

Primers

1 Vectors 89

2 Derivatives and Partial Derivatives 110

3 Extreme Points and Directions of
Polyhedral Sets

203

4 Matrices, Matrix Arithmetic, and
Transposes

213

5 Simultaneous Equations, Singularity,
and Bases

223

6 Identity and Inverse Matrices 261

7 Second Derivatives and Hessian
Matrices

938

8 Positive and Negative (Semi)
Definite Matrices

 945

Algorithms

3A Continuous Improving Search 106

3B Two-Phase Improving Search 129

5A Rudimentary Simplex Search for
Linear Programs

235

5B Two-Phase Simplex Search 247

5C Revised Simplex Search for Linear
Programs

271

5D Lower- and Upper-Bounded
Revised Simplex

278

6A Dual Simplex Search for Linear
Programs

363

6B Primal-Dual Simplex Search for
Linear Programs

369

7A Affine Scaling Search for Linear
Programs

407

7B Newton Step Barrier Search for
Linear Programs

419

7C Primal-Dual Interior-Point LP
Search

424

9A One to All (No Negative Dicycles);
Bellman–Ford Shortest Paths

496

9B All-to-All (No Negative Dicycles);
Floyd–Warshall Shortest Paths

502

9C One to All (Nonnegative Costs);
Dijkstra Shortest Paths

509

9D Shortest One to All Paths
(Acyclic Digraph) Shortest Paths

518

9E CPM Early Start Scheduling 525

10A Rudimentary Cycle Direction
Network Search

582

10B Cycle Cancelling for Network
Flows

587

10C Network Simplex Search 599

10D Hungarian Algorithm for Linear
Assignment

612

10E Maxflow-Mincut Search 622

10F Greedy Search for a Min/Max
Spanning Tree

634

12A LP-Based Branch and Bound
(0-1 ILPs)

761

12B Branch and Cut (0-1 ILP’s) 779

13A Delayed Column Generation 816

13B Branch and Price Search
(0-1 ILPs)

820

13C Subgradient Lagrangian Search 835

13D Dantzig–Wolfe Decomposition 841

13E Benders Decomposition 846

15A Rudimentary Constructive
Search

880

15B Discrete Improving Search 887

15C Tabu Search 895

15D Simulated Annealing Search 898

15E Genetic Algorithm Search 904

16A Golden Section Search 927

16B Three-Point Pattern 931

16C Quadratic Fit Search 934

16D Gradient Search 955

16E Newton’s Method 962

16F BFGS Quasi-Newton Search 968

16G Nelder–Mead Derivative-Free
Search

974

17A Sequential Unconstrained Penalty
Technique (SUMT)

1034

17B Sequential Unconstrained Barrier
Technique

1038

17C Reduced Gradient Search 1048

17D Active Set Method for Quadratic
Programs

1059

17E Sequential Quadratic
Programming (SQP)

1063

▪ ▪ ▪ ▪ ▪

Optimization
in Operations
Research

This page intentionally left blank

▪ ▪ ▪ ▪ ▪

Optimization
in Operations
Research
Second edition

Boston Columbus Indianapolis Hoboken New York San Francisco Amsterdam
Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Ronald l. RaRdin

University of Arkansas

Library of Congress Cataloging-in-Publication Data

Rardin, Ronald L.
 Optimization in operations research / Ronald L. Rardin, Purdue University.—Second edition.
 pages cm
 Includes bibliographical references and index.
 ISBN 978-0-13-438455-9—ISBN 0-13-438455-5
 1. Operations research. 2. Mathematical optimization. 3. Programming (Mathematics) I. Title.
 T57.7.R37 2016
 519.7'2—dc23
 2015019627

ISBN 10: 0-13-438455-5
ISBN 13: 978-0-13-438455-9

10 9 8 7 6 5 4 3 2 1

Vice President and Editorial
 Director, ECS: Marcia J. Horton
Executive Editor: Holly Stark
Editorial Assistant: Amanda Brands
Field Marketing Manager: Demetrius Hall
Senior Product Marketing Manager:
 Bram van Kempen
Marketing Assistant: Jon Bryant
Senior Managing Editor: Scott Disanno
Program Manager: Erin Ault
Production Project Manager: Greg Dulles

Director of Operations: Nick Sklitsis
Operations Specialist: Maura Zaldivar-Garcia
Cover Designer: Black Horse Designs
Manager, Rights and Permissions:
 Rachel Youdelman
Associate Project Manager, Rights and
 Permissions: William Opaluch
Composition: Integra Software Services, Inc.
Printer/Binder: RR Donnelley/Crawfordsville
Cover Printer: Phoenix Color/Hagerstown
Typeface: 10/12 Times Ten LT Std

Copyright © 2017, 1998 by Pearson Higher Education, Inc., Hoboken, NJ 07030.

All rights reserved. Manufactured in the United States of America. This publication is protected
by Copyright and permissions should be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise. For information regarding permissions, request
forms and the appropriate contacts within the Pearson Education Global Rights & Permissions
department, please visit www.pearsoned.com/permissions/.

Many of the designations by manufacturers and seller to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

The author and publisher of this book have used their best efforts in preparing this book. These
efforts include the development, research, and testing of theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with
regard to these programs or the documentation contained in this book. The author and publisher
shall not be liable in any event for incidental or consequential damages with, or arising out of, the
furnishing, performance, or use of these programs.

http://www.pearsoned.com/permissions/

v

▪ ▪ ▪ ▪ ▪

Preface xxix

about the author xxxii

chaPter 1 Problem Solving with mathematical modelS 1

 1.1 OR Application Stories 1
 1.2 Optimization and the Operations Research Process 3
 Decisions, Constraints, and Objectives 4
 Optimization and Mathematical Programming 4
 Constant-Rate Demand Assumption 5
 Back of Envelope Analysis 5
 Constant-Rate Demand Model 7
 Feasible and Optimal Solutions 7

 1.3 System Boundaries, Sensitivity Analysis, Tractability,
 and Validity 9

 EOQ Under Constant-Rate Demand 9
 System Boundaries and Sensitivity Analysis 10
 Closed-Form Solutions 11
 Tractability versus Validity 11

 1.4 Descriptive Models and Simulation 12
 Simulation over MM’s History 12
 Simulation Model Validity 12
 Descriptive versus Prescriptive Models 14

 1.5 Numerical Search and Exact Versus Heuristic
Solutions 14

 Numerical Search 14
 A Different Start 15
 Exact versus Heuristic Optimization 16

 1.6 Deterministic Versus Stochastic Models 16
 Random Variables and Realizations 17
 Stochastic Simulation 17
 Tradeoffs between Deterministic and Stochastic Models 19

 1.7 Perspectives 19
 Other Issues 20
 The Rest of This Book 20

Exercises 20

Contents

vi Contents

chaPter 2 determiniStic oPtimization modelS
in oPerationS reSearch 23

 2.1 Decision Variables, Constraints, and Objective
 Functions 23

 Decision Variables 24
 Variable-Type Constraints 24
 Main Constraints 25
 Objective Functions 25
 Standard Model 26

 2.2 Graphic Solution and Optimization Outcomes 27
 Graphic Solution 27
 Feasible Sets 27
 Graphing Constraints and Feasible Sets 27
 Graphing Objective Functions 30
 Optimal Solutions 33
 Optimal Values 34
 Unique versus Alternative Optimal Solutions 35
 Infeasible Models 36
 Unbounded Models 38

 2.3 Large-Scale Optimization Models and Indexing 40
 Indexing 40
 Indexed Decision Variables 41
 Indexed Symbolic Parameters 42
 Objective Functions 43
 Indexed Families of Constraints 43
 Pi Hybrids Application Model 45
 How Models Become Large 46

 2.4 Linear and Nonlinear Programs 46
 General Mathematical Programming Format 46
 Right-Hand Sides 47
 Linear Functions 48
 Linear and Nonlinear Programs Defined 50
 Two Crude and Pi Hybrids Models are LPs 51
 Indexing, Parameters, and Decision Variables for E-mart 51
 Nonlinear Response 51
 E-mart Application Model 52

 2.5 Discrete or Integer Programs 53
 Indexes and Parameters of the Bethlehem Application 53
 Discrete versus Continuous Decision Variables 53
 Constraints with Discrete Variables 55
 Bethlehem Ingot Mold Application Model 56
 Integer and Mixed-Integer Programs 56
 Integer Linear versus Integer Nonlinear Programs 57
 Indexing, Parameters, and Decision Variables for Purdue Finals

 Application 59

Contents vii

 Nonlinear Objective Function 59
 Purdue Final Exam Scheduling Application Model 60

 2.6 Multiobjective Optimization Models 60
 Multiple Objectives 61
 Constraints of the DuPage Land Use Application 62
 DuPage Land Use Application Model 63
 Conflict among Objectives 64

 2.7 Classification Summary 65
 2.8 Computer Solution and AMPL 65
 Solvers versus Modeling Languages 66
 Indexing, Summations, and Symbolic Parameters 67
 Nonlinear and Integer Models 70

Exercises 73
References 86

chaPter 3 imProving Search 87

 3.1 Improving Search, Local, and Global Optima 87
 Solutions 88
 Solutions as Vectors 88
 Example of an Improving Search 93
 Neighborhood Perspective 94
 Local Optima 95
 Local Optima and Improving Search 95
 Local versus Global Optima 95
 Dealing with Local Optima 97

 3.2 Search with Improving and Feasible Directions 98
 Direction-Step Paradigm 98
 Improving Directions 100
 Feasible Directions 102
 Step Size: How Far? 104
 Search of the DClub Example 105
 When Improving Search Stops 107
 Detecting Unboundedness 108

 3.3 Algebraic Conditions for Improving and Feasible
 Directions 109

 Gradients 109
 Gradient Conditions for Improving Directions 112
 Objective Function Gradients as Move Directions 114
 Active Constraints and Feasible Directions 115
 Linear Constraints 117
 Conditions for Feasible Directions with Linear

 Constraints 118

viii Contents

 3.4 Tractable Convex and Linear Cases 120
 Special Tractability of Linear Objective Functions 120
 Constraints and Local Optima 121
 Convex Feasible Sets 121
 Algebraic Description of Line Segments 123
 Convenience of Convex Feasible Sets for Improving Search 124
 Global Optimality of Linear Objectives over Convex

 Feasible Sets 125
 Convexity of Linearly Constrained Feasible Sets 126
 Global Optimality of Improving Search for Linear

 Programs 127
 Blocking Constraints in Linear Programs 127

 3.5 Searching for Starting Feasible Solutions 129
 Two-Phase Method 129
 Two Crude Model Application Revisited 129
 Artificial Variables 130
 Phase I Models 130
 Starting Artificial Solution 131
 Phase I Outcomes 132
 Concluding Infeasibility from Phase I 133
 Big-M Method 135
 Big-M Outcomes 136

Exercises 138
References 141

chaPter 4 linear Programming modelS 143

 4.1 Allocation Models 144
 Allocation Decision Variables 145
 Forest Service Allocation Model 145

 4.2 Blending Models 147
 Ingredient Decision Variables 148
 Composition Constraints 148
 Swedish Steel Example Model 150
 Ratio Constraints 150

 4.3 Operations Planning Models 152
 Tubular Products Operations Planning Model 153
 CFPL Decision Variables 156
 Continuous Variables for Integer Quantities 157
 CFPL Objective Function 157
 CFPL Constraints 158
 Balance Constraints 158
 CFPL Application Model 160

Contents ix

 4.4 Shift Scheduling and Staff Planning Models 162
 ONB Decision Variables and Objective Function 163
 ONB Constraints 164
 Covering Constraints 164
 ONB Shift Scheduling Application Model 165

 4.5 Time-Phased Models 166
 Time-Phased Decision Variables 167
 Time-Phased Balance Constraints 168
 IFS Cash Flow Model 169
 Time Horizons 170

 4.6 Models with Linearizable Nonlinear Objectives 171
 Maxisum Highway Patrol Application Model 172
 Minimax and Maximin Objective Functions 173
 Nonlinear Maximin Highway Patrol Application Model 173
 Linearizing Minimax and Maximin Objective Functions 173
 Linearized Maximin Highway Patrol Example Model 174
 Nonlinear VP Location Model 175
 Min Deviation Objective Functions 176
 Linearizing Min Deviation Objective Functions 176
 Linearized VP Location Model 177

 4.7 Stochastic Programming 179
 Deterministic Model of QA Example 180
 Stochastic Programming with Recourse 181
 Stochastic Programming Modeling of the QA Application 182
 Extensive Form versus Large-Scale Techniques 184

Exercises 185
References 200

chaPter 5 SimPlex Search for linear Programming 201

 5.1 LP Optimal Solutions and Standard Form 201
 Global Optima in Linear Programs 203
 Interior, Boundary, and Extreme Points 204
 Optimal Points in Linear Programs 207
 LP Standard Form 208
 Converting Inequalities to Nonnegativities with Slack

 Variables 209
 Converting Nonpositive and Unrestricted Variables

 to Nonegative 211
 Standard Notation for LPs 213

 5.2 Extreme-Point Search and Basic Solutions 216
 Determining Extreme Points with Active Constraints 216
 Adjacent Extreme Points and Edges 216

x Contents

 Basic Solutions 219
 Existence of Basic Solutions 221
 Basic Feasible Solutions and Extreme Points 225

 5.3 The Simplex Algorithm 227
 Standard Display 227
 Initial Basic Solution 228
 Simplex Directions 228
 Improving Simplex Directions and Reduced Costs 231
 Step Size and the Minimum Ratio Rule 232
 Updating the Basis 234
 Rudimentary Simplex Algorithm 235
 Rudimentary Simplex Solution of Top Brass Example 236
 Stopping and Global Optimality 236
 Extreme-Point or Extreme-Direction 238

 5.4 Dictionary and Tableau Representations of Simplex 238
 Simplex Dictionaries 239
 Simplex Tableaux 241
 Simplex Algorithm with Dictionaries or Tableaux 242
 Correspondence to the Improving Search Paradigm 242
 Comparison of Formats 243

 5.5 Two Phase Simplex 243
 Starting Basis in the Two Phase Simplex 245
 Three Possible Outcomes for Linear Programs 247
 Clever Clyde Infeasible Case 247
 Clever Clyde Optimal Case 250
 Clever Clyde Unbounded Case 252

 5.6 Degeneracy and Zero-Length Simplex Steps 253
 Degenerate Solutions 253
 Zero-Length Simplex Steps 255
 Progress through Changing of Bases 256

 5.7 Convergence and Cycling with Simplex 257
 Finite Convergence with Positive Steps 257
 Degeneracy and Cycling 258

 5.8 Doing it Efficiently: Revised Simplex 260
 Computations with Basis Inverses 260
 Updating the Representation of B−1 264
 Basic Variable Sequence in Revised Simplex 266
 Computing Reduced Costs by Pricing 267
 Revised Simplex Search of Top Brass Application 269

 5.9 Simplex with Simple Upper and Lower Bounds 272
 Lower- and Upper-Bounded Standard Form 272
 Basic Solutions with Lower and Upper Bounds 274
 Unrestricted Variables with No Bounds 274
 Increasing and Decreasing Nonbasic Variable Values 275
 Step Size with Increasing and Decreasing Values 276

Contents xi

 Case with No Basis Change 277
 Lower- and Upper-Bounded Simplex Algorithm 277
 Lower- and Upper-Bounded Simplex on Top Brass

 Application 277

Exercises 280
References 285

chaPter 6 duality, SenSitivity, and oPtimality in linear
Programming 287

 6.1 Generic Activities Versus Resources Perspective 288
 Objective Functions as Costs and Benefits 288
 Choosing a Direction for Inequality Constraints 288
 Inequalities as Resource Supplies and Demands 288
 Equality Constraints as Both Supplies and Demands 289
 Variable-Type Constraints 290
 Variables as Activities 290
 LHS Coefficients as Activity Inputs and Outputs 290

 6.2 Qualitative Sensitivity to Changes in Model
Coefficients 293

 Relaxing versus Tightening Constraints 293
 Swedish Steel Application Revisited 293
 Effects of Changes in Right-Hand Sides 294
 Effects of Changes in LHS Constraint Coefficients 296
 Effects of Adding or Dropping Constraints 297
 Effects of Unmodeled Constraints 297
 Changing Rates of Constraint Coefficient Impact 298
 Effects of Objective Function Coefficient Changes 299
 Changing Rates of Objective Function Coefficient Impact 301
 Effects of Adding or Dropping Variables 303

 6.3 Quantifying Sensitivity to Changes in LP Model
 Coefficients: A Dual Model 304

 Primals and Duals Defined 304
 Dual Variables 304
 Dual Variable Types 305
 Two Crude Application Again 306
 Dual Variables as Implicit Marginal Resource Prices 307
 Implicit Activity Pricing in Terms of Resources Produced

 and Consumed 308
 Main Dual Constraints to Enforce Activity Pricing 309
 Optimal Value Equality between Primal and Dual 310
 Primal Complementary Slackness between Primal Constraints

 and Dual Variable Values 311
 Dual Complementary Slackness between Dual Constraints

 and Primal Variable Values 312

xii Contents

 6.4 Formulating Linear Programming Duals 313
 Form of the Dual for Nonnegative Primal Variables 314
 Duals of LP Models with Nonpositive and Unrestricted

 Variables 316
 Dual of the Dual is the Primal 317

 6.5 Computer Outputs and What If Changes of Single
 Parameters 318

 CFPL Example Primal and Dual 318
 Constraint Sensitivity Outputs 320
 Right-Hand-Side Ranges 322
 Constraint What If’s 324
 Variable Sensitivity Outputs 326
 Objective Coefficient Ranges 328
 Variable What If’s 330
 Dropping and Adding Constraint What If’s 332
 Dropping and Adding Variable What If’s 333

 6.6 Bigger Model Changes, Reoptimization, and Parametric
 Programming 335

 Ambiguity at Limits of the RHS and Objective Coefficient
 Ranges 335

 Connection between Rate Changes and Degeneracy 337
 Reoptimization to Make Sensitivity Exact 338
 Parametric Variation of One Coefficient 338
 Assessing Effects of Multiple Parameter Changes 340
 Parametric Multiple-RHS Change 341
 Parametric Change of Multiple Objective Function

 Coefficients 343

 6.7 Duality and Optimality in Linear Programming 344
 Dual of the Dual 345
 Weak Duality between Objective Values 345
 Unbounded and Infeasible Cases 347
 Complementary Slackness and Optimality 349
 Strong Duality and Karush-Kuhn-Tucker (KKT) Optimality

 Conditions for Linear Programs 351
 Models in Standard Form 352
 Standard Form LPs in Partitioned Basic Format 354
 Basic Solutions in Partitioned Form 355
 Complementary Dual Basic Solutions 355
 Primal Simplex Optimality and Necessity of KKT

 Conditions 357

 6.8 Dual Simplex Search 359
 Choosing an Improving Direction 361
 Determining a Dual Step Size to Retain Dual

 Feasibility 361
 Changing the Primal Solution and Basis Update 362

Contents xiii

 6.9 Primal-Dual Simplex Search 365
 Choosing an Improving Dual Direction 367
 Determining a Dual Step Size 368

Exercises 371
References 384

chaPter 7 interior Point methodS for linear
Programming 385

 7.1 Searching through the Interior 385
 Interior Points 386
 Objective as a Move Direction 386
 Boundary Strategy of Interior Point Methods 387
 Interior in LP Standard Form 389
 Projecting to Deal with Equality Constraints 390
 Improvement with Projected Directions 394

 7.2 Scaling with the Current Solution 396
 Affine Scaling 396
 Diagonal Matrix Formalization of Affine Scaling 396
 Affine-Scaled Standard Form 399
 Projecting on Affine-Scaled Equality Constraints 401
 Computational Effort in Interior Point Computations 402

 7.3 Affine Scaling Search 402
 Affine Scaling Move Directions 402
 Feasibility and Improvement of Affine Scaling Directions 404
 Affine Scaling Step Size 404
 Termination in Affine Scaling Search 407
 Affine Scaling Search of the Frannie’s Firewood Application 408

 7.4 Log Barrier Methods for Interior Point Search 408
 Barrier Objective Functions 408
 Problems with Gradient Directions 411
 Newton Steps for Barrier Search 412
 Newton Step Barrier Search Step Sizes 415
 Impact of the Barrier Multiplier μ 417
 Barrier Algorithm Multiplier Strategy 418
 Newton Step Barrier Algorithm 418
 Newton Barrier Solution of Frannie’s Firewood Application 419

 7.5 Primal-Dual Interior-Point Search 421
 KKT Optimality Conditions 421
 Strategy of Primal-Dual Interior-Point Search 422
 Feasible Move Directions 422
 Management of Complementary Slackness 423
 Step Size 423
 Solving the Conditions for Move Directions 423

xiv Contents

 7.6 Complexity of Linear Programming Search 428
 Length of Input for LP Instances 428
 Complexity of Simplex Algorithms for LP 429
 Complexity of Interior-Point Algorithms for LP 430

Exercises 430
References 435

chaPter 8 multiobjective oPtimization and goal
Programming 437

 8.1 Multiobjective Optimization Models 437
 Bank Three Example Objectives 438
 Bank Three Example Model 439
 Dynamometer Ring Design Model 440
 Hazardous Waste Disposal Model 442

 8.2 Efficient Points and the Efficient Frontier 443
 Efficient Points 443
 Identifying Efficient Points Graphically 444
 Efficient Frontier 445
 Plots in Objective Value Space 446
 Constructing the Efficient Frontier 446

 8.3 Preemptive Optimization and Weighted Sums of
Objectives 448

 Preemptive Optimization 448
 Preemptive Optimization of the Bank Three Application 448
 Preemptive Optimization and Efficient Points 451
 Preemptive Optimization and Alternative Optima 451
 Weighted Sums of Objectives 451
 Weighted-Sum Optimization of the Hazardous Waste

 Application 452
 Weighted-Sum Optimization and Efficient Points 453

 8.4 Goal Programming 454
 Goal or Target Levels 454
 Goal Form of Bank Three Application 454
 Soft Constraints 455
 Deficiency Variables 455
 Expressing Soft Constraints in Mathematical Programs 456
 Goal Program Objective Function: Minimizing (Weighted)

 Deficiency 457
 Goal Linear Program Model of the Bank Three Application 457
 Alternative Deficiency Weights in the Objective 458
 Preemptive Goal Programming 459
 Preemptive Goal Programming of the Bank Three

 Application 459

Contents xv

 Preemptive Goal Programming by Weighting the Objective 461
 Practical Advantage of Goal Programming in Multiobjective

 Problems 461
 Goal Programming and Efficient Points 462
 Modified Goal Program Formulation to Assure Efficient

 Points 464

Exercises 465
References 475

chaPter 9 ShorteSt PathS and diScrete dynamic
Programming 477

 9.1 Shortest Path Models 477
 Nodes, Arcs, Edges, and Graphs 478
 Paths 479
 Shortest Path Problems 481
 Classification of Shortest Path Models 481
 Undirected and Directed Graphs (Digraphs) 482
 Two Ring Application Model 485

 9.2 Dynamic Programming Approach to Shortest Paths 485
 Families of Shortest Path Models 485
 Functional Notation 486
 Optimal Paths and Subpaths 487
 Negative Dicycles Exception 488
 Principle of Optimality 489
 Functional Equations 489
 Functional Equations for One Node to All Others 489
 Sufficiency of Functional Equations in the One to All Case 490
 Functional Equations for All Nodes to All Others 493
 Solving Shortest Path Problems by Linear Programming 494

 9.3 Shortest Paths from One Node to All Others:
 Bellman–Ford 494

 Solving the Functional Equations 495
 Repeated Evaluation Algorithm: Bellman–Ford 495
 Bellman–Ford Solution of the Two Ring Circus Application 496
 Justification of the Bellman–Ford Algorithm 498
 Recovering Optimal Paths 499
 Encountering Negative Dicycles with Bellman–Ford 500

 9.4 Shortest Paths from All Nodes to All Others:
 Floyd–Warshall 501

 Floyd–Warshall Algorithm 501
 Floyd–Warshall Solution of the Littleville Application 503
 Recovering Optimal Paths 507
 Detecting Negative Dicycles with Floyd–Warshall 507

xvi Contents

 9.5 Shortest Path from One Node to All Others with Costs
 Nonnegative: Dijkstra 509

 Permanently and Temporarily Labeled Nodes 509
 Least Temporary Criterion for Next Permanent Node 510
 Dijkstra Algorithm Solution of the Texas Transfer

 Application 510
 Recovering Paths 514
 Justification of the Dijkstra Algorithm 514

 9.6 Shortest Paths from One Node to All Others in Acyclic
 Digraphs 515

 Acyclic Digraphs 515
 Shortest Path Algorithm for Acyclic Digraphs 518
 Acyclic Shortest Path Example 518
 Longest Path Problems and Acyclic Digraphs 519

 9.7 CPM Project Scheduling and Longest Paths 520
 Project Management 520
 CPM Project Networks 521
 CPM Schedules and Longest Paths 523
 Critical Paths 523
 Computing an Early Start Schedule for the We Build Construction

 Application 524
 Late Start Schedules and Schedule Slack 526
 Acyclic Character of Project Networks 527

 9.8 Discrete Dynamic Programming Models 528
 Sequential Decision Problems 528
 States in Dynamic Programming 529
 Digraphs for Dynamic Programs 530
 Dynamic Programming Solutions as an Optimal Path 531
 Dynamic Programming Functional Equations 532
 Dynamic Programming Models with Both Stages

 and States 532
 Dynamic Programming Modeling of the President’s Library

 Application 534
 Backward Solution of Dynamic Programs 534
 Multiple Problem Solutions Obtained Simultaneously 537

 9.9 Solving Integer Programs with Dynamic
 Programming 537

 Dynamic Programming Modeling of Electoral Vote
 Knapsack 538

 9.10 Markov Decision Processes 541
 Elements of MDP Models 541
 Solution of the Breast Cancer MDP 545

Exercises 546
References 556

Contents xvii

chaPter 10 network flowS and graPhS 557

 10.1 Graphs, Networks, and Flows 557
 Digraphs, Nodes, and Arcs 557
 OOI Application Network 558
 Minimum Cost Flow Models 559
 Sources, Sinks, and Transshipment Nodes 560
 OOI Application Model 560
 Total Supply = Total Demand 562
 Starting Feasible Solutions 563
 Artificial Network Flow Model 563
 Time-Expanded Flow Models and Networks 565
 Time-Expanded Modeling of Agrico Application 567
 Node–Arc Incidence Matrices and Matrix

 Standard Form 568

 10.2 Cycle Directions for Network Flow Search 570
 Chains, Paths, Cycles, and Dicycles 570
 Cycle Directions 571
 Maintaining Flow Balance with Cycle Directions 573
 Feasible Cycle Directions 574
 Improving Cycle Directions 576
 Step Size with Cycle Directions 577
 Sufficiency of Cycle Directions 578
 Rudimentary Cycle Direction Search for

 Network Flows 580
 Rudimentary Cycle Direction Search of the OOI

 Application 580

 10.3 Cycle Cancelling Algorithms for Optimal Flows 582
 Residual Digraphs 582
 Feasible Cycle Directions and Dicycles of Residual

 Digraphs 584
 Improving Feasible Cycle Directions and Negative Dicycles of

 Residual Digraphs 585
 Using Shortest Path Algorithms to Find Cycle Directions 586
 Cycle Cancelling Solution of the OOI Application 586
 Polynomial Computational Order of Cycle Cancelling 589

 10.4 Network Simplex Algorithm for Optimal Flows 591
 Linear Dependence in Node–Arc Matrices and Cycles 591
 Spanning Trees of Networks 594
 Spanning Tree Bases for Network Flow Models 595
 Network Basic Solutions 596
 Simplex Cycle Directions 597
 Network Simplex Algorithm 598
 Network Simplex Solution of OOI Application 598

xviii Contents

 10.5 Integrality of Optimal Network Flows 601
 When Optimal Network Flows Must Be Integer 601
 Total Unimodularity of Node–Arc Incidence Matrices 603

 10.6 Transportation and Assignment Models 604
 Transportation Problems 604
 Standard Form for Transportation Problems 605
 Assignment Problems 607
 Balancing Unequal Sets with Dummy Elements 610
 Integer Network Flow Solution of Assignment Problems 610
 CAM Assignment Application Model 610

 10.7 Hungarian Algorithm for Assignment Problems 611
 Primal-Dual Strategy and Initial Dual Solution 611
 Equality Subgraph 613
 Labeling to Search for a Primal Solution in the Equality

 Subgraph 614
 Dual Update and Revised Equality Subgraph 616
 Solution Growth Along Alternating Paths 617
 Computational Order of the Hungarian Algorithm 617

 10.8 Maximum Flows and Minimum Cuts 618
 Improving Feasible Cycle Directions and Flow

 Augmenting Paths 620
 The Max Flow Min Cut Algorithm 621
 Solution of Max Flow Application of Figure 10.25(a) with

 Algorithm 10E 621
 Equivalence of Max Flow and Min Cut Values 624
 Computational Order of Algorithm 10E Effort 625

 10.9 Multicommodity and Gain/Loss Flows 625
 Multicommodity Flows 625
 Multicommodity Flow Models 627
 Tractability of Multicommodity Flow Models 629
 Flows with Gains and Losses 630
 Gain and Loss Network Flow Models 631
 Tractability of Network Flows with Gains and Losses 632

 10.10 Min/Max Spanning Trees 633
 Minimum/Maximum Spanning Trees and the Greedy

 Algorithm 633
 Solution of the WE Application 10.8 by Greedy

 Algorithm 10F 633
 Representing Greedy Results in a Composition Tree 635
 ILP Formulation of the Spanning Tree Problem 635
 Computational Order of the Greedy Algorithm 638

Exercises 639
References 653

Contents xix

chaPter 11 diScrete oPtimization modelS 655

 11.1 Lumpy Linear Programs and Fixed Charges 655
 Swedish Steel Application with All-or-Nothing Constraints 655
 ILP Modeling of All-or-Nothing Requirements 656
 Swedish Steel Model with All-or-Nothing Constraints 656
 ILP Modeling of Fixed Charges 658
 Swedish Steel Application with Fixed Charges 658

 11.2 Knapsack and Capital Budgeting Models 661
 Knapsack Problems 661
 Capital Budgeting Models 662
 Budget Constraints 663
 Modeling Mutually Exclusive Choices 664
 Modeling Dependencies between Projects 665
 NASA Application Model 665

 11.3 Set Packing, Covering, and Partitioning Models 666
 Set Packing, Covering, and Partitioning Constraints 667
 Minimum Cover EMS Model 669
 Maximum Coverage EMS Model 670
 Column Generation Models 672

 11.4 Assignment and Matching Models 675
 Assignment Constraints 675
 CAM Linear Assignment Application Revisited 676
 Linear Assignment Models 676
 Quadratic Assignment Models 677
 Mall Layout Application Model 678
 Generalized Assignment Models 680
 CDOT Application Model 682
 Matching Models 683
 Superfi Application Model 684
 Tractability of Assignment and Matching Models 684

 11.5 Traveling Salesman and Routing Models 685
 Traveling Salesman Problem 685
 Symmetric versus Asymmetric Cases of the TSP 686
 Formulating the Symmetric TSP 687
 Subtours 688
 ILP Model of the Symmetric TSP 690
 ILP Model of the Asymmetric TSP 690
 Quadratic Assignment Formulation of the TSP 692
 Problems Requiring Multiple Routes 693
 KI Truck Routing Application Model 694

 11.6 Facility Location and Network Design Models 695
 Facility Location Models 695
 ILP Model of Facilities Location 696

xx Contents

 Tmark Facilities Location Application Model 697
 Network Design Models 699
 Wastewater Network Design Application Model 701

 11.7 Processor Scheduling and Sequencing Models 702
 Single-Processor Scheduling Problems 703
 Time Decision Variables 703
 Conflict Constraints and Disjunctive Variables 704
 Handling of Due Dates 706
 Processor Scheduling Objective Functions 706
 ILP Formulation of Minmax Scheduling Objectives 708
 Equivalences among Scheduling Objective Functions 710
 Job Shop Scheduling 710
 Custom Metalworking Application Decision Variables

 and Objective 711
 Precedence Constraints 711
 Conflict Constraints in Job Shops 712
 Custom Metalworking Application Model 713

Exercises 715
References 729

chaPter 12 exact diScrete oPtimization methodS 731

 12.1 Solving by Total Enumeration 731
 Total Enumeration 732
 Swedish Steel All-or-Nothing Application 732
 Exponential Growth of Cases to Enumerate 733

 12.2 Relaxations of Discrete Optimization Models
 and Their Uses 734

 Constraint Relaxations 735
 Linear Programming Relaxations 737
 Relaxations Modifying Objective Functions 738
 Proving Infeasibility with Relaxations 738
 Solution Value Bounds from Relaxations 739
 Optimal Solutions from Relaxations 742
 Rounded Solutions from Relaxations 744
 Stronger LP Relaxations 747
 Choosing Big-M Constants 749

 12.3 Branch and Bound Search 751
 Partial Solutions 752
 Completions of Partial Solutions 752
 Tree Search 753
 Incumbent Solutions 756
 Candidate Problems 757
 Terminating Partial Solutions with Relaxations 758

Contents xxi

 LP-Based Branch and Bound 760
 Branching Rules for LP-Based Branch and Bound 761
 LP-Based Branch and Bound Solution of the River Power

 Application 762

 12.4 Refinements to Branch and Bound 764
 Branch and Bound Solution of NASA Capital Budgeting

 Application 764
 Rounding for Incumbent Solutions 765
 Branch and Bound Family Tree Terminology 768
 Parent Bounds 769
 Terminating with Parent Bounds 769
 Stopping Early: Branch and Bound as a Heuristic 770
 Bounds on the Error of Stopping with the Incumbent

 Solution 771
 Depth First, Best First, and Depth Forward Best Back

 Sequences 772

 12.5 Branch and Cut 777
 Valid Inequalities 777
 Branch and Cut Search 778
 Branch and Cut Solution of the River Power Application 779

 12.6 Families of Valid Inequalities 782
 Gomory Cutting Planes (Pure Integer Case) 782
 Gomory Mixed-Integer Cutting Planes 785
 Families of Valid Inequalities from Specialized Models 787

 12.7 Cutting Plane Theory 788
 The Convex Hull of Integer Feasible Solutions 789
 Linear Programs over Convex Hulls 791
 Faces, Facets, and Categories of Valid Inequalities 792
 Affinely Independent Characterization of Facet-Inducing Valid

 Inequalities 794
 Partial Dimensional Convex Hulls and Valid Equalities 795

Exercises 797
References 810

chaPter 13 large-Scale oPtimization methodS 811

 13.1 Delayed Column Generation and Branch and Price 811
 Models Attractive for Delayed Column Generation 813
 Partial Master Problems 815
 Generic Delayed Column Generation Algorithm 815
 Application of Algorithm 13A to Application 13.1 815
 Generating Eligible Columns to Enter 817
 Branch and Price Search 819

xxii Contents

 13.2 Lagrangian Relaxation 822
 Lagrangian Relaxations 822
 Tractable Lagrangian Relaxations 824
 Lagrangian Relaxation Bounds and Optima 825
 Lagrangian Duals 827
 Lagrangian versus Linear Programming

 Relaxation Bounds 830
 Lagrangian Dual Objective Functions 832
 Subgradient Search for Lagrangian Bounds 833
 Application of Subgradient Search to Numerical Example 835

 13.3 Dantzig–Wolfe Decomposition 836
 Reformulation in Terms of Extreme Points and Extreme

 Directions 838
 Reformulation from GB Application 13.4 Subproblems 839
 Delayed Generation of Subproblem Extreme-Point

 and Extreme-Direction Columns 840
 Dantzig–Wolfe Solution of GB Application 13.4 841

 13.4 Benders Decomposition 842
 Benders Decomposition Strategy 844
 Optimality in Benders Algorithm 13E 845
 Solution of Heart Guardian Application 13.5 with

 Benders Algorithm 13E 846

Exercises 849
References 854

chaPter 14 comPutational comPlexity theory 855

 14.1 Problems, Instances, and the Challenge 855
 The Challenge 856

 14.2 Measuring Algorithms and Instances 857
 Computational Orders 857
 Instance Size as the Length of an Encoding 859
 Expressions for Encoding Length of All a Problem’s

 Instances 860

 14.3 The Polynomial-Time Standard for Well-Solved
 Problems 861

 14.4 Polynomial and Nondeterministic-Polynomial
 Solvability 862

 Decision versus Optimization Problems 862
 Class P - Polynomially Solvable Decision Problems 863
 Class NP - Nondeterministic-Polynomially Solvable Decision

 Problems 864
 Polynomial versus Nondeterministic Polynomial Problem

 Classes 865

Contents xxiii

 14.5 Polynomial-Time Reductions and NP-Hard
 Problems 866

 Polynomial Reductions between Problems 866
 NP-Complete and NP-Hard Problems 868

 14.6 P versus NP 869
 The P Z NP Conjecture 870

 14.7 Dealing with NP-Hard Problems 871
 Special Cases 871
 Pseudo-Polynomial Algorithms 871
 Average Case Performance 872
 Stronger Relaxations and Cuts for B&B and B&C 872
 Specialized Heuristics with Provable Worst-Case

 Performance 872
 General Purpose Approximate/Heuristic Algorithms 874

Exercises 875
References 878

chaPter 15 heuriStic methodS for aPProximate diScrete
oPtimization 879

 15.1 Constructive Heuristics 879
 Rudimentary Constructive Search Algorithm 880
 Greedy Choices of Variables to Fix 880
 Greedy Rule for NASA Application 881
 Constructive Heuristic Solution of NASA

 Application 882
 Need for Constructive Search 884
 Constructive Search of KI Truck Routing Application 885

 15.2 Improving Search Heuristics for Discrete
Optimization INLPs 886

 Rudimentary Improving Search Algorithm 886
 Discrete Neighborhoods and Move Sets 887
 NCB Application Revisited 888
 Choosing a Move Set 889
 Rudimentary Improving Search of the NCB

 Application 891
 Multistart Search 892

 15.3 Tabu and Simulated Annealing Metaheuristics 893
 Difficulty with Allowing Nonimproving Moves 894
 Tabu Search 894
 Tabu Search of the NCB Application 895
 Simulated Annealing Search 897
 Simulated Annealing Search of NCB Application 899

xxiv Contents

 15.4 Evolutionary Metaheuristics and Genetic Algorithms 902
 Crossover Operations in Genetic Algorithms 902
 Managing Genetic Algorithms with Elites, Immigrants, Mutations,

 and Crossovers 903
 Solution Encoding for Genetic Algorithm Search 904
 Genetic Algorithm Search of NCB Application 905

Exercises 906
References 911

chaPter 16 unconStrained nonlinear Programming 913

 16.1 Unconstrained Nonlinear Programming Models 913
 USPS Single-Variable Application Model 915
 Neglecting Constraints to Use Unconstrained Methods 915
 Curve Fitting and Regression Problems 916
 Linear versus Nonlinear Regression 917
 Regression Objective Functions 918
 Custom Computer Curve Fitting Application Model 918
 Maximum Likelihood Estimation Problems 919
 PERT Maximum Likelihood Application Model 921
 Smooth versus Nonsmooth Functions and Derivatives 922
 Usable Derivatives 923

 16.2 One-Dimensional Search 924
 Unimodal Objective Functions 924
 Golden Section Search 925
 Golden Section Solution of USPS Application 927
 Bracketing and 3-Point Patterns 929
 Finding a 3-Point Pattern 930
 Quadratic Fit Search 932
 Quadratic Fit Solution of USPS Application 933

 16.3 Derivatives, Taylor Series, and Conditions
 for Local Optima in Multiple Dimensions 935

 Improving Search Paradigm 935
 Local Information and Neighborhoods 936
 First Derivatives and Gradients 936
 Second Derivatives and Hessian Matrices 937
 Taylor Series Approximations with One Variable 939
 Taylor Series Approximations with Multiple Variables 940
 Stationary Points and Local Optima 941
 Saddle Points 943
 Hessian Matrices and Local Optima 943

 16.4 Convex/Concave Functions and Global Optimality 947
 Convex and Concave Functions Defined 948
 Sufficient Conditions for Unconstrained Global Optima 950
 Convex/Concave Functions and Stationary Points 951

Contents xxv

 Tests for Convex and Concave Functions 951
 Unimodal versus Convex/Concave Objectives 954

 16.5 Gradient Search 955
 Gradient Search Algorithm 955
 Gradient Search of Custom Computer Application 956
 Steepest Ascent/Descent Property 958
 Zigzagging and Poor Convergence of Gradient Search 959

 16.6 Newton’s Method 959
 Newton Step 960
 Newton’s Method 961
 Newton’s Method on the Custom Computer Application 962
 Rapid Convergence Rate of Newton’s Method 963
 Computational Trade-offs between Gradient

 and Newton Search 963
 Starting Close with Newton’s Method 964

 16.7 Quasi-Newton Methods and BFGS Search 964
 Deflection Matrices 965
 Quasi-Newton Approach 965
 Guaranteeing Directions Improve 966
 BFGS Formula 966
 BFGS Search of Custom Computer Application 967
 Verifying Quasi-Newton Requirements 971
 Approximating the Hessian Inverse with BFGS 972

 16.8 Optimization without Derivatives and Nelder–Mead 973
 Nelder–Mead Strategy 973
 Nelder–Mead Direction 976
 Nelder–Mead Limited Step Sizes 977
 Nelder–Mead Shrinking 979
 Nelder–Mead Search of PERT Application 980

Exercises 981
References 986

chaPter 17 conStrained nonlinear Programming 987

 17.1 Constrained Nonlinear Programming Models 987
 Beer Belge Location-Allocation Model 988
 Linearly Constrained Nonlinear Programs 989
 Texaco Gasoline Blending Model 990
 Engineering Design Models 992
 Oxygen System Engineering Design Model 993

 17.2 Convex, Separable, Quadratic, and Posynomial Geometric
 Programming Special NLP Forms 995

 Pfizer Optimal Lot Sizing Model 996
 Convex Programs 998

xxvi Contents

 Special Tractability of Convex Programs 1000
 Separable Programs 1001
 Special Tractability of Separable Programs 1002
 Quadratic Portfolio Management Model 1004
 Quadratic Programs Defined 1005
 Special Tractability of Quadratic Programs 1006
 Cofferdam Application Model 1007
 Posynomial Geometric Programs 1008
 Special Tractability of Posynomial Geometric

 Programs 1010

 17.3 Lagrange Multiplier Methods 1011
 Reducing to Equality Form 1011
 Lagrangian Function and Lagrange Multipliers 1012
 Stationary Points of the Lagrangian Function 1013
 Lagrangian Stationary Points and the Original Model 1014
 Lagrange Multiplier Procedure 1015
 Interpretation of Lagrange Multipliers 1017
 Limitations of the Lagrangian Approach 1018

 17.4 Karush–Kuhn–Tucker Optimality Conditions 1019
 Fully Differentiable NLP Model 1019
 Complementary Slackness Conditions 1019
 Lagrange Multiplier Sign Restrictions 1020
 KKT Conditions and KKT Points 1020
 Improving Feasible Directions and Local Optima

 Revisited 1022
 KKT Conditions and Existence of Improving Feasible

 Directions 1024
 Sufficiency of KKT Conditions for Optimality 1027
 Necessity of KKT Conditions for Optimality 1027

 17.5 Penalty and Barrier Methods 1028
 Penalty Methods 1028
 Penalty Treatment of the Service Desk Application 1030
 Concluding Constrained Optimality with Penalties 1031
 Differentiability of Penalty Functions 1031
 Exact Penalty Functions 1032
 Managing the Penalty Multiplier 1033
 Sequential Unconstrained Penalty Technique (SUMT) 1033
 Barrier Methods 1034
 Barrier Treatment of Service Desk Application 1035
 Converging to Optimality with Barrier Methods 1036
 Managing the Barrier Multiplier 1037
 Sequential Unconstrained Barrier Technique 1037

 17.6 Reduced Gradient Algorithms 1038
 Standard Form for NLPs with Linear Constraints 1038
 Conditions for Feasible Directions with Linear Constraints 1040
 Bases of the Main Linear Equalities 1040

Contents xxvii

 Basic, Nonbasic, and Superbasic Variables 1041
 Maintaining Equalities by Solving Main Constraints for Basic

 Variables 1042
 Active Nonnegativities and Degeneracy 1042
 Reduced Gradients 1043
 Reduced Gradient Move Direction 1044
 Line Search in Reduced Gradient Methods 1046
 Basis Changes in Reduced Gradient Methods 1047
 Reduced Gradient Algorithm 1047
 Reduced Gradient Search of Filter Tuning Application 1048
 Major and Minor Iterations in Reduced Gradient 1049
 Second-Order Extensions of Reduced Gradient 1050
 Generalized Reduced Gradient Procedures for Nonlinear

 Constrants 1050

 17.7 Quadratic Programming Methods 1051
 General Symmetric Form of Quadratic Programs 1051
 Quadratic Program Form of the Filter Tuning

 Application 1052
 Equality-Constrained Quadratic Programs and KKT

 Conditions 1053
 Direct Solution of KKT Conditions for Quadratic

 Programs 1054
 Active Set Strategies for Quadratic Programming 1055
 Step Size with Active Set Methods 1056
 Stopping at a KKT Point with Active Set Methods 1057
 Dropping a Constraint from the Active Set 1058
 Active Set Solution of the Filter Tuning Application 1059

 17.8 Sequential Quadratic Programming 1061
 Lagrangian and Newton Background 1061
 Sequential Quadratic Programming Strategy 1062
 Application of Algorithm 17E to Modified

 Pfizer Application l7 . 9 1064
 Approximations to Reduce Computation 1065

 17.9 Separable Programming Methods 1065
 Pfizer Application 17.4 Revisited 1066
 Piecewise Linear Approximation to Separable

 Functions 1067
 Linear Program Representation of Separable Programs 1069
 Correctness of the LP Approximation to Separable

 Programs 1070
 Convex Separable Programs 1071
 Difficulties with Nonconvex Separable Programs 1073

 17.10 Posynomial Geometric Programming Methods 1073
 Posynomial Geometric Program Form 1073
 Cofferdam Application Revisited 1074
 Logarithmic Change of Variables in GPs 1075

xxviii Contents

 Convex Transformed GP Model 1076
 Direct Solution of the Transformed Primal GP 1077
 Dual of a Geometric Program 1077
 Degrees of Difficulty and Solving the GP Dual 1079
 Recovering a Primal GP Solution 1080
 Derivation of the GP Dual 1080
 Signomial Extension of GPs 1082

Exercises 1082
References 1093

aPPendix: grouP ProjectS 1095

Selected anSwerS 1099

index 1123

xxix

▪ ▪ ▪ ▪ ▪

It is now nearly two decades since publication of the first edition of my textbook
Optimization in Operations Research. Since that time thousands of students and
hundreds of instructors, researchers, and practitioners have had the opportunity to
benefit from its consistent content and accessible design. Of course, not all have seen
benefit, but many have written kind reviews and letters expressing their high regard
for the book. Also, the Institute of Industrial Engineers honored it with their Joint
Publishers Book-of-the-Year Award in 1999.

In this second edition, I have tried to preserve what was best about the original
while updating it with new and enhanced content. The goal remains the same—to make
the tools of optimization modeling and analysis accessible to advanced undergraduate
and beginning graduate students who follow the book in their studies, as well as research-
ers and working practitioners who use it as a reference for self-study. Emphasis is on the
skills and intuitions they can carry away and apply in real settings or later coursework.

Although aimed at that same goal, much is new in the second edition:

•	 Stochastic optimization is covered for the first time with Stochastic Programming in
Chapter 4, and Markov Decision Processes in Chapter 9.

•	 Coverage of linear programming techniques is expanded in Chapter 6 to encompass
dual and primal-dual methods.

•	 New sections rigorously formalize optimality conditions for linear programming in
Chapter 6, and cutting plane theory in Chapter 12.

•	 Treatment of the Hungarian Algorithm for assignment, and min/max spanning tree
methods has been added to Chapter 10.

•	 A whole new Chapter 13 is devoted to large-scale optimization techniques including
Delayed Column Generation, Lagrangian Relaxation, Dantzig–Wolfe Decomposition,
and Benders’ Partitioning.

•	 A whole new Chapter 14 treats the theory of computational complexity to provide a
rigorous foundation for comparing problems and algorithms.

•	 Nonlinear Chapter 17 now includes coverage of the popular Sequential Quadratic
Programming method.

•	 More generally, additional mathematical rigor is added to justifications of methods
throughout the book, including tracking computational orders for most.

New topics seek to cover even more completely the full breadth of optimiza-
tion (or mathematical programming) that might be of interest to the book’s intended
audience. Those span linear, integer, nonlinear, network, and dynamic programming
models and algorithms, in both single and multi-objective context, and a rich sample
of domains where they have been applied.

With content so inclusive, it is important to recognize that almost no reader
or course will ever use it all, much less in the exact sequence presented in the book.
For that reason, I have tried to make the organization of material as transparent and
re-entrant as possible.

Preface

xxx Preface

Dependencies between sections are minimized and clearly identified with
 explicit references. One- and two-page Primers concisely review prerequisite
 material where it is needed in the development to save diversions to other sources.
To keep the focus on intuitions and strategies behind topics, Definitions, Principles
and Algorithms are set out in easy-to-spot boxes, where high-level ideas can be
located and absorbed quickly. When more detail is of interest, computations and
discussions that may extend to several pages are recapped immediately in concise
Examples (also marked for easy identification). For readers and instructors seeking
more reinforcement with Exercises at the end of chapters, convenient icons clearly
tag which of those require computer software () or advanced calculators (), and
which have answers provided at the back of the book ().

The new edition also builds on my firm belief that making optimization
 materials accessible and exciting to readers of diverse backgrounds requires making
the book a continuing discourse on optimization modeling. Every algorithm and
 analytic principle is developed in the context of a brief story set out as an Application.
Also, computational exercises often begin with a formulation step. Many of those
stories are derived from real OR applications footnoted in the development. Story
settings—however contrived—provide a context for understanding both the needed
decision variables, constraints and objectives of model forms, and steps in computa-
tion. For example, ideas like improving directions are more intuitive if some quantity
in a story, not just a mathematical function, is clearly getting better as an algorithm
is pursued. Likewise, binary decision variables become intuitive if the reader can see
the either-or nature of some application decisions.

A related conviction is that students cannot really learn any mathematical top-
ic without working with it in homework exercises. That is why the second edition
continues the tradition of the first in providing a full range of exercises at the end
of each chapter. Some continue from the first edition, but many are new or posed
over modified parameter values. The range of exercises begins with verifications of
algorithm details, definitions and properties, which are essential to building intuition
about the methods. But a range of formulation exercises is also included extending
from tiny examples subject to graphic or inspection solution to more complex ap-
plications drawn from real OR work that challenge formulation skills. In addition,
a new Group Projects appendix details assignments I have used for years to engage
student teams more deeply in published reports of actual optimization applications.

Early introductory books in optimization focused heavily on hand application
of algorithms to compute solutions of tiny examples. With almost all real optimiza-
tion now done with the help of large-scale computer software, more recent sources
have sometimes limited attention to formulating data sets for submission to one of
those algorithms—treating the computation largely as a black box.

I reject both these extremes. Graphic solution of small instances and hand
implementation of algorithmic methods are essential if students are to internalize
the principles on which the computation is based. The second edition continues my
earlier pattern of moving quickly to such intuitive examples as each new concept is
introduced. At the same time, no reader will ever grow excited about the power of
optimization methods if he or she sees them applied only to tiny examples, much
less abstract mathematical forms. That is why many of the examples and exercises in

Preface xxxi

both the first and second editions of the book ask students to apply available class
software on models of greater size, where answers are not apparent until formal
methods are shown to reveal them. Brief sections have also been added on coding
models for software like AMPL.

Perhaps the greatest challenge in trying to bridge undergraduate and beginning
graduate audiences in optimization is the question of mathematical rigor. Elementary
treatments simply introduce algorithmic mechanics with little if any argument for
their correctness. On the other hand, more advanced books on optimization meth-
ods often devolve quickly into rigorous mathematical propositions and formal proofs
with almost no discussion of underlying strategies, intuitions, and tractability.

My effort in the first edition was to bridge that gap by focusing on the intui-
tions and strategies behind methods, and on their relative tractability, while offering
only limited arguments for their correctness. In the interest of better serving the
introductory graduate and self-study audiences, the second edition adds significantly
more rigor to the arguments presented. They are still not stated in theorem or proof
format, but most key elements of rationales are now justified.

I am proud of how the long overdue second edition has emerged, and I hope
readers will agree that it is a significant advance over the first. I look forward to your
comments as the new developments are absorbed.

I want to thank deeply the hundreds of students, friends, and colleagues at
Georgia Tech, Purdue and the University of Arkansas for their advice and encour-
agement as the new edition has taken shape. This goes especially for a series of
Graduate Assistants who have helped with exercises and solutions, and for the pa-
tience and support of department heads Marlin Thomas, Dennis Engi, John English,
Kim Needy, and Ed Pohl. Finally, I need to thank my family—especially my wife
Blanca and my son Rob—for their patience and encouragement in my long slog to
finish the task.

xxxii

▪ ▪ ▪ ▪ ▪

Dr. Ronald L. (Ron) Rardin retired as Distinguished
Professor Emeritus in 2013 after a 40-year record of
leadership as an educator and researcher in optimi-
zation methods and their application culminating
after 2007 as John and Mary Lib White Distinguished
Professor of Industrial Engineering on the faculty of
the University of Arkansas-Fayetteville. He headed
the University’s Center on Innovation in Healthcare
Logistics (CIHL) targeting supply chain and material
flow aspects of healthcare operations in collaboration
with a variety of healthcare industry organizations.
He also took the lead with colleagues at Arkansas in
founding the Health Systems Engineering Alliance
(HSEA) of industrial engineering academic pro-
grams interested in healthcare.

Earlier, Professor Rardin retired in 2006 as
Professor Emeritus of Industrial Engineering at
Purdue University after completing 24 years there,
including directing the Purdue Energy Modeling
Research Groups, and playing a leading role in

Purdue’s Regenstrief Center for Healthcare Engineering. Previously he had served
on the Industrial and Systems Engineering faculty at the Georgia Institute of
Technology for 9 years. He also served the profession in a rotation from 2000–2003
as Program Director for Operations Research and Service Enterprise Engineering
at the National Science Foundation, including founding the latter program to foster
research in service industries.

Dr. Rardin obtained his B.A. and M.P.A. degrees from the University of
 Kansas, and after working in city government, consulting and distribution for five
years, a Ph.D. at Georgia Institute of Technology.

His teaching and research interests center on large-scale optimization modeling
and algorithms, especially their application in healthcare and energy. He is an award
winning teacher of those topics, and co-author of numerous research papers and
two comprehensive textbooks: a graduate text Discrete Optimization, published in
1988, and a comprehensive undergraduate textbook on mathematical programming,
Optimization in Operations Research, which was published in 1998 and received the
Institute of Industrial Engineers (IIE) Book of the Year award. Among his many
other honors, he is a Fellow of both IIE and the Institute for Operations Research
and the Management Sciences (INFORMS), as well as 2012 winner of the IIE’s
David F. Baker award for career research achievement.

About the Author

▪ ▪ ▪ ▪ ▪

Optimization
in Operations
Research

This page intentionally left blank

1

▪ ▪ ▪ ▪ ▪
Chapter 1

Problem Solving with
Mathematical Models

Any student with the most elementary scientific training has encountered the idea
of solving problems by analyzing mathematical equations that approximate the
physical realities of the universe we inhabit. Countless questions about objects
falling, beams shearing, gases diffusing, currents flowing, and so on, are reduced to
simple computations upon skillful application of one of the natural laws passed to
us by Newton, Ohm, Einstein, and others.

The applicable laws may be less enduring, but “operations” problems such
as planning work shifts for large organizations, choosing investments for available
funds, or designing facilities for customer service can also be posed in mathematical
form. A mathematical model is the collection of variables and relationships needed
to describe pertinent features of such a problem.

In this chapter some of the fundamental issues and vocabulary related to oper-
ations research are introduced.

1.1 Or ApplicAtiOn StOrieS

Operations research techniques have proved useful in an enormous variety of applica-
tion settings. One of the goals of this book is to expose students to as broad a sample
as possible. All application examples, many end-of-chapter exercises, several complete
sections, and three full chapters present and analyze stories based on OR applications.

Whenever possible, these problems are drawn from reports of real operations
research practice (identified in footnotes). Of course, they are necessarily reduced in
size and complexity, and numerical details are almost always made up by the author.

Operations research (Or) is the study of how to form math-
ematical models of complex engineering and management problems and how
to analyze them to gain insight about possible solutions.

Definition 1.1

2 Chapter 1 Problem Solving with Mathematical Models

100

100

100

200

300

400

100

200

300

400

500

(a) Customer demand by week (average = 55)

(b) Replenishment amounts by week

(c) Beginning inventories by week

(d) Lost sales by week

Figure 1.1 Mortimer Middleman Example History

Other stories illustrate key elements of standard applications but greatly oversim-
plify, to facilitate quick learning.

A handful of continuing examples are even smaller and more contrived. They
still have a story, but convenience in illustrating methodological issues takes prece-
dence over reality of application.

ApplicAtiOn 1.1: MOrtiMer MiddleMAn

Our first story is of the totally made-up variety. Mortimer Middleman—friends call
him MM—operates a modest wholesale diamond business. Several times each year

1.2 Optimization and the Operations Research Process 3

conclusionsdecisions

modelproblem
modeling

inference

analysisassessment

Figure 1.2 Operations Research Process

1.2 OptiMizAtiOn And the OperAtiOnS reSeArch prOceSS

Operations research deals with decision problems like that of Mortimer Middleman
by formulating and analyzing mathematical models—mathematical representations
of pertinent problem features. Figure 1.2 illustrates this OR process.

The process begins with formulation or modeling. We define the variables and
quantify the relationships needed to describe relevant system behavior.

Next comes analysis. We apply our mathematical skills and technology to see
what conclusions the model suggests. Notice that these conclusions are drawn from

MM travels to Antwerp, Belgium, to replenish his diamond supply on the interna-
tional market. The wholesale price there averages approximately $700 per carat, but
Antwerp market rules require him to buy at least 100 carats each trip. Mortimer and
his staff then resell the diamonds to jewelers at a profit of $200 per carat. Each of
the Antwerp trips requires 1 week, including the time for Mortimer to get ready, and
costs approximately $2000.

Customer demand values in Figure 1.1(a) show that business has been good. Over
the past year, customers have come in to order an average of 55 carats per week.

Part (c) of Figure 1.1 illustrates Mortimer’s problem. Weekly levels of on-hand
diamond inventory have varied widely, depending on the ups and downs in sales and the
pattern of MM’s replenishment trips [Figure 1.1(b)].

Sometimes Mortimer believes that he is holding too much inventory. The hun-
dreds of carats of diamonds on hand during some weeks add to his insurance costs
and tie up capital that he could otherwise invest. MM has estimated that these hold-
ing costs total 0.5% of wholesale value per week (i.e., 0.005 * $700 = $3.50 per
carat per week).

At other times, diamond sales—and Mortimer’s $200 per carat profit—have been
lost because customer demand exceeded available stock [see Figure 1.1(d)]. When a
customer calls, MM must either fill the order on the spot or lose the sale.

Adding this all up for the past year, MM estimates holding costs of $38,409, unre-
alized profits from lost sales of $31,600, and resupply travel costs of $24,000, making the
annual total $94,009. Can he do better?

4 Chapter 1 Problem Solving with Mathematical Models

the model, not from the problem that it is intended to represent. To complete the pro-
cess, we must engage in inference, that is, argue that conclusions drawn from the model
are meaningful enough to infer decisions for the person or persons with the problem.

Often, an assessment of decisions inferred in this way shows them to be too
inadequate or extreme for implementation. Further thought leads to revised model-
ing, and the loop continues.

Decisions, Constraints, and Objectives
We always begin modeling by focusing on three dimensions of the problem:

The three fundamental concerns in forming operations re-
search models are (a) the decisions open to decision makers, (b) the constraints
limiting decision choices, and (c) the objectives making some decisions pre-
ferred to others.

Definition 1.2

In dealing with virtually any decision problem—engineering, management, or
even personal—explicitly defining the decisions, constraints, and objectives helps to
clarify the issues. Mortimer is obviously the decision maker in our diamond inven-
tory management example. What decisions does he get to make?

Actually, MM makes hundreds of decisions each year about when to replenish
his stock and how much to buy. However, it is common in inventory management
circumstances such as Mortimer’s to reduce the question to two policy decisions:
What reorder point level of inventory should trigger a decision to buy new stock, and
what order quantity should be purchased each time? These two variables constitute
our decisions. We presume that each time on-hand inventory falls below the reorder
point, Mortimer will head to Antwerp to buy a standard reorder quantity.

The next issue is constraints. What restrictions limit MM’s decision choices? In
this example there aren’t very many. It is only necessary that both decisions be non-
negative numbers and that the order quantity conform to the 100 carat minimum of
the Antwerp market.

The third element is objectives. What makes one decision better than another?
In MM’s case the objective is clearly to minimize cost. More precisely, we want to
minimize the sum of holding, replenishment, and lost-sales costs.

Summarizing in a verbal model or word description, our goal is to choose a non-
negative reorder point and a nonnegative reorder quantity to minimize the sum of hold-
ing, replenishment, and lost-sales costs subject to the reorder quantity being at least 100.

Optimization and Mathematical Programming
Verbal models can help organize an analyst’s thinking, but in this book we address
a higher standard. We deal exclusively with optimization (also called mathematical
programming).

Optimization models (also called mathematical programs)
represent problem choices as decision variables and seek values that maximize
or minimize objective functions of the decision variables subject to constraints
on variable values expressing the limits on possible decision choices.

Definition 1.3

1.2 Optimization and the Operations Research Process 5

With our Mortimer Middleman example, the decision variables are

q! reorder quantity purchased on each replenishment trip

r! reorder point signaling the need for replenishment

(Here and throughout ! means “is defined to be.”) Constraints require only that

q Ú 100

r Ú 0

The objective function,

c1q, r2! total cost using a reorder quantity of q and a reorder point r

remains to be explicitly represented mathematically. We seek to minimize c (q, r)
over values of q and r satisfying all constraints.

Constant-Rate Demand Assumption
How we formulate constraints and objectives in terms of decision variables depends
on what assumptions we are willing to make about the underlying system. We begin
with a strong assumption regarding constant-rate demand: Assume that demand
occurs at a constant rate of 55 carats per week. It is clear in Figure 1.1(a) that the de-
mand rate is not exactly constant, but it does average 55 carats per week. Assuming
that it is 55 carats in every week leads to some relatively simple analysis.

If the demand rate is constant, the pattern of on-hand inventory implied by
a particular q and r will take one of the periodic “sawtooth” forms illustrated in
Figure 1.3. Each time a shipment arrives, inventory will increase by order size q, then
decline at the rate of 55 carats per week, producing regular cycles. Part (a) shows a
case where inventory never runs out. A safety stock of (theoretically) untouched in-
ventory protects against demand variability we have ignored. At the other extreme
is part (c). Sales are lost because inventory runs out during the lead time between
reaching the reorder point r and arrival of a new supply. Part (b) has neither safety
stock nor lost sales. Stock runs out just as new supply arrives.

Back of Envelope Analysis
In cases where there are no lost sales [Figure 1.3(a) and (b)] it is easy to compute
the length of each sawtooth cycle.

order quantity

demand rate
=

q

55

With lost sales [Figure 1.3(c)], each cycle is extended by a period when MM is out of
stock that depends on both q and r.

Clearly, both modeling and analysis would be easier if we could ignore
the lost-sales case. Can we afford to neglect lost sales? As in so many OR prob-
lems, a bit of crude “back of envelope” examination of the relevant costs will help
us decide.

Lost sales may occur under the best of plans because of week-to-week
variation in demand. Under our constant-rate demand assumption, however,

6 Chapter 1 Problem Solving with Mathematical Models

time

inventory

q

r
{

slope = 55 per week (d)

slope = 55 per week (d)

slope = 55 per week (d)

}safety
stock

1 week (l) q/55

q/55

q/55

{
{

{
(a) With safety stock

(b) No safety stock or lost sales

(c) With lost sales

time

inventory

q

r

{

1 week (l)

time

inventory

q

r

{

1 week (l)

} lost sales

Figure 1.3 Inventories Under Constant-Rate Demand

1.2 Optimization and the Operations Research Process 7

there is no variation. Furthermore, MM can afford to add a unit to q and carry it
for up to

cost of lost sale
weekly holding cost

=
$200
$3.50

 ≈ 57.1 weeks

rather than lose a carat of sales. Since the history in Figure 1.1 shows that inventory
typically has been held no more than 4 to 6 weeks, it seems safe to make a second
assumption regarding no lost sales: Assume that lost sales are not allowed.

Constant-Rate Demand Model
Since customers order a constant-rate 55 carats during the 1 week it takes Mortimer
to carry out an Antwerp trip, both inventory at order arrival and lost sales can be
computed by comparing 55 to r. If r 6 55, we lose 155 - r2 carats of sales each
cycle, something we have decided not to permit. Thus we may deduce the constraint

r Ú 55

With r restricted to be at least 55, 1r - 552 is the safety stock, and the cycle
of rising and falling inventory repeats every q>55 weeks. Inventory on hand ranges
from 1r - 552 at the low point of a cycle to 1r - 552 + q as a shipment arrives. The
average will be the midpoint of these values, 1r - 552 + q>2.

We are finally in a position to express all relevant costs. Holding cost per week
is just the average inventory held times $3.50. Replenishment cost per week is $2000
divided by the cycle length or time between replenishments. Our first optimization
model is

minimize c = 3.50 c1r - 552 +
q

2
 d +

2000
q>55

 (1.1)

subject to q Ú 100, r Ú 55

Feasible and Optimal Solutions
Remember that our goal is to help Mortimer make decisions. Since the decisions
are the variables in our model, we would like to characterize good values for deci-
sion variables q and r.

For example, q = 200, r = 90 is feasible in constant-rate demand model (1.1)
because both constraints are satisfied: 200 Ú 100 and 90 Ú 55.

Here we can go farther and find an optimal solution. To begin, notice that if
r deviates from demand 55, we incur extra holding cost and that no constraint pre-
vents choosing r exactly 55. We conclude that

r* = 55

A feasible solution is a choice of values for the decision vari-
ables that satisfies all constraints. Optimal solutions are feasible solutions
that achieve objective function value(s) as good as those of any other feasible
solutions.

Definition 1.4

8 Chapter 1 Problem Solving with Mathematical Models

will tell MM the perfect moment to start travel preparations. The asterisk (*) or star
on a variable always denotes its optimal value.

Substituting this optimal choice of r of (1.1), the objective function reduces to

 c1q, r2! 3.50 aq

2
b + 2000 a 55

q
b (1.2)

Elementary calculus will tell us how to finish (differentiate with respect to q and
solve for a suitable point where the derivative is zero). To avoid being diverted by
mathematical details in this introductory chapter, we leave the computation as an
exercise for the reader.

The graphic presentation of cost function (1.2) in Figure 1.4 confirms the calcu-
lus result that the minimum average weekly cost occurs at

q* = {C21200021552
3.50

≈ 250.7

Since this value easily satisfies the q Ú 100 constraint, it is optimal.

To summarize, our assumptions of constant-rate demand and no lost sales
have led us to advise Mortimer to go to Antwerp whenever inventory drops below
r* = 55 carats and to buy q* = 250.7 carats of new diamonds each trip. Substituting
these values in the objective function of (1.1), total cost should be about $877 .50 per
week or $45,630 per year—quite an improvement over Mortimer’s real experience
of $94,009.

1000

500

1500

2000

100 200 300 400

q* = 250.7

c = 3.50
q

q+ 20002
55(())

weekly cost

order
quantity

Figure 1.4 Optimal MM Order Quantity Under Constant-Rate
Demand

1.3 System Boundaries, Sensitivity Analysis, Tractability, and Validity 9

1.3 SySteM BOundArieS, SenSitivity AnAlySiS,
trActABility, And vAlidity

The modeling in Section 1.2 took as given many quantities, such as the demand
per week and the cost per carat held, then computed optimal values for reorder
point and reorder quantity. A line between those items taken as settled and those
to be decided is called the system boundary. Figure 1.5 illustrates how parameters—
quantities taken as given—define objective functions and constraints applicable to
the decision model inside. Together, parameters and decision variables determine
results measured as output variables.

EOQ Under Constant-Rate Demand
Only cost c is an output variable in our constant-rate demand model of Mortimer
Middleman’s problem. Enumerating the parameters, let

d! weekly demand 155 carats2
f ! fixed cost of replenishment 1$20002
h! cost per carat per week for holding inventory 1$3.502
s ! cost per carat of lost sales 1$2002
/ ! lead time between reaching the reorder point and receiving a new
 supply (1 week)

m! minimum order size 1100 carats2
A great attraction of our constant-rate demand analysis is that it can be done just as
well in terms of these symbols. If lost sales are not allowed, repetition of the analysis
(calculus) in terms of symbolic parameters will cause us to conclude that

 optimal reorder quantity q* = C2fd

h
optimal reorder point r* = /d

Principle 1.5

modeling
and

analysis
in the

decision
variables

system boundary

parameters
output
variables

Figure 1.5 System Boundaries

10 Chapter 1 Problem Solving with Mathematical Models

These results hold as long as q* Ú m (to be general, we also need to specify
q* Ú /d).

The square root expression for q* now exhibits one of the oldest results in op-
erations research: the classic economic order quantity (EOQ) formula for inventory
management. Although we will soon see problems with the r* part of the solution in
MM’s case, EOQ order quantities yield reliable inventory policies in a wide variety
of settings.

System Boundaries and Sensitivity Analysis
To see the power of symbolic results such as equations 1.5 , we must recognize the
inherent arbitrariness in system boundaries. If we took nothing as settled, models
would mushroom in complexity and meaningful analysis would become impossi-
ble. Still, parameters we choose to regard as fixed at a system boundary often are
known only vaguely. For example, MM’s trips may cost approximately f = $2000,
but prices no doubt change with time, and more careful tabulation of past expenses
might show that trips actually average $1000 or $3000. Figure 1.6 shows the sig-
nificant implications for the optimal q*. Our analysis with parameter f = $2000
had q* = 250.7. With f = $1000, the optimal order quantity is 177.3; and with
f = $3000, it is 307.1.

Such variations in input parameter values taken as fixed at a system boundary
may dramatically affect the results of OR analysis.

1000

500

1500

2000

100 200 300 400

weekly cost

order
quantity

f = $1000

f = $2000

f = $3000

q* =
177.3

q* =
250.7

q* =
307.1

Figure 1.6 Sensitivity of MM Constant - Demand Results to Parameters

1.3 System Boundaries, Sensitivity Analysis, Tractability, and Validity 11

Any really complete operations research study includes an investigation of the sen-
sitivity of results to parameter values.

Closed-Form Solutions
Solutions prescribing choices for decision variables by simple formulas in the input
variables are called closed-form solutions. Expressions 1.5 are an example.

The power of closed-form solutions lies with their providing results for many
values of the parameters. Determining optimal q* and r* for the parameter values
assumed in Section 1.2 was no small success. With closed-form solutions, however,
we can determine sensitivities of optimal results to changes in input parameters. For
example, we can see immediately that travel cost parameter f influences q* in pro-
portion to its square root and has no impact on r*.

Our constant-rate demand model of Mortimer Middleman’s problem has proved
highly tractable because elementary calculus produced closed-form optimal solu-
tions. Should we conclude that the goal of every OR study must be to formulate and
analyze a model admitting closed-form solutions? Absolutely not!

Take another look at the operations research process depicted in Figure 1.2.
Our purpose is not mathematical elegance but insights that will really help people
like Mortimer Middleman deal with their problems. To assess the merit of opera-
tions research results, we must also consider another dimension.

The complete analysis possible with our constant-rate demand model derived
directly from the strong assumptions that we made to achieve a simple mathemati-
cal form. As we will see in the following subsections, those same assumptions bring
the applicability of our closed-form results into real doubt.

Our study of OR will return to this dilemma again and again.

Sensitivity analysis is an exploration of results from mathemat-
ical models to evaluate how they depend on the values chosen for parameters.

Definition 1.6

Closed-form solutions represent the ultimate in analysis of math-
ematical models because they provide both immediate results and rich sensitivity
analysis.

Principle 1.7

Tractability versus Validity

Tractability in modeling means the degree to which the model
admits convenient analysis—how much analysis is practical.

Definition 1.8

The validity of a model is the degree to which inferences
drawn from the model hold for the real system.

Definition 1.9

OR analysts almost always confront a tradeoff between valid-
ity of models and their tractability to analysis.

Principle 1.10

12 Chapter 1 Problem Solving with Mathematical Models

1.4 deScriptive MOdelS And SiMulAtiOn

Our constant-rate demand analysis of Mortimer Middleman’s problem started by
reducing all the information in Figure 1.1(a) to a single number, an average of 55
carats sold per week. Why not use more of what we know?

Simulation over MM’s History
A simulation model is a computer program that simply steps through the behavior
of a system of interest and reports experience. Of course, the behavior is tracked in
computer variables and program logic rather than in a physical system.

To illustrate for Mortimer Middleman’s inventory problem, suppose that we
retain our verbal model (i.e., continue to focus on a reorder point r and a reorder
quantity q). A straightforward computer program could then step through the 52
weeks of available history to try any given r and q. At each step, the program would:

1. Check whether MM is due to arrive with a new order of size q.
2. Determine if r has been reached so that a new trip is needed.
3. Reduce inventory by the demand actually experienced.

Holding cost for the week can be reported as $3.50 times the average number
of carats in inventory. Replenishment cost is $2000 in each trip week. Lost-sales cost
for the week is $200 times any excess of demand over the available inventory.

Table 1.1 details such a simulation from MM’s demand history. Using the opti-
mal q* = 251 and r* = 55 computed in our constant-rate demand model, this sim-
ulation reports beginning inventory for each week, customer demand taken from
Figure 1.1(a), inventory management actions taken, and their consequences for
holding cost, replenishment cost, and lost sales.

Total simulated cost for all 52 weeks is $108,621. Recall that Mortimer esti-
mated actual cost at $94,009, and the constant demand analysis said that costs under
q* and r* should decline to $45,630. The simulation model now is telling us that
if MM adopts our supposedly optimal constant-rate demand policy, he will spend
$108, 621 - $94, 009 = $14, 621 more than if he simply keeps operating as he
always has. This is hardly a help.

Simulation Model Validity
Can these new results be trusted? Only a clairvoyant could be certain, but it seems
safe to conclude that the simulation results, based on an entire year’s actual expe-
rience, should be taken more seriously than values derived from the constant-rate
demand model.

It should be noted, however, that the simulation was also based on some
assumptions. For example, we have implicitly presumed that future demand will
exactly mirror last year’s experience.

Simulation models often possess high validity
because they track true system behavior fairly accurately.
Definition and Principle 1.11

1.4 Descriptive Models and Simulation 13

tABle 1.1 Deterministic Simulation of MM’s Problem from Prior History

Week,
t

Beginning
Inventory

Customer
Demand

Simulated
Action

Holding
Cost

replenishment
Cost

Lost
Sales

1 100 94 Sell 94 $185.5 0 0
2 6 54 Below r = 55, so trip; sell 6 1.2 $2,000 $ 9,600
3 0 52 q = 251 arrive; sell 52 787.5 0 0
4 199 64 Sell 64 584.5 0 0
5 135 69 Sell 69 353.5 0 0
6 66 69 Sell 66 110.5 0 600
7 0 68 Below r = 55, so trip; sell 0 0.0 2,000 13,600
8 0 47 q = 251 arrive; sell 47 798.0 0 0
9 204 68 Sell 68 595.0 0 0

10 136 56 Sell 56 378.0 0 0
11 80 62 Sell 62 171.5 0 0
12 18 44 Below r = 55, so trip; sell 18 12.9 2,000 5,200
13 0 41 q = 251 arrive; sell 41 808.5 0 0
14 210 46 Sell 46 654.5 0 0
15 164 84 Sell 84 427.0 0 0
16 80 94 Sell 80 119.1 0 2,800
17 0 18 Below r = 55, so trip; sell 0 0.0 2,000 3,600
18 0 52 q = 251 arrive; sell 52 787.5 0 0
19 199 67 Sell 67 581.0 0 0
20 132 26 Sell 26 416.5 0 0
21 106 59 Sell 59 269.5 0 0
22 47 77 Below r = 55, so trip; sell 47 50.2 2,000 6,000
23 0 42 q = 251 arrive; sell 42 805.0 0 0
24 209 59 Sell 59 630.0 0 0
25 150 11 Sell 11 507.5 0 0
26 139 67 Sell 67 371.0 0 0
27 72 25 Sell 25 210.0 0 0
28 47 60 Below r = 55, so trip; sell 47 64.4 2,000 2,600
29 0 41 q = 251 arrive; sell 41 808.5 0 0
30 210 42 Sell 42 661.5 0 0
31 168 47 Sell 47 507.5 0 0
32 121 66 Sell 66 308.0 0 0
33 55 20 Below r = 55, so trip; sell 20 157.5 2,000 0
34 35 46 q = 251 arrive; sell 46 920.5 0 0
35 240 36 Sell 36 777.0 0 0
36 204 69 Sell 69 595.0 0 0
37 135 64 Sell 64 360.5 0 0
38 71 83 Sell 71 106.3 0 2,400
39 0 42 Below r = 55, so trip; sell 0 0.0 2,000 8,400
40 0 38 q = 251 arrive; sell 38 812.0 0 0
41 213 13 Sell 13 724.5 0 0
42 200 50 Sell 50 612.5 0 0
43 150 77 Sell 77 392.0 0 0
44 73 64 Sell 64 143.5 0 0
45 9 27 Below r = 55, so trip; sell 9 5.2 2,000 3,600
46 0 96 q = 251 arrive; sell 96 710.5 0 0
47 155 57 Sell 57 444.5 0 0
48 98 95 Sell 95 178.5 0 0
49 3 46 Below r = 55, so trip; sell 3 0.3 2,000 8,600
50 0 56 q = 251 arrive; sell 56 780.5 0 0
51 195 68 Sell 68 563.5 0 0
52 127 42 Sell 42 371.0 0 0

14 Chapter 1 Problem Solving with Mathematical Models

Descriptive versus Prescriptive Models
Think now about tractability. How much did our simulation actually tell us? It es-
timated the holding, replenishment, and lost-sales costs of operating with q = 251
and r = 55 using fixed values for input parameters. Nothing more.

Models that evaluate fixed decision alternatives rather than indicating good
choices may be termed descriptive models. Evaluating a few specific choices in this
way sometimes tells a decision maker (here MM) as much as he or she needs to
know. After all, many problems admit only a few practical solutions.

Still, results for a few cases are a very long way from what our prescriptive
constant-rate demand optimization provided. Section 1.3’s closed-form results both
recommended optimal choices for q and r and offered insight about the sensitivity
of results to changes in parameter values. The simulation did neither.

The tradeoff should now be clear. Resorting to a mathematically structureless
form such as a simulation model can substantially improve validity. Still, that same
lack of mathematical structure severely limits the possible analysis. More model
validity almost always implies less tractability.

1.5 nuMericAl SeArch And exAct verSuS heuriStic
SOlutiOnS

The simulation in Section 1.4 provided a computer program for estimating the total
inventory cost associated with a particular choice of reorder point and reorder
quantity. Suppose we think of that computation as a function c(q, r). That is, for any
given q and r,

c1q, r2! total cost computed by the simulation with reorder point fixed at r
and reorder quantity at q

Mortimer Middleman’s problem then reduces to the mathematical model

 minimize c1q, r2 (1.3)

subject to q Ú 100, r Ú 0

Numerical Search
Since we know very little about the properties of the mathematical function c(q, r),
restating our problem in this abstract form lends no immediate insight. Still, it does
suggest a way to proceed.

Numerical search is the process of systematically trying different choices for
the decision variables, keeping track of the feasible one with the best objective func-
tion value found so far. We call such a search numerical because it deals with specific
values of the variables rather than with symbolic quantities such as those we were
able to manipulate in analyzing the constant-rate demand model.

Descriptive models yield fewer analytic inferences than pre-
scriptive, optimization models because they take both input parameters and
decisions as fixed.

Principle 1.12

1.5 Numerical Search and Exact Versus Heuristic Solutions 15

Here we search numerically over q and r. It seems reasonable to begin with
the q and r recommended by our analysis of the constant-rate demand model.
Using superscripts (note that these are not exponents) to identify specific choices
of the decision variables, q102 = 251, r 102 = 55, and we have already seen that
c1q102, r 1022 = $108, 621.

Next, we need a systematic process for thinking of new q’s and r’s to try. Much
of this book centers on how search processes should be structured. For now, we will
try something naively simple: increasing and decreasing one variable at a time in
steps of 10.

Table 1.1 showed considerable lost sales, so we start by increasing r to intro-
duce a safety stock. Continuing until the objective function deteriorates yields.

 q102 = 251 r 102 = 55 c1q102, r 1022 = 108,621

 q112 = 251 r 112 = 65 c1q112, r 1122 = 108,421

 q122 = 251 r 122 = 75 c1q122, r 1222 = 63,254

 q132 = 251 r 132 = 85 c1q132, r 1322 = 63,054

 q142 = 251 r 142 = 95 c1q142, r 1422 = 64,242

All these (q1t2, r 1t2) are feasible. Proceeding from one of the best, r = 85, we
now try changing q. Increasing gives

q152 = 261 r 152 = 85 c1q152, r 1522 = 95,193

and decreasing yields

q162 = 241 r 162 = 85 c1q162, r 1622 = 72,781

Both are worse than (q (3), r (3)), so we terminate the search.

A Different Start
Our numerical search has discovered a choice of q and r with simulated cost $63,054,
far better than either the $108,621 of the constant-rate demand solution or MM’s
$94,009 actual cost. Lacking any information on how much MM’s costs might be
reduced, our only way of learning more with numerical search is to try a new search
from a different initial point. Consider the search sequence

 q102 = 251 r 102 = 145 c1q102, r 1022 = 56,904

 q112 = 251 r 112 = 155 c1q112, r 1122 = 59,539

 q122 = 251 r 122 = 135 c1q122, r 1222 = 56,900

 q132 = 251 r 132 = 125 c1q132, r 1322 = 59,732

 q142 = 261 r 142 = 135 c1q142, r 1422 = 54,193

 q152 = 271 r 152 = 135 c1q152, r 1522 = 58,467

This time, we have happened upon the better heuristic solution q = 261, r = 135 with
simulated cost $54,193. Certainly, the earlier best of q = 251, r = 85 was not optimal,
but we still have no real reason to believe that our last result is the best achievable.

16 Chapter 1 Problem Solving with Mathematical Models

With only two variables we might try a more exhaustive search, forming a
loop and evaluating c(q, r) at an entire grid of points. The essential difficulty would
remain, because results would depend on the size of the grid investigated.

Our numerical searches of MM’s problem have produced only a heuristic optimum—a
good feasible solution. Should we demand an exact optimum?

As usual, the answer is far from clear. The three “optimal” values of q depicted
in Figure 1.6 are all mathematically exact, yet the decisions they recommend vary
dramatically with the assumed value of input parameters. Furthermore, our simu-
lation results have shown the true cost to be very different from any of the optimal
objective function values computed assuming constant-rate demand.

Still, it would clearly make us more certain of whether to recommend the
q = 261, r = 135 solution, which is the best uncovered in our numerical searches,
if we knew something about how far from optimal it might be. Exact optima add a
satisfying degree of certainty.

1.6 deterMiniStic verSuS StOchAStic MOdelS

All the searching in Section 1.5 was based on the assumption that Mortimer
Middleman’s future week-to-week demand will repeat identically the experience of
the past year. This is almost certainly untrue. The best we can honestly claim regarding
future events is that we know something about the probability of various outcomes.

Inferences from numerical search are limited to the specific
points explored unless mathematical structure in the model supports further
deduction.

Principle 1.13

Exact versus Heuristic Optimization

An exact optimal solution is a feasible solution to an optimi-
zation model that is provably as good as any other in objective function value.
A heuristic or approximate optimum is a feasible solution derived from pre-
scriptive analysis that is not guaranteed to yield an exact optimum.

Definition 1.14

Losses from settling for heuristic instead of exact optimal
solutions are often dwarfed by variations associated with questionable model
assumptions and doubtful data.

Principle 1.15

The appeal of exact optimal solutions is that they provide both
good feasible solutions and certainty about what can be achieved under a fixed
set of model assumptions.

Principle 1.16

A mathematical model is termed deterministic if all parameter
values are assumed to be known with certainty, and probabilistic or stochastic
if it involves quantities known only in probability.

Definition 1.17

1.6 Deterministic Versus Stochastic Models 17

Random Variables and Realizations
random variables represent quantities known only in terms of a probability in sto-
chastic models. We distinguish random variables from ones with single values by
using uppercase (capital) letters.

If we do not accept the notion that next year’s demands in Mortimer’s problem
will exactly duplicate last year’s, weekly demands are random variable parameters
to his decision problem. Each weekly demand will eventually be a specific number.
At the time we have to choose a reorder point and reorder quantity; however, we
may know only something about their probability distributions.

If the magnitude of each week’s random demand—denoted by Dt—is in-
dependent of all others (an assumption), each of the values in Figure 1.1(a) is a
realization of each Dt (i.e., a specific historical outcome). We can learn about the
probability distribution of the Dt by counting how often different realizations
appear in Figure 1.1(a). The solid line in Figure 1.7 presents such a frequency
histogram. Demands ranged from 11 to 96, but Figure 1.7 clearly shows that de-
mands in the range 40 to 70 are most common.

Eliminating some of the raggedness, the dashed lines in Figure 1.7 show how
the true probability distribution for D probably looks. Outcomes in the range
40 to 70 are three times as probable as those in the regions 10–30 and 70–100, but
demands are equally likely within regions.

Stochastic Simulation
The simulation model of Sections 1.4 and 1.5 is deterministic because all input
parameters, including the week-by-week demands, are assumed known when
computations such as Table 1.1 begin. We can develop a stochastic model of
Mortimer’s problem by improving on that simulation. Assuming that weekly de-
mands D1, c, D52 are independent random variables with known probability dis-
tribution such as the smoothed one (dashed lines) in Figure 1.7, we will investigate
the distribution of the annual cost [now random variable C(q, r)] associated with
any choice of reorder quantity q and reorder point r.

frequency probability
density

5

10

15

.01

.02

10 30 50 70 90

weekly
demand

Figure 1.7 Weekly MM Demand Frequency Distribution

18 Chapter 1 Problem Solving with Mathematical Models

Stochastic simulation (sometimes called Monte Carlo analysis) provides the
tool. It samples realizations from output variable distributions by:

1. Randomly generating a sequence of realizations for input parameters.
2. Simulating each realization against chosen values for the decision variables.

With a large enough (and random enough) sample, a frequency histogram of output
realizations will approximate the true output distribution.

Figure 1.8 shows results of such stochastic simulation sampling in the
Mortimer Middleman problem. A total of 200 different sets of realizations for
demand variables D1, c, D52 were randomly sampled from the distribution
depicted in Figure 1.7 . Then each was simulated with q = 261, r = 135 just as in
Table 1.1, and the annual cost computed as one realization of C(261, 135).

We can see from Figure 1.8 that for this best known choice of decision vari-
ables, annual cost has a distribution ranging from $52,445 to $69,539, with an av-
erage of about $57 ,374. Notice that this range of possible futures does include the
single value $54,193 obtained in Section 1.5’s numerical searches. Still, many other
costs might result, depending on what demand pattern is actually realized.

Stochastic simulation is an effective and widely used OR modeling technique
because the enormous flexibility of simulation models makes it possible to formu-
late validly a very wide range of problem situations. Still, the ragged shape of the
frequency histograms in Figure 1.8 highlights the extra analytic challenge associated
with computing distributions by simulation. Even with decision variables fixed, and
after 200 runs, we know the C(q, r) distributions in Figure 1.8 only approximately.
Statistical estimation techniques would be required to determine how much confi-
dence we can have in any conclusions.

frequency

q = 261, r = 135
average cost = $57,374
range = $52,445 to $69,539
below $55,000 = 31 of 200

10

20

30

40

50 55 60 65 70 75 cost ($000)

Figure 1.8 MM Annual Cost Frequency Distribution

1.7 Perspectives 19

Tradeoffs between Deterministic and Stochastic Models
Few, if any, parameters of real systems can actually be quantified with certainty,
yet that is exactly what deterministic models assume. Distributional estimates such
as Figure 1.8 usually provide a much more complete picture of what might actually
happen with any chosen q and r.

Why not use stochastic models for every problem? It should be no surprise
that the answer is tractability. We have already seen how much work is required to
estimate the output distribution for a single choice of q and r via stochastic simula-
tion. Other stochastic methods can sometimes produce results with less effort, and
validity sometimes demands that stochastic variation be modeled, but a major trac-
tability difference remains.

When optimization is the goal, deterministic modeling is often the only prac-
tical choice.

Of course, deterministic optimization models are also used because they work.
We will see in illustrations throughout this book that very satisfactory results have
been obtained in a wide variety of applications, often in circumstances that involve
many thousands of decision variables.

1.7 perSpectiveS

Mortimer Middleman’s inventory problem is only one of hundreds of operations
design, planning, and control questions that we will encounter in this book. The
purpose of treating it in so many different ways here is to introduce the possible
approaches and to reveal some of their strengths and weaknesses.

OR analysts must daily decide whether a back-of-the-envelope computa-
tion is sufficient or a formal model is required; whether a more detailed and thus
more valid model is preferred to a more tractable approximation. One goal of this
book is to provide the vocabulary and sensitivity to issues that will help us make
those choices.

Besides providing only descriptive analysis, stochastic simula-
tion models impose the extra analytic burden of having to estimate results
statistically from a sample of system realizations.

Principle 1.18

The power and generality of available mathematical tools for
analysis of stochastic models does not nearly match that available for deter-
ministic models.

Principle 1.19

Most optimization models are deterministic—not because OR
analysts really believe that all problem parameters are known with certainty,
but because useful prescriptive results can often be obtained only if stochastic
variation is ignored.

Principle 1.20

20 Chapter 1 Problem Solving with Mathematical Models

Other Issues
The chapter’s emphasis on the tractability versus validity tradeoff in operations re-
search is not intended to suggest that it is the only issue. Models also differ in how eas-
ily they can be understood by the consumer of the analysis (Mortimer here), how fast
analysis must be completed, how much mathematical and computer power is required
to do the analysis, how many data must be collected, and in a variety of other ways.

More fundamentally, many situations do not lend themselves to the OR ap-
proach. Even from this chapter’s brief introduction, it should be clear that it is not
easy to formulate valid models that are tractable to analysis. Operations research is
founded on the conviction, buttressed by a long history of successful practice, that
formulation and analysis of mathematical decision models is often worth the trou-
ble. Still, time and resources are required.

The Rest of This Book
In the remainder of this book, the main classes of deterministic optimization models,
and the solution techniques available to deal with them, are developed. Chapter 2
begins with formulation and classification of a series of real-world problems in terms
of the mathematical properties of the models required. Later chapters address each
class in turn, emphasizing formulation of important business and engineering appli-
cations and highlighting common elements of the sometimes bewildering variety of
analysis techniques used to address various classes.

ExErCISES

1-1 A segment of automatically controlled high-
way is being equipped with sensors spaced equally
along its length. The maximum error in estimating
traffic volume, which occurs halfway between any
two sensors, can be expressed as (d/s)2, where d is
the length of the segment and s is the number of
sensors. Each sensor costs p dollars, and design-
ers want to reduce the maximum error as much
as possible within a budget for sensors of b dol-
lars. Identify each of the following for this design
problem.

 (a) The decision variable
 (b) The input parameters
 (c) The objective function
 (d) The constraints

1-2 Return to the problem of Exercise 1-1 and as-
sume that d = 10, p = 3.5, and b = 14. Determine
(if necessary by trying all the possibilties) whether

each of the following is a feasible and/or optimal
solution.

 (a) s = 4
 (b) s = 6
 (c) s = 2

1-3 A factory has two production lines available
to make a product. The first can produce one lot
of the product in t1 hours at cost c1, and the sec-
ond requires t2 hours and cost c2. The plant man-
ager wishes to find the least costly way to produce
b lots in a total of at most T hours. An integer
number x1 will be produced on line 1, and integer
number x2 on line 2. Identify each of the follow-
ing for this design problem.

(a) The decision variables
(b) The input parameters
(c) The objective function
(d) The constraints

The model-based OR approach to problem solving works best on
problems important enough to warrant the time and resources for a careful study.

Principle 1.21

 Exercises 21

1-4 Return to the problem of Exercise 1-3 and
assume that t1 = 10, t2 = 20, c1 = 500, c2 = 100,
b = 3, and T = 40. Determine (if necessary by
trying all the possibilties) whether each of the fol-
lowing is a feasible and/or optimal solution.

(a) x1 = 0, x2 = 3
(b) x1 = 2, x2 = 1
(c) x1 = 3, x2 = 0

1-5 A university wishes to purchase the max-
imum number of computer workstations that
can be accommodated within the available
laboratory floor space and budget. Determine
whether each of the following outcomes is most
likely the result of closed-form optimization,
exact numerical optimization, heuristic optimi-
zation, or descriptive modeling.

 (a) The maximum number of stations that
can be fit within 2000 square feet and a
budget of $500,000 is 110.

(b) The usual arrangement of 80 workstations
would require 1600 square feet of floor
space and cost $382,000.

 (c) The maximum number of stations feasi-
ble with an area of f thousand square feet
and a budget of b thousand dollars is min
{50f, b/5}.

(d) The best of the usual layouts for an area of
2000 square feet and a budget of $500,000
can accommodate 85 workstations.

1-6 Explain why the first alternative of each pair
constitutes more complete analysis of an optimi-
zation model than the second.

(a) Closed—form versus numerical optimization
(b) Exact optimization versus heuristic optimi-

za tion
(c) Heuristic optimization versus simulation of

some specific solutions

1-7 Explain why a model that admitted one of
the preferred choices in Exercise 1-6 would not
necessarily be more appropriate than one allow-
ing only the alternative.

1-8 An engineer is working on a design problem
with n parameters to be chosen, and each has 3
possible values. A highly valid descriptive model
is available, and he is thinking of choosing the
best design simply by using the model to eval-
uate the effect of every combination of design
parameter values.

(a) Explain why this approach will require
running the descriptive model on 3n com-
binations of decision-variable values.

 (b) For n = 10, 15, 20, and 30, compute the
time a computer would require to check
all the combinations, assuming that it
runs 24 hours per day, 365 days per year,
and that it requires 1 second to apply the
model for any particular choice of design
parameters.

(c) Comment on the practical limits of this
“try all combinations” analysis strategy
in the light of your results from part (b).

1-9 Determine whether each of the following
could probably be validly modeled only as a ran-
dom variable or if a deterministic quantity would
suffice.

 (a) The number of inches of rainfall in a city
over the next 14 days

(b) The average 14-day rainfall in a city
 (c) The market price of a common stock

1 week ago
(d) The market price of a common stock

1 week from today
 (e) The seating capacity of a restaurant

(f) The number of customers who will arrive
at a restaurant this evening

 (g) The production rate of an industrial
robot subject to frequent breakdowns

(h) The production rate of a highly reliable
industrial robot

 (i) Factory demand for a model of bulldozer
over the next 7 days

(j) Factory demand for a model of bulldozer
over the next 7 years

This page intentionally left blank

23

▪ ▪ ▪ ▪ ▪
Chapter 2

Deterministic
Optimization Models

in Operations Research

With this chapter we begin our detailed study of deterministic models in opera-
tions research—models where it is reasonable to assume all problem data to be
known with certainty. Few who have ever worked with real models can say the
words known with certainty without breaking a smile. Input constants in OR mod-
els are almost always estimated, some rather crudely. We employ deterministic
models because they often produce valid enough results to be useful and because
deterministic models are almost always easier to analyze than are their stochastic
counterparts.

The increased tractability of deterministic models permits us the luxury of
dealing explicitly with optimization. Often, we achieve only an approximation, but
the consistent goal is to prescribe the best possible solution.

Deterministic optimization models are also called mathematical programs be-
cause they decide how to plan or “program” activities. Our treatment is introduced
in this chapter with a stream of examples. By formulating models for a variety of
cases, we begin developing the modeling skills essential to every OR analyst. At the
same time we illustrate the wide range of model forms available and introduce some
terminology. Except for a tiny first example, all models presented are based on real
applications by real organizations.

2.1 Decision Variables, constraints, anD objectiVe
Functions

From the very early days of deterministic optimization, one of its heaviest users has
been the petroleum refining industry. Refining operations are routinely planned
by formal optimization, often on a daily or even hourly basis. We begin our survey
of mathematical programming models with a made-up example from the refining
setting, obviously much oversimplified.

24 Chapter 2 Deterministic Optimization Models in Operations Research

Decision Variables
The first step in formulating any optimization model is to identify the decision
variables.

application 2.1: two cruDe petroleum

Two Crude Petroleum runs a small refinery on the Texas coast. The refinery distills
crude petroleum from two sources, Saudi Arabia and Venezuela, into three main
products: gasoline, jet fuel, and lubricants.

The two crudes differ in chemical composition and thus yield different product
mixes. Each barrel of Saudi crude yields 0.3 barrel of gasoline, 0.4 barrel of jet fuel, and
0.2 barrel of lubricants. On the other hand, each barrel of Venezuelan crude yields 0.4
barrel of gasoline but only 0.2 barrel of jet fuel and 0.3 barrel of lubricants. The remain-
ing 10% of each barrel is lost to refining.

The crudes also differ in cost and availability. Two Crude can purchase up to 9000
barrels per day from Saudi Arabia at $100 per barrel. Up to 6000 barrels per day of
Venezuelan petroleum are also available at the lower cost of $75 per barrel because of
the shorter transportation distance.

Two Crude’s contracts with independent distributors require it to produce 2000
barrels per day of gasoline, 1500 barrels per day of jet fuel, and 500 barrels per day of
lubricants. How can these requirements be fulfilled most efficiently?

Variables in optimization models represent the decisions to
be taken.

Definition 2.1

Numerous quantities are floating around in even the very simple Two Crude
problem statement. Which do we get to decide? Cost, availability, yield, and require-
ment are all input parameters—quantities that we will take as fixed (see Section
1.3). What must be decided is how much of each crude to refine. Thus we define
decision variables

 x1 ! barrels of Saudi crude refined per day 1in thousands2
 x2 ! barrels of Venezuelan crude refined per day 1in thousands2

(2.1)

Notice that like good modelers in all fields, we have specified both the meaning of
each variable and the unit in which it is denominated.

Variable-Type Constraints
The next issue in formulating an optimization model is constraints. What limits
decisions?

The most elementary constraints declare variable type.

Variable-type constraints specify the domain of definition for
decision variables: the set of values for which the variables have meaning.

Definition 2.2

For example, variables may be limited to nonnegative values or to nonnegative
integer values, or they may be totally unrestricted.

2.1 Decision Variables, Constraints, and Objective Functions 25

Decision variables x1 and x2 in the Two Crude application represent quanti-
ties of petroleum refined. Thus they are subject to the most common variable-type
constraint form: nonnegativity. Every meaningful choice of these decision variables
must satisfy

 x1, x2 Ú 0 (2.2)

That is, both quantities must be nonnegative real numbers.
It may seem a bit fastidious to specify constraints (2.2) when they are already

implicit in definitions (2.1). Still, nothing can be taken for granted because our goal
is to produce a form suitable for analysis by computer-based procedures. Formal
methods for solving mathematical programs enforce only constraints explicitly ex-
pressed in the model formulation.

Main Constraints
The remainder of the limits on decision variable values constitute the main constraints.

Main constraints of optimization models specify the restrictions
and interactions, other than variable type, that limit decision variable values.

Definition 2.3

Objective functions in optimization models quantify the decision
consequences to be maximized or minimized.

Definition 2.4

Even in as simple a case as Two Crude Petroleum, we have several main con-
straints. First consider output requirements. Petroleum volumes selected must meet
contract requirements in the sense that

a 1yield per barrel21barrels purchased2 Ú product requirements(++++++++)+++++++++*
total output of a product

Quantifying in terms of our decision variables produces one such constraint per
product:

0.3x1 + 0.4x2 Ú 2.0 1gasoline2
0.4x1 + 0.2x2 Ú 1.5 1jet fuel2
0.2x1 + 0.3x2 Ú 0.5 1lubricants2

 (2.3)

Each is denominated in thousands of barrels per day.
Availabilities yield the other class of main constraints. We can buy no more than

9000 barrels of Saudi crude per day, nor 6000 barrels of Venezuelan. Corresponding
constraints are

x1 … 9 1Saudi2
x2 … 6 1Venezuelan2 (2.4)

Objective Functions
Objective or criterion functions tell us how to rate decisions.

26 Chapter 2 Deterministic Optimization Models in Operations Research

What makes one choice of decision variable values preferable to another in
the Two Crude case? Cost. The best solution will seek to minimize total cost:

 min a 1crude unit cost2 1barrels purchased2
Quantifying this single objective in terms of the decision variables yields

 min 100x1 + 75x2 (2.5)

(in thousands of dollars per day).

Standard Model
Once decision variables have been defined, constraints detailed, and objectives
quantified, the mathematical programming model we require is complete. Still, it
is customary to follow variable and parameter definitions with a summary of the
model in a standard format.

The standard statement of an optimization model has the form

min or max 1objective function1s22
s.t. 1main constraints2

1variable@type constraints2
where “s.t.” stands for “subject to.”

Principle 2.5

Combining (2.2)–(2.5), we may formalize our Two Crude model as follows:

 min 100x1 + 75x2 1total cost2
 s.t. 0.3x1 + 0.4x2 Ú 2.0 1gasoline requirement2

 0.4x1 + 0.2x2 Ú 1.5 1jet fuel requirement2
 0.2x1 + 0.3x2 Ú 0.5 1lubricant requirement2 (2.6)

 x1 … 9 1Saudi availability2
 x2 … 6 1Venezuelan availability2

 x1, x2 Ú 0 1nonnegativity2

example 2.1: Formulating Formal optimization moDels

Suppose that we wish to enclose a rectangular equipment yard by at most 80 meters
of fencing. Formulate an optimization model to find the design of maximum area.

Solution: The decisions required are the dimensions of the rectangle. Thus define
decision variables:

 / ! length of the equipment yard 1in meters2
 w ! width of the equipment yard 1in meters2

2.2 Graphic Solution and Optimization Outcomes 27

2.2 graphic solution anD optimization outcomes

Methods for analyzing optimization models are the focus of many chapters to fol-
low. However, very simple graphic techniques have enough power to deal with
tiny models such as Two Crude formulation (2.6). They also provide “pictures”
yielding helpful intuition about properties and solution methods for models of
more realistic size.

In this section we develop the techniques of graphic solution. We also illustrate
their intuitive power by exploring the unique optimal solution, alternative optimal
solution, and infeasible and unbounded outcomes of optimization analysis.

Both variables are nonnegative quantities, which implies variable-type constraints:

/, w Ú 0

The only main constraint is that the perimeter of the equipment yard should not
exceed 80 meters in length. In terms of decision variables, that limitation can be
expressed as

2/ + 2w … 80

Our objective is to maximize the enclosed area /w. Thus a complete model
statement is as follows:

max /w 1enclosed area2
s.t. 2/ + 2w … 80 1fence length2

/.w Ú 0 1nonnegativity2

The feasible set (or region) of an optimization model is the
collection of choices for decision variables satisfying all model constraints.

Definition 2.6

Graphing Constraints and Feasible Sets
We want to draw a picture of the feasible set in a coordinate system defined
by the decision variables. The process begins with the variable-type constraints
(definition 2.2).

Graphic Solution
Graphic solution solves 2- and 3-variable optimization models by plotting ele-
ments of the model in a coordinate system corresponding to the decision vari-
ables. For example, Two Crude model (2.6) involves decision variables x1 and
x2. Every choice of values for these variables corresponds to a point (x1, x2) in a
2-dimensional plot.

Feasible Sets
The first issue in graphic solution is the feasible set (also called the feasible region
or the feasible space).

28 Chapter 2 Deterministic Optimization Models in Operations Research

In the Two Crude application, both variables are nonnegative. Thus every fea-
sible solution corresponds to a point in the shaded, nonnegative part of the follow-
ing plot:

Graphic solution begins with a plot of the choices for decision
variables that satisfy variable-type constraints.

Principle 2.7

The set of points satisfying an equality constraint plots as a line
or curve.

Principle 2.8

The set of points satisfying an inequality constraint plots as
a boundary line or curve, where the constraint holds with equality, together
with all points on whichever side of the boundary satisfy the constraint as an
inequality (we add a small arrow at the end of the equality line to indicate the
feasible side).

Principle 2.9

However, constraint (2.7) is an inequality.

To identify feasible points, we first plot the boundary and then include which-
ever side of the line applies.

x2

x11 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Next we introduce the main constraints (definition 2.3) one at a time. Begin with
the Two Crude gasoline requirement

 0.3x1 + 0.4x2 Ú 2 (2.7)

If it were of the equality form

0.3x1 + 0.4x2 = 2

feasible points would lie along a corresponding line.

2.2 Graphic Solution and Optimization Outcomes 29

Over Two Crude’s nonnegative (x1, x2), the result is

x2

x1
1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

0.3x
1 + 0.4x

2 Ú 2

Points along the highlighted boundary satisfy the constraint with equality. To
determine which side of the line depicts points satisfying the constraint as a strict
inequality, we have only to substitute one point not on the line. For example, the
origin x1 = x2 = 0 violates the constraint because

0.3x1 + 0.4x2 = 0.3102 + 0.4102 , 2

Feasible points must be on the other side of the equality line, just as the arrow on
the constraint indicates.

Feasible (x1, x2) must satisfy all constraints simultaneously. To identify the
feasible set fully, we merely repeat the foregoing process.

The feasible set (or region) for an optimization model is
plotted by introducing constraints one by one, keeping track of the region
satisfying all at the same time.

Principle 2.10

Figure 2.1 shows the result for our Two Crude application. Each of the 5 main
inequality constraints yields a line, where it is satisfied as an equality, plus a side
of the line where it holds as an inequality. Together with variable-type constraints
x1, x2 Ú 0, these define the shaded feasible set.

example 2.2: graphing constraints anD Feasible sets

Graph the feasible sets corresponding to each of the following systems of constraints.

(a) x1 + x2 … 2
3x1 + x2 Ú 3
x1, x2 Ú 0

(b) x1 + x2 … 2
3x1 + x2 = 3
x1, x2 Ú 0

(c) 1x122 + 1x222 … 4
0 x1 0 - x2 … 0

30 Chapter 2 Deterministic Optimization Models in Operations Research

Graphing Objective Functions
To find the best feasible point, we must introduce the objective function into a plot
like Figure 2.1. Observe that the objective in our Two Crude application, call it

 c1x1, x22! 100x1 + 75x2 (2.8)

is a function of decision variables x1 and x2. Thus a plot requires a third dimension.
Figure 2.2(a) depicts surface (2.8) in an x1 versus x2 versus c coordinate system.

For example, feasible solution x1 = x2 = 4 has value c14, 42 = 100142 + 75142 = 700
on the objective function surface.

x2

x1
1 2 3 4 5 6 7 8 9

7

1

2

3

4

5

6

8

9

0.3x
1 + 0.4x

2 Ú 2

0.4x
1 + 0.2x

2 Ú 1.5

x2 … 6

0.2x
1 + 0.3x

2 Ú 0.5

x 1
 …

 9

Figure 2.1 Feasible Set for the Crude Application

Solution: Applying the process of 2.10 produces the following plots:

1

2

3 3

3

1

2

3

feasible set

(a) (b)

x2x2

-2

1

2

1 2-1

(c)

x2

x1x1
3

x1

feasible set

feasible set

Notice that the feasible set for system (b) is just the highlighted line segment, because
one constraint is an equality. Also, system (c) allows negative variable values because
the variable type is unrestricted.

2.2 Graphic Solution and Optimization Outcomes 31

Because most of us have trouble visualizing, much less drawing 3-dimensional
plots, mathematical programmers customarily employ the 2-dimensional alternative
of Figure 2.2(b). There, the third dimension, cost, is shown through contours.

1

2

3

4

6

8

5

7

0

100

200

cost

220

1 2 3 4 5 6 7 8 9

x1 = x2 = 4

feasible set

x2

x2

x1

x1

1 2 3 4 5 6 7 8 9

8

1

2

3

4

5

7

9

(b) Two-dimensions with contours

(a) Three-dimensional view

x2 … 6

x 1
 …

 9

1200
1100

1000
900

800
700

600

500

400

300

200

100

600 700 800 900 1000 1100 1200

0.3x
1 + 0.4x

2 Ú 2

0.4x
1 + 0.2x

2 Ú 1.5

0.2x
1 + 0.3x

2 Ú 0.5

400 500

optimal x1* = 2, x2* = 3.5

9

6

Figure 2.2 Graphic Solution of the Two Crude Model

32 Chapter 2 Deterministic Optimization Models in Operations Research

One way to introduce contours in graph solution plots is to begin at any conve-
nient point visible in the plot, evaluate the objective there, and find the set of points
with the same objective value. For example, we might pick x1 = 9 and x2 = 0 in the
Two Crude model, and evaluate objective function (2.8) as

100x1 + 75x2 = 100192 + 78102 = 900

Then plotting the line 100x1 + 75x2 = 900 yields the 900 contour of Figure 2.2(b).
An equivalent way is to pick an arbitrary feasible point, say x1 = 6 and x2 = 4

with objective value which happens also to = 900. There, we can construct the
direction of steepest improvement (decrease) in our minimize objective function
from the objective coefficients as shown below.

perpendicular
contour for
objective = 900

-c1 = -100

-c
2

=
 –

75

direction of
steepest
descent

x2

x1 (x1, x2) = (6, 4)

Combining a decrease of 100 for each unit step in x1 and a decrease of 75 for each
step in x2 gives the steepest descent direction shown. The contour at point (6, 4) will
be perpendicular to that direction.

Other countours for this objective will have the same steepest descent direc-
tion and thus parallel to this one. There is a contour for every objective value, but we
need only sketch a few to identify the pattern. Figure 2.2 illustrates with contours for
each change of $100 thousand in objective value.

Objective functions are normally plotted in the same coor-
dinate system as the feasible set of an optimization model by introducing
contours, which are lines or curves (typically shown as dashed lines or
curves) through choices of decision variables with the same objective func-
tion value and running perpendicular to the direction of steepest objective
improvement at points along the line.

Principle 2.11

example 2.3: plotting objectiVe Function contours

Show contours of each of the following objective functions over the feasible region
defined by y1 + y2 … 2, y1, y2 Ú 0.

(a) min 3y1 + y2 (b) max 3y1 + y2 (c) max 21y122 + 21y222

2.2 Graphic Solution and Optimization Outcomes 33

Optimal Solutions
Our goal in graphic analysis of an optimization model is to identify an optimal solu-
tion if there is one.

Solution: Contours for the three cases are as follows:

y2

y1

y2

y1

y2

y1

1

2

1

2

1

2

111

(a) (b) (c)

2.0

4.5

0.5

8.0

2 3 4 511 2 3 4 5

(a) After identifying the feasible region by plotting the main and variable-type con-
straints, we arbitrarily pick y1 = 0, y2 = 1 to begin introducing the objective func-
tion as in principle 2.6 . The corresponding contour is the line where

3y1 + y2 = 3102 + 112 = 1

Then other contours are introduced by incrementing the level to 2, 3, . . . , 5.

(b) Contours for this maximize model are identical to those minimizing the same
objective function in part (a). A small arrow on one of the contours reminds us of
the direction in which the objective function improves. Contours are perpendicular
to those arrows.

(c) For this more complex objective function, contours will not plot as straight lines.
We begin with y1 = 0, y2 = 1, and graph curve

21y122 + 21y222 = 21022 + 21122 = 2

Then other contours arise from trying nearby levels 0.5, 4.5, and 8.0.

An optimal solution is a feasible choice for decision variables
with objective function value at least equal to that of any other solution satis-
fying all constraints.

Definition 2.12

Optimal solutions show graphically as points lying on the best
objective function contour that intersects the feasible region.

Principle 2.13

We have already determined that the feasible points in Figure 2.2(b) are the
(x1, x2) in the shaded area. To identify an optimal solution, we examine the objective
function contours.

34 Chapter 2 Deterministic Optimization Models in Operations Research

Our Two Crude model is of minimize form, so the best objective contour is the
lowest. We can identify an optimal solution by finding a feasible point on the lowest
possible contour.

Only a few contour lines are explicitly displayed in Figure 2.2(b), but infinitely
many exist. It is clear from the pattern of those shown that the unique point satis-
fying condition 2.13 is 1x1

*, x2
2 = 12, 3.52. The asterisk () or “star” denotes an

optimal solution.
This completes graphic solution of the Two Crude model. The optimal oper-

ating plan uses 2 thousand barrels per day of Saudi petroleum and 3.5 thousand
barrels per day of Venezuelan. Total daily cost will be 100122 + 7513.52 = 462.5
thousand dollars.

example 2.4: solVing optimization moDels graphically

Return to the equipment yard model of Example 2.1 and solve it graphically.

Solution: Identifying the feasible set and introducing objective function contours
produces the following plot:

10 20 30 40

10

20

30

40

w

50 100

150 300
250

200

350

�

optimal �* = w* = 20

For this maximize problem we wish to be on the highest possible contour. Thus
application of principle 2.7 yields optimal solution /* = w* = 20.

Optimal Values
Optimal solutions provide a best choice for decision variables and the optimal value
is the corresponding objective function level.

The optimal value in an optimization model is the objective
function value of any optimal solution.

Definition 2.14

For example, the Two Crude optimum of Figure 2.2(b) has optimal value $462,500.
Notice that two different objective values could not both be best.

An optimization model can have only one optimal value.Principle 2.15

2.2 Graphic Solution and Optimization Outcomes 35

We see this graphically because there can only be one best contour level in
rule 2.13 .

Unique versus Alternative Optimal Solutions
The optimal solution x1

* = 2, x2
* = 3.5 in our Two Crude application is also unique

because it is the only feasible solution in Figure 2.2(b) achieving the optimal value.
This does not always happen. Many models have alternative optimal solutions.

An optimization model may have a unique optimal solution or
several alternative optimal solutions.

Principle 2.16

Still, all must have the same optimal value.
We can illustrate principle 2.9 very easily with another graphic solution. Suppose

that crude prices change in the Two Crude application to produce objective function

 min 100x1 + 50x2

Figure 2.3 shows the impact. There is still only one optimal value, $375 thousand. But
there are now an infinite number of alternative optimal solutions along the high-
lighted boundary of the feasible set; all lie on the optimal $375 thousand contour.

Unique optimal solutions show graphically by the optimal-
value contour intersecting the feasible set at exactly one point. If the optimal-
value contour intersects at more than one point, the model has alternative
optimal solutions.

Principle 2.17

x2

x1
1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

0.4x
1 + 0.2x

2 Ú 1.5.

x2 … 6

0.2x
1 + 0.3x

2 Ú 0.5

x 1
 …

 9

400 500 600 700 800 900 1000 1100

alternative optimal solutions

0.3x
1 + 0.4x

2 Ú 2

Figure 2.3 Variant of the Two Crude Model With
Alternative Optima

36 Chapter 2 Deterministic Optimization Models in Operations Research

Infeasible Models
Infeasible models have no optimal solutions.

example 2.5: iDentiFying unique anD alternatiVe optimal
solutions

Determine graphically which of the following optimization models has a unique
optimal solution and which has alternative optima.
(a) max 3w1 + 3w2

s.t. w1 + w2 … 2
w1, w2 Ú 0

(b) max 3w1 + 3w2

s.t. w1 + w2 … 2
w1, w2 Ú 0

Solution: Graphic solution of these models is as follows:

1

2

1

w2

w1

w2

w1

alternative optimal
solutions

1

2

1

unique
optimal
solution

1

1

2
2

5
4

3 3
5

4

(a) (b)

Model (a) has alternative optimal solutions along the highlighted boundary,
including 1w1, w22 = 10, 22, 1w1, w22 = 11, 12, and 1w1, w22 = 12, 02. Model (b)
has unique optimal solution 1w1, w22 = 12, 02 because the optimal-value contour
intersects the feasible space at only one point.

An optimization model is infeasible if no choice of decision
variables satisfies all constraints.

Definition 2.18

Such models have no optimal solutions because they have no solutions at all.
Infeasibility is also easy to illustrate with models small enough to be ana-

lyzed graphically. For example, consider modifying our Two Crude case so that only
2 thousand barrels per day are available from each source. The resulting model is

 min 100x1 + 75x2 1total cost2
 s.t. 0.3x1 + 0.4x2 Ú 2.0 1gasoline requirement2

 0.4x1 + 0.2x2 Ú 1.5 1jet fuel requirement2
 0.2x1 + 0.3x Ú 0.5 1lubricant requirement2
 x1 … 2 1Saudi availability2
 x2 … 2 1Venezuelan availability2
 x1, x2 Ú 0 1nonnegativity2

2.2 Graphic Solution and Optimization Outcomes 37

An attempt to graph the feasible space produces Figure 2.4. As before, each
constraint corresponds to a line where it holds as an equality and a side of the line
satisfying it as an inequality. This time, however, there are no (x1, x2) satisfying all
constraints simultaneously.

x2

x1
1 2 3 4 5 6 7 8 9

7

1

3

4

5

6

8

9

0.3x
1 + 0.4x

2 Ú 2

x2 … 2

x1 … 20.4x
1 + 0.2x

2 Ú 1.5

0.2x
1 + 0.3x

2 Ú 0.5

Figure 2.4 Infeasible of the Two Crude Model

An infeasible model shows graphically by no point falling within
the feasible region for all constraints.

Principle 2.19

example 2.6: iDentiFying inFeasible moDels graphically

Determine graphically which of the following optimization models is feasible and
which is infeasible.

(a) max 3w1 + w2

s.t. w1 + w2 … 2
w1 + w2 Ú 1
w1, w2 Ú 0

(b) max 3w1 + w2

s.t. w1 + w2 … 2
w1 + w2 Ú 3
w1, w2 Ú 0

38 Chapter 2 Deterministic Optimization Models in Operations Research

Unbounded Models
Another case where an optimization model has no feasible solution arises when it
is unbounded.

Solution: Graphic solution of these models is as follows:

w2

w1 w1

w2

1

2

1

1

2

1

4
3

51

(a) (b)

2

Model (a) has points in the shaded area that satisfy all constraints. Thus it is
feasible. No points satisfy all constraints in model (b). That model is infeasible.

An optimization model is unbounded when feasible choices of
the decision variables can produce arbitrarily good objective function values.

Definition 2.20

Unbounded models have no optimal solutions because any possibility can be
improved.

We can illustrate this outcome graphically with still another variant of the Two
Crude case (although not a very realistic one). Suppose that Saudi Arabia decides to
subsidize oil prices heavily so that Two Crude is paid $10 for each barrel it consumes,
and further that Saudi Arabia will supply unlimited amounts of petroleum at this
negative price. The result is a revised model

 min -10x1 + 75x2 1total cost2
 s.t. 0.3x1 + 0.4x2 Ú 2.0 1gasoline requirement2

 0.4x1 + 0.2x2 Ú 1.5 1jet fuel requirement2
 0.2x1 + 0.3x Ú 0.5 1lubricant requirement2
 x2 … 6 1Venezuelan availability2
 x1, x2 Ú 0 1nonnegativity2

Figure 2.5 shows its graphic solution. Notice that as x1 (Saudi purchases) in-
creases, we encounter feasible solutions with ever better objective function values.
No solution is optimal because a better one can always be found.

This is exactly what it means to be unbounded.

Unbounded models show graphically by there being points in
the feasible set lying on ever-better objective function contours.

Principle 2.21

2.2 Graphic Solution and Optimization Outcomes 39

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

x2

x1

0.3x
1 + 0.4x

2 Ú 2

0.4x
1 + 0.2x

2 Ú 1.5

x2 … 6

0.2x
1 + 0.3x

2 Ú 0.5

8400
350

300

200

250

150
100

50
0

–50

Figure 2.5 Unbounded Variant of the Two Crude Example

Solution: Graphic solution of these models is as follows:

w2 w2

w1w1

optimal

1

2

1 2

1

2

1 2

1 32 5 6 70 -1 -2 -3 -4 -5 -6 4

(a) (b)

Model (a) has a unique optimal solution at 1w1, w22 = 10, 12. Model (b) is
unbounded because we can find feasible solutions on arbitrarily good contours of
the objective function.

example 2.7: iDentiFying unbounDeD moDels graphically

Determine graphically which of the following optimization models has an optimal
solution and which is unbounded.

(a) max -3w1 + w2

s.t. -w1 + w2 … 1
w1, w2 Ú 0

(b) max 3w1 + w2

s.t. -w1 + w2 … 1
w1, w2 Ú 0

40 Chapter 2 Deterministic Optimization Models in Operations Research

2.3 large-scale optimization moDels anD inDexing

Because it could be solved graphically, our tiny Two Crude Petroleum application
facilitated introduction of a variety of mathematical programming concepts. Still,
it seriously misrepresents problem size. In real applications optimization models
quickly grow to thousands, even millions, of variables and constraints. We begin
to see how in this section and introduce the indexed notational schemes that keep
large models manageable.

application 2.2: pi hybriDs

To illustrate, we introduce our first real application of operations research.1 A large
manufacturer of corn seed, which we will call Pi Hybrids, operates / facilities pro-
ducing seeds of m hybrid corn varieties and distributes them to customers in n sales
regions. They want to know how to carry out these production and distribution
operations at minimum cost.

After some effort, a variety of parameters that we will take as constant have been
estimated:

 d The cost per bag of producing each hybrid at each facility
 d The corn processing capacity of each facility in bushels
 d The number of bushels of corn that must be processed to make a bag of each hybrid
 d The number of bags of each hybrid demanded in each customer region
 d The cost per bag of shipping each hybrid from each facility to each customer region

Our task is to produce a suitable optimization model.

1Based on M. Zuo, W. Kuo, and K. L. McRoberts (1991), “Application of Mathematical Programming
to a Large-Scale Agricultural Production and Distribution System,” Journal of the Operational Research
Society, 42, 639–648.

Indexing
Indexes or subscripts permit representing collections of similar quantities with a
single symbol. For example,

5zi : i = 1, c1006
represents 100 similar values with the same z name, distinguishing them with the
index i.

Indexing is a powerful aid in keeping large-scale optimization models easy to
think about and concise to write down. In fact, it often provides the initial model
organization.

The first step in formulating a large optimization model is to
choose appropriate indexes for the different dimensions of the problem.

Principle 2.22

2.3 Large-Scale Optimization Models and Indexing 41

Our Pi Hybrids application has three main dimensions: facilities, hybrids, and
sales regions. Thus we begin formulation of a model by assigning an index to each:

f ! production facility number 1f = 1, c, /2
h ! hybrid variety number 1h = 1, c, m2
r ! sales region number 1r = 1, c, n2

Indexed Decision Variables
We are now ready to think about what decisions Pi Hybrids’ problem requires.
Clearly, they fall into two categories: how much to produce and how much to ship.

There is a production decision for each plant and each hybrid. We could se-
quentially number the corresponding decision variables 1, . . . , km, but it would then
be difficult to keep plant and hybrid issues separate. It is much more convenient to
employ decision variables with distinct subscripts for plant and hybrids:

 xf, h ! number of bags of hybrid h produced at facility

 f1f = 1, c, /; h = 1, c, m2
Multiple subscripts are extremely common in large OR models.

It is usually appropriate to use separate indexes for each prob-
lem dimension over which a decision variable or input parameter is defined.

Principle 2.23

Shipping at Pi Hybrid is distinguished by the production facility shipped from,
the hybrid variety shipped, and the sales region shipped to. Following principle 2.14 ,
we complete the list of decision variables with a 3-subscript family:

 yf, h, r ! number of bags of hybrid h shipped from facility f to sales region r

 1 f = 1, c, /; h = 1, c, m; r = 1, c, n2
Notice that indexing has made it possible to define quite a large number of

variables with just two main symbols. Taking l = 20, m = 25, and n = 30, there are
/m = 201252 = 500 x-variables and /mn = 2012521302 = 15,000 y variables. The
15,500 total dwarfs the tiny examples of preceding sections, but it represents only a
rather average size for applied models.

example 2.8: counting inDexeD Decision Variables

Suppose that an optimization model employs decision variables wi,j,k,/, where i and
k range over 1, . . . , 100, while j and / index through 1, . . . , 50. Compute the total
number of decision variables.

Solution: The number of variables is

1number of i2 1number of j2 1number of k2 1number of /2
= 1001502110021502
= 25,000,000

42 Chapter 2 Deterministic Optimization Models in Operations Research

Indexed Symbolic Parameters
If Pi Hybrids made only 2 products at 2 facilities, we could easily express total pro-
duction cost as

 •cost of
hybrid
1 at
facility
1

µ x1, 1 + •cost of
hybrid
2 at
facility
1

µ x1, 2 + •cost of
hybrid
1 at
facility
2

µ x2, 1 + •cost of
hybrid
2 at
facility
2

µ x2, 2 (2.9)

using the actual cost values. But for / = 20, m = 25 writing out the /m = 20
1252 = 500 production cost terms actually required in our model would be bulky
and almost impossible to read or explain.

The answer to this dilemma is more indexing, this time on input parameters.

To describe large-scale optimization models compactly it is
usually necessary to assign indexed symbolic names to most input parameters,
even though they are being treated as constant.

Principle 2.24

For example, after defining

pf, h ! cost per bag of producing hybrid h at facility f

we may employ summation notation to express form (2.9) for any number of facili-
ties and hybrids as

a
/

f = 1
 a

m

h = 1
 pf, h xf, h

Moving indexes in the double sum capture terms for all combinations of facilities
f = 1, 2, c, / and hybrids h = 1, 2, c, m.

example 2.9: using summation notation

(a) Write the following sum more compactly with summation notation:

2w1, 5 + 2w2, 5 + 2w3, 5 + 2w4, 5 + 2w5, 5

(b) Write out terms separately of the sum

a
4

i = 1
 iwi

Solution:

(a) Introducing moving index i for the first subscript, the sum is

a
5

i = 1
 2wi, 5 = 2a

5

i = 1
 wi, 5

(b) The 4 terms of the sum are

1w1 + 2w2 + 3w3 + 4w4

2.3 Large-Scale Optimization Models and Indexing 43

Objective Functions
For similar reasons of convenience, define the following symbolic names for other
Pi Hybrids input parameters:

 uf ! corn processing capacity of facility f in bushels

 ah ! number of bushels of corn that must be processed to obtain a bag of hybrid h

 dh, r ! number of bags of hybrid h demanded in sales region r

 sf, h, r ! cost per bag of shipping hybrid h from facility f to sales region r

With the aid of our indexed decision variables and these indexed parame-
ters, we are now ready to formulate the objective function of a Pi Hybrids model. It
should minimize

total cost = total production cost + total shipping cost

or

min a
/

f = 1
 a

m

h = 1
 pf, h xf, h + a

/

f = 1
 a

m

h = 1
 a

n

r = 1
 sf, h, r yf, h, r

Indexed Families of Constraints
Turn now to constraints for the Pi Hybrids model. What restrictions must decision
variables satisfy?

One family of constraints must enforce production capacities at the various
facilities. Capacities uf are measured in bushels processed, with ah needed for each
bag of hybrid h. Thus we may express the capacity requirement at each facility 1 by

a
m

h = 1
 £bushels

per bag of
h

≥ £bags of h
produced
at 1

≥ … capacity at 1

or

a
m

h = 1
ahx1, h … u1

With / = 20 there are 20 such capacity constraints for different facilities. We
could write each one down explicitly, but again, the model would become very bulky
and hard to comprehend.

Standard mathematical programming notation deals with this difficulty by list-
ing indexed families of constraints.

Families of similar constraints distinguished by indexes may be
expressed in a single-line format

1constraint for fixed indexes2 1ranges of indexes2
which implies one constraint for each combination of indexes in the ranges
specified.

Principle 2.25

44 Chapter 2 Deterministic Optimization Models in Operations Research

Written in this style, all capacity constraints of the Pi Hybrids model can be
expressed in the single line

a
m

h = 1
 ah xf, h … uf f = 1, c, /

Separate constraints are implied for f = 1, 2, c, /. Equivalent forms are

a
m

h = 1
 ah xf, h … uf for all f

and

a
m

h = 1
 ah xf, h … uf 5f

because we know that f ranges from 1 through / and the mathematical symbol 5
means “for all”.

example 2.10: using inDexeD Families oF constraints

An optimization model must decide how to allocate available supplies si at sources
i = 1, c, p to meet requirements rj at customers j = 1, c, q. Using decision at
variables

wi, j ! amount allocated from source i to customer j

formulate each of the following requirements in a single line.
(a) The amount allocated from source 32 cannot exceed the supply available at 32.
(b) The amount allocated from each source i cannot exceed the supply available at i.
(c) The amount allocated to customer n should equal the requirement at n.
(d) The amount allocated to each customer j should equal the requirement at j.

Solution:

(a) Only one constraint is required:

a
n

j = 1
 w32, j … s32

(b) Here we require constraints for all sources i. Using notation 2.25 , all m can be
expressed:

a
n

j = 1
 wi, j … si i = 1, c, m

(c) As with part (a) there is only one constraint:

a
m

i = 1
 wi, n = rn

2.3 Large-Scale Optimization Models and Indexing 45

Pi Hybrids Application Model
In terms of the notation we have defined, a full model for Pi Hybrids’ production–
distribution problem is

 min a
/

f = 1
 a

m

h = 1
 pf, h xf, h + a

/

f = 1
 a

m

h = 1
 a

n

r = 1
 sf, h, r yf, h, r 1total cost2

 s.t. a
m

h = 1
 ah xf, h … uf f = 1, c, / 1capacity2

 a
/

f = 1
 yf, h, r = df, h h = 1, c, m; r = 1, c, n 1demands2 (2.10)

 a
n

r = 1
 yf, h, r = xf, h f = 1, c, /; h = 1, c, m 1balance2

 xf, h Ú 0 f = 1, c, /; h = 1, c, m 1nonnegativity2
 yf, h, r Ú 0 f = 1, c, /; h = 1, c, m; r = 1, c, n

(d) This requirement implies constraints for each demand j. Using notation 2.25 , all
n can be expressed

a
m

i = 1
 wi, j = rj j = 1, c, n

example 2.11: counting inDexeD constraints

Determine the number of constraints in the following systems.

(a) a
22

i = 1
 zi,3 Ú b3

(b) a
22

i = 1
 zi, p Ú bp, p = 1, c, 45

(c) a
10

k = 1
zi, j, k … gj, i = 1, c, 14; j = 1, c, 30

Solution:

(a) This expression represents only 1 constraint, associated with fixed index 3.

(b) This expression represents 45 constraints, one for each p.

(c) This expression represents 141302 = 420 constraints, one for each i and each j.

46 Chapter 2 Deterministic Optimization Models in Operations Research

Besides the objective function and capacity constraints derived earlier, model
(2.10) includes four new systems of constraints. The first of these enforces demand
for each hybrid in each sales region. Amounts shipped from various facilities are
summed to compute the total applicable to each demand. A second system of con-
straints balances production and distribution. It requires that the total of any hybrid
shipped from any facility should match the amount of that hybrid produced there.
Finally, there are the variable-type constraints. The last two systems require all pro-
duction and distribution quantities to be nonnegative.

How Models Become Large
Assuming / = 20, m = 25 and n = 30, the 500 x variables and 15,000 y variables
of model (2.10) are subject to a total of 120 + 750 + 500 + 15,5002 = 16,770
constraints:

 / = 20 capacity constraints

 mn = 251302 = 750 demand constraints

 /m = 201252 = 500 balance constraints

 /m + /mn = 201252 + 2012521302 = 15,500 nonnegativity constraints

Still, we have managed to write the model compactly in only a few lines.
In part this compactness derives from the power of indexed notation. But

there is another reason. Model (2.10) actually involves only a few simple notions:
production cost, shipping cost, capacity, demand, balance, and nonnegativity. What
makes it big is repetition of these notions over many combinations of facilities, hy-
brids, and sales regions.

This is typical of the way that OR models grow.

Optimization models become large mainly by a relatively small
number of objective function and constraint elements being repeated many
times for different periods, locations, products, and so on.

Principle 2.26

With suitable indexing over such problem dimensions, we can express very large
models in just a few lines.

2.4 linear anD nonlinear programs

Different classes of optimization models have enormously different tractability.
This makes recognizing the major categories an important modeling skill. In this
section we begin developing that ability by illustrating the fundamental distinction
between linear programs and nonlinear programs.

General Mathematical Programming Format
The distinction begins with thinking of mathematical programs in terms of functions
of the decision variables.

2.4 Linear and Nonlinear Programs 47

Individual constraints may be of … , = , or Ú form.
To illustrate, return to the Two Crude petroleum model of Section 2.1:

 min 100x1 + 75x2

 s.t. 0.3x1 + 0.4x2 Ú 2.0

 0.4x1 + 0.2x2 Ú 1.5

 0.2x1 + 0.3x2 Ú 0.5

 x1 … 9

 x2 … 6

 x1, x2 Ú 0

Decision variables are x1 and x2, so that n = 2 and there are m = 7 constraints. In
format 2.27 the implied functions are

 f1x1, x22 ! 100x1 + 75x2

 g11x1, x22! 0.3x1 + 0.4x2

 g21x1, x22! 0.4x1 + 0.2x2

 g31x1, x22! 0.2x1 + 0.3x2

 g41x1, x22! x1 (2.11)

 g51x1, x22! x2

 g61x1, x22! x1

 g71x1, x22! x2

Notice that there are g functions for both main and variable-type constraints.

Right-Hand Sides
Format 2.27 collects everything involving the decision variables in the functions f,
g1, . . . , gm. Constraint limits b1, . . . , bm must be constants.

The general form of a mathematical program or (single objec-
tive) optimization model is

min or max f1x1, c. , xn2

s.t. gi1x1, c. , xn2 •
…
=
Ú

¶bi i = 1, c. , m

where f, g1, . . . , gm are given functions of decision variables x1, . . . , xn, and b1,
. . . , bm are specified constant parameters.

Principle 2.27

48 Chapter 2 Deterministic Optimization Models in Operations Research

For obvious reasons these constraint constants bi are called the right-hand
sides (or RHSs) of the model. In our Two Crude application the right-hand sides are

b1 = 2.0, b2 = 1.5, b3 = 0.5, b4 = 9, b5 = 6, b6 = 0, and b7 = 0

example 2.12: expressing moDels in Functional Form

Assuming that the decision variables are w1, w2, and w3, express the following
optimization model in general functional format 2.27 and identify all required
functions and right-hand sides:

max 1w122 + 8w2 + 1w322

s.t. w1 + 6w2 … 10 + w2

1w222 = 7
w1 Ú w3

w1, w2 Ú 0

Solution: In format 2.27 the objective function is

f1w1, w2, w32! 1w122 + 8w2 + 1w322

After collecting all terms involving the decision variables on the left-hand side, con-
straints have the form

 g11w1, w2, w32 … 10

 g21w1, w2, w32 = 7

 g31w1, w2, w32 Ú 0

 g41w1, w2, w32 Ú 0

 g51w1, w2, w32 Ú 0

where

 g11w1, w2, w32! w1 + 6w2 - w2 = w1 + 5w2

 g21w1, w2, w32! 1w222

 g31w1, w2, w32! w1 - w3

 g41w1, w2, w32! w1

 g51w1, w2, w32! w2

Associated right-hand-side constants are

b1 = 10, b2 = 7, b3 = 0, b4 = 0, and b5 = 0

Linear Functions
We distinguish classes of mathematical programs according to whether functions f,
g1, . . . , gm of format 2.27 are linear or nonlinear in the decision variables.

2.4 Linear and Nonlinear Programs 49

Linear functions may involve only constants and terms with variables in the
first power. For example, the objective function

f1x1, x22! 100x1 + 75x2

of the Two Crude model is linear because it simply applies weights 100 and 75 in
summing decision variables x1 and x2. On the other hand, the objective function in
Example 2.12,

f1w1, w2, w32! 1w122 + 8w2 + 1w322

is nonlinear. It includes second powers of some decision variables.

A function is linear if it is a constant-weighted sum of decision
variables. Otherwise, it is nonlinear.

Definition 2.28

example 2.13: recognizing linear Functions

Assuming that x’ s are decision variables and all other symbols are constant, deter-
mine whether each of the following functions is linear or nonlinear.

(a) f1x1, x2, x32! 9x1 - 17x3

(b) f1x1, x2, x32! a 3
j = 1 cj xj

(c) f1x1, x2, x32!
5
x1

+ 3x2 - 6x3

(d) f1x1, x2, x32! x1x2 + 1x223 + ln 1x32
(e) f1x1, x2, x32! eax1 + ln 1b2x3

(f) f1x1, x2, x32!
x1 + x2

x2 - x3

Solution:

(a) This function is linear because it merely sums the 3 decision variables with
weights 9, 0, and -17, respectively.

(b) This function is also linear because the cj are constants.

(c) This function is nonlinear because it involves negative powers of decision variable x1.

(d) This function is nonlinear because it involves products, powers not 1, and loga-
rithms of decision variables.

(e) This function is linear. With a and b constant, it is just a weighted sum of the
decision variables.

(f) This function is nonlinear because it involves a quotient, even though both nu-
merator and denominator are linear functions.

50 Chapter 2 Deterministic Optimization Models in Operations Research

Linear and Nonlinear Programs Defined
The functional forms in format 2.27 characterize linear programs and nonlinear
programs.

example 2.14: recognizing linear anD nonlinear programs

Assuming that y’ s are decision variables and all other symbols are constant, deter-
mine whether each of the following mathematical programs is a linear program or
a nonlinear program.

(a) min a13y1 + 11y42

 s.t. a
5

j = 1
 di yj … b

 yj Ú 1 j = 1, c,9

(b) min a13y1 + 11y422

 s.t. a
5

j = 1
 di yj … b

 yj Ú 1 j = 1, c,9

(c) max a
9

j = 1
 yj

 s.t. y1y2 … 100

 yj Ú 1 j = 1, c,9

Solution: We apply definitions 2.11 and 2.12 .

(a) This model is a linear program because the objective function and all constraints
involve just weighted sums of the decision variables.

(b) This model has the same linear constraints as the model of part (a). However, it
is a nonlinear program because its objective function is nonlinear.

(c) This model is a nonlinear program. Its objective function and last 9 constraints
are linear, but the single nonlinear constraint

y1y2 … 100

renders the entire model nonlinear.

An optimization model in functional form 2.27 is a linear
program (LP) if its (single) objective function f and all constraint functions
g1, . . . , gm are linear in the decision variables. Also, decision variables should
be able to take on whole-number or fractional values.

Definition 2.29

An optimization model in functional form 2.27 is a nonlinear
program (NLP) if its (single) objective function f or any of the constraint func-
tions g1, . . . , gm is nonlinear in the decision variables. Also, decision variab1es
should be able to take on whole-number or fractional values.

Definition 2.30

2.4 Linear and Nonlinear Programs 51

Two Crude and Pi Hybrids Models Are LPs
Both the Two Crude Petroleum model of Section 2.1 and the Pi Hybrids model of
Section 2.3 are linear programs. In the Two Crude case we exhibited the required
functions in (2.11). Each obviously satisfies definition 2.10 . It is easier to be con-
fused about the much larger Pi Hybrids model (2.10) because we assigned so many
symbolic names to constants. However, a careful look will show that its objective
function and every one of its constraints involve just a weighted sum of decision
variables xf, h and yf, h, r. It, too, is a linear program.

2Based on P. Doyle and J. Saunders (1990), “Multiproduct Advertising Budgeting,” Marketing
Science, 9, 97–113.

application 2.3: e-mart
For an example of a nonlinear program or NLP, consider the problem of budgeting
advertising expenditures faced by a large European variety store chain we will call
E-mart.2 E-mart sells products in m major merchandise groups, such as children’s
wear, candy, music, toys, and electric. Advertising is organized into n campaign for-
mats promoting specific merchandise groups through a particular medium (catalog,
press, or television). For example, one variety of campaign advertises children’s wear
in catalogs, another promotes the same product line in newspapers and magazines,
while a third sells toys with television. The profit margin (fraction) for each merchan-
dise group is known, and E-mart wishes to maximize the profit gained from allocat-
ing its limited advertising budget across the campaign alternatives.

Indexing, Parameters, and Decision Variables for E-mart
We begin a model by introducing indexes for the two main dimensions of the problem:

 g ! merchandise group number 1g = 1, c, m2
 c ! campaign type number 1c = 1, c, n2

Then we may denote major input parameters by

 pg ! profit, as a fraction of sales, realized from merchandise group g

 b ! available advertising budget

Decisions to be made concern how to spend E-mart’s advertising budget. Thus
we will employ decision variables

xc ! amount spent on campaign type c

Nonlinear Response
To complete a model, we must quantify how sales in each group g are affected by
advertising expenditures on each campaign c. If the relationship is linear£ sales increase

in group g due
to campaign c

≥ = sg, c xc

52 Chapter 2 Deterministic Optimization Models in Operations Research

where

sg,c ! parameter relating advertising expenditures in campaign c to sales growth
in merchandise group g

A linear form is attractive because it leads to easier analysis.

When there is an option, linear constraint and objective func-
tions are preferred to nonlinear ones in optimization models because each
nonlinearity of an optimization model usually reduces its tractability as com-
pared to linear forms.

Principle 2.31

Linear functions implicitly assume that each unit increase in a
decision variable has the same effect as the preceding increase: equal returns
to scale.

Principle 2.32

Unfortunately, marketing researchers often find the linear alternative inap-
propriate. The main difficulty is that linear functions produce what economists call
equal returns to scale.

The E-mart experience shows something different. Their advertising history
exhibits decreasing returns to scale; that is, each dollar of advertising in a particular
campaign yields less than did the preceding dollar.

Such unequal returns to scale imply nonlinearity. E-mart analysts chose the
nonlinear form

 £ sales increase
in group g due
to campaign c

≥ = sg,c log1xc + 12 (2.12)

This sales response function has the required decreasing returns because logarithms
grow at a declining rate as xc becomes large. Adding + 1 keeps the function nonneg-
ative over xc Ú 0.

E-mart Application Model
After estimating constants sg, c from history, we are ready to state the complete
E-mart model:

 max a
m

g = 1
 pg a

n

c = 1
 sg,c log 1xc + 12 1total profit2

 s.t. a
n

c = 1
 xc … b 1budget limit2 (2.13)

 xc Ú 0 c = 1, c, n 1nonnegative expenditures2
The objective function maximizes total profit by summing sales increase ex-

pressions (2.12) times corresponding profit factors. A single main constraint enforces
the budget limit, and variable-type constraints keep all expenditures nonnegative.
The model is a nonlinear program because its objective function is nonlinear.

2.5 Discrete or Integer Programs 53

2.5 Discrete or integer programs

Variables in mathematical programs always encode decisions, but there are many
types of decisions. In this section we introduce discrete optimization models, which
include decisions of a logical character qualitatively different from those of linear
and nonlinear programs. Discrete optimization models are also called integer
 (linear or nonlinear) programs, mixed-integer (linear or nonlinear) programs, and
combinatorial optimization problems.

3Based on F. J. Vasko, F. E. Wolf, K. S. Stott, and J. W. Scheirer (1989), “Selecting Optimal Ingot
Sizes for Bethlehem Steel,” Interfaces, 19:1, 68–84.

application 2.4: bethlehem ingot molD

For an example, we turn to the problem confronted by Bethlehem Steel Corporation
in choosing ingot sizes and molds.3 In their process for making steel products, mol-
ten output from main furnace is poured into large molds to produce rectangular
blocks called ingots. After the molds have been removed, the ingots are reheated
and rolled into product shapes such as I-beams and flat sheets.

In our fictional version, Bethlehem’s mills using this process make approx-
imately n = 130 different products. The dimensions of ingots directly affect effi-
ciency. For example, ingots of one dimension may be easiest to roll into I-beams, but
another dimension produces sheet steel with less waste. Some ingot sizes cannot be
used at all in making certain products.

A careful examination of the best mold dimensions for different products yielded
m = 600 candidate designs. However, it is impractical to use more than a few because
of the cost of handling and storage. We wish to select at most p = 6 and to minimize the
waste associated with using them to produce all n products.

Indexes and Parameters of the Bethlehem Application
Our Bethlehem problem has two major index dimensions:

 i ! mold design number 1i = 1, c, m2
 j ! product number 1j = 1, c, n2

One set of input parameters are the

cj, i ! amount of waste caused by using ingot mold i on product j

The other input required for a model is some indication of which products can use
which molds. For this purpose we define index sets

 Ij ! collection of indexes i corresponding to molds that
 could be used for product j

If i ∈ Ij , mold i is feasible for product j.

Discrete versus Continuous Decision Variables
As usual, actual modeling begins with decision variables. Notice, however, that the
decisions to be taken in our Bethlehem application are qualitatively different from
those of earlier models. A mold design will either be selected or not. Once selected,
it will either be used for a given product, or it will not.

54 Chapter 2 Deterministic Optimization Models in Operations Research

Such decisions require a new, logical, discrete variable type.

A variable is discrete if it is limited to a fixed or countable set
of values. Often, the choices are only 0 and 1.

Definition 2.33

A variable is continuous if it can take on any value in a spec-
ified interval.

Definition 2.34

Frequently occurring discrete variable types include binary or 0–1 variables
limited to values 0 and 1, and nonnegative integer variables that may take any non-
negative integer value.

We employ discrete variables mainly to model decisions of an all-or-nothing,
either–or character such as those involved in our Bethlehem ingot mold application.
In particular, we will use

yi ! e1 if ingot mold i is selected
0 if not

Such yi are discrete because they are limited to two values. We use value 1 to mean
an event occurs, and value 0 when it does not. A value of 0.3 or 4

5 has no physical
meaning.

In a similar manner, we model decisions about which mold to use in making
each product with decision variables

xj,i ! e1 if ingot mold i is used for product j
0 if not

Again the variables are allowed only a countable set of values to reflect the logical
character of the decisions.

Contrast these decision variables with the continuous variables we encountered
in earlier models.

For example, a nonnegative variable is continuous because it can assume any value
in the interval [0, + ∞2.

Variables in the Two Crude model of Section 2.1 certainly have this continuous
character. They are denominated in thousands of barrels of petroleum, and any non-
negative real value has a physical interpretation. Technically speaking, variables of the
Pi Hybrids model in Section 2.3 should be limited to the integers (a discrete set) be-
cause they count bags of corn seed produced and shipped. Still, the numbers involved
are likely to be so large that there is no loss of validity in allowing all nonnegative
values. We will see in later chapters that there is a considerable gain in tractability.

When there is an option, such as when optimal variable magni-
tudes are likely to be large enough that fractions have no practical importance,
modeling with continuous variables is preferred to discrete because optimiza-
tions over continuous variables are generally more tractable than are ones over
discrete variables.

Principle 2.35

2.5 Discrete or Integer Programs 55

Constraints with Discrete Variables
We are now ready to begin forming the constraints of our Bethlehem ingot mold
application. One requirement is that at most p molds be selected:

a
m

i = 1
 yi … p

Notice that our convention of making the variable = 1 when something happens,
and = 0 otherwise makes such requirements easy to express.

A similar requirement is that each product be assigned exactly one mold
design. We may sum over the possible choice to express those constraints as

a
i∈Ij

 xj, i = 1 j = 1, c, n

Notice again how easy it is to model “at least 1,” “at most 1,” and “exactly 1” restric-
tions with 0–1 discrete variables.

A last system of main constraints for the Bethlehem model must encode the
dependency between x and y variables. Mold i cannot be assigned to product j unless
it is one of the p selected. That is,

xj, i … yi i = 1, c, m; j = 1, c, n

example 2.15: choosing Discrete Versus continuous Variables

Decide whether a discrete or a continuous variable would be best employed to model
each of the following quantities.

(a) The operating temperature of a chemical process

(b) The warehouse slot assigned a particular product

(c) Whether a capital project is selected for investment

(d) The amount of money converted from yen to dollars

(e) The number of aircraft produced on a defense contract

Solution:

(a) A temperature can assume any value in a physical range. It is naturally continuous.

(b) The slot will be selected from a finite, and thus countable, list. It will probably
require a discrete variable.

(c) Assuming that one cannot invest in just part of a project, there are only two
possibilities: Take the project or reject it. A 0–1 discrete variable is appropriate.

(d) Amounts of money can assume any nonnegative value. They should be modeled
with continuous variables.

(e) If the number of aircraft is likely to be large, principle 2.21 argues for a contin-
uous variable even though the number of aircraft is clearly countable. If only a few
expensive aircraft are planned, it may be necessary to model discreteness explicitly.
Then a nonnegative integer variable is required.

56 Chapter 2 Deterministic Optimization Models in Operations Research

Bethlehem Ingot Mold Application Model
We may complete a discrete optimization model of our Bethlehem ingot mold
application as

 min a
n

j = 1
 a
i∈Ij

 cj, i xj, i 1total waste2

 s.t. a
m

i = 1
 yi … p 1select at most p2

 a
i∈Ij

 xj, i = 1 j = 1, c, n 1one each product2 (2.14)

 xj, i … yi j = 1, c, n; i ∈ Ij 1use only if selected2
 yi = 0 or 1 i = 1, c, m 1binary variables2
 xj, i = 0 or 1; j = 1, c, n; i ∈ Ij

The objective function of this model merely totals the scrap waste associated
with assigning molds to products. In addition to the main constraints formulated
above, we have included m variable-type constraints on the yj and mn such con-
straints on the xj,i . The specification “ = 0 or 1” signals that these variables are dis-
crete and may take on only the values 0 and 1.

Integer and Mixed-Integer Programs
A mathematical program is a discrete optimization model if it includes any discrete
variables at all. Otherwise, it is a continuous optimization model.

example 2.16: expressing constraints in 0–1 Variables

In choosing among a collection of 16 investment projects, variables

wj ! e
1 if project j is selected
0 otherwise

Express each of the following constraints in terms of these variables.

(a) At least one of the first eight projects must be selected.

(b) At most three of the last eight projects can be selected.

(c) Either project 4 or project 9 must be selected, but not both.

(d) Project 11 can be selected only if project 2 is also.

Solution

(a) a
8

j = 1
 wj Ú 1 (b) a

16

j = 9
 wj … 3

(c) w4 + w9 = 1 (d) w11 … w2

2.5 Discrete or Integer Programs 57

Discrete models are often called integer programs because we may think of
discrete variables as being restricted to integers within an interval. For example,

yj = 0 or 1

is equivalent to

0 … yj … 1
yj integer

Whenever the allowed values of a variable are countable, they can be aligned with
the integers in a similar way.

An optimization model is an integer program (IP) if any of its
decision variables is discrete. If all variables are discrete, the model is a pure
integer program; otherwise, it is a mixed-integer program.

Definition 2.36

A discrete or integer programming model is an integer linear
program (ILP) if its (single) objective function and all main constraints are linear.

Definition 2.37

Integer Linear versus Integer Nonlinear Programs
Bethlehem ingot model (2.14) would fulfill definition 2.11 of a linear program
except for the binary type of its variables. Thus it is natural to classify it an integer
linear program.

example 2.17: recognizing integer programs

Determine whether an optimization model over each of the following systems of
variables is an integer program, and if so, state whether it is pure or mixed.

(a) wj Ú 0, j = 1, c, q

(b) wj = 0 or 1, j = 1, c, p

 wp + 1 Ú 0 and integer

(c) wj Ú 0, j = 1, c, p

 wp + 1 Ú 0 and integer

Solution: We apply definition 2.15 .

(a) Here all variables are continuous, so the model is continuous, not discrete.

(b) The first p variables are limited to 0 and 1, and the last to any nonnegative integer.
Thus the model is a pure integer program.

(c) The one integer variable makes this model discrete, and so an IP. It is a mixed-
integer program because it also has continuous decision variables.

58 Chapter 2 Deterministic Optimization Models in Operations Research

The alternative is an integer nonlinear program.

A discrete or integer programming model is an integer
nonlinear program (INLP) if its (single) objective function or any of its
main constraints is nonlinear.

Definition 2.38

example 2.18: recognizing ilps anD inlps

Assuming that all wj are decision variables, determine whether each of the following
mathematical programs is best described as a LP, a NLP, an (ILP), or an INLP.

(a) max 3w1 + 14w2 - w3

s.t. w1 … w2

w1 + w2 + w3 = 10
wj = 0 or 1 j = 1, c, 3

(b) min 3w1 + 14w2 - w3

s.t. w1, w2 … 1
w1 + w2 + w3 = 10
wj Ú 0 j = 1, c, 3
w1 integer

(c) min 3w1 + 9
ln(w2)

w3

s.t. w1 … w2

 w1 + w2 + w3 = 10
 w2, w3 Ú 1
 w1 Ú 0

(d) max 19w1

s.t. w1 … w2

w1 + w2 + w3 = 10
w2, w3 Ú 1
w1 Ú 0

Solution:

(a) Except for its discrete variable-type constraints, this model would be a linear
program because the objective function and both main constraints are linear. Thus
the model is an ILP.

(b) The product in its first main constraint makes this model nonlinear. However, it
would not usually be called a nonlinear program because w1 is discrete. The model
is best classified as an INLP.

2.5 Discrete or Integer Programs 59

Indexing, Parameters, and Decision Variables
for Purdue Finals Application
As usual, we begin a model of this problem by introducing indexes for its main
dimensions:

 i ! class unit number 1i = 1, c, m2
 t ! exam time period number 1t = 1, c, n2

Then discrete decision variables encode the schedule options:

xi,t ! e
1 if class i is assigned to time period t
0 otherwise

Also, we define joint enrollment input parameters:

ei, i= ! number of students taking an exam in both class unit i and class unit i =

Nonlinear Objective Function
The main challenge in solving Purdue’s final exam scheduling problem with the
foregoing notation is to represent total conflicts in an objective function. To begin,
focus on any pair of courses i and i =. The product

xi, txi=, t = e1 if i and i = are both scheduled at time period t
0 if not

4Based on C. J. Horan and W. D. Coates (1990), “Using More Than ESP to Schedule Final Exams:
Purdue’s Examination Scheduling Procedure II (ESP II),” College and University Computer Users
Conference Proceedings, 35, 133–142.

(c) The logarithm and quotient terms in its objective function make this model non-
linear. Since all variables are continuous, it should be classified as a NLP.

(d) The objective function and all main constraints of this model are linear and vari-
able types are all continuous. Thus the model is a LP.

application 2.5: purDue Final exam scheDuling

We may illustrate integer nonlinear programming applications with a problem familiar
to every college student: final exam scheduling. In a typical term Purdue University4
picks one of n = 30 final exam time periods for each of over m = 2000 class units on
its main campus. Most exams involve just one class section, but there are a substantial
number of “unit exams” held at a single time for multiple sections.

The main issue in this exam scheduling is “conflicts,” instances where a student
has more than one exam scheduled during the same time period. Conflicts burden
both students and instructors because a makeup exam will be required in at least one
of the conflicting courses. Purdue’s exam scheduling procedure begins by processing
enrollment records to determine how many students are jointly enrolled in each pair of
course units. Then an optimization scheme seeks to minimize total conflicts as it selects
time periods for all class units.

60 Chapter 2 Deterministic Optimization Models in Operations Research

Thus we may sum over time periods and multiply by joint enrollment to express the
conflict for any pair:

conflicts between i and i = = ei, i=a
n

t = 1
 xi, t xi=, t

It remains only to total such expressions over all course pairs i, i =. The result is
the Purdue final exam scheduling objective function:

 min a
m - 1

i = 1
 a

m

i= = i + 1
ei, i= a

n

t = 1
 xi, t xi=, t 1total conflicts2 (2.15)

Notice that summations have been indexed so that i = 7 i, to avoid counting
any pair more than once. The first sum considers all i except the last, which has no
higher index, and the second adds in all pairs with i = 7 i.

Purdue Final Exam Scheduling Application Model
Beginning from objective function (2.15), we may model Purdue’s problem:

min a
m - 1

i = 1
 a

m

i= = i + 1
ei, i= a

n

t = 1
 xi, t xi=, t 1total conflicts2

s.t. an
t = 1

xi, t = 1 i = 1, c, m 1class i scheduled2
xi, t = 0 or 1 i = 1, c, m; t = 1, c, n

 (2.16)

Main constraints simply assure that each class unit i is assigned exactly one exam
time period t.

Model (2.16) is an INLP. Its main constraints are linear, but the objective func-
tion has nonlinear product terms and variable types discrete.

2.6 multiobjectiVe optimization moDels

All the models considered so far have a clear, quantitative way to compare feasi-
ble solutions. That is, they have single objective functions. In many business and
industrial applications, single objectives realistically model the true decision pro-
cess. Such organizations often are really satisfied to maximize some measure of
profit or minimize some approximation to cost, although other objectives may
also be relevant.

Matters become much more confused when the problem arises in the gov-
ernment sector, or in a complex engineering design, or in circumstances where un-
certainty cannot be ignored. In such applications, solutions may be evaluated quite
differently by different participants in the decision process, or against different per-
formance criteria. None can be discounted. A multiobjective optimization model
is required to capture all the perspectives—one that maximizes or minimizes more
than one objective function at the same time.

2.6 Multiobjective Optimization Models 61

Multiple Objectives
No single criterion fully captures the appropriateness of assigning undeveloped
acres to a given use. Our version of the problem will use 5:

1. Compatibility: an index of the compatibility between each possible use in a region and
the existing uses in and around the region.

2. Transportation: the time incurred in making trips generated by the land use to/from
major transit and auto links.

3. Tax load: the ratio of added annual operating cost for government services associated
with the use versus increase in the property tax assessment base.

4. Environmental impact: the relative degradation of the environment resulting from the
land use.

5. Facilities: the capital costs of schools and other community facilities to support the land use.

A good plan should make the first of these objectives large and the others
small. Assigning the indexes

 i ! land use type 1i = 1, c, m2
 j ! planning region 1j = 1, c, n2

5Based on D. Bammi and D. Bammi (1979), “Development of a Comprehensive Land Use Plan by
Means of a Multiple Objective Mathematical Programming Model,” Interfaces, 9:2, part 2, 50–63.

table 2.1 Land Use Types
in DuPage Application

i Land Use Type

1 Single-family residential
2 Multiple-family residential
3 Commercial
4 Offices
5 Manufacturing
6 Schools and other institutions
7 Open space

application 2.6: Dupage lanD use planning

Perhaps no public-sector problem involves more conflict between different interests
and perspectives than land use planning. That is why a multiobjective approach was
adopted when government officials in DuPage County, Illinois, which is a rapidly
growing suburban area near Chicago, sought to construct a plan controlling use of
its undeveloped land.5

Table 2.1 shows a simplified classification with m = 7 land use types. The problem
was to decide how to allocate among these uses the undeveloped land in the county’s
n = 147 planning regions.

62 Chapter 2 Deterministic Optimization Models in Operations Research

the following symbolic constants parameterize the five objectives:

 ci, j ! compatibility index per acre of land use i in planning region j

 ti, j ! transportation trip time generated per acre of land use i in planning region j

 ri, j ! property tax load ratio per acre of land use i in planning region j

 ei, j ! relative environmental degradation per acre of land use i in planning region j

 fi, j ! capital costs for community facilities per acre of land use i in planning region j

Then with nonnegative decision variables

 xi, j! number of undeveloped acres assigned to land use i in planning region j

we have the following multiple objectives:

 max a
m

i = 1
 a

n

j = 1
ci, jxi, j

 min a
m

i = 1
 a

n

j = 1
ti, jxi, j

 min a
m

i = 1
 a

n

j = 1
ri, jxi, j

 min a
m

i = 1
 a

n

j = 1
ei, jxi, j

 min a
m

i = 1
 a

n

j = 1
fi, jxi, j

Constraints of the DuPage Land Use Application
Some of the main constraints enforced in the DuPage application are straightfor-
ward. Define symbolic parameters

 bj ! number of undeveloped acres in planning region j

 /i ! county@wide minimum number of acres allocated to land use type i

 ui ! county@wide maximum number of acres allocated to land use type i

 oj ! number of acres in planning region j consisting of undevelopable floodplains,
rocky areas, etc.

Then a first system of main constraints assures that all undeveloped land in each
planning region is allocated:

a
m

i = 1
 xi, j = bj j = 1, c n

Two others enforce county-wide lower and upper limits on various uses:

a
n

j = 1
 xi, j Ú /i i = 1, c, m

a
n

j = 1
 xi, j … ui i = 1, c, m

2.6 Multiobjective Optimization Models 63

Finally, we need to assure all undevelopable land is assigned to parks and other
open space:

x7, j Ú oj j = 1, c, n

The more complex constraints describe how land uses interact. In particular,
single- and multiple-family residential development creates a demand for nearby
commercial centers and open space, as well as new schools and other institutions.
Using the symbolic parameters

 si ! new acres of land use i implied by allocation of an acre of undeveloped land
to single-family residential

di ! new acres of land use i implied by allocation of an acre of undeveloped land
to multiple-family residential

we obtain
xi, j Ú si x1, j + di x2, j i = 3, 6, 7; j = 1, c, n

Acres in i = 3, commercial, i = 6, institutions, and i = 7, open space, must meet the
implied demands.

DuPage Land Use Application Model
Collecting all the above produces the following multiobjective optimization model
of our DuPage application:

max a
m

i = 1
 a

n

j = 1
ci, j xi, j 1compatibility2

min a
m

i = 1
 a

n

j = 1
ti, j xi, j 1transportation2

min a
m

i = 1
 a

n

j = 1
ri, j xi, j 1tax load ratio2

min a
m

i = 1
 a

n

j = 1
ei, j xi, j 1environmental2

min a
m

i = 1
 a

n

j = 1
fi, j xi, j 1facilities2

s.t. a
m

i = 1
 xi, j = bj j = 1, c, n 1all used2

a
n

j = 1
 xi, j Ú li i = 1, c, m 1use minimums2

a
n

j = 1
 xi, j … ui i = 1, c, m 1use maximums2

x7, j Ú oj j = 1, c, n 1undevelopable2
xi, j Ú six1, j + dix2, j i = 3, 6, 7; j = 1, c, n 1implied needs2
xi, j Ú 0 i = 1, c, m; j = 1, c, n 1nonnegativity2

 (2.17)

The only new element is nonnegativity type-constraints on the decision variables.

64 Chapter 2 Deterministic Optimization Models in Operations Research

Conflict among Objectives
Like so many other applications, DuPage’s land use planning could be modeled
validly only with multiple objective functions. Still, we will see in later chapters
that there is a price in tractability. It is almost certain that the objective functions
will conflict about the best allocation of land uses. For example, a solution placing
trip-generating manufacturing land uses near traffic arteries will score well on the
transportation objective, but it may not be at all compatible with existing land use,
and it may severely degrade sensitive environments.

Single objective models are easier to deal with because they avoid such
conflicts. With multiple objectives it is not even clear how to define an “optimal”
solution.

When there is an option, single-objective optimization models
are preferred to multiobjective ones because conflicts among objectives usu-
ally make multiobjective models less tractable.

Principle 2.39

example 2.19: unDerstanDing multiple-objectiVe conFlict

Consider the multiobjective mathematical program

max 3z1 + z2

min z1 - z2

s.t. z1 + z2 … 3
z1, z2 Ú 0

Graph the feasible region and show that the best solutions for the two objective func-
tions conflict.

Solution: The feasible region and contours of the two objective functions are as
follows:

1

2

3

1

2

z2

z1 z1

z2

optimal

1 21 2

optimal

10
2

-1

-2

max 3z1 + z2 min z1 - z2

2 4 6 8

Feasible solution z1 = 3, z2 = 0 is optimal for the first objective function, but
z1 = 0, z2 = 3 is optimal for the second. To find a solution that is overall “best,” the
analysis must somehow balance these conflicting objectives.

2.8 Computer Solution and AMPL 65

2.7 classiFication summary

Practitioners of optimization methods are actually confronted, not by generic model
forms like those introduced in the various sections of this chapter, but instead by in-
stances with specific decision variables, specific constraint functions, and specific ob-
jectives, all of which have model parameters explicit as numeric constants rather than
symbols. Still, over and over in the rest of this book we will see that the problem form–
whether a model is linear or nonlinear, continuous or discrete, single or multiobjective –
has by far the greatest effect on whether a given instance is tractable and on what
methods are most important to try in seeking a solution. Thus, one of the most import-
ant skills for students or practitioners struggling with instances of interest is to recog-
nize these distinctions and classify the underlying problem form accordingly.

To clarify the classification, Figure 2.6 provides a summary in a single display.
The most tractable LP case has continuous variables, linear constraints, and a single
linear objective function. If either constraints or the objective are nonlinear, it be-
comes a nonlinear NLP. Any discrete variables turn LPs into ILPs and NLPs into
INLPs. All forms become more complex if there is more than one objective.

multiple
objective

linear
constraints

nonlinear
constraints

discrete
variables

continuous
variables

single
nonlinear
objectivesingle

linear
objective

ILP LP

INLP NLP

Figure 2.6 Classification of Optimization Models

2.8 computer solution anD ampl

This chapter has introduced many of the key issues in formulating and classifying
optimization models. Section 2.2 also showed how tiny examples in 2 or 3 decision
variables can be solved graphically to gain intuition about issues arising in more
realistic cases. Still, real applications of mathematical programming are almost al-
ways addressed with computer solution techniques implementing the processes and
theory that make up most of the rest of this book.

In this section we introduce some of the main ideas behind the wide variety of
available software for conducting computer-based optimization. Special emphasis
will be focused on one of the most popular–AMPL.6

6See R. Fourer, D. Gay and B. Kernighan (2003), AMPL: A Modeling Language for Mathematical
Programming, 2nd edition, Brooks/Cole, Pacific Grove, California.

66 Chapter 2 Deterministic Optimization Models in Operations Research

Solvers versus Modeling Languages
Designers and users of software for mathematical programming need to address
two distinct challenges:

Solver software inputs instances of mathematical programs in
whatever mathematical format is convenient for the optimization methods being
applied, then computes and returns optimal solutions and related analytic results.

Principle 2.40

Modeling languages accept formulations of models and parame-
ters in formats similar to the standard statements of Sections 2.2-2.6, then create
a corresponding input set for a chosen solver. Once the solver has completed,
results are then translated back to the format of the formulation and reported.

Principle 2.41

Table 2.3 illustrates for the familiar Two Crude model of (2.6), assuming it is now
to be solved with computer software. This is the simplest form, with all indices and
parameters hard-coded.

Part (a) of the table shows an AMPL input coding for this elementary case,
and part (b) illustrates the output received. Notice:

 d AMPL statements always end with a semicolon. Any line or part of a line after “#” is only
a comment. Blank lines have no impact.

 d var statements define decision variables and declare variable type constraints.

table 2.3 Elementary AMPL Modeling of Two Crude Application 2.1

var x1 >= 0; # decision variables and types

var x2 >= 0;

minimize tcost: 100*x1+75*x2; # objective function

subject to

gas: 0.3*x1+0.4*x2 >= 2.0;

jet: 0.4*x1+0.2*x2 >= 1.5;

lubr: 0.2*x1+0.3*x2 >= 0.5;

saudi: x1 <= 9;

venez: x2 <= 6;

option solver cplex;

solve;

choose and call solver

display cost, x1,x2; # report solver outputs

(a) AMPL Input

CPLEX optimal solution

462.5

solver outcome

tcost = 462.5 # optimal values

x1 = 2.0

x2 = 3.5

(b) AMPL Output

2.8 Computer Solution and AMPL 67

 d minimize or maximize statements specify objective functions.
 d Main constraints follow subject to, with each labeled by a name at its start.
 d Mathematical expressions in both objective functions and constraints use the typical style

of scientific computer programming, with “+”, “-”, “*”, “/” operations, and “ 7 =” and
“ 6 = ” inequalities.

 d After the formulation is complete, an option solver command chooses the desired
solver and a solve command invokes it. Here the very popular CPLEX7 solver is
employed.

 d display commands after the solve show what outcome variable values should be
reported (part (b)).

Indexing, Summations, and Symbolic Parameters
Section 2.2 explained how almost all mathematical programs of realistic size and
validity use index sets for various dimensions of the formulation (2.22), summa-
tions to combine multiple terms, and symbolic parameters to represent constants
(2.24). Useful modeling languages like AMPL must accommodate such large-scale
features in a way that mirrors the standard mathematical formulation.

Table 2.4 illustrates how this can be done for the Pi Hybrids Application 2.2
formulation (2.10). New elements include:

 d param statements define symbolic parameters.
 d set statements declare index sets.
 d sum operators implement summations.
 d In all cases where objects are defined over index ranges, the range is shown within “{ }”

brackets.
 d Subscripts are called out within square “[]” brackets.

Perhaps most importantly, Table 2.4 presents only the symbolic AMPL model
formulation of Pi Hybrids cases. Constants will follow in an accompanying data
section.

7See for example IBM ILOG AMPL (2010), IBM ILOG AMPL Version 12.2 User’s Guide, ampl.
com/booklets.

Large-scale AMPL input sets distinguish between an abstract
model section, and an accompanying data section with details a of specific
instance to be solved.

Principle 2.42

In many settings this distinction proves convenient because different instances
of the same model form can be addressed simply by modifying the data section.

Table 2.5 shows how a data section might be structured for a small Pi Hybrids
instance with just l = 2 facilities, m = 4 varieties, and n = 3 regions. The full input

68 Chapter 2 Deterministic Optimization Models in Operations Research

for a given run would be the model section of Table 2.4, the data section of Table 2.5,
suitable solve commands, and needed display choices. Besides rules encoun-
tered above, notice that in assigning values to parameters

 d The symbol “: = ” is used to indicate assignment of a constant’s value.
 d No commas or other delimiters separate data values.
 d Scalar parameters are merely assigned with “: = .”
 d Single-subscript parameters are assigned in a list of subscript-value pairs.
 d Multiple-subscript parameters are assigned in a table with columns corresponding to the

last of the subscripts and rows for each combination of the other indices.

table 2.4 AMPL Model for Pi Hybrids Application 2.2

identify this as the abstract formulation model section

model;

index sets for facilities, hybrids, and regions

param 1;

param m;

param n;

set facils := 1 .. 1;

set hybrs := 1 .. m;

set regns := 1 .. n;

symbolic parameters for facility capacity, buschels per bag,

production costs, regional demands, and shipping costs

param u{f in facils};

param a{h in vars};

param p{f in facils, h in hybrs};

param d{h in hybrs, r in regns};

param s{f in facils, h in hybrs, r in regns};

decision variables and types constraints for production and sales

var x{f in facils, h in hybrs} >=0;

var y{f in facils, h in hybrs, r in regns} >= 0;

total cost objective

minimize tcost: sum{f in facils, h in hybrs} p[f, h]*x[f, h]

+ sum{f in facils, h in hybrs, r in regns} s[f, h, r]*y[f, h, r];

main constraint sets for facility capacity, regional demands,

and production-shipping balance

subject to

f cap{f in facils}: sum{h in hybrs} a[h]*x[f, h] <= u[f];

rdems{h in hybrs, r in regns}: sum{f in facils} y[f, h, r] = d[h, r];

psbal{f in facils, h in hybrs}: sum{r in regns} y[f, h, r] = x[f, h];

2.8 Computer Solution and AMPL 69

table 2.5 AMPL Data Section for a Small Instance of Pi Hybrids Application 2.2

identify this as the data section for a specific instance

data;

set scalar parameter values

param 1 := 2;

param m := 4;

param n := 3;

detail single-subscript parameters in lists

param u := 1 2200 2 2555;

param a := 1 7 2 11 3 6 4 18;

detail multiple-subscript parameters in tables

 param p: 1 2 3 4 :=

 1 1.10 0.89 2.05 1.45

 2 1.55 1.13 2.15 1.56

 3 0.95 0.83 1.80 1.22 ;

 param d : 1 2 3 :=

 1 123 119 500

 2 311 281 333

 3 212 188 424

 4 189 201 440 ;

 param s: 1 2 3 :=

 1 1 0.89 0.91 0.77

 1 2 1.00 0.84 0.89

 1 3 0.77 0.76 0.78

 1 4 0.99 1.03 0.85

 2 1 0.92 0.89 0.92

 2 2 0.87 0.95 0.90

 2 3 0.91 0.83 0.77

 2 4 0.89 0.79 0.86 ;

example 2.20: coDing ampl For lps with inDexing anD sums

Consider the following model and data sections of an AMPL linear program input set.

model;

param m;

param n;

set rows := 1 .. m;

set cols := 1 .. n;

param a{i in rows, j in cols};

param r{i in rows};

param d{j in cols};

var x{j in cols} >= 0;

70 Chapter 2 Deterministic Optimization Models in Operations Research

Nonlinear and Integer Models
Both the models depicted so far are linear programs. Still, AMPL models of non-
linear and integer or mixed-integer programs are also easily accommodated, albeit
sometimes with different solvers.

Table 2.6 illustrates the nonlinear case with the model (2.13) of E-mart
Application 2.3.

The only new element is use of the log() function, which is one of many
available in AMPL. Of course, a different solver like MINOS8 would be needed for
this nonlinear program.

For the integer and mixed-integer programming case, we can illustrate with
the AMPL coding of Bethlehem Ingot Mold Application 2.4 shown in Table 2.7 .

New elements with the Bethlemam Steel Application of Table 2.7 include the
following:

 d Most important is indication that both x and y variables are binary, that is, limited to in-
teger values 0 or 1. This simple change in the var commands makes the model an integer
program.

 d When nonnegative integer variables, say zk for k ∈ KK, are present that need not be just
0 or 1 , AMPL coding would include z{k in KK} integer >=0;

 d This application also ilustrates how subsets of index sets can be coded for AMPL.
Bethelehem application sets Ij ⊂ I, which are the subsets of mold set I usable for products
j, are represented as amold [j].

maximize totl: sum{j in cols} d[j]*x[j];

subject to

lims{ in in rows}: sum{j in cols} a[i, j]*x[j] <= r[i];

data;

param m:= 2;

param n:= 3;

param d:= 1 210 2 333 3 40;

param r:= 1 1100 2 2019;

param a: 1 2 3 :=

1 14 23 41

2 29 19 50 ;

Determine the corresonding LP in standard mathematical format with all constant
values shown explicity.

Solution: Using the 3 declared x variables, and given values for symbolic parame-
ters, the formulation is

max 210x1 + 333x2 + 40x3

s.t. 14x1 + 23x2 + 41x3 … 1100
29x1 + 19x2 + 50x3 … 2019
x1, x2, x3 Ú 0

8B. Murtagh and M. Saunders (1998-), MINOS Optimization Software, Stanford Business Software, Inc.

2.8 Computer Solution and AMPL 71

table 2.6 AMPL Model for E-Mart Application 2.3

model;

index sets for groups and sales campaigns

param m;

param n;

set groups := 1 .. m;

set cpaigns := 1 .. n;

symbolic parameters for budget, profit and sales rate increase

param b;

param p{g in groups};

param s{g in groups, c in cpaigns};

decision variables and types constraints for sales campaigns

var x{c in cpaigns} >=0;

total profit objective

maximize tprof: sum{g in groups}p[g]

 * sum{c in cpaigns} s[g, c]*log(x[c]+l);

main budget constraint

subject to

budgt: sum{c in cpaigns} x[c] <= b;

table 2.7 AMPL Model for Bethlehem Application 2.4

model;

index sets for molds, products, and applicable molds

param m;

param n;

set molds := 1 .. m;

set prods := 1 .. n;

set amolds {j in prods} within molds;

symbolic parameters for mold limit and waste

param p;

param c{j in prods, i in amolds[j]};

decision variables for mold assignments and molds used

var x {j in prods, i in amolds[j]} binary;

var y {i in molds} binary;

total waste objective

minimize twaste: sum {j in prods} sum {i in amolds [j]} c[j, i]*x[j, i];

mains constraints for molds selected, assignment for products,

and mold-assignment correspondence

subject to

mcnt: sum{i in molds} y[i] <= p;

pasmt{j in prods}: sum{i in amolds [j]} x [j ,i) = 1;

mamatch{j in prods, i in amolds[j]}: x[j, i] <= y[i];

72 Chapter 2 Deterministic Optimization Models in Operations Research

example 2.21: coDing ampl For mips with inDexing anD sums

Consider the following model and data sections of an AMPL input set for a
mixed-integer linear program.

model;

param m;

param n;

set rows := 1 .. m;

set cols := 1 .. n;

param a{i in rows, j in cols};

param r{i in rows};

param d{j in cols};

param f{i in rows};

var x{j in cols} >= 0;

var y{i in rows} integer >= 0;

minimize tcost: sum{j in cols} d[j]*x[j]+sum{i in rows}
f[i]*y[i];

subject to

lims{ i in rows}: sum{j in cols} a[i, j]*x[j] +400*y[i] >= r[i];

data;

param m:= 2;

param n:= 3;

param d:= 1 210 2 333 3 40;

param r:= 1 1100 2 2019;

param f:= 1 300 2 222;

param a: 1 2 3 :=

1 14 23 41

2 29 19 50 ;

Determine the corresponding MILP in standard mathematical format with all constant
values shown explicity.

Solution: Using the 3 declared x variables, 2 declared y variables, and given values
for symbolic parameters, the formulation is

min 210x1 + 333x2 + 40x3 + 300y1 + 222y2

s.t. 14x1 + 23x2 + 41x3 + 400y1 Ú 1100
29x1 + 19x2 + 50x3 + 400y2 Ú 2019
x1, x2, x3 Ú 0
y1, y2 Ú 0 and integer

 Exercises 73

9Whenever an exercise calls for a formulation, be sure to define all decision variables and any sym-
bolic parameters, state all constraints and sets of constraints (both main and variable type), annotating
each with its meaning, and state the objective function(s), annotating with its/their meaning(s).

10Whenever an exercise calls for a graphic solution of an optimization model, be sure to label all axes,
plot and label each constraint, show their common feasible set (if any), depict contours of the objective
function(s) including showing the direction of steepest improvement, then identify and justify an optimal
solution, or explain why no optimal solution exists.

EXERCISES9,10

2-1 The Notip Table Company sells two models of
its patented five-leg tables. The basic version uses
a wood top, requires 0.6 hour to assemble, and
sells for a profit of $200. The deluxe model takes
1.5 hours to assemble because of its glass top, and
sells for a profit of $350. Over the next week the
company has 300 legs, 50 wood tops, 35 glass tops,
and 63 hours of assembly available. Notip wishes
to determine a maximum profit production plan
assuming that everything produced can be sold.

(a) Formulate a mathematical programming
model with 4 main constraints to select
an optimal production plan using de-
cision variables x1 ! number of basic
models produced and x2 ! number of
deluxe models.

(b) Enter and solve your model with the class
optimization software.

(c) Using a 2-dimensional plot, solve your
model graphically for an optimal product
mix, and explain why it is unique.

(d) On a separate 2-dimensional plot, show
that the model has alternative optimal
solutions if profits are $120 and $300,
respectively.

2-2 Wiley Wiz is a mutual fund manager trying to
decide how to divide up to $12 million between
domestic and foreign stocks. Domestic stocks
have been returning 11% per year and foreign
17%. Naturally, Wiley would like to maximize
the annual return from his investments. Still, he
wants to exercise some caution. No more that $10
million of the fund should go into domestic stocks
and no more than $7 million into foreign. Also, at
least half as much should be invested in foreign as
domestic, and at least half as much in domestic as
foreign to maintain some balance.

(a) Formulate a mathematical program-
ming model with 5 main constraints to
decide Wiley’s optimal investment plan

using decision variables x1 ! millions of
dollars invested in domestic stocks and
x2 ! millions of dollars invested in for-
eign stocks.

(b) Enter and solve your model with the class
optimization software.

(c) Using a 2-dimensional plot, solve your
model graphically for an optimal invest-
ment plan.

(d) On a separate 2-dimensional plot, show
graphically that the problem has alterna-
tive optimal solutions if rates of return
are equal for domestic and foreign.

2-3 The Tall Tree lumber company owns 95,000
acres of forestland in the Pacific northwest, at
least 50,000 of which must be aerially sprayed
for insects this year. Up to 40,000 acres could be
handled by planes based at Squawking Eagle, and
up to 30,000 acres could be handled from a more
distant airstrip at Crooked Creek. Flying time, pi-
lots, and materials together cost $3 per acre when
spraying from Squawking Eagle and $5 per acre
when handled from Crooked Creek. Tall Tree
seeks a minimum cost spraying plan.

(a) Formulate a mathematical programming
model to select an optimal spraying plan
using decision variables x1! thousands
of acres sprayed from Squawking Eagle
and x2! thousands of acres sprayed from
Crooked Creek.

(b) Enter and solve your model with the class
optimization software.

(c) Using a 2-dimensional plot, solve your
model graphically for an optimal spray-
ing plan, and explain why it is unique.

(d) On a separate 2-dimensional plot, show
graphically that the problem is un-
bounded if the Squawking Eagle capacity
and both nonnegativity constraints are
omitted.

74 Chapter 2 Deterministic Optimization Models in Operations Research

(e) On a separate 2-dimensional plot, show
graphically that the problem becomes
infeasible if the Crooked Creek facility is
destroyed by fire.

2-4 The Fast Food Fantasy (Triple-F) hamburger
chain is attempting to respond to customer de-
mand for more healthy food by introducing a new
birdburger made from a combination of beef and
chicken. The new burger should weight at least
125 grams and have at most 350 calories, 15 grams
of fat, and 360 milligrams of sodium. Each gram
of beef used has 2.5 calories, 0.2 gram of fat, and
3.5 milligrams of sodium. Corresponding values
for chicken are 1.8 calories, 0.1 gram, and 2.5 mil-
ligrams. Triple-F wants to find the mix that will
meet all requirements and maximize beef content.

(a) Formulate a mathematical programming
model to decide an optimal birdburger
blend using decision variables x1! grams
of beef per burger and x2! grams of
chicken per burger.

(b) Enter and solve your model with the class
optimization software.

(c) Using a two-dimensional plot, solve your
model graphically for an optimal ingredi-
ent mix, and explain why it is unique.

(d) On a separate 2-dimensional plot, show
graphically that the model becomes infea-
sible if weight requirement is raised from
125 grams to 200 grams.

(e) On a separate 2-dimensional plot, show
graphically that the model is unbounded
if the minimum weight and nonnegativity
constraints are omitted.

2-5 Sun Agriculture (SunAg) operates a farm of
10,000 acres in the dry southwestern part of the
United States. In the next season SunAg can plant
acres in either vegetables, which return a profit of
approximate $450 per acre, or cotton, which returns
$200 per acre. As a precaution against bad weather,
insects, and other factors, SunAg will plant no
more than 70% of its total holdings in any one of
these options. Also, irrigation water is limited. To
grow vegetables requires 10 units (of water) per
acre, and cotton requires 7, out of a government
allocation of 70,000 units per season. SunAg wishes
to develop a planting plan that maximumes profit.

(a) Formulate a mathematical programming
model to solve SunAg’s problem using

2 main constraints, 2 upper bound con-
straints, 2 variable-type constraints, and
decision variables v = acres in vegeta-
bles and c = acres in cotton.

(b) Enter and solve your model with the class
optimization software.

(c) Using a 2-dimensional plot, find an opti-
mal plan graphically.

(d) Show graphically that if we accidentally
omitted the upper and lower bound con-
straints on the two variables, the result-
ing model would be unbounded.

(e) Now return to the correct model and
imagine that SunAg is required by govern-
ment regulation to plant all its acres. Show
graphically that this case is infeasible.

2-6 The Kazak Film company needs to cut 15
long rolls and 10 short rolls of film from stock
pieces. Each stock piece can be cut in one of two
patterns. The first produces 5 long and 2 short
rolls; the second yields 3 long and 5 short. Once
any part of a piece of stock is cut, anything that
remains is scrap. Also, neither pattern should be
used more than 4 times because the jig used to
cut it will become too inaccurate. Kazak wants
to find the allowable combination of patterns
that will minimize the number of stock pieces
required.

(a) Formulate a mathematical model to de-
cide what patterns to use. Use decision
variables x1! number of times pattern 1
is used and x2! number of times pattern
2 is used.

(b) Both variables in your model should be
restricted to take on only integer (whole
number) values. Explain why.

(c) Enter and solve your model with the class
optimization software.

(d) Using a 2-dimensional plot, solve your
model graphically for an optimal cutting
plan. Remember to consider only integer
points.

(e) Explain how your plot shows that the
model has alternative optimal solutions.

2-7 A factory is building a 500-square feet open
rectangular cooling pool for water exhausted from
its main process. The pool will be 8 feet deep, its
length should be at least twice its width, and there
is room for a width of at most 15 feet. We wish to

 Exercises 75

choose the feasible design that minimizes cost by
minimizing the concrete area of the pool walls.

(a) Formulate a mathematical programming
model with 3 main constraints to choose
an optimal design using decision variables
x1! length of the pool and x2! width of
the pool.

(b) Enter and solve your model with the class
optimization software.

(c) Using a 2-dimensional plot, solve your
model graphically for an optimal design.

(d) On a separate 2-dimensional plot, show
graphically that the problem becomes
infeasible if the pool can be at most 25
feet in length.

2-8 An architect is designing a cylindrical hotel
that will have 150,000 square feet of floor space.
She wishes to make the hotel have as many
10-feet-high floors as possible, but the height of
the building should not exceed 4 times its diam-
eter or it might be unstable. (Fractional numbers
of floors are acceptable in this rough analysis.)

(a) Formulate a mathematical program-
ming model with 2 main constraints to
choose an optimal design using decision
variables x1! diameter of the hotel in
feet and x2! number of floors.

(b) Enter and solve your model with the class
optimization software.

(c) Using a 2-dimensional plot, solve your
model graphically for an optimal design.

(d) On a separate 2-dimensional plot, show
graphically that the problem becomes in-
feasible if the diameter is limited to 50 feet.

2-9 Consider a linear program over constraint set

x1 + x2 Ú 2
-x1 + x2 Ú 0
x2 … 2
x1, x2 Ú 0

(a) Identify the feasible set in a 2-dimen-
sional plot.

(b) Devise a linear objective function for
which the LP has a unique optimal solu-
tion, and illustrate graphically.

(c) Devise a linear objective function for
which the LP has alternative optimal
solutions, and illustrate graphically.

(d) Devise a linear objective function for
which the LP is unbounded, and illustrate
graphically.

(e) Propose a constraint which, if added
to the above constraints, would make
the problem infeasible, and illustrate
graphically.

2-10 Do Exercise 2-9 for a linear program over
constraints

2x1 + 3x2 Ú 6
x1 Ú 0

2-11 Write each of the following as compactly as
possible using summation and “for all” indexed
notation.

(a) min 3y3,1 + 3y3, 2 + 4y4,1 + 4y4, 2

(b) max 1y1, 3 + 2y2, 3 + 3y3, 3 + 4y4,3

(c) max a1 y1, 4 + a2 y2, 4 + c + apyp, 4

(d) min d1 y1 + d2 y2 + c + dt yt

(e) y1, 1 + y1, 2 + y1, 3 + y1, 4 = s1

y2, 1 + y2, 2 + y2, 3 + y2, 4 = s2

y3, 1 + y3, 2 + y3, 3 + y3, 4 = s3

(f) a1, 1y1 + a2, 1y2 + a3, 1y3 + a4, 1y4 = c1

a1, 2y1 + a2, 2y2 + a3, 2y3 + a4,2y4 = c2

a1, 3y1 + a2, 3y2 + a3, 3y3 + a4, 3y4 = c3

2-12 Suppose that the decision variables of a
mathematical programming model are

xi, j, t! amount of product i produced on manu-
facturing line j during week t

where i = 1, c, 17; j = 1, c, 5; t = 1, c, 7.
Use summation and “for all” indexed notation
to write expressions for each of the following
systems of constraints in terms of these decision
variables, and determine how many constraints
belong to each system.

(a) Total production on any line in any week
should not exceed 200.

(b) The total 7-week production of product 5
should not exceed 4000.

(c) At least 100 units of each product should
be produced each week.

2-13 Repeat Exercise 2-12, this time coding
the variables and constraints in AMPL [Tables 2.4
and 2.5].

76 Chapter 2 Deterministic Optimization Models in Operations Research

2-14 Suppose that the decision variables of a
mathematical programming model are

xi, j, t! acres of land plot i allocated
to crop j in year t

where i = 1, c, 47; j = 1, c, 9; t = 1, c, 10.
Use summation and “for all” indexed notation to
write expressions for each of the following systems
of constraints in terms of these decision variables,
and determine how many constraints belong to
each system.

(a) The total acres allocated in each year to each
plot i cannot exceed the available acres there
(call it pi).

(b) At least 25% of the total acreage allocated in
each of the first 5 years years should be de-
voted to corn (crop j = 4).

(c) More acres should be devoted to beans (crop
j = 1) in each year and each plot than to any
other crop.

2-15 Repeat Exercise 2-14, this time cod-
ing the variables and constraints in AMPL as in
Table 2.4.

2-16 Assuming that decision variables are y1, . . . ,
y3, identify the objective function f, constraint
functions gi, and right-hand sides bi of the gen-
eral mathematical programming format 2.27
corresponding to each of the following optimiza-
tion models.

(a) max 1y122y2>y3

s.t. y1 + y2 + y3 + 7 = 20
2y1 Ú y2 - 9y3

y1, y3 Ú 0

(b) min 13y1 + 22y2 + 10y2y3 + 100
s.t. y1 + 5 Ú y2 - 9y3

8y2 Ú 4y3

y1, y2 Ú 0, y3 … 0

2-17 Taking the xj as variables, and all other sym-
bols as given constants, determine whether each
of the following is a linear or a nonlinear con-
straint, and briefly explain why.

(a) 3x1 + 2x2 - x17 = 9

(b) x1 + x3 = 4x6 + 9x7

(c) a>x9 + 10x13 … 100

(d) x4>a + bx13 Ú 29

(e) a 7
j = 1bj1xj22 … 10

(f) log 1x12 Ú 28x2x3

(g) max 5x1, 3x1 + x26 Ú 111

(h) a 15
j = 1 sin 1gj2xj … 33

2-18 Assuming that the wj are decision variables
and all other symbols are constant, determine
whether each of the following is a linear program
(LP) or a nonlinear program (NLP), and briefly
explain why.

(a) min 3w1 + 8w2 - 4w3

s.t. a 3
j = 1hjwj = 9

0 … wj … 10, j = 1, c, 3

(b) min 5w1 + 23>w2

s.t. 9w1 - 15w2 … w3

w1, w2 Ú 0

(c) max a 10
j = 1ajwj

s.t. 1w122 + w2w3 Ú 14

w1, w2, w3 … 1

(d) max a 40
j = 1wj> log1bj2

a 27
j = 1sjwj Ú eb

wj Ú 0 j = 1, c, 40

2-19 Determine whether a discrete or a continu-
ous variable would be most appropriate to model
each of the following quantities.

(a) Amount of electricity consumed
(b) Whether a plant should be closed.
(c) Process used to manufacture
(d) Number of storms in the coming hurri-

cane season.

2-20 The Forest Service can build a firewatch
tower on any of 8 mountains. Using decision
variables xj = 1 if a tower is built on mountain
j and = 0 otherwise, write constraint(s) enforc-
ing each of the following requirements.

(a) In all 3 sites will be selected.
(b) At least 2 of mountains 1, 2, 4, and 5 must

be selected.
(c) A tower should not be built on both

mountains 3 and 8.
(d) A tower can be built on mountain 1 only

if one is built on mountain 4.

 Exercises 77

2-21 The National Science Foundation (NSF)
has received 4 proposals from professors to un-
dertake new research in OR methods. Each pro-
posal can be accepted for funding next year at
the level (in thousands of dollars) shown in the
following table or rejected. A total of $1 million is
available for the year.

Proposal 1 2 3 4

Funding 700 400 300 600
Score 85 70 62 93

Scores represent the estimated value of doing
each body of research that was assigned by NSF’s
advisory panel.

(a) Formulate a discrete optimization model
to decide what projects to accept to max-
imize total score within the available
budget using decision variables xj = 1 if
proposal j is selected and = 0 otherwise.

(b) Enter and solve your model with the class
optimization software.

2-22 The state Department of Labor is consider-
ing the establishment of area job training centers
at up to 4 sites. The following table shows the
land cost (in thousands of dollars) of the 4 sites
and indicates with an * the sites that could pro-
vide adequate service to each of the five regions
of the state.

Site

Region 1 2 3 4

Northwest — * — *
Southwest * * — *
Capital — * * —

Northeast * — — *
Southeast * * * —

Cost 43 175 60 35

The Department seeks a minimum total cost col-
lection of sites that together could service all five
regions.

(a) Formulate a discrete optimization model
to decide what sites to build using deci-
sion variables yj = 1 if site j is selected
and = 0 otherwise.

(b) Enter and solve your model with the class
optimization software.

2-23 Assuming that the zj are decision vari-
ables, determine whether each of the follow-
ing mathematical programs is best described
as a linear program (LP), a nonlinear program
(NLP), an integer linear program (ILP), or an
integer nonlinear program (INLP), and briefly
explain why.

(a) max 3z1 + 14z2 + 7z3

s.t. 10z1 + 5z2 + 18z3 … 25
zj = 0 or 1, j = 1, c3

(b) max 7z1 + 12>z2 + z2z3

s.t. 15z1 - 11z2 Ú z3

0 … zj … 1 j = 1, c, 3

(c) min 7z1z2 + 17z2z3 + 27z1z3

s.t. a 3
j = 1zj = 2

zj = 0 or 1, j = 1, c, 3

(d) min z4

s.t. 27z1 + 33z2 + 15z3 … z4

z1, z2, z3 Ú 0

(e) max 12z1 + 4z2

s.t. z1z2z3 = 1
z1, z2 Ú 0
z3 = 0 or 1

(f) max 12z1 + 18z2 + 15z3

s.t. z1 + z2 + z3 … 14
zj Ú 0 j = 1, c, 3
z1, z3 integer

(g) max 15z1 + 19z22 >27
s.t. z1 + 20z2 … 60
z1, z2 Ú 0

(h) max 3z1z2 + 15z3

s.t. z1 + z2 … 18z3

z1, z2 Ú 0, z3 binary

2-24 Return to the mathematical programs of
Exercise 2-23. Determine which of each of the
following pairs of those models would normally
be most tractable, and briefly explain why.

(a) Model (a) versus (d)
(b) Model (b) versus (d)
(c) Model (c) versus (d)
(d) Model (e) versus (f)
(e) Model (a) versus (g)

78 Chapter 2 Deterministic Optimization Models in Operations Research

2-25 Consider the multiobjective optimization
model

max x1

max -3x1 + x2

s.t. -x1 + x2 … 4
x1 … 8
x1, x2 Ú 0

(a) Compute graphically a solution that
is optimal if only the first objective is
considered.

(b) Compute graphically a solution that is
optimal if only the second objective is
considered.

(c) Discuss the conflict inherent in trying to
maximize both objectives at once.

2-26 Do Exercise 2-25 for the multiobjective op-
timization model

min x1 + 10x2

min 12x1 + 5x2

s.t. x1 + x2 Ú 4
x1, x2 Ú 0

2-27 Mexican Communications11 is choosing
cable for a new 16,000-meter telephone line. The
following table shows the diameters available,
along with the associated cost, resistance, and
attenuation of each per meter.

Diameter
(0.1 mm)

Cost
($/m)

Resistance
(ohms/m)

Attenuation
(db/m)

 4 0.092 0.279 0.00175
 5 0.112 0.160 0.00130
 6 0.141 0.120 0.00161
 9 0.420 0.065 0.00095
12 0.719 0.039 0.00048

The company wishes to choose the least cost com-
bination of wires that will provide a new line with
at most 1600 ohms resistance and 8.5 decibels
attenuation.

(a) Formulate a mathematical programming
model with three main constraints to
choose an optimal combination of wires
using decision variables (d = 4, 5, 6, 9, 12)

xd! meters of diameter d wire used

Assume that resistance and attenuation
grow linearly with the length of the wire
used.

(b) Enter and solve your model with class
optimization software.

2-28 The city of Lancaster’s water distribution
system12 has 3 wells for water supply. There are 10
pumps at these 3 wells. It is estimated that a pump-
ing rate of 10,000 gallons per minute is needed to
satisfy the city’s total water demand. There are
limits on how much water can be pumped from
each well: 3000 gal/min from well 1; 2500 gal/min
from well 2; 7000 gal/min from well 3. There are
also different costs of operating each pump and
limits on the rate of each pump:

Pump
Maximum
(gal/min)

Cost
($/gal/min)

From
Well

 1 1100 0.05 1
 2 1100 0.05 2
 3 1100 0.05 3
 4 1500 0.07 1
 5 1500 0.07 2
 6 1500 0.07 3
 7 2500 0.13 1
 8 2500 0.13 2
 9 2500 0.13 3
10 2500 0.13 3

Lancaster wishes to determine the least cost way
to meet its pumping needs.

(a) Explain why appropriate decision vari-
ables for a model of this problem are
1j = 1, c, 102
xj! pump rate per minute of pump j

(b) Assign suitable symbolic names to the
constants of the cost and maximum rate
values in the table above.

(c) Formulate an objective function to mini-
mize the cost of the pumping plan selected.

(d) Formulate a system of 3 constraints en-
forcing well capacities.

11Based on L. F. Hernandez and B. Khoshnevis (1992), “Optimization of Telephone Wire Gauges for
Transmission Standards,” European Journal of Operational Research, 58, 389–392.

12Based on S. C. Sarin and W. El Benni (1982), “Determination of Optimal Pumping Policy of a
Municipal Water Plant,” Interfaces, 12:2, 43–48.

 Exercises 79

(e) Formulate a system of 10 constraints en-
forcing pump capacities.

(f) Formulate a single constraint enforcing
the overall pumping requirement.

(g) Complete your model with an appropri-
ate system of variable-type constraints.

(h) Is your model best classified as an LP, an
NLP, an ILP, or an INLP, and is it single-
or multiobjective? Explain.

(i) Enter and solve your model with class
optimization software.

2-29 A small engineering consulting firm13 is
establishing its plan for the next year. The direc-
tor and the three partners are to meet to decide
which projects to pursue.

Preliminary research has been done on
eight projects. The expected profit for each pro-
ject is given in the following table together with
the number of person-days of background prepa-
ration each will require and the computer pro-
cessing unit (CPU) time (in hours) each will use.

Project Profit Person-Days CPU

1 2.1 550 200
2 0.5 400 150
3 3.0 300 400
4 2.0 350 450
5 1.0 450 300
6 1.5 500 150
7 0.6 350 200
8 1.8 200 600

Excluding downtime, it is estimated that
1000 CPU hours will be available through the
year. Presently there are 10 engineers (including
the director and the partners); each works 240
days per year. At most three engineers could be
let go, and management does not want to hire
any new engineers for next year, due to market
uncertainties. A minimum of 3 projects need to
be selected, so each partner will be in charge of
at least one project for the year. The director has
four favorite projects (3, 4, 5, and 8), and the com-
pany needs to select at least one of these.

The firm wishes to formulate an optimization
model to determine which projects to undertake,

assuming that projects must be selected on an all-
or-nothing basis.

(a) Justify why appropriate decision vari-
ables for the model are 1j = 1, c, 82.

xi! e1 if project j is selected
0 otherwise

(b) Assign suitable symbolic names to the
constants in the foregoing table.

(c) Formulate an objective function to max-
imize total profit from projects selected.

(d) Formulate a pair of constraints to enforce
the minimum and maximum engineer
person-days available with different num-
bers laid off.

(e) Formulate 3 constraints to enforce the limit
on computer time, meet the requirement
to select at least three projects, and include
at least one of the director’s favorites.

(f) Complete your model with an appropri-
ate system of variable-type constraints.

(g) Is your model best classified as an LP, an
NLP, an ILP, or an INLP, and is it single-
or multiobjective? Explain.

(h) Enter and solve your model with class
optimization software.

2-30 A major expansion of the Brisbane airport14
will require moving substantial quantities of earth
from 4 sites where it is surplus to 7 locations where
it is needed. The following table shows the haul dis-
tances (hundreds of meters) between points, as well
as the quantity available (m3) at each surplus site.

Need Site

Surplus Site

Apron Term. Cargo Access

Extension 26 28 20 26
Dry pond 12 14 26 10
Roads 10 12 20 4
Parking 18 20 2 16
Fire station 11 13 6 24
Industrial park 8 10 22 14
Perimeter road 20 22 18 21

Quantity available 660 301 271 99

13Based on R. B. Gerdding and D. D. Morrison (1980), “Selecting Business Targets in a Competitive
Environment,” Interfaces, 10:4, 34–40.

14Based on C. Perry and M. Iliff (1983), “From the Shadows: Earthmoving on Construction Projects,”
Interfaces, 13:1, 79–84.

80 Chapter 2 Deterministic Optimization Models in Operations Research

Quantities needed are 247 cubic meters at the ex-
tension, 394 at the dry pond, 265 along roads, 105
in the parking area, 90 at the fire station, 85 in the
industrial park, and 145 along the perimeter road.
The site engineer wishes to compute a minimum
total distance times volume plan for accomplish-
ing the required earth moving.

(a) Explain why appropriate decision vari-
ables for a model of this problem are
1i = 1, c, 4, j = 1, c, 72
xi, j! cubic meters moved from surplus
 i to need j

(b) Assign suitable symbolic names to the
constants of the problem.

(c) Formulate an objective function to
minimize total distance times volume
movement.

(d) Formulate a system of 4 main constraints,
assuring that the full available amount is
moved from each surplus site.

(e) Formulate a system of 7 main constraints,
assuring that the required amount is
moved to each needing location.

(f) Complete your model with an appropri-
ate system of variable-type constraints.

(g) Is your model best classified as an LP, an
NLP, an ILP, or an INLP, and is it single-
or multiobjective? Explain.

(h) Enter and solve your model with class
optimization software.

2-31 The state highway department would like to
have a formula for estimating the snow removal
cost of each snow event as a function of the num-
ber of inches of snow to fall. A sample of n falls fj
and corresponding removal costs cj, j = 1, c, n,
has been collected from history. Now the depart-
ment would like to fit these data to an S-shaped
curve of the form

c =
k

1 + ea + bf

in a way that minimizes the sum of squared errors.
Here k, a, and b are empirical parameters of arbi-
trary sign.

(a) Explain why the decision variables in this
optimization problem are k, a, and b.

(b) Formulate an unconstrained optimization
model to perform the desired curve fit.

(c) Is your model best classified as an LP, an
NLP, an ILP, or an INLP, and is it single-
or multiobjective?

2-32 The Blue Hills Home Corporation (BHHC)15
employs 22 remedial education teachers to ser-
vice special needs students at 22 schools in the
St. Louis area. BHHC assigns its teachers to
schools for an entire year and is presently mak-
ing decisions for the current year. One assign-
ment consideration is cost; BHHC reimburses
its teachers the cost ci, j of teacher i traveling to
school j. However, the assignment must also con-
sider 3 sets of preferences. Teachers express pref-
erences scores ti, j of teacher i being assigned to
school j, BHHC supervisors express preferences
si, j, and school principals provide scores pi, j. In
all three cases a higher score indicates a greater
preference.

(a) Explain why appropriate decision
variables for a mathematical pro-
gramming model of this problem are
1i, j = 1, c, 222

xi, je
1 if teacher i is assigned to school j
0 otherwise

(b) Using these decision variables and the
symbolic input constants above, express
all BHHC assignment goals as separate
objective func tions.

(c) Write a system of 22 constraints express-
ing the requirement that each teacher be
assigned to exactly one school.

(d) Write a system of 22 constraints express-
ing the requirement that each school be
assigned exactly one teacher.

(e) Complete your model with an appropri-
ate system of variable-type constraints.

(f) Is your model best classified as an LP, an
NLP, an ILP, or an INLP, and is it single-
or multiobjective? Explain.

15Based on S. Lee and M. J. Schniederjans (1983), “A Multicriteria Assignment Problem: A Goal
Programming Approach,” Interfaces, 13:4, 75–81.

 Exercises 81

2-33 Professor Proof is trying to decide which of
6 needed teaching assistant tasks he will assign to
each of his 2 graduate assistants. Naturally, one
assistant would probably be better at some tasks
and the other assistant better at others. The fol-
lowing table shows his scoring of their potentials
(high is good).

Assistant

Task

1 2 3 4 5 6

0 100 85 40 45 70 82
1 80 70 90 85 80 65

Professor Proof wants to assign three tasks to
each assistant. However, tasks 5 and 6 are related
and should be assigned to the same assistant.

(a) Explain why appropriate decision vari-
ables for an optimization model of this
problem are 1j = 1, c, 62

xj! e0 if task j is assigned to 0
1 if task j is assigned to 1

(b) Formulate an objective function to maxi-
mize the potential of the assignment cho-
sen. (Hint: 1 - xj = 1 when xj = 0.)

(c) Formulate a single main constraint to en-
force requirements that at each assistant
be assigned three tasks.

(d) Formulate a single main constraint to en-
force the requirement that tasks 5 and 6
go to the same assistant.

(e) Complete your model with an appropri-
ate system of variable-type constraints.

(f) Is your model best classified as an LP, an
NLP, an ILP, or an INLP, and is it single-
or multiobjective? Explain.

(g) Enter and solve your model with class op-
timization software.

2-34 Fast Food Fantasy (Triple-F) cooks differ-
ent types of hamburgers j = 1, c, 4 in batches.
A batch of burger j consists of at most uj units
and requires the entire cooking grill for tj minutes.
Assuming that the hourly demand for each burger
is a known quantity dj, Triple-F would like to decide
the best batch size for each product. All required
batches (and fractions of batches) must fit within
the available grill time each hour, and the time re-
quired to sell out each burger should be minimized
so that none will get too cold waiting to be sold.

(a) Explain why appropriate decision variables
for a mathematical programming model of
this problem are 1j = 1, c, 42

xj! batch size of burger j

(b) Formulate a system of 4 objective functions,
minimizing the time to sell out batches of
each burger assuming that demand is smooth
over time.

(c) Formulate a single constraint assuring that
all batches needed to meet demand each
hour can be cooked.

(d) Complete your model with a suitable system
of upper-bound and variable-type constraints.

(e) Is your model best classified as an LP, an
NLP, an ILP, or an INLP, and is it single- or
multiobjective? Explain.

2-35 The Kitty Railroad is in the process of
planning relocations of freight cars among the
5 regions of the country to get ready for the fall
harvest. The following table shows the cost of
moving a car between each pair of regions, along
with the number of cars in each at present and the
number needed for harvest shipping.

Region

From 1 2 3 4 5

1 — 10 12 17 35
2 10 — 18 8 46
3 12 18 — 9 27
4 17 8 9 — 20
5 35 46 27 20 —

Present 115 385 410 480 610

Need 200 500 800 200 300

We want to choose a reallocation plan to get the
required number of cars in each region at mini-
mum total moving cost.

(a) Briefly justify why appropriate decision vari-
ables for this problem are 1i, j = 1, c, 5,
 i ≠ j2,

xi, j ! number of cars moved from region
i to region j

(b) The numbers of cars xi, j must physically be
integer (whole numbers), but it is proba-
bly better to model them as continuous.
Explain why.

82 Chapter 2 Deterministic Optimization Models in Operations Research

(c) Assign symbolic names for the constants
in the foregoing table.

(d) Write an objective function minimizing
total movement cost.

(e) Write a system of 5 main constraints, as-
suring that the net number of cars in each
region after the move will meet the need.

(f) Complete your model with an appropri-
ate system of variable-type constraints.

(g) Is your model best classified as an LP, an
NLP, an ILP, or an INLP, and is it single-
or multiobjective? Explain.

(h) Enter and solve your model with class
optimization software.

2-36 A large copper company16 has 23 plants,
each of which can burn 4 different kinds of fuels
to produce the energy needed in smelting. Energy
requirements at each plant p are known quanti-
ties rp. We also know the energy output ef of each
ton of fuel f burned and the quantity of sulfur pol-
lution sf released per ton of fuel f burned. Costs
vary by location, but estimates cf, p are available
of the cost per ton for fuel f at plant p. We want
to choose mixes of fuels at plants to fulfill energy
needs while minimizing both cost and pollution.

(a) Briefly justify why appropriate de-
cision variables for this problem are
1f = 1, c, 4; p = 1, c, 232
xf, p ! amount of fuel f burned at plant p

(b) Write an objective function minimizing
total energy cost.

(c) Write an objective function minimizing
total sulfur pollution.

(d) Write a system of main constraints re-
quiring that sufficient energy be pro-
duced at each plant. Also indicate how
many constraints there are in this system.

(e) Complete your model with an appropri-
ate system of variable-type constraints.
Also indicate how many constraints there
are in this system.

(f) Is your model best classified as an LP, an
NLP, an ILP, or an INLP, and is it single-
or multiobjective? Explain.

2-37 Alabama Cabinet17 runs a sawmill produc-
ing wood panels called “blanks” for cabinetmak-
ing. Some of the wood comes from logs sawed into
boards at the company’s mill, and the remainder
derives from boards purchased green (undried).
Lumber from both sources must be dried in the
company’s kilns before being cut into blanks.

Following are two tables, the first of which
shows the purchase price per log, yield of green
lumber per log, and availability for each of the
three log diameters. Each board foot of green lum-
ber sawed from logs gives 0.09 blank. The second
table shows the price, yield in blanks, and availa-
bility of the two grades of purchased green lumber.

Logs Purchased

Diameter $/Log Bd-ft Logs/Week

10 70 100 50
15 200 240 25
20 620 400 10

Lumber Purchases

Grade $/bd-ft Blanks/bd-ft Bd-ft/Week

1 1.55 0.10 5000
2 1.30 0.08 Unlimited

We seek a minimum cost plan for producing at
least 2350 blanks per week with the current mill’s
capacity to saw 1500 logs and dry 26,500 board
feet of lumber each week.

(a) Explain why suitable decision variables
for this model are

xd! number of logs of diameter d pur-
chased (d = 10, 15, 20)

yg! board feet of green lumber grade g
purchased) g = 1, 2)

(b) Numbers xd must physically be integer
(whole numbers), but it makes sense to
model them as continuous. Explain why.

(c) Formulate an objective function mini-
mizing total material purchase cost. (We
assume that other costs are essentially
fixed.)

16Based on R. L. Bulfin and T. T. deMars (1983), “Fuel Allocation in Processing Copper Ore,” IIE
Transactions, 15, 217–222.

17Based on H. F. Carino and C. H. LeNoir (1988), “Optimizing Wood Procurement in Cabinet
Manufacturing,” Interfaces, 18:2, 10–19.

 Exercises 83

(d) Formulate a main constraint assuring
that the required number of blanks will
be produced.

(e) Formulate 2 main constraints enforcing
sawing and drying capacities.

(f) Formulate 4 upper-bound constraints on
decision variables.

(g) Complete your model with a suitable sys-
tem of variable-type constraints.

(h) Is your model best classified as an LP, an
NLP, an ILP, or an INLP, and is it single-
or multiobjective? Explain.

(i) Enter and solve your model with class
optimization software.

2-38 The Bottles Film Festival draws thousands of
people each year to view some of the latest motion
pictures and award medals for the best. Planners
are now selecting one of time slots t = 1, c, n for
each of the j = 1, c, m films to be shown. From
past experience, the festival can estimate numbers
aj, j=! number of guests who would like to watch
both film j and file j =. Now they wish to schedule
the films so that no more than 4 are shown at any
time and the minimum total number of guests are
inconvenienced by two movies they would like to
see being scheduled at the same hour.

(a) Explain why appropriate decision
variables for a mathematical pro-
gramming model of this problem are
1j = 1, c, m, t = 1, c, n2

xj, t ! e
1 if j occurs at t
0 otherwise

(b) Formulate an objective function to mini-
mize the total number of guests inconve-
nienced by movies scheduled at the same
time. (Hint: When xj, t xj=, t = 1, films j and
j = are scheduled at the same time t.)

(c) Formulate a system of m constraints as-
suring that each film is scheduled at some
time.

(d) Formulate a system of n constraints as-
suring that no more than 4 movies are
schedule at any time.

(e) Complete your model with an appropri-
ate system of variable-type constraints.

(f) Is your model best classified as an LP, an
NLP, an ILP, or an INLP, and is it single-
or multiobjective? Explain.

(g) Code your model in AMPL (paralleling
Tables 2.6 and 2.7).

2-39 To improve tax compliance18 the Texas
Comptroller’s staff regularly audits at corporate
home offices the records of out-of-state corpora-
tions doing business in Texas. Texas is consider-
ing the opening of a series of small offices near
these corporate locations to reduce the travel
costs now associated with such out-of-state au-
dits. The following table shows the fixed cost (in
thousands of dollars) of operating such offices at
5 sites i, the number of audits required in each
of 5 states j, and the travel cost (in thousands of
dollars) per audit performed in each state from a
base at any of the proposed office sites.

Tax
Site

Fixed
Cost

Cost to Audit
of Corporate Location:

1 2 3 4 5

1 160 0 0.4 0.8 0.4 0.8
2 49 0.7 0 0.8 0.4 0.4
3 246 0.6 0.4 0 0.5 0.4
4 86 0.6 0.4 0.9 0 0.4
5 100 0.9 0.4 0.7 0.4 0

Audits 200 100 300 100 200

We seek a minimum total cost auditing plan.

(a) Briefly explain why appropriate decision
variables for an optimization model of
this problem are

xi, j! fraction of audits at j done from i

yi! e1 if office i is opened
0 otherwise

(b) Explain why the yi must be modeled as
discrete.

(c) Assign suitable symbolic names to the con-
stants in the foregoing table: the fixed cost
of office i, the travel cost for audits done at
j from i, and the number of audits at j.

(d) Formulate an objective function mini-
mizing the sum of fixed office operating

18Based on J. A. Fitzsimmons and L. A. Allen (1983), “A Warehouse Location Model Helps Texas
Comptroller Select Out-of-State Tax Offices,” Interfaces, 13:5, 40–46.

84 Chapter 2 Deterministic Optimization Models in Operations Research

cost plus travel costs to audit sites. (Hint:
The number of audits done at i from j is
xi, j times the total number required at j.)

(e) Formulate a system of 5 main constraints
requiring that 100% of audits at each j be
performed.

(f) Formulate a system of 25 main constraints
specifying that no part of the audits at any
j can be done from i unless an office is
opened at i.

(g) Complete your model with systems of
variable-type constraints for the x and y
decision variables.

(h) Is your model best classified as an LP, an
NLP, an ILP, or an INLP, and is it single-
or multiobjective? Explain.

(i) Enter and solve your model with class op-
timization software.

(j) Code your model in AMPL (paralleling
Table 2.7).

2-40 Channel 999 TV has staff to provide on-scene
coverage of up to 4 high school football games this
Friday. The following table indicates 3 possibili-
ties are in the town where Channel 999 is located.
At least 2 of them must be covered, as well as at
least 1 out of town. The table below shows 4 of
the games involve a team likely to compete for
the state championship, at least 2 of which must
be covered. Games must be fully covered or not at
all. Within these requirements Channel 999 wants
to maximize its total audience across the ratings
points shown for possible game choices.

Game Number 1 2 3 4 5 6 7 8

In town? Y Y Y

State champ? Y Y Y Y

Ratings points 3.0 3.7 2.6 l.8 l.5 1.3 l.6 2.0

(a) Formulate (but do not solve) a math-
ematical program to compute optimal
choice of games to cover. Be sure to de-
fine your decision variables and briefly
annotate the objective function, and each
(main or variable-type) constraint with a
few words indicating its meaning.

(b) Code your model in AMPL (paralleling
Tables 2.6 and 2.7).

(c) Is your model best described as an LP, an
ILP, an NLP, or an INLP? Why?

2-41 The Speculators Fund is a stock mutual
fund investing in categories j = 1, c, n of com-
mon stocks. At least a fraction /j and at most
fraction uj of the fund’s capital is invested in any
category j. The fund maintains estimates, vj, of
the expected annual return in capital gain and
dividends for each dollar invested in category j.
They also estimate the risk, rj, per dollar invested
in each category j. The goal is to maximize return
at minimum risk.

(a) Explain why appropriate decision vari-
ables for a model of this problem are

xj ! fraction of fund capital invested in
category j

(b) Formulate an objective function max-
imizing expected return per dollar
invested.

(c) Formulate an objective function minimiz-
ing risk per dollar invested assuming that
risks for different categories are indepen-
dent of one another.

(d) Formulate a main constraint assuring
that 100% of the fund’s capital is in-
vested somewhere.

(e) Formulate a system of n constraints en-
forcing lower bounds on the fraction of
fund capital invested in each category.

(f) Formulate a system of n constraints en-
forcing upper bounds on the fraction of
fund capital invested in each category.

(g) Is your model best classified as an LP, an
NLP, an ILP, or an INLP, and is it single-
or multiobjective? Explain.

2-42 Engineers19 are designing the location
for modules i = 1, c, m from among the
j = 1, c, n available sites on a computer board.
They already know

ai,i=! •
1

0

 if a wire is required from
module i to module i =

otherwise

dj,j=! distance between sites j and j =

19Based on L. Steinberg (1961), “The Backboard Wiring Problem: A Placement Algorithm,” SIAM
Review, 3, 37–50.

 Exercises 85

Using this information, they wish to choose a
combination of locations that will minimize the
total wire length required.

(a) Explain why appropriate decision vari-
ables for a model of this problem are
1i = 1, c, m; j = 1, c, n2

xj,t! e1 if i goes to site j
0 otherwise

(b) Explain why the length of any wire re-
quired between modules i and i =. can be
expressed as

a
n

j = 1
 a

n

j= = 1
 dj,j= xi,j= di=,j=

(c) Use the expression of part (b) to formulate
an objective function minimizing total wire
length.

(d) Formulate a system of m constraints as-
suring that each module is assigned a
location.

(e) Formulate a system of n constraints as-
suring that each location gets at most one
module.

(f) Complete your model with an appropri-
ate system of variable-type constraints.

(g) Is your model best classified as an LP, an
NLP, an ILP, or an INLP, and is it single-
or multiobjective? Explain.

(h) Code your model in AMPL (paralleling
Tables 2.6 and 2.7)

2-43 Consider the following model and data sections of AMPL input for a
mixed-integer linear program.

model;

param p;

param q;

set prods := 1 .. p;

set procs := 1 .. q;

param a{i in procs, j in prods};

param b{i in procs};

param v{j in prods};

param f{i in procs};

var x{j in prods} >= 0;

var y{i in procs} integer >= 0;

maximize net: sum{j in prods} v[j]*x[j]-sum{i in procs} f[i]*y[y];

subject to

caps{ i in procs }: sum{j in prods} a[i, j]*x[j] <= b[i]*y[i];

dem: sum{j in prods } x [j] >= 205;

cnt: sum{i in procs } Y [i] <= 2;

data;

param p:= 4;

param q:= 3;

param v:= 1 199 2 229 3 188 4 205;

param b:= 1 2877 2 2333 3 3011;

param f:= 1 180 2 224 3 497;

param a: 1 2 3 4 :=

1 0 0 23 41

2 14 29 0 0

3 0 0 11 27 ;

Determine the corresponding MILP in standard mathematical format with all constant
values shown explicity.

86 Chapter 2 Deterministic Optimization Models in Operations Research

2-44 Consider the following model and data sections of AMPL input for a linear program.

model;
param m;

param n;

param l;

set plants := 1 .. n;

set procs := 1 .. m;

set periods := 1 .. 1;

param p{i in procs, j in plants, t in periods};

param b{i in procs, t in periods};

param r{j in plants t in periods};

param d{t in periods};

var x{j in plants, t in periods} >= 0;

maximize retn: sum{j in plants, t in periods} r[j, t]*x[j, t];

subject to

caps{ i in procs, t in periods}: sum{j in plants} p[i, j, t]*x[j, t] <= b[i, t];

demd {t in periods}: sum{j in plants} x[j, t] >= d[t];

data;

param l := 4;

param m := 2;

param n := 3;

param d := 1 200 2 300 3 250 4 500;

param r: 1 2 3 4 :=

1 11 15 19 10

2 19 23 44 67

3 17 18 24 55

param b: 1 2 3 4 :=

1 7600 8200 6015 5000

2 6600 7900 5055 7777 ;

param p: 1 2 3 4 :=

1 1 15 19 23 14

1 2 24 26 18 33

1 3 17 13 16 14

2 1 31 25 39 29

2 2 26 28 22 31

2 3 21 17 20 18 ;

Do Exercise 2-43 for this AMPL encoding to show the LP in standard mathematical format
with all constant values shown explicitly.

REFERENCES

Fourer, Robert, David M. Gay, and Brian W.
Kernighan (2003), AMPL; A Modeling Language
for Mathematical Programming, Thomson-
Brooks-Cole, Canada.

Hillier, Fredrick S. and Gerald J. Lieberman
(2001), Introduction to Operations Research,
McGraw-Hill, Boston.

Taha, Hamdy (2011), Operations Research - An
Introduction, Prentice-Hall, Upper Saddle River,
New Jersey.

Winston, Wayne L. (2003), Operations Research -
Applications and Algorithms, Duxbury Press,
Belmont California.

87

▪ ▪ ▪ ▪ ▪
Chapter 3

Improving Search

To this point we have encountered a variety of types and sizes of deterministic
 optimization models but succeeded in analyzing only one or two. The time has come
to begin looking seriously at solution methods.

Some optimization models admit closed-form solutions or similarly elegant
analysis, but the overwhelming majority are approached by numerical search—
repeatedly trying different values of the decision variables in a systematic way until
a satisfactory one emerges. In fact, most optimization procedures can be thought of
as variations on a single search theme: improving search.

Improving search tries to better a current solution by checking oth-
ers nearby. If any proves superior, the search advances to such a solution, and
the process repeats. Otherwise, we stop with the current solution. Synonyms
for improving search include local improvement, hillclimbing, local search, and
neighborhood search.

Improving search is one of the major themes of the book, and this chapter
provides an elementary introduction. We explore the main strategies underlying
improving search algorithms and identify special cases that prove particularly trac-
table. Familiarity with the model classifications of Chapter 2 is assumed.

Readers are strongly advised to absorb thoroughly the central ideas treated
in this chapter before proceeding to the rest of the book. Much later development
builds directly on Chapter 3.

3.1 ImprovIng Search, LocaL, and gLobaL optIma

Searching means hunting, and improving searches are hunts. We trek through
a sequence of choices for decision variables, trying to find one good enough to
justify stopping.

88 Chapter 3 Improving Search

Solutions
Solutions are the points visited in a search.

A solution is a choice of values for all decision variables.Definition 3.1

For a model with decision vector x, the first solution visited by
a search is denoted x102, the next x112, and so on.

Definition 3.2

For example, in the Two Crude model of Section 2.1, which had decision
variables

 x1 ! thousands of barrels of Saudi crude refined per day

 x2 ! thousands of barrels of Venezuelan crude refined per day

a solution is a choice of two nonnegative quantities x1 and x2.
Notice that a solution need not be an “answer.” Any pair of nonnegative

real numbers forms a solution in the Two Crude case, but we were satisfied in our
analysis only by an optimal solution—one that conforms to all constraints and
minimizes cost.

Solutions as Vectors
If an optimization model has n decision variables, solutions are n-dimensional. It is
convenient to deal with them as n-vectors—linear arrays of n components. For ex-
ample, a Two Crude example solution refining 3 thousand barrels of Saudi crude per
day and 2 thousand barrels of Venezuelan can be expressed as the vector x = 13, 22
with components x1 = 3 and x2 = 2.

Since improving search is about moving among such whole solutions, we use
vector representations in most of our discussion. Primer 1 reviews vector notations
and computations for those who feel rusty. We employ superscripts on solution vec-
tors to indicate the order in which they are explored by a search.

exampLe 3.1: expreSSIng SoLutIonS aS vectorS

The following table shows the sequence of solutions encountered by an improving
search of an optimization model with 4 decision variables.

x1 x2 x3 x4

1 0 1 2
1 1 -2 4
2 1 -1 4
5 1 -1 6

(a) Express the solutions in standard vector notation 3.2 .

(b) Identify the value of x1
132 and x3

112 in part (a).

3.1 Improving Search, Local, and Global Optima 89

PrImer I: VectorS

A scalar is a single real number such as 2, -0.25, 37 , 117, or p. Scalar variables
such as x , y6 , ∆p, and a are those that take on scalar values. Notice that we
always show scalar variables in italic type.

Computations in operations research often involve procedures working
on several quantities or variables at the same time. It is convenient to write
such operations in terms of vectors—one-dimensional arrays of scalars. The
vector may be displayed either vertically or horizontally. In this book it makes
no difference. Representations£ 3

 13
-2

≥ = 13, 13, -22

are just vertical and horizontal presentations of the same vector.
The number of scalars in a vector is its dimension. The example above is

a 3-vector because it has dimension 3. We term the scalars making up a vector
its components. Thus the second component of the example above is 13.

Vector variables represent vectors of scalar quantities. In this book, vec-
tor variables are typeset in boldface (e.g., x, a, ∆p), and their components are
indicated by subscripts. Thus if p is a 5-vector (five-dimensional) variable, one
possible value would be p = 10, -2, 25, 0, 112 with components p2 = -2 and
p5 = 11. In this book we distinguish vectors with superscripts in parentheses.
That is, y172 and y1132 represent distinct vectors having third components y3

172
and y3

1132, respectively.
There are two closely related ways to conceptualize vectors geometri-

cally. One scheme simply thinks of an n-vector as a point in n-dimensional
space having coordinates equal to its components. For example, 2-vectors
x112 = 12, -32 and x122 = 14, 12 correspond to points 12, -32 and (4, 1) in
plot (a) in the following figure. The alternative conceptualization sees vectors
as movements in n-space with components indicating displacements in differ-
ent coordinates. Arrows in part (b) illustrate that this is exactly the same thing
if movement is assumed to begin at the origin.

x2 x2

x1 x1

(a) (b)

x(1) = (2, -3) x(1) = (2, -3)

x(2) = (4, 1) x(2) = (4, 1)

(Continued)

90 Chapter 3 Improving Search

The length or norm of n-vector x, denoted ‘x ‘ , is defined accordingly:

‘x ‘ ! Ca
n

j = 1
1xj22

For example, ‘x112 ‘ above is 31222 + 1-322 = 113.
Vectors of the same dimension are added and subtracted component by

component. Thus for x112 = 14, 12 and x122 = 12, -32 above,

x112 + x122 = a 2 + 4
-3 + 1

b = a 6
-2

b , x112 - x122 = a 2 - 4
-3 - 1

b = a -2
-4

b

Similarly, scalar multiples of vectors are formed by simply multiplying each
component by the scalar. Using the same x112 and x122 gives

 0.3x112 = 10.3122, 0.31-322 = 10.6, -0.92
 x112 + 0.3x122 = 12 + 0.3142, -3 + 10.321122 = 13.2, -2.72

The plots in the following figure demonstrate that these arithmetic op-
erations also have a geometric interpretation. Adding vectors x112 and x122 has
the effect of concatenating their associated movements in part (a). Similarly,
in part (b), subtracting x122 from x112 extends x112’s movement by the negative
of x122’s, and x112 + 0.3x122 combines x112 with 3

10 of x122.

x2 x2

x1 x1

(a) (b)

x(2) = (4, 1)

x(1) = (2, -3)

x(1) - x(2) = (-2, -4)

x(1) + x(2) = (6, -2)
x(1) + 0.3x(2) = (3.2, -2.7)

x(1) = (2, -3)

x(2) = (4, 1)

Vectors of the same dimension can also be multiplied. Although it seems
natural to define the product of two vectors as the product of components, a
less intuitive definition of multiplication is the one convenient in operations
research. The dot product of two n-vectors x and y is the scalar quantity

x # y ! y # x ! a
n

j = 1
 xj yj

(Continued)

3.1 Improving Search, Local, and Global Optima 91

For example, the 2-vectors x112 and x122 above yield x112 # x122 = x122 # x112 =
2142 + 1-32112 = 3. Notice that the dot product of vectors is indicated sim-
ply by writing the vectors with a multiplication dot between, and that it makes
no difference which vector is mentioned first.

We want multiplication of vectors to mean a dot product because we
then have an easy way to denote weighted sums. For example, when we
wish to show that the numbers x1, x2, c, x6 are summed with the weights
w1, w2, c, w6, the result is exactly w # x, where w is the vector of wj and x
the vector of xj.

Solution:

(a) In the notation of 3.2 the four solutions are

 x102 = 11, 0, 1, 22
 x112 = 11, 1, -2, 42
 x122 = 12, 1, -1, 42
 x132 = 15, 1, -1, 62

(b) The first component of solution 3 is x1
132 = 5. The third component of solution

1 is x3
112 = -2.

appLIcatIon 3.1: dcLub LocatIon

To illustrate some search ideas, consider the fictitious problem of choosing a loca-
tion for the latest DClub discount department store. Dots on the map in Figure 3.1
show the three population centers of the area to be served. Population center 1 has
approximately 60,000 persons, center 2 has 20,000, and center 3 has 30,000.

DClub wishes to locate one new store somewhere in the area in a way that maxi-
mizes business from the three populations. The obvious decision variables are x1 and x2,
the coordinates of the chosen location.

The new store can be located anywhere except in the congested areas within
1
2 mile of each population center. That is, constraints of the model are

 [x1 - 1-12]2 + 1x2 - 322 Ú 11
222

 1x1 - 122 + 1x2 - 322 Ú 11
222

 1x1 - 022 + [x2 - 1-42]2 Ú 11
222

Figure 3.1 shades the corresponding feasible set.
For an objective function, assume that experience shows that the business at-

tracted from any population follows a “gravity” pattern—proportional to population
(here in thousands) and inversely proportional to 1 + the square of its distance from

92 Chapter 3 Improving Search

-5 0 5

x2

x1

population 3
(30,000)

population 1
(60,000)

population 2
(20,000)

-5

0

5

FIgure 3.1 DClub Location Application

the chosen location. Using this relationship and the coordinates of the three population
centers, our objective function becomes

 max p1x1, x22! 60
1 + 1x1 + 122 + 1x2 - 322 +

20
1 + 1x1 - 122 + 1x2 - 322

(3.1)
+

30
1 + 1x122 + 1x2 + 422

Figure 3.2 provides a 3-dimensional view of the DClub example’s nonlinear
objective function. The peak occurs near population center 1. Figure 3.3 gives an
easier-to-read contour view (as in Section 2.2) of the full model,

 max p1x1, x22! 60
1 + 1x1 + 122 + 1x2 - 322 +

20
1 + 1x1 - 122 + 1x2 - 322

+
30

1 + 1x122 + 1x2 + 422 1patronage2

(3.2)
s.t. 1x1 + 122 + 1x2 - 322 Ú 1

4 1avoid 12
1x1 - 122 + 1x2 - 322 Ú 1

4 1avoid 22
1x1 - 022 + 1x2 + 422 Ú 1

4 1avoid 32
As usual, dashed lines connect points of equal objective value.

We want to maximize patronage p1x1, x22 subject to avoiding congested circular
areas around population centers. The point marked x142 in Figure 3.3 is (approximately)
optimal because it is the feasible point falling on the highest contour (principle 2.13).

3.1 Improving Search, Local, and Global Optima 93

Example of an Improving Search
Figure 3.3 also traces an improving search leading to optimal DClub solution x142.
Beginning at

x102 = 1-5, 02 with p1x1022 ≈ 3.5

it advances through solutions

x112 = 1-3, 42 with p1x1122 ≈ 11.5
x122 = 1-1, 4.52 with p1x1222 ≈ 21.6
x132 = 10, 3.52 with p1x1322 ≈ 36.1

to optimum

x142 = 1-0.5, 32 with p1x1422 ≈ 54.8

Do not be concerned at the moment about where the various moves come from.
Most of this chapter deals with principles for constructing such a search sequence.

For now, simply notice why we call it an improving search. The process be-
gins with a feasible solution x102 and passes exclusively through feasible points.
Furthermore, contours show that the objective function value constantly improves
along the search path.

-5
0

5 -5
0

5

0

10

20

30

40

50

60

70

x1
x2

p(x1, x2)

FIgure 3.2 Three-Dimensional View of the DClub Patronage Function

Improving searches are numerical algorithms that begin at a
feasible solution to a given optimization model and advance along a search
path of feasible points with ever-improving objective function value.

Definition 3.3

94 Chapter 3 Improving Search

Neighborhood Perspective
For optimization models small enough to graph, as in Figure 3.3, it is easy to spot
whether a search path maintains feasibility and constantly improves the objective
function. Identifying optimal solutions is not much harder.

Unfortunately, such a global viewpoint is unavailable in typical models which
have many decision variables. What we normally have to work with is illustrated by
Figure 3.4. That plot zooms in on the region around x142 = 1-0.5, 32 and blanks out
the rest of the graph. We can tell something of the shape of the objective function
near x142, and we can see the constraint limiting movement to the left. But we know
nothing about other parts of the feasible region.

-10

-5

-5 0 5

0

5

10

x(2) = (-1, 4.5)x(1) = (-3, 4)

x(0) = (-5, 0)
x(4) = (-0.5, 3)

x(3) = (0, 3.5)

FIgure 3.3 DClub Example Search Leading to an Optimal Solution

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2
2.75

2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

3.25

x(4) = (-0.5, 3)

FIgure 3.4 Neighborhood Perspective in DClub Search

3.1 Improving Search, Local, and Global Optima 95

Such a local perspective is typical of real searches. Lacking more complete
insight, we must base search choices mostly on information about the neighborhood
of the current solution.

The neighborhood of a current solution x1t2 consists of all
nearby points; that is, all points within a small positive distance of x1t2.

Definition 3.4

A solution is a local optimum (local maximum for a maximize
problem or local minimum for a minimize problem) if it is feasible and if suf-
ficiently small neighborhoods surrounding it contain no points that are both
feasible and superior in objective value.

Definition 3.5

Improving searches stop if they encounter a local optimum.Principle 3.6

Global optima are always local optima.Principle 3.8

A solution is a global optimum (global maximum for a maxi-
mize problem or global minimum for a minimize problem) if it is feasible and
no other feasible solution has superior objective value.

Definition 3.7

Local Optima
If Figure 3.4 were all we knew about our DClub model, we would be unable to
tell whether points outside the visible range might prove superior to x142. All we
could say is that 1-0.5, 32 seems the best point in its neighborhood; that is, it is a
local optimum.

Local Optima and Improving Search
Observe that an improving search which has reached a local optimum can go
no further.

Some solutions in the neighborhood of a local optimum may have better ob-
jective function value [e.g., x = 1-0.55, 32 in Figure 3.4]. Other neighbors may be
feasible [e.g., x = 1-0.5, 3.052]. But no neighboring solution can continue the path
of feasible points with ever-improving objective value (definition 3.3) because none
is both feasible and superior in objective value.

Local versus Global Optima
Truly optimal solutions to mathematical programs are feasible solutions with as good
an objective function value as any other feasible point—neighbor or not. To distin-
guish this comprehensive notion of optimal, we employ the term global optimum.

Notice that global optima cannot be improved in any neighborhood.

96 Chapter 3 Improving Search

No matter how large a radius we consider around x142 of Figure 3.3, for exam-
ple, the corresponding neighborhood contains no better point.

Unfortunately, the converse is not true.

-5

-5 0 5

0

5

x(1) = (0.5, -2.75)

x(0) = (-5, 0)

x(2) = (-0.5, -3)
x(3) = (0, -3.5)

FIgure 3.5 DClub Search Leading to a Local Maximum Not Global

Local optima may not be global optima.Principle 3.9

Figure 3.5 illustrates with another improving search of the DClub example. This
new search conforms to definition 3.3 in starting at a feasible point (in fact, the same
one as Figure 3.3) and following an ever-improving path through feasible solutions.
Still, it terminates at local maximum x3 = 10, -3.52, where the patronage objective
function p1x1322 ≈ 25.8, because no neighboring solution is both feasible and superior
in the objective (principle 3.6). We already know from the earlier search of Figure 3.3
that solution x* = 1-0.5, 32 has a superior objective function value of approximately
54.8. The strictly worst local maximum of Figure 3.5 cannot be globally optimal.

exampLe 3.2: IdentIFyIng LocaL and gLobaL optIma

The figure that follows depicts constraints and contours of a minimizing optimiza-
tion model.
Determine whether each of the following points is apparently a global minimum, local
minimum, or neither.

(a) x112 = 10, 22 (b) x122 = 14, 52
(c) x132 = 16, 62 (d) x142 = 16, 02

3.1 Improving Search, Local, and Global Optima 97

x2

x1

x(2) = (4, 5)

x(3) = (6, 6)

x(1) = (0, 2)

x(4) = (6, 0)

50

40
50

40

50
60

10

20

30

Solution: We apply definitions 3.5 and 3.7 .

(a) Point x112 is apparently a local minimum because no neighboring point has
better objective value even though all are feasible. Still, point x122 has superior
objective function value, so x112 cannot be globally optimal.

(b) Point x122 appears to be a global and thus local minimum (principle 3.8). No
other feasible point can match its objective value of 20.

(c) Even though point x132 has a very good objective function value, it is neither a
local nor a global minimum because it is infeasible.

(d) Point x142 is neither a local nor a global minimum because every neighbor-
hood contains feasible points with lower objective function value. One example is
x = 15.9, 0.12.

Dealing with Local Optima
Principle 3.6 implies that improving searches can guarantee no more than a local
optimum because they stop whenever one is encountered. But our DClub searches
show that local optima may not always provide the globally best solutions we prefer
(principle 3.9). Must we choose between the computational convenience of im-
proving search and the analytical completeness of global optima?

Fortunately, the answer in many of the most frequently occurring cases is “no.”

The most tractable optimization models for improving search are
those with mathematical forms assuring every local optimum is a global optimum.

Principle 3.10

98 Chapter 3 Improving Search

We may pursue an improving search to a local optimum knowing in advance that it
will also provide a global optimum.

What can be done with the many models that fail tractability standard 3.10 ?
Sometimes we can still obtain a global optimum by switching to more complicated
forms of search. Often, we must simply settle for less. After trying several improving
searches—typically from different starting solutions—we keep the best of the re-
sults as an approximate or heuristic optimum.

When models have local optima that are not global, the most
satisfactory available analysis is often to run several independent improv-
ing searches and accept the best local optimum discovered as a heuristic or
approximate optimum.

Principle 3.11

3.2 Search wIth ImprovIng and FeaSIbLe dIrectIonS

Having introduced improving search, we must now make it practical. Just how do
we efficiently construct search paths satisfying the always feasible, constantly im-
proving requirements of definition 3.3 ? In this section we develop the short list
of principles that point the way, and in Section 3.3 we translate them into algebraic
conditions. Together, they comprise the foundation for nearly all practical imple-
mentations of improving search and much of this book.

Direction-Step Paradigm
Another look at the improving searches of Figures 3.3 and 3.5 will begin to
 reveal how practical search paths are constructed. Notice that the direction of
search does not constantly change. Instead, we pursue a sequence of steps along
straight-line move directions. Each begins at one of the numbered solutions x1t2.
There, a move direction is chosen along with a step size specifying how far the
direction should be pursued. Together they determine new point x1t + 12, and the
search continues.

This direction-step paradigm lies at the heart of virtually all improving searches.

Improving searches advance from current solution x1t2 to new
solution x1t + 12 as

x1t + 12 d x1t2 + l ∆x

where vector ∆x defines a move direction of solution change at x1t2, and step
size multiplier l 7 0 determines how far to pursue the direction.

Definition 3.12

To illustrate, consider the first move of the search in Figure 3.5, which takes
us from x102 = 1-5, 02 to x112 = 10.5, -2.752. Most improving search algorithms
would accomplish this move by first choosing a vector ∆x of relative movement
from x102 and then applying a suitable step size multiplier l.

3.2 Search with Improving and Feasible Directions 99

One vector sure to describe the direction chosen is the difference

∆x = x112 - x102 = 10.5, -2.752 - 1-5, 02 = 15.5, -2.752
A step size of l = 1 then yields the move

x112 = x102 + l ∆x = 1-5, 02 + 115.5, -2.752 = 10.5, -2.752
However, vector ∆x= = 12, -12 defines the same direction of movement. Application
of step size l= = 2.75 produces the identical move

x112 = x102 + l= ∆x= = 1-5, 02 + 2.7512, -12 = 10.5, -2.752

exampLe 3.3: determInIng SoLutIonS From dIrectIonS
and Step SIzeS

An improving search beginning at solution w102 = 15, 1, -1, 112 employs first
move direction ∆w112 = 10, 1, 1, 32 for step l1 = 1

3, then ∆w122 = 12, 0, 14, -12 for
step l2 = 4, and finally, ∆w132 = 11, - 13, 0, 22 for step l3 = 1. Determine the solu-
tions visited.

Solution: Applying 3.12 gives

 w112 = w102 + l1∆w112 = 15, 1, -1, 112 + 1
3 10, 1, 1, 32 = 15, 43, - 23, 122

 w122 = w112 + l2∆w122 = 15, 43, - 23, 122 + 412, 0, 14, -12 = 113, 43, 13, 82
 w132 = w122 + l3∆w132 = 113, 43, 13, 82 + 111, - 13, 0, 22 = 114, 1, 13, 102

exampLe 3.4: determInIng move dIrectIonS From SoLutIonS

The first four solutions visited by an improving search are y102 = 15, 11, 02, y112 =
14, 9, 32, y122 = 14, 9, 72, and y132 = 10, 8, 72. Determine the move directions em-
ployed assuming that all step sizes l = 1.

Solution: With all l = 1, the sequence of move directions in computation 3.12
must merely be the sequence of differences between successive solutions. First

∆y112 = y112 - y102 = 14, 9, 32 - 15, 11, 02 = 1-1, -2, 32
so that

 y112 = y102 + l ∆y

 = 15, 11, 02 + 11-1, -2, 32 = 14, 9, 32
Then

 ∆y122 = y122 - y112 = 14, 9, 72 - 14, 9, 32 = 10, 0, 42
 ∆y132 = y132 - y122 = 10, 8, 72 - 14, 9, 72 = 14, -1, 02

100 Chapter 3 Improving Search

Improving Directions
We saw in Figure 3.4 that practical improving searches usually take a local perspec-
tive, limiting algorithmic decisions to information about the immediate neighbor-
hood of current solution x1t2. Still, improving search definition 3.3 demands that
every move improve the objective function value.

How can we be sure of progress when we can “see” only a tiny neighborhood?
We limit our choice to immediately improving directions.

-5

0

5

-5 0 5

x(1) = (0, -4)

x(2) = (-1, 3)

¢x = (-6, 2)

x(3) = (2, 0)
¢x = (-3, 1)

(a) Improving

x1

x2

FIgure 3.6 Improving Directions of the DClub Objective

Vector ∆x is an improving direction at current solution x1t2
if the objective function value at x1t2 + l ∆x is superior to that of x1t2 for all
l 7 0 sufficiently small.

Definition 3.13

If a direction ∆x does not immediately improve the objective in the neighbor-
hood of current x1t2, it will not be pursued, regardless of how it affects the objective
over larger steps.

Figure 3.6 illustrates for objective function (3.1) of our DClub location exam-
ple. Constraints have been omitted since they have nothing to do with whether a
direction improves.

Contours in part (a) show that direction ∆x = 1-3, 12 improves at x132 =
12, 02 because the (maximize) objective function increases. Notice that an im-
proving direction is not required to yield progress forever. Multiple ∆x = 1-6, 22
(dashed line) remains improving even though a large enough l produces a point with
an objective value worse than that of x132.

Part (b) of Figure 3.6 demonstrates that an improving direction at one
point need not improve everywhere. The same ∆x = 1-3, 12 that improved at
x132 = 12, 02 fails for x142 = 1-1.5, -1.52.

3.2 Search with Improving and Feasible Directions 101

Finally, consider local maximum x112 = 10, -42 in Figure 3.6(b). We can see
from contours that x122 has a better objective function value. Still, indicated direction

∆x= = x122 - x112 = 1-1, 32 - 10, -42 = 1-1, 72
is not an improving direction at x112. It fails definition 3.13 because the improvement
does not start immediately as we depart x112.

-5

0

5

-5 0 5

(b) Nonimproving

x(3) = (2, 0)

x1

x2

x(2) = (-1, 3)

¢x' = (-1, 7)

¢x = (-3, 1)

x(1) = (0, -4)

x(4) = (-1.5, -1.5)

FIgure 3.6 Improving Directions of the DClub Objective (Continued)

exampLe 3.5: recognIzIng ImprovIng dIrectIonS graphIcaLLy

The following figure plots contours of a minimizing objective function over decision
variables y1 and y2.

2

2 4 6

y(1)

y2

y1

4

30
60

30
60

10
0

100

200

y(2)

102 Chapter 3 Improving Search

Feasible Directions
Moves in improving searches of constrained optimization models must both im-
prove the objective function and maintain feasibility. For the latter, practical imple-
mentations parallel the foregoing discussion of improving directions by requiring
immediately feasible directions.

Determine graphically whether each of the following directions improves at the point
indicated.

(a) ∆y = 11, -12 at y112 = 11, 12
(b) ∆y = 10, 12 at y112 = 11, 12
(c) ∆y = 10, 10002 at y112 = 11, 12
(d) ∆y = 10, 10002 at y122 = 15, 32
(e) ∆y = 1-1, 02 at y122 = 15, 32

Solution: We apply definition 3.13 .

(a) At y112 a small movement in the indicated direction ∆y = 11, -12 increases
(degrades) the objective function value. Thus the direction is not improving.

(b) At the same y112 a small movement in the y2-coordinate direction ∆y = 10, 12
decreases (improves) the objective function value. Thus that direction improves
at y112.

(c) The length of a move direction has no impact on whether it improves because
definition 3.13 addresses only sufficiently small steps l. Thus this case improves for
the same reasons as part (b), albeit with smaller l.

(d) This same direction of part (c) that improved at y112 fails to improve at y122 because
a small step in the y2-coordinate direction increases the objective value.

(e) Even though a move in direction ∆y = 1-1, 02 will eventually decrease the
objective function from its value at y122 = 15, 32, the progress does not start imme-
diately. Thus this ∆y is not an improving direction at y122.

Vector ∆x is a feasible direction at current solution x1t2
if point x1t2 + l ∆x violates no model constraint if l 7 0 is suffi ciently
small.

Definition 3.14

Just as with definition 3.13 , we evaluate directions ∆x by considering only the
immediate neighborhood of current solution x1t2. If feasibility is maintained for
small enough steps, the direction is feasible. Otherwise, ∆x will not be considered
as our next search direction because we have no way to assess its impact outside the
neighborhood.

3.2 Search with Improving and Feasible Directions 103

To illustrate, consider Figure 3.7 , which depicts the variable-type and inequality
constraints that define the feasible set of the Two Crude refinery model introduced
in Sections 2.1 and 2.2:

min 100x1 + 75x2

s.t. 0.3x1 + 0.4x2 Ú 2
0.4x1 + 0.2x2 Ú 1.5
0.2x1 + 0.3x2 Ú 0.5
0 … x1 … 9
0 … x2 … 6

Every direction is feasible at solution x122 = 14, 42 because a short move in any
direction leads to no violation of constraints.

Contrast with x112 = 17, 02. There direction ∆x = 10, 12 is feasible because
a small movement in the x2-coordinate direction violates no constraints. As with
improving directions, it does not matter that too big a step will produce a violation.
The same direction is infeasible at x132 = 10.75, 62 because even a tiny l 7 0 would
lead to a violation of the bound constraint x2 … 6.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

x2

x1

x(1) = (7, 0)

x(2) = (4, 4)

x* = (2, 3.5)

x(3) = (0.75, 6)

x2 … 6

0.3x
1 + 0.4x

2 Ú 2

0.2x
1 + 0 .3x

2 Ú 0.5

0.4x
1 + 0.2x

2 Ú
 1.5

x 1
 …

 9

FIgure 3.7 Constraints of the Two Crude Refinery
Example

exampLe 3.6: recognIzIng FeaSIbLe dIrectIonS graphIcaLLy

The following figure shows the feasible region of a mathematical program over
decision variables y1 and y2.

104 Chapter 3 Improving Search

Step Size: How Far?
Once an improving feasible move direction has been discovered at the current solu-
tion, how far should we follow it? That is, what step size l should be applied?

We know from definitions 3.13 and 3.14 that we will improve the objection
and retain feasibility for at least small steps. But having an improving feasible direc-
tion in hand, it is natural to pursue it as long as it remains so.

y(2)

y(1)

y2

y1

Determine graphically whether each of the following directions is feasible at the
point indicated.

(a) ∆y = 11, 02 at y112

(b) ∆y = 11, 02 at y122

(c) ∆y = 10, 12 at y122

(d) ∆y = 10, 10002 at y122

Solution: We apply definition 3.14 .

(a) We can move from y112 in any direction without (immediately) violating con-
straints. Thus all directions, including ∆y = 11, 02, are feasible.

(b) At y122 a small step in the y1-coordinate direction ∆y = 11, 02 takes us outside
the feasible region. Thus the direction is not feasible even though a long enough step
would restore feasibility.

(c) A small step from y122 in the y2-coordinate direction ∆y = 10, 12 violates no
constraint. Thus the direction is feasible.

(d) The length of a move direction has no impact on whether it is feasible because
definition 3.14 addresses only sufficiently small steps l. Thus this direction is feasi-
ble for the same reason as in part (c), albeit with smaller l.

Improving searches normally apply the maximum step l for
which the selected move direction continues to retain feasibility and improve
the objective function.

Principle 3.15

3.2 Search with Improving and Feasible Directions 105

Notice that principle 3.15 involves two issues: how long the direction improves
the objective function and how long it remains feasible. We fix l and choose a new
direction when either the objective function stops improving or a constraint is
violated.

exampLe 3.7: determInIng maxImum Step SIze

Suppose that we are searching for an optimal solution to the mathematical program

min 10w1 + 3w2

s.t. w1 + w2 … 9
w1, w2 Ú 0

For current point w1192 = 14, 52, determine the maximum step in improving feasi-
ble direction ∆w = 1-3, -82 consistent with principle 3.15 .

Solution: Direction ∆w reduces the objective function at every point because it
decreases both decision variables, and they both have positive costs. Thus it remains
improving for any l 7 0.

For feasibility, we first consider the main constraint. Any step l 7 0 will result in

1w1 + l ∆w12 + 1w2 + l ∆w22 = 14 - 3l2 + 15 - 8l2 … 9

That is, the constraint remains satisfied.
We conclude that the maximum step size l will be determined by feasibility

in the nonnegativity constraints w1 Ú 0 and w2 Ú 0. Any l 7 4
3 makes negative the

first component of the new solution:

w1202 = w1192 + l ∆w = a4
5
b + la -3

-8
b = a4 - 3l

5 - 8l
b

Similarly, any l 7 5
8 will violate nonnegativity on w2. Thus the maximum step

retaining both improvement and feasibility in the objective function is

l = min {4
3, 5

8} = 5
8

Search of the DClub Example
Algorithm 3A collects definitions 3.12 to 3.14 and principle 3.15 in a formal
 improving search procedure. We can illustrate with the DClub search shown
in Figure 3.5. As usual, the search begins at a feasible solution vector, here
x102 = 1-5, 02. Its objective value is p1-5, 02 ≈ 3.5.

Passing to step 1 of Algorithm 3A, we look for an improving feasible direction.
The one adopted in Figure 3.5 is ∆x112 = 12, -12. Although there are many other
choices, this one clearly does conform to definitions 3.13 and 3.14 in improving the
objective and maintaining feasibility near x102.

We must now pick a l value at step 3. Any movement in the direction cho-
sen leaves us at a feasible point. Thus the step size will be determined by where
the objective function quits improving. In models with many variables, some work

106 Chapter 3 Improving Search

is required to find such a maximum l. Here we can proceed graphically. Contours
show stops after a step of approximately l1 = 2.75. Thus step 4’s update yields

 x112 d x102 + l1∆x112

 = 1-5, 02 + 2.7512, -12
 = 10.5, -2.752

Algorithm 3A: Continuous improving seArCh

step 0: initialization. Choose any starting feasible solution x102, and set
solution index t d 0.

step 1: local optimum. If no improving feasible direction ∆x exists at
current solution x1t2, stop. Under mild assumptions about the form of the
model, point x1t2 is a local optimum.

step 2: move Direction. Construct an improving feasible direction at x1t2
as ∆x1t + 12.

step 3: step size. If there is a limit on step sizes for which direction ∆x1t + 12
continues to both improve the objective function and retain feasibility, choose
the largest such step size as lt + 1. If not, stop; the model is unbounded.

step 4: Advance. Update

x1t + 12 d x1t2 + lt + 1 ∆x1t + 12

Then, increment t d t + 1, and return to Step 1.

Our first iteration is now complete. Incrementing t d 1, we return to step 1.
Impro ving feasible directions still exist. This time the search selected ∆x122 =
1-4, -12. As before, the maximum appropriate step size is determined by progress in
the objective function. Picking l2 = 0.25 leads to

 x122 d x112 + l2 ∆x122

 = 10.5, -2.752 + 0.251-4, -12
 = 1-0.5, -32

Returning again to step 1, we begin a third iteration. Improving feasible direc-
tions still exist, and the search chose ∆x132 = 1-1, 12. Unlike previous iterations,
feasibility is now a consideration. A step of 0.5 in that direction brings us up against
a constraint, even though further objective progress is possible. Thus l3 = 0.5, and

 x132 d x122 + l3 ∆x132

 = 1-0.5, -32 + 0.511, -12
 = 10, -3.52

Upon still another return to step 1, no improving feasible direction is apparent.
Algorithm 3A terminates with locally optimal solution x = 10, -3.52.

3.2 Search with Improving and Feasible Directions 107

When Improving Search Stops
Algorithm 3A keeps going while improving feasible directions are available because
local progress is still possible.

No optimization model solution at which an improving feasible
direction is available can be a local optimum.

Principle 3.16

When a continuous improving search terminates at a solution
admitting no improving feasible direction, and mild assumptions hold, the
point is a local optimum.

Principle 3.17

Since a direction improves and maintains feasibility for the smallest of steps l 7 0,
every neighborhood includes a better point.

What if the algorithm stops at a point admitting no improving feasible direc-
tion? In most applications the result is a local optimum (definition 3.5).

Figures 3.3 and 3.5 illustrate this typical case. Both searches lead us to points
where no improving feasible direction is apparent. Both results are local maxima.

The “mild assumptions” caveat appears in principle 3.17 because it is possible
to make up examples where there are no improving feasible directions at the cur-
rent solution, yet it is not a local optimum. Figure 3.8 shows two. The w in part (a)
is not a local minimum of the unconstrained model indicated because it is possible
to decrease the unusually shaped objective function for arbitrarily small steps along
the curved path shown. Still, every straight-line direction fails to improve. Thus
Algorithm 3A would terminate at w because there are no improving directions.

Even if the objective function has a very simple form, constraints can cause the
same sorts of anomalies. Algorithm 3A would also terminate at the point x shown in
part (b) because no (straight-line) feasible direction leads to higher objective func-
tion contours. Still, there are feasible solutions arbitrarily close to x with superior
objective values. Stopping point x cannot be a local maximum.

w

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

0

1

2

3

4

5

x

x2

x1

(b) No improving feasible direction(a) No improving direction

w1

w2

10

30

20

40

FIgure 3.8 Nonoptimal Points Admitting No Improving Feasible Directions

108 Chapter 3 Improving Search

1

2

3

4

1 2 3 4

x2

x1

y(0) = (1, 0)

y(1) = (3, 4)

30
0

40
0

50
0

20
0

10
0

FIgure 3.9 Improving Search of an Unbounded
Model

If an improving search discovers an improving feasible direc-
tion for a model that can be pursued forever without ceasing to improve or
losing feasibility, the model is unbounded.

Principle 3.18

Fortunately, such examples are rare for the standard models treated in this
book. In the interest of efficiency, analysts are almost always willing to accept the
result of an improving search as at least a local optimum.

Figure 3.9 shows such a problem and an application of Algorithm 3A starting
at y102 = 11, 02. Contour lines illustrate how the objective value improves forever
as y1 becomes large.

The first iteration depicted in Figure 3.9 reached step 3 with chosen direc-
tion ∆y112 = 11, 22. Progress in that direction is limited by constraints, so the
step was fixed at the maximum l1 = 2 that retains feasibility (principle 3.15).
On the next iteration, however, the chosen improving feasible direction is
∆y122 = 11, 02. Step 3 terminates with a conclusion of unboundedness because
there is no limit on step sizes improving the objective and retaining feasibility in
that direction.

Detecting Unboundedness
Most of the time, improving searches following Algorithm 3A will terminate at step
1 because there is no improving feasible direction. However, they can also stop in
l-choosing step 3.

An optimization model is unbounded if it admits feasible solutions with arbi-
trarily good objective value (definition 2.20).

3.3 Algebraic Conditions for Improving and Feasible Directions 109

3.3 aLgebraIc condItIonS For ImprovIng
and FeaSIbLe dIrectIonS

What distinguishes one implementation of improving search Algorithm 3A from
another is the process employed to identify an improving feasible direction at step 2
(or to prove that none exists). We are now ready to develop the fundamental alge-
braic conditions at the heart of nearly every such construction.

Readers are advised to dwell on these simple conditions and to experiment
with their own examples and plots until each idea has been absorbed completely. We
will return to the algebra of this section many times as we develop the algorithms of
subsequent chapters.

Gradients
To obtain algebraic characterizations of improving directions, we resort to a bit of
differential calculus. If the objective function of our optimization model is smooth
(i.e., differentiable with respect to all decision variables), simple conditions can eas-
ily be devised. Readers whose calculus is a bit inadequate or rusty should not panic.
The brief synopsis in Primer 2 includes everything you will need.

When f is a function of n-vector x ! 1x1, c, xn2, it has n first partial derivatives.
Our principal interest is the n-vector of such partial derivatives known as the gradient.

exampLe 3.8: detectIng unboundedneSS In ImprovIng Search

An improving search begins at w102 = 10, 02 in the model

min w2

s.t. 0 … w1 … 1

(a) Explain why the model is unbounded.

(b) Identify an improving feasible direction ∆w at w102 which demonstrates that
the model is unbounded.

Solution:

(a) Variable w2 has no lower bound in the model. Thus we may leave w1 at feasible
value 0 and decrease w2 to produce arbitrarily good objective function values.

(b) For the reasons given in part (a), arbitrarily good feasible solutions are obtained
by leaving w1 unchanged and decreasing w2. The obvious move direction to accom-
plish this is ∆w = 10, -12. There is no limit on the l 7 0 that may be applied to this
direction while maintaining feasibility and improving the objective function.

The gradient of f1x2! f1x1, c, xn2, denoted ∇f1x2, is the
vector of partial derivatives ∇f1x2! 10f>0x1, c, 0f>0xn2 evaluated at x.

Definition 3.19

The gradient describes the shape of the objective function because each partial
derivative of the objective function at any current solution quantifies the slope or
rate of change per unit change in one of the coordinate directions.

110 Chapter 3 Improving Search

To illustrate, we can return to patronage objective function (3.1) of Section 3.1’s
DClub example:

 max p1x1, x22! 60
1 + 1x1 + 122 + 1x2 - 322 +

20
1 + 1x1 - 122 + 1x2 - 322

+
30

1 + 1x122 + 1x2 + 422

PrImer 2: DerIVatIVeS anD PartIal DerIVatIVeS

One of the major concepts of calculus is derivatives—rates of change in the
value of a function with respect to small increases in its arguments. In this book
we assume only an elementary understanding of derivatives, but we will need
to compute them occasionally and to have an intuitive feel for derivatives as
“slopes.”

A function is differentiable or smooth at a point if its rate of change is
unambiguous (i.e., if the function has no sudden rate changes). The prototypical
example of a function that is not always differentiable is f1x2! 0 x 0 . At x = 0
the function makes a stark change from derivative -1 applicable for x 6 0 to
the +1 appropriate for x 7 0. No derivative exists for x exactly zero.

For a function f1x2 of a single variable x, it is customary to denote the
derivative of f with respect to x by df>dx or f =1x2. Thus constant function
f1x2! a has derivative f =1x2 = 0 at every x because its value does not change
with x.

Many familiar functions have easily expressed derivatives (a constant):

f1x2 df

dx
f1x2 df

dx
f1x2 df

dx

ax ax xa axa - 1 sin1ax2 a cos 1ax2
ax axln1a2 ln1ax2 1

x cos1ax2 -a sin1ax2

Also, a variety of computing formulas determine the derivative of a func-
tion f(x) in terms of simpler functions g and h forming f :

f1x2 df

dx
f1x2 df

dx

g1h1x22 dg

dh
 # dh

dx
g1x2 # h1x2 g1x2dh

dx
+ h1x2dg

dx

g1x2 { h1x2
dg

dx
 { dh

dx

g1x2
h1x2 ch1x2dg

dx
- g1x2dh

dx
 d >h1x22

For example, the derivative of f1x2! 13x24 can be computed as dg>dh # dh>dx =
41-3x231-32 by taking g1h2! h4 and h1x2! 3x. Similarly, the derivative with

3.3 Algebraic Conditions for Improving and Feasible Directions 111

respect to x of f1x2! 14x21ex2 can be computed as 14x21ex2112 + 1ex2142
by thinking of f as the product of functions g1x2! 4x and h1x2! ex.

When a function has more than one argument, partial derivatives show
rates of change with respect to single variables with all others held con-
stant. The partial derivatives of f1x1, x2, c, xn2 are usually denoted 0f>0xi,
i = 1, 2, c, n. To illustrate, consider f1x1, x2, x32! 1x1251x2271x32. Differ-
entiating with x2 and x3 treated as constants produces the partial derivative
0f>0x1 = 51x1241x2271x32. Similarly, 0f>0x2 = 71x1251x2261x32 and 0f>0x3 =
1x1251x227.

Gradients show graphically as vectors perpendicular to con-
tours of the objective function and point in the direction of most rapid objec-
tive value increase.

Principle 3.20

Figure 3.10 shows its now familiar contours. Differentiating yields

∇p1x1, x22! ±
0p

0x1

0p

0x2

≤ =

 • -
1201x1 + 12

[1 + 1x1 + 122 + 1x2 - 322]2 -
401x1 - 12

[1 + 1x1 - 122 + 1x2 - 322]2 -
601x12

[1 + 1x122 + 1x2 + 422]2

-
1201x2 - 32

[1 + 1x1 + 122 + 1x2 - 322]2 -
401x2 - 32

[1 + 1x1 - 122 + 1x2 - 322]2 -
601x2 + 42

[1 + 1x122 + 1x2 + 422]2

µ

(3.3)

Thus at point x = 12, 02.

∇p12, 02 ≈ 1-1.60, 1.452
Thus in the neighborhood of x = 12, 02, function p declines at the rate of about -1.60
per unit increase in x1 and grows at the rate of roughly 1.45 per unit increase in x2. Of
course, these rates may change if we move away from (2, 0), but they provide fairly
complete information at points in the immediate neighborhood.

Figure 3.10 also illustrates the geometry of gradient vectors.

For example, at x = 12, 02 the objective increases fastest by moving at
right angles to the contour in direction ∆x = 1-1.60, 1.452 , which is precisely
∇p12, 02 .

112 Chapter 3 Improving Search

Gradient Conditions for Improving Directions
Suppose that our search of objective function f has arrived at current solution x.
Then the change associated with a step of size l in direction ∆x can be approxi-
mated as1

objective change ≈ a
j
a 0f

0xj
 b 1l ∆xj2 = l1∇f1x2 # ∆x2

That is, the rate of objective function change near the current x is roughly the dot
product of ∇f1x2 and ∆x because it is approximated by the weighted sum of rates
of change described by partial derivatives times move components in the various
coordinate directions.

When dot product ∇f # ∆x ≠ 0, this gradient information provides a simple
algebraic test of whether a direction fulfills definition 3.13 as improving:

-5

0

5

§p(-1.5, -1.5) = (1.25, -0.25)

§p(2, 0) = (-1.60, 1.45)

-5 0 5

x1

x2

FIgure 3.10 Gradients of the DClub Example Objective

1This Taylor series approximation is developed more formally in Section 16.3.

Direction ∆x is improving for maximize objective function f at
point x if ∇f1x2 # ∆x 7 0. On the other hand, if ∇f1x2 # ∆x 6 0, ∆x does not
improve at x.

Principle 3.21

Direction ∆x is improving for minimize objective function f at
point x if ∇f1x2 # ∆x 6 0. On the other hand, if ∇f1x2 # ∆x 7 0, ∆x does not
improve at x.

Principle 3.22

3.3 Algebraic Conditions for Improving and Feasible Directions 113

Cases where dot product ∇f1x2 # ∆x = 0 cannot be resolved without further
information.

To illustrate, consider again the patronage function of Figure 3.10. We have
already computed the gradient at x = 12, 02 as ∇p12, 02 ≈ 1-1.60, 1.452. A glance
at the figure shows that ∆x = 1-1, 12 is an improving direction because it leads us
to higher contours. Confirming characterization 3.21 , we have

∇p10, 22 # ∆x ≈ 1-1.60, 1.452 # 1-1, 12 = 3.05 7 0

On the other hand, Figure 3.10 reports that evaluation of gradient expression (3.3)
at x = 1-1.5, -1.52 yields ∇p1-1.5, -1.52 ≈ 11.25, -0.252. Testing the same di-
rection ∆x = 1-1, 12, we see that

∇p1-1.5, -1.52 # ∆x ≈ 11.25, -0.252 # 1-1, 12 = -1.50 6 0

which verifies that direction ∆x = 1-1, 12 does not improve at 1-1.5, -1.52.

exampLe 3.9: uSIng gradIentS to determIne IF dIrectIonS
Improve

Either determine by an appropriate gradient test whether each of the following
 directions is improving for the specified objective function and point or show why
further information is required.

(a) ∆w = 11, 0, -22 for minimize f1w2! 1w122 + 5w2w3 at w = 12, 1, 02.

(b) ∆y = 13, -62 for maximize f1y2! 9y1 + 40y2 at y = 113, 22.

(c) ∆z = 1-6, 22 for minimize f1z2! 51z122 - 3z1z2 + 1z222 at z = 11, 32.

Solution:

(a) Computing the objective function gradient at the indicated w yields

∇f1w2 = ß 0f

0w1

0f

0w2

0f

0w3

∑ = £2w1

5w3

5w2

≥ = £2122
5102
5112

≥ = £4
0
5
≥

so that

∇f1w2 # ∆w = 14, 0, 52 # 11, 0, -22 = -6 6 0

By applying condition 3.22 , we conclude that ∆w does improve at w for the mini-
mize objective.

114 Chapter 3 Improving Search

Objective Function Gradients as Move Directions
One consequence of dot product tests 3.21 and 3.22 is that we can derive improving
directions directly from any nonzero gradient (although we will see in Chapters 16
and 17 that gradients are not always the best directions to choose). Since the dot prod-
uct of a nonzero gradient with itself is

∇f1x2 # ∇ f1x2 = a
j
a 0f

0xj
b

2

7 0

we need only choose ∆x = {∇f1x2.

(b) Computing the objective function gradient at the y indicated gives

∇f1y2 = ±
0f

0y1

0f

0y2

≤ = a 9
40

b

so that

∇f1y2 # ∆y = 19, 402 # 13, -62 = -213 6 0

Thus by condition 3.21 the direction does not improve for the maximize objective.

(c) Computing partial derivatives of the objective function at the indicated z, we have

∇f1z2 = ±
0f
z1

0f
z2

≤ = a 10z1 - 3z2

-3z1 + 2z2
b = a 10112 - 3132

-3112 + 2132 b = a1
3
b

and

∇f1z2 # ∆z = 11, 32 # 1-6, 22 = 0

With the dot product = 0, conditions 3.21 and 3.22 are insufficient to determine
whether this ∆z improves.

When objective function gradient ∇f1x2 ≠ 0, ∆x = ∇f1x2 is
an improving direction for a maximize objective f, and ∆x = - ∇f1x2 is an
improving direction for minimizing f.

Principle 3.23

Contours confirm that both of the gradients displayed for the maximize model
in Figure 3.10 are indeed improving directions. We can verify the first algebraically
by choosing

∆x = ∇p10, 22 = 1-1.60, 1.452
then (principle 3.21) the dot product

∇p10, 22 # ∆x = 1-1.60, 1.452 # 1-1.60, 1.452 = 1-1.6022 + 11.4522 7 0

establishes that∆x improves at x = 10, 22.

3.3 Algebraic Conditions for Improving and Feasible Directions 115

exampLe 3.10: conStructIng ImprovIng dIrectIonS
From gradIentS

Use the gradient of each of the following objective functions f to construct an im-
proving direction at the indicated point.

(a) Minimize f1w2! 1w122 ln1w22 at w = 15, 22.

(b) Maximize f1y2! 4y1 + 5y2 - 8y3 at y = 12, 0, 0.52.

Solution:

(a) Computing the gradient at the indicated point yields

∇f1w2! ±
0f

0w1

0f

0w2

≤ = ±
2w1 ln1w22

1w122

w2

≤ = ±
2152 ln122

1522

2

≤ ≈ ±
6.93

12.5
≤

Since this gradient is nonzero, we may apply construction 3.23 . Negative gradient

∆w = - ∇f1w2 = a -6.93
-12.5

b

must improve for the minimize objective.

(b) Computing the gradient at the indicated point yields

∇f1y2! ß 0f

0y1

0f

0y2

0f

0y3

∑ = ß

4

 5

-8

∑
Since this gradient is nonzero, we may again apply construction 3.23 . Gradient

∆y = ∇f1y2 = £ 4
 5
-8

≥
will improve for the maximize objective.

Active Constraints and Feasible Directions
Turning now to conditions for feasible directions (definition 3.14), we focus our
attention on constraints. Constraints define the boundary of the feasible region
for an optimization model, so they will be the source of conditions for feasible
directions.

116 Chapter 3 Improving Search

Figure 3.11’s repeat of our familiar Two Crude example demonstrates that not
all the constraints of a model are relevant to whether a direction ∆x is feasible at a
particular solution x. For example, at x112 = 17, 02 only

x2 Ú 0

poses a threat to feasibility; small movements from x112 cannot violate other con-
straints. At x132 = 10.75, 62 the relevant constraints are different:

x2 … 6 and 0.4x1 + 0.2x2 Ú 1.5

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

x2

x1

x(1) = (7, 0)

x(2) = (4, 4)
x* = (2, 3.5)

x(3) = (0.75, 6)

x2 … 6

0.3x
1 + 0.4x

2 Ú 2

0.2x
1 + 0.3x

2 Ú 0 .5

0.4x
1 + 0.2x

2 Ú
 1.5

x 1
 …

 9

FIgure 3.11 Active Constraints of the Two Crude Example

Whether a direction is feasible at a solution x depends on whether
it would lead to immediate violation of any active constraint at x, that is, any con-
straint satisfied as equality at x.

Principle 3.24

Other names for active constraints are tight constraints and binding constraints.
Equality constraints are active at every feasible point, because they are always

satisfied as equalities. Inequalities are more complex. For example, the Two Crude
constraint

0.4x1 + 0.2x2 Ú 1.5

is satisfied, but not active at x112 = 17, 02 of Figure 3.11 because

0.4172 + 0.2102 = 2.8 7 1.5

However, the same inequality is active at x* = 12, 3.52. There

0.4122 + 0.213.52 = 1.5

3.3 Algebraic Conditions for Improving and Feasible Directions 117

Linear Constraints
Constraints of the Two Crude example are all linear, that is, inequalities or equal-
ities constraining a weighted sum of the decision variables by a right-hand-side
constant (definition 2.28). We may denote general forms by

 a # x ! a
n

j = 1
 ajxj Ú b (3.7)

 a # x ! a
n

j = 1
 ajxj … b (3.8)

 a # x ! a
n

j = 1
 ajxj = b (3.9)

where n denotes the number of decision variables, aj is the constraint’s coefficient
for decision variable xj, a is the vector of coefficients aj, and b is the constraint’s
right-hand side.

exampLe 3.11: recognIzIng actIve conStraIntS

Consider an optimization model with main constraints

 1w1 - 422 + 3w2 - 7w3 Ú 31 (3.4)

 2w1 + w3 … 13 (3.5)

 w1 + w2 + w3 = 25 (3.6)

Determine which of these constraints are active at feasible solutions
(a) w = 18, 20, -32 (b) w = 15, 17, 32
Solution: Equality (3.6) must be active at every feasible solution.

(a) Checking definition 3.24 for inequalities (3.4) and (3.5) at w = 18, 20, -32, we
have

18 - 422 + 31202 - 71-32 = 97 7 31

and
2182 + 1-32 = 13

Thus only (3.5) and (3.6) are active at w = 18, 20, -32.

(b) Checking definition 3.24 for inequalities (3.4) and (3.5) at w = 15, 17, 32, we
find that

15 - 422 + 31172 - 7132 = 31

and

2152 + 132 = 13

Thus all three constraints are active at w = 15, 17, 32.

118 Chapter 3 Improving Search

One example is the first main Two Crude constraint,

0.3x1 + 0.4x2 Ú 2

In the notation of (3.7),

n = 2, a1 = 0.3, a2 = 0.4, a = 10.3, 0.42, and b = 2

Conditions for Feasible Directions with Linear Constraints
Conditions can be devised to characterize feasible directions in more complex cases
(see Section 14.4), but we focus here on linear forms (3.7) to (3.9). Consider the
Two Crude model constraint

0.4x1 + 0.2x2 Ú 1.5

At solution x132 = 10.75, 62 the constraint is active because

0.410.752 + 0.2162 = 1.5

A step in move direction ∆x ! 1∆x1, ∆ x22 will change the left-hand side as
follows:

0.410.75 + l ∆x12 + 0.216 + l ∆x22 = 1.5 + l10.4 ∆x1 + 0.2 ∆x22
Feasibility limit

1.5 + l10.4 ∆x1 + 0.2 ∆x22 Ú 1.5

can be maintained only if we restrict the sign “net change” coefficient of l by requiring

a
n

j = 1
 aj ∆xj = 0.4 ∆x1 + 0.2 ∆x2 Ú 0

This sort of analysis leads immediately to general conditions for directions
feasible to linear constraints:

Direction ∆x ! 1∆x1, c, ∆xn2 is feasible for a linearly con-
strained optimization model at solution x ! 1x1, c, xn2 if and only if

a # ∆x ! a
n

i = 1
 aj ∆xj Ú 0

for all active greater than or equal to constraints a j ajxj Ú b;

a # ∆x ! a
n

i = 1
 aj ∆xj … 0

for all active less than or equal to constraints a j ajxj … b; and

a # ∆x ! a
n

i = 1
 aj ∆xj = 0

for all equality constraints a j ajxj = b.

Principle 3.25

3.3 Algebraic Conditions for Improving and Feasible Directions 119

To illustrate, return to Figure 3.11. At x122 = 14, 42, no constraints are active,
and every direction is feasible.

At x132 = 10.75, 62, there are two active constraints:

 0.4x1 + 0.2x2 Ú 1.5

 x2 … 6

If direction ∆x is to be feasible, it must violate neither. Thus principle 3.25 yields
one condition for an active Ú form and one for an active … :

 0.4 ∆x1 + 0.2 ∆x2 Ú 0

 ∆x2 … 0

exampLe 3.12: FormIng condItIonS For a dIrectIon to be FeaSIbLe

Consider an optimization model with linear constraints

 3w1 + w3 Ú 26 (3.10)

 5w1 - 2w3 … 50 (3.11)

 2w1 + w2 + w3 = 20 (3.12)

 w1 Ú 0 (3.13)

 w2 Ú 0 (3.14)

State all conditions that must be satisfied for ∆w to be a feasible move direction at
w = 110, 0, 02.

Solution: When we substitute the solution w = 110, 0, 02, the active constraints
are (3.11), (3.12), and (3.14). Thus, applying conditions 3.25 , the corresponding re-
quirements for a feasible direction are

 5 ∆w1 - 2 ∆w3 … 0

 2 ∆w1 + ∆w2 + ∆w3 = 0

 ∆w2 Ú 0

exampLe 3.13: teStIng dIrectIonS For FeaSIbILIty

Return to the feasible region defined by constraints (3.10) to (3.14) and determine
whether direction ∆w = 10, -1, 12 is feasible at point w = 16, 0, 82.

Solution: At w = 16, 0, 82, the active constraints are (3.10), (3.12), and (3.14). Thus
required conditions 3.25 for a feasible direction are

 3 ∆w1 + ∆w3 Ú 0

 2 ∆w1 + ∆w2 + ∆w3 = 0

 ∆w2 Ú 0

120 Chapter 3 Improving Search

3.4 tractabLe convex and LInear caSeS

Tractability in a model means convenience for analysis (definition 1.8). Sometimes
difficult forms cannot be avoided, but in Chapter 1 (principle 1.10) we saw that
modeling often involves tradeoffs. To obtain a model that is tractable enough to
yield useful insights, we sometimes have the choice of making simplifying assump-
tions or other compromises. It is important to be able to identify the preferred cases.

Earlier sections of this chapter have provided a broad introduction to
Improving Search and its challenges including whether local optima may be as-
sumed to be global. We are now ready to build on details of Sections 3.2 and 3.3 to
define the most tractable models forms commonly encountered in terms of whether
they assure local optima are global. Such forms are preferred if the implied models
are sufficiently valid for the application.

Special Tractability of Linear Objective Functions
Recall that a linear objective function is one expressible as a weighted sum of the
decision variables (definition 2.28). The general form is

min or max f1x2 K a n
j = 1 cj xj = c # x

where x is th n-vector of the n decision variable, and c is the corresponding n-vector
of objective function coefficients. For instance, linear objective

min 3.5x1 - 2x2 + x3

has weights c1 = 3.5, c2 = -2, and c3 = 1.
Testing for whether a direction improves with a linear objective is particularly

easy under principles 3.21 and 3.22 because the gradient of such objectives is sim-
ply constant ∇f = c.

Direction ∆w = 10, -1, 12 meets the first two conditions because

 3 ∆w1 + ∆w3 = 3102 + 112 Ú 0

 2 ∆w1 + ∆w2 + ∆w3 = 2102 + 1-12 + 112 = 0

Still, the direction is not feasible because it violates the third condition,

∆w2 = 1-12 { 0

Direction ∆x is improving for a maximizing objective function
c # x at any feasible point if and only if c # ∆x 7 0, and for a minimizing objec-
tive if and only if c # ∆x 6 0.

Principle 3.26

In the minimizing example above, this means direction ∆x is improving if and
only if

c # ∆x = 3.5 ∆x1 - 2 ∆x2 + ∆x3 6 0

The convenience of this extra tractability arises as we decide step sizes l, that is,
how far a direction can be pursued at step 3 of Improving Search Algorithm 3A.

3.4 Tractable Convex and Linear Cases 121

With a linear objective, an improving direction remains improving at all feasible
solutions. Thus, the objective need not be considered in fixing the step limit.

*

0

5

10

x(2) = (1.5, 3)

-5 0 5

x1

x2

x* = (-0.5, 3)

x(1) = (-1.5, 3)

FIgure 3.12 Constraint-Induced Local Optima for the DClub Example

The feasible set of an optimization problem is convex if the
line segment between every pair of feasible points falls entirely within the fea-
sible region.

Definition 3.27

Constraints and Local Optima
Objective functions are not the only parts of mathematical programming models
that can induce local optima. For example, the only unconstrained local maximum
in the part of the DClub feasible space displayed in Figure 3.12 occurs at uncon-
strained global optimum x = 1-1, 32.

Solutions x112 = 1-1.5, 32 and x122 = 11.5, 32 illustrate a new, constraint-
induced form of local optimum. Both are (constrained) local maxima in the
full model that do not achieve as high an objective value as global maximum
x* = 1-0.5, 32. The difficulty is not the shape of the objective function, because
improving directions ∆x = 1x* - x1122 at x112 and ∆x = 1x* - x1222 at x122 leads
straight to the global optimum. The difficulty is constraints. No neighboring
point at either x112 or x122 both improves the objective function and satisfies all
constraints.

Convex Feasible Sets
Convex feasible sets avoid such difficulties.

122 Chapter 3 Improving Search

The idea is illustrated by the following feasible set:

1

2

3

4

1 2 3

x2

x1

x(1)

x(2)

This set is convex because the line segment between every pair of feasible points lies
entirely within the feasible set. The segment for x112 = 11, 12 and x122 = 12, 32 is
shown.

Contrast with the, DClub feasible region of Figure 3.12. That set is not convex
because some pairs of points fail definition 3.27 . One of the many is x112 = 1-1.5, 32
and x122 = 11.5, 32. The line segment joining them includes infeasible solutions in
both of the forbidden boxes around population centers.

A similar situation occurs with discrete feasible sets such as

1

2

3

4

1 2 3

x(1) x(2)

x2

x1

Here only the black integer points within the main constraints are feasible. Thus, the
line segment connecting any pair of feasible points passes primarily through nonin-
teger points violating constraints.

Discrete feasible sets are never convex (except in the trivial
case where there is only one feasible point).

Principle 3.28

3.4 Tractable Convex and Linear Cases 123

Algebraic Description of Line Segments
What does it mean to have a line segment in more than two or three dimensions?
There is an easy algebraic characterization. Since direction 1x122 - x1122 is the
straight-line move from x112 to x122, the line segment between the two points con-
sists exactly of those solutions obtained when we add a fraction of that direction
to x112.

exampLe 3.14: demonStratIng nonconvexIty graphIcaLLy

Show graphically that the following feasible region is not convex.

1

2

3

4

1 2 3

x2

x1

x(1)

x(2)

Solution: To show that the set fails definition 3.27 , we need to find any pair of fea-
sible solutions joined by a line segment that lies partly outside the feasible region.
Solutions x112 = 10, 22 and x122 = 13, 12 sketched in the figure suffice because the
line segment between them clearly includes infeasible points.

The line segment between vector solutions x112 and x122 con-
sists of all points of the form x112 + l1x122 - x1122 with 0 … l … 1.

Definition 3.29

As an example, suppose that x112 = 11, 5, 02 and x122 = 10, 1, 22 are both
feasible. One end of the line segment connecting them is x112 with l = 0 in 3.29 ;
the other end is x122 with l = 1. In between lie all the points with 0 6 l 6 1. For
instance, the one for l = 0.25 is

x112 + 0.251x122 - x1122 = £1
5
0
≥ + 0.25 ££0

1
2
≥ - £1

5
0
≥§ = £0.75

4
0.5

≥
If the feasible set is to be convex, (0.75, 4, 0.5) and all other solutions along the line
segment must satisfy all constraints.

124 Chapter 3 Improving Search

exampLe 3.15: repreSentIng LIne SegmentS

Return to the line segment joining x112 = 10, 22 and x122 = 13, 12 in Example 3.15.

(a) Represent the line segment algebraically.

(b) Show algebraically that one point on the line segment is x = (1, 53).

Solution:

(a) Applying 3.29 , the vectors along that line segment are those representable as

x112 + l1x122 - x1122 = a0
2
b + l c a3

1
b - a0

2
b d = a 3l

2 - l
b

with 0 … l … 1.

(b) To represent (1, 53), we must choose an appropriate l. If first component 3l = 1,
then l = 1

3, so that

13l, 2 - l2 = (3(1
3), 2 - (1

3)) = (1, 53)

as required.

exampLe 3.16: demonStratIng nonconvexIty aLgebraIcaLLy

Demonstrate algebraically that the feasible set excluding the unit circle with constraint

1w122 + 1w222 Ú 1
is not convex.

Solution: We must first pick a pair of feasible solutions joined by a line segment
that passes through an infeasible point within the unit circle, say w112 = 1-1, 02
and w122 = 11, 02. Under 3.29 , the line segment between these two points includes
all vectors expressible as

w112 + l1w122 - w1122 = a -1
 0

b + l c a1
0
b - a -1

 0
b d = a -1 + 2l

0
b

with 0 … l … 1. Thus we have only to choose a l corresponding to an infeasible point
to complete the argument that the set is not convex. One is l = 1

2, which yields the vec-
tor w = 10, 02 in the expression above, which clearly violates the unit circle constraint.

Convenience of Convex Feasible Sets for Improving Search
The attraction of convex feasible sets when using Improving Search is that there is
always a feasible direction ∆x = 1x122 - x1122 leading from any feasible solution
x112 to any other x122.

If the feasible set of an optimization model is convex, there is a
feasible direction leading from any feasible solution to any other.

Principle 3.30

3.4 Tractable Convex and Linear Cases 125

This means that feasibility cannot trap a search at a local optimum when there is a
better feasible solution.

Global Optimality of Linear Objectives over Convex
Feasible Sets
The simplifying tractability of convex feasible sets and linear objectives can com-
bine to assure us not to worry about Algorithm 3A stopping at a local optimum that
is not globally optimal.

If Improving Search Algorithm 3A over a linear objective and
a convex feasible set stops with a feasible solution x* where no improving fea-
sible solution exists, then x* is a global optimum. That is, local optima are
global optima for models with linear objectives and convex feasible sets.

Principle 3.31

exampLe 3.17: verIFyIng that LocaL optIma For LInear
objectIveS over convex FeaSIbLe SetS are gLobaL

Consider an optimization problem maximizing objective function 2x1 + x2 over the
unit circle with 1x122 + 1x222 … 1.

(a) Demonstrate that this problem meets the assumptions of property 3.31 .

(b) Show graphically that the local maximum is indeed global.

Solution:

(a) The plot below shows clearly that the unit circle feasible set is convex. Further-
more, the objective is a weighted sum of the decision variables, and thus linear.

x* = (0.89, 0.45)

x2

x1

To see why, suppose there is a better feasible solution than x*, say x=. Then
principle 3.30 assures there is a feasible direction ∆x = 1x= - x*2 available at x*,
and if, say, the problem minimizes,

cx= 6 cx* implies c1x= - x*2 = c ∆x 6 0

so that ∆x is both improving and feasible at x*. Algorithm 3A would not have stopped.

126 Chapter 3 Improving Search

Convexity of Linearly Constrained Feasible Sets
Linear constraints may take any of the forms (3.7–3.9). As with linear objective
functions, feasible sets defined by linear constraints, also known as polyhedral sets,
have unusual tractability.

(b) The plot also shows an optimal contour of the objective identifying a solution
x* ≃ 10.89, 0.462, which is locally optimal because every improving direction would
take the solution outside the feasible space. From the plot, it is equally clear that the
solution is also globally optimum, confirming principle 3.31 .

If all constraints of an optimization model are linear (both
main and variable-type), its feasible space is convex.

Principle 3.32

How can we be sure? Pick two solutions x112 and x122 feasible in an optimi-
zation model with linear constraints. For each model constraint of, say, the Ú form
(3.7), feasibility means

 a
n

j = 1
 aj xj

112 Ú b and a
n

j = 1
 aj xj

122 Ú b (3.15)

What about points along the line segment between x112 and x122? We know they are
formed as in 3.29 by some step l with 0 6 l 6 1.

Choose any such l. We may add 11 - l2 times the first inequality of (3.15) to
l times the second, to obtain

11 - l2a
n

j = 1
 ajxj

112 + la
n

j = 1
 ajxj

122 Ú 11 - l2b + lb = b

Then a bit of regrouping gives

a
n

j = 1
ajxj

112 - la
n

j = 1
 ajxj

112 + la
n

j = 1
 ajxj

122 Ú b

or

a
n

j = 1
 aj cxj

112 + l1xj
122 - xj

1122d Ú b

The last says that point x112 + l1x122 - x1122 satisfies the Ú constraint. Since
we could perform exactly the same computations for each of the other constraints,
we may conclude that points along the line segment between x112 and x122 are all
feasible—exactly what is required for the feasible set to be convex.

exampLe 3.18: ShowIng that LInearLy conStraIned SetS
are convex

Establish that the set of 1w1, w2, w32 satisfying

 19w1 + 3w2 - w3 … 14

 w1 Ú 0
is convex.

3.4 Tractable Convex and Linear Cases 127

Solution: Pick two arbitrary feasible solutions w112 and w122 satisfying both con-
straints. Then

 19w1
112 + 3w2

112 - w3
112 … 14 and w1

112 Ú 0

 19w1
122 + 3w2

122 - w3
122 … 14 and w1

122 Ú 0

We must show that any point along the line segment joining w112 and w122 also
satisfies both constraints. Each such point corresponds to some l strictly between 0
and 1 in representation 3.29 , so pick such a l.

Multiplying the foregoing main inequality for w112 by 11 - l2 and that of w122
by l, we may conclude that

11 - l2119w1
112 + 3w2

112 - w3
1122 + l119w1

122 + 3w2
122 - w3

1222
… 11 - l214 + 1l214

Noting that the right-hand side is just 14 and regrouping the left, it follows that

193w1
112 + l1w1

122 - w1
11224 + 33w2

112 + l1w2
122 - w2

11224
- 3w3

112 + l1w3
122 - w3

11224 … 14

As required, the point corresponding to l on the line segment satisfies the constraint.
For the second, nonnegativity constraint, the same computation yields

11 - l2w1
112 + l1w1

1222 Ú 11 - l20 + 1l20

or

w1
112 + l1w1

122 - w1
1122 Ú 0

Thus, the line segment point corresponding to l also satisfies constraint w1 Ú 0.

Global Optimality of Improving Search for Linear Programs
Recall from definition 2.29 that a linear program (or LP) is an optimization model
over continuous decision variables with a linear objective function and linear con-
straints (both main and variable type). Principles 3.31 and 3.32 now combine to
establish one reason why this linear objective function over the convex set of points
feasible for the linear constraints case is considered among the most tractable of
mathematical programs.

If a linear program has a global optimal solution, then improv-
ing search Algorithm 3A will stop only upon reaching one. That is, local optima
are global optima in linear programs.

Principle 3.33

Blocking Constraints in Linear Programs
We have already seen with principle 3.26 that an improving direction for a linear
objective function remains improving at all feasible points, that is, it cannot be the
limiting element in step size Step 3 of Improving Search Algorithm 3A over linear

128 Chapter 3 Improving Search

programs. Likewise, the simplicity of feasible direction conditions 3.25 over ac-
tive linear constraints assures a conforming direction ∆x will never violate an active
constraint it was constructed to avoid, no matter what the step size l. The final
element of our investigation of tractability in linear programs is to see that the only
feasibility consideration that can limit step size, that is, a blocking constraint, must
be one that was inactive when ∆x was chosen.

exampLe 3.19: verIFyIng that bLockIng conStraIntS For
LInearLy conStraIned FeaSIbLe SetS muSt be
nonbIndIng, but not aLL convex SetS

Consider the two feasible sets plotted below: the unit circle 5x1, x2 :1x122 + 1x222 … 16

of Example 3.17 , and a linear program over 5x1, x2 Ú 0: 1x122 + 1x222 … 16. In

both cases the current solution is x1t2 = 11, 02 and the search has chosen to pursue
feasible direction ∆x = 1-2, 12.

(a) Identify the active constraints in both cases.

(b) Show that the blocking constraint for the LP must be one inactive at x1t2, but
that this need not be true of the nonlinear case even though the feasible set is
convex.

x(t)

x2

x1

¢x

x(t)

x2

x1

¢x

Solution:

(a) In the first, nonlinear case the only constraint 1x122 + 1x222 … 1 is active. In the
linear case active constraints are x2 Ú 0 and x1 + x2 … 1.

(b) After a maximum feasible step in the nonlinear case, the search is blocked by
the same constraint active at x1t2. But with linear constraints in the LP, the previous-
ly active constraints remains satisfied for any positive step in the chosen direction.
Only previously inactive x1 Ú 0 limits feasible progress.

3.5 Searching for Starting Feasible Solutions 129

3.5 SearchIng For StartIng FeaSIbLe SoLutIonS

Up to now, all our discussion of improving search has envisioned moving from
 feasible solution to better feasible solution. But what if a first feasible solution is not
readily available? Complex optimization problems, with thousands of constraints
and variables, often have no obviously feasible solution. In fact, an early goal of
analysis may be to determine whether any feasible solution exists. In this section
we introduce the two-phase and big-M strategies, which deal with this startup issue.

Two-Phase Method
Improving search can be adapted to deal with the absence of a starting feasible solu-
tion, simply by using improving search to find one. More precisely, optimization is
effected in two phases. Phase I addresses an artificial problem with easier-to-satisfy
constraints. Starting from some feasible solution for this artificial problem, we mini-
mize how much the artificial solution violates constraints of the true problem. If the
violation can be driven to = 0, a completely feasible solution is at hand; Phase II then
performs a usual improving search starting from the Phase I result. If the (globally)
optimal value in Phase I is not ≠ 0, constraint violations cannot be completely elimi-
nated; the true problem is infeasible. Algorithm 3B formalizes this two-phase method.

Algorithm 3B: two-phAse improving seArCh

step 0: Artificial model. Choose any convenient solution for the true model
and construct a corresponding Phase I model by adding (or subtracting) non-
negative artificial variables in each violated constraint.

step 1: phase i. Assign values to artificial variables to complete a starting
feasible solution for the artificial model. Then begin at that solution and
perform an improving search to minimize the sum of the artificial variables.

step 2: infeasibility. If Phase I search terminated with artificial sum = 0,
proceed Step 3; the original model is feasible. If Phase I search terminated
with a global minimum having artificial sum 7 0, stop; the original model is
infeasible. Otherwise, repeat Step 1 from a different starting solution.

step 3: phase ii. Construct a starting feasible solution for the original model
by deleting artificial components of the Phase I optimum. Then begin at that
solution and perform an improving search to optimize the original objective
function subject to original constraints.

Two Crude Model Application Revisited
The Two Crude model of Figure 3.11 provides a familiar example:

min 100x1 + 75x2

s.t. 0.3x1 + 0.4x2 Ú 2
0.4x1 + 0.2x2 Ú 1.5
0.2x1 + 0.3x2 Ú 0.5
0 … x1 … 9, 0 … x2 … 6

130 Chapter 3 Improving Search

For this tiny case, it is easy to find a starting feasible solution graphically or by trial
and error. But for typical instances we employ a more formal procedure.

Algorithm 3B begins by picking arbitrarily some convenient values—feasible
or not—for the true decision variables. Often, the choice is to make all decision
variables = 0 as we will do here.

Our choice of x1 = x2 = 0 satisfies the bound constraints

0 … x1 … 9 and 0 … x2 … 6

Still, it violates all 3 main constraints.

Artificial Variables
We deal with constraints unsatisfied at our arbitrary starting solution by introducing
artificial variables to absorb the infeasibility.

Phase I constraints are derived from those of the original model
by considering each in relation to the starting solution chosen. Satisfied con-
straints simply become part of the Phase I model. Violated ones are augmented
with a nonnegative artificial variable to permit artificial feasibility.

Principle 3.34

Including artificial variables x3, x4, and x5 in the 3 constraints violated at
x1 = x2 = 0 produces Phase I constraints

 0.3x1 + 0.4x2 + x3 Ú 2

 0.4x1 + 0.2x2 + x4 Ú 1.5

 0.2x1 + 0.3x2 + x5 Ú 0.5

 0 … x1 … 9, 0 … x2 … 6

 x3, x4, x5 Ú 0

Notice that a different artificial variable was introduced in each constraint violated.
It was added in each case because extra left-hand side is needed to satisfy the Ú
constraints at x1 = x2 = 0.

Occasionally, it is appropriate to subtract the artificial. For example, if the
model had included a constraint

x1 - x2 = -10

the Phase I construction with artificial x6 is

x1 - x2 - x6 = -10

Then for x1 = x2 = 0, x6 = 10 produces feasibility. Had we used a + sign on x6 , the
corresponding solution would require x6 negative, a violation of nonnegativity.

Phase I Models
Artificial variables provide a way to get started in Phase I, but our goal is to drive
out all the infeasibility, that is, to find a solution feasible with artificial variables all
zero. This defines the Phase I objective function.

3.5 Searching for Starting Feasible Solutions 131

Minimizing the total minimizes each artificial because all are required to be
nonnegative.

In our Two Crude example, the resulting Phase I model is

min x3 + x4 + x5

s.t. 0.3x1 + 0.4x2 + x3 Ú 2
0.4x1 + 0.2x2 + x4 Ú 1.5
0.2x1 + 0.3x2 + x5 Ú 0.5
0 … x1 … 9, 0 … x2 … 6
x3, x4, x5 Ú 0

 (3.16)

The Phase I objective function minimizes the sum of the arti-
ficial variables.

Principle 3.35

exampLe 3.20: conStructIng a phaSe I modeL

Consider the optimization model

 max 141w1 - 1022 + 1w2 - 322 + 1w3 + 522

 s.t. 12w1 + w3 Ú 19 (3.17)

 4w1 + w2 - 7w3 … 10 (3.18)

 -w1 + w2 - 6w3 = -8 (3.19)

w1, w2, w3 Ú 0 (3.20)

Construct an artificial model to begin Phase I improving search with w1 = w2 =
w3 = 0.

Solution: The solution w1 = w2 = w3 = 0 satisfies the main constraint (3.18) and
nonnegativity constraints (3.20). In accord with principle 3.39 , an artificial vari-
able w4 must be added to deal with violated constraint (3.18), and another w5 must
be subtracted (because of the negative right-hand side -8) to satisfy the violated
equality (3.19).

An objective function minimizing the sum of the two artificial variables
 (principle 3.35) completes the Phase I model.

min w4 + w5

s.t. 12w1 + w3 + w4 Ú 19
4w1 + w2 - 7w3 … 10
-w1 + w2 - 6w3 - w5 = -8
 w1, w2, w3, w4, w5 Ú 0

Starting Artificial Solution
Using separate artificials in each violated constraint makes it extremely easy to
complete a starting feasible solution for the Phase I search.

132 Chapter 3 Improving Search

For example, in Two Crude model (3.16), we have decided to initiate Phase I
search at solution x102 with x1

102 = x2
102 = 0. For these values, the first main con-

straint becomes

0.3102 + 0.4102 + x3 Ú 2

It is violated without artificial variable x3 present, but choosing x3
102 = 2 is just

enough to provide feasibility in Phase I. Similarly,

0.4102 + 0.2102 + x4 Ú 1.5

demands x4
102 = 1.5, and

0.2102 + 0.3102 + x5 Ú 0.5

implies that x5
102 = 0.5. The result is x102 = 10, 0, 2, 1.5, 0.52, a starting feasible

solution for the Phase I problem.

After fixing original variables at their arbitrarily chosen val-
ues, each artificial variable is initialized at the smallest value still needed to
achieve feasibility in the corresponding constraint.

Principle 3.36

If Phase I terminates with a solution having (Phase I) objective
function value = 0, the components of the Phase I solution corresponding to
original variables provide a feasible solution for the original model.

Principle 3.37

If Phase I terminates with a global minimum having (Phase I)
objective function value 7 0, the original model is infeasible.

Principle 3.38

exampLe 3.21: conStructIng a phaSe I StartIng SoLutIon

Return to the artificial problem of Example 3.20. Determine a starting Phase I
solution having w1 = w2 = w3 = 0.

Solution: To start Phase I, we set w1
102 = w2

102 = w3
102 = 0. Then making w4

102 = 19
achieves feasibility in the first main constraint, and w5

102 = 8 satisfies the last.
Phase I would start at w102 = 10, 0, 0, 19, 82.

Phase I Outcomes
How could the Phase I search end? Certainly it will not terminate with a negative
objective function value. Artificial variables are restricted to be nonnegative, so
their sum must be nonnegative. For the same reason, the Phase I problem cannot be
unbounded. The objective value cannot ever fall below zero.

Three possibilities remain.

3.5 Searching for Starting Feasible Solutions 133

Begin with the happiest case 3.37 . Here Phase I has been able to drive the
sum of the artificial variables to zero. For example, in the Two Crude Phase I prob-
lem above, two iterations of improving search might produce the Phase I solution
x122 = 14, 4, 0, 0, 02 with objective function value

x3
122 + x4

122 + x5
122 = 0 + 0 + 0 = 0

The only way nonnegative numbers can sum to zero is for all of them to equal zero.
Thus, every artificial is necessarily zero in this final Phase I solution. Since artificials
no longer have any effect on their constraints, the values for nonartificial variables
must be feasible in the original model. We can simply drop all artificial variables and
proceed with Phase II.

The starting Phase II solution will be that part of the Phase I result that in-
volves variables of the real model. For example, our Two Crude Phase I solution
x122 = 14, 4, 0, 0, 02 has components x1

122 = x2
122 = 4 on nonartificial variables.

Phase II search can start from feasible solution x102 = 14, 42.

If Phase I terminates with a local minimum that may not
be global but has (Phase I) objective function value 7 0, we can conclude
nothing. Phase I search should be repeated from a new starting solution.

Principle 3.39

exampLe 3.22: verIFyIng FeaSIbILIty wIth phaSe I

Verify that w1 = 2, w2 = 0, w3 = 1 is a feasible solution to the original model in
Example 3.20. Then construct a corresponding optimal solution to exercise’s Phase
I model, and explain why it is optimal.

Solution: The solution indicated is feasible because all components are nonnega-
tive and

 12122 + 1 = 25 Ú 19

 4122 + 102 - 7112 = 1 … 10

 - 122 + 102 - 6112 = -8

To construct a corresponding optimum for the Phase I problem, we set artificials
w4 = w5 = 0. Full Phase I solution w = 12, 0, 1, 0, 02 is feasible because artificials
are unneeded to satisfy constraints with w1 = 2, w2 = 0, and w3 = 1. It is Phase I
optimal because the sum of nonnegative quantities is minimum when all are zero.

Concluding Infeasibility from Phase I
Now consider the 3.38 and 3.39 cases, where Phase I improving search terminates
with a positive objective function value. The final solution from Phase I improving
search will probably approximate a local minimum (principle 3.17), but it may or
may not be global.

If we have some way of being sure that the Phase I solution is a global op-
timum, our conclusion is clear. The original model is infeasible (principle 3.38),

134 Chapter 3 Improving Search

because every solution to the Phase I model has some artificial variables at positive
values. Their sum just cannot be driven to zero.

To illustrate, let us modify our Two Crude model until it is infeasible.
Specifically, reverse the direction of the last main inequality so that it reads

 0.2x1 + 0.3x2 + x5 … 0.5 (3.21)

in the Phase I problem.
Improving search on this revised Phase I problem will terminate at some

solution x(t) = 12.5, 0, 1.25, 0.5, 02 with objective function value 1.25 + 0.5 + 0 =
1.75 7 0. Since this Phase I problem has all linear constraints and a linear objective
function, we know from Section 3.4 (principle 3.32) that every Phase I local mini-
mum is a global minimum. It follows that no feasible solution to our modified Phase I
example can have artificial variable total less that x(t)’s 1.75. That is, artificials simply
cannot all be driven out of the solution. We conclude (principle 3.38) that the model
with last constraint reversed as in (3.21) is infeasible.

Notice how this analysis depended on our certainty that a local minimum in
Phase I was a global minimum. When Phase I’s solution may just be a local mini-
mum with positive objective function value, there might still be a solution with ar-
tificials all zero. Like any improving search with local outcomes possible, we would
have no choice but to repeat the analysis from a different Phase I starting solution
(principle 3.39).

exampLe 3.23: proceSSIng phaSe I outcomeS

Suppose that a linearly constrained optimization model over variables z1, z2, and
z3 is converted for Phase I by adding nonnegative artificial variables z4, z5, and z6.
For each of the following original model objective functions and Phase I search
results z, indicate what we can conclude and how Algorithm 3B processing should
proceed.

(a) Original model objective: maximize 14z1 - z3; Phase I local optimum:
z = 11, -1, 3, 0, 0, 02
(b) Original model objective: minimize 1z1z222 + sin1z32; Phase I local optimum:
z = 11, 2, -3, 0, 1, 12
Solution:

(a) All 3 artificial variables = 0 in the Phase I local maximum. Thus (principle 3.37)
z(0) = 11, -1, 32 provides a feasible solution for the original model. Proceed to
Phase II search, beginning at this z(0).

(b) The corresponding Phase I model has a linear objective function and linear con-
straints. Thus z is a global optimum (principle 3.37) despite the highly non-unimodal
nature of the true objective function. Applying 3.38 , we may conclude that the orig-
inal model is infeasible because artificial sum z4 + z5 + z6 = 0 + 1 + 1 = 2 7 0
in a Phase I global optimum.

3.5 Searching for Starting Feasible Solutions 135

Big-M Method
Two-Phase Algorithm 3B deals with feasibility and optimality separately. Phase I
search tests feasibility. Phase II proceeds to an optimum.

The Big-M method combines these activities in a single search. Artificial vari-
ables are included in constraints exactly as in Phase I of Two-Phase search. However,
the effort to drive their total to = 0 is combined with a search for an optimal solu-
tion to the original model.

The key to combining feasibility and optimality considerations is a composite
objective function.

The Big-M method uses a large positive multiplier M to com-
bine feasibility and optimality in a single-objective function of the form

 max 1original objective2 - M1artificial variable sum2
for an originally maximize problem, or

 min 1original objective2 + M1artificial variable sum2
for a minimize problem.

Definition 3.40

Infeasibility reflected in positive values of artificial variables is forced toward zero
by adding or subtracting that infeasibility in the objective with the large penalty
multiplier M that gives the method its name.

We again illustrate with the Two Crude example. The big-M form of the
problem is

min 100x1 + 75x2 + M1x3 + x4 + x52
s.t. 0.3x1 + 0.4x2 + x3 Ú 2

0.4x1 + 0.2x2 + x4 Ú 1.5
0.2x1 + 0.3x2 + x5 Ú 0.5
0 … x1 … 9, 0 … x2 … 6
x3, x4, x5 Ú 0

 (3.22)

Notice that the constraints are identical to those of Phase I model (3.16). That means
that the x102 = 10, 0, 2, 1.5, 0.52 of principle 3.36 continues to provide a suitable
starting solution.

What is new is the objective function. It combines the original objective to
minimize 100x1 + 75x2 with a large positive multiple of artificial variable sum
1x3 + x4 + x52.

Pick, say, M = 10,000. Then a single search of big-M version (3.22) will lead
to an optimal solution of the original model. Any solution with positive artificial
variable total will be highly penalized and thus not optimal in (3.22). Among those
that have artificial total = 0, (i.e., among the feasible solutions of the original
model), one with lowest original objective value will be preferred.

136 Chapter 3 Improving Search

Big-M Outcomes
Possible outcomes from a Big-M search closely parallel those of the two-phase
method detailed in principles 3.37 to 3.39 . When Big-M search terminates, we may
have an optimum for the original model, a proof that the original model was infeasi-
ble, or just confusion.

Consider first the optimal case.

exampLe 3.24: conStructIng a bIg-M modeL

Return to the optimization of Example 3.20 and construct the corresponding Big-M
model.

Solution: Constraints and artificial variables are exactly as in Example 3.21.
Including the Big-M objective of definition 3.40 results in the following big-M
model:

max 141w1 - 1022 + 1w2 - 322 + 1w3 + 522 - M1w4 + w52
s.t. 12w1 + w3 + w4 Ú 19

4w1 + w2 - 7w3 … 10
-w1 + w2 - 6w3 - w5 = -8
w1, w2, w3, w4, w5 Ú 0

The artificial sum is subtracted because the objective is maximized.

If a Big-M search terminates with a locally optimal solution
having all artificial variables = 0, the components of the solution correspond-
ing to original variables form a locally optimal solution for the original model.

Principle 3.41

For example, with M = 10,000, infeasibility is so expensive that big-M search
of model (3.22) will compute global optimum x = 12, 3.5, 0, 0, 02. Components
x1 = 2 and x2 = 3.5, which were the original decision variables, constitute an opti-
mal solution to model of interest.

When Big-M search terminates with artificial variables at positive values, mat-
ters are more murky.

If M is sufficiently large and Big-M search terminates with a
global optimum having some artificial variables 7 0, the original model is
infeasible.

Principle 3.42

If Big-M search terminates with a local optimum having some
artificial variables 7 0, or the multiplier M may not be large enough, we can
conclude nothing. The search should be repeated with a larger M and/or a new
starting solution.

Principle 3.43

3.5 Searching for Starting Feasible Solutions 137

As with two-phase outcomes 3.38 and 3.39 , we will not be able to reach any
conclusions when big-M search stops with a positive artificial variable total unless
we can be sure that the search has produced a global optimum. If the outcome is
known only to be a local optimum, a feasible solution might yet be found.

However, notice in 3.42 and 3.43 that we encounter a new difficulty when
we adopt the big-M approach. If artificial variables take nonzero values in the big-
M optimum, it may only mean that we did not choose a large enough multiplier M.
For example, solution of big-M form (3.22) with M = 1 will yield optimal solution
x = 10, 0, 2.0, 1.5, 0.52 because the penalty of

M1x3 + x4 + x52 = 112.0 + 1.5 + 0.52
is insufficient to force out infeasibility. Only when M is sufficiently large—
something that depends on details of each model—does a big-M optimum with
positive artificial variables imply infeasibility.

exampLe 3.25: proceSSIng bIg-M outcomeS

Suppose that a linearly constrained optimization model over variables z1, z2, and
z3 is converted for big-M by including nonnegative artificial variables z4, z5, and z6
and penalizing the original objective function (as in 3.40) by M = 1000 times their
sum. For each of the following original model objective functions and big-M search
results z, indicate what we can conclude.

(a) Original model objective: maximize 14z1 - z3 ; big-M local optimum: z =
11, -1, 3, 0, 0, 02
(b) Original model objective: maximize z2 + z3 ; big-M local optimum: z =
10, 0, 0, 1, 0, 22
(c) Original model objective: minimize 1z1z222 + sin1z32; big-M local optimum:
z = 11, 1, 3, 0, 0, 02
(d) Original model objective: minimize 1z1z222 + sin1z32; big-M local optimum:
z = 11, 2, -3, 0, 1, 12

Solution:

(a) All three artificial variables = 0 in the big-M local optimum. Thus (principle
3.41) z = 11, -1, 32 provides a local maximum for the original model. With both
objective and constraints linear, it is also globally optimal.

(b) With both objective and constraints linear, solution z is a global optimum
in the big-M model. However, we can conclude that the original model is infeasible
(principle 3.42) only if we know that M = 1000 imposes a large enough penalty
to make any infeasible solution have a lower objective value than any feasible one.

(c) All three artificial variables = 0 in the big-M local optimum. Thus (principle
3.41) z = 11, 1, 32 provides a local optimum for the original model. The highly
non-unimodal nature of the objective makes it impossible to tell whether it is a
global optimum.

138 Chapter 3 Improving Search

(d) The highly non-unimodal nature of the big-M objective function makes it impos-
sible to know whether the indicated z is a global minimum. Thus since some artificial
variables have positive value, our only choices (principle 3.43) are to increase M
and/or repeat the search from a different starting point.

ExErcISES

3-1 In each of the following plots, determine
whether the specified points are feasible, infeasi-
ble, local optimal, and/or global optimal in the de-
picted mathematical program over two continuous
variables. Dashed lines indicate contours of the
objective function, and solid lines show constraints.

(a) Maximize problem; x112 = 15, 02, x122 =
12, -12, x132 = 13, 32, x142 = 11, 32

2 3 4

-1

1

2

3

x2

x1

500
200

100
50

100

50

5

x(2)

x(4) x(3)

x(1)

(b) Minimize problem: x112 = 11, 32, x122 =
13, 32, x132 = 13, 22, x142 = 13, 02

x2

x1

x(1) x(2)

x(3)

x(4)

1

1 2 3 4

90
70

110
100

50

120

90
95

105

2

3

4

3-2 Each of the following shows the sequence of
directions and steps employed by an improving
search that began at y102 = 12, 0, 52. Compute
the sequence of points visited by the search.

(a) ∆y112 = 13, -1, 02, l1 = 2, ∆y122 =
1-1, 2, 12, l2 = 5, ∆y132 = 10, 6, 02,
 l3 = 1

2

(b) ∆y112 = 11, 3, -22, l1 = 2, ∆y122 =
11, 0, 22, l2 = 1

2, ∆y132 = 14, 3, 22,
l3 = 12

3-3 Each of the following shows the sequence of
points visited by an improving search. Compute
the corresponding sequence of move directions
assuming that all step sizes l = 1.

(a) w102 = 10, 1, 12, w112 = 14, -1, 72,
 w122 =14, -3, 192, w132 = 13, -3, 222

(b) w102 = 14, 0, 72, w112 = 14, 2, 102,
w122 =1-2, 4, 52, w132 = 15, 5, 52

3-4 Refer to the plots of Exercise 3-1 and deter-
mine graphically whether the following directions
appear to be improving at the points indicated.

(a) ∆x = 1-3, 32 at x112 of 3-1(a)
(b) ∆x = 10, 12 at x122 of 3-1(a)
(c) ∆x = 1-10, 12 at x132 of 3-1(a)
(d) ∆x = 10, -32 at x122 in 3-2(b)
(e) ∆x = 12, 22 at x132 in 3-2(b)
(f) ∆x = 1-1, -102 at x142 in 3-2(b)

3-5 Refer to the plots of Exercise 3-2 and deter-
mine graphically whether the following directions
appear to be feasible at the points indicated.

(a) ∆x = 1-5, 52 at x112 of 3-2(a)
(b) ∆x = 10, 12 at x132 of 3-2(a)
(c) ∆x = 1-10, 02 at x132 of 3-2(a)
(d) ∆x = 1-3, -22 at x122 in 3-2(b)

 Exercises 139

(e) ∆x = 12, 52 at x132 in 3-2(b)
(f) ∆x = 1-1, -102, at x142 in 3-2(b)

3-6 Consider a mathematical program with
constraints

x1 - 2x2 + 3x3 … 25

x1, x2, x3 Ú 0

Determine the maximum step (possibly + ∞) that
preserves feasibility in the direction indicated from
the point specified. Also indicate whether that step
indicates that the model is unbounded, assuming
that directions improve everywhere.

(a) ∆x = 1-1, 3, -22 from x = 14, 0, 62
(b) ∆x = 1-2, 1, -12 at x = 18, 5, 32
(c) ∆x = 11, 3, 12 from x = 10, 0, 42
(d) ∆x = 12, 7, 42 at x = 120, 4, 32

3-7 For each of the following combinations of
objective function, point, and direction, deter-
mine whether conditions 3.21 and 3.22 show
that the direction improves at the point, does not
improve at the point, or that further information
is required.

(a) max 4y1 - 2y3 + y5, y = 11, 0, 19, 4, 62,
 ∆y = 12, -3, 4, 0, 62

(b) max y1 + 7y3 + 2y5, y = 11, 0, 9, 0, 02,
 ∆y = 1-10, -20, 2, 0, 42

(c) min y1y2 + 1y122 + 4y2, y = 13, -12,
 ∆y = 1-7, 52

(d) min y1y2 + 4y1 + 1y222, y = 12, 12,
 ∆y = 1-1, 32

(e) max 1y1 - 522 + 1y2 + 122, y = 14, 12 ,
∆y = 1-1, 22

(f) min 1y1 - 222 + y1y2 + 1y2 - 322,
y = 11, 12, ∆y = 13, -12

3-8 Construct an improving direction from the
gradient of each objective function at the point
indicated.

(a) max 3w1 - 2w2 + w4 at w = 12, 0, 5, 12
(b) min -4w2 + 5w3 - w4, at w = 12, 2, 1, 02
(c) min 1w1 + 222 - w1w2 at w = 13, 22
(d) max -4w1 + 9w2 + 21w222 at

 w = 111, 22

3-9 Determine which of the constraints

1z1 - 222 + 1z2 - 122 … 25 [i]
2z1 - z2 = 8 [ii]
z1 Ú 0 [iii]
z2 Ú 0 [iv]

are active at each of the following solutions.

(a) z = 14, 02
(b) z = 16, 42

3-10 Determine whether each of the directions
specified is feasible at the solution indicated to
the linear constraints

3y1 - 2y2 + 8y3 = 14

6y1 - 4y2 - 1y3 … 11

y1, y2, y3 Ú 0

(a) ∆y = 10, 4, 12 at y = 12, 0, 12
(b) ∆y = 10, -4, 12 at y = 12, 0, 12
(c) ∆y = 12, 0, 12 at y = 10, 1, 22
(d) ∆y = 1-2, 1, 12 at y = 10, 1, 22

3-11 State all conditions that must be satisfied by
a feasible direction ∆w at the solution indicated to
each of the following systems of linear constraints.

(a) 2w1 + 3w3 = 18
 1w1 + 1w2 + 2w3 = 14

 w1, w2, w3 Ú 0
at w = 10, 2, 62

(b) Same constraints as part (a) at
w = 16, 4, 22.

(c) 1w1 + 1w2 = 10
 2w1 - 1w2 Ú 8
 1w1 - 8w2 … 1
at w = 16, 42

(d) Same constraints as part (c) at w = 17, 32.

3-12 Consider the linear program

min -y1 + 5y2

s.t. -y1 + y2 … 3
y2 Ú 2
y2 Ú y1

y1, y2 Ú 0

at current solution y112 = 10, 32.

140 Chapter 3 Improving Search

(a) List the condition for a direction ∆y to be
improving at y112.

(b) Show that direction ∆y = 11, -12 satis-
fies your condition of part (a).

(c) Determine which constraints are active
at y112.

(d) List and justify all conditions for any di-
rection ∆y to be feasible at point y112.

(e) Show that direction ∆y = 11, -12 sat-
isfies your conditions of part (d), deter-
mine the maximum feasible step l in that
direction from y112, an compute the next
solution point y122.

(f) Draw a 2-dimensional plot of the feasible
space for this LP including contours of its
objective. Then show how ∆y = 11, -12
improves the objective, identify y112, and
demonstrate how the same ∆y preserves
all constraints until it encounters an inac-
tive one at the l of part (e) to produce y122.

3-13 Do Exercise 3-12(a)–(e), on LP

min 3x1 - 13x3

s.t. 11x1 + 3x2 + 4x3 = 69
x1 + x2 + x3 … 16
x1, x2, x3 Ú 0

using x112 = 13, 0, 92 and ∆x = 1-1, 1, 22.

3-14 Consider the mathematical program

max 4z1 + 7z2

s.t. 2z1 + z2 … 9
0 … z1 … 4
0 … z2 … 3

(a) Show that directions ∆ z112 = 12, 02 and
∆ z122 = 1-2, 42 are improving direc-
tions for this model at every z.

(b) Beginning at z102 = 10, 02, execute Im-
proving Search Algorithm 3A on the
model. Limit your search to the two di-
rections of part (a), and continue until
neither is both improving and feasible.

(c) Show in a two-dimensional plot the feasi-
ble space and objective function contours
of the model. Then plot the path of your
search in part (b).

3-15 Do Exercise 3-14 for mathematical program

min z1 + z2

s.t. z1 + 2z2 Ú 4
0 … z1 … 6
0 … z2 … 4

directions ∆z112 = 10, -22, ∆z122 = 1-4, 22, and
initial point z102 = 16, 42.
3-16 Consider the line segment between each of
the following solution pairs z112 and z122. Write an
algebraic expression representing all points on the
line segment, show that the given z132 is on the line
segment, and show that the z142 specified is not.

(a) z112 = 13, 1, 02, z122 = 10, 4, 92, z132 =
12, 2, 32, z142 = 13, 5, 92

(b) z112 = 16, 4, 42, z122 = 110, 0, 72, z132 =
19, 1, 25>42, z142 = 114, -4, 102

3-17 Determine whether the feasible set for each
of the following systems of constraints is convex,
and if not, indicate points x112 and x122 that vio-
late definition 3.27 .

(a) 1x122 + 1x222 Ú 9
x1 + x2 … 10
x2, x2 Ú 0

(b) 1x122>4 + 1x222 … 25
x1 … 9
x1 + x2 Ú 3
x1, x2 Ú 0

(c) x1 - 2x2 + x3 = 2
x1 + 8x2 - x3 … 16
x1 + 4x2 - x3 Ú 5
x1, x2, x3 Ú 0

(d) a 12
j = 1 3xj … 50

xj Ú xj - 1 j = 2, c, 12

xj Ú 0 j = 1, c, 12

(e) x1 + 2x2 + 3x3 + x4 … 24

0 … xj … 10, j = 1, c, 4

xj integer, j = 1, c, 4

(f) a 50
j = 1 xj … 200

xj … x1 j = 2, c, 100
xj Ú 0 j = 1, c, 100
x1 = 0 or 1

 Exercises 141

3-18 Construct a Phase I model corresponding to
each of the following, and indicate appropriate
starting values for the artificial variables. Assume
that all original decision variables start at wj = 0.

(a) max 22w1 - w2 + 15w3

s.t. 40w1 + 30w2 + 10w3 = 150
w1 - w2 … 0
4w2 + w3 Ú 0
w1, w2, w3 Ú 0

(b) min -w1 + 5w2

s.t. -w1 + w2 … 3
w2 Ú w1 + 1
w2 Ú w1

w1, w2 Ú 0

(c) min 2w1 + 3w2

s.t. 1w1 - 322 + 1w2 - 322 … 4
2w1 + 2w2 = 5
w1 Ú 3

(d) max 1w122 + 1w222

s.t. w1w2 … 9
2w1 = 4w2

w2 Ú 2
w1 Ú 0

3-19 Consider the linear program

min 3w1 + 7w2

s.t. w1 + w2 Ú 5
0 … w1 … 2
0 … w2 Ú 2

(a) Justify by inspection that this model must
be infeasible.

(b) Add artifical variables to construct a
Phase I version for which improving
search could start with w1 = w2 = 0.

(c) Explain why your Phase I model must be
feasible even though the original LP was
not.

(d) Solve your Phase I model with class op-
timization software to prove the original
model is infeasible.

3-20 Describe how a two-phase improving search
of a model with original variables y1, y2, and y3
would proceed if Phase I search terminated as
follows:

(a) Global optimum y = 140, 7, 0, 9, 02
(b) Global optimum y = 16, 3, 1, 0, 02
(c) Local optimum y = 11, 3, 1, 0, 02
(d) Local optimum y = 10, 5, 1, 2, 02, which

may not be a global optimum

3-21 Construct a Big-M starting model for each
case in Exercise 3-18 and indicate appropri-
ate starting values for the artificial variables.
Assume that all original decision variables start
at wj = 0.

3-22 Describe how Big-M search of a model with
original variables y1, y2, and y3 would proceed if
improving search of the Big-M version produced
each of the outcomes in Exercise 3-20.

rEfErEncES

Bazaraa, Mokhtar, Hanif D. Sherali and C. M.
Shetty (2006), Nonlinear Programming - Theory
and Algorithms, Wiley Interscience, Hoboken,
New Jersey.

Griva, Igor, Stephen G. Nash, and Ariela Sofer
(2009). Linear and Nonlinear Optimization,
SIAM, Philadelphia, Pennsylvania.

Luenberger, David G. and Yinyu Ye (2008),
Linear and Nonlinear Programming, Springer,
New York, New York.

This page intentionally left blank

143

▪ ▪ ▪ ▪ ▪

That is, the model’s single-objective function and all constraints must consist of
weighted sums of continuous decision variables.

Everything in life is not linear and continuous, but an enormous variety of
applications can be validly modeled as LPs. Cases with thousands, millions, or even
billions of variables can then be solved to global optimality.

We have already encountered linear programming models in Sections 2.1 to
2.4. Many others are found in network flow Chapter 10.

In this chapter, we develop a more comprehensive picture by presenting several
of the classic LP application forms. Most of the models described have been actually
used by real organizations. Only the details and numerical data are fictitious.

Linear programs are so central to the study of mathematical programming that
four subsequent chapters also treat LP topics. In Chapter 5 we specialize the improv-
ing search notions of Chapter 3 to obtain a powerful algorithm called the simplex
method; in Chapter 6, we add some duality-base variants of simplex; in Chapter 7,
we present interior-point varieties of improving search for LPs; also in Chapter 6, we
develop the extensive duality and sensitivity analysis available in linear programming
and in Chapter 10, we address the special linear programs that model network flows.

Chapter 4
Linear Programming

Models

Linear programs (or LPs) are mathematical programs combining all the characteris-
tics that Chapter 3 showed lead to high tractability.

An optimization model is a linear program (or LP) if it has
continuous variables, a single linear objective function, and all constraints are
linear equalities or inequalities.

Definition 4.1

144 Chapter 4 Linear Programming Models

4.1 AllocAtion Models

One of the simplest forms of linear programs that occurs widely in application might
be termed allocation models. The main issue is how to divide or allocate a valuable
resource among competing needs. The resource may be land, capital, time, fuel, or
anything else of limited availability. For example, the (nonlinear) E-mart model
(2.13) of Section 2.4 allocated an advertising budget.

1Based on B. Kent, B. B. Bare, R. C. Field, and G. A. Bradley (1991), “Natural Resource Land
Management Planning Using Large-Scale Linear Programs: The USDA Forest Service Experience with
FORPLAN,” Operations Research, 39, 13–27.

ApplicAtion 4.1: Forest service AllocAtion

The U.S. Forest Service has used just such an allocation model to address the sensi-
tive task of managing 191 million acres of national forestland.1 The Forest Service
must trade off timber, grazing, recreational, environmental, national preservation,
and other demands on forestland.

Models of a forest begin by dividing land into homogeneous analysis areas.
Several prescriptions or land management policies are then proposed and evaluated for
each. The optimization seeks the best possible allocation of land in the analysis areas to
particular prescriptions, subject to forest-wide restrictions on land use.

Table 4.1 provides details of the fictional, 788 thousand acre Wagonho National
Forest that we model. Wagonho is assumed to have 7 analysis areas, each subject to 3
different prescriptions. The first prescription encourages timbering, the second empha-
sizes grazing, and the third preserves the land as wilderness. Using index dimensions

 i ! analysis area number 1i = 1, c, 72
 j ! prescription number 1j = 1, c, 32

Table 4.1 provides values for all the following symbolic parameters:

 si ! size of analysis area i (in thousands of acres)

 pi, j ! net present value (NPV) per acre of all uses in area
i if managed under prescription j

 ti, j ! projected timber yield (in board feet per acre) of analysis area
i if managed under prescription j

 gi, j ! projected grazing capability (in animal unit months per acre) of analysis
area i if managed under prescription j

 wi, j ! wilderness index rating (0 to 100) of analysis area i if managed under
prescription j

We wish to find an allocation that maximizes net present value while producing 40
million board feet of timber, 5 thousand animal unit months of grazing, and keep-
ing average wilderness index to at least 70.

4.1 Allocation Models 145

Allocation Decision Variables
As in all such models, our Forest Service example seeks an optimal allocation of a
valuable resource. Corresponding decision variables define the allocation.

tAble 4.1 Forest Service Application Data

Analysis
Area,

i

Acres,
si

(000)’s
Prescription,

j

NPV,
(per acre)

pi, j

Timber,
(per acre)

ti, j

Grazing,
(per acre)

gi, j

Wilderness
Index,

wi, j

1 75 1 503 310 0.01 40
2 140 50 0.04 80
3 203 0 0 95

2 90 1 675 198 0.03 55
2 100 46 0.06 60
3 45 0 0 65

3 140 1 630 210 0.04 45
2 105 57 0.07 55
3 40 0 0 60

4 60 1 330 112 0.01 30
2 40 30 0.02 35
3 295 0 0 90

5 212 1 105 40 0.05 60
2 460 32 0.08 60
3 120 0 0 70

6 98 1 490 105 0.02 35
2 55 25 0.03 50
3 180 0 0 75

7 113 1 705 213 0.02 40
2 60 40 0.04 45
3 400 0 0 95

Principal decision variables in allocation models specify how
much of the critical resource is allocated to each use.

Principle 4.2

Our Forest Service case will employ nonnegative

xi, j ! number of thousands of acres in analysis area i managed by prescription j

Forest Service Allocation Model
The Forest Service’s objective is to maximize total net present value (NPV). In
terms of the defined notation, this is

 max a
7

i = 1
 a

3

j = 1
 pi, j xi, j = 503x1,1 + 140x1,2 + 203x1,3 + 675x2,1 + 100x2,2 + 45x2,3

+ g + 705x7,1 + 60x7,2 + 400x7,3

146 Chapter 4 Linear Programming Models

One system of constraints must assure that all acres of each analysis area are
allocated. For example, in analysis area 1,

x1,1 + x1,2 + x1,3 = 75

Using symbolic constants, all 7 such constraints can be expressed by the system

a
3

j = 1
 xi, j = si i = 1, c, 7

Finally, there are the performance requirements on timber, grazing, and wil-
derness index. For example, we want timber output

a
7

i = 1
 a

3

j = 1
 ti, j xi, j = 310x1,1 + 50x1,2 + 0x1,3 + 198x2,1 + 46x2,2 + 0x2,3

+ c + 213x7,1 + 40x7,2 + 0x7,3

Ú 40, 000

Combining produces the following allocation linear program:

 max a
7

i = 1
 a

3

j = 1
 pi, j xi, j 1present value2

(4.1)

 s.t. a
3

j = 1
 xi, j = si i = 1, c, 7 1allocation2

 a
7

i = 1
 a

3

j = 1
 ti, jxi, j Ú 40,000 1timber2

 a
7

i = 1
 a

3

j = 1
 gi, jxi, j Ú 5 1grazing2

1

788
 a

7

i = 1
 a

3

j = 1
 wi, j xi, j Ú 70 1wilderness2

xi, j Ú 0 i = 1, c, 7; j = 1, c, 3

An optimal allocation makes

 x1,1
* = 0, x1,2

* = 0, x1,3
* = 75, x2,1

* = 90, x2,2
* = 0, x2,3

* = 0,

 x3,1
* = 140, x3,2

* = 0, x3,3
* = 0, x4,1

* = 0, x4,2
* = 0, x4,3

* = 60,

 x5,1
* = 0, x5,2

* = 154, x5,3
* = 58, x6,1

* = 0, x6,2
* = 0, x6,3

* = 98,

x7,1
* = 0, x7,2

* = 0, x7,3
* = 113

with total net present value $322,515,000.

exAMple 4.1: ForMulAting AllocAtion lps

Jill College is taking courses in operations research, engineering economics, statis-
tics, and material science. She has 30 study hours to prepare for her finals and wishes
to divide her time to improve her term grades as much as possible. Naturally, her

4.2 Blending Models 147

4.2 blending Models

Allocation models split a resource. Blending models combine them. That is, blend-
ing models decide what mix of ingredients best fulfills specified output require-
ments. Various applications blend everything from chemicals, to diets, to metals, to
animal food. For example, the Two Crude case of Section 2.1 is a blending model
mixing crude petroleums to produce refinery products.

favorite course is operations research, so she will spend as much on it as any other.
Still, she believes up to 10 hours of study could be useful in any of the courses, with
each hour on operations research increasing her grade by 2%, each on engineering
economics yielding 3%, each on statistics producing 1%, and each on materials sci-
ence adding 5%. Form an allocation linear program to help Jill optimize her study.

Solution: Using decision variables

hj ! hours spent on the j th course

the required model is

 max 2h1 + 3h2 + 1h3 + 5h4 1total gain2
 s.t. h1 + h2 + h3 + h4 = 30 1allocation2

 h1 Ú hj j = 2, c, 4 1OR most2
 hj … 10 j = 1, c, 4 1maximum 102
 hj … 0 j = 1, c, 4

The objective maximizes score gain. Main constraints make the allocation total 30,
keep OR study as great as any other, and limit the allocation for any class to 10 hours.

ApplicAtion 4.2: swedish steel

The steel industry confronts another blending problem when it melts materials in
high-temperature furnaces to manufacture new alloys from scrap. Fagersta AB of
Fagersta, Sweden, is one of many companies that have used mathematical program-
ming to plan this steel blending.2

An optimization arises each time a furnace is charged. Scrap in the available
inventory is combined with pure additives to produce a blend having the required per-
centages of various chemical elements. It is critical to make maximum use of scrap
because additives are much more expensive. Although there are some integer pro-
gramming aspects discussed in Section 11.1, we deal here only with the simpler linear
programming form.

Our fictitious version of Swedish steelmaking will produce a 1000-kilogram
furnace charge. All steel consists primarily of iron. Table 4.2 shows the much smaller

2Based on C.-H. Westerberg, B. Bjorklund, and E. Hultman (1977), “An Application of Mixed
Integer Programming in a Swedish Steel Mill,” Interfaces, 7:2, 39–43.

148 Chapter 4 Linear Programming Models

Ingredient Decision Variables
It is characteristic that we make ingredient decisions.

tAble 4.2 Data for Swedish Steel Example

Composition (%)
Available

(kg)
Cost

(kr/ kg)

Carbon Nickel Chromium Molybdenum

First scrap 0.80 18 12 — 75 16
Second scrap 0.70 3.2 1.1 0.1 250 10
Third scrap 0.85 — — — Unlimited 8
Fourth scrap 0.40 — — — Unlimited 9
Nickel — 100 — — Unlimited 48
Chromium — — 100 100 Unlimited 60
Molybdenum — — — — Unlimited 53

Minimum blend 0.65 3.0 1.0 1.1
Maximum blend 0.75 3.5 1.2 1.3

fractions of carbon, nickel, chromium, and molybdenum in the four available supplies
of scrap, on which we can draw, along with the quantities held and their unit cost in
Swedish krona. It also shows the three higher-cost additives that can be used and the
acceptable ranges for the resulting blend. For example, the 1000 kilograms of steel pro-
duced should contain between 0.65 and 0.75% carbon.

Principal decision variables in blending models specify how
much of each available ingredient to include in the mix.

Principle 4.3

In our Swedish Steel example we have seven such variables:

xj ! number of kilograms of ingredient j included in the charge

where j = 1, c, 4 refers to the four supplies of scrap, and j = 5, c, 7 to the pure
additives.

Composition constraints in blending models enforce upper
and/or lower limits on the properties of the resulting blend.

Definition 4.4

Composition Constraints
One requirement on any solution to our example is that the total charge sum to
1000 kilograms:

 x1 + x2 + x3 + x4 + x5 + x6 + x7 = 1000 (4.2)

However, most of the main constraints restrict the composition of the mix.

4.2 Blending Models 149

In our Swedish Steel example we have both upper and lower limits on the frac-
tion of carbon, nickel, chromium, and molybdenum in the mix. Each such constraint
will have the form

 a
j

 £ fraction in
j th
ingredient

≥ # §amount of
j th
ingredient
used

¥ Ú
or
…
 £allowed

fraction in
the blend

≥ # ablend
total

b (4.3)

Specifically, the composition constraints required are

 0.0080x1 + 0.0070x2 + 0.0085x3 + 0.0040x4 Ú 0.0065 a
7

j = 1
 xj

 0.0080x1 + 0.0070x2 + 0.0085x3 + 0.0040x4 … 0.0075 a
7

j = 1
 xj

 0.180x1 + 0.032x2 + 1.0x5 Ú 0.030 a
7

j = 1
 xj

 0.180x1 + 0.032x2 + 1.0x5 … 0.035 a
7

j = 1
 xj

 0.120x1 + 0.011x2 + 1.0x6 Ú .010 a
7

j = 1
 xj

 0.120x1 + 0.011x2 + 1.0x6 … 0.012 a
7

j = 1
 xj

 0.001x2 + 1.0x7 Ú 0.011 a
7

j = 1
 xj

 0.001x2 + 1.0x7 … 0.013 a
7

j = 1
 xj

exAMple 4.2: ForMulAting coMposition constrAints

A food blending model with 3 ingredients employs nonnegative decision variables

xj ! grams of ingredient j used

where ingredient 1 is 4% fiber and has 10 milligrams (mg) of sodium per gram,
ingredient 2 is 9% fiber and has 15 mg of sodium per gram, and ingredient 3 is
3% fiber and has 5 mg of sodium per gram. Formulate linear constraints enforcing
each of the following requirements.

(a) The blend must average at least 5% fiber.

(b) The blend must contain at most 100 mg of sodium.

Solution:

(a) Following format (4.3), the needed constraint is

0.04x1 + 0.09x2 + 0.03x3 Ú 0.051x1 + x2 + x32

150 Chapter 4 Linear Programming Models

Swedish Steel Example Model
Collecting the elements derived so far yields the following LP model of our Swedish
Steel example:

 min 16x1 + 10x2 + 8x3 + 9x4 + 48x5 + 60x6 + 53x7 1cost2

(4.4)

 s.t. x1 + x2 + x3 + x4 + x5 + x6 + x7 = 1000 1weight2
 0.0080x1 + 0.0070x2 + 0.0085x3 1carbon2

+0.0040x4 Ú 0.0065110002
 0.0080x1 + 0.0070x2 + 0.0085x3

+0.0040x4 … 0.0075110002
 0.180x1 + 0.032x2 + 1.0x5 Ú 0.030110002 1nickel2
 0.180x1 + 0.032x2 + 1.0x5 … 0.035110002

 0.120x1 + 0.011x2 + 1.0x6 Ú 0.010110002 1chromium2
 0.120x1 + 0.011x2 + 1.0x6 … 0.012110002

 0.001x2 + 1.0x7 Ú 0.011110002 1molybdenum2
 0.001x2 + 1.0x7 … 0.013110002

 x1 … 75 1available2
 x2 … 250

 x1, c, x7 Ú 0 1nonnegative2
The objective function merely sums the costs of the ingredients used. The only

constraints not discussed above enforce supply limits on the first two types of scrap.
Composition constraints have been simplified by taking advantage of the fact that
total weight is fixed at 1000 kilograms.

The unique optimal solution to model (4.4) has

 x1
* = 75.00 kg, x2

* = 90.91 kg, x3
* = 672.28 kg, x4

* = 137.31 kg

 x5
* = 13.59 kg, x6

* = 0.00 kg, x7
* = 10.91 kg

The total cost of an optimal charge is 9953.7 krona.

Ratio Constraints
The composition constraints of our Swedish Steel example can be viewed as ratio
constraints because they bound the fraction that one weighted sum of variables
forms of another. For example, the lower limit on carbon is

0.0080x1 + 0.0070x2 + 0.0085x3 + 0.0040x4 Ú 0.0065 a
7

j = 1
 xj

(b) Here the constraint deals with absolute amounts, not fractions. The required
form is

10x1 + 15x2 + 5x3 … 100

4.2 Blending Models 151

or

0.0080x1 + 0.0070x2 + 0.0085x3 + 0.004x4

x1 + x2 + x3 + x4 + x5 + x6 + x7
 Ú 0.0065

In the latter form, the constraint does not even appear linear. Still, multiplying by
the denominator, which we know will be nonnegative in every feasible solution,
produces the linear version without reversing the direction of the inequality.

Many blending models have similar ratio constraints among ingredients.
For example, if ingredients 3 and 4 must be in ratio no more than 2:3, we have the
requirement that

x3

x4
 …

2
3

Again, since we know the sign of denominator x4 Ú 0, we may cross-multiply to
produce the linear form

x3 … 2
3 x4

Contrast this with the ratio constraint

x3

x1 - x2
 …

2
3

Over nonnegative xj the denominator of the latter constraint has an unpredictable
sign. Without further information it must be considered nonlinear.

Ratio constraints, which bound the quotient of linear functions
by a constant, can often be converted to linear constraints by cross-multiplication.
However, if the constraint is an inequality, the sign of the denominator function
must be predictable over feasible solutions.

Principle 4.5

exAMple 4.3: ForMulAting rAtio constrAints

Formulate linear constraints enforcing each of the following ratio requirements on
nonnegative decision variables x1, x2, and x3 determining the amount of three sub-
stances in a blend.

(a) The amounts of substance 1 and 2 should be in the ratio 4:7.

(b) The amount of substance 1 is at most half that of substance 3.

(c) The blend is at least 40% substance 1.

Solution:

(a) The constraint required is

x1

x2
=

4
7
 or x1 = 4

7 x2

152 Chapter 4 Linear Programming Models

4.3 operAtions plAnning Models

Another classic linear program form deals with operations planning. In organiza-
tions ranging from volunteer, to government, to manufacturing, to distribution, plan-
ners must decide what to do and when and where to do it. For example, Section 2.3’s
Pi Hybrids model (2.10) was used to plan the production and distribution of
seed corn.

3Based on Wayne Drayer and Steve Seabury (1975), “Facilities Expansion Model,” Interfaces, 5:2,
part 2, 104–109.

(b) The constraint needed is

x1 … 1
2 x3

(c) The constraint specified is

x1

x1 + x2 + x3
 Ú 0.40

or (with the nonnegative denominator)

x1 Ú 0.401x1 + x2 + x32

ApplicAtion 4.3: tubulAr products operAtions plAnning

Sometimes a plan involves nothing more than allocation of work to operations.
The Tubular Products Division (TP) of Babcock and Wilcox encountered just such
a problem in investigating how work should be reallocated upon opening a new
mill.3 TP manufactured steel tubing in a variety of sizes and for many different
uses, including electrical power generation. At the time of the study three mills
handled production. The object was to consider how a fourth mill of different con-
figuration would affect the optimal distribution of work (and associated costs)
among the mills.

Table 4.3 shows fictional data for existing mills 1 to 3 and one design for new
mill 4, versus an array of 16 products. The products comprise all combinations of
standard or high-pressure tubing: 1

2 @, 1-, 2-, or 8-inch diameters, and thick or thin
tube walls. The table includes the cost (in dollars) per 1000 pounds of each product
according to which mill does the work, and the required processing time (in hours)
per 1000 pounds produced. Missing values indicate products that cannot be manu-
factured feasibly at the mill indicated.

Table 4.3 also shows the assumed division-wide demand for each of the
16 products in thousands of pounds per week. At present the three existing mills
1 to 3 have 800, 480, and 1280 hours per week of effective production capacity,
 respectively. New mill 4 is planned for 960 hours per week.

4.3 Operations Planning Models 153

Tubular Products Operations Planning Model
In operations planning models, the decisions always revolve around what opera-
tions to undertake. Here the problem has two index dimensions:

 p ! product number 1p = 1, c, 162
 m ! mill number 1m = 1, c, 42

The corresponding decision variables are

xp, m ! amount of product p produced at mill m
(in thousands of pounds per week)

In terms of these decision variables, it is straightforward to produce a linear
programming model. For brevity, define the symbolic constants

 cp, m ! unit cost of producing product p at mill m shown in Table 4.3 [= + ∞
if this 1p, m2 combination is impossible]

 tp, m ! unit time to manufacture product p at mill m shown in Table 4.3 [= 0
if this 1p, m2 combination is impossible]

 dp ! weekly demand for product p shown in Table 4.3

 bm ! given production capacity at mill m

tAble 4.3 Tubular Products Application Data

Product

Mill 1 Mill 2 Mill 3 Mill 4
Weekly

Demand,
dp

Cost,
cp, 1

Hours,
tp, 1

Cost,
cp, 2

Hours,
tp, 2

Cost,
cp, 3

Hours,
tp, 3

Cost,
cp, 4

Hours,
tp, 4

Standard
1: 1

2-in. thick 90 0.8 75 0.7 70 0.5 63 0.6 100

2: 1
2-in. thin 80 0.8 70 0.7 65 0.5 60 0.6 630

3: 1-in. thick 104 0.8 85 0.7 83 0.5 77 0.6 500
4: 1-in. thin 98 0.8 79 0.7 80 0.5 74 0.6 980
5: 2-in. thick 123 0.8 101 0.7 110 0.5 99 0.6 720
6: 2-in. thin 113 0.8 94 0.7 100 0.5 84 0.6 240
7: 8-in. thick — — 160 0.9 156 0.5 140 0.6 75
8: 8-in. thin — — 142 0.9 150 0.5 130 0.6 22

Pressure
9: 1

2-in. thick 140 1.5 110 0.9 — — 122 1.2 50

10: 1
2-in. thin 124 1.5 96 0.9 — — 101 1.2 22

11: 1-in. thick 160 1.5 133 0.9 — — 138 1.2 353
12: 1-in. thin 143 1.5 127 0.9 — — 133 1.2 55
13: 2-in. thick 202 1.5 150 0.9 — — 160 1.2 125
14: 2-in. thin 190 1.5 141 0.9 — — 140 1.2 35
15: 8-in. thick — — 190 1.0 — — 220 1.5 100
16: 8-in. thin — — 175 1.0 — — 200 1.5 10

154 Chapter 4 Linear Programming Models

Then the model required is

 min a
16

p = 1
 a

4

m = 1
 cp, mxp, m 1total cost2

(4.5)

 s.t. a
4

m = 1
 xp, m Ú dp p = 1, c, 16 1demands2

 a
16

p = 1
 tp, mxp, m … bm m = 1, c, 4 1capacities2

 xp, m Ú 0 p = 1, c, 16: m = 1, c, 4

The objective minimizes total production cost. One system of main constraints en-
forces product demands and the other mill capacities.

Table 4.4 shows an optimal solution x*. Old mill 1 should go virtually unused;
mills 2 and 3 concentrate on pressure and standard tubing, respectively; and new
mill 4 satisfies the remainder of demand for both. Total weekly cost is $378,899.

tAble 4.4 Tubular Products Example Optimum

Product
Mill 1,

xp, 1
*

Mill 2,
xp, 2

*
Mill 3,

xp, 3
*

Mill 4,
xp, 4

*

Standard

1: 1
2 in. thick 0.0 0.0 0.0 100.0

2: 1
2 in. thin 0.0 0.0 630.0 0.0

3: 1 in. thick 0.0 0.0 404.8 95.2
4: 1 in. thin 0.0 0.0 980.0 0.0
5: 2 in. thick 0.0 0.0 0.0 720.0
6: 2 in. thin 0.0 0.0 0.0 240.0
7: 8 in. thick — 0.0 0.0 75.0
8: 8 in. thin — 0.0 0.0 22.0

Pressure

9: 1
2 in. thick 0.0 50.0 — 0.0

10: 1
2 in. thin 0.0 22.0 — 0.0

11: 1 in. thick 0.0 214.1 — 138.9
12: 1 in. thin 55.0 0.0 — 0.0
13: 2 in. thick 0.0 125.0 — 0.0
14: 2 in. thin 0.0 0.0 — 35.0
15: 8 in. thick — 100.0 — 0.0
16: 8 in. thin — 10.0 — 0.0

ApplicAtion 4.4: cAnAdiAn Forest products liMited (cFpl)
operAtions plAnning

Operations planning models become more complex when there are several stages
of production. Activity at each stage consumes output of the preceding stage and
creates input to the next stage.

4.3 Operations Planning Models 155

4Based on D. B. Kotak (1976), “Application of Linear Programming to Plywood Manufacture,”
Interfaces, 7:1, part 2, 56–68.

Canadian Forest Products Limited (CFPL) employed such a model to plan their
production of plywood.4 Figure 4.1 shows the sequence of stages. Production begins by
purchasing logs and peeling them into strips of thin “green” veneer. Green veneer can
also be purchased directly. All green veneer is next dried, classified by quality, and in
some cases improved by patching knots and gluing thin strips together. After the veneer
has been cut into sheet sizes, several layers are glued and pressed to produce plywood.
A final production step sands completed plywood and trims it to exact size for sale.

The objective of CFPL’s operations research analysis was to determine how to
operate production facilities to maximize contributed margin: sales income less wood
costs. Labor, maintenance, and other plant costs were assumed fixed. The principal con-
straint, other than limits on availability of wood and the market for various products,
was the limited plant capacity to press plywood.

To have some numbers to work with, assume that logs are available from two
vendors in “good” and “fair” qualities at the rate and price shown below. The table also
shows the estimated yield in 1

16- and 18-inch green veneer of grades A, B, and C from peel-
ing a log of the quality indicated.

Veneer Yield (sq ft)

Vendor 1 Vendor 2

Good Fair Good Fair

Available per month 200 300 100 1000
Cost per log ($ Canadian) 340 190 490 140

A 1
16-inch green veneer (sq ft) 400 200 400 200

B 1
16-inch green veneer (sq ft) 700 500 700 500

C 1
16-inch green veneer (sq ft) 900 1300 900 1300

A 18-inch green veneer (sq ft) 200 100 200 100

B 18-inch green veneer (sq ft) 350 250 350 250

C 18-inch green veneer (sq ft) 450 650 450 650

purchase
logs

peel
logs

logs

purchase
veneer

dry and
process

green
veneer

�nished
veneer

press
sheets

rough
plywood

sand and
trim

green veneer

Figure 4.1 Plywood Processing Flow in CFPL Example

156 Chapter 4 Linear Programming Models

We can also purchase green veneer. Suppose that availabilities and purchase
prices are as shown in the following table.

1
16-Inch Green Veneer 1

8-Inch Green Veneer

A B C A B C

Available (sq ft / month) 5,000 25,000 40,000 10,000 40,000 50,000
Cost ($ Canadian /sq ft) 1.00 0.30 0.10 2.20 0.60 0.20

Our version of CFPL will make just 6 products—all 4- by 8-foot sheets of plywood for
the U.S. market. A final table shows the composition or Bill of Materials of each prod-
uct in veneer sheets, the available market per month, and the time required to glue and
press each sheet of plywood out of a monthly capacity of 4500 hours.

1
1-Inch Plywood Sheets 1

2-Inch Plywood Sheets

AB AC BC AB AC BC

Front veneer 1
16 A 1

16 A 1
16 B 1

16 A 1
16 A 1

16 B

Core veneer 1
8 C 1

8 C 1
8 C

1
8 C
1
8 B
1
8 C

1
8 C
1
8 B
1
8 C

1
8 C
1
8 B
1
8 C

Back veneer 1
16 B 1

16 C 1
16 C 1

16 B 1
16 C 1

16 C

Market per month 1000 4000 8000 1000 5000 8000

Price ($ Canadian) 45.00 40.00 33.00 75.00 65.00 50.00

Pressing time (hours) 0.25 0.25 0.25 0.45 0.40 0.40

CFPL Decision Variables
As usual, we begin a model for the CFPL case by choosing variables deciding how
much of what to do. Index dimensions include

 q ! log quality 1q = G for good, F for fair2
 n ! log vendor number 1v = 1, 22
 t ! veneer thickness (t = 1

16, 18)

 g ! veneer grade 1g = A, B, C2
To formulate the problem as a linear program, we will use four classes of (continu-
ous) decision variables over these index dimensions:

 wq, n, t ! number of logs of quality q bought from vendor v and peeled into green
veneer of thickness t per month

 xt, g ! number of square feet of thickness t, grade g green veneer purchased directly
per month

 yt, g, g= ! number of sheets of thickness t veneer used as grade g = after drying and
processing from grade g green veneer per month

 zt, g, g= ! number of sheets of thickness t, front veneer grade g, back veneer grade g =
plywood pressed and sold per month

4.3 Operations Planning Models 157

Notice that these variables correspond to only 4 of the 6 processing boxes in
Figure 4.1. This efficiency is possible because the way we have presented the prob-
lem offers no advantage for purchasing a log and not peeling it, or pressing a sheet
of plywood and not sanding or selling it. If inventories had to be modeled, so that
purchased logs, for example, need not be immediately peeled, we would require
many more variables.

Continuous Variables for Integer Quantities
Readers who are studying LP modeling for the first time may be perplexed about
the fact that the CFPL decision variables are all treated as continuous. Don’t quan-
tities such as the number of logs and the number of sheets of plywood need to be
integers? Indeed, how can CFPL’s problem even be modeled as a linear program
(which must have only continuous variable)?

Modeling physically integer quantities with continuous decision variables in
this fashion is standard when optimal variable magnitudes are likely to be relatively
large (principle 1.11). If the LP-optimal number of plywood sheets sold of some
type turns out to be, say, 953.2, there is little practical difficulty in rounding off to
953 sheets. After all, the costs, capacities, and other constants in the model are only
estimates that contain a certain amount of error.

But we know that there is a big gain in tractability. Continuous optimization
is almost always more efficient than discrete. To realize that gain without having
much impact on the usability of optimal results, we choose to neglect integrality
requirements.

To gain tractability with little loss of validity, decision variables
of relatively large magnitude are best modeled as continuous, even though
they correspond to physically integer quantities.

Principle 4.6

Notice that this concession to tractability would be much more serious when
decision variables were limited to, say, 0 and 1. If, for example, 0 means “do not build
a facility” and 1 means “build it,” rounding continuous LP solutions could be much
more problematic.

CFPL Objective Function
CFPL’s maximum contributed margin objective is easily expressed in terms of the
decision variables above. We compute

 max - 1log costs2 - 1purchased veneer costs2 + 1sales income2
That is,

 max - 1340wG, 1, 1>16 + 190wF, 1, 1>16 + 490wG, 2, 1>16 + 140wF, 2, 1>16 (4.6)

+ 340wG, 1, 1>8 + 190wF, 1, 1>8 + 490wG, 2, 1>8 + 140wF, 2, 1>82
- 11.00x1>16, A + 0.30x1>16, B + 0.10x1>16, C + 2.20x1>8, A2
+ 0.60x1>8, B + 0.20x1>8, C2 + 145z1>4,A, B + 40z1>4, A, C

+ 33z1>4, B, C + 75z1>2, A, B + 65z1>2, A, C + 50z1>2, B, C2

158 Chapter 4 Linear Programming Models

CFPL Constraints
Some constraints are equally easy. Log availability limits impose

wG, 1, 1>16 + wG, 1, 1>8 … 200, wF, 1, 1>16 + wF, 1, 1>8 … 300
(4.7)

wG, 2, 1>16 + wG, 2, 1>8 … 100, wF, 2, 1>16 + wF, 2, 1>8 … 1000

purchased veneer availabilities imply that

 x1>16, A … 5000, x1>16, B … 25, 000, x1>16, C … 40, 000
(4.8)

 x1>8, A … 10, 000, x1>8, B … 40, 000, x1>8, C … 50, 000

and market sizes constrain

 z1>4, A, B … 1000, z1>4, A, C … 4000, z1>4, B, C … 8000
(4.9)

 z1>2, A, B … 1000, z1>2, A, C … 5000, z1>2, B, C … 8000

Finally, the important pressing capacity limit yields the additional constraint

0.251z1>4, A, B + z1>4, A, C + z1>4, B, C2 + 0.401z1>2, A, B + z1>2, A, C + z1>2, B, C2 … 4500 (4.10)

Balance Constraints
So far we have done nothing to link log and veneer purchasing at the beginning of the
process to sales at the end. In fact, we have not used the processing variables yt, g, g, at all.

What makes operations planning models with several processing stages special
is the need to provide such links through balance constraints.

A balance constraint assures that in-flows equal or exceed
out-flows for materials and products created by one stage of production and
consumed by others.

Definition 4.7

The first family of balance constraints needed in the CFPL model involves green
veneer. Assume that with trim losses, 35 square feet of green veneer is required for
each 4-by 8-foot sheet of finished veneer. We then have for each thickness and grade

1veneer from peeled logs2 + 1veneer purchased2 Ú 351sheets of veneer finished2
Assuming that careful piecing and patching can permit green veneer of one grade to
be used as the next higher, and veneer of any grade can be substituted for the next
lower, we obtain the following six balance constraints for various grades and thick-
nesses of green veneer:

400wG, 1, 1>16 + 200wF, 1, 1>16 + 400wG, 2, 1>16 + 200wF, 2, 1>16 + x1>16, A

(4.11)

Ú 35y1>16, A, A + 35y1>16, A, B

700wG, 1, 1>16 + 500wF, 1, 1>16 + 700wG, 2, 1>16 + 500wF, 2, 1>16 + x1>16, B

Ú 35y1>16, B, A + 35y1>16, B, B + 35y1>16, B, C

900wG, 1, 1>16 + 1300wF, 1, 1>16 + 900wG, 2, 1>16 + 1300wF, 2, 1>16 + x1>16, C

Ú 35y1>16, C, B + 35y1>16, C, C

4.3 Operations Planning Models 159

200wG, 1, 1>8 + 100wF, 1, 1>8 + 200wG, 2, 1>8 + 100wF, 2, 1>8 + x1>8, A

Ú 35y1>8, A, A + 35y1>8, A, B

350wG, 1, 1>8 + 250wF, 1, 1>8 + 350wG, 2, 1>8 + 250wF, 2, 1>8 + x1>8, B

Ú 35y1>8, B, A + 35y1>8, B, B + 35y1>8, B, C

450wG, 1, 1>8 + 650wF, 1, 1>8 + 450wG, 2, 1>8 + 650wF, 2, 1>8 + x1>8, C

Ú 35y1>8, C, B + 35y1>8, C, C

Six quite similar constraints enforce balance in sheets of finished veneer pass-
ing from the drying process to pressing:

sheets finished for use at this grade = sheets consumed in pressing

We can make the constraints equalities this time because no veneer would ever
be finished unless it were going to be pressed. Again detailing for two thick-
nesses and three grades (other than the never-used 1

8-inch, grade A finished
veneer) gives

y1>16, A, A + y1>16, B, A

(4.12)

= z1>4, A, B + z1>4, A, C + z1>2, A, B + z1>2, A, C

y1>16, A, B + y1>16, B, B + y1>16, C, B

= z1>4, A, B + z1>4, B, C + z1>2, A, B + z1>2, B, C

y1>16, B, C + y1>16, C, C

= z1>4, A, C + z1>4, B, C + z1>2, A, C + z1>2, B, C

y1>8, A, B + y1>8, B, B + y1>8, C, B

= z1>2, A, B + z1>2, A, C + z1>2, B, C

y1>8, B, C + y1>8, C, C

= z1>4, A, B + z1>4, A, C + z1>4, B, C + 2z1>2, A, B + 2z1>2, A, C + 2z1>2, B, C

exAMple 4.4: ForMulAting bAlAnce constrAints

The following figure shows the assembly structure (Bill of Materials) of two products:

Assembly
1

Assembly
2

Assembly
2

Part
3

Part
3

Part
4

Part
4

Part
4

Part
3

Use decision variables

xj ! number of parts or assemblies j produced

to formulate balance constraints for assemblies/parts j = 2, 3, 4.

160 Chapter 4 Linear Programming Models

CFPL Application Model
Collecting (4.6) to (4.12) and adding variable-type constraints produces the full
CFPL linear programming model detailed in Table 4.5. One optimal solution has the
following variables nonzero:

 wG, 1, 1>16
* = 41.3, wF, 1, 1>16

* = 300.0, wF, 2, 1>16
* = 155.3

(4.13)

 wF, 2, 1>8* = 844.7, x1>16, C
* = 40,000.0, x1>8, C

* = 50,000.0

 y1>16, A, A
* = 3073.2, y1>16, B, A

* = 7329.4, y1>16, C, B
* = 6355.8

 y1>16, C, C
* = 12,758.4, y1>8, A, B

* = 2413.5, y1>8, B, C
* = 6033.8

 y1>8, C, B
* = 2989.1, y1>8, C, C

* = 14,127.3,

 z1>4, A, B
* = 1000.0, z1>4, A, C

* = 4000.0, z1>4, B, C
* = 4355.8

 z1>2, A, B
* = 1000.0, z1>2, A, C

* = 4402.6

The firm should enter all markets except the one for 12-inch BC plywood. Total con-
tributed margin is $484,878 Canadian per month.

Fractions in such variables as the number of sheets of plywood sold are phys-
ically impossible. Still, the advantage of globally solving this complex optimization
efficiently with linear programming far outweighs the minute inaccuracy associated
with rounding the LP optimum to obtain a plan.

Solution: Assembly 1 joins an assembly 2 with two part 3’s and a part 4. Assembly
2 consists of one part 3 and two part 4’s. Thus for j = 2, we require that the number
of assembly 2’s at least equal the number required for assembly 1’s:

x2 Ú x1

Similarly, for parts j = 3, 4, we require production to at least meet requirements
for the assemblies:

x3 Ú 2x1 + 1x2

x4 Ú 1x1 + 2x2

exAMple 4.5: ForMulAting operAtions plAnning lps

An orange juice company can sell up to 15,000 tons of juice to wholesalers at $1500
per ton. The juice is either squeezed from oranges purchased at $200 per ton or diluted
from concentrate obtained at $1600 per ton. Approximately 10,000 tons of juice or-
anges are available and each yields 0.2 ton of juice. The supply of concentrate is essen-
tially unlimited, and each ton dilutes into 2 tons of juice. Formulate a linear program to
choose an operating plan that maximizes the company’s net income (sales minus cost).

Solution: We define decision variables for each of the 3 operations:

 x1 ! tons of oranges squeezed for juice

 x2 ! tons of concentrate diluted for juice

 x3 ! tons of juice sold

4.3 Operations Planning Models 161

tAble 4.5 CFPL Application Linear Program Model

max - 1340wG, 1, 1>16 + 190wF, 1, 1>16 + 490wG, 2, 1>16 + 140wF, 2, 1>16 (logs)

+ 340wG, 1, 1>8 + 190wF, 1, 1>8 + 490wG, 2, 1>8 + 140wF, 2, 1>82
- 11.00x1>16, A + 0.30x1>16, B + 0.10x1>16, C (veneer)

+ 2.20x1>8, A + 0.60x1>8, B + 0.20x1>8, C2
+ 145z1>4, A, B + 40z1>4, A, C + 33z1>4, B, C (sales)

+ 75z1>2, A, B + 65z1>2, A, C + 50z1>2, B, C2
s.t. wG, 1, 1>16 + wG, 1, 1>8 … 200, wF, 1, 1>16 + wF, 1, 1>8 … 300 (log availability)

wG, 2, 1>16 + wG, 2, 1>8 … 100, wF, 2, 1>16 + wF, 2, 1>8 … 1000

x1>16, A … 5000, x1>16, B … 25,000, x1>16, C … 40,000 (veneer)

x1>8, A … 10,000, x1>8, B … 40,000, x1>8, C … 50,000 (availability)

z1>4, A, B … 1000, z1>4, A, C … 4000, z1>4, B, C … 8000 (market)

z1>2, A, B … 1000, z1>2, A, C … 5000, z1>2, B, C … 8000

0.251z1>4, A, B + z1>4, A, C + z1>4, B, C2 + 0.401z1>2, A, B + z1>2, A, C + z1>2, B, C2 … 4500 (pressing)

400wG, 1, 1>16 + 200wF, 1, 1>16 + 400wG, 2, 1>16 + 200wF, 2, 1>16 + x1>16,A (green)

Ú 35y1>16, A, A + 35y1>16, A, B (veneer)

700wG, 1, 1>16 + 500wF, 1, 1>16 + 700wG, 2, 1>16 + 500wF, 2, 1>16 + x1>16, B (balance)

Ú 35y1>16, B, A + 35y1>16, B, B + 35y1>16, B, C

900wG, 1, 1>16 + 1300wF, 1, 1>16 + 900wG, 2, 1>16 + 1300wF, 2, 1>16 + x1>16, C

Ú 35y1>16, C, B + 35y1>16, C, C

200wG, 1, 1>8 + 100wF, 1, 1>8 + 200wG, 2, 1>8 + 100wF, 2, 1>8 + x1>8, A

Ú 35y1>8, A, A + 35y1>8, A, B

350wG, 1, 1>8 + 250wF, 1, 1>8 + 350wG, 2, 1>8 + 250wF, 2, 1>8 + x1>8, B

Ú 35y1>8, B, A + 35y1>8, B, B + 35y1>8, B, C

450wG, 1, 1>8 + 650wF, 1, 1>8 + 450wG, 2, 1>8 + 650wF, 2, 1>8 + x1>8, C

Ú 35y1>8, C, B + 35y1>8, C, C

y1>16, A, A + y1>16, B, A = z1>4, A, B + z1>4, A, C + z1>2, A, B + z1>2, A, C (finished)

y1>16, A, B + y1>16, B, B + y1>16, C, B = z1>4, A, B + z1>4, B, C (veneer)

+ z1>2, A, B + z1>2, B, C (balance)
y1>16, B, C + y1>16, C, C = z1>4, A, C + z1>4, B, C + z1>2, A, C + z1>2, B, C

y1>8, A, B + y1>8, B, B + y1>8, C, B = z1>2, A, B + z1>2, A, C + z1>2, B, C

y1>8, B, C + y1>8, C, C = z1>4, A, B + z1>4, A, C + z1>4, B, C + 2z1>2, A, B

+ 2z1>2, A, C + 2z1>2, B, C

all variables wq, v, t, xt, g, yt, g, g=, zt, g, g= Ú 0

Then the required model is

 max - 200x1 - 1600x2 + 1500x3 1net income2
 s.t. x1 … 10, 000 1orange availability2

 x3 … 15, 000 1sales limit2
 0.2x1 + 2x2 = x3 1balance2
 x1, x2, x3 Ú 0

Its objective function maximizes the difference of purchase cost and sales revenue.
The first main constraint enforces the limit on orange availability, the second limits sales
to 15,000, and the third balances production with sales.

162 Chapter 4 Linear Programming Models

4.4 shiFt scheduling And stAFF plAnning Models

Operations planning models decide what work to undertake so that available re-
sources are used efficiently. In shift scheduling or staff planning models the work
is already fixed. We must now plan the resources to accomplish it. In particular,
we must decide how many of what types of workers and shifts best cover all work
requirements. Again, LP provides a powerful tool.

ApplicAtion 4.5: ohio nAtionAl bAnk (onb) shiFt scheduling

The Ohio National Bank (ONB) confronted such a problem in staffing its check
processing center.5 Checks received by the bank already have account numbers and
other identifying information encoded on them. Machine operators in the check
processing center key the dollar amount of the check, which is then imprinted with
the other information for computerized processing.

Checks arrive through the business day in volumes peaking in the early evening.
Our fictitious version will assume the following arrivals (in thousands):

Hour Arrivals Hour Arrivals

11:00 (11 a.m.) 10 17:00 (5 p.m) 32
12:00 (noon) 11 18:00 (6 p.m) 50
13:00 (1 p.m.) 15 19:00 (7 p.m) 30
14:00 (2 p.m.) 20 20:00 (8 p.m) 20
15:00 (3 p.m.) 25 21:00 (9 p.m) 8
16:00 (4 p.m.) 28 — —

Uncollected checks cost the bank money in lost interest. Thus it is essential that
all checks be processed in time for collection on the next business day. ONB decided to
enforce a requirement that all checks be completed by 22:00 (10 p.m.). Furthermore, the
number unprocessed at any hour should not exceed 20 thousand.

Two types of employees can perform the check processing task. Full-time
employees work an 8-hour shift with a 1-hour lunch break in the middle. Part-time
employees work only 4 hours per day with no lunch. Both types of shifts can begin
at any hour of the day, and full-time employees can be assigned an hour of overtime.
Table 4.6 illustrates the possible shifts.

In our analysis we assume that full-time employees receive $11 per hour in pay
and benefits, plus an extra $1 per hour in “night differential” for time after 6 p.m. and
150% pay for daily overtime. Part-time employees are paid $7 per hour, plus $1 per hour
night differential after 6 p.m. Also, to keep overtime under control, we require that no
more than half the full-time employees on any shift work overtime and that the total
number of scheduled overtime hours not exceed 20 per day.

Naturally, full-time employees work faster than part-timers. We will assume that
full-time operators process 1000 checks per hour, and part-timers only 800.

5Based on L. J. Krajewski, L. P. Ritzman, and P. McKenzie (1980), “Shift Scheduling in Banking
Operations: A Case Application,” Interfaces, 10:2, 1–8.

4.4 Shift Scheduling and Staff Planning Models 163

ONB Decision Variables and Objective Function
The main decisions to be made in shift scheduling models are the number of em-
ployees to work various shifts. In the ONB case we have all the possibilities in
Table 4.6. For example, the full-time shift starting at 11:00 works 4 hours, then
takes a lunch break, then works 4 more hours. The final 2 hours come after 6 p.m., so
a night differential applies. One additional hour may also be worked in overtime.

Using the index

h ! 124@hour clock2 shift start time

we define the corresponding decision variables:

 xh ! number of full-time employees beginning a shift at hour h
1h = 11, c, 132

 yh ! number of full-time employees with shift beginning at hour h who
work overtime 1h = 11, 122

 zh ! number of part-time employees beginning a shift at hour h
1h = 11, c, 182

We need only add up the pay for each shift to obtain a minimum (daily) cost
objective function:

 min 90x11 + 91x12 + 92x13 + 18y11 + 18y12 + 28z11 + 28z12
(4.14)

+ 28z13 + 28z14 + 29z15 + 30z16 + 31z17 + 32z18

For example, the coefficient on x13 reflects 8 regular hours at $11 per hour plus $4
for the 4 hours after 6 p.m., or

81$112 + 41$12 = $92

tAble 4.6 Possible Shifts in ONB Examplea

Start
Full-Time Shifts Part-Time Shifts

11 12 13 11 12 13 14 15 16 17 18

11:00 R — — R — — — — — — —
12:00 R R — R R — — — — — —
13:00 R R R R R R — — — — —
14:00 R R R R R R R — — — —
15:00 — R R — R R R R — — —
16:00 R — R — — R R R R — —
17:00 R R — — — — R R R R —
18:00 RN RN RN — — — — RN RN RN RN
19:00 RN RN RN — — — — — RN RN RN
20:00 ON RN RN — — — — — — RN RN
21:00 — ON RN — — — — — — — RN
a R, regular duty; O, possible overtime; N, night differential.

One final complication is encoding stations. The number of machines available
limits the number of employees who can work at any one time. Our center will have
35 machines.

164 Chapter 4 Linear Programming Models

ONB Constraints
Table 4.6 also suggests how to model the requirement that no more than 35 opera-
tors be on duty at any time. We simply constrain the sum of full-time, overtime, and
part-time employees on duty in each hour.

 x11 + z11 … 35 111:00 machines2

(4.15)

 x11 + x12 + z11 + z12 … 35 112:00 machines2
 f f f

 y11 + x12 + x13 + z17 + z18 … 35 120:00 machines2
 y12 + x13 + z18 … 35 121:00 machines2

There are also overtime limits. Overtime cannot exceed half of any full-time
shift or total more than 20 hours per day. These limits lead us to the constraints

 y11 …
1
2

 x11 111@shift overtime2

(4.16) y12 …
1
2

 x12 112@shift overtime2
 y11 + y12 … 20 1total overtime2

Covering Constraints
The main element in any staff planning model is a collection of covering constraints.

Covering constraints in shift scheduling models assure that
the shifts chosen provide enough worker output to cover requirements over
each time period; that is,

a
shifts

1output>worker21number on duty2 Ú period requirement

Definition 4.8

With the ONB case we have a slight complication in covering requirements.
Work arrivals are specified on an hour-by-hour basis, but work completion is limited
only by all checks being finished at 22:00 (10 p.m.). To model covering in such a case, we
need some new decision variables reflecting the work carried over. Specifically, define

wh ! uncompleted work backlog at 124@hour clock2 hour h 1in thousands2
Then our ONB covering constraints take the form

 1x11 + 0.8z11 Ú 10 - w12 111:00 cover2

(4.17)

 1x11 + 1x12 + 0.8z11 + 0.8z12 Ú 11 + w12 - w13 112:00 cover2
 f f f

 1y11 + 1x12 + 1x13 + 0.8z17 + 0.8z18 Ú 20 + w20 - w21 120:00 cover2
 1y12 + 1x13 + 0.8z18 Ú 8 + w21 121:00 cover2

For example, the one for the 20:00 hour requires the total output of workers on duty
from 20:00 to 21:00 to equal or exceed the 20 thousand checks arriving at that hour

4.4 Shift Scheduling and Staff Planning Models 165

(see the table at the beginning of Example 4.5), plus checks held over from previous
hours (w20), less those passed on to later hours (w21).

ONB Shift Scheduling Application Model
Combining (4.14) to (4.17) with suitable variable-type constraints and upper bounds
of 20 on all backlog variables wh produces the full ONB shift scheduling linear pro-
gram shown in Table 4.7. An LP optimum makes the following variables nonzero:

 x12
* = 8.57, x13

* = 12.86, y12
* = 4.29, z14

* = 13.57, z16
* = 5.36,

 z17
* = 7.50 z18

* = 0.71, w12
* = 10.00, w13

* = 12.43,

 w14
* = 6.00, w18

* = 2.29, w19
* = 20.00 w20

* = 17.71, w21
* = 9.71

That is, full-time employees carry the load early in the day, with part-time beginning
at 14:00 (2:00 p.m.) Total cost is $2836 per day.

tAble 4.7 ONB Shift Scheduling Application LP Model

min 90x11 + 91x12 + 92x13 + 18y11 + 18y12 + 28z11 + 28z12

+ 28z13 + 28z14 + 29z15 + 30z16 + 31z17 + 32z18

(total pay)

s.t. x11 + z11 … 35 (11:00 machine)

x11 + x12 + z11 + z12 … 35 (12:00 machine)

x11 + x12 + x13 + z11 + z12 + z13 … 35 (13:00 machine)

x11 + x12 + x13 + z11 + z12 + z13 + z14 … 35 (14:00 machine)

x12 + x13 + z12 + z13 + z14 + z15 … 35 (15:00 machine)

x11 + x13 + z13 + z14 + z15 + z16 … 35 (16:00 machine)

x11 + x12 + z14 + z15 + z16 + z17 … 35 (17:00 machine)

x11 + x12 + x13 + z15 + z16 + z17 + z18 … 35 (18:00 machine)

x11 + x12 + x13 + z16 + z17 + z18 … 35 (19:00 machine)

y11 + x12 + x13 + z17 + z18 … 35 (20:00 machine)

y12 + x13 + z18 … 35 (21:00 machine)

y11 … 1
2 x11 (11-shift overtime)

y12 … 1
2 x12 (12-shift overtime)

y11 + y12 … 20 (total overtime)
1x11 + 0.8z11 Ú 10 - w12 (11:00 cover)

1x11 + 1x12 + 0.8z11 + 0.8z12 Ú 11 + w12 - w13 (12:00 cover)

1x11 + 1x12 + 1x13 + 0.8z11 + 0.8z12 + 0.8z13 Ú 15 + w13 - w14 (13:00 cover)

1x11 + 1x12 + 1x13 + 0.8z11 + 0.8z12 + 0.8z13 + 0.8z14 Ú 20 + w14 - w15 (14:00 cover)

1x12 + 1x13 + 0.8z12 + 0.8z13 + 0.8z14 + 0.8z15 Ú 25 + w15 - w16 (15:00 cover)

1x11 + 1x13 + 0.8z13 + 0.8z14 + 0.8z15 + 0.8z16 Ú 28 + w16 - w17 (16:00 cover)

1x11 + 1x12 + 0.8z14 + 0.8z15 + 0.8z16 + 0.8z17 Ú 32 + w17 - w18 (17:00 cover)

1x11 + 1x12 + 1x13 + 0.8z15 + 0.8z16 + 0.8z17 + 0.8z18 Ú 50 + w18 - w19 (18:00 cover)

1x11 + 1x12 + 1x13 + 0.8z16 + 0.8z17 + 0.8z18 Ú 30 + w19 - w20 (19:00 cover)

1y11 + 1x12 + 1x13 + 0.8z17 + 0.8z18 Ú 20 + w20 - w21 (20:00 cover)

1y12 + 1x13 + 0.8z18 Ú 8 + w21 (21:00 cover)
all variables wh … 20
all variables wh, xh, yh, zh Ú 0

166 Chapter 4 Linear Programming Models

Once again we have a fractional solution that certainly must be imple-
mented in whole numbers of employees. Managers will need to round above LP-
optimal values to obtain a satisfactory plan. Still, any loss of optimality resulting
from rounding will fall well within the variability of hourly check arrivals and
other data. Unless the numbers of persons working shifts are in the range of, say,
0 to 2, our LP model (4.7) is a valid approximation justified by its outstanding
tractability.

exAMple 4.6: ForMulAting shiFt scheduling lps

Clerical employees of a government agency are allowed to work four 10-hour days
per week in any of the following patterns:

j = 1 Monday–Wednesday–Thursday–Friday
j = 2 Monday–Tuesday–Thursday–Friday
j = 3 Monday–Tuesday–Wednesday–Friday

Formulate a linear program to determine the minimum number of employees
needed to have at least 10 on duty Mondays, 9 in the office on Fridays, and 7 work-
ing on Tuesdays through Thursdays.

Solution: We employ decision variables

xj ! number of employees working pattern j

The required LP model is then

 min x1 + x2 + x3 1total staff2
 s.t. x1 + x2 + x3 Ú 10 1cover Monday2

 x2 + x3 Ú 7 1cover Tuesday2
 x1 + x3 Ú 7 1cover Wednesday2
 x1 + x2 Ú 7 1cover Thursday2
 x1 + x2 + x3 Ú 9 1cover Friday2
 x1, x2, x3 Ú 0

The objective minimizes total staff, and the constraints enforce the specified cov-
erage on all working days.

4.5 tiMe-phAsed Models

So far in this chapter we have formulated only static models—those where all plan-
ning is for a single period of time. Many, perhaps most, linear programs are dynamic
or time phased because they address circumstances that vary over time. In this sec-
tion we introduce time-phased modeling.

4.5 Time-Phased Models 167

6Based on A. A. Robichek, D. Teichroew, and J. M. Jones (1965), “Optimal Short Term Financing
Decision,” Management Science, 12, 1–36.

ApplicAtion 4.6: institutionAl Food services (iFs) cAsh Flow

LP models of almost any type may require time-phased decision making, but some
of the most obviously time dependent involve cash flow management.6 Every busi-
ness must keep track of the coming and going of its cash accounts, borrowing where
necessary and investing when wise.

We illustrate the modeling issues with a fictional Institutional Food Services (IFS)
company that supplies food and other products to restaurants, schools, and similar
 institutions. Table 4.8 shows IFS’s projections of some relevant accounts over the next
8 weeks (in thousands of dollars).

 st ! projected revenue in week t from cash sales to small customers

 rt ! projected accounts receivable revenue received in week t from large
customers who buy on credit

 pt ! projected accounts payable to IFS’s suppliers in week t

 et ! projected payroll, utility, and other expenses to be paid in week t

Cash sales and accounts receivable produce immediate income to IFS’s checking ac-
count. Expenses are immediate deductions. Accounts payable amounts pt are not
actually due until week t + 3, but they are discounted by 2% if paid early in week t.

Values in Table 4.8 vary dramatically over the period as a holiday approaches.
Besides the option on accounts payable, IFS’s financial officer has two additional
ways of dealing with the implied cash flow difficulties. First, the company’s bank has
extended a $4 million line of credit that may be drawn upon at 0.2% interest per
week. However, the bank requires at least 20% of the current amount borrowed
to be maintained (without earning interest) in IFS’s checking account. The other
option is investment of excess cash in short-term money markets. IFS can earn 0.1%
interest per week on amounts invested in this way.

The financial officer wishes to minimize net total cost in interest and lost discounts
while maintaining at least a $20,000 checking account safety balance. Our task is to help
him decide how to exercise the available options.

tAble 4.8 IFS Cash Flow Example Data

Item

Projected Weekly Amount ($ 000’s) for Week:

1 2 3 4 5 6 7 8

Cash Sales, st 600 750 1200 2100 2250 180 330 540
Accounts receivable, rt 770 1260 1400 1750 2800 4900 5250 420
Accounts payable, pt 3200 5600 6000 480 880 1440 1600 2000
Expenses, et 350 400 550 940 990 350 350 410

Time-Phased Decision Variables
Time is always an index dimension in time-phased models because both input con-
stants and decisions may be repeated in each time period. For our IFS example,

168 Chapter 4 Linear Programming Models

time is the only index dimension. Decision variables for the three cash flow manage-
ment options are (in thousands of dollars)

 gt ! amount borrowed in week t against the line of credit

 ht ! amount of line of credit debt paid off in week t

 wt ! amount of accounts payable in week t delayed until week t + 3 at
a loss of discounts

 xt ! amount invested in short-term money markets during week t

For modeling convenience, we also define

 yt ! cumulative line of credit debt in week t

 zt ! cash on hand during week t

These variables could be eliminated by substituting suitable sums of the oth-
ers, but many constraints are much easier to express when the extra variables
are included.

Time-Phased Balance Constraints
Although separate decisions may be made in each period of a time-phased model,
choices for different periods are rarely independent. Decisions in one period usually
imply consequences that carry over into the next.

Such interactions among decisions for different time periods can often be
modeled with balance constraints similar to those of definition 4.7 .

Time-phased models often link decisions in successive time
periods with balance constraints of the form£ starting

level in
period t

≥ + £ impacts of
period t

decisions
≥ = £ starting

level in
period t + 1

≥
tracking commodities carried over from each period t to the next.

Principle 4.9

In our IFS example there are two main quantities carried over in this way: cash
and debt. To develop the required balance constraints, we first enumerate the cash
increments and decrements each week:

Cash Increments Cash Decrements

Funds borrowed in week t Borrowing paid off in week t
Investment principal from week t - 1 Investment in week t

Interest on investment in week t - 1 Interest on debt in week t - 1
Cash sales from week t Expenses paid in week t
Accounts receivable for week t Accounts payable paid with discount for week t

Accounts payable paid without discount for week t - 3

4.5 Time-Phased Models 169

Using the symbols defined above, these increments and decrements lead to the fol-
lowing system of balance constraints:

zt - 1 + gt - ht + xt - 1 - xt + 0.001xt - 1 - 0.002yt - 1

+ st - et + rt - 0.98 1pt - wt2 - wt - 3 = zt t = 1, c, 8 1cash balance2
(All symbols with subscripts outside the range 1, c, 8 are assumed = 0.)

A similar constraint system tracks cumulative debt. New borrowing increases,
and paying off decreases:

yt - 1 + gt - ht = yt t = 1, c, 8 1debt balance2

exAMple 4.7: ForMulAting bAlAnce constrAints over tiMe

An LP model will decide

 xq ! thousands of snow shovels produced in quarter q

 iq ! thousands of snow shovels held in inventory at the end of quarter q

to meet customer demands for 11,000, 48,000, 64,000, and 15,000 shovels in quar-
ters q = 1, c, 4, respectively. Write balance constraints in shovels for the four
quarters assuming inventory at the beginning of the first quarter = 0.

Solution: Following principle 4.9 , the constraints will have the form

1beginning inventory2 + 1production2 = 1demand2 + 1ending inventory2
Now taking initial inventory = 0, we have

 0 + x1 = 11 + i1 1quarter 12
 i1 + x2 = 48 + i2 1quarter 22
 i2 + x3 = 64 + i3 1quarter 32
 i3 + x4 = 15 + i4 1quarter 42

IFS Cash Flow Model
We are now ready to state a full linear programming model for our IFS case:

 min 0.002 a
8

t = 1
 yt + 0.02 a

8

t = 1
 wt - 0.001 a

8

t = 1
 xt 1net interest2

(4.18)

s.t. zt - 1 + gt - ht + xt - 1 - xt

 +0.001xt - 1 - 0.002yt - 1 + st - et

 +rt - 0.98 1pt - wt2 - wt - 3 = zt t = 1, c, 8 1cash balance2
 yt - 1 + gt - ht = yt t = 1, c, 8 1debt balance2
 yt … 4000 t = 1, c, 8 1credit limit2
 zt Ú 0.20yt t = 1, c, 8 1bank rule2
 wt … pt t = 1, c, 8 1payables limit2
 zt Ú 20 t = 1, c, 8 1safety balance2

 gt, ht , wt, xt, yt, zt Ú 0 t = 1, c, 8 1variable type2

170 Chapter 4 Linear Programming Models

The objective function minimizes interest paid, plus discounts lost, less interest
earned. Besides the two systems of balance requirements formulated above, con-
straints enforce the credit limit and the bank rule requiring that 20% of borrowed
funds be kept as cash, keep delayed accounts payable within the value from Table
4.8, and ensure a continuing safety balance of $20,000. All symbols with subscripts
outside the range 1, c, 8 are assumed = 0.

Table 4.9 presents an optimal solution. The corresponding optimal net interest
and discounts total $158,492 for the 8 weeks.

Time Horizons
A time horizon establishes the range of time periods in a time-phased model. For
example, our IFS cash flow example uses a fixed time horizon of 1, c, 8 because
we model only 8 weeks.

Of course, IFS would have been operating before the current 8-week period
and will continue operations after it. Thus our use of a fixed time horizon raises
some special concerns about periods near the boundary.

In particular, model (4.18) assumes that all quantities outside the time horizon
equal zero. Thus IFS begins week 1 with zero cash balance z0, zero debt y0, and zero
short-term investments x0. Optimal results in Table 4.9 could change dramatically
if some of these boundary values proved to be nonsensical. To obtain a more valid
model, it might be necessary to estimate typical values and include them as con-
stants in balance equations for week 1.

At the other end of the time horizon we have similar issues. Although the opti-
mum in Table 4.9 chose not to delay accounts payable in the last few weeks, it might
have been severely tempted. Payables delayed in the last 3 weeks never have to be
paid because the due date 1t + 32 falls beyond the time horizon.

Such issues do require particular attention if models with time horizons are to
produce valid results.

tAble 4.9 IFS Cash Flow Optimal Solution

Decision Variable

Optimal Weekly Amount ($ 000’s) for Week

1 2 3 4 5 6 7 8

Borrowing, gt 100.0 505.7 3394.3 0.0 442.6 0.0 0.0 0.0
Debt payment, ht 0.0 0.0 0.0 442.5 0.0 2715.3 1284.7 0.0
Payables delayed, wt 2077.6 3544.5 1138.5 0.0 0.0 0.0 0.0 0.0
Short-term investments, xt 0.0 0.0 0.0 0.0 0.0 0.0 2611.7 1204.3
Cumulative debt, yt 100.0 605.7 4000.0 3557.4 4000.0 1284.7 0.0 0.0
Cumulative cash, zt 20.0 121.1 800.0 711.5 800.0 256.9 20.0 20.0

Use of fixed time horizons, although necessary in most time-
phased models, requires extra care in modeling and interpreting phenomena
near both ends of the time epoch being modeled.

Principle 4.10

One way to avoid having to think about boundaries of a fixed time horizon is
to employ an infinite time horizon model. Infinite horizon schemes “wrap around”

4.6 Models with Linearizable Nonlinear Objectives 171

output states of a last time period as input conditions for the first. The result is that
time goes on infinitely even though only a few periods are modeled explicitly.

Infinite horizon modeling can avoid some of the boundary
difficulties with finite horizons by treating the first explicitly modeled period
as coming immediately after the last.

Principle 4.11

Infinite horizon modeling of our IFS example would treat t = 1 as the period
immediately after week t = 8. Then, for example, the debt balance constraint for
t = 1 would read

y8 + g1 - h1 = y1

exAMple 4.8: Modeling with tiMe horizons

Return to the snow shovel problem of Example 4.7, and write balance constraints
for the four quarters under each of the following assumptions about inventory at
time horizon boundaries.

(a) The time horizon is a fixed four quarters, with beginning inventory in the first
quarter of 9000 shovels.

(b) The time horizon is infinite, with quarter 1 following quarter 4.

Solution:

(a) With initial inventory = 9, the required balance constraints are

 9 + x1 = 11 + i1 1quarter 12
 i1 + x2 = 48 + i2 1quarter 22
 i2 + x3 = 64 + i3 1quarter 32
 i3 + x4 = 15 + i4 1quarter 42

(b) With inventory wrapped around from the last to the first quarter, the balance
constraints are

 i4 + x1 = 11 + i1 1quarter 12
 i1 + x2 = 48 + i2 1quarter 22
 i2 + x3 = 64 + i3 1quarter 32
 i3 + x4 = 15 + i4 1quarter 42

4.6 Models with lineArizAble nonlineAr objectives

Because LP models possess all the tractable features explored in Chapter 3, a lin-
ear programming model of a problem is almost always preferable to a nonlinear
one of equal validity (principle 2.31 of Section 2.4). Nonlinearity is often unavoid-
able, but some frequently occurring nonlinear objective functions are exceptions.

172 Chapter 4 Linear Programming Models

We introduce in this section those minimax, maximin, and min deviation objective
functions which though nonlinear at first glance can be modeled with a linear objec-
tive function and linear constraints. Interested readers may also wish to refer to the
related discussion of separable nonlinear programming in Section 17.9.

7Based on D. T. Phillips and G. L. Hogg (1979), “The Algorithm That Converged Too Fast,”
Interfaces, 9:5, 90–93.

ApplicAtion 4.7: highwAy pAtrol

We begin with a real allocation problem addressed by the Highway Patrol of a
southern state.7 The Patrol wished to divide the effort of its on-duty officers among
highway segments in each territory to maximize speeding reduction.

The first two lines of Table 4.10 illustrate the types of data available. Highway
segments in our fictitious version are indexed by

 j ! highway segment number1j = 1, c, 82
with 25 officers per week to allocate. Analysts were able to estimate for each segment:

 uj ! upper bound on the number of officers assigned to segment j per week

 rj ! reduction potential for suppressing speeding on segment j per officer assigned

A high reduction potential indicates a segment where a patrol would be especially
effective. In the real application, reduction potentials were obtained by directly measur-
ing segment traffic speeds with and without an officer on patrol.

tAble 4.10 Highway Patrol Example Data and Solutions

Values by Highway Segment, j

1 2 3 4 5 6 7 8

Upper bound, uj 4 8 5 7 6 5 6 4
Reduction potential, rj 11 3 4 14 2 19 10 13

Maxisum optimum, xj
* 4.00 0.00 0.00 7.00 0.00 5.00 5.00 4.00

Maximin optimum, xj
* 1.09 4.00 3.00 0.86 6.00 4.85 1.20 4.00

Maxisum Highway Patrol Application Model
It is obvious that decision variables in our Highway Patrol allocation example should be

xj ! number of officers per week assigned to patrol segment j

Then a straightforward linear programming model is

 max a
8

j = 1
 rjxj 1total reduction2

(4.19) s.t. a
8

j = 1
 xj … 25 1officers available2

 xj … uj j = 1, c, 8 1upper bounds2
 xj Ú 0 j = 1, c, 8 1nonnegativity2

4.6 Models with Linearizable Nonlinear Objectives 173

The objective function is a maxisum because it seeks to maximize the sum of
reductions in different segments (the analog in a minimize model is called minisum).
Main constraints restrict solutions to the 25 available officers and enforce upper
bounds. The third line of Table 4.10 shows an optimal solution to maxisum model
(4.19) that yields a total speed reduction of 339.

Minimax and Maximin Objective Functions
Notice that all but one of the maxisum optimal values in Table 4.10 are either zero
or upper bound uj. A little contemplation will reveal that this must always happen in
a maxisum model with constraints as simple as those of (4.19).

Sometimes we would prefer a minimax or a maximin objective to spread the
allocation more evenly.

Minimax (minimize the maximum) or maximin (maximize the
minimum) objective functions model cases where success is measured by worst
rather than total performance.

Definition 4.12

Instead of optimizing total output, we focus on the model element with the least
satisfactory result.

Nonlinear Maximin Highway Patrol Application Model
Adopting the maximin approach in our Highway Patrol example yields the model

 max f1x1, c, x82 ! min5rj xj : j = 1, c, 86 1maximin reduction2

(4.20)
 s.t. a

8

j = 1
 xj … 25 1officers available2

 xj … uj j = 1, c, 8 1upper bounds2
 xj Ú 0 j = 1, c, 8 1nonnegativity2

The objective now maximizes the least reduction among all highway segments.
Notice that (4.20) is a nonlinear program (definition 2.14). Constraints remain

linear, but the objective function is no longer a weighted sum of the decision variables.
Still, this NLP may provide more valid results than maxisum LP (4.19) because speed
reduction is addressed on every highway segment. The final line of Table 4.10 shows
that the optimal allocation in this maximin model is much more uniform across seg-
ments. The specified optimum yields a reduction of at least 12 on every segment.

Linearizing Minimax and Maximin Objective Functions
With a model as simple as (4.20), nonlinearity may not produce much loss of trac-
tability. Happily, we need not sacrifice tractability even in much more complicated
cases. By a suitable modification of nonlinear form (4.20), we can formulate an
exactly equivalent linear program.

The idea is simply to introduce a new continuous variable

f ! objective function value

and maximize f subject to a system of linear constraints keeping f no more than any
term of the minimum.

174 Chapter 4 Linear Programming Models

Linearized Maximin Highway Patrol Example Model
Applying principle 4.13 to the maximin version of our Highway Patrol model yields
linear program

 max f 1maximin reduction2

(4.21)

 s.t. f … rj xj j = 1, c, 8 f … each term

 a
8

j = 1
xj … 25 1officers available2

 xj … uj j = 1, c, 8 1upper bounds2
 xj Ú 0 j = 1, c, 8 1nonnegativity2

Unrestricted variable f is now the only term of the objective function, which makes
the objective trivially linear. New linear constraints keep f less than or equal to all
terms rjxj.

Transformation 4.13 works because any optimal solution in (4.21) must have

f * = min 5rj xj
*

 : j = 1, c, 86
The new system of constraints keeps

f * … min 5rjxj
*

 : j = 1, c, 86
and an f strictly less than the minimum rjxj

* can be increased to improve the objective.

A minimax or maximin objective function can be modeled
linearly by introducing a new decision variable f to represent the objective
function value, and then minimizing f subject to f Ú each max element in a
minimax, or maximizing f subject to f … each min element in a maximin.

Principle 4.13

exAMple 4.9: Modeling MiniMAx objective Functions

In terms of decision variables x1, x2, and x3, the production times required on a com-
pany’s two assembly lines are

3x1 + 2x2 + 1x3 and 1x1 + 5x2

Assuming that all other constraints are linear, formulate an objective function
and extra constraints needed to minimize the maximum time on the two lines as
a linear program.

Solution: Following principle 4.13 for a minimax case, we introduce new unre-
stricted variable f and employ objective function

 min f

To make this minimize the maximum, we also add constraints

 f Ú 3x1 + 2x2 + 1x3

 f Ú 1x1 + 5x2

4.6 Models with Linearizable Nonlinear Objectives 175

Nonlinear VP Location Model
It should be clear that the main decisions to be made in this VP case are

 xj ! x@coordinate of new facility j =s location

 yj ! y@coordinate of new facility j =s location

We want to choose x1, y1, x2, and y2 to minimize the sum of implied distances to
other facilities times unit material handling costs. Using values and coordinates in
Figure 4.2, a model is

 min 4.00d1x1, y1, x2, y22 + 1.10d1x1, y1, 300, 12002

(4.22) +0.70d1x1, y1, 0, 6002 + 0.65d1x2, y2, 0,6002 1handling cost2
+0.40d1x2, y2, 600, 02

8Based on R. F. Love and L. Yerex (1976), “An Application of a Facilities Location Model in the
Prestressed Concrete Industry,” Interfaces, 6:4, 45–49.

ApplicAtion 4.8: virginiA prestress (vp) locAtion

To see another common nonlinear objective that can be linearized, we consider the
location problem confronted by a firm we will call Virginia Prestress (VP).8 VP was plan-
ning for production of a new product: concrete utility poles. That production required a
new concrete casting area to make poles and a storage area for finished products.

Figure 4.2 presents the implied facilities location problem for our fictitious
case. The two new facilities will interact with each other and with three existing oper-
ations: the concrete batching facility, where premixed concrete is prepared, the steel
area, where reinforcing steel is manufactured, and the shipping gate, where finished
poles are processed out of the plant. A coordinate system quantifies the locations of
all three existing facilities, and the adjoining table displays material handling costs of
expected traffic between facilities. For example, each foot of distance between the pole
storage area and the shipping gate adds $0.40 in crane activity. We must choose loca-
tions for the new facilities to minimize total material handling cost.

1200

900

600

300

300 600

1

3

concrete
batching

shipping

pole casting

pole storage

steel
mfg.

2

Material Handling
Costs per Foot

Pole
Casting
j = 1

Pole
Storage
j = 2

1: Pole casting
2: Pole storage
3: Concrete batch
4: Steel manufacturing
5: Shipping

—
4.00
1.10
0.70
—

—
—
—

0.65
0.40

0
0

Figure 4.2 Virginia Prestress (VP) Location Example

176 Chapter 4 Linear Programming Models

where

d1xj, yj, xk, yk2 ! distance from 1xj, yj2 to 1xk, yk2
No constraints are required.

If we measure distance in the straight-line or Euclidean way depicted in
Figure 4.3(a), model (4.22) is unavoidably nonlinear.9 However, it is often more
appropriate in facilities design to calculate distance in the rectilinear manner of
Figure 4.3(b). Material movements tend to follow aisles and other paths aligned
with either the x or the y axis. Thus travel distance is best modeled as

 d1xj, yj, xk, yk2 ! � xj - xk � + � yj - yk � (4.23)

Euclidean
distance

Rectilinear
distance

(b)(a)

Figure 4.3 Euclidean versus Rectilinear Distance

9See, for example, the DClub model of Section 3.1.

Min Deviation Objective Functions
With rectilinear distance measure (4.23), mathematical program (4.22) takes a min
deviation form.

Min deviation objective functions model cases where the goal
is to minimize positive-weighted sums of absolute differences between pairs of
model quantities.

Definition 4.14

Here we seek to minimize the cost-weighted sum of location coordinate
differences.

Linearizing Min Deviation Objective Functions
Any min deviation objective involving positive-weighted absolute differences of
linear functions can be modeled linearly. We need only introduce new deviation
variables expressing the required differences.

4.6 Models with Linearizable Nonlinear Objectives 177

Linearized VP Location Model
With distance rectilinear, our VP location model (4.22) becomes

 min 4.00 0 x1 - x2 � + 4.00 0 y1 - y2 � + 1.10 0 x1 - 300 0
+ 1.10 0 y1 - 1200 � + 0.70 0 x1 - 0 � + 0.70 0 y1 - 600 0
+ 0.65 0 x2 - 0 � + 0.65 0 y2 - 600 � + 0.40 0 x2 - 600 0
+ 0.40 0 y2 - 0 0

To apply principle 4.15 , we introduce a pair of deviation variables for each objec-
tive function term i = 1, c, 10:

 si
+ ! positive difference in absolute value term i

 si
- ! negative difference in absolute value term i

Then we may solve VP’s location problem with linear program

 min 4.001s1
+ + s1

-2 + 4.001s2
+ + s2

-2 + 1.101s3
+ + s3

-2

(4.24)

+ 1.101s4
+ + s4

-2 + 0.701s5
+ + s5

-2 + 0.701s6
+ + s6

-2
+ 0.651s7

+ + s7
-2 + 0.651s8

+ + s8
-2 + 0.401s9

+ + s9
-2

+ 0.401s10
+ + s10

- 2
 s.t. x1 - x2 = s1

+ - s1
- 1term 12

 y1 - y2 = s2
+ - s2

- 1term 22
 x1 - 300 = s3

+ - s3
- 1term 32

 y1 - 1200 = s4
+ - s4

- 1term 42
 x1 - 0 = s5

+ - s5
- 1term 52

 y1 - 600 = s6
+ - s6

- 1term 62
 x2 - 0 = s7

+ - s7
- 1term 72

 y2 - 600 = s8
+ - s8

- 1term 82
 x2 - 600 = s9

+ - s9
- 1term 92

 y2 - 0 = s10
+ - s10

- 1term 102
 si

+, si
- Ú 0 i = 1, c, 10

Notice that new (linear) constraints express each absolute difference term of
the min deviation objective function as the difference of corresponding deviation

Positive-weighted terms 0 p1x2 - q1x2 0 of a min deviation
objective function involving differences of linear functions p1x2 and q1x2 can
be modeled linearly by (1) introducing new nonnegative deviation variables
s+ and s-, (2) adding new constraints

p1x2 - q1x2 = s+ - s-

and (3) substituting s+ + s- for the absolute differences in the objective function.

Principle 4.15

178 Chapter 4 Linear Programming Models

variables subject to nonnegativity constraints. Then the objective function mini-
mizes the weighted sum (not the difference) of those variable pairs.

Here an optimal solution locates the new facilities next to each other at

x1
* = x2

* = 300

y1
* = y2

* = 600

Corresponding optimal values for deviation variables are

 s1
+* = 0, s2

+* = 0, s3
+* = 0, s4

+* = 0, s5
+* = 300

 s1
-* = 0, s2

-* = 0, s3
-* = 0, s4

-* = 600, s5
-* = 0

 s6
+* = 0, s7

+* = 300, s8
+* = 0, s9

+* = 0, s10
+* = 600

 s6
-* = 0, s7

-* = 0, s8
-* = 0, s9

-* = 300, s10
-* = 0

Why does transformation 4.15 work? Because it can never be optimal for any
term to have both si

+ 7 0 and si
- 7 0. For example, at optimality the fourth term of

our VP model (4.24) has the corresponding constraint

y1
* - 1200 = 600 - 1200 = - 600 = s4

+ - s4
-

Many choices of s4
+ and s4

- will satisfy the constraint, but the objective function pre-
fers the one with the smallest sum, that is,

s4
+* = 0, s4

-* = 600

With at most one member of each deviation variable pair being positive in an optimal
solution, their difference will always exactly equal the required absolute difference.

exAMple 4.10: Modeling Min deviAtion objective Functions

In terms of design parameters x1, x2, and x3 the speed and weight of a proposed
vehicle can be expressed as

4x1 - x2 + 7x3 and 9x1 - 10x2 + x3

respectively. Assuming that all other constraints are linear, formulate an objective
function and extra constraints needed in a linear program to find the design with
speed as close as possible to 100, and weight as close as possible to 150.

Solution: Following principle 4.15 , we define deviation variables s1
+ and s1

- for
speed, together with s2

+ and s2
- for weight. Then we minimize the deviation of speed

and weight from their desired values with objective function

 min s1
+ + s1

- + s2
+ + s2

- 1total deviation2
and special constraints

 4x1 - x2 + 7x3 - 100 = s1
+ - s1

- 1speed2
 9x1 - 10x2 + x3 - 150 = s2

+ - s2
- 1weight2

s1
+, s1

-, s2
+, s2

- Ú 0

4.7 Stochastic Programming 179

4.7 stochAstic progrAMMing

Section 1.6 introduced the distinction between deterministic and stochastic optimi-
zation models. For convenience and tractability, deterministic models assume all
model parameters are known with certainty even though they are truly only esti-
mates of the values that will arise in real application. Stochastic models explicitly
include parameters known only in probability, that is, random variables for which a
probability distribution of possible parameter realizations is known but variability
of possible values must be modeled to validly choose best values for the decision
variables of the optimization.

The overwhelming majority of this book addresses only the deterministic
form, leaving stochastic models to other sources. Still, a small collection of stochastic
cases fit neatly into the paradigms of deterministic optimization, and those can be
included. We introduce the LP version of one of them here – two-stage stochasic
programming also known as stochastic programming with recourse.

An optimization model is a two-stage stochastic program if
the decisions to be made can be divided into two phases or stages. The first
considers the decisions to be made before the values of any modeled random
variables are known, and the second provides response or recourse after sto-
chastic parameter values have been realized.

Definition 4.16

ApplicAtion 4.9: Quick Aid (QA)
The Quick Aid (QA) division of the Emergency Managment Agency is establishing
a network to rapidly distribute vitally needed first-aid and food supplies in survival
kits sized for single individuals when some part of the U.S. Gulf coast has been
struck by a hurricane. Kits will be inventoried in advance at one or more of 3 depot
sites leased within existing commercial warehouses. Then, as soon as a storm hits,
needed kits will be transported rapidly to any or all of the 4 coastal regions where
major populations have been dislocated.

QA wishes to find a minimum total cost plan for dealing with the 4 storm emer-
gencies typically occurring per year. Kits inventories for up to a total of 1 million victims
will be held in depots then shipped as needed to impacted regions. Cost (per kit) for
annual holding inventory at each potential depot site, and for shipping from each site to
each potentially stricken region have been estimated as shown in the following:

Depot
Holding
Cost ci

Transportation Costs dij

j = 1 j = 2 j = 3 j = 4

i = 1 7.20 2.25 3.45 5.52 5.00

i = 2 20.00 5.95 2.14 3.64 4.15

i = 3 8.00 5.90 3.95 4.10 4.00

The number of kits that will need to be shipped to any region depends on the scope
of the storm emergency. Careful analysis storm history over the past 20 years has

A small fictional example will illustrate.

180 Chapter 4 Linear Programming Models

identified n = 8 scenarios s according to the regions of the storm focus. The frac-
tion of storms fitting in each ps , and the associated requirements (in 000s) r j

1s2 have
been estimated as shown in the following:

Regional Requirements

Scenario Fraction j = 1 j = 2 j = 3 j = 4

s = 1 (R1 only) 0.10 100 10 — —

s = 2 (R2 only) 0.02 10 720 20 —

s = 3 (R3 only) 0.16 — 16 270 11

s = 4 (R4 only) 0.14 — — 20 77

s = 5 (R1 & R2) 0.08 90 675 20 —

s = 6 (R2 & R3) 0.20 10 675 220 11

s = 7 (R3 & R4) 0.24 — 10 220 69

s = 8 (All) 0.06 90 675 220 11

Average 24.8 249.9 158.0 32.0

exAMple 4.11: recognizing 2-stAge stochAstic settings

Consider a beachfront vendor with dispensing tanks for 2 types of drinks. Each eve-
ning the vendor must decide how many tanks to pre-order for the next morning
filled with lemonaide, and how many filled with coffee. One tank will also be left
empty for filling the next morning, but no other ordering is possible. If the new day
proves sunny, which happens 70% of the time, there will be demand for 3 tanks of
lemonaide and 1 of coffee. If it is cold, which happens 30% of the time, demands will
be for 1 tank of lemonaide and 3 of coffee. The vendor would like to maximize the
expected total tanks of liquid sold.

(a) Explain how this vendor’s decisions can be viewed as a two-stage stochastic
program with recourse.

(b) Identify what scenarios will be considered in Stage 2.

Solution:

(a) This is a two-stage stochastic programming setting, because a choice on the
mix of the first 3 tanks must be made when next day’s weather is known only in
probability. Then, disposition of the 4th tank is left to recourse after the weather
has been realized.

(b) The two scenarios are 1 = sun and 2 = cold.

Deterministic Model of QA Example
To begin, consider formulating a deterministic model of the QA example more in
the spirit of others in this chapter. Using decision variables xi ! the number of kits
(in thousands) inventoried at depot i and zij ! the number of kits (in thousands)

4.7 Stochastic Programming 181

shipped from depot i to region j in the event of an emergency, we can formulate the
task deterministically as

 min a 3
i = 1 cixi + 4 a 3

i = 1 a 4
j = 1 dijzij 1total annual cost2

 s.t. a 3
i = 1 xi … 1000 1up to 1 million2

 a 3
i = 1 zij = r j

avg j = 1, c, 4 1average demand2
 a 4

j = 1 zij … xi i = 1, c, 3 1depot inventory2
 xi Ú 0, i = 1, c, 3

 zij Ú 0, i = 1, c, 3, j = 1, c, 4

where the r j
avg parameters are the scenario-fraction-weighted average requirements

for regions r in the scenario table above. The constant 4 in the objective function
reflects planning for 4 events per year.

Such a model plans inventories and shipping for an average of the possible futures
rather than addressing recourse to particular scenarios. An optimal solution is

xi
* = 1274.7, 0.0, 190.02

zi j
* = £24.8 249.9 0.0 0.0

0.0 0.0 0.0 0.0
0.0 0.0 158.0 32.0

≥
cost = $10, 271 thousand

Notice that the chosen total inventory 274.7 + 190.0 = 464.4 is not enough to ful-
fill even region j = 2 needs given in the above tables for scenarios s = 2, 5, 6 or 8.
Implementing this “optimal” plan could easily lead to a major crisis.

Deterministic optimization for an average outcome in settings
with high variability of requirements may lead to optimal solutions with high risk.

Principle 4.17

Two-stage stochastic programs refine modeling of uncertain
futures by including both the impacts of Stage 1 choices before the future is
known, and separate choices explicitly addressing recourse for each possible
future scenario.

Definition 4.18

Stochastic Programming with Recourse
Stochastic programming LPs with recourse explicity consider decisions in both op-
timization stages.

Figure 4.4 illustrates the idea.
The first set of variables x, objective function term cx, and constraints Ax … b

model Stage 1 before stochastic outcomes have been observed. Then for each sce-
nario s, there is another set of recourse variables z1s2 and constraints

Tsx + Rsz
1s2 … r1s2

182 Chapter 4 Linear Programming Models

with objective function contribution psd
1s2z1s2. Here the ps are the (nonnegative,

sum = 1) probabilities of particular scenarios; including them in the objective makes
the complete sum the expected value of possible outcomes. Each Ts transforms Stage
1 variables into how they are reflected in scenario constraints, and together with
Rsz

1s2 … r1s2 imposes applicable limitations on recourse decisions for the scenario.
Many objective functions can be used in stochastic programs, but expected

values are the most common.

Although other possibilites are sometimes used, typical stochas-
tic programming models employ objective functions computing the expected
value of choices from both decision stages. This is accomplished by weighted
objective function terms for each scenario by the probability of it occurring.

Principle 4.19

Stochastic Programming Modeling of the QA Application
LP (4.25) is the 2-stage stochastic programming model of QA hurricane response
Application 4.9.

 min a 3
i = 1 cixi + 4 #a 8

s = 1ps a a 3
i = 1a 4

j = 1dijzij
s b 1expected annual cost2

(4.25)

 s.t. a 3
i = 1 xi … 1000 1up to 1 million2

 -xi + a 4
j = 1 zij

s … 0 s = 1, c, 8; i = 1, c, 3 1supply2
 a 3

i = 1 zij
s = r j

s s = 1, c, 8; j = 1, c, 4 1demand2
 xi Ú 0, i = 1, c, 3

zij
s Ú 0, i = 1, c, 3; j = 1, c, 4; s = 1, c, 8

Expected
value
objective

Stage 1
constraints

Recourse
constraints

x z(1) z(2) z(n)

" b

" r
(1)

" r
(2)

" r
(n)

A

T1 R1

T2 R2

Tn Rn

c pnd(n)p2d(2)p1d(1)

Figure 4.4 Extensive Format of 2-Stage Stochastic Programs

4.7 Stochastic Programming 183

In the schema of Figure 4.4, the Stage 1 rows are a single … inequality with

A = [+1 + 1 + 1] and b = 1000

Recourse systems for each scenario s use arrays

Ts = F -1
- 1

- 1V Rs = G1 1 1 1

1
1

1

7 1 1 1 1

1
1

1
1

7 1 1 1 1
1

1
1

1

W r(s) = G

0
0
0

r1
s

r2
s

r3
s

r4
s

 W
with the first 3 rows … inequalities and the last 4 equalities.

An optimal solution has expected value $14,192.1 thousand. Decision vari-
ables at non-zero optimal values in Stage 1 are x1 = 715, x3 = 281. Then optimal
shipping from the two used depots by scenario is

exAMple 4.12: ForMulAtion oF 2-stAge beAch vendor
exAMple 4.11

Return to the beach vendor’s problem of Example 4.11, and assume that numbers
of tanks can be taken as contiuous rather than integer.

(a) Define decision variables for Stage 1 of the application.

(b) Define decision variables for both scenarios recourse in Stage 2.

(c) Formulate a full 2-stage stochastic LP in terms of your variables in parts (a)
and (b) that maximizes expected total sales.

(d) Identify an optimal solution in your model of (c) by inspection.

Ship Depot i = 1
to Region

Ship Depot i = 3
to Region

s j = 1 j = 2 j = 2 j = 3 j = 4

1 100 10 0 0 0

2 10 697 23 20 0

3 0 16 0 270 11

4 0 0 0 20 77

5 90 217 58 20 0

6 10 617 0 220 11

7 0 10 0 220 69

8 90 617 58 220 11

184 Chapter 4 Linear Programming Models

Extensive Form versus Large-Scale Techniques
The 2-stage stochastic programming format of Figure 4.4 is called the extensive
form of the model because all scenarios and their associated recourse are included
explicitly. Many applications involve far too many scenarios to make explicit in this
way. Furthermore, many of them have no significant effect of the ultimate optimal
solution and expected value. That is why most such applications employ the large-
scale techniques of Chapter 13.

Solution:

(a) Stage 1 decisions are x1 ! the number of lemonaide tanks pre-ordered, and
x2 ! the number of coffee.

(b) Stage 2 decisions for scenarios s = 1, sunny and s = 2, cold are w1
s ! the

number of lemonade tanks ordered after weather is known, and w2
s ! the number

of coffee tanks ordered after weather is known. For simplicity we also include
intermediate variables z1

s ! the number of tanks of lemonaid sold on type s days,
and z2

s ! the number of tanks of coffee sold.

(c) A suitable model is

 max .701z1
1 + z2

12 + .301z1
2 + z2

22

 s.t. x1 + x2 = 3

 x1 + w1
1 Ú z1

1 x1 + w1
2 Ú z1

2

 x2 + w2
1 Ú z2

1 x2 + w2
2 Ú z2

2

 w1
1 + w2

1 = 1 w1
2 + w2

2 = 1

 z1
1 … 3 z1

2 … 1

 z2
1 … 1 z2

2 … 3

 all variables Ú 0

(d) An optimal choice of Stage 1 variables is x1 = 2 and x2 = 2. Then, if the day
proves sunny, choosing w1

1 = 1, w2
1 = 0 yields maximal sales z1

1 = 3 and z2
1 = 1.

If the day proves cold, choosing w1
2 = 0, w2

2 = 1 yields sales z1
2 = 0, and z2

2 = 2.
These lead to solution expected value = .713 + 12 + .311 + 22 = 3.7.

The extensive form of Stochastic Programs grows prohibi-
tively large if too many scenarios are possible. In such cases, large-scale
techniques like those in Chapter 13 can be employed to achive tractable
models.

Principle 4.20

 Exercises 185

4-1 Bisco’s new sugar-free, fat-free chocolate
squares are so popular that the company can-
not keep up with demand. Regional demands
shown in the following table total 2000 cases
per week, but Bisco can produce only 60% of
that number.

NE SE MW W

Demand 620 490 510 380
Profit 1.60 1.40 1.90 1.20

The table also shows the different profit levels per
case experienced in the regions due to competi-
tion and consumer tastes. Bisco wants to find a
maximum profit plan that fulfills between 50 and
70% of each region’s demand.

(a) Formulate an allocation LP to choose an
optimal distribution plan.

(b) Enter and solve your model with the class
optimization software.

4-2 A small engineering consulting firm has
3 senior designers available to work on the firm’s
4 current projects over the next 2 weeks. Each de-
signer has 80 hours to split among the projects, and
the following table shows the manager’s scoring
(0 = nil to 100 = perfect) of the capability of each
designer to contribute to each project, along with
his estimate of the hours that each project will
require.

Project

Designer 1 2 3 4

1 90 80 10 50
2 60 70 50 65
3 70 40 80 85

Required 70 50 85 35

The manager wants to assign designers to maxi-
mize total capability.

(a) Formulate an allocation LP to choose an
optimal work assignment.

(b) Enter and solve your model with the class
optimization software.

4-3 Cattle feed can be mixed from oats, corn, al-
falfa, and peanut hulls. The following table shows
the current cost per ton (in dollars) of each of

these ingredients, together with the percentage of
recommended daily allowances for protein, fat,
and fiber that a serving of it fulfills.

Oats Corn Alfalfa Hulls

% Protein 60 80 55 40
% Fat 50 70 40 100
% Fiber 90 30 60 80

Cost 200 150 100 75

We want to find a minimum cost way to produce
feed that statisfies at least 60% of the daily allow-
ance for protein and fiber while not exceeding
60% of the fat allowance.

(a) Formulate a blending LP to choose an
optimal feed mix.

(b) Which of the constraints of your model
are composition constraints? Explain.

(c) Enter and solve your model with the class
optimization software.

4-4 Several forms of gasoline are produced
during the petroleum refining process, and a
last step combines them to obtain market prod-
ucts with specified quality measures. Suppose
4 different gasolines are available, with values
for the 2 indexes of quality being 99 and 210,
70 and 335, 78 and 280, and 91 and 265, respec-
tively. Using corresponding costs per barrel of
$48, $43, $58, and $46, we would like to choose
a minimum cost blend with a first quality index
between 85 and 90 and a second index between
270 and 280.

(a) Formulate a blending LP to choose an
optimal gasoline blend.

(b) Which of the constraints of your model
are composition constraints? Explain.

(c) Enter and solve your model with the class
optimization software.

4-5 Ronnie Runner distilleries blends i = 1, c, m
scotch whiskeys to create its j = 1, c, n products
with properties k = 1, c, p. Unblended whiskey
i measures ai, k on scale k. Express each of the fol-
lowing as linear constraint(s) in these parameters
and the nonnegative decision variables xi, j ! bar-
rels of whiskey i used in product j. Assume that the
properties combine in proportion to volume and

ExERCISES

186 Chapter 4 Linear Programming Models

that the total production of any blend is free to vary
with the optimization.

(a) Property k = 11 should fall between 45
and 48 in all products.

(b) Product j = 14 must have all properties
k = 5, c, 9 between 90 and 95.

(c) Product j = 26 must measure at least 116
on property k = 15.

(d) No product should measure more than 87
on property k = 8.

(e) Products 6 through 11 should combine
input whiskey 1 with others in at most the
ratio 3: 7.

(f) Input whiskeys 4 and 7 should be in ratio
2:3 for all blends.

(g) At least one-third of all output must
come from inputs i = 3, c, 6.

(h) No more than 5% of all output can come
from input i = 13.

4-6 Problems are often modeled as linear pro-
grams even though some decision variables rep-
resent quantities such as the number of units
processed or the number of times an alternative is
used that must be integer in a physical implemen-
tation. Briefly justify this practice.

4-7 A metalworking shop needs to cut at least 37
large disks and 211 small ones from sheet metal
rectangles of a standard size. Three cutting pat-
terns are available. One yields 2 large disks with
34% waste, the second gives 5 small disks with
22% waste, and the last produces 1 large and 3
small disks with 27% waste. The shop seeks a
minimum waste way to fulfill its requirements.

(a) Formulate an operations management
LP to choose an optimal cutting plan.

(b) Enter and solve your model with the class
optimization software.

4-8 Classic Candles handmakes three models
of elegant Christmas candles. Santa models re-
quire 0.10 day of molding, 0.35 day of decorat-
ing, and 0.08 day of packaging and produce $16
of profit per unit sold. Corresponding values for
Christmas trees are 0.10, 0.15, 0.03, and $9, while
those of gingerbread houses are 0.25, 0.40, 0.05,
and $27. Classic wants to maximize profit on what
it makes over the next 20 working days with its 1
molder, 3 decorators, and 1 packager, assuming
that everything made can be sold.

(a) Formulate an operations management
LP to choose an optimal production plan.

(b) Enter and solve your model with the class
optimization software.

4-9 Wobbly Office Equipment (WOE) makes
two models of tables for libraries and other uni-
versity facilities. Both models use the same table-
tops, but model A has 4 short (18-inch) legs and
model B has 4 longer ones (30-inch). It takes
0.10 labor hour to cut and shape a short leg from
stock, 0.15 labor hour to do the same for a long
leg, and 0.50 labor hour to produce a tabletop.
An additional 0.30 labor hour is needed to attach
the set of legs for either model after all parts are
available. Estimated profit is $30 for each model
A sold and $45 for each model B. Plenty of top
material is on hand, but WOE wants to decide
how to use the available 500 feet of leg stock and
80 labor hours to maximize profit, assuming that
everything made can be sold.

(a) Formulate an operations management
LP to choose an optimal plan using the
decision variables x1 ! number of model
A’s assembled and sold, x2 ! number
of model B’s assembled and sold, x3 !
number of short legs manufactured, x4 !
number of long legs manufactured, and
x5 ! number of tabletops manufactured.

(b) Which of the constraints of your model
are balance constraints? Explain.

(c) Enter and solve your model with the class
optimization software.

4-10 Perfect Stack builds standard and extralong
wooden palettes for a variety of manufacturers.
Each model consists of 3 heavy separators of
length equal to the palette. The standard model
has 5 cross pieces above and 5 below the separa-
tors and requires 0.25 hour to assemble. The ex-
tralong version has 9 similar cross pieces on top
and bottom and consumes 0.30 hour to assem-
ble. The supply of wood is essentially unlimited,
but it requires 0.005 hour to fabricate a standard
separator, 0.007 hour to fabricate an extralong
separator, and 0.002 hour to fabricate a cross
piece. Assuming that it can sell as many standard
models as can be made at $5 profit each and as
many extralongs at $7 profit, Perfect wants to de-
cide what to produce with the available 200 hours
of assembly time and 40 hours of fabrication.

 Exercises 187

(a) Formulate an operations management
LP to choose an optimal plan using the
decision variables x1 ! number of stan-
dard palettes assembled and sold, x2 !
number of extralongs assembled and
sold, x3 ! number of standard separators
manufactured, x4 ! number of extralong
separators manufactured, and x5 ! num-
ber of cross pieces manufactured.

(b) Which of the constraints of your model
are balance constraints? Explain.

(c) Enter and solve your model with the class
optimization software.

4-11 The figure below shows the Bill of Materials
buildup to 2 finished products of bicycle rack
manufacturer Hang Up (HU). For example,
Product 2 uses one Assembly 3 and four Part 6’s.
Each Assembly 3, in turn, is made up of 2 Part 5’s
and 1 Part 7. All Products, Assemblies and Parts
are produced at HU’s plant.

Using decision variables xj Ú 0, j = 1, c, 7 for
the numbers of objects j (Products, Assemblies, or
Parts) produced per week, formulate all material
balance constraints required in an LP to assure
enough of each object has been manufactured to
meet given weekly demands d1 and d2 for finished
products 1 and 2.

4-12 Goings Engine produces diesel engines and
assemblies i = 1, c, m at its plants p = 1, c, n.
There is some end demand di, p for the various en-
gines and assemblies, with the rest used in Goings
production. The number of subassemblies i re-
quired to produce each assembly k is ai, k.

(a) Write a system of linear constraints spec-
ifying that the number of each engine
and assembly must balance (with zero in-
ventories) across the company using the
parameters above and the nonnegative
decision variable xi, p ! number of as-
semblies i produced at plant p.

(b) Write a system of linear constraints speci-
fying that the number of each engine and
assembly must balance (with zero inven-
tories) at each plant using the foregoing
parameters and the nonnegative decision
variable xi, p, q ! number of assemblies i
produced at plant p for use at plant q.

4-13 The River City Police Department uses
work shifts in which officers work 5 of the 7
days of the week with 2 successive days off. For
example, a shift might work Sunday through
Thursday and then have Friday and Saturday
off. A total of 6 officers must be on duty
Monday, Tuesday, Wednesday, and Thursday;
10 are required on Friday and Saturday; and 8
are needed on Sunday. River City wants to meet
these staffing needs with the minimum total
number of officers.

(a) Formulate a shift scheduling LP to select
an optimal staffing plan.

(b) Which of the constraints of your model
are covering constraints? Explain.

(c) Enter and solve your model with the class
optimization software.

4-14 Mama’s Kitchen serves from 5:30 a.m. each
morning until 1:30 p.m. Tables are set and cleared
by busers working 4-hour shifts beginning on
the hour from 5 a.m. through 10 a.m. Most are
college students who hate to get up in the morn-
ing, so Mama’s pays $7 per hour for the 5, 6, and
7 a.m. shifts, and $6 per hour for all others. The
manager seeks a minimum cost staffing plan that
will have 2 busers on duty for the hour beginning

Product
1

1 3 2 1 4 2 1

Product
2

Assembly
3

Assembly
3

Part
4

Part
5

Part
5

Part
7

Assembly
3

Part
6

 Figure for Exercise 4-11

188 Chapter 4 Linear Programming Models

at 5 a.m., plus 3, 5, 5, 3, 2, 4, 6 and 3 on duty for
the hours to follow.

(a) Formulate a shift scheduling LP to select
an optimal staffing plan.

(b) Which of the constraints of your model
are covering constraints? Explain.

(c) Enter and solve your model with the class
optimization software.

4-15 The MacKensie’s daughter will begin col-
lege 4 years from today. Her parents want to
invest $10,000 at the beginning of each of the 4
years to accumulate a fund that can help pay the
cost. Each year they expect to have available both
certificates of deposit returning 5% after 1 year
and ones returning 12% after 2 years. This year,
they also have an opportunity to make a special
investment that would return 21% after 4 years.
The MacKensies want to choose investments to
maximize their college fund assuming that all
funds are reinvested at maturity.

(a) Formulate a time-phased LP to choose
an optimal investment plan.

(b) Which of the constraints in your model
are balance constraints? Explain.

(c) What is the time horizon of your model?
Explain.

(d) Enter and solve your model with the class
optimization software.

4-16 The Big Gear (BG) transmission company
buys and distributes replacement transmissions
for large, 18-wheeler trucks. For the next 4
months, the company anticipates demands of 100,
130, 95, and 300 units, respectively. During the
first month, units can be purchased from BG’s
supplier at a cost of $12K each, but thereafter the
price goes to $14K per transmission. One order
will be placed at the beginning of each month,
and goods arrive immediately. Units can be held
in the Big Gear warehouse at a cost of $1.2K per
unit held per month, but there is no starting in-
ventory. Naturally, the company wants to meet
demand over the finite 4-month horizon at min-
imum total cost.

(a) Briefly justify why appropriate (nonneg-
ative) decision variables for an LP model
of BG’s problem are numbers of units xt
purchased each month and inventory ht
held during each month t.

(b) Clearly, BG can only implement solu-
tions involving integer numbers of trans-
missions. Briefly explain why it still
makes sense to represent the numbers of
transmissions as continuous variables in a
model of their challenge.

(c) Formulate BG’s problem as a time-
phased finite-horizon linear program
over the decision variables of part (a).
Assume all demand occurs on the last
day of the month. Be sure to annotate
each objective function and constraint
with a few words indicating its meaning.

(d) Enter and solve your model with class
optimization software.

4-17 Seasons Greetings (SG) manufacturers
artificial holiday trees decorated with embed-
ded multi-colored lights suitable for homes or
stores, tree sales vary seasonally, with 1 thousand
demanded in the first quarter of the year, 5 thou-
sand in the second, 10 thousand in the third, and
7 thousand in the fourth. Corresponding profits to
the company also vary with $50 per tree gained on
sales in the high-demand third and fourth quarters,
and $35 per tree in slower-demand first and second
quarters. Still, SG can manufacture only 5 thousand
in any quarter due to the limits of its production fa-
cility, so not all demand can be met. Inventory can
be produced and held to exploit varying profit lev-
els, but holding costs SG $12 per quarter per tree.

(a) Define index sets and symbolic parame-
ters naming and indexing the model con-
stants described above.

(b) Formulate a linear program to compute
an optimal (max net income) sales and in-
ventory plan for SG using the parameters
of part (a) and assuming perpetual inven-
tory. Use decision variables sq = sales in
quarter q and hq = units held in quarter
q, for q = 1, c, 4. Be sure to briefly
annotate the objective function and con-
straints (both main and variable-type) to
indicate their meaning.

(c) Enter and solve your model with class
optimization software.

4-18 Down Hill Ski (DHS) manufactures high
speed racing skis for the most adventurous of
skiers. Ski sales vary seasonally, with 7 thousand
pairs demanded in the first quarter of the year,

 Exercises 189

2 thousand in the second, 1 thousand in the third,
and 10 thousand in the fourth. Corresponding
profits to the company also vary with $500 per
pair gained on sales in the high-demand first and
fourth quarters, and $350 per pair in the other,
slower-demand quarters. Still, DHS will be man-
ufacturing only 4 thousand pairs per quarter due
to the limits of its production facility, so not all
demand can be met. Inventory can be produced
and held to exploit varying profit levels, but hold-
ing costs DHS $40 per quarter per pair.

(a) Define symbolic parameters naming and
indexing the constants described above.

(b) Formulate a linear program to compute
an optimal (max net income) sales and in-
ventory plan for SG using the parameters
of part (a) and assuming perpetual inven-
tory. Use decision variables sq = sales in
quarter q and hq = units held in quarter
q, for q = 1, c, 4. Be sure to briefly
annotate the objective function and con-
straints (both main and variable-type) to
indicate their meaning. Be sure to briefly
annotate the objective function and con-
straints (main and variable-type) with a
few words indicating their meaning.

(c) Enter and solve your model with class
optimization software.

4-19 Ace Green Windows (AGW) manufactures
environmentally efficient windows as replace-
ments of those in existing homes. It has just re-
ceived a contract for the next 6 months, requiring
100, 250, 190, 140, 220, and 110 units in months
1 through 6, respectively. Production costs for win-
dows vary with time due to the specialized mate-
rials. AGW estimates production will cost $250,
$450, $350, $400, $520, and $500 per unit in periods
1 through 6, respectively. To take advantage of cost
variations, AGW may produce more windows than
the contract requires in some months and hold up
to 375 of them in inventory for later months. But
holding inventory costs $30 per window per month.
Assume there is no beginning inventory.

(a) Define symbolic parameters naming and
indexing the constants described above.

(b) Formulate a time-phased linear program
to compute an optimal (minimum total
cost) finite-horizon, manufacturing and
inventory plan for the next 6 months

using the parameters of part (a). Use
decision variables xt = units produced
in month t and ht = units held in month
t, for t = 1, c, 6. Briefly annotate the
objective function and constraints (main
and variable-type) with a few words indi-
cating their meaning.

(c) Enter and solve your model with class
optimization software.

4-20 Global Minimum manufactures bikini
swimming suits. Their business is highly seasonal,
with expected demands being 2800, 500, 100, and
850 dozen suits over the four quarters of next
year. The company can produce 1200 dozen suits
per quarter, but inventories must be built up to
meet larger demands at a holding cost of $15 per
dozen per quarter. Global wants to meet demand
while minimizing this inventory cost.

(a) Formulate a time-phased LP to choose
an optimal production plan assuming an
infinite time horizon.

(b) Which of the constraints in your model
are balance constraints? Explain.

(c) Explain why your model has an infinite
horizon even though it details only four
quarters.

(d) Enter and solve your model with the class
optimization software.

4-21 A company manufactures parts i = 1, c, m
in weeks t = 1, c, n, where each unit of part
i requires ai, k units of production resource
k = 1, c, q and has value vi. Production re-
source capacities bk cannot be exceeded in any
period and part demands di,t must be met. Express
each of the following as linear constraint(s) in
these parameters and the non-negative decision
variables xi, t ! number of units of i produced in
week t and zi, t ! inventory of product i held at the
end of period t. Initial inventories all = 0.

(a) No production capacity can ever be
ex ceeded.

(b) The total value of held inventories should
never exceed 200.

(c) Quantities of each part i available after
week 1 should balance with demand and
accumulated inventory.

(d) Quantities of each part i available after
weeks 2, c, n - 1 should balance with
demand and accumulated inventory.

190 Chapter 4 Linear Programming Models

4-22 The following table shows observed electri-
cal power consumption at several different levels
of a factory’s operation.

Level 2 3 5 7
Power 1 3 3 5

Engineers want to fit the estimating relationship

power = b0 + b1level

to these data in a way that minimizes the sum of
the absolute deviations between predicted and
observed power requirements. Both parameters
b0 and b1 should be nonnegative.

(a) Formulate a linearized nonlinear LP to
choose optimal parameter values. (Hint: b0
and b1 are among the decision variables.)

(b) Enter and solve your model with the class
optimization software.

(c) Determine from your solution in part (b)
the absolute deviation at each observed
point.

4-23 The following figure shows the ceiling loca-
tions of 3 sensors in a new factory relative to a coor-
dinate system (in feet) with origin at the lower left.
A control box will be located along the long (lower
in the figure) wall with fiber-optic cables running
rectilinearly to each sensor. Designers want to
place the box to minimize the cable required.

(5, 8)

(10, 15)

(25, 10)

box

y

x

(a) Formulate a linearized nonlinear LP to
choose an optimal placement.

(b) Enter and solve your model with the class
optimization software.

(c) How much cable would be required to
implement your solution of part (b)?

4-24 Repeat Exercise 4-22, this time choosing a
fit that minimizes the maximum deviation between
observed and predicted power requirements.

4-25 Repeat Exercise 4-23, this time minimizing
the length of the longest cable.

4-26 The American Edwards Laboratories
(AEL)10 manufactures artificial human heart
valves from pig hearts. One of the things making
planning complex is that the size of pig hearts is
highly variable, depending on breed, age when
slaughtered, feed mix, and so on. The following
(fictitious) table shows the fraction of hearts from
suppliers j = 1, c, 5 yielding each of the valve
sizes i = 1, c, 7, along with the maximum quan-
tity available from each supplier per week and the
unit cost of hearts obtained.

Supplier j

Size 1 2 3 4 5

1 0.4 0.1 — — —
2 0.4 0.2 — — —
3 0.2 0.3 0.4 0.2 —
4 — 0.2 0.3 0.2 —
5 — 0.2 0.3 0.2 0.2
6 — — — 0.2 0.3
7 — — — 0.2 0.5

Availability 500 330 150 650 300

Cost 2.5 3.2 3.0 2.1 3.9

AEL wants to decide how to purchase hearts to
meet weekly requirements of 20 size 1, 30 size 2,
120 size 3, 200 size 4, 150 size 5, 60 size 6, and 45
size 7 valves at minimum total cost.

(a) Formulate an LP model of this heart pur-
chase planning problem using the decision
variable (j = 1, c, 5)

xj ! number of hearts purchased weekly
from supplier j

(b) Enter and solve your model with the class
optimization software.

10Based on S. S. Hilal and W. Erikson (1981), “Matching Supplies to Save Lives: Linear Programming
the Production of Heart Valves,” Interfaces, 11:6, 48–55.

 Exercises 191

4-27 Midville Manufacturing assembles heavy
duty materials handling carts to meet demand of
500 units in the first quarter of each year, 1200
in the second, 1000 in the third, and 300 in the
fourth. Elementary components, which consist of
wheels, steering yokes, and carrying platforms,
are first assembled separately. Then each steer-
ing yoke is equipped with 4 wheels to form the
front-end subassembly. Finally, front-end subas-
semblies are combined with a carrying platform
and 8 additional wheels at the rear to complete
the cart. Using j = 1 for steering yokes, j = 2 for
wheels, j = 3 for platforms, j = 4 for front-end
assemblies, and j = 5 for finished carts, the fol-
lowing table shows the estimated value of each el-
ement (in dollars) and the factory hours required
to assemble it.

Element j

1 2 3 4 5

Value 120 40 75 400 700

Time 0.06 0.07 0.04 0.12 0.32

Components, subassemblies, and finished carts
produced in any quarter may be used or shipped
in the same quarter or held over as inventory (in-
cluding from the fourth quarter to the first) at 5%
per quarter interest on the held value. Midville
seeks a plan that minimizes these holding costs
while conforming to the factory production ca-
pacity, 1150 hours per quarter.

(a) Formulate an LP model to choose a pro-
duction plan using the decision variables
(j = 1, c, 5; q = 1, c, 4)

 xj, q ! number of units of element j
produced in quarter q

 hj, q ! number of units of element j
held in inventory from quarter q
to the next

Your model should include a system of
main constraints for production capacity
and an additional system for each ele-
ment j to enforce material balance.

(b) Enter and solve your model with the class
optimization software.

4-28 A construction contractor has undertaken
a job with 7 major tasks. Some of the tasks can
begin at any time, but others have predecessors
that must be completed first. The following table
shows those predecessor task numbers, together
with the minimum and maximum time (in days)
allowed for each task, and the total cost that
would be associated with accomplishing each task
in its minimum and maximum times (more time
usually saves expense).

j
Min.
Time

Max.
Time

Cost
Min.

Cost
Max.

Predecessor
Tasks

1 6 12 1600 1000 None
2 8 16 2400 1800 None
3 16 24 2900 2000 2
4 14 20 1900 1300 1,2
5 4 16 3800 2000 3
6 12 16 2900 2200 3
7 2 12 1300 800 4

The contractor seeks a way to complete all work
in 40 days at least total cost, assuming that the
cost of each task is linearly interpolated for times
between the minimum and maximum.

(a) Formulate an LP model of this time/cost
planning problem using the decision vari-
ables (j = 1, c, 7)

 sj ! start time of task j 1in days2
 tj ! days to complete task j

Your model should have an objective
function summing interpolated cost and
main constraints to enforce precedence
relationships and the time limit.

(b) Enter and solve your model with the class
optimization software.

4-29 Import Books, Incorporated (IBI)11 stocks
several thousand titles in its main warehouse.
The titles can be categorized by sales volume,
with i = 1 requiring a stored inventory of 0 to 20
books, i = 2 requiring 21 to 40, i = 3 requiring
41 to 100, and i = 4 requiring 101 to 200. The
number of titles in category i is bi . Each title is
stored in a separate bin, and each bin has at most

11Based on R. J. Paul and R. C. Thomas (1977), “An Integrated Distribution, Warehousing and
Inventory Control System for Imported Books,” Operational Research Quarterly, 28, 629–640.

192 Chapter 4 Linear Programming Models

one title. IBI has 500 bins with space for up to
100 books and 2000 larger ones with space for up
to 200 books. The bins for 100 can also be sub-
divided to create either two bins for 40 books or
three bins for 20. Costs ci, j for storing a category i
title in a size j bin have been estimated by account-
ing for the material handling cost of accessing the
bin and the wasted space if a bin is underutilized.
Here j = 1 refers to bins for 20, j = 2 to bins for
40, j = 3 to bins for 100, and j = 4 to bins for
200. Formulate an LP model to find a minimum
cost allocation of titles to bins using the decision
variable 1i = 1, c, 4; j = i, c, 42

xi, j ! number of titles of category
i allocated to of size j

4-30 Radiation therapy planning for cancer treat-
ment begins with computer images of several body
tissues. A tumorous target is identified along with
surrounding healthy tissues. The treatment goal is
to get maximize the total radiation received by a
target tumor t = 0 while avoiding damage to sur-
rounding tissues t = 1, c, T by limiting the radi-
ation allowed to fall on them. Radiation is provided
from a large accelerator that can shoot beams from
multiple angles j = 1, c, J around the patient’s
body so as to spread the danger to healthy tis-
sues while focusing on the tumor. The accelerator
beam is relatively large, often approximately 10cm
square. That is why Intensity Modulated Radiation
Therapy (IMRT) adds precision to plans by treat-
ing each beam j as if made up of many beamlets
k = 1, c, Kj with independently controllable in-
tensities (roughly exposure times) xj, k Ú 0.

It is important that both tumor and healthy
tissue dose be spread fairly evenly across their
 respective volumes. This is modeled by divid-
ing each tissue volume t into a larger number of
mini-volumes called voxels i = 1, c, It. Then
the impact of particular beamlets 1j, k2 on any
voxel 1t, i2 can be estimated as aj, k, t, i per unit
beamlet intensity. The total dose received at any
voxel 1t, i2 can be assumed to be the sum of
these contributions across all beamlets, that is,

a J
j = 1 aKJ

k = 1 aj, k, t, i xj, k. Then such total voxel

doses within healthy tissues t = 1, c, T must be
limited to a specified maximum safe doses bt.

Using the indicies and symbols defined
above, formulate a linear program over decision
variables xj, k to compute a treatment plan max-
imizing the average dose to target voxels while
satisfying upper limits for all voxels of each
surrounding healthy tissue. Be sure to explain
and justify the meaning of the objective and all
constraints.
4-31 Dairy cows12 in most countries calve on
a regular annual basis. Their milk output varies
over the year accordingly, with a peak reached a
few months after calving followed by a decline to
almost zero in the tenth month. Knowing these
facts, farmers in an agricultural cooperative are
trying to plan calving months c = 1, c, 12 to
make it easier to meet seasonal milk demands rd
pounds in months d = 1, c, 12. Any milk pro-
duced beyond these demands must be sold on
the bulk market at b per pound below the regular
price. The annual cost mc of maintaining a cow
calving in month c varies significantly over the
year because low-cost grazing is available only in
certain seasons. From scientific studies the farm-
ers can estimate the yield pd, c pounds in demand
month d per cow calving in month c. Formulate
an LP model to determine a minimum total cost
calving schedule using the decision variables
1c, d = 1, c, 122

 xc ! number of cows calving in month c

 yd ! pounds of excess milk
produced in demand month d

4-32 Blue Bell13 is planning its monthly produc-
tion of a particular type of men’s jeans. Demands
di are know for the i = 1, c, 75 different fab-
ric parts needed to make all the combinations
of waist and inseam sizes being produced. Such
parts are cut from fabric laid out on cutting tables
in 60 to 70 layers. A predefined set of markers
(cutting patterns) m = 1, c, 350 define how
various parts may be cut. Each use of marker m
yields ai, m copies of part i per layer and wastes wm
square yards of fabric in areas between the usable

12Based on L. Killen and M. Keane (1978), “A Linear Programming Model of Seasonality in Milk
Production,” Journal of the Operational Research Society, 29, 625–631.

13Based on J. R. Edwards, H. M Wagner, and W. P. Wood (1985), “Blue Bell Trims Its Inventory,”
Interfaces, 15:1, 34–52.

 Exercises 193

parts. Formulate an LP model to choose a mini-
mum total waste cutting plan using the decision
variable 1m = 1, c, 350; p = 60, c, 702

xm, p ! number of times marker pattern
m is cut in a layup of p layers

4-33 To assess the impact on the U.S. coal mar-
ket of different pollution control strategies, the
Environmental Protection Agency (EPA)14 wants
to determine, for assumed control regimes, how
much coal from supplies si in different mining re-
gions i = 1, c, 24 will be extracted, how much
will then be processed into various deliverable
coal types m = 1, c, 8, and how much of each
deliverable product will be sent to meet consumer
demands dm, j in regions j = 1, c, 113. Demands
are expressed in Btu, with each ton of raw coal
mined at i for processing into type m yielding ai, m
Btu. Including the economic burden of pollution
controls and transportation, the cost per ton of
raw coal mined at i for processing into type m and
use at j can be estimated at ci, m, j. Formulate an
LP model to determine how coal would be mined,
processed, and distributed if the market seeks
to minimize total cost. Use the decision variable
1i = 1, c, 24; m = 1, c, 8; j = 1, c, 1132

xi, m, j ! tons of coal mined at i for processing
into m and use at j

4-34 Quantas Airways Ltd.15 must schedule
its hundreds of reservation salesclerks around
the clock to have at least rt on duty during each
1-hour period starting at (24-hour) clock hour
t = 0, c, 23. A shift beginning at time t extends
for 9 hours with 1 hour out for lunch in the fourth,
fifth, or sixth hours of the shift. Shifts beginning
at hour t cost the company ct per day, includ-
ing wages and night-hour premiums. Formulate
an LP model to compute a minimum total cost
daily shift schedule using the decision variables
1t = 0, c, 23; i = t + 4, c, t + 62

 xi ! number of clerks working a shift
starting at hour t

 yi, t ! number of clerks working a shift starting
at hour t who take lunch during hour i

4-35 An Indian reservation irrigation project16
must decide how much water to release through
the gate at the top of its main canal in each of
the upcoming 4-hour periods t = 1, c, 18. Ideal
canal outflows, rt , are known for each time pe-
riod, and the total outflow over all 18 periods
should equal or exceed the sum of these quanti-
ties. However, period-to-period deviations may
be needed to avoid flooding. The initial canal
storage is 120 units, and the net effect of releases
and outflows should never leave more than u
units stored after any period. Within these lim-
its, managers would like to minimize the total
absolute deviation between desired demands rt
and actual outflows. Formulate an LP model of
this irrigation control problem using the decision
variables 1t = 1, c, 182

 xt ! gate release during period t

 st ! amount of water stored in the
canal at the end of period t

 wt ! canal outflow during period t

 d1
+ ! over satisfaction of demand in period t

 d1
- ! undersatisfaction of demand in period t

4-36 Major shopping mall developer Homart17
is selecting the tenant mix for its next facility.
Stores of product types i = 1, c, 20 are being
considered for arrangement into the new mall’s
sectors j = 1, c, 5. Each sector will have 150
thousand square feet, and an allowance of ci per
square foot will be set aside for finishing of areas
allocated to stores of type i. From prior experi-
ence, Homart can estimate the present worth pi, j
of revenues from a type i store located in sector
j and the required floor space ai (in thousands

14Based on C. Bullard and R. Engelbrecht-Wiggans (1988), “Intelligent Data Compression in a Coal
Model,” Operations Research, 38, 521–531.

15Based on A. Gaballa and W. Pearce (1979), “Telephone Sales Manpower Planning at Quantas,”
Interfaces, 9:3, 1–9.

16Based on B. J. Boman and R. W. Hill (1989), “LP Operation Model for On-Demand Canal
Systems,” Journal of Irrigation and Drainage Engineering, 115, 687–700.

17Based on J. C. Bean, C. E. Noon, S. M. Ryan, and G. J. Salton (1988), “Selecting Tenants in a
Shopping Mall,” Interfaces, 18:2, 1–9.

194 Chapter 4 Linear Programming Models

of square feet). They seek a tenant mix that
will maximize total present worth while having
between ni and nQ i stores of each type i totaling
between fi and fQi thousand square feet, and not
exceeding the budget b for finishing allowances.
Formulate an LP model of this tenant mix prob-
lem using the decision variable

xi, j ! number of stores of type i included
in sector j

4-37 Once the configuration of molds is fixed,
the planning of production of aluminum in-
gots18 reduces to allocating the time of furnaces
j = 1, c, n among alloys i = 1, c, m and
ingot sizes s = 1, c, p. Yields aj, s of ingots of
size s producible from furnace j during the en-
tire planning period can be estimated. Planning
should meet demands di, s for ingots of alloy i and
size s, but this may require misapplying some
ingots (i.e., trimming some larger ingots sizes s=
greater than s to meet demands for size s of the
same alloy). Misapplications result in a trim-loss
cost ci, s=, s for each ingot cut down from size s=
to s. Managers want to find a feasible plan that
minimizes the total cost of these misapplications.
Formulate an LP model of this ingot produc-
tion planning problem using decision variables
1i = 1, c, m; j = 1, c, n; s = 1, c, p, s= 7 s2

 xi, j, s ! fraction of time on furnace j dedicated
to making ingots of alloy i, size s

 yi, x=, s ! number of ingots of alloy i, size s=,
misapplied to meet demand for size s

4-38 S&S operates its large supermarkets19 on
a 24-hour per day basis using only part-time ca-
shiers working shifts of 2 to 5 hours per day. All
shifts start on the hour. The required number rh of
cashiers on duty at a given store is known for (24-
clock) hours h = 0, c, 23, and managers can
also estimate the number of employees bl willing

to work shifts of lengths l = 2, c, 5. They seek
a shift schedule that meets requirements at mini-
mum total cashier hours worked. Formulate an LP
model of this shift scheduling problem using the
decision variable 1h = 0, c, 23; l = 2, c, 52

xh, l ! number of cashiers starting an
l-hour shift at hour h

Neglect the fact that the numbers working each
shift must physically be integers.
4-39 The transmitted gray-scale value gi, j of pix-
els i = 1, c, m, j = 1, c, n, in a digital space
satellite photo20 is distorted by both the usual
random noise and a known problem with the
video camera that effectively multiplies the value
for pixel (i, j) by a blurring factor bi, j. Engineers
want to restore the image by estimating correct
values for each pixel in a way that minimizes
the total absolute deviation between predicted
(after blurring) and observed gray-scale num-
bers. Formulate an LP model of this image
restoration problem using decision variables
1i = 1, c, m; j = 1, c, n2

 xi, j ! correct value for pixel 1i, j2
 di, j

+ ! positive deviation of predicted over
observed value for pixel 1i, j2

 di, j
- ! negative deviation of predicted below

observed value for pixel 1i, j2
4-40 The Hanshin expressway21 serves the
Osaka– Kobe area of Japan. Due to heavy con-
gestion, the number of vehicles entering at each
ramp j = 1, c, 38 of the expressway is con-
trolled by a system that reevaluates the situation
every 5 minutes based on current queue lengths
qj at each ramp and estimated number of new
entry-seeking arrivals dj over the next 5 minutes.
The system enforces end-of-period queue-length
limits uj and total traffic capacities bi on 500-
meter segments i = 1, c, 23 of the highway.

18Based on M. R. Bowers, L. A. Kaplan, and T. L. Hooker (1995), “A Two-Phase Model for Planning
the Production of Aluminum Ingots,” European Journal of Operational Research, 81, 105–114.

19Based on E. Melachrinoudis and M. Olafsson (1992), “A Scheduling System for Supermarket
Cashiers,” Computers and Industrial Engineering, 23, 121–124.

20Based on R. V. Digumarthi, P. Payton, and E. Barrett (1991), “Linear Programming Solutions of
Problems in Logical Inference and Space-Varient Image Restoration,” Image Understanding and the
Man–Machine Interface III, SPIE Vol. 1472, 128–136.

21Based on T. Yoshino, T. Sasaki, and T. Hasegawa (1995), “The Traffic-Control System on the
Hanshin Expressway,” Interfaces, 25:1, 94–108.

 Exercises 195

Traffic entering at j affects only down-stream
segments, and a part may exit before reaching
any given i. Prior engineering studies have cap-
tured this behavior in estimated fractions fi, j of
vehicles entering at j that persist to consume ca-
pacity at i. The system seeks the feasible control
policy that permits the maximum total number of
entry-seeking vehicles into the expressway during
the next time period. Formulate an LP model of
this traffic control problem using the decision
variables 1j = 1, c, 382

xj ! number of vehicles allowed to enter
at ramp j during the time period

4-41 Industrial engineers are planning the layout
of cells i = 1, c, 18 in a rectangular manufac-
turing facility of x = 1000 by y = 200 feet with a
6-foot-wide, two-way conveyor system along the
y = 0 boundary22. It has already been decided
that cells will be sequenced along the conveyor
in the same order as their i subscripts, but the
exact geometry of the cells remains to be fixed.
Analysis of cell loadings has produced lower lim-
its xi and yi on the x and y dimensions of each cell.
Engineers have also specified minimum cell pe-
rimeters pi as a surrogate for area (which would
lead to nonlinear optimization). Conveyor traffic
will enter and exit at input and output stations
located at cell x-midpoints along the conveyor,
and one-way traffic flows from cell i to cell j are
estimated at fi, j. The IEs seek a feasible design
that minimizes total travel (flow times distance)
on the conveyor. Formulate an LP model of
this layout problem using the decision variables
1i, j = 1, c, 182

 xj ! left x@coordinate of cell j

 yi ! y@depth of cell j

 di, j
+ ! positive x@distance between I>O stations

 of cells i and j

 di, j
- ! negative x@distance between I>O stations

 of cells i and j

4-42 Swift Chemical Company23 mines phos-
phate rock, collects it in inventory piles
i = 1, c, 8, and blends it to meet contracts with
customers k = 1, c, 25 at profit pik per ton.
The critical measure of phosphate content in rock
is its BPL. Piles correspond to different average
BPL contents bi per ton, asset value ai per ton,
contract net profit ri, k per ton, starting inven-
tory hi, and expected quantity qi to arrive from
mines vary accordingly. Each contract includes a
minimum sk and a maximum sQk number of tons
to be shipped, along with a minimum pk and a
maximum pQk average BPL content. Managers
want to schedule blending and sales to maxi-
mize total profit plus total ending inventory asset
value. Formulate an LP model of this phosphate
planning problem using the decision variables
1i = 1, c, 8; k = 1, c, 252

 xi,k ! tons of rock from pile i included
in shipment for contract k

 hi ! ending inventory in pile i

4-43 Any convex 3-dimensional object (i.e., a
body such that the line segment between any two
points in its volume falls entirely within the vol-
ume) with flat sides can be described as the set
of points (x, y, z) satisfying a series of linear con-
straints24. For example, a 3-by 5-by 9-meter box
with one corner at the origin can be modeled as

51x, y, z2: 0 … x … 3, 0 … y … 5, 0 … z … 96
Suppose that a stationary object is described in
this way by constraints

ai x + bi y + ci z … di i = 1, c, 19

and that a link of a robot arm is described at its
initial position by the constraints

pj x + qj y + rj z … sj j = 1, c, 12

The object and the link do not intersect at that
initial position, but the link is in motion. Its loca-
tion is being translated from the initial location by
growing a step a 7 0 in direction 1∆x, ∆y, ∆z2.
Formulate an LP in terms of decision variables x,

22Based on A. Langevin, B. Montreuil, and D. Riopel (1994), “Spine Layout Problem,” International
Journal of Production Research, 32, 429–442.

23Based on J. M. Reddy (1975), “A Model to Schedule Sales Optimally Blended from Scarce
Resources,” Interfaces, 5:1, 97–107.

24Based on R. Gallerini and A. Sciomachen (1993), “On Using LP to Collision Detection between a
Manipular Arm and Surrounding Obstacles,” European Journal of Operational Research, 63, 343–350.

196 Chapter 4 Linear Programming Models

y, z, and a to find the smallest step (if any) that
will produce a collision between the object and
the link, and indicate how the LP would detect the
case where no collision will occur.
4-44 The principal export of Iceland25 is fish
which are very perishable and subject to high
day-to-day variation in the size of the catch
available for processing. Each day processing
begins at any packing plant with estimates bf of
the kilograms of raw fish species f = 1, c, 10
that will be available for processing for market
m = 1, c, 20. The marketable volume (in ki-
lograms) of product m in any day is at most um.
Each kilogram of raw fish f processed for mar-
ket m yields af, m kilograms of the final product
and produces a gross profit of pf, m in sales minus
costs other than labor. Processing fish f into
product m requires hf, m, i hours of worker time
at stations i = 1 (filleting), i = 2 (packing), and
i = 3 (freezing). A total of qi hours of workers
can be obtained for workstation i at an aver-
age wage of ci per hour. The daily plan should
maximize total gross profit minus wage cost.
Formulate an LP model to compute an optimal
fish processing plan using the decision variables
1f = 1, c, 10; m = 1, c, 20; i = 1, c, 32

 xf, m ! kilograms of raw fish f processed
for market m

 yi ! worker hours at workstation i

4-45 The U.S. Air Force (USAF)26 must pro-
cure aircraft types i = 1, c, 10 and associated
munition types j = 1, c, 25 to meet antici-
pated sortie requirements against target types
k = 1, c, 15 in weather conditions classes
/ = 1, c, 8. Targets k are assigned a value rk,
and tk, / are anticipated under weather condition
/ in the assumed war scenario. An aircraft type i
using munitions type j under weather conditions
/ has probability pi, j, k, / of killing a type k target
each sortie, and a load of bi, j, k, / munitions j is
required. A total of si, j, k, / such sorties could be

flown by each available type i aircraft during the
assumed war. Currently, there are ai aircraft of
type i available, and new ones can be procured at
$ci billion per unit. Similarly, the current inven-
tory of munitions type j is mj and new ones can
be procured at $dj billion per unit. The USAF
wants to buy planes and munitions to maximize
the total expected value of targets it could kill if
the assumed war scenario happened subject to a
current-year procurement budget of $100 billion.
Formulate an LP model of this weapons pro-
curement problem using the decision variables
1i = 1, c, 10; j = 1, c, 25; k = 1, c, 15;
/ = 1, c, 82
 xi, j, k, / ! number of sorties flown byaircraft

type i with munitions type j against
target type k under weather conditions
class /

 yi ! number of new type i aircraft procured
 zi ! number of new type j munitions

procured

4-46 North American Van Lines27 maintains
a fleet of several thousand truck tractors, each
of which is owned by one of its contract truck-
ers. Tractors can be anywhere in the range
i = 0, c, 9 years old. Every 4-week planning
period t = 1, c, 13, tractors may be purchased
new at price p, sold to contractors at price si,
traded in to manufacturers at allowance ai, and
repurchased from contractors at price ri. Only
new units can be sold or traded as age i = 0, and
no more total units of any age can be traded in
any period than are purchased new in the same
period. The number of tractors in the fleet inven-
tory (i.e., with contractors) during each period t
must fall between a minimum lt and a maximum
ut to meet seasonal moving demands without
accumulating excess capacity. Managers wish to
find a plan that maximizes their net total income
from buying, selling, trading, and repurchas-
ing trucks. Formulate an LP model of this fleet

25Based on P. Jennson (1988), “Daily Production Planning in Fish Processing Firms,” European
Journal of Operational Research, 36, 410–415.

26Based on R. J. Might (1987), “Decision Support for Aircraft and Munitions Procurement,”
Interfaces 17:5, 55–63.

27Based on D. Avrmovich, T. M. Cook, G. D. Langston, and F. Sutherland (1982), “A Decision
Support System for Fleet Management: A Linear Programming Approach,” Interfaces, 12:3, 1–9.

 Exercises 197

management problem using the decision vari-
ables 1i = 0, c, 9; t = 1, c, 32

 wt ! number of new tractors purchased
in period t

 xi, j ! number of tractors of age i sold to
contractors in period t

 yi, j ! number of tractors of age i traded
in period t

 zi, j ! number of tractors of age i repurchased
from contractors in period t

 fi, j ! number of tractors of age i in the fleet
at the beginning of period t

Assume that vehicles enter and leave the fleet
only through sales to and repurchases from con-
tractors. Also assume that the fleet ages 1 year as
inventory is passed from period 13 to period 1 and
that no 9-year-old vehicles can be carried over to
the new year.
4-47 The College County Election Board
(CCEB) is planning for election machines needed
for the coming national election in the county’s 4
voting precincts. Each machine can be expected
to service 100 voters on election day, but the chal-
lenge is that the number of voters at each precinct
is unpredictable. Precincts 1 an 2 in the more up-
scale, highly educated part of the county experi-
ence fairly consistent voting, but precinct 3, and
especially univeristy district precinct 4 are highly
volatile. The table below shows the numbers of
citizens (in hundreds) whom history suggests
would vote in each precinct, depending upon
whether the overall election is a Low, Medium, or
High turnout one.

Precinct
Number

Turnout (hundreds)

Low Medium High

1 5 6 7
2 4 7 8
3 2 6 10
4 2 8 15

Prob 0.25 0.35 0.40

The table also shows to probability of the coming
election being of each type.

The CCEB must choose how many ma-
chines to pre-position at each precinct on election
day, and how many more to keep in a warehouse

from which they can be distributed to precincts
after the shape of the election is revealed in the
early hours of voting. Machines cost $5 thousand
each to obtain and program plus an additional
$0.5 thousand to relocate any from warehouse to
a polling place. The Board wants to stay within
its budget of $150 thousand while minimizing the
expected total number of voters who have long
waits because there are not enough machines at
their precinct to meet the demand.

(a) Explain how CCEB’s planning task can
be modeled as a Two-Stage Stochastic
Program with recourse (definition 4.18)?
Specifically, what will be decided in Stage
1, what scenarios s need to be treated in
Stage 2, and what recourse decisions are
available?

(b) Assuming it is satisfactory to treat num-
bers of voting matching as continuous,
formulate a Stochastic Linear Program
in Extensive Format (Figure 4.4) to com-
pute a minimum expected-value plan for
CCEB. Use Stage 1 decision variables
xp ! the number of voting machines
(hundreds) initially positioned at pre-
cincts p = 1, c, 4 or at the warehouse
p = 5. Combine with Stage 2 decision
variables yp

1s2 ! the number of machines
(hundreds) shipped from the warehouse
to precinct p under scenario s, and wp

1s2 !
the number (hundreds) of voters at pre-
cinct p who will experience long waits
due to a shortage of machines under
scenario s.

(c) Use class optimization software to solve
your model of (b) and explain what deci-
sions prove optimal.

4-48 Although it is only August, the Big View
(BV) electronics company is placing orders
now for holiday shopping season sales of a new
super-large, flat-screen TV. Orders will be de-
livered from the overseas manufacturer to the
company’s sites in 3 regional shopping malls.
Due to the global nature of orders, this will be
BV’s only buying opportunity until after the
first of next year. The product is very new and
different from competitors, which makes BV un-
certain how well it will sell. The following table

198 Chapter 4 Linear Programming Models

shows projected sales (if stock is available) at
the 3 malls under 5 possible demand scenarios,
along with the probability of each:

Demand Scenario

Mall 1 2 3 4 5

1 200 400 500 600 800

2 320 490 600 475 900

3 550 250 400 550 650

Prob 0.10 0.20 0.40 0.20 0.10

BV will pay $500 per TV purchased and shipped
to the 3 malls. Extra units may be obtained for
one mall from another’s excess at a transfer cost
of $150. Whatever the source, each TV sold dur-
ing the season will bring $800. TV’s still avail-
able at the end of the season in any malls will
all be sold at the clearance price of $300. BV
wishes to find a plan that maximizes the total
expected net profit over all the units purchased
in August.

(a) Explain how BV’s planning task can
be modeled as a Two-Stage Stochastic
Program with recourse (definition 4.18)?
Specifically, what will be decided in Stage
1, what scenarios s need to be treated in
Stage 2, and what recourse decisions are
available?

(b) Assuming it is satisfactory to treat num-
bers of TVs as continuous, formulate a

Stochastic Linear Program in Extensive
Format (Figure 4.4) to compute a max-
imum expected net-profit plan for BV.
Use Stage 1 decision variables xm !
the number TVs purchased for mall m.
Combine with Stage 2 decision variables
wm,n

1s2 ! the number of units transferred
from mall m to mall n under scenario s,
ym
1s2 ! the number of TVs sold in mall m

under scenario s, and zm
1s2 ! the number

of overstock units sold at discount from
mall m after the season.

(c) Use class optimization software to solve
your model of (b) and explain what deci-
sions prove optimal.

4-49 The Zoom automobile company28 is plan-
ning capacities and configurations of 3 plants
to produce 4 new models being introduced for
the coming market cycle. The first part of the
following table shows the configuration options
available at each plant, along with the implied
capacities (in thousands of cars) and (fixed)
changeover costs (in $ million). Option 1 of
each plant is the current facility configuration
making changeover cost = 0. Different config-
urations at the plants imply different mixes of
models that can be manufactured there. Part
two of the table adds the marginal production
cost per thousand units of the products eligible
for manufacture at the site given the chosen
configuration.

28Based on G. D. Eppen, R. K. Martin and L. Schrage (1989), “A Scenario Approach to Capacity
Planning,” Operations Research, 37, 517–527.

Plant j = 1 Plant j = 2 Plant j = 3

Configuration k = 1 k = 2 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

Capacity 1 ! ujk2 37 45 44 50 60 25 47 59

Changeover 1 ! fjk2 0 12 0 10 22 0 15 29

Product Production Costs (M cijk in $ 000 if Allowed)

i = 1 20 18 22 20 — — — 16

i = 2 — — — 21 18 — — 19

i = 3 — 30 — — 27 33 — —

i = 4 — — 34 — 36 32 31 22

 Exercises 199

Exactly one configuration must be chosen for each
plant well in advance, but demands and market
prices that will arise for units produced are uncer-
tain until later. The next table shows 4 scenarios

for available demands and prices applicable for
the entire market cycle. Estimated probabilities
for the scenarios are p1s2 = 0.15, 0.30, 0.35, and
0.20 respectively.

Product

Quantity Demanded (M di
s in 000s) Market Price (M ri

s $ 000)

s = 1 s = 2 s = 3 s = 4 s = 1 s = 2 s = 3 s = 4

i = 1 30 25 20 17 30 25 22 21

i = 2 24 20 22 35 27 22 23 33

i = 3 17 16 21 14 33 30 35 27

i = 4 52 36 30 40 45 30 28 33

(a) Explain why Zoom’s capacity planning
task can be formulated as a two-stage
mixed-integer stochastic program with
with recourse (definition 4.18) taking pro-
duction capacity decisions in Stage 1 and
determining implied scenario production
and sales in Stage 2.

(b) Using parameters defined above and de-
cision variables yjk ! 1 if plant j is placed
in configuration k1= 0 otherwise2, and
xijk
1s2 Ú 0 ! the quantitiy (in thousands)

of models i produced and sold from
plant j if it is placed in configuration k
under scenario s, formulate a two-stage
mixed-integer stochastic program in ex-
tensive form (Figure 4.4) to choose a
maximum expected profit plan for Zoom.

(c) Use class optimization software to solve
your model of (b) and describe the plan
that results.

4-50 The Regional Power Alliance (RPA) is a
profit-making operator of electric power gener-
ators g = 1, c, G. Each generator g can be uti-
lized or left idle in any of the t = 1, c, T months
over which it plans its operation. If generator g is
utilized, there is a fixed setup cost of fg each time,
and the power it produces must fall between Wg

min
and Wg

max (in megawatt hours (MWh)), with vari-
able cost of cg per MWh. Decisions about which
generators to utilize are made at the beginning
of the planning horizon which take into account
maintenance and other needs.

RPA planning must address 2 broad mar-
kets for its power. The first is “base load” power
sold under agreements selected from an available
list k = 1, c, K at the beginning of the planning

horizon. Such contracts set a price dk per MWh,
and requirements to deliver rk,t MWh in periods
t. These base load contracts must be accepted or
declined on an all-or-nothing basis.

The second “peak load” part of RPA’s
sales comes from offering power not commit-
ted to base-load customers in short-term energy
markets. The difficulty is that there is uncertain-
ty of what selling price vt will be available in the
market when period t arrives. To account for this
uncertainty, RPA has constructed a series of sce-
narios s = 1, c, S having probability p1s2 with
assumed prices vt

1s2 per MWh in time t.
RPA seeks a production and sales plan to

maximize its expected total profit over the plan-
ning horizon.

(a) Explain why RPA’s problem can be for-
mulated as a two-stage mixed-integer
stochastic program with Stage 1 deciding
which generators to utilize and which
base-load contracts to adopt, then Stage
2 adding the issue of peak-load power
sales in different scenarios.

(b) Justify why the needed decision vari-
ables in your model can be defined as
xgt ! 1 generator g is operated in period
t1=0 otherwise2, yk ! 1 if contract k
is accepted 1=0 otherwise22, wgt Ú 0 !
the total power produced (MWh) by gen-
erator g in period t, and zt

1s2 Ú 0 ! the
amount of power (MWh) sold as peak
load in period t under scenario s.

(c) Using the above parameters and decision
variables, formulate and justify an expect-
ed-value objective function tracking fixed
cost of open generators, plus variable cost

200 Chapter 4 Linear Programming Models

REFERENCES

of base- and peak-load generation, ver-
sus income from fulfilling adopted power
agreements, and expected income from
sales in the peak-load market.

(d) Using the above parameters and decision
variables, formulate and justify a system
of constraints requiring total power pro-
duced (both base-load and peak-load mar-
kets) from each open generator g and each
period t falls between Wg

min and Wg
max.

(e) Using the above parameters and decision
variables, formulate and justify a system
of constraints for each scenario and time
period assuring power produced across
all open generators fulfills both selected
power agreements and peak-load market
sales for the scenario.

(f) Complete an extensive-form statement
of the full model, including variable-type
constraints.

Bazaraa, Mokhtar, John J. Jarvis, and Hanif D.
Sherali (2010), Linear Programming and Network
Flows, John Wiley, Hoboken, New Jersey.

Birge, John R. and Francois Louveaux (2010),
 Introduction to Stochastic Programming, Springer,
New York, New York.

Chvátal, Vašek (1980), Linear Programming, W.H.
Freeman, San Francisco, California.

Hillier, Fredrick S. and Gerald J. Lieberman
(2001), Introduction to Operations Research,
McGraw-Hill, Boston.

Taha, Hamdy (2011), Operations Research - An
Introduction, Prentice-Hall, Upper Saddle River,
New Jersey.

Winston, Wayne L. (2003), Operations Research -
Applications and Algorithms, Duxbury Press,
Belmont California.

201

▪ ▪ ▪ ▪ ▪
Chapter 5

Simplex Search for
Linear Programming

Having sampled in Chapter 4 some of the enormous variety of linear programming
models, it is time to focus on the powerful algorithms that make them tractable.
In this chapter we develop a special form of improving search called the simplex
method. Simplex is the most widely used of all optimization algorithms, although
the newer interior-point methods of Chapter 7 are proving strong competitors. Both
exploit the special properties of linear programs to produce highly efficient algo-
rithms capable of globally optimizing huge models. Our treatment assumes reader
familiarity with the search fundamentals in Chapter 3.

5.1 LP OPtimaL SOLutiOnS and Standard FOrm

We begin our investigation of linear programming algorithms with some obser-
vations and conventions that enormously simplify the task of designing efficient
 computational procedures.

aPPLicatiOn 5.1: tOP BraSS trOPhy

As usual, it will help to have a tiny example at hand. We illustrate with the case of
the (fictional) Top Brass Trophy Company, which makes large championship tro-
phies for youth athletic leagues. At the moment they are planning production for
fall sports: football and soccer. Each football trophy has a wood base, an engraved
plaque, a large brass football on top, and returns $12 in profit. Soccer trophies are
similar except that a brass soccer ball is on top, and the unit profit is only $9. Since the
football has an asymmetric shape, its base requires 4 board feet of wood; the soccer
base requires only 2 board feet. At the moment there are 1000 brass footballs in
stock, 1500 soccer balls, 1750 plaques, and 4800 board feet of wood. What trophies
should be produced from these supplies to maximize total profit assuming that all
that are made can be sold?

202 Chapter 5 Simplex Search for Linear Programming

0

1000

2000

0 1000 2000

x1

x2

x 1
 Ú

 0

x1 … 1000 (x3 Ú 0)

x2 … 1500 (x4 Ú 0)

optimal x* = (650, 1100)

x
1 + x

2 … 1750 (x
5 Ú 0)

4x
1 + 2x

2 …
 4800 (x

6 Ú
 0)

x2 Ú 0

Figure 5.1 Graphical Solution of the Top Brass
Trophy Example

The decisions to be made in this problem are

 x1 ! number of football trophies to produce

 x2 ! number of soccer trophies to produce

In terms of these decision variables, we can model the problem

max 12x1 + 9x2 1profit)
s.t. x1 … 1000 1footballs)

x2 … 1500 1soccer balls)
x1 + x2 … 1750 (plaques)
4x1 + 2x2 … 4800 (wood)
x1, x2 Ú 0

 (5.1)

The objective seeks to maximize total profit, and the main constraints enforce limits
on footballs, soccer balls, plaques, and wood, respectively.

Figure 5.1 solves the problem graphically. An optimal solution occurs at x1
* = 650

and x2
* = 1100 with a total profit of $17 , 700.

5.1 LP Optimal Solutions and Standard Form 203

Global Optima in Linear Programs
By applying some of the observations in Chapter 3, we can begin to appreciate the
elegant model tractability implied by LP definition 4.1 (also 2.29). Feasible sets
defined by continuous variables and linear constraints are convex (principle 3.32).
Combined with linear objective functions, LPs have all the properties convenient
for improving search, and principle 3.33 applies.

Every local optimum for a linear program is a global optimum.Principle 5.1

Even more that being convex, feasible sets of linear programs are polyhedral.
Primer 3 highlights some mathematical properties of polyhedral sets that will prove
critical to some of our investigations of LP algorithms.

Primer 3: extreme PointS and directionS
of PoLyhedraL SetS

We have seen in Section 3.4 that a feasible set F is convex if for every two
points x11), x12) ∈ F the line segment between them 511 - l2x112 + lx122 with
 0 … l … 16 is entirely contained in F. The set is polyhedral if it is defined by
a set of linear inequalities, or equivalently, if it is the feasible set of a linear
program. Every polyhedral set is convex.

The following figure illustrates a polyhedral (and thus convex) feasible
set in 2 dimensions:

x2

x1

–x1 + 2x2 … 4

3x1 – x2 Ú 3

x1 + x2 Ú 1

x1 Ú 0

x(1) = (0, 2)

x(2) = (0, 1)

¢x(1) = (2, 1)

x = (1.8, 2.4)

∆x(2) = (3, 1)

x(3) = (1, 0)

–

Model (5.1) is a linear program (definition 4.1) because the single objective func-
tion and all constraints involve only weighted sums of the decision variables. Also, all
variables are continuous.

(Continued)

204 Chapter 5 Simplex Search for Linear Programming

Polyhedral sets can be characterized by certain distinguished elements:

•	 A point x of a polyhedral set F is an extreme point if it does not lie with-
in the line segment between any 2 other members of F. All of x112, x122,
and x132 in the figure above are extreme. Clearly, any line segment within
which any of them lies must have a least one end point outside F.

•	 A direction ∆x is a direction of F if for some x ∈ F, x + m∆x belongs to F
for all m Ú 0. Such a ∆x is an extreme direction of F it cannot be written
as a combination m1d

112 + m2d
122 of other directions d112 and d122 of F

with m1, m2 7 0. Directions ∆x112 and ∆x122 illustrate for the polyhedral
set in the above figure. Adding any positive multiple of either (or both)
to a point in F remains feasible for arbritarily large stepsizes. The positive
linear combination m1 ∆x112 + m2 ∆x122 of the two would also be a direc-
tion, but not extreme.

Normally we are entitled to expect every nonempty polyhedral set to
have at least one extreme point. Still, there is a technical exception. A line
is a doubly unbounded set of the form 5x + l ∆x} for -∞ … l … +∞ . A
nonempty LP-feasible (i.e. polyhedral) set has at least one extreme point if
and only if it contains no line. That is, there must be extreme points unless
the polyhedral set is so loosely constrainted that a direction can be pursued
forever with either positive or negative steps without losing feasibility—highly
unlikely for practical LP models.

Elements of a polyhedral set can be completely characterized by its
extreme points and extreme directions. Let P index the extreme points x1j2
of given polyhedral set F, and D the extreme directions ∆x1k2 of F. Then any x
belongs to polyhedral convex set F if an only if, the solution can be expressed as

1*2 x = a j∈Pljx
1j2 + a k∈Dmk∆x1k2

where lj Ú 0 for all j ∈ P, mk Ú 0 for all k ∈ D and Σjlj = 1. That is, every
point in F can be written as a sum = 1 nonnegative weighted sum of extreme
points plus a nonnegative weighted sum of extreme directions.

Point x = 11.8, 2.42 is illustrated in the above figure. In terms of 1*2, it
can be expressed as

x = 0.5x112 + 0.5x122 + 0.9∆x112 = 0.5 a0
2
b + 0.5 a0

1
b + 0.9 a2

1
b = a1.8

2.4
b

Interior, Boundary, and Extreme Points
One useful tool is a classification of the points in an LP feasible region. Not all have
equal interest.

We first distinguish between points in the interior of the feasible region versus
those on the boundary. Precise definitions follow from the fact that the boundary of
an LP’s feasible set is characterized by active inequality constraints (those satisfied
as equality).

5.1 LP Optimal Solutions and Standard Form 205

A feasible solution to a linear program is a boundary point
if at least one inequality constraint that can be strict for some feasible solu-
tions is satisfied as equality at the given point, and an interior point if no such
inequalities are active.

Definition 5.2

The collection of feasible points identified in 5.2 as those for which all in-
equality constraints that can be strictly satisfied are strict is formally known as the
relative interior of the feasible region. The small example below illustrates how
equality constraints can be encompassed in this relative sense.

All points in feasible set F have x3 = 2; it can never be a strict inequality. Thus the
relative interior of the feasible region is the shaded area within the boundaries of the
2-dimensional object shown. Point (1, 1, 2) is interior even though it satisfies the x3 = 2
constraint as equality. Points (0, 0, 2), (0, 3, 2), and (3, 0, 2) are the 3 extreme-points of F,
and (1, 0, 2) is a nonextreme boundary point.

x3

x1

x2

3

3

3

(1, 0, 2)

relative
interior

(3, 0, 2)

(0, 3, 2)

(0, 0, 2)

(1, 1, 2)

5(x1, x2, x3) : x1 + x2 … 3
x1, x2 Ú 0, x3 = 26

F¢
=

Figure 5.2 labels some specific points in the Top Brass Trophy feasible set.
Each of the inequalities has some feasible points that satisfy it as a strict inequal-
ity, and solution x(7) is interior because none of the inequalities is active. All of
x10), x11), c, x16) are boundary points because at least one inequality is active at
each. For example, inequalities x1 … 1000 and x2 Ú 0 are satisfied as equalities at
solution x11) = 11000, 0), and x1 Ú 0 is active at x(6). Solutions x(8) and x(9) consti-
tute neither boundary nor interior points because both are infeasible.

Extreme points (also called corner points) such as x10), c, x15) of Figure 5.2
are special boundary points so-named because they “stick out.” Primer 3 gives a
formal definition. If a point is to form a “corner” of a feasible set, it cannot fall in the
middle of any line segment of the set.

206 Chapter 5 Simplex Search for Linear Programming

0

1000

2000

0 1000 2000

(0) (1)

(2)

(3)

(4)(5)

(6) (7)

(8)

(9)

x1

x2

Figure 5.2 Interior, Boundary and Extreme Points of
the Top Brass Example

Notice that points x10), c, x15) in Figure 5.2 all fulfill this requirement. They
can form endpoints of line segments within the set, but never midpoints. Contrast
with nonextreme feasible solutions x162 = 10, 5002 and x172 = 1500, 5002. The
line segment from x102 to x152 passes through x162, and the segment from x162 to
x = 1501, 5002 includes x172.

examPLe 5.1: cLaSSiFying FeaSiBLe POintS

Classify the labeled solutions as interior, boundary, and/or extreme points of the
following LP feasible region:

1

2

3

4

1 2 3

(a)

(b)

(c)

(d)

(e)(f)

(g)

x2

x1

5.1 LP Optimal Solutions and Standard Form 207

Optimal Points in Linear Programs
In order to structure efficient improving search algorithms for LP, we need to know
a bit more about the kinds of feasible points that can be optimal.

Solution: Points (a), (c), and (d) are both extreme points and boundary points, be-
cause they do not lie along the line segment between any two other feasible points.
Points (b) and (e) are boundary points that are not extreme; each makes at least one
constraint active, but these points do fall within a line segment joining others. Point
(f) is interior because no constraint is active. Point (g) is neither interior nor bound-
ary (nor extreme) because it is infeasible.

Unless the objective function is constant (same for all solu-
tions), every optimal solution to an LP will occur at a boundary point of its
feasible set.

Principle 5.3

If a linear program has a unique optimal solution, that optimum
must occur at an extreme point of the feasible region.

Principle 5.4

For example, the optimal solution to our Top Brass example (see Figure 5.1) occurs
at boundary (and extreme point) solution x* = 1650, 11002.

To gain insight about why LP optima over non constant objectives always
occur on the boundary, consider the case where all constraints are inequalites
that may be strict at some feasible points. Then we can make at least a small move
in any direction from an interior point where none of the constraints are active
without losing feasibility. Also, with a (non constant) linear objective function,
the objective function coefficient vector ∆x = c is always an improving direction
for a maximize problem (principle 3.21), and ∆x = -c improves for a minimize
(principle 3.22).

Matters become more complex with equality constraints present, but the result
is the same for every LP model with a non constant objective. No interior point can
be optimal.

What about unique optimal solutions? Intuition suggests that if a feasible
point is to be the only optimal solution to a linear program, it must somehow “stick
out” farther than other feasible points. This is true.

For a more mathematical argument, consider an optimal solution x* to a
maximizing LP over objective function c # x. If x* is not an extreme point of the
feasible set, then (Primer 3) it must be the weighted average of two other feasible
solutions x112 and x122. That is,

 x* = 11 - l2x112 + lx122 where 0 6 l 6 1 and

 c # x* = 11 - l2c # x112 + lc # x122

208 Chapter 5 Simplex Search for Linear Programming

If the objective function values at the two end points differ, one must be higher than
their average c # x*, and x* cannot be optimal. If the objective function values at the
end points are equal, then all solutions along the line between them achieve the
optimal value; there are multiple optimal solutions, and x* cannot be unique. We
conclude that an LP solution can be a unique optimum only if it is an extreme point
of the feasible set.

Of course, the LP may be infeasible or unbounded, and there may be nonex-
treme alternative optimal solutions along the boundary. But if a linear program has
any optimal solutions at all, it is easy to see at least one will occur at an extreme.

If a linear progam has any optimal solution, it has one at an
extreme point of its feasible region.

Principle 5.5

To see why, think of forming the set of all optimal points for a given LP
over maximizing objective function c # x*. This is just another polyhedral set over
all the model’s constraints plus one more that c # x = v*, where v*! the optimal
solution value. Assuming the given LP feasible set meets the no line technical re-
quirement of Primer 3, its optimal subset also meets the requirement and has an
extreme point solution. Will that solution also be extreme in the underlying LP?
It has to be, because if it did lay along a feasible line segment, at least one of the
end points would have to be outside the optimal set, and their weighted average
could not be optimal.

Principle 5.5 is fundamental because of the flexibility it provides in designing
improving search algorithms for linear programming. Knowing that there will be an
optimal solution at an extreme point if there is any optimal solution at all, we are
free to restrict our search to extreme-point solutions. The simplex algorithm, which
is the main topic of this chapter, does exactly that.

examPLe 5.2: identiFying OPtimaL POintS

Indicate which of the labeled points in Example 5.1 can be optimal or uniquely op-
timal for any objective function.

Solution: Following principle 5.4 , extreme points (a), (c), and (d) can be optimal
or uniquely optimal. Boundary points (b) and (e) can also be optimal. Still, neither
can be uniquely optimal because any objective making either optimal will also have
extreme-point optimal solutions. Interior point (f) cannot be optimal for any non-
constant objective function; feasible improvement is always possible. Point (g) is not
even feasible.

LP Standard Form
A model can be a linear program even if variables are subject to a variety of (con-
tinuous) variable-type constraints, main constraints are mixtures of inequalities and
equalities, and expressions are nested through several levels of parentheses on both
sides of Ú , … , and = signs. Still, it will be much easier to discuss solution methods if
we settle on an LP standard form.

5.1 LP Optimal Solutions and Standard Form 209

Linear programs in standard form (1) have only equality main
constraints; (2) have only nonnegative variables, and (3) have objective func-
tion and main constraints simplified so that variables appear at most once, on
the left-hand side, and any constant term (possibly zero) appears on the right-
hand side.

Definition 5.6

Converting Inequalities to Nonnegativities with Slack Variables
We will clearly have to do some rearranging to fit every “raw” linear program into
standard form. For example, Top Brass model (5.1) includes inequalities among its
main constraints. Standard form 5.6 allows inequalities only in the form of non-
negativity variable-type constraints.

To accomplish the needed transformation we introduce new slack variables
in each main inequality that consumes the difference between left- and right-
hand sides.

Main inequality constraints of a given linear program can be
converted into nonnegativities by adding distinct, nonnegative, zero-cost slack
variables in every such … inequality and subtracting such slack variables in
every main Ú .

Principle 5.7

Applying principle 5.7 to the 4 main inequalities of Top Brass model (5.1), we
add slacks x3, c, x6. The result is the standard-form model

max 12x1 + 9x2

s.t. x1 + x3 = 1000
x2 + x4 = 1500
x1 + x2 + x5 = 1750
4x1 + 2x2 + x6 = 4800
x1, x2, x3, x4, x5, x6 Ú 0

Notice that a different slack was used in each constraint, nonnegativity limits apply
to each slack variable, and the slacks do not appear in the objective function. All
slack variables carry plus signs in this example (compare with Example 5.3 below)
because all the modified inequalities were of the … form.

Even though our standard form now has 6 variables versus an original 2, we
have not really changed the model. Labels in Figure 5.1 show that each original
inequality constraint corresponds to some slack’s nonnegativity in standard form.
For example, the final main constraint

4x1 + 2x2 … 4800

becomes nonnegativity on slack variable x6. Under standard-form equality

4x1 + 2x2 + x6 = 4800

210 Chapter 5 Simplex Search for Linear Programming

the inequality holds exactly when

x6 = 4800 - 4x1 - 2x2 Ú 0

Also, with their coefficients in the objective function = 0, slack variables have no
impact on cost.

Why bother with this modified version of a perfectly good linear program?
To see, we must look back to the development of feasible move directions in
Section 3.5. Most of the complexity in dealing with feasible directions relates to
keeping track of active inequality constraints (ones satisfied as equalities). Equality
constraints are always active, but inequalities may be active at one moment in a
search and inactive at the next. Introducing slack variables as in principle 5.7 does
not eliminate any inequalities, but it does convert them to the simplest possible
form which will simplify analysis.

examPLe 5.3: intrOducing SLack VariaBLeS

Introduce slack variables and simplify to place each of the following linear programs
in standard form.

(a)

min 9w1 + 6w2

s.t. 2w1 + w2 Ú 10
w1 … 50
w1 + w2 = 40
100 Ú w1 + 2w2 Ú 15
w1, w2 Ú 0

(b) max 1512x1 + 8x22 - 4x3

s.t. 2110 - x12 + x2 + 519 - x32 Ú 10
x1 + 2x3 … x3

2x2 + 18x3 = 50
x1, x2, x3 Ú 0

Solution:

(a) We introduce slack variables w3, w4, w5, w6 as in principle 5.7 to convert the
4 main inequalities to nonnegativities. The result is the standard-form linear
program

min 9w1 + 6w2

s.t. 2w1 + w2 - w3 = 10
w1 + w4 = 50
w1 + w2 = 40
w1 + 2w2 + w5 = 100
w1 + 2w2 - w6 = 15
w1, w2, w3, w4, w5, w6 Ú 0

5.1 LP Optimal Solutions and Standard Form 211

Notice that the last two main constraints, which were written together in the original
model, are separated in standard form. Slacks are added in … inequalities and sub-
tracted in Ú forms. No slack is required in equality constraints.

(b) We begin by simplifying to collect variable terms on the left-hand side and
constants on the right [(3) of definition 5.6].

max 30x1 + 120x2 - 4x3

s.t. -2x1 + x2 - 5x3 Ú -55
x1 + x3 … 0
2x2 + 18x3 = 50
x1, x2, x3 Ú 0

Now slacks are introduced according to principle 5.7 to complete the standard
form

max 30x1 + 120x2 - 4x3

s.t. -2x1 + x2 - 5x3 -x4 = -55
x1 + x3 +x5 = 0
2x2 + 18x3 = 50
x1, x2, x3, x4, x5 Ú 0

Converting Nonpositive and Unrestricted Variables to Nonegative
Like most applied linear programs, the Top Brass Trophy example employs only
nonnegative decision variables. Condition (2) of standard format 5.6 is fulfilled
automatically.

Still, LPs do occasionally involve variables such as net income or temperature
that can feasibly take on negative values. Such variables may be nonpositive (i.e.,
subject to … 0 variable-type constraints) or unrestricted by sign. The latter are often
designated URS, meaning “unrestricted sign.”

We can convert linear programs with nonpositive and unrestricted variables to
standard form simply by changes of variables. For nonpositive variables, the change
substitutes the negative.

Nonpositive variables in linear programs can be eliminated by
 substituting new variables equal to their negatives.

Principle 5.8

For example, in a model with original decision variables x1, c, x10 and nonpositive-
type restriction

x7 … 0

we would introduce the new variable

x11 = -x7

212 Chapter 5 Simplex Search for Linear Programming

and substitute -x11 everywhere that x7 appears. In particular, the nonpositivity
constraint

x7 … 0 becomes -x11 … 0 or x11 Ú 0

The handling of unrestricted variables is slightly less obvious. How can non-
negative variables model a quantity that can take on any sign? The answer is to
introduce two new nonnegative variables and consider their difference.

Unrestricted (or URS) variables in linear programs can be
eliminated by substituting the difference of two new nonegative variables.

Principle 5.9

For example, a model with variables y1, c, y7 and

y1 URS

can be placed in standard form by introducing two new variables y8, y9 Ú 0.
Everywhere y1 appears in the given model we then substitute

y1 = y8 - y9

examPLe 5.4: cOnVerting nOnPOSitiVe and unreStricted VariaBLeS

Make suitable variable changes to convert the following linear program to standard
form:

min -9w1 + 4w2 + 16w3 - 11w4

s.t. w1 + w2 + w3 + w4 = 100
3w1 - w2 + 6w3 - 2w4 = 200
w1 Ú 0, w2 … 0

Solution: Variable w1 is already nonnegative, but we must substitute for nonpositive
variable w2 and for URS variables w3 and w4 which are subject to no variable-type
constraints. Following principles 5.8 and 5.9 , we employ

 w2 = -w5

 w3 = w6 - w7

 w4 = w8 - w9

After simplification the resulting standard-form linear program is

min -9w1 - 4w5 + 16w6 - 16w7 - 11w8 + 11w9

s.t. w1 - w5 + w6 - w7 + w8 - w9 = 100
3w1 - w5 + 6w6 - 6w7 - 2w8 + 2w9 = 200
w1, w5, w6, w7, w8, w9 Ú 0

Notice that w2, w3, and w4 have been eliminated from the model completely.

5.1 LP Optimal Solutions and Standard Form 213

Standard Notation for LPs
Once a linear program has been placed in standard form, its key elements are so
neatly sorted out that we can begin to think of the model as a collection of coeffi-
cients. Widely used notation gives all of these elements standard names.

Standard notation for linear programs is

xj ! j th decision variable
cj ! cost or objective function coefficient of xj

ai, j ! constraint coefficient of xj in the ith main constraint
bi ! right-hand-side (or RHS) constant term of main constraint i
m ! number of main (equality) constraints
n ! number of decision variables

Definition 5.10

In the usual matrix notation, LP standard form is

min 1or max) c # x
s.t. Ax = b

x Ú 0

Definition 5.11

Then, LP standard form of every linear program has the generic format

min (or max) a
n

j = 1
 cj xj

s.t. a
n

j = 1
 ai, j xj = bi for all i = 1, 2, c, m

xj Ú 0 for all j = 1, 2, c, n

It will often be convenient to write standard-form linear programs in an even
more compact way using notions of vectors and matrices. Primer 4 reviews some of
the main ideas of matrix arithmetic for those who need it.

Primer 4: matriceS, matrix arithmetic, and tranSPoSeS

Matrices are 2-dimensional arrays of numbers, with the dimension of the array
being described in terms of its number of rows and columns. For example,

Q = a2 0 - 75
0 -1.2 3

b and R = a12 -2 7
5

1 0 -2
b

are 2 by 3 matrices (2 rows and 3 columns). See Primer 1 for the related
1-dimensional notion of vectors.

(Continued)

214 Chapter 5 Simplex Search for Linear Programming

In this book matrices are always denoted by uppercase (capital) boldface
symbols (e.g., A, R, Σ). Their entries are indicated by corresponding lowercase
italic symbols 1ai, j, r2, 6, s3, 9) having one subscript for the row index and one for
the column. Thus matrix Q above has q1, 2 = 0 and q2, 3 = 3.

Just as with vectors, matrices of like dimension are added, subtracted, and
multiplied by a scalar in component by component fashion. Thus for Q and R
above,

Q + R = a14 -2 0
1 -1.2 1

b and - .3R = a -3.6 0.6 -0.42
-0.3 0 0.6

b

Also like vectors, multiplication of one matrix by another is defined
in a somewhat nonintuitive way convenient for expressing linear combina-
tions. Matrices P and A can be multiplied as D = PA if the number of col-
umns in P is the same as the number of rows in A. Then the i, j component
of the result is defined as the dot product of row i of P and column j of A
(i.e., di, j = a kpi, kak, j). For example, with

P = a 1 3
-1 2

b and A = a5 -1 0
2 9 4

b , PA = a 11 26 12
-1 19 8

b

Notice that the order of multiplication of matrices matters. Product AP is
not defined for the P and A above because the number of columns of A does
not equal the number of rows of P. Even if matrices admit multiplication in
both orders, the results can be different.

Multiplication of a matrix by a vector is defined as if the vector were a row
or column matrix, whichever is appropriate. Thus if v = 1-1, 4), x = 12, 1, 2),
and A is as above,

 vA = (-1, 4) a5 -1 0
2 9 4

b = 13, 37, 16)

 Ax = a5 -1 0
2 9 4

b £2
1
2
≥ = a 9

21
b

In the first computation v was treated as a row matrix because it premulti-
plies matrix A. In the second computation x plays the role of a column matrix
because it postmultiplies A.

In some cases, it is also convenient to work with the transpose of
matrix M, denoted MT, where rows and columns have been interchanged. For
example,

Q = a2 - 13 7
0 6 13

b has transpose QT = £ 2 0
-1

3 6
7 13

≥

5.1 LP Optimal Solutions and Standard Form 215

A matrix is symmetric if transposing leaves it unchanged, and nonsym-
metric otherwise. Thus with

R = a3 -1
6 0

b and S = £3 1 8
1 -11 0
8 0 25

≥
R is nonsymmetric, because R ≠ RT, but S = ST is symmetric.

When matrices can be multiplied the transpose of the product is the
product of the transposes after the sequence of multiplication is reversed. For
example, with the Q and R above,

 (RQ)T = a a3 -1
6 0

b a2 - 13 7
0 6 13

b b
T

= a 6 -7 8
12 -2 42

b
T

 = £ 6 12
-7 -2

8 42
≥ = £ 2 0

-1
3 6
7 13

≥ a 3 6
-1 0

b = QTRT

Cost or objective function vector c presents all objective function coefficients
cj, constraint matrix A displays all main constraint coefficients ai,j, and right-hand-
side (RHS) vector b shows constant terms bi of the constraints. As usual, x is the
vector of decision variables xj.

We can illustrate with the Top Brass Trophy model and its m = 4 main
constraints. In standard form the Top Brass decision vector has the form
x = 1x1, x2, c, x6), with n = 6 components. Corresponding coefficient arrays are
n-vector c, m by n matrix A, and m-vector b:

 c = 112 9 0 0 0 0)

 A = §1 0 1 0 0 0
0 1 0 1 0 0
1 1 0 0 1 0
4 2 0 0 0 1

¥ b = §1000
1500
1750
4800

¥
examPLe 5.5: uSing Standard LP matrix nOtatiOn

Return to the standard-form linear program of Example 5.3(b). Identify the
m, n, A, b, and c of standard matrix representation 5.11 .

Solution: The standard form model of Example 5.3(b) has m = 3 main constraints
and n = 5 variables. Corresponding coefficient arrays are

 c = 130 120 -4 0 0)

 A = £ -2 1 -5 -1 0
1 0 1 0 1
0 2 18 0 0

≥ b = £ -55
0

50
≥

216 Chapter 5 Simplex Search for Linear Programming

5.2 extreme-POint Search and BaSic SOLutiOnS

One can fashion efficient algorithms for linear programs that pass through the interior
of the feasible set (see Chapter 7). Still, since there is an extreme-point optimal solu-
tion if there is any at all (definition 5.6), we are free to limit our search to extreme
points of an LP’s feasible region.

Simplex is just such an extreme-point search algorithm. In this section we
develop some underlying concepts that lead to the full algorithm in Section 5.3.

Determining Extreme Points with Active Constraints
To begin, we need a more convenient characterization of extreme points. Extreme
points are boundary points, and every part of the boundary of an LP feasible space
is formed by one or more active constraints. What makes extreme-point solutions
special is that enough constraints are active to determine a point completely.

Every extreme-point solution to a linear program is deter-
mined by a set of inequality constraints simultaneously active only at that
solution. In standard form all are nonnegativity constraints on original and
slack variables taking value = 0.

Principle 5.12

For example, extreme-point solution x(5) in Top Brass Figure 5.2 is determined
completely by the two constraints active there, x1 Ú 0 and x2 … 1500. Contrast this
with point x(6), where only x1 Ú 0 is active. This is not enough to determine a point
because many solutions have x1 = 0.

To see more fully how active inequalities relate to extreme points, we need
more dimensions. Figure 5.3 depicts the search of a 3-dimensional case maximizing
x3. The boundary area where each main inequality is active now forms one of the
2-dimensional faces labeled A–L. Extreme points are determined as in principle 5.8
by collections of three active constraints.

Inequalities I and J, plus nonnegativity x3 Ú 0, determine x(0). Notice, how-
ever, that some extreme points can be determined in several ways. For example,
any 3 of the inequalities for surfaces C, D, G, and J determine the extreme point
labeled x(2).

examPLe 5.6: determining extreme POintS

List all sets of 3 active constraints determining points x(3), x(4), and x(5) in Figure 5.3.

Solution: Constraints B, C, G, H, and I are all active at x(3). Any 3 of these 5 determine
the point. Solution x(4) is determined uniquely by constraints A, B, and C. Extreme
point x(5) is determined uniquely by ineqalities A and C, plus x2 Ú 0.

Adjacent Extreme Points and Edges
Improving search algorithms move from one solution to another nearby. We can
define neighboring or adjacent extreme points in terms of their determining sets of
active constraints.

5.2 Extreme-Point Search and Basic Solutions 217

Again Figure 5.3 illustrates. Extreme points x(1) and x(2) are adjacent because
the first is determined by active inequalities G, I, and J, while D, G, and J provide a
determining set for the second. These two lists have all but one member in common.

Contrast with x(2) and x(4), which are not adjacent. Point x(4) is determined by
active inequalities A, B, and C. Of these, only C is also active at x(2); no choice of a
determining set for x(2) can satisfy definition 5.13 .

Line segments joining adjacent extreme points in Figure 5.3 are called edges.

x1

x(6)
x(5)

x(4)

x(3)

x(2)

x(1)

x(0)

A

B C

D E

F

G

H

I
J K

L

x2

x3

Figure 5.3 Adjacent Extreme Point Search to Max x3 in
Three Dimensions

Extreme points of an LP-feasible space are adjacent if they
are determined by active constraint sets differing in only one element.

Definition 5.13

An edge of the feasible region for a linear program is a
1-dimensional set of feasible points along a line determined by a collection of
active constraints.

Definition 5.14

Adjacent extreme points are joined by an edge determined by the active con-
straints the extreme points have in common. For example, inequalities for surfaces
G, I, and J determine the extreme point labeled x(1). Keeping just G and J active
produces the edge joining x(1) and x(2). Similarly, if I and G are kept active, we obtain
the edge between adjacent extreme points x(1) and x(3).

218 Chapter 5 Simplex Search for Linear Programming

examPLe 5.7: identiFying edgeS and adjacent extreme POintS

Consider the linear program with feasible set delimited by

 -2x1 + 3x2 … 6 (5.2)

 -x1 + x2 … 1 (5.3)

 x1 Ú 0 (5.4)

 x2 Ú 0 (5.5)

(a) Sketch the feasible region and identify points x10) = 10, 0), x11) = 10, 1),
x12) = 13, 4), and x13) = 14, 0).

(b) Determine which pairs of those points are adjacent extreme points.

(c) Determine which pairs of the points are joined by an edge.

Solution:

(a) The feasible region is as follows:

1

2

3

4

1 2 3

x2

x1
4

(0)

(1)

(2)

(3)

(b) Applying principle 5.12 , extreme points must be determined by active con-
straints. Solutions x(0), x(1), and x(2) are thus extreme points determined by active
constraints (5.5)–(5.6), (5.4)–(5.5), and (5.3)–(5.4), respectively. Point x(3) is not an
extreme point.

In two dimensions all-but-one condition 5.12 makes extreme points adja-
cent if they have one active constraint in common. Thus x(0) and x(1) are adjacent,
as are x(1) and x(2), but not x(0) and x(2).

(c) Each adjacent pair of part (b) is joined by an edge determined by their com-
mon active constraint. For example, x(1) and x(2) are joined by the edge along line

-x1 + x2 = 1

Although x(3) is not an extreme point, the edge defined by line

x2 = 0

joins it to x(0).

5.2 Extreme-Point Search and Basic Solutions 219

Basic Solutions
We saw in Section 5.1 how LP standard form encodes every model as

min (or max) a
n

j = 1
 cj xj

s.t. a
n

j = 1
 ai, j xj = bi for all i = 1, 2, c, m

xj Ú 0 for all j = 1, 2, c, n

One effect is to reduce all inequalities to nonnegativity constraints.
It follows from principle 5.12 that extreme-point solutions to linear programs

in standard form are determined by sets of active nonnegativity constraints. Enough
variables must be fixed to = 0 (making the corresponding nonnegativity constraints
active) to uniquely determine all other components of a solution.

Basic solutions are produced in just this way.

A basic solution to a linear program in standard form is one
obtained by fixing just enough variables to = 0 that the model’s equality
 constraints can be solved uniquely for the remaining variable values. Those
variables fixed are called nonbasic and the ones obtained by solving the equal-
ities are termed basic.

Definition 5.15

We can illustrate with the standard form of our Top Brass example (Section 5.1):

max 12x1 + 9x2

s.t. + x1 + x3 = 1000
+ x2 + x4 = 1500

+ x1 + x2 + x5 = 1750
+ 4x1 + 2x2 + x6 = 4800

x1, x2, x3, x4, x5, x6 Ú 0

(5.6)

Figure 5.4 again shows the feasible set, with constraints labeled by the applicable
nonnegativity constraint of standard form.

One basic solution is obtained by choosing x1, x2, x3, x4 to be basic and x5, x6 to
be nonbasic. Fixing x5 = x6 = 0 leaves the equality system

+ x1 + x3 = 1000
+ x2 + x4 = 1500

+ x1 + x2 + (0) = 1750
+4x1 + 2x2 + (0) = 4800

 (5.7)

The unique solution is x1 = 650, x2 = 1100, x3 = 350, and x4 = 400. Thus the full
basic solution is x = 1650, 1100, 350, 400, 0, 0).

Notice that this standard-form solution corresponds to extreme point x(3) in
Figure 5.4. This should come as no surprise, because x(3) is defined by making active
the inequalities corresponding to x5 Ú 0 and x6 Ú 0. That is, the point is defined by
setting x5 = x6 = 0.

220 Chapter 5 Simplex Search for Linear Programming

x2

x10

1000

2000

0 1000 2000

(0) (1)

(2)

(3)

(4)(5)

(6)

(7)

(8) (9)

(10)

(11) (12)

x3 Ú 0x
6 Ú

 0

x4 Ú 0

x2 Ú 0

x 1
 Ú

 0

x
5 Ú 0

Figure 5.4 Basic Solutions of the Top Brass Example

examPLe 5.8: cOmPuting BaSic SOLutiOnS

Suppose that a linear program in standard form has the constraints

 4x1 - x2 + x3 = 1

 3x1 + 2x2 - 2x3 = 9

x1, x2, x3 Ú 0

Compute the basic solution corresponding to x1 and x2 basic.

Solution: The only nonbasic variable will be x3. Setting it to zero as in definition
5.15 gives

 4x1 - x2 + 102 = 1

 3x1 + 2x2 - 2102 = 9

The remaining 2 equations in 2 unknowns have a unique solution x1 = 1, x2 = 3.
Thus the full basic solution is x = 11, 3, 0).

5.2 Extreme-Point Search and Basic Solutions 221

Existence of Basic Solutions
It is tempting to believe that we can form basic solutions by setting any collection of
nonbasic variables to = 0 (i.e., by making any collection of nonnegativity constraints
active). Not so! For example, fixing only x4 = 0 in the Top Brass standard-form
model leaves the equation system

+ x1 + x3 = 1000
+ x2 + 10) = 1500

+ x1 + x2 + x5 = 1750
+4x1 + 2x2 + x6 = 4800

There remain 5 unknowns in only 4 equations. Geometrically, this simply reflects
the fact that only making active the inequality corresponding to x4 Ú 0 in Figure 5.4
does not fully determine a point.

We are no better off if we fix x2 = x4 = 0. The resulting system

+ x1 + x3 = 1000
+ 102 + 102 = 1500

+ x1 + 102 + x5 = 1750
+4x1 + 2102 + x6 = 4800

 (5.8)

now has 4 equations in 4 unknowns, but it has no solutions at all (look carefully at
the second equation). This establishes algebraically what is apparent in Figure 5.4.
Making active the inequalities corresponding to x2 Ú 0 and x4 Ú 0 does not deter-
mine a point.

To characterize when basic solutions do exist, we must draw on the
algebra of systems of simultaneous equations. Primer 5 provides a quick review.
One condition assuring a system with a unique solution gives basic solutions
their name:

A basic solution exists if and only if the columns of equality
constraints corresponding to basic variables from a basis, that is, a largest pos-
sible linearly independent collection.

Principle 5.16

Systems (5.7) and (5.8) illustrate the possibilities. We can verify that the
constraint columns for the basic variables x1, x2, x3, and x4 in (5.7) form a basis by
checking that the corresponding matrix is nonsingular, that is,

 det §1 0 1 0
0 1 0 1
1 1 0 0
4 2 0 0

¥ = -2 ≠ 0

It follows that the equations have a unique solution.

222 Chapter 5 Simplex Search for Linear Programming

On the other hand, the columns for basic variables x1, x3, x5, and x6 in (5.8) do
not produce a unique solution because they are linearly dependent; the column for
x1 is easily expressed as §1

0
1
4

¥ = 1 §1
0
0
0

¥ + 1 §0
0
1
0

¥ + 4 §0
0
0
1

¥
examPLe 5.9: checking exiStence OF BaSic SOLutiOnS

The following are the constraints of a linear program in standard form:

 4x1 - 8x2 - x3 = 15

 x1 - 2x2 = 10

x1, x2, x3, Ú 0

Check whether basic solutions exist for each of the following possible sets of basic
variables: (a)x1, x2; (b)x1, x3; (c)x1; (e)x1, x2, x3.

Solution:

(a) Column vectors for x1 and x2 form a linearly dependent set because

a4
1
b = -1

2 a -8
-2

b or equivalently, det a4 - 8
1 - 2

b = 0

Thus basic solutions do not exist.

(b) Basic solutions do exist because column vectors for x1 and x3 form a basis. One
way to check is to verify that the corresponding matrix is nonsingular, that is

det a4 -1
1 0

b = 1 ≠ 0

(c) Column vector (4,1) for x1 is linearly independent because it is nonzero.
However, we have already seen in part (b) that a larger linearly independent set of
columns is possible. Thus x1 alone does not determine a basic solution.

(d) Basic solutions do exist because column vectors x2 and x3 form a basis. One
proof is

deta -8 -1
-2 0

b = -2 ≠ 0

(e) Columns for this set of variables cannot form a basis because no more than two
2-vectors can be linearly independent. Thus basic solutions do not exist.

5.2 Extreme-Point Search and Basic Solutions 223

Primer 5: SimuLtaneouS equationS,
SinguLarity, and BaSeS

A system of m simultaneous linear equations in m unknowns may have a
unique solution, no solutions, or an infinite number of solutions. For example,
the m = 3 instances

 3x1 + x2 -7x3 = 17
 4x1 + 5x2 = 1
-2x1 +11x3 = -24

 2y1 - y2 - 5y3 = 3
-4y1 +8y3 = 0
-6y1 - y2 + 11y3 = -2

 2z1 - z2 - 5z3 = -3
-4z1 +8z3 = 4
-6z1 - z2 + 11z3 = 11

have unique solution x = 11, 0, -22, no solution y, and infinitely many solu-
tions z, respectively.

Whether a system falls within the first, unique-solution case depends
entirely on the variable coefficient structure of its left-hand side. The x-system
above continues to have a unique solution if the right-hand side (17 , 1, 24) is
replaced by any other 3-vector. Notice that the same is not true of the two
nonunique cases; the y and z systems above have identical coefficients on the
left-hand side.

A square matrix is singular if its determinant = 0 and nonsingular other-
wise. In these terms, systems of m linear equations in m unknowns have unique
solutions if and only if the corresponding matrix of left-hand-side variable coef-
ficients is nonsingular. Here the determinant of a square matrix D is the scalar
quantity computed recursively as

 det1D2 ! a
j
1-121j - 12d1, j det1Dj2 with det1d1, j2 ! d1, j

and Dj the matrix obtained from D by deleting row 1 and column j. Thus the
x-system above has a unique solution, and the others do not, because corre-
sponding left-hand-side coefficient matrices

N ! £ 3 1 -7
1 5 0

-2 0 11
≥ and S ! £ 2 -1 -5

-4 0 8
-6 -1 11

≥
are nonsingular and singular, respectively. That is,

 det1N2 = 3 det a5 0
0 11

b - 1 det a 1 0
-2 11

b - 7 det a 1 5
-2 0

b

 = 3155 - 02 - 1111 - 02 - 710 + 102 = 84 ≠ 0

and det1S2 = 0.
It is often convenient to draw also on the completely equivalent char-

acterization of when square systems of linear equations have unique solu-
tions, which come from treating the columns of left-hand-side coefficients as

(Continued)

224 Chapter 5 Simplex Search for Linear Programming

vectors. For example, we could deal with coefficients of the y and z systems
above as vectors

s112 ! £ 2
-4
-6

≥ , s122 ! £ -1
0

-1
≥ , and s132 ! £ -5

8
11

≥
A linear combination of vectors is simply a weighted sum. Weights may

be positive, negative, or zero. For example, weights 12 and -3 applied to vectors
s(1) and s(2) above produce the linear combination

1
2 s112 - 3s122 = 1

2 12, -4, -62 - 31-1, 0-12 = 14, -2, 02
A collection of vectors is said to be linearly independent if all are nonzero,

and none can be expressed as a linear combination of the others. Otherwise,
the collection is linearly dependent. For example, the nonzero vectors s(1) and
s(2) above are linearly independent because no multiple of one can produce
the other. Still, the expanded collection 5s112, s122, s1326 is linearly dependent
because

-2s112 + 1s122 = -212, -4, -62 + 11-1, 0, -12 = 1-5, 8, 112 = s132

A basis is a largest or maximal collection of linearly independent vectors
in the sense that members can be combined to produce any other vector. Such
linear combinations are unique. Thus e112 = 11, 02 and e122 = 10, 12 form a
basis of the 2 vectors because every (q1, q2) is expressed uniquely:

aq1

q2
b = a1

0
b q1 + a0

1
b q2 = e112q1 + e122q2

Any m linearly independent m-vectors form a basis, and vice versa. This
property leads to the connection between systems of equations and bases,
because solving a system for a right-hand side is the same as representing the
right-hand side as a linear combination. To be precise, an m by m system of
simultaneous linear equations has a unique solution if and only if the coefficient
columns for the various variables form a basis (i.e., if and only if the coeffi-
cient columns are linearly independent). For example, the x system above has
a unique solution for every right-hand side (b1, b2, b3), exactly because its coef-
ficient columns form a basis, so that there always exist multipliers x1, x2, and x3
satisfying £ 3

1
-2

≥ x1 + £1
5
0
≥ x2 + £ -7

0
11

≥ x3 = £b1

b2

b3

≥
On the other hand, corresponding y and z systems do not produce unique solutions
because columns 5s112, s122, s1326 are linearly dependent.

5.2 Extreme-Point Search and Basic Solutions 225

Basic Feasible Solutions and Extreme Points
Table 5.1 enumerates all possible choices of 2 nonbasic and 4 basic variables in the
4 equations of the Top Brass standard form. In two cases there is no basic solution
because (principle 5.16) the equality constraint columns corresponding to basic
variables are linearly dependent.

All other combinations produce basic solutions. Notice, however, that nothing in
the construction of basic solutions (definition 5.15) guarantees feasibility. Some of the
solutions in Table 5.1 violate nonnegativity constraints. These correspond geometrically
to points where active inequalities determine a solution falling outside the feasible re-
gion. For example, choosing x3 and x4 nonbasic yields point x(9) in Figure 5.4, which has
negative components for standard-form slack variables of the two constraints it violates.

Our interest is in basic feasible solutions.

taBLe 5.1 Basic Solutions of the Top Brass Example

Active
Constraints

Basic
Variables

Basic
Solution

Solution
Status

Point in
Fig. 5.4

x1 Ú 0, x2 Ú 0 x3, x4, x5, x6 x = 10, 0, 1000, 1500, 1750, 48002 Feasible x(0)

x1 Ú 0, x3 Ú 0 x2, x4, x5, x6 None Dependent —
x1 Ú 0, x4 Ú 0 x2, x3, x5, x6 x = 10, 1500, 1000, 0, 250, 18002 Feasible x(5)

x1 Ú 0, x5 Ú 0 x2, x3, x4, x6 x = 10, 1750, 1000, -250, 0, 13002 Infeasible x(6)

x1 Ú 0, x6 Ú 0 x2, x3, x4, x5 x = 10, 2400, 1000, -900, -650, 02 Infeasible x(7)

x2 Ú 0, x3 Ú 0 x1, x4, x5, x6 x = 11000, 0, 0, 1500, 750, 8002 Feasible x(1)

x2 Ú 0, x4 Ú 0 x1, x3, x5, x6 None Dependent —
x2 Ú 0, x5 Ú 0 x1, x3, x4, x6 x = 11750, 0, -750, -1500, 0, -22002 Infeasible x(12)

x2 Ú 0, x6 Ú 0 x1, x3, x4, x5 x = 11200, 0, -200, 1500, 550, 02 Infeasible x(11)

x3 Ú 0, x4 Ú 0 x1, x2, x5, x6 x = 11000, 1500, 0, 0, -750, -22002 Infeasible x(9)

x3 Ú 0, x5 Ú 0 x1, x2, x4, x6 x = 11000, 750, 0, 750, 0, -7002 Infeasible x(10)

x3 Ú 0, x6 Ú 0 x1, x2, x4, x5 x = 11000, 400, 0, 1100, 350, 02 Feasible x(2)

x4 Ú 0, x5 Ú 0 x1, x2, x3, x6 x = 1250, 1500, 750, 0, 0, 8002 Feasible x(4)

x4 Ú 0, x6 Ú 0 x1, x2, x3, x5 x = 1450, 1500, 550, 0, -200, 02 Infeasible x(8)

x5 Ú 0, x6 Ú 0 x1, x2, x3, x4 x = 1650, 1100, 350, 400, 0, 02 Feasible x(3)

A basic feasible solution to linear program in standard form is
a basic solution that satisfies all nonnegativity constraints.

Principle 5.17

Comparison of Table 5.1 and Figure 5.4 will show why. The six basic feasible
solutions are exactly the six extreme points x102, c, x152 of the feasible region.

This is no accident. We have seen how extreme points are feasible solutions
 determined by collections of active constraints (principle 5.12). For linear programs
in standard form, which have only nonnegativity-form inequalities, this means that
extreme points are determined by basic solutions. It follows that the extreme-point
solutions are the basic ones that are feasible.

The basic feasible solutions of a linear program in standard
form are exactly the extreme-point solutions of its feasible region.

Principle 5.18

226 Chapter 5 Simplex Search for Linear Programming

examPLe 5.10: identiFying BaSic FeaSiBLe SOLutiOnS

The constraint set of a standard-form linear program is defined by the following
constraints:

-x1 +x2 -x3 = 0
+x1 +x4 = 2

+x2 +x5 = 3

x1, c, x5 Ú 0

(a) Assuming that variables x3, x4, and x5 are slack variables added to produce
standard form, graph the feasible region in the original variables x1 and x2.

(b) Compute the basic solutions corresponding to each of the following sets of
basic variables, and determine which are basic feasible solutions: B1 = 5x3, x4, x56,
B2 = 5x2, x4, x56, B3 = 5x1, x2, x56, B4 = 5x1, x2, x46, B5 = 5x1, x3, x56.

(c) Verify that each basic feasible solution of part (b) corresponds to an extreme
point in the graph and that each infeasible basic solution corresponds to a point
outside the feasible region determined by the intersection of constraints.

Solution:

(a) Original constraints would have been

 -x1 + x2 Ú 0

 x1 … 2

 x2 … 3

x1, x2 Ú 0

Thus the feasible region is as follows:

x2

x1
(1) = (2)

(3)

(4)

(5)x2 Ú 0

x 1
 …

 2
(x

4
Ú

0)

x2 … 3 (x5 Ú 0)

x 1
 Ú

 0

-x 1
+ x 2

Ú 0
(x 3

Ú 0)

5.3 The Simplex Algorithm 227

5.3 the SimPLex aLgOrithm

The simplex algorithm is a variant of improving search elegantly adapted to ex-
ploit the special properties of linear programs in standard form. Like all improving
searches, it moves from solution to solution, retaining feasibility and improving the
objective function until a local optimum (global by 5.1) is encountered.

What is unusual is that every step of the simplex leaves us at an extreme-point
solution. Under principle 5.18 this means that we only need to think about moves
among basic feasible solutions.

Standard Display
Definition 5.11 showed how linear programs in standard form can be compactly
described by a cost vector c, a constraint coefficient matrix A, and a right-hand-side
vector b. The evolution of a simplex search will produce many more vectors for
current basic solutions, move directions, and so on.

In this book we display all these vectors simply by adding them as rows of a
growing table. To see the idea, return to our Top Brass Trophy model (5.2). Standard-
form data produce an initial table, with columns for each of the variables and the
right-hand side:

x1 x2 x3 x4 x5 x6

max c 12 9 0 0 0 0 b
 1 0 1 0 0 0 1000

A 0 1 0 1 0 0 1500
 1 1 0 0 1 0 1750
 4 2 0 0 0 1 4800

(b) Fixing nonbasics x1 = x2 = 0 for basic set B1, the resulting equation system is

- (0) + (0) - x3 = 0
+ (0) + x4 = 2

+ (0) + x5 = 3

Solving produces basic solution x11) = 10, 0, 0, 2, 3). Results for other basic sets
are derived in the same way:

B2 implies x12) = 10, 0, 0, 2, 3)

B3 implies x13) = 12, 2, 0, 0, 1)

B4 implies x14) = 13, 3, 0, -1, 0)

B5 implies x15) = 12, 0, -2, 0, 3)

Notice that different basic sets (here B1 and B2) can produce the same basic solution.
Under principle 5.17 , only x(1), x(2), and x(3) are basic feasible. The others

violate nonnegativity constraints.

(c) Points corresponding to each basic solution of part (b) are indicated on the
plot of part (a). Confirming principle 5.18 , basic feasible x(1), x(2), and x(3) corre-
spond to extreme points of the feasible region, while basic infeasible x(4) and x(5)
correspond to infeasible points where active constraints intersect.

228 Chapter 5 Simplex Search for Linear Programming

Initial Basic Solution
Any improving search begins by choosing a starting feasible solution, and simplex
requires an extreme point.

Simplex search begins at an extreme point of the feasible re-
gion (i.e., at a basic feasible solution to the model in standard form).

Principle 5.19

Simplex directions are constucted by increasing a single nonba-
sic variable, leaving other nonbasics unchanged, and computing the (unique)
corresponding changes in basic variables necessary to preserve equality
constraints.

Principle 5.20

To illustrate for the Top Brass example, we choose (arbitrarily) to begin
at extreme point x102 = 10, 0) in Figure 5.4. Table 5.1 will show that this solution is
obtained as the basic feasible one for basic variables B = 5x3, x4, x5, x66 and non-
basic columns N = 5x1, x26. Adding this basis and the corresponding solution vec-
tor to our table gives

x1 x2 x3 x4 x5 x6

max c 12 9 0 0 0 0 b

1 0 1 0 0 0 1000

A 0 1 0 1 0 0 1500

1 1 0 0 1 0 1750

4 2 0 0 0 1 4800

N N B B B B

x(0) 0 0 1000 1500 1750 4800

If we did not already know the solution from Table 5.1, it would have been com-
puted by setting nonbasics x1 = x2 = 0 and solving as in definition 5.15 .

Simplex Directions
The next requirement is move directions. We want simplex to follow edge direc-
tions joining current extreme points to adjacent ones. Each such edge direction
follows a line determined by all but one of the active constraints that fix our cur-
rent extreme point because definition 5.12 requires that adjacent extreme points
share all but one of their determining active constraints. But the active constraints
at a basis feasible solution are nothing more than the nonnegativity constraints on
nonbasic variables.

We obtain the simplex directions by making the nonbasic nonnegativities in-
active one at a time.

5.3 The Simplex Algorithm 229

That is, ∆xj = 1 on the increasing nonbasic, ∆xj = 0 on other nonbasics, and basic
components are obtained by solving conditions for a feasible direction in the equal-
ity constraints.

There is one simplex direction for each nonbasic variable. For example, at cur-
rent solution x(0) of the Top Brass example, we have one simplex direction increas-
ing nonbasic x1, and another increasing x2.

Simplex directions always have +1 on the increasing nonbasic, and other non-
basic components = 0. To complete the directions, we must determine components
for the basic variables.

Reaching all the way back to principle 3.25 in Section 3.3, we can see what is
required. A direction ∆x follows the equality constraint

a
j

 aj xj = b

if and only if it satisfies the net-change-zero condition

a
j

 aj ∆xj = 0

Thus for our entire system of equality constraints

Ax = b

every feasible direction must satisfy

 A ∆x = 0 (5.9)

At current Top Brass solution x(0), condition (5.9) produces the following
equation system for the simplex direction increasing x1 when ∆x1 is fixed = 1:

+1112 +0102 +1 ∆x3 +0 ∆x4 +0 ∆x5 +0 ∆x6 = 0
+0112 +1102 +0 ∆x3 +1 ∆x4 +0 ∆x5 +0 ∆x6 = 0
+1112 +1102 +0 ∆x3 +0 ∆x4 +1 ∆x5 +0 ∆x6 = 0
+4112 +2102 +0 ∆x3 +0 ∆x4 +0 ∆x5 +1 ∆x6 = 0

Corresponding equations for the simplex direction increasing x2 are

+1102 +0112 +1 ∆x3 +0 ∆x4 +0 ∆x5 +0 ∆x6 = 0
+0102 +1112 +0 ∆x3 +1 ∆x4 +0 ∆x5 +0 ∆x6 = 0
+1102 +1112 +0 ∆x3 +0 ∆x4 +1 ∆x5 +0 ∆x6 = 0
+4102 +2112 +0 ∆x3 +0 ∆x4 +0 ∆x5 +1 ∆x6 = 0

Will these systems have a solution? Absolutely. A basis is a collection
of column vectors that can represent every other vector of the same dimen-
sion, and we have been careful to leave undetermined only the components on
basic variables. Each of the systems (5.9) amounts to finding multipliers ∆xj that
weight columns of basic variables to produce the negative of the column for non-
basic k. Such multipliers have to exist. In fact, we know that they are unique
(Primer 5).

+1102 +0112 +1 ∆x3 +0 ∆x4 +0 ∆x5 +0 ∆x6 = 0
+0102 +1112 +0 ∆x3 +1 ∆x4 +0 ∆x5 +0 ∆x6 = 0
+1102 +1112 +0 ∆x3 +0 ∆x4 +1 ∆x5 +0 ∆x6 = 0
+4102 +2112 +0 ∆x3 +0 ∆x4 +0 ∆x5 +1 ∆x6 = 0

230 Chapter 5 Simplex Search for Linear Programming

Completing the two simplex directions for our current Top Brass solution
yields the following updated table:

x1 x2 x3 x4 x5 x6

max c 12 9 0 0 0 0 b
1 0 1 0 0 0 1000

A 0 1 0 1 0 0 1500
1 1 0 0 1 0 1750
4 2 0 0 0 1 4800
N N B B B B

x(0) 0 0 1000 1500 1750 4800

∆x for x1 1 0 -1 0 -1 -4

∆x for x2 0 1 0 -1 -1 -2

examPLe 5.11: cOnStructing SimPLex directiOnS

A minimizing, standard-form linear program has the following coefficient data:

x1 x2 x3 x4

min c 2 0 -3 18 b

A 1 -1 2 1 4

1 1 0 3 2

Assume that x1 and x3 are basic, solve for the current basic feasible solution, and
compute all corresponding simplex directions.

Solution: Following definition 5.15 , the current basic solution is obtained by setting
nonbasics x2 = x4 = 0 and solving equality constraints for basic variable values. Here,

+1x1 - 1102 + 2x3 + 1102 = 4
+1x1 + 1102 + 0x3 + 3102 = 2

gives x = 12, 0, 1, 0).
There will be two simplex directions, one increasing nonbasic x2 and another

increasing nonbasic x4. Following principle 5.20 , the direction increasing x2 has
∆x2 = 1 and its components on all other nonbasics (here only x4) = 0. We must solve
for basic components ∆x1 and ∆x3 satisfying net-change-zero condition (5.10). The
corresponding linear system

+1 ∆x1 - 1112 + 2 ∆x3 + 1102 = 0
+1 ∆x1 + 1112 + 0 ∆x3 + 3102 = 0

has unique solution ∆x1 = -1, ∆x3 = 1. Thus the simplex direction increasing x2
is ∆x = 1-1, 1, 1, 0).

5.3 The Simplex Algorithm 231

Improving Simplex Directions and Reduced Costs
Having constructed the collection of simplex directions that can be pursued from
our current basic solution without losing feasibility, our next task is to see if any of
them improve the objective function

f1x2 ! c # x ! a
n

j = 1
 cj xj

We know from Section 3.3 that improvement can be checked by referring to the
gradient ∇f1x2 at our current solution.

For linear objective function f(x), the gradient is just the vector of objective
function coefficients. That is,

∇f1x2 = c ! 1c1, c2, c, cn2 for all x

Thus gradient conditions 3.21 and 3.22 require checking quantities that we term
reduced costs.

For ∆x14) the corresponding linear system is

+1 ∆x1 - 1102 + 2 ∆x3 + 1112 = 0
+1 ∆x1 + 1102 + 0 ∆x3 + 3112 = 0

Solving for the two unknown components yields simplex direction ∆x = 1-3, 0, 1, 1).

The reduced cost cQj associated with nonbasic variable xj is

cQj = c # ∆x

where ∆x is the simplex direction increasing xj.

Principle 5.21

The simplex direction increasing nonbasic xj is improving for
a maximize linear program if the corresponding reduced cost cQj 7 0, and
for a minimize linear program if cQj 6 0.

Principle 5.22

These simple tests tell us immediately that both simplex directions at solution
x(0) of the Top Brass example improve the maximize objective. For example, the
direction increasing x1 gives

cQ1 = 112, 9, 0, 0, 0, 02 # 11, 0, -1, 0, 0, -1, -42 = 12 7 0

and for the one increasing x2,

cQ2 = 112, 9, 0, 0, 0, 02 # 10, 1, 0, -1, -1, -22 = 9 7 0

More typically (see Example 5.12), some simplex directions at a current basic solu-
tion will improve, and others will not.

232 Chapter 5 Simplex Search for Linear Programming

Step Size and the Minimum Ratio Rule
Simplex can adopt for the next move of improving search any simplex direction that
improves the objective function. The next issue is “How far?,” that is, what step size
l should be applied to chosen direction ∆x?

Following principle 3.15 in Section 3.2, we would like to take the biggest step
that preserves feasibility and improves the objective function value. With the con-
stant gradient for linear programs, an improving simplex direction remains improving
forever. Also, we constructed simplex directions to maintain all equality constraints
Ax = b.

If there is any limit on step size l, it must come from eventually violating a
nonnegativity constraint. That is, some component of the revised solution must be-
come negative. With all components feasible, and thus nonnegative at our current
solution, infeasibility can occur only if some component of the chosen simplex direc-
tion is negative. The first solution component forced to zero fixes l.

examPLe 5.12: checking imPrOVement OF SimPLex directiOnS

Determine which of the simplex directions computed in Example 5.11 are improv-
ing for the specified minimizing objective function.

Solution: We apply computations 5.21 and 5.22 . For direction ∆x = 1-1, 1, 1, 02
increasing x2,

cQ2 = 12, 0, -3, 182 # 1-1, 1, 1, 02 = -5 6 0

Thus the direction does improve. On the other hand, for ∆x = 1-3, 0, 1, 12, in-
creasing x4 does not improve because

cQ4 = 12, 0, -3, 182 # 1-3, 0, 1, 12 = 9 v 0

If any component is negative in improving simplex direction
∆x at current basic solution x(t), simplex search uses the maximum feasible
step of minimum ratio computation to determine step size l

l = min e
xj

1t2

- ∆xj
 : ∆xj 6 0 f

Principle 5.23

If no component is negative in improving simplex direction ∆x
at current basic solution x(t), the solution can be improved forever in direction
∆x. That is, the linear program is unbounded.

Principle 5.24

To illustrate, we arbitrarily set ∆x = 11, 0, -1, 0, -1, -42, increasing x1 at x(0)
of our Top Brass example. The chosen direction ∆x(1) does have negative compo-
nents, so there is no indication of unboundedness.

5.3 The Simplex Algorithm 233

To decide the maximum step, we add a row to our table that computes the step
size at which each component would drop to = 0.

x1 x2 x3 x4 x5 x6

N N B B B B

x(0) 0 0 1000 1500 1750 4800

∆x 1 0 -1 0 -1 -4

— — 1000
- 1-12

— 1750
- 1-12

4800
- 1-42

The least of these ratios establishes l in rule 5.24 :

l = min e 1000
1

,
1750

1
,

4800
4

 f = 1000

Thus our new solution is

 x112 d x102 + l∆x

 = 10, 0, 1000, 1500, 1750, 4800) + 100011, 0, -1, 0, -1, -42
 = 11000, 0, 0, 1500, 750, 8002

examPLe 5.13: determining the maximum SimPLex SteP

Let the current simplex solution to a linear program in standard form be
x1172 = 113, 0, 10, 2, 0, 02, with x2 and x5 nonbasic. Determine the maximum step
and new solution (if any), assuming that each of the following is the improving sim-
plex direction associated with increasing x2.

(a) ∆x = 112, 1, -5, -1, 0, 82
(b) ∆x = 10, 1, 6, 3, 0, 722
(c) ∆x = 1-1, 1, -8, 0, 0, -52
Solution:

(a) This improving simplex direction has negative components, so we apply
rule 5.24 .

l = min e 10
- 1-52 ,

2
- 1-12 f = 2

Notice that values for x1 were not included in this computation; with a positive di-
rectional component ∆x1 = 12, x1 is increasing. The new simplex solution will be

 x1182 d x1172 + l∆x

 = 113, 0, 10, 2, 0, 02 + 2112, 1, -5, -1, 0, 82
 = 137, 2, 0, 0, 0, 162

234 Chapter 5 Simplex Search for Linear Programming

Updating the Basis
Step size rule 5.24 tells us to continue from our present extreme-point solution,
along the edge direction formed by increasing a single nonbasic, until an adjacent
extreme point is formed by a newly active nonnegativity constraint (definitions 5.14
and 5.15). To continue the algorithm we need to find a new basis corresponding to
this new extreme-point solution. Active nonnegativity constraints tell us how.

(b) This improving simplex direction has no negative components, so progress is
unlimited. Under principle 5.24 , the model is unbounded.

(c) This improving simplex direction does have negative components. Applying
rule 5.23 yields

l = min e 13
- 1-12 ,

10
- 1-82 ,

0
- 1-52 f = 0

and new solution

x1182 d x1172 + 0 ∆x = x1172

The zero step l results from basic variable x6 happening to take on the zero value
more typical of nonbasics—a common occurrence with large-scale linear programs.
In Section 5.6 we discuss this degenerate case further.

After each move of simplex search, the nonbasic variable
generating the chosen simplex direction enters the basis, and any one of the
(possibly several) basic variables fixing step size l leaves the basis.

Principle 5.25

That is, we move to the new basis implied by the nonnegativity constraint on the
increasing nonbasic variable becoming inactive, while a nonnegativity constraint on
a blocking basic becomes active.

For our Top Brass example, the move from x(0) increased nonbasic x1, and x3
is the first component to drop to = 0. Thus x1 enters and x3 leaves, resulting in new
basic set 5x1, x4, x5, x66.

Figure 5.5 interprets graphically. New solution x(1) is indeed the adjacent extreme
point obtained when we move along the edge direction for x1 until the nonnegativity
constraint for x3 becomes active. The new basis makes x1 basic and x3 nonbasic.

examPLe 5.14: uPdating the BaSiS

Return to Example 5.13 and determine for bounded cases (a) and (c) what variables
should enter and leave the basis.

Solution: We apply rule 5.25 . Increasing nonbasic x2 enters in both cases. For case
(a) there is a choice of leaving variables because both x3 and x4 establish l; either
one could be selected to leave the basis. Variable x6 alone fixes the value of l in case
(c); it must be chosen as the leaving basic.

5.3 The Simplex Algorithm 235

Rudimentary Simplex Algorithm
We have now developed all the main ideas of simplex search. Simplex implements
extreme-point search by moving from basic feasible solution to basic feasible solu-
tion until either the problem is shown to be unbounded or the current solution
proves optimal. At every iteration a move is contemplated in each simplex direc-
tion. If any of the simplex directions is improving, one is selected and pursued as
far as feasibility permits. If no simplex direction improves, we stop and report an
optimum. Algorithm 5A gives a formal statement.

optimal

0

1000

2000

0 1000 2000

x1

x2

x 1
 Ú

 0

x1 … 1000 (x3 Ú 0)

x2 … 1500 (x4 Ú 0)

x
1 + x

2 … 1750 (x
5 Ú 0)

4x
1 + 2x

2 …
 4800 (x

6 Ú
 0)

x2 Ú 0

x(0) x(1)

x(2)

x(3)

Figure 5.5 Simplex Search of the Top Brass Example

Algorithm 5A: rudimentAry Simplex SeArch
For lineAr progrAmS

Step 0: initialization. Choose any starting feasible basis, construct the cor-
responding basic solution x(0), and set solution index t d 0.

Step 1: Simplex directions. Construct the simplex direction ∆x associated
with increasing each nonbasic variable xj, and compute the corresponding
reduced cost cQ j = c # ∆x.

Step 2: optimality. If no simplex direction is improving (no cQ j 7 0 for a
maximize problem, or no cQ j 6 0 for a minimize), then stop; current solution

236 Chapter 5 Simplex Search for Linear Programming

Rudimentary Simplex Solution of Top Brass Example
Table 5.2 details the full Algorithm 5A search of our Top Brass Trophy example in
LP standard form. Figure 5.5 tracks progress graphically. As in our earlier discussion,
the search begins at basic feasible solution x102 = 10, 0, 1000, 1500, 1750, 48002.
We have already detailed the first iteration t = 0. Simplex directions for nonbasics
x1 and x2 both improve. Choosing p = 1, the maximum feasible step is determined
by the component with subscript r = 3 at l = 1000.

After the move, we have new solution x112 = 11000, 0, 0, 1500, 750, 8002 with
objective function value $12,000. Increasing variable x1 has replaced blockings x3 in
the basis. The process now repeats with t = 1. Simplex directions are available for x2
and x3, but only the first improves because cQ2 = 9 and cQ3 = -12. Thus p = 2, and
we take a maximum step in the direction for x2. Step size l = 400 is fixed as basics
x6 decreases.

Taking this new step brings us to x122 = 11000, 400, 0, 1100, 350, 02 with ob-
jective value $15,600. Figure 5.5 confirms that it too is an extreme-point solution.

The basis is now 5x1, x2, x4, x56. As usual, there are two simplex direc-
tions available, one for each nonbasic. However, only the one for x3 improves. At
l = 350, the nonnegativity constraint on x5 becomes active, producing new solution
x132 = 1650, 1100, 350, 400, 0, 02.

With t = 3 we repeat the sequence again. This time, however, neither sim-
plex direction is improving. The search terminates with (global) optimal solution
x* = 1650, 1100, 350, 400, 0, 02 having profit $17,700.

Stopping and Global Optimality
If Algorithm 5A stops with a simplex direction along which we can improve forever
without losing feasibility, the given model is clearly unbounded. But what if it stops
with an optimum?

x(t) is globally optimal. Otherwise, choose any improving simplex direction as
∆x1t + 12 and denote the associated entering basic variable xp.

Step 3: Step Size. If there is no limit on feasible moves in simplex direction
∆x1t + 12 (all components are nonnegative), then stop; the given model is un-
bounded. Otherwise, choose leaving variable xr so that

xr
1t2

- ∆xr
1t + 12 = min •

xj
1t2

- ∆xj
1t + 12 : ∆xj

1t + 12 6 0 ¶ and set l d
xr
1t2

- ∆xr
1t + 12

Step 4: new point and Basis. Compute the new solution

x1t + 12 d x1t2 + l∆x1t + 12

and replace xr in the basis by xp. Then advance t d t + 1, and return to
Step 1.

5.3 The Simplex Algorithm 237

Simplex search considers only the simplex or edge directions as it looks for
an improving feasible move. As long as one of the simplex directions improves, this
approach is completely consistent with our previous development of improving
search. Still, we stop when no simplex direction is improving and feasible.

Could some non-simplex feasible direction still improve? No.

taBLe 5.2 Rudimentary Simplex Search of Top Brass Trophy Example

X1 X2 X3 X4 X5 X6

max c 12 9 0 0 0 0 b
1 0 1 0 0 0 1000

A 0 1 0 1 0 0 1500
1 1 0 0 1 0 1750
4 2 0 0 0 1 4800

t = 0 N N B B B B

x(0) 0 0 1000 1500 1750 4800 c # x102 = 0
∆x for x1 1 0 -1 0 -1 -4 cQ1 = 12

∆x for x2 0 1 0 -1 -1 -2 cQ2 = 9

— —
1000

- 1-12 —
1750

- 1-12
4800

- 1-42
l = 1000

t = 1 B N N B B B

x(1) 1000 0 0 1500 750 800 c # x102 = 12,000

∆x for x2 0 1 0 -1 -1 -2 cQ2 = 9

∆x for x3 -1 0 1 0 0 4 cQ3 = -12

— — —
1500

- 1-12
750

- 1-12
800

- 1-22
l = 400

t = 2 B B N B B N

x(2) 1000 400 0 1100 350 0 c # x122 = 15,600
∆x for x3 -1 2 1 -2 -1 0 cQ3 = 6

∆x for x6 0 -0.5 0 0.5 0.5 1 cQ6 = -4.5

1000
- 1-12 — —

1100
- 1-22

350
- 1-12 —

l = 350

t = 3 B B B B N N

x(3) 650 1100 350 400 0 0 c # x132 = 17,700
∆x for x5 1 -2 -1 2 1 0 cQ5 = -6

∆x for x6 -0.5 0.5 0.5 -0.5 0 1 cQ6 = -1.5
“optimal”

When simplex Algorithm 5A is applied to a linear program in
standard form, it either stops with a correct indication of unboundedness or
produces a globally optimal solution.

Principle 5.26

We know Algorithm 5A stops correctly with either a valid conclusion of
 unboundedness or our reaching a basic feasible solution that admits no improving
feasible simplex direction. Could there be an improving feasible direction that is not

238 Chapter 5 Simplex Search for Linear Programming

simplex? To investigate, pick a feasible direction d at a current basic solution. Notice
that it must increase two or more nonbasics because the basic part of the solution is
fixed once nonbasic changes are chosen, and simplex directions already consider the
case of single nonbasic increases.

Let K!5nonbasic k with dk 7 06 and B! the set of currently basic variables.
Now, there is a corresponding simplex direction ∆x1k2 for every k, and their feasibil-
ity requires

a1k2 = - Σj∈B a
1j2 ∆xj

1k2 for all k ∈ K

Then summing,

Σk∈K a
1k2dk = - Σk∈K [Σj∈Ba1j2∆xj

1k2] dk

That is, the combined change in nonbasic variable values implied by d can be
feasible only if the combined change on basic variables is exactly the weighted
sum of associated changes for corresponding simplex directions ∆x1k2. In short
d = Σk∈K ∆x1k2dk and the corresponding objective function improvement criterion
is c # d = Σk∈Kc # ∆x1k2dk. If it tests improving (7 0 for max, 6 0 for min), then
one of its components of the sum must do so too. It follows that the composite direc-
tion can be improving and feasible only if there is an improving simplex direction.

Extreme-Point or Extreme-Direction
It will sometimes be useful to be clear about the polyhedral character of the
two simplex outcomes described in 5.26 . In fact, they align exactly with the two
fundamental elements of polyhedral sets – extreme points and extreme directions
(see Primer 3).

Simplex Algorithm 5A terminates with either an optimal
extreme-point solution of the model’s feasible set or an extreme direction of
the set along which the objective improves forever.

Principle 5.27

If the given LP has an optimal solution, we already know it will terminate
with an optimal basic-feasible one in standard form. That is, it will terminate with
an optimal extreme-point of the model’s feasible set 5.12 . What about when we
conclude the model is unbounded? That occurs when the search encounters a sim-
plex direction ∆x1t + 12 along which the objective can improve forever. Because it is
an improving simplex direction at the current extreme-point solution, it follows an
edge (definition 5.14 of the polyhedral feasible set). Although it does not termi-
nate at an adjacent extreme point 5.13 , its nature as an edge assures it is extreme
among direction of that polyhedron.

5.4 dictiOnary and taBLeau rePreSentatiOnS OF SimPLex

Our development of the simplex algorithm in Section 5.3 follows the improving
search paradigm, which constitutes one of the main themes of this book. It also
reflects the way professionals and researchers in linear programming think about
simplex.

5.4 Dictionary and Tableau Representations of Simplex 239

Still, readers who have encountered simplex in other introductory texts may
find our form a bit difficult to recognize. In this section we make a brief connection
to more traditional formats. Those not confused by our departures from tradition
can skip the section without loss.

Simplex Dictionaries
Traditional introductory developments of the simplex algorithm view the process
that we have conceived as a search in terms of manipulating the objective function
and main standard-form equations

a
n

j = 1
 ai, j xj = bi for all i = 1, c, m

At each iteration representations called simplex dictionaries express the basic vari-
ables and the objective function value in terms of the nonbasics.

Simplex dictionaries express objective function value z and
basic variables xk, k ∈ B, in terms of nonbasic variables xj, j ∈ N, as

 z = zQ + a
j∈N

 cQ j xj

 xk = bQk - a
j∈N

 aQk, j xj for all k ∈ B

Principle 5.28

Dictionary form is achieved by Gaussian elimination—solving for one basic
variable at a time and substituting for it in other constraints and the objective. To
see the idea, consider the basis corresponding to t = 2 in Table 5.2. There basic and
nonbasic index sets are

 B = 51, 2, 4, 56
 N = 53, 66

We begin our derivation of the corresponding dictionary with the original
objective and constraints:

z = 12x1 + 9x2

x1 + x3 = 1000

x2 + x4 = 1500

x1 + x2 + x5 = 1750

4x1 + 2x2 + x6 = 4800

The first constraint expresses basic variable x1 as

x1 = 1000 - 11x32

240 Chapter 5 Simplex Search for Linear Programming

Substituting for x1 leaves

x1 = 1000 - 11x32
x2 + x4 = 1500

11000 - x32 + x2 + x5 = 1750

411000 - x32 + 2x2 + x6 = 4800

We now continue with basic x2. Solving the second equation and substituting
gives

x1 = 1000 - 11x32
x2 = 1500 - 11x42
11000 - x32 + 11500 - x42 + x5 = 1750

+411000 - x32 + 211500 - x42 + x6 = 4800

The third equation can now be solved for basic variable x4. After substitution
and solving the last equation for x5, we complete the constraints as

 x1 = 1000 - 1+1x3 +0 x62

(5.10)
 x2 = 400 - 1-2x3 +0.5x62
 x4 = 1100 - 1+2x3 -0.5x62
 x5 = 350 - 1+1x3 -0.5x62

Finally, we substitute these expressions in the objective function to obtain

 z = 1211000 - 1x32 + 91400 - 2x3 - 0.5x62
(5.11)

 = 15,600 + 6x3 - 4.5x6

The dictionary (5.11)–(5.12) is now complete. In the notation of definition 5.28 ,
for example, zQ = 15,600, cQ3 = 6, bQ2 = 400, and aQ4, 6 = -0.5.

examPLe 5.15: cOnStructing SimPLex dictiOnarieS

The computed simplex directions and reduced costs for the linear program of
Examples 5.11 and 5.12

 min z = 2x1 - 3x3 + 18x4

 s.t. x1 - x2 + 2x3 + x4 = 4

 x1 + x2 + 3x4 = 2

 x1, x2, x3, x4 Ú 0

had x1 and x3 basic. Apply Gaussian elimination to derive the corresponding
simplex dictionary.

5.4 Dictionary and Tableau Representations of Simplex 241

Simplex Tableaux
Simplex tableaux are detached-coefficient displays of exactly the same information
as simplex dictionaries.

Solution: We want to solve for basic variables x1 and x3 in terms of nonbasics. From
the first constraint.

x1 = 4 - 1-1x2 + 2x3 + 1x42
Substituting in the second constraint yields

14 + x2 - 2x3 - 1x42 + x2 + 3x4 = 2

Then, solving for x3 and substituting produces the dictionary:

 z = 1 + -5x2 + 9x4

 x1 = 2 - 1+1x2 + 3x42
 x3 = 1 - 1-1x2 - 1x42

The simplex tableau associated with basic set 5xk : k ∈ B6
displays the coefficients zQ , cQj, bQ i, and aQ i, j of the corresponding simplex
 dictionary in detached-coefficient form with ail variables translated to the
left-hand side.

Definition 5.29

For example, the dictionary (5.11) corresponds to the simplex tableau

x1 x2 x3 x4 x5 x6

0 0 -6 0 0 +4.5 15,600

1 0 1 0 0 0 1,000
0 1 -2 0 0 0.5 400
0 0 2 1 0 -0.5 1,100

0 0 1 0 1 -0.5 350

The only change is that nonbasic variables have been translated to the left-hand
side, and coefficients have been extracted in a matrix.

examPLe 5.16: cOnStructing SimPLex taBLeaux

Construct the simplex tableau corresponding to the dictionary of Example 5.15.

Solution: With all variables translated to the left-hand side, the coefficient tableau is

x1 x2 x3 x4

0 5 0 -9 1
1 1 0 3 2
0 -1 1 -1 1

242 Chapter 5 Simplex Search for Linear Programming

Simplex Algorithm with Dictionaries or Tableaux
In dictionary/tableau form, simplex still moves from basic feasible solution to
basic feasible solution. Each simplex iteration begins by checking the sign of
objective function coefficients cQj on nonbasic variables. If none is negative for a
minimize problem (positive for a maximize), the current basic solution is optimal.
Otherwise, the solution can be improved by increasing a nonbasic variable from
its basic-solution value = 0. We pick one such variable as the entering nonbasic.
Its coefficient column in the dictionary or tableau tells us how basic variables
will change as the nonbasic increases. If it can increase forever without losing
feasibility, the problem is unbounded. Otherwise, the entering variable’s increase
eventually drives some basic variable to its lower limit of zero. This establishes a
leaving basic variable. We update the dictionary or tableau to the new basis and
repeat the process.

Correspondence to the Improving Search Paradigm
This brief synopsis of the simplex with dictionaries or tableaux should sound very
familiar. It is, in fact, exactly Algorithm 5A. The only difference comes in how the
arithmetic is accomplished.

Think first about the current basic solution. When nonbasic variables are
fixed = 0, dictionary format makes the corresponding values of basic variables
obvious.

Right-hand-side constants bQk of simplex dictionary/tableau
format show current values for corresponding basic variables xk. Similarly, zQ is
the objective function value of the current basic solution.

Principle 5.30

Simplex dictionary/tableau coefficients aQk, j for nonbasic vari-
ables xj are exactly the negatives - ∆xk of corresponding components in the
simplex directions increasing xj.

Principle 5.31

For example, the dictionary (5.11) shows clearly that with nonbasics x3 =
x6 = 0, the current basic solution is

1bQ1, bQ2, 0, bQ4, bQ5, 02 = 11000, 400, 0, 1100, 350, 02
This is exactly the solution reported in Table 5.2 for t = 2. Its objective function
value is zQ = 15,600.

Next consider the simplex directions. Definition 5.21 specifies components for
nonbasic variables and leaves those for basic variables to be computed. Specifically,
the changes in basics associated with increasing any nonbasic are unique solutions
to equations A∆x = 0.

The simplex in dictionary/tableau form uses columns of the tableau to predict
the same basic variable changes. Since the changes are unique, there must be a close
connection to simplex directions.

5.5 Two Phase Simplex 243

The dictionary (5.11) illustrates again. There

 aQ1.3 = +1 aQ1.6 = 0

 aQ2.3 = -2 aQ2.6 = +0.5

 aQ4.3 = +2 aQ4.6 = -0.5

 aQ5.3 = +1 aQ5.6 = -0.5

Table 5.2 for t = 2 shows that the simplex directions are¶∆x1

∆x2

∆x3

∆x4

∆x5

∆x6

∂ = ¶ -1
+2
+1
-2
-1

0

∂ for x3 and ¶∆x1

∆x2

∆x3

∆x4
∆x5

∆x6

∂ = ¶ 0
-0.5
 0
 0.5
 0.5
 1

∂ for x6

Notice that tableau coefficients are exactly the negatives of corresponding simplex
direction components for basic variables x1, x2, x4, and x5.

Finally, focus on the reduced costs which tell us whether a nonbasic variable
can increase productively. We have employed the same cQj notation in both reduced
cost principle 5.22 and format 5.28 because they refer to the same quantities.

Simplex dictionary/tableau objective function coefficients cQj
are exactly the reduced costs of definition 5.22 .

Principle 5.32

In both representations they show how objective function value z will change per
unit increase in nonbasic variable xj if basics are adjusted to preserve feasibility in
main equality constraints. For example, the reduced cost of x3 in both dictionary
(5.11) and Table 5.2 (at t = 2) is cQ3 = 6.

Comparison of Formats
Observations 5.30 to 5.32 document how solving for current basic variables in
dictionary format 5.28 is just an alternative way to compute the basic solution,
simplex directions, and reduced costs required in rudimentary simplex Algorithm 5A.
Nothing is fundamentally different.

One can argue about which computation is easier for hand calculation. Still,
it is important to realize that neither is ever employed in serious computer imple-
mentations of the simplex algorithm. Sections 5.7 and 5.8 will detail the much more
efficient revised simplex version at the heart of all commercial simplex codes.

5.5 twO PhaSe SimPLex

As usual, we have developed the simplex version of improving search assuming that
we know a starting basic feasible solution. In most real problems we will have to
search for one.

244 Chapter 5 Simplex Search for Linear Programming

In Section 3.6 we introduced the generic two-phase approach for all math
programs (Algorithm 3B). A solution is chosen that satisfies at least part of the
constraints; artificial variables are added to synthetically satisfy all other con-
straints; Phase I minimizes the sum of the artificials; Phase II proceeds from the
result of Phase I to optimize the real objective function.

This section specializes those ideas to LPs and the simplex method.

aPPLicatiOn 5.2: cLeVer cLyde

We will illustrate two-phase simplex computation with the contrived but instructive
case of Clever Clyde. Clyde is an entrepreneur of dubious integrity who is seeking to
open a sports collectibles business. He has only $5000 of his own, and the business
will require at least $100,000. Still, Clyde also has a real knack for convincing others
to invest in his projects. One investor has already agreed to pay 50% of the initial
cost of the firm in return for an equal partnership, and Clyde has an appointment
tomorrow with another prospect. We want to consider several cases for the fraction
of support, call it a, that Clyde may get from selling a second “equal” partnership.
His goal is to maximize the size of the business.

To formulate Clyde’s dilemma as a linear program, we will use the decision
variables

 x1 ! amount invested by present investor 1 (thousands of dollars)

 x2 ! amount invested by new investor 2 (thousands of dollars)

 x3 ! amount Clyde invests of his own money (thousands of dollars)

Then, clearly the objective function is to

 max x1 + x2 + x3 (5.12)

Some constraints are also easy:

x1 + x2 + x3 Ú 100

 x1 Ú 0, x2 Ú 0, 5 Ú x3 Ú 0
(5.13)

Total investment must be at least $100,000, all amounts are nonnegative, and
Clyde’s funds are limited to $5000.

Investment constraints are a bit more complex. If investor 1 is to provide half the
capital, and investor 2 a fraction a, we want

x1

x1 + x2 + x3
= 0.5 and

x2

x1 + x2 + x3
= a (5.14)

These ratio constraints do not even look linear, but knowing x1 + x2 + x3 will
be positive in feasible solutions, we can clear denominators and collect terms
(principle 4.5) to obtain

 -0.5x1 + 0.5x2 + 0.5x3 = 0

 ax1 + 1a - 12x2 + ax3 = 0 (5.15)

5.5 Two Phase Simplex 245

Starting Basis in the Two Phase Simplex
Two-phase computation begins by constructing a starting feasible solution to
model (5.16) using artificial variables. There is one new issue in adapting the
two-phase approach to simplex. Simplex search employs basic solutions. Our
starting solution in Phase I must not just be feasible in the artificial model, but
basic feasible.

One set of columns that is sure to qualify for a basis by being linearly inde-
pendent is a collection where each column has only one nonzero component and
no two of the columns are nonzero in the same component. That is, constraint col-
umns with a single nonzero entry provide natural choices for a starting basis. Where
none exists after the model has been placed in standard form, the column of an
artificial variable will do the job. Either way, the single nonzero must have the same
sign as the corresponding right-hand-side coefficient, so that the basis will produce
a feasible basic solution.

Adding slacks x4 and x5 to place the LP in standard form, Clyde’s dilemma is
represented by the model

max +1x1 + 1x2 + 1x3

s.t. +1x1 + 1x2 + 1x3 - 1x4 = 100
+ 1x3 + 1x5 = 5

-0.5x1 + 0.5x2 + 0.5x3 = 0
+ax1 + 1a - 12x2 + ax3 = 0

x1, x2, x3, x4, x5 Ú 0

(5.16)

A starting basis for simplex can be obtained by making basic
one variable for each constraint row, with that variable having its only nonzero
coefficient in the row and coefficient sign matching that of the corresponding
right-hand side. Where no standard-form variable meets these requirements,
an artificial is introduced.

Principle 5.33

We can illustrate with Clever Clyde standard form (5.16). Our task is to find
(or manufacture with artificial variables) a starting feasible basis. In the first con-
straint row we have a variable with its only nonzero coefficient there—slack x4.
However, the coefficient of x4 is negative, while the right-hand-side 100 is positive.
An artificial variable x6 will be necessary.

Things go somewhat easier in the second row. There x5 has its only nonzero
coefficient with a sign that matches the right-hand side. Variable x5 will be part
of the initial basis. The last two constraints of standard form have no variable
with its only nonzero coefficient in their rows. Artificials x7 and x8 will have to
be added.

246 Chapter 5 Simplex Search for Linear Programming

Summarizing, simplex will begin Phase I with the data

x1 x2 x3 x4 x5 x6 x7 x8

max c 1 1 1 0 0 0 0 0

min d 0 0 0 0 0 1 1 1 b

A

1 1 1 -1 0 1 0 0 100

0 0 1 0 1 0 0 0 5

-0.5 0.5 0.5 0 0 0 1 0 0

a a - 1 a 0 0 0 0 1 0

N N N N B B B B

x (0) 0 0 0 0 5 100 0 0

Initial solution x(0) is the basic (artificially) feasible one obtained by assigning the
value zero to all nonbasics and solving for the basics.

Notice that we now have two objective function rows. The vector d denotes
the objective function vector for Phase I (sum of artificials). We first minimize d # x,
then return to maximize c # x in Phase II.

examPLe 5.17: cOnStructing an artiFiciaL BaSiS

Introduce artificial variables as necessary to construct a Phase I artificial model and
corresponding starting (artificially) feasible basis for the following standard-form
linear program:

min 14x1 - 9x3 + x4

s.t 8x1 + x2 - x3 = 74
+ 4x2 - 7x3 + x4 = -22
+ x2 + x3 = 11

x1, x2, x3, x4 Ú 0

Solution: We apply principle 5.33 . Variable x1 appears only in the first main con-
straint and has the same sign as the right-hand-side 74. Thus it can be the basic vari-
able for that constraint. Variable x4 occurs only in the second main constraint, but
its sign differs from the right-hand side; artificial variable x5 will be needed. Another
artificial x6 is needed in the last constraint because no variable has its only nonzero
coefficient there. Summarizing, the artificial model will be

min x5 + x6

s.t. 8x1 + x2 - x3 = 74
+ 4x2 - 7x3 + x4 - x5 = -22
+ x2 + x3 + x6 = 11

x1, x2, x3, x4, x5, x6 Ú 0

The starting (artificially) feasible basis is x1, x5, and x6.

5.5 Two Phase Simplex 247

Three Possible Outcomes for Linear Programs
Recall that there are three possible outcomes for a linear programming model:

A linear program may be infeasible (have no feasible solu-
tions), be unbounded (have arbitrarily good feasible solutions), or have finite
optimal solutions.

Principle 5.34

In the discussion of Section 3.6 we detailed how we detect each case, and Algorithm 5B
provides details for the simplex. The problem is infeasible if Phase I reaches optimality
without reducing the sum of artificials to = 0 (principle 3.39). Otherwise it has feasi-
ble solutions (3.38). Phase II then either detects unboundedness (5.25) or stops on an
optimal solution (5.27).

Clever Clyde Infeasible Case
The Clever Clyde application of this section was contrived so that we can illus-
trate all three possibilities for LP outcomes and know by easy deduction that sim-
plex is drawing the right conclusion. Think for a moment about what Clyde needs
from investor 2. His own $5000 would provide 5% of the $100,000 minimum for
the business, and investor 1 has guaranteed 50%. If a 6 0.45, there can be no
feasible solution.

Take a = 0.4. Table 5.3 shows the Phase I simplex computations leading to a
conclusion of infeasibility. Beginning with x5, x6, x7, and x8 basic, the sum of artificial
variables is d # x102 = 100. There are 4 available simplex directions, and 3 improve
the objective. (Remember that we are minimizing, so that dQ j 6 0 implies improve-
ment.) The direction increasing nonbasic x3 is chosen.

Algorithm 5B: two-phASe Simplex SeArch

Step 0: Artificial model. If there are convenient starting feasible bases for
the given standard-form linear program, identify one, and proceed to Step 3.
Otherwise, construct an artificial model and artificially feasible basis by adding
(or subtracting) artificial variables as in principle 5.33 .

Step 1: phase i. Beginning from the artificially feasible basis of Step 0, apply
simplex search to minimize the sum of the artificial variables subject to the
constraints of the artificial model.

Step 2: infeasibility. If Phase I search terminated with a minimum having
artificial sum 7 0, stop; the original model is infeasible. Otherwise, use the
final Phase I basis in the artificial model to identify a starting feasible basis
for the original model.

Step 3: phase ii. Beginning from the identified starting feasible basis, apply
simplex search to compute an optimal solution to the original standard-form
model or demonstrate that it is unbounded.

248 Chapter 5 Simplex Search for Linear Programming

taBLe 5.3 Simplex Computation for Clever Clyde Infeasible Case

x1 x2 x3 x4 x5 x6 x7 x8

max c 1 1 1 0 0 0 0 0
min d 0 0 0 0 0 1 1 1 b

A

1 1 -1 -1 0 1 0 0 100
0 0 1 0 1 0 0 0 5

-0.5 0.5 0.5 0 0 0 1 0 0

 0.4 -0.6 0.4 0 0 0 0 1 0
t = 0 N N N N B B B B Phase I

x(0) 0 0 0 0 5 100 0 0 d # x102 = 100

∆x for x1 1 0 0 0 0 -1 0.5 -0.4 dQ 1 = -0.9

∆x for x2 0 1 0 0 0 -1 -0.5 0.6 dQ 2 = -0.9

∆x for x3 0 0 1 0 -1 -1 -0.5 -0.4 dQ 3 = -1.9

∆x for x4 0 0 0 1 0 1 0 0 dQ 4 = 1.0

— — — —
5
1

100
1

0
0.5

0
0.4

l = 0.0

t = 1 N N B N B B B N Phase I

x(1) 0 0 0 0 5 100 0 0 d # x112 = 100

∆x for x1 1 0 -1 0 1 0 1 0 dQ 1 = 1.0

∆x for x2 0 1 1.5 0 -1.5 -2.5 -1.25 0 dQ 2 = -3.75

∆x for x4 0 0 0 1 0 1 0 0 dQ 4 = 1.0

∆x for x8 0 0 -2.5 0 2.5 2.5 1.25 1 dQ 8 = 4.75

— — — — —
5

1.5
100
2.5

0
1.25

— l = 0.0

t = 2 N B B N B B N N Phase I

x(2) 0 0 0 0 5 100 0 0 d # x122 = 100

∆x for x1 1 0.8 0.2 0 -0.2 -2 0 0 dQ 1 = -2.0

∆x for x4 0 0 0 1 0 1 0 0 dQ 4 = 1.0

∆x for x7 0 -0.8 -1.2 0 1.2 2 1 0 dQ 7 = 3.0

∆x for x8 0 1 -1 0 1 0 0 1 dQ 8 = 1.0

— — — —
5

0.2
100

2
— — l = 25

t = 3 B B B N N B N N Phase I

x(3) 25 20 5 0 0 50 0 0 d # x132 = 50

∆x for x4 0 0 0 1 0 1 0 0 dQ 4 = 1.0

∆x for x5 -5 -4 -1 0 1 10 0 0 dQ 5 = 10.0

∆x for x7 6 4 0 0 0 -10 1 0 dQ 7 = -9.0

∆x for x8 5 5 0 0 0 -10 0 1 dQ 8 = -9.0

— — — — —
50
10

— — l = 5

t = 4 B B B N N N B N Phase I

x(4) 55 40 5 0 0 0 5 0 d # x142 = 5

∆x for x4 0.6 0.4 0 1 0 0 0.1 0 dQ 4 = 0.1

∆x for x5 1 0 -1 0 1 0 1 0 dQ 5 = 1.0

∆x for x6 -0.6 -0.4 0 0 0 1 -0.1 0 dQ 6 = 0.9

∆x for x8 -1 1 0 0 0 0 -1 1 dQ 8 = 0.0
“infeasible”

5.5 Two Phase Simplex 249

examPLe 5.18: detecting inFeaSiBiLity in SimPLex PhaSe i

Use two-phase simplex Algorithm 5B to establish that the linear program

max 8x1 + 11x2

s.t. x1 + x2 … 2
x1 + x2 Ú 3
x1, x2 Ú 0

has no solution.

Solution: We begin by including slack variables to obtain standard-form model

max 8x1 + 11x2

s.t. x1 + x2 + x3 = 2
x1 + x2 - x4 = 3
x1, x2, x3, x4 Ú 0

Variable x3 provides a starting basic variable in the first constraint, but artificial x5
is needed in the second constraint. We are now ready to begin Phase I simplex with
initial basis 5x3, x56.

The next step is to determine how far we can pursue the ∆x for x3 without
losing feasibility. Here, something new occurs. Basic variables x7 and x8, which were
already = 0 in solution x(0), are both decreased by ∆x. As a consequence, the largest
possible step size is l = 0.

We will have more to say about this degenerate case in the next section. For
the moment we merely act as if l were small but positive. Variable x3 enters the
basis, and x7 (one of the two variables establishing l) leaves.

The new basic solution x(1) is identical to x(0), but the basis that determines
it has changed. As a consequence, we have new simplex directions to consider. This
time only the ∆x for x2 improves. It, too, leads to a degenerate step of l = 0, but x2
enters the basis and x8 leaves.

In iteration t = 2 we finally see real progress. Nonbasic x1 enters, and x5
leaves after a step of l = 25. The objective function value (sum of artificials)
is halved to d # x132 = 50. Iteration t = 3 is similar, reducing infeasibility to
d # x142 = 5.

Here the progress stops. As we consider the four available simplex directions
at iteration t = 4, we see all fail the test for improvement. That is, x(4) is optimal
in the Phase I problem. But the sum of artificials is still 5. No solution using only the
original variables satisfies all constraints [i.e., the original model (with a = 0.4) is
infeasible].

250 Chapter 5 Simplex Search for Linear Programming

Clever Clyde Optimal Case
Suppose now that investor 2 is willing to provide 49% of the startup capital Clever
Clyde requires. There should be a finite optimal solution. Table 5.4 traces Phase I
simplex computation on this a = 0.49 case. The first two iterations closely paral-
lel the infeasible variation of Table 5.3; two degenerate basis changes produce no
actual progress.

Iteration t = 2 shows something new. The direction for entering nonba-
sic x1 improves the objective, and the maximum feasible step of l = 50 erases
all infeasibility. The resulting solution x(3) is 0 in all artificial components
and thus corresponds to a feasible solution in the original model. Iteration
t = 3 confirms that it is optimal in the Phase I problem, with objective function
value = 0.

With a known basic feasible solution, we are ready to pass to Phase II.
Table 5.5 details the computations. Now that only the standard-form variables are
present, there is only one nonbasic. Its simplex direction ∆x tests as improving for
our maximize objective function, so it will enter the basis.

A check of ratios shows that feasible progress will stop at l = 400 as x5 leaves
the basis. The new solution is x112 = 1250, 245, 5, 400, 02. Now the only simplex
direction is that of x5 and it does not improve the objection function. We conclude
that x(1) is optimal. If investor 2 will provide 49% of the capital, a $500,000 business
is achievable, taking $250,000 from investor 1, $245,000 from investor 2, and the
remaining $5000 from Clyde.

x1 x2 x3 x4 x5

max c 8 11 0 0 0

min d 0 0 0 0 1 b

1 1 1 0 0 2

A 1 1 0 -1 1 3

t = 0 N N B N B Phase I

x(0) 0 0 2 0 3 d # x = 3

∆x for x1 1 0 -1 0 -1 dQ 1 = -1

∆x for x2 0 1 -1 0 -1 dQ 2 = -1

∆x for x4 0 0 0 1 1 dQ 4 = +1

— —
2
1

—
3
1

l = 2

t = 1 B N N N B Phase I

x(1) 2 0 0 0 1 d # x = 1

∆x for x2 -1 1 0 0 0 dQ 2 = 0

∆x for x3 -1 0 1 0 1 dQ 3 = +1

∆x for x4 0 0 0 1 1 dQ 4 = +1

“infeasible”

The original model is infeasible because the Phase I optimum has artificial total 1.

5.5 Two Phase Simplex 251

examPLe 5.19: mOVing tO SimPLex PhaSe ii

A standard-form linear program has variables x1, c, x5. To begin two-phase sim-
plex Algorithm 5B, we introduce artificial variables x6, c, x8. Explain for each of
the following Phase I outcomes how the algorithm should proceed.

taBLe 5.4 Phase I Simplex Computation for Clever Clyde Optimal Case

x1 x2 x3 x4 x5 x6 x7 x8

min d 0 0 0 0 0 1 1 1 b
1 1 1 -1 0 1 0 0 100

A 0 1 0 0 1 0 0 0 5

-0.50 0.50 0.50 0 0 0 1 0 0

0.49 -0.51 0.49 0 0 0 0 1 0

t = 0 N N N N B B B B Phase I

x(0) 0 0 0 0 5 100 0 0 d # x102 = 100

∆x for x1 1 0 0 0 0 -1 0.50 -0.49 dQ 1 = -0.99

∆x for x2 0 1 0 0 0 -1 -0.50 0.51 dQ 2 = -0.99

∆x for x3 0 0 1 0 -1 -1 -0.50 -0.49 dQ 3 = -1.99

∆x for x4 0 0 0 1 0 1 0 0 dQ 4 = 1.0

— — — —
5
1

100
1

0
0.50

0
0.49

l = 0.0

t = 1 N N B N B B B N Phase I

x(1) 0 0 0 0 5 100 0 0 d # x112 = 100

∆x for x1 1 0 -1 0 1 0 1 0 dQ 1 = 1.0

∆x for x2 0 1 1.04 0 -1.04 -2.04 -1.02 0 dQ 2 = -3.06

∆x for x4 0 0 0 1 0 1 0 0 dQ 4 = 1.0

∆x for x8 0 0 -2.04 0 2.04 2.04 1.02 1 dQ 8 = 4.06

— — — —
5

1.04
100
2.04

0
1.02

— l = 0.0

t = 2 N B B N B B N N Phase I

x(2) 0 0 0 0 5 100 0 0 d # x122 = 100

∆x for x1 1 0.98 0.02 0 -0.02 -2 0 0 dQ 1 = -2.0

∆x for x4 0 0 0 1 0 1 0 0 dQ 4 = 1.0

∆x for x7 0 -0.98 -1.02 0 1.02 2 1 0 dQ 7 = 3.0

∆x for x8 0 1 -1 0 1 0 0 1 dQ 8 = 1.0

— — — —
5

0.02
100

2
— — l = 50

t = 3 B B B N B N N N Phase I

x(3) 50 49 1 0 4 0 0 0 d # x132 = 0

∆x for x4 0.50 0.49 0.01 1 -0.01 0 0 0 dQ 4 = 0.0

∆x for x6 -0.50 -0.49 -0.01 0 0.01 1 0 0 dQ 6 = 1.0

∆x for x7 1 0 -1 0 1 0 1 0 dQ 7 = 1.0

∆x for x8 0 1 -1 0 1 0 0 1 dQ 8 = 1.0
“feasible”

252 Chapter 5 Simplex Search for Linear Programming

Clever Clyde Unbounded Case
If Clyde is particularly convincing, he might talk investor 2 into covering a full
50% of the investment. Clearly, the size of the business is then unbounded because
Clyde’s partners will be financing the entire cost.

Phase I simplex computation for the a = 0.50 case is almost identical
to that of Table 5.4. Only a few numbers differ. Table 5.6 shows Phase II. The

(a) Phase I optimum is x = 10, 0, 0, 0, 0, 0, 3, 62 with x1, x7, and x8 basic.

(b) Phase I optimum is x = 10, 2, 0, 0, 9, 0, 0, 02 with x1, x2, and x5 basic.

Solution:

(a) Here the minimum artificial total is 10 + 3 + 62 = 9. The model is infeasible
(principle 3.38), so we terminate.

(b) With a minimum artificial total of = 0, the model is feasible (principle 3.37).
We proceed to Phase II simplex, beginning with feasible basis 5x1, x2, x56.

taBLe 5.5 Phase II Simplex Computation for Clever Clyde Optimal Case

x1 x2 x3 x4 x5

max c 1 1 1 0 0 b
1 1 1 -1 0 100

A 0 1 0 0 1 5
-0.50 0.50 0.50 0 0 0
 0.49 -0.51 0.49 0 0 0

t = 0 B B B N B Phase II

x(0) 50 49 1 0 4 c # x102 = 100

∆x for x4 0.50 0.49 0.01 1 -0.01 cQ4 = 1.0

— — — —
4

0.01
l = 400

t = 1 B B B B N Phase II

x(1) 250 245 5 400 0 c # x112 = 500

∆x for x5 -50 -49 -1 -100 1 cQ5 = -100

“optimal”

taBLe 5.6 Phase II Simplex Computation for Clever Clyde Unbounded Case

x1 x2 x3 x4 x5

max c 1 1 1 0 0 b
 1 1 1 -1 0 100

A 0 1 0 0 1 5
-0.50 0.50 0.50 0 0 0
 0.50 -0.50 0.50 0 0 0

t = 0 B B B N B Phase II
x(0) 50 50 0 0 5 c # x102 = 100

∆x for x4 0.50 0.50 0.1 1 0.0 cQ4 = 1.0

 — — — — — l = ∞
“unbounded”

5.6 Degeneracy and Zero-Length Simplex Steps 253

feasible basis provided by Phase I consists of x1, x2, x3, and x5, with basic solution
x102 = 150, 50, 0, 0, 52. The only nonbasic, x4, yields an improving simplex direction.

Notice that this improving simplex direction has no negative components
(compare with Table 5.5). That is, the direction is not moving toward any nonneg-
ativity constraint. It follows that there is no limit on how far we may follow the
direction while retaining feasibility (principle 5.25). Since every step in the direc-
tion improves the objective, the model must be unbounded.

5.6 degeneracy and ZerO-Length SimPLex StePS

Our development of the simplex algorithm as a form of improving search has
implicitly assumed that each iteration makes positive progress toward an optimal
solution by advancing from a current extreme point solution to a superior one.
If a better extreme point is encountered at each move, it is not hard to see that
simplex must eventually produce an optimal solution or show that none exists
(see Section 5.7).

Unfortunately, this is not always the case. It is much more typical for a simplex
search to follow the pattern of Figure 5.6. Progress at some iterations is interspersed
with periods of no advance. In this section we explore the degeneracy phenomenon
in linear programming, which brings about simplex steps with no gain.

Degenerate Solutions
Degeneracy happens in linear programming whenever more constraints are active
than the minimum number needed to define a point.

A basic feasible solution to a standard-form linear program
is degenerate if nonnegativity constraints for some basic variables are active
(i.e., if some basic variables have value = 0.

Principle 5.35

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16

so
lu

ti
on

 v
al

ue
 (

m
ax

)

iterations

Figure 5.6 Typical Objective Function Progress of Simplex Search

254 Chapter 5 Simplex Search for Linear Programming

Figure 5.7 illustrates graphically. Any three of the five inequalities B, C, H,
I, and G define extreme point x(1). In standard form, each of those constraints
will correspond to a nonnegativity constraint on a slack variable. This means that
15 - 32 = 2 basic variables will have value = 0. The solution is degenerate.

x1

x2

x3

A

B C

D E

F

G

H

I
J K

L
x(3)

x(2)

x(1)

Figure 5.7 A Degenerate Extreme Point x(1)

In the presence of degeneracy, several bases can compute the
same basic solution.

Principle 5.36

Basic solutions require nonnegativity constraints to be active for the nonbasics
(definition 5.16), but when nonnegativities also happen to be active for some basics,
there are alternative choices for the basic set.

examPLe 5.20: recOgniZing degenerate SOLutiOnS

Determine for each of the following basic variable sets and basic solutions to a lin-
ear program in standard form whether the solution indicated is degenerate.

(a) B = 5x1, x3, x46 for x = 13, 0, 7, 2, 0, 02
(b) B = 5x1, x2, x56 for x = 10, 8, 0, 0, 1, 02

Solution: We apply definition 5.35 .

(a) This basic solution is nondegenerate because none of the nonnegativity con-
straints on basic variables are active.

(b) This basic solution is degenerate because basic variable x1 = 0.

5.6 Degeneracy and Zero-Length Simplex Steps 255

Zero-Length Simplex Steps
We can see how degeneracy inhibits simplex algorithm progress by returning to the
Clever Clyde application of Table 5.3. Table 5.7 recapitulates the first three itera-
tions. Notice that the first three basic solutions encountered were the same:

x102 = x112 = x122 = 10, 0, 0, 0, 5, 100, 0, 02
But this basic solution was computed by three different basic sets:

5x5, x6, x7, x86 at t = 0

5x3, x5, x6, x76 at t = 1

5x2, x3, x5, x66 at t = 2

The two positive components were basic in every case, but there are several choices
for the two remaining basics at value = 0.

taBLe 5.7 Degenerate Iterations in Clever Clyde Application

x1 x2 x3 x4 x5 x6 x7 x8

t = 0 N N N N B B B B Phase I (min)

x(0) 0 0 0 0 5 100 0 0 d # x102 = 100

∆x for x1 1 0 0 0 0 -1 0.5 -0.4 dQ 1 = -0.9

∆x for x2 0 1 0 0 0 -1 -0.5 0.6 dQ 2 = -0.9

∆x for x3 0 0 1 0 -1 -1 -0.5 -0.4 dQ 3 = -1.9

∆x for x4 0 0 0 1 0 1 0 0 dQ 4 = 1.0

— — — —
5
1

100
1

0
0.5

0
0.4

l = 0.0

t = 1 N N B N B B B N Phase I (min)

x(1) 0 0 0 0 5 100 0 0 d # x112 = 100

∆x for x1 1 0 -1 0 1 0 1 0 dQ 1 = 1.0

∆x for x2 0 1 1.5 0 -1.5 -2.5 -1.25 0 dQ 2 = -3.75

∆x for x4 0 0 1 1 0 1 0 0 dQ 4 = 1.0

∆x for x8 0 0 -2.5 0 2.5 2.5 1.25 1 dQ 8 = 4.75

— — — —
5

1.5
100
2.5

0
1.25

— l = 0.0

t = 2 N B B N B B N N Phase I (min)

x(2) 0 0 0 0 5 100 0 0 d # x122 = 100

∆x for x1 1 0.8 0.2 0 -0.2 -2 0 0 dQ 1 = -2.0

∆x for x4 0 0 0 1 0 1 0 0 dQ 4 = 1.0

∆x for x7 0 -0.8 -1.2 0 1.2 2 1 0 dQ 7 = 3.0

∆x for x8 0 1 -1 0 1 0 0 1 dQ 8 = 1.0

— — — —
5

0.2
100

2
— — l = 25

t = 3 B B B N N B N N Phase I (min)

x(3) 25 20 5 0 0 50 0 0 d # x132 = 50

256 Chapter 5 Simplex Search for Linear Programming

The sequence of simplex directions for x1 is illustrated in Table 5.7 . At t = 1
that simplex direction was not even improving. But after a change of basis at
t = 2, the direction for x1 is completely different. As a result it now improves with-
out decreasing a zero-valued basis variable, and a positive step is possible.

examPLe 5.21: deaLing with ZerO StePS

Consider the standard-form linear program

max -x1 + 2x2

s.t. x1 - x2 - x3 = 0
x1, x2, x3 Ú 0

(a) Begin with x3 basic and apply rudimentary simplex Algorithm 5A to demon-
strate that the first iteration produces a move with step l = 0.

Simplex directions that decrease basic variables already = 0 in
a degenerate solution may produce moves with steps l = 0.

Principle 5.37

This is precisely what happens on the initial two moves of Table 5.7 . In the first
case it was decreasing ∆x8 = -0.4, which produced a minimum ratio at l = 0. In
the second, it was ∆x7 = -1.25.

Progress through Changing of Bases
Computations continued in Table 5.7 as if there were nothing troublesome about
l = 0. This is the normal way to proceed.

When degenerate solutions cause the simplex algorithm to
compute a step of l = 0, the basis should be changed according to rule 5.26
and computations continued as if a positive step had been taken.

Principle 5.38

At t = 2 in Table 5.7, such perseverance was rewarded. Solution x(2) is just as
degenerate as earlier x(0) and x(1), but real progress was made with a step of l = 25.

In virtually all practical linear programs, eventual objective function progress
will occur in this way (see Section 5.7 for exceptions). The reason is a much more
subtle form of progress going on as we change bases at each iteration.

Simplex computations will normally escape a sequence of de-
generate moves because changing basic representations of the current solu-
tion, which also changes simplex directions, eventually produce a direction
along which positive progress can be achieved.

Principle 5.39

Simplex directions are structured to keep the equality constraints satisfied, and
also nonnegativity constraints on nonbasic variables. But there is no guarantee that
a basic component of the solution will not be decreased. If that component already
happens to = 0, as it does in degenerate cases, the result may be a step of l = 0.

5.7 Convergence and Cycling with Simplex 257

5.7 cOnVergence and cycLing with SimPLex

A numerical search algorithm is said to converge if iterations make steady progress
toward a solution. It converges finitely if it is guaranteed to stop after a finite num-
ber of iterations.

Finite Convergence with Positive Steps
Does simplex converge? Yes, if there is progress at each iteration.

If each iteration of simplex search yields a positive step l, the
algorithm will stop after finitely many iterations with either an optimal solu-
tion or a conclusion of unboundedness.

Principle 5.40

(b) Continue for another iteration to demonstrate that a positive (in fact, infinite)
step l is achieved at the second step.

(c) Explain how the change of basis the first iteration constributed to this progress.

Solution: Simpled Algorithm 5A proceeds as follows:

x1 x2 x3

max c -1 2 0 b
A 1 -1 -1 0

t = 0 N N B

x(0) 0 0 0 c # x102 = 0

∆x for x1 1 0 1 cQ1 = -1

∆x for x2 0 1 -1 cQ2 = 2

— —
0

- 1-12 l = 0

t = 1 N B N

x(1) 0 0 0 c # x112 = 0

∆x for x1 1 1 0 cQ1 = 1

∆x for x3 0 -1 1 cQ3 = -2

— — — “unbounded”

(a) The only improving simplex direction at t = 0 decreases basic x3, which is
already at degenerate value = 0. A step l = 0 results.

(b) After the change of basis at t = 1, the direction for x1 now improves. It
decreases no component of the solution, so l = +∞ is possible. The model is
unbounded.

(c) Progress became possible because the change of basis produced a different
simplex direction for x1.

With two phases we can also detect infeasibility.
To see why this is true, recall that every iteration of the simplex algorithm

produces a basic feasible solution (i.e., one generated by a selected set of basic

258 Chapter 5 Simplex Search for Linear Programming

examPLe 5.22: BOunding the numBer OF SimPLex iteratiOnS

A standard-form linear program has 10 variables and 7 main constraints. Assuming
step size l 7 0 at every step, compute a finite bound on the number of iterations
that Algorithm 5A might require before terminating.

Solution: If there is positive progress at each iteration, we need only bound the
number of possible bases. Each would have 7 basic variables selected from among
the 10 available. Thus there can be at most

n!
m!1n - m2!

=
10!
7!3!

=
3628, 800
5040162 = 120

iterations before simplex computation must stop.

Degeneracy and Cycling
Degenerate linear programs (definition 5.35) pose another threat to convergence
of the simplex method. We saw in Section 5.6 (principle 5.37) that degeneracy can
sometimes lead to simplex steps with l = 0.

The concern raised by such degenerate moves of simplex search is that since
no progress is being achieved in the objective function, a sequence of iterations
might return to a basis we have already visited. Thereafter, the cycle would repeat,
and the simplex would never stop.

Cycling can occur. Table 5.8 shows a carefully crafted example. For brevity, the
table shows simplex directions only if they were actually used, but each is clearly an
improving direction. Simplex passed through the degenerate basis sequence

x1, x2, x3

x2, x3, x4

x3, x4, x5

x3, x5, x6

x3, x6, x7

x1, x3, x7

x1, x2, x3

starting and ending on the same basic set.

columns). If the model in standard form has constraint matrix A with m rows and n
columns, there are only finitely many possible bases. Each chooses m columns from
the list of n as we did in Table 5.1. This limit gives

maximum number of bases =
n!

m!1n - m2!

where k! ! k1k - 12, c, 112. Certainly, this is a large number, but it is still finite.
When each step size l is positive, no basis can ever repeat. Each time, we pur-

sue a simplex direction that strictly improves the objective. Thus there is no way we
could return to a previous one with poorer objective value.

5.7 Convergence and Cycling with Simplex 259

Despite examples like the one in Table 5.8, cycling is quite rare. In fact,
small examples of LPs that cycle are so rare that the one in Table 5.8 is rather
famous.

For the overwhelming majority of LP models it is safe to proceed just as set
out in principle 5.38 . If a step l happens to = 0, act as if it were small but positive,
and continue the search.

taBLe 5.8 Example of Cycling with Simplex

x1 x2 x3 x4 x5 x6 x7

min c 0 0 0 -0.75 20 -0.50 6 b
1 0 0 0.25 -8 -1 9 0

A 0 1 0 0.50 -12 -0.50 3 0

0 0 1 0 0 1 0 1
t = 0 B B B N N N N

x(0) 0 0 1 0 0 0 0 c # x102 = 0

∆x for x4 -0.25 -0.50 0 1 0 0 0 cQ4 = -0.75
0

0.25
0

0.50
— — — — — l = 0

t = 1 N B B B N N N

x(1) 0 0 1 0 0 0 0 c # x112 = 0

∆x for x5 0 -4 0 32 1 0 0 cQ5 = -4.0

—
0
4

— — — — — l = 0

t = 2 N N B B B N N

x(2) 0 0 1 0 0 0 0 c # x122 = 0

∆x for x6 0 0 -1 -8 -0.38 1 0 cQ6 = -2.0

— —
1
1

0
8

0
0.38

— — l = 0

t = 3 N N B N B B N

x(3) 0 0 1 0 0 0 0 c # x132 = 0

∆x for x7 0 0 -10.5 0 -0.19 10.5 1 cQ7 = -2.0

— —
1

10.5
—

0
0.19

— — l = 0

t = 4 N N B N N B B

x(4) 0 0 1 0 0 0 0 c # x142 = 0

∆x for x1 1 0 2 0 0 -2 -0.33 cQ1 = -1.0

— — — — —
0
2

0
0.33

l = 0

t = 5 B N B N N N B

x(5) 0 0 1 0 0 0 0 c # x152 = 0

∆x for x2 3 1 0 0 0 0 -0.33 cQ2 = -2.0

— — — — — —
0

0.33
l = 0

t = 6 B B B N N N N

x(6) 0 0 1 0 0 0 0 c # x162 = 0

260 Chapter 5 Simplex Search for Linear Programming

It is usually safe to assume that cycling will not occur in applied
linear programming models and thus that simplex search will converge finitely.

Principle 5.41

In those rare cases where cycling is a threat, careful choice of entering and
leaving basic variables can restore simplex convergence. However, details of such
anticycling rules are beyond the scope of this book.

5.8 dOing it eFFicientLy: reViSed SimPLex

The approach we have taken to simplex search so far emphasizes the underlying
logic of the algorithm. However, many of the steps can be executed much more ef-
ficiently with the aid of a bit of matrix algebra. In this section we outline the revised
simplex algorithm which is at the heart of large-scale codes.

Computations with Basis Inverses
Rudimentary Algorithm 5A of Section 4.3 solves a great many systems of linear
equations. We must solve one such system to find the first basic solution. Then at
each iteration a linear system is solved for every simplex direction.

The first insight leading to computational efficiency is to realize that the lin-
ear systems for any iteration have the same left-hand side. All involve solving for
weights on basic columns to express another vector.

Consider, for example, iteration t = 1 of the Top Brass computation detailed
in Table 5.2. With all nonbasic variables fixed = 0 (definition 5.16), the current
basic solution can be completed by solving the linear system

+1x1 + 0x4 + 0x5 + 0x6 = 1000
+0x1 + 1x4 + 0x5 + 0x6 = 1500
+1x1 + 0x4 + 1x5 + 0x6 = 1750
+4x1 + 0x4 + 0x5 + 1x6 = 4800

Simplex directions are similar. Definition 5.21 implicitly requires solving for
a representation of the negative of the constraint column for xj as we derive the cor-
responding simplex direction. For example, basic parts of such simplex directions ∆x
for Top Brass iteration t = 1 all come from linear equation systems

+1∆x1 + 0∆x4 + 0∆x5 + 0∆x6 = -a1.j

+0∆x1 + 1∆x4 + 0∆x5 + 0∆x6 = -a2.j

+1∆x1 + 0∆x4 + 1∆x5 + 0∆x6 = -a3.j

+4∆x1 + 0∆x4 + 0∆x5 + 1∆x6 = -a4.j

Think of the collection of columns for basic variables as a basis matrix:

B ! §1 0 0 0
0 1 0 0
1 0 1 0
4 0 0 1

¥

5.8 Doing it Efficiently: Revised Simplex 261

All needed linear systems for this B can be solved easily if we compute just once the
inverse of matrix B:

B-1 = § 1 0 0 0
0 1 0 0

-1 0 1 0
-4 0 0 1

¥
Primer 6 reviews the key facts about matrix inverses. For our purposes the im-

portant observation is that multiplication by a basis inverse can solve a correspond-
ing system of linear constraints.

Primer 6: identity and inverSe matriceS

Primer 3 reviewed general matrix arithmetic. One very special form of square
matrix is an identity matrix, denoted I, that leaves any matrix or vector un-
changed after multiplication. That is,

IA = AI = A and Ix = xI = x

for any matrix A and any vector x. The unique matrices that have this property
are those of the form

I ! • 1 0 c 0
0 1 c 0
f f f
0 c 0 1

µ
with 1 down the diagonal and 0 off-diagonal. The dimension of an I matrix is
understood to be whatever is required for multiplication to be defined.

For every square nonsingular matrix M, there is a unique square nonsin-
gular matrix M-1 such that

MM-1 = M-1M = 1

Matrix M-1 is called the inverse of M and denoted by a -1 exponent. Matrices
that are not square or are singular (see Primer 5) have no inverses.

As an example, the inverse of the matrix

M ! £5 -1 3
0 1

2 - 12
7 4 0

≥ is M-1 = £ 2
3 4 - 13

-7
6 -7 5

6

-7
6 -9 5

6

≥
because

MM-1 = £5 - 1 3
0 1

2 - 12
7 4 0

≥ £ 2
3 4 - 13

-7
6 - 7 5

6

-7
6 - 9 5

6

≥ = £1 0 0
0 1 0
0 0 1

≥
(Continued)

262 Chapter 5 Simplex Search for Linear Programming

For 2 by 2 nonsingular matrices, inverses have the simple form

ap q
r s

b
-1

=
1

ps-qr
 a s -q

-r p
b , so a 2 3

-4 5
b

-1

= a
5

22 - 3
22

4
22

2
22
b

Many computational procedures are available to find matrix inverses in higher
dimensions, but a calculator or computer is usually required.

When a matrix has an inverse, the inverse of its transpose is the transpose
of its inverse. Thus for M above,

(MT)-1 = £ 5 0 7
-1 1

2 4
3 - 12 0

≥-1

= (M-1)T = £ 2
3 - 76 - 76
4 -7 -9

-1
3

5
6

5
6

≥
Our principal use of matrix inverses is in computations involving sys-

tems of linear equations. In particular, if Q is a square nonsingular matrix, the
unique solution to the equation system is

Qx = r is x = Q-1r

This follows because multiplication of the original system on the left by Q-1
gives Q-1Qx = Q-1r, and the left-hand side is by definition Ix = x. Similarly,
multiplication by Q-1 on the right shows that the unique solution to

vQ = h is v = hQ-1

Illustrating with matrix M above and r ! 12, 1, 22, the unique solution x
to the system Mx = r, or

-5x1 - 1x2 + 3x3 = 2
-0x1 + 1

2x2 - 12x3 = 1
+7x1 - 4x2 + 0x3 = 2

 is x = M-1r = £ 14
3

-23
3

-29
3

≥
With h = 1-1, 1, 12 the unique solution v to the system vM = h, or

+5v1 + 0v2 + 7v3 = -1
-1v1 + 1

2v2 + 4v3 = 1
+3v1 - 12v2 + 0v3 = 1

 is v = hM-1 = £ -5
3

-20
2
≥

Using a representation of the current basis matrix inverse B-1,
basic components of the corresponding basic solution can be computed by ma-
trix multiplication as B-1b, and basic components of simplex directions tor
nonbasic variables xj are -B-1a1j2, where b is the vector of right-hand-side
coefficients, and a(j) is the constraint column for xj.

Principle 5.42

5.8 Doing it Efficiently: Revised Simplex 263

We can illustrate with the basis inverse above. Basic components of the corre-
sponding basic solution can be computed (principle 5.42):§x1

x4

x5

x6

¥ = B-1b = § 1 0 0 0
0 1 0 0

-1 0 1 0
-4 0 0 1

¥ §1000
1500
1750
4800

¥ = §1000
1500
750
800

¥
Similarly, basic components of the simplex direction for x2 are§∆x1

∆x4

∆x5

∆x6

¥ = -B-1a122 = - § 1 0 0 0
0 1 0 0

-1 0 1 0
-4 0 0 1

¥ §0
1
1
2

¥ = § 0
-1
-1
-2

¥
examPLe 5.23: cOmPuting with BaSiS inVerSeS

Consider the standard-form linear program

min 9x1 + 3x2 + 1x4

s.t. 2x1 + 1x2 - 1x3 = 12
1x1 + 9x3 + 2x4 = 5
x1, x2, x3, x4 Ú 0

and assume that x1 and x2 are basic.

(a) Identify the current basis matrix.

(b) Compute the current basis inverse.

(c) Use your basis inverse to compute the current basic solution.

(d) Use the basis matrix inverse to compute all simplex directions at the current
solution.

Solution:

(a) Columns for basic variables x1 and x2 make the basis matrix

B = a2 1
1 0

b

(b) Applying the formula in Primer 6 yields

B-1 =
1

122102 - 112112 a 0 -1
-1 2

b = a0 1
1 -2

b

(c) Using computation 5.42 , the components of the basic solution for basic
variables are

ax1

x2
b = B-1b = a0 1

1 -2
b a12

5
b = a5

2
b

Thus the full basic solution is x = 15, 2, 0, 02.

264 Chapter 5 Simplex Search for Linear Programming

Updating the Representation of B-1

It would require too much memory to keep handy a copy of the full basis inverse
matrix for most real linear programs. Still, production-quality codes do employ a
representation of B-1 in much the same way as we have just outlined to speed up the
solution of required linear systems.

Recall that simplex changes the basis at each iteration. If a new basis matrix inverse
(representation) had to be computed each time, some of the work we did in Sections 5.3
and 5.5 would be reduced, but an immense amount of calculation would remain.

The next insight for reducing simplex computation is that bases differ very
little from iteration to iteration. Corresponding basis matrices are not very different
either. Exactly one column of the old B (the one for the leaving basic variable) is
replaced by one new one (the column of the entering nonbasic variable); other col-
umns remain unchanged.

Fortunately, we can exploit this similarity of bases.

(d) Applying formula 5.42 , the basic components of the direction for x3 can be
computed:

a∆x1

∆x2
b = B-1a132 = - a0 1

1 -2
b a -1

9
b = a -9

19
b

Thus the full simplex direction is x = 1-9, 19, 1, 02. Basic components of the corre-
sponding direction for nonbasic x4 are

a∆x1

∆x2
b = -B-1a142 = - a0 1

1 -2
b a0

2
b = a -2

4
b

which implies a full simplex direction x = 1-2, 4, 0, 12.

The new basis inverse at each iteration can be computed from
the old by 1new B-12 = E1old B-12, where E is an update matrix constructed
from the chosen simplex direction.

Principle 5.43

That is, the inverse can be updated by a single matrix multiplication. The process is
called a pivot.

The specific form of update matrices E is indicated by the schema

leaving position R

 E = ©

1 0 c 0 -
∆x1st

∆xleave
0 c 0

0 1 c 0 -
∆x2nd

∆xleave
0 c 0

f f f f f f f
f f 1 f 0 c 0

f f f -
1

∆xleave
f

0 0 c 0 f 0 f 0

0 0 c 0 -
∆xmth

∆xleave
0 c 1

π (5.17)

5.8 Doing it Efficiently: Revised Simplex 265

Here ∆xjth denotes the simplex direction component for the jth basic variable,
and ∆xleave indicates the component for the leaving basic. The matrix is almost an
identity. Only the column position of the leaving basic variable is replaced. The
j th row of that special column is - ∆xjth>∆xleave, except on the diagonal, where it is
-1>∆xleave.

Again using iteration t = 1 of Table 5.2, the required pivot replaces x6 in the
fourth position of the old basis 5x1, x4, x5, x66 by x2. The corresponding E matrix is

E = ß1 0 0 -
0

-2

0 1 0 -
-1
-2

0 0 1 -
-1
-2

0 0 0 -
1

-2

∑
The basis inverse after the iteration can then be computed from the old B-1 above
as (pivot formula 5.43)

 new B-1 ! §1 0 0 0
0 1 0 1
1 0 1 1
4 0 0 2

¥-1

 = E1old B-12

 = ß1 0 0 -
0

-2

0 1 0 -
-1
-2

0 0 1 -
-1
-2

0 0 0 -
1

-2

∑ § 1 0 0 0
0 1 0 0

-1 0 1 0
-4 0 0 1

¥
 = § 1 0 0 0

2 1 0 -0.5
1 0 1 -0.5

-2 0 0 0.5

¥
Although it is beyond the scope of this book to provide details, update formula

5.43 also hints at how production simplex computer codes actually represent basis
inverses. Since each inverse is just E times the last, we could represent the current
inverse simply by remembering its initial form along with the Es from iterations so

266 Chapter 5 Simplex Search for Linear Programming

far. Then the process of multiplying a vector by B-1, required, say, to compute a sim-
plex direction, can be accomplished just as well by multiplying in turn by the initial
form and all the Es.

examPLe 5.24: uPdating BaSiS inVerSeS

Assume in the linear program of Example 5.23 that nonbasic x3 enters the basis and
x1 leaves. Use the simplex direction results of part (d) to compute update matrix E,
and apply the result to compute the new basis inverse.

Solution: From Example 5.23(d), the basic components of the simplex direction
for x3 are ∆x1 = -9 and ∆x2 = 19. With x1 leaving the basic set 5x1, x26, schema
(5.18) gives

E = ±
-

1
∆x1

0

-
∆x2

∆x1
1
≤ = a

1
9 0

19
9 1

b

Using this E and the old basis inverse of Example 5.23(b), updating 5.43 gives

new B-1 = E1old B-12 = a
1
9 0

19
9 1

b a0 1
1 -2

b = a0 1
9

1 1
9
b

Basic Variable Sequence in Revised Simplex
One slightly confusing aspect of equation (5.17) is its reference to basic variables by
sequential position (1st, 2nd, etc.) rather than the original subscript. For example,
the pivot above for Top Brass iteration t = 1 entered x2 to replace x6 as the 4th
basic variable. The new basis thus has

x1st ! x1, x2nd ! x4, x3rd ! x5, x4th ! x2

and columns are arranged in that order in the foregoing expressions.

Variables in revised simplex enter the basis in the same sequential
positions as the variables they replace.

Principle 5.44

This sequence-based numbering of basis variables recurs in several elements
of revised simplex computation. Readers doing calculations by hand will find it
somewhat tedious. Keep in mind, however, that revised simplex ideas are designed
for efficient computer calculation, not ease of human understanding.

examPLe 5.25: tracking BaSic VariaBLe Sequence

Assume that revised simplex computation on a linear program in standard form
begins with basic variable sequence 5x1, x2, x36.On subsequent pivots x6 replaces
x1, x5 replaces x3, and x4 replaces x6. Show the basic variable sequences for those
three iterations.

5.8 Doing it Efficiently: Revised Simplex 267

Computing Reduced Costs by Pricing
Simplex search chooses a move direction (or concludes optimality) by computing
the reduced cost of definition 5.22 for nonbasic variables xj, that is,

cQj ! c # ∆x ! a
n

k = 1
 ck ∆xk

where ∆x is the simplex direction for nonbasic xj.
The only reason for computing most of the simplex directions at any itera-

tion is to determine reduced costs. We actually use just one simplex direction in the
move. Obviously, a great deal of computation could be saved if we could obtain the
cQj without generating full simplex directions.

To see exactly how to do that, recall that the simplex direction ∆x for nonba-
sic xj is = 1 in the jth component and = 0 on components for all other nonbasics
(definition 5.21). Thus we could write

 cQj = cj + a
k∈B

ck∆xk (5.18)

where B denotes the set of basic variable subscripts. For example, in iteration t = 1
of the Top Brass application,

cQ3 = 0 + [121-12 + 0102 + 0112 + 0142] = -12

We now know how to determine the basic directional components ∆xk in ex-
pression (5.19) using a representation of the basis inverse (principle 5.42).§

∆x1st

∆x2nd

f
∆xmth

 ¥ = B-1 §

-a1, k

-a2, k

f
-am, k

 ¥
where again ∆xjth is the component of simplex direction ∆x on the j th basic vari-
able. Denoting corresponding basic objective function coefficients by cjth and sub-
stituting produces the pricing vector for the current iteration.

Solution: The initial basis has

x1st ! x1, x2nd ! x2, x3rd ! x3

As variables enter and leave, it changes to

 x1st ! x6, x2nd ! x2, x3rd ! x3

 x1st ! x6, x2nd ! x2, x3rd ! x5

 x1st ! x4, x2nd ! x2, x3rd ! x5

The pricing vector v corresponding to the current basis 5x1st,
x2nd, c,xmth6 is

v ! 1c1st, c2nd, c, cmth2B-1

Definition 5.45

268 Chapter 5 Simplex Search for Linear Programming

Then, using formula 5.42 , equation (5.19) becomes

 cQj = cj + 1c1st, c2nd, c, cmth2 # § ∆x1st

∆x2nd

f
∆xmth

¥
 = cj - 1c1st, c2nd, c, cmth2 B-1 § a1, j

a2, j

f
am, j

¥
 = cj - v # § a1, j

a2, j

f
am, j

¥
We see that reduced costs cQj can be computed without explicitly generating

simplex directions.

Reduced costs can be computed directly from original data as
cQj = cj - v # a1j2, where v is the pricing vector of the current iteration and a(j)
is the original constraint matrix column for variable xk .

Principle 5.46

Again we illustrate with iteration t = 1 of Table 5.2. The pricing vector for that
iteration is

v = 1c1st, c2nd, c, cmth2 B-1 = 112, 0, 0, 02§ 1 0 0 0
0 1 0 0

-1 0 1 0
-4 0 0 1

¥ = 112, 0, 0, 02

Then reduced costs follow as

 cQ2 = c2 - v # a122 = 9 - 112, 0, 0, 02 # §0
1
1
2

¥ = 9

 cQ3 = c3 - v # a132 = 0 - 112, 0, 0, 02 # §1
0
0
0

¥ = -12

Formula 5.46 changes absolutely nothing about the value of the reduced costs,
but it decreases enormously the effort to compute them. We now need to compute only
one simplex direction explicitly—the one that the nonbasic variable was chosen to enter.

5.8 Doing it Efficiently: Revised Simplex 269

Revised Simplex Search of Top Brass Application
We now have all the pieces of the revised simplex procedure detailed in Algorithm
5C. Table 5.9 shows the complete revised simplex search of the Top Brass Trophy
application done earlier in Table 5.2. It is important to note that the sequence of
basic feasible solutions encountered is exactly the same in the two tables. Only the
method of computation at intermediate steps has changed.

To avoid confusion about sequential numbering of basis variables, bases in
Table 5.9 are marked with their positions. For example, the basis to start iteration
t = 3 has x1 as the first basic, x2 as the fourth basic, x3 as the third basic, and x4 as the
second basic. The variables x5 and x6 are nonbasic.

In Table 5.9 we maintain an updated representation of the basis matrix inverse
at each iteration. That of iteration t = 0 is an identity matrix because the corre-
sponding B is an identity, and it is easy to check that the inverse of an identity matrix
is an identity matrix.

examPLe 5.26: cOmPuting reduced cOStS By Pricing

Consider the linear program

min 3x1 + 100x2 + 12x3 - 8x4

s.t. 3x1 + 1x2 - 1x3 = 90
-1x1 - 1x2 + 1x4 = 22
x1, x2, x3, x4 Ú 0

Assume that the current basic variable sequence is 5x3, x16.

(a) Compute the corresponding basis inverse.

(b) Compute the associated pricing vector.

(c) Compute the reduced costs on nonbasic variables without generating any sim-
plex directions.

Solution:

(a) In the sequence given, the basis inverse matrix is

B-1 = a -1 3
0 -1

b
-1

= a -1 -3
0 -1

b

(b) Applying definition 5.46 , the associated pricing vector is

v = 1c1st, c2nd2B-1 = 112, 32 a -1 -3
0 -1

b = 1-12, -392

(c) We can now compute all reduced costs via principle 5.46 .

 cQ2 = c2 - v # a122 = 100 - 1-12, -392 # 11, -12 = 73

 cQ4 = c4 - v # a142 = -8 - 1-12, -392 # 10, 12 = 31

270 Chapter 5 Simplex Search for Linear Programming

taBLe 5.9 Revised Simplex Search of Top Brass Trophy Application

x1 x2 x3 x4 x5 x6

max c 12 9 0 0 0 0 b
1 0 1 0 0 0 1000
0 1 0 1 0 0 1500

A 1 1 0 0 1 0 1750
4 2 0 0 0 1 4800

t = 0 N N 1st 2nd 3rd 4th

x(0) 0 0 1000 1500 1750 4800 c # x102 = 0

B-1 = §1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

¥ # v = §0
0
0
0

¥
cQj 12 9 0 0 0 0

∆x for x1 1 0 -1 0 -1 -4

— —
1000

- 1-12 —
1750

- 1-12
4800

- 1-12 l = 1000

t = 1 1st N N 2nd 3rd 4th

x(1) 1000 0 0 1500 750 800 c # x112 = 12,000

B-1 = § 1 0 0 0
0 1 0 0

-1 0 1 0
-4 0 0 1

¥ # v = §12
0
0
0

¥
cQj 0 9 -12 0 0 0

∆x for x2 0 1 0 -1 -1 -2

— — —
1500

- 1-12
750

- 1-12
800

- 1-22 l = 400

t = 2 1st 4th N 2nd 3rd N

x(2) 1000 400 0 1100 350 0 c # x122 = 15,600

B-1 = § 1 0 0 0
 2 1 0 -0.5
 1 0 1 -0.5
-2 0 0 0.5

¥ , v = § -6
 0
 0
 4.5

¥
cQj 0 0 6 0 0 -4.5

∆x for x3 -1 2 1 -2 -1 0

1000
- 1-12

— — 1100
- 1-22

350
- 1-12 — l = 350

t = 3 1st 4th 3rd 2nd N N

x(3) 650 1100 350 400 0 0 c # x132 = 17,700

B-1 = §0 0 -1 0.5
0 1 -2 0.5
1 0 1 -0.5
0 0 2 -0.5

¥ , v = §0
0
6
1.5

¥
cQj 0 0 0 0 -6 -1.5 “optimal”

5.8 Doing it Efficiently: Revised Simplex 271

Algorithm 5c: reviSed Simplex SeArch
For lineAr progrAmS

Step 0: initialization. Choose any starting feasible basis, and construct a
representation of the corresponding basic column matrix inverse B-1. Then
use that representation to solve BxB = b for basic components of the initial
solution x(0), set all nonbasic xj

102 d 0, and initialize solution index t d 0.
Step 1: pricing. Use the representation of the current basic column inverse B-1

to solve vB = cB for pricing vector v where cB is the vector of basic objective
function coefficients. Then evaluate reduced costs cQ j d cj - v # a1j2 for each
nonbasic xj.

Step 2: optimality. If no cQ j 7 0 for a maximize problem (or no cQ j 6 0 for
a minimize), then stop; current solution x1t2 is globally optimal. Otherwise,
choose an entering nonbasic variable xp with improving cQp.

Step 3: Simplex direction. Construct the simplex direction ∆x1t + 12 for
nonbasic variable xp using the representation of current basic column inverse
B-1 to solve B∆x = -a1p2 for basic components.

Step 4: Step Size. If there is no limit on feasible moves in simplex direc-
tion ∆x1t + 12 (all components are nonnegative), stop; the given model is un-
bounded. Otherwise, choose leaving variable xr so that

xr
1t2

- ∆xr
1t + 12 = min e

xj
1t2

- ∆xj
1t + 12 :∆xj

1t + 12 6 0 f and set l d
xr
1t2

- ∆xr
1t + 12

Step 5: new point and Basis. Compute the new solution

x1t + 12 d x1t2 + l∆x1t + 12

and replace xr in the basis by xp. Also construct the associated pivot ma-
trix e and update the basis inverse representation as eB-1. Then advance
t d t + 1, and return to Step 1.

The next three iterations update B-1 via formula 5.43 . Required E matrices
are, respectively,

® -
1

-1
0 0 0

-
0

-1
1 0 0

-
-1
-1

0 1 0

-
-4
-1

0 0 1

 ∏ , ®1 0 0 -
0

-2

0 1 0 -
-1
-2

0 0 1 -
-1
-2

0 0 0 -
1

-2

∏ , and ®1 0 -
-1
-1

0

0 1 -
-2
-1

0

0 0 -
1

-1
0

0 0 -
2

-1
1

∏
At each iteration of revised simplex, reduced costs cQj are computed directly

using pricing vector v. Table 5.9 shows all vS, and the resulting cQj, boxing the one

272 Chapter 5 Simplex Search for Linear Programming

selected as improving at each iteration. The simplex direction associated with that
improving reduced cost, which follows immediately in the table, is the only one
explicitly generated at each iteration.

Once a move direction has been selected, the revised simplex makes the step
size l decision exactly as in the earlier simplex algorithm. A new basic solution
x1t + 12 is computed, a leaving variable is selected, the basis inverse representation is
updated, and processing continues.

5.9 SimPLex with SimPLe uPPer and LOwer BOundS

In Section 5.1 we showed how LP standard form converts all inequalities of a prob-
lem to nonnegativity constraints xj Ú 0. In later sections we demonstrated how easy
this form makes construction of basic solutions, simplex directions, and so on.

Almost all those simplifications would follow just as well if we allowed
inequalities to take the slightly more general simple lower-bound form

xj Ú /j

or simple upper-bound form

xj … uj

Here the /j and uj are given model constants. Nonnegativities are just the special
case of simple lower bounds with /j = 0. In this section we explore briefly how the
revised simplex method of Section 5.8 can be modified to encompass simple lower
and upper bounds.

Lower and Upper-Bounded Standard Form
The standard form for linear programs with simple lower and upper bounds is

 min 1or max 2 a
n

j = 1
 cj xj

 s.t. a
n

j = 1
 ai, j xj = bi for all i = 1, 2, c, m

 uj Ú xj Ú /j for all j = 1, 2, c, n

Collecting lower and upper bounds in vectors / and u produces the corresponding
matrix form.

In matrix notation, the lower and upper-bounded standard
form for linear programs is

min 1or max 2 c # x
s.t. Ax = b

u Ú x Ú /

Definition 5.47

Feasibility requires that uj Ú /j , and we allow the possibility that uj = ∞ , or
/j = -∞ , or both.

5.9 Simplex with Simple Upper and Lower Bounds 273

Often, allowing simple bounds in this way considerably reduces the number of
rows m in main constraints Ax = b. The result is a savings in most of the complex
steps of the simplex algorithm, such as generating simplex directions and updating
B-1. For example, the Top Brass model of Figure 5.5 required that m = 4 rows in
Tables 5.2 and 5.9; it needs only that m = 2 in lower or upper-bounded form.

x1 x2 x5 x6

max c 12 9 0 0 b
1 1 1 0 1750
4 2 0 1 4800

/ 0 0 0 0
u 1000 1500 ∞ ∞

Notice that only two slack variables are now required. We continue to call them x5
and x6, for consistency with Figure 5.5.

examPLe 5.27: cOnStructing LOwer-and uPPer-BOunded
Standard FOrm

Place the following linear program in lower- and upper-bounded standard form.

 min 3x1 - x2 + x3 + 11x4

 s.t. x1 + x2 + x3 + x4 = 50

 x1 … 30

 3x1 + x4 … 90

 9x3 + x4 Ú 5

 x2 … 10

 x3 Ú -2

 x1, x2 Ú 0

Solution: Nonnegative slack variables x5 and x6 are required in the third and
fourth constraints, but the rest of the model, including unrestricted variable x4,
can be accommodated by lower- and upper-bounded standard form 5.47 . A full
coefficient array is

x1 x2 x3 x4 x5 x6

min c 3 -1 1 11 0 0 b
1 1 1 1 0 0 50
3 0 0 1 1 0 90
0 0 9 1 0 -1 5

/ 0 0 -2 - ∞ 0 0
u 30 10 ∞ ∞ ∞ ∞

274 Chapter 5 Simplex Search for Linear Programming

Basic Solutions with Lower and Upper Bounds
The main idea of basic solutions is to make active the inequalities for all nonbasic
variables, then solve for the basics. With lower and upper bounds there may be
choices for each nonbasic xj, depending on which of /j and uj are finite.

Basic solutions in lower- and upper-bounded simplex set non-
basics to either (finite) lower bound /j or (finite) upper bound uj and solve
Ax = b for the basics.

Principle 5.48

The solution is basic feasible if computed basic values satisfy their lower- and
upper-bound constraints

uj Ú xj Ú /j for all j basic

The linear system to be solved in computing basic variable values has the form

 a
j∈B

 ai, jxj
1t2 = bi - a

j∈L
 ai, j/j - a

j∈U
 ai, juj for all i = 1, c, m (5.19)

where L indexes the set of lower-bounded nonbasics and U the set of upper-bounded
nonbasics. Except for the more complicated right-hand side, it is no more difficult to
solve than that of the ordinary simplex.

examPLe 5.28: cOmPuting LOwer- and uPPer-BOunded
BaSic SOLutiOnS

Consider the linear program

min -2x1 +5x2 +3x3

s.t. 1x1 -1x2 +3x4 = 13
2x1 +1x2 +2x3 -2x4 = 6
6 Ú x1 Ú 4, 10 Ú x2 Ú -10, 5 Ú x3 Ú 1, 3 Ú x4 Ú 2

Compute the basic solution having x2 and x3 basic, x1 nonbasic lower bounded,
and x4 nonbasic upper bounded.

Solution: Following definition 5.48 , nonbasic variables will be fixed:

x1 = /1 = 4 and x4 = u4 = 3

We solve for basic components in equations (5.20):

 -1x2 +0x3 = 13 - 112142 - 1-32132 = 0

 +1x2 +2x3 = 6 - 122142 - 1-22132 = 4

The unique solution is x2 = 0, x3 = 2, implying a full basic solution of x = 14, 0, 2, 32.

Unrestricted Variables with No Bounds
Sometimes models contain unrestricted variables that can take on any value.
Examples include inventory levels where backordering is allowed and temperatures.

5.9 Simplex with Simple Upper and Lower Bounds 275

Increasing and Decreasing Nonbasic Variable Values
Simplex directions ∆x are constructed to be feasible when nonbasic xj are increased.
The jth directional component is ∆xj = +1.

This logic works fine for lower-bounded nonbasic variables because the only
feasible move is an increase. Tests for improvement are as in principle 5.23 .

In such cases /j = -∞ and uj = ∞ . With neither finite, the variables cannot be non-
basic under definition 5.48 .

Unrestricted variables must be basic in every lower- and upper-
bounded basic solution.

Principle 5.49

The simplex direction ∆x for lower-bounded nonbasic xj
improves in a maximize problem if cQj 7 0, and in a minimize problem if cQj 6 0.

Principle 5.50

The new element in lower- and upper-bounded simplex comprises upper-
bounded nonbasic variables xj. If they are to change values and stay feasible, they
must decrease (i.e., the j th directional component of a move must be negative).

 A little review of the derivations in Section 4.3 will show that the direction
decreasing nonbasic xj changing no other nonbasic, and maintaining Ax = b is
 precisely the negative of simplex direction increasing xj. Improvement tests are
similarly reversed.

Negative simplex direction -∆x for upper-bounded nonbasic xj
improves in a maximize problem if cQj 6 0, and in a minimize problem if cQj 7 0.

Principle 5.51

examPLe 5.29: teSting SimPLex directiOnS in LOwer
and uPPer FOrmat

Return to the linear program of Example 5.28. Compute reduced costs for all non-
basic variables, and determine which could enter to improve the objective value.

Solution: Basis matrix

B = a -1 0
1 2

b has inverse B-1 = a -1 0
1
2

1
2
b

Thus, pricing vector

v = cBB-1 = 15.32 a -1 0
1
2

1
2
b = 1 - 7

2, 3
22

Then, applying computation 5.46 yields

 cQ1 = c1 - v # a112 = -2 - 1 - 7
2, 32 2 # 11, 22 = -1

2

 cQ4 = c4 - v # a142 = 0 - 1 - 7
2, 32 2 # 13, -22 = 27

2

These reduced costs both qualify as improving under conditions 5.50 and 5.51 .

276 Chapter 5 Simplex Search for Linear Programming

Step Size with Increasing and Decreasing Values
Step size rule 5.24 assumes that nonbasic variables always increase and that the
lower bound of every basic variable is zero. With a lower- and upper-bounded sim-
plex, many more possibilities exist. If a basic variable is decreasing from value xk,
the maximum feasible decrease is now 1xk - /k2. If a basic variable is increasing
from value xk, the maximum feasible increase is 1uk - xk2. Also, the changing
nonbasic variable may itself fix l because it can feasibly increase or decrease only
1uk - /k2. These cases lead to a more complex step size rule.

With upper and lower bounds, the maximum feasible step size
l in direction d∆x 1d = {12 is l = min5l-, l+6, where

 l- = min e
xj
1t2 - /j

-d ∆xj
 : d ∆xj 6 0 f 1+∞ if none2

 l+ = min e
uj - xj

1t2

d ∆xj
 : d ∆xj 7 0 f 1+∞ if none2

Principle 5.52

examPLe 5.30: determining SteP SiZe in LOwer- and
uPPer-BOunded SimPLex

Return again to the example of Example 5.28. Example 5.29 established that both
nonbasic variables qualify to enter. Determine the corresponding stepsize, leaving
variable for each.

Solution: Using the results of Example 5.29, basic components of the simplex
directions for x1 are

a∆x2

∆x3
b = -B-1a112 = - a -1 0

1
2

1
2
b a1

2
b = a 1

-3
2
b

The full direction is ∆x = 11, 1, -3
2, 02. With increasing orientation d = +1, rule

5.52 gives

 l- d min e 2 - 1
3
2

 f =
2
3

 l+ d min e 6 - 4
1

,
10 - 0

1
 f = 2

 l d min 52
3, 26 = 2

3

The leaving variable, which set the value of l, is the basic x3.
Basic components of the simplex directions for x4 are

a∆x2

∆x3
b = -B-1a142 = - a -1 0

1
2

1
2
b a 3

-2
b = a 3

-1
2
b

If l = ∞ the problem is unbounded.

5.9 Simplex with Simple Upper and Lower Bounds 277

Case with No Basis Change
The third possibility above, where l is established by the changing nonbasic itself,
presents another new issue. We have no leaving basic variable.

making the full direction ∆x = 10, 3, -1
2, 12. With decreasing orientation d = -1,

rule 5.52 gives

 l- d min e 0 - 1-102
3

,
3 - 2

1
 f = 1

 l+ d min e 5 - 2
1
2

 f = 6

 l d min 51, 66 = 1

This time the leaving variable is the nonbasic x4 itself.

If a changing nonbasic establishes step size l, it merely switches
from lower-bounded to upper-bounded status, or vice versa. We need not
change the basis or the associated representation of B-1.

Principle 5.53

Lower- and Upper-Bounded Simplex Algorithm
We are now ready to state the full lower- and upper-bounded revised simplex
Algorithm 5D employed in most commercial computer codes. As in earlier sections.
a1j2 denotes the (lower- and upper-bounded) standard-form constraint column for
xj, and cB ! 1c1st, c2nd, c, cmth2 represents the vector of basic variable objective
function coefficients.

Lower- and Upper-Bounded Simplex on Top Brass Application
Application Table 5.10 returns one last time to the Top Brass Trophy application of
Figure 5.5. It details the lower- and upper-bounded simplex computations parallel-
ing those in Tables 5.2 and 5.9.

With lower and upper bounds, only 2 basic variables must be chosen. We select
the two slacks and make both x1 and x2 nonbasic lower bounded. This produces start-
ing basic feasible solution x102 = 10, 0, 1750, 48002 with objective function value = 0.
The corresponding basis inverse B-1 and pricing vector v are shown in Table 5.10.

At iteration t = 0, both nonbasic lower-bounded variables have positive re-
duced costs for this v. We choose the one for x1, making p = 1 and orientation
d = +1 to indicate increase.

Next we compute step size l by rules 5.52 . Each unit step in that direction
decreases x5 by 1 and x6 by 4, so that

l- d min e 1750 - 0
1

,
4800 - 0

4
 f = 1200

The move also increases x1 by 1 per unit step, making

l+ d min e 1000 - 0
1

 f = 1000

278 Chapter 5 Simplex Search for Linear Programming

The maximum step feasible for both sorts of change is

l = min [l-, l+] = min51200, 10006 = 1000

with r = 1.
A step of size l in the chosen simplex direction moves us to new solution

x112 = 11000, 0, 750, 8002 at objective value 12,000. Since it was the changing
nonbasic x1 that fixed l (i.e., p = r), no modification of the basis is required
(principle 5.41). The variable x1 merely switches to nonbasic upper bounded.

Iteration t = 1 proceeds in much the same way except that this time we con-
sider both decreasing nonbasic x1 and increasing x2. Only the second satisfies tests for
improvement, so the ∆x for x2 is pursued until the basic x6 drops to /6 = 0 at step
l = 400. The new solution is x122 = 11000, 400, 350, 02, with objective value 15,600.

Algorithm 5d: lower- And upper-Bounded
reviSed Simplex

Step 0: initialization. Choose any starting feasible basis with initial nonbasic
j ∈ L at /j and nonbasic j ∈ U at uj, and construct a representation of the
corresponding basis inverse B-1. Then use the representation of B-1 to solve

a
j∈B

 ai, j xj
102 = bi - a

j∈L
 ai, j/j - a

j∈U
 ai, juj for all i = 1, c, m

for basic components j ∈ B of initial solution x(0), and set solution index t d 0.
Step 1: pricing. Use the representation of the current basic column matrix in-

verse B-1 to solve vB = cB for pricing vector v, where cB is the vector of basic
objective function coefficients. Then evaluate reduced costs cQ j d cj - v # a1j2
for each nonbasic xj.

Step 2: optimality. If no cQ j indicates improvement (rules 5.50 and 5.51),
stop; current solution x(t) is globally optimal. Otherwise, choose an entering
nonbasic variable xp with improving cQp and set orientation d = +1 if the
nonbasic is lower bounded and d = -1 if the nonbasic is upper bounded.

Step 3: Simplex direction. Construct the simplex direction ∆ x1t + 12 for
nonbasic variable xp using the representation of current basic column inverse
B-1 to solve B∆x = -d a1p2 for basic components.

Step 4: Step Size. Apply rule 5.52 to determine the maximum feasible step
l in direction ∆x1t + 12. If there is no limit 1l = ∞ 2, stop; the given model is
unbounded. Otherwise, choose as leaving xr any blocking variable that estab-
lished the value of l in 5.52 .

Step 5: new point and Basis. Compute the new solution

x1t + 12 d x1t2 + ld ∆x1t + 12

If p ≠ r, also replace xr in the basis by xp, construct the associated pivot
matrix e, and update the basis inverse representation as eB-1. Then advance
t d t + 1, and return to Step 1.

5.9 Simplex with Simple Upper and Lower Bounds 279

taBLe 5.10 Upper- and Lower-Bounded Simplex Search of Top Brass
Trophy Application

x1 x2 x5 x6

max c 12 9 0 0 b
1 1 1 0 1750
4 2 0 1 4800

/ 0 0 0 0
u 1000 1500 — —

t = 0 L L 1st 2nd

x102 0 0 1750 4800 c # x102 = 0

B-1 = a1 1
0 1

b , v = a0
0
b

cQj 12 9 0 0

∆x for x1 1 0 -1 -4

1000
1

—
1750

1
4800

4
l = 1000

t = 1 U L 1st 2nd

x112 1000 0 750 800 c # x112 = 12,000

B-1 = a1 0
0 0

b , v = a0
0
b

cQj 12 9 0 0

∆x for x2 0 1 -1 -4

— 1500
1

750
1

800
2

l = 400

t = 2 U 2nd 1st L

x122 1000 400 350 0 c # x122 = 15,600

B-1 = a1 -0.5
0 0.5

b , v = a0
4.5

b

cQj -6 0 0 -4.5

∆x for x1 -1 2 -1 0

1000
1

1100
2

350
1

—
l = 350

t = 3 1st 2nd L L

x132 650 1100 0 0 c # x132 = 17,700

B-1 = a -1 0.5
 2 -0.5

b , v = a6
1.5

b

cQj 0 0 -6 -1.5 “optimal”

At iteration t = 2 we encounter a nonbasic decreasing from its upper bound.
With cQ1 = -6 6 0, the negative simplex direction for x2 helps our maximize
objective (5.51). Orientation indicator d = -1. We step distance l = 350 in
direction d∆x to reach new point x132 = 1650, 1100, 0, 02 at value of 17 ,700. Iteration
t = 3 completes the computation, verifying that no available simplex move can
improve the objective function.

280 Chapter 5 Simplex Search for Linear Programming

5-1 Consider the linear constraints

 -w1 + w2 … 1

 w2 … 3

 w1, w2 Ú 0

(a) Sketch the feasible space in a 2-dimen-
sional plot.

(b) Determine geometrically whether each
of the following solutions are infeasi-
ble, boundary, extreme, and/or interior:
w112 = (2, 3),w122 = 10, 32, w132 = 12, 12,
w142 = (3, 3), and w152 = 12, 42.

(c) For those points of part (b) that are fea-
sible, demonstrate algebraically whether
they are boundary or interior.

(d) Determine for each of the points in part
(b) whether a suitable (nonconstant) ob-
jective function could make the point
optimal or uniquely optimal. Explain.

(e) Determine which of the points correspond
to basic solutions, and when they do, iden-
tify the defining active constraints.

5-2 Do Exercise 5-1 for the LP

3w1 + 5w2 … 15

5w1 + 3w2 … 15

w1, w2 Ú 0

and points w112 = 10, 02, w122 = 11, 12, w132 =
12, 02, w142 = 13, 32 and w152 = 15, 02.

5-3 Place each of the following LPs in standard
form and identify the corresponding A, b, and c
of definition 5.4 .

(a) min 4x1 + 2x2 - 33x3

s.t. x1 - 4x3 + x3 … 12

 9x1 + 6x3 = 15

 -5x1 + 9x2 Ú 3

 x1, x2, x3 Ú 0

(b) max 45x1 + 15x3

 s.t. 4x1 - 2x2 + 9x3 Ú 22

 -2x1 + 5x2 - x3 = 1

 x1 - x2 … 5

 x1, x2, x3 Ú 0

(c) max 151x1 + 2x22 + 111x2 - x32
 s.t. 3x1 Ú x1 + x2 + x3

 0 … xj … 3 j = 1, c, 3

(d) max - 53x1 + 331x1 + 3x32
 s.t. xj + 1 … xj + 1 j = 1, 2

 a 3
j = 1 xj = 12

 xj Ú 0 j = 1, c, 3

(e) min 2x1 + x2 - 4x3

 s.t. x1 - x2 - 5x3 … 10

 3x2 + 9x1 = -6

 x1 Ú 0, x3 … 0

(f) min 4x1 - x2

 s.t. -4x1 - x2 + 7x3 = 9

 -x1 - x2 + 3x3 … 14

 x2 … 0, x3 Ú 0

5-4 Consider the linear constraints

 -y1 + y2 … 2

 5y1 … 10

 y1, y2 Ú 0

(a) Sketch the feasible set in a 2-dimensional
plot.

(b) Add slacks y3 and y4 to place constraints
in LP standard form.

(c) Determine whether columns of stan-
dard form corresponding to each of the
following sets of variables form a basis:
5y1, y26, 5y2, y36, 5y3, y46, 5y1, y46, 5y36,
5y1, y2, y46.

(d) For each set that does form a basis in part
(c), determine the corresponding basic solu-
tion and classify it as feasible on infeasible.

(e) Identify each solution of part (d) on your
plot of part (a), and comment on the con-
nection between basic feasible solutions
and extreme points.

5-5 Do Exercise 5-4 for the LP

 y1 + 2y2 … 6

 y2 … 2

 y1, y2 Ú 0

ExERCISES

 Exercises 281

and possible basic sets 5y1, y26,5y2, y36,5y16,
5y2, y46,5y2, y3, y46,5y1, y36.

5-6 Write all conditions that a feasible direction
∆w must satisfy, at the solution w indicated, to
each of the following standard-form systems of
LP constraints.

(a) 5w1 + 1w2 - 1w3 = 9 at w = 12, 0, 12
 3w1 - 4w2 + 8w3 = 14

 w1, w2, w3 Ú 0

(b) 4w1 - 2w2 + 5w3 = 34 at w = 11, 0, 62
 4w1 + 2w2 - 3w3 = -14

 w1, w2, w3 Ú 0

5-7 Following is a maximizing, standard-form
linear program and a classification of variables as
basic and nonbasic.

x1 x2 x3 x4

max c 10 1 0 0 b

-1 1 4 21 13

2 6 0 -2 2

B N B B

(a) Compute the current basic solution.
(b) Compute all simplex directions available

at the current basis.
(c) Verify that all your simplex directions are

feasible at the current basic solution.
(d) Determine whether each of the simplex

directions is improving.
(e) Regardless of whether it improves, deter-

mine the maximum step that preserves
feasibility in each simplex direction and
the new basis that would result after such
a step.

5-8 Do Exercise 5-7 for minimizing the standard
form LP

x1 x2 x3 x4

min c 8 -5 0 1 b

13 2 3 1 7

-4 1 0 -1 -1

N N B B

5-9 Consider the linear program

 max 3z1 + z2

 s.t. -2z1 + z2 … 2

 z1 + z2 … 6

 z1 … 4

 z1, z2 Ú 0

(a) Solve the problem graphically.
(b) Add slacks z3, z4, and z5 to place the

model in standard form.
(c) Apply rudimentary simplex Algorithm 5A

to compute an optimal solution to your
standard form starting with all slacks basic.

(d) Plot your progress in part (c) on the
graph of part (a).

5-10 Do Exercise 5-9 for the LP

 max 2z1 + 5z2

 s.t. 3z1 + 2z2 … 18

 z1 … 5

 z2 … 3

 z1, z2 Ú 0

5-11 Consider the linear program

 max 10y1 + y2

 s.t. 3y1 + 2y2 Ú 6

 2y1 + 4y2 … 8

 y1, y2 Ú 0

(a) Solve the problem graphically. Be sure to
identify all constraints, show contours of
the objective, outline the feasible space,
and justify that an optimal solution is
y1

* = 4, y2
* = 0.

(b) Place the above LP in standard form using
nonnegative slack variables y3 and y4.

(c) Explain why a main constraint in the origi-
nal model will be active at a given solution
exactly when the corresponding solution
in standard form has its slack’s nonnega-
tivity constraint active at value = 0.

5-12 Consider the standard-form linear program

 min x2 + x4 + x5

 s.t. -2x1 + x2 + 2x4 = 7

 x4 + x5 = 5

 x2 + x3 - x4 = 3

 x1, c, x5 Ú 0

282 Chapter 5 Simplex Search for Linear Programming

(a) Compute the basic solution correspond-
ing to x1, x3, x4 basic, and explain why
it provides an appropriate place for the
 rudimentary simplex Algorithm 5A to
begin its search.

(b) Starting from the basis of part (a), apply
Algorithm 5A to compute an optimal
solution to the given LP.

5-13 Do Exercise 5-12 on standard-form linear
program

 max 5x1 - 10x2

 s.t. 1x1 - 1x2 + 2x3 + 4x5 = 2

 1x1 + 1x2 + 2x4 + x5 = 8

 x1, c, x5 Ú 0

starting with x3 and x4 basic.

5-14 Do Exercise 5-12 on standard-form linear
program

 min 2x1 + 4x2 + 6x3 + 10x4 + 7x5

 s.t. x1 + x4 = 6

 x2 + x3 - x4 + 2x5 = 9

 x1, c, x5 Ú 0

starting with x1 and x2 basic.

5-15 The following plot shows several feasible
points in a linear program and contours of its ob-
jective function.

P1

P2
P3

P4

P5

P6P7

P8

Determine whether each of the following se-
quences of solutions could have been one fol-
lowed by the simplex algorithm applied to the
corresponding LP standard form.

(a) P1,P8,P7,P6
(b) P2,P8,P7,P6
(c) P1,P3,P6
(d) P1,P4,P5,P6,P7

(e) P1,P7,P6
(f) P4,P1,P8,P7,P6

5-16 Construct the simplex dictionary form 5.28
corresponding to each of the following.

(a) The model and basis shown in Exercise 5-7
(b) The model and basis shown in Exercise 5-8

5-17 Rudimentary simplex Algorithm 5A is being
applied to optimize a linear program with objec-
tive function

 min 3w1 + 11w2 - 8w3

Determine whether each of the following simplex
directions for w4 leads to a conclusion that the
given LP in unbounded.

(a) ∆w = 11, 0, -4, 12
(b) ∆w = 11, 3, 10, 12
(c) ∆w = 11, 3, 0, 12
(d) ∆w = 10, 1, -2, 12

5-18 Consider the linear program

 max 4y1 + 5y2

 s.t. -y1 + y2 … 4

 y1 - y2 … 10

 y1, y2 Ú 0

(a) Show graphically that the model is
un bounded.

(b) Add slacks y3 and y4 to place the model
in standard form.

(c) Starting with all slacks basic, apply rudi-
mentary simplex Algorithm 5A to estab-
lish that the original model is unbounded.

5-19 Do Exercise 5-18 for the LP

 min -10y1 + y2

 s.t. -5y1 + 3y2 … 15

 3y1 - 5y2 … 8

 y1, y2 Ú 0

5-20 Setup each of the following to begin Phase I
of two-phase simplex Algorithm 5B. Also indicate
the basic variables of the initial Phase I solution.

(a) max 2w1 + w2 + 9w3

 s.t. w1 + w2 … 18

 -2w1 + w3 = -2

 3w2 + 5w3 Ú 15

 w1, w2, w3 Ú 0

 Exercises 283

(b) max 5w1 + 18w2

 s.t. 2w1 + 4w2 = 128

 7w1 + w2 Ú 11

 6w1 + 16w2 Ú 39

 w1 + 3w2 … 222

 w1, w2 Ú 0

5-21 Setup each of the models in Exercise 5-20 to
begin a big-M solution using rudimentary simplex
Algorithm 5A. Also indicate the basic variables
of the initial solution.

5-22 Consider the linear program

 max 9y1 + y2

 s.t. -2y1 + y2 Ú 2

 y2 … 1

 y1, y2 Ú 0

(a) Show graphically that the model is
infeasible.

(b) Add slacks and artificials y3, c, y5 to
setup the model for Phase I of Algorithm
5B.

(c) Apply rudimentary simplex Algorithm
5A to this Phase I problem to establish
that the original model is infeasible.

5-23 Do Exercise 5-22 for the linear program

 min 2y1 + 8y2

 s.t. y1 + y2 … 5

 y2 Ú 6

 y1, y2 Ú 0

5-24 Assuming that step size l 7 0 at every step,
compute a finite bound on the number of itera-
tions of Algorithm 5A for each of the following
standard-form linear programs.

(a) The model in Exercise 5-7
(b) The model in Exercise 5-8
(c) A model with 1150 main constraints and

2340 variables
(d) A model with 211 main constraints and

7200 variables

5-25 Rudimentary simplex Algorithm 5A is being
applied to a standard-form linear program with
variables x1, c, x5. Determine whether each of
the following basic solutions is degenerate for the
given basic variable set.

(a) B = 5x1, x2, x36, x = 11, 0, 5, 0, 02
(b) B = 5x3, x4, x56, x = 10, 0, 1, 0, 92
(c) B = 5x1, x3, x56, x = 11, 0, 5, 0, 82
(d) B = 5x1, x2, x46, x = 10, 0, 2, 0, 12

5-26 Return to Exercise 5-4 and consider adding
additional constraint y2 … 4 to the original LP.

(a) Repeat parts (a)-(c) of Exercise 5-4 with
the extra constraint, and additional slack
y5 included in all potential basis sets of
part (c).

(b) Demonstrate that in your revised standard
form LP has 3 feasible bases correspond-
ing to extreme-point 1y1, y22 = 12, 42.

(c) Explain how the condition in (b) leads
to degeneracy, and show a feasible sim-
plex direction relative to one of the basic
solutions that produces a l = 0 step to
another one.

5-27 Do Exercise 5-26 on the LP of Exercise 5-5
with additional constraint y1 … 6 and focusing
degeneracy parts on extreme point 1y1, y22 =
16, 02.

5-28 Consider the linear program

 max x1 + x2

 s.t. x1 + x2 … 9

 -2x1 + x2 … 0

 x1 - 2x2 … 0

 x1, x2 Ú 0

(a) Solve the problem graphically.
(b) Add slacks x3, c, x5 to place the model

in standard form.
(c) Apply rudimentary simplex Algorithm 5A

to compute an optimal solution to your
standard form starting with all slacks basic.

(d) Plot your progress in part (c) on the
graph of part (a).

(e) How can the algorithm be making prog-
ress when l = 0 if some moves of part
(c) left the solution unchanged? Explain.

5-29 Do Exercise 5-28 for the LP

 max x1

 s.t. 6x1 + 3x2 … 18

 12x1 - 3x2 … 0

 x1, x2 Ú 0

284 Chapter 5 Simplex Search for Linear Programming

5-30 Return to the LP of Exercise 5-7.

(a) Compute the basis matrix inverse corre-
sponding to the basic variables indicated.

(b) Compute the corresponding pricing vector
of 5.45 .

(c) Without generating the implied simplex
directions, use your pricing vector to
determine whether each of them will be
improving.

(d) For each improving simplex direction
in part (c), generate the corresponding
matrix E of 5.43 , and compute the next
basis matrix inverse.

5-31 Do Exercise 5-30 for the LP of Exercise 5-8.

5-32 Consider applying revised simplex Algorithm
5C to the tabulated standard-form LP

min c =

x1 x2 x3 x4 x5

b5 4 3 2 16

A = 2 0 1 0 6 8

0 1 1 2 3 12

starting with x1 and x2 basic.

(a) Determine the corresponding starting
basis matrix and its inverse, along with
the associated primal basic solution and
pricing vector.

(b) Use appropriate column pricing to de-
cide which nonbasics are eligible to enter
the basis, pick the one with most negative
cQj, and generate its simplex direction.

(c) Complete the rest of one iteration by (i)
choosing a step size and leaving basic
variable, (ii) updating the current basis
matrix, (iii) updating the correspond-
ing basis inverse with an appropriate
E-matrix, and (iv) updating the primal
solution and the pricing vector.

5-33 Solve each of the following standard form
linear programs by revised simplex Algorithm
5C, showing the basic inverse, the pricing vector,
and update matrix E used at each iteration. Start
from the basis specified in each original exercise.

(a) The LP of Exercise 5-12.
(b) The LP of Exercise 5-13.
(c) The LP of Exercise 5-14.

5-34 Suppose lower- and upper-bounded simplex
Algorithm 5D is being applied to a problem with
objective function

 max 3x1 - 4x2 + x3 - 4x4 + 10x5

3 main constraints, and bounds

0 … xj … 5 j = 1, c, 5

For each of the following current basic solutions
x and corresponding simplex directions ∆x, de-
termine whether the appropriate move of{∆x
is improving. Also compute the maximum step
l that could be applied without losing feasibil-
ity and the basis status of variables that would
result after such a step. Take the current basic
variables to be those strictly between lower and
upper bounds.

(a) x = 12, 2, 4, 0, 52 , ∆x = 11, -1, 0, 0, 12
for x5

(b) x = 15, 0, 2, 3, 22,

∆x = a0, 1,
1
10

, -
1
5

,
1
3
b for x2

(c) x = 10, 1, 0, 4, 22, ∆x = a0, 0, 1, -
2
5

,
2
5
b

for x3

(d) x = 15, 5, 1, 3, 1, 2, ∆x = 11, 0, 0, 4, 12
for x1

5-35 Consider the linear program

 min 5z1 + 6z2

 s.t. z1 + z2 Ú 3

 3z1 + 2z2 Ú 8

 0 … z1 … 6

 0 … z2 … 5

(a) Solve the problem graphically.
(b) Add slacks z3 and z4 to place the model

in standard form for a lower- and upper-
bounded simplex.

(c) Apply lower- and upper-bounded sim-
plex Algorithm 5D to compute an op-
timal solution to your standard form
starting with all slacks basic and orig-
inal variables nonbasic at their upper
bounds.

(d) Plot your progress in part (c) on the
graph of part (a).

 Exercises 285

5-36 Do Exercise 5-35 on the LP

 max 6z1 + 8z2

 s.t. z1 + 3z2 … 10

 z1 + z2 … 5

 0 … z1 … 4

 0 … z2 … 3

Start with original variable z1 nonbasic lower-
bounded and z2 upper-bounded.

5-37 Solve each of the following standard form
linear programs by lower- and upper-bounded
simplex Algorithm 5D, showing the basic inverse,
the pricing vector, and update matrix E used at
each iteration.

(a) The LP of Exercise 5-12 with added
upper bounds xj … 3, j = 1, c, 5, start-
ing with x1, x3, x5 basic and x2, x4 nonbasic
upper-bounded.

(b) The LP of Exercise 5-13 with added
upper bounds xj … 2, j = 1, c, 5, start-
ing with x4, x5 basic and x1, x2 nonbasic
upper-bounded.

(c) The LP of Exercise 5-14 with added
upper bounds xj … 4, j = 1, c, 6, start-
ing with x4, x5 basic and x1, x2, x3 nonbasic
upper-bounded.

REFERENCES

Bazaraa, Mokhtar, John J. Jarvis, and Hanif D.
Sherali (2010), Linear Progmmming and Network
Flows, John Wiley, Hoboken, New Jersey.

Bertsimas, Dimitris and John N. Tsitklis (1997),
Introduction to Linear Optimization. Athena Sci-
entific, Nashua, New Hampshire.

Chvátal, Vašek (1980), Linear Progmmming, W.H.
Freeman, San Francisco, California.

Griva, Igor, Stephen G. Nash, and Ariela Sofer
(2009). Linear and Nonlinear Optimization,
SIAM, Philadelphia, Pennsylvania.

Luenberger, David G. and Yinyu Ye (2008),
Linear and Nonlinear Progmmming, Springer,
New York, New York.

This page intentionally left blank

287

▪ ▪ ▪ ▪ ▪
Chapter 6

Duality, Sensitivity,
and Optimality in

Linear Programming

With the simplex and interior point methods of Chapters 5, 6, and 7 we can compute
mathematically optimal solutions to linear programming models. By comparison
to nonlinear, discrete, and other more difficult optimization forms, this is no small
achievement. Still, it rarely fulfills all an analyst’s needs.

Mathematical optima do not suffice because the constant parameters from
which they are derived—such items as costs, profits, yields, supplies, and demands—
are almost never known with certainty at the time the model is solved. Often, they
are not even within a factor of 10.

How much can we trust mathematically optimal answers to very imperfectly
parameterized models? Maybe a cost or demand controls everything. Maybe it
could change dramatically with absolutely no impact.

These are exactly the sorts of questions that sensitivity analysis tries to
 address. In Section 1.3 we explained that constants of OR models are really input
parameters—values we agree to take as fixed at the system boundary in order
to produce a tractable model. Optimal solutions simply provide a best choice of
decision variables for one fixing of the inputs. Sensitivity analysis then tries to
complete the picture by studying how results would vary with changes in param-
eter values.

Since linear programs have proved the most tractable of mathematical pro-
grams to numerical search, it should not surprise us that they also admit powerful
sensitivity analysis. In this chapter we will see how post-optimality analyses of LP
models can exploit the by-products of our search for an optimum to illuminate how
the solution might change with variations in input variables. Remarkably in fact, we
will see that there is an entirely separate dual linear program, defined on the same
input constants as the main primal model, that has optimal solutions replete with
sensitivity insights.

288 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

6.1 Generic Activities versus resources PersPective

We have encountered linear programming models drawn from a wide range of
 application settings. How can we speak about the sensitivity of their optimal solu-
tions to changes in input parameters when they model such different things?

We need a generic perspective—a standard intuition about the variables,
 constraints, and objective functions of LP models. Then, although the details will
certainly change with the model, we can still speak in broad, common terms about
the meaning of sensitivity results.

Objective Functions as Costs and Benefits
The easiest part of optimization models to interpret generically is their objective
functions. Although the exact meaning varies greatly, virtually every model we will
encounter can be thought about in terms of costs and benefits.

Optimization model objective functions usually can be inter-
preted as minimizing some measure of cost or maximizing some measure of
benefit.

Principle 6.1

Choosing a Direction for Inequality Constraints
Now consider inequality constraints. What does a Ú inequality sign typically signify?
Is a … sign any different?

Every beginning algebra student knows that there is no mathematical distinc-
tion. For example, the gasoline demand constraint of the Two Crude refining model
(2.3) can be written equivalently as either

0.3x1 + 0.4x2 Ú 2.0 or -0.3x1 - 0.4x2 … -2.0

Still, the first certainly depicts more clearly the idea that output must meet or exceed
demand.

Most constraints have a “natural” format of this sort. No absolute principle
tells us which direction is most intuitive, but a rule of thumb covers the foregoing
and most other examples.

The most natural expression of a constraint is usually the one
making the right-hand-side constant nonnegative.

Principle 6.2

Inequalities as Resource Supplies and Demands
At the level of intuitive understanding, we see that … inequalities do differ from
Ú inequalities. To assign a generic meaning, let us review some of the many …
 inequalities that we have encountered:

•	 x1 … 9 restricts the supply of Saudi petroleum in the Two Crude model (2.6) in Section
2.1.

•	 4x1 + 2x2 … 4800 in model (5.1) (Section 5.1) limits the wood supply in the Top Brass
Trophy example.

6.1 Generic Activities Versus Resources Perspective 289

•	 0.251z1>4, A,B + z1>4,A,C + z1>4,B,C2 + 0.401z1>2,A,B + z1>2, A,C + z1>2,B,C2 … 4500 enforces
the supply limit on pressing capacity in the CFPL model of Table 4.5 in Section 4.3.

•	 y11 + y12 … 20 fixes the availability of overtime in the ONB example of Table 4.7 in
Section 4.4.

Common elements are a resource and a limited supply of that resource.

Optimization model constraints of the … form usually can be
interpreted as restricting the supply of some commodity or resource.

Principle 6.3

The corresponding interpretation of Ú inequalities is as output demands.

•	 0.4x1 + 0.2x2 Ú 1.5 in model (2.6) (Section 2.1) requires jet fuel output to meet de-
mand in the Two Crude refining example.

•	 0.120x1 + 0.011x2 + 1.0x6 Ú 10 set the minimum acceptable level of chromium in the
blend of the Swedish Steel model (4.4) (Section 4.2).

•	 y1>8,A,B + y1>8,B,B + y1>8,C,B - z1>2,A,B - z1>2,A,C - z1>2,B,C Ú 0 demands produc-
tion of 1

8-inch veneer to exceed consumption in the CFPL example of Table 4.5
(Section 4.3).

•	 1y12 + 1x13 + 0.8z20 - w21 Ú 8 enforces the demand that all checks be processed by
22:00 (10 p.m.) in the ONB model of Table 4.7 (Section 4.4).

As with … inequalities, the common element is a commodity or resource, but the
direction is different.

Optimization model constraints of the Ú form usually can
be interpreted as requiring satisfaction of a demand for some commodity or
resource.

Principle 6.4

Equality Constraints as Both Supplies and Demands
Equality constraints are hybrids. Consider, for example, the Swedish Steel model
(4.4) constraint:

x1 + x2 + x3 + x4 + x5 + x6 + x7 = 1000

enforcing the requirement that ingredients in the melting furnace charge should
have a total weight of exactly 1000 kilograms. This (or any other) equality can just
as well be expressed as two opposed inequalities:

x1 + x2 + x3 + x4 + x5 + x6 + x7 … 1000

and

x1 + x2 + x3 + x4 + x5 + x6 + x7 Ú 1000

Thinking of equalities in this way makes it easy to see the hybrid.

290 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

The effect is a mixture of both limits on supply of a resource and demand for its output.

Variable-Type Constraints
Variable-type limitations such as nonnegativities are constraints in a linear program.
We can even stretch principle 6.4 to think of nonnegativities as demands for some
“positiveness” resource. Still, it usually makes more sense to keep variable-type
constraints separate.

Optimization model equality constraints usually can be inter-
preted as imposing both a supply restriction and a demand requirement on
some commodity or resource.

Principle 6.5

Nonnegativity and other sign restriction constraints are usually
best interpreted as declarations of variable type rather than supply or demand
limits on resources.

Principle 6.6

Variables as Activities
Turning now to the decision variables in an optimization model, let us again recall
some examples:

•	 x1 in the Two Crude model (2.6) (Section 2.1) chooses the amount of Saudi crude to
be refined.

•	 xp,m in the TP model (4.5) (Section 4.3) decides the amount of product p produced at
mill m.

•	 zh in the ONB model of Table 4.7 (Section 4.4) sets the number of part-time employees
starting at hour h.

•	 xj in the Swedish Steel model (4.4) (Section 4.2) establishes the number of kilograms of
ingredient j used in the blend.

The common element shared by these and other examples is a sense of activity.

Decision variables in optimization models can usually be
 interpreted as choosing the level of some activity.

Principle 6.7

LHS Coefficients as Activity Inputs and Outputs
Summarizing, our generic linear program chooses activity levels of appropriate sign
to minimize cost or maximize benefit, subject to … supply limits on input resources,
Ú demand requirements for output resources, and = constraints doing both. It fol-
lows immediately how we should think about the objective function and constraint
coefficients on decision variables.

Nonzero objective function and constraint coefficients on LP
decision variables display the impacts per unit of the variable’s activity on
 resources or commodities associated with the objective and constraints.

Principle 6.8

6.1 Generic Activities Versus Resources Perspective 291

Sometimes those impacts become clearer in block diagrams such as those of
Figure 6.1. Each variable or activity forms a block. Inputs and outputs to the block
indicate how a unit of the activity affects the constraints and objective. For example,
each unit (thousand barrels) of Saudi petroleum refined in the Two Crude example
(2.6) inputs 1 unit (thousand barrels) of Saudi availability and 20 units (thousand

Two Crude Application 2.1

thousand barrels

of Saudi

petroleum

processed

(x1)

1000 barrels

Saudi availability

0.3 unit (thousand barrels)

gasoline

ONB Application 4.5

full-time

check processor

starting 11 A.M.

(x11)

CFPL Application 4.4

peeling

“good”-quality

log from supplier

1 into -inch

green veneer

(wG, 1, 1/16)

$100,000

cost

0.4 unit (thousand barrels)

jet fuel

0.2 unit (thousand barrels)

lubricants

400 sq ft -inch

A green veneer

1
16

1
16

700 sq ft -inch

B green veneer

1
16

900 sq ft -inch

C green veneer

1
16

1 log of supplier 1

“good” availability

1 imprinting machine

11 A.M.–12 noon

1 imprinting machine

1–2 P.M.

1000 checks processed

1–2 P.M.

1000 checks processed

11A.M.–12 noon

1000 checks processed

3–4 P.M.

1000 checks processed

7–8 P.M.

–unit of 11 A.M. shift

overtime potential

1 imprinting machine

3–4 P.M.

1 imprinting machine

7–8 P.M.

$90 cost

$340 Canadian
cost

1
2

FiGure 6.1 Inputs and Outputs for Activities in Various Models

292 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

dollars) cost to output 0.3 unit (thousand barrels) of gasoline, 0.4 unit (thousand
barrels) of jet fuel, and 0.2 unit (thousand barrels) of lubricants.

The second diagram in Figure 6.1 comes from the CFPL model of Table 4.5.
Peeling “good”-quality logs from supplier 1 as 1

16-inch green veneer consumes log
availability and cost to obtain specified amounts of different veneer grades.

Finally, we have an activity from the ONB model of Table 4.7. Using a fulltime
employee on the 11 a.m. shift in the ONB example inputs cost and equipment for
each on-duty hour to output check processing through the shift and overtime poten-
tial. Each input or output produces a nonzero model coefficient.

exAmPle 6.1: GenericAlly interPretinG lineAr ProGrAms

Give a generic interpretation of the objective function, constraints variables, and
coefficients in the following linear program:

max + 13x1 + 24x2 + 5x3 + 50x4

s.t. + 1x1 + 3x2 Ú 89

-3x3 - 5x4 … -60

+ 10x1 + 6x2 + 8x3 + 2x4 … 608

+ 1x2 + 1x4 … 28

x1, c, x4 Ú 0

Solution: We begin by reversing the direction of the second inequality to make its
right-hand side nonnegative (principle 6.2):

max + 13x1 + 24x2 + 5x3 + 50x4

s.t. + 1x1 + 3x2 Ú 89

+ 3x3 + 5x4 Ú 60

+ 10x1 + 6x2 + 8x3 + 2x4 … 608

+ 1x2 + 1x4 … 28

x1, c, x4 Ú 0

We may now interpret the model as one of deciding the optimal level of 4 activ-
ities corresponding to the 4 decision variables (principle 6.7). The objective function
maximizes the benefit derived from these activities (principle 6.1) with coefficients
showing the benefit per unit activity (principle 6.8).

The 4 main constraints deal with 4 commodities or resources. The initial 2, being
of Ú form, specify a demand of 89 for the first commodity and 60 for the second
(principle 6.4). The last 2, being of … form, restrict the supply of commodities 3 and 4.
Nonnegativity constraints merely enforce the variable type (principle 6.6).

Coefficients on the left-hand side of main constraints show inputs and outputs per
unit of each variable’s activity (principle 6.8). Specifically, each unit of activity 1 con-
sumes 10 of commodity 3 to produce 1 of commodity 1; each unit of activity 2 consumes
6 of commodity 3 and 1 of commodity 4 to produce 3 of commodity 1; each unit of activ-
ity 3 consumes 8 of commodity 3 to produce 1 of commodity 2; and each unit of activity
4 consumes 2 of commodity 3 and 1 of commodity 4 to produce 5 of commodity 2.

6.2 Qualitative Sensitivity to Changes in Model Coefficients 293

6.2 QuAlitAtive sensitivity to chAnGes in model
coeFFicients

Armed with a generic way of thinking about LP models, we are ready to consider
the sensitivity of optimization model results to changes in their input parameters or
constants. Let us begin qualitatively. Much can be learned from looking just at the
directions of change rather than their magnitudes.

Relaxing versus Tightening Constraints
Consider first relaxing versus tightening constraints. Figure 6.2 shows the idea
graphically. A two-variable model in part (a) has the feasible region indicated by
shading. Relaxing a constraint as in part (b) admits new feasible solutions. The cor-
responding optimal value must stay the same or improve. On the other hand, if
the constraint is tightened as in part (c), fewer feasible solutions are available. The
 optimal value can only stay the same or worsen.

Relaxing the constraints of an optimization model either
leaves the optimal value unchanged or makes it better (higher for a maximize,
lower for a minimize). Tightening the constraints either leaves the optimal
value unchanged or makes it worse.

Principle 6.9

Principle 6.9 is the most broadly applicable of all sensitivity insights. It holds
for any optimization model—LP or not—and any constraint type.

Swedish Steel Application Revisited
For a more concrete illustration, we revisit our Swedish Steel blending example of
Section 4.2. The associated LP model is

 min 16x1 + 10x2 + 8x3 + 9x4 + 48x5 + 60x6 + 53x7 1cost2

(6.1)

 s.t. x1 + x2 + x3 + x4 + x5 + x6 + x7 = 1000 1weight2
 0.0080x1 + 0.0070x2 + 0.0085x3 + 0.0040x4 Ú 6.5 1carbon2
 0.0080x1 + 0.0070x2 + 0.0085x3 + 0.0040x4 … 7.5

 0.180x1 + 0.032x2 + 1.0x5 Ú 30.0 1nickel2
 0.180x1 + 0.032x2 + 1.0x5 … 30.5

 0.120x1 + 0.011x2 + 1.0x6 Ú 10.0 1chromium2
 0.120x1 + 0.011x2 + 1.0x6 … 12.0

 0.001x2 + 1.0x7 Ú 11.0 1molybdenum2
 0.001x2 + 1.0x7 … 13.0

 x1 … 75 1availability2
 x2 … 250

 x1, c, x7 Ú 0 1nonnegativity2

294 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

Effects of Changes in Right-Hand Sides
Figure 6.3 plots the optimal value in the Swedish Steel model (6.1) versus two of
its right-hand-side coefficients. Specifically, part (a) follows the impact of the right-
hand side (RHS) for the scrap 1 availability constraint

 x1 … 75 (6.2)

assuming that all other parameters are held constant. Similarly, part (b) tracks
changes with the right-hand side of the minimum chromium content constraint:

 0.120x1 + 0.011x2 + 1.0x6 Ú 10.0 (6.3)

Infeasible cases of this minimize cost problem are plotted as infinite costs.
In Section 6.6 we discuss how to generate such plots. For the moment, just no-

tice how the trends differ. Increases in the scrap 1 right-hand side help the minimize
cost objective and decreases hurt. Changes in the minimum chromium right-hand
side produce exactly the opposite effect.

This apparently contradictory experience follows from one of the constraints
being of … supply form and the other a Ú demand. An increase in the right-hand
side for the two forms produces different effects on the feasible set.

x2

x1

1

2

3

1 2 3

1

2

3

1 2 3

x2

x1

1

2

3

1 2 3
x1

x2

(a) Original (b) Relaxed (c) Tightened

FiGure 6.2 Effects of Relaxing Versus Tightening Constraints

Changes in LP model right-hand-side coefficients affect the
feasible space as follows:

Constraint
Type

RHS
Increase

RHS
Decrease

Supply (…) Relax Tighten

Demand (Ú) Tighten Relax

Principle 6.10

The plot in Figure 6.3(a) declines because an increase in the right-hand side
relaxes a … constraint. Under principle 6.9 the optimal value must stay the same or
decrease (improve). Increases in the RHS of part (b) tighten the corresponding Ú
constraint. The optimal value must either stay the same or increase (worsen).

6.2 Qualitative Sensitivity to Changes in Model Coefficients 295

9900

9800

9700

9600

9500

0.
0 9.
0 10

11
.7

12
.0

current 9526.9

slope 0.00
slope 8.57

slope 36.73

slope 50.11

slope +q (infeasible)

optimal
value

RHS

optimal
value

RHS

9900

9800

9700

9600

9500

9400

slope - 4.98

slope -3.38
slope 0.00current 9526.9

60
.4 75

83
.3

slope - q (infeasible)

(b) Demand (Ú) constraint case (minimum chromium content)

(a) Supply (…) constraint case (scrap 1 availability)

FiGure 6.3 Sensitivity of Swedish Steel Optimal Value
to Right-Hand Sides

exAmPle 6.2: QuAlitAtively AssessinG rhs sensitivity

Determine for each of the following objective function and constraint pairs the
qualitative effect of increasing or decreasing the constraint right-hand side. Assume
that the given constraint is not the only one.

(a) max 13w1 - 11w2 + w3

s.t. 9w1 + w2 - w3 … 50

(b) max 13w1 - 11w2 + w3

s.t. 9w1 + w2 - w3 Ú 50

(c) min 8z1 - 4z2 + 15z3

s.t. 6z1 - 3z2 … -19

(d) min 8z1 - 4z2 + 15z3

s.t. 6z1 - 3z2 Ú -19

Solution: We apply principles 6.9 and 6.10 .

(a) A RHS increase relaxes this … constraint, meaning that the optimal value will
stay the same or increase (improve for a maximize objective). RHS decreases
have the opposite effect.

296 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

Effects of Changes in LHS Constraint Coefficients
With linear programs, principle 6.9 holds just as well for coefficient changes on the
left-hand side (LHS) of a constraint as for RHS variations such as those in Figure 6.3.
Since constraint functions are just weighted sums of the variables, minimum chromium
content constraint (6.3) is relaxed if we increase the 0.120 yield coefficient on x1 to, say,
0.500. It is tightened if, for instance, we reduce it to -0.400. A larger coefficient on the
left-hand side of a Ú constraint makes it easier (for nonnegative variables) to satisfy,
and a smaller coefficient makes it harder to satisfy. Other cases are similar.

(b) A RHS increase tightens this Ú constraint, meaning that the optimal value will
stay the same or decrease (worsen).

(c) A RHS increase relaxes this … constraint, meaning that the optimal value will
stay the same or decrease (improve for a minimize objective).

(d) A RHS increase tightens this Ú constraint, meaning that the optimal value will
stay the same or increase (worsen).

Changes in LP model LHS constraint coefficients on nonnega-
tive decision variables affect the feasible space as follows:

Constraint
Type

Coefficient
Increase

Coefficient
Decrease

Supply 1… 2 Tighten Relax

Demand 1Ú 2 Relax Tighten

Principle 6.11

exAmPle 6.3: QuAlitAtively AssessinG lhs sensitivity

Return to the objective functions and constraints of Example 6.2, and determine
the qualitative impact of each of the following coefficient changes. Assume that all
variables are required to be nonnegative.

(a) Change the coefficient of w2 to 6 in Example 6.2(a).

(b) Change the coefficient on w3 to 0 in Example 6.2(b).

(c) Change the coefficient on z1 to 2 in Example 6.2(c).

(d) Change the coefficient on z3 to -1 in Example 6.2(d).

Solution: We apply principles 6.9 and 6.11 .

(a) The change from 1 to 6 is an increase, meaning that the … constraint is tight-
ened and the maximize optimal value will stay the same or decrease.

(b) The change from -1 to 0 is an increase, meaning that the Ú constraint is
 relaxed and the maximize optimal value will stay the same or increase.

(c) The change from 6 to 2 is a decrease, meaning that the … constraint is relaxed
and the minimize optimal value will stay the same or decrease.

(d) The change from 0 to -1 is a decrease, meaning that the Ú constraint is tight-
ened and the minimize optimal value will stay the same or increase.

6.2 Qualitative Sensitivity to Changes in Model Coefficients 297

Effects of Adding or Dropping Constraints
Principle 6.9 can even be stretched to cases where we change the model more dra-
matically by adding or dropping constraints.

Adding constraints to an optimization model tightens its feasi-
ble set, and dropping constraints relaxes its feasible set.

Principle 6.12

It follows that adding constraints can only make the optimal value worse. Dropping
constraints can only make it better.

Figure 6.3(a) implicitly includes the dropping case. Elimination of the scrap 1
availability constraint is the same thing as making its right-hand side very large.
Part (a) of the figure shows how the optimal value declines, an improvement for a
minimize cost problem.

exAmPle 6.4: QuAlitAtively AssessinG Added And droPPed
constrAints

Consider the linear program

 max 6y1 + 4y2

 s.t. y1 + y2 … 3

 y1 … 2

 y2 … 2

 y1, y2 Ú 0

Assess the qualitative impact of each of the following constraint changes.

(a) Dropping the first main constraint

(b) Adding the new constraint y2 Ú y1

Solution: We apply principles 6.9 and 6.12 .

(a) Dropping a constraint relaxes the feasible set. Thus the maximize optimal
value can only stay the same or increase.

(b) Adding a new constraint tightens the feasible set. Thus the maximize optimal
value can only stay the same or decrease.

Effects of Unmodeled Constraints
Often in OR studies the possibility of adding constraints arises in the context of
unmodeled phenomena. For example, managers in the Swedish Steel model (6.1)
might prefer to use all or none of the 250 kilograms of scrap 2 instead of trying to
measure amounts in between.

Such a requirement is discrete. (Do you see why?) Thus there are good rea-
sons for modelers to neglect it in the interest of tractability. But how would results
change if such a difficult-to-express limit on solutions had been modeled?

298 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

Explicitly including previously unmodeled constraints in an
 optimization model must leave the optimal value either unchanged or worsened.

Principle 6.13

Changing Rates of Constraint Coefficient Impact
Look again at Figure 6.3. Besides the fact that tightening constraints leaves the
 optimal value the same or worse, there is another pattern. The more we tighten,
the greater the rate of damage. In part (a), for instance, tightening means reduc-
ing the RHS coefficient. It has no impact at all for right-hand sides above 83.3.
As we continue to squeeze the feasible set, however, the rates of change increase.
Ultimately, the model becomes infeasible.

Relaxing constraints produces an opposite effect. For example, in Figure 6.3(b)
relaxing means reducing the RHS. The figure shows a steep rate of decline at higher
values of the right-hand side that dimishes as we make the coefficient smaller. Every
linear program exhibits similar behavior.

Coefficient changes that help the optimal value in linear pro-
grams by relaxing constraints help less and less as the change becomes large.
Changes that hurt the optimal value by tightening constraints hurt more and
more. The result is sensitivity plots shaped like the following:

optimal
value

RHS

optimal

Model Form
(Primal)

Supply
(◊)

Demand
(»)

value

RHS

optimal
value

RHS

optimal
value

RHS

Maximize objective

Minimize objective

Principle 6.14

6.2 Qualitative Sensitivity to Changes in Model Coefficients 299

Note that principle 6.14 is limited to linear programs. Models with nonconvex
 feasible sets (see Section 3.4) may behave differently.

To get some intuition about 6.14 , think of yourself as struggling heroically
to force solutions to conform to your favorite supply or demand requirement. The
more you tighten the constraint you control, the more it becomes the driving force
behind all decisions; its impact becomes greater and greater. On the other hand, if
you are driven back and forced to relax your constraint, there are many others to
take up the cause; you make less and less difference.

exAmPle 6.5: QuAlitAtively AssessinG rAtes oF constrAint
chAnGe

Determine whether rates of optimal objective function value change would be
steeper or less steep with the magnitude of each of the following RHS changes.

(a) Increase the RHS of 4y1 - 3y2 … 19 in a maximize linear program.

(b) Decrease the RHS of 3y1 + 50y2 Ú 40 in a maximize linear program.

(c) Decrease the RHS of 14y1 + 8y2 … 90 in a minimize linear program.

(d) Increase the RHS of 3y1 - 2y2 Ú 10 in a minimize linear program.

Solution:

(a) Under principle 6.10 , the optimal value will improve (become larger) with
 increases in this RHS because the … constraint is being relaxed. Principle 6.14
implies that the rate of improvement should stay the same or diminish.

(b) Under principle 6.10 , the optimal value will improve (become larger) with
 decreases in this RHS because the Ú constraint is being relaxed. Principle 6.14
implies that the rate of decline should stay the same or diminish.

(c) Under principle 6.10 , the optimal value will worsen (become larger) with
 increases in this RHS because the … constraint is being relaxed. Principle 6.14
implies that the rate of improvement should stay the same or steepen.

(d) Under principle 6.10 , the optimal value will worsen (become larger) with
 increases in this RHS because the Ú constraint is being tightened. Principle 6.14
implies that the rate of decline should stay the same or steepen.

Effects of Objective Function Coefficient Changes
Objective function coefficients neither relax nor tighten constraints, but we may still
be very interested in their impact on results. Figure 6.4(a) plots the optimal value in
the (minimize cost) Swedish Steel model (6.1) as a function of the unit cost for scrap
4 (coefficient of x4). Part (b) tracks the optimal value in the (maximize margin)
CFPL model in Table 4.5 versus the selling price for sheets of 1

2-inch AC plywood
(coefficient of z1>2,a,c).

300 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

450,000

500,000

current 484,879

slope 0.00

slope 2125.00

slope 2928.57

slope 4402.60

slope 4974.03

slope 5000.00

50
.0

62
.3

58
.4 65

67
.2

70
.0

optimal
value

obj
coef

6,000

8,000

10,000

12,000

slope
400.98

slope
178.76

slope
156.01

slope
109.56

slope
82.03

slope
72.20slope

72.59

slope
68.43

current 9526.9
8.

0
8.

4 9
10

.1

19
.9

29
.2

31
.8

35
.5

optimal
value

obj
coef

(a) Min case (Swedish Steel scrap 4 cost)

(b) Max case (CFPL selling price for -inch AC plywood)1
2

FiGure 6.4 Sensitivity of Optimal Values to Changes in Objective Function Coefficients

When an objective function coefficient multiplies a nonnegative variable, as
most of them do, the direction of change is easy to predict. For example, decreasing
the unit cost of an activity certainly makes lower-cost solutions easier to find; the
optimal value could only improve.

6.2 Qualitative Sensitivity to Changes in Model Coefficients 301

Changing Rates of Objective Function Coefficient Impact
Readers who absorbed the discussion above about rates of optimal value change
caused by variations in constraint coefficients should be surprised by the shapes of
curves in Figure 6.4. Consider, for instance, the maximize case of part (b). A move
to the right, which increases the coefficient of z1>2,a,c, helps the objective function—
just as we concluded in 6.15 .

What is different is that the more we increase the coefficient, the more rapidly
the optimal value improves. In contrast to the decreasing returns we saw with con-
straint changes that helped the optimal value, favorable objective function changes
produce increasing rates of return.

Changing the objective function coefficient of a nonnegative
variable in an optimization model affects the optimal value as follows:

Model Form
(Primal)

Coefficient
Increase

Coefficient
Decrease

Maximize objective Same or better Same or worse

Minimize objective Same or worse Same or better

Principle 6.15

exAmPle 6.6: QuAlitAtively AssessinG objective chAnGes

For each of the following objective functions, determine the qualitative impact of
the indicated change in objective function coefficient. Assume that all variables are
nonnegative.

(a) Change the coefficient of w1 to 7 in max 12w1 - w2.

(b) Change the coefficient of w2 to 9 in max 12w1 - w2.

(c) Change the coefficient of w1 to 60 in min 44w1 + 3w2.

(d) Change the coefficient of w2 to -9 in min 44w1 + 3w2.

Solution: We apply principle 6.15 .

(a) A change from 12 to 7 is a decrease, implying that the maximize optimal value
will stay the same or worsen (decrease).

(b) A change from -1 to 9 is an increase, implying that the maximize optimal
value will stay the same or improve (increase).

(c) A change from 44 to 60 is an increase, implying that the minimize optimal
value will stay the same or worsen (increase).

(d) A change from 3 to -9 is a decrease, implying that the minimize optimal value
will stay the same or improve (decrease).

302 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

As with 6.14 , principle 6.16 is limited to linear programs with their convex feasible
sets. Nonconvex optimization models may perform differently.

A full explanation of the incongruity between rates of change in constraint
and objective function coefficients must await the duality development of the next
few sections. For now, return to your struggling hero role, this time by manipulating
the unit cost or benefit of some activity. Changing your objective function coeffi-
cient in the direction that helps the optimal value draws more and more action to
your activity. The more it dominates the solution, the more its objective function
 coefficient affects the optimal value. On the other hand, changes that hurt the opti-
mal value are cushioned by transfer of responsibility to other activities. They have
less and less impact as the change becomes large.

Objective function coefficient changes that help the optimal
value in linear programs help more and more as the change becomes large.
Changes that hurt the optimal value hurt less and less. The result is sensitivity
plots shaped like the following:

optimal
value

coef

optimal
value

coef

Maximize Objective
(Primal)

Minimize Objective
(Primal)

Principle 6.16

exAmPle 6.7: QuAlitAtively AssessinG rAtes oF objective
chAnGe

Determine whether the objective function coefficient change indicated would
 increase or decrease the optimal objective function value in each of the following,
and indicate whether the rate of change will steepen or become less steep with the
magnitude of the change. Assume that all variables are nonnegative.

(a) Increase 42 on x1 in max 42x1 + 13x2 - 9x3.

(b) Decrease -9 on x3 in max 42x1 + 13x2 - 9x3.

(c) Increase -2 on x2 in min 12x1 - 2x2 + x4.

(d) Decrease 0 on x3 in min 12x1 - 2x2 + x4.

6.2 Qualitative Sensitivity to Changes in Model Coefficients 303

Effects of Adding or Dropping Variables
The final sort of sensitivity analysis we need to consider is the adding or dropping of
activities (which is implemented mathematically as adding or dropping of decision
variables). For example, what happens if we decide to consider a new scrap source
in the Swedish Steel model (6.1)? What happens if we drop scrap 4?

Adding activities offers new choices; dropping them reduces possibilities. The
direction of optimal value change should then be apparent.

Solution:

(a) The optimal value improves (increases) with any objective function coefficient
increase in a maximize model (principle 6.15). Thus, under principle 6.16 the rate
of increase should stay the same or steepen.

(b) A decrease would be to c3 6 -9. The optimal value worsens (decreases) with
any objective function coefficient decrease in a maximize model (principle 6.15).
Thus, under principle 6.16 the rate of increase should stay the same or lessen.

(c) The optimal value worsens (increases) with any objective function coefficient
increase in a minimize model (principle 6.15). Thus, under principle 6.16 the rate
of increase should stay the same or lessen.

(d) The optimal value improves (decreases) with any objective function coeffi-
cient decrease in a minimize model (principle 6.15). Thus, under principle 6.16
the rate of increase should stay the same or steepen.

Adding optimization model activities (variables) must leave
the optimal value unchanged or improved. Dropping activities will leave the
value unchanged or degraded.

Principle 6.17

exAmPle 6.8: QuAlitAtively AssessinG Added And droPPed
vAriAbles

Determine the qualitative impact of adding or dropping a variable in linear programs
with each of the following objective functions.

(a) max 27y1 - y2 + 4y3

(b) min 33y1 + 11y2 + 39y3

Solution: We apply principle 6.17 .

(a) Adding a variable in this maximize LP can only help, leaving the optimal value
the same or higher. Dropping a variable would make it the same or lower.

(b) Adding a variable in the minimize LP can only help, leaving the optimal value
the same or lower. Dropping a variable would make it the same or higher.

304 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

6.3 QuAntiFyinG sensitivity to chAnGes in lP model
coeFFicients: A duAl model

All the LP sensitivities of Section 6.2 related to directions of changes rather than
magnitudes. It is certainly helpful to know whether, say, a right-hand-side modifica-
tion will help or hurt the optimal value. Still, we would gain much more insight if we
could quantify the rate of change.

The OR approach to computing quantities we would like to know is to rep-
resent them as variables, formulate a model of how they interrelate, and solve the
model to obtain their values. In this and Section 6.4 we pursue that approach. More
specifically, we define new sensitivity variables and formulate the conditions that a
quantitative sensitivity analysis should fulfill.

Primals and Duals Defined
With one model being used to analyze sensitivity of another, it is important to dis-
tinguish between primal and dual.

All the linear programs formulated in earlier chapters were primals.

The remarkable fact is that the needed dual is an “orthogonal” LP over exactly
the same parameter values as the primal, but with constraints of the dual correspond-
ing to variables of the primal, and variables of the dual corresponding to constraints
of the primal. We will see in Section 6.7 that primal and dual share a host of elegant
connections and symmetries reaching well beyond sensitivity issues.

Dual Variables
To begin deriving the dual, take another look at the Figure 6.3 plots of the (primal)
Swedish Steel model’s optimal value as a function of right-hand side. Dual variables
quantify slopes of such curves.

There is one dual variable for each main primal constraint.
Each reflects the rate of change in primal optimal value per unit increase from
the given right-hand-side value of the corresponding constraint.

Principle 6.20

We often denote the dual variable on primal main constraint i by vi.
The right-hand side of primal constraint (6.2) is 75. Figure 6.3(a) shows the

rate of change in the primal optimal value, and thus the value of the dual variable
corresponding to this availability constraint is -3.38 kroner/kilogram.

The primal is the given optimization model, the one formulat-
ing the application of primary interest.

Definition 6.18

The dual corresponding to a given primal formulation is a
closely related LP with decision variables and constraints that quantify the
sensitivity of primal results to changes in its parameters.

Definition 6.19

6.3 Quantifying Sensitivity to Changes in LP Model Coefficients: A Dual Model 305

Of course, we would prefer to know such slopes for all possible values of right-
hand sides. For instance, in Figure 6.3(a) we have

 +∞ between -∞ and 0

 -4.98 between 0 and 60.42

 -3.38 between 60.42 and 83.33

 0 between 83.33 and +∞

However, several LPs have to be solved to derive such plots.
Since the dual only provides subsidiary analysis of the primal, which is the

model of real interest, definition 6.20 adopts a more manageable standard. Optimal
dual variable values for any single LP yield rates of change only at the original RHS
value. For instance, only the -3.38 rate at RHS = 75 would be obtained for the
constraint of Figure 6.3(a).

This definition is somewhat unclear if the RHS value happens to fall at exactly
one of the points where slopes change. For example, if the given RHS in Figure 6.3(a)
had been 83.33, the corresponding dual variable value could come out either -3.38
or 0.00 (or anything in between). The first applies to the left of 83.33 and the second
to the right. At exactly 83.33 the slope is ambiguous.

exAmPle 6.9: understAndinG duAl vAriAbles

Refer to Figure 6.3(b)’s plot of sensitivity to minimum chromium constraint (6.3).

(a) What is the corresponding optimal dual variable value?

(b) What would it be if the constraint RHS had been 7.0?

(c) What would it be if the constraint RHS had been 9.0?

Solution:

(a) By definition 6.20 , the dual variable corresponding to this minimum chro-
mium constraints should equal the slope of the sensitivity curve at RHS = 10.0.
That is, the dual variable has value 36.73 kroner/kilogram.

(b) For RHS = 7.0, the corresponding dual variable value or rate of change is
8.57 kroner/kilogram.

(c) At RHS = 9.0, the dual variable value is ambiguous. Computation might
 produce either the 8.57 to the left or the 36.73 to the right.

Dual Variable Types
We want to develop constraints and conditions that dual variables must satisfy
to provide meaningful sensitivity information. Qualitative principles 6.9 and 6.10
 already yield sign restrictions on rates of change in inequality right-hand sides.
For example, an increase in the RHS of a … constraint in a minimize model re-
laxes the constraint, which leaves the optimal value unchanged or reduced. The
corresponding v … 0.

306 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

The linear programming dual variable on constraint i has type
as follows:

Primal i is … i is Ú i is =
Minimize objective vi … 0 vi Ú 0 Unrestricted

Maximize objective vi Ú 0 vi … 0 Unrestricted

Principle 6.21

Notice that principle 6.21 specifies dual variables for = constraints to be unre-
stricted in sign (URS). Since an equality can act as either a … or a Ú (principle 6.5),
the corresponding dual rate of change can be either positive or negative.

Two Crude Application Again
To have an easy example to follow, let us return to the familiar Two Crude refining
model of Section 2.1. That primal linear program was

 min 100x1 + 75x2

(6.4)

 s.t. 0.3x1 + 0.4x2 Ú 2 : v1 1gasoline demand2
 0.4x1 + 0.2x2 Ú 1.5 : v2 1jet fuel demand2
 0.2x1 + 0.3x2 Ú 0.5 : v3 1lubricant demand2
 1x1 … 9 : v4 1Saudi availability2
 + 1x2 … 6 : v5 1Venezuelan availability2
x1, x2 Ú 0

The unique primal optimal solution is x1
* = 2, x2

* = 3.5, with optimal value 92.5.
Notice that we have assigned dual variables to each main constraint. Applying

principle 6.21 , sign restriction constraints for the 5 Two Crude dual variables become

 v1 Ú 0, v2 Ú 0, v3 Ú 0, v4 … 0, v5 … 0 (6.5)

Increasing ≥ right-hand sides in a minimize problem can only raise the optimal cost
or leave it unchanged. Increasing those of ≤’s can only lower it or leave it unchanged.

exAmPle 6.10: choosinG duAl vAriAble tyPe

For each of the following primal linear programs, determine whether the dual vari-
ables indicated should be nonnegative, nonpositive, or of URS type.

(a) min + 5x1 + 1x2 + 4x3 + 5x4

 s.t. + 1x1 + 4x2 + 2x3 = 36 : v1

 + 3x1 + 2x2 + 8x3 + 2x4 … 250 : v2

 - 5x1 - 2x2 + 1x3 + 1x4 … 7 : v3

 + 1x3 + 1x4 Ú 60 : v4

x1, x2, x3, x4 Ú 0

6.3 Quantifying Sensitivity to Changes in LP Model Coefficients: A Dual Model 307

Dual Variables as Implicit Marginal Resource Prices
Because the dual variables tell us the rate of change in the optimal value for
another unit of each RHS, they provide a sort of implicit price on the resource
of each constraint model. To be more precise, they yield what economists call
marginal prices.

(b) max + 13x1 + 24x2 + 5x3 + 50x4

 s.t. + 1x1 + 3x2 Ú 89 : v1

+ 1x3 + 5x4 Ú 60 : v2

 + 10x1 + 6x2 + 8x3 + 2x4 … 608 : v3

+ 1x2 + 1x4 = 28 : v4

x1, x2, x3, x4 Ú 0

Solution: We apply rule 6.21 .

(a) v1 URS, v2 … 0, v3 … 0, v4 Ú 0

(b) v1 … 0, v2 … 0, v3 Ú 0, v4 URS

Dual variables provide implicit prices for the marginal unit
of the resource modeled by each constraint as its right-hand-side limit is
encountered.

Principle 6.22

In the Two Crude model (6.4), for instance, the first constraint models gasoline
demand. Variable v1, which is in units of thousands of dollars per thousand barrels,
will tell us the implicit price of gasoline at the margin when RHS = 2000 barrels
are demanded, that is, how much the last 1000 barrels cost to produce in the opti-
mal operating plan. Similarly, variable v4 reflects the marginal impact of the Saudi
availability constraint at its current level of 9000 barrels, which is the implicit value
of another 1000 barrels of Saudi crude.

exAmPle 6.11: interPretinG duAl vAriAbles

The Top Brass Trophy application model (5.1) of Section 5.1 is

 max 12x1 + 9x2 [profit 1dollars2]

s.t. x1 … 1000 : v1 1brass footballs2
 x2 … 1500 : v2 1brass soccer balls2
 x1 + x2 … 1750 : v3 1brass plaques2
 4x1 + 2x2 … 4800 : v4 [wood 1board feet2]

x1, x2 Ú 0

308 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

Implicit Activity Pricing in Terms of Resources Produced
and Consumed
The activity associated with any decision variable both consumes and creates con-
straints’ resources (review Figure 6.1). We also know that the activity’s nonzero
constraint coefficients can be interpreted as amounts consumed or created per unit
of the activity (principle 6.8).

By summing those coefficients times the implicit price vi of the resources involved,
we can obtain an implicit marginal value (minimize problems) or price (maximize prob-
lems) for the entire activity.

Interpret each of the 4 corresponding dual variables and determine their signs and
units.

Solution: Applying interpretation 6.22 , v1 is the marginal value or contribution to
profit of brass footballs at the current 1000 availability level, that is, how much we
would pay for another one. Under principle 6.21 , v1 Ú 0, and its units are dollars
per brass football. Similarly, v2 Ú 0 is the marginal value of brass soccer balls at the
current 1500 availability level (in dollars per soccer ball), v3 Ú 0 is the marginal
value of brass plaques at the current 1750 availability (in dollars per plaque), and
v4 Ú 0 is the marginal value of wood at the current 4800 availability (in dollars per
board foot).

The implicit marginal value (minimize problems) or price
(maximize problems) of a unit of LP activity (primal variable) j implied by dual
variable values vi is a i ai, jvi, where ai, j denotes the coefficient of activity j in
the left-hand side of constraint i.

Principle 6.23

Venezuelan activity j = 2 in the Two Crude application illustrates. Given
 resource prices v1, g, v5, each unit of Venezuelan crude activity is implicitly worth

a
5

i = 1
 ai,2vi = 0.4v1 + 0.2v2 + 0.3v3 + 1v5

Noting sign restrictions (6.5), the first three terms measure the positive contribution
of fulfilling demand constraints. The last deducts 1v5 … 02 the implicit worth of the
availability resource consumed.

exAmPle 6.12: imPlicitly PricinG Activities

Develop and interpret expressions for the price per unit of each activity in the Top
Brass Trophy model reviewed in Example 6.11.

Solution: In the Top Brass example, x1 represents production of football trophies,
and x2, production of soccer trophies. Under principle 6.23 , the implicit price or

6.3 Quantifying Sensitivity to Changes in LP Model Coefficients: A Dual Model 309

Main Dual Constraints to Enforce Activity Pricing
The 6.23 notion of implicit activity worth per unit also leads to the main dual con-
straints. If dual variables vi are really to reflect the value of constraint resources in
the primal optimal value, the implied activity worth must be consistent with explicit
unit costs or benefits in the primal objective function.

To be specific, dual variables in a minimize (cost) problem would overvalue
an activity if they priced it above its true cost coefficient cj. An activity implicitly
worth more than it costs at optimality should be used in greater quantity. But then
we would be improving on an optimal solution—an impossibility. Similarly for maxi-
mize (benefit) problems, we would want to reject any vi’s that priced the net value of
resources that an activity uses below its real benefit cj. Otherwise, it too would yield
an improvement on an already optimal solution.

marginal cost to produce a football trophy is the sum of coefficients on x1 times the
marginal value of the associated commodities, that is,

a
4

i = 1
 ai,1vi = 1v1 + 1v3 + 4v4

This expression simply sums the marginal cost of the 1 football, 1 plaque, and 4
board feet of wood needed to make a football trophy. Similarly, the marginal cost
of producing a soccer trophy is

a
4

i = 1
 ai,2vi = 1v2 + 1v3 + 2v4

For each nonnegative variable activity xj in a minimize lin-
ear program, there is a corresponding main dual constraint a i ai, j vi … cj
requiring the net marginal value of the activity not to exceed its given cost.
In a maximize problem, main dual constraints for xj Ú 0 are a i ai, j vi Ú cj,
which keeps the net marginal cost of each activity at least equal to its given
benefit.

Principle 6.24

Illustrating again with the Two Crude model (6.4), principle 6.24 leads to one
constraint for primal variable x1 and another for x2.

 0.3v1 + 0.4v2 + 0.2v3 + 1v4 … 100 (6.6)

0.4v1 + 0.2v2 + 0.3v3 + 1v5 … 75

Without such limits, say if the worth evaluation on the left-hand side of the first
inequality were allowed to reach 105, the vi would be telling us that another unit of
activity j = 1 would produce a net impact on the optimal value of $105 (thousand)
yet costs only $100 (thousand). Such bargains cannot be allowed if the vi are to
mean what we want them to mean.

310 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

Optimal Value Equality between Primal and Dual
If dual variables are to price the resources associated with constraints correctly,
the supplies and demands for those resources should evaluate to exactly the primal
 optimal value.

exAmPle 6.13: ForminG mAin duAl constrAints

Formulate and interpret the main dual constraints of the linear programs in
Example 6.10.

Solution: We apply principle 6.24 .

(a) For this minimize model, main dual constraints are

 +1v1 +3v2 -5v3 … 5

 +4v1 +2v2 -2v3 … 1

 +2v1 +8v2 +1v3 +1v4 … 4

+2v2 +1v3 +1v4 … 5

They may be interpreted as requiring that the net marginal value of each activity
under an optimal choice of dual variable values cannot exceed its given objective
function cost.

(b) For this maximize model, main dual constraints are

 +1v1 +10v3 Ú 13

 +3v1 +6v3 +1v4 Ú 24

 +1v2 +8v3 Ú 5

 +5v2 +2v3 +1v4 Ú 50

They may be interpreted as requiring that the net marginal cost of each activity
 under an optimal choice of dual variable values cannot be less than its given objec-
tive function benefit.

If a primal linear program has an optimal solution, its opti-
mal value a j cjxj

* equals the corresponding optimal dual implicit total value

a i bivi
* of all constraint resources.

Principle 6.25

In the Two Crude case, requirement 6.25 implies that

100x1
* + 75x2

* = 2v1
* + 1.5v2

* + 0.5v3
* + 9v4

* + 6v6
*

The sum of optimal prices on all constraints times current limiting values should
recover the optimal primal objective value.

6.3 Quantifying Sensitivity to Changes in LP Model Coefficients: A Dual Model 311

Primal Complementary Slackness between Primal Constraints
and Dual Variable Values
Recall that an inequality is active if it is satisfied as an equality by a given solution,
and inactive otherwise. If an inequality is inactive at the primal optimal solution,
small changes in its right-hand side would not affect the optimal value at all; the
constraint has slack. We can immediately deduce the value of the corresponding
dual variable vi.

exAmPle 6.14: exPressinG PrimAl–duAl vAlue eQuAlity

Express and interpret optimal value equality requirement 6.25 for each of the lin-
ear programs in Example 6.10.

Solution: We want the primal optimal value to equal exactly the implicit total value
of all constraint resources.

(a) For this minimize model

5x1 + 1x2 + 4x3 + 5x4 = 36v1 + 250v2 + 7v3 + 60v4

(b) For this maximize model

13x1 + 24x2 + 5x3 + 50x4 = 89v1 + 60v2 + 608v3 + 28v4

Either the primal optimal solution makes main inequality con-
straint i active or the corresponding dual variable vi = 0.

Principle 6.26

Equalities are always active, so there is no corresponding condition.
Principle 6.26 carries the somewhat bulky name primal complementary slack-

ness because it asserts that either each primal inequality or its corresponding dual
sign restriction (vi Ú 0 or vi … 0) will be slack (inactive) at optimality. To illustrate
for the Two Crude model (6.4), we first substitute the primal optimum to determine
which constraints are active.

 + 0.3122 + 0.413.52 = 2.0 1active2
 + 0.4122 + 0.213.52 = 1.5 1active2
 + 0.2122 + 0.313.52 = 1.45 7 0.5 1inactive2
 + 1122 = 2 6 9 1inactive2

 + 113.52 = 3.5 6 6 1inactive2
The last three have slack. Thus small changes in corresponding right-hand-side
co-efficients would have no impact on optimal value. In accord with principle 6.26 ,
associated dual variables must = 0.

312 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

Dual Complementary Slackness between Dual Constraints
and Primal Variable Values
Constraints 6.24 keep activity prices below true cost in minimize problems and
above true benefit in maximize problems. At first glance, it might seem reasonable
to ask for more (i.e., demand that activity prices match exactly corresponding cj).

There would be a practical mathematical difficulty with such a requirement in
the common case where we have many more primal variables than main constraints.
Relatively few vi would simultaneously have to satisfy constraints

a
i

 ai, j ni = cj

for too many activities j.
More important, we want the dual variables to measure resource value at optimal-

ity. The only (nonnegative) primal variables involved in an optimal solution are those
with optimal xj

* 7 0. Limiting perfect valuation to this more limited list of activities
produces our final set of requirements—dual complementary slackness conditions.

exAmPle 6.15: exPressinG PrimAl comPlementAry slAckness

Express and interpret primal complementary slackness conditions for the linear
programs of Example 6.10.

Solution: We apply principle 6.26 .

(a) Primal complementary slackness conditions for this minimize model are

 + 3x1 + 2x2 + 8x3 + 2x4 = 250 or v2 = 0

 - 5x1 - 2x2 + 1x3 + 1x4 = 7 or v3 = 0

+ 1x3 + 1x4 = 60 or v4 = 0

They specify that a main primal inequality’s right-hand side can affect the optimal
value only if the constraint is active. There is no condition for equality constraint 1
because it is always active.

(b) Primal complementary slackness conditions for this maximize model are

 + 1x1 + 3x2 = 89 or v1 = 0

 + 1x3 + 5x4 = 60 or v2 = 0

 + 10x1 + 6x2 + 8x3 + 2x4 = 608 or v3 = 0

They, too, specify that changes in a main primal inequality’s right-hand side can
 affect the optimal value only if the constraint is active. There is no such condition for
equality constraint 4.

Either a nonnegative primal variable has optimal value xj = 0
or the corresponding dual prices vi must make the jth dual constraint
6.24 active.

Principle 6.27

6.4 Formulating Linear Programming Duals 313

This time the complementarity is between the primal nonnegativity xj Ú 0 and the
corresponding dual inequality 6.24 .

For example, the tiny Two Crude optimum had both primal variables positive
at optimality. Principle 6.27 now tells us that the dual values vi we are trying to
 understand must make both constraints of (6.6) active.

exAmPle 6.16: exPressinG duAl comPlementAry slAckness

Express and interpret dual complementary slackness conditions for the linear pro-
grams of Example 6.10.

Solution: We apply principle 6.27 to the main dual constraints of Example 6.13.

(a) For this minimize model, dual complementary slackness conditions are

 x1 = 0 or 1v1 + 3v2 - 5v3 = 5

 x2 = 0 or 4v1 + 2v2 - 2v3 = 1

 x3 = 0 or 2v1 + 8v2 + 1v3 + 1v4 = 4

 x4 = 0 or 2v2 + 1v3 + 1v4 = 5

They may be interpreted to mean that marginal resource prices vi must make the
implicit value of each activity used in an optimal solution equal its given cost.

(b) For this maximize model, dual complemenary slackness conditions are

 x1 = 0 or 1v1 + 10v3 = 13

 x2 = 0 or 3v1 + 6v3 + 1v4 = 24

 x3 = 0 or 1v2 + 8v3 = 5

 x4 = 0 or 5v2 + 2v3 + 1v4 = 50

They may be interpreted to mean that marginal resource prices vi must make the
implicit cost of each activity used in an optimal solution equal to its given benefit.

6.4 FormulAtinG lineAr ProGrAmminG duAls

The remarkable fact about linear programs is that all the quantitative sensitivity
requirements of Section 6.3 can actually be achieved. Not only that, but they can
be achieved with very minor computation as a by-product of the search for a primal
optimum.

The secret behind these elegant results is deceptively simple: We think of
dual variables vi as decision variables of a new dual linear program defined on the
same constants as the primal and determine their values by optimizing that dual.
In this section we show how to formulate duals, and in the next section we verify
the primal-to-dual relationships of Section 6.3 and more. As usual, xj will always
denote the jth primal variable, cj its objective function coefficient, and ai, j its coeffi-
cient in the ith constraint; vi is the dual variable for the ith constraint, and bi is the
right-hand side.

314 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

Form of the Dual for Nonnegative Primal Variables
To form a dual when primal decision variables are nonnegative, we optimize
total resource value a i bivi subject to the main dual constraints 6.24 and dual
 variable-type restrictions 6.21 derived in Section 6.3.

We can summarize in compact matrix format as follows:

Minimize primal LPs over variables x Ú 0 have duals over
variables v as follows.

min c # x max b # v

s.t. Ax c …
Ú
=

s b s.t. ATv … c

 x Ú 0 v c … 0
 Ú 0
 URS

s
where main constraint forms of the primal align with corresponding variable
types of the dual.

Principle 6.28

Maximize primal LPs over variables x Ú 0 have duals over
variables v as follows.

max c # x min b # v

s.t. Ax c …
Ú
=

s b s.t. ATv Ú c

x Ú 0 v c Ú 0
 … 0
 URS

s
where main constraint forms of the primal align with corresponding variable
types of the dual.

Principle 6.29

Our familiar Two Crude model (6.4) is a specific example. That minimize pri-
mal has dual

 max 2v1 + 1.5v2 + 0.5v3 + 9v4 + 6v5

(6.7)

s.t. 0.3v1 + 0.4v2 + 0.2v3 + 1v4 … 100

 0.4v1 + 0.2v2 + 0.3v3 + 1v5 … 75

 v1, v2, v3 Ú 0

 v4, v5 … 0

6.4 Formulating Linear Programming Duals 315

An optimal solution is v1
* = 100, v2

* = 175, v3
* = v4

* = v5
* = 0, with dual objective

function value 462.5.

exAmPle 6.17: stAtinG duAls with nonneGAtive xj

State the duals of each of the following primal linear programs.

(a) min + 30x1 + 5x3
s.t. + 1x1 - 1x2 + 1x3 Ú 1 : v1

 + 3x1 + 1x2 = 4 : v2
 + 4x2 + 1x3 … 10 : v3
x1, x2, x3 Ú 0

(b) max + 10x1 + 9x2 - 6x3
s.t. + 2x1 + 1x2 Ú 3 : v1

 + 5x1 + 3x2 - 1x3 … 15 : v2
 + 1x2 + 1x3 = 1 : v3

x1, x2, x3 Ú 0

Solution:

(a) From construction 6.28 , the dual of this minimize model is a maximize model
with objective function

max + 1v1 + 4v2 + 10v3

derived from the RHS of the primal. Constraints include one main constraint
for each primal variable (principle 6.24) and type restrictions from table 6.21 .
 Specifically,

s.t. + 1v1 + 3v2 … 30

 - 1v1 + 1v2 + 4v3 … 0

 + 1v1 + 1v3 … 5

v1 Ú 0, v2 URS, v3 … 0

(b) From construction 6.29 , the dual of this maximize model is a minimize with
objective function

min + 3v1 + 15v2 + 1v3

derived from the RHS of the primal. Constraints include one main constraint
for each primal variable (principle 6.24) and type restrictions from table 6.21 .
 Specifically,

s.t. + 2v1 + 5v2 Ú 10

 + 1v1 + 3v2 + 1v3 Ú 9

 - 1v2 + 1v3 Ú -6

v1 … 0, v2 Ú 0, v3 URS

316 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

Duals of LP Models with Nonpositive and Unrestricted Variables
So far, all our duality results have assumed nonnegative primal variables. Not much
is lost, because the majority of LP models have only nonnegative variables. Still,
to obtain full symmetry between primal and dual, both should be allowed to have
nonpositive, nonnegative, and unrestricted variables.

Table 6.1 shows the complete picture. Notice the elegant symmetries:

•	 A minimize primal yields a maximize dual and vice versa.
•	 Objective function coefficients of primal or dual become the right-hand sides of the

other, and the right-hand sides of the the primal or dual become the objective function
coefficients of the other.

•	 There is one dual variable for every primal constraint, and one dual constraint for
every primal variable.

•	 Main constraint forms of primal or dual align with corresponding variable type con-
straints in the other.

tAble 6.1 Corresponding Elements of Primal and Dual
Linear Programs

Primal Element Corresponding Dual Element

max
form

Objective max Σj cj xj Objective min Σi bi vi

Constraint Σj ai, j xj Ú bi Variable vi … 0

Constraint Σj ai, j xj = bi Variable vi unrestricted

Constraint Σj ai, j xj … bi Variable vi Ú 0

Variable xj Ú 0 Constraint Σi ai, j vj Ú cj

Variable xj URS Constraint Σi ai, j vj = cj

Variable xj … 0 Constraint Σi ai, j vj … cj

min
form

Objective min Σj cj xj Objective max Σi bi vi

Constraint Σj ai, j xj Ú bi Variable vi Ú 0

Constraint Σi ai, j xj = bi Variable vi unrestricted

Constraint Σj ai, j xj … bi Variable vi … 0

Variable xj Ú 0 Constraint Σi ai, j vi … cj

Variable xj URS Constraint Σj ai, j vi = cj

Variable xj … 0 Constraint Σj ai, j vi Ú cj

exAmPle 6.18: ForminG duAls oF ArbitrAry lPs

Form the dual of each of the following linear programs.

(a) max + 6x1 - 1x2 + 13x3

s.t. + 3x1 + 1x2 + 2x3 = 7

 + 5x1 - 1x2 … 6

 + 1x2 + 1x3 Ú 2

x1 Ú 0, x2 … 0

6.4 Formulating Linear Programming Duals 317

Dual of the Dual is the Primal
With this full symmetry of Table 6.1, we can also demonstrate one final form of pri-
mal-to-dual symmetry. Look back at the Two Crude model dual (6.7) and suppose
that it were the primal:

max 2x1 + 1.5x2 + 0.5x3 + 9x4 + 6x5

s.t. 0.3x1 + 0.4x2 + 0.2x3 + 1x4 … 100

 0.4x1 + 0.2x2 + 0.3x3 + 1x5 … 75

x1, x2, x3 Ú 0

x4, x5 … 0

(b) min + 7x1 + 44x3

s.t. - 2x1 - 4x2 + 1x3 … 15

 + 1x1 + 4x2 Ú 5

 + 5x1 - 1x2 + 3x3 = -11

x1 … 0, x3 Ú 0

Solution:

(a) Assigning dual variables v1, v2, v3 to the three main constraints, we apply the
“max form” part of Table 6.1 to produce the following dual:

min + 7v1 + 6v2 + 2v3

s.t. + 3v1 + 5v2 Ú 6

 + 1v1 - 1v2 + 1v3 … -1

 + 2v1 + 1v3 = 13

v1 URS, v2 Ú 0, v3 … 0

Notice that unrestricted x3 yields an equality dual constraint.

(b) Assigning dual variables v1, v2, v3 to the three main constraints, we apply the
“min form” part of Table 6.1 to produce the following dual:

max + 15v1 + 5v2 - 11v3

s.t. - 2v1 + 1v2 + 5v3 Ú 7

 - 4v1 + 4v2 - 1v3 = 0

 + 1v1 + 3v3 … 44

v1 … 0, v2 Ú 0, v3 URS

Again, unrestricted x2 yields an equality dual constraint.

318 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

Like all linear programs, this primal must have a dual. Applying Table 6.1, we obtain

min + 100v1 + 75v2

s.t. + 0.3v1 + 0.4v2 Ú 2

 + 0.4v1 + 0.2v2 Ú 1.5

 + 0.2v1 + 0.3v2 Ú 0.5

 + 1v1 … 9

 + 1v2 … 6

v1, v2 Ú 0

Except for variable naming, this dual exactly matches the original primal (6.4). This
will always be true.

The dual of the dual of any linear program is the LP itself.Principle 6.30

exAmPle 6.19: ForminG the duAl oF the duAl

Show that the dual of the dual of the linear program in part (a) of Example 6.18 is
the primal.

Solution: Assigning dual variables w1, w2, w3 to the three main constraints of the
dual part (a) of Example 6.18, the dual of that dual is

max + 6w1 - 1w2 + 13w3

s.t. + 3w1 + 1w2 + 2w3 = 7

 + 5w1 - 1w2 … 6

 + 1w2 + 1w3 Ú 2

w1 Ú 0, w2 … 0

In accord with principle 6.30 , this is exactly the primal (with different variable names).

6.5 comPuter outPuts And whAt iF chAnGes
oF sinGle PArAmeters

All the machinery for quantitative sensitivity analysis is now in place. It is time to
do some.

CFPL Example Primal and Dual
We illustrate with the CFPL model formulated in Section 4.3 to plan operations of a
plywood factory. Table 6.2 displays the full primal in terms of the decision variables

wq,v,t ! number of logs of quality q bought from vendor
v and peeled into green veneer of thickness t per
month

xt,g ! number of square feet of grade g green veneer of
thickness t, purchased directly per month

6.5 Computer Outputs and What If Changes of Single Parameters 319

yt,g,g′ ! number of sheets of thickness t used as grade g′
veneer after drying and processing from grade g
green veneer per month

zt,g,g′ ! number of sheets of front veneer grade g and back
veneer grade g′ plywood of thickness t, pressed and
sold per month

A dual variable vi has been assigned at the extreme right of each constraint. The
optimal solution value is $484,879 per month.

tAble 6.2 CFPL Application Primal

maximize:

(log costs)
-340wG, 1, 1>16 - 190wF, 1, 1>16 - 490wG, 2, 1>16 - 140wF, 2, 1>16

-340wG, 1, 1>8 - 190wF, 1, 1>8 - 490wG, 2, 1>8 - 140wF, 2, 1>8
(green veneer costs)
-1.00x1>16, A - 0.30x1>16, B - 0.10x1>16, C - 2.20x1>8, A - 0.60x1>8, B - 0.20x1>8, C

(finished plywood sales)

+45z1>4, A, B + 40z1>4, A, C + 33z1>4, B, C + 75z1>2, A, B + 65z1>2, A, C + 50z1>2, B, C

subject to:
(log availability)
wG, 1, 1>16 + wG, 1, 1>8 … 200 v1

wF, 1, 1>16 + wF, 1, 1>8 … 300 v2

wG, 2, 1>16 + wG, 2, 1>8 … 100 v3

(purchased green veneer availability)

wF, 2, 1>16 + wF, 2, 1>8 … 1000 v4

x1>16, A … 5000 v5

x1>16, B … 25,000 v6

x1>16, C … 40,000 v7

x1>8, A … 10,000 v8

x1>8, B … 40,000 v9

x1>8, C … 50,000 v10

(plywood market limits)

z1>4, A, B … 1000 v11

z1>4, A, C … 4000 v12

z1>4, B, C … 8000 v13

z1>2, A, B … 1000 v14

z1>2, A, C … 5000 v15

z1>2, B, C … 8000 v16

(plywood pressing capacity)

0.25z1>4, A, B + 0.25z1>4, A, C + 0.25z1>4, B, C + 0.40z1>2, A, B + 0.40z1>2, A, C

+0.40z1>2, B, C

… 4500 v17

(green veneer balance)
400wG, 1, 1>16 + 200wF, 1, 1>16 + 400wG, 2, 1>16 + 200wF, 2, 1>16 + x1>16, A

- 35y1>16, A, A - 35y1>16, A, B

Ú 0 v18

700wG, 1, 1>16 + 500wF, 1, 1>16 + 700wG, 2, 1>16 + 500wF, 2, 1>16 + x1>16, B

- 35y1>16, B, A- 35y1>16, B, B + 35y1>16, B, C

Ú 0 v19

(continued)

320 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

Table 6.3 provides the corresponding dual. Key points in its derivation include:

•	 The dual minimizes because the primal maximizes. Objective function coefficients
come directly from the primal right-hand side.

•	 There is one main constraint for each of the 32 primal variables. All such constraints
have the Ú form because all primal variables are nonnegative. Dual right-hand sides
come from the objective function coefficients of corresponding primal variables. Dual
variables weighted on the left-hand side are those for constraints where the associated
primal variable has nonzero coefficients.

•	 The first 17 dual variables are nonnegative because they correspond to … constraints
in a maximize primal. The next 6 are nonpositive because they relate to Ú ’s, and the
last 5 are unrestricted because they correspond to = ’s.

Constraint Sensitivity Outputs
No two linear programming codes are identical, but all report the primal optimal
solution, the corresponding dual solution, and some related sensitivity information:

Typ Whether the constraint is of L = … , or G = Ú , or E = equality form

Optimal Dual The optimal value of the dual variable for the constraint (AMPL dual)
RHS Coef The specified right-hand side for the constraint (AMPL current)
Slack The amount of slack in the constraint at primal optimality (AMPL slack)
Lower Range The lowest right-hand-side value for which the optimal dual solution

 must remain unchanged (AMPL down)
Upper Range The highest right-hand-side value for which the optimal dual solution

 must remain unchanged (AMPL up)

The following modified version of the Two Crude Example model (6.4) AMPL
encoding in Table 2.3 shows how these values are requested in that modeling lan-
guage using the CPLEX solver. It is only necessary to add new display commands

900wG, 1, 1>16 + 1300wF, 1, 1>16 + 900wG, 2, 1>16 + 1300wF, 2, 1>16 + x1>16, C

- 35y1>16, C, B - 35y1>16, C, C

Ú 0 v20

200wG, 1, 1>8 + 100wF, 1, 1>8 + 200wG, 2, 1>8 + 100wF, 2, 1>8 + x1>8, A

- 35y1>8, A, A - 35y1>8, A, B

Ú 0 v21

350wG, 1, 1>8 + 250wF, 1, 1>8 + 350wG, 2, 1>8 + 250wF, 2, 1>8 + x1>8, B

- 35y1>8, B, A - 35y1>8, B, B - 35y1>8, B, C

Ú 0 v22

450wG, 1, 1>8 + 650wF, 1, 1>8 + 450wG, 2, 1>8 + 650wF, 2, 1>8 + x1>8, C

- 35y1>8, C, B - 35y1>8, C, C

Ú 0 v23

(finished veneer sheet balance)

y1>16, A, A + y1>16, B, A - z1>4, A, B - z1>4, A, C - z1>2, A, B - z1>2, A, C = 0 v24

y1>16, A, B + y1>16, B, B + z1>16, C, B - z1>4, A, B - z1>4, B, C - z1>2, A, B - z1>2, B, C = 0 v25

y1>16, B, C + y1>16, C, C - z1>4, A, C - z1>4, B, C - z1>2, A, C - z1>2, B, C = 0 v26

y1>8, A, B + y1>8, B, B + z1>8, C, B - z1>2, A, B - z1>2, A, C - z1>2, B, C = 0 v27

y1>8, B, C + y1>8, C, C - z1>4, A, B - z1>4, A, C - z1>4, B, C + 2z1>2, A, B

+ 2z1>2, A, C + 2z1>2, B, C

= 0 v28

(nonnegativity)
all variables Ú 0

tAble 6.2 Continued

6.5 Computer Outputs and What If Changes of Single Parameters 321

tAble 6.3 CFPL Example Dual

minimize:

200v1 + 300v2 + 100v3 + 1000v4 + 5000v5 + 25,000v6

+ 40,000v7 + 10,000v8 + 40,000v9 + 50,000v10 + 1000v11 + 4000v12

+ 8000v13 + 1000v14 + 5000v15 + 8000v16 + 4500v17

subject to:
(w-variable columns)

v1 + 400v18 + 700v19 + 900v20 Ú -340

v2 + 200v18 + 500v19 + 1300v20 Ú -190
v3 + 400v18 + 700v19 + 900v20 Ú -490

v4 + 200v18 + 500v19 + 1300v20 Ú -140

v1 + 200v21 + 350v22 + 450v23 Ú -340

v2 + 100v21 + 250v22 + 650v23 Ú -190

v3 + 200v21 + 350v22 + 450v23 Ú -490

v4 + 100v21 + 250v22 + 650v23 Ú -140
(x-variable columns)

v5 + v18 Ú -1.00
v6 + v19 Ú -0.30
v7 + v20 Ú -0.10
v8 + v21 Ú -2.2
v9 + v22 Ú -0.60
v10 + v23 Ú -0.20
(y-variable columns)

v24 - 35v18 Ú 0

v24 - 35v19 Ú 0

v25 - 35v18 Ú 0

v25 - 35v19 Ú 0

v25 - 35v20 Ú 0

v26 - 35v19 Ú 0

v26 - 35v20 Ú 0

v27 - 35v21 Ú 0

v27 - 35v22 Ú 0

v27 - 35v23 Ú 0

v28 - 35v22 Ú 0

v28 - 35v23 Ú 0

(z-variable columns)

v11 + 0.25v17 - v24 - v25 - v28 Ú 45

v12 + 0.25v17 - v24 - v26 - v28 Ú 40

v13 + 0.25v17 - v25 - v26 - v28 Ú 33

v14 + 0.40v17 - v24 - v25 - v27 - 2v28 Ú 75
v15 + 0.40v17 - v24 - v26 - v27 - 2v28 Ú 65
v16 + 0.40v17 - v25 - v26 - v27 - 2v28 Ú 50
(sign restrictions)

v1, v2, g, v17 Ú 0
v18, v19, g, v23 … 0
v24, v25, g, v28 unrestricted

322 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

after the solve referencing the names of main constraints and the AMPL suffix
shown above.

var xl >= 0; # decision variables and types

var x2 >= 0;

minimize tcost: 100*xl+75*x2; # objective function

subject to # main constraints

gas: 0.3*xl+0.4*x2 >= 2.0;

jet: 0.4*xl+0.2*x2 >= 1.5;

lubr: 0.2*xl+0.3*x2 >= 0.5;

saudi: xl <= 9;

venez: x2 <= 6;

option solver cplex; # choose and call solver

solve;

display cost,xl,x2; # report primal optimum

added displays for constraint sensitivity

display gas.dual,gas.slack,gas.down,gas.current,gas.up;

display jet.dual,jet.slack,jet.down,jet.current,jet.up;

display lubr.dual,lubr.slack,lubr.down,lubr.current,lubr.up;

display saudi.dual,saudi.slack,saudi.down,saudi.current,saudi.up;

display venez.dual,venez.slack,venez.down,venez.current,venez.up;

Table 6.4 displays corresponding output from the GAMS1 modeling language
for the 28 constraints of the larger CFPL Example in Table 6.2.

Notice that slack and dual values conform to primal complementary slackness
conditions 6.26 . Dual variables are positive only when the corresponding slack is zero.

Right-Hand-Side Ranges
The last two items for each constraint are new to our discussion. To understand
their meaning, look back at Figure 6.3. We know that optimal dual variable values
quantify the slope or rate of change in such relations between the right-hand side
of a constraint and the overall optimal value. In the CFPL output, for instance,
v2

* = 122.156 implies that the optimal value will improve by $122.156 per log
 increase in RHS = 300 of the corresponding log availability constraint.

The RHS range question is how much we could change the right-hand side
before that slope would no longer apply.

Right-hand-side ranges in LP sensitivity outputs show the inter-
val within which the corresponding dual variable value provides the exact rate of
change in optimal value per unit change in RHS (all other data held constant).

Principle 6.31

For example, output Table 6.4 tells us that slope v2
* would remain unchanged for any

RHS in the interval [242.5, 331.972]. Outside the range, we have only qualitative
principle 6.14 .

The idea behind range computation is to identify the maximum change in
any RHS for which the optimal basis remains (primal) feasible. In rows with slack,
such as the first constraint in Table 6.4, feasibility persists exactly until the slack is

1A. Brooke, D. Kendrick, and A. Meeraus (1988) GAMS: A User’s Guide, Scientific Press.

6.5 Computer Outputs and What If Changes of Single Parameters 323

eliminated. Thus with the original constraint one RHS of 200 permitting 158.727
units of slack, dual slope v1

* = 0 applies for any RHS value at least

RHS - slack = 200 - 158.727 = 41.273

The upper range is +∞ because increasing the RHS only relaxes an already slack
constraint.

The computation is a bit more complex when a constraint is active, but the
issue remains keeping the primal solution feasible. We omit details.

tAble 6.4 Typical Constraint Sensitivity Analysis Output for CFPL Model

Name Typ Optimal
Dual

RHS
Coef

Slack Lower
Range

Upper
Range

c1 L −0.000 200.000 158.727 41.273 +infin

c2 L 122.156 300.000 0.000 242.500 331.972

c3 L −0.000 100.000 100.000 0.000 +infin

c4 L 172.156 1000.000 0.000 942.500 1031.972

c5 L −0.000 5000.000 5000.000 0.000 +infin

c6 L −0.000 25,000.000 25,000.000 0.000 +infin

c7 L 0.032 40,000.000 0.000 0.000 85,858.586

c8 L −0.000 10,000.000 10,000.000 0.000 +infin

c9 L −0.000 40,000.000 40,000.000 0.000 +infin

c10 L 0.112 50,000.000 0.000 0.000 81,971.831

c11 L 9.564 1000.000 0.000 342.857 2621.429

c12 L 4.564 4000.000 0.000 3342.857 5621.429

c13 L −0.000 8000.000 3644.156 4355.844 +infin

c14 L 10.000 1000.000 0.000 402.597 5402.597

c15 L −0.000 5000.000 597.403 4402.597 +infin

c16 L −0.000 8000.000 8000.000 0.000 +infin

c17 L 51.418 4500.000 0.000 4404.622 4609.524

c18 G −0.201 0.000 −0.000 −51,111.111 131,759.465

c19 G −0.201 0.000 −0.000 −51,111.111 194,861.111

c20 G −0.132 0.000 −0.000 −45,858.586 41,818.182

c21 G −0.312 0.000 −0.000 −31,971.831 57,500.000

c22 G −0.312 0.000 −0.000 −31,971.831 57,500.000

c23 G −0.312 0.000 −0.000 −31,971.831 57,500.000

c24 E −7.046 0.000 0.000 −1460.317 5567.460

c25 E −4.610 0.000 0.000 −1310.245 1194.805

c26 E −4.610 0.000 0.000 −1310.245 1194.805

c27 E −10.925 0.000 0.000 −913.481 1642.857

c28 E −10.925 0.000 0.000 −913.481 1642.857

exAmPle 6.20: interPretinG rhs rAnGes

Suppose that solution of the LP

min + 5x1 + 9x2
s.t. + 1x1 + 1x2 Ú 3

 + 1x1 - 1x2 … 4
x1, x2 Ú 0

324 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

Constraint What If’s
There are hundreds of possible “what if” questions about the CFPL model that can
be asked and answered with the aid of results in Table 6.4. Much can be said if we
consider changing only one coefficient while holding all others constant. We illus-
trate with a few examples.

•	 Question: How sensitive is the optimal value to our 8000 estimate of the market for
1
2-inch BC plywood?

Solution: The market constraint for 1
2-inch BC has optimal dual v16

* = 0 and
RHS range [0, + ∞2. Thus the optimal value will remain unchanged no matter what
(nonnegative) market estimate we employ.

•	 Question: How sensitive is the optimal value to our 300 estimate of the supply of “fair”
logs available from supplier 1?

produces the constraint sensitivity output

Name Typ Optimal

Dual

RHS

Coef

Slack Lower

Range

Upper

Range

c1 G 5.000 3.000 -0.000 0.000 4.000

c2 L 0.000 4.000 1.000 3.000 +infin

Sketch what can be deduced from this output about how the optimal value varies
with each RHS.

Solution: What we can know about how optimal value varies with each RHS is
summarized in the following two plots:

optimal
value

RHS
3.0 4.0

slope 0.0

optimal
value

RHS

slope 5.0

3.0 4.0

Constraint 1 Constraint 2

The printout’s RHS range for constraint 1 shows that the rate of change in optimal
value with its right-hand side is dual variable value 5.0 in the range 0.0 to 4.0 (prin-
ciple 6.30). Above that range qualitative principle 6.14 implies that the rate can
only increase because we are tightening a Ú constraint. Below the range the rate
can only decrease.

For constraint 2 the RHS range is [3.0, + ∞2. Within this range there will be no
change in optimal value because the corresponding dual variable is 0.0. Below the range
the tightening … may produce a steeper rate of change (principle 6.14).

6.5 Computer Outputs and What If Changes of Single Parameters 325

Solution: The availability constraint for fair logs from supplier 1 has optimal dual
v*

2 = 122.156 and the RHS range [242.5, 331.972]. Thus, if the estimate of 300 is too high,
every log deducted will reduce the optimal value by at least $122.156. If it is too low, every
log added will increase the optimal value by at most the same amount.

optimal
value

RHS

30
0

33
1.

97
2

24
2.

50
0

slope
122.156

The $122.156 rate is exact within the RHS range. Below the range, the rate of change
will become steeper because we are tightening a constraint (principle 6.14). Above
the range, the rate will diminish.

•	 Question: What is the marginal value of plywood pressing capacity?
Solution: The marginal value is the optimal dual on the pressing capacity con-

straint, v17
* = $51.418 per sheet.

•	 Question: How much should we be willing to spend in promotional costs to increase
the market for 14-inch AB plywood from 1000 to 2000 sheets per month?

Solution: Because 2000 is within the RHS range on the market constraint for
1
4-inch AB, dual v11

* = $9.564 gives the exact rate of change. An increase from 1000 to
2000 would be worth

 1new value - current RHS2 v11
* = 12000 - 1000219.5642

 = $9564 per month

Any promotional expense up to that amount would be justified.
•	 Question: How much should we be willing to pay to increase plant pressing capacity

from 4500 to 6000 sheets per month?
Solution: New value 6000 falls well beyond the upper range limit of 4609.624 on

the pressing capacity RHS, thus we can only bound the value of the proposed capacity
increase.

optimal
value

RHS

bound

45
00

60
00

slope 51.418

44
04

.6
22

46
09

.5
24

326 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

At a minimum, we know that the optimal value would improve:

 1range limit - current RHS2 v17
* = 14609.624 - 45002151.4182

 ≈ $5637 per month

The dual provides an exact rate of change through the upper range limit.
Above the range limit, the rate of change may decline (principle 6.14); we are

relaxing a constraint. Still, the gain from raising capacity to 6000 cannot exceed the
estimate provided by the dual-variable value:

 1new value - current RHS2v17
* = 16000 - 45002151.4182

 = $77, 127 per month

We conclude that any equivalent monthly capacity expansion cost up to $5637 could
be justified and any over $77,127 could not. In between, we cannot be definitive.

•	 Question: How much loss would we incur if we stopped using “good” logs from supplier 2?
Solution: The dual variable on supplier 2 good log availability has v3

* = 0.0 and
RHS range [0.0, +∞2. Thus no change in optimal value would result if we reduced
availability all the way to zero.

•	 Question: How much loss would we experience if we stopped using fair logs from
 supplier 2?

Solution: The dual variable on supplier 2 fair log availability 1000 has
v4

* = 172.156 and RHS range [942.5, 1031.972]. Eliminating such log purchases amount
to changing the RHS to zero. For such a value, which is well outside the RHS range, we
can only bound the effect.

optimal
value

RHS

10
00

bound

94
2.

50
0

10
31

.9
72

slope
172.156

We are tightening the availability constraint, so principle 6.14 shows that the
true rate of change will be v4

* (actually, its negative) or worse. Thus, closing out sup-
plier 2 fair logs would produce a loss of at least

 1new value - current RHS2v3
* = 10 - 100021172.1562
 = - $172,156 per month

There is no way to use Table 6.4 information to set an outer limit on the loss (except
the full optimal value, $484,878).

Variable Sensitivity Outputs
We saw in Section 6.1 that sensitivity analysis encompasses much more than just
changes in right-hand-side values. Table 6.5 provides an example of the variable

6.5 Computer Outputs and What If Changes of Single Parameters 327

or column-oriented sensitivity information that is part of almost any LP optimizer
output. The following are displayed for each primal variable:

Item AMPL

Name The name of the primal variable
Optimal Value The optimal value for the variable
Bas Sts Whether the variable is BAS = basic, NBL = nonbasic

 lower-bounded, or NBU = nonbasic upper-bounded in the
 optimal solution (see Section 5.9)

Lower Bound The specified lower bound on the variable
Upper Bound The specified upper bound on the variable
Object Coef The specified objective function coefficient for the variable

(AMPL current)

tAble 6.5 Typical Variable Sensitivity Analysis Output for CFPL Model

Name Optimal
Value

Bas
Sts

Lower
Bound

Upper
Bound

Object
Coef

Reduced
Object

Lower
Range

Upper
Range

wG1s 41.273 BAS 0.000 +infin −340.000 0.000 −361.569 −304.762

wF1s 300.000 BAS 0.000 +infin −190.000 0.000 −190.000 +infin

wG2s 0.000 NBL 0.000 +infin −490.000 150.000 −infin −340.000

wF2s 155.273 BAS 0.000 +infin −140.000 0.000 −185.306 −140.000

wG1e 0.000 NBL 0.000 +infin −340.000 27.844 −infin −312.156

wF1e 0.000 NBL 0.000 +infin −190.000 0.000 −infin −190.000

wG2e 0.000 NBL 0.000 +infin −490.000 177.844 −infin −312.156

wF2e 844.727 BAS 0.000 +infin −140.000 0.000 −140.000 −94.694

xsA 0.000 NBL 0.000 +infin −1.000 0.799 −infin −0.201

xsB 0.000 NBL 0.000 +infin −0.300 0.099 −infin −0.201

xsC 40,000.000 BAS 0.000 +infin −0.100 0.000 −0.132 +infin

xeA 0.000 NBL 0.000 +infin −2.200 1.888 −infin −0.312

xeB 0.000 NBL 0.000 +infin −0.600 0.288 −infin −0.312

xeC 50,000.000 BAS 0.000 +infin −0.200 0.000 −0.312 +infin

zqAB 1000.000 BAS 0.000 +infin 45.000 0.000 35.436 +infin

zqAC 4000.000 BAS 0.000 +infin 40.000 0.000 35.436 +infin

zqBC 4355.844 BAS 0.000 +infin 33.000 0.000 31.612 34.675

zhAB 1000.000 BAS 0.000 +infin 75.000 0.000 65.000 +infin

zhAC 4402.597 BAS 0.000 +infin 65.000 0.000 62.320 67.220

zhBC 0.000 NBL 0.000 +infin 50.000 12.564 −infin 62.564

yeBB 0.000 NBL 0.000 +infin −0.000 0.000 −infin 0.000

ysAA 3073.247 BAS 0.000 +infin 0.000 0.000 −2.351 5.045

ysAB 0.000 NBL 0.000 +infin 0.000 2.436 −infin 2.436

ysBA 7329.351 BAS 0.000 +infin 0.000 0.000 −2.792 3.964

ysBB 0.000 NBL 0.000 +infin 0.000 2.436 −infin 2.436

ysBC 0.000 NBL 0.000 +infin 0.000 2.436 −infin 2.436

ysCB 6355.844 BAS 0.000 +infin 0.000 0.000 −1.388 1.675

ysCC 12,758.442 BAS 0.000 +infin 0.000 0.000 −3.700 4.467

yeAB 2413.506 BAS 0.000 +infin 0.000 0.000 −12.867 15.857

(continued)

328 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

Item AMPL

Reduced Object The reduced objective function coefficient for the variable at
optimality (AMPL rc)

Lower Range The lowest objective function coefficient value for which the
optimal primal solution must remain unchanged (AMPL down)

Upper Range The highest objective function coefficient value for which the
optimal primal solution must remain unchanged (AMPL up)

Most of these items are familiar from our previous discussion. Optimal val-
ues, objective function coefficients, and reduced objective function coefficients have
usually been denoted xj

*, cj, and cQj, respectively. Notice that given values satisfy dual
complementary slackness conditions 6.27 . Whenever Optimal Value> 0, the
corresponding dual constraint slack Reduced Object = 0.

Just as the constraint sensitivity information shown above, AMPL display com-
mands are easily added to capture new results about objective function coefficients
from that modeling system and the CPLEX solver. Parallel with the earlier case, the
items are identified by a model variable name followed by the AMPL suffix from
the above list. For the 2 primal variables of the Two-Crude example those additions
would be as follows:

display x1.current,x1.down, x1.up,x1.rc;

display x2.current,x2.down, x2.up,x1.rc;

Objective Coefficient Ranges
As with constraint information, the two completely new items are ranges, this time
on the objective. Items Lower Range and Upper Range delimit changes in ob-
jective coefficient value that would leave the primal optimal solution unchanged.

Figure 6.5 illustrates how keeping the same optimal solution does not neces-
sarily mean keeping the same optimal value. The optimal level for sales variable
z1>4, A, B (zqAB in the computer output) is 1000. Thus the optimal objective value

optimal
value

obj

slope 1000.000

35.436 45

FiGure 6.5 Optimal Value Impact of CFPL
Objective Changes

6.5 Computer Outputs and What If Changes of Single Parameters 329

In Figure 6.5 the range is [35.436, +∞2. Outside the range we must rely on qual-
itative principle 6.16 to impute rates of change. Since selling prices below $35.436
help the objective less, the rate … 1000.

Like the RHS case, objective coefficient range computations involve details
inappropriate for this book. However, calculations center on keeping the dual
solution feasible so that optimality conditions will continue to hold for the current
 primal optimum.

The computation is easy when dual slack cQj is nonzero. Certainly, dual fea-
sibility will not be lost until all slack is eliminated. For instance, sales variable
z1>2, B, C (zhBC), with reduced objective coefficient - $12.564 on an original coef-
ficient of $50, has objective coefficient range 1-∞ , 62.564]. Reductions from $50
only relax an already slack dual constraint, and increases eliminate slack only at the
coefficient value

 1current coefficient - dual slack2 = 50 - 1-12.5642
 = $62.564 per month

Objective coefficient ranges in LP sensitivity outputs display
the interval within which the current primal solution remains optimal and in-
dividual variable values continue to show exactly how optimal value changes
with their objective coefficients (all other data held constant).

Principle 6.33

exAmPle 6.21: interPretinG objective coeFFicient rAnGes

Return to the LP of Example 6.20, and assume that the variable part of sensitivity
output is as follows:

Name Optimal

Value

Bas

Sts

Object

Coef

Reduced

Object

Lower

Range

Upper

Range

x1 5.000 BAS 5.000 0.000 0.000 9.000

x2 0.000 NBL 9.000 4.000 5.000 +infin

Sketch what can be deduced from this output about how the optimal value will change
with the two objective function coefficients.

Optimal primal LP variable values show the rate of change in
 optimal value per unit increase in the corresponding objective function coefficient.

Principle 6.32

will increase at the rate of $1000 per $1 increase in the z1>4, A, B objective function
coefficient as long as the primal optimal solution remains unchanged.

330 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

Solution: What we can know about how the optimal value varies with objective
function coefficients is summarized in the following two plots:

slope 0.000

5.000 9

optimal
value

obj

slope 3.000

5 9.000

optimal
value

obj

Variable 1 Variable 2

The range on the first coefficient is [0.0, 9.0], meaning that the current primal solu-
tion will remain optimal for any c1 in the range and that the optimal value varies
within that range at rate x1

* = 3.0 (principle 6.33). Increasing that coefficient hurts
the optimal value, so the rate may decline for c1 7 9.0 (principle 6.16). Below the
range the rate becomes steeper.

Similarly, the output above shows that the range for c2 is [5.0, + ∞2. Any cost in
that range will leave x2

* = 0.0 and the optimal value unchanged. Below the range the ob-
jective may decline because helping the objective will steepen the rate (principle 6.16).

Variable What If’s
The value of output information in Table 6.5 is best illustrated by considering some
of the “what if” questions that it might help to answer. Again we assume only one
parameter changes with all else held constant.

•	 Question: How sensitive are the optimal solution and value to our $33 estimate of the
selling price for 14-inch BC plywood?

Solution: The objective range of [31.612, 34.675] on zqBC implies that the op-
timal operating plan would remain unchanged for any price between those values.
However, the optimal value would vary.

optimal
value

obj

slope 4355.844

31
.6

12 33

34
.6

75

Every price increase of $1 would add z1>4, B, C
* = $4355.844 per week to the optimal

value within the range and that much or more above (principle 6.16). Every $1 de-
crease would reduce the optimal value at the same rate through limit $31.612 and that
much or less thereafter.

•	 Question: How sensitive are the optimal solution and value to our $1.00 per square
foot (objective coefficient -1.00) estimate of the cost of 1

16-inch A green veneer?
Solution: Coefficient range 1-∞ , -0.201] on xsA implies that the optimal solution

would remain unchanged for any coefficient below -0.201 (cost above $0.201) per square
foot. Within that range, optimal value would also remain unchanged because x1>16, A

* = 0.

6.5 Computer Outputs and What If Changes of Single Parameters 331

optimal
value

obj

-1

-0
.2

01

slope 0.000

Coefficient values above -0.201 (costs below $0.201) might improve the optimal value
because the rate of change cannot decrease.

•	 Question: How much difference in the optimal value would it make if we increased or
decreased the $65 per sheet selling price of 12-inch AC plywood by 20%?

Solution: A 20% increase would bring the price to 11.221652 = $78. Because
this value is well beyond the upper range limit of $67.220 for variable zhAC, we can
only bound the optimal value impact. It will equal or exceed

 1new coefficient - original coefficient2z1>2, A, C
* = 178 - 65214402.5972

 ≈ $57, 234 per month

52

62
.2

30 65
67

.2
20 78

slope
4402.597

optimal
value

obj

bound

A 20% price decrease also takes us well outside the range. We can compute the least
possible impact by considering only the range where we know the exact rate of change.

 1range limit - original coefficient2z1>2, A, C
* = 162.320 - 65214402.5972

 ≈ - $11, 799 per month

Extending the current rate of change all the way to 10.821652 = $52 bounds the
maximum impact:

 1new coefficient - original coefficient2z1>2, A, C
* = 152 - 65214402.5972

 ≈ - $57, 234 per month

•	 Question: The current optimal plan produces no 12-inch BC plywood at our estimated $50
per sheet selling price. At what price would producing that product become profitable?

Solution: Coefficient ranges that indicate z1>2, B, C
* = 0 would remain the opti-

mal choice for any price up to $62.564. At prices above that value a positive profit is
possible because the rate of change can only increase as we move a coefficient to help
the objective (principle 6.16).

•	 Question: The current optimal plan buys x1>16, C
* = 40, 000 square feet of 1

16-inch C
green veneer per week at cost $0.10 (objective coefficient -0.10) per square foot. At
what price would such purchases become unprofitable?

332 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

Solution: The coefficient range for x1>16, C is [-0.132, +∞2. Thus we know that
the 40,000-square foot value will remain optimal at coefficients above -0.132 (i.e.,
cost below $0.132 per square foot). Beyond $0.132 it may be optimal to buy less.

Dropping and Adding Constraint What If’s
Another familiar form of “what if” questions involve dropping or adding con-
straints. Results in Figures 6.4 and 6.5 help here, too. The necessary insights are
almost obvious:

Dropping a constraint can change the optimal solution only if
the constraint is active at optimality.

Principle 6.34

Adding a constraint can change the optimal solution only if
that optimum violates the constraint.

Principle 6.35

Some examples (assuming the rest of the model is held constant):

•	 Question: Would dropping the press capacity constraint change the optimal plan?
Solution: Yes. The constraint has no slack at the optimal solution.

•	 Question: Would dropping the supplier 1 good log availability constraint change the
 optimal plan?

Solution: No. At the optimal solution that constraint has a slack of 158.727 logs.
•	 Question: We have an informal commitment to buy at least 325 logs per month from

supplier 1. Would including that constraint change the optimal solution?
Solution: No. Such a constraint would have the form

wG, 1, 1>16 + wG, 1, 1>8 + wF, 1, 1>16 + wF, 1, 1>8 Ú 325

Substituting the current optimal solution yields

 wG, 1, 1>16
* + wG, 1, 1>8* + wF, 1, 1>16

* + wF, 1, 1>8* = 41.273 + 0 + 300 + 0

 = 341.273

 7 325

The constraint would not be active if it were included.
•	 Question: Would a policy limiting green veneer purchase to $10,000 per month change

the current optimal plan?
Solution: Yes. A new constraint enforcing this policy would have the form

1.00x1>16, A + 0.30x1>16, B + 0.10x1>16, C + 2.20x1>8, A + 0.60x1>8, B + 0.20x1>8, C … 10,000

Substituting the current plan yields

1.00x1>16, A
* + 0.30x1>16, B

* + 0.10x1>16, C
* + 2.20x1>8, A

* + 0.60x1>8, B
* + 0.20x1>8, C

*

= 1.00102 + 0.30102 + 0.10140,0002 + 2.20102 + 0.60102 + 0.20150,0002
= 14,000

 " 10,000

Our current optimal solution violates the proposed constraint.

6.5 Computer Outputs and What If Changes of Single Parameters 333

exAmPle 6.22: AnAlyzinG droPPed And Added constrAints

Suppose that a linear program has optimal solution x1
* = 3, x2

* = 0, x3
* = 1.

Determine whether each of the following modifications in the model will change
this optimal solution.

(a) Dropping constraint 6x1 - x2 + 2x3 Ú 20

(b) Dropping constraint 4x1 - 3x3 … 15

(c) Adding constraint x1 + x2 + x3 … 2

(d) Adding constraint 2x1 + 7x2 + x3 … 7

Solution:

(a) Substituting the optimal solution gives us

6132 - 102 + 2112 = 20

so that the constraint is active. Under principle 6.34 , dropping the constraint may
change the optimal solution.

(b) Substituting the optimal solution, we have

4132 - 3112 = 9 6 15

and the constraint is inactive. Dropping the constraint will not change the optimal
solution (principle 6.34).

(c) Substituting the optimal solution, we have

132 + 102 + 112 = 4 " 2

Since the constraint is violated, adding it will change the optimal solution (principle
6.35).

(d) Substituting the optimal solution, we have

2132 + 7102 + 112 = 7 … 7

Adding the constraint will not change the optimal solution because it is already
satisfied (principle 6.35).

Dropping and Adding Variable What If’s
The final category of “what if” questions that we can answer using Figures 6.4 and
6.5 involves dropping and adding variables. The dropping case is trivial:

An LP variable can be dropped without changing the optimal
solution only if its optimal value is zero.

Principle 6.36

For example, Table 6.5 implies that the optimal plan would remain unchanged if we
eliminated 12-inch BC producing activity z1>2,B,C. Its optimal value z1>2,B,C

* = 0.

334 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

Adding is a bit more complex. We need to decide whether the optimal value
for an added variable would be zero, implying that it is just as well not to include
it. But this depends on whether current optimal dual prices vi

* produce a reduced
objective function coefficient with the proper sign (i.e., whether the main dual con-
straint associated with the new variable is satisfied).

A new LP variable can change the current primal optimal solu-
tion only if its dual constraint is violated by the current dual optimum.

Principle 6.37

Some examples (assuming the rest of the model is held constant):

•	 Question: A new 14-inch AA plywood may be introduced that could be pressed in 0.25
hour using two 1

16-inch sheets of A veneer and one 1
8-inch sheet of B veneer. At what

selling price would this product enter the optimal plan?
Solution: The corresponding dual constraint would be

0.25v17 - 2v24 - v27 Ú c

Substituting the current dual solution yields

 0.25v17
* - 2v24

* - v27
* = 0.25151.4182 - 21-7.0462 - 1-10.9252

 ≈ $37.87

At any price above this value, the new product would be profitable.
•	 Question: A new supplier offers 1

16-inch B green veneer at $0.40 per square foot.
Would adding the possibility of purchasing this veneer change the optimal solution?

Solution: No. The only nonzero coefficient on this new activity would appear in
the balance constraint for 1

16-inch B veneer. Thus the constraint would be

v19 Ú -0.40

The present v19
* = -0.201 satisfies this constraint, so it would be optimal to use none

of the new activity.

exAmPle 6.23: AnAlyzinG droPPed And Added vAriAbles

Suppose that a minimize LP over nonnegative variables has primal optimal solu-
tion x1 = 0, x2 = 4, x3 = 2 and corresponding dual optimal solution v1 = 1, v2 = 0,
v3 = 6. Determine whether each of the following modifications in the model will
change this optimal solution.

(a) Dropping variable x1

(b) Dropping variable x2

(c) Adding a variable with coefficients 2, -1, and 3 in the main constraints and
cost 18

(d) Adding a variable with coefficients 1, 0, and 2 in the main constraints and
cost 50

6.6 Bigger Model Changes, Reoptimization, and Parametric Programming 335

6.6 biGGer model chAnGes, reoPtimizAtion,
And PArAmetric ProGrAmminG

Although standard LP sensitivity outputs lend insight on a host of minor “what if”
questions, optimization by-products can go only so far. In this section we review
briefly some of the practical limits and introduce more informative approaches
 requiring reoptimization.

Ambiguity at Limits of the RHS and Objective Coefficient Ranges
In Section 6.5 (principles 6.31 and 6.33) we explained that the optimal primal
 solution provides reliable quantitative sensitivity information only as long as an ob-
jective coefficient change stays within the range provided in LP outputs, and the
optimal dual solution yields precise rates of change only if a right-hand-side change
is restricted to the RHS range displayed. Beyond the ranges, we have only upper or
lower bounds on rates of change from qualitative principles 6.14 and 6.16 .

Figure 6.6 illustrates how the ambiguity about rates of change, which we first
encountered in Section 6.2, occurs at the limits of RHS ranges. Three different ver-
sions of our venerable Two Crude refining model (6.4) are solved graphically using
varying gasoline requirement RHS values b1 = 2.0, 2.625, and 3.25, respectively.

Computer output for the 2.0 case shows optimal dual slope v1
* = 20 hold-

ing within the RHS range 1.125 … b1 … 2.625. A similar output for the b1 = 3.25
choice indicates that a rate of change v1

* = 333.333 applies over the range
2.625 … b1 … 5.100.

Solution:

(a) In accord with principle 6.36 , dropping x1 will not change the optimal solution
because its optimal value = 0.

(b) Since x2 has a nonzero optimal value, dropping it would change the optimal
solution (principle 6.36).

(c) The main dual constraint for the new primal variable would be

2v1 - 1v2 + 3v3 … 18

Substituting the optimal dual solution, we obtain

2(1) - 1(0) + 3(6) = 20 " 18

Adding this variable would change the primal optimum because the current dual
solution violates the new constraint (principle 6.37).

(d) The main dual constraint for this new primal variable would be

1v1 + 2v3 … 50

Substituting the optimal dual solution, we obtain

1112 + 2162 = 13 … 50

Since the constraint is satisfied, adding the new variable would not change the
primal optimum (principle 6.37).

336 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

x2

x1

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(Venezuelan)

(S
au

di
)

(Lubricants)

optimal

(Gasoline)

(Jet Fuel)

x2

x1
1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(Venezuelan)

(S
au

di
)

(Lubricants)

optimal

(Gasoline)

(Jet Fuel)

x2

x1

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

400

(Venezuelan)

(S
au

di
)

(Lubricants)

(Gasoline)

optimal

(Jet Fuel)

(a) b1 = 2.0

(b) b1 = 2.625

(c) b1 = 3.25

100.000 1.125 2.625

100.000 1.125 2.625

333.333 2.625 5.100

either

or

333.333 2.625 5.100

Optimal
Dual

Lower
Range

Upper
Range

Optimal
Dual

Lower
Range

Upper
Range

Optimal
Dual

Lower
Range

Upper
Range

Optimal
Dual

Lower
Range

Upper
Range

500 600 700 800 900 100011001200

400500 600 700 800 900 100011001200

400500 600 700 800 900 100011001200

FiGure 6.6 Sensitivity Ranges for Varying Two Crude Gasoline Demand

6.6 Bigger Model Changes, Reoptimization, and Parametric Programming 337

One or the other of these dual and range outputs would print out if we solved
with b1 exactly 2.625, but which one it would be is unpredictable. Either would mis-
lead. The correct rate for an increase from b1 = 2.625 is 333.333, and for a decrease
it is 100.00, but neither possible output provides both.

At the limits of the RHS and objective function sensitivity
ranges rates of optimal value change are ambiguous, with one value applying
below the limit and another above. Computer outputs may show either value.

Principle 6.38

exAmPle 6.24: interPretinG sensitivity At rAnGe limits

Return to the Swedish Steel sensitivity plot of Figure 6.3(a). Determine from the
plot the RHS ranges and optimal dual values that might result if an LP optimization
code were invoked with the given RHS (a) 75.0; (b) 60.4.

Solution:

(a) RHS value 75.0 falls within an unambiguous range. Output would show dual
variable -3.38 and range [60.4, 83.3].

(b) RHS value 60.4 forms the boundary between two ranges. Output might show
dual variable -3.38 and range [60.4, 83.3], or it might produce dual -4.98 with
range [0.0, 60.4].

Connection between Rate Changes and Degeneracy
A closer look at the three cases in Figure 6.6 shows what causes rates to change at
b1 = 2.625. Below that value, the optimal solution is defined by active gasoline and
jet fuel requirement constraints

 0.3x1 + 0.4x2 Ú b1

 0.4x1 + 0.2x2 Ú 1.5

The corresponding dual slope is v1
* = 100. Above 2.625, the Venezuelan availability

limit replaces jet fuel to give active set

 0.3x1 + 0.4x2 Ú b1

 x2 … 6

Rate v1
* = 333.333.

Rates of variation in optimal value with model constants
change when the collection of active primal or dual constraints changes.

Principle 6.39

At exactly b1 = 2.625 all three constraints are active, but any two define pri-
mal solution x1

* = 0.75, x2
* = 6. This is the degenerate case of more constraints

being active than are needed to settle the primal solution that we introduced in

338 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

Section 5.6. Rates of change displayed in sensitivity outputs will reflect whichever
pair the optimization search happens to focus on.

Many, perhaps most, large linear programs will have degenerate optimal solu-
tions. It follows that we will often find that the given value of a model parameter
also forms one or the other end of its range. Even if the base-case value lies strictly
within a range, that interval of reliable quantitative sensitivity information is likely
to be rather narrow.

Degeneracy, which is extremely common in large-scale LP
models, limits the usefulness of sensitivity by-products from primal optimi-
zation because it leads to narrow RHS and objective coefficient ranges and
ambiguity at the range limits.

Principle 6.40

If the number of “what if” variations does not grow too big,
reoptimization using different values of model input parameters often pro-
vides the most practical avenue to good sensitivity analysis.

Principle 6.41

Reoptimization to Make Sensitivity Exact
The obvious remedy for weaknesses in sensitivity analysis based on optimization
byproducts is reoptimization—repeating the optimization search with changed
model constants. For example, if we want to know how the optimal plan at Two
Crude would change if gasoline demand increases from 2.0 to 3.5, we could just run
again with the revised RHS.

Practical OR analyses rely heavily on running a variety of cases, and many
linear programming optimization codes provide for inputting several alternative
RHSs or objective functions at the same time. Still, the approach has its limits. All
combinations of even 10 parameter variations leads to 210 = 1024 cases to try; 11
variations imply twice as many.

Parametric Variation of One Coefficient
To do sensitivity analysis by trying different cases, we must, of course, know what
cases to try. For example, we may know we are interested in how sensitive optimal
results are to changes in an RHS or objective coefficient, yet be unclear about ex-
actly what values to consider.

Parametric studies track the optimal value as a function of model inputs.
Figures 6.3 and 6.4 displayed just such parametric functions in our qualitative dis-
cussion of Section 6.2. Figure 6.7 adds another—the Two Crude optimal value as a
function of the demand for gasoline.

Many LP optimization codes include automatic features to produce such para-
metric analysis, but we are now in a position to see how it can be done with the tools
already at hand. Just four carefully chosen runs can construct the entire Figure 6.7
curve. In particular, we employ the following cases and sensitivity outputs:

6.6 Bigger Model Changes, Reoptimization, and Parametric Programming 339

Parametric analysis begins with the base model case of b1 = 2.000 and its opti-
mal value of 92.5. The first line of table values shows that the slope or rate of change
in optimal value at that point is v1

* = 20.000. Range information tells us that this
slope holds from b1 = 1.125 to 2.625. The result is the segment of the Figure 6.7
curve passing through b1 = 2.000, optimal value = 92.5.

New rates of change arise only outside that range. Our first variation changes
b1 to 2.625 + ∊, just beyond the upper limit. The result is new slope 66.667 and an in-
dication that it holds through upper limit b1 = 5.100. Repeating for b1 = 5.100 + ∊
shows that the model is infeasible beyond 5.100. We complete the analysis by mov-
ing b1 below the base-case range limit of 1.125. Reoptimization with b1 = 1.125 - ∊
indicates that the slope v1

* = 0.000 will hold for all further decreases.

250

1250

750 slope
0.00

slope
100.00

slope
333.33

slope + q
(infeasible)

1.
1 2

2.
6

5.
1

462.5

optimal
value

RHS

FiGure 6.7 Parametric Variation of Optimal
Value with Two Crude Gasoline Demand

Parametric studies of optimal value as a function of a single-
model RHS or objective function coefficient can be constructed by repeated
optimization using new coefficient values just outside the previously applicable
sensitivity range.

Principle 6.42

exAmPle 6.25: PArAmetricAlly AnAlyzinG one coeFFicient

Return to the parametric plots of Figures 6.3 and 6.4.

(a) Tabulate the separate optimizations that would have to be run to produce RHS
parametric analysis Figure 6.3(a), beginning from the base the RHS value 75.0.

Case RHS Dual Lower Range Upper Range

Base model 2.000 20.000 1.125 2.625
Variant 1 2.625 + e 333.333 2.626 5.100

Variant 2 5.100 + e + ∞ 5.100 + ∞
Variant 3 1.125 - e 0.000 - ∞ 1.125

where e is a small positive number.

340 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

(b) Tabulate the separate optimizations that would have to be run to produce ob-
jective coefficient parametric analysis Figure 6.4(a), beginning from base cost 9.0.

Solution:

(a) Proceeding from the figure according to principle 6.42 produces the following
cases:

Case RHS Dual Lower Range Upper Range

Base model 75.0 -3.38 60.4 83.3
Variant 1 83.3 + e 0.00 83.3 - ∞
Variant 2 60.4 + e -4.98 0.0 60.4
Variant 3 0.0 - e - ∞ - ∞ 0.0

(b) Proceeding from the figure according to principle 6.42 produces the following
cases:

Case Cost Primal Lower Range Upper Range

Base model 9.0 156.1 8.4 10.1
Variant 1 10.1 + e 109.56 10.1 19.9
Variant 2 19.9 + e 82.03 19.9 29.2
Variant 3 29.2 + e 72.59 29.2 31.8
Variant 4 31.8 + e 72.21 31.8 35.5
Variant 5 35.5 + e 68.43 35.5 + ∞
Variant 6 8.4 - e 178.76 8.0 8.4
Variant 7 8.0 - e 400.98 - ∞ 8.0

Assessing Effects of Multiple Parameter Changes
The greatest limitation of sensitivity studies we have explained so far is that all vary
only one model input at a time. They increase or decrease a single RHS or objective
coefficient, or add or drop a single variable or constraint. The implicit assumption is
that all other data are held constant.

Computations behind sensitivity printouts like those of Figures 6.4 and 6.5 de-
pend explicitly on this “single change” assumption.

Elementary LP sensitivity rates of change and ranges hold only
for a single coefficient change, with all other data held constant.

Principle 6.43

Unfortunately, one-at-a-time analysis often does not suffice. Many “what if”
questions that arise in operations research studies involve multiple changes, with
several model constants varying simultaneously. For example, we may wish to know
the impact on Two Crude refinery’s optimal plan if demand for gasoline increases by
some percent at the same time as demand for jet fuel increases at twice that percent
because of an anticipated upturn in the economy; two RHSs would be changing at
the same time.

6.6 Bigger Model Changes, Reoptimization, and Parametric Programming 341

As with single variations, we can deal with a modest number of such multiple-
change questions simply by reoptimizing with new coefficients. For example, a
fraction u increase in both gasoline and jet fuel demand at Two Crude would be
implemented by a new run with

 b1 = 11 + u22.0 (6.8)

b2 = 11 + 2u21.5

and all other data as before.

Parametric Multiple-RHS Change
To see how to track the parametric effect of such multiple changes over a variety of
change magnitudes u, we need to think of right-hand sides in the form

bi
new = bi

base + u ∆bi

where each ∆bi shows how much its RHS bi is changing per unit variation, and u
defines the size of the step. In the example of (6.8), change components for the five
model RHSs are

∆b1 = 2.0, ∆b2 = 211.52 = 3, ∆b3 = ∆b4 = ∆b5 = 0

Thinking of u as a decision variable, adding 1u ∆bi2 on the right-hand side of
each constraint translates as - 1∆bi2u on the left. Therein lies the key insight.

The effect of a multiple change in right-hand sides with step u
can be analyzed parametrically by treating u as a new decision variable with
constraint coefficients - ∆bi that detail the rates of change in RHSs bi and a
value fixed by a new equality constraint.

Principle 6.44

For example, the revised Two Crude model with varying rate of gasoline and jet
fuel demand growth would be

min + 100x1 + 75x2

s.t. + 0.3x1 + 0.4x2 - 2u Ú 2

+ 0.4x1 + 0.2x2 - 3u Ú 1.5

+ 0.2x1 + 0.3x2 Ú 0.5

+ 1x1 … 9

+ 1x2 … 6

+ 1u = b6

x1, x2 Ú 0. u URS

We can now proceed exactly as we did to construct Figure 6.7. New equality
constraint

u = b6

reduces the task of parametric analysis to one of seeing how optimal value changes
with RHS b6.

342 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

Using RHS range outputs for that constraint leads us to the following se-
quence of runs and the parametric curve of Figure 6.8.

Case RHS Dual Lower Range Upper Range

Base model 2.000 20.000 1.125 2.625
Variant 1 2.625 + e 66.667 2.626 5.100

Variant 2 5.100 + e + ∞ 5.100 + ∞
Variant 3 1.125 - e 0.000 - ∞ 1.125

optimal
value

250

1250

750

slope
725

slope
 1125

slope + q
(infeasible)

0.
9

1.
1

0.
0

u

FiGure 6.8 Parametric Multiple-RHS
Change of the Two Crude Example

exAmPle 6.26: AnAlyzinG multiPle-rhs chAnGes

Consider the linear program

max + 5x1 + 2x2

s.t. + 1x1 + 1x2 … 3

 + 1x1 … 2

x1, x2 Ú 0

Show how to modify the model to parametrically analyze the effect of simulta-
neously increasing the first RHS and decreasing the second by the same amount.

Solution: The indicated change involves ∆b1 = +1, ∆b2 = -1. Thus, applying
principle 6.44 , we may parametrically analyze the change by varying new RHS b3
in the modified model:

max + 5x1 + 2x2

s.t. + 1x1 + 1x2 - 1u … 3

+ 1x1 + 1u … 2

+ 1u = b3

x1, x2 Ú 0, u URS

6.6 Bigger Model Changes, Reoptimization, and Parametric Programming 343

Again we illustrate using the Two Crude model (6.4). If we wish to explore
parametrically the impact of a uniform crude price rise by a fraction u,

 c1
new = 100 + u ∆c1 = 20 + u1202

 c2
new = 75 + u∆c2 = 15 + u1152

The revised primal model to manipulate is

min + 100x1 + 75x2 + ux3

s.t. + 0.3x1 + 0.4x2 Ú 2

+ 0.4x1 + 0.2x2 Ú 1.5

+ 0.2x1 + 0.3x2 Ú 0.5

+ 1x1 … 9

+ 1x2 … 6

-20x1 - 15x2 + 1x3 = 0

x1, x2 Ú 0, x3 URS

Negatives of rates ∆cj form coefficients for a new equality constraint with RHS
= 0.0, and new variable x3 appears in that constraint and the objective function.

We can now determine parametric effects of our multiple changes by analyz-
ing the effect on optimal value of changes in the single objective coefficient u. The
process works because the main dual constraint corresponding to new variable x3 is

n6 = u

Thus u affects all other main dual constraints by a term - ∆cjn6 = - ∆cju on the left-
hand side, which is equivalent to increasing at the same rate in the dual right-hand
side c. With primal and dual guaranteed to yield equal optimal values, manipulating
the dual in this way does to the primal exactly what we want.

Using objective function range outputs for parameter u leads us to the follow-
ing sequence of runs and the parametric curve of Figure 6.9.

The effect of a multiple change in objective function with step
u can be analyzed parametrically by treating objective rates of change - ∆cj as
coefficients in a new equality constraint having right-hand side zero and a new
unrestricted variable with objective coefficient u.

Principle 6.45

Parametric Change of Multiple Objective Function Coefficients
To see how to do the same sort of parametric multiple-change analysis when objec-
tive function coefficients are changing, we must think back to the relation between
primal and dual. Parametric revision

cj
new = cj

base + u ∆cj

modifies the objective coefficients of the primal, which are the right-hand sides of
the dual. Thus the analog of adding a new constraint - ∆ b column in the RHS case
is the addition of a new constraint row - ∆ c to vary the cj. To be more specific,

344 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

Case Coefficient U Optimal x3 Lower Range Upper Range

Base model 2.000 100.000 1.125 2.625
Variant 1 2.625 + e 333.333 2.626 5.100

Variant 2 5.100 + e + ∞ (infeasible) 5.100 + ∞
Variant 3 1.125 - e 0.000 - ∞ 1.125

250

1250

750

0.
0

7.
0

slope
62.50

slope
33.25

optimal
value

u

FiGure 6.9 Parametric Multiple
Objective Coefficient Change of the
Two Crude Example

exAmPle 6.27: AnAlyzinG multiPle objective chAnGes

Show how to modify the model in Example 6.26 to parametrically analyze the effect
of simultaneously increasing the first objective coefficient and decreasing the sec-
ond at twice the rate.

Solution: The indicated change involves ∆c1 = +1, ∆c2 = -2. Thus, applying
principle 6.45 , we may parametrically analyze the change by varying new objective
coefficient u in the modified model:

 max + 5x1 + 2x2 + ux3

s.t. + 1x1 + 1x2 … 3

+ 1x1 … 2

-1x1 + 2x2 + 1x3 = 0

x1, x2 Ú 0, x3 URS

6.7 duAlity And oPtimAlity in lineAr ProGrAmminG

Relationships between primal linear programs and their duals have import well
 beyond the intuitive sensitivity results developed in Sections 6.3–6.6. In this section
we investigate those important theoretical relationships and their consequences of
LP algorithm strategies.

6.7 Duality and Optimality in Linear Programming 345

To begin, it will be useful to use a single concise form for primal and dual. We
know there is no loss of generality (Section 5.1) in adopting the following inequality
forms:

 min c # x max v # b

 1Primal2 s.t. Ax Ú b 1Dual2 s.t. vA … c (6.9)

 x Ú 0 v Ú 0

Dual of the Dual
We begin with one of the easiest relationships to see.

The dual of the dual of any linear program is the primal.Principle 6.46

We can see that this must be true by simply rearranging the primal-dual pair in (6.9).

 max v # b min c # y

1Dual2 s.t. vA … c 1DualDual2 s.t. Ay Ú b

 v Ú 0 y Ú 0

On the left we now have the former dual playing the role of the primal. Now let
the variables of its dual be denoted y. The corresponding objective function and
constraints will then be those shown on the right above. But comparison to the (6.9)
primal demonstrates this dual of the dual is identical to the original primal except
for the name of the variables.

Weak Duality between Objective Values
The next relationship to investigate is weak duality – how objective values of feasible
solutions to one of the problems bound the values of feasible solutions to the other.

The primal objective function evaluated at any feasible solution
to a minimize primal is Ú the objective function value of the corresponding
dual evaluated at any dual feasible solution. For a maximize primal, it is … .

Principle 6.47

To see why this weak duality must hold, let x be a feasible solution to the above
primal, and vQ a feasible solution to the corresponding dual. Then adding and sub-
tracting a common quantity and regrouping shows

 c # x - vQ # b = c # x - vQAx + vQAx - vQ # b

 = 1c - vQA2 # x + vQ # 1Ax - b2 (6.10)

If x is primal feasible in (6.9), and vQ is feasible in the corresponding dual, then
1c - vQA2, x, vQ , and 1Ax - b2 are all nonnegative. Thus (6.10) implies the differ-
ence in the optimal solution values is nonnegative, and primal value c # x is indeed
Ú dual solution value vQ # b.

346 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

exAmPle 6.28: veriFyinG weAk duAlity

For the Two linear programs in Example 6.17, verify that the following primal and dual
solutions are feasible, and show that they conform to weak duality property 6.47 .

(a) Primal solution: x1 = 1, x2 = 1, x3 = 1
Dual solution: v1 = 2, v2 = 6, v3 = -1

(b) Primal solution: x1 = 2, x2 = 1, x3 = 0
Dual solution: v1 = -2, v2 = 4, v3 = -1

Solution:

(a) To check primal feasiblity, we first note all specified xj Ú 0. For main primal
constraints,

 +1x1 - 1x2 - 1x3 = +1112 - 1(1) + 1112 = 1 Ú 1

 +3x1 + 1x2 = +3112 + 1112 = 4

 +4x2 + 1x3 = +4112 + 1112 = 5 … 10

Turning to dual feasibility, main constraints (see Example 6.17) have

 +1v1 + 3v2 = +1122 + 3162 = 20 … 30

 -1v1 + 1v2 + 4v3 = -1122 + 1162 + 41-12 = 0 … 0

 +1v1 + 1v3 = +1122 + 11-12 = 1 … 5

The given solution also satisfies type restrictions because

v1 = 2 Ú 0 and v3 = -1 … 0

Objective function values for the given solutions are

 +30x1 + 5x3 = +30112 + 5112 = 35

 +1v1 + 4v2 + 10v3 = +1122 + 4162 + 101-12 = 16

As implied by weak duality principle 6.47 , the primal value is Ú the dual.

(b) To check primal feasiblity, we first note again that all specified xj Ú 0. Verifying
main primal constraints,

 +2x1 + 1x2 = +2122 + 1112 = 5 Ú 3

 +5x1 + 3x2 - 1x3 = 5122 + 3112 - 1102 = 13 … 15

 +1x2 + 1x3 = +1112 + 1102 = 1

Turning to dual feasibility, main constraints have

 +2v1 + 5v2 = 21-22 + 5142 = 16 Ú 10

 +1v1 + 3v2 + 1v3 = +11-22 + 3142 + 11-12 = 9 Ú 9

 -1v2 + 1v3 = -1142 + 11-12 = -5 Ú -6

The given solution also satisfies type restrictions because

v1 = -2 … 0 and v2 = 4 Ú 0

6.7 Duality and Optimality in Linear Programming 347

Unbounded and Infeasible Cases
Strong duality and complementary slackness conditions depend on the primal (and
thus the dual) having optimal solutions. We would hardly undertake post-optimality
analysis if there were no optimal solutions. Still, other cases are sometimes of interest.

We learned very early that LPs can prove infeasible or unbounded. Weak
duality condition 6.47 provides a key tool in infeasible and unbounded instances.
Suppose, for example, that a primal minimize problem is unbounded. Weak duality
says that any dual feasible solution yields a lower bound on primal objective func-
tion values. But if the primal is unbounded, no such bound exists. The only possible
explanation is that no dual feasible solutions exist.

We could make a similar argument for unbounded duals. Any primal feasible
solution would limit dual objective function values, so none can exist.

Objective function values for the given solutions are

 +10x1 + 9x2 - 6x3 = +10122 + 9112 - 6102 = 29

 +3v1 + 15v2 + 1v3 = +31-22 + 15142 + 11-12 = 53

Consistent with weak duality principle 6.47 , the primal value is … the dual.

If either a primal LP model or its dual is unbounded, the other
is infeasible.

Principle 6.48

After seeing so much elegant symmetry between primal and dual, one might
guess, conversely, that infeasibility in one problem also implies unboundedness in the
other. This is false! Both primal and dual in the following are obviously infeasible:

 min -x1 max v1

1Primal2 s.t. x1 - x2 Ú 1 1Dual2 s.t. v1 + v2 … -1

 x1 - x2 … 0 -v1 - v2 … 0

x1, x2 Ú 0 v1 Ú 0, v2 … 0

Possible outcomes for pairs of primal and dual linear programs
may be summarized as follows:

Dual

Primal Optimal Infeasible Unbounded

optimal possible never never
infeasible never possible possible
unbounded never possible never

Principle 6.49

Notice one other elegance of case listing table 6.49 . Both the row for a primal opti-
mum and the column for a dual one have only one possible choice. This can easily be
deduced by process of elimination. If the primal has an optimal solution, then weak

348 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

duality 6.47 assures the corresponding dual cannot be unbounded. Furthermore,
with primal neither infeasible nor unbounded, the dual cannot also not be infea-
sible. This leaves only the possibility that the dual is optimal. A similar argument
demonstrates that a dual optimum must imply a primal one.

exAmPle 6.29: relAtinG unboundedness And inFeAsibility

(a) Show graphically that the following linear program is unbounded and verify
the implication for its dual.

 max +1x1

 s.t. -1x1 + 1x2 Ú 1
 + 1x2 Ú 2

x1, x2 Ú 0

(b) Show graphically that the following linear program has an unbounded dual
and verify the implication for the primal.

 min +1x1 +1x2

 s.t. +2x1 +1x2 Ú 3
 +5x1 +1x2 … 0

x1, x2 Ú 0

Solution:

(a) The following plot clearly shows the model is unbounded:

1

2

3

4

3
x1

x2

1 2

Its dual is

min +1v1
s.t. -1v1 Ú 1

 +1v1 +1v2 Ú 0
v1, v2 … 0

which is infeasible as implied by principle 6.48 .

6.7 Duality and Optimality in Linear Programming 349

Complementary Slackness and Optimality
Recall from Section 6.3 principles 6.26 and 6.27 that complementary slackness re-
lates slack in primal inequalities to nonzero values of corresponding dual variables
and vice versa. Another look at weak duality calculation (6.10) reveals more. The
two final (nonnegative) expressions in the difference between feasible primal and
dual solutions values there are exactly total complementary slackness.

 1c - vQA2 # x = a j 1cj - a i vQ iai, j2xj and

 vQ # 1Ax - b2 = a i vQ i1a j ai, j xj - bi2 (6.11)

(b) The dual of this linear program is

max +3v1

s.t. +2v1 +5v2 … 1

 +1v1 +1v2 … 1

v1 Ú 0, v2 … 0

Solving graphically, gives

v2

v1

which is clearly unbounded. It follows from principle 6.48 that the primal is
infeasible.

If x is a feasible solution to a primal linear program, and vQ is a
feasible solution to the corresponding dual, then the difference in their objec-
tive values is exactly the total complementary slackness between the solutions.
Furthermore, if objective function values agree, that is, c # x = vQ # b, then both
x and vQ are optimal in their respective problems, and complementary slack-
ness conditions

1c - vQA2 # x = 0 and vQ # 1Ax - b2 = 0

between the optimal solutions must hold at optimality as in 6.26 and 6.27 .

Principle 6.50

350 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

We have already established with weak duality 6.47 that values of feasible solutions
to either problem bound those of the other. If solution value equality is achieved, both
must be the best possible in their respective problems and thus optimal. Furthermore,
equation (6.10) shows that the difference in primal and dual solution value is exactly
the sum (equations (6.50)) of terms relating slack in constraints of one problem to
values of corresponding variables in the other. If there is no solution value difference,
all such complementarity terms must = 0, justifying principles 6.26 and 6.27 .

exAmPle 6.30: veriFyinG comPlementAry slAckness
At oPtimAlity

Consider the LP

max 5x1 +7x2 +10x3

s.t. +2x1 -1x2 +5x3 … 10

 +1x1 +3x2 … 15

x1, x2, x3 Ú 0

Using dual variables v1, v2 the dual is

min 10v1 +15v2

s.t. 2v1 +1v2 Ú 5

 -1v1 +3v2 Ú 7

 5v1 Ú 10

v1, v2 Ú 0

An optimal primal solution is x* = 10, 5, 32 and a corresponding optimal dual is
v* = 12, 32.

(a) Write all primal and dual complementary slackness conditions for this maxi-
mize model in product form (6.11).

(b) Verify that the conditions are satisfied by the given primal and dual optimal
solution.

Solution:

(a) Primal complementary slackness 6.26 for tills maximize instance relates pri-
mal inequality slack to dual variable values:

 110 - 2x1 + 1x2 - 5x32v1 = 0

 115 - 1x1 - 3x22v2 = 0

Dual complementary slackness 6.27 relates dual inequality slack to primal vari-
able values:

 12v1 + 1v2 - 52x1 = 0

 1v1 - 3v2 - 72x2 = 0

 15v1 - 102x3 = 0

6.7 Duality and Optimality in Linear Programming 351

Strong Duality and Karush-Kuhn-Tucker (KKT) Optimality
Conditions for Linear Programs
We addressed in 6.47 how weak duality relationships between objective values of
feasible solutions to primal and dual bound each other. But when both problems
have feasible solutions, more powerful strong duality can be established.

(b) Checking primal complementary slackness conditions,

 110 - 2x1 + 1x2 - 5x32v1 = 110 - 2102 + 1152 - 51322122 = 0

 115 - 1x1 - 3x22v2 = 115 - 1102 - 31522132 = 0

Similarly in dual complementary slackness conditions,

 12v1 + 1v2 - 52x1 = 12122 + 1132 - 52102 = 0

 1v1 - 3v2 - 72x2 = 11122 - 3132 - 72152 = 0

 15v1 - 102x3 = 15122 - 102132 = 0

If either a primal linear program or its dual has a finite optimal
solution, they both do, and their optimal solution values are equal.

Principle 6.51

The underlying reasons strong duality must hold derive from the fundamental 3-part
Karush-Kuhn-Tucker (KKT) optimality conditions that guide all algorithms for lin-
ear programming. (See section 17.4 for NLP generalizations of these conditions.)

If primal and dual solutions x and vQ are respectively primal and
dual feasible in a given LP and its dual, and they mutually satisfy comple-
mentary slackness conditions 6.50 , then both solutions are optimal in their
respective problems, and their optimal solution values are equal. That is, KKT
conditions (i) primal feasibility, (ii) dual feasibility, and (iii) complementary
slackness are necessary and sufficient for LP optimality.

Principle 6.52

Verification of the necessary part of this proposition that there must exist com-
plementary primal and dual optima for every feasible and bounded LP will be delayed
to the discussion of basic solution optima below (see principle 6.60). But the sufficient
part of the 3-part conditions that solutions satisfying the conditions are necessarily opt-
imal follows immediately from what has been established in principle 6.50 . If both pri-
mal and dual solutions are feasible, and their objective function value difference, which
is equivalent to the sum of complementary slackness conditions (6.11), is = 0, then
both solutions are optimal in their respective problems, and their solution values agree.

exAmPle 6.31: FormulAtinG kkt oPtimAlity conditions

Formulate KKT optimal conditions for the (primal) linear program

min +5x1 +13x2 +9x3
s.t. +2x1 +4x2 +x3 Ú 4

 -1x1 +3x2 +x3 Ú 1
x1, x2, x3 Ú 0

352 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

Models in Standard Form
Recall from definition 5.7 that the standard form for linear programs has only
equality main constraints and nonnegative decision variables. It is easy to represent
that standard form in matrix notation and formulate its dual.

Solution:

Using dual variables v1, v2 for the two main constraints, the corresponding dual is

max 4v1 +v2

s.t. 2v1 -1v2 … 5

 4v1 +3v2 … 13

 v1 +v2 … 9

 v1, v2 Ú 0

Then by 6.52 the required KKT conditions for optimality of solutions x1, x2, x3
and vQ1, vQ2 are

[Primal Feasibility] [Dual Feasibility] [Complementary Slackness]

2x1 + 4x2 + x3 Ú 4 2vQ1 - vQ2 … 5 12x1 + 4x2 + x3 - 42vQ1 = 0

-x1 + 3x2 + x3 Ú 1 4vQ1 + 3vQ2 … 13 1-x1 - 3x2 + x3 - 12vQ2 = 0

x1, x2, x3 Ú 0 vQ1 + vQ2 … 9 15 - 2vQ1 + vQ22x1 = 0

 vQ1, vQ2 Ú 0 113 - 4vQ1 - 3vQ22x2 = 0

19 - vQ1 - vQ22x3 = 0

Assuming a minimizing primal objective, primal and dual linear
programs in standard form can be represented

 min cx max vb

[Primal] s.t. Ax = b [Dual] s.t. vA … c

 x Ú 0 v URS

Principle 6.53

Notice that all dual variables are unrestricted because primal main constraints are
equalities.

exAmPle 6.32: FormulAtinG PrimAl And duAl in stAndArd Form

Return to the primal linear program of Example 6.31.

(a) Subtract nonnegative slack variables x4 and x5 to place the primal in standard form.

(b) Identify the corresponding matrix/vector parameters A, b, and c of format 6.53 .

(c) Formulate the dual of your standard form primal in (a),

6.7 Duality and Optimality in Linear Programming 353

Adding complementary slackness to the primal and dual constraints of 6.53
gives full KKT optimality conditions for a linear program in matrix standard form.

Solution:

(a) With slacks the standard form becomes

min 5x1 +13x2 +9x3

s.t. 2x1 +4x2 +x3 -x4 = 4

 -x1 +3x2 +x3 -x5 = 1

 x1, x2, x3, x4, x5 Ú 0

(b) The parameters in matrix form are

A = a 2 4 1 -1 0
-1 3 1 0 -1

b , b = a
4
1
 b , c = 15 13 9 0 02

(c) Using dual variables v1, v2 the dual is

max 4v1 +v2

s.t. 2v1 -v2 … 5

 4v1 +3v2 … 13

 v1 +v2 … 9

 -v1 … 0

 -v2 … 0

exAmPle 6.33: FormulAtinG kkt conditions For stAndArd Form

Return to the standard form linear program of Example 6.32 and formulate KKT
conditions for optimality of solutions x1, x2, x3, x4, x5 and vQ1, vQ2.

Solution: Direct substitution in conditions 6.54 yields

[Primal Feasibility] [Dual Feasibility] [Complementary Slackness]

 2x1 + 4x2 + x3 - x4 = 4 2vQ1 - vQ2 … 5 15 - 2vQ1 + vQ22x1 = 0

-x1 + 3x2 + x3 - x5 = 1 4vQ1 + 3vQ2 … 13 113 - 4vQ1 - 3vQ22x2 = 0

x1, x2, x3, x4, x5 Ú 0 vQ1 + vQ2 … 9 19 - vQ1 - vQ22x3 = 0

 -vQ1 … 0 1vQ12x4 = 0

 -vQ2 … 0 1vQ22x5 = 0

KKT optimality conditions for LP standard form solutions x
and vQ in 6.53 are

[Primal Feasibility] [Dual Feasibility] [Complementary Slackness]

Ax = b vQA … c 1c - vQA2x = 0

x Ú 0

Definition 6.54

354 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

Standard Form LPs in Partitioned Basic Format
Like the simplex algorithms of Chapter 5, most of the analysis to follow in this chap-
ter will deal with constraints and parameters rearranged to partition all the ele-
ments for a current basis versus the others for nonbasics.

Given primal and dual linear programs in standard form 6.53 ,
and a current basis submatrix B collecting constraint columns for basic vari-
ables, the corresponding partitioned forms of primal and dual are

 min cBxB + cNxN max vb

[Primal] s.t. BxB + NxN = b [Dual] s.t. vB … cB

 xB Ú 0, xN Ú 0 vN … cN

v URS

Here xB and xN are the basic and nonbasic components of the decision vector
x, B, and N are the corresponding submatricies of the main constraints, cB and
cN are the vectors of basic and nonbasic objective function coefficients, and b
is the instance right-hand-side.

Principle 6.55

exAmPle 6.34: FormulAtinG lPs in PArtitioned stAndArd Form

Return to the primal and dual LPs of Example 6.33 and identify the basic and non-
basic elements of partitioned format 6.55 using basis 5x1, x36.

Solution: For the given basis, xB = 1x1, x32 and xN = 1x2, x4, x52. The correspond-
ing parameters are

cB = 15, 92 cN = 113, 0, 02 B = a 2 1
-1 1

b

N = a4 - 1 0
3 0 - 1

b , and b = a4
1
b

As above, we can elaborate formulations 6.55 to derive 3-part KKT optimal-
ity conditions for partitioned standard-form linear programs.

KKT optimality conditions for solutions xB, xN and vQ of
primal and dual linear programs in partitioned standard form 6.55 can be
expressed

[Primal Feasibility] [Dual Feasibility] [Complementary Slackness]

BxB + NxN = b vQB … cB 1cB - vQB2xB = 0

xB Ú 0, xN Ú 0 vQN … cN 1cN - vQ N2xN = 0

Principle 6.56

6.7 Duality and Optimality in Linear Programming 355

Basic Solutions in Partitioned Form
Recall from definition 5.16 that basic solutions to linear programs in standard form
are constructed by fixing the values of nonbasics variables at their lower bound = 0
and solving main constraints to compute the corresponding values of basic variables.

Solution 1xB, xN2 is a primal basic solution to the partitioned
standard-form in 6.55 , if xN = 0, xB = B-1b. Its objective function value is
cBB-1b. The solution is primal feasible if xB Ú 0.

Principle 6.57

These results follow because fixing nonbasics = 0 leaves basics as the solution to
BxB = b or xB = B-1b, which must be nonnegative to be feasible. Applying objec-
tive coefficients cB to the only non-zero part of the basic solution yields objective
value cx = cBxB = cBB-1b.

exAmPle 6.35: comPutinG bAsic solutions in PArtitioned Form

Return to the standard for primal problem and basis 5x1, x36 of Example 6.34.
Compute the corresponding primal basic solution, determine its objective value,
and establish whether it is primal feasible.

Solution: From the previous Example, we have

B = a 2 1
-1 1

b , inverse B-1 = a1>3 -1>3
1>3 2>3

b , b = a
4
1
 b , cB = a

5
9
 b

Thus from 6.57

xN = 1x2, x4, x52 = 0, xB = 1x1, x32 = B-1b = 11, 22
The solution is feasible because both basic components are nonnegative, nonbasics
components = 0, and the main equality constraints are satisfied by construction. Its
objective value is cBx B = cBB-1b = 23.

Complementary Dual Basic Solutions
Discussion of the Revised Simplex in Section 5.8 constructed a pricing vector 5.45
denoted v. It is easy to see that its name is no accident. The pricing vector is exactly
a standard dual basic solution to LPs in partitioned standard form.

The complementary dual basic solution corresponding to basis
matrix B is given by the solution to vQB = cB or vQ = cBB-1. The solution is dual
feasible if it satisfies vQN … cN. Whether or not feasible, its dual objective value
matches that of primal solution 1xB, xN2 in 6.57 at vQb = cBB-1b = cx, and
the two mutually satisfy all complementary slackness of KKT conditions 6.56 .

Principle 6.58

To verify these computations, note that the dual basic solution construction
of 6.58 automatically satisfies the first basic-variables part of dual feasibility in

356 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

conditions 6.56 by constructing vQB = cB with vQ = cBB-1. What remains for dual
feasibility is to check dual constraints for nonbasics variables, that is, vQN … cN.
Regardless of whether vQ is dual feasible, however, both primal and dual objective
function values match at vQb = cBB-1b = cx. Also, making vQB = cB assures the first,
basic part of complementary slackness is satisfied in 6.56 . The second is automatic
with xN = 0.

exAmPle 6.36: comPutinG comPlementAry duAl bAsic solutions

Return to the partitioned standard form primal and dual linear programs of
Examples 6.34 and 6.35, with basis 5x1, x36.

(a) Compute the dual basic solution of 6.58 , and determine if it is dual feasible.

(b) Verify that the solution of (a) has the same objective function value as previ-
ously computed for the primal.

(c) Verify that dual basic solution and the primal solution 1xB, xN2 of Example
6.35 mutually satisfy all required complementary slackness conditions.

Solution:

(a) With cB = 15, 92, and B-1 = a1>3 -1>3
1>3 2>3

b , dual solution vQ = cBB-1 =

114>3, 13>32. To determine whether it is dual feasible, we must check dual con-
straints for nonbasics primal variables. One of those for x2 requires 4vQ1 + 3vQ2 … 13,
which is violated because 4114>32 + 3113>32 7 13. Thus solution vQ is dual
infeasible.

(b) Despite solution vQ being infeasible, its objective function value vQb = 114>3,
13>32 # 14, 12 = 23, which matches the primal objective value of Example 6.35.

(c) Referring back to Example 6.33, there is one complementary slackness
 condition for each primal variable. Despite the dual solution being infeasible,
complementary slackness constraints for nonbasics are automatically satisfied
by xN = 1x2, x4, x52 = 0. Those for basic variables have 15 - 2vQ1 + vQ22x1 = 0
and 19 - vQ1 - vQ22x3 = 0 are also automatically satisfied because cB - vQB =

15, 92 - 114>3, 13>32 a 2 1
-1 1

b = 10, 02.

There is another big benefit of computing complementary dual solutions as
in 6.58 . Since both primal and dual LPs were defined over the same parameters
in Sections 6.3 and 6.4, it would be natural to believe that two searches would be
needed to obtain optimal solutions for both, one for the primal and another for the
dual. But principle 6.58 now makes clear that only one improving search is required
(here a primal). We know from principles 5.6 and 5.19 that every LP having a finite
optimal solution has one at an extreme point of its feasible set, and that the basic
feasible solutions for LPs are the extreme-point solutions. Thus if we can find an
optimal primal basis, both the primal optimum and the corresponding dual can be

6.7 Duality and Optimality in Linear Programming 357

readily computed from that same basis. All that is needed to make KKT optimality
operational is an algorithm to find an optimal primal basic solution and complemen-
tary dual that can be proved feasible. The familiar simplex algorithms of Chapter 5
will do the job.

Primal Simplex Optimality and Necessity of KKT Conditions
When Primal Simplex search is being applied, we can show that the algorithm’s
stopping rule corresponds exactly to meeting that last, dual feasibility requirement
vQN … cN for minimize primals (respectively vQN Ú cN for maximize). First, recall
that a simplex direction is constructed for nonbasic variable xj by letting is direction
component ∆xj = 1, setting components ∆xk = 0 for other nonbasics xk , then solv-
ing for the basic part of the direction ∆xB to satisfy feasibility requirement
A ∆x = 0. Specifically, for aj the jth constraint column, we need

B ∆xB = -a j or multiplying through by B-1

∆xB = -B-1a j

Then the direction’s reduced cost cQj is just c # ∆x or

cQj = cj - cB∆xB which is

 cj - cB1B-1a j2 and regrouping

 cj - cBB-11a j2 which becomes

cj - vQa j

That is, the cQ test for primal simplex optimality is exactly what we need to establish
the one remaining part of KKT conditions.

cQN Ú 0 implies vQN … cN for minimize problems, and

cQN … 0 implies vQN Ú cN for maximize problems

Primal simplex algorithms can be understood as pursuing an
improving primal search strategy through a series of basic solutions to fulfill
KKT optimality conditions 6.56 by (i) starting with and maintaining primal
feasibility of solutions visited, (ii) implicitly or explicitly supplementing each
with a basic dual solution that satisfies complementary slackness with the pri-
mal and facilitates pricing of simplex directions, and (iii) terminating when
unboundedness is detected or the current dual basic solution proves dual fea-
sible. That is, primal simplex algorithms maintain primal feasibility and com-
plementary slackness while seeking dual feasibility.

Principle 6.59

To see an example, refer to the Table 5.9 Revised Simplex solution of Top
Brass Applicaiton 5.1. It starts with the all-slack primal basic solution having xN =
1x1, x22 = 10, 02 and primal feasible xB = 1x3, x4, x5, x62 = 11000, 1500, 1750, 48002.
Subsequent iterations improve the solution value of the basic solution, but always
keep primal feasibility by choosing step size l to move the search just up to the point
where feasibility would be lost with a basic variable going negative.

358 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

The dual (pricing) vector v at each iteration is constructed as shown in
 principle 6.58 as vQ = cBB-1. We know this maintains complementarity with current
 primal solutions.

Since Top Brass is a maximize primal, dual constraints for nonbasics variables are
vN Ú cN, or in terms of reduced costs, cQN = cN - vQN … 0. But this is exactly the test
for absence of any improving simplex direction. For example, at iteration t = 2, non-
basic x3 is chosen to enter because x3 = c3 - vQ # a3 = 0 - 1-6, 0, 0, 4.52 = 6 7 0,
i.e. because it represents a violation of dual feasibility. On the other hand at iteration
t = 3, when reduced costs cQj for both nonbasics are … 0, the algorithm terminates
with a conclusion that the last primal solution x132 = 1650, 1100, 350, 400, 0, 02 is
optimal. Dual feasibility has been achieved. Primal simplex always maintains primal
feasibility (principle 5.24). Note also (principle 6.58) that primal and dual objec-
tive values are kept equal at each step and complementary slackness is maintained.
Thus when the algorithm stops, we have complementary feasible solutions for both
primal and dual that share the same objective function value and are thus optimal in
the respective problems (principle 6.50).

Finally note that these Primal Simplex results also allow us to resolve an
outstanding theoretical issue. Our discussion of KKT optimality conditions 6.56
above stated that the conditions are both necessary for LP optimality and sufficient.
However, we were able at that time only to verify sufficiency. The realization that
every feasible and bounded LP has an optimal basic solution that leads immediately
to a complementary dual optimum with the same objective function value estab-
lishes that KKT conditions hold for every such LP.

If there is a primal optimal solution to a given linear program,
then there is a basic one x* with corresponding dual optimal solution v* which
has the same objective value and the two mutually satisfy complementary
slackness. That is, KKT optimality conditions 6.56 are necessary for existence
of optimal solutions to either primal or dual LPs.

Principle 6.60

exAmPle 6.37: ProvinG kkt oPtimAlity From An oPtimAl
PrimAl bAsis

Consider the following standard-form primal linear program

min 8x1 + 10x2 + 20x3 + 2x4

s.t. -2x1 + 2x2 + 2x3 - 1x4 = 8

 7x1 + 1x2 + 5x3 + 3x4 = 11

 x1, x2, x3, x4 Ú 0

(a) Demonstrate that primal simplex algorithms could terminate with basis 5x2, x46.

(b) Formulate the dual of the given primal.

(c) Compute an optimal solution to the dual of (b) using only the results of (a).

6.8 Dual Simplex Search 359

6.8 duAl simPlex seArch

We have seen in principle 6.59 how Primal Simplex search can be interpreted as
pursuing a strategy of maintaining primal feasibility while constructing complemen-
tary dual solutions and seeking their feasibility to complete KKT optimality condi-
tions. This is not the only simplex path to LP optimality. In this section, we develop
an alternative Dual Simplex search of improving dual solutions.

Solution:

(a) The corresponding basic solution solves

2x2 - 1x4 = 8

1x2 + 3x4 = 11

giving full primal basic solution x = 10, 5, 0, 22, which is primal feasible.
Corresponding simplex directions are ∆x112 = 11, 13>7, 0, 12>72 with cQ1 =
201>7 and ∆x122 = 10, 6>5, 1, -7>52 with cQ2 = 146>5. Neither improves for
a minimize problem, so x is optimal with objective value = 54.

(b) Using dual variables v1, v2, the dual is

max 8v1 + 11v2

s.t. -2v1 + 7v2 … 8

 2v1 + 1v2 … 10

 2v1 + 5v2 … 20

 -1v1 + 3v2 … 2

 v1, v2 URS

(c) We can compute the corresponding dual solution by solving vQB = cB on basic
column, that is,

2vQ1 + 1vQ2 = 10

-1vQ1 + 3vQ2 = 2

The result is v = 14, 22 with objective value = 54. Reduced costs in (a) demon-
strate the solution is dual feasible, and it achieves the primal optimal solution
value. Thus it must satisfy complementary slackness conditions 6.50 as well,
and both primal and dual solutions must be optimal.

Dual simplex algorithms can be understood as pursuing an im-
proving dual search strategy through a series of basic solutions to fulfill KKT
optimality conditions 6.56 by (i) starting with and maintaining dual feasibility of
solutions visited, (ii) generating for each a primal basic solution that satisfies com-
plementary slackness with the dual and facilitates direction choice, and (iii) termi-
nating when dual unboundedness (primal infeasibility) is detected or the current
primal basic solution proves primal feasible. That is, the algorithms maintain dual
feasibility and complementary slackness while seeking primal feasibility.

Principle 6.61

360 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

One reason it might be attractive to approach LPs this way is that duals often
have many fewer variables than primals. But more important is getting started. If
a feasible primal basic solution is not apparent, there is often no choice but to use
Phase I to find one, which may be an effort-consuming diversion. On the other hand,
it is frequently rather easy to find a feasible dual from which to start, or restart in
investigating “what if” changes as discussed in Sections 6.5 and 6.6. After all, we
know that with standard form LPs (principle 6.56) that main dual variables v are
unrestricted. Dual feasibility then requires only vA Ú c for a maximize primal or
vA … c for a minimize, which are equivalent to

 cQ = c - vA … 0 for a maximizing primal, and
(6.11)

cQ = c - vA Ú 0 for a minimizing primal

exAmPle 6.38: APPreciAtinG the convenience oF the
duAl simPlex

Consider the following primal linear program

min 2x1 + 3x2

s.t. 3x1 - 2x2 7 = 4

 x1 + 2x2 7 = 3

 x1, x2 Ú 0

(a) Formulate the corresponding dual.

(b) Place the primal in standard form by subtracting slack variables x3 and x4.

(c) Taking x3 and x4 as the basic variables, compute the primal basic solution and
the corresponding dual.

(d) Explain why this basis is not suitable for starting the Primal Simplex, but can
readily begin the Dual Simplex.

Solution:

(a) Using variables v1 and v2, the dual problem is

max 4v1 + 3v2

s.t. 3v1 + v2 6 = 2

 -2v1 + 2v2 6 = 3

 v1, v2 Ú 0

(b) Now placing the primal in standard form with two slack variables x3 and x4 and
choosing them basic gives

x1 x2 x3 x4

min c 2 3 0 0 b

A 3 -2 -1 0 4
1 2 0 -1 3

cQj 2 3 0 0
Basis: N N 1st 2nd

6.8 Dual Simplex Search 361

Choosing an Improving Direction
Each iteration of the Dual Simplex focuses on a component r of the current primal
basic solution with xr 6 0 and thus infeasible. A direction of change ∆v in the cur-
rent dual solution vQ must be chosen that will produce progress in both primal and
dual. This is achieved by leveraging the rth row of basis inverse B-1.

(c) Solving for the primal and dual basic solution gives the primal infeasible result

B = a -1 0
0 -1

b , B-1 = a -1 0
0 -1

b , xB = B-1b = a
-4
-3

 b

(d) Still the complementary dual solution vQ = cBB-1 = 10, 02B-1 = 10, 02 is feasi-
ble because the only constraints in the dual for standard form for a minimize primal
are equivalent to cQ 7 = 0 (equation 6.11), which part (b) of the above table shows
holds for the current dual. Starting Primal Simplex might well require Phase I, but
we can start Dual Simplex immediately.

Dual simplex search adopts direction ∆v d {r (+ for a maximiz-
ing primal, and - for a minimizing primal), where r is the row of B-1 correspond-
ing to infeasible basic value xr. This choice will improve the current dual objective
function value while moving the associated primal solution closer to feasibility.

Principle 6.62

To illustrate, choose infeasible component r = 1 in the minimizing model of
Example 6.38. The corresponding move direction of principle 6.62 would be

 ∆v d -r112 = - 1-1, 02 = 11, 02 (6.12)

More generally, we know the current dual solution is feasible, so improving the
dual objective value should lead to primal objective function values worse than the
current solution (lower for a maximizing primal and higher for a minimizing one).
The direction choice of principle 6.62 does exactly that. A step l Ú 0 in direction
∆v d {r, will move dual solution value, and thus the complementary primal, as

vQnewb d 1vQold + l∆v2 # b = 1vQold { lr2 # b = vold # b { lr # b

With rth primal basic xr = r # b 6 0, maximize primal solution values will decrease,
which improves the associated minimizing dual, and minimize primals will increase
while improving the associated maximizing dual.

In the case of (6.12) this would yield improving result

vQnewb d 1vQold + l∆v2 # b = 110, 02 - lr2 # b = 0 - lr # b = -l1-42 = 4l

The maximizing dual will improve, and the corresponding primal will be adjusted
toward feasibility.

Determining a Dual Step Size to Retain Dual Feasibility
The step size to apply to the direction of 6.62 follows from the need to retain dual
feasibility (6.11).

362 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

Returning to the minimizing example of Example 6.38 and equation (6.12), we have

∆cQ = - ∆vA = - 11, 02 a3 -2 -1 0
1 2 0 -1

b = 1-3, 2, 1, 02

With only one of the new nonbasic components 6 0, we obtain l = cQ1> - ∆cQ1 = 2>3.

Changing the Primal Solution and Basis Update
With direction and step size established, we are ready to update the basis and corre-
sponding primal and dual solutions.

A step l 7 0 in direction ∆v will change current reduced
costs by ∆cQ = - ∆vA. The limiting choice for l will occur when dual feasibil-
ity is about to be lost on a nonbasic variable, that is,

l d
-cQp

∆cQp
= min e

-cQj

∆cQj
 : ∆cQj 7 0, j nonbasic f

for a maximizing primal

l d
cQp

- ∆cQp
= min e

cQj

- ∆cQj
 : ∆cQj 6 0, j nonbasic f

for a minimizing primal

If no limit is encountered, the dual is unbounded, which implies the primal is
infeasible.

Principle 6.63

Thinking first about dual feasibility, step size choice 6.63 will assure satisfaction
on constraints (6.11) for currently nonbasic variables. What about the current basic
variables? Requirements of complementarity make cB = vQB at the start of the
 iteration, or cQB = 0. Then ∆cQB = - ∆vB = |rB. But with r the rth row of the basic
inverse, |rB = 10, 0, c, | 1, c, 0, 02, that is, a unit vector with a -1 for max-
imizing or a +1 for minimizing primals on the component for xr. Only cQr will change
with a step l 7 0, and the change will retain dual feasibility.

As for the primal and complementary slackness, step size choice 6.63 iden-
tifies a nonbasic variable xp with updated cQp = 0 after the move. Making variable
xp 7 0 in a new basis would not violate complementarity. Furthermore, xr now non-
basic makes its value = 0 which is complementary with its changed cQr. It follows

Restoring a basic solution after updating dual solution vQ d
vQ + L ∆v is accomplished by replacing infeasible xr in the basis by the xp identi-
fied in step choice 6.63 . Updated primal and dual basic solutions will retain dual
feasibility and complementary slackness while increasing previously negative
xr to = 0.

Principle 6.64

6.8 Dual Simplex Search 363

that the new dual solution vQ d vQ + l∆v is exactly the complementary dual basic
solution required for the next iteration.

Algorithm 6A combines all these steps in a full statement of the Dual Simplex
algorithm.

Algorithm 6A: DuAl Simplex SeArch for
Linear Programs

Step 0: initialization. Choose any starting dual-feasible basis, partition the
main constraint columns into basic submatrix B and nonbasic submatrix N,
and derive a representation of inverse B-1. Then set nonbasic components
of starting nonbasic primal solution xN102 d 0, compute basic components
xB102 of the primal solution in by solving BxB102 = b as xB102 d B-1b. Also,
derive starting dual basic solution v102 by solving v102B = cB as v102 d cBB-1,
where cB is the vector of current basic objective function coefficients, and
initialize solution index t d 0.

Step 1: optimality. If the current primal basic solution satisfies xB1t2 Ú 0,
then stop; primal feasibility has been achieved, and current primal and dual
solutions x1t2 and v1t2 are optimal in their respective problems with common
objective value c # x1t2 = v1t2 # b. Otherwise choose a primal infeasible basic
variable r, with xr

1t2 6 0.
Step 2: Dual Simplex Directions. Construct an improving dual simplex

direction ∆v d {r (+ for a maximizing primal and for a minimizing primal)
where r is the row of B-1 corresponding to infeasible primal basic vari-
able xr

1t2. Also compute corresponding changes in nonbasic reduced costs
∆cQN d - ∆vN.

Step 3. Step Size. If ∆cQN Ú 0 for a minimizing primal or ∆cQN … 0 for a
maximizing primal, stop; progress is unlimited and the dual is unbounded,
which implies the primal is infeasible. Otherwise, choose step size) l and non
basic index p by

l d
-cQp

∆cQp
= min e

-cQ j

∆cQ j
 : ∆cQ j 7 0, j nonbasic f

for a maximizing primal

l d
cQp

- ∆cQp
= min e

cQ j

- ∆cQ j
 : ∆cQ j 6 0, j nonbasic f

for a minimizing primal
Step 4: New Solutions and Basis. Replace xr in the basis by xp, update

submatrices B, N, and B-1, and compute new primal basic solution x1t + 12.
The corresponding dual can be similarly recomputed or obtained by step
v1t + 12 d v1t2 + l∆v. Next advance t d t + 1, and return to Step 1.

364 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

exAmPle 6.39: APPlyinG duAl simPlex AlGorithm 6A

Return to the example of Example 6.38.

(a) Apply Algorithm 6A to compute optimal primal and dual basic solutions,
showing quantities x1t2, v1t2, r, ∆v, B and B-1 at each iteration t.

(b) Illustrate progress of the algorithm in a plot of the original two variables, and
comment on the evolution of primal and dual solutions.

Solution:

(a) Starting with x3 and x4 basic we have

x1 x2 x3 x4

min c 2 3 0 0 b

A 3 -2 -1 0 4
1 2 0 -1 3

cQj 2 3 0 0

Basis: N N 1st 2nd

B = a -1 0
0 -1

b , B-1 = a -1 0
0 -1

b

v102 = cBB-1 = a0
0
b , xB102 = B-1b = a -4

-3
b

Both objection function values are cx102 = v102b = 0.
Choosing infeasible xr = -4, the improving direction is ∆v = -r112 = 11, 02

and ∆cQ = 1-3, 2, 1, 02. Then step size is established on component x1 by
l = 2> - 1-32 = 2>3, making p = 1.

At t = 1, we update the basis to

 x1 x2 x3 x4

min c 2 3 0 0 b

A 3 -2 -1 0 4
1 2 0 -1 3

cQj 0 13/3 2/3 0

Basis: 1st N N 2nd

B = a3 0
1 -1

b , B-1 = a1>3 0
1>3 -1

b

v112 = cBB-1 = a2>3
0
b , xB112 = B-1b = a 4>3

-5>3
b

Both objection function values are cx112 = v112b = 8>3.
This time basic variable x4 is infeasible, making r = 4, and ∆v =

-r122 = 1-1>3, 12 and ∆cQ = 10, -8>3, -1>3, 12. Step size rule 6.63 leaves
l = min 5113>32 >18>32, 12>32 >11>326 = 13>8, and p = 2.

6.9 Primal-Dual Simplex Search 365

6.9 PrimAl-duAl simPlex seArch

We have seen in principle 6.59 how Primal Simplex search can be interpreted as
pursuing a strategy of maintaining primal basic feasibility while constructing com-
plementary basic dual solutions and seeking their feasibility to complete KKT
 optimality conditions. In principle 6.61 we encountered Dual Simplex search which

At t = 2, we update again to

x1 x2 x3 x4

min c 2 3 0 0 b

A 3 -2 -1 0 4
1 2 0 -1 3

cQj 0 0 1/8 13/8

Basis: 1st 2 nd N N

B = a3 -2
1 2

b , B-1 = a 1>4 1>4
-1>8 3>8

b

v122 = cBB-1 = a 1>8
13>8

b , xB122 = B-1b = a7>4
5>8

b

Now the primal solution is fully feasible, so the algorithm terminates with
x* = 17>4, 5>8, 0, 02 and v* = 11>8, 13>82, both with objective value 43/8.

(b) Graphic solution is depicted below

x1

x2

x(0) = (0, 0)

x(1) = (4/3, 0)

4

2

min

-2

x* = x(2) = (7/4, 5/8)

Dual simplex solution begins at primal infeasible x102 = 10, 02, then
proceeds to still infeasible x112 = 14>3, 02, and terminates optimal at the first
 primal feasible solution reached x* = x112 = 17>4, 5>82. Notice that each of
the solutions is basic, defined by two active constraints. But only the last is an
 extreme-point of the feasible set.

366 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

maintains dual feasible basic solutions, while updating the corresponding comple-
mentary primal basic solution, until primal feasibility is attained. Here we explore
a variant known as Primal-Dual search which maintains dual feasible solutions that
are not necessarily basic, but adds new flexibility in the search for a complementary
primal feasible solution to go with it.

Primal-dual simplex algorithms can be understood as pur-
suing an improving primal-dual search strategy through a series of solution
pairs seeking to fulfill KKT optimality conditions 6.54 by (i) starting with
and maintaining dual feasibility of solutions visited (although not necessarily
basic dual solutions), (ii) seeking a primal feasible basic solution among those
of restricted primals admitting all that satisfy complementary slackness with
the each dual, and when blocked, generating an improving direction for the
dual, then (iii) terminating when dual unboundedness (primal infeasibility) is
 detected or the current primal basic solution proves primal feasible. That is,
the algorithms maintain dual feasibility and complementary slackness while
seeking primal feasibility in a new way.

Principle 6.65

Like the Dual Simplex, part of the appeal of Primal-Dual Simplex is that
only a dual feasible solution is required to get started. In the Primal-Dual case,
even more freedom is allowed because the dual solution need not even be basic. In
standard form LPs (principle 6.53), which are the focus of this section, main dual
variables v are unrestricted. Dual feasibility requires only vA Ú c for a maximize
primal or vA … c for a minimize, which are equivalent to cQ = c - vA … 0, and
cQ = c - vA Ú 0, respectively.

The other issue is flexibility and efficiency in discovering appropriate primal
solutions through a Restricted Primal strategy.

Each major step of primal-dual search solves a restricted
 primal model in the form

min a i qi

s.t. a j∊Ja jxj + q = b

 q Ú 0, xj Ú 0 for all j ∊ J

Here q is a vector of artificial variables, and J = 5j : cj - vQa j = cQj = 06 for
current dual feasible solution vQ .

Principle 6.66

As detailed in principle 6.66 , the restricted primal strategy brings back Phase
I Primal Simplex search (Section 3.5) in a new way dealing with fewer primal
 variables. A primal search ensues at each major step over just the subset of com-
plementary xj with cQj = 0 to find a solution that is primal feasible (qQ , the artificial
optimum, = 0). Dual change, which has to consider the cQj limits on every primal
variable, arises only periodically when the restricted problem fails. Although we
will limit our discussion here to simplex-based methods for dealing with restricted

6.9 Primal-Dual Simplex Search 367

primals, many others are possible for special LPs (e.g., the Hungarian Assignment
Algorithm of Chapter 10).

exAmPle 6.40: stArtinG PrimAl-duAl simPlex seArch

Consider the following standard-form primal linear program

min 2x1 +1x2 +4x3 + 11x4

s.t. 2x1 +1x2 +2x3 +4x4 = 4

 +1x2 +3x3 +6x4 = 5

 x1, x2, x3, x4 Ú 0

(a) Formulate the corresponding dual over variables v1 and v2.

(b) Demonstrate that solution vQ = 11, 02 is feasible in the dual.

(c) Compute reduced costs cQj for all primal variables, and identify those qualifying
for restricted primal set J.

(d) Formulate the corresponding restricted primal problem.

Solution:

(a) Using variables v1 and v2, the dual problem is

max 4v1 + 5v2

s.t. 2v1 … 2

 1v1 + 1v2 … 1

 2v1 + 3v2 … 4

 4v1 + 6v2 … 11

 v1, v2 URS

(b) Substituting v1 = 1, v2 = 0 satisfies all 4 main constraints, so it is dual feasible.

(c) Using v1 = 1 and v2 = 0 to weight the main constraint rows, correspond-
ing reduced costs are cQ1 = 0, cQ2 = 0, cQ3 = 2, cQ5 = 6. This makes restricted set
J = 51, 26, those with cQ = 0.

(d) Now restricting original variables to those in J, and introducing artificial vari-
ables q1 and q2, the starting restricted primal is

min q1 +q2

s.t. 2x1 +1x2 +q1 = 4

 +1x2 +q2 = 5

x1, x2, q1, q2 Ú 0

Choosing an Improving Dual Direction
Each major round of primal-dual search involves solving the current restricted primal,
often passing through a number of primal solutions to reach phase I optimality. If the
optimal qQ = 0, a primal feasible and complementary solution is at hand, and the

368 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

whole search can terminate. Otherwise, we must find a way to change main dual
solution v to improve its objective value and admit new variables to the restricted set.

If optimality is obtained in the current restricted primal problem
without reaching primal feasibility over the original variables, primal-dual sim-
plex search adopts direction ∆v d {w (+ for a minimizing primal, and – for a
maximizing primal), where w is an optimal dual solution to the current restricted
primal. This direction will improve the dual solution value in the original model
and offer the opportunity to add new variables to the next restricted primal.

Principle 6.67

To see that this choice of ∆v improves the mail dual objective value, note that

°
new dual
objective

value
¢ = 1vQ + l∆v2b = vQ # b + l∆ # b = °

old dual
objective

value
¢ { lwQ # b

But wQ # b is exactly the optimal solution value of the last restricted primal, and it
is 7 0 if nonzero artificials remain in its optimal solution.

Determining a Dual Step Size
We would like to pursue this improving direction ∆v = {wQ of principle 6.67 as long
as the modified vQ remains dual feasible. If there is a limit, we will see it is reached
exactly when one or more new primal variables are added to the restricted primal.

The step size to apply to the direction of 6.67 follows from the need to retain
dual feasibility.

A step l 7 0 in direction ∆v will add - ∆v # a j to the current
reduced cost cQj on each primal variable xj. The limiting choice for l can occur
only when dual feasibility is about to be lost on a variable xp not part of the
current restricted primal, that is,

l d
-cQp

- ∆v # ap = min e
-cQj

- ∆v # a j : ∆v # aj 6 0, j ∉ J f

for a maximizing primal

l d
cQp

∆ v # ap = min e
-cQj

- ∆v # a j : ∆v # a j 7 0, j ∉ J f

for a minimizing primal

The next restricted primal will add those blocking variables to J and retain
any variables that were basic in the restricted optimum. Otherwise, if no limit
is encountered, the dual is unbounded, which implies the primal is infeasible.

Principle 6.68

To understand why rule 6.68 works, consider the case of a minimizing primal. Then
feasibility of the current dual solution assures all cQj Ú 0. The step limit arises over
those j with positive reduced cost and change 6 0 meaning ∆v # a j 7 0. Now, dual

6.9 Primal-Dual Simplex Search 369

optimality in the restricted (always minimizing) primal, where all costs on original
variables = 0, demands phase I reduced costs = -wQ # a j = - ∆v # a j Ú 0 for all j ∊ J.
Furthermore that restricted problem reduced cost must = 0 for those j in the opti-
mal restricted solution. We can conclude that all of those J-variables in the reduced
problem will have cQj Ú 0 not declining after the dual change. In particular, those
that were in the optimal restricted primal solution will continue to have cQj = 0 and
remain a part of the next reduced model. Only j ∊ J can limit the step. When one or
more of them reaches cQj = 0, those new variables can be added to the next restricted
primal. Otherwise, there is no limit on dual improvement and the primal is infeasible
(principle 6.48).

All the elements are now in place to detail the Primal-Dual Simplex
Algorithm 6B. It will continue until either some restricted primal produces a primal
feasible solution to complete the primal and dual pair, or primal infeasibility (dual
unboundedness) is established.

Algorithm 6B: primAl-DuAl Simplex SeArch for lp

Step 0: initialization. Place the given primal model in standard form. Then
choose any dual feasible v102 (i.e., cQ = c - v102A … 0 for a maximize primal
and cQ = c - v102A Ú 0 for a minimize) that also makes at least one corre-
sponding primal reduced cost cQ j = 0, and set t d 0.

Step 1: restricted primal. Construct the restricted primal 6.66 over
j ∊ J = 5j : cQ j = 06 for current dual solution v1t2, and solve it to optimality
for solution x, qQ .

Step 2: optimality. If the optimal artificial variables qQ = 0 in the restricted
primal, stop. Restricted primal optimum x (including xj d 0 for j ∉ J) and the
current v1t2 are respectively primal and dual optimal in the original problem
with common objective value c # x = v1t2 # b.

Step 3: Dual Simplex Directions. Construct an improving dual simplex di-
rection ∆v d {wQ (+ for a minimizing primal and – for a maximizing primal)
where wQ is an optimal dual solution to the restricted primal of Step l.

Step 4: Step Size. If ∆v # a j Ú 0 for all j F J of a maximize primal, or all
∆v # a j … 0 for a minimize, stop; progress is unlimited and the dual is un-
bounded which implies the primal is infeasible. Otherwise pick step size
l 7 0 according to

l d
-cQp

- ∆ v # a p = min e
-cQ j

- ∆ v # a j : ∆v # a j 60, j ∉ J f

for a maximizing primal

l d
cQp

∆ v # ap = min e
cQ j

∆ v # aj : ∆ v # a j 7 0, j ∉ J f

for a minimizing primal
Step 5: New Solutions. Advance v1t + 12 d v1t2 + l∆v, update J to include

all xj with modified cQ j = 0, increment t d t + 1 and return to Step l.

370 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

exAmPle 6.41: APPlyinG PrimAl-duAl simPlex AlGorithm 6b

Return to the LP of Example 6.40. Starting from the same dual v102 = 11, 02, apply
Algorithm 6B to compute optimal primal and dual solutions, showing quantities x,
v, J, ∆v, B and B-1 as they change. Also show each restricted primal solved.

Solution:

(a) For simplicity, the solution will be tracked in tabular form. Variables not avail-
able in particular restricted primals are shaded in gray. New vector d is used to
denote the restricted problem (Phase I) objective, as opposed from the original c.

t = 0 x1 x2 x3 x4 q1 q2

min c = 2 1 4 11 – –

min d = 0 0 0 0 1 1 b v102

A = 2 1 2 4 1 0 4 1
0 1 3 6 0 1 5 0

cQ = 0 0 2 7 J = 51, 26
basis = 1st N N 2nd

B = a2 0
0 1

b , B-1 = a1>2 0
0 1

b

dB = a0
1
b , wQ = a0

1
b

x, qQ = 2 0 0 0 0 5
d = 0 –1 –3 –6 1 0

∆ x, ∆ q = –0.5 1 0 0 0 –1

step = 2/0.5 – – 5/1
x, qQ = 0 4 0 0 0 1

basis = N 1st – – N 2nd

B = a1 0
1 1

b , B-1 = a 1 0
-1 1

b

dB = a0
1
b , wQ = a -1

1
b

d = 2 0 –1 –2 2 0 – optimal

(b) We begin as in Example 6.41 with v102 = 11, 02 and objective value v102 # b = 4.
As often happens, this dual choice allows more than one primal variable to join
the restricted problem. Here, there are two with J = 51, 26. In combination with
the artificials, these present many options for a starting basis in the restricted prob-
lem. Computations above choose x1 and q2. Corresponding basis elements in the
table lead to a restricted problem solution of x2 = 2, x2 = 0, qQ1 = 0, and qQ5 = 5,
but pricing nonbasic columns with djs demonstrates nonbasic x2 should enter.

An appropriate step in the corresponding simplex direction leads to new
basis x2, q2 with restricted primal solution x1 = 0, x2 = 4, qQ1 = 0, and qQ2 = 1,.
Updated basis elements now show the last solution is optimal in the restricted
problem. All dj are nonnegative. However, artificial variable qQ2 still remains

 Exercises 371

positive, which establishes that a complementary x-solution cannot be constructed
using only the variables now available in the restricted problem. Dual solution v
must be changed.

Following principle 6.67 , the direction of dual improvement is derived from
the optimal dual solution in the last restricted problem, that is, ∆v d wQ = 1-1, 12.
Applying step rule 6.68 , there are two variables x3 and x4 not now in J, and both have
∆v # a j 7 0. Testing ratios with corresponding cQj gives l = min52>1, 6>26 = 2. The
result is v112 = v102 + l∆v = 11, 02 + 21-1, 12 = 1-1, 22 with improved objec-
tive value v112 # b = 6.

(c) As shown in the table below, updated cQj now admit x3 to the restricted prob-
lem. Notice that previously basic x2 remains because the chosen dual change has
net effect = 0 on its reduced cost. However, nonbasic x1 has dropped out of the
restricted primal, which creates no difficulty since its last value was = 0.

We restart directly from the last restricted primal basic solution, with newly
added variables nonbasic. Dual solution wQ and corresponding dQ j are unchanged.
Now that x3 has joined the restricted problem, it qualifies to enter the basis with
dQ3 = -1. Applying the usual simplex direction and step size rules leads to new
restricted primal solution x2 = 2, x3 = 1, qQ1 = 0, and qQ2 = 0.

t = 1 x1 x2 x3 x4 q1 q2 v112

cQ = 4 0 0 3 – – –1
basis = 1st N N 2nd 2

∆ x, ∆ q = 0 –2 1 0 0 –1 J = 52, 36
step = 4/2 – – 1/1
x, qQ = 0 2 1 0 0 0 feasible

This time a solution to the restricted primal has been reached with all artifi-
cial variables = 0. The corresponding optimal x is optimal in the original primal
because it is feasible and complementary with the last v. Filling in 0s on primal vari-
ables not in the restricted problem, we have x* = 10, 2, 1, 02 and v* = 1-1, 22,
both with objective value = 6.

ExERCISES

6-1 As a result of a recent decision to stop pro-
duction of toy guns that look too real, the Super
Slayer Toy Company is planning to focus its pro-
duction on two futuristic models: beta zappers
and freeze phasers. Beta zappers produce $2.50 in
profit for the company, and freeze phasers, $1.60.
The company is contracted to sell 10 thousand
beta zappers and 15 thousand freeze phasers in
the next month, but all that are produced can be
sold. Production of either model involves three
crucial steps: extrusion, trimming, and assembly.
Beta zappers use 5 hours of extrusion time per
thousand units, 1 hour of trimming time, and 12
hours of assembly. Corresponding values per
thousand units of freeze phasers are 9, 2, and 15.

There are 320 hours of extrusion time, 300 hours
of trimming time, and 480 hours of assembly time
available over the next month. (An optimization
output appears in Table 6.6.)

(a) Briefly explain how this problem can be
modeled by the linear program:

max 2500x1 + 1600x2

s.t. x1 Ú 10
 x2 Ú 15
 5x1 + 9x2 … 320
 1x1 + 2x2 … 300
 12x1 + 15x2 … 480
 x1, x2 Ú 0

372 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

(b) Identify the resource associated with the
objective function and each main con-
straint in part (a).

(c) Identify the activity associated with each
decision variable in part (a).

(d) Interpret the left-hand-side coefficients
of each decision variable in part (a) as
inputs and outputs of resources per unit
activity.

6-2 Eli Orchid can manufacture its newest phar-
macutical product in any of three processes.
One costs $14,000 per batch, requires 3 tons of
one major ingredient and 1 ton of the other, and
yields 2 tons of output product. The second pro-
cess costs $30,000 per batch, requires 2 and 7 tons
of the ingredients, respectively, and yields 5 tons
of product. The third process costs $11,000 per

batch, requires 9 and 2 tons of the ingredients,
respectively, and yields 1 ton of product. Orchid
wants to find the least costly way to produce at
least 50 tons of the new product given that there
are 75 tons of ingredient 1 and 60 tons of ingredi-
ent 2 on hand. (An optimization output appears
in Table 6.7.)

(a) Briefly explain how this problem can be
modeled by the LP

 min 14x1 + 30x2 + 11x3

s.t. 2x1 + 5x2 + 1x3 Ú 50

3x1 + 2x2 + 9x3 … 75

1x1 + 7x2 + 2x3 … 60

 x1, x2, x3 Ú 0

(b) through (d) as in Exercise 6-1.

tAble 6.6 Optimization Output for Super Slayer Exercise 6-1

Solution value (max) = 77125.000

VARIABLE SENSITIVITY ANALYSIS:

Name Optimal

Value

Bas

Sts

Lower

Bound

Upper

Bound

Object

Coef

Reduced

Object

Lower

Range

Upper

Range

x1 21.250 BAS 0.000 +infin 2500.00 0.000 1280.000 +infin

x2 15.000 BAS 0.000 +infin 1600.00 0.000 –infin 3125.000

CONSTRAINT SENSITIVITY ANALYSIS:

Name Typ Optimal

Dual

RHS

Coef

Slack Lower

Range

Upper

Range

c1 G 0.000 10.000 11.250 –infin 21.250

c2 G –1525.000 15.000 –0.000 0.000 24.000

c3 L –0.000 320.000 78.750 241.250 +infin

c4 L –0.000 300.000 248.750 51.250 +infin

c5 L 208.333 480.000 0.000 345.000 669.000

tAble 6.7 Optimization Output for Eli Orchid Exercise 6-2

Solution value (min) = 311.111

VARIABLE SENSITIVITY ANALYSIS:

Name Optimal

Value

Bas

Sts

Lower

Bound

Upper

Bound

Object

Coef

Reduced

Object

Lower

Range

Upper

Range

x1 5.556 BAS 0.000 +infin 14.000 0.000 12.000 +infin

x2 7.778 BAS 0.000 +infin 30.000 0.000 –infin 35.000

x3 0.000 NBL 0.000 +infin 11.000 5.667 5.333 +infin

CONSTRAINT SENSITIVITY ANALYSIS:

Name Typ Optimal

Dual

RHS

Coef

Slack Lower

Range

Upper

Range

c1 G 7.556 50.000 –0.000 42.857 70.263

c2 L 0.000 75.000 42.778 32.222 +infin

c3 L –1.111 60.000 0.000 25.000 70.000

 Exercises 373

6-3 Professor Proof is trying to arrange for the
implementation in a computer program of his
latest operations research algorithm. He can
contract with any mix of three sources for help:
unlimited hours from undergraduates at $4 per
hour, up to 500 hours of graduate students at $10
per hour, or unlimited hours of professional pro-
grammers at $25 per hour. The full project would
take a professional at least 1000 hours, but grad
students are only 0.3 as productive, and under-
graduates, 0.2. Proof has only 164 hours of his own
time to devote to the effort, and he knows from
experience that undergraduate programmmers
require more supervision than graduates, and
graduates more than professionals. In particular,
he estimates that he will have to invest 0.2 hour of

his own time per hour of undergraduate program-
ming, 0.1 hour of his time per hour of graduate
programming, and 0.05 hour of his time per hour
of professional programming. (An optimization
output appears in Table 6.8.)

(a) Briefly explain how this problem can be
modeled by the LP

 min 4x1 + 10x2 + 25x3

s.t. 0.2x1 + 0.3x2 + x3 Ú 1000

 0.2x1 + 0.1x2 + 0.05x3 … 164

 x2 … 500

 x1, x2, x3 Ú 0

(b) through (d) as in Exercise 6-1.

6-4 The NCAA is making plans for distribut-
ing tickets to the upcoming regional basketball
championships. The up to 10,000 available seats
will be divided between the media, the compet-
ing universities, and the general public. Media
people are admitted free, but the NCAA receives
$45 per ticket from universities and $100 per
ticket from the general public. At least 500 tick-
ets must be reserved for the media, and at least
half as many tickets should go to the competing
universities as to the general public. Within these
restrictions, the NCAA wishes to find the alloca-
tion that raises the most money. An optimization
output appears in Table 6.9.

(a) Briefly explain how this problem can be
modeled by the LP

max 45x2 + 100x3

s.t. x1 + x2 + x3 … 10,000

 x2 - 1
2 x3 Ú 0

 x1 Ú 500

 x1, x2, x3 Ú 0

(b) through (d) as in Exercise 6-1.

6-5 For each of the following constraint coef-
ficient changes, determine whether the change
would tighten or relax the feasible set, whether
any implied change in the optimal value would be
an increase or a decrease, and whether the rate of
any such optimal value effect would become
more or less steep if it varied with the magnitude
of coefficient change. Assume that the model is

tAble 6.8 Optimization Output for Professor Proof Exercise 6-3

Solution value (min) = 24917.647

VARIABLE SENSITIVITY ANALYSIS:

Name Optimal

Value

Bas

Sts

Lower

Bound

Upper

Bound

Object

Coef

Reduced

Object

Lower

Range

Upper

Range

x1 82.353 BAS 0.000 +infin 4.000 0.000 –4.444 5.000

x2 0.000 NBL 0.000 +infin 10.000 2.235 7.765 +infin

x3 983.529 BAS 0.000 +infin 25.000 0.000 20.000 31.333

CONSTRAINT SENSITIVITY ANALYSIS:

Name Typ Optimal

Dual

RHS

Coef

Slack Lower

Range

Upper

Range

c1 G 25.882 1000.000 –0.000 164.000 1093.333

c2 L –5.882 164.000 0.000 150.000 1000.00

c3 L 0.000 500.000 500.000 0.000 +infin

374 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

a linear program, that all variables are nonneg-
ative, and that the constraint is not the only one.

(a) Maximize problem, 3w1 + w2 Ú 9,
 increase 9.

(b) Minimize problem, 5w1 - 2w2 Ú 11,
 increase 11.

(c) Minimize problem, 4w1 - 3w2 Ú 15,
decrease 15.

(d) Maximize problem, 3w1 + 4w2 … 17,
increase 4.

(e) Maximize problem, 3w1 + 1w2 Ú 9,
increase 3.

(f) Minimize problem, 5w1 - 2w2 … 11,
increase -2.

(g) Minimize problem, 4w1 - 3w2 Ú 15,
decrease -3.

(h) Maximize problem, 3w1 + 4w2 … 17,
 increase 3.

6-6 Determine whether adding each of the follow-
ing constraints to a mathematical program would
tighten or relax the feasible set and whether any
implied change in the optimal value would be an
increase or a decrease. Assume that the constraint
is not the only one.

(a) Maximize problem, 2w1 + 4w2 Ú 10.
(b) Maximize problem, 14w1 - w2 Ú 20.
(c) Minimize problem, 45w1 + 34w2 … 77.
(d) Minimize problem, 32w1 + 67w2 … 49.

6-7 For each of the following objective coeffi-
cient changes, determine whether any implied
change in the optimal value would be an increase
or a decrease and whether the rate of any such

optimal value effect would become more or less
steep if it varied with the magnitude of coefficient
change. Assume that the model is a linear pro-
gram and that all variables are nonnegative.

(a) max 13w1 + 4w2, increase 13.
(b) max 5w1 - 10w2, decrease 5.
(c) min -5w1 + 17w2, increase -5.
(d) min 29w1 + 14w2, decrease 14.

6-8 Return to Super Slayer Exercise 6-1.

(a) Assign dual variables to each main con-
straint of the formulation in part (a),
and define their meanings and units of
measurement.

(b) Show and justify the appropriate vari-
able-type restrictions on all dual variables.

(c) Formulate and interpret the main dual
constraint corresponding to each primal
variable.

(d) Formulate and interpret an appropriate
dual objective function.

(e) Use optimal solutions in Table 6.6 to ver-
ify that optimal primal and dual objective
function values are equal.

(f) Formulate and interpret all primal com-
plementary slackness conditions for the
model.

(g) Formulate and interpret all dual com-
plementary slackness conditions for the
model.

(h) Verify that optimal primal and dual
solutions in Table 6.6 satisfy the comple-
mentary slackness conditions of parts (f)
and (g).

tAble 6.9 Optimization Output for NCAA Ticket for Exercise 6-4

Solution value (max) = 775833.333

VARIABLE SENSITIVITY ANALYSIS:

Name Optimal

Value

Bas

Sts

Lower

Bound

Upper

Bound

Object

Coef

Reduced

Object

Lower

Range

Upper

Range

x1 500.000 BAS 0.000 +infin 0.000 0.000 –infin 81.667

x2 3166.667 BAS 0.000 +infin 45.000 0.000 –200.000 100.000

x3 6333.333 BAS 0.000 +infin 100.000 0.000 45.000 +infin

CONSTRAINT SENSITIVITY ANALYSIS:

Name Typ Optimal

Dual

RHS

Coef

Slack Lower

Range

Upper

Range

c1 L 81.667 10000.000 0.000 500.000 +infin

c2 G –36.667 0.000 –0.000 –4750.000 9500.000

c3 G –81.667 500.000 –0.000 0.000 10000.000

 Exercises 375

6-9 Do Exercise 6-8 for the problem of Exercise
6-2 using Table 6.7.
6-10 Do Exercise 6-8 for the problem of Exercise
6-3 using Table 6.8.
6-11 Do Exercise 6-8 for the problem of Exercise
6-4 using Table 6.9.
6-12 State the dual of each of the following LPs.

(a) min 17x1 + 29x2 + x4

s.t. 2x1 + 3x2 + 2x3 + 3x4 … 40

 4x1 + 4x2 + x4 Ú 10

 3x3 - x4 = 0

 x1, c, x4 Ú 0

(b) min 44x1 - 3x2 + 15x3 + 56x4

s.t. x1 + x2 + x3 + x4 = 20

 x1 - x2 Ú 0

 9x1 - 3x2 + x3 - x4 … 25

 x1, c, x4 Ú 0

(c) max 30x1 - 2x3 + 10x4

s.t. 2x1 - 3x2 + 9x4 … 10

 4x2 - x3 Ú 19

 x1 + x2 + x3 = 5

 x1 Ú 0, x3 … 0

(d) max 5x1 + x2 - 4x3

s.t. x1 + x2 + x3 + x4 = 19

 4x2 + 8x4 Ú 55

 x1 + 6x2 - x3 … 7

 x2, x3 Ú 0, x4 … 0

(e) max 2x1 + 9x2

s.t. 3w + 2x1 - x2 Ú 10

 w - y … 0

 x1 + 3x2 + y = 11

 x1, x2 Ú 0

(f) min 19y1 + 4y2 - 8z2

s.t. 11y1 + y2 + z1 = 15

 z1 + 5z2 Ú 0

 y1 - y2 + z2 … 4

 y1, y2 Ú 0

(g) min 32x2 + 50x3 - 19x5

s.t. 115a 3
j = 1xj2 + x5 = 40

 12x1 - 90x2 + 14x4 Ú 18

 x4 … 11

 xj Ú 0, j = 1, c, 5

(h) min 101x3 + x42
s.t. a 4

j = 1xj = 400

 xj - 2xj + 1 Ú 0 j = 1, c, 3

 x1, x2 Ú 0

6-13 State (primal and dual) complementary
slackness conditions for each LP in Exercise 6-12.
6-14 Each of the following LP has a finite opti-
mal solution. State the corresponding dual, solve
both primal and dual graphically, and verify that
optimal objective function values are equal.

(a) max 14x1 + 7x2

s.t. 2x1 + 5x2 … 14

 5x1 + 2x2 … 14

 x1, x2 Ú 0

(b) min 4x1 + 10x2

s.t. 2x1 + x2 Ú 6

 x1 Ú 1

 x1, x2 Ú 0

(c) min 8x1 + 11x2

s.t. 2x1 + 9x2 Ú 24

 3x1 + x2 Ú 11

 x1, x2 Ú 0

(d) max 7x1

s.t. 4x1 + 2x2 … 7

 3x1 + 7x2 … 14

 x1, x2 Ú 0
6-15 Compute the dual solution corresponding
to each of the following basic sets in the stan-
dard-form LP

max 6x1 + 1x2 + 21x3 - 54x4 - 8x5

s.t. 2x1 + 5x3 + 7x5 = 70

 + 3x2 + 3x3 - 9x4 + 1x5 = 1

 x1, c, x5 Ú 0

(a) 5x1, x26
(b) 5x1, x46
(c) 5x2, x36
(d) 5x3, x56

6-16 Each of the following is a linear program
with no optimal solution. State the corresponding

376 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

dual, solve both primal and dual graphically,
and verify that whenever primal or dual is un-
bounded, the other is infeasible.

(a) max 4x1 + x2

s.t. 2x1 + x2 Ú 4

 3x2 … 12

 x1, x2 Ú 0

(b) max 4x1 + 8x2

s.t. 3x2 Ú 6

 x1 + x2 … 1

 x1, x2 Ú 0

(c) min 10x1 + 3x2

s.t. x1 + x2 Ú 2

 -x2 Ú 5

 x1, x2 Ú 0

(d) min x1 - 5x2

s.t. - x1 + x2 … 4

 x1 - 5x2 … 3

 x1, x2 Ú 0

(e) min - 3x1 + 4x2

s.t. - x1 + 2x2 Ú 2

 x1 - 2x2 Ú 5

 x1, x1 Ú 0

(f) max -20x1 + 15x2

s.t. 10x1 - 2x2 … 12

 -10x1 + 2x2 … -15

 x1, x2 Ú 0

6-17 For each of the following LPs and solution
vectors, demonstrate that the given solution is
feasible, and compute the bound it provides on
the optimal objective function value of the corre-
sponding dual.

(a) min 30x1 + 2x2 and x = 12, 52
s.t. 4x1 + x2 … 15

 5x1 - x2 Ú 2

 15x1 - 4x2 = 10

 x1, x2 Ú 0

(b) max 10x1 - 6x2 and x = 10, 22
s.t. 12x1 + 4x2 … 8

 3x1 - x2 Ú -5

 2x1 + 8x2 = 16

 x1, x2 Ú 0

6-18 For each of the following, verify that the
given formulation is the dual of the referenced
primal in Exercise 6-17, demonstrate that the
given solution is dual feasible, and compute the
bound it provides on the corresponding primal
optimal solution value.

(a) For 6-17(a) and solution v = 10, 0, 22
max 15v1 + 2v2 + 10v3
s.t. 4v1 + 5v2 + 15v3 … 30

 v1 - v2 - 4v3 … 2
 v1 … 0, v2 Ú 0, v3 URS

(b) For 6-17(b) and solution v = 12, 0, 22
min 8v1 - 5v2 + 16v3

s.t. 12v1 + 3v2 + 2v3 Ú 10

 4v1 - v2 + 8v3 Ú -6

 v1 Ú 0, v2 … 0, v3 URS

6-19 Demonstrate for each linear program in
Exercise 6-17 that the dual of its dual is the
primal.
6-20 Razorback Tailgate (RT) makes tents for
football game parking lot cookouts at its two dif-
ferent facilities, with two processes that may be
employed in each facility. All facilities and pro-
cesses produce the same ultimate product, and
Razorback wants to build 22 in the next 80 busi-
ness hours. Unit costs at facility 1 are $200 and
$350 for the two processes and consume 5 and 20
production hours per unit, respectively. Similarly,
at facility 2 unit costs are $150 and $450 with 11
and 23 hours required, respectively, for the two
processes. RT wants to meet demand within the
80 available hours at each facility at minimum
total cost.

(a) Briefly justify how RT’s problem can be
formulated as the following LP:

min 200x1 + 350x2 + 150x3 + 450x4

s.t. x1 + x2 + x3 + x4 Ú 22

 5x1 + 20x2 … 80

 11x3 + 23x4 … 80

 x1, x2, x3, x4 Ú 0

(b) State the dual of the LP in part (a)
using variables v1, v2, v3 on the 3 main
constraints.

(c) Demonstrate that primal solution
x* = 114.73, 0.0, 7.27, 0.02 and v* =
1200.0, 0.0, -4.552 are optimal by showing

 Exercises 377

they are both feasible and have the same
solution value.

(d) Using only parts (a)–(c), what is the mar-
ginal cost of production at optimality?

(e) Using only parts (a)–(c), what would be
the marginal savings from another hour
of production time at facility 1?

(f) Using only parts (a)–(c), and assuming
it had some impact, would a decrease in
the constraint coefficient 11 of this LP
increase or decrease the optimal solu-
tion value, and would the rate of change
lessen or steepen with the magnitude of
the decrease?

(g) Using only parts (a)–(c), and assuming
it had some impact, would an increase
in the objective function coefficient 150
of this LP increase or decrease the opti-
mal solution value, and would the rate of
change steepen or lessen with the magni-
tude of the increase?

(h) Facility 2, process 2 (i.e., x4) is not used in
the current optimum. Using only parts (a)–
(c), at what lowered unit cost would it begin
to be attractive to enter the solution?

6-21 As spring approaches, the campus grounds
staff is preparing to buy 500 truckloads of new
soil to add around buildings and in gulleys where
winter has worn away the surface. Three sources
are available at $220, $270, and $290 per truck-
load, respectively, but the soils vary in nitrogen
and clay composition. Soil from source 1 is 50%
nitrogen and 40% clay; soil from source 2 is 65%
nitrogen and 30% clay; and soil from source 3 is
80% nitrogen and 10% clay. The staff wants the
total mix of soil to contain at least 350 truckloads
of nitrogen, and at most 75 truckloads of clay.
Within the constraints on their needs, they wish
to find a minimum cost plan to purchase the soil.

(a) Define decision variables and annotate
objective and constraints to justify why
this problem can be modeled as the linear
program

min 220t1 + 270t2 + 290t3
s.t. t1 + t2 + t3 Ú 500

 .50t1 + .65t2 + .80t3 Ú 350

 .40t1 + .30t2 + .10t3 … 75

 t1, t2, t3 Ú 0

NOTE: This LP has optimal solution
t* = 183.33, 0.00, 416.672, and the opti-
mal shadow price on the first constraint is
v1

* = 313.333
(b) Using only material given, compute the

optimal solution value of the dual corre-
sponding to the LP of part (a), and justify
your computation.

(c) Using only material given, would a unit
increase in coefficient/parameter 500 of
the LP of part (a) increase or decrease
the optimal solution value, and by how
much? Also would the rate of change
lessen or steepen with the magnitude of
the increase? Explain.

(d) Assuming it has some impact, would an
decrease in coefficient/parameter 270 of
the LP of part (a) increase or decrease
the optimal solution value, and would the
rate of change lessen or steepen with
the magnitude of the decrease? Explain.

(e) Assuming it has some impact, would an
increase in coefficient/parameter 0.65 of
the LP of part (a) increase or decrease
the optimal solution value, and would the
rate of change lessen or steepen with
the magnitude of the increase? Explain.

6-22 Return to Exercise 6-1. Answer each of the
following as well as possible from the results in
Table 6.6.

(a) Is the optimal solution sensitive to the
exact value of the trimming hours avail-
able? At what number of hours capacity
would it become relevant?

(b) How much should Super Slayer be willing
to pay for an additional hour of extrusion
time? For an additional hour of assembly
time?

(c) What would be the profit effect of in-
creasing assembly capacity to 580 hours?
To 680 hours?

(d) What would be the profit effect of increas-
ing the profit margin on beta zappers by
$1500 per thousand? What would be the
effect of a decrease in that amount?

(e) Suppose that the model of Exercise 6-1
ignores packaging capacity because it
is hard to estimate, even though each
thousand beta zappers requires 2 hours
of packaging, and each thousand freeze

378 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

phasers requires 3 hours. At what capac-
ity would packaging affect the current
 optimal solution?

(f) Suppose that Super Slayer also has a
Ninja Nailer model it could manufac-
ture that requires 2 hours of extrusion, 4
hours of trimming, and 3 hours of assem-
bly per thousand units? At what profit
per thousand would it be economic to
produce?

6-23 Return to Eli Orchid Exercise 6-2. Answer
each of the following as well as possible from the
results in Table 6.7.

(a) What is the marginal cost of production
(per ton of output)?

(b) How much would it cost to produce 70
tons of the new pharmaceutical product?
To produce 100 tons?

(c) How much should Orchid be willing to
pay to obtain 20 more tons of ingredient
1? How about ingredient 2?

(d) How cheap would the third process have
to become before it might be used in an
optimal solution?

(e) How much would the cost of the 50
tons of product increase if process 2 ac-
tually cost $32,000 per batch? If it cost
$39,000?

(f) How much would the cost of the 50 tons
of product decrease if process 1 cost
$13,000 per batch? If it cost $10,000 per
batch?

(g) Suppose that the engineering department
is thinking about a new process that pro-
duces 6 tons of product using 3 tons of
each of the two original ingredients. At
what cost would this new process be eco-
nomic to use?

(h) Suppose that the three processes actu-
ally use 0.1, 0.3, and 0.2 ton per batch of
a third ingredient but we do not know
exactly how much of it is available.
Determine the minimum amount needed
if the optimal primal solution in Table 6.7
is not to change.

6-24 Return to Exercise 6-3. Answer each of the
following as well as possible from the results in
Table 6.8.

(a) What is the marginal cost per profes-
sional-equivalent hour of programming

associated with the optimal solution in
Table 6.8?

(b) How much would cost increase if 1050
professional-equivalent hours of pro-
gramming are required? How about
1100?

(c) Does Professor Proof’s availability limit
the optimal solution? How much would
cost change if Professor Proof could de-
vote only 150 hours to supervision? How
about 100 hours?

(d) How much would the hourly rate of grad-
uate student programmers have to be
 reduced before Professor Proof might op-
timally hire some?

(e) How much would project cost increase if
professional programmers cost $30 per
hour? If they cost $35?

(f) Suppose that Professor Proof decides to
require at least half of the total program-
mer hours to go to students. Could this
requirement change the optimal solution?

(g) Suppose that Professor Proof decides to
allow unlimited hours of graduate student
programming. Could this revision change
the optimal solution?

(h) One of Professor Proof’s colleagues has
expressed interest in doing some of the
programming to earn outside income. At
what price per hour should Proof be in-
terested if he estimates that the colleague
would be 80% as efficient as a profes-
sional and require 0.10 hour of supervi-
sion per hour of work?

6-25 Return to NCAA ticket Exercise 6-4.
Answer each of the following as well as possible
from the results in Table 6.9.

(a) What is the marginal cost to the NCAA
of each seat guaranteed the media?

(b) Suppose that there is an alternative ar-
rangement of the dome where the games
will be played that can provide 15,000 seats.
How much additional revenue would be
gained from the expanded seating? How
much would it be for 20,000 seats?

(c) Since television revenue provides most
of the income for NCAA events, an-
other proposal would reduce the price of
general public tickets to $50. How much
revenue would be lost from this change?
What if the price were $30?

 Exercises 379

(d) Media-hating coach Sobby Day wants the
NCAA to restrict media seats to 20% of
those allocated for universities. Could
this policy change the optimal solution?
How about 10%?

(e) To accommodate high demand from stu-
dent supporters of participating universi-
ties, the NCAA is considering marketing
a new “scrunch seat” that consumes only
80% of a regular bleacher seat but counts
fully against the “university Ú half pub-
lic” rule. Could an optimal solution al-
locate any such seats at a ticket price of
$35? At a price of $25?

6-26 Paper can be made from new wood pulp,
from recycled office paper, or from recycled
newsprint. New pulp costs $100 per ton, recycled
office paper, $50 per ton, and recycled newsprint,
$20 per ton. One available process uses 3 tons
of pulp to make 1 ton of paper; a second uses 1
ton of pulp and 4 tons of recycled office paper;
a third uses 1 ton of pulp and 12 tons of recycled
newsprint; a fourth uses 8 tons of recycled of-
fice paper. At the moment only 80 tons of pulp
is available. We wish to produce 100 tons of new
paper at minimum total cost.

(a) Explain why this problem can be mod-
eled as the LP

min 100x1 + 50x2 + 20x3

s.t. x1 = 3y1 + y2 + y3

 x2 = 4y2 + 8y4

 x3 = 12y3

 x1 … 80
 g4

j = 1yj Ú 100
 x1, c, x3, y1 c, y4 Ú 0

(b) State the dual of the given primal LP.
(c) Enter and solve the given LP with the

class optimization software.
(d) Use your computer output to determine a

corresponding optimal dual solution.
(e) Verify that your computer dual solution is

feasible in the stated dual and that it has the
same optimal solution value as the primal.

(f) Use your computer output to determine
the marginal cost of paper production at
optimality.

(g) Use your computer output to determine
how much we should be willing to pay to
obtain an additional ton of pulp.

(h) Use your computer output to determine
or bound as well as possible how much
optimal cost would change if the price of
pulp increased to $150 per ton.

(i) Use your computer output to determine
or bound as well as possible how much
optimal cost would change if the price of
recycled office paper decreased to $20
per ton.

(j) Use your computer output to determine
or bound as well as possible how much
optimal cost would change if the price
of recycled office paper increased to $75
per ton.

(k) Use your computer output to determine
or bound as well as possible how much
optimal cost would change if the number
of tons of new paper needed decreased
to 60.

(l) Use your computer output to determine
or bound as well as possible how much op-
timal cost would change if the number of
tons of new paper needed increased to 200.

(m) Use your computer output to determine
how cheap recycled newsprint would
have to become before the primal solu-
tion could change.

(n) An experimental new process will use 6
tons of newsprint and an undetermined
number a tons of office paper. Use your
computer output to determine how low a
would have to be for the new process to
be competitive with existing ones.

(o) Use your computer output to determine
whether a limit of 400 tons on recycled
office paper would change the primal op-
timal solution.

(p) Use your computer output to determine
whether a limit of 400 tons on recycled
newsprint would change the primal opti-
mal solution.

6-27 Silva and Sons Ltd. (SSL)2 is the largest
coconut processor in Sri Lanka. SSL buys coco-
nuts at 300 rupees per thousand to produce two
grades (fancy and granule) of desiccated (dehy-
drated) coconut for candy manufacture, coconut

2R. A. Cabraal (1981), “Production Planning in a Sri Lanka Coconut Mill Using Parametric Linear
Programming,” Interfaces, 11:3, 16–23.

380 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

shell flour used as a plastics filler, and charcoal.
Nuts are first sorted into those good enough for
desiccated coconut (90%) versus those good only
for their shells. Those dedicated to desiccated
coconut production go to hatcheting/pairing
to remove the meat and then through a drying
process. Their shells pass on for use in flour and
charcoal. The 10% of nuts not suitable for desic-
cated coconut go directly to flour and charcoal.
SSL has the capability to hatchet 300,000 nuts
per month and dry 450 tons of desiccated coco-
nut per month. Every 1000 nuts suitable for pro-
cessing in this way yields 0.16 ton of desiccated
coconut, 18% of which is fancy grade and the rest
granulated. Shell flour is ground from coconut
shells; 1000 shells yield 0.22 ton of flour. Charcoal
also comes from shells; 1000 shells yield 0.50 ton
of charcoal. SSL can sell fancy desiccated coco-
nut at 3500 rupees per ton over hatcheting and
drying cost, but the market is limited to 40 tons
per month. A contract requires SSL delivery of
at least 30 tons of granulated-quality desiccated
coconut per month at 1350 rupees per ton over
hatcheting and drying, but any larger amounts
can be sold at that price. The market for shell
flour is limited to 50 tons per month at 450 rupees
each. Unlimited amounts of charcoal can be sold
at 250 rupees per ton.

(a) Explain how this coconut production plan-
ning problem can be modeled as the LP

max 3500s1 + 1350s2 + 450s3

 + 250s4 - 300p1 - 300p2

s.t. 0.10p1 - 0.90p2 = 0

 0.82s1 - 0.18s2 = 0

 p1 … 300

 s1 + s2 … 450

 s1 … 40

 s2 Ú 30

 s3 … 50

 0.16p1 - s1 - s2 = 0

 0.11p1 + 0.11p2 - 0.50s3 - 0.22s4 = 0

 p1, p2, s1, s2, s3, s4 Ú 0

(b) State the dual of your primal linear
program.

(c) Enter and solve the given primal LP with
the class optimization software.

(d) Use your computer output to determine a
corresponding optimal dual solution.

(e) Verify that your computer dual solution
is feasible in the stated dual and that it
has the same optimal solution value as the
primal.

(f) On the basis of your computer output, de-
termine how much SSL should be willing
to pay to increase hatcheting capacity by
1 unit (1000 nuts per month).

(g) On the basis of your computer output,
determine how much SSL should be will-
ing to pay to increase drying capacity by 1
unit (1 ton per week).

(h) On the basis of your computer output, de-
termine or bound as well as possible the
profit impact of a decrease in hatcheting
capacity (thousands of nuts per month) to
250. Do the same for a capacity of 200.

(i) On the basis of your computer output,
determine or bound as well as possible
the profit impact of an increase in hatch-
eting capacity (thousands of nuts per
month) to 1000. Do the same for a capac-
ity of 2000.

(j) The company now has excess drying ca-
pacity. On the basis of your computer
output, determine how low it could go be-
fore the optimal plan was affected.

(k) The optimum now makes no shell flour.
On the basis of your computer output,
determine at what selling price per ton
it would begin to be economical to make
and sell flour.

(l) On the basis of your computer output, de-
termine or bound as well as possible the
profit impact of a decrease in the selling
price of granulated desiccated coconut to
800 rupees per ton. Do the same for a de-
crease to 600 rupees.

(m) On the basis of your computer output, de-
termine or bound as well as possible the
profit impact of an increase to 400 rupees
per ton in the price of charcoal. Do the
same for an increase to 600 rupees.

(n) On the basis of your computer output,
determine whether the primal optimal
solution would change if we dropped the
constraint on drying capacity.

(o) On the basis of your computer output,
determine whether the primal optimal

 Exercises 381

solution would change if we added a
new limitation that the total number of
nuts available per month cannot exceed
400,000. Do the same for a total not to ex-
ceed 200,000.

6-28 Tube Steel Incorporated (TSI) is optimizing
production at its 4 hot mills. TSI makes 8 types of
tubular products which are either solid or hollow
and come in 4 diameters. The following two ta-
bles show production costs (in dollars) per tube
of each product at each mill and the extrusion
times (in minutes) for each allowed combination.
Missing values indicate product–mill combina-
tions that are not feasible.

Unit Cost

Product Mill 1 Mill 2 Mill 3 Mill 4

0.5 in. solid 0.10 0.10 — 0.15
 1 in. solid 0.15 0.18 — 0.20
 2 in. solid 0.25 0.15 — 0.30
 4 in. solid 0.55 0.50 — —
0.5 in. hollow — 0.20 0.13 0.25
 1 in. hollow — 0.30 0.18 0.35
 2 in. hollow — 0.50 0.28 0.55
 4 in. hollow — 1.0 0.60 —

Unit Time

Product Mill 1 Mill 2 Mill 3 Mill 4

0.5 in. solid 0.50 0.50 — 0.10
 1 in. solid 0.60 0.60 — 0.30
 2 in. solid 0.80 0.60 — 0.60
 4 in. solid 0.10 1.0 — —
0.5 in. hollow — 1.0 0.50 0.50
 1 in. hollow — 1.2 0.60 0.60
 2 in. hollow — 1.6 0.80 0.80
 4 in. hollow — 2.0 1.0 —

Yearly minimum requirements for the solid sizes
(in thousands) are 250, 150, 150, and 80, respec-
tively. For the hollow sizes they are 190, 190, 160,
and 150. The mills can operate up to three 40-hour
shifts per week, 50 weeks a year. Present policy is
that each mill must operate at least one shift.

(a) Formulate a linear program to meet de-
mand and shift requirements at minimum
total cost using the decision variables

xp, m! thousands of units of product p
produced annually at mill m

Main constraints should have a system of
4 minimum time constraints, followed by
a system of 4 maximum time constraints,
followed by a system of 8 demand con-
straints.

(b) State the dual of your primal LP model.
(c) Enter and solve your primal linear

program with the class optimization
software.

(d) Use your computer output to determine a
corresponding optimal dual solution.

(e) Verify that your computer dual solution
is feasible in the stated dual and that it
has the same optimal solution value as the
primal.

(f) Use your computer results to determine
the marginal cost of producing each of the
eight products.

(g) Use your computer results to explain why
the policy of operating all mills at least
one shift is costing the company money.

(h) Two options being considered would
open mills 3 or 4 on weekends (i.e., add
up to 16 extra hours to each of 3 shifts
over 50 weeks). Taking each option sep-
arately, determine or bound as well as
possible from your computer results the
impact these changes would have on total
production cost.

(i) Another option being considered is to
hire young industrial engineers to find
ways of reducing the unit costs of produc-
tion at high-cost mill 4. For each of the 6
products there taken separately, use your
computer results to determine to what
level unit costs would have to be reduced
before there could be any change in the
optimal production plan.

(j) A final pair of options being considered
is to install equipment to produce 4-inch
solid and 4-inch hollow tubes at mill 4.
The new equipment would produce ei-
ther product in 1 minute per unit. Taking
each product separately, determine the
unit production cost that would have to
be achieved to make it economical to use
the new facilities.

382 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

6-29 Consider the primal linear program

max 13z2 - 8z3

s.t. - 3z1 + z3 … 19

 4z1 + 2z2 + 7z3 = 10

 6z1 + 8z3 Ú 0

 z1, z3 Ú 0

(a) Formulate the corresponding dual in
terms of variables v1, v2, v3.

(b) Formulate and justify all Karush-Kuhn-
Tucker conditions for primal solution zQ
and dual solution vQ to be optimal in their
respective problems.

6-30 Return to the primal LPs of Exercise 6-17
and corresponding duals of Exercise 6-18.

(a) State and justify all Karush-Kuhn-Tucker
conditions for each pair of models.

(b) Compute solution values for primal x in
Exercise 6-17 and dual v in Exercise 6-18,
and show that their difference is exactly
the value of the complementary slackness
violation in the KKT conditions.

6-31 Consider the standard-form linear program

max 5x1 - 10x2

s.t. 1x1 - 1x2 + 2x3 + 4x5 = 2

 1x1 + 1x2 + 2x4 + x5 = 8

 x1, x2, x3, x4, x5 Ú 0

(a) Taking x1 and x2 as basic, identify all el-
ements of the corresponding partitioned
model: B, B-1, N, cB, cN, and b.

(b) Then use the partitioned elements of part
(a) to compute the primal primal basic
solution 1xB, xN2, determine its objective
value, and establish that it is feasible.

(c) Formulate the dual of the above LP in
terms of partitioned elements of part (a)
and dual variables v.

(d) Compute the complementary dual solu-
tion vQ corresponding to the basis of (a),
and verify that its objective value matches
that of the primal.

(e) Briefly explain how your complementary
primal and dual solutions x and vQ can have
the same objective function value yet not
be optimal in their respective problems.

6-32 Return to the standard-form LP of Exercise
6-31, and do parts (a)–(d), this time using basis
(x3, x4). Then

(e) State all KKT conditions for your primal
solution of part (b) and dual solution of
part (d) to be optimal in their respective
problems.

(f) Demonstrate your solutions of parts (b)
and (d) are optimal by showing they sat-
isfy KKT conditions of part (e).

6-33 Consider the linear program

min 2x1 + 3x2

s.t. -2x1 + 3x2 Ú 6

 3x1 + 2x2 Ú 12

 x1, x2 Ú 0

(a) Establish that subtracting nonnegative
surplus variables x3 and x4 leads to the
equivalent standard-form:

min 2x1 + 3x2

s.t. -2x1 + 3x2 - x3 = 6

 3x1 + 2x2 - x4 = 12

 x1, x2, x3, x4 Ú 0

(b) Solve the original LP graphically in an
(x1, x2) plot, and identify an optimal solu-
tion. Also tag each main constraint with
the corresponding surplus variable.

(c) Establish that the dual of the standard
form in part (a) is

max 6v1 + 12v2

s.t. - 2v1 + 3v2 … 2

 3v1 + 2v2 … 3

 -v1 … 0

 -v2 … 0

(d) State all applicable complementary slack-
ness conditions between the standard-form
of part (a) and the dual of part (c).

6-34 Consider the linear program

min 2x1 + 3x2 + 4x3

s.t. x1 + 2x2 + x3 Ú 3

 2x1 - x2 + 3x3 Ú 4

 x1, x2, x3 Ú 0

(a) Use nonnegative surplus variables x4 and
x5 to place the model in standard form.

(b) State the dual of your standard form
model in part (a) in terms of variables v1
and v2.

 Exercises 383

(c) Choosing x4 and x5 as basic, compute the
corresponding primal basic solution and
establish that it is not feasible.

(d) Show that v1 = v2 = 0 is dual feasible in
the standard form and complementary
with the primal solution of part (c).

(e) Starting from the primal basis of part (c)
and dual solution of part (d), apply Dual
Simplex Algorithm 6A to compute op-
timal primal and dual solutions for the
given LP.

6-35 Consider the standard form linear program

min 3x1 + 4x2 + 6x3 + 7x4 + x5

s.t. 2x1 - x2 + x3 + 6x4 - 5x5 - x6 = 6

 x1 + x2 + 2x3 + x4 + 2x5 - x7 = 3

 x1, c, x7 Ú 0

(a) State the dual of this model using vari-
ables v1 and v2.

(b) Establish that v1 = v2 = 0 is dual feasi-
ble in your formulation of part (a).

(c) Starting from the dual solution of part
(b), compute optimal primal and dual
solutions to the given LP by Primal-Dual
Simplex Algorithm 6B.

6-36 Return to the standard-form LP of Exercise
6-33(a).

(a) Solve the model by Dual Simplex
Algorithm 6A starting from the all sur-
plus basis (x3, x4). At each step, identify
the basis matrix B, its inverse B-1, the
corresponding primal solution x, the basic
cost vector cB, the corresponding dual
solution v, reduced costs on all primal
variables, direction of change ∆ v, and
step size l. Also verify (i) each v is dual
feasible in your dual of 6-33(c), (ii) each
v and x together satisfy complementary
slackness 6-33(d), and (iii) each is im-
proving for the dual.

(b) Track your progress with Algorithm 6A
on an (x1, x2) plot of the original LP, and
comment.

6-37 Return to the standard-form LP of Exercise
6-34(a).

(a) Solve the model by Primal-Dual Simplex
Algorithm 6B starting from dual solution
v = 10, 02. At each major step, state the
restricted primal, the dual solution v, re-
duced costs on all primal variables, and
the direction of change ∆v. Also verify
that each v is complementary with the
latest x, and that each ∆v is improving in
the dual.

(b) Track your progress with Algorithm 6B
on an (x1, x2) plot of the original LP, and
comment.

6-38 Consider the following linear program:

max 3z1 + z2

s.t. -2z1 + z2 … 2

 z1 + z2 … 6

 z1 … 4

 z1, z2 Ú 0

After converting to standard form,
solution of the model via Rudimentary
Simplex Algorithm 5A produces the fol-
lowing sequence of steps:

 z1 z2 z3 z4 z5

 max c 3 1 0 0 0 b

 A -2 1 1 0 0 2

1 1 0 1 0 6

1 0 0 0 1 4

t = 0 N N B B B

z102 0 0 2 6 4 0

∆ z, z1 1 0 2 -1 -1 cQ1 = 3

∆ z, z2 0 1 -1 -1 0 cQ2 = 1

− − − 6
1

4
1

l = 4

t = 1 B N B B N

z112 4 0 10 2 0 12

∆z, z2 0 1 -1 -1 0 cQ2 = 1

∆z, z5 -1 0 -2 1 1 cQ5 = -3

− − 10
1

2
1

− l = 2

t = 2 B B B N N

z122 4 2 8 0 0 14

∆z, z4 0 -1 1 1 0 cQ4 = -1

∆z, z5 -1 1 -3 0 1 cQ5 = -2

384 Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming

(a) State the dual of the standard-form pri-
mal depicted at the top of this table, and
enumerate all complementary slackness
requirements between primal and dual.

(b) Compute the primal and dual basic solu-
tions at each step of the given simplex

computations, and check complementary
slackness, to demonstrate that Algorithm
5A is following of the KKT strategy of
maintaining primal feasibility and com-
plementary slackness while seeking dual
feasibility.

Bazaraa, Mokhtar, John J. Jarvis, and Hanif D.
Sherali (2010), Linear Programming and Network
Flows, John Wiley, Hoboken, New Jersey.

Bertsimas, Dimitris and John N. Tsitklis (1997),
Introduction to Linear Optimization. Athena Sci-
entific, Nashua, New Hampshire.

Chvátal, Vašek (1980), Linear Programming, W.H.
Freeman, San Francisco, California.

Eppen, G.D., F.J. Gould, GP. Schmidt, Jeffrey H.
Moore, and Larry R. Weatherford (1993), Intro-

duction to Management Science, Prentice-Hall,
Upper Saddle River, New Jersey.

Griva, Igor, Stephen G. Nash, and Ariela Sofer
(2009), Linear and Nonlinear Optimization,
SIAM, Philadelphia, Pennsylvania.

Luenberger, David G. and Yinyu Ye (2008),
Linear and Nonlinear Programming, Springer,
New York, New York.

REFERENCES

385

▪ ▪ ▪ ▪ ▪
Chapter 7

Interior Point
Methods for Linear

Programming

Although Chapter 5’s and 6’s simplex methods remain the most widely used algo-
rithms for solving linear programs, a very different strategy emerged in operations
research practice at the end of the 1980s. Interior point methods still follow the
improving search paradigm for linear programs, but they employ moves quite dif-
ferent from those in the simplex method. Instead of staying on the boundary of
the feasible region and passing from extreme point to extreme point, interior point
methods proceed directly across the interior.

Much more effort turns out to be required per move with interior point meth-
ods, but the number of moves decreases dramatically. In many large LPs, the result
is a substantially shorter total solution time than any obtained so far with simplex.

The first commercial interior point method for linear programming was N.
Karmarkar’s projective transformation procedure and developments have con-
tinued to this day. All methods are relatively complex mathematically, with many
details beyond the scope of an introductory book.

In this chapter we seek to provide an overview of popular affine scaling,
log-barrier, and primal-dual variants, then comment briefly on the theoretical
importance of interior-point approaches with respect to polynomial-time solution
of linear programs (see Sections 14.2–14.3). The development assumes reader famil-
iarity with search fundamentals of Chapter 3, LP conventions of Section 5.1, and LP
optimality conditions of Section 6.7.

7.1 Searching through the interior

Any linear programming search method allowed to pass through the interior of the
feasible region poses a variety of new challenges. Before developing specific algo-
rithms, we introduce some of the key issues.

386 Chapter 7 Interior Point Methods for Linear Programming

Interior Points
Recall (definition 5.2 , Section 5.1) that a feasible solution to a linear program is a
boundary point if at least one inequality constraint of the model that can be strict
for some feasible solutions is satisfied as an equality at the given point. A feasible
solution is an interior point if no such inequalities are active. For example, solu-
tion x102 = 11, 122 of Figure 7.1 is an interior point because it satisfies all three con-
straints of model (7.1) as strict inequalities.

Objective as a Move Direction
There is one enormous convenience in searching from an interior point such as x102
of Figure 7.1 when all constraints are inequalities (we deal with equalities shortly).

1

2

1 2 3 4 5

max 90x1 + 150x2

x2

x1

x(0) = (1,)1
2

x* = (6, 0)

x(1) = (,)50
26

53
26

Figure 7.1 Graphic Solution of Frannie’s Firewood
Application

application 7.1: Frannie’S Firewood

To illustrate interior point computations, we need an example so small (and trivial)
that it can be displayed graphically in a variety of ways. Frannie’s Firewood problem
will serve.

Each year Frannie sells up to 3 cords of firewood from her small woods. One
potential customer has offered her $90 per half-cord and another $150 per full cord. Our
concern is how much Frannie should sell to each customer to maximize income, assum-
ing that each will buy as much as he or she can.

To begin, we need a decision variable for each customer. Define

 x1! number of half@cords sold to customer 1

 x2! number of cords sold to customer 2

Then Frannie’s problem can be modeled as the linear program

 max 90x1 + 150x2 (7.1)

s.t. 12 x1 + x2 … 3

 x1, x2 Ú 0

Figure 7.1 solves model (7.1) graphically. The unique solution sells all 3 cords to
the first customer, making x*

1 = 6, x*
2 = 0.

7.1 Searching through the Interior 387

With no constraints active, every direction is feasible; that is, a small step in any
direction retains feasibility (see Section 3.2). Thus our only consideration in picking
the next move is to find a direction improving the objective function.

What direction improves the objective most rapidly? For linear programs it is
easy to see that we should move with the gradient or objective coefficient vector as
in principle 3.23 (Section 3.3).

The move direction of most rapid improvement for linear
objective max c # x = a j cjxj is the objective function vector ∆x = c. For a
model to min c # x, it is ∆x = -c.

Principle 7.1

For example, in the maximize Frannie model of Figure 7.1, we prefer ∆x =
c = 190, 1502 at x102. This direction runs exactly perpendicular to contours of the
objective function. No alternative improves the objective faster.

example 7.1: uSing the objective aS a direction

Each of the following is the objective function of a linear program with 3 decision
variables. Determine for each the direction of most rapid objective improvement.

(a) min 4x1 - 19x2 + x3

(b) max -2x1 - x2 + 79x3

Solution: We apply principle 7.1 .

(a) For a minimize objective the direction of steepest improvement is

∆x = -c = 1-4, 19, -12
(b) For a maximize objective the direction of steepest improvement is

∆x = c = 1-2, -1, 792

Boundary Strategy of Interior Point Methods
Figure 7.1 shows the effect of using cost direction ∆x = 190, 1502 at x102. A maxi-
mum feasible step of l = 2

195 would bring us to

 x112 = x102 + l ∆x112

 = (1, 12) + 2
195 190, 1502

 = (50
26, 53

26)

Very rapid progress toward an optimum is achieved in a single move.
Notice that we would have to deal with the boundary at x112. Constraint

1
2 x1 + x2 … 3

is now active, and we discovered in Chapter 3 (principle 3.25 , Section 3.3) that fea-
sible directions ∆x at x112 must preserve this inequality by satisfying

1
2 ∆x1 + ∆x2 … 0

388 Chapter 7 Interior Point Methods for Linear Programming

Such newly active constraints destroy the convenience of moves in the interior.
That is why interior point algorithms stop short of the boundary as in the typical
sequence plotted in Figure 7.2. Partial steps along suitable variations of the cost
direction in principle 7.1 continue progress while avoiding the boundary.

Of course, optimal solutions to linear programs lie along the boundary of the
feasible region (principle 5.4 , Section 5.1). It cannot be avoided forever. The effec-
tiveness of interior point methods depends on their keeping to the “middle” of the
feasible region until an optimal solution is reached.

1

2

1 2 3 4 5

x* = (6, 0)

x(4)

max 90x1 + 150x2

x2

x1

x(0) x(1)

x(2)

x(3)

Figure 7.2 Typical Interior Point
Search of Frannie’s Firewood
Application

Interior point algorithms begin at and move through a sequence
of interior feasible solutions, converging to the boundary of the feasible region
only at an optimal solution.

Principle 7.2

example 7.2: identiFying interior point trajectorieS

The following figure shows the Top Brass Trophy application from Section 5.1:

optimal x* = (650, 1100)
1000

2000

1000 2000

(0, 0)

(440, 530)

(100, 300)

x2

x1

(1000, 400)

7.1 Searching through the Interior 389

Interior in LP Standard Form
In Section 5.1 we showed how every linear program can be placed in standard form:

 min 1or max2 c # x

(7.2)

s.t. Ax = b

 x Ú 0

Any main inequalities are converted to equalities by adding slack variables, and
original variables are transformed until each is subject to a nonnegativity constraint.
For example, we can place the Frannie model (7.1) in standard form by adding slack
variable x3 in the main constraint to obtain

 max 90x1 + 150x2

(7.3)

s.t. 12x1 + x2 + x3 = 3

 x1, x2, x3 Ú 0

Chapter 5 placed LPs in form (7.2) to make it easier to perform simplex algo-
rithm computations, but standard form is equally convenient for interior point
search. With all inequalities reduced to nonnegativity constraints, it is easy to check
whether a given solution lies in the interior of the feasible region.

Determine whether each of the following sequences of solutions could have resulted
from an interior point search.

(a) 10, 02, 1440, 5302, 1650, 11002
(b) 1100, 3002, 1440, 5302, 1650, 11002
(c) 1100, 3002, 11000, 4002, 1650, 11002
(d) 10, 02, 11000, 02, 11000, 4002, 1650, 11002
Solution: The sequence of solutions visited by an interior point search should
 conform to principle 7.2 .

(a) This sequence is not appropriate because it begins at boundary point (0, 0).

(b) This could be the sequence of an interior point search. It starts at one interior
solution, passes to another, and reaches the boundary only at the optimum.

(c) This sequence starts in the interior but goes to the boundary before optimality
at (1000, 400). It could not result from an interior point algorithm.

(d) This is the simplex algorithm extreme-point sequence of Figure 5.5. It never
enters the interior.

A feasible solution for a linear program in standard form is an
interior point if every component of the solution that can be positive in any
feasible solution is strictly positive in the given point.

Principle 7.3

For example, point x102 of Figure 7.2 corresponds to x102 = 11, 12, 22 in standard
form (7.3). In accord with conditions 7.3 , the vector is positive in every component.

390 Chapter 7 Interior Point Methods for Linear Programming

Projecting to Deal with Equality Constraints
The ease of identifying interior points in standard form comes at a price. Many
equality constraints are added to the system Ax = b as main inequalities are con-
verted, and equality constraints are active at every solution. Straightforward moves
such as the objective vector directions of principle 7.1 must now be modified to
preserve the equalities.

Chapter 3 (principle 3.25 , Section 3.3) established that a direction ∆x pre-
serves equality constraints Ax = b if and only if the net effect on every constraint
is zero.

example 7.3: identiFying Standard-Form interior pointS

Consider the standard-form linear program

min 5x1 - 2x3 + 8x4

s.t. 2x1 + 3x2 - x3 = 10

 6x1 - 2x4 = 12

 x1, x2, x3, x4 Ú 0

which does have strictly positive feasible solutions. Determine whether each of the
following solutions corresponds to an interior point.

(a) x112 = 18, 0, 6, 182 (b) x122 = 14, 1, 1, 62 (c) x132 = 13, 3, 1, 62
Solution:

(a) Solution x112 cannot be interior, because a component x2
112 = 0 is not strictly

positive.

(b) Solution x122 is positive in every component. Also,

 2x1
122 + 3x2

122 - x3
122 = 2142 + 3112 - 112 = 10

6x1
122 - 2x4

122 = 6142 - 2162 = 12

which establishes the point is feasible. Thus x122 is an interior point.

(c) Solution x132 is also positive in every component. However,

2x1
132 + 3x2

132 - x3
132 = 2132 + 3132 - 112 = 14 ≠ 10

6x1
132 - 2x4

132 = 6132 - 2162 = 6 ≠ 12

Thus the point is infeasible and so not interior.

A move direction ∆x is feasible for equality constraints
Ax = b if it satisfies A∆x = 0.

Principle 7.4

7.1 Searching through the Interior 391

Readers familiar with statistics may recognize this idea as the one used in least
squares curve fitting.

Figure 7.3 illustrates for Frannie’s firewood optimization form (7.3). The
shaded triangle in this 3-dimensional plot is the set of feasible 1x1, x2, x32. The
search begins at x102 = 11, 12, 22.

How can we find a ∆x direction satisfying conditions 7.4 that approximates
as nearly as possible the direction d we would really like to follow? Interior point
algorithms often use some form of projection.

The projection of a move vector d on a given system of equali-
ties is a direction preserving those constraints and minimizing the total squared
difference between its components and those of d.

Principle 7.5

feasible region

optimal solution x* = (6, 0, 0)

x1

x3

x2

x(0) = (1, , 2)1
2

desired d =(, , 0)

projected ¢x =(, , -)14
18

19
18

26
18

3
2

5
2

Figure 7.3 Projection in the Frannie’s Firewood
Application

To improve the objective function as quickly as possible, we would like to
move parallel to standard-form cost vector c = 190, 150, 02. Call the desired direc-
tion d = 1

60 c = 13
2, 52, 02 to keep it in the picture.

A feasible direction ∆x must keep the next point in the feasible plane by sat-
isfying 7.4 , or

 1
2 ∆x1 + ∆x2 + ∆x3 = 0 (7.4)

But we would like it to be as much like d as possible. Figure 7.3 shows that the best
choice is d’s projection ∆x = 114

18, 19
18, - 26

182 . It is the closest to d in the sense that

1d1 - ∆x122 + 1d2 - ∆x222 + 1d3 - ∆x322

is minimized. It also satisfies feasibility condition (7.4), because
1
2 (14

18) + (19
18) + (-26

18) = 0

392 Chapter 7 Interior Point Methods for Linear Programming

Here I denotes an identity matrix and AT indicates the transpose of A, which is
obtained by swapping its rows for its columns. (Primer 6 reviews some properties
for those who may require it.)

For our Frannie’s Firewood application,

A = 11
2, 1, 12 , AT = £ 1

2

1
1
≥, AAT = 9

4

Thus 1AAT2 -1 = 4
9, and

AT1AAT2 -1A = £ 1
2

1
1
≥ 1 492 11

2, 1, 12 = ±

1
9

2
9

2
9

2
9

4
9

4
9

2
9

4
9

4
9

≤

The needed projection matrix P then becomes

 P = 1I - AT1AAT2 -1A2

 = £1 0 0
0 1 0
0 0 1

≥ - ±

1
9

2
9

2
9

2
9

4
9

4
9

2
9

4
9

4
9

≤ = ±

8
9 -2

9 -2
9

-2
9

5
9 -4

9

-2
9 -4

9
5
9

≤

Applying rule 7.6 for d = 13
2, 52, 02 gives

 ∆x = Pd

 = ±

8
9 -2

9 -2
9

-2
9

5
9 -4

9

-2
9 -4

9
5
9

≤ ±

3
2
5
2

0

≤ = ±

14
18
19
18

-26
18

≤ (7.5)

The projection of direction d onto conditions A∆x = 0 pre-
serving linear inequalities Ax = b can be computed as

∆x = Pd

where projection matrix

P = 1I - AT1AAT2 -1A2

Principle 7.6

Derivation of the projection computation that produced this move direction
∆x is beyond the scope of this book. However, the formula for the required projec-
tion matrix P is well known:

7.1 Searching through the Interior 393

example 7.4: projecting to preServe equality conStraintS

Consider the standard-form linear program

max 5x1 +7x2 +9x3

s.t. 1x1 -1x3 = -1

 +2x2 +1x3 = 5

x1, x2, x3 Ú 0

(a) Determine the direction d of most rapid objective function improvement at
interior point x = 12, 1, 32.

(b) Project that vector d to find the nearest direction ∆x that preserves the main
equality constraints of the LP.

(c) Verify that your ∆x satisfies all requirements for a feasible move direction at x.

Solution:

(a) Applying principle 7.1 , the direction of steepest improvement is

d = objective function vector = 15, 7, 92
(b) To compute the projection, we apply formula 7.6 . Here

A = a1 0 -1
0 2 1

b and AT = £ 1 0
0 2

-1 1
≥

Thus

AAT = a 2 -1
-1 5

b with inverse 1AAT2-1 = a
5
9

1
9

1
9

2
9
b

Continuing yields

 AT1AAT2-1A = £ 1 0
0 2

-1 1
≥ a

5
9

1
9

1
9

2
9
b a1 0 -1

0 2 1
b

 = ±

5
9

2
9 -4

9
2
9

8
9

2
9

-4
9

2
9

5
9

≤

and

 P = [1 - AT1AAT2-1A]

 = ≥ £1 0 0
0 1 0
0 0 1

≥ - ±

5
9

2
9 -4

9
2
9

8
9

2
9

-4
9

2
9

5
9

≤ ¥ = ±

4
9 -2

9
4
9

-2
9

1
9 -2

9
4
9 -2

9
4
9

≤

394 Chapter 7 Interior Point Methods for Linear Programming

Improvement with Projected Directions
Projection principle 7.6 yields a feasible direction ∆x at any standard-form inte-
rior point. But does the direction remain improving? For example, we know that
the direction d = (3

2, 52, 0) used in Frannie’s Firewood computation (7.5) is improv-
ing because it parallels the maximize objective function vector c = 190, 150, 02.
Projection would do little good if it achieved feasibility of ∆x at the loss of this
improving property.

Fortunately, we can show that improvement is always preserved in projecting
objective function vectors.

We conclude

∆x = Pd = ±

4
9 -2

9
4
9

-2
9

1
9 -2

9
4
9 -2

9
4
9

≤ £5
7
9
≥ = ±

14
3

-7
3
14
3

≤

(c) Checking net change zero conditions 7.4 , we see that

A∆x = a1 0 -1
0 2 1

b ±

14
3

-7
3
14
3

≤ = a0
0
b

With no inequalities (nonnegativities) active at x, this is all that is required for ∆x
to be feasible.

The projection ∆x = Pc of (nonzero) objective function vec-
tor c onto equality constraints Ax = b is an improving direction at every x for
a max case LP, and its negative improves for a min case.

Principle 7.7

For example, the Frannie’s Firewood direction ∆x of (7.5) satisfies gradient im-
provement conditions 3.21 and 3.22 of Section 3.3 because

 c # ∆x = (90, 150, 0) # (14
8 , 19

18, -26
18)

 = 685
3 7 0

To see that this will always be true, we need to make a simple observation
about projections. Computation 7.6 finds the nearest vector ∆x to direction d that
satisfies A∆x = 0. Thus if d already satisfies Ad = 0, the nearest such direction
must be ∆x = d itself. That is, re-projection of a ∆x that has already been projected
must leave ∆x unchanged, or in symbols,

 projection1d2 = Pd

(7.6)

 = PPd

 = projection[projection1d2]

7.1 Searching through the Interior 395

Projection matrices are also known to be symmetric 1P = PT2. Combining
with property (7.6) applied to maximize objective function vector c, we can see that
the corresponding ∆x of principle 7.6 has

 c # ∆x = cTPc

 = cTPPc

 = cTPTPc

 = 1Pc2T1Pc2
 = ∆xT∆x

 7 0

This is exactly what is required for improvement, and a similar analysis holds for
minimize models.

example 7.5: veriFying projected objective improvement

Return to the linear program of Example 7.4 and its projection matrix P derived
in part (b). Assuming that the objective function was changed to each of the fol-
lowing, compute the ∆x value obtained by projecting the corresponding steepest
improvement direction of principle 7.1 , and verify that the resulting move direction
is improving.

(a) max x1 - x2 + x3

(b) min 2x1 + x3

Solution:

(a) The corresponding steepest improvement direction is c = 11, -1, 12, so that
the projected move direction would be

∆x = Pc = ±

4
9 -2

9
4
9

-2
9

1
9 -2

9
4
9 -2

9
4
9

≤ £ 1
-1

1
≥ = ±

10
9

-5
9

10
9

≤

Checking improvement yields

c # ∆x = 11, -1, 12 # (10
9 , -5

9, 10
9) = 25

9 7 0

(b) For this minimize objective the steepest improvement direction is -c =
1-2, 0, -12. Projecting gives

∆x = ±

4
9 -2

9
4
9

-2
9

1
9 -2

9
4
9 -2

9
4
9

≤ £ -2
0

-1
≥ = ±

-4
3
2
3

-4
3

≤

Checking improvement yields

c # ∆x = 12, 0, 12 # (-4
3, 23, -4

3) = -3 6 0

396 Chapter 7 Interior Point Methods for Linear Programming

7.2 Scaling with the current Solution

We have already seen that it is important for interior point algorithms to avoid the
boundary of the feasible set (until optimality). One of the tools used by virtually
all such procedures to keep in the “middle” of the feasible region is scaling—
revising the units in which decision variables are expressed to place all solution
components a comfortable number of units from the boundary. In this section we
introduce the most common affine type of rescaling used in all algorithms of this
chapter.

Affine Scaling
Affine scaling adopts the simplest possible strategy for keeping away from the
boundary. The model is rescaled so that the transformed version of current solution
x1t2 is equidistant from all inequality constraints.

Figure 7.4 shows the idea for our Frannie’s Firewood application model (7.3).
Part (a) depicts the original feasible space, with a current interior point solution
x1t2 = (3, 12, 1). The rescaled version in part (b) converts to new variables

 y1!
x1

x1
1t2 =

x1

3

 y2!
x2

x2
1t2 =

x2
1
2

 y3!
x3

x3
1t2 =

x3

1

After dividing by current (positive because interior) x-values in this way, the corre-
sponding current solution y1t2 = 11, 1, 12—equidistant from all inequality (nonneg-
ativity) constraints.

Diagonal Matrix Formalization of Affine Scaling
Although it may seem excessive at this stage, it will prove helpful to formalize affine
scaling’s simple notion of dividing components by the current solution in terms of
diagonal matrices. In particular, we convert current solution vectors

x1t2 = 1x1
1t2, x2

1t2, c, xn
1t22

into the square matrix

xt = •x1
1t2 0 c 0

0 x2
1t2 f f

f f f 0

0 c 0 xn
1t2

µ with xt
-1 = ß 1

x1
1t2 0 c 0

0
1

x2
1t2 f f

f f f 0

0 c 0
1

xn
1t2

∑

7.2 Scaling with the Current Solution 397

With yj = xj>xj
1t2 the inverse affine scaling is equally easy to express.

original feasible region

optimal solution x* = (6, 0, 0)

x1

x3

x2

x(t) = (3, , 1)1
2

(a) Original space

(b) Af�ne scaled space

scaled feasible region

y1

y3

y2

y(t) = (1, 1, 1)

Figure 7.4 Affine Scaling of Frannie’s Firewood Application

At current solution x1t2 7 0, affine scaling transforms points
x into y defined by

y = xt
-1x or yj =

xj

xj
1t2 for all j

where xt denotes a square matrix with the components of x1t2 on its diagonal.

Definition 7.8

Affine scaling and unscaling can then be expressed in terms of multiplication by
such matrices.

398 Chapter 7 Interior Point Methods for Linear Programming

For example, in the Frannie’s firewood case of Figure 7.4,

x1t2 = £
3
1
2

1
 ≥ gives xt = £3 0 0

0 1
2 0

0 0 1
≥ with xt

-1 = £ 1
3 0 0
0 2 0
0 0 1

≥
Then under formula 7.8 ,

y = xt
-1x1t2 = £ 1

3 0 0
0 2 0
0 0 1

≥ £
3
1
2

1
 ≥ = £

1
1
1
 ≥

Similarly, applying inverse formula 7.9 retrieves

x = xt y = £3 0 0
0 1

2 0
0 0 1

≥ £
1
1
1
 ≥ = £

3
1
2

1
 ≥

At current solution x1t2 7 0, the point x corresponding to
affine-scaled solution y is

x = xty or xj = 1xj
1t22yj for all j

where xt denotes a square matrix with the components of x1t2 on its diagonal.

Principle 7.9

example 7.6: aFFine Scaling with diagonal matriceS

Suppose that the first two solutions visited by a linear programming search algo-
rithm are x102 = 112, 3, 22 and x112 = 11, 4, 72. Compute the affine scalings of
x = 124, 12, 142 relative to each of these x1t2, and verify that applying reverse scal-
ing to the resulting y’s recovers x.

Solution: For x102 the diagonal matrix of computation 7.8 is

x0 = £12 0 0
0 3 0
0 0 2

≥ with x0
-1 = £ 1

12 0 0
0 1

3 0
0 0 1

2

≥
Thus

y = x0
-1x = £ 1

2 0 0
0 1

3 0
0 0 1

2

≥ £24
12
14

≥ = £
2
4
7
 ≥

7.2 Scaling with the Current Solution 399

Affine-Scaled Standard Form
Affine scaling in effect changes the objective function and constraint coefficients of
the LP standard form:

min or max cx

s.t. Ax = b

 x Ú 0

Substituting x = xty from formula 7.9 and collecting c # x = cxty! c1t2y and
Ax = Axtx! Aty produces a new affine-scaled standard form for each solution x1t2.

Reversing the scaling with formula 7.9 recovers

x = x0y = £12 0 0
0 3 0
0 0 2

≥ £
2
4
7
 ≥ = £24

12
14

≥
After the search advances to x112, the scaling changes. Now the diagonal matrix of

computation 7.8 is

x1 = £1 0 0
0 4 0
0 0 7

≥ with x1
-1 = £1 0 0

0 1
4 0

0 0 1
7

≥
Thus solution x = 124, 12, 142 scales to

y = x1
-1x = £1 0 0

0 1
4 0

0 0 1
7

≥ £24
12
14

≥ = £24
3
2
≥

Still, reversing the scaling with formula 7.9 recovers

x = x1 y = £1 0 0
0 4 0
0 0 7

≥ £24
3
2
≥ = £24

12
14

≥

At current feasible solution x1t2 7 0, the affine-scaled version
of a standard-form linear program is

min or max c1t2 # y

s.t. Aty = b

 y Ú 0

where c1t2! cxt, At! Axt, and xt is a square matrix with the components of
x1t2 on its diagonal.

Definition 7.10

400 Chapter 7 Interior Point Methods for Linear Programming

Our Frannie’s Firewood application has

c = 190, 150, 02
A = (1

2, 1, 1), b = 132
Thus the affine-scaled form corresponding to the x1t2 = (3, 12, 1) of Figure 7.4 is

max 270y1 + 75y2

s.t. 32 y1 + 1
2 y2 + y3 = 3

 y1, y2, y3 Ú 0

with

c1t2 = cxt = 190, 150, 02 £3 0 0
0 1

2 0
0 0 1

≥ = 1270, 75, 02

At = Axt = a 1
2

, 1, 1b £3 0 0
0 1

2 0
0 0 1

≥ = (3
2, 12, 1)

example 7.7: aFFine Scaling Standard Form

After 7 moves in an improving search of the linear program

min -3x1 + 9x3

s.t. -x1 + x3 = 3

 x1 + 2x2 = 4

 x1, x2, x3 Ú 0

x172 = 12, 1, 52 has been reached. Derive the corresponding affine-scaled standard-
form model.

Solution: Here

c = 1-3, 0, 92, A = a -1 0 1
1 2 0

b , b = a3
4
b

Corresponding elements of affine-scaled standard form 7.10 are

c172 = cx7 = 1-3, 0, 92 £2 0 0
0 1 0
0 0 5

≥ = 1-6, 0, 452

A7 = Ax7 = a -1 0 1
1 2 0

b £2 0 0
0 1 0
0 0 5

≥ = a -2 0 5
2 2 0

b

7.2 Scaling with the Current Solution 401

Projecting on Affine-Scaled Equality Constraints
We have already seen in Section 7.1 (principle 7.6) that interior point algorithms
often employ some form of projection to find directions that preserve the equality
main constraints of standard form. We will soon see that most of those projections
involve scaled problem coefficients c1t2 and At of affine-scaled standard form 7.10 .

Thus the scaled model is

min -6y1 + 45y3

s.t. -2y1 + 5y3 = 3

 2y1 + 2y2 = 4

 y1, y2, y3 Ú 0

The projection of direction d onto affine-scaled conditions
At∆y = 0 preserving linear inequalities At y = b can be computed:

∆ y = Ptd

where projection matrix

Pt = 1I - At
T1AtAt

T2-1At2
and all other symbols are as in 7.10 .

Principle 7.11

example 7.8: projecting in Scaled y-Space

Return to the linear program of Example 7.7 at current solution x172 = 12, 1, 52,
and compute the projection of direction d = 11, 0, -12 onto corresponding the
standard-form equality constraints in affine-scaled y-space.

Solution: We apply scaled projection formula 7.11 . From Example 7.7 we have

A7 = Ax7 = a -2 0 5
2 2 0

b

Thus

A7A7
T = a 29 -4

-4 8
b with 1A7A7

T2-1 = °
8

216
4

216

4
216

29
216

¢

so

P7 = 1I - A7
T1A7A7

T2-1A72 = ±

25
54 -25

54
10
54

-25
54

25
54 -10

54
10
54 -10

54
4

54

≤

402 Chapter 7 Interior Point Methods for Linear Programming

Computational Effort in Interior Point Computations
The distinction between revised projection formulas of 7.11 and the unscaled for-
mulas of 7.6 may seem rather trivial. Haven’t we just changed from A, x, and P to
At, y, and Pt?

In fact, the difference is much more profound and accounts for most of the
computational effort in interior point algorithms. The key insight is that the model
constraint matrix A does not change as the algorithm proceeds. Thus its projec-
tion matrix P does not change either. If algorithms required only projection onto
Ax = b, some representation of P could be computed once and stored. Thereafter,
each move would involve only choosing a desired direction and multiplying by the
representation of P.

Contrast now with the fact that algorithms actually have to project onto scaled
constraints At y = b (or something similar). Since At! Axt, At changes at every
move with current solution x1t2, it follows that new projection computations have
to be performed at every move. Clever techniques of numerical linear algebra can
do much to make the computation more efficient, but the fact remains that a very
considerable effort has to be expended at each move of the search.

Thus the projected direction

∆y = P7d = ±

25
54 -25

54
10
54

-25
54

25
54 -10

54
10
54 -10

54
4

54

≤ £ 1
0

-1
≥ = ±

5
18

- 5
18

1
9

≤

The bulk of the computational effort in most interior point
algorithms is devoted to projection operations on scaled constraint matrices
such as At, which change with each solution visited.

Principle 7.12

7.3 aFFine Scaling Search

The affine problem scaling of Section 7.2 produces a new version of the model for
which scaled current solution y1t2 is = 1 in every component. Thus the transformed
point is nearly equidistant from all boundary (nonnegativity) constraints. It is natural
now to think of computing a search move in this simpler scaled solution space and then
converting it back to the true decision variables x via unscaling formula 7.9 . In this
section we develop an affine scaling form of interior point search for linear programs
that adopts just such a strategy.

Affine Scaling Move Directions
Principle 7.1 tells us that the preferred move direction in the scaled problem fol-
lows objective function vector c1t2. Projection formula 7.11 computes the closest ∆y
satisfying feasible direction requirement At∆y = 0. Combining gives the direction

 ∆y = Ptc
1t2 (7.7)

7.3 Affine Scaling Search 403

for a maximize problem, and

 ∆y = -Ptc
1t2 (7.8)

for a minimize problem.
To complete a move direction we have only to translate back into the original

variables via inverse scaling formula 7.9 .

An affine scaling search that has reached feasible solution
x1t2 7 0 moves next in the direction

∆x = {xtPtc
1t2

(+ to maximize and - to minimize) where c1t2, xt, and Pt are as in principles
7.10 and 7.11 .

Principle 7.13

We can illustrate with the initial solution x102 = (1, 12, 2) to our Frannie’s Fire-
wood application of Figure 7.4. Scaled standard-form principle 7.10 makes

c102 = cx0 = 190, 150, 02 £1 0 0
0 1

2 0
0 0 2

≥ = 190, 75, 02

and

A0 = Ax0 = (1
2, 1, 1) £1 0 0

0 1
2 0

0 0 2
≥ = (1

2, 12, 2)

Thus

P0 = [1 - A0
T 1A0A0

T2-1 A0] = ±

17
18 - 1

18 -2
9

- 1
18

17
18 -2

9

-2
9 -2

9
1
9

≤

We can now compute our maximizing 7.13 move direction as

 ∆x = x0P0c
102

 = £1 0 0
0 1

2 0
0 0 2

≥ ±

17
18 - 1

18 -2
9

- 1
18

17
18 -2

9

-2
9 -2

9
1
9

≤ £90
75
0
≥ = ±

80 5
6

3211
12

-731
3

≤ (7.9)

example 7.9: computing an aFFine-Scaled move direction

Return to the linear program of Examples 7.7 and 7.8 at current solution
x172 = 12, 1, 52. Compute the next affine scaling move direction.

404 Chapter 7 Interior Point Methods for Linear Programming

Feasibility and Improvement of Affine Scaling Directions
Alert readers will notice that our derivation of direction 7.13 is guided by rules
to produce an improving and feasible move in scaled y-space. But we are using the
direction in the original x-space. Will the familiar improving and feasible direction
properties of improving search be preserved in that original problem setting?

Fortunately, the answer is yes.

Solution: From Example 7.7,

c172 = 1-6, 0, 452 and A7 = a -2 0 5
2 2 0

b

and from Example 7.8,

P7 = ±

25
54 -25

54
10
54

-25
54

25
54 -10

54
10
54 -10

54
4

54

≤

Continuing with formula 7.13 for a minimizing problem gives

∆x182 = - £2 0 0
0 1 0
0 0 5

≥ ±

25
54 -25

54
10
54

-25
54

25
54 -10

54
10
54 -10

54
4

54

≤ £ -6
0

45
≥ = ±

-111
9

55
9

-111
9

≤

(Nonzero) affine scaling search directions derived by formula 7.13
are improving and feasible for the original model over x variables.

Principle 7.14

For feasibility, the A∆x = 0 required by condition 7.4 is the same as Axt∆y = 0,
which must be true when projected on At∆y = Axt∆y. The argument for improve-
ment is much the same as the one given for unscaled projection 7.7 in Section 7.1.

We may illustrate 7.14 with Frannie’s Firewood direction

∆x112 = (80 5
6, 32 11

12, -731
3)

of expression (7.9). Since we are in the interior, feasiblity requires only 1
2 ∆x1 +

∆x2 + ∆x3 = 0 (condition 7.4). Checking, we find that
1
2 (805

6) + (3211
12) + (-731

3) = 0

Similarly, improvement for this maximize problem requires that c # ∆x 7 0. Here

190, 150, 02 # (80 5
6, 3211

12, -731
3) ≈ 12212 7 0

Affine Scaling Step Size
With directions of construction 7.13 in hand, the next question involves how far to
move. That is, we need to choose an appropriate improving search step size l.

7.3 Affine Scaling Search 405

As usual, there may be no limit on progress in direction ∆x. For linear pro-
grams in standard form, the only inactive constraints at interior point solution
x1t2 7 0 are the nonnegativities. If ∆x decreases no component of the solution, we
can improve forever without encountering a nonnegativity constraint.

A linear program in standard form is unbounded if affine scal-
ing construction 7.13 ever produces a direction ∆x Ú 0.

Principle 7.15

When affine scaling produces a move direction with some negative compo-
nents, we must limit the step so that

x1t + 12 = x1t2 + l∆x Ú 0

There is also a second consideration. Definition 7.2 observed that interior
point algorithms avoid the boundary until an optimal solution is obtained. That is,
we should move all the way until a nonnegativity constraint is active only if such a
move will produce an optimal solution.

There are many step size rules that fulfill both of these requirements. The one
we will adopt is best understood in affine-scaled space over y-variables. Scaling
makes the current solution there a vector of 1s. For example, Figure 7.5 displays cur-
rent scaled solution y102 = 11, 1, 12. The highlighted unit sphere around y102 shows
how a move of length 1 in any direction maintains all nonnegativity constraints. We
can implement affine scaling by stepping to the limits of such a sphere.

y(0) = (1, 1, 1)

scaled feasible
region

unit step
sphere

y3

y1

y2

Figure 7.5 Feasible Unit Sphere in the Frannie Firewood Application

406 Chapter 7 Interior Point Methods for Linear Programming

Figure 7.5 shows this move to the limit of the sphere along the direction com-
puted at equation (7.9). The scaled direction is

∆y = x0
-1∆x ±

1 0 0

0 2 0

0 0 1
2

≤ ±
805

6

3211
12

-731
3

≤ = ±
805

6

655
6

-362
3

≤

with length (norm)

‘ ∆y ‘ = 4(80 5
6)2 + (65 5

6)2 + (-36 2
3)2 ≈ 110.5

Thus the computation 7.16 step of

 l =
1

‘ ∆y ‘
=

1
110.5

≈ 0.00905 (7.10)

brings us exactly to the boundary of the unit sphere.

At the current feasible solution x1t2 7 0 of a linear program in
standard form, if the ∆x computed from 7.13 is negative in some components,
affine scaling search applies step size

l =
1

‘ ∆xxt
-1 ‘

=
1

‘ ∆y ‘

where ‘d ‘ denotes 4a j1dj22, the length or norm of vector d.

Principle 7.16

example 7.10: computing aFFine Scaling Step Size

Determine the appropriate step size to apply to the move direction ∆x = (-111
9, 5 5

9,
-111

9) derived in Example 7.9 at point x172 = 12, 1, 52.

Solution: Applying principle 7.16 yields

∆y = x7
-1∆x = ±

1
2 0 0

0 1 0

0 0 1
5

≤ ±
-111

9

55
9

-111
9

≤ = ±
-55

9

55
9

-22
9

≤

This ∆y has

‘ ∆y ‘ = 4(-55
9)2 + (5 59)2 + (22

9)2 ≈ 8.165

Thus the appropriate step is

l =
1

8.165
= 0.1225

7.3 Affine Scaling Search 407

Termination in Affine Scaling Search
Applying the step computed in expression (6.10) advances our search of the
Frannie’s firewood application to point

 x112 = x102 + l∆x

 = 10.5, 1, 12 + 0.00905180.83, 32.92, -73.332 (7.11)

 ≈ 11.73, 0.80, 1.342
Notice that the new point remains positive in all components and thus in the interior
of the feasible region.

With step rule 7.16 constructed to keep updated (scaled) points within the
unit sphere of feasible y, the new solution will always be interior unless the search
moves to one of the points where that sphere touches a nonnegativity constraint.
Such moves are rare, but if they occur, the new solution can be shown to be optimal.

Much more typically, an affine scaling search will remain in the interior, stepping
ever closer to an optimal solution on the boundary. Then a stopping rule is required
to terminate computation when a solution becomes sufficiently close to an optimum.

But how do we know that we are near an optimal solution? Crude schemes
simply stop when the solution value is no longer changing very much (as with
Algorithm 7A). More precise rules derive bounds on the optimal solution value at

Algorithm 7A: Affine ScAling SeArch for lineAr
ProgrAmS

Step 0: initialization. Choose any starting feasible interior point solution,
x102 7 0, and set solution index t d 0.

Step 1: optimality. If any component of x1t2 is 0, or if recent algorithm
steps have made no significant change in the solution value, stop. Current
point x1t2 is either optimal in the given LP or very nearly so.

Step 2: move Direction. Construct the next move direction by projecting
in affine-scaled space as

∆x1t + 12 d {XtPtc1t2

(+ to maximize, - to minimize) where Xt, Pt, and c1t2 are the scaled values
of Section 7.2.

Step 3: Step Size. If there is no limit on feasible moves in direction ∆x1t + 12
(all components are nonnegative), stop; the given model is unbounded. Oth-
erwise, construct step size

l d 1

‘ ∆x1t + 12Xt
-1 ‘

Step 4: Advance. Compute the new solution

x1t + 12 d x1t2 + l∆x1t + 12

Then advance t d t + 1, and return to Step 1.

408 Chapter 7 Interior Point Methods for Linear Programming

each step so that we can know how much room remains for improvement. We look
at the latter briefly in Section 7.5.

Affine Scaling Search of the Frannie’s Firewood Application
Algorithm 7A collects all the insights of this section in an affine scaling algorithm
for linear programs in standard form. Table 7.1 and Figure 7.6 detail its application
to our Frannie’s firewood application.

table 7.1 Affine Scaling Search of the Frannie’s
Firewood Application

x1 x2 x3

max c 90 150 0 b

A 0.5 1 1 3

x102 1.00 0.50 2.00 c # x102 = 165.00
∆x112

x112
80.83
1.73

32.92
0.80

-73.33
1.34

 l = 0.00905
 c # x112 = 275.51

∆x122

x122
160.94

2.82
49.25
1.13

-129.72
0.46

 l = 0.00676
 c # x122 = 423.40

∆x132

x132
87.26
3.92

-10.29
1.00

-33.34
0.04

 l = 0.0126
 c # x132 = 502.84

∆x142

x142
48.13
5.66

-23.79
0.14

-0.27
0.03

 l = 0.0362
 c # x142 = 530.45

∆x152

x152
1.49
5.88

-0.58
0.05

-0.16
0.01

 l = 0.1472
 c # x152 = 537.25

∆x162

x162
0.19
5.98

-0.09
0.01

-0.01
0.003

 l = 0.5066
 c # x162 = 539.22

∆x172

x172
0.008
5.99

-0.003
0.005

-0.001
+0.000

 l = 1.7689
 c # x172 = 539.79

∆x182

x182
0.001
6.00

-0.001
0.001

-0.000
+0.000

 l = 6.3305
 c # x182 = 539.95

∆x192

x192
+0.000

6.00
-0.000
+0.000

-0.000
+0.000

 l = 23.854
 c # x192 = 539.99

Notice that the search makes very rapid progress while it is near the “mid-
dle” of the feasible region. Later iterations approach the boundary but never quite
reach it. We terminate after the ninth iteration changes the objective function by
less than 0.1.

7.4 log barrier methodS For interior point Search

Affine scaling is only one way to keep algorithms away from the boundary. In this
section we develop a log barrier alternative.

Barrier Objective Functions
Remembering that the boundary of a standard-form linear program is defined by
nonnegativity constraints, log barrier methods exploit the fact that ln 1xj2 S -∞ as

7.4 Log Barrier Methods for Interior Point Search 409

xj S 0. A modified barrier objective function includes ln 1xj2 terms to keep the xj
away from the boundary.

x1

x3

x2

x(0) = (1, , 2)1
2

x(1)

x(2)
x(3)

x(4)

optimal solution x* = (6, 0, 0)

feasible region

Figure 7.6 Affine Scaling Search of the Frannie’s Firewood Application

A maximize objective a jcjxj of a standard-form linear pro-
gram is modified with in log barrier methods as

max a
j

cjxj + ma
j

ln1xj2

where m 7 0 is a specified weighting constant. The corresponding form for a
minimize objective is

min a
j

cjxj - ma
j

ln1xj2

Principle 7.17

We can illustrate with our familiar Frannie’s firewood standard form

max 90x1 + 150x2

s.t. 12 x1 + x2 + x3 = 3

 x1, x2, x3 Ú 0

Adding a barrier term produces the modified model

 max 90x1 + 150x2 + m [ln1x12 + ln1x22 + ln1x32]

(7.12)

s.t. 12 x1 + x2 + x3 = 3

 x1, x2, x3 Ú 0

410 Chapter 7 Interior Point Methods for Linear Programming

Suppose that we (arbitrarily) choose multiplier m = 64. Then the objective at
feasible point x = 12, 1, 12, which is far from the boundary, evaluates to

90122 + 150112 + 0112 + 64 [ln122 + ln112 + ln112] ≈ 374.36

The log-barrier terms do have an influence, because the true objective value at this
x is 90122 + 150112 = 330. Still, the difference is modest.

Compare with near-boundary feasible point x = 10.010, 2.99, 0.0052. There
the barrier objective function evaluates as

9010.0102 + 15012.992 + 010.0052 + 64 [ln10.0102 + ln12.992 + ln10.0052]

= 449.4 + 641-4.605 + 1.095 - 5.2982
≈ -114.31

The corresponding true objective value is 9010.0102 + 15012.992 = 449.4. We see
that the negative logarithms of xj near 0.0 have severely penalized this solution in
the modified maximize objective.

It is in this penalization sense that modified objective functions of princi-
ple 7.17 erect a “barrier” to near-boundary solutions. As components xj approach
their boundary value of 0.0, penalties become larger and larger, thus guaranteeing
that no improving search will choose to approach the boundary too closely.

example 7.11: Forming log barrier objectiveS

Linear program

min 5x1 + 3x2

s.t. x1 + x2 Ú 1

 0 … x1 … 2

 0 … x2 … 2

has feasible region as displayed in the following figure:

1

2

1 2

x2

x1

optimum
= (0, 1)

feasible region

(a) Place the model in standard form.

(b) Show the modified objective function obtained when a logarithmic barrier is
introduced to discourage approaching the boundary.

7.4 Log Barrier Methods for Interior Point Search 411

Problems with Gradient Directions
To make any progress on our underlying LP with barrier methods, we must find
improving feasible directions for the now nonlinear standard form

 max or min f1x2! a
j
3cjxj { m ln1xj24

(7.13)

s.t. Ax = b

Nonnegativity constraints can be ignored because the barrier objective will keep us
away from the boundary.

Although the gradient-based directions introduced in Section 3.3 have served
us well so far, they usually perform poorly with nonlinear objective functions

(c) Choose a solution near the middle of the feasible region, and compare the true
and modified objective functions at that point using m = 10.

(d) Choose an interior point solution near the boundary of the feasible region, and
compare the true and modified objective functions at that point using the same
m = 10.

Solution:

(a) Introducing slack variables x3, x4, and x5, the standard-form model is

min 5x1 + 3x2

s.t. x1 + x2 - x3 = 1

 x1 + x4 = 2

 x2 + x5 = 2

 x1, c, x5 Ú 0

(b) Following principle 7.17 , the barrier objective with multiplier m is

min 5x1 + 3x2 - m [ln1x12 + ln1x22 + ln1x32 + ln1x42 + ln1x52]

(c) From the figure it is clear that x1 = x2 = 5
4 is near the middle of the feasible

 region. There the true objective function value is 5(5
4) + 3(5

4) = 10. Corresponding

values for slack variables are x3 = 5
4 + 5

4 - 1 = 3
2 and x4 = x5 = 2 - 5

4 = 3
4. Thus

the log barrier objective with m = 10 evaluates

5(5
4) + 3(5

4) - 10 [ln(5
4) + ln(5

4) + ln(3
2) + ln(3

4) + ln(3
4)] ≈ 7.237

Modified cost is a bit lower than the true objective value.

(d) One point near the boundary is x1 = 1.999, x2 = 0.001. There the true objec-
tive function value is 511.9992 + 310.0012 = 9.998. Corresponding values for
slack variables are x3 = 1.999 + 0.001 - 1 = 1.000, x4 = 2 - 1.999 = 0.001, and
x5 = 2 - 0.001 = 1.999. Thus the log barrier objective with m = 10 evaluates

511.9992 + 310.0012 - 10 [ln11.9992 + ln10.0012 + ln11.0002
 + ln11.9992 + ln10.0012] ≈ 134.3

This near-boundary point is penalized severely.

412 Chapter 7 Interior Point Methods for Linear Programming

(see Section 16.5 for details). In essence they treat the objective as if it were approx-
imated as

 f1x1t2 + l∆x2 ≈ f1x1t22 + la
j

0f

0xj
 ∆xj (7.14)

where x1t2 is the current solution and ∆x a proposed move direction. This approx-
imation, known as the first-order Taylor series (see also Section 16.3), takes the
function to be roughly its current value plus the net effect of partial derivative slopes
times move components. Choosing gradient-based direction ∆x = {∇f1x1t22 pro-
duces the most rapid change in the approximation per unit l.

With a linear objective function, partial derivatives are constant and approx-
imation (7.14) is exact. But with nonlinear cases, the slope information in partial
derivatives can decay rapidly as we move away from point x1t2. The result is that a
direction based on rapid progress for the simple (7.14) approximation may prove
very ineffective for the real nonlinear objective.

Newton Steps for Barrier Search
For those who remember their calculus (refer to Primers 2 and 7 if needed), it is
natural to think of enhancing approximation (7.14) with second partial derivatives.
The corresponding second-order Taylor form is

 f1x1t2 + l∆x2 ≈ f1x1t22 + la
j

0f

0xj
∆xj

(7.15)

 +
l2

2
 a

j
a
k

02f

0xj0xk
 ∆xj ∆xk

New terms account for changes in the rates of change 0f>0xj as we move away from x1t2.
The partial derivatives needed in this new approximation have a particularly

easy form for our log barrier objective 7.17 (+ for maximize, - for minimize):

0f

0xj
 = cj {

m

xj

02f

0xj 0xk
 = •

|
m

1xj22 if j=k

0 otherwise

(7.16)

Thus fixing l = 1 for the moment and taking second-order approximation as exact,
it makes sense to choose a move direction ∆x at x1t2 that solves

 max or min f1x1t2 + ∆x2 ≈ a
j

 £ cj {
m

xj
1t2 | 1

2
m

(xj
1t2)2

1∆xj22 §
(7.17)

s.t. A∆x = 0

That is, we choose the ∆x that most improves our barrier objective function—as
approximated by Taylor expression (7.15)—subject to the familiar requirements

7.4 Log Barrier Methods for Interior Point Search 413

(principle 7.4) that the direction preserve all equality constraints of standard
from (7.13).

Using Lagrange multiplier methods is beyond the scope of this section (but
developed in Section 17.3); it can be shown that the ∆x which solves the direction-
finding problem (7.17) is remarkably like the affine-scaled steps of Section 7.3.
It takes the form

 ∆x = { 1
m

 xtPt §c1
1t2 { m

f

cn
1t2 { m

¥ (7.18)

where xt, Pt, and c1t2 are the scaled problem data of 7.10 and 7.11 in Section 7.2.
The only difference from affine scaling direction 7.13 is the inclusion of bar-

rier multiplier m in forming the scaled direction to project.
This move is often called a Newton step because it is based on the same

 second-order Taylor approximation (7.15) that gives rise to the famous Newton
method for equation solving and unconstrained optimization (see Section 16.6 for
a full development). Allowing a step size l to be applied, which means that we may
drop the leading constant 1>m, yields the directions to be employed in our barrier
form of interior point LP search.

A Newton step barrier algorithm that has reached feasible
solution x1t2 7 0 with barrier multiplier m 7 0 moves next in direction

∆x = {xtPt §c1
1t2 { m

f

cn
1t2 { m

¥
(+ to maximize and - to minimize) where xt, Pt, and c1t2 are the affine-scaled
problem data of definitions 7.10 and 7.11 .

Principle 7.18

To illustrate principle 7.18 , we return to our Frannie’s Firewood application at
x(0) = (1, 12, 2) with m = 16. Scaling of Section 7.2 gives

c102 = cx0 = 190, 150, 02£1 0 0
0 1

2 0
0 0 2

≥ = 190, 75, 02

and

A0 = Ax0 = (1
2, 1, 1)

414 Chapter 7 Interior Point Methods for Linear Programming

Thus

P0 = 1I - A0
T1A0A0

T2-1A02 = ±

17
18 - 1

18 -2
9

- 1
18

17
18 -2

9

-2
9 -2

9
1
9

≤

Now projecting to find the next move direction,

∆x112 = x0P0 §c1
102 + m

f

cn
102 + m

¥
 = £1 0 0

0 1
2 0

0 0 2
≥ ±

17
18 - 1

18 -2
9

- 1
18 17

18 -2
9

-2
9 -2

9
1
9

≤ £90 + 16
75 + 16
0 + 16

≥
 = (911

2, 381
4, -84)

example 7.12: computing newton Step barrier Search
directionS

Previous Example 7.7 and 7.8 considered the model

min -3x1 + 9x3

s.t. -x1 + x3 = 3

 x1 + 2x2 = 4

 x1, x2, x3 Ú 0

at current solution x172 = 12, 1, 52. Compute the next Newton step barrier search
direction assuming a barrier multiplier m = 120.

Solution: From the earlier sample exercises we know that

c172 = cx7 = 1-6, 0, 452
at the specified x172,

A7 = Ax7 = a -2 0 5
2 2 0

b

and

P7 = 1I - A7
T1A7A7

T2-1A72 = ±

25
54 -25

54
10
54

-25
54

25
54 -10

54
10
54 -10

54
4

54

≤

7.4 Log Barrier Methods for Interior Point Search 415

Newton Step Barrier Search Step Sizes
As usual, our next concern is how big a step to take in barrier search direction 7.18 .
Any such rule must first assure that

x1t + 12 = x1t2 + l∆x1t + 12 7 0

so that the new point will also be in the interior.
This is easily accomplished by familiar minimum ratio computations. To

remain interior, we keep l less than or equal to say 90% of the maximum feasible
step size, that is,

 l … 0.9lmax (7.19)

where

lmax = min •
xj
1t2

- ∆xj
1t + 12 : ∆xj

1t + 12 6 0 ¶

With barrier objective 7.17 nonlinear, there is also the possibility that improve-
ment stops before we approach lmax. A direction that improves near current x1t2
may begin to degrade the barrier objective function value after a larger step.

Figure 7.7 illustrates both cases. At Fannie’s firewood, x102 = (1, 12, 2), direc-
tion ∆x112 = 191.5, 38.25, -842 decreases only x3. Thus expression (6.19) yields

0.9lmax = 0.9a 2
84

b = 0.0214

Part (a) of the figure shows that the barrier function improves throughout the range
0 … l … 0.0214.

Contrast with the more typical step at x1t2 = 15.205, 0.336, 0.0622. The cor-
responding ∆x1t + 12 = 1-3.100, 1.273, 0.2782. Only x1 decreases and the minimum
ratio expression (7.19) gives

0.9 a x1
1t2

- ∆x1
1t + 12 b = 0.9 a 5.205

3.100
b = 1.511

Thus principle 7.18 for this minimizing problem gives

 ∆x182 = -x7P7 §c1
172 - m

f

cn
172 - m

¥
 = - £2 0 0

0 1 0
0 0 5

≥ ±

25
54 -25

54
10
54

-25
54

25
54 -10

54
10
54 -10

54
4

54

≤ £ -6 - 120
0 - 120

45 - 120
≥ = ±

331
3

-162
3

331
3

≤

416 Chapter 7 Interior Point Methods for Linear Programming

However, Figure 7.7(b) shows that the barrier function reaches a maximum long
before this limit is encountered.

We need an enhancement of the basic minimum ratio step size rule to account
for this possibility of initial improvement followed by worsening of the barrier
objective. Fortunately, one is readily available in the Newton step computations of
expression (7.18). That best move for the second-order Taylor approximation con-
sisted of 1>m times the barrier search direction of principle 7.18 .

Combining this idea with a minimum ratio gives a step size that both keeps to
the interior and approximately optimizes the barrier objective:

360

380

400

420

440

460

480

500

0 0.2 0.4 0.6 0.8 1 1.2 1.4

ba
rr

ie
r

fu
nc

ti
on

 v
al

ue

step size l

maximum at
0.0214

150

200

250

300

350

400

450

500

ba
rr

ie
r

fu
nc

ti
on

 v
al

ue

step size l

(a) Step from x(0) (b) Step from x(t)

0 0.005 0.01 0.015 0.02

Figure 7.7 Frannie’s Firewood Barrier Function Changes with Step Size

At current feasible solution x1t2 7 0 and barrier multiplier
m 7 0, a Newton step barrier search algorithm should apply step size

l = min e 1
m

, 0.9lmax f

to the move direction of 7.18 , where

lmax = min •
xj
1t2

- ∆xj
1t + 12 : ∆xj

1t + 12 6 0 ¶

Principle 7.19

example 7.13: computing barrier Search Step SizeS

Return to the minimize problem of Example 7.12.

(a) Determine the maximum step that can be applied to the direction ∆x182 com-
puted there before the boundary is reached.

(b) Sketch the barrier objective function for that model as a function of the step
size l applied to direction ∆x182.

7.4 Log Barrier Methods for Interior Point Search 417

Impact of the Barrier Multiplier μ
Having worked out all the details of a barrier search for any fixed m in barrier
forms 7.17 , it is time to consider how to manage that barrier multiplier. Parameter
m controls how much weight is assigned to keeping a search away from the bound-
ary. For example, Table 7.2 details the effect for our Frannie’s Firewood barrier

(c) Compute the step size that would be applied by a Newton step barrier search
algorithm.

Solution:

(a) In Sample Exercise 7.12 we computed the next move direction,

∆x182 = (331
3,-162

3, 331
3)

Applying the minimum ratio computation (7.19), the boundary would be reached at

 lmax = min e
xj
172

- ∆xj
182 : ∆xj

1t + 12 6 0 f

 = min e 1

162
3
f

 = 0.060

We should stop before, say, 90% or l = 0.910.0602 = 0.054 to stay interior.

(b) The barrier objective function for this exercise is

min -3x1 + 9x3 - m[ln1x12 + ln1x22 + ln1x32]

Plotting as a function of step size gives the following:

-240

-220

-200

-180

-160

-140

-120

-100

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

ba
rr

ie
r

fu
nc

ti
on

 v
al

ue

step size l

We seek the l that yields a minimum value without leaving the interior.

(c) Applying rule 7.19 , Newton step barrier search would use step size

l = min e 1
m

, 0.9lmax f

= min { 1
120, 0.054} = 1

120 = 0.00833

418 Chapter 7 Interior Point Methods for Linear Programming

form (7.12). The optimal barrier problem values of x1, x2, and x3 are shown for a
range of barrier multiplier values. For example, high weight m = 216 = 65, 536 on
logarithmic barriers makes the optimal x in model (7.12) approximately (2, 1, 1).
As the multiplier decreases to m = 2-5 = 1

32, the optimal x in (7.12) approaches the
true optimum (without barriers) of x* = (6, 0, 0).

High values of barrier weight m 7 0 severely penalize interior
points near the boundary. Low values encourage the search to approach the
boundary.

Principle 7.20

Barrier Algorithm Multiplier Strategy
The power of multiplier m to control how close barrier optimal solutions come to the
boundary suggests a strategy for using barrier methods to solve the underlying LP.

Barrier algorithms begin with multiplier m 7 0 relatively high
and slowly reduce it toward zero as the search proceeds.

Principle 7.21

Initial moves seek good solutions far from the boundary, with later ones com-
ing ever closer to an optimum in the LP as barrier multiplier m S 0.

Newton Step Barrier Algorithm
Algorithm 7B collects all the ideas developed so far in a Newton step barrier algo-
rithm for linear programming. The search begins with an interior (feasible) point
x102 and a relatively large barrier multiplier m. For each m, an inner loop seeks to
approximately optimize the corresponding log barrier problem. That is, we take one
or more steps to approach the barrier model optimum for that m.

Once slow progress indicates that we are near enough to the optimal value in
the barrier model, an outer loop reduces m and repeats the inner loop. The process

table 7.2 Impact of m on the Frannie’s Firewood Application

m x1 x2 x3

216 = 65,536 2.002 1.001 0.998

215 = 32,768 2.004 1.001 0.997

214 = 16,384 2.009 1.002 0.993

213 = 8,192 2.017 1.005 0.987

212 = 4,096 2.034 1.009 0.974

211 = 2,048 2.068 1.018 0.948

210 = 1,024 2.134 1.035 0.898
29 = 512 2.261 1.060 0.809

28 = 256 2.494 1.088 0.665

27 = 128 2.889 1.079 0.477

26 = 64 3.489 0.960 0.295

m x1 x2 x3

25 = 32 4.250 0.711 0.164
24 = 16 4.951 0.439 0.086
23 = 8 5.426 0.243 0.044
22 = 4 5.702 0.127 0.022
21 = 2 5.847 0.065 0.011
20 = 1 5.923 0.033 0.006

2-1 = 1
2 5.961 0.017 0.003

2-2 = 1
4 5.980 0.009 0.001

2-3 = 1
8 5.990 0.004 0.001

2-4 = 116 5.995 0.002 0.000
2-5 = 1

32 5.997 0.001 0.000

7.4 Log Barrier Methods for Interior Point Search 419

terminates when m nears zero, indicating that the current solution is very close to an
optimum in the LP.

As with affine scaling Algorithm 7A, many details of stopping and convergence
are left vague in the statement of Algorithm 7B because they involve mathematical
issues beyond the scope of this chapter. However, in Section 7.5 we provide further
insight regarding how such issues are handled in commercial-quality algorithms.

Newton Barrier Solution of Frannie’s Firewood Application
Table 7.3 illustrates Algorithm 7B on our Frannie’s firewood application. The
table shows both the true objective function value at every step and the modified

Algorithm 7B: newton SteP BArrier SeArch
for Liner Program

Step 0: initialization. Choose any starting feasible interior point solution,
x102 7 0, and a relatively large initial barrier multiplier m. Also set solution
index t d 0.

Step 1: move Direction. Construct the next move direction by projecting
in affine-scaled space as

∆x1t + 12 d {XtPt §c1
1t2 { m

f

cn
1t2 { m

¥
(+ to maximize and - to minimize) where Xt, Pt, and c1t2 are the scaled
problem data of Section 7.2.

Step 2: Step Size. Choose a step size

l d min e 1
m

, 0.9lmax f

where

lmax d min •
xj
1t2

- ∆xj
1t + 12 : ∆xj

1t + 12 6 0 ¶

Step 3: Advance. Compute the new solution

x1t + 12 d x1t2 + l∆x1t + 12

Step 4: inner loop. If progress indicates that x1t + 12 is far from optimal for
the current m, increment t d t + 1, and return to Step 1.

Step 5: outer loop. If barrier multiplier m is near zero, stop. The current
point x1t + 12 is either optimal in the given LP or very nearly so. Otherwise,
reduce the barrier multiplier m, increment t d t + 1, and return to Step 1.

420 Chapter 7 Interior Point Methods for Linear Programming

objective value, including log-barrier terms (in parentheses). Figure 7.8 tracks prog-
ress graphically.

Initial point x102 is interior and satisfies the only equality constraint 12 x1 + x2+
x3 = 3. We begin with barrier multiplier m = 16. After six moves, the search arrives
at point x162, which very nearly optimizes barrier objective function

 max 90x1 + 150x2 + 0x3 + 16 [ln1x12 + ln1x22 + ln 1x32]

Now we begin to reduce m. In Table 7.3 each reduction updates m d 1
2 m,

although m would normally not be reduced so rapidly. Two steps follow each change
to bring the search near the best point for each new m.

table 7.3 Newton Barrier Search of Frannie’s Firewood
Application

x1 x2 x3

max c 90 150 0 b

A 0.5 1 1 3

x102 1.000 0.500 2.000 obj = 165.00 1165.002
∆x112

x112
91.500
2.961

38.250
1.320

-84.000
0.200

m = 16.0, l = 0.0214
obj = 464.411460.462

∆x122

x122
59.996
5.689

-26.113
0.132

-3.885
0.023

m = 16.0, l = 0.0455
obj = 531.84 1467.122

∆x132

x132
-3.519

5.470
1.487
0.225

0.272
0.040

m = 16.0, l = 0.0625
obj = 526.001477.932

∆x142

x142
-4.227

5.205
1.771
0.336

0.343
0.062

m = 16.0, l = 0.0625
obj = 518.82 1483.192

∆x152

x152
-3.100

5.012
1.273
0.415

0.278
0.079

m = 16.0, l = 0.0625
obj = 513.311484.442

∆x162

x162
-0.917

4.954
0.359
0.438

0.099
0.085

m = 16.0, l = 0.0625
obj = 511.521484.512

∆x172

x172
6.804
5.762

-2.756
0.110

-0.646
0.009

m = 8.0, l = 0.1188
obj = 535.16 1493.422

∆x182

x182
-1.076

5.628
0.483
0.171

0.055
0.015

m = 8.0, l = 0.1250
obj = 532.111498.402

∆x192

x192
0.426
5.734

-0.232
0.113

0.019
0.020

m = 4.0, l = 0.2500
obj = 533.011515.632

∆x1102

x1102
-0.118

5.705
0.052
0.126

0.007
0.022

m = 4.0, l = 0.2500
obj = 532.291515.672

∆x1112

x1112
0.552
5.959

-0.233
0.018

-0.043
0.002

m = 2.0, l = 0.4614
obj = 539.061522.362

∆x1122

x1122
-0.059

5.930
0.026
0.031

0.004
0.004

m = 2.0, l = 0.5000
obj = 538.351523.912

∆x1132

x1132
-0.006

5.924
0.002
0.033

0.001
0.005

m = 1.0, l = 1.0000
obj = 538.101531.182

∆x1142

x1142
-0.001

5.923
0.000
0.033

0.000
0.006

m = 1.0, l = 1.0000
obj = 538.021531.182

∆x1152

x1152
0.038
5.992

-0.016
0.003

-0.003
0.001

m = 0.50, l = 1.8
obj = 539.801534.102

∆x1162

x1162
-0.003

5.986
0.001
0.006

0.000
0.001

m = 0.50, l = 2.0
obj = 539.641534.532

7.5 Primal-Dual Interior-Point Search 421

Algorithm 7B terminates when m approaches zero and no further progress is
being made. Here we stop after m = 1

2 with x1162 = 15.986, 0.006, 0.0012, which is
very near the true LP optimum x* = 16, 0, 02.

7.5 primal-dual interior-point Search

This section treats a final family of interior-point search algorithms that take a
 primal-dual approach building heavily on the optimality theory results of Section 6.7

KKT Optimality Conditions
Specifically we assume instances of primal linear programs in (minimizing) standard
form.

 min cx

(7.20)

s.t. Ax = b

 x Ú 0

and corresponding duals

 max vb

(7.21)

s.t. Atv + w = c

 v URS, w Ú 0

Here v is the vector of dual multipliers on the main primal constraints, and w is a
vector of nonnegative slack variables added to convert main dual constraints into
equalities.

x1

x3

x2

x(0) = (1, , 2)1
2

x(1)

x(6) x(7)

x(2)

optimal solution x* = (6, 0, 0)

feasible region

Figure 7.8 Barrier Search of Frannie’s Firewood Application

422 Chapter 7 Interior Point Methods for Linear Programming

Combining these model forms with complementary slackness requirements
produces the full Karush-Kuhn-Tucker conditions for optimality of given primal
and dual solutions layed out in principle 6.61 .

Primal and dual solutions x and (vQ , wQ) are optimal in their
respective problems if and only if

Ax = b 1Primal Feasibility2
x Ú 0

Atv + w = c 1Dual Feasibility2
w Ú 0

xjwj = 0 for all j 1Complementary Slackness2

Principle 7.22

Strategy of Primal-Dual Interior-Point Search
Section 6.9 presents a “primal-dual” version of the Simplex method (Algorithm 7B)
which pursues a strategy of maintaining feasibility of all dual solutions encoun-
tered and seeking a corresponding primal-feasible solution among those satisfying
 complementary slackness with the current dual. Although it shares the same name,
Primal-Dual Interior-Point Search takes a significantly different approach.

Primal-Dual Interior-Point search begins with and maintains
primal and dual solutions that at each iteration are both strictly feasible,
then seeks to systematically reduce the violation of complementary slackness
between them.

Principle 7.23

Feasible Move Directions
Like other methods of this chapter, Primal-Dual interior search does visit only strictly
feasible primal and dual solutions with x 7 0 and w 7 0 so that all are in the inte-
rior of their respective feasible sets. Unlike other methods, however, Primal-Dual
interior search addresses main primal and dual constraints directly. That is, there is
no selecting preferred directions and then projecting them on the main equalities to
preserve feasibility. Instead, the requirements enforced on move directions to pre-
serve feasibility in constraints apply the familiar pattern of earlier chapters.

For current, strictly feasible solutions to primal (7.20) and dual
(7.21), feasible move directions (∆x, ∆v, ∆w) must satisfy

A ∆x = 0 and

At ∆v + ∆w = 0

Principle 7.24

Notice that nonnegativity constraints x Ú 0 and w Ú 0 can be disregarded in choos-
ing feasible move directions. Strictly feasible current solutions x 7 0 and w 7 0
leave all such constraints inactive.

7.5 Primal-Dual Interior-Point Search 423

Management of Complementary Slackness
The challenge with Primal-Dual interior search is handling of the complementary
slackness constraints of optimality conditions 7.22 . Unless the current solutions
are optimal, there will be a duality gap

 cx - bvQ = Total Complementary Slackness Violation = a
j

 xjwQ j (7.22)

Furthermore, with x and wQ strictly feasible, every term of the violation sum will
have xjwQ j 70.

The approach of Primal-Dual interior search is to set a target m 7 0 for each of
these violations, solve for feasible move directions that reduce the disparity between
current complementary slackness products and the target, then slowly diminish m
toward 0 where complementary slackness would be achieved. This requires adding
conditions

 1xj + ∆xj21wQ j + ∆wj2 = m or

 xjwQ j + xj∆wj + ∆xjwQ j + ∆xj∆wj = m for all j
(7.23)

to requirements 7.24 .
Now the challenge is quadratic terms ∆xj ∆wj in system (7.23). Primal-Dual

interior search disregards them in the interest of maintaining a linear system of
approximate conditions to solve in determining the next set of move directions.

At current strictly feasible solutions 1x, vQ , wQ 2, Primal-Dual
Interior-Point search follows move directions 1∆x, ∆v, ∆w2 satisfying feasibility
requirements of 7.24 together with xjwQ j + xj∆wj + ∆xjwQ j = m on all j, where m
is a target value for complementarity violation decreased slowly toward 0.

Principle 7.25

Step Size
All that remains in detailing an algorithm is the stepsize l to be followed at any
step. From the nonnegativity constraints on x and w set outer limits, and a constant
positive boundary prevention d 6 1 adjusts for the need to stay in the interior.

At current strictly feasible solutions 1x, vQ , wQ 2, and move
directions (∆x, ∆v, ∆w) satifying 7.25 , Primal-Dual Interior-Point search
employs stepsize l d d min5lP, lD6, where lP = min5-xj>∆xj : xj 6 06
and lD = min 5-wQ j>∆wj : wQ j 6 06.

Principle 7.26

Algorithm 7C collects all these ideas in a formal Primal-Dual interior-point method
for solving linear programs.

Solving the Conditions for Move Directions
Given current solutions x1t2, v1t2, and w1t2 at any iteration t, let xt, Vt, and Wt denote
square matrices with their respective solution vectors arrayed along the diagonals,

424 Chapter 7 Interior Point Methods for Linear Programming

and 1 be a vector of 1’s. Then the conditions of Algorithm 7C Step 2 can be rewrit-
ten in full matrix form as follows:

(a) A ∆x1t + 12 = 0

(b) At∆ v1t + 12 + ∆w1t + 12 = 0 (7.24)

(c) xt∆ w1t + 12 + Wt ∆x1t + 12 = mt + 11 - xtWt1

To begin computing a solution, solve (7.24)(c) for ∆x1t + 12 in terms of ∆w1t + 12

 ∆x1t + 12 d -Wt
-1xt ∆ w1t + 12 + Wt

-11mt + 11 - xtWt12 (7.25)

Then, in turn, solve (7.24)(b) for ∆w1t + 12 in terms of ∆ v1t + 12

 ∆w1t + 12 d -At ∆v1t + 12 (7.26)

Algorithm 7c: PrimAl-DuAl interior-Point lP SeArch

Step 0: initialization. Choose a strictly feasible primal solution x102 and a
strictly feasible dual solution 1v102, w1022. Then select a value for where the
standard target reduction factor is 0 6 r 6 1; initialize the average comple-
mentarity target by computing duality gap g0 d cx102 - bv102 and making
m0 d g0>n where n is the dimension of x. Finally, initialize solution index
t d 0.

Step 1: optimality. If gap gt d cx102 - bv102 is sufficiently close to zero,
stop. Current solutions x1t2, v1t2, and w1t2 are optimal or close to optimal
in their respective models. Otherwise, reduce mt + 1 d r # mt, and proceed to
Step 2.

Step 2: move Direction. Compute move directions ∆x1t + 12, ∆v1t + 12, and
∆w1t + 12 by solving the equation system

 A∆x1t + 12 = 0
 At∆v1t + 12 + ∆w1t + 12 = 0
 xj
1t2∆wj

1t + 12 + wj
1t2∆xj

1t + 12 = mt + 1 - xj
1t2wj

1t2 for all j

Step 3: Step Size. Compute stepsize l d d min5lP, lD6, where

 lP = min5-xj
1t2>∆xj

1t + 12 : ∆xj
1t + 12 6 06

 lD = min5-wj
1t2>∆wj

1t + 12 : ∆wj
1t + 12 6 06

and 0 6 d 6 1 is the standard positive boundary prevention factor.
Step 4: Advance. Update solutions

x1t + 12 d x1t2 + l∆x1t + 12

v1t + 12 d v1t2 + l∆v1t + 12

w1t + 12 d w1t2 + l∆w1t + 12

Then advance t d t + 1 and return to Step 1.

7.5 Primal-Dual Interior-Point Search 425

Now substituting (7.26) in conditions (7.24)(c) and multiplying through by
AWt

-1 gives

 -AWt
-1xtA

t ∆v1t + 12 + AWt
-1Wt ∆x1t + 12 = AWt

-11mt + 11 - xtWt12 (7.27)

Noting that (7.24)(a) implies

AWt
-1Wt ∆x1t + 12 = A∆x1t + 12 = 0

expression (7.27) simplifies to produce

-AWt
-1xtA

t ∆v1t + 12 = AWt
-11mt + 11 - xtWt12

Now solving for ∆v1t + 12 produces the last required expression

 ∆v1t + 12 d -[AWt
-1xtA

t]-1AWt
-11mt + 11 - xtWt12 (7.28)

Given a complementarity target m 7 0, along with current
solutions x1t2, v1t2, and w1t2 at iteration t of Algorithm 7C (respectively xt, Vt,
and Wt in diagonal matrix form), the next set of move directions of the algo-
rithm can be computed by using (7.28) to compute ∆v1t + 12, then employing the
result in (7.26) to compute a corresponding ∆w1t + 12, and finally substituting in
(7.25) to obtain ∆x1t + 12.

Principle 7.27

example 7.14: primal-dual interior-point Search

To illustrate Algorithm 7C, consider the standard-form linear program

min 11x1 +5x2 +8x3 +16x4

s.t. -1x2 +2x3 +1x4 = 1

 2x1 +1x2 +3x4 = 7

 x1, x2, x3, x4 Ú 0

It is easy to check that strictly positive solution x102 = 11, 2, 1, 12 is feasible in this
primal model.

The corresponding dual with variables v1 and v2 on the two main constraints, and
slacks w1, … , w4 is

max 1v1 +7v2

s.t. 2v2 +w1 = 1

 -1v1 +2v2 +w2 = 5

 2v1 +w3 = 8

 1v1 +3v2 +w4 = 16

 v1, v2 URS, w1, w2, w3, w4 Ú 0

A feasible dual solution is v102 = 13, 42 and w102 = 13, 4, 2, 12, strictly positive as
required on the sign-restricted variables.

The primal has solution value cx102 = 45, where c is the vector of objective func-
tion coefficients, and the dual bv102 = 31, where b is the right-hand side. This leaves a

426 Chapter 7 Interior Point Methods for Linear Programming

complementarity gap of g0 d 45 - 31 = 14, and the algorithm will begin with average
complementarity target for the four primal variables fixed m0 d 14>4 = 3.5, reducing it
by factor r = 0.6 at each iteration.

Construction of the first set of move directions begins with

x0 = D1
2

1
1

T V0 = c 3
4
d W0 = D3

4
2

1

T
so that

 AW0
-1x0A

t = c 0 -1 2 1
2 1 0 3

d D1>3
1>4

1>2
1

T D1
2

1
1

T D 0 2
-1 1

2 0
1 3

T
 = c3.5 2.5

2.5 1.8333
d

1AW0
-1x0A

t2-1 = c3.5 2.5
2.5 1.8333

d
-1

= c 0.3421 -0.0789
-0.0789 0.1105

d

m11 - x0W01 = D3.5 # 0.6
3.5 # 0.6
3.5 # 0.6
3.5 # 0.6

T - D1
2

1
1

T D3
4

2
1

T D1
1
1
1

T = D -0.9
-5.9

0.1
1.1

T
Then

 ∆v112 = -[AW0
-1x0A

t]-1AW0
-11m11 - x0W012

 = c 0.3421 - 0.0789
-0.0789 0.1105

d c 0 - 1 2 1
2 1 0 3

d D1>3
1>4

1>2
1

T D -0.9
-5.9

0.1
1.1

T
 = c -0.8184

0.0758
d

 ∆w112 = -At ∆v112

 = D 0 2
-1 1

2 0
1 3

T c -0.8184
0.0758

d = D -0.1516
-0.8942

1.6368
0.5911

T

7.5 Primal-Dual Interior-Point Search 427

 ∆x112 = -W0
-1 x0 ∆w112 + W0

-11m11 - x0W012

 = - D1>3
1>4

1>2
1

T D1
2

1
1

T D -0.1516
-0.8942

1.6368
0.5911

T
 + D1>3

1>4
1>2

1

T D -0.9
-5.9

0.1
1.1

T = D -0.2495
-1.0279
-0.7684

0.5089

T
Next step size is determined by

lP = min5-xj
1t2>∆xj

1t + 12 : ∆xj
1t + 12 6 06 = min{ 1

0.2495, 2
1.0279, 1

0.7684} = 1.3014

lD = min5-wj
1t2>∆wj

1t + 12 : ∆wj
1t + 12 6 06 = min{ 3

0.1516, 4
0.8942} = 4.4732

l = d min5lP, lD6 = 0.999 * 1.3014 = 1.3001

where d = 0.999 is the boundary prevention factor

Updated solutions are given by

x112 = x102 + l∆x112 = 10.6757, 0.6637, 0.0010, 1.66172
v112 = v102 + l∆v112 = 11.9360, 4.09852
w112 = w102 + l∆w112 = 12.8029, 2.8375, 4.1280, 1.76842

Note that the updated solutions remain feasible. The primal has solution value
cx112 = 37.3453 and the dual bv112 = 30.6257, which leaves a new complementary gap
of g1 d 37.3453 - 30.6257 = 6.7196 6 14.

With the duality gap not yet close to = 0, the algorithm proceeds to a new round
of moves. Table 7.4 shows details of the next several iterations. Computation is termi-
nated when primal and dual solutions are discovered with gap between them 6 1.0.

table 7.4 Progress of Primal-Dual Interior Algorithm 7C on Example 7.14

t = 0 x102 d 11.0000, 2.0000, 1.0000, 1.00002
v102 d 13.0000, 4.00002, w102 d 13.0000, 4.0000, 2.0000, 1.00002
∆x112 d 1-0.2495, -1.0279, -0.7684, 0.50892
∆v112 d 1-0.8184, 0.07582, ∆w112 d 1-0.2495, -0.8942, 1.6368, 0.59112

primal value = 45.00
dual value = 31.00
g0 = 14.00, m0 = 3.5
l d 1.3001

t = 1 x112 d 10.6757, 0.6637, 0.0010, 1.66172
v112 d 11.9360, 4.09852, w112 d 12.8029, 2.8375, 4.1280, 1.76842
∆x122 d 10.1693, 0.3704, 0.3034, -0.23642
∆v122 d 1-1.7024, 0.82032, ∆w122 d 1-1.6406, -2.5227, 3.4048, -0.75682

primal value = 37.3453
dual value = 30.6257
g1 = 6.7196, m1 = 2.1000
l d 1.1236

t = 2 x122 d 10.8660, 1.0799, 0.3419, 1.39612
v122 d 10.0231, 5.02032, w122 d 10.9594, 0.0028, 7.9538, 0.91602
∆x132 d 1-0.1703, -0.2018, -0.1913, 0.18082
∆v132 d 10.6466, -0.05112, ∆w132 d 10.1023, 0.6978, -1.2932, -0.49322

primal value = 39.9974
dual value = 35.1651
g2 = 4.8323, m2 = 1.2600
l d 1.7858

(continued)

428 Chapter 7 Interior Point Methods for Linear Programming

7.6 complexity oF linear programming Search

Sections 14.1 and 14.2 of Complexity Theory Chapter 14 detail the standard way effort
required by various algorithms is reported and compared. A problem or model form is
taken as an infinite collection of instances—specific data sets. A computational order
(denoted O1 # 2) for any algorithm is a function of the size/length of instance input
that bounds the number of computational steps to complete its solution. The bound
must be “worst-case” in the sense that it applies to any instance, however perverse.

This section briefly reviews the long trail of research on how the efficiency of
algorihms for the Linear Program (LP) problem form can/should be analyzed in
this way.

Length of Input for LP Instances
The length of the input for any instance of an optimization model form is described
by such global parameters as n! the number of variables and m! the number of
main constraints, plus the total number of digits required to input all its constant
parameters. This leads to the following result for a linear program in standard
form (7.20).

t = 3 x132 d 10.5618, 0.7196, 0.0003, 1.71892
v132 d 11.1778, 4.92892, w132 d 11.1421, 1.2489, 5.6444, 0.03542
∆x142 d 1-0.0146, 0.1272, 0.0799, -0.03272
∆v142 d 1-0.6867, 0.15252, ∆w142 d 1-0.3051, -0.8393, 1.3735, 0.22922

primal value = 37.2835
dual value = 35.6804
g3 = 1.6031, m3 = 0.7560
l d 1.4865

t = 4 x142 d 10.5041, 0.9087, 0.1192, 1.67042
v142 d 10.1569, 5.15572, w142 d 10.6887, 0.0012, 7.6862, 0.37612
∆x152 d 1-0.1676, -0.0286, -0.0750, 0.12132
∆v152 d 10.2838, -0.01452, ∆w152 d 10.0289, 0.2983, -0.5677, 0.24042

primal value = 38.1638
dual value = 36.2466
g4 = 1.9172, m4 = 0.4536
l d 1.5625

t = 5 x152 d 10.2782, 0.8639, 0.0020, 1.85992
v152 d 10.6004, 5.13312, w152 d 10.7339, 0.4674, 6.7992, 0.00042

primal value = 37.1544
dual value = 36.5319
g5 = 0.6225, m5 = 0.2722
l d 1.5552

table 7.4 Continued

The length of a standard form instance of linear programming
over n variables, m main constraints, integer costs c, integer constraint matrix
A, and integer right-hand sides b can be expressed as

L! n # m + a j [log1 � cj � + 12] + a ij [log1 � aij � + 12]

+ a i [log1 � bi � + 12]

Principle 7.28

Notice that expressions [log1parameter2] + 1 capture the number of digits in differ-
ent model parameters.

7.6 Complexity of Linear Programming Search 429

Complexity of Simplex Algorithms for LP
Details obviously vary, but the effort per iteration of any of the simplex algorithms
of Chapters 5 and 6 can be shown to be bounded by a low order polynomial func-
tion (low constant power) of the instance size L in principle 7.28 . Furthermore,
 simplex algorithms have proved highly effective in solving large instances of linear
programming for many decades because the number of iterations required is usu-
ally proportional to a low-order polynomial in the number of main constraints m.
Still, bounding the worst-case number of simplex iterations for LP instances has
proved an enigma.

Consider LPs of the following form first exhibited by Klee and Minty (1972).

 max xn (7.29)

s.t. a … x1 … 1

 a # xj - 1 … xj … a # xj - 1 j = 1, c, n

where constant a ∈ 10, 1>22

Figure 7.9 illustrates for n = 2 and a = 1>4. Constraints form a slanted variant
of a hypercube in dimension n with 2n extreme-point solutions. Starting from solu-
tion x112, deviations from an actual hypercube make each solution x1t + 12 adjacent
to predecessor x1t2 with better objective value xn

1t + 12 7 xn
1t2. A simplex algorithm

might very well proceed from extreme-point to adjacent extreme-point, improving
the objective value until all 2n of them have been visited. The consequence is an
important finding about worst-case performance of simplex algorithms.

1

1

1/2

1/2

x2

x1

x(1) = (14, 1/16)

(x(2) = 1, 1/4)

(x(3) = 1, 3/4)

(x(4) = 1/4, 15/16)

Figure 7.9 Klee-Minty Perverse LP Instances for Simplex Methods

Instances of linear programming exist for which simplex algo-
rithms require an exponential number of iterations as a function of input
length 7.28 .

Principle 7.29

430 Chapter 7 Interior Point Methods for Linear Programming

Complexity of Interior-Point Algorithms for LP
Although the typical performance of simplex algorithms is usually quite acceptable,
the anomalies of principle 7.29 are troubling for the wide body of researchers who
believe the accepted standard 14.5 for establishing a problem form is tractable.
There must exist an algorithm that runs in time polynomial in the number of vari-
ables n and the length of the input L on even the worst instance. The investigation
of interior-point methods actually began as a quest for alternatives to simplex ideas
that could meet the polynomial-time standard.

Soviet mathematician Leonid Khachiyan provided the first answer in 1979
with his ellipsoid technique that proved formally polynomial with a bound of
O11mn3 + n42L2, but was quickly shown to be impractical as an algorithm for large
linear programming applications. Development of more practically useful algo-
rithms began in the 1980s with N. Karmarkar’s projective transformation method,
which bears some similarity to the Log-Barrier algorithms of Section 7.4. With some
improvements through the years, it has achieved O11nL2 bound on the number
of iterations. Variations on the primal-dual methods of Section 7.5 have at least
matched that limit.

A number of interior-point methods for linear programming,
including refined versions of the Primal-Dual Interior-Point Algorithm 7C
developed in Section 7.5 can be shown to achieve the polynomial standard for
formal efficiency by requiring at most O11nL2 iterations, each polynomial in
the length of the input.

Principle 7.30

Details of all these methods, including the proofs of computational orders, are well
beyond the scope of this book. Interested readers are referred to references at the
end of this chapter.

ExErcISES

7-1 Consider the linear program

max 2w1 + 3w2

s.t. 4w1 + 3w2 … 12
 w2 … 2
 w1, w2 Ú 0

(a) Solve the problem graphically.
(b) Determine the direction ∆w of most

rapid improvement in the objective func-
tion at any solution w.

(c) Explain why the direction of part (b) is
feasible at any interior point solution to
the model.

(d) Show that w102 = 11, 12 is an interior
point solution.

(e) Determine the maximum step lmax from
the point w102 that preserves feasibility in
the direction of part (b).

(f) Plot the move of part (e) and the resulting
new point w112 in the graph of part (a).

(g) Explain why it is easier to find a good
move direction at w102 than at w112.

7-2 Do Exercise 7-1 for the LP

min 9w1 + 1w2

s.t. 3w1 + 6w2 Ú 12
 6w1 + 3w2 Ú 12
 w1, w2 Ú 0

and point w102 = 13, 12.

 Exercises 431

7-3 The following plot shows several feasible
points in a linear program and contours of its
 objective function.

P1 P2

P3

P4

P5

P6P7

P8

Determine whether each of the following se-
quences of solutions could have been one fol-
lowed by an interior point algorithm applied to
the corresponding standard-form LP.

(a) P1,P5,P6
(b) P3,P4,P6
(c) P3,P8,P6
(d) P4,P3,P6
(e) P3,P4,P5,P6
(f) P5,P4,P6

7-4 Determine whether each of the following is
an interior point solution to the standard-form
LP constraints

 4x1 + 1x3 = 13
 5x1 + 5x2 = 15
 x1, x2, x3 Ú 0

(a) x = 13, 0, 12
(b) x = 12, 1, 52
(c) x = 11, 2, 92
(d) x = 15, 1, 12
(e) x = 12, 2, 12
(f) x = 10, 3, 132

7-5 Write all conditions that a feasible direction
∆w must satisfy at any interior point solution to
each of the following standard-form systems of
LP constraints.

(a) 2w1 + 3w2 - 3w3 = 5
4w1 - 1w2 + 1w3 = 3
w1, w2, w3 Ú 0

(b) 11w1 + 2w2 - 1w3 = 8
2w1 - 7w2 + 4w3 = -7
w1, w2, w3 Ú 0

7-6 Table 7.4 shows several constraint matrices
A (or At) of standard-form LPs and the corre-
sponding projection matrices P (or Pt). Use these
results to compute the feasible direction for the
specifed equality constraints that is nearest to the
given direction d, and verify that the result sat-
isfies feasible direction conditions at any interior
point solution.

(a) x1 + 2x2 + x3 = 4 and d = 13, -6, 32
- 2x1 + x2 = -1

(b) 3x1 + x2 + 4x3 = 4 and d = 12, 1, -72
x2 - 2x3 = 1

7-7 Consider the standard-form LP

min 14z1 + 3z2 + 5z3

s.t. 2z1 - z3 = 1
 z1 + z2 = 1
 z1, z2, z3 Ú 0

(a) Determine the direction of most rapid
objective function improvement at any
solution z.

(b) Compute the projection matrix P for the
main equality constraints.

(c) Apply your P to project the direction of (a).
(d) Verify that the result of part (c) is im-

proving and feasible at any interior point
solution.

(e) Describe the sense in which the direction
of part (c) is good for improving search at
any interior point solution.

7-8 Do Exercise 7-7 for

max 5z1 - 2z2 + 3z3

s.t. z1 + z3 = 4
 2z2 = 12
 z1, z2, z3 Ú 0

7-9 An interior point search using scaling has
reached current solution x172 = 12, 5, 1, 92.
Compute the affine scaled y that would correspond
to each of the following x’s.

(a) (1, 1, 1, 1)
(b) (2, 1, 4, 3)
(c) (3, 5, 1, 6)
(d) (3, 5, 1, 7)

432 Chapter 7 Interior Point Methods for Linear Programming

7-10 Do Exercise 7-9 taking the listed vectors as
scaled y’s and computing the corresponding x.
7-11 Consider the standard-form LP

min 2x1 + 3x2 + 5x3

s.t. 2x1 + 5x2 + 3x3 = 12
 x1, x2, x3 Ú 0

with current interior point solution x132 = 12, 1, 12.

(a) Sketch the feasible space in a diagram like
Figure 7.4(a) and identify both the current
solution and an optimal extreme point.

(b) Sketch the corresponding affine-scaled
feasible space showing scaled equivalents
of all points in part (a).

(c) Derive the associated affine-scaled stan-
dard form 7.10 .

7-12 Do Exercise 7-11 using the LP

max 6x1 + 1x2 + 2x3

s.t. x1 + x2 + 5x3 = 18
 x1, x2, x3 Ú 0

and current solution x132 = 16, 7, 12.

7-13 Return to the LP of Exercise 7-11.

(a) Compute in both x and y space the next
move direction that would be pursued by
affine scaling Algorithm 7A.

(b) Verify that the ∆x of part (a) is both im-
proving and feasible.

(c) Compute the step size l that Algorithm 7A
would apply to your move directions in
part (a).

(d) Plot the move of parts (a) and (c) in both
original x-space and scaled y-space.

7-14 Do Exercise 7-13 on the LP of Exercise 7-12.
7-15 Consider the standard-form LP

min 10x1 + 1x2

s.t. x1 - x2 + 2x3 = 3

 x2 - x3 = 2

 x1, x2, x3 Ú 0

(a) Show that x102 = 14, 3, 12 is an appropriate
point to start affine scaling Algorithm 7A.

(b) Derive the associated scaled standard
form corresponding to solution x102.

(c) Compute the move direction ∆x that would
be pursued from x102 by Algorithm 7A
(refer to Table 7.4 for projection matrices).

(d) Show that your direction is improving
and feasible at x102.

(e) Compute the step size l that Algorithm
7A would apply to your direction, and
determine the new point x112 that results.

7-16 Do Exercise 7-15 using the LP

max 6x1 + 8x2 + 10x3
s.t. 9x1 - 2x2 + 4x3 = 6

 2x2 - 2x3 = -1
 x1, x2, x3 Ú 0

and initial solution x102 = (2
9, 1, 32).

7-17 Suppose that Affine Scaling Algorithm 7A
has reached current solution x1112 = 13, 1, 92.
Determine whether each of the following next
move directions would cause the algorithm to
stop and why. If not, compute x1122.

(a) ∆x = 16, 2, 22
(b) ∆x = 10, 4, -92
(c) ∆x = 16, -6, 02
(d) ∆x = 10, -2, 02

table 7.4 Projection Matrices

A or At P or Pt

1 -1 2 0.3333 -0.3333 -0.3333
0 1 -1 -0.3333 0.3333 0.3333

-0.3333 0.3333 0.3333
1 10 3 0.2540 0.1016 -0.4232

-2 5 0 0.1016 0.0406 -0.1693
-0.4232 -0.1693 0.7054

1 2 1 0.0333 0.0667 -0.1667
-2 1 0 0.0667 0.1333 -0.3333

-0.1667 -0.3333 0.8333
3 1 4 0.0816 -0.2449 -0.1224
0 1 -2 -0.2449 0.7347 0.3673

-0.1224 0.3673 0.1837
12 -3 4 0.0819 -0.0755 -0.1132
0 3 -2 -0.0755 0.3019 0.4528

-0.1132 0.4528 0.6793
4 -3 2 0.0533 -0.0710 -0.2130
0 3 -1 -0.071.0 0.0947 0.2840

-0.2130 0.2840 0.8521

-1 2 0 0.6667 0.3333 0.3333
1 -1 -1 0.3333 0.1667 0.1667

0.3333 0.1667 0.1667

 Exercises 433

7-18 Consider solving the following standard-form
primal LP by Affine Scaling Algorithm 7A starting
from solution x = 12, 3, 2, 3, 1>32.

x1 x2 x3 x4 x5

min c 5 4 3 2 16 b

s.t. 2 0 1 0 6 8
0 1 1 2 3 12

(a) Verify that the given solution is an appro-
priate point at which to start Algorithm 7A.

(b) Derive the scaled standard form in terms
of variables y that comes from the given
starting x. Also explain why it might be
more convenient to work with this form
than the original standard form.

(c) Write an expression for the move direc-
tion x in x-space to be followed on the first
solution update of the algorithm. You
need not explicitly do projections, just
denote them symbolically. For example,
to show that you want to project direction

d = 11, 22 on matrix A = c 3 4 5
6 7 8

d ,

just write ∆x = proj c 3 4 5
6 7 8

d a1
2
b .

Also, briefly justify the elements of this
expression, that is, (i) what does it start
with, (ii) how does it utilize results, and
(iii) why is the final form what it is?

7-19 Consider the standard-form LP

max 13w1 - 2w2 + w3

s.t. 3w1 + 6w2 + 4w3 = 12
 w1, w2, w3 Ú 0

(a) Sketch the feasible space in a plot like
Figure 7.6, identify an optimal extreme
point, and show w112 = 11.4, 0.7, 0.92 and
w2 = 10.01, 0.01, 2.97752.

(b) Form the corresponding log barrier prob-
lem with multiplier m 7 0.

(c) Using m = 10, evaluate the original and
log barrier objective functions at w112 and
w122. Then comment on the effect of bar-
rier terms at points far from the boundary
versus ones near the boundary.

(d) Use the class optimization software to
solve log barrier form (b) with multipliers
m = 100, 10, and 1.

(e) How does the trajectory of optimal solu-
tions to part (b) evolve as m S 0?

7-20 Do Exercise 7-19 for the LP

min 2w1 + 5w2 - w3

s.t. w1 + 6w2 + 2w3 = 18
 w1, w2, w3 Ú 0

and points w112 = 18, 1, 22, w122 = 10.01, 0.02,
8.9352.
7-21 Determine whether each of the following
could be the first four barrier multiplier val-
ues m used in the outer loop of a barrier search
Algorithm 7B.

(a) 100,80,64,51.2
(b) 100,200,100,800
(c) 100,500,1000,2000
(d) 600,300,150,75

7-22 Assume that barrer Algorithm 7B has com-
puted an appropriate move direction ∆x for its
standard-form LP and a maximum feasible step
size lmax. For each of the original objective func-
tions below, determine which of the following
curves best depicts how the corresponding barrier
objective function will vary with l ∈ [0, lmax].

l

barrier objective
value after step l

(II)
lmax

lmax

l

barrier objective
value after step l

(I)

434 Chapter 7 Interior Point Methods for Linear Programming

l

barrier objective
value after step l

(III)

l
lmax

lmax

barrier objective
value after step l

(IV)

(a) max 34x1 - 19x2 - 23x3 + 4x4
(b) min 44x1 + 15x2 + 1x3 + 9x4

7-23 Consider the LP

min 4x1 - x2 + 2x3

s.t. 4x1 - 3x2 + 2x3 = 13

 3x2 - x3 = 1

 x1, x2, x3 Ú 0

(a) Show that x102 = 13, 1, 22 is an appropri-
ate point to start barrier Algorithm 7B.

(b) Form the corresponding log barrier prob-
lem with multiplier m = 10.

(c) Compute the move direction ∆x that
could be pursued from x102 by barrier
Algorithm 7B. (See Table 7.4 for the pro-
jection matrix required.)

(d) Verify that your direction of part (c) is
improving and feasible in the barrier
model of part (b) at x102.

(e) Determine the maximum step lmax from
x102 that preserves feasibility in your
direction of part (c) and the l to be
employed.

(f) Will the barrier objective function first
increase, then decrease, or first decrease,
then increase, as the step l applied to
your direction of part (c) grows from 0 to
lmax? Explain.

(g) The next time that multiplier m is changed,
should it increase or decrease? Explain.

7-24 Do Exercise 7-23 for the LP

max -x1 + 3x2 + 8x3

s.t. x1 + 2x2 + x3 = 14
 2x1 + x2 = 11
 x1, x2, x3 Ú 0

at x102 = 15, 1, 72
7-25 Return to the LP and x102 of Exercise 7-15.

(a) Show that x102 = 14, 3, 12 is an appropri-
ate point to start barrier Algorithm 7B.

(b) Compute the move direction ∆x that
would be pursued from x102 by Algorithm
7B with m = 10 (refer to Table 7.4 for
projection matrices).

(c) Show that your direction is improving
and feasible at x102.

(d) Compute the maximum step size lmax that
can be applied to your direction of part
(b) at x102 without losing feasibility.

(e) Compute the step size l that Algorithm
7B would apply to your direction, and
 determine the new point x112 that results.

7-26 Do Exercise 7-25 for the LP and x102 of
Exercise 7-16.
7-27 Return to the LP of Exercise 7-18 and con-
sider solving by Primal-Dual Interior Algorithm 7C.

(a) Derive the corresponding dual formula-
tion over variables v and place it in stan-
dard form by adding slack variables s as
needed.

(b) Show that Algorithm 7C could appro-
priately start with solutions x = 12, 3, 2,
3, 1>32, v = 11>2, 1>22, and the corre-
sponding values of s in your dual standard
form of (a).

(c) State all relevant complementary slack-
ness conditions between primal and dual.

(d) Demonstrate that the primal solution
value and the dual solution value of (a) are
separated by a duality gap equal to the
total complementary slackness violation.

(e) Now suppose we want to derive move
 directions to change primal and dual solu-
tions in a way that will move each com-
plementary slackness violation closer to
m = 5. Write, but do not solve the system

 Exercises 435

of equation that must be solved to compute
values of ∆x, ∆v, and ∆s. Those 3 directions
should be left as symbols, but all other el-
ements of the equations should be detailed
numerically for the given example and start-
ing points.

(f) Build upon your analysis of (e) to conduct
up to 3 iterations Primal-Dual Interior
Point Algorithm 7C (fewer if optimal-
ity is reached earlier) to move toward an
 optimal solution. At each step show the
parameter m, change directions for ∆x, ∆v,
and ∆v, step size l, and new solutions,
as well as the complementary-slackness/
duality gap between primal and dual.

7-28 Do Exercise 7-27 on the LP

x1 x2 x3 x4 x5

min 14 30 11 9 10 RHS

s.t. 2 -1 0 3 -2 10
1 5 2 -1 1 15

with starting solutions x = 12, 1, 5, 3, 12 and
v = 12, 52
7-29 Return to the standard form LP instance of
Exercise 7-18.

(a) Explain why this LP model is an instance
of problem (LP) defined as

min a n
j = 1 cj xj

s.t. a n
j = 1 aij xj = bi i = 1, c, m

 xj Ú 0, j = 1, c.n

(b) Following Section 7.6 and 14.1, derive a
binary encoding of the instance using al-
phabet symbols 50, 1, c, 9, - , > , $6,
with ‘-’ the minus sign, ‘$’ separating in-
dividual constants, and ‘/’ separating rows

of the instance. Also compute the length
of this input for the instance.

(c) Explain why the lengths of the encodings
of parameters like costs and constraint
coefficients are best computed as the logs
(rounded up) of their magnitudes, rather
than the magnitudes themselves.

(d) Establish that your encoding of (a) has
length proportional to the number of
variables n, the number of main con-
straints m, and the logs (rounded up to
integers) of objective coefficients cj, main
constraint parameters aij, and right-hand
sides bi.

7-30 Repeat Exercise 7–29 for the LP instance of
(7.29).
7-31 Consider the 2-variable LP instance in
Figure 7.9 and equation (7.29).

(a) State the instance in the (LP) standard
form format above, fixing a = 1>4.

(b) Construct the basic solution correspond-
ing to x112 in the figure.

(c) Show that movement to figure solution
x122 can be understood as the simplex
 direction introducing the slack variable
on constraint x1 … 1 and that it is both
feasible and improving in your forulation
of (a).

(d) Show how similar simplex moves lead to
figure points x132 then x142.

(e) Explain how this suggests that simplex
can take exponentially many iterations to
compute an optimum for simple instances
like (7.29).

(f) How can this exponential behavior on
specific instances be reconsiled with the
generally excellent performance of the
simplex algorithm on most LPs?

Bazaraa, Mokhtar, John J. Jarvis, and Hanif D.
Sherali (2010), Linear Programming and Network
Flows, John Wiley, Hoboken, New Jersey.

Bertsimas, Dimitris and John N. Tsitklis (1997),
Introduction to Linear Optimization. Athena Sci-
entific, Nashua, New Hampshire.

Griva, Igor, Stephen G. Nash, and Ariela Sofer
(2009), Linear and Nonlinear Optimization,
SIAM, Philadelphia, Pennsylvania.

Martin, R. Kipp (1999), Large Scale Linear
and Integer Optimization, Kluwer Academic,
Boston, Massachusetts.

rEfErENcES

This page intentionally left blank

437

▪ ▪ ▪ ▪ ▪
Chapter 8

Multiobjective
Optimization and Goal

Programming
Most of the methods of this book address optimization models with a single objective
function—a lone criterion to be maximized or minimized. Although practical prob-
lems almost always involve more than one measure of solution merit, many can be
modeled quite satisfactorily with a single cost or profit objective. Other criteria are
either represented as constraints or weighted in a composite objective function to
produce a model tractable enough for productive analysis.

Other applications—especially those in the public sector—must simply be treated
as multiobjective. When goals cannot be reduced to a common scale of cost or benefit,
trade-offs have to be addressed. Only a model with multiple objective functions is satis-
factory, even though analysis will almost certainly become more challenging.

This chapter introduces the key notions and approaches available when such
multiobjective analysis is required. Emphasis is on efficient solutions, which are
optimal in a certain multiobjective sense, and goal programming, which is the most
commonly employed technique for dealing with multiobjective settings.

8.1 Multiobjective optiMization Models

As usual, we begin our investigation of multiobjective optimization with some
examples. In this section we formulate three cases illustrating the broad range of
applications requiring multiobjective analysis. All are based on real contexts docu-
mented in published reports.

application 8.1: bank three investMent

Every investor must trade off return versus risk in deciding how to allocate his or
her available funds. The opportunities that promise the greatest profits are almost
always the ones that present the most serious risks.

Commercial banks must be especially careful in balancing return and risk because
legal and ethical obligations demand that they avoid undo hazards. Yet their goal as a
business enterprise is to maximize profit. This dilemma leads naturally to multiobjective
optimization of investment that includes both profit and risk criteria.

438 Chapter 8 Multiobjective Optimization and Goal Programming

Bank Three Example Objectives
The first goal of any private business is to maximize profit. Using rates of return
from Table 8.1, this produces objective function

max 0.040x2 + 0.045x3 + 0.055x4 + 0.070x5 1profit2
 + 0.105x6 + 0.085x7 + 0.092x8

It is less clear how to quantify investment risk. We employ two common ratio measures.
One is the capital-adequacy ratio, expressed as the ratio of required capital for

bank solvency to actual capital. A low value indicates minimum risk. The “required
capital” rates of Table 8.1 approximate U.S. government formulas used to compute
this ratio, and Bank Three’s present capital is $20 million. Thus we will express a
second objective as

min 120 10.005x2 + 0.040x3 + 0.050x4 + 0.075x5 1capital@adequacy2
 + 0.100x6 + 0.100x7 + 0.100x82

Another measure of risk focuses on illiquid risk assets. A low risk asset/capital
ratio indicates a financially secure institution. For our example, this third measure of
success is expressed as

min 1
20 1x6 + x7 + x82 1risk@asset2

1Based on J. L. Eatman and C. W. Sealey, Jr. (1979), “A Multiobjective Linear Programming Model
for Commercial Bank Balance Sheet Management,” Journal of Bank Research, 9, 227–236.

table 8.1 Bank Three Investment Opportunities

Investment
Category, j

Return
Rate (%)

Liquid
Part (%)

Required
Capital (%)

Risk
Asset?

1: Cash 0.0 100.0 0.0 No
2: Short term 4.0 99.5 0.5 No
3: Government: 1 to 5 years 4.5 96.0 4.0 No
4: Government: 5 to 10 years 5.5 90.0 5.0 No
5: Government: over 10 years 7.0 85.0 7.5 No
6: Installment loans 10.5 0.0 10.0 Yes
7: Mortgage loans 8.5 0.0 10.0 Yes
8: Commercial loans 9.2 0.0 10.0 Yes

Our investment example1 adopts this multiobjective approach to a fictitious
Bank Three. Bank Three has a modest $20 million capital, with $150 million in demand
deposits (checking accounts) and $80 million in time deposits (savings accounts and
 certificates of deposit).

Table 8.1 displays the categories among which the bank must divide its capital
and deposited funds. Rates of return are also provided for each category together with
other information related to risk.

We model Bank Three’s investment decisions with a decision variable for each
category of investment in Table 8.1:

xj ! amount invested in category j 1$ million2 j = 1, c, 8

8.1 Multiobjective Optimization Models 439

Bank Three Example Model
To complete a model of Bank Three’s investment plans, we must describe the
 relevant constraints. Our example will assume five types:

1. Investments must sum to the available capital and deposit funds.
2. Cash reserves must be at least 14% of demand deposits plus 4% of time deposits.
3. The portion of investments considered liquid (see Table 8.1) should be at least 47% of

demand deposits plus 36% of time deposits.
4. At least 5% of funds should be invested in each of the eight categories, for diversity.
5. At least 30% of funds should be invested in commercial loans, to maintain the bank’s

community status.

Combining the 3 objective functions above with these 5 systems of constraints
completes a multiobjective linear programming model of Bank Three’s investment
problem:

max 0.040x2 + 0.045x3 + 0.055x4 + 0.070x5 1profit2
 + 0.105x6 + 0.085x7 + 0.092x8

min 120 10.005x2 + 0.040x3 + 0.050x4 + 0.075x5 1capital@adequacy2
 + 0.100x6 + 0.100x7 + 0.100x82

min 120 1x6 + x7 + x82 1risk@asset2
s.t. x1 + c + x8 = 120 + 150 + 802 1invest all2

 x1 Ú 0.1411502 + 0.041802 1cash reserve2
(8.1)

 1.00x1 + 0.995x2 + 0.960x3 + 0.900x4 1liquidity2
 + 0.850x5 Ú 0.4711502 + 0.361802

 xj Ú 0.05120 + 150 + 802 for all j = 1, c, 8 1diversification2
 x8 Ú 0.30120 + 150 + 802 1commercial2
 x1, c, x8 Ú 0

2Based on N. Singh and S. K. Agarwal (1983), “Optimum Design of an Extended Octagonal Ring by
Goal Programming,” International Journal of Production Research, 21, 891–898.

application 8.2: dynaMoMeter ring design

Multiobjective optimization also occurs in the engineering design of almost any
product or service. Competing performance measures must be balanced to choose
a best design.

We will illustrate with the design of a simple mechanical part, an octagonal ring
used in dynamometer instrumentation of machine tools.2 Figure 8.1 depicts the critical
design variables:

 w! width of the ring 1in centimeters2
 t! thickness of the outer surface 1in centimeters2
 r! radius of the two openings 1in centimeters2

It also shows upper and lower limits allowed for the three dimensions.

440 Chapter 8 Multiobjective Optimization and Goal Programming

Dynamometer Ring Design Model
To model this machine part optimization, we must characterize performance in
terms of decision variables w, t, and r. One consideration is sensitivity. We would
like the instrument to be as sensitive as possible. Analysis of the relevant strains and
deflections shows that sensitivity can be represented as

 max
0.7r

Ewt2 1sensitivity2

where E = 2.1 * 106, Young’s modulus of elasticity for the ring material.
Another measure of effectiveness is rigidity. Increased rigidity produces greater

accuracy. Again considering critical strains and deflections, rigidity can be modeled as

 max
Ewt3

r3 1rigidity2

Combining these two objectives with upper and lower bounds on the variables
yields a multiobjective optimization model of our ring design problem:

 max
0.7r

Ewt2 1sensitivity2

 max
Ewt3

r3 1rigidity2
(8.2)

 5.0 … w … 10.0
 0.1 … t … 2.0
 1.25 … r … 20.0

Notice that this model is a multiobjective nonlinear program. It can, however, be
handled by linear programming if we change variables to ln1w2, ln1t2, and ln1r2
and maximize the logarithms of the two objective functions (see Section 17.10).

t ++

5.00 … w … 10.00

0.10 … t … 2.00

1.25 … r … 20.00

w

r

Figure 8.1 Dynamometer Ring Design Example

application 8.3: hazardous Waste disposal

Many, perhaps most, government planning problems are multiobjective because
they involve competing interests and objectives that are difficult to quantify in

8.1 Multiobjective Optimization Models 441

monetary terms. We illustrate with the planning of disposal sites for dangerous
 nuclear wastes.3

Figure 8.2 depicts the source points and potential disposal sites we assume in our
fictitious version of the problem. Waste material is generated at the seven sources as
nuclear power plants and other reactors use up fuel. The goal of the study is to choose
2 of the 3 possible disposal sites to receive the waste.

1

2

3
4

5

6

7

1

2

3

= possible disposal
 site

= waste source

Figure 8.2 Hazardous Waste Example Sources and Disposal Sites

When the system is ready, wastes will be trucked from sources to disposal sites over
the public highway system. Conflicting objectives arise in routing materials to the sites.
Costs will be reduced, and in-transit time of wastes minimized if we ship along shortest
routes from source to disposal site. But population densities must also be considered.
Routes through densely populated areas threaten more people and incur greater risk of
traffic mishaps.

Table 8.2 shows parameters

si! amount of waste expected to be produced at source i

di, j, k! distance from source i to site j along route k

pi, j, k! population along route k from source i to site j

for 2 possible routes from each source i to each possible disposal site. We wish to min-
imize some combination of distance and population to select the best sites and routes.

3Based on C. ReVelle, J. Cohon, and D. Shobrys (1991), “Simultaneous Siting and Routing in the
Disposal of Hazardous Wastes,” Transportation Science, 25, 138–145.

442 Chapter 8 Multiobjective Optimization and Goal Programming

Hazardous Waste Disposal Model
To model this shipping and site selection problem, we require the two sorts of deci-
sion variables typical of facility location models:

yi ! e1 if site i is opened
0 otherwise

xi,j,k ! amount shipped from source i to site j along route k

Then a multiobjective integer linear programming model is

min a
7

i = 1
 a

3

j = 1
 a

2

k = 1
 di,j,k xi,j,k 1distance2

min a
7

i = 1
 a

3

j = 1
 a

2

k = 1
 pi,j,k xi,j,k 1population2

 s.t. a
3

j = 1
 a

2

k = 1
 xi,j,k = si i = 1, c, 7 1sources2

(8.3)

 a
3

j = 1
 yj = 2 12 sites2

 xi,j,k … siyj i = 1, c, 7; j = 1, c, 3; k = 1, 2

 xi,j,k Ú 0 i = 1, c, 7; j = 1, c, 3; k = 1, 2

 yj = 0 or 1 j = 1, c, 3

The first main constraints assure that all material arising at each source is shipped
somewhere, and the second selects 2 sites. Switching constraints makes sure that a
site is opened before any material can be shipped there.

table 8.2 Hazardous Waste Example

Source
i

Site j = 1 Site j = 2 Site j = 3
Supply

k = 1 k = 2 k = 1 k = 2 k = 1 k = 2

1 Distance 200 280 850 1090 900 1100 1.2
Population 50 15 300 80 400 190

2 Distance 400 530 730 860 450 600 0.5
Population 105 60 380 210 350 160

3 Distance 600 735 550 600 210 240 0.3
Population 300 130 520 220 270 140

4 Distance 900 1060 450 570 180 360 0.7
Population 620 410 700 430 800 280

5 Distance 600 640 390 440 360 510 0.6
Population 205 180 440 370 680 330

6 Distance 900 1240 100 120 640 800 0.1
Population 390 125 80 30 800 410

7 Distance 1230 1410 400 460 1305 1500 0.2
Population 465 310 180 105 1245 790

8.2 Efficient Points and the Efficient Frontier 443

8.2 eFFicient points and the eFFicient Frontier

The familiar notion of an “optimal” solution becomes somewhat murky when an
optimization model has more than one objective function. A solution that proves
best by one criterion may rate among the poorest on another. In this section we
develop the concept of efficient points and the efficient frontier, also known as
Pareto optima and nondominated points, which help to characterize “best” feasible
solutions in multiobjective models.

Efficient Points
A feasible solution to an optimization model cannot be best if there are others that
equal or improve on it by every measure. Efficient points are ones that cannot be
dominated in this way.

A feasible solution to a multiobjective optimization model
is an efficient point if no other feasible solution scores at least as well in all
objective functions and strictly better in one.

Definition 8.1

Efficient points are also termed Pareto optimal and nondominated.
We can illustrate with the dynamometer ring design model of Section 8.1:

 max
0.7r

12.1 * 10621wt22 1sensitivity2

(8.4)

max
12.1 * 10621wt32

r3 1rigidity2
 5.0 … w … 10.0

 0.1 … t … 2.0

 1.25 … r … 20.0

Consider solution 1w112, t112, r 1122 = 15, 0.1, 202. No feasible point has higher sen-
sitivity, because the sole variable r in the numerator of the sensitivity objective is
at its upper bound, and both w and t in the denominator are at lower bounds. But
there are feasible points with higher rigidity; we need only decrease radius r. Even
though it can be improved in one objective, the point is efficient. Any such change to
improve rigidity results in a strict decrease in sensitivity.

Contrast with the solution 1w122, t122, r 1222 = 17, 1, 32. Its values in the two
objective functions are

sensitivity =
0.7132

12.1 * 10621721122 = 1.429 * 10-7

 rigidity =
12.1 * 10621721123

1323 = 5.444 * 105

This feasible point cannot be efficient because it is dominated by 1w132, t132, r 1322 =
17, 0.9, 2.72. The latter has the same rigidity and superior sensitivity 1.587 * 10-7.

444 Chapter 8 Multiobjective Optimization and Goal Programming

Identifying Efficient Points Graphically
When a multiobjective optimization model has only two decision variables, we can
see graphically whether points are efficient. Consider, for example, the simple mul-
tiobjective linear program

 max + 3x1 + 1x2

(8.5)

max - 1x1 + 2x2

s.t. x1 + x2 … 4

 0 … x1 … 3

 0 … x2 … 3

plotted in Figure 8.3. Feasible solution x = 12, 22 of part (a) is efficient and the
x = 13, 02 of part (b) is not.

1

2

3

3

4

1 2

3

4

better points

dominated x = (3, 0)

x2

x1

(b) Dominated Point

1

2

3

4

1 2 3 4

better points

x2

x1

(a) Efficient Point

efficient x = (2, 2)

Figure 8.3 Graphical Characterization
of Efficient Points

8.2 Efficient Points and the Efficient Frontier 445

How can we be sure? In each case we have plotted the contours of the two
objective functions that pass through the point. Other solutions with equal or better
values of both objective functions must belong to the dark shaded areas bounded
by those contours. In part (a) no such point is feasible. In part (b), others, such as
x= = 13, 12, satisfy all constraints and thus dominate.

Efficient points show graphically as ones for which no other
feasible point lies in the region bounded by contours of the objective functions
through the point, which contains every solution with equal or superior value
of all objectives.

Principle 8.2

exaMple 8.1: identiFying eFFicient points

Determine whether each of the following points is efficient in model (8.5) and
Figure 8.3.

(a) x = 11, 32
(b) x = 11, 12
Solution: We apply principle 8.2 in the following plots:

1

1

2

2 3

3

4

4

better points

x = (1, 3)

x2

x1

(a)

1

1

2

2 3

3

4

4

better points

x = (1, 1)

x2

x1

(b)

(a) In plot (a), the set of possibly dominant points, which is bounded by the con-
tours, contains no other feasible point. Solution x = 11, 32 is efficient.

(b) In plot (b), the set of possibly dominant points, which is bounded by the con-
tours, contains numerous feasible solutions. Solution x = 11, 12 cannot be efficient.

Efficient Frontier
When confronting a multiobjective optimization model, it seems natural to demand
an efficient solution. But we have seen that very simple examples can have many
efficient points. Some will score better by one criterion; others will evaluate supe-
rior by another.

To deal with such conflicts, we would often like to generate and consider a
range of efficient solutions. The entire set is called the efficient frontier.

446 Chapter 8 Multiobjective Optimization and Goal Programming

Plots in Objective Value Space
The term “efficient frontier” comes from an alternative way to plot solutions to mul-
tiobjective models. Instead of using axes corresponding to the decision variables, we
plot in objective value space with axes for the different objective functions.

Figure 8.4 illustrates for our dynamometer ring design example (8.4). Every fea-
sible solution for the model corresponds to a point in this plot, with horizontal dimen-
sion equal to its sensitivity, and vertical equal to its rigidity. For example, efficient point
1w112, t112, r 1122 = 15, 0.1, 202 produces point 11.333 * 10-4, 1.3122 at the lower right.
Dominated point 1w122, t122, r 1222 = 17, 1, 32 graphs as 11.429 * 10-7, 5.444 * 1052.

The efficient frontier of a multiobjective optimization model
is the collection of efficient points for the model.

Definition 8.3

0.1

1

10

100

1,000

10,000

100,000

1e+06

1e+07

1e+08

1e-08 1e-07 1e-06 1e-05 0.0001

ri
gi

di
ty

sensitivity

ef�cient frontier

values for w = 7, t = 1, r = 3

values for w = 5, t = 0.1, r = 20

values for w = 10, t = 2, r = 1.25

+

Figure 8.4 Efficient Frontier for Dynamometer Ring Application

The efficient frontier forms the boundary of the region defined by objective
values for feasible points. Every efficient point lies along this boundary because no
further progress is possible in one objective function without degrading another. On
the other hand, dominated points plot in the interior; other feasible solutions along
the boundary are equal in all objectives and superior in at least one.

Constructing the Efficient Frontier
When a multiobjective optimization model has only a few objectives, it is often practical
to construct efficient frontier curves such as Figure 8.4. We have only to parametrically
vary specified levels of all but one objective while optimizing the other.

The set of points on the efficient frontier can be constructed by
repeated optimization. New constraints enforce achievement levels for all but
one objective, and the other is treated as a single objective.

Principle 8.4

8.2 Efficient Points and the Efficient Frontier 447

The process parallels the parametric sensitivity analysis of Section 6.7.
Table 8.3 details the computations used to construct the efficient frontier

of the dynamometer ring example in Figure 8.4. We begin by maximizing the two
objectives separately. Maximizing sensitivity without regard to rigidity produces the
first point 11.333 * 10-4, 1.3122 in the table. Then maximizing rigidity without con-
sidering sensitivity yields to the last point 11.042 * 10-8, 8.6 * 1072.

table 8.3 Efficient Frontier of the Dynamometer Ring Application

Sensitivity
Objective

Rigidity
Objective

Efficient Point

w t r

1.333 * 10-4 1.312 5.00 0.100 20.00

6.776 * 10-5 101 5.00 0.100 10.16

3.145 * 10-5 102 5.00 0.100 4.72

1.460 * 10-5 103 5.00 0.100 2.19

5.510 * 10-6 104 5.00 0.123 1.25

1.187 * 10-6 105 5.00 0.265 1.25

2.557 * 10-7 106 5.00 0.571 1.25

5.510 * 10-8 107 5.00 1.230 1.25

1.042 * 10-8 8.6 * 107 10.00 2.000 1.25

We now know the range of relevant rigidity values. The remaining points in
Table 8.3 are obtained by maximizing sensitivity subject to a constraint on rigidity.
For example, the values for rigidity 103 result from solving

max
0.7r

12.1 * 10621wt22 1sensitivity2

s.t.
12.1 * 10621wt32

r3 Ú 103 1rigidity2
 5.0 … w … 10.0
 0.1 … t … 2.0
 1.25 … r … 20.0

exaMple 8.2: constructing the eFFicient Frontier

Return to example model (8.5) of Figure 8.3 and construct an objective value space
diagram of its efficient frontier like the one in Figure 8.4.

Solution: We begin by separately maximizing the first and second objectives to obtain
solutions with objective values 110, -12 and (3,6), respectively. Now solving the LP

max +3x1 + 1x2

s.t. -1x1 + 2x2 Ú u

 x1 + x2 … 4
 0 … x1 … 3
 0 … x2 … 3

448 Chapter 8 Multiobjective Optimization and Goal Programming

8.3 preeMptive optiMization and Weighted
suMs oF objectives

In a typical multiobjective model of realistic size, especially one with more than two
objectives, the range of efficient solutions can be enormous. Explicit construction of
an efficient frontier like Figure 8.4 is computationally impractical.

To obtain useful results, we must reduce the multiobjective model to a sequence
of single objective optimizations. In this section, we explore two of the most straight-
forward ways: preemptive (or lexicographic) optimization and weighted sums.

Preemptive Optimization
Although a model may have several objective criteria, they are rarely of equal
importance. Preemptive optimization takes them in priority order.

for several values of u ∈ [-1, 6] produces the following plot:

-1

0

1

2

3

4

5

6

3 4 5 6 7 8 9 10

se
co

nd
 o

bj
ec

ti
ve

�rst objective

ef�cient frontier

Preemptive or lexicographic optimization performs multiob-
jective optimization by considering objectives one at a time. The most import-
ant is optimized; then the second most important is optimized subject to a
requirement that the first achieve its optimal value; and so on.

Definition 8.5

Preemptive Optimization of the Bank Three Application
We can illustrate with the Bank Three application, model (8.1). That model has
three objectives: profit, capital-adequacy ratio, and risk-asset ratio.

Suppose we decide that the third, risk-asset, objective is the single most
important one. Preemptive optimization would then begin by minimizing risk-asset
ratio in the single objective linear program

min 120 1x6 + x7 + x82 1risk@asset2
s.t. x1 + c + x8 = 20 + 150 + 80 1invest all2

 x1 Ú 0.1411502 + 0.041802 1cash reserve2
 1.00x1 + 0.995x2 + 0.960x3 + 0.900x4 1liquidity2
 + 0.850x5 Ú 0.4711502 + 0.361802

8.3 Preemptive Optimization and Weighted Sums of Objectives 449

 xj Ú 0.05120 + 150 + 802 for all j = 1, c, 8 1diversification2
 x8 Ú 0.30120 + 150 + 802 1commercial2
 x1, c, x8 Ú 0

An optimal solution allocates funds (in millions of dollars)

 x1
* = 100.0, x2

* = 12.5, x3
* = 12.5, x4

* = 12.5
(8.6)

x5
* = 12.5, x6

* = 12.5, x7
* = 12.5, x8

* = 75.0

with optimal risk-asset ratio 5.0, profit $11.9 million, and capital-adequacy ratio 0.606.
Next, we introduce a constraint keeping risk-asset ratio at the optimal 5.0 and

maximize the second priority, profit objective:

max 0.040x2 + 0.045x3 + 0.055x4 + 0.070x5 1profit2
 + 0.105x6 + 0.085x7 + 0.092x8

s.t. 120 1x6 + x7 + x82 … 5.0 1risk@asset2
 x1 + c + x8 = 20 + 150 + 80 1invest all2
 x1 Ú 0.1411502 + 0.041802 1cash reserve2
 1.00x1 + 0.995x2 + 0.960x3 + 0.900x4 1liquidity2
 + 0.850x5 Ú 0.4711502 + 0.361802

 xj Ú 0.05120 + 150 + 802 for all j = 1, c, 8 1diversification2
 x8 Ú 0.30120 + 150 + 802 1commercial2
 x1, c, x8 Ú 0

The result is (millions of dollars)

 x1
* = 24.2, x2

* = 12.5, x3
* = 12.5, x4

* = 12.5
(8.7)

x5
* = 88.3, x6

* = 12.5, x7
* = 12.5, x8

* = 75.0

with optimal risk-asset ratio still 5.0, but profit now $17.2 million, and capital-
a dequacy ratio 0.890.

Notice that the character of the optimum has changed significantly from solu-
tion (8.6). Considerable funds have been shifted from x1 = cash, to x5 = long-term
government bonds in order to increase profit.

Finally, we come to the capital-adequacy objective function. Imposing a new
constraint for profit, we solve

min 120 10.005x2 + 0.040x3 + 0.050x4 + 0.075x52 1capital@adequacy2
 + 0.100x6 + 0.100x7 + 0.100x8

s.t. 120 1x6 + x7 + x82 … 5.0 1risk@asset2
 0.040x2 + 0.045x3 + 0.055x4 + 0.070x5 1profit2
 + 0.105x6 + 0.085x7 + 0.092x8 Ú 17.2

 x1 + c + x8 = 20 + 150 + 80 1invest all2
 x1 Ú 0.1411502 + 0.041802 1cash reserve2

450 Chapter 8 Multiobjective Optimization and Goal Programming

 1.00x1 + 0.995x2 + 0.960x3 + 0.900x4 1liquidity2
 + 0.850x5 Ú 0.4711502 + 0.361802

 xj Ú 0.05120 + 150 + 802 for all j = 1, c, 8 1diversification2
 x8 Ú 0.30120 + 150 + 802 1commercial2
 x1, c, x8 Ú 0

This time solution (8.7) remains optimal. The capital-adequacy ratio cannot be
decreased without worsening other objectives.

exaMple 8.3: solving Multiobjective Models preeMptively

Consider the multiobjective mathematical program

max w1

max 2w1 + 3w2

s.t. w1 … 3

 w1 + w2 … 5

 w1, w2 Ú 0

Solve the model graphically by preemptive optimization, taking objectives in the
sequence given.

Solution: Graphic solution produces the following plot:

1

1

2

2 3

3

4

4

alternative
optima in �rst
maximization

extra constraint added
in second maximization

preemptive
optimum

w2

w1

A first optimization maximizes w1 subject to the given constraints. Any of the
solutions along the line segment from (3, 0) to (3, 2) is optimal.

Next, we impose an extra constraint

w1 Ú 3

and maximize the second objective. The result is final preemptive solution w = 13, 22.

8.3 Preemptive Optimization and Weighted Sums of Objectives 451

Preemptive Optimization and Efficient Points
One advantage of the preemptive approach to multiobjective optimization is that
it results in solutions that cannot be improved in one objective without degrading
another.

If each stage of preemptive optimization yields a single-objective
optimum, the final solution is an efficient point of the full multiobjective model.

Principle 8.6

The preemptive process requires that we try objective functions in turn, trying to
improve one without worsening the others. When we finish, no further improvement
is possible. As usual, infeasible and unbounded cases can produce complications, but
the typical outcome is an efficient point.

Preemptive Optimization and Alternative Optima
Although it usually will produce an efficient point, a moment’s reflection on the
preemptive optimization approach will reveal a major limitation.

After one objective function has been optimized in preemptive
processing of a multiobjective model, solutions obtained in subsequent stages
must all be alternative optima in the first.

Principle 8.7

That is, preemptive optimization places great emphasis on the first objective
addressed, with all later steps limited to alternative optima in the highest-priority
objective.

The Bank Three computations above showed considerable change from initial
optima (8.6) to final (8.7) because the first, risk-asset objective

min 1
20 1x6 + x7 + x82

admits many alternative optima among the unmentioned x1, c, x5. But with cases
where alternative optima are rare, the preemptive approach becomes essentially
one of optimizing a priority objective while ignoring all the others.

Weighted Sums of Objectives
An alternative scheme for dealing with multiobjective models that permits more
balanced handling of the objectives is simply to combine them in a weighted sum.

Multiple objective functions can be combined into a single
composite one to be maximized by summing objectives with positive weights
on maximizes and negative weights on minimizes. If the composite is to be
minimized, weights on maximize objectives should be negative, and those on
minimizes should be positive.

Principle 8.8

Signs orient all objectives in the same direction, and weights reflect their relative
importance.

452 Chapter 8 Multiobjective Optimization and Goal Programming

Weighted-Sum Optimization of the Hazardous Waste Application
Hazardous waste planning model (8.3):

min a
7

i = 1
 a

3

j = 1
 a

2

k = 1
 di, j, k xi, j, k 1distance2

min a
7

i = 1
 a

3

j = 1
 a

2

k = 1
 pi, j, k xi, j, k 1population2

s.t. a
3

j = 1
 a

2

k = 1
 xi, j, k = si i = 1, c, 7 1sources2

 a
3

j = 1
 yj = 2 12 sites2

xi, j, k … siyj i = 1, c, 7; j = 1, c, 3; k = 1, 2

 xi, j, k Ú 0 i = 1, c, 7; j = 1, c, 3; k = 1, 2

 yi = 0 or 1 j = 1, c, 3

illustrates a setting where weighted-sum analysis of a multiobjective model can
be usefully applied. The first objective minimizes the shipping distance to chosen
disposal sites. The second minimizes the population exposed along the way. Each
source is provided 2 alternative routes to each potential disposal site, one denoted
k = 1, emphasizing short distance, and the other k = 2, avoiding population.

exaMple 8.4: ForMing Weighted objectives

Form a single weighted-sum composite objective from each of the following col-
lections of objective functions. Indicate whether weights gi should be positive or
negative and whether the composite objective should be maximized or minimized.

(a) min +2w1 + 3w2 - 1w3
max +4w1 - 2w2
max + 1w2 + 1w3

(b) min +3w1 - 1w2
min +4w1 + 2w2 + 9w3

Solution: We apply principle 8.8 .

(a) Using weights g1, c, g3, the weighted objective is

max 12g1 + 4g22w1 + 13g1 - 2g2 + 1g32w2 + 1-1g1 + 1g32w3

This maximize composite form requires that g1 6 0, g2 7 0, and g3 7 0.

(b) Using weights g1 and g2, the weighted objective is

min 13g1 + 4g22w1 + 1-1g1 + 2g22w2 + 19g22w3

This minimize composite form requires that g1 7 0 and g2 7 0.

8.3 Preemptive Optimization and Weighted Sums of Objectives 453

Since both objectives minimize, we may produce a single composite objective
by applying weights g1, g2 7 0 and minimizing the result (principle 8.8):

min a
7

i = 1
 a

3

j = 1
 a

2

k = 1
 1g1di, j, k + g2 pi, j, k2xi, j, k 1composite2

Table 8.4 illustrates the impact for some different combinations of weights.
With comparatively high weight g1 on distance, the optimization routes almost
all along short routes k = 1. As population is given greater relative weight, activ-
ity shifts to the longer routes that avoid population except when the optimal
sites change at g1 = g2 = 10. Eventually, all shipping is along the safer routes.
Confronted with a range of such alternatives, decision makers could decide an
appropriate balance.

table 8.4 Weighting Objectives in the Hazardous Waste Application

Weight Ton-Miles
Total

Ton-Miles
Total

Ton-Population
Optimal

Sites

g1 g2 k = 1 k = 2

10 1 1155 0 1155 1334.5 1.3
10 5 754 591 1345 782.5 1.3
10 10 1046 404 1450 607.5 1.2
 5 10 440 1114 1554 533.0 1.3
 1 10 0 1715 1715 468.5 1.3

Weighted-Sum Optimization and Efficient Points
Although offering more flexibility in trading off objectives, using weighted totals
still assures an efficient solution.

If a single weighted-sum objective model derived from a mul-
tiobjective optimization as in 8.8 produces an optimal solution, the solution is
an efficient point of the multiobjective model.

Principle 8.9

To see why this is true, we need only consider the nature of a weighted-sum
objective:

 aweight
1

b aobjective
1 value

b + aweight
2

b aobjective
2 value

b + c

 + aweight
p

b aobjective
p value

b

With signs as in construction 8.8 , any solution that can improve in one objective
without degrading the others would also score better in the weighted objective.
Only an efficient point could be optimal.

454 Chapter 8 Multiobjective Optimization and Goal Programming

8.4 goal prograMMing

Multiobjective models of complex problems assume that we always want more
of everything—lower values of objectives being minimized at the same time as
higher values of criteria being maximized. Notice that this is independent of how
much we may already have achieved on one or another objective. For example, a
multiobjective model would keep the same priority or weight on a minimize cost
objective whether or not we already have in hand a solution with extraordinarily
low cost.

In this section, we explore the goal programming alternative, which is con-
structed in terms of target levels to be achieved rather than quantities to be maxi-
mized or minimized. It is probably more realistic to assume that the importance of
any criterion diminishes once a target level has been achieved. We will certainly see
that it is easier to implement. That is why goal programming is by far the most popu-
lar approach to finding good solutions in multicriteria optimization settings.

Goal or Target Levels
Goal program modeling of a multiobjective optimization begins by asking decision
makers to specify new data: goal or target levels for each of the criteria used to
evaluate solutions.

Goal or target levels specify the values of the criteria func-
tions in an optimization model that decision makers consider sufficient or
satisfactory.

Definition 8.10

Goal Form of Bank Three Application
To illustrate, return to our Bank Three application of Section 8.1.

max 0.040x2 + 0.045x3 + 0.055x4 + 0.070x5 1profit2
 + 0.105x6 + 0.085x7 + 0.092x8

min 120 10.05x2 + 0.040x3 + 0.050x4 + 0.075x52 1capital@adequacy2
 + 0.100x6 + 0.100x7 + 0.100x8

min 120 1x6 + x7 + x82 1risk@asset2
s.t. x1 + c + x8 = 120 + 150 + 802 1invest all2

 x1 Ú 0.1411502 + 0.041802 1cash reserve2
 1.00x1 + 0.995x2 + 0.960x3 + 0.900x4 1liquidity2
 + 0.85x5 Ú 0.4711502 + 0.361802

 xj Ú 0.05120 + 150 + 802 for all j = 1, c, 8 1diversification2
 x8 Ú 0.30120 + 150 + 802 1commerical2
 x1, c, x8 Ú 0

8.4 Goal Programming 455

Here solutions are evaluated on three criteria: profit, capital-adequacy ratio,
and risk-asset ratio. Assume that instead of seeking ever higher levels of the first
criterion and lower values of the last two, we set some goals:

 profit Ú 18.5

(8.8)

 capital@adequacy ratio … 0.8

 risk@asset ratio … 7.0

Then the problem might be specified in goal format as

goal 0.040x2 + 0.045x3 + 0.055x4 + 0.070x5 1profit2

(8.9)

 + 0.105x6 + 0.085x7 + 0.092x8 Ú 18.5

goal 120 10.05x2 + 0.040x3 + 0.050x4 + 0.075x52 1capital@adequacy2
 + 0.100x6 + 0.100x7 + 0.100x8 … 0.8

goal 120 1x6 + x7 + x82 Ú 7.0 1risk@asset2
s.t. x1 + c + x8 = 120 + 150 + 802 1invest all2

 x1 Ú 0.1411502 + 0.041802 1cash reserve2
 1.00x1 + 0.995x2 + 0.960x3 + 0.900x4 1liquidity2
 + 0.85x5 Ú 0.4711502 + 0.361802

 xj Ú 0.05120 + 150 + 802 for all j = 1, c, 8 1diversification2
 x8 Ú 0.30120 + 150 + 802 1commerical2
 x1, c, x8 Ú 0

Soft Constraints
Goals in statement (8.9) may be thought of as soft constraints.

Soft constraints such as the criteria targets of goal program-
ming specify requirements that are desirable to satisfy but which may still be
violated in feasible solutions.

Definition 8.11

The more familiar hard constraints still determine what solutions are feasible, leav-
ing the soft ones to influence which solutions are preferred.

Deficiency Variables
Once target levels have been specified for soft constraints, we proceed to a
more familiar mathematical programming formulation by adding constraints
that enforce goal achievement. However, we cannot just impose the constraint
that each objective meet its goal. There may be no solution that simultaneously
achieves the desired levels of all soft constraints. Instead, we introduce new defi-
ciency variables.

456 Chapter 8 Multiobjective Optimization and Goal Programming

In the 3-objective Bank Three application (8.9), we enforce goal levels (8.8)
with deficiency variables

d1! amount profit falls short of its goal

d2! amount capital-adequacy ratio exceeds its goal

d3! amount risk-asset ratio exceeds its goal

Expressing Soft Constraints in Mathematical Programs
Goal and other soft constraints can now be expressed in the usual (hard) mathe-
matical programming format with deficiency variables allowing violation.

Nonnegative deficiency variables are introduced to model
the extent of violation in goal or other soft constraints that need not be rig-
idly enforced. With a Ú target, the deficiency is the underachievement. With
a … target, it is the excess. With = soft constraints, deficiency variables are
included for both under- and overachievement.

Definition 8.12

Goal or soft constraints use nonnegative deficiency variables
to express a Ú target

1criterion function2 + 1deficiency variable2 Ú target value

and a … target

1criterion function2 - 1deficiency variable2 … target value

Equality-form soft constraints are modeled

 1criterion function2 - 1oversatisfaction deficiency variable2
 + 1undersatisfaction deficiency variable2 = target value

Principle 8.13

For example, the three goals in Bank Three model (8.9) lead to the following
main (and variable type) constraints:

0.040x2 + 0.045x3 + 0.055x4 + 0.070x5 1profit2
 + 0.105x6 + 0.085x7 + 0.092x8 + d1 Ú 18.5
1

20 10.005x2 + 0.040x3 + 0.050x4 + 0.075x5 1capital@adequacy2
 + 0.100x6 + 0.100x7 + 0.100x82 - d2 … 0.8
1

20 1x6 + x7 + x82 - d3 … 7.0 1risk@asset2
d1, d2, d3 Ú 0

The first keeps profit at least 18.5 or makes up the difference with deficiency variable
d1. The other two main constraints force the capital-adequacy and risk-asset ratios
below our target value unless the corresponding deficiency variables are nonzero.

Notice that nonnegativity constraints are required. We want the deficiency to
compute as zero if the target is achieved.

8.4 Goal Programming 457

Goal Program Objective Function: Minimizing
(Weighted) Deficiency
Having modeled undersatisfaction of goals with deficiency variables, we complete a
formulation by minimizing violation.

exaMple 8.5: ForMulating goal constraints

Return to the multiobjective model

max w1

max 2w1 + 3w2

s.t. w1 … 3

 w1 + w2 … 5

 w1, w2 Ú 0

of Example 8.3, and assume that instead of seeking to maximize the two criteria,
we decide to seek a target level of 2.0 on the first and 14.0 on the second. Introduce
deficiency variables and formulate new goal constraints to model these soft con-
straints as those of a linear program.

Solution: We apply construction 8.13 using deficiency variables

d1! undersatisfaction of the first goal

d2! undersatisfaction of the second goal

Then the new linear constraints are

w1 + d1 Ú 2.0

2w1 + 3w2 + d2 Ú 14.0

d1, d2 Ú 0

The objective in a goal programming model expresses the
desire to satisfy all goals as nearly as possible by minimizing a weighted sum of
the deficiency variables.

Principle 8.14

Often, all deficiency is weighted equally.

Goal Linear Program Model of the Bank Three Application
Using equal goal weights in our Bank Three application (8.9) produces the goal
linear program

min d1 + d2 + d3 1total deficiency2
s.t. 0.040x2 + 0.045x3 + 0.055x4 + 0.070x5 1profit2

 + 0.105x6 + 0.085x7 + 0.092x8 + d1 Ú 18.5

458 Chapter 8 Multiobjective Optimization and Goal Programming

 120 10.005x2 + 0.040x3 + 0.050x4 + 0.075x5 1capital@adequacy2
 + 0.100x6 + 0.100x7 + 0.100x82 - d2 … 0.8

 120 1x6 + x7 + x82 - d3 … 7.0 1risk@asset2
 x1 + c + x8 = 20 + 150 + 80 1invest all2

(8.10)

 x1 Ú 0.1411502 + 0.041802 1cash reserve2
 1.00x1 + 0.995x2 + 0.960x3 + 0.900x4 1liquidity2
 + 0.850x5 Ú 0.4711502 + 0.361802

 xj Ú 0.05120 + 150 + 802 for all j = 1, c, 8 1diversification2
 x8 Ú 0.30120 + 150 + 802 1commercial2
 x1, c, x8 Ú 0

 d1, d2, d3 Ú 0

The goals have been expressed with new constraints involving deficiency variables.
All original constraints are retained.

Alternative Deficiency Weights in the Objective
Table 8.5 shows an optimal solution to equal-weighted goal LP in column (1). Notice
how it seeks only the $18.5 million goal for profit and the 7.0 goal for risk-asset
ratio. Once corresponding deficiency variables d1 and d2 are driven to = 0.0, effort
can be directed toward the remaining capital-adequacy goal.

table 8.5 Goal Programming Solution of the Bank Three Example

(1)
Equal

Weights

(2)
Unequal
Weights

(3)
Preempt

Profit

(4)
Preempt

Profit, CA

(5)
Preempt
One Step

Profit goal weight 1 1 1 0 10,000
Cap-adequacy goal weight 1 10 0 1 100
Risk-asset goal weight 1 1 0 0 1
Extra constraints — — — d1 = 0 —
Profit 18.50 17.53 18.50 18.50 18.50
Deficiency, d1

* 0.00 0.97 0.00 0.00 0.00
Capital-adequacy ratio 0.928 0.815 0.943 0.919 0.919
Deficiency, d2

* 0.128 0.015 0.143 0.119 0.119
Risk-asset ratio 7.000 7.000 7.097 7.158 7.158
Deficiency, d3

* 0.000 0.000 0.097 0.158 0.158
Cash, x1

* 24.20 24.20 24.20 24.20 24.20
Short term, x2

* 16.03 48.30 12.50 19.73 19.73
Government: 1-5, x3

* 12.50 12.50 12.50 12.50 12.50
Government: 5-10, x4

* 12.50 12.50 12.50 12.50 12.50
Government: over 10, x5

* 44.77 12.50 46.37 37.91 37.91
Installment, x6

* 52.50 52.50 41.08 55.67 55.67
Mort gages, x7

* 12.50 12.50 12.50 12.50 12.50
Commercial, x8

* 75.00 75.00 88.36 75.00 75.00

8.4 Goal Programming 459

Preemptive Goal Programming
The preemptive optimization of Section 8.4 (definition 8.5) takes objective func-
tions in order: optimizing one, then a second subject to the first achieving its opti-
mal value, and so on. A similar preemptive goal programming approach is often
adopted after criteria have been modeled as goals.

exaMple 8.6: ForMulating goal prograMs

Assigning equal weights to violations of the two goals, formulate the goal linear
program corresponding to the constraints and target values of Example 8.5.

Solution: Including the goal constraints of Example 8.5 and minimizing total
 deficiency as in construction 8.14 produces the goal linear program

min d1 + d2

s.t. w1 + d1 Ú 2.0

 2w1 + 3w2 + d2 Ú 14.0

 w1 … 3

 w1 + w2 … 5

 w1, w2 Ú 0

 d1, d2 Ú 0

Notice that all original constraints have been retained.

There is no requirement that deficiency weights must be equal. In our Bank
Three example, the magnitude of the capital-adequacy ratio is much smaller than
that of the other two objectives. Thus better results might be obtained by a different
weighting that scales deficiencies more equally.

Column (2) of Table 8.5 shows the effect of multiplying the capital adequacy
weight by 10. Now the profit slips below its $18.5 million goal (to $17.53 million), but
the capital-adequacy ratio deficiency is reduced.

Preemptive or lexicographic goal programming considers goals
one at a time. Deficiency in the most important is minimized; then deficiency in
the second most important is minimized subject to a requirement that the first
achieve its minimum; and so on.

Definition 8.15

Preemptive Goal Programming of the Bank Three Application
Columns (3) and (4) of Table 8.5 illustrate this preemptive variant of goal pro-
gramming. The first was obtained by focusing entirely on the profit goal. Using the
 objective function

min d1

460 Chapter 8 Multiobjective Optimization and Goal Programming

we concern ourselves only with achieving the desired profit of $18.5 million. Column (3)
shows a distribution of investments that achieves that goal, albeit at the cost of violating
both the others.

Now we turn to the capital-adequacy ratio goal. After adding the extra
constraint

d1 = 0

to keep the profit goal fully satisfied, we address capital adequacy with objective
function

min d2

The result [column (4) of Table 8.5] shifts investments to improve the capital-ade-
quacy ratio while continuing to achieve a profit of $18.5 million.

To complete the preemptive goal programming solution of this example, we
should now address the last risk-asset ratio objective by

min d3

subject to extra constraints

d1 = 0.0, d2 = 0.119

The effect is to seek a solution coming closer to the risk-asset ratio goal without
losing ground on either of the other two. For this example the resulting solution is
the same as column (4).

exaMple 8.7: doing preeMptive goal prograMMing
sequentially

Return to the weighted goal program of Example 8.6.

(a) Formulate the first model to be solved if we wish to give highest priority to
fulfilling the first goal.

(b) Assuming that the first goal can be completely achieved in the model of part (a),
formulate a second model to seek satisfaction of the second goal subject to satisfying
the first.

Solution: We execute optimization sequence 8.15 .

(a) The first model to be solved emphasizes deficiency in goal 1:

min d1

s.t. w1 + d1 Ú 2.0

 2w1 + 3w2 + d2 Ú 14.0

 w1 … 3

 w1 + w2 … 5

 w1, w2 Ú 0

 d1, d2 Ú 0

8.4 Goal Programming 461

Preemptive Goal Programming by Weighting the Objective
If a given model has a number of objective functions (or goals), preemptive goal
programming in the successive optimization manner of principle 8.15 can become
rather tedious. Fortunately, the same effect can be achieved in a single optimization
by choosing appropriate weights.

(b) Assuming that deficiency in the first goal can be completely eliminated, the
second optimization to be solved is

min d2

s.t. w1 + d1 Ú 2.0

 2w1 + 3w2 + d2 Ú 14.0

 w1 … 3

 w1 + w2 … 5

 w1, w2 Ú 0

 d2 Ú 0

 d1 = 0

New constraint d1 = 0 requires that the first goal be fully satisfied. Within that
limitation, we minimize violation of the second goal.

Preemptive goal programming can be accomplished in a single
step by solving with an objective function that puts great weight on the defi-
ciency in the most important goal, less weight on the deficiency in the second
goal, and so on.

Principle 8.16

We may implement the profit first, capital-adequacy ratio second, risk-asset
ratio third prioritization of our Bank Three goal programming model (8.10) in this
way by using the objective function

min 10,000d1 + 100d2 + 1d3 1preemptive@weighted deficiency2
Column (5) of Table 8.5 shows that this weighting achieves the same solution as the
one obtained sequentially in column (4).

Practical Advantage of Goal Programming
in Multiobjective Problems
Although the same techniques can be used for any soft constraints, we have seen
from our treatment of the Bank Three application how goal programming can pro-
vide a practical tool for dealing with multiobjective problem settings. If decision
makers can be persuaded to specify target levels for their various objectives—and
often that is not easy—modeling as a goal LP or ILP or NLP reduces the multiob-
jective analysis to standard mathematical programming form.

462 Chapter 8 Multiobjective Optimization and Goal Programming

exaMple 8.8: doing preeMptive goal prograMMing
With Weights

Use appropriate weights to formulate a single goal program that implements the
preemptive priority sequence in the example of Example 8.7.

Solution: We apply construction 8.16 . Using multiplier 100 on the first deficiency
and 1 on the second assures that every effort will be made to fulfill the first goal
before the second is considered. The result is the goal program

min 100d1 + d2

s.t. w1 + d1 Ú 2.0

 2w1 + 3w2 + d2 Ú 14.0

 w1 … 3

 w1 + w2 … 5

 w1, w2 Ú 0

 d1, d2 Ú 0

Goal programming is the most popular approach to dealing
with multiobjective optimization problems because it reduces complex multi-
objective trade-offs to a standard, single-objective mathematical program in a
way that decision makers often find intuitive.

Principle 8.17

Goal Programming and Efficient Points
We have seen in Section 8.2 that efficient points (definition 8.1) provide the clos-
est analog to an optimal solution in multiobjective settings because they cannot be
improved in one objective without degrading another. Unfortunately, goal program-
ming reformulation of a multiobjective model cannot always guarantee a solution
with this desirable property.

If a goal program has alternative optimal solutions, some of
them may not be efficient points of the corresponding multiobjective optimi-
zation model.

Principle 8.18

To see the difficulties that can occur, suppose that we modify Bank Three goal
LP (8.10) by ignoring the capital-adequacy objective. The result is the two-goal form

min d1 + d3 1total deficiency2
s.t. 0.04x2 + 0.045x3 + 0.055x4 + 0.070x5 1profit2

 + 0.105x6 + 0.085x7 + 0.092x8 + d1 Ú 18.5

 + 10.100x6 + 0.100x7 + 0.100x82 - d2 … 0.8

 120 1x6 + x7 + x82 - d3 … 7.0 1risk@asset2

8.4 Goal Programming 463

 x1 + c + x8 = 120 + 150 + 802 1invest all2

(8.11)

 x1 Ú 0.1411502 + 0.041802 1cash reserve2
 1.00x1 + 0.995x2 + 0.960x3 + 0.900x4 1liquidity2

 + 0.850x5 Ú 0.4711502 + 0.361802

 xj Ú 0.05120 + 150 + 802 for all j = 1, c, 8 1diversification2
 x8 Ú 0.30120 + 150 + 802 1commercial2
 x1, c, x8 Ú 0

 d1, d3 Ú 0

Solving gives the goal programming optimum

 x1
* = 24.2, x2

* = 12.5, x3
* = 12.5, x4

* = 12.5
(8.12)

x5
* = 48.3, x6

* = 44.35, x7
* = 12.5, x8

* = 83.15

with profit $18.5 million and risk-asset ratio 7.00.
Both goals are satisfied completely. Still, solution (8.12) is not efficient because

either of the objectives can be improved without worsening the other. For example,
the efficient solution (an alternative goal program optimum)

 x1
* = 24.2, x2

* = 12.5, x3
* = 12.5, x4

* = 12.5
(8.13)

x5
* = 51.33, x6

* = 49.47, x7
* = 12.5, x8

* = 75.0

continues to produce $18.5 million in profit but reduces the risk-asset ratio to 6.849.
What makes such nonefficient goal programming solutions occur? A moment’s

reflection will reveal that the problem is goals that are fully satisfied. Both objectives
achieved their target values in (8.12). Once such a solution drives the corresponding
deficiency variable = 0, there is nothing in the goal programming formulation to
encourage further improvement. Progress stops without reaching an efficient point.

exaMple 8.9: understanding noneFFicient goal prograM
solutions

Consider the simple multiobjective optimization model

min w1

max w2

s.t. 0 … w1 … 2

 0 … w2 … 1

(a) Introduce deficiency variables to formulate a goal program with target values
1 for the first objective function and 2 for the second.

(b) Show that 1w1, w22 = 11, 12 is optimal in the goal program of part (a) but not
efficient in the original multiobjective form.

(c) Show that 1w1, w22 = 10, 12 is also optimal in the goal program of part (a) but
that it is efficient in the original multiobjective form.

464 Chapter 8 Multiobjective Optimization and Goal Programming

Modified Goal Program Formulation to Assure Efficient Points
In many applications, model constraints and objectives are so complex that
goal programming’s potential for producing non-efficient points never arises.
Fortunately, there is an easy correction when it is a concern.

Solution:

(a) Using deficiency variables d1 in the first objective and d2 in the second, the
required goal program is

min d1 + d2

s.t. w1 - d1 … 1

 w2 + d2 Ú 2

 0 … w1 … 2

 0 … w2 … 1

 d1, d2 Ú 0

(b) At solution 1w1, w22 = 11, 12, the first goal is satisfied 1d1 = 02 and the sec-
ond misses by d2 = 2 - 1 = 1. However, no feasible solution can make w2 7 1,
so the solution is optimal in the goal program.

Even though this solution is optimal in the goal program, it is not efficient. We
may feasibly make the first objective less that 1.0 while retaining 1.0 in the second.

(c) The solution 1w1, w22 = 10, 12 is feasible and achieves the same minimum
total deficiency as the solution of (b). But this alternative optimum is efficient.

To assure that goal programming treatment of a multiobjective
optimization yields an efficient point, we need only add a small positive multi-
ple of each original minimize objective function to the goal program objective
and subtract the same multiple of each original maximize.

Principle 8.19

We may illustrate with a modified Bank Three goal program (8.11). Efficient
solution (8.13) results when we change the goal program objective to

min d1 + d3

 - 0.00110.040x2 + 0.045x3 + 0.055x4 + 0.070x5 + 0.105x6

 + 0.085x7 + 0.092x82 +
0.001

20
 1x6 + x7 + x82

Multiple 0.001 of the maximize profit objective has been subtracted and the same
multiple of the risk-asset ratio added to the standard deficiency objective.

For the same reason that weighted-sum approaches produce efficient solutions
(principle 8.9), any result from this modified goal program can be optimal only if
no original objective can be improved without degrading another. Still, the underly-
ing goal program resolution of the multiple objectives will not be affected as long as
the weight on original objectives is kept small.

 Exercises 465

exaMple 8.10: Making goal prograMs produce eFFicient
solutions

Produce a revised version of the goal program in Example 8.9(a) that must yield an
efficient solution in the original multiobjective optimization.

Solution: Following principle 8.19 , we introduce a small multiple of the original
objective functions. Using multiplier 0.001, the result is

min d1 + d2 + 0.0011w12 - 0.0011w22
s.t. w1 - d1 … 1

 w2 + d2 Ú 2

 0 … w1 … 2

 0 … w2 … 1

 d1, d2 Ú 0

The multiplier is positive for the first, minimize objective, and negative on the
maximize objective. The goal program objective of minimizing deficiency is still
dominant, but new terms now assure that alternative optima will resolve to effi-
cient points.

ExERCISES

8-1 The sketch that follows shows the District 88
river system in the southwestern United States.

R1 R2

irrigationcommunities

hydroelectric(20% loss)

All water arises at mountain reservoir R1. The
 estimated flow is 294 million acre-feet. At least 24
million acre-feet of the water is contracted to go
directly from R1 to nearby communities, but the
communities would accept as much as could be
supplied. The remainder flows through the desert to
a second reservoir, R2, losing 20% to evaporation
along the way. Some water at R2 can be allocated
for irrigation of nearby farms. The remainder flows
over a hydroelectric dam and passes downstream.
To maintain the equipment, the flow over the
dam must be at least 50 million acre-feet. District
88 sells water to communities at $0.50 per acre-
foot and to irrigation farmers at $0.20 per acre
foot. Water passing through the hydroelectric dam
earns $0.80 per acre-foot. The district would like to

maximize both water supplied for irrigation and
sales income.

(a) Briefly explain how this problem can
be modeled by the multiobjective linear
program

max x2

max 0.50x1 + 0.20x2 + 0.80x3

s.t. x1 + 1.25x2 + 1.25x3 = 294
 x1 Ú 24, x2 Ú 0, x3 Ú 50

(b) Use the class optimization software to
sketch the efficient frontier for the model
of part (a) in an objective value graph like
Figure 8.4.

(c) Use the class optimization software to
show that the optimal solutions taken sep-
arately for each objective do not coincide.

8-2 A semiconductor manufacturer has three dif-
ferent types of silicon wafers in stock to manufac-
ture its three varieties of computer chips. Some
wafer types cannot be used for some chips, but
there are two alternatives for each chip. The table
that follows shows the cost and on-hand supply of

466 Chapter 8 Multiobjective Optimization and Goal Programming

each wafer type, the number of each chip needed,
and a score (0 to 10) of the appropriateness match
of each wafer type for making each chip.

Wafer
Type Chip Match

Unit
Cost

On
Hand

1 2 3

1 7 8 — 15 500
2 10 — 6 25 630
3 — 10 10 30 710

Need 440 520 380

The company would like to minimize the total
cost of the wafers used while maximizing the total
match score.

(a) Briefly explain how this problem can be
modeled by the multiobjective LP

min 15x1,1 + 15x1,2 + 25x2,1

 + 25x2,3 + 30x3,2 + 30x3,3

max 7x1,1 + 8x1,2 + 10x2,1

 + 6x2,3 + 10x3,2 + 10x3,3

s.t. x1,1 + x1,2 … 500
 x2,1 + x2,3 … 630
 x3,2 + x3,3 … 710
 x1,1 + x2,1 = 440
 x1,2 + x3,2 = 520
 x2,3 + x3,3 = 380
 all xi, j Ú 0

(b) and (c) as in Exercise 8-1.

8-3 A national commission is deciding which mil-
itary bases to close in order to save at least $85
million per year. The table that follows shows
projected annual savings (millions of dollars) for
each of five possible closings, together with the
implied percent loss of military readiness and
the number of civilian workers (thousands) who
would lose their jobs.

Base

1 2 3 4 5

Savings 24 29 45 34 80
Readiness 1.0 0.4 1.4 1.8 2.0
Workers 2.5 5.4 4.6 4.2 14.4

Each base must be left open or completely closed,
and the commission wants to meet the required
savings while minimizing both readiness loss and
unemployment.

(a) Briefly explain how this base-closing prob-
lem can be modeled by the multiobjective
ILP

min 1.0x1 + 0.4x2 + 1.4x3

 + 1.8x4 + 2.0x5

min 2.5x1 + 5.4x2 + 4.6x3

 + 4.2x4 + 14.4x5

s.t. 24x1 + 29x2 + 45x3

 - 34x4 + 80x5 Ú 85
 xt = 0 or 1, j = 1, c, 5

(b) and (c) as in Exercise 8-1.

8-4 A garden superstore sells 4 kinds of fertil-
izer from 20 pallet spaces aligned along a fence.
Weekly demands for the 4 fertilizers are 20, 14,
9, and 5 pallets, respectively, and each pallet
holds 10 bags. The sales counter is at the begin-
ning of the fence, and every bag sold must be
carried from its pallet to the counter. Whenever
all pallets for a product are empty, the space al-
located for that fertilizer is refilled completely
using a fork truck from secondary storage.
Store managers need to decide how many pallet
spaces to assign each product to minimize both
the number of times per week such refilling will
be necessary and the total carrying distance of
bags sold. Each fertilizer will have at least one
pallet space.

(a) Assuming that fractional numbers of
pallet spaces are allowed, briefly explain
how this pallet allocation problem can be
modeled by the multiobjective nonlinear
program

min 20>x1 + 14>x2 + 9>x3 + 5>x4

min 2001x1>22 + 1401x1 + x2>22
 + 901x1 + x2 + x3>22
 + 501x1 + x2 + x3 + x4>22

s.t. a
4

i = 1
 xj = 20

 xj Ú 1, j = 1, c, 4

(b) and (c) as in Exercise 8-1.

 Exercises 467

8-5 Consider the multiobjective LP

max x1 + 5x2

max x1

s.t. x1 - 2x2 … 2
 x1 + 2x2 … 12
 2x1 + x2 … 9
 x1, x2 Ú 0

(a) Show graphically that the optimal solu-
tions taken separately for each objective
do not coincide.

(b) Determine graphically whether each of
the following is an efficient point: (2,0),
(4,7), (3,3), (2,5), (2,2), (0,6).

(c) Use graphic solution to sketch the effi-
cient frontier for this model in an objec-
tive value graph like Figure 8.4.

8-6 Do Exercise 8-5 for multiobjective LP

min 5x1 - x2

min x1 + 4x2

s.t. -5x1 + 2x2 … 10
 x1 + x2 Ú 3
 x1 + 2x2 Ú 4
 x1, x2 Ú 0

and points (4,0), (2,1), (4,4), (1,2), (5,0), (0,2).
8-7 Consider the multiobjective LP

max 6x1 + 4x2

max x2

s.t. 3x1 + 2x2 … 12
 x1 + 2x2 … 10
 x1 … 3
 x1, x2 Ú 0

(a) State and solve graphically a sequence of
linear programs to compute a preemptive
solution giving priority to the first objec-
tive. Also verify that the result is an effi-
cient point.

(b) State and solve graphically a sequence of
linear programs to compute a preemp-
tive solution giving priority to the second
 objective. Also verify that the result is an
efficient point.

8-8 Do Exercise 8-7 for the multiobjective LP

min x1 + x2

min x1

s.t. 2x1 + x2 Ú 4
 2x1 + 2x2 Ú 6
 x1 … 4
 x1, x2 Ú 0

8-9 Combine each of the following sets of objec-
tive functions into a single weighted-sum objec-
tive of the specified maximize or minimize form,
weighting individual objectives in the proportions
indicated.

(a) min 3x1 + 5x2 - 2x3 + 19x4

max 17x2 - 28x4

min 34x2 + 34x3

Results form min, proportions 5:1:3.
(b) max 20x1 - 4x2 + 10x4

min 7x2 + 9x3 + 11x4

max 23x1

Results form max, proportions 3:1:1.
8-10 Return to the multiobjective linear program
of Exercise 8-7.

(a) Solve graphically with a weighted-sum
objective that weights the first objective
twice as heavily as the second, and verify
that the result is an efficient point.

(b) Solve graphically with a weighted-sum
 objective that weights the second objec-
tive twelve times as heavily as the first, and
verify that the result is an efficient point.

8-11 Do Exercise 8-10 on the multiobjective lin-
ear program of Exercise 8-8, weighting the second
objective twice the first.
8-12 Convert each of the following multiobjec-
tive optimization models to a goal program seek-
ing the specified target levels, and minimizing the
unweighted sum of all goal violations.

(a) min 3x1 + 5x2 - x3

max 11x2 + 23x3

s.t. 8x1 + 5x2 + 3x3 … 40
 x2 - x3 … 0
 x1, x2, x3 Ú 0

Targets 20,100.
(b) min 17x1 - 27x2

max 90x2 + 97x3

s.t. x1 + x2 + x3 = 100
 40x1 + 40x2 - 20x3 Ú 8
 x1, x2, x3 Ú 0

Targets 500, 5000.

468 Chapter 8 Multiobjective Optimization and Goal Programming

(c) max 40x1 + 23x2

min 20x1 - 20x2

min 5x2 + x3

s.t. x1 + x2 + 5x3 Ú 17
 40x1 + 4x2 + 33x3 … 300
 x1, x2, x3 Ú 0

Targets 700, 25, 65.
(d) max 12x1 + 34x2 + 7x3

min x2 - x3

min 10x1 + 7x3

s.t. 5x1 + 5x2 + 15x3 … 90
 x2 … 19
 x1, x2, x3 Ú 0

Targets 600, 20, 180.
(e) min 22x1 + 8x2 + 13x3

max 3x1 + 6x2 + 4x3

s.t. 5x1 + 4x2 + 2x3 … 6
 x1 + x2 + x3 Ú 1
 x1, x2, x3 = 0 or 1

Targets 20, 12.
(f) min 4x2 + ln1x22 + x3 + ln1x32

max 1x122 + 91x222 - x1 x2

s.t. x1 + x2 + x3 … 10
 4x2 + x3 Ú 6
 x1, x2, x3 Ú 0

Targets 20, 40.
8-13 Consider the multiobjective LP

max x1

max 2x1 + 2x2

s.t. 2x1 + x2 … 9
 x1 … 4
 x2 … 7
 x1, x2 Ú 0

(a) Sketch the feasible space and contours
where the first objective equals 3 and the
second equals 14.

(b) Formulate a corresponding goal program
seeking target levels 3 and 14 on the two
objectives and minimizing the unweighted
sum of goal violations.

(c) Explain why x = 12, 52 is optimal in the
goal program of part (b) by reference to
the plot of part (a).

8-14 Do Exercise 8-13 on the multiobjective LP

min x2

max 5x1 + 3x2

s.t. 2x1 + 3x2 Ú 6
 x1 … 5
 -x1 + x2 … 2
 x1, x2 Ú 0

using target levels 1 and 30 and solution x = 15, 5>32.
8-15 Return to the multiobjective LP of Exercise
8-13 with target levels 3 and 14 for the two
objectives.

(a) State and solve graphically [in 1x1, x22
space] a sequence of linear programs to
compute a preemptive goal program-
ming solution, prioritizing objectives in
the sequence given and using the given
target levels.

(b) Formulate a single goal program that
implements the preemptive goal pro-
gramming process of part (a) by suit-
able deficiency variable weighting, and
demonstrate graphically that it produces
the same solution.

(c) Determine whether your solution in part
(a) is an efficient point of the original
multiobjective model. Could the outcome
have been different if the target for the
first objective were revised to 1? Explain.

8-16 Return to the multiobjective LP of Exercise
8-14. Do Exercise 8-15 on the model using target
levels of 1 and 30 and a revised objective 1 target
of 3.
8-17 Return to the multiobjective District 88
water allocation problem of Exercise 8-1.

(a) State and solve with class optimization soft-
ware a sequence of linear programs to com-
pute a preemptive solution for the model of
part (a) taking objectives in the order given.

(b) State and solve with class optimization
software a weighted-sum objective LP
that weights the first objective twice as
heavily as the second.

(c) Suppose that district management sets a
goal of at least 100 million acre-feet for
irrigation and $144 million in income.
Convert the model of Exercise 8-1(a) to
a goal program seeking these target levels
and minimizing the unweighted sum of
goal violations.

(d) Use class optimization software and your
goal program of part (c) to show that all

 Exercises 469

goals cannot be fulfilled simultaneously
by any feasible solution.

(e) Solve the model of part (c) with class
 optimization software and compare to
 results for earlier methods.

(f) State and solve with class optimization
software a sequence of linear programs to
compute a preemptive goal programming
solution for the model of part (c) taking
objectives in the order given.

(g) Formulate an alternative objective function
in the goal program of part (c) that accom-
plishes the preemptive goal programming
optimization of part (f) in a single step.

8-18 Do Exercise 8-17 on the silicon wafer prob-
lem of Exercise 8-2 using target levels of 30,000
for cost and 13,000 for match.
8-19 Do Exercise 8-17 on the base closing prob-
lem of Exercise 8-3 using target levels of 3% for
readiness loss and 12,000 for displaced workers.
8-20 Do Exercise 8-17 on the pallet allocation
problem of Exercise 8-4 using target levels of
10 for refills and 2500 for walking.
8-21 Professor Proof is reconsidering where to
invest the $50,000 left in his retirement account.
One available bond fund with estimated return
of 5% per year has a published risk rating of 20.
The other option is a hedge fund with estimated
return of 15% per year but a risk rating of 80 (it
may be a ponzi scheme). Proof wants to divide his
entire account between the two, placing no more
that $40,000 in either fund. Within these limits he
would like to both maximize total annual return
and minimize the weighted (by investment size)
average of the risk ratings.

(a) Formulate Professor Proof’s problem as
a multiobjective linear program with one
main constraint, two upper bounds, and
two nonnegativities. Be sure to define all
decision variables and annotate objectives
and constraints to show their meanings.

(b) Now show how to modify your formula-
tion of (a) as a goal program with targets
of $6,000 annual return and a weighted
risk average of 50. Weight shortfalls from
the targets equally in the objective. Define
all new decision variables and annotate
new objectives and constraints to show
their meanings.

(c) Enter and solve your goal program of (b)
with class optimization software.

8-22 A major auto manufacturer is planning the
marketing campaign to introduce its new Bambi
model of hybrid sport utility vehicle. Bambis will be
introduced with a television advertising campaign
totaling $200 million. The table below shows the
3 kinds of programs being considered for placement
of the ads, including the cost per 30-second (unit)
commercial and the number of viewers exposed in
each of the market segments. No more than 50%
of the budget should be spent on any one type of
program. Within these limits the company has set
goals of 3,000 million under-30 exposures from the
campaign, 5,000 million age 30–55 male exposures,
and 3,400 million age 30–55 female exposures.

Program
Type

Unit
Cost

($ million)

Exposures per Unit
(millions)

Under
30

30–55
Male

30–55
Female

Desperate
Housewives

2.2 24 12 37

Law and
Order

2.5 27 42 11

Comedy
Central

0.5 19 16 6

(a) Formulate a Linear Goal Program to help
the manufacturer decide how to optimally
place their ads. Weight all goals equally.
Be sure to define all decision variables,
and annotate objectives and constraints
to indicate their meaning.

(b) Obviously numbers of commercial show-
ings in (a) must be integer, but it is good
OR modeling to treat them as continu-
ous. Briefly explain why.

(c) Enter and solve the your goal of (a) with
class optimization software.

8-23 The State Highway Patrol (SHP) has only
60 officers to patrol j = 1, c, 10 major highway
segments in rural and suburban areas of the state.
Officers work i = 1, c, 7 different shift patterns
across a 24 hour, 7 day work week. Exceptions can
be made on late-night shifts i = 1 and 2, but all
other shifts require at least 1 officer on each high-
way segment, and no segment ever receives more
than 3.

470 Chapter 8 Multiobjective Optimization and Goal Programming

An SHP goal is to concentrate the patrol re-
sources in times and places of greatest need. One
measure of this is ci, j! the traffic density on seg-
ment j during shift i. A second is ai, j! the rela-

tive accident rate on segment j during shift i. The
following table shows values derived from history
for both across shifts and segments.

Shift i Highway Segments j

1 2 3 4 5 6 7 8 9 10

1 Cong 0.22 0.26 1.11 1.06 1.80 2.16 1.93 0.98 0.66 0.45
Accid 0.92 2.16 1.18 1.49 0.90 4.11 1.10 1.15 2.18 0.77

2 Cong 0.32 0.36 1.31 1.26 1.90 2.26 2.03 1.05 0.86 0.55
Accid 0.98 2.66 1.48 1.69 1.10 3.91 1.12 1.17 2.48 0.77

3 Cong 0.55 0.66 1.81 1.86 2.20 2.86 2.43 1.95 1.06 0.85
Accid 0.88 3.16 1.88 1.89 1.80 4.11 1.62 1.67 2.88 1.07

4 Cong 0.65 0.76 1.91 1.96 2.30 2.96 2.53 2.05 1.26 0.95
Accid 0.77 2.01 1.03 1.31 1.10 3.11 1.00 1.05 2.08 0.67

5 Cong 0.60 0.70 1.83 1.82 2.22 2.79 2.45 2.00 1.16 0.90
Accid 0.90 2.76 1.38 1.52 0.98 3.81 1.40 1.45 2.48 0.87

6 Cong 0.62 0.68 1.85 1.82 2.25 2.74 2.40 2.02 1.18 0.94
Accid 1.18 4.16 2.48 2.59 2.80 4.61 2.62 1.87 3.28 1.09

7 Cong 0.42 0.48 1.55 1.52 1.95 2.14 2.10 1.92 1.08 0.64
Accid 1.08 5.16 2.28 2.19 2.20 4.11 3.22 1.67 3.58 1.19

SHP would like to decide how to feasibly
 allocate its officers to shifts and segments to max-
imize total coverage of congested shifts and seg-
ments, as well as total coverage of high accident
shifts and coverage.

(a) Formulate the problem as a multi- objective
ILP over nonnegative integer decision vari-
ables xi, j! the number of officers assigned
to each shift i and segment j.

(b) Show how to modify your model of (a)
as a goal ILP with targets for total con-
gestion = 120 and for total accident level
= 150. Weight under-satisfaction of the
two goals equally, define all new decision
variables, and annotate new objectives
and constraints to show their meanings.

(c) Enter and solve your goal ILP of (b) with
class optimization software.

8-24 An architect is trying to decide what mix of
single, double, and luxury rooms to include in a new
hotel. Only $10 million is available for the project,
and single rooms cost $40,000 to build, double rooms
$60,000, and luxury rooms $120,000 each. Business

travelers (in groups of one or more) average 0.7 of
single-room rentals, 0.4 of double-room rentals, and
0.9 of luxury room rentals. Family travelers occupy
the remainder of each category. The architect would
like her design to accommodate 100 total rooms for
business travelers, but she would also like it to pro-
vide 120 total rooms for family travelers.

(a) Formulate a weighted goal LP to decide
how many of each room to include in the
design. Weight the business traveler goal
twice as heavily as the family traveler goal.

(b) Enter and solve your goal program using
class optimization software.

8-25 Trustees of a major state university are
trying to decide how much tuition4 should be
charged next year from four categories of full-
time students: in-state undergraduates, in-state
graduates, out-of-state undergraduates, and out-
of-state graduates. The following table shows
present tuition levels (thousands of dollars) for
each category, together with projected enroll-
ments (thousands) for next year and estimates of
the true university cost to educate students.

4Based on A. G. Greenwood and L. J. Moore (1987), “An Inter-temporal Multi-goal Linear Programming
Model for Optimizing University Tuition and Fee Structures,” Journal of the Operational Research Society, 38,
599–613.

 Exercises 471

Undergrad Grad

In-state tuition 4 10
Out-of-state tuition 12 15

In-state enrollment 20 1.5
Out-of-state enrollment 10 4

True cost 20 36

New tuitions must raise $292 million, but trustees
would also like in-state tuitions to recover at least
25% of true cost and out-of-state, 50%. No tui-
tion will be reduced from its present level, but the
trustees would also like to assure that no tuition
category increases by more that 10%.

(a) Formulate a goal LP to compute suitable
tuitions giving priority to the 10% increase
goals over cost recovery.

(b) Enter and solve your model with class op-
timization software.

8-26 A university library5 must cut annual sub-
scription expenses sj to some or all scientific
journals j = 1, c, 40 to absorb a $5000 per
year budget cut. One consideration will be the
sum of published counts cj of the number of
times other journals cite papers in journal j,
which is a measure of how seminal a journal is
to research. Another is the sum of usefulness
ratings rj11 = low to 10 = high2 solicited from
university faculty. Finally, the library wants to
consider the sum of ratings aj of the relative avail-
ability 11 = low to 8 = high2 in nearby libraries,
 believing that journals readily available else-
where need not be retained.

(a) Formulate a multiobjective ILP to choose
journals to drop.

(b) Convert your multiobjective model to a
goal program with targets at most C for
total citations, at most R for total faculty
ratings, and at least A for total availability
ratings. Weight all goals equally.

8-27 The household sector is the largest consumer
of energy in India,6 requiring at least 108 kilo-
watthours per day in a large city such as Madras.

This energy can be obtained from sources j = 1
kerosene, j = 2 biogas, j = 3 photovoltaic, j = 4
fuelwood-generated electricity, j = 5 biogas-gen-
erated electricity, j = 6 diesel-generated electric-
ity, and j = 7 electricity from the national power
grid, with efficiencies hj expressing the number
of kilowatthours per unit of original fuel input of
source j. Biogas is limited 1.3 * 109 units. Energy
planners are looking for the best mix of these
sources to meet the 108 requirement in terms of a
variety of conflicting objectives. One is low total
cost at pj per unit source j. Another is to maximize
local employment, which is estimated to grow at ej
per unit of energy source j. Finally, there are three
types of pollution to be minimized: carbon oxides
produces at cj per unit of source j, sulfides at sj per
unit of j, and nitrogen oxides at nj per unit of j.

(a) Formulate a multiobjective LP to choose
a best mix of sources.

(b) Revise your model as a goal program with
maximum targets P, C, S, and N for cost,
carbon, sulfur, and nitrogen, together
with minimum target E for employment.

8-28 The table that follows lists tasks like
those required of the U.S. Food and Drug
Administration (FDA) in carrying out its respon-
sibilities to regulate drug laboratories, along with
an importance weighting of each tasks and the es-
timated minimum number of staff hours required
to accomplish the task fully.

j Task Import Hours

1 Laboratory quality
 control program

10 1500

2 Analytical protocol 1 100
3 Drug protocol 2 50
4 Quality assurance

 guidelines
 5 55

5 Safety programs 10 135
6 Stability of testing 5 490
7 Calibration of

 equipment
 4 2000

Total 4330

5Based on M. J. Schniederjans and R. Santhanam (1989), “A Zero–One Goal Programming Approach for the
Journal Selection and Cancellation Problem,” Computers and Operations Research, 16, 557–565.

6Based on R. Ramanathan and L. S. Ganesh (1995), “Energy Alternatives for Lighting in Households: An
Evaluation Using and Integrated Goal Programming-AHP Model,” Energy, 20, 66–72.

472 Chapter 8 Multiobjective Optimization and Goal Programming

Unfortunately only 3600 of the 4330 total hours
are available to execute all tasks. FDA manage-
ment seeks an allocation of the 3600 hours that
addresses the goal hours in the table on the basis
of minimizing total importance of undersatisfac-
tion. Formulate a goal LP to determine the most
appropriate allocation.
8-29 The Lake Lucky dam7 retains water in the
reservoir lake of the same name to prevent flood-
ing downstream and to assure a steady year-round
supply of water for wildlife and nearby cities. The
best available projections call for inflows it (cubic
meters of water) to arrive at the reservoir on up-
coming days t = 1, c, 120. A minimum of at
least r must be released through the dam every
day to maintain downstream water quality, but
the daily release can go as high as rQ. The current
 storage in the reservoir is s0 cubic meters, and
storage levels must be kept between minimum
and maximum limits s and sQ throughout the 120-
day period. Reservoir managers seek a 120-day
plan that releases, as close as possible to target, R
cubic meters each day and maintains a target level
of S cubic meters stored in the reservoir. Both
below- and above-target outcomes are considered
equally bad, and release deviations are weighted
equally with those for storage. Formulate a goal
LP to compute a reservoir operating plan. Assume
that no water is lost (i.e., all water that enters the
reservoir eventually flows over the dam).
8-30 A retail store has hired a marketing consul-
tant to help it decide how to evaluate the quality8
of its service. The store would like to evaluate
customer perceptions about i = 1, employee atti-
tude; i = 2, employee competence; i = 3, product
quality; and i = 4, sensory (look, sound, smell)
appeal of the store. The consultant is considering
6 survey instruments for the task: j = 1, point-
of-purchase cards measuring employee service
delivery; j = 2, point-of-purchase cards measur-
ing product quality; j = 3, open-ended comment
cards; j = 4, a focus group of known customers;

and j = 5, a telephone survey of known custom-
ers. The instruments are not equally useful in
measuring the desired quality attributes, so the
consultant has developed (1 = poor to 10 = ex-
cellent) ratings ri, j scoring the value of instrument
j in assessing attribute i. Instruments j would cost
cj dollars and require hj hours of store employee
time. Ideally, the instruments chosen should total
at least 30 points on each rated attribute, but their
total cost must not exceed $10,000, and the total
employee hours invested must not be more than
500. Formulate a goal ILP to choose a suitable
combination of instruments.
8-31 A steel workpiece is to be cut9 in a lathe to
a target depth of 0.04 inch. Empirical studies with
this type of steel express the properties of the
 resulting product as

finish ! 0.41n3.97f 3.46d0.91

power ! nf 0.75d0.90

time ! nf

where v is the cutting speed in revolutions per
minute, f is the feed rate in inches per revolution,
and d is the depth of cut in inches. Finish varia-
tion must be kept no greater than 150, required
power no more that 4.0, cutting speed between
285 and 680, and feed rate between 0.0075 and
0.0104. Within these limits, the first priority goal
is to make the depth of cut as close as possible to
0.04 inch, and the second is to complete the cut in
at most time 1.5 (minutes).

(a) Formulate a preemptive goal NLP to
choose cutting parameters.

(b) Enter and (at least locally) solve your
goal program using class optimization
software.

8-32 Trees in available wild forest10 stands j =
1, c, 300 have been measured in terms of desir-
able traits i = 1, c, 12 such as rate of growth, dis-
ease resistance, and wood density. Computations
of averages and standard deviations in traits over

7Based on K. K. Reznicek, S. P. Simonovic, and C. R. Bector (1991), “Optimization of Short-Term Operations of a
Single Multipurpose Reservoir—A Goal Programming Approach,” Canadian Journal of Civil Engineering, 18, 397–406.

8Based on M. J. Schniederjans and C. M. Karuppan (1995), “Designing a Quality Control System in a Service
Organization: A Goal Programming Case Study,” European Journal of Operational Research 81, 249–258.

9Based on R. M. Sundaram (1978), “An Application of Goal Programming Technique in Metal Cutting,”
International Journal of Production Research, 16, 375–382.

10Based on T. H. Mattheiss and S. B. Land (1984), “A Tree Breeding Strategy Based on Multiple Objective
Linear Programming,” Interfaces, 14:5, 96–104.

 Exercises 473

the stands then produced numbers zi, j of stan-
dard deviations that stand j falls above or below
the average for trait i. Corresponding scores for
the offspring of a planned breeding program may
be assumed to combine linearly (i.e., the result
will be a sum of scores for the wild stands used,
weighted by the proportion each stand makes up
of the breeding population).

(a) Formulate a multiobjective LP to choose
a breeding population that maximizes the
offspring standard deviation score of each
trait.

(b) Convert your model to a goal program
with a target of breeding offspring 2 stan-
dard deviations above the mean on all
traits. Weight the undersatisfaction of
each goal equally.

8-33 Soar, a retailer catering to upscale sub-
urbanites,11 wishes to be represented in all the
major malls j = 1, c, 5 in the Atlanta region.
However, Soar wants to divide its investment
budget b in proportion to three major measures
of mall attractiveness: weekly patronage, pj; aver-
age patron annual income, aj; and number of large
 anchor stores, sj. That is, they would like ratios of
investment in j to pj all to be equal, and similarly
for corresponding ratios to the aj and sj. Formulate
a goal LP model to choose an appropriate alloca-
tion, weighting all deviations equally.
8-34 Shipley Company12 is designing a new pho-
toresist, which is a chemical coating used in the
photoengraving of silicon chips. Important char-
acteristics of photoresists are i = 1, high flow
(liquefication) temperature; i = 2, low minimum
line-space resolution; i = 3, retention of unex-
posed areas when exposed circuits are developed
away at least b3; i = 4, photospeed (minimum
exposure time to create an image) between b4
and b4; and i = 5, exposure energy requirements
between b5 and b5. Ingredients j = 1, c, 24
produce highly nonlinear effects on these five
important characteristics. However, designed

experiments have demonstrated that the effects
can be assumed linear within ingredient quantity
ranges [lj, uj] under consideration. Between these
limits, each additional unit of ingredient j adds ai, j
to characteristic i of the photoresist.

(a) Formulate a 2-objective LP model to
choose the best composition for both flow
temperature and line-space resolution.

(b) Explain the meaning of an efficient point
solution to your model in part (a), and de-
scribe how one could be computed.

8-35 South African wildlife management officials13
must decide annual quotas (in thousands of tons)
for harvesting of pilchards, anchovies, and other
fish of the pelagic family in the rich waters to
the west of the Cape of Good Hope. One con-
sideration is the maximization of fishing industry
 income, which is estimated at 110 rand/ton for pil-
chards, 30 rand/ton for anchovies, and 100 rand/
ton for other pelagic. Still, the harvest should leave
the year-end populations of the 3 types of fish as
large as possible. Scientists estimate that initial
biomasses of the 3 types are 140,000 tons, 1,750,000
tons, and 500,000 tons, respectively. Due to differ-
ences in breeding characteristics, each thousand
tons of pilchards harvested will deplete the popu-
lation by 0.75 thousand tons, each of anchovies by
1.2 thousand tons, and each of other pilchards by
1.5 thousand tons. A final consideration is main-
taining the ocean ecosystem. Important measures
are the number of breeding characteristics, each
thousand tons of pilchards harvested will deplete
the population by 0.75 thousand tons, each of an-
chovies by 1.2 thousand tons, and each of other pil-
chards by 1.5 thousand tons. A final consideration
is maintaining the ocean ecosystem. Important
measures are the number of breeding pairs of pen-
guins (thousands), which is estimated as 70 + 0.60
(ending biomass of pilchards), and the number of
such pairs of gannets (thousands), which is esti-
mated at 5 + 0.20 (ending biomass of pilchards)
+ 0.20 (ending biomass of anchovies).

11Based on R. Khorramshahgol and A. A. Okoruwa (1994), “A Goal Programming Approach to Investment
Decisions: A Case Study of Fund Allocation Among Different Shopping Malls,” European Journal of Operational
Research, 73, 17–22.

12Based on J. S. Schmidt and L. C. Meile (1989), “Taguchi Designs and Linear Programming Speed New
Product Formulation,” Interfaces, 19:5, 49–56.

13Based on T. J. Stewart (1988), “Experience with Prototype Multicriteria Decision Support Systems for Pelagic
Fish Quota Determination,” Naval Research Logistics, 35, 719–731.

474 Chapter 8 Multiobjective Optimization and Goal Programming

(a) Formulate a multiobjective LP to max-
imize all measures of success using the
 decision variables (i = 1, pilchards; i = 2,
anchovies; i = 3, other pelagic)

xi ! quota for fish type i 1thousand tons2
yi ! ending biomass of fish type i

1thousand tons2
(b) Revise your formulation as a goal program

with minimum targets for the 6 objectives
being 38 million rands income, ending
biomasses of 100, 1,150,000 and 250,000
tons, and ending breeding populations of
130,000 and 25,000 pairs. Give preemptive
priority to maintaining the populations of
the 3 types of fish.

(c) Enter and solve your goal program ver-
sion using class optimization software.

8-36 The state of Calizona will soon be opening cen-
ters14 in 12 of its county seats i = 1, c, 100 to pro-
mote solid waste recycling programs. Each selected
site will service a district of surrounding counties.
The state wants to minimize the sum of distances
di, j populations pi in counties i must travel to their
district center at j. But they would also like to come
as close as possible (in total deviation) to having
3 centers in each of the 4 Environment Department
regions. Counties i = 1, c, 12 make up region 1,
i = 13, c, 47 region 2, i = 48, c, 89 region 3,
and i = 90, c, 100 region 4.

(a) Formulate a 2-objective ILP model of this
facility location problem using the main
decision variables 1i, j = 1, c, 1002

 xi, j ! •
1 if county i is served by
 a center at j

 0 otherwise

 xi ! e1 if country j gets a center
0 otherwise

(b) Explain the meaning of an efficient point
solution to your model of part (a) and
 describe how one could be computed.

8-37 Every year the U.S. Navy must plan the
 reassignment of thousands of sailors finishing

one tour of duty in specialties i = 1, c, 300
and preparing for their next one, k. The reassign-
ment may also require a move of the sailor and
his or her dependents from present base location
j = 1, c, 25 to a new base /. To plan the move,
personnel staff estimate numbers si, j of sailors at
base j in specialty i who are ready for reassign-
ment, dk,/ of sailors needed at base / in specialty
k, as well as average costs cj, l of moving a sailor
and dependents from base j to base /. Training is
required for the new position if it involves a dif-
ferent specialty than the present one, and capacity
limits uk at training schools limit the number that
can be trained for any specialty k during the year.
One Navy objective in planning reassignment is
to keep total relocation costs as low as possible.
However, other considerations arise from the
fact that full staffing levels dk,/ can almost never
all be met. Naturally, the Atlantic fleet (bases
j, / = 1, c, 15) wishes to maximize the fraction
of its slots actually filled, and the Pacific fleet
(bases j, / = 16, c, 25 prefers to maximize the
fraction of its needs accommodated. Formulate a
3-objective LP model to aid the Navy in planning
reassignments using the decision variables

xi, j, k, l!number of sailors presently in specialty i at
base j reassigned to specialty k at location /

8-38 The sales manager of an office systems dis-
tributor15 has sales representatives i = 1, c, 18
to assign to both current accounts j = 1, c, 250
and the development of new accounts. Each cur-
rent account will be assigned at most one repre-
sentative. From prior experience, the manager
can estimate monotone-increasing nonlinear
functions

ri, j1wi, j2! current@period sales revenue that will
result from allocating wi, j hours of
representative i time to account j

ai 1xi2! present value of future sales revenue
that will derive from assigning
representative i to xi hours of new
account development

Each representative has 200 hours to divide
 between his or her assignments during the

14Based on R. A. Gerrard and R. L. Church (1994), “Analyzing Tradeoffs between Zonal Constraints and
Accessibility in Facility Location,” Computers and Operations Research, 21, 79–99.

15Based on A. Stam, E. A. Joachimsthaler, and L. A. Gardiner (1992), “Interactive Multiple Objective Decision
Support for Sales Force Sizing and Deployment,” Decision Sciences, 23, 445–466.

 Exercises 475

planning period, but the manager would like to
maximize both total current revenue and total
new account value.

(a) Formulate a 2-objective INLP to deter-
mine an allocation plan using the decision
variables 1i = 1, c, 18, j = 1, c, 2502
wi, j! hours spent by representative i on

account j

xi! hours spent by representative i on
new account development

yi, j! •
1 if representative i is assigned

to account j

 0 otherwise

(b) Explain the meaning of an efficient point
solution to your model of part (a) and
 describe how one could be computed.

REFEREnCES

Collette, Yann and Patrick Siarry (2004),
Multiobjective Optimization: Principles and Case
Studies (Decision Engineering), Springer-Verlag,
Berlin, Germany.

Goichoechea, Ambrose, Don R. Hansen, and
Lucien Duckstein (1982), Multiobjective Decision

Analysis with Engineering and Business Applica-
tions, Wiley, New York, New York.

Winston, Wayne L. (2003), Operations Research -
Applications and Algorithms, Duxbury Press,
 Belmont, California.

This page intentionally left blank

477

▪ ▪ ▪ ▪ ▪
Chapter 9

Shortest Paths and
Discrete Dynamic

Programming
From our earliest discussions in Chapters 1 and 2, we have seen a trade-off between
generality of operations research models and tractability of their analysis. The more
specialized the model form and the longer the list of underlying assumptions, the
richer and more efficient the analysis that is possible.

In this chapter we extend that insight to a new extreme by introducing the most
specialized and thus most efficiently solved of all broad classes of optimization models:
shortest paths and discrete dynamic programs. Dynamic programming methods pro-
ceed by viewing the problem or problems we really want to solve as members of a
family of closely related optimizations. When model forms are specialized enough to
admit just the right sort of family, strong connections among optimal solutions to the
various members can be exploited to organize a very efficient search.

9.1 ShorteSt Path ModelS

Whether in urban traffic, college hallways, satellite communications, or the surface
of a microchip, it makes sense to follow the shortest route. Such shortest path prob-
lems are the first we will attack.

aPPlication 9.1: littleville

As usual, it will help to begin with an application setting. Suppose that you are the city
traffic engineer for the town of Littleville. Figure 9.1(a) depicts the arrangement of one-
and two-way streets in a proposed improvement plan for Littleville’s downtown, includ-
ing the estimated average time in seconds that a car will require to transit each block.

From survey and other data we can estimate how many driver trips originate
at various origin points in the town, and the destination for which each trip is bound.
But such survey data cannot indicate what streets will be selected by motorists to
move from origin to destination in a street network that does not yet exist.

One of the tasks of a traffic engineer is to project the route that drivers will
elect, so that city leaders can evaluate whether flows will concentrate where they

478 Chapter 9 Shortest Paths and Discrete Dynamic Programming

20 18

32

30

38

13
18

12 18
28

36

21

25

49

40

28

20 18

32

30

38

13
18

12 18
28

36

21

25

49

40
28

1

2

3

4

5

6

7

8

9

10

(a) Proposed street network

(b) Corresponding graph

Figure 9.1 Littleville Shortest Path Application

hope. A good starting point is to assume that drivers will do the most rational thing—
follow the shortest time path from their origin to their destination. We need to com-
pute all such shortest paths.

Nodes, Arcs, Edges, and Graphs
Figure 9.1(b) shows the first step. We abstract the given flow pattern—here a street
system—into a graph or network.

9.1 Shortest Path Models 479

These are not the newspaper sort of graphs comparing bars, or zigzag lines, or
piles of little coins.

Mathematical graphs model travel, flow, and adjacency patterns
in a network.

Definition 9.1

Such graphs begin with a collection of nodes (or vertices).

The nodes or vertices of a graph represent entities, intersections,
and transfer points of the network.

Definition 9.2

Pairs of nodes may be linked in a graph by either arcs or edges.

The arcs of a graph model available directed (one-way) links
between nodes. Edges represent undirected (two-way) links.

Definition 9.3

In Figure 9.1(b) nodes represent intersections. For convenience we have num-
bered the nodes 1 to 10. One-way streets between intersections of the Littleville
network yield arcs in our graph; two-way streets produce edges.

We denote arcs or edges by naming their terminal nodes. Thus (5, 1) and (3, 4)
are arcs in Figure 9.1(b), while (7, 9) and (5, 6) are edges. Order matters for arcs, so that
it would be incorrect, for example, to call the arc from node 10 to node 8 arc (8, 10).
It must be (10, 8). There is more flexibility in referencing edges. An edge between nodes
i and j could be called either (i, j), or (j, i), or both, although it is more common to name
the smallest node number first. For example, we could refer to the edge between nodes
2 and 6 of Figure 9.1(b) as either (2, 6) or (6, 2), but (2, 6) would be more standard.

exaMPle 9.1: identiFying eleMentS oF a graPh

Consider the following graph:

1

2

3

4

5

Identify its nodes, arcs, and edges.

Solution: The node set of this graph is V ! 51, 2, 3, 4, 56. Arcs form A! 512, 42,
13, 42, 14, 3215, 326. Edges are E! 511, 2211, 3214, 526.

Paths
Our interest in this chapter is paths.

480 Chapter 9 Shortest Paths and Discrete Dynamic Programming

Two of several paths from node 3 to node 8 in the Littleville application are illus-
trated in Figure 9.2(a). One proceeds 3–7–10–8, using edges (3, 7) and (7, 10), plus
arc (10, 8). Another is 3–4–10–8, following arc sequence (3, 4), (4, 10), and (10, 8).
The pattern 3–7–6–5–8 of Figure 9.2(b) is not a path because it transits arc (8, 5) in
the wrong direction. Sequence 3–7–6–9–7–10–8 also fails the definition of a path; it
repeats node 7.

20 18

32

30

38

13
18

12 18
28

36

21

25

49

40
28

1

2

3

4

5

6

7

8

9

10

(b) Sequences from 3 to 8 that are not paths

20 18

32

30

38

13
18

12 18
28

36

21

25

49

40
28

1

2

3

4

5

6

7

8

9

10

20 18

32

30

38

13
18

12 18
28

36

21

25

49

40
28

1

2

3

4

5

6

7

8

9

10

20 18

32

30

38

13
18

12 18
28

36

21

25

49

40
28

1

2

3

4

5

6

7

8

9

10

(a) Sequences from 3 to 8 that are paths

Figure 9.2 Paths of the Littleville Application

A path is a sequence of arcs or edges connecting two specified
nodes in a graph. Each arc or edge must have exactly one node in common
with its predecessor in the sequence, any arcs must be passed in the forward
direction, and no node may be visited more than once.

Definition 9.4

exaMPle 9.2: recognizing PathS

Return to the graph of Example 9.1. Identify all paths from node 1 to node 5.

Solution: The two available paths are 1–2–4–5 and 1–3–4–5. Sequence 1–3–5 is not
a path because it violates direction on arc (3, 5).

9.1 Shortest Path Models 481

Shortest Path Problems
When an application includes costs or lengths on the arcs and edges of a graph, we
are confronted with an optimization.

Shortest path problems seek minimum total length paths
between specified pairs of nodes in a graph.

Definition 9.5

In the Littleville application of Figure 9.1, lengths are travel times in seconds. The
first path from node 3 to node 8 shown in Figure 9.2(a) totals 130 + 49 + 282 = 107
seconds in length. The shortest path from 3 to 8 is the second 3-4-10-8 sequence
with length 113 + 38 + 282 = 79 seconds.

Classification of Shortest Path Models
Shortest path problems arise both as main decision questions and as steps in other
computations. There are many variations, depending on the type of network and
costs involved, and the pairs of nodes for which we need solutions.

We will see in the sections to come that shortest path algorithms are highly
specialized to exploit particular properties. Thus it is important to distinguish cases.

Our Littleville application illustrates one combination. The graph has both arcs
and edges, all link lengths are nonnegative, and our traffic engineering task requires
shortest paths between all pairs of nodes. To summarize:

•	 Name: Littleville
•	 Graph: arcs and edges
•	 Costs: nonnegative
•	 Output: shortest paths
•	 Pairs: all nodes to all others

Before passing to algorithms, we introduce some examples illustrating other possibilities.

aPPlication 9.2: texaS tranSFer

Figure 9.3 displays a map of highway links between several major cities in Texas.
Numbers on the edges in Figure 9.3 show standard driving distance in miles.

Texas Transfer, a major trucker in the southwest, ships goods from its hub
warehouse in Ft. Worth to all the cities shown. Trucks leave the hub and proceed
directly to their destination city, with no intermediate dropoffs or pickups.

Texas Transfer drivers are allowed to choose their own route from Ft. Worth
to their destination. However, management’s proposal in current labor negotiations
calls for drivers to be paid on the basis of shortest standard mileage to the location.
That is, they will be paid according to the length of the shortest path from Ft. Worth
to their destination city in the network of Figure 9.3. To see the impact of this pro-
posal, we need to compute such shortest path distances for all cities.

Notice that the character of this shortest path task differs significantly from
the Littleville application. Here we need only optimal path lengths, not the paths
themselves. Also, we need shortest path lengths for only one origin or source—the
Ft. Worth hub.

482 Chapter 9 Shortest Paths and Discrete Dynamic Programming

1

2

5

3

4

6

7

8

9

10

359

12
2

34
5

167

443
415

180

213

19
5

79

199

246

153 21
5

92

Ft. Worth

Amarillo

Lubbock

El Paso

Austin

Abilene

Houston

Corpus Christi

San Antonio

San Angelo

Figure 9.3 Network for Texas Transfer Application

•	 Name: Texas Transfer
•	 Graph: edges only
•	 Costs: nonnegative
•	 Output: shortest path lengths
•	 Pairs: one node to all others

aPPlication 9.3: two ring circuS

The Two Ring Circus is nearing the end of its season and planning a return to winter
headquarters near Tallahassee, Florida. Present commitments will end in Lincoln,
Nebraska, but there are still some opportunities for bookings in cities along the
route home.

Figure 9.4(a) shows the travel routes available and the estimated costs (in
thousands of dollars) of moving the circus over those routes. It also designates the
cities where bookings have been offered and the anticipated net receipts (in thou-
sands of dollars).

We want to compute the optimal path home for Two Ring. Notice that the cost of
a path is the difference of travel costs and net receipts from performances along the way.
But receipts occur at nodes of the network, not on edges as shortest path models require.

Undirected and Directed Graphs (Digraphs)
The Two Ring network of Figure 9.4(a) is an undirected graph because it has only
edges (undirected links). The key to incorporating receipts at nodes is first to

9.1 Shortest Path Models 483

convert to an equivalent directed graph or digraph, that is, a graph having only arcs
(directed links).

Such a directing of a graph is easy:

2

5

4

6

7 8

9

3

Lincoln (0.0)
Davenport (1.6)

Wichita
(3.2)

Little Rock (3.0)

Spring�eld (1.5)

Chattanooga (3.0)

Jackson (1.0)

Tallahassee (0.0)

1 3.6

2.
8

1.7

4.5

5.1

4.
5

5.5

4.6

2.
1 3.8

2.6

2.
4

4.5 2.2

Montgomery (1.5)

4.6

(a) Original travel network

Lincoln (0.0)
Davenport (1.6)

Wichita
(3.2)

Little Rock (3.0)

Spring�eld (1.5)

Chattanooga (3.0)

Jackson (1.0)

Tallahassee (0.0)

3.6

3.6

2.
8

2.
8

1.71.7

4.5
4.5

5.1

5.1

4.
5

4.
5

5.5
5.5

4.6

4.6

2.
1

2.
1 3.8

3.8
2.6
2.6

2.
4

2.
4

4.5
4.5

2.2

2.2

Montgomery (1.5)

4.6
4.6

(b) Corresponding digraph

2

5

4

6

7 8

9

3

1

Figure 9.4 Two Ring Circus Application Graphs

A shortest path problem including edges (i, j) of cost ci, j can be
converted to an equivalent one on a digraph by replacing each edge with a pair
of opposed arcs as

i j
ci, j

ci, j

ci, j
i j

Principle 9.6

484 Chapter 9 Shortest Paths and Discrete Dynamic Programming

The two parallel arcs replacing each edge merely make explicit the two directional
options for using the edge in a path. Whether directed or not, a path will use the link
no more than once because paths cannot repeat nodes.

Lincoln
Davenport

Wichita

Little Rock

Springfield

Chattanooga

Jackson

Tallahassee

3.6

2.0

2.
8

-0
.4

0.2
0.1

1.5

1.3

3.6

2.3

1.
5

3.
0

4.0
2.5

1.6

1.6

1.
1

-0
.9

0.8

2.8
1.1

1.6

0.
9

–0
.6

3.5
4.5

2.2
0.7

Montgomery

4.6
3.1

(c) After incorporating node values

2

5

4

6

7 8

9

3

1

Figure 9.4 Two Ring Circus Application Graphs (Continued)

exaMPle 9.3: directing a graPh

Consider the following graph:

1 3

2 4

5

10

15

3 7

2

929

Show the equivalent digraph.

Solution: Applying 9.6 , we replace all edges of the given graph with a pair of
 opposed arcs with the same length as the edge. The result is

10

15

3 7

2

9
29

3 2

9

7

1 3

2 4

5

Notice that arcs are unchanged and that the two arcs replacing each edge both
have the same length as the edge.

9.2 Dynamic Programming Approach to Shortest Paths 485

Two Ring Application Model
Figure 9.4(b) shows the result of directing the Two Ring network. For example,
Wichita-to-Little Rock edge (3, 5) becomes arcs (3, 5) and (5, 3), both with the same
cost as the original edge.

Net receipt values remain on nodes in part (b) of the figure. Part (c) moves
them to arcs by subtracting net receipts in each city from the cost of all outbound
arcs there. For example, Little Rock-to-Jackson arc (5, 7) now has cost

2.1 - 3.0 = -0.9

to account for net receipts if Two Ring plays Little Rock. Reverse arc (7, 5) from
Jackson to Little Rock has cost

2.1 - 1.0 = 1.1

to include Jackson receipts. If either of these arcs is used in an optimal path, the full
effect of both travel costs and show revenues will be reflected.

It may seem wrong to subtract receipts from all outbound arcs from a city
when show receipts can be realized only once. Remember, however, that a path can
visit any node only once—entering on an inbound arc and leaving on an outbound.
It follows that receipts for a town can be part of any path’s length at most once.

The Two Ring digraph of Figure 9.4(c) also introduces another class of shortest
path models. This time arc costs, being net dollar amounts, have unpredictable sign.
Also, we require a shortest path for only one pair of nodes: Lincoln to Tallahassee.

•	 Name: Two Ring Circus
•	 Graph: directed
•	 Costs: arbitrary
•	 Output: shortest path
•	 Pairs: one source to one destination

9.2 dynaMic PrograMMing aPProach to ShorteSt PathS

Dynamic programming methods exploit the fact that it is sometimes easiest to solve
one optimization problem by taking on an entire family. If strong enough relation-
ships can be found among optimal solutions to the various members of the family,
attacking all together can be the most efficient way of solving the one(s) we really
care about.

Families of Shortest Path Models
We will see later in the chapter how we sometimes have to invent a family of prob-
lems to solve a particular one by dynamic programming. With shortest path models
the appropriate family is already at hand. We need only exploit the fact that most
applications require optimal paths or path lengths for more than one pair of nodes.

Shortest path algorithms exploit relationships among optimal
paths (and path lengths) for different pairs on nodes.

Principle 9.7

486 Chapter 9 Shortest Paths and Discrete Dynamic Programming

The Littleville and Texas Transfer applications of Section 9.1 already seek paths
for multiple pairs of nodes. Littleville requires an optimal path between every pair of
nodes, and Texas Transfer needs optimal path lengths from one node to every other.

Even if only one optimal path is required, our dynamic programming approach
to shortest path problems embeds the case of application interest in such a family of
problems for different origin–destination pairs. In particular, we will solve the Two Ring
circus application, which needs an optimal path for only one origin–destination pair, by
embedding it in the problem of finding shortest paths from the origin to all other nodes.

Functional Notation
With many optimizations going on at once, we will need some notation to keep score.
Specifically, we denote optimal solutions and solution values as functions of the family
member. Square brackets [c] enclose the parameters in such functional notation.

The Texas Transfer and Two Ring applications require optima for one source
to all other nodes. Corresponding functional notation is

n[k]! length of a shortest path from the source node to node k
1= +∞ if no path exists2

xi, j [k]! c 1 if arc>edge 1i, j2 is part of the optimal
path from the source node to node k

0 otherwise

Notice that we adopt the convention that n[k] = + ∞ when there is no path to k.
Applications such as Littleville, which need optimal paths from all nodes to all

others, have two parameters:

n[k, /]! length of a shortest path from node k to node /
1= +∞ if no path exists2

xi, j[k, /]! e1 if arc/edge 1i, j2 is part of the optimal path from node k to node /
0 otherwise

Again n[k, /] = + ∞ indicates that no path exists from k to /.

exaMPle 9.4: underStanding Functional notation

Consider the problem of finding the shortest path from source node 1 in the follow-
ing graph to all other nodes.

1

2

3

4

5

15

3 8

6

5

11

10

(a) Use inspection to determine all required shortest paths.

(b) Detail optimal solutions and solution values in functional notation.

9.2 Dynamic Programming Approach to Shortest Paths 487

Optimal Paths and Subpaths
To formulate a dynamic programming approach to our shortest path models, we
must identify connections among optimal solutions to problems for different pairs
of nodes. How is the optimal path for one pair of nodes related to the optimal path
for another?

To begin to see, examine Figure 9.5. The highlighted path through Austin
and San Antonio is the shortest from the origin at Ft. Worth to Corpus Christi.
Think now about San Antonio. The figure’s Ft. Worth–Austin–San Antonio path
is one way to get to San Antonio, but could any other path be shorter? Certainly
not. If there were a better way to get from Ft. Worth to San Antonio than the path
indicated in Figure 9.5, that better route would also yield an improvement on the

Solution:

(a) It is easy to check that optimal paths to nodes 2, 3, and 4 are 1-2, 1-2-3, and
1-2-4, respectively. There is no path from source 1 to node 5.

(b) In functional notation these optimal paths imply that

n[1] = 0 x1,2[1] = x1,3[1] = x2,3[1] = x2,4[1] = x3,4[1] = 0

n[2] = 3 x1,2[2] = 1, x1,3[2] = x2,3[2] = x2,4[2] = x3,4[2] = 0

n[3] = 11 x1,2[3] = x2,3[3] = 1, x1,3[3] = x2,4[3] = x3,4[3] = 0

n[4] = 9 x1,2[4] = x2,4[4] = 1, x1,3[4] = x2,3[4] = x3,4[4] = 0

n[5] = +∞ 1no path2

1

2

5

3

4

6

7

8

9

10

359

12
2

34
5

167

443

415

180

213

19
5

79 199

246

153 21
5

92

Ft. Worth

Amarillo

Lubbock

El Paso

Austin

Abilene

Houston

Corpus Christi

San Antonio

San Angelo

Figure 9.5 Optimal Path of the Texas Transfer Application

488 Chapter 9 Shortest Paths and Discrete Dynamic Programming

Corpus Christi optimum. We need only follow it to San Antonio and finish with the
link from San Antonio to Corpus Christi.

Negative Dicycles Exception
It seems safe to conclude from examples like Figure 9.5 that optimal paths must
always have optimal subpaths. Unfortunately, there is a glitch.

Consider the example in Figure 9.6. The shortest path from source s = 1 to
node 3 clearly proceeds 1-2-3 with n[3] = 5. Still, the subpath 1-2 is not optimal.
Sequence 1-3-4-2 has lesser length n[2] = -3.

The logic of the preceding subsection suggests that there must be a contradic-
tion. Simply extending the optimal path to node 2 with arc 12, 32 should improve
the optimum at node 3. But that extension produces the sequence 1-3-4-2-3,
which is not a path because it repeats node 3. Eliminating the repetition gives path
1-3, but its length 10 is worse than 1-2-3.

The troublemaker is a negative dicycle.

A dicycle is a path that begins and ends at the same node, and
a negative dicycle is a dicycle of negative total length.

Definition 9.8

Figure 9.6 contains negative dicycle 3-4-2-3 with length

12 + 1-252 + 3 = -10

Its presence permits nonoptimal subpath 1-2 because extending shortest 1 to 2 path
1-3-4-2 with arc 12, 32 closes a dicycle that cannot be eliminated without increas-
ing the length of the route it offers to node 3.

Negative dicycles do not occur often in applied shortest path models because
they imply a sort of economic perpetual motion. Each time we transit a negative dicy-
cle we end up closer (in total length) to any source than we were when we started.
However, when negative dicycles are present, shortest path models become so dra-
matically more difficult that our whole solution approach must change.

Shortest path models with negative dicycles are much less
tractable than other cases because dynamic programming methods usually
do not apply.

Principle 9.9

2

3 4

1
2

12

10 -2
53

ν[1] = 0 ν[2] = -3

ν[4] = 17ν[3] = 5

Figure 9.6 Example with a Negative Dicycle

9.2 Dynamic Programming Approach to Shortest Paths 489

Principle of Optimality
Fortunately, negative dicycles are the only bad case in shortest path analysis. Just
as with the instance of Figure 9.6, a subpath of a shortest path can fail to be optimal
only if a negative dicycle is present. Other forms satisfy the simple insight known as
the principle of optimality for shortest path models.

exaMPle 9.5: identiFying negative dicycleS

Identify all dicycles and negative dicycles of the following graph:

2 3

41 -20

9

5 4

30

Solution: The dicycles of this example are 1-2-3-4-1 of length -2, and 1-3-4-1
of length 14. Only the first is a negative dicycle. Sequence 1-2-3-1 is not a dicycle
because it violates direction.

In a graph with no negative dicycles, optimal paths must have
optimal subpaths.

Principle 9.10

Functional Equations
To see how principle 9.10 helps us to compute optimal paths, let us limit our atten-
tion to one node to all other circumstances of models such as that of Texas Transfer
and the Two Ring Circus. If optimal paths must have optimal subpaths, it follows
that a shortest path can be constructed by extending known shortest subpaths.

Functional equations detail such recursive relationships.

Functional equations of a dynamic program encode the recur-
sive connections among optimal solution values that are implied by a principle
of optimality.

Definition 9.11

Functional Equations for One Node to All Others
In one node to all other shortest path cases, functional equations relate shortest
path lengths n[k].

The functional equations for shortest path problems from a
single source s in a graph with no negative dicycles are

n[s] = 0

n[k] = min5n[i] + ci, k : 1i, k2 exists6 all k ≠ s

Principle 9.12

The minimization in the second expression is taken over all neighbors i leading to k
in the graph. If none exist, we adopt the convention that min{nothing}! + ∞ .

490 Chapter 9 Shortest Paths and Discrete Dynamic Programming

The first part of the functional equations in 9.12 simply says that the length
of the shortest path from s to itself should = 0. The rest of the functional equations
fix the recursive relationships implied by principle 9.10 . In other words, they say
that the shortest path length for node j must be the best single arc/edge extension of
optimal paths to neighboring nodes i.

For an example, return again to San Antonio node j = 7 in Texas Transfer
Figure 9.5. The corresponding equation 9.12 is

n[7] = min5n[6] + c6,7, n[8] + c8,7, n[9] + c9,7, n[10] + c10,76
 = min5n[6] + 213, n[8] + 79, n[9] + 199, n[10] + 1536

That is, the length of the shortest path to San Antonio node 7 must be the least of
1-edge extensions to optimal paths for neighboring nodes i = 6 (San Angelo), 8
(Austin), 9 (Houston), and 10 (Corpus Christi). One of those must constitute an
optimal subpath of the shortest path from Ft. Worth to San Antonio.

exaMPle 9.6: underStanding Functional equationS

Return to Example 9.4. Write all corresponding functional equations and verify
that they are satisfied by shortest path lengths computed in Example 9.4(b).

Solution: Following 9.12 , functional equations are

n[1] = 0

n[2] = min5n[1] + c1,2, n[3] + c3,26
n[3] = min5n[1] + c1,3, n[2] + c2,3, n[4] + c4,36
n[4] = min5n[2] + c2,4, n[3] + c3,46
n[5] = min56

Now substituting optimal values yields

n[1] = 0

n[2] = min50 + 3, 11 + 86 = 3

n[3] = min50 + 15, 3 + 8, 9 + 56 = 11

n[4] = min53 + 6, 11 + 56 = 9

n[5] = min56= + ∞

Sufficiency of Functional Equations in the One to All Case
In the absence of negative dicycles, shortest path lengths satisfy functional equa-
tions 9.12 because they satisfy principle of optimality 9.10 . Optimal paths must
extend optimal subpaths.

The algorithms that make up most of this chapter depend on the fact that the
result works in both directions.

Node values n[k] in a graph with no negative dicycles are lengths
of shortest paths from a given source s if and only if they satisfy functional
equations 9.12 .

Principle 9.13

9.2 Dynamic Programming Approach to Shortest Paths 491

That is, we can compute shortest path lengths n[k] simply by computing values that
satisfy the functional equations.

To see why, examine the n[k] values of Texas Transport Figure 9.7. Certainly,
the value a Ft. Worth source node s = 3 is correct. The length of a shortest path
from Ft. Worth to Ft. Worth must = 0.

For other nodes, say El Paso node 4, we make two observations. First, func-
tional equations 9.12 assure that n[4] is the length of some path from s to node 4.
This is true because there must be at least one neighbor i of node 4 that has

n[4] = n[i] + ci, 4

Here i = 5 (Abilene) works because it achieves the minimum in 9.12 . But Abilene
node 5 must, in turn, have a neighbor j with

n[5] = n[j] + cj, 5

Here it is j = 3. We continue in this way until source node s is reached (as it just
was). Then summing the relationships, simplifying, and using n[s] = 0 produces

n[4] + n[5] = n[5] + n[s] + cs, 5 + c5,4

 n[4] = n[s] + cs, 5 + c5,4

 n[4] = cs, 5 + c5,4

That is, n[4] is the length of path s - 5 - 4.

1

2

5

3

4

6

7

8

9

10

359

12
2

34
5

167

443

415

180

213

19
5

79

199

246

153 21
5

92

Ft. Worth
ν [3] = 0

Amarillo
ν [1] = 359

Lubbock
ν [2] = 347

El Paso
ν [4] = 623

Austin

Abilene

Houston
ν [9] = 246

Corpus Christi
ν [10] = 427

San Antonio
ν [7] = 274

San Angelo
ν [6] = 272

ν [5] = 180

ν [8] = 195

Figure 9.7 Sufficiency of Functional Equations

492 Chapter 9 Shortest Paths and Discrete Dynamic Programming

The other half of the argument is to show that no other path can have shorter
length than the one associated with n[4]. Consider the s-1-2-4 path highlighted
with dashed lines in Figure 9.7. Because all values satisfy functional equations

n[1] … n[s] + cs, 1

n[2] … n[1] + c1,2

n[4] … n[2] + c2,4

Again summing, simplifying, and using n[s] = 0, we obtain

n[1] + n[2] + n[4] … n[s] + n[1] + n[2] + cs, 1 + c1,2 + c2,4

 n[4] … n[s] + cs, 1 + c1,2 + c2,4

 n[4] … cs, 1 + c1,2 + c2,4

The path indicated cannot have length less than n[4].

exaMPle 9.7: veriFying SuFFiciency oF Functional equationS

Consider the following graph and associated node values n[k]:

2

3

41

3

5

8

15
9

ν [3] = 5

ν [4] = 11

ν [2] = 3

ν [1] = 0

(a) Verify that given values n[k] satisfy functional equations 9.12 .

(b) Identify the path associated with the n[k] of each node k.

(c) Use functional equations to show why the length of path 1-3-2-4 must
be Ú n[4].

Solution:

(a) n[1] = 0

n[2] = min5n[1] + c1,2, n[3] + c3,26 = min50 + 3, 5 + 96 = 3

n[3] = min5n[1] + c1,3, n[2] + c2,36 = min50 + 5, 3 + 96 = 5

n[4] = min5n[2] + c2,4, n[3] + c3,46 = min53 + 8, 5 + 156 = 11

(b) Label n[s] = 0 is the length of a null path from s = 1 to itself. For k = 2, we
look for the neighbor achieving the minimum in the functional equation of n[2].
Here it is s = 1, so the path is 1-2 with length n[2] = 3. For k = 3, similar think-
ing yields path 1-3 with length n[3] = 5. Node k = 4 takes two steps. At node 4
the neighbor achieving the minimum is i = 2. Its minimum, in turn, occurred for
i = = 1. Thus the path is 1-2-4 with length n[4] = 11.

9.2 Dynamic Programming Approach to Shortest Paths 493

Functional Equations for All Nodes to All Others
For shortest path problems requiring optimal paths between all pairs of nodes
(Littleville is an example), almost everything said so far generalizes immediately.
Only the functional equations change.

(c) Functional equations for nodes 4, 2, and 3 imply that

n[4] … n[2] + c2,4

n[2] … n[3] + c3,2

n[3] … n[1] + c3,1

Summing, simplifying, and using n[1] = 0, we have

 n[4] + n[2] + n[3] … n[1] + n[2] + n[3] + c1,3 + c3,2 + c2,4

 n[4] … n[1] + c1,3 + c3,2 + c2,4

 n[4] … c1,3 + c3,2 + c2,4

The functional equations for shortest path problems from all
nodes to all other nodes in a graph with no negative dicycles are

n[k, k] = 0 all k

n[k, /] = min5ck, l, 5n[k, i] + n[i, /] : i ≠ k, /66 all k ≠ /

Principle 9.14

As with single-source cases, functional equations 9.14 merely detail the princi-
ple of optimality (9.10) insight that optimal paths must have optimal subpaths. Thus
the shortest path from k to / must consist either of arc/edge 1k, /2, or an optimal
path from k to some intermediate node i, plus an optimal path from i to /. Sufficiency
for computation follows exactly as it did for earlier model forms.

Node pair values n[k, /] in a graph with no negative dicycles
are lengths of shortest paths from k to / if and only if they satisfy functional
equations 9.14 .

Principle 9.15

exaMPle 9.8: veriFying Functional equationS For all
PairS caSeS

Consider the problem of finding shortest path between all pairs of nodes in the
following graph.

2

3 4

1

10
0 8

3

12

4

494 Chapter 9 Shortest Paths and Discrete Dynamic Programming

Solving Shortest Path Problems by Linear Programming
All the shortest path problems of this chapter can be formulated and solved by
linear programming as long as the given graphs contain no negative dicycles.
Details are provided in Chapter 10. Still, it is important to understand that the
dynamic programming methods of the remainder of this chapter are far more
efficient.

(a) Use inspection to identify optimal paths for all pairs.

(b) Write the functional equations for 1i, j2 = 11, 42 and (2, 3).

(c) Verify that your optimal path lengths of part (a) satisfy these equations.

Solution:

(a) Optimal paths are detailed in the following table:

i

j = 1 j = 2 j = 3 j = 4

N Path N Path N Path N Path

1 0 — 3 1-2 16 1-4-3 4 1-4
2 3 2-1 0 — 19 2-1-4-3 7 2-1-4
3 16 3-4-1 19 3-4-1-2 0 — 12 3-4
4 4 1-4 7 4-1-2 12 4-3 0 —

(b) Following 9.14 , the functional equations for 1i, j2 = 11, 42 and (2, 3) are

n[1, 4] = min5c1,4, n[1, 2] + n[2, 4], n[1, 3] + n[3, 4]6
n[2, 3] = min5c2,3, n[2, 1] + n[1, 3], n[2, 4] + n[4, 3]6

(c) Substitution of optimal values from the table in functional equations gives

n[1, 4] = min54, 3 + 7, 16 + 126 = 4

n[2, 3] = min5+ ∞ , 3 + 16, 7 + 126 = 19

Although shortest path problems over graphs with no negative
dicycles can be solved by linear programming, dynamic programming meth-
ods based on the principle of optimality are far more efficient.

Principle 9.16

9.3 ShorteSt PathS FroM one node to all otherS:
BellMan–Ford

We have seen that the task of computing shortest path lengths from single source
s to all other nodes reduces to a search for quantities n[k] satisfying functional
equations 9.12 . Principle 9.13 guarantees that such n[k] will provide shortest path
lengths whenever the given graph contains no negative dicycles.

9.3 Shortest Paths from One Node to All Others: Bellman–Ford 495

Solving the Functional Equations
The central issue in designing shortest path algorithms is how to compute functional
equation solutions efficiently. Notice that the task is not as straightforward as, say,
solving a system of linear equations. The min5c6 operator of our functional equa-
tions makes them nonlinear.

The format of equations 9.12 suggests another way. Each equation shows an
expression for a single value n[k]. Why not just evaluate those expressions?

Sometimes we can employ a one-pass evaluation strategy (see Sections 9.6 and
9.7). But if the graph contains a dicycle like the following one:

2

3

1
2

5 4

there is a difficulty. Notice that this dicycle has positive total length; the issue is not
a negative dicycle. The difficulty comes from the form of the three corresponding
functional equations:

n[1] = min5n[3] + 5, c6
n[2] = min5n[1] + 2, c6
n[3] = min5n[2] + 4, c6

Evaluating the expression for n[2] requires n[1]; evaluating the expression for n[3]
requires n[2]; and evaluating the expression for n[1] requires n[3].

Dicycles introduce circular dependencies in functional equa-
tions that preclude their solution by one-pass evaluation, even if the length of
all dicycles is nonnegative.

Principle 9.17

Repeated Evaluation Algorithm: Bellman–Ford
Algorithm 9A, which is attributed to R. E. Bellman and L. R. Ford, Jr., draws on the
notion of evaluation of functional equations to produce an algorithm that does work
for any graph with no negative dicycles. The key insight is repeated evaluation. Each
major iteration of the search (i.e., each t) evaluates the functional equation for each
n[k] using results from the preceding iteration. We stop when no result changes.

Just as with all the other searches of this book, Algorithm 9A distinguishes
search values at different iterations by attaching superscripts. That is,

n1t2[k]! value of n[k] obtained on the tth iteration

When the algorithm finishes, we may want to know both shortest path lengths
n[k] and the actual paths that achieve those optimal values. Labels d[k] keep notes
that will allow us to recover the optimal paths. Specifically,

d[k]! node preceding k in the best-known path from s to k

496 Chapter 9 Shortest Paths and Discrete Dynamic Programming

Bellman–Ford Solution of the Two Ring Circus Application
Before dealing with all the details of Bellman–Ford Algorithm 9A, let us apply it to
the Two Ring Circus application [Figure 9.4(c)]. Table 9.1 provides details.

Algorithm 9A: one to All (no negAtive Dicycles);
BellmAn–ForD shortest PAths

step 0: initialization. With s the source node, initialize optimal path lengths

n102[k] d e0 if k = s
+∞ otherwise

and set iteration counter t d 1.
step 1: evaluation. For each k evaluate

n1t2[k] d min5v 1t-12[i] + ci, k : 1i, k2 exists6
If n1t2[k] 6 n1t - 12[k], also set d [k] d the number of a neighboring node i
achieving the minimum n1t2[k].

step 2: stopping. Terminate if n1t2[k] = n1t - 12[k] for every k, or if t = the
number of nodes in the graph. Values n1t2[k] then equal the required short-
est path lengths unless some n1t2[k] changed at the last t, in which case the
graph contains a negative dicycle.

step 3: Advance. If some n[k] changed and t 6 the number of nodes,
 increment t d t + 1 and return to Step 1.

taBle 9.1 Bellman–Ford Algorithm Solution of Two Ring Application

t N1t2[1] N1t2[2] N1t2[3] N1t2[4] N1t2[5] N1t2[6] N1t2[7] N1t2[8] N1t2[9]

0 0 +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞
1 3.6 2.8 4.6
2 3.7 4.1
3 5.7 3.2
4 4.8 6.7
5 5.5
6

t d [1] d [2] d [3] d [4] d [5] d [6] d [7] d [8] d [9]

1 1 1 1
2 2 3
3 5 5
4 7 7
5 8
6

The process begins by initializing node values n[k]. Lacking better informa-
tion, the algorithm initializes all except n[s] at the worst possible value for a mini-
mizing optimization, +∞.

9.3 Shortest Paths from One Node to All Others: Bellman–Ford 497

The first main iteration of the algorithm computes new n112[k] by evaluating
the functional equations using the n102[k]. For example,

n112[2] = min5n102[1] + c1,2, n
102[4] + c4,26

 = min50 + 3.6, ∞ + 0.26
 = 3.6

Values change for n112[2] = 3.6, n112[3] = 2.8, and n112[4] = 4.6.
Whenever a new value is assigned to any path length n[k], we also want to

record the decision option that produced it. Here that means keeping track of the
neighboring node i through which a new value for n[k] was derived. For example,
d[2] d 1 because the minimum establishing n112[2] was achieved by extending the
best known path to neighboring node i = 1. Similarly, d[3] d 1 and d[4] d 1.

Advancing to iteration t = 2, we repeat the process. This time, values change
at nodes k = 4 and 5. The first of these illustrates the temporary nature of n[k] val-
ues in the Bellman–Ford algorithm. At iteration 1 we set n112 = 4.6 because

n112[4] = min5n102[1] + c1,4, n
102[2] + c2,4, n

102[3] + c3,4, n
102[5] + c5,4, n

102[6] + c6,46
 = min50 + 4.6, ∞ + 0.1, ∞ + 2.3, ∞ + 1.5, ∞ + 2.56
 = 4.6

After iteration 2, however, updated values produce

n122[4] = min5n112[1] + c1,4, n
112[2] + c2,4, n

112[3] + c3,4, n
112[5] + c5,4, n

112[6] + c6,46
 = min50 + 4.6, 3.6 + 0.1, 2.8 + 2.3, ∞ + 1.5, ∞ + 2.56
 = 3.7

Processing continues in this way through iterations t = 3, 4, 5, with better and
better values for the n[k] being computed. However, evaluation of functional equa-
tions at t = 6 produces no changed values. This is the signal to stop and accept val-
ues n162[k] as optimal. Figure 9.8 shows corresponding optimal paths.

Lincoln
Davenport

Wichita

Little Rock

Springfield

Chattanooga

Jackson

Tallahassee

3.6

2.0

2.
8

-0
.4

0.2
0.1

1.5

1.3

3.6

2.3

1.
5

3.
0

4.0
2.5

1.6

1.6

1.
1 -0

.9 0.8

2.8

1.1

1.6

0.
9

-0
.6

3.5
4.5

2.2

0.7

Montgomery

4.6
3.1

2

5

4

6

7 8

9

3

1

Figure 9.8 Optimal Paths in Two Ring Application

498 Chapter 9 Shortest Paths and Discrete Dynamic Programming

exaMPle 9.9: aPPlying the BellMan–Ford algorithM

Apply Bellman–Ford Algorithm 9A to compute the lengths of shortest paths from
source node s = 1 to all other nodes of the following graph.

2

3

41

5

8

2

3

-1
0

Solution: Initialization Step 0 sets

n102[1] = 0 n102[2] = n102[3] = n102[4] = ∞

On iteration t = 1, evaluation of functional equations gives

n112[1] = 0

n112[2] = min5n102[1] + c1,2, n
102[4] + c4,26

 = min50 + 5, ∞ + 26 = 5 1making d[2] = 12
n112[3] = min5n102[1] + c1,3, n

102[2] + c2,3, n
102[4] + c4,36

 = min50 + 8, ∞ - 10, ∞ + 36 = 8 1making d [3] = 12
n112[4] = min56

 = ∞

Continuing in tabular form, we have

t N1t2[1] N1t2[2] N1t2[3] N1t2[4]

0 0 + ∞ + ∞ + ∞
1 5 8
2 -5
3

t d [1] d [2] d [3] d [4]

1 1 1
2 2
3

Iteration t = 2 revises n122[3] = -5, which makes d[3] = 2. The algorithm ter-
minates when all values repeat at iteration t = 3.

Extracting final values from the table, the shortest path to node 2 has length
n[2] = 5, and the shortest path to node 3 has length n[3] = -5. Since the final
n[4] = ∞, there is no path to node 4.

Justification of the Bellman–Ford Algorithm
Having seen how Algorithm 9A works, we now need to investigate why. What guaran-
tees that the n1t2[k] correspond to optimal values when termination criteria are fulfilled?

9.3 Shortest Paths from One Node to All Others: Bellman–Ford 499

Look again at the complex of optimal paths in Figure 9.8. Some nodes are one
arc away from the source along optimal paths, some are two arcs away, some three,
and so on. Notice, however, that none is more than

number of nodes - 1 = 8

arcs away. A path in a 9 node network can contain no more than 19 - 12 = 8 arcs.
With any greater number, some node would have to repeat.

The value n1t2[1] = 0 at the source is correct from t = 0. After iteration t = 1,
all optimal lengths that directly depend upon it (i.e., all n112[k] with optimal paths of
1 arc) must also be correct. Similarly, after t = 2, those n122[k] with optimal paths of
2 arcs must also be final. In general, intermediate n1t2[k] reflect optimal paths of t or
fewer steps. All must be final before t = the number of nodes. Furthermore, if we go
a whole iteration without changing any node’s value, no more changes will occur. We
might as well terminate computation.

As we consider different shortest paths and other algorithms, it will be import-
ant to track how rapidly computational effort grows with dimensions of the instance.
Computational orders, denoted O(·), are functions of instance size that bound the
effort required by algorithms in the worst case (see Section 14.2 for details). For
Bellman–Ford on a graph of n nodes, our analysis of algorithm correctness implies
at most O(n) major iterations. Each involves checking all of the n nodes vs. nodes
that flow into them—possibly all nodes. Thus the computation is bounded by O1n22
effort per iteration, and O1n32 overall.

Recovering Optimal Paths
Some shortest path models require only shortest path lengths, but many require the
optimal paths that achieve those lengths.

To recover optimal paths, we exploit a consequence of principle of optimality 9.10 .
When optimal paths must have optimal subpaths, the shortest path to any node is just
a 1-arc/edge extension of the shortest path to a neighbor. This implies that the last link
is enough to recover the full path. We only need to move to the indicated neighbor and
follow its optimal path.

The d[k] labels we record during computation provide the needed information
because they record the last link of the sequence establishing optimal path length n[k].

At the completion of Algorithm 9A, a shortest path from source
s to any other node k can be recovered by starting at k, backtracking to neigh-
boring node d[k], and continuing with an optimal path from s to the neighbor
until source s is encountered.

Principle 9.18

To illustrate, consider the Lincoln-to-Tallahassee path we really need in Two
Ring Circus Figure 9.8. Starting at Tallahassee node 9, final d[9] = 8 tells us the
optimal path enters through node 8. Since the optimal path to node 9 must include
an optimal subpath to node 8, we can continue the process by focusing on the short-
est path to node 8. There d[8] = 7 tells us the path comes from node 7.

Continuing through d[7] = 5, d[5] = 3, and d[3] = 1 we finally reach the
source. Thus the full optimal path is 1–3–5–7–8–9: Lincoln to Wichita to Little Rock
to Jackson to Montgomery to Tallahassee.

500 Chapter 9 Shortest Paths and Discrete Dynamic Programming

This behavior illustrates why the Bellman–Ford algorithm terminates if labels
continue to change on iteration t = the number of nodes.

exaMPle 9.10: recovering PathS with BellMan–Ford

Return to the graph of Example 9.9. Recover an optimal path to node 3 using the
d[k] labels assigned during Example 9.9 processing.

Solution: Applying principle 9.18 , we begin at destination node 3. Since d[3] = 2,
the optimal path enters from node 2. The optimal path to node 2, in turn, enters
through node d[2] = 1. Having reached the source, we conclude that a shortest path
is 1–2–3.

Encountering Negative Dicycles with Bellman–Ford
We know that shortest path models with negative dicycles usually cannot be solved
by the dynamic programming methods of Algorithm 9A (principle 9.9). But if we
confront a very large model, it could be quite difficult to know whether negative
dicycles are present.

To see what happens, we could try applying the Bellman–Ford algorithm to
our negative dicycle example of Figure 9.6:

t N1t2[1] N1t2[2] N1t2[3] N1t2[4] d [1] d [2] d [3] d [4]

0 0 +∞ +∞ +∞
1 2 10 1 1
2 5 22 2 3
3 -3 17 4
4 -8 0

Initial values n102[k] are chosen just as in other examples, and each iteration
updates n[k] and d[k] labels. The critical difference is that labels continued to change
on iteration t = 4, even though the graph has only 4 nodes. Evaluation around neg-
ative dicycle drives n1t2 lower and lower because

n1t2[2] d n1t - 12[4] - 25

n1t2[3] d v1t - 12[2] + 3

n1t2[4] d v1t - 12[3] + 12

2

3 4
12

-25
3

9.4 Shortest Paths from All Nodes to All Others: Floyd–Warshall 501

If Algorithm 9A encounters negative dicycles, it will demon-
strate their presence by continuing to change n1t2[k] on iteration t = the number
of nodes. Any node k with such a changing n1t2[k] belongs to a negative dicycle.

Principle 9.19

We can actually exhibit a negative dicycle by following the d[k] labels of any k for
which n1t2[k] changed on the final iteration. For example, we could begin at k = 2
because n142[2] = -8 ≠ n132[2] = -3. Tracing backward through the d[k] labels,
we find that

d[2] = 4

d[4] = 3

d[3] = 2

As soon as node 2 repeats, we know we have completed negative dicycle 2–3–4–2.

9.4 ShorteSt PathS FroM all nodeS to all otherS:
Floyd–warShall

When shortest paths between all pairs of nodes are required in a graph with no
negative dicycles (e.g., in our Littleville application of Figure 9.1), the task is to
compute n[k, /] efficiently, satisfying all-to-all functional equations 9.14 .

Floyd–Warshall Algorithm
Algorithm 9B, which is attributed to R. W. Floyd and S. Warshall, does just that.
Search quantities

n1t2[k, /]! length of a shortest path for k to / using only
 intermediate nodes numbered less than or equal to t

converge to the required shortest path lengths n[k, /]. Corresponding decision labels

d[k, /]! node just before / on the current path from k to /

track the associated paths.
The key to Algorithm 9B’s effectiveness is the clever sequence in which quan-

tities are calculated. Initialization correctly sets the n102[k, /] = ck, / because the only
path from k to / that has no intermediate nodes (i.e., none with positive node num-
ber … 0) is an arc/edge 1k, /2 with cost ck, /.

Subsequent iterations consider concatenating previous results as indicated in
the following sketch:

t

k

O
shortest k to O, using 6 t

shortest k to t, using 6 t shortest t to O, using 6 t

502 Chapter 9 Shortest Paths and Discrete Dynamic Programming

Algorithm 9B: All to All (no negAtive Dicycles);
FloyD–WArshAll shortest PAths

By iteration t we already know optimal paths using nodes numbered 6 t as inter-
mediaries. Thus n1t2[k, /], which is the shortest using nodes numbered … t, must
be either the current best or one visiting t via an optimal path from k to t followed
by one from t to /. The latter subpaths must involve intermediaries numbered 6 t,
so they are already recorded in labels n1t - 12[k, t] and n1t - 12[t, /]. At termination,
all the possibilities of the minimization in functional equations 9.14 have been
checked, which implies that the final n[k, /] are optimal.

In terms of computational orders on a graph of n nodes (see Section 14.2), this
analysis is easily seen to yield O(n) major iterations, each involving O1n22 checking
of all pairs of nodes. Thus the computation is O1n32 overall.

There remains one concern. How can we be sure that piecing together a short-
est path from k to t in the above figure with a shortest path from t to / produces a
path from k to /? It certainly does produce a sequence of arcs leading from k to /,
and if we adopt it, the total length must be less than previous best n1t - 12[k, /]. But as
illustrated below, there could be one or more nodes i 6 t in common along the two
components. Then the arc sequence would not be a path.

O

i

t

k

step 0: initialization. All nodes should have consecutive positive numbers
starting with 1. For all arcs and edges 1k, /2 in the graph, initialize

n102[k, /] d ck, /

d [k, /] d k

For k, / pairs with no arc/edge 1k, /2, assign

n102[k, /] d e0 if k = /
+∞ otherwise

f

Also set iteration counter t d 1.
step 1: evaluation. For all k, / ≠ t update

n1t2[k, /] d min5n1t - 12[k, /], n1t - 12[k, t] + n1t - 12[t, /]6
If n1t2[k, /] 6 n1t - 12[k, /], also set d[k, /] d d[t, /].

step 2: stopping. Terminate if t = the number of nodes in the graph, or if
n1t2[k, k] 6 0 for any node k. Values n1t2[k, /] then equal the required short-
est path lengths unless some n1t2[k, k] is negative, in which case the graph
contains a negative dicycle through k.

step 3: Advance. If t 6 the number of nodes and all n1t2[k, k] Ú 0, incre-
ment t d t + 1 and return to Step 1.

9.4 Shortest Paths from All Nodes to All Others: Floyd–Warshall 503

To see that such cases cannot occur, notice first that the dicycle from i to t and
back in the sequence depicted above cannot have negative total length; negative
dicycles are precluded for Algorithm 9B. Thus removing it from the rest leaves a
sequence through nodes numbered 6 t with length no greater than the full pieced
sequence. Continuing in this way to remove nonnegative dicycles will eventually
leave us with a path from k to / using only nodes number 6 t with length at most
that of the original pieced sequence. But we know that must be 6 n1t - 12[k, /], which
violates optimality of that prior best length. The only way to avoid such conflicts is
that the full pieced sequence should itself be a path to in the first place.

Floyd–Warshall Solution of the Littleville Application
To illustrate Floyd–Warshall Algorithm 9B, we apply it to the Littleville Application
of Figure 9.1. Table 9.2 presents initial values, along with the results for iterations
t = 1, 9, and 10.

The algorithm begins by initializing n102[k, /] for all arcs/edges 1k, /2 at direct
cost ck, /, and fixing labels d[k, /] accordingly. For example, n102[6, 7] d c6,7 = 28,
and d[6, 7] d 6 to indicate that the current (direct) path from node 6 to node 7
enters 7 via 6.

Values for which there is no arc/edge 1k, /2 begin at +∞ except for k-to-k
path lengths n102[k, k], which are assigned value 0. Thus n102[1, 10] d ∞ in Table 9.2,
because the Littleville network has no direct link from node 1 to node 10, and
n102[9, 9] d 0 to indicate that the shortest path from node 9 to itself has length = 0.

Iteration t = 1 advances to Algorithm 9B, Step 1. For all node pairs k and /,
both different than t = 1, we update n[k, /] to the minimum of what it was before
and the concatenation the current path from k to t with the current path from t to /.

Table 9.2 shows that the only new (boxed) value occurs at k = 5, / = 2. There
is no direct path from node 5 to node 2 [refer back to Figure Example 9.1(b)], so
n102[5, 2] = + ∞ . But iteration t = 1 evaluates node 1 as an intermediary. The
length of the path 5–1–2 is recorded by evaluating the corresponding functional
equation 9.14 :

n112[5, 2] d min5n102[5, 2], n102[5, 1] + n102[1, 2]6
= min5∞, 20 + 126
= 32

Decision label d[5, 2] is also corrected to indicate that the current path from k = 5
to / = 2 now enters through node d[5, 2] = 1.

Skipping ahead, Table 9.2 shows other values changing as nodes t = 9 and
t = 10 are tried as intermediate nodes. One is

n1102[3, 8] d min5n192[3, 8], n192[3, 10] + n192[10, 8]6
= min587, 51 + 286
= 79

Another value changed at t = 10 is

n1102[4, 1] d n192[4, 10] + n192[10, 1]

= 38 + 66 = 104

504 Chapter 9 Shortest Paths and Discrete Dynamic Programming

taBle 9.2 Floyd–Warshall Algorithm Solution of Littleville Application

Initial Values

N102[k, /] / = 1 / = 2 / = 3 / = 4 / = 5 / = 6 / = 7 / = 8 / = 9 / = 10

k = 1 0 12 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
k = 2 ∞ 0 18 ∞ ∞ 32 ∞ ∞ ∞ ∞
k = 3 ∞ ∞ 0 13 ∞ ∞ 30 ∞ ∞ ∞
k = 4 ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ 38

k = 5 20 ∞ ∞ ∞ 0 18 ∞ ∞ ∞ ∞
k = 6 ∞ 32 ∞ ∞ 18 0 28 ∞ 25 ∞
k = 7 ∞ ∞ 30 ∞ ∞ 28 0 ∞ 21 49

k = 8 ∞ ∞ ∞ ∞ 18 ∞ ∞ 0 36 ∞
k = 9 ∞ ∞ ∞ ∞ ∞ 25 21 36 0 40

k = 10 ∞ ∞ ∞ ∞ ∞ ∞ 49 28 40 0

d[k, /] / = 1 / = 2 / = 3 / = 4 / = 5 / = 6 / = 7 / = 8 / = 9 / = 10

k = 1 — 1 — — — — — — — —

k = 2 — — 2 — — 2 — — — —

k = 3 — — — 3 — — 3 — — —

k = 4 — — — — — — — — — 4

k = 5 5 — — — — 5 — — — —

k = 6 — 6 — — 6 — 6 — 6 —

k = 7 — — 7 — — 7 — — 7 7

k = 8 — — — — 8 — — — 8 —

k = 9 — — — — — 9 9 9 — 9

k = 10 — — — — — — 10 10 10 —

After Iteration t = 1

N112[k, /] / = 1 / = 2 / = 3 / = 4 / = 5 / = 6 / = 7 / = 8 / = 9 / = 10

k = 1 0 12 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
k = 2 ∞ 0 18 ∞ ∞ 32 ∞ ∞ ∞ ∞
k = 3 ∞ ∞ 0 13 ∞ ∞ 30 ∞ ∞ ∞
k = 4 ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ 38

k = 5 20 32 ∞ ∞ 0 18 ∞ ∞ ∞ ∞
k = 6 ∞ 32 ∞ ∞ 18 0 28 ∞ 25 ∞
k = 7 ∞ ∞ 30 ∞ ∞ 28 0 ∞ 21 49

k = 8 ∞ ∞ ∞ ∞ 18 ∞ ∞ 0 36 ∞
k = 9 ∞ ∞ ∞ ∞ ∞ 25 21 36 0 40

k = 10 ∞ ∞ ∞ ∞ ∞ ∞ 49 28 40 0

d[k, /] / = 1 / = 2 / = 3 / = 4 / = 5 / = 6 / = 7 / = 8 / = 9 / = 10

k = 1 — 1 — — — — — — — —

k = 2 — — 2 — — 2 — — — —

k = 3 — — — 3 — — 3 — — —

k = 4 — — — — — — — — — 4

k = 5 5 1 — — — 5 — — — —

k = 6 — 6 — — 6 — 6 — 6 —

k = 7 — — 7 — — 7 — — 7 7

k = 8 — — — — 8 — — — 8 —

k = 9 — — — — — 9 9 9 — 9

k = 10 — — — — — — 10 10 10 —

9.4 Shortest Paths from All Nodes to All Others: Floyd–Warshall 505

After Iteration t = 9

N192[k, /] / = 1 / = 2 / = 3 / = 4 / = 5 / = 6 / = 7 / = 8 / = 9 / = 10

k = 1 0 12 30 43 62 44 60 105 69 81

k = 2 70 0 18 31 50 32 48 93 57 69

k = 3 96 90 0 13 76 58 30 87 51 51

k = 4 ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ 38

k = 5 20 32 50 63 0 18 46 79 43 83

k = 6 38 32 50 63 18 0 28 61 25 65

k = 7 66 60 30 43 46 28 0 57 21 49

k = 8 38 50 68 81 18 36 57 0 36 76

k = 9 63 57 51 64 43 25 21 36 0 40

k = 10 66 78 79 92 46 64 49 28 40 0

d[k, /] / = 1 / = 2 / = 3 / = 4 / = 5 / = 6 / = 7 / = 8 / = 9 / = 10

k = 1 — 1 2 3 6 2 3 9 6 4

k = 2 5 — 2 3 6 2 3 9 6 4

k = 3 5 6 — 3 6 7 3 9 7 4

k = 4 — — — — — — — — — 4

k = 5 5 1 2 3 — 5 6 9 6 9

k = 6 5 6 2 3 6 — 6 9 6 9

k = 7 5 6 7 3 6 7 — 9 7 7

k = 8 5 1 2 3 8 5 9 — 8 9

k = 9 5 6 7 3 6 9 9 9 — 9

k = 10 5 1 7 3 8 5 10 10 10 —

After Iteration t = 10

n1102[k, /] / = 1 / = 2 / = 3 / = 4 / = 5 / = 6 / = 7 / = 8 / = 9 / = 10

k = 1 0 12 30 43 62 44 60 105 69 81

k = 2 70 0 18 31 50 32 48 93 57 69

k = 3 96 90 0 13 76 58 30 79 51 51

k = 4 104 116 117 0 84 102 87 66 78 38

k = 5 20 32 50 63 0 18 46 79 43 83

k = 6 38 32 50 63 18 0 28 61 25 65

k = 7 66 60 30 43 46 28 0 57 21 49

k = 8 38 50 68 81 18 36 57 0 36 76

k = 9 63 57 51 64 43 25 21 36 0 40

k = 10 66 78 79 92 46 64 49 28 40 0

d[k, /] / = 1 / = 2 / = 3 / = 4 / = 5 / = 6 / = 7 / = 8 / = 9 / = 10

k = 1 — 1 2 3 6 2 3 9 6 4

k = 2 5 — 2 3 6 2 3 9 6 4

k = 3 5 6 — 3 6 7 3 10 7 4

k = 4 5 1 7 — 8 5 10 10 10 4

k = 5 5 1 2 3 — 5 6 9 6 9

k = 6 5 6 2 3 6 — 6 9 6 9

k = 7 5 6 7 3 6 7 — 9 7 7

k = 8 5 1 2 3 8 5 9 — 8 9

k = 9 5 6 7 3 6 9 9 9 — 9

k = 10 5 1 7 3 8 5 10 10 10 —

taBle 9.2 Continued

506 Chapter 9 Shortest Paths and Discrete Dynamic Programming

Look carefully at the corresponding d[4, 1]. Notice that it is set to d[10, 1] = 5, not
t = 10. We want d[4, 1] to be the next-to-last node of the newly recorded path, which
is information available in d[10, 1]. This may or may not equal the intermediate t.

After iteration t = 10 every node has been tried as an intermediary; the
Littleville network has only 10 nodes. Thus the algorithm terminates, and values
n1102[k, /] are optimal. That is, they provide the lengths of shortest paths from each
k to each /.

exaMPle 9.11: aPPlying the Floyd–warShall algorithM

Consider the following digraph:

2

3 4

1 20

4

-3 2
7

Apply Floyd–Warshall Algorithm 9B to compute the lengths of shortest paths
between all pairs of nodes.

Solution: Paralleling Table 9.2, we show tables of n1t2[k, /] and d[k, /], boxing
changed values.

n102[k, /] d[k, /]

k / = 1 / = 2 / = 3 / = 4 / = 1 / = 2 / = 3 / = 4

1 0 ∞ ∞ 7 — — — 1
2 20 0 ∞ 2 2 — — 2
3 -3 ∞ 0 ∞ 3 — — —
4 7 ∞ 4 0 4 — 4 —

n112[k, /] = n122[k, /] d[k, /]

k / = 1 / = 2 / = 3 / = 4 / = 1 / = 2 / = 3 / = 4

1 0 ∞ ∞ 7 — — — 1
2 20 0 ∞ 2 2 — — 2
3 -3 ∞ 0 4 3 — — 1
4 7 ∞ 4 0 4 — 4 —

n132[k, /] d[k, /]

k / = 1 / = 2 / = 3 / = 4 / = 1 / = 2 / = 3 / = 4

1 0 ∞ ∞ 7 — — — 1
2 20 0 ∞ 2 2 — — 2
3 -3 ∞ 0 4 3 — — 1
4 1 ∞ 4 0 3 — 4 —

9.4 Shortest Paths from All Nodes to All Others: Floyd–Warshall 507

Recovering Optimal Paths
Just as with earlier cases (principle 9.18), final labels d[k, /] allow us to recover an
optimal path between any pair of nodes.

n142[k, /] d[k, /]

k / = 1 / = 2 / = 3 / = 4 / = 1 / = 2 / = 3 / = 4

1 0 ∞ 11 7 — — 4 1
2 3 0 6 2 3 — 4 2
3 -3 ∞ 0 4 3 — — 1
4 1 ∞ 4 0 3 — 4 —

The table for t = 1 is identical to that of t = 2 because no paths use node 2 as an
intermediary.

With only 4 nodes in the graph, computations are complete after iteration
t = 4. Value n 1 4 2 [1 , 2] = ∞ indicates that there is no path from node 1 to node 2.

At the completion of Algorithm 9B, a shortest path from any
node k to any other node / can be recovered by starting at /, backtracking to
neighboring node d[k, /], and continuing with an optimal path from k to the
neighbor until k itself is encountered.

Principle 9.20

To illustrate, refer again to final t = 10 labels for the Littleville application
displayed in Table 9.2. A shortest path from node k = 3 to node / = 8 is recovered
by beginning at destination /. Label d[3, 8] = 10 indicates that an optimal path
enters from node 10. Now backtracking to node 10, we apply principle of opti-
mality 9.10 and follow the best path from 3 to 10. Label d[3, 10] = 4 tells us that
that path enters through node 4. Backtracking again, we discover label d[3, 4] = 3.
Origin k = 3 has been reached, and the optimal path is 3–4–10–8.

exaMPle 9.12: recovering a Floyd–warShall Path

Use final labels of Example 9.11 to recover an optimal path from k = 2 to / = 1.

Solution: Applying principle 9.20 , we backtrack from destination / = 1. Label
d[2, 1] = 3 indicates the optimal path enters through node 3. Continuing, the
 optimal path from 2 to 3 enters through d[2, 3] = 4, and the one for 4 enters through
d[2, 4] = 2, which brings us to origin k = 2. Thus the optimal path is 2–4–3–1.

Detecting Negative Dicycles with Floyd–Warshall
Just as with the Bellman–Ford algorithm for a single source, Floyd–Warshall
Algorithm 9B guarantees optimal paths and path lengths only if the given graph
contains no negative dicycles. Functional equations 9.14 , on which the algorithm is
based, need not hold in the presence of negative dicycles.

508 Chapter 9 Shortest Paths and Discrete Dynamic Programming

What happens when Algorithm 9B is applied to a graph with negative dicy-
cles? The secondary stopping criterion of algorithm Step 2 comes into play, and
computation terminates with the conclusion that a negative dicycle exists. The actual
condition flagging presence of a negative dicycle in the Floyd–Warshall procedure is
n1t2[k, k] 6 0 (i.e., a shortest path from any k to itself turning negative).

If Algorithm 9B is applied to a graph with negative dicycles, it
will demonstrate their presence by making some n1t2[k, k] 6 0 and terminat-
ing. Under those circumstances, the implied negative dicycle includes node k.

Principle 9.21

To illustrate, return to the negative dicycle example of Figure 9.6. Application
of Algorithm 9B produces the following:

n 1 0 2 [k, /] = n 1 1 2 [k, /] d [k, /]

k / = 1 / = 2 / = 3 / = 4 / = 1 / = 2 / = 3 / = 4

1 0 2 10 ∞ — 1 1 —
2 ∞ 0 3 ∞ — — 2 —
3 ∞ ∞ 0 12 — — — 3
4 ∞ -25 ∞ 0 — 4 — —

n 1 2 2 [k, /] d [k, /]

k / = 1 / = 2 / = 3 / = 4 / = 1 / = 2 / = 3 / = 4

1 0 2 5 ∞ — 1 1 —
2 ∞ 0 3 ∞ — — 2 —
3 ∞ ∞ 0 12 — — — 3
4 ∞ -25 -22 0 — 4 2 —

n 1 3 2 [k, /] d[k, /]

k / = 1 / = 2 / = 3 / = 4 / = 1 / = 2 / = 3 / = 4

1 0 2 5 17 — 1 2 3
2 ∞ 0 3 15 — — 2 3
3 ∞ ∞ 0 12 — — — 3
4 ∞ -25 -22 -10 — 4 3 3

Notice that on iteration t = 3, value

n132[4, 4] d min50, n122[4, 3] + n122[3, 4]6
= min50, -20 + 126
= -10

This would cause the algorithm to terminate at Step 2 with the conclusion that a
negative dicycle involving node 4 is present in the graph.

As usual, final d[k, /] labels allow us to retrieve the dicycle if needed. Starting
at node 4 in the table for t = 3,

9.5 Shortest Path from One Node to All Others with Costs Nonnegative: Dijkstra 509

d[4, 4] = 3

d[4, 3] = 3

d[4, 2] = 3

indicating the negative dicycle 4–2–3–4.

9.5 ShorteSt Path FroM one node to all otherS
with coStS nonnegative: dijkStra

The Bellman–Ford and Floyd–Warshall algorithms of Sections 9.3 and 9.4 can
solve any of the shortest path models presented in Section 9.1 and any of the others
we will encounter in Sections 9.6 and 9.7. They require only that the given graph
contains no negative dicycle. Still, those two algorithms are not the most efficient
option when given graphs satisfy further assumptions. In this section we develop the
algorithm credited to E. W. Dijkstra, which is considerably more efficient for cases
where we need shortest paths from one node to all others, and all costs are nonneg-
ative 1ci, j Ú 02. Algorithm 9C provides a formal statement.

Algorithm 9c: one to All (nonnegAtive costs);
DijkstrA shortest PAths

step 0: initialization. With s the source node, initialize optimal path lengths

n[i] d e0 if i = s
+∞ otherwise

Then mark all nodes temporary, and choose p d s as the next permanently
labeled node.

step 1: Processing. Mark node p permanent, and for every arc/edge (p, i)
leading from p to a temporary node, update

n[i] d min5n[i], n[p] + cp, i6
If n[i] changed in value, also set d[i] d p.

step 2: stopping. If no temporary nodes remain, stop; values n[i] now reflect
the required shortest path lengths.

step 3: next Permanent. Choose as next permanently labeled node p a
temporary node with least current value n[i], that is,

n[p] = min5n[i] : i temporary6
Then return to Step 1.

Permanently and Temporarily Labeled Nodes
A graph with nonnegative arc/edge costs certainly contains no negative total length
dicycles. Thus functional equations 9.12 apply.

510 Chapter 9 Shortest Paths and Discrete Dynamic Programming

What is new about Dijkstra Algorithm 9C is how values satisfying functional
equations are computed. Bellman–Ford Algorithm 9A simply evaluates functional
equations for all nodes on all iterations. Thus it processes all the inbound arcs and
edges at a node many times while computing the minimum in 9.12 .

Dijkstra’s method processes outbound arcs and edges instead of inbounds.
Much more important, it processes each arc/edge only once. Each major iteration
makes one new node p permanent.

Once a node is classified permanent by Dijkstra Algorithm 9C,
its n[p] and d[p] labels never change again. Nodes that are not yet permanently
labeled are classified temporary.

Definition 9.22

As each new permanent node p is selected, we correct

n[i] d min5n[i], n[p] + cp, i6

at all temporarily labeled neighbors i reachable from p. Knowing that the labels for
p are final, we need never again consider arc/edge (p, i) in our search for the final
value of n[i]. This finalizing of a node label at each step is what makes Algorithm 9C
the best for its class.

Dijkstra Algorithm 9C is the most efficient method available
for computing shortest paths from one node to all others in (general) graphs
and digraphs having all arc/edge costs nonnegative.

Principle 9.23

Of course, even faster schemes can be developed if the given graph or digraph has
special features beyond nonnegative costs (see Section 9.6).

Least Temporary Criterion for Next Permanent Node
It should be obvious that the heart of Dijkstra’s algorithm is a rule for selecting the
next temporary node to make permanent. The one required is elegantly simple.

Each iteration of Dijkstra Algorithm 9C selects as the new per-
manently labeled node p a temporary node of minimum n[i].

Principle 9.24

All current n[i] on temporary nodes are examined, and a p is selected with

n[p] = min5n[i] : i temporary6

Dijkstra Algorithm Solution of the Texas Transfer Application
Before investigating why principle 9.24 works, we will apply Dijkstra Algorithm
9C to the Texas Transfer Application reproduced in Figure 9.9. Table 9.3 provides
computational details.

Solution begins in exactly the same way as previous methods. Values n[i] d ∞
except at the source node 3 with n[3] d 0. All nodes start temporary. Source 3 is
automatically the first permanent.

9.5 Shortest Path from One Node to All Others with Costs Nonnegative: Dijkstra 511

Processing a new permanent node p means checking the n[i] values of all tem-
porary nodes i reachable from p in one step. For p = 3 these include nodes 1, 5, 8,
and 9. Thus

n[1] d min5n[1], n[3] + c3,16
= min5∞, 0 + 3596
= 359

n[5] d min5n[5], n[3] + c3,56
= min5∞, 0 + 1806
= 180

n[8] d min5n[8], n[3] + c3,86
= min5∞, 0 + 1956
= 195

n[9] d min5n[9], n[3] + c3,96
= min5∞, 0 + 2466
= 246

Corresponding labels d[1] d d[5] d d[8] d d[9] d 3 because all four n[i] changed
from 3.

It is now time to apply criterion 9.24 . The next permanent node p must be a
temporary i of minimum n[i]. With all nodes temporary except 3,

1

2

5

3

4

6

7

8

9

10

359

12
2

34
5

167

443

415

180

213

19
5

79

199

246

153 21
5

92

Ft. Worth

Amarillo

Lubbock

El Paso

Austin

Abilene

Houston

Corpus Christi

San Antonio

San Angelo

Figure 9.9 Texas Transfer Application Network

512 Chapter 9 Shortest Paths and Discrete Dynamic Programming

 min5n[1], n[2], n[4], n[5], n[6], n[7], n[8], n[9], n[10]6
 = min5359, ∞, ∞, 180, ∞, ∞, 195, 246, ∞6
 = 180

The smallest value occurs at node 5 and p = 5.
Correcting labels on outbound edges gives

n[2] d min5n[2], n[5] + c5,26
= min5∞ , 180 + 1676
= 347

n[4] d min5n[4], n[5] + c5,46
= min5∞ , 180 + 4436
= 623

n[6] d min5n[6], n[5] + c5,66
= min5∞ , 180 + 926
= 272

Corresponding d[2] d d[4] d d[6] d 5.

taBle 9.3 Dijkstra Algorithm Solution of Texas Transfer Application

p n[1] n[2] n[3] n[4] n[5] n[6] n[7] n[8] n[9] n[10]

(init) ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
 3 359 (perm) 180 195 246
 5 347 623 (perm) 272
 8 274 (perm)
 9 (perm) 461
 6 (perm)
 7 (perm) 427
 1 (perm)
 2 (perm)
10 (perm)
 4 (perm)

(final) 359 347 0 623 180 272 274 195 246 427

p d[1] d[2] d[3] d[4] d[5] d[6] d[7] d[8] d[9] d[10]

 3 3 3 3 3
 5 5 5 5
 8 8
 9 9
 6 7
 7
 1
 2
10
 4

(final) 3 5 – 5 3 5 8 3 3 7

9.5 Shortest Path from One Node to All Others with Costs Nonnegative: Dijkstra 513

To choose the next p, we examine the remaining temporary nodes:

 min5n[1], n[2], n[4], n[6], n[7], n[8], n[9], n[10]6
 = min5359, 347, 623, 272, ∞, 195, 246, ∞6
 = 195

Here p = 8, leading to n[7] d 195 + 79 = 274 and d[7] d 8.
The next permanent node is p = 9 because

 min5n[1], n[2], n[4], n[6], n[7], n[9], n[10]6
 = min5359, 347, 623, 272, 274, 246, ∞6
 = 246

Processing yields

n[7] d min5n[7], n[9] + c9,76
= min5274, 246 + 1996
= 274

n[10] d min5n[10], n[9] + c9,106
= min5∞ , 246 + 2156
= 461

Notice that n[7] did not change. Thus only label d[10] d 9.
Remaining processing of Table 9.3 follows in a similar way. Successive itera-

tions make permanent nodes 6, 7, 1, 2, 10, and 4. When all nodes are permanent, the
algorithm terminates. Final n[i] now represent the required lengths of shortest paths
from source node 3.

exaMPle 9.13: aPPlying dijkStra’S algorithM

Apply Dijkstra Algorithm 9C to compute the length of a shortest path from node
s = 1 in the following graph to every other node.

2

3

4

1 5

5

20
5

4

3

2

12

6

Solution: Paralleling Table 9.3, we may summarize computations in tables for n[i]
and d[i]:

p n[1] n[2] n[3] n[4] n[5]

(init) 0 ∞ ∞ ∞ ∞
1 (perm) 5 20
2 (perm) 17
5 7 (perm)
3 (perm)
4 (perm)

(final) 0 5 7 ∞ 5

514 Chapter 9 Shortest Paths and Discrete Dynamic Programming

Recovering Paths
The Texas Transfer application required only shortest path lengths, not the paths
themselves. However, decision labels d[i] make it possible to recover any needed
paths using principle 9.18 . For example, the shortest path from source node s = 3
to i = 10 could be traced backward from i = 10 as

d[10] = 7

d[7] = 8

d[8] = 3

The resulting shortest path is 3–8–7–10.

Justification of the Dijkstra Algorithm
The Dijkstra algorithm designation of permanently labeled nodes certainly speeds
computation. But how do nonnegative costs and selection criterion 9.24 make it work?

The key insight is an interpretation of n[i] values during computation.

p d[1] d[2] d[3] d[4] d[5]

1 1 1 1
2 2
5 5
3
4

(final) — 1 5 — 1

One new feature of this example occurs with the selection of the second permanent
node p = 2. Criterion 9.24 requires us to choose a temporary node i of minimum
n[i], but there is a tie. Both n[2] = 5 and n[5] = 5. Either could be selected. The
computations above arbitrarily chose p = 2.

One other different element is the presence of a node i = 4 to which there is
no path. As with other shortest path algorithms, this condition is indicated by final
n[4] = ∞.

After each major iteration, Dijkstra Algorithm 9C values n[i]
represent lengths of shortest paths from source s to i that use only perma-
nently labeled nodes.

Principle 9.25

That is, interim results reflect optimal paths through nodes already classified
permanent.

For an example, focus on n[10] in Table 9.3. There is no path from s = 3 to
i = 10 in the Texas Transfer network of Figure 9.9 that uses only nodes 3, 5, and 8.
That is why n[10] = ∞ through iterations making those nodes permanent. When
node 9 becomes permanent on the fourth iteration, an all-permanent path to node 10
does become available. Value n[10] = 461 to account for that path 3–9–10. Although
the path is shortest among nodes classified permanent through 4 iterations, it is not

9.6 Shortest Paths from One Node to All Others in Acyclic Digraphs 515

the shortest overall. Optimal path 3–8–7–10 (length n[10] = 427) is discovered only
2 iterations later when node 7 is made permanent.

With interpretation 9.25 , we can easily see why the node p chosen by crite-
rion 9.24 is ready to become permanent.

p

i

s

all permanent

path length ν[i]

finish Ú 0

first
temporary

all permanent path length ν[p]

Label n[p] corresponds to the shortest path to node p using only permanently labeled
nodes. Noting that s becomes permanent on the very first iteration, any other path
begins among permanent nodes, passes along a subpath to a first temporary i, and
completes with an i to p subpath. The length of such a path is

1s@to@i subpath2 + 1i@to@p subpath2 Ú n[i] + 0

because n[i] is the length of a shortest all-permanent path to i, and arc/edges costs
ofthe i-to-p subpath are nonnegative. But since p was chosen (principle 9.24) as the
temporary node with smallest n-value,

n[i] + 0 = n[i] Ú n[p]

Thus no path can be shorter than the one for n[p], and we may justly term it
permanent.

In terms of computational orders on a graph of n nodes (see Section 14.2), this
analysis implies O(n) major iterations where each new permanent node is chosen.
Then the algorithm processes the new permanent by checking all outbound arcs
to temporary nodes—all nodes in the worst case. Summarizing the computation is
bounded by O(n) effort per iteration, and thus O(n 2) steps overall.

9.6 ShorteSt PathS FroM one node to all otherS
in acyclic digraPhS

The key to Dijkstra Algorithm 9C’s efficiency was a careful selection of perma-
nently labeled nodes, so that arcs needed to be processed only once. Computation
becomes even more efficient if a sequence for permanent-node processing can be
determined before we begin.

Acyclic Digraphs
A predetermined sequence is possible if the model arises on an acyclic digraph,
which is a directed graph with no dicycles. Figure 9.10 illustrates the definition.
Part (a) shows a graph that is acyclic because it has only arcs (no edges) and has

516 Chapter 9 Shortest Paths and Discrete Dynamic Programming

no directed cycles (dicycles). Graphs of parts (b) and (c) fail the definition. The
first is only partly directed; for example, it contains edge (2, 3). The second is fully
directed, but contains dicycles; one is 2–3–4–5–2.

We can determine whether small graphs such as those of Figure 9.10 are acy-
clic simply by inspection. For larger graphs we require an easy-to-check condition.

2

(a) Acyclic

(b) Has edges

(c) Has dicycles

5

43

1

2 5

43

1

2 5

43

1

Figure 9.10 Definition
of an Acyclic Digraph

A digraph (completely directed graph) is acyclic if and only if
its nodes can be numbered so that every arc 1i, j2 has i 6 j.

Principle 9.26

Figure 9.10(a) is already numbered in this way. Each arc goes from a lower-
numbered to a higher-numbered node. Notice how this guarantees that the digraph
contains no dicycles. Since each arc takes us to a higher-numbered node, no path
could ever close a cycle by repeating a node that we have already visited.

Conversely, it is not hard to find a suitable numbering for a digraph that is acyclic.

Any acyclic digraph can be numbered as required in principle
9.26 by transiting the graph in depth-first fashion, numbering nodes in decreas-
ing sequence as soon as all their outbound arcs lead to nodes already visited.

Principle 9.27

Here depth-first simply means that we pass to new nodes before backtracking to
ones already visited.

9.6 Shortest Paths from One Node to All Others in Acyclic Digraphs 517

We can illustrate by computing the node numbers of Figure 9.10(a). To avoid con-
fusion, suppose that the graph was given to us with alphabetic node labels as follows:

2a b

c

d e

first

second

third

Beginning arbitrarily at node a, we pass first to node b. Since it has no outbound
arcs, we assign it the highest possible number, b = 5, and backtrack to a. There, an
outbound arc remains to node d, and it has an arc to e. Node e can now be numbered
e = 4 because it leads only to already visited node b = 5. Backtracking to node d,
we now assign it number d = 3. Similarly, node a is numbered a = 2. Having com-
pleted all arcs from our origin a = 2, we must start again at some still unnumbered
node. Here the only choice is c, which immediately becomes node c = 1.

exaMPle 9.14: deterMining whether a digraPh iS acyclic

Determine whether each of the following digraphs is acyclic.

a b

c

d e

a b

c

d e

(a) (b)

Solution:

(a) This graph is not acyclic. For example, it contains dicycle a–b–c–a.

(b) This graph is acyclic. To demonstrate that it is, we apply principle 9.27 . Starting
at node a, depth-first processing proceeds as follows:

a b

c

d e

1 2

3

45

first

second

third

fourth

We advance to b, then c, then d before being blocked. Numbering d = 5 and back-
tracking, we can now go to e. It leads nowhere, so we number e = 4 and backtrack
to c. With no further unexplored neighbors, c = 3, and further backtracking yields
b = 2 and a = 1. Node numbers now satisfy condition 9.26 .

518 Chapter 9 Shortest Paths and Discrete Dynamic Programming

Shortest Path Algorithm for Acyclic Digraphs
An acyclic digraph certainly has no negative dicycles, because it has no dicycles at
all. Thus functional equations 9.12 do apply.

Still, the most important convenience of acyclic digraphs in shortest path com-
putation arises from the numbering of principle 9.26 . If we evaluate functional
equations for nodes in that acyclic number sequence, each n[k] is permanent as soon
as it is computed. This is true because all terms in equations 9.12 involve inbound
arcs from lower-numbered nodes with previously fixed n[i]. Algorithm 9D provides
details, and it should be no surprise that it is the most efficient possible.

Algorithm 9D is the most efficient possible for computing
shortest paths from one node to all others in acyclic digraphs.

Principle 9.28

Algorithm 9D: shortest one to All PAths
(Acyclic DigrAPh) shortest PAths

step 0: initialization. Number nodes so that each arc (i, j) of the digraph
has i 6 j. Then set source s optimal path length

n[s] d 0

step 1: stopping. Terminate if all n[k] have now been fixed. Otherwise, let p
be the lowest number of an unprocessed node.

step 2: Processing. If there are no inbound arcs at node p, set n[p] d +∞.
Otherwise, compute

n[p] d min5n[i] + ci, p : 1i, p2 exists6
and let d[p] d the number of a node i achieving the minimum. Then return
to Step 1.

Careful examination will show that Algorithm 9D works on each arc only
once. As a new node p is processed, inbound arcs then are considered. But those arcs
cannot be inbound at any other node, so they are processed only once. This makes
the computational effort (see Section 14.2) of the algorithm on an acyclic digraph
with m arcs O(m). Furthermore, no alternative could do better because any algo-
rithm needs to look at all arcs at least once.

Acyclic Shortest Path Example
None of the models of Section 9.1 are posed on acyclic digraphs, so we will illustrate
Algorithm 9D on the digraph of Figure 9.11. Table 9.4 provides results.

Notice that the digraph in Figure 9.11 is already numbered as in princi-
ple 9.26 , and we will assume that paths are to begin at source s = 1. Initialization
sets n[1] d 0.

9.6 Shortest Paths from One Node to All Others in Acyclic Digraphs 519

Node processing now takes place in node number sequence. At node p = 2,
values are updated as

n[2] d min5n[1] + c1,26
= min50 + 56
= 5

with d[2] d 1. Then at node p = 3, we compute

n[3] d min5n[1] + c1,3, n[2] + c2,36
= min50 + 8, 5 - 106
= -5

with d[3] d 2. Computation now continues to p = 4, p = 5, and so on, until we
complete at p = 9. If required, shortest paths can be retrieved from final d[k] by
applying principle 9.18 .

Longest Path Problems and Acyclic Digraphs
Longest path problems are the maximize analogs of the shortest path problems
solved very efficiently by Algorithms 9A through 9D. In principle, all the functional
equation and algorithmic technology of Sections 9.2 to 9.7 can be adapted to treat
longest path cases simply by substituting min by max and +∞ by -∞.

1

2

3

4

5

6

7

8

9

5

8

16

4

3

9

1

7

-1
0

2

13
18

5

Figure 9.11 Acyclic Shortest Path Example

taBle 9.4 Solution to Acyclic Shortest
Path Example

p n[p] d[p] p n[p] d[p]

1 0 — 6 ∞ —
2 5 1 7 9 2
3 -5 2 8 22 7

4 7 3 9 14 4
5 ∞ —

520 Chapter 9 Shortest Paths and Discrete Dynamic Programming

Notice, however, that the difficult case of negative dicycles, which none of the
dynamic programming shortest path algorithms can handle (principle 9.9), becomes
the case of positive dicycles in longest path models—dicycles of positive total length.
In most instances these are so common that dynamic programming approaches to
longest paths are effectively impossible.

The acyclic case, where there are no dicycles at all, does not suffer this limita-
tion. We may directly apply Algorithm 9D after replacing min with max in Step 1,
and +∞ with -∞ in Step 2.

Uniquely, among path optimization problems, longest paths in
acyclic digraphs are as easy to compute as shortest paths.

Principle 9.29

To illustrate, return to the example of Figure 9.11, and consider applying the
max version of Algorithm 9D to find longest paths from node 1 to all other nodes.
The following table shows the results.

p n[p] d[p] p n[p] d[p]

1 0 — 6 - ∞ —
2 5 1 7 9 2
3 8 1 8 22 7
4 16 1 9 40 8
5 -∞ —

Values for the first 3 nodes are easily determined because there is only one path to
each. Node p = 4 presents the first real decision. Length n[4] d max516, 8 + 26 = 16,
coming from d[4] d 1. At p = 5 we encounter a node with no inbound arcs at all.
This implies n[5] d -∞, the worst possible value for a max problem. Continuing in the
same way completes solution with values for all the remaining nodes.

9.7 cPM Project Scheduling and longeSt PathS

Section 9.1 introduced some of the more common shortest path model forms.
However, many other models are closely related, even though they appear at first
glance to have nothing to do with computing paths.

Project Management
One of the most commonly occurring such problems arises in the management of
large work projects. For planning and control purposes, projects are usually subdi-
vided into a collection of work activities that must all be completed to accomplish
the project. Each activity has an estimated duration,

ak ! time required to accomplish activity k

and a list of predecessor activities. Activity j is a predecessor of activity k if activity
j must be completed before activity k can begin.

The main issue is to compute an early start schedule for the project. That is, we
want to know the earliest time that each activity can begin, subject to the require-
ment that all its predecessor activities have already been completed.

9.7 CPM Project Scheduling and Longest Paths 521

CPM Project Networks
To address project scheduling problems with shortest path technology, we require
a network or graph. The critical path method (CPM) forms such project networks
from precedence relationships.

aPPlication 9.4: we Build conStruction

For a contrived but suggestive application, consider We Build Construction’s latest
project. We Build is developing a 1-story medical office building on available land
near a hospital.

Table 9.5 details the project’s 9 work activities. For example, the table shows
the estimated duration of the heating and air conditioning activity k = 7 is a7 = 13
days, and that activity 7 cannot begin until predecessor activities 2 = rough plumb-
ing and 4 = structural members have been completed.

To plan materials deliveries and arrange subcontractors to do the various
activities, We Build needs a schedule. In particular, they want to know the earliest
time after project start that each activity can begin.

taBle 9.5 We Build Construction Application Tasks

k Activity
Duration,
ak (days)

Predecessor
Activities

1 Foundation 15 —
2 Rough plumbing 5 —
3 Concrete slab 4 1, 2
4 Structural members 3 3
5 Roof 7 4
6 Rough electrical 10 4
7 Heating and air conditioning 13 2, 4
8 Walls 18 4, 6, 7
9 Interior finish 20 5, 8

CPM project networks have special start and finish nodes, plus
one node for each activity. Arcs of zero length connect start to all activities
without predecessors. Other arcs of length ak connect each activity node k to
all activities of which it is a predecessor, or to finish if there are no such nodes.

Definition 9.30

Figure 9.12 illustrates for the We Build application of Table 9.5. The construction
begins by creating a node for each of the 9 activities, plus special start and finish nodes
to represent the beginning and ending of project activity. Each precedence relationship
generates an arc with length equal to the predecessor’s duration. For example, arc (8,9)
represents the fact that activity 8 is a predecessor of activity 9. Its length is a8 = 8 days.

Special arcs from start and finish complete the digraph. Zero-length arcs lead
from start to each activity having no predecessors. In the We Build application those
are 1 = foundation and 2 = rough plumbing. Arcs of length ak join activities that are
the predecessors of no other activity to finish. Here only activity 9 = interior finish
qualifies.

522 Chapter 9 Shortest Paths and Discrete Dynamic Programming

exaMPle 9.15: conStructing a cPM network

The following table lists the activities required of a political advance team in arrang-
ing a campaign rally. Construct the corresponding CPM project network.

k Activity
Duration,
ak (days)

Predecessor
Activities

1 Contact local party 2 —
2 Find location 11

2 1
3 Arrange date and time 1 1, 2
4 Notify news media 1 3
5 Arrange sound system 3 3
6 Coordinate policy security 1 3
7 Install speaking platform 11

2 3, 5
8 Decorate platform and site 1 7

Solution: Following construction 9.30 , we obtain the following CPM project network:

8

7

6

5

4

3

2

1start finish0

2

2

1

1

1

1

1

1

1

1
2

1

3

1
2

1

8

7

6

5

43

2

1

start finish9

0

0

15

5

5

4

3

3

3

3

10

13

18

7

20

Figure 9.12 We Build Construction Project Network

9.7 CPM Project Scheduling and Longest Paths 523

The longest path to node k is the longest succession of activities that must complete
before activity k can begin.

Critical Paths
Such longest paths are also called critical paths, from which the Critical Path Method
derives its name, because delay in any activity along the critical path to node k will
delay the start of activity k. The most important is the critical path from start to
finish, which links activities that could delay completion of the entire project if they
extend beyond their planned durations. Early start times and critical paths for all
activities in the We Build project are shown in the following:

k Activity
Early
Start Critical Path

1 Foundation 0 start–1
2 Rough plumbing 0 start–2
3 Concrete slab 15 start–1–3
4 Structural members 19 start–1–3–4
5 Roof 22 start–1–3–4–5
6 Rough electrical 22 start–1–3–4–6
7 Heating and air conditioning 22 start–1–3–4–7
8 Walls 35 start–1–3–4–7–8
9 Interior finish 53 start–1–3–4–7–8–9

In a similar way the least possible duration of a project corresponds to the
longest start-to-finish path.

CPM Schedules and Longest Paths
Focus on activity 3 in Figure 9.12. When is the earliest time it can begin? One limit
comes from predecessor activity 1 with duration 15. Another derives from predeces-
sor activity 2 with duration 5. Both must be completed before activity 3 can begin.
Since neither has a predecessor, both can begin at time 0. Thus the earliest start
time for activity 3 is day

max5a1, a26 = max515, 56 = 15

Notice that the constraint imposed by predecessor 1 corresponds to path start–
1–3 in Figure 9.12, and that of predecessor 2 corresponds to path start–2–3. The lon-
gest such path defines the early start time for activity 3. This is true in general.

The earliest start time of any activity k in a project equals the
length of the longest path from start to node k in the corresponding project
network.

Principle 9.31

The minimum time to complete a project equals the length of the
longest or critical path from start to finish in the corresponding project network.

Principle 9.32

For We Build, this project critical path runs

start-1-3-4-7-8-9-finish

524 Chapter 9 Shortest Paths and Discrete Dynamic Programming

Computing an Early Start Schedule for the We Build
Construction Application
Algorithm 9E details a longest path scheme for computing early start times. Table 9.6
shows the results from application of Algorithm 9E to compute an early start sched-
ule for our We Build application. Notation now signifies the following:

n[k] ! length of the longest path from source start to node k

d[k] ! immediate predecessor of node k in a longest path

As before, computation begins by initializing source node time n[start] d 0.
Then values for other nodes are established in increasing number order. First,

n[1] d max5n[start] + astart6
= max50 + 06 = 0

exaMPle 9.16: identiFying critical PathS

Use inspection to determine the earliest start times and critical paths for all activi-
ties of the political advance project in Example 9.15. Also determine the minimum
project duration and the activities which, if delayed, will delay completion of the
whole project.

Solution: Inspecting for the longest paths in the network of Example 9.15, start
times and critical paths are as follows:

k Activity
Early
Start Critical Path

1 Contact local party 0 start–1
2 Find location 2 start–1–2
3 Arrange date and time 31

2 start–1–2–3

4 Notify news media 41
2 start–1–2–3–4

5 Arrange sound system 41
2 start–1–2–3–5

6 Coordinate police security 41
2 start–1–2–3–6

7 Install speaking platform 71
2 start–1–2–3–5–7

8 Decorate platform and site 9 start–1–2–3–5–7–8

Minimum project duration will correspond to the longest start-to-finish path

start-1-2-3-5-7-8-finish

of length 10 days. Thus the activities that must complete as planned if the project is
not to be delayed are activities 1, 2, 3, 5, 7, and 8.

with a total length of 73. Thus the minimum time to complete the building detailed
in Table 9.5 is 73 days.

9.7 CPM Project Scheduling and Longest Paths 525

with d[1] d start. In a similar way, n[2] d 0 and d[2] d start. Then, at p = 3

n[3] d max5n[1] + a1, n[2] + a26
= max50 + 15, 0 + 56 = 15

making d[3] d 1. The final results in Table 9.6 correspond exactly to the early start
schedule detailed above.

Critical paths can be retrieved using optimal d[k]. For example, the entire
 project’s critical path

start-1-3-4-7-8-9-finish

is recovered by backtracking (principle 9.18) from finish as

 d[finish] = 9

 d[9] = 8

 d[8] = 7

 d[7] = 4

 d[4] = 3

 d[3] = 1

 d[1] = start

taBle 9.6 Early Start Schedule for the
We Build Application

p n[p] d[p] p n[p] d[p]

start 0 — 6 22 4
1 0 start 7 22 4
2 0 start 8 35 7
3 15 1 9 53 8
4 19 3 finish 73 0
5 22 4

Algorithm 9e: cPm eArly stArt scheDuling

step 0: initialization. Number activity nodes so that each precedence arc
1i, j2 of the CPM project network has i 6 j. Then initialize the schedule time
of the project start node as

n[start] d 0

step 1: stopping. Terminate if the early start time of the project finish node
has been fixed. Otherwise, let p be the lowest number of an unprocessed node.

step 2: Processing. Compute the activity p early start schedule time

n[p] d max5n[i] + ai : i is a predecessor of p6
and let d[p] d the number of a node i achieving the maximum. Then return
to Step 1.

526 Chapter 9 Shortest Paths and Discrete Dynamic Programming

Late Start Schedules and Schedule Slack
Computations of early start Algorithm 9E implicitly assume that all activities can
start at time 0. Early start schedules are then derived by finding the longest path of
predecessor activity durations and summing (principle 9.21).

Suppose now that we have a due date for the project, that is, a time by which
all activity must be completed. For example, our We Build project might be required
to be complete on day 80. We can perform longest path computations in reverse to
compute a late start time for each activity showing the latest it can begin if the due
date is to be met.

exaMPle 9.17: coMPuting a cPM early Start Schedule

Return to the political advance project of Example 9.15, and apply Algorithm 9E to
compute an early start schedule and identify the critial path for the entire project finish.

Solution: Following Algorithm 9E, n[p] and d[p] are set in increasing node number
sequence. Results are summarized in the following table:

p n[p] d[p] p n[p] d[p]

start 0 — 5 41
2

3

1 0 start 6 41
2

3

2 2 1 7 71
2

5

3 31
2

2 8 9 7

4 41
2

3 finish 10 8

The critical path from start to finish is traced d[finish] = 8, d[8] = 7, d[7] = 5,
d[5] = 3, d[3] = 2, d[2] = 1, and d[1] = start, yielding

start-1-2-3-5-7-8-finish

The latest start time of any activity k in a project equals the
due date less the length of a longest path from k to the finish node in the cor-
responding CPM network.

Definition 9.33

To find this late start schedule, we simply reverse the sequence of computations
in Algorithm 9E. Table 9.7 illustrates for the We Build application with a due date of 80.

Computation begins by fixing the late start schedule for the finish node at the
due date. Then we advance to the highest-numbered activity, 9. Its late start time is
the minimum of those for successor activities less its own duration, or 80 - 20 = 60.
Continuing in this way, the late start time for activity 4 is computed:

n[4] = min5n[5], n[6], n[7], n[8]6 - a4

 = min553, 32, 29, 426 - 3

 = 26

and so on, until we complete the start node.

9.7 CPM Project Scheduling and Longest Paths 527

With both early and late schedules in hand, we can also subtract to determine
the schedule slack for each activity.

Schedule slack is the difference between the earliest and latest
times that an activity can begin.

Definition 9.34

That is, schedule slack shows how much discretion we have in scheduling any single
activity while meeting the overall project due date. Table 9.8 computes such slacks
from the We Build application activities in Tables 9.6 and 9.7.

exaMPle 9.18: coMPuting late Start ScheduleS and Slack

Return to the political advance project of Examples 9.15 and 9.17. Compute the
 corresponding late start schedule for each activity and its schedule slack assuming
that all work must be completed by day 10.

Solution: As above, late start times are set in decreasing activity number sequence.
Then differences are computed versus early start times to determine slack. The
 result is summarized in the following table:

k Activity
Early
Start

Late
Start Slack

1 Contact local party 0 0 0
2 Find location 2 2 0
3 Arrange date and time 31

2 31
2 0

4 Notify news media 41
2 9 41

2

5 Arrange sound system 41
2 41

2 0

6 Coordinate police security 41
2 9 41

2

7 Install speaking platform 71
2 71

2 0

8 Decorate platform and site 9 9 0

taBle 9.7 Late Start Schedule for the
We Build application

p n[p] d[p] p n[p] d[p]

finish 80 — 4 26 7
9 60 finish 3 22 4
8 42 9 2 17 3
7 29 8 1 7 3
6 32 8 start 7 1
5 53 9

Acyclic Character of Project Networks
Positive dicycles cannot occur in acyclic digraphs, which have no dicycles at all. We
can do CPM scheduling and the associated longest path computations because CPM
networks fit this acyclic assumption.

528 Chapter 9 Shortest Paths and Discrete Dynamic Programming

To see why, recall that start nodes in principle 9.30 have only outbound arcs,
and finish nodes have only inbound arcs. Thus any dicycle would have to run through
other nodes (i.e., those for activities). But arcs connecting activity nodes correspond
to precedence relationships. Any dicycle i- j-k- i

i j

k

would mean that activity i must precede activity j, activity j must precede activity k,
and activity k must precede activity i. This is physically impossible. A project net-
work with a dicycle admits no feasible schedule (if durations ak 7 0).

We have already seen in Section 9.6 (principle 9.29) that either shortest or longest
path computations on an acyclic digraph with m arcs require O1m2 effort. For the CPM
case, arcs are precedence relationships. Thus in the light of 9.35 , CPM computations are
O1p2, where p is the number of precedence relationships that must be enforced.

9.8 diScrete dynaMic PrograMMing ModelS

Elementary discrete dynamic programming encompasses more than shortest paths,
including a variety of problems that can still be modeled as shortest or longest path
problems in a suitable digraph even though they have nothing to do with routes and
distances. In this section we explore some of the possibilities.

Sequential Decision Problems
One common feature of problems amenable to dynamic programming is sequential
decision making—decisions that can be arranged in a clear sequence. Then the deci-
sions can be confronted one by one in sequence. That same sequence produces an
acyclic digraph on which a shortest or longest path problem can be posed.

taBle 9.8 Schedule Slack for the We Build Application

k Activity
Early
Start

Late
Start Slack

1 Foundation 0 7 7
2 Rough plumbing 0 17 17
3 Concrete slab 15 22 7
4 Structural members 19 26 7
5 Roof 22 53 31
6 Rough electrical 22 32 10
7 Heating and air conditioning 22 29 7
8 Walls 35 42 7
9 Interior finish 53 60 7

Every well-formed project network is acyclic.Principle 9.35

9.8 Discrete Dynamic Programming Models 529

States in Dynamic Programming
For our Wagner–Whitin inventory application the passage of time sequences the
required decisions. To form a dynamic programming model, we must characterize
states of incomplete solution that capture the history on which each new decision
should be based.

aPPlication 9.5: wagner–whitin lot Sizing

A classic application, due to H. Wagner and T. Whitin, concerns lot sizing, that is,
planning production in an environment where there is a substantial setup cost in-
curred with each production run. Table 9.9 details an example. For each time period
k = 1, c, n, we know

rk ! quantity of product required at time k

sk ! setup cost if production occurs at time k

pk ! variable, per unit cost of production at time k

hk ! unit cost of holding goods through period k

An optimal solution must carefully balance production and holding costs.
Sometimes it will be better to pay the setup cost and produce as and when goods
are required. Other times we will produce in one period for the next several, incur-
ring a holding cost of storage and lost investment income on goods not required
immediately.

taBle 9.9 Wagner–Whitin Lot Sizing Data

Period, k

1 2 3 4 5 6

Requirement, rk 10 40 20 5 5 15
Setup cost, sk 50 50 50 50 50 50
Production cost, pk 1 3 3 1 1 1
Holding cost, hk 2 2 2 2 2 2

States in dynamic programming characterize conditions of
incomplete solution at which decisions should be considered.

Definition 9.36

If an optimal solution is known for any state, those of subsequent states can build
upon it.

Development of a state description for Wagner–Whitin lot sizing begins
with a simplifying insight: production needs to occur in an optimal solution
only when no inventory is held through the preceding period. That is, we should
 produce or hold for any period k, but not both. Any solution that combined
holding and production could at least be matched by shifting the full rk to which-
ever of unit holding cost since the last production and variable production cost
pk was lower.

530 Chapter 9 Shortest Paths and Discrete Dynamic Programming

The result is a definition of states. We may say that the process has reached
state k when requirements for periods / 6 k have been fulfilled and there is no
on-hand inventory.

Digraphs for Dynamic Programs
A suitable definition of states begins the construction of the digraph underlying any
elementary dynamic program.

Nodes of the digraph associated with any dynamic program
correspond to states of incomplete solution.

Principle 9.37

The remaining element is decisions. What options are available upon reaching
any given state, and what state will we reach if a decision is adopted?

Arcs of the digraph associated with any dynamic program cor-
respond to decisions. They link state nodes with a subsequent state to which
the decision leads.

Principle 9.38

Figure 9.13 displays the digraph for our Wagner–Whitin lot-sizing application.
Here decisions correspond to producing in some period to meet its requirements
and, possibly, those of several subsequent periods. For example, the arc from state
k = 3 to / = 6 reflects production at period 3 to meet requirements r3 = 20, r4 = 5,
and r5 = 5, arriving at period 6 with zero inventory. Its cost is

c3,6 = setup + production + holding

 = s3 + 1r3 + r4 + r52p3 + [1r4 + r52h3 + 1r52h4]

 = 50 + 120 + 5 + 523 + 15 + 522 + 1522

 = 170

7654321
60 170 110 55 55 65

180

280

315

360

525

270

305

350

515

135

170

305

70

145

100

Figure 9.13 Digraph for Wagner–Whitin Application

9.8 Discrete Dynamic Programming Models 531

Dynamic Programming Solutions as an Optimal Path
Notice now that each path from node 1 in the digraph of Figure 9.13 to node
1n+12 = 7 constitutes a lot-sizing plan. For example, path 1–3–6–7 corresponds to
production in period 1 for requirements r1 and r2, then in period 3 for requirements
r3, r4, and r5, then in period 6 for r6. The shortest such path identifies an optimal
solution.

Optimal solutions to elementary dynamic programs corre-
spond to shortest or longest paths from a beginning to an ending state in the
associated digraph.

Principle 9.39

They can be solved by applying the appropriate optimal path algorithm.
Like most dynamic programs, our lot-sizing problem is posed over an acyclic

digraph because decision arcs at any state lead only to later states. Application of short-
est acyclic Algorithm 9D produces the optimal solution highlighted in Figure 9.13.
It corresponds to producing in periods 1 and 5 at total cost of 415.

The order of computation (see Section 14.2) for this dynamic programming
solution depends on the number of time periods t, here 7. A best choice must be
made for each of the O(t) nodes, and option arcs need to be considered from each
other t. This makes the Wagner–Whitin solution procedure O1t22.

exaMPle 9.19: ForMulating dynaMic PrograMS

The management team of a 5-year research project is planning a replacement pol-
icy for its personal computers. New models may be purchased for $3000 each. If
sold after 1 year, they retain a salvage value of $1200. If sold after 2 years, the sal-
vage value falls to $500, and after 3 years the units are obsolete and have no value.
Maintenance costs also increase with age. They are estimated at $300 in the first year
of service, $400 in the second year, and $500 in the third. Formulate a dynamic pro-
gram and associated digraph to compute a minimum total cost replacement policy.

Solution: States in this problem correspond to years completed, and decisions
 relate to keeping computers for 1, 2, or 3 years. Cost of any decision is

1purchase cost2 - 1salvage value2 + 1maintenance cost2
The result is the following digraph:

543210

32003200

3200 3200

2100 2100 2100 2100 2100

4200 4200

4200

An optimal solution corresponds to a shortest path from time 0 through year 5. An
optimum is highlighted in the figure with total cost $7400.

532 Chapter 9 Shortest Paths and Discrete Dynamic Programming

Dynamic Programming Functional Equations
Although it is usually instructive to draw the digraph associated with a dynamic pro-
gram, it is common to proceed directly to the underlying functional equation recursions.

Dynamic programming functional equation recursions encode
connections among optimal values for different states of incomplete solution.

Principle 9.40

The process begins by interpreting the optimal value of any state. For example,
with our Wagner–Whitin lot-sizing model,

n[k] ! minimum cost of fulfilling requirements for periods / 6 k
 and arriving at k with no inventory

Dynamic programming solution of the problem is then encapsulated in functional
equation recursions

n[1] = 0

n[k] = min5n[/] + c/, k : 1 … / 6 k6 k = 2, c, n + 1

where

c/,k ! s/ + 1r/ + c + rk - 12p/ + 1r/ + 1 + c + rk - 12h/ + c + 1rk - 12hk - 2

For example,

n[4] = min5n[1] + c1,4, n[2] + c2,4, n[3] + c3,46
 = min5n[1] + 280, n[2] + 270, n[3] + 1106

These are precisely the shortest path functional equations of definition 9.11 for the
digraph of Figure 9.13.

exaMPle 9.20: ForMulating dynaMic PrograM recurSionS

Formulate functional equations for the dynamic programming model of Example 9.19.

Solution: For this model

n[k]! minimum cost of providing computers through year k

This leads to functional equations

n[0] = 0

n[k] = min5n[k - 3] + c3, n[k - 2] + c2, n[k - 1] + c16 k = 1, c, 5

where cj is the total cost of keeping a computer for j years.

Dynamic Programming Models with Both Stages and States
A sequence of decisions based on states of incomplete solution lies at the heart of
all discrete dynamic programs. However, it is often convenient to distinguish stages
of decision making from states of solution.

9.8 Discrete Dynamic Programming Models 533

In dynamic programs with both stages and states, stages delin-
eate the sequence of required decisions and states encode the conditions within
which decisions can be considered.

Definition 9.41

aPPlication 9.6: PreSident’S liBrary

We may illustrate with the design of shelving in the president’s library.1 The retir-
ing president is collecting all his papers in a new presidential library. Materials for
its archives are stored in covered cardboard boxes. All are 1.25 feet wide, but their
heights vary. Table 9.10 shows the estimated number of boxes at each height.

Boxes in the archives will be placed on metal shelves, with no box stacked on
top of another. The issue is how much shelving will be required. Figure 9.14 shows
that if, for example, two shelf spacings are employed, the total face area of shelving is§ linear feet of

boxes with
height … smaller
shelf spacing

¥ £ smaller
shelf
spacing

≥ + § linear feet of
boxes with
height 7 smaller
shelf spacing

¥ £ largest
box
height

≥

1Based in part on F. F. Leimkuhler and J. G. Cox (1964), “Compact Book Storage in Libraries,”
Operations Research, 12, 419–427.

taBle 9.10 President’s Library Storage Requirements

i 1 2 3 4 5 6 7

Height in feet, hi 0.25 0.40 0.80 1.00 1.50 2.00 3.0

Thousands of boxes, bi 10 2 12 30 8 6 4

area for �rst spacing

area for second spacing

1

2

3

10 20 30 40 50 60 70

box
height
(feet)

feet of
shelves
(000’s)

Figure 9.14 President’s Library Shelving Face Areas

534 Chapter 9 Shortest Paths and Discrete Dynamic Programming

Dynamic Programming Modeling of the President’s
Library Application
To distinguish stages for a dynamic programming model of the president’s library
application, we must consider the sequence of decisions. Here decisions correspond
to choices of shelf spacing. Thus we will have one stage for each distinct spacing.
More precisely,

stage k ! k th@to@last choice of a spacing

Next come states. On what preconditions should decisions be based? States
are often the least intuitive part of forming a dynamic programming model. In our
president’s library application, the decision to allocate a new shelf spacing depends
on what box sizes have already been provided for. Thus we define states as

state i ! having provided shelves for box sizes 0, 1, c, i 10 indicates none2
Decisions, which constitute the third element of any dynamic programming

model, are now easy to describe. The choice to provide a spacing for box sizes
through j, given that those through i are already accommodated, means commit-
ment of shelf space area

ci, j ! 1.25 a a
i 6 s … j

 bsbhj

For example, accommodating box sizes through j = 6, given that those up i = 3
have already been provided for, implies an area of

C3,6 = 1.251b4 + b5 + b62h6

 = 1.25130 + 8 + 6212.02 = 110.0 thousand square feet

Figure 9.15 shows the digraph for this dynamic program. Notice that there is
one group of nodes for each stage. In accord with principle 9.37 , nodes distinguish
states. Arcs of the digraph reflect decisions (principle 9.38). For example, the arc
from node 3 of stage 2 to node 6 of stage 1 corresponds to making the second-to-last
spacing for boxes accommodate sizes 4 to 6. All arcs from the last stage lead to an
artificial finish node that corresponds to having provided for all box sizes.

Backward Solution of Dynamic Programs
Readers may wonder why we have chosen to number stages of the president’s library
application in reverse or backward sequence. This is to highlight the sequence of
solution we will apply.

The most compact shelving obviously will result if different spacings are pro-
vided for each of the 7 sizes in Table 9.10. Still, designers would like to keep storage
relatively uniform. Even if they choose to provide 1, 2, c, 7 spacings, they want to
use the space as efficiently as possible.

Elementary dynamic programs are often most easily conceptu-
alized in backward sequence, that is, proceeding from final to initial conditions.

Principle 9.42

9.8 Discrete Dynamic Programming Models 535

Then optimal solutions correspond to shortest or longest paths to the final state in
an associated digraph.

The president’s library example is no exception to principle 9.42 . Its func-
tional equations take the form

 aoptimal cost
to finish

b = min e £ immediate
decision
cost

≥ + •optimal cost
to finish
from the
resulting
state

µ u (9.1)

where the minimization is over the available decisions. More precisely, define

vk[i] ! optimal cost to finish from stage k, state i

Then

n7[7] = 0

nk[i] = min5ci, j + nk - 1[j] : j 7 i6 k = 1, c, 6; i … 17 - k2
An optimal solution now corresponds to a shortest path to finish rather than

the usual shortest path from a single source. However, Algorithm 9D is easily
adapted. We need only evaluate the nk[/] in reverse acyclic sequence.

7

6

5

4

3

2

1

0

5

4

3

2

1

0

4

3

2

1

0

3

2

1

0

2

1

0

1

00

stage
k = 1

stage
k = 2

stage
k = 3

stage
k = 4

stage
k = 5

stage
k = 6

stage
k = 7

stage
k = 0

Figure 9.15 Digraph for President’s Library Application

536 Chapter 9 Shortest Paths and Discrete Dynamic Programming

Table 9.11 processing begins by setting the cost of the final state nfinish d 0. Then
all stage k = 1 states are solved in turn, each with only one out arc leading to finish.

A more typical step arises if fixing n2[3]. This second-to-last shelf spacing
(given boxes through size 3 are handled) could provide for size 4, or sizes 4 and 5, or
sizes 4 to 6. Thus

n2[3] d min5c3,4 + n1[4], c3,5 + n1[5], c3,6 + n1[6]6
= min537.5 + 67.5, 71.25 + 37.5, 110.0 + 15.06
= min5105.0, 108.75, 125.06 = 105.0 thousand square feet

with the optimal decision leading to state 4.

taBle 9.11 Backward Solution of
President’s Library Application

Stage,
k

State,
i

Optimal Area,
nk[i]

Next State,
dk[i]

finish — 0.000 0
1 0 270.000 7

1 232.500 7
2 225.000 7
3 180.000 7
4 67.500 7
5 37.500 7
6 15.000 7

2 0 135.000 4
1 122.500 4
2 120.000 4
3 105.000 4
4 50.000 6
5 30.000 6

3 0 117.500 4
1 105.000 4
2 102.500 4
3 87.500 4
4 45.000 5

4 0 108.125 1
1 100.000 4
2 97.500 4
3 82.500 4

5 0 103.125 1
1 96.500 3
2 94.500 3

6 0 99.625 1
1 95.500 2

7 0 98.625 1

9.9 Solving Integer Programs with Dynamic Programming 537

To establish the order of computation (see section 14.2) for dynamic
 programs like President’s Library Application 9.6, we must consider both states
and stages. Taking n ! the number of stages, and m ! the maximum number of
states per stage, Figure 9.15 shows last stage 1 computation is O1m2. Then each
subsequent stage k requires consideration of O1m - k2 states interacting with
O1m - k - 12 states of the next stage. This makes total computation equal to

O1m2 + a k Ú 2 O1m - k2O1m - k - 12 = O1nm22

Multiple Problem Solutions Obtained Simultaneously
What solution is optimal in Table 9.11? There are several, depending on how many
distinct shelf spacings are adopted. Optimal shelf areas are

n1[0] = 270.0 for k = 1 spacing

n2[0] = 135.0 for k = 2 spacings

n3[0] = 117.5 for k = 3 spacings

n4[0] = 108.125 for k = 4 spacings

n5[0] = 103.125 for k = 5 spacings

n6[0] = 99.625 for k = 6 spacings

n7[0] = 98.625 for k = 7 spacings

with corresponding optimal solutions retrievable from corresponding dk[i] labels.
Solutions for multiple assumptions are a common benefit of dynamic program-

ming solution.

The dynamic programming strategy of exploiting connections
among optimal solutions for a number of related problems often implies that
optima for multiple problem scenarios are produced by a single shortest or
longest path computation.

Principle 9.43

9.9 Solving integer PrograMS with dynaMic
PrograMMing

Earlier sections of this chapter showed how the dynamic programming approach
can be used to efficiently solve a wide variety of shortest path and related
 problems. The Section 9.8 broadened the treatment with some other dynamic
decision- making settings where DP applies. In this section we consider integer
and combinatorial models that do not appear on the surface to be dynamic optimi-
zations at all, but can be viewed that way to achieve dynamic programming solu-
tion. Every case is unique, but we can illustrate key ideas with the classic Binary
Knapsack Problem of Section 11.2.

538 Chapter 9 Shortest Paths and Discrete Dynamic Programming

Dynamic Programming Modeling of Electoral Vote Knapsack
Stages in dynamic programs delineate the sequence of decisions to be made. In
our knapsack application that is easily seen to be the sequence of targets for which
spend-no-spend decisions must be taken. States in the dynamic program should cap-
ture the status of partial decision when a particular stage is taken up. Here is where
some creativity is needed to fit the given ILP into dynamic decision-making format.
A bit of thought will show that for knapsack problem states at a given stage relate
to how much is left of the knapsack capacity—here the budget b—when the deci-
sion is made for stage (target) j. Denoting such states by i, possible choices for any
stage/variable j will either keep the same i (i.e. xj = 0) or be decreased by aj if xj = 1.
Of course, using target j it is not even feasible if i 6 aj. Table 9.12 shows data we can
use to illustrate the approach.

taBle 9.12 Electoral Vote Knapsack Data

target j 1 2 3 4 5 6 7

electoral votes vj 9 29 6 10 4 18 13
$ million cost to win aj 2 5 1 2 1 4 3

aPPlication 9.7: electoral vote knaPSack aPPlication

One classic combinatorial optimization problem where dynamic programming can
be useful is the Binary Knapsack Problem, that is, a 1-row 0–1 Linear Program.
For an example consider the task of a political campaign manager in allocat-
ing funds for the last 2 weeks of a presidential election. The Presidents of the
United States are elected indirectly by accumulating a majority of electoral votes
awarded in-block to the candidate in each state who gets the most popular votes
there, regardless of how narrow the margin might be. Table 9.12 shows numbers of
electoral votes vj for n = 7 target states in which our consultant believes the elec-
tion race is very close going into its final 2 weeks. The table also shows amounts aj
(in $ million) the consultant believes would be required to be spent on advertising
and activities like get-out-the-vote in each of the targets over the next 2 weeks to
insure her candidate wins there. With a total budget of b = $10 million, she wishes
to choose the expenditure that will maximize the total resulting electoral vote for
her candidate.

Using decision variables

xj ! e1 if target j is selected
0 otherwise

the problem is easily modeled as the Integer Linear Program

max a n
j = 1vjxj

s.t. a n
j = 1ajxj … b

all xj binary

We want to solve it by dynamic programming.

9.9 Solving Integer Programs with Dynamic Programming 539

The digraph in Figure 9.16 details the decisions to be considered in com-
puting an optimum. Stages (targets) are arrayed horizontally, and incoming
residual budgets (states) show vertically. A final stage at the end tracks ultimate
solutions for each state. Arcs from any any node 1i, j2 show the state change
implied by including or not including target j in the state i partial solution. For
example, at node 1i, j2 = 110, 22 one arc continues to node (10, 3) to implement
the option of not using variable 2. The other goes down to node (5, 3) because
using variable 2 will gain v2 = 29 electoral votes at the cost of reducing the avail-
able budget by a2 = 5.

Optimization begins at stage j = 1 with the full i = 10 million dollars
 available, and proceeds through each 1i, j2 pair in turn. We seek a longest path from
state 10 of stage 1 to whichever of the final nodes yields the highest final value.
An optimal solution is marked by darker arcs in Figure 9.16. Let

nj[i] ! the value of the best partial solution when stage j is entered in state i

Then functional equations employed at each i and j 7 1 to find optimal sub-
paths make

n1[i] d 0 for all i

nj[i] d max5nj - 1[i], nj - 1[i + aj - 1] + vj - 16 for all i, j 7 1

For example, at stage j = 5 the value for state i = 5 comes from the best of the value at
the same state at stage j - 1 = 4 and the value at stage 4, state 5 + a4 = 5 + 2 = 7

Figure 9.16 Electoral Vote Knapsack Dynamic Program

10 10 10 10 10 10 10 10

9 9 9 9 9 9 9 9

8 8 8 8 8 8 8 8

7 7 7 7 7 7 7 7

6 6 6 6 6 6 6 6

5 5 5 5 5 5 5 5

4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

0

stage j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 final

0 0 0 0 0 0 0

540 Chapter 9 Shortest Paths and Discrete Dynamic Programming

plus the value v4 = 10 for stage 4. Prior calculations make v4[5] = 29 and v4[7] = 15,
so that n5[5] = max529, 15 + 106 = 29.

It is easy to see from the digraph in Figure 9.16 that computation across
each of n stages and b states leads to an O1nb2 computational order for Binary
Knapsack Problems. Still, it is important to highlight that this bounding function
involves not just dimensions of instance size like the number of stages n, but also
the magnitude of one of the instance constants b, which measures the number of
states. As explained in Section 14.2 the standard way to count the size of a con-
stant b is log b, the number of digits needed to input it. This makes our dynamic
programming computation above more properly characterized as O1n # 2 log b2
(assuming binary encoding of b). Like many dynamic programs, the required com-
putational effort will grow rapidly with the magnitude of instance constances. The
difference will be important in our coming discussion of computational complex-
ity theory in Chapter 14.

exaMPle 9.21: Binary knaPSackS By dynaMic PrograMMing

An entrepreneur with $8 million to invest is considering acquisition of four
 companies. She estimates the cost of acquiring the four at $5, $1, $2, and $7 million,
respectively, and the present value of owning them at $8, $3, $4, and $10. Investments
are on an “all or nothing” basis (i.e., she must buy entire companies). Model as a
dynamic program the problem of deciding which investments she should choose.

(a) Formulate the entreprenur’s problem as a Binary Knapsack model.

(b) Define the states and stages of the corresponding discrete dynamic program to
compute an optimum.

(c) Draw the digraph corresponding to your model of (b).

(d) Solve the model of (a) by identifying an optimal path in the figure of (c).

Solution:

(a) Using decision variable xj = 1, if company j is acquired and = 0 otherwise, the
required BKP formulation is

max 8x1 + 3x2 + 4x3 + 10x4

s.t. 5x1 + 1x2 + 2x3 + 7x4 … 8
x1, c, x4 = 0 or 1

(b) States i will be the remaining investment $ million = 0, 1, c, 8. Stages j will
reflect the decision sequence 1, c, 4.

(c) The associated DDP digraph is shown below with one out-arc at each stage j
to the same state of the next, indicating xj = 0, and a second to the current state i
minus investment for the case of xj = 1.

9.10 Markov Decision Processes 541

9.10 Markov deciSion ProceSSeS

All the dynamic programming models considered so far—like almost all the other
models of this book—have been fully determinisitic; all parameters are assumed
known with certainty at the time decisions must be taken. A wide range of other
sequential decision processes involve uncertainty that cannot be ignored. Such
stochastic problems have some parameters known only in probability. Markov
Decision Processes (MDPs) are a very broad field of optimization models address-
ing such cases.

MDPs are named after the famous mathematician A. A. Markov (1856–1922)
who pioneered some of the underlying probability theory. Treatment here will be a
limited introduction. Much more is available in other references.

Elements of MDP Models
We begin by defining the elements of the MDP models.

8

7

6

5

4

3

2

1

0

8

7

6

5

4

3

2

1

0

8 8

7

6

5

4

3

2

1

0

�nish

0 0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

10

10
8

stage 1 stage 2 stage 3 stage 4

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

(d) Solution starts a Stage 4 and proceeds backward to update values for each state
and stage. An optimal solution is identified by heavy-weight arcs in the figure.
It makes x1

* = x2
* = x3

* = 1, x4
* = 0

542 Chapter 9 Shortest Paths and Discrete Dynamic Programming

Expected values are usually employed in functional equations to combine out-
comes known only in probability in identifying optimal decisions.

Markov Decision Processes (MDPs) are discrete dynamic pro-
grams with the added feature that the impact of any action/decision cannot
be predicted with certainty. Instead, at any state i, any chosen action k ∈ Ki
may lead to a range of possible transitions to next states j ∈ Ji, k with known
probabilities pi, k, j Ú 0 summing to = 1 for each i and k. Parameters ri, k, j the
transient reward/cost for decision k at state i when it leads to next state j.

Definition 9.44

In terms of states i, actions k, next states j, probabilities pi,k,j,
and transient rewards ri,k,j as defined in 9.44 , expected value functional equa-
tions for a maximizing model combine appropriate values at boundary nodes
5n1i26 with main updates

n1i2 d maxk∈Ki 5Σj∈Ji,k
[pi,k,jri,k,j + n1j2]6

A minimizing model would replace max by min in such functional equations.

Principle 9.45

exaMPle 9.22: identiFying eleMentS oF Markov deciSion
ModelS

Treasure hunters are seeking to locate and retrieve pots of gold with value esti-
mated at $750 thousand, $550 thousand, and $900 thousand, for sites i = 1, 2 and
3, respectively. In planning the one expedition for this summer, the hunters must
choose between 2 never-explored jungle paths. One would require an estimated
cost of $250 thousand if it leads to site 1, and $400 thousand if it reaches site 2,
but site 3 is known to not be accessible. The other path would require an esti-
mated cost of $500 thousand if it leads to site 2, and $350 thousand if it reaches
site 3, but site 1 is known to not be accessible. The difficulty is that, never having
explored either path, the explorers do not know which site they may ultimately
visit. Path 1 is thought to lead to site 1 with probability 0.6 and to site 2 with
probability 0.4. Similarly, path 2 will lead to site 2 with probability 0.7 and to site
3 with probability 0.3.

(a) Taking the current decision point as state i = 0, and states i = 1, 2, 3 for the
treasure pots, identify all the elements (and subsets) of definition 9.44 to formu-
late this gold hunters’ problem as an MDP.

(b) Sketch a digraph depicting your model of part (a) over nodes for 4 states and
arcs for possible transitions. Use solid-line arcs for transitions with decision 1 and
dashed-line arcs for transitions of decision 2. Also label all transition arcs with
their cost and probability, and show the boundard value for the 3 gold-pot states.

(c) Form and solve the functional equation for state i = 0, and determine the
 optimal action.

9.10 Markov Decision Processes 543

We can now illustrate with a more realistic example.

Solution:

(a) States i = 1, 2, 3 are boundary ones with no decisions to make and (maxi-
mize problem) values n112 = 750, n122 = 550, and n132 = 900. At state i = 0,
decision set K0 = [1 for path 1 and 2 for path 2]. Possible results for decision
k = 1 in set J0,1 are j = 1 with probability p0,1,1 = 0.6 and cost (negative reward)
r0,1,1 = -500, versus j = 2 with probability p0,1,2 = 0.4 and cost r0,1,2 = -350.
Results for decision k = 2 in set J0,2 are j = 2 with probability p0,2,2 = 0.7 and
cost r0,2,2 = -500, versus j = 3 with probability p0,2,3 = 0.7 and cost r0,2,3 = -350.

(b) The required digraph takes the form:

1

20

3

(0.6, -250)

(0.4, -400)

(0.7, -500)

n(2) = 550

n(1) = 750

n(3) = 900

(0.3, -350)

(c) Using boundary values at the 3 gold-pot states, and following 9.45 , the func-
tional equation for state i = 0 is

n102 = max50.61750 - 2502 + 0.41550 - 4002, 0.71550 - 5002 + 0.31900 - 35026
 = max5360, 2006 = 360

and decision/action 1 is optimal.

aPPlication 9.8: riSk and detection oF BreaSt cancer

A major challenge for physicians aiding patients in prevention and detection of
breast cancer is to decide what diagnostic steps to take at various states of patient
risk and age in order to detect breast cancer early without undue diagnostic pro-
cedures. Real applications of MDP have added structure to these prevention and
treatment decisions, and we will illustrate here with a simpified model posed over
fictional parameter values.

Our model divides patient ages into 4 decision epochs t = 1, c, 4 corre-
sponding to ages in the 40s, 50s, 60s, and 70s, plus a set of terminal states for ages 80

544 Chapter 9 Shortest Paths and Discrete Dynamic Programming

and over. Each of these decision epochs replicates the states, actions, and transitions
depicted in the following diagram:

Low Risk
(Lt+1)

Med Risk
(Mt+1)

High Risk
(Ht+1)

Null Action
Diagnostic Action

Low Risk
(Lt)

Low Risk
Anomaly (LAt)

Med Risk
Anomaly (MAt)

High Risk
Anomaly (HAt)

Med Risk
(Mt)

High Risk
(Ht)

Death
(Dt)

Malig
(Ct)

•	 States: Underlying patient risk due to family history, co-morbidities, and the like in
epoch t is divided among a Low-Risk state Lt, a Medium-Risk state Mt, and a High-
Risk state Ht. If a decision at one of these states leads to discovery of an anomaly
such as a lump or questionable structure on a mammogram, the implied transition may
lead to corresponding anomaly states LAt, MAt, and HAt. Finally, there are Death and
Malignancy Care boundary states Dt and Ct in each t, where sick or dying patients exit
this risk and detection analysis.

•	 Actions: At each decision state there are two kinds of actions. One (indicated in the
diagram by dashed lines) undertakes no clinical procedures, and allows nature to run
its course. The other (indicated in the diagram by solid lines) proceeds to a diagnostic
procedure. For basic states Lt, Mt, and Ht that action is sending the patient for mam-
mography. Results may lead to discovery of an anomaly and transition to correspond-
ing state LAt, MAt, or HAt, or they may prove negative and produce transition to that
same risk state at epoch t + 1. In Anomaly states LAt, MAt, or HAt the diagnostic
action available is a Biopsy of the anomalous tissue. If the biopsy proves negative,
transitions proceed to the same risk categories in epoch t + 1. If it tests positive for a
malignancy, the transition is to Malignancy Care state Ct.

•	 Rewards: The model estimates rewards for states and transitions in terms of Quality-
Adjusted Life Years (QALYs) predicted for a patient. Generally, early detection of
cancerous conditions will add QALYs. However, especially later in life, risks of com-
plication from procedures like biopsies may deduct a penalty reducing the reward that
would normally be expected.

Table 9.12 provides full details on the states, actions, transitions, and rewards
assumed for all the 5 age epochs in our fictional data. For example, the physician
of a low risk 1L12 patient in her 40s 1t = 12, may choose to do nothing, or to take
a mammogram. In the former case, there is a very low probability of death (0.05),

9.10 Markov Decision Processes 545

taBle 9.12 Parameters for Breast Cancer Application

State
i

Action
k Transition j

Age 40s
1t = 12

Age 50s
1t = 22

Age 60s
1t = 32

Age 70s
1t = 42

Age 80 +
1t = 52

Prob Rewrd Prob Rewrd Prob Rewrd Prob Rewrd Rewrd

Lt None Unchg Lt + 1 0.95 7.50 0.92 6.00 0.89 4.80 0.86 3.84 3.33
Death Dt 0.05 2.50 0.08 2.00 0.11 1.60 0.14 1.28

Mgram Unchg Lt + 1 0.95 6.50 0.92 5.20 0.89 4.16 0.86 3.33
Anomly LAt 0.05 2.17 0.08 0.72 0.11 0.65 0.14 0.59

Mt None Unchg Mt + 1 0.93 5.50 0.90 4.13 0.87 3.09 0.14 2.32 3.16
Death Dt 0.07 5.20 0.10 1.03 0.13 0.77 0.16 0.58

Mgram Unchg Mt + 1 0.93 4.88 0.90 4.39 0.87 3.95 0.84 3.16
Anomly MAt 0.07 2.44 0.10 2.19 0.13 1.97 0.16 1.58

Ht None Unchg Ht + 1 0.91 3.50 0.87 2.63 0.83 1.97 0.79 1.48 1.87
Death Dt 0.09 0.88 0.13 0.66 0.17 0.49 0.21 0.37

Mgram Unchg Ht + 1 0.91 3.66 0.87 2.93 0.83 2.34 0.79 1.87
Anomly HAt 0.09 1.83 0.13 1.46 0.17 1.17 0.21 0.94

LAt None Unchg Lt + 1 0.70 3.47 0.60 3.58 0.50 2.81 0.40 2.19
Worsen Mt + 1 0.30 1.73 0.40 1.79 0.50 1.40 0.60 1.10

Biopsy Benign Lt + 1 0.80 4.44 0.70 3.36 0.60 2.54 0.50 1.91
Malig Ct 0.20 1.65 0.30 1.61 0.40 1.19 0.50 0.88

MAt None Unchg Mt + 1 0.60 1.71 0.50 1.54 0.40 1.38 0.30 1.11
Worsen Ht + 1 0.40 1.28 0.50 1.15 0.60 1.04 0.70 0.83

Biopsy Benign Mt + 1 0.60 3.07 0.50 2.50 0.40 2.34 0.30 1.82
Malig Ct 0.40 1.22 0.50 1.04 0.60 0.88 0.70 0.66

HAt None Unchg Ht + 1 0.50 1.28 0.40 1.02 0.30 0.82 0.20 0.66
Worsen Dt 0.50 0.96 0.60 0.77 0.70 0.61 0.80 0.49

Biopsy Benign Ht + 1 0.60 2.32 0.50 1.70 0.40 1.24 0.30 0.97
Malig Ct 0.40 0.91 0.50 0.69 0.60 0.52 0.70 0.39

Ct Absorb 1.00 22.00 1.00 15.00 1.00 8.00 1.00 1.00
Dt Absorb 1.00 11.00 1.00 7.50 1.00 4.00 1.00 0.50

but the vast majority of cases will move on to state L2 after living out an average of
7.50 QALYs. If a mammogram is ordered, it will detect an anomaly with probability
0.05 leading to state LA1, and otherwise it will continue to state L2 with slightly
reduced reward 6.50. The same patient in risk class M1 will have the same future
possibilities, but risk probabilities will be somewhat higher, and rewards lower.

Solution of the Breast Cancer MDP
To compute optimal values and policies for each state of our model, we proceed
backward starting with epoch t = 5. All 3 risk states there are absorbing with
values 3.33, 3.16, and 1.87 QALYs, respectively.

Moving next to age 70s epoch t = 4, we first consider anomaly state LA4.
There the functional equation balances no clinical intervention against a biopsy as

n1LA42 d max50.4012.19 + 3.332 + 0.6011.10 + 3.162, 0.5012.19 + 3.332
+ 0.5010.88 + 1.0026

= max54.76, 3.566

546 Chapter 9 Shortest Paths and Discrete Dynamic Programming

leading to an optimal choice to take no intervention, with n1LA42 = 4.76. Next, the
functional equation for state L4 is

n1L42 d max50.8613.84 + 3.332 + 0.1411.28 + 0.502, 0.8613.33 + 3.332
+ 0.1410.59 + 4.7626

= max56.41, 6.476
Selection of second action, mammogram is preferred with value n1L42 = 6.47.
Table 9.13 shows the optimal values and actions for all states of the model.

taBle 9.13 Solution of Breast Cancer Application

State

Age 40s
1t = 12

Age 50s
1t = 22

Age 60s
1t = 32

Age 70s
1t = 42

Age 80 +
1t = 52

Expect
Value

Optimal
Action

Expect
Value

Optimal
Action

Expect
Value

Optimal
Action

Expect
Value

Optimal
Action

Expect
Value

Optimal
Action

Lt 23.07 None 16.08 None 10.65 None 6.47 Mgram 3.33 Absorb
Mt 19.46 None 14.21 Mgram 9.95 Mgram 6.07 Mgram 3.16 Absorb
Ht 13.05 Mgram 9.34 Mgram 6.16 Mgram 3.54 Mgram 1.87 Absorb

LAt 21.14 Biopsy 14.79 Biopsy 9.09 Biopsy 4.76 None
MAt 13.02 Biopsy 10.85 Biopsy 7.73 Biopsy 3.17 None
HAt 11.68 Biopsy 9.63 Biopsy 6.36 Biopsy 1.83 Biopsy
Ct 22.00 Absorb 15.00 Absorb 8.00 Absorb 1.00 Absorb
Dt 11.00 Absorb 7.50 Absorb 4.00 Absorb 0.50 Absorb

The purpose of constructing an MDP solution analysis like Table 9.13 is to gain
broad policy insights. The synthetic numbers we have used in this example yield sev-
eral. First, mammograms are not recommended for all ages and risk states. Low risk
patients Lt do not apparently benefit enough to justify them until their 70s.

In constrast, a mammogram is advised for high risk patients Ht at all ages over 40.
Similarly, biopsies are recommended for almost all age groups if an anomaly has placed
the patient in states LAt, MAt, or HAt. The exception is 1t = 42, low and medium risk
patients in their 70s. There the complication risk of a biopsy outweights the likely gain
from information it could yield.

None of these insights should be taken as real medical advice. Still, they do
demonstrate the enormous potential value of MDP analysis in healthcare settings.

ExERCiSES

9-1 Consider the following graph.

1

2

3

4

5

7

10

3

5

2

1

9

4

Numbers on arcs and edges represent lengths.

(a) Identify the nodes, arcs, and edges of the
graph.

(b) Determine whether each of the following
sequences is a path of the graph: 1–3–4–5,
2–5–3–4, 1–3–2–5–4, 1–3–4–1–2.

(c) Direct the graph (i.e., exhibit a digraph
with the same paths as those of the given
graph).

 Exercises 547

9-2 Do Exercise 9-1 for the graph

1

2

3

4

5

2

8

3

15

10 1

8

and sequences 3–2–4–5, 3–2–1–4, 1–3–5–2–4, 1–3–
2–5.
9-3 Return to the problem of Exercise 9-1.

(a) Find (by inspection) shortest paths from
node 1 to all other nodes.

(b) Verify that every subpath of the optimal 1
to 2 path in part (a) is itself optimal.

(c) Detail your optimal solutions of part (a)
in functional notation n[k] and xi,j[k].

(d) Write functional equations for the short-
est path problems of part (a).

(e) Verify that the n[k] of part (c) satisfy
functional equations of part (d).

(f) Explain why functional equations are suf-
ficient to characterize optimal values n[k]
for this instance.

9-4 Do Exercise 9-3 for the problem of Exercise
9-2, verifying the optimal 1 to 3 path in part (b).
9-5 Consider the following graph.

1 2

3 4

8

3 1

4

6

(a) Find (by inspection) shortest paths from
all nodes to all other nodes.

(b) Verify that every subpath of the optimal 1
to 4 path in part (a) is itself optimal.

(c) Detail your optimal solutions of part (a) in
functional notation n[k][/] and xi,j [k][/].

(d) Write functional equations for the short-
est path problems of part (a).

(e) Verify that the n[k][/] of part (c) satisfy
functional equations of part (d).

(f) Explain why functional equations are suffi-
cient to characterize optimal values n[k][/]
for this instance.

9-6 Do Exercise 9-5 for the following graph, veri-
fying the optimal 4 to 2 path in part (b).

1

2

3

4

8

5 2

6

1

9-7 Consider the following digraph:

1 2

3 4

-5

10 -20

2

40

Numbers on arcs represent costs.

(a) Find (by inspection) shortest paths from
node 1 to all other nodes.

(b) Enumerate the dicycles of the graph.
(c) Determine whether each dicycle is a neg-

ative dicycle.
(d) How does the presence of negative dicycles

in this instance make it more difficult for an
algorithm to compute shortest paths?

9-8 Do Exercise 9-7 for the digraph

1

2

3

4

11

-20 2

10

0

548 Chapter 9 Shortest Paths and Discrete Dynamic Programming

9-9 Return to the graph of Exercise 9-1, and sup-
pose that we seek shortest paths from node 1 to
all other nodes.

(a) Explain why Bellman–Ford Algorithm 9A
can be employed to compute the required
shortest paths.

(b) Apply Algorithm 9A to compute the
lengths of shortest paths from node 1 to
all other nodes.

(c) Use d[k] labels of your computations in
part (b) to recover all optimal paths.

(d) Verify the interpretation of interim labels
n1t2[k] as lengths of shortest paths using
at most t arcs/edges by showing that val-
ues at the end of iteration t = 2 in your
computations of part (b) correspond to
lengths of shortest paths using 1 or 2 arcs/
edges.

(e) Determine the maximum number of arcs/
edges in any path of this graph, and explain
how this bounds the computation required
for Algorithm 9A.

9-10 Do Exercise 9-9 on the graph of Exercise 9-2.
9-11 Use Bellman–Ford Algorithm 9A to iden-
tify a negative dicycle in each of the following
graphs.

(a) The digraph of Exercise 9-7
(b) The digraph of Exercise 9-8

9-12 Return to the graph of Exercise 9-5, and
suppose that we seek shortest paths from all
nodes to all other nodes.

(a) Explain why Floyd–Warshall Algorithm
9B can be employed to compute the re-
quired shortest paths.

(b) Apply Algorithm 9B to compute the
length of shortest paths from all nodes to
all other nodes.

(c) Use d[k][/] labels of your computations
in part (b) to recover all optimal paths.

(d) Verify the interpretation of interim labels
n1t2[k][/] as lengths of shortest paths using
only intermediate nodes up to t by showing
that values at the end of iteration t = 2 in
your computations of part (b) correspond
to lengths of shortest paths using only
nodes 1 and 2 as intermediates.

9-13 Do Exercise 9-12 on the graph of Exercise 9-6.

9-14 Use Floyd–Warshall Algorithm 9B to identify
a negative dicycle in each of the following graphs.

(a) The digraph of Exercise 9-7
(b) The digraph of Exercise 9-8

9-15 Return to the graph of Exercise 9-1, and
suppose that we seek shortest paths from node 1
to all other nodes.

(a) Explain why Dijkstra Algorithm 9C can
be employed to compute the required
shortest paths.

(b) Apply Algorithm 9C to compute the
length of shortest paths from node 1 to all
other nodes.

(c) Use d[k] labels of your computations in
part (b) to recover all optimal paths.

(d) Verify the interpretation of interim labels
n[k] as lengths of shortest paths using only
permanently labeled nodes by showing
that values after two permanent nodes
have been processed in your computa-
tions of part (b) correspond to lengths of
shortest paths using only those nodes (and
the destination).

9-16 Do Exercise 9-15 on the graph of Exercise 9-2.
9-17 For each of the following digraphs, deter-
mine which of Bellman–Ford Algorithms 9A,
Floyd–Warshall Algorithm 9B, and Dijkstra
Algorithm 9C could be applied to compute short-
est paths from node 1 to all others. Then, if any is
applicable, choose the most efficient and apply it
to compute the required paths.

(a)

1

2

3

4

7

2

1 3

6

12

(b)

1

2

3

4

18

10

-3

4

9

 Exercises 549

(c)

1

2

3

4

4

0

30

7

4

-20

(d)

1

2

3

4

0

8

10

5

14

 -6

9-18 Demonstrate whether each of the following
digraphs is acyclic by exhibiting a dicycle or num-
bering nodes so that every arc 1i, j2 has i 6 j.

(a) a b c

d e f

(b) a b c

d e f

(c) a b c

d e f

(d) a b c

d e f

9-19 Consider the following digraph:

2

3 4

5 6

2

6

-3

12 2

7

-4
10

1

Suppose that labels on arcs are cost and that we
seek a minimum total cost path from node 1 to all
other nodes.

(a) Demonstrate that acyclic shortest path
Algorithm 9D can be applied to compute
the required paths.

(b) Use Algorithm 9D to compute the lengths
of shortest paths from node 1 to all other
nodes.

(c) Use d[k] labels from your computations
in part (b) to recover all optimal paths.

9-20 Do Exercise 9-19 for the digraph

1 6

4 2

3 5

6

2

-2

-16 11

-5

9
-10

9-21 Determine whether acyclic shortest path
Algorithm 9D could be applied to compute shortest
paths from node 1 to all other nodes in each digraph
of Exercise 9-17. If so, explain whether it would
be more efficient than the Bellman–Ford, Floyd–
Warshall, and Dijkstra alternatives, and why.
9-22 The digraph below shows an instance of the
shortest path problem. Numbers on the arcs are
lengths. We wish to compute a shortest path from
the indicated node s to the indicated node t.

550 Chapter 9 Shortest Paths and Discrete Dynamic Programming

32

5 6

s = 1 t = 4

8

9

5

18

2

1 2

10

6

(a) Which of this chapter’s four shortest
path Algorithms 9A–9D (Bellman–Ford,
Dijkstra, Floyd–Warshall, and Acyclic)
should be preferred for this task? Explain
why.

(b) Apply the algorithm recommended in (a)
to compute the lengths of shortest paths
from node s to all other nodes. Show all
details of labeling and updates as the al-
gorithm proceeds. Then follow that algo-
rithm’s backtrack labels to recover (only)
an optimal path from s to t.

9-23 The table that follows lists the tasks that
must be performed in preparing a simple break-
fast. The table also shows the number of minutes
each requires and the tasks that must be com-
pleted before each can begin.

k Task Time Predecessors

1 Boil water 5 None
2 Get dishes 1 None
3 Make tea 3 1, 2
4 Pour cereal 1 2
5 Fruit on cereal 2 4
6 Milk on cereal 1 4
7 Make toast 4 None
8 Butter toast 3 7

(a) Construct the corresponding CPM proj-
ect network 9.30 .

(b) Use given activity numbers to verify that
your project network is acyclic.

(c) Apply CPM scheduling Algorithm 9E to
compute early start times for each activ-
ity and an early finish time for the entire
project.

(d) Use d[k] labels of your scheduling com-
putations to identify the activities along
a critical path from project start to finish.

(e) Compute late start times for each activity
assuming that the breakfast must be com-
plete in 10 minutes, and combine with
part (c) to determine schedule slacks.

9-24 The table that follows lists the activities that
must be performed in organizing a soccer tourna-
ment. The table also shows the estimated number
of days that each will require and the activities
that must be completed before each can begin.

k Activity Time Predecessors

1 Select dates 1 None
2 Recruit sponsors 4 1
3 Set fee 1 2
4 Buy souvenirs 5 1, 2
5 Mail invitations 1 2, 3
6 Wait responses 4 5
7 Plan pairings 1 6
8 Team packets 1 4, 7

Perform (a) through (e) of Exercise 9-23, assuming
that the organization must be completed in 13 days.
9-25 Officers of Industrial Engineering student
organizations are planning the annual awards
banquet. The following table shows the major ac-
tivities of the project, along with their durations
(in days) and predecessors.

No. Activity Duration Predecessors

1 Distribute award
ballots

 2 None

2 Receive completed
ballots

 7 1

3 Determine award
winners

 1 2

4 Reserve banquet
room

 2 None

5 Send invitiations 2 4
6 Receive RSVPs 10 5
7 Choose menu 4 4
8 Hold banquest 1 3, 6, 7

Perform (a) through (e) of Exercise 9-23, assum-
ing that the project must be completed in 17 days.
9-26 Construction of a small two-story house
 involves the tasks listed in the following table.
The table also shows the estimated duration of
each task in days and the tasks that must com-
pleted before it can begin.

 Exercises 551

Task Time Predecessors

Foundation (FD) 8 None
Concrete slab (CS) 5 FD
First bearing walls (1B) 3 CS
First internal walls (1I) 4 CS
First finishing (1F) 12 1B, 1I, FL
Second floor (FL) 3 1B
Second bearing walls (2B) 4 2FL
Second internal walls (2I) 5 2FL
Second finishing (2F) 10 2B, 2I, R
Roof (RF) 2 2B

(a) Construct the corresponding CPM proj-
ect network 9.30 .

(b) Number activity nodes in your project
network so that every arc 1i, j2 has i 6 j.

(c) Use CPM scheduling Algorithm 9E with
your activity numbering to compute early
start times for each activity and an early
finish time for the entire project.

(d) Use d[k] labels of your scheduling com-
putations to identify the activities along
a critical path from project start to finish.

(e) Compute late start times for each activity
assuming that construction must be com-
plete in 35 days, and combine with part
(c) to determine schedule slacks.

9-27 The table that follows shows the activities
required to construct a new computer laboratory,
along with their estimated durations (in weeks)
and predecessor activities.

Activity Time Predecessors

Order furniture (OF) 1 None
Order computers (OC) 1 None
Order software (OS) 1 OC
Furniture delivery (FD) 6 OF, P
Computer delivery (CD) 3 OC, AF
Software delivery (SD) 2 OS
Assemble furniture (AF) 1 FD
Install computers (IC) 1 CD
Install software (IS) 1 IC, SD
Wire room (W) 2 None
Paint room (P) 1 W

Perform (a) through (e) of Exercise 9-26, assum-
ing that the lab must be completed in 17 weeks.

9-28 The figure that follows shows a partially
complete layout for a circuit board of a large com-
puter peripheral. Lines show channels along which
circuits can be placed, together with the lengths of
the channels in centimeters. Several circuits can be
placed in a single channel (on different layers).

1

2

3 4 5

689

10

11

12

13

27

2

4

5
8

10

7

3
3

9

6

15

6

12

15

3

7

The last step in the design is to choose the rout-
ing from a component to be installed at point 1 to
connections at points 8, 10, 11, and 12.

(a) Explain why this problem can be mod-
eled as a shortest path problem.

(b) Explain why the most efficient proce-
dure available from this chapter for com-
puting optimal circuit routes is Dijkstra
Algorithm 9C.

(c) Apply Algorithm 9C to compute optimal
circuit routes to the 4 specified points.

9-29 The figure that follows shows the links of a
proposed campus computer network. Each node
is a computer, and links are fiber-optic cable.

1

2 3

4

56

7

8

9

10

11

3

6 5

8 14 25

23

30

18

552 Chapter 9 Shortest Paths and Discrete Dynamic Programming

Designers now want to decide how E-mail, which
will be broken into standard-length packets,
should be routed from Internet gateway node 1
to/from all other nodes. For example, E-mail for
node 4 might be transmitted by 1 to 6, then re-
peated by 6 to 5, then repeated by 5 to 4. Numbers
on nodes in the figure indicate minimum times
(in nanoseconds) required by the corresponding
computer to transmit or receive a message packet.
The time to send a packet along any link of the
network is the maximum of the times for the asso-
ciated sending and receiving computers.

(a) Explain why this problem can be modeled
as a shortest path problem, and sketch the
graph and edge weights over which opti-
mal paths are to be computed.

(b) Explain why the most efficient proce-
dure available from this chapter for com-
puting optimal E-mail routes is Dijkstra
Algorithm 9C.

(c) Apply Algorithm 9C to compute optimal
routes to all computers.

9-30 The campus shuttle bus begins running at
7:00 p.m. and continues until 2 a.m. Several driv-
ers will be engaged, but only one should be on
duty at any time. If a shift starts at or before
9:00 p.m., a regular driver can be engaged for a
4-hour shift at cost $50. Otherwise, part-time
drivers will be engaged. Some would work
3-hour shifts at $40 and the rest are limited to
2-hour shifts at $30.

(a) Show that the problem of computing a
minimum total cost for the night shift
driver schedule can be modeled as a
shortest path problem on a graph with
nodes equal to the hours of the night from
7:00 p.m. through 2 a.m. Also sketch the
corresponding digraph, and label it with
arc lengths.

(b) Is your digraph acyclic? Explain.
(c) Determine which of the algorithms of this

chapter would solve your shortest path
problem most efficiently, and justify your
choice.

(d) Apply your chosen algorithm to compute
an optimal night shift schedule.

9-31 The machine shop depicted in the figure that
follows has a heat treatment workstation at point
1, forges at points 2 and 3, machining centers at

points 4, 5, and 6, and a grinding machine at 7.
Each grid square indicated is the same size.

2

1 3

6

75

4

Processing of a camshaft product begins with heat
treatment, then goes to any forge, then moves to
any machining center, and finishes at the grinding
 machine. Movement between workstations is recti-
linear (i.e., north/south displacement plus east/west).

(a) Show that the problem of computing a min-
imum total movement camshaft routing
can be modeled as a shortest path problem.
Also sketch the corresponding digraph, and
label it with arc lengths.

(b) Is your digraph acyclic? Explain.
(c) Determine which of the algorithms of this

chapter would solve your shortest path
problem most efficiently, and justify your
choice.

(d) Apply your chosen algorithm to compute
an optimal movement.

9-32 The figure that follows shows the trails of
Littleville’s Memorial Park.

sh
ed

#1
#2

#4

#5

#3
20

10

14

16

18

38

12

20

10

20

 Exercises 553

Whenever there is a major event there, heavy hot
dog and soft-drink carts are stored in the shed and
rolled out along the trails to the five marked loca-
tions. Numbers on trail links indicate their length,
and arrows show which way is uphill. The work to
push a cart uphill on any link is proportional to that
length. Carts can also be moved in the opposite
direction, but the downhill effort is only half as
much.

(a) Show how the problem of finding the least
total-effort-push routes for all carts can be
modeled as a shortest path problem. Also
sketch the corresponding digraph, and label
it with arc lengths.

(b) Is your digraph acyclic? Explain.
(c) Determine which of the algorithms of this

chapter would solve your shortest path
problem most efficiently, and justify your
choice.

(d) Apply your chosen algorithm to compute
optimal move routes.

9-33 A pharmaceutical manufacturer must sup-
ply 30 batches of its new medication in the next
quarter, then 25, 10, and 35 in successive quarters.
Each quarter in which the company makes prod-
uct requires a $100,000 setup, plus $3000 per batch
produced. There is no limit on production capac-
ity. Batches can be held in inventory, but the cost
is a high $5000 per batch per quarter. The com-
pany seeks a minimum total cost production plan.

(a) Explain why this problem can be ap-
proached by discrete dynamic program-
ming, with states k = 1, c, 5 representing
the reaching of quarter k with all earlier
 demand fulfilled and no inventory on hand.

(b) Sketch the digraph corresponding to the
dynamic program structure of part (a).
Include costs on all arcs.

(c) Explain why the feasible production plans
correspond exactly to the paths from node
k = 1 to node k = 5 in your digraph.

(d) Solve a shortest path problem on your
 digraph to compute an optimal produc-
tion plan.

(e) Use your computations in part (d) to
compute an optimal production plan for
the first two quarters.

9-34 Do Exercise 9-33 with all parameters the
same except a holding cost of $1000.

9-35 A copy machine repairman has four pieces
of test equipment for which he estimates 25%,
30%, 55%, and 15% chances of using them at
his next stop. However, the devices weigh 20, 30,
40, and 20 pounds, respectively, and he can carry
no more than 60 pounds. The repairman seeks a
maximum utility feasible collection of devices to
carry with him.

(a) Explain why this problem can be
 approached by discrete dynamic pro-
gramming, with stages k = 1, c, 4
representing the four devices and states
w = 0, 10, 20, 30, 40, 50, 60 in each stage
indicating reaching that decision stage
with w units of weight limit remaining.

(b) Sketch the digraph corresponding to the
dynamic program structure of part (a).
Include objective function contributions
on all arcs.

(c) Explain why the feasible production
plans correspond exactly to the paths
from stage k = 1, state w = 60 to the last
stage in your digraph.

(d) Solve a longest path problem on your di-
graph to compute an optimal toolkit.

9-36 Do Exercise 9-35 with all parameters the
same except a weight limit of 40 pounds.
9-37 Consider solving the following Knapsack
ILP by Discrete Dynamic Programming (DDP):

min 18x1 + 13x2 + 20x3 + 12x4

s.t. 2x1 + 6x2 + 4x3 + 3x4 Ú 14
x1, x2, x3, x4 ∈ [0, 2] and integer

(a) Define the states and stages of the DDP
to compute an optimum.

(b) Draw a digraph from which an optimum
can be computed over the states and
stages of (a). How does it differ from sim-
ilar digraphs for 0-1 Knapsack Problems
like Figure 9.16?

(c) Solve the DDP depicted in (b), as it starts
at the Finish node and proceeds backward
to update values for each state and stage.
Then identify the optimal solution found.

9-38 Repeat Exercise 9-37, increasing the KP in-
stance on the right-hand side to 19.
9-39 Two promising drugs—X14Alpha and
X14Beta—are ready for testing to combat rare,

554 Chapter 9 Shortest Paths and Discrete Dynamic Programming

but dangerous virus X14. If one of the drugs
proves to have high effectiveness, 500 lives could
be saved in the coming winter, but only 200 lives
would be saved if the a drug proved to have just
moderate effectiveness. Also, the tests may prove
inconclusive, which would mean no drugs could
be released.

Unfortunately, only 10 patients are availa-
ble to serve as test subjects. Researchers can test
 X14Alpha on all 10, or X14Beta on all 10, or split
the subjects 5 and 5 between the drugs, with the
most successful being considered for release. The
following table shows the predicted probabilities
of different kinds of test results depending on
which subjects are tested.

Test Design

Probability of Proven Effectiveness

High Moderate inconclusive

All X14Alpha 0.30 0.40 0.30
All X14Beta 0.40 0.20 0.40
Split 0.15 0.60 0.25

(a) Taking states i = 1, 2, 3 for the high, mod-
erate, and inconclusive outcomes, iden-
tify all the elements of definition 9.44 to
formulate this drug testing challenge as a
MDP maximizing the expected number of
saved lives.

(b) Sketch a digraph depicting your model of
part (a) over nodes for 3 states and arcs
for possible transitions. Clearly label all
transition arcs with the decision to which
they are attached, the associated proba-
bility, and the implied reward.

(c) Form the functional equations for all
states i.

(d) Solve the equations of (c) to compute an
the optimal testing action.

9-40 Mindy is playing a gambling game of 3
rounds. She will start with 4 chips, and she can

wager any number of chips she has on hand at
each round. With probability 0.45, she will win
the bet and receive a number of additional chips
equal to her wager. Otherwise, with probability
0.55 she will lose all the chips wagered, and of
course, the game is over if she runs out of chips.
Mindy wants to choose the betting strategy that
will lead to the highest expected number of chips
at the end of the 4 rounds.

(a) Formulate Mindy’s task as a MDP with
multiple states and stages, including iden-
tifying all the elements of definition 9.44 .

(b) Sketch a digraph depicting your model of
part (a). You need not insert all parame-
ter details, but do show exemplars of all
transition arcs with the decision to which
they are attached, the reward they would
realize, and the associated probability.

(c) Form the functional equations for all
states and stages.

(d) Establish that the optimal (expected
value) bet at every state is simply to wager
just 1 chip, which produces the expected
value overall of 3.70 chips.

9-41 Saw King (SK) is the region’s leading seller of
the highest rated model of chain saws. Their chal-
lenge is that their present store site has space for
only an inventory of 18 of the very large saws. SK
is trying to develop a plan for how to make inven-
tory replenishment decisions in that constrained
environment. The company can place an order
at the end of each week for goods to arrive at the
beginning of the next, and the plan they are devel-
oping should cover the historically volatile coming
5 weeks. Placing an order costs $500 plus $900 per
unit purchased, and inventory holding costs $95 per
unit per week. If stock is available, sale of a saw
produces revenue of $2000. Demand is uncertain,
but the following table estimates the probability for
different numbers of weekly sales assuming stock
is available. If stock is not on hand, demand is lost.

Dem Prob Dem Prob Dem Prob Dem Prob Dem Prob

0 .020 4 .033 8 .046 12 .100 16 .041
1 .023 5 .036 9 .060 13 .060 17 .038
2 .027 6 .039 10 .100 14 .045 18 .036
3 .030 7 .043 11 .130 15 .042 over 18 .051

 Exercises 555

(a) Taking states i = 0, c, 18 for inventory
on hand as each week begins, identify all
the elements of definition 9.44 to formu-
late this inventory management challenge
as a MDP maximizing the total expected
undiscounted net profit of gross income
from sales less ordering and holding costs.
Assume initial inventory in week 1 equals
18, and that the order the end of week 5
will restore that max inventory level.

(b) Sketch a digraph depicting your model
of part (a) over nodes for 5 stages and 18
states with arcs for possible transitions.
You need not insert all parameter details,
but do show exemplars of all transition
arcs with the decision to which they are
attached, the reward they would realize,
and the associated probability.

(c) Form the functional equations for all
states and stages for your model of (a).

(d) Solve the equations of (c) to determine an
optimal inventory policy for SK.

9-42 Mini Job (MJ) is a small job shop manufac-
turer with a contract to stamp 200 copies per day
for the next 5 days of a metal door panel needed
by an automobile manufacturer. MJ’s machining
center that does the stamping can meet that de-
mand with regular 40-hour shifts, costing a total
of $3000 in labor per day if the machine is full
“working” state i = 1 in which it begins. But if
the device has “minor defects” (state i = 2), pro-
ductivity falls to 160 copies within regular hours,
leaving the remaining 40 to be done on overtime
at a total of $4500 per day. If the the device has
“major defects” (state i = 3), only 75 units can be
produced in regular hours, 25 more on the over-
time shift, and the other 100 must be purchased
from a competitor at a total of $10,000 per day.
Finally, the machine may be completely “inoper-
able” (state i = 4). On such days NJ must con-
tract the full 200 units at a total cost of $20,000.

MJ’s planning challenge is to decide when to do
repair on the work center. On any day, MJ can leave
the machine in its current condition, or undertake
repairs. In full working state i = 1, the machine

will continue in that state with probability 0.60 and
 decline to state i = 2 with probability 0.40. Without
repair of minor defects, the machine may continue
in state i = 2 for another day at probability 0.50,
or decline to state i = 3 or i = 4 with probabilities
0.30 and 0.20, respectively. Similarly, without repair
of major defects the machine will continue state
i = 3 with probability 0.40 and become inoperable
with probability 0.60. Assume repair happens in-
stantly once a decision is made.

If repairs are made to the machine in minor
 defects state i = 2 at cost $9000, there is a 0.90
chance it will return to full working state, and 0.10
that it continues to have minor defects. Similarly, if
repairs are made to the machine in major defects
state i = 3 at cost $14,000, there is a 0.70 chance
of restoring full working state, 0.20 of moving up
to minor defects state i = 2, and 0.10 of continuing
to have major defects. Doing repairs on the center
when it is completely inoperable, would cost $17,000,
but have a 0.60 chance of making it fully operable, a
0.20 chance of leaving it with minor defects, a 0.15
chance of moving it only to major defects state, and
0.05 of leaving the machine still inoperable.

MJ seeks a policy for when to repair that min-
imizes the total expected cost of its operations
over the 5-day contract period.

(a) Formulate MJ’s challenge as a MDP with
multiple states and stages, including iden-
tifying all the elements of definition 9.44 .

(b) Sketch a digraph depicting your model
of part (a) over nodes for the states and
stages, plus arcs for possible transitions.
You need not insert all parameter details,
but do show exemplars of all transition
arcs with the decision to which they are
attached, the reward they would realize,
and the associated probability.

(c) Form the functional equations for all
states and stages of your model in (a).

(d) Solve the equations of (c) to determine an
optimal repair policy for MJ.

9-43 Elite Air (EA)2 is a business-class only air-
line advertising complete meals for all its passen-
gers. EA must choose, then update the number to

2Based on J. H. Goto, M. E. Lewis, and M. L. Puterman (2002), “Coffee, Tea, or …?: A Markov Decision
Process Model for Airline Meal Provisioning,” ORIE, Cornell University.

556 Chapter 9 Shortest Paths and Discrete Dynamic Programming

order qe, at epochs e = 4, c, 0, which is initially
set to the number of booked and standby passen-
gers b4 known at that time. Values of both qe and
be can range between 0, 1, c, B! the seating
capacity of the flight. As flight time approaches,
meal requirements and passenger loads are re-
evaluated at every 4-hour epoch.

The predicted number of passengers who must
be served varies stochastically over the epochs
as bookings are clarified, but values are inde-
pendent of meal planning decisions, specifically
p[be, be - 1]! the probability that estimate be is
updated to be - 1 during epoch e = 4, c, 1.

Order quantities qe are also reviewed at each e.
In epochs e = 4 and 3, meals can be ordered at
standard cost c dollars each. Thereafter, extra
meals may be added at late-order cost $1.8c. Meals
already on order may be cancelled, but the savings
will only be $0.4c, not the full original amount.

EA wants to develop a meal ordering policy
that assures q0 = b0 at departure time, while

minimizing total expected cost of meal purchase
and return.

(a) Formulate EA’s challenge as a MDP with
multiple states and stages, including iden-
tifying all the elements of definition 9.44 .
Use bivariate states 1qe, be2 with qe! the
current number of meals ordered, and be!
the corresponding estimate of passengers
expected. Round any fractional value aris-
ing in computations to the nearest integer.

(b) Sketch a digraph depicting your model
of part (a) over nodes for the states and
stages, plus arcs for possible transitions.
You need not insert all parameter details,
but do show exemplars of all transition
arcs with the decision to which they are
attached, the reward they would realize,
and the associated probability.

(c) Form the functional equations over all
states and stages for your model of (a).

REFERENCES

Ahuja, Ravindra K., Thomas L. Magnanti, and
James B. Orlin (1993), Network Flows, Prentice-
Hall, Upper Saddle River, New Jersey.

Bazaraa, Mokhtar, John J. Jarvis, and Hanif
D. Sherali (2010), Linear Programming and Net-
work Flows, John Wiley, Hoboken, New Jersey.

Bertsekas, Dimitri P. (1987), Dyanmic Pro-
gramming: Deterministic and Stochastic Models,
 Prentice-Hall, Englewood Cliffs, New Jersey.

Denardo, Eric V. (2003), Dynamic Programming:
Models and Applications, Prentice-Hall, Engle-
wood Cliffs, New Jersey.

Lawler, Eugene (1976), Combinatorial Optimiza-
tion: Networks and Matroids, Holt, Rinehardt and
Winston, New York, New York.

Puterman, Martin L. (2005), Markov Decision
Processes-Discrete Stochastic Dynamic Program-
ming, Wiley, Hoboken, New Jersey.

557

▪ ▪ ▪ ▪ ▪
Chapter 10

Network Flows
and Graphs

We have seen in Chapters 4 to 7 that linear program models admit some very elegant
analysis. Global optima can be computed efficiently, and all sorts of “what if” sensi-
tivity analyses can be performed on results.

Network flow problems are special, yet widely applicable cases of linear pro-
grams which prove even more tractable. Much larger models can be solved, because
specialized algorithms apply. Most important, discrete cases, which we know are
usually more difficult, can often be managed with no extra effort at all.

10.1 Graphs, Networks, aNd Flows

One of the things that make network flow models particularly tractable is that deci-
sions and constraints have a form that we can easily represent in a diagram. More
precisely, network flow models arise on structures called directed graphs or digraphs.

Digraphs, Nodes, and Arcs
We encountered digraphs in Section 9.1. The digraphs begin with a collection of
nodes (or vertices), which we denote throughout this chapter by

V ! 5nodes or vertices of the network6
These indicate the facilities, or intersections, or transfer points of the network.
Nodes are joined in digraphs by a collection of arcs, which we denote throughout
this chapter by

A ! 5arcs of the network6
Arcs show possible flows or movements from one node to another. We indicate indi-
vidual arcs simply by listing the pair of nodes they connect. For example, arc (4, 7)
would go from node 4 to node 7.

Digraphs are termed directed because the direction of flow matters. For exam-
ple, an arc leading from node 7 to node 4, which would be denoted (7, 4), is not the
same as (4, 7). They represent traffic in different directions.

558 Chapter 10 Network Flows and Graphs

OOI Application Network
Figure 10.1 depicts OOI’s network. The 2 plants, 2 warehouses, and 3 customer
sites make up the 7 nodes of this digraph. Arcs show the possible oven flows, with
arrowheads indicating direction. For example, arc (3, 7) denotes ovens shipped
from the Memphis warehouse to the Newark customer site. The absence of an arc
(7, 3) means that ovens are not allowed to make the opposite move from Newark

1

2

3

4

5

6

7

Wisconsin Memphis

Fresno

Alabama Pittsburgh

Newark

Peoria

FiGure 10.1 Network for Optimal Ovens,
Incorporated (OOI) Application

applicatioN 10.1: optimal oveNs (ooi)
As usual, it will be much easier to absorb key notions with a small model in mind.
Consider the (entirely ficticious) case of Optimal Ovens, Incorporated (OOI).

OOI makes home toaster ovens at plants in Wisconsin and Alabama. Completed
ovens are shipped by rail to one of OOI’s two warehouses in Memphis and Pittsburgh,
and then distributed to customer facilities in Fresno, Peoria, and Newark. The two
warehouses can also transfer small quantities of ovens between themselves, using
company trucks.

Our task is to plan OOI’s distribution of new model E27 ovens over the next
month. Each plant can ship up to 1000 units during this period, and none are pres-
ently stored at warehouses. Fresno, Peoria, and Newark customers require 450,
500, and 610 ovens, respectively. Transfers between the warehouses are limited to
25 ovens, but no cost is charged. Unit costs (in dollars) of other possible flows are
detailed in the following tables.

From/To 3: Memphis 4: Pittsburgh

1: Wisconsin 7 8
2: Alabama 4 7

From/To 5: Fresno 6: Peoria 7: Newark

3: Memphis 25 5 17
4: Pittsburgh 29 8 5

10.1 Graphs, Networks, and Flows 559

to Memphis. Two opposed arcs joining the warehouse nodes indicate that traffic
between them can flow in either direction.

Minimum Cost Flow Models
What linear program does a digraph like Figure 10.1 represent? We want it to
describe flows, here of ovens starting at plants, passing through warehouses and
terminating at customers.

As usual, we begin with decision variables.

Decision variables xi, j in network flow models reflect the amount
of flow in arcs 1i, j2.

Principle 10.1

Letting ci, j denote the unit cost of flow on arc 1i, j2, the total cost to be mini-
mized is simply

a1i,j2∈A
 ci,jxi,j

Some constraints are equally easy. Flows must be nonnegative to make sense,
and capacities or upper bounds ui,j may apply. These requirements lead to constraints:

 0 … xi,j … ui,j for all 1i, j2 ∈ A (10.1)

The defining characteristic of network flow problems is the form of their main
constraints.

Main constraints of network flow problems enforce balance
(or conservation) of flow at nodes.

Principle 10.2

More precisely, we want

1total flow in2 - 1total flow out2 = specified net demand

at every node. In symbols,

 a1i,k2∈A
 xi,k - a1k,j2∈A

 xk, j = bk for all k ∈ V (10.2)

where bk denotes the specified net demand (required flow inbalance) at node k.
We are now ready to state the full minimum cost network flow model form.

The minimum cost network flow model for a digraph on nodes
k ∈ V with net demands bk, and arcs 1i, j2 ∈ A with capacity ui,j and unit cost
ci,j is

min a1i,j2∈A
 ci,jxi,j

s.t. a1i,k2∈A
 xi,k - a1k,j2∈A

 xk,j = bk for all k ∈ V

 0 … xi,j … ui,j for all 1i, j2 ∈ A

Definition 10.3

560 Chapter 10 Network Flows and Graphs

Sources, Sinks, and Transshipment Nodes
Nodes come in three types. Sink or demand nodes such as the customer sites in
the OOI application consume flow. Source or supply nodes such as the OOI plants
create flow. Transshipment nodes such as OOI warehouses merely pass along flow.
Net demands bk have corresponding sign.

1

2

3

4

5

6

7

8

450

500

610

-1000

440

-1000

Wisconsin Memphis

Fresno

Alabama Pittsburgh

Newark

Peoria

(7, q)

(7, q)

(0
, q

)
(0

, q
)

(0
, 2

5)

(0
, 2

5)

(25, q)

(2
9,

 q
)

(6, q)

(8, q
)

(17, q
)

(5, q)

(8, q
)

(4
, q

)

(c, u)

FiGure 10.2 Minimum Cost
Network Flow Problem for
OOI Application

Net demand bk is positive at sink (demand) nodes, negative at
source (supply) nodes, and zero at transshipment nodes.

Principle 10.4

OOI Application Model
Figure 10.2 includes net demands, costs, and capacities on the digraph for our OOI
application (plus an extra node 8 explained below). The corresponding minimum
cost network flow model is

min 7x1,3 + 8x1,4 + 4x2,3 + 7x2,4 + 25x3,5 + 5x3,6

 +17x3,7 + 29x4,5 + 8x4,6 + 5x4,7 1total cost2
s.t. -x1,3 - x1,4 - x1,8 = -1000 1node 12

(10.3)

 -x2,3 - x2,4 - x2,8 = -1000 1node 22
 +x1,3 + x2,3 + x4,3 - x3,4 - x3,5 - x3,6 - x3,7 = 0 1node 32
 +x1,4 + x2,4 + x3,4 - x4,3 - x4,5 - x4,6 - x4,7 = 0 1node 42
 +x3,5 + x4,5 = 450 1node 52
 +x3,6 + x4,6 = 500 1node 62
 +x3,7 + x4,7 = 610 1node 72
 +x1,8 + x2,8 = 440 1node 82
 x3,4 … 25, x4,3 … 25 1capacities2
 xi,j Ú 0 for all 1i, j2 ∈ A

Heavy lines in Figure 10.3 show an optimal solution.

10.1 Graphs, Networks, and Flows 561

Plants are the source nodes of the OOI network. Thus their flow balance con-
straints (the first two) in model (10.3) have negative net demands. Warehouse nodes
merely transship flow, so net demand is zero. The last four balance constraints of
model (10.3) detail the sink nodes consuming flow; corresponding right-hand sides
are positive.

The OOI application has capacities only on arcs connecting the two warehouses.
No more than 25 ovens may be transferred in either direction. Bound constraints in
model (10.3) reflect these two capacity limits and nonnegativity on all arcs.

1

2

3

4

5

6

7

8

450

500

610

-1000

440

-1000

Wisconsin Memphis

Fresno

Alabama Pittsburgh

Newark

Peoria

97
5

560

25

25

450

500

610

44
0

x

FiGure 10.3 Optimal Flows for OOI Application

example 10.1: FormulatiNG miNimum cost Network Flow models

The figure that follows shows a network on four nodes. Numbers next to nodes are
net demands bk, and those on arcs are cost and capacity 1ci,j, ui,j2.

2

3

4

1-100

40

60

0

(2, 90)

(3, 75)

(5, 50)

(11, +
q)(-

1,
 +

q
)

(0
, +

q
)

(c, u)

b

(a) Formulate the corresponding minimum cost network flow problem.

(b) Classify nodes of the problem as source, sink, or transshipment.

Solution: Here

V = 51, 2, 3, 46
A = 511, 22, 11, 42, 12, 32, 12, 42, 14, 22, 14, 326

562 Chapter 10 Network Flows and Graphs

(a) Using variables x1,2, x1,4, x2,3, x2,4, x4,2, and x4,3 to represent flows on the six
 members of A, the formulation of principle 10.3 is

min 2x1,2 + 3x1,4 + 5x2,3 - 1x4,2 + 11x4,3

s.t. -x1,2 - x1,4 = -100

 x1,2 + x4,2 - x2,3 - x2,4 = 0

 x2,3 + x4,3 = 60

 x1,4 + x2,4 - x4,2 - x4,3 = 40

 x1,2 … 90, x1,4 … 75, x2,3 … 50

 xi,j Ú 0 for all 1i, j2 ∈ A

(b) The only node with a negative net demand or supply is node 1. Thus it is the only
source node. Nodes 3 and 4 have positive net demand, making them sinks. Remaining
node 2, which has neither a demand nor a supply, is a transshipment node.

Total Supply ∙ Total Demand
One element appears in Figure 10.2 and model (10.3) that was absent in original
Figure 10.1. An extra sink node 8 has been added.

To see why, look again at flow balance constraints of 10.3 . Flow is created
only at source nodes and consumed only at sink nodes. Thus there is no hope of a
feasible flow unless

total supply = total demand

which means Σk bk = 0.
When the given network of a minimum cost network flow problem does not

come to us with total supply equal total demand, we must make some adjustments
before proceeding.

If total supply is less than total demand in a given network flow
problem, the problem is infeasible. If total supply exceeds total demand, a new
sink node should be added to consume excess demand via zero-cost arcs from
all sources.

Principle 10.5

Node 8 in Figure 10.2 was added because

total supply = 1000 + 1000 7 450 + 500 + 610 = total demand

in the OOI application. The excess of 440 determines node 8’s demand. We want
this excess supply to be able to reach node 8 without affecting any other part of the
optimization. Zero-cost arcs from both source nodes do the job.

example 10.2: BalaNciNG total supply aNd total demaNd

The digraph below shows net demand bk next to each of its nodes and cost ci,j on
its arcs.

10.1 Graphs, Networks, and Flows 563

Starting Feasible Solutions
All search methods for network flows proceed by assuming a starting feasible
solution is at hand, then systematically improving it until an optimum is obtained
or unboundedness is established. When a starting solution is not known, or there
is uncertainy about whether one exists, the standard network flow model can be
adapted to investigate using two-phase or big-M methods of Section 3.5.

The key to both those methods is construction of an artificial model from
which computation can begin. New artificial variables are introduced to force feasi-
bility, and their sum is minimized. If that sum can be driven to = 0, what remains is a
feasible flow for the original model. If not, the original model is infeasible.

Artificial Network Flow Model
The only new element in the network flow context is that we wish to create an
artifical model that is itself a minimum cost network flow problem so that usual
algorithms apply. In particular, we want to be able to interpret artificial variables as
flows in arcs.

2

3

41-50

-90

28

52

9

4

7

3 -2
b

c

Modify the network as required to produce an equivalent one with total supply
equal to total demand.

Solution: Here total supply is 50 + 90 = 140 and total demand is 28 + 52 = 80.
Thus total supply exceeds total demand by

140 - 80 = 60

To produce an equivalent model with total supply equal to total demand, we
apply principle 10.5 and add a “dummy” sink 5 to consume the excess.

2

3

41-50

-90

28

52

9

4

7

3 -2

c

b

5
0

0

60

Zero-cost arcs 11, 52 and 13, 52 from the two sources assure that the extra supply
can reach node 5 without affecting other costs.

564 Chapter 10 Network Flows and Graphs

To obtain such a network flow artificial model, we simply put a zero flow on all
arcs of the original model and add one artificial node. Supply and demand require-
ments are fulfilled by artificial arcs joining this special node to all others having net
demand bk ∙ 0.

1

2

3

4

5

6

7

8

450

500

610

-1000

440

-1000

0

1000

440

1000

450

500

61
0

FiGure 10.4 Starting Phase I Flow for the OOI Application

An artificial network model and starting point for computing
initial feasible solutions in minimum cost network flow problems can be con-
structed by (i) assigning 0 flow to all arcs of the original model, (ii) introducing
an artificial node, (iii) creating artificial arcs from each supply node k1bk 6 02
to the artificial node with flow equal to the specified supply 0 bk 0 , and (iv) add-
ing artificial arcs from the artificial node to each demand node k1bk 7 02 with
flow equal to the required demand 0 bk 0 .

Principle 10.6

Figure 10.4 illustrates for our OOI model. Artificial node 0 has been added
to anchor artificial arcs. Then artificial arcs 11, 02 and 12, 02 balance flow at supply
nodes 1 and 2 by carrying exactly the supply specified at those nodes. Similarly, arti-
ficial arcs 10, 52, 10, 62, 10, 72, and 10, 82 satisfy demand requirements by bringing
the needed flow to each demand node. All original arcs have flow = 0.

Zero flows on all original arcs satisfy their upper- and lower-bound constraints,
and all specified artificial flows are nonnegative. Also, setting artificial flows to
exactly the needed supply or demand has assured flow balance at all the original
nodes. Finally, under total supply equals total demand requirement 10.5 , flow will
balance at the artificial node as well.

10.1 Graphs, Networks, and Flows 565

Time-Expanded Flow Models and Networks
As with the more general linear programs of Section 4.5, many applications of
 network flows involve time-expanded formulations to account for flows over time.
This is especially true for those involving inventory management.

In the specially structured network flow case, such problems lead to time-
expanded networks.

example 10.3: coNstructiNG aN artiFicial Network model

Consider a network flow problem with net demands as depicted in the following
figure:

2

3

4

1

-18

10

80

b

Construct both the corresponding artifical network model for phase I or big-M
computation of a starting feasible solution and the associated artificial solution.

Solution: Following construction 10.6 , we introduce an artificial node 0, along with
artificial arcs from supply node 2 and to demand nodes 3 and 4. Flows on original
arcs are all zero, and those on artificials equal the specified supply or demand. The
result is the following artificial model and artificial starting solution:

2

3

4

1

10

8
0

18

0

0

0
0

0

x

Time-expanded networks model each node of a flow sys-
tem as a series of nodes, one for each time interval. Arcs then reflect either
flows between points in a particular time, or flows across time in a particular
location.

Definition 10.7

566 Chapter 10 Network Flows and Graphs

source

P1, 2

P1, 3

P1, 4

D1, 2

D1, 3

D1, 4

C1, 1

C1, 2

C1, 3

C1, 4

C500, 1

C500, 2

C500, 3

C500, 4

P1, 1

P4, 1

P4, 2

P4, 3

P4, 4

D20, 1

D20, 2

D20, 3

D20, 4

D1, 1

FiGure 10.5 Agrico Time-Expanded Network Format

1Based on F. Glover, G. Jones, D. Karney, D. Klingman, and J. Mote (1979), “An Integrated
Production, Distribution, and Inventory Planning System,” Interfaces, 9:5, 21–35.

applicatioN 10.2: aGrico chemical time-expaNded Network Flow

To see the idea, consider the case of Agrico Chemical,1 which is a large chemical
fertilizer company. Figure 10.5 sketches our fictitious version of the network model
used to plan Agrico’s production, distribution, and inventory. Much in the spirit of
OOI Application 10.1, products for this real company originate at 4 plants and are
transshipped through 20 regional distribution centers before reaching customers in
any of 500 service areas.

Highly seasonal demand makes the Agrico case more complex than OOI.
Agrico produces fertilizers throughout the year, but much of the demand comes in
the spring quarter. Production capacity cannot accommodate spring demand in just

10.1 Graphs, Networks, and Flows 567

Time-Expanded Modeling of Agrico Application
The Agrico digraph of Figure 10.5 illustrates a time-expanded network. Total annual
flow originates at the source node, but separate arcs representing production con-
nect it to the 8 nodes (Pi, t) modeling plants P1 through P4 in quarters t = 1, c, 4.
Capacities on those arcs would enforce the quarterly capacities of the correponding
plants, and costs would reflect units costs of production.

Plants in any quarter, t, are connected by transportation arcs to distribution
center nodes (Dj, t) in the same quarter. Distribution centers, in turn, are linked to
customer demands of the corresponding quarter. Costs on these arcs would reflect
the unit cost of transportation, perhaps differentiated by the quarter in which the
shipment takes place.

Holding arcs between nodes for the same distribution center comprise the
main new feature representable with time-expanded modeling. For example, the arc
from (D1, 2) to (D1, 3) models holding of the product at distribution site number 1
from the second to the third quarter. Its cost would be the unit holding cost at distri-
bution site 1, and its capacity the size of the available storage. It would be impossible
to model both flows in time and flow among facilities without distinguishing nodes
by both place and time.

example 10.4: modeliNG iN time-expaNded Networks

A certain company can manufacture up to 15 thousand units of its product in any
calendar quarter at a cost of $35 per thousand. The following table shows cost per
thousand units shipped to each of the company’s two customers, and the number
(thousands) of units demanded by each in various quarters.

Customer
Shipping

Cost

Demand by Quarter

1 2 3 4

1 11 5 9 2 1
2 17 3 14 6 4

Assuming that inventory can be maintained at the plant for $8 per thousand per
quarter, develop a time-expanded network flow model to determine the company’s
best production, distribution, and inventory plan.

Solution: Following 10.7 , we create 4 nodes for the plant in different quarters and 4
nodes for each of the 2 customers in different quarters. Commodities for all quarters
and customers arises at a common source node. Production arcs link commodities
to plant nodes by quarter, and holding arcs connect the plant nodes. Transportation

one quarter. Thus the company builds up inventories at distribution sites during
off-seasons to ship in the spring. Of course, storage is not unlimited, and inventories
result in holding costs.

Agrico’s decision problem requires choosing the amount to produce in each of the
four quarters of the year, the pattern of shipping and storing it at distribution sites, and
a scheme for sending it on to customers. We want to do all this at minimum total cost.

568 Chapter 10 Network Flows and Graphs

Node–Arc Incidence Matrices and Matrix Standard Form
As in all our work with linear programs, we will often wish to think of minimum
cost network flow model 10.3 in matrix terms. To do so, we will abuse notation
to treat the flow variables xi,j as a vector x even though components have two
 subscripts. Then, collecting costs ci,j and capacities ui,j in corresponding vectors c
and u, and arraying net demands bk in vector b reduces the minimum cost network
flow model 10.3 to the familiar LP standard form

 min c # x

(10.4)

s.t. Ax = b

 0 … x … u

Main constraint matrix A has a very special structure. Such matrices are called
node–arc incidence matrices because they both encode the flow balance require-
ments and provide an algebraic description of the underlying digraph.

arcs join the plant in each quarter to customer demands for that quarter. The result
is the following time-expanded minimum cost network flow model:

source

P, 1 P, 2 P, 3 P, 4

C1, 1 C1, 2 C1, 3 C1, 4 C2, 1 C2, 2 C2, 3 C2, 4

5 9 2 1 3 14 6 4

-44

(35, 15)

(3
5,

 1
5) (35, 15)

(35, 15)

b

(c, u)

(8, q)

(8, q) (8, q) (8, q)

(11, q
) (17, q

)

(17, q
)(17, q)

(17, q)

(11, q
)

(1
1,

q)(1
1,

q
)

Node–arc incidence matrices represent both the flow balance
requirements and the graph structure of a network flow model with a row for
every node and a column for every arc. The only nonzero entries in each col-
umn are a -1 in the row for the node the corresponding arc leaves and a +1 in
the row for the node the arc enters.

Definition 10.8

Table 10.1 illustrates for the OOI application. The 8 rows correspond to the 8
nodes of the digraph in Figure 10.2. One column is present for each of the 14 arcs.
The column for arc (3, 6) has a -1 in row 3 and a + 1 in row 6 because arc (3, 6)
leaves 3 and enters 6.

10.1 Graphs, Networks, and Flows 569

One of the conveniences of network flow problems is that we can depict them
in network diagrams. Notice, however, that we could just as well start from the node–
arc incidence matrix. If we had been given Table 10.1, it would be easy to sketch the
corresponding digraph.

example 10.5: coNstructiNG Node–arc iNcideNce matrices

Construct the node–arc incidence matrix for the original digraph of Example 10.2.

Solution: Consistent with principle 10.8 , the node–arc incidence matrix will have
a row for each of the 4 nodes and a column for each of the 5 arcs. The full matrix is
as follows:

Node

Arc

(1, 2) (1, 4) (2, 4) (3, 1) (4, 3)

1 -1 -1 0 +1 0
2 +1 0 -1 0 0
3 0 0 0 -1 +1
4 0 +1 +1 0 -1

example 10.6: iNterpretiNG Node–arc iNcideNce matrices

Consider the following matrix:§ -1 +1 0 +1 0 0
0 -1 -1 0 0 +1
0 0 +1 -1 -1 0

+1 0 0 0 +1 -1

¥
(a) Explain why it is a node–arc incidence matrix.

(b) Draw the corresponding digraph.

taBle 10.1 Node–Arc Incidence Matrix of the OOI Application

Node

Arc

(1, 3) (1, 4) (1, 8) (2, 3) (2, 4) (2, 8) (3, 4) (3, 5) (3, 6) (3, 7) (4, 3) (4, 5) (4, 6) (4, 7)

1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0
3 +1 0 0 +1 0 0 -1 -1 -1 -1 +1 0 0 0
4 0 +1 0 0 +1 0 +1 0 0 0 -1 -1 -1 -1
5 0 0 0 0 0 0 0 +1 0 0 0 +1 0 0
6 0 0 0 0 0 0 0 0 +1 0 0 0 +1 0
7 0 0 0 0 0 0 0 0 0 +1 0 0 0 +1
8 0 0 +1 0 0 +1 0 0 0 0 0 0 0 0

570 Chapter 10 Network Flows and Graphs

10.2 cycle directioNs For Network Flow search

Linear programming algorithms of Chapters 5–7 center on constructing improv-
ing feasible directions, directions of solution change that preserve feasibility and
improve the objective function for suitably small steps. Knowing that network flow
problems are linear programs with special properties, it should not surprise you that
unusually simple improving feasible directions are at the heart of their tractability.

Chains, Paths, Cycles, and Dicycles
Sections 9.1 introduced the notions of paths and dicycles in a graph. To derive direc-
tions for network flow problems, we need the additional concepts of chains and cycles.

A chain is a sequence of arcs connecting two nodes. Each arc
has exactly one node in common with its predecessor in the sequence, and no
node is visited more than once.

Definition 10.9

We describe a chain or cycle merely by listing its arcs in sequence. When no confu-
sion will result, we may also use the corresponding sequence of nodes.

Figure 10.6(a) illustrates on the OOI digraph of Figure 10.2. The first example
shows a chain (1, 3), (3, 6), (4, 6), (2, 4) connecting nodes 1 and 2. It could just as well
be called by its node sequence 1–3–6–4–2 because there is only one arc that could
provide each of the implied node-to-node connections. Figure 10.6(a)’s second
example is chain (1, 3), (3, 4), (4, 7). Here the node sequence would not be definitive
because both this chain and (1, 3), (4, 3), (4, 7) have node sequence 1–3–4–7.

Part (b) of Figure 10.6 shows some sequences that are not chains. The first is
not connected, and the second repeats node 3.

Notice that chains need not observe direction on the arcs. This is how a chain
differs from a path.

A cycle is a chain with the same beginning and ending node.Definition 10.10

Solution: Again we apply principle 10.8 .

(a) This is a node–arc incidence matrix because each column has only two nonzero
entries, one -1 and one +1.

(b) Associating nodes 1 to 4 with the 4 rows of the matrix, we construct the digraph
by inserting an arc for each column of the matrix. The arc leaves the node of the
row where the column has a -1 and enters the node of the row where it has a +1.

2

3 4

1

10.2 Cycle Directions for Network Flow Search 571

Thus highlighted sequence 1–3–6–4–2 in Figure 10.6(a) is a chain but not a path; it
violates direction on arcs (4, 6) and (2, 4). Second sequence 1–3–4–7 is both a chain
and a path.

The only additional element with cycles is beginning and ending at the same
node. For example, Figure 10.6(c) includes cycle 1–3–6–4–1 starting and ending at node
1 and cycle (3, 4), (4, 3) beginning and ending at node 3. Part (d) of the figure confirms
that disconnected arc sequences or ones repeating a node cannot constitute cycles.

As with chains and paths, the distinction between cycles and dicycles involves
direction.

Paths are chains that transmit all arcs in the forward direction.Definition 10.11

Dicycles are cycles that have all arcs oriented in the same
direction.

Definition 10.12

Thus the first cycle 1–3–6–4–1 of Figure 10.6(c) is not a dicycle because it violates
direction on arcs (4, 6) and (1, 4). Second cycle (3, 4), (4, 3) does meet the definition
of a dicycle because it passes both arcs in the forward direction.

Cycle Directions
Cycles can pass arcs in either a forward (with direction) or the reverse (against
direction) manner. Cycle directions derive from this visitation pattern.

A cycle direction of a minimum cost network flow model
increases flow on forward arcs and decreases flow on reverse arcs of a cycle in
the given digraph; that is,

∆xi,j ! c +1 if arc 1i, j2 is forward in the cycle
-1 if arc 1i, j2 is reverse in the cycle
 0 if arc 1i, j2 is not part of the cycle

Definition 10.13

For example, consider the first cycle of Figure 10.6(c): 1–3–6–4–1. With the first
two arcs forward in the cycle and the last two reverse, we obtain the cycle direction
sketched below.

1 3

4

6

+1

+1

-1

-1

¢x

forward

Forward arcs in the cycle have +1 components, reverse arcs have -1, and all other
arcs have 0.

572 Chapter 10 Network Flows and Graphs

(a) Chains

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

(b) Not chains

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

(c) Cycles

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

(d) Not cycles

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

FiGure 10.6 Chains and Cycles of the OOI Network

10.2 Cycle Directions for Network Flow Search 573

Notice that it matters which way we orient the cycle. If we used the same cycle as
above but thought of visiting it in sequence 1-4-6-3-1, arcs (1, 4) and (4, 6) would be
forward arcs with ∆x = +1, and arcs (3, 6) and (1, 3) would be reverse with ∆x = -1.

Maintaining Flow Balance with Cycle Directions
The main, flow conservation constraints of minimum cost network flow problems
in matrix format (10.4) are equality constraints Ax = b where A is the node–arc
incidence matrix of the given digraph and b is the net demand vector. We know
from our earliest investigation of improving search (principle 3.29 , Section 3.3)
that any direction ∆x preserving feasibility in such equality constraints must sat-
isfy the condition A∆x = 0. We are interested in cycle directions because they
satisfy this net-change-zero condition for node–arc incidence matrices A.

Adjusting a feasible flow along a cycle direction of a network
flow model leaves flow balance constraints satisfied.

Principle 10.14

To see that this is true, recall that each node of the cycle is touched by exactly two
arcs, and think about the four ways two arcs can visit a node. Figure 10.7 illustrates
how node–arc incidence matrix signs of the direction 10.8 combine with those of the
direction 10.13 to produce a net change = 0 at each node. In the forward–reverse
case, for example, we have

+1 ∆xi,j + 1 ∆xk, j = +11+12 + 11-12 = 0

+1

+1
i j k

a

¢x
+1

-1

(a) Forward–forward

-1

-1
i j k

a

¢x
+1

-1

(c) Reverse–forward

+1

+1
i j k

a

¢x
-1

+1

(b) Forward–reverse

-1

-1
i j k

a

¢x
-1

+1

(d) Reverse–reverse

FiGure 10.7 Possible Ways a Cycle Can Visit a Node

example 10.7: coNstructiNG cycle directioNs

Consider the following digraph:

765

43

21

574 Chapter 10 Network Flows and Graphs

Feasible Cycle Directions
Flow balance equalities are not the only constraints of a minimum cost network
flow model 10.3 . We must also be concerned with nonnegativity constraints and
arc capacities ui,j. Section 3.3 principles 3.27 and 3.28 tell us the requirements that
must be added for upper and lower bounds. No arc with zero flow can decrease, and
no capacitated arc can increase if bound constraints are also to be maintained in a
move from a current feasible solution x.

Construct the cycle direction for each of the following cycles, and verify that each
retains flow balance at node 6.

(a) 1-2-7-6-5-1

(b) 3-4-6-3

Solution:

(a) Applying definition 10.13 , the cycle direction has

∆x1,2 = ∆x5,1 = +1

∆x7,2 = ∆x6,7 = ∆x5,6 = -1

∆x1,3 = ∆x3,4 = ∆x4,2 = ∆x6,3 = ∆x4,6 = 0

Checking principle 10.14 at node 6,

-1 ∆x6,7 + 1 ∆x5,6 = -11-12 + 11-12 = 0

(b) Again applying definition 10.13 , the cycle direction has

∆x3,4 = ∆x4,6 = ∆x6,3 = 1

∆x1,2 = ∆x1,3 = ∆x2,4 = ∆x7,2 = ∆x6,7 = ∆x5,6 = ∆x5,1 = 0

At node 6

+1 ∆x4,6 - 1 ∆x6,3 = +11+12 - 11+12 = 0

To illustrate, we need a feasible flow. Consider the OOI flow x102 depicted in
Figure 10.8. That x102 satisfies net demand requirements at all nodes and conforms
to all bounds.

A cycle direction ∆x is a feasible direction at current solution
x if and only if xi,j 7 0 on all reverse arcs of the cycle, and xi,j 6 ui,j on all
forward arcs.

Principle 10.15

10.2 Cycle Directions for Network Flow Search 575

1

2

3

4

5

6

7

8

450

500

610

-1000

440

-1000
560 450

500

610

10
00

44
0

FiGure 10.8 Initial Flow
x102 in OOI Application

Figure 10.9 shows a cycle 2-4-7-3-2 that does satisfy conditions 10.15 .
Both reverse arcs have xi,j

102 7 0, and neither forward arc has a capacity.

-4

+7
+5

-17

cost change

forward

1

2

3

4

5

6

7

8

FiGure 10.9 An Improving
Feasible Cycle Direction at x102
of Figure 10.8

example 10.8: ideNtiFyiNG FeasiBle cycle directioNs

The figure that follows shows a network flow problem with a feasible flow x on
highlighted arcs. Labels on arcs indicate capacities and flows 1ui,j, xi,j2.

765

43

21

(200, 125) (300, 125)

(100, 0)

(35, 35)

(q
, 0

)

(q
, 1

25
)

(50, 35) (q
, 0

)

(9
0,

 0
)(q

, 0)

(u, x)

576 Chapter 10 Network Flows and Graphs

Improving Cycle Directions
Feasible cycle directions aid a search for an optimal flow only if they improve
the objective function. We know from principle 3.18 (Section 3.3) that this will
be true if cQ ! c # ∆x 6 0 for our minimizing model. The simple +1, -1, 0 coeffi-
cient structure of cycle directions (principle 10.13) make this test particularly
easy to apply.

cQ ! c # ∆x

 = a1i,j2 in cycle
 ci,j ∆xi,j

 = a
forward 1i,j2

 ci,j1+12 + a
reverse 1i,j2

 ci,j1-12

 = 1total forward arc cost2 - 1total reverse arc cost2

Determine whether the direction for each of the following cycles is a feasible cycle
direction.

(a) 1-2-7-6-5-1

(b) 3-4-6-3

(c) 1-3-6-5-1

Solution: We apply conditions 10.15 .

(a) This cycle direction is feasible because all reverse arcs currently have positive
flow and no forward arc is at capacity.

(b) This cycle direction is not feasible. Forward arc (3, 4) is at capacity and cannot
increase.

(c) This cycle direction is not feasible. One of the reverse arcs, (3, 6), has current
flow 0 and cannot decrease.

A cycle direction improves for a minimum cost network flow
model if the difference of total forward arc cost and total reverse arc cost 6 0.

Principle 10.16

Cycle 2–4–7–3–2 of Figure 10.9 illustrates a direction that is both feasible
and improving. Applying 10.16 to check the latter gives

1total forward2 - 1total reverse2 = 17 + 52 - 117 + 42 = -9 6 0

example 10.9: ideNtiFyiNG improviNG cycle directioNs

The figure that follows adds costs to the network of Example 10.8. Labels on arcs
now show costs, capacities, and current flows 1ci,j, ui,j, xi,j2.

10.2 Cycle Directions for Network Flow Search 577

Step Size with Cycle Directions
If we can take an arbitrary step l in improving feasible direction ∆x, we know that
our model is unbounded. The objective can be improved forever without losing
feasibility.

More often, upper and lower bounds on arc flows impose limits. Each unit step
in a cycle direction increases forward arc flows by a unit and decreases reverse flows
by a unit. Feasibility will be lost the first time these changes encounter a nonnegativ-
ity or capacity constraint. More specifically,

765

43

21

(23, 200, 125) (7, 300, 125)

(8, 100, 0)

(11, 35, 35)

(1
5,

 q
, 0

)

(2
9,

 q
, 1

25
)

(20, 50, 35) (1
0,

q, 0
)

(–
20

, 9
0,

 0)(0, q
, 0)

(c, u, x)

Determine whether each of the following cycles yields an improving cycle direction.

(a) 1–2–7–6–5–1

(b) 2–4–6–7–2

(c) 6–3–1–2–4–6

Solution: We apply condition 10.16 .

(a) This cycle direction improves because

1total forward2 - 1total reverse2 = 18 + 152 - 129 + 7 + 232 = -36

(b) This cycle direction does not improve because

1total forward2 - 1total reverse2 = 110 - 20 + 7 + 292 - 102 = 26

(c) This cycle direction improves because

1total forward2 - 1total reverse2 = 10 + 8 + 10 - 202 - 1202 = -22

Steps from feasible flow x in cycle direction ∆x retain feasibil-
ity for step sizes up to l = min5l+, l-6, where

l+ ! min51ui,j - xi,j2 : 1i, j2 forward61= +∞ if there are no forward arcs2
l- ! min5xi,j : 1i, j2 reverse61= +∞ if there are no reverse arcs2

Principle 10.17

578 Chapter 10 Network Flows and Graphs

Return to the cycle direction 2–4–7–3–7 of Figure 10.9 and the flow x102 of
Figure 10.8. For that example,

l+ = min51∞ - 02, 1∞ - 026 = ∞
l- = min5610, 10006 = 610

Thus l = min5∞ , 6106 = 610 is the largest step we can take in that cycle direction
without losing feasibility.

example 10.10: computiNG steps iN cycle directioNs

Return to the example of Example 10.9. Whether or not directions corresponding to
the three specified cycles improve the objective function, determine the maximum
step l in each direction that preserves feasibility.

Solution: We apply principle 10.17 .

(a) For cycle 1–2–7–6–5–1,

l+ = min51100 - 02, 1∞ - 026 = 100

l- = min5125, 125, 1256 = 125

l = min5l+, l-6 = min5100, 1256 = 100

(b) For cycle 2–4–6–7–2,

l+ = min51∞ - 02, 190 - 02, 1300 - 1252, 1∞ - 12526 = 90

l- = + ∞
l = min5l+, l-6 = min590, ∞6 = 90

(c) For cycle 6–3–1–2–4–6,

l+ = min51∞ - 02, 1100 - 02, 1∞ - 02, 190 - 026 = 90

l- = min5356 = 35

l = min5l+, l-6 = min590, 356 = 35

Sufficiency of Cycle Directions
Properties we long ago encountered for linear programs of any form, including network
flow models of present interest, make a solution globally optimal if and only if it admits
no improving feasible directions (principle 5.1). We have seen how cycle directions
can be improving and feasible. But what if none exist that satisfy both requirements?
Certainly there are more complicated improving feasible directions for network flow
models. Could any improve a solution when cycle directions fail? Happily, no.

A feasible flow in a minimum cost network flow problem is
(globally) optimal if and only if it admits no improving feasible cycle direction.

Principle 10.18

To formally justify property 10.18 , we will demonstrate how every more com-
plex improving feasible direction can be decomposed.

10.2 Cycle Directions for Network Flow Search 579

Consider the direction shown in Figure 10.10. It certainly does not look like a
cycle direction, but the reader can check that it satisfies conditions to be both feasi-
ble and improving. The objective changes by cQ = - $15.9 for every unit step.

To produce the decomposition of 10.19 , pick any cycle within the nonzero
arcs of the complex direction, and let a = the minimum absolute value of its com-
ponents. One of several cycles in Figure 10.10 is 3–4–7–3, with a = 4.0. Now express
the complex direction as the sum of a times the (necessarily feasible) cycle direction
for the chosen cycle, plus what remains of the complex one after forward compo-
nents along the cycle are reduced by a, and reverse increased by the same amount.
For the example of Figure 10.10 this gives

5

6

1

84.0

2

7

+1 -1

+14

3

5

6

1

8

7

+1
1.

3

+11.3

+

-1
1.

3

-0.2

-1
1.

5

+0.2
+0.2

4

3

2

Notice several things. First, the remaining direction must be feasible because
if its sum at each node were not = 0, the weighted sum, which is the original

Every direction ∆x satisfying A∆x ∙ 0 for node–arc incidence
matrix A of a minimum cost network flow model can be decomposed into a
weighted sum of cycle directions. Furthermore, if ∆x is feasible and improving,
at least one of the cycle directions will also be feasible and improving.

Principle 10.19

+11.3

+1
1.

3
-1

1.
3

+0.2

-1
1.

5 +4
.0

+4.2

1

2

3

4

5

6

7

8 -4.2

FiGure 10.10 A Non-Cycle Improving
Feasible Direction at x102 of Figure 10.8

580 Chapter 10 Network Flows and Graphs

direction, could not have been feasible. Furthermore, our choice of a assures no
signs on arcs in the original direction have changed in the residual one. Importantly,
however, the coefficient on at least one arc has dropped to = 0. Thus we can repeat
the process, finding a cycle in each residual with weight a1 c, until no nonzero
components remain. The resulting decomposition is a positive-weighted sum of the
cycle directions, so its reduced cost must be the same sum of the reduced costs for
the included cycle directions. If the sum has the right sign to improve, at least one of
the cycle directions must have that sign as well.

Rudimentary Cycle Direction Search for Network Flows
Most known procedures for minimum cost network flow problems can be viewed as
special forms of improving search using cycle directions. With all the properties of
cycle directions in hand, we are now ready to specify Rudimentary Algorithm 10A
below. Details of refinements are provided in upcoming Sections 10.3 and 10.4.

Rudimentary Cycle Direction Search of the OOI Application
Figure 10.11 summarizes costs and capacities of the OOI application, along with the
starting feasible flows of Figure 10.8, which have cost $32,540. Figure 10.12 then
details an application of Algorithm l0A to compute an optimal flow.

We first apply the improving feasible cycle direction of Figure 10.9. For that
cycle l+ = +∞ and l- = min5610, 10006 = 610. A maximum feasible step of
l = 610 in that direction yields flow x112 at cost $27,050.

Next we employ cycle 2–3–1–4–2 at cQ = -2 and l = 560 to produce flow x122
at cost $25,930. A final step in the direction for the indicated cycle 2–3–4–2 com-
pletes recovery of the optimal flow in Figure 10.3 with value $25,855.

The reader can verify that each of the three directions employed was both
improving and feasible for the solution to which it was applied. However, many
other choices were available. Pending the development of Sections 10.3 and 10.4,

1

2

3

4

5

6

7

8

450

500

610

–1000

440

–1000

(c, u, x)

(7, q, 560)

(7, q, 0)

(0
, q

, 0
)

(0
, q

, 4
40

)

(0
, 2

5,
 0

)

(0
, 2

5,
 0

)

(8, q
, 0)

(4
, q

, 1
00

0)

(25, q, 450)

(6, q, 500)(17, q
, 610)

(5, q, 0)

(8
, q

, 0
)

(2
9,

 q
, 0

)

FiGure 10.11 Data and Initial Flow for the OOI
Application

10.2 Cycle Directions for Network Flow Search 581

1

2

+0

3

4

5

6

7

8

+7 +5

-4

-17

1-1000

-1000

440

560

2

3

4

5 450450

500

610

610

500

10
00

44
0

6

7

8

1

2

3

4

5

6

7

8

-7

-7
+8

+4
+4

1-1000

-1000

440

560

2

3

4

5 450450

500

610

610

500

39
0

610

50

44
0

6

7

8

1

2

3

4

5

6

7

8

-7

1-1000

-1000

440

2

3

4

5 450450

500

610

610

500
560

95
0

44
0

6

7

8

c = –9

c = -2

c = –3

t Flow x(t) Cycle Direction ¢x Step

0

1

2

25

1-1000

-1000

440

2

3

4

5 450450

500

610

610

500

560

97
5 25

44
0

6

7

83
No improving feasible cycle
directions exist. Flow x(3) is
optimal.

l+ = +q
l- = 610
l = 610

l+ = +q
l- = 560
l = 560

l+ = 25
l– = 50
l = 25

FiGure 10.12 Rudimentary Cycle Direction Solution of OOI Application

582 Chapter 10 Network Flows and Graphs

readers should assume that choices were made arbitrarily, with appropriate cycles
discovered by trial and error.

Many cycle directions remain in the optimal flow x132. Some are either improv-
ing or feasible. Still, it can be shown that no cycle direction is both improving and
feasible. Algorithm 10A terminates with a conclusion of optimality.

10.3 cycle caNcelliNG alGorithms For optimal Flows

Algorithm 10A in Section 10.2 outlines the common computational logic of many
network flow algorithms. The big question to be answered is, “How do we identify
improving feasible cycle directions at each iteration, or prove that none exists?”
This section presents the cycle cancelling approach often considered the most
efficient.

Residual Digraphs
The cycle cancelling method (and many other network flow procedures) begins
each iteration by constructing a residual digraph that details available options for
improving feasible cycle directions. Each arc in the original digraph yields up to two

Algorithm 10A: rudimentAry CyCle
Direction Search

Step 0: initialization. Choose any starting feasible flow x102, and set solu-
tion index t d 0.

Step 1: optimal. If no improving feasible cycle direction ∆x exists at current
solution x1t2 (principles 10.15 and 10.16), then stop. Flow x1t2 is globally
optimal.

Step 2: cycle Direction. Choose an improving feasible cycle direction ∆x
at x1t2.

Step 3: Step Size. Compute the maximum feasible step l in direction ∆x
(principle 10.17):

l+ d min51ui, j - xi, j
1t22 : 1i, j2 forward6 1+∞ if none2

l- d min5xi, j
1t2 : 1i, j2 reverse6 1+ ∞ if none2

l d min5l+, l-6
If l = ∞ , stop; the model is unbounded.

Step 4: advance. Update

x1t + 12 d x1t2 + l∆x

by increasing flows on forward arcs of the cycle direction and decreasing
those on reverse arcs by the amount l. Then increment t d t + 1 and return
to Step 1.

10.3 Cycle Cancelling Algorithms for Optimal Flows 583

in the residual one, depending on whether its present flow can feasibly increase or
decrease or both.

The residual digraph associated with current feasible flow
x1t2 has the same nodes as the given network. It has one “increase arc” 1i, j2,
with cost ci,j, for each increasable arc flow xi,j

1t2 6 ui,j, and one (backward)
“decrease arc” 1j, i2, with cost -ci,j, for each decreasable arc flow xi,j

1t2 7 0.

Definition 10.20

Figure 10.13 illustrates for the OOI starting conditions depicted in Figure 10.11.
Every flow that can both increase and decrease yields two opposed arcs in the residual
digraph. For example, arc (2, 3) with current flow x2,3

102 = 1000 produces both resid-
ual graph arc (2, 3) and arc (3, 2). The first, increase arc represents the fact that x2,3
can feasibly become larger. Its cost is c2,3 = 4, the unit cost of such a flow increase.
Decrease arc (3, 2) shows that the flow can also become smaller without losing feasi-
bility. It has cost -c2,3 = -4, the unit savings from a flow decrease.

Flows that cannot both increase and decrease produce just one arc in the resid-
ual digraph. For example, flow x1,4

102 = 0. It can only increase, so the residual graph
has only arc (1, 4) at cost c1,4 = 8.

example 10.11: coNstructiNG residual diGraphs

Consider the network flow problem sketched below. Numbers on nodes show net
demand bk, and those on arcs show costs, capacities, and current flows 1ci,j, ui,j, xi,j2.

3

2 4

1-100

0

0

100
(17, 90, 90)

(5, 100, 0)

(8
, q

, 0
)

(1
0,

 2
00

, 9
0) (-1, 10, 10)

b

(c, u, x)

Construct the corresponding residual digraph.

Solution: Applying principle 10.20 , the residual digraph is

3

42

1

-17

5

1

10

8

-1
0

c

584 Chapter 10 Network Flows and Graphs

Feasible Cycle Directions and Dicycles of Residual Digraphs
The point of constructing a residual digraph is to make it easier to identify improv-
ing feasible cycle directions in the original graph. Notice first that any cycle direc-
tion meeting principle 10.15 ’s requirements for feasibility—forward flows below
capacity, reverse flows positive—now corresponds to a dicycle (definition 10.12)
in the residual graph. A backward, decrease arc has been provided for each reverse
arc of the cycle.

25

-25

5

8

8

4 29

-4

00

0
0 0

7

7

17-17

6
-6

-7
1

2

3

4

5

6

7

8

FiGure 10.13 Residual Digraph for
OOI Application Flow of Figure 10.12

Cycle direction ∆x is feasible for a current flow x1t2 if and only
if the residual graph for x1t2 contains a dicycle with forward arcs of the ∆x
cycle corresponding to increase arcs in the residual dicycle, and reverse arcs of
the cycle corresponding to decrease arcs.

Principle 10.21

One example is cycle 7–3–1–4–7 of the original digraph.

7
4

31
560

6100

0

x
forward

7
4

31

(a) Original graph (b) Residual digraph

The corresponding cycle direction is feasible because forward arcs (1, 4) and (4, 7)
are below capacity, and reverse arcs (3, 7) and (1, 3) have positive flow. It follows
that each forward arc of (a) corresponds to an increase arc in (b), and each reverse
arc of (a) yields a (backward) decrease arc in (b).

10.3 Cycle Cancelling Algorithms for Optimal Flows 585

Improving Feasible Cycle Directions and Negative Dicycles
of Residual Digraphs
We seek improving feasible cycle directions, those with negative reduced costs:

cQ = 1total forward arc cost2 - 1total reverse arc cost2
But under construction 10.20 , forward arcs appear in the residual digraph as increase
arcs with the same cost, and reverse arcs appear as backward, decrease arcs with the
sign of their costs switched. It follows that the cQ of a feasible cycle direction is exactly
the length of the corresponding dicycle in the residual digraph. Dicycles of negative
length yield what we require.

Feasible cycle direction ∆x is improving if and only if the cor-
responding residual graph dicycle is a negative dicycle.

Principle 10.22

Again we can illustrate with the direction for OOI application cycle 7–3–1–4–7.

7
4

31
7

178

5

c

-7

-17

8

5

c

7
4

31

(a) Original graph (b) Residual digraph

The original cycle is improving because the corresponding dicycle has negative total
length.

example 10.12: coNNectiNG oriGiNal aNd residual diGraphs

Return to the example of Example 10.11.

(a) Show that the direction for cycle 1–3–4–2–1 is both feasible and improving.

(b) Identify the corresponding dicycle in the residual digraph, and verify that it is
a negative dicycle.

Solution:

(a) The direction for cycle 1–3–4–2–1 is feasible because forward flows (1, 3) and
(3, 4) are below capacity, and reverse flows (2, 4) and (1, 2) are positive. It is im-
proving because

cQ = 15 + 82 - 117 + 102 = -14

(b) The residual digraph of Example 10.11 contains dicycle 1–3–4–2–1 with in-
crease arcs (1, 3) and (3, 4), plus decrease arcs (4, 2) and (2, 1). Its total length is

5 + 8 - 17 - 10 = -14 = cQ

586 Chapter 10 Network Flows and Graphs

Using Shortest Path Algorithms to Find Cycle Directions
Principles 10.21 and 10.22 reduce our search for improving feasible cycle direc-
tions to a hunt for negative dicycles in the residual digraph. The advantage is
that we already know algorithms for identifying negative dicycles or proving that
none exists.

The Floyd–Warshall shortest path Algorithm 9B, which we derived in Section
9.4, is one. That procedure is designed primarily to compute shortest paths from all
nodes of a graph to all other nodes. If the given graph contains a negative dicycle,
shortest path computation fails, but a negative dicycle is returned. Interchanging
roles to make negative dicycles the normal outcome and completion of shortest
path calculations the exception produces exactly the improving feasible cycle direc-
tion subroutine that we require.

Application of Floyd–Warshall Algorithm 9B to the residual
digraph for a current feasible flow either yields a negative dicycle, indicating
that the direction for the corresponding cycle of the original graph is both
improving and feasible, or completes a shortest path computation, proving
that improving feasible cycle directions do not exist.

Principle 10.23

example 10.13: FiNdiNG directioNs with Floyd–warshall

Apply Floyd–Warshall Algorithm 9B to the residual digraph of Example 10.11
 either to produce an improving feasible cycle direction or to prove that none exists.

Solution: After its third main iteration, Floyd–Warshall computation produces the
following shortest path and inbound node results:

k

v 102[k, /] d[k, /]

/ ∙ 1 / ∙ 2 / ∙ 3 / ∙ 4 / ∙ 1 / ∙ 2 / ∙ 3 / ∙ 4

1 0 10 5 13 — 1 1 3
2 -10 0 -5 3 2 — 1 3

3 ∞ ∞ 0 8 — — — 3
4 -27 -17 -22 -14 2 4 1 3

Computation halts with the conclusion that there is a negative dicycle because
diagonal distance n132[4, 4] = -14 is negative. Using d[k, /] labels to recover the
dicycle, d[4, 4] = 3, d[4, 3] = 1, d[4, 1] = 2, d[4, 2] = 4. Thus 4–2–1–3–4 is a neg-
ative dicycle of the residual graph. We already know from Example 10.12 that the
corresponding cycle direction is indeed improving and feasible.

Cycle Cancelling Solution of the OOI Application
Algorithm 10B formalizes principle 10.23 in the Cycle Cancelling method for net-
work flow optimization. Figure 10.14 details its application to our OOI Application
of Figure 10.11.

10.3 Cycle Cancelling Algorithms for Optimal Flows 587

As before, graphs on the left of Figure 10.14 show flows in the real network.
Notice that the sequence of solutions differs from that of Figure 10.12 because dif-
ferent improving feasible cycle directions were used. Still, both finished at the same
optimal flow.

Graphs at the right in Figure 10.14 depict the residual digraphs for each flow
encountered. Details of Floyd–Warshall computation have been omitted, but
the negative dicycles obtained are highlighted. For example, the first application
of Algorithm 9B identified negative dicycle 7–3–1–4–7 in the residual digraph
for initial flow x102. Its total length is -17 - 7 + 8 + 5 = -11. Application
of rule 10.17 around the corresponding cycle in the real OOI network yields
l = 560. Then increasing flows by 560 on forward arcs 11, 42 and 14, 72, while
decreasing by the same amount on reverse arcs 13, 72 and 11, 32 produces the
indicated flow x112.

Computation continues until t = 4. There Floyd–Warshall terminates on the resid-
ual digraph without discovering a negative dicycle. We may conclude (principle 10.23)

Algorithm 10B: CyCle CAnCelling for
network FlowS

Step 0: initialization. Choose any starting feasible flow x102, and set solu-
tion index t d 0.

Step 1: residual Digraph. Construct the residual digraph corresponding to
the current flow x1t2 (principle 10.20).

Step 2: Floyd–warshall. Execute Algorithm 9B on the current residual
graph. If Floyd–Warshall computation terminates with no indication of a neg-
ative dicycle, stop. No improving feasible cycle directions exist, and current
flow x1t2 is globally optimal.

Step 3: cycle Direction. Use Floyd–Warshall decision labels d[k, /] to trace
a negative dicycle in the residual graph, and construct the cycle direction ∆x
for the corresponding cycle in the original graph.

Step 4: Step Size. Compute the maximum feasible step l in direction ∆x
(rule 10.17):

l+ d min51ui,j - xi,j
1t22 : 1i, j2 forward6 1+∞ if none2

l- d min5xi, j
1t2:1i, j2 reverse61+∞ if none2

l d min5l+, l-6
If l = ∞, stop; the model is unbounded.

Step 5: advance. Update

x1t + 12 d x1t2 + l∆x

by increasing flows on forward arcs of the cycle direction and decreasing
those on reverse arcs by the amount l. Then increment t d t + 1 and return
to Step 1.

588 Chapter 10 Network Flows and Graphs

1

2

3

4

5

6

7

8

7

0

0 0

0

0

7

8

6
–6

–7

–7

5

25

29

–25

–4
4

17

7
0

0 0

0

0

7

8

–8

6
–6

5
–5

25

29

–25

–4
4

17

1–1000

–1000

440

560

2

3

4

5 450450

500

610

610

500

10
00

44
0

6

7

8

1

2

3

4

5

6

7

8

1–1000

–1000

440

560

2

3

4

5 450450

500

-17
-17

-17
-17

610

560

500

50

10
00

44
0

6

7

8

7

0

0 0

0

0

7

8

–8

6
–6

5
–5

25

29

–25

–4
4

17

1

2

3

4

5

6

7

8

7

0

0 0

0

0

7

8

–8

6
–6

5
–5

25

29

–25

–4
4

17

1

2

3

4

5

6

7

8

1–1000

–1000

440

2

3

4

5 450450

500

610

560

500

535

10
00

44
0

6

7

8

c = -11

 = 560

c = -1

c = -11

c = -9
+ = +q
- = 25

 = 25

t Flow x(t) Residual Digraph Step

0

1

2

25

1–1000

–1000

440

2

3

4

5 450450

500

610

585

500

560

10
00 25

44
0

6

7

83

25

25 50

8

8

8

8

l+ = +q
l- = 560
l

l+ = 25
l- = 560
l = 25

l+ = +q
l- = 25
l = 25

l
l

l

FiGure 10.14 Cycle Cancelling Solution of the OOI Application

10.3 Cycle Cancelling Algorithms for Optimal Flows 589

that no negative dicycle exists in the residual digraph, so that no improving feasible
cycle direction exists for our current flow. The flow must be optimal.

1

2

3

4

5

6

7

8

7
-7

0

0 0

0

0

7

8
-8

6
-6

5
8

-5

25

29

-25

-4
4

17 optimal

t Flow x(t) Residual Digraph Step

4

25

1-1000

-1000

440

2

3

4

5 450450

500

610

610

500

560

97
5 25

44
0

6

7

8

FiGure 10.14 Cycle Cancelling Solution of the OOI Application (Continued)

example 10.14: applyiNG the cycle caNcelliNG alGorithm

Apply Cycle Cancelling Algorithm 10B to the network flow problem of Example 10.11.

Solution: We have already seen in Example 10.13 that Floyd–Warshall computation
on the initial residual digraph yields negative dicycle 4–2–1–3–4. Forward arcs in the
corresponding cycle imply that l+ = min51100 - 02, 1∞ - 026 = 100. Reverse
arcs give l- = min590, 906 = 90. Thus step size l = min5100, 906 = 90.

Adjustment by this amount around cycle 4–2–1–3–4 produces the following
new flow and residual digraph:

3

2 4

1-100

0

0

100
(17, 90, 0)

(5, 100, 90)

(8
, q

, 9
0)

(1
0,

 2
00

, 0
) (-1, 10, 10)

b

(c, u, x)

3

42

1

17

5

-5

1

10 -88

c

Floyd–Warshall computation on the new residual digraph will show that there is no
negative dicycle. Thus the revised flow is optimal.

Polynomial Computational Order of Cycle Cancelling
Many of the details are beyond the scope of this book, (for more, see for example
Ahuja, Magnanti, and Orlin, Network Flows: Thoery, Algorithms and Applications,
1993). Still, we can outline how the general approach of Algorithm 10B can be

590 Chapter 10 Network Flows and Graphs

made rigorous enough to develop a bound on the number of steps needed to solve
instances of network flows problems as described in Section 14.2.

Given a network flow problem on digraph G1V, A2 and a current flow x and
costs c, Algorithm 10B first constructs a Residual Digraph G of flow-change options
available at the current solution, with costs cij on residual forward/increase arcs
1i, j2 and -cij on opposed reverse/decrease arcs 1j, i2. Then Algorithm 10B applies
shortest-path methods at each iteration t to search for a negative total length dicycle
in G. If one can be found, it becomes the source of the next improving feasible cycle
direction of the search. If no negative dicycle exists in G, the current flow is optimal.

Let Dt denote the collection of arcs in the negative dicycle employed at iter-
ation t. The first key to a computational bound on cycle cancelling is to use not
just any negative dicycle at each iteration t, but the one of minimum mean length
(MML) mt ! Σ1i,j2∈Dt cij> ∙Dt∙ . That is, we wish to use directions derived from a dicy-
cle in G with least (most negative) average arc length. Fortunately, methods are
available to find an MML dicycle efficiently.

Shortest-path-style discrete dynamic programming methods
like those of Chapter 9 can find an Minimum Mean Length dicycle D in any
residual digraph G of a given G1V, A2 in O1 0V 0 0A 0 2 time.

Principle 10.24

Next we need to normalize the search for MML dicycles with a set of (dual)
node multipiers w with components wi for all i ∈ V to obtain reduced A costs
cQij ! cij - wi + wj. The interesting thing about switching to cQij is that the length of
any dicycle D in G is unchanged; each wi subtracted on one arc of the dicycle is
added back on the next to leave the reduced cost total and its mean unchanged.
A clever choice can achieve more. Node multipliers w can be found that (i) make
cQij Ú mt 0Dt 0 for all arcs in G, and (ii) cQij = mt 0Dt 0 for members of D.

Now consider how things change after a maximum step l is taken along the
direction for an MML dicycle Dt of the G at iteration t. The next G will have all the
same arcs and reduced costs except around Dt. There, unless optimality has been
reached, reduced costs induced by carefully chosen wi will remain Ú mt except on
one or more arcs 1i, j2 that established stepsize l. Those arcs will be dropped in
the next G, and replaced by their opposities with cQj, i = -cQij Ú -mt. The conse-
quence is that the length of the next MML dicycle cannot be less in cQ terms than the
last. Furthermore, since both original and reduced costs yield the same MML cycle
length, the pattern must also hold for original costs.

The sequence of minimum mean dicycle lengths 5mt6 com-
puted at iterations t of the MML-cycle-cancelling Algorithm 10B is monotone
non-decreasing.

Principle 10.25

How long can this go on? Consider first, sequences of iterations where all used
MML dicycles have cQij 6 0 on every member arc. Each iteration drops at least one
such negative arc from G, and replaces it by one with cQij 7 0, so such all-negative
steps can happen at most O1∙A∙2 times in a row.

10.4 Network Simplex Algorithm for Optimal Flows 591

Now consider the first t for which the chosen MML dicycle Dt has at least one
member arc with a nonnegative reduced cost, yet optimality is not established, so
mt 6 0. Then

a1i,j2∈Dt
 cij = ∙Dt ∙mt Ú 1∙Dt ∙ - 12mt Ú 1∙Dt ∙ - 12mt - 1

The first inequality comes from dropping the nonnegarive member in the sum and
the second from property 10.25 . Dividing through by ∙Dt∙ gives

mt Ú 11 - 1> ∙Dt ∙2mt - 1 or in the worst case mt Ú 11 - 1> ∙V ∙2mt - 1

Results from geometric series establish that any series reducing values by a factor
of 11 - 1> ∙V ∙2 in each epoch will half the series value after no more than ∙V ∙ epochs.
Thus we may conclude that after at most O1∙V ∙2 epochs of at most O1 ∙ A ∙ 2 all neg-
ative MML dicycles, the magnitude of mt reduces by a factor of 1/2. In the worst case,
this progress begins with a m0 Ú -cmax where cmax is the largest cost in the instance.
Furthermore, if a mt 7 -1> ∙V ∙ is reached in an integer-cost instance, the total cost of
dicycle Dt cannot be any negative integer; mt Ú 0 and the current flow is optimal. The
consequence is that after at most log 1∙V ∙cmax2 reductions by 1/2, optimality must be
reached. Combining these insights with principle 10.24 gives a bound on overall com-
putation over integer data which is polynomial in instance size (see Chapter 14).

Given a network flow problem over G(V, A) and integer
data including cij … c max , the Minimum Mean Length implementation of
Cycle Cancelling Algorithm 10B computes an optimal solution in at most
O1∙V ∙ ∙A∙ log1∙V ∙cmax22 iterations or O1∙V ∙2 ∙A∙2 log1∙V ∙cmax22 total time.

Principle 10.26

10.4 Network simplex alGorithm For optimal Flows

All the minimum cost network flow models of Sections 10.1–10.6 are linear pro-
grams, so the LP algorithms of Chapters 5 and 7 could be applied. Still, we have
already seen in Section 10.3 how the elegant structure of cycle directions leads to
much more efficient computations in the network setting.

In this section we fill in the details of rudimentary cycle direction Algorithm
10A to derive one such procedure. It is known as the network simplex because it
specializes the usual simplex computations of Chapter 5, taking advantage of the
fact that simplex directions turn out to be cycle directions in the network flow case.

Linear Dependence in Node–Arc Matrices and Cycles
Simplex search centers on bases—maximal collections of linearly independent col-
umns drawn from the constraint matrix of main (standard form) constraints Ax = b.
Columns of the main constaints in network flow models are columns of the node-arc
incidence matrix 10.8 . They correspond to arcs. Thus, to understand simplex in the
network context, we must first understand what collections of arcs correspond to
linearly independent collections of columns.

592 Chapter 10 Network Flows and Graphs

Begin with cycles. For example, consider the OOI cycle (2, 3), (1, 3), (1, 4), (2, 4)
illustrated in Figure 10.15. The figure displays both the cycle and the corresponding
columns of the node–arc incidence matrix shown in Table 10.1.

1

2

3

4

5

6

7

8

-7

-7

+4

+8

Node

1
2
3
4
5
6
7
8

(2, 3)

0
-1
+1

0
0
0
0
0

(1, 3)

-1
0

+1
0
0
0
0
0

(1, 4)

-1
0
0

+1
0
0
0
0

(2, 4)

0
-1
0

+1
0
0
0
0

Arc

FiGure 10.15 Cycle and the
Corresponding Node–Arc Incidence
Columns of OOI Application

Suppose that we apply weights of +1 on all column vectors for all forward arcs
in the cycle, and -1 on columns of reverse arcs. Then

+ 1® 0
-1
+1

0
0
0
0
0

 ∏ - 1® -1
0

+1
0
0
0
0
0

 ∏ + 1® -1
0
0

+1
0
0
0
0

 ∏ - 1® 0
-1

0
+1

0
0
0
0

 ∏ = ®

0
0
0
0
0
0
0
0

 ∏
Our {1 weighted sum of the columns has produced the zero vector. This implies
that the columns are linearly dependent because any one of the vectors can be
expressed (by transposing) as a nonzero linear combination of the others.

The {1 weights we have chosen are exactly those of the corresponding cycle
direction 10.13 . Thus for the same (Figure 10.7) reasons that cycle directions satisfy

10.4 Network Simplex Algorithm for Optimal Flows 593

A∆x = 0, such a { 1 linear combination of node–arc incidence columns for the
arcs of a cycle will always yield the zero vector.

Node–arc incidence matrix columns for arcs of a cycle form a
linearly dependent set.

Principle 10.27

Since column vectors of a basis must be linearly independent, we have an immedi-
ate consequence.

Basic sets of arcs for minimum cost network flow models can
contain no cycles.

Principle 10.28

Cycles are not the only way to produce linearly dependent sets in network flow
models. For example, return to the complex direction of Figure 10.10. That weighting of
node–arc incidence columns also produces the zero vector because the direction satis-
fies A∆x = 0. Thus the collection of arcs with nonzero weights is linearly dependent.

Still, we know from principle 10.19 that complex directions like that of
Figure 10.10 decompose into weighted sums of cycle directions. This implies that
each includes at least one cycle.

Every linearly dependent arc set in a minimum cost network
flow model contains a cycle.

Principle 10.29

example 10.15: checkiNG liNear iNdepeNdeNce oF arcs

Consider the following digraph:

2

34

1

Determine which of the following arc sets could be part of a basis for the corre-
sponding node–arc incidence matrix.

(a) {(1, 2), (4, 3)}

(b) {(2, 4), (4, 3), (3, 2)}

(c) {(1, 2), (1, 4), (4, 3), (2, 4)}

(d) {(1, 2), (2, 4), (3, 2)}

594 Chapter 10 Network Flows and Graphs

Spanning Trees of Networks
We say that a graph is connected if there is a chain between every pair of nodes. A
graph is a tree if it is connected and contains no cycles. A tree is a spanning tree if it
touches every node of a graph.

Figure 10.16 illustrates these definitions. Part (a) shows a spanning tree. It is
connected, it contains no cycles, and it touches all nodes of the OOI network. Parts
(b) to (d) demonstrate the various ways that graphs can fail the definition of a span-
ning tree.

Solution:

(a) This set is linearly independent under principle 10.29 because it contains no
cycle. It could be part of a basis.

(b) These arcs form a cycle. Thus, under principle 10.28 , they cannot be part of a
basis.

(c) This set is linearly dependent because it contains cycle 1–2–4–1. Under princi-
ple 10.28 , it cannot be part of a basis.

(d) This set is linearly independent under principle 10.29 because it contains no
cycle. It could be part of a basis.

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

(a) Spanning tree (b) Not connected

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

(c) Not spanning (d) Contains a cycle

FiGure 10.16 Notion of a Spanning Tree

10.4 Network Simplex Algorithm for Optimal Flows 595

The connected but cycle-free nature of trees leads to an important property:

Every pair of nodes in a tree is connected by a unique chain
of the tree. If the tree spans a graph, every pair of nodes in the graph is con-
nected by a unique chain of the tree.

Principle 10.30

For example, nodes 8 and 4 are connected in the spanning tree of Figure 10.16(a)
by the chain 8–1–3–7–4 and by no other. If there were two such chains, they would
form a cycle, and there must be one if the tree is connected.

Spanning Tree Bases for Network Flow Models
Returning to the issue of bases for node–arc incidence matrices, the example of Figure
10.16(d) has no hope of being a basis because it contains a cycle. Corresponding col-
umns of the node–arc incidence matrix will be linearly dependent (principle 10.27).
The graphs in parts (a) to (c) have no such cycles. Thus principle 10.29 assures us that
corresponding columns are linearly independent. But are they a basis?

A basis must be a maximal linearly independent set (i.e., it should be impossible to
enlarge it without creating a dependency). Notice that the examples in Figure 10.16(b)
and (c) fail this test. We know from principle 10.29 that a dependency will be created
only if we form a cycle. That cannot occur when we insert an arc between previously
unconnected nodes. For example, adding arc (4, 3) in Figure 10.16(b) preserves linear
independence. The same is true for adding arc (3, 5) in Figure 10.16(c).

The spanning tree of Figure 10.16(a) is different. Because there is already a
unique chain between every pair of nodes (principle 10.30), inserting any other arc
closes a cycle. For example, adding arc (2, 4) closes cycle 2–4–7–3–2.

Adding an arc to a spanning tree produces a unique cycle.Principle 10.31

It follows immediately that spanning trees correspond to maximal linearly
independent sets and no bases. We have reached the key to understanding simplex
computations in minimum cost network flow models.

A collection of columns in the node–arc incidence matrix of a
minimum cost network flow problem forms a basis if and only if correspond-
ing arcs form a spanning tree of the associated digraph.

Principle 10.32

example 10.16: ideNtiFyiNG Network Flow Bases

Determine which of the four arcs sets in Example 10.15 forms a basis for the corre-
sponding network flow problem.

Solution: We have already seen in Example 10.15 that sets (b) and (c) are linearly
dependent. Set (a) is linearly independent, but it is not a basis under principle 10.32
because the arcs do not form a spanning tree. Set (d) does form a spanning tree.
Thus it is the only basis of the four.

596 Chapter 10 Network Flows and Graphs

Network Basic Solutions
Simplex algorithms proceed from one basic feasible solution to another. For the
network case, where capacities or upper bounds are present, we define basic solu-
tion in the upper-/lower-bound sense of Section 5.9 (principle 5.48).

-1000

-1000

440

450
450

500

610

610

500

635

92
5

25

75
36

5

1

2

3

4

5

6

7

8

FiGure 10.17 Initial Basic
Solution for OOI Application

In basic solutions for network flow problems, nonbasic arcs
have flow equal to either 0 or capacity ui,j. Basic arcs have the unique flow
achieving flow balance for the nonbasic values specified. The flow is basic fea-
sible if all basis flows are within bounds.

Principle 10.33

Figure 10.17 illustrates for the OOI application of Figure 10.2. The correspond-
ing basis is highlighted. There is positive flow on nonbasic arc (4, 3), but it equals
capacity u4,3 = 25. Only basic arcs can have flow xi,j other than zero or ui,j.

To compute this basic solution, we first assign flow 0 to all nonbasics except
(4, 3) and 25 to x4,3. Only one choice of basic flows can then meet net demand
requirements at each node. For example, with nonbasic flow x3,7 = 0, the only
 flowbalancing choice for basic flow x4,7 = 610. The solution of Figure 10.17 is basic
feasible because all such basis flows are within bound limits.

example 10.17: computiNG Network Basic solutioNs

In the following network, numbers on nodes indicate net demands bk and those on
arcs show capacities ui,j.

2

3 4

1-40

10

10
0

30

2050

30

30

b

u

10.4 Network Simplex Algorithm for Optimal Flows 597

Simplex Cycle Directions
Simplex directions (principle 5.20 of Section 5.3) in linear programs are formed by
increasing one nonbasic variable from its lower bound (or decreasing a nonbasic
from its upper bound) and changing basic variables in the unique way assuring that
main constraints remain satisfied. For network flow cases, every basic set of col-
umns (arcs) forms a spanning tree (principle 10.32). Thus introducing any nonbasic
arc creates a unique cycle (principle 10.31), and the corresponding cycle direction
must be the simplex direction.

For each of the following choices on nonbasic arcs, compute the corresponding basic
solution and determine whether it is basic feasible.

(a) (1, 4) nonbasic lower-bounded, (2, 4) nonbasic upper-bounded

(b) (3, 4) nonbasic lower-bounded, (1, 2) nonbasic upper-bounded

Solution: We apply principle 10.33 .

(a) Here the basis is 511, 22, 11, 32, 13, 426. With x1,4 = 0 and x2,4 = 20, the
unique choice of basic values that meets net demand requirements at all nodes is
x1,2 = x1,3 = 20, x3,4 = 10. This basis solution is not basic feasible because flow
x1,2 exceeds capacity u1,2 = 10.

(b) Here the basis is 511, 32, 11, 42, 12, 426. With x3,4 = 0 and x1,2 = 10, the
unique choice of basic values that meets net demand requirements at all nodes is
x1,3 = x2,4 = 10, x1,4 = 20. Since all basic flows are within bounds, this basic solution
is basic feasible.

The network simplex direction for increasing nonbasic arc
at flow = 0 is the cycle direction of the unique cycle formed when the cor-
responding nonbasic arc is introduced into the current basis tree and the
orientation is the same as that arc. The simplex direction for decreasing a
nonbasic arc at capacity flow ui,j is the cycle direction obtained when the
corresponding nonbasic arc is introduced and the orientation is opposite to
that arc.

Definition 10.34

Simplex cycle directions need not be feasible because some decreasing basic
flow may already equal zero or some increasing basic flow may be at capacity.
As with other simplex methods, however, we may ignore such degeneracy without
much practical effect except step sizes l = 0 (definition 5.39).

example 10.18: coNstructiNG Network simplex directioNs

Consider the following network. Numbers next to nodes are net demands bk, and
those on arcs are cost, capacities, and current flows (ci,j, ui,j, xi,j).

598 Chapter 10 Network Flows and Graphs

Network Simplex Algorithm
Algorithm 10C combines these ideas in a special simplex version of cycle direc-
tionbased network search, Algorithm 10A. Instead of considering all possible cycle
directions at each iteration, we check only the simplex directions induced by the
unique cycles for increasing or decreasing nonbasic arcs. Simplex theory for all
 linear programs (principle 5.26 of Section 5.3) tells us that these directions are suf-
ficient to find an optimal solution.

Comparison of this algorithm statement with the general simplex computa-
tions of Chapter 5 will highlight the convenience made possible by the special net-
work flow structure. To find simplex directions and determine whether they improve
the objective function, we need only trace our way through the basis tree.

Network Simplex Solution of OOI Application
Figure 10.18 details solution of our OOI application by Algorithm 10C, starting
from the initial basic feasible solution in Figure 10.17. At the first iteration, the sim-
plex directions for the 7 nonbasic arcs are as follows:

Nonbasic Cycle c

Increase (1, 3) 1–3–2–8–1 3
Increase (2, 4) 2–4–1–8–2 -1
Increase (3, 4) 3–4–1–8–2–3 via (3, 4) -4
Increase (3, 7) 3–7–4–1–8–2–3 8
Increase (4, 3) 3–4–1–8–2–3 via (4, 3) -4
Increase (4, 5) 4–5–3–2–8–1–4 8
Increase (4, 6) 4–6–3–2–8–1–4 6

2

3

41

(2, 50, 0)
(5, 10, 10)

(13, 40, 10)(6, q
, 20)

(4
, 3

0,
 1

0)

-20 20

0

0

b

(c, u, x)

Taking highlighted arcs as the basis, construct the simplex directions for all nonbasic
arcs.

Solution: We apply principle 10.34 . Introducing nonbasic arc (1, 3) produces
unique cycle 1–3–2–1. Since nonbasic arc (1, 3) is presently at flow 0, the correspond-
ing simplex direction will be the cycle direction for 1–3–2–1 with (1, 3) a forward arc.
That is, ∆x1,3 = +1, ∆x2,3 = ∆x1,2 = -1.

Nonbasic arc (3, 4) is presently at capacity. To find its cycle/simplex direction
we pass the unique cycle it forms in the basis so that (3, 4) is a reverse arc. That is, we
employ cycle direction 4–3–2–4 with ∆x3,4 = ∆x2,3 = -1, ∆x2,4 = +1.

10.4 Network Simplex Algorithm for Optimal Flows 599

Any simplex direction with cQ 6 0 could provide a means of improving flow x102.
Figure 10.18 employs the one associated with increasing nonbasic, lower-bounded arc
(2, 4). The unique cycle formed in the basis tree immediately identifies the rest of the
associated cycle direction. Arcs (2, 4) and (1, 8) increase; (1, 4) and (2, 8) decrease.
Thus l+ = ∞, l- = min575, 6356, and l = 75. Arc (2, 8) established the l limit, so
(2, 4) replaces (2, 8) in the basis. Updating produces flow x112 of Figure 10.19. Notice
that the new basis is also a spanning tree.

The simplex direction decreasing nonbasic, upper-bounded arc (4, 3) now
improves for x112. The unique cycle formed by (4, 3) in the current basis yields a
cycle direction decreasing (4, 3) and (2, 4) while increasing (2, 3). Move limit l for
this direction occurs when nonbasic (4, 3) reaches its lower bound of 0. Thus flows
are updated, but the basis remains unchanged.

Flow x122 in Figure 10.18 is the result. Increasing nonbasic (3, 4) can improve
this flow because cQ = -3 on the corresponding simplex direction. Adjustment of
l = 25 around the implied cycle direction improves to flow x132. Again incoming arc
(3, 4) itself stops improvement, so the basis remains unchanged.

algorithm 10c: network Simplex Search

Step 0: initialization. Choose any starting basic feasible flow x102, identify
the corresponding basis spanning tree, and set solution index t d 0.

Step 1: Simplex Directions. For each nonbasic arc, examine the simplex
direction associated with the unique cycle that arc forms in the basis span-
ning tree and apply test 10.16 to determine whether the direction improves.

Step 2: optimal. If no simplex cycle direction improves, stop; flow x1t2 is
globally optimal. Otherwise, choose as ∆x some improving simplex cycle
 direction, and let 1p, q2 denote the corresponding nonbasic arc.

Step 3: Step Size. Compute the maximum feasible step l in direction ∆x
(principle 10.17):

l+ d min51ui, j - xi, j
1t22 : 1i, j2 forward6 1+∞ if none2

l- d min5xi, j
1t2 : 1i, j2 reverse6 1+∞ if none2

l d min5l+, l-6
If l = + ∞ , stop; the model is unbounded.

Step 4: advance. Update

x1t + 12 d x1t2 + l∆x

by increasing flows on forward arcs of the cycle direction and decreasing
those on reverse arcs by the amount l.

Step 5: new Basis. If some arc other than 1p, q2 established the minimum
l in step 3, replace any such arc in the basis spanning tree by 1p, q2.
Increment t d t + 1 and return to step 1.

600 Chapter 10 Network Flows and Graphs

92
5

1

2

-0

-0

+0

+0

3

4

5

6

7

8

+7

-8

1-1000

-1000

440

2

3

4

5 450450

500

610

610

500

635

92
5 25

75
36

5

6

7

8

1

2

3

4

5

6

7

8

-7

+4
+4

1-1000

-1000

440

2

3

4

5 450450

500

610

610

500

560

25

75

50

40
0

6

7

8

1

2

3

4

5

6

7

8

-7

1-1000

-1000

440

2

3

4

5 450450

500

610

610

500

560

95
0

44
0

6

7

8

(2, 4) increases
c = -1

(2, 4) replaces
(2, 8)

(4, 3) decreases
c = –3

no basis change

(3, 3) increases
c = –3

no basis change

t Flow x(t) Simplex Direction ¢x Step

0

1

2

25

1-1000

-1000

440

2

3

4

5 450450

500

610

610

500

560

97
5 25

44
0

6

7

83
No improving simplex directions
exist. Flow x(3) is optimal.

l+ = +q
l- = 75
l = 75

l+ = +q
l- = 25
l = 25

l+ = 25
l- = 50
l = 25

FiGure 10.18 Network Simplex Solution of OOI Application

10.5 Integrality of Optimal Network Flows 601

Comparison to Figure 10.3 will show that new flow x132 is now optimal. None
of the 7 simplex cycle directions is improving.

example 10.19: applyiNG the Network simplex alGorithm

Return to the network flow example and starting basis of Example 10.18, and com-
pute an optimal solution with network simplex Algorithm 10C.

Solution: At the first iteration, increasing (1, 3) produces a simplex direction for
cycle 1–3–2–1 having cQ1,3 = 2 - 4 - 6 = -8. Decreasing nonbasic (3, 4) yields the
direction for cycle 4–3–2–4 with cQ3,4 = -5 - 4 + 13 = 4. Thus we update along the
former by l = 10, and replace (2, 3) in the basis by (1, 2) because (2, 3) established l.

The new solution is

2

3

41
(2, 50, 10)

(5, 10, 10)

(13, 40, 10)(6, q
, 20)

(4
, 3

0,
 0

)

-20 20

0

0

b

(c, u, x)

Now the cycle direction for increasing (2, 3) has cQ2,3 = 8 and that of decreasing (3, 4)
had cQ3,4 = 12. Neither is improving, and the latest flow is optimal.

10.5 iNteGrality oF optimal Network Flows

As far back as Chapter 2, we have seen that integer linear programs (ILPs) are
generally much less tractable than linear programs (LPs). We are now prepared to
show why network flows are often an exception. Under mild conditions, optimal
network flows automatically take on integer (whole-number) values. Thus, if an
ILP can be shown to have network form, we may solve it with methods based on
Algorithm 10A–10C which are even more efficient than general-purpose LP meth-
ods of Chapters 5–7.

When Optimal Network Flows Must Be Integer
Suppose that all constraint data of a given minimum cost network flow model—
supplies, demands, and capacities—happen to have integer values as they do in the
OOI application of Figure 10.11. Then we can think through some observations
about the steps in a two-phase or big-M implementation of Algorithm 10A that
have important consequences.

•	 The starting artificial flow of principle 10.6 will be integer because the only nonzero
flows occur on artificial arcs, and all those flows equal supplies or demands that we
have assumed integer.

602 Chapter 10 Network Flows and Graphs

•	 Regardless of whether we proceed by two-phase or big-M application of Algorithm
10A, an optimal solution can be computed using only cycle directions (principle 10.18).

•	 Each iteration of Algorithm 10A either increases arc flows by step size l, decreases
them by l, or leaves the flows unchanged, because all components of cycle directions
are +1, -1, or 0 (definition 10.13).

•	 Whenever the current flow x1t2 is integer, step size l of 10.17 , which will equal either
some xi,j

1t2 or some 1ui,j - xi, j
1t22, must also be integer under our assumption of integer ui,j.

The consequence is a fundamental integrality property. When a network flow
model has integer constraint data, we can start with an integer flow and execute
every step of two-phase of big-M solution by adding or subtracting integer quan-
tities l to current flows. If the result is an optimal solution (i.e., not infeasible or
unbounded), that solution must have integer flows on all arcs.

If a minimum cost network flow model with integer constraint
data (supplies, demands, and capacities) has any optimal solution, it has an
integer optimal solution.

Principle 10.35

Notice one assumption not required in principle 10.35 . Nothing was said
about arc costs ci,j. Integrality property 10.35 depends only on constraint data. What
is important is that flows start integer and change by integer amounts at each step.
Costs have no effect because only supplies, demands, and capacities are involved in
flow adjustments.

example 10.20: recoGNiziNG iF Network optima will
Be iNteGer

Each of the following details the constraint data of a minimum cost network flow
problem. Assuming that the models are neither infeasible nor unbounded, deter-
mine whether each must have an integer optimal solution.

(a) b = 1100, 200, 0, -3002, u = 190, 20, ∞ , 220, 1802, c = 18, 9, -4, 0, 62
(b) b = 1-30, 40, -10, 02, u = (20, 12 12, 23, 15, 92), c = 111, 0, 3, 81, 62
(c) b = (-13 13, -20, 23 13, 10), u = 110, 20, ∞, ∞, 402, c = 1-4, 8, 0, 19, 312
(d) b = 125, 15, 0, -402, u = 120, ∞, 30, 45, 102, c = 13.5, 9.6, -2.1, 11.77, 122
Solution: We apply principle 10.35 .

(a) This model has integer supplies, demands, and capacities. An integer optimal
solution will exist.

(b) This model has a fractional capacity. An integer optimum is not assured.

(c) This model has a fractional supply and a fractional demand. An integer opti-
mum is not assured.

(d) Even though cost data are highly noninteger, this model has integer constraint
data. An integer optimal solution will exist.

10.5 Integrality of Optimal Network Flows 603

Total Unimodularity of Node–Arc Incidence Matrices
The above “starts integer and stays integer” arguement is only one way of seeing
that network flow optima will be integer when all constraint data are integer. Since
we know that optimal solutions, at least unique ones, must be extreme points of the
 corresponding LP-feasible region (Section 5.1, principle 5.4), there must also be some-
thing special about the basic solution computations of extreme points (Section 5.2) in
minimum cost network flow models.

The property is called total unimodularity.

The constraint matrix A of a linear program is totally uni-
modular if each square submatrix has determinant +1, 0, or -1.

Definition 10.36

The main constraint matrices of network flow models are their node–arc incidence
matrices, and they have this very special property:

Node–arc incidence matrices of network flow models are
totally unimodular.

Principle 10.37

The relevance of total unimodularity comes in solving for basic (i.e., extreme-
point) solutions to network LPs. The famous Cramer rule for solving systems of lin-
ear equations shows that the maximum denominator of the result is the determinant
of the corresponding basis matrix. Under total unimodularity, that denominator will
always be {1, meaning that no fractions will be introduced.

An example from the OOI node–arc matrix of Table 10.1 will illustrate.
Extracting rows for nodes 2, 3, and 4, along with columns for arcs (2, 3), (2, 4), and
(3, 4), gives §

(2,3) (2,4) (3,4)
2 -1 -1 0
3 +1 0 -1
4 0 -1 +1

 ¥
All 1 by 1 submatrices are obviously +1, 0, or -1. The full 3 by 3 matrix has deter-
minant = 0, its lower left corner yields

det a +1 0
0 -1

b = -1

and all other 2 by 2 submatrices are similar.
The formal justification of principle 10.37 comes from an easy inductive argu-

ment on the size of the submatrix being considered. For size 1 * 1, every entry in
a node–arc incidence matrix is either 0, 1, or -1, so its 1 * 1 determinant is the
same. Now assume total unimodularity holds for all submatrices of size k * k or
smaller, and consider a submatrix of size k + 1 * k + 1. If the submatrix has an
all-zero column, its determinant = 0. Otherwise, if all its columns have exactly one
+1 and one -1, which is the most non-zeros possible with a node–arc incidence

604 Chapter 10 Network Flows and Graphs

matrix, the row sum = 0, and the determinant = 0. The last possibility is that the
matrix has a column with only nonzero {1. But then the full determinant is {1
times the determinant of the k * k matrix excluding its row and column, which = 0,
1 or -1 by the inductive hypothesis.

10.6 traNsportatioN aNd assiGNmeNt models

The OOI application of Section 10.1 contains all the major elements of network flow
models, but it only begins to suggest the rich variety of problems that can be treated
as networks. In this section we present the classic transportation and assignment
special cases. Among the simplest are those posed on bipartite graphs—graphs on
two nonoverlapping node sets S and T, with every arc or edge having one end in S
and the other in T.

Transportation Problems

Transportation problems are special minimum cost network
flow models for which every node is either a pure supply node (every arc
points out) or a pure demand node (every arc points in).

Definition 10.38

That is, all flow goes immediately from some source node, where it is supplied, to a
sink node where it is demanded. There are no intermediate steps and no transship-
ment nodes. The commodity flowing in a transportation problem may be people,
water, oil, money, or almost anything else. It is only necesary that flows go direct
from sources to sinks.

example 10.21: ideNtiFyiNG traNsportatioN proBlems

Each of the following digraphs shows a minimum cost network flow problem.
Numbers on vertices are net demands, bk, and those on arcs are costs.

2

3

4

1-50

+20 +30

0
2

5

47 9

2

3

4

1-50

+45 +35

-30
2

5

47 9

2

3

4

1-50

+45 +35

-30

4

7 9

5

(c)(b)(a)

Determine which are transportation problems.

Solution:

(a) This network flow problem is not a transportation problem because node 3 is a
pure transshipment node, with neither supply nor demand.

10.6 Transportation and Assignment Models 605

Standard Form for Transportation Problems
Using constants

si ! supply at node i

dj ! demand at node j

ci,j ! unit cost of flow from i to j

and decision variables

xi,j ! flow from i to j

the network flow formulation 10.3 of a transportation problem simplifies to

min a
i
a

j
 ci,jxi,j

s.t. - a
j

 xi,j = -si for all i

 a
i

 xi,j = dj for all j

 xi,j Ú 0 for all i, j

As usual, flows leaving supply nodes carry negative signs, and those entering demand
points have positive signs.

The more common statement of transportation problems in operations
research uses the standard form obtained when signs are reversed on the first set of
constraints.

(b) This network flow problem is also not a transportation problem because nodes
2 and 3 have both inbound and outbound arcs.

(c) This network flow problem is a transportation problem. Nodes 1 and 3 are
pure source nodes; nodes 2 and 4 are pure demand nodes.

For supplies si, demands dj, and costs ci,j, the standard form
of transportation problems is

min a i a j ci,jxi,j

s.t. a j xi,j = si for all i

 a i xi,j = dj for all j

 xi,j Ú 0 for all i, j

Definition 10.39

example 10.22: FormulatiNG traNsportatioN proBlems

Write a standard-form transportation problem formulation for the diagraph of
Example 10.21(c).

606 Chapter 10 Network Flows and Graphs

Solution: Following 10.39 , the model in standard form is

min 7x1,2 + 5x1,4 + 4x3,2 + 9x3,4

s.t. x1,2 + x1,4 = 50

 x3,1 + x3,4 = 30

 x1,2 + x3,2 = 45

 x1,4 + x3,4 = 35

 x1,2, x1,4, x3,1, x3,4 Ú 0

applicatioN 10.3: mariNe moBilizatioN traNsportatioN proBlem

A really massive transportation problem application arises in officer mobilization
planning for the U.S. Marine Corps.2 During any international emergency, thou-
sands of officers must be mobilized from their regular duty or reserve positions into
billets required for the emergency. However, not every officer is qualified by rank,
training, or experience to fulfill every assignment. Using the very efficient network
flow methods of this chapter, Marine planners are able to develop a mobilization
scheme in a few minutes by solving a transportation problem with over 100,000 arcs.

Mobilization options can be depicted in a digraph like the fictitious one of
Figure 10.19. Supply nodes exist for each group of like-qualified officers presently

2Based on D. O. Bausch, G. G. Brown, D. R. Hundley, S. H. Rapp, and R. E. Rosenthal (1991),
“Mobilizing Marine Corps Officers,” Interfaces, 21:4, 26–38.

1 1

2 2

3 3

4 4

i j

Captain, 1st Division
Intelligence

Captain, 1st Division
Field Artillery

Major, 2nd Division
Embarkation

arti�cial

Captain, Georgia Reserves
Civil Affairs

Local Government
Liason

Headquarters
Tactical Intelligence

Force 1
Communications

Force 1
Embarkation

high-cost arti�cial arcs
for un�llable billets

normal arcs

AVAILABLE NEEDED

FiGure 10.19 Marine Mobilization Transportation Problem

10.6 Transportation and Assignment Models 607

based in the same location. For example, Figure 10.19 shows one supply node for
captains now in the 1st Division who are trained as intelligence officers. Another rep-
resents civil affairs–trained officers in Georgia units of the Marine Corps Reserve.

Demand nodes indicate needs for officers of particular qualifications at active
locations of the emergency. For example, Figure 10.19 depicts the need for one or
more local government liason officers in the forward area of a deployment.

Arcs exist whenever officers represented by a supply node would be qualified
to fill billets of a demand node. Thus the Georgia civil affairs officers are linked to
the local government liason billets but not to artillery or intelligence needs. There
may be several feasible assignments for officers of any source node. For example,
Figure 10.19 indicates that the same civil affairs officers could serve as communica-
tions officers with assault force 1.

The Marines’ first priority is to fill all needed billets, but there are always some
left unfilled. The transportation problem of Figure 10.19 models the possibility of
unfilled billets with an artificial supply node connected to all demands. High cost on
its arcs penalizes unfilled billets in the objective function.

Once as many requirements as possible have been filled, a secondary concern
is to minimize turbulence. That is, the Marines try to assign officers to the same
unit to which they were assigned before mobilization, or at least to assign them to a
nearby unit by minimizing total travel cost.

Using the following notation:

si ! supply of officers available at source node i

dj ! demand for officers at demand node j

ci,j ! distance officers at supply node i would have to travel to report for
billet j (a large positive number if i is the artificial node)

Ii ! set of officer supply nodes i suitable for billets j

Jj ! set of billet demand nodes j suitable for officers at supply node i

xi,j ! number of officers at node i mobilized to billets at j

this Marine mobilization problem reduces to the standard-form transportation
problem

min a
i
a

j
 ci,jxi,j

s.t. a
j∈Ji

 xi,j = si for all i 1supply of i2

 a
i∈Ij

 xi,j = dj for all j 1demand for j2

 xi,j Ú 0 for all i, j

Assignment Problems
Another important class of network flow models, known as (linear) assignment
problems, do not seem at first glance to have anything to do with something flowing.

Assignment problems deal with optimal pairing or matching
of objects in two distinct sets.

Definition 10.40

608 Chapter 10 Network Flows and Graphs

We might pair jobs to machines, male dating service clients to female, duties to
employees, and so on.

Assignment problems are modeled using (discrete) decision variables

xi,j ! e1 if i is assigned to j
0 otherwise

The first subscript refers to items in one set; the second subscript identifies items in
the other.

Assignment problems may have quite complicated objective functions (see
Section 11.4). We address here only the most common form with a linear objective.
In that case we have known costs

ci,j! cost of assigning i to j

An optimal solution minimizes (or maximizes) total cost (or benefit).
Denoting by A the set of allowed assignments (i, j), we can express the linear

assignment model as bipartite flow problem

 min or max a1i, j2∈A
 ci,jxi,j 1min or max total cost2

(10.4)

s.t. a
j with 1i, j2∈A

 xi,j = 1 for all i 1every i is assigned2

 a
i with 1i, j2∈A

 xi,j = 1 for all j 1every j is assigned2

xi,j Ú 0 for all (i, j) ∈ A

The first system of constraints guarantees every i is assigned exactly once by sum-
ming over all possible assignments j. The second system does the same to assure
that every j is assigned exactly once.

Notice that this formulation is an integer linear program (ILP). Decision vari-
ables are allowed only the discrete values 0 and 1. Still, we will soon see how the
discreteness can be ignored in computing an optimum.

example 10.23: FormulatiNG liNear assiGNmeNt models

The following table shows a computerized dating service’s compatibility ratings for
male customer i = 1, c, 3 with and female customers j = 1, c, 3.

i

j

1 2 3

1 90 30 12
2 40 80 75
3 60 65 80

Formulate an assignment model to find the highest compatibility arrangement
providing each customer with a single date of the opposite gender.

10.6 Transportation and Assignment Models 609

Solution: Using variables xi,j = 1 if male i is paired with female j, the model corre-
sponding to system (10.4) is

max 90x1,1 + 30x1,2 + 12x1,3 + 40x2,1 + 80x2,2 + 75x2,3 + 60x3,1 + 65x3,2 + 80x3,3

s.t. x1,1 + x1,2 + x1,3 = 1

 x2,1 + x2,2 + x2,3 = 1

 x3,1 + x3,2 + x3,3 = 1

 x1,1 + x2,1 + x3,1 = 1

 x1,2 + x2,2 + x3,2 = 1

 x1,3 + x2,3 + x3,3 = 1

 all xi,j = 0 or 1

applicatioN 10.4: cam assiGNmeNt

For a more realistic assignment problem, consider a computer-aided manufacturing
(CAM) system that automatically routes jobs through workstations of a computer-
controlled factory. Each job consists of a sequence of required machining and
 assembly operations.

Often, there are several different workstations where the same operation can
be performed. Thus the computer control system must make routing decisions. Each
time that a job completes some operation, the system must select the next station to
which the job should be routed from among the several that could perform the next
operation required.

One method for accomplishing such control decisions in an approximately
optimal way is to periodically solve an assignment model.3 To illustrate, suppose
that the 8 fictitious jobs i of Table 10.2 are either waiting for movement to their
next workstation or will finish their current operation within the next 5 minutes.

3Based on J. Chandra and J. Talavage (1991), Optimization-Based Opportunistic Part Dispatching
in Flexible Manufacturing Systems, School of Industrial Engineering, Purdue University, July.

taBle 10.2 Transportation and Processing Times for CAM Assignment
Application

Jobs, i

Next Workstations, j

1 2 3 4 5 6 7 8 9 10

1 8 — 23 — — — — — 5 —
2 — 4 — 12 15 — — — — —
3 — — 20 — 13 6 — 8 — —
4 — — — — 19 10 — — — —
5 — — 8 — — 12 — — 16
6 14 — — — — — 8 — 3 —
7 — 6 — — — — — 27 — 12
8 — 5 15 — — — — 32 — —

610 Chapter 10 Network Flows and Graphs

Balancing Unequal Sets with Dummy Elements
Letting A! 5feasible 1i, j2pairs6, and ci,j! the times shown in Table 10.2, an opti-
mal short-term control decision is to assign jobs to workstations in a manner mini-
mizing total time. This is exactly what assignment model (10.5) will compute.

One small complication arises from the fact that there are more workstations
than jobs. Model (10.4) assumes that the sets to be matched have equal numbers of
objects.

This problem is easily solved with dummy members.

The 10 workstations j to which they might be routed are also shown. Entries in the
table reflect£ transporation

time to the
station

≥ + £ waiting time
until the station

becomes free
≥ + £ operation

processing time
at the station

≥
That is, they show the short-term time implications of assigning jobs i to stations j.
Missing values in the table reflect assignments that are not possible because the next
required operation cannot be performed at a workstation.

If the two sets to be paired in an assignment problem differ in
size, the smaller can be augmented with dummy members. These dummy objects
should be treated as assignable to all members of the other set at zero cost.

Principle 10.41

Principle 10.41 leads to dummy jobs i = 9, 10 in our CAM application.

Integer Network Flow Solution of Assignment Problems
Any of the general-purpose network flow methods of this chapter (Algorithms 10A,
10B, and 10C), or even linear programming methods, can be used to solve assignment
problems (after multiplying the first set of constraints in (10.5) by -1). Furthermore,
we know by integrality property 10.35 that the optimum will be binary. All supplies
and demands = 1, and no capacities apply, so that Assignment model (10.5) is a
binary ILP that can be solved by continuous methods of linear programming. The
next section presents a Primal-Dual LP algorithm for the Assignment Problem that
computes a binary optimum even more efficiently.

CAM Assignment Application Model
We are now ready to state a full formulation of our CAM application in the stan-
dard format of (10.4):

min 8x1,1 + 23x1,3 + 5x1,9 + 4x2,2 + 12x2,4 + 15x2,5

 +20x3,3 + 13x3,5 + 6x3,6 + 8x3,8 + 19x4,5 + 10x4,6

 +8x5,4 + 12x5,7 + 16x5,10 + 14x6,1 + 8x6,7 + 3x6,9

 +6x7,2 + + 27x7,8 + 12x7,10 + 5x8,2 + 15x8,3 + 32x8,8

10.7 Hungarian Algorithm for Assignment Problems 611

s.t. x1,1 + x1,3 + x1,9 = 1 1job 12
 x2,2 + x2,4 + x2,5 = 1 1job 22
 x3,3 + x3,5 + x3,6 + x3,8 = 1 1job 32
 x4,5 + x4,6 = 1 1job 42
 x5,4 + x5,7 + x5,10 = 1 1job 52
 x6,1 + x6,7 + x6,9 = 1 1job 62
 x7,2 + x7,8 + x7,10 = 1 1job 72
 x8,2 + x8,3 + x8,8 = 1 1job 82
 x9,1 + x9,2 + x9,3 + x9,4 + x9,5

 +x9,6 + x9,7 + x9,8 + x9,9 + x9,10 = 1 1job 92 (10.5)
 x10,1 + x10,2 + x10,3 + x10,4 + x10,5
 +x10,6 + x10,7 + x10,8 + x10,9 + x10,10 = 1 1job 102
 x1,1 + x6,1 + x9,1 + x10,1 = 1 1station 12
 x2,2 + x7,2 + x8,2 + x9,2 + x10,2 = 1 1station 22
 x1,3 + x3,3 + x8,3 + x9,3 + x10,3 = 1 1station 32
 x2,4 + x5,4 + x9,4 + x10,4 = 1 1station 42
 x2,5 + x3,5 + x4,5 + x9,5 + x10,5 = 1 1station 52
 x3,6 + x4,6 + x9,6 + x10,6 = 1 1station 62
 x5,7 + x6,7 + x9,7 + x10,7 = 1 1station 72
 x3,8 + x7,8 + x8,8 + x9,8 + x10,8 = 1 1station 82
 x1,9 + x6,9 + x9,9 + x10,9 = 1 1station 92
 x5,10 + x7,10 + x9,10 + x10,10 = 1 1station 102

 xi,j = 0 or 1 for all i = 1, c, 10; j = 1, c, 10

An optimal short-term routing of jobs to workstations has

x1,1
* = x2,2

* = x3,8
* = x4,6

* = x5,4
* = x6,9

* = x7,10
* = x8,3

* = 1

and all other xi,j
* = 0.

10.7 huNGariaN alGorithm For assiGNmeNt proBlems

The Assignment Problem introduced in Section 10.6 (definition 10.40) can be
solved by general network flow Algorithms l0A, l0B, and l0E, or by any of the
Linear Programming methods of Chapters 5–7. In this section we introduce the
highly efficient Hungarian Algorithm specifically tailored to assignment that pre-
dated most of those more general methods, but draws upon concepts from both
networks and linear programming. Algorithm l0D provides a full statement with
details explained in the coming subsections.

Primal-Dual Strategy and Initial Dual Solution
The first set of principles on which the Hungarian Algorithm is based on come from
viewing the Assignment Problem as a Linear Program. Recall that the LP formula-
tion of (linear) Assignment problems arises on a bipartite graph over source set I,

612 Chapter 10 Network Flows and Graphs

sink set J, and links (i, j) in set A connecting nodes in I to possible assigrunents in J.
For the maximizing case, it has the form

 max a 1i,j2∈A cijxij

(10.6)

s.t. a 1i,j2∈A xij = 1 for all i ∈ I

 a 1i,j2∈A xij = 1 for all j ∈ J

xij Ú 0 for all 1i, j2 ∈ A

where cij! the cost/weight of assigning i to j, and decision variables xij = 1 if i is
assigned to j, and = 0 otherwise. A binary solution is actually required, but we know
from Section 10.5 and property 10.35 that an optimal solution to LP (10.6) will nec-
essarily be integer.

Algorithm 10d: hungAriAn Algorithm
For linear aSSignment

Step 0: initialization. Choose starting dual solutions by setting uQ i d
max5ci, j : 1i, j2 ∈ A6 and vQj d max5ci, j - uQ i : 1i, j2 ∈ A6. Then construct
the equality subgraph A= as the set of links with cQ ij = wij - uQ i - vQj = 0.
Set the initial solution set A empty. Root a solution tree at all i ∈ I. Label all
roots “even” and leave all other nodes unlabeled.

Step 1: Solution growth. If ∙ A ∙ = ∙ I ∙, stop, the assignment detailed in A
is optimal. Otherwise attempt to grow A by finding an even-to-unassigned,
unlabeled 1i, j2 ∈ A= . If one exists, identify the alternating path P from j back
to its tree root. Reverse the assignment along the P by A d A ∪ P ∖ 1A ¨ P2,
and erase labeling on the tree containing P. Repeat Step l.

Step 2: tree growth. Attempt to grow a tree by finding an even-to-
unlabeled 1i, j2 ∈ A= with j assigned. If one exists, grow its tree by puting
both (i,j) and the 1k, j2 ∈ A assigned to j into the tree, labeling node j “odd”
and node k “even”. Then return to Step l.

Step 3: Dual change. Define D d all 1i, j2 ∈ A with i “even” and .j unla-
beled. If D is empty, stop, the given assignment instance is infeasible. Otherwise,
choose a dual-change step size according to

l d min5∙ cQ ij ∙ : 1i, j2 ∈ D6
Then update each “even” i ∈ I by

uQ i d uQ i - l

and each “odd” j ∈ J by

vQj d vQj + l

Finally update the equality subgraph A= according to A= d 51i, j26 ∈ A : new
cQ ij = 06, and return to Step 1.

10.7 Hungarian Algorithm for Assignment Problems 613

Unrestricted dual variable values uQ i and vQ j on the equality
constraints for points i ∈ I and j ∈ J, respectively, are feasible in the dual of
LP (10.6) if and only if reduced costs satisfy

cQij ! cij - uQ i - vQ j … 0 for all 1i, j2 ∈ A

Principle 10.42

The signs of reduced costs completely capture the requirements for dual feasibility.
The simple LP structure of assignment models also makes it very easy to find

a starting dual feasible solution at Step 0 of Algorithm l0D.

An initial dual feasible solution uQ , vQ corresponding to primal
formulation (10.6) can be obtained by setting uQ i = max5cij : 1i, j2 ∈ A6 and
vQ j = max5cij - uQ i : 1i, j2 ∈ A6

Principle 10.43

Choosing each uQ i as the largest of weights for its row i makes interim cQij … 0. Then
choosing vQ j as the largest (least negative) of the interim values in column j keeps
final cQij … 0 as required in 10.42 .

We will illustrate these and other computations of Hungarian Algorithm 10D
with the simple example instance detailed in Table 10.3. Objects in source set
I!51, 2, 3, 46 are to be paired with those in sink set J!55, 6, 7, 86. Figure
10.20(a) shows the starting dual values from 10.43 and corresponding reduced
costs. For example, dual value uQ1 gets the maximum of weights from node 1 or
max59, 6, 4, 76 = 9. Next are the vQ j d max5cij - uQ i : 1i, j2 ∈ A6. For vQ3 this
leads to max54 - 7, 0 - 1, -1 - 3, 2 - 56 = -36. Then each cQij is computed as
cij - uQ i - vQ j .

Equality Subgraph
The next task in the primal-dual strategy of Algorithm l0D is to define a restricted
primal over only variables xij allowed to be positive under complementary slackness
with the current dual solution, and then search for a primal feasible solution within
those variables alone. For these tasks, the Hungarian Algorithm 10D departs the con-
text of LP, and addresses the Assignment Problem on the underlying bipartite graph.

Specifically, an equality subgraph defined over links with values allowed to be
positive by complementary slackness plays the role of a restricted primal.

Following the sequence of Primal-Dual LP Algorithm 6B, computation begins
by constructing a feasible dual solution to formulation (10.6).

taBle 10.3 Costs/Weights of Maximizing
Numerical Application

cij j = 5 j = 6 j = 7 j = 8

i = 1 9 6 4 7
i = 2 1 3 0 1
i = 3 6 5 -1 3
i = 4 2 3 2 5

614 Chapter 10 Network Flows and Graphs

Figure 10.20(b) shows the A= resulting from initial duals and reduced costs in
part (a). The computations in 10.43 guarantees at least some links will have cQij = 0
and belong to A= . Here there are many. Link (3, 5) is included with cQ35 = 0, but
(3,7) is not because cQ37 = -4.

Labeling to Search for a Primal Solution in the Equality Subgraph
Algorithm l0D Steps 1 and 2 attempt to grow a primal feasible assignment within
successive equality subgraphs by labeling trees. If a full primal solution is discov-
ered, the algorithm stops optimal.

The equality subgraph corresponding to any dual feasible
assignment solution is the restricted primal over links in set

A= ! 51i, j2 ∈ A : cQij = 06

Definition 10.44

1

2

3

4

even

even

even

even

5

6

7

8

(a) Initial Duals and Reduced Costs (b) Initial Equality subgraph

i = 1
i = 2
i = 3
i = 4

9

3
6
5

vj

j = 5

0
-2

0
-3

0

j = 6

-3

0
-1
-2

0

j = 7

-2

0
-4

0

-3

j = 8

-2

-2
-3

0

0-

ui
-cj

-

FiGure 10.20 Initialization for Example Data of Table 10.3

If a primal feasible assignment can be produced within the link
set A= of any equality subgraph corresponding to a feasible solution to the
dual of model (10.6), that assignment is optimal in the full assignment model.

Principle 10.45

Karush-Kuhn-Tucker conditions 6.54 are fulfilled for model (10.6) and its
dual because both primal and dual solutions are feasible, and limiting search to A=
assures complementary slackness.

If optimaliy has not yet been reached, the current tree labeling can be used
to revise dual values at algorithm Step 3 while preserving dual feasibility. Updated
duals yield a revised equality subgraph, and the search for a complementary primal
solution continues.

Labeling begins by rooting a tree at each i ∈ I not now assigned and designat-
ing it “even”. Figure l0.20(b) shows this leads to all i ∈ I being labeled “even” since
the initial set of assigned links A is empty.

As labeling proceeds, Step 1 of Algorithm 10D seeks a link in A= from an
even-labeled root node i to an unlabeled, unassigned node j. If one is found, adding
(i,j) to M leads to the working solution.

10.7 Hungarian Algorithm for Assignment Problems 615

Figure 10.21(a) shows the result of three successive solution growth steps in
the equality subgraph of Figure 10.20(b). First even-labeled root i = 1 is assigned to
previously unlabeled, unassigned j = 5, and (1, 5) joins A. Then even-labeled root
i = 2 is assigned to j = 6, and i = 4 is assigned to j = 7. All labels from those trees
are erased and

A = 511, 22, 12, 62, 14, 726
Now only i = 3 remains to be assigned, and its only outgoing A= link leads to
already assigned j = 5. The assignment cannot be grown immediately, but the tree
rooted at i = 3 can be grown in the hope of eventually finding a more complex way
to assign that node. This tree growth at Step 2 of Algorithm l0D adds links two at
a time – one from an unassigned, even-labeled node to an assigned but unlabeled
node j, and the other the link currently assigned to j. Node j is labeled “odd” to show
it has been added to a tree, and the i to which it is now assigned is labeled “even.”

Part (b) of Figure 10.21 illustrates. Link (3,5) is added to the tree even though
node j = 5 is already assigned. Then node 5 is labeled “odd,” its current assignment
(1,3) is added to the tree, and node i = 1 becomes “even.”

Now further label progress is impossible. No even-labeled node i leads to any
unlabeled node j. The dual solution must be updated to change the equality sub-
graph and permit further progress.

Tree growth
link (3, 5) and
(1, 5)

(bold links are assigned, dashed ones are included in a tree)

Solution growth
with (1, 5),
(2, 6), and (4, 7)

Graph Explanation

(a)

(b)

1

2

3

4

even

5

6

7

8

1

2

3

4

even

even odd5

6

7

8

FiGure 10.21 Labeling Progress on Initial Equality Subgraph

616 Chapter 10 Network Flows and Graphs

Dual Update and Revised Equality Subgraph
Dual change begins by identifying

D d 51i, j2 ∈ A : i ‘even’ and j unlabeled6
These are members of A not available in the current A= that would allow further
solution or tree growth with Algorithm 10D Steps 1 or 2. If D is empty, no further
progress is possible; the original assignment model was infeasible. Otherwise we
update the dual solution as follows:

Set step size, l d min5 0 cQi,j 0 : 1i, j2 ∈ D6. Then update duals
for even-labeled nodes i ∈ I as uQ i d uQ i - l, and those for odd-labeled j ∈ J
by vQ j d vQ j + l. All other dual values remain on unchanged.

Principle 10.46

In the example of Figure 10.21(b), i nodes 1 and 3 are even-labeled, and within J,
only node 5 is labeled. With A a complete graph, this labeling makes

D d 511, 62, 11, 72, 11, 82, 13, 62, 13, 72, 13, 826 and

l d min5 0 -3 0 , 0 -2 0 , 0 -2 0 , 0 -1 0 , 0 -4 0 , 0 -3 0 6 = 1

Figure 10.22 shows the full result of the update. Even-labeled duals uQ1 and uQ3
have decreased by l = 1, and odd labeled vQ1 has increased by the same amount.
Update of the reduced costs allows D-edge (3,6) to join the equality subgraph.

It is critical to realize that, in addition to retaining dual feasibility, the dual
update of 10.46 preserves labeling progress already achieved, and opens the way to
new labeling.

Dual change 10.46 adds at least one edge not in the previous
equality subgraph that opens the way for either solution or tree growth. At the
same time it retains all previous solution and tree edges and continues dual
feasiblity.

Principle 10.47

To verify these observations, enumerate the cQij impacts for different labelings:

Edge Status uQ i change vQ j change Net cQ ij

even to odd -l +l 0
even to unlabeled -l 0 +l

unlabeled to odd 0 +l -l

unlabeled to unlabeled 0 0 0

Assigned and tree edges are either even-to-odd or unlabeled-to-unlabeled; both have
reduced cost still = 0. Only even-to-unlabeled cases (in set D) increase cQij, and l has
been chosen to be sure at least one goes to = 0 but none become positive. Furthermore,
even-to-unlabeled links are exactly what is needed to either grow the solution or grow
the label trees.

10.7 Hungarian Algorithm for Assignment Problems 617

Solution Growth Along Alternating Paths
Figure 10.22 shows how progress continues in the new equality subgraph. New edge
(3, 6) allows tree growth including assignment link (2, 6) that makes node i = 2
“even.” Then further tree growth adds edges (2, 7) and (7, 4) and labels i = 4
“even.” This opens the way to solution growth along an alternating path adding new
assignment edge (4, 8).

 P d 513, 62, 12, 62, 12, 72, 14, 72, 14, 826 (10.7)

1

2

3

4

even

(a) Updated Duals and c matrix

even odd

new edge

5

6

7

8

1

2
3
4

8

3
5
5

vj

5

0
-3

0
-4

1

6

-2

0
0

-2

0

7

-1

0
-3

0

-3

8

-1

-2
-2

0

0-

- (b) Updated Equality Subgraph

ui
-

FiGure 10.22 Results of Dual Update on Numerical Application

Labeling in Hungarian Algorithm 10D produces solution
growth by highlighting an odd-cardinality alternating path in the equality
subgraph starting from an unassigned root node in I, and continuing through
 nonassigned then assigned link pairs with tree growth, until a final link con-
nects to an unassigned node in J. Swapping A d A ∪ P ∖ 1A ¨ P2 results in an
increase in the size of the current assignment by 1.

Principle 10.48

The path of (10.7) illustrates. Swapping its solution and nonsolution edges yields the
optimal assignment of Figure 10.23 part (d).

Computational Order of the Hungarian Algorithm
To bound the computation (see Section 14.2) that could be required for Algorithm
10D in computing an optimal assignment or proving none exists, note that, unless
infeasibility is detected first, constructing an assignment requires O10 I 02 rounds of
solution growth. Each of these may involve O1 0 I 02 rounds of tree growth before
all I-nodes have labels. Those, in turn, may be separated by O10 I 02 dual-changes.
Then finally solution growth is completed by up to an O10 I 02 swap along an
 alternating path.

Hungarian Algorithm 10D runs in at most

O1 0 I 0 2 # 1O1 0 I 0 22 + O1 0 I 0 22 = O1 0 I 0 32
steps on an assistant problem with |I| supplies and demands.

Principle 10.49

618 Chapter 10 Network Flows and Graphs

10.8 maximum Flows aNd miNimum cuts

Maximum Flow and Minimum Cut problems are another simple special case of net-
work flows. Still, initial work on the topics by Ford and Fulkerson (1956) is one
of the founding achievements that led to all the tools and models reviewed in this
chapter. This section provides a brief overview.

Minimum cut problems address the same input data, but focus on the comple-
mentary issue of identifying the arcs and capacities that most limit s-to-t flow.
Specifically,

Tree Growth
(3, 6) and (2, 6)
(2, 7) and (4, 4)

(old links are assigned, dashed ones are in a tree)

Solution growth
ƒAƒ = ƒI ƒ ,
optimal solution
found, stop

Graph Explanation

(c)

(d)

1

2

3

4

even

even

even

even odd

odd

odd

5

6

7

8

1

2

3

4

5

6

7

8

-

FiGure 10.23 Labeling Progress on Updated Equality Subgraph

The Max Flow problem on a given directed graph G(V, A)
seeks simply to find the largest possible flow between a specified source node
s and a specified sink node t, subject to conservation of flow at all other nodes
and given arc capacities uij.

Definition 10.50

10.8 Maximum Flows and Minimum Cuts 619

As usual, a simple application will clarify these definitions.

An s-t cut set (S, T) of directed graph G (V, A) is a collec-
tion of arcs which, if deleted, partitions the graph into two non overlapping
 components – one on nodes S ⊂ V including source node s and the other
T = V \S containing sink node t. Then the Min Cut problem seeks an s-t cut set
of minimum total capacity among “forward” arcs 1i, j2 with i ∈ S and j ∈ T.

Definition 10.51

4Based in part on L. G. Chalmet. R. L. Frances. and P. B. Saunders (1982). “Network Models for
Building Evacuation,” Management Science, 28, 86–105. All numerical data and diagrams were made up
by the author of this book.

applicatioN 10.5: BuildiNG evacuatioN maximum Flow

Maximum flow problems arise most often as subproblems in more complex oper-
ations research studies. However, they occur naturally in evaluating the safety of
proposed building designs.4 Proper design requires adequate capacity for building
evacuation in the event of an emergency.

Figure 10.24 shows a small example involving a proposed sports arena. Patrons
in the arena would exit in an emergency through doors on all four sides that can
accommodate 600 persons per minute. Those doors lead into an outer hallway
that can move 350 persons per minute in each direction. Egress from the hallway
is through four firestairs with capacity 400 persons per minute and a tunnel to the
parking lot accommodating 800 persons per minute. Our interest is in the maximum
rate of evacuation possible with this design.

Part (b) of Figure 10.24 shows how we reduce this safety analysis to a max-
imum flow model. Patron flows originate at source node 1. Outbound arcs model
the four doorways. The flows around the outer hall lead to the four stairways and
the tunnel. Persons exiting by any of those means pass to sink node 10. Capacities
enforce the flow rates of the various facilities.

We wish to know the maximum flow from 1 to 10, subject to the capacities indi-
cated. An optimal flow is provided in the arc labels of part (b). Patrons can escape at
a total rate of 2100 per minute.

In application, the Min Cut analog of a Max Flow problem may have the great-
est interest because it identifies bottlenecks that limit flow. Part (c) of Figure 10.24
depicts the minimum cut along with the optimal flow. Arcs of the cut partition
the graph into two components over node subsets S = 51, 4, 5, 6, 7, 86 and
T = 52, 3, 106 with source 1 in S and sink 10 in T. Forward arcs across this cut are
(1, 2), (4, 3), (8, 9), (5, 10), and (7, 10), all at capacity in the flow optimum. Summing
their capacities gives cut capacity

600 + 350 + 350 + 400 + 400 = 2100

which exactly matches the maximum total flow. If designers wish to raise the evacu-
ation rate of the design, one or more of those capacities will have to increase.

620 Chapter 10 Network Flows and Graphs

Improving Feasible Cycle Directions and Flow Augmenting Paths
The key element of network flow Algorithms 10A, 10B, and 10C is improving feasible
cycle directions used to better current feasible solutions. To discover the Max Flow
 analog, consider the example of Figure 10.25(a) with capacities shown on each (solid
line) arc. One can imagine converting this max flow application to a standard network
flow by (i) making costs on all existing arcs = 0, (ii) fixing all supplies and demands
= 0, and (iii) adding the indicated single artificial return arc (6, 1) from sink node 6 to
source node 1 with cost - 1 and unlimited capacity. Then every improving and feasible
cycle direction would include the return arc, which is the only opportunity for objective
function improvement, together with a path from source to sink in the original graph
that permits net flow increase. The latter becomes the target of an improving search
algorithm for Max Flow/Min Cut.

350

arena

firestairs
tunnel

min cut

door

(a) Layout (b) Network

2

3

4

5

6

7

8

9

10

350

35
0 35

0

350
350

350

350

35
0

350

350

35
0

350350

350

350

600600

60
0

60
0

400

400

400

40
0

800

u

1

(c) Optimal flow

2

3

4

5

6

7

8

9

10

150

35
0

50
50

350

15
0

250
250

500500

60
0

50
0

400

400

400

40
0

500

x

1

FiGure 10.24 Building Evacuation Maximum Flow Application

10.8 Maximum Flows and Minimum Cuts 621

Figure 10.25(b) illustrates for the instance in part (a). Numbers on arcs are a
starting feasible flow totalling 20 units from s to t. Heavier line arcs indicate a flow aug-
menting path 1–3–5–4–6 with all forward arcs below capacity, and the single reverse
arc (4, 5) at positive flow 15. Notice that the imagined return arc would complete an
improving feasible cycle direction in the corresponding min cost network flow model.

The Max Flow Min Cut Algorithm
As with Cycle Cancelling Algorithm 10B, a systematic way to find flow augmenting
paths is to work with a residual digraph where attractive options are apparent.

In a Max Flow problem on graph G(V, A) with source node
s, sink node t, arc capacities uij, and current feasible flow xij, a flow augmenting
path is a path from s to t with all forward arcs in the path having xij 6 uij and
all reverse arcs having xij 7 0.

Definition 10.52

The max flow residual digraph for graph G(V, A) with capac-
ities uij and current feasible flow xij has the same nodes i ∈ V as the given
network. There is a forward/increase arc with capacity uij - xij for each arc
1i, j2 with xij 6 uij, and a reverse/decrease arc with capacity xij for each arc
1i, j2 with xij 7 0.

Definition 10.53

4

3 5

2 20

40
43

22

57
32

18

90

15

(a) Graph and capacities

c = -1 return arc of
network ow form

c = -1 return arc of
network ow form

(b) Initial feasible ow and augmenting path

s = 1 t = 6

4

3 5

2 20

0
0

0

20

15

0

20

15

s = 1 t = 6

FiGure 10.25 Numerical Application of Max Flow/Min Cut and Augmenting Paths

A directed s - t path in this residual digraph corresponds to an augmenting path in
the original network.

All the elements are now in place to detail a Max Flow Min Cut algorithm.

Solution of Max Flow Application of Figure 10.25(a)
with Algorithm 10E
Figure 10.26 tracks application Algorithm 10E to the instance in Figure 10.25(a).
Starting from the initial feasible solution Figure 10.25(b), computation for iteration
k = 1 begins at Step 1 by constructing the corresponding residual digraph. Notice
that arcs already at capacity like (2, 4) have only a decrease options, those with

622 Chapter 10 Network Flows and Graphs

zero flow like (1, 3) have only an increase option, and others like (4, 5) have both.
Examination of the residual digraph shows a directed path 1–3–5–4–6 (highlighted
with heavy arcs) from s to t as an opportunity to increase flow. Step size l is com-
puted from the residual digraph capacities along the path as

 l+ d min557, 32, 856 = 32

 l- d min5156 = 15

 l d min532, 156 = 15

Increasing flow by 15 on corresponding forward arcs of the original graph, and
decreasing by 15 on the one reverse arc, produces the updated flow shown for k = 1
which totals 35.

Now the process repeats with k = 2. The residual digraph shown yields
directed path 1–3–4–6 and stepsize l = 40. Then flows are updated to the values
shown for k = 2 which total 75.

algorithm 10e: maxFlow – mincut Search

Step 0: initialization. Choose any starting feasible flow xij
102, and set solu-

tion index k d 1.
Step 1: residual Digraph. Construct the residual digraph corresponding to

the current feasible flow, and attempt to find a directed path within it from
s to t.

Step 2: optimality and minimum cut. If no s-t directed path exists in
the current residual digraph, stop; the current flow is maximum and the cor-
responding minimum cut (S, T) has

S d 5i ∈ V reachable from source s in the residual digraph6
T d V ∖ S

Step 3: Step Size. Determine the flow augmenting path in the original graph
corresponding to the identified directed path found in the residual digraph,
and choose the maximum feasible augmentation step l by

 l d min5l+, l-6 where

 l+ d min51uij - xij
1k22 : 1i, j2 is forward in the augmenting path6

 l- d min5xij
1k2 : 1i, j2 is reverse in the augmenting path6

Step 4: new Solution. Update the current flow solution by

xij
1k + 12 d d xij

1k2 + l if 1i, j2 is forward in the augmenting path

xij
1k2 - l if 1i, j2 is reverse in the augmenting path

xij
1k2 otherwise

Then advance k d k + 1, and return to Step 1.

10.8 Maximum Flows and Minimum Cuts 623

At iteration k = 3, a residual digraph is again constructed. This time, however,
it contains no directed s to t path. We can conclude that the last flow (from k = 2) is
maximum with total value 75.

The residual digraph also defines a minimum cut by partitioning its nodes into
those reachable from s and those not, that is, S d 51, 2, 3, 56 and T d V ∖ S = 54, 66.
Forward capacity across this cut in Figure 10.25(a) totals 20 + 40 + 15 = 75,
exactly matching the maximum flow.

k Residual Digraph Updated Flow Step

1

path 1-3-5-4-6
l+ = 32
l- = 15
l = 15

2

path 1-3-4-6
l+ = 40
l- = +∞
l = 40

3

Last flow is optimal because no
directed path connects s to t in the
residual digraph. Optimal cut set
is (S, T) with S d 51, 2, 3, 56,
T d 54,66

max flow =
min cut = 75

2 20

40

2

20

57

43

32

3
15

85

5

15

t = 6

4

s = 1

53

4

3

2
20

00

15
15

20

0

20

15

s = 1 t = 6

5

2 20

4043

2

55

2

20

17

15

18

30

60

15

t = 6

4

s = 1

53

2 20

4043

42

15

20
2

17

15

18

70

20

15

t = 6

4

s = 1

53

4

3 5

2 20

20

55

40

15

00

60

15

s = 1 t = 6

FiGure 10.26 Progress of Algorithm 10E on Application of Figure 10.25(a).

example 10.24: ideNtiFyiNG Flows, cuts, aNd auGmeNtiNG paths

Consider the max flow instance below with labels on arcs indicating 1uij, xij2.

2
(12, 10)(40, 15)

(8, 8)(13, 3)

(22, 15)

(capacity, flow)

(10, 10)

3

s = 1 t = 4

624 Chapter 10 Network Flows and Graphs

Equivalence of Max Flow and Min Cut Values
It is no accident that max flow and min cut capacity in the above example matched
at optimality.

Given a directed graph G(V, A) with arc capacities uij, and
specified source s and sink t, the maximum total feasible s-to-t flow equals to
the minimum total forward capacity of cut sets separating s and t.

Principle 10.54

(a) Determine by inspection a maximum s – t flow and a minimum cut.

(b) Identify all the flow-augmenting paths available with the current flow, indicate
whether member arcs are forward or reverse, and compute the maximum step l
that could be applied.

(c) Construct the corresponding residual digraph, and note how each of the aug-
menting paths in part in part (b) are directed paths in the residual digraph.

Solution:

(a) A maximum flow would make x12 = 20, x1,3 = 10, x2,3 = 8, x2,4 = 12,
x34 = 18, for a total flow = 30. A minimum cut separates node 51, 26 from 53, 46
with total forward capacity of 10 + 8 + 22 = 30.

(b) Available augmenting paths are

1 - 2 - 4 Both 11, 22 and 12, 42 fwd l d min55, 26 = 2

1 - 2 - 3 - 4 11, 22 fwd, 13, 22 rev, 13, 42 fwd l d min55, 3, 76 = 3

(c) The residual digraph is as follows:

2
10

2
15

25

3
810

15
7

10

s = 1 t = 4

3

Forward arcs are included for all opportunities to increase flows below capacity, and
reverse arcs depict opportunities to decrease now-positive flows. This makes every
augmenting path in the original graph a directed path in the residual digraph.

To see why this must be true, notice

value of any feasible s@t flow … value of a maximum s@t flow

 … capacity of a minimum s@t cut

 … capacity of any s@t cut

Every feasible unit of s-to-t flow must cross every s-t cut set, so the total flow is
bounded by the forward capacity of every cut. It follows that if the value of any fea-
sible s-to-t flow happens to equal the forward capacity of any s-t cut, both must be
optimal in their respective problems.

10.9 Multicommodity and Gain/Loss Flows 625

This is exactly what occurs when Algorithm 10E terminates. The flow across
the min cut it picks out must exactly equal its forward capacity because all forward
arcs across the cut are at capacity, and all reverse arcs across the cut have zero flow.
Otherwise, there would be a forward arc in the residual digraph, and there are none.

Computational Order of Algorithm 10E Effort
To bound the number of computational steps (see Section 14.2) or any instance of Max
Flow - Min Cut on graph G(V, A), observe first that each iteration k requires O1∙A∙2
computation in the worst case. All arcs may need to be considered in constructing
the residual subgraph and choosing an s-to-t dipath within it. With a dipath in hand,
O1∙V ∙2 steps are needed to compute step-size l and update flows in the original graph.
With O1∙V ∙2 … O1∙A∙2 we conclude each iteration requires at most O1 ∙ A ∙ 2 time.

How many augmenting iterations can there be? Suppose we refine Algorithm
10E to seek augmenting paths of minimum cardinality at each iteration. This is eas-
ily done by breadth-first processing the residual digraph to find all nodes reachable
in one step, then those reachable from already settled ones in two steps, and so on
until sink t is encountered. Then the algorithm will first look for cardinality 1 paths
until all are exausted, then proceed to cardinality 2, and so on.

Notice that augmentation along such a minimum cardinality path will leave the
residual digraph unchanged except at the arc blocking flow augmentation progress.
Replacing that arc by its reverse, adds 2 to the cardinality of the same arc sequence
from s to t, so the blocking arc can be used in a future augmentation only for paths
of greater cardinality.

It follows that there can be at most O1∙A∙2 distinct updates per path cardinal-
ity. Furthermore, only O1∙V ∙2 path cardinalities are possible. Combining with the
effort per augmentation gives a computational bound.

On a graph G(V, A) Max Flow - Min Cut Algorithm 10E
implemented to choose minimum cardinality augmenting paths at each itera-
tion requires at most O1∙V ∙ ∙A∙2 augmentations and O1∙V ∙ ∙A∙22 total effort
to compute a maximum flow and a minimum cut.

Principle 10.55

10.9 multicommodity aNd GaiN/loss Flows

There is almost always a trade-off between the tractability of operations research mod-
els and the span of applications to which they can be adapted. Networks are no excep-
tion. In this section we explore briefly some more broadly applicable network forms
that retain part, but not all, of the tractability of minimum cost network flows.

Multicommodity Flows
An implicit assumption in our previous flow models has been that all flows are in a
single commodity. In the OOI application of Section 10.1, it was toaster ovens. In other
applications the commodity was people, chemicals, or manufacturing tasks. In every
case we assumed that demands at sink nodes could be filled from any supply node with
a path to the sink. That is, we assumed that flows were interchangeable or fungible.

Multicommodity flow problems arise when flows passing thorough a common
network must be kept separate; flow is not fungible.

626 Chapter 10 Network Flows and Graphs

Multicommodity flow models seek a minimum cost flow
where separate commodities are moving through a common network.

Definition 10.56

applicatioN 10.6: Bay Ferry multicommodity Flow

As usual, it will help to think of a simple (fictitious) application. Figure 10.27 depicts
traffic flows in communities around an ocean bay. Each morning, the population of
the three residential communities travels to the two industrial and two commercial
centers in the region. Table 10.4 details flows by origin and destination. For example,
1250 of the 6000 daily trips originating at residential node 4 have industrial park
node 7 as their destination.

At present, geography limits each trip to a single path. Numbers on arcs of the
network in Figure 10.27 show the distance in kilometers between various points. For
instance, those originating at node 1 and bound for node 7 must drive all the way
around the bay through nodes 2 to 6. The 21,100 trips arising daily in the three residen-
tial communities produce a total of 399,250 kilometers of driving along such routes.

Regional planners are considering various improvements to reduce air pollu-
tion by reducing the number of kilometers driven. One idea is the ferry indicated by
dashed arcs (2, 6) and (6, 2) in Figure 10.27. If a ferry were introduced, it could carry
2000 cars in each direction during the morning rush period. We want to know how
many kilometers of driving might be saved.

7
6

5

4

3

21

residential

residential

residential

commercial

commercial

industrial

industrial

ferry

3.5

3.5

3.
0

3.
0

5.0

5.0

2.5

2.5

4.0
4.0

25.0

25.0

FiGure 10.27 Bay Ferry Application Network

taBle 10.4 Daily Trips in the Bay Ferry Application

Trip Origin
Node

Total
Trips

Trips by Destination

1 2 3 4 5 6 7

1 2850 — 900 750 40 10 600 550
4 6000 100 2000 1100 — 150 1400 1250
5 12250 110 4000 2200 200 — 3300 2440

10.9 Multicommodity and Gain/Loss Flows 627

Multicommodity Flow Models
Clearly, Figure 10.27 depicts a flow network. But what is flowing? If we treat all
trips as equal, we have only a single commodity. Then, however, it would be feasible
to fulfill the demand for 1250 trips from origin node 4 at sink node 7 with trips from
any source. Naturally, a minimum distance solution would prefer ones from nearby
source 5, leaving demands for node 5 trips at locations 2 and 3 to be filled from the
closer source 1. Such a solution makes no sense for the application because trips are
not fungible.

We must form separate commodity networks for trips from each of the three
sources. That is, we must model in multiple commodities. Still, the commodities are
not independent. All share the 2000-trip capacity of the proposed ferry. Such inter-
dependencies are typical of multicommodity flows.

Commodities of a multicommodity flow model cannot be ana-
lyzed separately because they interact through shared arc capacities.

Principle 10.57

Suppose that we employ constants

cq,i,j ! unit cost of commodity q flow in arc 1i, j2
ui,j ! shared capacity of arc 1i, j2
bq,k ! net demand for commodity q at node k

and the decision variables

xq,i,j ! commodity q flow in arc 1i, j2

The multicommodity network flow model on a digraph with
nodes k ∈ V and arcs 1i, j2 ∈ A is

min a
q

a1i,j2∈A
 cq,i,jxq,i,j

s.t. a1i,k2∈A
 xq,i,k - a1k,j2∈A

 xq,k,j = bq, k for all q, k ∈ V

 a
q

 xq, i, j … ui, j for all 1i, j2 ∈ A

 xq,i,j Ú 0 for all q, 1i, j2 ∈ A

Definition 10.58

Table 10.5 presents the corresponding formulation of our Bay Ferry appli-
cation. There commodity 1 corresponds to flows from origin node 1, commodity
2 denotes flows from residential node 4, and commodity 3 relates to residential
node 5. Notice that there are separate systems of flow conservation equations for
each commodity, plus a common set of capacity constraints on the two arcs with
flow limits.

An optimal solution reduces the total driving to 280,770 kilometers, a savings
of 29.7%. This is accomplished by accommodating x1,2,6 = 1160 commodity 1 trips
on the 2-to-6 ferry, and x2,2,6 = 840 commodity 2. In the reverse direction the ferry
carries x3,6,2 = 2000 commodity 3 trips.

628 Chapter 10 Network Flows and Graphs

taBle 10.5 Bay Ferry Application Model

min 3.5x1,1,2 + 3.5x1,2,1 + 3x1,2,3 + 3x1,3,2 + 5x1,3,4 + 5x1,4,3 (minimize driving)

+ 15x1,4,5 + 15x1,5,4 + 4x1,5,6 + 4x1,6,5 + 2.5x1,6,7 + 2.5x1,7,6

+ 3.5x2,1,2 + 3.5x2,2,1 + 3x2,2,3 + 3x2,3,2 + 5x2,3,4 + 5x2,4,3

+ 15x2,4,5 + 15x2,5,4 + 4x2,5,6 + 4x2,6,5 + 2.5x2,6,7 + 2.5x2,7,6

+ 3.5x3,1,2 + 3.5x3,2,1 + 3x3,2,3 + 3x3,3,2 + 5x3,3,4 + 5x3,4,3

+ 15x3,4,5 + 15x3,5,4 + 4x3,5,6 + 4x3,6,5 + 2.5x3,6,7 + 2.5x3,7,6

s.t. x1,2,1 - x1,1,2 = -2,850

x1,1,2 + x1,3,2 + x1,6,2 - x1,2,1 - x1,2,3 - x1,2,6 = 900

x1,2,3 + x1,4,3 - x1,3,2 - x1,3,4 = 750

x1,3,4 + x1,5,4 - x1,4,3 - x1,4,5 = 40

x1,4,5 + x1,6,5 - x1,5,4 - x1,5,6 = 10

x1,2,6 + x1,5,6 + x1,7,6 + x1,6,2 - x1,6,5 - x1,6,7 = 600

x1,6,7 - x1,7,6 = 550

x2,2,1 - x2,1,2 = 100

x2,1,2 + x2,3,2 + x2,6,2 - x2,2,1 - x2,2,3 - x2,2,6 = 2,000

x2,2,3 + x2,4,3 - x2,3,2 - x2,3,4 = 1,100

x2,3,4 + x2,5,4 - x2,4,3 - x2,4,5 = -6,000

x2,4,5 + x2,6,5 - x2,5,4 - x2,5,6 = 150

x2,2,6 + x2,5,6 + x2,7,6 + x2,6,2 - x2,6,5 - x2,6,7 = 1,400

x2,6,7 - x2,7,6 = 1,250

x3,2,1 - x3,1,2 = 110

x3,1,2 + x3,3,2 + x3,6,2 - x3,2,1 - x3,2,3 - x3,2,6 = 4,000

x3,2,3 + x3,4,3 - x3,3,2 - x3,3,4 = 2,200

x3,3,4 + x3,5,4 - x3,4,3 - x3,4,5 = 200

x3,4,5 + x3,6,5 - x3,5,4 - x3,5,6 = -12,250

x3,2,6 + x3,5,6 + x3,7,6 - x3,6,2 - x3,6,5 - x3,6,7 = 3,300

x3,6,7 - x3,7,6 = 2,440

x1,2,6 + x2,2,6 + x3,2,6 … 2,000

x1,6,2 + x2,6,2 + x3,6,2 … 2,000

(commodity 1)

(commodity 2)

(commodity 3)

(capacities)

all xq,i, j Ú 0

example 10.25: FormulatiNG multicommodity Flows

Consider the following multicommodity flow problem:

3

1 2

(1, 0, –1)

(0, 0, 0, 1)

(0
, 0

, 0
, 1

) (0, 0, 0, 1)
(1, 1, 1, q

)

(1, 1, 1, q)

(1
, 1

, 1
, q

)

(–1, 1, 0) (0, –1, 1)

10.9 Multicommodity and Gain/Loss Flows 629

Tractability of Multicommodity Flow Models
Multicommodity flow formulations 10.58 are certainly linear programs. In fact,
they are rather special linear programs for which unusually efficient algorithms can
be developed. Also, we continue to think in terms of flows and represent complex
models in simple diagrams.

Still, very little of the elegant structure presented for single-commodity cases
in Sections 10.2 to 10.5 carries over to the multicommodity setting. Most important
is a loss of integrality property 10.35 .

Labels on arcs show costs for three commodities and common capacity 1c1,i,j, c2,i,j,
c3,i,j, ui, j2. Labels on nodes show net demands 1b1,k, b2,k, b3,k2. Formulate the corre-
sponding multicommodity network flow model.

Solution: Following format 10.58 , the model is

min x1,1,3 + x1,3,2 + x1,2,1 + x2,1,3 + x2,3,2

 + x2,2,1 + x3,1,3 + x3,3,2 + x3,2,1

s.t. x1,2,1 + x1,3,1 - x1,1,2 - x1,1,3 = -1

 x1,1,2 + x1,3,2 - x1,2,1 - x1,2,3 = 0

 x1,1,3 + x1,2,3 - x1,3,1 - x1,3,2 = 1

 x2,2,1 + x2,3,1 - x2,1,2 - x2,1,3 = 1

 x2,1,2 + x2,3,2 - x2,2,1 - x2,2,3 = -1

 x2,1,3 + x2,2,3 - x2,3,1 - x2,3,2 = 0

 x3,2,1 + x3,3,1 - x3,1,2 - x3,1,3 = 0

 x3,1,2 + x3,3,2 - x3,2,1 - x3,2,3 = 1

 x3,1,3 + x3,2,3 - x3,3,1 - x3,3,2 = -1

 x1,1,2 + x2,1,2 + x3,1,2 … 1

 x1,2,3 + x2,2,3 + x3,2,3 … 1

 x1,3,1 + x2,3,1 + x3,3,1 … 1

 all xq, i, j Ú 0

Even if all problem data are integer, optimal solutions to mul-
ticommodity flow problems may be fractional.

Principle 10.59

The instance of Example 10.25 illustrates. Each commodity is supplied at one
node and demanded at another. Since costs on the inner dicycle 1–2–3–1 are zero,
all commodities compete for the unit capacities on those arcs. It is easy to verify that
the unique optimal solution makes

x1,1,2 = x1,2,3 = x1,1,3 = 1
2

x2,2,3 = x2,3,1 = x2,2,1 = 1
2

x3,3,1 = x3,1,2 = x3,3,2 = 1
2

Total cost of this fractional solution is 32, versus 2 for any all-integer flow.

630 Chapter 10 Network Flows and Graphs

Flows with Gains and Losses
Another implicit assumption of network models so far encountered is that the num-
ber of units entering one end of any arc is the same as the number of units leaving
the other end. Many realistic modeling situations fail this assumption. Power distri-
bution networks lose electricity along distribution lines, groundwater seeps into and
out of sewers along their runs, and invested funds earn interest as they flow through
time. All such circumstances produce flows with gains and losses.

Network flow problems with gains and losses model circum-
stances where a given constant ai,j units of flow exit arc 1i, j2 at node j for every
1 unit of flow entering at i. Value ai,j 7 1 indicates a gain, ai,j 6 1 implies a
loss, and ai,j = 1 yields ordinary network flows.

Definition 10.60

applicatioN 10.7: tiNyco cash Flow with GaiNs aNd losses

One of the most common settings for flows with gains and losses is financial transac-
tions. A simple case is cash flow modeling.5

Cash flow management deals with cash and near equivalents such as short-
term bonds. The object is to have cash available when it is needed to pay obligations
while earning as much interest as possible on funds that are not needed immedi-
ately. In some cases it is also possible to borrow cash against future receipts.

Figure 10.28 presents a specific instance for a fictitious company we will call
Tinyco. Nodes 1 to 5 represent cash over time, with numbers bk next to each node
showing net demand for cash by month (in thousands of dollars). Nodes 6 and 7
model funds invested in short-term bonds, starting from an initial holding of $200,000.

We assume that cash can be invested to return 0.5% per month, and bonds 0.9%.
This produces the gain multipliers ai,i + 1 shown in boxes on arcs in Figure 10.26 run-
ning forward in time. For example, arc (3, 4) carries multiplier a3,4 = 1.005 because
each dollar invested at month 3 yields 1.005 dollars after a month’s interest at 0.5%.

5Based on B. Golden and M. Liberatore (1979), “Models and Solution Techniques for Cash Flow
Management,” Computers and Operations Research, 6, 13–20.

10

5

30

0

u = 100

9

4

-10

0

u = 100

76

21
1.005

0.9901

0.
99

8

1.009

max-100 300

-200 0b
a

u = 100

8

3

-500

0

u = 100
1.005 1.005 1.005

0.9901 0.9901 0.9901

1.009 1.009 1.009

0.
99

8

0.
99

8

0.
99

8

0.
99

8

0.
99

8

0.
99

8

0.
99

8

0.
99

8

FiGure 10.28 Tinyco Application Network

10.9 Multicommodity and Gain/Loss Flows 631

Gain and Loss Network Flow Models
To reduce gain/loss flow application such as cash management problems to stan-
dard network flow form, we have only to include multipliers ai,j in the minimum cost
network flow format of 10.3 .

Reverse arcs along the cash part of Figure 10.28 illustrate loss arcs by modeling bor-
rowing. We assume that our company can obtain up to $100,000 in cash at 1% per
month. Thus each dollar of next month’s cash borrowed to meet current needs yields

1
1.01

 ≈ 0.9901

dollars now.
Similar loss arcs connect cash and bond nodes in Figure 10.28. For example, arc

(2, 7) represents cash invested in bonds during week 2. The loss multiplier a2,7 = 0.998
corresponds to a 0.2% investment fee. The similar loss on arc (7, 2) models an identi-
cal fee to convert bonds into cash.

The object of the management problem depicted in Figure 10.28 is to have as
much money as possible at the end of the planning period. Thus the only nonzero
objective function coefficient occurs on node 5 outflow.

The gain/loss flow problem on a digraph with nodes in V hav-
ing net demand bk, and arcs 1i, j2 ∈ A having capacity ui,j and multiplier ai,j is

min a1i, j2∈A
 ci, jxi,j

s.t. a1i, k2∈A
 ai,kxi,k - a1k, j2∈A

 xk,j = bk for all k ∈ V

 0 … xi,j … ui,j for all 1i, j2 ∈ A

Definition 10.61

example 10.26: FormulatiNG Flows with GaiNs

Taking numbers next to nodes as net demands bk, quantities in boxes on arcs as gain
multipliers ai,j, and unboxed numbers on arcs as costs ci,j, formulate the flow with
gains model corresponding to the following figure:

2

1

3

2

120

3

0

3

2
14

2

a

b
c

Table 10.6 illustrates for our cash flow application. An optimal solution returns
$489,311 at the end of the planning period. Nonzero flows are on arcs highlighted in
Figure 10.28.

632 Chapter 10 Network Flows and Graphs

Tractability of Network Flows with Gains and Losses
As with multicommodity flows, models with gain and loss flows are linear programs
with some exploitable structure. It is still convenient to think in terms of flows and
to represent models in simple diagrams.

Still, many elegant properties of ordinary flows are lost when gains and losses
are permitted. In particular, integrality property 10.35 does not extend.

Solution: Following format 10.61 , the model is

min 3x1,2 + 14x2,3 + 12x3,1

s.t. 2x3,1 - x1,2 = 0

 2x1,2 - x2,3 = 0

 2x2,3 - x3,1 = 3

 x1,2, x2,3, x3,1 Ú 0

taBle 10.6 Tinyco Application Model

max r 1max return2
s.t. 0.9901x2,1 + 0.9980x6,1 - x1,2 - x1,6 = -100 1note 12
 1.005x1,2 + 0.9901x3,2 + 0.9980x7,2 - x2,1 - x2,3 - x2,7 = 300 1node 22
 1.005x1,3 + 0.9901x4,3 + 0.9980x7,3 - x3,2 - x3,4 - x3,8 = -500 1node 32
 1.005x3,4 + 0.9901x5,4 + 0.9980x9,4 - x4,3 - x4,5 - x4,9 = -10 1node 42
 1.005x4,5 + 0.9980x10,5 - x5,4 - r = 30 1node 52
 0.9980x1,6 - x6,1 - x6,7 = -200 1node 62
 0.9980x2,7 + 1.009x6,7 - x7,2 - x7,8 = 0 1node 72
 0.9980x3,8 + 1.009x7,8 - x8,9 - x8,9 = 0 1node 82
 0.9980x4,9 + 1.009x8,9 - x9,4 - x9,10 = 0 1node 92
 1.009x9,10 - x10,5 = 0 1node 102
 x2,1 … 100 1cash limit2
 x3,2 … 100
 x4,3 … 100
 x5,4 … 100
 all xi, j Ú 0

Even if all problem data are integer, optimal solutions to flow
problems with gains and losses may be fractional.

Principle 10.62

The simple instance in Example 10.26 provides an example. All data are inte-
ger, but the only feasible solution is

x12 =
6
7

, x2,3 =
12
7

, x3,1 =
3
7

10.10 Min/Max Spanning Trees 633

10.10 miN/max spaNNiNG trees

This section presents another special network/graph model with an elegant solution:
the min/max spanning tree problem. As usual, we begin with a fictional application.

outside

min solution 80

13

2

12

4

7

15

16

32

22
41

40

30

1

2

7

4 5

6

3

FiGure 10.29 Wilderness Energy Drill Sites and
Possible Roads

applicatioN 10.8: wilderNess eNerGy (we)
Wilderness Energy (WE), a natural gas drilling company, wants to build roads to
facilitate travel to/from and among drilling sites in a wilderness area it controls.
Figure 10.29 shows the area of interest (shaded), and the seven sites that have
been selected by air and satellite analysis. It also shows possible road alignments
 between pairs of sites that have been identified, including the estimated cost to
construct each (in $ thousand). Only site 1 will link the others to the outside world.
WE wishes to choose a minimum total cost collection of the identified road options
among the sites to produce a network including a path between every pair of sites.
An optimal solution to this problem is shown in bold with total cost $80,000.

Minimum/Maximum Spanning Trees and the Greedy Algorithm
What Wilderness Energy needs is a subgraph like the bold edges of the Figure 10.29
that connects all sites without extra road links which add cost.

Recall from Section 10.7 that a spanning tree of a given graph is a connected
subgraph containing no cycles and spanning all nodes. A min/max spanning tree is
one of minimum, respectively maximum total weight. WE Application 10.8 seeks a
min spanning tree of the road network depicted in Figure 10.29.

Although it may seem challenging to compute optimal spanning trees, there is
a remarkably simple greedy algorithm that can find either a minimum or a maximum
total weight solution with comparitively little effort. Algorithm 10F provides the details.

Solution of the WE Application 10.8 by Greedy Algorithm 10F
Greedy search starts by sorting all the edges in Figure 10.29 in non decreasing con-
struction cost from (3, 6) with cost $2 thousand through (2, 3) at $41 thousand, and
initializing solution set T d 0.

634 Chapter 10 Network Flows and Graphs

To begin, the shortest edge (3, 6) is placed in T. Next-shortest edges (4, 5)
and (3, 4) can also be added, in turn, without creating a cycle, to produce
T = 513, 62, 14, 52, 13, 426. The next edge in the sort order is (3, 5), but adding it
to solution set T would create a cycle 3–4–5. Thus it is skipped. Similarly, edges (3, 5)
and (4, 7) are skipped because each creates a cycle with T. Continuing with edges
(3, 7), (1, 2), and (1, 4), none of which creates a cycle, leaves solution set

T * = 513, 62, 14, 52, 13, 42, 13, 72, 11, 22, 11, 426
With 0T * 0 = 0V 0 - 1 = 6, which is the greatest number of edges possible without
creating cycles. Algorithm 10F terminates with an optimal spanning tree.

The name “greedy” for Algorithm 10F comes from the fact that it selects the
best-cost edge immediately available at each step without considering consequences
for later choices. Only edges that would immediately create cycles are skipped
because they cannot help the current solution. If any skipped edge were added, we
would have to drop another already chosen edge of the cycle it creates. Since all
the edges in such a cycle have costs no worse than the skipped one because they
were chosen before it, adding the skipped edge cannot benefit the solution.

algorithm 10F: greeDy Search For
a min/max Spanning tree

Step 0: initialization. Given undirected graph G(V, E), create a list of edg-
es in set E sorted in non-decreasing cost sequence for a minimize problem
(non-increasing for a maximize), and initialize solution set T d 0.

Step 1: edge processing. If ∙T ∙ = ∙V ∙ - 1, stop, T defines an optimal
spanning tree. Otherwise, consider the next sequential edge e in the sorted
list. If e creates a cycle with the edges already in solution set T, skip it. If not,
update T d T ∪ e. Either way repeat step 1.

example 10.26: Greedy computatioN oF a max spaNNiNG tree

Consider the following graph with numbers on edges showing weights.

2
4022

32

3016

4

1 3

Apply Algorithm 10F to compute a maximum weight spanning tree.

Solution: Taking edges highest weight first, edges (2, 3) and (2, 4) would be selected.
Next edge (3, 4) creates a cycle, so processing moves to (1, 2). This completes the
 optimal spanning tree T * = 511, 22, 12, 32, 12, 426.

10.10 Min/Max Spanning Trees 635

Representing Greedy Results in a Composition Tree
To more rigorously justify why the greedy algorithm produces an optimal tree and
detail an implementation, it is useful to track the evolution of the solution in a
 node-set composition tree.

The composition tree corresponding to an Algorithm 10F
greedy search represents how, starting with each node in its own singleton
set, selection of new tree edges joins nodes of the graph into bigger and bigger
connected components.

Definition 10.63

Figure 10.30 illustrates for the WE application of Figure 10.29. Each node forms a sub-
set of its own at the bottom of the tree. Larger collections of nodes are created by
joining those connected by the newly selected edge at each step. Edge (3, 6) is selected
first, and its corresponding end nodes are spanned to form subset S1 = 53, 66. The
next cheapest edge (4, 5) joins subsets {4} and {5} to create a S2 = 54, 56. Then, edge
(3, 4) connects subsets S1 and S2 to form S3 = 53, 4, 5, 66 for the graph compo-
nent spanning those 4 nodes. The next cheapest edge (3, 5) with cost 12 was skipped
because it has both ends in the same, already-spanned subset {3, 4, 5, 6}; it forms a
cylce with edges already there. Edge (5, 6) is skipped for the same reason, but edge
(4, 7) can connect node 7 with the others to produce S4 = 53, 4, 5, 6, 76. In a similar
way, nodes 1 and 2 are first joined by greedy edge (1, 2) in S5, then combined with the rest
of the nodes by edge (1, 4). The result is full vertex set V ! S6 = 51, 2, 3, 4, 5, 6, 76.

ILP Formulation of the Spanning Tree Problem
To build a formal justification for Algorithm 10F on undirected graph G(V, E), we
will formulate it as an integer linear problem over edge cost cij and edge decision
variables xij = 1 if edge (i, j) is in the solution and = 0 otherwise.

1, 2, 3, 4, 5, 6, 7 s6 by (1, 4)
w = 30

s5 by (1, 2)
w = 22

s4 by (3, 7)
w = 15

s3 by (3, 4)
w = 7

s1 by (3, 6)
w = 2

s2 by (4, 5)
w = 4

3, 4, 5, 6, 7 1, 2

4, 53, 6

3, 4, 5, 6 7

3 6 4 5

21

FiGure 10.30 Composition Tree for WE Application 10.8

636 Chapter 10 Network Flows and Graphs

The first constraint of the formulation in 10.64 requires that exactly ∙ V ∙ ∙ - 1
edges are selected as required for a spanning tree. All inequality constraints prevent
cycles by limiting the selected edges joining elements of any node set S to number
no more than ∙ S ∙ - 1. Clearly all these are satisfied by every spanning tree solution.
Still, since there is one such constraint for every proper node subset of cardinality
71, the full constraint list becomes exponential.

To see how the greedy algorithm implicitly yields an LP relaxation optimum
also optimal in the ILP without explicitly treating all such constraints, we also need
its LP relaxation dual.

The minimum (or maximum) spanning tree problem on graph
G(V, E) can be formulated as the ILP

min 1or max2 a 1i,j2∈E cijxij

s.t. a 1i,j2∈E xij = ∙V ∙ - 1

 a 1i,j2∈S xij … ∙S ∙ - 1 for all S ⊂ V, ∙S ∙ 7 1

 xij = 0 or 1 for all 1i, j2 ∈ E

Principle 10.64

Using dual variables uS for the main constraints in the LP relax-
ations of primal spanning tree formulation 10.64 , correponding dual formula-
tions of the minimize and maximize cases are respectively

max a S⊆V, ∙S∙ 7 11 ∙S ∙ - 12us

s.t. a S⊃1i, j2 uS … cij for all 1i, j2 ∈ E

 uS … 0 for all S ⊂ V, uv URS

and

min a S⊆V, ∙S∙ 7 11∙ S ∙ - 12us

s.t. a S⊃1i, j2 uS Ú cij for all 1i, j2 ∈ E

 uS Ú 0 for all S ⊂ V, uv URS

Principle 10.65

The optimal greedy solution from Algorithm 10F provides a primal feasible solu-
tion to both the ILP of 10.64 and its LP relaxation.

Using the solution constructed by greedy Algorithm 10F, a pri-
mal feasible solution to both ILP 10.64 and its LP relaxation are obtained by
setting xj = 1 on greedy-chosen edges and xj = 0 otherwise.

Principle 10.66

Exactly ∙V ∙ - 1 edges are selected, and the absence of cycles assures satisfaction of
all the subset cardinality inequalities.

The composition tree for the search shows how to construct a corresponding
feasible solution to LP relaxation dual 10.65 .

10.10 Min/Max Spanning Trees 637

We can illustrate the construction of 10.67 by computing the dual solution implied
in the composition tree of WE application Figure 10.30. First, uQS1

d 2 - 7 =
-5, because the edge creating S1 has weight c3,6 = 2 and its tree-parent S4
was created by edge (3, 4) with weight c3,4 = 7. Continuing, uQS2

d 4 - 7 = -3,
uQS3

d 7 - 15 = -8, uQS4
d 15 - 30 = -15, and uQS5

d 22 - 30 = -8. With no par-
ent, uQV ! uQS6

 get 3, 0, the weight of the last chosen edge. Summing over nonzero
duals, the objective value is then -5 * 1 - 3 * 1 - 8 * 3 - 15 * 4 - 8 * 1 + 30 * 6 = 80
which matches the primal solution value. This is no accident.

A dual feasible solution for any given instance of the LP
relaxation of 10.64 can be constructed by setting the all uQS d 0 except
on subsets Sk in the corresponding composition tree with ∙Sk ∙ 7 1. Then,
uQV d the cost of the last edge selected. Other non-singleton tree sets Sk
get, uQSk d (cost of the edge creating subset Sk) (cost of the edge creating its
tree-parent).

Principle 10.67

After application of Algorithm 10F, the primal solution
of 10.66 and the dual solution of 10.67 are both feasible in their respective
problems and share the same objective function value. Thus both are optimal.
Furthermore, since the relaxation primal produces an integer optimum, that
solution is also optimal in the full ILP 10.64 .

Principle 10.68

First, to see why the dual computation in 10.67 always produces agreement of primal
and dual solution values, note that the creation of each new set Sk in the composition
tree by new edge (i, j) adds ∙Sk ∙ - 1 copies of cij to the dual sum. But its children, say
Si and Sj, have already subtracted all but one of these because ∙S ∙ = ∙Si ∙ + ∙Sj ∙ . This
leaves the running dual sum simply the total of costs on edges in the greedy solution,
which is also the primal value.

To see that the constructed dual solution is also feasible, focus on the min case.
All constructed dual values uQSk

 on Sk ⊂ V will be non positive as required for the
corresponding primal … constraints. Ones not in the compostion tree are fixed = 0,
and those in the tree, subtract parent edge costs at least as large as those of their
children.

Main dual inequalities require cij Ú the sum of uQS along the path from the first
tree set to which i and j both belong, call it (k, l), up to the root for V. That sum begins
with the ckl, then both subtracts and add the costs of selected edges higher in the com-
position tree, so that the total is first set cost ckl. Now consider three cases. For any edge
(i, j) creating a set in the composition and taking part in the primal optimum, its set is
exactly the first time i and j have shared a component. Thus, the inequality for (i, j) is
satisfied as equality comforming to complementary slackness with xij 7 0. For an edge
(i, j) not selected by the greedy algorithm, but still having both ends in some composi-
tion set, the cost selected there, say ckl, will have ckl … cij as required for dual feasibility
because (k, l) was chosen over (i, j) by the algorithm. Finally, if no set in the composi-
tion tree except the last contains both ends of edge (i, j), all included variables in its
dual constraint will have value = 0, and again (with cij Ú 0), dual feasibility holds.

638 Chapter 10 Network Flows and Graphs

Computational Order of the Greedy Algorithm
The core of greedy algorithm on graph G(V, E) is a sort of edges by cost, which
requires O1∙E ∙ log ∙E ∙2 effort (see section 14.2), followed by examination of edges
one-by-one until a tree is finalized, which could be O1∙E ∙2 in the worst case. The
more subtle issue is how to track whether new edges form cycles with ones already

example 10.27: coNstructiNG compositioN tree aNd dual
solutioN

Return to the max spanning tree of Example 10.26.

(a) Construct the composition tree corresponding to its greedy solution.

(b) Construct the associated primal solution to the corresponding ILP 10.64 .

(c) Construct the corresponding LP relaxation dual solution of 10.67 , and verify
its solution value matches the primal.

(d) Verify that your dual solution is dual feasible.

Solution:

(a) The composition tree is shown below. Nodes 2 and 3, then 4, and finally 1 are
joined by greedy-chosen edges into graph components defined by node sets.

1, 2, 3, 4

2, 3, 4

2, 3

2 3

1

4

s3 by (1,2)
w = 22

s2 by (2,4)
w = 32

s1 by (2,3)
w = 40

(b) The primal optimum has greedy-chosen edge values x1,2 = x2,3 = x2,4 = 1,
and all others = 0. This yields solution value 40 + 32 + 22 = 94.

(c) Dual variable values will = 0 on all subsets except those in the composition tree.
For those, we have uQS1

d 40 - 32 = 8, uQS2
d 32 - 22 = 10, and uQV = uQS3

= 22.
The corresponding solution value is 1 # 8 + 2 # 10 + 3 # 22 = 94 which matches the
primal.

(d) All dual values are nonnegative as expected. Summing duals along path from
the first composition tree node including both ends of each arc and comparing to
its objective coefficient to check main dual constraints gives 22 = c12 for 11, 22,
22 7 16 = c14 for 11, 42, 8 + 10 + 22 = 40 = c23, 10 + 22 = 32 = c24, and
10 + 22 = 32 7 30 = c34. The dual solution is indeed feasible.

 Exercises 639

chosen. This can be done by keeping a record of the component/subset number
to which each node belongs as computation continues. Define tk ! the compo-
nent number including vertex k. The algorithm starts with each node with its own
component or tk d k for all k ∈ V. Then if the two ends of a candidate edge (i, j)
have ti = tj, it joins 2 nodes in the same component and forms a cycle; it should be
skipped. If ti ∙ tj, then (i, j) connects different components. The algorithm accepts
the edge in the solution and combines the components for i and j by replacing tj d ti
for all nodes in component j before the selection. Such t-label updates are done
O1O1 ∙ V ∙ 22 times as edges are selected and require O1 ∙ V ∙ 2 effort per update.
Summarizing,

On given instance G(V, E), Algorithm 10F runs in O1∙E ∙ log
∙E ∙2 + O1∙E ∙2 + O1∙V ∙22 = O1∙E ∙ log ∙E ∙ + ∙V ∙22 time.

Principle 10.69

ExERCiSES

10-1 The figure that follows depicts a minimum
cost network flow problem. Numbers on the
nodes show net demand, while those on arcs show
unit cost and capacity.

1 2

3

4

5

(-
6,

 4
)

(5, q)
(10, 40) (8, 20)

(2, q
)

(3, q)

(6, q) (0
, 1

0)

(1
, q

)

-50

-70

0

20

100

(a) Identify the node set V and the arc set A
of the network.

(b) Classify all nodes as source, sink, or
transshipment.

(c) Verify that total supply equals total demand.
(d) Formulate the corresponding minimum cost

network flow problem as a linear program.
(e) Show the node–arc incidence matrix for

the network.

10-2 Do Exercise 10-1 for the network

1

2

3

4

5

-80

0

-70

150

0

(2, q)

(0
, 1

0)

(3, q
)

(6, q)

(8
, q

)

(4, 150)

(-1, 150)

10-3 Consider the matrix§ -1 0 0 1 0
1 -1 -1 0 0
0 1 0 -1 -1
0 0 1 0 1

¥
(a) Explain why it is a node–arc incidence

matrix.
(b) Draw the corresponding digraph.

10-4 Do Exercise 10-3 for the matrix§ -1 -1 0 0 0
1 0 1 1 0
0 1 -1 0 1
0 0 0 -1 -1

¥
10-5 The following digraph represents a network
flow problem with values at nodes showing net
demand.

1

2 3

-100

-50 80

(a) Verify that total supply exceeds total
demand.

(b) Add a new sink to create an equivalent
network with total supply equal to total
demand.

640 Chapter 10 Network Flows and Graphs

10-6 Do Exercise 10-5 for the network

1

2 3

0

-90 40

10-7 Super Sleep is a company making matresses
for king-size beds. Matresses can be shipped di-
rectly from either of its plants to retail store cus-
tomers, or they may be transshipped through
the company’s single warehouse. The table that
follows shows the unit cost of shipping matresses
from the plants and the warehouse to Super
Sleep’s 2 customers. Shipping from either plant to
the warehouse costs $15 per matress. The table
also shows the number of matresses that can be
produced at each plant over the next week and
the number demanded by each customer.

Shipping Costs

Capacityj ∙ 1 j ∙ 2

Plant 1 25 30 400
Plant 2 45 23 600
Warehouse 11 14 —

Demand 160 700 —

Super Sleep seeks a minimum total shipping cost
way to supply its customers.

(a) Formulate a linear program to determine
an optimal shipping plan.

(b) Use class optimization software to com-
pute an optimal solution to your LP.

(c) Show that your LP can be represented as
a minimum cost flow model (with total
supply = total demand) by sketching the
corresponding digraph and labeling as in
Exercise 10-1.

(d) Classify nodes in your digraph as source,
sink, or transshipment.

10-8 Crazy Crude oil company can produce 1500
barrels per day from one of its fields and 1210
from the other. From there the crude oil can be
piped to either of two tank farms, one at Axel
and the other at Bull. Axel then trucks oil on to
the Crazy Crude refinery at $0.40 per barrel to
help meet its daily demand of 2000 barrels. Bull

trucks to the refinery at $0.33 per barrel. It costs
Crazy Crude $0.10 per barrel to pipe from field
1 to Axel and $0.35 per barrel to pipe from field
1 to Bull. Corresponding values for field 2 are
$0.25 and $0.56. Also, the tank farms can truck
between themselves at $0.12 per barrel.

Do (a) through (d) as in Exercise 10-7.

10-9 Return to the Super Sleep problem of Exercise
10-7, and suppose now that we wish to plan over a
2-week time horizon. Customer demands remains
160 and 700 in the first week, but they are predicted
to be 300 and 810 in the second. There is no initial
inventory, but matresses may be held in the ware-
house at $10 per week. All other parameters are the
same in each week as those given in Exercise 10-7.

(a) Formulate a time-expanded linear pro-
gram to determine an optimal shipping
and holding plan.

(b) Use class optimization software to com-
pute an optimal solution to your LP.

(c) Show that your LP can be represented as
a minimum cost flow model (with total
supply = total demand) by sketching the
corresponding digraph and labeling as in
Exercise 10-1.

10-10 Return to the Crazy Crude problem of
Exercise 10-8, and suppose now that we wish to
plan over a 2-day time horizon. Refinery demand
remains 2000 on the first day but will be 3000 on
the second. There are no initial inventories, but
either tank farm can hold over petroleum at $0.05
per barrel per day. All other parameters are the
same on each day as those given in Exercise 10-8.

Do (a) through (c) as in Exercise 10-9.

10-11 Determine whether each of the following
sequences is a chain, a path, a cycle, and/or a dicy-
cle of the network in Exercise 10-1.

(a) 1–2–4–1
(b) 3–4–2
(c) 3–4–1
(d) 3–4–5–3

10-12 Determine whether each of the following
sequences is a chain, a path, a cycle and/or a dicy-
cle of the network in Exercise 10-2.

(a) 2–3–4–2
(b) 1–3–5–4
(c) 3–4–2
(d) 2–3–4–5

 Exercises 641

10-13 The following digraph shows a partially
solved minimum cost network flow problem with
node labels indicating net demand and arcs labels
showing unit cost, capacity, and current flow.

1

2

3

460

5

35

-100

(7, 30, 20)

(4, 80, 80)

(3, 40, 15)

(14, 30, 20)(1
, 1

00
, 0

)

(a) Verify that the current flow is feasible.
(b) Generate the six possible cycle directions

of flow change.
(c) Verify for the first (one) of your cycle

directions that a step l in the direction
would leave flow balanced at all nodes.

(d) Determine whether each of your cycle
 directions is improving.

(e) Determine whether each of your cycle
 directions is feasible.

(f) For those directions that are feasible,
compute the maximum step size l that
could be applied without losing feasibility.

10-14 Do Exercise 10-13 for the network

1 2

3 4

-45 5

60 -20

(10, 27, 5)

(2
0,

 4
0,

 4
0)

(6, 1
9, 5

)

(14, 30, 15)

(1
, 5

, 5
)

10-15 Solve each of the following by rudimentary
cycle direction Algorithm 10A starting from the
solution given in the figure. Find needed cycle
 directions by inspection.

(a) The network in Exercise 10-13
(b) The network in Exercise 10-14

10-16 The digraph below shows an instance of
the minimum cost network flow problem. Labels
on arcs are (cost, capacity, current flow), and
those on nodes are net demand.

2

3

4

5 6

1

(2, 25, 20)

(3, 90, 60) (14, 60, 10)

(33, 55, 55)

(19, 40, 40)

(7, 40, 20)

(8, 70, 15)

15

60

0

-30-40

-5

(a) Show the corresponding Node–Arc Inci-
dence Matrix.

(b) Start from the given solution and solve the
instance to optimality by the Rudimentary
Cycle Direction Algorithm 10A. Choose
cycle directions to use by inspection,
 establish that each is improving and fea-
sible, and show the revised flow after
each iteration. Also identify the ultimate
optimum.

10-17 Add an artificial node and artificial arcs to
prepare each of the following networks for two-
phase or big-M solution starting with a zero flow
on all original arcs. Show the starting flow, and
verify that it balances at the artificial node.

(a) The network of Exercise 10-1
(b) The network of Exercise 10-2

10-18 Refer to the partially solved minimum cost
network flow problem of Exercise 10-25.

(a) Verify that the given flow is feasible.
(b) Construct the residual digraph corre-

sponding to the current flow.
(c) Use Floyd-Warshall Algorithm 9B on

your residual digraph to identify an im-
proving feasible cycle direction with
 respect to the given flow.

(d) Compute the maximum feasible step l that
could be applied to your cycle direction.

10-19 Do Exercise 10-18 on the network of
Exercise 10-26.
10-20 The digraph below shows a minimum cost
network flow instance. Labels on arcs are (cost,
capacity, current flow. Labels on the nodes show
net demand.

642 Chapter 10 Network Flows and Graphs

2

3

4

5 6

1

(2, 60, 50)

(11, 90, 80) (4, 60, 10)

(33, 90, 90)

(19, 40, 28)

(7, 40, 12)

(8, 70, 42)

0

40

20

-60-30

30

(a) Establish that the given flow is feasible.
(b) Start from the given solution and solve

the instance to optimality by the Cycle
Cancelling Algorithm 10B. Show the re-
sidual digraph at each step, but choose
improving feasible cycle directions from
them by inspection.

(c) Compute bound 10.26 on the Algorithm
10B computational effort for this instance
and compare to the number of steps in
your solution of part (b).

10-21 Do Exercise 10-20(b) on each of the fol-
lowing networks.

(a) The network of Exercise 10-13
(b) The network of Exercise 10-14
(c) The network of Exercise 10-25
(d) The network of Exercise 10-26

10-22 Demonstrate that columns of the node–arc
incidence matrix corresponding to arcs in each
of the following cycles of the digraph in Exercise
10-1 form a linearly dependent set.

(a) (2, 5), (5, 2)
(b) (4, 2), (5, 2), (4, 5)
(c) (1, 2), (4, 2), (1, 4)
(d) (1, 4), (4, 5), (5, 3), (3, 1)

10-23 The following depicts a network flow prob-
lem, with labels on nodes indicating net demand
and those on arcs showing capacity.

1

2

3

4

5

-60

-30

0

80

2525

35

5

60 60

50

10035

4010

For each of the following lists of possible nonba-
sic arcs, either compute the corresponding basic
solution and indicate whether it is basic feasible,
or apply principle 10.33 to demonstrate that the
unlisted arcs do not form a basis of the implied
flow balance constraints.

(a) (1, 2), (2, 1), (3, 4), (5, 4) lower-bounded,
(1, 3), (2, 5) upper-bounded

(b) (1, 2), (1, 4), (3, 4), (4, 5), (5, 4) lower-
bounded, (1, 3), (3, 5) upper-bounded

(c) (1, 3), (2, 1), (2, 5), (3, 4), (5, 4) lower-
bounded, (1, 4) upper-bounded

(d) (1, 2), (1, 4), (2, 3), (3, 4) lower-bounded,
(2, 5) upper-bounded

(e) (1, 2), (1, 4), (4, 5) lower-bounded, (2, 5),
(3, 4) upper-bounded

(f) (1, 2), (2, 1), (2, 5), (3, 4), (5, 4) lower-
bounded, (1, 4) upper-bounded

(g) (1, 2), (1, 4), (3, 4), (5, 4) lower-bounded,
(1, 3), (2, 5), (3, 5) upper-bounded

(h) (1, 2), (1, 4), (3, 4), (4, 5) lower-bounded,
(1, 3), (2, 5) upper-bounded

10-24 Return to the minimum cost network flow
instance of Exercise 10-20. The figure below de-
picts the same instance with different values for
the current flow, including many marked ‘?’ for
unknown.

2

3

4

5 6

1

(2, 60, 0)

(11, 90, ?) (4, 60, ?)

(33, 90, ?)

(19, 40, ?)

(7, 40, 0)

(8, 70, ?)

0

40

20

-60-30

30

(a) Demonstrate that arcs with flow indi-
cated as ‘?” form a basis of the corre-
sponding LP.

(b) Compute the corresponding basic solu-
tion and establish that it is feasible.

(c) Explain why the basic solution of (b) is
degenerate.

 Exercises 643

(d) Start from the solution of (b), and apply
Network Simplex Algorithm 10C to com-
pute an optimal solution. Show details of
reduced costs, stepsize computation, basis
updates, etc.

10-25 The following digraph depicts a partially
solved minimum cost flow problem with labels on
nodes indicating net demand and those on arcs
showing unit cost, capacity, and current flow.

1

2

3

4-50

0

40

10

(2, 50, 10)

(3, 40, 0)
(6, 60, 40)

(12, q, 10)

(1
, 1

5,
 0

)

(a) Verify that the given solution is a basic
feasible solution for basis 511, 22, 11, 32,
12, 426.

(b) Compute all simplex directions available
at this basis.

(c) Determine whether each of the simplex
directions is improving.

(d) Regardless of whether they are improv-
ing, determine the maximum feasible step
l that could be applied to each of the sim-
plex directions.

10-26 Do Exercise 10-25 on the problem.

1

2

3

4-25

40

-60

45

(4, 33, 25)

(9, q, 45)

(-1, 50, 0)

(3, q, 0)

(1
5,

 1
5,

 1
5)

and basis 511, 22, 13, 12, 13, 426.
10-27 Apply network simplex Algorithm 10C to
compute an optimal flow in each of the following
networks. Start from the flow given in the figure,
using the basis specified below.

(a) The network of Exercise 10-13 with basis
511, 22, 12, 42, 13, 426

(b) The network of Exercise 10-14 with basis
511, 22, 12, 32, 14, 326

(c) The network of Exercise 10-25 with basis
511, 22, 11, 32, 12, 426

(d) The network of Exercise 10-26 with basis
511, 22, 13, 12, 13, 426

10-28 The following digraph depicts a partially
solved minimum cost flow problem with labels
on the nodes indicating net demand and those
on the arcs showing unit cost, capacity, and cur-
rent flow.

1

2

3

4

-25

20

-5

10

(3, 40, 25)

(1, 15, 0)
(2

0,
 q

, 0
)

(5
, 3

0,
 1

0)

(12, 2
0, 2

0)

(a) Verify that the given solution is a basic
feasible solution for basis 511, 22, 11, 32,
13, 426.

(b) Identify a cycle for which the correspond-
ing cycle direction could be pursued by
cycle cancelling Algorithm 10B but not
by network simplex Algorithm 10C with
the basis of part (a).

(c) Identify a cycle for which the corre-
sponding cycle direction could be pur-
sued by network simplex Algorithm 10C
with the basis of part (a) but not by cycle
cancelling Algorithm 10B.

10-29 Each of the following depicts a minimum
cost network flow problem, with labels on nodes
indicating net demand and those on arcs showing
unit cost and capacity. Determine for each (with-
out solving) whether any unique optimal flow
would have to be integer valued.

(a)
1

2

3

4

200

-10 -10

(1
, 5

)

(1, 5)

(6, q
)

(10, 30)

(5
, 4

0)

644 Chapter 10 Network Flows and Graphs

(b)
1

2

3

4

0

-5/2

5/2

0

(0
, 2

)

(0, 1)

(2, 3)

(1, 4)

(1
, 4

)
(c)

1

2

3

4

3010

-40 0

(2
, 1

2.
6)

(0, q)

(10, 14.2)

(5, 30)

(5
, 4

0)

(d)
1

2

3

4

-6050

0 10

(1
.4

14
, 5

0)

(12, 50)

(1.7, q
)

(7.67, 10)

(6
.3

, 9
)

10-30 Consider the following digraph.

3 4

21

(a) Exhibit the Node–Arc Incidence Matrix
(NAIM) of this digraph.

(b) Select a column submatrix of your NAIM
with the maximum possible number of
linearly independent columns.

(c) Demonstrate that your submatrix of (b)
has determinant +1 or -1 after one row
is deleted to make the submatrix full row
rank.

(d) Confirm that your NAIM is totally un-
imodular by selecting two 2 by 2, two 3
by 3, and two more 4 by 4 submatrices,
then showing all have determinant = 0,
+1 or -1.

10-31 The Quick Chip gravel company has re-
ceived a contract to supply two new construction

projects in the towns of Brock and Wurst. A
total of 60 truckloads are needed at Brock in the
next month and 90 at Wurst. Quick Chip has idle
gravel pits in the towns of Nova, Scova, and Tova,
each with a monthly production capacity of 50
truckloads. Travel distances from each pit to each
project site are shown in the following table.

Pit To Brock To Wurst

Nova 23 77
Scova 8 94
Tova 53 41

The company wants to fulfill its contract at least
total truck travel distance.

(a) Formulate a linear program to choose an
optimal shipping plan.

(b) Use class optimization software to com-
pute an optimal solution to your LP.

(c) Show that your LP can be represented as
a minimum cost transportation problem
by sketching the corresponding bipartite
digraph and labeling as in Exercise 10-1.

10-32 Maize Mills has 800 thousand, 740 thou-
sand, and 460 thousand bushels of corn stored
at its three rural elevators. Its three processing
plants will soon require 220 thousand, 1060 thou-
sand, and 720 thousand respectively, to make
cornstarch. The following table shows the cost
per thousand bushels of shipping from each ele-
vator to each plant.

Elevator

Plant

1 2 3

1 10 13 22
2 15 12 11
3 17 14 19

Maize wants to move its corn to plants at mini-
mum total shipping cost.

Do (a) through (c) as in Exercise 10-31.
10-33 The table below shows the results of tri-
aging 7 persons injured in a recent terrorist at-
tack. Each patient has been scored (1 = lowest
to 5 = highest) according the compatibility of
his/her needs vs. the capabilities of each of the 4
available hospitals. No more than 3 patients can
be sent to any hospital.

 Exercises 645

Patient

Hospital

1 2 3 4

1 2 1 5 3
2 3 3 1 2
3 1 1 5 2
4 4 2 3 2
5 3 1 3 2
6 4 2 4 1
7 2 3 3 5

(a) Assign a symbolic parameter name to the
values in the table, including detailing
 required subscripts.

(b) Formulate this problem as an instance of
the Transportation Problem in terms of
appropriate decision variables and the
parameters of part (a).

(c) Draw the corresponding bipartite network,
including supplies/demands on nodes, and
costs/scores on arcs.

(d) Explain why flow requirements in your
formulation of part (b) are not balanced
to have total supply = total demand.
Then briefly explain how to modify the
model to obtain an equivalent one that is
balanced.

10-34 Senior design students are negotiating
which of the four members of the team will take
primary reponsibility for each of the four proj-
ect tasks the team must complete. The follow-
ing table shows the composite ratings (0 to 100)
they have prepared to estimate the ability of each
member to manage each task.

Member

Task Rating

1 2 3 4

1 90 78 45 69
2 11 71 50 89
3 88 90 85 93
4 40 80 65 39

The team wants to find a maximum total score
plan that allocates exactly one task to each team
member.

(a) Formulate a linear assignment problem
(LP) to choose an optimal plan.

(b) Use class optimization software to com-
pute an optimal assignment.

(c) Show that your assignment problem can
be represented as a minimum total cost
flow model by sketching the correspond-
ing bipartite digraph and labeling as in
Exercise 10-1.

(d) A feasible assignment must have deci-
sion variables = 0 or 1 in part (a), yet the
model can be solved as a linear program.
Explain how the underlying network na-
ture of the problem makes this possible.

10-35 Paltry Properties has just acquired four
rental homes. Paltry wishes to have the houses
painted within the next week so that all can be
available for the prime rental season. This means
that each house will have to be painted by a dif-
ferent contractor. The following table shows the
bids (thousands of dollars) received from four
contractors on the four houses.

House

Painter Bid

1 2 3 4

1 2.5 1.3 3.6 1.8
2 2.9 1.4 5.0 2.2
3 2.2 1.6 3.2 2.4
4 3.1 1.8 4.0 2.5

Paltry want to decide which bids to accept in or-
der to paint all houses at minimum total cost.
Do (a) through (d) as in Exercise 10-34.
10-36 The following table shows the weights for
assigning rows i to columns j in a maximum total
weight assignment problem.

j = 4 5 6

i = 1 25 13 22
2 21 14 19
3 20 25 29

(a) Formulate the model as a linear assign-
ment model.

(b) Construct the starting dual solution and
equality subgraph of Hungarian Algorithm
10D for the given weights.

(c) Make a starting assignment of (2 to 4) and
(3, 6). Then explain why this solution is
complementary with the dual of part (a).

(d) Beginning from the solution of (c) com-
plete Hungarian Algorithm 10D to iden-
tify an optimal assignment. Detail the
labeling to grow the assignment and/or

646 Chapter 10 Network Flows and Graphs

associated label trees at each step, as well
as computations to change duals. Also
verify at each dual change that no assign-
ment of tree-labeled edges are dropped
in the equality subgraph as the dual is
updated.

(e) Show the optimal primal and dual solu-
tions, and demonstrate that they are
complementary.

(f) Compute bound 10.49 on the Algorithm
10D computational effort for this instance
and compare to the number of steps in
your solution of part (c).

10-37 Do Exercise 10-36 on each of the following
assignment models.

(a) The digraph of Exercise 10-34(c).
(b) The digraph of Exercise 10-35(c).

10-38 A relief agency is urgently trying to get the
maximum possible quantity of supplies from its
base at Alto to the volcano-ravaged city of Epi.
One available road goes via Billi. The agency
estimates that the Alto-to-Billi part of that road
can carry 500 tons per day, and the Billi-to-Epi
segment, 320 tons. A second route goes via Chau
and Domo, with the Alto-to-Chau part having ca-
pacity 650 tons, the Chau-to-Domo section, 470,
and the Domo-to-Epi segment, 800. There is also
a small mountain road with capacity 80 tons that
connects Billi to Domo.

(a) Formulate this problem as a maximum
flow model by sketching the associated
digraph. Indicate the source, the sink, and
all capacities.

(b) Solve your maximum flow problem by
inspection.

(c) Show how to modify your digraph of part
(a) as in Figure 10.25 to represent the
model as a minimum cost network flow
problem.

10-39 Makers of the new Ditti Doll are urgently
trying to get as many to market as possible be-
cause a craze has created almost unlimited de-
mand. One plant can supply up to 8 thousand per
week to its distribution center, but that center can
then get only 3 thousand per week to east region
customers, and 1 thousand to west. The other
plant supplies up to 3 thousand per week to its

(distinct) distribution center, which can ship 2
thousand per week to the east and the same num-
ber to the west.
Do (a) through (c) as in Exercise 10-38.

10-40 Formulate as a minimum cost network
flow problem, and solve by inspection, the prob-
lem of finding a maximum flow from the specified
source to the specified sink in each of the fol-
lowing networks. Use capacities specified on the
original digraph.

(a) Source 3, sink 2 in the network of Exercise
10-13

(b) Source 1, sink 3 in the network of Exercise
10-14

(c) Source 1, sink 4 in the network of Exercise
10-35

(d) Source 3, sink 2 in the network of Exercise
10-26

10-41 The capital city Capria of the remote
Republic of Democracio (ROD) is under growing
attack from murderous terrorist forces. To defend
themselves the ROD forces in Capria have an
 urgent need for rocket propelled grenades (RPGs)
which they use in close combat. There is a supply
of 400 RPGs in the ROD city of Butey, but the
only way they can be shipped to Capria is along a
mountainous road supporting trucks able to carry a
total of 250 per day. There are also 1200 units of the
weapon available in a European depot, and 10,000
at one in North America. Large cargo, planes
can fly 500 RPGs from Europe and/or 800 from
North America per day to Moderna, which is the
only unoccupied airfield in ROD. From there the
weapons must be sent via a narrow-guage railroad
capable of shipping 1600 units per day through the
mountains to Capria. ROD leaders and their allies
wish to formulate a plan to get the maximum num-
ber of RPGs to Capria over the next 3 days.
Do (a) through (c) as in Exercise 10-38.
10-42 Consider the following digraph.

5

4

3 5

2
5

39

10

1

3

24

6

2

10

5

s = 1 t = 7

 Exercises 647

(a) Starting from an all zero flow, apply
Bellman Ford Algorithm 10E to compute
a max flow from node s to node t. Show
the residual digraph at each iteration,
and choose your augmenting paths by
inspection.

(b) Process the final residual digraph of (a)
to identify a min cut, and verify that max
flow = min cut in this instance.

(c) Repeat parts (a) and (b), this time aug-
menting along shortest cardinality paths
in the residual digraphs.

(d) Comment on how results of the two com-
putations differ if at all, and why.

(e) Compute bound 10.55 and compare to
your actual effort in parts (a) and (c).

10-43 Consider the digraph below. Numbers on
arcs are capacities.

3

5 6

2
9

8

5

18

1

6

2

10

6

s = 1 t = 4

Do (a)–(e) of Exercise 10-42.
10-44 Do Exercise 10-42(a)–(b) for each of the
following maximum flow models:

(a) Maximum flow Exercise 10-38
(b) Maximum flow Exercise 10-39
(c) Maximum flow Exercise 10-41

10-45 Although Dynamic Programming methods
of Chapter 9 are usually more efficient, the prob-
lem of finding a shortest path from a given origin
s to a destination t in a graph with no negative
dicycles can easily be represented as a minimum
cost flow problem. Using arc lengths as costs, it
is only necessary to make s a node with supply
= 1, t a node with demand = 1, and treat all
other nodes as transshipment.

(a) Illustrate and justify how this produces an
optimal path by formulating the problem
of finding a shortest path from s = 3 to
t = 5 in the digraph of Exercise 10-1.

(b) Do part (a) for a path from s = 1 to t = 5
in the digraph of Exercise 10-2.

10-46 Three workstations are located on the cir-
cular conveyor of a manufacturing facility. Most
of the flow between them moves from one station
to the next on the conveyor. However, 7 units per
minute must move from each station to the sta-
tion after the next. As much as possible of this
2-step flow should be carried within the 11 units
per minute capacity of each link of the conveyor.
The rest will be transported manually.

(a) Formulate a linear program to determine
an optimal way to carry the flows.

(b) Use class optimization software to com-
pute an optimal solution to your LP.

(c) Show that your LP can be represented
as a multicommodity flow problem by
sketching the corresponding digraph and
labeling with costs, capacities, and net
demands.

(d) Explain why your multicommodity model
would give meaningless results if all flow
were combined into a single commodity.

(e) The optimal solution in this problem is
fractional. Explain how this is compatible
with the network nature of your multi-
commodity flow model.

10-47 The Wonder Waste disposal company has
5 truckloads of nuclear waste and 5 truckloads of
hazardous chemical wastes that must be moved
from its current cleanup site to nuclear and chem-
ical disposal facilities, respectively. The following
table shows that many of the available roads are
restricted for one or the other type of waste.

Road

From To Nuclear OK Chemical OK

Site NDisp Yes No
Site CDisp Yes Yes
Site Inter No Yes
NDisp CDisp No Yes
CDisp Inter Yes No
Inter NDisp Yes Yes

Also, Wonder Waste wants to distribute any risk
by allowing no more than half the 10 total truck-
loads on any road. One particular road, the link
from crossing Inter to the nuclear disposal facil-
ity, is especially well suited to hazardous transfer

648 Chapter 10 Network Flows and Graphs

 because it runs through very remote areas. Won-
der Waste seeks a feasible shipping plan that
 maximizes the use of that road.
Do (a) through (e) as in Exercise 10-44.
10-48 Maine Miracle’s 2 restaurants sell lobsters
obtained from 3 fisherman. A total of 350 lob-
sters per day are served at the first restaurant,
and 275 at the second. Each fisherman can ship
up to 300 per day, but not all arrive suitable
for serving. The following table show the cost
(including shipping) and the yield of servable
lobsters for each combination of fisherman and
restaurant.

Fisherman

Restaurant

Cost Yield (%)

1 2 1 2

1 $7 $7 70 60
2 8 8 80 80
3 5 5 60 70

Maine Miracle seeks a minimum total cost way to
meet its restaurant needs.

(a) Formulate a linear program to determine
an optimal plan.

(b) Use class optimization software to com-
pute an optimal solution to your LP.

(c) Show that your LP can be represented
as a minimum cost flow model with gains
or losses by sketching the correspond-
ing digraph and labeling as in Example
10.30.

(d) The optimal solution in this problem is
fractional. Explain how this is compatible
with the network nature of your flow with
gains or losses model.

10-49 A new grocery store has 3 weeks to train
its full staff of 39 employees. There are 5 em-
ployees now. At least 2 employees must work
on preparing the store during the next week,
5 employees the week after, and 10 in the final
week before opening. Employees assigned to
these duties earn $300 per week. Any other
available employees, including those who were
themselves trained in just the preceding week,
can be assigned to train new workers. If an em-
ployee trains just one other, the two of them cost
$500 for the week. If two are trained, the three

employees cost $800 per week, including trainer
overtime. Managements seeks a minimum total
cost plan to meet all requirments.
Do (a) through (d) as in Exercise 10-48. You may
use nonzero lower bounds on some variables.
10-50 Consider the following undirected graph,
taking numbers on edges as costs/weights.

5

74

3 6

2

1

7

3 1

24

8

11

10

9

15

20

13

(a) Apply standard Greedy Algorithm 10F to
compute a maximum spanning tree of the
graph.

(b) Sketch a tree like Figure 10.30 to track the
new subtrees formed as edges are added
to the solution, as well as the weight of
the edge added to create each subtree.

(c) List the active primal constraints associ-
ated with each tree in (b).

(d) Use the structure of (b) to determine dual
variable values for those active constraints.

(e) Combine (a)–(d) to demonstrate that
your greedy solution is primal feasible in
the LP relaxation of the problem, your
dual solution of (d) is dual feasible, and
that together they mutually satisfy com-
plementary slackness.

(f) Compute bound 10.69 and compare to
your actual computational effort of part (a).

10-51 The following graph shows an instance of
the Maximum Spanning Tree Problem.

3 4

21 13

17
1911

15

Do (a)–(f) of Exercise 10-50.

10-52 Hilltop University (HU) is building a new
campus on one of the highest hills in its hometown.
The following table shows details about 6 key
buildings under construction at the new site.

 Exercises 649

No. Name

Coords

Altitudex y

1 Administration 100 100 300
2 Library 52 55 210
3 Student Union 151 125 204
4 Engineering 50 208 150
5 Management 147 25 142
6 Residence Hall 210 202 100

HU wants to construct a minimum total length
system of sidewalks that contains a path from
every building to every other, taking into ac-
count both the distance between their sites and
the steepness caused by changes in altitude. Spe-
cifically a link joining buildings i and j should be
viewed as having weighted length.

dij ! 1Euclidean distance from i to j2 *
11 + Absolute difference of altitudes for i and j2

(a) Compute lengths dij defined above for all
pairs of buildings i and j.

(b) Explain why an optimal sidewalk net-
work for the new HU campus will be a
minimum total weight spanning tree of
the complete graph with nodes at the 6
buildings and edges of weight computed
in part (a).

(c) Apply Greedy Algorithm 10F to compute
such a minimum weight spanning tree,
commenting on how subtrees are formed
and merged as the algorithm proceeds, and
on why some attractive edges were skipped.

10-53 The Metropolis Regional Authority (MRA)
is planning the construction of a light rail network
connecting the major activity centers of the region.
The figure below shows the 9 centers involved
along with possible segments connecting them.
Estimated costs of construction are also shown on
each such link (in $ million).

Eventually traffic on the chosen background
network will be organized into routes with inter-
mediate stops. For now, however, MRA simply
wants to find the least total cost background net-
work that offers a path between each pair of the
9 centers.

(a) Explain why an optimal background net-
work for the MRA light rail will be a min-
imum total weight spanning tree of the
graph below.

(b) Apply Greedy Algorithm 10F to compute
such a minimum weight spanning tree,
commenting on how subtrees are formed
and merged as the algorithm proceeds, and
on why some attractive edges were skipped.

1-Stadium

3-North
Mall2-North

Hotels

7-South
Hotels

9-Airport

4-Govt
Center

5-Convention
Center

8-South
Mall

6-Theater
District

12

9
5

14
22

13
18

7

17

6
3

23

20

21

11 27

19

8

4

650 Chapter 10 Network Flows and Graphs

10-54 Forest fire control organizations in Canada’s
provinces6 must reposition the numbers of obser-
vation aircraft available at stations i = 1, c, 11
on a daily basis to adjust for changing fire threats.
The required number ri and the present number
pi are known for all stations, along with the cost
ci,j of moving an aircraft from any station i to
 station j. Explain how the problem of choosing a
minimum total cost plan for repositioning aircraft
can be modeled as a transportation problem by
identifying the sources, sinks, supplies, demands,
and arc costs.
10-55 A new highway7 is being built through
terrain points i = 1, c, 40. The distance from i
to i + 1 is di. To level the route, net earth defi-
cits bi truckloads must be corrected at all nodes
(bi 6 0 if surplus, a i bi = 0). This will be done
by moving truckloads of earth from surplus to
deficit points along the route of the highway, but
the same earth should not be handled more than
once. Explain how the problem of choosing a
 minimum total truck travel distance leveling plan
can be modeled as a transportation problem by
identifying the sources, sinks, supplies, demands,
and arc costs.
10-56 To estimate the impact of proposed tax
changes, the U.S. Department of the Treasury8
maintains two data files of records statistically
characterizing the taxpayer population. Each
of the i = 1, c, 10,000 records in the first file
represents a known number of families ai and
describes corresponding characteristics such
as family size and age distribution. Records
j = 1, c, 40,000 in the second file also repre-
sent a known number of families bj and con-
tain some of the same characteristics as the
first 1a i ai = a i bi2. However, most of the
entries in the second file relate to the sources
of income for family class j. To do a better job
of analyzing proposals, the Treasury wants to
merge these files into one with new records

containing information drawn from both inputs.
Each new record will represent a collection
of families formed by matching some or all of
those in population ai with some of all in bj. The
quality of the similarity between classes i of the
first file and j of the second can be described by
a distance measure di,j, and the Treasury seeks
a minimum total distance merge. Explain how
this problem can be modeled as a transporta-
tion problem by identify sources, sinks, sup-
plies, demands, and costs. Also, explain how an
optimal flow can be understood as a merge.
10-57 Freight trains9 run a regular weekly sched-
ule in both the forward and reverse directions
of a railroad’s main line through section bound-
ary points i = 1, c, 22. Dividing the week into
hourly time blocks t = 1, c, 168 (with t = 1
following t = 168), a train leaving i bound for
j 7 i advances through both time and space as
it transits sections 1i, i + 12, 1i + 1, i + 22, and
so on. Summing requirements for all scheduled
trains to pull the anticipated load over grades in
the section, engine needs fi, t can be estimated for
each forward section 1i, i + 12, and each time t to
t + pi, where pi is the number of hours required
to transit the section. Reverse requirements ri,t
provide the same information for trains moving i
at t to i - 1 at t + qi with qi the time to transit seg-
ment 1i, i - 12. We assume that all engine units
are identical. Those located at any place and time
where they are not immediately needed, may be
held there, turned around to go the opposite way,
or added as extras on a passing train. Cost ci, di,
and h reflect the cost of running one unit over
segment 1i, i + 12, running one over 1i, i - 12,
and holding for an hour at any site, respectively.
Show that the problem of computing a mini-
mum total cost engine schedule can be modeled
as a network flow problem over a suitable time-
expanded network, by sketching a representative
node and showing all adjacent nodes, arcs, costs,

6Based on P. Kourtz (1984), “A Network Approach to Least-Cost Daily Transfers of Forest Fire Control
Resources,” INFOR, 22, 283–290.

7Based on A. M. Farley (1980), “Levelling Terrain Trees: A Transshipment Problem,” Information Procession
Letters, 10, 189–192.

8Based on F. Glover and D. Klingman (1977), “Network Application in Industry and Government,” AIIE
Transactions, 9, 363–376.

9Based on M. Florian, G. Bushell, J. Ferland, G. Guerin, and L. Nastanshy (1976), “The Engine Scheduling
Problem in a Railway Network,” INFOR, 14, 121–138.

 Exercises 651

bounds, and node net demands. Some arcs will
have nonzero lower bounds.
10-58 A substantial part of United Parcel
Service’s10 freight traffic moves as trailer-on-flat-
cars (i.e., with truck trailers traveling most of the
way on railroad flatcars). The required number
of truckloads di,j to be shipped between points
i, j = 1, c, n in this way is known, but UPS can
use either its own trailers at unit cost ci,j or rent
trailers from the railroad at unit cost ri,j. Rented
trailers can be left anywhere, but UPS wishes to
balance the number of its own trailers available
at every point. That is, the number of company
trailers inbound at any point should equal the
number outbound. If necessary, trailers may be
returned empty from i to j at unit cost ei,j to meet
this requirement. Show that the problem of finding
a minimum total cost shipping plan can be modeled
as a (single-commodity) network flow problem by
detailing the arcs that would join each node i to
another j, including both their cost and any appli-
cable capacity. Also indicate the net flow demand
at each node. (Hint: Represent rented trailer flows
indirectly from flows of loaded company-owned
trailers with capacity di,j.)
10-59 KS brand tires11 are shaped in changeable
molds type i = 1, c, m, installed in the com-
pany’s 40 presses. Production plans dictate the
minimum ri, t and maximum ri, t numbers of molds
i that should be operational during time period
t = 1, c, n, and the planning period begins t = 0
with numbers of molds bi installed 1a ibi = 402.
There is an adequate supply of molds, but change-
overs from one mold to another are expensive,
 costing an amount ci depending on the mold
 installed. All 40 presses should be in use in each
time period. Demonstrate that the problem of
finding a minimum total changeover cost mold
schedule can be modeled as a network flow on
a suitable time- expanded network by sketching
the graph for a case with m = 2 and n = 3, and

showing all nodes, arcs, costs, bounds, and node
net demands. Some arcs will have nonzero lower
bounds. (Hint: Also include supernodes balancing
the total number of molds removed and inserted
in each time period.)
10-60 Major league baseball umpires12 work in
crews that move among league cities to officiate
series of 2–4 games. After every series, all crews
move on to another that must involve different
teams. To provide adequate travel time, any crew
that works a series ending with a night game must
also not go directly to one starting with a day game.
Within these limits, league management would like
to plan crew rotation to minimize the total of city
i-to-city j travel costs ci,j. Experience has shown
that good results can be obtained by deciding each
all crew move independently (i.e., without regard
to where crews were before the most recent series
or where they will be after the next). Explain how
the problem of planning a move can be modeled
as a linear assignment problem by describing the
two sets being matched, the collection of feasible
pairings, the associated linear costs, and whether
the total is to be minimized or maximized.
10-61 One of the ways that airlines operating
through major hubs can improve their service is
to allow as many transferring passengers as pos-
sible who land at one of the scheduled arrival–
departure peaks to carry on with their next flight
on the same plane.13 Such through-flight connec-
tions must involve flights scheduled for the same
type of aircraft, and flights with sufficient arrival
to departure time to complete the required ser-
vicing. The number of passengers pi,j arriving on
flight i and continuing on flight j at any peak can
be estimated in advance. Explain how this prob-
lem of optimizing through flights can be modeled
as a linear assignment problem by describing the
two sets being matched, the collection of feasible
pairings, the associated linear costs, and whether
the total is to be minimized or maximized.

10Based on R. B. Dial (1994), “Minimizing Trailer-on-Flat-Car Costs: A Network Optimization Model,”
Transportation Science, 28, 24–35.

11Based on R. R. Love and R. R. Vemuganti (1978), “The Single-Plant Mold Allocation Problem with
Capacity and Changeover Restrictions,” Operations Research, 26, 159–165.

12Based on J. R. Evans, (1988), “A Microcomputer-Based Decision Support System for Scheduling Umpires
in the American Baseball League,” Interfaces, 18:6, 42–51.

13Based on J. F. Bard and I. G. Cunningham (1987), “Improving Through-Flight Schedules,” IIE Transactions,
19, 242–250.

652 Chapter 10 Network Flows and Graphs

10-62 As commercial airliner14 makes stops
j = 1, c, n of its daily routine and returns to
where it started it takes on fuel for the next leg.
Fuel is added at stop j to assure that the plane
will arrive at stop j + 1 with at least the required
safety reserve rj + 1. Fuel unit costs cj (dollars per
pound) vary considerably from stop to stop, so it
is sometimes economical to carry more fuel than
the minimum required in order to buy less at
high-cost stops. However, the takeoff fuel load at
any j must not exceed safety limit tj. The amount
of fuel at takeoff also affects the weight of the
aircraft and thus its fuel consumption during
flight. For each leg from stop j to j + 1, the fuel
required can be estimated as a constant aj plus a
slope bj times the onboard fuel at takeoff from j.

(a) Formulate this fuel management problem
as a linear program in the decision vari-
ables 1j = 1, c, n2
xj ! fuel added at stop j
yj ! onboard fuel at takeoff from j

Assume that stop 1 is the successor of
stop n, and use nonzero lower bounds if
needed.

(b) Show how your model can be viewed as
a flow with gains where the xj correspond
to 1-ended arcs, and the arcs associated
with the yj have both upper and (nonzero)
lower bounds. Sketch the graph for a case
with n = 3 and show all nodes, arcs, costs,
bounds, and node net demands.

10-63 American Olean15 makes product families
i = 1, c, 10 of tile at plants p = 1, c, 4 to
meet demands di,k (square feet) at sales distri-
bution points (SDPs) k = 1, c, 120. Variable
costs of production and transportation total ci,p,k
per square foot to make tile of family i at plant p
and ship to SDP k. Each plant can produce up to
100% of capacity, with ui,p being the capacity if
plant p makes only group i. Management wants to
find a minimum total cost way to meet demand.

(a) Formulate an LP model to compute an
optimal plan in terms of the decision
variables 1i = 1, c, 10; p = 1, c, 4;
k = 1, c,1202
xi,p,k ! fraction of capacity at plant p

devoted to making tile family i
for shipment to SDP k

(b) Show that your model can be viewed as
a flow with gains of the transportation
problem type by identifying sources,
sinks, supplies, demands, arc gain multi-
pliers, and arc costs.

10-64 The figure that follows shows a part of a
distribution network like those used by Shell Oil
Company16 to supply the midwest with its three
main classes of product: gasoline, kerosene/jet
fuel, and fuel oil.

Green Bay

E. Chicago
Detroit

Lima

Oklahoma

Coraopolis

Houston
Norco

Wood River

Solid links shown indicate available pipelines,
but products can also be shipped by barge from
the refineries at Houston and Norco to depots at
Wood River and/or Coraopolis. Wood River is
also a refinery. Flows must meet known demands
di,p for the various products p at all nodes i. The
three refineries have known production capacities

15Based on M. J. Liberatore and T. Miller (1985), “A Hierarchial Production Planning System,” Interfaces
15:4, 1–11.

16Based on T. K. Zierer, W. A. Mitchell, and T. R. White (1976), “Practical Applications of Linear
Programming to Shell’s Distribution Problems,” Interfaces, 6:4, 13–26.

14Based on J. S. Stroup and R. D. Wollmer (1992), “A Fuel Management Model for the Airline Industry,”
Operations Research, 40, 229–237.

 Exercises 653

REFERENCES

Ahuja, Ravindra K., Thomas L. Magnanti, and
James B. Orlin (1993), Network Flows, Prentice
Hall, Upper Saddle River, New Jersey.

Bazaraa, Mokhtar, John J. Jarvis, and Hanif D.
Sherali (2010), Linear Programming and Network
Flows, John Wiley, Hoboken, New Jersey.

Lawler, Eugene (1976), Combinatorial Optimi-
zation: Networks and Matroids, Holt, Rinehardt
and Winston, New York, New York.

bi,p for production of product p at refinery i, and
a pipeline from point i to point j can carry com-
bined total of at most ui,j barrels of product.
Barge capacity is essentially unlimited. Refining
costs are assumed fixed, and cost per barrel ci,j to
transport along links from i to j is the same for all
products.

(a) Formulate an LP model to determine a
minimum total cost distribution plan.

(b) Show that your model can be viewed as a
multicommodity flow problem by sketch-
ing the corresponding network, labeling
arcs with costs and capacities, and nodes
with net demands.

This page intentionally left blank

655

▪ ▪ ▪ ▪ ▪
Chapter 11

Discrete Optimization
Models

Most network flow, shortest path, and dynamic programming models of Chapters 9
and 10 solve elegantly, even if decision variables are treated as discrete. Fortunately,
such special discrete models do occur in operations research practice. Unfortunately,
they are hardly the norm. The overwhelming majority of integer and combinatorial
optimization models prove much more challenging.

Before exploring methods for dealing with hard discrete models, we need to
get some concept of their enormous range. In this chapter we formulate a series of
classic types using real application contexts often drawn from published reports. In
Chapter 12 we address integer programming methods.

11.1 Lumpy Linear programs and Fixed Charges

One broad class of discrete optimization problems add either/or side constraints or
objective functions to what is otherwise a linear program. For want of a better term,
we might call such models lumpy linear programs.

Swedish Steel Application with All-or-Nothing Constraints
The Swedish steel blending application of Section 4.2 provides an illustration. The
model repeated below, which was formulated there, chooses a minimum cost mix of
scrap metal and pure additives to produce a “charge” of steel. Constraints restrict
the chemical content of the charge.

656 Chapter 11 Discrete Optimization Models

All-or-nothing variable requirements of the form

 xj = 0 or uj

can be modeled by substituting xj = ujyj, with new discrete variable

 yj = 0 or 1

Principle 11.1

min 16x1 + 10x2 + 8x3 + 9x4 + 48x5 + 60x6 + 53x7 1cost2

(11.1)

s.t. x1 + x2 + x3 + x4 + x5 + x6 + x7 = 1000 1weight2
 0.0080x1 + 0.0070x2 + 0.0085x3 + 0.0040x4 Ú 6.5 1carbon2
 0.0080x1 + 0.0070x2 + 0.0085x3 + 0.0040x4 … 7.5

 0.180x1 + 0.032x2 + 1.0x5 Ú 30 1nickel2
 0.180x1 + 0.032x2 + 1.0x5 … 35

 0.120x1 + 0.011x2 + 1.0x6 Ú 10 1chromium2
 0.120x1 + 0.011x2 + 1.0x6 … 12

 0.001x2 + 1.0x7 Ú 11 1molybdenum2
 0.001x2 + 1.0x7 … 13

 x1 … 75 1availability2
x2 … 250

x1, c, x7 Ú 0

In real application, steel blending often has an added complexity. Some of the
scrap elements considered in the blend may be large blocks of reclaimed steel that
cannot be subdivided. Either the entire block is used, or none of it is.

ILP Modeling of All-or-Nothing Requirements
Such indivisible input elements illustrate the need to model all-or-nothing phenom-
ena. The usual approach to dealing with such cases is to rescale to new discrete
variables.

The new yj can be interpreted as the fraction of limit uj chosen.

Swedish Steel Model with All-or-Nothing Constraints
Suppose in our model (11.1) that the first two ingredients had this lumpy character.
That is, we may use either none or all 75 kilograms of ingredient 1 and none or
all 250 kilograms of ingredient 2. Then, instead of continuous decision variables x1
and x2 to reflect the quantities of each ingredient used, we simply employ discrete
alternatives

yj ! e1 if scrap j is part of the blend
0 otherwise

11.1 Lumpy Linear Programs and Fixed Charges 657

In terms of these new variables, the quantity of scraps 1 and 2 included in the
mix are 75y1 and 250y2. Substituting produces the following integer linear program
(definition 2.37):

 min 161752y1 + 1012502y2 + 8x3 + 9x4 + 48x5 + 60x6 + 53x7

(11.2)

s.t. 75y1 + 250y2 + x3 + x4 + x5 + x6 + x7 = 1000

 0.00801752y1 + 0.007012502y2 + 0.0085x3 + 0.0040x4 Ú 6.5

 0.00801752y1 + 0.007012502y2 + 0.0085x3 + 0.0040x4 … 7.5

 0.1801752y1 + 0.03212502y2 + 1.0x5 Ú 30

 0.1801752y1 + 0.03212502y2 + 1.0x5 … 35

 0.1201752y1 + 0.01112502y2 + 1.0x6 Ú 10

 0.1201752y1 + 0.01112502y2 + 1.0x6 … 12

 0.00112502y2 + 1.0x7 Ú 11

 0.00112502y2 + 1.0x7 … 13

 x3, c, x7 Ú 0

 y1, y2 = 0 or 1

An optimal solution now sets

 y1
* = 1, y2

* = 0, x3
* = 736.44, x4

* = 160.06

 x5
* = 16.50, x6

* = 1.00, x7
* = 11.00

Total cost increases to 9967.1 kroner, versus 9953.7 for the linear programming ver-
sion (11.1), because of the all-or-nothing requirements.

exampLe 11.1: modeLing aLL-or-nothing VariabLes

Consider the linear program

 max 18x1 + 3x2 + 9x3

 s.t. 2x1 + x2 + 7x3 … 150

 0 … x1 … 60

 0 … x2 … 30

 0 … x3 … 20

Revise the model so that each variable can be used only at zero or its upper bound.

Solution: Following principle 11.1 , we introduce new 0-1 variables

 yj ! fraction of upper bound uj used

Then substituting, the model becomes

max 18160y12 + 3130y22 + 9120y32
s.t. 2160y12 + 130y22 + 7120y32 … 150

 y1, y2, y3 = 0 or 1

658 Chapter 11 Discrete Optimization Models

ILP Modeling of Fixed Charges
Another common source of lumpy phenomena in what are otherwise linear pro-
grams arises when the objective function involves fixed charges. For example, a
nonnegative decision variable x may have cost

 u1x2 ! e
f + cx if x 7 0
0 otherwise

That is, a fixed initial, or construction, or setup cost, f, must be paid before con-
tinuous decision variable x can be used at any nonzero level. Thereafter, the usual
variable cost c of linear programming applies.

If such fixed charges are nonnegative, which is almost always true, they can be
modeled in mixed-integer linear programs by using new fixed charge variables.

or

max 1080y1 + 90y2 + 180y3

s.t. 120y1 + 30y2 + 140y3 … 150

 y1, y2, y3 = 0 or 1

Minimize objective functions with nonnegative fixed charges
for making variables xj 7 0 can be modeled by introducing new fixed charge
variables

 yj ! e
1 if xj 7 0
0 otherwise

The objective coefficient of yj is the fixed cost of xj, and the coefficient of xj is
its variable cost.

Principle 11.2

New switching constraints are also required to link yj with corresponding xj.

Switching constraints model the requirement that continuous
variable xj Ú 0 can be used only if a corresponding binary variable yj = 1 by

 xj … ujyj

where uj is a given or derived upper bound on the value of xj in any feasible
solution.

Definition 11.3

If yj = 1, xj can assume any LP-feasible value. If yj = 0, then xj = 0 too.

Swedish Steel Application with Fixed Charges
To illustrate the modeling of fixed charges, return again to our original Swedish
Steel model (11.1). This time, suppose that there are setup costs. Specifically,
assume that ingredients 1 to 4 can be used in the furnace only after injection mech-
anisms are setup at a cost of 350 kroner each.

11.1 Lumpy Linear Programs and Fixed Charges 659

To model these fixed charges, we introduce new discrete variables

 yj ! e1 if setup for j is performed
0 otherwise

for j = 1, c, 4.
We also require upper bounds on feasible values of the first four xj. Bounds

u1 = 75 and u2 = 250 are given in model statement (11.1). We must derive corre-
sponding upper bounds for x3 and x4 in switching constraints 11.3 . Any value implied
by constraints on these variables is valid, although we will see in Section 12.3 that it
helps to employ the smallest possible. For simplicity, we look here only at the first
main constraint of model (11.1). Since it sets the total weight of the charge at 1000,
we know that u3 = u4 = 1000 are valid upper bounds.

Introducing these new variables and switching constraints of definition 11.3
produces the fixed-charge version of our Swedish Steel model:

min 16x1 + 10x2 + 8x3 + 9x4 + 48x5 + 60x6 + 53x7

 + 350y1 + 350y2 + 350y3 + 350y4

 s.t. x1 + x2 + x3 + x4 + x5 + x6 + x7 = 1000

 0.0080x1 + 0.0070x2 + 0.0085x3 + 0.0040x4 Ú 6.5

 0.0080x1 + 0.0070x2 + 0.0085x3 + 0.0040x4 … 7.5

 0.180x1 + 0.032x2 + 1.0x5 Ú 30

 0.180x1 + 0.032x2 + 1.0x5 … 35

 0.120x1 + 0.011x2 + 1.0x6 Ú 10

 0.120x1 + 0.011x2 + 1.0x6 … 12

 0.001x2 + 1.0x7 Ú 11

 0.001x2 + 1.0x7 … 13

 x1 … 75y1

 x2 … 250y2

 x3 … 1000y3

 x4 … 1000y4

 x1, c, x7 Ú 0

 y1, c, y4 = 0 or 1

An optimal solution is

 x1
* = 75, x2

* = 0, x3
* = 736.44, x4

* = 160.06

 x5
* = 16.5, x6

* = 1.00, x7
* = 11.00

 y1
* = 1, y2

* = 0, y3
* = 1, y4

* = 1

which sets up for ingredients 1, 3, and 4. Total cost is 11,017.1 kroner, versus 9953.7
in the linear version (11.1).

660 Chapter 11 Discrete Optimization Models

exampLe 11.2: modeLing Fixed Charges

Consider a fixed-charge objective function

 min u11x12 + u21x22
where

 u11x12 ! e150 + 7x1 if x1 7 0
0 otherwise

and

 u21x22 ! e110 + 9x2 if x2 7 0
0 otherwise

For each of the following systems of constraints on x1 and x2, form a corresponding
mixed-integer linear programming model.

(a) x1 + x2 Ú 8
0 … x1 … 3
0 … x2 … 8

(b) x1 + x2 Ú 8
2x1 + x1 … 10
x1, x2 Ú 0

Solution: We introduce y1 to carry fixed charges as in 11.2 and switching constraints
as in 11.3 .

(a) In this case upper bounds 3 and 8 are provided. Thus the mixed-integer formu-
lation is

min 7x1 + 9x2 + 150y1 + 110y2

s.t. x1 + x2 Ú 8

 x1 … 3y1

 x2 … 8y2

 x1, x2 Ú 0

 y1, y2 = 0 or 1

(b) Upper bounds on x1 and x2 are not explicit in these constraints. Still, we may
infer from the second main constraint that any feasible solution has x1 … 5 and
x2 … 10. Thus a mixed-integer formulation is

min 7x1 + 9x2 + 150y1 + 110y2

s.t. x1 + x2 Ú 8

 2x1 + x2 … 10

 x1 … 5y1

 x2 … 10y2

 x1, x2 Ú 0

 y1, y2 = 0 or 1

11.2 Knapsack and Capital Budgeting Models 661

11.2 KnapsaCK and CapitaL budgeting modeLs

In contrast to the cases of Section 11.1, which involve linear programs with some
discrete side conditions, knapsack and capital budgeting problems are completely
discrete. We must select an optimal collection of objects, or features, or projects, or
investments subject to limits on budget resources. Each element is either all in or all
out of the result, with no partial selections allowed.

Knapsack Problems
The simplest of these object choosing discrete problems, and indeed the simplest of
all integer linear programs, are knapsack problems.

A knapsack model is a pure integer linear program with a sin-
gle main constraint.

Definition 11.4

All knapsack decision variables are 0–1 in most applications.
The knapsack name derives from the problem confronted by a hiker packing

a backpack. He or she must choose the most valuable collection of items to take
subject to a volume or weight limit on the size of the pack.

appLiCation 11.1: indy Car KnapsaCK

We may illustrate more realistic forms of knapsack problems by considering the
(fictitious) dilemma of mechanics in the Indy Car racing team. Six different features
might still be added to this year’s car to improve its top speed. Table 11.1 lists their
estimated costs and speed enhancements.

Suppose first that Indy Car wants to maximize the performance gain without
exceeding a budget of $35,000. Using decision variables

 xj ! e1 if feature j is added
0 otherwise

 (11.3)

we can formulate the problem as the knapsack model

 max 8x1 + 3x2 + 15x3 + 7x4 + 10x5 + 12x6 1mph gain2
(11.4) s.t. 10.2x1 + 6.0x2 + 23.0x3 + 11.1x4 + 9.8x5 + 31.6x6 … 35 1budget2

 x1, c, x6 = 0 or 1

That is, we maximize total performance subject to a budget constraint. An
optimal solution chooses features 1, 4, and 5 for a gain of 25 miles per hour.

Suppose now that the Indy Car team decides they simply must increase speed
by 30 miles per hour to have any chance of winning the next race. Ignoring the budget,
they wish to find the minimum cost way to achieve at least that much performance.

tabLe 11.1 Indy Car Application Alternatives

Proposed Feature, j

1 2 3 4 5 6

Cost ($ 000’s) 10.2 6.0 23.0 11.1 9.8 31.6
Speed increase (mph) 8 3 15 7 10 12

662 Chapter 11 Discrete Optimization Models

Capital Budgeting Models
The typical maximize form of a knapsack problem has its single main constraint
enforcing a budget. When there are budget limits over more than one time period,
or multiple limited resources, we obtain more general capital budgeting or multidi-
mensional knapsack models.

This scenario leads to an alternative, minimize knapsack form. With variables
(11.3), we obtain

 min 10.2x1 + 6.0x2 + 23.0x3 + 11.1x4 + 9.8x5 + 31.6x6 1cost2

(11.5) s.t. 8x1 + 3x2 + 15x3 + 7x4 + 10x5 + 12x6 Ú 30 1mph required2
 x1, c, x6 = 0 or 1

This model minimizes cost subject to a performance requirement. An optimal
solution now chooses features 1, 3, and 5 at cost $43,000.

exampLe 11.3: FormuLating KnapsaCK modeLs

Readily available U.S. coins are denominated 1, 5, 10, and 25 cents. Formulate a knap-
sack model to minimize the number of coins needed to provide change amount q cents.

Solution: We employ decision variables x1, x5, x10, and x25 to represent the number
of coins chosen from each denomination. Then the knapsack model is

 min x1 + x5 + x10 + x25 1total coins2
s.t. x1 + 5x5 + 10x10 + 25x25 = q 1correct change2

 x1, x5, x10, x25 Ú and integer

Notice that these discrete variables are not limited to 0 and 1.

Capital budgeting models (or multidimensional knapsacks)
select a maximum value collection of project, investments, and so on, subject
to limitations on budgets or other resources consumed.

Definition 11.5

appLiCation 11.2: nasa CapitaL budgeting

The U.S. space agency, NASA, must deal constantly with such decision problems in
choosing how to divide its limited budgets among many competing missions pro-
posed.1 Table 11.2 shows a fictitious list of alternatives.

We must decide which of the 14 indicated missions to include in program
plans over 5 stages of a 25-year era. Thus it should be clear that the needed decision
variables are

 xj ! e1 if mission j is selected
0 otherwise

 (11.6)

1Based on G. W. Evans and R. Fairbairn (1989), “Selection and Scheduling of Advanced Missions for
NASA Using 0–1 Integer Linear Programming,” Journal of the Operational Research Society, 40, 971–981.

11.2 Knapsack and Capital Budgeting Models 663

Budget Constraints
The budget constraints that give capital budgeting problems their name limit proj-
ect expenditures in particular time periods.

tabLe 11.2 Proposed Missions in NASA Application

Budget Requirements ($ billion)

j Mission Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Value
 Not
With

Depends
On

1 Communications satellite 6 — — — — 200 — —
2 Orbital microwave 2 3 — — — 3 — —
3 Io lander 3 5 — — — 20 — —
4 Uranus orbiter 2020 — — — — 10 50 5 3
5 Uranus orbiter 2010 — 5 8 — — 70 4 3
6 Mercury probe — — 1 8 4 20 — 3
7 Saturn probe 1 8 — — — 5 — 3
8 Infrared imaging — — — 5 — 10 11 —
9 Ground -based SETI 4 5 — — — 200 14 —

10 Large orbital structures — 8 4 — — 150 — —
11 Color imaging — — 2 7 — 18 8 2
12 Medical technology 5 7 — — — 8 — —
13 Polar orbital platform — 1 4 1 1 300 — —
14 Geosynchronous SETI — 4 5 3 3 185 9 —

Budget 10 12 14 14 14

Budget constraints limit the total funds or other resources
consumed by selected projects, investments, and so on, in each time period not
to exceed the amount available.

Definition 11.6

Budget requirements in Table 11.2 span 5-year stages. We form budget con-
straints for each of these periods by summing project decision variables times their
needs.

 6x1 + 2x2 + 3x3 + 1x7 + 4x9 + 5x12 … 10 1Stage 12
 3x2 + 5x3 + 5x5 + 8x7 + 5x9 + 8x10 1Stage 22

 + 7x12 + 1x13 + 4x14 … 12

 8x5 + 1x6 + 4x10 + 2x11 + 4x13 + 5x14 … 14 1Stage 32
 8x6 + 5x8 + 7x11 + 1x13 + 3x14 … 14 1Stage 42
 10x4 + 4x6 + 1x13 + 3x14 … 14 1Stage 52

exampLe 11.4: FormuLating budget Constraints

A department store is considering 4 possible expansions into presently unoccupied
space in a shopping mall. The following table shows how much (in millions of dol-
lars) each expansion would cost in the next two fiscal years, and the required floor
space (in thousands of square feet).

664 Chapter 11 Discrete Optimization Models

Modeling Mutually Exclusive Choices
Capital budgeting problems often come with other constraints besides simple bud-
get limits. For example, two or more proposed projects may be mutually exclusive.
That is, at most one of them can be included in a solution.

Table 11.2 indicates three such conflicts. Possibilities j = 4 and 5 represent alterna-
tive timing for the same mission. Technologies for missions j = 8 and 11 are incompati-
ble. Numbers j = 9 and 14 involve two different ways to accomplish the SETI program.

Such incompatibilities are easily modeled with 0–1 decision variables (11.6).

Expansion, j

1 2 3 4

Year 1 1.5 5.0 7.3 1.9
Year 2 3.5 1.8 6.0 4.2
Space 2.2 9.1 5.3 8.6

Using decision variables

 xj ! e1 expansion j is selected
0 otherwise

formulate implied constraints on investment funds and floor space assuming that
10 million dollars are available in each of the two years and that the expansion
cannot exceed 17 thousand square feet.

Solution: The three required budget constraints are

 1.5x1 + 5.0x2 + 7.3x3 + 1.9x4 … 10 1year 1 budget2
 3.5x1 + 1.8x2 + 6.0x3 + 4.2x4 … 10 1year 2 budget2
 2.2x1 + 9.1x2 + 5.3x3 + 8.6x4 … 17 1floor space2

Mutually exclusiveness conditions allowing at most one of a set
of choices are modeled by gxj … 1 constraints summing over each choice set.

Definition 11.7

For our NASA application, the result is

x4 + x5 … 1

x8 + x11 … 1

x9 + x14 … 1

exampLe 11.5: FormuLating mutuaLLy exCLusiVe Constraints

Suppose that a real estate development company is considering 5 investment deci-
sions. Only 1 of the first 3 can be chosen because all require the same piece of land.
Investment 4 is a new office building, and investment 5 is the same project delayed a
year. Formulate suitable mutually exclusive constraints in terms of decision variables

 xj ! e1 if investment j is selected
0 otherwise

11.2 Knapsack and Capital Budgeting Models 665

Modeling Dependencies between Projects
Another characteristic relationship between projects arises when one project
depends on another. We cannot choose such a dependent project unless we also
include the option on which it depends.

We can model dependencies among projects as easily as mutual exclusiveness.

Solution: The fact that only 1 of the first 3 can be selected produces constraint

 x1 + x2 + x3 … 1

Since x4 and x5 refer to the same investment, we also want

 x4 + x5 … 1

Dependence of choice j on choice i can be enforced on corre-
sponding binary variables by constraint xj … xi.

Principle 11.8

Variable xj cannot = 1 unless xi does too.
Table 11.2 shows that mission j = 11 depends on mission 2 in our NASA

application, and also that mission j = 3 must be chosen if any of projects 4, c, 7 is.
Implied constraints are

 x11 … x2

 x4 … x3

 x5 … x3

 x6 … x3

 x7 … x3

exampLe 11.6: modeLing projeCt dependenCies

Phase 1 of a new city hall project will construct the first story of a building that
could grow to two stories in phase 2, and to three in phase 3. Using the variables

 xj ! e1 if phase j is constructed
0 otherwise

write corresponding dependency constraints.

Solution: Obviously, the second floor cannot be built without the first, and the third
without the second. Thus we have project dependency constraints

 x2 … x1

 x3 … x2

NASA Application Model
To complete formulation of our version of NASA’s decision problem, we need an
objective function. Like almost all public agencies, NASA has many. They may try
to maximize the intellectual gains of selected missions, maximize the direct benefit
to life on earth, and so on.

666 Chapter 11 Discrete Optimization Models

appLiCation 11.3: ems LoCation pLanning

As always, it will help to think of a specific application. A classic example occurred
when Austin, Texas undertook a study of the positioning of its emergency medical
service (EMS) vehicles.2 That city was divided into service districts needing EMS
services, and vehicle stations selected from a list of alternatives so that as much of
the population as possible would experience a quick response to calls for help.

Figure 11.1 shows the fictitious map we will assume for our numerical ver-
sion. Our city is divided into 20 service districts that we wish to serve from some

We will assume that a weighted sum of these different objective functions can be
used to estimate a value for each mission. Resulting values are included in Table 11.2.
Combining with previous elements, we obtain the NASA application model:

 max 200x1 + 3x2 + 20x3 + 50x4 + 70x5 1total value2

(11.7)

 + 20x6 + 5x7 + 10x8 + 200x9 + 150x10

 + 18x11 + 8x12 + 300x13 + 185x14

s.t. 6x1 + 2x2 + 3x3 + 1x7 + 4x9 + 5x12 … 10 1Stage 12
 3x2 + 5x3 + 5x5 + 8x7 + 5x9 + 8x10 1Stage 22

 + 7x12 + 1x13 + 4x14 … 12

 8x5 + 1x6 + 4x10 + 2x11 + 4x13 + 5x14 … 14 1Stage 32
 8x6 + 5x8 + 7x11 + 1x13 + 3x14 … 14 1Stage 42
 10x4 + 4x6 + 1x13 + 3x14 … 14 1Stage 52
 x4 + x5 … 1 (mutually

exclusive) x8 + x11 … 1

 x9 + x14 … 1

 x11 … x2 (dependent

missions) x4 … x3

 x5 … x3

 x6 … x3

 x7 … x3

 xj = 0 or 1 for all j = 1, c, 14

11.3 set paCKing, CoVering, and partitioning modeLs

Our capital budget models of Section 11.2 included mutual exclusiveness constraints
involving subsets of decision variables, at most one of which can take part in a solu-
tion. Set packing, covering, and partitioning models feature such constraints. Using
decision variables that = 1 if an object is part of a solution and = 0 otherwise, these
models formulate problems where the core issue is membership in specified subsets.

2Based on D. J. Eaton, M. S. Daskin, D. Simmons, Bill Bulloch, and G. Jansma (1985), “Determining
Emergency Medical Service Vehicle Deployment in Austin, Texas,” Interfaces, 15:1, 96–108.

11.3 Set Packing, Covering, and Partitioning Models 667

Set Packing, Covering, and Partitioning Constraints
The defining constraints of set packing, covering, and partitioning models deal with
subcollections of problem objects. In our EMS application the subcollections are
locations that can provide satisfactory response for a service district. For instance,
Figure 11.1 shows that any of locations 4, 5, and 6 can protect downtown district 12.

Covering constraints demand that at least one member of each subcollection
belongs to a solution, packing constraints allow at most one member, and partition-
ing constraints require exactly one member. Mathematical forms follow easily with
0–1 variables.

combination of the 10 indicated possibilities for EMS stations. Each station can
 provide service to all adjacent districts. For example, station 2 could service districts
1, 2, 6, and 7. Main decision variables are

 xj ! e1 if location j is selected
0 otherwise

1

2

3

4

5

6

7

8

9

20

10

12

13

14

15

16

17

18

19

1

2

3

4

5

6

7

8

9

10

11

Figure 11.1 Service District and Candidate Locations for EMS Application

Set covering constraints requiring that at least one member of
subcollection J belongs to a solution are expressed as

 a
j∈J

 xj Ú 1

Definition 11.9

668 Chapter 11 Discrete Optimization Models

In our EMS application, we are covering, because each district should be pro-
tected by at least one location, but more is even better. In other settings, such as
radio station location, we pack; at most one station on any particular frequency
should reach a service area (see Exercise 11-7). The mutual exclusiveness con-
straints of capital budgeting also have the packing form. Partitioning applies when
exactly one decision option can serve each sector. This is the case, for example, if
decision variables relate to possible election districts, and constraints demand that
each geographic unit belong to exactly one district (see Exercise 11-12).

Set partitioning constraints requiring that exactly one mem-
ber of subcollection J belongs to a solution are expressed as

 a
j∈J

 xj = 1

Definition 11.11

exampLe 11.7: FormuLating set paCKing, CoVering, and
partitioning

A university is acquiring mathematical programming software for use in operations
research classes. The four codes available and the types of optimization algorithms
they provide are indicated by * ’s in the following table.

Algorithm
 Type

Code, j

1 2 3 4

LP * * * *
IP — * — *
NLP — — * *

Objective 3 4 6 14

(a) Taking objective function coefficients as code costs, formulate a set covering
model to acquire a minimum cost collection of codes providing LP, IP, and NLP
capability.

(b) Taking objective function coefficients as code costs, formulate a set partitioning
model to acquire a minimum cost collection of codes with exactly one providing
LP, one providing IP, and one providing NLP.

(c) Taking objective function coefficients as indications of code quality, for-
mulate a set packing model to acquire a maximum quality collection of codes
with at most one providing LP, at most one providing IP, and at most one
 providing NLP.

Set packing constraints requiring that at most one member of
subcollection J belongs to a solution are expressed as

 a
j∈J

 xj … 1

Definition 11.10

11.3 Set Packing, Covering, and Partitioning Models 669

Solution: In each case we use the decision variables

 xj ! e1 if code j is chosen
0 otherwise

(a) Following form 11.9 , the required model is

min 3x1 + 4x2 + 6x3 + 14x4

s.t. x1 + x2 + x3 + x4 Ú 1 1LP2
 x2 + x4 Ú 1 1IP2
 x3 + x4 Ú 1 1NLP2
 x1, c, x4 = 0 or 1

(b) Following form 11.11 , the required model is

min 3x1 + 4x2 + 6x3 + 14x4

s.t. x1 + x2 + x3 + x4 = 1 1LP2
 x2 + x4 = 1 1IP2
 x3 + x4 = 1 1NLP2
 x1, c, x4 = 0 or 1

(c) Following form 11.10 , the required model is

min 3x1 + 4x2 + 6x3 + 14x4

s.t. x1 + x2 + x3 + x4 … 1 1LP2
 x2 + x4 … 1 1IP2
 x3 + x4 … 1 1NLP2
 x1, c, x4 = 0 or 1

Minimum Cover EMS Model
The most obvious approach to modeling our EMS application of Figure 11.1 is to
minimize the number of locations needed to cover all districts. The following set
covering model results.

 min a
10

j = 1
 xj 1number of sites2

(11.8)

 s.t. x2 Ú 1 1district 12
 x1 + x2 Ú 1 1district 22
 x1 + x3 Ú 1 1district 32
 x3 Ú 1 1district 42
 x3 Ú 1 1district 52
 x2 Ú 1 1district 62
 x2 + x4 Ú 1 1district 72

670 Chapter 11 Discrete Optimization Models

 x3 + x4 Ú 1 1district 82
 x8 Ú 1 1district 92
 x4 + x6 Ú 1 1district 102
 x4 + x5 Ú 1 1district 112
 x4 + x5 + x6 Ú 1 1district 122
 x4 + x5 + x7 Ú 1 1district 132
 x8 + x9 Ú 1 1district 142
 x6 + x9 Ú 1 1district 152
 x5 + x6 Ú 1 1district 162

 x5 + x7 + x10 Ú 1 1district 172
 x8 + x9 Ú 1 1district 182
 x9 + x10 Ú 1 1district 192
 x10 Ú 1 1district 202

 x1, c, x10 = 0 or 1

One optimal solution chooses the six sites 2, 3, 4, 6, 8, and 10. That is,

 x2
* = x3

* = x4
* = x6

* = x8
* = x10

* = 1

 x1
* = x5

* = x7
* = x9

* = 0

Maximum Coverage EMS Model
In the Austin case, as in many other real instances, the straightforward covering
model (11.8) proves inadequate because it calls for too many sites. Suppose that we
have funds for only 4 EMS locations. How can we find the collection of 4 that mini-
mizes coverage insufficiency?

For this version of the model we need estimates of the demand or importance
of covering each service district. We will assume the following values have been esti-
mated by EMS staff:

District District District
i Value i Value i Value

1 5.2 8 12.2 15 15.5

2 4.4 9 7.6 16 25.6

3 7.1 10 20.3 17 11.0

4 9.0 11 30.4 18 5.3

5 6.1 12 30.9 19 7.9

6 5.7 13 12.0 20 9.9

7 10.0 14 9.3

Next we introduce extra decision variables to model uncovered districts i.

11.3 Set Packing, Covering, and Partitioning Models 671

Set packing, covering, and partitioning models can be modi-
fied to penalize uncovered items i by introducing new variables

 yi ! e1 if item i is uncovered in the solution
0 otherwise

into each constraint i.

Principle 11.12

Including such variables, the EMS model becomes

 min 5.2y1 + 4.4y2 + 7.1y3 + 9.0y4 + 6.1y5 (uncovered

 + 5.7y6 + 10.0y7 + 12.2y8 + 7.6y9 + 20.3y10
 district

 + 30.4y11 + 30.9y12 + 12.0y13 + 9.3y14 + 15.5y15
 importance)

 + 25.6y16 + 11.0y17 + 5.3y18 + 7.9y19 + 9.9y20

 s.t. x2 + y1 Ú 1 1district 12
 x1 + x2 + y2 Ú 1 1district 22
 x1 + x3 + y3 Ú 1 1district 32
 x3 + y4 Ú 1 1district 42
 x3 + y5 Ú 1 1district 52
 x2 + y6 Ú 1 1district 62
 x2 + x4 + y7 Ú 1 1district 72
 x3 + x4 + y8 Ú 1 1district 82 (11.9)

 x8 + y9 Ú 1 1district 92
 x4 + x6 + y10 Ú 1 1district 102
 x4 + x5 + y11 Ú 1 1district 112
 x4 + x5 + x6 + y12 Ú 1 1district 122
 x4 + x5 + x7 + y13 Ú 1 1district 132
 x8 + x9 + y14 Ú 1 1district 142
 x6 + x9 + y15 Ú 1 1district 152
 x5 + x6 + y16 Ú 1 1district 162
 x5 + x7 + x10 + y17 Ú 1 1district 172
 x8 + x9 + y18 Ú 1 1district 182
 x9 + x10 + y19 Ú 1 1district 192
 x10 + y20 Ú 1 1district 202

a
10

j = 1
 xj … 4 1at most four2

 x1, c, x10 = 0 or 1

 y1, c, y20 = 0 or 1

672 Chapter 11 Discrete Optimization Models

Here the objective function minimizes the total importance of uncovered districts.
The last (noncovering) main constraint limits solutions to four EMS sites.

An optimal solution for this more realistic version chooses

 x3
* = x4

* = x5
* = x9

* = 1

 y1
* = y2

* = y6
* = y9

* = y20
* = 1

with all other decision variables = 0. That is, sites 3, 4, 5, and 9 are chosen, leaving
districts 1, 2, 6, 9, and 20 uncovered. The total importance of those districts, which is
the optimal objective value, equals 32.8.

exampLe 11.8: FormuLating maximum CoVering modeLs

Return to the set covering case of Example 11.7(a). Revise the model to maximize
the number of algorithms available within a budget of 12.

Solution: We introduce new variables yLP, yIP, and yNLP that = 1 if the indicated
algorithm is not provided, and = 0 otherwise. Then the required model is

min yLP + yIP + yNLP

s.t. x1 + x2 + x3 + x4 + yLP Ú 1 1LP2
 x2 + x4 + yIP Ú 1 1IP2
 x3 + x4 + yNLP Ú 1 1NLP2
 3x1 + 4x2 + 6x3 + 14x4 … 12 1budget2
 x1, c, x4 = 0 or 1

 yLP, yIP, yNLP = 0 or 1

Column Generation Models
Another common family of set packing, covering, and partitioning models are
derived from problems involving a combinatorially large array of possibilities too
complex to be modeled concisely. Column generation adopts a two-part strategy for
such problems.

Column generation approaches deal with complex combina-
torial problems by first enumerating a sequence of columns representing viable
solutions to parts of the problem, and then solving a set partitioning (or cov-
ering or packing) model to select an optimal collection of these alternatives
fulfilling all problem requirements. (See also Section 13.1).

Definition 11.13

The convenience of this approach comes from its flexibility. Any appropriate
scheme—however ad hoc—can be employed to generate a rich family of columns
meeting complex and difficult-to-model constraints. Optimization is reserved for
the second part of the strategy, when a well-formed model over the columns can be
addressed by standard ILP technology.

11.3 Set Packing, Covering, and Partitioning Models 673

appLiCation 11.4: aa Crew sCheduLing

A classic application of column generation arises in the enormously complex prob-
lem of scheduling crews for airlines. For example, American Airlines3 reports spend-
ing over $1.3 billion per year on salaries, benefits, and travel expenses of air crews.
Careful scheduling, or crew pairing as it is called, can produce enormous savings.

Figure 11.2 illustrates a (tiny) sequence of flights to be crewed in our fictitious case.
For example, flight 101 originates in Miami and arrives in Chicago some hours later.

Each pairing is a sequence of flights to be covered by a single crew over a 2- to
3-day period. It must begin and end in the base city where the crew resides.

Table 11.3 enumerates possible pairings of flights in Figure 11.2. For example,
pairing j = 1 begins at Miami with flight 101. After a layover in Chicago, the crew
covers flight 203 to Dallas–Ft. Worth and then flight 406 to Charlotte. Finally, flight
308 returns them to Miami.

3Based on R. Anbil, E. Gelman, B. Patty, and R. Tanga (1991), “Recent Advances in Crew-Pairing
Optimization at American Airlines,” Interfaces, 21:1, 62–74.

MIA

CHI

CHR

DFW

(101)

(402)

(203)

(204)

(305)

(406)

(407) (308)

(109)

(310)

(211)

(212)

Figure 11.2 Flight Schedule for AA Application

tabLe 11.3 Possible Pairings for AA Application

j Flight Sequence Cost j Flight Sequence Cost

1 101–203–406–308 2900 9 305–407–109–212 2600
2 101–203–407 2700 10 308–109–212 2050
3 101–204–305–407 2600 11 402–204–305 2400
4 101–204–308 3000 12 402–204–310–211 3600
5 203–406–310 2600 13 406–308–109–211 2550
6 203–407–109 3150 14 406–310–211 2650
7 204–305–407–109 2550 15 407–109–211 2350
8 204–308–109 2500

674 Chapter 11 Discrete Optimization Models

In real applications, intricate government and union rules regulate exactly which
sequences of flights constitute a reasonable pairing. Complex software is employed
to generate a list such as that of Table 11.3. Here we simply allow all closed sequences
of 3 or 4 flights in Figure 11.2. (See Section 13.1 for more discussion).

Column Generation Model for AA Application

Having enumerated a list of alternatives like Table 11.3, the remaining task is to find
a minimum total cost collection of columns staffing each flight exactly once. Define
decision variables

 xj ! e1 if pairing j is chosen
0 otherwise

Then the following set partitioning model does the job:

min 2900x1 + 2700x2 + 2600x3 + 3000x4 + 2600x5

(11.10)

 + 3150x6 + 2550x7 + 2500x8 + 2600x9 + 2050x10

 + 2400x11 + 3600x12 + 2550x13 + 2650x14 + 2350x15

 s.t. x1 + x2 + x3 + x4 = 1 1flight 1012
 x6 + x7 + x8 + x9 + x10 + x13 + x15 = 1 1flight 1092
 x1 + x2 + x5 + x6 = 1 1flight 2032
 x3 + x4 + x7 + x8 + x11 + x12 = 1 1flight 2042
 x12 + x13 + x14 + x15 = 1 1flight 2112
 x9 + x10 = 1 1flight 2122
 x3 + x7 + x9 + x11 = 1 1flight 3052
 x1 + x4 + x8 + x10 + x13 = 1 1flight 3082
 x5 + x12 + x14 = 1 1flight 3102
 x11 + x12 = 1 1flight 4022
 x1 + x5 + x13 + x14 = 1 1flight 4062
 x2 + x3 + x6 + x7 + x9 + x15 = 1 1flight 4072

 x1, c, x15 = 0 or 1

An optimal solution makes

 x1
* = x9

* = x12
* = 1

and all other xj
* = 0 at total cost $9100.

Pairing costs are equally complex. On-duty crews are guaranteed pay for minimum
periods, regardless of the part of that time they are actually flying. If the pairing re-
quires overnight stays away from home, hotel and other expenses are added. Values
for our illustration are shown in Table 11.3.

11.4 Assignment and Matching Models 675

exampLe 11.9: Forming CoLumn generation modeLs

A moving and storage company is allocating 5 long-distance moving loads to trucks.
One feasible combination covers loads 1 and 3 in a 4525-mile route; a second com-
bines loads 2, 3, and 4 in 2960 miles; a third hauls loads 2, 4, and 5 in 3170 miles; and
a fourth covers load 1, 4, and 5 in 5230 miles. Form a set partitioning model to decide
a minimum distance combination of routes covering each load exactly once.

Solution: We use the decision variables

 xj ! e1 if route j is chosen
0 otherwise

Then the required model is

min 4525x1 + 2960x2 + 3170x3 + 5230x4 1total miles2
 s.t. x1 + x4 = 1 1load 12

 x2 + x3 = 1 1load 22
 x1 + x2 = 1 1load 32
 x2 + x3 + x4 = 1 1load 42
 x3 + x4 = 1 1load 52

 x1, c, x4 = 0 or 1

11.4 assignment and matChing modeLs

We have already encountered assignment problems in network flow Section 10.6.
The issue is optimal matching or pairing of objects of two distinct types—jobs to
machines, sales personnel to customers, and so on. In this section we extend with a
number of variations that cannot be solved by network flow methods.

Assignment Constraints
It is standard to model all assignment forms with the decision variables

 xi, j ! e1 if i of the first set is matched with j of the second
0 otherwise

Then corresponding assignment constraints merely require that each object of each
set be paired exactly once.

Over decision variables xi, j = 1 if i is assigned to j and = 0
otherwise, assignment constraints take the form

 a
j

xi, j = 1 for all i

 a
i

xi, j = 1 for all j

 xi, j = 0 or 1 for all i, j

where all sums are limited to (i, j) combinations allowed in the instance.

Definition 11.14

676 Chapter 11 Discrete Optimization Models

The first system of constraints forces every i to be assigned. The second does the
same for every j.

CAM Linear Assignment Application Revisited
Section 10.6’s computer-aided manufacturing (CAM) model illustrates one assign-
ment case. Table 11.4 repeats total transportation, queueing, and processing times
for 8 pending jobs on 10 workstations to which they might next be routed. Each
workstation can accommodate only one job at a time. We want to find a minimum
total time routing.

Linear assignment models minimize or maximize a linear objec-
tive function of the form

 a
i
a

j
 ci, j xi, j

subject to assignment constraints 11.14 , where ci, j is the cost (or benefit) of
assigning i to j.

Definition 11.15

Costs are sums of single assignment decisions.

tabLe 11.4 Transportation and Processing Times for CAM Application

Next Workstation, j

Job, i 1 2 3 4 5 6 7 8 9 10

1 8 — 23 — — — — — 5 —
2 — 4 — 12 15 — — — — —
3 — — 20 — 13 6 — 8 — —
4 — — — — 19 10 — — — —
5 — — — 8 — 12 — — 16
6 14 — — — — — 8 — 3 —
7 — 6 — — — — — 27 — 12
8 — 5 15 — — — — 32 — —

After introducing dummy jobs 9 and 10, so that we have the same number of
jobs as machines, this problem clearly has the assignment form. A complete model is
given in (10.5) of Section 10.6. Our interest here is in the objective function

 min 8x1,1 + 23x1,3 + 5x1,9 + 4x2,2 + 12x2,4 + 15x2,5

(11.11)

 + 20x3,3 + 13x3,5 + 6x3,6 + 8x3,8 + 19x4,5 + 10x4,6

 + 8x5,4 + 12x5,7 + 16x5,10 + 14x6,1 + 8x6,7 + 3x6,9

 + 6x7,2 + 27x7,8 + 12x7,10 + 5x8,2 + 15x8,3 + 32x8,8

Linear Assignment Models
CAM model (10.5) is a linear assignment model because its objective function
(11.11) is linear.

11.4 Assignment and Matching Models 677

exampLe 11.10: FormuLating Linear assignment modeLs

A swimming coach is choosing his team for a medley relay. One swimmer will swim
the back stroke leg j = 1, one the breast stroke leg j = 2, one the butterfly leg
j = 3, and one the free-style leg j = 4. From previous experience the coach can
estimate the time, ti, j, that swimmer i could achieve on leg j. Formulate a linear as-
signment model to choose the fastest medley team.

Solution: Using the decision variables

 xi, j ! e1 if swimmer i swims leg j
0 otherwise

the required model is

 min a
4

i = 1
a

4

j = 1
 ti, jxi, j 1team time2

 s.t. a
4

j = 1
 xi, j = 1 i = 1, c, 4 1one leg per swimmer2

 a
4

i = 1
 xi, j j = 1, c, 4 1one swimmer per leg2

 xi, j = 0 or 1 i = 1, c, 4; j = 1, c, 4

Swimmers are assigned to relay legs to minimize total team time.

Quadratic Assignment Models
What produces the linearity in definition 11.15 is that the objective function weights
single decisions to pair i in one set with j in the other. For example, in objective
(11.11), a decision to assign job 4 to workstation 5 adds 19 to the total time of the
solution, regardless of how other decisions are resolved.

Many assignment problem circumstances do not fit the linear case because the
objective function depends on combinations of decisions. That is, the impact of one
decision cannot be assessed until we know how others are resolved. Such circum-
stances often lead to quadratic assignment models.

Quadratic assignment models minimize or maximize a qua-
dratic objective function of the form

 a
i
a

j
a

k 7 i
a
i ≠ j

 ci, j, k, /xi, jxk, /

subject to assignment constraints 11.14 , where ci, j, k, / is the cost (or benefit) of
assigning i to j and k to /.

Definition 11.16

Notice that each objective function term
 ci, j, k, / # xi, j # xk, /

involves two assignment decisions. Cost ci, j, k, / is realized only if both xi, j = 1 and
xk, / = 1. That is, ci, j, k, / applies only if i is assigned to j and k is assigned to /.

678 Chapter 11 Discrete Optimization Models

1

2

3

4

1
2
3
4

—
80

150
150

80
—

130
100

150
130
—

120

170
100
120
—

1 2 3 4j l

Distance (feet)

Figure 11.3 Mall Layout Application Locations

appLiCation 11.5: maLL Layout QuadratiC assignment

Some of the most common cases producing quadratic assignment models arise in
facility layout. We are given a collection of machines, offices, departments, stores,
and so on, to arrange within a facility, and a set of locations within which they must
fit. The problem is to decide which unit to assign to each location.

Figure 11.3 illustrates with 4 possible locations for stores in a shopping mall.
Walking distances (in feet) between the shop locations are displayed in the adjacent
table. The 4 prospective tenants for the shop locations are listed in Table 11.5. The
table also shows the number of customers each week (in thousands) who might wish
to visit various pairs of shops. For example, a projected 5 thousand customers per
week will visit both 1 (Clothes Are) and 2 (Computers Aye).

Mall managers want to arrange the stores in the 4 locations to minimize customer
inconvenience. One very common measure is flow-distance, the product of flow vol-
umes between facilities and the distances between their assigned locations. For exam-
ple, if shop 1 (Clothes Are) is located in space 1, and shop 4 (Book Bazaar) is located
in space 2, their 7 thousand common customers will have to walk the 80 feet between
the locations. This sums to 7 # 80 = 560 thousand customer-feet to the flow-distance.

tabLe 11.5 Mall Layout Application Tenants

Common Customers
with k (000’s)

Store, i 1 2 3 4

1: Clothes Are — 5 2 7
2: Computers Aye 5 — 3 8
3: Toy Parade 2 3 — 3
4: Book Bazaar 7 8 3 —

Mall Layout Application Model
Notice that the flow-distance for any pair of shops cannot be computed until we
know where both are assigned. This is the assignment combinations characteristic
that yields quadratic assignment models.

11.4 Assignment and Matching Models 679

Using the decision variables

 xi, j ! e1 if shop i is assigned to location j
0 otherwise

the required quadratic assignment model is

 min 5180x1,1x2,2 + 150x1,1x2,3 + 170x1,1x2,4 1shops 1 and 22

(11.12)

 + 80x1,2x2,1 + 130x1,2x2,3 + 100x1,2x2,4

 + 150x1,3x2,1 + 130x1,3x2,2 + 120x1,3x2,4

 + 170x1,4x2,1 + 100x1,4x2,2 + 120x1,4x2,32
 2180x1,1x3,2 + 150x1,1x3,3 + 170x1,1x3,4 1shops 1 and 32

 + 80x1,2x3,1 + 130x1,2x3,3 + 100x1,2x3,4

 + 150x1,3x3,1 + 130x1,3x3,2 + 120x1,3x3,4

 + 170x1,4x3,1 + 100x1,4x3,2 + 120x1,4x3,32
 7180x1,1x4,2 + 150x1,1x4,3 + 170x1,1x4,4 1shops 1 and 42

 + 80x1,2x4,1 + 130x1,2x4,3 + 100x1,2x4,4

 + 150x1,3x4,1 + 130x1,3x4,2 + 120x1,3x4,4

 + 170x1,4x4,1 + 100x1,4x4,2 + 120x1,4x4,32
 3180x2,1x3,2 + 150x2,1x3,3 + 170x2,1x3,4 1shops 2 and 32

 + 80x2,2x3,1 + 130x2,2x3,3 + 100x2,2x3,4

 + 150x2,3x3,1 + 130x2,3x3,2 + 120x2,3x3,4

 + 170x2,4x3,1 + 100x2,4x3,2 + 120x2,4x3,32
 8180x2,1x4,2 + 150x2,1x4,3 + 170x2,1x4,4 1shops 2 and 42

 + 80x2,2x4,1 + 130x2,2x4,3 + 100x2,2x4,4

 + 150x2,3x4,1 + 130x2,3x4,2 + 120x2,3x4,4

 + 170x2,4x4,1 + 100x2,4x4,2 + 120x2,4x4,32
 3180x3,1x4,2 + 150x3,1x4,3 + 170x3,1x4,4 1shops 3 and 42

 + 80x3,2x4,1 + 130x3,2x4,3 + 100x3,2x4,4

 + 150x3,3x4,1 + 130x3,3x4,2 + 120x3,3x4,4

 + 170x3,4x4,1 + 100x3,4x4,2 + 120x3,4x4,32
 s.t. x1,1 + x1,2 + x1,3 + x1,4 = 1 11, Clothes Are2

 x2,1 + x2,2 + x2,3 + x2,4 = 1 12, Computers Aye2
 x3,1 + x3,2 + x3,3 + x3,4 = 1 13, Toy Parade2
 x4,1 + x4,2 + x4,3 + x4,4 = 1 14, Book Bazaar2
 x1,1 + x2,1 + x3,1 + x4,1 = 1 1location 12
 x1,2 + x2,2 + x3,2 + x4,2 = 1 1location 22
 x1,3 + x2,3 + x3,3 + x4,3 = 1 1location 32
 x1,4 + x2,4 + x3,4 + x4,4 = 1 1location 42

 xi, j = 0 or 1 i = 1, c, 4; j = 1, c, 4

680 Chapter 11 Discrete Optimization Models

exampLe 11.11: FormuLating QuadratiC assignment modeLs

An industrial engineer has divided a proposed machine shop’s floor area into 12
grid squares, g, each of which will be the location of a single machine m. He has also
estimated the distance, dg, g=, between all pairs of grid squares and the number of
units, fm, m=, that will have to travel between machines m and m= (in both directions)
during each week of operation. Formulate a quadratic assignment model to layout
the shop in a way that will minimize material handling cost (i.e., minimize the prod-
uct of between machine flows and the distance between their locations). Assume
dg, g= = dg=, g.

Solution: Using the decision variables

 xm, g ! e1 if machine m is located at grid square g
0 otherwise

the required model is

min a
12

m = 1
a
12

g = 1
a
12

m= 7 m

a
12

g= = 1
g= ≠ g

 fm, m=dg, g=xm, gxm=, g= 1flow distance2

 s.t. a
12

g = 1
 xm, g = 1 m = 1, c, 12 1square per machine2

 a
12

m = 1
 xm, g = 1 g = 1, c, 12 1machine per square2

 xi, j = 0 or 1 m = 1, c, 12; g = 1, c, 12

Machines are assigned to grid squares to minimize the total flow distance which
measures the material handling implication of a layout. Index ranges in the objec-
tive function assure that each pair of machines and locations is reflected just once.

The objective function computes total flow distance for all pairs of shops and all
possible assigned locations. Assignment constraints assure that one shop goes to
each location and each location gets one shop. An optimal assignment places shop
1 in location 1, shop 2 in location 4, shop 3 in location 3, and shop 4 in location 2, for
a total flow distance of 3260 thousand customer-feet.

Generalized Assignment Models
Main assignment constraints of definition 11.14 require, respectively, that each
object i of one set is assigned to exactly one j of the other, and that each j receives
one i. Suppose, instead, that each object i must be assigned to some j, but that j’s
may receive several i. Specifically, define

 bj ! capacity of j

 si, j ! size, space, or similar amount of j’s capacity consumed if i is assigned to j

 ci, j ! cost 1or benefit2 of assigning i to j

11.4 Assignment and Matching Models 681

Then finding the best way to assign all i without violating capacities is called a
 generalized assignment model.

appLiCation 11.6: Cdot generaLized assignment

The Canadian Department of Transportation encountered a problem of the gen-
eralized assignment form when reviewing their allocation of coast guard ships on
Canada’s Pacific coast.4 The ships maintain such navigational aids as lighthouses
and buoys. Each of the districts along the coast is assigned to one of a smaller num-
ber of coast guard ships. Since the ships have different home bases and different
equipment and operating costs, the time and cost for assigning any district varies
considerably among the ships. The task is to find a minimum cost assignment.

Table 11.6 shows data for our (fictitious) version of the problem. Three ships—
the Estevan, the Mackenzie, and the Skidegate—are available to serve 6 districts.
Entries in the table show the number of weeks each ship would require to maintain
aides in each district, together with the annual cost (in thousands of Canadian dollars).
Each ship is available 50 weeks per year.

4Based on J. G. Debanne and Jean-Noel Lavier (1979), “Management Science in the Public
Sector—the Estevan Case,” Interfaces, 9:2, part 2, 66–77.

Generalized assignment models, which encompass cases
where allocation of i to j requires fixed size or space si, j within j capacity bj,
have the form

min or max a
i
a

j
 ci, jxi, j

s.t. a
j

 xi, j = 1 for all i

 a
j

 si, jxi, j … bj for all j

 xi, j = 0 or 1 for all i, j

Here ci, j is the cost (or benefit) of assigning i to j and all sums are limited to (i, j)
combinations allowed in the instance.

Definition 11.17

tabLe 11.6 Costs and Times for the CDOT Application

District, i

Ship, j 1 2 3 4 5 6

1: Estevan Cost 130 30 510 30 340 20
Time 30 50 10 11 13 9

2: Mackenzie Cost 460 150 20 40 30 450
Time 10 20 60 10 10 17

3: Skidegate Cost 40 370 120 390 40 30
Time 70 10 10 15 8 12

682 Chapter 11 Discrete Optimization Models

CDOT Application Model
Using the decision variables

 xi, j ! e1 if district i is assigned to ship j
0 otherwise

this CDOT application can be formulated

 min 130x1,1 + 460x1,2 + 40x1,3 + 30x2,1 + 150x2,2 + 370x2,3

 + 510x3,1 + 20x3,2 + 120x3,3 + 30x4,1 + 40x4,2 + 390x4,3

 + 340x5,1 + 30x5,2 + 40x5,2 + 20x6,1 + 450x6,2 + 30x6,3

s.t. x1,1 + x1,2 + x1,3 = 1 1district 12
 x2,1 + x2,2 + x2,3 = 1 1district 22
 x3,1 + x3,2 + x3,3 = 1 1district 32
 x4,1 + x4,2 + x4,3 = 1 1district 42 (11.13)

 x5,1 + x5,2 + x5,3 = 1 1district 52
 x6,1 + x6,2 + x6,3 = 1 1district 62
 30x1,1 + 50x2,1 + 10x3,1 1Estevan2

 + 11x4,1 + 13x5,1 + 9x6,1 … 50

 10x1,2 + 20x2,2 + 60x3,2 1Mackenzie2
 + 10x4,2 + 10x5,2 + 17x6,2 … 50

 70x1,3 + 10x2,3 + 10x3,3 1Skidegate2
 + 15x4,3 + 8x5,3 + 12x6,3 … 50

 xi, j = 0 or 1 i = 1, c, 6; j = 1, c, 3

The objective function minimizes total cost. The first 6 constraints assure that
every district is assigned to one ship, and the last 3 keep work assigned to each ship
within the 50 weeks available. An optimal solution assigns districts 1, 4, and 6 to the
Estevan, districts 2 and 5 to the Mackenzie, and district 3 to the Skidegate at a total
cost of $480,000.

exampLe 11.12: FormuLating generaLized assignment modeLs

Objects i = 1, c, 100 of volume ci cubic meters are being stored in an automated
warehouse. Storage locations j = 1, c, 20 are located dj meters from the system’s
input/output station, and all have capacity b cubic meters. Formulate a generalized
assignment model to store all items at minimum total travel distance assuming that
as many objects can be placed in any location as volume permits.

Solution: Using the decision variables

 xi, j ! e1 if object i is stored in location j
0 otherwise

11.4 Assignment and Matching Models 683

Matching Models
Assignment problems considered so far always pair objects in two distinct sets. One
final variation eliminates the distinction between the sets. Decision variables of
such matching models are

 xi, i= ! e1 if i is paired with i =

0 otherwise

where by convention index i = 7 i to avoid double counting.

Matching models, which seek an optimal pairing of like
objects i, have the form

min or max a
i
a
i= 7 i

ci, i xi, i=

s.t. a
i= 6 i

x i=, i + a
i= 7 i

 xi, i = = 1 for all i

 xi, i= = 0 or 1 for all i, i = 7 i

Here ci, i= is the cost (or benefit) of pairing i with i = and all sums are limited to
1i, i =2 combinations allowed in the instance.

Definition 11.18

The two sums in each main constraint of formulation 11.18 are required because
any particular i will be the higher index in some pairs and the lower index in others.

Matching models include linear assignment cases 11.15 if allowed pairings
are restricted to those matching an object in one class with an object in another.
However, the matching term is usually reserved for the more general case where all
objects come from a single class.

appLiCation 11.7: superFi speaKer matChing

We may illustrate matching with the task faced by fictitious high-fidelity speaker man-
ufacturer Superfi. Superfi sells its speakers in pairs. Even though the manufacturing
process maintains the most rigid quality standards, any two speakers produced will
still interfere slightly with each other when connected to the same stereo system.

the required generalized assignment model is

 min a
100

i = 1
 a

20

j = 1
dj xi, j 1total distance2

 a
20

j = 1
 xi, j = 1 i = 1, c, 100 1each i stored2

 a
100

j = 1
 ci xi, j … b j = 1, c, 20 1j capacity2

 xi, j = 0 or 1 i = 1, c, 100; j = 1, c, 20

The objective function totals move distance to assigned locations, the first system of
main constraints assures that every object is stored, and the second enforces capacities.

684 Chapter 11 Discrete Optimization Models

To improve its product quality even more, Superfi has measured the distortion
di, i= for each pair of speakers in the current lot. They wish to determine how to pair
the speakers so that total distortion is minimized.

Notice that any two speakers may be paired. There is no distinction between
large and small, or left and right.

Superfi Application Model
We may model this problem with the decision variables

 xi, i= ! e1 if speakers i and i = are paired
0 otherwise

There is one for each pair 1i, i =2, i 6 i =. The corresponding matching model 11.18 is

 min a
i
a
i= 7 i

 di, i=xi, i= 1distortion2

s.t. a
i= 6 i

 xi=, i + a
i= 7 i

 xi=, i = 1 for all i 1each speaker paired2 (11.14)

 xi, i= = 0 or 1 for all i, i = 7 i

The objective function sums the distortion of all selected pairs, and main constraints
assure that each speaker is part of exactly one pair.

exampLe 11.13: FormuLating matChing modeLs

The instructor in an operations research class is assigning his students to 2-person
teams for a term project. Each student s has scored his or her preference ps, s= for
working with each other student s=. Formulate a matching model to form teams in a
way that maximizes total preference.

Solution: Using the decision variables

 xi, i=! e1 if i is teamed with i =

0 otherwise

the required matching model is

max a
i
a
i= 7 i

1pi, i= + pi=, i2xi, i= 1preference2

s.t. a
i= 6 i

 xi=, i + a
i= 7 i

 xi, i= = 1 for all i 1each student paired2
 xi, i= = 0 or 1 for all i, i = 7 i

Each term of the objective captures the two-way preference gain of teaming i with
i =, and the main constraints assure that each student is assigned to one team.

Tractability of Assignment and Matching Models
The various models of the assignment family presented in this section provide a
good illustration of the tremendous variation in tractability of discrete optimization
models.

11.5 Traveling Salesman and Routing Models 685

11.5 traVeLing saLesman and routing modeLs

Among the most common discrete optimization problems are those that organize
a collection of customer locations, jobs, cities, points, and so on, into sequences or
routes. Sometimes such routing models form all points into a single sequence. Other
times, several routes are required.

Traveling Salesman Problem
The simplest and most famous of routing problems is known to researchers as the
traveling salesman problem.

Linear assignment models are highly tractable because they
can be viewed as network flow problems, and thus as special cases of linear
programming. Even more efficient algorithms exist (Section 10.7).

Principle 11.19

It is very difficult to compute global optima in quadratic
assignment models because the nonlinear objective function precludes even
the ILP methods of Chapter 12. Improving search heuristics like those of
Chapter 15 are usually applied.

Principle 11.20

Generalized assignment models, which are ILPs, can be solved
in moderate size by the methods of Chapter 12. Still, they are far less tractable
than the linear assignment case.

Principle 11.21

Matching models are more difficult to solve than linear assign-
ment cases, but efficient special-purpose algorithms are known that can solve
quite large instances.

Principle 11.22

The traveling salesman problem (TSP) seeks a minimum-
total-length route visiting every point in a given set exactly once.

Definition 11.23

The name derives from a mythical salesperson who must make a tour of the
cities in his or her territory while traveling the least possible distance. TSPs actually
occur in a much wider expanse of applications. Any task of sequencing objects in
minimum total cost, length, or time can be viewed as a traveling salesman problem.

appLiCation 11.8: nCb CirCuit board tsp
A practical scenario for thinking about traveling salesman problems occurs in the
manufacture of printed circuit boards for electronics.5 Circuit boards have many
small holes through which chips and other components are wired. In a typical

5Based in part on S. Danusaputro, Chung-Yee Lee, and L. A. Martin-Vega (1990), “An Efficient
Algorithm for Drilling Printed Circuit Boards,” Computers and Industrial Engineering, 18, 145–151.

686 Chapter 11 Discrete Optimization Models

1

2

3

4 5

7

6

8

9

10

length = 92.8

Figure 11.4 Board Drilling Locations for NCB Application

example, several hundred holes may have to be drilled in up to 10 different sizes.
Efficient manufacture requires that these holes be completed as rapidly as possible
by a moving drill. Thus for any single size, the question of finding the most efficient
drilling sequence is a traveling salesman routing problem.

Figure 11.4 shows the tiny instance that we will investigate for fictional board
manufacturer NCB. We seek an optimal route through the 10 hole locations indi-
cated. Table 11.7 reports straight-line distances di, j between hole locations i and j.
Lines in Figure 11.4 show a fair quality solution with total length 92.8 inches. The
best route is 11 inches shorter (see Section 15.2).

Symmetric versus Asymmetric Cases of the TSP
An important distinction among traveling salesman problems concerns whether dis-
tances between points are symmetric or asymmetric.

tabLe 11.7 Distances between Holes in NCB Application

i j 1 2 3 4 5 6 7 8 9 10

 1 — 3.6 5.1 10.0 15.3 20.0 16.0 14.2 23.0 26.4
 2 3.6 — 3.6 6.4 12.1 18.1 13.2 10.6 19.7 23.0
 3 5.1 3.6 — 7.1 10.6 15.0 15.8 10.8 18.4 21.9
 4 10.0 6.4 7.1 — 7.0 15.7 10.0 4.2 13.9 17.0
 5 15.3 12.1 10.6 7.0 — 9.9 15.3 5.0 7.8 11.3
 6 20.0 18.1 15.0 15.7 9.9 — 25.0 14.9 12.0 15.0
 7 16.0 13.2 15.8 10.0 15.3 25.0 — 10.3 19.2 21.0
 8 14.2 10.6 10.8 4.2 5.0 14.9 10.3 — 10.2 13.0
 9 23.0 19.7 18.4 13.9 7.8 12.0 19.2 10.2 — 3.6
10 26.4 23.0 21.9 17.0 11.3 15.0 21.0 13.0 3.6 —

11.5 Traveling Salesman and Routing Models 687

A traveling salesman problem is symmetric if the distance or
cost of passing from any point i to any other point j is the same as the distance
from j to i. Otherwise, the problem is asymmetric.

Definition 11.24

Our NCB application is symmetric because di, j = dj, i in Table 11.7. In other cases,
distances are not symmetric in this way because travel from i to j is with the traffic, and
travel from j to i against, or because of a host of similar asymmetric circumstances.

Formulating the Symmetric TSP
One thing that intrigues researchers about traveling salesman problems is that there
are many different formulations—none of them straightforward. Most ILP models
of the symmetric case employ decision variables, i 6 j,

 xi, j ! e1 if the route includes a leg between i and j
0 otherwise

Notice that we define xi, j only for i 6 j. This numbering convention avoids the
duplication that could result because a leg between i and j implies one between j and
i, and costs are the same.

In terms of these new decision variables, the total route length now has the
easy linear form

 mina
i

 a
j 7 i

 di,jxi,j (11.15)

What makes ILP traveling salesman models complex is their constraints. A
little contemplation will make one system clear. In the symmetric case, exactly two
x variables relating to any point i can be = 1 in a feasible solution. One links i to the
city before it in the route, and the other links i to the city after. We can express this
requirement mathematically with constraints

 a
j 6 i

 xj, i + a
j 7 i

 xi,j = 2 for all i (11.16)

A specific instance for i = 5 in the NCB application of Figure 11.4 is

x1,5 + x2,5 + x3,5 + x4,5 + x5,6 + x5,7 + x5,8 + x5,9 + x5,10 = 2

exampLe 11.14: modeLing tsps as iLps

The following graph shows the available links joining 6 points, with numbers on
edges indicating transit times.

1 2

3 4

5 6

10

10

10

1

1

1
1

1

1

688 Chapter 11 Discrete Optimization Models

Subtours
Figure 11.5 illustrates why constraints (11.16) are not usually enough. The solution
shown does have two links at each point. But it divides the 10 hole locations among
three subtours or miniroutes. We seek a single route through all the points.

No one has any difficulty understanding subtours, but constraints to prevent
them are less obvious. One form of subtour elimination constraints is obtained
from any

S ! proper subset of the points>cities to be routed

Every tour must cross between points in S and points outside at least twice. This
leads to constraints of the form

 £number of legs
between points in S
and points not in S

≥ = a
i∈S

 a
jFS

 xi,j = a
iFS

 a
j∈S

 xi,j Ú 2 (11.17)

There is one such constraint for every proper subset S of at least 3 cities.

We wish to find the shortest time route visiting all nodes exactly once and using
only links shown in the graph.

(a) Explain why this problem can be viewed as a symmetric traveling salesman
problem.

(b) Formulate integer linear program objective (11.15) for this instance.

(c) Formulate constraints (11.16) for this instance.

Solution:

(a) The problem is a TSP because it requires a closed route visiting each point. It
is symmetric because the time is the same whether a link is passed in the i-to-j or
the j-to-i direction.

(b) The linear objective required is

min 10x1,2 + 1x1,3 + 1x1,5 + 1x2,4 + 1x2,6

 + 10x3,4 + 1x3,5 + 1x4,6 + 10x5,6

which minimizes total tour length.

(c) Needed constraints (11.16) are

 x1,2 + x1,3 + x1,5 = 2 1node 12
 x1,2 + x2,4 + x2,6 = 2 1node 22
 x1,3 + x3,4 + x3,5 = 2 1node 32
 x2,4 + x3,4 + x4,6 = 2 1node 42
 x1,5 + x3,5 + x5,6 = 2 1node 52
 x2,6 + x4,6 + x5,6 = 2 1node 62

11.5 Traveling Salesman and Routing Models 689

The subtour solution of Figure 11.5 violates several of these constraints. For
example, pick S ! 55, 6, 9, 106. The corresponding subtour elimination constraint
lists all possible tour legs passing into or out of set S:

 x1,5 + x1,6 + x1,9 + x1,10 + x2,5

 + x2,6 + x2,9 + x2,10 + x3,5 + x3,6

 + x3,9 + x3,10 + x4,5 + x4,6 + x4,9

 + x4,10 + x5,7 + x6,7 + x7,9 + x7,10

 + x5,8 + x6,8 + x8,9 + x8,10

 Ú 2

1

2

3

4
5

7

6

8

9

10

Figure 11.5 Subtour Solution for NCB Application

exampLe 11.15: Forming subtour eLimination Constraints

Return to the TSP of Example 11.14.

(a) Show by inspection that the least cost binary solution over = 2 constraints of
Example 11.14(b) has subtours.

(b) Formulate a subtour elimination constraint (11.17) not satisfied by the subtour
solution of part (a).

Solution:

(a) It is obvious that the least cost binary solution touching each node with exactly
two links has

 x1,3 = x1,5 = x3,5 = 1

 x2,4 = x2,6 = x4,6 = 1

 x1,2 = x3,4 = x5,6 = 0

It contains subtours 1–3–5–1 and 2–4–6–2.

690 Chapter 11 Discrete Optimization Models

ILP Model of the Symmetric TSP
Combining expressions (11.15)–(11.17) produces a full integer linear programming
formulation of the symmetric traveling salesman problem.

(b) One violated subtour elimination constraint (11.17) arises from

 S ! 51, 3, 56
Summing all edges joining a node in S to one outside gives

 x1,2 + x3,4 + x5,6 Ú 2

An integer linear programming formulation of the symmetric
traveling salesman problem is

min a
i

 a
j 7 i

 di,jxi,j

s.t. a
j 6 i

 xj,i + a
j 7 i

 xi,j = 2 for all i

 a
i∈S

 a
jFS, j 7 i

 xi,j + a
iFS

 a
j∈S, j 7 i

 xi,j Ú 2 for all proper point
subsets S, � S � Ú 3

 xi,j = 0 or 1 for all i; j 7 i

where xi,j = 1 if link (i, j) is part of the solution, and di,j ! the distance from
point i to point j.

Principle 11.25

ILP Model of the Asymmetric TSP
How must formulation 11.25 be modified to address the asymmetric case? Several
insights are required.

•	 In the asymmetric case we use decision variables

xi,j ! e1 if the tour passes i to j
0 otherwise

for all combinations of i and j. With costs asymmetric it matters whether the route goes
i to j of j to i.

•	 Instead of just meeting each point twice, any asymmetric TSP route must enter each
point once and leave each point once. Thus = 2 constraints of the symmetric formula-
tion become assignment constraints (definition 11.14) in the asymmetric case:

a
j

 xj, i = 1 for all i 1enter i2

a
j

 xi,j = 1 for all i 1leave i2

•	 Each tour must enter and leave every subset S of points. Thus we may accomplish sub-
tour elimination by requiring the tour to leave every S at least once:

a
i∈S

 a
jFS

 xi,j Ú 1 all proper point subsets S

Combining produces a full asymmetric formulation.

11.5 Traveling Salesman and Routing Models 691

The asymmetric traveling salesman problem can be formu-
lated as the integer linear program

min a
i

 a
j ≠ i

 di,jxi,j

s.t. a
j

 xj, i = 1 for all i

 a
j

 xi,j = 1 for all i

 a
i∈S

 a
jFS

 xi,j Ú 1 for all proper point subsets S, �S � Ú 2

 xi,j = 0 or 1 for all i, j

where xi,j = 1 if the tour passes from i to j and di,j ! distance from i to j.

Principle 11.26

exampLe 11.16: FormuLating asymmetriC tsps

Return to the TSP of Examples 11.14 and 11.15, and assume that a 2-unit cost pen-
alty is required when the tour passes from a higher to a lower node number. That is,
d1,2 = 10, but d2,1 = 10 + 2 = 12, d1,3 = 1, but d3,1 = 1 + 2 = 3, and so on.

(a) Explain why the problem is now an asymmetric TSP.

(b) Formulate an objective function for the corresponding model 11.26 .

(c) Formulate constraints requiring the tour to enter and leave each node exactly once.

(d) Formulate a subtour elimination constraint requiring the tour to leave node
subset S = 51, 3, 56 at least once.

Solution:

(a) The penalty of 2 makes di,j ≠ dj,i, which turns the problem asymmetric.

(b) Including variables for all one-way passages, the objective function of for-
mat 11.26 is

min 10x1,2 + 1x1,3 + 1x1,5

 + 12x2,1 + 1x2,4 + 1x2,6

 + 3x3,1 + 10x3,4 + 1x3,5

 + 3x4,2 + 12x4,3 + 1x4,6

 + 3x5,1 + 3x5,3 + 10x5,6

 + 3x6,2 + 3x6,4 + 10x6,5

(c) These constraints have the assignment form:

 x2,1 + x3,1 + x5,1 = 1
 x1,2 + x4,2 + x6,2 = 1
 x1,3 + x4,3 + x5,3 = 1
 x2,4 + x3,4 + x6,4 = 1
 x1,5 + x3,5 + x6,5 = 1
 x2,6 + x4,6 + x5,6 = 1

692 Chapter 11 Discrete Optimization Models

Quadratic Assignment Formulation of the TSP
There are an enormous number of subtour elmination constraints for a TSP on even a
modest number of points. That is why it is sometimes easier—especially in developing
heuristic procedures of Chapter 15—to deal with a TSP formulation having simpler
constraints. We can accomplish this, at the cost of making the objective function non-
linear, by formulating the TSP as a quadratic assignment (QAP) model 11.16 .

Think of the tour as a sequence or permutation of the points to be visited.
Decision variables in the QAP form assign sequence positions k to points i; that is,

yk,i ! e1 if kth point visited is i
0 otherwise

For example, the illustrative route of Figure 11.4 has

y1,1 = y2,3 = y3,6 = y4,5 = y5,4 = y6,8

 = y7,9 = y8,10 = y9,7 = y10,2

 = 1

when viewed as starting at hole 1. In terms of these variables, either the symmetric
or the asymmetric case can be formulated as an INLP.

plus

 x1,2 + x1,3 + x1,5 = 1

 x2,1 + x2,4 + x2,6 = 1

 x3,1 + x3,4 + x3,5 = 1

 x4,2 + x4,3 + x4,6 = 1

 x5,1 + x5,3 + x5,6 = 1

 x6,2 + x6,4 + x6,5 = 1

(d) To avoid any subtour among nodes in S = 51, 3, 56, we add subtour elimina-
tion constraint.

x1,2 + x3,4 + x5,6 Ú 1

The traveling salesman problem can be formulated as the qua-
dratic assignment model

min a
i
a

j
 di,j a

k
 yk,iyk + 1,j 1total length2

 a
i

 yk,i = 1 for all k 1each position occupied2

 a
k

 yk,i = 1 for all i 1each point visited2
 yk,i = 0 or 1 for all k, i

where yk,i = 1 if the kth visited point is i, and di,j ! distance from point i to
point j.

Principle 11.27

11.5 Traveling Salesman and Routing Models 693

Constraints in 11.27 have the usual assignment format 11.14 , but the objec-
tive function is less transparent. Terms

di,ja
k

 yk,i yk + 1,j

add in distance di,j exactly when j follows i somewhere in the chosen tour sequence.
(Here we take k + 1 to mean 1 when k is the highest-numbered point.) In Figure
11.4, for example, one of the nonzero terms would be

d3, 6
#

 y2,3
#

 y3,6

because holes 3 and 6 could be second and third in sequence. Summing over all i and
j recovers total distance.

Problems Requiring Multiple Routes
For many trucking and other distribution organizations, the problem is to design
many routes, not just one. The task begins with a collection of stops to be serviced.
Decisions first subdivide the stops into several routes and then choose the visitation
sequence for each route.

appLiCation 11.9: Ki truCK routing

Kraft Incorporated confronts such multiple-route design problems in planning truck
delivery of its food products to over 100,000 commercial, industrial, and military
customers in North America.6 Known customer requirements must be grouped into
truckloads and then routes planned.

Our tiny fictitious version of the KI case is illustrated in Figure 11.6. The
20 stops shown in the figure are to be serviced from a single depot. Table 11.8
 displays the requirements at each stop, expressed in fractions, fi, of a truckload. The
7 routes depicted in Figure 11.6 show one feasible solution.

6Based on H. K. Chung and J. B. Norback (1991), “A Clustering and Insertion Heuristic Applied to
a Large Routing Problem in Food Distribution,” Journal of the Operational Research Society, 42, 555–564.

1

2

3

4

5

6

7

8

9

10

11

12

13 14
15

16
17

18 19

20

depot

Figure 11.6 Depot and Delivery
Locations in the KI Application

694 Chapter 11 Discrete Optimization Models

KI Truck Routing Application Model
With complex problems like KI’s, it is not easy to see where to begin a model.

tabLe 11.8 Fractions of Truckloads to Be Delivered in KI Application

Stop, i Fraction, fi Stop, i Fraction, fi Stop, i Fraction, fi Stop, i Fraction, fi

1 0.25 6 0.70 11 0.21 16 0.38
2 0.33 7 0.28 12 0.68 17 0.26
3 0.39 8 0.43 13 0.16 18 0.29
4 0.40 9 0.50 14 0.19 19 0.17
5 0.27 10 0.22 15 0.22 20 0.31

Routing problems are characteristically difficult to represent
concisely in optimization models.

Principle 11.28

We will start with the assignment of stops to routes. The decision variables

zi,j ! e1 if stop i is assigned to route j
0 otherwise

Generalized assignment constraints (definition 11.17) then manage the allo-
cation of the 20 stops to seven routes:

 a
7

j = 1
 zi,j = 1 for all i = 1, c, 20 1each i to some j2

(11.18)

 a
20

j = 1
 fi zi,j … 1 for all j = 1, c, 7 1truck capacities2

 zi,j = 0 or 1 for all i = 1, c, 20; j = 1, c, 7

The first set makes sure every stop goes to some route, and the second keeps loads
to assigned trucks within capacity.

The difficulty of concisely formulating routing problems becomes apparent when
we try to express an objective function to go with (11.18). Certainly, it is something like

 a
7

j = 1
 uj1z2 (11.19)

where z is the vector of zi,j and

uj1z2 ! length of the best route through stops assigned
 to truck j by decision vector z

However, functions like uj1z2 are highly nonlinear. In fact, uj1z2 is the optimal solu-
tion value of a traveling salesman problem over the stops allocated to route j.

No concise expression of such functions exists. Still, we know what they mean
in the problem context. Chapter 15 will show that good heuristic solutions can be
obtained with rough approximations.

11.6 Facility Location and Network Design Models 695

11.6 FaCiLity LoCation and networK design modeLs

Principle 11.2 and definition 11.3 of Section 11.1 demonstrated how fixed charges can be
modeled with new binary variables and switching constraints. Virtually any linear pro-
gram with fixed charges can be modeled in that way, but some forms are especially com-
mon. In this section we introduce the classic facility location and network design cases.

Facility Location Models
Facility location models, also called warehouse location models and plant location
models, are perhaps the most frequently solved of all forms involving fixed charges.

Facility/plant/warehouse location models choose which of a
proposed list of facilities to open in order to service specified customer demands
at minimum total cost.

Definition 11.29

Costs include both the variable cost of servicing customers from chosen facilities
and the fixed cost of opening the facilities.

appLiCation 11.10: tmarK FaCiLities LoCation

AT&T has confronted many facility location problems in recommending sites for
the toll-free call-in centers of its telemarketing customers.7 Such centers handle tele-
phone reservations and orders arising in many geographic zones. Since telephone
rates vary dramatically depending on the zone of call origin and the location of
the receiving center, site selection is extremely important. A well-designed system
should minimize the total of call charges and center setup costs.

Our version of this scenario will involve fictional firm Tmark. Figure 11.7
shows the 8 sites under consideration for Tmark’s catalog order centers embedded

1

2 3

4

5

6

7

8

1

2

3

4

5

6

7

8

10

11

12

13

14

9

1
2
3
4
5
6
7
8

2400
7000
3600
1600
3000
4600
9000
2000

Fixed Costi

Figure 11.7 Customer Zones and Possible Facility Locations for Tmark Application

7Based on T. Spencer III, A. J. Brigandi, D. R. Dargon, and M. J. Sheehan (1990), “AT&T’s
Telemarketing Site Selection System Offers Customer Support,” Interfaces, 20:1, 83–96.

696 Chapter 11 Discrete Optimization Models

ILP Model of Facilities Location
Clearly, there are two kinds of decisions to make in facilities location: which facili-
ties to open, and how chosen facilities should serve customer demands. We employ
the decision variables

yi ! e1 if facility i is opened
0 otherwise

to determine which sites are selected. A second set,

xi,j ! fraction of customer j demand satisfied from facility i

decides how service is to be allocated. Combining produces a standard model of
facilities location.

in a map of the 14 calling zones. Table 11.9 shows corresponding unit calling charges,
ri,j. from each zone j to various centers i, and the zone’s anticipated call load, dj.

Any Tmark center selected can handle between 1500 and 5000 call units per
day. However, their fixed costs of operation vary significantly because of differences
in labor and real estate prices. Estimated daily fixed costs, fi, for the 8 centers are
displayed in Figure 11.7.

tabLe 11.9 Unit Call Charges and Demands for Tmark Application

Zone, j

Possible Center Location, i Call
Demand1 2 3 4 5 6 7 8

 1 1.25 1.40 1.10 0.90 1.50 1.90 2.00 2.10 250
 2 0.80 0.90 0.90 1.30 1.40 2.20 2.10 1.80 150
 3 0.70 0.40 0.80 1.70 1.60 2.50 2.05 1.60 1000
 4 0.90 1.20 1.40 0.50 1.55 1.70 1.80 1.40 80
 5 0.80 0.70 0.60 0.70 1.45 1.80 1.70 1.30 50
 6 1.10 1.70 1.10 0.60 0.90 1.30 1.30 1.40 800
 7 1.40 1.40 1.25 0.80 0.80 1.00 1.00 1.10 325
 8 1.30 1.50 1.00 1.10 0.70 1.50 1.50 1.00 100
 9 1.50 1.90 1.70 1.30 0.40 0.80 0.70 0.80 475
10 1.35 1.60 1.30 1.50 1.00 1.20 1.10 0.70 220
11 2.10 2.90 2.40 1.90 1.10 2.00 0.80 1.20 900
12 1.80 2.60 2.20 1.80 0.95 0.50 2.00 1.00 1500
13 1.60 2.00 1.90 1.90 1.40 1.00 0.90 0.80 430
14 2.00 2.40 2.00 2.20 1.50 1.20 1.10 0.80 200

Basic facilites location problems can be formulated as the
integer linear program

min a
i
a

j
 ci,jdjxi,j = a

i
 fiyi 1total cost2

s.t. a
i

 xi,j = 1 for all j 1fullfill j demand2

Principle 11.30

(Continued)

11.6 Facility Location and Network Design Models 697

This objective function sums all variable and fixed costs. The first system of
constraints assures that 100% of each customer demand is fulfilled. The second set
switches “on” facility capacity when the corresponding yi = 1. If the problem has no
true capacities on facilities, any sufficiently large value can provide a ui—perhaps
total demand.

Sometimes customers must be 100% serviced from a single facility, so that
constraints

xi,j = 0 or 1 for all i, j

are also enforced. Other times, demand can be split among several facilities, which
leaves xi,j continuous.

Tmark Facilities Location Application Model
Following format 11.30 , we can express a Tmark’s facilities location problem in the
mixed-integer linear program

 min a
8

i = 1
 a

14

j = 1
 1ri,jdj2xi,j + a

8

i = 1
 fiyi 1total cost2

(11.20)

s.t. a
8

i = 1
 xi,j = 1 for all j = 1, c.14 1carry j load2

 1500yi … a
14

j = 1
 dixi,j for all i = 1, c, 8 1minimum at i2

 a
14

j = 1
 djxi,j … 5000yi for all i = 1, c, 8 1maximum at i2

 xi,j Ú 0 for all i = 1, c, 8; j = 1, c, 14

 yi = 0 or 1 for all i = 1, c, 8

Here the objective function sums calling and setup costs. The total cost of call
load serviced by i for zone j is

1demand at j21i, j telephone rate21fraction of j serviced from i2 = djri,jxi,j

Most constraints of model (11.20) are identical to pattern 11.30 . Variables xi,j
are continuous because it is assumed that the load from a zone can be split among
several centers.

 a
j

 dj xi,j … uiyj for all i 1i capacity switching2
xi,j Ú 0 for all i, j

y1 = 0 or 1 for all i

where xi,j ! fraction of demand j fulfilled from i, yi = 1 if facility i is opened,
dj is the demand at j, ci,j is the unit cost of fulfilling j demand from i, fi is the
nonnegative fixed cost of opening facility i, and ui is the capacity of facility i.

698 Chapter 11 Discrete Optimization Models

The one new element is switching constraints dealing with minimum operating
levels. Constraints

1500yi … a
14

j = 1
 djxi,j

enforce the requirement that any open center i must handle at least 1500 call units
per day.

Solution of model (11.20) produces

y4
* = y8

* = 1

y1
* = y2

* = y3
* = y5

* = y6
* = y7

* = 0

with a total cost of $10,153 per day. Zones 1, 2, 4, 5, 6, and 7 are serviced from center 4,
and the rest from center 8.

exampLe 11.17: FormuLating FaCiLities LoCation modeLs

Environmental protection authorities have identified 14 possible offices around
the country from which inspectors would make annual visits to each of 111 sites at
high risk for oil spills. They have also measured the travel cost ci,j from location i to
every potential spill site j. Each spill site should be under the supervision of a single
 inspection office.

(a) Formulate a facilities location model to choose a minimum total cost collection
of offices and inspection assignments assuming that there is an annual fixed cost of
f for operating any office.

(b) Formulate a facilities location model to choose a minimum total cost collec-
tion of offices and inspection assignments assuming that fixed costs of operating
office are unknown but that it has been decided to open at most 9.

Solution: We follow integer linear programming format 11.30 .

(a) For this case the model required is

min a
14

i = 1
 a

111

j = 1
 ci,jxi,j + f a

14

i = 1
 yi 1total cost2

s.t. a
14

i = 1
 xi,j = 1 j = 1, c, 111 1each j inspected2

 a
111

j = 1
 xi,j … 111yi i = 1, c, 14 1i switching2

 xi,j = 0 or 1 i = 1, c, 14; j = 1, c, 111

 yi = 0 or 1 i = 1, c, 14

Since no capacities are specified for the offices, switching constraints use ui = 111.

11.6 Facility Location and Network Design Models 699

Network Design Models
Facility location models decide which nodes of a network to open. Network design
or fixed-charge network flow models decide which arcs to use. A continuous net-
work flow in variables xi,j is augmented with discrete variables yi,j implementing
fixed charges for opening/constructing/setting up arcs.

Every spill site can be covered by any open office. Variables xi,j are binary because
spill sites must be inspected from a single office.

(b) For this case the model required is

min a
14

i = 1
 a

111

j = 1
 ci,jxi,j 1travel cost2

s.t. a
14

j = 1
 xi,j = 1 j = 1, c, 111 1each j inspected2

 a
111

j = 1
 xi,j … 111yi i = 1, c, 14 1i switching2

 a
14

i = 1
 yi … 9 1max nine chosen2

 xi,j = 0 or 1 i = 1, c, 14; j = 1, c, 111

 yi = 0 or 1 i = 1, c, 14

Fixed charges have been omitted and a new constraint added that limits the number
of offices to 9.

The fixed-charge network flow or network design model on
a digraph on nodes k ∈ V with net demand bk, and arcs 1i, j2 ∈ A with capac-
ity ui,j, unit cost ci,j, and nonnegative fixed cost fi,j is

min a1i,j2∈A
 ci,jxi,j + a1i,j2∈A

 fi,jyi,j

s.t. a1i,k2∈A
 xi,k - a1k,j2∈A

 xk,j = bk for all k ∈ V

 0 … xi,j … ui,jyi,j for all 1i, j2 ∈ A

 yi,j = 0 or 1 for all 1i, j2 ∈ A

Definition 11.31

Main constraints in xi,j mirror network flow models 10.3 (Section 10.1) in conserv-
ing flow at each node. Switching constraints (definition 11.3) turn on arc capaci-
ties ui,j if the fixed charge is paid. As usual, capacities must be derived from other
constraints if not given explicitly—possibly by taking ui,j = the largest feasible
flow on arc 1i, j2.

700 Chapter 11 Discrete Optimization Models

Nodes 1 to 8 of the network represent population centers where smaller sewers feed
into the main regional network, and locations where treatment plants might be built.
Wastewater loads are roughly proportional to population, so the inflows indicated at
nodes represent population units (in thousands).

Arcs joining nodes 1 to 8 show possible routes for main collector sewers.
Most follow the topology in gravity flow, but one pumped line (4, 3) is included.
A large part of the construction cost for either type of line is fixed: right-of-way
acquisition, trenching, and so on. Still, the cost of a line also grows with the num-
ber of population units carried, because greater flows imply larger-diameter pipes.
The table in Figure 11.8 shows the fixed and variable cost for each arc in thousand
of dollars.

Treatment plant costs actually occur at nodes—here nodes 3, 7, and
8. Figure 11.8 illustrates, however, that such costs can be modeled on arcs by
introducing an artificial “supersink” node 9. Costs shown for arcs (3, 9), (7, 9),
and (8, 9) capture the fixed and variable expense of plant construction as flows
depart the network.

appLiCation 11.11: wastewater networK design

Network design applications may involve telecommunications, electricity, water, gas,
coal slurry, or any other substance that flows in a network. We illustrate with an
 application involving regional wastewater (sewer) networks.8

As new areas develop around major cities, entire networks of collector sewers
and treatment plants must be constructed to service growing population. Figure 11.8
displays our particular (fictional) instance.

8Based on J. J. Jarvis, R. L. Rardin, V. E. Unger, R. W. Moore, and C. C. Schimpeler (1978),
“Optimal Design of Regional Wastewater Systems: A Fixed Charge Network Flow Model,” Operations
Research, 26, 538–550.

12

4

5
6

3

7

8

9

273

14

36

21
8

13

pumped

gravity

population
units

plant arcs

(1, 2)
(1, 3)
(2, 3)
(2, 4)
(3, 4)
(3, 9)
(4, 3)
(4, 8)
(5, 6)
(5, 7)
(6, 7)
(6, 8)
(7, 4)
(7, 9)
(8, 9)

240
350
200
750
610

3800
1840
780
620
800
500
630

1120
3800
2500

21
30
22
58
43
1

49
63
44
51
56
94
82
1
2

Variable
 Cost

Fixed
CostArc

Figure 11.8 Wastewater Network Design Application

11.6 Facility Location and Network Design Models 701

Wastewater Network Design Application Model
To place our wastewater network design problem in format 11.31 , we need capac-
ities ui,j on the arcs. None are explicitly provided, but it is not difficult to determine
the maximum possible flow on each arc. For example, we may take

u2,3 = 27 + 3 = 30

because no solution would send more than the 27 thousand population units at node
1 and the 3 at node 2 along arc (2, 3).

With such derived capacities, we may model the wastewater system design
problem of Figure 11.8 as the following fixed-charge network flow problem:

min 21x1,2 + 30x1,3 + 22x2,3 + 58x2,4 + 43x3,4 1total cost2

(11.21)

 + 1x3,9 + 49x4,3 + 63x4,8 + 44x5,6 + 51x5,7

 + 56x6,7 + 94x6,8 + 82x7,4 + 1x7,9 + 2x8,9

 + 240y1,2 + 350y1,3 + 200y2,3 + 750y2,4 + 610y3,4

 + 3800y3,9 + 1840y4,3 + 780y4,8 + 620y5,6 + 800y5,7

 + 500y6,7 + 630y6,8 + 1120y7,4 + 3800y7,9 + 2500y8,9

s.t. -x1,2 - x1,3 = -27 1node 12
 x1,2 - x2,3 - x2,4 = -3 1node 22
 x1,3 + x2,3 + x4,3 - x3,4 - x3,9 = -14 1node 32
 x2,4 + x3,4 + x7,4 - x4,3 - x4,8 = -36 1node 42
 -x5,6 - x5,7 = -21 1node 52
 x5,6 - x6,7 - x6,8 = -8 1node 62
 x5,7 + x6,7 - x7,4 - x7,9 = -13 1node 72
 x4,8 + x6,8 - x8,9 = 0 1node 82
 x3,9 + x7,9 + x8,9 = 122 1node 92
 0 … x1,2 … 27y1,2, 0 … x1,3 … 27y1,3, 0 … x2,3 … 30y2,3 1switching2
 0 … x2,4 … 30y2,4, 0 … x3,4 … 44y3,4, 0 … x3,9 … 122y3,9

 0 … x4,3 … 108y4,3, 0 … x4,8 … 122y4,8, 0 … x5,6 … 21y5,6

 0 … x5,7 … 21y5,7, 0 … x6,7 … 29y6,7, 0 … x6,8 … 29y6,8

 0 … x7,4 … 42y7,4, 0 … x7,9 … 42y7,9, 0 … x8,9 … 122y8,9

 yi,j = 0 or 1 all arcs 1i, j2
Bold lines in Figure 11.8 indicate an optimal design. Lines (1, 3), (2, 3), (4, 3),

(5, 7), and (6, 7) should be constructed, along with the plant at node 7. Total cost is
$15,571,000.

exampLe 11.18: FormuLating networK design modeLs

The following digraph shows possible routes for cable television lines from broad-
casting center node 1 to towns at nodes 3 and 4. Node 2 is a connection box that may

702 Chapter 11 Discrete Optimization Models

11.7 proCessor sCheduLing and seQuenCing modeLs

Scheduling is the allocation of resources over time. The enormous range of
applications encompasses staffing activities such as the ONB shift planning in
Section 5.4, AA air crew scheduling in Section 11.3, Purdue final exam timeta-
bling in Section 2.4, and construction project management in Section 9.7. In this
section we introduce another very broad class: processor scheduling models that
sequence a collection of jobs through a given set of processing devices.

or may not be included in the ultimate system. Numbers on arcs are the fixed cost of
the corresponding cable line.

center

town

town

25

10

33

8

6

1 2

3

4

Formulate a fixed-charge network flow model to choose a least cost design provid-
ing service to both towns.

Solution: The problem provides no explicit supplies, demands, or capacities, and
there are no variable costs. Thus we may assume that demand = 1 at both cities,
with 2 units of flow supplied at node 1. Capacity is then 2 on arc (1,2), which might
carry both flows, and 1 on all other arcs.

Substituting these values in form 11.31 produces the integer linear program-
ming model

min 10y1,2 + 25y1,3 + 3 3y1,4 + 8y2,3 + 6y2,4 1cost2
s.t. -x1,2 - x1,3 - x1,4 = -2 1node 12

 x1,2 - x2,3 - x2,4 = 0 1node 22
 x1,3 + x2,3 = 1 1node 32
 x1,4 + x2,4 = 1 1node 42
 0 … x1,2 … 2y1,2, 0 … x1,3 … y1,3, 0 … x1,4 … y1,4 1switching2
 0 … x2,3 … y2,3, 0 … x2,4 … y2,4

y1,2, y1,3, y1,4, y2,3, y2,4 = 0 or 1

appLiCation 11.12: niFty notes singLe-maChine sCheduLing

We begin with the binder scheduling problem confronting a fictitious Nifty Notes
copy shop. Just before the start of each semester, professors at the nearby university
supply Nifty Notes with a single original of their class handouts, a projection of the
class enrollment, and a due date by which copies should be available. Then the Nifty

11.7 Processor Scheduling and Sequencing Models 703

Single-Processor Scheduling Problems
Our Nifty Notes application is a very simple case of single-processor (or single-
machine) scheduling.

Notes staff must rush to print and bind the required number of copies before each
class begins.

During the busy period each semester, Nifty Notes operates its single binding
station 24 hours per day. Table 11.10 shows process times, release times, and due
dates for the jobs j = 1, c, 6 now pending at the binder:

pj ! estimated process time 1in hours2 job j will require to bind

rj ! release time 1hour2 at which job j has>will become available for processing
1relative to time 0 = now2

dj ! due date 1hour2 by which job j should be completed
1relative to time 0 = now2

Notice that two jobs are already late 1dj 6 02.

We wish to choose an optimal sequence in which to accomplish these jobs.
No more than one can be in process at a time; and once started, a job must be com-
pleted before another can begin.

tabLe 11.10 Nifty Notes Scheduling Application Data

Binder Job, j

1 2 3 4 5 6

Process time, pj 12 8 3 10 4 18
Release time, rj -20 -15 -12 -10 -3 2
Due date, dj 10 2 72 -8 -6 60

Single-processor (or single-machine) scheduling problems
seek an optimal sequence in which to complete a given collection of jobs on a
single processor that can accommodate only one job at a time.

Definition 11.32

Usually (as in the Nifty Notes case), we also assume that preemption is not allowed.
That is, one job cannot be interrupted to work on another.

Time Decision Variables
Since scheduling means assignment of resources over time, it is natural that one set
of decision variables found in most models chooses job start or completion times.

A set of (continuous) decision variables in processor sched-
uling models usually determines either the start or the completion time(s) of
each job on the processor(s) it requires.

Principle 11.33

In our Nifty Notes application we employ

xj ! time binding starts for job j 1relative to time 0 = now2

704 Chapter 11 Discrete Optimization Models

Then one set of constraints requires each job to start after the later of now
1time = 02 and the hour it will be released for processing:

 xj Ú max 50, rj6 j = 1, c, 6 1earliest start2 (11.22)

We could just as well have modeled in terms of completion times. Still, both
start and completion times need not be decided because one can be computed from
the other through

1start time2 + 1process time2 = 1completion time2
(Recall that process times are given constants.)

Conflict Constraints and Disjunctive Variables
The central issue in processor scheduling is that only one job should be in progress
on any processor at any time. If we know just start (or finish) times, it is not difficult
to check for a violation or conflict. Still, it is not easy to write standard mathematical
programming constraints that prevent conflicts.

For any pair of jobs j and j′ that might conflict on a processor, the appropriate
conflict constraint is either

 1start time of j2 + 1process time of j2 … start time of j ′

(11.23)

 or

1start time of j ′2 + 1process time of j ′2 … start time of j

Either j must finish before j′ begins, or vice versa. But only one possibility can hold,
and to determine which, we must know whether j or j′ starts first on the processor.

Often, operations research analysts deal with conflict prevention (11.23) outside
the usual mathematical program format. Nonetheless, conflict avoidance require-
ments can be modeled explicitly with the aid of additional disjunctive variables.

A set of (discrete) disjunctive variables in processor sched-
uling models usually determines the sequence in which jobs are started on
processors by specifying whether each job j is scheduled before or after each
other j′ with which it might conflict.

Principle 11.34

Then we can enforce conflict prevention (11.23) with pairs of linear constraints.

A processor scheduling model with job start times xj and pro-
cess times pj can prevent conflicts between jobs j and j′ with disjunctive con-
straint pairs

 xj + pj … xj′ + M11 - yj,j′2
 xj′ + pj′ … xj + Myj,j′

where M is a large positive constant, and binary disjunctive variable yj, j′ = 1
when j is scheduled before j′ on the processor and = 0 if j′ is first.

Principle 11.35

11.7 Processor Scheduling and Sequencing Models 705

To illustrate for our Nifty Notes application, define

yj,j′ ! e1 if j binding comes before j′
0 if j′ binding comes before j

Construction 11.35 yields constraints

 xj + pj … xj′ + M11 - yj,j′2
xj′ + pj′ … xj + Myj,j′

f j = 1, c, 6; j′ 7 j (11.24)

As in many other cases, we consider only j′ 7 j, to avoid listing the same pair twice.
To see how the constraints prevent conflicts, consider the specific case of j = 2,

j′ = 6. Using processing times from Table 11.10, the corresponding pair (11.24) is

 x2 + 8 … x6 + M11 - y2,62
 x6 + 18 … x2 + My2,6

If job 2 is started before job 6, y2,6 = 1, and the first constraint keeps the start time
for 6 after the finish of 2. The second constraint is also enforced. However, the
big-M term My2,6 makes it true for any x2, x6. On the other hand, if job 6 is started
before job 2, so that y2,6 = 0, the first constraint of the pair is discounted and the
second enforced.

exampLe 11.19: FormuLating ConFLiCt Constraints

Formulate integer linear programming constraints for feasible schedules on a single
processor with jobs j = 1, c, 3 having process times 14, 3, and 7, respectively.

Solution: We employ the decision variables

 xj ! start time of job j

 yj,j′ ! e1 if j is scheduled before j′
0 otherwise

Then conflict constraints 11.35 assure that only one job is processed at a time are

 x1 + 14 … x2 + M11 - y1,22
 x2 + 3 … x1 + My1,2

 x1 + 14 … x3 + M11 - y1,32
 x3 + 7 … x1 + My1,3

 x2 + 3 … x3 + M11 - y2,32
 x3 + 7 … x2 + My2,3

Variable-type restrictions

x1, x2, x3 Ú 0

y1,2, y1,3, y2,3 = 0 or 1

complete the constraints required.

706 Chapter 11 Discrete Optimization Models

Handling of Due Dates
Readers will note that we have not formulated any constraints enforcing due dates
for various jobs. This could easily be done by adding conditions of the form

xj + pj … dj

However, it is not standard to enforce such requirements because there may
very well be no feasible schedule that meets all due dates. In Nifty Notes data of
Table 11.10, for example, some due dates have already passed; it is far more custom-
ary to reflect due dates in the objective function as explained in the next subsection.

Due dates in processor scheduling models are usually handled
as goals to be reflected in the objective function rather than as explicit con-
straints. Dates that must be met are termed deadlines to distinguish.

Principle 11.36

Processor Scheduling Objective Functions
One of the intriguing features of scheduling models is the wide variety of objective
functions that may be appropriate.

Denoting the start time of job j = 1, c, n by xj, the process
time by pj, the release time by rj, and the due date by dj, processor scheduling
objective functions often minimize one of the following:

Maximum completion time maxj5xj + pj6
Mean completion time

1
n

 g j1xj + pj2

Maximum flow time maxj5xj + pj - rj6
Mean flow time

1
n

 g j1xj + pj - rj2
Maximum lateness maxj5xj + pj - dj6
Mean lateness

1
n

 g j1xj + pj - dj2

Maximum tardiness maxj5max50, xj + pj - dj66
Mean tardiness

1
n

 g j1 max 50, xj + pj - dj62

Maximum completion time is also known as makespan.

Principle 11.37

Total completion time, flow time, lateness, or tardiness may also be of interest, but
optimization over each of these is equivalent to optimization over the correspond-
ing mean measure because the total is constant n times the mean.

The completion time measures in principle 11.37 emphasize getting all jobs
done as soon as possible. For example, the mean completion time version of our
Nifty Notes application would have objective function

min 1
6 [1x1 + 122 + 1x2 + 82 + 1x3 + 32 + 1x4 + 102 + 1x5 + 42 + 1x6 + 182]

11.7 Processor Scheduling and Sequencing Models 707

A corresponding optimal schedule has Nifty Notes binding jobs in sequence 3–5–2–
4–1–6 with start times

 x1
* = 25, x2

* = 7, x3
* = 0, x4

* = 15, x5
* = 3, x6

* = 37 (11.25)

and mean completion time 23.67.
Completion time measures are particularly appropriate when there are a fixed

number of jobs to complete and no more expected. Where the model relates to a
more continuing operation, flow time may be more suitable. Flow time tracks the
length of time that a job is in the system:

flow time ! 1completion time2 - 1release time2
The idea is to minimize work in process so that inventory costs for partially finished
goods are reduced.

The third category of measures becomes important when due dates are criti-
cal. Lateness counts both early and late jobs:

lateness ! 1completion time2 - 1due date2
Tardiness considers only the late ones (positive lateness):

tardiness ! max50, 1lateness26
For example, minimizing maximum lateness in the Nifty Notes case produces

the objective function

 min max 51x1 + 12 - 102, 1x2 + 8 - 22, 1x3 + 3 - 722,
(11.26)

 1x4 + 10 + 82, 1x5 + 4 + 62, 1x6 + 18 - 6026
The corresponding optimal schedule has Nifty Notes binding jobs in sequence 4–2–
5–3–1–6 with start times

 x1
* = 22, x2

* = 14, x3
* = 52, x4

* = 0, x5
* = 10, x6

* = 34 (11.27)

and maximum lateness 122 + 12 - 102 = 24 on job 1. Notice that this schedule
differs significantly from the mean completion time schedule of (11.25). To decrease
lateness, mean completion time has increased from 23.67 to 31.17.

exampLe 11.20: understanding proCessor sCheduLing
objeCtiVes

The following table shows the process times, release times, due dates, and scheduled
start times for three jobs.

Job 1 Job 2 Job 3

Process time 15 6 9
Release time 5 10 0
Due date 20 25 36
Scheduled start 9 24 0

708 Chapter 11 Discrete Optimization Models

ILP Formulation of Minmax Scheduling Objectives
Disjunctive constraints of formulation 11.35 can be combined with any of the mean
objective forms in list 11.36 except tardiness to obtain an integer linear program-
ming formulation of a processor scheduling problem. When tardiness or any of the
minmax objectives are being optimized, however, the problem is an integer nonlin-
ear program (INLP).

We can convert any of these INLP forms to the more tractable ILP by using
the techniques of Section 4.6 (principle 4.13).

Compute the corresponding value of each of the eight objective functions in
principle 11.37 .

Solution: Completion times 1start + process2 are

9 + 15 = 24, 24 + 6 = 30, and 0 + 9 = 9

Thus maximum completion time is max 524, 30, 96 = 30 and mean completion
time is

1
3124 + 30 + 92 = 21

Corresponding flow times (completion–release) are

24 - 5 = 19, 30 - 10 = 20, and 9 - 0 = 9

Thus maximum flow time is max 519, 20, 96 = 20 and mean flow time is
1
3 119 + 20 +92 = 16.

Lateness of the three jobs (completion–due date) is

24 - 20 = 4, 30 - 25 = 5, and 9 - 36 = -27

Thus maximum lateness is max 54, 5, -276 = 5 and mean lateness is 1
3 14 + 5 -

272 = -6.
Finally, tardiness of the jobs 1max50, lateness62 is

max50, 46 = 4, max50, 56 = 5, and max50, -276 = 0

Thus maximum tardiness is max 54, 5, 06 = 5 and mean tardiness is 1314 + 5 + 02 = 3.

Any of the min max objective of list 11.37 can be linearized by
introducing a new decision variable f to represent the objective function value,
then minimizing f subject to new constraints of the form f Ú each element in
the maximize set. A similar construction can model tardiness by introducing
new nonnegative tardiness variables for each job and adding constraints keep-
ing each tardiness variable Ú the corresponding lateness.

Principle 11.38

To illustrate, return to the Nifty Notes lateness objective of expression (11.26):

min max51x1 + 12 - 102, 1x2 + 8 - 22, 1x3 + 3 - 722, 1x4 + 10 + 82,

 1x5 + 4 + 62, 1x6 + 18 - 6026

11.7 Processor Scheduling and Sequencing Models 709

We may convert to ILP form by introducing a new variable f and then solving

min f

s.t. f Ú x1 + 2

 f Ú x2 + 6

 f Ú x3 - 69

 f Ú x4 + 18

 f Ú x5 + 10

 f Ú x6 - 42

 1all original constraints2

exampLe 11.21: Linearizing sCheduLing objeCtiVes

Using xj to represent the scheduled start time of each job j in Example 11.20, show
how each of the following objective functions can be expressed in ILP format.

(a) Maximum completion

(b) Mean tardiness

Solution: We apply construction 11.38 .

(a) To linearize maximum completion time, we introduce a new decision variable f
and enforce new constraints to keep it as great as any completion time. Specifically,
the formulation is

min f

s.t. f Ú x1 + 15

 f Ú x2 + 6

 f Ú x3 + 9

 1all original constraints2
(b) To model tardiness, we introduce new decision variables tj Ú 0 for each job j
and force it to be Ú lateness. Then the mean tardiness model is

min 131t1 + t2 + + t32
s.t. t1 Ú x1 + 15 - 20

 t2 Ú x2 + 6 - 25

 t3 Ú x3 + 9 - 36

 t1, t2, t3 Ú 0

 1all original constraints2
If job j is late, the corresponding new main constraint makes tj = lateness. If not,
nonnegativity constraints tj Ú 0 force tardiness = 0.

710 Chapter 11 Discrete Optimization Models

Equivalences among Scheduling Objective Functions
Different objective functions from list 11.37 do not always imply different optimal
schedules.

The mean completion time, mean flow time, and mean late-
ness scheduling objective functions are equivalent in the sense that an optimal
schedule for one is also optimal for the others.

Principle 11.39

An optimal schedule for the maximum lateness objective
function is also optimal for maximum tardiness.

Principle 11.40

For example, the optimal mean completion time schedule (11.25) of our Nifty Notes
application is also optimal for the mean flow time and mean lateness objective func-
tions (principle 11.39). Schedule (11.27), which minimized maximum lateness, also
minimizes maximum tardiness (principle 11.40).

To see why mean completion time and mean flow time are equivalent, we need
only rearrange defining sums:

mean flow time =
1
n

 a
n

j = 1
1xj + pj - rj2

 =
1
n

 a
n

j = 1
1xj + pj2-

1
n

 a
n

j = 1
 rj

 = 1mean completion time2-
1
n

 a
n

j = 1
 rj

Expressed this way, it is apparent that the objective functions differ only by the
constant last term. Adding or subtracting such a constant to the objective function
cannot change what solutions are optimal. Similar arguments equate mean comple-
tion time and mean lateness.

Connection 11.40 between maximum lateness and maximum tardiness is also
straightforward. If at least one job must be late in every schedule, maximum lateness
= maximum tardiness. If no job has to be late, all schedules are optimal for the max-
imum tardiness objective, including any optimal for maximum lateness.

Job Shop Scheduling
In contrast to the single-processor case of definition 11.32 , job shop scheduling
involves jobs that must be processed on several different machines.

Job shop scheduling problems seek an optimal schedule for
a given collection of jobs, each of which requires a known sequence of proces-
sors that can accommodate only one job at a time.

Definition 11.41

11.7 Processor Scheduling and Sequencing Models 711

Custom Metalworking Application Decision Variables and Objective
Job shop scheduling involves deciding when to start each step of each job on its proces-
sor. Thus start time decision variables 11.33 are now indexed by both job and processor:

 xj,k ! start time of job j on processor k

Our assumed makespan scheduling objective can then be expressed as

min max 5x1,6 + 1, x2,3 + 6, x3,4 + 256
Notice that only the last step of each job is reflected. Completion of a multiproces-
sor job means completion of all steps.

Precedence Constraints
Steps of the various jobs being scheduled in a job shop must take place in the
sequence given. That is, start times are subject to precedence constraints.

appLiCation 11.13: Custom metaLworKing job shop

We illustrate job shop scheduling with a fictitious Custom Metalworking com-
pany which fabricates prototype metal parts for a nearby engine manufacturer.
Figure 11.9 provides details on the 3 jobs waiting to be scheduled. First is a die
requiring work on a sequence of 5 workstations: 1 (forging), then 2 (machining),
then 3 (grinding), then 4 (polishing), and finally, 6 (electric discharge cutting). Job
2 is a cam shaft requiring 4 stations, and job 3 a fuel injector requiring 5 steps.
Numbers in boxes indicate process times

pj,k ! process time 1in minutes2 of job j on processor k

For example, job 1 requires 45 minutes at polishing workstation 4.

Any of the objective function forms in list 11.37 could be appropriate for
Custom Metalworking’s scheduling. We will assume that the company wants to com-
plete all 3 jobs as soon as possible (minimize maximum completion), so that workers
can leave for a holiday.

WS1 WS2 WS3 WS4 WS6
3 10 8 45 11. Die

WS7 WS1 WS2 WS3

50 6 11 6
2. Camshaft

WS2 WS3 WS5 WS6 WS4

5 9 2 1 25
3. Fuel Injector

1
2
3
4
5
6
7

Forging
Machining center
Grinding
Polishing
Drilling
Electric discharge
Heat treatment

Workstationsk

Figure 11.9 Custom Metalworking Application Jobs

712 Chapter 11 Discrete Optimization Models

Job shop models have precedence constraints 11.42 between each step and
its successor in each job. For instance, job 1 in Figure 11.9 implies precedence
constraints

x1,1 + 3 … x1,2

x1,2 + 10 … x1,3

x1,3 + 8 … x1,4

x1,4 + 45 … x1,6

to maintain the required processing sequence.

The precedence requirement that job j must complete on pro-
cessor k before activity on k′ begins can be expressed as

 xj,k + pj,k … xj,k′

where xj,k denotes the start time of job j on processor k, pj,k is the process time
of j on k, and xj,k′ is the start time of job j on processor k′.

Principle 11.42

exampLe 11.22: FormuLating job shop preCedenCe Constraints

A job shop must schedule product 1, which requires 12 minutes on machine 1 fol-
lowed by 30 minutes on machine 2, and product 2, which requires 17 minutes on
machine 1 followed by 29 minutes on machine 3. Formulate the implied precedence
constraints in terms of the decision variables

 xj,k ! start time of product j on machine k

Solution: There is one precedence constraint for each job because each has only
two steps. In accord with 11.42 , those constraints are

 x1,1 + 12 … x1,2

 x2,1 + 17 … x2,3

Conflict Constraints in Job Shops
As in one machine case such as Nifty Notes, job shop models must also confront the
possibility of conflicts—jobs scheduled simultaneously on the same processor. For
example, in the Custom Metalworking application of Figure 11.9, jobs 1 and 2 may
conflict at workstation 1, which both require. One must complete before the other
can begin.

Paralleling 11.34 and 11.35 , we may model conflicts by introducing the new
discrete decision variables

yj,j′,k ! e1 if j is scheduled before job j′ on processor k
0 otherwise

11.7 Processor Scheduling and Sequencing Models 713

For instance, the possible conflict between Custom Metalworking jobs 1 and 2 at
workstation 1 produces constraint pair

 x1,1 + 6 … x2,1 + M11 - y1,2,12
 x2,1 + 3 … x1,1 + My1,2,1

If job 1 uses the processor first, y1,2,1 = 1, and the first constraint is enforced.
If job 2 comes first, y1,2,1 = 0, and the second constraint controls.

Job shop models can prevent conflicts between jobs by intro-
ducing new disjunctive variables yj,j′,k and constraint pair

 xj,k + pj,k … xj′,k + M11 - yj,j′,k2
 xj′,k + pj′,k … xj,k + Myj,j′,k

for each j, j′ that both require any processor k. Here xj,k denotes the start time
of job j on processor k, pj,k its process time, M is a large positive constant, and
binary yj,j′,k = 1 when j is scheduled before j′ on k and = 0 if j′ is first.

Principle 11.43

exampLe 11.23: FormuLating job shop ConFLiCt Constraints

Return to the job shop of Example 11.22 and formulate all constraints required to
prevent conflicts.

Solution: Conflicts can occur only on machine 1, which is the only one required for
both products. Thus we require only one binary variable,

 y1,2,1 ! e1 if product 1 is first on machine 1
0 if product 2 is first on machine 1

and the needed constraints 11.43 are

 x1,1 + 12 … x2,1 + M11 - y1,2,12
 x2,1 + 17 … x1,1 + My1,2,1

Here M = 12 + 17 = 29 would be large enough to have the desired effect of dis-
counting whichever constraint should not really apply.

Custom Metalworking Application Model
Combining our maximum completion time objective function with all required
precedence and conflict constraints produces the following complete model of the
Custom Metalworking application in Figure 11.9:

min max5x1,6 + 1, x2,3 + 6, x3,4 + 256 1maximum completion2
s.t. x1,1 + 3 … x1,2 1job 1 precedence2

 x1,2 + 10 … x1,3

714 Chapter 11 Discrete Optimization Models

 x1,3 + 8 … x1,4

 x1,4 + 45 … x1,6

 x2,7 + 50 … x2,1 1job 2 precedence2
 x2,1 + 6 … x2,2

 x2,2 + 11 … x2,3

 x3,2 + 5 … x3,3 1job 3 precedence2
 x3,3 + 9 … x3,5

 x3,5 + 2 … x3,6

 x3,6 + 1 … x3,4

 x1,1 + 6 … x2,1 + M11 - y1,2,12 1workstation 1 conflicts2
 x2,1 + 3 … x1,1 + My1,2,1

(11.28)

 x1,2 + 10 … x2,2 + M11 - y1,2,22 1workstation 2 conflicts2
 x2,2 + 11 … x1,2 + My1,2,2

 x1,2 + 10 … x3,2 + M11 - y1,3,22

 x3,2 + 5 … x1,2 + My1,3,2

 x2,2 + 11 … x3,2 + M11 - y2,3,22

 x3,2 + 5 … x2,2 + My2,3,2

 x1,3 + 8 … x2,3 + M11 - y1,2,32 1workstation 3 conflicts2
 x2,3 + 6 … x1,3 + My1,2,3

 x1,3 + 8 … x3,3 + M11 - y1,3,32

 x3,3 + 9 … x1,3 + My1,3,3

 x2,3 + 6 … x3,3 + M11 - y2,3,32

 x3,3 + 9 … x2,3 + My2,3,3

 x1,4 + 45 … x3,4 + M11 - y1,3,42 1workstation 4 conflicts2
 x3,4 + 25 … x1,4 + My1,3,4

 x1,6 + 1 … x3,6 + M11 - y1,3,62 1workstation 6 conflicts2
 x3,6 + 1 … x1,6 + My1,3,6

all xj,k Ú 0

all yj,j′,k = 0 or 1

An optimal solution uses start times

 x1,1
* = 2, x1,2

* = 5, x1,3
* = 15, x1,4

* = 42, x1,6
* = 87

 x2,7
* = 0, x2,1

* = 50, x2,2
 * = 56, x2,3

* = 67

 x3,2
* = 0, x3,3

* = 5, x3,5
* = 14, x3,6

* = 16, x3,4
* = 17

to complete all jobs in 88 minutes.

 Exercises 715

ExERCiSES

11-1 A fertilizer plant can make a product by any
of 3 processes. Using decision variables xj ! num-
ber of units produced by process j, the following
linear program computes a minimum cost way to
produce 150 units with available resources:

min 15x1 + 11x2 + 18x3

s.t. x1 + x2 + x3 = 150
 2x1 + 4x2 + 2x3 … 310
 4x1 + 3x2 + x3 … 450
 x1, x2, x3 Ú 0

(a) Explain why this LP implicitly assumes
that objective function coefficients are
variable costs.

(b) Use class optimization software to solve
the given LP.

(c) Formulate a revised ILP model imple-
menting a requirement that only one of
the 3 activities may be used.

(d) Use class optimization software to solve
the ILP of part (c).

(e) Formulate a different revised ILP imple-
menting a fixed setup cost of 400 charged
for each activity used at all.

(f) Use class optimization software to solve
the ILP of part (e).

(g) Formulate another revised ILP imple-
menting a requirement that an activity can
be used only if a minimum of 50 units are
produced.

(h) Use class optimization software to solve
the ILP of part (g).

11-2 A computer distributor can purchase work-
stations from any of 3 suppliers. Using decision
variables xj! number of units purchased from
supplier j, the following linear program computes
a minimum cost way to purchase 300 worksta-
tions within applicable limits:

min 5x1 + 7x2 + 6.5x3

s.t. x1 + x2 + x3 = 300
 3x1 + 5x2 + 4x3 … 1500
 0 … x1 … 200
 0 … x2 … 300
 0 … x3 … 200

Do (a) through (h) as in Exercise 11-1 using
a setup cost of 100 and a minimum purchase
of 125.

11-3 A retired executive has up to $8 million that
he wishes to invest in apartment buildings. The
following table shows the purchase price and the
expected 10-year return (in millions of dollars) of
the 4 buildings that he is considering.

Building

1 2 3 4

Price 4.0 3.8 6.0 7.2
Return 4.5 4.1 8.0 7.0

The executive wishes to choose investments that
maximize his total return. Assume that every op-
tion is available only on an all-or-nothing basis.

(a) Formulate a knapsack ILP to choose an
optimal investment plan.

(b) Solve your knapsack by inspection.

11-4 The River City redevelopment authority
wants to add a minimum of one thousand new
parking spaces in the downtown area. The follow-
ing table shows the estimated cost (in millions of
dollars) of the 4 proposed projects and the num-
ber of spaces each would yield (in hundreds).

Project

1 2 3 4

Cost 16 9 11 13

Spaces 8 3 6 6

The authority wants to meet its goal at minimum
total cost. Assume that every project is available
only on an all-or-nothing basis.

(a) Formulate a knapsack ILP to choose an
optimal parking program.

(b) Solve your knapsack by inspection.

11-5 Silo State’s School of Engineering is prepar-
ing a 5-year plan for building construction and
expansion to accommodate new offices, laborato-
ries, and classrooms. The Electrical Engineering

716 Chapter 11 Discrete Optimization Models

faculty has proposed projects for all 3 avail-
able parcels of land: a digital circuits lab on the
northwest parcel at $48 million, a faculty office
annex on the southeast parcel at $20.8 million,
and a computer vision lab on the northeast par-
cel at $32 million. The Mechanical Engineering
faculty has 3 alternative proposals for the same
northwest parcel: a large lecture room building
at $28 million, a heat transfer lab at $44 million,
and a computer-aided design expansion at $17.2
million. The Industrial Engineering faculty has
only 2 proposals: a manufacturing research cen-
ter on the southeast parcel at $36.8 million, and
a tunnel from their current building to the new
center for an additional $1.2 million. The Dean
of Engineering scores the impact of these projects
as 9, 2, and 10 for the EE proposals, 2, 5, and 8
for the ME alternatives, 10 and 1 for the IE ideas.
He wishes to allocate his available $100 million to
maximize the total impact, selecting projects on
an all-or-nothing basis with at most one per land
parcel.

(a) Describe verbally the budget limits, mu-
tual exclusiveness constraints, and project
dependency requirements of this capital
budgeting problem.

(b) Formulate a capital budgeting ILP to se-
lect an optimal combination of proposals.

(c) Use class optimization software to solve
your ILP model.

11-6 A small pharmaceutical research laboratory
must decide which product research activities to
undertake with its $25 million available in each
of the next two 5-year periods. The products
optamine and feasibine are ready for field test-
ing in the first 5-year period at a cost of $13 mil-
lion and $14 million, respectively. Discretol and
zeronex are at an earlier, development stage.
Proposed development activities would require
$4 million in the first 5 years for discretol and $3
million in the second. Corresponding values for
zeronex are $2 million and $6 million. Field test-
ing of the two products may also be chosen in the
second 5-year period for $10 million and $15 mil-
lion, respectively, if the corresponding develop-
ment activity was undertaken in the first 5 years.
The company wishes to maximize future profits
from field-tested products, which it estimates at
$510 million for optamine, $640 million for fea-
sibine, $580 million for discretol, and $469 million

for zeronex. All projects must be adopted on an
all-or-nothing basis, and no more than one of the
two development projects may be selected.

Do (a) through (c) as in Exercise 11-5.

11-7 The map that follows shows the locations of
8 applicants for low-power radio station licences
and the approximate range of their signals.

1

3

8

4

7

6
2 5

Regulators have scored the quality of applications
on a scale of 0 to 100 as 45, 30, 84, 73, 80, 70, 61,
and 91, respectively. They wish to select the high-
est-quality combination of applications that has
no overlap in signal ranges.

(a) Formulate this problem as a set packing
ILP.

(b) Use class optimization software to solve
your ILP.

11-8 Time Sink Incorporated is about to begin
selling its computer game software to college stu-
dents in the midwest. The following table shows
the states that could be covered by salespersons
based at 4 possible locations, together with the
annual sales (in thousands of dollars) expected if
all those states were covered from that base.

Base

Ames Beloit Normal Avon

MN * * — —
IA * * * —
MO * — * —
WI — * * —
IN — — * *
KY — — — *
Sales 115 90 150 126

Time Sink wants to choose a collection of bases
that maximizes total sales without assigning the
same state to more than one base.

Do (a) and (b) as in Exercise 11-7.

 Exercises 717

11-9 The following map shows the 8 intersections
at which automatic traffic monitoring devices
might be installed. A station at any particular
node can monitor all the road links meeting that
intersection. Numbers next to nodes reflect the
monthly cost (in thousands of dollars) of operat-
ing a station at that location.

1 2 3

4

5

6

40

48

65

72

43

36

(a) Formulate the problem of providing full
coverage at minimum total cost as a set
covering ILP.

(b) Use class optimization software to solve
your ILP of part (a).

(c) Revise your formulation of part (a) to
obtain an ILP minimizing the number of
uncovered road links while using at most
2 stations.

(d) Use class optimization software to solve
your ILP of part (c).

11-10 Top Tool Company wishes to hire part-
time models to pass out literature about its ma-
chine tools at an upcoming trade show. Each of
the 6 available models can work 2 of the 5 show
days: Monday–Tuesday, Monday–Wednesday,
Monday–Friday, Tuesday–Wednesday, Tuesday–
Friday, and Thursday–Friday. If there is no more
than one day separating their duty days, models
will be paid $300, but the charge is $500 if two or
more days intervene. Top Tool seeks a minimum
cost way to have a least one model on all 5 days.

Do (a) through (d) as in Exercise 11-9 with the
revised model minimizing the number of days un-
covered using just 2 models.

11-11 Air Anton is a small commuter airline
running 6 flights per day from New York City
to surrounding resort areas. Flight crews are
all based in New York, staffing flights to var-
ious locations and then returning on the next
flight home. Taking into account complex work
rules and pay incentives, Air Anton schedulers

have constructed the 8 possible work patterns
detailed in the following table. Each row of the
table marks the flights that could be covered in a
particular pattern and the daily cost per crew (in
thousands of dollars).

Work
Pattern

Flight

Cost1 2 3 4 5 6

1 — * — * — — 1.40
2 * — — — — * 0.96
3 — * — * * — 1.52
4 — * — — * * 1.60
5 * — * — — * 1.32
6 — — * — * — 1.12
7 — — — * — * 0.84
8 * — * * — — 1.54

The company wants to choose a minimum total
cost collection of work patterns that covers all
flights exactly once.

(a) Formulate this problem as a set partition-
ing ILP.

(b) Use class optimization software to solve
your ILP.

11-12 A special court commission appointed to
resolve a bitter fight over legislative redistricting
has proposed 6 combinations of the 5 disputed
counties that could form new districts. The fol-
lowing table marks the counties composing each
proposed district and shows the district’s devia-
tion from the equal-population norm.

Country

District

1 2 3 4 5 6

1 * — — — * *
2 * — * — — *
3 — — * * * —
4 — * — * — —
5 — * — — — *

Deviation 0.5 0.5 0.6 1.3 0.7 1.2

The court wants to select a minimum total devia-
tion collection of districts that includes each county
exactly once.

Do (a) and (b) as in Exercise 11-11.

11-13 Mogul Motors is planning a major over-
haul of its automobile assembly plants as it intro-
duces 4 new models. Exactly one exisiting plant

718 Chapter 11 Discrete Optimization Models

must be converted to assemble each model. The
following table shows for each model and plant
the cost (in millions of dollars) of modifications
at the plant to produce the model. Those marked
with a dash reflect plants not large enough to ac-
commodate the needed activity.

Model

Plant

1 2 3 4

1 18 26 — 31
2 — 50 22 —
3 40 29 52 39
4 — — 43 46

Mogul seek a minimum total cost way to make
the conversion.

(a) Formulate this problem as a linear assign-
ment LP.

(b) Explain why a binary optimal solution is
guaranteed even though your model is a
linear program.

(c) Use class optimization software to solve
your assignment LP.

11-14 The sister communities program pairs cit-
ies in Russia with cities in the United States that
have a similar size and economic base. Visits are
then exchanged between the sister communities
to improve international understanding. The fol-
lowing table shows the program’s compatibility
scores (0 to 100) for the 4 U.S. and 4 Russian cit-
ies about to join the program.

U.S.

Russian

1 2 3 4

1 80 65 83 77
2 54 87 61 66
3 92 45 53 59
4 70 61 81 76

Sister communities seeks a maximum total com-
patibility pairing.

Do (a) through (c) as in Exercise 11-13.
11-15 The following table shows the unit price
and the minimum quantity at which suppliers
j = 1 c, 5 have to bid to supply State University
(SU) with office desk chairs. SU wishes to find
the lowest total cost combination of purchases
that will procure at least the minimums from each

supplier used, and will obtain a total of at least
400 chairs.

Supplier 1 2 3 4 5

Unit Price 200 400 325 295 260
Min Quantity 500 50 100 100 250

(a) Although SU must obviously buy inte-
ger numbers of chairs from each supplier,
explain why it makes sense to model the
number of chairs purchased from each sup-
plier as a nonnegative, continuous variable.
Also indicate what issues are left that make
the problem discrete.

(b) Using nonnegative continuous xj for the
number of chairs purchased from supplier
j, and whatever other decision variables
are required, formulate SU’s problem as
a Mixed-Integer Linear Program. Be sure
to define any additional decision vari-
ables and annotate each objective func-
tion and constraint with its meaning.

11-16. Focus Inc. wants to consolidate its cam-
era manufacturing operations at 2 of the current 4
plants. At the same time, each surviving plant will
begin full 3-shift operations running 168 hours per
week. The following table shows the estimated cost
(in $ million) of moving operations from each cur-
rent plant to each other, along with the projected
number of production hours per week the moved
operation would add at the new site. For example,
closing operation 1 and moving it to site 3 would cost
$320 million and add 70 hours per week at site 3.

To Site

From Site
1 5

Omaha
2 5

Denver
3 5

Muncie
4 5

Kent

l = Omaha Cost 0 450 320 550
Hours 56 56 70 56

2 = Denver Cost 770 0 640 690
Hours 82 82 70 70

3 = Muncie Cost 810 770 0 660
Hours 40 40 60 60

4 = Kent Cost 580 610 490 0
Hours 56 56 56 56

Formulate Focus Inc.’s problem of choosing which
two sites to retain and how to move the others to
minimize total moving cost as an Integer Linear

 Exercises 719

Program. Use decision variables xij = 1 of plant i is
moved to site j and = 0 otherwise, so that xii = 1
means the plant will be retained. Be sure to annotate
objectives and constraints to indicate their meaning.
11-17 Channel 999 TV has staff to provide on-
scene coverage of up to 4 high school football
games this Friday. The following table shows 3
possibilities are in the town where Channel 999
is located. At least 2 of them must be covered,
as well as at least 1 out of town. The table also
shows that 4 of the games involve a team likely to
compete for the state championship, at least 2 of
which must be covered. Games must be fully cov-
ered or not. Within these requirements Channel
999 wants to maximize its total audience across
the ratings points show for possible game choices.

Game Number 1 2 3 4 5 6 7 8

In Town? Y Y Y
State Champ? Y Y Y Y
Ratings Points 3.0 1.7 2.6 1.8 1.5 5.3 1.6 2.0

(a) Formulate a pure ILP to compute opti-
mal choice of games to cover. Be sure to
define your decision variables and briefly
annotate the objective function, and each
(main or variable-type) constraint with a
few words indicating its meaning.

(b) Use class optimization software to com-
pute an optimal choice.

11-18 Erika Entrepreneur assembles laptop com-
puter systems in her home to finance her graduate
education. She makes and sells two types of units,
both using the same frame. The deluxe model has
1024 megabytes of RAM memory, a 16 gigabyte
hard drive, and a communication card; it sells for
$1400 per unit. The cheaper basic model, which sells
for $1000, has only 512 megabytes of RAM mem-
ory, a 4 gigabyte hard drive, and no communication
card. RAM in both models is built up by installing
the requisite number of 256 megabyte chips.

Component Frames
256 MB
Chips

16 GB
Drives

4 GB
Drives

Comm
Cards

On Hand 18 72 7 11 3
Min
Purchase

 5 48 10 8 3

Max
Purchase

 40 182 30 64 25

Price/Unit $700 $75 $300 $110 $250

The table shows the number on hand at the
 beginning of the current month for each of the
components Erika uses, along with the minimum
and maximum she can buy if she makes a new
purchase, and the unit price that would apply.
Note that her suppliers do not allow Erika to buy
fewer than the minimum nor more than the max-
imum shown, and only one purchase per month is
allowed. Within these limits Erika wants to decide
a production and procurement plan that will max-
imize her gross profit (sales - cost) for the coming
month.

(a) Although the numbers of components
used and purchased must obviously be in-
teger, explain why it would be good OR
modeling to represent them as nonnega-
tive continuous decision variables. Also
indicate what issues are left that make the
problem discrete.

(b) Formulate Erika’s problem as a Mixed-
Integer Linear Program. Be sure to define
all your decision variables and annotate
objectives and constraints to show their
meaning.

11-19 Sandbox State University is rearranging
the locations of 3 equal-sized academic depart-
ments to provide for better faculty communica-
tion. The following tables show the estimated
number of person-to-person contacts per month
between members of the various faculties, and
the distances (in thousands of feet) between
available office locations.

interaction

English Math

History 20 12
English — 14

Distance

2 3

1 3 6
2 — 1

Sandbox State wants to place one department in
each location in a way that minimizes total dis-
tance traveled for faculty interactions.

(a) Formulate this problem as a quadratic as-
signment INLP.

720 Chapter 11 Discrete Optimization Models

(b) Explain why the objective function in this
problem must be quadratic rather than
linear.

(c) Compute an optimal assignment in your
INLP by inspection.

11-20 The River City Operations Research soci-
ety is planning a meeting that will have 2 morn-
ing and 2 afternoon sessions running at the same
time. The 4 sessions will be on LP, NLP, ILP,
and INLP, respectively, but times have not yet
been fixed. The following table shows the esti-
mated number of attendees who would like to
be able to attend both of each combination of
sessions.

NLP iLP iNLP

LP 10 30 14
NLP — 5 8
ILP — — 18

The society would like to arrange sessions to min-
imize the number of persons who cannot attend
a desired pair of sessions because they occur si-
multaneously.

Do (a) through (c) as in Exercise 11-19.
11-21 A warehouse facility has packing stations
at both its front and back entrances. The fol-
lowing table shows the number of ton-feet (in
thousands) of materials handling that would be
required to move each of the 6 pending jobs to
either of the 2 stations, along with the number of
hours packing that would be required at which-
ever station does the work.

Job

1 2 3 4 5 6

Front 21 17 10 30 40 22
Back 13 18 29 24 33 29

Time 44 60 51 80 73 67

Schedulers seek a minimum handling plan that
completes all packing within the 200 hours availa-
ble at the front station and 190 hours available at
the back. Assume that jobs must go entirely to a
single packing station.

(a) Formulate this problem as a generalized
assignment ILP.

(b) Explain why this is a generalized rather
than an ordinary assignment problem.

(c) Use class optimization software to solve
your ILP.

11-22 Three professional baseball teams are try-
ing to find places for 6 available players within
their remaining salary limits of $35 million, $20
million, and $26 million, respectively. The fol-
lowing table shows how valuable each player
would be to each team on a scale of 0 to 10, and
the player’s current annual salary (in millions
of dollars).

Player

Value

Salary1 2 3

1 8 7 10 10
2 7 8 6 13
3 5 4 6 8
4 6 3 3 6
5 8 7 6 15
6 10 9 10 22

The teams want to find a maximum total score
allocation of players to teams that fits with in
salary limits.

Do (a) through (c) as in Exercise 11-21.

11-23 Small business Cool Room Furniture
(CRF) sells whole-room packages of furniture
in the region around its single store and ware-
house. Each day it must decide how to assign
needed deliveries i = 1, c, m to available
trucks j = 1, c, n to fulfill commitments of
timely delivery to customers at minimum total
cost. Each delivery i requires a whole-truck
round trip from warehouse to customer and
back taking ti hours and costing cj,i dollars. But
the same truck j may make multiple deliveries
i if the total of their trip times is at most the
trucks available for regular work hours aj. It is
also possible for any truck to work up to an ad-
ditional 4 hours of overtime at qj per hour.

The following table shows values of these pa-
rameters for a typical day with m = 9 loads and
n = 5 trucks.

(a) Formulate CRF’s problem as a general-
ized assignment type ILP with extensions
to allow buying overtime.

 Exercises 721

(b) Use class optimization software to com-
pute an optimal plan.

11-24 Military commanders are planning the
command structure for 6 new radar stations.
Three commanders will each be in charge of two
of the stations. The following table shows the pro-
jected cost (in millions of dollars) of building the
necessary communication links to connect jointly
commanded locations.

2 3 4 5 6

1 42 65 29 31 55
2 — 20 39 40 21
3 — — 68 55 22
4 — — — 30 39
5 — — — — 47

Planners seek a minimum cost way to organize
the command.

(a) Formulate this problem as a matching ILP.
(b) Explain why this is not an assignment problem.
(c) Use class optimization software to solve

your ILP.

11-25 Awesome Advertising manages the tele-
vision promotion of a variety of products. In
the next few months they are planning to cross-
advertise six of their items by running interlock-
ing television ads that mention both products.
The following table shows Awesome’s estimate
of the number of viewers (in millions) who might
be interested jointly in each pair of products.

2 3 4 5 6

1 7 8 6 14 15
2 — 18 20 5 8
3 — — 19 9 10
4 — — — 6 11
5 — — — — 16

Awesome wants to find a product pairing that max-
imizes the appeal, with each product in exactly one
pair.

Do (a) through (c) as in Exercise 11-24.
11-26 Engineers are designing a fixed route to be
followed by automatic guided vehicles in a large
manufacturing plant. The following table shows
the east–west and north–south coordinates of the
6 stations to be served by vehicles moving contin-
uously around the same route.

1 2 3 4 5 6

E/W 20 40 180 130 160 50
N/S 90 70 20 40 10 80

Since traffic must move along east–west or north–
south aisles, designers seek a route of shortest to-
tal rectilinear length (see Section 4.6).

(a) Explain why this problem can be viewed
as a traveling salesman problem.

(b) Explain why distances in this problem
are symmetric, and compute a matrix of
rectilinear distances between all pairs of
points.

(c) Formulate this problem (incompletely)
as an ILP with main constraints requir-
ing only that every point be touched by
2 links of the route.

(d) Use class optimization software to show
that your ILP of part (c) produces a sub-
tour 1–2–6–1.

(e) Formulate a subtour elimination constraint
that precludes the solution of part (d).

(f) Use class optimization software to show
that an optimal route results when your
subtour elimination constraint is added to
the formulation of part (c).

(g) Formulate this problem as a quadratic
 assignment INLP.

Deliveries i

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

Time ti 4 6 2 3 7 1 4 3 9 Avail
aj

Otime
qjTrucks j Trip Costs cj,i

j = 1 210 50 89 115 151 77 40 160 145 8 50
j = 2 150 40 69 95 131 57 30 120 125 6 70
j = 3 210 50 89 115 151 77 40 160 145 8 50
j = 4 150 40 69 95 131 57 30 120 125 6 70

j = 5 190 45 79 105 141 67 35 140 135 8 60

722 Chapter 11 Discrete Optimization Models

11-27 An oil company currently has 5 platforms
drilling off the Gulf coast of the United States.
The following table shows the east–west and
north–south coordinates of their shore base at
point 0 and all the platform locations.

0 1 2 3 4 5

E/W 80 10 60 30 85 15
N/S 95 15 70 10 75 30

Each day a helicopter delivers supplies by flying
from the base to all platforms and then returning
to base. Supervisors seek the route of shortest to-
tal length.

Do (a) through (g) as in Exercise 11-26 using
straightline (Euclidean) distance and subtour 0–2–
4–0.
11-28 Every week Mighty Mo Manufacturing
makes one production run of each of its 4 dif-
ferent kinds of metal cookware. Setup times to
make any particular product vary depending on
what was produced most recently. The following
table shows the time (in hours) required to con-
vert from any product to any other.

1 2 3 4

1 — 4.2 1.5 6.5
2 5.0 — 8.5 1.0
3 1.2 7.7 — 8.0
4 5.5 1.8 6.0 —

Mighty Mo would like to find the production
 sequence that minimizes total setup time.

(a) Explain why this problem can be viewed as
an asymmetric traveling salesman problem.

(b) Formulate this problem (incompletely) as
a linear assignment problem to choose a
successor for each product.

(c) Use class optimization software to show
that your ILP of part (b) produces a sub-
tour 1–3–1.

(d) Formulate a subtour elimination constraint
that precludes the solution of part (c).

(e) Use class optimization software to show
that an optimal route results when your
subtour elimination constraint is added to
the formulation of part (b).

(f) Formulate this problem as a quadratic
 assignment INLP.

11-29 Every weekday afternoon, at the height
of the rush hour, a bank messenger drives from
the a bank’s central office to its 3 branches and
 returns with noncash records of the day’s activity.
The following figure shows the freeway routes
that are not hopelessly clogged by traffic at that
hour and the estimated driving time for each (in
minutes).

1

3

2

0
10

10

25

15

20

45

30

50

The bank would like to find a route that minimiz-
es total travel time.

Do (a) through (f) as in Exercise 11-28 with sub-
tour 0–3–0.
11-30 Gotit Grocery Company is considering 3
locations for new distribution centers to serve it
customers in 4 nearby cities. The following table
shows the fixed cost (in millions of dollars) of
opening each potential center, the number (in
thousands) of truckloads forecasted to be de-
manded at each city over the next 5 years, and
the transportation cost (in millions of dollars)
per thousand truckloads moved from each center
 location to each city.

Center
Fixed
Cost

City

1 2 3 4

1 200 6 5 9 3
2 400 4 3 5 6
3 225 5 8 2 4

Demand — 11 18 15 25

Gotit seeks a minimum cost distribution system
assuming any distribution center can meet any or
all demands.

(a) Formulate this problem as a facilities lo-
cation ILP.

(b) Use class optimization software to solve
your ILP.

 Exercises 723

11-31 Basic Box Company is considering 5 new
box designs of different sizes to package 4 up-
coming lines of computer monitors. The follow-
ing table shows the wasted space that each box
would have if used to package each monitor.
Missing values indicate a box that cannot be used
for a particular monitor.

Box

Monitor

1 2 3 4

1 5 — 10 —
2 20 — — 25
3 40 — 40 30
4 — 10 70 —
5 — 40 80 —

Basic wants to choose the smallest number of box
designs needed to pack all products and to decide
which box design to use for each monitor, to min-
imize waste.

Do (a) and (b) as in Exercise 11-30. (Hint: Use a
large positive constant for fixed charges.)
11-32 The figure that follows shows 5 pipelines
under consideration by a natural gas company to
move gas from its 2 fields to its 2 storage areas.
The numbers on the arcs show the number of
miles of line that would have to be constructed at
$100,000 per mile.

F1

F2

S1

S2

T60

140

80

20100

The figure also shows that storage facilities are
both already connected to the company’s main
terminal through existing lines. An estimated 800
million cubic feet must be shipped each year from
field 1 to the terminal, and 600 million from field
2. Variable shipping cost is $2000 per million cu-
bic feet on each link of the network, and all links
have an annual capacity of 1 billion cubic feet.
The company wants a minimum total annual cost
system for the required shipping.

(a) Formulate this problem as a network
 design ILP.

(b) Use class optimization software to solve
you ILP.

11-33 Dandy Diesel manufacturing company
assembles diesel engines for heavy construction
equipment. Over the next 4 quarters the com-
pany expects to ship 40, 20, 60, and 15 units, re-
spectively, but no more than 50 can be assembled
in any quarter. There is a fixed cost of $2000 each
time the line is setup for production, plus $200 per
unit assembled. Engines may be held over in in-
ventory at the plant for $100 per unit per month.
Dandy seeks a minimum total cost production
plan for the 4 quarters, assuming that there in no
beginning or ending inventory.

Do (a) and (b) as in Exercise 11-32. (Hint: Cre-
ate nodes for each quarter and a common source
node for production arcs.)
11-34 Top-T shirt company imprints T-shirts
with cartoons and celebrity photographs. For
each of their 4 pending contracts, the following
table shows the number of days of production re-
quired, the earliest day the order can begin, and
the day the order is due.

1 2 3 4

Production 10 3 16 8
Earliest 0 20 1 12
Due Date 12 30 20 21

The company wants to design an optimal sched-
ule assuming that contracts can be processed in
any sequence but that production cannot be inter-
rupted once a job has started.

(a) Ignoring objective functions for the mo-
ment, formulate constraints of a sin-
gle-machine ILP to select an optimal start
time for each contract.

(b) Evaluate each of the 8 objective function
in principle 11.37 for the schedule with
start times 2, 20, 23, and 12 for the four
contracts, respectively.

(c) Extend your constraints of part (a) to
formulate an ILP to compute a minimum
mean completion time schedule.

(d) Use class optimization software to solve
your ILP of part (c).

(e) Without actually solving, list the other ob-
jective functions of 11.37 for which your
schedule of part (d) must be optimal.

724 Chapter 11 Discrete Optimization Models

(f) Extend your constraints of part (a) to
formulate an ILP to compute a minimum
maximum lateness schedule.

(g) Use class optimization software to solve
your ILP of part (f).

(h) Without actually solving, list the other
objective functions of 11.37 for which
your schedule of part (g) must be optimal.

11-35 Sarah is a graduate student who must make 4
large experimental runs on her personal computer
as part of her thesis research. The jobs require vir-
tually all the computer’s resources, so only one can
be processed at a time and none can be interrupted
once it has begun. The following table shows the
number of days of computing each job will require,
the earliest that all data will be available, and the day
Sarah has promised the result to her thesis advisor.

1 2 3 4

Time 15 8 20 6
Earliest 0 0 10 10
Promise 20 20 30 20

Before beginning any work, Sarah wants to com-
pute an optimal schedule. Assume promised times
are only targets.

Do (a) through (h) as in Exercise 11-34, evalu-
ating the schedule with start times 8, 0, 23, and 43,
respectively.
11-36 Three new jobs have just arrived at Fancy
Finishing’s main furniture restoration shop. The
following table shows the sequence that each
must follow through the company’s 3 finish re-
moval processes and the time required for each.

Job Sequence

Process Time

1 2 3

1 1–2–3 10 3 14
2 1–3–2 2 4 1
3 2–1–3 12 6 8

Once a process is begun, it cannot be interrupted.
Although the shop was empty when the new jobs
arrived, Fancy expects more in the next few days.
To maintain efficiency, they seek a schedule that
minimizes the average time that a job is in the shop.

(a) Ignoring objective functions for the mo-
ment, formulate constraints of a job shop
ILP to select an optimal start time for
each job on each machine.

(b) Which of the 8 objective functions in
 11.37 is appropriate for this problem?

(c) Complete an ILP model by introducing
that objective.

(d) Use class optimization software to solve
your ILP model for an optimal schedule.

11-37 A team of auditors has divided itself into 3
groups, each to examine one category of records.
Each group will review their speciality area for all
3 subsidiaries of the client being audited, but the
required sequence and times differ, as shown in
the following table.

Subsidiary Sequence

Group Time

1 2 3

1 1–3–2 4 5 12
2 2–1–3 6 18 3
3 3–2–1 5 7 3

Once a group starts on a subsidiary, it should
finish all work either before it moves to another
or before a different group begins on theirs. The
team seeks a schedule that will complete all work
at the earliest possible time.

Do (a) through (d) as in Exercise 11-36.
11-38 With the addition of a new plant, Monsanto9
now has more capacity than it needs to manu-
facture its main chemical product. Numerous
reactors i = 1, c, m can be operated at a vari-
ety j = 1, c, n of discrete combinations of set-
tings for feed rate, reactor velocity, and reactor
pressure. Both the production yield pi,j and the
operating cost ci,j vary with reactor and setting.
Formulate an ILP model to find the least cost way
to fulfill total production target b in terms of the
decision variables 1i = 1, c, m; j = 1, c, n2

xi,j ! e1 if reactor i operates at setting j
0 otherwise

11-39 W.R. Grace10 strip mines phosphates in
strata numbered from i = 1 at the top to i = n at
the deepest level. Each stratum must be removed

9Based on R. R. Boykin (1985), “Optimizing Chemical Production at Monsanto,” Interfaces, 15:1, 88–95.
10Based on D. Klingman and N. Phillips (1988), “Integer Programming for Optimal Phosphate- Mining

Strategies,” Journal of the Operational Research Society, 9, 805–809.

 Exercises 725

before the next can be mined, but only some of the
layers contain enough suitable minerals to justify
processing into the company’s three products: peb-
ble, concentrate, and flotation feed 1j = 1, 2, 32.
The company can estimate from drill samples the
quantity ai,j of product j available in each stratum
i, the fraction bi,j of BPL (a measure of phosphate
content) in the part of i suitable for j, and the corre-
sponding fraction pi,j of pollutant chemicals. They
wish to choose a mining plan that maximizes the
product output while keeping the average fraction
BPL of material processed for each product j at
least bj and the average pollution fraction at most
pj. Formulate an ILP model of this mining prob-
lem using the decision variables 1i = 1, c, n2

xi ! e1 if stratum i is removed
0 otherwise

yi ! e1 if stratum i is processed
0 otherwise

11-40 Ault Food Limited11 is planning the pro-
duction and distribution system for its new line
of food products. Plants may be opened at any of
sites i = 1, c, 7, and warehouses at locations
j = 1, c, 13, to meet demands dk at customer
regions k = 1, c, 219. Each plant costs $50 mil-
lion to open and produces up to 30 thousand cases
per year. Warehouses cost $12 million to open and
handle up to 10 cases per year. Transportation
costs are ri,j per case for rail shipment from plant
i to warehouse j, and tj,k per case for trucking
from warehouse j to customer k. No direct ship-
ments from the plants are allowed. Formulate ILP
model to decide which facilities to open and how
to service customers using the decision variables
(i = 1, c, 7; j = 1, c, 13; k = 1, c, 219)

xi,j,k ! thousand of cases produced at plant i and
shipped to customer k via warehouse j

yi ! e1 if plant i is opened
0 otherwise

wi ! e1 if warehouse j is opened
0 otherwise

11-41 Space structures12 designed for zero
gravity have no structural weight to support
and nothing to which a foundation can be at-
tached. The structure needs only to withstand
vibrations in space. This is accomplished by re-
placing truss members with dampers at a given
number of p sites among j = 1, c, n candidate
locations throughout the structure. Engineering
analysis can identify the principal strain modes
i = 1, c, m, and estimate fractions di,j of total
modal strain energy imparted in mode i to truss
site j. The best design places dampers to absorb
as much energy as possible. Specifically we want
to maximize the minimum total of di,j reach-
ing chosen sites over all modes i. Formulate
an ILP model to choose an optimal design in
terms of p, the di,j, and the decision variables
1j = 1, c, n2

xj ! e1 if a damper is placed at j
0 otherwise

z ! smallest modal d@total

(Hint: Maximize z.)
11-42 The National Cancer Institute13 has re-
ceived proposals from 22 states to participate in
its newest smoking intervention study. The first
j = 1, c, 5 are from the Northeast region, the
next j = 6, c, 11 from the Southeast, numbers
j = 12, c, 17 from the Midwest, and the last
j = 18, c, 22 from the West. At least 3 are to
be selected from each region. Each proposal has
been evaluated and rated with a merit score rj
based on rankings by a panel of experts. Selected
project budgets bj (in millions of dollars) must
total no more than the $15 million available for
the study, and the number of smokers sj (in mil-
lions) living in chosen states must sum to at least
11 million. Proposals j = 2, 7, 11, 19 come from
states in the highest quartile with respect to the
fraction of the population that smokes; proposals
j = 1, 4, 13, 14, 21 come from the lowest quartile.
At least 2 states must be selected from each of these
outlier groups. Formulate an ILP model to choose

11Based on J. Pooley (1994), “Integrated Production and Distribution Facility Planning for Ault Foods,”
Interfaces, 24:4, 113–121.

12Based on R. K. Kincaid and R. T. Berger (1993), “Damper Placement for the CSI-Phase I Evolutionary Model,”
34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, part 6, 3086–3095.

13Based on N. G. Hall, J. C. Hershey, L. G. Kessler, and R. C. Spotts (1992), “A Model for Making Project
Funding Decisions at the National Cancer Institute,” Operations Research, 40, 1040–1052.

726 Chapter 11 Discrete Optimization Models

a maximum merit feasible set of proposals to fund
using the decision variables (j = 1, c, 22)

xj ! e1 if proposal j is selected
0 otherwise

11-43 Every year the city of Montreal14 must
remove large quantities of snow from sectors
i = 1, c, 60 of the city. Each sector is assigned
to one of sites j = 1, c, 20 as its primary dis-
posal point. From prior-year history, planners
have been able to estimate the expected volume
of snowfall fi (in cubic meters) in each sector and
the capacity uj (in cubic meters) of each disposal
site. They also know the travel distance di,j from
each sector to each disposal site. Removal rates
also have to be considered. The total of hourly
removal rates ri (in m3/hr) associated with sectors
assigned to any disposal site must not exceed its
receiving rate bj (in m3/hr). Formulate an ILP
model to select an assignment that minimizes total
distance times volume moved using the decision
variables (i = 1, c, 60; j = 1, c, 20)

xi,j ! e1 if sector i is assigned to disposal j
0 otherwise

11-44 Highway maintenance in Australia15 is
performed by crews operating out of mainte-
nance depots. The Victoria region is planning a
major realignments of its depots to provide more
effective service to the i = 1, c, 276 highway
segments in the region. A total of 14 sites must
be selected from among the possible depot loca-
tions j = 1, c, 36. Review of the possibilities
has determined the indicators

ai,j ! c 1 if a depot at j is close enough
to provide good service to segment i

0 otherwise

Not all segments will be able to receive this good
service, so planners wish to select 14 locations
to minimize to sum of service requirements si at

segments with inadequate service. Formulate an
ILP model to select an optimal collection of de-
pots using the decision variables (i = 1, c, 276;
j = 1, c, 36)

xi ! e1 if depot j is selected
0 otherwise

yi ! e1 if segment i goes inadequately covered
0 otherwise

11-45 Mobil Oil Corporation16 serves 600,000
customers with 430 tanktrucks operating out of
120 bulk terminals. As illustrated in the follow-
ing figure, tanktrucks have several compartments
c = 1, c, n of varying capacity uc.

compartment
1

compartment
2

compartment
3

compartment
4

The final stage of distribution planning is to al-
locate outgoing gasoline products p = 1, c, m
to compartments. The various products ordered
are placed in one or more compartments, but
each compartment can contain only one prod-
uct. To avoid overfilling, the total gallons of any
product loaded can be reduced from the ordered
volume vp by up to bp gallons. The loading proce-
dure seeks to minimize the sum of these under-
loadings while meeting all other requirements.
Formulate an ILP model of this loading prob-
lem using the decision variables (p = 1, c, m;
c = 1, c, n)

 xp,c ! gallons of product p loaded in
compartment c

 yp,c ! c 1 if product p is loaded in
 compartment c

 0 otherwise

zp ! gallons underloading of product p

14Based on J. F. Campbell and A. Langevin (1995), “The Snow Disposal Assignment Problem,” Journal of
the Operational Research Society, 46, 919–929.

15Based on G. Rose, D. W. Bennett, and A. T. Evans (1992), “Locating and Sizing Road Maintenance
Depots,” European Journal of Operational Research, 63, 151–163.

16Based on G. G. Brown, C. J. Ellis, G. W. Graves, and D. Ronen (1987), “Real-Time, Wide Area Dispatch
of Mobil Tank Trucks,” Interfaces, 17:1, 107–120.

 Exercises 727

11-46 Each of the 11 nurses17 at Rosey Retire-
ment Home works a total of 10 days within each
2-week period, alternating between a compat-
ible pair of weekly schedules taken from those
depicted in the following table (1 = work,
0 = off).

Day

Shift

1 2 3 4 5 6

1 1 1 0 1 1 0
2 1 0 1 1 1 1
3 1 1 1 1 1 1
4 1 1 1 1 0 1
5 0 1 1 0 1 1
6 0 0 0 1 1 1
7 0 0 0 1 1 1

Compatible weekly schedule pairs are C!511, 42,
11, 52, 11, 62, 12, 42, 12, 52, 12, 62, 13, 42,13, 52,
13, 62, 14, 12, 14, 22, 15, 22, 15, 32, 16, 326, and
the number working each shift should be constant
from week to week. At least rd nurses must be on
duty on days d = 1, c, 7, but excesses are al-
lowed if mandated by the shift patterns. Rosey’s
objective is to minimize the sum of any such over-
staffing. Formulate an ILP model to decide an op-
timal cyclic schedule for the staff of 11 using the
decision variables 11i, j2 ∈ C, d = 1, c, 72,

 xi,j ! number of nurses working shift i then shift j
 zd ! excess number of nurses scheduled on day d

11-47 Regional Bell telephone operating com-
panies,18 which buy many products from a much
smaller number of suppliers, often solicit dis-
counts based on the total dollar volume of busi-
ness awarded to particular suppliers. For example,
suppliers i = 1, c, 25 might be required to quote
base prices pi,j for needed products j = 1, c, 200,
together with upper limits bi,k, k = 1, c, 5 for
ranges on total dollar volume and corresponding
discount fractions di,k that increase with k. Then
the actual cost to the telephone company of sup-
plier i’s goods will be 11 - di,12 times the total

base price of those goods if that total dollar value
falls within the interval [ui,0, ui,1], 11 - di,22 if the
total dollar volume falls within [ui,1, ui,2], and so
on (assume that ui,0! 0, ui,5 Ú any feasible dol-
lar volume). The company wants to choose bids
to equal or exceed all required product quantities
rj at least total discounted cost. Formulate an ILP
model of this volume discount problem using the
decision variables (i = 1, c, 25; j = 1, c, 200;
k = 1, c, 5)

 xi,j ! quantity of product j purchased from
supplier i

 wi,k ! dollar volume of goods from supplier i
when discount range k applies

 yi,k ! c 1 if discount range k applies for
 supplier i

 0 otherwise

11-48 The small Adele19 textile company knits
products p = 1, c, 79 on a variety of machines
m = 1, c, 48 to meet known output quotas qp
pounds for the next week. The variable cost per
pound of making product p on machine m is
known cm, p. Machines operate with changeable
cylinder types j = 1, c, 14, which have differ-
ent combinations of knitting needles, and thus
yield different quantities am,j,p (pounds) of prod-
uct p per hour on machine m. A total of 100 hours
is available on each machine over the next week,
but a setup time sm,j must be deducted for each
cylinder type j used on each machine m. Adele
wants to find a minimum total variable cost sched-
ule that conforms to all constraints. Formulate an
ILP model of this production scheduling prob-
lem using decision variables (m = 1, c, 48;
j = 1, c, 14; p = 1, c, 79)

 xm,j,p ! pounds of product p made on machine
m with cylinder type j

 ym,j ! c 1 if cylinder type j is used on
 machine m

 0 otherwise

17Based on E. S. Rosenbloom and N. F. Goertzen (1987), “Cyclic Nurse Scheduling,” European Journal of
Operational Research, 31, 19–23.

18Based on P. Katz, A. Sadrian, and P. Tendick (1994), “Telephone Companies Analyze Price Quotations
with Bellcore’s PDSS Software,” Interfaces, 24:1, 50–63.

19Based on U. Akinc (1993), “A Practical Approach to Lot and Setup Scheduling at a Textile Firm,” IIE
Transactions, 25, 54–64.

728 Chapter 11 Discrete Optimization Models

11-49 Mail Order Mart (MOM)20 will ship qj
pounds of small-order novelty goods over the
next week to regions j = 1, c, 27 of the United
States. MOM’s distribution facility is located in
New England region 1. Orders can be directly
shipped from the distribution center by small
parcel carriers at cost p1, j per pound. An often
cheaper alternative is to drop-ship (i.e., group)
the week’s orders for a region j into a bulk quan-
tity that can be sent by common carrier freight
to an intermediate point in region i for ci per
pound 1c1 ! 02, and then be directly shipped
from i on to j at small-parcel cost pi,j per pound.
However, common carriers require a minimum of
1000 pounds per shipment. MOM wants to iden-
tify the least total cost way to meet this week’s
shipping needs. Formulate an ILP model of this
shipping problem using the decision variables
(i, j = 1, c, 27)

xi,j ! c 1 if goods bound for region j are drop
 are drop shipped via region i

 0 otherwise

1x1, j = 1 implies direct shipping to j.2
11-50 Gas turbine engines21 have the following
radial assembly of nozzle guides located imme-
diately upstream from each rotor. The purpose
of the vanes is to spread flow uniformly over the
rotor, which improves its efficiency materially.
During engine maintenance, the 55 old vanes
are removed and replaced by new and refur-
bished ones i = 1, c, 55 marked with previ-
ously assessed performance measures ai and bi
of the two faces. The effect of each nozzle slot
is greatly impacted by the sum of the a-value for
the vane placed on one side and the b-value for
the vane installed on the other. Maintenance
personnel want to choose an (counterclock-
wise) arrangement of vanes around the assem-
bly to balance this performance by minimizing
the total of squared deviations between each
resulting a + b sum and known target value t.
Show that this vane arrangement task can be

viewed as a traveling salesman problem and
write an expression for the corresponding point
i to point j costs.

11-51 A new freight airline22 is designing a hub-
and-spoke system for its operations. From a total
of 34 airports to be served, 3 will be selected as
hubs. Then (one-way) airport-to-airport freight
quantities fi,j will be routed via the hubs (fi,i = 0
for all i). That is, flow from i to j will begin at i, go
to the unique hub k for i, then pass to the (possi-
bly same) hub / for j before being shipped on to j.
The goal is to minimize the total of flow time unit
transportation costs ci,j taking into account a 30%
savings for flows between hubs that results from
economies of scale (ci,i = 0 for all i).

(a) Explain why appropriate decision variables
for an integer programming model of this
hub design problem are (i, k = 1, c, 34)

 xi,k ! e1 if airport i is assigned to a hub at k
0 otherwise

 yk ! e1 if a hub opens at k
0 otherwise

(b) Use only the xi,k (i.e., disregard whether
hubs are open) to formulate a quadratic
objective function summing origin-to-hub,

21Based on R. D. Plante, T. J. Lowe, and R. Chandrasekaran (1987), “The Product Matrix Traveling Salesman
Problem: An Application and Solution Heuristic,” Operations Research, 35, 772–783.

22Based on M. E. O’Kelly (1987), “A Quadratic Integer Program for the Location of Interacting Hub
Facilities,” European Journal of Operational Research, 32, 393–404.

20Based on L. S. Franz and J. Woodmansee (1993), “Zone Skipping vs. Direct Shipment of Small Orders:
Integrating Order Processing and Optimization,” Computers and Operations Research, 20, 467–475.

 Exercises 729

hub-to-hub, and hub-to-destination trans-
portation costs for each pair of nodes.

(c) Complete an INLP model of the problem
by adding linear main constraints and
 appropriate variable-type constraints.

11-52 In an area with many suburban commu-
nities, telephone listings are usually grouped
into several different books.23 Patrons in each
community i = 1, c, n are covered in exactly
one directory k = 1, c, m. Numbers of pa-
trons pi are known for each community, as well

as (one-way) calling traffic levels ti,j between
communities. Engineers seek to design books
that maximize the traffic among patrons shar-
ing a common telephone book without listing
more than capacity q patrons in any single di-
rectory. Formulate an INLP model to select
an optimal collection of telephone books in
terms of the decision variables (i = 1, c, n,
k = 1, c, m)

xi,k ! e1 if community i goes in book k
0 otherwise

23Based on S. Chen and C. J. McCallum (1977), “The Application of Management Science to the Design of
Telephone Directories,” Interfaces, 8:1, 58–69.

REFERENCES

Chen, Der-San, Robert G. Batson, and Yu Dang
(2010), Applied Integer Programming - Modeling
and Solution. Wiley, Hoboken, New Jersey.

Hillier, Fredrick S. and Gerald J. Lieberman
(2001), Introduction to Operations Research.
 McGraw-Hill, Boston, Massachusetts.

Parker, R. Gary and Ronald L. Rardin (1988), Dis-
crete Optimization. Academic Press, San Diego,
California.

Taha, Hamdy (2011), Operations Research - An
Introduction. Prentice-Hall, Upper Saddle River,
New Jersey.

Winston, Wayne L. (2003), Operations Research -
Applications and Algorithms. Duxbury Press,
 Belmont, California.

Wolsey, Laurence (1998), Integer Programming.
John Wiley, New York, New York.

This page intentionally left blank

731

▪ ▪ ▪ ▪ ▪
Chapter 12

Exact Discrete
Optimization Methods

In Chapter 11 we illustrated the wide range of integer and combinatorial optimization
models encountered in operations research practice. Some are linear programs with
a few discrete side constraints; others are still linear but involve only combinatorial
decision variables; still others are both nonlinear and combinatorial. Each one includes
logical decisions that just cannot be modeled validly as continuous, so most lack the
elegant tractability of the LP and network models studied in earlier chapters.

Diminished tractability does not imply diminished importance. Discrete opti-
mization models such as those presented in Chapter 11 all represent critical decision
problems in engineering and management that must somehow be confronted. Even
partial analysis can prove enormously valuable.

It should not surprise that discrete optimization methods span a range as
wide as the models they address. In contrast to, say, linear programming, where
a few prominent algorithms have proved adequate for the overwhelming major-
ity of models, success in discrete optimization often requires methods cleverly
specialized to an individual application. Still, there are common themes. In this
chapter we introduce the best known of those seeking—at least nominally—
exact optimal solutions. Chapter 15 treats expressly heuristic methods satisfied
with approximate optima.

12.1 Solving by ToTal EnumEraTion

Beginning students often find counterintuitive the idea that discrete optimization
problems are more difficult than their continuous analogs. The algebra of LP algo-
rithms in Chapters 5 and 6 is rather daunting. By comparison, a discrete model, which
has only a finite number of choices for decision variables, can seem refreshingly easy.
Why not just try them all and keep the best feasible solution as optimal?

Although naive, this point of view contains a kernel of wisdom.

732 Chapter 12 Exact Discrete Optimization Methods

Total Enumeration
To be more specific, total or complete enumeration requires checking all possibilities
implied by discrete variable values.

TablE 12.1 Enumeration of the Swedish Steel All-or-Nothing Model

Discrete
Combination

Corresponding Continuous
Solution

Objective
Value

y1 = 0, y2 = 0 x3 = 814.3, x4 = 114.6, x5 = 30.0, x6 = 10.0, x7 = 1.1 9914.1

y1 = 0, y2 = 1 x3 = 637.9, x4 = 82.0, x5 = 22.0, x6 = 7.3, x7 = 0.9 9877.3

y1 = 1, y2 = 0 x3 = 727.6, x4 = 178.8, x5 = 16.5, x6 = 1.0, x7 = 1.1 9540.3

y1 = 1, y2 = 1 x3 = 552.8, x4 = 112.9, x5 = 8.5, x6 = 0.0, x7 = 0.9 9591.1

If a model has only a few discrete decision variables, the most effec-
tive method of analysis is often the most direct: enumeration of all the possibilities.

Principle 12.1

Total enumeration solves a discrete optimization by trying all
possible combinations of discrete variable values, computing for each the best
corresponding choice of any continuous variables. Among combinations yielding
a feasible solution, those with the best objective function value are optimal.

Definition 12.2

Swedish Steel All-or-Nothing Application
We can illustrate with the discrete version of our Swedish Steel application formu-
lated in model (11.2) (Section 11.1):

min 161752y1 + 1012502y2 + 8x3 + 9x4 + 48x5 + 60x6 + 5 3x7

s.t. 75y1 + 250y2 + x3 + x4 + x5 + x6 + x7 = 1000

 0.00801752y1 + 0.007012502y2 + 0.0085x3 + 0.0040x4 Ú 0.0065110002
 0.00801752y1 + 0.007012502y2 + 0.0085x3 + 0.0040x4 … 0.0075110002
 0.1801752y1 + 0.03212502y2 + 1.0x5 Ú 0.030110002
 0.1801752y1 + 0.03212502y2 + 1.0x5 … 0.035110002
 0.1201752y1 + 0.01112502y2 + 1.0x6 Ú 0.010110002

(12.1)

 0.1201752y1 + 0.01112502y2 + 1.0x6 … 0.012110002
 0.00112502y2 + 1.0x7 Ú 0.011110002
 0.00112502y2 + 1.0x7 … 0.013110002
 x3, c, x7 Ú 0
 y1, y2 = 0 or 1

In this version the first two sources of scrap iron have to be entered on an all-
or-nothing basis modeled with discrete variables. The other five sources can be
employed in any nonnegative amount.

There are 2 possible values for y1 and 2 for y2, or a total of 2 # 2 = 4 combina-
tions to enumerate. Table 12.1 provides details. Third option y1 = 1, y2 = 0 yields
the optimal solution with objective value 9540.3.

12.1 Solving by Total Enumeration 733

Since this model has both discrete and continuous variables, each case enu-
merated requires solving a continuous optimization over variables x3, c, x7 to find
the best continuous values to go with the choice of discrete variables selected. For
example, fixing y1 = y2 = 0 in model (12.1) leaves the linear program

min 161752102 + 1012502102 + 8x3 + 9x4 + 48x5 + 60x6 + 5 3x7

s.t. 75102 + 250102 + x3 + x4 + x5 + x6 + x7 = 1000

 0.00801752102 + 0.007012502102 + 0.0085x3 + 0.0040x4 Ú 0.0065110002
 0.00801752102 + 0.007012502102 + 0.0085x3 + 0.0040x4 … 0.0075110002
 0.1801752102 + 0.03212502102 + 1.0x5 Ú 0.030110002
 0.1801752102 + 0.03212502102 + 1.0x5 … 0.035110002
 0.1201752102 + 0.01112502102 + 1.0x6 Ú 0.010110002
 0.1201752102 + 0.01112502102 + 1.0x6 … 0.012110002
 0.00112502102 + 1.0x7 Ú 0.011110002
 0.00112502102 + 1.0x7 … 0.013110002
 x3, c, x7 Ú 0

Optimal solution x3 = 814.3, x4 = 144.6, x5 = 30.0, x6 = 10.0, x7 = 1.1, completes
the first case in Table 12.1.

ExamplE 12.1: Solving by ToTal EnumEraTion

Solve the following discrete optimization model by total enumeration 12.2 .

max 7x1 + 4x2 + 19x3

s.t. x1 + x3 … 1

 x2 + x3 … 1

 x1, x2, x3 = 0 or 1

Solution: Checking the 23 = 8 combinations produces the following table:

Case Objective Case Objective

x = 10, 0, 02 0 x = 11, 0, 02 7

x = 10, 0, 12 19 x = 11, 0, 12 Infeasible

x = 10, 1, 02 4 x = 11, 1, 02 11

x = 10, 1, 12 Infeasible x = 11, 1, 12 Infeasible

Solution x = 10, 0, 12 is the feasible one with best objective value 19, so it is optimal.

Exponential Growth of Cases to Enumerate
Our Swedish Steel application has two discrete decision variables, each with two
possible values 0 and 1. A total of

2 # 2 = 22 = 4

combinations result.

734 Chapter 12 Exact Discrete Optimization Methods

Similar thinking shows that a model with k binary decision variables would have

2 # 2 c2 = 2k
3

k times

cases to enumerate. This is exponential growth, with every additional 0–1 variable
doubling the number of combinations. Even k = 100 implies ≈ 1010.

12.2 rElaxaTionS of DiScrETE opTimizaTion moDElS
anD ThEir uSES

Because analysis of discrete optimization models is usually hard, it is natural to look
for related but easier formulations that can aid in the analysis. Relaxations are auxil-
iary optimization models of this sort formed by weakening either the constraints or the
objective function or both of the given discrete model.

applicaTion 12.1: biSon booSTErS

Before considering relaxation in the more realistic circumstances of models in
Chapter 11, it will help to develop a more compact (albeit highly artificial) example.
Consider the dilemma of the Bison Boosters club supporting the local atheletic team.

The Boosters are trying to decide what fundraising projects to undertake at
the next country fair. One option is customized T-shirts, which will sell for $20 each;
the other is sweatshirts selling for $30. History shows that everything offered for sale
will be sold before the fair is over.

Materials to make the shirts are all donated by local merchants, but the Boosters
must rent the equipment for customization. Different processes are involved, with
the T-shirt equipment renting at $550 for the period up to the fair, and the sweatshirt
equipment for $720. Display space presents another consideration. The Boosters
have only 300 square feet of display wall area at the fair, and T-shirts will consume 1.5
square feet each, sweatshirts 4 square feet each. What plan will net the most income?

Certainly this problem centers on making shirts, so decision variables will include

 x1 ! number of T@shirts made and sold

 x2 ! number of sweatshirts made and sold

However, the Boosters also confront discrete decisions on whether to rent equipment:

 y1 ! 1 if T@shirt equipment is rented and = 0 otherwise

 y2 ! 1 if sweatshirt equipment is rented and = 0 otherwise

Using these decision variables, the Boosters’ dilemma can be modeled:

 max 20x1 + 30x2 - 550y1 - 720y2 1net income2
s.t. 1.5x1 + 4x2 … 300 1display space2

 x1 … 200y1 1T@shirts if equipment2 (12.2)

Exponential growth makes total enumeration impractical for
models having more than a few discrete variables.

Principle 12.3

12.2 Relaxations of Discrete Optimization Models and Their Uses 735

Constraint Relaxations
Relaxations may weaken either the objective function or the constraints, but the
elementary ones we explore in this book mostly focus on constraints. A constraint
relaxation produces an easier model by dropping or easing some constraints.

 x2 … 75y2 1sweatshirts if equipment2
 x1, x2 Ú 0

 y1, y2 = 0 or 1
The objective function maximizes net income, and the first main constraint enforces
the display space limit. The next two constraints provide the switching we have seen
in other models. Any sufficiently large big-M could be used as the yj coefficient
in these constraints. Values in (12.2) derive from the greatest production possible
within the 300 square feet display limit. Coefficients 300>1.5 = 200 for T-shirts and
300>4 = 75 for sweatshirts introduce no limitation if y’s equal 1, yet switch off all
production if y’s equal 0.

Enumeration of the 4 combinations of y1 and y2 values easily establishes that
the Boosters should make only T-shirts. The unique optimal solution is x1

* = 200,
x2

* = 0, y1
* = 1, y2

* = 0, with net income $3450.

Model 1P2 is a constraint relaxation of model (P) if every
feasible solution to (P) is also feasible in 1P2 and both models have the same
objective function.

Definition 12.4

New feasible solutions may be allowed, but none should be lost.
Table 12.2 shows several constraint relaxations of the tiny Bison Boosters

model (12.2). The first simply doubles capacities. The result is certainly a relaxation,
because every solution fitting within the true capacity of 300 square feet will also fit
within twice as much area. Still, this relaxation gains us little.

TablE 12.2 Constraint Relaxations of Bison Boosters Model

Revised Constraints Discussion

1.5x1 + 4x2 … 600
x1 … 400y1

x2 … 150y2

x1, x2 Ú 0
y1, y2 = 0 or 1

Doubled capacities. Relaxation
 optimum: x1 = 400, x2 = 0, yQ1 = 1,
yQ2 = 0, net income $7450

x1 … 200y1

x2 … 75y2

x1, x2 Ú 0
y1, y2 = 0 or 1

Dropped first constraint. Relaxation
optimum: x1 = 200, x2 = 75,
yQ1 = 1, yQ2 = 1, net income $4980

1.5x1 + 4x2 … 300
x1 … 200y1

x2 … 75y2

x1, x2 Ú 0
0 … y1 … 1
0 … y2 … 1

Linear programming relaxation
with discrete variables treated as
continuous. Relaxation optimum:
x1 = 200, x2 = 0, yQ1 = 1, yQ2 = 0,
net income $3450

736 Chapter 12 Exact Discrete Optimization Methods

Doubling capacities fails this requirement because the character of the model is
unchanged.

The second relaxation of Table 12.2 is more on track. Dropping the first con-
straint delinks decisions about the two types of shirts. It then becomes much eas-
ier to compute a (relaxation) optimal solution. We need only decide one by one
whether the maximum production now allowed each xj when its yj = 1 justifies the
fixed cost of equipment rental. Both do.

ExamplE 12.2: rEcognizing conSTrainT rElaxaTionS

Determine whether or not each of the following mixed-integer programs is a con-
straint relaxation of

 min 3x1 + 6x2 + 7x3 + x4

s.t. 2x1 + x2 + x3 + 10x4 Ú 100
 x1 + x2 + x3 … 1
 x1, x2, x3 = 0 or 1
 x4 Ú 0

(a) min 3x1 + 6x2 + 7x3 + x4

s.t. 2x1 + x2 + x3 + 10x4 Ú 100
 x1, x2, x3 = 0 or 1
 x4 Ú 0

(b) min 3x1 + 6x2 + 7x3 + x4

s.t. 2x1 + x2 + x3 + 10x4 Ú 200
 x1 + x2 + x3 … 1
 x1, x2, x3 = 0 or 1
 x4 Ú 0

(c) min 3x1 + 6x2 + 7x3 + x4

s.t. 2x1 + x2 + x3 + 10x4 Ú 100
 x1 + x2 + x3 … 1
 x1, x2, x3, x4 Ú 0

(d) min 3x1 + 6x2 + 7x3 + x4

s.t. 2x1 + x2 + x3 + 10x4 Ú 100
 x1 + x2 + x3 … 1
 1 Ú x1 Ú 0, 1 Ú x2 Ú 0,
 1 Ú x3 Ú 0, x4 Ú 0

Solution: We apply definition 12.4 .

(a) This model is a constraint relaxation because it is formed by dropping the second
main constraint. Certainly, every solution feasible in the original model remains so
with fewer constraints.

(b) This model is not a relaxation. The only change, which is increasing the
righthand side by 100, to 200, eliminates previously feasible solutions. One example
is x = 10, 0, 0, 102.

(c) This model is a relaxation. Allowing x1, x2, and x3 to take on any nonnegative
value—rather than just 0 or 1—cannot eliminate previously feasible solutions.

(d) This model is also a relaxation. Allowing x1, x2, and x3 to take on any values in
the interval [0, 1] precludes none of their truly feasible values.

Relaxations should be significantly more tractable than the
models they relax, so that deeper analysis is practical.

Principle 12.5

12.2 Relaxations of Discrete Optimization Models and Their Uses 737

Linear Programming Relaxations
The third case in Table 12.2 illustrates the best known and most used of all constraint
relaxation forms: linear programming, or more generally, continuous relaxations.

Continuous relaxations (linear programming relaxations if the
given model is an integer linear program) are constraint relaxations formed by
treating any discrete variables as continuous while retaining all other constraints.

Definition 12.6

LP relaxations of integer linear programs are by far the most
used relaxation forms because they bring all the power of linear programming
to bear on analysis of the given discrete models.

Principle 12.7

In the real Bison Boosters model, each yj must equal 0 or 1. In the continuous relax-
ation we also admit fractions, replacing each

yj = 0 or 1 by 1 Ú yj Ú 0

Certainly, no feasible solutions are lost by allowing both fractional and integer
choices for discrete variables, so the process does produce a valid relaxation. More
important, the relaxed model usually proves significantly more tractable.

Our Bison Boosters model is an integer linear program (ILP), linear in all
aspects except the discreteness of y1 and y2. Thus, relaxing discrete variables to con-
tinuous leaves a linear program to solve—the linear programming relaxation; we
have already expended several chapters of this book showing how effectively linear
programs can be analyzed.

ExamplE 12.3: forming linEar programming rElaxaTionS

Form the linear programming relaxation of the following mixed-integer program:

 min 15x1 + 2x2 - 4x3 + 10x4

s.t. x3 - x4 … 0
 x1 + 2x2 + 4x3 + 8x4 = 20
 x2 + x4 … 1
 x1 Ú 0
 x2, x3, x4 = 0 or 1

Solution: Following definition 12.6 , we replace 0–1 constraints xj = 0 or 1 by
xj ∈ [0, 1] to obtain the LP relaxation

 min 15x1 + 2x2 - 4x3 + 10x4

s.t. x3 - x4 … 0
 x1 + 2x2 + 4x3 + 8x4 = 20
 x2 + x4 … 1
 x1 Ú 0
 1 Ú x2 Ú 0, 1 Ú x3 Ú 0, 1 Ú x4 Ú 0

738 Chapter 12 Exact Discrete Optimization Methods

Relaxations Modifying Objective Functions
Not all relaxations are constraint relaxations. Sometimes the objective function is
also weakened. A full definition includes both possibilities.

Optimization problem (R) is a relaxation of optimization
problem (P) if (i) every feasible solution in (P) is feasible in (R), and (ii) the
objective value in (R) of every feasible solution in (P) is equal to or better
than its objective value in (P) (… for a min problem, Ú for a max problem).

Definition 12.8

ExamplE 12.4: rElaxaTionS wiTh changing objEcTivES

Return to the ILP of Example 12.3, and determine whether each of the following
changes in the model produces a valid relaxation.

(a) Replacing the given objective function by

 min 3x1 - 6x2 + 2x3 + x4

(b) Dropping the second main constraint as in part (a) of Example 12.3 and replacing
the given objective function by

 min 3x1 + 6x2 + 19x3 + 5x4

(c) Dropping the second main constraint as in part (a) of Example 12.3 and replac-
ing the given objective function by

 min 3x1 + 6x2 + 7x3 + x4 - 511 - x1 - x2 - x32
Solution:

(a) This change has not modified the original constraints, but it has reduced two ob-
jective function coefficients. Since all the variables of the problem are nonnegative,
reducing their objective coefficients can only produce a lower objective value. This is
consistent with 12.8 (ii) for a min problem, and the new model is a valid relaxation.

(b) This change has widened the feasible set consistent with 12.8 (i) by dropping
a constraint, but it has increased two objective function coefficients as well. Over
nonnegative variables this may produce a violation of 12.8 (ii) for a min problem.
The new model is not a valid relaxation.

(c) This change has again widened the feasible set consistent with 12.8 (i) by drop-
ping a constraint. Furthermore, the change in the objective function has subtracted
a multiple of the slack in the relaxed constraint. Feasible solutions in the origi-
nal model will have nonnegative slack in the constraint, and thus the effect is to
 lower-bound the true objective value which satisfies 12.8 (ii) for a min problem.
The model is a valid relaxation.

Proving Infeasibility with Relaxations
Exactly what do relaxations add to our analysis of discrete optimization models?
One thing is to prove infeasibility.

12.2 Relaxations of Discrete Optimization Models and Their Uses 739

Suppose that a relaxation comes out infeasible. Then it has no solutions at all.
Since every solution to the full model must also be feasible in the relaxation, it fol-
lows that the original model was also infeasible. By analyzing the relaxation we have
learned a critical fact about the model of real interest.

If a relaxation is infeasible, so is the full model it relaxes.Principle 12.9

ExamplE 12.5: proving infEaSibiliTy wiTh rElaxaTionS

Use linear programming relaxation to establish that the following discrete optimiza-
tion model is infeasible:

 min 8x1 + 2x2

s.t. x1 - x2 Ú 2
 -x1 + x2 Ú -1
 x1, x2 Ú 0 and integer

Solution: The linear programming relaxation of this model is

 min 8x1 + 2x2

s.t. x1 - x2 Ú 2
 -x1 + x2 Ú -1
 x1, x2 Ú 0

It is clearly infeasible, because the two main constraints can be written

x1 - x2 Ú 2
x1 - x2 … 1

Thus by principle 12.9 , the given integer program is also infeasible. Any solutions
satisfying all constraints would also have to be feasible in the relaxation.

It is important to understand that principle 12.9 works in only one direction.
An infeasible relaxation does prove the full model also has no solutions. But a fea-
sible relaxation does not assure full model feasibility. Consider, for example, the
following tiny ILP

 min 5x

s.t.
1
4

 … x …
1
2

 x integer

Its LP-relaxation clearly has solutions in the interval 31
4, 124, but none of them are

integer. The full ILP is infeasible.

Solution Value Bounds from Relaxations
Figure 12.1 illustrates how relaxations also give us bounds on optimal solution
values. Constraint relaxations expand the feasible set, allowing more candidates

740 Chapter 12 Exact Discrete Optimization Methods

for relaxation optimum. The relaxation optimal value, which is the best over the
expanded set of solutions, must then equal or improve on the best feasible solution
value to the true model.

The optimal value of any relaxation of a maximize model
yields an upper bound on the optimal value of the full model. The optimal
value of any relaxation of a minimize model yields a lower bound.

Principle 12.10

feasible solutions in relaxation

feasible solutions
in true model

true optimum

figurE 12.1 Relaxations and Optimality

All three constraint relaxations in Table 12.2 illustrate the maximize case. The
optimal solution value of the Bison Boosters model (12.2) is $3450. One of the
cases in Table 12.2 yields exactly this value. The others produce higher estimates of
net income. All provide the upper bound guaranteed in principle 12.10 .

For relaxations with changed objective functions, the issue is a bit more com-
plex, but solution value bounds are still produced. Take, for example, a minimizing
problem (P) and valid relaxation (R). By 12.8 (i), every feasible solution to (P) is
also feasible in (R), and the objective value for each in (P) is lower-bounded by its
objective value in (R) (12.8 (ii)). In particular, the value of an optimal solution in
(P) is Ú its value in (R) which is in turn Ú the value of the optimal solution in (R),
assuring that relaxation optimal value provides a valid bound on the optimum in
(P) as required in principle 12.10 .

With the Bison Boosters model, which is so small that it is easily solved optimally,
relaxation bounds offer little new insight. A better sense of their value comes from
considering the somewhat larger EMS model (11.8) of Section 11.3 that minimizes the
number of stations to cover the 20 metropolitan districts:

min a
10

j = 1
xj 1number of sites2

s.t. x2 Ú 1 1district 12
 x1 + x2 Ú 1 1district 22
 x1 + x3 Ú 1 1district 32
 x3 Ú 1 1district 42

12.2 Relaxations of Discrete Optimization Models and Their Uses 741

 x3 Ú 1 1district 52
 x2 Ú 1 1district 62
 x2 + x4 Ú 1 1district 72
 x3 + x4 Ú 1 1district 82
 x8 Ú 1 1district 92
 x4 + x6 Ú 1 1district 102
 x4 + x5 Ú 1 1district 112
 x4 + x5 + x6 Ú 1 1district 122

(12.3)

 x4 + x5 + x7 Ú 1 1district 132
 x8 + x9 Ú 1 1district 142
 x6 + x9 Ú 1 1district 152
 x5 + x6 Ú 1 1district 162
 x5 + x7 + x10 Ú 1 1district 172
 x8 + x9 Ú 1 1district 182
 x9 + x10 Ú 1 1district 192
 x10 Ú 1 1district 202
 x1, c, x10 = 0 or 1

How many stations does this model imply? Even with just 10 discrete vari-
ables, the answer is hardly obvious. But if we replace each xj = 0 or 1 constraint by
0 … xj … 1, the resulting linear programming relaxation can be solved quickly with
say, the simplex algorithm. An optimal solution is

 x∼1 = x∼7 = 0
(12.4)

 x∼2 = x∼3 = x∼8 = x∼10 = 1
 x∼4 = x∼5 = x∼6 = x∼9 = 1

2

with optimal value 6.0. Without looking any further into the discrete model, we can
conclude that at least 6 EMS sites will be required because this LP relaxation value
provides a lower bound (principle 12.10).

ExamplE 12.6: compuTing bounDS from rElaxaTionS

Compute (by inspection) the optimal solution value and the LP relaxation bound
for each of the following integer programs.

(a) max x1 + x2 + x3

s.t. x1 + x2 … 1
 x1 + x3 … 1
 x2 + x3 … 1
 x1, x2, x3 = 0 or 1

(b) min 20x1 + 9x2 + 7x3

s.t. 10x1 + 4x2 + 3x3 Ú 7
 x1, x2, x3 = 0 or 1

742 Chapter 12 Exact Discrete Optimization Methods

Optimal Solutions from Relaxations
Sometimes relaxations not only bound the optimal value of the corresponding discrete
model but produce an optimal solution.

Solution:

(a) Clearly, only one of the variables in this model can = 1, so the optimal solution
value is 1. Corresponding linear programming relaxation

 max x1 + x2 + x3

s.t. x1 + x2 … 1
 x1 + x3 … 1
 x2 + x3 … 1
 1 Ú x1, x2, x3 Ú 0

yields optimal solution x∼ = 11
2, 12, 122 with objective value 3

2. In accord with princi-
ple 12.10 , relaxation value 3

2 is an upper bound on the true optimal value 1 of this
maximize model.

(b) Total enumeration shows that an optimal solution to this minimizing ILP is
x = 10, 1, 12 with value 16. Its linear programming relaxation is

 min 20x1 + 9x2 + 7x3

s.t. 10x1 + 4x2 + 3x3 Ú 7
 1 Ú x1, x2, x3 Ú 0

with optimal solution x∼ = 1 7
10, 0, 02 and value 14. Demonstrating principle 12.10 ,

relaxation value 14 provides a lower bound on true optimal value 16.

If an optimal solution to a constraint relaxation is also feasible
in the model it relaxes, the solution is optimal in that original model.

Principle 12.11

Another look at Figure 12.1 will show why. All (shaded-area) feasible solu-
tions to the original discrete model must also belong to the larger relaxation feasible
set. If the relaxation optimum happens to be one of them, it has as good an objective
function value as any feasible solution to the relaxation. In particular, it has as good
an objective function value as any feasible solution in the original model. It must be
optimal in the full model.

The third, linear programming relaxation of the Bison Boosters model in
Table 12.2 illustrates. Even though integrality was not required of y-components in
the relaxation optimal solution

x∼1 = 200, x∼2 = 0, y∼1 = 1, y∼2 = 0

it happened anyway. This relaxation optimum is feasible in the full discrete model
and so optimal there.

This easy justification above, for constraint relaxations, requires a bit of refine-
ment when dealing with relaxations that modify objective functions.

12.2 Relaxations of Discrete Optimization Models and Their Uses 743

To see why this additional requirement is needed, image adding a new point
in the gray region of Figure 12.1 that is the optimal solution to the relaxation. With
different objective functions being used, there is no reason to expect that relaxation
optimum to coincide with the one for the full model.

Assuming the minimize case, the full-model objective value of the relaxation
optimum provides an upper bound on the full-model’s optimal value because the
relaxation optimum is feasible there. We also know from 12.10 that its objective
value in the relaxation lower-bounds the full-model optimal value. The only way
to be sure these upper and lower bounds coincide is to require it. Full-model and
relaxation solution values must match if the relaxation optimum is to be taken as an
optimal solution to the underlying problem.

A relaxation optimum is optimal if it satisfies the require-
ments of 12.10 , and in addition, its objective value in the relaxation is equal to
its objective value in the full model.

Principle 12.12

ExamplE 12.7: obTaining opTimal SoluTionS from rElaxaTionS

Compute (by inspection) optimal solutions to each of the following relaxations, and
determine whether we can conclude that the relaxation optimum is optimal in the
original model.

(a) The linear programming relaxation of

 max 20x1 + 8x2 + 2x3

s.t. x1 + x2 + x3 … 1
 x1, x2, x3 = 0 or 1

(b) The linear programming relaxation of

 max x1 + x2 + x3

s.t. x1 + x2 … 1
 x1 + x3 … 1
 x2 + x3 … 1
 x1, x2, x3 = 0 or 1

(c) The relaxation obtained by dropping the first main constraint and reducing
the objective coefficient from 8 to 5 of

 min 2x1 + 4x2 + 8x3

s.t. x1 + x2 + x3 … 2
 10x1 + 3x2 + x3 Ú 8
 x1, x2, x3 = 0 or 1

(d) The linear programming relaxation of

 max 20x1 + 8x2 + 2x3

s.t. x1 + x2 + x3 … 1
 x1, x2, x3 = 0 or 1

with objective function coefficient 2 increased to 40.

744 Chapter 12 Exact Discrete Optimization Methods

Solution:

(a) The linear programming relaxation of this model is

 max 20x1 + 8x2 + 2x3

s.t. x1 + x2 + x3 … 1
 1 Ú x1, x2, x3 Ú 0

with obvious optimal solution x∼ = 11, 0, 02. Since this solution is also feasible in
the original model, it follows from principle 12.11 that it is optimal there.

(b) The linear programming relaxation of this model is

 max x1 + x2 + x3

s.t. x1 + x2 … 1
 x2 + x3 … 1
 x1 + x3 … 1
 1 Ú x1, x2, x3 Ú 0

with optimal solution x∼ = 11
2, 12, 12 2. Since this solution violates integrality require-

ments in the original model, it is infeasible there. It could not be optimal.

(c) The indicated relaxation is

 min 2x1 + 4x2 + 5x3

s.t. 10x1 + 3x2 + x3 Ú 8
 x1, x2, x3 = 0 or 1

with obvious optimal solution x∼ = 11, 0, 02. This relaxation optimum satisfies re-
laxed constraint

x1 + x2 + x3 … 2

and so is feasible in the original model. Furthermore, relaxation and full-problem
objective values agree. It follows from principle 12.12 that the relaxation optimum
solves the full model.

(d) The linear programming relaxation of this model is

 max 20x1 + 8x2 + 40x3

s.t. x1 + x2 + x3 … 1
 1 Ú x1, x2, x3 Ú 0

with obvious optimal solution x∼ = 10, 0, 12 and objective value 40. This solution is
indeed feasible in the original model, and its objective value of 40 is a valid upper
bound on the full model solution of x* = 11, 0, 02 with value 20 (see part (a)). But
the two solution values are not equal, principle 12.12 does not apply, and we cannot
accept the relaxation optimum as a solution to the full model.

Rounded Solutions from Relaxations
When principle 12.12 applies, relaxation completely solves a hard discrete optimi-
zation model. More commonly, things are not that simple. As with the EMS solution
(12.4) above, relaxation optima usually violate some constraints of the true model.

12.2 Relaxations of Discrete Optimization Models and Their Uses 745

All is hardly lost. First, we have the bound of principle 12.10 . We may also have
a starting point for constructing a good heuristic solution to the full discrete model.

Many relaxations produce optimal solutions that are easily
“rounded” to good feasible solutions for the full model.

Principle 12.13

Consider, for example, the EMS solution (12.4). The nature of model con-
straints (12.3), Ú form with nonnegative coefficients on the left-hand side, means that
feasibility of a solution is not lost if we increase some of its components. Beginning
from the LP relaxation optimum and rounding up produces the approximate optimal
solution

xn1 = <x∼1= = <0= = 0

xn2 = <x∼2= = <1= = 1

xn3 = <x∼3= = <1= = 1

xn4 = <x∼4= = <1
2= = 1

 xn5 = <x∼7= = <1
2= = 1

 (12.5)
xn6 = <x∼6= = <1

2= = 1

xn7 = <x∼7= = <0= = 0

xn8 = <x∼8= = <1= = 1

xn9 = <x∼9= = <1
2= = 1

xn10 = <x∼10= = <1= = 1

with value a 10
j = 1 xnj = 8. Here ceiling notation

<x= ! least integer greater than or equal to x

The corresponding floor notation

<x= ! greatest integer less that or equal to x

Heuristic optimum xn may not be truly optimal, but it does satisfy all constraints.
Where time permits no deeper analysis, this rounded relaxation solution might well
suffice. Also, feasible solutions provide bounds to complement those obtained from
the optimal relaxation solution value (principle 12.10).

The objective function value of any (integer) feasible solution
to a maximizing discrete optimization problem provides a lower bound on the
integer optimal value, and any (integer) feasible solution to a minimizing dis-
crete optimization problem provides an upper bound.

Principle 12.14

Set covering relaxation optima like (12.4) are particularly easy to round,
because of the unusually simple form of the constraints. Many other forms admit
similar rounding. Some round infeasible relaxation solutions up, some round down,
and some do other straightforward patching. Details vary with model form.

746 Chapter 12 Exact Discrete Optimization Methods

Unfortunately, there are some discrete models that just do not round. For an
example, return to our AA airline crew scheduling model (11.10) (Section 11.3). Its
set partitioning form closely resembles the set covering case we just rounded easily.
But set partitioning involves equality constraints. Each time we round some infeasi-
ble x∼j up to 1 or down to 0, other variables sharing constraints with that xj will also
have to be adjusted if feasibility is to be preserved. Much more complex rounding
schemes are required, and success cannot be guaranteed.

ExamplE 12.8: rounDing rElaxaTion opTima

In each of the following integer linear programs, develop and apply a scheme for
rounding the indicated LP relaxation optimum to an approximate solution for the
full model. Also, indicate the best lower and upper bounds on the optimal integer
solution value available from relaxation and rounding.

(a) min 10x1 + 8x2 + 18x3 with LP relaxation optimum x∼ = 10, 1, 172
s.t. 2x1 + 4x2 + 7x3 Ú 5

 x1 + x2 + x3 Ú 1

 x1, x2, x3 = 0 or 1

(b) max 40x1 + 2x2 + 18x3 with LP relaxation optimum x∼ = 11, 0, 372
s.t. 2x1 + 11x2 + 7x3 … 5

 x1 + x2 + x3 … 2

 x1, x2, x3 = 0 or 1

(c) min 3x1 + 5x2 + 20x3 + 14x4 with LP relaxation optimum
 x∼ = 116

3 , 17
3 , 16

33, 17
332

s.t. x1 + x2 = 11

 3x1 + 6x2 = 50

 x1 … 11x3

 x2 … 11x4

 x1, x2 Ú 0

 x3, x4 = 0 or 1

Solution:

(a) All main constraints of this model are Ú form, and coefficients on the left-hand
side are nonnegative. Thus increasing feasible variable values cannot cause a viola-
tion. We may round up to integer-feasible solution

<x∼= = 1<0=, <1=, <1
7=2 = 10, 1, 12

Substituting this solution in the objective function gives an upper bound (princi-
ple 12.14) of 26 on the optimal value. The corresponding lower bound, which is
obtained by substituting the relaxation optimal solution (principle 12.10), is 10.57.

12.2 Relaxations of Discrete Optimization Models and Their Uses 747

Stronger LP Relaxations
It should be obvious that we can detect infeasibility quicker (principle 12.9) obtain
sharper bounds (principles 12.10 and 12.14), have a better chance of discovering
an optimal solution (principles 12.11 and 12.12), and find rounding easier (princi-
ple 12.13) if the realxations we employ more closely approximate the full model of
interest. Strong relaxations do exactly that.

The Telemark facilities location model of Section 11.6 illustrates a classic case.
The model formulated there is:

min a
8

i = 1
 a

14

j = 1
1djri, j2xi, j + a

8

i = 1
 fiyi (total fixed cost2

s.t. a
8

i = 1
 xi, j = 1 for all j = 1, c, 14 1carry j load2

 1500yi … a
14

j = 1
 djxi, j for all i = 1, c, 8 1minimum at i2 (12.6)

 a
14

j = 1
 djxi, j … 5000yi for all i = 1, c, 8 1maximum at i2

 xi, j Ú 0 for all i = 1, c, 8; j = 1, c, 14

 yi = 0 or 1 for all i = 1, c, 8

where xi, j if the fraction of region j’s call traffic handled by center i, yi decides
whether or not center i is opened, dj is the anticipated call demand from region j,
ri, j is the unit cost of calls from region j to center i, and fi is the fixed cost of opening
center i.

(b) All main constraints of this model are … form, and coefficients on the left-hand
side are nonnegative. Thus decreasing feasible variable values cannot cause a viola-
tion. We may round down to integer-feasible solution

3x∼4 = 1:1; , :0; , :3
7; 2 = 11, 0, 02

Substituting this solution in the objective function gives a lower bound (princi-
ple 12.14) of 40 on the optimal value. The corresponding upper bound, which is
obtained by substituting the relaxation optimal solution (principle 12.10), is 47.71.

(c) Each of the discrete variables in this mixed-integer linear program occurs in
only one … constraint on the right-hand side. Thus increasing x3 and x4 from their
relaxation values cannot lose feasiblity. We may round up to

116
3 , 17

3 , <16
33=, <17

33=2 = 116
3 , 17

3 , 1, 12
Notice that continuous variable values were not changed.

Substituting this solution in the objective function gives an upper bound (prin-
ciple 12.14) of 78.33 on the optimal value. The corresponding lower bound, which is
obtained by substituting the relaxation optimal solution (principle 12.10), is 61.24.

748 Chapter 12 Exact Discrete Optimization Methods

Focus on the third, maximum capacity set of constraints. Each forces discrete
variable yi to take on a value in the relaxation satisfying

yi Ú
a 14

j = 1 djxi, j

5000
 !

capacity used

total available

For discrete modeling, these constraints do fine. Each yi must equal 1 if correspond-
ing x-variables are to use facility i at any level. In the LP relaxation, however, if
x-variables use only a small part of the capacity, the corresponding yi will take on a
small fractional value.

The numerical values of Section 11.6 confirm this behavior. The LP relaxation
of formulation (12.6) has

 y∼1 = 0.230, y∼2 = 0.000, y∼3 = 0.000, y∼4 = 0.301

(12.7)

 y∼5 = 0.115, y∼6 = 0.000, y∼7 = 0.000, y∼8 = 0.650

total cost = $8036.60

with many of the y∼j small.
Compare the optimal mixed-integer solution

 y1
* = 0, y2

* = 0, y3
* = 0, y4

* = 1

(12.8)

 y5
* = 0, y6

* = 0, y7
* = 0, y8

* = 1

total cost = $10,153

Bound $8036 of (12.7) is only 79% of true optimal value $10,153. Also, (12.7) sug-
gests that 4 centers may be needed, while the optimum opens only 2.

Even when a center is used only fractionally, it may fulfill the whole demand
for some single district. Such thinking suggests inequalities

 xi, j … yi for all i = 1, c, 8; j = 1, c, 14 (12.9)

which require that the fraction a center is opened be as great as the fraction of any
region’s demand satisfied from the center.

Adding these valid inequalities improves the LP relaxation dramatically. The
strengthened model has optimal solution

 y∼1 = 0.000, y∼2 = 0.000, y∼3 = 0.000, y∼4 = 0.537

 y∼5 = 0.000, y∼6 = 0.000, y∼7 = 0.000, y∼8 = 1.000

total cost = $10,033.68

Its bound $10,033 is almost 99% of optimal value $10,153, and only one discrete
variable comes out fractional. Addition of inequalities (12.9) has produced a much
stronger relaxation, which provides much better information about the form of a
discrete optimum.

Equally correct integer linear programming formulations of a
discrete problem may have dramatically different linear programming relaxation
optima.

Principle 12.15

12.2 Relaxations of Discrete Optimization Models and Their Uses 749

Choosing Big-M Constants
The “sufficiently large” big-M constants needed in so many models offer one easy
family where details of ILP modeling affect the LP relaxation. Return, for instance,
to the tiny Bison Boosters model of (12.2) and Table 12.2. In formulating switch-
ing constraints x1 … 400y1 and x2 … 75y2, we constructed values 400 and 75 with a
back-of-envelope computation. Any sufficiently large M would yield a correct inte-
ger linear programming model.

Suppose that we had used 10,000 for both. The new model is

 max 20x1 + 30x2 - 550y1 - 720y2 1net income2

(12.10)

s.t. 1.5x1 + 4x2 … 300 1display space2
 x1 … 10,000y1 1T@shirts if equipment2
 x2 … 10,000y2 1sweatshirts if equipment2
 x1, x2 Ú 0

 y1, y2 = 0 or 1

Recall that the original model (12.2) had relaxation optimum

x∼1 = 200, x∼2 = 0, y∼1 = 1, y∼2 = 0

matching perfectly the discrete optimal solution with value $3450. Its LP relaxation
was indeed strong.

ExamplE 12.9: unDErSTanDing STrongEr lp rElaxaTionS

Show (by inspection) that even though the two following integer linear program-
ming models have the same feasible solutions, the second yields a stronger linear
programming relaxation.

 max x1 + x2 + x3 max x1 + x2 + x3

s.t. x1 + x2 … 1 s.t. x1 + x2 … 1

 x1 + x3 … 1 x1 + x3 … 1

 x2 + x3 … 1 x2 + x3 … 1

 x1, x2, x3 = 0 or 1 x1 + x2 + x3 … 1

 x1, x2, x3 = 0 or 1

Solution: Both ILPs have the same feasible solutions,

x112 = 11, 0, 02
x122 = 10, 1, 02
x132 = 10, 0, 12

Thus they are both valid models of the same problem. Still, the first has LP relax-
ation optimum x∼ = 11

2, 12, 122, and the second has relaxation optimum x∼ = 11, 0, 02
(among others). The corresponding relaxation bounds are 3

2 and 1, making the sec-
ond relaxation stronger. In this simple case, in fact, it yields a discrete optimum (via
principle 12.12).

750 Chapter 12 Exact Discrete Optimization Methods

Revision (12.10) is every bit as correct as the original (12.2) in the sense that
it has exactly the same (discrete) feasible set. However, the LP relaxation of (12.10)
yields optimum

 x∼1 = 200, x∼2 = 0, y∼1 = 0.02, y∼2 = 0 (12.11)

with value $3989. The value bound $3989 now differs significantly from the true
optimal value $3450. Also, the relaxation optimal solution has component y∼1 at a
tiny fractional value. With only (12.11) at hand, it would be hard to tell whether to
rent or not the T-shirt equipment.

This contrast between LP relaxations of integer-equivalent models (12.2) and
(12.10) highlights an important and easy-to-implement principle for strengthening
relaxations.

Whenever a discrete model requires sufficiently large big-
M’s, the strongest relaxations will result from models employing the smallest
valid choice of those constants.

Principle 12.16

ExamplE 12.10: chooSing SmallEST big-M’S

We wish to decide which combination of two pharmaceutical facilities should be
used to produce 80 units of a needed product. One costs $5000 to setup and has
variable cost $20 unit. The other cost $7000 to setup and has variable cost $15. Both
have capacity of 200 units.

(a) Formulate a mixed-integer linear programming model using capacities for
needed big-M’s.

(b) Strengthen the linear programming relaxation of your model in part (a) by re-
ducing big-M’s to their smallest valid value.

Solution:

(a) Using decision variables x1 and x2 for the amount produced in each facility, and
switching variables x3 and x4 to track setups, a valid formulation is

 min 20x1 + 15x2 + 5000x3 + 7000x4

s.t. x1 + x2 = 80

 x1 … 200x3

 x2 … 200x4

 x1, x2 … 0

 x3, x4 = 0 or 1

Full capacity is available whenever setup cost is paid.

(b) Although capacities are 200, the problem calls for only 80 units to be produced.
Thus neither x1 nor x2 will ever exceed 80 in an optimal solution. We may strengthen
the model by reducing big-M constants from 200 to 80, to produce

12.3 Branch and Bound Search 751

12.3 branch anD bounD SEarch

Total enumerations of Section 12.1 are impractical for all but the simplest models
because every one of an explosively growing number of discrete solutions must be
considered explicitly. The process would become much more manageable if we could
deal with those solutions in large classes, determining for each whole class whether
it is likely to contain optimal solutions, and doing so without explicit enumeration of
all its members. Only the most promising classes would have to be searched in detail.

Branch and bound algorithms combine such a partial or subset enumeration
strategy with the relaxations of Section 12.2. They systematically form classes of solu-
tions and investigate whether the classes can contain optimal solutions by analyzing
associated relaxations. More detailed enumeration ensues only if the relaxations fail
to be definitive.

 min 20x1 + 15x2 + 5000x3 + 7000x4

s.t. x1 + x2 = 80

 x1 … 80x3

 x2 … 80x4

 x1, x2 Ú 0

 x3, x4 = 0 or 1

The reader can verify that this new formulation has relaxation optimum
x∼ = 180, 0, 1, 02 with value $6600, versus the original model’s x∼ = 180, 0, 4, 02 at
value $3600.

applicaTion 12.2: rivEr powEr

As with so many other topics, an artificially small example will aid in our develop-
ment of branch and bound ideas. Here we consider an operations problems at River
Power Company.

River Power has 4 generators currently available for production and wishes to
decide which to put on line to meet the expected 700-megawatt peak demand over
the next several hours. The following table shows the cost to operate each generator
(in thousands of dollars per hour) and their outputs (in megawatts).

Generator, j

1 2 3 4

Operating cost 7 12 5 14
Ouput power 300 600 500 1600

Units must be completely on or completely off.
We can formulate River Power’s problem as a knapsack problem like those of

Section 11.2. Decision variables

xj ! e1 if generator j is turned on
0 otherwise

752 Chapter 12 Exact Discrete Optimization Methods

Partial Solutions
Much like the improving searches of most of this book, branch and bound searches
iterate through a sequence of solutions until we are ready to conclude optimality or
stop with the best fully feasible solution found so far. What is new is that branch and
bound searches through partial solutions.

Then a model is

 min 7x1 + 12x2 + 5x3 + 14x4 1total cost2

(12.12)

s.t. 300x1 + 600x2 + 500x3 + 1600x4 Ú 700 1demand2
 x1, x2, x3, x4 = 0 or 1

The objective function minimizes total operating costs, and the main constraint assures
that the chosen combination of generators will fulfill demand. Total enumeration
 establishes that an optimal solution use generators 1 and 3 and cost $12,000.

A partial solution has some decision variables fixed, with oth-
ers left free or undetermined. We denote free components of a partial solution
by the symbol #.

Definition 12.17

For example, in the River Power model (12.12), x = 11, #, 0, #2 specifies a partial
solution with x1 = 1, x3 = 0, while x2 and x4 remain free.

Completions of Partial Solutions
Each partial solution implicitly defines a class of full solutions called its completions.

The completions of a partial solution to a given model are the
possible full solutions agreeing with the partial solution on all fixed components.

Definition 12.18

For instance, the completions of partial solution x = 11, #, #, 02 in our River Power
model are

11, 0, 0, 02, 11, 0, 1, 02, 11, 1, 0, 02, and 11, 1, 1, 02
Every solution with x1 = 1 and x4 = 0 is among these 4. The last 3 are feasible com-
pletions because they satisfy all constraints of model (12.12).

ExamplE 12.11: unDErSTanDing parTial SoluTionS anD complETionS

Suppose an integer program as decision variables x1, x2, x3 = 0 or 1. List all comple-
tions of each of the following partial solutions.

(a) (1, #, #)

(b) (1, #, 0)

12.3 Branch and Bound Search 753

Tree Search
Branch and bound investigates classes of solutions corresponding to completions
of partial solutions in a treelike fashion that gives it the “branch” part of its name.
Figure 12.2 provides a full example for River Power model (12.12). Nodes of this
branch and bound tree represent partial solutions, with numbers indicating the
sequence in which they are investigated. Edges or links of the tree specify how vari-
ables are fixed in partial solutions. For example, partial solution x(6) in the sequence
has x4 = 0 and x2 = 0.

The process begins at root node 0.

Solution: We apply definitions 12.17 and 12.18

(a) Completions of this partial solution consist of all full solutions with x1 = 1 [i.e.,
(1, 0, 0), (1, 0, 1), (1, 1, 0), and (1, 1, 1)].

(b) Completions of this partial solution consist of all full solutions with x1 = 1 and
x3 = 0 [i.e., (1, 0, 0) and (1, 1, 0)].

0

3

1

4 5

6

7

98

10

2
x(1) = (0, 0, 0, 1)
n = 14

x(2) = (0, 0.33, 1, 0)

n = 9

x(0) = (0, 0, 0, 0.44)
n = 6.12

x(8) = (1, 0, 1, 0)
n = 12

x(4) = (0, 1, 1, 0)
n = 17

x(3) = (0, 1, 0.2, 0)
n = 13

x(6) = (0.67, 0, 1, 0)
n = 9.67

n = ∞

by solving
n = 12

by solving
n = 14

infeasible

infeasibleby bound by bound

∼
∼

∼
∼

∼
∼

∼
∼

∼
∼

∼
∼

∼
∼

∼
∼

∼
∼

ˆ

ˆ

ˆ

x(7) = (1, 0, 0.8, 0)
ν = 11

x(5) = (0.33,1, 0, 0)
n = 14.33

x3 = 1

x1 = 1

x3 = 0

x3 = 1 x3 = 0

x2 = 1

x4 = 1 x4 = 0

x2 = 0

x1 = 0

figurE 12.2 Branch and Bound Tree for River Power Application

754 Chapter 12 Exact Discrete Optimization Methods

Node 2 of Figure 12.2 illustrates the need for branching. Analysis (detailed
below) was unable either to find the best completion of partial solution x122 =
1#, #, #, 02 or to prove that none could be optimal. Thus the node was branched
into those numbered 3 and 6. Both have x4 = 0, as in the x122. However, previously
free variable x2 has now been fixed. In partial solution 3, it is fixed = 1. In partial
solution 6, it is fixed = 0.

Notice that this branching process loses no solutions. Every completion of node
2 has either x2 = 0 or x2 = 1. We have simply constructed 2 smaller classes of solu-
tions in the hope that our analysis will now be strong enough to permit termination.

Since no solutions are lost, the enumeration is complete when all partial solu-
tions have been resolved definitively.

Branch and bound search begins at initial or root partial solu-
tion x102 = 1#, c, #2 with all variables free.

Principle 12.19

This provides the first active or unanalyzed partial solution.
At any stage of the search one or more active nodes (distinguished by not yet

having a number) remain in the tree. Analysis of each node or partial solution attempts
to decide which, if any, completions warrant consideration as an overall optimal solu-
tion. Sometimes we can either find a best completion or conclude that none is worth
further investigation. Then we terminate or fathom the entire class of (completion)
solutions represented by the node. That is, we give it no further consideration.

Branch and bound searches terminate or fathom a partial
solution when they either identify a best completion or prove that none can
produce a feasible solution in the overall model with objective value better
that the best so far known.

Principle 12.20

Node 1 in Figure 12.2 illustrates termination. It has no subsidiary nodes
because analysis of partial solution x112 = 1#, #, #, 12, which we detail below, estab-
lished that the best possible completion is x = 10, 0, 0, 12. No further investigation
of any solution with x4 = 1 is required.

Observe that this termination dealt, in a single step, with fully half the possible
solutions to the River Power model. That is, we enumerated the half of all solutions
with x4 = 1 as a class. In this way, the exponentially growing effort to totally enu-
merate every member was avoided.

Unfortunately, it often happens that analysis is not definitive. In such cases the
node or partial solution must be branched.

When a partial solution cannot be terminated in a branch and
bound search of a 0–1 discrete optimization model, it is branched by creating
2 subsidiary partial solutions derived by fixing a previously free binary variable.
One of these partial solutions matches the current except that the variable cho-
sen is fixed = 1, and the other is identical except that the variable is fixed = 0.

Principle 12.21

12.3 Branch and Bound Search 755

As long as partial solutions do remain, branch and bound search must select an
active one to explore next. The simplest such scheme is known as depth first.

Branch and bound search stops when every partial solution in
the tree has been either branched or terminated.

Principle 12.22

Depth first search selects at each iteration an active partial
solution with the most components fixed (i.e., one deepest in the search tree).

Definition 12.23

The River Power enumeration of Figure 12.2 employs this depth first rule. For
example, after node 3 had been explored, the partial solutions corresponding to
nodes 4, 5, and 6 were active in the tree. In accord with depth first rule 12.23 , one of
the deeper nodes 4 and 5 was selected to investigate next.

ExamplE 12.12: unDErSTanDing branch anD bounD TrEES

The following is the branch and bound tree for a discrete optimization model with
decision variables x1, x2, x3 = 0 or 1.

1

3 4

2

0

x2 = 1 x2 = 0

x1 = 1 x1 = 0

(a) List the sequence of partial solutions explored.

(b) Identify which of the partial solutions in part (a) were terminated and which
branched.

(c) Determine which nodes would have been active just after processing of node 1,
and explain which could have been the next explored under the depth-first enumer-
ation rule.

(d) Demonstrate that all possible solutions were implicitly enumerated by specifying
for each the node at which it was terminated.

Solution:

(a) Under principle 12.19 , the first partial solution x102 of a branch and bound
search is always the all-free (#, #, #). From variable restrictions on branches, we
can see subsequent partial solutions visited were x112 = 1#, 1, #2, x122 = 1#, 0, #2,
x132 = 11, 1, #2, and x142 = 10, 1, #2.

756 Chapter 12 Exact Discrete Optimization Methods

Incumbent Solutions
Whether explicit or implicit, the goal of any enumeration is to identify an optimal
(or at least a good feasible) solution to some optimization model. To that end, it is
essential to keep track of the best known or incumbent solution.

(b) A lack of subsidiary nodes shows that partial solutions 2, 3, and 4 were termi-
nated. Remaining nodes 0 and 1 were branched.

(c) After processing node 1, 3 active partial solutions remained in the tree. None
would then have had a number, but they eventually became node 2 created when
partial 0 was branched, together with nodes 3 and 4 formed at 1. Depth first enumer-
ation would have taken the search to either of the deeper nodes 3 and 4. However,
the search in this example proceeded, instead, to node 2.

(d) A full solution is implicitly enumerated when a completion class to which it belongs
is terminated. The following table shows the node at which each of the 8 solutions was
terminated in this case.

Solution Node Solution Node Solution Node Solution Node

(0, 0, 0) 2 (0, 1, 0) 4 (1, 0, 0) 2 (1, 1, 0) 3
(0, 0, 1) 2 (0, 1, 1) 4 (1, 0, 1) 2 (1, 1, 1) 3

The incumbent solution at any stage in a search of a discrete
model is the best (in terms of objective value) feasible solution known so far.
We denote the incumbent solution xn and its objective function value nn.

Definition 12.24

The incumbent solution may derive from experience prior to the search, or it may
have been discovered as the search evolved.

When the search stops, the last incumbent solution is its output. Assuming
that the given model has an optimal solution, the final incumbent at least provides
an approximate optimum, xn, with corresponding incumbent solution value nn. If the
search was fully carried out, the optimum is exact.

If a branch and bound search stops as in 12.22 , with all partial
solutions having been either branched or terminated, the final incumbent solu-
tion is a global optimum if one exists. Otherwise, the model is infeasible.

Principle 12.25

ExamplE 12.13: unDErSTanDing incumbEnT SoluTionS

Return to the branch and bound tree of Example 12.12 and assume (i) that we were
maximizing, (ii) that from prior experience we knew a feasible solution with ob-
jective value 10, and (iii) that analysis leading to terminations at nodes 2, 3, and 4
showed the best feasible completions of the corresponding partial solutions have
objective values 8, 14, and 12, respectively.

12.3 Branch and Bound Search 757

Candidate Problems
Having introduced the tree search underlying branch and bound, we are now ready
to see how relaxations of Section 12.2 can make it efficient (and justify the “bound”
part of its name). Candidate problems provide the linkage.

(a) Show the sequence of incumbent solution objective values.

(b) Determine the optimal solution value.

Solution:

(a) From assumption (ii) the initial incumbent solution value would have been
nn = 10. This value held until node 3 because node 1 was branched and the best
completion of node 2 did not improve on 10. At node 3, the search uncovered a
feasible solution with better value 14, so this became the incumbent solution value
to nn = 14. Node 4 produced no change.

(b) This search implicitly enumerated all possible solutions. Thus, by the princi-
ple 12.25 , the final incumbent solution value nn = 14 is optimal.

We may illustrate with partial solution x132 = 1#, 1, #, 02 in River Power
Figure 12.2. The corresponding candidate problem is

 min 7x1 + 12x2 + 5x3 + 14x4

s.t. 300x1 + 600x2 + 500x2 + 1600x4 Ú 700

 x1, x3 = 0 or 1

 x2 = 1, x4 = 0

It derives from original model (12.12) by restricting x2 and x4 to their partial solution
values.

Thinking about candidate problems aids branch and bound search because of
the close connection with completions of the corresponding partial solution.

The feasible completions of any partial solution are exactly the
feasible solutions to the corresponding candidate problem, and thus the objec-
tive value of the best feasible completion is the optimal objective value of the
candidate problem.

Principle 12.27

That is, we can search for a best completion of any partial solution, or at least learn
something about a solution’s objective value, by trying to optimize the correspond-
ing candidate problem.

The candidate problem associated with any partial solution
to an optimization model is the restricted version of the model obtained when
variables are fixed as in the partial solution.

Definition 12.26

758 Chapter 12 Exact Discrete Optimization Methods

Terminating Partial Solutions with Relaxations
Now we are ready to take advantage of the relaxation principles in Section 12.2.
We analyze nodes in a branch and bound tree by solving relaxations of the corre-
sponding candidate problems. For example, relaxation solutions and solution values
shown next to the nodes in River Power Figure 12.2 (denoted x∼) come from the
linear programming relaxation of the corresponding candidate problem.

Begin with infeasibility principle 12.9 . If any relaxation of a candidate prob-
lem is infeasible, so is the full candidate.

ExamplE 12.14: unDErSTanDing canDiDaTE problEmS

Consider the ILP

 max 10w1 + 3w2 + 9w3

s.t. 6w1 + 4w2 + 3w3 … 10

 w1 - w3 Ú 0

 w1, w2, w3 = 0 or 1

(a) State the candidate problem corresponding to partial solution w = 11, #, 02.

(b) State the LP relaxation of the candidate problem corresponding to partial solution
w = 11, #, 02.

Solution:

(a) Following definition 12.26 , the required candidate problem is the restricted
version with w1 = 1, w3 = 0:

 max 10w1 + 3w2 + 9w3

s.t. 6w1 + 4w2 + 3w3 … 10

 w2 - w3 Ú 0

 w1 = 1, w3 = 0

 w2 = 0 or 1

An optimal solution provides a best completion of the partial w = 11, #, 02 (prin-
ciple 12.27).

(b) Applying definition 12.6 , the LP relaxation of the candidate problem in part
(a) is

 max 10w1 + 3w2 + 9w3

s.t. 6w1 + 4w2 + 3w3 … 10

 w2 - w3 Ú 0

 w1 = 1, w3 = 0

 0 … w2 … 1

Notice that it is a relaxation of the candidate problem in part (a), not a relaxation
of the full model.

12.3 Branch and Bound Search 759

Node 10 of Figure 12.2 illustrates. The LP relaxation of the corresponding can-
didate problem is infeasible. It follows that partial solution x1102 = 10, 0, #, 02 has
no feasible completions, and we may terminate infeasible.

Now consider relaxation bound principle 12.10 . Relaxation optimal values bound
those of the problem relaxed. Thus in the context of candidate problems, relaxation
optimal values bound the objective value of the best possible completion. Comparison
to the incumbent solution value (definition 12.24) can lead to termination.

If any relaxation of a candidate problem proves infeasible,
the associated partial solution can be terminated because it has no feasible
completions.

Principle 12.28

If any relaxation of a candidate problem has optimal objective
value no better than the current incumbent solution value, the associated par-
tial solution can be terminated because no feasible completion can improve on
the incumbent.

Principle 12.29

Node 5 of Figure 12.2 illustrates such termination by bound. When the search
reached partial solution x152 = 1#, 1, 0, 02, incumbent solution xn = 10, 0, 0, 12 with
objective value nn = 14 was already in hand (from node 1). The linear programming
relaxation of the candidate problem for node 5 had optimal value 14.33, which means that
no feasible completion can do better than that value. It follows that none can improve on
the incumbent solution in this minimizing problem, and we terminate by bound.

The third way to terminate with relaxations derives from optimality
principle 12.12 .

If an optimal solution to any constraint relaxation of a candi-
date problem is feasible in the full candidate, it is a best feasible completion of
the associated partial solution. After checking whether a new incumbent has
been discovered, the partial solution can be terminated.

Principle 12.30

Consider node 1 of River Power Figure 12.2. The corresponding LP relaxation
fixed x4 = 1 but allowed free variables to take on any value between 0 and 1. Still,
relaxation optimum x∼ = 10, 0, 0, 12 meets integrality requirements on all compo-
nents. It is optimal in the corresponding candidate problem and the best possible
completion of partial solution x112 = 1#, #, #, 12. It is also the first fully feasible
solution encountered in the search, so it provides the first incumbent solution. After
saving it as the incumbent, node 1 was terminated by solving.

ExamplE 12.15: TErminaTing parTial SoluTionS wiTh rElaxaTionS

Suppose that a maximizing branch and bound search over y1, c, y4 = 0 or 1 reaches
partial solution y132 = 1#, 0, #, #2 with incumbent solution value nn = 100. Explain
how the search should proceed assuming each of the following outcomes from an

760 Chapter 12 Exact Discrete Optimization Methods

attempt to solve the linear programming relaxation of the corresponding candidate
problem.

(a) Relaxation optimum y∼ = 11
3, 0, 1, 02 with objective value n∼ = 85.

(b) Relaxation optimum y∼ = 11, 0, 12, 02with objective value n∼ = 100.

(c) Relaxation optimum y∼ = 10, 0, 1, 12 with objective value n∼ = 120.

(d) Relaxation infeasible.

(e) Relaxation optimum y∼ = 10, 14, 1, 02 with objective value n∼ = 111.

Solution:

(a) The relaxation bound demonstrates no feasible completion can do better than
85 in objective value, which is worse than the known incumbent. The partial solu-
tion should be terminated as in principle 12.29 .

(b) The relaxation bound demonstrates that no feasible completion can do better
than 100 in objective value, which is the same as the incumbent. The partial solution
should be terminated as in principle 12.29 (unless alternative optimal solutions are
of interest).

(c) This relaxation optimum is feasible in the full candidate problem and thus
 optimal. Having found the best possible completion, we terminate by princi-
ple 12.30 after updating the incumbent solution value to improved value nn d 120.

(d) There are no feasible completions. The partial solution should be terminated as
in principle 12.28 .

(e) Here none of principles 12.28 to 12.30 lead to termination because the relax-
ation optimum is better in objective value than the incumbent but still fractional
in some components. The partial solution must be branched as in principle 12.21 .

LP-Based Branch and Bound
The discrete models most frequently solved by branch and bound are ILPs with 0-1
variables. Linear programming relaxations of candidate problems usually provide
the basis for analysis.

Algorithm 12A details a formal algorithm for this LP-based branch and bound
case. For simplicity we assume that the model is not unbounded.

Initialization begins as in principle 12.19 with all binary variables free. If no
incumbent solution xn is known, the worst possible value nn d {∞ is assumed.

Each main iteration begins by selecting some active partial solution to pur-
sue. Any one can be selected, although sequence does make a difference (see
Section 12.4).

Processing begins with an attempt to solve the LP relaxation. Then we check
to see if any of termination rules 12.28 to 12.30 apply. If so, the current partial is
terminated and the process repeats. Partial solutions that cannot be terminated must
be branched (principle 12.21).

12.3 Branch and Bound Search 761

Algorithm 12A: lP-BAsed BrAnch
And Bound (0–1 ilPs)

step 0: initialization. Make the only active partial solution the one with all
discrete variables free, and initialize solution index t d 0. If any feasible solu-
tions are known for the model, also choose the best as incumbent solution
xn with objective value nn. Otherwise, set nn d - ∞ if the model maximizes and
nn d + ∞ if it minimizes.

step 1: stopping. If active partial solutions remain, select one as x1t2, and
proceed to Step 2. Otherwise, stop. If there is an incumbent solution xn , it is
optimal, and if not, the model is infeasible.

step 2: relaxation. Attempt to solve the linear programming relaxation of
the candidate problem corresponding to x1t2.

step 3: termination by infeasibility. If the LP relaxation proved infeasi-
ble, there are no feasible completions of partial solution x1t2. Terminate x1t2,
increment t d t + 1, and return to Step 1.

step 4: termination by Bound. If the model maximizes and LP relaxation
optimal value n∼ satisfies n∼ … nn, or it minimizes and n∼ Ú nn, the best feasible
completion of partial solution x1t2 cannot improve on the incumbent. Termi-
nate x1t2, increment t d t + 1, and return to Step 1.

step 5: termination by solving. If the LP relaxation optimum x∼1t2 satisfies
all binary constraints of the model, it provides the best feasible completion of
partial solution x1t2. After saving it as new incumbent solution

xn d x∼1t2

nn d n∼

terminate x1t2, increment t d t + 1, and return to Step 1.
step 6: Branching. Choose some free binary-restricted component xp that

was fractional in the LP relaxation optimum, and branch x1t2 by creating two
new actives. One is identical to x1t2 except that xp is fixed = 0, and the other
the same except that xp is fixed = 1. Then increment t d t + 1 and return
to Step 1.

Branching Rules for LP-Based Branch and Bound
One peculiarity of the LP-based form of branch and bound is that this is done on a
fractional free variable.

LP-based branch and bound algorithms always branch by
 fixing an integer-restricted decision variable that had a fractional value in the
associated candidate problem relaxation.

Principle 12.31

For example, at node 0 of in Figure 12.2, branching occurred by fixing x4, which had
fractional value x∼4 = 0.44 in the LP relaxation.

762 Chapter 12 Exact Discrete Optimization Methods

The motivation behind this fractional variable branching rule is avoiding
duplicate computation. The alternative of branching on a free variable that came
out integer in the LP relaxation produces one new candidate problem guaranteed to
have the same relaxation optimum as the one just solved. For example, branching on
x1 at node 0 of Figure 12.2 would have created new partial solutions

x112 = 11, #, #, #2 and x122 = 10, #, #, #2
But the relaxation optimum for the second would be exactly the same as x∼102 =
10, 0, 0, 0.4382 because added constraint x1 = 0 can affect solution value only if it
is violated by the previous optimum. We prefer to get new information from both
candidates.

Somewhat similar thinking applies when more than one integer variable is
fractional in the relaxation optimum.

When more than one integer-restricted variable is fractional
in the relaxation optimum, LP-based branch and bound algorithms often
branch by fixing the one closest to an integer value.

Principle 12.32

For example, if the relaxation optimum were x∼ = 10.3, 1, 0.5, 0.92, and all com-
ponents were supposed to be binary, rule 12.32 would next fix x4 because it is the
fractional variable closest to an integer.

The motivation behind rule 12.32 is to take the most obvious decision, hoping
that the farthest away of the two resulting partial solutions can be terminated before
it has to be explored. Still, many other schemes are possible. Commercial codes
often give the modeler an opportunity to explicitly designate priority variables for
branching.

LP-Based Branch and Bound Solution of the River Power
Application
We are now ready to fully trace Figure 12.2’s branch and bound solution of River
Power model (12.12).

The process begins with all-free partial solution x102 = 1#, #, #, #2 and
nn = + ∞ . The corresponding LP relaxation optimum is fractional on x4, so the node is
branched (principle 12.31) as

0
x(0) = (0, 0, 0, 0.438), n = 6.125∼ ∼

x4 = 0x4 = 1

There are now 2 active partial solutions, and we must choose one to process
next. Any active partial solution could be chosen, but all Figure 12.2 computation
employs the depth first rule 12.23 . That is, it chooses an active partial solution deep-
est in the tree.

12.3 Branch and Bound Search 763

At the moment both active candidates have equal depth because both have
1 fixed variable. Figure 12.2 adopts the simple tie-breaking rule of always selecting
the partial solution with the branching variable fixed = 1. (See definition 12.40 of
Section 12.4 for another possibility.)

That tie-breaking rule leads us to x112 = 1#, #, #, 12. Here the relaxation solu-
tion is binary on all components. Thus we have found the best completion, and we
terminate (principle 12.30) after saving incumbent solution

xn d 10, 0, 0, 12 with nn d 14

The only remaining active is now partial solution x122 = 1#, #, #, 02. Relaxation
optimum x∼122 = 10, 0.333, 1, 02 fails all termination tests 12.28 to 12.30 because it
is feasible, fractional, and has solution value 9 strictly better than vn = 14. We must
branch on fractional x2.

Processing continues in this way until we reach x142 = 1#, 1, 1, 02. There the
relaxation bound v∼ = 17 Ú vn = 14, so we terminate (principle 12.29). Something
similar happens at node 5.

After several more steps, we encounter a new incumbent solution at node 8,

xn d 11, 0, 1, 02 with nn d 12

Termination of nodes 9 and 10 by infeasibility (principle 12.28) completes the
search. This final incumbent solution is optimal (principle 12.25).

ExamplE 12.16: pErforming lp-baSED branch anD bounD

The following table shows candidate problem LP relaxation optima for all possible
combinations of fixed and free values in a maximizing mixed-integer linear program
over x1, x2, x3 = 0 or 1, x4 Ú 0.

x1 x2 x3 x∼ v∼ x1 x2 x3 x∼ v∼

(0.2, 1, 0, 0) 82.80 0 0 1 Infeasible —
0 (0.2, 1, 0, 0) 82.80 0 1 # (0, 1, 0.67, 0) 80.67
1 (0, 0.8, 1, 0) 79.40 0 1 0 (0, 1, 0, 2) 28.00
0 # (0.7, 0, 0, 0) 81.80 0 1 1 (0, 1, 1, 0.5) 77.00
0 0 (0.7, 0, 0, 0) 81.80 1 # # (1, 0, 0, 0) 74.00
0 1 (0.4, 0, 1, 0) 78.60 1 # 0 (1, 0, 0, 0) 74.00
1 # (0.2, 1, 0, 0) 82.80 1 # 1 (1, 0, 1, 0) 63.00
1 0 (0.2, 1, 0, 0) 82.80 1 0 # (1, 0, 0, 0) 74.00
1 1 (0, 1, 1, 0.5) 77.00 1 0 0 (1, 0, 0, 0) 74.00
0 # # (0, 1, 0.67, 0) 80.67 1 0 1 (1, 0, 1, 0) 63.00
0 # 0 (0, 1, 0, 2) 28.00 1 1 # (1, 1, 0, 0) 62.00
0 # 1 (0, 0.8, 1, 0) 79.40 1 1 0 (1, 1, 0, 0) 62.00
0 0 # Infeasible — 1 1 1 (1, 1, 1, 0) 51.00
0 0 0 Infeasible —

Solve the model by LP-based branch and bound Algorithm 12A, applying the same
depth first rule for selecting among actives (ties broken in favor of xj = 1) that was
implemented in the River Power application of Figure 12.2.

764 Chapter 12 Exact Discrete Optimization Methods

12.4 rEfinEmEnTS To branch anD bounD

Algorithm 12A contains all the main elements of at least LP-based branch and bound,
but it omits many details. In this section we briefly introduce some refinements.

Branch and Bound Solution of NASA Capital Budgeting
Application
It will help to have a more serious example to illustrate. For this purpose we employ
the NASA mission selection model formulated in Section 11.2. There, the decision
variables

xj ! e1 if mission j is selected
0 otherwise

Solution: Applying Algorithm 12A produces the following branch and bound tree:

0

3

1

4 5

6

2

x(0) = (0.2, 0.1, 0, 0), n = 82.8∼ ∼

∼x(4) = (0, 1, 1, 0.5),
n = 77

n = 77

∼

∼x(3) = (0, 0.8, 1, 0), n = 79.4∼ ∼ ∼

by solving
= 74ˆ

by solving infeasible
ˆ

x2 = 1 x2 = 0

x3 = 1 x3 = 0

x1 = 1 x1 = 0

x(6) = (0, 1, 0, 2), n = 28

∼ ∼x(2) = (0, 1, 0.67, 0), n = 80.67∼ ∼x(1) = (1, 0, 0, 0), n = 74

n

Processing stops with optimal solution x* = (0, 1, 1, 0.5) at objective value 77.
Most of the processing is similar to our River Power application. One excep-

tion is that this model maximizes. For example, we terminate by bound at node 6
because

28 = v∼ … nn = 77

The other new element is that this model has continuous variable x4 as well as
3 binary ones. This makes relaxation optimum x∼142 = 10, 1, 1, 0.52 feasible (and so
optimal) in the full candidate, even though its last component is fractional. We termi-
nate by having solved the candidate problem.

12.4 Refinements to Branch and Bound 765

The complete formulation of our version was

 max 200x1 + 3x2 + 20x3 + 50x4 + 70x5 1total value2
 + 20x6 + 5x7 + 10x8 + 200x9 + 150x10

 + 18x11 + 8x12 + 300x13 + 185x14

s.t. 6x1 + 2x2 + 3x3 + 1x7 + 4x9 + 5x12 … 10 1Stage 12
 3x2 + 5x3 + 5x5 + 8x7 + 5x9 + 8x10 1Stage 22
 + 7x12 + 1x13 + 4x14 … 12

 8x5 + 1x6 + 4x10 + 2x11 + 4x13 + 5x14 … 14 1Stage 32
 8x6 + 5x8 + 7x11 + 1x13 + 3x14 … 14 1Stage 42
 10x4 + 4x6 + 1x13 + 3x14 … 14 1Stage 52

(12.13)

 x4 + x5 … 1 1mutually

 x8 + x11 … 1 exclusives2
 x9 + x14 … 1

 x11 … x2 1dependent

 x4 … x3 missions2
 x5 … x3

 x6 … x3

 x7 … x3

 xj = 0 or 1 for all j = 1, c, 14

Figure 12.3 shows the tree of an LP-based branch and bound search, and Table 12.3
details computations.

Rounding for Incumbent Solutions
One refinement of branch and bound exhibited in these NASA application compu-
tations is rounding relaxation optima as in principle 12.11 to speed the process of
finding good incumbent solutions.

If convenient rounding schemes are available, the relaxation
optimum for every partial solution that cannot be terminated in a branch and
bound search is usually rounded to a feasible solution for the full model prior
to branching. The feasible solution provides a new incumbent if it is better
than any known.

Principle 12.33

Computations in NASA Table 12.3 round down; that is, fractional components
in relaxation optima are set = 0. Every partial solution that cannot be terminated is
rounded before branching, and the resulting feasible solution considered as an incum-
bent. For instance, at node 5, the candidate relaxation produced optimum

x∼152 = 11, 0, 1, 0.6, 0.4, 1, 0, 0.4, 0, 0, 0, 0, 1, 12, v∼ = 787

766 Chapter 12 Exact Discrete Optimization Methods

n = 755

round = 765,

0

482

1

11 5

10

3

∼n = 826.250, x10 = 0.875, round = 695, n = 695 ∼

n = 704∼

by boundby bound

9 14 n = 714∼

n = 700.167∼

infeasible

ˆ

∼n = 798.750, x14 = 0.75,∼ ∼n = 793.171, x3 = 0.78,∼

∼
n = 787, x4 = 0.60,∼

∼n = 791.250, x9 = 0.25,∼ n = 713.5∼∼∼n = 545∼

by bound by bound

round = 725, n̂ = 725

∼n = 770.5, x2 = 0.50,∼

round = 755, ˆ

n̂ = 765

∼
n = 766.905,∼

round = 540

round = 510round = 660

round = 660

126

13 n = 732∼

by parent
after 15

by bound

7 15

by bound

∼n = 766.600, x12 = 0.20,∼

round = 76518 16

infeasible

n = 765∼n = 174.667∼19 17

by bound by bound

∼
n = 757, ∼

round = 725

x7 = 0.09,

x5 = 0.40,

x2 = 1

x7 = 0x7 = 1

x12 = 0x12 = 1

x2 = 0

x9 = 1 x9 = 0

x5 = 1 x5 = 0

x4 = 1

x9 = 1

x4 = 0

x9 = 0

x3 = 1 x3 = 0x14 = 1

x10 = 1

x14 = 0

x10 = 0

n = 780, x9 = 0.60,

figurE 12.3 Branch and Bound Search of NASA Application

The solution is fractional, and bound 787 is insufficient to terminate. Instead of
branching immediately, however, the relaxation is first rounded by setting each
xnj = [x∼j]. The result is new incumbent solution

xn = 11, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 12, nn = 725

12.4 Refinements to Branch and Bound 767

TablE 12.3 Branch and Bound Search of NASA Application

t
Relax
Value

Relaxation
Solutiona

Round
Value Action

0 826.250 (1, 0, 0, 0, 0, 0, 0, 1, 0, 0.875, 0, 0, 1, 1) 695 First incumbent xn d
11, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 12
branch on x10

1 798.750 (1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0.750) 660 Branch on x14

2 545.000 (1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1) — Terminate by bound
3 793.171 (1, 0, 0.780, 0.463, 0.537, 0.780, 0, 1, 0.415, 0,

0, 0, 1, 0.585)
510 Branch on x3

4 791.250 (1, 0, 1, 0.650, 350, 1, 0, 0.550, 0.250, 0, 0, 1, 0.750) 540 Branch on x9

5 787.000 (1, 0, 1, 0.600, 0.400, 1, 0, 0.400, 0, 0, 0, 0, 1, 1) 725 New incumbent xn d
11, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 12
branch on x4

6 770.500 (1, 0.500, 1, 1, 0, 0, 0, 0.500, 0, 0, 0.500, 0, 1, 1) 755 New incumbent xn d
11, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 12
branch on x2

7 700.167 (0.833, 1, 1, 1, 0.188, 0, 0, 0, 0, 1, 0, 1, 0.750) — Terminate by bound
8 780.000 (1, 0, 0, 0, 0, 0, 0, 1, 0.600, 1, 0, 0, 1, 0) 660 Branch on x9

9 Infeasible None — Terminate by infeasible
10 713.500 (1, 1, 0, 0, 0, 0, 0, 0, 0.500, 0, 1, 0, 1, 0.500) — Terminate by bound
11 704.000 (0.500, 0, 1, 0.800, 0.200, 1, 0, 1, 1, 0, 0, 0, 1, 0) — Terminate by bound
12 757.000 (1, 0, 1, 0, 0.400, 1, 0, 0.400, 0, 0, 0, 0, 1, 1) 725 Branch on x5

13 732.000 (1, 0.462, 1, 0, 0, 0.846, 0, 0.077, 0, 0, 0, 0.462, 0, 1, 1) — Terminate by bound
14 714.000 (1, 0, 0.600, 0.600, 0, 0.600, 0, 0, 1, 0, 1, 0, 0, 1, 0) — Terminate by bound
15 766.909 (1, 0, 1, 1, 0, 0, 0.091, 1, 0, 0, 0, 0.182, 1, 1) 765 New incumbent xn d

11, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 12
branch on x7

16 766.600 (1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0.200, 1, 1) 765 Branch on x12

17 765.000 (1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1) — Terminate by bound
18 Infeasible None — Terminate by infeasible
19 174.667 (0.333, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0) — Terminate by bound

aUnderlined values are fixed in the partial solution.

Rounding is not guaranteed always to produce a new incumbent. For example,
at node 1 of the NASA example, rounding produced a solution of value 660, which
was no better that the existing incumbent nn = 695.

It is valuable to have good incumbent solutions early in a branch and bound
search for two reasons. First, time may not permit the search to be run until every
node has been terminated or branched. Then the final incumbent solution provides
an approximate optimum. Clearly, we would like it to be as good as possible.

The other advantage of early incumbents comes with termination by bound
(principle 12.29). In the maximize case, for example, we terminate if

relaxation bound ! n∼ … nn ! incumbent value

We can certainly terminate more nodes with the same bound values if a strong
incumbent value is discovered quickly.

768 Chapter 12 Exact Discrete Optimization Methods

ExamplE 12.17: rounDing for incumbEnT SoluTionS

The following tree shows Algorithm 12A computation on a minimizing ILP over
x1, c, x3 = 0 or 1. (Rounded solution values are shown but were not used in the
computation.)

1

2 3

4

0
∼ ∼

∼ ∼

x = (1, 1, 0)

x = (0, 0, 1), n = 14x = (0.7, 1, 0), n = 20

x = (0, 0.5, 1), n = 10

∼
∼

∼ ∼

round = (1, 1, 0), value 32

round = (0, 0, 1), value 14

infeasible
n = 32

x1 = 0x1 = 1

x2 = 1 x2 = 0

(a) Determine the earliest moment in the search at which ultimate optimal solution
value 14 was known.

(b) Repeat the search using rounding to produce earlier incumbent solutions.

(c) Describe the savings that resulted in part (b) from using rounded solutions.

Solution:

(a) The final incumbent solution, which proved optimal, was encountered when the
relaxation optimum at partial solution 4 solved its candidate problem.

(b) At node 0 the relaxation optimum has value 10, and it rounds to a feasible solu-
tion with value 14. This becomes the first incumbent solution value. We then branch
on x2 as before. At node 1 relaxation bound 20 permits termination because it does
not improve on the incumbent (principle 12.29). Then the relaxation at node 4 the
verifies optimality of the incumbent solution.

(c) In the search of part (b) the incumbent was uncovered at node 0, much earlier
than node 4 in calculations depicted in the tree. This would be an advantage if we
had to stop the search before all nodes had been terminated or branched. Also, the
early incumbent avoided some candidate problem computations at nodes 2 and 3.
The bound at 1 is now enough to terminate.

Branch and Bound Family Tree Terminology
To discuss issues connected with managing and controlling branch and bound trees,
we need some terminology. It is standard to make analogies with family trees.

Any node created directly from another by branching is called a child, and
the branched node is its parent. For example, in Figure 12.3, nodes 11 and 5 are the
children of node 4. Its parent is node 3.

12.4 Refinements to Branch and Bound 769

ExamplE 12.18: unDErSTanDing TrEE TErminology

Identify each of the following in the branch and bound tree of Example 12.17.

(a) The parent of node 3

(b) The children of node 0

Solution:

(a) Node 1 is the parent of node 3.

(b) Nodes 1 and 4 are the children of node 0.

Parent Bounds
Another way of refining LP-based branch and bound Algorithm 12A is to take
advantage of an easy parent bound readily available from prior computations.

The relaxation optimal value for the parent of any partial
solution to a minimize model provides a lower bound on the objective value of
any completion of its children. The relaxation optimal value for the parent in
a maximize model provides an upper bound.

Principle 12.34

To see that these bounds are valid, recall that the candidate problem associ-
ated with any partial solution is just our original model augmented by constraints
for variables fixed in the partial solution (definition 12.26). Extending the solution
with a new fix in a child can only worsen the optimal objective function value. For
example, in Figure 12.3, relaxation bound 826.250 for node 0 holds for its children
nodes 1 and 3. Both have an additional constraint, so the solution value can only
worsen. In fact, when relaxation bounds n∼112 = 798.750 and n∼132 = 793.171 were
later computed, they proved strictly worse (for this maximize model).

ExamplE 12.19: unDErSTanDing parEnT bounDS

Identify for node 5 in NASA branch and bound Figure 12.3 the best (upper) bound
known for the optimal value of the corresponding candidate problem before the
candidate’s LP relaxation was solved.

Solution: Prior to solving the LP relaxation of the candidate problem for node 5,
the best bound available on its optimal value comes from its parent. Parent bound
n∼ = 791.250 is valid for child node 5 because the is identical except for the extra
x9 = 0 constraint.

Terminating with Parent Bounds
One way a sophisticated branch and bound algorithm can exploit parent
bounds 12.34 arises whenever a new incumbent solution is discovered.

770 Chapter 12 Exact Discrete Optimization Methods

Processing of partial solution 15 in Table 12.3 illustrates principle 12.35 . An
incumbent solution was discovered there with value n∼ = 765. Earlier, partial solution
12 had been branched because its bound of n∼ = 757 was insufficient to terminate
versus the incumbent at that time. Now we may terminate the still-active child with
x5 = 1. The 757 bound available from the parent is no better than the incumbent dis-
covered at node 15.

Whenever a branch and bound search discovers a new incum-
bent solution, any active partial solution with parent bound no better than the
new incumbent solution value can immediately be terminated.

Principle 12.35

ExamplE 12.20: TErminaTing wiTh parEnT bounDS

The following tree shows a minimizing branch and bound search that has processed
4 partial solutions and just discovered its first incumbent solution at node 3. Nodes
marked a, b, and g are active but not yet explored.

1

3

2

0
∼

∼ ∼

by solving

n = 60

n = 55

n = 69

ba g

Determine which if any active partial solution can be terminated if the incumbent
solution discovered at node 3 has value (a) nn = 80; (b) nn = 63.

Solution: We apply principle 12.35 , comparing with parent bounds 60 at node a
and 69 at nodes b and g.

(a) Incumbent value nn = 80 is not as good as either parent bound for this minimize
model. No active solution can be terminated.

(b) Incumbent value nn = 63 is not as good as 60, but superior to 69. Thus active
partial solutions b and g should be terminated.

Stopping Early: Branch and Bound as a Heuristic
Table 12.4 provides a historical summary of the NASA application in Figure 12.3 and
Table 12.3. Incumbent solutions reported in the first column show a typical pattern.
Good incumbents were uncovered fairly early in the search, with the final 50 to 80%
of computational effort consumed in squeezing out the last improvements and proving
global optimality. For example, nearly optimal nn = 755 was discovered after only 7 of
the 19 partial solutions analyzed.

12.4 Refinements to Branch and Bound 771

Often, we are willing to settle for less than global optimality to avoid the long
final phase. That is, we want to stop early, accepting the last incumbent as a heuristic
optimum.

Bounds on the Error of Stopping with the Incumbent Solution
Of course, we know that such incumbent solutions are feasible for the full problem,
and better than any other feasible solution that we have encountered. But we can
use the best of current parent bounds 12.34 to conclude much more.

TablE 12.4 Incumbent and Best Parent Bound History
in NASA Application, Branch Bound Figure 12.3

After
Node

Incumbent
Value

Best
Parent

After
Node

Incumbent
Value

Best
Parent

0 695 826.250 10 755 791.250
1 695 826.250 11 755 780.000
2 695 826.250 12 755 780.000
3 695 798.750 13 755 780.000
4 695 798.750 14 755 770.500
5 725 798.750 15 765 766.909
6 755 798.750 16 765 766.909
7 755 798.750 17 765 766.909
8 755 793.171 18 765 765.000
9 755 793.171

The least relaxation optimal value for parents of the active
partial solutions in a minimizing branch and bound search always provides
a lower bound on the optimal solution value of the full model. The great-
est relaxation optimal value for parents in a maximizing search provides an
upper bound.

Principle 12.36

Since every full solution that might still improve on the incumbent is a completion
of some active partial solution, we can bound every such solution by finding the best
of the corresponding parent bounds.

The second column of Table 12.4 tracks this overall bound on remaining active
partials in our NASA application. For example, at the moment after partial solution
x162 is explored and branched, the tree then contains active children of nodes 1, 3, 4,
5, and 6. The best of their relaxation bounds

max5798.750, 793.171, 791.250, 787.000, 770.5006 = 798.750

is as much as any future incumbent could ever achieve. Any unexplored solution
has to be a feasible completion in one of those active partial solutions.

Suppose now that we decide to terminate the search after node 6. Table 12.4
shows that the incumbent solution value was 755 at that point, and we just computed

772 Chapter 12 Exact Discrete Optimization Methods

the best parent bound of 798.750. Thus we can compute that our approximate optimum
(the incumbent) is at most

1best possible2 - 1best known2
1best known2 =

798.750 - 755
755

= 5.8%

below optimal. That is, we can bound the error in our approximation.

At any stage of a branch and bound search, the difference
between the incumbent solution value and the best parent bound of any active
partial solution shows the maximum error in accepting the incumbent as an
approximate optimum.

Principle 12.37

We use the lower bound in the denominator of percent computations because the
optimal solution value could be that small.

ExamplE 12.21: STopping branch anD bounD Early

Return to the minimizing branch and bound tree of Example 12.20 and assume the
incumbent solution value discovered at node 3 was nn = 71. Determine the maxi-
mum error and percent error in stopping the search at that point.

Solution: After node 3, the best parent bound 12.36 is

min560, 696 = 60

Thus the maximum error for this minimize model is

1best known2 - 1best possible2 = 71 - 60 = 11

As a percent the maximum error is

1best known2 - 1best possible2
1best possible2 =

71 - 60
60

= 18.3%

Depth First, Best First, and Depth Forward Best Back Sequences
Another important implementation question in branch and bound is how to select
a partial solution to pursue among the many that may be active. We have already
introduced the simple depth first rule 12.23 , which selects at each iteration an active
partial solution with the most components fixed (i.e., one deepest in the search tree).

Parent bounds 12.34 permit other alternatives.

Best first search selects at each iteration an active partial
solution with best parent bound.

Definition 12.38

Depth forward best back search selects a deepest active par-
tial solution after branching a node, but one with best parent bound after a
termination.

Definition 12.39

12.4 Refinements to Branch and Bound 773

All these rules require tie-breaking refinements when several partials have
maximum depth or best parent bound. One alternative builds on fractional variable
rule 12.31 by preferring the nearest child.

When several active partial solutions tie for deepest or best
parent bound, the nearest child rule chooses the one with last fixed variable
value nearest the corresponding component of the parent LP relaxation.

Definition 12.40

Assuming that the parent relaxation optimum tells us something about good values
for the branching variable, this nearest child is more likely to lead to early discovery
of good incumbent solutions.

Figure 12.4 illustrates all 3 rules 12.23 , 12.38 and 12.39 on NASA model
(12.13). Branch and bound trees are shown after the first 10 partial solutions. Each
uses nearest child tie-breaking rule 12.40 .

Part (a) applies depth first search, always selecting an active partial solu-
tion with the most variables fixed. The deepest active partials in the current tree
are the children of node 9. Nearest child rule 12.40 would choose the one with
x4 = 1 as x1102 because the parent LP relaxation had x∼4 = 0.6, which is closer to
1 than 0.

Notice that depth first search will automatically choose a child of the last par-
tial solution analyzed if that partial was branched. It finds a deepest solution before
branching, and the children have an additional variable fixed. This means that depth
first search tends to move rapidly to fix enough variables that a feasible solution to
the full model is uncovered. When rounding is not easy, that may be the best way to
produce early incumbent solutions.

Selecting a child of the last node investigated can also have important compu-
tational savings. For example, at node 3 of Figure 12.4(a) the associated candidate
problem differs by only the x14 = 0 constraint from that of parent node 1. Often, this
similarity can be exploited to solve the relaxation at a child very quickly by starting
at the LP optimum of the parent.

Figure 12.4(b) illustrates best first search, always advancing to an active par-
tial solution with best parent bound. At the moment depicted there are active
children of nodes 4, 7, and 9. We would next select a child of node 7 because its
parent bound

787 = max5780, 787, 7576
is best for this maximizing model. Partial solution x1102 would be the child of 7 with
x4 = 1.

Here the idea is always to pursue a partial solution that could lead to the best
possible completion. We select one with best parent bound because that is the most
accurate information at hand about how good completions might be.

Notice, however, that best first search tends to skip rapidly around the branch
and bound tree, with selected partial solutions often rather different than the one
just before. This tendency means that depth first’s efficiency when advancing to a
child is often lost.

774 Chapter 12 Exact Discrete Optimization Methods

0

932

1 8

∼∼

4 5

infeasible

6 7

infeasible

(a) Depth �rst

by bound

= 545∼

= 671∼

by bound

0

543

1 2

6

8 7

∼n = 826.250, x10 = 0.875, round = 695, n = 695

n = 826.250, x10 = 0.875, round = 695, n = 695

∼

(b) Best �rst

ˆ

∼∼ ∼∼

∼∼∼∼
n = 545∼

n = 704∼

by bound

by parent
after 7

by bound by parent
after 7

∼∼

∼∼

9
∼n = 757, x4 = 0.40,

round = 725

n = 787, x4 = 0.25,
round = 725

n = 791.250, x9 = 0.25,
round = 540

∼∼n = 791.250, x9 = 0.25,
round = 540

n = 713.5, x9 = 0.50,
round = 538

n = 793.171, x3 = 0.78,
round = 510

∼∼n = 793.171, x3 = 0.78,
round = 510

n = 798.750, x14 = 0.75,
round = 660

∼∼
n = 798.750, x14 = 0.75,
round = 660

n = 780, x9 = 0.60,
round = 660

∼∼n = 714, x9 = 0.60,
round = 660

∼∼n = 780, x9 = 0.60,
round = 660

∼

n = 725ˆ

x5 = 1 x5 = 0

x4 = 1 x4 = 0

x9 = 1 x9 = 0

x9 = 1 x9 = 0x9 = 1 x9 = 0

x9 = 1 x9 = 0

x3 = 1 x3 = 0

x10 = 1 x10 = 0

x14 = 1 x14 = 0

x14 = 1 x14 = 0

x9 = 1 x9 = 0

x3 = 1 x3 = 0

x3 = 1 x3 = 0

x10 = 1 x10 = 0

ˆ

n

n

figurE 12.4 Alternative Partial Solution Selection in NASA Application

12.4 Refinements to Branch and Bound 775

0

482

1 3

5

n = 695∼

x9 = 1

x14 = 1 x14 = 0

x10 = 0

x3 = 1 x3 = 0

x10 = 1

x9 = 0 x9 = 0

x4 = 0

x2 = 0x2 = 1

x9 = 1

x4 = 1

(c) Depth forward best back

ˆ

∼
n = 780, x9 = 0.60,∼

n = 545∼

by bound

9

infeasible

7

by bound

round = 660

round = 660

∼
n = 798.750, x14 = 0.75,

n = 826.250, x10 = 0.875, round = 695,

∼

round = 660

round = 755, n = 7556 ˆ
∼n = 770.5, x2 = 0.50,∼

round = 725, n = 725ˆ
∼n = 787, x4 = 0.25,∼

round = 540

∼
n = 791.250, x9 = 0.25,∼

n = 770.167∼

round = 510

∼n = 793.171, x3 = 0.78,∼

figurE 12.4 Alternative Partial Solution Selection in NASA Application (Continued)

The depth forward best back rule of Figure 12.4(c) (and full search tree,
Figure 12.3) provides a compromise. As long as nodes are branched, so that their
children are a possible next choice, this rule follows depth first in selecting one
of the children. When a node is terminated, however, so that some disruption is
unavoidable, rule 12.39 pursues the more ambitious best-first policy.

In Figure 12.4(c), partial solution x192 was terminated. Thus x1102 would be an
active partial with best parent bound. Here that would be the child of node 3 with
x3 = 0. Had node 9 been branched, x1102 would have been one of its children.

ExamplE 12.22: SElEcTing among acTivE parTial SoluTionS

Return to the maximizing branch and bound problem of Example 12.14 and show
the branch and bounds trees for searches guided by (a) depth first selection, (b) best
first selection; (c) depth forward best back selection. Use nearest child tie-breaking
rule 12.40 in each case.

Solution:

(a) The branch and bound tree for depth first rule 12.23 is

776 Chapter 12 Exact Discrete Optimization Methods

0

2

6

3 4

5

1

by bound

by bound

x2 = 1 x2 = 0

x3 = 1 x3 = 0

x1 = 1 x1 = 0

by solving infeasible
ˆ

∼ ∼x(5) = (0, 1, 0, 2), n = 28

∼ ∼x(6) = (1, 0, 0, 0), n = 74 ∼ ∼x(1) = (0, 1, 0.67, 0), n = 80.67

∼ ∼x(0) = (0.2, 1, 0, 0), n = 82.8

∼ ∼x(2) = (0, 0.8, 1, 0), n = 79.4

∼
∼
n = 77
x(3) = (0, 1, 1, 0.5),

n = 77

(b) The branch and bound tree for best first rule 12.38 is

0

3

2

5

4

1

6

∼ ∼ ∼ ∼

∼ ∼

∼
∼

∼ ∼ ∼ ∼

by bound

by solving infeasible
ˆ

by solving
ˆ

n = 77

n = 74

n = 77

x2 = 1 x2 = 0

x3 = 1 x3 = 0

x1 = 1 x1 = 0

x(4) = (0, 1, 0, 2), n = 28

x(2) = (1, 0, 0, 0), n = 74 x(1) = (0, 1,0.67, 0), n = 80.67

x(0) = (0.2, 1, 0, 0), n = 82.8

x(3) = (0, 0.8, 1, 2), n = 79.4

x(5) = (0, 1, 1, 0.5),

(c) The branch and bound tree for depth forward best back rule 12.39 is

12.5 Branch and Cut 777

0

2

4

3 6

5

1∼ ∼ ∼ ∼

∼ ∼

∼
∼

∼ ∼ ∼ ∼

by bound

by solving infeasible
ˆ

by bound

n = 77

x2 = 1 x2 = 0

x3 = 1 x3 = 0

x1 = 1 x1 = 0

x(5) = (0, 1, 0, 2), n = 28x(2) = (0, 0.8, 1, 0), n = 79.4

x(1) = (0, 1, 0.67, 0), n = 80.67x(4) = (1, 0, 0, 0), n = 74

x(0) = (0.2, 1, 0, 0), n = 82.8

x(3) = (0,1,1,0.5),
n = 77

12.5 branch anD cuT

Section 12.2 demonstrated with the Tmark facilities location model that adding or
strengthening the constraints of an ILP model can sometimes dramatically improve
the power of its LP relaxation. It is almost always valuable to start solution of a dis-
crete optimization problem with a model having the strongest available relaxation.
This section begins our investigation of how much more can be done as the branch
and bound search proceeds by adding new constraints as needed. Subsequent sections
(Sections 12.6 and 12.7) offer much more detail.

Valid Inequalities
The development begins with an understanding of what new constraints may be
suitable and helpful.

A linear inequality is a valid inequality for a given discrete
optimization model if it holds for all (integer) feasible solutions to the model.

Definition 12.41

Relaxations can often be strenghtened dramatically by including valid inequalities
that are not needed for a correct discrete model.

Not every valid inequality strengthens a relaxation. For example, all inequality
constraints of the original formulation are trivially valid because they are satisfied
by every feasible solution.

To strengthen a relaxation, a valid inequality must cut off
(render infeasible) some feasible solutions to the current LP relaxation that
are not feasible in the full ILP model.

Principle 12.42

778 Chapter 12 Exact Discrete Optimization Methods

This need to cut off noninteger relaxation solutions is why valid inequalities are
sometimes called cutting planes.

ExamplE 12.23: rEcognizing uSEful valiD inEqualiTiES

Consider the ILP

 max 3x1 + 14x2 + 18x3

s.t. 3x1 + 5x2 + 6x3 … 10

 x1, x2, x3 = 0 or 1

with LP relaxation optimum x∼ = 10, 45, 12. Determine (by inspection) whether
each of the following inequalities is valid for this model, and if so, whether adding it
would strengthen the LP relaxation.

(a) x2 + x3 … 1

(b) x1 + x2 + x3 … 1

(c) 3x1 + 5x2 … 10

Solution: We apply definition 12.41 and principle 12.42 .

(a) It is obvious from the main constraint that no feasible solution can have both
x2 = 1 and x3 = 1. Thus the constraint is valid. Also, the current LP relaxation op-
timum is one LP-feasible solution that violates the inequality because

x∼2 + x∼3 = 4
5 + 1 0 1

It follows that the constraint will strengthen the relaxation.

(b) This constraint is not valid. For example, x = 11, 0, 12 violates the constraint
even though it is integer-feasible in the given model.

(c) This constraint is valid, because any integer-feasible solution satisfying main
constraint 3x1 + 5x2 + 6x3 … 10 certainly has 3x1 + 5x2 … 10. Still, this will also
be true of all feasible solutions in the LP relaxation. Adding the inequality cannot
improve the relaxation.

Branch and Cut Search
Branch and Cut algorithms integrate valid inequalities with branch and bound
search dynamically as the enumeration proceeds.

Branch and Cut algorithms enhance the basic branch and
bound strategy of Algorithm 12A by attempting to strengthen relaxations with
new valid inequalities before branching to a partial solution. Added constraints
should cut off (render infeasible) the last relaxation optimum.

Definition 12.43

12.5 Branch and Cut 779

Branch and Cut Solution of the River Power Application
Algorithm 12B provides a formal statement of the branch and cut process. To see
the idea, return to our River Power application of Section 12.3. Decisions there
relate to which generators to activate, and the model is

 min 7x1 + 12x2 + 5x3 + 14x4 1total cost2
 (12.14) s.t. 300x1 + 600x2 + 500x3 + 1600x4 Ú 700 1demand2

 x1, x2, x3, x4 = 0 or 1

Solution of the first, all-free candidate problem produces relaxation optimum

x∼102 = 10, 0, 0, 0.4382, n∼ = 6.125

In normal branch and bound Figure 12.2 we immediately branched on fractional
variable x4.

Algorithm 12B: BrAnch And cut (0-1 ilP’s)

step 0: initialization. Make the only active partial solution the one with all dis-
crete variables free, and initialize solution index t d 0. If any feasible solutions
are known for the model, also choose the best as incumbent solution xn with
objective value nn. Otherwise, set nn d - ∞ if the model maximizes and nn d + ∞
if it minimizes.

step 1: stopping. If active partial solutions remain, select one as x1t2, and pro-
ceed to Step 2. Otherwise, stop. If there is an incumbent solution xn, it is optimal,
and if not, the model is infeasible.

step 2: relaxation. Attempt to solve the linear programming relaxation of
the candidate problem corresponding to x1t2.

step 3: termination by infeasibility. If the LP relaxation proved infeasible,
there are no feasible completions of partial solution x1t2. Terminate x1t2, incre-
ment t d t + 1, and return to Step 1.

step 4: termination by Bound. If the model maximizes and LP relaxation
optimal value n∼ satisfies n∼ … n∼, or it minimizes and n∼ Ú n∼, the best feasible
completion of partial solution x1t2 cannot improve on the incumbent. Terminate
x1t2, increment t d t + 1, and return to Step 1.

step 5: termination by solving. If the LP relaxation optimum x∼1t2 satisfies
all binary constraints of the model, it provides the best feasible completion of
partial solution x1t2. After saving it as new incumbent solution by xn d x∼1t2 and
nn d n∼, terminate x1t2, increment t d t + 1, and return to Step 1.

step 6: Valid inequality. Attempt to identify a valid inequality for the full ILP
model that is violated by the current relaxation optimum x∼1t2. If successful, make
the constraint a part of the full model increment t d t + 1, and return to Step 2.

step 7: Branching. Choose some free binary-restricted component xp that was
fractional in the last LP relaxation optimum, and branch x1t2 by creating two new
actives. One is identical to x1t2 except that xp is fixed = 0, and the other is the
same except that xp is fixed = 1. Then increment t d t + 1 and return to Step 1.

780 Chapter 12 Exact Discrete Optimization Methods

Before turning the current partial solution into two in that way, branch and cut
Algorithm 12B would try to improve the relaxation. The idea is to find an inequality
satisfied by every binary solution to the full model but violated by x∼102.

Methods used to find such cutting inequalities vary enormously from one
model to another. In this example we simply observe that any feasible solution in
(12.14) must have a least one generator turned on. Thus

 x1 + x2 + x3 + x4 Ú 1 (12.15)

is valid. Also, constraint (12.15) cuts off previous relaxation optimum x∼102 because

0 + 0 + 0 + 0.438 4 1

Figure 12.5 shows that branch and cut advances by adding inequality (12.15)
to improve the relaxation. With the same all-free partial solution, we now obtain
stronger results:

x∼112 = 10, 0, 0.818, 0.1822, n∼ = 6.636

Suppose now that a hunt for further cuts meets with no success. The search
branches as usual on fractional variable x3. Depth first rule 12.23 with nearest child
tie-breaker 12.32 makes the next partial solution x122 = 1#, #, 1, #2.

0

1

3

2

4 5

6

by solving
= 19ˆ

by solving
ˆ = 12

by bound

∼
∼

∼
∼

∼
∼

x1 + x2 + x3 + x4 Ú 1

x1 + x2 + x3 + 2x4 Ú 2

x3 = 1 x3 = 0

x4 = 1 x4 = 0

x(2) = (0, 0, 1, 0.125) x(6)
 = (1, 0, 0, 0.5)

x(0) = (0, 0, 0, 0.438)

n = 14n = 6.750

∼
∼
x(3) = (0, 0, 1, 0.500)
n = 12.000

∼
∼
x(5) = (1, 0, 1, 0)
n = 12

∼
∼
x(4) = (0, 0, 1, 1)
n = 19

∼

∼
x(1) = (0, 0, 0.818, 0.182)
n = 6.636

n = 6.125
 n̂ = ∞

n n

figurE 12.5 Branch and Cut Search of River Power Application

12.5 Branch and Cut 781

At node 2 the relaxation again proves inadequate for termination. This time
analysis of possible cuts discovers violated inequality

 x1 + x2 + x3 + 2x4 Ú 2 (12.16)

which recognizes that either generator 4 or two others are required to meet the
700-megawatt output requirement. The improved relaxation at node 3 has n∼ = 12,
and the search continues.

Notice that both inequalities (12.15) and (12.16) are valid for the original model
(12.14). That is, they do not depend on variables fixed in partial solutions. As a conse-
quence, they may be retained when candidate problem relaxations are solved at sub-
sequent nodes 4 to 6. Each new cut discovered strengthens all subsequent relaxations.

ExamplE 12.24: unDErSTanDing branch anD cuT

The following is a branch and cut tree detailing application of Algorithm 12B to a
maximizing integer linear program over x1, x2, x3 = 0 or 1 and x4 Ú 0. The best first
selection rule 12.38 was employed with nearest child tie-breaker.

0

1

2

3

6 7

5

∼
∼

∼
∼

infeasibleby bound

by solving

 ˆ

∼

∼

∼
∼

∼
∼

∼
∼

∼
∼

4

ˆx3 + x4 Ú 5

2x1 + x2 Ú 2

x1 + x3 Ú 1

x3 = 1 x3 = 0

x2 = 1 x2 = 0

x(4) = (0.5, 1, 0.7, 4.3)

x(3) = (0.5, 1, 0.6, 0.1) x(5) = (1, 0, 1, 6.2)

x(2) = (0.6, 0.8, 0.4, 1)

x(1) = (0.3, 0.8, 0.7, 0)

x(0) = (0.5, 0, 0, 2)

x(6) = (0.5, 1, 1, 4),
n = 42

n = 45

n = 45

n = 48

n = 50

n = 53

n = 55

n = 63
n = - ∞

Assuming that all cutting inequalities shown are valid, trace the computation and
justify each step.

782 Chapter 12 Exact Discrete Optimization Methods

12.6 familiES of valiD inEqualiTiES

Over the past several decades, many families of valid inequalities have been discov-
ered that can be incorporated to speed Branch and Cut search Algorithm 12B. The
section introduces some of the most familiar.

Gomory Cutting Planes (Pure Integer Case)
The systematic development of strategies for generating families of valid inequal-
ities was pioneered by R. E. Gomory in the early days of integer programming
research. Like the concepts developed in Section 12.5, the Gomory cuts are con-
ceived as seeking a way to iteratively improve the most recent LP relaxation of the
given instance by cutting off the relaxation optimum with a new valid inequality.

Gomory cuts address both pure ILPs and mixed-integer MILPs with con-
straints in generic standard form:

 a n
j = 1 aijxj = bi, i = 1, c, m

 (12.17)

xj Ú 0 j = 1, c, n
xj integer j ∈ J ⊆ 51, 2, c, n6

For simplicity, we assume all constants in these constraints are integer. When
J = 51, 2, c, n6 the model is a pure ILP, and otherwise an MILP.

Given an optimal set of basic variables k ∈ B for the LP relaxation of model
(12.17), the corresponding Simplex Dictionary of its constraints (see Section 5.4
and 5.28) can be obtained by solving main constraints for basic variables xk in
terms of the nonbasics xj, j ∈ N:

 xk = bQk - a j∈N aQkj for all k ∈ B
 (12.18)

 xj Ú 0 for all j ∈ Nxj integer j ∈ J ⊆ 51, 2, c, n6
Constants bQk and aQkj are the updated forms of original data bk and akj, respectively.
As usual, the corresponding basic solution to the relaxation has xk = bQk for basic
variables k ∈ B and xj = 0 for nonbasics j ∈ N.

Although all original data is assumed to be integer, these updated dictionary con-
stants may be fractional. Their fractional parts will be central to Gomory cut derivation.

Solution: There is no initial incumbent solution. The first relaxation at node 0 proves
feasible and fractional, but cut x1 + x3 Ú 1 could be generated. We can usefully add
it because

x1
102 + x3

102 = 0.5 + 0 = 0.5 4 1

The improved relaxation at node 1 still cannot be terminated, but valid inequality
2x1 + x2 Ú 2 can be added because

2x1
112 + x2

112 = 210.32 + 10.82 = 1.4 4 2

The fractional part f1q2 ! q - :q; , that is, the distance
down to the next lower integer value.

Definition 12.44

12.6 Families of Valid Inequalities 783

Some examples: f13.252 = .25, f1-3.252 = .75, and f132 = 0.
A first family of Gomory’s cutting planes addresses the pure-integer case

where all variables are required to have integer values in any feasible solution, that
is, all j ∈ J.

Before justifying these valid inequalities, consider the example of Figure 12.6(a).
Part (a) of the figure plots the feasible space of the example’s LP-relaxation and

demonstrates that the relaxation optimum has both variables fractional. To construct
Gomory Fractional Cuts 12.45 that can progress toward an integer optimum requires
that we first put the model in standard form (12.17) by adding slack variables x3 Ú 0
and x4 Ú 0. Note that with all model coefficients integer these slacks may also be
considered integer-restricted as the difference of LHS and RHS quantities required
to be integer.

It is easy to see that the optimal basis corresponding to Figure 12.6(a) is
B = 51, 26, leaving N = 53, 46. The implied Simplex Dictionary is

 x1 = 5>12 - 1-5>12 x3 +1>12 x42 (12.19)
 x2 = 11>6 - 11>6 x3 +1>6 x42

Each of the basic variables is fractional, so two classic cuts 12.45 can be obtained:

 f1-5>122x3 + f11>122x4 Ú f15>122 and

 f11>62x3 + f11>62x4 Ú f15>62
Evaluating fractional parts gives

 7>12x3 + 1>12x4 Ú 5>12 and

 1>6x3 + 1>6x4 Ú 5>6

The strengthened cut form of 12.45 is the same for the second of these, but the first
improves to

11 - f1-5>1222f115>122 >11 - f15>1222x3 + f11>122x4 Ú f15>122 or

25>84 x3 + 1>12 x4 Ú 5>12

For any row k in dictionary (12.18) of a pure- integer ILP cor-
responding to a x∼k fractional, let fk0 denote f1bQk2 and fkj denote f1aQkj2. Then
the classic Gomory fractional cut is

a
j

 fkjxj Ú fk0

which can be strengthened to

a
fkj … fk0

 fkjxj + a
fk0 7 f0

fk0

1 - fk0
 11 - fkj2xj Ú fk0

Definition 12.45

784 Chapter 12 Exact Discrete Optimization Methods

Then substituting for the slack variables as x3 = 1 + 2x1 - x2 and x4 = 10 -
2x1 - 5x2 to restate the inequalities in terms of the original variables, we obtain the
three cuts depicted in Figure 12.6(b):

 -x1 + x2 … 1

 x2 … 1 and

 -3>7x1 + 5>7x2 … 5>7

Notice in the figure that all 3 cuts are valid for the original ILP, and all render the
original LP relaxation optimum infeasible. Still, even if all 3 cuts are added to the
formulation, the updated LP feasible region (dark shading) has a fractional relax-
ation optimum. 1x1, x22 = 15>2, 12. Further computation would be required to
reach an integer optimal solution.

Classic Cut 1

Classic Cut 2

Stronger Cut 1

x2

x1

(x1, x2) = (5/2, 1)

(x1
*, x2

*) = (2, 1)

_ _

(x1
*, x2

*) = (2, 1)

(x1, x2) = (5/12, 11/6)
_ _

x2

x1

x1, x2 Ú 0 and integer

(a) Original Form

(b) With Gomory Fractional Cuts

2x1 + 5x2 … 10
s.t. - 2x1 + x2 … 1

x1 + 4x2max

figurE 12.6 Numerical Example of Gomory Fractional Cuts

12.6 Families of Valid Inequalities 785

There are two issues to justify about the cuts of 12.45 . How can we be sure the
cuts are always valid? And how do we know the strengthened form will be tighter?

Taking the second issue first, note that the only difference between the two is
the coefficients of xj with fractional part fkj greater than that of the right-hand side
fk0. Comparison to the fkj in the classic form gives (using fkj 7 f0 twice)

fk0

1 - fk0
 11 - fkj2 6 fkj

1 - fkj

1 - fk0
 6 fkj

We see that the changed coefficient of nonnegative xj becomes strictly smaller in
the strengthened form, meaning the cut is indeed tighter.

As to validity, note that with strengthened form tighter than the classic, both
will be valid if we can establish that for the strengthened form. Any row k of the
dictionary (12.18) can be rewritten

 xk + a fkj … fk0
1 :aQkj; + fkj2xj + a fkj 7 fk0

1 <aQkj= - 11 - fkj22xj = :bQk; + fk0

where :q; is the next integer … q and <q= is the next integer Ú q. Regrouping yields

 xk + a fkj … fk0
:aQkj;xj + a fkj 7 fk0

<aQkj=xj - :bQk;
 = fk0 - a fkj … fk0

fkjxj + a fkj 7 fk0
11 - fkj2xj (12.19)

Now with all xj restricted to be nonnegative integers, the left-hand side of
(12.19) is integer, which means the right-hand side must be integer, too.

We consider two cases: either it is … 0 or Ú 1. The first makes the right side
of (12.19)

 a fkj … fk0
 fkjxj - a fkj 7 fk0

11 - fkj2xj Ú fk0 (12.20)

and the second gives

 - a fkj … fk0
 fkjxj + a fkj 7 fk0

11 - fkj2xj Ú 1 - fk0

which after rescaling by fk0> 11 - fk02 becomes

 - a fkj … fk0
 fkj

fk0

1 - fk0
 xj + a fkj 7 fk0

11 - fkj2
fk0

1 - fk0
 xkj Ú fk0 (12.21)

Noting all xj Ú 0 and both constraints are Ú the same right-hand-side fk0, we
can produce a valid combination of (12.20) and (12.21) by choosing the largest of their
two coefficients on each variable. When fkj … fk0, that will be the positive coefficient
in (12.20); for j with fkj 7 fk0, it will come from the positive one in (12.21). The result is

 a fkj … fk0
 fkjxj + a fkj 7 fk0

fk0

1 - fk0
 11 - fkj2xj Ú fk0

which is exactly the strenthened form of definition 12.45 , confirming its validity.

Gomory Mixed-Integer Cutting Planes
Now consider the mixed-integer (MILP) case. An extension of the stronger form
in 12.45 can deal with that as well.

786 Chapter 12 Exact Discrete Optimization Methods

The new element is retention of the aQkj coefficients on continuous variables j o J.
To illustrate, consider the MILP dictionary of Table 12.5 below. All 3 basic

variables are integer-restricted, but x2 already has an integer basic value. For x1 and
x5, we obtain cuts 12.46

 0.3x3 + 0.1x4 - 10.6>0.422.3x6 + 13.4x7 Ú 0.6 and

 0.6x3 + 13.6x6 - 10.4>0.625.9x7 Ú 0.4

The arguement for validity of cuts 12.46 closely parallels the above for the
all-integer case. We start by expressing coefficients aQkj with j ∈ J in terms of their
integer and fractional parts, then separating integer elements from all other to
obtain the following parallel to (12.19):

 xk + a fkj … fk0
:aQkj;xj + a fkj 7 fk0

<aQkj=xj - :bQk;

(12.22)

 = fk0 - a fkj … fk0
 fkjxj + a fkj 7 fk0

11 - fkj2xj

 - a joJ, akj 7 0 aQkjxj - a joJ, akj 6 0 aQkjxj

Notice that components for continuous variables join the fractional parts on the right
side of the = . For convenience at the next steps they are partitioned into ones with
positive aQkj vs. negative. As before, we note that the left side must be integer, so the
right must be also. We consider the cases of it being … 0 or Ú 1. The former leads to

 a fkj … fk0
fkjxj - a fkj 7 fk0

11 - fkj2xj
(12.23)

 + a joJ, akj 7 0 aQkjxj + a joJ, akj 6 0 aQkjxj Ú fk0

and the latter implies

 - a fkj … fk0
fkjxj + a fkj 7 fk0

11 - fkj2xj

 - a joJ, akj 7 0 aQ kjxj - a joJ, akj 6 0 aQkjxj Ú 1 - fk0

TablE 12.5 Mixed-Integer Gomory Cut Application

x1 = 1.6 - 1-2.7x3 + 1.1x4 + -2.3x6 + 13.4x72
x2 = 3.0 - 13.9x3 - 4.7x4 + 2.8x6 + 2.2x7

x5 = 2.4 - 10.6x3 + 13.6x6 - 5.9x72
all xj Ú 0, xj integer for j ∈ J ! 51, 2, 3, 4, 56

For any row k in dictionary (12.18) of a mixed-integer ILP
corresponding to a k ∈ J (integer-restricted) xk fractional, let fk0 denote
f1bQk2 and fkj denote f1aQkj2 for j ∈ J. Then the Gomory mixed-integer cut is

 a j∈J, fkj … fk0
fkjxj + a j∈J, fk0 7 fk0

fk0

1 - fk0
 11 - fkj2xj

 + a joJ, akj 7 0 akjxj - a joJ, akj 6 0

fk0

1 - fk0
 akjxj Ú fk0

Definition 12.46

12.6 Families of Valid Inequalities 787

Strong valid inequalities for selected sets of constraints from
an ILP model remain valid for the full model.

Principle 12.47

Minimal cover inequalities of the form

 a j∈C xj … � C � - 1

are valid for Binary Knapsack Problem form (12.25) with subsets
C ⊂ 51, c, n6 satisfying

 a j∈C aj 7 b

 a j∈C ∖k aj … b for all k ∈ C

Definition 12.48

After rescaling by fk0> 11 - fk02, the second becomes

 - a fkj … fk0
fkj

fk0

1 - fk0
 xj + a fkj 7 fk0

11 - fkj2
fk0

1 - fk0
 xj

(12.24)

 - a joJ, akj 7 0 aQkj
fk0

1 - fk0
 xj - a joJ, akj 6 0 aQkj

fk0

1 - fk0
 xj Ú fk0

Then, as before, choosing the highest (or positive) of the two coefficients on each
variable in (12.23) and (12.24) produces exactly the mixed-integer cut of 12.46 .

Families of Valid Inequalities from Specialized Models
Although complete ILP formulations may be complex, with many families of con-
straints, certain characteristic constraint structures recur frequently. Examples are
budget constraints on availability of some resource (Section 11.3, definition 11.6),
and set covering/packing constraint requiring Ú 1 or … 1 option to be chosen from
a set (Section 11.3, definitions 11.9 and 11.10).

Many of the successes produced by the valid inequality theory above have
involved studying the polyhedral structure of such families of constraints, then
applying strong forms in more general settings.

Dropping all full-model constraints not part of the selected set certainly produces
a constraint relaxation (definition 12.4). Since every feasible solution to the full
model must be feasible in the relaxation, valid cuts for that row relaxation remain
valid for all solutions to the full model.

To illustrate return to the Binary Knapsack Problem (BKP) form of Examples
Applications 9.7 and 11.1. Main and variable-type constraints have the form

 a n
j = 1ajxj … b (12.25)

 xj binary j = 1, c, n

Coefficients aj denote the consumption associate with each choice j, and b is the
available capacity. We may assume all aj … b because otherwise xj will always = 0.

788 Chapter 12 Exact Discrete Optimization Methods

That is, the inequalities are defined by members of minimally infeasible index
subsets C that (i) cannot all be part of a feasible solution, but (ii) become feasible
when any member of the collection is dropped. Validity of these inequalities for any
instance of BKP follows directly from those two defining properties.

For a specific example, consider the following data for a BKP.

 a1 a2 a3 a4 a5 a6 b (12.26)

 2 3 3 5 7 11 15

One minimal valid inequality 12.48 uses C = 51, 2, 4, 56 to obtain

 x1 + x2 + x4 + x5 … 3 (12.27)

As required, the sum of the associated coefficients is 2 + 3 + 5 + 7 = 17 7 15,
and droppping even the smallest = 2 produces a total within b-limit 15.

ExamplE 12.25: rEcognizing minimal covEr inEqualiTiES

Return to the BKP instance of (12.26).
Determine whether each of the following is a proper minimum cover inequal-

ity for that instance.

 x2 + x4 + x5 … 2

 x3 + x4 + x6 … 2

 x2 + x3 + x4 + x5 … 3

Solution: For the first inequality, the sum of associated coefficients is
3 + 5 + 7 = 15 which does not exceed b = 15. Thus it fails definition 12.48 . The
second inequality has coefficient sum 3 + 5 + 11 = 19 7 15 as required. However,
dropping the smallest = 3 leaves total 5 + 11 = 16 7 15. It too fails defini-
tion 12.48 . The coefficient sum for the third case is 3 + 3 + 5 + 7 = 18 7 15 as
required, and dropping the smallest leaves feasible total 3 + 5 + 7 = 15. The cut is
a proper minimal cover inequality.

12.7 cuTTing planE ThEory

To understand which inequalities (or cutting planes) like those developed in Section
12.6 are likely to be most powerful requires a theory classifying proposed cuts rela-
tive to the best possible. This section develops that cutting plane theory, also known
as polyhedral combinatorics for its focus on the best possible polyhedral representa-
tion of the set of feasible (integer) solutions to a given ILP.

12.7 Cutting Plane Theory 789

The convex hull of feasible solutions to a given integer or
mixed-integer linear program is the intersection of all convex sets containing
every such solution, informally the smallest such convex set.

Definition 12.49

The feasible set of any LP is always a convex set (principle 3.32). Thus the convex
hull is the tightest relaxation containing every integer-feasible solution to an ILP.

To see the idea, consider the following ILP.

 max -3x1 + x2

(12.28)

s.t. -x1 + x2 … 1

 2x1 - 2x2 … 3

 4x1 + x2 Ú 2

 0 … x1, x2 … 2 and integer

The feasible space for this pure-integer model is depicted in Figure 12.7(a), with
integer points shown as heavy dots, the LP relaxation feasible space in light
shading, and the convex hull in the darker. An LP-relaxation optimum occurs at
x = 11>5, 6>52, which is integer-infeasible. The unique integer optimal solution
is x* = 11, 22.

To compare for a mixed-integer case, consider the MILP obtained from (12.28)
by dropping integrality on x1, that is, requiring only x2 to be an integer. Figure 12.7(b)
graphs that case. Integer-feasible points lie along the heavy lines for x2 = 0, 1, or 2,
with x* = 11>4, 12. The convex hull has now grown just enough to encompass all
those solutions.

x* = (2, 1)

LP
Relaxation

Convex
Hull

(a) Pure Integer (x1, x2 integer)

x = (1/5, 6/5)
_

figurE 12.7 Convex Hull Examples

The Convex Hull of Integer Feasible Solutions

790 Chapter 12 Exact Discrete Optimization Methods

ExamplE 12.26: iDEnTifying convEx hullS

Consider the ILP

max 2z1 + z2

s.t. 2z1 - z2 Ú 1

 2z1 + 2z2 … 5

 0 … z1 … 2

 0 … z2 … 1

 z1, z2 integer

(a) Plot the feasible space of the model’s LP-relaxation, and the convex hull of
 integer-feasible solutions.

(b) Using your plot, identify optimal solutions to both the LP-relaxation and the
full ILP.

(c) Now consider a corresponding MILP where only z2 is required to be integer,
and plot the feasible space of the corresponding LP-relaxation and the convex hull
of integer-feasible solutions.

(d) Did either the LP-relaxation optimum or the integer optimum change in this
revised model?

x* = (1/4, 1)

LP
Relaxation

Convex Hull

(b) Mixed Integer (only x2 integer)

x = (1/5, 6/5)
_

figurE 12.7 Convex Hull Examples (Continued)

12.7 Cutting Plane Theory 791

Linear Programs over Convex Hulls
It is rare that we can completely detail the convex hull of solutions for any integer
program of practical size and complexity. Still, the convex hull serves as an ideal and
a reference point for characterizing the strongest valid inequalities.

Both instances in Figure 12.7 illustrate one fundamental attraction of convex
hulls.

z* = (2, 0)

LP Relaxation

Convex Hull Convex Hull
z1

z2

z = (2,1/2)
_

z* = (2, 0)

LP Relaxation

z1

z2

z = (2,1/2)
_

(a) Pure Integer (b) Mixed-Integer

Solution:

(a) Part (a) of the plots above shows by the LP-relaxation and the convex hull fea-
sible sets.

(b) Relaxation and integer optima are zQ = 12, 1>22 and z* = 12, 02, respectively.

(c) Part (b) of the plots shows corresponding results for the mixed-integer case.

(d) Neither optimum changes.

Assuming rational coefficient data, convex hulls of solutions
to integer and mixed-integer linear programs are polyhedral sets, that is, sets
fully defined by linear constraints.

Principle 12.50

Proof of this important proposition is lengthy and technical, so it will be
omitted here. The proposition’s assumption of rational-number coefficients in the
original model is required for some purely mathematical issues, but it represents
no limitation for IPs of applied interest because digital computer inputs are inher-
ently rational.

For cases of practical interest, we may conclude that convex hulls can, in prin-
ciple, be fully defined as feasible sets of linear programs obtained by supplementing
the equalities and inequalities of the original ILP or MILP with a sufficient collec-
tion of valid inequalities. For example, in the case of Figure 12.7(a), the represen-
tation of its convex hull can be obtained from the LP relaxation by adding valid
inequalities x1 Ú 1 and x1 - x2 … 1. In mixed-integer part (b) the needed addi-
tional inequalities are 2x1 - x2 … 3 and -4x1 + 3x2 … 2.

Property 5.5 established that if any LP has a finite optimum, it has one at an
extreme-point of its feasible set. The corresponding property for convex hulls of
integer programs is directly analogous.

792 Chapter 12 Exact Discrete Optimization Methods

That is, if we knew completely a polyhedral description of the convex hull for a
given integer program, we could compute an optimal integer solution by solving a
linear program over the convex hull constraints. Optimal solutions x* in both parts
of Figure 12.7 confirm this fact.

To see why this must be true in general, observe first that every extreme-point
of a convex hull must be a fully feasible solution to the underlying ILP or MILP.
Otherwise, an integer-infeasible extreme-point could cut off by adding a new valid
inequality. This would produce a strictly smaller polyhedral (and thus convex)
set containing all the solutions which are feasible – a violation of definition 12.49 .
Furthermore, every feasible solution to the given integer model lies somewhere within
its convex hull. If the model’s linear objective function produces a finite optimum over
those solutions, it must produce at least one at an extreme-point of the polyhedral
convex hull (principle 5.5), all of which are feasible in the given integer model.

Faces, Facets, and Categories of Valid Inequalities
Valid inequalities for a given ILP or MILP cannot cut off parts of its convex hull
because it is already the tightest possible polyhedral set that contains all integer-fea-
sible solutions. In the more typical situation where the current LP-relaxation can
still be improved, we can categorize valid inequalities by how close they come to
the convex hull. Figure 12.8 will provide a helpful point of reference. It depicts the
convex hull of an all-integer program over x1, x2, x3 Ú 0 and integer. The current
LP-relaxation must contain this convex hull, but it presumably also includes many
integer-infeasible solutions.

If an ILP or MILP has a finite optimum, it has one at an
extreme-point of the convex hull of its integer-feasible solutions.

Principle 12.51

(1, 2, 0)

(2, 1, 0)

(2, 0, 2)

(1, 0, 1)

(1, 1, 1)

Facet 1

Facet 2

Facet 4

Facet 3

Facet 5

Facet 6

x2

x1

x3

figurE 12.8 Faces and Facets Examples

12.7 Cutting Plane Theory 793

A face of the convex hull is any subset satisfying some valid
inequality as equality at all subset points.

Definition 12.52

A facet is a face of maximum dimension, that is, of dimen-
sion one less than the dimension of the convex hull itself.

Definition 12.53

The higher the dimension of a face, the more powerful the corresponding valid
inequality becomes.

The polytope in Figure 12.8 is the full dimensional for its n = 3 decision vari-
ables. This assures no 3-dimensional subset could satisfy a valid cutting plane as
equality at all its points. The highest possible dimension for this case is the n - 1 = 2
dimensional facets enumerated in the figure. Table 12.6 details the facet inducing
valid inequalities that characterize each.

All of the facets in Table 12.6 are faces of the convex hull because there are
valid inequalities they strictly satisfy. Indeed, they are the most preferred cutting
planes because they intersect the convex hull in a maximum dimension face. Still,
lower-dimensional subsets of the convex hull boundary are also faces. For example,
each of the extreme-points shown in Figure 12.8 are faces of dimension = 0. Any
supporting valid inequality at those points would satisfy definition 12.52 . Similarly,
all the edges connecting pairs of those extreme-points are faces of dimension = 1.
Again, a supporting valid inequality active along the whole edge would fulfill defi-
nition 12.52 . Although not as strong as the facet-inducing ones, supporting valid
inequalities do at least touch the convex hull.

TablE 12.6 Facet-Inducing Valid Inequalities of Figure 12.8

Facet Number Inducing Valid Inequality

1 x1 - x3 Ú 0
2 x2 + x3 … 2
3 2x1 + 2x2 + x3 … 6
4 x1 Ú 1
5 x1 + x2 + 2x3 Ú 3
6 x1 - 2x2 - x3 … 0

ExamplE 12.27: iDEnTifying facE-anD facET-inDucing
inEqualiTiES

Return to the ILPs of Example 12.26.

(a) Identify all the faces of the pure-integer convex hull plot (a), establish their di-
mensions, and determine which are facets.

(b) For each face in part (a) determine a face-inducing valid inequalities intersect-
ing the convex hull in that face.

794 Chapter 12 Exact Discrete Optimization Methods

Affinely Independent Characterization of Facet-Inducing
Valid Inequalities
Like so many other parts of this book, graphic examples like Figure 12.8 are helpful
for building insight, but more rigorous mathematical characterizations are required
for instances of realistic size. The core of what is needed are independent solutions
numbering 1 more than the dimension of the face being considered, that is, 1 for a
point, 2 for a line, 3 for a plane, etc.

Still, care is required in defining what is meant by points being independent.
First of all, they cannot all fall within a lower-dimensional set such as 3 points along
a line within a plane. On the other hand, it is too much to require the defining points
to be linearly independent. For example, the 3 corner points of Facet 2 in Figure 12.8
fully define the corresponding facet inducing inequality, but they are not linearly
independent. x122 = 12, 0, 22 is a multiple of x112 = 11, 0, 12.

What is needed is a more refined idea of independence.

(c) Verify that the optimal z* is an extreme-point of the convex hull, and identify
the facet-defining inequalities that delineate it.

(d) Repeat part (a) for the mixed-integer convex hull plot (b).

(e) Repeat part (b) for the mixed-integer convex hull plot (b).

(f) Repeat part (c) for the mixed-integer convex hull plot (b).

Solution:

(a) The three facets are the dimension 1 lines joining (1, 0) to (1, 1),(1, 0) to (2, 0),
and (1, 1) to (2, 0). The three corner points (1, 0), (1, 1), and (2, 0) are dimension 0
faces, but not facets.

(b) The three facets are induced by z2 Ú 0, z1 Ú 1, and z1 + z2 … 2. Among the
many supporting inequalities inducing the dimension 0 extreme-point faces are
z1 + z2 Ú 1, z1 … 2, and z2 … 1.

(c) Integer optimal solution z* = 12, 02 is indeed an extreme-point at the intersec-
tion of z2 Ú 0 and z1 + z2 … 2.

(d) The four facets for this case are the dimension 1 lines joining (1/2, 0) to (2, 0),
(1/2, 0) to (1, 1), (1, 1) to (3/2, 1), and (3/2, 1) to (2, 0). All four corner points (1/2, 0),
(1, 1), (3/2, 1), and (2, 0) are dimension 0 faces, but not facets.

(e) The four facts are induced by z2 Ú 0, z2 … 1, 2z1 - z2 Ú 1, and 2z1 + z2 … 4.
Among the many supporting inequalities inducing the dimension 0 extreme-point
faces are z1 Ú 1>2, z1 … 2, z1 - z2 Ú 0, and 2z1 + 2z2 … 5.

(f) Integer optimal solution z* = 12, 02 is indeed an extreme-point at the intersec-
tion of z2 7 0 and 2z1 + z2 6 5.

A collection of n-vectors x112, x122, x132, c, x1k2 are affinely
independent if differences 1x122 - x1122, 1x132 - x1122, c, 1x1k2 - x1122 from
one of them are linearly independent.

Definition 12.54

12.7 Cutting Plane Theory 795

Linearly independent collections of vectors are certainly affinely independent,
but some linearly dependent collections like the corners of Facet 1 can also qual-
ify after translating the origin of vectors to one of them. That is, we require only
that differences 1x122 - x1122 = 12, 0, 22 - 11, 0, 12 = 11, 0, 12 and 1x132 - x1122
= 11, 1, 12 - 11, 0, 12 = 10, 1, 02 be linearly independent, which they clearly are.

This brings us the characterization required.

A valid inequality for a given ILP or MILP induces a face of
dimension k in the corresponding convex hull if and only if there exist k + 1
affinely independent, integer-feasible solutions to the model satisfying the
inequality as equality. In particular, a valid inequality is facet-inducing if and
only if there exist n affinely independent solutions satisfying it as equality,
where n is the dimension of the convex hull.

Principle 12.55

ExamplE 12.28: iDEnTifying facE-anD facET-inDucing
inEqualiTiES

Return to the ILPs of Example 12.26.

(a) Exhibit the required number of affinely independent feasible points satisfing each
facet as equality and demonstrate their affine independence for the pure-integer con-
vex hull plot (a).

(b) Repeat part (a) for the mixed-integer case of plot (b).

Solution:

(a) For each of the (dimension 1) facets we need two affinely independent points. For
z2 Ú 0, 11, 02 and 12, 02 will serve, but they are not linearly independent. Still the
difference 12, 02 - 11, 02 = 11, 02 is linearly independent as required by princi-
ple 12.55 . For z1 Ú 1, linearly independent (1, 0) and (1, 2) suffice. For z1 + z2 … 2,
linearly independent (2, 0) and (1, 1) fullfil the requirements.

(b) Again we require 2 affinely independent points for each of the (dimension 1) fac-
ets. For z2 Ú 0, 11, 02 and (2, 0) suffice even though they are not linearly independent.
Many other pairs would serve as well. For z2 … 1, linearly independent (1, 1) and (3/2, 1)
meet the requirement. For 2z1 - z2 Ú 1, linearly independent (1/2, 0) and (1, 1) suf-
fice. For 2z1 + z2 … 4, linearly independent (3/2, 1) and (2, 0) satisfy the need.

Partial Dimensional Convex Hulls and Valid Equalities
For simplicity so far we have used only full-dimensional examples of convex hulls,
but many cases do not meet this standard. To explore such possibilities, more rigor-
ous definitions are needed.

The dimension of any polyhedral set of n-vectors is 1 less than
the maximum number of affinely independent points belonging to the set. The set
is full dimensional if its dimension = n, and partial dimensional otherwise (6 n).

Definition 12.56

796 Chapter 12 Exact Discrete Optimization Methods

We can use any of the facets in Figure 12.8 plus one separate point to establish that
it is formally full dimensional. From Facet 1 using

 x112 = 11, 0, 12
 x122 = 11, 1, 12 x122 - x112 = 10, 1, 02
 x132 = 12, 2, 12 x132 - x112 = 11, 2, 02
 x142 = 12, 0, 22 x142 - x112 = 11, 0, 12

Differences for x112 are linearly independent, proving the 4 points are affinely inde-
pendent (definition 12.54), and the dimension of the set = 4 - 1 or 3. This is full
dimension for 3-vectors.

To see a partial dimensional case, consider the convex hull in Figure 12.9.
Even though it is contained in 3-space, its 3 extreme-points form a maximum set of
affinely independent solutions, so that dimension = 3 - 1 = 2 (definition 12.56).
Thus (principle 12.55) the convex hull’s three 1-dimensional edges connecting pairs
of extreme-points are its facets. Any supporting valid inequality intersecting one of
those edges is facet-inducing, such as x13 … 1 for the edge from (0, 1, 1) to (1, 0, 1).

Still, those facets, or corresponding facet-inducing inequalities, do not fully
describe the polyhedral set in Figure 12.9. We clearly need the valid equality
x1 + x2 + x3 = 2 containing the whole set.

A valid equality of a given polyhedral set is a linear equality
satisfied by every member of the set.

Definition 12.57

Existence of such valid equalities is what makes a polyhedral set partial- dimensional.
Often they are apparent in the original LP-relaxation of an ILP or MILP, so their
importance comes less from being discovered to describe the convex hull than in
determining its dimension, and thus the dimension of facet-inducing valid inequali-
ties we do need to identify.

(1, 1, 0)

(0, 1, 1)

(1, 0, 1)

x2

x1

x3

figurE 12.9 Example of a Partial Dimensional Convex Hull

 Exercises 797

ExamplE 12.29: rEcognizing parTial DimEnSion anD valiD
EqualiTiES

Return to the two IPs of Examples 12.26.

(a) Establish that both convex hulls are full dimensional.

(b) Suppose now that the original LP-relaxation constraints had included the valid
equality z1 + z2 = 2. Demonstrate that the revised LP-relaxation in both cases, and
also the new convex hull, would be just the line segment from z = 11, 12 to 12, 02.

(c) Establish that this revised convex hull is partial dimensional.

Solution:

(a) With two decision variables in each case, full dimension would be n = 2. In
both parts (a) and (b) solutions z = 11, 02, 12, 02, and (1,1) provide the 3 affinely
independent solutions required to establish dimension 2.

(b) Adding the valid equality reduces both cases to the plot below.

z* = (2, 0)
Convex Hull

Valid Equality

z1

z2

z = (2, 1/2)
_

The new convex hull is simply the line segment from z = 11, 12 to 12, 02.

(c) The same two solutions from part (b) provide the affinely independent points
needed to establish that the dimension of the new convex hull is 2 - 1 = 1. With two
decision variables, this demonstrates the new convex hull is partial dimension 1 6 2.

ExERCISES

12-1 Solve each of the following discrete optimi-
zation models by total enumeration.

(a) min 2x1 + x2 + 4x3 + 10x4

 s.t. x1 + x2 + x3 … 2
 3x1 + 7x2 + 19x3 + x4 Ú 20
 x1, x2, x3 = 0 or 1
 x4 Ú 0

(b) max 30x1 + 12x2 + 24x3 + 55x4

 s.t. 30x1 + 20x2 + 40x3 + 35x4 … 60
 x2 + 2x3 + x4 Ú 2
 x1 Ú 0
 x2, x3, x4 = 0 or 1

12-2 Suppose that you have been asked to solve
a mixed-integer ILP with 10,000 continuous and n

798 Chapter 12 Exact Discrete Optimization Methods

binary decision variables. Determine the largest
n’s for which the problem could be totally enu-
merated in one 24-hour day and in one 24-hour,
30-day month by each of the following computer
environments.

(a) An engineering workstation that can enu-
merate one choice of binary variables each
second, including solving the resulting LP.

(b) A parallel processing computer that can
evaluate 8192 choices simultaneously every
second, including solving the resulting LPs.

12-3 Consider the ILP

 max 14x1 + 2x2 - 11x3 + 17x4

 s.t. 2x1 + x2 + 4x3 + 5x4 … 12
 x1 - 3x2 - 3x3 - 3x4 … 0
 x1 Ú 0
 x2, x3, x4 = 0 or 1

Determine whether each of the following is a con-
straint relaxation.

(a) max 14x1 + 2x2 - 11x3 + 17x4

 s.t. 2x1 + x2 + 4x3 + 5x4 … 12
 x1 - 3x2 - 3x3 - 3x4 … 0
 xj Ú 0, j = 1, c, 4

(b) max 14x1 + 2x2 - 11x3 + 17x4

 s.t. 2x1 + x2 + 4x3 + 5x4 … 12
 x1 - 3x2 - 3x3 - 3x4 … 0
 x1, x2, x3, x4 = 0 or 1

(c) max 14x1 + 2x2 - 11x3 + 17x4

 s.t. 2x1 + x2 + 4x3 + 5x4 … 5
 x1 - 3x2 - 3x3 - 3x4 … 0
 x1 Ú 0
 x2, x3, x4 = 0 or 1

(d) max 14x1 + 2x2 - 11x3 + 17x4

 s.t. x1 - 3x2 - 3x3 - 3x4 … 10
 x1 Ú 0
 x2, x3, x4 = 0 or 1

12-4 Form the linear programming relaxation of
each of the following ILPs.

(a) min 12x1 + 45x2 + 67x3 + 1x4

 s.t. 4x1 + 2x2 - x4 … 10
 6x1 + 19x3 Ú 5
 x2, x3, x4 Ú 0
 x1 = 0 or 1
 x3 integer

(b) max 3x1 + 8x2 + 9x3 + 4x4

s.t. 2x1 + 2x2 + 2x3 + 3x4 … 20
 29x1 + 14x2 + 78x3 + 20x4 … 100
 x1, x2, x3 = 0 or 1
 x4 Ú 0

12-5 Each of the following ILPs has no feasible
solutions. Solve the corresponding LP relaxation
graphically and indicate whether your relax-
ation results are sufficient to show that the ILP
is infeasible.

(a) min 10x1 + 15x2

 s.t. x1 + x2 Ú 2
 -2x1 + 2x2 Ú 1
 x1, x2 = 0 or 1

(b) max 40x1 + 17x2

 s.t. 2x1 + x2 Ú 2
 2x1 - x2 … 0
 x1, x2 = 0 or 1

(c) min 2x1 + x2

 s.t. x1 + 4x2 … 2
 -4x1 + 4x2 Ú 1
 x1 Ú 0, x2 = 0 or 1

(d) max 57x1 + 20x2

 s.t. x1 + x2 Ú 4
 x1 = 0 or 1
 0 … x2 … 2

12-6 Determine the best bound on the optimal
solution value of an ILP with each of the follow-
ing objective functions that is available from the
specified LP relaxation optima x∼.

(a) max 24x1 + 13x2 + 3x3

 x∼ = a2, 12, 0b
(b) min x1 - 6x2 + 49x3

 x∼ = a1, 0, 27 b
(c) min 60x1 - 16x2 + 10x3

 x∼ = a1
2, 1, 12 b

(d) max 90x1 + 11x2 + 30x3

 x∼ = a0, 12, 3b
12-7 Determine whether each of the following LP
relaxation optima x∼ is optimal in the corresponding
ILP over the specified variable type constraints.

 Exercises 799

(a) xj = 0 or 1, j = 1, c, 4

 x∼ = a1, 0, 13, 23 b
(b) x1, x2 = 0 or 1, x3, x4 Ú 0

 x∼ = a0, 1, 32, 12 b
(c) x1, x2, x3 = 0 or 1, x4 Ú 0

 x∼ = a1, 0, 1, 23
7 b

(d) xj Ú 0 and integer, j = 1, c, 4

 x∼ = a0, 3, 32, 1b

12-8 The ILP

 max 3x1 + 6x2 + 4x3 + 10x4 + 3x5

 s.t. 2x1 + 4x2 + x3 + 3x4 + 7x5 … 10

 x1 + x3 + x4 … 2

 4x2 + 4x4 + 4x5 … 7

 x1, c, x5 = 0 or 1

has LP relaxation optimal solution x∼ =
10, 0.75, 1, 1, 02.

(a) Determine the best bound on the ILP op-
timal solution value available from relax-
ation results.

(b) Determine whether the relaxation opti-
mum solves the full ILP. If not, round to
an ILP-feasible solution either by moving
all binary variables at fractional values
in the relaxation up to 1 or by moving all
down to 0.

(c) Combine parts (a) and (b) to determine the
best upper and lower bounds on the ILP
optimal solution value available from the
combination of relaxation and rounding.

(d) Verify your bounds of part (c) by solv-
ing the full ILP with class optimization
software.

12-9 Do Exercise 12-8 for the ILP

 min 12x1 + 5x2 + 4x3 + 6x4 + 7x5

 s.t. 6x1 + 8x2 + 21x3 + 6x4 + 5x5 Ú 11

 x1 + x2 + 2x3 + x4 Ú 1

 2x2 + 5x3 + x5 Ú 2

 x1, c, x5 = 0 or 1

and LP relaxation optimum x∼ = 10, 0, 0.524, 0, 02.

12-10 Do Exercise 12-8 for the ILP

 min 17x1 + 12x2 + 24x3 + 2x4 + 8x5

 s.t. 3x1 + 5x3 + 7x4 + 9x5 Ú 13

 7x2 + 4x4 + 11x5 Ú 5

 2x1 + 3x2 + 2x3 + 3x4 Ú 7

 x2, x3, x4 = 0 or 1

 x1, x5 Ú 0

and LP relaxation optimum x∼ = 10.5, 1, 0, 1, 0.52.

12-11 Do Exercise 12-8 for the ILP

 min 50x1 + 25x2 + 100x3 + 300x4

+ 200x5 + 500x6

s.t. 10x1 + 6x2 + 2x3 = 45

 2x1 + 3x2 + x3 Ú 12

 0 … x1 … 5x4

 0 … x2 … 5x5

 0 … x3 … 5x6

 x4, x5, x6 = 0 or 1

and LP relaxation optimum x∼ = 11.5, 5, 0, 0.3, 1, 02.

12-12 Consider the ILP

 min 10x1 + 20x2 + 40x3 + 80x4 - 144y

 s.t. x1 + x2 + x3 + x4 Ú 4y

 x1, c, x4, y = 0 or 1

(a) Solve the full ILP model by inspection.
(b) Verify by inspection that its LP relaxation

has optimal solution x∼ = 11, 1, 0, 02,
y∼ = 1

2.
(c) Show that an equivalent ILP would result

if the main constraint were replaced by
 xj Ú y j = 1, c, 4

(d) Verify that the revised formulation of
part (c) has a stronger LP relaxation than
the original of part (b).

12-13 Do Exercise 12-12 for ILP

 min 16x1 + 14x2 + 15x3

 s.t. x1 + x2 Ú 1
 x2 + x3 Ú 1
 x1 + x3 Ú 1
 x1, c, x3 = 0 or 1

LP relaxation optimum x∼ = 11
2, 12, 12 2 and revised

main constraint

 x1 + x2 + x3 Ú 2

800 Chapter 12 Exact Discrete Optimization Methods

12-14 Consider the Fixed Charge Network Flow
instance displayed below (see Section 11.6).

26

supply = 2

demand = 1

demand = 1

3

4

1 2
20

26

10
15 15

8

Numbers on arcs are fixed charges fij. All variable
costs cij = 0.

(a) Formulate the instance as in 11.31 using
decision variables xij ! flow on arc (i, j),
and yij = 1 if xi, j 7 0 and = 0 otherwise.

(b) Identify by inspection an optimal solution
to the full ILP model of (a).

(c) Identify by inspection an optimal solution
to the LP relaxation of the model in (a).

(d) Now Develop an extended formulation
of the instance which artificially divides
flows into two separate flow networks.
The first in decision variables xij

112 should
define constraints for flows from source 1
to first demand 3. The other in xij

122 should
define constraints on flows from source
1 to second demand 4. A common set of
y-variables for the fixed costs should be
subject to pairs of switching constraints for
every arc (i, j) as xij

112 … 1demand at 32yij,
and xij

122 … 1demand at 42yij

(e) Explain why the new formulation of (d)
is a correct representation of the given
fixed-charge instance.

(f) Use class optimization software to solve
the LP relaxation of the new version in (d).
Then compare with results in (b) and (c),
and comment.

12-15 The fixed-charge ILP

 min 60x1 + 78x2 + 200y1 + 400y2

 s.t. 12x1 + 20x2 Ú 64
 15x1 + 10x2 … 60
 x1 + x2 … 10

 0 … x1 … 100y1

 0 … x2 … 100y2

 y1, y2 = 0 or 1

has LP relaxation optimum x∼ = 10, 3.22,
y∼ = 10, 0.0322.

(a) Compute the smallest replacements for
big-M values of 100 in this formulation
that can be inferred simply by examining
constraints of the model.

(b) Show that the LP relaxation optimum will
change if the lower big-M’s of part (a) are
employed.

(c) Verify part (b) by solving the model hav-
ing smaller big-M’s with class optimiza-
tion software.

12-16 Do Exercise 12-15 for the average-
completion-time, single-machine scheduling ILP

 min 0.51x1 + 12 + x2 + 82
 s.t. x1 + 12 … x2 + 7511 - y2

 x2 + 8 … x1 + 75y

 x1, x2 Ú 0
 y = 0 or 1

with LP relaxation optimum x∼ = 10, 02, y∼ = 0.08.
[Hint: Consider the sum of the process times in
part (a).]

12-17 Suppose that an integer linear program has
decision variables x1, x2, x3 = 0 or 1. List all com-
pletions of the following partial solutions.

(a) (#, 0, #)
(b) (1, 0, #)

12-18 The following is the complete branch and
bound tree for an ILP over decision variables
x1, c, x4 = 0 or 1.

1

2 4

3

0

x3 = 1 x3 = 0

x2 = 1
x2 = 0

 Exercises 801

(a) List the partial solutions associated with
each node of the tree.

(b) Which nodes were branched and which
terminated?

(c) Identify the nodes of the tree that have
x = 10, 1, 0, 12 as a feasible completion.

12-19 Do Exercise 12-18 for the branch and
bound tree

1

4 3

2

0

x4 = 1 x4 = 0

x2 = 1 x2 = 0

12-20 Suppose that the ILP of Exercise 12-8 is
being solved by branch and bound. State the can-
didate problem associated with each of the fol-
lowing partial solutions.

(a) (#, 1, #, #, 0)
(b) (#, 1, 0, 1, #)

12-21 Suppose that a minimizing ILP is being
solved by LP-based branch and bound Algorithm
12A over decision variables x1, x2, x3 = 0 or 1,
x4 Ú 0. Show how the search should process the
node with x2 = 1 and other variables free if the
corresponding LP relaxation has each of the fol-
lowing outcomes. Assume that the incumbent
solution value is 100.

(a) x∼ = 10.9, 1, 0, 62, value n∼ = 97

(b) x∼ = 10.2, 1, 0.77, 4.52, value n∼ = 102

(c) x∼ = 11, 1, 0, 4.22, value n∼ = 75

(d) LP relaxation infeasible

(e) x∼ = 11, 1, 0.6, 02, value n∼ = 100

(f) x∼ = 10.4, 1, 0.1, 5.92, value n∼ = 86

12-22 The following table shows the LP relax-
ation outcomes for all possible combinations of
fixed and free variables in branch and bound
solution of a minimizing integer linear program

over decision variables x1, x2, x3 = 0 or 1,
x4 Ú 0. Solve the problem by LP-based
Algorithm 12A and record your results in a
branch and bound tree. Apply the depth first
rule for selecting among active nodes and pick
whichever of = 0 and = 1 is closest to the pre-
ceding relaxation value when nodes have equal
depth. Branch on the integer-restricted vari-
able with fractional relaxation value nearest to
integer.

 x1 x2 x3 x∼ n∼

(0, 0.60, 0.14, 0) 60.9

0 (0.20, 0.60, 0, 0) 61.0

1 (0.60, 0, 1, 0) 69.0

0 # (0.60, 0, 1, 0) 69.0

0 0 Infeasible —

0 1 (0.60, 0, 1, 0) 69.0

1 # (0, 1, 0, 400) 4090.0

1 0 (0, 1, 0, 400) 4090.0

1 1 Infeasible —

0 # # (0, 0.60, 0.14, 0) 60.9

0 # 0 (0, 0.60, 0, 1.9) 73.6

0 # 1 (0, 0, 1, 6) 108.0

0 0 # (0, 0, 1, 6) 108.0

0 0 0 Infeasible —

0 0 1 (0, 0, 1, 6) 108.0

0 1 # (0, 1, 0, 400) 4090.0

0 1 0 (0, 1, 0, 400) 4090.0

0 1 1 Infeasible —

1 # # (1, 0.33, 0, 0) 65.0

1 # 0 (1, 0.33, 0, 0) 65.0

1 # 1 (1, 0, 1, 0) 83.0

1 0 # (1, 0, 0.71, 0) 69.3

1 0 0 Infeasible —

1 0 1 (1, 0, 1, 0) 83.0

1 1 # (1, 1, 0, 400) 4125.0

1 1 0 (1, 1, 0, 400) 4125.0

1 1 1 Infeasible —

12-23 Do Exercise 12-22 for a minimizing mixed-
integer linear program over binary variables w1, w2,
w3, and w4 Ú 0.

802 Chapter 12 Exact Discrete Optimization Methods

#
#
#
#
#
#
#
#
#
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1

w1

#
#
#
0
0
0
1
1
1
#
#
#
0
0
0
1
1
1
#
#
#
0
0
0
1
1
1

w2

#
0
1
#
0
1
#
0
1
#
0
1
#
0
1
#
0
1
#
0
1
#
0
1
#
0
1

w3

24.6
24.6
83.0
24.6
24.6
83.0
58.4
58.4

134.0
69.2
72.3
83.0
69.2

—
83.0
71.8
72.6

134.0
123.0
123.0
206.0
123.0
123.0
206.0
174.0
174.0
257.0

(0.2, 0.0, 0.0, 0.0)
(0.2, 0.0, 0.0, 0.0)
(0.0, 0.0, 1.0, 0.0)
(0.2, 0.0, 0.0, 0.0)
(0.2, 0.0, 0.0, 0.0)
(0.0, 0.0, 1.0, 0.0)

(0.06, 1.0, 0.0, 0.0)
(0.06, 1.0, 0.0 0.0)
(0.0, 1.0, 1.0, 0.0)

(0.0, 0.0, 0.833, 0.0)
(0.0, 0.368, 0.0, 0.147)

(0.0, 0.0, 1.0, 0.0)
(0.0, 0.0, 0.833, 0.0)

infeasible
(0.0, 0.0, 1.0, 0.0)

(0.0, 1.0, 0.25, 0.0)
(0.0, 1.0, 0.0, 0.059)

(0.0, 1.0, 1.0, 0.0)
(1.0, 0.0, 0.0, 0.0)
(1.0, 0.0, 0.0, 0.0)
(1.0, 0.0, 1.0, 0.0)
(1.0, 0.0, 0.0, 0.0)
(1.0, 0.0, 0.0, 0.0)
(1.0, 0.0, 1.0, 0.0)
(1.0, 1.0, 0.0,0.0)
(1.0, 1.0, 0.0, 0.0)
(1.0 ,1.0, 1.0, 0.0)

LP Optimum LP Value

12-24 Consider a maximizing MILP over x1 Ú 0,
and x2, x3, x4 = 0 or 1.

#
#
#
#
#
#
#
#
#
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1

x2

#
#
#
0
0
0
1
1
1
#
#
#
0
0
0
1
1
1
#
#
#
0
0
0
1
1
1

x3

#
0
1
#
0
1
#
0
1
#
0
1
#
0
1
#
0
1
#
0
1
#
0
1
#
0
1

x4

232.67
232.67
220.00
230.00
211.25
220.00
229.33
229.33
216.00
216.00
141.00
216.00
87.50
12.50
87.50

216.00
141.00
216.00
232.67
232.67

—
230.00
211.25

—
—
—
—

(0, 1, .17, 0)
(0, 1, .17, 0)
(0, .67, 0, 1)
(0, 1, 0, .25)

(1.25, 1, 0, 0)
(0, .67, 0, 1)
(0, .44, 1, 0)
(0, .44, 1, 0)
(0, 0, 1, 1)
(0, 0, 1, 1)
(5, 0, 1, 0)
(0, 0, 1, 1)

(7.5, 0, 0, 1)
(12.5, 0, 0, 0)
(7.5, 0, 0, 1)
(0, 0, 1, 1)
(5, 0, 1, 0)
(0, 0, 1, 1)

(0, 1, .17, 0)
(0, 1, .17, 0)
infeasible

(0, 1, 0, .25)
(1.25, 1, 0, 0)

infeasible
infeasible
infeasible
infeasible

LP Optimum LP Value

(a) Solve the problem by LP-based Branch
and Bound Algorithm 12A, using the
given table of candidate problem solu-
tions, and record your computations in a
branch and bound tree. When more than
one node is active, select the deepest in the
tree, breaking ties in favor of the child with
newly fixed variable value most like that
of its parent’s relaxation optimum. When
needed, branch on the fractional variable
of the most recent LP relaxation that is
closest to integer in value. Start with no
incumbent solution, and do not round to
create early incumbents.

(b) Briefly explain why the logic of Branch
and Bound assures your final solution is
optimal.

(c) The table used for part (a) is a conve-
nience, but really solving the given ILP
by branch and bound would have re-
quired actually solving a series of candi-
date problem LP relaxations. How many
would have been needed to do the com-
putations of part (a)?

12-25 Consider a minimizing MILP over x1, x2, x3
binary and x4 Ú 0.

#
#
#
#
#
#
#
#
#
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1

x1

#
#
#
0
0
0
1
1
1
#
#
#
0
0
0
1
1
1
#
#
#
0
0
0
1
1
1

x2

#
0
1
#
0
1
#
0
1
#
0
1
#
0
1
#
0
1
#
0
1
#
0
1
#
0
1

x3

—
—
—
—
—
—
—
—
—

2.429
2.429
6.000
3.000
5.333
6.000
5.000
5.000
9.000

2.429
2.429
5.400
3.000
5.333
5.400
3.800
3.800
7.600

(1.0, 0.143, 0.0, 0.0)
(1.0, 0.143, 0.0, 0.0)
(0.7, 0.0, 1.0, 0.0)
(1.0, 0.0, 0.25, 0.0)
(1.0, 0.0, 0.0, 0.067)
(0.7, 0.0, 1.0, 0.0)
(0.4, 1.0, 0.0, 0.0)
(0.4, 1.0, 0.0, 0.0)
(0.3, 1.0, 1.0, 0.0)

(1.0, 0.143, 0.0, 0.0)
(1.0, 0.143, 0.0, 0.0)
(1.0, 0.0, 1.0, 0.0)
(1.0, 0.0, 0.25, 0.0)
(1.0, 0.0, 0.0, 0.067)
(1.0, 0.0, 1.0, 0.0)
(1.0, 1.0, 0.0, 0.0)
(1.0, 1.0, 0.0, 0.0)
(1.0, 1.0, 1.0, 0.0)

LP Optimum LP Value

Infeasible

Infeasible
Infeasible
Infeasible
Infeasible

Infeasible
Infeasible
Infeasible
Infeasible

 Exercises 803

(a) Solve the problem by LP-based Branch
and Bound Algorithm 12A, using the
given table of candidate problem solu-
tions, and record your computations in a
branch and bound tree. When more than
one node is active, apply the Depth-First
rule, breaking ties in favor of the child with
newly fixed variable value most like that
of its parent’s relaxation optimum. When
needed, branch on the fractional variable
of the most recent LP relaxation that is
closest to integer in value. Start with no
incumbent solution, and do not round to
create early incumbents.

(b) Briefly explain why the logic of branch
and bound assures your final solution is
optimal.

(c) Point out the first time in your enumeration
of (a) where a comparable search based
on depth-forward-best-back enumeration
would have taken up a different candidate
than was done in your depth-first sequence.
Explain.

12-26 Consider a maximizing mixed-integer liner
program with x1 Ú 0, x2, x3, x4 = 0 or 1.

#
#
#
#
#
#
#
#
#
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1

x2

#
#
#
0
0
0
1
1
1
#
#
#
0
0
0
1
1
1
#
#
#
0
0
0
1
1
1

x3

#
0
1
#
0
1
#
0
1
#
0
1
#
0
1
#
0
1
#
0
1
#
0
1
#
0
1

x4

135.0
135.0
125.0
110.0
87.5

110.0
135.0
135.0

—
131.8
117.5
125.0
80.0
57.5
80.0

131.8
117.5

—
128.8
128.8
110.0
110.0
87.5

110.0
—
—
—

(0.0, 0.58, 1.00, 0.00)
(0.0, 0.58, 1.00, 0.00)
(0.0, 0.00, 0.75, 1.00)
(0.0, 1.00, 0.00, 1.00)
(0.9, 1.00, 0.00, 0.00)
(0.0, 1.00, 0.00, 1.00)
(0.0, 0.58, 1.00, 0.00)
(0.0, 0.58, 1.00, 0.00)

infeasible
(0.0, 0.00, 1.00, 0.64)
(0.6, 0.00, 1.00, 0.00)
(0.0, 0.00, 0.75, 1.00)
(1.0, 0.00, 0.00, 1.00)
(1.9, 0.00, 0.00, 0.00)
(1.0, 0.00, 0.00, 1.00)
(0.0, 0.00, 1.00, 0.64)
(0.6, 0.00, 1.00, 0.00)

infeasible
(0.0, 1.00, 0.69, 0.00)
(0.0, 1.00, 0.69, 0.00)
(0.0, 1.00, 0.00, 1.00)
(0.0, 1.00, 0.00, 1.00)
(0.9, 1.00, 0.00, 0.00)
(0.0, 1.00, 0.00, 1.00)

infeasible
infeasible
infeasible

LP Rela.xation Value

(a) Solve the problem by LP-based Branch
and Bound Algorithm 12A, using the
given table of candidate problem solu-
tions, and record your computations in a
branch and bound tree. When more than
one node is active, apply the Depth-
First rule, breaking ties in favor of the
child with newly fixed variable value
most like that of its parent’s relaxation
optimum. When needed, branch on the
fractional variable of the most recent
LP relaxation that is closest to integer
in value. Start with no incumbent solu-
tion, and do not round to create early
incumbents.

(b) Briefly explain why the logic of branch
and bound assures your final solution is
optimal.

(c) Point out the first time in your enumer-
ation of (a) where a comparable search
based on best-first enumeration would
have taken up a different candidate than
was done in your depth-first sequence.
Explain.

12-27 Students often mistakenly believe ILPs are
more tractable than LPs because the straightfor-
ward rules of Algorithm 12A seem less complex
than the simplex and interior point methods of
Chapters 5–7.

(a) Explain why solution of any ILP by LP-
based branch and bound always takes at
least as much work as a linear program of
comparable size and coefficients.

(b) Justify the number of LP relaxations that
might have to be solved in branch-and-
bound enumeration of an ILP with n
 binary variables is 21n + 12 - 1.

(c) Use part (b) to compute the number of
linear programs that could have to be
solved in branch and bound search of ILP
models with 100, 300, and 500 binary vari-
ables respectively, and determine how
long each such search could take at the
rate of one LP per second.

(d) How practical is it be to solve LPs of
100, 300, and 500 variables in reasonable
amounts of time?

804 Chapter 12 Exact Discrete Optimization Methods

(e) Comment on the implications of your
analysis in parts (a) to (d) for tractability
of LPs versus ILPs of comparable size.

12-28 In most applications, LP based Branch and
Bound Algorithm 12A actually investigates only
a tiny fraction of the possible partial solutions.
Still, this is not always the case. Consider the fam-
ily of ILPs of the form

min y

s.t. 2a
n

j = 1
 xj + y = n

 xj = 0 or 1 j = 1, c, n

 y = 0 or 1

where n is odd.

(a) Enter and solve versions for n = 7, n = 11,
and n = 15 with class branch and bound
software, and record the number of branch
and bound nodes explored. (Warning:
Program limits must be set big enough
to allow up to 20,000 branch and bound
nodes.)

(b) Express your results in part (a) as frac-
tions as the total number of nodes that
might have to be investigated. [Hint: Use
the formula in Exercise 12-27(b).]

(c) Comment on the implications for tractabil-
ity of ILP’s via branch and bound if frac-
tions like those of part (b) were typical.

12-29 The branch and bound tree Figure 12.10
records solution of the knapsack model

 min 90x1 + 50x2 + 54x3

 s.t. 60x1 + 110x2 + 150x3 Ú 50
 x1, x2, x3 = 0 or 1

by LP-based Algorithm 12A under rules of Exer-
cise 12-22.

Briefly describe the processing, including how
and why nodes were branched or terminated,
when incumbent solutions were discovered, and
what solution proved optimal. Assume that there
was no initial incumbent solution.

12-30 Do Exercise 12-29 for

 max 51x1 + 72x2 + 41x3

 s.t. 17x1 + 10x2 + 14x3 … 19
 x1, x2, x3 = 0 or 1

and tree in Figure 12.11

5 2

1

0

3 4

(0, 0, 1)
54

(0, 0.45, 0)
22.7

(0, 1, 0)
50

(0.83, 0, 0)
75

(1, 0, 0)
90

infeasible

(0, 0, 0.33)
18

6

x1 = 1 x1 = 0

x3 = 1 x3 = 0

x2 = 1 x2 = 0

figurE 12.10 Branch and Bound Tree for
Exercise 12-29

12-31 Return to the knapsack problem of
Exercise 12-29.

(a) Explain why LP relaxation optimal solu-
tions can be rounded to integer-feasible
solutions by setting xnj d <x∼j=.

(b) Repeat the branch and bound computa-
tions of Exercise 12-29, this time round-
ing up each relaxation solution in this way
to produce earlier incumbent solutions.

(c) Comment on the computational savings
with rounding.

12-32 Do Exercise 12-31 on the knapsack model
of Exercise 12-30, this time rounding solutions
xnj d :x∼j; .

12-33 For each of the following branch and bound
trees determine the best lower and upper bounds
on the value of an optimal solution known from
parent bounds and incumbent solutions after pro-
cessing of each node. Also show the maximum
percent error that would have resulted if process-
ing had terminated after the node, accepting the
current incumbent solution as an approximate
optimum.

(a) The tree of Exercise 12-29.
(b) The tree of Exercies 12-30.

12-34 The branch and bound tree that follows
shows the incomplete solution of a maximizing ILP

 Exercises 805

by LP-based Algorithm 12A, with numbers next to
nodes indicating LP relaxation solution values.

3

a

1

0 240

212201

2102 d

4 c

b

by solving

x1 = 1 x1 = 0

x3 = 1 x3 = 0

x1 = 1 x1 = 0 x2 = 1 x2 = 0

Node 4 has just produced the first incumbent
solution, and nodes a to d remain unexplored.

(a) Show which unexplored nodes could be
immediately terminated by parent bound
if the incumbent at node 4 had objective
function value 205. How about 210?

(b) Determine the best upper bound on the
ultimate ILP optimal value that is avail-
able after processing of node 4.

(c) Assuming the incumbent at node 4
has objective value 195, compute the

b c

100

118120

125

by solving

1

a

2

0

4 d3

x3 = 0x3 = 1

x2 = 0x2 = 1

x2 = 0

x1 = 0

x2 = 1

x1 = 1

maximum absolute and percent objective
value error in accepting the incumbent as
an approximate optimum.

12-35 The branch and bound tree that follows
shows the incomplete solution of a minimizing ILP
by LP-based Algorithm 12A, with numbers next to
nodes indicating LP relaxation solution values.

Node 4 has just produced the first incumbent
solution, and nodes a to d remain unexplored.

(a) Show which unexplored nodes could be
immediately terminated by the parent
bound if the incumbent at node 4 had ob-
jective function value 120. How about 118?

figurE 12.11 Branch and Bound Tree for Exercise 12-30

1

5 2

6

0 (0.53, 1, 0)
99

(1, 0.2, 0)
65.4

infeasible

(1, 0, 0.14)
61.2

7 10 (0, 1, 0)
72

(0, 0.50, 1)
77

4 3

infeasible infeasible(1, 0, 0)
51

8 9

(0, 0, 1)
41

(0, 1, 0.64)
98.4

x3 = 1 x3 = 0

x3 = 1 x3 = 0

x2 = 1 x2 = 0

x2 = 1 x2 = 0

x1 = 1 x1 = 0

806 Chapter 12 Exact Discrete Optimization Methods

(b) Determine the best lower bound on the
ultimate ILP optimal value that is avail-
able after processing of node 4.

(c) Assuming that the incumbent at node
4 has objective value 125, compute the
maximum absolute and percent objective
value error in accepting the incumbent as
an approximate optimum.

12-36 Repeat Exercise 12-22, following the same
rules except:

(a) Use the best-first enumeration sequence
and allow termination by parent bounds.

(b) Use the depth-forward best-back enu-
meration sequence and allow termination
by parent bounds.

12-37 Do Exercise 12-36 for the branch and
bound of Exercise 12-26.

12-38 Three company trucks must be assigned
to pickup 7 miscellaneous loads on the way back
from their regular deliveries. Truck capacities
and load sizes (cubic yards) are shown in the fol-
lowing table, together with the extra distance (in
miles) that each truck would have to travel if it is
to deviate to pick up any of the loads.

Distance for Truck: Load
SizeLoad 1 2 3

1 23 45 50 4
2 25 72 23 8
3 29 13 41 13
4 12 23 40 31
5 49 7 42 11
6 37 39 59 9
7 2 9 20 21

Capacity 30 40 50

(a) Formulate this problem as a generalized
assignment ILP using the decision vari-
ables 1i = 1, c, 7; j = 1, c, 32

 xi, j ! e1 if load i goes to truck j
0 otherwise

(b) Enter and use class optimization software
to compute an optimal solution.

(c) Use class optimization software to solve
the corresponding LP relaxation and ver-
ify that the relaxation optimal value pro-
vides a lower bound.

(d) Using class optimization software to solve
relaxations, verify your ILP optimal solu-
tion by executing LP-based branch and
bound Algorithm 12A including parent
bounds. Apply the depth-first rule for
selecting among active nodes and pick
whichever of = 0 and = 1 is closest to
the preceding relaxation value when
nodes have equal depth. Branch on the
integer-restricted variable with fractional
relaxation value nearest to integer pick-
ing the one with least subscript if there
are ties. Record incumbent solutions only
when an LP relaxation comes out integer
(i.e., do not round).

(e) Determine when your search of part (d)
could have been stopped if we were will-
ing to accept an incumbent solution no
worse than 25% above optimal.

(f) Do the same branch and bound computa-
tion as part (d) except with the best first
enumeration rule using LP relaxation val-
ues as parent bounds.

(g) Do the same branch and bound compu-
tation as part (d) except with the depth
forward best back enumeration rule using
LP relaxation values as parent bounds.

(h) Compare your results in parts (d), (f)
and (g).

12-39 Return to the ILP of Exercise 12-12 with
LP relaxation optimum x∼ = 11, 1, 0, 02, y∼ = 1

2.
Determine whether each of the following is a
valid inequality for the ILP, and if so, whether
it would strengthen the original LP relaxation to
add the inequality as a constraint.

(a) x2 + x3 + x4 Ú 3y
(b) x1 + x2 + x3 + x4 Ú 4y
(c) x1 + x2 Ú 1
(d) x3 Ú y

12-40 Return to the ILP of Exercise 12-13 with
LP relaxation optimum x∼ = 11

2, 12, 122. Determine
whether each of the inequality for the ILP, and
if so, whether it would strengthen the original LP
relaxation to add the inequality as a constraint.

(a) 10x1 + 10x2 + 10x3 Ú 25
(b) x1 + x2 + x3 Ú 1
(c) x1 + x2 + x3 Ú 2
(d) 14x1 + 20x2 + 16x3 Ú 30

 Exercises 807

12-41 The ILP

 max 40x1 + 5x2 + 60x3 + 8x4

 s.t. 18x1 + 3x2 + 20x3 + 5x4 … 25
 x1, c, x4 = 0 or 1

has LP relaxation optimum x∼ = 1 5
18, 0, 1, 02. De-

termine whether each of the following is a valid
inequality for the ILP, and if so, whether it would
strengthen the LP relaxation to add the inequality
as a constraint.

(a) x1 + x3 … 1
(b) x1 + x2 + x3 + x4 … 3
(c) x2 + x4 Ú 1
(d) 18x1 + 20x3 … 25

12-42 The following tree records solution of a
maximizing ILP over x1, x2, x3 = 0 or 1 by branch
and cut Algorithm 12B. LP relaxations solutions
show next to each node.

0

1

3

4

5 6

2

(0.3, 0.5, 0) 95

(0.375, 0.5, 0) 91

(1, 0.2, 0.9) 84 (0, 1, 0.6) 78

(0, 1, 1) 75

solve infeasibleinfeasible

x1 = 1 x1 = 0

x3 = 1 x3 = 0x2 + x3 … 1

4x1 + 3x2 Ú 3

Briefly describe the processing, including how
and why nodes were branched tightened or
terminated, when incumbent solutions were dis-
covered, and what solution proved optimal. As-
sume that all added inequalities are valid for the
original ILP.

12-43 Do Exercise 12-42 for the following tree of
a minimizing ILP over x1, x2, x3 = 0 or 1.

4

3

2

1

0

6

5

(0, 2/5, 1, 2/3, 1, 0) 40

(1, 0, 1, 0, 2/3, 1) 43

(0, 1/3, 1, 1, 1, 1/4) 47

(0, 1, 1, 0, 1, 1, 1/3) 51 (0, 0, 1, 1, 1, 3/4) 49

(no initial incumbent)

(0, 0, 1, 1, 1, 1) 52(0, 1, 1, 0, 4/5, 2/3) 55

add cut 3add cut 4

add cut 1

add cut 2

x2 = 0x1 = 1

1

2

5

3 4

(0.2, 0.5, 0.75) 57

(0.6, 0.4, 1) 58

(0, 1, 0.5) 61

(0, 1, 0.67) 65

(1, 0, 1) 63

solve

x1 = 0x1 = 1

0 (0.2, 0, 0.6) 50

3x2 + 3x3 Ú 5

x1 + x2 Ú 1

x2 + 2x3 Ú 2

12-44 The tree below shows the evolution of
a hypothetical Branch and Cut Algorithm 12B
solution of a given minimizing, all-binary ILP.
Relaxation solutions are shown next to nodes,
and both fixed variables and new cuts are indi-
cated on the branches.

808 Chapter 12 Exact Discrete Optimization Methods

Take nodes in sequence, one by one, and
briefly describe what apparently happened and
why. Also show the ultimate optimal solution.
Assume that generated cuts are all valid for the
original ILP, and that whenever branching or
termination occurs, the cut-generation subrou-
tine has concluded that no valid inequality of
the family being used can separate the last LP
relaxation.
12-45 The LP relaxation of a standard form ILP
over constraints Ax = b, x Ú 0, x integer, with
3 rows and 7 variables, has been solved for basic
variables x1, x2, and x5 to obtain the dictionary
form (see Section 5.4).

RHS x3 x4 x6 x7

x1 = 1.6 -2.7 1.1 -2.3 13.4

x2 = 3.0 = 3.9 -4.7 2.8 2.2

x3 = 2.4 0.6 0.0 13.6 -5.9

(a) Generate the Gomory fractional cutting
plane for x1.

(b) Generate all other available Gomory
fractional cutting planes.

12-46 Consider the binary knapsack polytope

 18x1 + 3x2 + 20x3 + 17x4 + 6x5
 + 10x6 + 5x7 + 12x8 … 25
 x1, c, x8 = 0 or 1

(a) Identify 5 minimal cover inequalities
valid for this knapsack polytope, includ-
ing the one involvin the last 3 variables,
and briefly justify why each meets the re-
quirements of definition 12.48 .

(b) Explain how the valid inequality forms of
(a) remain valid, and could contribute to
sharpening the LP relaxation, if the knap-
sack constraints above were only part a
larger model with many constraints.

12-47 Air National Guard planners are loading
a cargo plane with crates of supplies and equip-
ment needed to help victims of the recent wave
of floods in the Northeast. The table below shows
the criticality of the need for each crate, its weight
(in tons), and its volume (in hundreds of cubic
feet). The plane’s capacity limits are 38 tons and
26 hundred cubic feet of cargo.

Crate j = 1 2 3 4 5 6 7 8

Criticality 9 3 22 19 21 14 16 23
Weight 5 11 15 12 20 7 10 18
Volume 7 4 13 9 4 18 9 6

(a) Formulate the problem of choosing the
maximum total criticality combination of
crates to put on the plane as a pure 0-1
ILP over two main constraints and deci-
sion variables xj = 1 if crate j is selected
and = 0 otherwise. Be sure to annotate
the objective and each constraint to indi-
cate their meaning.

(b) Derive one minimum cover inequality from
each of the two main constraints of your
model in (a). Demonstrate that each meets
the requirements of definition 12.48 for
such constraints, and explain why both must
be valid for the full model of (a).

(c) Suppose now that we are solving your
model of (a) by Branch and Cut Algorithm
12B, and the first LP-relaxation solution is
x = 10.5, 0, 0, 1, 0, 0, 1, 0.752. Which, if ei-
ther of your cuts in (b) could the algorithm
add productively as the next step? Explain.

12-48 Consider the binary ILP

max 21x1 + 21x2 + 48x3 + 33x4 + 18x5
 + 17x6 + 39x7

s.t. 5x1 + 14x2 + 12x3 + 21x4 + 1x5
 + 6x6 + 13x7 … 30 [i]

 x1 + x2 + x3 … 1 [ii]
 xj binary for all j [iii]

(a) Use class optimization software to solve
both the full ILP and its LP relaxation.

(b) Explain why minimum cover constraints
 12.48 derived from constraints [i] and [iii]
are valid for the full model.

(c) Now consider solving the given ILP via
Branch and Cut Algorithm l2B, starting
from your LP relaxation of (a), and invok-
ing class optimization software as each node
is investigated. Use minimal cover inequali-
ties from (b) when adding appropriate cuts,
and branch on the fractional variable with
highest subscript. Branch after at most 3 cuts
have been generated for any partial solution,
and continue until a total of 5 nodes have
been explored.

 Exercises 809

Coordinates and solution values of important
points are pre-computed in the key.

(a) Sketch the convex hull of integer solutions
on the plot and briefly justify your choice.

(b) Determine the dimension of the convex
hull, and justify your answer with suitable
affinely independent points.

(c) Determine graphically whether each of
the three inequalities below is valid. Then,
determine whether each intersects the con-
vex hull in a facet, or in a face of lower di-
mension, or not at all, including calling out
affinely independent points that satisfy the
cuts as equalities in the facet and face cases.

 4x1 + 2x2 Ú 1
 5x1 + 2x2 Ú 2
 x1 + x2 Ú 1

12-50 Consider a pure-integer program over
constraints

 -1x1 + 2x2 … 4
 5x1 + 1x2 … 20

 -2x1 - 2x2 … -7
 x1, x2 Ú 0 and integer

(a) Draw a 2-dimensional plot of the LP-
relaxation feasible set.

(b) Identify all integer-feasible solutions and
their convex hull.

(c) Determine the dimension of this convex
hull.

(d) Identify all facet-defining inequalities of
the convex hull and the required affinely
independent solutions proving each.

(e) Identify another non-facet-defining in-
equality that at least intersects the con-
vex hull.

(f) Identify another valid inequality that cuts
off part of the LP-feasible set without in-
tersecting the convex hull at all.

12-51 Return to the ILP of Exercises 12-13
and 12-40.

(a) Draw a 3-dimensional sketch of the
convex hull of feasible solutions to this
model

(b) Determine the dimension of the convex
hull.

(c) For each of (a)–(d) in Exercise 12-40
yielding a valid inequality, determine (by
showing the required number of affinely
independent solutions) whether it is facet-
inducing; or intersects the convex hull in a
face of lower dimension; or neither.

12-49 The plot below depicts the solution space of pure binarary ILP

 min 3x1 + 4x2

 s.t. 4x1 + 2x2 Ú 1 5x1 + 10x2 Ú 4 x1, x2 = 0 or 1
x2

x1

x1 … 1x

x2 … 1

 min 3x2 + 4x2

A = (0, 0), 0
B = (1, 0), 3
C = (0, 1), 4
D = (1, 1), 7
E = (0, 1/2), 2
F = (1/15, 11/30), 1.2/3
G = (4/5, 0), 2.2/5

5x1 + 10x2 Ú 44x1 + 2x2 Ú 1

E

F

A G B

DC

810 Chapter 12 Exact Discrete Optimization Methods

REFERENCES

Chen, Der-San, Robert G. Batson, and Yu Dang
(2010), Applied Integer Programming - Modeling
and Solution, Wiley, Hoboken, New Jersey.

Nemhauser, George L. and Laurence Wolsey
(1988), Integer and Combinatorial Optimization,
John Wiley, New York, New York.

Parker, R. Gary and Ronald L. Rardin (1988),
Discrete Optimization, Academic Press, San Diego,
California.

Schrijver, Alexander (1998), Theory of Linear
and Integer Programming, John Wiley, Chichester,
England.

Wolsey, Laurence (1998), Integer Programming,
John Wiley, New York, New York.

12-52 The following plot shows the feasible space
for an ILP over nonnegative integer variables x1
and x2.

x1

x2

 3x1 + 2x2 … 9

 – x1 + 2x2
 Ú 1

- 3x1 + 2x2 … 3

3

3

2

2

1

1

(a) Identify the convex hull of integer-feasi-
ble solutions.

(b) Determine the dimension of the con-
vex hull and confirm your answer with a
suitable number of affinely independent
points.

(c) Derive the equations of all facet-defining
inequalities of your convex hull in (a).

(d) Develop the equation of another face-
defining inequality that is not
facet-defining.

(e) Develop the equation of another valid
inequality that cuts off part of the LP-
feasible space but does not induce a face
of any dimension.

811

▪ ▪ ▪ ▪ ▪
Chapter 13

Large-Scale
Optimization Methods

Almost all of the optimization methods considered in this book directly address
a fully formulated model of an application of interest. Starting with a feasible solu-
tion, they search systematically for better ones until a satisfactory result is at hand.
Some temporary modifications may relax requirements like integrality and/or fix
some variable values as part of a partial enumeration search, but the full formulation
is always in sight.

This chapter introduces the large-scale (or decomposition) alternatives that
adopt a more indirect approach to deal with problem forms having instances that
quickly become too big or too complex to be addressed frontally. The methods
 “outsource” to one or more subproblem pieces of the models that are tractable
enough to be solved repeatedly if considered alone. An associated master problem
produces an overall exact or near-exact optimum by integrating results from frequent
subproblem invocations, changing their parameters with guidance from the master.

13.1 DelayeD Column Generation anD BranCh anD PriCe

The Delayed Column Generation large-scale strategy becomes necessary when the
optimization needs to address combinatorially many decision options that can be
represented by columns of a full formulation. Instead of explicitly addressing all
the options at once, a partial master problem optimizes over just the subset explic-
itly generated so far. The rest are delayed until identified by a column- generation
 subproblem as ones that can improve the current master problem solution. The
overwhelming number of possible columns never need to be considered explic-
itly because the column-generation subproblem shows implicitly that they cannot
improve the current solution.

As usual, it will help to begin with an example application.1

1Based on F. Preciado-Wlaters, M. Langer, R. Rardin, and V. Thai (2006), “Column Generation
for IMRT Cancer Therapy Optimization with Implementable Segments,” Annals of Operations Research,
148, 55–63.

812 Chapter 13 Large-Scale Optimization Methods

aPPliCation 13.1: imrt PlanninG for raDiation
theraPy oPtimization

Radiation therapy planning for cancer treatment begins with images of body
cross-sections like the figure below. A tumororous target (here the prostrate) is
identified along with surrounding healthy tissues. The goal of the treatment is to
provide maximum radiation to the tumor while avoiding damage to surrounding
tisses by limiting radiation to these tissues.

Target

Liver

Acc
ele

ra
to

r Accelerator

A
cc

el
er

at
or

Left
Kidney

Cord

Small
Bowell

++
+

++

+

+ +
+

+
+

+

+
+ + + +

+

+
+

+ +
+

+ +
+
+ +

++

+ +
+

+ ++

+
++

+++
++

++ + + +
++

+
+
++ +

+ +

+ + +

++

+

+

+
+

+ +
++

+
+

+
+ +

+ ++
+

+ + +

+

+
+++

+

+
+ +

+
+

+
++

+
+ ++ ++

+
+

++

+

+
+ +

+

+
++

Right
Kidney

Radiation is provided from a large accelerator that can shoot beams from multiple
angles around the patient’s body (here 3 beams are shown) so as to spread the
danger to healthy tissues while focusing on the tumor. The accelerator beam is
 relatively large, often approximately 10 cm square. That is why Intensity Modulated
Radiation Therapy (IMRT) adds precision to plans by treating each beam as made
up of many beamlets (often a few hundred) with different intensities (roughly
exposure times).

The beamlets are virtual, not physical, with their impacts induced by focusing
the beam through a multileaf collimator with moving leaves (or fingers) that limit
intensity to an open aperture as shown in the following figure. Effects of separate
apertures add to produce a combined beamlet-by-beamlet impact for each angle
like those shown as bar graphs in the following figure.

Not every combination of beamlets forms a valid aperture. Among many lim-
itations, it must be possible to create the chosen opening just by moving leaves in
from the two boundaries; closed “holes” or middle areas such as row 2 of example
(b) are impossible. Another rule preclude leaves overlapping as in rows 2 and 3 of
example (c) because overlaps constitute a “collision risk.”

13.1 Delayed Column Generation and Branch and Price 813

(a) Valid Aperture (b) Invalid “Hole” (c) Invalid “Collision Risk”

Each tissue is modeled as a discrete set of points, with the objective of maximizing
total (or equivalently average) dose delivered to tumor points, and constraints lim-
iting the total dose at each point of the various healthy tissues to the maximum safe
level. Input parameters estimate the dose per unit intensity of beamlets to points:

 ti, q, k ! the dose per unit intensity to tumor point i by beamlet q of angle k

 di, h, q, k ! the dose per unit intensity to tumor point i in healthy tissue h

 by beamlet q of angle k

Table 13.1 shows fictitious values for a tiny 2-angle, 18-beamlet, 18-point instance.
Dose limits for the 3 healthy tissues are b1 = 50, b2 = 65, and b3 = 70, respectively.

Once beamlet sets Qm, k for apertures m of angles k have been chosen, aggre-
gations of detail data such as Table 13.1 become

tm, k ! the total dose per unit intensity to tumor points
 by aperture m of angle k 1i.e., a q∈Qm, k a i ti, q, k2
dh

m, k! vector of dose per unit intensity di, h
m, k to points i of healthy tissue h

 by aperture m of angle k 1i.e., the vector of a q∈Qm, k
di, h, q, k2

Then the corresponding formulation of the IMRT therapy planning problem as
a linear program takes the form

 max am , ktm , k x m , k

1IMRT2 s.t. am, k dh
m, k xm, k … b for all h

xm, k Ú 0 for all m, k

where decision variables xm, k ! the intensity applied to aperture m of angle k,
and bh is a vector of the total dose allowed to points in health tissue h.

Models Attractive for Delayed Column Generation
IMRT radiation therapy planning as in Application 13.1 illustrates settings where
delayed column generation can work well because the optimization is relatively
simple to express in terms of variables/columns for each possible aperture/column
(formulation (IMRT)). If instead, we tried to formlate the problem with beamlet
variables and constraints, summing them to form apertures, all the limits on feasible
beamlet combinations (like the holes and collision risks illustrated above) would
have to be explicitly modeled without destroying the tractability of the model; doing
that is often difficult if not impossible.

814 Chapter 13 Large-Scale Optimization Methods

taBle 13.1 Dose Data for Small IMRT Instance

Pt

Angle 1 Beamlets

1 2 3 4 5 6 7 8 9
Target 1 0.100 0.250 0.100 0.080 0.150 0.080 0.050 0.100 0.050

2 0.090 0.070 0.050 0.050 0.070 0.090 0.150 0.120 0.100
3 0.090 0.070 0.050 0.050 0.070 0.090 0.090 0.080 0.070
4 0.100 0.120 0.150 0.090 0.120 0.150 0.090 0.070 0.050
5 0.090 0.080 0.110 0.080 0.070 0.130 0.090 0.070 0.050
6 0.050 0.100 0.050 0.070 0.120 0.090 0.100 0.250 0.100

Healthy No. 1 1 0.150 0.375 0.150 0.120 0.225 0.120 0.075 0.150 0.075
2 0.135 0.105 0.075 0.075 0.105 0.135 0.225 0.180 0.150
3 0.135 0.105 0.075 0.075 0.105 0.135 0.135 0.120 0.105
4 0.150 0.180 0.225 0.135 0.180 0.225 0.135 0.105 0.075
5 0.135 0.120 0.165 0.120 0.105 0.195 0.135 0.105 0.075
6 0.075 0.150 0.075 0.105 0.180 0.135 0.150 0.375 0.150

Healthy No. 2 1 0.070 0.100 0.075 0.042 0.060 0.042 0.060 0.040 0.028
2 0.020 0.028 0.068 0.020 0.028 0.020 0.038 0.048 0.034
3 0.020 0.028 0.068 0.020 0.028 0.020 0.038 0.032 0.022
4 0.034 0.048 0.075 0.034 0.048 0.034 0.068 0.028 0.020
5 0.022 0.032 0.068 0.020 0.028 0.020 0.060 0.028 0.020
6 0.028 0.040 0.038 0.034 0.048 0.034 0.053 0.100 0.070

Healthy No. 3 1 0.090 0.225 0.090 0.072 0.135 0.072 0.045 0.090 0.045
2 0.081 0.063 0.045 0.045 0.063 0.081 0.135 0.108 0.090
3 0.081 0.063 0.045 0.045 0.063 0.081 0.081 0.072 0.063
4 0.090 0.108 0.135 0.081 0.108 0.135 0.081 0.063 0.045
5 0.081 0.072 0.099 0.072 0.063 0.117 0.081 0.063 0.045
6 0.045 0.090 0.045 0.063 0.108 0.081 0.090 0.225 0.090

Angle 2 Beamlets

Pt 1 2 3 4 5 6 7 8 9

Target 1 0.100 0.250 0.100 0.080 0.150 0.080 0.050 0.100 0.050
2 0.100 0.120 0.150 0.090 0.120 0.150 0.090 0.070 0.050
3 0.090 0.080 0.110 0.080 0.070 0.130 0.090 0.070 0.050
4 0.090 0.070 0.050 0.050 0.070 0.090 0.150 0.120 0.100
5 0.090 0.070 0.050 0.050 0.070 0.090 0.090 0.080 0.070
6 0.050 0.100 0.050 0.070 0.120 0.090 0.100 0.250 0.100

Healthy No. 1 1 0.075 0.100 0.070 0.060 0.060 0.042 0.038 0.040 0.028
2 0.068 0.028 0.020 0.038 0.028 0.020 0.113 0.048 0.034
3 0.068 0.028 0.020 0.038 0.028 0.020 0.068 0.032 0.022
4 0.075 0.048 0.034 0.068 0.048 0.034 0.068 0.028 0.020
5 0.068 0.032 0.022 0.060 0.028 0.020 0.068 0.028 0.020
6 0.038 0.040 0.028 0.053 0.048 0.034 0.075 0.100 0.070

Healthy No. 2 1 0.150 0.375 0.150 0.120 0.225 0.120 0.075 0.150 0.075
2 0.150 0.180 0.225 0.135 0.180 0.225 0.135 0.105 0.075
3 0.135 0.120 0.165 0.120 0.105 0.195 0.135 0.105 0.075
4 0.135 0.105 0.075 0.075 0.105 0.135 0.225 0.180 0.150
5 0.135 0.105 0.075 0.075 0.105 0.135 0.135 0.120 0.105
6 0.075 0.150 0.075 0.105 0.180 0.135 0.150 0.375 0.150

Healthy No. 3 1 0.090 0.225 0.090 0.072 0.135 0.072 0.045 0.090 0.045
2 0.090 0.108 0.135 0.081 0.108 0.135 0.081 0.063 0.045
3 0.081 0.072 0.099 0.072 0.063 0.117 0.081 0.063 0.045
4 0.081 0.063 0.045 0.045 0.063 0.081 0.135 0.108 0.090
5 0.081 0.063 0.045 0.045 0.063 0.081 0.081 0.072 0.063
6 0.045 0.090 0.045 0.063 0.108 0.081 0.090 0.225 0.090

13.1 Delayed Column Generation and Branch and Price 815

Delayed column generation separates the construction of columns satisfying
all the applicable side constraints from the larger optimization. Still, in a real-world
instance with thousands of tissue points and beamlets, the number of possible aper-
tures for any instance quickly becomes combinatorially large. A mechanism must be
devised to generate only the columns likely to be a part of an optimal or near-opti-
mal solution.

Delayed column generation decompositions are attractive
when the model of an application is most naturally expressed in terms of
an extended list of options/columns that can be generated as needed by a
separate subproblem applying (often ad hoc) constructions to produce
attractive and feasible new columns that conform to even difficult-to-model
side constraints.

Principle 13.1

Partial Master Problems
Overall coordination of a delayed column generation decompition is accom-
plished by iteratively solving a partial master problem over columns already known
explicitly.

The partial master problem of a delayed column generation
decomposition solves the restricted version, the full model allowing only
decision variable for columns explicitly known to take on nonzero values. If
the underlying model is an ILP, the LP relaxation of its partial form is solved.

Definition 13.2

Generic Delayed Column Generation Algorithm
Algorithm 13A presents a generic form of column generation for the following
extended linear program:

max 1or min2 a j∈J cj xj

(13.1) ELP1J2 s.t. a j∈J a1j2xj … b

xj Ú 0 for all j ∈ J

Here Jall is the set of all columns under consideration, and J ⊆ Jall is the subset
of explicit columns in the current partial master problem. Symbols xj, cj, and a1j2
denote corresponding decision variables, objective coefficients, and constraint coef-
ficient vectors, respectively, with b the vector of constraint right-hand sides.

Application of Algorithm 13A to Application 13.1
Table 13.2 tracks 3 iterations of Algorithm 13A on the IMRT application model.
Two aperture columns are generated as each step, and the associated partial master
problem is solved to derive the primal and dual solutions shown.

816 Chapter 13 Large-Scale Optimization Methods

taBle 13.2 IMRT Application Progress

Aperture
Beamlets

Q1,1
all

Q2,1
all

Dual
v102

Q1,2
7, 8

Q2,2
1, 4, 7, 8

Dual
v112

Q1,3
2, 3

Q2,3
8

Total Target 5.050 5.050 — 3.615 4.987 — 3.546 1.932

Healthy
No. 1

1 1.440 0.513 0.000 0.225 0.200 0.000 0.525 0.040
2 1.185 0.394 0.000 0.405 0.245 0.000 0.180 0.048
3 0.990 0.322 0.000 0.255 0.115 0.000 0.180 0.028
4 1.410 0.421 0.000 0.240 0.115 0.000 0.180 0.028
5 1.155 0.345 0.000 0.240 0.157 0.000 0.285 0.028
6 1.395 0.485 0.000 0.525 0.122 4.840 0.225 0.100

Healthy
No. 2

1 0.517 1.440 0.000 0.100 0.106 0.000 0.175 0.150
2 0.301 1.410 0.000 0.086 0.675 0.000 0.096 0.105
3 0.274 1.155 0.000 0.070 0.555 0.000 0.096 0.105
4 0.387 1.185 0.000 0.096 0.420 0.000 0.123 0.180
5 0.297 0.990 0.000 0.088 0.315 0.000 0.100 0.120
6 0.443 1.395 0.000 0.153 0.315 0.000 0.078 0.375

Healthy
No. 3

1 0.864 0.864 0.000 0.135 0.300 7.957 0.315 0.090
2 0.711 0.846 5.845 0.243 0.405 0.000 0.108 0.063
3 0.594 0.693 0.000 0.153 0.333 0.000 0.108 0.063
4 0.846 0.711 0.000 0.144 0.252 0.000 0.243 0.108
5 0.693 0.594 0.000 0.144 0.189 0.000 0.171 0.072
6 0.837 0.837 0.000 0.315 0.189 0.000 0.135 0.225

n = 292.20, x102 = 43.49 14.38 — — — — — —

n = 736.63, x112 = 0.000 0.000 — 112.3 49.41 — — —

n = 737.20, x122 = 0.000 0.000 — 85.54 13.15 — 82.09 36.91

Algorithm 13A: DelAyeD Column generAtion

Step 0: initialization. Set iteration index / d 0, and choose a J0 ⊆ Jall such
that the corresponding partial master problem ELP1J02 is feasible.

Step 1: Partial master Solution. Solve partial master problem ELP1J/2 for
primal optimum x1/2 and corresponding dual optimum v1/2.

Step 2: Column generation Subproblem. Attempt to construct a col-
umn a1g2 satisfying all column-specific side constraints for g ∈ Jall, and hav-
ing reduced objective cQg ! cg - a1g2v1/2 6 0 for a maximize (or 7 0 for
minimize), which qualifies it to enter the solution of the most recent master
problem ELP1J/2.

Step 3: Stopping. If no suitable column g was discovered in Step 2, stop.
Solution x1/2 is an optimal or near optimal solution in full model ELP1Jall2.
Otherwize update J/ + 1 d J/ ∪ g, advance / d / + 1, and return to Step 1.

13.1 Delayed Column Generation and Branch and Price 817

The algorithm must start with a feasible solution. Here this is accomplished
by opening all beamlets in both beam angles. The following illustrates how this is
accomplished from data in Table 13.1 for aperature A1,1:

t1,1 = 5.050 d a i, qti, q, k

 = 0.100 + 0.250 + c + 0.250 + 0.100 and

d6,2
1,1 = 0.443 d a qd6,2, q, k = 0.028 + 0.040 + c + 0.070

Later apertures open only the beamlets listed. For aperture A2,2, which uses
beamlets 1,4,7, and 8 of angle 2, this yields coefficients

t2, 2 = 4.987 d a i1ti, q, 2 + ti, 4,2 + ti, 7,2 + ti, 8,22
 = 0.100 + 0.080 + 0.050 + 0.050 + c
 + 0.050 + 0.070 + 0.100 + 0.100 and

d6,2
2, = 0.315 d d6,2,1,2 + d6,2,4,2 + d6,2,7,2 + d6,2,8,2

 = 0.075 + 0.105 + 0.150 + 0.150

Generating Eligible Columns to Enter
Typically, the most challenging task in any implementation of Algorithm 13A is to
conceive a method of finding attractive new columns p using the last dual solution
v1/2 and corresponding reduced cost cQp ! cp - a1p2v1/2. Note that any such column
with cQp 7 0 (6 0 for a minimize) will automatically be new to the partial master
problem; optimality in the current one ELP Jt means cQj … 0 for all j ∈ Jt (Ú 0 for
minimize).

Occasionally, such a method actually optimizes over possible p to minimize
(or maximize) the resulting cQp. Example 13.1 below illustrates. Where possible, such
optimization is attractive because it results in a clear stopping rule for Algorithm
13A Step 3. We can terminate when even the best column p has reduced cost failing
the required sign.

In most applications, side constraints and other complications on column gener-
ation leave Step 2 heuristic. Feasible columns are produced that meet the reduced-cost
sign rules and have some reason to suggest they may be attractive.

Aperature generation in model (IMRT) falls into the latter category. We
 proceed from the insight that the reduced objective for aperture m of angle k is the
sum of “mini-reduced objectives” for component beamlets of the aperature, that is,
cQm, k = a q∈Am, l

cQq, m, k. Thus the beamlets for new apertures can be selected by exam-
ining those mini-values. Table 13.3 illustrates the aperture columns of Table 13.2.
Each block of the table shows the beamlet mini-reduced objectives for one iteration
and angle.

Values in bold are the ones for the selected aperture set. For / = 0 all beam-
lets are chosen. Later cases for / = 1 and / = 2 select feasible combinations of
beamlets with the highest mini-reduced objective values. Even for this tiny instance,
there are obviously many alternatives that might produce better results, but the pro-
cess does and can be expected without extensive enumerations or other expensive
computations. Here we terminate because the target dose objective improvement
with the last pair of apertures is minimal.

818 Chapter 13 Large-Scale Optimization Methods

taBle 13.3 IMRT Aperture Selection

Angle 1 O = 0 Angle 1 O = 1 Angle 1 O = 2
1.441 1.932 1.614 0.915 0.617 1.088 0.374 0.976 0.975
1.176 1.680 1.680 0.755 0.891 1.259 0.496 0.682 0.530
1.683 1.932 1.201 1.420 1.406 0.938 -0.130 0.130 -0.076

Angle 2 O = 0 Angle 2 O = 1 Angle 2 O = 2
1.638 1.932 1.417 1.112 0.617 0.891 0.515 0.592 -0.228
1.323 1.680 1.680 0.902 0.891 1.259 0.287 0.329 0.027
1.796 1.932 1.201 1.532 1.406 0.938 0.728 1.045 0.569

examPle 13.1: DelayeD Column Generation for StoCk CuttinG

Consider the task of cutting b ! 11 feet stock boards to meet requirements for
 various smaller lengths in furniture manufacture as shown in the following table:

i Length hi Needed di

1 2 22

2 3 17
3 6 13
4 7 9

The manufacturer wishes to meet all requirements with the minimum number of
stock pieces cut.

(a) Define a cutting pattern k as a combination of size quantities ai, k for different
lengths pi totaling to at most b feet. Then, using K ! the set of all such cutting
patterns, and decision variables xk ! the number of times pattern k is to be used,
show that this stock cutting problem can be formulated as the following ILP:

min a k∈K xk

s.t. a k∈K ai, k xk Ú di for all i

xk Ú 0 and integer for all k ∈ K

(b) Suppose solving the LP relaxation of a current partial master version / of the
model in part (a) has produced dual optima 5vQ i6. Show that the next column p to
enter should solve (over decision variables ai, g) a knapsack problem

min 1 - a i vQ i ai, g

s.t. a i ai, g … b

ai, g Ú 0 and integer for all i

(c) Comment on the advantages of a delayed column generation decomposition
such as this one where a best new column, or a proof that none exists, can be found
by a tractable model.

13.1 Delayed Column Generation and Branch and Price 819

Branch and Price Search
Many applications of delayed column generation, including the ones above, keep
integer and combinatorial elements in their column-generating subproblems. Then,
the master problem across the generated columns can be effectively treated as a
Linear Program. For instance, in radiation planning Application 13.1, the decision
variables associated with aperture columns are nonnegative and continuous, result-
ing in an LP master problem. In stock cutting Example 13.1, decision variables are
nominally integer—the number of times a cutting pattern is to be used—but easy,
near-optimal solutions can be obtained by simply rounding up LP relaxation opti-
mal values to the next higher integer.

As in many other settings, optimization of the master problem becomes more
complex when the associated decision variables are binary. Rounding is unlikely to
assure near-optimal solutions, and the partial enumeration ideas of Chapter 12 must
be engaged.

(d) Suppose Algorithm 13A is being applied starting with a partial master of just
the 4 single-length cutting patterns, each producing only one of the lengths needed.
Explain why this is an appropriate initial collection of columns.

(e) Solving the initial LP of part (d) yields primal optimal solution x =
14.4, 5.67, 6.5, 92 and dual vQ = 10.2, 0.33, 0.5, 12. Use these results and the method
of part (b) to solve by inspection for the next column to enter.

Solution:

(a) The objective minimizes the total number of stock boards used, and constraints
assure that at least the required number of each piece length will be obtained from
the optimal combination of cutting patterns.

(b) The best column will be the one g of most negative reduced objective cQg. This
knapsack objective function computes the cQg of the pattern selected, and the main
constraint assures its mix of various length fits within the stock length b.

(c) Having a tractible model for constructing new columns assures rapid progress
toward an ultimate LP relaxation optimum in the master problem. Also, failure
to produce a column with cQg 6 0 proves conclusively that all needed columns are
already present in the last partial master problem.

(d) The requirement for a starting column set is that it can produce a feasible
 solution to the master problem. Using the single-length columns easily satisfies
this need.

(e) The knapsack to find a column will be

min 1 - 0.2 * a1 - 0.33 * a2 - 0.5 * a3 - 1 * a4

s.t. 2*a1 + 3 * a2 * 6 * a3 + 7 * a4 … 11

 ai Ú 0 and integer for all i

An optimal solution is a = 10, 1, 0, 12 with objective value = reduced cost - 0.33.

820 Chapter 13 Large-Scale Optimization Methods

Algorithm 13B: BrAnCh AnD PriCe SeArCh (0–1 ilPS)

Step 0: initialization. Make the active partial solution the one with all
 discrete variables free, initialize, solution index / d 0, and take as the root
candidate problem one defined over a starting working collection of col-
umns. If (integer) feasible solutions are known for the model, choose the best
as incumbent solution xn with objective value vn. Otherwise, define vn d { ∞
 depending on whether the problem minimizes or maximizes.

Step 1: Stopping. If active partial solutions remain, select one as x1t2, and
proceed to Step 2. Otherwise, stop. If there is an incumbent solution xn , it is
optimal, and if not, the model is infeasible.

Step 2: relaxation. Attempt to solve the linear programming relaxation of
the candidate problem corresponding to x1/2.

Step 3: incumbent update. If LP relaxation optimum x∼1/2 satisfies all
binary constraints of the model and its objective value v∼ is better than
 incumbent xn , save xn d x∼1//2 and vn d v∼ as the new incumbent.

Step 4: Column generation. Invoke a subproblem using optimal dual re-
laxation solution v∼1/2 to attempt to generate a new column j eligible to enter
the current LP relaxation with reduced cost cQ j positive for a maximize problem
or negative for a minimize. If any such column j is produced, add it to the
current candidate problem, increment / d / + 1 and return to Step 2. Oth-
erwise, the current LP relaxation is optimal for the candidate problem.

Step 5: termination by infeasibility. If the (now optimal) LP relaxation is
integer infeasible, there are no feasible completions of partial solution x1/2.
Terminate it, increment / d / + 1, and return to Step 1.

Step 6: termination by Bound. If the model maximizes and LP optimal
value vn is at most v∼, or it minimizes and vn is at least v∼, the best feasible com-
pletion of partial solution x1/2 cannot improve on the incumbent. Terminate
it, increment / d / + 1, and return to Step 1.

Step 7: termination by Solving. If the (now optimal) LP relaxation opti-
mum x∼1ell2 satisfies all binary constraints of the model, it provides an optimal
completion of partial solution x1/2. Terminate x1/2, increment / d / + 1, and
return to Step 1.

Step 8: Branching. Choose some free binary-restricted component xp that
was fractional in the last LP relaxation optimum and branch x1/2 by creat-
ing two new active candidate problems. One is identical to x1/2 except that
xp is fixed = 0 and the other is identical to x1/2 except that xp is fixed = 1.
Then, increment / d / + 1 and return to Step 1.

Branch and Price search methods do exactly that. Much like the Branch and
Cut methods of Section 12.5, which combine cut generation with Branch and Bound
search over LP relaxations, Branch and Price enhances LP Branch and Bound with
periodic generation of new columns with attractive reduced costs. Algorithm 13B
provides details on this.

13.1 Delayed Column Generation and Branch and Price 821

0

1

Add columm 5

Add columm 6

Add columm 7
Terminate
infeasible

Terminate by bound Terminate by solving

2

3 4

5

7 6

x2 = 0

x7 = 0 x7 = 1

x2 = 1

x(7) = (0, 1, 1, 0, 0.1, 1, 0) n∼ ∼ = 129.10

x(1) = (0, 0.3, 1, 0.6, 0.7) n∼ ∼ = 129.7

x(4) = (0, 1, 1, 0, 0.6, 0.35) n∼ ∼ = 130.55

x(5) = (0, 1, 1, 0, 0, 0.4, 0.6) n∼ ∼ = 125.2

x(6) = (0, 1, 1, 0, 0, 0, 1) n∼ ∼ = 126

x(2) = (0, 0.3, 1, 0.35, 0.6, 0.33) n∼ ∼ = 124.56

x(0) = (0, 1, 1, 1) n∼ ∼ = 136

x d (0, 1, 1, 1) n d 136ˆ

x d (0, 1, 1, 0, 0, 0, 1) n∼ d 126ˆ

ˆ

fiGure 13.1 Branch and Price Tree of a Synthetic Example

Figure 13.1 illustrates a synthetic minimizing binary ILP. Computation
begins at root node 0 with a working collection of 4 of presumably many pos-
sible columns. The corresponding LP relaxation solution x∼102 = 10, 1, 1, 02 hap-
pens to be binary- feasible with value = 136, so it provides a first incumbent at
Algorithm 13B Step 3.

Notice however, that in contrast to usual Branch and Bound, the search cannot
be terminated immediately. Even though this solution is integer feasible, generat-
ing additional columns may allow it to be improved. This is exactly what happens
at node 1, where adding a new column 5 reduces the relaxation bound to = 129.7.
It happens again a node 2 after new column 6 is included to obtain even better
value = 124.56.

We assume at this point that no additional column can produce improvement.
Thus solution x∼122 solves the LP relaxation of the full model. Still, it cannot be ter-
minated because it is feasible and has bound less than the current incumbent. Thus
we proceed to branch on fractional component x∼2 = 0.3.

Trying the x2 = 0 side first, the relaxation is infeasible. Also, no new col-
umns are able to enter in order to escape that result. We can terminate by
infeasibilty.

Proceeding to node 4 with x2 = 1, we obtain a still fractional relaxation solu-
tion with bound = 130.55. This time, however, a new column 7 qualifies to enter.
The resulting node 5 reduces the relaxation solution value to = 125.2. Still, it too is
fractional and no additional columns are available to improve results.

822 Chapter 13 Large-Scale Optimization Methods

We may conclude that x∼152 is optimal in the LP relaxation with x2 fixed = 1, but
we much branch on a fractional variable, this time x7 = 0.6. Proceeding first to the near-
est child with x7 fixed = 1 yields integer-feasible solution x∼162 = 10, 1, 1, 0, 0, 0, 12
with value = 126. The solution improves on the current incumbent, so takes its place.
Furthermore, since no additional columns are able to improve upon it, the node can be
terminated by solving.

Finally, computation proceeds to node 7 with x7 = 0 and a fractional relaxation
solution with value = 129.10. Again, no additional columns are able to improve the
relaxation. Thus, with 129.10 7 vn = 126, we may terminate this last active candidate
problem by bound. The most recent incumbent is optimal.

13.2 laGranGian relaxation

Rather than directly seeking an optimal solution to a given ILP model, the
Lagrangian Relaxation large-scale strategy uses decompostion to compute strong
bounds on the value of an optimal solution to the full ILP. Sometimes the goal is
to compute the linear-programming relaxation (definition 12.6) of a very large dis-
crete model. Other times the decomposition can yield an even stronger bound than
LP. Either way, the result can speed Branch and Bound/Cut Algorithms 12A and
12B, or provide a source for rounding to an approximate optimum in the full model
(see Section 12.4).

Lagrangian Relaxations
Unlike LP relaxations that relax integrality requirements, Lagrangian Relaxations
are formed by relaxing some of the main linear constraints of the given ILP,
while keeping integrality requirements and the other main constraints. However,
the relaxed constraints are not dropped entirely. Instead, they are dualized or
weighted in the objective function with suitable Lagrange multipliers to discourage
their violation.

Lagrangian relaxations partially relax some of the main
 linear constraints of a given ILP by dualizing them in the objective function
as terms

c + vi abi - a
j

 ai, j xjb + c

Here vi is a Lagrange multiplier on constraint i.

•	 If the relaxed constraint has form a j ai, j xj Ú bi, multiplier vi … 0 for a maximize model
and vi Ú 0 for a minimize.

•	 If the relaxed constraint has form a j ai, j xj … bi multiplier vi Ú 0 for a maximize
model and vi … 0 for a minimize.

•	 Equality constraints a j ai, j xj = bi have unrestricted multipliers vi.

Definition 13.3

13.2 Lagrangian Relaxation 823

aPPliCation 13.2: laGranGian relaxation of CDot GeneralizeD
aSSiGnment

We can illustrate with the CDOT generalized assignment model of Section 11.4:

min 130x1, 1 + 460x1,2 + 40x1, 3

+ 30x2, 1 + 150x2, 2 + 370x2, 3

510x3, 1 + 20x3, 2 + 120x3, 3

+ 30x4, 1 + 40x4, 2 + 390x4, 3

340x5, 1 + 30x5, 2 + 40x5, 3

+ 20x6, 1 + 450x6, 2 + 30x6, 3

s.t. x1, 1 + x1, 2 + x1, 3 = 1 1district 12
x2, 1 + x2, 2 + x2, 3 = 1 1district 22
x3, 1 + x3, 2 + x3, 3 = 1 1district 32
x4, 1 + x4, 2 + x4, 3 = 1 1district 42

1CDOT2 x5, 1 + x5, 2 + x5, 3 = 1 1district 52
x6, 1 + x6, 2 + x6, 3 = 1 1district 62
30x1, 1 + 50x2, 1 + 10x3, 1 1Estevan2
+ 11x4, 1 + 13x5, 1 + 9x6, 1 … 50

10x1, 2 + 20x2, 2 + 60x3, 2 1Mackenizie2
+ 10x4, 2 + 10x5, 2 + 17x6, 2 … 50

70x1, 3 + 10x2, 3 + 10x3, 3 1Skidegate2
+ 15x4, 3 + 8x5, 3 + 12x6, 3 … 50

xi, j = 0 or 1 i = 1, 6; j = 1, 3

where xi, j e
1 if district i is assigned to ship j
0 otherwise

An optimal solution assigns districts 1,4, and 6 to the Estevan, districts 2 and 4 to the
Mackenzie, and district 3 to the Skidgate for a total cost of 480.

One strong Lagrangian relaxation keeps integrality requirements and the last
3 main constraints, while dualizing the first 6 with weights vi to obtain

min 130x1, 1 + 460x1, 2 + 40x1, 3 + 30x2, 1 + 150x2, 2 + 370x2, 3

510x3, 1 + 20x3, 2 + 120x3, 3 + 30x4, 1 + 40x4, 2 + 390x4, 3

340x5, 1 + 30x5, 2 + 40x5, 3 + 20x6, 1 + 450x6, 2 + 30x6, 3

+v111 - x1, 1 - x1, 2 - x1, 32 + v211 - x2, 1 - x2, 2 - x2, 32
1CDOTv2 +v311 - x3, 1 - x3, 2 - x3, 32 + v411 - x4, 1 - x4, 2 - x4, 32

+v511 - x5,1 - x5,2 - x5,32 + v611 - x6,1 + x6,2 + x6,32
s.t. 30x1,1 + 50x2,1 + 10x3,1 + 11x4,1 + 13x5,1 + 9x6,1 … 50

10x1,2 + 20x2,2 + 60x3,2 + 10x4,2 + 10x5,2 + 17x6,2 … 50

70x1,3 + 10x2,3 + 10x3,3 + 15x4,3 + 8x5,3 + 12x6,3 … 50

xi, j = 0 or 1 i = 1, 6; j = 1, 3

824 Chapter 13 Large-Scale Optimization Methods

Notice that the 6 constraints of the full model have not been completely
dropped. Instead, they have been rolled into the objective function as in defini-
tion 13.3 . Being equalities, the corresponding vi are URS. Feasible solutions to the
relaxed subproblem (CDOTv) may very well have say

x3, 1 + x3, 2 + x3, 3 ≠ 1 or equivalently, 11 - x3, 1 - x3, 2 - x3, 32 ≠ 0

Still, if chosen multiplier v3 ≠ 0, violations will at least affect the relaxation objective
function.

examPle 13.2: forminG laGranGian relaxationS

Consider the ILP

max 20x1 + 30x2 - 550y1 - 720y2

s.t. 1.5x1 + 4x2 … 300

x1 - 200y1 … 0

x2 - 75y2 … 0

x1, x2 Ú 0

y1, y2 = 0 or 1

(a) Use multipliers v1 and v2 to form a Lagrangian relaxation dualizing the last
two main constraints.

(b) Indicate any required sign restrictions on choices of multipliers v1 and v2.

Solution: We apply definition 13.3 .

(a) The required Lagrangian relaxation weights the two relaxed constraints in the
objective function as

 max 20x1 + 30x2 - 550y1 - 720y2 + v110 - x1 + 200y12 + v210 - x2 + 75y22

 s.t. 1.5x1 + 4x2 … 300

 x1, x2 Ú 0

 y1, y2 = 0 or 1

(b) For these … constraints in a maximize model, multipliers should satisfy
v1, v2 Ú 0.

Tractable Lagrangian Relaxations
Lagrangian relaxation (CDOTv) keeps variables xi, j binary; integrality require-
ments of the full model (CDOT) have not been dropped. Instead, the improved
tractability required of any useful relaxation is achieved by dualizing enough of the
model’s linear constraints to make the subproblems that remain significantly easier
to solve.

13.2 Lagrangian Relaxation 825

To see how the above relaxation CDOTv meets criterion 13.4 , arbitrarily
assign Lagrange multipliers vn1, vn2, vn3 d 150 and vn4, vn5, vn6 d -90. Then we may
collect objective function terms involving each variable to obtain a single value.
For example, the coefficient of x1,1 becomes 130 - vn1 = 130 - 150 = -20.
Repeating for all variables produces the relaxation

min -20x1, 1 - 120x2, 1 + 360x3, 1 + 120x4, 1 + 430x5, 1 + 110x6, 1

+310x1, 2 + 0x2, 2 - 130x3, 2 + 130x4, 2 + 120x5, 2 + 540x6, 2

-110x1, 3 + 220x2, 3 - 30x3, 3 + 480x4, 3 + 130x5, 3 + 120x6, 3

1CDOTvn) + 180

s.t. 30x1, 1 + 50x2, 1 + 10x3, 1 + 11x4, 1 + 13x5, 1 + 9x6, 1 … 50

10x1, 2 + 20x2, 2 + 60x3, 2 + 10x4, 2 + 10x5, 2 + 17x6, 2 … 50

70x1, 3 + 10x2, 3 + 10x3, 3 + 15x4, 3 + 8x5, 3 + 12x6, 3 … 50

xi, j = 0 or 1 i = 1, 6; j = 1, 3

The key insight is that each variable now appears only once in the objective
and in only one constraint. Thus (except for the constant a ivni = 180) relax-
ation (CDOTvn) decomposes into 3 separate problems, each with a single main
constraint.

Variables are still required to take on binary values, but these one-
constraint ILPs take one of the simplest forms—Binary Knapsack Problems
(definition 11.4). It is then easy to see by inspection that the only nonzero
variable values in the relaxation optimum are the ones with negative collected
objective coefficients. In the above, they are xn2,1 = 1 and xn3,3 = 1, yielding
objective value of -120 - 30 + 180 = 30. Notice also that these xni, j satisfy
the relaxated constraints for i = 1, 3 but leave all the others infeasible with no
assignments.

More effort is required to solve the Knapsack Problems of the relaxation
than would be needed if variables with negative coefficents competed for space
in the retained knapsack constraints. Still, knapsack optima can be obtained
for quite large instances (see, for example, Section 9.9). Repeated solution of
relaxation subproblems is practical as part of a multiplier-driven Lagrangian
decomposition.

Lagrangian Relaxation Bounds and Optima
Lagrangian relaxations fit within Section 12.2’s discussion of ILP relaxations
that modify the objective as well as the feasible set. Specifically principle 12.8
requires a valid relaxation to (i) admit as feasible every feasible solution to

Constraints chosen for dualization in Lagrangian relaxations
should leave remaining subproblems with enough special structure to be rela-
tively tractable even if they remain integer programs.

Principle 13.4

826 Chapter 13 Large-Scale Optimization Methods

the full model, and (ii) make the objective value in the relaxation of every such
globally feasible solution equal to or better than its objective value in the full model.

Lagrangian definition 13.3 fulfills both requirements. Dropping explicit
 constraints in the relaxation cannot exclude feasible solutions of the full model. In
the objective function, globally feasible solutions will satisfy all the relaxed con-
straints. Then careful examination of the sign rules on Lagrange multipliers shows
that the added terms from dualization can only improve the objective value. For
example, constraint a j ai, j xj Ú bi of a minimize would have multiplier vi Ú 0.
Thus the corresponding Lagrangian objective function term for feasible xn would
be the product

viabi - a
j

ai, j xnjb which must be … 0

for all feasible xj. Dualized terms can only improve the minimize objective, which
implies valid Lagrangian bounds.

The optimal solution value of any valid Lagrangian relaxation
conforming to 13.3 is a lower bound on the optimal value of the underlying
ILP if it minimizes, and an upper bound on the overall optimal value if it
maximizes.

Principle 13.5

The minimizing (CDOTvn) relaxation of Application 13.2 illustrates. Its optimal value
of 30 is indeed a lower bound of the 480 optimal value for the full (CDOT) model.

Section 12.2 also explores cases where the relalation optimum happens to
prove optimal for the full model. Principles 12.11 and 12.12 showed that a relax-
ation optimum will be optimal in the full model if (i) it is feasible in the full model,
and (ii) it has the same objective function value in both. Specialization to the
Lagrangian case is as follows.

An optimal solution to a Lagrangian relaxation that is feasible
for the full model and satisfies complementary slackness (see Section 6.7) for
each dualized inequality constraint i so that either the associated multiplier
vi = 0 or the corresponding constraint is satisfied as equality is optimal in the
full model.

Principle 13.6

Complementary slackness assures each dualized term = 0 so that original and
relaxation objective values match—exactly as required to establish overall optimal-
ity of the relaxation optimum.

Notice the distinction from simpler relaxations that do not modify the objec-
tive. A Lagrangian relaxation optimum that is feasible in the full model may pro-
duce a useful incumbent, but principle 13.6 will establish its optimality in the full
model only if needed complementarity on dualization terms is also met.

13.2 Lagrangian Relaxation 827

examPle 13.3: BounDS anD oPtima from laGranGian relaxationS

Consider the ILP

max 5x1 + 1x2 + 4x3
s.t. x1 + 2x2 … 2

 + 1x2 + 1x3 … 1
 x1, x2, x3 = 0 or 1

(a) Compute an optimal solution to the model by inspection.

(b) Formulate a Lagrangian relaxation dualizing just the last main constraint with
multiplier vn Ú 0.

(c) Solve by inspection the relaxation of part (b) with vn = 10, and show that the
result bounds the optimal solution value of the full model.

(d) Solve by inspection the relaxation of part (b) with vn = 3, and use 13.6 to show
that the relaxation optimum also solves the full model.

Solution:

(a) By enumeration, an optimal solution is xn = 11, 0, 12 with objective value = 9.

(b)
max 5 x 1 + 11 - vn2 x 2 + 14 - vn2x 3 + vn

s.t. x1 + 2x2 … 2

 x1, x2, x3 = 0 or 1

(c) With vn = 10, a relaxation optimum is xn = 11, 0, 02 and relaxation objective
value = 15, which is a valid bound on the full optimum of 9 for this maximize instance.

(d) With vn = 3, a relaxation optimum is xn = 11, 0, 12 with relaxation objective
value = 9. To verify its overall optimality by 13.6 , we first note that xn is feasible for
the relaxed constraint. Furthermore, it satisfies the dualized constraint with equal-
ity, so that a vn = 3 7 0 conforms to the complementary slackness condition for
optimality.

Lagrangian Duals
So far we have developed the idea of Lagrangian relaxations and explored some
of their properties. Little has been said about how useful multipliers are chosen to
empower the relaxations, and the limits of what can be achieved.

The Lagrangian decomposition strategy for any dualization
choice seeks to compute the best possible bound on the value of an optimal
solution to a given ILP model by searching iteratively over possible choices
of multipliers, solving the corresponding Lagrangian relaxations at each step,
and learning from results how to improve multiplier choice or conclude signif-
icant further progress is unlikely.

Principle 13.7

828 Chapter 13 Large-Scale Optimization Methods

Rather than treat all the possible permuations of min or max, and linear
constraint forms, it will be useful to think most of the time about a single compact
 standard model to which all other cases can be reduced:

 min cx

1P2 s.t. Rx Ú r

 x ∈ T ! 5x Ú 0 : Hx Ú h, xj integer for j ∈ J6
Here x is a vector of nonnegative decision variables, c is the vector of cost coefficients,
and J is the subset of decision variables required to take integer values. Systems
Rx Ú r and Hx Ú h partition the main (linear) constraints. The first part is dualized
and the second retained to complete the definition of the relatively tractable relaxation
feasible set T.

The corresponding Lagrangian relaxation for multipliers v Ú 0 is

 min cx + v1r - Rx2
1Pv2 s.t. x ∈ T

Then the Lagrangian Dual computes multipiers producing the strongest possible
bound from this relaxation in accord with goal 13.7 .

For the primal (P) and Lagrangian relaxation form 1Pv2
above, the corresponding Lagrangian Dual 1DL2 seeks multipliers v solving

 max n1Pv2
1DL2 s.t. v Ú 0

where n1 #2 denotes the value of an optimal solution to problem 1 #2.

Definition 13.8

Some properties of these standard-form Lagrangian models follow immedi-
ately from principles 13.5 and 13.6 above.

For 1P2, 1Pv92, and 1DL2 above, n1P2 Ú n1DL2. Furthermore,
if xn solves 1Pvn2 for some vn Ú 0, Rxn Ú r and vn1r - Rxn2 = 0, then xn solves
(P), and n1P2 = n1DL2.

Principle 13.9

With every v Ú 0 providing a lower bound on n1P2, the strongest, which comes
from n1DL2 must too. Likewise, a relaxation optimum xn that satisfies dualized con-
straints and meets complementary slackness conditions between the constraints and
their multipliers must be a (P) optimal, proving n1P2 = n1DL2.

aPPliCation 13.3: Small laGranGian numeriCal examPle

To better understand issues around Lagrangian duals and multiplier search, it will
be helpful to work with an example taken from Parker and Rardin (1988), which is
small enough to be addressed graphically. Consider the ILP

13.2 Lagrangian Relaxation 829

 min 3x1 + 2x2

 s.t. 5x1 + 2x2 Ú 3

 2x1 + 5x2 Ú 3

1SMALL2 8x1 + 8x2 Ú 1

 0 … x1 … 1

 0 … x2 … 2

 x1, x2 integer

Dualizing the first two linear constraints with multiplers v1, v2 Ú 0 gives
Lagrangian relaxation:

 min 3x1 + 2x2 + v113 - 5x1 - 2x22 + v213 - 2x1 - 5x22
1SMALLv1, v2

2 s.t. 1x1, x22 ∈ T ! 5integer 1x1, x22 Ú 0:

8x1 + 8x2 Ú 1, x1 … 1, x2 … 2}

The corresponding Lagrangian dual is:

 max n1SMALLv1, v2
2

1S Dual2 s.t. v1, v2 Ú 0

Figure 13.2(a) solves the original model (SMALL) and its LP relaxation graph-
ically. The integer-feasible solutions are 1x1, x22 = 10, 22, 11, 12, and (1, 2), with
optimal choice x* = 10, 22 at value n* = 4. The LP-relaxation feasible space of the
model is shaded in part (a), solving at x = 13>7, 3>72 with value nQ = 15>7 ≈ 2.14.

x2

x1 x1

x2

x1
* = 0. x2

* = 2x1
* = 0. x2

* = 2

x1 + 2x2 Ú 35x1 + 2x2 Ú 3

2x1 + 5x2 Ú 3
2x1 + 5x2 Ú 3

LP Relaxation
Feasible Set

Convex Hull of
Lagrangian Relaxation
Feasible Solutions

min 3x1 + 2x2

(a) Full Model and
LP Relaxation

(b) Equivalent of
Lagrangian Dual

min 3x1 + 2x2

 8x1 + 8x2 Ú 1 8x1 + 8x2 ≥ 1

2 2

1 1

0 0
1 1

x1 = x2 = 3/7
_ _

x1 = 1/3, x2 = 2/3ˆ ˆ

fiGure 13.2 Graphic Solution of SMALL Lagrangian Example

830 Chapter 13 Large-Scale Optimization Methods

With the first two linear constraints dualized (dotted lines in Figure 13.2(b)),
Lagrangian relaxations are solved over feasible integer solutions meeting the
still-enforced 8x1 + 8x2 Ú 1, 0 … x1 … 1, and 0 … x2 … 2.

T ! 510, 12, 10, 22, 11, 02, 11, 12, 11, 226
We know from Section 12.7 that any of the relaxations can be viewed as a linear
program over their convex hull (the smallest polyhedral set containing all solutions
in T). Shading in part (b) depicts the convex hull for this example, with optimum
x∼ = 11>3, 2>32 and value = 7>3.

Lagrangian versus Linear Programming Relaxation Bounds
The graphic solutions of Figure 13.2 demonstrate a useful formal characterization
of what is achievable by solving the Lagrangian dual versus solving the linear pro-
gramming relaxation of a given ILP.

For 1P2, 1Pv2, P, and 1DL2 above, n1DL2 Ú n1P2. Further-
more, if [T] = T, that is, Lagrangian relaxations can be solved by linear
 programming, and n1DL2 = n1P2.

Principle 13.11

The above characterization of LP relaxation bound n1P2 is no surprise. It
simply reassembles all the original constraints after dropping integrality.

The characterization of Lagrangian dual bound n1DL2 tells us more. What
is achievable is exactly what would result from restricting an LP relaxation to
dualized constraints and the convex hull [T] of those maintained in Lagrangian
relaxations.

Solution xn = 11>3, 2>32 at solution value 7>3 ≈ 2.33 illustrates in Figure 13.2(b).
Notice that it still bounds integer optimal solution x* = 10, 22 with value 4.00, con-
firming property 13.9 . Comparison with LP relaxation solution x = 13>7, 3>72, which
produces bound value 15>7 ≈ 2.14, establishes for this instance that n1P2 6 n1DL2;
the Lagrangian strictly improves on the ordinary LP relaxation if an optimal choice or
dual multipliers is used. This is no accident, because convex hull [T] is always as tight as
LP feasible T and may be tighter.

For 1P2, 1Pv2, and 1DL2 as defined above,

n1DL2 = v°
min cx

R Ú r
x ∈ [T]

¢ and

n1P2 = v£min cx
R Ú r
x ∈ T

≥
where [T] is the convex hull of T, 1P2 is the LP relaxation of (P), and T is the
LP relaxation of T.

Principle 13.10

13.2 Lagrangian Relaxation 831

Clearly, the choice of which constraints to dualize in Lagrangian relaxation is
crucial. The generalized assignment model (CDOT) presented above illustrates the
dilemma. We have seen that the Lagrangian relaxation 1CDOTv2 dualizing the = 1
constraints there decomposes into a series of Binary Knapsack Problems. Under
principle 13.12 , the extra integer-programming effort to solve them can (and does)
yield a bound n1DL2 stonger—sometimes much stronger—than the corresponding
LP relaxation (CDOT).

Contrast with the alternative 1CDOTw2 dualizing the … constraints with mul-
tipliers w … 0, while retaining the = 1 system:

 min 130x1, 1 + 460x1, 2 + 40x1, 3 + 30x2, 1 + 150x2, 2 + 370x2, 3

 510x3, 1 + 20x3, 2 + 120x3, 3 + 30x4, 1 + 40x4, 2 + 390x4, 3

 340x5, 1 + 30x5, 2 + 40x5, 3 + 20x6, 1 + 450x6, 2 + 30x6, 3

 +w1150 - 30x1, 1 - 50x2, 1 - 10x3, 1 - 11x4, 1 - 13x5, 1 - 9x6, 12
 +w2150 - 10x1, 2 - 20x2, 2 - 60x3, 2 - 10x4, 2 - 10x5, 2 - 17x6, 22
 +w3150 - 70x1, 3 - 10x2, 3 - 10x3, 3 - 15x4, 3 - 8x5, 3 - 12x6, 32
 s.t. x1, 1 + x1, 2 + x1, 3 = 1

 x2, 1 + x2, 2 + x2, 3 = 1

1CDOTw2 x3, 1 + x3, 2 + x3, 3 = 1

 x4, 1 + x4, 2 + x4, 3 = 1

 x5, 1 + x5, 2 + x5, 3 = 1

 x6, 1 + x6, 2 + x6, 3 = 1

 xi, j = 0 or 1 i = 1, 6; j = 1, 3

As before, relaxations decompose into a series of single-constraint feasible sets
such as

 x1,1 + x1,2 + x1,3 = 1

 x1,1, x1,2, x1,3 Ú 0 and integer

This time, however, each such problem can be solved as well by LP as IP. Whichever,
of the variables in each system has the least objective function coefficient will = 1,
and all the others will = 0, whether or not we explicitly enforce integrality. It fol-
lows (principle 13.12) that even the best choice of multipliers w cannot produce a
bound better than the LP relaxation of the full model.

Per property 13.4 , the choice of constraints to dualize in
Lagrangian relaxations must leave subproblems significantly more tractable
than the full model. Still, the Lagrangian dual bound for any dualization strat-
egy cannot improve on the corresponding LP relaxation, unless subproblems
cannot always be solved by LP alone.

Principle 13.12

We see that the bound from a Lagrangian dual will always at least match that
of the corresponding LP relaxation, but it can exceed it only if relaxations 1Pv2 are
truly integer programs rather than being directly solvable as LPs. This leads to a
refinement of Lagrangian tractability principle 13.4 .

832 Chapter 13 Large-Scale Optimization Methods

Lagrangian Dual Objective Functions
The above graphic solution discussion provides intuition and insight. But as with
most of the methods of this book, finding good Lagrangian dual multipliers for
 realistic applications typically requires a numerical search.

To simplify our discussion of search for Lagrange multipliers, assume that the
feasible set T of relaxations 1Pv2 is bounded. Then, each relaxation optimum will
occur at one of the finitely many extreme points of its convex hull. This leads to a
useful insight into the form of the Lagrangian dual objective.

If the feasible set T of a Lagrangian relaxation 1Pv2 is bounded,
the relaxation optimal objective value v 1Pv2 will be the piecewise-linear con-
cave function of multipliers v Ú 0 obtained as the minimum of linear objective
functions of multipliers v at alternative x ∈ T.

Principle 13.13

Figure 13.3 illustrates why this must be true with the numerical example
(SMALL) and its relaxation 1SMALLv1, v2

2 (and confirms the optimal dual solution
value 7>3 ≈ 2.33 derived in Figure 13.2(b)). Given any nonnegative choice of the
2 multiplers v1 and v2, computation of the relaxation optimum can be thought of
as evaluating the resulting linear objective function at each of the 4 feasible solu-
tions x ∈ T, and then choosing the one with least objective value. For example, at
x = 11, 22, the relaxation objective function in 1SMALLv1, v2

2 simplifies to the
 linear function

3112 + 2122 + v113 - 5112 - 21222 + v213 - 2112 - 51222 = 7 - 6v1 - 9v2

Each flat surface in the figure corresponds to the best choice at given values
of multipliers v. (There is no surface here for x = 11, 12 because it is dominated for
all v Ú 0.) That is, the solution value function is the minimum of linear functions in

3 - 2v1 + v2

v

(x1 = 1, x2 = 0)

7 - 6v1 - 9v2
(x1 = 1, x2 = 2)

4 - v1 - 7v2
(x1 = 0, x2 = 2)

2 + v1 - 2v2
(x1 = 0, x2 = 1)

value = 7/3

v = (1/3,0)ˆ

v1

v2

fiGure 13.3 Dual Objective
of SMALL Example

13.2 Lagrangian Relaxation 833

the dual multipliers. Its piecewise-linear shape follows from the fact that the best x
may be constant for a collection of vs, then change abruptly when another one first
matches and then surpasses the previous optimum. Linear boundaries between the
surfaces identify v for which there are alternative optima in the relaxation.

For the generic form (P) defined above, principle 13.13 establishes that dual
objective functions n1Pv2 are always minima of linear functions in the multipliers,
and thus concave (see definition 16.23). Thus we can pursue an improving search
such as those developed in Chapter 3 and 16 with confidence that when a local max-
imum is reached, that is, a v that cannot be improved in its immediate neighborhood,
then those multipliers are optimal for the Lagrangian dual (DL).

Subgradient Search for Lagrangian Bounds
A wide variety of improving search methods are known for at least approximately
finding the best possible bounds for a given model and Lagrangian dualization strat-
egy. We consider here only the simplest and most popular—subgradient search—
which applies a generalization of steepest ascent gradient—search Algorithm 16D.

As usual, it will be helpful to gain insight from the Lagrangian dual of the simple
numerial instance (SMALL) maximized graphically in Figure 13.3. Figure 13.4 shows
a part of that dual surface projected from “above” to reduce it to 2 dimensions,
including dual optimal vn = 10.333, 0.02.

Where a function is differentiable, the gradient (vector of partial deriva-
tives) provides an improving direction in a maximize problem. For example, Point
1 = 10.10, 0.502 in the figure is a solution for which the dual function is uniquely
defined by surface 4 - y1 - 7y2, because the corresponding relaxation (Pn) has
unique optimum x = 10.22. A gradient exists and yields the improving direction
∆v 1-1, -72 as shown.

The challenge in Lagrangian search arises at solutions like nearby Point
2 = 10.262, 0.2952, which lies on a boundary between piecewise linear segments
of the dual function. There the relaxation has alternative optima x = 10, 12 and
x = 10, 22.

v2

v1

Pt 1 = (0.100, 0.500)

Unique subgradient

Pt 2 = (0.262, 0.295)

Multiple subgradients

Multiple subgradients

0.5

0.25

0

- 0.25

0.5
Opt v = (0.333, 0.0)ˆ

-

fiGure 13.4 Lagrangian
Dual Search of SMALL
Numerical Example in 2D

834 Chapter 13 Large-Scale Optimization Methods

We have already seen that at Point 1 in the figure, substitution of the unique
optimum 1x∼1, x∼22 = 10, 22 gives improving direction 1∆v1, ∆v22 = 1-1, -72.

In the more complicated situation at figure Point 2, alternative relaxation
optima x = 10, 12, and (0, 2), both with relaxation solution value = 1.673, lead to
multiple subgradient directions.

a11-2, 12 + a211, -22 for all a1, a1 Ú 0, a1 + a2 = 1

All of the subgradients at Point 2 happen to be improving. Sadly, this will not
always be the case when there are multiple subgradients at a point v. The range of
subgradients at optimal point vn illustrate. They include 11, -22, which decreases the
objective, and 1-2, 12, which increases. Still, it can be shown that, at least for small
steps, movement in any subgradient direction reduces the distance between a cur-
rent solution and an optimum. Details of one step sequence known to still converge
are given in the Step 4 of Algorithm 13C.

Algorithm 13C provides a full statement of subgradient search over Lagrangian
duals. Before proceeding to the numerical example, it is worth noting some details
of the algorithm. First, the search can pursue any subgradient defined in 13.14 at
the current dual solution v1/2. We adopt here the most readily available—dualized
 constraint “infeasibility” 1r - Rx1/22 of the relaxation optimum.

Steps along subgradient directions (normalized to length = 1) are known to
produce convergence if stepsizes converge to 0 but have sum that does not. Our
example will use

l/ + 1 d 1>21/ + 12
Stepsizes l/ at Step 4 are chosen as if the optimization were unconstrained.

Algorithm 13C Step 5 deals with the fact that the optimization is not strictly
 unconstrained because dual solutions may be subject to sign restrictions (here
nonnegativity). However, it can be shown that the simplest possible correction
for this keeps solutions nonnegative and maintains convergence; we have only
to project (zero-out) any components of the solution becoming negative after
the step.

Finally, there is no guarantee that subgradient search will produce monotonely
improving dual solution values. Incumbents are tracked at Step 2 to record the best
solution so far. When to satisfy that incumbent is an ad hoc decision. When the opti-
mal x1/2 of the Lagrangian relaxation happens to be feasible for dualized constraints,
we can also track it as a primal incumbent.

Subgradients provide the generalization needed to deal with such cases by
admitting convex combinations of all these alternatives.

For standard form (P) and (Pv) above, the subgradients of
function n1Pv2 a point v may be expressed as

e ∆ v = a x
&

∈Tv ax
&1r - Rx∼2 for ax& Ú 0 and aax& = 1 f

where Tv ! 5x∼ optimal in Pv6

Principle 13.14

13.2 Lagrangian Relaxation 835

Application of Subgradient Search to Numerical Example
Table 13.4 and Figure 13.5 track application of Algorithm 13C on SMALL numer-
ical example of (P) and 1Pv2. The search begins at v102 = 10.50, 0.402, for which
the relaxation solves at x102 = 11, 22 with objective value v1Pv1022 = 0.040. These
become the first incumbent dual solution. With x = 11, 22 feasible for both relaxed
constraints, we can also save it as a primal incumbent.

Next we choose infeasibility vector r - Rx102 = 1-6, -92 as our first subgra-
dient direction and normalize to length = 1 as 1-0.55, -0.832. A step of l1 = 1>2
advances the search to raw coordinates v = 10.22, -0.022. However, the second
 component is negative, so we project it to obtain next dual solution v112 = 10.22, 0.002.

taBle 13.4 Progress of Algorithm 13C on SMALL Numerical Example

O v1O2 x1O2 v1Pv1O22 r − Rx1O2 lO + 1 Raw v1O + 12 vn vnD xn vnp

0 (0.50, 0.40) (1, 2) 0.40 1-6, -92 1/2 10.22, -0.022 (0.50, 0.40) 0.40 (1, 2) 7

1 (0.22, 0.00) (0, 1) 2.22 11, -22 1/4 10.33, -0.222 (0.22, 0.00) 2.22 (1, 2) 7

2 (0.33, 0.00) (1, 0) 2.33 1-2, 12 1/6 (0.19, 0.07) (0.33, 0.00) 2.33 (1, 2) 7

3 (0.19, 0.07) (0, 1) 2.04 11, -22 1/8 10.24, -0.042 (0.33, 0.00) 2.33 (1, 3) 7

Algorithm 13C: SuBgrADient lAgrAngiAn SeArCh

Let (P), 1Pv2, and 1DL2 be as defined above.
Step 0: initialization. Pick any starting dual solution v102 Ú 0, begin / d 0,

and initialize primal and dual incumbent solution values vnD d - ∞ and
vnP d + ∞ .

Step 1: lagrangian relaxation. Solve Lagrangian Relaxation 1Pv1/22 for
relaxation optimum x1/2.

Step 2: update incumbents. If v1Pv1/22 7 vnD, update vnD d v1Pv1/22, and
save vn d v1/2. Also if 1r - Rx1/22 … 0 and vnP 6 cx1/2, update vnP d cx1/2.

Step 3: Stopping. If 1r - Rx1/22 … 0 and v1/21r - Rx1/22 = 0, stop; x1t2
solves primal problem (P), and v1DL2 = v1P2. Otherwise, if further computa-
tion does not appear justified, stop and report incumbents vnP, vnD, xn , and vn as
approximate optima in (P) and 1DL2, respectively.

Step 4: Subgradient Step. Pick next stepsize l/ + 1 7 0 from a sequence
with lim/ S ∞ =0 and a ∞

/ = 1l/ = ∞ . Then compute new dual solution

v1/ + 12 d v1/2 + l/ + 1∆ v where ∆ v d 1r - Rx1/22 > � � r - Rx1/2 � �

Step 5: Projection for Feasiblity. Project the new dual solution on
5v Ú 06 by setting

vi
1/ + 12 d max 50, vi

1/ + 126 for all i

Then advance / d / + 1 and return to Step 1.

836 Chapter 13 Large-Scale Optimization Methods

Two further steps follow current value = 2.22 with dual solution values = 2.33,
and 2.04, respectively. Not surprisingly, their solution values do not always improve.
Although more iterations would be needed to assure convergence, we terminate this
example upon the first decrease and report dual incumbent (0.33, 0.00) at value 2.33.
From Figure 13.4 we know that this solution is optimal, but the subgradient search
has established only that it may be an approximate optimum.

13.3 DantziG–Wolfe DeComPoSition

The Delayed Column Generation large-scale strategy of Section 13.1 is addressed
to optimizations confronting combinatorially many decision options that can
be represented by columns of a full formulation. Instead of explicitly addressing
all the options at once, a partial master problem optimizes over just the subset
of columns explicitly generated so far. The rest are delayed until identified by a
 column- generation subproblem as ones that can improve the current master prob-
lem solution. The overwhelming number of possible columns never need to be
 considered explicitly because the column-generation subproblem demonstrates that
none not already considered can improve the current solution.

The Dantzig–Wolfe decomposition strategy of large-scale optimization,
which is named after LP pioneers George Dantzig and Philip Wolfe (1960), adopts
many of the same methods, but the target is different. The issue is not combinato-
rially many decision options that can be described by columns of a full optimiza-
tion. Instead, we deal with very large linear programs by paralleling Lagrangian
Relaxation of Section 13.2 in dividing the constraints as in Figure 13.6(a) between
a modest-size collection of complicating constraints, and one or more LP sub-
problems with highly tractable structure such as network flows. Often the tracta-
bility of the subproblems stems from a block-diagonal collection of disjoint and

v2

v1

0.5

0.25

0

- 0.25

0.5

v(3) = (0.19, 0.07)

v(0) = (0.50, 0.40)

v(2) = (0.33, 0.0)

projection
v(1) = (0.22, 0.0)

fiGure 13.5 Progress of Subgradient Search on SMALL Numberical
Example

13.3 Dantzig–Wolfe Decomposition 837

smaller subproblems over subsets of the variables as illustrated in Figure 13.6(b).
The subproblems may reflect parts of an organization, or time periods, or other
 modular elements that interact only through the set of linking constraints. The
goal in all cases is to exploit the high tractability of subproblems by calling on
them repeatedly while optimizing over a partial master problem of complicating/
linking constraints.

As usual, it will helpful to begin with an example application, albeit it tiny and
fictional.

Linking
constraints

c(1)

x(1) x(2)

c(3) c(n)

x(n)

b

t(1)

t(2)

t(n)Tn

T2

T1

A1 A2 An

Disjoint
subproblems

…

…

…

…

Single
tractable
subproblem

Complicating
constraints

(a) Single Tractable Subproblem (b) Block-Diagonal Subproblems

A

T

c

x

… t

fiGure 13.6 Structure of Attractive Dantzig–Wolfe Applications

aPPliCation 13.4: GloBal BaCkPaCk (GB) numeriCal examPle

Consider a fictional company Global Backpack (GB) that manufactures and distrib-
utes school backpacks for children. GB has two sets of operations—one off-shore
and one domestic—both with two production modes. The following table details
 parameters of the planning optimization they face in its block diagonal format:

Off-shore Domestic

x1 x2 x3 x4

max 14 8 11 7 (profit)

GBPdat

s.t. 2.1 2.1 0.75 0.75 … 60 (shipping)
0.5 0.5 0.5 0.5 … 25 (handling)

1 1 Ú 22 (site contract)
1 0 … 20 (site mode 1 limit)

1 1 Ú 12 (site contract)
1 0 … 15 (site mode 1 limit)
0 1 … 25 (site mode 2 limit)

Decision variables x1 and x2 determine the number of bags (in thousands) pro-
duced, respectively, by each mode at the off-shore site. Variables x3 and x4 do the
same for the domestic site.

Turning first to the subproblems, mode 1 production of bags at each site is
subject to a limit because it uses components available at pre-contracted quantities

838 Chapter 13 Large-Scale Optimization Methods

at a discounted price. Mode 2 is unlimited at the off-shore because it involves
 production with components bought more expensively on the open market. Mode 2
at the domestic site is limited by union agreements. Both sites are also subject to an
agreed minimum production (in thousands) specified in contracts with their respec-
tive local goverment regulators.

For all sites and modes, GB has estimated a gross profit ($ thousand per unit)
reflecting the expected selling price less the cost of production. Profits are higher
off-shore because of lower labor costs. The sum of all site and mode profits is to be
maximized in the optimization.

Linking constraints show total shipping and handling budgets (in $ thousand)
provided by a separate subsidiary company for all GB sites and modes. As long as
plans are within budget, no specific charge is billed to GB. Still, the budget $-burdens
per unit shown are higher for off-shore production because all finished goods must
be shipped for sale in the domestic market.

Reformulation in Terms of Extreme Points
and Extreme Directions
In the spirit of Delayed Column Generation we would like to focus on a partial
master problem over just the linking constraints, with subproblems being called as
needed to account for their separate constraint systems. Dantzig and Wolfe’s key
insight is that this can be accomplished by exploiting as in (*) of Primer 3 the convex
nature of subproblem feasible spaces. We represent values of the decision variables
in the master problem as weighted sums of extreme points and extreme directions
of the various subproblems.

A row-partitioned-form LP in the format of Figure 13.6(b),
with master problem

max a sc
1s2x1s2

s.t. a sAsx
1s2 … b

 x1s2 Ú 0 for all s

can be reformulated in terms of extreme points and extreme directions of sub-
problems s to capture the entire model as follows:

max a s c
1s2 a a j∈Ps

 l s, j x1s, j2 + a k∈Ds
 ms, k∆ x1s, k2b

s.t. a s As a a j∈Ps
l s, j x

1s, j2 + a k∈Ds
ms, k∆ x1s, k2b … b

 a j∈Ps
l s, j = 1 for all s

 l s, j Ú 0 for all s, j ∈ Ps, ms, k Ú 0 for all s, k ∈ Ds

where the Ps index the extreme points x1s, j2 and the Ds index the extreme di-
rections ∆ x1s, k2 of subproblems s.

Principle 13.15

13.3 Dantzig–Wolfe Decomposition 839

Reformulation from GB Application 13.4 Subproblems
Although typical applications would be much more complex, our GB Application
13.4 has been chosen so that both subproblems can be investigated graphically.
Figure 13.7(a) shows that off-shore subproblem 1 has

extreme points x11, j2 = a 0
22

b , a20
2
b

and single extreme direction ∆ x11, k2 = a0
1
b

Domestic subproblem 2 in part (b) has

extreme points x12, j2 = a 0
12

b , a12
0
b , a15

0
b , a15

25
b , a 0

25
b

and no extreme directions

All other points in either subproblem feasible set can be represented as in principle
 13.15 and Primer 3. For example, depicted points 1x1, x22 = 120, 222 in subproblem 1
and 1x3, x42 = 115, 3, 42 in subproblem 2 can be expressed, respectively, as

a20
22

b d l1a20
2
b + m1a0

1
b = 1a20

2
b + 20a0

1
b and

a 15
3.4

b d l1a15
0
b + l2a15

25
b = 0.864a15

0
b + 0.136a15

25
b

Notice that in both subproblems, extreme-point weights lj are nonnegative and
sum = 1 as required in the reformulation of 13.15 . Extreme-direction weights
need only be nonnegative.

x3
x1

x4
x2

x4 … 25

x3 … 15

x1 … 20

 x3 +x4 Ú 12

 x1 + x2 Ú 22

(15, 3.4)

(0,12)

(15,25)

(20, 22)

(20, 2)
(15, 0)

105

5

5

10

10

15

15

20

5

10

15

20

25 (0, 25)

(12, 0)

(a) Off-shore Subproblem s = 1 (b) Domestic Subproblem s = 2

fiGure 13.7 Subproblems of GB Application 13.4

840 Chapter 13 Large-Scale Optimization Methods

Delayed Generation of Subproblem Extreme-Point
and Extreme-Direction Columns
Although the full reformulation of principle 13.15 is completely equivalent to the
original model, the numbers of extreme points and extreme directions it incorporates
would be prohibitively huge for any real application. The heart of Dantzig–Wolfe
is to realize that, just as with other models in Section 13.1, subproblem columns
can be generated as needed in a partial master problem. Before presenting the full
 algorithm, we focus on the column-generation task, in principle 13.16 .

We want to generate new columns that price out at favorable reduced costs
in terms of the iteration / partial master problem optimal dual solution v1/2 and
qs
1/2. Objective function cost cQ 1s2 d 1c1s2 - v1/2As2 builds in the part of that col-

umn pricing for linking constraints. Then, optimizing over subproblem variables x1s2
completes the task by optimizing the result over all possible feasible solutions to
the subproblem. The term -qs

(/) can be treated as constant in choosing an optimal
extreme point or justifying unboundedness with an improving extreme direction
(see Primer 3 and principle 5.27). If an extreme point results, we have only to check
that total column price including constant -qs

1/2 is positive for a maximize or nega-
tive for a minimize master problem.

One final observation is that processing of column generation subproblems is
completely natural if some form of Simplex search (see Chapters 5–6 and Section
10.4) is applied.

If some form of Simplex search is applied to solve column
generation subproblems 13.16 , normal termination of any such algorithm
produces exactly what is required to generate useful new columns. A finite
optimum in simplex will be the best available extreme point to consider for
addition to the master problem. Proof of unboundedness automatically yields
the needed extreme direction for a new column.

We are now ready to proceed to a formal statement of the Dantzig–Wolfe
method in the form of Algorithm 13D.

To generate new improved columns for the reformulated
master problem of 13.15 , or prove that none exist, iterations / of Dantzig–
Wolfe decomposition attempt to solve LPs for each subproblem s of the fol-
lowing form:

max cQ1s2x1s2 - q1/2

s.t. Tsx
1s2 … t1s2

 x1s2 Ú 0

where cQ 1s2 d 1c1s2 - v1/2As2, v1/2 is the optimal dual solution on linking con-
straints of the most recent partial master problem, and qs

1/2 is the correspond-
ing dual value on the = 1 convexity constraint for subproblem s in that partial
master problem.

Principle 13.16

Principle 13.17

13.3 Dantzig–Wolfe Decomposition 841

Algorithm 13D: DAntzig-WolFe DeComPoSition

Step 0: initialization. Set iteration index / d 1, and choose initial partial
subproblem extreme point sets Ps, / ⊆ Ps for all s such that the corresponding
partial master version / = 1 of the formulation in 13.15 is feasible. Also
 initialize all partial extreme direction sets Ds, / d 0.

Step 1: Partial master Solution. Solve partial master problem / for refor-
mulated primal optima l1s, /2, and m1s, /2, along with corresponding dual optima
v1/2 and q1/2.

Step 2: Column generation Subproblems. Taking each subproblem s in
turn, construct column generation LP of 13.16 , and attempt to solve it. If
the result is finite with solution value 70 for a maximize (60 for minimize),
return an extreme-point optimum x1s2 (along with a +1 in the correspond-
ing = 1 convexity constraint for s) as a new columnn in the next partial master
problem. If the result is unbounded, return a corresponding extreme direction
∆ x1s2 as a new column. Otherwise, no additional columns from subproblem s
can improve on the iteration / partial master problem optimum.

Step 3: Stopping. If no additional columns were produced for any s in
Step 2, stop. The most recent partial master problem / solutions to primal
and dual are optimal in the full model. Values for original primal variables can
be recovered for all s by

x1s2 d a j∈Ps, /
 lj

1s, /2x1 j2 + a k∈Ds, /
 mk

1s, /2∆ x1k2

Otherwise update each Ps, / + 1 and Ds, / + 1 to include any new extreme-point
and/or extreme-direction columns generated at Step 2. Then advance
/ d / + 1, and return to Step 1.

Dantzig–Wolfe Solution of GB Application 13.4
Table 13.5 details application of Algorithm 13D to tiny GB Application 13.4.

Computation starts at iteration / = 1 with first sets of extreme points for the
two subproblems that together yield a feasible starting partial master problem. Only
one is needed from each subproblem to produce the subproblem optima shown
for / = 1. Linking constraint duals are both = 0 because these particular extreme
 solutions leave slack in both main constraints.

Now consider the column generation subproblems at / = 1. With main
duals = 0, cQ 112 = 114.0, 8.02, and cQ 122 = 111.0, 7.02, simply duplicate original
objective function coefficients, but constants q1112 = 176 and q2

112 = 84. Both cQ 1s2
are 7 0 in all components, meaning both subproblems seek large x-values. It can
be seen in Figure 13.7 that this yields an extreme direction ∆ x112 = 10, 12 in the
first subproblem, which immediately leads to a new D1, 2 column in the next partial
master problem. In subproblem 2, the largest extreme point x = 115, 252 is optimal.
Taking into account the constant q2

1/2, total reduced cost for it has solution value
340 - 84 7 0, qualifying the point to enter the next partial master problem set P2, 2.

Computation continues in the same way with iteration / = 2. This time link-
ing constraint duals are not all = 0, and more complicated cQ 112 = 1-11.60, -17.602

842 Chapter 13 Large-Scale Optimization Methods

taBle 13.5 Progress of Algorithm 13D on GB Application 13.4

/ Partial Master Problem Subproblem 1 Subproblem 2

0 Begin with extreme points
x112 = 10, 222, x122 = 10, 122

1 l11,12 = 112, l12,12 = 112
m112 = none
v112 = 10, 02, q112 = 1176, 842
partial master objval = 260.0
implied x11, 12 = 10, 222, x12, 12 = 10, 122

cQ 112 = 114.0, 8.02
∆ x112 = 10, 12
unbounded

cQ 122 = 111.0, 7.02
x122 = 115, 252
objval = 256.0

2 l12,12 = 11, 02, l12,22 = 10.771, 0.2292
m112 = 102
v122 = 112.191, 02, q122 = 1-387.2, -25.712
partial master objval = 318.51
implied x11, 22 = 10, 222, x12, 22 = 13.43, 14.972

cQ 112 = 1-11.60, -17.602
x112 = 120, 22
objval = 120.0

cQ 122 = 11.857, -2.1432
x122 = 115, 02
objval = 53.57

3 l11, 32 = 10, 12, l12, 32 = 10, 0.136, 0.8642
m112 = 102
v132 = 19.333, 02, q132 = 1-135.2, 60.02
partial master objval = 484.8
implied x11, 32 = 120, 22, x12, 32 = 115, 3.42

cQ 112 = 1-5.599, -11.5992
x112 = 120, 22
objval = 0.00

cQ 122 = 14.000, 0.0002
x122 = 115, 02
objval = 0.00

and cQ 122 = 11.857, -2.1432 result. Each produces a new extreme point qualifying
for the next partial master problem when constants q1

1/2 = -135.2 and q2
1/) are

taken into account.
Finally, in iteration / = 3, updated cQ 112 = 1-5.599, -11.5992 and cQ 122 =

14.000, 0.0002 along with constants q132 = 1-135.2, 602. With those parameter val-
ues, both column generation subproblems produce optima with solution value = 0.0.
We may conclude that no futher columns are needed, and the most recent partial
master problem is optimal.

For insight, the implied values of original variables x112 and x122 are reported in
Table 13.5 at every iteration /. However, it is only necessary to recover the final optima
when algorithm Step 3 terminates. Here this yields x112 = 120, 22, and x122 = 115, 3.42
with overall objective function value = 484.8. Notice in Figure 13.7(b) that the optimal
solution for subproblem 2 is nonextreme-point solution (15, 3.4).

13.4 BenDerS DeComPoSition

Section 13.2 described the Lagrangian Relaxation large-scale strategy that formed more
tractable subproblems by relaxing some of the main linear constraints of the given ILP.
The relaxed constraints are not dropped entirely, but instead, they are weighted in the
objective function with suitable dual multipliers to discourage their violation.

Benders Decomposition is the complementary strategy that fixes decision vari-
able values on challenging columns to form more tractable LP subproblems over the
rest. Then, like all the other methods of this chapter, a partial master problem processes
subproblem results to either conclude that the current solution is optimal or pick a new
set of fixed values on challenging variables to feed to the next subproblem. Most appli-
cations address mixed-integer linear programs (MILPs), treating their integer variables
as the challenges to be fixed, and the continuous ones as the more tractable.

13.4 Benders Decomposition 843

Benders decomposition is most attractive for MILP models
taking the form

 min cx + fy

1BP2 s.t. Ax + Fy Ú b

 x Ú 0, y Ú 0 and integer

where a linear program results if values of integer variables y are fixed.

Principle 13.18

aPPliCation 13.5: heart GuarDian faCilitieS loCation

We can illustrate this with a small uncapacitated facilities location problem such
as those of Section 11.6. The Heart Guardian (HG) corporation is establishing
a logistic network to distribute its new single line of monitoring devices across
5 markets. Distribution centers from which trucks will deliver the monitors will
need to be established at any or all of 3 already selected sites. Demands in each
market (thousands), unit shipping costs from each site to each market ($), and
setup costs ($ thousand) to establish each site have been estimated as shown in the
following table.

Markets

j = 1 j = 2 j = 3 j = 4 j = 5

Demand dj 75 90 81 26 57

GHdat Setup fi Unit Transportation Cost cij

Site i = 2 400 4 7 3 12 15
Site i = 2 250 13 11 17 9 19
Site i = 3 300 8 12 10 7 5

HG wishes to develop a minimum cost plan over these parameters.
Using decision variables xij ! the number (thousands) of units shipped from

site i to market j and yi ! 1 if site i is opened and = 0 otherwise, the HG task can
be modeled

 min a ijcij xij + a i fi yi

 s.t. a j xij - dsum*yi … 0 for all i

1HG2 a ni xij = dj for all j

xij Ú 0 for all i, j

yi = 0 or 1 for all i

With distribution site capacities treated as unlimited, constant dsum ! a j dj is
 employed in the first system to implement the needed switching constraints.

Under the usual assumption that numbers of units shipped can be taken
as continuous, this model (HG) partitions naturally into continous and integer
(binary) parts as in 13.18 . Once values for binary variable yi have been fixed, the
remaining LP over xij is a highly tractable transportation problem.

844 Chapter 13 Large-Scale Optimization Methods

Benders Decomposition Strategy
The Benders method for models (BP) in 13.18 begins at each iteration / by fixing
a choice of integer variables at some y1/2, and reducing the formulation to one over
continuous variables alone:

 min cx + fy1/2

1BP/2 s.t. Ax Ú b - Fy1/2

 x Ú 0

The dual of 1BPy1/22 produces the Benders subproblem at the heart of each
iteration /.

Using dual variables v on rows of primal models (BP) and
1BPy1/22 yields the dual subproblem.

 max v1b - Fy1/22 + fy1/2

1BD/2 s.t. vA … c

 v Ú 0

Definition 13.19

The complete Benders master problem (BM) optimizes
 variables y over all possible subproblem extreme-point outcomes v1i2, i ∈ P,
and extreme-direction outcomes ∆v1j2, j ∈ D as

 min z

1BM2 s.t. z Ú fy + v1i21b - Fy2 for all i ∈ P

 0 Ú ∆v1j21b - Fy2 for all j ∈ D

 y Ú 0 and integer

Definition 13.20

For simplicity, we will assume that the given instance of (BP) has a finite opti-
mum. This assures that reduced primal 1BP/2 will also have a finite optimum for
at least an optimal y1/2. Then dual subproblem 1BD/2 is also feasible, and since the
constraints are the same for all subproblems, every one must be feasible.

This leaves two kinds of outcomes that may result from attempting to solve
 subproblems 1BDy1/22. First, the subproblem may yield an extreme point optimal
solution v1/2. Alternatively, the subproblem may prove unbounded along an extreme
direction ∆ v1/2. The Benders master problem accounts for both of these subprob-
lem possibilities in a formulation to decide the best choice of integer variables y.

Analgously to the column-based reformulation of the Dantzig-Wolfe
method in Section 13.3, Benders produces this row-based (BM) reformulation
taking advantage of the fact that all Benders subproblems 13.19 for any model
(BP) have the same constraints. The extreme-point system of constraints in (BM)
assures that an optimal solution y must equal or exceed its valuation at any sub-
problem extreme point by listing all the possibilities. On the other hand, infeasible
y lead to unbounded subproblems along some extreme direction. The second sys-
tem of contraints in 13.20 assures that no such y will be feasible in (BM).

13.4 Benders Decomposition 845

We are now ready to state the full row-generating Benders Decomposition
Algorithm 13E.

Optimality in Benders Algorithm 13E
One remaining issue is when can Benders Algorithm 13E end its sequence of solv-
ing subproblems and corresponding partial master problems, that is, when has an
optimal solution been reached? Algorithm Step 2 shows the test.

We can conclude that full formulation (BM) does compute an optimal y. To be
sure, there are likely to be exponentially many extreme points in full list P and per-
haps numerous extreme directions in full list D. Still, as with all the other methods
of this chapter, we can work with a much smaller partial master problem over just
subproblem results derived so far.

Each iteration / of Benders decomposition solves, at least
approximately, a partial version 1BM/2 of full master problem (BM):

 min z

 1BM/2 s.t. z Ú fy + v1i2 1b - Fy2 for all i ∈ P/

 0 Ú ∆v1j2 1b - Fy2 for all j ∈ D/

 y Ú 0 and integer

where P/ indexes any extreme-point subproblem solutions generated in inter-
ations 1, c, / and D/ is the corresponding index set of generated extreme
directions.

Principle 13.21

If subproblem / of Algorithm 13E produces an extreme-
point solution v1/2 with subproblem optimal value v1BD/2 … previous partial
 master problem optimal solution value v1BM/ - 12, then v1/2 is optimal in both
full master problem (BM) and given model (BP).

Principle 13.22

This criterion holds because every subproblem optimal value v1BD/2 is an upper
bound on v(BP) for fixed y1/2 because 1BD/2 is a restriction of (BM). On the other
hand, most recent partial master problem solution value v1BM/ - 12 is a lower bound
because it is a relaxation of full master problem (BM), which is equivalent to (BP). Thus
if criterion 13.22 is fulfilled, v1BD/2 = v1BP2 = v1BM2 and v1/2 is optimal in all 3.

It is important to note that the test of 13.22 addresses provable optimal value
v1BD/ - 12 of the most recent partial master problem, not the z/ - 1 that is part of that
formulation. Partial master problems are integer programs, and thus it is often desir-
able to solve most of them only approximately. Algorithm 13E can continue adding
new rows and computing bound values z/ as long as some care is taken to avoid
duplication. In particular, all that is needed is to generate extreme-point solutions
y1/2 and/or extreme directions ∆v1/2 not satisfied by the most recent partial master
problem solution. Such new constraints will have to change the next partial master
problem result. Still full optimality can be concluded only if, at some point, a partial
master problem is solved to a provable optimum, and criterion 13.22 is satisfied.

846 Chapter 13 Large-Scale Optimization Methods

Solution of Heart Guardian Application 13.5 with Benders
Algorithm 13E
To apply Algorithm 13E to Heart Guardian facilities location 13.5, we begin by
organizing its parameters in the format of primal subproblem 1BP/2. Taking first
the continous, LP part, cx and Ax can be arranged as follows:

Algorithm 13e: BenDerS DeComPoSition

Let (BP), 1BP/2, 1BD/2, and 1BM/2 be as defined above.
Step 0: initialization. Initialize extreme-point set P0 d 0, extreme-direction

set D0 d 0, prior master problem solution value z0 = - ∞ , and pick any start-
ing y102 consistent with formulation (BP). Also, begin iteration counter / d 1.

Step 1: Benders Subproblem. Attempt to solve Benders subproblem
1BDy1/ - 122. If the result is a finite optimum at extreme point v1/2, go to Step
2, and if it is an extreme direction ∆ v1/2, go to Step 3.

Step 2: Stopping. If subproblem solution value fy1/2 + v1/21b - Fy1/22 …
the optimal solution value of previous partial master problem v1BM/ - 12, stop;
y1/2 is optimal in full model (BP), and the corresponding continuous part of the
optimal solution x1/2 can be obtained by solving reduced primal 1BPy1/22.

Step 3: Partial master Problem update. If an extreme point resulted at
Step 2, include the new point by P/ d P/ - 1 ∪ / in partial master problem
1BM/2 with new constraint

z Ú fy + v1/21b - Fy2
and retain D/ d D/ - 1. Otherwise, if an extreme direction resulted at Step 1,
include the new direction by D/ d D/ - 1 ∪ / in the partial master problem
1BM/2 with new constraint

0 Ú ∆ v1/21b - Fy2
and retain P/ d P/ - 1.

Step 4: Benders Partial master Problem. Solve, at least approximately,
master problem 1BM/2 for solution y1/2 and z/. Then advance / d / + 1 and
return to Step 1.

x = x11 x12 x13 x14 x15 x21 x22 x23 x24 x25 x31 x32 x33 x34 x35

c = 4 7 3 12 15 13 11 17 9 19 8 12 10 7 5

i = 1 1 1 1 1 1
i = 2 1 1 1 1 1
i = 3 1 1 1 1 1

A = j = 1 1 1 1
j = 2 1 1 1
j = 3 1 1 1
j = 4 1 1 1

j = 5 1 1 1

13.4 Benders Decomposition 847

Next, we consider the right-hand side, integer parts fy and 1b - Fy2. Then arrange
as follows:

y = y1 y2 y3

f = 400 250 300

i = 1 … 0 329
i = 2 … 0 329
i = 3 … 0 329
j = 1 = 75
j = 2 = 90
j = 3 = 81
j = 4 = 261

j = 5 = 57

Together, and using dual variables vi on the three i-rows, and wj on the five j rows,
these lead to Benders subproblem:

y1 y2 y3 v1 v2 v3 w1 w2 w3 w4 w5

max 400 250 300 329y1 329y2 329y3 75 90 81 26 57

s.t. 1 1 … 4
1 1 … 7
1 1 … 3
1 1 … 12
1 1 … 15

1 1 … 13
1 1 … 11
1 1 … 17
1 1 … 9
1 1 … 19

1 1 … 8
1 1 … 12
1 1 … 10
1 1 … 7
1 1 … 5

yi fixed vi … 0 wj URS

Notice that the variable types on dual variables have been adjusted for the … format
of capacity constraints, and the = demands.

Table 13.6 traces the progress of Algorithm 13E on these formulations. We begin
somewhat arbitrarily with initial y102 = 10, 0, 02. It is easy to see that this choice
makes subproblem 1BD12 unbounded. Extreme direction ∆v112 = 1-1, -1, -12
and ∆w112 = 11, 1, 1, 1, 12 produces the first constraint of partial master 1BM12
(see parameters in the above table):

 0 Ú ∆v1121329y1, 329y2, 329y32 + ∆w112175, 90, 81, 26, 572 or

 0 Ú -329y1 - 329y2 - 329y3 + 329

which simply says at least one yi must be positive in any feasible solution.

848 Chapter 13 Large-Scale Optimization Methods

Lacking any more guidance, we arbitrarily fix next y112 = 11, 0, 02. Then,
subproblem 1BD22 yields an extreme-point optimum at v122 = 10, -3, -102,
w122 = 14, 7, 3, 12, 152, and objective value = 2740. The implied new master prob-
lem constraint is

 z Ú 400y1 + 250y2 + 300y3 + v1221329y1, 329y2, 329y32 + w122175, 90, 81, 26, 572 or

 z Ú 400y1 - 737y2 - 2990y3 + 2340

Now, the partial master problem 1BM22 solves at y122 = 10, 1, 12 and optimal value
= -1387.

Continuing in this way, we solve subproblems for partial master problem
optima y122, y132 = 11, 0, 12, and y142 = 11, 1, 02. When the constraint for subprob-
lem 1BD52 is added to the partial master, however, repeat optimum y152 = 11, 0, 12
occurs at objective value = 2340. We already know that the subproblem at / = 6
will produce the same optimum as / = 3 for the same y. Thus means criterion 13.22
has been fulfilled, and the algorithm has reached optimality at solution:

 y* = 11, 0, 12 and from corresponding 1BPy*2
 x* = 175, 90, 81, 0, 0 � 0, 0, 0, 0, 0 �0, 0, 0, 26, 572
 optimal value = 2340

taBle 13.6 Progress of Benders Algorithm 13E on Heart Guardian Application

O Benders Subproblem Partial Master Problem

0 y102 = 10, 0, 02
1 ∆ v112 = 1-1, -1, -12 new row: 0 Ú - 329y1 - 329y2 - 329y3 + 329

∆ w112 = 11, 1, 1, 1, 12 y112 = 11, 0, 02
objval = + ∞ objval indeterminant

2 v122 = 10, -3, -102 new row: z Ú 400y1 - 737y2 - 2990y3 + 2340

w122 = 14, 7, 3, 12, 152 y122 = 10, 1, 12
objval = 2740 objval = -1387

3 v132 = 1-7, 0, 02 new row: z Ú - 2003y1 + 250y2 + 300y3 + 2867

w132 = 18, 11, 10, 7, 52 y132 = 11, 0, 12
objval = 3417 objval = 1264

4 v142 = 10, 0, 02 new row: z Ú 400y1 + 250y2 + 300y3 + 2867

w142 = 14, 7, 3, 7, 52 y142 = 11, 1, 02
objval = 2340 objval = 2290

5 v152 = 10, 0, -102 new row: z Ú 400y1 + 250y2 - 2990y3 + 2262

w152 = 14, 7, 3, 9, 152 y152 = 11, 0, 12
objval = 2912 objval = 2340

6 objval = 2340

 Exercises 849

ExERCISES

13-1 Consider solving an ILP of the following form
by Delayed Column Generation Algorithm 13A.

 min a j cj xj

 s.t. a j ai, j xj Ú bi i = 1, c, 5

 all xj Ú 0 and integer

where right-hand sides are given positive integers,
bi … 5, coefficients ai, j in any column j are non-
negative integers summing to at most 5, and corre-
sponding cost cj d a 5

i = 1 log 101ai, j + 12.

(a) Specify an initial partial problem using
only columns j with a single ai, j ≠ 0 that
admits a feasible primal solution.

(b) Justify why it is appropriate to solve
LP relaxations of each partial prob lem
encountered by Algorithm 13A instead
of requiring integer values of decision
variables prior to overall algorithm
termination.

(c) Now suppose a partial problem is at
hand with columns j ∈ J, and its LP re-
laxation is solved to obtain optimal dual
solution vQ1, c, vQ5. Formulate a INLP
column generation subproblem model
that seeks an attractive next new column
g to enter (if there is one) with coeffi-
cients ai, g and cost cg conforming to the
rules above.

(d) Explain why a generated column g that
qualifies to enter the partial problem
cannot already be one of the columns
in J.

(e) Explain how subproblem generation in
(c) will also detect when the algorithm
should stop because no further columns
qualify to enter.

13-2 Emergency relief agency ERNow is plan-
ning flights of small helicopters to deliver medi-
cal, food, and housing supplies for populations
cutoff by a recent hurricane. The following table
shows the fraction of each plane’s weight wi and
volume vi capacity of shipping containers for dif-
ferent materials to be sent, along with the number
that must be transported.

i Material

Weight
Fraction

wi

Volume
Fraction

vi

Quantity
Needed

qi

1 First aid
 supplies

0.04 0.10 30

2 Drinking
 water

0.20 0.14 20

3 Diesel
 Generators

0.40 0.24 12

4 Generator
 fuel

0.28 0.32 23

5 Tents 0.10 0.28 15
6 Cots 0.16 0.24 30
7 Blankets 0.03 0.18 40
8 Rain capes 0.08 0.14 25

ERNow wants to meet all these needs with the
minimum number of flights.

(a) Formulate ERNow’s challenge as an ILP
over decision variables xj ! the number
of times load combination j is used, with
columns for load combinations made
up of ai, j ! the number of containers of
 material i carried in each load j.

(b) Discuss how the large number of feasi-
ble load mixes make Delayed Column
Generation Algorithm 13A attractive for
this application.

(c) Show that the weight and volume con-
straints column coefficients ai, j are required
to satisfy in terms of parameters wi and vi.

(d) Construct an initial set of columns j for a
first partial problem as ones for “pure”
loads with ai, j = 0 except on one product
i where the maximum feasible number of
that product is specified.

(e) Justify why it is appropriate to solve LP
relaxations of each partial problem en-
countered instead of requiring integer
values of decision variables prior to algo-
rithm termination.

(f) Suppose now that the LP relaxation of
a partial problem is solved as the algo-
rithm proceeds and yields optimal dual
values wQ i on product rows i. Use those
results to formulate a column generation

850 Chapter 13 Large-Scale Optimization Methods

subproblem to find a feasible new load
mix g with coefficients ag, i having a
 reduced cost in the LP relaxation of the
current partial problem that makes it
 attractive to enter.

(g) What outcome from solving your genera-
tion subproblems of (f) would justify ter-
minating Algorithm 13A? Explain.

(h) Use class optimization software to solve
the LP relaxation of the partial problem
of (d). Then solve the resulting column
generation subproblem (f) by inspection
and continue Algorithm 13A until 5 new

columns have been added, or the termi-
nation condition of (g) is met.

(i) Round up to derive an approximate inte-
ger optimal solution from the final results
of part (h).

13-3 The Silo State IE faculty is dividing its 12
members into 4 teams of 3 to develop ideas for
a long-term strategic plan. Like all faculties,
the professors are not all equally compatible
with each other. The table below provides a
compatibility score (0 bad to 100 good) for each
possible pair.

88589970642775549961

9135587378558114

10036353314127

116302629463

87073935256

1813923453

18276827

941549

5332

12

10

8

35

7

38

14

43

11

44

45

21Prof 1

Prof
2

Prof
3

Prof
4

Prof
5

Prof
6

Prof
7

Prof
8

Prof
9

Prof
10

Prof
11

Prof
12

Prof 2

Prof 3

Prof 4

Prof 5

Prof 6

Prof 7

Prof 8

Prof 9

Prof 10

Prof 11

(a) Formulate this team formation task as a
binary ILP over professors i = 1 c, 12,
and decision variables xj = 1 if possible
3-prof team Tj ! 5i1, i2, i36 is included
in the plan, and = 0 otherwise. The
faculty seeks a maximum total compat-
ibility collection of the 4 chosen teams,
where the compatibility value of each
possible team Tj denoted hj, is the sum
of the 3 table values above for pairs of
its members.

(b) How many columns (distinct teams) would
the full formulation of (a) include?

(c) Discuss the challenges in direct solution
of the full model, especially if the faculty
became much larger.

(d) Explain the possible advantages of ap-
proaching the faculty’s task indirectly with
Delayed Column Generation Algorithm
13A, starting with a partial master prob-
lem including just the columns for teams
of profs 1–3, 4–6, 7–9, and 10–12.

(e) Use class optimization software to com-
pute primal and dual optimal solutions
to the LP relaxation of this first partial
problem.

 Exercises 851

(f) Outline an adhoc column generation sub-
problem using the dual LP optimum of
(e) to produce additional columns that
could improve the solution.

(g) Manually apply your subproblem design
of (f) to generate 3 new columns likely to
improve the solution of (e), and justify
your choices in terms of reduced objec-
tive values.

(h) Add your new columns of (g) to the
 partial problem and re-solve its LP relax-
ation. Did the solution improve? Why or
why not?

(i) Do you think your solution of (h) is close
to optimal? Explain.

13-4 The tree below shows the hypothetical
evolution of a Branch and Price Algorithm 13B
solution of an all-binary ILP in original vari-
ables x1, x2, and x3. Relaxation solutions are
shown next to nodes, and both fixed variables
and new columns (variables) are identified on
the branches.

x2 = 0x2 = 1

add x6

add x5

add x4

(0, 1/2, 1) 50

(no initial incumbent)

(1, 1, 0, 1) 43

(0, 2/5, 1, 1, 1) 33

(1, 0, 1, 1, 1) 47

3

5

4

2

1

0

(0, 1, 1, 1/3, 0) 40

(0, 1, 1, 0, 3/4, 1) 46

(a) Is the model minimizing or maximizing?
Explain.

(b) Assuming the process correctly followed
Branch and Price Algorithm 13B, take
the nodes in numerical order and briefly
describe what apparently happened. Also,
explain what solution proved optimal
and why.

13-5 Do Exercise 13-4 for the Branch-and-Price
below on an all-binary ILP over original variables
x1, x2, x3 and x4.

x2 = 0x2 = 1

add x6

add x5

add x8 add x7

(1, 1, 0, 1, 2/3) 35

(0, 1/2, 1, 1, 1, 1/4) 33

(0, 1/2, 1, 2/3) 40

(no initial incumbent)

(0, 0, 1, 1, 1, 1) 42(0,1,1,0,1,1/3,0) 39

(0, 0, 1, 0, 1, 1, 1) 35(0, 1, 1, 0, 1/5, 1/3, 0, 1/2) 37

3

45

4

2

1

0

13-6 Consider the ILP

 max 30x1 + 55x2 + 20x3

 s.t. 40x1 - 12x2 + 11x3 … 55
 19x1 + 60x2 + 3x3 Ú 20
 3x1 + 2x2 + 2x3 = 5

 x1, x2, x3 = 0 or 1

Form the Lagrangian relaxations obtained by
 dualizing each of the following collections of
main constraints, and show all sign restrictions
that apply to Lagrange multipliers.

(a) Dualize that first and second main
constraints.

(b) Dualize the first and third main constraints.

13-7 Consider the facilities location ILP

 min 3x1,1 + 6x1,2 + 5x2,1 + 2x2,2

 +250y1 + 300y2

 s.t. 30x1,1 + 20x1,2 … 30y1

 30x2,1 + 20x2,2 … 50y2

 x1,1 + x2,1 = 1
 x1,2 + x2,2 = 1
 0 … x1,1, x1,2, x2,1, x2,2 … 1
 y1 = 0 or 1

(a) Use total enumeration to compute all
 optimal solution.

(b) Form a Lagrangian relaxation dualiz-
ing the third and fourth constraints with
Lagrange multipliers v1 and v2.

852 Chapter 13 Large-Scale Optimization Methods

(c) Explain how the dualization in part (b)
leaves a relaxation that is easier to solve
than the full ILP.

(d) Use total enumeration to solve the
Lagrangian relaxation of part (b) with v1 =
v2 = 0, and verify that the relaxation opti-
mal value provides a lower bound on the
true optimal value computed in part (a).

(e) Repeat part (d) with v1 = v2 = -100.
(f) Repeat part (d) with v1 = 1000, v2 = 500.

13-8 Add to Exercise 13-7(a)-(f) the following:

(g) Compute the subgradient direction of
Algorithm 13C at your solution of (f)
and take a step using lambda = 500 to
update the dual solution. Then re-solve
the Lagrangian relaxation. Did the value
improve?

(h) Repeat (g) by taking a second step from
the solution of (f) using stepsize lambda
= 250 to update the dual solution, and
comment on the result.

(i) Is it possible that the dualization of (b) can
produce a bound better than the LP relax-
ation of the full model? Explain.

(j) Now formulate an alternative Lagrangian
relaxation dualizing the first two main
constraints and keeping the 3rd and 4th.

(k) Can that new dualization ever produce
a bound better than the LP relaxation of
the full model? Explain.

13-9 Do Exercise 13-7 for the generalized assign-
ment model

 min 15x1,1 + 10x1,2 + 30x2,1 + 20x2,2

 s.t. x1,1 + x1, 2 = 1
 x2,1 + x2,2 = 1
 30x1,1 + 50x2,1 … 80
 30x1,2 + 50x2,2 … 60
 x1,1, x1,2, x2,1, x2,2 = 0 or 1

Dualize the first two main constraints and solve with
v = 10, 02, v = 110, 122, and v = 1100, 2002.

13-10 Consider the binary integer program

 min 5x1 - 2x2

 s.t. 7x1 - x2 Ú 5
 x1, x2 binary

(a) Formulate and justify a Lagrangian relax-
ation dualizing the only main constraint
with multiplier v.

(b) Briefly explain why your relaxation of (a)
is indeed a relaxation of the full ILP model.

(c) Comment on whether this relaxation can
always be solved by LP (13.11).

(d) There are four possible integer solutions
to the relaxation. Develop four (linear)
expressions for the relaxation objective
function in terms of multiplier v, assuming
in turn that each of the four is optimal.

(e) Use results of (d) to develop a plot for the
Lagrangian relaxation dual solution value
as a function of multipler v.

(f) Identify an optimal choice of v on your
plot of (e), and explain your choice.

13-11 Consider the following binary ILP:

 max 13x1 + 22x2 + 18x3 + 17x4 + 11x5 + 19x6 + 25x7

s.t. a 7
j = 1xj … 3

 3x1 + 7x2 + 5x3 … 15
 12x4 + 9x5 + 8x6 + 6x7 … 11
 xj binary, j = 1, c, 7

(a) State the corresponding Lagrangian re-
laxation dualizing only the first main
constraint, and initializing its dual multi-
plier at v = 20 or v = -20, whichever is
appropriate.

(b) Briefly justify why your Lagrangian of (a)
is indeed a relaxation of the original model.

(c) Solve the relaxation of (a) by inspection,
using multiplier v = 10 and identify an
optimal solution and solution value for it.
Justify your computations.

(d) Beginning from your results of part
(c), compute the subgradient direction
Algorithm 13C would follow.

13-12 Consider the tiny LP constraint set

 -w1 + w2 … 1
 w1 + 2w2 Ú 1
 w1, ww Ú 0

(a) Sketch the feasible set of these constraints
in a 2-dimensional plot.

(b) Establish that the feasible set is convex.
(c) List all the extreme points of the set.
(d) List all the extreme directions.
(e) Show that each of the following points can

be expressed as a convex combination of
the extreme points plus a nonnegative

 Exercises 853

combination of the extreme directions:
w(1) = (0, 1), w(2) = (1, 1), w132= 10, 1>22.

(f) Is there any feasible point 1w1, w22 for
these constraints that cannot be expressed
as a convex combination of the extreme
points plus a nonnegative combination of
the extreme directions? Explain.

13-13 Consider solving the following 4-variable
LP by Dantzig-Wolfe Decomposition Algorithm
13D. Constraints 1 and 2 will constitute the link-
ing problem, numbers 3-5 the first subproblem,
and numbers 6-8 the second.

max 52x1 +19x2 +41x3 + 9x4

s.t. 12x1 +20x2 +15x3 + 8x4 "90

 9x1 +10x2 +13x3 +18x4 "180

+ x1 … 7
+ x1 -x2 Ú 3
x1, x2 Ú 0

+ 1x3 … 8

+ 1x3 + 1x4 Ú 10
x3, x4 Ú 0

(a) Sketch the feasible set of the constraints
for the first subproblem in a 2-dimensional
plot, and establish that the feasible set is
convex.

(b) Identify all the extreme points and ex-
treme directions of that first subproblem
feasible set.

(c) Do (a) for the second subproblem.
(d) Do (b) for the second subproblem.
(e) Show that Algorithm 13D can begin with

extreme point 1x1, x22 = 10, 02 in the
first subproblem, and 1x3, x42 = 10, 102
in the second subproblem. And construct
the first partial master problem.

(f) Solve your partial master problem of (e)
with class optimization software.

(g) Use results of part (f) to construct objec-
tive functions for the two subproblems
and solve both graphically.

(h) Update the partial master with results
from the two subproblems.

13-14 Do Exercise 13-13 on the following LP
starting with extreme points 1x1, x22 = 10, 02
and 1x3, x42 = 136, 02 in part (e).

13-15 Consider solving the following MILP by
Benders Decomposition Algorithm 13E. Treat
the y variables as the complicating ones, and begin
with y102 = 10, 02.

 max 60x1 + 50x2 - 25y1 - 100y2

 s.t. 20x1 + 17x2 - 60y1 - 30y2 … 10
 11x1 + 13x2 - 30y1 - 60y2 … 10
 x1, x2 Ú 0;
 y1, y2 ∈ [0, 10] and integer

(a) Treating y variables as the complicat-
ing ones, formulate the corresponding

Benders Primal and Benders Dual sub-
problems (definition 13.19).

(b) Starting with all yi = 0, optimize the
instance by Algorithm 13E. Use class
optimization software to solve sub- and
master problems when they become in-
convenient for solution by inspection.

13-16 Consider solving the the following min-
imum total cost facilities location model with
Benders Decomposition Algorithm 13E, taking
numbers on supply nodes as the fixed cost and
capacity (if opened), those on demand nodes as

min 200x1 +350x2 +450x3 +220x4

s.t. 2x1 + 1x2 + 4x3 + 3x4 #100
 5x1 + 5x2 + 9x3 + 7x4 #177

+x1 … 5

+5x1 +4x2 … 32

x1, x2 Ú 0
+1x3 +4x4 …36

+1x4 …4
x3, x4 Ú 0

854 Chapter 13 Large-Scale Optimization Methods

the required inflow, and numbers on arcs as unit
costs of transportation.

12
12

4

7

5
8

12

22
3

6 10

21

demand

41

2 5

63

(�xed cost, capacity)

(145, 20)

(160, 25)

(200, 35)

transport cost

(a) Use nonnegative variables xi, j for flows
on arcs (i, j) and binary variables yi = 1
if supply i is opened (= 0 otherwise) to
formulate the instance as a capacitated
MILP parallel to the uncapacitated one of
BG Application 13.5.

(b) Treating y variables as the complicating
ones, formulate the corresponding Benders
Primal and Benders Dual subproblems
(definitions 13.18 and 13.19).

(c) Starting with all yi = 1, optimize the
 instance by Algorithm 13E. Be sure to
 provide details of sub and master problems
solved at each step. Use class optimization
software to solve sub and master prob-
lems when they become inconvenient for
 solution by inspection.

REFERENCES

Bertsimas, Dimitris and John N. Tsitklis (1997),
Introduction to Linear Optimization. Athena
Scientific, Nashua, New Hampshire.

Chvátal, Vašek (1980), Linear Programming, W.H.
Freeman, San Francisco, California.

Lasdon, Leon S. (1970), Optimization Theory for
Large Systems, Macmillan, London, England.

Martin, R. Kipp (1999), Large Scale Linear and
Integer Optimization, Kluwer Academic, Boston,
Massachusetts.

Parker, R. Gary and Ronald L. Rardin (1988), Dis-
crete Optimization, Academic Press, San Diego,
California.

Wolsey, Laurence (1998), Integer Programming,
John Wiley, New York, New York.

855

▪ ▪ ▪ ▪ ▪
Chapter 14

Prior chapters of this book have encountered many optimization model forms and
the algorithms that address them. These include Linear Programs, Integer Linear
Programs, Network Flow Problems, Shortest Path Problems, and Dynamic Programs.
Some of these were seen to be highly tractable, that is, very large examples can be
solved to global optimality. Others seemed dramatically harder to address.

Computational Complexity Theory seeks to define a rigorous and consistent
way of thinking about how the tractability of problem forms should be classified
and how algorithmic efficiency should be measured. This chapter presents the cen-
tral concepts of that theory and illustrates their value in conducting optimization
research and practice.

14.1 Problems, Instances, and the challenge

Our investigation begins with a formal definition of an optimization problem.

Computational
Complexity Theory

In complexity theory, a problem is a general model form
defined as an infinite collection of particular data sets termed instances.

Definition 14.1

Thus, although we sometimes informally call an example like the following a
“problem”

 min 2x1 + 4x2

s.t. 12x1 + x2 Ú 29

 x1 + x2 … 10

 x1, x2 Ú 0

it is more properly considered one instance of the LP problem form characterized
by its specific decision variables, objective function, and constraints.

856 Chapter 14 Computational Complexity Theory

The Challenge
Researchers or analysts confronted with instances of some problem form seek the
most efficient algorithms for addressing the models before them. The challenge is
to decide what sorts of methods to investigate. How can we identify some problems
that are quickly and easily solved with clever special techniques, while much less
efficient, or even heuristic methods are the best available tools for others? Two tree
problems on graphs will illustrate.

aPPlIcatIon 14.1: sPannIng tree examPles of the comPlexIty
challenge

We consider two similar problems defined on undirected graphs with weights/costs
assigned to each edge. One instance is shown below.

7
2

2

3
5

12 11 optimum = 19

1

1

10

3

4

1

6

2
5

An edge subgraph of any given instance is a tree if it is connected and contains no
cycles, and it is a spanning tree if it includes all nodes. Heavy edges in the above
offer an example.

Minimum Spanning Tree Problem

The Minimum Spanning Tree (MST) problem treated in Section 10.10 seeks a mini-
mum total weight spanning tree. The heavy edges in the above application define an
optimum with total weight = 19.

As explained in Section 10.10, an extremely efficient “greedy” algorithm is
available to compute an optimal spanning tree of any given instance. We simply
select edges in lowest-to-highest weight sequence, skipping any which would create
a cycle with those already chosen, and stopping when a spanning tree is a hand. For
the above instance, this process could first choose weight = 1 edges (2, 3) and (3, 4),
then choose weight = 2 edge (1, 2). Weight = 2 edge (1, 4) must now be skipped
because it forms a cycle with the other three. Continuing, we skip weight = 3 edge
(1, 3) because it too forms a cycle. Now weight = 5 edge (3, 5) can be added, but
weight = 7 edge (2, 5) then creates a cycle. Adding weight = 10 edge (4, 6) com-
pletes a spanning tree. A solution obtained this way is provably optimal.

Minimum Steiner Tree Problem

An apparently very similar problem is the Minimum Steiner Tree (Stein) problem
with instances like the following.

102

2
3

6 11

5

7

1

1

optimum = 141

6

5

4

2

3

14.2 Measuring Algorithms and Instances 857

The new element is a subset of Steiner nodes (shown as squares in the above
 diagram). The minimum Steiner tree problem seeks a minimum total weight tree
that spans all the Steiner nodes, but others may or may not be included. The above
figure identifies an optimal solution in heavy edges, with total weight 14. All 3
Steiner nodes (1, 5, and 6) are included along with optional node 3.

What is startling about this Steiner variant of spanning tree problems is that
despite its close resemblance to the (MST), the only known algorithms for comput-
ing an optimum are standard Integer Linear Programming methods of Chapter 12.
Enumerative methods like Branch and Bound or Branch and Cut are the best tools
available.

14.2 measurIng algorIthms and Instances

Any discussion of computation time in optimization begins with the observation
that larger instances of any problem are likely to require more effort to solve than
small ones. Efficiency must be defined relative to instance size.

Computational Orders
The time required by an algorithm can be defined informally as the number of ele-
mentary steps like additions, subtractions, multiplications, divisions, and compar-
isons needed to complete computation. We assume for the moment that all these
operations can be done in unit time.

Recognizing that the effort required for any computation will grow with
instance size, complexity theory describes algorithm efficiency as a function of size.

The computational order of a given algorithm, denoted O1 # 2,
is a bound on the required time to complete computation on a problem instance
as a function of its size.

Definition 14.2

Thus an O1n22 algorithm will require time growing at most with the square of
instance size n, while an O12n2 algorithm consumes exponentially growing time.

The bound should be worst case, covering every instance, however perverse,
to be sure no exceptions need to be treated. Otherwise, it would not really be a
bound. Furthermore, much of the deep complexity theory of Sections 14.5–14.6 will
be seen to depend on covering every case in establishing computation orders for
given problems.

Prior to the full discovery of complexity theory for optimization problems
in the 1970s, researchers and analysts had only their experience and intuition to
decide what methods to pursue on a problem of interest. The remainder of this
chapter introduces the rigorous, though still incomplete, tools introduced then that
revolutionized the classification of problem complexity and the corresponding
algorithm choices.

858 Chapter 14 Computational Complexity Theory

The following table illustrates why we need to focus only on computation time
trends as n grows large. The ranking of time requirements at n = 10 changes dra-
matically as the trend emerges for even a modest n = 100.

Order Time at n = 10 Time at n = 100

log n 1 hour 2 hours

n2 10 minutes 16 2/3 hours

n5 1 minute 69+ days

2n 1 second 1017 centuries

Recognizing that only the trends at large n really matter permits us to skip over
a host of details that only cloud the real messages to be revealed.

•	 It is not important how computation times rank at small instance sizes (see log n vs. 2n
in the table). We are interested in the comparison only after instance size growth has
revealed the trend.

•	 Only the dominant or highest-order term in the expression for the required number
of steps needs to be considered (see n2 vs. n5 in the table). The effects of lower order
terms will be overwhelmed as instances grow large.

•	 Constant multiples can be ignored in computing orders because effects of say doubling
or tripling times will also be overwhelmed at larger sizes.

•	 Ignoring multiples also frees us from concerns about exactly what computer algo-
rithms we are trying to bound or the units in which times are expressed. Speeding
the time of computations, or changing the units, will only update the bound by the
ratio of new vs. old times to execute arithmatic operations or the units in which they
are expressed.

examPle 14.1: determInIng comPutatIonal orders

Consider the task of sorting instances defined by n numbers into nondecreasing se-
quence by their values. One algorithm (not the best) starts a sorted output list with
one of the numbers and then inserts each of the others in turn by starting at the bot-
tom of the list and stepping up one by one until the right place for the new number
is identified. Determine the computational order of this algorithm.

Solution: Summing the number of steps that could be required before each inser-
tion point is discovered, gives

1 + 2 + c + 1n - 12 =
1
2

 1n - 121n2 =
1
2

 1n2 - n2

Notice that the insertion point might be discovered more quickly in some cases,
but bounds need to reflect the worst case. Following the above conventions, atten-
tion can be focused on the dominant term n2 of the order. Also, the constant 12 can
be ignored. The result is to score the given algorithm an O1n22 one.

14.2 Measuring Algorithms and Instances 859

Instance Size as the Length of an Encoding
To apply the notion of computational orders to the full range of problems and algo-
rithms requires more precision about what is meant by instance size. In many opti-
mization cases, it is satisfactory to rely on the normal intuitions about the number of
elements in an instance. How many constraints and/or variables are in an instance?
How many nodes and/or arcs are in an instance on graphs? Still, the issue becomes
more subtle when the magnitudes of instance constants/parameters like costs, con-
straint coefficients, capacities, and right-hand sides materially affect the arithmatic
effort to accomplish algorithm steps (e.g., in inverting matrices), or even change the
number of arithmatic steps to be done (e.g., BKP, Examples 14.1 and 14.2 below).

For a more robust definition of instance size, modern complexity theory falls
back on concepts first developed by computing pioneer Dr. Alan Turing in the 1930s
before computers even existed. It recognizes that to submit an instance for com-
puter solution it must be reduced to a string of symbols, called an encoding, which
provides a full description.

The formal size of an instance of any given problem is the
length of its encoding as a string of symbols drawn from a finite alphabet
that fully defines the main structure of the instance and details its constant
parameters.

Definition 14.3

Obviously, the encoding length can vary depending on the alphabet and other con-
ventions used, but the difference will often be one of those constant multipliers
which can be disregarded in assessing algorithm efficiency.

examPle 14.2: encodIng maxImum flow Instances

To illustrate encoding, return to the Maximum Flow Problem (MFlow) of Section
10.8. An instance is a directed graph G(V, A), with constants ui, j on the arcs in
1i, j2 ∈ A specifying flow capacities, and two specific nodes in V chosen as the flow
origin/source s and destination/sink t. The problem seeks a feasible network flow on
the digraph that maximizes the total flow from s to t, treating all other nodes in V as
transshipment. The following figure shows a simple instance on 4 nodes, with source
s = 1 and sink t = 4.

3

104
optimum = 1783353

124

67

78

t = 4s = 1

2

(a) Specify a finite alphabet of symbols sufficient to encode such instances.

(b) Detail and justify an encoding of the above instance in symbols of the defined
alphabet.

860 Chapter 14 Computational Complexity Theory

Solution:

(a) We can use the digits 0, c, 9 plus delimiters & within #.

(b) One encoding of such instances in this alphabet would start by naming the source
s and sink t, then enumerate the other members of vertex set V, and complete with
a list of all arcs in 1i, j2 ∈ A and their capacities ui, j. For the above instance, the
result is

1&4#2&3#1&2&124#1&3&67#2&3&33#2&4&78#3&2&33#3&4&104

Expressions for Encoding Length of All a Problem’s Instances
The encoding length for any given problem instance can easily be determined by
simple counting. Still, like most other things in complexity theory, what is important
is how the length of the encoding grows with the various dimensions of instance
input, including the size of constant parameters. For convenience, most complex-
ity theory assumes such constants are integer, and if they are at least rationals the
instance can be rescaled to make them integers.

Integer constants in problem instances are usually assumed to
be encoded in a fixed-base number system so that their size is characterized by
the logarithm of their magnitude.

Principle 14.4

Such encodings are often called binary encodings, thinking of numbers as base-2.
Still, the base is irrelevant. The number of digits to express any integer q in the
familiar base-10 system is <1 + log10 0 q 0 =, which can be treated as simply log10 0 q 0 in
broad complexity analysis. Changing to binary only multiplies by a constant.

 log2 0 q 0 = log210 # log10 0 q 0
It is sufficient to simply refer to the size of parameter q as log 0 q 0 .

examPle 14.3: length of maxImum flow encodIngs

Return to Maximum Flow Problems (MFlow) of Section 10.8 and the of Example
14.2 over directed graphs G1V, A2, with capacities ui, j 7 0 on the arcs in 1i, j2 ∈ A,
and two specific nodes in V chosen as the origin/source s and destination/sink t.
Develop and justify an expression bounding the length of the inputs for such
(MFlow) instances.

Solution: Following the pattern of Example 14.2, and disregarding delimiters
 between items in the encoding, the total length of the encoding of the capacities is

a
1i, j2∈A

 log ui, j

14.3 The Polynomial-Time Standard for Well-Solved Problems 861

This is bounded by 0A 0 # log umax where umax is the largest capacity. Other elements
of size such as the lists the nodes and arcs grow with 0V 0 and 0A 0 alone. Thus a good
description of the full length of Max Flow instance inputs is

O1 0V 0 + 0A 0 + 0A 0 # log umax2

14.3 the PolynomIal-tIme standard for well-solved
Problems

Ideas of computational orders for algorithms and measures of instance size are valu-
able guides to the efficiency of solution procedures for most optimization problem
forms. Knowing that a problem admits one algorithm that is say O1n22, for instance
size n, and another that is O1n32, informs anyone trying to solve instances of that
problem to at least give priority consideration to the first method.

Still, the challenge outlined in Section 14.1 is far grander. When should a prob-
lem form be classified well-solved? The remarkably simple answer that has emerged
from modern complexity theory is elegantly concise.

An optimization problem is considered well-solved in the
complexity theory sense if it admits a polynomial-time algorithm for every
instance, that is, an algorithm running in computation time bounded by a poly-
nomial (constant power) function of the instance size (length of its input).

Principle 14.5

examPle 14.4: recognIzIng PolynomIally bounded
comPutatIon

For n the number of entities in an instances of a given problem, and q a constant pa-
rameter for instances, determine whether an algorithm with time bounded by each
of the following orders is polynomial-time:

O1n22, O1n252, O1n2 log n2, O1n21n2, O12n2, O1n # q2

Solution: O1n22 is clearly polynomial with time bounded by constant power 2, as
is O1n252, although the latter has computation that grows very rapidly with instance
size. O1n2 log n2 and O1n21n2 also qualify as polynomial-time because compu-
tation growth in both is bounded by constant-power O1n32. Exponential growth,
with size in the exponent like O12n2, is definitely not polynomial-time because
there is no constant power that bounds every case. More subtly, O1n # q2 is also not
polynomial-time because in the binary-encoding length of the parameter q, such an
 algorithm is O1n # 2 log q2 which is exponential in the length of q.

The polynomial-time standard was another of the theoretical computing con-
tributions of pioneer Alan Turing. It was extended to optimization in the 1970s by
other pioneers Jack Edmonds, Stephen Cook, and Richard Karp. Table 14.1 shows
how it aligns so well with findings about best algorithms for many of the problems
treated in this book.

862 Chapter 14 Computational Complexity Theory

14.4 PolynomIal and nondetermInIstIc-PolynomIal
solvabIlIty

Having recognized the polynomial-time solvability standard for well-solved
problems (principle 14.5), the big question is, “How broad is the family of poly-
nomially solvable problems?” Table 14.1 showed that many of the most familiar
 optimization models meet the standard, but many more remain formally uncertain;
no polynomial-time algorithm is known, but there is no definitive proof that none is
possible. This section introduces formal families of problems that provide a founda-
tion for investigating those uncertainties.

Decision versus Optimization Problems
Most of this formal complexity theory is developed in terms of decision problems,
which are problems that can be answered simply “yes” or “no.” For example the
problem of determining whether the given instance of a directed graph is acyclic (free
of dicycles) is a decision problem. Algorithms like those of Section 9.6 can deter-
mine whether or not the instance is acyclic with an easy polynomial-time search.

Most optimization problems demand more. An optimal choice of the decision
variables is required, or at least the optimal value of the objective function, rather
than a simple “yes” or “no.”

table 14.1 Well-Known Problem Forms and Polynomial Solvability

Polynomially Solvable Believed Not

Linear Programs (LP) Integer Linear Programs (ILP)
Spanning Tree Problem (MST) Steiner Tree Problem (Stein)
Network Flow Problem (NetFlo) Fixed Charge Network Flow Problem (FCNP)
Linear Assignment (Asmt) Quadratic Assignment (QAsmt)
Maximum Flow (MFlow) Generalized Assignment (GAsmt)
2-Matching (2Match) 3-Matching (3Match)
Shortest Path (SPath) Longest Path (LPath)
CPM Scheduling (CPM) Minimum Makespan Scheduling (MSpan)

Travelling Salesman Problem (TSP)
Set Packing (SPack)
Set Covering (SCover)
Set Partitioning (SPartn)
Vertex Covering (VCover)
Knapsack Problem (KP)
Binary Knapsack Problem (BKP)
Multi-dimension Knapsack Problem (MKP)
Capital Budgeting Problem (CapBud)
Facilities Location Problem (FLP)
Vehicle Routing Problem (VRP)

No typical optimization model is a decision problem.Principle 14.6

14.4 Polynomial and Nondeterministic-Polynomial Solvability 863

Given an instance of an optimization problem (Opt), the more
limited feasibility version asking whether the instance admits any feasible
solutions (denoted 1Optfeas2), is a decision problem.

Principle 14.7

Given an instance of an optimization problem (Opt) and a
threshold v, the more limited threshold version asking whether the instance
admits a feasible solution with objective value at least as good as v (denoted
1Opt…2 for a minimize or 1OptÚ2 for a maximize) is a decision problem.

Principle 14.8

Still, some restricted forms of optimizations do fit the definition.

aPPlIcatIon 14.2: set PartItIonIng and decIsIon Problems

The Set Partitioning Problem (SPartn) is introduced in Section 11.3. It seeks a min-
imum total cost sub-collection of subsets Sj creating an exact partition of a target
set S. Using decision variables xj ! 1 if subset j is chosen and = 0 otherwise, and
parameter matrix

A ! C1 1 1 0 0
1 0 0 1 1
1 0 1 0 1

S
The following is an instance over S = 51, 2, 36, with S1 = 51, 2, 36 at cost 12,
S2 = 516 at cost 3, S3 = 51, 36 at cost 7, S4 = 526 at cost 10, and S5 = 52, 36 at
cost 5:

 min 12x1 + 3x2 + 7x3 + 10x4 + 5x5

s.t. a 5
j = 1aijxj = 1 for all i ∈ S

 x1, c, x5 binary

An optimal solution is x* = 10, 1, 0, 0, 12 with total cost 8.
Like most optimizations (principle 14.6) problem (SPartn) is clearly not a

decision problem. It is answered by an optimal solution, not a simple “yes” or “no.”
Contrast with the feasibility variant 1SPartnfeas2 to determine whether the

given instance of (SPartn) has any feasible solution. Possible answers are limited to
“yes” or “no,” and 1SPartnfeas2 is indeed a decision problem (principle 14.7). The
above instance is a “yes” case.

The threshold version 1SPartn…2, which is also a decision problem (principle
 14.8), adds a new objective value target v to the encoding. For the minimize instance
above, the answer is “yes” for v Ú 8 because there are feasible solutions with values
as low as 8. For v 6 8 the answer is “no.”

Class P - Polynomially Solvable Decision Problems
The first major class of problems in complexity theory to consider are the polynomi-
ally solvable decision problems.

864 Chapter 14 Computational Complexity Theory

None of the polynomially solvable optimization problems identified in
Table 14.1 belongs to P because none is a decision problem. Still, all of their fea-
sibility and threshold version are members of P. For example, for instances of
 minimizing linear programming problem (LP), corresponding instances of feasibil-
ity version 1LPfeas2 can be answered in polynomial-time by applying the known
 polynomial-time algorithm for computing a full optimal solution, which will provide
a feasible solution if there is one, or stop with a provable conclusion of infeasibility.

Similarly, minimizing instances of threshold version 1LP…2 can be resolved in
polynomial time by applying the polynomial-time optimization algorithm. It is only
necessary to compare the threshold v to the computed optimal solution value in
order to decide “yes” or “no.”

Class NP - Nondeterministic-Polynomially Solvable Decision
Problems
A subtle extension of the idea of polynomial-solvability is needed to deal with the
more difficult optimization problems not known to be polynomially solvable in the
usual sense (e.g., right-hand column of Table 14.1). It focuses on whether given or
guessed solutions can be verified in polynomial-time. Specifically, a decision prob-
lem is said to be nondeterministic-polynomial time solvable if “yes” instances can
be verified in polynomial time with the aid of a polynomial-length hint. Then the set
of such models forms the second major building block of complexity theory.

Class P ! 5decision problems solvable in polynomial time6Definition 14.9

Class NP ! 5decision problems nondeterministically solvable
in polynomial time6

Definition 14.10

aPPlIcatIon 14.3: nondetermInIstIc solvabIlIty of IlP
threshold

Nondeterministic solvability (verifiability) is actually much more straightforward
in the optimization context than its clumsy name suggests. To see the idea, consider
the general maximizing Integer Linear Program (ILP) and its threshold version
1ILPÚ2. An instance is defined by an m by n integer matrix A, an n-vector of
 objective coefficients, c, an m-vector of right-hand-sides, b, and a threshold v. Each
instance of problem 1ILPÚ2 asks whether there exists an n-vector x such that

c # x Ú v

Ax … b

x Ú 0 and integer

If the answer is “yes,” how can that be proved in polynomial time? One way
would be to begin from scratch and fully solve the corresponding optimization
instance, checking the threshold at the end. But no polynomial-time algorithm is
known for optimizing general ILPs.

14.4 Polynomial and Nondeterministic-Polynomial Solvability 865

What if instead a sufficiently good (objective at least v) feasible solution x could
be guessed or found in some other nondeterministic manner? Confirming a “yes”
conclusion would then require only O(n) additions to verify the objective threshold,
O(mn) effort to check satisfaction of all main constraints, and O(n) inspections to
assure all xj Ú 0 and integer. This combines to O1n2 + O1mn2 = O1mn2 effort.
Verifiability of “yes” cases is doable in polynomial-time if a solution is given.

Now suppose the right answer for an instance of 1ILPÚ2 is “no.” No way is
known to efficiently prove that, even with the help of a polynomial-length guess.
At least for worst cases, an enumerative algorithm requiring exponentially growing
time would probably be required. Proving the negative is just a lot harder. This is
why class NP asks only about “yes” cases in defining nondeterministic-polynomial
solvability.

Membership in NP is easy to establish for “yes” cases of all the familiar opti-
mization problems treated in this book using exactly the kind of argument applied
in Application 14.3. The same does not hold for every decision problem. The great
Alan Turing established that a class of Undecidable problems exists for which not
even “yes” instances can be verified in polynomial time. Fortunately, such problems
fall outside the scope of this book.

Polynomial versus Nondeterministic Polynomial Problem Classes
Figure 14.1 displays many connections among different complexity classes of prob-
lems considered so far. The most important regards P vs. NP.

Complexity class P is a subset of NP.Principle 14.11

PTime

P

NP

Undecidable
Decision
problems

fIgure 14.1 Polynomial vs. Nondeterministic Polynomial
Problem Classes

This must be true because both “yes” and “no” instances of (decision) problems in
P can be solved in polynomial time. The same algorithm would verify “yes” cases in
polynomial time as required for NP.

866 Chapter 14 Computational Complexity Theory

It is also useful to include PTime, the collection of all polynomially solvable
problems in the discussion. PTime includes P and much more.

examPle 14.5: dIstInguIshIng the comPlexIty class of
Problems

Refer again to Table 14.1 and Applications 14.1–14.2 with the Minimum Spanning
Tree problem (MST), the Minimum Steiner Tree problem (Stein), and the Set
Partitioning problem (SPartn).

Decide where each of the following should be placed in the diagram of
Figure 14.1: (MST), 1MST…2, 1Stein…2, 1SPartnfeas2.

Solution: We know optimization problem (MST) is polynomially solvable, so it
would be placed in the part of PTime outside P. Its threshold version 1MST…2
 belongs to P. Although its optimization version is more difficult, the threshold
 version of Steiner Tree 1Stein…2 still belongs to NP, but probably not P. The fea-
sibility version of Set Partitioning 1SPartnfeas2 is similar. It belongs to NP, but
 probably not to P.

Complexity class P is the decision-problem subset of PTime.Principle 14.12

14.5 PolynomIal-tIme reductIons and nP-hard Problems

The complexity classification of Figure 14.1 is still incomplete because it remains
vague about problems not known to belong to PTime or P.

Polynomial Reductions between Problems
A relational operator that connects complexity of different problems can vastly
enrich the investigation.

One last observation mentioned above is that the collection of decision problems
contains more than NP, including the famous Undecidable class.

Complexity theory problem 1Q12 polynomially reduces to
another 1Q22 (denoted 1Q12 ∝ 1Q22) if a polynomial-time algorithm for
1Q22 provides one for 1Q12.

Definition 14.13

The notion of instances of one problem being solved by an algorithm for another is
common in optimization. For example, Chapter 10 shows that Network Flow prob-
lems can be solved by Linear Programming, that is, (NetFlo) ∝ (LP). Similarly,
(LP) ∝ (ILP) because an algorithm for Integer Linear Programs could be used to
solve instances of LP. Notice that the more general or harder-to-solve problem falls
on the open, right side of the ∝ operator, much like a larger number falls on the

14.5 Polynomial-Time Reductions and NP-Hard Problems 867

For any optimization problem (Opt), feasibility version
1Optfeas2 and threshold version 1Opt…2 (or 1OptÚ2) reduce to the full opti-
mization version, that is, 1Optfeas2 ∝ 1Opt2, and 1Opt…2 ∝ 1Opt2 (or
1OptÚ2 ∝ 1Opt2).

Principle 14.14

open side of a standard 6 . Problems (NetFlo) and (LP) on the left are the less com-
plex of the two problems to solve in each reduction.

Earlier discussion of feasibility and threshold versions of optimization prob-
lems fits nicely in the reduction context.

aPPlIcatIon 14.4: reductIon of set PartItIon to steIner tree

For a less straight forward example of a polynomial reduction, return to the Steiner
Tree problem of Application 14.1 and the Set Partitioning problem of Application
14.2. The figure below illustrates a proof that Set Partitioning feasibility version
1SPartnfeas2 polynomially reduces to a threshold version of Steiner Tree, that is,
1SPartnfeas2 ∝ 1Stein…2.

Subsets
linked to
members

S1

S2

S3

0

2

3

v = | S |

| S3 |

|S|

| S|1| |

S|1|

| S2 |

| S1 |
1

The argument begins with a typical instance of 1SPartnfeas2: a ground set of
objects S, and a family of subsets 5Si ⊆ S : i ∈ I6. The question is whether any col-
lection of those subsets provides an exact partition of S. To establish a reduction, a
corresponding instance of Steiner Tree will be constructed that fulfills the task of
checking feasibility of the given Set Partition instance by meeting a specified objec-
tive function threshold in the corresponding Steiner Tree.

The figure illustrates how this can be done. One source, Steiner-node is con-
nected by edges to non-Steiner nodes for each of the subsets Si with cost equal to
subset size � Si � . Then each such subset node i is joined to Steiner nodes for elements
of the ground set that belong to Si. Finally the threshold for the Steiner case is set at
� S � the number of objects in the ground set.

Clearly any Steiner Tree of the constructed instance will use subsets covering
every element of � S � . If its cost, which will be the sum of the used subset sizes, satis-
fies the threshold, there can be no duplication among the selected subsets, and they
provide the needed proof of Set Partition feasibility. Otherwise, there is no feasible
solution.

Why is this a polynomial reduction? That is because the constructed Steiner
instance has a size polynomially related to the length of the Set Partitioning one. If,
for example, the construction required building an exponentially larger Steiner Tree

868 Chapter 14 Computational Complexity Theory

instance, a polynomial algorithm in the length of its massive size would not provide
one for the Set Partition instance being investigated. The reduction must keep the
sizes of both instances in sync.

Another insight is that nothing has been presented so far about the threshold
version 1Stein…2 of Steiner Tree to suggest there actually is a polynomial-time algo-
rithm to solve it; there probably is not. Still, the above reduction shows 1Stein…2 is
at least as hard to solve as 1SPartnfeas2. Whatever is known about the solvability of
1SPartnfeas2 bounds what is possible for 1Stein…2.

examPle 14.6: ProvIng Problems nP-comPlete or nP-hard

Recall Application 14.4’s proof that Set Partitioning feasibility 1SPartnfeas2 ∝
1Stein…2, and assume it is known that 1SPartnfeas2 is NP-Complete. Use these re-
sults to establish that 1Stein…2 is NP-Complete and full Steiner Tree optimization
model (Stein) is NP-Hard.

Solution: To show 1Stein…2 is NP-Complete requires first establishing that it
 belongs to NP, then finding a known NP-Complete problem that reduces to it.

Complexity class NP-Complete ! {1Q2 ∈ NP: every mem-
ber of NP reduces to (Q)}.

Definition 14.16

Complexity class NP-Hard ! {(Q): some member of
NP-Complete reduces to (Q)}.

Definition 14.17

Polynomial reductions among problems are transitive. That is,
if 1Q12 ∝ 1Q22 and 1Q22 ∝ 1Q32, then 1Q12 ∝ 1Q32.

Principle 14.15

Another important property of polynomial reductions is that they can be
chained together to establish a reduction indirectly.

For example, 1NetFlo2 ∝ 1ILP2 because 1NetFlo2 ∝ 1LP2, and in turn, 1LP2∝
1ILP2.

NP-Complete and NP-Hard Problems
Canadian researcher Stephen Cook revolutionized modern complexity theory
by discovering that there are problems in NP to which every one of its members
reduces. They form a new hardest subclass called NP-Complete.

The idea can be extended beyond decision problems by capturing those as hard as
any member of NP-Complete.

All that is required to place a problem in this hardest of complexity families rele-
vant to optimization is to show a known member of NP-Complete reduces to it.

14.6 P versus NP 869

As a “yes”/“no” problem for which given “yes” solutions can easily be verified in
 polynomial time, 1Stein…2 does indeed belong to NP. Furthermore, Application
14.4 provides the needed reduction from an NP-Complete problem assuming
1SPartnfeas2 is NP-Complete.

Full optimization Steiner Tree problem (Stein) is not a decision problem (princi-
ple 14.6), so it cannot belong to any part of NP. Still principle 14.14 establishes that the
threshold version of the problem reduces to the full optimization. Having just proved
the threshold version NP-Complete, this assures full version (Stein) is NP-Hard.

Figure 14.2 adds NP-Complete and NP-Hard to the known complexity frame-
work. Class NP-Hard includes all the problems provably as hard as any in NP, and
NP-Complete is its decision problem subset.

PTime

P

NP

NP-Complete

NP-Hard

Undecidable
Decision
problems

fIgure 14.2 Believed Complexity Class Structure

14.6 P versus nP

Thousands of well-studied optimization problems (including all those on the right
side of Table 14.1) are by now known to be NP-Hard, with corresponding feasiblity
and threshold versions NP-Complete. The full import of this is revealed by consid-
ering what would follow if a polynomial-time algorithm were found for any member
of either class.

If any single problem in NP-Complete or NP-Hard can be
solved in polynomial time, then every member of NP is polynomially solvable,
and P = NP. Consequently, unless P = NP, there can exist no polynomial-time
algorithm for any NP-Complete or NP-Hard problem.

Principle 14.18

Every member of NP-Hard reduces from a member of NP-Complete, and every
member of NP reduces to every member of NP-Complete. A polynomial algo-
rithm for any problem in either class implicitly provides one for all of NP, mak-
ing P = NP, because every other problem could be solved in polynomial time by
reducing it to the one with a known algorithm.

870 Chapter 14 Computational Complexity Theory

The P 3 NP Conjecture
The cartoons in Figure 14.3 depict the revolutionary impact of principle 14.18 for re-
searchers seeking efficient (polynomial-time) algorithms for one or another NP-Hard
problem of interest. As of this writing, all have failed, and principle 14.18 now
reveals that a team seeking a polynomial algorithm for any NP-Hard problem is,
in effect, simultaneously trying to achieve what generations of researchers have not
been able to do – find a polynomial algorithm for any problem in NP. An algorithm
for any member of NP would yield one for all.

Recognition of this almost breathtaking burden has led to a broadly accepted
conjecture that P ≠ NP.

(a) Team Failing on Their NP-Hard Problem

(b) Countless Others Sharing Their Failure on Equivalent Problems in NP

fIgure 14.3 Argument for P ≠ NP

Although it has yet to be proved, discovery that an optimization
or related problem is NP-Hard makes it all but certain that no polynomial-time
algorithm will be discovered that can deal with every instance.

Principle 14.19

It is worth emphasizing that many once broadly held beliefs in science and math-
ematics have ultimately been shown to be false. Until that happens with P vs. NP,

14.7 Dealing with NP-Hard Problems 871

however, readers are well advised to first attempt to determine whether a problem
of interest is NP-Hard, and if so, to look beyond polynomial-time exact algorithms
to find useful tools that can address instances of interest.

14.7 dealIng wIth nP-hard Problems

A finding that a problem is NP-Hard does not imply it is hopeless to investigate.
After all, many of the most important applications of optimization fall on the right,
NP-Hard side of Table 14.1. What is indicated is that more limited standards for
effective solution need to be considered.

Special Cases
One of the first ways to seek solutions to NP-Hard optimization problems is to
focus on tractable special cases.

An algorithm is said to be pseudo-polynomial if its computa-
tion is bounded by a polynomial in the number of main entities in the instance,
and the magnitudes of its constant parameters.

Definition 14.21

Special cases of optimization problem – subsets of instances –
can often be solved in polynomial-time even though the full problem is
NP-Hard.

Principle 14.20

Classification of a problem must consider its worst case – the most difficult instances
to solve – if it is going to be up to the task of dealing with other hard problems that
reduce to it. Difficult instances of one problem are unlikely to reduce to easy cases
of another.

This does not preclude efficient solution of subsets of instances important in
particular applications. For example, the Linear Assignment problem (Asmt) of
Section 10.7 is a binary integer linear program with widespread application. Every
instance of (Asmt) is an instance of (ILP). Still, efficient polynomial-time algorithms
are known for even the worst case of (Asmt) although they probably do not exist for
all cases of (ILP).

Pseudo-Polynomial Algorithms
Some important optimization models are NP-Hard because no algorithm is known
to solve them in time polynomial in the formal length of instance input. Still, meth-
ods may be available with weaker standards of efficiency.

The distinction comes in the treatment of constant parameter lengths. A truly poly-
nomial-time bound would use the number of digits or logarithm of its magnitude for
such constants (principle 14.4). Pseudo-polynominal bounds consider the magni-
tude of constants, which grows much more quickly in the worst case. Although good

872 Chapter 14 Computational Complexity Theory

performance may result for instances with moderate-size constants, exponential
time growth will eventually come to dominate.

An example of a pseudo-polynomial algorithm is the dynamic programming
method for Binary Knapsack Problems (BLP) treated in Section 9.9. It runs in
O(nb) time, where n is the number of variables in the instance and b is the right-
hand-side. Good performance could be expected for modest values of b, but (BKP)
is NP-Hard when input length is measured in the standard way O1n logb2.

Average Case Performance
Although worst-case bounds track well with algorithm time growth on instances of
most optimization problems, actual performance is sometimes better represented
by average times.

Strong relaxations, cutting planes, and other methods of inte-
ger programming can often contain the ultimately exponential-time explosion
of enumerative methods enough to permit solution of modest-size instances
found in important applications.

Principle 14.23

Average-case bounds on computation times may be useful in
predicting actual performance on instances of some problems, although they
do not change the formal complexity classification of the problem.

Principle 14.22

A classic example of the distinction between worst- and average-case bounds arises
with Linear Programs (LP). As shown in Table 14.1, (LP) is known to be polynomi-
al-time solvable. Still, the polynomial bounds come from the interior-point methods
of Chapter 7, not the Simplex algorithms of Chapter 5 and 6. Simplex performs well
on a vast array of actual (LP) instances, but a small and unrepresentative num-
ber of cases are known to require an exponentially growing numbers of steps (see
Section 7.6). This has not precluded Simplex from being widely used in practice or
having its effectiveness documented by research on average-case bounds.

Stronger Relaxations and Cuts for B&B and B&C
Enumerative methods like Branch-and-Bound (B&B) and Branch-and-Cut (B&C)
treated in Chapter 12 have exponentially growing worst-case computation times.
Still enhanced relaxation and cutting planes of Sections 12.2 and 12.6 can greatly
enhance their performance.

One example is the strong valid inequalities for Set Covering problems (SCover)
investigated in Section 12.6. They render instances of (SCover) among the better
solved of ILPs.

Specialized Heuristics with Provable Worst-Case Performance
Another class of approaches to difficult NP-Hard problems are specialized heuristic
algorithms with provable objective function performance.

14.7 Dealing with NP-Hard Problems 873

Application 14.5 illustrates for the famous Travelling Salesman Problem (TSP) of
Section 11.5.

Guaranteed Performance heuristics produce a feasible solu-
tion to the given instance of a hard optimization problem that has an objective
function value within a provable multiple of optimal.

Definition 14.24

aPPlIcatIon 14.5: twIce-around heurIstIc for tsP wIth trIangle
InequalIty

The Traveling Salesman Problem seeks a minimum total length closed route or
tour visiting each node of a given complete graph. Most forms are known to be
NP-Hard.

This holds even for instances with the special property that point-to-point dis-
tances di, j satisfy the famous triangle inequality:

di, k … di, j + dj, k for all nodes i, j, k

That is, going directly from any node i to any other k is always at least as short as
going via an intermediate node j.

NCB Application 11.8 of Section 11.5 is just such a case. Recall that it seeks
a shortest route for a drilling machine to visit all 10 holes needed in a given circuit
board. Distances in Table 11.7 are Euclidean and thus satisfy the triangle inequality.
An optimal solution has total length 8l.8 inches.

The following figures illustrate the famous Twice-Around approximate algo-
rithm for such cases.

Minimum Spanning Tree = 54.1
Twice-Around Walk = 108.2

10

98

7

4
5

63

2

1

874 Chapter 14 Computational Complexity Theory

Minimum Spanning Tree = 54.1
Short-Cut Heuristic Tour = 86.0

1
3

Shortcut
6–5–8–4–2–1

Shortcut
10–9–5–6

Shortcut
3–2–4

Shortcut
7–4–8

2

4
5

6

9

10

8

7

•	 The algorithm begins by computing the Minimum Spanning Tree of the given graph
shown in heavy lines. Section 10.10 shows how that can be done in time polynomially
bounded in the number of edges and nodes.

•	 Next a closed walk around the outside of the spanning tree is constructed by doubling
each spanning tree edge (dashed arcs). The walk does visit every node as required for
a TSP tour, but it duplicates some nodes.

•	 Finally, this walk is converted to a TSP tour by stepping from node to adjacent node,
short-cutting past any already visited as in the second figure to avoid duplication. For
example, progress goes from node 1, to 2, to 3, then bypasses a return to 3 by skipping
to node 4 etc.

How far from optimal can the tour produced by this heuristic be? First, notice
that the created tour’s length is no more that two times the length of the mini-
mum spanning tree. The original walk doubled each tree edge, and several were
short-cutted in the tour, which, under the triangle inequality, can only reduce the
total length. On the other hand, an optimal tour must be a connected subgraph vis-
iting every node. This makes the length of the shortest spanning tree a lower bound
on the TSP optimum. Taken together, we can conclude the twice-around heuristic
solution is at most two times the length of an optimum. Although this 100% over
optimum limit is not a very attractive guarantee, worst-case methods do give a sat-
isfying certainty that the method will meet expectations for even the most perverse
of instances.

General Purpose Approximate/Heuristic Algorithms
Finally, for the most difficult of NP-Hard optimization problems, the most attrac-
tive approach may be heuristic or approximate algorithms.

 Exercises 875

Heuristic or approximate algorithms, which produce at least
feasible solutions with objective function values likely to be attractive, are
often the only viable approach to instances of hard optimization problems big
enough for practical application.

Principle 14.25

ExERCISES

14-1 Consider the following Binary Knapsack
Problem (BKP) instance

 max 7x1 + 9x2 + 21x3 + 15x4

s.t. 8x1 + 4x2 + 12x3 + 7x4 … 19 1BKP2
 x1, c, x4 = 0 or 1

(a) Construct the corresponding Dynamic
Programming digraph (like Figure 9.16),
including showing objective function co-
efficients on all arcs needed.

(b) What are the stages and what are the
states of your model in (a)? Explain.

(c) Starting with state 19, stage 1 initialized
with objective value v[19, 1] = 0, and
taking each later stages in turn, compute
optimal subproblem values v[state, stage]
for each reachable state and state.

(d) Use your results of (c) to identify an op-
timal solution to the full instance and
 determine its objective function value.

14-2 Return to the (BKP) of Exercise 14-l.

(a) Define a finite alphabet of symbols, and
then show a binary encoding of that in-
stance in terms of your alphabet.

(b) Establish that your encoding of (a) has
length proportional to the number of
variables n, and the logarithms (rounded
up) of objective coefficients cj, main con-
straint coefficients aj, and RHS b.

(c) Explain why the formulation of Exercise
14-1 is an instance of the Binary Knapsack
Problem (BKP) form

 max a n
j = 1cj xj

s.t. a n
j = 1aj xj … b

 x1, c, xn = 0 or 1

(d) The Dynamic Programming algorithm
of 14-1 solves instances of (BKP) by

computing a longest path in a network
across n stages with at most b states
each. Explain why those computations
are polynomial in the magnitudes of the
constants, but exponential in the standard
binary encoding.

(e) Explain why (d) makes (BKP) pseudo-
polynomially solvable.

(f) Comment on what (d) and (e) tell us
about how easy or hard (BKP) instances
are to solve, at least those of modest size.

(g) (BKP) is known to be NP-Hard, so all
problems in NP reduce to it. Would you
expect manageable instances like those of
(f) to be the kinds that result from reduc-
tion of a very hard problem form in NP?
Explain.

14-3 Return to the Facilities Location Problem
(FLP) of Chapter 11, definition 11.29 , and as-
sume all parameters are integer.

(a) Consider the following instance:

4

5

6

7

3

2

1

110

demand

213

(1880, 350)

12

4

7

9

5
8

12

17

7522
3

6

(1455, 200)

(1633, 250)

(fixed cost, capacity)

16

96

transport cost

Chapter 15 offers many alternatives.

876 Chapter 14 Computational Complexity Theory

Define a finite alphabet of symbols, and
then show a binary encoding of the in-
stance in terms of your alphabet.

(b) Establish that your encoding of (a) has
length proportional to the number of
 facilities m, demand points n, and the
logarithms (rounded up) of objective and
constraint coefficients.

(c) State the threshold version 1FLP…2 of
the full problem for given threshold v.

(d) Explain why the threshold model of (c)
belongs to class NP but the full optimiza-
tion model (FLP) does not.

(e) Threshold version 1FLP…2 is known to
be NP-Complete. Explain why this im-
plies the full optimization form (FLP) is
NP-Hard.

(f) What would be the consequences of dis-
covering a polynomial-time algorithm for
either the full optimization model or its
threshold analog? Explain.

14-4 Now return to the Fixed Charge Network
Flow Problem (FCNP) of Chapter 11, defini-
tion 11.31 , and assume all data are integer.

(a) Develop and justify an expression for
the length of a binary encoding for an
instance in terms of the dimensions and
parameters of the model.

(b) State the threshold version 1FCNP…2 for
given threshold v.

(c) Explain why the threshold problem of (b)
belongs to NP.

(d) Detail a polynomial reduction from the
1FLP…2 of Exercise 14-3 (c) to your
threshold problem 1FCNP…2 of (b).

(e) How do (b), (c), and NP-Completeness
of 1FLP…2 (Exercise 14-3 (e)) lead to
the conclusion that the threshold version
1FCNP…2 also belongs to NP-Complete.

(f) Explain why (e) implies the full optimiza-
tion model (FCNP) is NP-Hard.

(g) What would be the consequences of find-
ing a polynomial-time algorithm for ei-
ther the full optimization problem or its
threshold analog? Explain

14-5 The Capital Budgeting Problem (CapBud)
of Section 11.2 over a set of n proposed projects
j using decision variables xj = 1 if project j is

chosen and = 0 otherwise can be formulated as
follows:

 max a n
j = 1rj xj (maximize

total return)

s.t. a n
j = 1at, j xj … bt for all t (budget limits

in times t)

 xj … xk for all j, k ∈ P (project pairs
 subject to precedence)

 xj + xk … 1 for all j, k ∈ M (mutually
 exclusive project pairs)

 xj binary j = 1, c, n

(a) Develop and justify an expression for
the length of a binary encoding for an
instance in terms of the dimensions and
parameters of the model.

(b) State the threshold version 1CapBudÚ2
of the problem for given threshold v, and
establish that it belongs to complexity
class NP.

(c) The threshold version 1BKPÚ2 of the
Binary Knapsack Problem discussed in
Exercise 14-2 above is known to be NP-
Complete. Use that fact along with part
(b) to establish that 1CapBudÚ2 is also
NP-Complete. Be sure to fully detail the
required reduction among instances of
the two problems.

(d) Explain what the result of (c) implies for
the prospects of finding a polynomial
time (binary encoding) algorithm for ei-
ther 1CapBudÚ2 or the full optimization
version (CapBud), and why.

14-6 The Multi-dimensional Knapsack Problem
(MKP) over n decision variables xj = 1 is ob-
ject j is chosen and = 0 otherwise, can be
formulated:

 max a n
j = 1rj xj (maximize

total return)

s.t. a n
j = 1aij xj … bi

i = 1, c, m (capacities i)

 xj binary j = 1, c, n

(a) Develop and justify an expression for
the length of a binary encoding for an
instance in terms of the dimensions and
parameters of the model.

 Exercises 877

(b) Explain why the (BKP) instance in
Exercise 14-1 is an instance of (MKP).

(c) State the threshold version 1MKPÚ2
of (MKP) for given threshold v, and
 establish that it belongs to complexity
class NP.

(d) The threshold version 1BKPÚ2 of the
Binary Knapsack Problem treated
in Exercise 14-2 is known to be NP-
Complete. Use that fact along with part
(c) to establish that 1MKPÚ2 is also
NP-Complete. Be sure to fully detail the
required reduction among instances of
the two problems.

(e) Explain what the result of (d) implies
for the prospects of finding a polynomial
time (binary encoding) algorithm for ei-
ther 1MKPÚ2 or the full optimization
version (MKP), and why.

14-7 Given a digraph G(V, E), the Vertex Cover
problem (VCover) seeks a minimum cardinality
subset of vertices that together touch every edge
of E.

(a) Show that the problem can be modeled in
terms of decision variables xi = 1 if ver-
tex i is in the solution and = 0 otherwise
as ILP

 min a i∈Vxi

s.t. a i∈Ie
xi Ú 1 for all e ∈ E

 xi binary for all i ∈ V

where Ie ! 5i ∈ V6 end points of edge e.
(b) Now recall the weighted Set Covering

problem (SCover) of Section 11.3 seeking
a minimum total weight subcollection of
subsets Sj, j ∈ J, which together include
each element of union S ! ∪ j∈J Sj at
least once. In terms of decision variables
xj = 1 if subset j is included and = 0
otherwise, plus objective function coef-
ficients cj, the problem can be modeled
as ILP:

 min a j∈J cj xj

s.t. a 5j with i∈Sj6xj Ú 1 for all i ∈ S

 xj binary for all j ∈ J

(c) Show that every instance of (VCover) can
be viewed as an instance of (SCover). Be
sure to fully detail how elements of the
two formulations correspond.

(d) Problem (VCover) is known to be NP-
Hard. Use that fact and your result of part
(c) to show that (SCover) is NP-Hard.

14-8 Return to the cardinality Vertex Cover
problem (VCover) of Exercise 14-7(a). One al-
gorithm to construct an approximately optimum
set VQ ! 5i ∈ V: xi = 16 for the problem can
be stated as follows: (i) start with VQ d 0; then
(ii) as long as there exists any edge e ∈ E with
Ie ¨ VQ = 0, update VQ d VQ ∪ Ie. That is, add both
end nodes of any edge not covered by the current
solution VQ until no more such edges exist.

(a) Apply the algorithm to the following in-
stance beginning with VQ = 51, 26.

2 3

4 5

67

1

(b) Explain why the algorithm is guaranteed
to produce a feasible cover of all edges in
any given instance.

(c) Justify that this approximate algorithm
runs in time polynomial in the numbers of
vertices and edges.

(d) Explain why an optimal vertex cover must
contain at least one end of every edge e
encountered at step (ii) of the algorithm.
Then show how this assures the carninal-
ity of the approximate solution obtained
above is no more than twice optimal.

(e) Explain how existence of a guaran-
teed-performance heuristic like the one
above is not inconsistent with the fact that
(VCover) is NP-Hard.

878 Chapter 14 Computational Complexity Theory

14-9 Return to the Traveling Salesman Problem
(TSP) and the Twice-Around heuristic of
Application 14.5. Then consider an instance on
the 5 points in the following plot:

2 (1, 4)

(0, 3)

(1, 1)

(4, 5/2)

(4, 0)

x1

x2

3

4

1

5

Arcs can be assumed to exist between all pairs of
points, and distances are Euclidean.

(a) Compute a minimum spanning tree of the
points in the plot using Algorithm 10F
and determine its total length.

(b) Start from point 1 and sketch the corre-
sponding twice-around walk of the points.
Also show its total length.

(c) Starting again from point 1, shorten the
walk of part (b) into a TSP tour, and com-
pute the tour’s total length.

(d) Use results of parts (a) and (c) to compute
an upper and a lower bound on the length
of an optimal TSP tour for the given in-
stance. Then verify that the approximate
solution of (c) is no more than twice the
length of an optimal tour.

(e) Explain how existence of a guaran-
teed-performance heuristic like Twice-
Around is not inconsistent with the fact
that (TSP) is NP-Hard, even when arc
lengths are Euclidean.

14-10 Return to the lists of problems in Table
14.1. For each of the following pairs of problems
in the table, establish that the first, polynomially
solvable one is a special case of the NP-Hard sec-
ond, and identify the special properties of the first
that prevent it from yielding worst-case instances
of the second.

(a) (MST) vs. (Stein).
(b) (Asmt) vs. (GAsmt).
(c) (CPM) vs. (LPath).

REFERENCES

Garey, Michael R. and David S. Johnson (1979),
Computers and Intractability - A Guide to the
Theory of NP-Completeness, W.H. Freeman, San
Francisco, California.

Hochbaum, Dorit S., editor (1997), Approxima-
tion Algorithms for NP-Hard Problems, PWS
Publishing, Boston, Massachusetts.

Martin, R. Kipp (1999), Large Scale Linear and
Integer Optimization, Kluwer Academic, Boston,
Massachusetts.

Parker, R. Gary and Ronald L. Rardin (1988), Dis-
crete Optimization, Academic Press, San Diego,
California.

Schrijver, Alexander (1998), Theory of Linear
and Integer Programming, John Wiley, Chichester,
 England.

Wolsey, Laurence (1998), Integer Programming,
John Wiley, New York, New York.

879

▪ ▪ ▪ ▪ ▪
Chapter 15

Almost all of the methods considered in previous chapters for dealing with ILPs and
INLPs are at least nominally addressed to exact optimization—assuring a provably
optimal solution if allowed to run long enough. Unfortunately, the main message
of the complexity theory developed in Chapter 14 (principle 14.19) is that a huge
number of important ILP and INLP problem forms will probably never admit
the sort of polynomial-time algorithm, assuring that arbitarily large instances can be
solved to exact optimality.

The result is that the overwhelming majority of large-scale discrete optimi-
zation applications settle for some form of heuristic/approximate optimization
method seeking good and feasible, but not necessarily optimal solutions within
manageable computational effort. Many heuristic methods merely adapt one of the
exact methods—stopping searches early and accepting the best feasible solution
discovered. As Branch and Bound, Branch and Cut, and Large-Scale technologies
evolve, larger and larger instances can be successfully addressed in this way. Still,
underlying exponential growth will eventually overwhelm.

This chapter introduces some important, but strictly heuristic alternatives that
follow strategies bearing little more than surface similarity to exact methods. Instead
they pursue opportunistic and intuitive drives for hopefully good feasible solutions,
exploiting problem structures where available. The results may be very good indeed,
but their quality can usually be assessed only empirically by experiments over a
variety of instances. Such strictly heuristic methods rarely stop with any mathemati-
cal guarantee of how nearly optimal their results may be.

15.1 ConstruCtive HeuristiCs

The first category of heuristics to consider, constructive searches, build an approx-
imate optimum incrementally. Like the partial solutions of Chapter 12, values for
the discrete decision variables are chosen one-by-one, terminating when a full fea-
sible solution is completed. They proceed through partial solutions, choosing values

Heuristic Methods for
Approximate Discrete

Optimization

880 Chapter 15 Heuristic Methods for Approximate Discrete Optimization

for decision variables one at a time and (often) stopping upon completion of a first
feasible solution.

Rudimentary Constructive Search Algorithm
Constructive searches typically begin with every discrete component of the decision
vector free. At each iteration, one previously free variable is fixed at a value feasible
with decisions fixed so far. That is, the chosen value for the new component should
not produce constraint violation when previously fixed values are substituted and
optimistic assumptions about free variable values are adopted.

In the simplest case, the process terminates when no free variables remain.
Algorithm 15A gives a more formal statement.

Algorithm 15A: rudimentAry ConstruCtive
seArCh

step 0: initialization. Start with all-free initial partial solution x 102 =
1# , c, # 2 and set solution index t d 0.

step 1: stopping. If all components of current solution x1t2 are fixed, stop
and output xn d x1t2 as an approximate optimum.

step 2: step. Choose a free component xp of partial solution x1t2 and a value
for it that plausibly leads to good feasible completions. Then, advance to
partial solution x1t + 12 identical to x1t2 except that xp is fixed at the chosen
value.

step 3: increment. Increment t d t + 1, and return to Step 1.

Greedy Choices of Variables to Fix
Obviously, the bulk of the effort in constructive searches goes to choosing the next
free variable to fix and picking its value. Most common procedures accomplish
these tasks in a greedy or myopic fashion.

Greedy constructive heuristics elect the next variable to fix
and its value that does least damage to feasibility and most helps the objective
function, based on what has already been fixed in the current partial solution.

Definition 15.1

That is, greedy rules choose the fix that seems most likely, on the basis of what is
presently known, to lead to a good feasible completions.

In very rare cases (e.g., the Spanning Tree problems of Section 10.10) such greedy
approaches are guaranteed to produce an exact optimum. Much more commonly,
they risk suffering from looking only at local information about the next choice. Quite
possibly, a decision that appears very good with only a few variables fixed will actually
end up forcing the search into a very poor part of the feasible space. Still, if the proce-
dure is to be computationally efficient, compromises have to be made.

15.1 Constructive Heuristics 881

Greedy Rule for NASA Application
We can illustrate the idea of constructive search with the NASA capital budgeting
model (11.7). There, the decision variables

xj ! e1 if mission j is selected
0 otherwise

f

It is natural to construct a solution for capital budgeting models like this one
by successively adding missions until constraints block further inclusions. That is,
we will seek to fix a previously free xj at value 1 as long as any free mission can be
selected without violating a constraint.

To implement this natural constructive search we need a greedy selection cri-
terion of the type described in 15.1 . Certainly, we should prefer missions with high
objective function “value” coefficients. But we also want to consider constraints.
One high-value mission might consume so much of the various budgets that it would
block all further decisions. Also, precedence constraints change the implicit value of
a mission; choosing the mission gains its value and makes successors feasible.

Our search will trade-off these objective and constraint considerations in a
common way, by comparing missions according to the ratios

 rj !

a
project
j value

b + £allowance for
enabled successor
values

≥
a

8

i = 1
£ fraction of remaining

constraint i right@hand
side consumed by j

≥ =

cj + a
free k preceded by j

a ck

2
 b

a
8

i = 1
a

ai, j

bi
1t2 b

 (15.1)

where

 cj ! objective function coefficient for mission j

 ai, j ! coefficient for mission j in the ith main constraint

 bi
1t2! right@hand side remaining in the ith main constraint after fixing

variable values as in partial solution x1t2

Among the free projects for which all predecessors have been scheduled in partial
solution x1t2, we will fix the xj with maximum ratio rj. If there remains room for j in
all applicable budgets, it is fixed = 1. Otherwise, we set xj = 0.

Like many such greedy indices, ratio (15.1) seems rather complicated at first
glance. The numerator tries to account for both the immediate value of selecting a
mission and the potential it opens up to select missions of which it is a predeces-
sor. Half the value of all enabled successors is arbitrarily added to the mission’s
direct value. The denominator of (15.1) sums the fractions of remaining constrained
“resources” that a mission would consume if selected. Thus we favor missions using
relatively little of now-scarce resources.

Ratioing value to resource use combines objective and constraint considerations.
The highest rj will correspond to a mission j high in value, or low in resource consump-
tion, or both. Selecting that mission may not be the best long-term decision, but it does
reflect about all we can know without looking more than one step into the future.

882 Chapter 15 Heuristic Methods for Approximate Discrete Optimization

example 15.1: Devising greeDy HeuristiC rules

Recall from Section 11.3 that set cover models seek a minimum cost collection of
columns or subsets that together include or cover every element of a given set. One
instance is

min 15x1 + 18x2 + 6x3 + 20x4

s.t. + x1 + x4 Ú 1

+ x1 + x2 + x4 Ú 1

+ x2 + x3 + x4 Ú 1

x1, c, x4 = 0 or 1

Explain why it would make sense to choose free xj to fix = 1 by picking one with
least ratio

rj !
cost coefficient of column j

number of uncovered elements that j covers

Solution: The proposed ratio explicitly seeks minimum cost by including the objec-
tive function coefficient in its numerator. Still, it also considers feasibility in dividing
by the number of still uncovered rows or elements each free j could resolve. The
effect is to seek the most efficient next choice of xj to fix = 1, the best in the short-
term or myopic sense.

Constructive Heuristic Solution of NASA Application
Starting from the completely free partial solution

x102 = 1#, #, #, #, #, #, #, #, #, #, #, #, #, #2
all bi

102 equal initial right-hand sides. Ratios for the first two j’s are

r1 =
200

6>10
 = 333.33

 r2 =
3 + 118>22

12>102 + 13>122 = 26.67

and similar arithmetic yields

 r3 = 129.07, r4 = 29.17, r5 = 35.21, r6 = 21.54

 r7 = 6.52, r8 = 7.37, r9 = 110.09, r10 = 157.50

 r11 = 10.96, r12 = 7.38, r13 = 586.05, r14 = 87.30

The highest of these ratios is 586.05 for mission 13. Since this mission fits within
remaining right-hand sides bi

1t2 and has no predecessors, we fix x13 = 1 to produce

x112 = 1#, #, #, #, #, #, #, #, #, #, #, #, 1, #2
Table 15.1 provides an abridged summary of the rest of the search. Processing

of t = 1 parallels the first iteration, selecting and fixing = 1 additional mission 1.

15.1 Constructive Heuristics 883

table 15.1 Constructive Search of NASA Application

t Computation Choice

 0 x102 = 1#, #, #, #, #, #, #, #, #, #, #, #, #, #2
b1
102 = 10, b2

102 = 12, b3
102 = 14, b4

102 = 14.

b5
102 = 14, b6

102 = 1, b7
102 = 1, b8

102 = 1

 r1 = 333.33, r2 = 26.67, r3 = 129.07, r4 = 29.17,
 r5 = 35.21, r6 = 21.54, r7 = 6.52, r8 = 7.37,
 r9 = 110.09, r10 = 157.50, r11 = 10.96, r12 = 7.38,

 r13 = 586.05, r14 = 87.30

Select j = 13 and fix
x13 = 1

 1 x112 = 1#, #, #, #, #, #, #, #, #, #, #, #, 1, #2
b1
112 = 10, b2

112 = 11, b3
112 = 10, b4

112 = 13.

b5
112 = 13, b6

112 = 1, b7
112 = 1, b8

112 = 1

 r1 = 333.33, r2 = 25.38, r3 = 122.59, r4 = 28.26,
 r5 = 31.05, r6 = 19.55, r7 = 6.05, r8 = 7.22,
 r9 = 107.84, r10 = 133.06, r11 = 10.35, r12 = 7.04,

 r13 = N>A, r14 = 79.56

Select j = 1 and fix
x1 = 1

 f f f

 3 x132 = 11, #, #, #, #, #, #, #, #, 1, #, #, 1, #2
b1
132 = 4, b2

132 = 3, b3
132 = 6, b4

132 = 13.

b5
132 = 13, b6

132 = 1, b7
132 = 1, b8

132 = 1

 r1 = N>A, r2 = 8.00, r3 = 38.28, r4 = 28.26,
 r5 = 17.50, r6 = 18.35, r7 = 1.71, r8 = 7.22,
 r9 = 54.54, r10 = N>A, r11 = 9.61, r12 = 2.23,

 r13 = N>A, r14 = 50.99

Select j = 9 and
fix x9 = 0 because
 violates contraint 2

 f f f

 9 x192 = 11, #, 0, 0, 0, 0, #, #, 0, 1, #, #, 1, 02
b1
192 = 4, b2

192 = 3, b3
192 = 6, b4

192 = 13.

b5
192 = 13, b6

192 = 1, b7
192 = 1, b8

192 = 1

 r1 = N>A, r2 = 8.00, r3 = N>A, r4 = N>A,
 r5 = N>A, r6 = N>A, r7 = 1.71, r8 = 7.22,
 r9 = N>A, r10 = N>A, r11 = 9.61, r12 = 2.23,

 r13 = N>A, r14 = N>A

Select second best
j = 2 and fix x2 = 1
because j = 11 has
free predecessor

10 x1102 = 11, 1, 0, 0, 0, 0, #, #, 0, 1, #, #, 1, 02
b1
1102 = 2, b2

1102 = 0, b3
1102 = 6, b4

1102 = 13.

b5
1102 = 13, b6

1102 = 1, b7
1102 = 1, b8

1102 = 1

 r1 = N>A, r2 = N>A, r3 = N>A, r4 = N>A,
 r5 = N>A, r6 = N>A, r7 = 0.0000, r8 = 0.0001,
 r9 = N>A, r10 = N>A, r11 = 0.002, r12 = 0.0000,

 r13 = N>A, r14 = N>A

Select j = 11 and fix
x11 = 1

 f f f

14 x1142 = 11, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 02

884 Chapter 15 Heuristic Methods for Approximate Discrete Optimization

Something different occurs at t = 3. The mission with the maximum rj there
is number 9. But mission 9 requires $5 billion in the 2000–2004 budget period, and
projects already chosen use all but b2

132 = $3 billion. We have to fix x9 = 0 to main-
tain feasibility.

Another peculiarity arises at iteration t = 9. There the mission with the best
ratio is j = 11. However, mission 11 cannot be selected before predecessor mission
2. Thus we pass to the second best ratio, which happens to be j = 2, and fix x2 = 1.

Our constructive search terminates when all 14 components of the decision
vector have been fixed. The heuristic optimal solution produced is

xn ! x1142 = 11, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 02
flying missions 1, 2, 10, 11, and 13 at a total value of 671. (Compare with the branch
and bound results in Table 12.3.)

example 15.2: exeCuting ConstruCtive HeuristiCs

Return to the set covering problem of Example 15.1 and its suggested greedy ratio rj.
Use this ratio to apply Algorithm 15A, fixing selected xj = 1 as long as rows remain
uncovered and = 0 thereafter.

Solution: The search begins with all-free partial solution x102 = 1#, #, #, #2. All
rows of the set covering model are uncovered, so ratios compute

r1 =
15
2

, r2 =
18
2

, r3 =
6
1

, r4 =
20
3

The least of these values occurs at j = 3, so we fix x3 to obtain x112 = 1#, #, 1, #2.
The third row of the model is now satisfied. This leads to revised ratios

r1 =
15
2

, r2 =
18
1

, r4 =
20
2

Choosing the least fixes x1 in x122 = 11, #, 1, #2.
All rows are covered by partial solution x122. Thus the least cost choice for

remaining components is zero. We stop with heuristic optimum xn = 11, 0, 1, 02 at
cost 6 + 15 = 21. Notice that this solution is not as good as optimal x* = 10, 0, 0, 12
with cost 20.

Need for Constructive Search
Many project selection and capital budgeting models are approached by greedy
constructive heuristics such as the one just illustrated. Still, we have seen in Chapter
12 that more exact Branch and Bound, and Branch and Cut methods can also be
effective.

The real need for constructive search methods becomes clear only with large,
often nonlinear, highly combinatorial discrete models such as the KI truck routing
application of Section 11.5 or cases where we need an answer fast.

15.1 Constructive Heuristics 885

If tractable and strong relaxations are available, Branch and Bound is pre-
ferred. When natural neighborhoods exist, improving search can be effective. If nei-
ther applies, constructive heuristics provide the method of last resort.

Constructive Search of KI Truck Routing Application
To illustrate constructive search in such highly combinatorial cases, we will develop
an algorithm for the KI routing application. Recall that stops i = 1, c, 20 are to
be organized into the smallest possible list of routes j originating and terminating
at a single central depot. Each route is then sequenced by an improving search to
minimize travel distance. Figure 15.1 shows stop locations, and Table 15.2 provides
the fractions of a load to be delivered at each stop.

Our constructive search for KI begins each route with a “seed” stop. We will
choose the free stop farthest from the depot—number i = 9 in the first route.
Figure 15.1 shows that the idea is to create a starting, out-and-back route with a
general direction anchored by the seed location.

table 15.2 Fractions of Truckloads to Be Delivered in KI Application

Stop, i Fraction, fi Stop, i Fraction, fi Stop, i Fraction, fi Stop, i Fraction, fi

1 0.25 6 0.70 11 0.21 16 0.38
2 0.33 7 0.28 12 0.68 17 0.26
3 0.39 8 0.43 13 0.16 18 0.29
4 0.40 9 0.50 14 0.19 19 0.17
5 0.27 10 0.22 15 0.22 20 0.31

In large, especially nonlinear, discrete models, or when time
is limited, constructive search is often the only effective optimization-based
approach to finding good solutions.

Principle 15.2

1
2

3
20

4

5

6

7
8

9

10

11

12
20

13

14

15

16

17

18 19

insertion to
complete

a route

20

initial center
of gravity

initial out and
back route

depot

Figure 15.1 Locations and First Route
in KI Application

886 Chapter 15 Heuristic Methods for Approximate Discrete Optimization

As long as capacity remains in the truck for a route, we will insert new stops.
As usual, our approach is greedy. A “center of gravity” is computed for stops so far
fixed into the route, and the closest stop to that center still fitting on the truck is
added to the route.

Figure 15.1 shows that a 1-stop route’s center of gravity is set arbitrarily 80%
of the way from the depot to the seed location. This initial center of gravity for the
route started by stop 9 has coordinates

0.81x9, y92 = 0.8115, 202 = 112, 162
We hope to grow a cluster of stops near that point to form a compact route.

Stop 9 already uses f9 = 0.50 truck. The nearest stop to the center of grav-
ity is i = 8, with load f8 = 0.43 within the remaining capacity. It becomes the first
insertion.

After the route has more than one stop, the new selection is averaged into its
center of gravity as

1
2 [0.8115, 202 + 111, 172] = 111.5, 16.52

However, the capacity fixed on this route already sums to

f8 + f9 = 0.50 + 0.43 = 0.93

and no remaining load will fit in the residual 0.07 truckload capacity. Route j = 1
is complete.

The next seed location is the farthest free stop from the depot—number i = 10.
In turn, stop i = 7 is fixed in the route, then stop i = 11, and finally i = 5.
Continuing in this way produces a total of 7 routes covering all stops.

15.2 improving searCH HeuristiCs For DisCrete
optimization inlps

Many large combinatorial optimization models, especially INLPs with nonlinear
objective functions, are too large for enumeration and lack strong relaxations that
are tractable. Still, much can be done. Suitable adaptations of improving search
methods introduced in Chapter 3 can often yield very effective heuristic algo-
rithms. That is, we can still find good feasible solutions even though we will not
be able to guarantee their optimality or even be sure about how close they come
to optimal.

Rudimentary Improving Search Algorithm
Algorithm 15B shows a rudimentary adaptation of improving search to discrete
models. Like the continuous cases of Chapter 3, the process begins with an initial
feasible solution x102. Each iteration t considers neighbors of current solution x1t2
and tries to advance to one that is feasible and superior in objective value. If no
feasible neighbor is improving, the process stops with local optimum and heuristic
optimum x1t2.

15.2 Improving Search Heuristics for Discrete Optimization INLPs 887

Discrete Neighborhoods and Move Sets
What is new about the discrete form of improving search is that we must explic-
itly define the neighborhood of a current solution. Unlike the continuous case,
where there are infinitely many points near a current solution, discrete search must
advance to a binary or integer point. Explicit move sets (denoted M) control what
solutions are considered neighbors of current x1t2.

Improving searches over discrete variables define neighbor-
hoods by specifying a move set M of moves allowed. The current solution and
all reachable from it in a single move ∆x ∈ M comprise its neighborhood.

Principle 15.3

Algorithm 15B: disCrete improving seArCh

step 0: initialization. Choose any starting feasible solution x102, and set
solution index t d 0.

step 1: local optimum. If no move ∆x in move set M is both improving
and feasible at current solution x1t2, stop. Point x1t2 is a local optimum.

step 2: move. Choose some improving feasible move ∆x ∈ M as ∆x1t + 12.
step 3: step. Update

x1t + 12 d x1t2 + ∆x1t + 12

step 4: increment. Increment t d t + 1, and return to Step 1.

example 15.3: DeFining move sets

Consider the discrete optimization model

 max 20x1 - 4x2 + 14x3

s.t. 2x1 + x2 + 4x3 … 5

 x1, x2, x3 = 0 or 1

and assume that an improving search begins at x102 = 11, 1, 02.

(a) List all neighbors of x102 under move set

M! • £1
0
0
≥ , £ -1

0
0
≥ , £0

1
0
≥ , £ 0

-1
0
≥ , £0

0
1
≥, £ 0

0
-1

≥ ¶

(b) Determine which members of the neighborhood are both improving and
feasible.

888 Chapter 15 Heuristic Methods for Approximate Discrete Optimization

Solution:

(a) Following principle 15.3 , the neighbors of x102 under the specified move
set are

11, 1, 02 + 11, 0, 02 = 12, 1, 02
11, 1, 02 + 1-1, 0, 02 = 10, 1, 02
11, 1, 02 + 10, 1, 02 = 11, 2, 02
11, 1, 02 + 10, -1, 02 = 11, 0, 02
11, 1, 02 + 10, 0, 12 = 11, 1, 12
11, 1, 02 + 10, 0, -12 = 11, 1, -12

(b) Of the neighbors in part (a), only x = 10, 1, 02, which has objective value -4,
and x = 11, 0, 02, which has objective value 20, are feasible for all constraints of the
model. Current point x102 = 11, 1, 02 has objective value 16. Thus x = 11, 0, 02 is
the only neighbor that is both improving and feasible (i.e., the one to which improv-
ing search would advance).

NCB Application Revisited
We will use the NCB application of Section 11.5 to illustrate improving search in
discrete optimization. Recall that we seek a shortest-distance routing through 10
points in a printed circuit board that must be drilled. Table 15.3 details hole-to-hole
travel distances.

table 15.3 Distances between Holes in NCB Application

 j
i 1 2 3 4 5 6 7 8 9 10

 1 — 3.6 5.1 10.0 15.3 20.0 16.0 14.2 23.0 26.4
 2 3.6 — 3.6 6.4 12.1 18.1 13.2 10.6 19.7 23.0
 3 5.1 3.6 — 7.1 10.6 15.0 15.8 10.8 18.4 21.9
 4 10.0 6.4 7.1 — 7.0 15.7 10.0 4.2 13.9 17.0
 5 15.3 12.1 10.6 7.0 — 9.9 15.3 5.0 7.8 11.3
 6 20.0 18.1 15.0 15.7 9.9 — 25.0 14.9 12.0 15.0
 7 16.0 13.2 15.8 10.0 15.3 25.0 — 10.3 19.2 21.0
 8 14.2 10.6 10.8 4.2 5.0 14.9 10.3 — 10.2 13.0
 9 23.0 19.7 18.4 13.9 7.8 12.0 19.2 10.2 — 3.6
10 26.4 23.0 21.9 17.0 11.3 15.0 21.0 13.0 3.6 —

For improving search it will be most convenient to employ the quadratic
assignment formulation 11.27 of Section 11.5:

 min a
10

k = 1
a
10

i = 1
a
10

j = 1
dt, jyk, iyk + 1, j 1total distance2

 a
10

i = 1
yk, i = 1 for all k = 1, c, 10 1some hole each k2 (15.2)

15.2 Improving Search Heuristics for Discrete Optimization INLPs 889

 a
10

k = 1
yk, i = 1 for all i = 1, c, 10 1each i assigned2

 yk, i = 0 or 1 for all k = 1, c, 10; i = 1, c, 10

where

yk, i! e1 if kth hole drilled is i
0 otherwise

and y10 + 1, j is understood to mean y1, j in objective function summations.
We will abuse notation in the usual way to think of solutions as vectors y even

though components have two subscripts. The NCB optimal solution y*, which is
depicted in Figure 15.2, has length 81.8 inches and nonzero components

y1,1
* = y2,3

* = y3,6
* = y4,10

* = y5,9
* = y6,5

* = y7,8
* = y8,7

* = y9,4
* = y10,2

* = 1

We begin our improving searches with initial feasible solution

 y102 = 11, 0, c, 0; 0, 1, 0, c, 0; c; 0, c, 0, 12 (15.3)

corresponding to y1,1 = y2,2 = c = y10,10 = 1. That is, hole 1 is drilled first, then
hole 2, and so on. The total length is

 d1,2 + d2,3 + d3,4 + d4,5 + d5,6 + d6,7 + d7,8 + d8,9 + d9,10 + d10,1

 = 3.6 + 3.6 + 7.1 + 7.0 + 9.9 + 25.0 + 10.3 + 10.2 + 3.6 + 26.4

 = 106.7 inches

1

2

3

4 5

7

6

8

9

10
length = 81.8

Figure 15.2 Optimal Drill Path in
the NCB Example

Choosing a Move Set
The critical element of a discrete improving search heuristic is its move set. If it
were possible, we would make every solution a neighbor of every other. Then the
search would yield global optima because a stop implies that no solution at all is
feasible and superior in objective value to the current.

In a practical search, however, we must accept much less.

890 Chapter 15 Heuristic Methods for Approximate Discrete Optimization

If the move set M of a discrete improving search is too restrictive, very few solu-
tions will be considered at each iteration, and poor quality local optima will result.

We will adopt one of the simplest move sets for our NCB application.
Specifically, our M will consist of pairwise interchanges swapping one position k
with another /. Corresponding move vectors ∆y have two -1 components at deleted
assignments, two + 1 components at revised ones, and all other components 0.
For example, if the hole in route position k = 3 is now number 7, and the hole in
position / = 5 in now number 1, the corresponding interchange move direction has

∆y3,7 = -1, ∆y5,1 = -1, ∆y3,1 = +1, ∆y5,7 = +1

changing hole 1 to position 3 and hole 7 to position 5.
In all, this pairwise interchange M contains a ∆y for 110 # 92 >2 = 45 choices

of k and /, each with 10 # 9 = 90 possible current hole assignment pairs—a total of
45 # 90 = 4050 moves. However, at any particular solution y, only 45 moves inter-
changing its specific assignments lead to a feasible neighbor. In all searches in this
section we adopt the one such move most improving the objective function.

The move set M of a discrete improving search must be com-
pact enough to be checked at each iteration for improving feasible neighbors.

Principle 15.4

The solution produced by a discrete improving search depends
on the move set (or neighborhood) employed, with larger move sets generally
resulting in superior local optima.

Principle 15.5

On the other hand, we would not want too limited a move set.

example 15.4: Comparing move sets

Return to the discrete model of Example 15.3 at initial point x102 = 11, 1, 02.

(a) Show that x102 is not locally optimal under the move set of Example 15.3.

(b) Show that x102 is locally optimal over smaller move set

M! = 511, 0, 02, 10, 1, 02, 10, 0, 126
Solution:

(a) Example 15.3(b) established that x = 11, 0, 02 is a feasible neighbor of x102
with superior objective value. Thus x102 is not best in its neighborhood, and so not
locally optimal. Algorithm 15B would advance to x112 = 11, 0, 02 and repeat.

(b) Over this more restricted move set, neighbors are

11, 1, 02 + 11, 0, 02 = 12, 1, 02
11, 1, 02 + 10, 1, 02 = 11, 2, 02
11, 1, 02 + 10, 0, 12 = 11, 1, 12

None is feasible, so x102 is locally optimal.

15.2 Improving Search Heuristics for Discrete Optimization INLPs 891

Rudimentary Improving Search of the NCB Application
We can illustrate Algorithm 15B on our NCB application of Section 11.5. Table 15.4
displays results starting from initial solution t = 0. The objective function impact of
the 45 feasible pairwise interchanges available at that solution are as follows:

O
k 2 3 4 5 6 7 8 9 10

1 -1 .9 -1 .6 -0 .3 6.5 -0 .5 3.1 12.1 20.1 38.8

2 0.8 11.5 26.3 18.2 18.0 30.2 54.0 34.4
3 6.4 13.6 14.6 3.0 17.8 41.8 22.8
4 9.3 -7 .1 1.6 5.1 19.5 13.0

5 -1 .0 -2 .3 4.8 11.5 8.2

6 10.0 -3 .1 8.2 -0 .6
7 -1 .1 4.4 -2 .1
8 18.3 -1 .5
9 -0 .6

For example, the best swap, position k = 4 for / = 6 , implies savings of

d3,4 + d4,5 + d5,6 + d6,7 = 7.1 + 7.0 + 9.9 + 25.0 = 49 inches

for delinking holes 4 and 6 from their current fourth and sixth tour positions, plus
costs

d3,6 + d6,5 + d5,4 + d4,7 = 15.0 + 9.9 + 7.0 + 10.0 = 41.9 inches

for relinking in their new positions. The net change is 41.9 - 49 = -7.1 inches.
Table 15.4 displays the tour sequence resulting from this best interchange. It

also details, swaps, move directions, and solutions visited to reach local optimality at
t = 5 . Local optimum yn has length 92.8 inches with

yn1,2 = yn2,1 = yn3,3 = yn4,6 = yn5,5 = yn6,4 = yn7,8 = yn8,9 = yn9,10 = yn10,7 = 1

Initial length 106.7 inches has been reduced by 13%, but locally optimal value 92.8
leaves us well above globally shortest tour length 81.8 inches.

table 15.4 Rudimentary Improving Search of the NCB Application

t Drill Sequence Length Interchange Nonzero Move Components

0 1–2–3–4–5–6–7–8–9–10 106.7 4th for 6th ∆y4,4 = ∆y6,6 = -1, ∆y4,6 = ∆y6,4 = 1
∆y1,1 = ∆y2,2 = -1, ∆y1,2 = ∆y2,1 = 1
∆y8,8 = ∆y10,10 = -1, ∆y8,10 = ∆y10,8 = 1
∆y7,7 = ∆y10,8 = -1, ∆y7,8 = ∆y10,7 = 1
∆y8,10 = ∆y9,9 = -1, ∆y8,9 = ∆y9,10 = 1

1 1–2–3–6–5–4–7–8–9–10 99.6 1st for 2nd
2 2–1–3–6–5–4–7–8–9–10 97.7 8th for 10th
3 2–1–3–6–5–4–7–10–9–8 96.0 7th for 10th
4 2–1–3–6–5–4–8–10–9–7 93.8 8th for 9th
5 2–1–3–6–5–4–8–9–10–7 92.8 Local optimum

892 Chapter 15 Heuristic Methods for Approximate Discrete Optimization

Multistart Search
For our tiny NCB example we were able to know how far heuristic optimum
sequence 2–1–3–6–5–4–8–9–10–7 is from globally optimal. In a larger instance it
would be difficult to tell. Thus it is natural to at least try for further improvement.

One obvious approach is multistart—repeating the search from several differ-
ent initial solutions y10 2.

example 15.5: perForming DisCrete improving searCH

Consider the knapsack model (Section 11.2)

 max 18x1 + 25x2 + 11x3 + 14x4

s.t. 2x1 + 2x2 + x3 + x4 … 3

 x1, c, x4 = 0 or 1

under the single complement move set admitting moves that change one 0- component
to 1 or one 1-component to 0. Compute an approximate optimal solution by discrete
improving search Algorithm 15B beginning at x102 = 11, 0, 0, 02. If more than one
neighbor is feasible and improving at any move, choose the one that improves the
objective the most.

Solution: Feasible neighbors of the given x102 are 10, 0, 0, 02, 11, 0, 1, 02 and
11 , 0 , 0 , 1 2 with objective values 0, 29, and 32, respectively. The last improves the
objective function the most, so the search advances to x112 = (1, 0, 0, 1).

At x 11 2, feasible neighbors are 10, 0, 0, 12 and 11, 0, 0, 02. Since nei-
ther improves the objective function, the search stops with local optimum
xn = x112 = 11, 0, 0, 12 at objective value nn = 32.

example 15.6: perForming multistart searCH

Return to the knapsack problem of Example 15.4:

 max 18x1 + 25x2 + 11x3 + 14x4

s.t. 2x1 + 2x2 + x3 + x4 … 3

 x1, c, x4 = 0 or 1

Multistart or keeping the best of several local optima obtained
from searches from different starting solutions is one way to better the heuris-
tic solutions produced by improving.

Principle 15.6

Table 15.5 details search of the NCB application from 3 different starts. The first is
the search of Table 15.4 with local minimum 92.8. Search 2 yields an improved local
minimum with length 84.7 inches after one 1 iteration. Search 3 terminates with the
same solution after a longer sequence. Multistart would report the best of these as
an approximate optimum.

15.3 Tabu and Simulated Annealing Metaheuristics 893

table 15.5 Multistart Search of the NCB Application

t Drill Sequence Length Interchange Nonzero Move Components

 Search 1
0 1–2–3–4–5–6–7–8–9–10 106.7 4th for 6th ∆y4,4 = ∆y6,6 = -1, ∆y4,6 = ∆y6,4 = 1
1 1–2–3–6–5–4–7–8–9–10 99.6 1st for 2nd ∆y1,1 = ∆y2,2 = -1, ∆y1,2 = ∆y2,1 = 1
2 2–1–3–6–5–4–7–8–9–10 97.7 8th for 10th ∆y8,8 = ∆y10,10 = -1, ∆y8,10 = ∆y10,8 = 1
3 2–1–3–6–5–4–7–10–9–8 96.0 7th for 10th ∆y7,7 = ∆y10,8 = -1, ∆y7,8 = ∆y10,7 = 1
4 2–1–3–6–5–4–8–10–9–7 93.8 8th for 9th ∆y8,10 = ∆y9,9 = -1, ∆y8,9 = ∆y9,10 = 1
5 2–1–3–6–5–4–8–9–10–7 92.8 Local optimum Incumbent value = 92.8

 Search 2
0 1–2–7–3–4–8–5–6–9–10 100.8 1st for 3rd ∆y1,1 = ∆y3,7 = -1, ∆y1,7 = ∆y3,1 = 1
1 7–2–1–3–4–8–5–6–9–10 84.7 Local optimum Incumbent value = 84.7

 Search 3
0 1–10–2–9–3–8–4–7–5–6 157.7 1st for 4th ∆y1,1 = ∆y4,9 = -1, ∆y1,9 = ∆y4,1 = 1
1 9–10–2–1–3–8–4–7–5–6 97.5 6th for 8th ∆y6,8 = ∆y8,7 = -1, ∆y6,7 = ∆y8,8 = 1
2 9–10–2–1–3–7–4–8–5–6 92.2 3rd for 6th ∆y3,2 = ∆y6,7 = -1, ∆y3,7 = ∆y6,2 = 1
3 9–10–7–1–3–2–4–8–5–6 86.8 5th for 6th ∆y5,3 = ∆y6,2 = -1, ∆y5,2 = ∆y6,3 = 1
4 9–10–7–1–2–3–4–8–5–6 86.0 4th for 5th ∆y4,1 = ∆y5,2 = -1, ∆y4,2 = ∆y5,1 = 1
5 9–10–7–2–1–3–4–8–5–6 84.7 Local optimum Incumbent value = 84.7

and its single complement search neighborhood. Perform a multistart discrete im-
proving search starting from initial solutions (1, 0, 0, 0), (0, 1, 0, 0), and (0, 0, 1, 0).

Solution: Example 15.4 already established that x102 = 11, 0, 0, 02 leads to local
maximum xn = 11, 0, 0, 12 with value nn = 3 2 . Now restarting with x102 = 10, 1, 0, 02,
the best feasible neighbor is x112 = 10, 1, 0, 12 with value 39.

This solution is locally optimal because no neighbor is both feasible and
improving. Since it also improves on the current best (or incumbent) solution, our
approximate optimum becomes xn = 10, 1, 0, 12, nn = 39.

The third search starts with x102 = 10, 0, 1, 02. Its feasible neighbor that most
improves the objective function is x112 = 10, 1, 1, 02 with value 36. Again, Algorithm
15B stops at a local maximum. However, this one is not better than incumbent value
nn = 3 9 , so it is not retained.

15.3 tabu anD simulateD annealing metaHeuristiCs

Discrete improving search Algorithm 15B can be quite effective on many models,
especially if it is applied several times with multistart. Still, the drive to an improv-
ing search local optinum can prove so narrowly focused that longer paths leading to
better solutions are never investigated.

Metaheuristic algorithms apply one of several high-level strategics to obtain
a better diversified search. This section presents two searches—tabu search and
simmulated annealing—that enrich the way moves are selected at each iteration

894 Chapter 15 Heuristic Methods for Approximate Discrete Optimization

but continue the paradigm of moving from single solution to single solution. Then
Section 15.4 extends even further to algorithms moving through evolving families of
solutions.

Difficulty with Allowing Nonimproving Moves
An alternative to restarting improving search when no improving feasible move
remains is to escape a local optimum by allowing nonimproving feasible moves. A
few such retrograde moves might very well take the search to a region where prog-
ress can resume.

Unfortunately, this appealing strategy has a fatal flaw (unless new technol-
ogy is introduced). Consider, for example, the locally optimal point where the first
search of Table 15.5 terminated. No improving move was available at final drilling
sequence 2–1–3–6–5–4–8–9–10–7 with value 92.8 inches. However, the best non-
improving move, which swaps the 9 in the eighth position for the 10 in the ninth,
increases the objective by only 1.0 inch.

Why not take it and hope it leads to a better local optimum? Try. Sequence
2–1–3–6–5–4–8–10–9–7 results with length 93.8 inches. There is now a feasible inter-
change that improves (perhaps only one): swap back the 10 and 9 in the eighth and
ninth tour positions to reduce length to 92.8 inches. Adopting that move returns us
to exactly where we began, and the search will cycle forever.

Nonimproving moves will lead to infinite cycling of improving
search unless some provision is added to prevent repeating solutions.

Principle 15.7

Tabu search deals with cycling by temporarily forbidding
moves that would return to a solution recently visited.

Definition 15.8

Tabu Search
Several schemes for incorporating nonimproving moves in improving search without
undo cycling have proved effective on a variety of discrete optimization problems.
One is called tabu search because it proceeds by classifying some moves “tabu” or
forbidden. To be more specific,

The effect is to prevent short-term cycling, although solutions can repeat over a lon-
ger period.

Algorithm 15C gives a formal statement of this tabu modification to improv-
ing search Algorithm 15B. A tabu list records forbidden moves, and each itera-
tion chooses a non-tabu feasible move. After each step, a collection of moves that
includes any returning immediately to the previous point is added to the tabu list.
No such move is allowed for a few iterations, but eventually all are removed from
the tabu list and again available.

15.3 Tabu and Simulated Annealing Metaheuristics 895

Since steps may either improve or degrade the objective function value, an
incumbent solution xn tracks the best feasible point found so far. When the search
stops, which is usually when user-supplied iteration limit tmax is reached, incumbent
xn is reported as an approximate optimum.

Tabu Search of the NCB Application
Table 15.6 illustrates an implementation of tabu search on the NCB application.
Figure 15.3 tracks the objective function values of points encountered.

The initial solution and move set of this tabu search are identical to those of
the ordinary improving search in Table 15.4. This time, however, tmax = 50 points
were visited, with search proceeding to the feasible, non-tabu neighbor with best
objective function value, whether or not it improves.

The design of tabu searches requires some judgment in deciding what moves
to make tabu at each iteration. Too few will lead to cycling; too many inordinately
restricts the search.

Table 15.6’s search of the NCB application fixed the first of each two positions
interchanged for a period of 6 iterations. For example, after the first interchange of
fourth and sixth positions, no move again changing the fourth position was allowed
for 6 steps. Tabu positions are underlined. Such a policy maintains a relatively rich
set of available moves, yet prevents immediate reverses.

Figure 15.3 shows clearly how tabu search improves as long as improving
moves are available, then begins controlled wandering. In the beginning the incum-
bent solution yn improves rapidly. (Incumbent values are recorded in Table 15.6.)
Later, progress slows. Still, the global optimum was discovered on iteration t = 44.

Algorithm 15C: tABu seArCh

step 0: initialization. Choose any starting feasible solution x102 and an
iteration limit tmax. Then set incumbent solution xn d x102 and solution index
t d 0. No moves are tabu.

step 1: stopping. If no non-tabu move ∆x in move set M leads to a feasible
neighbor of current solution x1t2, or if t = t max , then stop. Incumbent solu-
tion xn is an approximate optimum.

step 2: move. Choose some non-tabu feasible move ∆x ∈ M as ∆x1t + 12.
step 3: step. Update

x1t + 12 d x1t2 + ∆ x1t + 12

step 4: incumbent solution. If the objective function value of x1t + 12 is
superior to that of incumbent solution xn , replace xn d x1t + 12.

step 5: tabu list. Remove from the list of tabu of forbidden moves any that
have been on it for a sufficient number of iterations, and add a collection of
moves that includes any returning immediately from x1t + 12 to x1t2.

step 6: increment. Increment t d t + 1, and return to Step 1.

896 Chapter 15 Heuristic Methods for Approximate Discrete Optimization

table 15.6 Tabu Search of NCB Application

t Drill Sequencea Length Incumbent Interchange ∆ Obj.
0 1–2–3–4–5–6–7–8–9–10 106.7 106.7 4th for 6th 7.1
1 1–2–3–6–5–4–7–8–9–10 99.6 99.6 1st for 2nd 1.9
2 2–1–3–6–5–4–7–8–9–10 97.7 97.7 8th for 10th 1.7
3 2–1–3–6–5–4–7–10–9–8 96.0 96.0 7th for 10th 2.2
4 2–1–3–6–5–4–8–10–9–7 93.8 93.8 6th for 10th –2.3
5 2–1–3–6–5–7–8–10–9–4 96.1 93.8 5th for 10th .1
6 2–1–3–6–4–7–8–10–9–5 96.2 93.8 4th for 10th 2.9
7 2–1–3–5–4–7–8–10–9–6 93.3 93.3 1st for 3rd 1.6
8 3–1–2–5–4–7–8–10–9–6 91.7 91.7 8th for 9th –0.2
9 3–1–2–5–4–7–8–9–10–6 91.9 91.7 2nd for 3rd –1.7

10 3–2–1–5–4–7–8–9–10–6 93.6 91.7 6th for 7th –3.2
11 3–2–1–5–4–8–7–9–10–6 96.8 91.7 5th for 7th –3.0
12 3–2–1–5–7–8–4–9–10–6 99.8 91.7 4th for 7th 15.9
13 3–2–1–4–7–8–5–9–10–6 83.9 83.9 1st for 3rd –2.1
14 1–2–3–4–7–8–5–9–10–6 86.0 83.9 8th for 9th –0.5
15 1–2–3–4–7–8–5–10–9–6 86.5 83.9 2nd for 3rd –0.8
f f f f f f

40 1–2–7–8–5–9–10–4–6–3 96.3 83.9 1st for 2nd –1.3
41 2–1–7–8–5–9–10–4–6–3 97.6 83.9 8th for 9th 9.9
42 2–1–7–8–5–9–10–6–4–3 87.7 83.9 2nd for 9th 0.9
43 2–4–7–8–5–9–10–6–1–3 86.8 83.9 9th for 10th 5.0
44 2–4–7–8–5–9–10–6–3–1 81.8 81.8 6th for 7th –0.5
45 2–4–7–8–5–10–9–6–3–1 82.3 81.8 5th for 7th –3.1
46 2–4–7–8–9–10–5–6–3–1 85.4 81.8 1st for 10th –2.1
47 1–4–7–8–9–10–5–6–3–2 87.5 81.8 7th for 8th 0.7
48 1–4–7–8–9–10–6–5–3–2 86.8 81.8 2nd for 3rd 0.1
49 1–7–4–8–9–10–6–5–3–2 86.7 81.8 9th for 10th –3.0
50 1–7–4–8–9–10–6–5–2–3 89.7 81.8 Stop

a Underlining indicates components not allowed to change.

105 in.

100 in.

95 in.

90 in.

85 in.

80 in.
t = 0 t = 10 t = 20 t = 40 t = 50

�nal incumbent

Figure 15.3 Solution
Values in Tabu Search of
NCB Application

15.3 Tabu and Simulated Annealing Metaheuristics 897

Naturally, it would be the final incumbent reported when iteration limit tmax = 50
was reached.

Results will vary with models and details of tabu policy, but there is good rea-
son to believe that such performance is typical. Suitable implementations of the
tabu variation on improving search can greatly enhance the quality of heuristic solu-
tions obtained.

example 15.7: applying tabu searCH

Return to the knapsack problem

 max 18x1 + 25x2 + 11x3 + 14x4

s.t. 2x1 + 2x2 + x3 + x4 … 3

 x4, c, x4 = 0 or 1

of Examples 15.5 and 16.6 and assume that we will use the same single-complement
move set.

(a) Explain how making it tabu to complement any component x j for the next 2
iterations after it is changed by the search prevents short-term cycling.

(b) Begin from solution x102 = 11, 0, 0, 02 and use this tabu rule in executing
Algorithm 15C through tmax = 5 steps.

Solution:

(a) Once a component is changed for 0 to 1, or vice versa, the only way to return to
the immediately preceding solution is to complement the same component again.

(b) The required search is summarized in the following table:

t x1t2 Value Incumbent Value Complemented ∆ obj.

0 (1, 0, 0, 0) 18 18 j = 4 14

1 11, 0, 0, 12 32 32 j = 1 -1 8

2 10, 0, 0, 12 14 32 j = 2 25

3 10, 1, 0, 12 39 39 j = 4 –14

4 10, 1, 0, 02 25 39 j = 3 11

5 10, 1, 1, 02 36 39 Stop

Each iteration begins by selecting an x j to complement that is not among those
marked tabu (underlined) and does preserve feasibility. The best such move pro-
duces the next solution. The result is also saved as a new incumbent if it is superior
to any feasible solution encountered so far. Computation stops with approximate
(here exact) optimum xn = 10, 1, 0, 12 at t = tmax = 5.

Simulated Annealing Search
Another method of introducing nonimproving moves into improving search is
termed simulated annealing because of its analogy to the annealing process of
slowly cooling metals to improve strength.

898 Chapter 15 Heuristic Methods for Approximate Discrete Optimization

Simulated annealing algorithms control cycling by accepting
nonimproving moves according to probabilities tested with computer- generated
random numbers.

Definition 15.9

Algorithm 15d: simulAted AnneAling seArCh

step 0: initialization. Choose any starting feasible solution x102, an iter-
ation limit tmax, and a relatively large initial temperature q 7 0. Then, set
incumbent solution xn d x102 and solution index t d 0.

step 1: stopping. If no move ∆x in move set M leads to a feasible neighbor
of current solution x1t2, or if t = tmax, then stop. Incumbent solution xn is an
approximate optimum.

step 2: provisional move. Randomly choose a feasible move ∆x ∈ M
as a provisional ∆x1t + 12, and compute the (possibly negative) net objec-
tive function improvement ∆obj for moving from x122 = 10, 0, 0, 12 to
1x1t2 + ∆x1t + 122 (increase for a maximize, decrease for a minimize).

step 3: Acceptance. If ∆x1t + 12 improves, or with probability e∆obj>q if
∆obj … 0, accept ∆x1t + 12 and update

x1t + 12 d x1t2 + ∆x1t + 12

Otherwise, return to Step 2.
step 4: incumbent solution. If the objective function value of x1t + 12 is

superior to that of incumbent solution xn , replace xn d x1t + 12.
step 5: temperature reduction. If a sufficient number of iterations have

passed since the last temperature change, reduce temperature q.
step 6: increment. Increment t d t + 1, and return to Step 1.

Improving and accepted nonimproving moves are pursued; rejected ones are not.
Algorithm 15D provides details. The move selection process at each iteration

begins with random choice of a provisional feasible move, totally ignoring its objec-
tive function impact. Next, the net objective function improvement ∆obj (nonposi-
tive for nonimproving moves) is computed for the chosen move. The move is always
accepted if it improves 1∆ obj 7 02, and otherwise

 probability of acceptance = e∆obj>q (15.4)

That is, all improving moves and some nonimproving ones are accepted. The prob-
ability of accepting a nonimproving move declines as net objective improvement
∆obj becomes more negative.

15.3 Tabu and Simulated Annealing Metaheuristics 899

Parameter q in (15.4) is a temperature controlling the randomness of the
search. If q is large, the exponent in (15.4) approaches 0, implying that the probabil-
ity of accepting nonimproving moves approximates e0 = 1. If q is small, the prob-
ability of accepting very bad moves decreases dramatically. Simulated annealing
searches usually begin with q relatively large and decrease it every few iterations.

As with tabu and other searches that can make nonimproving moves, an incum-
bent solution xn must be maintained to keep track of the best feasible solution found
so far. When computation stops, xn is output as an approximately optimal solution.

Simulated Annealing Search of NCB Application
Table 15.7 provides an abridged summary of a simulated annealing search of our
NCB application. Figure 15.4 shows the complete history of accepted solutions
through iteration limit tmax = 50. Like all other searches of this section, move set M
included all single interchanges, and initial solution y102 is the one in (15.3).

Temperatures in this simulated annealing example began at q = 5.0. Every 10
iterations they were reduced by a factor of 0.8, so that

q = 5.0 for iterations t = 0, c, 9

 q = 0.815.02 = 4.0 for iterations t = 10, c, 19

 q = 0.814.02 = 3.2 for iterations t = 20, c, 29
f

The first few iterations of Table 15.7 show most randomly chosen moves being
accepted. Interchange of the seventh and tenth tour positions improves on solution
y102 and is accepted immediately to produce y112. The first move generated from
solution y112 increases length by 20.1 inches. Thus its probability of acceptance was

e-20.1>5 ≈ 0.018

Not surprisingly, it was rejected.
The next try produced a move that increased length by only 3.1 inches. With

better probability

e-3.1>5 ≈ 0.538

it was adopted.
The latter part of Table 15.7 shows the impact of reducing temperature q as

the search proceeds. More and more nonimproving moves are rejected, because the
probability of acceptance has declined with q.

Results in Figure 15.4 show the wide-ranging evolution of the full simulated
annealing search. As with tabu, the final incumbent solution happens to be the
global optimum, but this is not guaranteed.

Again this behavior is typical of reported simulated annealing applications,
although many more iterations would normally be required. Suitable implementa-
tions of the simulated annealing variation on improving search can greatly enhance
the quality of heuristic solutions obtained.

900 Chapter 15 Heuristic Methods for Approximate Discrete Optimization

table 15.7 Simulated Annealing Search of NCB Application

t Drill Sequence Length Incumbent Temp q Interchange ∆Obj. Outcome

0 1–2–3–4–5–6–7–8–9–10 106.7 106.7 5.00 7th for 10th 2.1 Accepted
1 1–2–3–4–5–6–10–8–9–7 104.6 104.6 5.00 1st for 9th -20.1 Rejected

1st for 4th -3.1 Accepted
2 4–2–3–1–5–6–10–8–9–7 107.7 104.6 5.00 7th for 10th 1.3 Accepted
3 4–2–3–1–5–6–7–8–9–10 106.4 104.6 5.00 5th for 6th 5.0 Accepted
4 4–2–3–1–6–5–7–8–9–10 101.4 101.4 5.00 9th for 10th 0.3 Accepted
5 4–2–3–1–6–5–7–8–10–9 101.1 101.1 5.00 9th for 10th -0.3 Accepted
6 4–2–3–1–6–5–7–8–9–10 101.4 101.1 5.00 2nd for 7th -12.9 Rejected

1st for 7th 3.6 Accepted
7 7–2–3–1–6–5–4–8–9–10 97.8 97.8 5.00 6th for 7th -6.6 Rejected

7th for 8th -1.7 Accepted
8 7–2–3–1–6–5–8–4–9–10 99.5 97.8 5.00 2nd for 5th -9.0 Rejected

2nd for 4th -0.9 Accepted
f f f f f f f f

40 3–1–2–4–7–8–5–9–10–6 81.8 81.8 2.05 6th for 10th -13.4 Rejected
5th for 6th -4.5 Rejected
2nd for 5th -24.2 Rejected
9th for 10th -15.3 Rejected
9th for 10th -15.3 Rejected
8th for 9th -0.5 Accepted

f f f f f f f f

46 3–1–2–4–7–8–9–10–5–6 85.4 81.8 2.05 5th for 10th -16.5 Rejected
8th for 10th -15.3 Rejected
8th for 10th -15.3 Rejected
3rd for 6th -20.8 Rejected
2nd for 9th -39.2 Rejected
2nd for 9th -39.2 Rejected
4th for 9th -22.5 Rejected
3rd for 9th -32.2 Rejected
5th for 7th -21.3 Rejected
1st for 3rd -3.8 Rejected
2nd for 8th -59.6 Rejected
9th for 10th 0.7 Accepted

47 3–1–2–4–7–8–9–10–6–5 84.7 81.8 2.05 3rd for 8th -52.6 Rejected
8th for 9th -9.8 Rejected
4th for 5th -0.7 Rejected
7th for 10th -12.4 Rejected
7th for 10th -12.4 Rejected
5th for 10th -12.0 Rejected
1st for 7th -34.0 Rejected
4th for 10th -13.3 Rejected
2nd for 10th -18.6 Rejected
6th for 10th -7.8 Rejected
6th for 7th -18.3 Rejected
3rd for 5th -12.7 Rejected
9th for 10th -0.7 Accepted

48 3–1–2–4–7–8–9–10–5–6 85.4 81.8 2.05 9th for 10th 0.7 Accepted
49 3–1–2–4–7–8–9–10–6–5 84.7 81.8 2.05 7th for 8th 0.2 Accepted
50 3–1–2–4–7–8–10–9–6–5 84.5 81.8 1.64 Stop

15.3 Tabu and Simulated Annealing Metaheuristics 901

105 in.

100 in.

95 in.

90 in.

85 in.

80 in.
t = 0 t = 10 t = 20 t = 40t = 30 t = 50

final incumbent

Figure 15.4 Solution Values in Simulated Annealing
Search of NCB Application

example 15.8: applying simulateD annealing

Return again to the knapsack model of Example 15.5 to 15.7 with its single-
complement move set and initial solution x102 = 11, 0, 0, 02. Using temperature
q = 10, apply simulated annealing Algorithm 15D through tmax = 3 steps. Where
random decisions are required, use the following random numbers (uniform between
0 and 1): 0.72, 0.83, 0.33, 0.41, 0.09, 0.94.

Solution: Required computations are summarized in the following table.

t x1t2 Value Incumbent Value q Complement ∆ obj Outcome

0 (1, 0, 0, 0) 18 18 10 j = 4 14 Accepted
1 (1, 0, 0, 1) 32 32 10 j = 4 -14 Rejected

j = 1 -18 Accepted
2 (0, 0, 0, 1) 14 32 10 j = 3 11 Accepted
3 (0, 0, 1, 1) 25 32 10 Stop

The process begins by randomly selecting between feasible moves complementing
j = 3 and j = 4 at x102 = 11, 0, 0, 02. Since the first random number 0.72 is in
the upper half of interval [0,1], j = 4 is provisionally selected. The corresponding
move is improving, so the search advances to x112 = 11, 0, 0, 12 with value 32.

Feasible complements at x112 are j = 1 and j = 4. The next random number
0.83 selects j = 4. The corresponding move has ∆obj = -14, so we test whether
random number 0.33 is at most probability

902 Chapter 15 Heuristic Methods for Approximate Discrete Optimization

e∆obj>q = e-14>10 ≈ 0.247

It is not, and the provisional move is rejected.
The next randomly generated feasible move complements j = 1 with

∆obj = -18. This time

e∆obj>q = e-18>10 ≈ 0.165 Ú 0.09

We accept the move and advance to x122 = 10, 0, 0, 12.
Three moves are feasible at x122 and complementation of j = 3 is selected by ran-

dom number 0.94. The corresponding improving move advances to x132 = 10, 0, 1, 12.
We now stop at t = t max = 3 and report incumbent solution xn = 11, 0, 0, 12 with
value 32.

15.4 evolutionary metaHeuristiCs anD genetiC
algoritHms

Evolutionary Metaheuristics broaden the reach of heuristic search beyond any
sequence of single solutions to an evolving population of possibilities improved
through time by mechanisms that mirror the biological process of natural selection.
The best known family of such population metaheuristics, genetic algorithms, is
introduced in this section.

Genetic algorithms evolve good heuristic optima by opera-
tions combining members of an improving population of individual solutions.

Definition 15.10

Crossover combines a pair of “parent” solutions to produce
a pair of “children” by breaking both parent vectors at the same point and
reassembling the first part of one parent solution with the second part of the
other, and vice versa.

Definition 15.11

The best single solution encountered so far will always be part of the population
(in the variant discussed here), but each generation will also include a spectrum of
other solutions. Ideally, all will be feasible, and some may be nearly as good in the
objective function as the best. Others may have quite poor solution values.

New solutions are created by combining pairs of individuals in the popula-
tion. Local optima are less frequent because this combining process does not center
entirely on the best current solution.

Crossover Operations in Genetic Algorithms
The standard genetic algorithm method for combining solutions of the population
is known as crossover.

15.4 Evolutionary Metaheuristics and Genetic Algorithms 903

We can illustrate with two binary solution vectors x112 and x122:

x112 = (1, 0, 1, 1, 0,
x122 = (0, 1, 1, 0, 1,

` 0, 1, 0, 0)
1, 0, 0, 1)

Crossover after component j = 5 leads to children

x132 = (1, 0, 1, 1, 0,
x142 = (0, 1, 1, 0, 1,

` 1, 0, 0, 1)
0, 1, 0, 0)

One child x132 combines the initial part of x112 with the final part of x122. Child x142
does just the opposite. Both become members of the new population, and the search
continues.

There is no guarantee that crossover’s rather arbitrary manipulation of parent
solutions will yield improvement. Still, it does lead to fundamentally new solutions
that preserve significant parts of their parents. Experience shows that this is often
enough to produce very good results.

Managing Genetic Algorithms with Elites, Immigrants,
Mutations, and Crossovers
Many variations on the basic genetic algorithm strategy have been employed suc-
cessfully in particular applications, including many alternatives to standard cross-
over operations 15.11 . Principal differences in the various implementations concern
how to select pairs of current solutions to produce new ones via crossover, how to
decide which new and/or old solutions will survive in the next population, and how
to maintain diversity in the population as the search advances from generation to
generation. The only requirement is that better solutions have greater chance
to breed.

In this brief introduction we consider only a single elitest method of popula-
tion management. Each new generation will be composed of a combination of elite,
immigrant, mutated, and crossover solutions.

The elitest strategy for implementation of genetic algorithms
forms each new generation as a mixture of elite (best) solutions held over from
the previous generation, immigrant solutions added arbitrarily to increase
diversity, random mutation of other solutions and children of crossover opera-
tions on nonoverlapping pairs of solutions in the previous population.

Definition 15.12

Maintenance of the elite solutions from the preceding generation assures that the best
solutions known so far will remain in the population and have more opportunities to
produce offspring. Addition of new immigrant solutions and random mutations of
existing ones will help to maintain diversity as solutions are combined. The bulk of
the new solutions will be the product of crossovers, with elites in the preceding popu-
lation allowed to serve as parents. Algorithm 15E details a full procedure.

904 Chapter 15 Heuristic Methods for Approximate Discrete Optimization

Solution Encoding for Genetic Algorithm Search
Just as design of an ordinary improving search requires careful construction of a
move set (principle 15.5), implementations of genetic algorithms require judicious
choice of a scheme for encoding solutions in a vector. To see the difficulty, return to
our NCB drilling application.

If solutions are encoded merely by displaying the drilling sequence, two that
might come together as crossover parents would be

13, 1, 2, 4, 7, 8, 5, 9, 10, 62 and 17, 2, 3, 1, 6, 5, 8, 4, 9, 102
Crossing over the solutions after component j = 6 would yield children

13, 1, 2, 4, 7, 8, 8, 4, 9, 102 and 17, 2, 3, 1, 6, 5, 5, 9, 10, 62
Neither is a feasible drilling sequence because some holes are visited more than
once and some never. A poor choice of solution encoding has made it almost impos-
sible for crossover to produce useful new solutions.

Algorithm 15e: genetiC Algorithm seArCh

step 0: initialization. Choose a population size p, initial starting feasible
solutions x112,c, x1p2, a generation limit t max , and population subdivisions
pe for elites, pi for immigrants, and pc for crossovers. Also set generation
index t d 0.

step 1: stopping. If t = t max , stop and report the best solution of the cur-
rent population as an approximate optimum.

step 2: elite. Initialize the population of generation t + 1 with copies of the
pe best solutions in the current generation.

step 3: immigrants/mutations. Arbitrarily choose pi new immigrant fea-
sible solutions, or mutations of existing ones and include them in the t + 1
population.

step 4: Crossovers. Choose pc>2 nonoverlapping pairs of solutions from
the generation t population, and execute crossover on each pair at an in-
dependently chosen random cut point to complete the generation t + 1
population.

step 5: increment. Increment t d t + 1, and return to Step 1.

Random-key methods for genetic algorithms encode solu-
tions indirectly as a sequence of random numbers. Then solutions are recov-
ered indirectly by making the first encoded index that of the lowest random
number, the second the next lowest, and so on.

Definition 15.14

Effective genetic algorithm search requires a choice for
encoding problem solutions that often, if not always, preserves solution feasi-
bility after crossover.

Principle 15.13

We can obtain a better encoding in the NCB application by a technique known
as random keys.

15.4 Evolutionary Metaheuristics and Genetic Algorithms 905

To illustrate, consider the following encoding of a drilling sequence in the
NCB application

10.32, 0.56, 0.91, 0.44, 0.21, 0.68, 0.51, 0.07, 0.12, 0.392
The drilling sequence implied is the one obtained by aligning hole 1 with the lowest
random component, hole 2 at the next lowest, and so on. That is, the given random
vector encodes the drilling sequence

14, 8, 10, 6, 3, 9, 7, 1, 2, 52
But notice that crossover on two vectors of random numbers produces two others.
Thus every crossover operation of these random key encodings will yield two new fea-
sible solutions. Also, it is very easy to generate arbitrary new solutions for the initial
population and immigration simply by generating random vectors of random numbers.

Genetic Algorithm Search of NCB Application
Figure 15.5 shows objective function values in a 30-generation Algorithm 15E search
of our NCB application. The population had size 20, with the initial population gen-
erated randomly. Following principle 15.11 , each new generation contained the

160 in.

150 in.

140 in.

130 in.

120 in.

110 in.

100 in.

90 in.

80 in.
t = 0 t = 10 t = 20 t = 30

Figure 15.5 Genetic Search
Population Ranges for NCB
Application

906 Chapter 15 Heuristic Methods for Approximate Discrete Optimization

6 best (elite) solutions of the preceding generation, 4 randomly generated immi-
grant solutions, and 10 solutions obtained from crossover of 5 pairs of parents in the
preceding generation. All solutions were encoded by random keys.

Bars in Figure 15.5 extend from the lowest to the highest route length of solu-
tions in each population. Notice that the lowest ones converge systematically to 81.8,
which we know is the optimal value of this example. Still, the population always
contains a variety of solutions, some with rather poor objective values. This diversity
makes it possible for the search to range into distinctly new parts of the feasible
space as it seeks improved solutions.

ExErCISES

15-1 Consider solving (approximately) the fol-
lowing knapsack problem by constructive search
Algorithm 15A.

 max 11x1 + 1x2 + 9x3 + 17x4

s.t. 9x1 + 2x2 + 7x3 + 13x4 … 17

 x1, c, x4 = 0 or 1

(a) Determine a global optimum by
inspection.

(b) Explain why it is reasonable to fix vari-
ables in decreasing order of ratio

objective coefficient

constraint coefficient

(c) Apply constructive search Algorithm
15A to construct an approximate solu-
tion choosing variables to fix in this ratio
sequence.

15-2 Do Exercise 15-1 for the knapsack model
(this time with increasing ratio order)

 min 55x1 + 150x2 + 54x3 + 180x4

s.t. 25x1 + 30x2 + 18x3 + 45x4 Ú 40

 x1, c, x4 = 0 or 1
15-3 Now consider knapsack instance

 max 30x1 + 20x2 + 20x3

s.t. 21x1 + 20x2 + 20x3 … 40

 x1, x2, x3 = 0 or 1

(a) Determine a global optimum by inspection
(b) Now apply Constructive Search

Algorithm l5A with the greedy ratio of
Exercise l5-l(b) to compute an approxi-
mate optimum.

(c) Compare the results of (a) and (b), and
discuss how the local nature of greedy ratio
search led part (b) to a poorer solution.

15-4 Do Exercise 15-3 for the knapsack instance

 min 10x1 + 10x2 + 3x3

s.t. 10x1 + 10x2 + 6x3 Ú 20

 x1, x2, x3 = 0 or 1
15-5 Recall the Traveling Salesman Problem
(TSP) of Section 11.5, which seeks a minimum
total length cycle (or tour) of a given graph G(V,
E) that includes all nodes of V. One construc-
tive algorithm for the problem is the Nearest
Neighbor method, which begins at one of the
given points, then successively extends the cur-
rent partial tour to the nearest-in-distance unvis-
ited point of V, closing the tour when all points
have been included.

(a) Justify the greedy standard of the algorithm
to proceed to the nearest unvisited point.

(b) Now consider the following (TSP) instance
(from Exercise 14-9) over the 5 points
shown, assuming edges connect all pairs of
nodes and distances are Euclidean.

2 (1, 4)

(0, 3)

(1, 1)

(4, 5/2)

(4, 0)

x1

x2

3

4

1

5

Exercises 907

Use inspection to justify assuming an op-
timal tour is 1–2–4–5–3–l.

(c) Next, solve the instance approximately
by the Nearest Neighbor method, starting
from node 1.

(d) Discuss the advantages and disadvan-
tages of employing a simple constructive
method like Nearest Neighbor versus the
quality of the solution produced.

15-6 Return to the (TSP) instance of Exercise
15-5(b). This time construct an approximately op-
timal tour by the Greedy Insertion strategy used
on the KI Truck Routing application in Figure
15.1. Specifically begin with a 2-point tour 1–5–1.
Then at each iteration insert to unvisited point
closest to the average of coordinates for nodes
included so far.

(a) Justify the greedy standard of the al-
gorithm to insert the nearest unvisited
point.

(b) Compare your results to the optimum of
Exercise 15-5(b) and the heuristic solu-
tion 15-5(c).

(c) Discuss the advantages and disadvan-
tages of employing a Greedy Insertion
constructive method versus the tour ex-
tension strategy of Nearest Neighbor.

15-7 Consider a simplified Vehicle Routing
Problem (VRP) over the customer sites in the
 following plot (refer to Section 11.5).

4

(1, 4)2

1

6

7

3

5

10

9

8

T

(0, 3)

(45, /2)

(1, 1)

(4, 0)

(4, –1)

(2, –3/2)

(–3/2, –1)

(–2, 2)

(–2, 4)

x1

x2

Two 5-customer routes are to be designed,
both originating and returning to terminal site

x1 = x2 = 0. All point-to-point distances are as-
sumed Euclidean, and the goal is to minimize the
total travel length of the two routes.

(a) Parallel the constructive solution of
routes in the KI Trucking application
of Section 15.1 to construct two ap-
proximately optimal routes. Begin with
seed routes to sites 6 and 10. Then iter-
atively insert all other points in order
of their distance from centers of gravity
computed as the average coordinates of
sites already inserted in each of the two
emerging routes.

(b) Comment on the quality of the two ul-
timate routes and whether similar con-
structive techniques could be used in
more realistic (VRP) applications.

15-8 Classic Bin Packing (BP) considers the
task of packing a collection of items j = 1, c, n
of varying sizes aj into a minimum number N
of bins of capacity b. The first-fit algorithm to
solve instances approximately begins with no
bins open. Then it takes items in arbitrary se-
quence, considering possible bins for each in
the order they were opened. The item is placed
in the the first bin that can accomodate it, or
if none does, a new bin is opened and the item
placed there.

(a) Taking items in subscript sequence,
apply this first-fit heuristic to an in-
stance with n = 12 items of sizes
aj = 12, 14, 9, 19, 2, 4, 13, 8, 8, 10, 13, and
7 and bins of capacity b = 30.

(b) Justify the greedy standard of taking
items in first-fit sequence.

(c) Explain why a j aj>b is a lower bound on
the optimal number of bins needed in any
solution, and compare to your result of
part (a).

(d) Explain why there can never be more
than one bin … half full at any point in
the execution of the algorithm, so that the
final number NQ of bins it uses must satisfy
1NQ - 121b>22 6 a j aj.

(e) Combine (c) and (d) to establish that the
number of bins used by the first-fit heu-
ristic solution can be no worse than twice
optimal.

908 Chapter 15 Heuristic Methods for Approximate Discrete Optimization

15-9 Consider solving (approximately) the ILP

 max 5x1 + 7x2 - 2x3

s.t. x2 + x3 … 1

 x1, x2, x3 = 0 or 1

by a version of discrete improving search
Algorithm 15B that employs move set
M = 511, 0, 02, 10, 1, 02, 10, 0, 126 and always
advances to the feasible neighbor with best ob-
jective value.

(a) Identify a global optimal solution by
inspection.

(b) List all points in the neighborhood of fea-
sible solution x102 = 10, 0, 12.

(c) Compute a local optimal solution by
applying Algorithm 15B starting from
x102 = 10, 0, 12.

(d) Repeat part (c), this time starting at
x102 = 11, 0, 02.

(e) Compare results in parts (c) and (d),
and comment on the effect of starting
solutions.

(f) Repeat part (c), this time using the single-
complement move set that allows any
one xj = 1 to be switched to = 0, or vice
versa.

(g) Compare results in parts (c) and (f), and
comment on the effect of move set.

15-10 Repeat Exercise 15-9 for the ILP

 min 2x1 - 11x2 + 14x3

s.t. x1 + x2 + x3 Ú 1

 x1, x2, x3 = 0 or 1
15-11 Consider solving (approximately) the ILP

 max 12x1 + 7x2 + 9x3 + 8x4

s.t. 3x1 + x2 + x3 + x4 … 3

 x3 + x4 … 1

 x1, c, x4 = 0 or 1

by a version of discrete improving search Algo-
rithm 15B that always advances to the feasible
neighbor with best objective value and uses the
single-complement neighborhood permitting any
one xj = 1 to be switched to = 0, or vice versa.

(a) Identify a global optimal solution by
inspection.

(b) Use Algorithm 15B to compute a local
optimum starting from x102 = 10, 0, 0, 02.

(c) Apply the multistart extension of im-
proving search to compute a local opti-
mum by trying starts at x = 10, 1, 0, 02,
and (0, 0, 0, 1).

15-12 Do Exercise 15-11 for the ILP

 min 20x1 + 40x2 + 20x3 + 15x4

s.t. x1 + x2 Ú 1

 x1 + x4 Ú 1

 x1, c, x4 = 0 or 1

Start Algorithm 15B at x = 11, 1, 1, 12, and multi-
start at x = 11, 0, 1, 12, and (1, 1, 1, 0).
15-13 Return to the improving search problem
of Exercise 15-11.

(a) Show that x = 11, 0, 0, 02 is a local
optimum.

(b) Show that if a nonimproving move is al-
lowed at x = 11, 0, 0, 02, the next iter-
ation will return the search to this same
point.

15-14 Do Exercise 15-13 for the model of
Exercise 15-12.
 15-15 Return to the improving search prob-
lem of Exercise 15-11, starting from x102 = 11, 0,
0, 02. Compute an approximate optimum by Tabu
search Algorithm 15C, forbidding complemen-
tation of a variable for one step after its value
changes, and limiting the search to t max = 5
moves.
15-16 Do Exercise 15-15 for the model of
Exercise 15-12. Forbid complementation of a
variable for two steps after its value changes.
 15-17 Return to the improving search prob-
lem of Exercise 15-11, starting from x102 = 10, 0,
0, 12. Compute an approximate optimum by
Simulated Annealing Algorithm 15D, using a
temperature of q = 20, limiting the search to
t max = 4 moves, and resolving probabilistic deci-
sions with (uniform [0,1]) random numbers 0.65,
0.10, 0.40, 0.53, 0.33, 0.98, 0.88, 0.37.
15-18 Do Exercise 15-17 for the model of
Exercise 15-12. Use random numbers 0.60, 0.87,
0.77, 0.43, 0.13, 0.19, 0.23, 0.71, 0.78, 0.83, 0.29.
Start at x102 = 11, 0, 0, 02.

Exercises 909

15-19 Return to the (TSP) and the instance of
Exercise 15-5(b). Given a feasible tour, the pair-
wise interchange move set considers all possible
swaps of city positions in the current tour. For
example, one swap of a current tour 1–2–5–4–3–1
would be 1–2–3–5–3–1.

(a) Begin with tour 1–2–5–4–3–1 in the in-
stance of Exercise 15-5(b) and apply
Improving Search Algorithm 15B with
this pairwsie interchange to compute an
approximate optimum.

(b) Now apply multistart to the same instance
with pairwise interchange neighbor start-
ing from both the beginning solution of
(a) and also 1–3–2–5–4–1. What approx-
imate optimum is the result?

(c) Replicate part (a) applying Tabu Search
Algorithm 15C, forbidding swaps involv-
ing the first of the two cities in a nonim-
proving interchange for 2 steps.

(d) Replicate part (a) applying Simulated
Annealing Algorithm 15D, a temperature
of q = 15, limiting the search to tmax = 4
moves, and using random numbers 0.05,
0.92, 0.77, 0.40, 0.81, and 0.53 to decide
acceptance of nonimproving moves.

15-20 Inform College (IC) is planning a major
government issues conference with panels on
topics i = 1, c, 30. Panels will be scheduled in
one of t = 1, c, 6 time blocks, with 5 running si-
multaneously in each block. To make the confer-
ence as convenient as possible, IC has surveyed
prospective attendees and computed vales qi, i=!
the number of attendees who would particularly
like to be able to attend both sessions i and i=.
Now IC would like to construct a session sched-
ule that minimizes the total number of attendees
inconvenienced by pairs of sessions they would
like to attend running simultaneously.

(a) Formulate IC’s session scheduling task
as a transportation problem analog of
Quadradic Assignment model 11.16 ,
using decision variables xi, t ! 1 if panel
i is scheduled in time block t and = 0
otherwise.

(b) Refer to Section 11.4 and Chapter 14 to
justify solving the model heuristically
using methods of this chapter because
tractable exact solution is unlikely.

(c) Suppose now that the instance is to be
solved approximately by Improving
Search Algorithm 15B, beginning from
a feasible schedule and using a pairwise
swap move set to evaluate moves inter-
changing the current time assignment of
a single pair of panels. Calculate the num-
ber of such moves at any current assign-
ment xi, j. Also determine whether all the
neighbors produced by such moves will
be feasible.

(d) Repeat part (c) using a single change
move set that changes only the assigned
time of a single panel.

15-21 Silo State’s Industrial Engineering faculty
is moving to new offices. Professors p = 1, c, 20
will be assigned offices among the r = 1, c, 25
rooms, with unused rooms being left for gradu-
ate assistants. Walking distances dr, r′ have been
computed between all pairs of rooms 1r, r′2.
The department head also has collected values
cp, p=! the number of times per month each pair
of professors 1p, p=2 collaborates in their teach-
ing and research. Now, she would like to pick an
assignment of professors to rooms that minimizes
the total of collaboration traffic cp, p=

dr, r′ over all
chosen assignments.

(a) Formulate the head’s task as a Quadratic
Assignment model 11.16 , using deci-
sion variables xp, r! 1 if professor p is
assigned to room r and = 0 otherwise,
together with the model parameters de-
fined above.

(b) Refer to Sections 11.4 and Chapter 14
to justify solving the model heuristically
using methods of this chapter because
tractable exact solution is unlikely.

15-22 Return to the model of Exercise 15-21,
and consider solving it approximately with
Improving Search Algorithm 15B over each of
the following move sets:

M1! 5reassignments of a single professor to
any office6

M2! 5reassignments of a single professor to
a vacant office6

M3! 5swaps of the assignments of two
professors6

910 Chapter 15 Heuristic Methods for Approximate Discrete Optimization

The search will begin with each professor ran-
domly assigned to a different office.

(a) Show that all these move sets yield a poly-
nomial-size neighborhood in terms of
numbers of professors and rooms.

(b) Compare the 3 move sets with regard to
whether every neighbor of any current
feasible solution must also be feasible.

(c) For those move sets that can produce
 infeasible neighbors, show how the objec-
tive function of your model can be modi-
fied with “big M” penalties to make such
infeasible solutions unattractive.

15-23 Return to the improving search problem
of Exercise 15-11.

(a) Show that the solutions x112 = 10, 0, 1, 02
and x122 = 10, 0, 0, 12 are eligible to be-
long to a genetic algorithm population for
the problem.

(b) Construct all possible crossover results
(all cut points) for the x112 and x122 of
part (a).

(c) Determine whether all your resulting
solutions in part (b) are feasible, and if
not, explain what difficulty this presents
for effective application of genetic algo-
rithm search.

15-24 Do Exercise 15-23 on the model of
Exercise 15-12 using x112 = 10, 1, 1, 12 and
x122 = 11, 0, 1, 12.

15-25 Return again to the model of
Exercise 15-11, and consider employing ge-
netic Algorithm 15E with initial population
510, 0, 1, 02, 10, 0, 0, 12, 10, 1, 1, 02, 11, 0, 0, 026,
pe = pi = 1, and pe = 2. Construct and evaluate
each member of the next generation population,
with crossover after component 2 of the best and
worst current solutions. Use a large negative M
as the objective value of any infeasible solutions
produced by crossover.

15-26 Do Exercise 15-25 on the model
of Exercise 15-12 with initial population
510, 1, 1, 12, 11, 0, 1, 12, 10, 1, 0, 12, 11, 0, 0, 026.

15-27 Return to the model of Exercise 15-20
and consider applying Genetic Algorithm 15E.

(a) First consider encoding solutions by tak-
ing sessions in i order and recording the

time block t to which each is assigned.
Sketch what would happen if two
 solutions like this were combined in
crossover. What kinds of infeasibility
could result? Explain. Then discuss how
it might be managed by penalizing infea-
sibility with suitable “big M” terms in the
objective function.

(b) Now consider encoding solutions by first
listing the 5 panel numbers for the first
time slot, then the 5 for the second, and
so on. Sketch what would happen if two
solutions were combined in crossover
with cut points limited to the 5 bound-
aries between session lists for particular
time slots, that is, after entry 5, 10, 15,
20, and 25. What kinds of infeasibility
could result? Explain. Then discuss how
it might be managed by penalizing infea-
sibility with suitable “big M” terms in the
objective function.

(c) Finally, consider the method of Random
Keys defined in 15.13 . Specifically, the
solution would be encoded indirectly with
30 random numbers corresponding to the
30 panels. To recover the implied solu-
tion and evalute the objective function,
the 5 panels with lowest random numbers
would be assigned to time slot 1, the next
5 to time slot 2, and so on. Explain why in-
feasiblity could not result from crossovers
between 2 such solutions, and how that
could make Algorithm 15E more effective.

15-28 Return to the model of Exercise 15-21
and consider applying Genetic Algorithm 15E.

(a) First consider encoding solutions by
taking professors in p order (adding
p = 21, c, 25 for rooms assigned to
graduate assistants), then recording the
room r to which each is assigned. Sketch
what would happen if two solutions
such as this were combined in crossover.
What kinds of infeasibility could result?
Explain. Then discuss how it might be
managed by penalizing infeasibility with
suitable “big M” terms in the objective
function.

(b) Now consider encoding solutions by tak-
ing rooms in r order, recording the pro-
fessor (or graduate assistants) p assigned

Exercises 911

to the room. Sketch what would happen if
two solutions were combined in crossover
with cut points limited to the 5 bound-
aries between session lists for particular
time slots, that is, after entry 5, 10, 15,
20, and 25. What kinds of infeasibility
could result? Explain. Then discuss how
it might be managed by penalizing infea-
sibility with suitable “big M” terms in the
objective function.

(c) Finally, consider the method of Random
Keys defined in 15.13 . Specifically, the

solution would be encoded indirectly
with 25 random numbers corresponding
to rooms as in part (b). To recover the
implied solution and evalute the objec-
tive function, the room with the lowest
random number would be assigned to
professor 1, the second to professor 2, and
so on with the last 5 assigned to graduate
students. Explain why infeasiblity could
not result from crossovers between 2
such solutions, and how that could make
Algorithm 15E more effective.

rEFErENCES

Aarts, Emile and Jan Korst (1989), Simulated
Annealing and Boltzmann Machines, Johy Wiley,
Chichester, England.

Glover, Fred and Manuel Laguna (1997), Tabu
Search, Kluwer, Boston, Massachusetts.

Goldberg, David E. (1989), Genetic Algorithms in
Search and Machine Learning, Additon-Wesley,
Reading, Massachusetts.

Parker, R. Gary and Ronald L. Rardin (1988), Dis-
crete Optimization, Academic Press, San Diego,
California.

Talbi, EI-Ghazali (2009), Metaheuristics from
 Design to Implementation, John Wiley, Hoboken,
New Jersey.

Wolsey, Laurence (1998), Integer Programming, John
Wiley, New York, New York.

This page intentionally left blank

913

▪ ▪ ▪ ▪ ▪
Chapter 16

Unconstrained
Nonlinear

Programming
A major theme of this book has been the power and elegance of linear programming
models, which are models with continuous decision variables, linear constraints, and
a linear objective function. Nonlinear programming (NLP) encompasses all the rest
of single-objective optimization over continuous decision variables.

Being defined only by what it is not—linear—leaves nonlinear programming
with a host of quite different forms and algorithms. Some models have constraints.
Others have only an objective function. Calculus yields readily exploitable derivatives
in many models. Derivatives do not even exist in others. In some cases, both objective
function and constraints are nonlinear. In others it is only the objective function. Even
single-variable optimization is a nontrivial topic when the objective is nonlinear.

This chapter begins our treatment of nonlinear programming with the uncon-
strained case where no constraints apply. Chapter 17 follows with the more com-
plicated models having constraints that cannot be ignored. There are important
unconstrained applications, but most real models have at least a few constraints. We
treat unconstrained cases first because many of the underlying notions of nonlinear
programming are easier to understand without the encumbrance of constraints, and
because most methods for constrained optimization use unconstrained algorithms
as building blocks. Familiarity with definitions of Section 2.4 and improving search
concepts of Chapter 3 is assumed throughout.

16.1 Unconstrained nonlinear Programming models

One of the major differences between linear and nonlinear programs is that
unconstrained NLPs—ones with no constraints—can still be meaningful.

Unconstrained optimization over a linear objective function is
always unbounded (except in the trivial case where the objective is constant),
but unconstrained nonlinear programs can have finite optimal solutions.

Principle 16.1

We begin our discussion of unconstrained NLPs with some typical applications.

914 Chapter 16 Unconstrained Nonlinear Programming

1Based on D. B. Rosenfield, I. Engelstein, and D. Feigenbaum (1992), “An Application of Sizing
Service Territories,” European Journal of Operational Research, 63, 164–177.

aPPlication 16.1: UsPs single Variable

Even models with a single decision variable can be challenging when the objective
function is nonlinear. For a real single-variable nonlinear program we turn to the
U.S. Postal Service (USPS).1 Service “territories” for the USPS typically consist of a
city and its suburbs. Mail delivery is provided by a number of postal carriers driving,
or sometimes walking, specified “delivery regions.” Carriers are based at “delivery
units” distributed throughout the territory, beginning and ending their routes there
each workday. Often, a delivery unit is also a local post office that sells stamps, and
so on, to the general public.

Determining the most efficient number of delivery units for a territory
involves a trade-off between the fixed overhead costs of operating delivery units
and the travel savings from carriers being based nearer their delivery regions. More
delivery units increase overhead, but they reduce the number of carriers required
by saving travel as the units are dispersed closer to customers.

Increasing automation of mail handling has significantly changed the relative
economics of such decisions. To adjust, the USPS has developed and applied a rough
decision model computing the approximate number of delivery units appropriate
for any given territory. Input parameters are

a ! land area of the territory

m ! number of customers in the territory

t ! average time for a carrier to service any customer site

d ! length of the carrier work day

c ! annual cost per carrier

u ! annual overhead cost of operating a delivery unit

We want to determine the decision variable

x ! number of delivery units

To develop a model, we employ approximations derived from an assumption
that customers are spread evenly over the territory. Under that assumption it can
be shown that

average travel time per carrier to>from regions ≈ k1B a
x

travel time between route stops for all routes ≈ k21am

where k1 and k2 are constants of proportionality. Then the total number of routes is

1total time at stops2 + 1total time between stops2
effective work time per carrier

=
tm + k21am

d - k11a>x
and total cost is

 overhead + operations = ux + ca tm + k21am

d - k11a>x
 b (16.1)

16.1 Unconstrained Nonlinear Programming Models 915

USPS Single-Variable Application Model
To have a specific example with which to deal, pick

 a = 400, m = 200,000, d = 8, t = 0.05

 c = 0.10, u = 0.75, k1 = 0.2, k2 = 0.1

in expression (16.1). Then our single-variable USPS nonlinear program is

 min f1x2 ! 10.752x + 10.102 c 10.0521200, 0002 + 10.1214001200, 0002
182 - 10.221400>x

 d (16.2)

 ≈ 0.75x +
1089.4

8 - 0.21400>x

Figure 16.1 shows that a unique optimal solution occurs at x* ≈ 15.3.

160

180

200

220

240

260

280

5 10 15 20 25 30 35

x* ≈ 15.3
FigUre 16.1 USPS Application
Objective Function

Neglecting Constraints to Use Unconstrained Methods
Strictly speaking, model (16.2) is incomplete. A meaningful number of delivery units,
x, should satisfy the constraint

x Ú 0

and perhaps also

x integer

Still, we know (Chapter 6) that adding a constraint can change an optimal solution
only if it is violated. With x* = 15.2 7 0, the neglected nonnegativity constraint
would have no impact even if we modeled it explicitly. Integrality is violated at x*,
but the rough planning nature of the model suggests that we would be quite justified
in rounding to x = 15.

Many, perhaps most, problems modeled as unconstrained nonlinear programs
actually have a few constraints that are neglected in this way.

The relative tractability of unconstrained models often justi-
fies neglecting simple constraints that should apply until an optimum has been
computed, checking only afterward that the solution is feasible.

Principle 16.2

916 Chapter 16 Unconstrained Nonlinear Programming

table 16.1 Cost Data for Custom Computer Application

i
Number,

pi

Cost,
qi i

Number,
pi

Cost,
qi i

Number,
pi

Cost,
qi

1 19 7.9 5 5 19.5 9 14 9.2
2 2 25.0 6 6 13.0 10 17 6.3
3 9 13.1 7 3 17.8 11 1 42.0
4 4 17.4 8 11 8.0 12 20 6.6

Of course, if the unconstrained optimum violates an important constraint, we must
resort to constrained methods.

Curve Fitting and Regression Problems
Perhaps the most common of unconstrained NLPs involve curve fitting or regression.
We seek to choose coefficients for a functional form to make it fit closely some
observed data.

Decision variables in a regression problem are the coefficients
of the fitted functional form, and the objective function measures the accuracy
of the fit.

Principle 16.3

aPPlication 16.2: cUstom comPUter cUrVe Fitting

For a simple application of curve fitting, we consider the problem of (fictitious)
Custom Computer Company, which builds specialized computer workstations for
engineers. Although there may be many commonalties, stations produced for each
order are specially modified to meet customer specifications.

Table 16.1 shows the number of units and unit cost (in thousands of dollars) of
m = 12 recent orders. Figure 16.2 plots this experience. Obviously, unit cost declines
dramatically with the size of an order. Custom wants to fit an estimating function
like the one depicted in Figure 16.2 to facilitate preparation of bids on future work.

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20

FigUre 16.2 Fitted Curve for Custom
Computer Application

16.1 Unconstrained Nonlinear Programming Models 917

Linear versus Nonlinear Regression
Our first task in dealing with Custom Computer’s problem is choosing a regression
form to fit. That is, we want to choose a function r(p) with unknown coefficients to
approximate

r1pi2 ≈ qi for all i = 1, c, m

Nonlinear optimization will choose the best coefficient values.
The fact that functional coefficients constitute the decision variables (principle

 16.3) in curve fitting leads to considerable confusion. For example, regression
 analysts often denote a form something like

 r1x2 ! a + bx (16.3)

with x being data and 5a, b6 the coefficients to determine. This choice of notation
is exactly the reverse of the one familiar in optimization.

We will follow the mathematical programming tradition of reserving x for
decision variables. Thus form (16.3) might be expressed as

 r1p2 ! x1 + x2 p (16.4)

with p the data and 5x1, x26 the undetermined coefficients.
A similar confusion arises in distinguishing linear versus nonlinear regression.

A regression problem is termed linear if the functional form
being fitted is linear in the unknown coefficients (decision variables) and
 nonlinear otherwise.

Definition 16.4

For example, the choice of

 r1p2 ! x1 +
x2

p
 (16.5)

in our Custom Computer case would be a linear regression. The corresponding
curve in Figure 16.2 would not be a straight line, but expression (16.5) is linear in the
unknown coefficients x1 and x2.

The distinction between linear and nonlinear regression is important because
there is often a closed-form solution for fitting linear forms, but nonlinear ones
 usually require search. Computations throughout this chapter will illustrate for
 nonlinear regression form

 r1p2 ! x1p
x2 (16.6)

on our Custom Computer application. The curve depicted in Figure 16.2 is

r1p2 ! 40.69p-0.6024

which provides an optimal fit.

examPle 16.1: distingUishing linear and nonlinear regression

Taking variables xj to be the unknown coefficients and all other symbols as given
data, determine whether fitting each of the following forms is linear or non-
linear regression.

918 Chapter 16 Unconstrained Nonlinear Programming

Regression Objective Functions
To complete formulation of curve fitting as a nonlinear optimization, we require
an objective function measuring fit. The error or residual associated with any data
point is the difference between the fitted function and the actual value observed. For
example, in our Custom Computer case, residuals under functional form (16.6) are

qi - r1pi2 = qi - x11pi2x2 for all i = 1, c, m

Regression objective functions minimize some nondecreasing function of the
magnitudes of residuals. Many possibilities have been employed, but the most
common is the sum of residual squares or least squares. This objective possesses a
number of desirable statistical properties, and it also has the intuitive appeal that
small deviations cost little but large ones are heavily penalized.

Custom Computer Curve Fitting Application Model
For our Custom Computer application, the least squares objective produces uncon-
strained NLP model

 min f1x1, x22 ! a
m

i = 1
[qi - x11pi2x2]2 (16.7)

Figure 16.3 displays the objective graphically, with global minimum at

x1
* ≈ 40.69, x2

* ≈ -0.6024

yielding the best fit.

(a) r1p2 ! x1 + x2 sin1p2
(b) r1p2 ! x1 + sin1x22p

(c) r1p1, p22 ! x1p1
2 + x2e

p2

Solution: We apply definition 16.4 .

(a) This regression form is linear because it is linear in the decision variables x1
and x2 for given data p.

(b) This regression form is nonlinear. Decision variable x2 appears in the nonlinear
expression sin 1x22.

(c) This regression form is linear. It fits a nonlinear function of two inputs p1 and
p2, but decision variables x1 and x2 occur linearly.

examPle 16.2: FormUlating nonlinear regression models

Three observations from a function believed to have the form

z = aubv

are 1u1, v1, z12 = 11, 8, 32, 1u2, v2, z22 = 14, 15, 22, and 1u3, v3, z32 = 12, 29, 712.
Formulate an unconstrained nonlinear program to choose the a and b yielding a
least squares fit.

16.1 Unconstrained Nonlinear Programming Models 919

Maximum Likelihood Estimation Problems
Another common application of unconstrained NLP arises in fitting continuous
probability distributions to observed data. A probability density function, d(p), char-
acterizes any such distribution by showing how the probability is spread over differ-
ent values of a random variable, P. For example, the d(p) depicted in Figure 16.4
indicates relatively higher probability of values of P near 0.7 than near 0.2.

* *

30
35

40
45

-0.65
-0.6

-0.55
-0.5

-0.45

100
200
300
400
500
600

x2

x1

f(x1, x2) (x1, x2) = (40.69, - 0.6024)

FigUre 16.3 Objective Function in Custom
Computer Application

Solution: Residuals are 1z1 - auibvi2. Thus a least squares fit will be obtained at a
and b solving

 min f1a, b2 ! 13 - a1b 822 + 12 - a4b 1522 + 171 - a2b 2922

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

d(
p)

p

FigUre 16.4 Density Function for PERT
Maximum Likelihood Application

When say m independent random variables P1, P2, c, Pm have the same
probability density d(p), the joint probability density function or likelihood is

 d1p1, p2, c, pm2 = d1p12d1p22 cd1pm2 (16.8)

That is, the density for any particular independent combination of values is the
product of the densities for the values separately.

920 Chapter 16 Unconstrained Nonlinear Programming

2Beta parameters are more commonly called a and b, but we will employ x1 and x2 to be consistent
with the convention that xj refers to a decision variable.

table 16.2 Realized Data for PERT Maximum Likelihood
Application

Value Value Value Value Value

p1 0.65 p3 0.52 p5 0.74 p7 0.79 p9 0.92
p2 0.57 p4 0.72 p6 0.30 p8 0.89 p10 0.42

Estimation involves choosing values for unknown coefficients of a density
functional form d(p). The best estimates by many criteria are maximum likelihood,
ones that maximize the joint density of a known sample of random variable values.

Decision variables in maximum likelihood estimation are the
coefficients of the fitted probability density, and the objective function is the
corresponding joint density or likelihood evaluated at the observed data.

Principle 16.5

aPPlication 16.3: Pert maximUm likelihood

Maximum likelihood estimates for parameters of many standard probability densi-
ties can be obtained in closed form. However, some require a numerical optimization
to maximize the likelihood function.

A specific example occurs in fitting the beta distribution often used in project
evaluation and review technique (PERT) project management. PERT is an exten-
sion of the CPM project scheduling method introduced in Section 9.7. As with
CPM, a project is divided into a series of work activities with specified time dura-
tions. The new element with PERT is that durations are taken as random variables
(i.e., they are assumed to be known only in probability distribution at the time that
planning takes place).

Beta random variables assign probability density over the interval 0 … p … 1,
so that in PERT they reflect the fraction p that some activity’s duration forms of an
allowed maximum. The beta probability density function is

 d1p2 !
Γ1x1 + x22
Γ1x12Γ1x22 1p2x1 - 111 - p2x2 - 1 (16.9)

where x1 7 0 and x2 7 0 are parameters controlling its shape.2 For instance,
x1 = 4.50, and x2 = 2.20 yields density shown in Figure 16.4. In expression (16.9),
Γ1x2 is the standard Γ-function equal to the area under the curve

g1x2 ! 1h2x - 11e2-h

over 0 … h … + ∞ . Γ1x2 has no closed form.
Table 16.2 shows the data we will assume for m = 10 previous times a project

activity was undertaken. Values pi represent actual duration as a fraction of the
 maximum ever expected.

16.1 Unconstrained Nonlinear Programming Models 921

PERT Maximum Likelihood Application Model
The beta probability density for observation p1 = 0.65 is

d1p12 = d10.652 =
Γ1x1 + x22
Γ1x12Γ1x22 10.652x1 - 111 - 0.652x2 - 1

and for the first two observations together it is [applying expression (16.8)]

d1p12d1p22 = c Γ1x1 + x22
Γ1x12Γ1x22 10.652x1 - 111 - 0.652x2 - 1 d

c Γ1x1 + x22
Γ1x12Γ1x22 10.572x1 - 111 - 0.572x2 - 1 d

Continuing in this way our nonlinear program to maximize the likelihood of
the full m-value sample over coefficients x1 and x2 is

 max f1x1, x22 ! q
m

i = 1
c Γ1x1 + x22
Γ1x12Γ1x22 1pi2x1 - 111 - pi2x2 - 1 d (16.10)

Figure 16.5 plots this objective for various x1 and x2. The unique global maximum is
at x1

* ≈ 4.50 and x2
* ≈ 2.20 of the density in Figure 16.4.

examPle 16.3: FormUlating maximUm likelihood models

Exponential probability distributions have density function

d1p2 ! ae-ap

Formulate an unconstrained nonlinear program to determine the maximum likeli-
hood value of parameter a consistant with realizations p1 = 4, p2 = 9, and p3 = 8.

Solution: The likelihood is the product (expression (16.8)) of the densities for the
three realizations. Thus the model required is

 max f1a2 ! 1ae-4a21ae-9a21ae-8a2

1
2

3
4

5
6

7
8

0.5 1 1.5 2 2.5 3 3.5 4 4.5

5
10
15
20

x1

x2

f(x1, x2) (x1, x2) = (4.50, 2.20)* *

FigUre 16.5 PERT Maximum Likelihood
Application Objective Function

922 Chapter 16 Unconstrained Nonlinear Programming

Figure 16.6 illustrates this for some functions of a single x. (Refer, if needed, to
Primer 2 in Section 3.3 for a quick review of differential calculus.)

(a) Smooth (b) Not continuous (c) Not differentiable

x x x

f(x) f(x) f(x)

FigUre 16.6 Examples of Smooth and Nonsmooth Functions

Smooth versus Nonsmooth Functions and Derivatives
It is useful to classify nonlinear programs according to whether their objective func-
tions are smooth or nonsmooth.

A function f(x) is said to be smooth if it is continuous and
 differentiable at all relevant x. Otherwise, it is nonsmooth.

Definition 16.6

The smooth/nonsmooth distinction is useful because the more erratic nature
of nonsmooth functions usually implies a more difficult search.

Nonlinear programs over smooth functions are generally more
tractable than those over nonsmooth ones.

Principle 16.7

examPle 16.4: recognizing smooth FUnctions

Determine whether each of the following single variable functions is smooth or
nonsmooth over the specified domain.

(a) f1x2 ! x3 for x ∈ 1- ∞ , + ∞ 2
(b) f1x2 ! � x - 1 � for x ∈ 1- ∞ , + ∞ 2
(c) f1x2 !

1
x

 for x 7 0

Solution: We apply definition 16.6 .

(a) This function is differentiable at every point in the domain, so the function is
smooth.

(b) This function is not differentiable at point x = 1, which is within the range.
Thus the function is nonsmooth.

(c) This function is discontinuous at x = 0. However, that point is not in the do-
main specified. Thus the function is smooth for x 7 0.

16.1 Unconstrained Nonlinear Programming Models 923

Usable Derivatives
All three objective functions for the examples of this section (Figures 16.1, 16.3, and
16.5) are smooth. Still, the existence of (partial) derivatives at every relevant x does
not necessarily imply that derivatives are readily available to aid search algorithms.

For the USPS application

f1x2 ! 0.75x +
1089.4

8 - 0.21400>x
and

df

dx
= 0.75 -

1089.4
18 - 0.21400>x22 a 0.11400>x

 b a 400
x2 b (16.11)

For the Custom Computer case

f1x1, x22 ! a
m

i = 1
[qi - x11pi2x2]2

with

0f

0x1
= -2a

m

i = 1
[qi - x11pi2x2]1pi2x2 (16.12)

0f

0x2
= -2a

m

i = 1
[qi - x11pi2x2][x11pi2x2] ln1pi2

Neither (16.11) nor (16.12) is a particularly simple expression, but both show deriv-
atives that can be computed with reasonable effort to speed a search.

In elementary calculus, unconstrained optima are computed by solving the
 system of equations resulting from setting derivatives = 0. With complex derivative
expressions such as (16.11) and (16.12), solving such a system of equations is often
as difficult as solving the underlying nonlinear program. Nevertheless, practically
available derivatives can be a significant aid to a numerical search for optimal vari-
able values.

Nonlinear programs over smooth functions with convenient-
to-compute derivatives are usually more tractable than those without, because
derivatives can be exploited to produce a much more efficient search.

Principle 16.8

Contrast with the PERT maximum likelihood objective

f1x1, x22 ! q
m

i = 1
c Γ1x1 + x22
Γ1x12Γ1x22 1pi2x1 - 111 - pi2x2 - 1 d

The Γ-function itself has no closed form, so derivatives are certainly not readily
available, even though they do exist in theory. To compute an optimum for this case
we require a search method that does not depend on derivatives.

924 Chapter 16 Unconstrained Nonlinear Programming

16.2 one-dimensional search

The easiest case on unconstrained nonlinear programming is single-variable or
1-dimensional search. One-dimensional NLPs occur both directly, as in our USPS
application of Section 16.1, and as line search subroutines choosing step sizes to
apply to move directions of more general algorithms.

Unimodal Objective Functions
Figure 16.7 illustrates for

f1x2 ! 1x - 421x - 6231x - 122

how 1-dimensional optimization can be quite challenging.

•	 Points x112 and x132 are both local minima because small changes from either x do
not decrease the objective function (definition 3.5). Only x132 is an overall, global
 minimum (definition 3.7) for the displayed interval.

•	 Point x122 is a local maximum because small changes from x122 do not increase the
objective function. Being the only local maximum, it is also a global maximum for the
displayed interval.

•	 Point x142 is neither a maximum nor a minimum, despite the fact that the slope of f(x)
(derivative df/dx) at the point = 0.

Fortunately, most of the 1-dimensional searches we encounter in application
are somewhat better behaved.

examPle 16.5: assessing Practicality oF deriVatiVes

Return to the least squares objective function of Example 16.2:

 min f1a, b2 ! 13 - a1 b 822 + 12 - a4 b 1522 + 171 - a2 b 2922

(a) Express partial derivatives with respect to a and b.

(b) Discuss the usefulness of those partial derivatives in computing an optimal a
and b.

Solution:

(a) Partial derivatives are

0f

0a
= 213 - a1b 821-b 82 + 212 - a4b 1521-4a3b 152

 + 2171 - a2b 2921-2ab 292

0f

0b
= 213 - a1b 821-8a1b 72 + 212 - a4b 1521-5a4b 142

 + 2171 - a2b 2921-29a2b 282
(b) Although derivative expressions of part (a) are somewhat complicated, they
can be evaluated efficiently. Simply setting them = 0 is impractical because it
would leave a pair of difficult nonlinear equations to solve. However, the deriva-
tives can be employed to speed an improving search (principle 16.8).

16.2 One-Dimensional Search 925

The “one-hump” or “single-mode” character that gives unimodal functions
their name is particularly easy to grasp in 1-dimensional cases. For example, the min-
imizing USPS objective of Figure 16.1 is unimodal because the objective is decreas-
ing (improving) at every x to the left of x* ≈ 15.2 and increasing (degrading) at
every x to the right. Since a tiny move toward x* always helps, the local minimum
there must be global.

An objective function f(x) is unimodal if the straight line
direction ∆x to any x with better objective value is an improving direction.
Over unimodal objective functions, every unconstrained local optimum must
be a global optimum.

Definition 16.9

0

50

100

150

x(1) x(2) x(3) x(4)

FigUre 16.7 Single-Variable Nonlinear Function

Notice that an objective being unimodal depends on whether we are maximiz-
ing or minimizing. The USPS objective of Figure 16.1 is not unimodal for a maximize
problem because, for example, a move toward x122 = 30 does not immediately
improve the objective function at x112 = 10, even though f1302 7 f1102.

Golden Section Search
Although derivatives can sometimes be of assistance, many 1-dimensional optimiza-
tions employ simpler methods not requiring derivatives. Among the most clever is
golden section search, which deals with an unimodal objective by rapidly narrowing
an interval guaranteed to contain an optimum.

Figure 16.8 illustrates the idea for a minimize problem. We iteratively consider
the functional value at four carefully spaced points. Leftmost x1lo2 is always a lower
bound on the optimal x*, and x1hi2 is an upper bound, so that an optimum is certain
to lie within the interval [x1lo2, x1hi2]. Points x112 and x122 fall in between.

Each iteration begins by determining whether the objective is better at x112 or
x122. If x112 proves superior [part (a)], we may conclude the optimum lies within the

One example is unimodal objectives.

926 Chapter 16 Unconstrained Nonlinear Programming

smaller interval [x1lo2, x122]. If x122 has a better objective value [part (b)], we restrict
further attention to the interval [x112, x1hi2].

Each narrowing of the interval certain to contain an optimum leaves us with
2 endpoints and 1 interior point at which we already know the objective value. The
efficiency of golden section search comes from how we choose 1 new interior point
to evaluate. Any new point would allow the search to continue, but we want con-
sistent progress regardless of whether the next interval is [x1lo2, x122] or [x112, x1hi2].

Golden section search proceeds by keeping both these possible intervals equal
in length.

f(x)

x

f(x)

x

(b) Optimum right(a) Optimum left

x(hi)

x(hi)

x(2)x(1)

x(1) x(2)

x(lo) x(hi)x(2)x(1)x(lo)

x(lo) x(hi)x(1) x(2)x(lo)

FigUre 16.8 Interval Reduction in a Minimizing Golden Section Search

The two middle points of golden section search are spaced

x112 = x1hi2 - a1x1hi2 - x1lo22
x122 = x1lo2 + a1x1hi2 - x1lo22

where a ≈ 0.618 is a fraction known as the golden ratio.

Principle 16.10

Whichever of [x1lo2, x122] or [x112, x1hi2] provides the next interval, its length will be
a times the current.

The golden ratio value of

 a =
-1 + 15

2
 ≈ 0.618 (16.13)

arises from the need to maintain the spacing of principle 16.10 as the algorithm
 proceeds. For example, suppose that the chosen next interval is [x1lo2, x122]. As indi-
cated in Figure 16.8(a), we want current x112 to play the role of x122 in the next
 interval. Applying formulas 16.10 yields

current x112 = x1hi2 - a1x1hi2 - x1lo22
and

 next x122 = x1lo2 + a1x122 - x1lo22
 = x1lo2 + a1x1lo2 + a1x1hi2 - x1lo22 - x1lo22

Equating and regrouping produces

0 = a21x1hi2 - x1lo22 + a1x1hi2 - x1lo22 - 1x1hi2 - x1lo22

16.2 One-Dimensional Search 927

which further simplifies with x1hi2 ≠ x1lo2 to

0 = a2 + a - 1

The unique positive root of this quadratic equation is a = the golden ratio of
expression (16.13).

Golden Section Solution of USPS Application
Algorithm 16A formalizes these ideas of golden section search. Table 16.3 details its
application to our minimizing unimodal USPS model (16.2).

Algorithm 16A: golden Section SeArch

Step 0: initialization. Choose lower bound x1lo2 and upper bound x1hi2 on
an optimal solution x* along with stopping tolerance e 7 0, compute

x112 d x1hi2 - a1x1hi2 - x1lo22
x122 d x1lo2 + a1x1hi2 - x1lo22

for golden ratio a of (16.13), evaluate objective function f(x) at all four
points, and initialize iteration counter t d 0.

Step 1: Stopping. If 1x1hi2 - x1lo22 … e, stop and report as an approximate
optimal solution

x* d 1
2

 1x1lo2 + x1hi22
the midpoint of the remaining interval. Otherwise, proceed to Step 2 if
f1x1122 is superior to f1x1222 (less for a minimize model, greater for a maxi-
mize), and to Step 3 if it is not.

Step 2: left. Narrow the search to the left part of the interval by updating

 x1hi2 d x122

 x122 d x112

 x112 d x1hi2 - a1x1hi2 - x1lo22
and evaluate the objective at new point x112. Then advance t d t + 1, and
return to Step 1.

Step 3: right. Narrow the search to the right part of the interval by updating

 x1lo2 d x112

 x112 d x122

 x122 d x1lo2 + a1x1hi2 - x1lo22
and evaluate the objective at new point x122. Then advance t d t + 1, and
return to Step 1.

Computation in Table 16.3 starts arbitrarily with interval

[x1lo2, x1hi2] = [8, 32]

928 Chapter 16 Unconstrained Nonlinear Programming

It is only necessary that the interval contain the optimum. Intermediate points x112
and x122 are then computed by principle 16.10 as

 x112 d x1hi2 - a1x1hi2 - x1lo22
 = 32 - 0.618132 - 82
 ≈ 17.17

 x122 d x1lo2 + a1x1hi2 - x1lo22
 = 8 + 0.618132 - 82
 ≈ 22.83

At iteration t = 0, objective value

f1x1122 = 167.74 6 f1x1222 = 169.22

implying that the optimum lies in the left part of the current interval. Following
Algorithm 16A, we update

 x1hi2 d x122 = 22.83

 x122 d x112 = 17.17

and compute new

 x112 d x1hi2 - a1x1hi2 - x1lo22
 = 22.83 - 0.618122.83 - 8.002
 ≈ 13.67

The process now repeats for iteration t = 1.
Computation continues until interval [x1lo2, x1hi2] has sufficiently small length.

In Table 16.3 stopping was set to occur when

x1hi2 - x1lo2 6 e = 0.5

which happened at t = 9. Then our estimate of the optimal solution is midpoint

x* d 11x1lo2 + x1hi22 =
1
2

 115.20 + 15.512 = 15.36

If greater accuracy were desired, we would need to continue through more iterations.

table 16.3 Golden Section Search of USPS Application

t x1lo2 x112 x122 x1hi2 f1x1lo22 f1x1122 f1x1222 f1x1hi22 x1hi2 - x1lo2

0 8.00 17.17 22.83 32.00 171.42 167.74 169.22 173.38 24.00
1 8.00 13.67 17.17 22.83 171.42 167.73 167.74 169.22 14.83
2 8.00 11.50 13.67 17.17 171.42 168.36 167.73 167.74 9.17
3 11.50 13.67 15.00 17.17 168.36 167.73 167.62 167.74 5.67
4 13.67 15.00 15.83 17.17 167.73 167.62 167.63 167.74 3.50
5 13.67 14.49 15.00 15.83 167.73 167.64 167.62 167.63 2.16
6 14.49 15.00 15.32 15.83 167.64 167.62 167.61 167.63 1.34
7 15.00 15.32 15.51 15.83 167.62 167.61 167.62 167.63 0.83
8 15.00 15.20 15.32 15.51 167.62 167.61 167.61 167.62 0.51
9 15.20 15.32 15.39 15.51 167.61 167.61 167.61 167.62 0.32

16.2 One-Dimensional Search 929

Bracketing and 3-Point Patterns
Golden section search begins solving a 1-variable model with an interval [x1lo2, x1hi2]
known to contain an optimum. But how do we determine such initial intervals; that
is, how do we bracket an optimal solution before the main search begins?

Sometimes the initial bracket is given because the model includes implicit
upper and lower bounds on the decision variable. Much more commonly, one
 endpoint is known and the other must be determined. For example, in line searches,
where the single variable is the step size l to apply to a chosen move direction,
l must be positive. Thus we begin with x1lo2 = 0.

To locate the corresponding x1hi2 bracketing the optimum of a unimodal
 objective function requires a search for a 3-point pattern.

examPle 16.6: aPPlying golden section search

Beginning with interval [0, 40], apply golden section search to the unconstrained
unimodal nonlinear program

max f1x2 ! 2x-
1x - 2024

500

plotted below.

–350

–300

–250

–200

–150

–100

–50

0

50

100

0 5 10 15 20 25 30 35 40

x* = 26.1

Continue until the interval containing an optimum has length at most 10.

Solution: The algorithm proceeds exactly as in Table 16.3 except that this model
maximizes. The following table provides details:

t x1lo2 x112 x122 x1hi2 f1x1lo22 f1x1122 f1x1222 f1x1hi22 x1hi2 - x1lo2

0 0.00 15.28 24.72 40.00 -320.00 29.57 48.45 -240.00 40.00
1 15.28 24.72 30.54 40.00 29.57 48.45 36.27 -240.00 24.72
2 15.28 21.12 24.72 30.56 29.57 42.23 48.45 36.27 15.28
3 21.12 24.72 26.95 30.56 42.23 48.45 49.23 36.27 9.44

Termination occurs at t = 3 with x1hi2 - x1lo2 = 9.44 6 e = 10.

930 Chapter 16 Unconstrained Nonlinear Programming

Figure 16.9 illustrates for our USPS model (16.2). Points

x1lo2 = 8, x1mid2 = 16, x1hi2 = 32

surround the minimum in a 3-point pattern with

 f1x1lo22 = f182 ≈ 171.42 7 f1x1mid22 = f1162 ≈ 167.63

 f1x1hi22 = f1322 ≈ 173.38 7 f1x1mid22 = f1162 ≈ 167.63

In 1-dimensional optimization, a 3-point pattern is a col-
lection of 3 decision variable values x1lo2 6 x1mid2 6 x1hi2 with the objective
value at x1mid2 superior to that of the other two (greater for a maximize, lesser
for a minimize).

Definition 16.11

160

180

200

220

240

260

280

x = 4x = 1 x(lo) = 8 x(mid) = 16 x(hi) = 32

FigUre 16.9 Bracketing the USPS Optimum with a 3-Point Pattern

A 3-point pattern provides the bracket we seek if the objective function is
unimodal. Midpoint value f1x1mid22 superior to f1x1lo22 means that the function
improves to the right of x1lo2. Similarly, with f1x1mid22 better than f1x1hi22, the
 function improves to the left of x1hi2. An optimum must lie in between.

Finding a 3-Point Pattern
Algorithm 16B details the most common scheme for quickly finding a 3-point pat-
tern when we are given only an initial lower endpoint x1lo2. Values of x are modified
by exponentially changing step d until the last three form a 3-point pattern.

If 5x1lo2, x1mid2, x1hi26 is a 3-point pattern for unimodal objec-
tive function f1x2, there is an optimal x* in the interval [x1lo2, x1hi2].

Principle 16.12

16.2 One-Dimensional Search 931

Algorithm 16B: three-Point PAttern

Step 0: initialization. Choose lower bound x1lo2 on optimal solution x* and
initial step d 7 0.

Step 1: right or left. If f1x1lo2 + d2 is superior to f1x1lo22 (less for a minimize,
greater for a maximize), set

x1mid2 d x1lo2 + d

and go to Step 2 to search right. Otherwise, an optimum lies to the left; set

x1hi2 d x1lo2 + d

and go to Step 3.
Step 2: expand. Increase d d 2d. If now f1x1mid22 is superior to f1x1mid2 + d2,

set

x1hi2 d x1mid2 + d

and stop; 5x1lo2, x1mid2, x1hi26 forms a 3-point pattern. Otherwise, update

x1lo2 d x1mid2

x1mid2 d x1mid2 + d

and repeat Step 2.

Step 3: reduce. Decrease d d 1
2

 d. If f1x1lo2 + d2 is now superior to f1x1lo22,
set

x1mid2 d x1lo2 + d

and stop; 5x1lo2, x1mid2, x1hi26 forms a 3-point pattern. Otherwise, update

x1hi2 d x1lo2 + d

and repeat Step 3.

Values in Figure 16.9 illustrate the idea. Computation starts with x1lo2 = d = 1.
Since

f1x1lo2 + d2 = f11 + 12 = f122 ≈ 212.16 6 f1x1lo22 = f112 ≈ 273.11

we must expand to the right to find a 3-point pattern bracketing the optimum.
Setting x1mid2 = 2, we double d and consider

x1mid2 + d = 2 + 2 = 4

The function improves again, so

x1lo2 d x1mid2 = 2

x1mid2 d x1mid2 + d = 4

and the process continues.
Eventually, we have x1lo2 = 8, x1mid2 = 16, and d = 16. Then

f1x1mid22 = f1162 ≈ 167.63 6 f1x1mid2 + d2 = f1322 ≈ 173.63

932 Chapter 16 Unconstrained Nonlinear Programming

and the algorithm stops after completing the 3-point pattern with

x1hi2 = x1mid2 + d = 32

examPle 16.7: Finding a 3-Point Pattern

Return to the model

 max f1x2 ! 2x -
1x - 2024

500
of Example 16.6, and apply Algorithm 16B to compute 3-point patterns with initial
x1lo2 = 0 and (a) d = 10; (b) d = 50.

Solution:

(a) Initial f1x1lo22 = f102 = -320, and f1x1lo2 + d2 = f1102 = 0 improves.
Thus x1mid2 d 10. Doubling d and trying f1x1mid2 + d2 = f1302 = 40 produces
further improvement. Thus x1lo2 d x1mid2 = 10, x1mid2 d 30. Doubling d again
yields f1x1mid2 + d2 = f130 + 402 = -12, 360. Thus we stop with x1hi2 d 70.

(b) Initial f1x1lo22 = f102 = -320, and f1x1lo2 + d2 = f1502 = -1520 is worse.
Setting x1hi2 d 50, we could stop if our only purpose is to bracket the maxi-
mum. To complete a 3-point pattern, however, we must reduce d. Halving to
d = 25 produces f1x1lo2 + d2 = f1252 = 48.75, which does improve on f1x1lo22.
Choosing x1mid2 d 25 completes the 3-point pattern.

Quadratic Fit Search
Golden search Algorithm 16A is reliable, but its slow and steady narrowing of the
optimum-containing interval can require considerable computation before an opti-
mum is identified with sufficient accuracy. Quadratic fit search closes in much more
rapidly by taking full advantage of a current 3-point pattern.

Given a 3-point pattern, we can fit a quadratic function through corresponding
functional values that has a unique maximum or minimum, x1qu2, whichever we are
seeking for the given objective f(x). Quadratic fit uses this approximation to improve
the current 3-point pattern by replacing one of its points with approximate optimum
x1qu2.

Figure 16.10 illustrates for USPS model (16.2) with initial 3-point pattern

x1lo2 = 8, x1mid2 = 20, x1hi2 = 32

The main curve plots actual objective function f(x). A second, dashed line shows the
unique quadratic function fitting through the 3 pattern points.

That quadratic approximation has a minimum at

 x1qu2 ≈ 18.56 with f1x1qu22 ≈ 167.98 (16.14)

Together with the current x1lo2 and x1mid2 it now forms a new 3-point pattern

x1lo2 = 8, x1mid2 = 18.56, x1hi2 = 20

with a smaller interval [8,20]. Repeating in this way isolates an optimum for f(x) in
an ever-narrowing range.

16.2 One-Dimensional Search 933

The computation to determine x1qu2 requires only some tedious algebra.

166

168

170

172

174

176

178

180

x(lo) = 8 x(qu) = 18.56 x(mid) = 20 x(hi) = 32

�tted
quadratic

f(x)

FigUre 16.10 Quadratic Fit Search of USPS Application

The unique optimum of a quadratic function agreeing with
f(x) at 3-point pattern 5x1lo2, x1mid2, x1hi26 occurs at

x1qu2 ! 12
f 1lo2 [s1mid2 - s1hi2] + f 1mid2 [s1hi2 - s1lo2] + f 1hi2 [s1lo2 - s1mid2]

f 1lo2 [x1mid2 - x1hi2] + f 1mid2 [x1hi2 - x1lo2] + f 1hi2 [x1lo2 - x1mid2]
Where f 1lo2! f1x1lo22, f 1mid2! f1x1mid22, f 1hi2! f1x1hi22, s1lo2!1x1lo222, s1mid2!1x1mid222,
and s1hi2! 1x1hi222.

Principle 16.13

For example, the approximate minimum of expression (16.14) is

 x1qu2 =
1
2

171.42[12022 - 13222] + 168.32[13222 - 1822] + 173.38[1822 - 12022]

171.42[20 - 32] + 168.32[32 - 8] + 173.38[8 - 20]
 ≈ 18.56

Quadratic Fit Solution of USPS Application
Algorithm 16C details a quadratic fit procedure for 1-dimensional search, and
Table 16.4 tracks progress for our USPS application. The reader can verify that
each iteration produces a new 3-point pattern and that interval [x1lo2, x1hi2] narrows
constantly. Computation for Table 16.4 was stopped when that interval had length
at most P = 0.50.

One new element arises when the computed x1qu2 happens to nearly coincide
with the current x1mid2. If nothing were done, the algorithm would loop forever. Step
3 of Algorithm 16C addresses this difficulty by perturbing x1qu2 by P>2 toward the
most distant endpoint.

The one value changed in this way in Table 16.4 is marked with an asterisk 1*2
at t = 7. There formula 16.13 produced x1qu2 = 15.34, which was too close to

934 Chapter 16 Unconstrained Nonlinear Programming

Algorithm 16c: QuAdrAtic Fit SeArch

Step 0: initialization. Choose starting 3-point pattern 5x1lo2, x1mid2, x1hi26
along with a stopping tolerance ∈ 7 0, and initialize iteration counter t d 0.

Step 1: Stopping. If 1x1hi2 - x1lo22 … P, stop and report approximate
 optimal solution x1mid2.

Step 2: Quadratic Fit. Compute quadratic fit optimum x1qu2 according to
formula 16.13 . Then if x1qu2 ≈ x1mid2, go to Step 3; if x1qu2 6 x1mid2, go to
Step 4; and if x1qu2 7 x1mid2, go to Step 5.

Step 3: coincide. New x1qu2 coincides essentially with current x1mid2. If x1mid2
is farther from x1lo2 than from x1hi2, preturb left

x1qu2 d x1mid2-
P
2

and proceed to Step 4. Otherwise, adjust right

x1qu2 d x1mid2 +
P
2

and proceed to Step 5.
Step 4: left. If f1x1mid22 is superior to f1x1qu22 (less for a minimize, greater for

a maximize), then update
x1lo2 d x1qu2

Otherwise, replace
 x1hi2 d x1mid2

 x1mid2 d x1qu2

Either way, advance t d t + 1, and return to Step 1.
Step 5: right. If f1x1mid22 is superior to f1x1qu22 (less for a minimize, greater

for a maximize), then update

x1hi2 d x1qu2

Otherwise, replace
 x1lo2 d x1mid2

 x1mid2 d x1qu2

Either way advance t d t + 1, and return to Step 1.

table 16.4 Quadratic Fit Solution of USPS Application

t x1lo2 x1mid2 x1hi2 f1x1lo22 f1x1mid22 f1x1hi22 x1hi2 - x1lo2 x1qu2 f1x1qu22
0 8.00 20.00 32.00 171.42 168.32 173.38 24.00 18.56 167.98
1 8.00 18.56 20.00 171.42 167.98 168.32 12.00 16.75 167.70
2 8.00 16.75 18.56 171.42 167.70 167.98 10.56 16.23 167.65
3 8.00 16.23 16.75 171.42 167.65 167.70 8.75 15.78 167.62
4 8.00 15.78 16.23 171.42 167.62 167.65 8.23 15.59 167.62
5 8.00 15.59 15.78 171.42 167.62 167.62 7.78 15.45 167.62
6 8.00 15.45 15.59 171.42 167.62 167.62 7.59 15.38 167.61
7 8.00 15.38 15.45 171.42 167.61 167.62 7.45 *15.13 167.62
8 15.13 15.38 15.45 167.62 167.61 167.62 0.32 — —

16.3 Derivatives, Taylor Series, and Conditions for Local Optima in Multiple Dimensions 935

x1mid2 = 15.38. With x1lo2 = 8.00 farther from this value than x1hi2 = 15.45, Step 3
preturbed the computed value to

x1qu2 = x1mid2 -
P
2

= 15.38 - 0.25 = 15.13

examPle 16.8: aPPlying QUadratic Fit search

Return to the unconstrained nonlinear program of Example 16.6:

 max f1x2 ! 2x -
1x - 2024

500

Using initial 3-point pattern x1lo2 = 0, x1mid2 = 32, x1hi2 = 40, apply quadratic fit
Algorithm 16C to identify an optimal solution within an interval [x1lo2, x1hi2] of
length at most 10.

Solution: Computation parallels Table 16.4 except that this model maximizes.
Details are contained in the following table:

t x1lo2 x1mid2 x1hi2 f1x1lo22 f1x1mid22 f1x1hi22 x1hi2 - x1lo2 x1qu2 f1x1qu22
0 0.00 32.00 40.00 -320.00 22.53 -240.00 40.00 20.92 41.84
1 0.00 20.92 32.00 -320.00 41.84 22.53 32.00 25.00 48.75
2 20.92 25.00 32.00 41.84 48.75 22.53 11.80 *30.00 40.03
3 20.92 25.00 30.00 41.84 48.75 40.03 9.08 — —

16.3 deriVatiVes, taylor series, and conditions
For local oPtima in mUltiPle dimensions

Unconstrained nonlinear optimization is certainly possible without derivatives. Still,
where derivatives are readily available, they can tell us a great deal about a model
and substantially accelerate search algorithm progress (principle 16.8). This section
develops some of the most important insights to be gained.

Improving Search Paradigm
In Sections 3.1 and 3.2 we introduced the principle of improving search (Algorithm
3A, Section 3.2) on which almost all nonlinear algorithms are based. We begin with
a (vector) solution x102 satisfying all model constraints. In the unconstrained context
of this chapter, any x102 will do. Iterations t advance current solution x1t2 to

x1t + 12 d x1t2 + l∆x

where ∆x is a move direction and l a positive step size. Each ∆x should be an
 improving direction; that is, it should produce immediate objective function
improvement (definition 3.13). (It should also retain feasibility when constraints are
present.) The process continues until a point is reached where no directions lead to
such immediate improvement. There we stop (principle 3.17) with what is usually a
local optimum—a point as good in objective value as any nearby (definition 3.5).
[See Figure 3.8(a) for an exception that is not a local optimum even though it admits
no improving direction.]

936 Chapter 16 Unconstrained Nonlinear Programming

Figure 16.11 illustrates for our (minimizing) Custom Computers model (16.7).
At initial point x102 = 132, -0.42 that search took a step of l = 1

2 in direction
∆x = 12, -0.22 to produce

x112 = a 32
-0.4

b + 1
2 a 2

-0.2
b = a 33

-0.5
b

Dashed lines in the figure, which show contours of the objective function plotted
in Figure 16.3, demonstrate that the move is improving. Even very small steps from
x102 in direction ∆x advance the search to lower contours of the objective function.

x* = (40.69, - 0.6024)

x(1) = (33, -0.5)

x(0) = (32, -0.4)

30 35 40 45

-.065

-.06

-.055

-.05

-.045

x2

x1

FigUre 16.11 Improving Search of the Custom
Computers Application

Local Information and Neighborhoods
What move direction should the search of Figure 16.11 adopt next? The best choice
would make

∆x = x* - x112 = a 40.69
-0.6024

b - a 33
-0.5

b = a 7.69
-0.1024

b

which leads directly to the optimal solution.
Unfortunately, a search in progress does not have the global viewpoint avail-

able in Figure 16.11. The next move must be chosen using only experience with points
already visited (here x102 and x112) plus local information about the shape of the
objective function in the immediate neighborhood (definition 3.4) of current x112.

First Derivatives and Gradients
We know from elementary calculus (see also Section 3.3 and Primer 2) that first deriv-
atives or gradients provide information about how an objective function changes near
a current solution x1t2.

The first derivative f′1x2 of a single-variable objective function
f1x2, or the gradient vector ∇f1x2 of first partial derivatives 0f>0x1, c, 0f>0xn
with n variables, describes the slope or rate of change in f with small increments
in current decision variable values.

Principle 16.14

16.3 Derivatives, Taylor Series, and Conditions for Local Optima in Multiple Dimensions 937

For instance, at x112 = 133, -0.52 in minimizing Figure 16.11, we may apply
partial derivative expressions (16.12) to compute

0f

0x1
 ≈ -23.07,

0f

0x2
 ≈ -174.23, so that ∇f1x1122 ≈ 1-23.07, -174.232

Thus small increments from either x1 = 33 or x2 = -0.5 decrease f1x1, x22, but the
rate of change is much more rapid with increments in x2.

Second Derivatives and Hessian Matrices
When an objective function is twice differentiable, which is typical for the smooth
objectives most often occurring in applications, second derivatives can tell us still
more about the shape of the function in the neighborhood of current solution x1t2.
Primer 7 reviews some of the fundamentals.

The second derivative of a single-variable objective f is a scalar function f ″1x2.
For an n-variable objective, there is a whole Hessian matrix of second partial deriva-
tives with row i, column j entry 02f>0xi 0xj. For example, our Custom Computer objec-
tive [model (16.7)]

f1x1, x22 ! a
m

i = 1
1qi - x1pi

x222

has first partial derivatives [expression (16.12)]

0f

0x1
= -2a

m

i = 1
1qi - x1pi

x22 pi
x2

0f

0x2
= -2a

m

i = 1
1qi - x1pi

x22 1x1pi
x22ln1pi2

Thus second partials are

02f

0x1
2 = 2a

m

i = 1
pi

2x2

(16.15)

02f

0x10x2
=

02f

0x20x1

 = -2a
m

i = 1
[1qi - x1pi

x221pi
x22 ln1pi2 - 1pi

x221x1pi
x22 ln1pi2]

02f

0x2
2 = -2a

m

i = 1
 ln21pi2[1qi - x1pi

x221x1pi
x22 - 1x1pi

x222]

At the x112 = 133, -0.52 of Figure 16.11 constants pi and qi of Table 16.1 yield the
Hessian matrix

∇2f133, -0.52 ! § 02f

0x1
2

02

0x1 0x2

02f

0x2 0x1

02f

0x2
2

¥ ≈ a 5.77 179.65
179.65 11, 003.12

b

938 Chapter 16 Unconstrained Nonlinear Programming

What second derivatives offer a search algorithm is information about the
 curvature of objective function f near current solution x1t2.

Primer 7: SecoNd derivativeS aNd HeSSiaN matriceS

Primer 2 (Section 3.3) provides a brief overview of first derivatives df>dx [or
f′1x2] and first partial derivatives 0f>0xj, which measure the rate of change
function f with respect to increases in its arguments. The vector of partial
 derivatives for n-variable function f1x2 is its gradient ∇f1x2.

First derivatives or partial derivatives of function f are themselves
 functions of its arguments. If such derivative functions are also differentiable,
f is said to be twice differentiable, and we may determine second derivatives.
Second derivatives describe the rate of change in slopes (i.e., the curvature of f).

Second derivatives of a single-variable f1x2 are customarily denoted d2f>dx2
or f ″1x2. For example, f1x2 ! 3x4 has first derivative f′1x2 = 12x3 and second
f ″1x2 = 36x2. At x = 2, d f>dx = 121223 = 96, while d2f>dx2 = 361222 = 144.

Twice differentiable functions f1x2 ! f1x1, c, xn2 of n variables have
second partial derivatives for each pair of variables xi and xj. Such second partial
derivatives are customarily denoted 02f>0xi 0xj when i ≠ j and 02f>0xi

2 if i = j.
The order in which variables are listed indicates the sequence of differentiation.
That is, 02f

0xi 0xj
 !

0
0xj

 a 0f

0xi
 b

To illustrate, consider f1x1, x22 ! 5x11x223. First partial derivatives are
0f>0x1 = 51x223 and 0f>0x2 = 15x11x222. Thus

02f

0x1
2 = 0,

02f

0x1 0x2
= 151x222,

02f

0x2 0x1
= 151x222,

02f

0x2
2 = 30x1x2

Notice in this example that 02f>0x10x2 = 02f>0x2 0x1. It is always true that

02f

0xi 0xj
=

02f

0xj 0xi

when f and all its first partial derivatives are continuous functions.
It is often convenient to deal with second partial derivatives in a Hessian

matrix denoted ∇2f1x2 and defined

∇2f1x1, c, xn2 ! ¶ 02f

0x1
2 c

02f

0x10xn

f f f

02f

0xn0x1

c 02f

0xn
2

∂
For instance, at x1 = -3, x2 = 2, the f1x1, x22 above has Hessian matrix

∇2f1-3, 22 = a 0 151222

151222 30(-3)122 b = a 0 60
60 -180

b

16.3 Derivatives, Taylor Series, and Conditions for Local Optima in Multiple Dimensions 939

For example, the 02f>0x2
2 = 11,003.12 confirms what we can see in Figure 16.11—

that small changes in x2 dramatically affect the slope of f near x112. The much smaller
02f>0x1

2 = 5.77 indicates the function is flatter in the x1 dimension.

Taylor Series Approximations with One Variable
A more concise description of what derivatives tell us about an objective func-
tion follows from classic Taylor series. For 1-dimensional function f1x2, Taylor’s
approximation represents the impact of a change l from current x1t2 as

 f1x1t2 + l2 ≈ f1x1t22 +
l

1!
 f′1x1t22 +

l2

2!
 f ″1x1t22 +

l3

3!
 f ‴1x1t22 + c (16.16)

where f′1x2 is the first derivative of f, f ″1x2 is the second derivative, and so on.
To illustrate, consider

 f1x2 ! e3x - 6 (16.17)

for which f′1x2 = 3e3x - 6, f ″1x2 = 9e3x - 6, and f ‴1x2 = 27e3x - 6. Near x1t2 = 2,
derivatives approximate the impact of a change l as

 f12 + l2 ≈ f122 +
l

1!
 f′122 +

l2

2!
 f ″122 +

l3

3!
 f ‴122 + c

 = 1 + 3l + 9
2 l2 + 27

6 l3 + c

Notice that as 0 l 0 S 0, higher powers of l approach zero the most rapidly.
That is why we may approximate a function with just the first few terms of expres-
sion (16.16) if our interest centers on the immediate neighborhood of current x1t2.
The results are the first-order or linear, and second-order or quadratic approxima-
tions to a function of a single variable.

The second derivative x1t2 of a single-variable objective
function f1x2, or the Hessian matrix ∇2f1x2 of second partial derivatives of
02f>0xi 0xj for n variables describes the change in slope or curvature of f in the
neighborhood of current decision variable values.

Principle 16.15

The first-order or linear, and second-order or quadratic
Taylor series approximations to single-variable function f1x2 near x = x1t2 are,
respectively,

f11x1t2 + l2 ! f1x1t22 + lf′1x1t22
and

f21x1t2 + l2 ! f1x1t22 + lf′1x1t22 + 1
2 l2f ″1x1t22

where l is the amount of change, f′ is the first derivative of f, and f ″ is the second.

Definition 16.16

Figure 16.12 illustrates for the f1x2! e3x - 6 of expression (16.17). Part (a) plots
f1x2 and the first-order approximation for current x1t2 = 2

f112 + l2 = f122 + lf′122 = 1 + 3l

940 Chapter 16 Unconstrained Nonlinear Programming

and part (b) shows f1x2 versus second-order approximation

f212 + l2 = f122 + lf′122 + 1
2l

2f ″122 = 1 + 3l + 9
2l

2

Notice that the first-order approximation is a linear function of change l. It
assumes that the slope at x1t2 = 2 remains constant. Both approximations are fairly
accurate near l = 0 and deteriorate as l becomes larger. Still, the second-order
approximation in part (b) comes somewhat closer to the real f because it incorpo-
rates the curvature information in second derivative f ″1x1t22.

Taylor Series Approximations with Multiple Variables
We may extend Taylor series approximations to functions of more than one vari-
able by using first and second partial derivatives.

x = 2
-5

0

5

10

15

20

25

x = 2

f (x)

f1(x)

f (x)

f2(x)

-5

0

5

10

15

20

25

(a) First order (b) Second order

FigUre 16.12 First- and Second-Order Taylor Series Approximations

The first-order or linear, and second-order or quadratic
Taylor series approximations to n-variable function f1x2! f1x1, c, xn2 at
point x1t2 are, respectively,

 f11x1t2 + l∆x2 ! f1x1t22 + l∇f1x1t22 # ∆x

 ! f1x1t22 + la
n

j = 1
a 0f

0xj
 b∆xj

and

 f21x1t2 + l∆x2 ! f1x1t22 + l∇f1x1t22 # ∆x +
l2

2
 ∆x ∇2f1x1t22∆x

 ! f1x1t22 + la
n

j = 1
a 0f

0xj
 b ∆xj +

l2

2
 a

n

i = 1
a
n

j = 1
a 02f

0xi 0xj
 b∆xi ∆xj

where ∆x ! 1∆x1, c, ∆xn2 is a direction of change, l is the applied step size,
∇f1x1t22 is the gradient of f at x1t2, and ∇2f1x1t22 is the corresponding Hessian
matrix.

Definition 16.17

As with 1-dimensional series (16.16), there are higher-order terms in the full Taylor
series expansion of an n-variate function, but they become insignificant as �l � S 0.

16.3 Derivatives, Taylor Series, and Conditions for Local Optima in Multiple Dimensions 941

To illustrate 16.17 , consider

f1x1, x22! x1 ln1x22 + 2

at x1t2 = 1-3, 12. There f1-3, 12 = 2, and gradient

∇f1-3, 12 ! § 0f

0x1

0f

0x2

¥ = £ ln1x22
x1

x2

≥ = a 0
-3

b

Thus the first-order approximation to f1x1, x22 near x1t2 = 1-3, 12 in direction
∆x ! 1∆x1, ∆x22 is

 f11x1t2 + l∆x2! f1x1t22 + l∇f1x1t22 # ∆x

 = 2 + l10, -32 # 1∆x1, ∆x22
 = 2 - 3l∆x2

To improve the approximation with second-order terms, we compute Hessian

∇2f1-3, 12 = § 0
1
x2

1
x2

-x1

1x222

¥ = a0 1
1 3

b

Then

 f21x1t2 + l∆x2! f1x1t22 + l∇f1x1t22 # ∆x +
l2

2
 ∆x ∇2f1x1t22∆x

 = 2 + l10, -32 a∆x1

∆x2
b +

l2

l
 1∆x1, ∆x22 a0 1

1 3
b a∆x1

∆x2
b

 = 2 - 3l ∆x2 + l2∆x1 ∆x2 + 3
2 l21∆x222

Stationary Points and Local Optima
First and second derivatives tell us a great deal about whether a solution is a local
optimum. Begin with stationary points.

Solution x is a stationary point of smooth function f if ∇f1x2 = 0.Definition 16.18

That is, stationary points are solutions where all first (partial) derivatives equal zero.
Figure 16.13 illustrates for

 f1x1, x22! 40 + 1x1231x1 - 42 + 31x2 - 522 (16.18)

Partial derivatives are

0f

0x1
= 1x12214x1 - 122 (16.19)

0f

0x2
= 61x2 - 52

It is easy to check that they become zero at two stationary points:

 x112 = 13, 52 and x122 = 10, 52 (16.20)

942 Chapter 16 Unconstrained Nonlinear Programming

We can see in Figure 16.13 that one of these, x112, is a local (and here also
global) minimum of f. This suggests our first (so-called first-order necessary) con-
dition for an unconstrained local optima.

x(2) = (0, 5) x(1) = (3, 5)

-1 0 1 2 3 4 1 2 3 4 5 6 7 8 9

0

50

100

f (x1, x2)

x1

x2

FigUre 16.13 Stationary Points of a Minimize
Objective

Every unconstrained local optimum of a smooth objective
function must be a stationary point.

Principle 16.19

The reason that condition 16.19 must hold in every case is that a nonzero
gradient ∇f1x1t22 itself provides an improving direction at x1t2. Following principle
 3.23 , we may adopt ∆x = {∇f1x1t22 with + for maximize problems and - to
 minimize. Then the first-order Taylor series approximation 16.17 gives

 f1x1t2 + l∆x2 ≈ f1x1t22 + l∇f1x1t22 # ∆x

 = f1x1t22 { l∇f1x1t22 # ∇f1x1t22 (16.21)

 = f1x1t22 { la
n

j = 1
a 0f

0xj
 b

2

This is an improvement in the objective value unless all partial derivatives = 0, and
we know that for l sufficiently small the first-order part of the Taylor series expan-
sion dominates all other terms.

examPle 16.9: VeriFying local oPtima as stationary Points

Consider the single-variable function

f1x2 = x3 - 9x2 + 24x - 14

Plot the function for 1 … x … 5 and verify that local maximum x112 = 2 and local
minimum x122 = 4 are both stationary points.

16.3 Derivatives, Taylor Series, and Conditions for Local Optima in Multiple Dimensions 943

Saddle Points
Look again at Figure 16.13. Stationary point x112 = 13, 52 is a local minimum, but
x122 = 10, 52 is not. Increasing x1 reduces the objective at the latter. Point x122 is also
not a local maximum. Increasing x2 makes the objective value bigger. Figure 16.14
shows that the remaining possibility is a saddle point.

Solution: A plot of the function is as follows:

0

1

2

3

4

5

6

7

8

1 1.5 2 2.5 3 3.5 4 4.5 5

f (x)

x

local minimum x(2) = 4

local maximum x(1) = 2

Its first derivative is

f′1x2 = 3x2 - 18x + 24

Both f′1x1122 = f′122 = 0 and f′1x1222 = f′142 = 0, confirming that both are sta-
tionary points.

A saddle point is a stationary point that is neither a local
 maximum nor a local minimum.

Definition 16.20

Every stationary point is either a local maximum, a local minimum, or a saddle point.
Saddle points get their name from the saddlelike possibility of the 2- dimensional

case in Figure 16.14(c). The same stationary point is a local maximum in one dimen-
sion and a local minimum in another, yet neither a local maximum nor a local
 minimum when both directions are considered together.

Hessian Matrices and Local Optima
To distinguish better among the 3 types of stationary points in Figure 16.14 we must
look at second (partial) derivatives. At stationary points, which have ∇f1x1t22 = 0,
second-order Taylor approximation 16.17 simplifies as

 f1x1t2 + l∆x2 ≈ f1x1t22 + l∇f1x1t22 # ∆x +
l2

2
 ∆x∇2f1x1t22∆x

 (16.22)
 = f1x1t22 + 0 +

l2

l
 ∆x∇2f1x1t22∆x

944 Chapter 16 Unconstrained Nonlinear Programming

Thus (nonzero) Hessian-based quadratic forms ∆x∇2f1x1t22∆x critically influ-
ence whether improving directions ∆x exist at stationary points (i.e., whether such
points have any chance of being local optima).

Consider, for example, a direction ∆x with ∆x∇2f1x1t22∆x 6 0 at stationary
point x1t2. Quadratic approximation (16.22) implies that

f1x1t2 + l∆x2 ≈ f1x1t22 +
l2

2
 ∆x∇2f1x1t22∆x

 6 f1x1t22
We may conclude that ∆x is an improving direction for minimize problems at
x1t2 because moves in direction ∆x strictly reduce the objective value if l is small
enough for this quadratic Taylor approximation to dominate higher-order terms.
With a descent direction at hand, stationary point x1t2 could not be a local minimum
(principle 3.16).

The ponderously named positive and negative (semi)definite properties of
square matrices, which are reviewed briefly in Primer 8, address such sign issues
in quadratic forms. Combining with Taylor expression (16.22), we may use these
properties to distinguish among stationary points. Semidefinite forms provide
 second-order necessary optimality conditions.

(c) Saddle point

(b) Local minimum(a) Local maximum

f (x1, x2)

f (x1, x2)

x1

x1

x2

x2

f (x1, x2)

x1

x2

FigUre 16.14 Three Forms of Stationary Points

16.3 Derivatives, Taylor Series, and Conditions for Local Optima in Multiple Dimensions 945

Primer 8: PoSitive aNd Negative (Semi) defiNite matriceS

Single-variable quadratic form dad = ad2 is positive for all d ≠ 0 if constant
a 7 0 and negative for all d ≠ 0 if a 6 0. In a similar way, whether n-variable
quadratic form dMd! a n

i = 1a n
j = 1 mi, jdidj is positive or negative depends on

properties of the matrix M.
Square matrix M is said to be positive definite if dMd 7 0 for all d ≠ 0,

and positive semidefinite if dMd Ú 0 for all d. Similarly, M is negative definite
if dMd 6 0 for all d ≠ 0, and negative semidefinite if dMd … 0 for all d.

To illustrate, consider

A! a3 0
0 8

b , B! a -1 2
2 -4

b , C! a3 0
0 -8

b

Matrix A is positive definite because

dAd = 31d122 + 81d222

which is positive for every nonzero d. Similarly, B is negative semi-definite
because

dBd = - 1d122 + 4d1d2 - 41d222 = - 1d1 - 2d222 … 0

But with dBd = 0 for d1 = 2d2, B is not negative definite. Matrix C is neither
positive nor negative definite or semidefinite.

Obviously, M being positive (or negative) definite implies that M is
positive (negative) semidefinite, so that example A is positive semidefinite.
Conversely, a positive (or negative) semidefinite matrix that is also symmet-
ric (Primer 4) and nonsingular (Primer 5) is positive (negative) definite. Thus
example A being positive semidefinite, symmetric, and nonsingular proves that
it is positive definite. Also, if M is positive (semi)definite, then -M is negative
(semi)definite, and vice versa.

One way to test whether a symmetric matrix M satisfies any of these
definitions is to check the determinants (Primer 5) of its principal submatrices
[i.e., the submatrices made up of its first k rows and columns 1k = 1, c, n].
Symmetric matrix M is positive definite if all such principal determinants
are positive, and positive semidefinite if they are all nonnegative. Similarly,
 symmetric M is negative definite if the principal determinants are nonzero and
alternating in sign with the first negative; negative semidefinite allows zeros.

For example, one D and its principal submatrix determinants are

D! £ 5 - 2 0
-2 3 0
 0 0 8

≥ ,

det 152 = 5,

 det a 5 -2
-2 3

b = 11,
 det £ 5 -2 0

-2 3 0
 0 0 8

≥ = 88

Since all determinants are positive, D is positive definite. On the other hand,
principal determinants of example B above are -1 and 0. Alternating signs
with the first nonpositive confirm that B is negative semidefinite.

946 Chapter 16 Unconstrained Nonlinear Programming

We may illustrate principles 16.21 and 16.22 by testing the two stationary
points of the example in Figure 16.13 and function (16.18). Using first partial deriva-
tive expressions (16.19), the Hessian at x112 computes as

∇2f1x1122 = ∇2f13, 52 = a121x122 - 24x1 0
0 6

b = a24 0
0 6

b

The matrix is positive definite because

∆x a24 0
0 6

b ∆x = 241∆x122 + 61∆x222 7 0 for all ∆x ≠ 0

Confirming principal 16.21 , local minimum x112 has a positive definite, and thus pos-
itive semidefinite Hessian. Conversely, we can establish that stationary point x112 is
a local minimum by applying principle 16.22 with the Hessian positive definite.

The second stationary point x122 = 10, 52 shows that properties 16.21 and
16.22 are not always conclusive. There

∇2f1x1222 = ∇2f10, 52 = a121x122 - 24x1 0
0 6

b = a0 0
0 6

b

and quadratic form

∆x a0 0
0 6

b ∆x = 61∆x222 Ú 0

We can apply principle 16.21 to rule out the possibility of a local maximum because
this Hessian is not negative semidefinite. Still, principle 16.22 cannot be applied
to assure a local minimum with the Hessian only positive semidefinite. Without
extending to third derivatives, we cannot distinguish between a local minimum and
a saddle point.

A stationary point of a smooth function f is an unconstrained
local maximum if the Hessian matrix at the point is negative definite. A station-
ary point is an unconstrained local minimum if the Hessian matrix is positive
definite.

Principle 16.22

The Hessian matrix of a smooth function f is negative semidef-
inite at every unconstrained local maximum and positive semidefinite at every
unconstrained local minimum.

Principle 16.21

The stronger definite forms give sufficient conditions.

Verify that function

f1x1, x2, x32! 1x122 + x1x2 + 51x222 + 91x3 - 222

has a local minimum at x = 10, 0, 22.

examPle 16.10: VeriFying local oPtima

16.4 Convex/Concave Functions and Global Optimality 947

examPle 16.11: VeriFying saddle Points

Verify that function

f1x1, x22! 1x122 - 2x1 - 1x222

has a saddle point at x = 11, 02.

Solution: To fulfill definition 16.20 , a saddle point must first be a stationary point.
Checking yields

0f

0x1
= 2x1 - 2 = 2112 - 2 = 0 and

0f

0x2
= -2x2 = -2102 = 0

Now computing the Hessian gives

∇2f11, 02 = a2 0
0 -2

b
With first principal determinant = 2, and second = -4, this matrix is neither positive
semidefinite nor negative semidefinite. Thus x violates requirements 16.21 for both a
local minimum and a local maximum. The remaining possibility is a saddle point.

Solution: We apply sufficient conditions 16.22 . First, x must be a stationary point.
All three partial derivatives

0f

0x1
= 2x1 + x2,

0f

0x2
= x1 + 10x2,

0f

0x3
= 181x3 - 22

= 0 at x = 10, 0, 22 as required.
Next we consider the Hessian

∇2f1x2 = £2 1 0
1 10 0
0 0 18

≥
We may verify that this matrix is positive definite, and thus x a local minimum, by
checking that all determinants of principal submatrices are positive (refer to Primer
8 if needed):

 det122 = 2 7 0, det a2 1
1 10

b = 18 7 0, det£2 1 0
1 10 0
0 0 18

≥ = 324 7 0

16.4 conVex/concaVe FUnctions and global oPtimality

Improving search Algorithm 3A (Section 3.2), which provides the paradigm for
nearly all unconstrained nonlinear programming algorithms, stops if it encounters
a locally optimal solution (principle 3.6). What then? We would clearly prefer an
overall, or global optimum.

In this section we investigate objective functions having special convex, concave,
and unimodal forms that allow us to prove that a local optimum must also be global
(see also Section 3.4). With other objectives we must either accept the improving search
stopping point or try for another by restarting the search from a different initial x102.

948 Chapter 16 Unconstrained Nonlinear Programming

Interpolation of f values along the line segment from x112 to x122 should neither
underestimate for a convex function nor overestimate for a concave one.

Figure 16.15 illustrates for functions of 2-vectors x! 1x1, x22. The indicated
moves start at x112 and advance toward x122 along direction 1x122 - x1122. Each point

Convex and Concave Functions Defined
Convex and concave functions can be defined in terms of how f(x) changes as we move
from x112 to x122 along straight line path ∆x! 1x122 - x1122. (See also Section 3.4)

A function f(x) is convex if

f(x112 + l1x122 - x1122) … f1x1122 + l1f1x1222 - f(x1122)

for every x112 and x122 in its domain and every step l ∈ [0, 1]. Similarly, f(x) is
concave if

f(x112 + l1x122 - x1122) Ú f1x1122 + l(f1x1222 - f1x1122)

for all x112, x122 and l ∈ [0, 1].

Definition 16.23

(c) Neither

(b) Concave
(a) Convex

f (x(2))

f (x(2))

f (x(1))
f (x(2))

f (x(1))

f (x(1))

x(1)

x(1)
x(2)

x(1)
x(2)

x(2)

FigUre 16.15 Convex and Concave Functions

16.4 Convex/Concave Functions and Global Optimality 949

x in that trajectory has a representation

x = x112 + l1x122 - x1122
for some l ∈ [0, 1] (property 3.31). For example, x112 corresponds to l = 0, and
x122 to l = 1.

The issue in definition 16.23 is what happens when we interpolate an esti-
mated value for f somewhere along the trajectory. For convex functions [Figure
16.15(a)] the corresponding interpolated values

f1x1122 + l(f1x1222 - f1x1122)

should always equal or exceed the true f1x112 + l1x122 - x11222. For concave func-
tions [part (b)] it should fall equal or below.

The property must hold for every pair of points x112 and x122. For example,
some pairs would meet the test for convexity in Figure 16.15(c), and others would
satisfy the definition of concave. Still, the function is neither convex nor concave
because the indicated pair violates both definitions.

examPle 16.12: recognizing conVex and concaVe FUnctions

Determine graphically whether each of the following single-variable functions is
convex, concave, or neither over x ∈ [0, 5].

7

8

9

10

11

12

0 1 2 3 4 5
x

(a)

7

8

9

10

11

12

0 1 2 3 4 5

f (x)f (x) f (x)

x

(b)

7

8

9

10

11

12

0 1 2 3 4 5
x

(c)

Solution: We apply definition 16.23 .

(a) This function is neither convex nor concave. To demonstrate that it is not convex,
take x112 = 1, x122 = 2, and l = 1

2.

f(x112 + l1x122 - x1122) = f(1 + 1
2 12 - 12) = f11.52 ≈ 11.7

 0 f1x1122 + l(f1x1222 - f1x1122) = 10 + 1
2111 - 102 = 10.5

Similarly choosing x112 = 3, x122 = 2 and l = 1
2 establishes that the function is not

concave because

f1x112 + l1x122 - x11222 = f13 + 1
212 - 322 = f12.52 ≈ 10.2

 4 f1x1122 + l1f1x1222 - f1x11222 = 10 + 1
2111 - 102 = 10.5

950 Chapter 16 Unconstrained Nonlinear Programming

(b) This function is apparently concave because definition 16.23 holds for all pairs
of points displayed.

(c) This function is apparently convex because definition 16.23 holds for all pairs
of points displayed. Notice that convex (and concave) functions need not be
differentiable.

That is, a search must only achieve a local optimum to produce with no additional
effort a global minimum of a convex objective function or a global maximum of a
concave one.

To see why principle 16.24 must be true, consider a convex objective function
f1x2, a global minimum x*, and any x112 that is not globally optimal:

x* = x(2)

nonoptimal x(1)

f (x)

x

Then

 f1x*2 6 f1x1122 or l(f1x*2 - f1x1122) 6 0 (16.23)

for all l 7 0. Combining with the convexity definition 16.23 yields

 f(x112 + l1x* - x1122) … f1x1122 + l(f1x*2 - f1x1122) 6 f1x1122 (16.24)

for all l ∈ 10, 1]. That is, direction ∆x = x* - x112 is an improving direction at
every x112 that is not globally optimal. A local optimum, which permits no improv-
ing directions, can exist only if it is also a global optimum.

Sufficient Conditions for Unconstrained Global Optima
The importance of convex and concave objective functions lies with their unusual
tractability for improving search.

If f1x2is a convex function, every unconstrained local minimum
of f is an unconstrained global minimum. If f1x2 is concave, every unconstrained
local maximum is an unconstrained global maximum.

Principle 16.24

16.4 Convex/Concave Functions and Global Optimality 951

Convex/Concave Functions and Stationary Points
Principle 16.24 shows that we need only compute a local minimum of a convex
function or a local maximum of a concave one to obtain an unconstrained global
optimum. In fact, the requirement is even weaker when the objective function is
differentiable.

examPle 16.13: VeriFying global oPtima With conVexity

The function

f1x2! 20 - x2 + 6x

is concave. Use this fact to establish that it has an unconstrained global maximum
at x = 3.

Solution: Differentiating yields

f′1x2 = -2x + 6

so that f′132 = 0 Being a stationary point of a concave function, x = 3 must be an
unconstrained global maximum (principle 16.25).

Every stationary point of a smooth convex function is an
unconstrained global minimum, and every stationary point of a smooth con-
cave function is an unconstrained global maximum.

Principle 16.25

We require only an x with ∇f1x2 = 0.
For an idea of why principle 16.25 holds, let f be a smooth convex function,

and ∇f1x*2 = 0. Convexity definition 16.23 assures that

f(x* + l1x - x*2) … f1x*2 + l(f1x2 - f1x*2)

for any x and any l ∈ 10, 1]. Furthermore, first-order Taylor approximation 16.16
gives

f(x* + l1x - x*2) ≈ f1x*2 + l∇f1x*21x - x*2
Subtracting, simplifying, and dividing by l S 0 yields

f1x2 - f1x*2 Ú ∇f1x*21x - x*2
It follows that x* is a global minimum when ∇f1x*2 = 0 because f1x2 - f1x*2 Ú 0
for all x.

Tests for Convex and Concave Functions
Many familiar functions are either convex or concave, but it is often tedious to verify
definitions 16.23 . Fortunately, when the function’s domain is all real n-vectors or all
positive n-vectors, or any other open convex set (definition 3.27), some important
properties are available to simplify the analysis.

If f1x2 is convex, -f1x2 is concave, and vice versa.Principle 16.26

952 Chapter 16 Unconstrained Nonlinear Programming

To see the power of principles 16.26 to 16.32 , examine the curve-fitting objec-
tive in linear regression form (16.4):

 min f1x1, x22! a
m

i = 1
[qi - 1x1 + x2pi2]2

[The nonlinear case with 1qi - x11pi2x22 is not convex.] Recall that the pi and qi are
given constants.

To show this linear regression f is convex, notice first that it is the (unweighted)
sum of functions

gi1x1, x22! [qi - 1x1 + x2pi2]2

Under principle 16.29 , f will be convex if each of the gi is convex.
Now, dropping the i subscripts, we examine

 g1x1, x22! [q - 1x1 + x2p2]2

 = [� q - 1x1 + x2 p2�]2

 = [max51q - x1 - x2 p2, - 1q - x1 - x2 p26]2

An f1x2 with continuous second (partial) derivatives is convex
if and only if Hessian ∇2f1x2 is positive semidefinite at all x in its (open con-
vex set) domain. It is concave if and only if ∇2f1x2 is negative semidefinite at
all x in the domain.

Principle 16.27

Linear functions are both convex and concave.Principle 16.28

Any f1x2 formed as the nonnegative-weighted 1ai Ú 02 sum

f1x2! a
k

i = 1
aigi1x2

of convex functions gi1x2, i = 1, c, k, is itself convex. The nonnegative-
weighted sum of concave functions is concave.

Principle 16.29

Any f1x2 formed as the maximum

f1x2! max5gi1x2 : i = 1, c, k6
of convex functions gi1x2, i = 1, c, k, is itself convex. The minimum of
 concave functions is concave.

Principle 16.30

If g1y2 is a nondecreasing, single-variable convex function, and
h1x2 is convex, f1x2 ! g1h1x22 is convex. If g1y2 is a nondecreasing, single-
variable concave function, and h1x2 is concave, f1x2 ! g1h1x22 is concave.

Principle 16.31

If g1x2 is a concave function, f1x2 ! 1>g1x2 is convex over
x with g1x2 7 0. If g1x2 is a convex function, f1x2 ! 1>g1x2 is concave over
x with g1x2 6 0.

Principle 16.32

16.4 Convex/Concave Functions and Global Optimality 953

(the last equality holds because 0 z 0 = max5z, -z62. Expressions 1q - x1 - x2 p2
and - 1q - x1 - x2p2 are both linear and thus convex by principle 16.28 . Therefore,

h1x1, x22! � q - 1x1 + x2 p2 � = max5q - x1 - x2 p, - 1q - x1 - x2 p26
is also convex; it is the maximum of convex functions (principle 16.30). Finally,
consider s1y2! y2. Second derivative s″1y2 = 2 proves s1y2 is convex because
s″1y2 is the 1 by 1 Hessian matrix and positive definite (principle 16.27). Over
domain y Ú 0, s1y2! y2 is also nondecreasing. Thus we may apply composition
principle 16.31 to conclude that

g1x1, x22! 1q - 1x1 + x2p222 = s1h1x1, x222
is convex. This completes the argument for convexity f.

examPle 16.14: VeriFying conVexity and concaVity

Apply principles 16.26 to 16.32 to establish that the first two of the following
 functions are convex and the last two are concave over the specified domains.

(a) f1x1, x22! 1x1 + 124 + x1x2 + 1x2 + 124 over all x1, x2 7 0

(b) f1x1, x22! e-3x1 + x2 over all x1, x2

(c) f1x1, x2, x32! -41x122 + 5x1x2 - 21x222 + 18x3 over all x1, x2

(d) f1x1, x22! 1
-7x1

- e-3x1 + x2 over all x1, x2 7 0

Solution:

(a) Here the Hessian matrix is

∇2f1x1, x22 = a121x1 + 122 1
1 121x2 + 122b

Determinants of its principal submatrices are 121x1+ 122 and 1441x1+ 1221x2 + 122 - 1,
which are both positive for all x1, x2 7 0. Thus the Hessian is positive definite, and f is
convex by principle 16.27 .

(b) Function h1x1, x22! -3x1 + x2 is convex because it is linear (principle 16.28).
Also, g1y2! ey in nondecreasing and convex because g″1y2 = ey 7 0. Thus com-
position principle 16.31 proves that f1x1, x22 = g1h1x1, x222 is convex.

(c) For this function the Hessian matrix is

∇2f1x1, x2, x32 = £ -8 5 0
5 -4 0
0 0 0

≥
Principal submatrix determinants are -8, 132 - 252 = 7, and 0, which imply that
the Hessian is negative semidefinite and f is concave (principle 16.27).

(d) Over x1, x2 7 0, first term g11x1, x22! 1> 1-7x12 is the reciprocal of negative-
valued, linear, and thus convex function h1x1, x22! -7x1. It follows that

954 Chapter 16 Unconstrained Nonlinear Programming

Unimodal versus Convex/Concave Objectives
In Section 16.2 we introduced the notion of unimodal objective functions (defini-
tion 16.9). Every unconstrained local optimum of a unimodal objective function
is a global optimum because improving directions exist at every point that can
be bettered.

Since both unimodal and convex/concave objective functions imply that
unconstrained local optima are global it should be no surprise that there is a
connection.

this g11x1, x22 is concave (principle 16.32). Part (b) already established that
g21x1, x22! e-3x1 + x2 is convex, meaning (principle 16.26) that its negative is con-
cave. Thus f is the sum of concave functions and so concave (principle 16.29).

Both convex objective functions in minimize problems and
concave objective functions in maximize problems are unimodal.

Principle 16.33

A unimodal objective function need not be either convex or
concave.

Principle 16.34

Expressions (16.23) and (16.24) have already shown why. Improving directions
exist at all solutions not globally optimal in a convex minimization or concave
maximization.

Unimodality is a weaker requirement than convexity or concavity.

For example, the following is unimodal for a maximize problem, but we showed in
Example 16.12(a) that it is not concave.

7

8

9

10

11

12

0 1 2 3 4 5

f (x)

x

Other such examples are our Custom Computer objective in Figure 16.3 and PERT
application in Figure 16.5.

16.5 Gradient Search 955

Unfortunately, convenient combination rules such as 16.26 – 16.32 do not
generally hold for arbitrary unimodal objectives. Thus in practice we must often
establish the more restrictive convex or concave properties to be sure that an objec-
tive is unimodal. When the functions are not concave for a maximize or convex for a
minimize, which often happens in applied models, we usually must accept the risk of
local optima that are not global.

16.5 gradient search

In Section 3.3, principle 3.23 established that a nonzero gradient ∇f1x1t22 provides
an improving direction at solution x1t2. First-order Taylor series computations of
expression (16.21) guarantee improvement with sufficiently small steps in direc-
tion ∆x = ∇f1x1t22 for a maximize problem or ∆x = - ∇f1x1t22 for a minimize.
In this section we develop the simple gradient search algorithm that adopts such
 gradient-based move directions.

Gradient Search Algorithm
Algorithm 16D provides details. The move direction for each iteration is derived
from the gradient at the current point.

Algorithm 16d: grAdient SeArch

Step 0: initialization. Choose any starting solution x102, pick stopping
 tolerance P 7 0, and set solution index t d 0.

Step 1: gradient. Compute objective function gradient ∇f1x1t22 at current
point x1t2.

Step 2: Stationary Point. If gradient norm � � ∇f1x1t22 � � 6 P, stop. Point
x1t2 is sufficiently close to a stationary point.

Step 3: direction. Choose gradient move direction
∆x1t + 12 d {∇f(x(t))

(+ for maximize and - for minimize).
Step 4: line Search. Solve (at least approximately) corresponding one-

dimensional line search
max or min f1x1t2 + l∆ x1t + 122

to compute lt + 1.
Step 5: new Point. Update

x1t + 12 d x1t2 + lt + 1∆ x1t + 12

Step 6: Advance. Increment t d t + 1, and return to Step 1.

At any current point x1t2 with gradient ∇f1x1t22 ≠ 0, gradi-
ent search pursues move direction

∆x ! { ∇f1x1t22
(+ for a maximize, - for a minimize).

Definition 16.35

956 Chapter 16 Unconstrained Nonlinear Programming

Gradient norm

� � ∇f1x1t22 � � ! B a j a
0f

0xi
b

2

provides a stopping rule at Step 1 of Algorithm 16D. If the gradient at x1t2 is very
small in length (less than stopping tolerance P), all its components must be nearly
zero. Thus the search has essentially reached a stationary point (definition 16.18).

Of course, we know from Section 16.3 that a stationary point may be a saddle
point (definition 16.20), not the local optimum we seek. Still, a pure gradient algo-
rithm can guarantee no more. When ∇f(x(t)) = 0, principle 16.35 provides no move
direction to pursue.

Gradient Search of Custom Computer Application
Table 16.5 details application of Algorithm 16D to the Custom Computer regression
model (16.7) (Section 16.1). Figure 16.16 plots the first few steps on a contour map.

table 16.5 Gradient Search of Custom Computer Application

t x1t2 f1x1t22 ∇f1x1t22 � � ∇f1x1t22 � � lt + 1

 0 132.00, -0.40002 174.746 1-6.24, 1053.372 1053.39 0.00007
 1 132.00, -0.46872 141.138 1-23.06, -0.142 23.06 0.10558
 2 134.44, -0.45402 112.599 1-4.57, 759.602 759.61 0.00007
 3 134.44, -0.50782 93.297 1-16.28, -0.102 16.28 0.11303
 4 136.28, -0.49622 78.123 1-3.34, 530.012 530.02 0.00008
 5 136.28, -0.53652 67.897 1-11.34, -0.072 11.34 0.11970
 6 137.63, -0.52782 60.133 1-2.33, 365.742 365.75 0.00008
 7 137.63, -0.55712 54.932 1-7.78, -0.052 7.78 0.12905
 8 138.64, -0.55122 51.006 1-1.48, 251.172 251.17 0.00008
 9 138.64, -0.57222 48.428 1-5.19, -0.032 5.19 0.13926
10 139.36, -0.56842 46.548 (0.88, 168.22) 168.22 0.00009
11 139.36, -0.58292 45.348 1-3.34, -0.022 3.34 0.14737
12 139.85, -0.58062 44.522 1-0.51, 108.662 108.66 0.00009
13 139.85, -0.59022 44.007 1-2.10, -0.012 2.10 0.15220
14 140.17, -0.58882 43.672 1-0.30, 68.072 68.07 0.00009
15 140.17, -0.59492 43.466 1-1.29, 0.002 1.29 0.16435
16 140.38, -0.59412 43.329 1-0.14, 42.342 42.34 0.00009
17 140.38, -0.59802 43.248 1-0.76, 0.002 0.76 0.15652
18 140.50, -0.59752 43.203 1-0.10, 24.602 24.60 0.00009
19 140.50, -0.59972 43.175 1-0.46, 0.002 0.46 0.14805
20 140.57, -0.59942 43.160 1-0.08, 14.772 14.77 0.00009
21 140.57, -0.60072 43.150 1-0.29, 0.002 0.29 0.15527
22 140.62, -0.60052 43.143 1-0.04, 9.372 9.37 0.00009
23 140.62, -0.60142 43.139 1-0.18, 0.002 0.18 0.16376
24 140.65, -0.60132 43.137 1-0.02, 5.782 5.78 0.00009
25 140.65, -0.60182 43.135 1-0.11, 0.002 0.11 0.15266
26 140.66, -0.60172 43.134 1-0.02, 3.372 3.37 0.00009
27 140.66, -0.60202 43.134 1-0.06, 0.002 0.06 Stop

The search begins at x102 = 132, -0.42. There the move direction (principle
 16.35) is

∆x = - ∇f1x1022 = - 1-6.24, 1053.372 = 16.24, -1053.372

16.5 Gradient Search 957

This move direction defines the first line search for step size l. We identify
the largest step for which ∆x continues to improve by solving the 1-dimensional
problem

min f1x102 + l∆x2! f132 + 6.24l, -0.4 - 1053.37l2
Plotting shows that a minimum occurs at approximately l1 = 0.00007.

70

75

80

85

90

95

100

105

110

0 2e-05 4e-05 6e-05 8e-05 0.0001 0.00012 0.00014

l

The result is new point

x112 d x102 + l1∆x ≈ 132, -0.46872
Computations in Table 16.5 employ stopping tolerance P = 0.1. Thus the algo-

rithm continues until norm � � ∇f1x1t22 � � 6 0.1 at t = 27. The resulting (approxi-
mate) stationary point is x1272 = 140.66, -0.60202 which we know from earlier
analysis approximates a local (and here also global) minimum.

30 35 40 45

-0.65

-0.6

-0.55

-0.5

-0.45

x1

x2

x(9)
x(7)

x(5)

x(3)

x(4)

x(6)

x(8)

x(10)

x*

x(2)

x(1)

x(0)

FigUre 16.16 Gradient Search of Custom Computer Application

958 Chapter 16 Unconstrained Nonlinear Programming

examPle 16.15: execUting gradient search

Consider the unconstrained nonlinear program

max f1x1, x22!
x1

1 + e0.1x1
- 1x2 - 522

(a) Compute the move direction that would be pursued by gradient search
Algorithm 16D at x102 = 130, 22.

(b) State the line search problem implied by your direction of part (a).

Solution:

(a) At the specified x102, the gradient is

∇f130, 22 = § 1 + e0.1x1 - 0.1x1e
0.1x1

(1 + e0.1x1)2

-2(x2 - 5)
¥ = a -0.088

6
b

Thus with a maximize problem we use direction

∆x = + ∇f1x1022 = 1-0.088, 62
(b) The line search problem implied by the direction of part (a) is

max f130 - 0.088l, 2 + 6l2! 130 - 0.088l2
1 + e0.1130 - 0.088l2 - [12 + 6l2 - 5]2

over l 7 0.

Steepest Ascent/Descent Property
Gradient search is sometimes called the method of steepest ascent (steepest descent
for minimize problems) because the direction of principle 16.35 produces the most
rapid rate of objective improvement near the current solution.

At any x1t2 with ∇f1x1t22 ≠ 0, direction ∆x ! ∇f1x1t22 pro-
duces the locally steepest rate of objective function ascent, and ∆x ! - ∇f1x1t22
yields the locally steepest rate of descent.

Principle 16.36

The search of Figure 16.16 illustrates graphically. The rate of objective improve-
ment at any point depends on the angle between the move direction and nearby
objective function contours. Gradient-based directions, which move perpendicular
to the contours (principle 3.20), produce the most rapid local progress.

examPle 16.16: comPUting directions oF steePest
ascent/descent

Return to the nonlinear program of Example 16.15 and compute the steepest de-
scent direction of length 1 at point x102 = 130, 22.

16.6 Newton’s Method 959

Although gradient search may produce good initial progress, zig-
zagging as it approaches a stationary point makes the method too slow and unreli-
able to provide satisfactory results in many unconstrained nonlinear applications.

Principle 16.37

Zigzagging and Poor Convergence of Gradient Search
Gradient search is appealingly straightforward, but it is not very effective in most
applications. To see why, look again at the search in Figure 16.16 and Table 16.5.
The first move was in direction ∆x = 16.24, - 1053.372, the second pursued
∆x = 123.06, 0.142, and the third adopted ∆x = 14.57, -759.602. This third direction
is almost exactly parallel to the first, and the fourth will parallel the second. Later iter-
ations continued this zigzagging alternation of almost perpendicular move directions.

We would prefer to approach the optimum more directly, but these gradient-
based directions still produced good progress in early iterations. The objective fell
from 174.746 to 46.548 in 10 steps.

The difficulty arises later in the search. Near an optimal solution, the shape
of the objective function changes rapidly with very small step sizes. Thus although
 gradient-based directions produce the locally steepest rate of improvement, they
can be followed only a very short distance before the best direction changes
 dramatically. The resulting zigzagging consumed the last 17 iterations in Table 16.5
to reduce the objective from 46.548 to 43.134.

Unfortunately, this poor convergence is typical of gradient methods.

Solution: In accord with principle 16.36 , the steepest descent direction at (30, 2) will
be the negative of the improving gradient direction computed in Example 16.15(a).
Thus the steepest descent direction is ∆x = 10.088, -62. Dividing by norm =
6.000645, gives length 1 direction (0.0147, 0.9999).

Zigzagging is not the only convergence problem with gradient search. With
small solution changes having a big objective function impact, numerical errors also
can hopelessly bog down the procedure far from an optimal solution. More sophisti-
cation is required to obtain a really satisfactory improving search algorithm.

16.6 neWton’s method

Gradient search can be viewed as pursuing the move direction suggested by the
first-order Taylor series approximation (definition 16.17)

f11x1t2 + l∆x2! f1x1t22 + l∇f1x1t22 # ∆x

Aligning ∆x with gradient ∇f1x1t22 produces the most rapid improvement in this
first-order approximation to f1x2.

To improve on the slow, zigzagging progress characteristic of gradient search
(principle 16.37) requires more information. An obvious possibility is extending to
the second-order Taylor approximation

f21x1t2 + l∆x2! f1x1t22 + l∇f1x1t22 # ∆x +
l 2

2
 ∆x∇2f1x1t22∆x

This section explores the famous Newton’s method, which does exactly that.

960 Chapter 16 Unconstrained Nonlinear Programming

Newton Step
Unlike the first-order Taylor approximation, which is linear in directional compo-
nents ∆xj, the quadratic, second-order version may have a local maximum or min-
imum. To determine the l∆x move that takes us to such a local optimum of the
second-order approximation, we may fix l = 1 and differentiate f2 with respect to
components of ∆x. With l = 1 the scalar-notation form of f2 is

f21x1t2 + ∆x2! f1x1t22 + a
n

i = 1
a 0f

0xi
 b ∆xi + 1

2 a
n

i = 1
a
n

j = 1
a 02f

0xi 0xj
 b∆xi∆xj

Then partial derivatives with respect to move components are

0f2

0∆xi
= a 0f

0xi
 b + a

n

j = 1
a 02f

0xj 0xj
 b∆xj, i = 1, c, n

or in matrix format,

∇f21∆x2 = ∇f1x1t22 + ∇2f1x1t22∆x

Either way, setting ∇f21∆x2 = 0 to find a stationary point produces the famous
Newton step.

Newton steps ∆x, which move to a stationary point (if there
is one), of the second-order Taylor series approximation to f(x) at current
point x1t2 are obtained by solving the linear equation system

∇2f1x1t22∆x = - ∇f1x1t22

Definition 16.38

x(1)

30 35 40 45

-0.65

-0.6

-0.55

-0.5

-0.45

x2

x1

x(1)

x(0)

x*

FigUre 16.17 Newton’s Method on the Custom Computer Application

16.6 Newton’s Method 961

Figure 16.17 illustrates for our Custom Computer curve-fitting model
(16.7) (Section 16.1). First and second partial derivatives at initial point
x102 = 132, -0.42 are

∇f1x1022 = a -6.240
1053

b and ∇2f1x1022 = a 7.13 293.99
293.99 18.817

b

Solving system

a 7.13 293.99
293.99 18.817

b∆x = - a -6.240
1053

b

produces Newton step ∆x = 18.956, -0.19592, which takes us to second-order
Taylor approximation minimum

 x112 = x102 + ∆x = 132, -0.42 + 18.956, -0.19592 = 140.96, -0.59592 (16.25)

examPle 16.17: comPUting neWton stePs

Compute the Newton step corresponding to current point x102 = 10, 12 in a search
of unconstrained NLP

 min f1x1, x22 ! 1x1 + 124 + x1x2 + 1x2 + 124

Solution: To develop linear system 16.38 , we compute partial derivatives

∇f10, 12 = a41x1 + 123 + x2

x1 + 41x2 + 123b = a 5
32

b

and

∇2f10, 12 = a121x1 + 122 1
1 121x2 + 122b = a12 1

1 48
b

Then Newton step ∆x is the solution to the system

a12 1
1 48

b a∆x1

∆x2
b = - a 5

32
b

which is approximately ∆x1 = -0.3617, ∆x2 = -0.6591.

Newton’s Method
Newton’s method proceeds by repeating the process above. That is, it uses first and
second partial derivatives at the current point to compute a Newton step, updates
the solution with that step, and repeats the process. Algorithm 16E provides details.

962 Chapter 16 Unconstrained Nonlinear Programming

Algorithm 16e: newton’S method

Newton’s Method on the Custom Computer Application
Table 16.6 and Figure 16.17 apply Algorithm 16E to our Custom Computer appli-
cation using stopping tolerance P = 0.1. Equation (16.25) already derived the first
move to x112 = 140.96, -0.59592. The derivatives are recomputed, and new Newton
step ∆x = 1-0.2733, -0.00612 brings us to

x122 = x112 + ∆x = 140.96, -0.59592 + 1-0.2733, -0.00612 = 140.68, -0.60202
Notice that a step size of l = 1 is assumed because the Newton step represents a
full move rather than just a direction.

Algorithm 16E stops after one additional move to x132 = 140.68, -0.60242.
The gradient norm 0.00272 at that point is less than stopping tolerance ∈ = 0.1,
which implies that we are sufficiently close to a stationary point of the full objective
function.

Step 0: initialization. Choose any starting solution x102, pick stopping tol-
erance P 7 0, and set solution index t d 0.

Step 1: derivatives. Compute objective function gradient ∇f1x1t22 and
Hessian matrix ∇2f1x1t22 at current point x1t2.

Step 2: Stationary Point. If � � ∇f1x1t22 � � 6 P, stop. Point x1t2 is sufficiently
close to a stationary point.

Step 3: newton move. Solve the linear system

∇2f1x1t22∆x = - ∇f1x1t22
for Newton move ∆x1t + 12.

Step 4: new Point. Update

x1t + 12 d x1t2 + ∆x1t + 12

Step 5: Advance. Increment t d t + 1, and return to Step 1.

table 16.6 Newton’s Method on the Custom Computer Application

t x1t2 f1x1t22 ∇f1x1t22 ∇2f1x1t22 � � ∇f1x1t22 � � ∆x1t + 12

0 132.00, -0.40002 174.746 1-6.240, 10532 a 7.13 293.99
293.99 18.817

b 1053.4 18.956, -0.19592

1 140.96, -0.59592 43.820 12.347, 116.32 a 4.86 18.817
166.21 166.21

b 116.36 1-0.2733, -0.00612

2 140.68, -0.60202 43.133 (0.0289, 2.989) a 4.81 158.97
158.97 10.918

b 2.9895 10.0058, -0.00042

3 140.69, -0.60242 43.133 10.0000, 0.00272 a 4.81 158.73
158.73 10.899

b 0.00272 Stop

16.6 Newton’s Method 963

Rapid Convergence Rate of Newton’s Method
Comparison of Tables 16.5 and 16.6 shows dramatically improved convergence with
Newton’s method versus gradient search. The gradient algorithm required 27 moves
to reach an optimum. Newton’s method took only three.

Although the mathematical theory to fully explain this gain is beyond the
scope of this book, it is typical of comparative experience with the methods.

examPle 16.18: execUting neWton’s method

Return to the model of Example 16.17, and execute two iterations of Newton’s
method Algorithm 16E starting with x(0) = (0, 1).

Solution: Example 16.17 already computed partial derivative expressions

∇f1x1, x22 = a41x1 + 123 + x2

x1 + 41x2 + 123b

and

∇2f1x1, x22 = a121x1 + 122 1
1 121x2 + 122b

along with first Newton step ∆x112 = 1-0.3617, -0.65912. Thus the first iteration
produces

x112 = 10.12 + 1-0.3617, -0.65912 = 1-0.3617, 0.34092
Notice that no step size l is applied (or equivalently, l = 1).

Substituting this x112 in gradient and Hessian expressions produces the next
 16.38 linear system

a4.889 1
1 28.93

b a∆x1

∆x2
b = - a1.381

9.282
b

There the solution is ∆x122 = 1-0.2184, -0.31332, and we complete the second
iteration with

x122 = 1-0.3167, -0.65912 + 1-0.2184, -0.31332 = 1-0.5801, 0.02762

If Newton’s method converges to a local optimum, it usually
does so in many fewer steps than first-order procedures such as gradient search.

Principle 16.39

Computational Trade-offs between Gradient and Newton Search
Of course, the number of iterations is not the only consideration in comparing the
efficiency of algorithms. We must also take into account the effort per iteration.

There Newton’s method has both advantages and disadvantages. On the posi-
tive side is the absence of line searches (although some extensions add them to

964 Chapter 16 Unconstrained Nonlinear Programming

Algorithm 16E). Once each direction ∆x1t + 12 is computed, we may update immedi-
ately, with no need for a relatively costly search for the best step size l.

The extra burdens of Newton’s method come with its use of the second-order
Taylor approximation. Each directional computation on an n-vector x1t2 requires
evaluating n expressions for the various first partial derivatives, and (using sym-
metry) another 1

2 n1n + 12 expressions for the Hessian. This is roughly the same
amount of work as evaluating the original objective n + 1

2 n1n + 12 times versus
only n for gradient search. In addition, we must solve an n by n system of linear
equations to find the next Newton move. This too represents a substantial computa-
tional burden at every iteration.

Computing both first and second partial derivatives plus solv-
ing a linear system of equations at each iteration makes Newton’s method com-
putationally burdensome as the dimension of the decision vector becomes large.

Principle 16.40

Newton’s method is assured of converging to local optimum
only if it starts relatively close to a local optimum.

Principle 16.41

Starting Close with Newton’s Method
Perhaps the greatest disadvantage of Newton’s method is that it may not converge
at all.

There are two main reasons convergence can fail. First is the quadratic Taylor
approximation itself. Far from an optimal solution, the second-order approxima-
tion can give such poor information that the computed Newton step does not even
improve the objective function. For instance, suppose that the Newton search of
Example 16.18 had begun at x102 = 1-1, 12 instead of (0, 1). Then the linear system
of definition 16.38 would have been

a0 1
1 48

b a∆x1

∆x2
b = - a 1

31
b

The implied Newton step ∆x112 = 1-1, 172 moves the minimizing objective value
from f1-1, 12 = 15 to f1-2, 182 = 130, 286. Hardly an improvement!

Another potential difficulty arises with the linear system that must be solved
at each Newton iteration. How do we know that it can be solved efficiently; that is
(Primer 5), what assures that Hessian matrix ∇2f1x1t22 in 16.38 is nonsingular?

Near a strict local optimum, second-order sufficient conditions 16.22 suggest
that the Hessian may be positive or negative definite. Either implies nonsingularity
(Primer 8). But if we are farther away from an optimum, there is no guarantee whatever.

16.7 QUasi-neWton methods and BFGS search

In Section 16.5 we saw that gradient search requires only first partial derivatives but
often gives poor numerical performance. Newton’s method of Section 16.6 yields
much improved convergence but requires second derivatives and solving a system

16.7 Quasi-Newton Methods and BFGS Search 965

of linear equations at each iteration. It is natural to look for a blend of the two that
preserves their advantages while ameliorating their worst defects. That is precisely
the idea behind quasi-Newton methods, which provide the most effective known
algorithms for many unconstrained nonlinear programs.

Deflection Matrices
The Newton step of definition 16.38 solves

∇2f1x1t22∆x = - ∇f1x1t22
for move ∆x. Assuming that the Hessian is nonsingular, we may left-multiply by its
matrix inverse to express the move as

∆x = - ∇2f1x1t22-1∇f1x1t22
That is, directions are computed by applying a suitable deflection matrix
Dt! ∇2f1x1t22-1 to the current gradient.

Deflection matrices Dt produce modified gradient search
directions

∆x1t + 12 = -Dt∇f 1x1t22

Definition 16.42

By stretching a point, we can also think of gradient search as a deflection matrix
method. For example, the maximize case of Algorithm 16D employs directions

∆x = ∇f1x1t22 = - 1-i2∇f1x1t22
which can be viewed as adopting negative identity deflection matrix Dt = -i. The
corresponding minimize case uses Dt = + i.

Quasi-Newton Approach
Quasi-Newton methods work with a deflection matrix that approximates the
Hessian inverse ∇2f -11x1t22 of Newton’s method. Unlike the full Newton’s
method, however, this Dt is built up from prior search results using only first
derivatives.

The key to this approach is identifying properties that a deflection matrix
should possess if it is to do the job of an inverse Hessian. Principal among these is
the idea that the Hessian ∇2f1x1t22 reflects the rates of change in first derivatives
∇f1x1t22. As we move from x1t2 to x1t + 12, it follows that

∇f1x1t + 122 - ∇f1x1t22 ≈ ∇2f1x1t221x1t + 12 - x1t22
or

∇2f1x1t22-11∇f1x1t + 122 - ∇f1x1t222 ≈ x1t + 12 - x1t2

The analogous requirement on Dt is known as the quasi-Newton condition.

966 Chapter 16 Unconstrained Nonlinear Programming

Another characteristic property of Hessian matrices is their symmetry. For
most common functions both ∇2f1x1t22 and ∇2f1x1t22-1 are symmetric matrices.
If quasi-Newton deflection matrices are to have any hope of approximating such
inverse Hessians, they must also preserve this property.

Deflection matrices of quasi-Newton algorithms approximate
the gradient change behavior of inverse Hessian matrices by satisfying the
quasi-Newton condition

Dt + 1g = d

at every iteration, where d! x1t + 12 - x1t2 and g! ∇f1x1t + 122 - ∇f1x1t22.

Principle 16.43

Deflection matrices of quasi-Newton algorithms should paral-
lel inverse Hessians by being symmetric.

Principle 16.44

Guaranteeing Directions Improve
One of the difficulties that we encountered with Newton’s method in Section 16.6
is that it gives unpredictable results far from an optimal solution. It may not even
produce an improving step.

We would like our quasi-Newton algorithms to avoid this difficulty. Recall
from earliest principles 3.21 and 3.22 that direction ∆x improves for a maximize
problem at x1t2 if ∇f1x1t22 # ∆x 7 0 and for a minimize if ∇f1x1t22 # ∆x 6 0. With
directions from deflection matrix definition 16.42 , these conditions become

∇f1x1t221-Dt ∇f1x1t222 = ∇f1x1t221-Dt2∇f1x1t22 7 0

and

∇f1x1t221-Dt∇f1x1t222 = ∇f1x1t221-Dt2∇f1x1t22 6 0

Notice that the maximize case will be satisfied for any gradient if every
Dt is negative definite, so that -Dt is positive definite (Primer 8). Similarly, the
minimize case requires Dt positive definite. These concerns motivate another
specification.

Deflection matrices in quasi-Newton algorithms should assure
improving directions by keeping Dt negative definite for maximize problems
and positive definite for minimizes.

Principle 16.45

BFGS Formula
It turns out that a variety of deflection matrix update formulas can meet quasi-
Newton requirements 16.43 to 16.45 . Still, one has proved more effective than
all the others. Developed through the combined work of C. Broyden, R. Fletcher,
D. Goldfarb, and D. Shanno, it is known as the BFGS formula.

16.7 Quasi-Newton Methods and BFGS Search 967

Although it appears rather imposing, BFGS update 16.46 actually changes
deflection matrices rather modestly at each iteration. The update has the form

Dt + wC1 - [1DtC22 + 1DtC22T]

where weight

 w! 1 +
gDtg
d # g

 (16.26)

is applied to combine simple matrices

 C1!
ddT

d # g
=

1

a
j

dj gj

 • 1d122 d1d2 c d1dn

d2d1 1d222 c d2dn

f f f f
dnd1 dnd2 c 1dn22

µ

(16.27)

C2!
gdT

d # g
=

1

a
j

dj gj

 •g1d1 g1d2 c g1dn

g2d1 g2d2 c g2dn

f f f f
gnd1 gnd2 c gndn

µ
Notice that both C1 and C2 are rank one with every row a multiple of every other.

BFGS Search of Custom Computer Application
Algorithm 16F details a search algorithm based on BFGS update formula 16.46 .
Table 16.7 and Figure 16.18 then track its application to our Custom Computer
 curve-fitting model (16.7).

The initial iteration of Algorithm 16F for this minimize problem employs iden-
tity deflection matrix D0 = i, which leaves the first direction

∆x112 = -D0∇f1x1022 = -i∇f1x1022 = - ∇f1x1022
Thus our BFGS procedure follows the same first direction as gradient search
Algorithm 16D.

The BFGS formula updates deflection matrices by

Dt + 1 d Dt + a1 +
gDt g
d # g

 b ddT

d # g
-

Dt gdT + dgTDt

d # g

where d! x1t + 12 - x1t2 and g! ∇f1x1t + 122 - ∇f1x1t22.

Definition 16.46

968 Chapter 16 Unconstrained Nonlinear Programming

Like gradient Algorithm 16D, and unlike Newton Algorithm 16E, quasi- Newton
methods require line search. Table 16.7 shows that the first such search produces step
l = 0.0001. The result is

 x112 d x102 + l1∆x1

= 132.00, -0.40002 + 10.0001216.240, -10532
= 132.00, -0.46852

with gradient ∇f1x1122 = 1-23.02, 2.5142. Thus

d! x1t + 12 - x1t2 = a 32.0004
-0.4685

b - a 32
-0.4

b = a 0.0004
-0.0685

b

g! ∇f1x1t + 122 - ∇f1x1t22 = a -23.02
2.514

b - a -6.240
1053.4

b = a -16.78
-1050.9

b

and

d # g = 10.0004, -0.06852 # 1-16.78, -1050.92 = 71.9

Algorithm 16F: BFgS QuASi-newton SeArch

Step 0: initialization. Choose any starting solution x102, compute gradient
∇f1x1022 and pick stopping tolerance P 7 0. Also initialize deflection matrix

d0 = | i

(- for a maximize, + for a minimize) and set solution index t d 0.
Step 1: Stationary Point. If norm � � ∇f1x1t22 � � 6 P, stop. Point x1t2 is suf-

ficiently close to a stationary point.
Step 2: direction. Use the current deflection matrix dt to compute the move

direction

∆ x1t + 12 d -dt∇f1x1t22
Step 3: line Search. Solve (at least approximately) 1-dimensional line search

max or min f1x1t2 + l∆x1t + 122 to compute step size lt + 1.
Step 4: new Point. Update

x1t + 12 d x1t2 + lt + 1∆x1t + 12

and compute new gradient ∇f1x1t122.
Step 5: deflection matrix. Revise the deflection matrix as

dt + 1 d dt + a1 +
gdt g
d # g b ddT

d # g -
dt gdT + dgdt

d # g
where d! 1x1t + 12 - x1t22 and g! 1∇f1x1t + 122 - ∇f1x1t222.

Step 6: Advance. Increment t d t + 1, and return to Step 1.

16.7 Quasi-Newton Methods and BFGS Search 969

Next we compute main update matrices

ddT

d # g
 =

1
71.9

 a 0.0004
-0.4685

b 10.0004, -0.46852 = a 0.0000000 -0.0000004
-0.0000004 0.0000652

b

D0gdT

d # g
 =

1
71.9

 a1 0
0 1

b a -16.78
-1050.9

b 10.0004, -0.46852 = a -0.000095 0.015975
-0.005927 1.00062

b

Then with

gD0g
T = 1-16.78, -1050.92 a1 0

0 1
b a -16.78

-1050.9
b = 1,104,583

30 35 40 45

-0.65

-0.6

-0.55

-0.5

-0.45

x1

x2

x(2)

x(1)

x(0)

x*

FigUre 16.18 BFGS Search of Custom Computer Application

table 16.7 BFGS Search of Custom Computer Application

t x1t2 f1x1t22 ∇f1x1t22 �� ∇f1x1t22 � � Dt ∆x1t + 12 l t + 1

0 132.00, -0.40002 174.746 1-6.240, 10532 1053.4 a 1.0000 0.0000
0.0000 1.0000

b 16.240, -10532 0.0001

1 132.00, -0.46852 141.139 1-23.02, 2.5142 23.15 a 1.0002 -0.0160
-0.0160 0.0003

b 123.06, -0.36842 0.3755

2 140.66, -0.60682 43.258 1-0.823, -51.542 51.54 a 0.3759 -0.0059
-0.0059 0.0002

b (0.0079, 0.0032) 1.4361

3 14.067, -0.60212 43.133 1-0.041, 0.1002 0.11 a 0.3775 -0.0055
-0.0055 0.0002

b 10.0160, -0.00022 1.0604

4 140.69, -0.60242 43.132 10.000, -0.0082 0.01 Stop

970 Chapter 16 Unconstrained Nonlinear Programming

examPle 16.19: execUting bFgs search

Suppose that BFGS Algorithm 16F reaches iteration t = 5 with

x152 = 110, 162, ∇f1x1522 = 1-1, 12, D5 = a -10 2
2 -4

b

of a maximizing search, and then takes a step of l6 = 1
2 in the BFGS direction to

reach a new x162 with ∇f1x1622 = 15, -32.

(a) Determine the direction ∆x162 that was employed and the new solution x162.

(b) Compute the revised deflection matrix D6 needed for the next iteration.

Solution:

(a) Following gradient deflection computation 16.42

∆x162 d -D5 ∇f1x1522 = - a -10 2
2 -4

b a -1
1
b = a -12

6
b

Thus the new solution

x162 = x152 + l6∆x162 = a10
16

b +
1
2

 a -12
6
b = a 4

19
b

the new deflection matrix is

D1 d D0 + a1 +
gD0g
d # g

 b ddT

d # g
-

D0gdT + dgTD0

d # g

= a1 0
0 1

b + a1 +
1, 104, 583

71.9
 b a 0.0000000 -0.0000004

-0.0000004 0.0000652
b

- c a -0.000095 0.015975
-0.005927 1.00062

b + a -0.000095 -0.005927
0.015975 1.00062

b d

= a 1.0002 -0.0160
-0.0160 0.0003

b

This revised deflection matrix produces the next move direction,

∆x112 d -D1∇f1x1122 = - a 1.0002 -0.0160
-0.0160 0.0003

b a -23.02
2.514

b = a 23.06
-0.3684

b

and the search continues.
Algorithm 16F stops when � � ∇f1x1t22 � � 6 e, indicating that we have reached

an approximately stationary point. Using e = 0.1, this occurs at iteration t = 4 of
Table 16.7.

16.7 Quasi-Newton Methods and BFGS Search 971

(b) We apply BFGS formula 16.46 . First, the difference vectors are

 d! x162 - x152 = a 4
19

b - a10
16

b = a -6
3
b

 g! ∇f1x1622 - ∇f1x1522 = a 5
-3

b - a -1
1
b = a 6

-4
b

with d # g = -48. The update matrices are then

ddT

d # g
 =

1
-48

 a -6
3
b 1-6.32 = a -0.75 0.375

0.375 -0.1875
b

D5gdT

d # g
 =

1
-48

 a -10 2
2 -4

b a 6
-4

b 1-6.32 = a -8.5 4.25
3.5 -1.75

b

Also,

gD5g = 16, -42 a -10 2
2 -4

b a 6
-4

b = -520

Now substituting in formula 16.46 gives

D6 d D5 + a1 +
gD5g
d # g

 b ddT

d # g
-

D5gdT + dgTD5

d # g

= a -10 2
2 -4

b + a1 +
-520
-48

 b a -0.75 0.375
 0.375 -0.1875

b

- c a -8.5 4.25
3.5 -1.75

b + a -8.5 3.5
4.25 -1.75

b d

= a -1.8750 -1.3125
-1.3125 -2.7188

b

Verifying Quasi-Newton Requirements
Although proving most of them is beyond the scope of this book, BFGS update
16.46 can be shown to fulfill all of our quasi-Newton requirements.

BFGS update formula 16.46 produces deflection matrices sat-
isfying quasi-Newton condition 16.43 at every iteration, as well as symmetry
requirement 16.44 and improving direction specification 16.45 .

Principle 16.47

To illustrate, focus on t = 1 in Table 16.7. There

 d = x122 - x112 = a 40.66
-0.6068

b - a 32.00
-0.4685

b = a 8.66
-0.1383

b

 g = ∇f1x1222 - ∇f1x1122 = a -0.823
-51.54

b - a -23.02
2.514

b = a 22.193
-54.05

b

972 Chapter 16 Unconstrained Nonlinear Programming

Thus quasi-Newton principle 16.43 D2g = d checks

D2g = a 0.37594 -0.00585
-0.00585 0.00016

b a 22.193
-54.05

b ≈ a 8.66
-0.1383

b = d

It is easy to see that all deflection matrices Dt in Table 16.7 are also symmetric
and positive definite (as required for a minimize problem). For instance, with D3 the
principal minor determinants are

det10.37752 = 0.3775 7 0 and det a 0.3775 -0.0055
-0.0055 0.0002

b = 0.00004 7 0

examPle 16.20: VeriFying QUasi-neWton reQUirements

Return to the maximize model of Example 16.19, and demonstrate that the com-
puted D6 satisfies quasi-Newton algorithm principles 16.43 to 16.45 .

Solution: Quasi-Newton principle 16.43 is D6g = d. Checking gives

D6g = a -1.8750 -1.3125
-1.3125 -2.7188

b a 6
-4

b = a -6
3
b = d

as required. Also, matrix D6 is symmetric (principle 16.44) because d1,2
162 =

d2,1
162 = -1.3125

To guarantee an improving direction for a maximize problem, D6 should also
be negative definite (principle 16.45). This too is true because principal minor
determinants

 det 1-1.87502 = -1.8750 and det a -1.8750 -1.3125
-1.3125 -2.7188

b = 3.375

alternate in sign and the first is negative.

Approximating the Hessian Inverse with BFGS
Quasi-Newton principles 16.43 to 16.45 were motivated to mimic Newton’s meth-
od’s use of Hessian inverse deflection matrices Dt = ∇2f1x1t22-1. It should not
surprise that BFGS and many other quasi-Newton deflection matrices tend to this
Newton case.

As BFGS Algorithm 16F nears a local optimum, deflection
matrices Dt approach the inverse Hessian matrix at that optimum.

Principle 16.48

Once again, we may illustrate with results for our Custom Computer application.
The final deflection matrix of BFGS Table 16.7 is

D3 = a 0.3775 -0.0055
-0.0055 0.0002

b

16.8 Optimization without Derivatives and Nelder–Mead 973

The corresponding Hessian matrix is

∇2f1x1322 = a4.811 158.8
158.8 10,903

b

with inverse

∇2f1x1322-1 = a 0.4004 -0.0058
-0.0058 0.0002

b

In accord with principle 16.48 , this D3 closely approximates ∇2f1x1322-1.

16.8 oPtimization WithoUt deriVatiVes and nelder–mead

Sometimes nonlinear programs must be addressed over objective functions that are
not differentiable, or at least do not have readily computable derivatives. In such
cases, improving search must rely entirely on functional evaluations.

How do algorithms choose search directions without derivatives? Numerous
schemes have been proposed. Some simply use the coordinate directions— searching
each in turn. Others seek to align the search with the trend of recent progress. We
develop here only the method due to Nelder and Mead, which constructs directions
by maintaining an ensemble of current points.

Nelder–Mead Strategy
One of the most popular schemes for unconstrained search without derivatives is
the Nelder–Mead procedure detailed in Algorithm 16G. Table 16.8 traces its appli-
cation to our PERT maximum likelihood model (16.10).

In contrast to other improving search methods, which keep only one current
point, Nelder-Mead Algorithm 16G maintains a set of n + 1.

In an optimization over n decision variables, the Nelder–Mead
algorithm maintains an ensemble of n + 1 distinct solutions y112, c, y1n + 12,
with y112 having the best objective function value, y122 the second best, and so on.

Definition 16.49

Each iteration of the search tries to replace the worst solution y1n + 12 with a better
one.

The maximization of Table 16.8 illustrates for n = 2. Search begins with the
ensemble

y112 = 15, 32, y122 = 16, 32, y132 = 16, 42
f1y1122 = 12.425, f1y1222 = 11.429, f1y1322 = 2.663

Notice that the solutions are numbered from best to worst.
It is somewhat arbitrary that exactly n + 1 solutions are maintained in the

ensemble. Still, too many would complicate computation, and too few would not
adequately surround an emerging optimum. Over n decision variables, n + 1 solu-
tions is just enough to define vertices of a polytope surrounding a point.

974 Chapter 16 Unconstrained Nonlinear Programming

Algorithm 16g: nelder–meAd derivAtive–Free
SeArch

Step 0: initialization. Choose 1n + 12 distinct solutions x1j2 as starting set
5y112, c, y1n + 126, evaluate f1y1122, c, f1y1n + 122, and initialize iteration
index t d 0.

Step 1: centroid. Renumber as necessary to arrange the y1i2 in nonimprov-
ing sequence by solution value. Then compute best-n centroid

x1t2 =
1
n

 a
n

i = 1
y1i2

Step 2: Stopping. If all solution values f1y1122, c, f1y1n22 are sufficiently
close to centroid objective value f1x1t22, stop and report the best of y112
and x1t2.

Step 3: direction. Use centroid x1t2 to compute away-from-worst move
direction

∆x1t + 12 d x1t2 - y1n + 12

Step 4: reflection. Try l = 1 by computing f1x1t2 + 1∆x1t + 122. If this new
value is at least as good as current best f1y1122, go to Step 5 and expand. If
it is no better than second-worst value f1y1n22, go to Step 6 and contract.
Otherwise, accept l d 1, and proceed to Step 8.

Step 5: expansion. Try l = 2 by computing f1x1t2 + 2∆x1t + 122. If this val-
ue is no worse than f1x1t2 + 1∆x1t + 122 fix l d 2, and otherwise set l d 1.
Then proceed to Step 8.

Step 6: contraction. If reflection value f1x1t2 + 1∆x1t + 122 is better than
worst current f1y1n + 122, try l = 1

2 by computing f1x1t2 + 1
2 ∆x1t + 122. If not,

try l = -1
2 by evaluating f1x1t2- 12 ∆x1t + 122. Either way, if the result im-

proves on worst current f1y1n + 122, fix l at the {1
2 tried and proceed to Step 8.

Otherwise, go to Step 7 to shrink.
Step 7: Shrinking. Shrink the current solution set toward best y112 by

y1i2 d 1
2

 1y112 + y1i22 for all i = 2, c, n + 1

Then compute new f1y1222, c, f1y1n + 122, advance t d t + 1, and return
to Step 1.

Step 8: replacement. Replace worst y1n + 12 in the solution set by

x1t2 + l∆x1t + 12

Then advance t d t + 1 and return to Step 1.

16.8 Optimization without Derivatives and Nelder–Mead 975

table 16.8 Nelder–Mead Search of PERT Application

t y112 y122 y132 y1t2 ∆x1t + 12 Reflect Second

 0 (5.000, 3.000) (6.000, 3.000) (6.000, 4.000) (5.500, 3.000) 1-0.500, -1.0002 l = 1.0 l = 0.5

f = 12.425 f = 11.429 f = 2.663 f = 13.084 f = 11.415 f = 24.915

 1 (5.250, 2.500) (5.000, 3.000) (6.000, 3.000) (5.125, 2.750) 1-0.875, -0.2502 l = 1.0 l = 2.0

f = 24.915 f = 12.425 f = 11.429 f = 13.074 f = 30.005 f = 19.654

 2 (4.250, 2.500) (5.250, 2.500) (5.000, 3.000) (4.750, 2.500) 1-0.250, -0.5002 l = 1.0 l = 0.5

f = 30.005 f = 24.915 f = 12.425 f = 30.482 f = 18.229 f = 17.354

 3 (4.250, 2.500) (5.250, 2.500) (4.625, 2.250) (4.750, 2.500) (-0.203, -0.031) l = 1.0 l = 0.5

f = 30.005 f = 24.915 f = 17.354 f = 30.482 f = 21.434 f = 11.231

 4 (4.438, 2.375) (4.750, 2.500) (4.250, 2.500) (4.594, 2.438) 10.344, -0.0632 l = 1.0

f = 35.513 f = 30.482 f = 30.005 f = 16.119 f = 31.642

 5 (4.438, 2.375) (4.938, 2.375) (4.750, 2.500) (4.688, 2.375) 1-0.063, -0.1252 l = 1.0 l = -0.5

f = 35.513 f = 31.642 f = 30.482 f = 15.893 f = 17.354 f = 26.577

 6 (4.438, 2.375) (4.594, 2.438) (4.688, 2.375) (4.516, 2.406) 1-0.172, 0.0312 l = 1.0

f = 35.513 f = 16.119 f = 15.893 f = 25.980 f = 31.062

 7 (4.438, 2.375) (4.344, 2.438) (4.594, 2.438) (4.391, 2.406) 1-0.203, -0.0312 l = 1.0 l = 0.5

f = 35.513 f = 31.062 f = 16.119 f = 32.845 f = 17.253 f = 28.811

 8 (4.438, 2.375) (4.344, 2.438) (4.289, 2.391) (4.391, 2.406) (0.102, 0.016) l = 1.0 l = 0.5

f = 35.513 f = 31.062 f = 28.811 f = 32.845 f = 29.758 f = 31.979

 9 (4.438, 2.375) (4.441, 2.414) (4.344, 2.438) (4.439, 2.395) 10.096, -0.0432 l = 1.0 l = -0.5

f = 35.513 f = 31.979 f = 31.062 f = 33.857 f = 26.094 f = 32.250

10 (4.438, 2.375) (4.392, 2.416) (4.441, 2.414) (4.415, 2.396) 1-0.027, -0.0192 l = 1.0

f = 35.513 f = 32.250 f = 31.979 f = 33.726 f = 34.140

11 (4.438, 2.375) (4.388, 2.377) (4.392, 2.416) (4.413, 2.376) 10.021, -0.0402 l = 1.0 l = 2.0

f = 35.513 f = 34.140 f = 32.250 f = 34.957 f = 37.893 f = 41.050

12 (4.455, 2.296) (4.438, 2.375) (4.388, 2.377) (4.446, 2.335) 10.058, -0.0422 l = 1.0 l = 2.0

f = 41.050 f = 35.513 f = 34.140 f = 38.569 f = 42.813 f = 27.929

13 (4.504, 2.294) (4.455, 2.296) (4.438, 2.375) (4.479, 2.295) 10.042, -0.0802 l = 1.0

f = 42.813 f = 41.050 f = 35.513 f = 43.202 f = 41.193

14 (4.504, 2.294) (4.521, 2.215) (4.455, 2.296) (4.513, 2.254) 10.058, -0.0422 l = 1.0 l = -0.5

f = 42.813 f = 41.193 f = 41.050 f = 42.388 f = 28.723 f = 44.727

15 (4.484, 2.275) (4.504, 2.294) (4.521, 2.215) (4.494, 2.285) 1-0.027, 0.0702 l = 1.0 l = -0.5

f = 44.727 f = 42.813 f = 41.193 f = 45.087 f = 37.793 f = 44.627

16 (4.484, 2.275) (4.508, 2.250) (4.504, 2.294) (4.496, 2.262) 1-0.009, -0.0322 l = 1.0 l = 2.0

f = 44.727 f = 44.627 f = 42.813 f = 46.671 f = 46.356 f = 43.832

17 (4.487, 2.231) (4.484, 2.275) (4.508, 2.250) (4.485, 2.253) 1-0.022, 0.0032 l = 1.0 l = -0.5

f = 46.356 f = 44.727 f = 44.627 f = 45.790 f = 42.708 f = 47.301

18 (4.497, 2.251) (4.487, 2.231) (4.484, 2.275) (4.492, 2.241) 10.008, -0.0342 l = 1.0 l = 2.0

f = 47.301 f = 46.356 f = 44.727 f = 46.977 f = 48.520 f = 44.839

19 (4.500, 2.207) (4.497, 2.251) (4.487, 2.231) (4.498, 2.229) 10.011, -0.0022 l = 1.0 l = -0.5

f = 48.520 f = 47.301 f = 46.356 f = 48.192 f = 44.882 f = 47.275

20 (4.500, 2.207) (4.497, 2.251) (4.493, 2.230) (4.498, 2.229) Stop

f = 48.520 f = 47.301 f = 47.275 f = 48.192

976 Chapter 16 Unconstrained Nonlinear Programming

examPle 16.21: arranging a nelder–mead ensemble

Consider the unconstrained nonlinear program

 min f1x1, x2, x32! 1x122 + 1x2 - 122 + 1x3 + 422

Choose an initial ensemble of solutions for Nelder–Mead search and arrange them
with the notation of 16.49 .

Solution: With n = 3 we need 4 distinct solutions that “bracket” a region likely to
produce good solutions. One possibility is

 £3
3
3
≥, £ -3

3
-3

≥, £3
0
3
≥, and £ -3

0
-3

≥
Evaluating the objective gives

f13, 3, 32 = 62, f1-3, 3, -32 = 14, f13, 0, 32 = 59, and f1-3, 0, -32 = 11

Thus, for this minimizing model, we have initial ensemble

 y112 = £ -3
0

-3
≥, y122 = £ -3

3
-3

≥, y132 = £3
0
3
≥, and y142 = £3

3
3
≥

Nelder–Mead Direction
The critical issue in any derivative-free optimization method is how to construct
search directions without the aid of partial derivatives. Nelder-Mead Algorithm
16G adopts an away-from-worst approach.

At iteration t, the Nelder–Mead algorithm employs search
direction

∆x! x1t2 - y1n + 12

which moves away from worst current solution y1n + 12 through the best-n centroid

x1t2! 1
n

 a
n

i = 1
y1i2

Principle 16.50

The idea is to move away from the worst solution in the ensemble and toward
the rest.

Figure 16.19 illustrates for t = 0 of the 2-variable search in Table 16.8. The cen-
troid of the best two solutions is

 x102! 1
2 c a5

3
b + a6

3
b d = a5.5

3
b

16.8 Optimization without Derivatives and Nelder–Mead 977

examPle 16.22: comPUting nelder–mead directions

Return to Example 16.21, and compute the Nelder–Mead direction corresponding
to the initial ensemble constructed there.

Solution: The centroid of the best 3 solutions in that 3-variable model is

 x102 = 1
3 1y112 + y122 + y1322

 = 1
3 [1-3, 0, -32 + 1-3, 3, -32 + 13, 0, 32]

 = 1-1, 1, -12
Thus direction 16.50 becomes

∆x = x102 - y142 = 1-1, 1, -12 - 13, 3, 32 = 1-4, -2, -42

Thus the search direction of 16.50 is

 ∆x! x102 - y132 = a5.5
3
b - a6

4
b = a -0.5

-1.0
b

FigUre 16.19 Nelder-Mead Direction for PERT Application

76.565.554.54

2

1.5

2.5

3

3.5

4

4.5

x1

x2

contraction

re�ection

y(1)

y(3)

y(2)
x(0)

Nelder–Mead Limited Step Sizes
Centroid x1t2 plays the role of a current solution in Nelder-Mead Algorithm 16G.
But what step size l should be applied to direction 16.50 ?

One strategy would undertake a full line search over

 x1t2 + l∆x

However, the required computation is usually not justified for such a crudely derived
direction ∆x. Also, too large a step would destroy the “spread” pattern of the ensemble.

978 Chapter 16 Unconstrained Nonlinear Programming

examPle 16.23: execUting nelder–mead search

Suppose that a minimizing Nelder–Mead search has current ensemble objective val-
ues f1y1122 = 13, f1y1222 = 21, f1y1322 = 25, and f1y1422 = 50. For cases (a) to (d)
in the following table, describe which step sizes l would be tried at this iteration,
and which (if any) should be chosen.

 f (x1t2 - 1
2 x∆) f(x1t2 + 1

2 x∆) f1x1t2 + 1∆x2 f1x1t2 + 2∆x2
(a) 12 15 18 30
(b) 40 22 12 10
(c) 43 51 60 25
(d) 60 49 44 70

Algorithm 16G confronts these concerns by trying only one or two l’s drawn
from possibilities {+1, +2, +1

2, - 12}.

The Nelder–Mead algorithm explores new points x1t2 + l∆x
by first reflecting about centroid x1t2 with l = 1. If replacing y1n + 12 with this
new point would leave it neither best nor worst in the ensemble, it is adopted
without further trials. If the reflection point is a new best, the algorithm
expands to try l = 2. If the point would be worst, the procedure contracts to
try either l = +1

2 or l = -1
2.

Principle 16.51

Figure 16.19 illustrates for t = 0 in Table 16.8. Trying l = 1 produces reflec-
tion point

 x102 + ∆x = 15.5, 32 + 1-0.5, -1.02 = 15, 22
with f15, 22 = 11.415. The term reflection comes from the fact that this new point
mirrors worst ensemble y132 = 16, 42 on the opposite side of centroid x102 = 15.5, 32.

Immediately replacing y132 with this reflection point would leave it worst in the
new ensemble. Thus we try to do better by contracting with l = +1

2. (Contraction
would use l = -1

2 if the reflection point had been no better than worst y132.)
The resulting (5.25, 2.5) yields far superior f15.25, 2.52 = 24.915. Substitu-

ting this contraction point for the worst in the current ensemble produces the
improved set

 y112 = 15.25, 2.52, y122 = 15, 32, y132 = 16, 32
 f1y1122 = 24.915, f1y1222 = 12.425, f1y1322 = 11.429

of t = 1. Notice that points have been renumbered to keep them in objective func-
tion value sequence.

Table 16.8 shows the direction 16.50 for this new ensemble is ∆x =
1-0.875, -0.2502, and new centroid x112 = 15.125, 2.752. Now reflection with
l = 1 produces new best (4.25, 2.5) with f14.25, 2.52 = 30.005. This leads to trying
expansion with l = 2. However, the result is not as good, so the reflection point
joins the ensemble.

16.8 Optimization without Derivatives and Nelder–Mead 979

Solution: We follow details of Algorithm 16G.

(a) Reflection 1l = 12 objective value 18 is neither better than best ensemble
value f1y1122 = 13 nor worse than second worst f1y1322 = 25. Thus we replace
worst current point y142 with the one for l = 1.

(b) Reflection 1l = 12 objective value 12 is better than ensemble best f1y1122 = 3.
Thus we expand and try l = 2. The resulting value of 10 improves, so we replace
worst current point y142 with the one for l = 2.

(c) Reflection 1l = 12 objective value 60 is worse than ensemble worst
f1y1422 = 50. Thus we contract and try l = -1

2. The resulting value of 43 is better
than worst, so we replace y142 with the one for l = -1

2.

(d) Reflection point 1l = 12 objective value 44 is better than worst f1y1422 = 50,
but not second worst f1y1322 = 25. Thus we contract and try l = 1

2. The resulting
value of 49 is better than worst, so we replace y142 with the one for l = 1

2.

When reflection and subsequent contraction fails to improve
the Nelder–Mead algorithm’s current ensemble, the procedure shrinks the
whole array toward best point y112 by

y1i2 d 1
2 1y112 + y1i22 for all i = 2, c, n + 1

Principle 16.52

Nelder–Mead Shrinking
Sometimes neither the reflection point nor a contraction alternative yields a solu-
tion that would much improve the ensemble. This suggests the need for rescaling
the entire array of ensemble points.

Figure 16.20 depicts such a shrinking step at t = 3 of the PERT maximum
likelihood search inTable 16.8. Ensemble points y122 and y132 are moved halfway to
best y112 as

 new y122 d 1
2 1y112 + y1222 = 1

2 c a4.25
2.5

b + a5.25
2.5

b d = a4.75
2.5

b

 new y132 d 1
2 1y112 + y1322 = 1

2 c a4.25
2.5

b + a4.625
2.25

b d = a4.438
2.375

b

After renumbering to reflect new objective value sequence, the search proceeds
with this more compact ensemble.

examPle 16.24: shrinking in nelder–mead search

Suppose that it becomes necessary to apply shrinking Step 7 of Algorithm 16G with
current ensemble

 y112 = 12, 32, y122 = 1-4, 52, and y132 = 18, -12
Compute the new ensemble.

980 Chapter 16 Unconstrained Nonlinear Programming

new y(1)

y(1) = new y(3)
x(3) = new y(2)

65.554.543.5
2

2.5

3

x1

x2
x(4)

y(3)

y(2)

FigUre 16.20 Nelder–Mead Shrinking in PERT Application

Solution: We apply principle 16.52 .

 new y112 = y112 = 12, 32
 new y122 = 1

2 1y112 + y1222 = 1
2 [12, 32 + 1-4, 52] = 1-1, 42

 new y132 = 1
2 1y112 + y1322 = 1

2 [12, 32 + 18, -12] = 15, 12

Nelder–Mead Search of PERT Application
Table 16.8 detailed all 20 iterations required in Algorithm 16G search of our
maximum likelihood PERT model (16.10). When one of the trial l values was
adopted, it was shown boxed in the table. Otherwise, shrinking principle 16.52
was invoked.

Nelder–Mead search stops when objective function values for points in
the ensemble become essentially equal. In Table 16.8 this condition was reached
when

 C 1
n + 1

 a
n + 1

i = 1
[f1y1i22 - f1x1t22]2 6 P = 0.5

Then the best of the ensemble and centroid points is selected as an approximate
optimum x* = 14.5, 2.2072 with f1x*2 = 48, 520.

 Exercises 981

ExERCiSES

16-1 A biomedical intrumentation company sells
its main product at the rate of 5 units per day. The
instrument is manufactured in lots run every few
days. It costs the company $2000 to setup for pro-
duction of a lot and $40 per unit per day to hold
finished instruments in inventory between runs.
The company would like to choose a lot size that
minimizes average inventory and setup cost per
day assuming that demand occurs smoothly at the
given rate.

(a) Formulate a 1-variable unconstrained NLP
to choose an optimum lot size.

(b) Plot the objective function of your
model and compute an optimum lot size
graphically.

16-2 As part of a study of 911 emergency calls,
an analyst wishes to choose the value of parame-
ter a in exponential probability density function
d1t2! ae-at that best fits call interarrival times
80, 10, 14, 26, 40, and 22 minutes.

(a) Formulate a 1-variable unconstrained NLP
to choose a maximum likelihood estimate
of a.

(b) Plot the objective function of your
model and compute an optimal estimate
graphically.

16-3 An oil drilling company wishes to locate a
supply base somewhere in the jungle area where
it is presently exploring for oil. The base will ser-
vice drilling sites at map coordinates (0, -30),
(50, -10), (70, 20), and (30, 50) with helicopter
supply runs. The company wishes to choose a lo-
cation that minimizes the sum of flying distances
to the four sites.

(a) Formulate an unconstrained NLP to
choose an optimum base location.

(b) Use class optimization software to com-
pute at least a local optimum starting
from coordinates (10, 10).

16-4 Repeat Exercise 16-3, this time minimizing
the maximum distance to any drilling site.
16-5 An electronics assembly firm is planning its
production staff needs to make a new modem. It

has measured one test worker assembling the unit
and observed the following data:

Through unit 2 6 20 25 40

Average time 8.4 5.5 4.2 3.7 3.1

Experience shows that learning curves, which de-
scribe the ability of a worker to improve his or her
productivity as more an more units are produced,
often take the form

average time = a 1no. units2b

where a and b are empirical constants.

(a) Formulate an unconstrained NLP to fit
this form to the given data so as to min-
imize the sum of squared errors.

(b) Use class optimization software to
compute at least a local optimum for
your curve fitting model starting with
a = 15, b = -0.5.

16-6 The following shows a series of measure-
ments of the height (in inches) of a new geneti-
cally engineered tomato plant versus the number
of weeks after the plant was replanted outdoors.

Week 1 2 4 6 8 10

Height 9 15 22 33 44 52

Researchers wish to fit this experience with an
S-shaped logistics curve

size =
k

1 + ea + b1weeks2

where k, a, and b are empirical parameters.

(a) Formulate an unconstrained NLP to fit
this form to the given data so as to min-
imize the sum of squared errors.

(b) Use class optimization software to com-
pute at least a local optimum for your
curve fitting model starting with k = 50,
a = 3, b = -0.3.

16-7 The university motor pool3 provides a large
number of cars n for faculty and staff traveling
on university business. Motor pool cars have an

3Based on W. W. Williams and O. S. Fowler (1980), “Minimum Cost Fleet Sizing for a University Motor
Pool,” Interfaces 10:3, 21–27.

982 Chapter 16 Unconstrained Nonlinear Programming

average annual cost of f dollars per car for fixed
expenses such as depreciation, insurance, and li-
censing, plus a variable operating cost of vm cents
per mile driven. Those travelers who cannot be
accommodated by the pool must drive their per-
sonal cars and be reimbursed at vp cents per mile.
Demand varies greatly among times of the year,
but an extensive analysis of past travel records
has fitted regression equations

 m1n2! am + bmn + cm>n

 p1n2! ap + bpn + cp>n

to the annual numbers of miles that would be driv-
en in motor pool and personal cars as a function of
the size of the motor pool available. Formulate a
1-variable unconstrained NLP to compute a mini-
mum total cost motor pool size. Ignore integrality.
16-8 Once a site for a new service facility has
been chosen, the limits of its market area must
be determined,4 along with the corresponding
facility size. Assume (i) that the facility is to be
located at the center of a circular market area
and sized to cover uniform density d calls per unit
area out to a radius of r; (ii) the cost of operat-
ing the facility is [f + c1size2], where f is a fixed
cost and c a variable cost per unit size; and (iii)
transportation costs per call are proportional to
(straight-line, one-way) distance from the facility
to the customer at t per unit distance. Formulate a
1-variable unconstrained NLP to choose a market
area radius that minimizes the facility’s average
total cost per call. Evaluate any calculus integrals
in your objective.
16-9 Renewing highway pavement markings5
costs c dollars per mile but reduces social costs
from delays, accidents, and other effects of de-
clining marking performance over time. Suppose
that new markings yield maximum performance
p max and that performance t days after renewal
can be expressed p1t2! p max e

-at, where a is a
constant depending on the durability of the mark-
ings. Also assume that each unit of lost perfor-
mance costs d dollars per day per mile. Formulate

a 1-variable unconstrained NLP to choose a time
between pavement renewals to minimize average
total daily cost per mile. Evaluate any calculus in-
tegrals in your objective.
16-10 The number of potential patrons pi of a
new movie theater complex has been estimated
from census data for each of the surrounding
counties i = 1, c, 15. However, the fraction of
potential patrons from any i who will actually use
the complex varies inversely with its (straight line)
distance from the county centroid at coordinates
1xi, yi2. Formulate a 2-variable NLP to choose a
maximum total realized patronage location for
the complex.
16-11 Denoting by nt the number of universi-
ties using a textbook through semester t of its
availability 1n0 = 02, the number of new adop-
tions in any single semester t can be estimated
1a + bnt - 121m - nt - 12, where a and b are pa-
rameters relating to the rapidity of success, and m
is the maximum number of universities who will
ever adopt.

(a) Given values of nt for t = 1, c, 10, for-
mulate an unconstrained NLP to make a
nonlinear least squares fit of the forego-
ing approximation to these data.

(b) Show that an appropriate change of
 parameters can covert your model into a
linear least squares problem.

16-12 Major aircraft parts undergo inspection
and overhaul6 every t1 flying hours, and replace-
ment every t2. Experience shows the cost of over-
hauling a particular model of jet engine can be
expressed as increasing nonlinear function a1t12b
of the overhaul cycle, and operating costs per
hour are an increasing nonlinear function c1t22d
of the replacement time. Each replacement costs
a fixed part cost f plus labor cost g1t12h to iden-
tify and fix associated problems. Formulate an
unconstrained NLP over t1 and t2 to find an over-
haul and replacement policy that minimizes total
cost per flying hour.

4Based on D. Erlenkotter (1989), “The General Optimal Market Area Model,” Annals of Operations
Research, 18, 45–70.

5Based on V. Kouskoulas (1988), “An Optimization Model for Pavement Marking Systems,” European
Journal of Operational Research, 33, 298–303.

6Based on T. C. E. Cheng (1992), “Optimal Replacement of Ageing Equipment Using Geometric Programming,”
International Journal of Production Research, 30, 2151–2158.

x(2)

x(1)

x(3)

f (x)

x
x(4) x(5) x(6)

x
x(2)x(1) x(3)

f (x)

x(4) x(5) x(6)

 Exercises 983

16-13 Determine whether each of the following
functions is smooth on the specified domain.

(a) f1x2! x4 + 3x - 19 for all x
(b) f1x2! min 52x - 1, 2 - x6 for all x
(c) f1x2! � x - 5 � for x 7 0
(d) f1x2! 3x + ln 1x2 for x 7 0
(e) f1x1, x22! x1e

x2 for all x1, x2

(f) f1x1, x22! 0 x1 + 1� + 0 x2 - 3� for x1, x2 Ú 0.

16-14 Each of the following plots shows a function
f1x2. Determine graphically whether each indi-
cated point is an unconstrained local maximum, an
unconstrained global maximum, an unconstrained
local minimum, an unconstrained global minimum,
or none of the above over the domain depicted.

(a)

(b)

16-15 Each of the following plots shows contours
of a smooth function f1x1, x22. Determine graph-
ically whether each indicated point is an uncon-
strained local maximum, an unconstrained global
maximum, an unconstrained local minimum, an
unconstrained global minimum, or none of the
above over the domain depicted.

(a) Points x112 = 11, 32, x122 = 14, 42,
x132 = 13, 32, x142 = 14, 12,
x152 = 12, 12

0

5

0 5

0
30 20

20

x1

x2 4040

50
40

70

40

100
70x(1)

x(2)

x(4)
x(5)

x(3)

(b) Points x112 = 16, 62, x122 = 12, 82,
x132 = 18, 22, x142 = 14, 42, x152 = 14, 22

20
200

0

10

0 10
x1

x2

50

80

100

300
100

400

200

x(5)

x(2)

x(1)

x(3)

x(4)

16-16 Use golden section Algorithm 16A to find
an optimum of the NLP

min 10x +
70
x

s.t. 1 … x … 10

to within an error of{1.
16-17 Use golden section Algorithm 16A to find
an optimum of the NLP

max 500 - x1x - 2023

s.t. 0 … x … 12

to within an error of {1.
16-18 Suppose that we were given only the lower
limit of 1 in the NLP of Exercise 16-16. Apply
3-point pattern Algorithm 16B to compute a cor-
responding upper limit with which golden section
search could begin using each of the following ini-
tial step sizes d.

(a) d = 0.5
(b) d = 16

984 Chapter 16 Unconstrained Nonlinear Programming

16-19 Do Exercise 16-18 for the NLP of Exercise
16-17 using d = 2 and d = 5.
 16-20 Use quadratic fit Algorithm 16C to
compute an optimum for the NLP of Exercise
16-16 within an error tolerance of 2. Start with the
3-point pattern 51, 2, 106.
16-21 Use quadratic fit Algorithm 16C to com-
pute an optimum for the NLP of Exercise 16-17
within an error tolerance of 4. Start with 3-point
pattern 50, 3, 126.
16-22 Consider the 1-variable function f1x2! x3 -
3x2 + 11x at current point x = 3.

(a) Derive the first-order Taylor approxima-
tion to f1x + l2.

(b) Derive the second-order Taylor approxi-
mation to f1x + l2.

(c) Plot the original function and both Taylor
series approximations in the vicinity of x.
How accurate do the approximations ap-
pear to be? Which is better?

16-23 Do Exercise 16-22 for function f1x2!
18x - 20 ln1x2 at x = 16.
16-24 Consider the 2-variable function f1x1, x22!
1x123 - 5x1x2 + 61x222 with current point
x = 10, 22 and move direction ∆x = 11, -12.

(a) Derive the first-order Taylor approxima-
tion to f1x + l∆x2.

(b) Derive the second-order Taylor approxi-
mation to f1x + l∆x2.

(c) Plot the original function and both Taylor
series approximations as functions of l.
How accurate do the approximations ap-
pear to be? Which is better?

16-25 Do Exercise 16-24 for function
f1x1, x22! 13x1 - 6x1x2 + 8>x2, x = 12.12 and
∆x = 13.12.
16-26 For each of the following unconstrained
NLPs, either verify that the given x is a stationary
point of the objective function or give a direction
Δx that improves at x.

(a) min 1x122 + x1x2 - 6x1 - 8x2, x = 18, -102
(b) max 101x122 + 2 ln 1x22, x = 11, 22
(c) min 16x1 - x1x2 + 21x222, x = 13, 02
(d) max x1x2 - 8x1 + 2x2, x = 1-2, 82

16-27 For each of the following functions f, use
conditions 16.19 to 16.22 to classify the specified

x as definitely local maximum, possibly local max-
imum, definitely local minimum, possibly local
minimum, and/or definitely neither.

(a) f1x1, x22! 31x122 - x1x2 + 1x222 - 11x1,
x = 12, 12

(b) f1x1, x22! - 1x122 - 6x1x2 - 91x222,
x = 1-3, 12

(c) f1x1, x22! x1 - x1x2 + 1x222, x = 12, 12
(d) f1x1, x22! 12x2 - 1x122 + 3x1x2 - 31x222,

x = 112, 82
(e) f1x1, x22! x11x223, x = 10, 02
(f) f1x1, x22! 6x1 + ln 1x12 + 1x222, x = 11, 32
(g) f1x1, x22! 21x122 + 8x1x2 + 81x222 -

12x1 - 24x2, x = 11, 12
(h) f1x1, x22! 41x122 + 3>x2 - 8x1 + 3x2,

x = 11, 12
16-28 Determine whether each of the following
functions is convex, concave, both, or neither
over the domain specified.

(a) f1x1, x22! ln 1x12 + 20 ln 1x22
over x1, x2 7 0

(b) f1x2! x sin 1x2 over x ∈ [0, 2p]
(c) f1x2! x1x - 222 over all x Ú 0
(d) f1x2! 1x - 824 + 132x over all x
(e) f1x1 c. . x52! 3x1 + 11x2 - x3 - 8x5

over all 1x1 c. . x52
(f) f1x1, x22! 21x1 + 63x2 over x1, x2 Ú 0
(g) f1x1, x22! max 5x1, x26 over all x1, x2

(h) f1x1, x22! min 513x1 - 2x2, - 1x2226
over all x1, x2

(i) f1x1, x22! 10>1x1 - 401x2 over x1, x2 Ú 0
(j) f1x1, x22! ln [-31x122 - 91x222] - 10>x2

over x1, x2 7 0

16-29 Use convexity/concavity to establish that
each of the following solutions x is either an un-
constrained global maximum or an unconstrained
global minimum of the f indicated, and explain
which.

(a) f1x1, x22! 1x1 - 522 + x1x2 + 1x2 - 722
at x = 12, 62

(b) f1x1, x22! 500 - 81x1 + 122 - 21x2 - 122 +
4x1x2 at x = 1-1, 02

16-30 Consider the unconstrained NLP

 max x1x2 - 51x1 - 224 - 31x2 - 524

 Exercises 985

(a) Use graphing software to produce a con-
tour map of the objective function for
x1 ∈ [1, 4], x2 ∈ [2, 8].

(b) Compute the move direction that would
be pursued by gradient search Algorithm
16D at x102 = 11, 32.

(c) State the line search problem implied by
your direction.

(d) Solve your line search problem graphically
and compute the next search point x112.

(e) Do two additional iterations of Algorithm
16D to compute x122 and x132.

(f) Plot progress of the search on the contour
map of part (a).

16-31 Do Exercise 16-30 for the unconstrained
NLP

 min
1000

x1 + x2
+ 1x1 - 422 + 1x2 - 1022

starting from x102 = 13, 12, and plotting
x1 ∈ [2, 11], x2 ∈ [0, 15].
16-32 Return to the unconstrained optimization
of Exercise 16-30 starting from x102 = 13, 72.

(a) Write the second-order Taylor approx-
imation to the objective function at x102
for unknown ∆x and l = 1.

(b) Compute the Newton direction ∆x at x102
and verify that it is a stationary point of
your second-order Taylor approximation.

(c) Beginning with your Newton direction,
complete 2 iterations of Newton’s method
Algorithm 16E.

(d) Plot progress of your search on a contour
map like the one of Exercise 16-30(a).

16-33 Do Exercise 16-32 on the NLP of Exercise
16-31 starting from x102 = 113, 12.
16-34 Return to the unconstrained optimization
of Exercise 16-31 and consider BFGS Algorithm
16F starting at x102 = 12, 32.

(a) Compute the first direction that would be
pursued by Algorithm 16F.

(b) Assuming that the optimal step is l =
0.026 in that direction, compute the new
solution x112, the next deflection matrix D,
and the next BFGS search direction ∆x.

(c) Verify that your deflection matrix of part
(b) satisfies quasi-Newton conditions 16.43
(within roundoff error) and is symmetric.

(d) Verify algebraically that your direction of
part (b) is improving.

(e) Plot your first move and second direction
on a contour map like that of Exercise
16-31(a).

16-35 Do Exercise 16-34 on the NLP of Exercise
16-31 starting from x102 = 16, 12 and using l =
0.32 in part (b).
16-36 Consider the unconstrained NLP

min max510 - x1 - x2,
 6 + 6x1 - 3x2,
 6 - 3x1 + 6x26

(a) Explain why Nelder–Mead search is ap-
propriate for solving this unconstrained
optimization.

(b) Do 3 iterations (moves) of Nelder–Mead
Algorithm 16G, starting from initial en-
semble (5, 0), (10, 5), (5, 5).

(c) Plot the progress of your search through
centroids x1t2 and connecting the 3 points
of each ensemble with dashed lines.

16-37 Do Exercise 16-36 for the NLP

 max min 520 - x1 - x2, 6 + 3x1 - x2, 6 - x1 + 3x26
starting with ensemble (0, 0), (1, 2), (2, 2).
16-38 Compute the Nelder–Mead Algorithm
16G ensemble that would result from applying
the shrinking step to each of the following (y112
best objective value, etc.).

(a) y112 = 11, 2, 12, y122 = 15, 4, 52,
y132 = 13, 2, 72, y142 = 17, 2, 72

(b) y112 = 110, 8, 102, y122 = 14, 6, 22,
y132 = 10, 0, 02, y142 = 10, 10, 62

986 Chapter 16 Unconstrained Nonlinear Programming

REFERENCES

Bazaraa, Mokhtar, Hanif D. Sherali, and C. M.
Shetty (2006), Nonlinear Programming - Theory
and Algorithms, Wiley Interscience, Hoboken,
New Jersey.

Griva, Igor, Stephen G. Nash, and Ariela Sofer
(2009). Linear and Nonlinear Optimization,
SIAM, Philadelphia, Pennsylvania.

Luenberger, David G. and Yinyu Ye (2008),
 Linear and Nonlinear Programming, Springer,
New York, New York.

987

▪ ▪ ▪ ▪ ▪
Chapter 17

Constrained Nonlinear
Programming

In this chapter we introduce models and methods for constrained nonlinear optimi-
zation. We begin by modeling a series of real applications, emphasizing differences
between linear and nonlinear constraints, convex and nonconvex feasible sets, sep-
arable and nonseparable objective functions, and so on. Then, a variety of solution
methods are developed, some fairly general purpose and others restricted to special
classes on NLPs. Theoretical development draws on Chapters 3, 5, 6, and 16.

17.1 Constrained nonlinear Programming models

As usual, we begin our investigation of constrained nonlinear programming with
some examples. In this section we formulate three cases, illustrating the broad
range on constrained NLP, and in Section 17.2 we present three more, representing
some classic special cases. All are based on real application contexts drawn from
 published reports.

1Based in part on L. F. Gelders, L. M. Pintelon, and L. N. Van Wassenhove (1987), “A Location-
Allocation Problem in a Large Belgian Brewery,” European Journal of Operational Research, 28, 196–206.

aPPliCation 17.1: Beer Belge loCation alloCation

One common class of nonlinear programs arises from the location and customer
 allocation of distribution and service facilities. The task confronted by a large
Belgian brewery we will call Beer Belge illustrates.1 Beer Belge wishes to realign
its 17 depots to more efficiently solve its 24,000 customers throughout Belgium. For
purposes of this analysis the customers can be aggregated in 650 regions.

Assigning index dimensions

i ! depot number 1i = 1, c, 172
j ! customer region number 1j = 1, c, 6502

988 Chapter 17 Constrained Nonlinear Programming

Beer Belge Location-Allocation Model
As with all such location-allocation problems, decision variables in a model of Beer
Belge’s case must settle two distinct but related questions. First, we need to know
where the depots will be located. Then we must allocate the trips required in vari-
ous regions among the depots. The following address both:

 xi ! x@coordinate of depot i’s location

 yi ! y @coordinate of depot i’s location

 wi,j ! number of trips per year from depot i to customer region j

To obtain an objective function, we adopt the common assumption that
roundtrip travel costs from depot i to customer region j is proportional to the straight-
line (Euclidean) distance between their locations. Then, minimizing total transporta-
tion costs of the location-allocation amounts to

min a
i
a

j
 1number of trips from i to j21distance from i to j2

Using symbolic constants and decision variables defined above, we obtain

min a
17

i = 1
 a

650

j = 1
 wi, j31xi - hj22 + 1yi - kj22

To complete a model, we must add constraints assuring that all required trips
to each region are made. The result is

 min a
17

i = 1
 a
650

j = 1
 wi, j31xi - hj22 + 1yi - kj22 1total travel2

(17.1)st a
17

i = 1
 wi,j = dj j = 1, c, 650 1allocate trips2

 wi, j Ú 0 i = 1, c, 17; j = 1, c, 650

company analysts can determine from maps and past experience

hj ! x@coordinate of the center of customer region j

kj ! y@coordinate of the center of customer region j

dj ! number of delivery trips required to region j per year

We wish to choose locations for the depots and allocate customer region demand to
minimize total travel cost.

examPle 17.1: Formulating loCation-alloCation models

Two airstrips are to be constructed in the jungle to service three remote oil fields.
The first oil field requires 25 tons of supplies per month. The second, which is
75 miles east and 330 miles north of the first, requires 14 tons. The third, which is
225 miles west and 40 miles south of the first, needs 34 tons per month. Formulate

17.1 Constrained Nonlinear Programming Models 989

Linearly Constrained Nonlinear Programs
Location-allocation model (17.1) illustrates the many large-scale nonlinear programs
having all constraints linear. Only its objective function renders the model an NLP.

Linearly constrained nonlinear programs form an important special class because
much of the tractability of linear programs extends to cases with only the objective
function nonlinear. Fortunately, linearly constrained NLPs are also very common.

a location-allocation model to locate and operate the airstrips to minimize the
 ton-miles flown per month.

Solution: Coordinates in this problem may be introduced by taking the first oil
field as (0, 0). Then the second is 1-75, 3302 and the third is 1225, -402.

Decisions involve both the location of the airstrips and allocation of workload
between the strips. Thus we employ decision variables 1x1, y12! coordinates of the
first airstrip, 1x2, y22! coordinates of the second, and wi,j ! tons flown from air-
strip i to oil field j. The resulting model is

min w1,121x1 - 022 + 1y1 - 022 + w1,221x1 + 7522 + 1y1 - 33022 1ton@miles2
 + w1,321x1 - 22522 + 1y1 + 4022 + w2,121x2 - 022 + 1y2 - 022

 + w2,221x2 + 7522 + 1y2 - 33022 + w2,321x2 - 22522 + 1y2 + 4022

s.t. w1,1 + w2,1 = 25 1field 12
 w1,2 + w2,2 = 14 1field 22
 w1,3 + w2,3 = 34 1field 32
 wi, j Ú 0 i = 1, 2; j = 1, 2, 3

Here the objective function totals flight distances times tons shipped, and con-
straints allocate needed shipments among airstrips.

Most large-scale nonlinear programs that can be solved effec-
tively have all or nearly all their constraints linear.

Principle 17.1

aPPliCation 17.2: texaCo gasoline Blending

Beginning as early as the 1950s, oil companies have used mathematical program-
ming to help plan gasoline blending at refineries. Texaco is no exception.2

Figure 17.1 sketches gasoline processing in refineries. Crude oil is first distilled
into a range of materials from light ones such as gasoline to much heavier ones such
as fuel oil. The “straight-run” gasoline produced in distilling is not nearly enough to
meet market demands economically. Thus most of the distillates that are heavier or
lighter than gasoline are re-formed and cracked to produce other gasoline forms.
A final processing stage combines some additives with these various stocks of

2Based on C. W. DeWitt, L. S. Lasdon, A. D. Waren, D. A. Brenner, and S. A. Melhem (1989),
“OMEGA: An Improved Gasoline Blending System for Texaco,” Interfaces, 19:1, 85–101.

990 Chapter 17 Constrained Nonlinear Programming

Texaco Gasoline Blending Model
Clearly, the decisions in gasoline blending involve how much of which stocks to use.
Thus we will develop a model with decision variables

xi,j ! quantity of input stock i used in output blend j

crude

reforming

cracking

ga
so

lin
e

bl
en

di
ng

cr
ud

e
di

st
ill

at
io

n

additives

straight-run
gasoline

m
ar

ke
t b

le
nd

s

Figure 17.1 Gasoline Refinery Flow

gasoline to produce market blends (e.g., premium unleaded, regular unleaded) with
suitable quality indexes (e.g., octane, lead content, sulfur content, volatility).

Typical operations plan blending for a month at a time. Using index dimensions

 i ! gasoline or additive stock number 1i = 1, c, m2
 j ! market blend number 1j = 1, c, n2

 k ! quality index number 1k = 1, c, h2
We will assume that the following constants are known as each optimization begins:

 pj ! estimated selling price per unit of output blend j

 rj ! quantity of output blend j required

 si ! quantity of input stock i available

 vi ! estimated cost per unit of input stock i

 ai,k ! kth quality index of input stock i

 /j,k ! lowest acceptable level of quality index k in output blend j

 uj,k ! highest acceptable level of quality index k in output blend j

We want to find a maximum profit (sales income minus stock costs) plan to meet all
blending requirements with available stocks.

17.1 Constrained Nonlinear Programming Models 991

In accord with principle 17.1 , much of the model will be linear. We begin with
the objective to maximize sales income minus stock cost:

max a
m

i = 1
 a

n

j = 1
 1pj - vi2xi,j 1profit2

Linear constraints enforce stock availabilities and output demands:

 a
n

j = 1
 xi,j … si i = 1, c, m

 a
m

i = 1
 xi,j Ú rj j = 1, c, n

Most of the blending constraints also take the linear form of the blending
LPs in Section 4.2. That is, we require the average level of each quality index to fall
between upper and lower limits for each output blend with constraints

/j,k … am
i = 1 ai,kxi,j

am
i = 1 xi,j

… uj,k j = 1, c, n: linear k

What introduces nonlinearity in gasoline blending are two classes of quality
indexes that do not combine linearly. The volatility quality measures perform loga-
rithmically to produce constraints

/j,k … ln ° am
i = 1 ai,kxi,j

am
i = 1 xi,j

¢ … uj,k j = 1, c, n: volatility k

Octane measures are even more complex. Typical schemes use known constants
bi,k, ci,k, di,k, and ei,k to specify octane limits with fourth-order expressions

/j,k … a
m
i = 1 bi,kxi,j

am
i = 1 xi,j

+ am
i = 1 ci,k 1xi,j22

(am
i = 1 xi,j)2

+ am
i = 1 di,k 1xi,j23

(am
i = 1 xi,j)3

 + am
i = 1 ei,k 1xi,j24

(am
i = 1 xi,j)4

… uj,k j = 1, c, n; octane k

Collecting all the above and adding variable-type constraints completes the
full gasoline blending model:

max a
m

i = 1
 a

n

j = 1
 1pj - vi2xi,j 1profit2

s.t. a
n

j = 1
 xi,j … si i = 1, c, m 1availability2

 a
m

i = 1
 xi,j Ú rj j = 1, c, n 1demand2

992 Chapter 17 Constrained Nonlinear Programming

 /j,k … am
i = 1 ai,kxi,j

am
i = 1 xi,j

… uj,k j = 1, c, n; linear k 1blend 12

 /j,k … ln ° am
i = 1 ai,kxi,j

am
i = 1 xi,j

¢ … uj,k j = 1, c, n; volatility k 1blend 22 (17.2)

/j,k … am
i = 1 bi,kxi,j

am
i = 1 xi,j

+ am
i = 1 ci,k1xi,j22

1am
i = 1 xi,j22

+ am
i = 1 di,k1xi,j23

1am
i = 1 xi,j23

+ am
i = 1 ei,k 1xi,j24

1am
i = 1 xi,j24

… uj,k j = 1, c, n; octane k 1blend 32

xi,j Ú 0 i = 1, c, m; j = 1, c, n

This time it is the last two systems of main constraints that make the model a non-
linear program. All other elements are linear.

Engineering Design Models
The mostly linear location-allocation [model (17.1)] and gasoline blending [model
(17.2)] nonlinear programs treated so far are typical of large-scale applications. Still,
the NLPs arising in engineering design often have quite a different character.

3Based on F. C. Jen, C. C. Pegels, and T. M. DuPuis (1967), “Optimal Capacities of Production
Facilities,” Management Science, 14, B573–B580.

Optimal engineering design of structures and processes fre-
quently leads to constrained nonlinear programs with relatively few variables
but highly nonlinear constraints and objective functions.

Principle 17.2

aPPliCation 17.3: oxygen system engineering design

To illustrate the smaller but more nonlinear models arising in engineering, we con-
sider the design of the oxygen production system for a basic oxygen furnace in the
steel industry.3 Figure 17.2(a) shows the main components of the system. The oxy-
gen plant produces at a constant rate, with output compressed and stored in a tank.
The furnace then uses the oxygen in a cycle like the one depicted in Figure 17.2(b).
Relatively low demand level d1 applies during the first t1 minutes of the cycle, fol-
lowed by a burst to demand d2 from time t1 through t2.

We seek a minimum cost sizing of the system components. In particular, we
wish to choose values for 4 decision variables:

x1 ! production rate of the oxygen plant

x2 ! pressure in the storage tank

x3 ! compressor power

x4 ! storage tank volume

Also, physical limitations require that the storage tank pressure be at least p0.

17.1 Constrained Nonlinear Programming Models 993

Oxygen System Engineering Design Model
The procurement and operation costs of this oxygen system has 4 parts:

a total
cost

b = aoxygen
plant cost

b + acompressor
cost

b + astorage tank
cost

b + aelectrical
power cost

b

Using prior experience with similar systems, engineers in this application estimate
oxygen plant cost to be linear in the production rate as

oxygen plant cost = 61.8 + 5.72 1production rate2
Compressor costs grow with compressor power in the nonlinear function

compressor cost = 0.0175 1power20.85

Storage vessel costs perform similarly in the required volume

storage tank costs = 0.0094 1volume20.75

Finally, electricity for the compressor is proportional to the power and time of oper-
ation as

electrical power cost = 0.006 1time of operation21compressor power2
One constraint of the model comes from the requirement that the oxygen pro-

duction rate outputs at least what is required over the cycle, that is,

t2x1 Ú d1t1 + d21t2 - t12
Also, the minimum pressure p0 imposes bound

x2 Ú p0

oxygen
plant

compressor

storage
tank

steel
furnace

(a) System components (b) Operating cycle

furnace
demand

time

d2

t2

d1

t1

Figure 17.2 Oxygen System Engineering Design Application

994 Chapter 17 Constrained Nonlinear Programming

The remainder of the constraints enforce the physical relations among the deci-
sion variables. First, the power of the compressor is related to the pressure that it must
generate in the storage tank. In particular, the compressor power must address the
maximum stored inventory 1d2 - x121t2 - t12 just before the burst part of the oper-
ating cycle. Including standard temperature and gas constants gives the constraint

x3 = 36.25
1d2 - x121t2 - t12

t1
 ln a x2

p0
b

Finally, we must relate storage volume to the pressure needed to keep the max-
imum required inventory. Using appropriate temperature and gas constants gives

x4 = 348,300
1d2 - x121t2 - t12

x2

Collecting all the above and adding variable-type constraints, we obtain the
following NLP model of our oxygen system design problem:

 min 61.8 + 5.72x1 + 0.01751x320.85 + 0.00941x420.75

(17.3)

 + 0.006t1x3 1total cost2
s.t. t2x1 Ú d1t1 + d21t2 - t12 1demand2

 x2 Ú p0 1pressure2

 x3 = 36.25
1d2 - x121t2 - t12

t1
 ln a x2

p0
b apower vs.

pressure
b

 x4 = 348,300
1d2 - x121t2 - t12

x2
 avolume vs.

pressure
b

 x1, x2, x3, x4 Ú 0

With constants

d1 = 2.5, d2 = 40, t1 = 0.6, t2 = 1.0, p0 = 200

an optimal design uses production rate x1
* = 17.5, storage pressure x2

* = 473.7,
compressor power x3

* = 468.8, and storage volume x4
* = 6618 for total cost approx-

imately 173.7.

examPle 17.2: Formulating engineering design models

A closed cylindrical tank is being designed to carry at least 20 cubic feet of chem-
icals. Metal for the top and sides costs $2 per square foot, but the heavier metal of
the base costs $8 per square foot. Also, the height of the tank can be no more than
twice its diameter to keep it from being top heavy. Formulate a constrained nonlin-
ear program to find a design of minimum cost.

Solution: The decision variables the designer must choose are

x1 ! diameter of the tank

x2 ! height of the tank

17.2 Convex, Separable, Quadratic, and Posynomial Geometric Programming 995

17.2 Convex, seParaBle, QuadratiC, and Posynomial
geometriC Programming sPeCial nlP Forms

Linear programming is one especially tractable special case of constrained non-
linear programming, but it is not the only one. Several other common forms have
 special characteristics that can be exploited in search algorithms.

In this section we define and illustrate models in four of these unusually
 tractable classes: convex programs, separable programs, quadratic programs, and
posynomial geometric programs. Then, in Sections 17.7–17.10 we illustrate how their
special properties can be exploited. As usual, the models presented are drawn from
real application contexts, usually cases described in published accounts.

Then, we obtain the NLP

min 2 apx1x2 + p
1x122

4
 b + 8 ap

1x122

4
 b 1metal cost2

s.t. p
1x122

4
 x2 Ú 20 1volume2

 x2 … 2x1 1height@to@diameter ratio2
 x1 Ú 0, x2 Ú 0

The objective function minimizes metal cost for the sides and top at $2 per square
foot, plus cost for the base at $8. One main constraint makes the tank have the
 required volume, and the other enforces the height-to-diameter ratio limit.

aPPliCation 17.4: PFizer oPtimal lot sizing

One common application context yielding NLPs with special structure arises in
managing inventories and choosing manufacturing lot sizes. Work at Pfizer, a large
manufacturer of pharmaceuticals,4 offers a good example.

The production of pharmaceuticals involves a series of fermentation and
organic synthesis steps done in large tanks holding several thousand gallons. Each
“campaign” or lot of a product consists of one or more “batches” processed serially.

The main issue to be decided is how many batches should be included in a
campaign or lot of each product. Large changeover times and costs are incurred each
time a new campaign starts because of the need to clean and reconfigure equipment
carefully for the next product. These changeover burdens must be balanced against
the cost of holding inventories built up during campaigns. In particular, rigorous
quality control requires that all batches of a campaign be held at the end of each
manufacturing step until every one is ready for the next step.

Our specific (fictitious) version of this lot sizing problem will consider prod-
ucts j = 1, c, 4, each having steps k = 1, 2 of production (k = 0 refers to raw
materials). Table 17.1 details values of the associated input parameters

4Based on P. P. Kleutghen and J. C. McGee (1985), “Development and Implementation of an
Integrated Inventory Management Program at Pfizer Pharmaceuticals,” Interfaces, 15:1, 69–87.

996 Chapter 17 Constrained Nonlinear Programming

Pfizer Optimal Lot Sizing Model
To model our version of the Pfizer application, introduce decision variables

xj ! number of batches of product j in each campaign or lot

To begin, notice that the implied number of campaigns per year is

annual demand
campaign size

=
dj

xj

Then the total annual cost objective function can be expressed as

 min a
4

j = 1

dj

xj
 c achangeover costs

per campaign of j
b + aholding costs per

campaign of j
b d (17.4)

Changeover costs for product j are easily expressed as

achangeover costs
per campaign of j

b = c a
2

k = 1
 tj,k

To compute the corresponding inventory holding costs, consider the cycle
illustrated in Figure 17.3. Each campaign of product j begins with xj batches val-
ued at raw material cost vj, 0. Over the xjpj,1 weeks it takes all batches to com-
plete the first step of processing, their value increases to xjvj, 1. Then the next xjpj,2
weeks raise the value to xjvj, 2. Finally, the finished pharmaceutical is distributed
to customers over the 52>1dj>xj2 weeks until the next campaign is completed.
Inventory cost per campaign is then 1

2 % of the area under the implied inventory
value curve.

 dj ! number of batches of product j demanded annually

 tj,k ! changeover time per campaign of product j at step k 1in weeks2
 pj,k ! process time per batch of product j in step k 1in weeks2
 vj,k ! value per batch of product j at the end of step k 1in thousands of dollars2

We will also assume that 3000 total production weeks are available to manufacture
the 4 products, that holding inventory cost 1

2 % per week of the product value, and
that changeover activities cost c = $12,000 thousand per week.

taBle 17.1 Pfizer Lot Sizing Application Data

Product
Number,

j

Annual
Demand,

dj

Changeover
Time (weeks)

Process
Time (weeks) Value ($000)

tj, 1 tj, 2 pj, 1 pj, 2 vj, 0 vj, 1 vj, 2

1 150 0.5 0.7 1.5 3.2 10 14 27
2 220 1.3 2.0 4.0 1.5 50 70 110
3 55 0.3 0.2 2.5 4.2 18 29 40
4 90 0.9 1.8 2.0 3.5 43 69 178

17.2 Convex, Separable, Quadratic, and Posynomial Geometric Programming 997

Substituting in expression (17.4) gives the complete objective function

min a
4

j = 1

dj

xj
 c c a

2

k = 1
 tj,k + 0.005 a a

2

k = 1
 12 pj,k1vj, k - 1 + vj,k21xj22 +

52vj, 2

2dj
 1xj22b d

The only main constraint in this model will enforce the limit on production
time available. Again summing per campaign, we have

a
4

j = 1

dj

xj
 c achangeover time

per campaign of i
b + aproduction time

per campaign of j
b d … a time

available
b

or

 a
4

j = 1

dj

xj
 a a

2

k = 1
 tj,k + a

2

k = 1
 pj,kxjb … 3000 (17.5)

Substituting parameter values of Table 17.1 and simplifying produces the com-
plete model

 min 66.21x1 +
2160

x1
+ 426.8x2 +

8712
x2
 1total cost2

(17.6)
 + 61.20x3 +

330
x3

+ 268.1x4 +
2916

x4

s.t.
180
x1

+
726
x2

+
27.5
x3

+
243
x4

 … 221.5 1production time2

 x1, c, x4 Ú 0

time

inventory
value

step 1
production
time for
all batches

step 2
production
time for
all batches

distribution
time between
campaigns

raw
material
value

all batches
value after
step 2

all batches
value after
step 1

Figure 17.3 Pfizer Lot Sizing Application Inventory Cycle

998 Chapter 17 Constrained Nonlinear Programming

An optimal plan runs

 x1
* = 7.161, x2

* = 5.665, x3
* = 2.911, x4

* = 4.135 (17.7)

campaigns per year of the 4 products. Total annual cost will be approximately
$6,837,000.

Convex Programs
Lot sizing model (17.6) is special, in part, because it forms a convex program.

A constrained nonlinear program in functional form

 max or min f1x2

 s.t. gi1x2 c Ú
…
=

s bi i = 1, c, m

is a convex program if f is concave for a maximize or convex for a minimize,
each gi of a Ú constraint is concave, each gi of a … constraint is convex, and
each gi of an = constraint is linear.

Definition 17.3

In Section 16.4 we defined convex and concave functions (definition 16.23)
and showed their importance in characterizing the most tractable objective func-
tions. Convex programs extend these ideas to constraints. Every Ú constraint should
be concave (after collecting terms involving the decision variables on the left-hand
side), every … constraint convex, and every = constraint linear.

To see that lot sizing model (17.6) satisfies these requirements, we first con-
sider its objective function:

 min f1x2! 66.21x1 +
2160

x1
+ 426.8x2 +

8712
x2

(17.8)

 + 61.20x3 +
330
x3

+ 268.1x4 +
2916

x4

Notice that it is a sum of terms

ajxj +
bj

x2

with positive constants aj and bj. The first such terms are linear and so convex (prin-
ciple 16.28). But linear functions are also concave, which makes reciprocal terms
convex for xj Ú 0 (principle 16.32). It follows that the objective function is a sum of
convex functions, and so itself convex (principle 16.29). This is just what is needed
in definition 17.3 .

17.2 Convex, Separable, Quadratic, and Posynomial Geometric Programming 999

Now consider constraints

 g11x2!
180
x1

+
726
x2

+
27.5
x3

+
243
x4

… 221.5

(17.9)
 g21x2! x1 Ú 0

 g31x2! x2 Ú 0

 g41x2! x3 Ú 0

 g51x2! x4 Ú 0

Definition 17.3 requires g1 convex and g2, c, g5 concave. Function g1 conforms for
much the same reason as the objective: It is the positive-weighted sum of recipro-
cals of nonnegative linear functions. Other functions g2, c, g5 are concave because
they are linear.

examPle 17.3: reCognizing Convex Programs

Determine whether each of the following mathematical programs is a convex program.

(a) max 3w1 - w2 + 8 ln1w12
s.t. 41w122 - w1w2 + 1w222 … 100

 w1 + w2 = 4
 w1, w2 Ú 0

(b) min 3w1 - w2 + 8 ln1w12
s.t. 1w122 + 1w222 Ú 10

 w1 + w2 = 4
 w1, w2 Ú 0

(c) max w1 + 7w2

s.t. w1w2 … 14
 1w122 + 1w222 = 40
 w1, w2 Ú 0

(d) min w1 + 7w2

s.t. w1 + w2 … 14
 w1 - w2 Ú 0
 2w1 + 5w2 = 18
 w1, w2 Ú 0

Solution: We apply definition 17.3 .

(a) The objective function of this model is concave because it is the sum of a lin-
ear function and 8 ln1w12, which has negative second derivative (principle 16.27).
Also, the first main constraint function is convex because the Hessian matrix

∇2f1w2 = a 8 -1
-1 2

b

1000 Chapter 17 Constrained Nonlinear Programming

is positive definite (principle 16.27). Since all 3 other constraints are linear, the
model is a convex program. It maximizes a concave objective, subject to a convex …
 constraints, a linear = constraint, and concave (because linear) Ú constraints.

(b) This NLP is not a convex program because its objective function, which is
the concave one of part (a), is inappropriate for a minimize. Also, the first main
constraint

1w122 + 1w222 Ú 10

is convex in a Ú form.

(c) This model is also not a convex program. Its first main constraint involves func-
tion g11w1, w22 = w1 w2, which is neither convex nor concave. Its Hessian matrix is

∇2g11w2 = a0 1
1 0

b

Furthermore, the second main constraint is a nonlinear equality.

(d) This model is a linear program and so a convex program. Linear objectives and
constraints, which are both convex and concave (principle 16.28), fulfill all require-
ments of definition 17.3 .

Special Tractability of Convex Programs
To appreciate the special tractability of convex programs, recall the characterization
in Section 3.4 of the models most convenient for improving search. The best objec-
tive functions are those that are unimodal (definition 16.9), and principle 16.24 has
already established that maximizing a concave function, or minimizing a convex, pro-
duces an objective with that desirable property.

For constraints we would like the implied feasible set to be convex (defini-
tion 3.27). Requirements for a convex program assure exactly that.

The feasible set defined by constraints

gi1x2 c Ú
…
=

s bi i = 1, c, m

is convex if each gi of a Ú constraint is concave, each gi of a … constraint is
convex, and each gi of an = constraint is linear.

Principle 17.4

We can see why property 17.4 is true by considering a single convex constraint

g1x2 … b

and two points x112 and x122 that satisfy it. If the corresponding feasible set is to be
convex, every point along the line segment between x112 and x122 must also satisfy
the constraint, that is (definition 3.29), every point representable as

x112 + l1x122 - x1122

17.2 Convex, Separable, Quadratic, and Posynomial Geometric Programming 1001

for some l ∈ [0, 1]. Using

g1x1122 … b

g1x1222 … b

we may multiply the first by 11 - l2, the second by l, and sum to conclude that

11 - l2g1x1122 + 1l2g1x1222 … 11 - l2b + 1l2b

which simplifies to

g1x1122 + l1g1x1222 - g1x11222 … b

With g convex, the left side of this expression is at most g1x112 + l1x122 - x11222
(definition 16.23). Thus

g1x112 + l1x122 - x11222 … b

which shows that the line segment point for l is feasible are required. A similar
argument demonstrates that feasible sets for concave Ú constraints are convex, and
we already know that linear constraints yield convex feasible sets (principle 3.32).

Combining the convexity of objective functions for convex programs with the
convexity of their feasible sets leads to their main convenience for improving search.

Function s1x2 is separable if it can be expressed as the sum

s1x1, c, xn2! a
n

j = 1
 sj1xj2

of single-variable functions s11x12, c, sn1xn2.

Definition 17.6

Every local optimum of a convex program is a global optimum.Principle 17.5

Improving search procedures that produce locally optimal solutions automatically
yield global optima.

Separable Programs
Besides being a convex program, the objective and constraint functions of Pfizer lot
sizing model (17.6) also have a special separable property.

That is, a function is separable if it is the sum of 1-variable functions of its arguments.
To see that Pfizer objective function (17.8) is separable, consider the 1-variable

functions

f11x12! 66.21x1 +
2160

x1

f21x22! 426.8x1 +
8712

x2

f31x32! 61.20x1 +
330
x3

f41x42! 268.1x1 +
2916

x4

1002 Chapter 17 Constrained Nonlinear Programming

Clearly, the full objective f1x2 separates into a sum of these functions of single
decision variables.

Similar definitions establish that constraint functions g11x2 through g51x2 are
separable. For example,

g11x2 = g1,11x12 + g1,21x22 + g1,31x32 + g1,41x42
where g1, 11x12 = 180>x1, g1, 21x22 = 726>x2, g1, 31x32 = 27.5>x3, and g1, 41x42 =
243>x4.

When both the objective function and all constraint functions are separable in
this way, we term an NLP a separable program.

A constrained nonlinear program in functional form

 max or min f1x2

 s.t. g11x2c Ú
…
=

s b1 i = 1, c, m

is a separable program if f and every gi is separable.

Definition 17.7

Pfizer model (17.6) provides an example.

examPle 17.4: reCognizing seParaBle Programs

Return to the NLPs of Example 17.3, and determine whether each is a separable
program.

Solution: We apply definition 17.7 .

(a) The objective function and most constraints of this model are separable.
However, it fails the definition of a separable program because the first main con-
straint contains the term w1w2, which involves both variables.

(b) This model is a separable program. Each objective and constraint function can be
expressed as a sum of separate functions, one involving only w1 and the other only w2.

(c) Again, the objective and most constraint functions of this NLP are separable.
Still, the first main constraint is not, because it includes the term w1w2. Thus the
model is not a separable program.

(d) This model is a linear program. By definition, linear functions involve sums of
constant multiples of the decision variables. Thus all are separable, and every linear
program is a separable program.

Special Tractability of Separable Programs
Separable programs, where objective and constraint functions are sums of 1-variable
functions, have much in common with linear programs where the corresponding

17.2 Convex, Separable, Quadratic, and Posynomial Geometric Programming 1003

functions are limited to scalar multiples of the decision variables. This relationship
can be exploited by piecewise-linear approximation of each component function
as suggested in Figure 17.4. That is, each of the single-variable components of the
objective and constraint functions is approximated by a series of linear (straight-
line) segments. Then, if the separable program also conforms to convex program
definition 17.3 , the approximation can be solved by linear programming.

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9

y1 y2

slope 1

slope 2

f(y) = y2 - 12y + 45

Figure 17.4 Piecewise-Linear Approximation of a One-Variable
Function

Separable convex nonlinear programs can be addressed by
linear programming through piecewise-linear approximation of the objective
and constraint functions.

Principle 17.8

Details are provided in Section 17.9.

aPPliCation 17.5: QuadratiC PortFolio management

We can illustrate another important class of constrained nonlinear programs by re-
turning to an application setting that we encountered earlier in Chapter 8: finance.
Financial managers are constantly planning and controlling market decisions, and a
wide array of nonlinear programs have been employed to help.

We will consider a simple case of portfolio management—dividing invest-
ment funds to maximize return and minimize risk. Our manager, whom we will call
Barney Backroom, must decide how to split the available funds among three classes
of investments: common stocks, money markets, and corporate bonds. Table 17.2
shows the experience of the past 6 years on which Barney will base his decisions. He
would like to average an 11% return on investments while accepting minimum risk.

1004 Chapter 17 Constrained Nonlinear Programming

Quadratic Portfolio Management Model
The obvious decision variables for a model of this problem are

x1 ! fraction of the portfolio invested in common stocks

x2 ! fraction of the portfolio invested in money markets

x3 ! fraction of the portfolio invested in corporate bonds

Then one main constraint forces all funds to be invested:

x1 + x2 + x3 = 1

One reasonable assumption about returns is that each class will achieve the
average experienced in the years of Table 17.2. Then the goal of returning 11% can
be expressed as

13.22x1 + 8.24x2 + 9.03x3 Ú 11

The more difficult issue is how to model variability of return. One measure
is the variance—the average squared deviation from the mean. If the three classes
of investments varied independently, the variance of the overall return would be
simply the sum of the variances of each class. However, financial markets in various
commodities tend to interact. Thus a workable model should include the covari-
ances relating movement in the different categories of investment.

Given a series of n observations like those in Table 17.2, covariances can be
estimated as

vi,j! estimated covariance between categories i and j

=
1
n

 a
n

t = 1
a i value

in period t
b a j value

in period t
b -

1
n2 c a

n

t = 1
a i value

in period t
b d c a

n

t = 1
a j value

in period t
b d

Then the variance of the total return is approximately

 variance of return = a
n

i = 1
a
n

j = 1
 vi,jxixj

 = xVx

for V is the matrix of vi,j.
Table 17.2’s data for our example yields

V = £66.51 2.61 2.18
2.61 0.63 0.48
2.18 0.48 0.38

≥

taBle 17.2 Return Experience for Portfolio Application

Percent Returns for Year:

Category 1 2 3 4 5 6 Average

Stocks 22.24 16.16 5.27 15.46 20.62 -0.42 13.22
Money market 9.64 7.06 7.68 8.26 8.55 8.26 8.24
Bonds 10.08 8.16 8.46 9.18 9.26 9.06 9.03

17.2 Convex, Separable, Quadratic, and Posynomial Geometric Programming 1005

Thus we may combine with the constraints above to obtain the model

 min 66.511x122 + 212.612x1x2 + 212.182x1x3 + 0.631x222 1variance2
 + 210.482x2x3 + 0.381x322

s.t. x1 + x2 + x3 = 1 1invest 100%2 (17.10)

 13.22x1 + 8.24x2 + 9.03x3 Ú 11 1return2
 x1, x2, x3 Ú 0

An optimal portfolio invests a fraction x1
* = 0.47 of funds in common stocks, x2

* = 0
of funds in money markets, and x3

* = 0.53 in corporate bonds to produce a mini-
mum variance of 15.895.

Quadratic Programs Defined
Model (17.10) illustrates the special case of a quadratic program.

A constrained nonlinear program is a quadratic program if its
objective function is quadratic, that is,

f1x2! a j cjxj + a i a j qi,jxixj = c # x + xQx

and all constraints are linear.

Definition 17.9

Portfolio model (17.10) clearly qualifies. All 5 constraints are linear, and the
objective function involves only squares and products of 2 variables. In the matrix
format of definition 17.9 , its objective function has

c = 0, Q = V

examPle 17.5: reCognizing QuadratiC Programs

Determine whether each of the following NLPs is a quadratic program. For those
that are, also place the objective function in matrix format c # w + wQw.

(a) max 3w1 - 5w2 + 121w122 + 8w1w2 + 1w222

s.t. w1 + w2 = 9
 w1, w2 Ú 0

(b) min w1w2w3

s.t. 1w122 + 1w222 … 25

(c) min 5w1 + 19w2

s.t. w1 + w2 = 9
 w1, w2 Ú 0

Solution: We apply definition 17.9 .

(a) This model is a quadratic program because its objective function involves only
second-order terms, and its constraints are linear. Here

c = a 3
-5

b , Q = a12 4
4 1

b

1006 Chapter 17 Constrained Nonlinear Programming

Notice that the coefficient 8 on cross-product w1w2 is split so that

q1, 2w1w2 + q2, 1w1w2 = 4w1w2 + 4w1w2 = 8w1w2

(b) This model is not a quadratic program. Its objective involves a 3-way product,
which is not quadratic, and its constraint is not linear.

(c) This model is a linear program and so quadratic. Objective function elements

c = a 5
19

b , Q = 0

Special Tractability of Quadratic Programs
Being nonlinear in only the objective function, and only quadratic there, quadratic
programs have much in common with LPs. In particular, powerful dual and com-
plementary slackness properties make possible efficient specialized algorithms for
many cases. Section 17.7 provides details.

aPPliCation 17.6: CoFFerdam design

To illustrate another special type of constrained NLP arising often in engineering
design applications, we consider the planning of a cofferdam.5 Cofferdams are used
to block streams temporarily while construction is in progress. Figure 17.5 illustrates
a common design. Each “cycle” of the dam consists of a large steel cylinder filled
with soil and joined to the next with curved connecting plates.

5Based on F. Neghabat and R. M. Stark (1972), “A Cofferdam Design Optimization,” Mathematical
Programming, 3, 263–275.

+ +

he
ig

ht
 =

 x
1

cycle length = x3

thickness = x2

length = /

Figure 17.5 Cofferdam Application Structure

Given

 / ! total dam length1in feet2
 t ! design life of the dam 1in days2

17.2 Convex, Separable, Quadratic, and Posynomial Geometric Programming 1007

and other characteristics of site and materials, we wish to determine a minimum cost
design. Main decision variables are

 x1 ! height of the dam 1in feet2
 x2 ! average thickness of the dam 1in feet2
 x3 ! length of a cycle of the dam 1in feet2

Cofferdam Application Model
To develop a model, we begin with the various elements of cost. Filling cost is
roughly proportional to the dam volume. Using a cost of $0.21 per cubic foot, this
produces

 fill cost ≈ 0.211length21height21thickness2
 = 0.21/x1x2

Similarly, steel cost depends on the area of the dam’s front and back, plus that of the
two cylinder sides passing through the dam in each cycle. Pricing steel at $2.28 per
square foot, we have

 steel cost ≈ 2.28 c 21length21height2 + 2 a length

cycle length
b 1height21thickness2 d

 = 4.56/x1 + 4.56/
x1x2

x3

A very low dam would minimize construction cost, but flood risk must also
be considered. Analysis of prior experience suggests that flood cost can be approx-
imated as

 flood cost ≈ 1cost per flood2 adesign life

empirical
b

 = 40,000
t

x4

where each flood costs $40,000, and x4 is an intermediate decision variable related
to dam height by

x4 + 33.3 … 0.8x1

Other constraints of the model come from possible failure modes. One possi-
bility is slipping on the river bottom. This can be prevented if

1.04251height2 … thickness or 1.0425x1 … x2

The other main considerations are the tension stresses at cycle joints. These require
that

1height21cycle length2 … 2857 or x1x3 … 2857

1008 Chapter 17 Constrained Nonlinear Programming

Collecting all the above, simplifying to make all constraint right-hand sides
= 1, and assuming a dam of length / = 800 feet that should last t = 365 days, our
cofferdam design task reduces to the following constrained NLP model:

 min 168x1x2 + 3648x1 + 3648
x1x2

x3
+

1.46 * 107

x4
 1cost2

(17.11)
s.t.

1.25x4

x1
+

41.625
x1

 … 1 1empirical2

1.0425x1

x2
 … 1 1slipping2

 0.00035x1x3 … 1 1tension2
 x1, x2, x3, x4 7 0

An optimal design has height x1
* = 62.65 feet, average thickness x2

* = 65.32 feet,
cycle length x3

* = 45.60 feet, intermediate variable x4
* = 16.82, and total cost $2.111

million.

Posynomial Geometric Programs
The objective and constraint functions of cofferdam model (17.11) have a special
posynomial form.

Function p1x2 is a posynomial if it can be expressed

p1x1, c, xn2! a
k

 dka q
n

j = 1
1xj2ak, jb

for given dk 7 0 and exponents ak, j of arbitrary sign.

Definition 17.10

For example, objective function

f1x1, x2, x3, x42 ! 168x1x2 + 3648x1 + 3648
x1x2

x3
+

1.46 * 107

x4

of model (17.11) is a posynomial with

 d1 = 168, d2 = 3648, d3 = 3648, d4 = 1.46 * 107

(17.12)

a1,1 = 1, a1,2 = 1, a1,3 = 0, a1,4 = 0

a2,1 = 1, a2,2 = 0, a2,3 = 0, a2,4 = 0

a3,1 = 1, a3,2 = 1, a3,3 = -1, a3,4 = 0

a4,1 = 0, a4,2 = 0, a4,3 = 0, a4,4 = -1

Notice that powers ak, j can have any sign, but coefficients dk must be positive. Thus

h1x1, x2, x32! 131x1221x32 + 291x220.5341x32-0.451

17.2 Convex, Separable, Quadratic, and Posynomial Geometric Programming 1009

is a posynomial, but the variation

h1x1, x2, x32! 131x1221x32 - 291x220.5341x32-0.451

is not because d2 = -29 6 0.
Posynomial geometric programs are NLPs over posynomial functions and

 positive variables.

An NLP is a posynomial geometric program if it can be
expressed in the form

min f1x2
s.t. gi1x2 … 1 i = 1, c, m

 x 7 0

where f and all gi are posynomial functions of x.

Definition 17.11

With posynomial terms written out, the format is

 min a
k∈K0

dk q
n

j = 1
1xj2ak, j

(17.13)s.t. a
k∈K0

dk q
n

j = 1
1xj2ak, j … 1 i = 1, c, m

 xj 7 0 j = 1, c, n

where nonoverlapping the Ki index terms k in various posynomials.
Notice that we allow only a minimize objective function form and … con-

straints. Also, we have only positive-valued variables, and positive right-hand sides
have been divided through to produce 1’s. Usual conversions to reverse directions
for other cases fail in the geometric programming case because they change the sign
of some dk and thus destroy the posynomial property.

Cofferdam model (17.11) satisfies all these conditions. In detail format (17.13),
model (17.12) shows coefficients for objective function terms in K0 = 51, 2, 3, 46.
Those for constraint sets K1 = 55, 66, K2 = 576, and K3 = 586 are

d5 = 1.25, d6 = 41.625, d7 = 1.0425, d8 = 0.00035

 a5,1 = -1, a5,2 = 0, a5,3 = 0, a5,4 = 1

 a6,1 = -1, a6,2 = 0, a6,3 = 0, a6,4 = 0

 a7,1 = 1, a7,2 = -1, a7,3 = 0, a7,4 = 0

 a8,1 = 1, a8,2 = 0, a8,3 = 1, a8,4 = 0

examPle 17.6: reCognizing Posynomial geometriC Programs

Determine whether each of the following NLPs is a posynomial geometric program.
For those that are, also detail coefficients dk and ak,j in standard form (17.13).

1010 Chapter 17 Constrained Nonlinear Programming

(a) min 144
w11w2

+ 6w3

 19w1 + 1w222 … w3

 w1w2w3 … 44

 w1, w2, w3 7 0

(b) max 144
w11w2

+ 6w3

 19w1 - 1w222 … w3

 w1w2w3 Ú 44

 w1, w2, w3 7 0

Solution: We apply definitions 17.10 and 17.11 .

(a) Dividing both constraints by their right-hand sides places this model in posyno-
mial geometric program format (17.13). Coefficients are

 K0 = 51, 26, K1 = 53, 46, K2 = 556
 d1 = 144, d2 = 6, d3 = 19, d4 = 1, d5 = 1

44

 a1,1 = 1, a1,2 = -0.5, a1,3 = 0

 a2,1 = 0, a2,2 = 0, a2,3 = 1

 a3,1 = 1, a3,2 = 0, a3,3 = -1

 a4,1 = 0, a4,2 = 2, a4,3 = -1

 a5,1 = 1, a5,2 = 1, a5,3 = 1

(b) This model is not a posynomial geometric program for several reasons. First,
its objective maximizes a posynomial, and definition 17.11 requires a minimize.
Similarly, the second main constraint has Ú form, not the … as appropriate for
 geometric programs. Finally, the first main constraint function has a negative coef-
ficient, so it is not a posynomial.

Special Tractability of Posynomial Geometric Programs
Posynomial functions need not be convex, and thus geometric programs 17.11 are
often not convex programs. For example,

 h1x1, x22! 1x122x2 + 7x2 (17.14)

has Hessian matrix at x = 11, 12

∇2h11, 12 = a2 2
2 0

b

This matrix is not positive semidefinite, and thus (principle 16.27) f is not convex
over even x 7 0.

17.3 Lagrange Multiplier Methods 1011

Still, posynomial geometric programs can be made convex with a suitable
change of variables.

Posynomial geometric programs covert to convex programs
when original variables xj are replaced by zj! ln1xj2.

Principle 17.12

For example, in the case of function (17.14), substituting zj! ln1xj2 or xj = ezj
produces

h1z1, z22! 1ez122 1ez22 + 71ez22 = e2z1 + z2 + 71ez22
Both exponential terms are convex under composition principle 16.31 , so their sum
is also convex.

Notice the role that details of definition 17.11 play in making this transforma-
tion work. First, a logarithmic transformation would be impossible if any xj could be
zero or negative. Also, the transformation could produce a mixed-sign sum of convex
terms if all coefficients ck were not positive in definition 17.10 . Finally, convex con-
straint functions would not be appropriate for a convex program (definition 17.3)
unless all constraints were of … form.

Further transformations of posynomial geometric programs can lead to even
greater tractability. Section 17.10 provides details.

17.3 lagrange multiPlier methods

If we can see how to view a constrained nonlinear program as one with only =
 constraints (i.e., no inequalities of any form), calculus methods predating most of the
numerical search techniques of this book can sometimes be applied to find an opti-
mal solution. We briefly explore such Lagrange multiplier techniques in this section.
Also, Lagrangian ideas will be seen to motivate more general approaches in later
sections of the chapter. (See also Lagrangian large-scale methods in Section 13.2.)

Reducing to Equality Form
Lagrange multiplier solution techniques are most easily applied to models in equal-
ity constrained format.

Lagrange multiplier solution techniques address NLPs in pure
equality form

min or max f1x2
s.t. gi1x2 = bi for all i = 1, c, m

That is, they consider only a set of constraints assumed active, which can be
taken as = ’s.

Principle 17.13

There is one equality for each original equality and one for each active inequality.
Notice that not even variable-type inequalities such as nonnegativity constraints are
allowed.

1012 Chapter 17 Constrained Nonlinear Programming

To see how such models can arise, consider the Pfizer lot sizing model of
Section 17.2:

 min f1x2! 66.21x1 +
2160

x1
+ 426.8x2 +

8712
x2

 1total cost2

(17.15)
 + 61.20x3 +

330
x3

+ 268.1x4 +
2916

x4

s.t.
180
x1

+
726
x2

+
27.5
x3

+
243
x4

 … 221.5 1production time2
 x1, c, x4 Ú 0

If none of the constraints are active at an optimal x*, then that solution will be an
unconstrained optimum of the objective function alone. Since we have shown in
Section 17.2 that the objective function is convex, we may compute x* by finding a
stationary point (principle 16.22), that is, a point where all partial derivatives = 0.
Then, we can solve x1

* as

0f

0x1
= 66.21 -

2160
1x122 = 0 so that x1

* = C 2160
66.21

= 5.712

Similarly, unconstrained x2
* = 4.518, x3

* = 2.322, and x4
* = 3.298.

Checking the main constraint of (17.15) gives

180
5.712

+
726

4.518
+

27.5
2.322

+
243

3.298
= 277.7 0 221.5

Thus our unconstrained solution is infeasible, and the main constraint must be
treated as active at a true optimum. Assuming that nonnegativity constraints will
remain inactive, we may deal with the model in pure equality form

 min f1x2! 66.21x1 +
2160

x1
+ 426.8x2 +

8712
x2

 1total cost2

(17.16) + 61.20x3 +
330
x3

+ 268.1x4 +
2916

x4

s.t.
180
x1

+
726
x2

+
27.5
x3

+
243
x4

= 221.5 1production time2

Lagrangian Function and Lagrange Multipliers
Lagrangian techniques begin with conversion of equality-constrained model 17.13
to an unconstrained form by weighting constraints in the objective function with
Lagrange multipliers, vi. The result is a Lagrangian function of both x and v.

The Lagrangian function associated with a nonlinear pro-
gram over equality constraints g11x2 = b1, c, gm1x2 = bm is

L1x, v2! f1x2 + a
m

i = 1
ni [bi - gi1x2]

where ni is the Lagrange multiplier for constraint i.

Definition 17.14

17.3 Lagrange Multiplier Methods 1013

For example, the Lagrangian function for Pfizer equality form (17.16) is

L1x1, x2, x3, x4, n2! 66.21x1 +
2160

x1
+ 426.8x2 +

8712
x2

+ 61.20x3 +
330
x3

+ 268.1x4 +
2916

x4
+ n a221.5 -

180
x1

-
726
x2

-
27.5
x3

-
243
x4

 b (17.17)

Notice what happens when we form the Lagrangian. We have relaxed the
given constrained model into unconstrained form. Still, the Lagrangian function
value coincides with the original objective function value at every feasible point
because

 L1x, v2 = f1x2 + a
m

i = 1
 ni [bi - gi1x2] = f1x2 + a

m

i = 1
 ni102 = f1x2 (17.18)

examPle 17.7: Forming the lagrangian FunCtion

Consider the equality-constrained nonlinear program

min 61x122 + 41x222 + 1x322

s.t. 24x1 + 24x2 = 360

 x3 = 1

Form the corresponding Lagrangian function.

Solution: Here m = 2. Following format 17.14 , we form the Lagrangian by rolling
the 2 equality constraints into the objective function with Lagrange multiplier n1
and n2. The result is

L1x1, x2, x3, n1, n22! 61x122 + 41x222 + 1x322 + n11360 - 24x1 - 24x22 + n211 - x32

Stationary Points of the Lagrangian Function
Think now about stationary points of the Lagrangian [i.e., points where gradient
∇L1x*, v*2 = 0]. Components of gradient ∇L1x, v2 are partial derivatives with
respect to the x and v parts of a solution, respectively. Setting both = 0 produces
the key stationary-point conditions.

Solution 1x*, v*2 is a stationary point of Lagrangian function
L(x, v) if it satisfies

a
i

∇gi1x*2n i
* = ∇f1x*2 or a

i

0gi

0xj
 ni =

0f

0xj
 for all j

and

gi1x*2 = bi for all i

Principle 17.15

1014 Chapter 17 Constrained Nonlinear Programming

Lagrangian Stationary Points and the Original Model
The value of Lagrangian functions 17.14 in solving equality-constrained NLPs
17.13 becomes apparent upon careful examination of Lagrangian stationary con-
ditions 17.15 . We originally formed the Lagrangian to obtain a relaxed model that
matches the original objective function at feasible points. For any fixed choice v of
Lagrange multipliers, an unconstrained optimum x* of that relaxed model must be
a stationary point (principle 16.19). This is exactly what the first part of conditions
17.15 demand.

But the second part of 17.15 requires any stationary point of the Lagrangian
to satisfy all constraints of the original model. Thus if the x* components of a
stationary point can be shown to optimize the relaxation with multipliers fixed
at the v* of a stationary point, then that x* solves a relaxed form, achieves fea-
sibility, and has the same objective value as the original f1x*2. It must solve the
constrained model.

examPle 17.8: Forming stationary Conditions For
lagrangians

Return to the model and Lagrangian function of Example 17.7. State the corre-
sponding stationary-point conditions on x1

*, x2
*, x3

*, v1
*, and v2

*.

Solution: We construct conditions 17.15 for Lagrangian function

L1x1, x2, x3, v1, v22! 61x122 + 41x222 + 1x322 + v11360 - 24x1 - 24x22 + v211 - x32
Gradients

 ∇f1x2 = 112x1, 8x2, 2x32
 ∇g11x2 = 124, 24, 02
 ∇g21x2 = 10, 0, 12

Thus the required conditions are

 24v1
* = 12x1

*

 24v1
* = 8x2

*

 + 1v2
* = 2x3

*

 24x1
* + 24x2

* = 360

 1x3
* = 1

If 1x*, v*2 is a stationary point of Lagrangian function L(x, v)
and x* is an unconstrained optimum of L1x, v*2, then x* is an optimum of the
corresponding equality-constrained NLP 17.13 .

Principle 17.16

17.3 Lagrange Multiplier Methods 1015

Lagrange Multiplier Procedure
The Lagrangian approach to solving equality-constrained NLPs exploits sufficient
optimality condition 17.16 . Specifically, we:

1. Reduce the given model to pure equality form 17.13 .
2. Form Lagrangian function 17.14 .
3. Solve conditions 17.15 for a stationary point of the Lagrangian function.
4. Try to establish that the x part of the stationary point is optimal for the Lagrangian

with v = v* and thus (principle 17.16) optimal for the original model.

Lagrangian (17.17) shows the result of steps 1 and 2 for our Pfizer lot sizing
application. Solving for a stationary point, we first compute

0L
0x1

= 66.21 -
2160
1x122 +

180v

1x122 = 0 or x1
*

 = C2160 - 180v*

66.21

(17.19)

0L
0x2

= 426.8 -
8712
1x222 +

726v

1x222 = 0 or x2
*

 = C8712 - 726v*

426.8

0L
0x3

= 61.20 -
330
1x322 +

27.5v

1x322 = 0 or x3
*

 = C330 - 27.5v*

61.20

0L
0x4

= 268.1 -
2916
1x422 +

243v

1x422 = 0 or x4
*

 = C2916 - 243v*

268.1

Then setting

0L
0v

= 221.5 -
180
x1

-
726
x2

-
27.5
x3

-
243
x4

= 0

and substituting gives

221.5 =
180C2160 - 180v*

66.21

+
726C8712 - 726v*

426.8

+
27.5C330 - 27.5v*

61.20

+
243C2916 - 243v*

268.1

Now taking advantage of the fact that changeover costs in the objective function of
model (17.16) are multiples (by $12,000 per week) of changeover times, we may factor

 221.5 =
1212 - v*

 ±
180C 180
66.21

+
726C 726
426.8

+
27.5C 27.5
61.20

+
243C 243
268.1

≤

and solve

v* = 12 -
1

221.5
 c3180166.212 + 37261426.82 + 327.5161.202 + 32431268.12 d

2

= -6.865

1016 Chapter 17 Constrained Nonlinear Programming

Finally, substituting in (17.19) gives x1
* = 7.161, x2

* = 5.665, x3
* = 2.911, and x4

* = 4.135.
We know that this x* part of the stationary point solution yields an optimum

because it agrees with values reported in Section 17.2. To complete step 4 of the
Lagrangian approach and apply principle 17.16 , however, we must examine the
Lagrangian objective with v = v* = -6.865:

L1x1, x2, x3, x4 - 6.8652! 66.21x1 +
2160

x1
+ 426.8x2 +

8712
x2

+ 61.20x3 +
330
x3

+ 268.1x4 +
2916

x4
- 6.865 a221.5 -

180
x1

-
726
x2

-
27.5
x3

-
243
x4

 b

= 66.21x1 +
3395.7

x1
+ 426.8x2 +

13,696
x2

+ 61.20x3 +
518.79

x3

+ 268.1x4 +
4584.2

x4
- 1520.6

This function is convex for the same reasons that the original objective was in
Section 17.2. Thus the computed stationary point is indeed a global minimum
(principle 16.22).

examPle 17.9: oPtimizing with lagrangian methods

Use Lagrange multiplier methods to compute an optimal solution to the model of
Examples 17.7 and 17.8.

Solution: Stationary-point conditions from Example 17.8 are

 24v1
* = 12x1

*

 24v1
* = 8x2

*

 + 1v2
* = 2x3

*

 24x1
* + 24x2

* = 360

 1x3
* = 1

Using the first 3 to substitute for x1, c, x3 in the last 2 of these constraints yields

 2412v1
*2 + 2413v1

*2 = 360 or v1
* = 3

 111
2 v2

*2 = 1 or v2
* = 2

Then solving for corresponding xj
* produces the unique stationary point

1x1
*, x2

*, x3
*, v1

*, v2
*2 = 16, 9, 1, 3, 22

It remains to be sure that the computed point is a minimum of the Lagrangian function

L1x1, x2, x3, v1
*, v2

*2
! 61x122 + 41x222 + 1x322 + 31360 - 24x1 - 24x22 + 211 - x32
= 61x122 + 41x222 + 1x322 - 72x1 - 72x2 - 2x3 + 1082

17.3 Lagrange Multiplier Methods 1017

But this function is obviously convex (squares plus linear), so that the computed
stationary point does indeed solve the original constrained model (principle 17.16).

Interpretation of Lagrange Multipliers
Those readers who have followed large parts of this book will recall that we
employed dual variables vi on constraints of linear programs (principle 6.20 ,
Section 6.3) to analyze the sensitivity of results to changes in the right-hand-side
coefficients of the model. It is no accident that the same notation is used here for
Lagrange multipliers.

The optimal Lagrange multiplier, vi
* associated with con-

straint gi1x2 = bi can be interpreted as the rate of change in optimal value per
unit increase in right-hand side bi.

Principle 17.17

To see that this interpretation applies, we need only examine the Lagrangian
function at an optimal 1x*, v*2:

L1x*, v*2 = f1x*2 + a
m

i = 1
 vi

*
 [bi - gi1x*2]

The rate of change with RHS bi is

0L
0bt

= vi
*

For a specific example, return to the v* = -6.865 on the sole constraint of
Pfizer equality model (17.16). This quantity is the partial derivative of Lagrangian
function (17.17) with respect to the right-hand side, which represents a production
capacity in weeks. Thus because the Lagrangian function and the true objective
function coincide at stationary points (expression (17.18)), this v* tells us that small
increases in the RHS would decrease (improve) the optimal objective value at the
rate of $6865 per week.

examPle 17.10: interPreting oPtimal lagrange multiPliers

Use the optimal Lagrange multipliers of Example 17.9 to analyze sensitivity of
 results to changes in constraint right-hand sides.

Solution: From Example 17.7, model constraints are

24x1 + 24x2 = 360

x3 = 1

Corresponding optimal Lagrange multipliers are v1
* = 3 and v2

* = 2. We see that an
increase in either right-hand side would increase (degrade) the optimal value of 541.
At least for small changes, every unit increase in RHS 360 adds v1

* = 3, and each
unit increase in RHS 1 costs v2

* = 2.

1018 Chapter 17 Constrained Nonlinear Programming

Limitations of the Lagrangian Approach
Although Lagrange multiplier methods work well for some models, it should be
apparent that they have serious limitations:

•	 Stationary-point conditions 17.15 can be solved only if they are linear or very simple
nonlinear functions. In other cases, solving those conditions may be more difficult than
directly searching for an optimal solution to the original model.

•	 If a given model has many inequality constraints, it may be an explosively combina-
torial task to determine which will be active at an optimal solution, so that equality-
constrained Lagrangian methods may be applied.

•	 We can be certain that the stationary point computed from system 17.15 is a global
optimum only if the original model functions were tractable enough to apply principle
17.16 . Other cases may produce ambiguous results.

There is also another, more subtle difficulty with applying Lagrange multiplier
techniques to some NLPs. Principle 17.16 tells us when the x* part of an optimum
for the Lagrangian function must be optimal in the original model. But the converse
is not always true. That is, an optimal solution in the original model need not cor-
respond to a stationary point of the associated Lagrangian. Although most models
occurring in application do have optima satisfying conditions 17.15 , we will present
an example in the next section where the property fails.

examPle 17.11: understanding limits oF lagrangian methods

Consider the equality-constrained nonlinear program

max w1w2

s.t. 91w124 - 171w123 + 61w122 + 3w1 + 11ew2 = 100

Describe the difficulties that would be encountered in trying to address this model
by Lagrange multiplier methods.

Solution: Using Lagrange multiplier n on the single constraint yields Lagrangian

L1w1, w2, n2! w1w2 + n[100 - 91w124 + 171w123 - 61w122 - 3w1 - 11ew2]

Corresponding stationary-point conditions 17.15 are

0L
0w1

= w2 - 36n1w123 + 51n1w122 - 12nw1 - 3v = 0

0L
0w1

= w1 - 11new2 = 0

0L
0w1

= 100 - 91w124 + 171w123 - 61w122 - 3w1 - 11ew2 = 0

Solving these highly nonlinear conditions would probably be as difficult as solving
the original NLP. Furthermore, the original objective function is neither convex nor
concave, and the constraint function is still less tractable. Even if a stationary point
could be computed, it would probably be impossible to argue that the w1

*, w2
* part

represented an optimal solution.

17.4 Karush–Kuhn–Tucker Optimality Conditions 1019

17.4 Karush–Kuhn–tuCKer oPtimality Conditions

The Lagrangian stationary-point conditions 17.15 are often difficult to solve directly
for an optimum, but they do provide useful conditions that optima must (usually)
satisfy. In this section we develop the elaborated form known as Karush–Kuhn–
Tucker (KKT) conditions, which we will see are intimately related to whether a
point is a local optimum of the given NLP. (See also LP Section 6.7.)

Fully Differentiable NLP Model
The Lagrangian discussion of Section 17.3 deals only with equality constraints. KKT
conditions address the fully differentiable nonlinear program.

Differentiable nonlinear programs have the general form

max or min f1x2

s.t. gi1x2 Ú bi for all i ∈ G

 gi1x2 … bi for all i ∈ L

 gi1x2 = bi for all i ∈ E

where f and all gi are differentiable functions, and sets G, L, and E index the Ú ,
… , and = constraints, respectively.

Definition 17.18

Complementary Slackness Conditions
The difficulty in extending Lagrangian stationarity conditions 17.15 to inequality
cases arises in knowing what inequalities will be active at a local optimum x (i.e.,
hold as equality). When we know that an inequality will be active, we may treat it as
an equality and include it in the Lagrangian. If it will be inactive, we want it left out.

One way to formalize such requirements is to assign a Lagrange variable ni
to every constraint but require those for inactive inequalities to = 0. That is, we
enforce complementary slackness constraints like those of 6.26 (Section 6.3) for lin-
ear programs.

Either inequality constraints should be active at a local opti-
mum or the corresponding Lagrange variable should = 0, that is,

 ni [bi - gi1x2] = 0 for all inequalities i

Principle 17.19

We can illustrate with quadratic portfolio application (17.10).

 min 66.511x122 + 212.612x1x2 + 212.182x1x3

(17.20)

 + 0.631x222 1variance2
 + 210.482x2x3 + 0.381x322

 s.t. x1 + x2 + x3 = 1 1invest 100%2
 13.22x1 + 8.24x2 + 9.03x3 Ú 11 1return2
 x1, x2, x3 Ú 0

1020 Chapter 17 Constrained Nonlinear Programming

Numbering constraints in the order given, the corresponding complementary slack-
ness conditions are

 n2111 - 13.22x1 - 8.24x2 - 9.03x32 = 0

(17.21)
 n31-x12 = 0

 n41-x22 = 0

 n51-x32 = 0

Notice that none is needed on equality constraint i = 1.

Lagrange Multiplier Sign Restrictions
We saw with interpretation 17.17 that Lagrange multipliers should reflect the rate
of change in optimal value per unit increase in right-hand side bi. Just as with lin-
ear programming results 6.20 , this interpretation implies Lagrange multiplier sign
restrictions when the constraints are inequalities. For example, we know that increas-
ing RHS bi relaxes a … inequality, so that it can only increase the optimal value in a
maximize problem or decrease it in a minimize problem. Other cases are similar.

Lagrange multipliers ni on constraints i of 17.18 should satisfy
the following sign restrictions:

Objective i is … i is Ú i is =

Minimize ni … 0 ni Ú 0 Unrestricted

Maximize ni Ú 0 ni … 0 Unrestricted

Principle 17.20

Again illustrating with minimizing portfolio management model (17.20), the needed
sign restrictions are
 n1 URS; n2, n3, n4, n5 Ú 0 (17.22)

because the first constraint is an equality, and the rest are Ú ’s of a minimize model.

KKT Conditions and KKT Points
We are now ready to state Karush–Kuhn–Tucker conditions for general (differen-
tiable) model 17.18 .

Solutions x and v satisfy the Karush–Kuhn–Tucker condi-
tions for differentiable nonlinear program 17.18 if they fulfill complementary
slackness conditions 17.19 , sign restrictions 17.20 , gradient equation

 a
i

∇gi1x2ni = ∇f1x2
and primal constraints

 gi1x2 Ú bi for all i ∈ G

 gi1x2 … bi for all i ∈ L

 gi1x2 = bi for all i ∈ E

Any x for which there exist a corresponding v satisfying these conditions is
called a KKT point.

Principle 17.21

17.4 Karush–Kuhn–Tucker Optimality Conditions 1021

Our portfolio model (17.20) has objective function gradient

 ∇f1x1, x2, x32 = £133.02x1 + 5.22x2 + 4.36x3

5.22x1 + 1.26x2 + 0.96x3

4.36x1 + 0.96x2 + 0.76x3

≥
and those of the 5 linear constraints are

 ∇g11x1, x2, x32 = 11, 1, 12
 ∇g21x1, x2, x32 = 113.22, 8.24, 9.032
 ∇g31x1, x2, x32 = 11, 0, 02
 ∇g41x1, x2, x32 = 10, 1, 02
 ∇g51x1, x2, x32 = 10, 0, 12

Thus the gradient equation part of KKT conditions 17.21 is

 1n1 + 13.22n2 + n3 = 133.02x1 + 5.22x2 + 4.36x3

(17.23) 1n1 + 8.24n2 + n4 = 5.22x1 + 1.26x2 + 0.96x3

 1n1 + 9.03n2 + n5 = 4.36x1 + 0.96x2 + 0.76x3

The rest of the conditions are primal constraints

 x1 + x2 + x3 = 1

(17.24) 13.22x1 + 8.24x2 + 9.03x3 Ú 11

 x1, x2, x3 Ú 0

complementary slackness (17.21), and sign restrictions (17.22).
Notice the direct parallel to Lagrangian stationary-point conditions 17.15 . Both

sets of conditions require the objective function gradient to be expressible as a multi-
plier-weighted combination of constraint gradients, while primal constraints are also
satisfied. The new elements are complementary slackness conditions and sign restric-
tions arising from inequalities.

examPle 17.12: Formulating KKt Conditions

Consider the nonlinear program

max 2w1 + 7w2

s.t. 1w1 - 222 + 1w2 - 222 = 1

 w1 … 2

 w2 … 2

 w1 Ú 0

 w2 Ú 0

State the Karush–Kuhn–Tucker conditions for this model.

1022 Chapter 17 Constrained Nonlinear Programming

Solution: We apply definition 17.21 . Numbering constraints in the order given,

 ∇f1w1, w22 = 12, 72
 ∇g11w1, w22 = 12w1, 2w22
 ∇g21w1, w22 = 11, 02
 ∇g31w1, w22 = 10, 12
 ∇g41w1, w22 = 11, 02
 ∇g51w1, w22 = 10, 12

Thus the KKT conditions consist of primal constraints

 1w1 - 222 + 1w2 - 222 = 1

 w1 … 2

 w2 … 2

 w1 Ú 0

 w2 Ú 0

gradient equation

 a2w1

2w2
b n1 + a1

0
b n2 + a0

1
b n3 + a1

0
b n4 + a0

1
b n5 = a2

7
b

complementary slackness

 n212 - w12 = 0

 v312 - w22 = 0

 n410 - w12 = 0

 n510 - w22 = 0

and sign restrictions

 n2, n3 Ú 0

 n3, n4 … 0

Improving Feasible Directions and Local Optima Revisited
To see the importance of KKT conditions 17.21 in constrained nonlinear pro-
gramming, we must return to the elementary improving search notions of Sections
3.2 and 3.3. Move directions ∆x pursued by implementations of improving search
should be both improving and feasible. That is (definitions 3.13 and 3.14),
they should improve the objective and maintain feasibility for sufficiently small
steps l.

If there is such an improving feasible direction available at a current solution
in the search, the point cannot be even locally optimal (principle 3.16). Progress is
still possible in every neighborhood of the current point by advancing in the available
direction.

17.4 Karush–Kuhn–Tucker Optimality Conditions 1023

When no improving feasible direction exists, the current solution is under
mild assumptions, at least a local optimum (principle 3.17). Still, cases such as
Figure 3.8 show that the absence of improving feasible directions does not always
imply local optimality. We can only be certain the search will stop.

Absence of an improving feasible direction at the current
point of an improving search, which causes an improving search to stop, pro-
vides a working definition of when a local optimum has been reached.

Principle 17.22

When does a direction ∆x improve at current x? First-order Taylor series
approximation (definition 16.17)

 f1x + ∆x2 ≈ f1x2 + ∇f1x2 # ∆x

suggests that improvement depends on the sign of ∇f1x2 # ∆x. This yields condi-
tions 3.21 and 3.22 .

The linear Taylor approximation to smooth objective func-
tion f1x2 shows the following about move direction ∆ x:

Objective ∇f1x2 # ∆x 7 0 ∇f1x2 # ∆x 6 0

Maximize Improving Nonimproving

Minimize Nonimproving Improving

If ∇f1x2 # ∆x = 0, more information is required to classify ∆x.

Principle 17.23

A direction can still improve if ∇f1x2 # ∆x = 0, but the absence of any ∆x satisfying
first-order condition 17.23 is a strong indication that no improving directions exist.

The corresponding feasibility conditions 3.25 are exact for linear constraints.
Direction ∆x is feasible if

 a # ∆ xc … 0 for active constraints a # x … b
= 0 for all constraints a # x = b
Ú 0 for active constraints a # x Ú b

Inactive constraints need not be considered because they have no immediate impact
on feasibility.

To generalize for nonlinear constraints we may again employ first-order Taylor
series approximations (definition 16.17):

 gi1x + ∆x2 ≈ gi1x2 + ∇gi1x2 # ∆x (17.25)

If gi is active at x, gi1x2 = bi. Thus feasibility in (17.25) depends on the sign of the
term ∇gi1x2 # ∆x.

1024 Chapter 17 Constrained Nonlinear Programming

KKT Conditions and Existence of Improving Feasible Directions
We are now in a position to link Karush–Kuhn–Tucker conditions 17.21 with the
existence of improving feasible directions at a current search point x.

Direction ∆x is feasible at x for the linear Taylor approxima-
tion to constrained nonlinear program 17.18 if

 ∇gi1x2 # ∆xc Ú 0 for active Ú constraints
… 0 for active … constraints
= 0 for all = constraints

Principle 17.24

To illustrate, recall that an optimal solution for portfolio management model
(17.20) is

 x1
* = 0.43, x2

* = 0, x3
* = 0.57

Certainly, there are no improving feasible directions at this global optimum, and we
may demonstrate that fact by finding corresponding vi

* to satisfy KKT conditions
(17.21) - (17.24). Values that will do the job are

 v1
* = -132.026, v2

* = 14.892, v3
* = 0.0, v4

* = 12.275, v5
* = 0.0 (17.26)

It is easy to check that these primal and multiplier values satisfy complementary
slackness conditions (17.21), sign restrictions (17.22), and primal constraints (17.24).
In gradient equation (17.23)

 1v1 + 13.22v2 + v3 = 11-132.0262 + 13.22114.8922 + 10.02 = 64.8

(17.27)

 133.02x1 + 5.22x2 + 4.36x3 = 133.0210.472 + 5.22102 + 4.3610.532 = 64.8

 1v1 + 8.24v2 + v4 = 11-132.0262 + 8.24114.8922 + 112.2752 = 2.96

 5.22x1 + 1.26x2 + 0.96x3 = 5.2210.472 + 1.2610.02 + 0.9610.532 = 2.96

 1v1 + 9.03v2 + v5 = 11-132.0262 + 9.03114.8922 + 10.02 = 2.45

 4.36x1 + 0.96x2 + 0.76x3 = 4.3610.472 + 0.9610.02 + 0.7610.532 = 2.45

Contrast this optimal point with x = 11, 0, 02, where direction ∆ x = 1-1, 0, 12
satisfies first-order conditions 17.23 and 17.24 because

 ∇f11, 0, 02 # ∆x = 1133.02, 5.22, 4.362 # 1-1, 0, 12 = -128.66 6 0

and active constraints

 ∇g111, 0, 02 # ∆x = 11, 1, 12 # 1-1, 0, 12 = 0

 ∇g411, 0, 02 # ∆x = 10, 1, 02 # 1-1, 0, 12 Ú 0

 ∇g511, 0, 02 # ∆x = 10, 0, 12 # 1-1, 0, 12 Ú 0

Karush–Kuhn–Tucker conditions provide a first-order, work-
ing test of the absence of improving feasible directions. More specifically, x is
a KKT point if and only if no direction of movement from x fulfills first-order
tests 17.23 and 17.24 for an improving feasible direction.

Principle 17.25

17.4 Karush–Kuhn–Tucker Optimality Conditions 1025

(Note that v2 = v3 = 0 for complementary slackness.) But now the unique solution
to gradient equation

 £1
1
1
≥ v1 + £0

1
0
≥ v4 + £0

0
1
≥ v5 = 1133.02, 5.22, 4.362

is

 v1 = 133.02, v2 = -127.8, v3 = -128.66

which violates sign restrictions v4, v5 Ú 0. KKT conditions cannot be satisfied.
To see why principle 17.25 must always be true, we may think of improving

feasible conditions 17.23 and 17.24 as a linear program in decision variables ∆x.
Taking the minimize case,

 min ∇f1x2 # ∆x

(17.28) s.t. ∇gi1x2 # ∆x Ú 0 for active Ú ’s

 ∇gi1x2 # ∆x … 0 for active … ’s

 ∇gi1x2 # ∆x = 0 for all = ’s

Now we apply some linear programming duality from Section 6.4. Over multipliers
vi, the dual of (17.28) is

 max a
i active

102vi = 0

(17.29)s.t. a
i active

∇gi1x2vi = ∇f1x2
 vi Ú 0 for active Ú ’s

 vi … 0 for active … ’s

Notice that the feasibility requirements of dual (17.29) are identical to the gradient
equation and sign restriction part of KKT conditions 17.21 at x (assuming that vi = 0 on
inactive constraints to satisfy complementary slackness). If any vi fulfill these conditions,
the dual is feasible and its objective value is constant zero. It follows (principle 6.51)
that the optimal ∆x in primal (17.28) has the same optimal value ∇f1x2 # ∆x = 0.
If KKT conditions are fulfilled, no ∆x can fulfill all the conditions of 17.23 and 17.24 .

On the other hand, if some ∆x meets all the conditions of 17.23 and 17.24 , there
is a feasible solution to the primal with ∇f1x2 # ∆x 6 0. Then the dual must be infeasi-
ble, because every dual solution bounds the primal optimum (principle 6.47) and any
would have objective value = 0. It follows that KKT conditions cannot be fulfilled at x.

examPle 17.13: veriFying KKt as a no-direCtion CheCK

Consider the constrained NLP

min 1w122 + 1w222

s.t. w1 + w2 = 1

 w1, w2 Ú 0

1026 Chapter 17 Constrained Nonlinear Programming

A global optimum is w1
* = w2

* =
1
2

.

(a) State the KKT conditions for this problem.

(b) Verify that ∆w = 11, -12 satisfies the first-order conditions for an improving
feasible direction at w = 10, 12, and that the corresponding KKT conditions have
no solution.

(c) Verify that KKT conditions hold at the optimal w*, so that no direction can meet
first-order tests for being improving and feasible.

Solution:

(a) Following 17.21 with Lagrange multipliers v1, v2, v3 on the three constraints,
conditions are

 w1 + w2 = 1 1primal constraints2
 w1, w2 Ú 0

 v21-w12 = 0 1complementary slackness2
 v31-w22 = 0

 a1
1
b v1 + a1

0
b v2 + a0

1
b v3 = a2w1

2w2
b 1gradient equation2

 v2, v3 Ú 0 1sign restrictions2
(b) Direction ∆w = 11, -12 meets improving test 17.23 at w = 10, 12 because

 ∇f10, 12 # ∆w = 10, 22 # 11, -12 6 0

It is also feasible because active constraints have

 ∇g110, 12 # ∆w = 11, 12 # 11, -12 = 0

 ∇g210, 12 # ∆w = 11, 02 # 11, -12 Ú 0

Solution w = 10, 12 satisfies the primal constraint part of KKT conditions in
part (a), and making v2 = 0 will assure complementary slackness. Solving gradient
equation

 a1
1
b v1 + a1

0
b v2 = a0

2
b

yields unique solution v1 = 2, v2 = -2, which violates the sign restriction on v2.
KKT conditions cannot be satisfied.

(c) Optimum w1
* = w2

* = 1
2 satisfies primal constraints and is active only in the first,

thus corresponding v2 = v3 = 0 to conform to complementary slackness. This
leaves gradient equation

 a1
1
b v1 = a1

1
b

which has solution v1 = 1 satisfying all sign restrictions. KKT conditions do hold.

17.4 Karush–Kuhn–Tucker Optimality Conditions 1027

Sufficiency of KKT Conditions for Optimality
Since principle 17.25 shows that a KKT point is one that admits no direction satis-
fying first-order conditions for improving feasibility, it follows that KKT conditions
are sufficient to establish optimality whenever the absence of improving feasible
directions is sufficient. The most common case is convex programs (definition 17.3).

If x is a KKT point of a convex program, x is a global optimum.Principle 17.26

For example, our portfolio application (17.20) is a convex program because
all its constraints are linear, and its objective function is convex because it has
 positive-definite Hessian matrix

 ∇2f1x2 = £133.02 5.22 4.36
5.22 1.26 0.96
4.36 0.96 0.76

≥ (17.30)

Thus, when we verified that x1
* = 0.47, x2

* = 0.0, x3
* = 0.53 is a KKT point in com-

putation (17.27), we proved that the solution was optimal (principle 17.26).

Necessity of KKT Conditions for Optimality
A much more subtle issue than when KKT conditions are sufficient to establish a
point’s optimality is when they are necessary. That is, when must optimal points
satisfy KKT conditions?

To see the issue, consider the NLP

 min 1y122 + 4y2 (17.31)

s.t. 1y1 - 122 + 1y222 … 1

 1y1 + 122 + 1y222 … 1

It is easy to check that this model is a convex program because the objective and
both constraints are convex. Also, the only feasible solution y1 = y2 = 0 has to be
optimal.

For KKT conditions 17.21 ,

 ∇f1y1, y22 = 12y1, 42, ∇g11y1, y22 = 12y1 - 2, 2y22, ∇g21y1, y22 = 12y1 + 2, 2y22
so that the gradient equation part at y = 10, 02 becomes

 a -2
0
b v1 + a2

0
b v2 = a0

4
b

Clearly, there is no solution v1, v2. Even though y1 = y2 = 0 is a global optimum of
a convex program, it is not a KKT point.

Fortunately, such cases where KKT conditions are not necessary are rare in
common models. Also, a variety of constraint qualifications have been derived to
characterize models where every local or global optimum is a KKT point. We pres-
ent here only the easiest to apply.

1028 Chapter 17 Constrained Nonlinear Programming

17.5 Penalty and Barrier methods

One approach to solving constrained nonlinear programs is to convert them to a series
of unconstrained ones. In this section we investigate such sequential unconstrained
min/maximization techniques (SUMT), also known as penalty and barrier methods.
(See also Section 7.4 for the LP case.)

Penalty Methods
One scheme for transforming constrained into unconstrained NLPs uses penalty
methods.

A local optimum solution of a constrained differentiable NLP
must be a KKT point if (1) all constraints are linear; or (2) the gradients of all
constraints active at the local optimum are linearly independent.

Principle 17.27

Penalty methods drop constraints of nonlinear programs and
substitute new terms in the objective function penalizing infeasibility in the form

 max or min F1x2! f1x2 { ma
i

 pi1x2

(+ for minimize problems and − for maximize problems), where m is a positive
penalty multiplier and the pi are functions satisfying

 pi1x2 e = 0 if x satisfies constraint i
7 0 otherwise

Definition 17.28

examPle 17.14: veriFying neCessity oF KKt Conditions

Without actually solving, verify that every local optimum of the following models
must be a KKT point.

(a) max 1w122 + ew2 + w1w2

s.t. 3w1 + w2 … 9

 w1, w2 Ú 0

(b) max 1w122 + ew2 + w1w2

s.t. 1w1 - 122 … 1

 1w2 - 222 … 4

Solution: We apply constraint qualifications 17.27 , which depend only on the con-
straints of the models.

(a) All constraints of this model are linear, so every local optimum must be a
KKT point.

(b) Constraint gradients are

 ∇g11w1, w22 = 12w1 - 2, 02 and ∇g21w1, w22 = 10, 2w2 - 42
These constraints are linearly independent except at w = 11, 22, which is not fea-
sible. Thus the active constraints at any local optimum will be linearly independent,
and all such solutions must satisfy KKT conditions.

17.5 Penalty and Barrier Methods 1029

Many alternatives are available for the penalty functions pi1x2 associated with par-
ticular constraints.

Among the common penalty functions employed for con-
strained NLPs are

 max 50, bi - gi1x26 and max 250, bi - gi1x26 for Ú ’s

 max 50, gi1x2 - bi6 and max 250, gi1x2 - bi6 for … ’s

 � gi1x2 - bi 0 and �gi1x2 - bi 0 2 for = ’s

Principle 17.29

Each imposes no penalty when the corresponding constraint is satisfied, but adds a
growing cost if it is violated.

aPPliCation 17.7: serviCe desK design

Penalty methods are most often used in engineering design applications where
many of the constraints are nonlinear. We will illustrate with a contrived example to
design the service desk of a catalog order company.

Figure 17.6 displays the problem. A service desk 12 meter in width is to be cen-
tered around two 1-meter conveyors bringing orders from warehouse storage.

The conveyors are 6 meters apart (center-to-center) and protrude 0.75 meter
into the work area. For employees to work efficiently behind the counter, there
should be at least 2 meters clearance in front of the conveyors, and no part of the
inside counter perimeter should total more than 10 meters from the conveyors.
Within these limits we wish to maximize the customer room provided by the outside
perimeter of the counter.

To model this simple example, introduce an origin halfway between the con-
veyors, and define decision variables

 x1 ! half@length of the work area inside the counter

 x2 ! width of the work area inside the counter

10-m limit

3 m

0.75 m

m
in

 2
 m

conveyors

service desk

0.

5
m

x1

x 2

Figure 17.6 Service Desk Design Application

1030 Chapter 17 Constrained Nonlinear Programming

Penalty Treatment of the Service Desk Application
Any of the penalty function alternatives in principle 17.29 might be used to deal
with the … constraint and two Ú constraints of service desk model (17.32). We will
choose the second, squared penalty forms. For example, in the first constraint

 p11x1, x22! max2 e0,
1x122

25
+

1x222

16
- 1 f

When the constraint is satisfied [1x122>25 + 1x222>16 - 1] … 0 and p11x1, x22 = 0.
However, violations of the constraint make [1x122>25 + 1x222>16 - 1] 7 0 and
impose a penalty equal to the square of the violation. Proceeding in this manner
with all constraints yields the unconstrained penalty model

 max 2x1 + 2x2 + 2 - mamax2 e0,
1x122

25
+

1x222

16
- 1 f

(17.33)

 + max250, 3.5 - x16 + max250, 2.75 - x26b

Infeasible solutions in the constrained model (17.32) are now allowed, but they are
discouraged by subtracting a penalty in the objective function.

Then the problem can be modeled:

 max 2x1 + 2x2 + 2 1outer perimeter2

(17.32)
 s.t.

1x122

1522 +
1x222

1422 … 1 110 @m distance limit2

 x1 Ú 3.5 1outside conveyors2
 x2 Ú 2.75 12 @m inside space2

The objective function maximizes the outer perimeter. The first (ellipse) constraint
keeps the most distant point inside the counter at most a total of 10 meters from the
conveyors. The lower bound on x1 ensures that the counter falls outside the convey-
ors, and that of x2 enforces the 2-meter inside clearance. An optimal design uses a
desk with inside dimensions 2x1

* = 213.632 meters by x2
* = 2.75 meters and outside

perimeter 14.76 meters.

examPle 17.15: Forming Penalty models

Use absolute value (unsquared) penalty functions to reduce the following con-
strained NLP to an unconstrained penalty model.

min 1w124 - w1w2w3

s.t. w1 + w2 + w3 = 5

 1w122 + 1w222 … 9

 w3w2 Ú 1

17.5 Penalty and Barrier Methods 1031

Concluding Constrained Optimality with Penalties
By definition, the penalty terms of definitions 17.28 must = 0 at any x feasible
in the given constrained NLP. This provides a way to know when unconstrained
optimization of the penalty problem yields an optimal solution for the original
model.

Solution: Using the first, unsquared penalty alternatives of 17.29 , the correspond-
ing unconstrained model 17.28 is

 min 1w124 - w1w2w3 + m1 0w1 + w2 + w3 - 5 0
 + max50, 1w122 + 1w222 - 96 + max50, 1 - w3w262

where m is a positive penalty multiplier.

If an optimal x* in unconstrained penalty problem 17.28 is
feasible in the original constrained model, it is optimal in that NLP.

Principle 17.30

Any better solution to the constrained model would also have all penalty terms = 0,
so it would have to best x* in penalty model objective value.

Differentiability of Penalty Functions
One consideration in choosing among the penalty options in 17.29 is differentia-
bility. Most of Chapter 16’s unconstrained methods that might be employed to
optimize penalty model 17.28 assume that the function is smooth. None of the first
options listed in principle 17.29 meet this differentiability requirement, but the
 second, squared options do.

Squared penalty options of principle 17.29 are differentiable
whenever the underlying gi are differentiable.

Principle 17.31

We can see why by examining a … inequality gi(x) … bi with gi smooth. The
corresponding squared penalty term can be expressed as

 pi1x2 = e0 if x satisfies gi1x2 … bi

[gi1x2 - bi]
2 otherwise

Associated partial derivatives are

0pi

0xj
= •

0 if x satisfies gi1x2 … bi

2[gi1x2 - bi]
0gi

0xj
 otherwise

Notice that these two expressions match at the boundary where gi1x2 = bi. Thus
partial derivatives are well defined and continuous.

1032 Chapter 17 Constrained Nonlinear Programming

Exact Penalty Functions
We would also like penalty functions to be exact. That is, we would like there to be
a large enough m 7 0 that the unconstrained penalty model F1x2 yields an optimal
solution in the original constrained form under principle 17.19 by driving out all
infeasibility.

A trivial example shows that the squared alternatives of 17.29 may not be
exact. Consider

 min y (17.34)

s.t. y Ú 0

The squared choice in 17.29 produces penalty model

 min F1y2 ! y + m max2 50, -y6

 = ey if y Ú 0
y + my2 if y 6 0

Differentiating

dF
dy

= e1 if y Ú 0
1 + 2my if y 6 0

shows that the only stationary point is

 y* = -
1

2m

But this unconstrained minimum is negative and infeasible, regardless of the mag-
nitude of m.

Squared penalty alternatives 17.29 are usually not exact;
that is, there will often be no choice of penalty multiplier m for which the
corresponding unconstrained optimum of penalty model F is optimal in the
original NLP.

Principle 17.32

Suppose that we had used nondifferentiable penalty function max50, bi - gi1x26
on application (17.34). The corresponding penalty model is

 min F1y2! y + m max50, -y6
Now for any m 7 1, F1y2 is minimized at y = 0. That is, a finite m is large enough
to make the penalty optimum feasible in the original NLP.

All of the nonsquared penalty forms in 17.29 are exact in this way.

If nonsquared penalty forms of 17.29 are applied to a con-
strained non-linear program having an optimal solution, and mild assumptions
hold, there exists a finite multiplier m sufficiently large that an optimum in
unconstrained penalty problem 17.28 is optimal in the given NLP.

Principle 17.33

17.5 Penalty and Barrier Methods 1033

Managing the Penalty Multiplier
In squared cases such as (17.33), a constrained optimum can be obtained with pen-
alty methods only by letting m S ∞. With exact methods of principle 17.33 there
is a large enough finite m to do the job. Either way, m needs to grow large, and we
cannot know how large when we begin.

Why not just use a very large m from the start? Figure 17.7 shows the risk with
trivial model

 min w
(17.35)

s.t. 3 … w … 5

When m is comparitively large, the corresponding penalty objective function F
becomes very steep. Small moves have dramatic impacts on its value. The result
is an unconstrained model that is difficult to solve with any of the methods of
Chapter 16.

These competing demands on the penalty multiplier μ motivate a sequential
strategy that slowly increases the multiplier.

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

F
 (

w
)

w

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

F
 (

w
)

w

(a) Smaller µ (b) Larger µ

Figure 17.7 Effect of Penalty Multiplier on Unconstrained Tractability

When addressing a constrained nonlinear program by penalty
methods, the multiplier m should be started at a relatively low value 7 0 and
increased as computation proceeds.

Principle 17.34

Sequential Unconstrained Penalty Technique (SUMT)
Formalization of principle 17.34 ’s strategy for slowly increasing the penalty multi-
plier m produces the sequential unconstrained penalty technique of Algorithm 17A.
Multiplier m begins relatively small and grows with each search. For each value of m,
unconstrained penalty problem 17.28 is solved beginning with the optimum of the
preceding search. If the result is ever feasible in the original model, we stop with an
optimum (principle 17.30). Otherwise, we continue until the unconstrained opti-
mum is sufficiently close to feasible.

1034 Chapter 17 Constrained Nonlinear Programming

Algorithm 17A: SequeNtiAl uNCoNStrAiNed
PeNAlty teChNique (Sumt)

Table 17.3 illustrates Algorithm 17A for service desk design model (17.32) and
corresponding penalty form (17.33). With initial multiplier m = 1

4, a first search pro-
duces the unconstrained optimum

 x112 = 19.690, 6.2022
which violates the first constraint of the original model by 5.160. Then, the multiplier
is increased by factor b = 4 and a new unconstrained search initiated from x112. The
resulting optimum x122 starts a third search after m is quadrupled again. The process
continues until m is large enough that the unconstrained optimum approaches feasi-
bility. There we stop to obtain constrained optimal solution x* = 13.63, 2.752.

Barrier Methods
The penalty methods above begin anywhere and try to force the unconstrained opti-
mum into the feasible set of the given NLP. Barrier methods adopt the alternative
of beginning with a feasible solution and trying to prevent the unconstrained search
from leaving the feasible region.

Step 0: Initialization. Form penalty model 17.28 , and choose initial
penalty multipier m0 7 0 relatively small and starting solution x102. Also,
initialize solution index t d 0, and pick an escalation factor b 7 1.

Step 1: Unconstrained Optimization. Beginning from x1t2, solve penal-
ty optimization problem 17.28 with m = mt to produce optimum x1t + 12.

Step 2: Stopping. If x1t + 12 is feasible or sufficiently close to feasible in the
constrained model given, stop and output x1t + 12.

Step 3: Increase. Enlarge the penalty multiplier as
 mt + 1 d bmt

Then advance t d t + 1, and return to Step 1.

taBle 17.3 Sequential Penalty Solution of Service
Desk Application

Constraint Violation, i

t M Optimal x1t + 12 1 2 3

0 1
4

(9.690, 6.202) 5.160 0.000 0.000

1 1 (6.632, 4.244) 1.885 0.000 0.000
2 4 (4.981, 3.188) 0.627 0.000 0.000
3 16 (4.221, 2.749) 0.185 0.000 0.001
4 64 (3.806, 2.748) 0.051 0.000 0.002
5 256 (3.677, 2.749) 0.013 0.000 0.001
6 1024 (3.643, 2.750) 0.003 0.000 0.000
7 4096 (3.634, 2.750) 0.001 0.000 0.000

17.5 Penalty and Barrier Methods 1035

Each explodes toward + ∞ as the corresponding inequality approaches being satis-
fied as an equality.

Barrier Treatment of Service Desk Application
All constraints of service desk design model (17.32) are inequalities, so barrier
methods could be applied. We will adopt the more common logarithmic forms. For
example, the first constraint produces barrier term

 q11x1, x22! - ln a1 -
1x122

25
-

1x222

16
 b

When x is well inside the feasible region, this barrier function affects the objective only
modestly. But as 11x122>25 + 1x222>162 S 1, the negative of the logarithm goes to
+ ∞ . Similar treatment of all constraints yields the unconstrained barrier model

 max 2x1 + 2x2 + 2 + m c ln a1 -
1x122

25
-

1x222

16
 b d

(17.36)
 + ln1x1 - 3.52 + ln1x2 - 2.752]

With m 7 0, an approach to any part of the boundary is discouraged.

Barrier methods drop constraints of nonlinear programs and
substitute new terms in the objective function discouraging any approach to
the boundary of the feasible region in the form

 max or min F1x2! f1x2 { ma
j

 qi1x2

(+ for minimize problems and - for maximize problems), where m is a posi-
tive barrier multiplier and the qi are functions with

 qi1x2 S ∞

as constraint i approaches being active.

Definition 17.35

Since the boundary cannot be avoided with equality constraints, barrier meth-
ods are applicable only when constraints are all inequalities. Many alternatives are
available for the qi1x2 associated with such constraints.

Among the common barrier functions associated with inequal-
ity constrained NLPs are

 - ln[gi1x2 - bi] and
1

gi1x2 - bi
 for Ú ’s

 - ln[bi - gi1x2] and
1

bi - gi1x2 for … ’s

Principle 17.36

1036 Chapter 17 Constrained Nonlinear Programming

Converging to Optimality with Barrier Methods
Unlike penalty methods, barrier functions affect the objective function at fea-
sible points. We can illustrate the difficulty this causes by returning to the trivial
min y, s.t. y Ú 0 example of (17.34). Using, say, the logarithmic barrier alternative
of 17.36 , the corresponding barrier problem is

 min F1y2! y - m ln1y2
Differentiating (with y 7 0) yields

dF
dy

= 1 -
m

y

which has its only stationary point at

 y* = m

This unconstrained optimum never reaches the true optimum of y = 0 for any m 7 0.
Similar behavior occurs for all barrier versions of constrained NLPs with an

optimum on the boundary of the feasible set.

examPle 17.16: Forming Barrier models

Use reciprocal barrier functions to reduce the following constrained NLP to an un-
constrained barrier model.

min 1w124 - w1w2w3

s.t. 1w122 + 1w222 … 9

 w3w2 Ú 1

Solution: Using second, reciprocal barrier alternatives of 17.36 , the corresponding
unconstrained model 17.35 is

 min 1w124 - w1w2w3 + ma 1
9 - 1w122 - 1w222 +

1
w3w2 - 1

 b

where m is a positive barrier multiplier.

The optimum of barrier function 17.35 can never equal the
true optimum of the given constrained NLP if m 7 0 and the optimum lies on
the boundary of the feasible set.

Principle 17.37

As with penalty methods, however, there is a pattern to the unconstrained
optima. As m S 0, the unconstrained optimum comes closer and closer to the con-
strained solution.

Although none may actually solve the given NLP, if mild
assumptions hold, the sequence of unconstrained barrier function optima con-
verges to an optimal solution to the given constrained NLP as multiplier m S 0.

Principle 17.38

17.5 Penalty and Barrier Methods 1037

Managing the Barrier Multiplier
Property 17.38 makes it clear that we have to let barrier multipliers m approach
zero if we expect to obtain a constrained optimum. Why not simply start close to
zero? Figure 17.8 illustrates the difficulty with the trivial model (17.35).

0

5

10

15

20

25

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
w

0

5

10

15

20

25

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
w

F
 (w

)

F
(w

)
(b) Smaller µ(a) Larger µ

Figure 17.8 Effect of Barrier Multiplier on Unconstrained Tractability

When m is comparatively large, a strong barrier keeps the search far from
boundary areas, where it might bog down. But small m’s allow the search to approach
the boundary.

The best strategy is to start big and reduce the multiplier slowly.

When addressing a constrained nonlinear program by barrier
methods, the multiplier m should be started at a relatively high value 7 0 and
decreased as the search proceeds.

Principle 17.39

Sequential Unconstrained Barrier Technique
Formalization of principle 17.39 ’s strategy for slowly decreasing the barrier mul-
tiplier m produces the sequential unconstrained barrier technique of Algorithm
17B. Processing begins at an interior feasible x102 where none of the constraints
are active. Multiplier m starts relatively large and becomes smaller with each
search. For each value m, unconstrained barrier problem 17.35 is solved begin-
ning with the optimum of the preceding search. We stop when m is sufficiently
close to zero. (Readers may wish to compare with barrier methods for linear
programming in Section 7.4.)

Table 17.4 illustrates this for service desk design model (17.32) and corre-
sponding barrier form (17.36). Unlike penalty methods, which can start anywhere, a
barrier search must begin at an interior feasible point of the constrained NLP. Here
we employ

 x102 = 13.52, 2.772

1038 Chapter 17 Constrained Nonlinear Programming

The bulk of the computation involves a sequence of unconstrained barrier
model searches with decreasing multipliers m. Table 17.4 shows the first used m0 = 4
to obtain the unconstrained optimum

 x112 = 13.573, 2.7942
Then the multiplier was decreased by a factor of b = 1

2 and a new search initiated
from x112. The resulting x122 starts a third search after m is halved again. Searches
continue until m is close enough to zero that an approximate optimum is at hand.
Then we stop with constrained optimum x* = 13.63, 2.752.

taBle 17.4 Sequential Barrier Solution of Service Desk
Application

t M x1t + 12 t M x1t + 12

0 4 (3.573, 2.794) 2 1 (3.608, 2.769)
1 2 (3.588, 2.786) 3 1

2 (3.629, 2.752)

Algorithm 17B: SequeNtiAl uNCoNStrAiNed BArrier
teChNique

Step 0: Initialization. Form barrier function 17.35 , and choose initial bar-
rier multipier m0 7 0 relatively large and feasible interior starting solution
x102. Also initialize solution index t d 0, and pick a reduction factor b 6 1.

Step 1: Unconstrained Optimization. Beginning from x1t2, solve barrier
optimization problem 17.35 with m = mt, to produce optimum x1t + 12.

Step 2: Stopping. If m is sufficiently small, stop and output x1t + 12.
Step 3: Reduce. Decrease the penalty multiplier as

mt + 1 d bmt

Then advance t d t + 1, and return to Step 1.

17.6 reduCed gradient algorithms

Chapter 5’s simplex algorithm for linear programming is the most widely employed
of all optimization procedures. In this section we develop natural extensions to the
nonlinear case known as reduced gradient algorithms, or more generally as the vari-
able elimination method.

Standard Form for NLPs with Linear Constraints
Most of our development of reduced gradient methods will assume a linearly con-
strained nonlinear program. In particular, we assume that constraints have the stan-
dard form like Section 5.1’s definition 5.6 .

17.6 Reduced Gradient Algorithms 1039

We will also assume for simplicity that the rows of matrix A are linearly indepen-
dent, which can always be achieved by dropping redundant constraints.

Standard form for linearly constrained nonlinear programs is

 min or max f1x2
 s.t. Ax = b

 x Ú 0

Definition 17.40

aPPliCation 17.8: Filter tuning

For a tiny example on which to illustrate reduced gradient notions, consider the
tuning of an electronic filter. Two parameters

 x1 ! value of the first tuning parameter

 x2 ! value of the second tuning parameter

must be chosen to minimize distortion

 f1x1, x22! 1x1 - 522 - 2x1x2 + 1x2 - 1022

with x1 in the range [0, 3], x2 in the range [0, 5], and their total at most 6. The result
is the linearly constrained nonlinear program

 min f1x1, x22! 1x1 - 522 - 2x1x2 + 1x2 - 1022

(17.37)
s.t. x1 + x2 … 6

 0 … x1 … 3

 0 … x2 … 5

Figure 17.9 graphs this tuning model. A global optimum occurs at x132 =
(1.75, 4.25).

0 1 2 3 4 5
0

1

2

3

4

5

6

7

x

x2

x(0)

x(1)

x(2)

x(3)

Figure 17.9 Reduced Gradient Search of Filter Tuning Application

1040 Chapter 17 Constrained Nonlinear Programming

To illustrate, consider point x102 at (2.5, 0) of Tuning Application Figure 17.9.
Including corresponding values for slacks, the full standard-form solution is

 x102 = 12.5, 0, 3.5, 0.5, 52
The only active inequality is the nonnegativity constraint on x2. Thus the corre-
sponding conditions 17.41 for a feasible direction ∆x are

 + ∆x1 + ∆x2 + ∆x3 = 0

(17.39) + ∆x1 + ∆x4 = 0

 + ∆x2 + ∆x5 = 0

 ∆ x2 Ú 0

Bases of the Main Linear Equalities
Section 5.2 developed the idea of bases or basic column sets of the matrix A. Bases
are maximal sets of linearly independent columns.

The important characteristic of a basis, and the corresponding basic
variables, is that we can solve for the values of basic variables once all other,
nonbasic variables have been fixed. That is, we can view the basics as functions of
the nonbasics.

We may convert to standard form 17.40 by adding slacks x3, x4, and x5:

 min f1x1, x22! 1x1 - 522 - 2x1x2 + 1x2 - 1022

(17.38)
 s.t. +x1 +x2 +x3 = 6

 +x1 +x4 = 3

 +x2 +x5 = 5

 x1, x2, x3, x4, x5 Ú 0

Conditions for Feasible Directions with Linear Constraints
Any improving search algorithm attempts to move along improving feasible direc-
tions. Principle 3.25 of Section 3.3 has already detailed the requirements for main-
taining feasibility with standard-form linear constraints.

At x feasible for standard-form linear constraints 17.40 , ∆x is
a feasible direction if and only if

 A∆x = 0

 ∆xj Ú 0 for all j with xj = 0

Principle 17.41

Identification of a basic set of variables in a system of linear
equations partitions solutions into independent, nonbasic versus dependent,
basic components.

Principle 17.42

17.6 Reduced Gradient Algorithms 1041

Basic, Nonbasic, and Superbasic Variables
The simplex algorithms of Chapter 5 proceed through basic solutions in which all
nonbasic variables take on lower bound value zero. We saw in Section 5.2 how this
restriction can lead to a search through extreme points of the feasible set.

With nonlinear models, we know that an optimal solution may very well fall in
the interior of the feasible set, or at a nonextreme point of the boundary. This does
not change the fact that basic variables are dependent on our choice of nonbasics. It
only means that nonbasics cannot be restricted to = 0. A new superbasic category
of variables arises, which are nonbasics at positive value.

Reduced gradient algorithms classify variables as basics, non-
basics at bound value zero, and superbasics nonbasic at values 7 0.

Principle 17.43

To illustrate, return to tuning application standard form (17.38), and choose x1,
x3, and x5 basic. Initial solution

 x102 = 12.5, 0, 3.5, 0.5, 52
of Figure 17.9 is implied by nonbasic values x2

102 = 0.0 and x4
102 = 0.5. Setting all

nonbasics = 0 would produce an extreme point of the feasible set. But with x4
102 7 0,

and thus superbasic, nonextreme x102 can be represented.

examPle 17.17: distinguishing BasiC, nonBasiC, and suPerBasiC

Consider the standard-form nonlinear program

max f1w2! 50 - 1w122 + 6w1 - 1w222 + 6w2 + w3

s.t. + w1 - w2 + 3w3 = 1

 + 3w1 + 2w2 + 2w4 = 6

 w1, w2, w3, w4 Ú 0

(a) Show that w3 and w4 form a basic set of variables.

(b) Assuming the basis of part (a), classify remaining variables as nonbasic at lower
bound or superbasic for the solution w = 10, 2, 1, 12.

Solution:

(a) A basis is a maximal set of linearly independent vectors. The columns of w3 and
w4 are linearly independent because the corresponding matrix

 B = a3 0
0 2

b

has nonzero determinant = 6, and two is the maximum number of linearly indepen-
dent 2-vectors.

(b) The specified solution has w1 nonbasic at value zero, and w2 superbasic because
its value is positive.

1042 Chapter 17 Constrained Nonlinear Programming

Maintaining Equalities by Solving Main Constraints
for Basic Variables
Return now to the feasibility requirements of 17.41 . Let B be a submatrix of A
formed by a basic set of columns, and N the submatrix of all other columns. Then
divide direction vector ∆x into corresponding parts denoted ∆x1B2 for components
on columns in B and ∆x1N2 for those in N.

Conditions 17.41 require that

 A∆ x = B∆ x1B2 + N∆ x1N2 = 0

Solving for basic components as a function of nonbasic variables,

 ∆ x1B2 = -B-1N∆ x1N2 (17.40)

Thus we can find a direction maintaining the equalities by choosing directional
components for nonbasic variables and solving for basics as in (17.40).

Direction ∆ x ! 1∆x1B2, ∆ x1N22 maintains feasibility in standard-
form equality constraints Ax = b if

 ∆ x1B2 = -B-1N∆ x1N2

where B is a basis submatrix of A! 1B, N2.

Principle 17.44

For example, solving feasibility conditions (17.39) of our tuning application for
basic variable components ∆x1, ∆x2, and ∆x3 produces

 £∆x1

∆x3

∆x5

≥ = - £0 1
1 - 1
1 0

≥ a∆x2

∆x4
b (17.41)

examPle 17.18: solving For BasiC direCtion ComPonents

Return to the maximizing nonlinear program of Example 17.17 and express basic
components of a move direction at w = 10, 2, 1, 12 as a function of the nonbasic
components so that the resulting direction is feasible for the main constraints.

Solution: We apply principle 17.44 in solving A∆w = 0 conditions for basic com-
ponents. The result is

 ∆w3 = - 11
3 ∆w1- 13 ∆w22

 ∆w4 = - 13
2 ∆w1 + 1 ∆w22

Active Nonnegativities and Degeneracy
The second part of feasible direction conditions 17.41 requires that ∆xj Ú 0 when-
ever the corresponding nonnegativity constraint xj Ú 0 is active. As with the sim-
plex algorithm (see Section 5.6), we will not strictly enforce these requirements on

17.6 Reduced Gradient Algorithms 1043

basic j. Algorithms developed below endeavor to keep basic variables strictly posi-
tive, that is,

 xj 7 0 for all j ∈ B (17.42)

For example, basic components j = 1, 3, 5 of tuning example solution x102 = 12.5,
0, 3.5, 0.5, 5) are all positive.

Under this nondegeneracy assumption, only nonnegativity constraints for
nonbasics can be active, and we enforce

 ∆xj Ú 0 for all j ∈ N with xj = 0 (17.43)

Reduced Gradients
We now know from principle 17.44 how to produce a feasible direction by limiting
independent choices to components for a nonbasic set of variables. It remains to
construct a feasible direction that improves the objective.

For small steps the change in objective along direction ∆x is the first-order
Taylor approximation term

 ∇f1x2 # ∆x

Subdividing the gradient ∇f1x2 into basic and nonbasic parts 1∇f1x21B2, ∇f1x21N22,
we can eliminate the basic components to see fully the impact of choices for the
nonbasics:

 ∇f1x2 # ∆x = ∇f1x21B2 # ∆x1B2 + ∇f1x21N2 # ∆x1N2
(17.44) = ∇f1x21B2 # 1-B-1N∆x1N22 + ∇f1x21N2 # ∆x1N2

 = 1∇f1x21N2 - ∇f1x21B2B-1N2∆x1N2

These derived coefficients on directional components are called the reduced gradient.

The reduced gradient associated with basis matrix B at cur-
rent solution x is r! 1r1B2, r1N22 with

r1B2 ! 0

r1N2 ! ∇f1x21N2 - ∇f1x21B2B-1N

Definition 17.45

To illustrate, return to tuning model (17.38) at x102 = 12.5, 0, 3.5, 0.5, 52. The
corresponding gradient is

 ∇f1x1022 = • 21x1 - 52 - 2x2

-2x1 + 21x2 - 102
0
0
0

µ = • -5
-25

0
0
0

µ

1044 Chapter 17 Constrained Nonlinear Programming

Now using system (17.41), which derives B-1N to express feasible direction condi-
tions with x1, x3, and x5 basic,

 r1B2 = 1r1, r3, r52 = 10, 0, 02 (17.45)

and

 r1N2 = 1r2, r42

(17.46)

 = ∇f 1N2 - ∇f 1B21B-1N2

 = 1-25, 02 - 1-5, 0, 02 £0 1
1 - 1
1 0

≥
 = 1-25, 52

examPle 17.19: ComPuting reduCed gradients

Return to the nonlinear program of Examples 17.17 and 17.18 with basis B = 53, 46.
Compute the corresponding reduced gradient at solution w = 10, 2, 1, 12.

Solution: With objective function

 f1w2! 50 - 1w122 + 6w1 - 1w222 + 6w2 + w3

the gradient at the w specified is

 ∇f1w2 = § -2w1 + 6
-2w2 + 6

1
0

¥ = §6
2
1
0

¥
Now applying definition 17.45 , basic components of the reduced gradient become

 r3 = r4 = 0

Corresponding nonbasic components are

 r1 = 6 - 11, 02 # 11
3, 322 = 17

3

 r2 = 2 - 11, 02 # 1-1
3, 12 = 7

3

Reduced Gradient Move Direction
Reduced gradient algorithms seek to move nonbasics in reduced gradient direction
∆x1N2 = {r1N2 (+ for maximize models, - for minimize models). However, some
adjustment must be made to avoid decreasing any xj already = 0 [i.e., to enforce
feasibility requirement (17.43)].

17.6 Reduced Gradient Algorithms 1045

In the minimizing tuning application of (17.45)–(17.46), construction 17.46 makes
nonbasic components

 ∆x 2 = -r2 = 2 5 and ∆x 4 = -r4 = -5 (17.47)

Corresponding basic components are derived from expression (17.41) as

 £∆x1

∆x3

∆x5

≥ = - £0 1
1 - 1
1 0

≥ a 25
-5

b = £ 5
-30
-25

≥ (17.48)

We have constructed direction ∆x of 17.46 to be feasible (assuming all basics
positive). If ∆x = 0, the current x can be shown to be a KKT point, and the algo-
rithm stops. Otherwise [using (17.44) and 17.45],

 ∇f1x 2 # ∆x = r1N2 # ∆x 1N2

 = a
∆xj = { rj ≠ 0

1rj21{rj2

shows that ∆x has the proper sign to be an improving direction.

The reduced gradient algorithm moves from feasible point x
in direction ∆x derived from reduced gradient 17.45 as (+ to maximize, - to
minimize)

 ∆xj d e{rj if {rj 7 0 or xj 7 0
0 otherwise

on nonbasic components j ∈ N and

 ∆x1B2 d -B-1N∆x1N2

for basics.

Principle 17.46

examPle 17.20: ConstruCting reduCed gradient direCtions

Return to the nonlinear program of Examples 17.17 to 17.19. Construct the move
direction that would be pursued by the reduced gradient algorithm at solution
w = 10 , 2 , 1 , 1 2.

Solution: Using reduced gradient results of Example 17.19 and construction 17.46 ,
nonbasic components for this maximizing model are

 ∆w1 = +r1 = 17
3 and ∆w2 = +r2 = 7

3

Then, basic components derive from the representation of Example 17.18 as

∆w3 = - 11
3 ∆w1 - 1

3 ∆w22 = -10
9

∆w4 = - 13
2 ∆w1 + 1 ∆w22 = -65

6

1046 Chapter 17 Constrained Nonlinear Programming

Line Search in Reduced Gradient Methods
Having specified reduced gradient direction 17.46 , we next need to decide how
far to follow it. As with most nonlinear methods, a line search will be required to
determine the largest l for which the direction improves. However, constraints
add feasibility considerations. Our direction ∆x will satisfy equality constraints
A(x + l∆x) = b for arbitrarily large l, but nonnegativity constraints cannot be
ignored. The line search must be limited by the same sort of “minimum ratio” check
employed in LP algorithms of Chapters 5, 6 and 7.

The step size l applied at each step of the reduced gradient
algorithm is determined by the one-dimensional optimization

 min or max f1x + l∆x2
s .t. 0 … l … lmax

where x is the current point, ∆x is the move direction, and lmax is the maxi-
mum feasible step

 lmax = mine
xj

- ∆xj
 : ∆xj 6 0 f

Principle 17.47

For example, tuning example direction (17.47)–(17.48) is negative for compo-
nents j = 3 , 4 , 5 . Thus the maximum feasible step at x102 = 12.5, 0, 3.5, 0.5, 52 is

 lmax = min {3.5
30 , 55, 5

25 } = 0.1 (17.49)

Distortion function f1x102 + l∆x2 decreases for all l ∈ 30, 0.14, so that the step
size chosen will be the full l = 0 .1 .

examPle 17.21: ComPuting maximum FeasiBle stePs

Example 17.20 computed reduced gradient move direction

∆w = 117
3 , 73, -10

9 , -65
6 2 at solution w = 10, 2, 1, 12

of a standard-form, linearly constrained NLP. Determine the maximum feasible step
in this direction.

Solution: For a standard-form model with linear equality main constraints, the only
possible loss of feasibility occurs when some variable drops to its lower bound of 0.

This occurs here at (principle 17.47)

 lmax = mine 1
10>9

,
1

65>6
 f =

6
65

17.6 Reduced Gradient Algorithms 1047

Basis Changes in Reduced Gradient Methods
One final issue relates to nondegeneracy assumption (17.42). All our analysis has
been based on basic variables always having positive values. As with the simplex
algorithms of Chapter 5 (see Section 5.6), such nondegeneracy cannot always be
guaranteed. Still, it is sufficient for functioning of the reduced gradient algorithm
that we replace a variable in the basis if the most recent move forced it to = 0.

With many nonbasics (and superbasics) changing during the move, it is not as
easy as with simplex to decide which nonbasic should enter the basis. To be assured
of keeping a basis, we need only be careful to select a nonbasic actually affecting the
blocking basic in computation 17.44 .

When movement in reduced gradient direction 17.46 is
blocked by a nonnegativity constraint on a basic variable xi, that variable
should be replaced in the basis by a nonbasic xj, preferably superbasic, such
that the coefficient of -B-1N relating i and j in 17.44 is nonzero.

Principle 17.48

Superbasics are preferred because they have the positive value desired for a basic.
In the move along tuning application direction (17.47)–(17.48), the blocking

variable of step computation (17.49) was nonbasic x 4 . No basis adjustment is required.

examPle 17.22: Changing the Basis in reduCed gradient

The nonlinear programs of Examples 17.17 to 17.21 computed maximum feasible
step size lmax = 65

6 in the direction

 ∆w = 117
3 , 73, - 10

9 , - 65
6 2 at solution w = 10, 2, 1, 12

with w3 and w4 nonbasic. Assume that a full step l = 65
6 is chosen by the line search.

(a) Determine whether a basis change is now needed.

(b) If a change is required, select a new basis.

Solution: We apply principle 17.48 .

(a) After a full step, the new solution will be

 w + l∆w = 134
65, 144

65 , 35
39, 02

Since basic variable w4 drops to 0, a basis change is required.

(b) We must replace w4 in the basis with a nonbasic variable that influenced its
value on this move—preferably one that is now superbasic. Reference back to
Example 17.20 shows that ∆w4 was affected (had nonzero coefficients) by both
non-basics. With both nonbasics now superbasic, we arbitrarily choose w2 to pro-
duce new basis 5w2, w36.

Reduced Gradient Algorithm
All the building blocks of a reduced gradient search are now in place. Algorithm
17C provides details.

1048 Chapter 17 Constrained Nonlinear Programming

Algorithm 17C: reduCed grAdieNt SeArCh

Step 0: Initialization. Choose stopping tolerance e 7 0 and any starting
feasible solution x102. Then construct a corresponding basis B with as many
basic xj

0 7 0 as possible, and set solution index t d 0.
Step 1: Reduced Gradient Direction. Compute reduced gradient r at

x1t2 as in 17.45 , and use r to generate move direction ∆xt + 1 per 17.46 .
Step 2: Stopping. If ||∆xt + 1|| … e, stop and output local optimum x1t2.
Step 3: Feasibility Limit. Compute feasiblity limiting step lmax according

to 17.47 1lmax = ∞ if ∆xt + 1 Ú 02.
Step 4: Line Search. Perform a one-dimensional optimization to determine

lt + 1 solving
 min or max f1x + l∆xt + 12
s.t. 0 … l … lmax

Step 5: New Point. Advance
x1t + 12 d x1t2 + lt + 1∆xt + 1

Step 6: Basis Change. If any basic xj
1t + 12 = 0, replace one such j in the

basis with some superbasic j’.
Step 7: Advance. Increment t d t + 1, and return to Step 1.

Computation begins at any feasible point and a corresponding basis. Each iter-
ation follows reduced gradient direction 17.46 until either objective progress stops
or the feasibility limit is reached. Bases are changes as in 17.48 whenever a basic
variable dropping to zero blocks progress. Termination occurs when the computed
direction is sufficiently close to the zero vector.

Reduced Gradient Search of Filter Tuning Application
Figure 17.9 has already displayed the sequence of points visited by reduced gra-
dient Algorithm 17C in solving our tuning application from initial point (2.5, 0).
Table 17.5 provides details.

The first move of the search follows the directions (17.47)–(17.48) for a full
step lmax = 0.1. No basis change is required because the blocking variable is nonba-
sic. Thus gradient computations are simply repeated to produce new direction

 ∆x = 10, 21, -21, 0, -212
Once again the direction improves all the way to maximum feasible step

lmax = 0.0238. This time, however, the blocking variable is basic x3. Replacing x3
in the basis with superbasic x2 keeps basic variables strictly positive without losing
linear independence of basic columns.

Recomputation produces the next move direction,

 ∆x = 1-10, 10, 0, 10, -102

17.6 Reduced Gradient Algorithms 1049

Notice that ∆x3 = 0 even though -r3 = -20, because decreasing x3 would produce
immediate infeasibility.

The maximum feasible step in the chosen ∆x is lmax = 0.2. Still, a line search
over l ∈ 10, 0.2] discovers a minimum at l = 0.125. Thus the search advances
only to

 x132 = 11.75, 4.25, 0, 1.25, 0.752
This point proves (at least locally) optimal when ∆x = 0 computes as the next
search direction.

Major and Minor Iterations in Reduced Gradient
At any point in a reduced gradient search, the superbasic variables represent a
“free” set in that they can increase or decrease without losing feasibility. A refine-
ment that has proved useful exploits this relative ease of movement by dividing the
search into major iterations and minor iterations.

taBle 17.5 Reduced Gradient Search of Filter Tuning Application

 x1 x2 x3 x4 x5

min f1x2 1x1 - 522 - 2x1x2 + 1x2 - 1022 b

1 1 1 0 0 6
A 1 0 0 1 0 3

0 1 0 0 1 5

t = 0 B N B N B

x102 2.5 0.0 3.5 0.5 5.0 f1x1022 = 106.25

∇f1x1022 -5.0 -25.0 0.0 0.0 0.0

r 0.0 -25.0 0.0 5.0 0.0

∆x 5.0 25.0 -30.0 -5.0 -25.0 l max = 0.1, l = 0.1

t = 1 B N B N B

x112 3.0 2.5 0.5 0.0 2.5 f1x1122 = 42.25

∇f1x1122 -9.0 -21.0 0.0 0.0 0.0

r 0.0 -21.0 0.0 9.0 0.0

∆x 0.0 21.0 -21.0 0.0 -21.0 l max = 0.0238, l = 0.0238

t = 2 B B N N B

x122 3.0 3.0 0.0 0.0 2.0 f1x1222 = 35.00

∇f1x1222 -10.0 -20.0 0.0 0.0 0.0

r 0.0 0.0 20.0 -10.0 0.0

∆x -10.0 10.0 0.0 10.0 -10.0 l max = 0.2, l = 0.125

t = 3 B B N N B

x132 1.75 4.25 0.0 1.25 0.75 f1x1322 = 28.75

∇f1x1322 -15.0 -15.0 0.0 0.0 0.0

r 0.0 0.0 15.0 0.0 0.0

∆x 0.0 0.0 0.0 0.0 0.0 Stop

1050 Chapter 17 Constrained Nonlinear Programming

A minor iteration leaves nonbasics at bound zero fixed, changing only superbasics.
When progress slows, we undertake a major iteration changing more nonbasics as in
Algorithm 17C.

Second-Order Extensions of Reduced Gradient
Major/minor direction procedure 17.49 can be productively extended even fur-
ther by employing second-order information on the objective function. Thinking
of objective function f(x) as a function of the superbasics alone, with other non-
basics fixed = 0, and basics taking implied values, we are left with an uncon-
strained optimization in the superbasics. Quasi-Newton methods of Section
16.7 can then be employed to quickly find a good choice of superbasic values.
Afterward, having completed several minor iterations, we consider making other
nonbasics positive.

Generalized Reduced Gradient Procedures for Nonlinear
Constrants
To this point we have assumed that all constraints of the given nonlinear program
are linear. Generalized reduced gradient algorithms can be developed that extend
to nonlinear constraints.

Suppose that we are given the nonlinear equality-constrained standard form

 min or max f1x2

(17.50)s.t. gi1x2 = bi i ∈ E

 x Ú 0

Using first-order Taylor approximations, it is natural to consider linearizing con-
straints around a current x1t2 as

 bi = gi1x2 ≈ gi1x1t22 + ∇gi1x1t22 # 1x - x1t22 (17.51)

Noting that feasibility implies gi1x1t22 = bi, this linearization simplifies to

 ∇gi1x1t22 # x = ∇gi1x1t22 # x1t2 for all i ∈ E (17.52)

Minor iterations of reduced gradient procedures change only
superbasic and basic variable values by adopting at ∆x the move direction ∆x
with 1+ for maximize, - for minimize2

 ∆xj d e{rj if xj 7 0
0 otherwise

for nonbasic components j ∈ N and

 ∆x1B2 d -B-1N∆x1N2

for basics. Major iterations follow construction 17.46 by also allowing changes
in nonbasics = 0.

Definition 17.49

17.7 Quadratic Programming Methods 1051

Including nonnegativity constraints with system (17.52) yields linear-
constrained format

 A1t2x = b1t2

 x Ú 0

with rows of A1t2 being ∇gi1x1t22 and components of b1t2 equaling ∇gi1x1t22 # x1t2. We
are now in a position to employ linear-constrained reduced gradient Algorithm 17C
(or its second-order extensions).

Dealing with successive systems (17.52) is essentially the strategy of general-
ized reduced gradient algorithms. Still, there is a difficulty. Approximation (17.51) is
not exact for nonlinear constraints. Thus enforcement of (17.52) is not guaranteed
to keep x feasible.

Generalized reduced gradient algorithms address this difficulty by following
each reduced gradient move with corrector steps to restore feasibility. In essence, a
penalty function is introduced (see Section 17.5) and a new move is chosen to mini-
mized the penalized objective function. Once feasibility is restored, a new move can
be computed using equations (17.52).

17.7 QuadratiC Programming methods

A constrained nonlinear program is a quadratic program or QP if its objective func-
tion is quadratic and all its constraints are linear (definition 17.9). In this section we
investigate special methods adapted to this class of NLPs.

General Symmetric Form of Quadratic Programs
It will be useful to express quadratic programs in general symmetric form.

Quadratic programs can be placed in the general symmetric
form

 max or min f1x2! c0 + c # x + xQx

s.t. a1i2x Ú bi for all i ∈ G

 a1i2x … bi for all i ∈ L

 a1i2x = bi for all i ∈ E

where Q is a symmetric matrix, and sets G, L, and E index the Ú , … , and =
constraints, respectively.

Definition 17.50

Notice that nonnegativity and other variable-type restrictions are treated as main
constraints.

The assumption that Q is symmetric 1= QT2 merely simplifies notation. There
is no loss of generality because a model with asymmetric QQ has the same objective
value as one with symmetric

 Q = 1
2 1QQ + QQ T2

1052 Chapter 17 Constrained Nonlinear Programming

Quadratic Program Form of the Filter Tuning Application
We illustrate quadratic programming methods with the tiny distortion tuning appli-
cation model (17.53) (Section 17.7). In vector format 17.50 , the model is

 min 125 + 1-10, -202 # x + xa 1 -1
-1 1

bx

(17.53)

s.t. 11, 02 # x Ú 0

 10, 12 # x Ú 0

 11, 12 # x … 6

 11, 02 # x … 3

 10, 12 # x … 5

With G = 51, 26, L = 53, 4, 56, and E = 0.

examPle 17.23: understanding standard QP notation

Return to the quadratic program used in Examples 17.17–17.19 of Section 17.6:

max f1w2! 50 - 1w122 + 6w1 - 1w222 + 6w2 + w3

s.t. + w1 - w2 + 3w3 = 1

 +3w1 + 2w2 + 2w4 = 6

 w1, w2, w3, w4 Ú 0

Identify elements c0, c, Q, G, L, E, a1i2, and bi of general form 17.50 .

Solution: Arranging objective function elements in matrix form 17.50 yields
c0 = 50,

 c = §6
6
1
0

¥ and Q = § -1 0 0 0
0 -1 0 0
0 0 0 0
0 0 0 0

¥
With E = 51, 26, G = 53, 4, 5, 66, and L = 0, corresponding constraint coeffi-
cients are

 a112 = 11, -1, 3, 02, b1 = 1

 a122 = 13, 2, 0, 22, b2 = 6

 a132 = 11, 0, 0, 02, b3 = 0

 a142 = 10, 1, 0, 02, b4 = 0

 a152 = 10, 0, 1, 02, b5 = 0

 a162 = 10, 0, 0, 12, b6 = 0

17.7 Quadratic Programming Methods 1053

Equality-Constrained Quadratic Programs and KKT Conditions
It is instructive to begin our investigation of quadratic programming with the pure
equality case:

 max or min f1x2 ! cx + xQx
(17.54)

s.t. Ax = b

Here G = L = 0 in general form 17.50 , and coefficient vectors a1i2 for equalities
i ∈ E have been collected as rows of a matrix A.

With all constraints equalities, Karush–Kuhn–Tucker conditions (principle 17.21)
for model (17.54) require no sign restrictions or complementary slackness constraints.
Furthermore, the objective function gradient (Q symmetric) is

 ∇f1x2 = c + 2Qx

and constraint gradients ∇gi1x2 are the rows of A. Thus KKT conditions for model
(17.54) reduce to

 a
i

a1i2vi = c + 2Qx

 Ax = b

What makes pure-equality quadratic programs special is that these conditions can
be rearranged into a square system of linear equations.

Karush–Kuhn–Tucker optimality conditions for pure equality
quadratic programs (17.54) are the linear equations

 a -2Q AT

 A 0
b ax

v
b = a c

b
b

Principle 17.51

examPle 17.24: Forming KKt Conditions For eQuality QPs

Form Karush–Kuhn–Tucker optimality conditions for the equality-constrained qua-
dratic program

min 41y122 - 6y1y2 + 51y222 + y3

s.t. + y1 - 3y2 - 9y3 = 11

 -y1 + 7y2 + 7y3 = -9

at y = 12, 0, -12.

Solution: Here

 A = a 1 -3 -9
-1 7 7

b , c = £0
0
1

 ≥, and Q = £ 4 -3 0
-3 5 0

0 0 0
≥

1054 Chapter 17 Constrained Nonlinear Programming

Thus KKT conditions 17.51 are

 • -8 6 0 1 -1
6 -10 0 -3 7
0 0 0 -9 7
1 -3 -9 0 0

-1 7 7 0 0

µ •y1

y2

y3

v1

v2

µ = • 0
0
1

11
-9

µ
Direct Solution of KKT Conditions for Quadratic Programs
The unusually simple form of KKT conditions 17.51 for equality-constrained qua-
dratic programs suggests an approach to solution. We could simply form the KKT
system of linear equations and solve for KKT point x and corresponding Lagrange
multipliers v.

This is the approach taken in many methods.

Equality-constrained quadratic programs are often approached
by direct solution of (linear) Karush–Kuhn–Tucker conditions 17.51 .

Principle 17.52

Sophisticated methods of linear algebra may be used to compute answers, but the
process remains essentially one solving the KKT system.

Unique solvability of system 17.51 would mean that model (17.54) has a
unique KKT point. Since equality constraints assure that every local optimum is a
KKT point (principle 17.27), a unique 17.51 solution must correspond to a unique
local (and thus global) maximum or minimum unless the model has no extrema at
all. Other cases may have multiple KKT points, or none at all. Still, any local opti-
mum must be a solution to system 17.51 .

examPle 17.25: solving KKt Conditions For eQuality QPs

Solve the KKT conditions of the equality-constrained quadratic program in
Example 17.24 to find a KKT point of the model.

Solution: The unique solution to this KKT system has primal solution

 y1 = -0.0834, y2 = -0.0992, y3 = -1.1984

and corresponding Lagrange multipliers

 v1 = -0.2486, v2 = -0.1768

Further analysis would be required to determine whether this KKT solution is a
global maximum, a global minimum, or a saddle point.

17.7 Quadratic Programming Methods 1055

Active Set Strategies for Quadratic Programming
Active set methods exploit the linear equation form of KKT conditions for equality
constrained QPs by reducing general quadratic programs 17.50 to a sequence of
equality cases. To see how, define

 S ! set of indices of active constraints at current feasible solution

 x1t2 in general QP model 17.50

 AS ! matrix with rows formed by the coefficient vectors

 a1i2 of i ∈ S

Every equality constraint of E belongs to S, along with active inequalities of G and L.
Suppose that we require all active constraints i ∈ S to continue being satisfied

as equalities during our next move. Then an optimal move ∆x from x1t2 should solve

 max or min f1x1t2 + ∆x2 = f1x1t22 + ∇f1x1t22 # ∆x + ∆xQ∆x
(17.55)

s.t. At∆x = 0

The (17.55) objective merely rewrites f1x1t2 + ∆x2 in terms of the second-order
Taylor representation (definition 16.17), which is exact for quadratic functions.
Constraints enforce the familiar requirements Σai,j ∆xk = 0 (principle 3.25) for a
move to preserve linear equality constraints.

Notice that subproblem (17.55) is now in equality-constrained format (17.54).
Thus we can compute a move ∆x by solving the corresponding KKT linear
equations 17.51 .

Active set methods for general quadratic programs com-
pute the move ∆x at current solution x1t2 by solving Karush–Kuhn–Tucker
conditions

 a -2Q AS
T

AS 0
b a x

v1S2b = a∇f1x1t22
0

b

where AS is the coefficient matrix of active constraints and v1S2 is the corre-
sponding Lagrange multiplier vector. All vi for i o S are fixed = 0.

Definition 17.53

As with models having only equality constraints, a KKT solution to system 17.53 may
not exist, or not correspond to the desired minimum for a minimize problem or max-
imum for a maximize problem over the active constraints. Still, definition 17.53 pro-
vides good results when the objective function is reasonably well behaved.

To illustrate, return to tuning model (17.53), which is a convex program. At
x102 = 12.5, 02, only nonnegativity constraint i = 2 is active, so

 S = 526 and AS = 10, 12
With ∇f1x1t22 = 1-5, -252, the corresponding move-finding KKT system (17.53) is

 £ -2 2 0
2 - 2 1
0 1 0

≥ £∆x1

∆x2

v2

≥ £ -5
-25

0
≥

1056 Chapter 17 Constrained Nonlinear Programming

This system has unique solution

 ∆x1 = 2.5, ∆x2 = 0, v2 = -30 (17.56)

Step Size with Active Set Methods
If a move ∆x ≠ 0 results from subproblem (17.55), the usual update

 x1t + 12 d x1t2 + ∆x

optimizes the objective over the active constraints. However, we have ignored inac-
tive constraints in forming (17.55). A full step in direction ∆x may cause some such
constraints to be violated.

To account for this possibility, we introduce a now-familiar maximum step rule:

If the ∆x computed from the active constraints at solution x1t2
is nonzero, active set algorithms adopt step l in direction ∆x, where

lG d mine a1i2x1t2 - bi

-a1i2∆x
 : a1i2∆x 6 0, i ∈ G f

lL d mine bi - a1i2x1t2

a1i2∆x
 : a1i2∆x 7 0, i ∈ L f

l d min51, lG, lL6

Principle 17.54

The first two possibilities for l check inactive Ú and … constraints, respectively, and
the 1 in the last step provides for the possibility that the full move is feasible. For
example, we would compute the appropriate step in tuning application direction
∆x = 12.5, 02 of (17.56) from x102 = 12.5, 02 as

 lG = + ∞ (17.57)

 lL = min53.5
2.5, 0.5

2.56 = 0.2

 l = min51, + ∞, 0.26 = 0.2

examPle 17.26: Choosing steP size in aCtive set QP

Suppose that an active set search of a quadratic program with constraints

 2y1 + 3y2 Ú 10

 1y1 + 7y2 … 40

 1y1 + 3y2 = 17

has reached y = 12, 52 and computed (definition 17.53) move ∆y = 1-3, 12.

(a) Determine the appropriate step size l to apply.

(b) How would the l change if the second constraint were 1y1 + 7y2 … 80?

17.7 Quadratic Programming Methods 1057

Solution: We apply rule 17.54 .

(a) Only the last, equality constraint is active. Changes in the other constraints per
unit step in direction ∆y are

 a112 # ∆ y = 12, 32 # 1-3, 12 = -3

 a122 # ∆ y = 11, 72 # 1-3, 12 = 4

Thus

 lG =
19 - 10

3
, lL =

40 - 37
4

, l = min e1, 3,
3
4

 f =
3
4

(b) With this revised right-hand side,

 lG = 3, lL =
80 - 37

4
, l = min e1, 3,

43
4

 f = 1

Although step sizes up to l = min53, 43
4 6 are feasible, the optimal one of KKT

computation 17.53 occurs at l = 1.

Stopping at a KKT Point with Active Set Methods
Update x1t + 12 d x1t2 + l∆x advances us toward an optimum to (a reasonable well
behaved) general quadratic program 17.50 as long as move direction ∆x ≠ 0.
Should we stop when ∆x = 0? It depends on whether Lagrange multipliers v com-
puted from linear system 17.53 for active constraints complete a KKT solution for
the full model.

If ∆x = 0 in a solution to conditions 17.53 , active set methods
will stop at a KKT point for the full model 17.50 if all corresponding Lagrange
multipliers v satisfy sign restrictions

Objective Active i ∈ G Active i ∈ L

Minimize vi Ú 0 vi … 0
Maximize vi … 0 vi Ú 0

Principle 17.55

Lagrange multipliers satisfying conditions 17.55 suffice for a KKT point in the
full model 17.50 because the corresponding optimality conditions are

 c + 2Qx1t2 = a
i

a1i2vi = AS
Tv1S2 (17.58)

together with sign restrictions 17.55 , complementary slackness on all inequalities,
and feasibility in primal constraints. But (17.58) is the first part of the linear system
solved in 17.53 ; complementary slackness is automatic because only active con-
straints are allowed to have vi ≠ 0; primal feasibility is enforced by the second part
of equation system 17.53 and step size rule 17.54 . Thus the only additional require-
ments for a KKT point are the sign restrictions of principle 17.55 .

1058 Chapter 17 Constrained Nonlinear Programming

examPle 17.27: stoPPing in aCtive set searCh oF QPs

Consider an active set search of a maximizing quadratic program with currently
active constraints

 w1 + 2w2 Ú 4

 w3 - 8w4 + w5 … 2

 3w1 + 2w2 + 2w3 + 2w4 + 2w5 = 16

Determine whether the procedure would stop if solution of linear equation sys-
tem 17.53 produces:

(a) ∆w = 10, 0, 0, 0, 02, v = 1-33, 10, 142
(b) ∆w = 10, 0, 0, 0, 02, v = 133, 10, 142
(c) ∆w = 12, -1, -1, 0, 12, v = 133, 10, 142
Solution: We apply principle 17.55 .

(a) For this maximize model, v1 = -33 is appropriate for a Ú constraint, and
v2 = 10 is suitable for a … . The search would terminate with the current solution a
KKT point.

(b) For this maximize model, v1 = 33 violates sign restrictions of 17.55 . The search
would not terminate.

(c) Here the move direction ∆w ≠ 0. The search would continue.

Dropping a Constraint from the Active Set
Clearly, the active set must change if further progress is to be achieved when sign
restriction 17.55 are not fulfilled even though system 17.53 produced a move ∆x = 0.
In particular, one or more now active constraint i ∈ S must be allowed to become a
strict inequality.

To see which active constraint to drop from S, focus again on the Lagrange mul-
tipliers computed in solving system 17.53 . We know these multipliers can be inter-
preted (principle 17.17) as the change in (17.55) optimal value with its constraint
right-hand sides. For example, vi 7 0 for a … inequality i of a minimize subproblem
indicates that allowing inequality i to become strict (i.e., relaxing to a1i2 # ∆x … 0)
will help the objective function. That is, a violation of sign conditions 17.55 indicates
an active constraint that could be productively dropped.

When solution of system 17.53 produces a ∆x = 0 but vi not
all satisfying the sign restrictions of 17.55 , active set algorithms drop from S
some i with a violating vi.

Principle 17.56

examPle 17.28: droPPing Constraints in aCtive set QP

For each of the cases in Example 17.27 where the procedure did not terminate,
 determine how the active set S should be modified.

17.7 Quadratic Programming Methods 1059

Solution: We apply principle 17.56 .

(a) The procedure stops in this case and no modification of S is required.

(b) For this case we drop constraint i = 1 from S and re-solve linear system 17.53 be-
cause Lagrange multiplier v1 = -33 violates sign restrictions 17.55 .

(c) No change is needed in S for this case because the move direction ∆w ≠ 0.

Active Set Solution of the Filter Tuning Application
Algorithm 17D collects principles 17.53 – 17.56 in an active set procedure for qua-
dratic programs. Figure 17.10 and Table 17.6 detail the application of Algorithm
17D to tuning model (17.53), beginning at x102 = 12.5, 0.02.

Algorithm 17d: ACtive Set method For quAdrAtiC
ProgrAmS

Step 0: Initialization. Pick starting feasible solution x102, and initialize
working active set S with indices of all constraints active at x102. Also,
choose stopping tolerance P 7 0, and initialize iteration index t d 0.

Step 1: Subproblem. With AS! coefficient matrix of active constraints in
S, solve the Karush–Kuhn–Tucker conditions

a -2q AS
T

AS 0
b a∆xt + 1

vS
1t + 12 b = a∇f1x1t22

0
b

of direction problem (17.55) for move direction ∆xt + 1 and active con-
straint Lagrange multipliers vS

1t + 12. Lagrange multipliers for nonactive i ∉ S
are fixed vi

1t + 12 d 0.
Step 2: KKT Point. If 0 0 ∆x1t + 12 0 0 … P and v1t + 12 satsifies sign restrictions

of 17.55 , stop; the current x1t2 is a Karush–Kuhn–Tucker point of the given
symmetric quadratic program 17.50 . Otherwise, if 0 0 ∆x1t + 12 0 0 … P, go to
Step 3, and if not, proceed to Step 4.

Step 3: Active Dropping. Choose some i ∈ S with Lagrange multiplier
vi
1t + 12 violating sign restrictions 17.55 , and remove it from S. Then go to

Step 6.
Step 4: Step Size. Compute the maximum appropriate step l in direction

∆x1t + 12 via

lG d min e a1i2x1t2 - bi

-a1i2∆xt + 1 : a1i2∆xt + 1 6 0, i ∈ G f

lL d min e bi - a1i2x1t2

a1i2∆xt + 1 : a1i2∆xt + 1 7 0, i ∈ L f

l d min51, lG, lL6
(continued)

1060 Chapter 17 Constrained Nonlinear Programming

0 1 2 3 4 5
0

1

2

3

4

5

6

7

x1

x2

x(1) = x(2)

x(3) = x(4)

x(5)

 x(0)

Figure 17.10 Active Set QP Solution of Filter Tuning
Application

taBle 17.6 Active Set QP Solution of Filter Tuning Application

Variables Constraints

 x1 x2 i = 1 i = 2 i = 3 i = 4 i = 5

t = 0 x102 2.5 0.0 S no yes no no no

∆x 2.5 0.0 v 0.0 -30.0 0.0 0.0 0.0 l = 0.2000

t = 1 x112 3.0 0.0 S no yes no yes no

∆x 0.0 0.0 v 0.0 -26.0 0.0 -4.0 0.0 drop i = 2

t = 2 x122 3.00 0.00 S no no no yes no

∆x 0.0 13.0 v 0.0 0.0 0.0 -30.0 0.0 l = 0.2308

t = 3 x132 3.00 3.00 S no no yes yes no

∆x 0.0 0.0 v 0.0 0.0 -20.0 10.0 0.0 drop i = 4

t = 4 x142 3.00 3.00 S no no yes no no

∆x -1.25 1.25 v 0.0 0.0 -15.0 0.0 0.0 l = 1.0000

t = 5 x152 1.75 4.25 S no no yes no no

∆x 0.00 0.00 v 0.0 0.0 -15.0 0.0 0.0 KKT point

Step 5: Move. Step

x1t + 12 d x1t2 + l∆x1t + 12

and update S with the indices of any newly active constraints.
Step 6: Advance. Increment t d t + 1, and return to Step 1.

Computations (17.56) and (17.57) have already established the first move
direction ∆x = 12.5, 0.02 and step size l = 0.2, which lead to

 x112 = x102 + l∆x = 12.5, 0.02 + 0.212.5, 0.02 = 13.0, 0.02

17.8 Sequential Quadratic Programming 1061

The active set S = 52, 46 at x112 includes the previous x2 Ú 0 and newly active
x1 … 3. Solution of the corresponding linear system 17.53 produces null direction
∆x = 0. We have not yet reached a KKT point for the full model because the sign
of v2 = -26 is wrong for a Ú constraint in a minimize problem (principle 17.55).
Thus we drop i = 2 from S and re-solve equations 17.53 .

The new direction produces a nonzero move, and the search continues. At
t = 5 the computed direction is again ∆x = 0. This time, however, Lagrange mul-
tipliers satisfy sign restrictions of principle 17.55 . The search terminates with KKT
point (here global optimum) x* = 11.75, 4.252.

17.8 seQuential QuadratiC Programming

Sequential Quadratic Programming (SQP) is a method for solving a broad range
of constrained NLPs by creatively combining Lagrangian ideas of Section 17.3
with Newton’s Method concepts of Section 16.6, to construct a step-choosing com-
putation that takes the form of Quadratic Programs (QPs) in Section 17.7. If the
underlying problem is well behaved, repeated solution of such step-choice QPs, and
 adoption of the implied steps, converges to an optimum for the underlying NLP. We
will show how these ideas combine in a solution strategy after constructing a slightly
modified form of Pfizer Lot Sizing Application 17.4 on which to illustrate key ideas.

aPPliCation 17.9: modiFied version oF PFizer aPPliCation 17.4
Recall that Application 17.4 considered the problem of deciding the number of phar-
maceutical production lots/campaigns xj to run per year on products j = 1, c, 4
while balancing costs of production holding and changeovers against the capacity of
resources all share. Our slightly modified model for this section is

 min f1x2! 66.21x1 +
2160

x1
+ 426.8x2 +

8712
x2

 1total cost2

 + 61.20x3 +
330
x3

+ 268.1x4 +
2916

x4

1Pf 22 s.t. h1x2!
180
x1

+
726
x2

+
27.5
x3

+
243
x4

- 221.5 = 0 1capacity2
 g1x2! x1 - 5 … 0 1limit on product 12

Capacity is taken as = because we know it could never be optimal to use less than all
of it. Still, a new xi … 5 inequality limit has been introduced, to insure that the model
has both equalities and inequalities. Decision variables x1, c, x4 should also be Ú 0,
but explicit constraints are unneeded because they are certain never to be active.

Lagrangian and Newton Background
We consider constrained NLPs in the generic form

 min f1x2
(17.59)s.t. gi1x2 … 0 for all i = 1, c, /

 hk1x2 = 0 for all k = 1, c, m

1062 Chapter 17 Constrained Nonlinear Programming

Functions f, all gi, and all hk are assumed to be twice-differentiable, continuous
functions of x.

Rolling constraints into the objective function with multipliers vi … 0 on the
inequality constraints, and unrestricted wk on the equalities produces the Lagrangian
form

 min L1x, v, w2! f1x2 - a /
i = 1vigi1x2 - am

k = 1wkhk1x2 (17.60)

For our Application l7.9 model (Pf2) this becomes

 min L1x, v, w2! f1x2 - v # g1x2 - w # h1x2 (17.61)

where x! 1x1, x2, x3, x42, and v … 0 and w URS are the Lagrange multipiers on the
two constraints.

Lagrangian Section 17.3 considered the special case without inequality con-
straints and showed how to compute a stationary point (x, wQ) of Lagrangian (17.60)
with ∇L1x, wQ 2 = 0 (principle 17.15). Under additional assumptions these become
an optimal solution to the corresponding NLP.

In contrast to the direct solution approach of Lagrangian Section 17.3,
Newton’s Method of Section 16.6 (Algorithm 16E) solves (second-order) equation
systems in first and second partial derivatives to determine a best next move for the
unconstrained optimization underway. Rather than attempting to solve the model in
one major round of computation, attractive moves ∆x from the second-order equa-
tions are applied iteratively as the process repeats.

Sequential Quadratic Programming Strategy
SQP adopts elements of both these strategies.

•	 Like other Lagrangian approaches, SQP addresses form (17.60), but it does so itera-
tively through (x1t2, v1t2, w1t2) improving at each iteration t.

•	 Like Newton’s method, SQP addresses a second-order system to determine a best
move ∆x at each iteration t, but it applies this process to the current Lagrangian
L1x1t2, v1t2, w1t22 rather than a single unconstrained objective.

At each iteration t, SQP minimizes the second-order approxi-
mation to the Lagrangian

 L1x1t2, v1t2, w1t22 + ∇L1x1t2, v1t2, w1t22∆x

 + 1
2 ∆x∇2L1x1t2, v1t2, w1t22∆x

as a function of move direction ∆x.

Principle 17.57

In terms of the original objective and constraint functions

 ∇L1x1t2, v1t2, w1t22 = ∇f1x1t22 - a /
i = 1vi

1t2∇gi1x1t22
(17.62)

 - am
k = 1wk

1t2∇hk1x1t22
and

 ∇2L1x1t2, v1t2, w1t22 = ∇2f1x1t22 - a /
i = 1vi

1t2∇2gi1x1t22
(17.63)

 - am
k = 1wk

1t2∇2hk1x1t22

17.8 Sequential Quadratic Programming 1063

Furthermore, assuring the new ∆x1t2 leads to a feasible solution requires constraints

 gi1x1t22 + ∇gi1x1t22∆x1t + 12 … 0 i = 1, c, / (17.64)

 hk1x1t22 + ∇hk1x1t22∆x1t + 12 = 0 k = 1, c, m

At each iteration t, SQP solves the quadratic program

 min ∇f1x1t22∆x1t2 + 12 ∆x1t2[∇2f1x1t22 -

(QPt) g /
i = 1 v

1t2
i ∇2gi1x1t22 - gm

k = 1 w
1t2
k ∇2hk1x1t22] ∆x1t2

s.t. constraints (17.64)

An optimal ∆x1t2 yields the update x1t + 12 d x1t2 + ∆x1t + 12 and the associ-
ated optimal dual multiplers on constraints (17.64) complete the solution as
vi
1t + 12, i = 1, c, /, and wk

1t + 12, k = 1, c, m.

Principle 17.58

Algorithm 17E details the full procedure. When computation stops at Step 2,
solutions x1t + 12, v1t + 12 and a112 = 11, 1, 0, 02, a122 = 11, 0, 0, 02 have reached a
feasible and complementary minimum of the Lagrangian 17.57 , which is very nearly
= 0. This established their approximate KKT optimality.

We can simplify (17.62) to

 ∇L1x1t2, v1t2, w1t22 = ∇f1x1t22 (17.65)

because first-order terms on the constraints become essentially = 0 at feasible
x and ∆x with complementary Lagrange multipliers v and w. Then, minimizing
Lagrangian approximation 17.57 , dropping the constant part L1x1t2, v1t2, w1t22, and
expanding as in (17.65) and (17.63) leads at last to the quadratic program that gives
SQP its name:

Algorithm 17e: SequeNtiAl quAdrAtiC ProgrAmmiNg

Step 0: Initialization. Choose stopping tolerance P 7 0, starting feasible
solution x102, and starting Lagrange multipliers v102 … 0 and w102 unre-
stricted in sign. Then initialize iteration index t d 0.

Step 1: Quadratic Subproblem. Solve quadratic subproblem QP(t)
of principle 17.58 for optimal step ∆x1t2 and associated optimal con-
straint multipliers v1t + 12 and w1t + 12. Also update primal solution
x1t + 12 d x1t2 + ∆x1t + 12.

Step 2: Stopping. If 0 0 ∆x1t2 0 0 … P, stop; solutions x1t + 12, v1t + 12, and
w1t + 12 together define an approximate KKT optimum for the original NLP.
Otherwise, increment t d t + 1, and return to Step 1.

1064 Chapter 17 Constrained Nonlinear Programming

Application of Algorithm 17E to Modified Pfizer Application l7.9
To apply Algorithm 17E to our modified Pfizer application, we begin by deriving
expressions for the relevant first and second Modified partial derivatives in Table 17.7.

taBle 17.7 Partial Derivative Expressions for Modified Pfizer Application 17.9

∇f1x1t22 ! 166.21 - 21601x1
1t22-2, 426.8 - 87121x2

1t22-2,

61.20 - 3301x3
1t22-2, 268.1 - 29161x4

1t22-22
∇2f1x1t22 ! 143201x1

1t22-3, 174241x2
1t22-3, 6601x3

1t22-3, 58321x4
1t22-32 (diagonals only)

∇g1x1t22 ! 11, 0, 0, 02
∇2g1x1t22 ! (all zero)

∇h1x1t22 ! 1-1801x1
1t22-2, -7261x2

1t22-2, -27.51x3
1t22-2, -2431x4

1t22-22
∇2h1x1t22 ! 13601x1

1t22-3, 14521x2
1t22-3, 551x3

1t22-3, 4861x4
1t22-32 (diagonals only)

Notice that function g, being linear, has constant first partial derivatives and
no second partials. Also, the Hessian matrices for functions f and h are diagonal
because both are separable (definition 17.6).

Table 17.8 details progress of Algorithm 17E using these expressions. All the
building blocks of Table 17.7 are evaluated at each iteration along with the optimal
∆x and corresponding v and w.

taBle 17.8 SQP Solution of Modified Pfizer Application 17.9

t = 0 x = 14.000, 6.000, 3.000, 5.0002, v = 0.000, w = -10.000, f = 7034.9, g = -1.000, h = 2.267

∇f = 1-68.790, 184.800, 24.533, 151.4602, ∇2f = 167.500, 80.667, 24.444, 46.6562
∇g = 11.000, 0.000, 0.000, 0.0002, ∇2g = all zero

∇h = 1-11.250, -20.167, -3.056, -9.7202, ∇2h = 15.625, 6.722, 2.037, 3.8882
∆x = 11.000, -0.0715, 0.0417, -0.7892, 0 0 ∆x 0 0 = 1.2765, QP obj value = -208.57

t = 1 x = 15.000, 5.929, 3.042, 4.2112, v = -42.232, w = -8.639, f = 6878.9, g = 0.000, h = 3.706

∇f = 1-20.190, 178.928, 25.532, 103.6562, ∇2f = 134.560, 83.621, 23.453, 78.1022
∇g = 11.000, 0.000, 0.000, 0.0002, ∇2g = all zero

∇h = 1-7.200, -20.656, -2.972, -13.7042, ∇2h = 12.880, 6.698, 1.954, 6.5082
∆x = 10.000, 0.0675, 0.0399, 0.16002, 0 0 ∆x 0 0 = 0.1782, QP obj value = 29.343

t = 2 x = 15.000, 5.996, 3.082, 4.3712, v = -85.943, w = -9.132, f = 6909.8, g = 0.000, h = 0.0983

∇f = 1-20.190, 184.477, 26.449, 115.4752, ∇2f = 134.560, 80.828, 22.554, 69.8352
∇g = 11.000, 0.000, 0.000, 0.0002, ∇2g = all zero

∇h = 1-7.200, -20.194, -2.896, -12.7192, ∇2h = 12.880, 6.736, 1.879, 5.8202
∆x = 10.000, 0.0008, 0.0006, 0.00642, 0 0 ∆x 0 0 = 0.0.0065, QP obj value = 0.90214

t = 3 x = 15.000, 5.996, 3.082, 4.3772, v = -86.002, w = -9.1401, f = 6010.7, g = 0.000, h = -0.0008

∇f = 1-20.190, 184.4542, 26.463, 115.9212, ∇2f = 134.560, 80.796, 22.540, 69.5292
∇g = 11.000, 0.000, 0.000, 0.0002, ∇2g = all zero

∇h = 1-7.200, -20.188, -2.895, - 12.6822, ∇2h = 12.880, 6.733, 1.878, 5.7942
∆x = 10.000, -0.00003, -0.00007, 0.000002, 0 0 ∆x 0 0 = 0.00008, QP obj value = -0.00731

t = 4 x = 15.000, 5.997, 3.082, 4.3772, v = -86.004, w = -9.141, f = 6010.7, g = 0.000, h = 0.000

17.9 Separable Programming Methods 1065

Taking tolerance P = 0.0001, computation begins with x102 = 14, 6, 3, 52,
v = 0, and w = -10. The presented f1x1022 = 7034.9 shows the corresonding
objective value in the original model, but h1x1022 = 2.267 ≠ 0 demonstrates
this start is infeasible in the equality constraint. The optimal ∆x102 yields updated
x112 = 15.000, 5.929, 3.042, 4.2112 with improved objective value 6878.9. Still, its
norm 1.2754 7 P, so computation continues.

Successive iterations continue to improve on the objective function and feasibil-
ity. Ultimately, ∆x132 has norm = 0.00008 6 P, and we stop with feasible approximate
optimum x = 15.000, 5.997, 3.082, 4.3772 with value = 6010.7, and corresponding
dual multipliers v = -86.004, w = -9.141.

Notice that the last (QP) objective value = -0.00731 is very close to zero.
This verifies that KKT conditions for the full model and its Lagrangian have been
approximately satisfied.

Approximations to Reduce Computation
The above development has described the broad outline of the SQP method,
but like other second-order procedures of Chapters 16 and 17, the computations
required may be very bulky because Hessian matrices are needed at every iteration
on the objective and all nonlinear constraints. This has led to approximate methods
analogous to Quasi-Newton methods of Section 16.7 for SQP. Details are available
in more focused references on NLP.

17.9 seParaBle Programming methods

Separable functions decompose into sums of functions of single decision
 variables (definition 17.6), and separable programs are NLPs over separable
objective functions and constraints (definition 17.7). That is, they take the
general form

 max or min f1x2! a
j

 fj1xj2

(17.66)

s.t. gi1x2! a
j

 gi,j1xj2 Ú bi for all i ∈ G

 gi1x2! a
j

 gi,j1xj2 … bi for all i ∈ L

 gi1x2! a
j

 gi,j1xj2 = bi for all i ∈ E

 xj Ú 0 for all j

Here G, L, and E index the Ú , … , and = constraints, respectively. For nota-
tional convenience, we also assume that nonnegativity constraints apply to all
variables.

1066 Chapter 17 Constrained Nonlinear Programming

Pfizer Application 17.4 Revisited
Section 17.2 developed Pfizer pharmaceutical manufacturing lot size model

 min 66.21x1 +
2160

x1
+ 426.8x2 +

8712
x2

 1total cost2

(17.67)
 + 61.20x3 +

330
x3

+ 268.1x4 +
2916

x4

s.t.
180
x1

+
726
x2

+
27.5
x3

+
243
x4

 … 221.5 1production time2

 x1, c, x4 Ú 0

Variables in this example are

xj ! number of batches in each run or lot of product j

It is easy to see that this model is separable because its objective function can
be written as

 f1x1, x2, x3, x42! f11x12 + f21x22 + f31x32 + f41x42
where

 f11x12! 66.21x1 +
2160

x1

 f21x22! 426.8x2 +
8712

x2

 f31x22! 61.20x3 +
330
x3

 f41x22! 268.1x4 +
2916

x4

and the main production time constraint decomposes similarly with

 g11x12!
180
x1

 g21x22!
726
x2

 g31x32!
27.5
x3

 g41x42!
243
x4

The remaining four (nonnegativity) constraints are linear and thus automati-
cally separable.

17.9 Separable Programming Methods 1067

By definition, linear functions consist of a sum of terms ajxj involving single decision
variables.

Linear functions are always separable.Principle 17.59

examPle 17.29: reCognizing seParaBle FunCtions

Determine whether each of the following functions is separable.

(a) f1w1, w22! 1w123.5 + ln1w22
(b) g11w1, w22! 14w1 - 26w2

(c) g21w1, w22! 14w1 + w1w2 - 26w2

Solution: We apply definition 17.6 .

(a) This f is separable because it decomposes into the sum of f11w12! 1w123.5 and
f21w22! ln1w22.

(b) This g1 is separable because it is linear (principle 17.59).

(c) This g2 is not separable because the term w1w2 involves both variables.

Piecewise Linear Approximation to Separable Functions
The main special convenience of separable programs is that they can sometimes
be approximated closely by LPs (principle 17.8). The transformation begins with
piecewise linear approximation of the one-variable functions fj and gi,j.

Piecewise linear approximation of separable programs divides
the domain of each decision variable xj into a series of intervals k and interpo-
lates linearly to approximate corresponding fj1xj2 and gi,j1xj2 as

fj1xj2 ≈ cj,0 + a
k

 cj,kxj,k

gi,j1xj2 ≈ ai,j,0 + a
k

 ai,j,kxj,k

New variables xj,k represent xj within interval k, and coefficients cj,k and ai,j,k
express interpolation intercepts and slopes.

Definition 17.60

Figure 17.11 illustrates for x1 in our Pfizer model (17.67) over domain [0, 8].
Both objective function term f11x12 and main constraint function g11x12 have been
approximated with three linear segments. One covers x1 ∈ [0, u1, 1] = [0, 1]; a second
treats x1 ∈ [u1, 1, u1, 2] = [1, 5.7]; and the third handles x1 ∈ [u1, 2, u1, 3] = [5.7, 8].
First breakpoint u1, 1 = 1 was chosen near the “knee” of the two functions,
u1, 2 = 5.7 approximates the minimum of f11x12, and u1, 3 = 8 is a practical upper
bound on x1.

1068 Chapter 17 Constrained Nonlinear Programming

Introducing new variables x1,1, x1,2, and x1,3 with coefficients as in Figure 17.11,
we have

f11x12 ! 66.21x1 +
2160

x1
 ≈ 6480 - 4254x1, 1 - 312.7x1, 2 + 18.8x1.3

g11x12 !
180
x1

 ≈ 1540 - 1360x1, 1 - 31.6x1, 2 - 3.9x1, 3

Notice that the same interval limits must be used to approximate x1 in the objective
and all constraints. Upper bounds on the new variables are derived from interval limits

 0 … x1,1 … u1,1 = 1

 0 … x1,2 … u1,2 - u1,1 = 5.7 - 1.0 = 4.7

 0 … x1,3 … u1,3 - u1,2 = 8.0 - 5.7 = 2.3

f1(x1) = 66.21x1 + 2160

0

500

1000

1500

2000

2500

3000

c1.2 = -312.7

a1.0 = 1540

a1.1 = -1360

a1.2 = -31.6

u1.1 = 1 u1.2 = 5.7 u1.3 = 8.0

a1.3 = -3.9

c1.1 = -4254
c1.0 = -6480

g1(x1) = 180

c1.3 = 18.8

x1

x1

Figure 17.11 Piecewise Linear Approximation of Pfizer Application 17.4

examPle 17.30: Forming PieCewise linear aPProximations

Consider a separable nonlinear program with objective function and constraint
component functions for nonnegative decision variable w1 given by

f11w12 ! 1w122 - 4w1 + 22

g1,11w12 ! 1w1 + 9

g2,11w12 ! 14w1

Form corresponding piecewise linear approximations using breakpoints u1, 1 = 2
and u1, 2 = 5.

Solution: We must estimate the interpolation coefficients of definition 17.60 . Inter-
cepts are

c1,0 = f1102 = 22, a1,1,0 = g1, 1102 = 3, a2,1,0 = g2,1102 = 0

17.9 Separable Programming Methods 1069

Linear Program Representation of Separable Programs
Applying piecewise linear approximation 17.60 to every variable of separable
 program format (17.66) yields an LP approximation.

Slopes for the interval [0, u1,1] = [0, 2] are derived as

c1,1 =
f1122 - f1102

2 - 0
 = -2

a1,1,1 =
g1,1122 - g1,1102

2 - 0
 = 0.158

a2,1,1 =
g2,1122 - g2,1102

2 - 0
 = 14

Corresponding slopes for interval [u1,1, u2,1] = [2, 5] are

c1,2 =
f1152 - f1122

5 - 2
 = 3

a1,1,2 =
g1,1152 - g1,1122

5 - 2
 = 0.142

a2,1,2 =
g2,1152 - g2,1122

5 - 2
 = 14

Thus piecewise linear approximations are

f11w12 ≈ 22 - 2w1,1 + 3w1,2

g1,11w12 ≈ 3 + 0.158w1,1 + 0.142w1,2

g2, 11w12 ≈ 0 + 14w1,1 + 14w1,2

The linear programming approximation to a separable non-
linear program over nonnegative variables can be expressed as

max or min a j acj, 0 + a
k

 cj,kxj,kb

s.t. a
j

 aai,j,0 + a
k

 ai,j,kxj,kb Ú bi for all i ∈ G

 a
j
aai,j,0 + a

k
 ai,j,kxj,k b … bi for all i ∈ L

 a
j

 aai,j,0 + a
k

 ai,j,kxj,kb = bi for all i ∈ E

 0 … xj,k … uj,k - uj,k - 1 for all j, k

where uj,k are the interval breakpoints for variable xj1uj,0! 02, and the coeffi-
cients cj,k and ai,j,k express interpolation intercepts and slopes.

Definition 17.61

1070 Chapter 17 Constrained Nonlinear Programming

This model is a linear program solvable by methods of Chapters 5–7.
Full application of construction 17.61 to our Pfizer lot sizing model produces

the linear approximation

 min 42,354 - 4254x1,1 - 312.7x1,2 + 18.8x1,3

(17.68)

 - 16,997x2,1 - 1509x2,2 + 184.8x2,3

 - 598.8x3,1 - 82.3x3,2 + 43.3x3,3

 - 5564x4,1 - 615.5x4,2 + 157.6x4,3

s.t. 7030 - 1360x1,1 - 31.6x1,2 - 3.9x1,3

 - 2452x2,1 - 161.3x2,2 - 20.2x2,3

 - 555x3,1 - 12x3,2 - 1.5x3,3

 - 1486x4,1 - 73.6x4,2 - 9.2x4,3 … 221.5

 0 … x1,1 … 1, 0 … x1,2 … 4.7, 0 … x1,3 … 2.3

 0 … x2,1 … 1, 0 … x2,2 … 3.5, 0 … x2,3 … 3.5

 0 … x3,1 … 1, 0 … x3,2 … 1.3, 0 … x3,3 … 5.7

 0 … x4,1 … 1, 0 … x4,2 … 2.3, 0 … x4,3 … 4.7

An optimal solution is

 x1,1
* = 1.0, x1,2

* = 4.7, x1,3
* = 2.3, or x1,1

* + x1,2
* + x1,3

* = x1
* = 8.0

(17.69)
 x2,1

* = 1.0, x2,2
* = 3.5, x2,3

* = 2.4, or x2,1
* + x2,2

* + x2,3
* = x2

* = 6.9

 x3,1
* = 1.0, x3,2

* = 1.3, x3,3
* = 0.0, or x3,1

* + x3,2
* + x3,3

* = x3
* = 2.3

 x4,1
* = 1.0, x4,2

* = 2.3, x4,3
* = 0.0, or x4,1

* + x4,2
* + x4,3

* = x4
* = 3.3

which corresponds fairly well to the nonlinear optimum of (17.7).

Correctness of the LP Approximation to Separable Programs
Does linear program 17.61 correctly model (17.66) (except for interpolation
error)? Sometimes yes, sometimes no. To see the potential difficulty, suppose that
we attempt to

max f1y2! y2 - 12y + 45

s.t. 0 … y … 9

This f is the function in Figure 17.4 (Section 17.2). Obviously, the optimal y* = 0,
because f102 = 45, f192 = 18, and every y in between has a lower function value.

Forming linear program representation 17.61 for this simple example yields

max 45 - 7y1 + 2y2

s.t. 0 … y1 … 5

 0 … y2 … 4

An optimal solution makes y1
* = 0, y2

* = 4, which implies that y* = y1
* + y2

* = 4.
What went wrong? The approximation

f 1y2 ≈ c0 + a
k

 ckyk

17.9 Separable Programming Methods 1071

corresponding to 17.60 is correct only if we assume that segment variables yk satisfy a
certain sequence at optimality. For y ∈ [0, 5], we want first segment y1 to represent y.
If y ∈ [5, 9], we want segment 1 to run to its upper limit and segment 2 to do the rest.

In general, each segment of a piecewise linear approximation must reach its
upper bound before the next is available for use.

Linear program representation 17.61 gives a correct approx-
imation to separable program (17.66) whenever optimal values for segment
variables satisfy

xj,k + 1
* 7 0 only if xj,k

* = 1uj,k - uj,k - 12 for all j and k

with uj,0 ! 0.

Principle 17.62

Pfizer application results (17.69) illustrate a case where conditions 17.62 are
satisfied. For example, at j = 2, segment upper bounds in formulation (17.68) are
1.0, 3.5, and 3.5, while

x2,1
* = 1.0, x2,2

* = 3.5, x2,3
* = 2.4

Each positive segment has the preceding one at its upper bound.

examPle 17.31: CheCKing PieCewise linear aPProximations

A piecewise linear approximation to a separable nonlinear program in nonnegative
variables w1 and w2 uses breakpoints u1,1 = 2 and u1,2 = 6 for the first variable,
together with u2,1 = 7 and u2,2 = 20 for the second. Determine whether each of the
following LP approximation solutions provides a correct answer (except for inter-
polation error) to the original nonlinear program.

(a) w1,1
* = 2, w1,2

* = 3, w2,1
* = 6, w2,2

* = 0

(b) w1,1
* = 0, w1,2

* = 3, w2,1
* = 1, w2,2

* = 13

Solution: Following formulation 17.61 , bounds on the segment variables will be

 0 … w1,1 … 2 - 0 = 2, 0 … w1,2 = 6 - 2 = 4

 0 … w2,1 … 7 - 0 = 7, 0 … w2,2 = 20 - 7 = 13

(a) This optimal solution does give a correct approximation because it satisfies sequenc-
ing conditions 17.62 . Variable w1,1

* equals its upper bound, so w1,2
* can be positive.

(b) This solution yields an incorrect approximation because it violates sequencing
conditions 17.62 . Variable w1,2

* 7 0 and w1,1
* does not equal its upper bound.

Convex Separable Programs
Suppose now that the given separable program (17.61) is also a convex program.
That is, we are minimizing a convex objective or maximizing a concave one, subject
to concave Ú constraints, convex … ones, and linear equalities (definition 17.3).

1072 Chapter 17 Constrained Nonlinear Programming

These requirements relate to the entire objective of constraint functions. Still,
it is easy to see that all component functions for each variable in separable form
(17.61) must have similar properties.

Separable function

 s1x1, c, xn2! a
n

j = 1
 sj1xj2

is convex if and only if each component sj is convex. It is concave if and only if
each sj is concave.

Principle 17.63

We already know from principle 16.29 that sums of convex (or concave) functions
are convex (concave). But 17.63 asserts that the converse is also true for separable
functions. To see why, we need only choose points x112 and x122 with all components
equal except the jth. Then a step l from x112 toward x122 changes just component
sj1xj

112 + l1xj
122 - xj

1122 of s. Convex function definition 16.23 can hold for s only
if it holds for sj.

Given their many convenient properties, it should not surprise us that sepa-
rable convex programs satisfy requirement 17.62 for good approximation by linear
programming.

Linear approximations 17.61 to a separable convex programs
have an optimal solution satisfying sequencing conditions 17.62 if they have
any optimum at all.

Principle 17.64

Again, Pfizer application model (17.68) illustrates. We have seen in Section 16.2
that the nonlinear version (17.67) is a convex program. Thus it was no accident that
segment optima (17.69) satisfy sequencing condition 17.67 .

To understand why separable convex programs have the required property for
effective LP approximation, recall (principle 16.27) that second derivatives of convex
functions are nonnegative and those of concave functions are nonpositive. It follows
that first derivatives, or slopes, are nondecreasing and nonincreasing, respectively.

For a minimizing convex objective, this implies that the least cost slope cj,k of
each approximation occurs at k = 1, and for a maximizing concave objective, the
first segment will also be the most preferred. In a similar way, coefficients in con-
straint rows also exhibit a preference for lower-numbered segments. For example, if
constraint i is … , and thus convex, ai,j,1 is the smallest slope in the approximation of
gi,j. Thus it does least damage to feasibility. If the constraint is Ú , and thus concave,
ai,j,1 is largest and advances feasibility most rapidly.

Combining these observations about objective and constraint approximations,
we see that the first segment xj,k of each piecewise linear approximation gives the
greatest objective function payoff with the least burden on constraints. An optimal
LP solution must choose it first, making the second segment positive only when the
first has reached its upper bound. The pattern continues through each interval k, so
that property 17.62 is satisfied.

17.10 Posynomial Geometric Programming Methods 1073

Difficulties with Nonconvex Separable Programs
When the given separable program is not convex, property 17.62 may not hold

automatically. However, it can be enforced artificially.
Suppose that we apply upper-and lower-bounded simplex Algorithm 5D to lin-

ear approximation 17.61 . Each iteration chooses either a nonbasic lower-bounded
variable to increase or a nonbasic upper-bounded variable to decrease.

General separable programming searches simply restrict the choices even fur-
ther to maintain sequencing property 17.62 . A nonbasic lower-bounded segment
variable cannot increase unless the preceding segment is already at its upper bound.
Similarly, a nonbasic upper-bounded segment variable cannot decrease unless the
succeeding segment has value 0.

Of course, these extra limitations may prevent the simplex from computing
an optimal solution to linear program 17.61 . However, they do assure that prop-
erty 17.67 is enforced. When no allowable pivots remain, we stop with a heuristic
optimum.

An alternative approach producing globally optimal solutions can be derived
using integer linear programming methods of Section 11.1. Binary variables yj,k are
introduced that parallel each xj,k, with

yj,k ! e1 if xj,k 7 0
0 otherwise

Then the switching constraints

1uj,k - uj,k - 12 yj,k + 1 … xj,k … 1uj,k - uj,k - 12 yj,k for all j, k

enforce sequencing conditions 17.67 by pushing each segment to its upper bound if
the next is positive.

17.10 Posynomial geometriC Programming methods

As we have seen in Sections 17.1 and 17.2, many important applications of nonlin-
ear programming arise in engineering design, where decision variables are physical
dimensions, pressures, and so on. Such models are often highly nonlinear and have
many locally optimal solutions. This section deals with special cases called posyn-
omial geometric programs, which address the “variables to powers” form of many
engineering design models and constitute the only broad class of nonconvex NLPs
readily solved to global optimality.

Posynomial Geometric Program Form
In Section 17.2 we introduced (definition 17.10) posynomial functions, which are
positive-weighted sums of products of decision variables raised to arbitrary powers.
A posynomial geometric program (GP) is an NLP minimizing a posynomial objec-
tive function over positive variables and … posynomial main constraints (defini-
tion 17.11). The general form is

min a
k∈K0

 dk q
n

j = 1
 1xj2ak,j

1074 Chapter 17 Constrained Nonlinear Programming

 s.t. a
k∈Ki

 dk q
n

j = 1
 1xj2ak, j … 1 i = 1, c, m (17.70)

 xj 7 0 j = 1, c, n

where nonoverlapping sets Ki index the posynomial terms in the objective and con-
straints, values dk are the corresponding weights, and the ak, j are exponents of vari-
ables xj in terms k.

Several details of the format will prove critical to its tractability:

•	 The objective must minimize a posynomial. Maximizations are not allowed.
•	 Coefficients dk must all be positive.
•	 Constraints must enforce … requirements on a posynomial. Any = and Ú forms

 destroy the structure.
•	 Decision variables must be limited to positive values. We will want to take their

logarithms.

Cofferdam Application Revisited
We illustrate GP methods with Section 17.2’s model (17.11) to optimize a cofferdam
design:

min 168x1x2 + 3648x1 + 3648
x1x2

x3
+

1.46 * 107

x4
 1cost2

(17.71)
s.t.

1.25x4

x1
+

41.625
x1

 … 1 1empirical2

1.0425x1

x2
 … 1 1slipping2

 0.00035x1x3 … 1 1tension2
 x1, x2, x3, x4 7 0

In the notation of (17.70), K0 = 51, 2, 3, 46, K1 = 55, 66, K2 = 576, and K3 = 586.
Corresponding coefficients are

 d1 = 168, d2 = 3648, d3 = 3648, d4 = 1.46 * 107

 d5 = 1.25, d6 = 41.625, d7 = 1.0425, d8 = .00035

 a1,1 = 1, a1,2 = 1, a1,3 = 0, a1,4 = 0

 a2,1 = 1, a2,2 = 0, a2,3 = 0, a2,4 = 0

 a3,1 = 1, a3,2 = 1, a3,3 = -1, a3,4 = 0

 a4,1 = 0, a4,2 = 0, a4,3 = 0, a4,4 = -1

 a5, 1 = -1, a5,2 = 0, a5,3 = 0, a5,4 = 1

 a6,1 = -1, a6,2 = 0, a6,3 = 0, a6,4 = 0

 a7,1 = 1, a7,2 = -1, a7,3 = 0, a7,4 = 0

 a8,1 = 1, a8,2 = 0, a8,3 = 1, a8,4 = 0

17.10 Posynomial Geometric Programming Methods 1075

Logarithmic Change of Variables in GPs
Posynomial functions need not be convex (see application (17.14)), and thus
geometric programs (17.70) are often not convex programs. However, a change
of variables can make them convex. In particular (principle 17.12), we consider
substituting

 zj ! ln1xj2 (17.72)

or

 xj! ezi (17.73)

Under transformation (17.73), terms k of posynomials in (17.70) simplify as

dk q
j
1xj2ak, j = dkq

j
1ezj2ak, j = dkq

j
eak, jzj = dk

aj ak, jzj = dkea1k2 # z

examPle 17.32: PlaCing geometriC Programs in standard Form

Identify the constants and index sets of standard form (17.70) for the following po-
synomial geometric program:

min 3
w1

.43

w2
+ 14w2w3

s.t. w11w3 + w21w3 … 20

w1

w2
 … 1

 w1, w2, w3 7 0

Solution: Begin by dividing through the main constraint by 20 to obtain standard
right-hand side 1. Then the objective function has terms k ∈ K0! 51, 26, the first
constraint involves k ∈ K1! 53, 46, and the second has only the one k ∈ K2! 556.
The corresponding standard-form coefficients are

d1 = 3, d2 = 14, d3 = 0.05, d4 = 0.05, d5 = 1

and

 a1,1 = 0.43, a1,2 = -1, a1,3 = 0

 a2,1 = 0, a2,2 = 1, a2,3 = 1

 a3,1 = 1, a3,2 = 0, a3,3 = 0.5

 a4,1 = 0, a4,2 = 1, a4,3 = 0.5

 a5,1 = 1, a5,2 = -1, a5,3 = 0

1076 Chapter 17 Constrained Nonlinear Programming

where a1k2! 1ak,1, c, ak,n2 and z ! 1z1, c, zn2. Then original geometric program
form (17.70) becomes

 min f1z2! a
k∈K0

 dkea1k2 # z

(17.74)
s.t. gi1z2! a

k∈Ki

 dkea1k2 # z … 1 i = 1, c, m

 zj URS j = 1, c, n

For example, cofferdam model (17.71) transforms to

min 168ea112 # z + 3648ea12 2 # z + 3648ea132 # z + 11.46 * 1072ea142 # z

(17.75)
s.t. 1.25ea152 #z + 41.625ea162 # z … 1

 1.0425a172 # z … 1

 0.00035ea182 # z … 1

 z URS

with

 a112 = 11, 1, 0, 02, a122 = 11, 0, 0, 02
 a132 = 11, 1, -1, 02, a142 = 10, 0, 0, -12
 a152 = 1-1, 0, 0, 12, a162 = 1-1, 0, 0, 02
 a172 = 11, -1, 0, 02, a182 = 11, 0, 1, 02

examPle 17.33: Changing variaBles in geometriC Programs

Return to the posynomial geometric program of Example 17.32. Change variables
via (17.73) to produce a convex program in format (17.74).

Solution: Using the coefficients of Example 17.32, the transformed model is

min 3e0.43z1 - 1z2 + 14e1z2 + 1z3

s.t. 0.05e1z1 + 0.5z3 + 0.05e1z2 + 0.5z3 … 1

 1e1z1 - 1z2 … 1

 z1, z2, z3 URS

Convex Transformed GP Model
The power of this simple change of variables (17.73) is to convert a posynomial geo-
metric program to a convex program (definition 17.3).

The transformed model obtained from a geometric program
by substituting xj = ezj is a convex program in new variables zj.

Principle 17.65

To see why the transformed model is convex in z, observe that the objective and
constraint functions are positive-weighted sums of terms

pk1z2! ea1k2 # z

17.10 Posynomial Geometric Programming Methods 1077

Linear exponent a1k2 # z is convex in z (principle 16.28), and h1y2! ey is nonde-
creasing and convex. Composition principle 16.31 then implies that each pk is convex,
so that their transformed sum must be, too. It follows that format (17.74) minimizes a
convex objective, subject to convex … constraints, which makes it a convex program.

Notice how this analysis depends on details of the posynomial GP format.
Coefficients dj,k must be positive for weighted sums of convex terms to be guaran-
teed convex. Also, a minimizing objective and … nonlinear constraints are essential
if a model over convex functions is to be a convex program.

Direct Solution of the Transformed Primal GP
Principle 17.65 provides a direct avenue to computing global optimal solutions to
posynomial geometric programs (17.65). We need only substitute xj = ezj, solve the
resulting convex program in z by methods of Section 17.6, and transform back by

 xj
* d ezj

* for all j (17.76)

For example, application of reduced gradient Algorithm 17C to transformed model
(17.75) produces optimal solution

z1
* = 4.138, z2

* = 4.179, z3
* = 3.820, z4

* = 2.823

Then inverse transformation (17.76) gives the following optimal solution in original
variables:

 x1
* = e4.138 = 62.65, x2

* = e4.179 = 65.32,

 x3
* = e3.820 = 45.60, x4

* = e2.823 = 16.82

Dual of a Geometric Program
Sometimes even more efficient methods than solving convex program (17.74) can
be used to optimize geometric programs. The process begins with still another trans-
formation of the given model termed its dual.

In addition to the usual Lagrange multiplier for each constraint, geometric
programming duals introduce variables for every term k of the objective and con-
straint posynomials:

 vi ! Lagrange multiplier for constraint i

 dk ! dual variable for posynomial term k

The GP dual corresponding to posynomial geometric pro-
gram (17.70) can be expressed as

max a
all k

 dk ln adk

dk
b - a

m

j = 1
 ni ln1-ni2

s.t. a
all k

 a1k2dk = 0

 a
k∈K0

 dk = 1

Definition 17.66

(Continued)

1078 Chapter 17 Constrained Nonlinear Programming

Cofferdam model (17.71) illustrates. Dual form 17.66 is

max d1 ln a 168
d1

b + d2 ln a 3648
d2

 b + d3 ln a 3648
d3

b

(17.77) + d4 ln a 1.46 * 107

d4
b + d5 ln a 1.25

d5
b + d6 ln a 41.625

d6
b

 + d7 ln a 1.0425
d7

b + d8 ln a 0.00035
d8

b

 - n1 ln1-n12 - n2 ln1-n22 - n3 ln1-n32
s.t. +d1 +d2 +d3 -d5 -d6 +d7 +d8 = 0

 +d1 +d3 -d7 = 0

 -d3 +d8 = 0

 -d4 +d5 = 0

 +d1 +d2 +d3 +d4 = 1

 +d5 +d6 = -n1

 +d7 = -n2

 +d8 = -n3

 d1, c, d8 Ú 0

 n1, n2, n3 … 0

It first 4 constraints weight dk with exponents aj,k for primal variables j. The fifth
normalizes the d total of variables relating to the objective function. The remaining
main constraints simply recover (negatives of) Lagrange multipliers for the 3 primal
constraints as sums of associated dk. An optimal solution is

 n1
* = -1.225, n2

* = -0.481, n3
* = -0.155,

(17.78) d1
* = 0.326, d2

* = 0.108, d3
* = 0.155, d4

* = 0.411

 d5
* = 0.411, d6

* = 0.814, d7
* = 0.481, d8

* = 0.155

with optimal value 14.563.

 a
k∈Ki

dk = -ni i = 1, c, m

 dk Ú 0 for all k

 ni … 0 i = 1, c, m

where ni is the Lagrange multiplier on main primal constraint i and dk is the
dual variable for posynomial term k.

17.10 Posynomial Geometric Programming Methods 1079

Degrees of Difficulty and Solving the GP Dual
Dual problem 17.66 is a separable program (definition 17.7) with linear constraints.
Furthermore, its objective function can be shown to be concave over feasible 1d, v2,
even though it is not concave over all choices of the decision variables.

examPle 17.34: Formulating geometriC Program duals

Form the dual of the posynomial geometric program in Example 17.33.

Solution: Following format 17.66 , we introduce Lagrange multipliers n1 and n2 for
the main constraints, and variables d1, c, d5 for the five posynomial terms. Then
the dual becomes

max d1 ln a 3
d1
b + d2 ln a 14

d2
b + d3 ln a 0.05

d3
b + d4 ln a 0.05

d4
b + d5 ln a 1

d5
b

 -n1 ln1-n12 - n2 ln1-n22
s.t. 0.43d1 + 1d3 + 1d5 = 0

 -1d1 + 1d2 + 1d4 - 1d5 = 0

 1d2 + .5d3 + .5d4 = 0

 1d1 + 1d2 = 1

 1d3 + 1d4 = -n1

 1d5 = -n2

 d1, c, d5 Ú 0

 n1, n2 … 0

Posynomial geometric program dual 17.66 is a separable con-
vex program over linear constraints.

Principle 17.67

Thus either the separable programming methods of Section 17.9 or the reduced gra-
dient algorithms of Section 17.6 can be employed to compute a global optimum.

Sometimes the task is even easier. Noting that the last main system of con-
straints entirely determines the vi in terms of the dk, the degree of difficulty of a
model depends on the number of truly independent variables dk in other main
constraints.

The degree of difficulty of a geometric program is

(number of posynomial terms k) - (number of variables j) - 1

Definition 17.68

The first two sets of main constraints in dual 17.66 have one variable for each
k and 1n + 12 constraints for the n primal decision variables. Thus the degree of
difficulty bounds the number of d-variables that must be fixed in value to determine
the rest uniquely. Some models even have degree of difficulty zero, meaning that the

1080 Chapter 17 Constrained Nonlinear Programming

dual can be optimized by solving a system of linear equations. Cofferdam applica-
tion dual (17.77) has degree of difficulty

terms - variables - 1 = 8 - 4 - 1 = 3

examPle 17.35: determining gP degrees oF diFFiCulty

Determine the degrees of difficulty in posynomial geometric program of Examples
17.32 to 17.34.

Solution: The model has 5 posynomial terms and 3 variables. Thus its degree of
difficulty is 5 - 3 - 1 = 1.

Recovering a Primal GP Solution
We have seen that the dual problem 17.66 may be convenient to solve, but pri-
mal 17.11 is the model of true interest. How can we retrieve a primal optimum x*?

An elegant dual relationship makes recovery straightforward when optimal
Lagrange multipliers are known for the dual.

Suppose that z* are the optimal Lagrange multipliers on con-
straints a k a

1k2dk = 0 in geometric programming dual 17.66 . Then

xj
*

 d e
-zj

*

yields a global optimum in the corresponding primal.

Principle 17.69

For example, optimal Lagrange multipliers for the first 4 constraints of coffer-
dam model dual (17.77) are

z1
* = -4.138, z2

* = -4.179, z3
* = -3.820, z3

* = -2.823

Application of transformation 17.69 recovers the same primal optimum that we
have seen before:

 x1
* = e4.138 = 62.65, x2

* = e4.179 = 65.32

 x3
* = e3.820 = 45.60, x4

* = e2.823 = 16.82

Derivation of the GP Dual
Why is problem 17.66 termed a dual, and why can primal optima be recovered by
principle 17.69 ? Begin by taking logarithms of both sides in constraints and the
objective function of transformed model (17.74).

 min ln1f1z22! ln a a
k∈K0

 dkea1k2 # zb

(17.79)
s.t. ln1gi1z22! ln a a

k∈Ki

 dkea1k2 # zb … 0 i = 1, c, m

 zj URS j = 1, c, n

17.10 Posynomial Geometric Programming Methods 1081

Minimizing ln1f2 is equivalent to minimizing f, and gi1z2 7 0, so that logarithms
always exist.

Noting the convexity of transformed model (17.75), this logarithmically
retransformed form (17.79) is also a convex program. Karush–Kuhn–Tucker condi-
tions will be sufficient for an optimal solution (principle 17.28).

With Lagrange multipliers, ni, the main rows of KKT conditions are

1

f1z2 a
k∈K0

 dkak, je
a1k2 # z - a

m

i = 1

ni

gi1z2 a
k∈Ki

 dkak,je
a1k2 # z = 0 for all j (17.80)

Now substituting

 dk !
1

f1z2 1dkea1k2 # z2 k ∈ K0 (17.81)

dk !
-ni

gi1z2 1dkea1k2 # z2 k ∈ Ki, i = 1, c, m

equations (17.80) become

a
al k

 ak,jdk = 0 for all j = 1, c, n

These are exactly the first main constraints of dual 17.66 . Sign restrictions on the ni
and dk also correspond.

To make new variables dk perform according to their definitions (17.81), we
must also enforce

f1z2 = a
k∈K0

 dkea1k2 # z

or, dividing by f(z),

 1 = a
k∈K0

 dk (17.82)

Similarly,

gi1z2 = a
k∈Ki

 dkea1k2 # z for all i = 1, c, m

becomes upon multiplication by -ni>gi1z2
 -ni = a

k∈Ki

 dk for all i = 1, c, m (17.83)

Expressions (17.82) and (17.83) complete the constraints of dual 17.66 .
Only the complementary slackness part of KKT conditions now remain to be for-

mulated. Instead of explicitly including such conditions, dual formulation 17.66 maxi-
mizes objective function

 a
all k

 dk ln adk

dk
b - a

i
 ni ln1-ni2 (17.84)

1082 Chapter 17 Constrained Nonlinear Programming

over 1d, v2, fulfilling the other constraints. A long but tedious derivation can show
that this maximizes the Lagrangian of (17.79) over stationary points z, which has the
same effect as enforcing complementary slackness.

Signomial Extension of GPs
Often, models that cannot be formulated as a posynomial geometric program do fit
a less restrictive signomial form.

Function s(x) is a signomial if it can be expressed as

 s1x1, c, xn2! a
k

 dk a q
n

j = 1
1xj2ak, jb

for given dk and aj,k of arbitrary sign.

Definition 17.70

Note that term weights dk are not required to be positive.
Obviously, the easy convexity of NLPs over transformed posynomials (prin-

ciple 17.65) is lost when weights may be negative. Still, considerable tractability is
preserved. The reader is referred to more advanced books on nonlinear program-
ming for details.

ExERCiSES

17-1 A lidless, rectangular box is to be manufac-
tured from 30- by 40-inch cardboard stock sheets
by cutting squares from the four corners, folding
up ends and sides, and joining with heavy tape.
The designer wishes to choose box dimensions
that maximize volume.

(a) Formulate this design problem as a con-
strained NLP.

(b) Use class optimization software to start
from a feasible solution and compute at
least a local optimum.

17-2 A partially buried, rectangular office build-
ing is to be constructed with a volume of at least
50,000 cubic meters. To minimize energy for
heating and cooling, the exterior roof and side-
wall surface exposed above ground should not
 exceed 2250 square meters. Within these limits,
the designer wishes to choose dimensions that
minimize the volume excavated for the buried
part of the building.

(a) Formulate this design problem as a con-
strained NLP.

(b) Use class optimization software to start
from a feasible solution and compute at
least a local optimum.

17-3 A company maintains inventories of its 5
prod ucts, replenishing the stock of an item when-
ever it reaches zero by manufacturing a fixed lot
size of new units. The following table shows the
setup cost for manufacturing, the unit volume,
the unit annual inventory holding cost, and the
estimated annual demand for each item.

Product

1 2 3 4 5

Setup 300 120 440 190 80
Volume 33 10 12 15 26
Holding 87 95 27 36 135
Demand 800 2000 250 900 1350

Managers wish to choose lot sizes for each item
that minimize total average annual setup and
holding costs while assuring that the maximum
combined stored volume will not exceed the 4000
cubic meters available. Assume that lots arrive the
instant they are ordered.

(a) Formulate this operations problem as a
constrained NLP. (Hint: What is the aver-
age on hand inventory of item j as a func-
tion of the lot size for j?)

 Exercises 1083

(b) Use class optimization software to start
from a feasible solution and compute at
least a local optimum.

17-4 A print shop plans to maintain 5 different
presses, replacing each every few years on a regular
cycle. The following table shows the replacement
cost (in thousands of dollars) of each press, and the
estimated annual income (in thousands of dollars)
that each can generate when new. However, as
the presses grow older, their productivity declines;
final values in the table show the (simple, not com-
pound) percent income loss each year of life.

Press

1 2 3 4 5

Replace 110 450 150 675 320
Income 90 110 55 220 250
Decline 5% 20% 30% 20% 40%

The owner wishes to choose a replacement (cycle)
time for each press that minimizes total replace-
ment and lost income costs within the $250,000
she can average annually for purchasing new
presses.

(a) Formulate this replacement problem as a
constrained NLP. (Hint: What is the aver-
age income loss on press j as a function of
the replacement time for j?)

(b) Use class optimization software to start
from a feasible solution and compute at
least a local optimum.

17-5 A machinist will remove excess metal from
a rotary (round) machine part by passing the
cutting tool of a lathe along 42 inches of the part
length. For a lathe turning at N revolutions per
minute and advancing the tool at a feed rate of f
inches per revolution, classic empirical relation-
ships project the effective life of a cutting tool
(in minutes) at

tool life = a 5

Nf 0.60 b
6.667

Each time a tool wears out the operator must in-
stall a new one and spend 0.1 hour realigning the
machine. Engineers wish to choose the machining
plan that minimizes total cost at $52 per hour for
machinist time and $87 each for new tools. Speed
N must be in the interval [200, 600] and feed rate
f in the interval [0.001, 0.005].

(a) Formulate this machining problem as a
constrained NLP.

(b) Use class optimization software to start
from a feasible solution and compute at
least a local optimum.

17-6 A warehousing firm services orders for its 5
products from an automatic storage and retrieval
(ASAR) system, refilling storage from backup
areas whenever the ASAR stock of any item
reaches zero. The following table shows the weekly
demand and the unit volume (cubic feet) for each
product.

Product

1 2 3 4 5

Demand 100 25 30 50 200
Volume 2 5 3 7 5

Managers wish to decide how many of each item
to accommodate within the 1000 cubic feet of
available storage to minimize the total number of
refilling operations per week.

(a) Formulate this operations problem as a
constrained NLP.

(b) Use class optimization software to start
from a feasible solution and compute at
least a local optimum.

17-7 A solid waste company must locate 2 dis-
posal sites to service the demand (tons per day) of
the 5 communities detailed in the following table.

Community

1 2 3 4 5

Demand 60 90 35 85 70
E-W coordinate 0 4 30 20 16
N-S coordinate 0 30 8 17 15

Each site will be able to handle up to 200 tons per
day, and planners want to select the site locations
to minimize to total ton-miles of hauling from
community (mile) coordinates shown in the table
to disposal sites. Assume that hauling distance is
proportional to straight-line distance.

(a) Formulate this location-allocation prob-
lem as a constrained NLP.

(b) Use class optimization software to start
from reasonable locations and compute
at least a local optimum.

1084 Chapter 17 Constrained Nonlinear Programming

17-8 A light manufacturing firm is planning a
new factory in a rural part of the western United
States. A total of 100 employees are to be hired
from the 5 surrounding communities. The follow-
ing table shows the number of (equally) qualified
workers available in each community and com-
munity location coordinates (in miles).

Community

1 2 3 4 5

Available 70 15 20 40 30
E-W coordinate 0 10 6 1 2
N-S coordinate 0 1 8 9 3

Planners want to choose a factory site that mini-
mizes total employee travel distance. Assume that
travel distance is proportional to straight-line dis-
tance from community to factory site.

(a) Formulate this location-allocation prob-
lem as a constrained NLP.

(b) Use class optimization software to start
from reasonable locations and compute
at least a local optimum.

17-9 An investor has decided to divide his $1.5 mil-
lion portfolio among government bonds, interest-
sensitive stocks, and technology stocks because
some of these categories tend to increase return in
periods when the others decrease. Specifically, his
analysis of recent experience produced the following
average returns and covariances among categories:

Bonds

interest-
Sensitive

Stocks
Technology

Stocks

Mean return 5.81% 10.97% 13.02%

Covariance

Bonds 1.09 -1.12 -3.15
Interest-
sensitive
stocks

-1.12 1.52 4.38

Technology
stocks

-3.15 4.38 12.95

The investor wants to find the least variance way
to divide his portfolio among the three categories
while maintaining a 10% average return.

(a) Formulate this portfolio problem as a
constrained NLP.

(b) Use class optimization software to start
from a feasible solution and compute at
least a local optimum.

17-10 A farmer wants to allocate between 10 and
60% of his available acreage to each of corn, soy-
beans, and sunflowers. With markets varying wildly
from year to year, he has done some research on
past performance to guide his decisions. The fol-
lowing table shows the average return per acre
and the covariances among categories that he has
computed.

Corn Soybeans Sunflow

Dollar return 77.38 88.38 107.50

Covariance

Corn 1.09 -1.12 -3.15
Soybeans -1.12 1.52 4.38
Sunflow -3.15 4.38 12.95

The farmer wants the least risk plan that will aver-
age at least $90 per acre.

(a) Formulate this portfolio problem as a
constrained NLP.

(b) Use class optimization software to start
from a feasible solution and compute at
least a local optimum.

17-11 A new premium whiskey will be produced
by blending up to 5 different distilling products,
and the quality of the results will be measured by
3 performance indices. The following table shows
the value of each index for the 5 ingredients,
along with lower and upper limits for the index of
the blend and costs per unit volume.

index

ingredient

1 2 3 4 5

1 12.6 15.8 17.2 10.1 11.7
2 31.4 30.2 29.6 40.4 28.9
3 115 202 184 143 169

Cost 125 154 116 189 132

index

Blend

Low High

1 12 16
2 31 36
3 121 164

 Exercises 1085

The index of the blend in the first two cases will be
just a volume-weighted sum of those of the chosen
ingredients. However, the third index is logarith-
mic (i.e., the natural logarithm of the blend value
will be the logarithm of the volume-weighted
ingredient sum). Production planners want to
choose a blend that meets upper and lower index
requirements at minimum cost.

(a) Formulate this blending problem as a
constrained NLP.

(b) Use class optimization software to start
from a feasible solution and compute at
least a local optimum.

17-12 A chemical manufacturer needs to pro-
duce 1250 barrels of a special industrial cleaning
fluid by blending 5 available ingredients. The
quality of the result is measured by 3 quantitative
indices. The following table show the index val-
ues for each ingredient, along with the minimum
and maximum required in the blend and the cost
per barrel of ingredients.

index

ingredient

1 2 3 4 5

1 50.4 45.2 33.1 29.9 44.9
2 13.9 19.2 18.6 25.5 10.9
3 89.2 75.4 99.8 84.3 68.8

Cost 531 339 128 414 307

Blend

index Minimum Maximum

1 33 43
2 17 20
3 81 99

The index of the blend in the first case will be just
a volume-weighted average of those of the chosen
 ingredients. However, the square of the second blend
index will be the square of the volume-weighted
ingredient average, and the logarithm of the
third blend index will be the logarithm of the vol-
ume-weighted ingredient average. Production plan-
ners want to choose a blend that meets upper and
lower index requirements at minimum cost.

(a) Formulate this blending problem as a
constrained NLP.

(b) Use class optimization software to start
from a feasible solution and compute at
least a local optimum.

17-13 A laser printer manufacturer can make
models i = 1, c, 6 at any of plants j = 1, c, 4.
The fraction of plant j capacity required per unit
of printer i has been estimated for each combi-
nation at fi,j. The laser printer market is very
competitive, so the price that can be charged for
any model is a decreasing nonlinear (demand)
function pi of the total number of model i printers
that are sold. Assuming these demand functions
are know, formulate an NLP to determine a max-
imum total revenue production plan.
17-14 A new automatic storage and retrieval
(ASAR)6 area is being added to an existing ware-
house on land already owned by the company. It
will have n Ú 1 aisles, each with pallet storage
cells on both sides and a stacker crane moving
in the middle which can carry a pallet to/from
any location in the aisle. Storage must be pro-
vided for a total of at least p pallet cells of width
w, depth d, and height h feet. All racks will be
m Ú 1 cells high, and k cells from one end of the
aisle to the other on each side. The total build-
ing height should not be more than t feet, includ-
ing a clearance of u feet between the top of the
racks and the ceiling. Aisle width will be 150%
of pallet depth to allow for clear passage of pal-
lets carried by the cranes, and their length should
accommodate the k storage cells plus one extra
pallet width to provide for an input/output station
at the end. The ASAR area and its input/output
stations will be enclosed with a roof and walls on
three sides, being open only on the end (perpen-
dicular to the aisles) where it adjoins the existing
warehouse. Engineers want to find a minimum
total cost design for the new facility using c1!
unit cost of cranes, c2! unit cost of steel racks
per pallet storage cell, together with c3, c4, and c5
being the construction cost per square of founda-
tion/floors, ceilings, and sidewalls, respectively.
Formulate an NLP model to choose an optimal
design in terms of decision variables n, m, k, and

6Based on J. Ashayeri, L. Gelders, and L. Van Wassenhove (1985), “A Microcomputer-Based Optimisation
Model for Design of Automated Warehouses,” International Journal of Production Research, 23, 825–839.

1086 Chapter 17 Constrained Nonlinear Programming

building exterior dimensions x (perpendicular to
the aisles) y (parallel to the aisles), and z (height).
Take all other symbols as constant.
17-15 Assume that Syntex Laboratories7 is reex-
amining the distribution of its sales force across
major pharmaceutical products j = 1, c, 7.
Present force levels ej are expected to produce sj
units of product sales per month at a profit margin
of pj per unit. However, extensive discussion and
surveying has quantified impacts of changing the
effort dedicated to different products. Nonlinear
functions rj1xj2 predict the ratio of future to cur-
rent product sales quantities as a function of xj!
ratio of future to current sales effort. Formulate
an NLP model in terms of decision variables xj
to determine a maximum total profit realignment
of salesforce distribution keeping the total force
unchanged and the force devoted to each product
within {50% of the current levels.
17-16 A major oil company8 manufactures petro-
leum lubricants at sites j = 1, c, 10 using a criti-
cal additive purchased from suppliers i = 1, c, 15
all over the world. Manufacturing site j requires dj
metric tons per month of the additive, and suppliers
i can provide up to si metric tons. The transportation
cost for shipping additive from supplier i to manu-
facturing site j is a constant ti,j per ton. However,
the purchase cost from the supplier varies with vol-
ume. Starting with a base price ci, supplier i reduces
the unit price for all purchases from i each month
by a fraction ai 7 0 for each multiple of quantity
qi ordered. For example, the reduction might be
fraction 0.5% = 0.005 off the base price for each
1000 metric tons ordered per month. Formulate an
NLP model to find a minimum total cost procure-
ment and shipping plan using the decision variables
(i = 1, c, 15; j = 1, c, 10)

 xi,j ! metric tons shipped from supplier i to site j
 yi ! total metric tons purchased from supplier i

17-17 A stirred tank reactor9 is a tank equipped
with a large stirring device that is used in the

chemical and biochemical industry to produce
chemical reactions. A series of 5 such tanks will
be used to lower the concentration of toxic chemi-
cal from c0 at input for tank 1, to no more that cQ on
exit from tank 5. A flow rate of q liters per minute
will be maintained through the tank sequence, but
the effect of each tank depends on its volume vi.
In particular, the units of toxic chemical removed
per minute will be approximately

g
output concentration

1 + output concentration

times the tank volume. Stirred tank cost can also
be estimated from the volume at a1volume2b.
Formulate an NLP model to find a minimum total
cost sequence of tanks using the decision varia-
bles 1i = 1, c, 52

 ci ! output concentration of tank i
 vi ! size of tank i

Assume that all other symbols are constants.
17-18 Each day qi tons of freight arrive by sea10 in
Japan bound for in-country regions i = 1, c, 50.
These goods may arrive at any of the major ports
j = 1, c, 17, but the internal transportation
cost per ton ci,j varies by port and destination.
The government plans a capital investment pro-
gram in port facilities to pick daily tonnage pro-
cessing capacities at each port j that minimize
these internal transportation costs plus associated
port maintenance costs, plus delay costs from
freight passing through each port. Port j main-
tenance costs can be expressed aj1capacity j2bj,
where aj and bj are known constants. Delay cost
at j can be estimated by d/[(capacity j) − (traf-
fic through j)], where d is the delay cost per
ton per day. Formulate an NLP model to op-
timize the ports using the decision variables
1i = 1, c, 50; j = 1, c, 172

 xi,j ! tons shipped through port j for i
 xj ! total tons shipped through port j
 yj ! capacity of port j

7Based on L. M. Lodish, E. Curtis, M. Ness, and M. K. Simpson (1988), “Sales Force Sizing and Deployment
Using a Decision Calculus Model at Syntex Laboratories,” Interfaces, 18:1, 5–20.

8Based on P. Ghandforoush and J. C. Loo (1992), “A Non-linear Procurement Model with Quantity
Discounts,” Journal of the Operational Research Society, 43, 1087–1093.

9Based on L. Ong (1988), “Hueristic Approach for Optimizing Continuous Stirred Tank Reactors in Series
Using Michaelis–Menten Kinetics,” Engineering Optimization, 14, 93–99.

10Based on M. Noritake and S. Kimura (1990), “Optimum Allocation and Size of Seaports,” Journal of
Waterway, Port, Coastal and Ocean Engineering, 116, 287–299.

 Exercises 1087

17-19 Three urban neighborhoods are mutually
connected by freeways admitting traffic in both
 directions. Net output bi,k (per hour) at each neigh-
borhood k of vehicles originating at i can be estimated
from known patterns 1bi,k = -a k ≠ i bi,k2. The
delay vehicles experience on any arc (i, j) is an
 increasing nonlinear function di,j of the total flow
on that arc reflecting the number of lanes and other
characteristics of the road link. Formulate an NLP
to compute a “system optimal” traffic flow (i.e., one
that minimizes the total delay experienced in carry-
ing the required traffic), using the decision variables
1i, j, k = 1, c, 32

xi,j,k ! flow on arc 1i, j2 bound for node k

(Observe that this may not be the same as a “user
optimal” flow where each driver tries to minimize
his or her own delay.)
17-20 The commander of a battlefront11 must
plan how to employ his f frontline and r reserve
firepower to minimize the advance achieved
over days t = 1, c, 14 by an attack of opposing
forces with firepower a. Intelligence and battle
simulations predict that each surviving unit of
firepower in the attacking force will kill p units
of defender firepower per day, and each unit of
 defender firepower committed to the battle will
kill q units of attacker per day. Also, the kilome-
ter advance on day t can be estimated in terms of
the ratio of forces fighting that day as

exp c -4adefender firepower

attacker firepower
b

2

d

Reserves will not be in the battle on day 1, but
they may be committed as desired over the en-
suing days. Once committed, reserves cannot be
withdrawn from the battle. Formulate an NLP
model to choose an optimal plan for the defender
using the decision variables 1t = 1, c, 142

 xt ! attacker firepower fighting on day t
 yt ! defender firepower fighting on day t
 zt ! defender reserve firepower newly

committed on day t

Assume that forces are lost only to enemy fire.

17-21 Chilled-water building cooling systems12
operate as indicated in the following sketch.

tower

pump

pump

condenser

evaporator

chiller

building

Water flows at a rate of F1 gallons per minute
around the lower loop, entering the chiller at
temperature T1,1 and being cooled to tempera-
ture T1,2 before passing through the building. An
upper loop flowing at rate F2 gallons per minute
absorbs heat within the chiller in a separate water
stream, and passes it through an outdoor cooling
tower to reduce its temperature from T2,1 to T2,2.
Tower output temperature T2,2 is a nonlinear
function f1 of T2,1, F2, the tower fan speed S, and
the ambient air temperature T0. The lower loop
must absorb a load H of heat within the building
(measured in water temperature difference times
flow). Similarly, the heat exchanged between the
two loops should balance within the chiller after
adjusting for extra heat generated by the unit and
its pumps, which is a constant multiple k of the
electrical energy they consume. That energy is, in
turn, a nonlinear function f2 of all four temper-
atures and both flow rates. Energy consumed in
the cooling tower is another nonlinear function f3
of fan speed. On any given day, temperature T0,
heat load H, constant k, and all 3 functions will
be known, but other system variables can be

11Based on K. Y. K. Ng and M. N. Lam (1995), “Force Deployment in a Conventional Theatre-Level Military
Engagement,” Journal of the Operational Research Society, 46, 1063–1072.

12Based on R. T. Olson and J. S. Liebman (1990), “Optimization of a Chilled Water Plant Using
Sequential Quadratic Programming,” Engineering Optimization, 15, 171–191.

1088 Chapter 17 Constrained Nonlinear Programming

 controlled within ranges [Ti,j, Ti,j], [Fi, F i], and
[S, S], respectively. Formulate an NLP model to
decide how to operate such a system at minimum
total electrical consumption.
17-22 The figure below shows a system of reser-
voirs and hydroelectric dams of the sort operated
by large utilities such as California’s PG&E.13

1

2

3 4

Each node is a reservoir with a power plant re-
leasing water on the downstream side. The water
then requires one month to reach the reservoir
of the next dam on the river system. Acre-feet
inflows bi,t from streams feeding each reservoir i
(other than the indicated rivers) can be estimated
for coming months t = 1, c, 3, and reservoirs
begin month 1 with storage si,0. Lower and upper
bounds si and sQi restrict the number of acre-feet
of water that should be stored in each reservoir
i at all times, and similar bounds fi and fi limit
the release flow through the dams. The hydropow-
er obtained from any dam i in any month can be
estimated by nonlinear function hi1s, f2 reflect-
ing both the flow f through the dam that month
and the water pressure, which is a consequence of
the amount of water s stored in the correspond-
ing reservoir at the end of the month. Managers
would like to operate the system to maximize the
total power produced.

(a) Sketch a time-expanded flow network
for this problem with arcs fi,t reflecting
monthly release flows at i, and other
arcs si,t reflecting ending storage there at
month t. Label arcs with lower and upper
bounds, and nodes with net inflows.
Assume that all releases fi,0 = 0.

(b) Formulate an NLP to maximize the total
power produced in your network of part (a).

17-23 Determine whether each of the following
NLP’s is a convex program.

(a) max ln1x12 + 3x2

s.t. x1 Ú 1

 2x1 + 3x2 = 1

 1x122 + 1x222 … 9

(b) min x1 + x2

s.t. x1, x2 … 9

 -5 … x1 … 5

 -5 … x2 … 5

(c) max x1 + 6>x1 + 51x222

s.t. 4x1 + 6x2 … 35

 x1 Ú 5, x2 Ú 0

(d) min 14x1 + 9x2 - 7x3

s.t. 6x1 + 2x2 = 20

 3x2 + 11x3 … 25

 x1, x2, x3 Ú 0

(e) min ex1 + x2 - 28x2

s.t. 1x1 - 322 + 1x2 - 522 … 4

 14x1 - 6x2 = 12

 -21x122 + 2x1x2 - 1x222 Ú 0

(f) max 62x1 + 123x2

s.t. ln1x12 + ln1x22 = 4

 7x1 + 2x2 = 900

 x1, x2 Ú 1

17-24 Determine which of the NLPs in
Exercise 17-23 are separable programs.
17-25 Determine whether each of the following
NLPs is a quadratic program, and if so, identify
the c and Q of matrix objective function form
c # x + xQx.

(a) min x1x2 + 134>x3 + ln1x12
s.t. x1 + 4x2 - x3 … 7

 14x1 + 2x3 = 16

 x1, x2, x3 Ú 0

(b) min 61x122 + 34x1x2 + 51x222

 -12x1 + 19x2

13Based on Y. Ikura, G. Gross, and G. S. Hall (1986), “PG&E’s State-of-the-Art Scheduling Tool for Hydro
Systems,” Interfaces 16:1, 65–82.

 Exercises 1089

s.t. 7x1 + 3x2 Ú 15

 93x1 + 27x2 + 11x3 … 300

 x3 Ú 0

(c) max 2x1x2 + 1x222 + 9x3

s.t. x1 + x2 + x3 Ú 6

 xj … 5, j = 1, c, 3

(d) max 1x122 + 1x222

s.t. 1x1 - 1022 + 1x2 - 422 … 9

 x1, x2 Ú 0
17-26 Determine whether each of the following
is a posynomial.

(a) 23x1 - 34x2 + 60x3

(b) 54x1 + 89x2 + 52x3

(c) 7x1x2> 1x322.3 + 41x1

(d) 44x1> ln 1x22 + e-x3

17-27 Demonstrate that each of the following
NLPs is a posynomial geometric program by plac-
ing the model in standard form and detailing the
sets Ki, and associated coefficients dk and ak,j.

(a) min 13x1x2>x3 + 91x1x3

s.t. 3x1 + 8x2 … x3

 20> 1x324 … 4

 x1, x2, x3 7 0

(b) min 40>x1 + x2>1x3

s.t. x1x2 … 1x322

 18x1 + 14x2 … 2

 x1, x2, x3 7 0
17-28 Consider the nonlinear program

min 81x1 - 222 + 21x2 - 122

s.t. 32x1 + 12x2 = 126

(a) Form the Lagrangian function for this
model.

(b) Write stationary conditions for the
Lagrangian.

(c) Solve your stationary conditions for x1 and
x2, and explain why your answers are opti-
mal in the original model.

(d) Explain why a constraint x1 … 2 would be
active if added to the original model.

(e) Use the Lagrangian approach to compute
an optimal solution to the model with the
added constraint of part (d).

17-29 Do Exercise 17-28 for the NLP

max 300 - 51x1 - 2022 - 41x2 - 622

s.t. x1 + x2 = 8

and part (d) extra constraint x2 Ú 0.
17-30 State the Karush–Kuhn–Tucker optimality
conditions for each of the following mathematical
programs.

(a) min 141x1 - 922 + 31x2 - 522 + 1x3 - 1122

s.t. 2x1 + 18x2 - x3 = 19

 6x1 + 8x2 + 3x3 … 20

 x1, x2 Ú 0

(b) max 6x1 + 40x2 + 5x3

s.t. x1 sin1x22 + 9x3 Ú 2

 e18x1 + 3x2 + 14x3 … 50

 x2, x3 Ú 0

(c) min 100 - 1x1 - 322 - 1x224 + 19x3

s.t. 51x1 - 122 + 301x2 - 222 Ú 35

 60x2 + 39x3 = 159

 x1, x2, x3 Ú 0

(d) max 7 ln1x12 + 4 ln1x22 + 11 ln1x32
s.t. 1x1 + 222 - x1x2 + 1x2 - 722 Ú 80

 5x1 + 7x3 Ú 22

 x1, x2, x3 Ú 3

17-31 For each mathematical program in
Exercise 17-30, determine whether principle 17.26
assures that a KKT point is a global optimum.
17-32 Consider the NLP

min 151x122 + 41x222

s.t. 3x1 + 2x2 = 8
 x1, x2 Ú 0

(a) State the KKT optimality conditions for
this model.

(b) Verify that at solution x = 10, 42 there
exists an improving feasible direction
∆x = 12, -32.

(c) Confirm that KKT conditions have no
solution for the nonoptimal x of part (b).

(d) Explain why every local optimum of the
model must be a KKT point.

(e) Show that global optimal solution x* =
11, 522 is a KKT point.

1090 Chapter 17 Constrained Nonlinear Programming

17-33 Do Exercise 17-32 for NLP

max 2 ln1x12 + 8 ln1x22
s.t. 4x1 + x2 = 8

 x1, x2 Ú 1

with nonoptimal point x = 11, 42, improving
feasible direction ∆x = 1-1, 42, and global op-
timum x* = 11, 42.

17-34 Use absolute value (unsquared) pen-
alty functions to reduce each NLP of Exercise
17-30 to an unconstrained penalty model.

17-35 Do Exercise 17-34 using squared pen-
alty functions.
17-36 Consider the NLP

min 21x1 - 322 - x1x2 + 1x2 - 522

s.t. 1x122 + 1x222 … 4
 0 … x1 … 2, x2 Ú 0

with optimal solution x* = 11.088, 1.6782.

(a) Use unsquared penalty functions to re-
duce this problem to an unconstrained
penalty model.

(b) Explain why local minima of the uncon-
strained model in part (a) must be global
minima for all m Ú 0.

(c) Determine whether the penalty objective
of part (a) is differentiable. Explain.

(d) Determine whether there will be a pen-
alty multiplier m large enough that the
unconstrained optimum in part (a) is op-
timal in the original model. Explain.

(e) Suppose that we are solving the given
constrained NLP by the sequential uncon-
strained penalty Algorithm 17A. Explain
why it is reasonable to begin with multiplier
m = 0.5 and increase it by a factor b = 2
after each unconstrained optimization.

(f) Use class optimization software to apply
Algorithm 17A, starting at x = 13, 52
and managing the penalty multiplier as in
part (e).

17-37 Do Exercise 17-36 using squared pen-
alty functions. Stop the search in part (f) when
the total constraint violation is … 0.2.
17-38 Do Exercise 17-36 for the NLP

max 100 - 81x122 - 3 1x2 - 322

s.t. x2 Ú 2>x1

 0 … x1 … 2
 0 … x2 … 2

Start at x102 = 12, 22 with multiplier m = 0.5, and
increase by the factor b = 4.
17-39 Do Exercise 17-38 using squared penalty
functions. Stop the search in part (f) when total
constraint violation … 0.2.

17-40 Determine whether barrier methods
can be applied to each of the NLPs in Exercise 17-
23, and if so, use log barrier functions to reduce
the constrained optimization model to an uncon-
strained barrier model.

17-41 Do Exercise 17-40 using reciprocal bar-
rier functions.
17-42 Consider solving the NLP of Exercise
17-36 by barrier methods.

(a) Use logarithmic barrier functions to re-
duce this problem to an unconstrained
barrier model.

(b) Explain why local minima of the uncon-
strained model in part (a) for all m Ú 0
must be global minima.

(c) Determine whether the barrier objective
of part (a) is differentiable. Explain.

(d) Determine whether there will be a barrier
multiplier m 7 0 small enough that the
unconstrained optimum in part (a) is op-
timal in the original model. Explain.

(e) Suppose that we are solving the given
constrained NLP by the sequential uncon-
strained barrier Algorithm 17B. Explain
why it is reasonable to begin with multiplier
m = 2 and decrease it by a factor b = 1

4
after each unconstrained optimization.

(f) Use class optimization software to apply
Algorithm 17B, starting at x102 = 13, 52
and managing the barrier multiplier as in
part (e). Proceed while m Ú 1

32.

17-43 Do Exercise 17-42 using reciprocal bar-
rier functions.
17-44 Do Exercise 17-42 for the NLP of Exercise
17-38. Start at x102 = 11.8, 1.82 with multiplier
m = 8, and decrease with factor b = 1

4.
17-45 Do Exercise 17-44 using reciprocal barrier
functions.
17-46 Consider the nonlinear program

min 1x1 - 822 + 21x2 - 422

s.t. 2x1 + 8x2 … 16
 x1 … 7
 x1, x2 Ú 0

 Exercises 1091

(a) Introduce slack variables x3 and x4 to
place the model in standard form for re-
duced gradient Algorithm 17C.

(b) Show that x2 and x4 form a basic set of
variables for your standard form.

(c) Assuming the basis of part (b), classify
variables as basic, nonbasic, or superbasic
at initial solution x102 = 10, 1, 8, 72.

(d) Compute the reduced gradient corre-
sponding to the basis and x102 of part (c).

(e) Construct the move direction that would
be pursued by Algorithm 17C at the basis
and x102 of part (c).

(f) Compute the maximum feasible step l in
the direction of part (e). Then, assuming
(correctly) that the direction of part (e)
remains improving all the way to the max-
imum l, compute the resulting new solu-
tion x112.

(g) Explain why a basis change would by re-
quired by Algorithm 17C at the x112 of part
(f), and choose an appropriate new basis.

17-47 Return to the standard form NLP of
Exercise 17-46(a).

(a) Apply reduced gradient Algorithm 17C
to compute an optimal solution starting
from the x102 = 10, 1, 8, 72.

(b) Graph your progress in a plot of the fea-
sible 1x1, x22.

17-48 Do Exercise 17-46 for nonlinear program

max 500 - 31x1 + 122 + 2x1x2 - 1x2 - 1022

s.t. x1 - x2 … 1
 x2 … 5
 x1, x2 Ú 0

using basis 5x1, x46 and standard-form starting
solution x102 = 12, 1, 0, 42.

17-49 Do Exercise 17-47 on the standard-form
NLP of Exercise 17-48(a).
17-50 Consider the equality-constrained qua-
dratic program

min 61x122 + 21x222 - 6x1x2 + 41x322

 + 5x1 + 15x2 - 16x3

s.t. x1 + 3x2 - 2x3 = 2
 3x1 - x2 + x3 = 3

(a) Identify the Q, c, A, and b of (symmetric)
quadratic program standard form.

(b) State Karush–Kuhn–Tucker optimality
conditions for the model as a system of
linear equalities.

(c) Solve your system of part (b) for the
unique KKT point of the model.

17-51 Do Exercise 17-50 for the equality-
constrained quadratic program

max - 1x122 - 81x222 - 21x322 + 10x2x3

 + 14x1 - 8x2 + 20x3

s.t. x1 + 4x3 = 4
 -x2 + 3x3 = 1

17-52 Return to the NLP of Exercise 17-46,
and consider solving by active set Algorithm 17D
starting from solution x102 = 10, 12.

(a) Demonstrate that the model is a qua-
dratic program by deriving the c0, c, Q,
a112, c, a142, b1, c, b4, G, L, and E of
general symmetric form 17.50 .

(b) State and solve as a system of linear
equalities the active set optimality condi-
tions 17.53 corresponding to initial solu-
tion x102.

(c) Determine the step l that would be ap-
plied to the direction resulting from part
(b), and compute the new point x112.

(d) Verify by forming and solving the opti-
mality conditions 17.53 corresponding to
x112 that no further progress can be made
if all inequalities active at x112 of part (c)
are included in the active set S.

(e) Use the results of part (d) to show which
active constraint should be dropped
from S.

(f) Begin from part (e) and complete the
solution of this quadratic program.

(g) Graph your progress in a plot of the fea-
sible 1x1, x22.

(h) Compare the evolution of active set
Algorithm 17D in part (g) with correspond-
ing reduced gradient Algorithm 17C com-
putations in Exercise 17-47.

17-53 Do Exercise 17-52 for the NLP of Exer-
cise 17-48 starting from solution x102 = 12, 12.
17-54 Form linear programming approxima-
tions 17.59 to each of the following separable
programs using breakpoints u1, 0 = 0, u1,1 = 1,
u1,2 = 3, u2, 0 = 0, u2,1 = 2, u2,2 = 4.

1092 Chapter 17 Constrained Nonlinear Programming

(a) min x1> 14 - x12 + 1x2 - 122

s.t. 2x1 + x2 Ú 2

 41x1 + 123 - 91x222 … 25

 0 … x1 … 3

 0 … x2 … 4

(b) max 500 - 1x1 - 122 - 25> 1x2 + 12
s.t. 1x1 - 1x2 + 122 Ú - 3

 6x1 + 2x2 … 10

 0 … x1 … 3

 0 … x2 … 4

17-55 Consider the trivial separable program

min 21x - 322

s.t. 0 … x … 6

(a) Verify that the model is a convex program.
(b) Verify by inspection that an optimal solu-

tion occurs at x* = 3.
(c) Form a linear programming approxima-

tion 17.61 using u0 = 0, u1 = 2, u2 = 6.
(d) Solve your LP approximation of part (c)

by inspection, and determine whether
correctness condition 17.62 is satisfied by
the approximate optimum.

(e) Discuss how convexity of part (a) relates
to correct sequencing 17.62 in part (d).

(f) Verify by inspection that x* = 0 and
x* = 6 are alternative optima in the orig-
inal NLP when the objective is maximized
instead of minimized.

(g) Repeat part (d), this time maximizing the
objective function.

(h) Comment on the errors introduced in
objective function and other values when
sequencing condition 17.62 is violated in
part (g).

17-56 Consider the standard-form posynomial
geometric program

min 3>1x1 + x1x2 + 10> 1x323

s.t. 0.5x1x2> 1x322 … 1
 0.167x1 + 0.251x120.4x2 + 0.0833x3 … 1
 x1, x2, x3 7 0

(a) Change variables to convert this geomet-
ric program into a convex program.

(b) Use class optimization software to solve
your convex program of part (a) and
transform optimal variable values back
to obtain an optimal solution for the orig-
inal NLP.

(c) Form the geometric programming dual of
the original NLP.

(d) Determine the degree of difficulty of the
original NLP.

(e) Use class optimization software to solve
the dual of part (c) and retrieve an opti-
mal primal solution from the correspond-
ing Lagrange multipliers.

17-57 Do Exercise 17-56 for the posynomial geo-
metric program

min 10> 1x1x2x322

s.t. 121x122x2 + 4x3 … 1
 0.1x21x1 + x2x3 … 1
 1x1x220.333 … 1
 x1, x2, x3 7 0

17-58 A water distribution system14 is a network
with (positive = forward or negative = reverse)
flows xi,j, in pipes between nodes i, j = 0, c, m
representing storage tanks and pipe intersections.
Pressures at the nodes i can be measured in hy-
draulic “head,” which is the height to which water
will rise in an openended vertical pipe installed at
the node, relative to the “ground node” 0. Heads
have assigned values si for storage tank nodes i,
and net outflows ri are established for all nodes
1am

i = 0 ri = 02 . The ground node 0 is connected
to each storage node i by an arc (0, i), and to no
others. To determine how the system will per-
form at steady state, engineers need to find flows
fi,j and heads hi that (i) maintain net flow balance
at every node, (ii) achieve assigned heads si at
storage nodes, and (iii) satisfy nonlinear head-to-
flow equations

hj - hi = fi,j1fi,j2 nonground 1i, j2
where functions fi,j1xi,j2 are known relations be-
tween head difference and the flow on particular
arcs 1i, j2 that reflect length, size, pumping, grade,
and other characteristics.

(a) Formulate a related NLP over unrestri-
cted flows xi,j having only flow balance

14Based on M. Collins, L. Cooper, R. Helgason, J. Kennington, and L. LeBlanc (1978), “Solving the Pipe
Network Analysis Problem Using Optimization Techniques,” Management Science, 24, 747–760.

 Exercises 1093

constraints at all nodes and a minimizing
objective function summing terms

fi,j1xi,j2 e
sj x0,j arcs 10, j2
1xi, j

0 fi,j1z2dz other 1i, j2
(b) Explain why your NLP of part (a) is a

separable program. (With mild assump-
tions on the fi,j it can also be shown to
be convex.)

(c) State Karush–Kuhn–Tucker conditions
for the primal model of part (a) and ex-
plain why they must be satisfied by a lo-
cally optimal x*.

(d) Interpret conditions of part (c) to show
that a solution to steady-state equation
system (i)–(iii) above can be obtained
from locally optimal flows x* in part (a)
and corresponding KKT multipliers v*.

17-59 Return to the NLP of Exercise 17-36,
and consider solving it by Sequential Quadratic
Programming Algorithm 17E.

(a) Using dual variables v1, roll constraints
into the objective function to formulate
the Lagrangian.

(b) Formulate the second-order the Lagrangian
as a function of move direction ∆x as in
principle 17.59 .

(c) Formulate the quadratic program 17.60 that
must be solved at each iteration of SQP,
and justify each element.

(d) Specialize your formulation of (c) to state
the quandratic subproblem that would
 result at iteration 1 if x102 = 11, 12 and all
multipliers v1 = 0.

17-60 Do Exercise 17-59 on the NLP of Exercise
17-38, again using x102 = 11, 12 and all multipli-
ers v1 = 0 in part (d).

REfERENCES

Bazarra, Mokhtar, Hanif D. Sherali, and C. M.
Shetty (2006), Nonlinear Programming - Theory
and Algorithms, Wiley Interscience, Hoboken,
New Jersey.

Griva, Igor, Stephen G. Nash, and Ariela Sofer
(2009). Linear and Nonlinear Optimization, SIAM,
Philadelphia, Pennsylvania.

Luenberger, David G. and Yinyu Ye (2008), Linear
and Nonlinear Programming, Springer, New York,
New York.

This page intentionally left blank

1095

▪ ▪ ▪ ▪ ▪

Appendix

Group Projects

This textbook focuses broadly on developing two kinds of skills in students. First is
modeling the enormous variety of applied settings where optimization methods can
yield practically useful insights. Then, analysis using the variety of algorithms and
mathematical insights available to obtain and understand best possible solutions to
fully formulated models. The two are closely related because choices made in for-
mulation can dramatically impact the tractability of models to available solution
methods as well as the validity of results obtained.

This addendum proposes projects that can be accomplished by small teams of
students in order to deepen their experience with the use of optimization methods
in applied engineering and management settings within the time available in busy
courses. A first category focuses on settings already referenced in the book’s num-
bered Applications and Exercises. The second, more wide-ranging category of proj-
ect topics, places the burden and flexibility on students to find their own published
report of a application setting. Then they must distill it into a usable starting point
parallel to those within the text before further investigation can proceed.

Instructors may choose to assign projects focused on particular types of optimi-
zation models (LP, ILP, NLP, etc.) as those arise in the course timeline. Alternatively,
they may prefer to assign a term project with students having freedom to take on
any category of models treated in the course.

1. Projects Based on references in this Book

Numbered Applications in the chapters of this book tell simplified stories of how
optimization methods can be employed in a variety of applied domains to meet the
needs of decision makers therein. Most have explicit footnote references to a pub-
lished paper about the underlying investigation. Exercises at the ends of chapters
with similar footnote references introduce a host of additional domain scenarios
where appropriate optimization modeling and analysis can prove valuable.

Assignment
Choose one of those simplified environments depicted in an Application or foot-
noted Exercise as the focus of your project. Next obtain a copy of the referenced
paper (if there is one), and also research related sources online and in other
published papers (see the journal list below) to enrich your understanding of
the real problem domain and the opportunity to usefully employ optimization
techniques there.

Then prepare a project report describing how optimization methods and anal-
ysis can be applied more deeply and completely to addressing the needs of real

1096 Appendix Group Projects

decision makers confronted with the challenge sketched in the book development.
Specifically,

(a) Determine and justify whether, and if so how, the simplified story and any con-
stant parameter values invented in the text need to be enhanced to validly address
the needs of decision makers in the described problem environment. (Justify all
answers and reference sources.)

•	 Are important domain elements over simplified or left out of the text discus-
sion that should be treated more completely? If so, how can remedial adjust-
ments be made to the model without doing too much damage to tractability?

•	 What scales (number of locations, employees, products, customers, pro-
cesses, time periods, etc.) are needed for a realistic instance of the applied
environment?

•	 What are appropriate choices for values of model parameters (costs, profits,
capacities, yields, demands, etc.)?

•	 If you have chosen a multi-objective case, make it more manageable for the
project by showing how it can be reformulated as a goal program or one with
a single-weighted-sum of objectives. Justify your choices of goal targets or ob-
jective weights in doing so.

(b) Formulate and justify a new model consistent with your recommendations of
part (a) and having all scale and other parameter values explicit as data. Be sure
it is feasible and bounded in objective value. If a truly realistic scale exceeds the
capacity of available software, choose and justify reduced-scale parameter values
to make the solution possible.

(c) Solve your updated model of part (b) with class optimization software or general-
purpose tools like spreadsheets, to obtain an exact or approximate optimal solution.
Then, fully explain the results obtained.

(d) Taking account of the results obtained in part (c), evaluate whether a revised
model and/or a new choice of parameters might give superior results for decision
makers. If so, modify those inputs, re-solve, and compare with first results to high-
light any gains you see in the new results.

(e) Document all your findings and analysis in a written project report, and pre-
pare a PowerPoint or similar presentation suitable for delivery to the full class.

2. Projects Based on a new reference chosen
By the student team

The list below that follows enumerates engineering and management journals often
describing real cases of optimization modeling and analysis.

Assignment
Use available online and library resources to peruse those and related published
sources and choose an article on which to base your project. The article should not
come from any text or similar book. It should be clear that the authors of the paper

Appendix Group Projects 1097

were thinking about a real applied challenge rather than merely contriving a vehicle
for demonstrating mathematical methods and properties.

If the article develops more than one model, choose one to pursue. Then study
the paper and model, and find related material online about the application domain
and related research, to prepare a project report describing how optimization mod-
eling and analysis can best contribute to addressing the needs of decision makers
confronted with the challenge discussed. (Justify all answers and reference sources.)

(a) Begin by distilling material in your chosen paper into a suitable project starting
point:

•	 Briefly describe the “story” based upon the chosen model and paper in a fash-
ion similar to those presented throughout the text. What is being decided?
What constraints must be considered? What objective(s) determine preferred
solutions? Where do parameter values come from?

•	 Formulate a preliminary model of your story in standard mathematical for-
mat, clearly defining and explaining all indexes, decision variables, symbolic
parameters, constraints, and objective functions.

•	 Then proceed from that preliminary model as if it had been taken from an
Application or Exercise in the text.

(b) Defend and refine your simplified model of part (a) to assess how it can val-
idly address the needs of decision makers in the described problem environment.
(Justify all answers and reference sources.)

•	 Are important domain elements over simplified or left out of your story and
model that should be treated more completely? If so, how can remedial adjust-
ments be made to the model without doing too much damage to tractability?

•	 What scales (number of locations, employees, products, customers, processes,
time periods, etc.) are needed for a realistic instance of the problem?

•	 What are appropriate choices for values of the model parameters (costs, prof-
its, capacities, yields, demands, etc.)?

•	 If you have chosen a multi-objective case, make it more manageable for the
project by showing how it can be reformulated as a goal program or one with
a single-weighted-sum of objectives. Justify your choices of goal targets or ob-
jective weights in doing so.

(c) Formulate and justify a full model consistent with your recommendations of
part (b) and having all scale and other parameter values explicit as data. Be sure
it is feasible and bounded in objective value. If a truly realistic scale exceeds the
capacity of available software, choose and justify reduced-scale parameter values
to make solution possible.

(d) Solve your updated model of part (c) with class optimization software or general-
purpose tools like spreadsheets, to obtain an exact or approximate optimal solu-
tion. Then, fully explain the results obtained.

(e) Taking account of the results obtained in part (d), evaluate whether a revised
model and/or a new choice of parameters might give superior results for decision

1098 Appendix Group Projects

makers. If so, modify those inputs, re-solve, and compare with first results to high-
light any gains you see in the new outcomes.

(f) Document all your findings and analysis in a written project report, and pre-
pare a PowerPoint or similar presentation suitable for delivery to the full class.

Journal Sources for Optimization Applications
Descriptions of optimization applications can be found in many scientific journals.
The following is a partial list in rough order of choice as a source for the above
project.

European Journal of Operational Research

Operational Research (formerly Operational Research Quarterly)

IIE (Institute of Industrial Engineers) Transactions

IIE (Institute of Industrial Engineers) Transactions on Healthcare Systems
Engineering

Interfaces

Operations Research

Computers and Operations Research

International Journal of Production Research

Computers and Industrial Engineering

Transportation Science

Healthcare Management Science

Management Science

Naval Research Logistics

Omega

Decision Sciences

Opsearch (Indian Journal of Operations Research)

INFOR (formerly Canadian Journal of Operational Research)

Marketing Science

Manufacturing and Service Operations Management

1099

▪ ▪ ▪ ▪ ▪
Selected Answers

2-4 (b) x1
* = beef = 25g, x2

* = chicken = 100g

2-5 (b) v* = 7000, c* = 0

2-6 (a) min x1 + x2, s.t. 5x1 + 3x2 Ú 15,
2x1 + 5x2 Ú 10, 0 … x1 … 4, 0 … x2 … 4, x1, x2
integer (b) partial patterns make no physical
sense (c) Either x1

* = x2
* = 2, or x1

* = 3, x2
* = 1

(d)

x1

x2

alternative
optima

min

1 2 3 4 5

1

2

3

4

5

x2 Ú 0

x2 … 4

x 1
…

4

x 1
Ú

0

2x
1 + 5x

2 Ú 10

5x
1 + 3x

2 Ú 15

2-7 (a) min 16x1 + 16x2, s.t. x1x2 = 500,
x1 Ú 2x2, x2 … 15, x1 Ú 0, x2 Ú 0
(b) x1

* = length = 331
3 feet, x2

* = width = 15 feet
(d) x1 … 25 leaves no feasible

2-8 (b) x1
* = diameter = 78.16 feet,

x2
* = floors = 31.26

2-9 (b) min x2 (c) min x1 + x2 (d) max x2
(e) x2 … 1>2

2-11 (a) ming4
i = 3 i g2

j = 1 yi, j (c) max gp
i = 1 aiyi,4

(e) g4
j = 1 yi,j = si, i = 1, c, 3

2-12 (a) g17
i = 1 xi,j,t … 200, j = 1, c, 5;

t = c, 7; 35 constraints (b) g5
j = 1 g7

t = 1 x5,j,t

… 4000; 1 constraint (c) g5
j = 1 xi,j,t Ú 100,

i = 1, c, 17; t = 1, c, 7; 119 constraints

2-13 model; param m; param n;
param p; set products : = 1.. m;

Chapter 1
1-1 (a) s (b) d, p and b (c) min1d>s22 (d) ps … b,
s nonnegative and integer

1-2 (a) feasible and optimal (b) neither because
infeasible (c) feasible but not optimal

1-5 (a) exact numerical optimization (c) closed-
form optimization

1-8 (b) 16.4 hours; 166.1 days; 110.6 years;
6.5 million years

1-9 (a) random variable (c) deterministic
(e) deterministic (g) random variable
(i) deterministic

Chapter 2
2-1 (a) max 200x1 + 350x2, s.t. 5x1 + 5x2 … 300,
0.6x1 + 1.5x2 … 63, x1 … 50, x2 … 35, x1 Ú 0,
x2 Ú 0 (b) x1

* = basic = 30, x2
* = deluxe = 30

(c)

x1

x2

x 1 …
 5

0

x2 … 35

x2 Ú 0

x 1
Ú

0

.6x
1 + 1.5x

2 … 635x
1 + 5x

2 … 300

10

20

30

40
(x1*, x2*) = (30, 30)

50

5040302010

m
ax

(d) all optimal from x = 130, 302 to
x = 117.5, 352
2-2 (b) x1

* = domestic = $5 million, x2
* =

foreign = $7 million

2-3 (b) x1
* = Squawking Eagle = 40 thousand,

x2
* = Crooked Creek = 10 thousand

1100 Selected Answers

x2 + x3 + x4 + x8 Ú 2, x1cx8 = 0 or 1
(b) model; param n ; set games : =
1..n; #ratings param r{j in games};
#home? param h{j in games}; #state?
param s{j in games}; #cover? var
x{j in games} binary; maximize
totrat: sum5j in games6 r[j]*x[j];
subject to capacity: sum5j in games6
x[j] 6 = 4; home: sum5j in games6
h[j]* x[j] 7 = 2; away: sum5j in games6
11 - h[j]2* x[j] 7 = 1; state:
sum5j in games6s[j]* x[j] 7 = 2; data;
param n : = 8; param r : = 1 3.0 2
3.7 3 2.6 4 1.8 5 1.5 6 1.3 7 1.6 8 2.0;
param h: = 1 1 2 1 3 1 4 0 5 0 6 0
7 0 8 0; param s: = 1 0 2 1 3 1 4 1
5 0 6 0 7 0 8 1; (c) The model is an ILP
because all constraints and the objective are
 linear, but decision variables are binary.

2-43 max 199x1 + 229x2 + 188x3 + 205x4 -
180y1 - 224y2 - 497y3, subject to,
23x3 + 41x4 … 2877y1, 14x1 + 29x2 … 2333y2,
11x3 + 27x4 … 3011y3, x1 + x2 + x3 + x4 Ú 205,
y1 + y2 + y3 … 2, x1, c, x4 Ú 0, y1, c, y3 = 0
or 1

Chapter 3
3-1 (a) feasible and local max; infeasible; feasi-
ble; feasible, local, and global max

3-2 (a) y112 = 18, -2, 52, y122 = 13, 8, 102,
y132 = 13, 11, 102
3-3 (a) ∆w112 = 14, -2, 62, ∆w122 = 10, -2, 82,
∆w132 = 1-1, 0, 32
3-4 (a) nonimproving (c) improving
(e) nonimproving

3-5 (a) feasible (c) feasible (e) feasible

3-6 (a) l = 3; not unbounded (c) l = +∞ ;
unbounded

3-7 (a) improving (c) need more information
(e) improving

3-8 (a) ∆w = 13, -2, 0, 12 (c) ∆w = 1-8, 32
3-9 (a) [ii], [iv]

3-10 (a) feasible (c) infeasible

3-11 (a) 2 ∆w1 + 3 ∆w3 = 0, 1 ∆w1 + 1 ∆w2 +
2 ∆w3 = 0, ∆w1 Ú 0 (c) 1 ∆w1 + 1 ∆w2 = 0,
2 ∆w1 - 1 ∆w2 Ú 0

3-12 (a) -1 ∆y1 + 5 ∆y2 6 0 (b) substitution
(c) y1 Ú 0, -y1 + y2 … 3. (d) 1 ∆y1 + 0 ∆y2 Ú 0,

set lines : = 1.. n; set weeks : =
1.. p; var x5i in products, j in
lines,t in weeks6 7 = 0; subject to
linecap {j in lines, t in weeks}:
sum 5i in products6 x[i,j,t] 6 = 200;
prod5lim: sum 5j in lines,
t in weeks6 x[5,j,t] 6 = 4000;
minprodn{i in products, t in weeks}:
sum 5j in lines6 x[i,j,t] 7 = 100;
data; param m : = 17; param n : = 5;
param p : = 7;

2-16 (a) f1y1, y2, y32 ! 1y122y2>y3,
g11y1, y2, y32 ! y1 + y2 + y3, b1 = 13,
g21y1, y2, y32 ! 2y1 - y2 + 9y3, b2 = 0,
g31y1, y2, y32 ! y1, b3 = 0, g41y1, y2, y32 ! y3,
b4 = 0

2-17 (a) linear (c) nonlinear (e) nonlinear
(g) nonlinear

2-18 (a) LP (c) NLP

2-19 (a) continuous (c) discrete

2-20 (a) g8
j = 1 xj = 3 (c) x3 + x8 … 1

2-21 (a) max 85x1 + 70x2 + 62x3 + 93x4,
s.t. 700x1 + 400x2 + 300x3 + 600x4 … 1000,
xj = 0 or 1, j = 1, c, 4 (b) fund 2 and 4,
i.e., x1

* = x3
* = 0, x2

* = x4
* = 1

2-22 (b) build 3 and 4

2-23 (a) ILP (c) INLP (e) INLP (g) LP

2-24 (a) model (b) (c) model (d)

2-25 (a) Alternative optima from x1
* = 8, x2

* = 0
to x1

* = 8, x2
* = 12 (b) Unique optimum x1

* = 0,
x2

* = 4 (c) Helping one can hurt the other.

2-27 (b) nonzeros: x5
* = 1000, x12

* = 15000

2-28 (i) x1
* = x2

* = x3
* = 1100, x4

* = x6
* = 1500,

x5
* = 1400, x7

* = 400, x8
* = x10

* = 0, x9
* = 1900

2-29 (h) x1
* = x3

* = x6
* = x7

* = 1, others = 0

2-30 (h) nonzeroes: x1,1
* = 81, x1,2

* = 93,
x1,3

* = 166, x1,5
* = 90, x1,6

* = 88, x1,7
* = 145,

x2,2
* = 301, x3,1

* = 166, x3,4
* = 105, x4,3

* = 99

2-33 (g) x2
* = x3

* = x4
* = 1, others = 0

2-35 (h) nonzero values: x4,2
* = 115, x4,3

* = 165,
x5,1

* = 85, x5,3
* = 225

2-37 (i) x10
* = 50, x15

* = 25, x20
* = 5, y1

* = 5000,
y2 = 8500

2-39 (i) nonzeroes: x2,2
* = x2,4

* = x3,1
* = x3,3

* =
x5,5

* = 1, y2
* = y3

* = y5
* = 1

2-40 (a) maxg8
j = 1 rj xj, subject to, g8

j = 1 xj … 4,
x1 + x2 + x3 Ú 2, x4 + x5 + x6 + x7 + x8 Ú 1,

Selected Answers 1101

90x1 + 30x2 + 60x3 + 80x4 Ú 60 (b) the
3 main inequalities (c) x1

* = oats = .157,
x2

* = corn = .271, x3
* = alfalfa = .401,

x4
* = hulls = .171

4-4 (c) x1
* = .176, x2

* = .353, x3
* = .000,

x4
* = .471

4-5 (a) 45gm
i = 1 xi,j … gm

i = 1 ai,11xi,j … 48gm
i = 1 xi,j,

j = 1, c, n (c) gm
i = 1 ai,15 xi,15 Ú 116gm

i = 1 xi,15
(e) 7x1, j … 3gm

i = 2 xi,j, j = 6, c, 11
(g) 3g6

i = 3 gn
j = 1 xi,j Ú gm

i = 1 gn
j = 1 xi,j

4-7 (a) xj ! the number of cuts with pattern j;
min .34x1 + .22x2 + .27x3, s.t. 2x1 + 1x3 Ú 37,
5x2 + 3x3 Ú 211, xj Ú 0, j = 1, c, 4
(b) x1

* = 0, x2
* = 20, x3

* = 37

4-8 (b) x1
* = santas = 147.4, x2

* = trees = 0.0,
x3

* = houses = 21.1

4-9 (a) max 30x1 + 45x2, s.t. .30x1 + .30x2 +
.10x3 + .15x4 + .50x5 … 80, 1.5x3 + 2.5x4 … 500,
x3 = 4x1, x4 = 4x2, x5 = x1 + x2, xj Ú 0,
j = 1, c, 5 (b) the 3 equalities (c) x1

* = 27.8,
x2

* = 33.3, x3
* = 111.1, x4

* = 133.3,x5
* = 61.1

4-10 (c) x1
* = 0.0, x2

* = 666.7, x3
* = 0.0,

x4
* = 2000, x5

* = 12,000

4-12 (a) gn
p = 1 xi,p = gn

p = 1 di,p +
gm

k = 1 gn
p = 1 ai,k xk, p, i = 1, c, m

4-13 (a) x1 ! number with 5 days starting
Sunday, c, x7 ! number with 5 days
 starting Saturday; min g7

j = 1 xj, s.t.
x1 + x4 + x5 + x6 + x7 Ú 8,
x1 + x2 + x5 + x6 + x7 Ú 6,
x1 + x2 + x3 + x6 + x7 Ú 6,
x1 + x2 + x3 + x4 + x7 Ú 6,
x1 + x2 + x3 + x4 + x5 Ú 6,
x2 + x3 + x4 + x5 + x6 Ú 10,
x3 + x4 + x5 + x6 + x7 Ú 10,
xj Ú 0, j = 1, c, 7 (b) all main constraints
(c) x1

* = 0.0, x2
* = .67, x3

* = 2.0, x4
* = 2.67,

x5
* = 2.0, x6

* = 2.67, x7
* = .67

4-14 (c) x1
* = 5, x2

* = 0, x3
* = 0, x4

* = 0,
x5

* = 3, x6
* = 3

4-15 (a) xj, t ! investment in option j, year t;
max 1.05x1,4 + 1.12x2,3 + 1.21x3,1, s.t.
10 = x1,1 + x2,1 + x3,1,
1.05x1,1 + 10 = x1,2 + x2,2,
1.05x1,2 + 1.12x2,1 + 10 = x1,3 + x2,3,
1.05x1,3 + 1.12x2,2 = x1,4,
all variables nonnegative (b) all main

-1 ∆y1 + 1 ∆y2 … 0. (e) feasible by substitution.
l = 1.

3-14 (a) 14, 72 # 12, 02 7 0, 14, 72 # 1-2, 42 7 0
(b) ∆z112 for l = 2 to z112 = 14, 02, ∆z122 for
l = 3>4 to z122 = 15>2, 32, ∆z112 for l = 1>4 to
z132 = 13, 32
3-16 (a) 13, 1, 02 + l1-3, 3, 92, l ∈ [0, 1];
l = 1>3 for z132; no l gives z142

3-17 (a) not convex, x112 = 10, 32, x122 = 13, 02
(c) convex (e) not convex, x112 = 10, 0, 0, 42,
x122 = 10, 0, 0, 52
3-18 (a) min w4 + w5, s.t. 40w1 + 30w2 +
10w3 + w4 = 150, w1 - w2 … 0,
4w2 + w3 + w5 Ú 10, w1, w2, w3, w4, w5 Ú 0;
w4 = 150, w5 = 10 (c) min w3 + w4 + w5,
s.t. 1w1 - 322 + 1w2 - 322 - w3 … 4,
2w1 + 2w2 + w4 = 5, w1 + w5 Ú 3, w3, w4,
w5 Ú 0; w3 = 14, w4 = 5, w5 = 3

3-20 (a) stop and conclude model is infeasible
(c) proceed with Phase II from initial solution
y = 11, 3, 12
3-21 (a) max 22w1 - w2 + 15w3 - M 1w4 +
w52, s.t. 40w1 + 30w2 + 10w3 + w4 = 150,
w1 - w2 … 0, 4w2 + w3 + w5 Ú 10, w1, w2, w3,
w4, w5 Ú 0; w4 = 150, w5 = 10 (c) min 2w1 +
3w2 + M 1w3 + w4 + w52, s.t. 1w1 - 322 +
1w2 - 322 - w3 … 4, 2w1 + 2w2 + w4 = 5,
w1 + w5 Ú 3, w3, w4, w5 Ú 0; w3 = 14, w4 = 5,
w5 = 3

3-22 (a) stop and conclude model is infeasible
if M is big enough, else increase M and repeat
(c) stop and conclude y = 11, 3, 12 is a local
optimum for the original model

Chapter 4
4-1 (a) xj ! cases shipped to region j, max
1.60x1 + 1.40x2 + 1.90x3 + 1.20x4,

s.t. g4
j = 1 xj = 1200, 310 … x1 … 434,

245 … x2 … 343, 255 … x3 … 357,
190 … x4 … 266 (b) x1

* = NE = 408,
x2

* = SE = 245, x3
* = MW = 357,

x4
* = W = 190

4-2 (b) nonzero values are x1,1
* = 70,

x1,2
* = 10, x2,2

* = 40, x2,3
* = 5, x2,4

* = 35, x3,3
* = 80

4-3 (a) xj ! fraction of ingredient j;
min 200x1 + 150x2 + 100x3 + 75x4, s.t. g4

j = 1 xj = 1, 60x1 + 80x2 + 55x3 + 40x4 Ú 60,
50x1 + 70x2 + 40x3 + 100x4 … 60,

1102 Selected Answers

x3,4
* = 500.0, x4,1

* = x4,2
* = x4,3

* = 833.3,
x4,4

* = 500.0, x5,1
* = x5,2

* = x5,3
* = 833.3,

x5,4
* = 500.0, h5,1

* = 533.3, h5,2
* = 166.7,

h5,4
* = 200.0

4-28 (b) s1
* = s2

* = 0, s3
* = 8, s4

* = 12,
s5

* = s6
* = 24, s7

* = 32, t1
* = 12, t2

* = t7
* = 8,

t3
* = t5

* = t6
* = 16, t4

* = 20

4-47 (a) Stage 1 is acquiring voting machines.
Stage 2 possible turnouts. Transferring machines
from the warehouse for unmet demand.
(b) q1s2 ! the probability of scenario s, vp

1s2 !
voters (in hundreds) at precinct p under

 scenario s: min g3
s = 1 q

1s2 g4
p = 1 wp

1s2, subject to,

5 g5
p = 1 xp + .5g4

p = 1 g3
s = 1 yp

1s2 … 150,
s = 1, c, 3, g4

p = 1 yp
1s2 … x5, s = 1, c, 3,

g4
p = 1 g3

s = 1 xp + yp
1s2 + wp

1s2 = vp
1s2,

x1, c, x5 Ú 0, yp
1s2 Ú 0 and wp

1s2 Ú 0 for
p = 1, c, 4, s = 1, c, 3. (c) nonzeros x1

* = 5,
x2

* = 4, x3
* = 2, x4

* = 2, x5
* = 15.45, y1

122* = 1,
y2
122* = 3, y3

122* = 4, y3
132* = 2.45, y4

122* = 6,
y4
132* = 13, w1

132* = 2, w2
132* = 4, w3

132* = 5.55,
value = 4.62. Fulfills scenario s = 1 with direct
machine shipments, other voter demands from
warehouse inventory. Some demands go unfulfilled.

Chapter 5
5-1 (b) boundary and extreme, infeasible, inte-
rior, boundary not extreme, infeasible (c) w2 … 3
active, no active, w2 … 3 active, no active (d)
optimal or unique, neither, neither, optimal not
unique, neither (e) w(1) basic feasible with actives
w2 … 3 and -w1 + w2 … 1;
w(2) basic infeasible with actives w1 Ú 0 and
w2 … 3; all others not basic.

5-3 (a) A = £ 1 -4 1 1 0
9 0 6 0 0

-5 9 0 0 -1
≥,

b = 112, 15, 32, c = 14, 2, -33, 0, 02

(c) A = §2 -1 -1 -1 0 0 0
1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1

¥,

b = 10, 3, 3, 32, c = 115, 41, -11, 0, 0, 0, 02

(e) A = a1 -1 1 5 1
0 3 -3 -9 0

b , b = 110, -62,

c = 12, 1 -1, 4, 02

constraints (c) 4 years (d) nonzero values are
x2,1

* = x2,2
* = 10, x2,3

* = x1,4
* = 21.2

4-16 (a) xj ! purchase in month j, hj ! hold
in month j. (b) LP optima are likely to be
relatively large in value, meaning ignoring
any fractions in them has little impact, but
LP is much more tractible that ILP. (c) min
12x1 + 14x2 + 14x3 + 14x4 + 1.2h1 + 1.2h2 +
1.3h3 + 1.4h4, subject to, x1 = 100 + h1,
h1 + x2 = 130 + h2, h2 + x3 = 95 + h3,
h3 + x4 = 300, x1, c, x4 Ú 0, h1, c, h3 Ú 0
(d) nonzeros x1

* = 230, x3
* = 95, x4

* = 300,
h1

* = 130, value = 84,460.

4-20 (d) x1
* = x3

* = x4
* = 1200, x2

* = 650,
z1

* = 0, z2
* = 150, z3

* = 1250, z4
* = 1600

4-21 (a) gm
i = 1 ai,kxi,t … bk, k = 1, c, q,

t = 1, c, n (c) xi,1 = di,1 + zi,1, i = 1, c, m

4-22 (a) wj
+ ! over@estimation on point j,

wj
- ! under@estimation on point j; min

g4
j = 11wj

+ + wj
-2, s.t. b0 + 2b1 = 1 + w1

+ - w1
-,

b0 + 3b1 = 3 + w2
+ - w2

-, b0 + 5b1 =
3 + w3

+ - w3
-, b0 + 7b1 = 5 + w4

+ - w4
-, all

 variables nonnegative (b) b0
* = .000, b1

* = .714,
nonzero over w1

+* = .429, w3
+* = .571, nonzero

under w2
-* = .857 (c) .429, .857, .571, .000

4-23 (b) x* = 10, nonzero runs w3
+* = 15,

w1
-* = 5

4-24 (a) z ! largest deviation, wj
+ ! over-

estimation on point j, wj
- ! under-estimation

on point j; min z, s.t.
b0 + 2b1 = 1 + w1

+ - w1
-,

b0 + 3b1 = 3 + w2
+ - w2

-,
b0 + 5b1 = 3 + w3

+ - w3
-,

b0 + 7b1 = 5 + w4
+ - w4

-,
z Ú wj

+, j = 1, c, 4,
z Ú wj

-, j = 1, c, 4, all variables nonnegative
(b) b0

* = .333, b1
* = .667, z* = .667, nonzero over

w1
+* = w3

+* = .667, nonzero under w2
-* = .667

(c).667, .667, .667, .000

4-26 (a) min g5
j = 1 cj xj, s.t. g5

j = 1ai,j xj Ú ri,
i = 1, c, 7; 0 … xj … uj, j = 1, c, 5; where
the ai,j are the yield fractions in the table, cj
the costs, and uj the availabilites; the ri are the
given requirements. (b) x1

* = 18.75, x2
* = 125.00,

x3
* = 150.00, x4

* = 650.00, x5
* = 0.00

4-27 (b) Nonzeroes x1,1
* = x1,2 = x1,3

* = 833.3,
x1,4

* = 500.0, x2,1
* = x2,2

* = x2,3
* = 10000.0,

x2,4
* = 6000.0, w3,1

* = x3,2
* = x3,3

* = 833.3,

Selected Answers 1103

5-18 (b) A = a -1 1 1 0
1 -1 0 1

b , b = 14, 102,

c = 14, 5, 0, 02 (c) y102 = 10, 0, 4, 102,
then either y112 = 110, 0, 14, 02 and
∆y = 11, 1, 0, 02 for y2 improves without limit,
or y112 = 10, 4, 0, 142 and ∆ y = 11, 1, 0, 02 for
y1 improves without limit

5-20 (a) min w6 + w7, s.t. w1 + w2 + w4 = 18,
-2w1 + w3 - w6 = -2, 3w2 + 5w3 - w5 +
w7 = 15, w1, c, w7 Ú 0; 5w4, w6, w76
5-21 (a) max 2w1 + w2 + 9w3 - M1w6 + w72
s.t. same constraints and starting basis.

5-22 (b) A = a -2 1 -1 0 1
0 1 0 1 0

b , b = 12, 12,

min c = 10, 0, 0, 0, 12 (c) y102 = 10, 0, 0, 1, 22,

y112 = 10, 1, 0, 0, 12, optimal value positive

5-24 (a) 14!2 >12!2!2 = 6
(c) 12340!2 >11150!1190!2
5-25 (a) yes (c) no

5-26 (b) A = £ -1 1 1 0 0
5 0 0 1 0
0 1 0 0 1

≥,

b = 12, 10, 42, (c) yes, no, yes, yes, no, no
(d) 5y1, y2, y36, 5y1, y2, y46, and 5y1, y2, y56
(e) Some basic components = 0. From basis
5y1, y2, y36, introducing y4 gives direction
∆y = 1-1>5, 0, -1>5, 1, 02, which will make
l = 0.

5-28 (a) alternative optima x = 13, 62 through

x = 16, 32 (b) A = £ 1 1 1 0 0
-2 1 0 1 0

1 -2 0 0 1
≥,

b = 19, 0, 02, c = 11, 1, 0, 0, 02 (c) bases
5x3, x4, x56, then either 5x1, x3, x46 and
5x1, x2, x46, or 5x2, x3, x56 and 5x1, x2, x56
(d) x102 = x112 = 10, 02, then either
x122 = 13, 62 or x122 = 16, 32

5-30 (a) B-1 = a 0 .500
.250 .125

b

(b) v = 10, .52 (c) no for x2, yes for x4

(d) Ea1 .2
0 .2

b , B-1a .050 .525
.050 .025

b

5-4 (b) A = a -1 1 1 0
5 0 0 1

b , b = 12, 102

(c) yes, no, yes, yes, no, no
(d) y = 12, 4, 0, 02 feasible,
y = 10, 0, 2, 102 feasible, y = 1-2, 0, 0, 202
infeasible (e) y = 12, 42, y = 10, 02,
y = 1-2, 02
5-6 (a) 5∆w1 + 1∆w2 - 1∆w3 = 0,
3∆w1 - 4∆w2 + 8∆w3 = 0, ∆w2 Ú 0

5-7 (a) x = 11, 0, 3, 02 (b) ∆x = 1-3, 1, -1, 02
for x2, ∆x = 11, 0, -5, 12 for x4 (c) each has
A ∆x = 0, ∆x2 Ú 0 and ∆x4 Ú 0 (d) no, yes
(e) l = 1>3, 5x2, x36, l = 3>5, 5x1, x46
5-9 (a) z1

* = 4, z2
* = 2

(b) A = £ -2 1 1 0 0
1 1 0 1 0
1 0 0 0 1

≥, b = 12, 6 42,

c = 13, 1, 0, 0, 02 (c) bases 5z3, z4, z56, then
either 5z1, z3, z46, 5z1, z2, z36 or 5z2, z4, z56,
5z1, z2, z56, 5z1, z2, z36 (d) z102 = 10, 02,
then either z112 = 14, 02, z122 = 14, 22 or
z112 = 10, 22, z122 = 110>3, 8>32, z132 = 14, 22
5-12 (a) x102 = 12, 0, 8, 5, 02, basic feasible.
(b)

 x1 x2 x3 x4 x5

min c 0 1 0 1 1 b
A -2 1 0 2 0 6

0 0 0 1 1 5
0 1 1 -1 0 3

t = 0 B N B B N

x(0) 2 0 8 5 0 5

∆x, x2 .5 1 -1 0 0 cQ2 = 1

∆x, x5 1 0 -1 -1 1 cQ5 = 0

x(0) is optimal because all nonbasic cQj Ú 0 in a
min problem.

5-15 (a) yes (c) no (e) no

5-16 (a) z = 10 - 29x2 + 10x3,
x1 = 1 - 13x2 - 1x42, x2 = 3 - 11x2 + 5x42
5-17 (a) no (c) yes

1104 Selected Answers

z112 = 10, 52, z122 = 10, 42 and z132 = 12, 12, or
z112 = 16, 02, z122 = 13, 02 and z132 = 12, 12
Chapter 6
6-1 (b) $ profit, thousand beta zappers, thou-
sand freeze phasers, extrusion hours, trimming
hours, assembly hours (c) make thousand beta
zappers, make thousand freeze phasers (d) input
1: 5 hours extrusion, 1 hour trimming, 12 hours
assembly; output 1: thousand beta zappers,
$2500 profit; input 2: 9 hours extrusion, 2 hours
trimming, 15 hours assembly; output 2: thousand
freeze phasers, $1600 profit

6-3 (b) $ cost, professional-equivalent hours pro-
duction, Proof hours supervision, grad maximum
hours (c) ugrad hour programming, grad hour
programming, professional hour programming
(d) input 1: .2 hours Proof supervision, $4 cost;
output 1: .2 professional-equivalent hours pro-
gramming; input 2: .3 hours Proof supervision,
1 hour grad maximum, $10 cost; output 2: .3
 professional-equivalent hours programming;
input 3: .05 hours Proof supervision, $25 cost;
 output 3: 1 professional-equivalent hour
programming

6-5 (a) tighten, decrease, more steep (c) relax,
decrease, less steep (e) relax, increase, less steep
(g) tighten, increase, more steep

6-6 (a) tighten, decrease (c) tighten, increase

6-7 (a) increase, more steep (c) increase, less steep

6-8 (a) v1 ! $ change in optimal profit per
 thousand increase in beta zapper demand,
v2 ! $ change in optimal profit per thousand
increase in freeze phaser demand, v3 ! $
change in optimal profit per hour increase in
extrusion capacity, v4 ! $ change in optimal
profit per hour increase in trimming capac-
ity, v5 ! $ change in optimal profit per hour
increase in assembly capacity (b) v1, v2 … 0;
v3, v4, v5 Ú 0; RHS increase tightens Ú and
relaxes … (c) v1 + 5v3 + v4 + 12v5 Ú 2500,
v2 + 9v3 + 2v4 + 15v5 Ú 1600, implicit cost of
activities should equal or exceed objective
function return (d) min 10v1 + 15v2 + 320v3 +
300v4 + 480v5, minimize total implicit cost
(f) x1 = 10 or v1 = 0, x2 = 15 or v2 = 0,
5x1 + 9x2 = 320 or v3 = 0, x1 + 2x2 = 300
or v4 = 0, 12x1 + 15x2 = 480 or v5 = 0,
either a primal constraint is active or small RHS
change as no objective function impact

5-32 (a)

x1 x2 x3 x4 x5

min c 5 4 3 2 16 b
A 2 0 1 0 6 8

0 1 1 2 3 12
t = 0 1st 2nd N N N

x(0) 4 12 0 0 0 68

B-1 = a0.5 0
0 1

b , v = a2.5
4
b

cQ 0 0 -3.5 -6 -11

∆ x, x5 -3 -3 0 0 1

4
3

12
3

- - -
l = 4>3

t = 1 N 2nd N N 1st

x (1) 0 9 0 0 4>3 57 1>3

(b) (c) See above. (d) New B = a6 0
3 1

b ,

E = a .33 0
-1 1

b , B-1 = a 1>6 0
-1>2 1

b and

v = 12>3, 42
5-33 (a)

 x1 x2 x3 x4 x5

min c 0 1 0 1 1 b
A -2 1 0 2 0 6

0 0 0 1 1 5
0 1 1 -1 0 3

t = 0 1st N 2nd 3rd N

x (0) 2 0 8 5 0 5

B-1 = £ -1>2 1 0
0 1 1
0 1 0

≥, v = £0
1
0
≥

cQ 0 1 0 0 0

x(0) is optimal because all nonbasic cQj Ú 0 in a
min problem.

5-34 (a) nonimproving, l = 2, (L, B, B, L, B)
(c) improving, l = 5, (L, B, U, B, B)

5-35 (a) z*
1 = 2, z2

* = 1

(b) A = a1 1 -1 0
3 2 0 -1

b , b = 13, 82,

c = 15, 6, 0 02 (c) basis statuses (U, U, 1st, 2nd),
then either (L, U, 1st, 2nd), (L, 2nd, 1st, L) and
(1st, 2nd, L, L), or (U, L, 1st, 2nd), (1st, L, L, 2nd)
and (1st, 2nd, L, L) (d) z102 = 16, 52, then either

Selected Answers 1105

6-14 (a) min 14v1 + 14v2, s.t. 2v1 + 5v2 Ú 14,
5v1 + 2v2 Ú 7, v1, v2 Ú 0; x* = 12, 22,
v* = 11>3, 8>32 (c) max 24v1 + 11v2,
s.t. 2v1 + 3v2 … 8, 9v1 + v2 … 11, v1, v2 Ú 0;
x* = 13, 22, v* = 11, 22
6-15 (a) v1 = 3, v2 = 1>3 (c) v1 = 1>3, v2 = 4

6-16 (a) min 4v1 + 12v2, s.t. 2v1 Ú 4,
v1 + 3v2 Ú 1, v1 … 0, v2 Ú 0; unbounded,
infeasible (c) max 2v1 + 5v2, s.t.v1 Ú 10,
v1 - v2 Ú 3, v1, v2 Ú 0, infeasible, unbounded
(e) max 2v1 + 5v2, s.t. - v1 + v2 … - 3,
2v1 - 2v2 … 4, v1, v2 Ú 0; infeasible, infeasible

6-17 (a) dual optimal value … 70

6-18 (a) For min primal, v1 … 0 ! dual on
… row 1, v2 Ú 0 ! dual on Ú row 2,
v3 URS ! dual on = row 3. First dual
… constraint corresponds to primal x1 Ú 0,
second to x2 Ú 0. Checking dual feasibility for
v = 10, 0, 22, 15 # 2 … 30, -4 # 2 = -8 6 2.
Dual value 10 # 2 = 20 lower bounds primal
 optimal value.

6-22 (a) no; 51.25 (b) $0; $208.33 (c) increase
$20,833; increase at least $39,375 and at most
$41,667 (d) increase $31,875; decrease at least
$25,925 and at most $31,875 (e) 87.5 hours
(f) $624.99

6-24 (a) v1
* = $25.882 (b) $1294.10, at least

$2415.64 and at most $2588.20 (c) yes, increase at
least $258.81; increase at least $376.45 (d) $2.235
(e) $4917.65; at least $17,376.01 and at most
$19,670.58 (f) yes (g) no (h) $20.12

6-29 (a) min 19v1 + 10v2, subject to
-3v1 + 4v2 + 6v3 Ú 0, 2v2 = 13,
1v1 + 7v2 + 8v3 Ú - 8, v1 Ú 0, v2 URS, v3 … 0.
(b) zQ must satisfy all constraints of the given
primal, vQ must satisfy all constraint of the dual in
part (a), and complementary slackness conditions
for all main inequalities must be satisfied, i.e.
119 + 3zQ1 - zQ32vQ1 = 0, 10 - 6zQ1 - 8zQ32vQ3 = 0,
10 + 3vQ1 - 4vQ2 - 6vQ32zQ1 = 0,
1-8 - 1vQ1 - 7vQ2 - 8vQ32zQ3 = 0

6-31 (a) B-1 = a 1>2 1>2
-1>2 1>2

b , N = a2 0 4
0 2 1

b ,

cB = 15, -102, cN = 10, 0, 02, b = 12, 82

(b) xB = a 1>2 1>2
-1>2 1>2

b a2
8
b = 15, 32,

xN = 10, 0, 02, value = -5, feasible 5 - 3 = 2,
5 + 3 = 8, all Ú 0. (c) min 12, 82 # v,

(g) v1 + 5v3 + v4 + 12v5 = 2500 or x1 = 0,
v2 + 9v3 + 2v4 + 15v5 = 1600 or x2 = 0, a
 primal variable should be used only if its implicit
cost matches its objective function return

6-10 (a) v1 ! $ change in optimal cost per pro-
fessional-equivalent hour increase in required
production, v2 ! $ change in optimal cost per
hour increase in Proof supervision, v3 ! $
change in optimal cost per hour increase in
grad availability (b) v1 Ú 0; v2, v3 … 0;
RHS increase tightens Ú and relaxes …
(c) .2v1 + .2v2 … 4, .3v1 + .1v2 + v3 … 10,
v1 + .05v2 … 25, implicit value of activities
should not exceed objective function cost
(d) max 1000v1 + 164v2 + 500v3, maximize total
implicit value (f) .2x1 + .3x2 + x3 = 1000 or
v1 = 0, .2x1 + .1x2 + .05x3 = 164 or v2 = 0,
x2 = 500 or v3 = 0, either a primal constraint
is active or small RHS change as no objec-
tive function impact (g) .2v1 + .2v2 = 4 or
x1 = 0, .3v1 + .1v2 + v3 = 10 or x2 = 0,
v1 + .05v2 = 25 or x3 = 0, a primal variable
should be used only if its implicit value matches
its objective function cost

6-12 (a) max 40v1 + 10v2, s.t. 2v1 + 4v2 … 17,
3v1 + 4v2 … 29, 2v1 + 3v3 … 0,
3v1 + v2 - v3 … 1, v1 … 0, v2 Ú 0, v3 URS
(c) min 10v1 + 19v2 + 5v3, s.t. 2v1 + v3 Ú 30,
-3v1 + 4v2 + v3 = 0, -v2 + v3 … - 2,
9v1 = 10, v1 Ú 0, v2 … 0, v3 URS (e)
min 10v1 + 11v3, s.t. 3v1 + v2 = 0, 2v1 + v3 Ú 2,
-v1 + 3v3 Ú 9, -v2 + v3 = 0, v1 … 0,
v2 Ú 0 v3 URS (g) max 40v1 + 18v2 + 11v3,
s.t. 15v1 + 12v2 … 0, 15v1 - 90v2 … 32,
15v1 … 50, 14v2 + v3 … 0, v1 … - 19, v1 URS,
v2 Ú 0, v3 … 0

6-13 (a) 2x1 + 3x2 + 2x3 + 3x4 = 40 or v1 = 0,
4x1 + 4x2 + x4 = 10 or v2 = 0, 2v1 + 4v2 = 17
or x1 = 0, 3v1 + 4v2 = 29 or x2 = 0,
2v1 + 3v2 = 0 or x3 = 0, 3v1 + v2 - v3 = 1
or x4 = 0 (c) 2x1 - 3x2 + 9x4 = 10 or v1 = 0,
4x2 - x3 = 19 or v2 = 0, 2v1 + v3 = 30 or
x1 = 0, -v2 + v3 = -2 or x3 = 0
(e) 3w + 2x1 - x2 = 10 or v1 = 0, w - y = 0 or
v2 = 0, 2v1 + v3 = 2 or x1 = 0, -v1 + 3v3 = 9
or x2 = 0 (g) 12x1 - 90x2 + 14x4 = 18 or
v2 = 0, x4 = 11 or v3 = 0, 15v1 + 12v2 = 0 or
x1 = 0, 15v1 - 90v2 = 32 or x2 = 0, 15v1 = 50
or x3 = 0, 14v2 + v3 = 0 or x4 = 0 v1 = -19
or x5 = 0

1106 Selected Answers

cQ = 10, 4, 3, 0, 4, 1, 12, x = 13, 0, 0, 0, 0, 0, 02,
qQ = 10, 02, primal feasible and optimal,
value = 9.

Chapter 7
7-1 (a) w1

* = 3>2, w2
* = 2 (b) ∆w = 12, 32

(d) check constraints strictly satisfied
(e) lmax = 5>17 (f) w112 = 127>17, 32>172
7-3 (a) no (c) no (e) yes

7-4 (a) no (c) yes (e) no

7-5 (a) 2∆w1 + 3∆w2 - 3∆w3 = 0,
4∆w1 - 1∆w2 + 1∆w3 = 0

7-6 (a) ∆x = 1- .8, -1.6, 42,

a 1 2 1
-2 1 0

b ∆ x = 0

7-7 (a) ∆z = 1-14, -3, -52

(b) P = £ 1>6 -1>6 1>3
-1>6 1>6 -1>3

1>3 -1>3 2>3
≥

(c) ∆z = 1-7>2, 7>2, -72

(d) a2 0 - 1
1 1 0

b ∆z = 0,

114, 3, 52 # 1-7>2, 7>2, -72 6 0

7-9 (a) (1/2, 1/5, 1, 1/9) (c) (3/2, 1, 1, 2/3)

7-10 (a) (2, 5, 1, 9) (c) (6, 25, 1, 54)

7-11 (a) x* = 10, 0, 42 (b) y132 = 11, 1, 12,
y* = 10, 0, 42 (c) min 4y1 + 3y2 + 5y3,
s.t. 4y1 + 5y2 + 3y3 = 12, y1, y2, y3 Ú 0

7-13 (a) ∆x = 1- .64, 1.6, -2.242,
∆y = 1- .32, 1.6, -2.242 (b) 12, 3, 52 # ∆x 6 0,
12, 5, 32 # ∆x = 0 (c) l = .36084
(d) x142 = 11.769, 1.577, 0.1922,
y142 = 10.884, 1.577, 0.1922
7-15 (a) check feasible and strictly positive
(b) min 40y1 + 3y2, s.t. 4y1 - 3y2 + 2y3 = 3,
3y2 - y3 = 2, y1, y2, y3 Ú 0
(c) ∆x = 1-7.669, 7.669, 7.6692

(d) 110, 1, 02 # ∆ x 6 0, a1 -1 2
0 1 -1

b ∆x = 0

(e) l = .12037, x112 = 13.077, 3.923, 1.9232
7-17 (a) yes, unbounded
(c) no, x1122 = 13.894, 0.106, 92
7-19 (a) w* = 14, 0, 02 (b) max 13w1 - 2w2
+ w3 + m1ln1w12 + ln1w22 + ln1w322,
s.t. 3w1 + 6w2 + 4w3 = 12, w1, w2, w3 Ú 0

subject to v a1 - 1
1 1

b Ú 15, - 102,

va2 0 4
0 2 1

b Ú 10, 0, 02, v URS.

(d) vQ = 15, -102 a 1>2 1>2
-1>2 1>2b = 115>12, -5>22

value = -5 same as primal. (e) Part (d) assures
matching solution values, but not complementary
slackness needed for optimality.

6-34 (a) min 2x1 + 3x2 + 4x3, subject to,
x1 + 2x2 + x3 - x4 = 3,
2x1 - x2 + 3x3 - x5 = 4, x1, c, x5 Ú 0.
(b) max 3v1 + 2v2, subject to, v1 + 2v2 … 2,
2v1 - v2 … 3, v1 + 3v2 … 4, v1 Ú 0, v2 Ú 0.
(c) x1 = x2 = x3 = 0, x4 = -3, x5 = -4.
Infeasible because some components negative.
(d) All cj Ú 0, implies feasible (b). Only on
x4 and x5 and cQ4 = cQ5 = 0. (e) t = 0:

B = B-1 = a -1 0
0 -1

b , xB = 1-3, - 42,

cQ = 12, 3, 4, 0, 02, t = 1: r = 11, 02,
∆cQ = 1-1, - 2, - 1, 1, 02, p = 2, l = 3>2,
v = 13>2, 02, cQ = 11>2, 0, 5>2, 3>2, 02,

B = a 2 0
-1 -1

b , B-1 = a 1>2 0
-1>2 -1

b ,

xB = 13>2, - 11>22. t = 2: r = 11>2, 12,
∆cQ = 1-5>2, 0, - 7>22, 1>2, 02, p = 1,

l = 1>5, v = 18>5, 1>52, B = a1 2
2 -1

b ,

B-1 = a1>5 2>5
2>5 -1>5

b , xB = 111>5, 2>52.

Stop primal feasible, value 28>5.

6-35 (a) max 6v1 + 3v2, subject to, 2v1 + v2 … 3,
-v1 + v2 … 4, v1 + 2v2 … 6, 6v1 + v2 … 7,
-5v1 + 2v2 … 1, v1 Ú 0, v2 Ú 0.
(b) All cj Ú 0 implies feasible in (a).
(c) Restricted primals min q1 + q2, subject to
2x1 - x2 + x3 + 6x4 - 5x5 - x6 + q1 = 6,
x1 + x2 + 2x3 + x4 + 2x5 - x7 + q2 = 3,
all variables Ú 0. t = 0: v102 = 10, 02,

cQ = 13, 4, 6, 7, 1, 0, 02, B = B-1 = a1 0
0 1

b ,

qB = 16, 32, w = 11, 12, restricted optimal.
l = 1 v112 = 11, 12, ∆x = 13, 0, 0, 0, 0, 0, 02,
∆q = 1-2, -12. x1 enters, q2 leaves.

t = 1: B = a2 1
1 0

b , B-1 = a0 1
1 - 2

b ,

Selected Answers 1107

>1$7> Length = no. chars used = 35.
(c) The number of digits of integer value {q is
{ <log1� q �2 + 1=, not its magnitude. (d) Here
n = 4 and m = 2. The count of the n cj, m bi, and
n # mai,j grows in proportion to n + m + nm.
Lengths of coefficients values {q grow in
 proportion to { <log1� q �2 + 1=
7-31 (a)

x1 x2 x3 x4 x5 x6

max c 0 1 0 0 0 0 b
s.t. +1 -1 1/4

+1 +1 1

+1>4 -1 +1 0

+1>4 +1 +1 1

B B N B N B

(b) Basic as shown, yield x112 = 11>4, 1>16, 0,
3>4, 0, 7>82 value = 1>16. (c) Introducing
nonbasic slack x3 gives feasible
∆ x112 = 11, 1>4, 1, -1, 0, -1>22 with im-
proving reduced cost 1/4. With l = 3>4,
x122 = 11, 1>4, 3>4, 0, 0, 1>22

Chapter 8
8-1 (b) (166, 85.2) to (0,184.8) (c) first:
x* = 124, 166, 502; second: x* = 124, 0, 2162
8-3 (b) (2.4,19.8) to (2.8,12.5) to (3.2,12.1) to
(4.2,11.3) (c) first: x* = 10, 1, 0, 0.12; second:
x* = 11, 0, 1, 1, 02
8-4 (b) approximately (9.05, 4202) to (12, 2760)
to (20, 1809) to (30, 1365) to (43.29, 1110)
(c) first: x* = 16.65, 5.56, 4.46, 3.332; second:
x* = 11, 1, 1, 172
8-5 (a) first: x* = 10, 62, second: x* = 14, 12
(b) no, no, yes, yes, no, yes (c) (9,4) to (27, 2) to
(30, 0)

8-7 (a) first: first objective, s.t. original con-
straints, points (1, 9/2) through (3,3/2) alternative
optima; second: second objective, s.t. original
constraints and 6x1 + 4x2 Ú 26, x* = 11, 9>22
(b) first: second objective, s.t. original constraints,
x* = 10, 52; second: first objective, s.t. original
constraints and x2 Ú 5, x* = 10, 52
8-9 (a) min 15x1 + 110x2 + 92x3 + 123x4

8-10 (a) x* = 11, 9>22 (b) x* = 10, 52
8-12 (a) min d1 + d2, s.t. 3x1 + 5x2 - x3
- d1 … 20, 11x2 + 23x3 + d2 Ú 100,
d1, d2 Ú 0, and all original constraints

(c) 17.7 and 16.45, 3.088 and -78.10, moderate
bonus in middle vs. major penalty near bound-
ary (d) w* = 11.497, 0.619, 0.9492, w* = 12.799,
0.285, 0.4742, w* = 13.850, 0.350, 0.6002
7-21 (a) yes (c) no

7-22 (a) curve II

7-23 (a) check feasible and strictly positive
(b) min 4x1 - x2 + 2x3 - 101ln1x12 +
ln1x22 + ln1x322, s.t. 4x1 - 3x2 + 2x3 = 13,
3x2 - x3 = 1, x1, x2, x3 Ú 0
(c) ∆x = 1-4.6415, 6.1887, 18.5662
(d) 10.667, -11, -32 # ∆ x 6 0,

a4 -3 2
0 3 -1

b ∆x = 0 (e) lmax = .64634

(f) decrease then increase

7-25 (a) check feasible and strictly positive
(b) ∆ x = 1-16.899, 16.899, 16.8992

(c) 110, 1, 02 # ∆ x 6 0, a1 -1 2
0 1 -1

b ∆ x = 0

(d) lmax = .2367 (e) l = .1,
x112 = 12.310, 4.690, 2.6902
7-27 (a) max 8v1 + 12v2, subject to,
2v1 + w1 = 5, v2 + w2 = 4, v1 + v2 + w3 = 3,
2v2 + w4 = 2, 6v1 + 3v2 + w5 = 16,
w1, c, w5 Ú 0. (b) w = 14, 7>2, 2, 1, 23>22.
Check that all are strictly positive and satisfy all
main constraints. (c) xj

wj = 0,
j = 1, c, 5. (d) primal = 39.33, dual = 10,
complementary slackness = 29.33.
(e) A∆x = 0, AT∆v + ∆w = 0,
2∆w1 + 4∆x1 = -3, 3∆w2 + 3.5∆x2 = -5.5,
2∆w3 + 2∆x3 = 1, 3∆w4 + 1∆x4 = 2,
0.33∆w5 + 11.5∆x5 = 1.17. (f) t = 1:
x112 d 11.2811, 0.0030, 2.6470, 3.9773, 0.46512,
primal value = 29.7547, v112 d 11.4794, 0.53152,
w112 d 12.0411, 3.4685, 0.9891, 0.9370, 5.52892,
dual value = 18.2133. t = 2:
x122 d 10.9309, 1.8314, 3.1943, 2.7512, 0.49062,
primal value = 34.9151, v122 d 11.7927, 0.99952,
w122 d 11.4146, 3.0005, 0.2078, 0.0009, 2.24512,
dual value = 26.3361. t = 3:
x132 d 10.9590, 0.0018, 3.2666, 3.6619, 0.4692,
primal value = 29.4332, v132 d 11.8455, 0.72832,
w132 d 11.3089, 3.2717, 0.4262, 0.5434, 2.74192,
dual value = 23.5036.

7-29 (a) (LP) is a problem or model form with
size and symbolic parameters unspecified. An
instance, like the given one, is a specific case with
parameter values and size made explicit.
(b) >4$2>11$5$8$16>0$ - 1$2$1>2$1$0$3

1108 Selected Answers

(b) x1
* = 76.92, x2

* = 115.38, x3
* = 0.00,

d1
-* = 0.00, d2

-* = 27.69

8-22 (b) nonzeros: x1
* = 4.4, x2

* = 10.0,
x3

* = 12.3, x4
* = 16.5, r1

* = 0.6, r4
* = 1.5

8-28 (b) v* = 285, f * = .007, d* = .040,
g1

+* = g1
-* = 0, g2

* = .637

8-32 (c) x1
* = 53.33, x2

* = 500, x3
* = 166.67,

y1
* = 100, y2

* = 1150, y3 = 250, all dk
* = 0 except

d1
* = 466.67

Chapter 9
9-1 (a) nodes: 1,2,3,4,5; arcs: (3,2), (3,4), (3,5);
edges: (1,2), (1,3), (1,4), (2,5), (4,5) (b) yes, no,
yes, no (c) replace each edge with 2 opposed arcs
of the same length as the edge

9-3 (a) 1 - 3 - 5 - 2, length 6, 1 - 3, length
3, 1 - 4, length 7, 1 - 3 - 5, 4 (b) 1-3 best for 1
to 3, 1-3-5 best for 1 to 5, 3-5 best for 3 to 5, 3-5-2
best for 3 to 2, 5-2 best for 5 to 2 (c) n[1] = 0,
n[2] = 6, x1,3[2] = x3,5[2] = x2,5[2] = 1,
n[3] = 3, x1,3[3] = 1, n[4] = 7, x1,4[4] = 1,
n[5] = 4, x1,3[5] = x3,5[5] = 1 (d) n[1] = 0,
n[2] = min5n[1] + 10, n[3] + 5, n[5] + 26,
n[3] = min5n[1] + 36, n[4] = min5n[1] + 7,
n[3] + 9, n[5] + 46, n[5] = min5n[2] + 2,
n[3] + 1, n[4] + 46 (f) positive lengths preclude
negative dicycles

9-5 (a) 1 - 3 - 2, length 4, 1 - 3, length 3,
1 - 3 - 2 - 4, length 10, 2 - 1, length 8,
2 - 4 - 3, length 10, 2 - 4, length 6, 3 - 1,
length 3, 3 - 2, length 1, 3 - 2 - 4, length 7,
4 - 3 - 1, length 7, 4 - 3 - 2, length 5, 4 - 3
length 3 (b) 1-3 best for 1 to 3, 1-3-2 best for 1 to
2, 3-2 best for 3 to 2, 3-2-4 best for 3 to 4, 2-4 best
for 2 to 4 (c) n[k][k] = 0, k = 1, c, 4,
n[1][2] = 4, x1,3[1][2] = x3,2[1][2] = 1,
n[1][3] = 3, x1,3[1][3] = 1, n[1][4] = 10,
x1,3[1][4] = x3,2[1][4] = x2,4[1][4] = 1,
n[2][1] = 8, x1,2[2][1] = 1, n[2][3] = 10,
x2,4[2][3] = x4,3[2][3] = 1, n[2][4] = 6,
x2,4[2][4] = 1, n[3][1] = 3, x1,3[3][1] = 1,
n[3][2] = 1, x3,2[3][2] = 1, n[3][4] = 7,
x3,2[3][4] = x2,4[3][4] = 1, n[4][1] = 7,
x4,3[4][1] = x1,3[4][1] = 1, n[4][2] = 5,
x4,3[4][2] = x3,2[4][2] = 1, n[4][3] = 3,
x4,3[4][3] = 1 (d) n[k][k] = 0, k = 1, c, 4,
n[1][2] = min58, n[1][3] + n[3][2], n[1][4] +
 n[4][1]6 ,
n[1][3] = min53, n[1][2] + n[2][3], n[1][4] +
 n[4][2]6,

(c) min d1 + d2 + d3, s.t. 40x1 + 23x2 + d1 Ú 700,
20x1 - 20x2 - d2 … 25, 5x2 + x3 - d3 … 65,
d1, d2, d3 Ú 0, and all original constraints
(e) min d1 + d2, s.t. 22x1 + 8x2 + 13x3 - d1 … 20,
3x1 + 6x2 + 4x3 + d2 Ú 12, d1, d2 Ú 0, and all
original constraints

8-13 (b) min d1 + d2, s.t. x 1 + d1 Ú 3,
2 x 1 + 2 x 2 + d2 Ú 1 4 , 2 x 1 + x 2 … 9 , x 1 … 4 ,
x 2 … 7 , x 1 , x 2 , d1 , d2 Ú 0 (c) least total
 distance to the two contours

8-15 (a) min d1, s.t. x 1 + d1 Ú 3 ,
2 x 1 + 2 x 2 + d2 Ú 1 4 , 2x1 + x2 … 9, x1 … 4,
x2 … 7, x1, x2, d1, d2 Ú 0; any feasible solution
with x 1 Ú 3 is alternative optimal; min d2,
s.t. d1 … 0 and other constraints of the first LP;
x * = 13 , 3 2 (b) min 100 d1 + d2, s.t. same con-
straints as first LP in (a) (c) yes; yes

8-17 (a) first: first objective s.t. original con-
straints, x* = 124, 166, 502; second: second
objective s.t. original constraints and x2 Ú 166,
x* = 124, 166, 502 (b) max .50x1 + 2.20x2 + .80x3,
s.t. original constraints, x* = 124, 166, 502
(c) min d1 + d2, s.t. x2 + d1 Ú 100,
.50x1 + .20x2 + .80x3 + d2 Ú 144, d1, d2 Ú 0,
and all original constraints (e) x* = 124, 100, 1162,
in between the earlier (f) first: min d1, s.t.
constraints of (c), any feasible solution with
x2 Ú 100 is optimal; second: min d2, s.t. d1 … 0
and constraints of (c), x* = 124, 100, 1162
(g) min 10000d1 + d2

8-19 (a) first: first objective s.t. original
constraints, x* = 10, 1, 0, 0, 12; second:
 second objective s.t. original constraints and
1.0x1 + 0.4x2 + 1.4x3 + 1.8x4 + 2.0x5 … 2.4,
x* = 10, 1, 0, 0, 12 (b) min 4.5x1 + 6.2x2 +
7.4x3 + 7.8x4 + 18.4x5, s.t. original constraints,
x* = 11, 1, 1, 0, 02 (c) min d1 + d2, s.t.
1.0x1 + 0.4x2 + 1.4x3 + 1.8x4 + 2.0x5 - d1 … 3.0,
2.5x1 + 5.4x2 + 4.6x3 + 4.2x4 + 14.4x5 - d2 … 15,
d1, d2 Ú 0, and all original constraints (d) part (c)
optimal value ≠ 0 (e) x* = 10, 1, 1, 1, 02, new
intermediate (f) first: min d1, s.t. constraints
of (c), x* = 11, 0, 0, 0, 12; second: min d2,
s.t. d1 … 0 and constraints of (c), same x*
(g) min 10000d1 + d2

8-21 (a) x1 ! singles, x2 ! doubles, x3 ! luxuries;
min 2d1

- + d2
-, s.t. 40x1 + 60x2 + 120x3 … 10000;

.7x1 + .4x2 + .9x3 + d1
- Ú 100; .3x1 + .6x2 +

.1x3 + d2
- Ú 120; all variables nonnegative

Selected Answers 1109

9-23 (a)

1

2

3

4

5

6

7 8

start �nish

0

0

0

5

1

1
1

1 1

3

2

4
3

(b) check arcs (i, j) have i 6 j (c) n[1] = 0,
n[2] = 0, n[3] = 5, n[4] = 1, n[5] = 2, n[6] = 2,
n[7] = 0, n[8] = 4, finish = 8 (d) start - 1 -
3 - finish (e) late starts: 1 = 2, 2 = 6, 3 = 7,
4 = 7, 5 = 8, 6 = 9, 7 = 3, 8 = 7; slacks: 1 = 2,
2 = 6, 3 = 2, 4 = 6, 5 = 6, 6 = 7, 7 = 3, 8 = 3

9-26 (a)

start

F 1LB

1IW 1FN

0

8

5

5

3

3

4

3

3

3

4

4
2

5

10

12

CS 2IW

2FN

2LB R

�nish

2FL

(b) one numbering: F = 1, CS = 2, 1LB = 3,
1IW = 4, 2FL = 5, 1FN = 6, 2LB = 7,
2IW = 8, R = 9, 2FN = 10 (c) n[F] = 0,
n[CS] = 8, n[1LB] = 13, n[1IW] = 13,
n[2FL] = 16, n[1FN] = 19, n[2LB] = 19,
n[2IW] = 19, n[R] = 23, n[2FN] = 25,
finish = 35 (d) start - F - CS - 1LB -
2FL - 2LB - R - 2FN - finish (e) late starts:
F = 0, CS = 8, 1LB = 13, 1IW = 19, 2FL = 16,
1FN = 23, 2LB = 19, 2IW = 20, R = 23,
2FN = 25; slacks: F = 0, CS = 0, 1LB = 0,
1IW = 6, 2FL = 0, 1FN = 4, 2LB = 0,
2IW = 1, R = 0. 2FN = 0

9-28 (c) for 8: 1–2–13–3–8, length 26; for 10: 1–2–
13–3–8–10, length 41; for 11: 1–2–13–4–11, length
19; for 12: 1–2–13–3–8–6–12, length 35

9-29 (c) 1-2, length 6; 1–2–7–3, length 42; 1–2–7–4,
length 30; 1–2–7–5, length 20; 1–6, length 11; 1–2–7,
length 12; 1–2–7–5–8, length 34; 1–2–7–5–8–9, 57;
1–2–7–5–8–10, length 59

9-30 (b) yes (d) 7–11–2 with one 4-hour and one
3-hour, cost $90

9-31 (d) 1–3–6–7 (or 1–3–6–5–7), length 9 gridsize

n[1][4] = min5n[1][2] + n[2][4], n[1][3] +
 n[3][4]6,
n[2][1] = min58, n[2][3] + n[3][1], n[2][4] +
 n[4][1]6,
n[2][3] = min5n[2][1] + n[1][3], n[2][4] +
 n[4][3]6,
n[2][4] = min56, n[2][1] + n[1][4], n[2][3] +
 n[3][4]6,
n[3][1] = min53, n[3][2] + n[2][1], n[3][4] +
 n[4][1]6,
n[3][2] = min51, n[3][1] + n[1][2], n[3][4] +
 n[4][2]6,
n[3][4] = min5n[3][1] + n[1][4], n[3][2] +
 n[2][4]6,
n[4][1] = min5n[4][2] + n[2][1], n[4][3] +
 n[3][1]6,
n[4][2] = min56, n[4][1] + n[1][2], n[4][3] +
 n[3][2]6,
n[4][3] = min54, n[4][1] + n[1][3], n[4][2] +
 n[2][3]6
(f) positive lengths preclude negative dicycles

9-7 (a) 1 - 2, length -5, 1 - 3, length 10,
1 - 3 - 4, length 12 (b) 1 - 2 - 4 - 1,
1 - 3 - 4 - 1 (c) no, yes (d) functional equa-
tions nolonger sufficient

9-9 (a) one to all, no negative dicycles (b) see
9-3(a) (c) see 9-3(a) (d) 1 - 3 - 2, length 8,
1 - 3, length 3, 1 - 4, length 7, 1 - 3 - 5,
length 4 (e) 4, labels correct after t = 4

9-11 (a) 1 - 3 - 4 - 1

9-12 (a) all to all, no negative dicycles (b) see 9-5(a)
(c) see 9-5(a) (d) 1 - 2, length 8, 1 - 3, length 3,
1 - 2 - 4, length 14, 2 - 1, length 8, 2 - 1 - 3,
length 11, 2 - 4, length 6, 3 - 1, length 3, 3 - 2,
length 1, 3 - 2 - 4, length 7, 4 - 2 - 1, length 14,
4 - 2, length 6, 4 - 3 length 3

9-14 (a) 1 - 3 - 4 - 1

9-15 (a) one to all, lengths nonnegative (b) see
9-3(a) (c) see 9-3(a) (d) 1 - 3 - 2, length 8, 1 - 3,
length 3, 1 - 4, length 7, 1 - 3 - 5, length 4

9-17 (a) Bellman-Ford, Floyd-Warshall, Dijkstra
(best), 1 - 3 - 2, length 5, 1 - 3, length 2, no
path to 4 (c) none apply

9-18 (a) acyclic; one numbering: a = 1, b = 2,
c = 4, d = 3, e = 6, f = 5 (c) not acyclic; dicycle
a-d-e-c-b-a

9-19 (a) acyclic digraph (b) n[1] = 0, n[2] = ∞ ,
n[3] = 2, n[4] = 12, n[5] = -1, n[6] = 11
(c) 1 - 3, 1 - 3 - 4, 1 - 3 - 5, 1 - 3 - 5 - 6

1110 Selected Answers

.40 # 500 + .20 # 200, .15 # 500 + .60 # 2006 = 240
(d) Action 2 = All Beta is optimal.

Chapter 10
10-1 (a) V = 51, 2, 3, 4, 56, A = 511, 22, 11, 42,
12, 52, 13, 12, 13, 42, 13, 52, 14, 22, 14, 52, 15, 226
(b) source: 1, 3; sink: 2, 5; transshipment: 4
(d) min 5x1,2 + 10x1,4 - 6x3,1 + 2x3,4 + 8x4,2 +
6x4,5 + 1x5,2 + 3x5,3, s.t.
-x1,2 - x1,4 + x3,1 = -50,
x1,2 - x2,5 + x4,2 + x5,2 = 20,
-x3,1 - x3,4 + x5,3 = -70,
x1,4 + x3,4 - x4,2 - x4,5 = 0,
x2,5 + x4,5 - x5,2 - x5,3 = 100, x1,4 … 40,
x2,5 … 10, x3,1 … 4, x4,2 … 20, all xi, j Ú 0
(e)

A = • -1 -1 0 1 0 0 0 0 0
1 0 -1 0 0 1 0 1 0
0 0 0 -1 -1 0 0 0 1
0 1 0 0 1 -1 -1 0 0
0 0 1 0 0 0 1 -1 -1

µ
10-3 (a) check every column has at most a -1
and a + 1 (b)

2

43

1

10-5 (a) 150 7 80 (b) node 4, demand 70; zero
cost arcs (1,4) and (2,4)

10-7 (a) min 25xP1,C1 + 30xP1,C2 + 15xP1,W +
45xP2,C1 + 23xP2,C2 + 15xP2,W + 11xW,C1 +
14xW,C2, s.t. xP1,C1 + xP1,C2 + xP1,W … 400,
xP2,C1 + xP2,C2 + xP2,W … 600,
xP1,W + xP2,W - xW,C1 - xW,C2 = 0,
xP1,C1 + xP2,C1 + xW,C1 = 160,
xP1,C2 + xP2,C2 + xW,C2 = 700, all xi,j Ú 0
(b) xP1,C1

* = 160, xP1,W
* = 100, xP2,C2

* = 600,
xW,C2

* = 100 (c)

C1

400

140

600

160

(25, q)

(15, q)

(15, q
)

(23, q)

(45, q)

(11, q)

(14, q)

(30, q)

(0
, q

)
(0

, q
)

P1

P2

D W
0

C2 700

source: P1,P2; sink: C1,C2,D; transshipment: W

9-32 (d) Using S for shed and I for the unlabeled
intersection: S–5–I–1, length 24; S–5–3–2, length
26; S–5–3, length 19; S–5–4, length 25; S–5, length 5

9-33 (b)

390

190 175 130 205

710

410

255

520

1150

21 543

(d) produce 30, 35, 0, 35 (e) produce 30, 25

9-35 (b)

60

50

40

30

20

10

0

60

50

40

30

20

10

0

60

50

40

30

20

10

0

60

�nish

25

0 0 0

30
30

30
30

0

0

0

0

0

0

55
55

55

15
15

15

15

15

0

0

0

0

0

0

0
0

(d) take 1 and 3

9-39 (a) Actions K = 5all Alpha, all Betas,
Split6, rewards all = 0. (b) Using solid lines for
X14Alpha, dashed lines for X14Beta, and dotted
lines for Split

.15

.40

.30

.40

.20

.30

.40

.60

.25

1 v(1) = 500

v(2) = 200

v(3) = 03

20

(c) Boundary states n112 = 500, n122 = 200,
n132 = 0. n102 = max5.30 # 500 + .40 # 200,

Selected Answers 1111

10-18 (a) check flow balance and capacities
(b)

3

(2, q) (12, q)

(-12, 10)

(6, 20)

(-6, 40)

(2, 10)

(3, 40)

(1
, 1

5)

2

1 4

(c) direction of 1 – 2 – 3 – 1 or 2 – 3 – 4 – 2 (d) 15 or 10

10-20 (a) Check flows between 0 and capacity,
and flow balance at all nodes. (b) Showing for-
ward and reverse arcs of the residual digraph with
costs and limits, plus current flow on forward arcs
gives negative dicycle 1–2–3–1, cost -9, maxi-
mum step l = 50 in first residual. Then negative
 dicycle 4–5–6–4, cost -4, maximum step l = 28
in the second leaving

21

3

4

5 6

(2, 60, 0)

(11, 10, 30) (4, 0, 60)

(33, 0, 90)

(19, 40, 0)(8, 0, 70) (-19, 0)

(-8, 70)

(-7, 40)

(7, 0, 40)

(-33, 90)

(-2, 0)
(-11, 80)

(-4, 60)

No negative dicycles. Last flow optimal.

10-22 (a) apply weights +1, -1 (c) apply weights
+1, -1, -1

10-23 (a) x1,3 = 50, x1,4 = 10, x2,3 = 25, x2,5 = 5,
x3,5 = 65, x4,5 = 10; feasible (c) x1,2 = 25,
x1,4 = 35, x2,3 = 55, x3,5 = 45, x4,5 = 35; infeasi-
ble (e) not basis, cycle 1 – 3 – 2 – 1 (g) not basis,
not connected

10-9 (a) min 25xP1,1,C1,1 + 30xP1,1,C2,1 +
15xP1,1,W,1 + 45xP2,1,C1,1 + 23xP2,1,C2,1 +
15xP2,1,W,1 + 11xW,1,C1,1 + 14xW,1,C2,1 +
25xP1,2,C1,2 + 30xP1,2,C2,2 + 15xP1,2,W,2 +
45xP2,2,C1,2 + 23xP2,2,C2,2 + 15xP2,2,W,2 +
11xW,2,C1,2 + 14xW,2,C2,2 + 10xW,1,W,2,
s.t. xP1,1,C1,1 + xP1,1,C2,1 + xP1,1,W,1 … 400,
xP2,1,C1,1 + xP2,1,C2,1 + xP2,1,W,1 … 600,
xP1,1,W,1 + xP2,1,W,1 - xW,1,C1,1 - xW,1,C2,1 -
xW,1,W,2 = 0, xP1,1,C1,1 + xP2,1,C1,1 + xW,1,C1,1 = 150,
xP1,1,C2,1 + xP2,1,C2,1 + xW,1,C2,1 = 700,
xP1,2,C1,2 + xP1,2,C2,2 + xP1,2,W,2 … 400,
xP2,2,C1,2 + xP2,2,C2,2 + xP2,2,W,2 … 600,
xP1,2,W,2 + xP2,2,W,2 - xW,2,C1,2 - xW,2,C2,2 +
xW,1,W,2 = 0,
xP1,2,C1,2 + xP2,2,C1,2 + xW,2,C1,2 = 300,
xP1,2,C2,2 + xP2,2,C2,2 + xW,2,C2,2 = 810, all
xi,k, j, l Ú 0 (b) xP1,1,C1,1

* = 160, xP1,1,W,1
* = 210,

xP2,1,C2,1
* = 600, xW,1,C2,1

* = 100, xP1,2,C1,2
* = 300,

xP1,2,W,2
* = 100, xP2,2,C2,2

* = 600, xW,2,C2,2
* = 210,

xW,1,W,2
* = 110 (c)

C1

0

160

700

(25, q)
(15, q)

(15, q
)

(23, q)

(45, q)

(11, q)

(14, q)

(30, q)

(0
, q

)
(0

, q
)

D W

C1

C2

0

(25, q)
(15, q)

(15, q
)

(23, q)

(45, q)

(11, q)

(14, q)

(30, q)

(0, q)

300

810

30

(10, q
)

(0, q
)

P1

P1

P2

P2600

400

400

600

W

C2

10-11 (a) cycle (b) chain, path (c) chain (d) cycle,
dicycle

10-13 (a) check flow balance and capacities
(b) ∆x = {11, 0, 1, -1, 02, {10, 1, 0, 1, -12,
{ 11, 1, 1, 0, -12 (d) no, yes, yes, no, no, no
(e) no, yes, yes, no, no, yes (f) 20, 20, 10

10-15 (a) x* = 10, 35, 60, 40, 02
10-17 (a) add node 0; (1,0) flow 50, (3,0) flow 70,
(0,2) flow 20, (0,5) flow 100

1112 Selected Answers

10-28 (a) feasible, spanning tree, all off-tree at
bounds (b) 2 – 3 – 4 – 2 (c) 4 – 2 – 1 – 3 – 4

10-29 (a) yes (c) no

10-30 (a) For V ! 51, 2, 3, 46,
A ! 511, 22, 11, 32, 12, 42, 13, 22, 13, 426

A = § -1 -1 0 0 0
+1 0 -1 +1 0

0 +1 0 -1 -1
0 0 +1 0 +1

¥

(b) First 3 cols (c) Delete last row gives B

with det B = -1. (d) det a -1 -1
1 0

b = +1,

 det a0 +1
0 0

b = 0, det £ -1 -1 0
+1 0 -1

0 +1 0
≥ = -1,

 det £ -1 +1 0
0 -1 -1

+1 0 -1
≥ = 0

 det 1first 4 columns2 = det 1last 42 = 0

10-31 (a) min 23xN,B + 77xN,W + 8xS,B +
94xS,W + 53xT,B + 41xT,W, s.t. xN,B + xN,W = 50,
xS,B + xS,W = 50, xT,B + xT,W = 50,
xN,B + xS,B + xT,B = 60,
xN,W + xS,W + xT,W = 90, all xi,j Ú 0
(b) xN,B

* = 10, xN,W
* = 40, xS,B

* = 50, xT,W
* = 50

(c)

S

B

W

50

50

50

60

90

23

27

8

94

53
41

all capacities q T

N

10-34 (a) max g4
i = 1
4 g4

j = 1 ri,j xi,j,

s.t. g4
j = 1 xi,j = 1, i = 1, c, 4, g4

i = 1 xi,j = 1,
j = 1, c, 4, all xi,j = 0 or 1, where ri,j ! the
rating of member i for task j
(b) x1,1

* = x2,4
* = x3,3

* = x4,2
* = 1 (c) 4 member

nodes with supply 1, 4 task nodes with demand 1,
arcs from every member to every task with cost
the negative of the corresponding rating (d) net-
work flow with integer supplies and demands

10-36 (a) Define values given in table as ci,j.
Then max g3

i = 1 g6
i = 1 ci,j xi,j subject to

g6
j = 4 xi,j = 1 i = 1, c, 3,

g3
i = 1 xi,j = 1 j = 4, c, 6 all xi,j binary

10-24 (a) Bold arcs below. Basis because span-
ning tree.

21

3

4

5 6

(2, 60, 0)

(11, 90, 30) (4, 60, 60)

(33, 90, 90)

(19, 40, 40)(8, 70, 30)

(7, 40, 0)30 40

20

0

-60-30

(b) Yields the basic flow shown above. Feasible be-
cause within bounds and balances. (c) Degenerate
because x2,3 = 60 = u2,3, and x3,4 = 90 = u3,4 (d)
Nonbasic x5,6 produces cycle direction 5-6-4-5, net
cost -4, step l = 40, updated basis and flows below

21

3

4

5 6

(2, 60, 0)

(11, 90, 30) (4, 60, 60)

(33, 90, 90)

(19, 40, 0)(8, 70, 70)

(7, 40, 40)30 40

20

0

-60-30

Now optimal because neither nonbasic produces
an improving direction.

10-25 (a) forms spanning tree, all off-tree at
bounds (b) increase (2, 3), ∆x = 11, -1, 1, 0, 02;
increase (3, 4), ∆x = 1-1, 1, 0, -1, 12 (c) yes,yes
(d) 15, 10

10-27 (a) x2,4
* = 35, x3,1

* = 60, x3,2
* = 40

(c) x1,2
* = 15, x1,3

* = 35, x2,3
* = 15, x3,4

* = 10

Selected Answers 1113

(b) xA,B
* = 400, xA,C

* = 470, xB,D
* = 80,

xB,E
* = 320, xC,D

* = 470, xD,E
* = 550 (c) add

infinite capacity, cost = -1 arc from E to A;
all other cost = 0; all net demands = 0

10-40 (a) add infinite capacity, cost -1 return
arc (2,3), all other costs and all net demands 0;
x* = 130, 0, 30, 100, 02 (c) add infinite capacity,
cost -1 return arc (4,1), all other costs and all net
demands 0; x* = 150, 40, 0, 50, 402
10-45 (a)

5

810

2
-6

3
6

0 1

1-1

21

3 5

4

Solution must be a dipath from s = 3 to t = 5 of
minimum total length.

10-46 (a) min a 3
k = 1 1x1,3,k + x2,1,k + x3,2,k2,

s.t. x3,1,1 + x2,1,1 - x1,2,1 - x1,3,1 = -7,
x1,2,1 + x3,2,1 - x2,3,1 - x2,1,1 = 0,
x2,3,1 + x1,3,1 - x3,1,1 - x3,2,1 = 7,
x3,1,2 + x2,1,2 - x1,2,2 - x1,3,2 = 7,
x1,2,2 + x3,2,2 - x2,3,2 - x2,1,2 = -7,
x2,3,2 + x1,3,2 - x3,1,2 - x3,2,2 = 0,
x3,1,3 + x2,1,3 - x1,2,3 - x1,3,3 = 0,
x1,2,3 + x3,2,3 - x2,3,3 - x2,1,3 = 7,
x2,3,3 + x1,3,3 - x3,1,3 - x3,2,3 = -7,

a 3
k = 1 x1,2,k … 11, a 3

k = 1 x2,3,k … 11,

a 3
k = 1 x3,1,k … 11, all xi,j, k Ú 0

(b) x1,2,1
* = x1,2,3

* = x2,3,1
* = x2,3,2

* = x3,1,2
* =

x3,1,3
* = 5.5, x1,3,1

* = x2,1,2
* = x3,2,3

* = 1.5
(c)

(7, 7, 0)

(7, 0, 7)

(1
,1

,1
, q

)

(1,1,1, q)

(1, 1, 1, q)

(0
, 0

, 0
, 1

1)

(0, 0, 0, 11)

(0, 0, 0, 11)

(0, 7, 7)

2

3

1

(d) an optimal solution would ship each 7 units
to itself at 0 cost (e) integer flows not guaranteed
in multicommodity flows

(b)

4 025

even

even

odd

029

-421

1

2

3 6

5

(duals on nodes) (c) Starting assignment shown
above in bold; complementary because both edges
have cQi, j = 0. (d) Initial even-odd-even labeling also
shown above. Now blocked. Using D = 512, 52,
12, 626, update duals with l = 2 to produce

4 223

even

even

even

odd

odd

029

-419

1

2

3 6

5

Now further labeling of 6 odd and 3 even gives oppor-
tunity for solution growth. Adjusting along augment-
ing path 1 – 4 – 2 – 6 – 3 – 5 yields optimal solution.
Nonzeros x1,4

* = x2,6
* = x2,6

* = 1, value 69. (e) Duals
as shown above. Value also 69. Complementary be-
cause all chosen (i, j) have cQi, j = 0. (f) With � I � = 3
bound is 1323 = 27 steps. Here less with only one
dual change and one solution growth.

10-38 (a)

E

500

650

320

470

80 800

B

DC

A

1114 Selected Answers

of � V � - 1 edges; part (c) constraints active
(satisfied and complementary), main con-
straints for S not mentioned in (c) satisfied but
inactive with complementary uS = 0 because
they include multiple subtree components.
Dual value = gk 1 0 Sk 0 - 12usk

= 68. Dual
constraints on xi,j = 1 active (satsified and com-
plementary) because summing upwards in tree of
(b) from that edge adds and subtracts to produce
ci,j. Dual constraints for other xi,j = 0 satisfied
and complementary because summing upwards
from first Sk containing (i, j) will total edge weight
 associated with Sk which is Ú ci,j because (i, j)
was not selected by greedy. (f) With � E � = 12
and � V � = 7 bound = 12 log 2 12 + 1722 ≈ 92
steps.

Chapter 11
11-1 (a) proportional to variable magnitude
(b) x* = 196.67, 5, 48.332 (c) min
2250y1 + 1650y2 + 2700y3, s.t.
150y1 + 150y2 + 150y3 = 150,
300y1 + 600y2 + 300y3 … 310,
600y1 + 450y2 = 150y3 … 450, yj = 0 or 1,
j = 1, c, 3 (d) x* = 10, 0, 1502, y* = 10, 0, 12
(e) min 15x1 + 11x2 + 18x3 + 4001y1 + y2 + y32,
s.t. xj … 150yj, yj = 0 or 1, j = 1, c, 3, and all
original constraints (f) x* = 10, 0, 1502,
y* = 10, 0, 12 (g) add variables y1, y2, y3, and
constraints 50yj … xj … 150yj,
yj = 0 or 1, j = 1, c, 3 (h) x* = 1100, 0, 502,
y* = 11, 0, 12
11-2 (h) x* = 1175, 0, 1252, y* = 11, 0, 12
11-3 (a) max 4.5x1 + 4.1x2 + 8x3 + 7x4,
s.t. 4x1 + 3.8x2 + 6x3 + 7.2x4 … 8 xj = 0 or 1,
j = 1, c, 4 (b) x* = 11, 1, 0, 02
11-5 (a) budget: $100 total; mutual exclu-
siveness: alternatives for NW and SE parcels;
dependency: IE tunnel upon IE lab (b) max
9x1 + 2x2 + 10x3 + 2x4 + 5x5 + 8x6 + 10x7 + 1x8,
s.t. 48x1 + 20.8x2 + 32x3 + 28x4 + 44x5 +
17.2x6 + 36.8x7 + 1.2x8 … 100,
x1 + x4 + x5 + x6 … 1, x2 + x7 … 1, x8 … x7,
x1, c, x8 = 0 or 1 (c) x* = 10, 0, 1, 0, 0, 1, 1 12
11-7 (a) max 45x1 + 30x2 + 84x3 + 73x4 +
80x5 + 70x6 + 61x7 + 91x8, s.t. x1 + x2 … 1,
x2 + x5 … 1, x4 + x7 … 1, x5 + x6 + x7 … 1,
x1, c, x8 = 0 or 1 (b) x* = 11, 0, 1, 1, 0, 0, 0, 12
11-9 (a) min 40x1 + 65x2 + 43x3 + 48x4 +
72x5 + 36x6, s.t. x1 + x2 Ú 1, x1 + x4 Ú 1,

10-48 (a) min 71x1,1 + x1,22 + 81x2,1 + x2,22 +
51x3,1 + x3,22, s.t. a 2

j = 1xi,j … 300, i = 1, 2,
.7x1,1 + .8x2,1 + .6x3,1 = 350,
.6x1,2 + .8x2,2 + .7x3,2 = 275, all xi,j Ú 0
(b) x1,1

* = 300, x2,1
* = 175, x2,2

* = 81.25,
x3,2

* = 300 (c)

1

2

2

300

300

350

275

0

0

0

7

7

8

8

5
5

.7

.8

.8

.7

.6 .6

3

1

300

(d) integer flows not guaranteed in flow with losses

10-50 (a) Tree shown in bold with total weight 68

7

3 1 10

11

92
8

4

13

15

20

2

7

6

4

3

1

5

(b)

S6 = V by
(3, 4)
w = 4

S5 by
(3, 6)
w = 8

S4 by
(5, 7)
w = 10

S3 by
(5, 6)
w = 11

S2 by
(1, 2)
w = 15

S1 by
(1, 3)
w = 20

3 5 61

1, 2, 3

1, 2 3

1, 2, 3, 5, 6, 7

5, 6, 7

5, 6

4

1, 2, 3, 4, 5, 6, 7

7

(c) a i, j∈Sk xi, j … 0 Sk 0 - 1 (d) Nonzeros =
weight of corresponding edge minus that of par-
ent: uS1

= 5, uS2
= 7, uS3

= 1, uS4
= 2, uS5

= 4,
uS6

= 4. (e) Primal feasible with part (a) solution

Selected Answers 1115

x1,4 + x2,4 + x3,4 + x4,5 + x4,6 = 1,
x1,5 + x2,5 + x3,5 + x4,5 + x5,6 = 1,
x1,6 + x2,6 + x3,6 + x4,6 + x5,6 = 1, all xi,j = 0
or 1, where ci,j ! the cost of pairing i with j
(b) objects to be paired do not come from dis-
tinct sets (c) x1,5

* = x2,3
* = x4,6

* = 1

11-26 (a) seeks a minimum total length closed
route visiting every point (b)

1 2 3 4 5 6

1 – 40 230 160 220 40
2 40 – 190 120 180 20
3 230 190 – 70 30 190
4 160 120 70 – 60 120
5 220 180 30 60 – 180
6 40 20 190 120 180 –

(c) min g i = 1
5 g j = i + 1

6 di,j xi,j,
s.t. x1,2 + x1,3 + x1,4 + x1,5 + x1,6 = 2,
x1,2 + x2,3 + x2,4 + x2,5 + x2,6 = 2,
x1,3 + x2,3 + x3,4 + x3,5 + x3,6 = 2,
x1,4 + x2,4 + x3,4 + x4,5 + x4,6 = 2,
x1,5 + x2,5 + x3,5 + x4,5 + x5,6 = 2,
x1,6 + x2,6 + x3,6 + x4,6 + x5,6 = 2, all xi,j = 0 or
1, where di,j ! the i to j distance of (b)
(d) x1,2

* = x1,6
* = x2,6

* = x3,4
* = x3,5

* = x4,5
* = 1

(e) x1,3 + x1,4 + x1,5 + x2,3 + x2,4 + x2,5 + x3,6 +
x4,6 + x5,6 Ú 2 (f) x1,2

* = x1,6
* = x2,3

* = x3,5
* =

x4,5
* = x4,6

* = 1 (g) model 11.27 with di,j as in (b)

11-28 (a) seeks a minimum total setup time
closed tour of the 4 products, and times are not
symmetric (b) min g i = 1

4 g j ≠ i ci,j xi,j,
s.t. g j ≠ i xi,j = 1, i = 1, c, 4, g i ≠ j xi,j = 1 j = 1, c, 4, all xi,j Ú 0,
where ci,j ! the given i to j setup time.
(c) x1,3

* = x3,1
* = x2,4

* = x4,2
* = 1

(d) x1,2 + x1,4 + x3,2 + x3,4 Ú 1
(e) x1,2

* = x2,4
* = x3,1

* = x4,3
* = 1

(f) model 11.27 with di,j the given setup times

11-30 (a) min g i = 1
3 1fiyi + g j = 1

4 dj ci,j xi,j2, s.t. g j = 1
4 xi,j … 4yi, i = 1, c, 3, g i = 1

3 xi,j = 1,
j = 1, c, 4, y1, c, y3 = 0 or 1, all xi,j Ú 0,
where fi ! the given fixed cost for i,
ci,j ! the given transportation cost from
i to j, and dj ! the given demand at j.
(b) y3

* = x3,1
* = x3,2

* = x3,3
* = 1

11-32 (a) min
2xF1, S1 + 8000yF1, S1 + 2xF2, F1 + 6000yF2, F1 +
2xF2, S1 + 10000yF2, S1 + 2xF2, S2 + 14000yF2, S2 +
2xS1, S2 + 2000yS1, S2 + 2xS1, T + 2xS2, T,

x2 + x3 Ú 1, x2 + x4 Ú 1, x2 + x5 Ú 1,
x3 + x5 Ú 1, x3 + x6 Ú 1, x4 + x5 Ú 1,
x5 + x6 Ú 1, x1, c, x6 = 0 or 1
(b) x* = 10, 1, 1, 1, 0, 12 (c) min g i = 1

9 yi,
s.t. x1 + x2 + y1 Ú 1, x1 + x4 + y2 Ú 1,
x2 + x3 + y3 Ú 1, x2 + x4 + y4 Ú 1,
x2 + x5 + y5 Ú 1, x3 + x5 + y6 Ú 1,
x3 + x6 + y7 Ú 1, x4 + x5 + y8 Ú 1,
x5 + x6 + y9 Ú 1, g j = 1

6 xj … 2, x1, c, x6 = 0 or
1, y1, c, y9 = 0 or 1 (d) x* = 10, 1, 0, 0, 1, 02,
y* = 10, 1, 0, 0, 0, 0, 1, 0, 02
11-11 (a) min 1.40x1 + .96x2 + 1.52x3 +
1.60x4 + 1.32x5 + 1.12x6 + .84x7 + 1.54x8,
s.t. x2 + x5 + x8 = 1, x1 + x3 + x4 = 1,
x5 + x6 + x8 = 1, x1 + x3 + x7 + x8 = 1,
x3 + x4 + x6 = 1, x2 + x4 + x5 + x7 = 1,
x1, c, x8 = 0 or 1 (b) x* = 10, 0, 1, 0, 1, 0, 0, 02
11-13 (a) min 18x1,1 + 26x1,2 + 31x1,4 +
50x2,2 + 22x2,3 + 40x3,1 + 29x3,2 + 52x3,3 +
39x3,4 + 43x4,3 + 46x4,4,
s.t. x1,1 + x1,2 + x1,4 = 1, x2,2 + x2,3 = 1,
x3,1 + x3,2 + x3,3 + x3,4 = 1, x4,3 + x4,4 = 1,
x1,1 + x3,1 = 1, x1,2 + x2,2 + x3,2 = 1,
x2,3 + x3,3 + x4,3 = 1, x1,4 + x3,4 + x4,4 = 1,
all xi,j Ú 0 (b) can be viewed as a network
flow with unit supplies and demands (c)
x1,1

* = x2,3
* = x3,2

* = x4,4
* = 1

11-19 (a) min
60xH,1xE,2 + 120xH,1xE,3 + 36xH,1xM,2 +
72xH,1xM,3 + 60xH,2xE,1 + 20xH,2xE,3 +
36xH,2xM,1 + 12xH,2xM,3 + 120xH,3xE,1 +
20xH,3xE,2 + 72xH,3xM,1 + 12xH,3xM,2 +
42xE,1xM,2 + 84xE,1xM,3 + 42xE,2xM,1 +
14xE,2xM,3 + 84xE,3xM,1 + 14xE,3xM,2, s.t.
xH,1 + xH,2 + xH,3 = 1, xE,1 + xE,2 + xE,3 = 1,
xM,1 + xM,2 + xM,3 = 1, xH,1 + xE,1 + xM,1 = 1,
xH,2 + xE,2 + xM,2 = 1, xH,3 + xE,3 + xM,3 = 1,
all xi,j = 0 or 1 (b) can assess cost only after
pairs of assignments (c) xH,3

* = xE,2
* = xM,1

* = 1

11-21 (a) min g i = 1
6 1ci,F xi,F + ci,B xi,B2, s.t.

xi,F + xi,B = 1, i = 1, c, 6, g i = 1
6 tixi,F … 200, g i = 1

6 tixi,B … 190, all xi,j = 0 or 1, where
ci,j ! the materials handling to move i to
j and ti ! the time for i (b) more than one
unit of time allocated by each decision (c)
x1, B

* = x2, B
* = x3, F

* = x4, F
* = x5, B

* = x6, F
* = 1

11-24 (a) min g i = 1
5 g j = i + 1

6 ci,j xi,j,
s.t. x1,2 + x1,3 + x1,4 + x1,5 + x1,6 = 1,
x1,2 + x2,3 + x2,4 + x2,5 + x2,6 = 1,
x1,3 + x2,3 + x3,4 + x3,5 + x3,6 = 1,

1116 Selected Answers

x3,3 + 12 … x2,3 + My2,3,3, all xj, k Ú 0,
all yi,j, k = 0 or 1 (b) mean flow time (c)
min 1>31x1,3 + 14 + x2,2 + 4 + x3,3 + 82, s.t.
all constraints of (a) (d) x1,1

* = 2, x1,2
* = 12,

x1,3
* = 15, x2,1

* = 0, x2,2
* = 6, x2,3

* = 5, x3,1
* = 12,

x3,2
* = 0, x3,3

* = 29

Chapter 12
12-1 (a) x* = 10, 1, 1, 02
12-2 (a) 16, 21

12-3 (a) yes (c) no

12-4 (a) same except last two constraints
replaced by 0 … x1 … 1

12-5 (a) yes (c) no

12-6 (a) optimal ILP value … 54.5 (c) optimal
ILP value Ú 19

12-7 (a) no (c) yes

12-8 (a) ILP optimal value … 18.5 (b) not
optimal; xn = 10, 0, 1, 1, 02 (c) 14 … optimal
value … 18.5 (d) x* = 10, 0, 1, 1, 02, value 14

12-12 (a) x* = 10, 0, 0, 02, y* = 0 (c) same inte-
ger-feasible solutions of all = 0 or all = 1 (d)
solution value 0 vs. solution value -42

12-15 (a) 4, 6 (b) original LP optimum violates
x2 … 6y2 (c) new x∼ = 10, 3.22, y∼ = 10, .5332
12-17 (a) (0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1)

12-18 (a) (#, #, #, #), (#, #, 1, #), (#, 1, 1, #), (#, 0, 1, #),
(#, #, 0, #) (b) branched: 0, 1; terminated: 2, 3, 4
(c) 0, 3

12-20 (a) given ILP plus constraints x2 = 1, x5 = 0

12-21 (a) branch on x1 = 1 vs. x1 = 0 (c) termi-
nate by solving after saving x∼ as a new incumbent
solution (e) terminate by bound

12-22 partial solutions: (#, #, #), (#, #, 0), (0, #, 0),
(0, 1, 0), (0, 0, 0), (1, #, 0), (1, 0, 0), (1, 1, 0), (#, #, 1),
(1, #, 1), (0, #, 1); x* = 11, 0, 1, 02
12-29 0: branch on fractional x3; 1: branch on
fractional x2; 2: branch on fractional x1; 3: termi-
nate by solving after saving incumbent solution
xn = 11, 0, 02, vn = 90; 4: terminate infeasible; 5:
terminate by solving after saving incumbent solu-
tion xn = 10, 1, 02, vn = 50; 6: terminate by bound
54 Ú 50; x* = 10, 1, 02
12-31 (b) 0: round for incumbent solution
xn = 10, 0, 12, vn = 54, branch on fractional
x3; 1: round for new incumbent solution

s.t. xF2, F1 - xF1, S1 = -800,
-xF2, F1 - xF2, S1 - xF2, S2 = -600,
xF1, S1 + xF2, S1 - xS1, S2 - xS1, T = 0,
xF2, S2 + xS1, S2 - xS2, T = 0, xS1, T + xS2, T = 1400,
xF1, S1 … 1000yF1, S1, xF2, F1 … 1000yF2, F1,
xF2, S1 … 1000yF2, S1, xF2, S2 … 1000yF2, S2,
xS1, S2 … 1000yS1, S2, all xi,j Ú 0, all yi,j = 0 or 1
(b) yF1, S1

* = yF2, S2
* = 1, xF1, S1

* = xS1, T
* = 800,

xF2, S2
* = xS2, T

* = 600

11-34 (a) x1 + 10 … x2 + M11 - y1,22,
x2 + 2 … x1 + My1,2,
x1 + 10 … x3 + M11 - y1,32,
x3 + 16 … x1 + My1,3,
x1 + 10 … x4 + M11 - y1,42,
x4 + 8 … x1 + My1,4,
x2 + 3 … x3 + M11 - y2,32,
x3 + 16 … x2 + My2,3,
x2 + 3 … x4 + M11 - y2,42,
x4 + 8 … x2 + My2,4,
x3 + 16 … x4 + M11 - y3,42,
x4 + 8 … x3 + My3,4, x1 Ú 0, x2 Ú 20, x3 Ú 1,
x4 Ú 12, all yi,j = 0 or 1 (b) 39, 23.5, 38,
15.25, 19, 2.75, 19, 4.75 (c)
min 1>41x1 + 10 + x2 + 3 + x3 + 16 + x4 + 82,
s.t. constraints of (a) (d) x1

* = 0, x2
* = 20,

x3
* = 23, x4

* = 2 (e) mean flow time and mean
lateness (f) min z, s.t. z Ú x1 - 2, z Ú x2 - 27,
z Ú x3 - 4, z Ú x4 - 13, plus all constraints of
(a) (g) x1

* = 0, x2
* = 34, x3

* = 10, x4
* = 26 (h)

maximum tardiness

11-36 (a) x1,1 + 10 … x1,2, x1,2 + 3 … x1,3,
x2,1 + 2 … x2,3, x2,3 + 1 … x2,2,
x3,2 + 6 … x3,1, x3,1 + 12 … x3,3,
x1,1 + 10 … x2,1 + M11 - y1,2,12,
x2,1 + 2 … x1,1 + My1,2,1,
x1,1 + 10 … x3,1 + M11 - y1,3,12,
x3,1 + 12 … x1,1 + My1,3,1,
x2,1 + 2 … x3,1 + M11 - y2,3,12,
x3,1 + 12 … x2,1 + My2,3,1,
x1,2 + 10 … x2,2 + M11 - y1,2,22,
x2,2 + 2 … x1,2 + My1,2,2,
vx1,2 + 10 … x3,2 + M11 - y1,3,22,
x3,2 + 12 … x1,2 + My1,3,2,
x2,2 + 2 … x3,2 + M11 - y2,3,22,
x3,2 + 12 … x2,2 + My2,3,2,
x1,3 + 10 … x2,3 + M11 - y1,2,32,
x2,3 + 2 … x1,3 + My1,2,3,
x1,3 + 10 … x3,3 + M11 - y1,3,32,
x3,3 + 12 … x1,3 + My1,3,3,
x2,3 + 2 … x3,3 + M11 - y2,3,32,

Selected Answers 1117

Chapter 13
13-1 (a) for j = 1, c, 5, ai,j d bi if i = j
and d 0 otherwise. cj d log 101aj,j + 12.
(b) using LP allows quick solutions of interim
partial problems, and easy computation of
duals vQ i needed in column generation. (c)
min cQg ! g4

i = 1[log 101ai,g + 12 - ai,gvQ i],
subject to, g4

i = 1 ai,g … 5, ai,g Ú 0 and in-
teger, i = 1, c, 5. Use optimal ai,g and
cg d g4

i = 1 log 101ai,g + 12. (d) the result of (c)
will be a column qualified to enter if its cQg 6 0
. The previous partial problem LP could not had
terminated optimal if one of its columns have
negative reduced cost. (e) if the optimal cQg in
(c) is Ú 0, there can be no new column that can
enter the partial problem to improve the previ-
ous solution.

13-4 (a) minimizing. (b) 0: fractional, generate
new x4. 1: integer, incumbent xn = 11, 1, 0, 12,
nn = 43, generate new x5. 2: fractional, no new
columns, branch on x∼2 = 2>5. 3: integer, not
incumbent, no new columns, terminate. 4: frac-
tional, cannot terminate, generate new x6. 5: frac-
tional, no new columns, terminate 46 7 n∼ = 43.
x* = 11, 1, 0, 12
13-6 (a) max 30x1 + 55x2 + 20x3 + v1155 -
40x1 + 12x2 - 11x32 + v2120 - 19x1 -
60x2 - 3x32, s.t. all undualized constraints;
v1 Ú 0, v2 … 0

13-7 (a) x1,1
* = x1,2

* = y1
* = 1 with objective

value 259. (b) min 3x1,1 + 6x1,2 + 5x2,1 +
2x2,2 + 250y1 + 300y2 + v111 - x1,1 - x2,12 +
v211 - x1,2 + x2,22, s.t. all undualized constraints.
both v1 and v2 are URS because they relate to
equality constraints. (c) in the relaxation, optimi-
zations are now independent for facilities 1 and
2. we may solve them separately and sum the
results along with the constant 11v1 + 1v22 in
the objective function. (d) all x∼i,j and y∼i = 0,
with relaxation value 0 … 259. (e) all x∼i,j and
y∼i = 0, with relaxation value -200 … 259. (f)
x∼1,1 = 1, x∼1,2 = 0,
x∼2,1 = 1, x∼2,2 = 1, y∼1 = 1, y∼2 = 1, with relax-
ation value -440 … 259.

13-8 (g) subgradient ∆v = 10, 12. new duals
v1 d 1000, v2 d 1000. same solution as (f).
(h) v1 d 1000, v2 d 750. same solution as (f).
(i) yes.

13-12 (b) polyhedral sets are convex
(c) w112 = 11, 02, w122 = 10, 1>22,

xn = 10, 1, 02, vn = 50, branch on fractional
x2; 2: terminate by bound 75 Ú 50; 3: termi-
nate by bound 50 Ú 50; 4: terminate by bound
54 Ú 50; x* = 10, 1, 02
12-33 (a) bounds 18 to ∞, 18 to ∞, 18 to ∞, 18 to
90, 18 to 90, 18 to 50, 50 to 50. Errors from node
3, 400%, 400%, 178%, 0%.

12-34 (a) a, b; a, b, c (b) 212 (c) 17; 8.0 percent

12-36 (a) partial solutions: (#, #, #), (#, #, 0), (#, #,
1), (0, #, 0), (1, #, 0), (1, 0, 0), (1, 1, 0), (1, #, 1), (0,
#, 1); (0, 1, 0), (0, 0, 0); x* = 11, 0, 1, 02 (b) partial
solutions: (#, #, #), (#, #, 0), (0, #, 0), (0, 1, 0), (#, #,
1), (1, #, 1), (1, #, 0), (1, 0, 0), (1, 1, 0), (0, #, 1); (0,
0, 0); x* = 11, 0, 1, 02
12-39 (a) valid; yes (b) valid; no (c) not valid (d)
valid, yes

12-41 (a) valid; yes (c) not valid

12-42 0: fractional so introduce valid inequality
4x1 + 3x2 Ú 3 which cuts off the current relax-
ation; 1: lacking further valid inequalties, branch
on fractional x1; 2: fractional so introduce valid
inequality x2 + x3 … 1 which cuts off the current
relaxation; 3: terminate infeasible; 4: lacking fur-
ther valid inequalities, branch on fractional x3; 5:
terminate by solving after saving incumbent
solution xn = 10, 1, 12, vn = 75; 6: terminate infea-
sible; x* = 10, 1, 12
12-45 (a) 0.3x3 + 0.1x4 + 10.6>0.420.3x6 +
0.4x7 Ú 0.6

12-49 (a)

Convex Hull

(1, 1)

(1, 0)

(0, 1)

(b) dimension = 2 justified by (1,0), (0,1), (1,1).
(c) original constraint, valid, no intersection.
intersects at (0,1), valid, lower-dimensional face.
facet, valid, justified by (1,0) and (0,1).

1118 Selected Answers

Chapter 14
14-2 (a) {0, 1, . . . , 9, #, &},
4#7&8#9&4#21&12#15&7#19. (b) O(n) each with
length number of parameter digits. (c) n = 4,
c1 = 7, c2 = 9, c3 = 21, c4 = 15, a1 = 8,
a2 = 4, a3 = 12, a4 = 7, b = 19. (d) polyno-
mial O(nb); exponential O(n2k) in n and digits
k ! < log b + 1= of b. (e) pseudo-polynomial
means polynomial in magnitudes. (f) parts (d)
and (e) say instances solvable for modest coef-
ficients; instances with large coefficients remain
hard. (g) yes; reduction allows instances of very
hard problems to be reduced to instances of
(BKP); unlikely to be easy after reduction.

14-3 (a) {0, 1, . . . , 9, #, &}. 3&4#1880&350#16
33&250#1455&200#110#213#75#96#12&4&7
&9#5&8&12&17#22&3&6&16. (b) parameter
clusters grow with m, n; cluster size is number
parameter value digits; logarithmic in mag-
nitudes. (c) given indices i = 1, c, m and
j = 1, c, n, corresponding costs ci,j, fixed
costs fi, capacities ui, demands dj, and thresh-
old v, do there exist xi,j Ú 0 and yi binary, such
that g i g j ci,jdj xi,j + g i fiyi … v, g i xi,j = 1
for all j, and g i di xi,j … uiyi for all i. (d) ques-
tion for 1FLP…2 is yes/no with yes solution
checkable in polynomial time; thus NP; full
model (FLP) requires an optimal solution. (e)
1FLP…2 ∝ 1FLP2 because solving any instance
of (FLP) would answer 1FLP…2 question for
any v; 1FLP…2 in NP-Complete means (FLP)
in NP-Hard. (f) polynomial solution of any
NP-Hard implies one for all NP; highly unlikely.

14-4 (d) add a super-source node 0 and create arcs
from 0 to all sources i with u0,i = capacity at i,
f0,i = fi and c0,i = 0. then make supply at node g i u0,i, and all supply points transshipment. then
with same threshold, a qualifying solution prov-
ing ‘yes’ to this instance of 1FCNP…2 will serve
for 1FLP…2. (e) 1FLP…2 ∈ NP - Complete,
1FLP…2 ∝ 1FCNP…2 and 1FCNP…2 ∈ NP
proves 1FCNP…2 ∈ NP - Complete.
(f) 1FCNP…2 ∝ 1FCNP2 (g) polynomial
algorithm for either would provide one for all
members of NP, which is highly unlikely.

14-8 (a) Vn = 51, 26, (3, 5) gives Vn = 51, 2, 3, 56,
(6, 7) gives final Vn = 51, 2, 3, 5, 6, 76. (b) Proceeds
until there is no uncovered edge. (c) O1� E �2 steps
to perform O1� V �2 checks/updates.

w132 = 10, 12 (d) ∆w112 = 11, 12,
∆w122 = 11, 02 (e) wQ 112 = 10, 12 = 1w132,
wQ 122 = 11, 12 = 1w132 + 1∆w122,
wQ 132 = 13>4, 3>22 = 1>2w122 + 1>2w132 + 3>2∆w122
(f) no.

13-13 (a) set is polyhedral so convex. (b)
extreme points x112 = 17, 02, x122 = 13, 02,
x132 = 17, 42, no extreme-directions. (c) set
is polyhedral so convex. (d) extreme points
x12,12 = 10, 102, x12,22 = 18, 22. extreme direc-
tion ∆x12,12 = 10, 12. (e) substitute in linking
constraints. partial master / = 1 is

max 521x1
11,12

l
11,12 + 191x2

11,12
l
11,122

+ 411x3
12,12

l
12,122 + 91x4

12,12
l
12,122

s.t. 121x1
11,12 * l

11,122 + 201x2
11,12 * l

11,122
+ 151x3

12,12
l
12,122 + 81x4

12,12
l
12,122 … 90

91x1
11,122l11,122 + 101x2

11,12
l
11,122

+131x3
12,12

l
12,122 + 181x4

12,12
l
12,122 … 180

l11,12 = 1

l12,12 = 1

l11,12 Ú 0

l12,12 Ú 0

(f) an optimal primal solution is lQ 11,12 = lQ12,12

= 1, objective value 90. optimal main duals
vQ1 = vQ2 = 0, and the optimal duals on = 1
 constraints are qQ1

112 = 0, qQ2
112 = 90. (g) cQ1

112 = 52,
cQ2
112 = 19, cQ3

122 = 41, cQ4
122 = 9. subproblem

1 max 52x1 + 19x2 - 0, subproblem 2 max
41x3 + 9x4 - 90. first solves at x1 = 7, x2 = 4.
Second is unbounded and yielding extreme di-
rection ∆x = 10, 12. (h) add weighting of l11,22
in terms for x1 and x2, and weighting of m12,22 in
terms for x3 and x4.

13-15 (a) primal max 60x1 + 50x2 - 25y1
1/2 -

100y2
1/2, subject to 20x1 + 17x2 … 10 + 60y1

1/2 +
30y2

1/2, 11x1 + 13x2 … 10 + 30y1
1/2 + 60y2

1/2,
x1, x2 Ú 0. dual min 110 + 60y1

1/2 + 30y2
1/22v1 +

110 + 30y1
1/2 + 60y2

1/22v2 - 25y1
1/2 - 100y2

1/2
subject to 20v1 + 11v2 Ú 60, 17v1 + 13v3 Ú 50,
v1, v2 Ú 0. (b) dual 1: v1 = 3, v2 = 0, value = 30.
mstr 1: z = 1580, y1 = 10, y2 = 0. dual 2: v1 = 0,
v2 = 5.45455, value 1440.91. mstr 2: z = 1570,
y1 = 10, y2 = 1. Dual 3: v1 = 3, v2 = 0,
value = 1570. stop on repeat and recover
x1

* = 32, x2
* = 0.

Selected Answers 1119

16-15 (a) local maximum; local and global max-
imum; nothing; local and global minimum; local
minimum

16-16 at t = 4, x* ≈ 2.47

16-18 (a) x1hi2 = 4.5 (b) x1hi2 = 9

16-20 at t = 3, x* ≈ 2.79

16-22 (a) f113 + l2 = 33 + 20l
(b) f213 + l2 = 33 + 20l + 6l2

16-24 (a) f1110, 22 + l11, - 122 = 24 - 34l
(b) f2110, 22 + l11, - 122 = 24 - 34l + 11l2

16-26 (a) stationary (c) ∆x = 1-16, 32
16-27 (a) definitely local minimum (c) definitely
neither (e) possibly local maximum and possibly
local minimum (g) possibly local minimum

16-28 (a) concave (c) neither (e) both (g) convex
(i) convex

16-29 (a) global minimum

16-30 (b) ∆x = 123, 972 (c) max
100 - 5111 + 23l2 - 224 - 3113 + 97l2 - 524 +
11 + 23l213 + 97l2, s.t. l 7 0 (d) l = .027,
x112 = 11.621, 5.6192 (e) x122 = 12.627, 5.4352,
x132 = 12.675, 5.5922
16-32 (a) f2113, 72 + ∆x2 ! 68 +

1-13, -932 ∆x + 1
2 ∆x a -60 1

1 -144
b ∆x

(b) ∆x = 1- .2275, - .64742
(c) x112 = 12.773, 6.3532, x122 = 12.681, 5.9422
16-34 (a) ∆x = 13, 982 (b) x112 = 12.078, 5.5482,

D = a -1.003 - .0268
- .0268 - .0267

b , ∆x = 15.555, 0.1512

16-36 (a) the function is not differentiable
everywhere (b) x102 = 15, 2.52,
x112 = 10, 1. 252, x122 = 1-1.25, - .93752,
x132 = 1-1.5625 - .23442
16-38 (a) y112 = 11, 2, 12, y122 = 13, 3, 32,
y132 = 12, 2, 42, y142 = 14, 2, 42
Chapter 17
17-1 (a) max lwh, s.t. w + 2h … 30, l + 2h … 40,
l, w, h Ú 0 (b) l* = 28.685, w* = 18.685,
h* = 5.657

17-2 (b) l* = 27.386, w* = 27.386, h* = 66.667,
d* = 52.974

17-3 (a) min g4
j = 1 1hjxj>2 + sjdj>xj2, s.t.

g4
j = 1 vj xj … 4000, x1,c, x5 Ú 0, where sj,

14-10 (a) (MST) is the special case of (Stein) with
all nodes Steiner. Easier because no combinatorial
decisions about non-Steiner nodes to span.

Chapter 15
15-1 (a) x* = 11, 0, 1, 02 (b) most payoff per
unit constraint usage (c) xn = 10, 1, 0, 12
15-8 (a) taking items in sequence, bins are,
1,1,2,2,1,3,3,3,4,4,5,4.

15-9 (a) x* = 11, 1, 02 (b) (0,0,1), (1,0,1), (0,1,1),
(0,0,2) (c) xn = 11, 0, 12 (d) xn = 11, 1, 02 (f)
xn = 11, 1, 02
15-11 (a) x* = 10, 1, 1, 02 (b) xn = 11, 0, 0, 02
(c) xn = 10, 1, 1, 02
15-15 xn = 10, 1, 1, 02
15-17 xn = 10, 1, 0, 12
15-23 (a) check both feasible (b) after 1 or 2:
x132 = x122, x142 = x112; after 3: x132 = 10, 0, 1, 12,
x142 = 10, 0, 0, 02 (c) all feasible except x(3)
 cutting after 3; infeasibles must either be
excluded from the population or included with
a large negative objective value

15-25 (0, 1, 1, 0), value 16; (0, 0, 1, 0), value 9;
(0, 1, 0, 1), value 15; and any feasible immigrant
such as (0, 1, 0, 0), value 7

Chapter 16
16-1 (a) min 401x>22 + 2000> 1x>52 (b) x* = 22.4

16-2 (b) a* = .031

16-3 (a) min 21x122 + 1x2 + 3022

+ 21x1 - 5022 + 1x2 + 1022

+ 21x1 - 7022 + 1x2 + 2022

+ 21x1 - 3022 + 1x2 + 5022
(b) x* = 145.8, 2.72
16-5 (a) min g4

i = 1 1ti - a1ui2b22 where ui and ti
are the given units and average time values
(b) a* = 10.36, b* = - .322

16-6 (b) k* = 62.79, a* = 2.011, b* = - .363

16-11 (b) defining a = am, b = 1bm - a2,
g = -b, the fitted equation has the linear from
a + bnt - 1 + g1nt22

16-13 (a) yes (c) no (e) yes

16-14 (a) local maximum; local and global mini-
mum; nothing; local and global maximum; noth-
ing; local minimum

1120 Selected Answers

17-26 (a) no (c) yes

17-27 (a) min 13x1x21x32-1 + 91x12
1
21x32

1
2,

s.t. 3x11x32-1 + 8x21x32-1 … 1.51x32-4 … 1,
x1, x2, x3 7 0; K0 = 51, 26, K1 = 53, 46,
K2 = 556, d1 = 13, d2 = 9, d3 = 3, d4 = 8,
d5 = 5, a1,1 = 1, a1,2 = 1, a1,3 = -1, a2,1 = 1

2,
a2,2 = 0, a2,3 = 1

2, a3,1 = 1, a3,2 = 0, a3,3 = -1,
a4,1 = 0, a4,2 = 1, a4,3 = -1, a5,1 = 0, a5,2 = 0,
a5,3 = -4

17-28 (a) 81x1 - 222 + 21x2 - 122 +
v1126 - 32x1 - 12x22 (b) 161x1 - 22 - 32v = 0,
41x2 - 12 - 12v = 032x1 + 12x2 = 126 (c)
x1

* = 3, x2
* = 5>2 (e) x1

* = 2, x2* = 5.167

17-30 (a) all given primal constraints,
plus 2v1 + 6v2 + v3 = 281x1 - 92,
18v1 + 8v2 + v4 = 61x2 - 52,
-v1 + 3v2 = 21x3 - 112, v2 … 0, v3, v4 Ú 0,
v2120 - 6x1 - 8x2 - 3x32, v31-x12 = 0,
v41-x22 = 0 (c) all given primal constraints,
plus 1101x1 - 122v1 + v3 = -21x1 - 32,
1601x2 - 222v1 + 60v2 + v4 = -41x223,
39v2 + v5 = 19, v1, v3, v4, v5 = 0,
v1135 - 51x1 - 122 - 301x2 - 2222 = 0,
v31-x12 = 0, v41-x22 = 0, v51-x32 = 0

17-31 (a) yes (c) no

17-32 (a) all given primal constraints, plus
3v1 + v2 = 30x1, 2v1 + v3 = 8x2, v2, v3 Ú 0,
v21-x12 = 0, v31-x22 = 0 (e) v1

* = 10,
v2

* = v3
* = 0

17-34 (a) min 141x1 - 922 + 31x2 - 522 +
1x3 - 1122 + m1 � 2x1 + 18x2 - x3 - 19 � +
max50, 6x1 + 8x2 + 3x3 - 206 +
max50, -x16 + max50, -x262
(c) min 100 - 1x1 - 322 - 1x224 + 19x3 +
m1max50, 35 - 51x1 - 122 - 301x2 - 2226 +
� 60x2 + 39x3 - 159 � + max50, -x16 +
max50, -x26 + max50, -x362
17-35 (a) min 141x1 - 922 + 31x2 - 522 +
1x3 - 1122 + m1 � 2x1 + 18x2 - x3 - 19 �2 +
max250, 6x1 + 8x2 + 3x3 - 206 +
max250, -x16 + max250, -x262
(c) min 100 - 1x1 - 322 - 1x224 + 19x3 +
m1max250, 35 - 51x1 - 122 - 301x2 - 2226 +
� 60x2 + 39x3 - 159 �2 + max250, -x16 +
max250, -x26 + max250, -x362
17-36 (a) min 21x1 - 322 - x1x2 + 1x2 - 522 +
m1max50, 1x122 + 1x222 - 46 + max50, x1 - 26 +
max50, -x16 + max50, -x262 (b) original
model was convex program and convexity is
 preserved by the chosen penalty functions

vj, hj and dj are the values in the table. (b)
x* = 141.423, 55.937, 47.602, 52.600, 27.4412
17-4 (b) x* = 110.338, 9.456, 6.304, 8.189, 3.7402
17-5 (a) min 52 142> 160Nf2 + 0.1
142> 156.667 N -5.667 f -3222 +
87 142> 156.667 N -5.667 f -322,
s.t. 200 … N … 600, .001 … f … .005
(b) N* = 200, f * = .001

17-6 (b) x* = 183.052, 26.263, 37.142, 31.391,
74.2842
17-7 (a) min g4

i = 1 g2
j = 1wi,j21ei - xj22 + 1ni - yi22,

s.t. g2
j = 1 wi,j = di, i = 1,c, 5, g4

i = 1 wi,j … 200,
j = 1, 2, wi,j Ú 0, i = 1,c, 5, j = 1, 2, where di,
ei and ni are the values in the table. (b) x1

* = 20,
y1

* = 17, x2
* = 4, y2

* = 30, w1,1
* = 10, w1,2

* = 50,
w2,2

* = 90, w3,1
* = 35, w4,1 = 85, w5,1

* = 80

17-8 (b) x* = 1.897, y* = 7.186,
w* = 110, 0, 20, 40, 302
17-9 (a) min g3

i = 1 g3
j = 1 vi,j xi xj, s.t. g3

i = 1 xi = 1.5,

g3
i = 1 mi xi Ú 110211.52, x1, x2, x3 Ú 0, where

the mi are the mean return rates and vi,j the
covariances in the given table. (b) x1

* = 0.282,
x2

* = 1.218, x3* = 0.0

17-10 (b) x* = 10.518, 0.100, 0.3822

17-11 (a) a
5

j = 1
cj xj, s.t. g4

j = 1 xj = 1,

12 … g4
j = 1 a1,j xj … 16, 31 … g4

j = 1 a2,j xj … 36,

ln11212 … ln(g4
j = 1 a3,j xj) … ln11642,

x1,c, x5 Ú 0, where the cj are the costs, and
ai,j the ingredient index values in the table.
(b) x* = 1.778, 0, .222, 0, 02
17-12 (b) x* = 10, 0, 1217.742, 0, 32.2882
17-15 max g7

j = 1 pj sj rj1xj2, s.t.

g7
j = 1 ej xj = g7

j = 1 ej; .5 … xj … 1.5, j = 1,c, 7

17-21 min f21T1,1, T1,2, T2,1, T2,2, F1, F22 + f31S2,
s.t. T2,2 = f11T2,1, F2, S, T02; 1T1,1 - T1,22F1 = H;
1T1,1 - T1,22F1 + kf21T1,1, T1,2, T2,1, T2,2, F1, F22
= 1T2,1 - T2,22F2; Ti,j … Ti,j … Ti,j, i, j = 1, 2;
Fi … Fi … Fi, i = 1, 2; S … S … S

17-23 (a) yes (c) no (e) yes

17-24 (a) yes (c) yes (e) no

17-25 (a) not QP (c) QP: c = 10, 0, 92,

Q = £0 1 0
1 1 0
0 0 0

≥

Selected Answers 1121

17-46 (a) min 1x1 - 822 + 21x2 - 422,
s.t. 2x1 + 8x2 + x3 = 16, x1 + x4 = 7,
x1, x2, x3, x4 Ú 0 (b) columns linearly indepen-
dent (c) N,B,S,B (d) r = 1-13, 0, 1.5, 02
(e) ∆x = 113, -3.0625, -1.5, -132 (f)
lmax = .32653, x112 = 14.2449, 0, 7.5102, 2.75512
(g) basic x2 dropped to 0; new basis 5x3, x46 or
5x1, x46
17-47 (a) x102 = 10, 1, 8, 72,
x112 = 14.2449, 0, 7.5102, 2.75512; then
either x122 = 14.6393, .8402, 0, 2.36072,
x* = x132 = 16.2222, .4444, 0, .77782,
or x122 = 17, 0, 2, 02, x132 = 17, .25, 0, 02,
x* = x142 = 16.2222, .4444, 0, .77782

17-50 (a) Q = £ 6 -3 0
-3 2 0

0 0 4
≥,

c = £ 5
15

-16
≥, A = a1 3 -2

3 -1 1
b ,

b = a2
3
b (b) -12x1 + 6x2 + 1v1 + 3v2 = 5,

6x1 - 4x2 + 3v1 - 1v2 = 15,
-8x3 - 2v1 + 1v2 = -16, 1x1 + 3x2 - 2x3 = 2,
3x1 - 1x2 + 1x3 = 3 (c) x1

* = x2
* = x3

* = 1,
v1

* = 5, v2
* = 2

17-52 (a) c0 = 96, c = 1-16, - 162,

Q = a1 0
0 2

b , a112 = 12, 82, a122 = 11, 02,

a132 = 11, 02, a142 = 10, 12, b1 = 16, b2 = 7,
b3 = 0, b4 = 0, G = 53, 46, L = 51, 26, E = 0
(b) -2∆x1 + 1v3 = -16, -4∆x2 = -12,
1∆x1 = 0; solution ∆x1 = 0, ∆x2 = 3, v3 = -16
(c) l = 1>3, x112 = 10, 22
(d) -2∆x1 + 2v1 + 1v3 = -16,
-4∆x2 + 8v1 = -8, 2∆x1 + 8∆x2 = 0, ∆x1 = 0;
solution ∆x1 = 0, ∆x2 = 0, v1 = -1, v3 = -14;
∆x = 0 implies no further progress (e) drop
i = 3, x1 Ú 0 (f) x122 = 10, 22,
x132 = x* = 16.222, 0.4442
17-54 (a) min 1 + x1,1>3 + 4x1,2>3 + 4x2,2,
s.t. 2x1,1 + 2x1,2 + 1x2,1 + 1x2,2 Ú 2,
4 + 28x1,1 + 112x1,2 - 18x2,1 - 54x2,2 … 25,
0 … x1,1 … 1, 0 … x1,2 … 2, 0 … x2,1 … 2,
0 … x2,2 … 2

17-55 (b) unconstrained minimum is
feasible (c) min 18 - 8x1 + 4x2, s.t.
0 … x1 + x2 … 6, 0 … x1 … 2, 0 … x2 … 4

(c) no (d) yes (e) penalty multipliers should
start relatively low and increase slowly (f)
x102 = 13, 52; with m = .5, x112 = 13.229, 4.6462;
with m = 1, x122 = 12.457, 3.7432; with
m = 2, x132 = 11.841, 2.7302; with m = 4,
x142 = 11.147, 1.7622; with m = 8,
x152 = 11.088, 1.6782
17-37 (a) min 21x1 - 322 - x1x2 +
1x2 - 522 + m1max250, 1x122 + 1x222 - 46 +
max250, x1 - 26 + max250, -x16 +
max250, -x262 (b) original model was convex
program and convexity preserved by the
chosen penalty functions (c) yes (d) no
(e) penalty multipliers should start relatively
low and increase slowly (f) x102 = 13, 52;
with m = .5, x112 = 11.449, 2.1902; with m = 1,
x122 = 11.308, 1.9912; with m = 2,
x132 = 11.214, 1.8582; with m = 4,
x142 = 11.157, 1.7772; with m = 8,
x152 = 11.124, 1.7302
17-40 (a) not applicable due to equality
constraint (c) max x1 + 6>x1 + 51x222 +
m1ln135 - 4x1 - 6x22 + ln1x1 - 52 + ln1x222
(e) not applicable due to equality constraint
(f) not applicable due to equality constraint

17-41 (a) not applicable due to equality
constraint (c) max x1 + 6>x1 + 51x222 -
m11> 135 - 4x1 - 6x22 + 1> 1x1 - 52 + 1> 1x222
(e) not applicable due to equality constraint

17-42 (a) min 21x1 - 322 - x1x2 + 1x2 - 522 -
m1ln14 - 1x122 - 1x2222 + ln12 - x12 +
ln1x12 + ln1x22 (b) original model was convex
program and convexity preserved by the
chosen barrier functions for x 7 0 (c) yes
(d) no (e) barrier multipliers should start rela-
tively high and decrease to 0 (f) x102 = 13, 52;
with m = 2, x112 = 10.991, 1.6152; with m = 1>2,
x122 = 11.059, 1.6632; with m = 1>8,
x132 = 11.081, 1.6742; with m = 1>32,
x142 = 11.086, 1.6772
17-43 (a) min 21x1 - 322 - x1x2 + 1x2 - 522 +
m11> 14 - 1x122 - 1x2222 + 1> 12 - x12 +
1> 1x12 + 1> 1x22 (b) original model was
convex program and convexity preserved by
the chosen barrier functions for x 7 0 (c) yes (d)
no (e) barrier multipliers should start relatively
high and decrease to 0 (f) x102 = 13, 52;
with m = 2, x112 = 10.978, 1.5532; with m = 1>2,
x122 = 11.031, 1.6142; with m = 1>8,
x132 = 11.061, 1.6452; with m = 1>32,
x142 = 11.075, 1.6612

1122 Selected Answers

17-59 (a) Using x ! 1x1, x22, v ! 1v1, v2, v3, v42,
f1x2 ! 21x1 - 322 - x1x2 + 1x2 - 522,
g11x2 ! 1x122 + 1x222 - 4, g21x2 ! x1 - 2,
g31x2 ! - x1, g41x2 ! - x2,

L1x, v2 ! f1x2 + g4
i = 1 vi gi1x2 (b) L1x, v2 +

∇L1x, v2∆x + 1>2 ∆x∇2L1x, v2∆x
(c) min ∇f1x2∆x + 1>2 ∆x[∇2f1x2 +
g4

i = 1vi∇2gi1x2]∆x subject to
gi1x2 + ∇gi1x2∆x … 0, i = 1, c, 4 (d)

min 1-9, -92∆x + 1>2 ∆x a 4 -1
-1 2

b∆x, sub-

ject to -2 + 12, 22∆x … 0, -1 + 11, 02∆x … 0,
-1 + 1-1, 02∆x, -1 + 10, -12∆x … 0.

(d) x1
* = 2, x2

* = 0; sequence correct (g) x1
* = 0,

x2
* = 4; sequence incorrect

17-56 (a) min 3 e-.5z1 + ez1 + z2 +
10 e-3z3, s.t. .5 ez1 + z2 - 2z3 … 1,
.167 ez1 + .25 e.4z1+z2 + .0833 ez3 … 1,
z URS (b) z* = 11.360, -31.1, 1.4332,
x* = 13.898, 3 * 10-14, 4.1912 (c) max d1
ln13>d12 + d2 ln11>d22 + d3 ln110>d32 +
d4 ln1.5>d42 + d5 ln1.167>d52 + d6 ln1.25>d62 +
d7 ln1.0833>d72 - v1 ln (-v12 - v2 ln1-v2),
s.t. - .5d1 + d2 + d4 + d5 + .4d6 = 0,
d2 + d4 + d6 = 0, -3d3 - 2d4 + d7 = 0,
d1 + d2 + d3 = 1, d4 = -v1, d5 + d6 + d7 = -v2,
d1, c, d7 Ú 0, v1, v2 … 0 (d) 4
(e) d* = 10, 0, 1, 0, 0, 0, 32, v* = 10, -32,
x*as in (b)

1123

▪ ▪ ▪ ▪ ▪
Index

0-1 variables (see discrete variables)
1-dimensional search 924–935

bracketing 929–932
golden section search 925–929
quadratic fit 932–935

3-point patterns 929–932
Algorithm 16B 931

AA Crew Scheduling Application 673–674
absolute value objectives (see minimum

deviation objectives)
actions of Markov Decision Processes 542
active constraints 116, 216–217

conditions for feasible directions 118–119
active partial solutions 754
active set methods 1055–1061

Algorithm 17D 1059–1060
KKT conditions 1055
step sizes 1056–1057
updating the active set 1058–1059

activities implicit pricing 309–310
activities in project management 520
activities interpretation of decision variables 292
activity duration 520
acyclic digraph shortest paths 515–519

Algorithm 9D 518
computational order 518

acyclic digraphs project network case 528
adjacent extreme points 216–217
affine scaling 396–401

diagonal matrix formalization 396–398
inverse 398
standard form for LPs 399

affine scaling search 402–409
Algorithm 7A 407
directions 403–404
step sizes 403–406
termination optimal 407

affinely independent sets of points 794
versus linearly independent 795

Agrico Chemical Application 566
all or nothing constraints 656–658
allocation decision variables 145
allocation models 144–147

allocation decision variables 145
alternative optimal solutions 34–36
AMPL modeling language 65–72,

320–322
data section 67
dual and sensitivity 320–322
indexing and summation 67
model section 67
model vs. data sections 67
nonlinear and integer programs 70
syntax 66–67
variable types 70

anti-cycling rules 260
approximate optimization (see heuristic

optimization)
arcs 479, 557

capacities 559
costs 559
flows 559

artificial network flow model 563–564
artificial variables 129–130
assignment constraints 608
assignment problems 609 (see also each

model class)
generalized 680–683
linear (see Hungarian algorithm)
linear 607–610
matching 683–684
quadratic 677–680

asymmetric traveling salesman problems
(see traveling salesman problems)

1124 Index

backwards dynamic programming 534–535
balance constraints 158–169, 559

in operations planning 158–159
in time-phased models 168–169
network flow 559

balance of flow 559
Bank Three Application 437–438
barrier functions 1035
barrier methods
barrier methods (see also Newton step barrier

search; primal-dual barrier search)
LPs 408–420
NLPs 1034–1038
sequential unconstrained barrier

technique 1037–1038
barrier multipliers 409, 1033

management of 417–419
barrier objective function 409, 1031
bases finite number 258
basic feasible solutions 225 (see also basic

solutions)
equivalence with extreme points 225–226
minimum cost flows 596–597
via two-phase simplex 250

basic solutions 219–227 (see also basic
feasible solutions)

existence 221–223
in lower- and upper-bounded form

274–275
minimum cost flows 596–597

basic variables 219, 836
basis inverse 261

product representation 264–266
basis matrix 260
basis 221
basis connection to linear independence 222
basis in reduced gradient 1040–1041
basis minimum cost flows 594–595
basis update in simplex 234–235
Bay Ferry Multicommodity Flow Applica-

tion 626
Beer Belge Location Allocation Applica-

tion 987–988
Bellman, R.E. 495
Bellman-Ford shortest paths one to all

494–501
Algorithm 9A 496
computational order 499
negative dicycles 500–501

Benders decomposition 842–848
Algorithm 13E 846
attractive models 843
partial master problem 844–845
primal and dual subproblems 844
strategy 844–845

Benders, J.F. 842
benefits as LP objectives 288
best first search 772

versus depth first 772–777
versus depth forward best back 772–777

beta distribution 920
Bethlehem Ingot Mold Application 53
BFGS formula 966

approximation to Hessian inverse 972
BFGS search 966–972

Algorithm 16F 968
big-M constants 135, 749–751
big-M method 135–138

artificial model 135
objective function 135
outcomes 136

bill of materials 156, 159, 187
binary variables (see discrete variables)
binding constraints (see active constraints)
Bison Boosters Application 734–735
blending models 147–151, 989–992

composition constraints 148–149
ingredient decision variables 148
linear program case 147–151
nonlinear refining 990–993

boundary points 203–205, 252
optimal in Llinear programs 207

bounds on dual values from primal 345
bounds on primal values from dual 345
bounds from relaxations 739–742
bracketing (see 3-point patterns)
branch and bound 751–764

candidate problems 757–778
enumeration sequences 772–777
error bounds 770–772
global optimality 756
incumbent solutions 756–757
LP-based 760–764
partial solutions 752–753
stopping early 770–772
stopping 755
terminating by bound 759
terminating by parent bound 769–770

Index 1125

terminating by solving 759
terminating infeasible 759
trees 753
tree search 753–756

branch and cut 779–784, 874 (see also
branch and bound)

Algorithm 12B 779
valid inequalities 777–782

branch and price 819–822
Algorithm 13B 820

branch and price strategy 819–820
Broyden, C. 966
budget constraints 663–664
Building Evacuation Maximum Flow

Application 619–620

CAM Application linear assignment
problems 676

Canadian Department of Transportation
(see CDOT application)

Canadian Forest Products Limited
Application (see CFLP application)

candidate problems 757–758
capital budgeting problems 662–666

budget constraints 663–664
dependent projects 665
mutually exclusive choices 664–665

cash flow models 166–170, 630–631
CDOT generalized assignment

Application 681, 823
ceiling least integer ≥ q 745

denoted <q = 745
CFPL Application generalized

assignment 154–155
chains 570

versus paths 570
child of a tree node 768
classes of optimization models 65
Clever Clyde Application 244
closed form solutions 11
Cofferdam Design Application 1006–1007
column generation methods 674–677,

814–821 (see also delayed column
generation)

combinatorial optimization (see discrete
optimization)

complementary dual basic solution 355–356
complementary slackness

dual LP 312–313, 349–351

equivalence to primal vs. dual value
difference 349–350

primal LP 311–312
primal NLP 1019–1020
role in KKT conditions 349–351

complete enumeration (see total enumeration)
completion time 706
completions of partial solutions 752–753
complexity theory

class Undecidable 865
classes PTime and NP-Hard 869
computational orders 857–858
decision problems 862–863
guaranteed performace heuristics 872–874
improved enumerative algorithms

(see branch and bound)
improved enumerative algorithms

(see branch and cut)
length of instance encoding 859
linear programming 430
linear programming length of input 428
linear programming polynomial order 430
linear programming simplex worst

cases 429
minimum cost network flows 589–591
nondeterministic polynomial solution and

class NP 864
optimization vs. threshold vs. feasibility

problems 863
P ≠ NP conjecture and its

implications 869–871
polynomial reduction among

problems 866–867
polynomially solvability and class P versus

PTime 864–866
polynomially solvability and class P 864
polynomial-time standard for

solvability 861–862
problems vs. instances 855
pseudo-polynomial algorithms 871–872
recognizing tractability 856
tractable special cases 871
worst-case standard 857

composition constraints 148
compositions of convex/concave

functions 952
concave functions 948–950

sufficient for global maxima 950–951
tests 951–954

1126 Index

conflict constraints 704–705
conservation of flow (see balance of flow)
constrained nonlinear programming 987–995

active set methods 1055–1061
barrier methods 1034–1038
blending models 990–993
convex programs 998–1001
differentiable 1019
engineering design models 992–996
geometric programs 1006–1008, 1073–1082
Karush-Kuhn-Tucker conditions 1020–1021
Lagrange multiplier methods 1011–1019
linearly constrained 989–992
location allocation problems 988–990
penalty methods 1028–1034
quadratic programs 1003–1006, 847–856
reduced gradient methods 1038–1051
separable programs 1001–1003, 1065–1072
sequential quadratic programming

1061–1065
constraint coefficients 184

interpretation 290–291
constraint matrix 184
constraint qualifications 1027
constraint relaxations 737–738 (see also

relaxations)
constraints 4, 24–25

adding and dropping 308–309, 350–352
interpretation 288–290
relaxing versus tightening constraints 293
sensitivity analysis 293–303, 324–326
sensitivity computer outputs 320–322

construction costs (see fixed charges)
constructive search 879–886

Algorithm 15A 880
greedy rules 885–889

continuous improving search (see also
 improving search)

Algorithm 3A 106
continuous optimization model, 56
continuous relaxations 737–738
continuous variables 54

versus discrete 54, 144
contours of objective functions 32–33
contraction step in Nelder-Mead 977
convergence of algorithms 386
convex feasible sets 121–122

linearly constrained 126–127
nonlinearly constrained 998

convex functions 948–950
sufficient for global minima 950–951
tests 951–954

convex hull of feasible solutions 789–791
affine independence 794
dimension 793–797
dimension affine independence

characterization 794–795
faces 793
facets 793
finite optimum at extreme point of 792
polyhedral form 791
supporting inequalities 793
valid equalities 796

convex programming 998–1001
global optima 1001
separable 1071–1072
sufficiency of KKT conditions 1027

Cook, W. 861
corner points 203–205
costs as LP objectives 288
covariances of returns 1005
covering constraints 667

in shift scheduling 164–165
CPLEX solver 67
CPM (see critical path methods)
crew pairing 673
criterion functions (see objective functions)
critical path methods 520–528

Algorithm 9E 525
computational order 528
versus longest paths 523

critical paths 523
crossover genetic algorithms 902–903
curve fitting 916–919

linear versus nonlinear 917–918
Custom Computer Curve Fitting

Application 916
Custom Metalworking Job Shop

Application 711–714
cut sets 619
cutting plane theory 788–797
cutting planes 777
cycle canceling search 582–591

Algorithm 10B 587
computational order 589–591
feasible directions 584–585
improving directions 583–584
minimum mean length 589–591

Index 1127

residual digraphs 583–584
with Floyd-Warshall algorithm 586–587

cycle direction search 580–582
Algorithm 10A 582
network simplex 591–601
starting feasible solutions 563–564
step sizes 577–578

cycle directions 571–572
feasible 574–575
from Floyd-Warshall algorithm 586–587
from residual digraphs 584–585
improving 576–577
preserving flow balance 573
step sizes 577–578
sufficiency for optimality 578–580

cycles 570
cycles versus dicycles 571
cycling with degeneracy 259

Dantzig, G. 836
Dantzig-Wolfe decomposition 836–842

Algorithm 13D 841
attractive applications 836–837
partial master problem 836–838
reformulation with extreme-points and

directions 838–839
strategy 836–840

DClub Location Application 91
Decision Problem complexity

class 862–863
decision problems in OR models 3
decision variables 5, 24

activity interpretation 288
adding and dropping 303
implicit pricing 309–310

decisions in OR models 4
decisions in dynamic programs 530
decomposition methods 811–848

Benders decomposition 842–848
Dantzig-Wolfe decomposition 836–842
delayed column generation 812–819
Lagrangian relaxation 822–836

decrease arc 583
decreasing returns to scale 52
deficiency variables 455–456
defined to be equals by definition 5

denoted! 5
deflection matrices 964–965
degeneracy 253

ambiguity of rates of change in optimal
values 329, 335–338

cycling 259
difficulties for simplex 255–257

delayed column generation 812–819
Algorithm 13A 816
attractive model targets 813
generating eligible columns to enter 817–818
in set partitioning 674–675
partial master problem 815
strategy 811–815

demand nodes (see sinks)
dependent projects 665
depth first search

acyclic digraphs 515–516
branch and bound 755–756
versus best first 772–777
versus depth forward best back 772–777

depth forward best back search 772
derivatives denoted df/dx 110
derivatives first partial denoted 0f/0xj

gradient as vector of 106
gradient as vector of denoted ∇f 106
rates of change for single variable 111

derivatives rates of change for single
 variable 110

derivatives second partial denoted 0f2/0xi 0xj
Hessian as matrix of 106
Hessian as matrix of denoted ∇2f 106
rates of change for two variables 938

descriptive models 12
versus prescriptive 12–14

determinants of matrices 223
checking convexity/concavity 952

deterministic models 16
versus stochastic 18–19

dicycles 488, 573 (see also negative dicycles)
versus cycles 571

differentiable nonlinear programming 1021
(see also constrained nonlinear
 programming)

digraphs 483, 557
Dijkstra shortest paths one to all nonnega-

tive 509–515
Algorithm 9C 509
computational order 515
permanent and temporary nodes 509

Dijkstra, E.W. 509
dimension (see vectors)

1128 Index

directed graphs (see digraphs)
directing a graph 483–484
direction change in scalar x 98

denoted ∆x;98
direction change in vector x 98

denoted ∆x;98
directions (see move directions)
direction-step paradigm 98–100
discrete dynamic programming (see dynamic

programming)
discrete improving search 888–895 (see also

improving search)
Algorithm 15B 887
move sets 887–892
nonimproving moves 894–895
pairwise interchange 890–891
single complement move sets 892

discrete optimization 56
assignment problems 675
branch and bound search 751–764
branch and cut search 777–778
capital budgeting models 662–666
cutting planes 777–778, 788–797
facility location 695–699
fixed charge problems 658–660
generalized assignment problems 680–683
job shop scheduling 710–713
knapsack problems 661–662
linear assignment problems 607–610, 676–677
lumpy linear programming 655–660
matching 683–684
modeling as continuous 157
network design 699–702
quadratic assignment problems 677–680
routing 689–690, 693–694
set packing, covering, partitioning 666–675
single processor scheduling 702–710
total enumeration 731–734
traveling salesman problems 679–693

discrete variables 54
versus continuous 54, 144

disjunctive constraints 704
big-M constants 749–751

disjunctive variables 704
dot product of vectors 90–91
dual and primal LP standard forms 352

partitioned 354–355
dual complementary slackness 312–313,

349–352

dual constraints 309–310
dual linear programs 304
dual of the dual 317–318, 345
dual simplex search 359–365

Algorithm 6A 359
convenience for start or restart 360
directions 361
solution update 362–363
step size 361–362
strategy for LP optimality 359–360

dual variables 304
price interpretation 308–309
variable types 304–307

duality
bounds on dual values 345
bounds primal value 345–346
by-product optimum 313
complementary slackness 311–313, 349–351
equality with primal 310–311
formulating 313–318
formulating nonnegative primal

variables 314–315
formulating nonpositive and unrestricted

primal variables 316–317
geometric programming 1077–1082
infeasible duals 347–349
infeasible primals 347–349
primal or dual finite other finite 351
strong 310, 351
unbounded duals 347–349
unbounded primals 347–349
weak 345

due dates 706
DuPage Land Use Planning Application 61
Dyanmometer Ring Design

Application 439–440
dynamic models (see time-phased models)
dynamic programming 485

approach to shortest paths 485–490
backward solution 534–535
computational order 537
digraph for 530–531
functional equations 489, 532
functional notation 486–487
knapsack problems 538–540
Markov Decision Processes 541–545
modeling 532–532
multiple problem solution feature 537
principle of optimality 489–490

Index 1129

solving integer programs 537–540
stages 533
states 529

early start schedules 523
Algorithm 9E 525
versus longest paths 523

early start times 523
economic order quantity 9
edges of a graph 479
edges of the LP-feasible space 217
Edmonds, J. 861
efficient frontier 445–448

constructing 446–447
efficient points 443–445

with goal programs 462–463
with preemptive optimization 451
with weighted sums 453

efficient solutions (see efficient points)
Electoral Vote Knapsack Application 538
elite solutions genetic algorithms 903
ellipsoid method 430
E-Mart Application 51
EMS Location Planning Application 666–672
engineering design models 431, 992–996,

1007–1010, 1029–1030
EOQ (see economic order quantity)
equal returns to scale 52
error bounds enumerative search 770–772
Euclidean distance 176

versus rectilinear 176
evolutionary metaheuristics 902–906
exact optimal solutions 15

versus heuristic 16
exact penalty functions 1032–1033
expansion step in Nelder-Mead 977
exponential growth 733–734

of total enumeration 733–734
extensive form stochastic programming 184
extreme points 203–205

adjacent 216–217
defined by active constraints 216
equivalence with basic feasible

solutions 225–226
optimal in linear programs 207–208

face-inducing inequalities 794
faces of polyhedral sets 793

affine independence characterization 795

facet-inducing inequalities 794
facets of polyhedral sets 793

affine independence characterization 795
facility layout models 678
facility location problems 695–699

big-M constants 747–748
switching constraints 697

families of valid inequalities 782–788
fathoming (see termination)
feasible completions 752–753
feasible directions 102–104

active constraint conditions 118–119
linearly constrained NLPs 1040
network cycle 574–575
versus KKT conditions 1023–1024

feasible models 29, 35–37
concluding with two-phase method 132

feasible region (see feasible set)
feasible set 27

convex 121–122
feasible solutions 7
feasible space (see feasible set)
Filter Tuning Application 1039–1040
finish node project scheduling 521
first derivatives 110
first partial derivatives (see gradients)
first-order necessary optimality

conditions 942
first-order Taylor approximation 939–941
fixed charge network flow (see network

design problems)
fixed charge problems 586–558

big-M constants 747–748
facilities location 695–699
fixed charge variables 658
network design 699–702
switching constraints 658

fixed charges 658
versus variable 658

fixed time horizons 170
versus infinite 170–171

Fletcher, R. 966
floor greatest integer … q 745

denoted :q ; 745
flow balance constraints 561 (see also balance

constraints)
flow time 706
flow-distance 678
flows with gains and losses (see gain/loss flows)

1130 Index

Floyd, R.W. 501
Floyd-Warshall shortest paths all to

all 501–509
Algorithm 9B 502
computational order 502
detecting negative dicycles 507–509

FLP (see facilities location problems)
for every for all

denoted 5
Ford, L.R. Jr. 495
Forest Service Allocation Application 144
forward arc 571
fractional parts 782
fractional variable branching rule 761–762
Frannie’s Firewood Application 386
free variables 752–753
frequency histogram 17
functional equations 489–490

all to all shortest path 425–426
knapsack problems 539
one to all shortest path 489–490
Wagner-Whitin Lot Sizing Application 532

functional notation dynamic
programming 486

gain/loss flows 630–632
tractability 632

GAP (see generalized assignment problems)
Gaussian elimination 239
generalized assignment problems 680–683

Lagrangian relaxations 681, 823
tractability 685

generalized reduced gradient methods
1050–1051

generations in genetic algorithms 902
generic interpretation of LPs 288–292
genetic algorithms 902–906

Algorithm 15E 904
crossover 902–903
elite solutions 903
generations 902
immigrant solutions 903
mutations 903
populations 902
random keys 904–905
solution encoding 904–906

geometric programming 1008–1010,
1075–1084 (see also posynomial
geometric programming)

gets value variable x is assigned a value
q denoted x: = q;68
q denoted x d q;98

Global Backpack (GB) Application 837
global maxima 95 (see also global optima)

concave sufficient 950–951
global minima 95 (see also global optima)

convex sufficient 950–951
global optima 95

from branch and bound 756
from convex programs 1001
from improving search 120
versus local optima 95–97

goal levels 454
goal programs 458

deficiency variables 455–456
efficient points 462–463
minimize deficiency objective 457–458
modeling soft constraints 455–457
preemptive 459–461
versus other multiobjective 461–462

golden ratio 926
golden section search 925–930

Algorithm 16A 927
Goldfarb, D. 966
Gomory cutting planes mixed-integer

case 785–787
Gomory cutting planes pure integer

case 782–784
Gomory, R.E. 782–778
GP (see geometric programming)
gradient norm 956
gradient search 955–959

Algorithm 16D 955
zigzagging and convergence 959

gradients 109–110
as move directions 112–113, 252–253, 278
conditions for improving directions 112–114
graphic interpretation 111

graphic solution
constraints 27–30
feasible solutions 28–29
infeasible models 35–37
objective functions and their contours 30–33
optimal solutions 33–35
unbounded models 37–39

graphs 479 (see also digraphs; undirected
graphs)

greedy heuristics 880–885

Index 1131

hard constraints 455
Hazardous Waste Disposal Application

440–441
Heart Guardian Facilities Location

Application 843
Hessian matrices 937–939
heuristic optimal solutions 16, 678

from local optimum 98
versus exact 16

heuristic optimization
constructive search 879–887
genetic algorithms 902–906
improving search 98, 678–683
metaheuristics 893–902
multistart 892–893
simulated annealing 898–902
tabu search 893–887
truncated branch and bound 770–772

Highway Patrol Application 172
hillclimbing (see improving search)
holding arcs 567
how far (see step sizes)
Hungarian assignment algorithm 611–618

Algorithm 10D 612
computational order 617
dual solution update 616–617
equality subgraph 614–616
primal solution growth 617
primal-dual strategy 611–613

identity matrix 261
I notation 228

IFS (see Institutional Foods)
ILP (see integer linear programming)
immigrant solutions genetic algorithms 903
implicit prices (see dual variables)
improving directions 100–101

deflection matrix conditions 966
from gradients 112–113
gradient conditions for 112–114
network cycle 576–577
versus KKT conditions 1023–1024

improving search 93–95, 735–736
active constraint conditions for

feasibility 118–119
blocking constraints 127–128
cases with local optima global
cases with local optima global linear over

convex 128

cases with local optima global linear
programs 128

continuous Algorithm 3A 106
detecting unboundedness 108–109
direction-step paradigm 98–100
discrete 886–893
feasible directions 102–104
heuristics 886–893
improving directions 100–101
initial solutions 129, 118–127
neighborhoods 94–95
step sizes 104–105
stopping with local optima 107
tractable when local optima are

global 120–129
with convex feasible sets 127–128

IMRT Radiation Therapy Planning
Application 812

inactive constraints (see active constraints)
increase arc 583
incumbent solutions 756–757

as heuristic optima 770–772, 872
indexing 40–45

for time phasing 168–169
in summations 42
making models large 45–46
of decision variables 40–41
of families of constraints 43–45
of symbolic parameters 41–42

Indy Car Knapsack Application 661
infeasible models 35–37

concluding from two-phase method
132–133

detecting with simplex 249–250
primal to dual relationships 347–349
proving with relaxations 737–738

infinite time horizons 171
versus fixed 170–171

ingredient decision variables 148
initial costs (see fixed charges)
INLP (see integer nonlinear programming)
Institutional Food Services Cash Flow

Application 167
integer linear programming 57, 63

multiobjective 442
integer nonlinear programming 57, 63
integer programming 56
integer programs (see discrete optimization)
integer variables (see discrete variables)

1132 Index

integrality property
lacking in gain/loss flows 632
lacking in multicommodity flows 629
minimum cost flows 601–602

Intensity Modulated Radiation Therapy 812
beamlets 812
voxels 812

interior point methods
for LP 385–428
affine scaling search 396–408
computational burden 402
log barrier search 408–420
Newton step barrier search 412–419
primal-dual (see also primal-dual search

interior-point)
Algorithm 7C 424
strategy 422

projection on equality constraints 390–394
strategy 387–389

interior point solutions 386
convenience for feasible directions 384
in linear program standard form 389
strictly interior 389

interior points 203–205, 252
inverse of a matrix 261–262
IP (see integer programming)

job shop scheduling 712–715 (see also
scheduling)

conflict constraints 712–713
precedence constraints 712

joint probability density function 919

Karmarkar, N. 430
Karp, R.P. 861
Karush, W 351
Karush-Kuhn-Tucker conditions

active set methods 1055
necessary and sufficient for LPs 351–352
necessary and sufficient for LPs 351–352
necessity 1027–1028
NLPs 1020–1021
partitioned standard form LPs 354
proof of necessity for LPs 358–359
proof of sufficiency for LPs 351
quadratic programs 1053–1054
standard form LPs 353–354
sufficiency for convex programs 1027
versus improving feasible directions

1023–1027

Khachiyan 430
KI Routing Application 693–694
KKT conditions (see Karush-Kuhn-Tucker

conditions)
KKT point 1020
Klee-Minty perverse simplex instances 429
knapsack problems 661–662

as dynamic programs 539–541
minimal cover valid inequalities 787–788

Kuhn, H.W. 351

Lagrange multiplier techniques 822–824,
1011–1019

all equality standard form 1011–1012
limitations to use 1018–1019
optimal solutions from stationary

points 1014–1017
stationary point conditions 1013–1014

Lagrange multipliers (see also dual
variables)

interpretation 1017–1018
sign restrictions 1020

Lagrangian duals 828–830
objective function concavity 832–833
subgradient search Algorithm 13C 833

Lagrangian functions 1012–1013
Lagrangian relaxations 822–824

bound versus LP relaxation 831
bounds on overall optimum 826
multipliers 822
solutions provably overall optimum 826
strategy 822–824
tractability 824–825

large-scale optimization methods
(see decomposition methods)

late start schedules 526–527
late start times 526
lateness 706
lead times 5
learning curves 980
left-hand sides interpretation 290
lexicographic goal programming (see preemp-

tive goal programming)
lexicographic optimization (see preemptive

optimization)
LHS (see left-hand sides)
likelihood functions 919–920
line search (see 1-dimensional search)
line search required in reduced

gradient 1046–1047

Index 1133

line segments 123
algebraic characterization 123–124

linear assignment problems 607–610,
676–677

CAM Application 609
Hungarian Algorithm 10D 612
integrality 610
standard form 608
tractability 685
versus matching 683

linear combinations 224 (see also linearly
independent vectors; weighted sums)

linear constraints 48, 107
conditions for feasible directions 118–119
convexity of feasible set 126–127

linear equations 223–224
linear functions 48

convex and concave 952
equal returns to scale 52

linear objective functions 125
linear program-based branch and bound

(see LP-based branch and bound)
linear programming 50, 64, 131 (see also

duality)
relaxations 737–738
affine-scaled standard form 399
allocation models 144–147
blending models 147–151
degeneracy 253–257
dual bounds 345–346
formulation of duals 313–318
formulation of duals nonnegative primal

variables 314–316
formulation of duals nonpositive and URS

primal variables 316–317
generic interpretation 288–292
inequalities as supplies and demands

288–290
linearizable nonlinear objectives 171–178
lower- and upper-bounded simplex

search 272–279
modeling integer quantities 157
multiobjective 60–62, 373–375
objectives as costs and benefits 288
operations planning models 152–161
primal versus dual 304
qualitative sensitivity 293–303
quantitative sensitivity 304–310
relaxations of ILPs 737–738
revised simplex search 260–272

shift scheduling and staff planning
models 162–166

simplex search 227–237
standard forms 209–215, 238–239
testing infeasible 249–250
testing unbounded 252
time-phased models 166–171
tractability 203, 424
variables as activities 302

linear programs feasible sets polyhedral 126
linear regression (see curve fitting)
linear Taylor approximation (see first-order

Taylor approximation)
linearly dependent vectors 224

impossible in a basis 222
relation to singularity 224

linearly independent sets of points versus
affinely independent 795

linearly independent vectors 224
relation to nonsingularity 224
versus bases 221

links (see edges)
Littleville Application 477–478
local improvement (see improving search)
local maxima 95 (see also local optima)
local minima 95
local optima 95

caused by constraints 122
first-order necessary conditions 942
from improving search 95–98
KKT conditions 1024–1026
second-order necessary conditions 946
second-order sufficient conditions 946–947
single variable search 924–925
versus global optima 96–97

local search (see improving search)
location models 91, 678
location-allocation models 988–990
log barrier functions 409–410
log barrier methods (see barrier methods)
logistics curve 980
longest path problems 519–520 (see also

shortest path problems)
tractability 519–520

lot sizing 529
lower- and upper-bounded simplex

search 272–279
Algorithm 5D 278
basic solutions 274–275
step sizes 276–277

1134 Index

LP (see linear programming)
LP-based branch and bound 762–766

(see also branch and bound)
Algorithm 12A 761
branching rules 761–762

LP-feasible sets
edges 217
extreme points 216
polyhedral 126

Luenberger, David G. 141
lumpy linear programming 655–660

all or nothing constraints 656–658
fixed charge problems 658–660

main constraints 25
major iterations reduced gradient

search 1049–1050
makespan (see maximum completion time)
Mall Layout Quadratic Assignment

Application 678
marginal prices (see dual variables)
Marine Mobilization Transportation Problem

Application 606–607
Markov Decision Processes 541–546

actions 543
dynamic programming solution 542
model elements 541–542
rewards 542
states 542
transitions 542

matching problems 683–684
tractability 685
versus linear assignment 683

material balance constraints (see balance
constraints)

mathematical model 1
mathematical program general form 47
mathematical programs 4

standard form 26, 46–47
matrices 213–214

denoted by boldface upper case notation 213
inverses 261
inverses denoted M-1 261
multiplication 214–215
nonsymmetric 214
symmetric 214
transposes 214–215
transposes denoted MT 214–215

maximal sets of independent vectors 223–224

maximin objectives 173–174
linearizing 173–174

maximum completion time 706
maximum flow problems 618

Algorithm 10E 622
computational order 625
equality of max flow and min cut 624
flow augmenting paths 620–621
minimum cuts 619
network flow formulations 621
residual digraph 622–624

maximum flow time 706
maximum lateness 706
maximum likelihood estimation 919–921
maximum tardiness 706
maximum/minimum spanning trees 633–639

Algorithm 10F 634
composition tree 635
computational order 638–639
equvalence of primal and dual 637
greedy algorithm strategy 633–634
ILP formulation 636
LP relaxation and dual 636

maxisum objectives 173
MDP (see Markov Decision Processes)
Meade, R 974
mean completion time 706
mean flow time 706
mean lateness 706
mean tardiness 706
metaheuristics discrete optimization

heuristics 893–902
method of steepest ascent (see gradient search)
minimal cover knapsack inequalities 787–788
minimax objectives 173

linearizing 173–174
scheduling 706–708

minimum cost flows 559–563
basic solutions 596–597
cycle canceling search 583–591
cycle direction search 580–582
cycle directions 571–572
formulation of shortest paths 647
integer optima 601–602
linear dependence of cycles 591–592
network simplex search 591–601
node-arc incidence matrices 568–570
residual digraphs 583–584
single commodity 629

Index 1135

spanning tree bases 594–595
standard form 559
time-expanded models 565–568
total supply equals total demand 562–563
tractability versus LP 499–500
tractability versus shortest paths 647

minimum cut problems 619
minimum deviation objectives 176

linear modeling 176
minimum mean length dicycles (see Cycle

Cancelling)
minimum ratio rule (see step sizes)
minisum objectives 173
MINLP (see mixed-integer nonlinear

programming)
minor iterations reduced gradient

search 1049–1050
MINOS solver 70
MIP (see mixed-integer programming)
mixed-integer nonlinear programming

(see integer nonlinear programming)
mixed-integer programming 57

(see also discrete optimization)
modeling languages vs. solvers 66
Monte Carlo analysis (see stochastic simulation)
Mortimer Middleman Application 2
move directions 98, 735

BFGS 965–968
gradient search 955–959
gradient 112–113, 252–253, 278
Nelder-Mead 975–976
Newton step barrier 412–414
Newton’s method 960
reduced gradient 1044–1045
simplex cycle 597–598
simplex LP 228–230, 240–241

move sets discrete improving search 887–892
multicommodity flows 625–629

tractability 629
versus single commodity 626–627

multidimensional knapsack problems
(see capital budgeting problems)

multiobjective optimization 60, 437–464
efficient frontier 445–448
efficient points 443–445
engineering design models 439
finance models 437
goal programming 454–464
preemptive 450–451

public sector models 60–62, 440–443
versus single-objective 64
weighted sums 451–453

multistart search 894–895 (see also discrete
improving search)

mutations genetic algorithms 903
mutually exclusive choices 664–665
myopic rules (see greedy rules)

NASA Capital Budgeting Application
662–663, 764–765

NCB Circuit Board TSP Application
685–686, 888–889

nearest child rule 773
negative definite matrices 945

local optimality conditions 946–947
test for concave functions 952

negative dicycles 488
Bellman-Ford algorithm 500–501
difficulty for shortest paths 488–489
Floyd-Warshall algorithm 507–509
improving cycle directions 585–586

negative semidefinite matrices 945
local optimality conditions 946–947
test for concave functions 952

neighborhood search (see improving search)
neighborhoods 94–95, 887–892

discrete 887–892
Nelder, R 974
Nelder-Mead search 972–979

Algorithm 16G 973
direction 975–976

Nelder-Mead shrinking 978–979
Nelder-Mead step sizes 976–977
network cycle cancelling search Algorithm

10B (see cycle cancelling search)
network design problems 699–702

big-M constants 747–748
switching constraints 701

network flow gain/loss flows 630–632
network flows (see also each model class)

linear assignment 607–610
maximum flow 611–620
minimum cost flows 559–563
multicommodity 625–629
network design 699–702
shortest path problems 647
time-expanded models 565–568
transportation problems 502–506

1136 Index

network rudimentary search Algorithm 10A
(see cycle direction search)

network simplex search 591–601
Algorithm 10C 599
simplex cycle directions 597–598

networks 479, 559 (see also digraphs)
Newton step barrier search 412–419

Algorithm 7B 419
directions 413–414
multiplier management 417–419
step sizes 415–417

Newton step 412–414, 960
Newton’s method 959–964

Algorithm 16E 962
starting close 964
versus gradient search 963

Nifty Notes Machine Scheduling
Application 702–703

NLP (see nonlinear programming)
node-arc incidence matrices 568–570

linear dependence of cycles 591–592
spanning tree bases 594–595
total unimodularity 603–604

nodes 479
nonbasic variables 219, 836

superbasic 1041
nondominated solutions (see efficient points)
nonimproving moves 894–895
nonlinear constraints 48
nonlinear functions 48
nonlinear objective functions 49, 64
nonlinear programming 50 (see also

constrained nonlinear programming;
unconstrained nonlinear
programming)

multiobjective 440
nonlinear regression (see curve fitting)
nonnegativity constraints 25
nonpositive variables 211

converting to nonnegative 211
nonsingular matrices 223 (see also singular

matrices)
nonsmooth functions 922

Nelder-Mead search 972–979
versus smooth 922–924

nonsymetric matrices 214
norms of vectors 90
NP complexity class 864
NP-Complete complexity class 869

NP-Hard complexity class 869
numerical search 14

dependence on starting point 15

objective function coefficients
ranges 326–328
sensitivity analysis 299–300
sensitivity computer outputs 326–329
what if’s 330–333

objective function modifying relaxations 738
objective functions 25–26

as interior move directions 386–387
contours 32–33

objectives 4
Ohio National Bank Application 162–163
ONB Application 162
one-dimensional search (see 1-dimensional

search)
operations planning models 152–161

balance constraints 158–159
operations research approach 3

dependence on time and resources 19
Operations Research 1
Opt… threshold version of problem Opt 863
OptÚ threshold version of problem Opt 863
Optfeas feasibility version of problem Opt 863
optima (see global optima)
Optimal Ovens, Inc (OOI) Application 558
optimal solutions 7

denoted with * 8
exact 15
from constraint relaxations 742
from Lagrangian stationary points 1014–1017
from relaxations modifying objective

functions 743
heuristic 16
unique versus alternative 34–35
values denoted with n* 8

optimal values 35
optimization models 4 (see also mathematical

programs)
OR (see operations research)
order quantity 5
output variables 9
Oxygen System Engineering Design

Application 992–994

P 3 NP conjecture 869–871
P complexity class 864

Index 1137

pairwise interchanges discrete improving
search 890–891

parameters of models 9
indexed symbolic 41–42

parametric programming 338–344 (see also
sensitivity analysis)

inadequacies of range outputs 338
multiple coefficient changes 340–344
one coefficient 338–339

parent bounds 769–770
terminating by 769–770

parent of a tree node 768
Pareto optimal points (see efficient points)
partial derivatives 110–111 (see also gradients)
partial solutions 752–753

active 754
branched 754
completions 752–753

partitioned LP standard form
complementary dual solution 355–356
primal basic solution 355

partitioning constraints 667
paths 480, 570
paths shortest versus shortest subpaths

487–488
paths versus chains 570–571
penalty functions 1029

differentiability 1031–1032
exactness 1032–1033

penalty methods 1028–1034
concluding optimality 1031
multiplier management 1033
sequential unconstrained penalty

techniques 1033–1034
penalty multipliers 1028

management 1033
penalty objective function 1028
permanently labeled node Dijkstra shortest

paths 510–511
PERT (see program evaluation and review

technique)
PERT Maximum Likelihood Application 920
Pfizer Pharmaceuticals Lot Sizing

Application 995
Phase I 129 (see also two-phase method)

artificial model 129–130
artificial variables 129–130
in two-phase method 129–134
minimum cost flows 563–564

objective function 131
outcomes 132–133
starting solutions 129–130, 212–215
testing infeasibility 132–133

Phase II 129 (see also two-phase method)
proceeding from Phase I 132

Pi Hybrids Application 40
piecewise-linear approximation of separable

programs 1002–1003, 1065–1073
correctness 1065–1073

pivots simplex 264
plant location problems (see facility location

problems)
points (see solutions)
polyhedral combinatorics (see cutting plane

theory)
polyhedral sets 126, 203–204

convexity of 126
extreme directions 204
extreme points 202
LP feasible sets as 126

polynomial reduction 866–867
polynomial-time algorithm complexity 861
populations in genetic algorithms 902
portfolio management 1003–1004
positive definite matrices 945

local optimality conditions 946–947
test for convex functions 952

positive dicycles 519
positive semidefinite matrices 945

local optimality conditions 946–947
test for convex functions 952

post-optimality analyses (see sensitivity
analysis)

posynomial functions 1008
posynomial geometric programming

1009–1011, 1073–1082
degrees of difficulty 1079–1080
dual program 1077–1082
logarithmic change of variables 1075–1076
standard form 1073–1074

precedence constraints 521
in job shop scheduling 712

predecessor 520
preemption in scheduling 703
preemptive goal programming 459–461
preemptive optimization efficient points 451
preemptive optimization multiobjective

optimization 450–451

1138 Index

prescriptive models 12
versus descriptive 12–14

President’s Library Application 533–534
pricing columns in delayed generation 811–821
pricing columns in revised simplex 267–269
primal and dual LP standard forms 352

partitioned 354–355
primal complementary slackness 311–312,

349–351
primal linear programs 304
primal simplex search strategy for

LP optimality 357–358
primal-dual search

interior point Algorithm 7C 424
interior point complexity 430
interior point strategy 424
interior point 421–428
interior point Algorithm 7C 424
interior point management of

complementary slackness 423
interior point move directions 422–423
interior point step size 423
interior point strategy (non simplex) 422
interior-point 421
interior-point directions 422
interior-point step size 423
linearly assignment Hungarian

Algorithm 10D 612
simplex 365–371
simplex Algorithm 6B 369
simplex dual change directions 368
simplex dual step size 368
simplex restricted primal 366–367
simplex strategy for LP optimality 365–366

principal minors 945
principal submatrices 945
principle of optimality 489–490
probabilisitic models (see stochastic models)
probability density function 918
problems vs. instances (see complexity theory)
process times 703
processor scheduling (see scheduling)
program evaluation and review technique

920–921
project activity 520
project duration 520
project management 520
project networks 521–522

acyclic property 528

projection on equality constraints
affine-scaled form 398–399
burden of interior point methods 390–394
least squares curve fitting 391–392
obtaining feasible directions 392–394
obtaining improving directions 394–395
projection matrices 392

projective transformation method 430
pseudo-polynomial time algorithm

complexity 871–872
PTime complexity class 865
Purdue Final Exam Scheduling Application 59
pure integer programs 57 (see also discrete

optimization)

QA application (see Quick Aid Aplication)
QAP (see quadratic assignment problems)
QP (see quadratic programming)
quadratic assignment problems 677–680

flow-distance 678
formulation of TSPs 694–693
tractability 685

quadratic fit search 932–935
Algorithm 16C 934

quadratic form 945
Quadratic Portfolio Management

Application 1003–1004
quadratic programming 1051–1061

active set methods 1055–1061
direct solution of KKT conditions 1054
equality constrained 1053–1055

quadratic Taylor approximation (see
second-order Taylor approximation)

quasi-Newton condition 965
satisfied by BFGS 971

quasi-Newton methods 964–972
versus gradient search 965
versus Newton’s method 965

Quick Aid Application 179

random keys 904–905
random variables 16
rank one matrices 967
ratio constraints 150–151
realizations of a random variables 17
reciprocals of convex/concave functions 952
rectilinear distance 176

linear modeling 176–177
versus Euclidean 176

Index 1139

recursions (see functional equations)
reduced costs 231

cycle direction computation 576
revised simplex computation 267–269

reduced gradient search 1038–1051
Algorithm 17C 1048
basic, nonbasic, superbasic 1041–1042
major and minor interations 1049–1050
move directions 1044–1045
nondegeneracy assumption 1042–1043

reduced gradients 1043–1044
reduces to polynomial reductions from

(P) to (Q) 866
denoted 1P2 r 1Q2 866

reductions among problems (see complexity
theory)

reflecting step in Nelder-Mead 977
regression (see curve fitting)
relaxations bounds 739–742
relaxations choosing big-Ms 747–751
relaxations constraint 735–736
relaxations LP 737–738
relaxations modifying objective 738
relaxations optimal solutions 742–743
relaxations proving infeasibility 738–739
relaxations rounded solutions 744–747
relaxations strengthening 747–751

with valid inequalities 777–778
relaxing constraints (see sensitivity analysis)
release times 703
reoptimization (see parametric

programming)
reorder point 5

residual digraphs 583–584
feasible directions 584–585
improving directions 585–586

residual errors 918
resources interpretation of constraints

288–290
reverse arc 571
revised simplex search 260–272 (see also

simplex search)
Algorithm 5C 278
computing reduced costs 267–269
pricing vector 267
updating basis inverse 264–266
use of basis inverse 261–266

rewards of Markov Decision Processes 542
RHS (see right-hand sides)

right-hand sides 47
ranges 322–324
sensitivity analysis 294–296, 323–324

Risk and Detection of Breast Cancer
Application 543–545

River Power Application 751–752
root node 754
rounded solutions

for incumbent solutions 765–768
from relaxations 744–747

routing problems
multiple routes 693–695
traveling salesman 679–693

saddle points 943
versus local optima 943–947

safety stock 5
scalars distiguished by subscripts 89
scalars single real numbers 89
scalars variables denoted in italics 89
scaling (see affine scaling)
scenarios in stochastic programming 179–180
schedule conflict 704–705
schedule slack 527–528
scheduling (see also early start schedules; late

start schedules)
conflict constraints 704–705
disjunctive variables 704–705
equivalences among objectives 710
handling of due dates 706
job shop 710–713
objective functions 706–708
single processor 702–710
time decision variables 703

second derivatives 937–939
second partial derivatives (see Hessian matrices)
second-order necessary optimality condi-

tions 946
second-order sufficient optimality condi-

tions 946–947
second-order Taylor approximation 939–941
sensitivity analysis 11 (see also parametric

programming)
adding or dropping constraints 297–298,

322–323
adding or dropping variables 303, 333–334
constraint coefficients rates of change

298–299
LHS changes 296

1140 Index

sensitivity analysis (continued)
objective function coefficients 299–300
objective function coefficients rates of

change 301–303
qualitative for LPs 293–303
quantitative for LPs 304–310
relaxing versus tightening constraints 293
RHS changes 294–296, 322–323
only for single parameter changes 320–335

separable functions 1001
separable programming 1002–1003, 1065–1073

convex 1071–1072
piecewise-linear approximation 1002–1003,

1065–1073
standard form 1065–1066

sequential decision making 528–529
sequential quadratic programming (SQP)

1061–1065
Algorithm 17E 1063
strategy 1062
subproblem 1063

sequential unconstrained barrier
technique 1037–1038

Algorithm 14B 1038
sequential unconstrained penalty

technique 1033–1034
Algorithm 17A 1034

Service Desk Design Application 1029–1030
set covering constraints 667
set covering problems 667–672
set packing constraints 667
set packing problems 668
set partitioning constraints 667
set partitioning problems 668, 672–675

with column generation 674–675
setup costs (see fixed charges)
Shanno, D 966
shift scheduling models

air crews 673–674
covering constraints 164–165
LPs 162–166

shortest path problems Acyclic
Algorithm 9D 518

computational order 518
shortest path one to all nonnegative problems

Dijkstra Algorithm 9C 509
shortest path problems 481

acyclic digraphs 515–519
all to all 493–494

Bellman-Ford Algorithm 9A 496–498
Bellman-Ford Algorithm 9A computational

order 499
classification 481, 485
Dijkstra Algorithm 9C computationl

order 515
Floyd-Warshall Algorithm 9B 501–509
Floyd-Warshall Algorithm 9B

computational order 502
functional equations 489–490
network flow formulation 647
one to all nonnegative costs 509–515
one to all 489–493
one to one 485
solving by LP 494
tractability 494

shrinking in Nelder-Mead 978–979
signomial geometric programming 1082
simple lower bound 272
simple upper bound 272
simplex algorithm (see simplex search)
simplex cycle directions 596–598
simplex dictionaries 239–241

relationship to improving search 243
simplex directions 228–230

feasibility 229–230
minimum cost flows 597–598
test for improving 231–232

simplex search (see also dual simplex search;
lower- and upper-bounded simplex
search; network simplex search;
primal-dual simplex search; revised
simplex search)

computational order 429
degeneracy 253
dual Algorithm 6A 363
primal basis update 234–235
primal directions 229–230
primal finite convergence 257–258
primal global optimality 236–237
primal lower- and upper-bounded form

Algorithm 5D 278
primal revised form Algorithm 5C 271
primal Rudimentary Algorithm 5A 235
(primal) starting basic solution 227
primal step sizes 232
primal two-phase Algorithm 5B 247
primal two-phase approach 245–250
primal with dictionaries 242–243

Index 1141

primal with tableaux 242–243
primal-dual Algorithm 6B 369

simplex tableaux 241
simulated annealing 898–902

Algorithm 15D 898
temperature 899

simulation models 12, 17–18
simultaneous linear equations 223–224
single commodity flows 629

versus multicommodity 626–627
single complement discrete improving

search 892
single machine scheduling (see single

processor scheduling)
single objective optimization 59–60

versus multiobjective 64
single processor scheduling 704–712

(see also scheduling)
singular matrices 223

relation to linear dependence 223
testing by determinants 223

sink nodes 560–561
slack variables 209

converting main inequalities to
nonnegativities 209–211

Small Lagrangian Numerical
Application 828–829

smooth functions 109, 722
versus nonsmooth 922–924

soft constraints 455
goal program modeling 455

solutions 88
as vectors 88–91
encoding in genetic algorithms

904–906
solver software 67
solvers vs. modeling languages 66
source nodes

in network flows 560–561
in shortest paths 481

Spanning Trees Complexity Application
856–857

spanning trees 594
max/min weight (see maximum/minimum

spanning trees)
network flow bases 594–595

staff planning models (see shift scheduling
models)

stages of a dynamic program 533

standard forms
affine-scaled LPs 399–401
convex programs 998
differentiable NLP 1019
linear assignment 618
linear program interior points 389
linear programs 209–215, 352
linearly constrained NLP 1038–1039
lower- upper-bounded LPs 272
mathematical programs 26, 46–47
network flow problems 568–570
partitioned linear programs 260–262,

354–355
posynomial geometric programming

1073–1074
primal and dual LPs 352
quadratic programs 1051
separable programs 1065–1066
transportation problems 605

star notation (*) 5
start node project scheduling 521
start times

early 523
starting feasible solutions 129

basic 227
big-M methods 135–138
minimum cost flow 563–565
two-phase method 129–134, 212–214

states of a dynamic programs 529
states of Markov Decision Processes 542
static models 166
stationary points 941

necessary optimality conditions 941
of Lagrangians 1013–1014

steepest ascent directions 114–115
steepest descent directions 114–115
Steiner tree problems 856
step sizes

active set QP 1056–1057
in improving search 104–105
in simplex 232
minimum ratio rule 232
Nelder-Mead 976–977
Newton step barrier 415–417
reduced gradient methods 1046–1047
with cycle directions 577–578
with lower and upper bounds

276–277
zero due to degeneracy 255–257

1142 Index

stochastic models 16–19
Markov Decision Processes 541–545
stochastic programming 179–184
versus deterministic 18–19

stochastic programming 179
extensive form 184
extensive vs. large-scale forms 184
scenarios 179–180
two-stage 179
versus deterministic 181
with recourse 179

stochastic simulation 17–18
stopping early in branch and bound 770–772

error bounds 770–772
strong duality 310, 351
subgradient search (see Lagrangian duals)
subgradient search Lagrangian dual 833–836
subpaths 487–488
subscripts 40 (see also indexing)

for components of vectors 89
subtour elimination constraints 688
subtours 688
SUMT (see sequential unconstrained min/

maximization technique)
superbasic variables 1041
Superfi Speaker Matching Application

683–684
superscripts for distinghishing vectors 89
supply nodes (see sources)
surplus variables (see slack variables)
Swedish Steel Application 147–148, 656
switching constraints 658–660

big-M constants 749–751
symmetric matrices 214

quasi-Newton requirement 965
symmetric quadratic program form 1051
symmetric traveling salesman problems

(see traveling salesman problems)
system boundary 9

tabu list 894
tabu search 893–887

Algorithm 15C 895
tardiness 706
target levels (see goal levels)
Taylor series approximations 939–941
temperature simulated annealing 899
temporarily labeled node Dijkstra shortest

paths 510

termination 754
by bound 759
by infeasible 759
by parent bound 769–770
by solving 759

Texaco Gasoline Blending Application
989–990

Texas Transfer Application 481–482
three-point pattern (see 3-point pattern)
tight constraints (see active constraints)
tightening constraints (see sensitivity analysis)
time horizons 170
time-expanded networks 565–568
time-phased models

balance constraints 168–169
LPs 166–171
time horizons 170–171

Tinyco Cash Flow Application 630
Tmark Facilities Location Application

695–696
Top Brass Trophy Application 201–202
total enumeration 731–734

exponential growth 733–733
total supply equals total demand 562–563
total unimodularity of network flow

matrices 603–604
implications for solution integrality

603–604
tours in traveling salesman problems 685
tractability 11

assignment and matching 685
constructive search 884–885
continuous versus discrete variables 53–54,

144
convex programs 1000–1001
engineering design NLPs 992
gain/loss flows 632
improving search 98, 109–118
linear versus nonlinear functions 52
linearly constrained NLPs 989
longest path problems 519–520
LP versus network flows 570
LPs 203
multicommodity flows 629
network flows versus shortest path 647
posynomial geometric programs 1010–1011
quadratic programs 1006
separable programs 1002–1003
shortest path problems 494

Index 1143

single versus multiobjective 64, 397
smooth versus nonsmooth functions

922–924
total enumeration 733–734
unconstrained versus constrained

NLPs 915
versus validity 11

transitions of Markov Decision
Processes 542

transportation problems 604–607
standard form 605

transshipment nodes 560–561
traveling salesman problems 679–693

formulating asymmetric 690–692
formulating symmetric 687–690
heuristic methods 873–874, 888–893
quadratic assignment formulation 692–693
subtour elimination constraints 688
subtours 688
symmetric versus asymmetric 687

trees 594
TSP (see traveling salesman problems)
Tubular Products Operations Planning

Application 152
Tucker, A.W. 351
Turing, A. 859
twice differentiable functions 938
twice-around heuristic application for

TSPs 873–874
Two Crude Petroleum Application 24
Two Ring Circus Application 482
two-phase method 129–134 (see also Phase I;

Phase II)
Algorithm 3B 129
simplex Algorithm 5B 247

U.S. Forest Service Application 144
unbounded models 37–39

detection with improving search 108–109
detection with simplex 252
primal to dual relationships 347–349

unconstrained global maxima (see
unconstrained global optima)

unconstrained global minima (see
 unconstrained global optima)

unconstrained global optima 122
convex/concave objectives 950–951

unconstrained local maxima (see
unconstrained local optima)

unconstrained local minima (see
unconstrained local optima)

unconstrained local optima 122
first-order necessary conditions 942
second-order necessary conditions 946
second-order sufficient conditions

946–947
unconstrained nonlinear programming 913

1-dimensional search 924–935
BFGS search 966–972
curve fitting 916–918
global optimality conditions 950–951
golden section search 925–929
gradient search 955–959
local optimality conditions 941–947
maximum likelihood estimation 919–921
Nelder-Mead search 972–979
Newton’s method 959–964
quadratic fit search 932–935
quasi-Newton methods 964–972
single-variable 915

unconstrained optima (see unconstrained
global optima)

Undecidable complexity class 865
undirected graph 482–483 (see also graph)

directing 483–484
unimodal objective functions single

variable 924–925
unique optimal solutions 34–35
unrestricted variables 212

converting to nonnegative 212
URS (see unrestricted variables)
USPS Single Variable Application 914

valid equalities partial convex hull
dimension 796

valid inequalities 777
face-inducing 794
facet-inducing 794
families of 782–788
Gomory mixed integer 785–787
Gomory pure integer 782–785
in branch and cut 777–782
minimal cover 787–788

validity of models 11
simulation models 12
versus tractability 11

variable costs 658
versus fixed 658

1144 Index

variable elimination methods (see reduced
gradient methods)

variables (see decision variables)
variable-type constraints 24–25
variance of return 1004
vectors 89–91

addition and subtraction 90
components of denoted with subscripts 89
denoted boldface lower case notation 89
dimension 89
distinguished by superscripts 89
dot product 90
geometric interpretation 89
norm or length 90
representing one-dimensional array of

scalars 89
scalar multiple 90

verbal models 4
vertices (see nodes)
Virginia Prestress Location Application 175
VP Application(see Virginia Prestress) 175

Wagner, H. 529
Wagner-Whitin lot sizing Application 529–532

Wagner-Whitin lot sizing dynamic
programming solution 529–532

warehouse location problems (see facility
location problems)

Warshall, S. 501
Wastewater Network Design

Application 700
We Build Construction Application 521
weak duality 345
weighted sums 90

linear functions 125
of convex/concave functions 952
of deficiencies 458–459
of objectives 451–453
with dot product notation 90–91

what ifs (see sensitivity analysis)
Whitin, T. 529
Wilderness Energy (WE) Application 633
WLP (see warehouse location problems)
Wolfe, P. 836
work in process 707
worst-case heuristic algorithms 872–874

zigzagging in gradient search 96

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

10.8 Wilderness Energy (WE) 633

11.1 Indy Car Knapsack 661

11.2 NASA Capital Budgeting 662

11.3 EMS Location Planning 666

11.4 AA Crew Scheduling 673

11.5 Mall Layout Quadratic Assignment 678

11.6 CDOT Generalized Assignment 681

11.7 Superfi Speaker Matching 683

11.8 NCB Circuit Board TSP 685

11.9 KI Truck Routing 693

11.10 Tmark Facilities Location 695

11.11 Wastewater Network Design 700

11.12 Nifty Notes Single-Machine Scheduling 702

11.13 Custom Metalworking Job Shop 711

12.1 Bison Boosters 734

12.2 River Power 751

13.1 IMRT Planning for Radiation Therapy
Optimization

 812

13.2 Lagrangian Relaxation of CDOT
Generalized Assignment

 823

13.3 Small Lagrangian Numerical Example 828

13.4 Global Backpack (GB) Numerical
Example

 837

13.5 Heart Guardian Facilities Location 843

14.1 Spanning Tree Examples of the
Complexity Challenge

 856

14.2 Set Partitioning and Decision Problems 863

14.3 Nondeterministic Solvability of ILP
Threshold

 864

14.4 Reduction of Set Partition to Steiner Tree 867

14.5 Twice-Around Heuristic for TSP with
Triangle Inequality

 873

16.1 USPS Single Variable 914

16.2 Custom Computer Curve Fitting 916

16.3 PERT Maximum Likelihood 920

17.1 Beer Belge Location Allocation 987

17.2 Texaco Gasoline Blending 989

17.3 Oxygen System Engineering Design 992

17.4 Pfizer Optimal Lot Sizing 995

17.5 Quadratic Portfolio Management 1003

17.6 Cofferdam Design 1006

17.7 Service Desk Design 1029

17.8 Filter Tuning 1039

17.9 Modified Version of Pfizer
Application 17.4

1061

ApplicAtions

1.1 Mortimer Middleman 2

2.1 Two Crude Petroleum 24

2.2 Pi Hybrids 40

2.3 E-Mart 51

2.4 Bethlehem Ingot Mold 53

2.5 Purdue Final Exam Scheduling 59

2.6 DuPage Land Use Planning 61

3.1 DClub Location 91

4.1 Forest Service Allocation 144

4.2 Swedish Steel 147

4.3 Tubular Products Operations Planning 152

4.4 Canadian Forest Products Limited
(CFPL) Operations Planning

154

4.5 Ohio National Bank (ONB) Shift
Scheduling

162

4.6 Institutional Food Services (IFS) Cash
Flow

167

4.7 Highway Patrol 172

4.8 Virginia Prestress (VP) Location 175

4.9 Quick Aid (QA) 179

5.1 Top Brass Trophy 201

5.2 Clever Clyde 244

7.1 Frannie’s Firewood 386

8.1 Bank Three Investment 437

8.2 Dynamometer Ring Design 439

8.3 Hazardous Waste Disposal 440

9.1 Littleville 477

9.2 Texas Transfer 481

9.3 Two Ring Circus 482

9.4 We Build Construction 521

9.5 Wagner–Whitin Lot Sizing 529

9.6 President’s Library 533

9.7 Electoral Vote Knapsack Application 538

9.8 Risk and Detection of Breast Cancer 543

10.1 Optimal Ovens (OOI) 558

10.2 Agrico Chemical Time-Expanded
Network Flow

566

10.3 Marine Mobilization Transportation
Problem

606

10.4 CAM Assignment 609

10.5 Building Evacuation Maximum Flow 619

10.6 Bay Ferry Multicommodity Flow 626

10.7 Tinyco Cash Flow with Gains and
Losses

630

	Cover
	Title Page ���
	Copyright Page ���
	Contents ���
	Preface ��
	About the Author ���
	Chapter 1 Problem Solving with Mathematical Models ���
	1.1 OR Application Stories
	1.2 Optimazation and the Operations Research Process
	Decisions, Constraints, and Objectives ���
	Optimization and Mathematical Programming ��
	Constant-Rate Demand Assumption
	Back of Envelope Analysis ��
	Constant-Rate Demand Model
	Feasible and Optimal Solutions ���

	1.3 System Boundaries, Sensitivity Analysis, Tractability, and Validity
	EOQ Under Constant-Rate Demand
	System Boundaries and Sensitivity Analysis ���
	Closed-Form Solutions
	Tractability versus Validity

	1.4 Descriptive Models and Simulation
	Simulation over MM’s History
	Simulation Model Validity ��
	Descriptive versus Prescriptive Models

	1.5 Numerical Search and Exact Versus Heuristic Solutions
	Numerical Search ���
	A Different Start ��
	Exact versus Heuristic Optimization

	1.6 Deterministic Versus Stochastic Models
	Random Variables and Realizations ��
	Stochastic Simulation ��
	Tradeoffs between Deterministic and Stochastic Models

	1.7 Perspectives
	Other Issues ���
	The Rest of This Book ��

	Exercises

	Chapter 2 Deterministic Optimization Models in Operations Research
	2.1 Decision Variables, Constraints, and Objective Functions
	Decision Variables ���
	Variable-Type Constraints
	Main Constraints ���
	Objective Functions ��
	Standard Model ���

	2.2 Graphic Solution and Optimization Outcomes
	Graphic Solution ���
	Feasible Sets ��
	Graphing Constraints and Feasible Sets ���
	Graphing Objective Functions ���
	Optimal Solutions ��
	Optimal Values ���
	Unique versus Alternative Optimal Solutions
	Infeasible Models ��
	Unbounded Models ���

	2.3 Large-Scale Optimization Models and Indexing
	Indexing ���
	Indexed Decision Variables ���
	Indexed Symbolic Parameters ��
	Objective Functions ��
	Indexed Families of Constraints ��
	Pi Hybrids Application Model ���
	How Models Become Large ��

	2.4 Linear and Nonlinear Programs
	General Mathematical Programming Format ��
	Right-Hand Sides
	Linear Functions ���
	Linear and Nonlinear Programs Defined ��
	Two Crude and Pi Hybrids Models are LPs
	Indexing, Parameters, and Decision Variables for E-mart ��
	Nonlinear Response ���
	E-mart Application Model ���

	2.5 Discrete or Integer Programs
	Indexes and Parameters of the Bethlehem Application ��
	Discrete versus Continuous Decision Variables
	Constraints with Discrete Variables ��
	Bethlehem Ingot Mold Application Model ���
	Integer and Mixed-Integer Programs
	Integer Linear versus Integer Nonlinear Programs
	Indexing, Parameters, and Decision Variables for Purdue Finals Application ���
	Nonlinear Objective Function ���
	Purdue Final Exam Scheduling Application Model ���

	Multiobjective Optimization Models ���
	Multiple Objectives ��
	Constraints of the DuPage Land Use Application
	Dupage Land Use Application Model ��
	Conflict among Objectives

	Classification Summary ���
	Computer Solution and AMPL
	Solvers versus Modeling Languages
	Indexing, Summations, and Symbolic Parameters ��
	Nonlinear and Integer Models ���

	Exercises
	References

	Chapter 3 Improving Search
	3.1 Improving Search, Local, and Global Optima
	Solutions ��
	Solutions as Vectors ���
	Example of an Improving Search ���
	Neighborhood Perspective ���
	Local Optima ���
	Local Optima and Improving Search ��
	Local versus Global Optima
	Dealing with Local Optima ��

	3.2 Search with Improving and Feasible Directions
	Direction-Step Paradigm
	Improving Directions ���
	Feasible Directions ��
	Step Size: How Far? ��
	Search of the DClub Example
	When Improving Search Stops ��
	Detecting Unboundedness ��

	3.3 Algebraic Conditions for Improving and FeasibleDirections
	Gradients ��
	Gradient Conditions for Improving Directions ���
	Objective Function Gradients as Move Directions ��
	Active Constraints and Feasible Directions ���
	Linear Constraints ���
	Conditions for Feasible Directions with Linear Constraints ���

	3.4 Tractable Convex and Linear Cases
	Special Tractability of Linear Objective Functions ���
	Constraints and Local Optima ���
	Convex Feasible Sets ���
	Algebraic Description of Line Segments ���
	Convenience of Convex Feasible Sets for Improving Search ���
	Global Optimality of Linear Objectives over Convex Feasible Sets ���
	Convexity of Linearly Constrained Feasible Sets ��
	Global Optimality of Improving Search for Linear Programs ��
	Blocking Constraints in Linear Programs ��

	3.5 Searching for Starting Feasible Solutions
	Two-Phase Method
	Two Crude Model Application Revisited ��
	Artificial Variables ���
	Phase I Models ���
	Starting Artificial Solution ���
	Phase I Outcomes
	Concluding Infeasibility from Phase I ��
	Big-M Method
	Big-M Outcomes

	Exercises
	References

	Chapter 4 Linear Programming Models
	4.1 Allocation Models
	Allocation Decision Variables ��
	Forest Service Allocation Model ��

	4.2 Blending Models
	Ingredient Decision Variables ��
	Composition Constraints ��
	Swedish Steel Example Model ��
	Ratio Constraints ��

	4.3 Operations Planning Models
	Tubular Products Operations Planning Model ���
	CFPL Decision Variables
	Continuous Variables for Integer Quantities ��
	CFPL Objective Function
	CFPL Constraints
	Balance Constraints ��
	CFPL Application Model

	4.4 Shift Scheduling and Staff Planning Models
	ONB Decision Variables and Objective Function
	ONB Constraints
	Covering Constraints ���
	ONB Shift Scheduling Application Model

	4.5 Time-Phased Models
	Time-Phased Decision Variables
	Time-Phased Balance Constraints
	IFS Cash Flow Model
	Time Horizons ��

	4.6 Models with Linearizable Nonlinear Objectives
	Maxisum Highway Patrol Application Model ���
	Minimax and Maximin Objective Functions ��
	Nonlinear Maximin Highway Patrol Application Model ���
	Linearizing Minimax and Maximin Objective Functions ��
	Linearized Maximin Highway Patrol Example Model ��
	Nonlinear VP Location Model
	Min Deviation Objective Functions ��
	Linearizing Min Deviation Objective Functions ��
	Linearized VP Location Model

	4.7 Stochastic Programming
	Deterministic Model of QA Example
	Stochastic Programming with Recourse ���
	Stochastic Programming Modeling of the QA Application
	Extensive Form versus Large-Scale Techniques

	Exercises
	References

	Chapter 5 Simplex Search for Linear Programming
	5.1 LP Optimal Solutions and Standard Form
	Global Optima in Linear Programs ���
	Interior, Boundary, and Extreme Points ���
	Optimal Points in Linear Programs ��
	LP Standard Form
	Converting Inequalities to Nonnegativities with Slack Variables ��
	Converting Nonpositive and Unrestricted Variables to Nonegative ��
	Standard Notation for LPs

	5.2 Extreme-Point Search and Basic Solutions
	Determining Extreme Points with Active Constraints ���
	Adjacent Extreme Points and Edges ��
	Basic Solutions ��
	Existence of Basic Solutions ���
	Basic Feasible Solutions and Extreme Points ��

	5.3 The Simplex Algorithm
	Standard Display ���
	Initial Basic Solution ���
	Simplex Directions ���
	Improving Simplex Directions and Reduced Costs ���
	Step Size and the Minimum Ratio Rule ���
	Updating the Basis ���
	Rudimentary Simplex Algorithm ��
	Rudimentary Simplex Solution of Top Brass Example ��
	Stopping and Global Optimality ���
	Extreme-Point or Extreme-Direction

	5.4 Dictionary and Tableau Representations of Simplex
	Simplex Dictionaries ���
	Simplex Tableaux ���
	Simplex Algorithm with Dictionaries or Tableaux ��
	Correspondence to the Improving Search Paradigm ��
	Comparison of Formats ��

	5.5 Two Phase Simplex
	Starting Basis in the Two Phase Simplex ��
	Three Possible Outcomes for Linear Programs ��
	Clever Clyde Infeasible Case ���
	Clever Clyde Optimal Case ��
	Clever Clyde Unbounded Case ��

	5.6 Degeneracy and Zero-Length Simplex Steps
	Degenerate Solutions ���
	Zero-Length Simplex Steps
	Progress through Changing of Bases

	5.7 Convergence and Cycling with Simplex
	Finite Convergence with Positive Steps ���
	Degeneracy and Cycling ���

	5.8 Doing it Efficiently: Revised Simplex
	Computations with Basis Inverses ���
	Updating the Representation of B−1
	Basic Variable Sequence in Revised Simplex ���
	Computing Reduced Costs by Pricing ���
	Revised Simplex Search of Top Brass Application ��

	5.9 Simplex with Simple Upper and Lower Bounds
	Lower- and Upper-Bounded Standard Form
	Basic Solutions with Lower and Upper Bounds ��
	Unrestricted Variables with No Bounds ��
	Increasing and Decreasing Nonbasic Variable Values ���
	Step Size with Increasing and Decreasing Values ��
	Case with No Basis Change ��
	Lower- and Upper-Bounded Simplex Algorithm
	Lower- and Upper-Bounded Simplex on Top Brass Application

	Exercises
	References

	Chapter 6 Duality, Sensitivity, and Optimality in Linear Programming
	Generic Activities Versus Resources Perspective ��
	Objective Functions as Costs and Benefits ��
	Choosing a Direction for Inequality Constraints ��
	Inequalities as Resource Supplies and Demands ��
	Equality Constraints as Both Supplies and Demands ��
	Variable-Type Constraints
	Variables as Activities ��
	LHS Coefficients as Activity Inputs and Outputs

	6.2 Qualitative Sensitivity to Changes in ModelCoefficients
	Relaxing versus Tightening Constraints
	Swedish Steel Application Revisited ��
	Effects of Changes in Right-Hand Sides
	Effects of Changes in LHS Constraint Coefficients
	Effects of Adding or Dropping Constraints ��
	Effects of Unmodeled Constraints ���
	Changing Rates of Constraint Coefficient Impact ��
	Effects of Objective Function Coefficient Changes ��
	Changing Rates of Objective Function Coefficient Impact ��
	Effects of Adding or Dropping Variables ��

	6.3 Quantifying Sensitivity to Changes in LP ModelCoefficients: A Dual Model
	Primals and Duals Defined ��
	Dual Variables ���
	Dual Variable Types ��
	Two Crude Application Again ��
	Dual Variables as Implicit Marginal Resource Prices ��
	Implicit Activity Pricing in Terms of Resources Produced and Consumed ��
	Main Dual Constraints to Enforce Activity Pricing ��
	Optimal Value Equality between Primal and Dual
	Primal Complementary Slackness between Primal Constraints and Dual Variable Values
	Dual Complementary Slackness between Dual Constraints and Primal Variable Values

	6.4 Formulating Linear Programming Duals
	Form of the Dual for Nonnegative Primal Variables ��
	Duals of LP Models with Nonpositive and Unrestricted Variables
	Dual of the Dual is the Primal

	6.5 Computer Outputs and What If Changes of SingleParameters
	CFPL Example Primal and Dual
	Constraint Sensitivity Outputs ���
	Right-Hand-Side Ranges
	Constraint What If’s ���
	Variable Sensitivity Outputs ���
	Objective Coefficient Ranges ���
	Variable What If’s ���
	Dropping and Adding Constraint What If’s ���
	Dropping and Adding Variable What If’s ���

	Bigger Model Changes, Reoptimization, and Parametric Programming
	Ambiguity at Limits of the RHS and Objective Coefficient Ranges
	Connection between Rate Changes and Degeneracy
	Reoptimization to Make Sensitivity Exact ���
	Parametric Variation of One Coefficient ��
	Assessing Effects of Multiple Parameter Changes ��
	Parametric Multiple-RHS Change
	Parametric Change of Multiple Objective Function Coefficients ��

	6.7 Duality and Optimality in Linear Programming
	Dual of the Dual ���
	Weak Duality between Objective Values
	Unbounded and Infeasible Cases ���
	Complementary Slackness and Optimality ���
	Strong Duality and Karush-Kuhn-Tucker (KKT) Optimality Conditions for Linear Programs
	Models in Standard Form ��
	Standard Form LPs in Partitioned Basic Format
	Basic Solutions in Partitioned Form ��
	Complementary Dual Basic Solutions ���
	Primal Simplex Optimality and Necessity of KKT Conditions

	6.8 Dual Simplex Search
	Choosing an Improving Direction ��
	Determining a Dual Step Size to Retain Dual Feasibility ��
	Changing the Primal Solution and Basis Update ��

	6.9 Primal-Dual Simplex Search
	Choosing an Improving Dual Direction ���
	Determining a Dual Step Size ���

	Exercises
	References

	Chapter 7 Interior Point Methods for Linear Programming
	7.1 Searching through the Interior
	Interior Points ��
	Objective as a Move Direction ��
	Boundary Strategy of Interior Point Methods ��
	Interior in LP Standard Form
	Projecting to Deal with Equality Constraints ���
	Improvement with Projected Directions ��

	7.2 Scaling with the Current Solution
	Affine Scaling ���
	Diagonal Matrix Formalization of Affine Scaling ��
	Affine-Scaled Standard Form
	Projecting on Affine-Scaled Equality Constraints
	Computational Effort in Interior Point Computations ��

	7.3 Affine Scaling Search
	Affine Scaling Move Directions ���
	Feasibility and Improvement of Affine Scaling Directions ���
	Affine Scaling Step Size ���
	Termination in Affine Scaling Search ���
	Affine Scaling Search of the Frannie’s Firewood Application ��

	7.4 Log Barrier Methods for Interior Point Search
	Barrier Objective Functions ��
	Problems with Gradient Directions ��
	Newton Steps for Barrier Search ��
	Newton Step Barrier Search Step Sizes ��
	Impact of the Barrier Multiplier µ ���
	Barrier Algorithm Multiplier Strategy ��
	Newton Step Barrier Algorithm ��
	Newton Barrier Solution of Frannie’s Firewood Application ��

	7.5 Primal-Dual Interior-Point Search
	KKT Optimality Conditions
	Strategy of Primal-Dual Interior-Point Search
	Feasible Move Directions ���
	Management of Complementary Slackness ��
	Step Size ��
	Solving the Conditions for Move Directions ���

	7.6 Complexity of Linear Programming Search
	Length of Input for LP Instances
	Complexity of Simplex Algorithms for LP
	Complexity of Interior-Point Algorithms for LP

	Exercises
	References

	Chapter 8 Multiobjective Optimization and Goal Programming
	8.1Multiobjective Optimization Models
	Bank Three Example Objectives ��
	Bank Three Example Model ���
	Dynamometer Ring Design Model ��
	Hazardous Waste Disposal Model ���

	8.3 Efficient Points and the Efficient Frontier
	Efficient Points ���
	Identifying Efficient Points Graphically ���
	Efficient Frontier ���
	Plots in Objective Value Space ���
	Constructing the Efficient Frontier ��

	8.3 Preemptive Optimization and Weighted Sums ofObjectives
	Preemptive Optimization
	Preemptive Optimization of the Bank Three Application
	Preemptive Optimization and Efficient Points ���
	Preemptive Optimization and Alternative Optima ���
	Weighted Sums of Objectives ��
	Weighted-Sum Optimization of the Hazardous Waste Application
	Weighted-Sum Optimization and Efficient Points

	8.4 Goal Programming
	Goal or Target Levels ��
	Goal Form of Bank Three Application ��
	Soft Constraints ���
	Deficiency Variables ���
	Expressing Soft Constraints in Mathematical Programs ���
	Goal Program Objective Function: Minimizing (Weighted) Deficiency
	Goal Linear Program Model of the Bank Three Application ��
	Alternative Deficiency Weights in the Objective ��
	Preemptive Goal Programming ��
	Preemptive Goal Programming of the Bank Three Application ��
	Preemptive Goal Programming by Weighting the Objective ���
	Practical Advantage of Goal Programming in Multiobjective Problems ���
	Goal Programming and Efficient Points ��
	Modified Goal Program Formulation to Assure Efficient Points ���

	Exercises
	References

	Chapter 9 Shortest Paths and Discrete Dynamic Programming
	9.1 Shortest Path Models
	Nodes, Arcs, Edges, and Graphs ���
	Paths ����������������������������������
	Shortest Path Problems ���
	Classification of Shortest Path Models ���
	Undirected and Directed Graphs (Digraphs)
	Two Ring Application Model ���

	9.2 Dynamic Programming Approach to Shortest Paths
	Families of Shortest Path Models ���
	Functional Notation ��
	Optimal Paths and Subpaths ���
	Negative Dicycles Exception ��
	Principle of Optimality ��
	Functional Equations ���
	Functional Equations for One Node to All Others ��
	Sufficiency of Functional Equations in the One to All Case ���
	Functional Equations for All Nodes to All Others ���
	Solving Shortest Path Problems by Linear Programming ���

	9.3 Shortest Paths from One Node to All Others:Bellman–Ford
	Solving the Functional Equations ���
	Repeated Evaluation Algorithm: Bellman–Ford
	Bellman–Ford Solution of the Two Ring Circus Application
	Justification of the Bellman–Ford Algorithm
	Recovering Optimal Paths ���
	Encountering Negative Dicycles with Bellman–Ford

	9.4 Shortest Paths from All Nodes to All Others:Floyd–Warshall
	Floyd–Warshall Algorithm
	Floyd–Warshall Solution of the Littleville Application
	Recovering Optimal Paths ���
	Detecting Negative Dicycles with Floyd–Warshall

	9.5 Shortest Path from One Node to All Others with CostsNonnegative: Dijkstra
	Permanently and Temporarily Labeled Nodes ��
	Least Temporary Criterion for Next Permanent Node ��
	Dijkstra Algorithm Solution of the Texas Transfer Application ��
	Recovering Paths ���
	Justification of the Dijkstra Algorithm ��

	9.6 Shortest Paths from One Node to All Others in Acyclic Digraphs
	Acyclic Digraphs ���
	Shortest Path Algorithm for Acyclic Digraphs ���
	Acyclic Shortest Path Example ��
	Longest Path Problems and Acyclic Digraphs ���

	9.7 CPM Project Scheduling and Longest Paths
	Project Management ���
	CPM Project Networks
	CPM Schedules and Longest Paths
	Critical Paths ���
	Computing an Early Start Schedule for the We Build Construction Application ��
	Late Start Schedules and Schedule Slack ��
	Acyclic Character of Project Networks ��

	9.8 Discrete Dynamic Programming Models
	Sequential Decision Problems ���
	States in Dynamic Programming ��
	Digraphs for Dynamic Programs ��
	Dynamic Programming Solutions as an Optimal Path ���
	Dynamic Programming Functional Equations ���
	Dynamic Programming Models with Both Stages and States ���
	Dynamic Programming Modeling of the President’s Library Application ��
	Backward Solution of Dynamic Programs ��
	Multiple Problem Solutions Obtained Simultaneously ���

	9.9 Solving Integer Programs with DynamicProgramming
	Dynamic Programming Modeling of Electoral Vote Knapsack ��

	9.10 Markov Decision Processes
	Elements of MDP Models
	Solution of the Breast Cancer MDP

	Exercises
	References

	Chapter 10 Network Flows and Graphs
	10.1 Graphs, Networks, and Flows
	Digraphs, Nodes, and Arcs ��
	OOI Application Network
	Minimum Cost Flow Models ���
	Sources, Sinks, and Transshipment Nodes ��
	OOI Application Model
	Total Supply = Total Demand
	Starting Feasible Solutions ��
	Artificial Network Flow Model ��
	Time-Expanded Flow Models and Networks
	Time-Expanded Modeling of Agrico Application
	Node–Arc Incidence Matrices and Matrix Standard Form

	10.2 Cycle Directions for Network Flow Search
	Chains, Paths, Cycles, and Dicycles ��
	Cycle Directions ���
	Maintaining Flow Balance with Cycle Directions ���
	Feasible Cycle Directions ��
	Improving Cycle Directions ���
	Step Size with Cycle Directions ��
	Sufficiency of Cycle Directions ��
	Rudimentary Cycle Direction Search for Network Flows ���
	Rudimentary Cycle Direction Search of the OOI Application

	10.3 Cycle Cancelling Algorithms for Optimal Flows
	Residual Digraphs ��
	Feasible Cycle Directions and Dicycles of Residual Digraphs ��
	Improving Feasible Cycle Directions and Negative Dicycles of Residual Digraphs ���
	Using Shortest Path Algorithms to Find Cycle Directions ��
	Cycle Cancelling Solution of the OOI Application
	Polynomial Computational Order of Cycle Cancelling ���

	10.4 Network Simplex Algorithm for Optimal Flows
	Linear Dependence in Node–Arc Matrices and Cycles
	Spanning Trees of Networks ���
	Spanning Tree Bases for Network Flow Models ��
	Network Basic Solutions ��
	Simplex Cycle Directions ���
	Network Simplex Algorithm ��
	Network Simplex Solution of OOI Application

	10.5 Integrality of Optimal Network Flows
	When Optimal Network Flows Must Be Integer ���
	Total Unimodularity of Node–Arc Incidence Matrices

	10.6 Transportation and Assignment Models
	Transportation Problems ��
	Standard Form for Transportation Problems ��
	Assignment Problems ��
	Balancing Unequal Sets with Dummy Elements ���
	Integer Network Flow Solution of Assignment Problems ���
	CAM Assignment Application Model

	10.7 Hungarian Algorithm for Assignment Problems
	Primal-Dual Strategy and Initial Dual Solution
	Equality Subgraph ��
	Labeling to Search for a Primal Solution in the Equality Subgraph ��
	Dual Update and Revised Equality Subgraph ��
	Solution Growth Along Alternating Paths ��
	Computational Order of the Hungarian Algorithm ���

	10.8 Maximum Flows and Minimum Cuts
	Improving Feasible Cycle Directions and Flow Augmenting Paths ��
	The Max Flow Min Cut Algorithm ���
	Solution of Max Flow Application of Figure 10.25(a) with Algorithm 10E
	Equivalence of Max Flow and Min Cut Values ���
	Computational Order of Algorithm 10E Effort

	10.9 Multicommodity and Gain/Loss Flows
	Multicommodity Flows ���
	Multicommodity Flow Models ���
	Tractability of Multicommodity Flow Models ���
	Flows with Gains and Losses ��
	Gain and Loss Network Flow Models ��
	Tractability of Network Flows with Gains and Losses ��

	10.10 Min/Max Spanning Trees
	Minimum/Maximum Spanning Trees and the Greedy Algorithm
	Solution of the WE Application 10.8 by Greedy Algorithm 10F
	Representing Greedy Results in a Composition Tree ��
	ILP Formulation of the Spanning Tree Problem
	Computational Order of the Greedy Algorithm ��

	Exercises
	References

	Chapter 11 Discrete Optimization Models
	11.1 Lumpy Linear Programs and Fixed Charges
	Swedish Steel Application with All-or-Nothing Constraints
	ILP Modeling of All-or-Nothing Requirements
	Swedish Steel Model with All-or-Nothing Constraints
	ILP Modeling of Fixed Charges
	Swedish Steel Application with Fixed Charges ���

	11.2 Knapsack and Capital Budgeting Models
	Knapsack Problems ��
	Capital Budgeting Models ���
	Budget Constraints ���
	Modeling Mutually Exclusive Choices ��
	Modeling Dependencies between Projects
	NASA Application Model

	11.3 Set Packing, Covering, and Partitioning Models
	Set Packing, Covering, and Partitioning Constraints ��
	Minimum Cover EMS Model
	Maximum Coverage EMS Model
	Column Generation Models ���

	11.4 Assignment and Matching Models
	Assignment Constraints ���
	CAM Linear Assignment Application Revisited
	Linear Assignment Models ���
	Quadratic Assignment Models ��
	Mall Layout Application Model ��
	Generalized Assignment Models ��
	CDOT Application Model
	Matching Models ��
	Superfi Application Model ��
	Tractability of Assignment and Matching Models ���

	11.5 Traveling Salesman and Routing Models
	Traveling Salesman Problem ���
	Symmetric versus Asymmetric Cases of the TSP
	Formulating the Symmetric TSP
	Subtours ���
	ILP Model of the Symmetric TSP
	ILP Model of the Asymmetric TSP
	Quadratic Assignment Formulation of the TSP
	Problems Requiring Multiple Routes ���
	KI Truck Routing Application Model

	11.6 Facility Location and Network Design Models
	Facility Location Models ���
	ILP Model of Facilities Location
	Tmark Facilities Location Application Model ��
	Network Design Models ��
	Wastewater Network Design Application Model ��

	11.7 Processor Scheduling and Sequencing Models
	Single-Processor Scheduling Problems
	Time Decision Variables ��
	Conflict Constraints and Disjunctive Variables ���
	Handling of Due Dates ��
	Processor Scheduling Objective Functions ���
	ILP Formulation of Minmax Scheduling Objectives
	Equivalences among Scheduling Objective Functions
	Job Shop Scheduling ��
	Custom Metalworking Application Decision Variables and Objective ���
	Precedence Constraints ���
	Conflict Constraints in Job Shops ��
	Custom Metalworking Application Model ��

	Exercises
	References

	Chapter 12 Exact Discrete Optimization Methods
	12.1 Solving by Total Enumeration
	Total Enumeration ��
	Swedish Steel All-or-Nothing Application
	Exponential Growth of Cases to Enumerate ���

	12.2 Relaxations of Discrete Optimization Modelsand Their Uses
	Constraint Relaxations ���
	Linear Programming Relaxations ���
	Relaxations Modifying Objective Functions ��
	Proving Infeasibility with Relaxations ���
	Solution Value Bounds from Relaxations ���
	Optimal Solutions from Relaxations ���
	Rounded Solutions from Relaxations ���
	Stronger LP Relaxations
	Choosing Big-M Constants

	12.3 Branch and Bound Search
	Partial Solutions ��
	Completions of Partial Solutions ���
	Tree Search ��
	Incumbent Solutions ��
	Candidate Problems ���
	Terminating Partial Solutions with Relaxations ���
	LP-Based Branch and Bound
	Branching Rules for LP-Based Branch and Bound
	LP-Based Branch and Bound Solution of the River Power Application

	12.4 Refinements to Branch and Bound
	Branch and Bound Solution of NASA Capital Budgeting Application
	Rounding for Incumbent Solutions ���
	Branch and Bound Family Tree Terminology ���
	Parent Bounds ��
	Terminating with Parent Bounds ���
	Stopping Early: Branch and Bound as a Heuristic ��
	Bounds on the Error of Stopping with the Incumbent Solution ��
	Depth First, Best First, and Depth Forward Best Back Sequences ���

	12.5 Branch and Cut
	Valid Inequalities ���
	Branch and Cut Search ��
	Branch and Cut Solution of the River Power Application ���

	12.6 Families of Valid Inequalities
	Gomory Cutting Planes (Pure Integer Case)
	Gomory Mixed-Integer Cutting Planes
	Families of Valid Inequalities from Specialized Models ���

	12.7 Cutting Plane Theory
	The Convex Hull of Integer Feasible Solutions ��
	Linear Programs over Convex Hulls ��
	Faces, Facets, and Categories of Valid Inequalities ��
	Affinely Independent Characterization of Facet-Inducing Valid Inequalities
	Partial Dimensional Convex Hulls and Valid Equalities ��

	Exercises
	References

	Chapter 13 Large-Scale Optimization Methods
	13.1 Delayed Column Generation and Branch and Price
	Models Attractive for Delayed Column Generation ��
	Partial Master Problems ��
	Generic Delayed Column Generation Algorithm ��
	Application of Algorithm 13A to Application 13.1
	Generating Eligible Columns to Enter ���
	Branch and Price Search ��

	13.2 Lagrangian Relaxations
	Lagrangian Relaxations ���
	Tractable Lagrangian Relaxations
	Lagrangian Relaxation Bounds and Optima
	Lagrangian Duals ���
	Lagrangian versus Linear Programming Relaxation Bounds
	Lagrangian Dual Objective Functions ��
	Subgradient Search for Lagrangian Bounds ���
	Application of Subgradient Search to Numerical Example ���

	13.3 Dantzig–Wolfe Decomposition
	Reformulation in Terms of Extreme Points and Extreme Directions ��
	Reformulation from GB Application 13.4 Subproblems
	Delayed Generation of Subproblem Extreme-Point and Extreme-Direction Columns
	Dantzig–Wolfe Solution of GB Application 13.4

	13.4 Benders Decomposition
	Benders Decomposition Strategy ���
	Optimality in Benders Algorithm 13E
	Solution of Heart Guardian Application 13.5 with Benders Algorithm 13E

	Exercises
	References

	Chapter 14 Computational Complexity Theory
	14.1 Problems, Instances, and the Challenge
	The Challenge ��

	14.2 Measuring Algorithms and Instances
	Computational Orders ���
	Instance Size as the Length of an Encoding ���
	Expressions for Encoding Length of All a Problem’s Instances ���

	14.3 The Polynomial-Time Standard for Well-SolvedProblems
	14.4 Polynomial and Nondeterministic-PolynomialSolvability
	Decision versus Optimization Problems
	Class P - Polynomially Solvable Decision Problems
	Class NP - Nondeterministic-Polynomially Solvable Decision Problems
	Polynomial versus Nondeterministic Polynomial Problem Classes

	14.5 Polynomial-Time Reductions and NP-HardProblems
	Polynomial Reductions between Problems
	NP-Complete and NP-Hard Problems

	14.6 P versus NP
	The P ≠ NP Conjecture

	Dealing with NP-Hard Problems
	Special Cases ��
	Pseudo-Polynomial Algorithms
	Average Case Performance ���
	Stronger Relaxations and Cuts for B&B and B&C
	Specialized Heuristics with Provable Worst-Case Performance
	General Purpose Approximate/Heuristic Algorithms

	Exercises
	References

	Chapter 15 Heuristic Methods for Approximate Discrete Optimization
	15.1 Constructive Heuristics
	Rudimentary Constructive Search Algorithm ��
	Greedy Choices of Variables to Fix ���
	Greedy Rule for NASA Application
	Constructive Heuristic Solution of NASA Application
	Need for Constructive Search ���
	Constructive Search of KI Truck Routing Application

	15.2 Improving Search Heuristics for DiscreteOptimization INLPs
	Rudimentary Improving Search Algorithm ���
	Discrete Neighborhoods and Move Sets ���
	NCB Application Revisited
	Choosing a Move Set ��
	Rudimentary Improving Search of the NCB Application
	Multistart Search ��

	15.3 Tabu and Simulated Annealing Metaheuristics
	Difficulty with Allowing Nonimproving Moves ��
	Tabu Search ��
	Tabu Search of the NCB Application
	Simulated Annealing Search ���
	Simulated Annealing Search of NCB Application

	15.4 Evolutionary Metaheuristics and Genetic Algorithms
	Crossover Operations in Genetic Algorithms ���
	Managing Genetic Algorithms with Elites, Immigrants, Mutations, and Crossovers ���
	Solution Encoding for Genetic Algorithm Search ���
	Genetic Algorithm Search of NCB Application

	Exercises
	References

	Chapter 16 Unconstrained Nonlinear Programming
	16.1 Unconstrained Nonlinear Programming Models
	USPS Single-Variable Application Model
	Neglecting Constraints to Use Unconstrained Methods ��
	Curve Fitting and Regression Problems ��
	Linear versus Nonlinear Regression
	Regression Objective Functions ���
	Custom Computer Curve Fitting Application Model ��
	Maximum Likelihood Estimation Problems ���
	PERT Maximum Likelihood Application Model
	Smooth versus Nonsmooth Functions and Derivatives
	Usable Derivatives ���

	16.2 One-Dimensional Search
	Unimodal Objective Functions ���
	Golden Section Search ��
	Golden Section Solution of USPS Application
	Bracketing and 3-Point Patterns
	Finding a 3-Point Pattern
	Quadratic Fit Search ���
	Quadratic Fit Solution of USPS Application

	16.3 Derivatives, Taylor Series, and Conditionsfor Local Optima in Multiple Dimensions
	Improving Search Paradigm ��
	Local Information and Neighborhoods ��
	First Derivatives and Gradients ��
	Second Derivatives and Hessian Matrices ��
	Taylor Series Approximations with One Variable ���
	Taylor Series Approximations with Multiple Variables ���
	Stationary Points and Local Optima ���
	Saddle Points ��
	Hessian Matrices and Local Optima ��

	16.4 Convex/Concave Functions and Global Optimality
	Convex and Concave Functions Defined ���
	Sufficient Conditions for Unconstrained Global Optima ��
	Convex/Concave Functions and Stationary Points
	Tests for Convex and Concave Functions ���
	Unimodal versus Convex/Concave Objectives

	16.5 Gradient Search
	Gradient Search Algorithm ��
	Gradient Search of Custom Computer Application ���
	Steepest Ascent/Descent Property
	Zigzagging and Poor Convergence of Gradient Search ���

	16.6 Newton’s Method
	Newton Step ��
	Newton’s Method ��
	Newton’s Method on the Custom Computer Application ���
	Rapid Convergence Rate of Newton’s Method ��
	Computational Trade-offs between Gradient and Newton Search
	Starting Close with Newton’s Method ��

	16.7 Quasi-Newton Methods and BFGS Search
	Deflection Matrices ��
	Quasi-Newton Approach
	Guaranteeing Directions Improve ��
	BFGS Formula
	BFGS Search of Custom Computer Application
	Verifying Quasi-Newton Requirements
	Approximating the Hessian Inverse with BFGS

	16.8 Optimization without Derivatives and Nelder–Mead
	Nelder–Mead Strategy
	Nelder–Mead Direction
	Nelder–Mead Limited Step Sizes
	Nelder–Mead Shrinking
	Nelder–Mead Search of PERT Application

	Exercises
	References

	Chapter 17 Constrained Nonlinear Programming
	17.1 Constrained Nonlinear Programming Models
	Beer Belge Location-Allocation Model
	Linearly Constrained Nonlinear Programs ��
	Texaco Gasoline Blending Model ���
	Engineering Design Models ��
	Oxygen System Engineering Design Model ���

	17.2 Convex, Separable, Quadratic, and Posynomial Geometric Programming Special NLP Forms
	Pfizer Optimal Lot Sizing Model ��
	Convex Programs ��
	Special Tractability of Convex Programs ��
	Separable Programs ���
	Special Tractability of Separable Programs ���
	Quadratic Portfolio Management Model ���
	Quadratic Programs Defined ���
	Special Tractability of Quadratic Programs ���
	Cofferdam Application Model ��
	Posynomial Geometric Programs ��
	Special Tractability of Posynomial Geometric Programs ��

	17.3 Lagrange Multiplier Methods
	Reducing to Equality Form ��
	Lagrangian Function and Lagrange Multipliers ���
	Stationary Points of the Lagrangian Function ���
	Lagrangian Stationary Points and the Original Model ��
	Lagrange Multiplier Procedure ��
	Interpretation of Lagrange Multipliers ���
	Limitations of the Lagrangian Approach ���

	17.4 Karush–Kuhn–Tucker Optimality Conditions
	Fully Differentiable NLP Model
	Complementary Slackness Conditions ���
	Lagrange Multiplier Sign Restrictions ��
	KKT Conditions and KKT Points
	Improving Feasible Directions and Local Optima Revisited ���
	KKT Conditions and Existence of Improving Feasible Directions
	Sufficiency of KKT Conditions for Optimality
	Necessity of KKT Conditions for Optimality

	17.5 Penalty and Barrier Methods
	Penalty Methods ��
	Penalty Treatment of the Service Desk Application ��
	Concluding Constrained Optimality with Penalties ���
	Differentiability of Penalty Functions ���
	Exact Penalty Functions ��
	Managing the Penalty Multiplier ��
	Sequential Unconstrained Penalty Technique (SUMT)
	Barrier Methods ��
	Barrier Treatment of Service Desk Application ��
	Converging to Optimality with Barrier Methods ��
	Managing the Barrier Multiplier ��
	Sequential Unconstrained Barrier Technique ���

	17.6 Reduced Gradient Algorithms
	Standard Form for NLPs with Linear Constraints
	Conditions for Feasible Directions with Linear Constraints ���
	Bases of the Main Linear Equalities ��
	Basic, Nonbasic, and Superbasic Variables ��
	Maintaining Equalities by Solving Main Constraints for Basic Variables ���
	Active Nonnegativities and Degeneracy ��
	Reduced Gradients ��
	Reduced Gradient Move Direction ��
	Line Search in Reduced Gradient Methods ��
	Basis Changes in Reduced Gradient Methods ��
	Reduced Gradient Algorithm ���
	Reduced Gradient Search of Filter Tuning Application ���
	Major and Minor Iterations in Reduced Gradient ���
	Second-Order Extensions of Reduced Gradient
	Generalized Reduced Gradient Procedures for Nonlinear Constrants ���

	17.7 Quadratic Programming Methods
	General Symmetric Form of Quadratic Programs ���
	Quadratic Program Form of the Filter Tuning Application ��
	Equality-Constrained Quadratic Programs and KKT Conditions
	Direct Solution of KKT Conditions for Quadratic Programs
	Active Set Strategies for Quadratic Programming ��
	Step Size with Active Set Methods ��
	Stopping at a KKT Point with Active Set Methods
	Dropping a Constraint from the Active Set ��
	Active Set Solution of the Filter Tuning Application ���

	17.8 Sequential Quadratic Programming
	Lagrangian and Newton Background ���
	Sequential Quadratic Programming Strategy ��
	Application of Algorithm 17E to Modified Pfizer Application l7.9
	Approximations to Reduce Computation ���

	17.9 Separable Programming Methods
	Pfizer Application 17.4 Revisited ��
	Piecewise Linear Approximation to Separable Functions ��
	Linear Program Representation of Separable Programs ��
	Correctness of the LP Approximation to Separable Programs
	Convex Separable Programs ��
	Difficulties with Nonconvex Separable Programs ���

	17.10 Posynomial Geometric Programming Methods
	Posynomial Geometric Program Form ��
	Cofferdam Application Revisited ��
	Logarithmic Change of Variables in GPs
	Convex Transformed GP Model
	Direct Solution of the Transformed Primal GP
	Dual of a Geometric Program ��
	Degrees of Difficulty and Solving the GP Dual
	Recovering a Primal GP Solution
	Derivation of the GP Dual
	Signomial Extension of GPs

	Exercises
	References

	Appendix: Group Projects
	Selected Answers
	Index

		2016-01-29T10:55:32+0000
	Preflight Ticket Signature

