 6 8 9

G n 6 11 15 18 22 26
t 1.92 1.67 1.25 1.02 0.89 0.77
Ac 2 5 6 7 10 13
Re 3 6 7 8 11 14

H n 7 13 17 21 27 32 38
t 1.94 2.27 1.65 1.36 1.23 1.00 0.84
Ac 2 8 8 9 13 15 19
Re 3 9 9 10 14 16 20

J n 7 14 20 25 33 40 48 56
t 2.48 2.17 1.93 1.71 1.41 1.29 1.20 0.98
Ac 3 7 10 12 15 19 25 29
Re 4 8 11 13 16 20 26 30

K n 8 16 22 28 38 46 56 69 86
t 2.79 2.34 2.12 1.96 1.81 1.64 1.45 1.16 1.05
Ac 4 8 11 14 20 24 29 33 46
Re 5 9 12 15 21 25 30 34 47

L n 9 18 26 32 45 54 68 82 108
t 3.08 2.37 2.39 2.15 1.98 1.90 1.57 1.63 1.30
Ac 5 8 14 16 23 29 32 46 56
Re 6 9 15 17 24 30 33 47 57

M n 10 20 29 37 51 62 79 98 127
t 3.33 2.54 2.33 2.36 2.16 1.84 1.90 1.70 1.55
Ac 6 9 13 19 26 27 41 49 66
Re 7 10 14 20 27 28 42 50 67

N n 11 22 32 41 57 72 90 115 148
t 3.56 2.70 2.47 2.40 2.34 2.19 2.05 1.92 1.66
Ac 7 10 14 19 29 36 45 58 70
Re 8 11 15 20 30 37 46 59 71

P n 11 24 35 45 64 81 103 131 171
t 3.23 2.96 2.89 2.63 2.45 2.23 2.25 2.21 1.96
Ac 5 12 19 22 31 36 52 71 87
Re 6 13 20 23 32 37 53 72 88

Q n 12 26 37 49 70 89 116 148 196
t 3.46 3.00 2.89 2.83 2.75 2.46 2.47 2.23 2.06
Ac 6 12 18 25 38 42 61 71 93
Re 7 13 19 26 39 43 62 72 94

R n 27 41 54 78 99 129 163 222
t 3.28 2.91 2.86 2.83 2.78 2.62 2.40 2.25
Ac 14 18 25 40 53 67 78 106
Re 15 19 26 41 54 68 79 107

Source: Reprinted from Schilling, E.G. and Sommers, D.J., J. Qual. Technol., 13(2), 87, 1981. With permission.
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TABLE T13.6: Reduced inspection optimal narrow limit plans for MIL-STD-105E.

Sample
Size
Code
Letter

Acceptable Quality Levels (Reduced Inspection)

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10

A n 2
t 0.00
Ac 0
Re 1

B n 2
t 0.00
Ac 0
Re 1

C n 2 2
t 0.00 0.00
Ac 0 0
Re 1 2

D n 3 3 3
t 0.00 0.00 0.00
Ac 0 0 1
Re 1 2 3

E n 3 5. 5 5
t 1.19 0.00 0.00 0.00
Ac 1 0 1 1
Re 2 2 3 4

F n 4 6 7 8 8
t 1.14 1.07 0.48 0.00 0.00
Ac 1 1 2 1 2
Re 2 4 4 4 5

G n 5 8 10 11 12 13
t 1.20 1.67 0.98 0.61 0.50 0.00
Ac 1 3 3 2 4 3
Re 2 6 6 6 7 6

H n 5 9 12 14 16 17 19
t 1.92 1.43 1.25 1.02 0.83 0.60 0.45
Ac 2 2 4 4 5 6 8
Re 3 5 7 8 9 9 11

J n 6 11 15 18 20 22 26 28
t 1.91 1.90 1.58 1.02 1.14 0.89 0.77 0.49
Ac 2 4 6 4 7 7 10 11
Re 3 7 9 8 11 11 14 14

K n 7 13 17 21 24 27 32 36 41
t 1.94 1.69 1.65 1.48 1.29 1.32 1.00 0.91 0.86
Ac 2 3 6 7 8 11 12 15 21
Re 3 6 9 11 12 15 16 19 24

L n 7 14 20 25 29 33 40 45 52
t 2.48 2.17 1.93 1.71 1.59 1.49 1.29 1.07 0.89
Ac 3 5 8 9 11 13 16 17 20
Re 4 8 11 13 15 17 20 21 24

M n 8 16 23 28 34 39 47 54 64
t 2.80 2.34 2.06 1.87 1.84 1.71 1.61 1.41 1.34
Ac 4 6 9 10 14 16 21 23 30
Re 5 9 12 14 18 20 25 27 34

N n 9 18 26 33 39 45 55 64 77
t 2.80 2.51 2.20 2.19 2.01 1.98 1.92 1.73 1.60
Ac 4 7 10 14 16 20 27 30 37
Re 5 10 13 18 20 24 31 34 41

P n 10 20 29 37 44 51 64 75 90
t 2.57 2.54 2.42 2.36 2.28 2.21 2.12 1.88 1.77
Ac 3 7 12 15 20 24 32 34 42
Re 4 10 15 20 24 28 36 38 46

Q n 10 22 32 41 49 58 73 86 104
t 3.22 2.70 2.47 2.34 2.32 2.36 2.21 2.18 1.95
Ac 5 8 12 14 19 27 34 43 48
Re 6 11 15 19 24 31 38 47 52

R n 24 35 45 55 64 82 97 119
t 2.86 2.89 2.63 2.54 2.45 2.31 2.29 2.22
Ac 9 17 18 23 27 36 46 59
Re 12 20 23 28 32 40 50 63

Source: Reprinted from Schilling, E.G. and Sommers, D.J., J. Qual. Technol., 13(2), 88, 1981. With permission.
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TABLE T13.7: MIL-STD-105E scheme probability of acceptance (Pa) and average sample
number (ASN) at AQL using narrow limit plans (limit numbers for switching to reduced
inspection not used).

Sample
Size
Code
Letter

Acceptable Quality Levels (Reduced Inspection)

0.010 0.015 0.025 0.040 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 2.5 4.0 6.5 10

A Pa .863
ASN 2.21

B Pa .885
ASN 2.68

C Pa .901 .921
ASN 2.73 4.48

D Pa .901 .908 .987
ASN 3.67 5.69 4.06

E Pa .899 .908 .978 .981
ASN 4.18 7.55 6.68 8.02

F Pa .896 .913 .980 .978 .996
ASN 4.75 8.64 8.66 11.20 10.60

G Pa .899 .922 .978 .977 .994 .996
ASN 5.74 10.56 11.71 14.76 15.45 16.48

H Pa .903 .912 .983 .979 .994 .995 .999
ASN 6.15 12.31 13.54 17.63 19.55 21.34 21.02

J Pa .909 .903 .977 .982 .994 .995 .997 .998
ASN 6.68 13.74 16.68 21.48 24.29 27.24 29.22 31.12

K Pa .903 .911 .975 .976 .996 .995 .998 .998 .999
ASN 7.71 15.66 18.72 24.63 28.13 32.35 35.21 40.59 44.98

L Pa .897 .912 .977 .973 .993 .996 .997 .997 .997
ASN 8.35 17.44 22.01 28.78 34.39 38.42 43.94 50.14 59.43

M Pa .902 .924 .978 .976 .992 .994 .999 .997 .998
ASN 9.29 19.29 24.93 32.69 39.94 45.67 50.52 59.67 71.01

N Pa .903 .911 .982 .977 .993 .993 .997 .998 .998
ASN 10.15 21.45 27.81 37.13 45.12 53.65 60.16 69.42 85.28

P Pa .910 .903 .977 .981 .993 .994 .996 .996 .999
ASN 10.67 23.54 30.91 40.90 50.64 59.98 70.47 82.94 96.77

Q Pa .903 .911 .975 .977 .995 .994 .997 .995 .997
ASN 11.43 25.31 33.60 45.07 55.33 67.07 79.46 96.36 115.26

R Pa .912 .976 .972 .993 .996 .997 .996 .996
ASN 26.79 36.88 49.74 62.84 73.26 89.09 107.25 135.31

Source: Reprinted from Schilling, E.G. and Sommers, D.J., J. Qual. Technol., 13(2), 89, 1981. With permission.
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TABLE T13.8: Joint probabilities for mixed plans.

Fraction Defective, p

zA .005 .01 .02 .05 .10 .15 .20

n¼ 5, i¼ 0

�2.50 .9752 .9510 .9039 .7738 .5905 .4437 .3277
�2.45 .9752 .9510 .9039 .7738 .5905 .4437 .3277
�2.40 .9752 .9510 .9039 .7738 .5905 .4437 .3277
�2.35 .9752 .9510 .9039 .7738 .5905 .4437 .3277
�2.30 .9752 .9510 .9039 .7738 .5905 .4437 .3277
�2.25 .9752 .9510 .9039 .7738 .5905 .4437 .3277
�2.20 .9752 .9510 .9039 .7738 .5905 .4437 .3277
�2.15 .9752 .9510 .9039 .7738 .5905 .4437 .3277
�2.10 .9752 .9510 .9039 .7738 .5905 .4437 .3277
�2.05 .9752 .9510 .9039 .7738 .5905 .4437 .3277
�2.00 .9752 .9510 .9039 .7738 .5905 .4437 .3277
�1.95 .9752 .9510 .9039 .7738 .5905 .4437 .3277
�1.90 .9752 .9510 .9039 .7738 .5905 .4437 .3277
�1.85 .9752 .9510 .9039 .7738 .5905 .4437 .3277
�1.80 .9752 .9510 .9039 .7738 .5905 .4437 .3277
�1.75 .9752 .9509 .9039 .7737 .5904 .4437 .3276
�1.70 .9752 .9509 .9038 .7737 .5904 .4436 .3276
�1.65 .9751 .9509 .9038 .7737 .5904 .4436 .3276
�1.60 .9751 .9508 .9037 .7737 .5903 .4435 .3275
�1.55 .9750 .9507 .9037 .7735 .5902 .4434 .3274
�1.50 .9749 .9506 .9035 .7734 .5901 .4433 .3273
�1.45 .9747 .9504 .9033 .7732 .5899 .4431 .3271
�1.40 .9744 .9501 .9030 .7729 .5896 .4428 .3268
�1.35 .9740 .9497 .9027 .7725 .5892 .4425 .3264
�1.30 .9734 .9492 .9021 .7720 .5887 .4419 .3259
�1.25 .9727 .9484 .9013 .7712 .5879 .4412 .3252
�1.20 .9716 .9473 .9003 .7701 .5869 .4401 .3242
�1.15 .9702 .9459 .8989 .7687 .5855 .4388 .3228
�1.10 .9683 .9440 .8970 .7669 .5836 .4370 .3211
�1.05 .9658 .9416 .8945 .7644 .5812 .4346 .3188
�1.00 .9626 .9383 .8913 .7612 .5780 .4315 .3159
�0.95 .9584 .9342 .8871 .7571 .5740 .4276 .3121
�0.90 .9532 .9289 .8819 .7518 .5689 .4227 .3075
�0.85 .9466 .9223 .8753 .7453 .5626 .4167 .3018
�0.80 .9384 .9142 .8672 .7373 .5548 .4093 .2949
�0.75 .9285 .9043 .8573 .7275 .5454 .4004 .2867
�0.70 .9165 .8923 .8453 .7158 .5342 .3899 .2771
�0.65 .9022 .8780 .8311 .7018 .5209 .3776 .2660
�0.60 .8854 .8613 .8144 .6855 .5055 .3634 .2533
�0.55 .8659 .8418 .7951 .6666 .4878 .3473 .2391
�0.50 .8436 .8195 .7729 .6451 .4678 .3294 .2235
�0.45 .8182 .7942 .7478 .6208 .4456 .3096 .2067
�0.40 .7899 .7660 .7198 .5939 .4211 .2883 .1889
�0.35 .7586 .7348 .6890 .5644 .3947 .2656 .1703
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TABLE T13.8 (continued): Joint probabilities for mixed plans.

Fraction Defective, p

zA .005 .01 .02 .05 .10 .15 .20

�0.30 .7245 .7008 .6554 .5325 .3666 .2419 .1513
�0.25 .6877 .6642 .6193 .4985 .3371 .2176 .1323
�0.20 .6486 .6254 .5811 .4628 .3067 .1930 .1137
�0.15 .6075 .5846 .5411 .4258 .2758 .1687 .0959
�0.10 .5649 .5424 .4998 .3880 .2449 .1452 .0792
�0.05 .5213 .4992 .4578 .3500 .2146 .1227 .0639
0.00 .4771 .4557 .4155 .3123 .1854 .1018 .0503
0.05 .4331 .4123 .3736 .2755 .1577 .0828 .0386
0.10 .3897 .3696 .3326 .2401 .1320 .0659 .0287
0.15 .3475 .3282 .2930 .2066 .1086 .0511 .0206
0.20 .3070 .2886 .2554 .1754 .0876 .0387 .0143
0.25 .2685 .2512 .2201 .1468 .0694 .0285 .0095
0.30 .2326 .2163 .1875 .1210 .0537 .0203 .0060
0.35 .1993 .1842 .1577 .0982 .0407 .0140 .0036
0.40 .1690 .1551 .1311 .0784 .0300 .0093 .0020
0.45 .1418 .1291 .1075 .0615 .0216 .0059 .0010
0.50 .1176 .1061 .0869 .0474 .0151 .0036 .0005
0.55 .0964 .0861 .0693 .0358 .0102 .0020 .0002
0.60 .0781 .0691 .0545 .0265 .0066 .0011 .0001
0.65 .0625 .0546 .0421 .0191 .0042 .0005 .0000
0.70 .0494 .0426 .0321 .0135 .0025 .0002 .0000
0.75 .0386 .0328 .0240 .0093 .0014 .0001 .0000
0.80 .0297 .0249 .0177 .0063 .0008 .0000 .0000
0.85 .0226 .0186 .0128 .0041 .0004 .0000 .0000
0.90 .0169 .0136 .0091 .0026 .0002 .0000 .0000
0.95 .0125 .0099 .0063 .0016 .0001 .0000 .0000
1.00 .0091 .0070 .0043 .0009 .0000 .0000 .0000
1.05 .0066 .0049 .0028 .0005 .0000 .0000 .0000
1.10 .0046 .0034 .0018 .0003 .0000 .0000 .0000
1.15 .0032 .0023 .0012 .0001 .0000 .0000 .0000
1.20 .0022 .0015 .0007 .0001 .0000 .0000 .0000
1.25 .0015 .0010 .0004 .0000 .0000 .0000 .0000
1.30 .0010 .0006 .0003 .0000 .0000 .0000 .0000
1.35 .0006 .0004 .0001 .0000 .0000 .0000 .0000
1.40 .0004 .0002 .0001 .0000 .0000 .0000 .0000
1.45 .0003 .0001 .0000 .0000 .0000 .0000 .0000
1.50 .0002 .0001 .0000 .0000 .0000 .0000 .0000
1.55 .0001 .0000 .0000 .0000 .0000 .0000 .0000
1.60 .0001 .0000 .0000 .0000 .0000 .0000 .0000
1.65 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1.70 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1.75 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1.80 .0000 .0000 .0000 .0000 .0000 .0000 .0000

(continued)
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TABLE T13.8 (continued): Joint probabilities for mixed plans.

Fraction Defective, p

zA .005 .01 .02 .05 .10 .15 .20

n¼ 5, i¼ 1

�2.50 .024 .048 .092 .204 .328 .391 .410
�2.45 .024 .048 .092 .204 .328 .391 .410
�2.40 .024 .048 .092 .204 .328 .391 .410
�2.35 .024 .048 .092 .204 .328 .391 .410
�2.30 .024 .048 .092 .204 .328 .391 .410
�2.25 .024 .048 .092 .204 .328 .391 .410
�2.20 .024 .048 .092 .204 .328 .391 .410
�2.15 .024 .048 .092 .204 .328 .391 .410
�2.10 .024 .048 .092 .204 .328 .391 .410
�2.05 .024 .048 .092 .204 .328 .391 .410
�2.00 .024 .048 .092 .204 .328 .391 .410
�1.95 .024 .048 .092 .204 .328 .391 .410
�1.90 .024 .048 .092 .204 .328 .391 .410
�1.85 .024 .048 .092 .204 .328 .391 .410
�1.80 .024 .048 .092 .204 .328 .391 .410
�1.75 .024 .048 .092 .204 .328 .391 .410
�1.70 .024 .048 .092 .204 .328 .391 .410
�1.65 .024 .048 .092 .204 .328 .391 .410
�1.60 .024 .048 .092 .204 .328 .391 .410
�1.55 .024 .048 .092 .204 .328 .391 .410
�1.50 .024 .048 .092 .204 .328 .391 .410
�1.45 .024 .048 .092 .204 .328 .391 .410
�1.40 .024 .048 .092 .204 .328 .391 .410
�1.35 .024 .048 .092 .204 .328 .391 .410
�1.30 .024 .048 .092 .204 .328 .391 .410
�1.25 .024 .048 .092 .204 .328 .391 .409
�1.20 .024 .048 .092 .204 .328 .391 .409
�1.15 .024 .048 .092 .204 .328 .391 .409
�1.10 .024 .048 .092 .204 .328 .391 .409
�1.05 .024 .048 .092 .204 .328 .391 .409
�1.00 .024 .048 .092 .204 .328 .391 .409
�0.95 .024 .048 .092 .203 .328 .391 .408
�0.90 .024 .048 .092 .203 .327 .390 .408
�0.85 .024 .048 .092 .203 .327 .390 .407
�0.80 .024 .048 .092 .203 .327 .389 .406
�0.75 .024 .048 .092 .203 .326 .388 .404
�0.70 .024 .048 .092 .203 .326 .387 .402
�0.65 .024 .048 .092 .202 .325 .385 .398
�0.60 .024 .048 .092 .202 .323 .382 .394
�0.55 .024 .048 .092 .201 .321 .379 .389
�0.50 .024 .048 .091 .201 .319 .374 .383
�0.45 .024 .048 .091 .199 .316 .369 .375
�0.40 .024 .047 .091 .198 .312 .362 .365
�0.35 .024 .047 .090 .196 .307 .353 .353
�0.30 .024 .047 .090 .194 .301 .343 .339
�0.25 .024 .047 .089 .191 .294 .331 .322
�0.20 .024 .046 .088 .187 .285 .317 .304
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TABLE T13.8 (continued): Joint probabilities for mixed plans.

Fraction Defective, p

zA .005 .01 .02 .05 .10 .15 .20

�0.15 .024 .046 .086 .183 .275 .302 .283
�0.10 .023 .045 .085 .178 .263 .284 .261
�0.05 .023 .044 .083 .172 .250 .264 .237
0.00 .023 .043 .081 .165 .236 .243 .212
0.05 .022 .042 .078 .158 .220 .221 .187
0.10 .022 .041 .075 .149 .203 .198 .161
0.15 .021 .039 .072 .140 .185 .175 .136
0.20 .020 .038 .068 .130 .167 .151 .113
0.25 .019 .036 .064 .120 .148 .129 .091
0.30 .018 .034 .060 .109 .129 .108 .072
0.35 .017 .032 .055 .098 .111 .088 .055
0.40 .016 .029 .051 .087 .094 .070 .041
0.45 .015 .027 .046 .077 .078 .055 .029
0.50 .014 .025 .041 .066 .064 .041 .020
0.55 .013 .022 .037 .057 .051 .030 .014
0.60 .011 .020 .032 .047 .039 .022 .009
0.65 .010 .018 .028 .039 .030 .015 .005
0.70 .009 .015 .024 .032 .022 .010 .003
0.75 .008 .013 .020 .025 .016 .006 .002
0.80 .007 .011 .017 .020 .011 .004 .001
0.85 .006 .009 .014 .015 .007 .002 .000
0.90 .005 .008 .011 .011 .005 .001 .000
0.95 .004 .006 .009 .008 .003 .001 .000
1.00 .003 .005 .007 .006 .002 .000 .000
1.05 .003 .004 .005 .004 .001 .000 .000
1.10 .002 .003 .004 .003 .001 .000 .000
1.15 .002 .002 .003 .002 .000 .000 .000
1.20 .001 .002 .002 .001 .000 .000 .000
1.25 .001 .001 .001 .001 .000 .000 .000
1.30 .001 .001 .001 .000 .000 .000 .000
1.35 .001 .001 .001 .000 .000 .000 .000
1.40 .000 .000 .000 .000 .000 .000 .000
1.45 .000 .000 .000 .000 .000 .000 .000
1.50 .000 .000 .000 .000 .000 .000 .000
1.55 .000 .000 .000 .000 .000 .000 .000
1.60 .000 .000 .000 .000 .000 .000 .000
1.65 .000 .000 .000 .000 .000 .000 .000
1.70 .000 .000 .000 .000 .000 .000 .000
1.75 .000 .000 .000 .000 .000 .000 .000
1.80 .000 .000 .000 .000 .000 .000 .000

(continued)
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TABLE T13.8 (continued): Joint probabilities for mixed plans.

Fraction Defective, p

zA .005 .01 .02 .05 .10 .15 .20

n¼ 5, i¼ 2

�2.50 .000 .001 .004 .021 .073 .138 .205
�2.45 .000 .001 .004 .021 .073 .138 .205
�2.40 .000 .001 .004 .021 .073 .138 .205
�2.35 .000 .001 .004 .021 .073 .138 .205
�2.30 .000 .001 .004 .021 .073 .138 .205
�2.25 .000 .001 .004 .021 .073 .138 .205
�2.20 .000 .001 .004 .021 .073 .138 .205
�2.15 .000 .001 .004 .021 .073 .138 .205
�2.10 .000 .001 .004 .021 .073 .138 .205
�2.05 .000 .001 .004 .021 .073 .138 .205
�2.00 .000 .001 .004 .021 .073 .138 .205
�1.95 .000 .001 .004 .021 .073 .138 .205
�1.90 .000 .001 .004 .021 .073 .138 .205
�1.85 .000 .001 .004 .021 .073 .138 .205
�1.80 .000 .001 .004 .021 .073 .138 .205
�1.75 .000 .001 .004 .021 .073 .138 .205
�1.70 .000 .001 .004 .021 .073 .138 .205
�1.65 .000 .001 .004 .021 .073 .138 .205
�1.60 .000 .001 .004 .021 .073 .138 .205
�1.55 .000 .001 .004 .021 .073 .138 .205
�1.50 .000 .001 .004 .021 .073 .138 .205
�1.45 .000 .001 .004 .021 .073 .138 .205
�1.40 .000 .001 .004 .021 .073 .138 .205
�1.35 .000 .001 .004 .021 .073 .138 .205
�1.30 .000 .001 .004 .021 .073 .138 .205
�1.25 .000 .001 .004 .021 .073 .138 .205
�1.20 .000 .001 .004 .021 .073 .138 .205
�1.15 .000 .001 .004 .021 .073 .138 .205
�1.10 .000 .001 .004 .021 .073 .138 .205
�1.05 .000 .001 .004 .021 .073 .138 .205
�1.00 .000 .001 .004 .021 .073 .138 .205
�0.95 .000 .001 .004 .021 .073 .138 .205
�0.90 .000 .001 .004 .021 .073 .138 .205
�0.85 .000 .001 .004 .021 .073 .138 .205
�0.80 .000 .001 .004 .021 .073 .138 .205
�0.75 .000 .001 .004 .021 .073 .138 .205
�0.70 .000 .001 .004 .021 .073 .138 .205
�0.65 .000 .001 .004 .021 .073 .138 .205
�0.60 .000 .001 .004 .021 .073 .138 .205
�0.55 .000 .001 .004 .021 .073 .138 .204
�0.50 .000 .001 .004 .021 .073 .138 .204
�0.45 .000 .001 .004 .021 .073 .138 .204
�0.40 .000 .001 .004 .021 .073 .138 .203
�0.35 .000 .001 .004 .021 .073 .137 .202
�0.30 .000 .001 .004 .021 .073 .137 .201
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TABLE T13.8 (continued): Joint probabilities for mixed plans.

Fraction Defective, p

zA .005 .01 .02 .05 .10 .15 .20

�0.25 .000 .001 .004 .021 .072 .136 .199
�0.20 .000 .001 .004 .021 .072 .135 .197
�0.15 .000 .001 .004 .021 .072 .134 .194
�0.10 .000 .001 .004 .021 .072 .133 .191
�0.05 .000 .001 .004 .021 .071 .131 .186
0.00 .000 .001 .004 .021 .070 .128 .180
0.05 .000 .001 .004 .021 .069 .125 .173
0.10 .000 .001 .004 .021 .068 .121 .165
0.15 .000 .001 .004 .021 .066 .116 .155
0.20 .000 .001 .004 .020 .065 .111 .144
0.25 .000 .001 .004 .020 .062 .105 .132
0.30 .000 .001 .004 .020 .060 .097 .119
0.35 .000 .001 .004 .019 .056 .090 .105
0.40 .000 .001 .004 .018 .053 .081 .091
0.45 .000 .001 .003 .018 .049 .072 .078
0.50 .000 .001 .003 .017 .045 .063 .065
0.55 .000 .001 .003 .016 .041 .054 .052
0.60 .000 .001 .003 .015 .036 .046 .041
0.65 .000 .001 .003 .014 .031 .037 .031
0.70 .000 .001 .003 .012 .027 .030 .023
0.75 .000 .001 .003 .011 .023 .023 .017
0.80 .000 .001 .002 .010 .018 .018 .012
0.85 .000 .001 .002 .009 .015 .013 .008
0.90 .000 .001 .002 .007 .012 .009 .005
0.95 .000 .001 .002 .006 .009 .006 .003
1.00 .000 .001 .002 .005 .007 .004 .002
1.05 .000 .000 .001 .004 .005 .003 .001
1.10 .000 .000 .001 .003 .003 .002 .001
1.15 .000 .000 .001 .003 .002 .001 .000
1.20 .000 .000 .001 .002 .001 .001 .000
1.25 .000 .000 .001 .001 .001 .000 .000
1.30 .000 .000 .001 .001 .001 .000 .000
1.35 .000 .000 .000 .001 .000 .000 .000
1.40 .000 .000 .000 .000 .000 .000 .000
1.45 .000 .000 .000 .000 .000 .000 .000
1.50 .000 .000 .000 .000 .000 .000 .000
1.55 .000 .000 .000 .000 .000 .000 .000
1.60 .000 .000 .000 .000 .000 .000 .000
1.65 .000 .000 .000 .000 .000 .000 .000
1.70 .000 .000 .000 .000 .000 .000 .000
1.75 .000 .000 .000 .000 .000 .000 .000
1.80 .000 .000 .000 .000 .000 .000 .000

Source: Schilling, E.G. and Dodge, H.F., Technometrics, 11(2), 362, 1969.
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TABLE T14.1: Values of x and y for determining AOQL.

Given Given Given Given
c x y c x y c x y c x y

0 1.00 0.3679 10 8.05 6.528 20 15.92 13.89 30 24.11 21.70
1 1.62 0.8400 11 8.82 7.233 21 16.73 14.66 31 24.95 22.50
2 2.27 1.371 12 9.59 7.948 22 17.54 15.43 32 25.78 23.30
3 2.95 1.942 13 10.37 8.670 23 18.35 16.20 33 26.62 24.10
4 3.64 2.544 14 11.15 9.398 24 19.17 16.98 34 27.45 24.90
5 4.35 3.168 15 11.93 10.13 25 19.99 17.76 35 28.29 25.71
6 5.07 3.812 16 12.72 10.88 26 20.81 18.54 36 29.13 26.52
7 5.80 4.472 17 13.52 11.62 27 21.63 19.33 37 29.97 27.33
8 6.55 5.146 18 14.31 12.37 28 22.46 20.12 38 30.82 28.14
9 7.30 5.831 19 15.12 13.13 29 23.29 20.91 39 31.66 28.96
10 8.05 6.528 20 15.92 13.89 30 24.11 21.70 40 32.51 29.77

Source: Dodge, H.F. and Romig, H.G., in Sampling Inspection Tables, Single and Double Sampling, 2 ed., John Wiley
and Sons, New York, 1959. With permission.

TABLE T16.1: Values of Y for determining AOQL, for SkSP-2 plans.

n=N¼ 0

i

c f 4 6 8 10

1 2=3 0.8682 0.8479 0.8421 0.8405
1=2 0.8954 0.8564 0.8443 0.8411
1=3 0.9443 0.8784 0.8493 0.8423
1=4 0.9861 0.8939 0.8549 0.8436
1=5 1.0219 0.9125 0.8613 0.8450

2 2=3 1.4281 1.3935 1.3794 1.3741
1=2 1.4785 1.4163 1.3884 1.3773
1=3 1.5619 1.4604 1.4081 1.3844
1=4 1.6284 1.5000 1.4291 1.3927
1=5 1.6835 1.5349 1.4501 1.4021

3 2=3 2.0294 1.9835 1.9610 1.9505
1=2 2.1023 2.0229 1.9806 1.9593
1=3 2.2177 2.0927 2.0205 1.9789
1=4 2.3067 2.1511 2.0582 2.0004
1=5 2.3971 2.2006 2.0925 2.0223

4 2=3 2.6604 2.6054 2.5754 2.5594
1=2 2.7547 2.6615 2.6076 2.5764
1=3 2.8998 2.7561 2.6683 2.6124
1=4 3.0097 2.8320 2.7217 2.6482
1=5 3.0980 2.8948 2.7681 2.6817

5 2=3 3.3140 3.2516 3.2151 3.1939
1=2 3.4286 3.3242 3.2605 3.2207
1=3 3.6018 3.4423 3.3417 3.2742
1=4 3.7312 3.5346 3.4098 3.3236
1=5 3.8344 3.6100 3.4674 3.3677

� 2008 by Taylor & Francis Group, LLC.



TABLE T16.1 (continued): Values of Y for determining AOQL,
for SkSP-2 plans.

n=N¼ 0

i

c f 4 6 8 10

6 2=3 3.9857 3.9171 3.8751 3.8491
1=2 4.1197 4.0058 3.9338 3.8866
1=3 4.3195 4.1463 4.0347 3.9575
1=4 4.4673 4.2543 4.1168 4.0198
1=5 4.5846 4.3416 4.1850 4.0738

7 2=3 4.6726 4.5986 4.5518 4.5215
1=2 4.8250 4.7029 4.6237 4.5700
1=3 5.0502 4.8650 4.7437 4.6580
1=4 5.2156 4.9878 4.8390 4.7326
1=5 5.3462 5.0865 4.9174 4.7959

8 2=3 5.3722 5.2937 5.2425 5.2083
1=2 5.5424 5.4130 5.3275 5.2680
1=3 5.7919 5.5958 5.4658 5.3727
1=4 5.9740 5.7330 5.5739 5.4590
1=5 6.1174 5.8425 5.6620 5.5313

9 2=3 6.0829 6.003 5.9454 5.9077
1=2 6.2702 6.1343 6.0431 5.9785
1=3 6.5430 6.3372 6.1993 6.0993
1=4 6.7413 6.4881 6.3197 6.1970
1=5 6.8969 6.6080 6.4171 6.2779

10 2=3 6.8033 6.7172 6.6588 6.6180
1=2 7.0070 6.8654 6.7690 6.7000
1=3 7.3024 7.0876 6.9425 6.8363
1=4 7.5162 7.2518 7.0748 6.9450
1=5 7.6836 7.3819 7.1812 7.0341

Source: Reprinted from Perry, R.L., A system of skip-lot sampling plans for lot
inspection, PhD dissertation, Rutgers—The State University, New Brunswick,
NJ, 1970. With permission.
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TABLE T16.2: Unity values for SkSP-2 and matched single sampling plans.

Matched
Single Sampling Plan Skip-Lot Plan SkSP-2

Ratio of SkSP-2 Sample
Size to Matched Single

Sampling Plan Sample Sizec* OR n*p.95 f, i c OR np.95

2 6.500 0.818 (1=5,8) 1 6.505 0.598 .731
3 4.890 1.366 (1=5,14) 2 4.883 1.090 .731
4 4.057 1.970 (1=2,4) 3 4.063 1.645 .830
5 3.549 2.613 (1=2,6) 4 3.522 2.270 .868

(1=2,8) 4 3.574 2.237 .856
(1=5,8) 3 3.561 1.876 .718

6 3.206 3.285 (1=2,10) 5 3.207 2.892 .880
(1=4,8) 4 3.191 2.505 .762

7 2.957 3.981 (1=2,12) 6 2.951 3.569 .894
(1=4,10) 5 2.930 3.166 .795
(1=5,14) 5 2.963 3.130 .789
(1=5,6) 4 2.982 2.681 .673

8 2.768 4.695 (2=3,4) 7 2.757 4.270 .909
(2=3,6) 7 2.777 5.238 .902
(1=2,14) 7 2.759 4.266 .908
(1=4,14) 6 2.778 3.791 .807
(1=5,8) 5 2.782 3.334 .709

9 2.618 5.425 (2=3,6) 8 2.611 4.977 .917
(2=3,8) 8 2.627 4.947 .912
(1=2,4) 7 2.627 4.482 .626
(1=3,10) 7 2.597 4.533 .835
(1=5,10) 6 2.629 4.007 .738
(1=5,4) 5 2.594 3.578 .659

10 2.497 6.169 (2=3,8) 9 2.493 5.698 .924
(2=3,10) 9 2.505 5.670 .919
(1=3,14) 8 2.507 5.184 .840
(1=5,12) 7 2.506. 4.698 .761
(1=5,6) 6 2.499 4.215 .683

Source: Reprinted from Dodge, H.F. and Perry, R.L. in ASQC Technical Conference Transactions, American Society
for Quality Control Inc., Chicago, IL, 1971, 477. With permission.
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TABLE T16.3: Poisson unity values for constructing ChSP-1 plans.

i
np1 for

L(p1)¼ 0.95
np2 for

L(p2)¼ 0.10 p2=p1 nAOQL
AOQL

p1 npM

1 0.207 2.490 12.029 0.5033 2.431 1.000
2 0.162 2.325 14.352 0.4190 2.586 0.897
3 0.139 2.303 16.568 0.3889 2.798 0.902
4 0.124 2.303 18.573 0.3764 3.036 0.943
5 0.114 2.303 20.202 0.3717 3.261 0.972
6 0.106 2.303 21.726 0.3689 3.500 0.990
7 0.100 2.303 23.030 0.3683 3.483 0.994
8 0.094 2.303 24.500 0.3680 3.915 0.998
9 0.090 2.303 25.589 0.3679 4.088 0.999
10 0.087 2.303 26.471 0.3679 4.229 0.999
1 0.051 2.303 44.890 0.3680 7.214 1.000

Source: Reprinted from Soundararajan, V., J. Qual. Technol., 10(3), 58, 1978. With permission.
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TABLE T16.4: ChSP-1 plans indexed by AQL (p.95) and LTPD (p.10).

AQL in Percent

LTPD
in Percent

Sample
Size 0.10 0.15 0.25 0.40 0.65 1.00 1.50 2.50 4.00 6.50

1.0 228 2
1.5 152 4 1
2.0 114 7 2
2.5 91 3 1
3.0 76 4 2
3.5 65 2
4.0 57 3 1
4.5 50 4 2
5.0 45 5 2
5.5 41 7 3
6.0 38 9 3
6.5 35 4 1
7.0 32 5 1
7.5 30 5 1
8.0 28 6 2
8.5 26 7 2
9.0 25 2
9.5 23 3
10.0 22 3 1
11.0 20 4 2 1
12.0 18 5 2 1
13.0 17 5 2 1 1
14.0 16 2 1 1
15.0 15 3 1 1
16.0 14 3 2 1 1
17.0 13 4 2 1 1
18.0 12 5 2 1 1
19.0 11 6 3 1 1
20.0 11 6 3 1 1
21.0 10 7 3 1 1
22.0 10 7 3 1 1
23.0 9 4 1 1
24.0 9 4 1 1
25.0 8 5 2 1
30.0 7 7 2 1
35.0 6 2 1
40.0 5 4 2 1
50.0 4 7 3 1
60.0 3 6 2
70.0 2 8 4

Source: Reprinted from Soundararajan, V., J. Qual. Technol., 10(3), 101, 1978. With permission.
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TABLE T16.5: ChSP-1 plans indexed by AQL (p.95) and AOQL.

AOQL in Percent

AQL in
Percent

0.10 0.25 0.50 0.75 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

n i n i n i n i n i n i n i n i n i n i n i n i

0.05 504, 1 147,
0.075 149, 5
0.10 168, 2 73,
0.15 74, 3 49,
0.20 89, 2 50, 7 36,
0.25 101, 1 51, 4 37, 9
0.30 56, 2 38, 5 24,
0.35 68, 1 39, 3 25, 10
0.40 42, 2 25, 7
0.45 51, 1 25, 5 18,
0.50 51, 1 26, 4 19, 9
0.55 26, 3 19, 6 14,
0.60 28, 2 19, 5 15, 9
0.65 34, 1 19, 4 15, 8 12,
0.70 34, 1 20, 3 15, 6 13, 10
0.75 20, 3 15, 5 13, 9 10,
0.80 22, 2 16, 4 13, 7 11, 10
0.85 26, 1 16, 4 13, 6 11, 9
0.90 26, 1 16, 3 13, 5 11, 8 9,
0.95 26, 1 17, 2 13, 4 11, 7 10, 10
1.0 26, 1 17, 2 13, 4 11, 6 10, 9 8,
1.5 17, 1 15, 1 11, 2 9, 4
2.0 13, 1 12, 1

AOQL in Percent

AQL in
Percent

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

n i n i n i n i n i n i n i n i n i n i n i

1.0 7, 7, 6, 6,
1.5 8, 5 7, 7 7, 9 6, 10 5, 5, 5, 5,
2.0 9, 2 7, 3 7, 4 6, 5 6, 6 5, 7 5, 9 5, 10 5, 4, 4,
2.5 11, 1 10, 1 9, 1 7, 2 6, 3 5, 4 5, 5 5, 6 5, 7 4, 8 4, 9
3.0 9, 1 8, 1 8, 1 7, 1 6, 2 5, 3 5, 4 4, 4 4, 5
3.5 8, 1 7, 1 7, 1 6, 1 5, 2 5, 3 4, 3
4.0 7, 1 6, 1 6, 1 6, 1 5, 2
4.5 6, 1 6, 1 5, 1
5.0 5, 1

AOQL in Percent

AQL in
Percent

10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5

n i n i n i n i n i n i n i n i n i n i n i

2.00 4,
2.50 4, 10 3, 3, 3, 3, 3,
3.00 4, 6 4, 7 4, 8 3, 9 3, 9 3, 10 3, 3, 3, 3,
3.50 4, 4 4, 4 4, 5 3, 6 3, 6 3, 7 3, 8 3, 9 3, 10 3, 10 3,
4.00 4, 2 4, 3 4, 3 4, 4 3, 4 3, 5 3, 5 3, 6 3, 7 3, 8 3, 8
4.50 5, 1 5, 1 4, 2 4, 2 4, 3 3, 3 3, 4 3, 4 3, 5 3, 5 3, 6
5.00 5, 1 5, 1 5, 1 5, 1 4, 2 4, 2 3, 3 3, 3 3, 3 3, 4 3, 4
5.50 5, 1 5, 1 5, 1 4, 1 4, 1 3, 2 3, 2 3, 2 3, 3 3, 3
6.00 5, 1 4, 1 4, 1 4, 1 4, 1 4, 1 3, 2 3, 2
6.50 4, 1 4, 1 4, 1 4, 1 4, 1 4, 1
7.00 4, 1 4, 1 4, 1 4, 1
7.50 4, 1 4, 1

(continued)
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TABLE T16.5 (continued): ChSP-1 plans indexed by AQL (p.95) and AOQL.
AOQL in Percent

AQL in
Percent

16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50 20.00 30.00

n i n i n i n i n i n i n i n i n i n i

3.50 3, 3, 3, 2,
4.00 3, 9 3, 9 3, 10 3, 10 2, 2, 2, 2,
4.50 3, 6 3, 7 3, 8 3, 8 2, 9 2, 9 2, 10 2, 10 2,
5.00 3, 5 3, 5 3, 6 3, 6 2, 7 2, 7 2, 8 2, 8 2, 9
5.50 3, 3 3, 4 3, 4 3, 5 2, 5 2, 6 2, 6 2, 6 2, 7
6.00 3, 3 3, 3 3, 3 3, 4 2, 4 2, 5 2, 5 2, 5 2, 6
6.50 4, 1 3, 2 3, 2 3, 3 3, 3 3, 3 2, 3 2, 4 2, 4 2,
7.00 4, 1 4, 1 3, 1 3, 2 3, 2 3, 3 2, 3 2, 3 2, 3 2, 10
7.50 4, 1 4, 1 3, 1 3, 1 3, 1 3, 2 3, 2 3, 2 2, 2 2, 9
8.00 4, 1 3, 1 3, 1 3, 1 3, 1 3, 1 3, 1 3, 2 2, 7
8.50 3, 1 3, 1 3, 1 3, 1 3, 1 3, 1 3, 1 2, 6
9.00 3, 1 3, 1 2, 1 3, 1 3, 1 2, 5
9.50 2, 1 3, 1 3, 1 2, 4
10.00 3, 1 2, 4

Source: Reprinted from Soundararajan, V., J. Qual. Technol. 10(3), 100–101, 1978. With permission.
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TABLE T17.1: Unity values for the QSS system.

cN cT np.95 np.10 OR np.50 h0 PN at np.50 PT at np.50

0a 0 0.051 2.303 44.891 0.693 0.693 .5000 .5000
1 0 0.308 2.528 8.213 1.146 1.230 .6822 .3178
1a 1 0.355 3.890 10.946 1.678 1.052 .5000 .5000
2 0 0.644 2.821 4.383 1.568 1.748 .7916 .2084
2 1 0.770 4.080 5.301 2.156 1.530 .6346 .3654
2a 2 0.818 5.322 6.509 2.674 1.319 .5000 .5000
3 0 1.005 3.149 3.134 1.976 2.259 .8614 .1386
3 1 1.210 4.335 3.581 2.608 2.012 .7342 .2658
3 2 1.318 5.496 4.170 3.159 1.769 .6116 .3884
3a 3 1.366 6.681 4.890 3.672 1.541 .5000 .5000
4 0 1.375 3.494 2.540 2.376 2.766 .9071 .0929
4 1 1.653 4.633 2.803 3.046 2.496 .8076 .1924
4 2 1.823 5.729 3.142 3.625 2.229 .7017 .2983
4 3 1.921 6.844 3.562 4.161 1.974 .5974 .4026
4a 4 1.970 7.994 4.057 4.671 1.735 .5000 .5000
5 0 1.750 3.849 2.199 2.771 3.271 .9374 .0626
5 1 2.091 4.958 2.371 3.473 2.982 .8612 .1388
5 2 2.320 6.006 2.588 4.077 2.695 .7730 .2270
5 3 2.472 7.062 2.857 4.634 2.418 .6798 .3202
5 4 2.564 8.150 3.179 5.162 2.156 .5875 .4125
5a 5 2.613 9.275 3.549 5.670 1.909 .5000 .5000
6 0 2.127 4.210 1.979 3.162 3.775 .9577 .0423
6 1 2.524 5.300 2.100 3.893 3.470 .9002 .0998
6 2 2.806 6.314 2.251 4.519 3.166 .8286 .1714
6 3 3.009 7.324 2.434 5.095 2.872 .7481 .2519
6 4 3.149 8.357 2.654 5.640 2.589 .6639 .3361
6 5 3.236 9.426 2.913 6.163 2.321 .5801 .4199
6a 6 3.285 10.532 3.206 6.670 2.069 .5000 .5000
7 0 2.505 4.574 1.826 3.550 4.278 .9713 .0287
7 1 2.951 5.654 1.916 4.307 3.960 .9285 .0715
7 2 3.279 6.643 2.026 4.954 3.642 .8714 .1286
7 3 3.530 7.618 2.158 5.547 3.332 .8036 .1964
7 4 3.716 8.606 2.316 6.107 3.033 .7291 .2709
7 5 3.847 9.625 2.502 6.644 2.746 .6516 .3484
7 6 3.932 10.680 2.716 7.164 2.474 .5744 .4256
7a 7 3.981 11.771 2.957 7.669 2.218 .5000 .5000
8 0 2.883 4.941 1.714 3.936 4.781 .9805 .0195
8 1 3.373 6.014 1.783 4.716 4.451 .9489 .0511
8 2 3.743 6.987 1.867 5.382 4.121 .9041 .0959
8 3 4.036 7.935 1.966 5.992 3.798 .8481 .1519
8 4 4.266 8.889 2.084 6.566 3.484 .7836 .2164
8 5 4.440 9.864 2.222 7.116 3.182 .7139 .2861
8 6 4.564 10.872 2.382 7.647 2.892 .6417 .3583
8 7 4.646 11.915 2.565 8.164 2.617 .5697 .4303
8a 8 4.695 12.995 2.768 8.669 2.357 .5000 .5000
9 0 3.261 5.310 1.628 4.320 5.283 .9867 .0133
9 1 3.790 6.380 1.683 5.123 4.943 .9635 .0365

(continued)
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TABLE T17.1 (continued): Unity values for the QSS system.

cN cT np.95 np.10 OR np.50 h0 PN at np.50 PT at np.50

9 2 4.197 7.342 1.749 5.806 4.602 .9288 .0712
9 3 4.529 8.270 1.826 6.430 4.268 .8833 .1167
9 4 4.798 9.196 1.917 7.018 3.941 .8287 .1713
9 5 5.013 10.136 2.022 7.580 3.625 .7672 .2328
9 6 5.177 11.102 2.144 8.122 3.321 .7013 .2987
9 7 5.296 12.102 2.285 8.649 3.030 .6335 .3665
9 8 5.376 13.137 2.443 9.164 2.752 .5658 .4342
9a 9 5.425 14.206 2.618 9.669 2.488 .5000 .5000
10 0 3.639 5.679 1.561 4.703 5.784 .9909 .0091
10 1 4.203 6.750 1.606 5.526 5.436 .9740 .0260
10 2 4.645 7.704 1.659 6.225 5.086 .9474 .0526
10 3 5.010 8.618 1.720 6.864 4.741 .9109 .0891
10 4 5.315 9.522 1.791 7.464 4.404 .8653 .1347
10 5 5.568 10.434 1.874 8.037 4.076 .8122 .1878
10 6 5.770 11.366 1.970 8.590 3.758 .7533 .2467
10 7 5.927 12.326 2.080 9.127 3.453 .6908 .3092
10 8 6.042 13.318 2.204 9.651 3.159 .6266 .3734
10 9 6.120 14.346 2.344 10.164 2.879 .5625 .4375
10a 10 6.169 15.407 2.497 10.669 2.613 .5000 .5000
11 0 4.017 6.050 1.506 5.085 6.285 .9938 .0062
11 1 4.614 7.121 1.544 5.926 5.929 .9815 .0185
11 2 5.085 8.071 1.587 6.641 5.571 .9612 .0388
11 3 5.481 8.974 1.637 7.293 5.218 .9323 .0677
11 4 5.819 9.862 1.695 7.905 4.871 .8948 .1052
11 5 6.105 10.752 1.761 8.489 4.532 .8496 .1504
11 6 6.344 11.656 1.837 9.052 4.203 .7979 .2021
11 7 6.537 12.581 1.925 9.598 3.884 .7414 .2586
11 8 6.687 13.536 2.024 10.131 3.577 .6818 .3182
11 9 6.798 14.523 2.136 10.653 3.282 .6206 .3794
11 10 6.875 15.545 2.261 11.165 3.001 .5596 .4404
11a 11 6.924 16.598 2.397 11.668 2.732 .5000 .5000
12 0 4.394 6.420 1.461 5.466 6.786 .9958 .0042
12 1 5.021 7.495 1.493 6.325 6.423 .9869 .0131
12 2 5.520 8.442 1.529 7.054 6.058 .9715 .0285
12 3 5.945 9.338 1.571 7.718 5.697 .9488 .0512
12 4 6.312 10.214 1.618 8.342 5.341 .9183 .0817
12 5 6.629 11.086 1.672 8.936 4.993 .8804 .1196
12 6 6.900 11.966 1.734 9.509 4.653 .8357 .1643
12 7 7.127 12.864 1.805 10.064 4.324 .7855 .2145
12 8 7.312 13.785 1.885 10.605 4.004 .7310 .2690
12 9 7.457 14.736 1.976 11.134 3.696 .6739 .3261
12 10 7.565 15.719 2.078 11.654 3.400 .6155 .3845
12 11 7.640 16.734 2.190 12.165 3.117 .5571 .4429
12a 12 7.690 17.782 2.312 12.668 2.846 .5000 .5000
13 0 4.771 6.792 1.423 5.845 7.287 .9971 .0029
13 1 5.425 7.870 1.451 6.721 6.918 .9907 .0093
13 2 5.951 8.816 1.482 7.464 6.546 .9792 .0208
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TABLE T17.1 (continued): Unity values for the QSS system.

cN cT np.95 np.10 OR np.50 h0 PN at np.50 PT at np.50

13 3 6.401 9.707 1.517 8.141 6.178 .9615 .0385
13 4 6.794 10.573 1.556 8.775 5.814 .9369 .0631
13 5 7.139 11.432 1.601 9.379 5.458 .9054 .0946
13 6 7.440 12.294 1.652 9.960 5.109 .8673 .1327
13 7 7.699 13.168 1.710 10.524 4.769 .8233 .1767
13 8 7.917 14.061 1.776 11.073 4.439 .7745 .2255
13 9 8.095 14.979 1.850 11.610 4.119 .7219 .2781
13 10 8.235 15.926 1.934 12.137 3.810 .6670 .3330
13 11 8.340 16.905 2.027 12.655 3.513 .6109 .3891
13 12 8.415 17.916 2.129 13.165 3.228 .5549 .4451
13a 13 8.464 18.958 2.240 13.668 2.956 .5000 .5000
14 0 5.148 7.163 1.391 6.224 7.788 .9980 .0020
14 1 5.828 8.246 1.415 7.116 7.413 .9934 .0066
14 2 6.377 9.193 1.442 7.872 7.036 .9848 .0152
14 3 6.850 10.080 1.472 8.560 6.661 .9711 .0289
14 4 7.268 10.940 1.505 9.204 6.290 .9515 .0485
14 5 7.639 11.787 1.543 9.818 5.926 .9257 .0743
14 6 7.967 12.634 1.586 10.408 5.569 .8936 .1064
14 7 8.255 13.489 1.634 10.980 5.220 .8555 .1445
14 8 8.503 14.359 1.689 11.537 4.880 .8122 .1878
14 9 8.713 15.249 1.750 12.081 4.550 .7646 .2354
14 10 8.885 16.165 1.819 12.615 4.229 .7138 .2862
14 11 9.021 17.109 1.897 13.139 3.920 .6608 .3392
14 12 9.124 18.085 1.982 13.656 3.622 .6069 .3931
14 13 9.197 19.091 2.076 14.165 3.335 .5529 .4471
14a 14 9.246 20.128 2.177 14.668 3.062 .5000 .5000
15 0 5.524 7.535 1.364 6.603 8.289 .9986 .0014
15 1 6.228 8.623 1.385 7.509 7.909 .9953 .0047
15 2 6.799 9.571 1.408 8.278 7.526 .9889 .0111
15 3 7.295 10.456 1.433 8.976 7.145 .9784 .0216
15 4 7.735 11.311 1.462 9.631 6.769 .9629 .0371
15 5 8.129 12.150 1.495 10.253 6.398 .9419 .0581
15 6 8.482 12.985 1.531 10.852 6.033 .9151 .0849
15 7 8.796 13.824 1.572 11.432 5.676 .8826 .1174
15 8 9.073 14.674 1.617 11.996 5.327 .8447 .1553
15 9 9.312 15.541 1.669 12.547 4.987 .8022 .1978
15 10 9.515 16.429 1.727 13.088 4.656 .7558 .2442
15 11 9.682 17.342 1.791 13.619 4.336 .7065 .2935
15 12 9.814 18.285 1.863 14.141 4.026 .6553 .3447
15 13 9.914 19.257 1.942 14.657 3.727 .6032 .3968
15 14 9.987 20.260 2.029 15.165 3.439 .5512 .4488
15a 15 10.036 21.292 2.122 15.668 3.164 .5000 .5000
16 0 5.900 7.906 1.340 6.980 8.789 .9991 .0009
16 1 6.627 9.000 1.358 7.902 8.405 .9967 .0033
16 2 7.218 9.950 1.378 8.682 8.017 .9920 .0080
16 3 7.734 10.835 1.401 9.391 7.631 .9839 .0161
16 4 8.195 11.686 1.426 10.054 7.249 .9718 .0282

(continued)
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TABLE T17.1 (continued): Unity values for the QSS system.

cN cT np.95 np.10 OR np.50 h0 PN at np.50 PT at np.50

16 5 8.610 12.518 1.454 10.686 6.872 .9548 .0452
16 6 8.986 13.344 1.485 11.292 6.501 .9326 .0674
16 7 9.324 14.170 1.520 11.880 6.136 .9051 .0949
16 8 9.627 15.004 1.559 12.451 5.779 .8724 .1276
16 9 9.894 15.851 1.602 13.009 5.430 .8348 .1652
16 10 10.125 16.715 1.651 13.556 5.090 .7930 .2070
16 11 10.322 17.602 1.705 14.094 4.759 .7478 .2522
16 12 10.484 18.514 1.766 14.622 4.438 .6999 .3001
16 13 10.613 19.454 1.833 15.143 4.128 .6503 .3497
16 14 10.711 20.424 1.907 15.657 3.828 .5999 .4001
16 15 10.783 21.424 1.987 16.165 3.540 .5496 .4504
16a 16 10.832 22.452 2.073 16.668 3.263 .5000 .5000
17 0 6.276 8.278 1.319 7.358 9.290 .9994 .0006
17 1 7.024 9.378 1.335 8.292 8.901 .9977 .0023
17 2 7.635 10.330 1.353 9.084 8.509 .9942 .0058
17 3 8.169 11.215 1.373 9.803 8.118 .9881 .0119
17 4 8.649 12.064 1.395 10.476 7.731 .9786 .0214
17 5 9.084 12.891 1.419 11.115 7.348 .9650 .0350
17 6 9.481 13.710 1.446 11.730 6.971 .9468 .0532
17 7 9.841 14.526 1.476 12.325 6.600 .9237 .0763
17 8 10.167 15.346 1.509 12.903 6.235 .8957 .1043
17 9 10.460 16.176 1.547 13.468 5.879 .8629 .1371
17 10 10.718 17.020 1.588 14.021 5.530 .8257 .1743
17 11 10.943 17.883 1.634 14.564 5.190 .7847 .2153
17 12 11.133 18.768 1.686 15.098 4.859 .7405 .2595
17 13 11.291 19.679 1.743 15.625 4.538 .6939 .3061
17 14 11.417 20.618 1.806 16.145 4.227 .6458 .3542
17 15 11.514 21.585 1.875 16.658 3.926 .5969 .4031
17 16 11.585 22.582 1.949 17.165 3.637 .5481 .4519
17a 17 11.634 23.606 2.029 17.668 3.359 .5000 .5000
18 0 6.651 8.650 1.300 7.734 9.790 .9996 .0004
18 1 7.419 9.755 1.315 8.682 9.397 .9984 .0016
18 2 8.048 10.711 1.331 9.485 9.001 .9958 .0042
18 3 8.600 11.597 1.348 10.214 8.606 .9912 .0088
18 4 9.098 12.444 1.368 10.895 8.214 .9838 .0162
18 5 9.552 13.268 1.389 11.543 7.826 .9730 .0270
18 6 9.967 14.081 1.413 12.165 7.443 .9582 .0418
18 7 10.348 14.888 1.439 12.766 7.066 .9390 .0610
18 8 10.696 15.698 1.468 13.351 6.695 .9153 .0847
18 9 11.012 16.514 1.500 13.923 6.331 .8869 .1131
18 10 11.295 17.341 1.535 14.482 5.975 .8541 .1459
18 11 11.546 18.183 1.575 15.031 5.626 .8173 .1827
18 12 11.764 19.045 1.619 15.571 5.286 .7770 .2230
18 13 11.950 19.929 1.668 16.103 4.956 .7338 .2662
18 14 12.104 20.839 1.722 16.627 4.634 .6884 .3116
18 15 12.227 21.776 1.781 17.146 4.323 .6416 .3584
18 16 12.322 22.742 1.846 17.658 4.022 .5942 .4058
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TABLE T17.1 (continued): Unity values for the QSS system.

cN cT np.95 np.10 OR np.50 h0 PN at np.50 PT at np.50

18 17 12.393 23.736 1.915 18.165 3.731 .5468 .4532
18a 18 12.442 24.756 1.990 18.668 3.453 .5000 .5000
19 0 7.027 9.022 1.284 8.111 10.291 .9997 .0003
19 1 7.813 10.133 1.297 9.071 9.894 .9988 .0012
19 2 8.459 11.092 1.311 9.884 9.494 .9970 .0030
19 3 9.028 11.980 1.327 10.622 9.095 .9935 .0065
19 4 9.542 12.826 1.344 11.312 8.699 .9878 .0122
19 5 10.013 13.648 1.363 11.967 8.306 .9792 .0208
19 6 10.447 14.456 1.384 12.597 7.918 .9673 .0327
19 7 10.847 15.257 1.407 13.205 7.535 .9515 .0485
19 8 11.215 16.057 1.432 13.797 7.159 .9315 .0685
19 9 11.551 16.862 1.460 14.374 6.788 .9072 .0928
19 10 11.857 17.674 1.491 14.939 6.425 .8786 .1214
19 11 12.132 18.500 1.525 15.494 6.068 .8459 .1541
19 12 12.376 19.341 1.563 16.039 5.720 .8095 .1905
19 13 12.589 20.202 1.605 16.577 5.380 .7699 .2301
19 14 12.770 21.085 1.651 17.107 5.049 .7276 .2724
19 15 12.921 21.994 1.702 17.630 4.728 .6834 .3166
19 16 13.042 22.930 1.758 18.147 4.416 .6378 .3622
19 17 13.136 23.894 1.819 18.659 4.114 .5917 .4083
19 18 13.205 24.885 1.884 19.166 3.823 .5455 .4545
19a 19 13.255 25.903 1.954 19.668 3.544 .5000 .5000
20 0 7.402 9.394 1.269 8.486 10.791 .9998 .0002
20 1 8.206 10.511 1.281 9.459 10.391 .9992 .0008
20 2 8.869 11.474 1.294 10.282 9.988 .9978 .0022
20 3 9.453 12.363 1.308 11.029 9.585 .9952 .0048
20 4 9.983 13.210 1.323 11.727 9.184 .9908 .0092
20 5 10.470 14.030 1.340 12.390 8.788 .9841 .0159
20 6 10.920 14.835 1.358 13.027 8.395 .9745 .0255
20 7 11.337 15.631 1.379 13.642 8.007 .9616 .0384
20 8 11.724 16.423 1.401 14.240 7.625 .9449 .0551
20 9 12.080 17.218 1.425 14.823 7.248 .9242 .0758
20 10 12.407 18.019 1.452 15.394 6.878 .8995 .1005
20 11 12.705 18.829 1.482 15.954 6.515 .8707 .1293
20 12 12.973 19.653 1.515 16.505 6.159 .8382 .1618
20 13 13.210 20.494 1.551 17.047 5.811 .8022 .1978
20 14 13.418 21.354 1.591 17.582 5.472 .7633 .2367
20 15 13.595 22.237 1.636 18.110 5.141 .7219 .2781
20 16 13.742 23.145 1.684 18.632 4.819 .6787 .3213
20 17 13.861 24.080 1.737 19.148 4.507 .6343 .3657
20 18 13.953 25.041 1.795 19.659 4.205 .5893 .4107
20 19 14.023 26.030 1.856 20.166 3.913 .5444 .4556
20a 20 14.072 27.045 1.922 20.668 3.632 .5000 .5000

Source: Reprinted from Romboski, L.D., An investigation of quick switching acceptance sampling systems, Rutgers—
The State University, New Brunswick, NJ, 1969, 90–95. With permission.

a Indicates values for single sampling plans.
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TABLE T17.2: Ha values for simplified grand lot sampling.a

k 0 1 2 3 4 5 6 7 8 9

a¼ .002
0 0. 0. 2.19 2.78 3.01 3.17 3.28 3.36 3.48 3.48
10 3.53 3.57 3.60 3.64 3.66 3.69 3.71 3.74 3.76 3.77
20 3.79 3.81 3.82 3.84 3.85 3.86 3.88 3.89 3.90 3.91
30 3.92 3.93 3.94 3.95 3.96 3.97 3.97 3.98 3.99 4.00
40 4.00 4.01 4.02 4.02 4.03 4.04 4.04 4.05 4.06 4.06
50 4.07 4.07 4.08 4.08 4.09 4.09 4.10 4.10 4.11 4.11
60 4.11 4.12 4.12 4.13 4.13 4.14 4.14 4.14 4.15 4.15
70 4.15 4.16 4.16 4.17 4.17 4.17 4.18 4.18 4.18 4.19
80 4.19 4.19 4.19 4.20 4.20 4.20 4.21 4.21 4.21 4.21
90 4.22 4.22 4.22 4.23 4.23 4.23 4.23 4.24 4.24 4.24
100 4.24 4.25 4.25 4.25 4.25 4.26 4.26 4.26 4.26 4.26
110 4.27 4.27 4.27 4.27 4.28 4.28 4.28 4.28 4.28 4.29
120 4.29 4.29 4.29 4.29 4.30 4.30 4.30 4.30 4.30 4.30
130 4.31 4.31 4.31 4.31 4.31 4.32 4.32 4.32 4.32 4.32
140 4.32 4.33 4.33 4.33 4.33 4.33 4.33 4.34 4.34 4.34
150 4.34 4.34 4.34 4.34 4.35 4.35 4.35 4.35 4.35 4.35
160 4.35 4.36 4.36 4.36 4.36 4.36 4.36 4.36 4.37 4.37
170 4.37 4.37 4.37 4.37 4.37 4.38 4.38 4.38 4.38 4.38
180 4.38 4.38 4.38 4.39 4.39 4.39 4.39 4.39 4.39 4.39
190 4.39 4.40 4.40 4.40 4.40 4.40 4.40 4.40 4.40 4.40
200 4.41 4.41 4.41 4.41 4.41 4.41 4.41 4.41 4.41 4.42

a¼ .05
0 0. 0. 1.39 1.96 2.16 2.30 2.41 2.49 2.56 2.61
10 2.66 2.71 2.74 2.78 2.81 2.84 2.86 2.89 2.91 2.93
20 2.95 2.97 2.98 3.00 3.01 3.03 3.04 3.06 3.07 3.08
30 3.09 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18
40 3.19 3.19 3.20 3.21 3.22 3.22 3.23 3.24 3.24 3.25
50 3.26 3.26 3.27 3.28 3.28 3.29 3.29 3.30 3.30 3.31
60 3.31 3.32 3.32 3.33 3.33 3.34 3.34 3.35 3.35 3.36
70 3.36 3.36 3.37 3.37 3.38 3.38 3.38 3.39 3.39 3.40
80 3.40 3.40 3.41 3.41 3.41 3.42 3.42 3.42 3.43 3.43
90 3.43 3.44 3.44 3.44 3.45 3.45 3.45 3.45 3.46 3.46
100 3.46 3.47 3.47 3.47 3.47 3.48 3.48 3.48 3.49 3.49
110 3.49 3.49 3.50 3.50 3.50 3.50 3.51 3.51 3.51 3.51
120 3.51 3.52 3.52 3.52 3.52 3.53 3.53 3.53 3.53 3.53
130 3.54 3.54 3.54 3.54 3.55 3.55 3.55 3.55 3.55 3.56
140 3.56 3.56 3.56 3.56 3.56 3.57 3.57 3.57 3.57 3.57
150 3.58 3.58 3.58 3.58 3.58 3.58 3.59 3.59 3.59 3.59
160 3.59 3.60 3.60 3.60 3.60 3.60 3.60 3.61 3.61 3.61
170 3.61 3.61 3.61 3.61 3.62 3.62 3.62 3.62 3.62 3.62
180 3.63 3.63 3.63 3.63 3.63 3.63 3.63 3.64 3.64 3.64
190 3.64 3.64 3.64 3.64 3.65 3.65 3.65 3.65 3.65 3.65
200 3.65 3.65 3.66 3.66 3.66 3.66 3.66 3.66 3.66 3.66

Source: Reprinted from Schilling, E.G., J. Qual Technol., 11(3) 119, 1979. With permission.
a Computed as in Schilling (1973b).
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TABLE T17.3: Parametric values of some TNT plans.

s t
np1 for
a¼ 0.05

np2 for
b¼ 0.10 R¼ p2=p1 np0 npm nAOQL

AOQL=p1
for a¼ 0.05 h0

1 2 0.05102 1.18167 23.16090 0.48121 0.47536 0.24063 4.71639 1.01922
1 3 0.05086 1.15471 22.70370 0.43098 0.41973 0.21559 4.23889 1.03486
1 4 0.05070 1.15164 22.71480 0.39880 0.40199 0.19941 3.93314 0.99261
1 5 0.05052 1.15132 22.78940 0.37799 0.42687 0.18984 3.75772 0.92596
1 6 0.05033 1.15129 22.87480 0.36478 0.46871 0.18589 3.69342 0.85779
2 3 0.05052 1.15423 22.84700 0.41667 0.42436 0.20838 4.12470 0.97923
2 4 0.05023 1.15159 22.92630 0.38825 0.42261 0.19470 3.87607 0.93071
2 5 0.04992 1.15132 23.06330 0.37069 0.45351 0.18786 3.76332 0.86921
2 6 0.04961 1.15129 23.20680 0.36007 0.47980 0.18529 3.73493 0.81266
2 7 0.04927 1.15129 23.36700 0.35388 0.49168 0.18441 3.74285 0.76885
3 4 0.04984 1.15158 23.10550 0.38425 0.43274 0.19322 3.87681 0.90446
3 5 0.04944 1.15132 23.28720 0.36801 0.46136 0.18731 3.78863 0.84684
3 6 0.04903 1.15129 23.48130 0.35839 0.48293 0.18512 3.77565 0.79589
3 7 0.04861 1.15129 23.68420 0.35290 0.49286 0.18436 3.79264 0.75751
3 8 0.04818 1.15129 23.89560 0.34988 0.49704 0.18409 3.82088 0.73156
4 5 0.04905 1.15132 23.47240 0.36668 0.46488 0.18707 3.81386 0.83514
4 6 0.04857 1.15129 23.70370 0.35757 0.48433 0.18504 3.80976 0.78737
4 7 0.04808 1.15129 23.94530 0.35242 0.49339 0.18433 3.83382 0.75186
4 8 0.04759 1.15129 24.19190 0.34962 0.49724 0.18408 3.86804 0.72809
4 9 0.04709 1.15129 24.44870 0.34813 0.49886 0.18399 3.90720 0.71325
5 6 0.04818 1.15129 23.89560 0.35711 0.48507 0.18500 3.83977 0.78237
5 7 0.04764 1.15129 24.16650 0.35216 0.49367 0.18432 3.86902 0.74861
5 8 0.04711 1.15129 24.43830 0.34947 0.49735 0.18408 3.90745 0.72609
5 9 0.04657 1.15129 24.72170 0.34805 0.49890 0.18399 3.95083 0.71209
5 10 0.04603 1.15129 25.01170 0.34732 0.49952 0.18396 3.99652 0.70379

Source: Reprinted from Soundararajan, V. and Vijayaraghavan, R., J. Qual. Technol., 22(2), 151, 1990. With
permission.

TABLE T17.4: MIL-STD-1916 Table I—code letters (CL) for entry into the sampling tables.

Lot or Production
Interval Size

Verification Levels

VII VI V IV III II I

2–170 A A A A A A A
171–288 A A A A A A B
289–544 A A A A A B C

545–960 A A A A B C D
961–1632 A A A B C D E
1633–3072 A A B C D E E

3073–5440 A B C D E E E
5441–9216 B C D E E E E
9217–17408 C D E E E E E

17409–30720 D E E E E E E
30721 and larger E E E E E E E

Source: United States Department of Defense, Department of Defense Test Method Standard, DOD Preferred Methods
for Acceptance of Product, MIL-STD-1916, U.S. Government Printing Office, Washington, DC, 1996, 15.
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TABLE T17.5: MIL-STD-1916 Table II—Attributes sampling plans.

Code
Letter

Verification Levels

T VII VI V IV III II I R

Sample size (na)

A 3072 1280 512 192 80 32 12 5 3

B 4096 1536 640 256 96 40 16 6 3

C 5120 2048 768 320 128 48 20 8 3

D 6144 2560 1024 384 160 64 24 10 4

E 8192 3072 1280 512 192 80 32 12 5

Source: United States Department of Defense, Department of Defense Test Method Standard, DOD Preferred Methods
for Acceptance of Product, MIL-STD-1916, U.S. Government Printing Office, Washington, DC, 1996, 17.

Notes: 1. When the lot size is less than or equal to the sample size, 100% attributes inspection is required.
2. One verification level (VL) to the left=right of the specified normal VL is the respective tightened=reduced

plan. Tightened inspection of VL-VII is T, reduced inspection of VL-I is R.
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TABLE T17.6: MIL-STD-1916 Table III—variables sampling plans.

Code
Letter

Verification Levels

T VII VI V IV III II I R

Sample size (nv)

A 113 87 64 44 29 18 9 4 2

B 122 92 69 49 32 20 11 5 2

C 129 100 74 54 37 23 13 7 2

D 136 107 81 58 41 26 15 8 3

E 145 113 87 64 44 29 18 9 4

k values (one- or two-sided)

A 3.51 3.27 3.00 2.69 2.40 2.05 1.64 1.21 1.20

B 3.58 3.32 3.07 2.79 2.46 2.14 1.77 1.33 1.20

C 3.64 3.40 3.12 2.86 2.56 2.21 1.86 1.45 1.20

D 3.69 3.46 3.21 2.91 2.63 2.32 1.93 1.56 1.20

E 3.76 3.51 3.27 3.00 2.69 2.40 2.05 1.64 1.21

F values (one- or two-sided)

A .136 .145 .157 .174 .193 .222 .271 .370 .707

B .134 .143 .154 .168 .188 .214 .253 .333 .707

C .132 .140 .152 .165 .182 .208 .242 .301 .707

D .130 .138 .148 .162 .177 .199 .233 .283 .435

E .128 .136 .145 .157 .174 .193 .222 .271 .370

Source: United States Department of Defense, Department of Defense Test Method Standard, DOD Preferred Methods
for Acceptance of Product, MIL-STD-1916, U.S. Government Printing Office, Washington, DC, 1996, 19.

Notes: 1. When the lot size is less than or equal to the sample size, 100% attributes inspection is required.
2. One verification level (VL) to the left=right of the specified normal VL is the respective tightened=reduced

plan. Tightened inspection of VL-VII is T, reduced inspection of VL-I is R.
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TABLE T17.7: MIL-STD-1916 Table IV—Continuous sampling plans.

Code
Letter

Verification Levels

T VII VI V IV III II I R

Screening phase: clearance numbers (i)

A 3867 2207 1134 527 264 125 55 27 NA

B 7061 3402 1754 842 372 180 83 36 NA

C 11337 5609 2524 1237 572 246 116 53 NA

D 16827 8411 3957 1714 815 368 155 73 NA

E 26912 11868 5709 2605 1101 513 228 96 NA

Sampling phase: frequencies ( f)

A 1=3 4=17 1=6 2=17 1=12 1=17 1=24 1=34 1=48

B 4=17 1=6 2=17 1=12 1=17 1=24 1=34 1=48 1=68

C 1=6 2=17 1=12 1=17 1=24 1=34 1=48 1=68 1=96

D 2=17 1=12 1=17 1=24 1=34 1=48 1=68 1=96 1=136

E 1=12 1=17 1=24 1=34 1=48 1=68 1=96 1=136 1=192

Source: United States Department of Defense, Department of Defense Test Method Standard, DOD Preferred Methods
for Acceptance of Product, MIL-STD-1916, U.S. Government Printing Office, Washington, DC, 1996, 20.

Notes: 1. Use of other i and f combinations is permitted provided that they are computed in accordance with Appendix,
paragraph 30.5.

2. During the screening phase, one verification level (VL) to the left of the specified normal VL is the tightened
plan. Tightened inspection of VL-VII is T. There is no reduced plan while in the screening phase.
During the sampling phase, one VL to the left=right of the specified normal VL is the respective
tightened=reduced plan. Tightened inspection of VL-VII is T, reduced inspection of VL-I is R.

3. Sample units shall be chosen with frequency ( f) so as to give each unit of product an equal chance of being
inspected. The inspector should allow the interval between sample units to vary somewhat rather than draw
sample units according to a rigid pattern.
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TABLE T17.8: Nomograph for samples having zero defectives.

10.0

Maximum
% defective

9.0
8.0

7.0

6.0

5.0

4.0

3.5

3.0

2.5

2.0
1.8
1.6

1.4

1.2

1.0
0.90
0.80

0.70

0.60

0.50

0.40

0.35

0.30

0.25

0.20
0.18
0.16

0.14

0.12

0.10

Confidence
0.9999

0.999

0.99

0.95

0.90

0.80

0.70

0.60

0.50

Sample
size
1000
950

850

750

650

550

480
460
440
420

380
360
340
320

280
260
240

270

190
180
170
160
150
140
130
120

110

95

85

75

65

55

48
46
44
42

38
36
34
32

900

800

700

600

500

400

300

200

100

90

80

70

60

50

40

30

Source: Reprinted from Nelson, L.S., J. Qual. Technol., 10(1), 43, 1978. With permission.
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TABLE T18.1: Hazard values corresponding to probability plotting positions
for censored data.

Probability
Percent

Probability Tenth of Percent

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0. 0. 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
1. 1.01 1.11 1.21 1.31 1.41 1.51 1.61 1.71 1.82 1.92
2. 2.02 2.12 2.22 2.33 2.43 2.53 2.63 2.74 2.84 2.94
3. 3.05 3.15 3.25 3.36 3.46 3.56 3.67 3.77 3.87 3.98
4. 4.08 4.19 4.29 4.40 4.50 4.60 4.71 4.81 4.92 5.02
5. 5.13 5.23 5.34 5.45 5.55 5.66 5.76 5.87 5.97 6.08
6. 6.19 6.29 6.40 6.51 6.61 6.72 6.83 6.94 7.04 7.15
7. 7.26 7.36 7.47 7.58 7.69 7.80 7.90 8.01 8.12 8.23
8. 8.34 8.45 8.56 8.66 8.77 8.88 8.99 9.10 9.21 9.32
9. 9.43 9.54 9.65 9.76 9.87 9.98 10.09 10.20 10.31 10.43
10. 10.54 10.65 10.76 10.87 10.98 11.09 11.20 11.32 11.43 11.54
11. 11.65 11.77 11.88 11.99 12.10 12.22 12.33 12.44 12.56 12.67
12. 12.78 12.90 13.01 13.12 13.24 13.35 13.47 13.58 13.70 13.81
13. 13.93 14.04 14.16 14.27 14.39 14.50 14.62 14.73 14.85 14.97
14. 15.08 15.20 15.32 15.43 15.55 15.67 15.78 15.90 16.02 16.13
15. 16.25 16.37 16.49 16.61 16.72 16.84 16.96 17.08 17.20 17.32
16. 17.44 17.55 17.67 17.79 17.91 18.03 18.15 18.27 18.39 18.51
17. 18.63 18.75 18.87 19.00 19.12 19.24 19.36 19.48 19.60 19.72
18. 19.85 19.97 20.09 20.21 20.33 20.46 20.58 20.70 20.83 20.95
19. 21.07 21.20 21.32 21.44 21.57 21.69 21.82 21.94 22.06 22.19
20. 22.31 22.44 22.56 22.69 22.82 22.94 23.07 23.19 23.32 23.45
21. 23.57 23.70 23.83 23.95 24.08 24.21 24.33 24.46 24.59 24.72
22. 24.85 24.97 25.10 25.23 25.36 25.49 25.62 25.75 25.88 26.01
23. 26.14 26.27 26.40 26.53 26.66 26.79 26.92 27.05 27.18 27.31
24. 27.44 27.58 27.71 27.84 27.97 28.10 28.24 28.37 28.50 28.63
25. 28.77 28.90 29.04 29.17 29.30 29.44 29.57 29.71 29.84 29.98
26. 30.11 30.25 30.38 30.52 30.65 30.79 30.92 31.06 31.20 31.33
27. 31.47 31.61 31.75 31.88 32.02 32.16 32.30 32.43 32.57 32.71
28. 32.85 32.99 33.13 33.27 33.41 33.55 33.69 33.83 33.97 34.11
29. 34.25 34.39 34.53 34.67 34.81 34.96 35.10 35.24 35.38 35.52
30. 35.67 35.81 35.95 36.10 36.24 36.38 36.53 36.67 36.82 36.96
31. 37.11 37.25 37.40 37.54 37.69 37.83 37.98 38.13 38.27 38.42
32. 38.57 38.71 38.86 39.01 39.16 39.30 39.45 39.60 39.75 39.90
33. 40.05 40.20 40.35 40.50 40.65 40.80 40.95 41.10 41.25 41.40
34. 41.55 41.70 41.86 42.01 42.16 42.31 42.46 42.62 42.77 42.92
35. 43.08 43.23 43.39 43.54 43.70 43.85 44.01 44.16 44.32 44.47
36. 44.63 44.79 44.94 45.10 45.26 45.41 45.57 45.73 45.89 46.04
37. 46.20 46.36 46.52 46.68 46.84 47.00 47.16 47.32 47.48 47.64
38. 47.80 47.96 48.13 48.29 48.45 48.61 48.78 48.94 49.10 49.27
39. 49.43 49.59 49.76 49.92 50.09 50.25 50.42 50.58 50.75 50.92
40. 51.08 51.25 51.42 51.58 51.75 51.92 52.09 52.26 52.42 52.59
41. 52.76 52.93 53.10 53.27 53.44 53.61 53.79 53.96 54.13 54.30
42. 54.47 54.65 54.82 54.99 55.16 55.34 55.51 55.69 55.86 56.04
43. 56.21 56.39 56.56 56.74 56.92 57.09 57.27 57.45 57.63 57.80
44. 57.98 58.16 58.34 58.52 58.70 58.88 59.06 59.24 59.42 59.60
45. 59.78 59.97 60.15 60.33 60.51 60.70 60.88 61.06 61.25 61.43
46. 61.62 61.80 61.99 62.18 62.36 62.55 62.74 62.92 63.11 63.30
47. 63.49 63.68 63.87 64.06 64.25 64.44 64.63 64.82 65.01 65.20
48. 65.39 65.59 65.78 65.97 66.16 66.36 66.55 66.75 66.94 67.14
49. 67.33 67.53 67.73 67.92 68.12 68.32 68.52 68.72 68.92 69.11

� 2008 by Taylor & Francis Group, LLC.



TABLE T18.1 (continued): Hazard values corresponding to probability plotting positions
for censored data.

Probability
Percent

Probability Tenth of Percent

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50. 69.31 69.51 69.72 69.92 70.12 70.32 70.52 70.72 70.93 71.13
51. 71.33 71.54 71.74 71.95 72.15 72.36 72.57 72.77 72.98 73.19
52. 73.40 73.61 73.81 74.02 74.23 74.44 74.65 74.87 75.08 75.29
53. 75.50 75.72 75.93 76.14 76.36 76.57 76.79 77.00 77.22 77.44
54. 77.65 77.87 78.09 78.31 78.53 78.75 78.97 79.19 79.41 79.63
55. 79.85 80.07 80.30 80.52 80.74 80.97 81.19 81.42 81.64 81.87
56. 82.10 82.33 82.55 82.78 83.01 83.24 83.47 83.70 83.93 84.16
57. 84.40 84.63 84.86 85.10 85.33 85.57 85.80 86.04 86.27 86.51
58. 86.75 86.99 87.23 87.47 87.71 87.95 88.19 88.43 88.67 88.92
59. 89.16 89.40 89.65 89.89 90.14 90.39 90.63 90.88 91.13 91.38
60. 91.63 91.88 92.13 92.38 92.63 92.89 93.14 93.39 93.65 93.90
61. 94.16 94.42 94.67 94.93 95.19 95.45 95.71 95.97 96.23 96.50
62. 96.76 97.02 97.29 97.55 97.82 98.08 98.35 98.62 98.89 99.16
63. 99.43 99.70 99.97 100.24 100.51 100.79 101.06 101.34 101.61 101.89
64. 102.17 102.44 102.72 103.00 103.28 103.56 103.85 104.13 104.41 104.70
65. 104.98 105.27 105.56 105.84 106.13 106.42 106.71 107.00 107.29 107.59
66. 107.88 108.18 108.47 108.77 109.06 109.36 109.66 109.96 110.26 110.56
67. 110.87 111.17 111.47 111.78 112.09 112.39 112.70 113.01 113.32 113.63
68. 113.94 114.26 114.57 114.89 115.20 115.52 115.84 116.16 116.48 116.80
69. 117.12 117.44 117.77 118.09 118.42 118.74 119.07 119.40 119.73 120.06
70. 120.40 120.73 121.07 121.40 121.74 122.08 122.42 122.76 123.10 123.44
71. 123.79 124.13 124.48 124.83 125.18 125.53 125.88 126.23 126.58 126.94
72. 127.30 127.65 128.01 128.37 128.74 129.10 129.46 129.83 130.20 130.56
73. 130.93 131.30 131.68 132.05 132.43 132.80 133.18 133.56 133.94 134.32
74. 134.71 135.09 135.48 135.87 136.26 136.65 137.04 137.44 137.83 138.23
75. 138.63 139.03 139.43 139.84 140.24 140.65 141.06 141.47 141.88 142.30
76. 142.71 143.13 143.55 143.97 144.39 144.82 145.24 145.67 146.10 146.53
77. 146.97 147.40 147.84 148.28 148.72 149.17 149.61 150.06 150.51 150.96
78. 151.41 151.87 152.33 152.79 153.25 153.71 154.18 154.65 155.12 155.59
79. 156.06 156.54 157.02 157.50 157.99 158.47 158.96 159.45 159.95 160.45
80. 160.94 161.45 161.95 162.46 162.96 163.48 163.99 164.51 165.03 165.55
81. 166.07 166.60 167.13 167.66 168.20 168.74 169.28 169.83 170.37 170.93
82. 171.48 172.04 172.60 173.16 173.73 174.30 174.87 175.45 176.03 176.61
83. 177.20 177.79 178.38 178.98 179.58 180.18 180.79 181.40 182.02 182.64
84. 183.26 183.89 184.52 185.15 185.79 186.43 187.08 187.73 188.39 189.05
85. 189.71 190.38 191.05 191.73 192.41 193.10 193.79 194.49 195.19 195.90
86. 196.61 197.33 198.05 198.78 199.51 200.25 200.99 201.74 202.50 203.26
87. 204.02 204.79 205.57 206.36 207.15 207.94 208.75 209.56 210.37 211.20
88. 212.03 212.86 213.71 214.56 215.42 216.28 217.16 218.04 218.93 219.82
89. 220.73 221.64 222.56 223.49 224.43 225.38 226.34 227.30 228.28 229.26
90. 230.26 231.26 232.28 233.30 234.34 235.39 236.45 237.52 238.60 239.69
91. 240.79 241.91 243.04 244.18 245.34 246.51 247.69 248.89 250.10 251.33
92. 252.57 253.83 255.10 256.39 257.70 259.03 260.37 261.73 263.11 264.51
93. 265.93 267.36 268.82 270.31 271.81 273.34 274.89 276.46 278.06 279.69
94. 281.34 283.02 284.73 286.47 288.24 290.04 291.88 293.75 295.65 297.59
95. 299.57 301.59 303.66 305.76 307.91 310.11 312.36 314.66 317.01 319.42
96. 321.89 324.42 327.02 329.68 332.42 335.24 338.14 341.12 344.20 347.38
97. 350.66 354.05 357.56 361.19 364.97 368.89 372.97 377.23 381.67 386.32
98. 391.20 396.33 401.74 407.45 413.52 419.97 426.87 434.28 442.28 450.99
99. 460.52 471.05 482.83 496.18 511.60 529.83 552.15 580.91 621.46 690.77

Source: Sheesley, J.H., Report Number 1300-1119, General Electric Company, Cleveland, OH, 1974.
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TABLE T18.2: H-108 Table 2A-1—Life test sampling plan code designation.

a¼ 0.01 a¼ 0.05 a¼ 0.10 a¼ 0.25 a¼ 0.50
b¼ 0.10 b¼ 0.10 b¼ 0.10 b¼ 0.10 b¼ 0.10

Code u1=u0 Code u1=u0 Code u1=u0 Code u1=u0 Code u1=u0

A-1 0.004 B-1 0.022 C-1 0.046 D-1 0.125 E-1 0.301
A-2 .038 B-2 .091 C-2 .137 D-2 .247 E-2 .432
A-3 .082 B-3 .154 C-3 .207 D-3 .325 E-3 .502
A-4 .123 B-4 .205 C-4 .261 D-4 .379 E-4 .550
A-5 .160 B-5 .246 C-5 .304 D-5 .421 E-5 .584
A-6 .193 B-6 .282 C-6 .340 D-6 .455 E-6 .611
A-7 .221 B-7 .312 C-7 .370 D-7 .483 E-7 .633
A-8 .247 B-8 .338 C-8 .396 D-8 .506 E-8 .652
A-9 .270 B-9 .361 C-9 .418 D-9 .526 E-9 .667
A-10 .291 B-10 .382 C-10 .438 D-10 .544 E-10 .681
A-11 .371 B-11 .459 C-11 .512 D-11 .608 E-11 .729
A-12 .428 B-12 .512 C-12 .561 D-12 .650 E-12 .759
A-13 .470 B-13 .550 C-13 .597 D-13 .680 E-13 .781
A-14 .504 B-14 .581 C-14 .624 D-14 .703 E-14 .798
A-15 .554 B-15 .625 C-15 .666 D-15 .737 E-15 .821
A-16 .591 B-16 .658 C-16 .695 D-16 .761 E-16 .838
A-17 .653 B-17 .711 C-17 .743 D-17 .800 E-17 .865
A-18 .692 B-18 .745 C-18 .774 D-18 .824 E-18 .882

Source: United States Department of Defense, Quality Control and Reliability (Interim) Handbook (H-108), Office of
the Assistant Secretary of Defense (Supply and Logistics), Washington, DC, 1960, 2.2.

Notes: Producer’s risk a is the probability of rejecting lots with mean life u0.
Consumer’s risk b is the probability of accepting lots with mean life u1.
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TABLE T18.3: H-108 Table 2B-1—Master table for life tests terminated upon occurrence
of preassigned number of failures.

r

Producer’s Risk (a)

0.01 0.05 0.10 0.25 0.50

Code C=u0 Code C=u0 Code C=u0 Code C=u0 Code C=u0

1 A-1 0.010 B-1 0.052 C-1 0.106 D-1 0.288 E-1 0.693
2 A-2 .074 B-2 .178 C-2 .266 D-2 .481 E-2 .839
3 A-3 .145 B-3 .272 C-3 .367 D-3 .576 E-3 .891
4 A-4 .206 B-4 .342 C-4 .436 D-4 .634 E-4 .918
5 A-5 .256 B-5 .394 C-5 .487 D-5 .674 E-5 .934
6 A-6 .298 B-6 .436 C-6 .525 D-6 .703 E-6 .945
7 A-7 .333 B-7 .469 C-7 .556 D-7 .726 E-7 .953
8 A-8 .363 B-8 .498 C-8 .582 D-8 .744 E-8 .959
9 A-9 .390 B-9 .522 C-9 .604 D-9 .760 E-9 .963
10 A-10 .413 B-10 .543 C-10 .622 D-10 .773 E-10 .967
15 A-11 .498 B-11 .616 C-11 .687 D-11 .816 E-11 .978
20 A-12 .554 B-12 .663 C-12 .726 D-12 .842 E-12 .983
25 A-13 .594 B-13 .695 C-13 .754 D-13 .859 E-13 .987
30 A-14 .625 B-14 .720 C-14 .774 D-14 .872 E-14 .989
40 A-15 .669 B-15 .755 C-15 .803 D-15 .889 E-15 .992
50 A-16 .701 B-16 .779 C-16 .824 D-16 .901 E-16 .993
75 A-17 .751 B-17 .818 C-17 .855 D-17 .920 E-17 .996
100 A-18 .782 B-18 .841 C-18 .874 D-18 .931 E-18 .997

Source: United States Department of Defense, Quality Control and Reliability (Interim) Handbook (H-108), Office of
the Assistant Secretary of Defense (Supply and Logistics), Washington, DC, 1960, 2.28.

Notes: Producer’s risk a is the probability of rejecting lots with mean life u0.
Acceptance criterion: accept lot if ûr,n � u0(C=u0).
For explanation of the code, see par. 2A3.2 and Table 2A-1.
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TABLE T18.4: H-108 Table 2C-1 (b)—Master table for life tests terminated at preassigned
time: testing without replacement (Values of T=u0 for a¼ 0.05).

Code r

Sample Size

2r 3r 4r 5r 6r 7r 8r 9r 10r 20r

B-1 1 0.026 0.017 0.013 0.010 0.009 0.007 0.006 0.006 0.005 0.003
B-2 2 .104 .065 .048 .038 .031 .026 .023 .020 .018 .009
B-3 3 .168 .103 .075 .058 .048 .041 .036 .031 .028 .014
B-4 4 .217 .132 .095 .074 .061 .052 .045 .040 .036 .017
B-5 5 .254 .153 .110 .086 .071 .060 .052 .046 .041 .020
B-6 6 .284 .170 .122 .095 .078 .066 .057 .051 .045 .022
B-7 7 .309 .185 .132 .103 .084 .072 .062 .055 .049 .024
B-8 8 .330 .197 .141 .110 .090 .076 .066 .058 .052 .025
B-9 9 .348 .207 .148 .115 .094 .080 .069 .061 .055 .027
B-10 10 .363 .216 .154 .120 .098 .083 .072 .064 .057 .028
B-11 15 .417 .246 .175 .136 .112 .094 .082 .072 .065 .032
B-12 20 .451 .266 .189 .147 .120 .102 .088 .078 .070 .034
B-13 25 .475 .280 .199 .154 .126 .107 .093 .082 .073 .036
B-14 30 .493 .290 .206 .160 .131 .111 .096 .085 .076 .037
B-15 40 .519 .305 .216 .168 .137 .116 .101 .089 .079 .039
B-16 50 .536 .315 .223 .173 .142 .120 .104 .092 .082 .040
B-17 75 .564 .331 .235 .182 .149 .126 .109 .096 .086 .042
B-18 100 .581 .340 .242 .187 .153 .130 .112 .099 .089 .043

Source: United States Department of Defense, Quality Control and Reliability (Interim) Handbook (H-108), Office of
the Assistant Secretary of Defense (Supply and Logistics), Washington, DC, 1960, 2.45.

Note: For explanation of the code, see par. 2A3.2 and Table 2A-1.
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TABLE T18.5: H-108 Table 2C-2 (b)—master table for life tests terminated at preassigned time:
testing with replacement (values of T=u0 for a¼ 0.05).

Code r

Sample Size

2r 3r 4r 5r 6r 7r 8r 9r 10r 20r

B-1 1 0.026 0.017 0.013 0.010 0.009 0.007 0.006 0.006 0.005 0.003
B-2 2 .089 .059 .044 .036 .030 .025 .022 .020 .018 .009
B-3 3 .136 .091 .068 .055 .045 .039 .034 .030 .027 .014
B-4 4 .171 .114 .085 .068 .057 .049 .043 .038 .034 .017
B-5 5 .197 .131 .099 .079 .066 .056 .049 .044 .039 .020
B-6 6 .218 .145 .109 .087 .073 .062 .054 .048 .044 .022
B-7 7 .235 .156 .117 .094 .078 .067 .059 .052 .047 .023
B-8 8 .249 .166 .124 .100 .083 .071 .062 .055 .050 .025
B-9 9 .261 .174 .130 .104 .087 .075 .065 .058 .052 .026
B-10 10 .271 .181 .136 .109 .090 .078 .068 .060 .054 .027
B-11 15 .308 .205 .154 .123 .103 .088 .077 .068 .062 .031
B-12 20 .331 .221 .166 .133 .110 .095 .083 .074 .066 .033
B-13 25 .348 .232 .174 .139 .116 .099 .087 .077 .070 .035
B-14 30 .360 .240 .180 .144 .120 .103 .090 .080 .072 .036
B-15 40 .377 .252 .189 .151 .126 .108 .094 .084 .075 .038
B-16 50 .390 .260 .195 .156 .130 .111 .097 .087 .078 .039
B-17 75 .409 .273 .204 .164 .136 .117 .102 .091 .082 .041
B-18 100 .421 .280 .210 .168 .140 .120 .105 .093 .084 .042

Source: United States Department of Defense, Quality Control and Reliability (Interim) Handbook (H-108), Office of
the Assistant Secretary of Defense (Supply and Logistics), Washington, DC, 1960, 2.47.

Note: For explanation of the code, see par. 2A3.2 and Table 2A-1.
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TABLE T18.6: H-108 Table 2D-1 (b)—Master table for sequential life tests (a¼ 0.05).

Code r0 h0=u0 h1=u0 s=u0 E0(r) Eo1(r) Es(r) Eo0(r)

B-1 3 0.0506 �0.0650 0.0859 0.8 0.8 0.4 0.0
B-2 6 .2254 �.2894 .2400 1.2 1.6 1.1 .3
B-3 9 .4098 �.5261 .3405 1.5 2.3 1.9 .6
B-4 12 .5805 �.7453 .4086 1.8 3.0 2.6 .9
B-5 15 .7345 �.9430 .4576 2.1 3.7 3.3 1.2
B-6 18 .8842 �1.1352 .4972 2.3 4.3 4.1 1.6
B-7 21 1.0209 �1.3107 .5282 2.5 5.0 4.8 1.9
B-8 24 1.1495 �1.4757 .5538 2.7 5.6 5.5 2.3
B-9 27 1.2719 �1.6329 .5756 2.8 6.3 6.3 2.7
B-10 30 1.3916 �1.7866 .5948 3.0 6.9 7.0 3.0
B-11 45 1.9101 �2.4523 .6607 3.7 10.0 10.7 5.0
B-12 60 2.3620 �3.0325 .7024 4.3 13.1 14.5 7.0
B-13 75 2.7516 �3.5327 .7307 4.8 16.1 18.2 9.1
B-14 90 3.1217 �4.0079 .7530 5.3 19.2 22.1 11.2
B-15 120 3.7522 �4.8173 .7833 6.2 25.0 29.5 15.3
B-16 150 4.3314 �5.5610 .8053 6.9 31.0 37.1 19.7
B-17 225 5.5386 �7.1109 .8391 8.5 45.6 55.9 30.5
B-18 300 6.5773 �8.4444 .8600 9.8 60.4 75.1 41.6

Source: United States Department of Defense, Quality Control and Reliability (Interim) Handbook (H-108), Office of
the Assistant Secretary of Defense (Supply and Logistics), Washington, DC, 1960, 2.63.

Note: For explanation of the code, see par. 2A3.2 and Table 2A-1.
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TABLE T18.7: H-108 Table 2C-5—Master table for proportion failing before specified time.
Life test sampling plans for specified a, b, and p1=p0.

Values of r (Upper Numbers) and of D (Lower Numbers)a

p1=p0

a¼ 0.01 a¼ 0.05 a¼ 0.10

b¼ 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

3=2 136 101 83 95 67 55 77 52 41
110.4 79.1 63.3 79.6 54.1 43.4 66.0 43.0 33.0

2 46 35 30 33 23 19 26 18 15
31.7 22.7 18.7 24.2 15.7 12.4 19.7 12.8 10.3

5=2 27 21 18 19 14 11 15 11 9
16.4 11.8 9.62 12.4 8.46 6.17 10.3 7.02 5.43

3 19 15 13 13 10 8 11 8 6
10.3 7.48 6.10 7.69 5.43 3.98 7.02 4.66 3.15

4 12 10 9 9 7 6 7 5 4
5.43 4.13 3.51 4.70 3.29 2.61 3.90 2.43 1.75

5 9 8 7 7 5 4 5 4 3
3.51 2.91 2.33 3.29 1.97 1.37 2.43 1.75 1.10

10 5 4 4 4 3 3 3 2 2
1.28 .823 .823 1.37 .818 .818 1.10 .532 .532

Source: United States Department of Defense, Quality Control and Reliability (Interim) Handbook (H-108), Office of
the Assistant Secretary of Defense (Supply and Logistics), Washington, DC, 1960, 2.55.

Notes: Producer’s risk a is the probability of rejecting lots with acceptable proportion of lot failing before specified
time, p0.
Consumer’s risk b is the probability of accepting lots with unacceptable proportion of lot failing before
specified time, p1.

a The sample size n is obtained by taking the largest integer less than or equal to the tabled value divided by p0, i.e.,
n¼ [D=p0].
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TABLE T18.8: TR3 Table 1—Table of values for percent truncation, (t=m)� 100.

p0 (%)

Shape Parameter¼b

1

3

1

2
1 1

2

3
2 2

1

2
3
1

3
4 5

.010 .010 .45 1.13 2.83 7.03 11.03 17.26

.012 .012 .49 1.24 3.04 7.42 11.55 17.91

.015 .015 .57 1.38 3.32 7.94 12.21 18.72

.020 .020 .67 1.59 3.73 8.66 13.12 19.83

.025 .025 .77 1.78 4.08 9.26 13.87 20.74

.030 .030 .86 1.95 4.40 9.77 14.52 21.50

.040 .040 1.02 2.26 4.93 10.65 15.60 22.77

.050 .050 1.18 2.53 5.39 11.40 16.49 23.82

.065 .065 1.37 2.88 5.98 12.32 17.62 25.10

.080 .080 1.56 3.19 6.50 13.13 18.56 26.16

.100 .10 1.78 3.57 7.11 14.03 19.62 27.36

.12 .12 1.98 3.92 7.65 14.82 20.53 28.37

.15 .15 2.26 4.37 8.36 15.84 21.71 29.67

.20 .20 2.69 5.07 9.39 17.27 23.33 31.43

.25 .25 3.08 5.64 10.27 18.47 24.68 32.87

.30 .30 3.44 6.18 11.05 19.51 25.83 34.09

.40 .40 4.07 7.14 12.39 21.27 27.76 36.12

.50 .001 .50 4.67 7.99 13.55 22.75 29.36 37.76

.65 .002 .65 5.46 9.12 15.06 24.62 31.35 39.81

.80 .003 .80 6.19 10.11 16.36 26.21 33.03 41.50

1.00 .005 1.01 7.08 11.31 17.90 28.03 34.93 43.40
1.2 .007 1.21 7.90 12.40 19.26 29.62 36.57 45.02
1.5 .011 1.51 9.07 13.87 21.08 31.68 38.68 47.09
2.0 .020 2.02 10.77 16.03 23.67 34.56 41.59 49.90
2.5 .032 2.53 12.33 17.95 25.90 36.98 44.01 52.21

3.0 .047 3.05 13.78 19.69 27.89 39.09 46.09 54.17
4.0 .001 .083 4.08 16.42 22.79 31.35 42.69 49.59 57.45
5.0 .002 .13 5.13 18.84 25.58 34.35 45.71 52.50 60.13
6.5 .005 .23 6.72 22.15 29.25 38.28 49.57 56.18 63.46
8.0 .010 .35 8.34 25.20 32.59 41.72 52.88 59.29 66.26

10.0 .020 .56 10.54 29.01 36.63 45.82 56.73 62.85 69.44
12 .034 .82 12.78 32.58 40.34 49.50 60.11 65.96 72.18
15 .070 1.32 16.25 37.63 45.48 54.49 64.60 70.05 75.73
20 .18 2.49 22.31 45.51 53.30 61.85 71.04 75.83 80.68
25 .40 4.14 28.77 52.99 60.53 68.47 76.67 80.80 84.89

30 .76 6.36 35.37 60.29 67.39 74.62 81.79 85.26 88.62
40 2.22 13.04 51.08 74.79 80.64 86.15 91.09 93.27 95.22
50 5.55 24.02 69.31 89.82 93.95 97.33 99.82 100.67 101.21
65 19.28 55.10 104.98 115.23 115.61 114.92 113.06 111.68 109.98
80 69.48 129.52 160.94 148.91 143.14 136.34 128.53 124.27 119.79

Source: United States Department of Defense, Quality Control and Reliability Technical Report (TR3), Office of the
Assistant Secretary of Defense (Installations and Logistics), U.S. Government Printing Office, Washington,
DC. 1961, 26.
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TABLE T18.9: TR7 Table 1A—100t=m ratios at the acceptable quality level (normal inspection)
for the MIL-STD-105E plans.

Acceptable
Quality
Level p0 (%)

Shape Parameter, b

1

3

1

2

2

3
1 1

1

3
1
2

3
2 2

1

2
3
1

3
4

0.010 17–12 50–8 75–6 .010 .11 .45 1.13 2.83 7.03 11.0
0.015 56–12 11–7 14–5 .015 .15 .57 1.38 3.32 7.94 12.2
0.025 26–11 31–7 30–5 .025 .22 .77 1.78 4.08 9.26 13.9
0.040 11–10 80–7 60–5 .040 .31 1.02 2.26 4.93 10.7 15.6
0.065 46–10 21–6 13–4 .065 .44 1.37 2.88 5.98 12.3 17.6

0.10 17–9 50–6 25–4 .10 .61 1.78 3.57 7.11 14.0 19.6
0.15 56–9 11–5 44–4 .15 .83 2.26 4.37 8.36 15.8 21.7
0.25 26–8 31–5 94–4 .25 1.22 3.08 5.64 10.3 18.5 24.7
0.40 11–7 80–5 .019 .40 1.73 4.07 7.14 12.4 21.3 27.8
0.65 46–7 21–4 .040 .65 2.50 5.46 9.12 15.1 24.6 31.4

1.0 17–6 51–4 .076 1.01 3.45 7.08 11.3 17.9 28.0 34.9
1.5 59–6 .011 .14 1.51 4.69 9.07 13.9 21.1 31.7 38.7
2.5 27–5 .032 .30 2.53 6.91 12.3 18.0 25.9 37.0 44.0
4.0 11–4 .083 .62 4.08 9.88 16.4 22.8 31.4 42.7 49.6
6.5 51–4 .23 1.31 6.72 14.4 22.2 29.3 38.3 49.6 56.2
10 .019 .56 2.57 10.5 20.1 29.0 36.6 45.8 56.7 62.9

Source: United States Department of Defense, Quality Control and Reliability Assurance Technical Report (TR7),
Office of the Assistant Secretary of Defense (Installations and Logistics), U.S. Government Printing Office,
Washington, DC, 1965, 14.

Note: The negative figure after a ratio shows the number of decimal points to provide. Thus 13–4¼ .0013.
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TABLE T18.10: TR7 Table 1B—100t=m ratios at the limiting quality level
for the MIL-STD-105E plans: consumer’s risk¼ 0.10.

Code
Letter AQL

Shape Parameter, b

1

3

1

2

2

3
1 1

1

3
1
2

3
2 2

1

2
3
1

3
4

A 6.5 25 68 92 120 120 118 118 116 115 115
B 4.0 7.2 29 50 77 89 95 98 100 102 103
C 2.5 1.6 10 23 46 61 70 77 82 88 91
C 10 11 40 62 89 100 102 103 105 106 106

D 1.5 .38 4.1 11.6 28 43 53 60 68 76 80
D 6.5 2.4 13 28 53 67 76 81 86 91 94
D 10 7.2 29 50 77 89 95 98 100 102 103
E 1.0 .094 1.5 5.6 17 30 39 47 56 66 71
E 4.0 .49 4.8 13 31 45 55 63 70 78 82
E 6.5 1.5 10 22 45 59 68 76 80 86 90
E 10 3.5 17 37 60 73 82 87 90 95 97

F 0.65 .026 .66 2.9 11 22 30 38 47 58 64
F 2.5 .14 2.0 6.7 20 33 42 50 58 68 72
F 4.0 .36 4.0 11 28 42 52 59 67 75 80
F 6.5 .80 6.5 16 36 51 61 68 73 81 85
F 10 2.6 14 29 54 68 77 82 87 92 95

G 0.40 62–4 .26 1.4 7.2 15 23 30 39 50 57
G 1.5 .032 .76 3.2 12 22 31 39 48 59 65
G 2.5 .086 1.4 5.3 17 29 38 47 55 65 70
G 4.0 .18 2.4 7.7 22 35 45 53 60 70 74
G 6.5 .52 5.0 13 31 46 56 63 70 78 82
G 10 1.2 8.8 20 42 57 66 73 78 85 89

H 0.25 16–4 .11 .74 4.6 11 17 24 33 44 51
H 1.0 84–4 .31 1.6 7.8 16 24 31 40 51 58
H 1.5 .021 .59 2.6 11 20 29 37 46 57 63
H 2.5 .046 .97 3.9 14 25 34 42 51 61 67
H 4.0 .12 1.8 6.5 19 32 42 49 58 67 72
H 6.5 .27 3.2 9.7 25 39 49 57 65 73 78
H 10 .68 6.0 15 34 49 58 67 73 80 85

J 0.15 40–5 .042 .37 2.9 7.5 13 19 27 38 45
J 0.65 20–4 .12 .80 4.9 11 18 24 33 45 52
J 1.0 54–4 .23 1.3 6.7 14 22 29 38 49 57
J 1.5 .010 .36 1.8 8.3 17 25 32 42 53 59
J 2.5 .030 .72 3.1 12 22 31 39 48 58 64
J 4.0 .063 1.2 4.5 15 27 36 44 53 63 68
J 6.5 .16 2.3 7.5 21 34 44 52 60 69 74
J 10 .34 3.8 11 27 41 51 59 67 75 80

K 0.10 10–5 .017 .19 1.8 5.5 10 15 23 33 40
K .40 50–5 .049 .41 3.1 8.0 14 20 28 39 46
K .65 13–4 .093 .67 4.3 10 17 23 32 43 50
K 1.0 27–4 .15 .94 5.4 12 19 26 35 46 53
K 1.5 76–4 .29 1.5 7.6 15 23 31 40 51 58
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TABLE T18.10 (continued): TR7 Table 1B—100t=m ratios at the limiting quality level
for the MIL-STD-105E plans: consumer’s risk¼ 0.10.

Code
Letter AQL

Shape Parameter, b

1

3

1

2

2

3
1 1

1

3
1
2

3
2 2

1

2
3
1

3
4

K 2.5 .015 .47 2.2 9.8 19 27 35 44 55 61
K 4.0 .039 .85 3.5 13 23 33 41 50 60 66
K 6.5 .092 1.5 5.5 17 29 39 47 56 65 70
K 10 .27 3.2 9.7 25 39 49 57 65 73 78

L 0.065 25–6 67–4 .093 1.1 3.8 7.7 12 19 29 36
L 0.25 12–5 .019 .20 1.9 5.7 10 15 23 34 41
L 0.40 33–5 .036 .33 2.7 7.2 12 18 26 37 45
L 0.65 66–5 .058 .47 3.4 8.5 14 20 29 40 47
L 1.0 18–4 .11 .79 4.8 11 18 24 33 44 52
L 1.5 40–4 .18 1.1 6.0 13 20 27 36 48 55
L 2.5 91–4 .32 1.7 8.0 16 24 32 40 52 59
L 4.0 .020 .56 2.6 10 20 29 36 45 56 62
L 6.5 .060 1.1 4.4 15 26 36 44 52 62 68

M 0.040 60–7 26–4 .047 .73 2.7 5.8 9.6 16 25 32
M 0.15 30–6 78–4 .10 1.2 4.0 8.0 12 19 30 37
M 0.25 80–6 .015 .17 1.7 5.1 9.7 14 22 33 40
M 0.40 16–5 .023 .23 2.1 6.0 11 16 24 35 42
M 0.65 45–5 .045 .39 3.0 7.8 13 19 27 38 46
M 1.0 95–5 .074 .56 3.8 9.3 15 22 30 42 49
M 1.5 22–4 .12 .85 5.0 11 18 25 34 45 52
M 2.5 51–4 .22 1.3 6.6 14 22 29 38 49 56
M 4.0 .013 .45 2.1 9.4 18 27 34 43 54 61

N 0.025 14–7 10–4 .024 .46 1.9 4.4 7.6 13 22 28
N 0.10 72–7 31–4 .052 .79 2.8 6.1 10 16 26 32
N 0.15 19–6 56–4 .082 1.0 3.5 7.3 11 18 28 35
N 0.25 40–6 92–4 .11 1.3 4.3 8.4 13 20 30 37
N 0.40 11–5 .017 .19 1.8 5.5 10 15 23 33 40
N 0.65 22–5 .028 .27 2.4 6.6 12 17 25 36 43
N 1.0 50–5 .049 .41 3.1 8.0 14 20 28 39 46
N 1.5 12–4 .083 .62 4.0 9.8 16 22 31 42 49
N 2.5 35–4 .17 1.0 5.9 13 20 27 36 47 54

P 0.015 35–8 40–5 .012 .29 1.3 3.3 6.0 11 19 25
P 0.065 17–7 12–4 .026 .49 2.0 4.6 7.8 13 22 29
P 0.10 44–7 22–4 .041 .67 2.5 5.5 9.2 15 25 31
P 0.15 92–7 34–4 .057 .84 3.0 6.3 10 17 26 33
P 0.25 25–6 68–4 .094 1.1 3.8 7.7 12 19 29 36
P 0.40 51–6 .011 .13 1.4 4.6 8.9 13 20 31 38
P 0.65 12–5 .019 .20 1.9 5.7 10 15 23 34 41
P 1.0 28–5 .033 .30 2.5 6.9 12 18 26 37 44
P 1.5 77–5 .063 .50 3.5 8.8 15 21 29 41 48

Q 0.010 90–9 16–5 63–4 .18 .96 2.5 4.9 9.0 16 23
Q 0.040 44–8 48–5 .013 .31 1.4 3.5 6.2 11 19 26
Q 0.065 11–7 90–5 .021 .43 1.8 4.2 7.4 12 21 28

(continued)
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TABLE T18.10 (continued): TR7 Table 1B—100t=m ratios at the limiting quality level
for the MIL-STD-105E plans: consumer’s risk¼ 0.10.

Code
Letter AQL

Shape Parameter, b

1

3

1

2

2

3
1 1

1

3
1
2

3
2 2

1

2
3
1

3
4

Q 0.10 22–7 14–4 .029 .53 2.1 4.8 8.2 14 23 30
Q 0.15 62–7 28–4 .048 .75 2.7 5.9 9.7 16 25 32
Q 0.25 13–6 45–4 .069 .95 3.3 6.8 11 17 27 34
Q 0.40 30–6 78–4 .10 1.2 4.1 8.0 12 19 30 37
Q 0.65 70–6 .013 .15 1.6 4.9 9.4 14 22 32 39
Q 1.0 19–5 .026 .26 2.3 6.4 11 17 25 35 43

R 0.025 10–8 18–5 68–4 .19 1.0 2.6 5.0 9.3 17 23
R 0.040 26–8 35–5 .010 .26 1.2 3.2 5.8 10 18 25
R 0.065 54–8 55–5 .015 .33 1.5 3.6 6.5 11 20 26
R 0.10 15–7 11–4 .024 .47 1.9 4.5 7.7 13 22 29
R 0.15 30–7 17–4 .034 .59 2.3 5.1 8.7 14 24 30
R 0.25 70–7 30–4 .051 .78 2.8 6.0 10 16 26 33
R 0.40 17–6 52–4 .075 1.0 3.4 7.1 11 18 28 35
R 0.65 46–6 .010 .12 1.4 4.5 8.7 13 20 31 38

Source: United States Department of Defense, Quality Control and Reliability Assurance Technical Report (TR7),
Office of the Assistant Secretary of Defense (Installations and Logistics), U.S. Government Printing Office,
Washington, DC, 1965, 15–17.

Note: A negative figure after a ratio shows the number of decimal points to provide. Thus 62–4¼ .0062.
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TABLE T18.11: TR7 Table 1C—100t=m ratios at the limiting quality level
for the MIL-STD-105E plans: consumer’s risk¼ 0.05.

Code
Letter AQL

Shape Parameter, b

1

3

1

2

2

3
1 1

1

3
1
2

3
2 2

1

2
3
1

3
4

A 6.5 55 120 130 140 140 130 130 120 120 120
B 4.0 16 50 73 100 110 110 110 110 110 110
C 2.5 3.5 18 35 60 74 82 87 90 96 97
C 10 20 59 84 110 120 110 110 110 110 110

D 1.5 .84 6.9 17 36 52 61 69 76 82 86
D 6.5 4.3 20 37 64 77 85 90 93 97 99
D 10 13 43 65 93 100 100 100 110 100 100
E 1.0 .22 2.8 8.6 23 37 47 55 63 72 76
E 4.0 .95 7.4 18 39 53 63 70 76 83 87
E 6.5 2.5 14 28 53 67 76 82 86 92 95
E 10 5.5 24 43 69 82 89 94 97 99 100

F 0.65 .059 1.1 4.4 15 26 35 43 52 62 68
F 2.5 .25 3.1 9.3 25 38 48 56 64 73 77
F 4.0 .60 5.4 14 33 48 57 65 72 79 83
F 6.5 1.2 8.6 20 42 57 66 73 78 85 89
F 10 3.8 19 36 62 75 83 88 92 96 98

G 0.40 .013 .43 2.1 9.3 18 27 34 43 54 61
G 1.5 .059 1.1 4.4 15 26 35 43 52 62 68
G 2.5 .13 1.9 6.7 20 32 42 50 58 67 72
G 4.0 .29 3.4 10 26 30 50 57 65 74 78
G 6.5 .76 6.3 16 35 50 60 67 74 81 85
G 10 1.6 10 23 47 61 70 77 82 88 91

H 0.25 37–4 .18 1.1 5.9 13 20 27 36 47 54
H 1.0 .014 .46 2.2 9.6 18 27 34 42 55 61
H 1.5 .034 .82 3.4 12 23 32 40 49 60 66
H 2.5 .070 1.3 4.9 16 27 37 45 54 64 70
H 4.0 .18 2.5 7.9 22 35 45 53 61 71 75
H 6.5 .40 4.1 11 28 43 53 60 68 76 80
H 10 .93 7.4 18 39 54 63 70 76 83 87

J 0.15 90–5 .072 .55 3.7 9.3 15 22 30 41 49
J 0.65 37–4 .18 1.1 5.9 13 20 27 36 47 54
J 1.0 92–4 .32 1.7 8.0 16 24 32 40 52 58
J 1.5 .016 .48 2.3 9.9 19 28 35 44 57 61
J 2.5 .046 .95 3.9 14 25 34 42 51 61 67
J 4.0 .089 1.5 5.5 17 29 39 47 55 65 70
J 6.5 .18 2.5 7.9 22 35 45 53 61 71 75
J 10 .45 4.6 12 30 44 54 62 69 77 81

K 0.10 24–5 .029 .28 2.4 6.6 12 17 25 36 43
K 0.40 10–4 .076 .58 3.8 9.4 16 22 30 42 49
K 0.65 23–4 .13 .87 5.1 11 18 25 34 45 52
K 1.0 46–4 .20 1.2 6.4 13 21 28 37 49 56
K 1.5 .011 .38 1.9 8.7 17 26 33 42 53 60

(continued)
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TABLE T18.11 (continued): TR7 Table 1C—100t=m ratios at the limiting quality level
for the MIL-STD-105E plans: consumer’s risk¼ 0.05.

Code
Letter AQL

Shape Parameter, b

1

3

1

2

2

3
1 1

1

3
1
2

3
2 2

1

2
3
1

3
4

K 2.5 .030 .72 3.1 12 22 31 39 48 58 64
K 4.0 .059 1.1 4.4 15 26 35 43 52 62 68
K 6.5 .12 1.8 6.5 19 32 42 49 58 67 72
K 10 .34 3.8 11 27 41 51 59 67 75 80

L 0.065 56–6 .011 .14 1.5 4.7 9.0 13 21 31 38
L 0.25 24–5 .029 .28 2.4 6.6 12 17 25 36 43
L 0.40 58–5 .053 .44 3.2 8.3 14 20 28 39 47
L 0.65 11–4 .082 .60 4.0 9.7 16 22 31 42 49
L 1.0 28–4 .15 .95 5.5 12 19 26 35 46 53
L 1.5 56–4 .24 1.3 6.8 14 22 29 38 49 57
L 2.5 .012 .40 2.0 8.9 17 26 33 42 53 60
L 4.0 .027 .67 3.0 11 22 30 38 47 58 64
L 6.5 .070 1.3 4.9 16 27 37 45 54 64 70

M 0.040 13–6 46–4 .070 .96 3.3 6.8 11 17 27 34
M 0.15 56–6 .011 .14 1.5 4.7 9.0 13 21 31 38
M 0.25 13–5 .020 .21 2.0 5.8 10 16 23 34 41
M 0.40 27–5 .032 .30 2.5 6.9 12 18 25 37 44
M 0.65 64–5 .057 .46 3.3 8.5 14 20 29 40 47
M 1.0 13–4 .093 .67 4.3 10 17 23 32 43 50
M 1.5 30–4 .15 .99 5.6 12 19 26 35 46 53
M 2.5 68–4 .27 1.4 7.3 15 23 30 39 50 57
M 4.0 .017 .51 2.4 10 19 28 35 45 56 62

N 0.025 33–7 18–4 .035 .60 2.3 5.2 8.7 14 24 31
N 0.10 13–6 46–4 .070 .96 3.3 6.8 11 17 27 34
N 0.15 40–6 92–4 .11 1.3 4.3 8.4 13 20 30 37
N 0.25 68–6 .013 .15 1.6 4.9 9.3 14 22 32 39
N 0.40 16–5 .022 .23 2.1 6.0 11 16 24 35 42
N 0.65 30–5 .035 .32 2.6 7.0 12 18 26 37 45
N 1.0 70–5 .061 .48 3.4 8.7 14 21 29 40 48
N 1.5 16–4 .10 .70 4.5 10 17 23 32 44 51
N 2.5 44–4 .20 1.2 6.3 13 21 28 37 48 55

P 0.015 80–8 72–5 .018 .38 1.6 3.9 6.9 12 21 27
P 0.065 30–7 17–4 .034 .59 2.3 5.1 8.7 14 24 30
P 0.10 67–7 31–4 .053 .80 2.8 6.1 10 16 26 32
P 0.15 14–6 47–4 .072 .98 3.3 7.0 11 17 27 34
P 0.25 40–6 92–4 .11 1.3 4.3 8.4 13 20 30 37
P 0.40 68–6 .013 .15 1.6 4.9 9.3 14 22 32 39
P 0.65 16–5 .022 .23 2.1 6.0 11 16 24 35 42
P 1.0 33–5 .036 .33 2.7 7.2 12 18 26 37 45
P 1.5 10–4 .076 .58 3.8 9.4 16 22 30 42 49

Q 0.010 19–8 28–5 92–4 .024 1.1 3.0 5.5 10 18 24
Q 0.040 80–8 72–5 .018 .38 1.6 3.9 6.9 12 21 27
Q 0.065 18–7 12–4 .026 .50 2.0 4.6 8.0 13 22 29
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TABLE T18.11 (continued): TR7 Table 1C—100t=m ratios at the limiting quality level
for the MIL-STD-105E plans: consumer’s risk¼ 0.05.

Code
Letter AQL

Shape Parameter, b

1

3

1

2

2

3
1 1

1

3
1
2

3
2 2

1

2
3
1

3
4

Q 0.10 35–7 19–4 .036 .63 2.4 5.3 8.9 15 24 31
Q 0.15 92–7 34–4 .057 .84 3.0 6.3 10 17 26 33
Q 0.25 21–6 62–4 .087 1.1 3.7 7.5 12 18 29 35
Q 0.40 46–6 .010 .12 1.4 4.5 8.7 13 20 31 38
Q 0.65 10–5 .017 .18 1.8 5.3 10 15 22 33 40
Q 1.0 24–5 .029 .28 2.4 6.6 12 17 25 36 43

R 0.025 19–8 28–5 92–4 .024 1.1 3.0 5.5 10 18 24
R 0.040 44–8 50–5 .014 .32 1.4 3.6 6.4 11 20 26
R 0.065 88–8 76–5 .018 .39 1.7 4.0 7.1 12 21 27
R 0.10 22–7 14–4 .029 .53 2.1 4.8 8.2 14 23 30
R 0.15 44–7 22–4 .041 .67 2.5 5.5 9.2 15 25 31
R 0.25 10–6 36–4 .059 .85 3.0 6.4 10 17 26 33
R 0.40 21–6 62–4 .087 1.1 3.7 7.5 12 18 29 35
R 0.65 56–6 .011 .14 1.5 4.7 9.0 13 21 31 38

Source: United States Department of Defense, Quality Control and Reliability Assurance Technical Report (TR 7),
Office of the Assistant Secretary of Defense (Installations and Logistics), U.S. Government Printing Office,
Washington, DC, 1965, 18–20.

Note: A negative figure after a ratio shows the number of decimal points to provide. Thus 92–4¼ .0092.
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Answers to Problems

Chapter 1

Answers to the problems of Chapter 1 are given directly in the text.

Chapter 2

1. Probability of acceptance is 49=50 ¼ .98.

2. Yes, each tablet has an equal chance to be selected.

3. P6
2 ¼

6!
4!

¼ 30.

4. C6
2 ¼

6!
2!4!

¼ 15; C2
2 ¼ 1: Probability ¼ 1=15.

5. G

2B3G

G

2B3G

G

2B3G

G

START

2B3G

B

1B4G

B

1B4G

6. The two draws are not independent. Should be (2=6) (1=5)¼ 1=15. Probability both good is
(4=6) (3=5)¼ 12=30¼ 6=15. Probability both the same is 1=15 þ 6=15¼ 7=15. Can be added
since they are mutually exclusive.

7. .95 þ .95 � (.95) (.95)¼ .9975.

8. AQL¼ .017, IQ¼ .206, LTPD¼ .536 (binomial).

9. .10 þ .90(.10)¼ .19.

10.
Probability all fail .55¼ .031
Probability all pass .55¼ .031
Probability at least one failure 1 � .031¼ .969



Chapter 3

1.
f (0) ¼ C98

5 C2
0

C100
5

¼ 98!
5!93!

� 2!
0!2!

� 95!5!
100!

¼ 98 � 97 � 96 � 95 � 94
100 � 99 � 98 � 97 � 96 ¼ :9020

f (1) ¼ C98
4 C2

1

C100
5

¼ 98!
4!94!

� 2!
1!1!

� 5!95!
100!

¼ 10 � 98!95!
94!100!

¼ 10 � 98 � 97 � 96 � 95
100 � 99 � 98 � 97 � 96 ¼ :0960

F(�1) ¼ f (0)þ f (1) ¼ :9020þ :0960 ¼ :9980

m ¼ np ¼ 5
2

100

� �

¼ :1

s ¼ ffiffiffiffiffiffiffiffi
npq

p
ffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N � 1

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5(:02)(:98)

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100� 5
100� 1

r

¼ :3067:

2. f (0) ¼ C5
0(:02)

0(:98)5 ¼ :9039

f (1) ¼ C5
1(:02)

1(:98)4 ¼ :0922

F(�1) ¼ :9961

m ¼ np ¼ 5(:02) ¼ :1

s ¼ ffiffiffiffiffiffiffiffi
npq

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5(:02)(:98)

p
¼ :3130:

3. f (0) ¼ 20e�2

0!
¼ :1353

f (1) ¼ 21e�2

1!
¼ :2707

f (2) ¼ 22e�2

2!
¼ :2707

F(�2) ¼ :6767, Poisson distribution not symmetric

s ¼
ffiffiffi
2

p
¼ 1:4142:

4. b�1(5j1, :05) ¼ C4
0:05

1:954 ¼ :0407

m ¼ 2(:95)
:05

¼ 38:

5. F(20,000) ¼ 1� e�20,000=10,000 ¼ 1� :1353 ¼ :8647

s ¼ m ¼ 10,000 h:

6. g ¼ 0 b ¼ 1 h ¼ 10,000

F(10,000) ¼ :6321:

7. z ¼ �2:5
P(�1:005) ¼ :0062

C3
1:0062

1:99382 ¼ :0184:



8.
s�X ¼ :0003

ffiffiffi
9

p ¼ :0001

z ¼ 3:001� 3
:0001

¼ 10

Very unlikely.

9. ‘‘f-Binomial’’

f (0) ¼ C2
0

5
25

� �0

1� 5
25

� �2�0

¼ :64

f (1) ¼ C2
1

5
25

� �1

1� 5
25

� �2�1

¼ :32

P(�1) ¼ :96:

10. ŝ ’ 48� 24
2

¼ 12

m̂ ’ 48þ 24
2

¼ 36:

Chapter 4

1. Type B, binomial, Poisson

2. Pa Pa

p Type A Type B

.125 .50 .5863

.25 .2143 .3164

.375 .0714 .1526

.50 .0143 .0625

3. .5500, .2720, .1154, .0385. For n> 16, they would be even closer to the Type B probabilities
of Problem 2.

4. m ¼ 2=100 units

.1353, .2707, .2707, .1804

Pa ¼ .6767.

5. Inspector sees fraction defective .10, .20, .30, .40. Effective OC curve using binomial
distribution is

Actual p .125, .25, .375, .50
Apparent p .10, .20, .30, .40
Pa .9185, .7373, .5282, .3370



6. Type B

p .125, .25, .375, .50
AOQ .0366, .0396, .0286, .0156

7.
p .125, .25, .375, .50
ATI 5.65, 6.73, 7.39, 7.75

8. Using the Poisson approximation

ASNC ¼ 15F(2j15)þ 3
:1
(1� F(3j16) )

¼ 15(:8088)þ 30(:0788) ¼ 14:5:

9. p̂ ¼ 2
11� 1

¼ :20:

10. PQL¼ .0166, CQL¼ .122.

Chapter 5

1. Binomial Poisson

a. n¼ 30 c¼ 3 n¼ 35 c¼ 3
b. n¼ 59 c¼ 4 n¼ 66 c¼ 4
c. n¼ 193 c¼ 7 n¼ 200 c¼ 7

2.
a. Pa .95 .75 .50 .25 .10

p (binomial) .028 .074 .126 .194 .268
p (Poisson) .027 .074 .129 .207 .299

b. Pa .95 .75 .50 .25 .10
P (binomial) .002 .009 .021 .042 .069
P (Poisson) .002 .009 .022 .043 .071

c. Pa .95 .75 .50 .25 .10
p (binomial or Poisson) .006 .014 .021 .031 .043

3.
a. n¼ .2(200)¼ 40, c¼ 2
b. Pa .75 .50 .25

P .045 .065 .09

4. n¼ 33, c¼ 1, m.50¼ 5.1.



5. a. n¼ 13, c¼ 1

Pa .95 .50 .10

AOQ .027 .062 .027
ATI 62.35 506.5 901.3
AOQL¼ .064

b. n¼ 32, c¼ 0

Pa .95 .50 .10

AOQ .002 .010 .007
ATI 80.4 516 903.2
AOQL ¼ .011

c. n¼ 125, c¼ 2

Pa .95 .50 .10

AOQ .005 .009 .004
ATI 168.8 562.5 912.5
AOQL¼ .0096

6.
n¼ 5, c¼ 0 n¼ 5, c¼ 1

Pa .95 .50 .10 Pa .95 .50 .10
p .010 .129 .369 p .076 .314 .584
AOQ .010 .062 .036 AOQ .070 .153 .057
ATI 14.75 102.5 180.5 ATI 14.75 102.5 180.5

AOQL¼ .072 AOQL¼ .164

7.
n¼ 5, c¼ 1 n¼ 10, c¼ 1

Pa .95 .50 .10 Pa .95 .50 .10
p .071 .336 .778 p .036 .168 .389
AOQ .066 .164 .076 AOQ .032 .080 .037
ATI 14.75 102.5 180.5 ATI 19.5 105.0 181.0

AOQL¼ .164 AOQL¼ .080

8.
Binomial n¼ 128, c¼ 7
Hypergeometric n¼ .2(500)¼ 100, c¼ 5

9. n¼ 131, c¼ 7. The Poisson is a conservative approximation of the binomial.



10. P(x < np) ¼ 1� p x2

2 < x2
n ¼ 2cþ 2

� �

Hence
np ¼ x2

n ¼ 2cþ 2 for given probability of acceptance.
Since

F x2
8 < 2:73

� � ¼ :05 F x2
8 < 15:5

� � ¼ :95

we have

np:95 ¼ 2:73
2

¼ 1:36 np:05 ¼ 15:5
2

¼ 7:75

and

R ¼ np:05
np:95

¼ 15:5
2:73

¼ 5:68

Chapter 6

1.
a. ni¼ 17 Ac¼ 0, 3

Re¼ 3, 4
b. ni¼ 34 Ac¼ 1, 4

Re¼ 4, 5
c. ni¼ 120 Ac¼ 3, 8

Re¼ 7, 9

2.
a. ni¼ 7 Ac¼ #, 0, 0, 1, 2, 3, 4

Re¼ 2, 3, 3, 4, 4, 5, 5
b. ni¼ 18 Ac¼ #, 1, 2, 3, 5, 7, 9

Re¼ 4, 5, 6, 7, 8, 9, 10
c. ni¼ 50 Ac¼ 0, 1, 3, 5, 7, 10, 13

Re¼ 4, 6, 8, 10, 11, 12, 14

Plans a and b exceed desired R.

3. Pa p

.95 .026

.50 .126

.10 .311



4. Pa p

.95 .034

.50 .139

.10 .306

5. Pa ASN AOQ ATI

.95 9.34 .025 58.87

.50 10.94 .063 505.47

.10 9.65 .031 900.96

6. Pa ASN AOQ ATI

.95 10.50 .032 59.32

.50 10.92 .070 508.04

.10 7.80 .031 901.34

7. n¼ 35, c¼ 3 has p2¼ .19. Corresponding matched plans are

Double ni¼ 24, Ac¼ 1, 4 Re¼ 4, 5; ASN at p1 is 29.9
Multiple ni¼ 9, Ac¼ #, 0, 1, 2, 3, 4, 6 Re¼ 3, 3, 4, 5, 6, 6, 7; ASN at p1 is 25.4

Savings of 15% and 27% are possible.

8.
Double n¼ 12, c¼ 1.25 � 1
Multiple n¼ 12, c¼ 1.43 � 1

9. 9.21, hardly worthwhile.

10.

Defectives

Sample

1 2

2 .0176 .0297
1 .1637 .1340
0 .8187

Sample

1 2 Total

Accept Aj .8187 .1340 .9527
Reject Rj .0176 .0297 .0473
Terminate Tj .8363 .1637 1.0
Indecision Ij .1637 0 x
Pa¼ .9527 ASN¼ 9.31



Chapter 7

1. Y2¼ 1.6131 þ .1018k

Y1¼�1.2565 þ .1018k.

2. Y2¼ 1.6617 þ .1633k

Y1¼�1.2943 þ .1633k.

3. Y2¼ 2.5348 þ .0365k

Y1¼�1.9743 þ .0365k.

4. Increasing slope raises probability of acceptance. Decreasing slope increases probability of
rejection. Increasing h2 decreases probability of rejection. Increasing h1 decreases probability
of acceptance.

5. p Pa ASN

.05 .95 119

.0723 .56 174

.10 .10 115

6. p ASN AOQ

.03 38 .028

.12 29 .012

7. Y2¼ 1.6284 þ 2.7606k

Y1¼�1.2684 þ 2.7606k.

8. Defects=100 Defects=unit ASN=100 ASN

1 .01 .683 68.3
5.9 .059 .426 42.6

9. 459=100 units or 45.9 units.

10.
A ¼ 1� b

a
¼ 1� :10

:05
¼ 18 a ¼ logA ¼ 1:2552

B ¼ 1� a

b
¼ 1� :05

:10
¼ 9:5 b ¼ logB ¼ :9777

G1¼ p2
p1

¼ :06
:01

¼ 6 g1 ¼ logG1 ¼ :7782

G2¼ 1� p1
1� p2

¼ 1� :01
1� :06

¼ 1:053 g2 ¼ logG2 ¼ :0225

G ¼ g1 þ g2 ¼ :7782þ :0225 ¼ :8007



h2 ¼ a

G
¼ 1:2552

:8007
¼ 1:5678

h2 ¼ b

G
¼ :9777

:8007
¼ 1:2211

s ¼ g2
G

¼ :0225
:8007

¼ :0281

Chapter 8

1. d¼ 2, t-test with n¼ 5.

2. Chi-square, x2¼ 14
7
6

� �2

¼ 19:05 < 23:7, accept.

3. n ¼ (1:64þ 1:28)(1:5)
90� 87

� �2

¼ 2:1 � 3

d ¼ 1:64
1:64þ 1:28

90� 87j j ¼ 1:68

Lower ACL at 90 � 1.68¼ 88.32
Reject lot means 88 and 87.

4. NCL¼ 89.5, D2¼
ffiffiffi
n

p
(APL� NCL)

s
¼

ffiffiffi
3

p
(2:5)
1:5

¼ 2:887 not <.619 so n¼ 3.

5. No necessary meaning since acceptance control charts may be set up to allow a drift in
the mean.

6.
m1¼ 400 a¼ .025
m2¼ 408 b¼ .10
Y2¼ 28.67 þ 404k
Y1¼�18.22 þ 404k

Accept on third sample.

7. See Problem 6

Y 0
2 ¼ �28:67� 4k Y2¼ 28.67 þ 4k

Y 0
1 ¼ 18:22� 4k Y1¼�18.22 þ 4k

8. Y2¼ 1027.7 þ 79.3k

Y1¼�800.5 þ 79.3k.

9. D ¼ 1.0, S(x � m)¼�1, �1, �1.17, �1.55, �1.31, �0.72, �0.20, �0.39, �0.62, �0.62
Accept on fourth sample.

10. tan u¼ 404 so u¼ 898510, clearly a rescaling is needed.

d ¼ h2=s ¼ 28:67=404 ¼ :071



Chapter 9

1. One sample from each of the 10 compartments.

2. d¼ (7 � 5)=3¼ .67, n¼ 20, need 10 more samples, 1 per compartment.

3. t ¼ 5:5� 5

2=
ffiffiffiffiffi
20

p ¼ 1:12 < 1:73, accept the shipment.

4. Testing: s23 ¼ :7; Reduction: s24 ¼ :45� :7
2
¼ :1.

5. s22 ¼ 2:2� :7 ¼ 1:5; s21 ¼ 4:75� 2:2
2

¼ 3:65.

6. Source SS df MS

Between segments 228 24 9.5
Increments within segments 55 25 2.2

7. n2 ¼ 1:5

16 5�7ð Þ2
8:567 � 3:65

16 � :7
4 � :1

2

� � ¼ 6:8 � 8 to be even.

8. s�X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:65
16 þ 1:5

128 þ :7
4 þ :1

2

q
¼ ffiffiffiffiffiffiffiffiffiffiffi

:4648
p ¼ :68:

z ¼ 5:9� 5:0
:68

¼ :9
:68

¼ 1:32 < 1:645 accept the shipment:

9.
s2¼ 3.65 þ 1.5 þ.7 þ.1 5.9 � 1.96 (.68)
s2¼ 5.95 5.9 � 1.33
s¼ 2.44 4.57 to 7.23

10. n2 ¼
ffiffiffiffiffiffiffiffiffi
1:5
3:65

r

¼ :64 � 1

n1 ¼ 16(1:5þ 1(3:65))

16(1) 1
1:96

� �2þ(1)(3:65)
¼ 10:55 � 11

Chapter 10

1.
a. n¼ 10 k¼ 2
b. n¼ 30 k¼ 2



2. �X¼ 6.83, s¼ .08.
Accept since 6.83 < 6.84.

3. n¼ 10, M¼ .017, p̂¼ .0125, accept.

4.
M

100
¼ I:31(14,14) ¼ :019; p̂U ¼ I:22(14,14) ¼ :0006; accept.

5. Take eight subgroups of 5, MAR¼ .92(U�L), use plan with ŝ ¼ �R=2:35 hence �X þ 2s � U
becomes �X þ :85�R � U:

6. n¼ 13, k¼ 1.63, MSD¼ (U � L)=3.9.

7. �X ¼ 65, s ¼ 3:37 > 2:30 ¼ MSD, reject.

8. For n¼ 13, k¼ 1.83 by interpolation

65þ 1:83(3:37) ¼ 71:2 > 69, reject:

65� 1:83(3:37) ¼ 58:8 < 60, reject:

9. TU1 ¼
U � �X

s1
¼ 7:0� 6:834

:085
¼ 1:953. Yes, resample.

10. p.50¼ .0228 from k¼ 2.

Chapter 11

1. Code H, 1.0 AQL:

a. Normal n¼ 50 Ac¼ 1 Re¼ 2
Tightened n¼ 80 Ac¼ 1 Re¼ 2
Reduced n¼ 20 Ac¼ 0 Re¼ 2

b. Normal ni¼ 32 Ac¼ 0, 1 Re¼ 2, 2
Tightened ni¼ 50 Ac¼ 0, 1 Re¼ 2, 2
Reduced ni¼ 13 Ac¼ 0, 0 Re¼ 2, 2

c. Normal ni¼ 13 Ac¼ #, #, 0, 0, 1, 1, 2 Re¼ 2, 2, 2, 3, 3, 3, 3
Tightened ni¼ 20 Ac¼ #, #, 0, 0, 1, 1, 2 Re¼ 2, 2, 2, 3, 3, 3, 3
Reduced ni¼ 5 Ac¼ #, #, 0, 0, 0, 0, 1 Re¼ 2, 2, 2, 3, 3, 3, 3

2. a. 1:7 1� 50
390

� �

¼ 1:48%.

b. 1:1 1� 80
390

� �

¼ 0:87%.

AOQL of tightened is about AQL.
AOQL of scheme is about AOQL tightened.



3. a. 7.6%.

b. 7.8 defects per 100 units.

4. Double.

5. a. No action.

b. No action, already back to normal.

c. Switch to normal.

6. a. 95%.

b. 18.3.

c. 4.0%.

d. 23.3.

7. a. .510¼ .001.

b. .910¼ .349.

8. C2
1 .11 .91¼ .18.

9. 5000, 1, .015%.

10. n¼ 35, c¼ 3; Code D, 10.0 AQL.

Chapter 12

1. Code I, 1.0 AQL:

a. Normal n¼ 25 k¼ 1.85
b. Tightened n¼ 25 k¼ 1.98
c. Reduced n¼ 10 k¼ 1.58

2.
a. 2 > 1.85 Accept
b. 2 > 1.98 Accept
c. 2 > 1.58 Accept

3. Code I, 1.0 AQL

a. Normal n¼ 25 M¼ 2.86
b. Tightened n¼ 25 M¼ 2.00
c. Reduced n¼ 10 M¼ 4.77



C

4.
a. Normal 3.82 > 2.86 Reject
b. Tightened 3.82 > 2.00 Reject
c. Reduced 2.34 < 4.77 Accept

5. MSD¼ 9.52, s¼ 10, does not pass.

6. LTPD¼ 11.2%, IQ¼ 2.8%.

7. No action. Must have 8 lots of 10 to switch to tightened.

Minimum process average is
7(4:0)þ 3(0)

10
¼ 2:8%.

Cannot switch to reduced, all lots must have p̂ < 3.94%.

But, seven lots have p̂ > 4.0%.

8. Code M, 0.65 AQL.

9. Reject since 1.88 þ 1.88¼ 3.76 > M¼ 2.81.

10. Reject since QU¼QL¼ 2 giving pU¼ pL¼ 2.275% and p̂¼ 4.55 > 2.59.

hapter 13

1. P(i)¼ 97.9, 2.063 < 3.23, accept.

2. z¼ 2, p̂¼ .023, reject.

3. NLG¼ 110 � 1.5(6)¼ 101, reject.

4. p Zp Zg pg npg Pa (Poisson) Pa (Binomial)

.0025 2.81 .89 .19 .95 .93 .95

.034 1.82 �.10 .54 2.7 .49 .43

.109 1.23 �.69 .75 3.75 .28 .10

Poisson only an approximation and at p¼ .109, n not large, p not small.

5. n ’ 25, c ’ 9, t ’ 1:15

6.
Tightened n¼ 14 Ac¼ 7 Re¼ 8 t¼ 2.17
Normal n¼ 13 Ac¼ 8 Re¼ 9 t¼ 2.27
Reduced n¼ 9 Ac¼ 2 Re¼ 5 t¼ 1.43

7. a. .98

b. 12

c. .039



8. a. .42

b. 18.2

c. .021

9. P0 ¼ cþ 2=3
n

c Formula Table

0 .0067 .0069
1 .0167 .0168
2 .0267 .0267
3 .0367 .0367
4 .0467 .0467
5 .0567 .0567

10. From Table 13.3, NLG: n¼ 22, c¼ 11, t¼ 1.95; single sampling plan: n¼ 109, c¼ 3.

Chapter 14

1. a. 1.7%

b. 1.1%

c. 1.8%

2. n¼ 28, c¼ 2.

3. Using tables in text

a. n¼ 19 c¼ 1 n1¼ 15 n2¼ 17 c1¼ 0 c2 ¼ 2
b. n¼ 34 c¼ 2 n1¼ 21 n2¼ 44 c1¼ 0 c2 ¼ 4
c. n¼ 210 c¼ 13 n1¼ 22 n2¼ 58 c1¼ 0 c2 ¼ 5

4. Using tables in text

a. n¼ 50 c¼ 0 n1¼ 55 n2¼ 30 c1¼ 0 c2¼ 1
b. n¼ 195 c¼ 4 n1¼ 110 n2¼ 195 c1¼ 1 c2¼ 7
c. n¼ 575 c¼ 17 n1¼ 320 n2¼ 585 c1¼ 7 c2¼ 27

5. n¼ 195, c¼ 4, ATI¼ 237.5.

6. n¼ 34, c¼ 2, pM¼ .067.

7. f1¼ .3690, f2¼ .1900, ASN¼ 54.9, AOQL¼ 1.1%, pM¼ 2.4%.



C

C

8. n¼ 50, c¼ 0, AOQL¼ 0.55%, Imin¼ 70.

9. ASN=N¼ f1, AOQ¼ 0, NAOQL¼ 4.69, NpM¼ 10.3.

10. N¼ 50, a¼ 0.02, k¼ 4(50)¼ 200, n¼ 9, c¼ 0.

hapter 15

1. f¼ .10, i¼ 27, UAOQL¼ 24.3%.

2. f¼ .10, i¼ 36, UAOQL¼ 33.3%.

3. a. .51.

b. .53.

4. r¼ 2.99 � 3.

5. i¼ 12, f¼ .23.

6. i¼ 58, f¼ .1, AOQL¼ .039.

7. N0¼ 576, k¼ 24, f¼ .042, M*¼ 2.

8. N¼ 24, m¼ 2.

9. f¼ 1=7, i¼ 14, S¼ 59.

10. No.

hapter 16

1. n¼ 40, c¼ 2, i¼ 14, f¼ .20.

2. Pa¼ .972, F¼ .55, ASN¼ 90.8, AOQL1¼ .013, AOQL2¼ .06.

3. n¼ 160, c¼ 7; n1¼ n2¼ 98, Ac¼ 3, 7, Re¼ 8, 9;

ni¼ 41, Ac¼ 0, 1, 3, 5, 7, 10, 13, Re¼ 4, 6, 8, 10, 11, 12, 14.

ASN (single)¼ 160, ASN (double)¼ 119, ASN (multiple)¼ 106, ASNsk¼ 92.8.

4. Pa¼ .99, .95, .50, .10, .05, .01 have p¼ .003, .007, .038, .115, .150, .230, AOQL¼ .02,
Pa (chain)¼ .122.

5. n¼ 7, i¼ 2.

6. n¼ 8, i¼ 5, p.95¼ .014, AOQL¼ .046, pM¼ .122.



7. n¼ 5, D¼ 47, IQ¼ .07.

8. n¼ 142.

9. US¼ .74, CS¼ 39.54; LIMITS .74 � .597, D¼ 114, D=n¼ .114 Yes, out of control low.

10. Discontinue the criterion since sample result meets CRC2.

Chapter 17

1. n¼ 3150, c¼ 0, AOQL¼ .01%.

2. Pa: .95, .75, .50, .25, .10; p¼ .0015%, .008%, .02%, .04%, .065%.

3. n¼ 3900, c¼ 0.

4. t¼ 5, s¼ 4, n1¼ 29, n2¼ 6.

5. Pa¼ .228, ASN¼ 28.9, AOQ¼ .011.

6. CN¼ 1, CT¼ 0, n¼ 32, IQ¼ .036.

7. Sample 460 from each lot. If three lots form grand lot, then use plan n¼ 1380, c¼ 3 on grand
lots to demonstrate the compliance.

8. s: E 5.9, 84.1, M 14.9, 75.1; X: E 444.6, 555.4, M 457.4, 542.6; accept.

9. n¼ 5, s: E 1.0, 89.0, M 17.1, 72.9; X: E 437.8, 562.2, M 460.6, 539.4.

10. Code letters: A, A, C, E, B, D, A, C, D, E, E; Sample sizes: 192, 192, 320, 512, 256, 384, 192,
320, 384, 512, 512; Lot disposition: A, R, A, A, A, A, A, R, R, A, A; Stages: N, N, N, N, N,
N, N, N, T, T, T.

Chapter 18

1. The eighth-ordered unit would show h¼ .33, H¼ 1.426, P¼ 76.0.

2.
a. .509
b. .491
c. .01
d. .7121

3. Code B-8, r¼ 8, c¼ 74.7; û ¼ 80 � 74.7, accept.

4. Code B-8, r¼ 8, T¼ 37; <8 failures at 37 h, accept.

5. Code B-8, r¼ 8, T¼ 50; >8 failures at 50 h, reject.



6. Code B-8, r0¼ 24, h0¼ 172, h1¼�221, s¼ 83, V(t)¼ 640, continue testing.

7. p1=p0¼ 2.5, r¼ 11, n¼ 35, T¼ 30 h.

8. m.95¼ 811, m10¼ 266.

9. AQL¼ 130.6, LQ(10)¼ 89.3, LQ(5)¼ 86.2.

10. Code N, 1.0 AQL.

Chapter 19

1. Institute the demerit rating and consider discontinuing the inspection.

2. LSP indicates 90% of a lot of 100,000 must be sampled. To reduce the sampling frequency
to .2, D¼Npt¼ 10.3 which implies N¼ 1,030,000. Use grand lot scheme to combine
10 months production with acceptance number of zero.

3. 9.6 � 10%.

4. AQL¼ 2=1.5¼ 1.3%, LTPD¼ 5(1.3)¼ 6.5%.

5. AQL: AOQL: IQ: LTPD¼ .3: .5: 1: 2.

6. pB¼ .019.

7. AQL¼ .57%, AOQL¼ .95%, LTPD¼ 3.8%.

8. No. Manual costs $5.00 per lot. Computer costs $10.00 per lot. Breakeven at $.10 per piece.

9. AQL¼ .3 I=A, LTPD¼ 2 I=A.

10. Use n¼ .1N to obtain AOQL¼ 3.311=N.
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