
ptg18221911

ptg18221911

Android™
Database Best

Practices

ptg18221911

About the Android
Deep Dive Series

Zigurd Mednieks, Series Editor

The Android Deep Dive Series is for intermediate and expert developers who use
Android Studio and Java, but do not have comprehensive knowledge of Android system-
level programming or deep knowledge of Android APIs. Readers of this series want to
bolster their knowledge of fundamentally important topics.

Each book in the series stands alone and provides expertise, idioms, frameworks, and
engineering approaches. They provide in-depth information, correct patterns and idioms,
and ways of avoiding bugs and other problems. The books also take advantage of new
Android releases, and avoid deprecated parts of the APIs.

About the Series Editor
Zigurd Mednieks is a consultant to leading OEMs, enterprises, and entrepreneurial
ventures creating Android-based systems and software. Previously he was chief archi-
tect at D2 Technologies, a voice-over-IP (VoIP) technology provider, and a founder of
OpenMobile, an Android-compatibility technology company. At D2 he led engineering
and product definition work for products that blended communication and social media
in purpose-built embedded systems and on the Android platform. He is lead author of
Programming Android and Enterprise Android.

ptg18221911

Android™
Database Best

Practices

Adam Stroud

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

ptg18221911

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016941977

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

The following are registered trademarks of Google: Android™, Google Play™.

Google and the Google logo are registered trademarks of Google Inc., used with
permission.

The following are trademarks of HWACI: SQLite, sqlite.org, HWACI.

Gradle is a trademark of Gradle, Inc.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Square is a registered trademark of Square, Inc.

Facebook is a trademark of Facebook, Inc.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Oracle and/or its affiliates.

MySQL trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

The following are registered trademarks of IBM: IBM, IMS, Information Management
System.

PostgreSQL is copyright © 1996-8 by the PostgreSQL Global Development Group, and is
distributed under the terms of the Berkeley license.

Some images in the book originated from the sqlite.org and used with permission.

Twitter is a trademark of Twitter, Inc.

ISBN-13: 978-0-13-443799-6
ISBN-10: 0-13-443799-3

Text printed in the United States on recycled paper at RR Donnelley
in Crawfordsville, Indiana.
First printing, July 2016

Publisher
Mark L. Taub

Executive Editor
Laura Lewin

Development Editor
Michael Thurston

Managing Editor
Sandra Schroeder

Full-Service Production
Manager
Julie B. Nahil

Project Editor
codeMantra

Copy Editor
Barbara Wood

Indexer
Cheryl Lenser

Proofreader
codeMantra

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
codeMantra

http://www.pearsoned.com/permissions/

ptg18221911

v

To my wife, Sabrina, and my daughters, Elizabeth and Abigail.
You support, inspire, and motivate me in everything you do.

v

ptg18221911

This page intentionally left blank

ptg18221911

Contents in Brief
Preface xv

Acknowledgments xix

About the Author xxi

1	 Relational Databases 1

2	 An Introduction to SQL 17

3	 An Introduction to SQLite 39

4	 SQLite in Android 47

5	 Working with Databases in Android 79

6	 Content Providers 101

7	 Databases and the UI 137

8	 Sharing Data with Intents 163

9	 Communicating with Web APIs 177

10	 Data Binding 231

Index 249

ptg18221911

This page intentionally left blank

ptg18221911

Contents
Preface xv

Acknowledgments xix

About the Author xxi

1	 Relational Databases  1
History of Databases  1

Hierarchical Model  2

Network Model  2

The Introduction of the Relational Model  3

The Relational Model  3

Relation  3

Properties of a Relation  5

Relationships  6

Relational Languages  9

Relational Algebra  9

Relational Calculus  13

Database Languages  14

ALPHA  14

QUEL  14

SEQUEL  14

Summary  15

2	 An Introduction to SQL  17
Data Definition Language  17

Tables  18

Indexes  20

Views  23

Triggers  24

Data Manipulation Language  28

INSERT  28

UPDATE  30

DELETE  31

Queries  32

ORDER BY  32

Joins  34

Summary  37

ptg18221911

x Contents

3	 An Introduction to SQLite  39
SQLite Characteristics  39

SQLite Features  39

Foreign Key Support  40

Full Text Search  40

Atomic Transactions  41

Multithread Support  42

What SQLite Does Not Support  42

Limited JOIN Support  42

Read-Only Views  42

Limited ALTER TABLE Support  43

SQLite Data Types  43

Storage Classes  43

Type Affinity  44

Summary  44

4	 SQLite in Android  47
Data Persistence in Phones  47

Android Database API  47

SQLiteOpenHelper  47

SQLiteDatabase  57

Strategies for Upgrading Databases  58

Rebuilding the Database  58

Manipulating the Database  59

Copying and Dropping Tables  59

Database Access and the Main Thread  60

Exploring Databases in Android  61

Accessing a Database with adb  61

Using Third-Party Tools to Access Android
Databases  73

Summary  77

5	 Working with Databases in Android  79
Manipulating Data in Android  79

Inserting Rows into a Table  80

Updating Rows in a Table  83

Replacing Rows in a Table  85

Deleting Rows from a Table  86

ptg18221911

Contents	 xi

Transactions  87

Using a Transaction  87

Transactions and Performance  88

Running Queries  89

Query Convenience Methods  89

Raw Query Methods  91

Cursors  91

Reading Cursor Data  91

Managing the Cursor  94

CursorLoader  94

Creating a CursorLoader  94

Starting a CursorLoader  97

Restarting a CursorLoader  98

Summary  99

6	 Content Providers  101
REST-Like APIs in Android  101

Content URIs  102

Exposing Data with a Content Provider  102

Implementing a Content Provider  102

Content Resolver  108

Exposing a Remote Content Provider to
External Apps  108

Provider-Level Permission  109

Individual Read/Write Permissions  109

URI Path Permissions  109

Content Provider Permissions  110

Content Provider Contract  112

Allowing Access from an External App  114

Implementing a Content Provider  115

Extending android.content.ContentProvider  115

insert()  119

delete()  120

update()  122

query()  124

getType()  130

ptg18221911

xii	 Contents

When Should a Content Provider Be Used?  132

Content Provider Weaknesses  132

Content Provider Strengths  134

Summary  135

7	 Databases and the UI  137
Getting Data from the Database to the UI  137

Using a Cursor Loader to Handle Threading  137

Binding Cursor Data to a UI  138

Cursors as Observers  143

registerContentObserver(ContentObserver)  143

registerDataSetObserver(DataSetObserver)  144

unregisterContentObserver
(ContentObserver)  144

unregisterDataSetObserver
(DataSetObserver)  144

setNotificationUri(ContentResolver,
Uri uri)  145

Accessing a Content Provider from an Activity  145

Activity Layout  145

Activity Class Definition  147

Creating the Cursor Loader  148

Handling Returned Data  149

Reacting to Changes in Data  156

Summary  161

8	 Sharing Data with Intents  163
Sending Intents  163

Explicit Intents  163

Implicit Intents  164

Starting a Target Activity  164

Receiving Implicit Intents  166

Building an Intent  167

Actions  168

Extras  168

Extra Data Types  169

What Not to Add to an Intent  172

ShareActionProvider  173

Share Action Menu  174

Summary  175

ptg18221911

Contents	 xiii

9	 Communicating with Web APIs  177
REST and Web Services  177

REST Overview  177

REST-like Web API Structure  178

Accessing Remote Web APIs  179

Accessing Web Services with Standard
Android APIs  179

Accessing Web Services with Retrofit  189

Accessing Web Services with Volley  197

Persisting Data to Enhance User Experience  206

Data Transfer and Battery Consumption  206

Data Transfer and User Experience  207

Storing Web Service Response Data  207

Android SyncAdapter Framework  207

AccountAuthenticator  208

SyncAdapter  212

Manually Synchronizing Remote Data  218

A Short Introduction to RxJava  218

Adding RxJava Support to Retrofit  219

Using RxJava to Perform the Sync  222

Summary  229

10	 Data Binding  231
Adding Data Binding to an Android Project  231

Data Binding Layouts  232

Binding an Activity to a Layout  234

Using a Binding to Update a View  235

Reacting to Data Changes  238

Using Data Binding to Replace Boilerplate Code  242

Data Binding Expression Language  246

Summary  247

Index 249

ptg18221911

This page intentionally left blank

ptg18221911

Preface

The explosion in the number of mobile devices in all parts of the word has led to an
increase in both the number and complexity of mobile apps. What was once considered
a platform for only simplistic applications now contains countless apps with considerable
functionality. Because a mobile device is capable of receiving large amounts of data from
multiple data sources, there is an increasing need to store and recall that data efficiently.

In traditional software systems, large sets of data are frequently stored in a database that
can be optimized to both store the data as well as recall the data on demand. Android
provides this same functionality and includes a database system, SQLite. SQLite provides
enough power to support today’s modern apps and also can perform well in the resource-
constrained environment of most mobile devices. This book provides details on how
to use the embedded Android database system. Additionally, the book contains advice
inspired by problems encountered when writing “real-world” Android apps.

Who Should Read This Book
This book is written for developers who have at least some experience with writing
Android apps. Specifically, an understanding of basic Android components (activities,
fragments, intents, and the application manifest) is assumed, and familiarity with the
Android threading model is helpful.

At least some knowledge of relational database systems is also helpful but is not
necessarily a prerequisite for understanding the topics in this book.

How This Book Is Organized
This book begins with a discussion of the theory behind relational databases as well as
some history of the relational model and how it came into existence. Next, the discussion
moves to the Structured Query Language (SQL) and how to use SQL to build a database
as well as manipulate and read a database. The discussion of SQL provides some details on
Android specifics but generally discusses non-Android-specific SQL.

From there, the book moves on to provide information on SQLite and how it relates
to Android. The book also covers the Android APIs that can be used to interact with a
database as well as some best practices for database use.

With the basics of database, SQL, and SQLite covered, the book then moves into
solving some of the problems app developers often face while using a database in Android.
Topics such as threading, accessing remote data, and displaying data to the user are covered.
Additionally, the book presents an example database access layer based on a content provider.

ptg18221911

xvi	 Preface

Following is an overview of each of the chapters:

■■ Chapter 1, “Relational Databases,” provides an introduction to the relational
database model as well as some information on why the relational model is more
popular than older database models.

■■ Chapter 2, “An Introduction to SQL,” provides details on SQL as it relates to
databases in general. This chapter discusses the SQL language features for creating
database structure as well as the features used to manipulate data in a database.

■■ Chapter 3, “An Introduction to SQLite,” contains details of the SQLite database
system, including how SQLite differs from other database systems.

■■ Chapter 4, “SQLite in Android,” discusses the Android-specific SQLite details such
as where a database resides for an app. It also discusses accessing a database from
outside an app, which can be important for debugging.

■■ Chapter 5, “Working with Databases in Android,” presents the Android API for
working with databases and explains how to get data from an app to a database and
back again.

■■ Chapter 6, “Content Providers,” discusses the details around using a content
provider as a data access mechanism in Android as well as some thoughts on when
to use one.

■■ Chapter 7, “Databases and the UI,” explains how to get data from the local database
and display it to the user, taking into account some of the threading concerns that
exist on Android.

■■ Chapter 8, “Sharing Data with Intents,” discusses ways, other than using content
providers, that data can be shared between apps, specifically by using intents.

■■ Chapter 9, “Communicating with Web APIs,” discusses some of the methods and
tools used to achieve two-way communication between an app and a remote
Web API.

■■ Chapter 10, “Data Binding,” discusses the data binding API and how it can be used
to display data in the UI. In addition to providing an overview of the API, this
chapter provides an example of how to view data from a database.

Example Code
This book includes a lot of source code examples, including an example app that is
discussed in later chapters of the book. Readers are encouraged to download the example
source code and manipulate it to gain a deeper understanding of the information
presented in the text.

The example app is a Gradle-based Android project that should build and run. It was
built with the latest libraries and build tools that were available at the time of this writing.

ptg18221911

Conventions Used in This Book	 xvii

The source code for the example can be found on GitHub at https://github.com/
android-database-best-practices/device-database. It is made available under the Apache 2
open-source license and can be used according to that license.

Conventions Used in This Book
The following typographical conventions are used in this book:

■■ Constant width is used for program listings, as well as within paragraphs to refer
to program elements such as variable and function names, databases, data types,
environment variables, statements, and keywords.

■■ Constant width bold is used to highlight sections of code.

Note
A Note signifies a tip, suggestion, or general note.

Register your copy of AndroidTM Database Best Practices at informit.com for convenient
access to downloads, updates, and corrections as they become available. To start the reg-
istration process, go to informit.com/register and log in or create an account. Enter the
product ISBN (9780134437996) and click Submit. Once the process is complete, you
will find any available bonus content under “Registered Products.”

https://github.com/android-database-best-practices/device-database
https://github.com/android-database-best-practices/device-database

ptg18221911

This page intentionally left blank

ptg18221911

Acknowledgments

I have often believed that software development is a team sport. Well, I am now convinced
that authoring is also a team sport. I would not have made it through this experience
without the support, guidance, and at times patience of the team. I would like to thank
executive editor Laura Lewin and editorial assistant Olivia Basegio for their countless
hours and limitless e-mails to help keep the project on schedule.

I would also like to thank my development editor, Michael Thurston, and technical
editors, Maija Mednieks, Zigurd Mednieks, and David Whittaker, for helping me
transform my unfinished, random, and meandering thoughts into something directed and
cohesive. The support of the team is what truly made this a rewarding experience, and it
would not have been possible without all of you.

Last, I would like to thank my beautiful wife and wonderful daughters. Your patience
and support have meant more than I can express.

ptg18221911

This page intentionally left blank

ptg18221911

About the Author

Adam Stroud is an Android developer who has been developing apps for Android since
2010. He has been an early employee at multiple start-ups, including Runkeeper, Mustbin,
and Chef Nightly, and has led the Android development from the ground up. He has
a strong passion for Android and open source and seems to be attracted to all things
Android.

In addition to writing code, he has written other books on Android development and
enjoys giving talks on a wide range of topics, including Android gaining root access on
Android devices. He loves being a part of the Android community and getting together
with other Android enthusiasts to “geek out.”	

Adam is currently the technical cofounder and lead Android developer at a new
start-up where he oversees the development of the Android app.

ptg18221911

This page intentionally left blank

ptg18221911

1
Relational Databases

The relational database model is one of the more popular models for databases today.
Android comes with a built-in database called SQLite that is designed around the
relational database model. This chapter covers some of the basic concepts of a relational
database. It starts with a brief history of databases, then moves to a discussion of the
relational model. Finally, it covers the evolution of database languages. This chapter is
meant for the reader who is largely unfamiliar with the concept of a relational database.
Readers who feel comfortable with the concepts of a relational database can safely move
on to chapters that discuss the unique features of the SQLite database system that comes
bundled with Android.

History of Databases
Like other aspects of the world of computing, modern databases evolved over time. While
we tend to talk about NoSQL and relational databases nowadays, it is sometimes impor-
tant to know “how we got here” to understand why things work the way they do. This
section of the chapter presents a little history of how the database evolved into what it is
today.

Note
This section of the chapter presents information that may be of interest to some but seem
superfluous to others. Feel free to move on to the next section to get into the details of how
databases work on Android.

The problem of storing, managing, and recalling data is not a new one. Even decades
before computers, people were storing, managing, and recalling data. It is easy to think
of a paper-based system where important data was manually written, then organized and
stored in a filing cabinet until it would need to be recalled. I need only to look in the
corner of my basement to be reminded of the days when this was a common paradigm for
data storage.

The paper-based approach has obvious limitations, the main one being its abil-
ity to scale as the amount of data grows. As the amount of data increases, so does the
amount of time it takes to both manage the data store and recall data from the data store.

ptg18221911

2	 Chapter 1 Relational Databases

A paper-based approach also implies a highly manual process for data storage and retrieval,
making it slow and error prone as well taking up a lot of space.

Early attempts to offload some of this process onto machines followed a very simi-
lar approach. The difference was that instead of using hard copies of the data written
on paper, data was stored and organized electronically. In a typical electronic-file-based
system, a single file would contain multiple entries of data that was somehow related to
other data in the file.

While this approach did offer benefits over older approaches, it still had many problems.
Typically, these file stores were not centralized. This led to large amounts of redundant
data, which made processing slow and took large amounts of storage space. Additionally,
problems with incompatible file formats were also frequent because there was rarely a
common system in charge of controlling the data. In addition, there were often difficulties
in changing the structure of the data as the usage of the data evolved over time.

Databases were an attempt to address the problems of decentralized file stores. Database
technology is relatively new when compared to other technological fields, or even other
areas of computer science. This is primarily because the computer itself had to evolve to a
point where databases provided enough utility to justify their expense. It wasn’t until the
early to mid-1960s that computers became cheap enough to be owned by private entities
as well as possess enough power and storage capacity to allow the concept of a database to
be useful.

The first databases used models that are different from the relational model discussed in
this chapter. In the early days, the two main models in widespread use were the network
model and the hierarchical model.

Hierarchical Model
In the hierarchical model data is organized into a tree structure. The model maintains a
one-to-many relationship between child and parent records with each child node hav-
ing no more than one parent. However, each parent node may have multiple children.
An initial implementation of the hierarchical model was developed jointly by IBM and
Rockwell in the 1960s for the Apollo space program. This implementation was named
the IBM Information Management System (IMS). In addition to providing a database,
IMS could be used to generate reports. The combination of these two features made IMS
one of the major software applications of its time and helped establish IBM as a major
player in the computer world. IMS is still a widely used hierarchical database system on
mainframes.

Network Model
The network model was another popular early database model. Unlike the hierarchical
model, the network model formed a graph structure that removed the limitation of the
one-to-many parent/child node relationship. This structure allowed the model to repre-
sent more complex data structures and relations. In addition, the network model was stan-
dardized by the Conference on Data Systems Language (CODASYL) in the late 1960s.

ptg18221911

The Relational Model	 3

The Introduction of the Relational Model
The relational database model was introduced by Edgar Codd in 1970 in his paper
“A Relational Model of Data for Large Shared Data Banks.” The paper outlined some of
the problems of the models of the time as well as introduced a new model for efficiently
storing data. Codd went into details about how a relational model solved some of the
shortcomings of the current models and discussed some areas where a relational model
needed to be enhanced.

This was viewed as the introduction to relational databases and caused the idea to
be improved and evolve into the relational database systems that we use today. While
very few, if any, modern database systems strictly follow the guidelines that Codd
outlined in his paper, they do implement most of his ideas and realize many of the
benefits.

The Relational Model
The relational model makes use of the mathematical concept of a relation to add structure
to data that is stored in a database. The model has a foundation based in set theory and
first-order predicate logic. The cornerstone of the relational model is the relation.

Relation
In the relational model, conceptual data (the modeling of real-world data and its
relationships) is mapped into relations. A relation can be thought of as a table with rows
and columns. The columns of a relation represent its attributes, and the rows represent
an entry in the table or a tuple. In addition to having attributes and tuples, the relational
model mandates that the relation have a formal name.

Let’s consider an example of a relation that can be used to track Android
OS versions. In the relation, we want to model a subset of data from the Android dash-
board (https://developer.android.com/about/dashboards/index.html). We will name this
relation os.

The relation depicted in Table 1.1 has three attributes—version, codename, and api—
representing the properties of the relation. In addition, the relation has four tuples tracking
Android OS versions 5.1, 5.0, 4.4, and 4.3. Each tuple can be thought of as an entry in the
relation that has properties defined by the relation attributes.

Table 1.1  The os Relation

version codename api

5.1 Lollipop 22

5.0 Lollipop 21

4.4 KitKat 19

4.3 Jelly Bean 18

https://developer.android.com/about/dashboards/index.html

ptg18221911

4	 Chapter 1 Relational Databases

Attribute
The attributes of a relation provide the data points for each tuple. In order to add struc-
ture to a relation, each attribute is assigned a domain that defines what data values can
be represented by the attribute. The domain can place restrictions on the type of data
that can be represented by an attribute as well as the range of values that an attribute
can have. In the previous example, the api attribute is limited to the domain of integers
and is said to be of type integer. Additionally, the domain of the api attribute can be
further reduced to the set of positive integers (an upper bound can also be defined if the
need arises).

The concept of a domain for a relation is important to the relational model as it allows
the relation to establish constraints on attribute data. This becomes useful in maintaining
data integrity and ensuring that the attributes of a relation are not misused. In the relation
depicted in Table 1.1, a string api value could make certain operations difficult or allow
operations to produce unpredictable results. Imagine adding a tuple to the os relation that
contains a nonnumeric value for the api attribute, then asking the database to return all
os versions with an api value that is greater than 19. The results would be unintuitive and
possibly misleading.

The number of attributes in a relation is referred to as its degree. The relation in
Table 1.1 has a degree of three because it has three attributes. A relation with a degree
of one is called a unary relation. Similarly, a relation with a degree of two is binary, and
a relation with a degree of three is called ternary. A relation with a degree higher than
three is referred to as an n-ary relation.

Tuples
Tuples are represented by rows in the tabular representation of a relation. They represent
the data of the relation containing values for the relation’s attributes.

The number of tuples in a relation is called its cardinality. The relation in Table 1.1
has a cardinality of four since it contains four tuples.

An important point regarding a relation’s cardinality and its degree is the level of
volatility. A relation’s degree helps define its structure and will change infrequently.
A change in the degree is a change in the relation itself.

In contrast, a relation’s cardinality will change with high frequency. Every time a tuple
is added or removed from a relation, the relation’s cardinality changes. In a large-scale
database, the cardinality could change several times per second, but the degree may not
change for days at a time, or indeed ever.

Intension/Extension
A relation’s attributes and the attributes’ domains and any other constraints on attribute
values define a relation’s intension. A relation’s tuples define its extension. Since inten-
sion and extension are related to cardinality and degree respectively, it is easy to see that a
relation’s intension will also remain fairly static whereas it extension is dynamic, changing
as tuples are added, deleted, and modified. A relation’s degree is a property of its intension,
and its cardinality is a property of its extension.

ptg18221911

The Relational Model	 5

Schema
The structure of a relation is defined by its relational schema. A schema is a list of
attributes along with the specification of the domain for those attributes. While the tabular
form of a relation (Table 1.1) allows us to deduce the schema of a relation, a schema can
also be specified in text. Here is the text representation of the schema from Table 1.1:

os(version, codename, api)

Notice the name of the relation along with the list of the attributes. In addition, the
primary key is sometimes indicated with bold column names. Primary keys are discussed
later in the chapter.

Properties of a Relation
Each relation in the relational model must follow a set of rules. These rules allow the
relation to effectively represent real-world data models as well as address some of the
limitations of older database systems. Relations that adhere to the following set of rules
conform to a property known as the first normal form:

■■ Unique name: Each relation must have a name that uniquely identifies it. This
allows the relation to be identified in the system.

■■ Uniquely named attributes: In addition to a uniquely named relation, each
attribute in a relation must have a unique name. Much like the relation name, the
attribute’s unique name allows it to be identified.

■■ Single-valued attributes: Each attribute in a relation can have at most one value
associated with it per tuple. In the example in Table 1.1, each api level attribute has
only a single integer value. Including a tuple that has multiple values (19 and 20) is
considered bad form.

■■ Domain-limited attribute values: As discussed previously, the value of each
attribute for a tuple must conform to the attribute’s domain. The domain for an
attribute defines the attribute’s “legal” values.

■■ Unique tuples: There should be no duplicate tuples in the relation. While there
may be parts of a tuple that have common values for a subset of the relation’s
attributes, no two tuples should be identical.

■■ Insignificant attribute ordering: The order of the attributes in a relation has no
effect on the representation of the relation of the tuples defined in the relation. This
is because each attribute has a unique name that is used to refer to that attribute.

For example, in Table 1.1, if the column ordering of the codename and api
attributes were switched, the relation would remain the same. This is because the
attributes are referred to by their unique names rather than their column ordering.

■■ Insignificant tuple ordering: The order of the tuples in a relation has no effect
on the relation. While tuples can be added and removed, their ordering has no
significance for the relation.

ptg18221911

6	 Chapter 1 Relational Databases

Relationships
Most conceptual data models require a relational model that contains multiple relations.
Fortunately, the relational model allows relationships between multiple relations to be
defined to support this. In order to define relationships between two relations, keys must
be defined for them. A key is a set of attributes that uniquely identify a tuple in a relation.
A key is frequently used to relate one relation to another and allows for complex data
models to be represented as a relational model.

■■ Superkey: A superkey is a set of attributes that uniquely identify a tuple in a
relation. There are no limits placed on the number of attributes used to form a
superkey. This means that the set of all attributes should define a superkey that is
used for all tuples.

■■ Candidate key: A candidate key is the smallest set of attributes that uniquely
identify a tuple in a relation. A candidate key is like a superkey with a constraint
placed on the maximum number of attributes. No subset of attributes from a
candidate key should uniquely identify a tuple. There may be multiple candidate
keys in a relation.

■■ Primary key: The primary key is a candidate key that is chosen to be the primary
key. It holds all the properties of a candidate key but has the added distinction of
being the primary key. While there may be multiple candidate keys in a relation that
all uniquely identify a single row, there can be only one primary key.

■■ Foreign key: A foreign key is a set of attributes in a relation that map to a
candidate key in another relation.

The foreign key is what allows two relations to be related to one another. Such
relationships can be any of three different types:

■■ One-to-one relationship: The one-to-one relationship maps a single row in table
A to a single row in table B. Additionally, the row in table B only maps back to the
single row in table A (see Figure 1.1).

Figure 1.1  One-to-one relationship

ptg18221911

The Relational Model	 7

■■ One-to-many relationship: A one-to-many relationship maps a single row in
table A to multiple other rows in table B. However, each row in table B maps to
only a single row in table A (see Figure 1.2).

■■ Many-to-many relationship: A many-to-many relationship maps multiple rows
in table A to multiple rows in table B and maps multiple rows in table B to multiple
rows in table A (see Figure 1.3).

Referential Integrity
When using relationships in the relational model, it is important to ensure that a foreign
key in a referenced table can be resolved to a tuple in the referring table. This concept is
known as referential integrity. Most relational database management systems help to
enforce referential integrity so that tables don’t have foreign keys that cannot be resolved.

The concept of relationships is of great importance to the relational model as it allows
the attributes of a relation to be atomic. For example, let’s consider a conceptual data

Figure 1.2  One-to-many relationship

Figure 1.3  Many-to-many relationship

ptg18221911

8	 Chapter 1 Relational Databases

model that tracks mobile device information in addition to the os relation from Table 1.1.
The relational schema for the database now looks like the following:

os(version, codename, api)

device(version, manufacturer, os_version, os_codename, os_api)

The device relation has attributes that define the characteristics of the hardware and
the software. In addition, the os relation contains the characteristics of the OS software.
If tuples are added, the tabular form of the relations would look like Table 1.2.

While the relation looks innocent enough, it has duplicate attributes that do not fit into
a normalized form of the relational model. Specifically, values for the os_version,
os_codename, and os_api attributes are repeated in multiple tuples in the relation. In addition,
the same values are part of the os relation from Table 1.1. Now, imagine that an attribute of
the os relation needs to be updated. In addition to directly modifying the os relation, each
tuple of the device relation that references the os information needs to be updated. Duplicate
copies of the data require multiple update operations when the data changes.

To solve this issue and make relations conform to a normal form, we can replace the
os_version, os_codename, and os_api attributes in the device relation with the primary
key from the os relation. This allows tuples in the device relation to reference tuples in the
os relation. As mentioned previously, the primary key is a candidate key that is selected as
the primary key.

The os relation has two candidate keys: the version and the api attributes. Notice
that the codename attribute is not a candidate key as it does not uniquely identify a tuple
in the relation (multiple tuples share the codename “Lollipop”). For this example, we use
version as the primary key for the os relation. Using version as the primary key for
os, we can rewrite the device relation to use the os foreign key to add the normalized
relationship to the device relation. The updated device relation now looks like Table 1.3.

Table 1.2  device Relation

version manufacturer os_version os_codename os_api

Galaxy Nexus Samsung 4.3 Jelly Bean 18

Nexus 5 LG 5.1 Lollipop 21

Nexus 6 Motorola 5.1 Lollipop 21

Table 1.3  Normalized device Relation

version manufacturer os_version

Galaxy Nexus Samsung 4.3

Nexus 5 LG 5.1

Nexus 6 Motorola 5.1

ptg18221911

Relational Languages	 9

With the updated structure, an update to the os relation is immediately reflected across
the database since the duplicate attributes have been replaced by a reference to the os
relation. Additionally, the device relation does not lose any os information since it can
use the os_version attribute to look up attributes from the os relation.

Relational Languages
Thus far in the discussion of the relational model, we have focused on model structure.
Tables, attributes, tuples, and domains provide a way to format the data so it fits the model,
but we also need a way to both query and manipulate that model.

The two languages most used to manipulate a relational model are relational algebra
and relational calculus. While relational algebra and relational calculus seem different,
it is important to remember that they are equivalent. Any expression that can be written
in one can also be written in the other.

Relational calculus, and to some extent relational algebra, is the basis for higher-
level manipulation languages like SQL and SEQUEL. While a user does not directly use
relational algebra or relational calculus to work with a database (higher-level languages
are used instead), it is important to have at least a basic understanding of them to better
comprehend what the higher-level languages are doing.

Relational Algebra
Relational algebra is a language that describes how the database should run a query in
order to return the desired results. Because relational algebra describes how to run a query,
it is referred to as a procedural language.

A relational algebra expression consists of two relations that act as operands and an
operation. The operation produces an additional relation as output without any side effects
on the input operands. Relations are closed under relational algebra, meaning that both
the inputs and the outputs of an expression are relations. The closure property allows
expressions to be nested using the output of one expression to be the input of another.

All relational algebra operations can be broken down into a base set of five
operations. While other operations do exist, any operation outside the base set can
be expressed in terms of the base set of operations. The base set of operations in
relational algebra consists of selection, projection, Cartesian product, union, and
set difference.

Relational algebra operations can operate on either a single relation (unary) or a
pair of relations (binary). While most operations are binary, the selection and projection
operations operate on a single relation and are unary.

In addition to the base operations, this section discusses the intersection and join
operations.

To provide an example of relational algebra operations, consider the simple relations
defined in Tables 1.4 and 1.5.

ptg18221911

10	 Chapter 1 Relational Databases

Union (A ∪ B)
The union operator produces a relation that includes all the tuples in the operand
relations (see Table 1.6). It can be thought of as an “or” operation in that the output
relation has all the members that are in either relation A OR relation B.

Intersection (A ∩ B)
The intersection operator produces a relation that includes all tuples in both relation
A and relation B (see Table 1.7).

Table 1.4  Relation A

Color

Red

White

Blue

Table 1.5  Relation B

Color

Orange

White

Black

Table 1.6  A ∪ B

Color

Red

White

Blue

Orange

Black

Table 1.7  A ∩ B

Color

White

ptg18221911

Relational Languages	 11

Difference (A - B)
The difference operator produces a relation that contains the tuples that are members of
the left operand without the tuples that are members of the right operand (see Table 1.8).

Cartesian Product (A ë B)
The Cartesian product produces a relation that includes all possible ordered pairings of all
tuples from operand A with all tuples from operand B (see Table 1.9). The degree of the
output relation is the sum of the degree of each operand relation. The cardinality of the
output relation is the product of the cardinalities of the input relations. In our example,
both relations A and B have a degree of 1. Therefore, the output relation has a degree
of 1 + 1 = 2. Similarly, both relations A and B have a cardinality of three, so the output
relation has a degree of 3 * 3 = 9.

Selection (σpredicate (A))
Selection produces a relation with only the tuples from the operand that satisfy a given
predicate. Remember that, unlike the previous operations, selection is a unary operation
and operates on only a single relation.

As an example of the selection operation, we again consider the os relation from earlier
in the chapter. In the example, the os relation is being searched for all tuples that contain
an api value that is greater than 19 (see Table 1.10).

Table 1.8  A - B

Color

Red

Blue

Table 1.9  A ë B

A. Color B. Color

Red Orange

Red White

Red Black

White Orange

White White

White Black

Blue Orange

Blue White

Blue Black

ptg18221911

12	 Chapter 1 Relational Databases

Projection (Πa1, a2,…,an(A))

Projection produces a relation containing only the attributes that are specified on the
operand. The output relation has the values from the attributes listed in the operand, and
the operation removes the duplicates.

Like selection, projection is also a unary operation working on a single input relation.
As an example, we again use the relation depicted in Table 1.1. This time, only the values
for the attribute codename are included in the resulting relation (see Table 1.11).

Joins
The join relations can be considered a class of relations that are similar to the Cartesian
product of two operand relations. Usually, a query does not need to return the complete
pairing of tuples from the two operands that are produced by the Cartesian product.
Instead, it is usually more useful to limit the output relation to only those pairings that
meet certain criteria. This is where the different join operations are useful.

Natural join is a useful join variant as it conceptually allows two relations to be
combined into a single relation connecting the relations over a set of common attributes.
For example, if we consider the os relation in Table 1.1 and the normalized device
relation in Table 1.3, we can produce a relation that combines the two relations using the
device.os_version and os.version attributes from each of the input relations. The
results are depicted in Table 1.12.

Table 1.10  σapi>19 (os)

version codename api

5.1 Lollipop 22

5.0 Lollipop 21

Table 1.11  (Πcodename(os))

codename

Lollipop

KitKat

Jelly Bean

Table 1.12  A ⋈ B

device.version device.manufacturer os.version os.codename os.api

Galaxy Nexus Samsung 4.3 Jelly Bean 18

Nexus 5 LG 5.1 Lollipop 21

Nexus 6 Motorola 5.1 Lollipop 21

ptg18221911

Relational Languages	 13

Notice how the result of the natural join is the same unnormalized relation as in
Table 1.2. By using a join operation, we are now able to perform additional operations on
the output relation to produce the same results that would have been obtained if the data
was combined in one table.

Natural join is really a specific type of theta join that uses the equality operation over
a set of attributes. Theta join allows the use of any operation to combine the two operand
relations. Equality (producing a natural join) is just one of the most common cases.

Relational Calculus
Relational calculus is another relational language that can be used to query and modify a
relational model. Codd made the proposal for tuple relational calculus after his paper that
introduced the relational model.

As discussed previously, relational algebra describes how data should be retrieved. Using
relational calculus, we can describe what needs to be retrieved and leave the details of
how the data is retrieved to the database. Because relational calculus is concerned with
describing what to retrieve, it can be classified as a declarative language.

There are two forms of relational calculus: tuple relational calculus and domain
relational calculus. Both forms are described in the following sections.

Tuple Relational Calculus
In tuple relational calculus, the tuples of a relation are evaluated against a predicate. The
output of an expression is the relation that contains the tuples that make the predicate
true. Again, with relational calculus, we only need to specify what we want and let the
system determine the best way to fulfill the request.

If we again consider the os relation listed in Table 1.1, we can formulate a tuple
relational calculus query in words. It would read something like this:

Return all tuples from the relation os where the codename is “Lollipop.”

Notice that this is the same query that we, in the previous section, defined using
relational algebra. While the text representation is generally how humans think about
tuple relational calculus, we often use a shorthand notation to define the relation. The
shorthand notation for this query would be

{x|os(x) ∧ x.codename = ‘Lollipop’}

This query would return all attributes for tuples that satisfy the predicate. We can also
limit the attributes that are returned by the query. A query that would return only the
codename when it is equal to “Lollipop” would look like this:

{x.codename|os(x) ∧ x.codename = ‘Lollipop’}

Domain Relational Calculus
Domain relational calculus evaluates the domain of the attributes in a relation as opposed
to the tuples as in tuple relational calculus.

ptg18221911

14	 Chapter 1 Relational Databases

Database Languages
While the structure of a relational database is important, it is also necessary to be able
to manipulate the data that is housed in the database. In his 1970 paper, Codd started
describing a sub-language called ALPHA based on predicate calculus declaring relations,
their attributes, and their domains.

ALPHA
While the ALPHA language was never developed, it did lay the foundation for modern-
day languages used by most relational database systems today. It is important to point out
that it was not Codd’s intent to provide a full implementation of such a language in a
paper that introduced the relational model. Instead, he presented some of the concepts
and features that such a language would include. In addition, he described the language’s
relationship with a higher-level language as a “proof of concept” about what the language
could do with a relational model.

The features of ALPHA that Codd described included the retrieval, modification,
insertion, and deletion of data.

In addition to describing what the language could do, Codd went into the details of
what the language should not do. Since the main objective of the language is to interact
with a relational data model, the semantics of the language specify what data to retrieve as
opposed to how to retrieve it. This is an important detail and is a language feature that has
been carried through to modern-day SQL.

ALPHA was described as a “sub-language” that would exist along with another
higher-level “host” language. This implies that ALPHA was never meant to be a complete
language on its own. For example, features like arithmetic functions would be intention-
ally left out of ALPHA as they would be implemented in the host language and called
from ALPHA.

QUEL
QUEL was a database language developed at UC Berkeley based on Codd’s ALPHA
language. It was shipped as part of the Ingres DBMS and has roots in POSTQUEL which
was shipped with early versions of the Postgres database. QUEL was included as part of
early relational databases but has more recently been supplanted by SQL in most modern
relational database systems.

SEQUEL
Structured English QUEry Language (SEQUEL) was the name given to SQL when it
was originally developed by IBM. However, due to trademark infringements, the name
was shortened to Structured Query Language (SQL). SEQUEL was the first commercial
language to be implemented based on Codd’s ALPHA language.

As discussed earlier in the chapter, SQLite is the database system included as part
of Android. In addition to implementing a way to store relational data, it includes an
interpreter for the SQL high-level database language.

ptg18221911

Summary	 15

Summary
Relational databases offer a powerful mechanism to both store and operate on data.
The introduction of the relational model by Edgar Codd in 1970 allowed database
technology to overcome many of the limitations that existed in earlier file-based models.

The relational model, along with relational algebra and relational calculus, allows a
database to be queried and perform operations on the data it stores. By including the
concepts that define the relational languages in higher-level languages such as QUEL,
SEQUEL, and SQL, developers are able to harness the power of a relational database to
help support their software.

The next chapter dives into the details of the most popular database language: SQL.

ptg18221911

This page intentionally left blank

ptg18221911

2
An Introduction to SQL

Structured Query Language (SQL) is one programming language used to interact with
a relational database, and it is the language used in SQLite. The language supports the
ability to define database structure, manipulate data, and read the data contained in the
database.

Although SQL has been standardized by both the American National Standards
Institute (ANSI) and the International Organization for Standardization (ISO), vendors
frequently add proprietary extensions to the language to better support their platforms.
This chapter primarily focuses on SQL as it is implemented in SQLite, the database
system that is included in Android. Most of the concepts in this chapter do apply to SQL
in general, but the syntax may not be the same for other database systems.

This chapter covers three areas of SQL:

■■ Data Definition Language (DDL)
■■ Data Manipulation Language (DML)
■■ Queries

Each area has a different role in a database management system (DBMS) and a different
subset of commands and language features.

Data Definition Language
Data Definition Language (DDL) is used to define the structure of a database. This
includes the creation, modification, and removal of database objects such as tables, views,
triggers, and indexes. The entire collection of DDL statements defines the schema for
the database. The schema is what defines the structural representation of the database.
The following SQL commands are usually used to build DDL statements:

■■ CREATE: Creates a new database object
■■ ALTER: Modifies an existing database object
■■ DROP: Removes a database object

The following sections describe how the CREATE, ALTER, and DROP commands can be
used with different database objects.

ptg18221911

18	 Chapter 2 An Introduction to SQL

Tables
Tables, as discussed in Chapter 1, “Relational Databases,” provide the relations in a
relational database. They are what house the data in the database by providing rows
representing a data item, and columns representing attributes of each item. Table 2.1 shows
an example of a table that contains device information.

SQLite supports the CREATE, ALTER, and DROP commands with regard to tables.
These commands allow tables to be created, mutated, and deleted respectively.

CREATE TABLE
The CREATE TABLE statement begins by declaring the name of the table that will
be created in the database, as shown in Figure 2.1. Next, the statement defines the
columns of the table by providing a column name, data type, and any constraints
for the column. Constraints place limits on the values that can be stored in a given
attribute of a table.

Table 2.1  Device Table

model nickname display_size_inches

Nexus One Passion 3.7

Nexus S Crespo 4.0

Galaxy Nexus Toro 4.65

Nexus 4 Mako 4.7

CREATE

TEMP

TABLE

TEMPORARY

schema-name . table-name

select-stmtAS

EXISTS

column-def

,

)(

WITHOUT ROWID

NOTIF

table-constraint ,

Figure 2.1  Overview of the CREATE TABLE statement

Source: sqlite.org

ptg18221911

Data Definition Language	 19

Listing 2.1 shows a CREATE TABLE statement that creates a table named device with
three columns: model, nickname, and display_size_inches.

Listing 2.1  Creating the device Table

CREATE TABLE device (model TEXT NOT NULL,

nickname TEXT,

display_size_inches REAL);

Note
The discussion of SQL data types is deferred to Chapter 3, “An Introduction to SQLite.”
For now, it is enough to know that TEXT represents a text string and REAL a floating-point
number.

If the SQL statement from Listing 2.1 is run and returns without an error, the device
table is created with three columns: model, nickname, and display_size_inches of
types TEXT, TEXT, and REAL respectively. In addition, the table has a constraint on the
model column to ensure that every row has a non-null model name. The constraint is
created by appending NOT NULL to the end of the column name in the CREATE statement.
The NOT NULL constraint causes SQLite to throw an error if there is an attempt to insert
a row into the table that contains a null value for the model column.

At this point, the table can be used to store and retrieve data. However, as time passes,
it is often necessary to make changes to existing tables to support the changing needs of
software. This is done with an ALTER TABLE statement.

ALTER TABLE
The ALTER TABLE statement can be used to modify an existing table by either adding
new columns or renaming the table. However, the ALTER TABLE statement does have
limitations in SQLite. Notice from Figure 2.2 that there is no way to rename or remove
a column from a table. This means that once a column is added, it will always be a part of
the table. The only way to remove a column is to remove the entire table and re-create

ALTER TABLE schema-name . table-name

new-table-name

column-def

RENAME TO

COLUMNADD

Figure 2.2  Overview of the ALTER TABLE statement

Source: sqlite.org

ptg18221911

20	 Chapter 2 An Introduction to SQL

the table without the column to be removed. Doing this, however, also removes all the
data that was in the table. If the data is needed when the table is re-created, an app must
manually copy the data from the old table into the new table.

As an example, the SQL code to add a new column to the device table is shown in
Listing 2.2. The new column is named memory_mb and it is of type REAL. It is used to track
the amount of memory in a device.

Listing 2.2  Adding a New Row to the device Table

ALTER TABLE device ADD COLUMN memory_mb REAL;

DROP TABLE
The DROP TABLE statement is the simplest table operation; it removes the table from the
database along with all the data it contains. Figure 2.3 shows an overview of the DROP
TABLE statement. In order to remove a table, the DROP TABLE statement needs only the
name of the table to be removed.

The device table can be removed with the statement shown in Listing 2.3.

Listing 2.3  Removing the device Table

DROP TABLE device;

Care should be taken when using the DROP TABLE statement. Once the DROP TABLE
statement completes, the data is irrevocably removed from the database.

Indexes
An index is a database object that can be used to speed up queries. To understand what an
index is, a discussion of how databases (SQLite in this case) find rows in a table is helpful.

Suppose an app needs to find a device with a specific model from the device table
shown in Table 2.1. The application code would run a query against the table, passing the
desired model name. Without an index, SQLite would then have to examine every row
in the table to find all rows that match the model name. This is referred to as a full table
scan as the entire table is being read. As the table grows, a full table scan takes more time
as the database needs to inspect an increasing number of rows. It would take significantly
more time to perform a full table scan on a table with four million rows than on a table
with only four rows.

schema-name table-name.TABLE IF EXISTSDROP

Figure 2.3  Overview of the DROP TABLE statement

Source: sqlite.org

ptg18221911

Data Definition Language	 21

An index can speed up a query by keeping track of column values in an additional
table that can be quickly scanned to avoid a full table scan. Table 2.2 shows another
version of the device table presented in Table 2.1.

Notice the new column in Table 2.2 called rowid. SQLite automatically creates this
column when creating a table unless you specifically direct it not to. While an app will
logically consider the device table to look like Table 2.1 (without the rowid), in memory
the device table actually looks more like Table 2.2 with the rowid included.

Note
The rowid column can also be accessed using standard SQL queries.

The rowid is a special column in SQLite and can be used to implement indexes.
The rowid for each row in a table is guaranteed to be an increasing integer that uniquely
identifies the row. However, notice in Table 2.2 that the rowid values may not be
consecutive. This is because rowids are generated as rows are inserted to a table, and
rowid values are not reused when rows are removed from a table. In Table 2.2, a row
with a rowid of 4 was inserted into the table at one point but has since been deleted.
Even though rowids may not be consecutive, they remain ordered as rows are added to
the table.

Using the rowid, SQLite can quickly perform a lookup on a row since internally it
uses a B-tree to store row data with the rowid as the key.

Note
Using the rowid to query a table also prevents the full table scan. However, rowids are
usually not convenient to use as they rarely have any other purpose in an app’s business
logic.

When an index is created for a table column, SQLite creates a mapping of the row
values for that column and the corresponding rowid. Table 2.3 shows such a mapping for
the model column of the device table.

Notice that the model names are sorted. This allows SQLite to perform a binary search
to find the matching model. Once it is found, SQLite can access the rowid for the model
and use that to perform the lookup of the row data in the device table without the need
for a full table scan.

Table 2.2  device Table with rowid

rowid model nickname display_size_inches

1 Nexus One Passion 3.7

2 Nexus S Crespo 4.0

3 Galaxy Nexus Toro 4.65

5 Nexus 4 Mako 4.7

ptg18221911

22	 Chapter 2 An Introduction to SQL

CREATE
UNIQUE

INDEX
IF NOT EXISTS

schema-name index-name ON table-name (.

,

)indexed-column

exprWHERE

Figure 2.4  Overview of the CREATE INDEX statement

Source: sqlite.org

INDEXDROP IF EXISTS schema-name . index-name

Figure 2.5  Overview of the DROP INDEX statement

Source: sqlite.org

Table 2.3  Index on model

model rowid

Galaxy Nexus 3

Nexus 4 5

Nexus One 1

Nexus S 2

CREATE INDEX
The CREATE INDEX statement needs a name as well as a column definition for the index.
In the simplest case, the index has a column definition that includes a single column that
is frequently used to search a table during queries. Figure 2.4 shows the structure of the
CREATE INDEX statement.

Listing 2.4 shows how to create an index on the model column of the device table.

Listing 2.4  Creating an Index on model

CREATE INDEX idx_device_model ON device(model);

Unlike tables, indexes cannot be modified once they are created. Therefore, the ALTER
keyword cannot be applied to indexes. To modify an index, the index must be deleted
with a DROP INDEX statement and then re-created with a CREATE INDEX statement.

DROP INDEX
The DROP INDEX statement, as shown in Figure 2.5, has the same form as other DROP
statements such as DROP TABLE. It needs only the name of the index to be removed.

ptg18221911

Data Definition Language	 23

Listing 2.5 shows how to drop the index that was created in Listing 2.4.

Listing 2.5  Deleting the Index on model

DROP INDEX idx_device_model;

Views
A view can be thought of as a virtual table in a database. Like a table, it can be queried
against to get a result set. However, it does not physically exist in the database in the same
way that a table does. Instead, it is the stored result of a query that is run to generate the
view. Table 2.4 shows an example of a view.

Notice that the view from Table 2.4 contains only a subset of the columns of the
device table. Even if more columns are added to the table, the view will remain the same.

Note
SQLite supports only read-only views. This means that views can be queried but do not
support the DELETE, INSERT, or UPDATE operations.

CREATE VIEW
The CREATE VIEW statement assigns a name to a view in a similar manner to other CREATE
statements (CREATE TABLE, CREATE VIEW, etc.), as shown in Figure 2.6. In addition to
a name, the CREATE VIEW statement includes a way to define the content of the view.
The view’s content can be defined by a SELECT statement, which returns the columns

Table 2.4  Device Name View

model nickname

Nexus One Passion

Nexus S Crespo

Galaxy Nexus Toro

Nexus 4 Mako

CREATE
TEMP

VIEW

IF NOT EXISTS

TEMPORARY

. (

,

)

AS select-stmt

column-name

view-name

schema-name

Figure 2.6  Overview of the CREATE VIEW statement

Source: sqlite.org

ptg18221911

24	 Chapter 2 An Introduction to SQL

to be included in the view as well as places limits on which rows should be included in
the view.

Listing 2.6 shows the SQL code needed to create the view from Table 2.4. The code
creates a view named device_name which includes the model and nickname columns
from the device table. Because the SELECT statement has no WHERE clause, all rows from
the device table are included in the view.

Listing 2.6  Creating the device_name View

CREATE VIEW device_name AS SELECT model, nickname FROM device;

Note
SELECT statements are covered in more detail later in the chapter.

Views in SQLite are read-only and don’t support the DELETE, INSERT, or UPDATE
operations. In addition, they cannot be modified with an ALTER statement. As with
indexes, in order to modify a view, it must be deleted and re-created.

DROP VIEW
DROP VIEW works like the other DROP commands that have been discussed thus far.
It takes the name of the view to be deleted and removes it. The details of the DROP VIEW
statement can be seen in Figure 2.7.

Listing 2.7 removes the device_name view that was created in Listing 2.6.

Listing 2.7  Removing the device_name View

DROP VIEW device_name;

Triggers
The final database object that can be manipulated by DDL is a trigger. Triggers provide a
way to perform an operation in response to a database event. For example, a trigger can be
created to run an SQL statement whenever a row is added or deleted in the database.

CREATE TRIGGER
Like other CREATE statements discussed previously, the CREATE TRIGGER statement
assigns a name to a trigger by providing the name to the CREATE TRIGGER statement.

DROP VIEW IF EXISTS .schema-name view-name

Figure 2.7  Overview of the DROP VIEW statement

Source: sqlite.org

ptg18221911

Data Definition Language	 25

After the name, an indication of when the trigger needs to run is defined. This
definition of when a trigger should run has two parts: the operation that causes the
trigger to run, and when the trigger should run in relation to that operation. For
example, a trigger can be declared to run before, after, or instead of any DELETE,
INSERT, or UPDATE operation. The DELETE, INSERT, and UPDATE operations are part of
SQL’s DML, discussed later in the chapter. Figure 2.8 shows an overview of the CREATE
TRIGGER statement.

Listing 2.8 shows the creation of a trigger on the device table that sets the insertion
time of any newly inserted rows.

TEMP

TEMPORARY

CREATE TRIGGER

IF NOT

BEFORE

AFTER

INSTEAD OF

ON table-name

column-nameOF

DELETE

INSERT

UPDATE

ROW WHEN expr

END

select-stmt

delete-stmt

insert-stmt

update-stmt ;

,

BEGIN

EACHFOR

trigger-nameschema-name .

EXISTS

Figure 2.8  Overview of the CREATE TRIGGER statement

Source: sqlite.org

ptg18221911

26	 Chapter 2 An Introduction to SQL

Listing 2.8  Creating a Trigger on the device Table

ALTER TABLE device ADD COLUMN insert_date INTEGER;

CREATE TRIGGER insert_date AFTER INSERT ON device

 BEGIN

 UPDATE device

 SET insert_date = datetime('now');

 WHERE _ROWID_ = NEW._ROWID_;

 END;

Before the insertion date can be tracked, the insert_date column must be added to the
device table. This is done with an ALTER TABLE statement prior to the trigger being created
(the insert_date column needs to exist before it can be referenced in the trigger definition).

After the ALTER TABLE statement has been run, the device table will contain the
values shown in Table 2.5.

Notice that the value of insert_date is null for all rows. This is because the column
was added after the table was created and the ALTER TABLE statement did not specify a
default value to add to existing rows.

Now that the trigger is defined, the following INSERT statement can be run to insert a
new row in the table:

INSERT INTO device (model, nickname, display_size_inches)

 VALUES ("new_model", "new_nickname", 4);

Table 2.6 shows the rows that are now in the device table.

Table 2.6  Inserting a Row

model nickname display_size_inches insert_date

Nexus One Passion 3.7 <null>

Nexus S Crespo 4.0 <null>

Galaxy Nexus Toro 4.65 <null>

Nexus 4 Mako 4.7 <null>

new_model new_nickname 4 2015-07-13 04:52:20

Table 2.5  Adding insert_date

model nickname display_size_inches insert_date

Nexus One Passion 3.7 <null>

Nexus S Crespo 4.0 <null>

Galaxy Nexus Toro 4.65 <null>

Nexus 4 Mako 4.7 <null>

ptg18221911

Data Definition Language	 27

Notice that the new row has a timestamp to indicate when it was added. This column
was populated by the insert_date trigger automatically when the INSERT statement was
run. Let’s dive a little deeper into the details of the trigger to explore how it works.

The first line of the trigger simply assigns it a name and dictates that it should be run
after an INSERT statement on the device table:

CREATE TRIGGER insert_date AFTER INSERT ON device

The actual details of the trigger are between the BEGIN and END statements:

BEGIN

 UPDATE device

 SET insert_date = datetime('now')

 WHERE _ROWID_ = NEW._ROWID_;

 END;

The previous statements cause an UPDATE statement to run, setting the insert_date to
the current time. The UPDATE statement defines which table to operate on (device) and
what values to set (column insert_date to the current date and time). The interesting
part of the insert_date trigger is the WHERE clause in the UPDATE statement:

WHERE _ROWID_ = NEW._ROWID_;

Recall from the discussion of indexes that rows in an SQLite database have a rowid
that is added by the database automatically and that this rowid column can be accessed.
The WHERE clause in the UPDATE statement accesses this rowid column by using
NEW._ROWID_. _ROWID_ is the special name of the column that can be used to access the
rowid for a given row.

This WHERE clause causes the UPDATE statement to run only when the WHERE clause
evaluates to true. In the insert_date trigger, this happens only when the row being
manipulated by the trigger is the current row. Failure to include the WHERE clause causes
the UPDATE statement to run on every row of the table.

To ensure that the current row matches the row being inserted, the NEW keyword is
used. In a trigger, NEW represents the updated column values of the row being updated. In
a similar fashion, OLD can be used to access the old values of a row that is being processed.

Triggers cannot be altered. In order for them to be modified, they need to be deleted
and re-created.

DROP TRIGGER
The DROP TRIGGER statement works like the other DROP statements introduced in this
chapter. As shown in Figure 2.9, it takes the name of the trigger that should be removed
and deletes it.

Listing 2.9 removes the insert_date trigger.

Listing 2.9  Removing the DROP TRIGGER Statement

DROP TRIGGER insert_date;

ptg18221911

28	 Chapter 2 An Introduction to SQL

The previous sections provided an overview of the DDL that is supported by SQLite.
Using the DDL, it is possible to define database objects that can be used to store data in a
local database. The next section discusses ways to manipulate data that can be stored in a
database.

Warning
While triggers can be an attractive feature of SQL, it is important to understand that they are
not without their faults. Because the database runs a trigger automatically in response to
an action performed on the database, a trigger may produce unexpected side effects. It may
not always be obvious to application code that a trigger has been added to a table, and that
could cause a database operation initiated by the trigger to have unintended results. In a
lot of cases, it may be better for the app to move certain logic to the application code rather
than add the same functionality in a trigger.

Data Manipulation Language
Data Manipulation Language (DML) is used to read and modify the data in a database.
This includes inserting and updating rows in tables. Once the structure of the database
has been defined with DDL, DML can be used to alter the data in the table. The main
difference between DDL and DML is that DDL is used to define the structure of the data
in a database, whereas DML is used to process the data itself.

DML consists of three operations that can be applied to rows in a table:

■■ INSERT: Adds a row to a table
■■ DELETE: Removes a row from a table
■■ UPDATE: Modifies the attribute values for a row in a table

INSERT
The INSERT statement is used to add rows to a table. Specifying what data should be
inserted into the table and which columns that data should be inserted into can be
done in three ways: using the VALUES keyword, using a SELECT statement, and using the
DEFAULT keyword. Figure 2.10 shows an overview of the INSERT statement.

VALUES
When using the VALUES keyword, the INSERT statement must specify the values to be
instated for each row. This is done by using two lists in the INSERT statement to specify

TRIGGER IF EXISTS schema-name trigger-nameDROP .

Figure 2.9  Overview of the DROP TRIGGER statement

Source: sqlite.org

ptg18221911

Data Manipulation Language	 29

the destination column and the value for the column. The order must match so that the
column name and the value have the same offset in the list.

When using the VALUES keyword with the INSERT statement, only a single row can be
inserted into a table per INSERT statement. This means that multiple INSERT statements are
needed in order to insert multiple rows into a table.

SELECT
Using the SELECT statement to specify row content in an INSERT statement causes the row
that is inserted to contain the result set returned by the SELECT statement. When using
this form of the INSERT statement, it is possible to insert multiple rows with one INSERT
statement.

DEFAULT
The DEFAULT keyword is used to insert a row into the table that contains only default
values for each column. When defining a table, it is possible to assign a default value for
each column.

,

,

,

()

()

,

INSERT
with-clause

schema-name table-name column-name

INSERT

INSERT

INSERT

INSERT

INSERT

VALUES expr

select-stmt

DEFAULT VALUES

REPLACE

REPLACE

INTO

OR

OR

OR

OR

OR

ROLLBACK

ABORT

FAIL

IGNORE

Figure 2.10  Overview of the INSERT statement

Source: sqlite.org

ptg18221911

30	 Chapter 2 An Introduction to SQL

Listing 2.10 shows a basic example of using multiple INSERT statements to populate the
data into the device table that was presented in Table 2.1.

Listing 2.10  Populating the Table with Multiple INSERT Statements

INSERT INTO device (model, nickname, display_size_inches)

 VALUES ("Nexus One", "Passion", 3.7);

INSERT INTO device (model, nickname, display_size_inches)

 VALUES ("Nexus S", "Crespo", 4.0);

INSERT INTO device (model, nickname, display_size_inches)

 VALUES ("Galaxy Nexus", "Toro", 4.65);

INSERT INTO device (model, nickname, display_size_inches)

 VALUES ("Nexus 4", "Mako", 4.7);

After rows have been inserted into a table, they can be altered using an UPDATE
statement.

UPDATE
An UPDATE statement is used to modify data that already exists in a table. Like the
INSERT statement, the table name, affected columns, and the new values for the affected
columns must be specified. In addition, a WHERE clause may be specified to limit the
manipulation to only specific rows. If a WHERE clause is not present in the UPDATE
statement, all rows of the table will be manipulated. Figure 2.11 shows an overview of
the UPDATE statement.

UPDATE

OR ROLLBACK

ABORT

REPLACE

FAIL

IGNORE

WHERESET

OR

OR

OR

OR

with-clause

column-name expr=

expr

qualified-table-name

Figure 2.11  Overview of the UPDATE statement

Source: sqlite.org

ptg18221911

Data Manipulation Language	 31

Listing 2.11 shows an example of an UPDATE statement that processes all rows of a table.
The UPDATE statement sets the model column to “Nexus” for all rows of the table.

Listing 2.11  Processing All Rows with UPDATE

UPDATE device SET model = "Nexus";

Listing 2.12 makes use of the WHERE clause to update specific rows of the table.
The UPDATE statement sets the model name to “Nexus 4” for all rows that have a
device_size_inches greater than 4.

Listing 2.12  Using UPDATE with a WHERE Clause

UPDATE device SET model = "Nexus 4" WHERE device_size_inches > 4;

DELETE
The DELETE statement, shown in Figure 2.12, is used to remove rows from a table. Like
the UPDATE statement, it can be used with a WHERE clause to remove only specific rows.
If the WHERE clause is not used, the DELETE statement removes all rows from a table.
The table will still exist in the database; it will just be empty.

Listing 2.13 shows a DELETE statement that removes all rows from the device table
where the display_size_inches is greater than 4.

Listing 2.13  Removing Rows with DELETE

DELETE FROM device WHERE display_size_inches > 4;

Now that DDL and DML have been discussed, it is time to start looking at the parts
of SQL that allow queries to be run against a database. This is done with the SELECT
statement.

DELETE FROM

WHERE

with-clause

expr

qualified-table-name

Figure 2.12  Overview of the DELETE statement

Source: sqlite.org

ptg18221911

32	 Chapter 2 An Introduction to SQL

Queries
In addition to defining database structure and manipulating data in a database, SQL
provides a way to read the data. In most cases, this is done by querying the database using
a SELECT statement. Running database queries is heavily based on the relational algebra
and relational calculus concepts that were discussed in Chapter 1.

Figure 2.13 shows the structure for the SELECT statement in SQL.
The SELECT statement can be fairly complicated as can be seen in Figure 2.13. In most

cases, it starts with the SELECT keyword and is followed by the projection of the query.
Recall from Chapter 1 that the projection is the subset of columns in the table. For the
SELECT statement, the projection is the list of columns that should be returned from the
table. The projection either can list the desired columns or may use a * to represent all
the columns of the table.

After the desired columns have been specified, a SELECT statement must include a
FROM clause to indicate where the input data is located. Listing 2.14 contains two queries
that return data from the device table. The first query uses the * character to return all
columns from the table, and the second query lists a subset of columns to be returned
from the device table.

Listing 2.14  SELECT Statement

SELECT * FROM device;

SELECT model, nickname FROM device;

The result set returned from each of the queries in Listing 2.14 includes all of the rows
of the table. To limit the query to specific rows, the WHERE clause can be added to a SELECT
statement.

The WHERE clause describes which rows the query should return. The WHERE clause
in a SELECT statement works the same way as a WHERE clause in an UPDATE or DELETE
statement. Listing 2.15 shows a SELECT statement that returns all columns for rows that
contain a display_size_inches value that is greater than 4.

Listing 2.15  Using SELECT with a WHERE Clause

SELECT * FROM device WHERE display_size_inches > 4;

ORDER BY
The query in Listing 2.15 returns the list of rows using the default ordering. That can be
changed by using the ORDER BY clause in a SELECT statement. The ORDER BY clause directs
the database how to order the result set that is returned by the query. In the simplest case,
the ORDER BY clause can use the value of a column to dictate how the result set should be
ordered.

ptg18221911

Queries	 33

WITH

RECURSIVE

SELECT

DISTINCT

FROM

WHERE

GROUP BY

BY

LIMIT OFFSET

�

�

�

))

�

�

�

�

�

HAVING

VALUES

ORDER

ALL

common-table-expression

result-column

table-or-subquery

join-clause

expr

expr expr

expr

expr expr

ordering-term

compound-operator

Figure 2.13  SELECT statement structure

Source: sqlite.org

ptg18221911

34	 Chapter 2 An Introduction to SQL

Listing 2.16 shows a query that returns every row from the device table ordered by
model. The results of the query are shown in Table 2.7.

Listing 2.16  Ordering Rows with ORDER BY

SELECT * FROM device ORDER BY model;

Notice that the result set is now in alphabetical order by model name.
In addition to the result set being ordered, the way it is ordered can be controlled

in an ORDER BY clause by appending either the ASC keyword or the DESC keyword after
the ORDER BY clause. ASC and DESC control how the ORDER BY clause sorts the result set
(ascending or descending order). The query in Listing 2.16 made use of the ASC ordering,
which is the default if neither ASC nor DESC is provided in the query. Appending a DESC to
the end of the ORDER BY clause causes the result to be reversed as shown in Table 2.8.

Joins
Joins provide a way to include data from multiple tables in a single query. In many cases,
tables in a database contain related data. Rather than repeat the data in a single table, it is
preferable to create multiple tables to store the data and allow the tables to reference each
other. With this structure, using a JOIN when querying allows data from both tables to be
combined in a single result set.

As an example, let’s extend the database that has been discussed in this chapter.
Currently it has a single device table that tracks the properties of various mobile devices.
Suppose the database also needs to track the manufacturer of each device, and each

Table 2.7  Alphabetical Order by model

model nickname display_size_inches

Galaxy Nexus Toro 4.65

Nexus 4 Mako 4.7

Nexus One Passion 3.7

Nexus S Crespo 4

Table 2.8  Reverse Alphabetical Order by model

model nickname display_size_inches

Nexus S Crespo 4

Nexus One Passion 3.7

Nexus 4 Mako 4.7

Galaxy Nexus Toro 4.65

ptg18221911

Queries	 35

manufacturer has a short name and a long name. The device table could be altered to add
two new columns to track this data. However, since a single manufacturer makes multiple
devices, the details of each manufacturer would need to be duplicated in device rows.
Table 2.9 shows the problem.

Since two devices, the Nexus S and the Galaxy Nexus, are made by the same company,
they have identical values for the manuf_short_name and manuf_long_name columns.
This becomes problematic should the name of the company need to be changed in the
database. An app would then need to search for all occurrences of the manufacturer
name and update the table. Also, if additional information needs to be tracked about the
manufacturer, the device table must be updated to add the new column, and each row
in the table needs to be updated to populate a value for the new attribute. This database
structure simply does not scale well and is inefficient.

A better approach would be to add the manufacturer information to a second table
and add a reference to a row in the manufacturer table to each row of the device table.
Listing 2.17 shows the SQL to create the manufacturer table that contains columns for
the short_name, long_name, and an automatically generated id.

Listing 2.17  Creating a manufacturer Table

CREATE TABLE manufacturer (id INTEGER PRIMARY KEY AUTOINCREMENT,

short_name TEXT,

long_name TEXT);

The CREATE TABLE statement in Listing 2.17 looks similar to the CREATE statements
in previous examples with one exception, the id column. In Listing 2.17, the id
attribute is declared as an INTEGER and the primary key of the table. This simply means
that the id column must uniquely identify a single row in the table. The CREATE TABLE
statement in Listing 2.17 also uses the AUTOINCREMENT keyword. This can be used
with columns that are integer types to automatically increment the value as rows are
inserted.

After running the INSERT statements in Listing 2.18, the manufacturer table contains
the data in Table 2.10.

Table 2.9  Duplicate Manufacturer Information

model nickname
display_size_
inches

manuf_short_
name

manuf_long_
name

Nexus One Passion 3.7 HTC HTC Corporation

Nexus S Crespo 4.0 Samsung Samsung Electronics

Galaxy
Nexus

Toro 4.65 Samsung Samsung Electronics

Nexus 4 Mako 4.7 LG LG Electronics

ptg18221911

36	 Chapter 2 An Introduction to SQL

Listing 2.18  Inserting Manufacturers

INSERT INTO manufacturer (short_name, long_name)

 VALUES ("HTC", "HTC Corporation");

INSERT INTO manufacturer (short_name, long_name)

 VALUES ("Samsung", "Samsung Electronics");

INSERT INTO manufacturer (short_name, long_name)

 VALUES ("LG", "LG Electronics");

In order to “link” the tables together, the device table needs to have a column added
to reference the id from the manufacturer table.

Listing 2.19 shows the ALTER TABLE statement that adds the column as well as the
UPDATE TABLE statements that update the rows in the device table.

Listing 2.19  Adding a Manufacturer Reference to the device Table

ALTER TABLE device

 ADD COLUMN manufacturer_id INTEGER REFERENCES manufacturer(id);

UPDATE device SET manufacturer_id = 1 where model = "Nexus One";

UPDATE device SET manufacturer_id = 2

WHERE model IN ("Nexus S", "Galaxy Nexus");

UPDATE device SET manufacturer_id = 3 where model = "Nexus 4";

After running the SQL statements in Listing 2.19, the device table contains the data
from Table 2.11.

Table 2.10  Manufacturer Table

id short_name long_name

1 HTC HTC Corporation

2 Samsung Samsung Electronics

3 LG LG Electronics

Table 2.11  Duplicate Manufacturer Information

model nickname display_size_inches manufacturer_id

Nexus One Passion 3.7 1

Nexus S Crespo 4.0 2

Galaxy Nexus Toro 4.65 2

Nexus 4 Mako 4.7 3

ptg18221911

Summary	 37

Now, each device has a manufacturer_id that references a row in the manufacturer
table.

Now that the two tables are defined and populated, a JOIN between them can be
performed in a SELECT statement. Listing 2.20 shows a SELECT statement that combines all
the data from the two tables.

Listing 2.20  Joining the Tables with JOIN

SELECT model, nickname, display_size_inches, short_name, long_name

FROM device

JOIN manufacturer

ON (device.manufacturer_id = manufacturer.id);

The SELECT statement in Listing 2.20 returns the rows from both the device and
manufacturer tables in the projection. The FROM clause in the SELECT statement is where
the JOIN operation happens.

The following code fragment indicates that the device and manufacturer tables
should be joined where the manufacturer_id from the device table matches the value of
the id column from the manufacturer table:

FROM device JOIN manufacturer ON (device.manufacturer_id = manufacturer.id)

The outcome of the SELECT statement in Listing 2.20 is a single result that combines
the data from two different tables as if they were a single table.

Summary
SQL contains different types of statements to perform operations on a database. Data
Definition Language (DDL) includes the SQL commands and statements needed to
define a schema for a database using various database objects such as tables, views, triggers,
and indexes. The operations included in DDL are CREATE, ALTER, and DROP.

Data Manipulation Language (DML) contains SQL language features needed to work
with the data in tables. These include the INSERT, UPDATE, and DELETE statements.

Once a database has been defined and populated with data, the SELECT statement can
be used to query the database. A query defines which table columns should be returned as
the result along with which rows from the database should be selected for inclusion in the
result set.

Chapter 3, “An Introduction to SQLite,” goes into more details about SQLite, which is
the SQL database implementation included in Android.

ptg18221911

This page intentionally left blank

ptg18221911

3
An Introduction to SQLite

Previous chapters discussed the basics of general SQL and relational databases.
The Android SDK contains a relational database system called SQLite that can be used to
store and retrieve an app’s internal data. SQLite is a lightweight database system, making
it ideal for use in resource-constrained environments like mobile devices. This chapter
discusses some of the features that make SQLite unique when compared to other database
systems, and it discusses some of its limitations.

SQLite Characteristics
Unlike larger database systems (MySQL, PostgreSQL, etc.), SQLite does not require a
server/client architecture. Instead, it is completely server-less and self-contained. It runs
in a single process, making it ideal for a mobile environment. All the SQLite functionality
resides in process via a library that is part of the Android framework.

Each process that uses SQLite uses a single file to store its database content. However,
SQLite does make use of some temporary files to support transactions, a topic that is
discussed later in the chapter. The use of a single file to store all database content
(tables, views, data, etc.) makes SQLite data storage simple and convenient.

Because the database file format is system agnostic, it can be read and written to across
different environments. This can be a real convenience for developers because it allows
them to copy an app’s SQLite database from a mobile device to a development machine
and inspect its contents. Additionally, an app can include an SQLite database file to help
bootstrap the database during the install/initialization process.

SQLite Features
While SQLite is lightweight, it does provide a set of features that are present in larger
database systems. It does not include all the features of more robust systems, but it
does provide a large enough feature set to handle most use cases that arise in mobile
development. Using SQLite, it is possible to add structure to data by making use of DDL
to create tables and views. In addition, constraints can be added to the table by using
primary/foreign keys. SQLite also includes support for cascading deletes and updates with
foreign key support. Also, features such as atomic transaction and multithread support,
which are found in larger database systems, are supported in SQLite.

ptg18221911

40	 Chapter 3 An Introduction to SQLite

Where SQLite differs from other database systems is in what it does not support as well
as the way it implements data types. It has limited support for the JOIN operations as well
as ALTER TABLE operations. Data types in SQLite are also more fluid than those found in
other systems.

Foreign Key Support
SQLite supports foreign key constraints across tables to help ensure data integrity. Using
foreign key constraints can help ensure that changes to the database span multiple tables
when UPDATE or DELETE operations are performed. For example, should a row from the
parent table be deleted, SQLite can ensure that any rows that reference that row in other
tables are also deleted. While this can be done using triggers or application code, using a
foreign key with the CASCADE operator can often be a cleaner approach.

Foreign key support was added to SQLite version 3.6.19. This is problematic for
versions of Android older than 2.2 as they contained SQLite version 3.5.9 as part of the
Android SDK. This means that foreign key support does not work in versions of Android
older than 2.2. For these versions of Android, database integrity can be maintained by
using either triggers or having the application code perform all the necessary database
actions when rows are either updated or deleted.

The Android Debug Bridge (adb) utility can be used to display the version of SQLite
that is present on an Android device using the following command:

adb -s <device_id> shell sqlite3 –version

While adb is not something that is generally used in app code, it can be used to
determine which version of SQLite is present on a device or emulator that represents the
minimum SDK level that is supported by an app. adb is covered in more detail in
Chapter 4, “SQLite in Android.”

Full Text Search
SQLite supports full-text search (FTS), allowing an app to query the database for all rows
that contain a specified string or token. In order to enable full-text support, a virtual table
must be created using one of the FTS modules. These modules are used to create tables
that have a built-in full-text index. It is this full-text index that allows the tables to be
efficiently searched for textual strings. The SQL code to create a table with FTS support
enabled is shown in Listing 3.1.

Listing 3.1  Creating an FTS Table

CREATE VIRTUAL TABLE person USING fts4(first_name, middle_name, last_name);

The SQL code in Listing 3.1 creates a table named person that has three
columns—first_name, middle_name, and last_name—that support full-text search.

Once the virtual table is created, it can be used like any other database table with SQL
operations like INSERT, DELETE, DROP, and UPDATE.

ptg18221911

SQLite Features	 41

To enable FTS support, either the FTS3 or the FTS4 module must be used (FTS1 and
FTS2 are considered deprecated and should be avoided). These modules are similar, but
they do have some differences. FTS4 is considered an enhancement to FTS3 and contains
optimizations that allow FTS queries to have better performance. The performance
enhancements are achieved by use of shadow tables. The shadow tables also require the
FTS4 module to use more space than the FTS3 module.

In general, FTS4 is the recommended module to use to support FTS on a table.
However, FTS4 was added to SQLite version 3.7.4 and is available only on Android
devices running Android 3.0 and later.

Atomic Transactions
SQLite supports atomic transactions. To ensure the atomicity of transactions, SQLite can
run in one of two modes: journal mode or write-ahead-log (WAL) mode. Each mode
allows SQLite to write to a file that is external to the main database file. This use of an
external file is one of the primary ways SQLite supports atomic transactions.

Journal Mode
When performing a transaction in journal mode, SQLite first writes all the current
database content into a journal file, then updates the original database file with the
changes from the transaction. If a transaction needs to be rolled back, the journal file’s
contents can be replayed back into the original database file. When the content from
the journal file is replayed into the database file, the database is returned to the previous
state. When the changes need to be committed to the database, the journal file is simply
removed from the file system.

The external journal file is located in the same directory as the database file and has the
same base name as the database file, with -journal appended to it.

Write-Ahead-Log (WAL) Mode
When WAL mode is enabled, SQLite still makes use of an additional file to support
atomic transactions, but the role of the files changes. When using WAL, the changes in the
transaction are written to an external file while the main database file remains unchanged.
A commit can occur by simply writing a commit record to the external WAL file. This
means that in WAL mode, a commit can occur without ever actually touching the main
database file. Allowing commits to occur without a need to change the database file allows
read and write operations to be performed simultaneously because they are performed
on two different files. The read operation is performed on the main database file and the
write operation is performed on the WAL file.

At some point the data from the WAL file needs to be added to the main database
file. This is called a checkpoint. SQLite, by default, performs a checkpoint when the
WAL file reaches a certain size. The checkpoint operation happens automatically without
intervention from an app.

Enabling WAL in SQLite does have performance implications that developers need
to be mindful of. While there are both advantages and disadvantages to enabling WAL,

ptg18221911

42	 Chapter 3 An Introduction to SQLite

most of the disadvantages are limited by the fact that the app using the SQLite database is
running on Android, which imposes certain limitations. For example, all access to a
WAL-enabled database must happen from processes on the same machine. While this
might be a concern for larger software systems, it is not a concern for Android apps since
all database access likely already happens from the same process. In addition, apps don’t
directly communicate with an SQLite database. Instead, they use an Android SDK API
which also helps limit the negative effects of enabling WAL. Enabling WAL can make
database access faster for most use cases because WAL allows read and write operations
to happen simultaneously. The downside of  WAL is that it can be slower in scenarios
where read operations have a high frequency and write operations have a low frequency.
Enabling WAL also causes SQLite to perform an extra operation, the checkpoint.

Multithread Support
SQLite supports multiple threading modes: single-thread, multithread, and serialized.
In the single-thread mode, SQLite is not thread-safe because all of its internal mutexes
are disabled. When running in single-thread mode, access to the database needs to
be controlled by the application client to ensure that data does not get corrupted.
Multithread mode adds a level of multithread support to SQLite. However, thread safety
is guaranteed only if the same connection is not used in multiple threads at the same
time. The serialized mode is the default thread for SQLite. In this mode, SQLite access is
thread-safe for all access.

An important point to keep in mind when using SQLite in Android is that
the Android SDK provides additional thread-safety support. Specifically, the
SQLiteDatabase class provides thread-safe access as long as the same instance is used
for all database access.

What SQLite Does Not Support
While SQL is a language used by relational database systems, not all features of the
language may be supported by all database systems. SQLite is no different, and some of the
limitations are in place to ensure that SQLite remains a lightweight database solution. The
following sections reveal some of the areas where SQLite has limited support.

Limited JOIN Support
SQLite does provide support for an SQL JOIN operation, but it is limited to the RIGHT
JOIN and the FULL OUTER JOIN. Specifically, the LEFT JOIN is not supported. This
limitation is easy to work with, but it is something to keep in mind when designing a
database schema and writing queries.

Read-Only Views
Views can be a convenient way to consistently present insight into the data stored in
a database. While views can be used in SQLite, they cannot be used to manipulate data.
SQLite does not support using INSERT, UPDATE, or DELETE from within a view. However,

ptg18221911

SQLite Data Types	 43

triggers can be used to perform the data manipulation when an INSERT, UPDATE, or
DELETE operation is attempted.

Limited ALTER TABLE Support
Table modification operations are limited to renaming tables (RENAME TABLE) and adding
columns (ADD COLUMN). SQLite does not support removing columns (DROP COLUMN),
changing the data type of a column (ALTER COLUMN), or adding constraints to a column.

Should a column data type need to be modified, or a constraint need to be added to a
column, a new column can be added to the table. After the new column is added, the data
can be migrated from the old column and the old column must then be ignored.

SQLite Data Types
Unlike most other database systems, SQLite does not have rigid data typing. In most
other database systems, the type of data stored in a table is defined by the data type of
the column. In SQLite, the type of a piece of data is more a property of the actual data
value rather than the declared type of the column itself. SQLite allows a database schema
to provide a hint as to what type of data a column contains, but the database makes the
typing determination from the actual data.

Storage Classes
In addition to having more static data typing, SQLite has a slightly different model of data
storage from most other database systems. Rather than have multiple different types that
can represent similar types of data, SQLite uses data storage classes. While other database
systems might have SMALLINT, INTEGER, or BIGINT to represent different types of integer
values, SQLite has only the INTEGER storage class. In the case of the INTEGER type, SQLite
uses different types to store the actual data in the database file depending on its magnitude.
However, that specific typing information can be ignored at the application level since
SQLite always returns an INTEGER storage class value when the database file is read.

Storage classes allow SQLite to be more flexible with data typing because they are
more general. That being said, a developer can think of a storage class as a data type in
other database systems and can usually use them the same way. Following are the types of
storage classes supported by SQLite:

■■ INTEGER: Used to store integer values. SQLite stores the value in 1, 2, 3, 4, 6, or
8 bytes in the database file.

■■ REAL: Used to store floating-point values in the database file. All REAL values are
stored as 8-byte IEEE floating-point numbers.

■■ TEXT: Used to store strings in the database file. The stored strings are encoded using
the database encoding.

■■ BLOB: Typically used to store binary data in the database. Technically, the BLOB storage
class stores data in the database file exactly as it is received in SQL.

■■ NULL: Used to store null values in the database file.

ptg18221911

44	 Chapter 3 An Introduction to SQLite

Type Affinity
While SQLite stores column data based on the actual data rather than the column
type, it does allow the CREATE statement to make a suggestion as to which kind of data
the column will hold. This is called type affinity. This is only a suggestion, however.
Because of SQLite’s dynamic data typing, any kind of data can be stored in any column
independent of what type the column is declared as, or what type of data is already
contained in the column. Following is a list of column affinities that are supported in SQLite:

■■ TEXT

■■ NUMERIC

■■ INTEGER

■■ REAL

■■ BLOB

In an effort to make SQLite’s data typing system compatible with SQL syntax, SQLite
calls a CREATE TABLE operation to specify more specific data types that are used in other
database systems. For example, the SQL in Listing 3.2 is valid in SQLite even though
it uses a type affinity that is not in the previous list.

Listing 3.2  Using Standard SQL Types

CREATE TABLE person (first_name VARCHAR(255),

age INT,

height_in_feet DOUBLE);

While some of the types used in Listing 3.2 are not explicitly defined in the SQLite
typing system, SQLite uses type affinity to assign the appropriate storage class. In the case
of Listing 3.2, INT has a type affinity of INTEGER, VARCHAR(255) has a type affinity of
TEXT, and DOUBLE has a type affinity of REAL. This allows the same SQL code that would
work on other database systems to also work with SQLite and still fit into its dynamic
typing system.

Summary
SQLite is a very popular database system primarily because it has a really small footprint
and still provides many of the features of much larger database systems. The “Lite” part of
SQLite should refer to the size of the library rather than to a lack of functionality. These
properties make SQLite a good choice for mobile development and are one of the reasons
it was included in the Android SDK.

ptg18221911

Summary	 45

By supporting features like foreign keys, full-text search, multithread access, and atomic
transactions, SQLite provides the functionality to support a wide number of Android apps.
Becoming familiar with some of the unique features of SQLite such as its dynamic data
types, limited JOIN support, and read-only views can take some time. The limitations of
SQLite can also make database development slightly more challenging than working with
more robust database systems.

The next chapter dives into more of the specifics of using SQLite on the Android
platform.

ptg18221911

This page intentionally left blank

ptg18221911

4
SQLite in Android

Previous chapters discussed general database use and how SQLite works. This
information is invaluable when working with databases in most environments.
This chapter focuses on working with an SQLite database in Android. It covers some
of the tools that can be used to interact with a database, and it introduces the Android
APIs that can be used to add database support to an Android app.

Data Persistence in Phones
On Android, there are multiple ways that data can be persisted. For data that is highly
structured and needs to be accessed efficiently, persisting data in SQLite may be a good
solution. SQLite is not only lightweight, but it also provides fast access to data in the form
of SQL queries.

Other methods of persisting data in Android, like preferences and/or direct file access,
may be more convenient, but they don’t provide the power that a relational database and
SQL can provide. For larger sets of data, the added complexity of adding SQLite database
support may be well worth the time and effort.

Android Database API
The Android SDK contains multiple classes that provide a level of abstraction between
an app and the details of working with SQLite. These classes are located in the android.
database.sqlite package. Two of the most basic classes that are used to work with
SQLite databases are SQLiteOpenHelper and SQLiteDatabase. These classes provide a
Java API for low-level database access on Android.

SQLiteOpenHelper
The SQLiteOpenHelper class is used to manage the SQLite database file for a process.
Recall from Chapter 3, “An Introduction to SQLite,” that SQLite stores an entire database
in a single file. SQLiteOpenHelper is responsible for creating the SQLite database as
well as configuring the connections to the database and performing upgrade operations.
SQLiteOpenHelper is the main access point for an SQLite database in Android. While
SQLiteOpenHelper does not directly support manipulating the database via SQL, it does

ptg18221911

48	 Chapter 4 SQLite in Android

provide methods to get an SQLiteDatabase instance that supports interacting with the
database through SQL.

Because SQLiteOpenHelper is an abstract class, an app must provide a subclass that
implements the SQLiteOpenHelper.onCreate() and SQLiteOpenHelper.onUpgrade()
methods as well as one of the constructor methods.

SQLiteOpenHelper Constructors
The SQLiteOpenHelper class contains two constructor methods:

■■ public SQLiteOpenHelper(Context context,

String name,

SQLiteDatabase.CursorFactory factory,

int version)

■■ public SQLiteOpenHelper(Context context

String name,

SQLiteDatabase.CursorFactory factory,

int version,

DatabaseErrorHandler errorHandler)

Each constructor accepts a Context, a String, a SQLiteDatabase.CursorFactory,
and an int. The CursorFactory is used to generate cursor objects in response to database
query operations. Making this value null applies the default implementation.

The String parameter is used to define the name of the database file. The value of this
parameter is the name of the SQLite database file that is stored in the Android file system.
This name is usually not important to an app’s Java code as an app typically does not
interact with the SQLite database file directly. The database file name is important if the
database needs to be inspected with external developer tools.

The int parameter defines the current schema version of the database. As the
functionality of an app changes, the database may also need to evolve to support added
functionality. It is typical for tables and/or views to be added to a database as the app
evolves over time and gains functionality. Since requiring a user to uninstall/reinstall an
app in order to upgrade leads to a bad experience, the SQLiteOpenHelper uses the schema
version to trigger an upgrade process to allow the developer to provide a lightweight
upgrade process for the user. When the schema needs to change, an incremented value can
be passed to the constructor, and the SQLiteOpenHelper calls onUpgrade() to allow the
database to be upgraded by the app.

The only difference between the constructors is that one includes a
DatabaseErrorHandler in the parameter list, which can be used to perform a custom
action when Android detects that the database is corrupt.

Listing 4.1 shows a snippet of a class that extends SQLiteOpenHelper and its
constructor.

ptg18221911

Android Database API	 49

Listing 4.1  Implementing the SQLiteOpenHelper Constructor

/* package */ class DevicesOpenHelper extends SQLiteOpenHelper {

 private static final String TAG = DevicesOpenHelper.class.getSimpleName();

 private static final int SCHEMA_VERSION = 1;

 private static final String DB_NAME = “devices.db”;

 private final Context context;

 private static DevicesOpenHelper instance;

 public synchronized static DevicesOpenHelper getInstance(Context context) {

if (instance == null) {

instance = new DevicesOpenHelper(context.getApplicationContext());

}

return instance;

 }

 /**

* Creates a new instance of the simple open helper.

 *

 * @param context Context to read assets. This will be helped by the
➥instance.

 */

 private DevicesOpenHelper(Context context) {

super(context, DB_NAME, null, SCHEMA_VERSION);

this.context = context;

 }

Forcing an app to use the same instance of SQLiteOpenHelper can provide added
thread safety if the database is accessed from multiple threads. Using the singleton
pattern is one way to ensure that only one instance of the open helper is used through-
out the app. In Listing 4.1, the DevicesOpenHelper is implemented as a singleton to
ensure that all database access throughout the app uses the same instance to assure thread
safety.

ptg18221911

50	 Chapter 4 SQLite in Android

The DevicesOpenHelper also uses constants to define the database name and schema
version, which are passed to the constructor of the parent class. The database file name is
unlikely to change throughout the life of the app. However, the schema version will almost
certainly change. If the schema needs to be updated, the global constant SCHEMA_VERSION
should be manually incremented in the DevicesOpenHelper class to reflect a new version.
This ensures that the onUpgrade() method is called to perform the upgrade operation.

SQLiteOpenHelper.onCreate()
The SQLiteOpenHelper.onCreate() method is used to create the database that the app
will use. Like the Activity.onCreate() and Fragment.onCreate() methods, it is called
only once when the database is being created for the first time. The SQLiteOpenHelper.
onCreate() method is the place where DDL can be used to create tables and views in
the database. In addition, DML can be used to initialize any data the app might need.
While the SQLiteOpenHelper class cannot perform an SQL operation on its own, the
SQLiteOpenHelper.onCreate() method is passed an SQLiteDatabase object that can
perform SQL operations on the database.

Listing 4.2 shows the implementation of DevicesOpenHelper.onCreate().

Listing 4.2  Implementing DevicesOpenHelper.onCreate()

@Override

public void onCreate(SQLiteDatabase db) {

 for (int i = 1; i <= SCHEMA_VERSION; i++) {

applySqlFile(db, i);

 }

}

The DevicesOpenHelper.onCreate() method makes multiple calls to the applySql()
method, passing the SQLiteDatabase instance as well as the schema version. The
applySql() method reads an SQL file from the assets resource and sends all the SQL
statements from the file to the database.

Because the DevicesOpenHelper.onCreate() method is called only when the
database is first created, the method loops through all the schema version files to create
the latest version of the schema in the database. For the device database sample app, all
the schema version files build upon each other, so it is necessary to run them all to have a
complete database schema.

The DevicesOpenHelper.onCreate() uses asset files to read SQL statements to send
to the database. However, the SQL statements needed to create the database can also be
generated in Java code and sent, as Strings, to the SQLiteDatabase object.

SQLiteOpenHelper.onUpgrade()
The SQLiteOpenHelper.onUpgrade() method is called when Android detects that
a database upgrade is needed. Android keeps track of the current schema version that is
passed to the constructor of SQLiteOpenHelper by using SQLite’s PRAGMA user_version.

ptg18221911

Android Database API	 51

SQLite PRAGMAs can be used to keep track of data that does not belong in a table
because the PRAGMA data describes properties of the database itself. The user_version
PRAGMA can be used by any application to store application-specific version data.

When the SQLiteOpenHelper detects that the current schema version is older than the
version passed to the constructor, it calls the SQLiteOpenHelper.onUpgrade() method.
Listing 4.3 shows the implementation of DevicesOpenHelper.onUpgrade().

Listing 4.3  Implementing DevicesOpenHelper.onUpgrade()

@Override

public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

 for (int i = (oldVersion + 1); i <= newVersion; i++) {

applySqlFile(db, i);

 }

}

The onUpgrade() method is similar to the onCreate() method. Both use the
applySql() method to read a series of SQL files and apply the SQL statements to the
database. The only difference between onCreate() and onUpgrade() is that onUpgrade()
is passed both the old schema version and the new schema version. This allows the
onUpgrade() method to process only SQL files that have not already been processed.

Listing 4.4 shows the implementation of applySql() that is used in both onCreate()
and onUpgrade().

Listing 4.4  Implementing applySql()

private void applySqlFile(SQLiteDatabase db, int version) {

 BufferedReader reader = null;

 try {

String filename = String.format("%s.%d.sql", DB_NAME, version);

final InputStream inputStream = context.getAssets().open(filename);

reader = new BufferedReader(new InputStreamReader(inputStream));

final StringBuilder statement = new StringBuilder();

for (String line; (line = reader.readLine()) != null;) {

if (BuildConfig.DEBUG) {

Log.d(TAG, "Reading line -> " + line);

}

ptg18221911

52	 Chapter 4 SQLite in Android

// Ignore empty lines

if (!TextUtils.isEmpty(line) && !line.startsWith("--")) {

statement.append(line.trim());

}

if (line.endsWith(";")) {

if (BuildConfig.DEBUG) {

Log.d(TAG, "Running statement " + statement);

}

db.execSQL(statement.toString());

statement.setLength(0);

}

}

 } catch (IOException e) {

Log.e(TAG, "Could not apply SQL file", e);

 } finally {

if (reader != null) {

try {

reader.close();

} catch (IOException e) {

Log.w(TAG, "Could not close reader", e);

}

}

 }

}

The applySql() method takes an SQLiteDatabase instance as a parameter as well as
an int to indicate the schema version file that should be read. Using the DATABASE_NAME
constant and the schema version number, applySql() accesses the SQL file as an asset
resource. It then reads each non-empty and non-comment line in the file until it finds a
line that ends with a semicolon. These lines are concatenated to form an SQL statement
that is then passed the SQLiteDatabase.execSQL(), which sends the statement to
the actual SQLite database. The SQLiteDatabase.execSQL() method takes a String
representing raw SQL and runs the statements on the database.

ptg18221911

Android Database API	 53

Database schema versions are handled by keeping multiple SQL files as asset resources
and giving them a naming convention that includes the schema version in the file name.
Figure 4.1 shows the SQL resources in Android Studio.

The SQL files in Figure 4.1 represent the different database schema versions. Each of
the SQL files follows a naming convention of devices.db.<schema_version>.sql. The
applySql() method looks for the file with the given schema version, reads its content,
and sends the SQL statements to the database.

When extending SQLiteOpenHelper, the onCreate() and onUpgrade() methods
are the only methods that must be implemented because they are abstract. However,
there are other methods that can be useful to override, such as onConfigure() and
onDowngrade().

SQLiteOpenHelper.onConfigure()
The SQLiteOpenHelper.onConfigure() method is used to configure a connection to
the database. Because this method performs the connection configuration, it is called
before any other methods that may be used to manipulate the database (onCreate(),
onUpgrade(), onDowngrade()). Being called so early also means that the onConfigure()
method should not be used to make changes to the database as the database may be in
an unpredictable state until one of the onCreate(), onUpgrade(), or onDowngrade()
methods is called.

Figure 4.1  SQL schema files

ptg18221911

54	 Chapter 4 SQLite in Android

Listing 4.5 shows the implementation of DevicesOpenHelper.onConfigure().

Listing 4.5  Implementing DevicesOpenHelper.onConfigure()

@Override

@TargetApi(Build.VERSION_CODES.JELLY_BEAN)

public void onConfigure(SQLiteDatabase db) {

 super.onConfigure(db);

 setWriteAheadLoggingEnabled(true);

 db.setForeignKeyConstraintsEnabled(true);

}

The DevicesOpenHelper.onConfigure() method in Listing 4.5 enables write-ahead
logging and foreign key support. This is also the method that can be used to set any
PRAGMA values that may be needed for a database.

Note
The SQLiteOpenHelper.onConfigure() method was introduced in API 16. Any devices
running on an older version of Android need to handle the database connection configuration
in a different way.

SQLiteOpenHelper.onDowngrade()
The SQLiteOpenHelper.onDowngrade() method is similar to the SQLiteOpenHelper.
onUpgrade() method, except it handles the case where the current schema version is
higher than the new version. It has the same parameter list as the SQLiteOpenHelper.
onUpgrade() method, including two int parameters representing the current and new
schema version values.

Putting It All Together
Listing 4.6 shows the entire implementation of DevicesOpenHelper.

Listing 4.6  Entire Implementation of DevicesOpenHelper

/* package */ class DevicesOpenHelper extends SQLiteOpenHelper {

 private static final String TAG =DevicesOpenHelper.class.getSimpleName();

 private static final int SCHEMA_VERSION = 3;

 private static final String DB_NAME = "devices.db";

 private final Context context;

ptg18221911

Android Database API	 55

 private static DevicesOpenHelper instance;

 public synchronized static DevicesOpenHelper getInstance(Context ctx) {

if (instance == null) {

instance = new DevicesOpenHelper(ctx.getApplicationContext());

}

return instance;

 }

 /**

* Creates a new instance of the simple open helper.

 *

 * @param context Context to read assets. This will be helped by the

 * instance.

 */

 private DevicesOpenHelper(Context context) {

super(context, DB_NAME, null, SCHEMA_VERSION);

this.context = context;

// This will happen in onConfigure for API >= 16

if (Build.VERSION.SDK_INT < Build.VERSION_CODES.JELLY_BEAN) {

SQLiteDatabase db = getWritableDatabase();

db.enableWriteAheadLogging();

db.execSQL("PRAGMA foreign_keys = ON;");

}

 }

 @Override

 public void onCreate(SQLiteDatabase db) {

for (int i = 1; i <= SCHEMA_VERSION; i++) {

applySqlFile(db, i);

}

 }

ptg18221911

56	 Chapter 4 SQLite in Android

 @Override

 public void onUpgrade(SQLiteDatabase db,

int oldVersion,

int newVersion) {

for (int i = (oldVersion + 1); i <= newVersion; i++) {

applySqlFile(db, i);

}

 }

 @Override

 @TargetApi(Build.VERSION_CODES.JELLY_BEAN)

 public void onConfigure(SQLiteDatabase db) {

super.onConfigure(db);

setWriteAheadLoggingEnabled(true);

db.setForeignKeyConstraintsEnabled(true);

 }

 private void applySqlFile(SQLiteDatabase db, int version) {

BufferedReader reader = null;

try {

final InputStream inputStream =

context.getAssets().open(filename);

reader =

new BufferedReader(new InputStreamReader(inputStream));

final StringBuilder statement = new StringBuilder();

for (String line; (line = reader.readLine()) != null;) {

if (BuildConfig.DEBUG) {

Log.d(TAG, "Reading line -> " + line);

}

// Ignore empty lines

if (!TextUtils.isEmpty(line) && !line.startsWith("--")) {

ptg18221911

Android Database API	 57

statement.append(line.trim());

}

if (line.endsWith(";")) {

if (BuildConfig.DEBUG) {

Log.d(TAG, "Running statement " + statement);

}

db.execSQL(statement.toString());

statement.setLength(0);

}

}

} catch (IOException e) {

Log.e(TAG, "Could not apply SQL file", e);

} finally {

if (reader != null) {

try {

reader.close();

} catch (IOException e) {

Log.w(TAG, "Could not close reader", e);

}

}

}

 }

}

SQLiteDatabase
As discussed previously in this chapter, the SQLiteOpenHelper class is used to help
manage creating and upgrading a database in Android. However, in order to actually use
the database, an app needs to use additional classes that allow for interaction with the
database. When using an open helper, the SQLiteDatabase class represents the connection
to the database itself. SQLiteDatabase contains methods to interact with a database,
including executing SQL statements. It is the class that will be used to perform typical
SQL operations such as query(), create(), and delete() as well as allow for database
configuration and transaction management.

ptg18221911

58	 Chapter 4 SQLite in Android

Before an app can interact with an SQLiteDatabase connection, it must first get an
instance of SQLiteDatabase. In most cases, apps use methods from SQLiteOpenHelper to
get a reference to an SQLiteDatabase connection.

SQLiteOpenHelper contains two methods that return SQLiteDatabase
connections: SQLiteOpenHelper.getReadableDatabase() and SQLiteOpenHelper.
getWritableDatabase(). Both methods return an SQLiteDatabase or create one if
necessary. However, as the method names indicate, getReadableDatabase() returns an
SQLiteDatabase that can be used for read operations, and getWritableDatabase()
returns an SQLiteDatabase that can be used for both reading and writing.

The actual database connection object that is returned by getReadableDatabase()
and getWritableDatabase() is cached inside SQLiteOpenHelper to
improve performance. Additionally, once a writable database connection is
created, getReadableDatabase() actually returns the same connection as
getWritableDatabase() since both methods return the cached version of the object.

Strategies for Upgrading Databases
The topic of database upgrades was briefly discussed earlier in this chapter. However,
because it can be a complicated issue, it warrants more discussion.

The DevicesOpenHelper method presented in this chapter uses an upgrade approach
that preserves the data in the database and uses external SQL files to manipulate the
database for different schema versions. While this approach works, it may not be well
suited for all use cases and can cause problems that developers should be aware of. In
addition, there are other paradigms that can be used to handle SQL database upgrades
such as dropping all database tables and re-creating them.

Rebuilding the Database
The simplest way to upgrade an existing application database is to drop all the tables
and views in the database and simply re-create them. With this approach, there is no
need to track schema versions. There is still a need to increment the schema version that
is passed to the constructor of SQLiteOpenHelper, but that simply requires triggering
SQLiteOpenHelper.onUpgrade() to run. The onUpgrade() method essentially clears out
all database objects, then uses DDL to re-create the database.

While this is the simplest approach, it also destroys the data that is already in the
database. Depending on the needs of the app, and the architecture of the entire system,
this may not be much of an issue. For example, if an app is repeatedly pulling data from a
remote Web service, it might not need to persist its local database across database upgrades.
Removing all database objects, re-creating them, and then populating them with the data
from a Web service may be perfectly acceptable at times. If so, perhaps the simplicity of
this approach makes it worth implementing.

ptg18221911

Strategies for Upgrading Databases	 59

Manipulating the Database
While dropping and re-creating the entire database may be the simplest approach, it may
not work in all cases. For example, an app may collect data that is provided by the user and
not stored on any remote site. For these cases, simply manipulating the database with DDL
might be a better approach.

Manipulating an already-existing database is the upgrade strategy that is used in the
DevicesOpenHelper presented earlier in this chapter. Depending on the changes needed
to the database, using DDL to change existing database objects may be enough. If the
changes needed to update the schema are purely additive (adding a table and/or columns,
for example), this approach often works. It is when existing database objects need to be
changed that this approach may get complicated.

Recall from Chapter 3 that the ALTER TABLE statement poses some limitations on the
operations it can perform in SQLite. Specifically, ALTER TABLE does not support DROP
COLUMN or ALTER COLUMN. If there is no way to alter or drop a column, columns that are
no longer used by the app remain in the table. This is not necessarily problematic, but it
can potentially cause the table to use more disk space. In addition, because the column still
exists in the table, the column can accidentally be accessed by application code without
having the database throw an error.

A typical approach to achieving the equivalent ALTER COLUMN functionality is to create
a new column and copy the data from the old column to the new column for each row
in the table. With this approach, the table is once again left with a column that is not
being used, leading to increased disk usage and opening the door for programming errors.

The addition of extra columns along with the inability to drop old columns can also have
a much more menacing side effect than simply taking up more space and allowing for acci-
dental usage of the old column. It would be convenient to simply ignore the old column and
let it reside in the database, but remove all references to the column in app code. Unfortu-
nately, if the column contains a constraint that prevents null values from being entered when
a row is added, this may not be possible. To prevent an error from SQLite, the application
code needs to populate a column with a non-null constraint with some non-meaningful value.

To alleviate some of these problems, some apps may be able to simply remove one or
more tables, re-create them, and restore the data.

Copying and Dropping Tables
One way to circumvent the problem of having columns that are no longer used in a database,
either because of the lack of DROP COLUMN or to work around the lack of ALTER COLUMN
support, is to create a new table that has the desired columns under a different name. When
creating this new table, the data from the old table can be copied to the new table. After the
data is copied, the old table can be dropped and the new table can be renamed to match the
name of the old table. This approach allows a table to be manipulated without losing any data.
It also bypasses the limitations imposed by lack of DROP COLUMN and ALTER COLUMN support.

ptg18221911

60	 Chapter 4 SQLite in Android

As an example, suppose a database has a table created with the SQL statements from
Listing 4.7.

Listing 4.7  Example Table

CREATE TABLE data_table (column1 TEXT NOT NULL,

column2 TEXT NOT NULL,

column3 TEXT NOT NULL);

INSERT INTO data_table

VALUES ('row1_column1', 'row1_column2', 'row1_column3');

INSERT INTO data_table

VALUES ('row2_column1', 'row2_column2', 'row2_column3');

INSERT INTO data_table

VALUES ('row3_column1', 'row3_column2', 'row3_column3');

Even though the data_table.column3 column is no longer needed, it may cause
problems with app code because it has the NOT NULL constraint on it. Any attempt to
add a row to the table requires some value to be inserted into data_table.column3.
Ideally, what needs to happen is that column3 needs to be removed from the table so the
application code does not need to worry about inserting a value into it.

Listing 4.8 shows the SQL code that implements the copy and DROP approach that was
discussed previously.

Listing 4.8  Copying and Dropping a Table

CREATE TABLE temp_table AS SELECT column1, column2 FROM data_table;

DROP TABLE data_table;

ALTER TABLE temp_table RENAME TO data_table;

Copying the data to a new table and giving it the same name as the old table helps to ensure
that the queries used by the application code still work; they just return a smaller result set.

Database Access and the Main Thread
Performing long-running tasks on the main thread is always a concern with Android
development. Spending too much time on the main thread can cause the UI to become
slow or even hang. Android best practices tend to recommend refraining from any disk
access on the main thread out of fear of causing a poor user experience. Even though

ptg18221911

Exploring Databases in Android	 61

SQLite data access is typically fast, the database does reside in a file on the disk and should
not be accessed from the main thread.

While typical Android threading techniques can be used to offload database operations
from the main thread, the Android SDK also provides the loader framework to help.
Specifically, the CursorLoader can be used to painlessly access a database off the main
thread and perform UI tasks on the main thread. An in-depth discussion of the use of a
CursorLoader comes in Chapter 5, “Working with Databases in Android.”

Exploring Databases in Android
When developing an Android app that uses a database, it is often necessary to access the
database in order to inspect its data. Because Android uses SQLite as the database system,
any tool that supports SQLite can be used to interact with and manipulate an app’s
database. Additionally, the Android SDK provides the tools to inspect a database that is on
a mobile device, as well as copy the database to a development machine so that other tools
can be used to interact with it. There are also third-party tools, like Facebook’s Stetho, that
can be used to access a database in an app.

Accessing a Database with adb
The Android Debug Bridge (adb) is a very valuable tool for any Android developer.
One of the things adb can do is open a shell to a device or emulator. The shell provides
command-line access to the device, allowing a developer to perform some basic
operations. Also included in the Android SDK is the sqlite3 tool that can be used to
interact with a database on a device through the shell. Once a shell is opened to a device,
the sqlite3 command-line tool can be used to open the database and send it commands.

Introduction to adb
The following code snippet shows how to use adb to open a shell to a device:

<path_to_android_sdk_dir>/platform-tools/adb shell

If there are multiple devices (emulators or actual devices) connected to the machine,
adb needs to be provided with the ID of the target device. adb can be used to get a list
of devices, and their IDs, that are currently connected to the machine using the adb
devices subcommand. Listing 4.9 shows an example of using adb to find all the devices
currently connected to the machine.

Listing 4.9  Getting a List of Attached Devices

bash-4.3$ adb devices

List of devices attached

HT4ASJT00075 device

ZX1G22PJGX device

bash-4.3$

ptg18221911

62	 Chapter 4 SQLite in Android

While the device IDs are displayed to the screen, it is not always clear which device is
represented by a given ID. Passing –l to the adb devices command causes adb to print
additional information to help identify different devices. Listing 4.10 shows usage of the
adb devices command with the –l flag.

Listing 4.10  Getting a List of Attached Devices with Device Names

bash-4.3$ adb devices -l

List of devices attached

HT4ASJT00075 device product:volantis model:Nexus_9 device:flounder

ZX1G22PJGX device product:shamu model:Nexus_6 device:shamu

bash-4.3$

With the addition of the –l flag, it is now clear which device is represented by which
ID so that the shell can be opened on the correct device.

Once the ID for the desired device has been determined, the adb shell command
can be used along with the –s flag to indicate which device is the target for the adb
command. The following snippet shows use of the adb shell command with the –s flag:

adb -s HT4ASJT00075 shell

Note
The –s flag passed to the adb command applies to adb itself and not the subcommand of
shell. This means that the –s flag can be used with any adb subcommand.

Once a shell to the desired device is connected, the file system hierarchy can be
navigated using standard Linux commands, such as cd to change directories and ls to
retrieve a directory listing.

Permissions and the Android File System
When using the adb shell command, it is important to remember that the Android environ-
ment is heavily based on Linux. Each app is treated like a user on a Linux system with a home
directory and permissions set on the home directory to disallow other apps from reading its
private data. This is an intentional security feature that is built into Android in the same way
that this is a security feature built into Linux to protect user data. On Android, apps have home
directories in the /data/data folder. The actual name of the app’s home directory is the same
as the package name that uniquely identifies the app in the system. Listing 4.11 shows a part of
a directory listing of /data/data, including the permissions of each subdirectory.

Listing 4.11  /data/data Directory Listing

root@generic_x86_64:/ # ls -l /data/data

drwxr-x--x u0_a0 u0_a0 2015-12-16 14:04 com.android.backupconfirm

ptg18221911

Exploring Databases in Android	 63

drwxr-x--x u0_a15 u0_a15 2015-12-16 14:04 com.android.backuptester

drwxr-x--x u0_a17 u0_a17 2015-12-16 14:04 com.android.browser

drwxr-x--x u0_a18 u0_a18 2015-12-16 14:04 com.android.calculator2

drwxr-x--x u0_a19 u0_a19 2015-12-16 14:04 com.android.calendar

drwxr-x--x u0_a33 u0_a33 2015-12-16 14:04 com.android.camera

drwxr-x--x u0_a20 u0_a20 2015-12-16 14:04 com.android.captiveportallogin

drwxr-x--x u0_a21 u0_a21 2015-12-16 14:04 com.android.certinstaller

drwxr-x--x u0_a2 u0_a2 2016-03-24 20:40 com.android.contacts

drwxr-x--x u0_a22 u0_a22 2015-12-16 14:04 com.android.customlocale2

drwxr-x--x u0_a3 u0_a3 2015-12-16 14:05 com.android.defcontainer

drwxr-x--x u0_a23 u0_a23 2015-12-16 14:04 com.android.deskclock

drwxr-x--x u0_a24 u0_a24 2015-12-16 14:04 com.android.development

drwxr-x--x u0_a4 u0_a4 2015-12-16 14:04 com.android.dialer

drwxr-x--x u0_a1 u0_a1 2015-12-16 14:04 com.android.providers.calendar

drwxr-x--x u0_a2 u0_a2 2015-12-16 14:04 com.android.providers.contacts

drwxr-x--x u0_a5 u0_a5 2015-12-16 14:04 com.android.providers.media

In Listing 4.11, each directory in the listing represents the home directory of an app
that is installed on the device. The home directory is where local data, such as databases,
preferences, and cache information, is saved. Because the data is specific to the app,
Android assigns permissions that prevent other apps from accessing local app data. The
permissions for the directories in /data/data (rwxr-x-—x) allow any app to enter the
directory but not add or remove anything in the directory. Only the app that “owns”
the directory can add or remove content from the directory.

Drilling down into an app directory a little deeper provides more detail on how
Android protects files. Listing 4.12 shows the permissions of files in the databases
directory of /data/data/com.android.providers.contacts.

Listing 4.12  File Permissions

root@generic_x86_64:/ # ls -l \

> data/data/com.android.providers.contacts/databases

-rw-rw---- u0_a2 u0_a2 348160 2016-03-24 20:42 contacts2.db

-rw-rw---- u0_a2 u0_a2 0 2016-03-24 20:42 contacts2.db-journal

-rw-rw---- u0_a2 u0_a2 348160 2015-12-16 14:04 profile.db

-rw-rw---- u0_a2 u0_a2 16928 2015-12-16 14:04 profile.db-journal

root@generic_x86_64:/ #

ptg18221911

64	 Chapter 4 SQLite in Android

Notice that in Listing 4.12 the file permissions (rw-rw----) are even more restrictive
than the directory permissions. The file permissions for every file in the databases
directory ensure that no other app can read or write to the file.

File permissions are important when exploring a device with adb because when the
adb shell is launched, it may be launched as an “unprivileged” user. In Linux terms, an
unprivileged user means that the user account used to run the shell is not able to override
any of the permissions of the files or directories on the device. If a file has permissions that
prevent it from being read for all users except the app that owns the file, the adb shell is
not able to read the file. This means that the adb shell is not able to perform tasks like read
and write to databases in an app’s home directory.

While the adb shell does tend to run as an unprivileged user on most devices, it is run
as the “root” user on the emulator, or if the device is “rooted” (modified to allow apps and
programs to run as root). On Linux systems, the root user can override file and directory
permissions. It can be thought of as an administrative account with almost limitless access
to the system and its contents.

When the adb shell is run as root, it has access to an app’s private files and directories.
This is important because it means that on an emulator or rooted device, the adb shell
is able to access an app-private database. However, the adb shell is not able to access
app-private databases on a device that is not rooted. Because most devices are not rooted,
accessing a database on most devices can be problematic.

Note
All the adb shell commands listed in this chapter were run on either the Android emulator
or a rooted device. The commands used to read and copy files from an app’s home directory
are not able to run on a non-rooted device/emulator due to a lack of permissions.

Finding a Database Location with adb
To connect to an app’s SQLite database, the location of the SQLite database file must be
known. Recall from Chapter 3 that SQLite stores an entire database in a single file (with
the possibility of some temporary files used for transaction support). The database file is
stored in the app’s home directory.

An example of accessing an app’s database would be accessing the database of one of
Android’s internal databases: the contacts database. Before the contacts database can be
accessed, the location of the database file must be known. The database file location can
be determined using adb.

As for most system-level databases, Android provides a content provider to access the
contacts database. While the concept of content providers will be explored more deeply
in later chapters, for now it is enough to know that a content provider provides a data
abstraction layer and contains an authority that uniquely identifies the type of data in the
ContentProvider. This authority is typically defined in a contract class that provides the
public API for using a ContentProvider.

In the case of the contacts content provider, the contract class is
ContactsContract. Examining the documentation for the ContactsContract class

ptg18221911

Exploring Databases in Android	 65

(https://developer.android.com/reference/android/provider/ContactsContract.
html#AUTHORITY) reveals that ContactsContract defines an AUTHORITY constant
which has a value of com.android.contacts. We can use the value of ContactsCon-
tract.AUTHORITY along with adb shell dumpsys to find the location of the database
that supports the contacts ContentProvider.

The adb shell dumpsys subcommand can be used to display information about the
Android system. Listing 4.13 shows how to use adb shell dumpsys to get information
about the registered content providers in the system as well as a snippet of the output
from the command.

Listing 4.13  adb shell dumpsys Subcommand

bash-4.3$ adb shell dumpsys activity providers

ACTIVITY MANAGER CONTENT PROVIDERS (dumpsys activity providers)

…

* ContentProviderRecord{2f0e81e u0 com.android.providers.contacts/.Contacts

➥Provider2}

 package=com.android.providers.contacts process=android.process.acore

 proc=ProcessRecord{ad8d91a 11766:android.process.acore/u0a2}

 launchingApp=ProcessRecord{ad8d91a 11766:android.process.acore/u0a2}

 uid=10002 provider=android.content.ContentProviderProxy@c8028ff

 authority=contacts;com.android.contacts

…

bash-4.3$

The output from the adb shell dumpsys subcommand provides all the content
provider information for the entire device, listing all the providers provided by the
various apps that are installed. To find the correct content provider entry, the authority
field from the adb shell dumpsys output needs to be examined. Specifically, the
ContentProviderRecord with an authority that includes com.android.contacts
provides the details needed to find the contacts SQLite database file. The correct
ContentProviderRecord is highlighted in Listing 4.13.

In most cases, the adb shell dumpsys command prints a lot of information that needs
to be searched to find the correct authority string. After the ContentProviderRecord
is identified, the package of the app that provides the content provider can be resolved.
In the case of the contacts content provider, the package name for the app that provides
the content provider is com.android.providers.contacts. Once the package name is
known, finding the actual SQLite database file is easy since it is in the home directory
of the app. In this case, the home directory is /data/data/com.android.providers.
contacts.

https://developer.android.com/reference/android/provider/ContactsContract.html#AUTHORITY
https://developer.android.com/reference/android/provider/ContactsContract.html#AUTHORITY

ptg18221911

66	 Chapter 4 SQLite in Android

Listing 4.14 shows using the cd command to change to the contacts provider app
home directory, then using the ls command to perform a directory listing.

Listing 4.14  Home Directory Listing

root@generic_x86_64:/ # cd /data/data/com.android.providers.contacts

root@generic_x86_64:/data/data/com.android.providers.contacts # ls

cache

code_cache

databases

files

shared_prefs

root@generic_x86_64:/data/data/com.android.providers.contacts #

The contents of the contacts content provider app can be seen in Listing 4.14.
The directory /data/data/com.android.providers.contacts contains the following
entries:

■■ cache

■■ code_cache

■■ databases

■■ files

■■ shared_prefs

The cache and code_cache directories are used to store temporary information.
The files directory is where app-specific files get stored. shared_prefs contains
the XML files used to persist preferences in Android, and the databases directory
is used to store the SQLite database files for the app. Recall from the discussion of
SQLiteOpenHelper that the name of the database is specified when opening the database.
The file in the database directory matches the file names used in the SQLiteOpenHelper
class. Listing 4.15 shows a directory listing of the databases directory for the contacts
provider app.

Listing 4.15  databases Directory Listing

root@generic_x86_64:/data/data/com.android.providers.contacts# ls databases

contacts2.db

contacts2.db-journal

profile.db

profile.db-journal

root@generic_x86_64:/data/data/com.android.providers.contacts#

ptg18221911

Exploring Databases in Android	 67

In Listing 4.15, there are two database files in the databases directory that make up
the contacts database, contacts2.db and profile.db. Each database file also has a journal
file to support transactions. With the knowledge of the location of the database file, the
sqlite3 command can now be used to connect to the database in the shell.

Connecting to a Database with sqlite3
The sqlite3 command is part of the SQLite package and is included in the Android
SDK. To use the sqlite3 command to connect to a database, simply pass the database file
name as an argument to sqlite3. Listing 4.16 shows how to use the sqlite3 command
to connect to the contacts database from Listing 4.15.

Listing 4.16  Connecting to the Contacts Database

root@generic_x86_64:/data/data/com.android.providers.contacts # sqlite3 \

> databases/contacts2.db

SQLite version 3.8.10.2 2015-05-20 18:17:19

Enter ".help" for usage hints.

sqlite>

Once the connection to the database has been made, sqlite3 displays a prompt.
Notice in Listing 4.16 that the sqlite3 program provides a hint at how to get help:
typing .help and pressing Enter. Listing 4.17 shows what is printed when the .help
command is issued to sqlite3.

Listing 4.17  Issuing .help to sqlite3

sqlite> .help

.backup ?DB? FILE Backup DB (default "main") to FILE

.bail on|off Stop after hitting an error. Default OFF

.binary on|off Turn binary output on or off. Default OFF

.clone NEWDB Clone data into NEWDB from the existing database

.databases List names and files of attached databases

.dbinfo ?DB? Show status information about the database

.dump ?TABLE? ... Dump the database in an SQL text format

If TABLE specified, only dump tables matching

LIKE pattern TABLE.

.echo on|off Turn command echo on or off

.eqp on|off Enable or disable automatic EXPLAIN QUERY PLAN

.exit Exit this program

.explain ?on|off? Turn output mode suitable for EXPLAIN on or off.

With no args, it turns EXPLAIN on.

ptg18221911

68	 Chapter 4 SQLite in Android

.fullschema Show schema and the content of sqlite_stat tables

.headers on|off Turn display of headers on or off

.help Show this message

.import FILE TABLE Import data from FILE into TABLE

.indexes ?TABLE? Show names of all indexes

If TABLE specified, only show indexes for tables

matching LIKE pattern TABLE.

.limit ?LIMIT? ?VAL? Display or change the value of an SQLITE_LIMIT

.log FILE|off Turn logging on or off. FILE can be stderr/stdout

.mode MODE ?TABLE? Set output mode where MODE is one of:

ascii Columns/rows delimited by 0x1F and 0x1E

csv Comma-separated values

column Left-aligned columns. (See .width)

html HTML <table> code

insert SQL insert statements for TABLE

line One value per line

list Values delimited by .separator strings

tabs Tab-separated values

tcl TCL list elements

.nullvalue STRING Use STRING in place of NULL values

.once FILENAME Output for the next SQL command only to FILENAME

.open ?FILENAME? Close existing database and reopen FILENAME

.output ?FILENAME? Send output to FILENAME or stdout

.print STRING... Print literal STRING

.prompt MAIN CONTINUE Replace the standard prompts

.quit Exit this program

.read FILENAME Execute SQL in FILENAME

.restore ?DB? FILE Restore content of DB (default "main") from FILE

.save FILE Write in-memory database into FILE

.scanstats on|off Turn sqlite3_stmt_scanstatus() metrics on or off

.schema ?TABLE? Show the CREATE statements

If TABLE specified, only show tables matching

LIKE pattern TABLE.

ptg18221911

Exploring Databases in Android	 69

.separator COL ?ROW? Change the column separator and optionally the row

separator for both the output mode and .import

.shell CMD ARGS... Run CMD ARGS... in a system shell

.show Show the current values for various settings

.stats on|off Turn stats on or off

.system CMD ARGS... Run CMD ARGS... in a system shell

.tables ?TABLE? List names of tables

If TABLE specified, only list tables matching

LIKE pattern TABLE.

.timeout MS Try opening locked tables for MS milliseconds

.timer on|off Turn SQL timer on or off

.trace FILE|off Output each SQL statement as it is run

.vfsname ?AUX? Print the name of the VFS stack

.width NUM1 NUM2 ... Set column widths for "column" mode

Negative values right-justify

sqlite>

Typing .help lists all the commands that sqlite3 supports. Notice that each of the
commands starts with a period. This is a common pattern with sqlite3. Besides .help,
one of the most important commands for sqlite3 is .quit, which exits the sqlite3 shell
and returns the user to the Android shell.

After a database connection is established, the sqlite3 command can be used to
execute SQL statements against the database. Since the schema of the database (which
defines the tables) is not known, it is useful to get a list of tables that can be used in a
query before running a query. The output of the .help command in Listing 4.17 reveals
that sqlite3 contains the .tables command, which shows the list of tables in the
database. Listing 4.18 shows the output of running the .tables command.

Listing 4.18  Running .tables

qlite> .tables

_sync_state phone_lookup view_data

_sync_state_metadata photo_files view_data_usage_stat

accounts pre_authorized_uris view_entities

agg_exceptions properties view_groups

android_metadata raw_contacts view_raw_contacts

ptg18221911

70	 Chapter 4 SQLite in Android

calls search_index view_raw_entities

contacts search_index_content view_stream_items

data search_index_docsize view_v1_contact_methods

data_usage_stat search_index_segdir view_v1_extensions

default_directory search_index_segments view_v1_group_membership

deleted_contacts search_index_stat view_v1_groups

directories settings view_v1_organizations

groups status_updates view_v1_people

mimetypes stream_item_photos view_v1_phones

name_lookup stream_items view_v1_photos

nickname_lookup v1_settings visible_contacts

packages view_contacts voicemail_status

sqlite>

Now that the list of tables is known, sqlite3 can be used to run a query. Listing 4.19
shows running a query to return all the rows of the raw_contacts table.

Listing 4.19  Querying the raw_contacts Table

sqlite> select _id, display_name, display_name_alt from raw_contacts;

1|Bob Smith|Smith, Bob

2|Rob Smith|Smith, Rob

3|Carol Smith|Smith, Carol

4|Sam Smith|Smith, Sam

sqlite>

While the output from Listing 4.19 is useful, sometimes it is convenient to show the
column names along with the query results. This can be done by using the .headers
command in the SQLite command prompt. The .headers command controls whether
the column names are shown as column headers in the query results. The default is to hide
the headers. Listing 4.20 shows the use of the .headers command to turn the headers on.
It also shows running a query again to show all the data from the table.

Listing 4.20  Enabling Column Headers

sqlite> .headers on

sqlite> select _id, display_name, display_name_alt from raw_contacts;

_id|display_name|display_name_alt

1|Bob Smith|Smith, Bob

ptg18221911

Exploring Databases in Android	 71

2|Rob Smith|Smith, Rob

3|Carol Smith|Smith, Carol

4|Sam Smith|Smith, Sam

sqlite>

Notice the bold text in Listing 4.20, which highlights the column names in the query
results. The addition of the headers can make it easier to determine which column in the
result set represents which column in the table definition.

One additional tweak to the output of sqlite3 that can make reading query results
easier is to enable columns. This can be done with the .mode command. sqlite3 supports
many different output types when returning query results. It can output in an ASCII
format or HTML, generate SQL INSERT statements based on the current contents of
the data, or just provide a more intuitive column structure. To make the result set more
readable, the .mode command can be passed the column parameter. Listing 4.21 shows
how to enable the column mode, and it shows the result set from running a query against
the raw_contacts table.

Listing 4.21  Enabling Columns

sqlite> .mode column

sqlite> select _id, display_name, display_name_alt from raw_contacts;

_id display_name display_name_alt

---------- ------------ ----------------

1 Bob Smith Smith, Bob

2 Rob Smith Smith, Rob

3 Carol Smith Smith, Carol

4 Sam Smith Smith, Sam

sqlite>

A Shorthand Approach to adb and sqlite3
The previous listings showed how to use adb to traverse the Android system tree and use
sqlite3 to access a database. If the location of the database is known, probably because
the package name of the app is known, a shorthand version of adb shell and sqlite3
can be used to connect to the database and run SQL commands. The shorthand approach
can be more convenient than explicitly starting a shell, then connecting to the database,
because it allows for use of typical shell features (history, pipes, redirection, etc.) that are
traditionally part of a shell on a development machine.

To use the shorthand approach, adb shell is passed a command to run inline, and it
returns the results. To access a database, the adb shell command is passed sqlite3 along

ptg18221911

72	 Chapter 4 SQLite in Android

with the path to the database. Listing 4.22 shows the combined execution of adb shell
and sqlite3.

Listing 4.22  Combining adb shell and sqlite3

bash-4.3$ adb shell sqlite3 \

> /data/data/com.android.providers.contacts/databases/contacts2.db \

> '"select _id, display_name, display_name_alt from raw_contacts;"'

1|Bob Smith|Smith, Bob

2|Rob Smith|Smith, Rob

3|Carol Smith|Smith, Carol

4|Sam Smith|Smith, Sam

bash-4.3$

Notice in Listing 4.22 that the output from the query has lost its formatting from
previous examples. The formatting can be enabled by passing the –column and –header
flags to the sqlite3 command. These are needed because with the shorthand approach, the
SQLite shell is not entered. Instead, the SQL command is run, the results are printed, and
then sqlite3 exits. Listing 4.23 shows the shorthand approach with the formatting added.

Listing 4.23  Combining adb shell and sqlite3 with Formatting Added

bash-4.3$ adb shell sqlite3 -column -header \

> /data/data/com.android.providers.contacts/databases/contacts2.db \

> '"select _id, display_name, display_name_alt from raw_contacts;"'

_id display_name display_name_alt

---------- ------------ ----------------

1 Bob Smith Smith, Bob

2 Rob Smith Smith, Rob

3 Carol Smith Smith, Carol

4 Sam Smith Smith, Sam

bash-4.3$

With the column formatting and the headers added, the output is equivalent to
running the query with the sqlite3 interactive shell.

For common queries, it can be convenient to add the combined shorthand adb shell
sqlite3 command in a script that can be rerun easily. This allows complex queries to be
persisted and easily run from a development machine while the SQLite database file still
resides on the device.

ptg18221911

Exploring Databases in Android	 73

Using Third-Party Tools to Access Android Databases
The adb and sqlite3 commands provide lightweight and convenient access to Android
databases. However, they lack the features of some more robust database access tools such
as a graphical interface and code completion, both of which can make development
easier. When a more feature-filled database tool is desired, the SQLite database must
be transferred to a development machine where it can be accessed by the database
application. The adb command supports pulling files from and pushing files to and from
an Android device from a connected development machine.

To copy a file from a mobile device to a development machine, the adb pull
command can be used. Listing 4.24 shows copying the databases containing the contact
information to the local directory.

Listing 4.24  Pulling Contact Information with adb pull

bash-4.3$ adb pull \

> /data/data/com.android.providers.contacts/databases

pull: building file list...

pull: /data/data/com.android.providers.contacts/databases

/contacts2.db-journal -> ./contacts2.db-journal

pull: /data/data/com.android.providers.contacts/databases

/contacts2.db -> ./contacts2.db

5 files pulled. 0 files skipped.

1745 KB/s (713248 bytes in 0.399s)

bash-4.3$

When the database folder has been copied to the development machine, any database
tool that supports SQLite can be used to access the database by reading the main SQLite
database file.

While using adb to pull the database from a device does allow powerful tools to be
used to access the database, it means that the database needs to be copied whenever the
mobile device makes changes to the database. This added step can be a little cumbersome.
Luckily, there is at least one tool, Stetho, that provides more functionality than sqlite3
while reading the database directly from the device.

Accessing a Database with Stetho
Stetho (https://facebook.github.io/stetho/) is a tool written and maintained by
Facebook for Android debugging. Stetho uses the Chrome browser’s developer tools to
provide access to information that can be useful when debugging an Android app. While
there is a lot of data that Stetho can provide access to, the focus for this chapter is on
database access.

https://facebook.github.io/stetho/

ptg18221911

74	 Chapter 4 SQLite in Android

In order to use Stetho, it must be added to the target Android project and initialized in the
app. In addition, Stetho functionality is typically enabled only for debug builds as there are
probably very few compelling reasons to have it enabled for release builds. This means that
Stetho can be used to debug/inspect apps that are being developed but will likely not help in
accessing any data, including SQLite databases, for apps that are downloaded via Google Play.

Because of this limitation, this chapter looks at using Stetho with an app that is used to
track devices.

Before Stetho can be initialized, it must be added to the project build.gradle file
which causes the library to be downloaded. Listing 4.25 shows the build.gradle snippet
that includes Stetho as a dependency.

Listing 4.25  Adding Stetho to build.gradle

dependencies {

 // other dependencies

 compile 'com.facebook.stetho:stetho:1.3.1'}

}

With the dependency added to the build.gradle file, Stetho now needs to be
initialized. The recommended place to initialize Stetho is on the Application class’s
onCreate() method. Because Stetho functionality should be enabled only for debug
builds, it is usually a good idea to inspect the BuildConfig.DEBUG flag to conditionally
enable it. Listing 4.26 shows the Application class that is used in the device database app.

Listing 4.26  Device Database Application Class

public class DeviceDatabaseApplication extends Application {

 @Override

 public void onCreate() {

super.onCreate();

if (BuildConfig.DEBUG) {

Stetho.initializeWithDefaults(this);

}

 }

}

With Stetho initialized, the Chrome browser can be used to inspect a running application.
To inspect the app details provided by Stetho, start the Chrome Web browser and enter
“chrome://inspect” into the address bar. Figure 4.2 displays what should appear in Chrome.

ptg18221911

Exploring Databases in Android	 75

Figure 4.2  Stetho device list screen

Figure 4.2 shows all of the devices that are currently attached to the development
machine as well as the package name of the app that is configured to use Stetho. In
this case, Figure 4.2 indicates that Chrome can attach to either a Nexus 6 or a Nexus
9 device, both of which are running the device database app. To start viewing the
data provided by Stetho, click the “inspect” link under the desired device to open the
Developer Tools window for the device. Figure 4.3 shows the Developer Tools window
for the Nexus 6.

To access the database information on the device, click the “Resources” tab at the top
of the screen, then expand the Web SQL tree in the left panel. Under the Web SQL tree,
there is an entry for the database file(s) for the app. For the device database, the file is
named devices.db as can be seen from the entry under Web SQL. Expanding the device
tree shows the tables in the database that can be inspected by simply clicking on them. In
Figure 4.3, all the rows in the manufacturer table are being displayed. This view can be
useful for inspecting the contents of a table in a graphical tool without going through the
trouble of pulling the database from the device.

In addition to viewing table contents, Stetho allows a developer to send SQL
statements to the database. To open up the SQL editor, click the database file name instead
of a table. Figure 4.4 shows the SQL Editor in Stetho.

The Stetho SQL Editor provides a prompt that allows SQL statements to be typed
in and run inline. Once a statement is run, the result of the statement is shown below
it. This allows for complex queries such as JOINs to be built while connected to the
database.

Accessing a database in Android can be invaluable when developing an app. Whether
wrestling with the SQL syntax that will be used by Java code, or debugging a problem in
the app, using tools like adb and Stetho can be vital.

ptg18221911

76	 Chapter 4 SQLite in Android

Figure 4.3  Developer Tools window

Figure 4.4  Stetho SQL Editor

ptg18221911

Summary	 77

Summary
The use of SQLite is becoming more frequent with complex apps. To support the need
to have a database to store internal data for an app, Android provides tools to ease the
complexity of working with SQLite. Tools like adb along with adb shell and adb shell
dumpsys can make interacting with a database on a device possible. In addition, adb can be
used to transfer a database from a device to a development machine so that more powerful
tools may be used to interact with the database.

To further abstract the details of communicating with an SQLite database, Android also
provides APIs that support different lifecycle events of a database. The SQLiteOpenHelper
class provides convenience methods for creating, upgrading, and downgrading a database
as well as configuring the connection to the database. The SQLiteDatabase class provides
methods for executing raw SQL statements in SQLite.

This chapter provided some of the higher-level details for working with SQLite in
Android. The rest of the book gets more into the specifics of how to implement different
parts of the Android SQLite API.

ptg18221911

This page intentionally left blank

ptg18221911

5
Working with Databases

in Android

The previous chapter introduced the SQLiteOpenHelper and SQLiteDatabase classes
and discussed how to create databases. Of course, this is only the first step as a database is
not very useful until it contains data and allows software to run queries against that data.
This chapter explains how that is done in Android by discussing which Android SDK
classes can be used to manipulate a database as well as query a database.

Manipulating Data in Android
The Android SDK contains many classes to support database operations. Along with the
classes to support create, read, update, and delete (CRUD) operations, the SDK contains
classes to help generate the queries that read the database. Following are the classes
introduced in this chapter and a summary of how they are used to work with databases in
Android:

■■ SQLiteDatabase: Represents a database in Android. It contains methods to perform
standard database CRUD operations as well as control the SQLite database file used
by an app.

■■ Cursor: Holds the result set from a query on a database. An app can read the data
from a cursor and display it to a user or perform business logic based on the data
contained in the cursor.

■■ ContentValues: A key/value store that inserts data into a row of a table. In most
cases, the keys map to the column names of the table, and the values are the data to
enter into the table.

■■ CursorLoader: Part of the loader framework that handles cursor objects.
■■ LoaderManager: Manages all loaders for an activity or fragment. The LoaderManager
contains the API for initializing and resetting a loader that may be used by Android
components.

Working with SQL is a vital part of working with databases in Android. In Chapter 2,
“An Introduction to SQL,” we saw how SQL is used to both create and upgrade a

ptg18221911

80	 Chapter 5 Working with Databases in Android

database. SQL can also be used to read, update, and delete information from a database in
Android. The Android SDK provides useful classes to assist in creating SQL statements,
while also supporting the use of Java string processing to generate SQL statements.

Working with SQL in Android involves calling methods on an SQLiteDatabase object.
This class contains methods for building SQL statements as well as convenience methods
to make issuing SQL statements to the database easy.

In a typical database use case, inserting data into the database is the step that follows
creating the database. This makes sense since a database is useful only after it contains data.
The steps to create a database were covered in the previous chapter, so this discussion
starts with inserting data into a database.

Inserting Rows into a Table
The SQLiteDatabase class contains multiple convenience methods that can be used
to perform insert operations. In most cases, one of the following three methods is used to
perform an insert operation:

■■ long insert(String table, String nullColumnHack, ContentValues

values)

■■ long insertOrThrow(String table, String nullColumnHack, ContentValues

values)

■■ long insertWithOnConflict(String table, String nullColumnHack,

ContentValues values, int conflictAlgorithm)

Notice that the parameter lists for all the variations of the insert methods contain
(as the first three parameters) a String tableName, a String nullColumnHack, and
ContentValues values. SQLiteDatabase.insertWithOnConflict() contains a fourth
parameter which will be discussed soon. The common three parameters for the insert
methods are

■■ String table: Gives the name of the table on which to perform the insert operation.
This name needs to be the same as the name given to the table when it was created.

■■ String nullColumnHack: Specifies a column that will be set to null if the
ContentValues argument contains no data.

■■ ContentValues values: Contains the data that will be inserted into the table.

ContentValues is a maplike class that matches a value to a String key. It contains
multiple overloaded put methods that enforce type safety. Here is a list of the put meth-
ods supported by ContentValues:

■■ void put(String key, Byte value)

■■ void put(String key, Integer value)

■■ void put(String key, Float value)

■■ void put(String key, Short value)

ptg18221911

Manipulating Data in Android	 81

■■ void put(String key, byte[] value)

■■ void put(String key, String value)

■■ void put(String key, Double value)

■■ void put(String key, Long value)

■■ void put(String key, Boolean value)

Each put method takes a String key and a typed value as parameters. When using
ContentValues to insert data into a database, the key parameter must match the name of
the column for the table that is targeted by the insert.

In addition to the overloaded put methods just listed, there is also a put(ContentValues
other) method that can be used to add all the values from another ContentValues object,
and a putNull(String key) method that adds a null value to a column of a table.

In a typical use case, a new instance of ContentValues is created and populated with
all the values that should be inserted into the table. The ContentValues object is then
passed to one of the insert methods from SQLiteDatabase. Listing 5.1 shows typical
ContentValues usage.

Listing 5.1  Inserting Data with SQLiteDatabase.insert()

int id = 1;

String firstName = "Bob";

String lastName = "Smith";

ContentValues contentValues = new ContentValues();

contentValues.put("id", id);

contentValues.put("first_name", firstName);

contentValues.put("last_name", lastName);

SQLiteDatabase db = getDatabase();

db.insert("people", null, contentValues);

The code in Listing 5.1 passes a null for the value of the nullColumnHack to the
SQLiteDatabase.insert() method. This is primarily because the code in Listing 5.1
“knows” what values were used to populate the values parameter and can ensure that
there is at least one column represented in the ContentValues object. However, this is not
always the case, and this is why the nullColumnHack parameter exists.

To explain nullColumnHack, consider the case where a ContentValues object that
is inserted into a table contains no key/value pairs. This would amount to attempting
to perform an insert operation without specifying any columns to insert data into. Such
an insert statement is illegal in SQL because an insert statement must specify at least one

ptg18221911

82	 Chapter 5 Working with Databases in Android

column to insert data into. The nullColumnHack parameter can be used to guard against
the “empty ContentValues” use case by specifying the name of a column that should be
set to null in the case that the ContentValues object contains no data. Like the keys in
the ContentValues instance, the string value for nullColumnHack must match the name
of a column in the table that is targeted by the insert statement.

Listing 5.2 contains a usage of the nullColumnHack parameter. After the code in
Listing 5.2 is run, column last_name will contain a value of null.

Listing 5.2  Specifying Null Columns with nullColumnHack

ContentValues contentValues = new ContentValues();

SQLiteDatabase db = getDatabase();

db.insert("people", "last_name", contentValues);

All three insert methods of SQLiteDatabase return a long. The value returned by the
methods is the row ID of the inserted row, or a value of −1 if there was an error perform-
ing the insert.

Both Listings 5.1 and 5.2 used the simplest insert method to put a row into a table of
the database, SQLiteDatabase.insert(). This method attempts to perform the insert and
returns −1 if there is an error. The other two insert methods can be used to handle error
cases differently.

SQLiteDatabase.insertOrThrow() is similar to SQLiteDatabase.insert().
However, it throws an SQLException if there was an error inserting the row.
SQLiteDatabase.insertOrThrow() takes the same parameter list and has the same return
type as SQLiteDatabase.insert(). It takes a String as the table parameter, a String as
the nullColumnHack parameter, and a ContentValues object as the values parameter.

SQLiteDatabase.insertWithConflict(String table, String nullColumnHack,

ContentValues values, int conflictAlgorithm) operates a little differently from the
other two insert methods. It supports conflict resolution during the insert operation.
Insertion conflicts occur when an attempt is made to insert a row into a table that would
produce duplicates in a column that has the UNIQUE constraint applied to it, or duplicate
data for the primary key. For example, consider the database table represented by Table 5.1.

Table 5.1  Example Database Table

first_name last_name id*

Bob Smith 1

Ralph Taylor 2

Sabrina Anderson 3

Elizabeth Hoffman 4

Abigail Elder 5

ptg18221911

Manipulating Data in Android	 83

In Table 5.1, the id column is the primary key and must hold a unique value for
all rows across the entire table. Therefore, an attempt to insert a row containing an id
of 1 would be an illegal operation in SQL because it would cause a UNIQUE constraint
violation.

In this scenario, the two previous insert methods would indicate the error
by either returning a value of -1 (SQLiteDatabase.insert()) or throwing an
exception (SQLiteDatabase.insertOrThrow()). However, SQLiteDatabase.
insertWithOnConflict() takes a fourth int parameter that can be used to tell the
method how to handle the insertion conflict. The conflict resolution algorithms are
defined as constants in SQLiteDatabase and can be one of the following:

■■ SQLiteDatabase.CONFLICT_ROLLBACK: Aborts the current insert statement.
If the insert was part of a transaction, any previous statements are also undone
and the value of SQLiteDatabase.CONFLICT_FAIL is returned by the
insertWithOnConflict() method.

■■ SQLiteDatabase.CONFLICT_ABORT: Aborts the current statement. If the statement
was part of a transaction, all previous statements are left untouched.

■■ SQLiteDatabase.CONFLICT_FAIL: Similar to SQLiteDatabase.CONFLICT_ABORT.
In addition to aborting the current statement, this flag causes the method to return
SQLITE_CONSTRAINT as a return code.

■■ SQLiteDatabase.CONFLICT_IGNORE: Skips the current statement and all other
statements in the transaction are processed. When using this flag, no error value is
returned.

■■ SQLiteDatabase.CONFLICT_REPLACE: Removes conflicting rows currently in
the table, and the new row is inserted. An error will not be returned when using
this flag.

■■ SQLiteDatabase.NONE: No conflict resolution is applied.

Updating Rows in a Table
Once data has been inserted into a database, it often needs to be updated. Like the three
insert methods discussed previously, SQLiteDatabase has a couple of update methods that
can be used to perform update operations on tables in a database:

■■ int update(String table, ContentValues values, String whereClause,

String[] whereArgs)

■■ int updateWithOnConflict(String table, ContentValues values, String

whereClause, String[] whereArgs, int conflictAlgorithm)

Much like the insert methods, both update methods take the same first four parameters,
and updateWithOnConflict() takes a fifth parameter to define how a conflict should be
resolved.

ptg18221911

84	 Chapter 5 Working with Databases in Android

The common parameters for the update methods are

■■ String table: Defines the name of the table on which to perform the update.
As with the insert statements, this string needs to match the name of a table in the
database schema.

■■ ContentValues values: Contains the key/value pairs that map the columns and
values to be updated by the update statement.

■■ String whereClause: Defines the WHERE clause of an UPDATE SQL statement.
This string can contain the “?” character that will be replaced by the values in the
whereArgs parameter.

■■ String[] whereArgs: Provides the variable substitutions for the whereClause
argument.

Listing 5.3 shows an example of the SQLiteDatabase.update() call.

Listing 5.3  Example Update Call

String firstName = "Robert";

ContentValues contentValues = new ContentValues();

contentValues.put("first_name", firstName);

SQLiteDatabase db = getDatabase();

db.update("people", contentValues, "id = ?", new String[] {"1"});

Listing 5.3 updates the first name of the person that has an id of 1. The code first
creates and populates a ContentValues object to hold the values that will be updated.
It then makes the call to SQLiteDatabase.update() to issue the statement to the
database. The rows are selected for the update() method using the whereClause and
whereArgs parameters, which are in bold in Listing 5.3. The “?” in the whereClause
parameter of the update() method serves as a placeholder for the statement. The
whereArgs parameter, containing an array of strings, holds the value(s) that will replace
the placeholder(s) when the statement is sent to the database. Since Listing 5.3 contains
only a single placeholder, the string array only needs to be of size 1. When multiple
placeholders are used, they will be replaced in order using the values from the string array.
Passing null values for the whereClause and whereArgs parameters will cause the update
statement to be run against every row in the table.

Table 5.2 shows the result of running the code in Listing 5.3 on Table 5.1. The changes
to the row with id 1 are in bold.

The basic whereClause in Listing 5.3 matches the value of a single column. When
using either update method, any legal SQL whereClause can be used to build the
statement.

ptg18221911

Manipulating Data in Android	 85

Both update methods in SQLiteDatabase return an integer that represents the number
of rows that were affected by the update statement.

Replacing Rows in a Table
In addition to insert and update operations, SQLiteDatabase supports the SQL replace
operation with the SQLiteDatabase.replace() methods. In SQLite, a replace operation
is an alias for INSERT OR REPLACE. It inserts the row if it does not already exist in a table,
or updates the row if it already exists.

Note
This is different from an update operation because an update operation does not insert a
row if it does not already exist.

There are two versions of the replace() method in SQLiteDatabase:
SQLiteDatabase.replace() and SQLiteDatabase.replaceOrThrow(). Both methods
have the same parameter list:

■■ String table: The name of the table on which to perform the operation
■■ String nullColumnHack: The name of a column to set a null value in case of an
empty ContentValues object

■■ ContcentValues initialValues: The values to insert into the table

Both replace() methods return a long indicating the row ID of the new row, or a
value of -1 if an error occurs. In addition, replaceOrThrow() can also throw an exception
in the case of an error.

Listing 5.4 shows an example of the SQLiteDatabase.replace() call.

Listing 5.4  Example Replace Call

String firstName = "Bob";

ContentValues contentValues = new ContentValues();

contentValues.put("first_name", firstName);

contentValues.put("id", 1);

Table 5.2  person Table after Call to update()

first_name last_name id*

Robert Smith 1

Ralph Taylor 2

Sabrina Anderson 3

Elizabeth Hoffman 4

Abigail Elder 5

ptg18221911

86	 Chapter 5 Working with Databases in Android

SQLiteDatabase db = getDatabase();

db.replace("people", null, contentValues);

Table 5.3 shows the state of the people table after running the SQLiteDatabase.
replace() call in Listing 5.4. Notice that the last_name attribute for the first row is
now blank. This is because there was a conflict when processing the SQLiteDatabase.
replace() method. The ContentValues object passed to SQLiteDatabase.replace()
specified a value of 1 for the id attribute. The conflict arises because the id attribute
is the primary key for the table, and there is already a row that contains an id of 1. To
resolve the conflict, the SQLiteDatabase.replace() method removes the conflicting
row and inserts a new row containing the values specified in the ContentValues object.
Because the ContentValues object passed to SQLiteDatabase.replace()contains
values for only the first_name and id attributes, only those attributes are populated in
the new row.

Deleting Rows from a Table
Unlike the update and insert operations, SQLiteDatabase has only a single method
for deleting rows: SQLiteDatabase.delete(String table, String whereClause,
String[] whereArgs). The delete() method’s signature is similar to the signature of
the update() method. It takes three parameters representing the name of the table from
which to delete rows, the whereClause, and a string array of whereArgs. The process-
ing of the whereClause and the whereArgs for the delete() method matches the
whereClause processing for the update() method. The whereClause parameter contains
question marks as placeholders, and the whereArgs parameter contains the values for the
placeholders. Listing 5.5 shows a delete() method example.

Listing 5.5  Example Delete Method

SQLiteDatabase db = getDatabase();

db.delete("people", "id = ?", new String[] {"1"});

Table 5.3  person Table after replace() Call

first_name last_name id*

Bob 1

Ralph Taylor 2

Sabrina Anderson 3

Elizabeth Hoffman 4

Abigail Elder 5

ptg18221911

Transactions	 87

The results of running the code in Listing 5.5 are shown in Table 5.4, where there is no
longer a row with an id of 1.

Transactions
All of the previously discussed insert, update, and delete operations manipulate tables
and rows in a database. While each operation is atomic (will either succeed or fail on its
own), it is sometimes necessary to group a set of operations together and have the set of
operations be atomic. There are times when a set of related operations should be allowed
to manipulate the database only if all operations succeed to maintain database integrity.
For these cases, a database transaction is usually used to ensure that the set of operations is
atomic. In Android, the SQLiteDatabase class contains the following methods to support
transaction processing:

■■ void beginTransaction(): Begins a transaction
■■ void setTransactionSuccessful(): Indicates that the transaction should be
committed

■■ void endTransaction(): Ends the transaction causing a commit if
setTransactionSuccessful() has been called

Using a Transaction
A transaction is started with the SQLiteDatabase.beginTransaction() method. Once
a transaction is started, calls to any of the data manipulation method calls (insert(),
update(), delete()) may be made. Once all of the manipulation calls have been
made, the transaction is ended with SQLiteDatabase.endTransaction(). To mark the
transaction as successful, allowing all the operations to be committed, SQLiteDatabase.
setTransactionSuccessful() must be called before the call to SQLiteDatabase.
endTransaction() is made. If endTransaction() is called without a call to
setTransactionSuccessful(), the transaction will be rolled back, undoing all of the
operations in the transaction.

Because the call to setTransactionSuccessful() affects what happens during
the endTransaction() call, it is considered a best practice to limit the number
of non-database operations between a call to setTransactionSuccessful() and
endTransaction(). Additionally, do not perform any additional database manipulation

Table 5.4  Row Deleted from the Table

first_name last_name id*

Ralph Taylor 2

Sabrina Anderson 3

Elizabeth Hoffman 4

Abigail Elder 5

ptg18221911

88	 Chapter 5 Working with Databases in Android

operations between the call to setTransactionSuccessful() and endTransaction().
Once the call to setTransactionSuccessful() is made, the transaction is marked as
clean and is committed in the call to endTransaction() even if errors have occurred after
the call to setTransactionSuccessful().

Listing 5.6 shows how a transaction should be started, marked successful, and ended in
Android.

Listing 5.6  Transaction Example

SQLiteDatabase db = getDatabase();

db.beginTransaction();

try {

 // insert/update/delete

 // insert/update/delete

 // insert/update/delete

 db.setTransactionSuccessful();

} finally {

 db.endTransaction();

}

Database operations that happen in a transaction as well as the call to
setTransaction() should take place in a try block with the call to endTransaction()
happening in a finally block. This ensures that the transaction will be ended even if an
unhandled exception is thrown while modifying the database.

Transactions and Performance
While transactions can help maintain data integrity by ensuring that multiple data
manipulation operations occur atomically, they can also be used purely to increase database
performance in Android. Like any operation performed in Java, there is overhead that is
associated with running SQL statements inside a transaction. While a single transaction
may not inject large amounts of overhead into a data manipulation routine, it is important
to remember that every call to insert(), update(), and delete() is performed in its
own transaction. Thus inserting 100 records into a table would mean that 100 individual
transactions will get started, cleaned, and closed. This can cause a severe slowdown when
attempting to perform a large number of data manipulation method calls.

To make multiple data manipulation calls run as fast as possible, it is generally a good
idea to combine them into a single transaction manually. If the Android SDK determines
that a call to insert()/update()/delete() is already inside of an open transaction, it
will not attempt to start another transaction for the single operation. With a few lines

ptg18221911

Running Queries	 89

of code, an app can dramatically speed up data manipulation operations. It is common
to see a speed increase of five to ten times when wrapping even 100 data manipulation
operations into a single transaction. These performance gains can increase as the number
and complexity of operations increase.

Running Queries
Previous sections of this chapter discussed inserting, updating, and deleting data from
a database. The last piece of database CRUD functionality is retrieving data from the
database. As with the insert and update database operations, SQLiteDatabase contains
multiple methods to support retrieving data. In addition to a series of query convenience
methods, SQLiteDatabase includes a set of methods that support more free-form “raw”
queries that can be generated via standard Java string manipulation methods. There is also
an SQLiteQueryBuilder class that can further aid in developing complex queries such
as joins.

Query Convenience Methods
The simplest way to issue a query to a database in Android is to use one of the query
convenience methods located in SQLiteDatabase. These methods are the overloaded
variations of SQLiteDatabase.query(). Each variant of the query() method takes a
parameter list that includes the following:

■■ String table: Indicates the table name of the query.
■■ String[] columns: Lists the columns that should be included in the result set of
the query.

■■ String selection: Specifies the WHERE clause of the selection statement. This string
can contain “?” characters that can be replaced by the selectionArgs parameter.

■■ String[] selectionArgs: Contains the replacement values for the “?” of the
selection parameter.

■■ String groupBy: Controls how the result set is grouped. This parameter represents
the GROUP BY clause in SQL.

■■ String having: Contains the HAVING clause from an SQL SELECT statement. This
clause specifies search parameters for grouping or aggregate SQL operators.

■■ String orderBy: Controls how the results from the query are ordered. This defines
the ORDER BY clause of the SELECT statement.

The table name, column list selection string, and selection arguments parameters
operate in the same manner as other operations discussed earlier in the chapter. What is
different about the query() methods is the inclusion of the GROUP BY, HAVING, and ORDER
BY clauses. These clauses allow an app to specify additional query attributes in the same
way that an SQL SELECT statement would.

ptg18221911

90	 Chapter 5 Working with Databases in Android

Each query method returns a cursor object that contains the result set for the
query. Listing 5.7 shows a query returning data from the people table used in previous
listings.

Listing 5.7  Simple Query

SQLiteDatabase db = getDatabase();

Cursor result = db.query("people",

new String[] {"first_name", "last_name"},

"id = ?",

new String[] {"1"},

null,

null,

null);

Listing 5.7 returns the first_name and last_name columns for the row that has an
id of 1. The query statement passes null values for the GROUP BY, HAVING, and ORDER BY
clauses since the result set should be of size 1 and these clauses have no effect on a result
set with size 1.

The query() method also supports passing a null value for the columns param-
eter which will cause the query to return all the table’s columns in the result set. It
is usually better to specify the desired table columns rather than letting the Android
SDK return all columns from a table and making the caller ignore the columns it does
not need.

To return all the rows from a table, pass null values for the selection and
selectionArgs parameters. A query returning all rows in a table is shown in Listing 5.8;
the result set is sorted by ID in descending order.

Listing 5.8  Returning All Rows in a Table

SQLiteDatabase db = getDatabase();

Cursor result = db.query("people",

new String[] {"first_name", "last_name"},

null,

null,

null,

null,

"id DESC");

ptg18221911

Cursors	 91

Raw Query Methods
If the query() convenience methods do not provide enough flexibility for a query that
an app needs to run, the SQLiteDatabase.rawQuery() methods can be used instead.
Like the convenience query methods, the rawQuery() methods are an overloaded set
of methods. However, unlike the query() methods, the rawQuery() methods take two
parameters as input: a String parameter representing the query to run, and a String[]
to support query placeholder substitution. Listing 5.9 shows the same query as Listing 5.6
using the rawQuery() method instead of the query() convenience method.

Listing 5.9  Using the rawQuery() Method

SQLiteDatabase db = getDatabase();

Cursor result = db.rawQuery("SELECT first_name, last_name " +

"FROM people " +

"WHERE id = ?",

new String[] {"1"});

Like the query() method, rawQuery() returns a cursor containing the result set for
the query. The caller can read and process the resulting cursor in the same way that it
processes the result from the query() methods.

The rawQuery() method allows an app to have great flexibility and construct more
complex queries using joins, sub-queries, unions, or any other SQL construct supported
by SQLite. However, it also forces the app developer to build the query in Java code (or
perhaps from reading a string resource), which can be cumbersome for really complex
queries.

To aid in building more complex queries, the Android SDK contains the
SQLiteQueryBuilder class. The SQLiteQueryBuilder class is discussed in more detail in
the next chapter with the discussion of ContentProviders.

Cursors
Cursors are what contain the result set of a query made against a database in Android. The
Cursor class has an API that allows an app to read (in a type-safe manner) the columns
that were returned from the query as well as iterate over the rows of the result set.

Reading Cursor Data
Once a cursor has been returned from a database query, an app needs to iterate over the
result set and read the column data from the cursor. Internally, the cursor stores the rows
of data returned by the query along with a position that points to the current row of data
in the result set. When a cursor is returned from a query() method, its position points
to the spot before the first row of data. This means that before any rows of data can be read
from the cursor, the position must be moved to point to a valid row of data.

ptg18221911

92	 Chapter 5 Working with Databases in Android

The Cursor class provides the following methods to manipulate its internal position:

■■ boolean Cursor.move(int offset): Moves the position by the given offset
■■ boolean Cursor.moveToFirst(): Moves the position to the first row
■■ boolean Cursor.moveToLast(): Moves the position to the last row
■■ boolean Cursor.moveToNext(): Moves the cursor to the next row relative to the
current position

■■ boolean Cursor.moveToPosition(int position): Moves the cursor to the
specified position

■■ Cursor.moveToPrevious(): Moves the cursor to the previous row relative to the
current position

Each move() method returns a boolean to indicate whether the operation was
successful or not. This flag is useful for iterating over the rows in a cursor.

Listing 5.10 shows the code to read data from a cursor containing all the data from the
people table.

Listing 5.10  Reading Cursor Data

SQLiteDatabase db = getDatabase();

String[] columns = {"first_name",

"last_name",

"id"};

Cursor cursor = db.query("people",

columns,

null,

null,

null,

null,

null);

while(cursor.moveToNext()) {

 int index;

 index = cursor.getColumnIndexOrThrow("first_name");

 String firstName = cursor.getString(index);

ptg18221911

Cursors	 93

 index = cursor.getColumnIndexOrThrow("last_name");

 String lastName = cursor.getString(index);

 index = cursor.getColumnIndexOrThrow("id");

 long id = cursor.getLong(index);

 //... do something with data

}

The code in Listing 5.10 uses a while loop to iterate over the rows in the cursor
returned from the query() method. This pattern is useful if the code performing the
iteration “controls” the cursor and has sole access to it. If other code can access the cursor
(for example, if the cursor is passed into a method as a parameter), the cursor should also
be set to a known position as the current position may not be the position ahead of the
first row.

Once the cursor’s position is pointing to a valid row, the columns of the row can be
read from the cursor. To read the data, the code in Listing 5.10 uses two methods from
the cursor class: Cursor.getColumnIndexOrThrow() and one of the type get() methods
from the Cursor class.

The Cursor.getColumnIndexOrThrow() method takes a String parameter that
indicates which column to read from. This String value needs to correspond to one of
the strings in the columns parameter that was passed to the query() method. Recall that
the columns parameter determines what table columns are part of the result set. Cursor.
getColumnIndexOrThrow()throws an exception if the column name does not exist in
the cursor. This usually indicates that the column was not part of the columns parameter
of the query(). The Cursor class also contains a Cursor.getColumnIndex() method
that does not throw an exception if the column name is not found. Instead,
Cursor.getColumnIndex() returns a -1 value to represent an error.

Once the column index is known, it can be passed to one of the cursor’s get()
methods to return the typed data of the row. The get() methods return the data from
the column in the row which can then be used by the app. The Cursor class contains the
following methods for retrieving data from a row:

■■ byte[] Cursor.getBlob(int columnIndex): Returns the value as a byte[]
■■ double Cursor.getDouble(int columnIndex): Returns the value as a double
■■ float Cursor.getFloat(int columnIndex): Returns the value as a float
■■ int Cursor.getInt(int columnIndex): Returns the value as an int
■■ long Cursor.getLong(int columnIndex): Returns the value as a long
■■ short Cursor.getShort(int columnIndex): Returns the value as a short
■■ String Cursor.getString(int columnIndex): Returns the value as a String

ptg18221911

94	 Chapter 5 Working with Databases in Android

Managing the Cursor
The internals of a cursor can contain a lot of resources such as all the data returned from
the query along with a connection to the database. Because of this, it is important to
handle a cursor appropriately and tell it to clean up when it is no longer in use to prevent
memory leaks. To perform the cleanup, the Cursor class contains the Cursor.close()
method, which needs to be called when an activity or fragment no longer needs the
cursor.

In versions of Android before 3.0, cursor maintenance was left to developers. They
either had to handle the closing of the cursor themselves or had to make sure they
informed an activity that it was using a cursor so the activity would close the cursor at an
appropriate time.

Android 3.0 introduced the loader framework that takes care of managing cursors for
activities/fragments. To support older versions of Android, the loader framework has also
been backported and added to the support library. When using the loader framework,
apps no longer need to worry about calling Cursor.close() or informing an activity/
fragment of a cursor that it needs to manage.

CursorLoader
The previous section discussed the low-level details of how to perform database
operations in Android using SQLiteDatabase. However, it did not discuss the fact that
databases on Android are stored on the file system, meaning that accessing a database
from the main thread should be avoided in order to keep an app responsive for the user.
Accessing a database from a non-UI thread typically involves some type of asynchronous
mechanism, where a request for database access is made and the response to the request
is delivered at some point in the future. Because views can be updated only from the UI
thread, apps need to make calls to update views on the UI thread even though the results
to a database query may be delivered on a different thread.

Android provides multiple tools for executing potentially long-running code off the
UI thread while having results processed in the UI thread. One such tool is the loader
framework. For accessing databases, there is a specialized component of the Loader called
CursorLoader, which, in addition to managing a cursor’s lifecycle with regard to an
activity lifecycle, also takes care of running queries in a background thread and presenting
the results on the main thread, making it easy to update the display.

Creating a CursorLoader
There are multiple pieces to the CursorLoader API. A CursorLoader is a specialized
member of Android’s loader framework specifically designed to handle cursors. In a
typical implementation, a CursorLoader uses a ContentProvider to run a query against a
database, then returns the cursor produced from the ContentProvider back to an activity
or fragment.

ptg18221911

CursorLoader	 95

Note
ContentProviders are discussed in detail in Chapter 6, “Content Providers.” For now, it is
enough to know that they abstract the functionality provided by SQLiteDatabase away from
an activity (or fragment) so the activity does not need to worry about making method calls on
an SQLiteDatabase object.

An activity only needs to use the LoaderManager to start a CursorLoader and respond to
callbacks for CursorLoader events.

In order to use a CursorLoader, an activity gets an instance of the LoaderManager. The
LoaderManager manages all loaders for an activity or fragment, including a CursorLoader.

Once an activity or fragment has a reference to its LoaderManager, it tells the
LoaderManager to initialize a loader by providing the LoaderManager with an object
that implements the LoaderManager.LoaderCallbacks interface in the LoaderManager.
initLoader() method. The LoaderManager.LoaderCallbacks interface contains the
following methods:

■■ Loader<T> onCreateLoader(int id, Bundle args)
■■ void onLoadFinished(Loader<T>, T data)
■■ void onLoaderReset(Loader<T> loader)

LoaderCallbacks.onCreate() is responsible for creating a new loader and returning
it to the LoaderManager. To use a CursorLoader, LoaderCallbacks.onCreate()creates,
initializes, and returns a CursorLoader object that contains the information necessary to
run a query against a database (through a ContentProvider).

Listing 5.11 shows the implementation of the onCreateLoader() method returning a
CursorLoader.

Listing 5.11  Implementing onCreateLoader()

@Override

public Loader<Cursor> onCreateLoader(int id, Bundle args) {

 Loader<Cursor> loader = null;

 switch (id) {

case LOADER_ID_PEOPLE:

loader = new CursorLoader(this,

PEOPLE_URI,

new String[] {"first_name", "last_name", "id"},

null,

null,

"id ASC");

ptg18221911

96	 Chapter 5 Working with Databases in Android

break;

 }

 return loader;

}

In Listing 5.11, the onCreateLoader() method first checks the ID it was passed to
know which loader it needs to create. It then instantiates a new CursorLoader object and
returns it to the caller.

The constructor of CursorLoader can take parameters that allow the CursorLoader to
run a query against a database. The CursorLoader constructor called in Listing 5.11 takes
the following parameters:

■■ Content context: Provides the application context needed by the loader
■■ Uri uri: Defines the table against which to run the query
■■ String[] projection: Specifies the SELECT clause for the query
■■ String selection: Specifies the WHERE clause which may contain “?” as placeholders
■■ String[] selectionArgs: Defines the substitution variables for the selection
placeholders

■■ String sortOrder: Defines the ORDER BY clause for the query

The last four parameters, projection, selection, selectionArgs, and sortOrder,
are similar to parameters passed to the SQLiteDatabase.query() discussed earlier in this
chapter. In fact, they also do the same thing: define what columns to include in the result
set, define which rows to include in the result set, and define how the result set should be
sorted.

Once the data is loaded, Loader.Callbacks.onLoadFinished() is called,
allowing the callback object to use the data in the cursor. Listing 5.12 shows a call to
onLoadFinished().

Listing 5.12  Implementing onLoadFinished()

@Override

public void onLoadFinished(Loader<Cursor> loader, Cursor data) {

while(data.moveToNext()) {

 int index;

 index = data.getColumnIndexOrThrow("first_name");

 String firstName = data.getString(index);

ptg18221911

CursorLoader	 97

 index = data.getColumnIndexOrThrow("last_name");

 String lastName = data.getString(index);

 index = data.getColumnIndexOrThrow("id");

 long id = data.getLong(index);

 //... do something with data

}

Notice how similar the code in Listing 5.12 is to the code in Listing 5.10 where a
direct call to SQLiteDatabase.query() was made. The code to process the results of
the query is nearly identical. Also, when using the LoaderManager, the activity does not
need to worry about calling Cursor.close() or making the database query on a non-UI
thread. That is all handled by the loader framework.

There is one other important point to note about onLoadFinished(). It is not
only called when the initial data is loaded; it is also called when changes to the data are
detected by the Android database. There is one line of code that needs to be added to the
ContentProvider to trigger this, and that is discussed next chapter. However, having a
single point in the code that receives query data and can update the display can be really
convenient. This architecture allows activities to easily react to changes in data without
the developer worrying about explicitly notifying the activities of changes to the data.
The LoaderManager handles the lifecycle and knows when to requery and pass the data
to the LoaderManager.Callbacks when it needs to.

There is one more method in the LoaderManager.Callbacks interface that
needs to be implemented to use a CursorLoader: LoaderManager.Callbacks.
onLoaderReset(Loader<T> loader). This method is called by the LoaderManager when
a loader that was previously created is reset and its data should no longer be used. For a
CursorLoader, this typically means that any references to the cursor that was provided by
onLoadFinished() need to be discarded as they are no longer active. If a reference to the
cursor is not persisted, the onLoadReset() method can be empty.

Starting a CursorLoader
Now that the mechanics of using a CursorLoader have been discussed, it is time to
focus on how to start a data load operation with the LoaderManager. For most use cases,
an activity or a fragment implements the LoaderManager.Callbacks interface since
it makes sense for the activity/fragment to process the cursor result in order to update
its display. To start the load, LoaderManager.initLoader() is called. This ensures that
the loader is created, calling onCreateLoader(), loading the data, and making a call to
onLoadFinished().

ptg18221911

98	 Chapter 5 Working with Databases in Android

Both activities and fragments can get their LoaderManager object by calling
getLoaderManager(). They can then start the load process by calling LoaderManager.
initLoader(). LoaderManager.initLoader() takes the following parameters:

■■ int id: The ID of the loader. This is the same ID that is passed to
onCreateLoader() and can be used to identify a loader (see Listing 5.11).

■■ Bundle args: Extra data that might be needed to create the loader. This is also
passed to onCreateLoader() (see Listing 5.11). This value can be null.

■■ LoaderManager.LoaderCallbacks callbacks: An object to handle the
LoaderManager callbacks. This is typically the activity or fragment that is making
the call to initLoader().

The call to initLoader() should happen early in an Android component’s lifecycle.
For activities, initLoader() is usually called in onCreate(). Fragments should call
initLoader() in onActivityCreated() (calling initLoader() in a fragment before its
activity is created can cause problems).

Once initLoader() is called, the LoaderManager checks to see if there is already a
loader associated with the ID passed to initLoader(). If there is no loader associated
with the ID, LoaderManager makes a call to onCreateLoader() to get the loader and
associate it with the ID. If there is currently a loader associated with the ID, initLoader()
continues to use the preexisting loader object. If the caller is in the started state, and there
is already a loader associated with the ID, and the associated loader has already loaded its
data, then a call to onLoadFinished() is made directly from initLoader(). This usually
happens only if there is a configuration change.

One detail to note about initLoader() is that it cannot be used to alter the query
that was used to create the CursorLoader that gets associated with an ID. Once the
loader is created (remember, the query is used to define the CursorLoader), it is reused
only on subsequent calls to initLoader(). If an activity/fragment needs to alter the
query that was used to create a CursorLoader with a given ID, it needs to make a call to
restartLoader().

Restarting a CursorLoader
Unlike the call to LoaderManager.initLoader(), a call to LoaderManager.
restartLoader() disassociates a loader with a given ID and allows it to be re-created.
This results in onCreateLoader() being called again, allowing a new CursorLoader
object to be made which can contain a different query for a given ID. LoaderManager.
restartLoader() takes the same parameter list as initLoader() (int id, Bundle,
args, LoaderManager.Callbacks, and callbacks) and discards the old loader. This
makes restartLoader() useful for when the query of a CursorLoader needs to change.
However, the restartLoader() method should not be used to simply handle activity/
fragment lifecycle changes as they are already handled by the LoaderManager.

ptg18221911

Summary	 99

Summary
This chapter presented the basic API for working with databases in Android and built
upon the concepts introduced in Chapter 4, “SQLite in Android,” where database
creation was discussed. By using SQLiteDatabase and its create(), insert(), update(),
replace(), and delete() methods, an app is able to manipulate an internal database.
In addition, an app can call the query and rawQuery() methods to retrieve the data from a
database to perform actions on that data, or just display it to a user.

Query data is returned in the form of a cursor that can be iterated over to access the
result set returned by a query.

While this chapter introduced some of the low-level “plumbing” needed to use an
in-app database, there are higher-level components that allow apps to both abstract some
of the data access details away from components that define and drive user interaction
(activities and fragments) as well as allow data to be shared across apps and across processes.
These concepts are introduced in the next chapter with the discussion of content
providers.

ptg18221911

This page intentionally left blank

ptg18221911

6
Content Providers

This chapter builds upon the brief introduction to content providers presented in
Chapter 5, “Working with Databases in Android.” It discusses how to use a content
provider to share data between internal parts of an app as well as with external apps.
This chapter also discusses when it is appropriate to use a content provider, and it provides
the code for a simple content provider implementation.

REST-Like APIs in Android
Content providers allow an app to expose structured data to other components of the
same app and/or other apps. They also present an API similar to Representational State
Transfer (REST) for accessing the data. Since the data in a content provider is usually
retrieved using a URI, they also present a REST-like API for accessing data in Android.

RESTful APIs have become a popular way to implement Web services recently. A
typical RESTful API makes use of a URL scheme convention and uses HTTP methods
to retrieve and manipulate data. For example, a RESTful API may have a URL scheme
convention of http://api.example.com/items that a client would use to address all of the
concrete items the Web service supports. Sending an HTTP GET request to this URL
would retrieve the entire list of items the Web service can provide. To get a single item, a
client would append the ID of the item to the end of the URL. For example, to get the
details of an item with ID 17, a client would send an HTTP GET request to the URL
http://api.example.com/items/17. This would return the details of a single item in the
serialization format the Web service supports.

Content providers work in a similar fashion. Specifying a URL tells a content provider
which type of data to perform an operation (query, insert, update, delete) on. Usually,
content providers follow the same pattern when defining their URIs as the RESTful
pattern just described. The base URI for a set of data follows the general URI form of
content://some_authority/items, and a specific member of the data can be accessed by
appending the ID to the URI (content://some_authority/items/32).

Note
The actual format of the URI scheme that defines the API for a content provider can be
specified by the content provider. Always follow the provider’s documentation and URI specs.

http://api.example.com/items
http://api.example.com/items/17

ptg18221911

102	 Chapter 6 Content Providers

Content URIs
Content provider URIs (also called content URIs) typically have the following formats:

■■ content://authority/path

■■ content://authority/path/id

The first part of the URI (content://) is referred to as the scheme. For content
URIs, this is always content://.

The next part of the URI is referred to as the authority. The authority is specific to
an individual content provider and allows Android to determine which content provider
to route a request to. Because the authority for each content provider exists at the Android
system level, it is important that all content providers use unique authorities to avoid
naming collisions. A standard convention is to use an app’s package name with .provider
appended to the end to ensure uniqueness across the Android device.

The path portion of a content URI indicates the collection of data being targeted by
a request. For example, content providers that are backed by a database may use the path
to indicate a certain table in the database that a request is targeting.

The last part of a content URI is the ID. The ID can be used to uniquely identify an
individual data member in a content URI path. For content providers that are backed by
a database, the ID usually represents the primary key of the table that is defined by the
path. The ID is optional, and when not used, a URI refers to the entire collection of data
that is referred to by the path.

Exposing Data with a Content Provider
Content providers have the ability to expose multiple types of data to app components. In
addition, the details of how the data is stored and retrieved can vary without these details
being exposed to other app components. Content providers can expose data that is stored
in a database or files stored on the file system, or even retrieve data from a remote Web
server. The remainder of this chapter assumes a fairly common case for content providers,
providing access to data that is stored in an SQLite database.

The next sections discuss the APIs that are used to communicate with a content
provider and introduce some of the concepts that are necessary to work with content
providers in Android.

The ContentProvider and the ContentResolver are the two major classes that apps
interact with, both directly and indirectly, when working with the content provider API.
The details of how each class is used and how they interact are discussed in the following
sections.

Implementing a Content Provider
android.content.ContentProvider is the base class for all content providers in Android.
Whether the concrete implementation that is provided by an app returns data from a
database, provides access to a file on the file system, or exposes data from a Web service,

ptg18221911

Exposing Data with a Content Provider	 103

it extends android.content.ContentProvider. All content providers must also
implement, at minimum, the following abstract methods inherited from android.
content.ContentProvider:

■■ boolean onCreate()

■■ Uri insert(Uri uri, ContentValues values)

■■ int delete(Uri uri, String selection, String[] selectionArgs)

■■ String getType(Uri uri)

■■ Cursor query(Uri uri, String[] projection, String selection, String[]

selectionArgs, String sortOrder)

■■ int update(Uri uri, ContentValues values, String selection, String[]

selectionArgs)

onCreate()
The onCreate() method is called at the beginning of a content provider’s lifecycle and,
like other Android components, can be a convenient place to perform initialization for
the class. However, it is important to remember that the call to onCreate() happens on
the main thread, so it is important to not perform any lengthy tasks in onCreate(). Also,
unlike other Android components, the call to ContentProvider.onCreate() happens
at app start-up as opposed to the first time the content provider is accessed. This means
that any delays in finishing the method will cause the entire app to be delayed when
starting up.

If a content provider is supported by an SQLite database, extra care should be used
when initially accessing the database. It is important to remember that a database may be
upgraded, if needed, when it is first accessed. This means that the onCreate() method of
a content provider is not a good place to create a connection to a database as that could
cause the database to be upgraded in the main thread while the app is started. Since
the database is likely to reside on disk, it will almost certainly delay the initial app open
routine.

ContentProvider.onCreate() returns a boolean indicating if the initialization was
successful. A value of true indicates that the provider was successfully initialized, and a
value of false indicates an error.

insert()
The insert() method is used to insert an entry into the database:

insert(Uri uri, ContentValues values)

The method takes two parameters: a URI declaring which table to perform the
insertion on, and a ContentValues object that contains the values to be inserted into
the table. After the row is inserted, this method should make a call to ContentResolver.
notifyChange() to make other parts of the app, or other apps, aware that the table has
been updated if they are using a content observer.

ptg18221911

104	 Chapter 6 Content Providers

Recall from Chapter 5 that the content values used by the SQLiteDatabase.insert()
method contain name/value pairs for the row to be inserted. The ContentValues object
passed to ContentProvider.insert() works the same way. In fact, the ContentValues
object passed to ContentProvider.insert() can be used as a parameter to
SQLiteDatabase.insert() without modification to insert data into a table.

ContentProvider.insert() finishes by returning a Uri object that references the
newly created row in the provider. This URI should be constructed in a way that allows
an external caller to retrieve the newly inserted row from the content provider.

This method can be called on any thread, so it must ensure that all logic can execute
safely when called by multiple threads.

delete()
The ContentProvider.delete() method removes the row from the table that is specified
by the uri parameter:

delete(Uri uri, String selection, String[] selectionArgs)

The uri parameter may refer either to a table in the database (content://authority/
table) or to a specific row of a table to be deleted (content://authority/table/id).
When the URI refers to a table, the delete() method must use the selection and
selectionArgs parameters to determine which row(s) should be deleted from the table.

Like the ContentProvider.insert() method, the selection and selectionArgs
parameters can be passed to SQLiteDatabase.delete() without being manipulated by
the ContentProvider.delete() method.

The ContentProvider.delete() method returns the number of rows that have been de-
leted by the call. This is usually the same value that is returned by SQLiteDatabase.delete().

The ContentProvider.delete() method may also be called on any thread and
needs to ensure that its operation happens in a thread-safe manner. It should call
ContentResolver.notifyChange() to inform any observers that the table has changed.

getType()
The ContentProvider.getType() method returns the MIME type for the given URI:

getType(Uri uri)

When the URI refers to a table (content://authority/table), the method should
return a String that starts with vnd.android.cursor.dir/. When the URI refers to
a single row in a table (content://authority/table/id), the method should return a
String that begins with vnd.android.cursor.item.

After the prefix that is dependent on the type of URI, the rest of the returned String
should contain the content provider’s authority and the table name from the URI. For exam-
ple, if the input URI is content://myAuthority/tableName/32, the MIME type would be

vnd.android.cursor.item/myAuthority.tableName

This method can be called by any thread and must ensure thread safety.

ptg18221911

Exposing Data with a Content Provider	 105

Note
The discussion of MIME types applies only to content providers that are returning data from
a database. If the content provider is exposing files to a client, the getType() method
should return the MIME type of the file.

query()
The query() method performs a query against the content provider:

query(Uri uri,

String[] projection,

String selection,

String[] selectionArgs,

String sortOrder)

The URI in the parameter list specifies the table(s) against which to perform the
query. All other parameters can be passed to an SQLiteDatabase.query() method,
or used by an SQLiteQueryBuilder to build the query. The cursor resulting from
either SQLiteDatabase.query() or SQLiteQueryBuilder should be returned by
ContentProvider.query().

The ContentProvider.query() method may be called from any thread.

update()
The update() method performs an update operation on the table specified by the URI:

update(Uri uri,

ContentValues values,

String selection,

String[] selectionArgs)

The ContentValues parameter contains the updated column/value pairs for the table.
The selection and selectionArgs parameters select which rows from the table the
update should be applied to. The values, selection, and selectionArgs parameters can
all be passed to an SQLiteDatabase.update() method without modification. The return
value from SQLiteDatabase.update() should also be returned by ContentProvider.
update().

The ContentProvider.update() method should make a call to ContentResolver.
notifyChange() to notify observers that the table data has changed. The method can be
called from any thread.

bulkInsert() and applyBatch()
The methods discussed in the previous sections must be implemented because they are
abstract methods of android.content.ContentProvider and failure to implement them

ptg18221911

106	 Chapter 6 Content Providers

results in a compile error. There are, however, two additional methods that should be
overridden:

■■ int bulkInsert(Uri uri, ContentValues[] values)

■■ ContentProviderResult applyBatch(ArrayList<ContentProviderOperations

operations)

Both methods are used to perform multiple operations on a database. The problem
with their default implementations is that neither wraps the operations in a transaction,
which means that neither method is atomic (individual operations can fail). Additionally,
recall from Chapter 5 that when not wrapped in a transaction, every SQLiteDatabase
modification operation starts a new transaction for the individual operation. This has
severe impacts on runtime performance and makes both calls much slower than if they
wrapped all operations in a single transaction.

In both cases, each method should, at minimum, be overridden to wrap a call to super
in a transaction. Listing 6.1 shows the minimal override for both methods.

Listing 6.1  Adding Transaction Support to bulkInsert() and applyBatch()

@Override

public int bulkInsert(Uri uri, ContentValues[] values) {

 final SQLiteDatabase db = helper.getWritableDatabase();

 db.beginTransaction();

 try {

final int count = super.bulkInsert(uri, values);

db.setTransactionSuccessful();

return count;

 } finally {

db.endTransaction();

 }

}

@Override

public

ContentProviderResult[]

applyBatch(ArrayList<ContentProviderOperation> operations)

ptg18221911

Exposing Data with a Content Provider	 107

throws OperationApplicationException {

 final SQLiteDatabase db = helper.getWritableDatabase();

 db.beginTransaction();

 try {

final ContentProviderResult[] results =

super.applyBatch(operations);

db.setTransactionSuccessful();

return results;

 } finally {

db.endTransaction();

 }

}

In addition to inheriting from android.content.ContentProvider and implementing
the required methods, a content provider needs to be listed in an app’s manifest,
specifically in the <application> element. Listing 6.2 shows the minimal entry for a
content provider that is available only to the app containing it.

Listing 6.2  Content Provider Manifest Listing

<provider

 android:name=".provider.MyProvider"

 android:authorities="com.example.provider"

 android:exported="false" />

The <provider> element in Listing 6.2 declares a class named MyProvider as
an available content provider for the app with the android:name attribute of the
<provider> element. The android:authorities attribute lists the authorities that the
content provider supports. Content authorities are used in URIs that are passed to a
content resolver which will the send the request to the correct content provider. The
android:authorities element is what binds an authority to a content provider.

The third attribute in the minimal <provider> element is the android:export
attribute. This attribute defines whether the content provider can be used by other apps.
In Listing 6.2, the content provider is available only to the local app. Allowing a content
provider to be accessed by other apps will be discussed in detail later in the chapter.

ptg18221911

108	 Chapter 6 Content Providers

With an implementation of an android.content.ContentProvider and an entry for
that content provider in the manifest, an app is ready to start using the content provider.
To use the content provider, an app must first access its content resolver.

Content Resolver
Requesting operations on a content provider (insert, update, delete, query) is usually
not done on a content provider object directly. Instead, an app requests that a content
resolver send operation requests to a content provider. A content resolver has methods that
conceptually delegate responsibility to a content provider. To get a reference to a content
resolver, an app makes a call to Context.getResolver(). Once the app has access to
a content resolver, it can begin to make method calls on the content resolver to have a
similar method called on a content provider. A content resolver has the following methods
available to a client:

■■ Uri insert(Uri uri, ContentValue values)

■■ int delete(Uri uri, String selection, String[] selectionArgs)

■■ String getType(Uri uri)

■■ Cursor query(Uri uri, String[] projection, String selection, String[]

selectionArgs, String sortOrder)

■■ int update(Uri uri, ContentValues values, String selection, String[]

selectionArgs)

■■ int bulkInsert(Uri uri, ContentValues[] values)

■■ ContentProviderResult[] applyBatch(String authority,

ArrayList<ContentProviderOperation> operations)

Notice that the methods in a content resolver map to the methods of the same
signature on a content provider. This allows the content resolver to pass a method call,
with its parameter list, to the content provider.

The reason it is useful to have a content resolver act as a delegate to a content provider,
instead of making method calls on a content provider directly, is that a content resolver
aids in marshaling method calls across Android process boundaries. This allows an app to
make interprocess method calls without worrying about details such as data serialization
or deserialization. This interprocess support is what allows a content provider to be imple-
mented by one app and seamlessly used by another. In addition, this feature allows a single
app to execute in two separate processes and easily read, write, and manipulate its data.

Exposing a Remote Content Provider to
External Apps
The code introduced in the previous section builds the foundation for using a content
provider in most cases. However, there is one other configuration detail that needs to be

ptg18221911

Exposing a Remote Content Provider to External Apps	 109

addressed in order to allow a content provider to expose its data to other apps. Recall
from Listing 6.2 that the manifest entry would not allow the content provider to be
exported to other Android apps (android:exported was set to false in the manifest).
In order to allow the content provider to be used by other apps, the exported flag needs
to be set to true. In addition, the manifest should assign permissions that external apps
need to use in order to control the external access to the data.

By default, when a content provider is exported, all other apps can use the content
provider for both read and write access unless the content provider declares a permission
model in its <provider> element in the app’s manifest. To declare the permission model,
app developers must first decide what types of permissions they want for the content
provider. The permissions for a content provider can vary in the granularity of the access
they provide. A permission can be set ranging from access to the top-level content
provider down to individual parts of the data a content provider exposes with finer-level
permissions taking precedence.

By using permissions, a content provider gives the user the ability to decide which
other apps have access to the data of the content provider. The user is presented with a UI
that can explain which data-related permissions an external app is requesting and has the
ability to decide whether to grant access to that data by an external app.

Provider-Level Permission
An app can declare a single read/write-level permission for the entire content provider. If
an external app has this permission, it has read/write access to any of the data exposed by
the content provider. This top-level permission is controlled by the android:permission
attribute of the <provider> element in the app manifest.

Individual Read/Write Permissions
Adding different permissions to read and write operations of a content provider allows
an app to provide more control over access to its data. Instead of declaring a single
permission for read/write access to the entire content provider, an app can assign different
permissions for read and write operations in its manifest.

To assign a read permission, an app uses the android:readPermission attribute of the
<provider> element in the manifest. To assign a write permission, an app assigns a value to
the android:writePermission attribute of the <provider> element. Using two permissions,
an app can allow the ability to read its data while disallowing write access to its data.

Both android:readPermission and android:writePermission take precedence over
android:permission of the <provider> element.

URI Path Permissions
Path permissions allow a content provider to assign individual permissions for different
paths in its URIs, enabling the content provider to allow access to different sections
of the data it exposes. Path permissions are set using the <path-permission> element

ptg18221911

110	 Chapter 6 Content Providers

as a child of the <provider> element. A <path-permission> element may have the
following attributes:

■■ android:path: The full path for the URI to configure permissions for.
■■ android:pathPrefix: The beginning of the path that should be affected by the
element. This is useful if multiple URI paths have the same beginning URI.

■■ android:pathPattern: A pattern to match the paths that should be affected by the
element.

■■ android:permission: The permission to apply to the entire path. This
affects both reading from and writing to the path and can be overridden by
android:readPermission and android:writePermission.

■■ android:readPermission: The permission for reading the paths.
■■ android:writePermission: The permission for writing to the paths.

Content Provider Permissions
In addition to associating permissions with certain content provider actions, apps usually
need to declare their own content-provider-related permissions. Creating app-specific
permissions allows a content provider to have full control over its data access since it is
unlikely that permissions already exist to fit the needs of a content provider.

To define a new permission for content provider use, an app needs to add a
<permission> element to its manifest under the <manifest> element. The <permission>
element can contain the following attributes:

■■ android:description: Text to describe the permission to the user. This can be
longer than the label and should inform users about what action they may be
enabling.

■■ android:icon: An icon that represents the permission.
■■ android:label: A name given to the permission that will be displayed to the user.
■■ android:name: The name given to the permission. This name is what will be used
by the content provider entries in the manifest. The name needs to be unique across
Android, so a good permission-naming pattern is to prefix the permission with the
app package name (com.example.myapp.mypermission).

■■ android:permissionGroup: The group of which the permission is a member. It is
not mandatory to add the permission to a group.

■■ android:protectionLevel: The risk level of granting the permission. This allows
an app to dictate which other apps can be granted the permission:

■■ normal: Permission presents a low level of risk to the system, user, or other apps.
This is the default value.

ptg18221911

Exposing a Remote Content Provider to External Apps	 111

■■ dangerous: Permission allows actions that present a higher level of risk to the user
or the system such as exposing private information about the user to other apps.

■■ signature: Permission is granted only to apps that are signed by the same
certificate as the app declaring the permission.

■■ signatureOrSystem: Permission is granted only if the app requesting the
permission is signed with the same certificate as the app declaring the
permission or the app requesting the permission is a “system” app (located on
the /system partition of the device). This permission is usually reserved for
device vendors.

Listing 6.3 shows the manifest declaration of two permissions and the use of the
permissions in the declaration of a content provider.

Listing 6.3  Declaring Content Provider Permissions

<permission

 android:description="@string/permission_description_read_devices"

 android:name="me.adamstroud.devicedatabase.provider.READ_DEVICES" />

<permission

 android:description="@string/permission_description_write_devices"

 android:name="me.adamstroud.devicedatabase.provider.WRITE_DEVICES" />

<application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme"

 android:name=".DeviceDatabaseApplication">

 <provider

android:name=".provider.DevicesProvider"

android:authorities="${applicationId}.provider"

android:exported="false"

android:readPermission=

ptg18221911

112	 Chapter 6 Content Providers

"me.adamstroud.devicedatabase.provider.READ_DEVICES"

android:writePermission=

"me.adamstroud.devicedatabase.provider.WRITE_DEVICES"/>

Content Provider Contract
In order to expose a content provider’s data, an app should also declare its contract. The
content provider’s contract is especially important if the data can be accessed by exter-
nal apps as it defines the tables and rows that can be accessed using the content provider.

Using a content provider involves specifying URIs and columns that can be used
when making queries. For a database-backed content provider, the database structure and
especially table and column names are intimate details of the content provider that any
external component should not need to worry about.

The contract class for a content provider is where an app can define the URIs as
well as specific details of how the data is structured in the content provider. Think of
the contract class as the external API for a content provider that should be published to
external apps that need to use the content provider. By including constants in a contract
class, an external app can easily use a content provider’s API.

An easy way to define the contract class for a content provider is to store constants in
a common place so they can be accessed by both local app components and external apps.

Listing 6.4 shows an example content provider implementation.

Listing 6.4  Implementing the Contract Class

public final class DevicesContract {

 public static final String AUTHORITY =

String.format("%s.provider", BuildConfig.APPLICATION_ID);

 public static final Uri AUTHORITY_URI = new Uri.Builder()

.scheme(ContentResolver.SCHEME_CONTENT)

.authority(AUTHORITY)

.build();

 public interface Device extends BaseColumns {

/* default */ static final String PATH = "device";

public static final String MODEL = "model";

public static final String NICKNAME = "nickname";

public static final String MEMORY_MB = "memory_mb";

ptg18221911

Content Provider Contract	 113

public static final String DISPLAY_SIZE_INCHES =

"display_size_inches";

public static final String MANUFACTURER_ID = "manufacturer_id";

public static final Uri CONTENT_URI =

Uri.withAppendedPath(AUTHORITY_URI, PATH);

 }

 public interface Manufacturer extends BaseColumns {

/* default */ static final String PATH = "manufacturer";

public static final String SHORT_NAME = "short_name";

public static final String LONG_NAME = "long_name";

public static final Uri CONTENT_URI =

Uri.withAppendedPath(AUTHORITY_URI, PATH);

 }

 public interface DeviceManufacturer extends Device, Manufacturer {

/* default */ static final String PATH = "device-manufacturer";

public static final String DEVICE_ID = "device_id";

public static final String MANUFACTURER_ID = "manufacturer_id";

public static final Uri CONTENT_URI =

Uri.withAppendedPath(AUTHORITY_URI, PATH);

 }

}

Notice in Listing 6.4 that all information needed to use the content provider is listed
in the contract class. This includes the content provider’s authority URI as well as internal
structures (interfaces in this implementation) to represent the logical structure of the
data. Since this content provider exposes data stored in a database, each internal interface
represents a table in the database and contains constants for the table’s content URI and
the columns in the table. This allows a client of the content provider to use the contents
when making method calls on the content resolver.

ptg18221911

114	 Chapter 6 Content Providers

Listing 6.5 shows an example of using the contract class to insert data into the database
via a content provider. Usage of the contract class is shown in bold for clarity.

Listing 6.5  Inserting Data Using the Contract Class

final ContentValues contentValues = new ContentValues();

final String modelValue =

modelView.getEditText().getText().toString();

final String nicknameValue =

nicknameView.getEditText().getText().toString();

contentValues.put(DevicesContract.Device.MODEL, modelValue);

contentValues.put(DevicesContract.Device.NICKNAME, nicknameValue);

getContentResolver().insert(DevicesContract.Device.CONTENT_URI,

contentValues);

Because the contract class serves as the API definition for a content provider, serious
thought should be given to contract changes. As with all APIs, introducing changes that
cause older clients to break can cause headaches and pain for other developers.

Allowing Access from an External App
The content provider discussed thus far exposes data to external clients, has a configured
set of permissions, and has a defined contract that other apps can use. There is one
additional step that needs to be done in order to allow the content provider to export data
externally.

Recall from Listing 6.2 that there is a <provider> entry in the manifest that can be
used to determine if the content provider will be accessible from outside its current app.
Listing 6.2 declares a content provider that would not be accessible from an external app. If
the content provider needs to be available to other apps, the android:exported attribute
needs to be set to true for the <provider> element as shown in Listing 6.6.

Listing 6.6  Exported Content Provider Manifest Listing

<provider

 android:name=".provider.MyProvider"

 android:authorities="com.example.provider"

 android:exported="true" />

ptg18221911

Implementing a Content Provider	 115

At this point, all of the parts of a content provider that can be used to expose data to
external apps have been discussed. If a content provider needs to expose data only in local
parts of its app, there are some additional APIs that can be of use to app developers.

Implementing a Content Provider
The previous sections of this chapter discussed many of the details of content providers
such as their APIs, manifest configurations, and how to access them. This section finally
deals with the details of actually implementing a content provider, and it dissects the code
for the example app content provider.

The DevicesProvider exposes the data in the device database app that was
introduced in Chapter 4, “SQLite in Android.” The app contains two tables, device
and manufacturer, which need to be supported by the DevicesProvider. In addition,
some of the activities in the device database need information from both the device
and manufacturer tables. Instead of making clients query the tables individually, the
DevicesProvider implements an INNER JOIN that clients can use.

Extending android.content.ContentProvider
As discussed previously, the first step in implementing a content provider is extending
android.content.ContentProvider and implementing the abstract methods it declares.
Listing 6.7 shows the class declaration as well as the constant declarations and all member
variables for the content provider.

Listing 6.7  Content Provider Declaration

public class DevicesProvider extends ContentProvider {

 private static final String TAG =

DevicesProvider.class.getSimpleName();

 private static final int CODE_ALL_DEVICES = 100;

 private static final int CODE_DEVICE_ID = 101;

 private static final int CODE_ALL_MANUFACTURERS = 102;

 private static final int CODE_MANUFACTURER_ID = 103;

 private static final int CODE_DEVICE_MANUFACTURER = 104;

 private static final SparseArray<String> URI_CODE_TABLE_MAP =

new SparseArray<>();

 private static final UriMatcher URI_MATCHER =

new UriMatcher(UriMatcher.NO_MATCH);

ptg18221911

116	 Chapter 6 Content Providers

 static {

URI_CODE_TABLE_MAP.put(CODE_ALL_DEVICES,

DevicesOpenHelper.Tables.DEVICE);

URI_CODE_TABLE_MAP.put(CODE_DEVICE_ID,

DevicesOpenHelper.Tables.DEVICE);

URI_CODE_TABLE_MAP.put(CODE_ALL_MANUFACTURERS,

DevicesOpenHelper.Tables.MANUFACTURER);

URI_CODE_TABLE_MAP.put(CODE_MANUFACTURER_ID,

DevicesOpenHelper.Tables.MANUFACTURER);

URI_MATCHER.addURI(DevicesContract.AUTHORITY,

DevicesContract.Device.PATH,

CODE_ALL_DEVICES);

URI_MATCHER.addURI(DevicesContract.AUTHORITY,

DevicesContract.Device.PATH + "/#",

CODE_DEVICE_ID);

URI_MATCHER.addURI(DevicesContract.AUTHORITY,

DevicesContract.Manufacturer.PATH,

CODE_ALL_MANUFACTURERS);

URI_MATCHER.addURI(DevicesContract.AUTHORITY,

DevicesContract.Manufacturer.PATH + "/#",

CODE_MANUFACTURER_ID);

URI_MATCHER.addURI(DevicesContract.AUTHORITY,

DevicesContract.DeviceManufacturer.PATH,

CODE_DEVICE_MANUFACTURER);

 }

ptg18221911

Implementing a Content Provider	 117

 private DevicesOpenHelper helper;

 public DevicesProvider() {

// no-op

 }

As expected, DevicesProvider extends ContentProvider. The constant declarations
in Listing 6.7 are used to process incoming URIs. Recall from previous sections that it is
the job of the content provider to process the URIs it receives and map the URIs to the
correct tables. The constant ints in the DevicesProvider are used to map URIs to tables.
They are registered with the URI_MATCHER constant and used to match URIs later in the
class implementation.

The URI_CODE_TABLE_MAP is used to map URIs to table names. This was added as a
convenient way to look up table names given a URI. Some content provider methods,
like insert(), differ only in the table that is operated on. The URI_CODE_TABLE_MAP
constant allows the same code to vary only by the table name.

The same static block that initializes URI_CODE_TABLE_MAP is also used to initialize
URI_MATCHER for use later in the class when performing operations on a table based on
a URI.

The URI_MATCHER is constructed passing UriMatcher.NO_MATCH to its constructor. This
is used as the base case for URI matching. URI_MATCHER maps a URI, or a URI pattern,
to an integer value. Passing UriMatcher.NO_MATCH sets the return value when there is no
URI_MATCHER mapping for a given URI. A value of UriMatcher.NO_MATCH indicates a
URI that is not supported by the devices provider.

After the URI_MATCHER object is instantiated, it can be configured by mapping a URI
to an int return value by calling the addUri() method. UriMatcher.addUri() can map
either a URI or a URI pattern to an int value, and the static block does both. This
is needed to support URIs that reference a table in the content provider (content:
//authority/path) and URIs that reference a single item in a table (content:
//authority/path/id). The static block matches both URI formats for each table
in the database.

Listing 6.8 shows the code where the device table URIs are matched to a table.

Listing 6.8  Mapping UriMatcher

URI_MATCHER.addURI(DevicesContract.AUTHORITY,

DevicesContract.Device.PATH,

CODE_ALL_DEVICES);

ptg18221911

118	 Chapter 6 Content Providers

URI_MATCHER.addURI(DevicesContract.AUTHORITY,

DevicesContract.Device.PATH + "/#",

CODE_DEVICE_ID);

The first call to UriMatcher.addUri() matches a URI that references the entire
device table. This URI would be used, for example, to query over all devices by passing
the authority, path, and mapped integer value to the method. The mapped integer value
passed in the third parameter is what is returned by the UriMatcher object if a URI
matches.

The second call to UriMatcher.addUri() matches a URI that references an individual
row in the device table. This is done by passing a URI pattern in the form of

content://authority/path/#

The # at the end of the URI matches against any number. Since the primary key of
the device table is a number (column _id), this URI pattern can be used to reference an
individual device as long as the last part of the path is the ID of the device.

Note
UriMatcher.addUri() can also use a pattern of content://authority/path/* to
match any text after the path. This pattern is not used in this app, however.

The helper member variable holds a reference to a DevicesOpenHelper object and is
used to get SQLiteDatabase objects to perform database operations on.

Listing 6.9 shows the implementation of DevicesProvider.onCreate().

Listing 6.9  Implementing DevicesProvider.onCreate()

@Override

public boolean onCreate() {

 helper = DevicesOpenHelper.getInstance(getContext());

 return true;

}

The onCreate() method should not perform long tasks since it will be called on the
UI thread while the app is loading. The only operation being done in DevicesProvider.
onCreate() is to assign helper to the DevicesOpenHelper singleton instance. This does
not actually open the database, so it is safe to run on the UI thread because it has a short
runtime.

Now that the code to create and initialize the DevicesProvider has been discussed,
focus can be turned to the more interesting parts of the DevicesProvider where the
insert, delete, update, and query operations are implemented.

ptg18221911

Implementing a Content Provider	 119

insert()
Listing 6.10 shows the implementation of the insert() method.

Listing 6.10  Implementing insert()

@Override

public Uri insert(@NonNull Uri uri, ContentValues values) {

 long id;

 final int code = URI_MATCHER.match(uri);

 switch (code) {

case CODE_ALL_DEVICES:

case CODE_ALL_MANUFACTURERS:

id = helper

.getWritableDatabase()

.insertOrThrow(URI_CODE_TABLE_MAP.get(code),

null,

values);

break;

default:

throw new IllegalArgumentException("Invalid Uri: " + uri);

 }

 getContext().getContentResolver().notifyChange(uri, null);

 return ContentUris.withAppendedId(uri, id);

}

The first task of any of the methods that read/write to the database is to map the uri
parameter to a table. This is where the URI_MATCHER that was initialized earlier is used.
UriMatcher.match() returns the mapped integer that was set using the addUri() method
calls. Thus resolving the table from the URI means making a single call to UriMatcher.
match() instead of writing code to manually inspect and match the URI. This becomes
really useful because all the methods that perform read/write operations on the database
have to perform this check.

The insert() method gets the matcher value and uses that to determine which
table is the target of the database operation. The only supported operation is to per-
form an insert on one of the two tables of the database, so any other URI is invalid.
For the invalid case, the insert() method throws an exception to let the client know

ptg18221911

120	 Chapter 6 Content Providers

of the problem. If the URI does map to either the device or manufacturer table,
the table name is looked up from the URI_CODE_TABLE_MAP, and SQLiteDatabase.
insertOrThrow() is called to insert the values passed to the insert() method via the
values parameter.

After the insert operation is completed, any content observers listening for database
changes on the URI should be notified of the update to the database. This is done with
a call to ContentResolver.notifyChange(), passing the uri of the updated table and a
null for the observer parameter.

Recall from Chapter 5 that the SQLiteDatabase.insertOrThrow() method returns a
long value that is the ID for the newly inserted row. The ID can be used to reference the
new row as part of a URI. ContentProvider.insert() generates that URI by calling
ContentUris.withAppendedId(), which is a convenience method that returns a URI
when passed the base URI and a long value as the ID. The insert() method returns the
generated URI and finishes execution.

delete()
The delete() method also needs to interrogate the UriMatcher to map a URI to an
integer value that was initialized earlier in the class. However, it needs to support both the
table-related URIs (content://authority/path) and URIs that reference a specific row
(content://authority/path/id). The implementation of delete() is shown in Listing 6.11.

Listing 6.11  Implementing delete()

@Override

public int delete(@NonNull Uri uri,

String selection,

String[] selectionArgs) {

 int rowCount;

 final int code = URI_MATCHER.match(uri);

 switch (code) {

case CODE_ALL_DEVICES:

case CODE_ALL_MANUFACTURERS:

rowCount = helper

.getWritableDatabase()

.delete(URI_CODE_TABLE_MAP.get(code),

selection,

selectionArgs);

break;

ptg18221911

Implementing a Content Provider	 121

case CODE_DEVICE_ID:

case CODE_MANUFACTURER_ID:

if (selection == null && selectionArgs == null) {

selection = BaseColumns._ID + " = ?";

selectionArgs = new String[] {

uri.getLastPathSegment()

};

rowCount = helper

.getWritableDatabase()

.delete(URI_CODE_TABLE_MAP.get(code),

selection,

selectionArgs);

} else {

throw new IllegalArgumentException("Selection must be " +

"null when specifying ID as part of uri.");

}

break;

default:

throw new IllegalArgumentException("Invalid Uri: " + uri);

 }

 getContext().getContentResolver().notifyChange(uri, null);

 return rowCount;

}

The ContentProvider.delete() method follows a similar pattern to the
ContentProvider.insert() method. It resolves the table from the URI using URI_
MATCHER, then performs an action on the correct table. However, since individual rows can
be deleted from a table, the ContentProvider.delete() method must support URIs that
map to the entire table as well as URIs that reference individual rows in a table.

In Listing 6.11, both table-based URIs are handled by the same case in the switch state-
ment. This is, once again, because the same operation is performed with only the table name
changing. If the SQLiteDatabase.delete() method is called with no selection parameters, all
rows are removed from the table specified by the URI. The values passed to SQLiteDatabase.
delete() are set by the code that makes the delete call from the content provider.

ptg18221911

122	 Chapter 6 Content Providers

When a specific row is referenced by the URI, the ContentProvider.delete()
method needs to perform some additional work and use the URI to determine the ID of
the row to delete. This is accomplished by making a call to Uri.getLastPathSegment(),
which returns the right-most part of the path. Since this code is run only when the
URI matches the pattern content://authority/path/id, the last path segment can be
assumed to be the ID.

Next, the ContentProvider.delete() method constructs a selection clause that
is passed to SQLiteDatabase.delete() using the ID that was part of the URI. The
return value of the SQLiteDatabase.delete() method call is stored in a variable and
returned by ContentProvider.delete() to indicate the number of rows that were
deleted by the operation.

The code in Listing 6.11 also makes a check to determine if the selection and
selectionArgs are null when processing a URI that references a specific row. This
is because having a URI that references a row in the table and a non-null selection
clause could result in an ambiguous method call if the ID in the URI and the selection
arguments do not reference the same row in the table. Instead of assuming the caller’s
intent, the method throws an exception in order to preserve the data and prevent
accidental data deletion.

The last task the ContentProvider.delete() method performs before returning
is to make a call to ContentResolver.notifyChange(). This informs any registered
content observers that a change has happened to the database and they can respond
accordingly.

update()
Listing 6.12 includes the implementation of the ContentProvider.update() method.

Listing 6.12  Implementing update()

@Override

public int update(@NonNull Uri uri,

ContentValues values,

String selection,

String[] selectionArgs) {

 int rowCount;

 final int code = URI_MATCHER.match(uri);

 switch (code) {

case CODE_ALL_DEVICES:

case CODE_ALL_MANUFACTURERS:

ptg18221911

Implementing a Content Provider	 123

rowCount = helper

.getWritableDatabase()

.update(URI_CODE_TABLE_MAP.get(code),

values,

selection,

selectionArgs);

break;

case CODE_DEVICE_ID:

case CODE_MANUFACTURER_ID:

if (selection == null

&& selectionArgs == null) {

selection = BaseColumns._ID + " = ?";

selectionArgs = new String[] {

uri.getLastPathSegment()

};

} else {

throw new IllegalArgumentException("Selection must be " +

"null when specifying ID as part of uri.");

}

rowCount = helper

.getWritableDatabase()

.update(URI_CODE_TABLE_MAP.get(code),

values,

selection,

selectionArgs);

break;

default:

throw new IllegalArgumentException("Invalid Uri: " + uri);

 }

 getContext().getContentResolver().notifyChange(uri, null);

 return rowCount;

}

ptg18221911

124	 Chapter 6 Content Providers

The ContentProvider.update() method is similar to the ContentProvider.
delete() method. Both methods select the table for the target of the operation by mak-
ing calls to UriMatcher.match(), passing in the uri. Also, each method must process
URIs for entire tables and individual rows since both the delete and update operations
can work on multiple rows of a table.

The only difference between the ContentProvider.delete() and the
ContentProvider.update() methods is that SQLiteDatabase.update() is called instead
of SQLDatabase.delete(). As expected, the ContentProvider.update() method makes
a call to SQLiteDatabase.update().

After the call to SQLiteDatabase.update() is made, ContentResolver.
notifyChange() is called and the number of rows affected by the SQLiteDatabase.
update() call is returned to the caller.

query()
The next part of the DevicesProvider that will be discussed is the query() method
which makes up Listing 6.13.

Listing 6.13  Implementing query()

@Override

public Cursor query(@NonNull Uri uri,

String[] projection,

String selection,

String[] selectionArgs,

String sortOrder) throws IllegalArgumentException {

 Cursor cursor;

 if (projection == null) {

throw new IllegalArgumentException("Projection can't be null");

 }

 sortOrder = (sortOrder == null ? BaseColumns._ID : sortOrder);

 SQLiteDatabase database = helper.getReadableDatabase();

 final int code = URI_MATCHER.match(uri);

 switch (code) {

case CODE_ALL_DEVICES:

case CODE_ALL_MANUFACTURERS:

cursor = database.query(URI_CODE_TABLE_MAP.get(code),

ptg18221911

Implementing a Content Provider	 125

projection,

selection,

selectionArgs,

null,

null,

sortOrder);

break;

case CODE_DEVICE_ID:

case CODE_MANUFACTURER_ID:

if (selection == null) {

selection = BaseColumns._ID

+ " = "

+ uri.getLastPathSegment();

} else {

throw new IllegalArgumentException("Selection must " +

"be null when specifying ID as part of uri.");

}

cursor = database.query(URI_CODE_TABLE_MAP.get(code),

projection,

selection,

selectionArgs,

null,

null,

sortOrder);

break;

case CODE_DEVICE_MANUFACTURER:

SQLiteQueryBuilder builder = new SQLiteQueryBuilder();

builder.setTables(String

.format("%s INNER JOIN %s ON (%s.%s=%s.%s)",

DevicesOpenHelper.Tables.DEVICE,

DevicesOpenHelper.Tables.MANUFACTURER,

DevicesOpenHelper.Tables.DEVICE,

DevicesContract.Device.MANUFACTURER_ID,

ptg18221911

126	 Chapter 6 Content Providers

DevicesOpenHelper.Tables.MANUFACTURER,

DevicesContract.Manufacturer._ID));

final Map<String, String> projectionMap = new HashMap<>();

projectionMap.put(DevicesContract.DeviceManufacturer.MODEL,

DevicesContract.DeviceManufacturer.MODEL);

projectionMap

.put(DevicesContract.DeviceManufacturer.SHORT_NAME,

DevicesContract.DeviceManufacturer.SHORT_NAME);

projectionMap

.put(DevicesContract.DeviceManufacturer.DEVICE_ID,

String.format("%s.%s AS %s",

DevicesOpenHelper.Tables.DEVICE,

DevicesContract.Device._ID,

DevicesContract.DeviceManufacturer.DEVICE_ID));

projectionMap.put(DevicesContract

.DeviceManufacturer.MANUFACTURER_ID,

String.format("%s.%s AS %s",

DevicesOpenHelper.Tables.MANUFACTURER,

DevicesContract.Manufacturer._ID,

DevicesContract

.DeviceManufacturer.MANUFACTURER_ID));

builder.setProjectionMap(projectionMap);

cursor = builder.query(database,

projection,

selection,

selectionArgs,

null,

null,

ptg18221911

Implementing a Content Provider	 127

sortOrder);

break;

default:

throw new IllegalArgumentException("Invalid Uri: " + uri);

 }

The DevicesProvider.query() method first checks for a null sortOrder parameter.
Instead of relying on the default sort order of SQLite, the query() method sorts the result
set by ID if the caller does not provide a sortOrder parameter.

Next, the query() method uses the uri and the URI_MATCHER member variable to
determine which table should be queried. This is similar to the insert(), update(), and
delete() methods that were previously discussed. If the URI references a table-based
URI, the SQLiteDatabase.query() is called with the values that were passed to
DevicesProvider.query(). If the uri matches a row in a table, the selection and
selectionArgs parameters are checked for values of null.

Specifying the row ID in the URI and specifying selection parameters once again
makes the query() method ambiguous and causes the query to throw an exception rather
than trying to determine the intent of the call from its possibly conflicting parameters. This
is similar to what occurs in the update() and delete() methods where an exception is
thrown if a row URI is passed to the method while also passing non-null selection criteria.

The cursor returned from SQLiteDatabase.query() is returned to the caller
after making a call to Cursor.setNotificationUri(). The call to Cursor.
setNotificationUri() causes the cursor to “watch” for changes to the URI passed to it
as a parameter. This call allows the caller of DevicesProvider.query() to process changes
in the database when they occur without having to requery the database.

Thus far, the DevicesProvider.query() method has followed a similar algorithm to the
insert(), update(), and delete() methods, using the uri parameter and the URI_MATCHER
member variable to determine which table to run the operation against, then performing the
operation. The update(), insert(), and delete() methods all used a switch statement to
map destination tables with the integer constants that were used to initialize URI_MATCHER.

What makes the query() method different from the other methods is that it also needs
to support the use of an INNER JOIN on the device and manufacturer tables so that
a client can receive data from both tables in a single query operation. The INNER JOIN
functionality happens in the switch statement when the URI matches the CODE_DEVICE_
MANUFACTURER constant.

Recall from the contract class discussion that a contract class can specify URIs that can
be used to map paths to table names. In the case of the device contract, it also specifies
a URI that can be used to reference a join of multiple tables. This works because the
contract class defines only what URIs the content provider will support. It does not define
how the content provider will support them.

ptg18221911

128	 Chapter 6 Content Providers

This level of abstraction allows the content provider to support complex queries that
can span multiple tables if needed. The devices provider supports the DevicesContract.
DeviceManufacturer.CONTENT_URI by performing a join on the device and
manufacturer tables and returning a cursor object with columns from both tables.
Listing 6.14 shows the DevicesContract.DeviceManufacturer inner class from the
device contract.

Listing 6.14  Extending Contracts with DevicesContract.DeviceManufacturer

public interface DeviceManufacturer extends Device, Manufacturer {

 /* default */ static final String PATH = "device-manufacturer";

 public static final String DEVICE_ID = "device_id";

 public static final String MANUFACTURER_ID = "manufacturer_id";

 public static final Uri CONTENT_URI =

Uri.withAppendedPath(AUTHORITY_URI, PATH);

}

Notice in Listing 6.14 that DeviceManufacturer extends both the device and
manufacturer contracts. This means that the client can choose to include columns from
both tables in a query, and that there will be column name collisions that will need to be
resolved because a column of the same name (ID) exists in both tables.

Something to note in the query() method is the use of SQLiteQueryBuilder.
While the SQLiteDatabase.query() method is convenient for simple queries, it can
be difficult to use for more advanced queries as it often requires large amounts of string
concatenation to construct the queries. The goal of SQLiteQueryBuilder is to make
complex queries easier to write in Java code.

In the case of DevicesProvider.query() an SQLiteQueryBuilder object is used to
build a query with an INNER JOIN. The following snippet from Listing 6.14 shows an
SQLiteQueryBuilder object being created and initialized:

SQLiteQueryBuilder builder = new SQLiteQueryBuilder();

builder.setTables(String.format("%s INNER JOIN %s ON (%s.%s=%s.%s)",

DevicesOpenHelper.Tables.DEVICE,

DevicesOpenHelper.Tables.MANUFACTURER,

DevicesOpenHelper.Tables.DEVICE,

DevicesContract.Device.MANUFACTURER_ID,

DevicesOpenHelper.Tables.MANUFACTURER,

DevicesContract.Manufacturer._ID));

ptg18221911

Implementing a Content Provider	 129

After instantiating an SQLiteQueryBuilder instance, a call to setTables() is made.
For a simpler query, the setTables() method can be used to build a query with a single
table by simply passing the name of the table. However, when building an INNER JOIN
query, the setTables() is passed the INNER JOIN SQL statement. The result of String.
format() is

device INNER JOIN manufacturer on (device._id=manufacturer._id)

This forms the base of the SELECT clause for the query.
After the call to setTables(), the ContentProvider.query() method needs to build

the projection map and set it with a call to SQLiteQueryBuilder.setProjectionMap().
This call allows the SQLiteQueryBuilder to map from the column names passed
into the content provider to the column names that will appear in the query. An
important detail with building projection maps is that if a call to SQLiteQueryBuilder.
setProjectionMap() is made, every column specified by the client must appear in
the map even if the column name maps to itself. Following is the code that builds the
projection map from Listing 6.13:

final Map<String, String> projectionMap = new HashMap<>();

projectionMap.put(DevicesContract.DeviceManufacturer.MODEL,

DevicesContract.DeviceManufacturer.MODEL);

projectionMap.put(DevicesContract.DeviceManufacturer.SHORT_NAME,

DevicesContract.DeviceManufacturer.SHORT_NAME);

projectionMap.put(DevicesContract.DeviceManufacturer.DEVICE_ID,

String.format("%s.%s AS %s",

DevicesOpenHelper.Tables.DEVICE,

DevicesContract.Device._ID,

DevicesContract.DeviceManufacturer.DEVICE_ID));

projectionMap.put(DevicesContract.DeviceManufacturer.MANUFACTURER_ID,

String.format("%s.%s AS %s",

DevicesOpenHelper.Tables.MANUFACTURER,

DevicesContract.Manufacturer._ID,

DevicesContract

.DeviceManufacturer.MANUFACTURER_ID));

builder.setProjectionMap(projectionMap);

ptg18221911

130	 Chapter 6 Content Providers

Notice that the column DevicesContract.DeviceManufacturer.MODEL is mapped to
itself in the map. Again, every column specified by the query must be in the projection map.

The more interesting projection map cases in this code snippet are shown in bold text.
Because both the device and manufacturer tables contain an id column, the projection
map must be used to clarify what otherwise would be ambiguous column names. For both
the device_id and the manufacturer_id, the columns can be resolved by appending the
table name to the front of the column name. This produces the following raw SQL:

SELECT device._id, manufacturer._id

Along with appending the table name to the id columns, the projection map maps the
fully qualified string name to the column names that were defined in the device contract
and used by the client in the call to DevicesProvider.query().

Once the projection map is built, it is set on the SQLiteQueryBuilder object with a
call to SQLiteQueryBuilder.setProjectionMap().

Once the projection map is set, the query builder can be used to run the query against
the database with a call to SQLiteQueryBuilder.query(). The method used to query a
database is a little different from what has been discussed elsewhere in the chapter. Instead
of making a call to SQLiteData.query(), the SQLiteQueryBuilder.query() method
takes an SQLiteDatabase object as its first parameter, then makes the query. Here is
the code snippet from Listing 6.13 where the SQLiteQueryBuilder.query() method
is called:

cursor = builder.query(database,

projection,

selection,

selectionArgs,

null,

null,

sortOrder);

Other than the first parameter, SQLiteQueryBuilder.query() takes the same
parameter list as SQLiteDatabase.query() and returns a cursor object. This object is then
returned by the content provider back to its client.

getType()
The last method that needs to be implemented in the DevicesProvider is getType().
The getType() method is shown in Listing 6.15.

ptg18221911

Implementing a Content Provider	 131

Listing 6.15  Implementing getType()

@Override

public String getType(@NonNull Uri uri) {

 final int code = URI_MATCHER.match(uri);

 switch (code) {

case CODE_ALL_DEVICES:

return String.format("%s/vnd.%s.%s",

ContentResolver.CURSOR_DIR_BASE_TYPE,

DevicesContract.AUTHORITY,

DevicesContract.Device.PATH);

case CODE_ALL_MANUFACTURERS:

return String.format("%s/vnd.%s.%s",

ContentResolver.CURSOR_DIR_BASE_TYPE,

DevicesContract.AUTHORITY,

DevicesContract.Manufacturer.PATH);

case CODE_DEVICE_ID:

return String.format("%s/vnd.%s.%s",

ContentResolver.CURSOR_ITEM_BASE_TYPE,

DevicesContract.AUTHORITY,

DevicesContract.Device.PATH);

case CODE_MANUFACTURER_ID:

return String.format("%s/vnd.%s.%s",

ContentResolver.CURSOR_ITEM_BASE_TYPE,

DevicesContract.AUTHORITY,

DevicesContract.Manufacturer.PATH);

default:

return null;

 }

}

ptg18221911

132	 Chapter 6 Content Providers

Like other methods discussed previously in this chapter, the getType() method first
needs to determine which URI it was called with by interrogating the URI_MATCHER.
Once the mapped int value has been returned from UriMatcher.match(), the
getType() method can use a switch statement to process different URIs much like the
other device provider methods do.

What makes getType() different is that it does not need to make a call to the database.
Instead, it constructs a MIME type string based in the path of the uri parameter. Earlier
in the chapter, the MIME type prefixes were discussed for both table- and item-based
URIs. These values are stored in the constants ContentResolver.CURSOR_ITEM_BASE_
TYPE for item URIs and ContentResolver.CURSOR_DIR_BASE_TYPE for table URIs.

Using the constants, the getType() method uses String.format() to construct the
string MIME type and return it to the caller.

At this point, we now have a fully functioning content provider that can provide access
to the device database for both the local app components as well as external apps. The
next section of this chapter discusses some things to consider when deciding if a content
provider is the correct choice for your app.

When Should a Content Provider Be Used?
The discussion as to whether to add a content provider to an app can be a bit of a heated
one. While content providers do provide a level of abstraction between Android components
that display data to the user, activities, and fragments, there is also a level of complexity
involved with writing and using them. Ultimately, there is probably no right or wrong
answer to this question as the decision to add a content provider to an app always depends
on multiple factors surrounding the app. This section simply points out some strengths and
weaknesses of content providers so you can make an informed decision about their use.

Content Provider Weaknesses
While using content providers can alleviate certain annoyances that go along with
accessing a database, they are not without their faults. The following sections detail some
of the weaknesses of content providers.

The Need for Extra Code
One of the major negatives that is often cited with using content providers is the additional
amount of “boilerplate” code that needs to be written. When compared to using an
SQLiteOpenHelper and SQLiteDatabase object directly, there is definitely more code that
needs to be written to use a content provider. For starters, the content provider itself needs
to be written and maintained. This means writing the code to determine which table will
be accessed by which URI and delegating operation calls to a lower-level database access
object. Often, as the number of tables that are supported by the content provider increases,
so does the length of the content provider. At a minimum, switch statements may need to
be extended to handle new tables as well as additional INNER JOIN queries.

ptg18221911

When Should a Content Provider Be Used?	 133

Along with the content provider itself, contract classes need to be written and
maintained as a database evolves. This becomes especially important if an app needs to
expose its data to other apps. However, it is often a good idea to have contract classes even
when the data will be used only by local app components.

What does make the amount of boilerplate code required to support content providers
less of an issue is the number of projects released by the Android community to address
this issue. A quick Google search will reveal projects that leverage tools such as code
generation to aid in building a content provider.

Use of URIs and Cursors over Objects
When using a content provider, components need to make use of URIs and cursors
instead of just using Java classes to represent an app’s model data. This can be seen as a
higher learning curve, especially for developers who are new to Android development as
they are very likely to be familiar with POJOs (plain old Java objects) and less likely to be
familiar with content providers.

Also, at least when this book was written, the Android data binding library does not
support cursors. This means that in order to use a content provider to bind database
information to a UI, an app has to make a query to a content provider and create Java
objects out of the cursor that is returned by the content provider. This additional layer,
converting cursors to objects, causes additional memory churn as the OS must allocate
memory for the objects, then the garbage collector must reclaim the memory when the
object is no longer used.

No Convenient Place to Close the Database
When performing database tasks, a connection to the database needs to be opened.
Typically, it is beneficial to keep the same database connection open as long as additional
database tasks might be needed to avoid the overhead of creating a new database
connection multiple times to perform multiple tasks.

Since the database is opened by an app’s code, it seems logical that the database needs
to be closed by the same app’s code. This is where things can get a little sticky when it
comes to content providers. Usually, all database operations use the same SQLiteDatabase
object and open it only once. Even if the SQLiteOpenHelper.getWritable() method
is called multiple times, it internally caches the SQLiteDatabase instance it returns in an
effort to eliminate the overhead of creating multiple connections. While there is a method
that gets called at the beginning of a content provider’s lifecycle (ContentProvider.
onCreate()), there is no method that is guaranteed to be called when a content provider
gets destroyed. This means that if a database connection is opened, there is no convenient
place to close the connection other than in each insert()/update()/delete()/query()
method (which would also require each method to reopen the database connection,
injecting the overhead that was just discussed).

This issue seems to worry some people more than others. Some Android platform
engineers have posted, publicly, that the database will be closed when Android cleans up

ptg18221911

134	 Chapter 6 Content Providers

the process, but there are still people who feel it is good practice for an app to clean up
after itself and close the database connection.

Content Provider Strengths
While content providers have their weaknesses, they also have their strengths and can,
at times, make things easier. The following sections detail why the use of content providers
can be advantageous.

Abstraction Layer for Structured Data
Content providers are good at hiding the details of data storage and retrieval from
apps. Because a content provider is actually an interface to structured data, the actual
mechanism of data storage is irrelevant to other app components. For example, a content
provider can expose data that is stored in a database, stored as files on disk, or even stored
on a remote system and accessed via a Web service. Because those other components never
know the details of how the data is stored, the storage mechanism can change without
affecting any of a content provider’s clients (assuming the contract classes don’t change).

The content provider also allows all data store information to be accessed the same
way whether the client accessing the data is the local component or an external app. Pro-
viding a single interface for all data access, whether local or remote, limits the complexity
around data access.

Most apps that need to persist data to a database need a layer that handles interfacing
between the database and the rest of the business logic. In Android, the content provider is
a natural option for that layer that offers many benefits over other architectures.

Well Supported by Other Android Components
Content providers are well supported across the Android SDK (with the exception of the
data binding API as discussed previously) when using other Android components. One of
the most convenient uses of a content provider is with a cursor loader. The Android docs
make a strong claim that a content provider should be used when using a cursor loader.
While it is possible to use a cursor loader without a content provider, it can make the
cursor loader implementation more complex.

Cursor loaders can be a great way for apps to eliminate the complexity of manually
supporting configuration changes in activities and fragments. In addition, loaders handle
the asynchronous nature of loading data from a database off the UI thread while providing
the results of a database operation (usually a query) on the main thread allowing UI
updates. Recall from the discussion of cursor loaders in Chapter 5 that neither the cursor
loader nor the activity needs to explicitly make calls to a content resolver or content
provider when using a cursor loader. This is because the cursor loader handles these tasks
on its own.

Once a content provider is implemented, making use of a cursor loader to load data
to the UI is pretty straightforward and does not require much code. Additionally, activity
lifecycle events, as they relate to cursor objects, are handled by the Android system, freeing
the developer from worrying about memory leaks from a cursor that was not closed.

ptg18221911

Summary	 135

In addition to cursor loaders, the sync adapter and the search API make use of content
providers. In some cases, certain APIs mandate the use of a content provider.

Handles Interprocess Communication
One of the major strengths of content providers is that they allow apps to easily send data
across process boundaries. This can foster communication between two different apps,
or even within a single app that needs to run across two different processes. As discussed
earlier in the chapter, the interaction between the content resolver and a content provider
allows this interprocess communication to happen transparently in apps.

Android does provide other mechanisms to send data between components that are
running in two different processes. One alternative approach is to use a bound service
and define an Android Interface Definition Language (AIDL) interface for interprocess
communication. While this allows communication to take place, it does not always fit the
needs of an app.

Services are good at supporting long-running tasks that need to happen in the
background with no UI. While they can be used to transfer data across a process boundary,
services do not seem like a good fit if that long-running use case is not needed. In
addition, a service still needs to make calls to the database to retrieve the data, then
manually manipulate it so it can be sent to another process.

Summary
Content providers can be a convenient way to both expose internal data to external apps
and provide an abstraction layer between an app’s database and UI logic. When used with
a content resolver, a developer does not need to worry about the details of getting data
from one process to another.

By setting permissions, apps can also control the level of access an external app will
have to the data they provide. This provides flexibility when deciding to allow external
apps to have access to an internal database.

When coupled with the use of a cursor loader, a content provider can be a useful
Android component for handling chores normally associated with data access in Android.

The next chapter dives deeper into the details of using cursor loaders to load data into
views that are displayed to a user.

ptg18221911

This page intentionally left blank

ptg18221911

7
Databases and the UI

As apps increase in complexity, the need for data stored in a local database also increases.
While previous chapters have discussed the details of storing data, they have not discussed
how to take the data from a database and present it to a user. This topic is of significant
importance since it is such a common usage pattern. This chapter presents some strategies
for using the Android database APIs to show data to the user.

Getting Data from the Database to the UI
Before a UI can present data to the user, it must obtain the data from a database. This is an
area where special attention needs to be paid to Android threads. Reading from a database
requires reading from internal app storage and should not be done on the main thread.
While database access is usually quick, reading from internal storage on the main thread
is usually a bad idea as it can block the main thread. In addition, database connections can
block the calling thread in order to support multithreaded database access.

While the database read operation should happen on a background thread, updating the
UI always needs to happen on the main thread in Android. Attempting to update a view
on a thread other than the main thread will result in a runtime exception being thrown.

As mentioned in Chapter 5, “Working with Databases in Android,” a cursor loader can
help solve the problem of accessing a database on a background thread while updating the
UI on the main thread.

Using a Cursor Loader to Handle Threading
A cursor loader can be used to read data from a local database. An activity or fragment
can use the loader framework to create a cursor loader with the desired projection
and selection parameters. A nice feature of the loader framework is that it takes care of
threading concerns on its own. For a cursor loader, this means reading from the database
on a background thread and making the call to LoaderManager.LoaderCallbacks.
onLoadFinished() on the main thread. The cursor that is passed to the
onLoadFinished() method can then be used to update the UI with the data it contains.

One thing to remember when using cursor loaders is that the default implementation
expects to use a content provider for data access. If an app does not implement a content
provider, it needs to use an alternative to the cursor loader.

ptg18221911

138	 Chapter 7 Databases and the UI

Binding Cursor Data to a UI
Once the cursor has been returned from the loader manager, it can be used to update
the UI. Depending on the needs of the UI, there are different ways this can be done.
Simple UIs may need to reference only a single row from the result set in the cursor.
When this is the case, the cursor data can be read and views can be updated directly from
the onLoadFinished() method. Listing 7.1 shows an example of using a single row in a
cursor to update views.

Listing 7.1  Updating a View from a Single Row in a Cursor

@Override

public void onLoadFinished(Loader<Cursor> loader, Cursor data) {

 if (data != null && data.moveToFirst()) {

String model =

data.getString(data.getColumnIndexOrThrow(DevicesContract

.DeviceManufacturer.MODEL));

modelView.setText(model);

String nickname =

data.getString(data.getColumnIndexOrThrow(DevicesContract

.DeviceManufacturer

.NICKNAME));

nicknameView.setText(nickname);

String manufacturerShortName =

data.getString(data.getColumnIndexOrThrow(DevicesContract

.DeviceManufacturer

.LONG_NAME));

manufacturerShortNameView.setText(manufacturerShortName);

 }

The code in Listing 7.1 is useful for a list/detail scenario where the user has selected a
single item from a list and the details of that item need to be displayed.

Using a cursor to display a list of items from a database is a bit more involved. This
is partly because it depends on how the list of items is represented in the activity or
fragment. Android provides two views that can be used to efficiently present a list of items
to the user: ListView and RecyclerView.

ptg18221911

Getting Data from the Database to the UI	 139

ListView
A ListView uses an adapter to bind a list of data to the UI. The Android SDK
provides classes that can be used to bind a cursor to a ListView. One such class is
SimpleCursorAdapter. The SimpleCursorAdapter class can be used to map column
names in a cursor to TextView in the list items of the ListView. Listing 7.2 shows the use
of a SimpleCursorAdapter to connect a cursor returned to a ListView in an activity.

Listing 7.2  Connecting a Cursor with SimpleCursorAdapter

private simpleCursorAdapter SimpleCursorAdapter;

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 String[] columnNames = {

DevicesContract.Device.MODEL,

DevicesContract.Device.NICKNAME

 };

 int[] viewNames = {

 R.id.modelView,

R.id.nicknameView

 };

 simpleCursorAdapter = new SimpleCursorAdapter(this,

R.layout.list_item, // layout

null, // cursor

columnNames, // column names

viewNames, // view names

0);

 listView.setAdapter(simpleCursorAdapter);

 getLoaderManager().initLoader(LOADER_ID_DEVICES, null, this);

}

ptg18221911

140	 Chapter 7 Databases and the UI

@Override

public void onLoaderReset(Loader<Cursor> loader) {

 simpleCursorAdapter.changeCursor(null);

}

@Override

public void onLoadFinished(Loader<Cursor> loader, Cursor data) {

 simpleCursorAdapter.changeCursor(data);

}

The SimpleCursorAdapter used in Listing 7.2 is created in the activity’s onCreate()
method. It has a parameter list that includes the layout to use for each row in the cursor,
the cursor containing the data, an array of column names available in the cursor, and an
array of view IDs in the layout used to display the data in the cursor. The array of column
names and the array of view IDs are parallel arrays that map view IDs to column names
by using the same offset in the two arrays.

The array of column names contains values from the DevicesContract which maps to
columns in the content provider that provides the cursor. The view IDs are all contained
in the layout that is also passed to the constructor of the SimpleCursorAdapter.

Notice that instead of passing a cursor to the SimpleCursorAdapter constructor, a
value of null is passed in Listing 7.2. This is because during onCreate() the cursor that
will contain the data is not yet available. The SimpleCursorAdapter accepts a value of
null during its creation, allowing the activity to update the adapter when the cursor
becomes available.

The onCreate() method ends by setting the adapter on the ListView and making a
call to have the loader manager read the data from the database.

When the query result set from the database is available, the loader manager calls
onLoadFinished(). In Listing 7.2, the onLoadFinished() implementation only makes a
call to simpleCursorAdapter.changeCursor(). This causes the adapter to use the new
cursor as the source of input data and close the old one if it exists.

The final method implementation in Listing 7.2 is onLoaderReset(). This method is
called by the loader manager to indicate that the loader has been reset and its data should
no longer be used. Since the SimpleCursorAdapter has a reference to the cursor data
provided by the loader, a call to changeCursor() is made, passing in a null value. This
ensures that the adapter and the ListView don’t use data that is possibly invalid.

While SimpleCursorAdapter can be easy to use, it sacrifices flexibility for ease of use.
When SimpleCursorAdapter does not provide enough flexibility, CursorAdapter can be
used instead.

CursorAdapter is a more general form of SimpleCursorAdapter.
SimpleCursorAdapter actually extends CursorAdapter and implements the abstract
methods. When using CursorAdapter, the abstract methods need to be implemented in

ptg18221911

Getting Data from the Database to the UI	 141

the application code. Listing 7.3 shows an example of using CursorAdapter to bind a
cursor to the view of an activity.

Listing 7.3  Binding a Cursor with CursorAdapter

public class DeviceAdapter extends CursorAdapter {

 public DeviceAdapter() {

super(DeviceListActivity.this, null, 0);

 }

 @Override

 public View newView(Context context, Cursor cursor, ViewGroup parent) {

View view

= LayoutInflater.from(context).inflate(R.layout.list_item,

parent,

false);

Holder holder = new Holder(view);

view.setTag(holder);

return view;

 }

 @Override

 public void bindView(View view, Context context, Cursor cursor) {

String model =

cursor.getString(cursor

.getColumnIndexOrThrow(DevicesContract.Device.MODEL));

String nickname =

cursor.getString(cursor

.getColumnIndexOrThrow(DevicesContract.Device.NICKNAME));

Holder holder = (Holder) view.getTag();

holder.modelView.setText(model);

holder.nicknameView.setText(nickname);

}

ptg18221911

142	 Chapter 7 Databases and the UI

Note
Listing 7.3 shows only the implementation details of DeviceAdapter, which extends
CursorAdapter and implements the abstract methods. The use of DeviceAdapter is
the same as the use of SimpleCursorAdapter in Listing 7.2 except for its instantiation
in the activity’s onCreate() method.

When creating a class that extends CursorAdapter, the abstract methods newView()
and bindView() need to have concrete implementations. In Listing 7.3, newView() simply
inflates a layout, adds it to a view holder to prevent superfluous calls to findViewById(),
and returns the view. Binding the cursor to the list item view happens in the bindView()
method.

The bindView() method takes the cursor that it is passed to the method in the
parameter list, reads its data, and populates the view passed to it in the parameter list.
Notice that there is no need to edit the cursor’s internal pointer with method calls like
Cursor.moveToFirst() or Cursor.moveToPosition(). This is because CursorAdapter
handles the task of updating the cursor to point to the relevant row of the result set.

RecyclerView
A RecyclerView is a newer alternative to ListView that can also be used to display lists
of items to the user. Like ListView, a RecyclerView needs an adapter that will be used to
bind each row in the cursor to a view. However, unlike ListView, there are currently no
predefined adapters available that support binding a RecyclerView to a cursor. This means
that in order to use a RecyclerView, an adapter that supports a cursor must be written.

All RecyclerView adapters extend RecyclerView.Adapter. A full implementation of a
RecyclerView adapter that supports cursors is provided later in the chapter.

Object-Relational Mapping
Object-relational mapping (ORM) is the process of mapping Java objects to a relational
database. This mapping allows an application’s model objects to be easily persisted into a
relational database as the ORM software takes care of the details of reading and writing to
the database. ORM is a popular paradigm when persisting objects to a relational database
is needed.

The Android SDK does not provide any support for ORM. However, a number of third-party
libraries exist to provide ORM functionality. While these libraries may seem more convenient
when writing an Android app than using components such as cursor loaders, their functional-
ity does come at a cost.

All Android data access happens with the cursor class when using the standard Android
database tools. Cursors provide a layer of abstraction above the actual database and hold
the result set in memory so it can be easily accessed by application code.

When an ORM library is used, it provides another layer of abstraction on top of the
Android cursor in order to map the cursor to a Java object. This means that additional
objects are being created and will eventually need to be garbage collected.

While this object creation and garbage collection may seem trivial, an argument can be
made that it is also unnecessary because a cursor can be bound to the UI almost as easily
as a Java object.

ptg18221911

Cursors as Observers	 143

Cursors as Observers
One of the strengths of using cursors to access relational data in Android is that they can
act as observers to the underlying database. When an Android component has access to a
cursor, it can register an observer that will be notified when the cursor’s underlying data
changes. This can be useful for keeping a UI up-to-date when changes are made to the
underlying database.

The cursor class provides the following methods to expose the observer pattern to a
source of data:

■■ Cursor.registerContentObserver()

■■ Cursor.registerDataSetObserver()

■■ Cursor.unregisterContentObserver()

■■ Cursor.unregisterDataSetObserver()

■■ Cursor.setNotificationUri()

Using these methods, it is possible to respond to data changes using the observer
pattern rather than polling the database for changes, which can be inefficient.

registerContentObserver(ContentObserver)
The registerContentObserver() method is used to register an observer that will
receive a callback when the data backing the cursor is changed. Although the data source
has been changed, the cursor may not have been updated to reflect the changes in the
data source. In fact, a ContentObserver can be used to update the cursor in response to
the underlying data being changed. The cursor can be refreshed with a call to Cursor.
requery(), but it is generally more advisable to just obtain another cursor that represents
the backing data from the data source on a background thread.

The single parameter passed to the registerContentObserver() method is the
observer to be registered. The observer must extend ContentObserver and can override
any or all of the following methods:

■■ public boolean deliverSelfNotification(): The deliverSelfNotification()
is used to indicate whether the observer should receive change notifications for
changes that the observer made to the backing data.

■■ public void onChange(boolean selfChange, Uri uri): The
onChange() method is called when a change to the backing data is made.
The value passed as the selfChange parameter indicates if the change was caused
by a self-change.

■■ public void onChange(boolean selfChange): This overloaded version of the
onChange() method was added in API 16. It has a similar functionality to the other
overloaded form of onChange(). Both are called when a change to the backing
data is made and passed a boolean flag to indicate if the change was a self-change.
This form of the onChange() method is also passed a Uri parameter which is

ptg18221911

144	 Chapter 7 Databases and the UI

the URI of the changed data. To ensure compatibility with versions of Android
older than API 16, it is good practice to chain a call between the two onChange()
methods as shown in Listing 7.4.

Listing 7.4  Chaining onChange() Method Calls

public void onChange(boolean selfChange, Uri uri) {

 // React to change notification

}

public void onChange(boolean selfChange) {

 selfChange(selfChange, null);

}

ContentObserver has a single constructor which is passed a Handler object. This
Handler instance is used to make the callbacks in response to data being changed.

registerDataSetObserver(DataSetObserver)
The registerDataSetObserver() method is used to register an observer that will be
notified when the data inside the cursor has been changed. The difference between this
method and registerContentObserver() is that registerContentObserver() is used
to track the underlying data changes, whereas registerDataSetObserver() is used to
track changes in the cursor that represent the underlying data.

The registerDataSetObserver() method takes a single parameter of type
DataSetObserver that provides the callbacks that will be used when a change in the
cursor data is detected. A DataSetObserver must be extended to override one or both of
the following methods:

■■ public void onChange(): The onChange() method is called when the data set in
the cursor changes. This is usually in response to a call to requery().

■■ public void onInvalidate(): This method is called when the data in the cursor
becomes invalid and should no longer be used. A cursor being closed causes the
onInvalidate() method to be called.

unregisterContentObserver(ContentObserver)
The unregisterContentObserver() method unregisters the ContentObserver so it
no longer receives any callbacks. It is important to unregister any registered observer to
prevent memory leaks.

unregisterDataSetObserver(DataSetObserver)
The unregisterDataSetObserver() method unregisters the DataSetObserver.

ptg18221911

Accessing a Content Provider from an Activity	 145

setNotificationUri(ContentResolver, Uri uri)
The setNotificationUri() method registers the URI that should be monitored for
changes. The URI may be for either a single item in a ContentResolver or an entire
table of items.

Accessing a Content Provider from an Activity
Now that the various ways to use a content provider to support an activity’s UI have been
discussed, let’s take a look at an example. This example uses an extension of the example
app that has been discussed in previous chapters which tracks mobile device data. The
opening activity (DeviceListActivity) of the app shows a list of the devices that are
stored in the database along with some manufacturer information.

Activity Layout
DeviceListActivity uses a RecyclerView to display the list of devices to the user. Let’s
take a look at the code that is responsible for retrieving the data from the database and
presenting it to the user.

Listing 7.5 shows the XML layout for DeviceListActivity.

Listing 7.5  Layout Definition for DeviceListActivity

<android.support.design.widget.CoordinatorLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:fitsSystemWindows="true"

 tools:context=".device.DeviceListActivity">

 <include layout="@layout/appbar" />

 <android.support.v7.widget.RecyclerView

android:id="@+id/recycler_view"

android:layout_width="match_parent"

android:layout_height="match_parent"

app:layout_behavior="@string/appbar_scrolling_view_behavior"

android:paddingTop="8dp"

android:paddingBottom="8dp"/>

ptg18221911

146	 Chapter 7 Databases and the UI

 <TextView

android:id="@+id/empty"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:text="@string/no_devices_message"

android:gravity="center"/>

 <android.support.design.widget.FloatingActionButton

android:id="@+id/fab"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_margin="@dimen/fab_margin"

android:src="@drawable/ic_add_white_24dp"

android:layout_gravity="bottom|end" />

</android.support.design.widget.CoordinatorLayout>

The layout for DeviceListActivity includes both a RecyclerView to display the
device information and a view that will be used when there are no devices in the database.
Both view declarations are in bold in Listing 7.5.

In order to show the device in the RecyclerView, a layout must be defined which
is used to show summary information for the device. This layout uses a CardView and
contains a single TextView to show the device summary. Listing 7.6 shows the contents
of list_item_device.xml, which is used to display the device summary information to
the user.

Listing 7.6  list_item_device.xml Definition

<android.support.v7.widget.CardView

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_marginStart="16dp"

 android:layout_marginEnd="16dp"

 android:layout_marginTop="8dp"

 android:layout_marginBottom="8dp">

 <TextView

android:id="@+id/name"

ptg18221911

Accessing a Content Provider from an Activity	 147

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:padding="16dp"

tools:text="model"/>

</android.support.v7.widget.CardView>

Activity Class Definition
With the layout code listed, it is time to dive into the details of the DeviceListActivity
itself, starting with the class definition in Listing 7.7.

Listing 7.7  DeviceListActivity Class Definition

public class DeviceListActivity extends BaseActivity

implements LoaderManager.LoaderCallbacks<Cursor> {

The DeviceListActivity class extends BaseActivity and implements the
LoaderManager.LoaderCallback<Cursor> interface. BaseActivity is just a common
base class that all activities in the project extend from and does not contain any useful
implementation code as it relates to database access.

Because DeviceListActivity implements LoaderManager.
LoaderCallback<Cursor>, it can be used as the callback object by the loader manager.
This allows the activity to interact with the database and respond to changes in the
underlying data.

The DeviceListActivity.onCreate() method is fairly unexciting. It is where the
views are initialized and where LoaderManager.initLoader() is called to start reading
the device information from the database. These parts of onCreate() are shown in
Listing 7.8.

Listing 7.8  onCreate() Method Implementation

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_device_list);

 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);

 toolbar.setTitle(getTitle());

 // Additional initialization…

ptg18221911

148	 Chapter 7 Databases and the UI

 recyclerView = (RecyclerView) findViewById(R.id.recycler_view);

 empty = (TextView) findViewById(R.id.empty);

 recyclerView.setLayoutManager(new LinearLayoutManager(this));

 recyclerView.setAdapter(new DeviceCursorAdapter());

 getLoaderManager().initLoader(LOADER_ID_DEVICES, null, this);

}

Creating the Cursor Loader
DeviceListActivity does not contain any additional Android lifecycle initialization
methods (onStart(), onResume(), etc.). The call to LoaderManager.initLoader()
moves execution of the activity to onCreateLoader() where a cursor loader is created
and returned to the loader manager. The implementation of onCreateLoader() is shown
in Listing 7.9.

Listing 7.9  Creating a Loader with onCreateLoader()

@Override

public Loader<Cursor> onCreateLoader(int id, Bundle args) {

 Loader<Cursor> loader = null;

 String[] projection = {

DevicesContract.DeviceManufacturer.MODEL,

DevicesContract.DeviceManufacturer.DEVICE_ID,

DevicesContract.DeviceManufacturer.SHORT_NAME

 };

 switch (id) {

case LOADER_ID_DEVICES:

loader = new CursorLoader(this,

DevicesContract.DeviceManufacturer.CONTENT_URI,

projection,

null,

null,

DevicesContract.DeviceManufacturer.MODEL);

break;

ptg18221911

Accessing a Content Provider from an Activity	 149

 }

 return loader;

}

The implementation of onCreateLoader() is similar to the example discussed
in Chapter 6, “Content Providers,” where cursor loaders were introduced. The
DevicesContract.DeviceManufacturer contract class is used to specify the projection
of the query. Since DeviceListActivity needs to display every device in the database,
no selection criteria are passed to the cursor loader constructor. Other than the projec-
tion and the URI of the data to be returned by the content provider, the only other
non-null parameter passed to the cursor loader constructor is the last parameter, which
defines the sort order. Passing the DevicesContract.DeviceManufacturer.MODEL value
causes the content provider to issue a query to the database which sorts the result set by
the model name. This causes the list of devices to be displayed in alphabetical order by
DeviceListActivity.

Handling Returned Data
Once the cursor loader has been created and returned from onCreateLoader(),
DeviceListActivity needs to wait for the data to be returned from the content provider in a
call to onLoadFinished(). Because the loader manager causes the database read operation to
happen on a background thread, the main thread will not be blocked, so there is no fear of an
application not responding (ANR) error while the activity waits for the data to be returned.

Listing 7.10 shows the onLoadFinished() implementation where DeviceListActivity
starts to interact with the data returned from the content provider.

Listing 7.10  Processing a Cursor in onLoadFinished()

@Override

public void onLoadFinished(Loader<Cursor> loader, Cursor data) {

 if (data == null || data.getCount() == 0) {

empty.setVisibility(View.VISIBLE);

recyclerView.setVisibility(View.GONE);

 } else {

empty.setVisibility(View.GONE);

recyclerView.setVisibility(View.VISIBLE);

((DeviceCursorAdapter)recyclerView.getAdapter()).swapCursor(data);

 }

}

ptg18221911

150	 Chapter 7 Databases and the UI

When onLoadFinished() is called, it firsts check to validate that it has received a
cursor that has a result set. If the returned cursor is null, or has no rows in the result set,
the RecyclerView is hidden and a view is shown to indicate that there is no data to be
shown. Figure 7.1 shows the DeviceListActivity in this empty state.

The empty state of a list activity provides a good opportunity to instruct the user
on how to add data to the app. DeviceListActivity instructs the user to click the “+”
button in order to start populating the device list.

If the cursor returned from the content provider in onLoadFinished() contains
data, the “empty state” view is hidden, and the RecyclerView is shown so the data can
be presented to the user. In addition, the RecyclerView’s adapter (which was set in
onCreate()) is retrieved from the RecyclerView and then updated with the cursor from
the content provider by making a call to swapCursor(). Once the adapter is updated with
the new data, it starts processing the cursor and displays the cursor contents to the user.

Before looking at the implementation of DeviceCursorAdapter, let’s take a quick look
at the onLoaderReset() method which also needs to be implemented because it is part of

Figure 7.1  Device list in an empty state

ptg18221911

Accessing a Content Provider from an Activity	 151

the LoaderManager.LoaderCallbacks<Cursor> interface. The onLoaderReset() method
implementation is shown in Listing 7.11.

Listing 7.11  Loading a New Cursor with onLoaderReset()

@Override

public void onLoaderReset(Loader<Cursor> loader) {

 ((DeviceCursorAdapter) recyclerView.getAdapter()).swapCursor(null);

}

The implementation of the onLoaderReset() method is pretty simple. It retrieves the
RecyclerView’s adapter and sets its cursor value to null to prevent the RecyclerView
from performing any additional processing on a cursor that could be invalid.

The first interaction with the DeviceCursorAdapter, other than the call to its
constructor, is the call to DeviceCursorAdapter.swapCursor() on onLoadFinished().
The DeviceCursorAdapter.swapCursor() implementation is shown in Listing 7.12.

Listing 7.12  Implementing DeviceCursorAdapter.swapCursor()

private class DeviceCursorAdapter

extends RecyclerView.Adapter<DeviceViewHolder> {

 public void swapCursor(Cursor newDeviceCursor) {

if (deviceCursor != null) {

deviceCursor.close();

}

deviceCursor = newDeviceCursor;

notifyDataSetChanged();

 }

}

The DeviceCursorAdapter.swapCursor() method mimics the behavior found in
the CursorAdapter class that can be used with ListView. It closes the previous cursor,
if it was not null, updates its internal state to use the new cursor, then makes a call to
DeviceCursorAdapter.notifyDataSetChanged(). The call to DeviceCursorAdapter.
notifyDataSetChanged() causes the RecyclerView to update itself with the new data
from the adapter.

While the RecyclerView is updating in response to the DeviceCursorAdapter.
notifyDataSetChanged() method, it makes a call to DeviceCursorAdapter.
getItemCount() to get the number of items in the data set. Because the adapter is

ptg18221911

152	 Chapter 7 Databases and the UI

backed by a cursor, the number of items in the adapter is the same as the number of
rows in the cursor, or 0 if the cursor is null. See Listing 7.13 for the getItemCount()
implementation.

Listing 7.13  Returning the Number of Items

@Override

public int getItemCount() {

 return (deviceCursor == null ? 0 : deviceCursor.getCount());

}

Once the number of items in the cursor has been returned, RecyclerView starts to
make calls to DeviceCursorAdapter.onBindViewHolder() to populate its view with the
data from the adapter. Listing 7.14 shows the implementation of onBindViewHolder().

Listing 7.14  Updating the UI in onBindViewHolder()

@Override

public void onBindViewHolder(DeviceViewHolder holder, int position) {

 if (deviceCursor != null && deviceCursor.moveToPosition(position)) {

String model = deviceCursor

.getString(deviceCursor

.getColumnIndexOrThrow(DevicesContract

.DeviceManufacturer

.MODEL));

int deviceId = deviceCursor

.getInt(deviceCursor

.getColumnIndexOrThrow(DevicesContract

.DeviceManufacturer

.DEVICE_ID));

String shortName = deviceCursor

.getString(deviceCursor

.getColumnIndexOrThrow(DevicesContract

.DeviceManufacturer

.SHORT_NAME));

holder.name.setText(getString(R.string.device_name,

ptg18221911

Accessing a Content Provider from an Activity	 153

shortName,

model,

deviceId));

holder.uri = ContentUris

.withAppendedId(DevicesContract.Device.CONTENT_URI,

deviceId);

 }

}

The onBindViewHolder() method is passed a DeviceViewHolder which contains
the views for the list item in the RecyclerView and a position that is the offset of the
current item in the RecyclerView. With this information, onBindViewHolder() first
checks to make sure the deviceCursor is not currently null, and if it is not it checks to
see if the cursor point can be moved to the required position. If both of these cases are
true, onBindViewHolder() reads the cursor information and uses it to populate the views
contained in the viewHolder.

For the DeviceListActivity, the ViewHolder contains views for the device model,
device ID, and manufacturer’s name. The holder also keeps track of the URI that can
be used to retrieve the device from the DeviceContentProvider so that when the
user clicks on a device, the URI can be passed to the DeviceDetailsActivity so it
can read the device from the database and show the user more information about the
device.

Listing 7.15 shows the complete implementation of both the DeviceCursorAdapter
and the DeviceViewHolder classes.

Listing 7.15  Implementing DeviceCursorAdapter and DeviceViewHolder

private class DeviceCursorAdapter

extends RecyclerView.Adapter<DeviceViewHolder> {

 private Cursor deviceCursor;

 @Override

 public DeviceViewHolder onCreateViewHolder(ViewGroup parent,

int viewType) {

View view = LayoutInflater.from(parent.getContext())

.inflate(R.layout.list_item_device, parent, false);

return new DeviceViewHolder(view);

 }

ptg18221911

154	 Chapter 7 Databases and the UI

 @Override

public void onBindViewHolder(DeviceViewHolder holder,

int position) {

if (deviceCursor != null

&& deviceCursor.moveToPosition(position)) {

String model = deviceCursor

.getString(deviceCursor

.getColumnIndexOrThrow(DevicesContract

.DeviceManufacturer

.MODEL));

int deviceId = deviceCursor

.getInt(deviceCursor

.getColumnIndexOrThrow(DevicesContract

.DeviceManufacturer

.DEVICE_ID));

String shortName = deviceCursor

.getString(deviceCursor

.getColumnIndexOrThrow(DevicesContract

.DeviceManufacturer

.SHORT_NAME));

holder.name.setText(getString(R.string.device_name,

shortName,

model,

deviceId));

holder.uri = ContentUris

.withAppendedId(DevicesContract.Device.CONTENT_URI,

deviceId);

}

}

 @Override

ptg18221911

Accessing a Content Provider from an Activity	 155

 public int getItemCount() {

return (deviceCursor == null ? 0 : deviceCursor.getCount());

 }

 public void swapCursor(Cursor newDeviceCursor) {

if (deviceCursor != null) {

deviceCursor.close();

}

deviceCursor = newDeviceCursor;

notifyDataSetChanged();

 }

}

private class DeviceViewHolder

extends RecyclerView.ViewHolder

implements View.OnClickListener {

 public TextView name;

 public Uri uri;

 public DeviceViewHolder(View itemView) {

super(itemView);

itemView.setOnClickListener(this);

name = (TextView) itemView.findViewById(R.id.name);

 }

 @Override

 public void onClick(View view) {

Intent detailIntent =

new Intent(view.getContext(),

DeviceDetailActivity.class);

ptg18221911

156	 Chapter 7 Databases and the UI

detailIntent.putExtra(DeviceDetailActivity.EXTRA_DEVICE_URI, uri);

startActivity(detailIntent);

 }

}

Reacting to Changes in Data
Because DeviceListActivity makes use of a cursor loader to read data from a database,
DeviceListActivity has an implicit content observer that gets registered with a cursor
on its behalf to monitor database changes. Internally, a cursor loader creates a content
observer and registers it with a content provider so it can be notified when data is
changed and, in turn, notify the loader manager. This means that when changes to the
database are made, DeviceListActivity automatically reacts and updates itself using the
same API that it used to initialize itself during creation. A change to the database causes
the onLoadFinished() method to be called, which will update the adapter and cause the
RecyclerView to be updated with fresh data.

This is one of the strengths of using a cursor loader instead of directly accessing the
database (along with built-in main thread management). The cursor loader takes care of
registering and unregistering a content observer that is used to react to changes in the
underlying data.

While the cursor loader takes care of the register/unregister content observer
operations, it does not perform some of the other tasks that are necessary to alert the
content observer to changes in the database. Recall from a previous section that a call
to setNotificationUri() is also needed to ensure that the content observer is notified
of database changes. This happens in the DevicesProvider when a cursor is returned
from the query() method.

Listing 7.16 shows the DevicesProvider.query() method.

Listing 7.16  Sending Updates from DevicesProvider.query()

@Override

public Cursor query(@NonNull Uri uri,

String[] projection,

String selection,

String[] selectionArgs,

String sortOrder) throws IllegalArgumentException {

 Cursor cursor;

 if (projection == null) {

throw new IllegalArgumentException("Projection can't be null");

 }

ptg18221911

Accessing a Content Provider from an Activity	 157

 sortOrder = (sortOrder == null ? BaseColumns._ID : sortOrder);

 SQLiteDatabase database = helper.getReadableDatabase();

 final int code = URI_MATCHER.match(uri);

 switch (code) {

case CODE_ALL_DEVICES:

case CODE_ALL_MANUFACTURERS:

cursor = database.query(URI_CODE_TABLE_MAP.get(code),

projection,

selection,

selectionArgs,

null,

null,

sortOrder);

break;

case CODE_DEVICE_ID:

case CODE_MANUFACTURER_ID:

if (selection == null) {

selection = BaseColumns._ID

+ " = "

+ uri.getLastPathSegment();

} else {

throw new IllegalArgumentException("Selection must " +

"be null when specifying ID as part of uri.");

}

cursor = database.query(URI_CODE_TABLE_MAP.get(code),

projection,

selection,

selectionArgs,

null,

null,

sortOrder);

break;

case CODE_DEVICE_MANUFACTURER:

ptg18221911

158	 Chapter 7 Databases and the UI

SQLiteQueryBuilder builder = new SQLiteQueryBuilder();

builder.setTables(String

.format("%s INNER JOIN %s ON (%s.%s=%s.%s)",

DevicesOpenHelper.Tables.DEVICE,

DevicesOpenHelper.Tables.MANUFACTURER,

DevicesOpenHelper.Tables.DEVICE,

DevicesContract.Device.MANUFACTURER_ID,

DevicesOpenHelper.Tables.MANUFACTURER,

DevicesContract.Manufacturer._ID));

final Map<String, String> projectionMap = new HashMap<>();

projectionMap.put(DevicesContract.DeviceManufacturer.MODEL,

DevicesContract.DeviceManufacturer.MODEL);

projectionMap

.put(DevicesContract.DeviceManufacturer.SHORT_NAME,

DevicesContract.DeviceManufacturer.SHORT_NAME);

projectionMap

.put(DevicesContract.DeviceManufacturer.DEVICE_ID,

String.format("%s.%s AS %s",

DevicesOpenHelper.Tables.DEVICE,

DevicesContract.Device._ID,

DevicesContract.DeviceManufacturer.DEVICE_ID));

projectionMap.put(DevicesContract

.DeviceManufacturer.MANUFACTURER_ID,

String.format("%s.%s AS %s",

DevicesOpenHelper.Tables.MANUFACTURER,

DevicesContract.Manufacturer._ID,

DevicesContract

.DeviceManufacturer.MANUFACTURER_ID));

ptg18221911

Accessing a Content Provider from an Activity	 159

builder.setProjectionMap(projectionMap);

cursor = builder.query(database,

projection,

selection,

selectionArgs,

null,

null,

sortOrder);

break;

default:

throw new IllegalArgumentException("Invalid Uri: " + uri);

 }

 cursor.setNotificationUri(getContext().getContentResolver(), uri);

 return cursor;

}

The last operation the DevicesProvider.query() method performs after
it has retrieved the cursor from the database is to make the call to Cursor.
setNotificationUri(), passing in the URI that was specified by the caller. Placing the call
to setNotificationUri() in the content provider instead of the DeviceCursorAdapter
ensures that all cursors returned by the content provider receive updates if the database
changes.

In addition to making the call to setNotificationUri() for each query, the
DevicesProvider needs to makes a call to ContentResolver.notifyChange() whenever
any insert, update, or delete action is performed.

ContentResolver.notifyChange() is what notifies all the registered observers about a
change to a given URI. In order to make sure this notification is sent to all the observers,
DevicesProvider makes this call whenever a database write operation is performed.
Listing 7.17 shows snippets of the insert(), update(), and delete() methods.

Listing 7.17  Snippets of insert(), update(), and delete()

@Override

public Uri insert(@NonNull Uri uri, ContentValues values) {

 // insert operations

ptg18221911

160	 Chapter 7 Databases and the UI

 notifyUris(uri);

 // return uri

}

@Override

public int delete(@NonNull Uri uri,

String selection,

String[] selectionArgs) {

 // delete operations

 notifyUris(uri);

 // return deleted row count

}

@Override

public int update(@NonNull Uri uri,

ContentValues values,

String selection,

String[] selectionArgs) {

 // delete operations

 notifyUris(uri);

 // return updated row count

}

The one complication with calling ContentResolver.notifyChange() directly
is the JOIN between the device and manufacturer tables represented by the
DevicesContract.DeviceManufacturer contract class. Since DevicesContract.
DeviceManufacturer has a different URI from DevicesContract.Device and
DevicesContract.Manufacturer, it must also be notified of changes to either table.
Because this is common functionality needed in the insert(), update(), and delete()
methods, it is implemented in a notifyUris() method which insert(), update(), and
delete() all call. Listing 7.18 contains the implementation of notifyUris().

Listing 7.18  Implementing notifyUris()

private void notifyUris(Uri affectedUri) {

 final ContentResolver contentResolver =

getContext().getContentResolver();

ptg18221911

Summary	 161

 if (contentResolver != null) {

contentResolver.notifyChange(affectedUri, null);

contentResolver.

notifyChange(DevicesContract

.DeviceManufacturer.CONTENT_URI, null);

 }

}

The notifyUris() method has an affectedUri parameter which is the URI that was
used by one of the insert(), update(), or delete() methods. In order to make sure all
ContentObservers are notified of a change, notifyUris() sends an update notification to
the original content URI as well as the URI of the joined tables.

Summary
Once data has been stored in a database, it frequently needs to be read and shown to the
user. Android offers classes to help simplify this task. Using a cursor loader helps relieve
application code from worrying about threading when either reading the database or
updating the UI.

Through the use of content observers, a cursor loader and content provider can notify
activities and fragments of changes to the underlying data source.

When using a RecyclerView, the application code must contain an adapter that
binds the RecyclerView’s adapter to the UI. This chapter provided an example of such
an adapter that can be used in a similar way to how a CursorAdapter is used with a
ListView.

ptg18221911

This page intentionally left blank

ptg18221911

8
Sharing Data with Intents

One of the strengths of Android is the ability to share data between multiple components
of an app as well as with components of an external app. In previous chapters, the content
provider was discussed as a mechanism to perform internal and external data sharing.
While a content provider can be a useful mechanism to share data in Android, it is not
the only method.

This chapter discusses an alternative method for sharing data in Android by using the
Android intent API.

Sending Intents
Intents provide a convenient way to send data from one Android component to another.
They are frequently used to pass data from one activity to another when starting a new
activity or service.

Explicit Intents
Listing 8.1 shows a typical paradigm for starting an activity and passing that activity some
information using an explicit intent.

Listing 8.1  Creating an Explicit Intent

Intent intent = new Intent(CurrentClass.this, TargetClass.class)

.putExtra("NameOfExtra1", payload));

The intent created in Listing 8.1 is referred to as an explicit intent because it explicitly
defines the target Android component that should receive the intent. In Listing 8.1,
TargetClass is the target of the intent because it is passed to the intent’s constructor.
The intent also contains data that the target activity can access and process which is added
to the intent with a call to Intent.putExtra().

While explicit intents are useful for sharing data between components that are internal
to an app, they are not useful for sharing data with external components. To share data
externally, an implicit intent needs to be created.

ptg18221911

164	 Chapter 8 Sharing Data with Intents

Implicit Intents
The only difference between implicit and explicit intents is the data they contain. Implicit
intents are created using the same class as an explicit intent. Listing 8.2 shows the creation
of an implicit intent.

Listing 8.2  Creating an Implicit Intent

Intent intent = new Intent(Intent.ACTION_SEND)

.setType("text/plain")

.putExtra(Intent.EXTRA_TEXT, payload));

Unlike the explicit intent created in Listing 8.1, the intent created in Listing 8.2 does
not specify a target activity. Instead, it provides an action and a MIME type that allow
Android to deliver the intent to the correct activity, which can be either part of the same
app or part of a different app. The action is supplied to the intent constructor, and the
MIME type is set with a call to Intent.setType(). In addition to helping Android find
an activity that can process the intent, the intent’s MIME type provides an indication of
what kind of data the intent holds.

After the intent is created and its MIME type set, a call to Intent.putExtra() is made,
which adds the actual data to the intent. Intent “extras” can be thought of as a key/value
pair collection of data contained in the intent. In Listing 8.2, the data being sent in the
intent (contained in the payload variable) is being added to the intent with the Intent.
EXTRA_TEXT key.

Once the intent has been created, it can be used to start an activity to process the data.

Starting a Target Activity
One important difference between using implicit intents and explicit intents to start
activities is that there might be multiple activities that are capable of handling the implicit
intent. This is because implicit intent activity resolution is based on the intent’s action and
MIME type rather than an actual target component. When multiple activities are capable
of handling an implicit intent, Android displays a dialog to users that allows them to pick
which activity they would like to process the intent. Figure 8.1 shows this dialog.

To start an activity with an implicit intent, the intent either can be directly passed
to the Context.startActivity(), or it can first be wrapped in another intent with a
call to Intent.createChooser(), with the resulting intent being passed to Context.
startActivity(). The first approach, passing directly to Context.startActivity(),
shows the activity chooser from Figure 8.1 only if the user has told Android to ask every
time. The user can override this functionality and decide not to have the chooser shown.

In addition, a runtime exception is thrown if no activity can process the given action
and MIME type. To prevent the exception, it is good practice to make a call to Intent.
resolveActivity() first. Listing 8.3 shows a protected call to Context.startActivity()
without using Intent.createChooser().

ptg18221911

Sending Intents	 165

Listing 8.3  Protected Call to Context.startActivity()

if (intent.resolveActivity(this.getPackageManager()) == null) {

 // Show user something

} else {

 startActivity(intent);

}

Figure 8.1  Activity chooser dialog

ptg18221911

166	 Chapter 8 Sharing Data with Intents

Wrapping the intent with a call to Intent.createChooser() ensures that the activity
chooser is always shown. In addition, it allows an app to have control over the title of
the chooser dialog to present users with some text to guide them through the selection
process. It also prevents the runtime exception should Android not be able to find an
activity to handle the intent. For actions like ACTION_SEND, which have numerous apps
that can implement them, apps will want to force the display of the picker. Actions that
are implemented by one or two apps should allow a default to be set. Listing 8.4 shows
the use of the Intent.createChooser() method.

Listing 8.4  Calling Intent.createChooser()

startActivity(intent.createChooser(intent, "Custom Title"));

Once the user selects an activity from the chooser, that activity starts and receives the intent
to process. The next section discusses how to receive external data from an implicit intent.

Receiving Implicit Intents
Because implicit intents do not specify an Android component to start, Android must keep
a list of which components can handle the various intents. Indicating which activities
can process which intents is done on app installation by adding an intent filter to the
AndroidManifest.xml file for an activity. The intent filter indicates which actions and MIME
types an activity can process so Android can include the activity in the activity chooser dialog
that is shown to the user when an implicit intent is used. Listing 8.5 shows a snippet of an
Android manifest file that declares an activity and defines an intent filter for the activity.

Listing 8.5  Activity with an Intent Filter

<activity

 android:name=".MyActivity">

 <intent-filter>

<action android:name="android.intent.action.SEND"/>

 </intent-filter>

</activity>

In Listing 8.5, the MyActivity class is registered to support the android.intent.action.
SEND action. This means that if another activity calls startActivity() and passes an intent
with the android.intent.action.SEND action, Android adds MyActivity to the list of
activities that can process that intent.

Note
android.intent.action.SEND and Intent.ACTION_SEND are the same action.
Intent.ACTION_SEND is the constant used in Java code and has the value of android.
intent.action.SEND which is used in XML.

ptg18221911

Building an Intent	 167

In addition to filtering based on actions, an intent filter can filter based on MIME types
so that only certain types of data are passed to an activity through an implicit intent. For
example, an activity can be configured to handle only intents with image data by adding a
MIME type of image/png to the intent filter.

When the target activity is started by an implicit intent, the implicit intent can be
retrieved with a call to Activity.getIntent(). Once the intent has been retrieved,
the activity can access the action and MIME type as well as retrieve data from
the intent.

Even though the intent filter from the manifest ensures that only matching intents
are routed to an activity, the action and MIME type might still need to be inspected by
the activity because an intent filter can specify multiple actions and MIME types for
an activity. When this happens, the activity likely needs to process the data differently
depending on the action and MIME type of data. For example, an activity that supports
both textual URL data and binary image data would need to have different functionality
for different intent MIME types.

Listing 8.6 shows a snippet from an Activity.onCreate() method where the intent is
retrieved and verified and the data is retrieved.

Listing 8.6  Handling an Implicit Intent

Intent intent = getIntent();

if (intent != null) {

 if (Intent.ACTION_SEND.equals(intent.getAction())

&& "text/plain".equals(intent.getType())) {

String htmlPayload = intent.getStringExtra(Intent.EXTRA_TEXT);

//.... process htmlPayload

 }

}

So far, the mechanics of sending and receiving data with an implicit intent have
been discussed. While these are important details, the actual data being sent is also very
important. The next sections go into the details of the various actions, MIME types, and
types of data that can be sent with an implicit intent.

Building an Intent
Before sending an implicit intent, the action, MIME type, and data must all be added
to the intent. In previous examples, the ACTION_SEND action was used along with the
text/plain MIME type to send textual data. The intent API allows for additional actions
to be used and supports sending binary data to an activity.

ptg18221911

168	 Chapter 8 Sharing Data with Intents

Actions
When working with intents, multiple actions can be used. By convention, the actions
Intent.ACTION_SEND and Intent.ACTION_SEND_MULTIPLE are typically used to send data
from one activity to another through an implicit intent.

Intent.ACTION_SEND
ACTION_SEND is used to send a single piece of text or binary data to another Android
component. The type of data can be either textual or binary, but there should be only one
piece of data.

With only a single piece of data being sent, one of the overloaded Intent.getExtra()
methods that take non-collection data should be used to store the data in the intent.

All of the examples thus far have used Intent.ACTION_SEND.

Intent.ACTION_SEND_MULTIPLE
ACTION_SEND_MULTIPLE is used to send multiple pieces of data in an intent. In addition
to setting the action, the intent should use an Intent.setExtra() overloaded method
that takes an array or collection of data as a parameter. Listing 8.7 shows the
ACTION_SEND_MULTIPLE action.

Listing 8.7  Using the ACTION_SEND_MULTIPLE Action

String[] urls = {

"URL1",

"URL2",

"URL3"

};

new Intent(Intent.ACTION_SEND_MULTIPLE)

.setType("text/plain")

.putExtra(Intent.EXTRA_TEXT, urls);

When the intent in Listing 8.7 is received by the target activity, the extra data can be
read as an array of strings and handled accordingly.

Setting the action can let a target activity know how many pieces of data are included
in an implicit intent. Setting the MIME type indicates the type of data in the intent.
Thus far, all the examples have covered only text data. It is also possible to send binary
data in an implicit intent.

Extras
Extras are used in an intent to hold the actual data for the intent. As mentioned previously,
the intent extra data can be thought of as a collection of key/value pairs. By convention,

ptg18221911

Building an Intent	 169

an implicit intent should use two different keys when sending text and binary data:
Intent.EXTRA_TEXT should be used when sending text data, and Intent.EXTRA_STREAM
should be used when sending binary data.

Because the data is stored using different keys, the target activity needs to know which
key to use in order to read the data. The MIME type is a good indicator of which type of
data the intent contains. For example, an intent with a MIME type of text/* should have
its data populated in the Intent.EXTRA_TEXT key, whereas an intent with a MIME type of
image/* should use the Intent.EXTRA_STREAM key to read the data.

EXTRA_TEXT
EXTRA_TEXT is used to store textual data in an implicit intent. In most cases, the type
of data in the intent is either text/plain, or text/html if the text contains HTML.
Creating an intent to send text data was presented in Listing 8.2. The payload to the
Intent.putExtra() method call contains the textual data that is sent to an activity.

EXTRA_STREAM
EXTRA_STREAM is used to store binary data in an intent. This could be an image, sound file,
or anything else that can be represented as binary content. When using EXTRA_STREAM,
the MIME type set on the intent becomes even more important as it indicates how the
receiving activity should handle the binary data. For example, to send a JPEG in an intent,
Listing 8.8 might be used.

Listing 8.8  Sending a JPEG Extra

Intent intent = new Intent(Intent.ACTION_SEND)

.setType("image/jpeg")

.putExtra(Intent.EXTRA_STREAM, payload));

The intent in Listing 8.8 allows the receiving activity to access the actual image data
from the intent.

Extra Data Types
Intents can hold many different types of data as “extra” fields. To support the different
types, the Intent class has multiple overloaded putExtra() methods, all taking a string
as the name of the extra and a second parameter as the data itself. Among the overloaded
putExtra() methods are variants that accept each of the Java primitive data types (byte,
short, int, long, float, double, boolean, and char) as well as arrays of all the Java
primitives. The Intent class also contains overloaded methods to add an extra of type
String and String[].

Intent extras can get a little more complicated when other objects need to be added
to an intent. While the Intent class does have methods to accept a class implementing
Serializable, this tends to be inefficient as it relies on Java serialization and deserialization.
Instead, Android includes a Parcelable interface that should be used to add objects to intents.

ptg18221911

170	 Chapter 8 Sharing Data with Intents

Implementing Parcelable
The Parcelable interface allows a class to determine how it should serialize and deserialize
itself for use in an intent. Listing 8.9 shows the implementation of a class that implements
the Parcelable interface.

Listing 8.9  Parcelable Implementation

public class ParcelableClass implements Parcelable {

 private String stringField;

 private int intField;

 private float floatField;

 private boolean booleanField;

 public String getStringField() {

return stringField;

 }

 public void setStringField(String stringField) {

this.stringField = stringField;

 }

 public int getIntField() {

return intField;

 }

 public void setIntField(int intField) {

this.intField = intField;

 }

 public float getFloatField() {

return floatField;

 }

 public void setFloatField(float floatField) {

this.floatField = floatField;

 }

ptg18221911

Building an Intent	 171

 protected ParcelableClass(Parcel in) {

this.stringField = in.readString();

this.intField = in.readInt();

this.floatField = in.readFloat();

this.booleanField = in.readInt() == 1;

 }

 @Override

 public int describeContents() {

return 0;

 }

 @Override

 public void writeToParcel(@NonNull Parcel dest, int flags) {

dest.writeString(stringField);

dest.writeInt(intField);

dest.writeFloat(floatField);

dest.writeInt(booleanField ? 1 : 0);

 }

 public static final Creator<ParcelableClass> CREATOR =

new Creator<ParcelableClass>() {

@Override

public ParcelableClass createFromParcel(Parcel in) {

return new ParcelableClass(in);

}

@Override

public ParcelableClass[] newArray(int size) {

return new ParcelableClass[size];

}

 };

}

ptg18221911

172	 Chapter 8 Sharing Data with Intents

The class in Listing 8.9 is a bean-style class containing member data and methods to both
access and set the member data (“getters” and “setters”). The Parcelable support is shown in
bold text in Listing 8.9, including a non-public constructor, concrete method implementations
describeContents() and writeToParcel(), and the CREATOR member variable.

Writing a Parcel
The Parcelable.writeToParcel() method is responsible for deconstructing a class into
a parcel object which is used by the Android SDK. The parcel object that is created is used
to eventually reconstruct the class.

In Listing 8.9, the writeToParcel() method uses overloaded write methods to
add the member data from ParcelableClass to the parcel object. The Parcel class has
methods for different data types which add an element of type safety to the parceling
operation. Notice in Listing 8.9 that there is no method to write a boolean value to the
parcel. Instead, an int value is used to record the value of a boolean field.

CREATOR
The CREATOR member variable is required for any class that implements Parcelable.
The Android SDK mandates that to use the parcelable API, a class must contain a field
named “CREATOR” and that field must be a non-null static value that implements
the Parcelable.Creator interface. The Parcelable.Creator interface contains methods
to create a new array of the class type, in this case ParcelableClass, and to create a
ParcelableClass instance from a parcel object. The parcel object contains all the data
to reconstruct an instance of ParcelableClass. The parcel object that is passed to the
CREATOR.createFromParcel() method will contain the same values as the parcel object
that was returned from the call to ParcelableClass.writeToParcel().

Reading a Parcel
The protected ParcelableClass() constructor is used to reconstruct a
ParcelableClass object from a parcel object. Notice in Listing 8.9 that the constructor
reads the parcel object and sets the member variables of a ParcelableClass instance.

Notice that there are no field names associated with reading the values inside a
parcel object. This is because the Parcel class uses the order in which data was added to
internally store values. This means that values must be read from a parcel in the same order
in which they were written.

What Not to Add to an Intent
With the use of Parcelable, it is possible to add almost any type of data to an intent and
have it sent to other Android components, potentially across process boundaries. However,
it is important to keep in mind that not every class should be added to an intent for
transmission to other Android components.

The Cursor class was introduced in earlier chapters of this book when discussing
reading data from a database. While it might be tempting to add a cursor to an intent,
by using either standard Java serialization or Parcelable, it can be problematic. The cursor
class contains low-level connections to the SQLite database which allow Android to update

ptg18221911

ShareActionProvider	 173

the cursor when data in the database changes. Attempting to deconstruct a cursor, add it
to an intent, and reconstruct it in a different component breaks these connections, possibly
causing the cursor to no longer respond to database updates. In addition, there is a limit to
the amount of memory that an intent can use when moving from one Android component
to another. Using a large cursor in an intent may cause a runtime exception should the
cursor contain too much data.

ShareActionProvider
The ShareActionProvider allows an activity to make use of the app bar to aid in the
sharing of data using an intent. In previous examples, the code to create an implicit intent
to start an activity could be activated with a button click. If action and MIME types are
included in the filters used by multiple activities, users would then be presented with the
activity chooser dialog where they can tell Android how they want to handle the intent.

The ShareActionProvider removes some of the code needed to send implicit intents
and handles the cases where multiple activities can respond to it. Recall Figure 8.1, which
displayed the activity chooser dialog. The dialog is displayed when the user clicks the

Figure 8.2  Share action provider

ptg18221911

174	 Chapter 8 Sharing Data with Intents

“share” button on the app bar. Contrast that to Figure 8.2, which shows the share action
being displayed after the user clicks the “share” button on the app bar.

Notice in Figure 8.2 that the list of activities that can process the intent now appears
as a spinner on the app bar. Also, the user’s last selection appears to the right of the
spinner. This allows the user to reuse the last selection without having to perform an
additional click.

Implementing the ShareActionProvider involves adding a menu to an activity, setting
the intent that the ShareActionProvider should use to start an activity, and responding
to click events from the app bar icon.

Share Action Menu
Before a ShareActionProvider can be used, it must be included in a menu that will
be inflated by an activity. Listing 8.10 shows a menu resource definition that includes a
button that is attached to a ShareActionProvider.

Listing 8.10  Share Action Provider Menu Item

<menu xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto">

 <item android:id="@+id/action_share"

android:title="@string/action_share"

app:showAsAction="always"

app:actionProviderClass="android.support.v7.widget.ShareAction

➥Provider"/>

</menu>

Note
Because the ShareActionProvider was not introduced until API 14, the support library
version is used to backport functionality to older versions.

The ShareActionProvider is a specialization of the more general Action
Provider class. To use a ShareActionProvider in a menu, it must be declared as the
ShareProvider for a menu item. In Listing 8.10, this is done with the following:

app:actionProviderClass="android.support.v7.widget.ShareActionProvider"

Once the ActionProvider is declared in the menu resource file, the activity needs to
configure the ShareActionProvider to send the appropriate implicit intent when it is

ptg18221911

clicked. Listing 8.11 shows an implementation of Activity.onCreateOptionsMenu()
that configures the ShareActionProvider.

Listing 8.11  Configuring the Provider with onCreateOptionsMenu

@Override

public boolean onCreateOptionsMenu(Menu menu) {

 MenuInflater inflater = getMenuInflater();

 inflater.inflate(R.menu.activity_details, menu);

 MenuItem menuItem = menu.findItem(R.id.action_share);

 shareIntent = new Intent(Intent.ACTION_SEND)

.setType("text/plain")

.putExtra(Intent.EXTRA_TEXT, payload);

 ShareActionProvider provider =

(ShareActionProvider)

MenuItemCompat.getActionProvider(menuItem);

 provider.setShareIntent(shareIntent);

 return true;

}

The code in Listing 8.11 first finds the MenuItem that is associated with the
ShareActionProvider. This is the MenuItem that was declared in the menu resource from
Listing 8.10. After finding the correct MenuItem, the MenuItem’s ActionProvider can be
retrieved. The ShareActionProvider is provided with the implicit intent it will use to
start an activity when the app bar action item is clicked.

The intent that is created and passed to the ShareActionProvider follows the
same form as the intents discussed previously in this chapter. This is because the
ShareActionProvider does not manipulate or interfere with how the intent shares
information. Instead, it only provides a simple way to add a UI around sharing data.

Summary
Previous chapters discussed how to use a ContentProvider to share data across activities
in different apps. This can also be done using implicit intents in Android.

Summary	 175

ptg18221911

176	 Chapter 8 Sharing Data with Intents

Implicit intents do not specify an Android component that will be started but
instead specify an action and MIME type which are used to find activities that can receive
the data.

Implicit intents can contain either text or binary data, and the different types of data
should be set using different keys in the intent. Using the MIME type, an implicit intent
can define which type of data it contains.

Using a ShareActionProvider can be a convenient way to add share functionality
to an activity. The ShareActionProvider still uses an implicit intent to share data but
limits the amount of code that is necessary to send the intent while using a common
UX pattern to allow the user to share data.

ptg18221911

9
Communicating with

Web APIs

As both the complexity of mobile applications and the capabilities of mobile devices
increase, app developers frequently find themselves in a situation where their app needs to
communicate with a Web API. While this communication vastly increases the capability
of an app, it also injects significant complexity from both the user experience and
technical standpoints. This chapter discusses some of the problems that commonly occur
with app-to-server communication, and it presents some tools and guidance for making
app-to-server communication easier for the developer and transparent to the user.

REST and Web Services
A common architecture for creating a system that allows a mobile device to communicate
with a back-end server is a Web service that is based on the Representational State
Transfer (REST) architecture with which mobile devices communicate. With a
REST-based approach, the server allows the mobile app to read data as well as add and
update its data. A REST architecture is a common solution for this problem and is well
supported across multiple platforms and languages used for the back-end implementation.

REST Overview
REST is a software architecture that was introduced by Roy Thomas Fielding in 2000.
While REST is not a formal specification, it does provide a list of constraints that a true
RESTful Web service needs to follow. While many Web services claim to be RESTful, few
actually follow all those constraints. The formal list of REST constraints is as follows:

■■ Client-server: The client(s) and the server have different roles in the system. This
provides separation of concerns to the REST system. The client does not need to
worry about details such as data storage, and the server can ignore the details of
displaying the data to the user. The REST API is the interface between the clients
and the server.

■■ Stateless: The server does not store any client information between requests. Each
request is entirely self-contained and provides all the data needed for the server to
perform the desired operation.

ptg18221911

178	 Chapter 9 Communicating with Web APIs

■■ Cacheable: Responses from the server are labeled as either cacheable or
non-cacheable so a component in the system may save the response for reuse.

■■ Layered system: All layers in the system should be self-contained such that they
do not know the implementation details of other layers in the systems. This allows
layers to be seamlessly added to or removed from the system when needed.

■■ Code on demand: Client functionality can be altered, when appropriate, by the
server without changing the server functionality.

■■ Uniform interface: The REST interface is the same for all servers and clients in
the system.

Even though a Web service may not follow all the REST constraints, many do follow
at least some of them, giving them similar architecture and the ability to be accessed in
a similar manner. It can be more appropriate to refer to these kinds of Web resources as
Web APIs rather than Web services as their intent is to provide an API that is accessible by
remote machines.

REST-like Web API Structure
Many modern Web APIs follow an architecture that is similar to REST. While the Web
APIs may not implement all of the formal REST constraints, many implement at least a
few. The reason for the divergence is usually convenience. For many systems it does not
make sense to incur the additional engineering effort to implement every formal REST
constraint.

For the purposes of this chapter, it is assumed that accessing a Web API means
communicating with a remote API that uses the HTTP protocol with JSON as the data
interchange format. This is becoming more common as remote services look to provide a
lightweight interface for remote clients.

What makes these APIs REST-like is the way they are accessed. Typically, accessing the
API means using one of the standard HTTP methods and sending the request to a specific
URL. The path segment of the URL often defines an operation or piece of data that
should be either accessed or manipulated.

For example, Twitter uses a RESTful API that allows remote clients to access pieces of
data, such as the contents of a user’s Twitter feed, and perform operations such as posting
a tweet. For the Twitter RESTful API, the list of tweets that shows up on a user’s feed can
be accessed by sending the HTTP GET method to https://api.twitter.com/1.1/statuses/
home_timeline.json. Assuming the request also includes the correct credentials, the Twitter
API returns a JSON response that represents the user’s Twitter feed.

This API architecture supports writing to the Web API. In the case of the Twitter Web
API, a client can submit a tweet for a user by sending the HTTP POST method to
https://api.twitter.com/1.1/statuses/update.json. The HTTP POST request often carries
a payload, in this case the contents of the tweet, along with any other parameters that are
needed to satisfy the request. The payload for a POST request is also in JSON, and the Web
API can respond with a response.

https://api.twitter.com/1.1/statuses/home_timeline.json
https://api.twitter.com/1.1/statuses/home_timeline.json
https://api.twitter.com/1.1/statuses/update.json

ptg18221911

Accessing Remote Web APIs	 179

While REST and REST-like APIs are not the only ways to support data access by
remote clients, they are becoming more widely used because of their simplicity. Publishing
an API entails setting up an HTTP server to handle the requests and making sure the
documentation that describes the API is publicly available.

The remainder of this chapter uses the terms Web API and Web service interchangeably
to mean a remote Web resource that follows this REST-like pattern.

Accessing Remote Web APIs
As stated in the beginning of the chapter, accessing a Web service from Android can be
complicated. While the standard Android SDK does contain the tools to successfully access
a Web service, it leaves many implementation details to the developer. The Android SDK
contains multiple HTTP clients as well as classes to help with the reading and writing of
JSON. This section describes the APIs that can be used to access an HTTP/JSON Web
service as well as some of the problems that need to be solved to use them.

Accessing Web Services with Standard Android APIs
In order to communicate with a Web service that uses HTTP as the protocol and JSON
as the interchange format, an app must use an HTTP client to send requests to and receive
responses from the Web service. Historically, Android has had multiple HTTP clients.
However, as of Gingerbread (2.3), HttpURLConnection is the preferred HTTP client to
use, and the other Web clients are considered deprecated.

Communicating with the Web Service
Before an HTTP request can be sent to the Web service, a connection to an HTTP server
must be established. Listing 9.1 shows code that opens a connection to an HTTP server
and sends the HTTP GET method.

Listing 9.1  Opening an HttpURLConnection Connection

HttpURLConnection connection = null;

StringBuffer buffer = new StringBuffer();

BufferedReader reader = null;

try {

 connection = (HttpURLConnection) new URL(params[0]).openConnection();

 InputStream input =

new BufferedInputStream(connection.getInputStream());

 reader = new BufferedReader(new InputStreamReader(input));

 String line;

ptg18221911

180	 Chapter 9 Communicating with Web APIs

 while ((line = reader.readLine()) != null) {

buffer.append(line);

 }

 // Process data

} catch (IOException | JSONException e) {

 // Log error

} finally {

 if (connection != null) {

connection.disconnect();

 }

 if (reader != null) {

try {

reader.close();

} catch (IOException e) {

// do something meaningless

}

 }

}

In addition to making the request to the Web service, the code in Listing 9.1 reads
the response and makes use of the JSON API that is included with Android to parse the
response for further processing.

While Listing 9.1 is not overly complicated, it does present some complexities that
will only increase as the number of requests that an app needs to make increases. For
example, the code should also handle any error cases that may arise. These can be issues
such as the device not currently being connected to a network, a slow network connec-
tion resulting in a timeout, or any of the error responses that the Web service may return.
It is the job of the developer to handle all these cases in a way that presents a good user
experience.

Something else to consider is that Listing 9.1 must not be run on the main thread
because it accesses the network. On devices running Honeycomb and above, accessing a
network resource on the main thread results in a NetworkOnMainThreadException being
thrown. Older versions of Android just cause the main thread to pause, which could result
in ANR issues. In addition to making the request off the main thread, the app must make
sure to update the UI on the main thread. Failure to update a view on the main thread
causes Android to throw runtime exceptions that could crash an app.

ptg18221911

Accessing Remote Web APIs	 181

To handle the threading complexities, a common approach is to use some of the
Android threading APIs such as AsyncTask. Listing 9.2 shows the code updated to run
with an AsyncTask.

Listing 9.2  Using AsyncTask to Make the Request

public class NetworkCallAsyncTask

 extends AsyncTask<String, Void, JSONObject> {

 @Override

 protected JSONObject doInBackground(String... params) {

HttpURLConnection connection = null;

StringBuffer buffer = new StringBuffer();

BufferedReader reader = null;

JSONObject response = null;

try {

connection =

(HttpURLConnection) new URL(params[0])

.openConnection();

InputStream input =

new BufferedInputStream(connection.getInputStream());

reader = new BufferedReader(new InputStreamReader(input));

String line;

while ((line = reader.readLine()) != null) {

buffer.append(line);

}

response = new JSONObject(buffer.toString());

} catch (IOException | JSONException e) {

// Log error

} finally {

if (connection != null) {

ptg18221911

182	 Chapter 9 Communicating with Web APIs

connection.disconnect();

}

if (reader != null) {

try {

reader.close();

} catch (IOException e) {

// do something meaningless

}

}

}

return response;

 }

 @Override

 protected void onPostExecute(JSONObject response) {

super.onPostExecute(response);

// update display

 }

}

// Activity that will use the NetworkCallAsyncTask

public class NetworkActivity extends Activity {

 @Override

 protected void onStart() {

super.onStart();

new NetworkCallAsyncTask().execute("http://remote-web-server");

 }

}

With the updates in Listing 9.2, the request is now sent on a background thread,
and the JSON response can be handled on the UI thread, allowing the UI to
be updated in onPostExecute(). The Web service request starts with the call to
NetworkCallAsyncTask.execute() in the activity’s onStart() method.

ptg18221911

Accessing Remote Web APIs	 183

While the code in Listing 9.2 does address the threading issues, it can still be
problematic. When making network calls, it is important to remember that many factors
contribute to the overall time it takes the request/response pair to make a round trip
from the device to the Web service and back. Network speed, server load, request
size, response size, and the time it takes to parse the response can all lead to a request/
response pair taking multiple seconds to transmit. While the asynchronous HTTP call is
running on a background thread (preventing a janky UI, or ANRs), the user can navigate
away from the activity after the request has been sent but before the response has been
received by the device. When this happens, Android may destroy the activity. If the
activity gets destroyed, attempting to update the activity’s views causes another runtime
exception to be thrown.

To handle this case, the activity that starts the AsyncTask must cancel the task before
it becomes detached from its view. In addition, the AsyncTask needs to check if the task
has been canceled. Listing 9.3 shows the updated code to handle the lifecycle changes and
canceling of the AsyncTask.

Listing 9.3  Adding Cancel Support to AsyncTask

public class NetworkCallAsyncTask

extends AsyncTask<String, Void, JSONObject> {

 @Override

 protected JSONObject doInBackground(String... params) {

HttpURLConnection connection = null;

StringBuffer buffer = new StringBuffer();

BufferedReader reader = null;

JSONObject response = null;

try {

connection =

(HttpURLConnection) new URL(params[0])

.openConnection();

InputStream input =

new BufferedInputStream(connection.getInputStream());

reader = new BufferedReader(new InputStreamReader(input));

String line;

while ((line = reader.readLine()) != null) {

ptg18221911

184	 Chapter 9 Communicating with Web APIs

buffer.append(line);

}

if (!isCancelled()) {

response = new JSONObject(buffer.toString());

}

} catch (IOException | JSONException e) {

// Log error

} finally {

if (connection != null) {

connection.disconnect();

}

if (reader != null) {

try {

reader.close();

} catch (IOException e) {

// do something meaningless

}

}

}

return response;

 }

 @Override

 protected void onPostExecute(JSONObject response) {

super.onPostExecute(response);

if (!isCancelled()) {

// update display

}

 }

}

ptg18221911

Accessing Remote Web APIs	 185

// Activity that will use the NetworkCallAsyncTask

public class NetworkActivity extends Activity {

 private NetworkCallAsyncTask networkCallAsyncTask;

 @Override

 protected void onStart() {

super.onStart();

networkCallAsyncTask =

new NetworkCallAsyncTask().execute("http://remote-web-server");

 }

 @Override

 protected void onStop() {

super.onStop();

networkCallAsyncTask.cancel(true);

 }

}

With the code in Listing 9.3, both the threading and the lifecycle issues have been
addressed.

While use of an AsyncTask is one solution for dealing with the threading and lifecycle
complexities of communicating with a Web service, it is not the only one. Other popular
solutions involve using an IntentService, or manually starting and managing threads.
Rather than building a complex threading solution from scratch, many developers use
frameworks like RxJava. However, RxJava is not part of the Android SDK and would
need to be added as a third-party dependency.

Once an app is able to communicate with a Web service, it must process the response it
receives from the Web service into a format that can be used by the rest of the app’s code.
When using a Web service that uses JSON as an interchange format, this usually means
either converting the returned JSON into a Java object that is used by the app or saving
the values in a database. The raw JSON can be used as a representation of the app’s state,
but this tends to be tedious.

Working with JSON
As shown in Listings 9.1 through 9.3, the Android SDK contains an API for working with
JSON. Listing 9.4 shows the NetworkCallAsyncTask with code to convert the JSON
response that was received from the Web service to Java objects using the default Android
JSON API.

ptg18221911

186	 Chapter 9 Communicating with Web APIs

Listing 9.4  Converting JSON to a Data Model

public class NetworkCallAsyncTask

extends AsyncTask<String, Void, List<Manufacturer>> {

 @Override

 protected List<Manufacturer> doInBackground(String... params) {

HttpURLConnection connection = null;

StringBuffer buffer = new StringBuffer();

BufferedReader reader = null;

List<Manufacturer> manufacturers = new ArrayList<>();

try {

connection =

(HttpURLConnection) new URL(params[0])

.openConnection();

InputStream input =

new BufferedInputStream(connection.getInputStream());

reader = new BufferedReader(new InputStreamReader(input));

String line;

while ((line = reader.readLine()) != null) {

buffer.append(line);

}

if (!isCancelled()) {

JSONObject response = new JSONObject(buffer.toString());

JSONArray jsonManufacturers =

response.getJSONArray("manufacturers");

for (int i = 0; i < jsonManufacturers.length(); i++) {

JSONObject jsonManufacturer =

jsonManufacturers.getJSONObject(i);

ptg18221911

Accessing Remote Web APIs	 187

Manufacturer manufacturer = new Manufacturer();

manufacturer

.setShortName(jsonManufacturer

.getString("short_name"));

manufacturer

.setLongName(jsonManufacturer

.getString("long_name"));

JSONArray jsonDevices =

jsonManufacturer.getJSONArray("devices");

List<Device> devices = new ArrayList<>();

for (int j = 0; j < jsonDevices.length(); j++) {

JSONObject jsonDevice =

jsonDevices.getJSONObject(j);

Device device = new Device();

device.setDisplaySizeInches((float) jsonDevice

.getDouble("display_size_inches"));

device.setNickname(jsonDevice

.getString("nickname"));

device.setModel(jsonDevice.getString("model"));

devices.add(device);

}

ptg18221911

188	 Chapter 9 Communicating with Web APIs

manufacturer.setDevices(devices);

manufacturers.add(manufacturer);

}

}

} catch (IOException | JSONException e) {

// Log error

} finally {

if (connection != null) {

connection.disconnect();

}

if (reader != null) {

try {

reader.close();

} catch (IOException e) {

// do something meaningless

}

}

}

return manufacturers;

 }

 @Override

 protected void onPostExecute(List<Manufacturer> manufacturers) {

super.onPostExecute(manufacturers);

if (!isCancelled()) {

// update display

}

 }

}

ptg18221911

Accessing Remote Web APIs	 189

// Activity that will use the NetworkCallAsyncTask

public class NetworkActivity extends Activity {

 private NetworkCallAsyncTask networkCallAsyncTask;

 @Override

 protected void onStart() {

super.onStart();

networkCallAsyncTask =

new NetworkCallAsyncTask().execute("http://remote-web-server");

 }

 @Override

 protected void onStop() {

super.onStop();

networkCallAsyncTask.cancel(true);

 }

}

In Listing 9.4, the JSON response from the Web service is converted to Java POJOs
using the JSON API that comes with the Android SDK. The conversion is a manual
process with the app developer mapping all the JSON data to the Java objects.

At this point, we have a reasonable implementation of an architecture that can support
sending and receiving data from a remote Web service. However, the solution presented
in Listing 9.4 is a very manual one and needs to be changed and updated as new API
calls are added. In addition, as the JSON returned from the Web service grows, the
NetworkCallAsyncTask will need to be updated to map the JSON to model objects.
While this approach works, there are other tools and libraries that simplify the code by
addressing some of these issues (threading, activity lifecycle, JSON parsing) out of the box.
The next sections discuss two of these solutions: Retrofit and Volley.

Accessing Web Services with Retrofit
Retrofit (https://square.github.io/retrofit/) is a popular open-source solution for
communicating with a Web service that supports HTTP. Retrofit can ease the pain of
communicating with a remote Web service by handling the communication and threading
details. Instead of needing to worry about making a request off the main thread, and
handling the response on the main thread, an app only needs to let Retrofit know which
request it needs to make, and Retrofit does the rest.

https://square.github.io/retrofit/

ptg18221911

190	 Chapter 9 Communicating with Web APIs

Along with handling the low-level communication details, Retrofit supports using other
third-party libraries to handle the serialization/deserialization of requests and responses.
Because Retrofit allows these converters to be specified by the app, it can support multiple
interchange formats, such as JSON, XML, protocol buffers, and so on.

In addition to handling the communication and serialization support, Retrofit has
support for canceling a request that has been sent but has not received a response. This
allows developers to work around the issues that are caused by an activity attempting to
update a view when it is no longer alive.

Adding Retrofit to an Android Project
Because Retrofit is a third-party library, it must be added to a project as a dependency.
For Gradle-backed Android projects, this is as easy as adding the Retrofit entries to the
project’s build.gradle file. Listing 9.5 shows the typical Retrofit declarations in a
build.gradle file.

Listing 9.5  Adding Retrofit to build.gradle

final RETROFIT_VERSION = '2.0.0'

compile "com.squareup.retrofit2:retrofit:${RETROFIT_VERSION}"

compile "com.squareup.retrofit2:converter-gson:${RETROFIT_VERSION}"

compile "com.squareup.okhttp3:logging-interceptor:3.2.0"

Listing 9.5 has two dependencies for Retrofit: the core Retrofit library (com.
squareup.retrofit2:retrofit) and the GSON converter (com.squareup.
retrofit2:converter-gson).

The core Retrofit library is what adds the base Retrofit support to the project. This
includes the ability to communicate asynchronously with a Web service off the main
thread and receive the response on the main thread. The ability to cancel a request is also
included in the core library.

The Retrofit GSON converter allows Retrofit to use GSON to transform a JSON
response into Java POJOs for use in the app. GSON is a popular JSON library written
by Google. It can be used to bind JSON objects to Java objects by using either matching
property names or annotations. A library like GSON can replace the standard Android
JSON API and eliminate the need to manually map JSON objects to Java objects.

The third dependency (compile "com.squareup.okhttp3:logging-
interceptor:3.2.0") in Listing 9.5 adds a library that provides HTTP request and
response logging. This will be discussed in more detail in the next section.

Once the build.gradle file has been updated with the code from Listing 9.5, Gradle
automatically downloads the required files and adds them to the project.

Using Retrofit
Once Retrofit has been added to a project, it can be used to ease the pain of
communicating with a remote Web service. In order to use Retrofit, an interface must first
be declared that represents the calls that are supported by the Web service. This interface

ptg18221911

Accessing Remote Web APIs	 191

allows the rest of the app to use the Web service as if it were a class containing methods
for each of the calls the Web service supports. This adds an object-oriented feel to Web
service communication as the code using the interface simply makes method calls on
an implementation of the interface, passing Java objects as parameters and receiving Java
objects as the result. The actual implementation of the interface is defined by Retrofit.
Listing 9.6 shows the interface for a Web service that contains a single call to support the
device database app. It returns the list of devices and manufacturers.

Listing 9.6  Defining the Web Service Interface

public interface DeviceService {

 @GET("v2/570bbaf6110000b003d17e3a")

 Call<ManufacturersAndDevicesResponse> getManufacturersAndDevices();

}

In Listing 9.6, the DeviceService interface is declared containing the method
getManufacturersAndDevices(). Notice that there is a @GET annotation attached to
the getManufacturersAndDevices() method. The @GET annotation tells Retrofit that
the HTTP request should be made using the HTTP GET method. In addition, the @GET
annotation contains the path for the Web service call. The rest of the URL, protocol and
host, is defined when retrieving an implementation of the DeviceService interface from
Retrofit.

The getManufacturersAndDevices() method returns an implementation of the Call
interface. The returned Call implementation can be used to make either a synchronous
or an asynchronous call to the Web service. A synchronous Web service request is made on
the current thread, and an asynchronous request is made on a background thread.

Listing 9.7 shows how to use Retrofit to get an implementation of the DeviceService
interface defined in Listing 9.6. Since the configuration of Retrofit often needs to be the
same for the entire app, it can be convenient to wrap the configuration in a singleton. The
initialization of Retrofit can also be expensive from a performance perspective, giving
added motivation to wrap the Retrofit.Builder method calls in a singleton.

Listing 9.7  Configuring Retrofit

public class WebServiceClient {

 private static final String TAG =

WebServiceClient.class.getSimpleName();

 private static WebServiceClient instance = new WebServiceClient();

 private final DeviceService service;

ptg18221911

192	 Chapter 9 Communicating with Web APIs

 public static WebServiceClient getInstance() {

return instance;

 }

 private WebServiceClient() {

final Gson gson = new GsonBuilder()

.setFieldNamingPolicy(FieldNamingPolicy

.LOWER_CASE_WITH_UNDERSCORES)

.create();

Retrofit.Builder retrofitBuilder = new Retrofit.Builder()

.baseUrl("http://www.mocky.io")

.addConverterFactory(GsonConverterFactory.create(gson));

if (BuildConfig.DEBUG) {

final HttpLoggingInterceptor loggingInterceptor =

new HttpLoggingInterceptor(new HttpLoggingInterceptor

.Logger() {

@Override

public void log(String message) {

Log.d(TAG, message);

}

});

retrofitBuilder.callFactory(new OkHttpClient

.Builder()

.addNetworkInterceptor(loggingInterceptor)

.build());

loggingInterceptor.setLevel(HttpLoggingInterceptor.Level.BODY);

}

service = retrofitBuilder.build().create(DeviceService.class);

 }

ptg18221911

Accessing Remote Web APIs	 193

 public DeviceService getService() {

return service;

 }

}

In order to use GSON with Retrofit, the GsonBuilder must be used to create and
configure a GSON instance which then needs to be passed to Retrofit.Builder. In
Listing 9.7, the GsonBuilder builds the GSON instance and configures it with the
LOWER_CASE_WITH_UNDERSCORES naming policy. This constant is used to control how
GSON maps JSON field names into Java POJO field names. More specifically, it maps
underscores in the JSON properties to camel-case property names when creating Java
POJOs from the JSON response.

Once the GSON instance has been created, it can be passed to the Retrofit.Builder,
which generates the Retrofit-backed service that implements the DeviceService
interface and is used by the rest of the app to access the Web service. Notice that the
Retrofit.Builder is also used to define the base URL for the Web service. Remember
from Listing 9.6 that the methods on the DeviceService interface contain annotations
that specify the path of the Web service call. The base URL passed to the Retrofit.
Builder is prepended to each of the paths to define the full URL of the Web service
call. For example, the full URL of the getManufacturersAndDevices call is
http://www.mocky.io/v2/570bbaf6110000b003d17e3a.

Once the Retrofit service has been configured with the Retrofit.Builder, the code
in Listing 9.7 adds request/response logging to the Retrofit service for debug builds.

Retrofit uses another library, OkHttp, as its actual HTTP client. OkHttp can be thought
of as a replacement for HttpURLConnection from earlier in the chapter. OkHttp has a
powerful feature known as interceptors which allow developers to define code that can
be run while processing a Web service request or response. In the case of Listing 9.7, an
OkHttpLoggingInterceptor is added to the OkHttpClient used by Retrofit for DEBUG
builds. The OkHttpLoggingInterceptor implementation simply prints out information
about each request or response that is processed by the OkHttpClient. This information can
be really useful when debugging integration issues between the app and the Web service.
Listing 9.8 shows the information that is sent to LogCat for a request/response pair.

Listing 9.8  OkHttpLoggingInterceptor Output

D/WebServiceClient: --> GET http://www.mocky.io/v2/570bbaf6110000b003d17e3a

➥ http/1.1

D/WebServiceClient: Host: www.mocky.io

D/WebServiceClient: Connection: Keep-Alive

D/WebServiceClient: Accept-Encoding: gzip

D/WebServiceClient: User-Agent: okhttp/3.2.0

http://www.mocky.io/v2/570bbaf6110000b003d17e3a

ptg18221911

194	 Chapter 9 Communicating with Web APIs

D/WebServiceClient: --> END GET

D/WebServiceClient: <-- 200 OK http://www.mocky.io/v2/570bbaf6110000b003d17

➥e3a(116ms)

D/WebServiceClient: Server: Cowboy

D/WebServiceClient: Connection: close

D/WebServiceClient: Content-Type: application/json; charset=utf-8

D/WebServiceClient: Date: Wed, 13 Apr 2016 03:34:25 GMT

D/WebServiceClient: Via: 1.1 vegur

D/WebServiceClient: OkHttp-Sent-Millis: 1460508929836

D/WebServiceClient: OkHttp-Received-Millis: 1460508929950

D/WebServiceClient: {

"manufacturers": [

{

"short_name": "Samsung",

"long_name": "Samsung Electronics",

"devices": [

{

"model": "Nexus S",

"nickname": "Crespo",

"display_size_inches": 4.0,

"memory_mb": 512

},

{

"model": "Galaxy Nexus",

"nickname": "Toro",

"display_size_inches": 4.65,

"memory_mb": 1024

}

]

},

{

"short_name": "LG",

"long_name": "LG Electronics",

"devices": [

ptg18221911

Accessing Remote Web APIs	 195

{

"model": "Nexus 4",

"nickname": "Mako",

"display_size_inches": 4.7,

"memory_mb": 2048

}

]

},

{

"short_name": "HTC",

"long_name": "HTC Corporation",

"devices": [

{

"model": "Nexus One",

"nickname": "Passion",

"display_size_inches": 3.7,

"memory_mb": 512

}

]

}

]

}

D/WebServiceClient: <-- END HTTP (944-byte body)

D/DeviceListActivity: Got response -> 9

In Listing 9.8, you can see that the OkHttpLoggingInterceptor can be configured to
print out all the HTTP headers for both the request and the response as well as the JSON
that was received in the response.

Notice that in the request, the Accept-Encoding: gzip header is set. Setting the
Accept-Encoding header to a value of gzip tells the HTTP server that the client can
accept responses compressed with GZip. This header is set because OkHttp takes care of
unzipping any GZipped requests that it receives automatically. If the HTTP server hosting
the Web service is configured to compress responses with GZip, this is transparent to the
application developer.

Because the OkHttpLoggingInterceptor has the capability to log all information
about an HTTP request and response, it is important to make sure that production builds
have this logging disabled. In addition to a possible performance loss caused by logging

ptg18221911

196	 Chapter 9 Communicating with Web APIs

potentially frequent and large HTTP requests/responses, this could also cause sensitive data
to be logged to the central Android logging system, which can be accessed by multiple
apps. It is common for Web services to require some sort of authorization information
when making a request, and this is generally information that should be kept private and
out of the Android logs. In the case of Listing 9.7, the OkHttpLoggingInterceptor is
enabled for debug builds only by interrogating the BuildConfig.DEBUG flag.

Once the OkHttpClient has been set, the Retrofit.Builder can be used to generate
a concrete implementation of the DeviceService interface. This service is used by the app
to make Web service calls.

Now that the Retrofit-backed service has been created, other parts of the app can use
it to make Web services calls. Listing 9.9 shows how this can be done.

Listing 9.9  Making a Retrofit Call

Call<ManufacturersAndDevicesResponse> call = WebServiceClient

.getInstance()

.getService()

.getManufacturersAndDevices();

call.enqueue(new Callback<ManufacturersAndDevicesResponse>() {

 @Override

 public

 void onResponse(Response<ManufacturersAndDevicesResponse> response) {

List<Manufacturer> manufacturerList =

response.body().getManufacturers();

// process response

 }

 @Override

 public void onFailure(Throwable t) {

// handle error case

 }

});

As mentioned previously, there are two ways to make the Web service call with Retrofit:
synchronously and asynchronously. The code in Listing 9.9 makes an asynchronous call
by using the WebServiceClient singleton to get a reference to the Retrofit-based service
created in Listing 9.7. The code then uses the service to get an object that implements the
Call interface by calling getManufacturersAndDevices(). A concrete implementation of

ptg18221911

Accessing Remote Web APIs	 197

the Call interface is what is used to make both the synchronous and asynchronous calls.
Listing 9.9 makes the asynchronous call so it is safe to perform on the main thread. The
asynchronous call is made by calling Call.enqueue(). The Call.enqueue() methods take
an object that implements the Callback interface as a parameter and uses the Callback
instance to either deliver the result of the Web service call or return an error.

The Callback interface defines two methods that need to be implemented:
onResponse() and onFailure(). onResponse() is where the response from a successful
Web service call is returned, and onFailure() is called when there is an error.

The parameter passed to onResponse() is an instance of the Retrofit Response
object. This object contains details of the HTTP response such as the headers, the HTTP
response code, and the raw body of this response. In addition, it contains the deserialized
Java POJO containing the response data. The POJO is what is usually important to the
app, and Retrofit allows the app to work with Java objects instead of working with a
JSON response.

Because the Web service call in Listing 9.9 is asynchronous, there may be a need to
cancel a request that has not yet had a response returned. The Call interface declares the
Call.cancel() method that may be used to cancel a request that is still pending. This is
useful to ensure that an activity does not receive a response after it has been stopped or
destroyed.

That was a quick overview of Retrofit. It is worth mentioning that the code presented
in the previous listings is based on Retrofit2. The API for Retrofit1 is similar, but there
are some differences. The ability to cancel a call with Call.cancel() was introduced in
Retrofit2 and is not part of Retrofit1.

Accessing Web Services with Volley
Volley started as an internal Google project for accessing remote services. Like Retrofit,
Volley makes it easy to construct remote Web service requests by taking care of the
threading concerns. It does this by making HTTP requests on a background thread and
providing the response on the UI thread. In addition, Volley allows requests to be canceled
to ensure that responses are not delivered to a stopped or destroyed activity.

Adding Volley to an Android Project
Volley is part of the Android Open Source Project (AOSP) and does not have an official
release from Google. Instead, to get Volley, you need to retrieve it from the AOSP Git
repository. Once the source code has been retrieved, the Volley project can either be added
to an Android project as a library project or built into a JAR file and added to the project.

In addition to the official Volley library from Google, there are unofficial Volley
mirrors that pull changes from the official repository, package a JAR, and push that JAR
to a Maven-compatible repository. These mirrors allow Volley to be added as a Gradle
dependency like other third-party libraries. However, these unofficial mirrors may also
make changes to the Volley library. This is not necessarily a bad thing as some of the
mirrors also address issues that have not yet been addressed in the upstream AOSP Volley
repository. This section focuses on the AOSP version of Volley and its API.

ptg18221911

198	 Chapter 9 Communicating with Web APIs

The source code for AOSP Volley can be retrieved from the AOSP Git repository.
To download the source using Git, first install Git, then use the following command to
download the repository:

git clone https://android.googlesource.com/platform/frameworks/volley

Once downloaded, the volley directory can be added to a Gradle project as a
third-party library. If a project uses Git as its source control tool, the volley/.git
directory can also be removed to prevent any issues.

Adding Volley as a library project involves copying the volley directory into the
project and configuring Gradle to use it. The device database app project keeps all
third-party projects in a directory named thirdParty in the root of the project. This
allows any third-party source code to be kept out of the main app source code. Figure 9.1
shows the Project view in Android Studio.

Once the Volley folder has been copied to the project structure, Gradle must be
configured to add the Volley source code to the project. For most Gradle-powered
Android projects, this is accomplished by editing two .gradle files: settings.gradle and
build.gradle.

settings.gradle is typically found in the root folder of the main Gradle project.
Listing 9.10 shows how to update the settings.gradle file to add Volley. It makes the
assumption that Volley is located in thirdParty/volley as is depicted in Figure 9.1.

Listing 9.10  Adding Volley to settings.gradle

include ':app', ':thirdParty:volley'

Once Volley has been added to the project, it needs to be added to the list of
dependencies for all project modules that require it. Like other dependencies, adding
Volley is done in the build.gradle for a module. Listing 9.11 shows the Gradle entry for
adding the Volley project that is located in the thirdParty/volley directory.

Listing 9.11  Adding the Volley Dependency

dependencies {

 compile fileTree(dir: 'libs', include: ['*.jar'])

 compile project(':thirdParty:volley')

With Volley added to the project, it can now be used in the app’s source code.

Using Volley
Volley’s architecture is different from Retrofit’s. Recall from the previous section that
to use Retrofit, an interface is defined that includes methods that map to remote Web
service calls. Volley maps individual Web service calls to requests that are passed to a
RequestQueue for processing. Once the response to a request has been received, Volley
provides the response to a callback.

https://android.googlesource.com/platform/frameworks/volley

ptg18221911

Accessing Remote Web APIs	 199

Figure 9.1  Volley in Android Studio

ptg18221911

200	 Chapter 9 Communicating with Web APIs

When setting up the Volley RequestQueue, a best practice is to wrap the RequestQueue
in a singleton to ensure that every part of an app is using the same RequestQueue.
The device database sample app has a singleton called VolleyApiClient that handles
the details of setting up a Volley RequestQueue for use by other parts of the app. The
implementation of VolleyApiClient, which is the singleton that wraps the Volley
RequestQueue, is shown in Listing 9.12.

Listing 9.12  Implementing VolleyApiClient

public class VolleyApiClient {

 private static VolleyApiClient instance;

 private RequestQueue requestQueue;

 public static synchronized VolleyApiClient getInstance(Context ctx) {

if (instance == null) {

instance = new VolleyApiClient(ctx);

}

return instance;

 }

 private VolleyApiClient(Context context) {

requestQueue =

Volley.newRequestQueue(context.getApplicationContext());

 }

 public <T> Request<T> add(Request<T> request) {

return requestQueue.add(request);

 }

 public void cancelAll(Object tag) {

requestQueue.cancelAll(tag);

 }

}

ptg18221911

Accessing Remote Web APIs	 201

VolleyApiClient creates a new RequestQueue by making a call to Volley.new
RequestQueue() and passing an application context as the parameter. As with most
Android development, it is important to not leak contexts as they can be activities that
hold references to their views and can be cleaned up by Android when memory is needed.
The application context will be around for the lifecycle of the app, however.

In addition to creating the RequestQueue needed to use Volley, VolleyApiClient has
two delegate methods for the RequestQueue: add() and cancelAll().

The VolleyApiClient.add() method is used to add a request to the RequestQueue.
Adding a request to the RequestQueue allows Volley to send the request to a remote Web
service and handle the response.

The VolleyApiClient.cancelAll() method is used to cancel all requests that have
been given a specific tag. This is useful for when an activity has added multiple requests
to the RequestQueue and needs to cancel them as the activity is stopped. It can assign the
same tag to each request that it adds to the RequestQueue and call VolleyApiClient.
cancelAll() when it is being stopped to cancel all its requests. Canceling a request
ensures that Volley does not deliver the response to the request callbacks.

Once the Volley RequestQueue has been set up, it can start accepting requests to
process. The Volley Request class handles request-specific functionality such as setting a
priority, setting a retry count, and serializing/deserializing requests and responses.

Volley comes with multiple subclasses of Request for handling different types of
data, including JsonObjectRequest and JsonArrayRequest. Unfortunately, both
JsonObjectRequest and JsonArrayRequest use the standard JSON parsing API that
comes with Android. As was discussed earlier, this API can be cumbersome to use,
especially when there are alternatives that directly map JSON to Java POJOs.

In the device database app, there is a Volley request that uses the Jackson JSON parser.
Like GSON, Jackson can map JSON to Java objects. Listing 9.13 shows the implementa-
tion of JacksonRequest which uses Jackson to parse the JSON body of a Volley response.

Listing 9.13  Parsing JSON with JacksonRequest

public class JacksonRequest<T> extends Request<T> {

 private static final ObjectMapper objectMapper = new ObjectMapper()

.setPropertyNamingStrategy(PropertyNamingStrategy.SNAKE_CASE)

.setSerializationInclusion(JsonInclude.Include.NON_NULL);

 private final Response.Listener<T> listener;

 private final Class<T> clazz;

 public JacksonRequest(int method,

String url,

ptg18221911

202	 Chapter 9 Communicating with Web APIs

Class<T> clazz,

Response.Listener<T> listener,

Response.ErrorListener errorListener) {

super(method, url, errorListener);

this.listener = listener;

this.clazz = clazz;

 }

 @Override

 protected Response<T> parseNetworkResponse(NetworkResponse response) {

T responsePayload;

try {

responsePayload = objectMapper.readValue(response.data,

clazz);

return Response.success(responsePayload,

HttpHeaderParser.parseCacheHeaders(response));

} catch (IOException e) {

return Response.error(new ParseError(e));

}

 }

 @Override

 protected void deliverResponse(T response) {

listener.onResponse(response);

 }

}

The first thing to notice in Listing 9.13 is the static final ObjectMapper constant.
ObjectMapper is part of the Jackson databind API and is used to bind JSON data to Java
objects (Jackson has other methods to process JSON as well). The ObjectMapper is static
to ensure that every JacksonRequest uses the same ObjectMapper. This is considered

ptg18221911

Accessing Remote Web APIs	 203

a Jackson best practice since the ObjectMapper can be expensive to create and caches
serializers and deserializers as they are created.

Before the ObjectMapper can be used in the project, the build.gradle file must
be updated to include the Jackson data binding library. Listing 9.14 shows the updated
build.gradle file with the databind entry in bold.

Listing 9.14  Adding a Data Binding Library to build.gradle

final RETROFIT_VERSION = '2.0.0'

compile "com.squareup.retrofit2:retrofit:${RETROFIT_VERSION}"

compile "com.squareup.retrofit2:converter-gson:${RETROFIT_VERSION}"

compile "com.squareup.okhttp3:logging-interceptor:3.2.0"

compile 'com.fasterxml.jackson.core:jackson-databind:2.7.0'

To create a new JacksonRequest, the single constructor is used. This constructor takes
the following parameters:

■■ int method: Defines the HTTP method that should be used to make the request.
The int constants for this parameter are defined in the Volley Method class.

■■ String url: Contains the URL of the Web service endpoint to which the request
should be sent. Unlike Retrofit, this should be the entire URL including the
protocol, host, and path.

■■ Class<T> clazz: Defines the type of class that should be used to map the JSON
response to a POJO. The type of class is needed by Jackson for deserializing, so it is
required by the JacksonRequest.

■■ Response.Listener<T> listener: The listener that is called to process the
response of the JacksonRequest. Because Volley supports only asynchronous HTTP
requests/responses, a callback listener is always needed to process the results of the
request.

■■ Response.ErrorListener<T> errorListener: Called when there is an error
making the request.

The JacksonRequest constructor passes a subset of the parameters to its parent class
constructor and saves the listener and clazz information to be used by its other two
methods: parseNetworkResponse() and deliverResult().

The parseNetworkReponse() method converts the byte[] data that is returned by
Volley into a Java POJO using Jackson. This is done by using the ObjectMapper and
clazz member variables to map the JSON to the Java POJO. If there are no errors
deserializing the JSON response, a success status is returned with the Java POJO. If an
exception is thrown converting the JSON to a Java object, an error response is returned
that carries the exception.

ptg18221911

204	 Chapter 9 Communicating with Web APIs

With the VolleyApiClient in place, the app can use Volley to make asynchronous
Web service requests. In the device database app, this is done to retrieve the list of
manufacturers and devices from a Web service. Listing 9.15 shows a snippet of the
DeviceListActivity that uses the VolleyApiClient to load the device list.

Listing 9.15  Using VolleyApiClient to Load Devices

public class DeviceListActivity extends AppCompatActivity {

 private static final String TAG =

DeviceListActivity.class.getSimpleName();

 private static final String VOLLEY_TAG =

DeviceListActivity.class.getCanonicalName();

 private void loadDataUsingVolley() {

GetManufacturersAndDevicesRequest request =

new GetManufacturersAndDevicesRequest(VOLLEY_TAG,

new Response.Listener<GetManufacturersAndDevicesRequest

.Response>() {

@Override

public

void onResponse(GetManufacturersAndDevicesRequest

.Response response) {

List<Manufacturer> manufacturersList =

response.getManufacturers();

updateDisplay(manufacturersList);	

}

}, new Response.ErrorListener() {

@Override

public void onErrorResponse(VolleyError error) {

Log.e(TAG, "Received web API error", error);

}

});

ptg18221911

Accessing Remote Web APIs	 205

VolleyApiClient

.getInstance(DeviceListActivity.this)

.add(request);

 }

 @Override

 protected void onStop() {

super.onStop();

VolleyApiClient.getInstance(this).cancelAll(VOLLEY_TAG);

 }

}

DeviceListActivity defines the constant VOLLEY_TAG that is used to set the tag for
each request it submits to the RequestQueue. The request is also passed two anonymous
classes: one that implements Response.Listener to handle successful responses and one
that implements Response.ErrorListener to handle error responses.

The Response.Listener class declares the onResponse() method which the
anonymous class implements. The onResponse() method is passed a Response object
which contains the deserialized JSON response from the Web service as a Java POJO.
Because the request handles the deserialization, it is easy for the client code to handle the
response because it can work with model objects that are defined in the app.

The last part of the Volley implementation is the GetManufacturersAndDevices
Request class which is shown in Listing 9.16.

Listing 9.16  Implementing GetManufacturersAndDevicesRequest

public class GetManufacturersAndDevicesRequest

extends JacksonRequest<GetManufacturersAndDevicesRequest.Response> {

 public GetManufacturersAndDevicesRequest(Object tag,

Listener<Response> listener,

ErrorListener errorListener) {

super(Method.GET,

"http://www.mocky.io/v2/570bbaf6110000b003d17e3a",

Response.class,

listener,

errorListener);

this.setTag(tag);

 }

http://www.mocky.io/v2/570bbaf6110000b003d17e3a"

ptg18221911

206	 Chapter 9 Communicating with Web APIs

 public static class Response {

private List<Manufacturer> manufacturers;

public List<Manufacturer> getManufacturers() {

return manufacturers;

}

public void setManufacturers(List<Manufacturer> manufacturers) {

this.manufacturers = manufacturers;

}

 }

}

The GetManufacturersAndDevices class contains an inner class represent-
ing the response to the request. While Volley does not strictly mandate this, it does
make an association between the request and the response that is expected from the
response.

Also notice that the GetManufacturersAndDevices constructor passes Method.GET
and the URL to the parent class. This means that the request will use the HTTP GET
method for the specified URL.

While Retrofit and Volley make communicating with a remote Web service easier,
there are times when apps need additional functionality to provide a good user experience
for Web service communication.

Persisting Data to Enhance User Experience
While using activities and fragments can be a convenient way to access remote Web
services, it can also lead to a poor user experience. Activities typically display a single type
of data, and each activity in an app may use only a subset of Web service calls that are used
across the entire app. If each activity makes its own set of Web service calls, it can lead to a
sluggish app and increased battery drain.

Data Transfer and Battery Consumption
To understand how multiple Web service calls can adversely affect battery life, consider
how radios in mobile devices work. In order to send and receive data, a mobile device
needs to power up its wireless radio, which can consume a considerable amount of power.
However, the wireless radio does not power down immediately after the data transfer
is complete. Instead, it remains in full power for a period of time. If there is no need to
transfer or receive any additional data during that time, the radio enters a reduced-power

ptg18221911

Android SyncAdapter Framework	 207

mode where it is not fully powered up but also not completely powered down. If there is
no need to transfer or receive data during this reduced-power time, the radio then powers
all the way down. Wireless radios cycle through these states in an effort to minimize the
latency that occurs while moving the wireless radio from the powered-down state to the
high-power state where it can send and receive data.

The reason that sending frequent Web service requests can have adverse effects on
battery life is that multiple requests can keep the wireless radio in a high-powered state
instead of letting it power down after enough time has gone by.

Data Transfer and User Experience
While battery life is a concern for frequent remote Web service calls, the poor user
experience that can accompany frequent remote Web service calls can be an even bigger
problem. HTTP requests are asynchronous and not immediate. This means that an app
needs to let the user know that “something” is happening while the device waits for
a request/response pair to make a round trip. Too often, this results in some type of
indeterminate progress bar being shown to the user on Android. While this is better than
not showing anything, it is not the ideal situation for the user. This may be acceptable at
certain points in the user experience, but it is certainly a bad idea to have every screen
display a progress bar while the app receives data from a remote call.

Instead of making frequent Web service calls, a better approach is to batch the calls
together. This allows the radio to power up, get data, and then power down. It also limits
the number of remote Web service calls that are needed as well as the amount of time a
user is waiting for the data. In an ideal scenario, all the data needed to present the UI to
the user would be retrieved before it is needed so the user never has to wait for data to be
transferred.

Storing Web Service Response Data
A solution to both of these problems is to use a local database to store the data retrieved
by remote Web service calls and have UI functionality (activities and fragments) read
the data from the database instead of directly accessing the Web service. This provides
flexibility for when the data needs to be retrieved as well as an additional level of
abstraction between UI functionality and the details of the Web service. The Web service
can completely change its response format, and the UI functionality will be unaffected as
long as the database schema remains the same.

Android SyncAdapter Framework
One way to allow an app to centralize the functionality needed to both retrieve data from
a Web service and persist it into a database is to use a SyncAdapter. A SyncAdapter allows
code to be run in the background at different times based on different conditions. For
example, in an effort to limit the amount of time that a user waits for data to be retrieved
from a remote server, it is sometimes useful to have the data be transferred before the app

ptg18221911

208	 Chapter 9 Communicating with Web APIs

even starts. The SyncAdapter framework allows an app to retrieve data based on the time
since the last sync, the time of day, or changes to the data. In addition, an app can trigger a
SyncAdapter to run in response to a user’s actions (like triggering swipe-to-refresh). This
allows all the synchronization-related code to exist in one spot and be triggered by several
different events.

In addition to allowing code to be run in response to different triggers, the
SyncAdapter framework takes network connectivity into consideration. It prevents a sync
task from running when the network is not connected. Also, the SyncAdapter framework
attempts to batch an app’s sync tasks with other apps across the system. This allows the
wireless radio to power up, run several tasks that all need network connectivity, and then
power back down. This can save battery life for a user as it allows network calls to be
batched across apps.

In order to use a SyncAdapter, an app must contain three components: a
ContentProvider, a SyncAdapter, and an AccountManager. The device database app
already contains a ContentProvider which has been discussed in previous chapters. This
means that only the AccountAuthenticator and SyncAdapter need to be implemented
in order to use the Android SyncAdapter framework.

AccountAuthenticator
An AccountAuthenticator can be used to help manage account credentials for an app.
Most Web services require some kind of authentication, and the AccountAuthenticator
can be used to get credentials from the user and insecurely store those credentials.

For the device database app, no credentials are required to use the Web service. Even
though the app does not otherwise need an AccountAuthenticator, one is still required
for use with the SyncManager framework. Because of this requirement, the device
database sample app creates a stub AccountAuthenticator.

To create an AccountAuthenticator, an app needs to include a class that extends
AbstractAccountAuthenticator. Because the device database app needs only a stub
AccountAuthenticator, it can create an AccountAuthenticator that extends the
AbstractAccountAuthenticator with stub implementations for all the abstract methods.
Listing 9.17 shows the implementation of the stub AccountAuthenticator.

Listing 9.17  Implementing a Stub AccountAuthenticator

public class Authenticator extends AbstractAccountAuthenticator {

 public Authenticator(Context context) {

super(context);

 }

 @Override

 public Bundle editProperties(AccountAuthenticatorResponse response,

ptg18221911

Android SyncAdapter Framework	 209

String accountType) {

throw new UnsupportedOperationException("Not yet implemented");

 }

 @Override

 public Bundle addAccount(AccountAuthenticatorResponse response,

String accountType,

String authTokenType,

String[] requiredFeatures,

Bundle options) throws NetworkErrorException {

throw new UnsupportedOperationException("Not yet implemented");

 }

 @Override

 public Bundle confirmCredentials(AccountAuthenticatorResponse response,

Account account,

Bundle options)

throws NetworkErrorException {

throw new UnsupportedOperationException("Not yet implemented");

 }

 @Override

 public Bundle getAuthToken(AccountAuthenticatorResponse response,

Account account,

String authTokenType,

Bundle options)

throws NetworkErrorException {

throw new UnsupportedOperationException("Not yet implemented");

 }

 @Override

 public String getAuthTokenLabel(String authTokenType) {

throw new UnsupportedOperationException("Not yet implemented");

 }

ptg18221911

210	 Chapter 9 Communicating with Web APIs

 @Override

 public Bundle updateCredentials(AccountAuthenticatorResponse response,

Account account,

String authTokenType,

Bundle options)

throws NetworkErrorException {

throw new UnsupportedOperationException("Not yet implemented");

 }

 @Override

 public Bundle hasFeatures(AccountAuthenticatorResponse response,

Account account,

String[] features)

throws NetworkErrorException {

throw new UnsupportedOperationException("Not yet implemented");

 }

}

The SyncAdapter framework uses a service to access the AccountAuthenticator.
This service needs to be created in order to provide the AccountAuthenticator to the
SyncAdapter framework. Listing 9.18 shows the AuthenticatorService that is used
in the device database app to bind the AccountAuthenticator to the SyncAdapter
framework.

Listing 9.18  Binding to the Framework with AuthenticatorService

public class AuthenticatorService extends Service {

 private Authenticator authenticator;

 public AuthenticatorService() {

 }

 @Override

 public void onCreate() {

super.onCreate();

authenticator = new Authenticator(this);

 }

ptg18221911

Android SyncAdapter Framework	 211

 @Override

 public IBinder onBind(Intent intent) {

return authenticator.getIBinder();

 }

}

The AccountService instantiates a new Authenticator object and returns it in the
onBind() method of the service.

Like any other service in Android, the AccountService needs to be declared in the
app’s manifest. Listing 9.19 shows the manifest entry for AccountService.

Listing 9.19  AccountService in the Manifest

<service

 android:name=".sync.AuthenticatorService">

 <intent-filter>

<action android:name="android.accounts.AccountAuthenticator"/>

 </intent-filter>

 <meta-data

android:name="android.accounts.AccountAuthenticator"

android:resource="@xml/authenticator" />

</service>

Listing 9.19 highlights that the AccountService responds to the android.accounts.
AccountAuthenticator intent action. This action is sent by Android when the
authenticator needs to be run. The <service> element also contains a <meta-data>
element which references the res/xml/authenticator.xml file that is used to declare the
authenticator. Listing 9.20 shows the contents of authenticator.xml.

Listing 9.20  Contents of res/xml/authenticator.xml

<?xml version="1.0" encoding="utf-8"?>

<account-authenticator

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:accountType="stubAuthenticator" />

Since the device database app does not need to actually authenticate a user in order to
access the Web service, the authenticator.xml file only needs to declare the accountType
that will be used by the SyncAdapter framework. A domain that is in the app writer’s con-
trol should be used as the account type even though the value is not sent to the server.

ptg18221911

212	 Chapter 9 Communicating with Web APIs

Once the AccountAuthenticator has been defined and bound to the SyncAdapter
framework, the actual SyncAdapter can be implemented and used.

SyncAdapter
Implementing the actual sync adapter includes adding a class that extends
AbstractThreadedSyncAdapter, creating a bound service for the SyncAdapter, and
adding the sync adapter metadata file.

In the device database app, AbstractThreadedSyncAdapter is extended by
SyncAdapter. Listing 9.21 shows the implementation of SyncAdapter.

Listing 9.21  Implementing SyncAdapter

public class SyncAdapter extends AbstractThreadedSyncAdapter {

 private static final String TAG = SyncAdapter.class.getSimpleName();

 public SyncAdapter(Context context, boolean autoInitialize) {

super(context, autoInitialize);

 }

 public SyncAdapter(Context context,

boolean autoInitialize,

boolean allowParallelSyncs) {

super(context, autoInitialize, allowParallelSyncs);

 }

 @Override

 public void onPerformSync(Account account,

Bundle extras,

String authority,

ContentProviderClient provider,

SyncResult syncResult) {

Call<ManufacturersAndDevicesResponse> call = WebServiceClient

.getInstance()

.getService()

.getManufacturersAndDevices();

ptg18221911

Android SyncAdapter Framework	 213

try {

// Perform synchronous Web service call

Response<ManufacturersAndDevicesResponse> wrappedResponse =

call.execute();

ArrayList<ContentProviderOperation> operations =

generateDatabaseOperations(wrappedResponse.body());

provider.applyBatch(operations);

} catch (IOException

| OperationApplicationException

| RemoteException e) {

Log.e(TAG, "Could not perform sync", e);

}

 }

 private

 ArrayList<ContentProviderOperation>

 generateDatabaseOperations(ManufacturersAndDevicesResponse response) {

final ArrayList<ContentProviderOperation> operations =

new ArrayList<>();

operations.add(ContentProviderOperation

.newDelete(DevicesContract.Device.CONTENT_URI).build());

operations.add(ContentProviderOperation

.newDelete(DevicesContract.Manufacturer.CONTENT_URI)

.build());

for (Manufacturer manufacturer : response.getManufacturers()) {

final ContentProviderOperation manufacturerOperation =

ContentProviderOperation

ptg18221911

214	 Chapter 9 Communicating with Web APIs

.newInsert(DevicesContract.Manufacturer

.CONTENT_URI)

.withValue(DevicesContract.Manufacturer

.SHORT_NAME,

manufacturer.getShortName())

.withValue(DevicesContract.Manufacturer

.LONG_NAME,

manufacturer.getLongName())

.build();

operations.add(manufacturerOperation);

int manufacturerInsertOperationIndex =

operations.size() - 1;

for (Device device : manufacturer.getDevices()) {

final ContentProviderOperation deviceOperation =

ContentProviderOperation

.newInsert(DevicesContract.Device

.CONTENT_URI)

.withValueBackReference(DevicesContract

.Device.MANUFACTURER_ID,

manufacturerInsertOperationIndex)

.withValue(DevicesContract.Device.MODEL,

device.getModel())

.withValue(DevicesContract

.Device

.DISPLAY_SIZE_INCHES,

device.getDisplaySizeInches())

.withValue(DevicesContract

.Device

.MEMORY_MB,

ptg18221911

Android SyncAdapter Framework	 215

device.getMemoryMb())

.withValue(DevicesContract

.Device

.NICKNAME, device.getNickname())

.build();

operations.add(deviceOperation);

}

}

return operations;

 }

}

The onPerformSync() method is an abstract method declared in
AbstractThreadedSyncAdapter. It is the main entry point for the sync operation. The
SyncAdapter implementation uses a Retrofit synchronous call to perform the Web service
remote call and then persists the response in the database.

An important point about the onPerformSync() method is that the SyncAdapter
framework takes care of calling onPerformSync() off the main thread. This means that
any implementation of onPerformSync() does not need to worry about starting a new
thread to handle potential long-running tasks. This makes the onPerformSync() method
fairly convenient because, in the case of the device database sync task, both making the
call to the remote Web service and saving the response to the data can take a long time
depending on the size of the response.

Once the Retrofit Web service call returns with the response, SyncAdapter makes
a call to generateDatabaseOperations(). This method takes the response and creates
a list of ContentProviderOperations that can be used to update the internal database
with the data. Once the list of database operations has been created, onPerformSync()
uses a ContentProviderClient to apply the list of operations to the database. The
ContentProviderClient is an interface to a content provider and can be used the same
way as a ContentResolver.

Once the SyncAdapter implementation is in place, it needs to be wired into the
Android SyncAdapter framework. This is done with another bound service and metadata
file. The bound service that attaches the SyncAdapter is shown in Listing 9.22.

Listing 9.22  Attaching SyncAdapter with SyncService

public class SyncService extends Service {

 private static SyncAdapter syncAdapter = null;

ptg18221911

216	 Chapter 9 Communicating with Web APIs

 @Override

 public void onCreate() {

super.onCreate();

synchronized (SyncService.class) {

syncAdapter = new SyncAdapter(getApplicationContext(), true);

}

 }

 @Nullable

 @Override

 public IBinder onBind(Intent intent) {

return syncAdapter.getSyncAdapterBinder();

 }

}

SyncService creates a new SyncAdapter and returns it in the onBind() method. The
static synchronized block in onCreate() is used to ensure that only one instance of
the SyncAdapter exists. This essentially makes SyncAdapter a singleton to any code that is
starting the SyncService.

In order for SyncService to be started, it needs to be declared in the manifest. Listing
9.23 shows the manifest declaration for SyncService.

Listing 9.23  SyncService Manifest Declaration

<service

 android:name=".sync.SyncService"

 android:exported="true"

 android:process=":sync">

 <intent-filter>

<action android:name="android.content.SyncAdapter"/>

 </intent-filter>

 <meta-data android:name="android.content.SyncAdapter"

android:resource="@xml/syncadapter" />

</service>

ptg18221911

Android SyncAdapter Framework	 217

The SyncService manifest declaration indicates that it can be started with the
android.content.SyncAdapter action. Like the action used to start the account
authentication service from the previous section, the android.content.SyncAdapter
action is used by Android to start the SyncService.

The manifest declaration for the SyncService also defines the location of the metadata
file as res/xml/syncadapter.xml. Listing 9.24 shows the contents of that file.

Listing 9.24  Contents of res/xml/syncadapter.xml

<?xml version="1.0" encoding="utf-8"?>

<sync-adapter xmlns:android="http://schemas.android.com/apk/res/android"

 android:contentAuthority="me.adamstroud.devicedatabase.provider"

 android:accountType="stubAuthenticator"

 android:userVisible="false"

 android:supportsUploading="false"

 android:allowParallelSyncs="false"

 android:isAlwaysSyncable="true"/>

The SyncAdapter metadata file declares some of the properties of the sync adapter. In the
case of the device database SyncAdapter, the metadata file defines the contentAuthority
for the app’s ContentProvider. The accountType attribute should contain the same value
that was defined in the AccountAuthenticator discussed in the previous section.

Now that the SyncAdapter has been implemented and bound to the Android
SyncAdapter framework, it can be invoked to update the internal database. As mentioned
previously, a SyncAdapter can be triggered by many different events. In the case of the
device database app, the only event that should trigger the SyncAdapter to run is a
gesture from the user. This means that the SyncAdapter needs to run “on demand” instead
of being triggered automatically by some external event.

The DeviceListActivity contains an action in its overflow menu that the user can
use to trigger the SyncAdapter. The overflow action’s handler is shown in Listing 9.25.

Listing 9.25  Manually Triggering the SyncAdapter

Bundle bundle = new Bundle();

bundle.putBoolean(ContentResolver.SYNC_EXTRAS_MANUAL, true);

bundle.putBoolean(ContentResolver.SYNC_EXTRAS_EXPEDITED, true);

ContentResolver.requestSync(new Account("SyncAccount",

"stubAuthenticator"),

"me.adamstroud.devicedatabase.provider",

bundle);

ptg18221911

218	 Chapter 9 Communicating with Web APIs

To trigger the SyncAdapter, a call to ContentResolver.requestSync() is made.
For its parameters, it is passed the account information as well as a Bundle that contains
flags to control how the SyncAdapter will run. Since the device database is using a stub
account authenticator, the account credentials are unimportant. However, the flags passed
to the ContentResolver.requestSync() method are important. The Bundle that is
passed to ContentResolver.requestSync() contains the ContentResolver.SYNC_
EXTRAS_MANUAL and ContentResolver.SYNC_EXTRAS_EXPEDITED flags. These flags tell
the SyncAdapter framework to start a manual sync immediately, which is what is needed
when running the sync in response to a user action.

The device database app now has a SyncAdapter that can be used to update the
internal database with remote Web service information at any time. While SyncAdapters
can be useful, they do contain a fair amount of boilerplate code and don’t always fit the
need of an app. The next section discusses another approach to persisting remote Web
service data in an internal database.

Manually Synchronizing Remote Data
When a SyncAdapter does not fit an app’s use case, the app can always include its own
functionality to synchronize and persist the response to a remote Web service call to the
database. The solution that an app uses needs to handle the asynchronous nature of HTTP
communication as well as the threading concerns discussed earlier in the chapter. In order
to address the asynchronous and threading concerns, the device database app makes use
of Retrofit’s RxJava support to make a remote Web service request where the response is
saved in the database when it is received. The code for performing the manual sync with-
out the SyncAdapter is located in the SyncManager class in the device database project.

A Short Introduction to RxJava
RxJava has been a hot topic in the world of Android development recently. The idea
behind RxJava, and the reactive paradigm in general, is to support an asynchronous stream
of events by using observables. These observables can be composed together using RxJava
operators to form a chain of operators with each operator manipulating the data in the
events that are being received.

In the case of Retrofit, each event can be thought of as the response to a Web service
request. By using the RxJava operators, the SyncManager can transform each response
into a list of database operations, then commit the entire list of operations to the database
in a single transaction. This allows the entire sync process to be atomic to protect the
integrity of the database. It is really important to guard against committing only a partial
sync task because only a subset of the database operations are committed successfully to
the database.

In addition to handling the asynchronous Web service calls, RxJava allows operations to
be performed on different threads. This feature allows the sync operation to be performed
on a background thread and, optionally, allows a routine to be run on the main thread
when the sync operation is complete.

ptg18221911

Manually Synchronizing Remote Data	 219

Adding RxJava Support to Retrofit
While Retrofit does have good support for RxJava, it is not included in the base library
that was added to the device database earlier in the chapter. Because RxJava is not
part of the standard Android SDK, it must be added to the project through the build.
gradle file. The RxJava Retrofit adapter must also be added to the project to bring
the libraries needed to add RxJava support to Retrofit. Listing 9.26 shows the build.
gradle file that has been updated to include the required RxJava libraries. The RxJava
entries are in bold.

Listing 9.26  Adding RxJava Support to build.gradle

final RETROFIT_VERSION = '2.0.0'

compile "com.squareup.retrofit2:retrofit:${RETROFIT_VERSION}"

compile "com.squareup.retrofit2:converter-gson:${RETROFIT_VERSION}"

compile "com.squareup.okhttp3:logging-interceptor:3.2.0"

compile 'com.fasterxml.jackson.core:jackson-databind:2.7.0'

compile "com.squareup.retrofit2:adapter-rxjava:${RETROFIT_VERSION}"

compile 'io.reactivex:rxandroid:1.1.0'

// Because RxAndroid releases are few and far between, it is

// recommended you also explicitly depend on RxJava's latest version

// for bug fixes and new features.

compile 'io.reactivex:rxjava:1.1.3'

In addition to adding the RxJava libraries to the project, the Retrofit client needs
to be updated to use the RxJava adapter that was added to the build.gradle file.
This adapter allows Retrofit to return Web service responses in the form of an RxJava
observable in addition to the Call interface implementation that has previously been used
in the device database app. Adding the RxJava adapter to Retrofit can be done using the
Retrofit.Builder that was used to create the Retrofit client in the WebServiceClient
class. Listing 9.27 shows how the WebServiceClient was updated to add the RxJava
adapter to Retrofit.

Listing 9.27  Adding the RxJava Adapter to Retrofit

public class WebServiceClient {

 private static final String TAG =

WebServiceClient.class.getSimpleName();

 private static WebServiceClient instance = new WebServiceClient();

ptg18221911

220	 Chapter 9 Communicating with Web APIs

 private final DeviceService service;

 public static WebServiceClient getInstance() {

return instance;

 }

 private WebServiceClient() {

final Gson gson = new GsonBuilder()

.setFieldNamingPolicy(FieldNamingPolicy

.LOWER_CASE_WITH_UNDERSCORES)

.create();

Retrofit.Builder retrofitBuilder = new Retrofit.Builder()

.baseUrl("http://www.mocky.io")

.addCallAdapterFactory(RxJavaCallAdapterFactory.create())

.addConverterFactory(GsonConverterFactory.create(gson));

if (BuildConfig.DEBUG) {

final HttpLoggingInterceptor loggingInterceptor =

new HttpLoggingInterceptor(new HttpLoggingInterceptor

.Logger() {

@Override

public void log(String message) {

Log.d(TAG, message);

}

});

retrofitBuilder.callFactory(new OkHttpClient

.Builder()

.addNetworkInterceptor(loggingInterceptor)

.build());

loggingInterceptor.setLevel(HttpLoggingInterceptor.Level.BODY);

}

ptg18221911

Manually Synchronizing Remote Data	 221

service = retrofitBuilder.build().create(DeviceService.class);

 }

 public DeviceService getService() {

return service;

 }

The last step that needs to be performed before the RxJava observable can be used
with Retrofit is to update the DeviceService interface that defines the Web service
calls that can be made. Remember from earlier in the chapter that the DeviceService
interface contains a method for each Web service call that can be made. Previously, there
was a single method defined in the DeviceService interface because only one Web
service call was made. This method call, DeviceService.getManufacturersAnd
Devices(), returned an object that implemented the Call interface that could be used
to perform either a synchronous or an asynchronous Web service call.

To add RxJava support to the DeviceService interface, an additional method needs
to be added that returns an RxJava observable instead of a Call implementation. The
addition of this method can be seen in Listing 9.28.

Listing 9.28  Observable Web Service Call to DeviceService

public interface DeviceService {

 @GET("v2/570bbaf6110000b003d17e3a")

 Call<ManufacturersAndDevicesResponse> getManufacturersAndDevices();

 @GET("v2/570bbaf6110000b003d17e3a")

 Observable<ManufacturersAndDevicesResponse>

 rxGetManufacturersAndDevices();

}

In Listing 9.28, the rxGetManufacturersAndDevices() method was added to the
DeviceService interface. This method uses the same Web service path as the original
getManufacturersAndDevices() method and still uses the HTTP GET method to
retrieve the data. The only difference between the two methods is the return type. The
original method returns the Call implementation, whereas the Rx version of the method
returns an observable.

ptg18221911

222	 Chapter 9 Communicating with Web APIs

Using RxJava to Perform the Sync
Now that RxJava support for Retrofit has been added to the project, the implementation
details of SyncManager can be described. SyncManager is implemented as a singleton that
contains a single method, syncManufacturersAndDevices(), which performs the sync.
The syncManufactureresAndDevices() method is presented in Listing 9.29.

Listing 9.29  Implementing SyncManager.getManufacturersAndDevices()

public void syncManufacturersAndDevices() {

 WebServiceClient

.getInstance()

.getService()

.rxGetManufacturersAndDevices()

.flatMap(this)

.toList()

.subscribeOn(Schedulers.io())

.subscribe(this);

}

The SyncManager.getManufacturersAndDevices() implementation may look
short, but there is actually a lot going on. It starts off by getting a reference to the
Retrofit-backed Web service client in the same way as was done earlier in the chapter.
Using this reference, it then makes a call to rxGetManufacturersAndDevices(), which
returns the RxJava observable. At this point, the code has moved away from purely
Retrofit functionality and has entered the world of RxJava by making calls to flatMap(),
toList(), subscribeOn(), and subscribe().

The first RxJava method to be called is flatMap(). This is an RxJava operator that
transforms a collection of objects and returns an observable that emits the transformed
objects. In the case of SyncManager, the flatMap() operator transforms the response from
the Web service into a list of ContentProviderOperations that can be applied to the
database through a ContentResolver.

To perform the transformation, the flatMap() method takes an implementation of
the RxJava Func1 interface. The Func1 interface contains a single Func1.call() method
that contains the functionality for the transformation. Because SyncManager implements
the Func1 interface, the singleton instance can be passed to flatMap() to perform the
transformation. The implementation of the SyncManager.call() method is contained in
Listing 9.30.

ptg18221911

Manually Synchronizing Remote Data	 223

Listing 9.30  Implementing SyncManager.getManufacturersAndDevices()

@Override

public Observable<ContentProviderResult>

call(ManufacturersAndDevicesResponse response) {

 final ContentResolver contentResolver =

context.getContentResolver();

 final ArrayList<ContentProviderOperation> operations =

new ArrayList<>();

 final ContentProviderResult[] results;

 operations.add(ContentProviderOperation

.newDelete(DevicesContract.Device.CONTENT_URI)

.build());

 operations.add(ContentProviderOperation

.newDelete(DevicesContract.Manufacturer.CONTENT_URI)

.build());

 for (Manufacturer manufacturer : response.getManufacturers()) {

final ContentProviderOperation manufacturerOperation =

ContentProviderOperation

.newInsert(DevicesContract.Manufacturer.CONTENT_URI)

.withValue(DevicesContract.Manufacturer.SHORT_NAME,

manufacturer.getShortName())

.withValue(DevicesContract.Manufacturer.LONG_NAME,

manufacturer.getLongName())

.build();

operations.add(manufacturerOperation);

ptg18221911

224	 Chapter 9 Communicating with Web APIs

int manufacturerInsertOperationIndex = operations.size() - 1;

for (Device device : manufacturer.getDevices()) {

final ContentProviderOperation deviceOperation =

ContentProviderOperation

.newInsert(DevicesContract.Device.CONTENT_URI)

.withValueBackReference(DevicesContract

.Device.MANUFACTURER_ID,

manufacturerInsertOperationIndex)

.withValue(DevicesContract.Device.MODEL,

device.getModel())

.withValue(DevicesContract

.Device.DISPLAY_SIZE_INCHES,

device.getDisplaySizeInches())

.withValue(DevicesContract.Device.MEMORY_MB,

device.getMemoryMb())

.withValue(DevicesContract.Device.NICKNAME,

device.getNickname())

.build();

operations.add(deviceOperation);

}

 }

 try {

results =

contentResolver.applyBatch(DevicesContract.AUTHORITY,

operations);

 } catch (RemoteException | OperationApplicationException e) {

throw new RuntimeException(e);

 }

 return Observable.from(results);

}

ptg18221911

Manually Synchronizing Remote Data	 225

The implementation of call() is similar to code that has been discussed in previous
chapters. The list of manufacturers is iterated over and a ContentProviderOperation
is added to the list of operations for each manufacturer. The same process is then followed
for the list of devices for each manufacturer.

What makes the call() method different is that it does not simply return the list of
operations that it has accumulated. Instead, it creates another observable from that list
and returns it. This allows the RxJava operator chain to continue and potentially apply
additional operators to the observable that is now emitting ContentProviderOperations.

The next operator to be applied in the operator chain is the toList() operator. The
toList() method takes all the ContentProviderOperations that are emitted by the
observable returned from flatMap() and puts them in a list.

The last operator in the operator chain is subscribeOn(). This operator defines on
which thread the work will be done. By default, RxJava performs its work on the same
thread on which subscribe() is called. In the case of SyncManager, this can be dangerous
since communicating with the Web service and writing the response to the database need
to happen on a background thread. The subscribeOn() operator can be used to specify
the thread that will be used.

RxJava has a set of predefined threads that can be used to perform various operations.
These are defined by RxJava schedulers. In the case of SyncManager, the I/O scheduler is
used by passing Schedulers.io() to the subscribeOn() operator. This ensures that the
network and database operations happen on a thread that is meant to be used for I/O.

After all the operators have been applied, the observable that has been manipulated
with the operators can be subscribed to. In SyncManager, this is an important step because
none of the work happens until the call to subscribe() is made. The subscribe()
method is passed an instance of a Subscriber. Because SyncManager extends Subscriber,
the singleton instance can be passed to subscribe().

The Subscribe class defines three abstract methods that need to be implemented by
any concrete class that extends it: onCompleted(), onError(), and onNext(). In RxJava,
these methods are used to observe events and error cases that are emitted by an observable.
onCompleted() is called when there are no longer any items for an observable to emit.
onError() is called when an error is encountered when processing observable data. The
onNext() method is called for each item that is emitted by the observable.

For SyncManager, there is only one item emitted from the observable, and that is the
list of ContentProviderResults that is returned from the call to ContentResolver.
applyBatch(). SyncManager simply makes a log statement about the results. However, if
additional functionality is needed to alert other components that the sync has completed,
onNext() would be the place to add such functionality.

Because SyncManager uses the ContentResolver to commit changes to the database,
no further operation is needed to alert other app components that the sync is done. This
is because the ContentProvider that is used in the device database app causes every
cursor that it returns to watch the database for changes and react to those changes as was
discussed in Chapter 6, “Content Providers.”

ptg18221911

226	 Chapter 9 Communicating with Web APIs

Listing 9.31 shows the complete implementation of SyncManager.

Listing 9.31  Complete Implementation of SyncManager

public class SyncManager extends Subscriber<List<ContentProviderResult>>

 implements Func1<ManufacturersAndDevicesResponse,
➥Observable<ContentProviderResult>> {

 private static final String TAG = SyncAdapter.class.getSimpleName();

 private static SyncManager instance;

 private final Context context;

 public static synchronized SyncManager getInstance(Context context) {

if (instance == null) {

instance = new SyncManager(context);

}

return instance;

 }

 private SyncManager(Context context) {

this.context = context.getApplicationContext();

 }

 public void syncManufacturersAndDevices() {

WebServiceClient

.getInstance()

.getService()

.rxGetManufacturersAndDevices()

.flatMap(this)

.toList()

.subscribeOn(Schedulers.io())

.subscribe(this);

 }

ptg18221911

Manually Synchronizing Remote Data	 227

 @Override

 public void onCompleted() {

// no-op

 }

 @Override

 public void onError(Throwable e) {

Log.e(TAG, "Received web API error", e);

 }

 @Override

 public void onNext(List<ContentProviderResult> contentProviderResults){

Log.d(TAG, "Got response -> " + contentProviderResults.size());

 }

 @Override

 public

 Observable<ContentProviderResult>

 call(ManufacturersAndDevicesResponse response) {

final ContentResolver contentResolver =

context.getContentResolver();

final ArrayList<ContentProviderOperation> operations =

new ArrayList<>();

final ContentProviderResult[] results;

operations.add(ContentProviderOperation

.newDelete(DevicesContract.Device.CONTENT_URI)

.build());

operations.add(ContentProviderOperation

.newDelete(DevicesContract.Manufacturer.CONTENT_URI)

.build());

ptg18221911

228	 Chapter 9 Communicating with Web APIs

for (Manufacturer manufacturer : response.getManufacturers()) {

final ContentProviderOperation manufacturerOperation =

ContentProviderOperation

.newInsert(DevicesContract.Manufacturer.CONTENT_URI)

.withValue(DevicesContract.Manufacturer.SHORT_NAME,

manufacturer.getShortName())

.withValue(DevicesContract.Manufacturer.LONG_NAME,

manufacturer.getLongName())

.build();

operations.add(manufacturerOperation);

int manufacturerInsertOperationIndex = operations.size() - 1;

for (Device device : manufacturer.getDevices()) {

final ContentProviderOperation deviceOperation =

ContentProviderOperation

.newInsert(DevicesContract.Device.CONTENT_URI)

.withValueBackReference(DevicesContract

.Device.MANUFACTURER_ID,

manufacturerInsertOperationIndex)

.withValue(DevicesContract.Device.MODEL,

device.getModel())

.withValue(DevicesContract

.Device.DISPLAY_SIZE_INCHES,

device.getDisplaySizeInches())

.withValue(DevicesContract.Device.MEMORY_MB,

device.getMemoryMb())

.withValue(DevicesContract.Device.NICKNAME,

device.getNickname())

.build();

operations.add(deviceOperation);

}

}

ptg18221911

Summary	 229

try {

results =

contentResolver.applyBatch(DevicesContract.AUTHORITY,

operations);

} catch (RemoteException | OperationApplicationException e) {

throw new RuntimeException(e);

}

return Observable.from(results);

 }

}

Summary
There are multiple ways that a mobile client can access a Web service or Web API. While
accessing remote data can provide a richer experience for the user, it also adds complexity.
Issues such as battery drain and responsive UI are things that should be considered when
designing how a mobile client will access a remote Web service.

While the standard Android SDK does provide the tools needed to effectively add
support for remote Web service access, they may not be the most efficient way to access
the Web service. Libraries such as Retrofit and Volley make it easy to access a remote
service by handling the threading details of making remote calls, and libraries like GSON
and Jackson make transforming JSON to Java objects painless.

Once a method for accessing a remote Web service has been established, determining
when to access the remote data must be taken into consideration. For certain use cases,
it is acceptable to access the remote service only in response to a user’s action, but in
others the remote Web service access needs to happen more automatically. The Android
SyncAdapter framework provides a central place to perform sync operations while
allowing the sync operation to have multiple different triggers.

If the remote data is retrieved before it needs to be displayed to a user, it needs to
be stored until then. A local database can make a good place to store the data until it is
needed by the app.

ptg18221911

This page intentionally left blank

ptg18221911

10
Data Binding

Data binding was announced at Google I/O 2015 as a way to bind an app’s data to the
views that display that data in the app. In addition to allowing Android developers to write
less boilerplate code, it can speed up code performance. This chapter provides an overview
of the data binding library and how it can use used.

The data binding library analyzes view layouts at compile time and generates code that
can be used at runtime. This code generation can make some of the view-related tasks that
are part of Android development (like calls to findViewById()) obsolete.

Adding Data Binding to an Android Project
Before the data binding API can be used in a project, it must be added to the project.
For a Gradle-based Android project, adding data binding support is as easy as updating
the build.gradle file for the module that needs data binding support, as shown in
Listing 10.1.

In addition to updating build.gradle, the data binding API requires at least version
1.5.0-alpha1 of the Android plugin for Gradle as well as Android Studio 1.3 or later.

Listing 10.1  Adding Data Binding Support to build.gradle

android {

 // other gradle configuration

 dataBinding {

enabled = true

 }

}

Once the data binding library has been added to the project, it can be used to simplify
binding data to views and view access in general.

ptg18221911

232	 Chapter 10 Data Binding

Data Binding Layouts
To use the data binding library, view layouts must be converted to data binding layouts.
To convert a non–data binding layout to a data binding layout, the <layout> element
must be the root element in a layout file. A data binding layout contains a view hierarchy
as well as an optional <data> section that can be used to declare variables to be used in
the layout file. Listing 10.2 provides an example of using the <layout> element.

Listing 10.2  Using the <layout> Element

<layout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools">

 <data>

<variable name="device"

type="me.adamstroud.devicedatabase.device.DeviceDetailActivity

➥.ObservableDevice"/>

 </data>

 <android.support.design.widget.CoordinatorLayout

android:id="@+id/coordinator_layout"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:fitsSystemWindows="true"

tools:context=".device.DeviceDetailActivity"

tools:ignore="MergeRootFrame">

<LinearLayout

android:layout_width="match_parent"

android:layout_height="match_parent"

android:orientation="vertical">

<include layout="@layout/appbar" />

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@{@string/model(device.model), default=

➥model}" />

ptg18221911

Data Binding Layouts	 233

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@{@string/nickname(device.nickname), default=

➥nickname}" />

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@{@string/memory_in_mb(device.memoryInMb),

➥default=memoryInMb}" />

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@{@string/display_in_inches(device.displaySizeInInches),

➥default=displaySizeInInches}" />

</LinearLayout>

 </android.support.design.widget.CoordinatorLayout>

</layout>

The variables declared under the <data> element can be used elsewhere in the layout
by using the data binding expression language. In Listing 10.2, the two text fields that
show the model and nickname are set to the values of Device.getModel() and Device.
getNickname() respectively by the following code:

<TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@{@string/model(device.model), default=model}" />

<TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@{@string/nickname(device.nickname), default=nickname}"/>

ptg18221911

234	 Chapter 10 Data Binding

Binding an Activity to a Layout
With the data binding layout in place, the activity that uses the layout can retrieve a
reference to the data binding object and use it to both access the view from the layout as
well as set the variables that were declared in the layout.

To get a reference to the data binding object, the DataBindingUtil.setContentView()
method can be called. Listing 10.3 shows a call to the DataBindingUtil.setContentView()
method in an activity. It can be used to replace the Activity.setContentView() method
that would normally be called to associate an activity with a view hierarchy.

Listing 10.3  Binding a Layout to an Activity

public class DeviceDetailActivity extends BaseActivity

implements LoaderManager.LoaderCallbacks<Cursor> {

 public static final String EXTRA_DEVICE_URI = "deviceUri";

 private static final int ID_DEVICE = 1;

 private Uri deviceUri;

 private CoordinatorLayout coordinatorLayout;

 private ActivityDeviceDetailBinding binding;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

binding =

DataBindingUtil.setContentView(this,

R.layout.activity_device_detail);

// more initialization code

 }

}

In Listing 10.3, the call to DataBindingUtil.setContentView() takes the current
activity and the resource ID from the layout in Listing 10.2 as parameters. The first
parameter defines the activity that should have the content view updated, and the second
parameter defines the layout to use for the content view of the activity. Like the call to
Activity.setContentView() that was replaced, DataBindingUtil.setContentView()
inflates the layout and uses the layout for the activity’s content view. However, in addition,
it performs the data binding for the layout.

ptg18221911

Data Binding Layouts	 235

The return type of DataBindingUtil.setContentView() is an
ActivityDeviceDetailBinding object. The ActivityDeviceDetailBinding class is
generated by the data binding library at compile time and contains methods for setting
variables defined in the layout XML file as well as views that are in the layout file.

Figure 10.1 shows the location of the generated code.

Using a Binding to Update a View
Once the data binding object is retrieved, it can be used to update the view data by
calling the setter methods of the variables that were declared in the layout file. Since the
device data is read from the database using a CursorLoader, the call to DataBindingUtil.

Figure 10.1  Data binding generated code

ptg18221911

236	 Chapter 10 Data Binding

setDevice() is not made until the CursorLoader has returned the data in
onLoadFinished(). Listing 10.4 contains the implementation of onLoadFinished().

Listing 10.4  Updating the Bound Views

@Override

public void onLoadFinished(Loader<Cursor> loader, Cursor data) {

 if (data != null && data.moveToFirst()) {

ObservableDevice observableDevice = binding.getDevice();

observableDevice

.model

.set(data.getString(data

.getColumnIndexOrThrow(DevicesContract

.Device

.MODEL)));

observableDevice

.nickname

.set(data.getString(data

.getColumnIndexOrThrow(DevicesContract

.Device

.NICKNAME)));

observableDevice

.memoryInMb

.set(data.getFloat(data

.getColumnIndexOrThrow(DevicesContract

.Device

.MEMORY_MB)));

observableDevice

.displaySizeInInches

.set(data.getFloat(data

.getColumnIndexOrThrow(DevicesContract

.Device

.DISPLAY_SIZE_INCHES)));

 }

}

ptg18221911

Data Binding Layouts	 237

Once the CursorLoader finishes loading, the views are updated through the view
binding and the display is updated.

The data binding implementation in Listings 10.2 through 10.4 shows the details of the
device on the UI when the cursor is loaded. However, there is something wrong with the
current implementation. If the database is updated, the UI will not be updated to reflect
the changes in the database. The issue is not with the CursorLoader; onLoadFinished()
will be called again and attempt to update the device details. The problem lies with the
way the DeviceDetailActivity is using the data binding API.

Recall from Listing 10.2 that the data binding layout uses a variable from the model
package:

<data>

 <variable name="device"

type="me.adamstroud.devicedatabase.model.Device "/>

</data>

This use of the POJO from the model package allows the UI to show the original
values of the POJO; however, it does not cause the UI to be updated when the values of
the Device class are changed. In order to update the UI when the data of a bound data
object is updated, the data object must contain observable fields.

Note
The observable field that is used with data binding is unrelated to the Observable class
from RxJava discussed in the preceding chapter.

Because the Device class does not contain observable fields, it cannot be used to update
the UI as the database changes. Instead, another class can be created that contains the
observable fields that are needed to have the UI reflect changes in the data. Listing 10.5
shows the implementation of ObservableDevice which contains these observable fields.
ObservableDevice is implemented as an inner class to DeviceDetailActivity because it
is used only by DeviceDetailActivity.

Listing 10.5  Implementing ObservableDevice

public static class ObservableDevice extends BaseObservable {

 private String model;

 private String nickname;

 @Bindable

 public String getModel() {

return model;

 }

ptg18221911

238	 Chapter 10 Data Binding

 public void setModel(String model) {

this.model = model;

notifyPropertyChanged(BR.model);

 }

 @Bindable

 public String getNickname() {

return nickname;

 }

 public void setNickname(String nickname) {

this.nickname = nickname;

notifyPropertyChanged(BR.nickname);

 }

}

In order to have the UI views updated, ObservableDevice extends BaseObservable
and makes calls to notifyPropertyChanged() in the setter that updated its state. In
addition, the @Bindable annotation has been applied to each of the getter methods for
values that require a UI update when they are modified.

Notice the parameter that is passed to notifyPropertyChange(). It is a public
constant that represents the property that was changed. The BR class is a generated class
that is used like the R class that identifies resources in Android. Both are generated by the
Android toolchain and belong to the base package of the app as shown in Listing 10.6.

Listing 10.6  BR and R Class Imports

import me.adamstroud.devicedatabase.BR;

import me.adamstroud.devicedatabase.R;

The BR class can be thought of as a data-binding-specific version of the R class.

Reacting to Data Changes
With the ObservableDevice implemented, the last task in order to have a data binding
implementation that reacts to database changes is to update the data binding layout to use
the ObservableDevice instead of the Device class. The changes that are needed to make
the update are displayed in Listing 10.7.

ptg18221911

Data Binding Layouts	 239

Listing 10.7  Updating the Layout to Use ObservableDevice

<layout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools">

 <data>

<variable name="device"

type="me.adamstroud.devicedatabase.device.DeviceDetailActivity

➥.ObservableDevice"/>

 </data>

 <android.support.design.widget.CoordinatorLayout

android:id="@+id/coordinator_layout"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:fitsSystemWindows="true"

tools:context=".device.DeviceDetailActivity"

tools:ignore="MergeRootFrame">

<LinearLayout

android:layout_width="match_parent"

android:layout_height="match_parent"

android:orientation="vertical">

<include layout="@layout/appbar" />

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@{@string/model(device.model), default=

➥model}" />

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@{@string/nickname(device.nickname), default=

➥nickname}" />

ptg18221911

240	 Chapter 10 Data Binding

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@{@string/memory_in_mb(device.memoryInMb),

➥default=memoryInMb}" />

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@{@string/display_in_inches(device.displaySizeInInches),

➥default=displaySizeInInches}" />

</LinearLayout>

 </android.support.design.widget.CoordinatorLayout>

</layout>

While extending the BaseObservable class can get updated member data to the UI, it
does contain some boilerplate code. A terser solution that can produce the same effect is
to make the individual member variables observable instead of the entire class.

The data binding library contains ObservableFields that make individual
fields observable without some of the boilerplate code that is needed to extend
BaseObservable. To make an individual field observable, the field can be one of the
following types:

■■ ObservableField

■■ ObservableBoolean

■■ ObservableByte

■■ ObservableChar

■■ ObservableShort

■■ ObservableInt

■■ ObservableLong

■■ ObservableFloat

■■ ObservableDouble

■■ ObservableParcelable

Because the DeviceDetailActivity will be updating its UI with String data, the
ObservableDevice needs to have two ObservableField<String> members. Listing 10.8
shows the updated ObservableDevice implementation.

ptg18221911

Data Binding Layouts	 241

Listing 10.8  Updated ObservableDevice with ObservableField

public static class ObservableDevice {

 public final ObservableField<String> nickname =

new ObservableField<>();

 public final ObservableField<String> model =

new ObservableField<>();

 public final ObservableFloat memoryInMb =

new ObservableFloat();

 public final ObservableFloat displaySizeInInches =

new ObservableFloat();

}

Using the ObservableField type makes the code for ObservableDevice really simple.
There is no need to use the @Bind annotation, and the fields automatically update the
views they are bound to without a call to notifyPropertyChange().

The last piece of code to change after migrating the ObservableField implementation
is onLoadFinished(). It needs to be updated to set the values of the ObservableFields,
which requires an additional method call as can be seen in Listing 10.9.

Listing 10.9  Setting ObservableField Values

@Override

public void onLoadFinished(Loader<Cursor> loader, Cursor data) {

 if (data != null && data.moveToFirst()) {

ObservableDevice observableDevice = binding.getDevice();

observableDevice

.model

.set(data.getString(data

.getColumnIndex(DevicesContract

.Device.MODEL)));

observableDevice

.nickname

ptg18221911

242	 Chapter 10 Data Binding

.set(data.getString(data

.getColumnIndex(DevicesContract

.Device.NICKNAME)));

 }

}

Instead of directly setting the values on ObservableDevice, ObservableField.set() must
be used to update the value. This takes care of all the details of making sure the UI gets updated.

In addition to automatically binding Java objects to the UI, the data binding library can
be used to replace other boilerplate code often found in Android apps.

Using Data Binding to Replace Boilerplate Code
In order to access a view in its view hierarchy, an activity/fragment first needs to find the
view. This is often done with a call to findViewById(). The findViewById() traverses
the view hierarchy until it finds a view that matches the ID that it was passed. For com-
plex views that have deep view hierarchies, this can be an expensive operation as the
whole view hierarchy may need to be processed in order to find the view. In addition,
each call to findViewById() incurs this performance hit. If an activity needs to update ten
views, it has to make ten calls to findViewById() and have ten view hierarchy traversals.
The performance hit of superfluous calls to findViewById() was the motivation behind
the ViewHolder pattern that is often used with ListView.

The data binding library helps address these issues by removing the need to make calls
to findViewById(). This both replaces the boilerplate code for finding views and makes
the code faster by eliminating the need to have multiple view hierarchy traversals to get a
reference to multiple views. Because the code generation functionality of the data binding
library happens at compile time, data binding can provide a handle to all necessary views
by making only a single pass over the view hierarchy.

To have the data binding library insert references to views in its data binding object,
views only need to be given an ID in the layout file. All views that have an ID will be
accessible from the activity’s data binding object.

To see how the feature works, the device details layout is updated to add a view that
contains an ID. Listing 10.10 shows the updated layout file.

Listing 10.10  Adding a View with an ID

<layout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools">

 <data>

<variable name="device"

type="me.adamstroud.devicedatabase.device.DeviceDetailActivity

➥.ObservableDevice"/>

ptg18221911

Using Data Binding to Replace Boilerplate Code	 243

 </data>

 <android.support.design.widget.CoordinatorLayout

android:id="@+id/coordinator_layout"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:fitsSystemWindows="true"

tools:context=".device.DeviceDetailActivity"

tools:ignore="MergeRootFrame">

<LinearLayout

android:layout_width="match_parent"

android:layout_height="match_parent"

android:orientation="vertical">

<include layout="@layout/appbar" />

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@{@string/model(device.model), default=

➥model}" />

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@{@string/nickname(device.nickname), default=

➥nickname}" />

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@{@string/memory_in_mb(device.memoryInMb),

➥default=memoryInMb}" />

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

ptg18221911

244	 Chapter 10 Data Binding

android:text="@{@string/display_in_inches(device.display

➥SizeInInches), default=displaySizeInInches}" />

<TextView

android:id="@+id/id"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

</LinearLayout>

 </android.support.design.widget.CoordinatorLayout>

</layout>

Once the ID has been added to one of the TextViews, it can be directly accessed from
the binding class that is returned from DataBindingUtil.setContentView(). The only
change to DeviceDetailActivity is to update the ID when the cursor is returned
to onLoadFinished() to access the id view and update its content. This is shown in
Listing 10.11.

Listing 10.11  Updating the ID

@Override

public void onLoadFinished(Loader<Cursor> loader, Cursor data) {

 if (data != null && data.moveToFirst()) {

ObservableDevice observableDevice = binding.getDevice();

observableDevice

.model

.set(data.getString(data

.getColumnIndexOrThrow(DevicesContract

.Device

.MODEL)));

observableDevice

.nickname

.set(data.getString(data

.getColumnIndexOrThrow(DevicesContract

ptg18221911

Using Data Binding to Replace Boilerplate Code	 245

.Device

.NICKNAME)));

observableDevice

.memoryInMb

.set(data.getFloat(data

.getColumnIndexOrThrow(DevicesContract

.Device

.MEMORY_MB)));

observableDevice

.displaySizeInInches

.set(data.getFloat(data

.getColumnIndexOrThrow(DevicesContract

.Device

.DISPLAY_SIZE_INCHES)));

binding

.id

.setText(getString(R.string.id,

data.getLong(data

.getColumnIndex(DevicesContract

.Device

._ID))));

 }

}

Recall from Listing 10.2 that the binding member variable is of type ActivityDevice
DetailBinding. With the ID added to the layout file, the id TextView can be accessed
without a call to findViewById(). Because the data binding code generation happens at
compile time, the type of id is also known, so there is no need to cast id to the correct
type. The data binding library generates a binding class that uses a TextView.

In addition to binding data to views, the data binding library has an expression
language that allows layout files to manipulate views. The next section introduces the data
binding expression language.

ptg18221911

246	 Chapter 10 Data Binding

Data Binding Expression Language
The data binding expression language allows for view manipulation directly in the XML
layout file. Recall from Listing 10.2 that the values of both the device model and the
device nickname are set in the data binding layout file. Listing 10.12 shows the portion of
the data binding layout, in bold, that uses the expression language.

Listing 10.12  Using the Data Binding Expression Language

<TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@{@string/model(device.model), default=model}" />

<TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@{@string/nickname(device.nickname), default=

➥nickname}" />

Listing 10.12 references the model and nickname of the device variable that was
declared in the data section of the layout.

The default keyword is used to show a placeholder in the Android Studio layout
preview windows. It is useful for displaying text at design time for values that are not
available until runtime.

In addition to accessing the actual data from the device object, the code in
Listing 10.12 accesses string resources. This can be useful when string resources are needed
to provide formatting and/or localization support to an app.

Use of the expression language is fairly simplistic. In addition to populating view
values, expression language operators are available to give a layout a more dynamic nature.
The operators supported by the data binding expression language are mostly the same as
the standard Java operators. For example, the expression language supports the following
operators:

■■ Mathematical operators
■■ String concatenation
■■ Unary operators
■■ Binary operators
■■ The ternary operator

ptg18221911

Summary	 247

■■ instanceof

■■ Shift operators
■■ Logical operators

In addition to the operators listed, the data binding expression language supports
accessing individual array items, accessing object data members, making method calls, and
typecasting.

On top of the familiar Java operators, the expression language adds support for the null
coalescing operator. This operator is represented by two question marks (“??”) and can
be thought of as a shorthand notation for the ternary operator when checking for null.
Listing 10.13 shows an example of the null coalescing operator.

Listing 10.13  Null Coalescing Operator

<TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@{object.left ?? object.right}" />

In Listing 10.13, the null coalescing operator assigns the object.left if object.left
is not null, and object.right if object.left is null. Conceptually, the statement is
equivalent to

<TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@{object.left == null? object.right : object.left}" />

Something important to remember when using the data binding expression language is
that just because it supports complicated expressions, that does not mean these expressions
should be used. A good rule of thumb would be not to use any expression that is more
complicated than the ternary operator. For complex view expressions, Java may be a better
alternative, especially since the overhead from making calls to findViewById() has been
removed by the data binding library.

Summary
The data binding library can be a powerful addition to an Android project. Its ability
to remove boilerplate code by working with views and performance gains caused by
leveraging compile-time code generation make it an important tool in the Android
toolkit.

ptg18221911

This page intentionally left blank

ptg18221911

Index

Symbols
?? (null coalescing operator), 247

A
accessing databases. See also content providers

with adb utility, 61–62
connecting with sqlite3, 67–72
copying files to development machines, 73
finding file location, 64–67
permissions, 62–64

allowing external apps, 114–115
main thread and, 60–61
with Stetho, 73–75
via Web services

with Android SDK (Software
Development Kit), 179–187

REST and, 177–179
with Retrofit, 188–194
with Volley, 194–203

AccountAuthenticator class, 204–208
ACTION_SEND, 168
ACTION_SEND_MULTIPLE, 168
ActionProvider class, 174
actions in implicit intents, 167–168
activities

accessing content providers
activity class sdefinition, 147–148
activity layout, 145–147
creating cursor loader, 148–149
handling returned data, 149–156
reacting to data changes, 156–161

binding to layouts, 234–235
starting, 164–166
UI (user interface). See UI (user interface)

Activity class
getIntent( ) method, 167
onCreate( ) method, 167
onCreateOptionsMenu( ) method, 174–175

adb (Android Debug Bridge) utility
accessing databases, 61–62

connecting with sqlite3, 67–72
copying files to development machines, 73
finding file location, 64–67
permissions, 62–64

viewing SQLite version, 40

ptg18221911

250 Index

with ListViews, 139–142
with RecyclerViews, 142, 145–147

BLOB storage class, 43
boilerplate code, replacing, 242–245
BR class, 238
bulkInsert( ) method, 105–108

C
candidate keys, 6
cardinality, 4
Cartesian product, 11
checkpoints, 41
close( ) method, 94
closing databases, 133–134
Codd, Edgar, 3
conflict resolution in insert operations, 82–83
connections

to HTTP servers, 179–184
with sqlite3, 67–72

constraints
candidate keys, 6
foreign keys

definition, 6
in SQLite, 40

keys, 6
primary keys, 6
REST, 177–178
superkeys, 6

constructors
CursorLoader class, 96
SQLiteOpenHelper class, 48–50

content observers, cursors as, 143
reacting to data changes, 156–161
registerContentObserver( ) method, 143–144
registerDataSetObserver( ) method, 144
unregisterContentObserver( ) method, 144
unregisterDataSetObserver( ) method, 144

content providers
accessing from activities

activity class definition, 147–148
activity layout, 145–147
creating cursor loader, 148–149
handling returned data, 149–156
reacting to data changes, 156–161

content resolvers, role of, 108
ContentProvider class, 102–103

applyBatch( ) method, 105–108
bulkInsert( ) method, 105–108
delete( ) method, 104
extending, 115–118
getType( ) method, 104–105
insert( ) method, 103–104
onCreate( ) method, 103
query( ) method, 105
update( ) method, 105

DevicesProvider implementation, 115
class declaration, 115–118
delete( ) method, 120–122
getType( ) method, 130–132
insert( ) method, 119–120

ALPHA, 14
ALTER TABLE statement, 19–20

in SQLite, 43
upgrading databases, 59

Android Debug Bridge (adb) utility. See adb
(Android Debug Bridge) utility

Android SDK (Software Development Kit), 47
accessing Web services, 179–187
ContentValues class, 79

put( ) methods, 80–81
Cursor class, 79, 92

managing cursors, 94. See also
CursorLoader class

reading data, 92–94
CursorLoader class, 79, 94–95. See also

cursor loaders
creating CursorLoaders, 95–98
restarting CursorLoaders, 99
starting CursorLoaders, 98–99

JSON API, 184–187
LoaderManager class, 79

creating CursorLoaders, 95–98
restarting CursorLoaders, 99
starting CursorLoaders, 98–99

SQLiteDatabase class, 57–58, 79
deleting rows, 86–87
inserting rows, 80–83
queries, 89–91
replacing rows, 85–86
transactions, 87–89
updating rows, 83–85

SQLiteOpenHelper class, 47–48
constructors, 48–50
onConfigure( ) method, 53–54
onCreate( ) method, 50
onDowngrade( ) method, 54
onUpgrade( ) method, 50–53

SQLiteQueryBuilder class, 91, 128–130
applyBatch( ) method, 105–108
applySql( ) method, 51–52
app-specific permissions, 110–112
AsyncTask class, 180–184
atomic transactions

in content providers, 105–108
methods, 87–88
performance, 88–89
in SQLite, 41–42

attributes, 3, 4–4
authorities

in content URIs, 102
definition, 64

B
BaseActivity class, 147
battery consumption, Web services and, 203
beginTransaction( ) method, 87–88
binary relations, 4
binding. See also data binding library

activities to layouts, 234–235
cursor data to UI, 138

ptg18221911

251Index

creating CursorLoaders, 95–98
restarting CursorLoaders, 99
starting CursorLoaders, 98–99

cursors
binding data to UI, 138

with ListViews, 139–142
with RecyclerViews, 142, 145–147

creating CursorLoaders, 95–98
definition, 92
intents and, 172–173
managing, 94. See also CursorLoader class
objects versus, 133
as observers, 143

reacting to data changes, 156–161
registerContentObserver( ) method, 143–144
registerDataSetObserver( ) method, 144
setNotificationUri( ) method, 145
unregisterContentObserver( ) method, 144
unregisterDataSetObserver( ) method, 144

ORM versus, 142
reading data, 92–94
restarting CursorLoaders, 99
starting CursorLoaders, 98–99
threads and, 94–95

D
data binding library, 231. See also binding

adding to projects, 200, 231
binding activities to layouts, 234–235
converting view layouts to data binding layouts,

232–233
expression language, 246–247
reacting to data changes, 238–242
replacing boilerplate code, 242–245
updating views, 235–238

Data Definition Language (DDL). See DDL (Data Definition
Language)

Data Manipulation Language (DML). See DML
(Data Manipulation Language)

data persistence, 47
for Web services, 204

AccountAuthenticator class, 204–208
manual synchronization with RxJava, 213–223
SyncAdapter class, 209–213
SyncAdapter framework, 204

data transfer. See Web services
data types

for intent extras, 169
for observable fields, 240
in SQLite, 43

storage classes, 43
type affinity, 44

databases
accessing. See accessing databases
closing, 133–134
hierarchical model, 2
history of, 1–2
languages, 14

ALPHA, 14
QUEL, 14

query( ) method, 124–130
update( ) method, 122–124

exposing to external apps, 108–109
allowing access, 114–115
app-specific permissions, 110–112
contracts, 112–114
path permissions, 109–110
provider-level permissions, 109
read/write permissions, 109

finding file location, 64–67
limitations, 132–134
RESTful APIs compared, 101
strengths, 134–135
UI (user interface). See UI (user interface)
URI scheme conventions, 101–102

content resolvers, role of, 108
ContentProvider class, 102–103

applyBatch( ) method, 105–108
bulkInsert( ) method, 105–108
delete( ) method, 104
extending, 115–118
getType( ) method, 104–105
insert( ) method, 103–104
onCreate( ) method, 103
query( ) method, 105
update( ) method, 105

ContentResolver class, 159–160
ContentValues class, 79, 80–81
Context class

getResolver( ) method, 108
startActivity( ) method, 164

contracts for content providers, 112–114
converting view layouts to data binding layouts,

232–233
copying

databases to development machines, 73
tables, 59–60

CREATE INDEX statement, 22
CREATE TABLE statement, 18–19
CREATE TRIGGER statement, 24–27
CREATE VIEW statement, 23–24
createChooser( ) method, 164–166
CREATOR member variable, 172
Cursor class, 79, 92

managing cursors, 94. See also CursorLoader class
reading data, 92–94
registerContentObserver( ) method,

143–144
registerDataSetObserver( ) method, 144
setNotificationUri( ) method, 145
unregisterContentObserver( ) method, 144
unregisterDataSetObserver( ) method, 144

cursor loaders. See also CursorLoader class
content providers and, 134
creating, 95–98, 148–149
reacting to data changes, 156–161
restarting, 99
starting, 98–99
threads and, 137

CursorAdapter class, 140–142
CursorLoader class, 79, 94–95. See also cursor loaders

ptg18221911

252 Index

databases (continued)
SEQUEL, 14
SQL. See SQL (Structured Query Language)
SQLite. See SQLite

network model, 2
relational model, 3

attributes, 4
first normal form, 5
intension/extension, 4
referential integrity, 7–9
relational algebra, 9–13
relational calculus, 13
relational languages, 9
relations, 3
relationships, 6–7
schemas, 5, 17
tuples, 4

upgrading. See upgrading databases
DataBindingUtil class, 234–235
DDL (Data Definition Language), 17

for indexes, 20–21
CREATE INDEX statement, 22
DROP INDEX statement, 22–23

for tables, 18
ALTER TABLE statement, 19–20, 59
CREATE TABLE statement, 18–19
DROP TABLE statement, 20

for triggers, 24
CREATE TRIGGER statement, 24–27
DROP TRIGGER statement, 27–28

for views, 23
CREATE VIEW statement, 23–24
DROP VIEW statement, 24

DEFAULT keyword in INSERT statements,
29–30

degrees, 4
delete( ) method

ContentProvider class, 104
DevicesProvider class, 120–122
SQLiteDatabase class, 86–87

DELETE statement, 31
deleting table rows, 86–87, 104
deliverSelfNotification( ) method, 143
DeviceCursorAdapter class

getItemCount( ) method, 151–152
implementation, 153–156
onBindViewHolder( ) method, 152–153
swapCursor( ) method, 151

DevicesOpenHelper implementation, 54–57
DevicesProvider implementation, 115

class declaration, 115–118
delete( ) method, 120–122
getType( ) method, 130–132
insert( ) method, 119–120
query( ) method, 124–130, 156–159
update( ) method, 122–124

DeviceViewHolder class, 153–156
difference operator, 11
DML (Data Manipulation Language), 28

DELETE statement, 31
INSERT statement, 28–29

DEFAULT keyword, 29–30
SELECT statement in, 29
VALUES keyword, 28–29

UPDATE statement, 30–31
domain relational calculus, 13
domains, 4
DROP INDEX statement, 22–23
DROP TABLE statement, 20
DROP TRIGGER statement, 27–28
DROP VIEW statement, 24
dropping

indexes, 22–23
tables, 20, 59–60
triggers, 27–28
views, 24

E
endTransaction( ) method, 87–88
explicit intents, 163
expression language for data binding, 246–247
extending ContentProvider class, 115–118
extension, 4
external apps

exposing content providers to, 108–109
allowing access, 114–115
app-specific permissions, 110–112
contracts, 112–114
path permissions, 109–110
provider-level permissions, 109
read/write permissions, 109

sharing data via intents, 164
actions, 167–168
extras, 168–169
Parcelable interface, 170–172
receiving implicit intents, 166–167
ShareActionProvider class, 173–175
starting target activities, 164–166

EXTRA_STREAM, 169
EXTRA_TEXT, 169
extras in implicit intents, 168–169

F
finding database file location, 64–67
findViewByID( ) method, 242
first normal form, 5
foreign keys

definition, 6
in SQLite, 40

FROM clause in SELECT statements, 32
FTS (full text search) in SQLite, 40–41
full table scans, 20

G
get( ) methods, 94
getColumnIndex( ) method, 93–94
getColumnIndexOrThrow( ) method, 93–94
getIntent( ) method, 167
getItemCount( ) method, 151–152

ptg18221911

253Index

getReadableDatabase( ) method, 58
getResolver( ) method, 108
getType( ) method

ContentProvider class, 104–105
DevicesProvider class, 130–132

getWritableDatabase( ) method, 58
GSON library, 188, 190

H
hierarchical model of databases, 2
history of databases, 1–2
HTTP clients, OkHttp library, 190–193
HTTP servers, connecting to, 179–184
HttpURLConnection class, 179–180

I
IBM Information Management System (IMS), 2
IDs

adding to views, 242–245
in content URIs, 102

implicit intents, 164
actions, 167–168
extras, 168–169
Parcelable interface, 170–172
receiving, 166–167
ShareActionProvider class, 173–175
starting target activities, 164–166

IMS (IBM Information Management System), 2
indexes

CREATE INDEX statement, 22
definition, 20–21
DROP INDEX statement, 22–23

initLoader( ) method, 95, 98–99
insert( ) method

ContentProvider class, 103–104
DevicesProvider class, 119–120
SQLiteDatabase class, 80–83

INSERT statement, 28–29
DEFAULT keyword, 29–30
SELECT statement in, 29
VALUES keyword, 28–29

inserting
null columns, 81–82
table rows, 80–83, 103–104

insertOrThrow( ) method, 80, 82
insertWithOnConflict( ) method, 80, 82–83
INTEGER storage class, 43
intension, 4
Intent class

actions, 167–168
createChooser( ) method, 164–166
extras, 168–169
putExtra( ) method, 164, 169
resolveActivity( ) method, 164
setType( ) method, 164

intents
cursors and, 172–173
definition, 163
explicit intents, 163

implicit intents, 164
actions, 167–168
extras, 168–169
Parcelable interface, 170–172
receiving, 166–167
ShareActionProvider class, 173–175
starting target activities, 164–166

interprocess communication, 135
intersection operator, 10

J
Jackson, parsing JSON with, 197–200
joins, 12–13, 34–37, 42
journal mode, 41
JSON

Android APIs for, 184–187
parsing with Jackson, 197–200

K
keys, 6

L
languages, 14

ALPHA, 14
QUEL, 14
SEQUEL, 14
SQL. See SQL (Structured Query Language)
SQLite. See SQLite

<layout> element, 232–233
layouts

for activities, 145–147
binding activities to, 234–235
view layouts, converting to data binding layouts,

232–233
listings

AccountService in manifest, 207
ACTION_SEND_MULTIPLE, 168
activity with intent filter, 166
adb shell dumpsys subcommand, 65
adding

cancel support to AsyncTask, 182–184
data binding library to build.gradle, 200
data binding support to build.gradle, 231
manufacturer reference to device table, 36
new row to device table, 20
Retrofit to build.gradle, 188
RxJava adapter to Retrofit, 214–216
RxJava support to build.gradle, 214
Stetho to build.gradle, 74
transaction support to bulkInsert( )

and applyBatch( ), 106–107
views with IDs, 242–244
Volley dependency, 195
Volley to settings.gradle, 195

attaching SyncAdapter with SyncService, 212
binding

cursor with CursorAdapter, 141
to framework with AuthenticatorService, 206
layout to activity, 234

ptg18221911

254 Index

DeviceCursorAdapter and DeviceViewHolder,
153–156

DeviceCursorAdapter.swapCursor( ), 151
DevicesOpenHelper.onConfigure( ), 54
DevicesOpenHelper.onCreate( ), 50
DevicesOpenHelper.onUpgrade( ), 51
DevicesProvider.onCreate( ), 118
GetManufacturersAndDevicesRequest,

202–203
getType( ), 131
insert( ), 119
notifyUris( ), 160
ObservableDevice, 237
onCreateLoader( ), 96
onLoadFinished( ), 97
query( ), 124–127
SQLiteOpenHelper constructor, 49
stub AccountAuthenticator, 204–206
SyncAdapter, 209–211
SyncManager.call( ), 217–219
SyncManager.

getManufacturersAndDevices( ), 216
update( ), 122–123
VolleyApiClient, 196

inserting
data using contract class, 114
data with SQLiteDatabase.insert( ), 81
manufacturers, 36

issuing .help to sqlite3, 67–69
joining tables with JOIN, 37
layout definition for DeviceListActivity,

145–146
<layout> element usage, 232–233
list_item_device.xml definition, 146
loading

devices with VolleyApiClient, 200–202
new cursor with onLoaderReset( ), 151

making requests with AsyncTask, 180–182
making Retrofit call, 194
manually triggering SyncAdapter, 213
mapping UriMatcher, 117
null coalescing operator, 247
observable Web service call to DeviceService, 216
OkHttpLoggingInterceptor output, 191–193
onCreate( ) method implementation, 147–148
opening HttpURLConnection connections,

179–180
ordering rows with ORDER BY, 34
Parcelable implementation, 170–171
parsing JSON with JacksonRequest, 197–200
populating table with multiple INSERT

statements, 30
processing

all rows with UPDATE, 31
cursor in onLoadFinished( ), 149

protected call to Context.startActivity( ), 165
pulling contact information with adb pull, 73
querying raw_contacts table, 70
reading cursor data, 92–93
removing

listings (continued)
BR and R class imports, 238
calling Intent.createChooser( ), 166
chaining onChange( ) method, 144
combining adb shell and sqlite3, 72

with formatting added, 72
complete implementation of SyncManager,

220–223
configuring

provider with onCreateOptionsMenu, 175
Retrofit, 188–190

connecting
to contacts database, 67
cursor with SimpleCursorAdapter, 139–140

content provider declaration, 115–117
content provider manifest, 107
contents of res/xml/authenticator.xml, 208
contents of res/xml/syncadapter.xml, 213
converting JSON to data model, 184–187
copying and dropping table, 60
creating

the device table, 19
device_name view, 24
explicit intent, 163
FTS table, 40
implicit intent, 164
index on model column, 22
loader with onCreateLoader( ), 148–149
manufacturer table, 35
trigger on device table, 26

data binding expression language, 246
databases directory listing, 66
/data/data directory listing, 62–63
declaring content provider permissions, 111–112
defining Web service interface, 188
deleting index on model column, 23
device database Application class, 74
DeviceListActivity class definition, 147
enabling

column headers, 70
columns, 71

entire implementation of DevicesOpenHelper,
54–57

examples
delete method, 87
replace call, 85
table, 60
update call, 84

exported content provider manifest listing, 114
extending contracts with DevicesContract.

DeviceManufacturer, 128
file permissions, 63
getting list of attached devices, 61

with device names, 62
handling implicit intent, 167
home directory listing, 66
implementing

applySql( ), 51–52
contract class, 112–113
delete( ), 120–121

ptg18221911

255Index

device table, 20
device_name view, 24
insert_date trigger, 27
rows with DELETE, 31

returning
all rows in table, 90
number of items, 152

running .tables, 69–70
SELECT statement, 32

with WHERE clause, 32
sending

JPEG extra, 169
updates from DevicesProvider.query( ),

156–159
setting ObservableField values, 241
share action provider menu item, 174
simple query, 90
snippets of insert( ), update( ), and delete( ),

159–160
specifying null columns with

nullColumnHack, 82
standard SQL types, 44
SyncService manifest declaration, 212
transaction example, 88
UPDATE with WHERE clause, 31
updated ObservableDevice with

ObservableField, 241
updating

bound view, 236
IDs, 244–245
layout to use ObservableDevice,

239–240
UI in onBindViewHolder( ),

152–153
view from single row in cursor, 138

ListViews, 139–142
loader framework. See CursorLoader class
LoaderCallbacks interface, 95

onLoaderReset( ) method, 98, 150–151
onLoadFinished( ) method

binding data to UI, 138
creating cursor loaders, 97–98
processing cursors, 149–150
setting ObservableField values, 241
threads and, 137
updating views, 235–237

LoaderManager class, 79
creating CursorLoaders, 95–98
restarting CursorLoaders, 99
starting CursorLoaders, 98–99

M
main thread, database access and, 60–61
many-to-many relationships, 7
mapping URIs to tables, 117–118
menus, 174–175
MIME types, returning, 104–105
move( ) method, 92
moveToFirst( ) method, 92

moveToLast( ) method, 92
movetoNext( ) method, 92
moveToPosition( ) method, 92
moveToPrevious( ) method, 92
multithread support in SQLite, 42

N
n-ary relations, 4
natural joins, 12–13
network model of databases, 2
notifyChange( ) method, 159–160
notifyPropertyChanged( ) method, 238
notifyUris( ) method, 160–161
null coalescing operator, 247
null columns, inserting, 81–82
NULL storage class, 43

O
object-relational mapping (ORM), 142
objects, cursors versus, 133
observable fields

data types, 240
setting values, 241–242
updating views, 237–238

ObservableDevice class, 237–242
ObservableField class, 240–242
observers, cursors as. See content observers, cursors as
OkHttp library, 190–193
onBindViewHolder( ) method, 152–153
onChange( ) method, 143–144
onConfigure( ) method, 53–54
onCreate( ) method

Activity class, 167
ContentProvider class, 103
DeviceListActivity class, 147–148
DevicesOpenHelper class, 50
DevicesProvider class, 118
LoaderCallbacks interface, 95
SQLiteOpenHelper class, 50

onCreateLoader( ) method
DeviceListActivity class, 148–149
LoaderCallbacks interface, 96

onCreateOptionsMenu( ) method, 174–175
onDowngrade( ) method, 54
one-to-many relationships, 7
one-to-one relationships, 6
onInvalidate( ) method, 144
onLoaderReset( ) method, 98, 150–151
onLoadFinished( ) method

binding data to UI, 138
creating cursor loaders, 97–98
processing cursors, 149–150
setting ObservableField values, 241
threads and, 137
updating views, 235–237

onUpgrade( ) method
DevicesOpenHelper class, 51
SQLiteOpenHelper class, 50–53

ptg18221911

256 Index

read/write permissions, 109
REAL storage class, 43
rebuilding database as upgrade method, 58
receiving implicit intents, 166–167
RecyclerViews, 142, 145–147
referential integrity, 7–9
registerContentObserver( ) method, 143–144
registerDataSetObserver( ) method, 144
relational algebra

Cartesian product, 11
definition, 9–10
difference operator, 11
intersection operator, 10
joins, 12–13
projection operation, 12, 32
selection operation, 11–12
union operator, 10

relational calculus
definition, 9, 13
domain relational calculus, 13
tuple relational calculus, 13

relational languages, 9
relational algebra, 9–10

Cartesian product, 11
difference operator, 11
intersection operator, 10
joins, 12–13
projection operation, 12, 32
selection operation, 11–12
union operator, 10

relational calculus, 13
domain relational calculus, 13
tuple relational calculus, 13

relational model of databases, 3
relational languages, 9

relational algebra, 9–13
relational calculus, 13

relations, 3
attributes, 4
first normal form, 5
intension/extension, 4
schemas, 5, 17
tuples, 4

relationships
definition, 6–7
referential integrity, 7–9

relations, 3
attributes, 4
definition, 3
first normal form, 5
intension/extension, 4
relationships

definition, 6–7
referential integrity, 7–9

schemas, 5, 17
tuples, 4

relationships
definition, 6–7
referential integrity, 7–9

operators
Cartesian product, 11
data binding expression language, 246–247
difference, 11
intersection, 10
projection operation, 12
selection operation, 11–12
union, 10

ORDER BY clause in SELECT statements, 32–34
ORM (object-relational mapping), 142

P
Parcelable interface, 170–172
path permissions, 109–110
paths in content URIs, 102
performance of transactions, 88–89
permissions, 62–64

app-specific, 110–112
path, 109–110
provider-level, 109
read/write, 109

persisting data. See data persistence
primary keys, 6
projection operation, 12, 32
provider-level permissions, 109
pull command (adb), 73
put( ) methods, 80–81
putExtra( ) method, 164, 169

Q
QUEL, 14
queries

cursors
creating CursorLoaders, 95–98
definition, 92
managing, 94. See also CursorLoader class
reading data, 92–94
restarting CursorLoaders, 99
starting CursorLoaders, 98–99
threads and, 94–95

joins, 34–37
SELECT statement, 32–34
SQLiteDatabase class, 89–91

query( ) method, 89–91
rawQuery( ) method, 91

query( ) method
ContentProvider class, 105
DevicesProvider class, 124–130, 156–159
SQLiteDatabase class, 89–91

R
R class, 238
rawQuery( ) method, 91
reading

cursor data, 92–94
parcels, 172
threads and, 137

ptg18221911

257Index

remote data transfer. See Web services
removing table rows, 86–87, 104
replace( ) method, 85–86
replaceOrThrow( ) method, 85
replacing

boilerplate code, 242–245
table rows, 85–86

RequestQueue (Volley), 195–197
resolveActivity( ) method, 164
REST (Representational State Transfer)

constraints, 177–178
Web services and, 177–179

restarting CursorLoaders, 99
restartLoader( ) method, 99
RESTful APIs

content providers compared, 101
structure of, 178–179

Retrofit, 188–194
adding RxJava support, 214–216
adding to projects, 188
configuring, 188–190
OkHttp library, 190–193
Web service calls, 193–194
Web service interface, 188

rowid column (SQLite), 21
rows

deleting, 86–87, 104
inserting, 80–83, 103–104
replacing, 85–86
updating, 83–85, 105

RxJava, 213–214
adding support to Retrofit, 214–216
SyncManager implementation, 216–223

S
schemas, 5, 17
schemes in content URIs, 102
SELECT statement, 32–34

in INSERT statements, 29
joins, 34–37
ORDER BY clause, 32–34

selection operation, 11–12
SEQUEL, 14
serialized mode in SQLite, 42
setContentView( ) method, 234–235
setNotificationUri( ) method Cursor class, 145
setTransactionSuccessful( ) method, 87–88
setType( ) method, 164
ShareActionProvider class, 173–175
sharing data

with content providers. See content providers
with intents. See intents

SimpleCursorAdapter class, 139–140
single-thread mode in SQLite, 42
SQL (Structured Query Language), 14

DDL (Data Definition Language), 17
for indexes, 20–23
for tables, 18–20

for triggers, 24–28
for views, 23–24

DML (Data Manipulation Language), 28
DELETE statement, 31
INSERT statement, 28–30
UPDATE statement, 30–31

queries
joins, 34–37
SELECT statement, 32–34

SQLite
Android SDK. See Android SDK

(Software Development Kit)
characteristics, 39
data persistence, 47
data types, 43

storage classes, 43
type affinity, 44

features, 39–40
atomic transactions, 41–42
foreign key support, 40
full text search, 40–41
multithread support, 42

limitations, 42–43
threads and database access, 60–61
upgrading databases, 58

by manipulating database, 59–60
by rebuilding database, 58

sqlite3 command, 67–72
SQLiteDatabase class, 57–58, 79

deleting rows, 86–87
inserting rows, 80–83
queries, 89–91

query( ) method, 89–91
rawQuery( ) method, 91

replacing rows, 85–86
transactions, 87–89
updating rows, 83–85

SQLiteOpenHelper class, 47–48
constructors, 48–50
onConfigure( ) method, 53–54
onCreate( ) method, 50
onDowngrade( ) method, 54
onUpgrade( ) method, 50–53

SQLiteQueryBuilder class, 91, 128–130
startActivity( ) method, 164
starting

CursorLoaders, 98–99
target activities, 164–166

statements (SQL)
ALTER TABLE, 19–20

in SQLite, 43
upgrading databases, 59

CREATE INDEX, 22
CREATE TABLE, 18–19
CREATE TRIGGER, 24–27
CREATE VIEW, 23–24
DELETE, 31
DROP INDEX, 22–23
DROP TABLE, 20

ptg18221911

258 Index

transactions
in content providers, 105–108
methods, 87–88
performance, 88–89
in SQLite, 41–42

triggers
CREATE TRIGGER statement, 24–27
definition, 24
DROP TRIGGER statement, 27–28
warning about, 28

tuple relational calculus, 13
tuples, 3, 4
type affinity in SQLite, 44

U
UI (user interface), binding cursor data to, 138

with ListViews, 139–142
with RecyclerViews, 142, 145–147

unary relations, 4
union operator, 10
unregisterContentObserver( ) method, 144
unregisterDataSetObserver( ) method, 144
update( ) method

ContentProvider class, 105
DevicesProvider class, 122–124
SQLiteDatabase class, 83–85

UPDATE statement, 30–31
updateWithOnConflict( ) method, 83–85
updating

data binding layouts, 238–242
table rows, 83–85, 105
views

with data binding, 235–238
with ListViews, 139–142
from onLoadFinished( ) method, 138
reacting to data changes, 156–161
with RecyclerViews, 142, 145–147

upgrading databases, 58
by manipulating database, 59–60
onUpgrade( ) method, 50–53
by rebuilding database, 58

URIs
mapping to tables, 117–118
scheme conventions, 101–102

URL scheme conventions, 101
user experience, Web services and, 203–204
user interface. See UI (user interface)

V
VALUES keyword in INSERT statements, 28–29
view layouts, converting to data binding layouts, 232–233
views

adding IDs, 242–245
CREATE VIEW statement, 23–24
definition, 23

statements (SQL) (continued)
DROP TRIGGER, 27–28
DROP VIEW, 24
INSERT, 28–29

DEFAULT keyword, 29–30
SELECT statement in, 29
VALUES keyword, 28–29

SELECT, 32–34
in INSERT statements, 29
joins, 34–37
ORDER BY clause, 32–34

UPDATE, 30–31
Stetho, 73–75
storage classes in SQLite, 43
storing data. See data persistence
Structured Query Language. See SQL
superkeys, 6
swapCursor( ) method, 151
SyncAdapter class, 209–213
SyncAdapter framework, 204

AccountAuthenticator class, 204–208
SyncAdapter class, 209–213

synchronizing remote data
manual synchronization with RxJava, 213–223

adding support to Retrofit, 214–216
SyncManager implementation, 216–223

SyncAdapter framework, 204
AccountAuthenticator class, 204–208
SyncAdapter class, 209–213

SyncManager implementation, 216–223

T
tables

ALTER TABLE statement, 19–20
in SQLite, 43
upgrading databases, 59

copying and dropping, 59–60
CREATE TABLE statement, 18–19
definition, 18
deleting rows, 86–87, 104
DROP TABLE statement, 20
inserting rows, 80–83, 103–104
mapping URIs to, 117–118
relations. See relations
replacing rows, 85–86
updating rows, 83–85, 105

target activities, starting, 164–166
ternary relations, 4
TEXT storage class, 43
theta joins, 13
threads

AsyncTask class, 180–184
cursor loaders and, 137
cursors and, 94–95
database access and, 60–61
in SQLite, 42

ptg18221911

259Index

DROP VIEW statement, 24
in SQLite, 42
updating

with data binding, 235–238
with ListViews, 139–142
from onLoadFinished( ) method, 138
reacting to data changes, 156–161
with RecyclerViews, 142, 145–147

Volley, 194–203
adding to projects, 194–195
parsing JSON, 197–200
RequestQueue, 195–197
Web service calls, 200–203

W
WAL (write-ahead-log) model, 41–42
Web services

accessing databases

with Android SDK (Software Development
Kit), 179–187

with Retrofit, 188–194
with Volley, 194–203

battery consumption and, 203
data persistence, 204

AccountAuthenticator class, 204–208
manual synchronization with RxJava,

213–223
SyncAdapter class, 209–213
SyncAdapter framework, 204

REST and, 177–179
user experience and, 203–204

WHERE clause
in SELECT statements, 32
in UPDATE statement, 30, 31

write permissions, 109
write-ahead-log (WAL) model, 41–42
writeToParcel( ) method, 172

ptg18221911

This page intentionally left blank

ptg18221911

Addison-Wesley • Cisco Press • IBM Press • Microsoft Press • Pearson IT Certif ication • Prentice Hall • Que • Sams • VMware Press

REGISTER YOUR PRODUCT at informit.com/register

• Download available product updates.

• Access bonus material when applicable.

• Receive exclusive offers on new editions and related products.
(Just check the box to hear from us when setting up your account.)

• Get a coupon for 35% for your next purchase, valid for 30 days. Your code will
be available in your InformIT cart. (You will also find it in the Manage Codes
section of your account page.)

Registration benefits vary by product. Benefits will be listed on your account page
under Registered Products.

InformIT.com–The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world’s foremost
education company. At InformIT.com you can

• Shop our books, eBooks, software, and video training.
• Take advantage of our special offers and promotions (informit.com/promotions).
• Sign up for special offers and content newsletters (informit.com/newsletters).
• Read free articles and blogs by information technology experts.
• Access thousands of free chapters and video lessons.

Connect with InformIT–Visit informit.com/community
Learn about InformIT community events and programs.

http://www.informit.com/register
http://www.InformIT.com
http://www.InformIT.com
http://www.informit.com/promotions
http://www.informit.com/newsletters
http://www.informit.com/community
http://www.informIT.com

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Author
	1 Relational Databases
	History of Databases
	Hierarchical Model
	Network Model
	The Introduction of the Relational Model

	The Relational Model
	Relation
	Properties of a Relation
	Relationships

	Relational Languages
	Relational Algebra
	Relational Calculus

	Database Languages
	ALPHA
	QUEL
	SEQUEL

	Summary

	2 An Introduction to SQL
	Data Definition Language
	Tables
	Indexes
	Views
	Triggers

	Data Manipulation Language
	INSERT
	UPDATE
	DELETE

	Queries
	ORDER BY
	Joins

	Summary

	3 An Introduction to SQLite
	SQLite Characteristics
	SQLite Features
	Foreign Key Support
	Full Text Search
	Atomic Transactions
	Multithread Support

	What SQLite Does Not Support
	Limited JOIN Support
	Read-Only Views
	Limited ALTER TABLE Support

	SQLite Data Types
	Storage Classes
	Type Affinity

	Summary

	4 SQLite in Android
	Data Persistence in Phones
	Android Database API
	SQLiteOpenHelper
	SQLiteDatabase

	Strategies for Upgrading Databases
	Rebuilding the Database
	Manipulating the Database
	Copying and Dropping Tables

	Database Access and the Main Thread
	Exploring Databases in Android
	Accessing a Database with adb
	Using Third-Party Tools to Access Android Databases

	Summary

	5 Working with Databases in Android
	Manipulating Data in Android
	Inserting Rows into a Table
	Updating Rows in a Table
	Replacing Rows in a Table
	Deleting Rows from a Table

	Transactions
	Using a Transaction
	Transactions and Performance

	Running Queries
	Query Convenience Methods
	Raw Query Methods

	Cursors
	Reading Cursor Data
	Managing the Cursor

	CursorLoader
	Creating a CursorLoader
	Starting a CursorLoader
	Restarting a CursorLoader

	Summary

	6 Content Providers
	REST-Like APIs in Android
	Content URIs
	Exposing Data with a Content Provider
	Implementing a Content Provider
	Content Resolver

	Exposing a Remote Content Provider to External Apps
	Provider-Level Permission
	Individual Read/Write Permissions
	URI Path Permissions
	Content Provider Permissions

	Content Provider Contract
	Allowing Access from an External App
	Implementing a Content Provider
	Extending android.content.ContentProvider
	insert()
	delete()
	update()
	query()
	getType()

	When Should a Content Provider Be Used?
	Content Provider Weaknesses
	Content Provider Strengths

	Summary

	7 Databases and the UI
	Getting Data from the Database to the UI
	Using a Cursor Loader to Handle Threading
	Binding Cursor Data to a UI

	Cursors as Observers
	registerContentObserver (ContentObserver)
	registerDataSetObserver (DataSetObserver)
	unregisterContentObserver (ContentObserver)
	unregisterDataSetObserver (DataSetObserver)
	setNotificationUri (ContentResolver, Uri uri)

	Accessing a Content Provider from an Activity
	Activity Layout
	Activity Class Definition
	Creating the Cursor Loader
	Handling Returned Data
	Reacting to Changes in Data

	Summary

	8 Sharing Data with Intents
	Sending Intents
	Explicit Intents
	Implicit Intents
	Starting a Target Activity

	Receiving Implicit Intents
	Building an Intent
	Actions
	Extras
	Extra Data Types
	What Not to Add to an Intent

	ShareActionProvider
	Share Action Menu

	Summary

	9 Communicating with Web APIs
	REST and Web Services
	REST Overview
	REST-like Web API Structure

	Accessing Remote Web APIs
	Accessing Web Services with Standard Android APIs
	Accessing Web Services with Retrofit
	Accessing Web Services with Volley

	Persisting Data to Enhance User Experience
	Data Transfer and Battery Consumption
	Data Transfer and User Experience
	Storing Web Service Response Data

	Android SyncAdapter Framework
	AccountAuthenticator
	SyncAdapter

	Manually Synchronizing Remote Data
	A Short Introduction to RxJava
	Adding RxJava Support to Retrofit
	Using RxJava to Perform the Sync

	Summary

	10 Data Binding
	Adding Data Binding to an Android Project
	Data Binding Layouts
	Binding an Activity to a Layout
	Using a Binding to Update a View
	Reacting to Data Changes

	Using Data Binding to Replace Boilerplate Code
	Data Binding Expression Language
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

