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Preface

Operations research (OR), which began as an interdisciplinary activity to solve complex
problems in the military during World War II, has grown in the past 50 years to a full-
fledged academic discipline. Now OR is viewed as a body of established mathematical models
and methods to solve complex management problems. OR provides a quantitative analy-
sis of the problem from which the management can make an objective decision. OR has
drawn upon skills from mathematics, engineering, business, computer science, economics,
and statistics to contribute to a wide variety of applications in business, industry, govern-
ment, and military. OR methodologies and their applications continue to grow and flourish
in a number of decision-making fields.

The objective of this book is to provide a comprehensive overview of OR applications in
practice in a single volume. This book is not an OR textbook or a research monograph.
The intent is that this book becomes the first resource a practitioner would reach for when
faced with an OR problem or application. The key features of this book are as follows:

• Single source guide to OR applications
• Comprehensive resource, but concise
• Coverage of functional applications of OR
• Quick reference guide to students, researchers, and practitioners
• Coverage of industry-specific applications of OR
• References to computer software availability
• Designed and edited with nonexperts in mind

This book contains 12 chapters that cover not only OR applications in the functional
areas of business but also industry-specific areas. Each chapter in this book is written by
leading authorities in the field and is devoted to a specific application area listed as follows:

• Airlines
• E-commerce
• Energy systems
• Finance
• Military
• Production systems
• Project management
• Quality control
• Reliability
• Supply chain management
• Water resources

This book ends with a chapter on the future of OR applications. This book will be an
ideal reference book for OR practitioners in business, industry, government, and academia.

xi
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xii Preface

It can also serve as a supplemental text in undergraduate and graduate OR courses in
the universities. Readers may also be interested in the companion book titled Operations
Research Methodologies, which contains a comprehensive review of the OR models and
methods that are used in the applications discussed here.

A. Ravi Ravindran
University Park, Pennsylvania
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History of Operations
Research

A. Ravi Ravindran
Pennsylvania State University

Origin of Operations Research

To understand what operations research (OR) is today, one must know something of its
history and evolution. Although particular models and techniques of OR can be traced
back to much earlier origins, it is generally agreed that the discipline began during World
War II. Many strategic and tactical problems associated with the Allied military effort were
simply too complicated to expect adequate solutions from any one individual, or even a
single discipline. In response to these complex problems, groups of scientists with diverse
educational backgrounds were assembled as special units within the armed forces. These
teams of scientists started working together, applying their interdisciplinary knowledge and
training to solve such problems as deployment of radars, anti-aircraft fire control, deploy-
ment of ships to minimize losses from enemy submarines, and strategies for air defense.
Each of the three wings of Britain’s armed forces had such interdisciplinary research teams
working on military management problems. As these teams were generally assigned to the
commanders in charge of military operations, they were called operational research (OR)
teams. The nature of their research came to be known as operational research or operations
research.

The work of these OR teams was very successful and their solutions were effective in
military management. This led to the use of such scientific teams in other Allied nations,
in particular the United States, France, and Canada. At the end of the war, many of the
scientists who worked in the military operational research units returned to civilian life in
universities and industries. They started applying the OR methodology to solve complex
management problems in industries. Petroleum companies were the first to make use of
OR models for solving large-scale production and distribution problems. In the universities
advancements in OR techniques were made that led to the further development and appli-
cations of OR. Much of the postwar development of OR took place in the United States.

An important factor in the rapid growth of operations research was the introduction of
electronic computers in the early 1950s. The computer became an invaluable tool to the
operations researchers, enabling them to solve large problems in the business world.

The Operations Research Society of America (ORSA) was formed in 1952 to serve the
professional needs of these operations research scientists. Due to the application of OR in
industries, a new term called management science (MS) came into being. In 1953, a national
society called The Institute of Management Sciences (TIMS) was formed in the United
States to promote scientific knowledge in the understanding and practice of management.
The journals of these two societies, Operations Research and Management Science, as well
as the joint conferences of their members, helped to draw together the many diverse results
into some semblance of a coherent body of knowledge. In 1995, the two societies, ORSA
and TIMS, merged to form the Institute of Operations Research and Management Sciences
(INFORMS).

xix
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Another factor that accelerated the growth of operations research was the introduction
of OR/MS courses in the curricula of many universities and colleges in the United States.
Graduate programs leading to advanced degrees at the master’s and doctorate levels were
introduced in major American universities. By the mid-1960s many theoretical advances
in OR techniques had been made, which included linear programming, network analysis,
integer programming, nonlinear programming, dynamic programming, inventory theory,
queueing theory, and simulation. Simultaneously, new applications of OR emerged in service
organizations such as banks, health care, communications, libraries, and transportation. In
addition, OR came to be used in local, state, and federal governments in their planning and
policy-making activities.

It is interesting to note that the modern perception of OR as a body of established models
and techniques—that is, a discipline in itself—is quite different from the original concept of
OR as an activity, which was preformed by interdisciplinary teams. An evolution of this kind
is to be expected in any emerging field of scientific inquiry. In the initial formative years,
there are no experts, no traditions, no literature. As problems are successfully solved, the
body of specific knowledge grows to a point where it begins to require specialization even
to know what has been previously accomplished. The pioneering efforts of one generation
become the standard practice of the next. Still, it ought to be remembered that at least a
portion of the record of success of OR can be attributed to its ecumenical nature.

Meaning of Operations Research

From the historical and philosophical summary just presented, it should be apparent that the
term “operations research” has a number of quite distinct variations of meaning. To some,
OR is that certain body of problems, techniques, and solutions that has been accumulated
under the name of OR over the past 50 years and we apply OR when we recognize a prob-
lem of that certain genre. To others, it is an activity or process, which by its very nature is
applied. It would also be counterproductive to attempt to make distinctions between “oper-
ations research” and the “systems approach.” For all practical purposes, they are the same.

How then can we define operations research? The Operational Research Society of Great
Britain has adopted the following definition:

Operational research is the application of the methods of science to com-
plex problems arising in the direction and management of large systems of men,
machines, materials and money in industry, business, government, and defense.
The distinctive approach is to develop a scientific model of the system, incor-
porating measurement of factors such as chance and risk, with which to predict
and compare the outcomes of alternative decisions, strategies or controls. The
purpose is to help management determine its policy and actions scientifically.

The Operations Research Society of America has offered a shorter, but similar,
description:

Operations research is concerned with scientifically deciding how to best design
and operate man–machine systems, usually under conditions requiring the allo-
cation of scarce resources.

In general, most of the definitions of OR emphasize its methodology, namely its unique
approach to problem solving, which may be due to the use of interdisciplinary teams or
due to the application of scientific and mathematical models. In other words, each prob-
lem may be analyzed differently, though the same basic approach of operations research is
employed. As more research went into the development of OR, the researchers were able to
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classify to some extent many of the important management problems that arise in practice.
Examples of such problems are those relating to allocation, inventory, network, queuing,
replacement, scheduling, and so on. The theoretical research in OR concentrated on devel-
oping appropriate mathematical models and techniques for analyzing these problems under
different conditions. Thus, whenever a management problem is identified as belonging to a
particular class, all the models and techniques available for that class can be used to study
that problem. In this context, one could view OR as a collection of mathematical mod-
els and techniques to solve complex management problems. Hence, it is very common to
find OR courses in universities emphasizing different mathematical techniques of operations
research such as mathematical programming, queueing theory, network analysis, dynamic
programming, inventory models, simulation, and so on.

For more on the early activities in operations research, see Refs. 1–5. Readers interested
in the timeline of major contributions in the history of OR/MS are referred to the excellent
review article by Gass [6].
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1.1 Introduction

Project management techniques continue to be a major avenue to accomplishing goals and
objectives in various organizations ranging from government, business, and industry to
academia. The techniques of project management can be divided into three major tracks as
summarized below:

• Qualitative managerial principles
• Computational decision models
• Computer implementation tools.

This chapter focuses on computational network techniques for project management. Net-
work techniques emerged as a formal body of knowledge for project management during
World War II, which ushered in a golden era for operations research and its quantitative
modeling techniques.

1-1
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Badiru (1996) defines project management as the process of managing, allocating, and
timing resources to achieve a given objective expeditiously. The phases of project manage-
ment are:

1. Planning
2. Organizing
3. Scheduling
4. Controlling.

The network techniques covered in this chapter are primarily for the scheduling phase,
although network planning is sometimes included in the project planning phase too. Every-
one in every organization needs project management to accomplish objectives. Consequently,
the need for project management will continue to grow as organizations seek better ways
to satisfy the constraints on the following:

• Schedule constraints (time limitation)
• Cost constraints (budget limitation)
• Performance constraints (quality limitation).

The different tools of project management may change over time. Some tools will come
and go over time. But the basic need of using network analysis to manage projects will always
be high. The network of activities in a project forms the basis for scheduling the project.
The critical path method (CPM) and the program evaluation and review technique (PERT)
are the two most popular techniques for project network analysis. The precedence diagram-
ming method (PDM) has gained popularity in recent years because of the move toward
concurrent engineering. A project network is the graphical representation of the contents
and objectives of the project. The basic project network analysis of CPM and PERT is
typically implemented in three phases (network planning phase, network scheduling phase,
and network control phase), which has the following advantages:

• Advantages for communication
It clarifies project objectives.
It establishes the specifications for project performance.
It provides a starting point for more detailed task analysis.
It presents a documentation of the project plan.
It serves as a visual communication tool.

• Advantages for control
It presents a measure for evaluating project performance.
It helps determine what corrective actions are needed.
It gives a clear message of what is expected.
It encourages team interactions.

• Advantages for team interaction
It offers a mechanism for a quick introduction to the project.
It specifies functional interfaces on the project.
It facilitates ease of application.
It creates synergy between elements of the project.

Network planning is sometimes referred to as activity planning. This involves the identifi-
cation of the relevant activities for the project. The required activities and their precedence
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relationships are determined in the planning phase. Precedence requirements may be deter-
mined on the basis of technological, procedural, or imposed constraints. The activities are
then represented in the form of a network diagram. The two popular models for network
drawing are the activity-on-arrow (AOA) and the activity-on-node (AON) conventions. In
the AOA approach, arrows are used to represent activities, whereas nodes represent starting
and ending points of activities. In the AON approach, nodes represent activities, whereas
arrows represent precedence relationships. Time, cost, and resource requirement estimates
are developed for each activity during the network planning phase. Time estimates may be
based on the following:

1. Historical records
2. Time standards
3. Forecasting
4. Regression functions
5. Experiential estimates.

Network scheduling is performed by using forward pass and backward pass computational
procedures. These computations give the earliest and latest starting and finishing times for
each activity. The slack time or float associated with each activity is determined in the
computations. The activity path with the minimum slack in the network is used to deter-
mine the critical activities. This path also determines the duration of the project. Resource
allocation and time-cost tradeoffs are other functions performed during network scheduling.

Network control involves tracking the progress of a project on the basis of the network
schedule and taking corrective actions when needed; an evaluation of actual performance
versus expected performance determines deficiencies in the project.

1.2 Critical Path Method

Precedence relationships in a CPM network fall into the three major categories listed below:

1. Technical precedence
2. Procedural precedence
3. Imposed precedence

Technical precedence requirements are caused by the technical relationships among activi-
ties in a project. For example, in conventional construction, walls must be erected before the
roof can be installed. Procedural precedence requirements are determined by policies and
procedures. Such policies and procedures are often subjective, with no concrete justification.
Imposed precedence requirements can be classified as resource-imposed, project-imposed,
or environment-imposed. For example, resource shortages may require that one task be
scheduled before another. The current status of a project (e.g., percent completion) may
determine that one activity be performed before another. The environment of a project, for
example, weather changes or the effects of concurrent projects, may determine the prece-
dence relationships of the activities in a project.

The primary goal of a CPM analysis of a project is the determination of the “critical
path.” The critical path determines the minimum completion time for a project. The com-
putational analysis involves forward pass and backward pass procedures. The forward pass
determines the earliest start time and the earliest completion time for each activity in the
network. The backward pass determines the latest start time and the latest completion time
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for each activity. Figure 1.1 shows an example of an activity network using the activity-on-
node convention. Conventionally the network is drawn from left to right. If this convention
is followed, there is no need to use arrows to indicate the directional flow in the activity
network. The notations used for activity A in the network are explained below:

A: Activity identification
ES: Earliest starting time
EC: Earliest completion time
LS: Latest starting time
LC: Latest completion time
t: Activity duration

During the forward pass analysis of the network, it is assumed that each activity will begin
at its earliest starting time. An activity can begin as soon as the last of its predecessors
is finished. The completion of the forward pass determines the earliest completion time of
the project. The backward pass analysis is a reverse of the forward pass. It begins at the
latest project completion time and ends at the latest starting time of the first activity in the
project network. The rules for implementing the forward pass and backward pass analyses
in CPM are presented below. These rules are implemented iteratively until the ES, EC, LS,
and LC have been calculated for all nodes in the network.

Rule 1: Unless otherwise stated, the starting time of a project is set equal to time zero.
That is, the first node in the network diagram has an earliest start time of zero.

Rule 2: The earliest start time (ES) for any activity is equal to the maximum of
the earliest completion times (EC) of the immediate predecessors of the activity.
That is,

ES=Maximum {Immediately Preceding ECs}
Rule 3: The earliest completion time (EC) of an activity is the activity’s earliest start

time plus its estimated duration. That is,

ES=ES+ (Activity Time)

Start

A
t D

B   E G

C   F H

I

Finish

ES         EC

LS         LC

FIGURE 1.1 Example of activity network.
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Rule 4: The earliest completion time of a project is equal to the earliest completion
time of the very last node in the network. That is,

EC of Project=EC of last activity

Rule 5: Unless the latest completion time (LC) of a project is explicitly specified,
it is set equal to the earliest completion time of the project. This is called the
zero-project-slack assumption. That is,

LC of Project=EC of Project

Rule 6: If a desired deadline is specified for the project, then

LC of Project=Specified Deadline

It should be noted that a latest completion time or deadline may sometimes be
specified for a project based on contractual agreements.

Rule 7: The latest completion time (LC) for an activity is the smallest of the latest
start times of the activity’s immediate successors. That is,

LC=Minimum {Immediately Succeeding LS’s}
Rule 8: The latest start time for an activity is the latest completion time minus the

activity time. That is,

LS=LC− (Activity Time)

1.2.1 CPM Example

Table 1.1 presents the data for an illustrative project. This network and its extensions
will be used for other computational examples in this chapter. The AON network for the
example is given in Figure 1.2. Dummy activities are included in the network to designate
single starting and ending points for the project.

TABLE 1.1 Data for Sample Project for CPM Analysis
Activity Predecessor Duration (Days)

A – 2
B – 6
C – 4
D A 3
E C 5
F A 4
G B,D,E 2

Start

A
2

D
3

B
6

E
5

G
2

C
4

F
4

End

FIGURE 1.2 Project network for illustrative example.
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1.2.2 Forward Pass

The forward pass calculations are shown in Figure 1.3. Zero is entered as the ES for the
initial node. As the initial node for the example is a dummy node, its duration is zero. Thus,
EC for the starting node is equal to its ES. The ES values for the immediate successors of
the starting node are set equal to the EC of the START node and the resulting EC values are
computed. Each node is treated as the “start” node for its successor or successors. However,
if an activity has more than one predecessor, the maximum of the ECs of the preceding
activities is used as the activity’s starting time. This happens in the case of activity G,
whose ES is determined as Max {6,5,9}= 9. The earliest project completion time for the
example is 11 days. Note that this is the maximum of the immediately preceding earliest
completion times: Max {6,11}= 11. As the dummy ending node has no duration, its earliest
completion time is set equal to its earliest start time of 11 days.

1.2.3 Backward Pass

The backward pass computations establish the latest start time (LS) and latest completion
time (LC) for each node in the network. The results of the backward pass computations
are shown in Figure 1.4. As no deadline is specified, the latest completion time of the
project is set equal to the earliest completion time. By backtracking and using the network
analysis rules presented earlier, the latest completion and start times are determined for
each node. Note that in the case of activity A with two successors, the latest completion
time is determined as the minimum of the immediately succeeding latest start times. That

Start

A
2

D
3

B
6

E
5

G
2

C
4

F
4

End
0             0 

0             2 2             6

0             6 9               11 

2
5

0     
4  4  

9

11 11

FIGURE 1.3 Forward pass analysis for CPM example.
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0             0 

0             0 

0             2

4            6 

2             6

7    11

0             6

3             9

9            11     11             11 

9            11     11             11 

2

6 5

0     
4            4 

4            4  

9

9    

0 5

FIGURE 1.4 Backward pass analysis for CPM example.
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is, Min{6,7}= 6. A similar situation occurs for the dummy starting node. In that case, the
latest completion time of the dummy start node is Min {0,3,4}= 0. As this dummy node has
no duration, the latest starting time of the project is set equal to the node’s latest completion
time. Thus, the project starts at time 0 and is expected to be completed by time 11.

Within a project network, there are usually several possible paths and a number of activ-
ities that must be performed sequentially and some activities that may be performed con-
currently. If an activity has ES and LS times that are not equal, then the actual start
and completion times of that activity may be flexible. The amount of flexibility an activity
possesses is called a slack. The slack time is used to determine the critical activities in the
network as discussed below.

1.2.4 Determination of Critical Activities

The critical path is defined as the path with the least slack in the network diagram. All the
activities on the critical path are said to be critical activities. These activities can create
bottlenecks in the network if they are delayed. The critical path is also the longest path
in the network diagram. In some networks, particularly large ones, it is possible to have
multiple critical paths. If there is a large number of paths in the network, it may be very
difficult to visually identify all the critical paths.

The slack time of an activity is also referred to as its float. There are four basic types
of activity slack as described below:

• Total Slack (TS). Total slack is defined as the amount of time an activity may
be delayed from its earliest starting time without delaying the latest completion
time of the project. The total slack time of an activity is the difference between
the latest completion time and the earliest completion time of the activity, or the
difference between the latest starting time and the earliest starting time of the
activity.

TS = LC − EC
Or

TS = LS − ES

Total slack is the measure that is used to determine the critical activities in a
project network. The critical activities are identified as those having the minimum
total slack in the network diagram. If there is only one critical path in the network,
then all the critical activities will be on that one path.

• Free Slack (FS). Free slack is the amount of time an activity may be delayed
from its earliest starting time without delaying the starting time of any of its
immediate successors. Activity free slack is calculated as the difference between
the minimum earliest starting time of the activity’s successors and the earliest
completion time of the activity.

FS = Min{Succeeding ES’s} − EC

• Interfering Slack (IS). Interfering slack or interfering float is the amount of time
by which an activity interferes with (or obstructs) its successors when its total
slack is fully used. This is rarely used in practice. The interfering float is computed
as the difference between the total slack and the free slack.

IS = TS − FS
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• Independent Float (IF). Independent float or independent slack is the amount
of float that an activity will always have regardless of the completion times
of its predecessors or the starting times of its successors. Independent float is
computed as:

IF = Max{0,(ESj − LCi − t)}

where ESj is the earliest starting time of the preceding activity, LCi is the latest
completion time of the succeeding activity, and t is the duration of the activity
whose independent float is being calculated. Independent float takes a pessimistic
view of the situation of an activity. It evaluates the situation whereby the activ-
ity is pressured from either side, that is, when its predecessors are delayed as
late as possible while its successors are to be started as early as possible. Inde-
pendent float is useful for conservative planning purposes, but it is not used
much in practice. Despite its low level of use, independent float does have practi-
cal implications for better project management. Activities can be buffered with
independent floats as a way to handle contingencies.

In Figure 1.4 the total slack and the free slack for activity A are calculated, respectively, as:

TS = 6 − 2 = 4 days
FS = Min{2, 2} − 2 = 2 − 2 = 0

Similarly, the total slack and the free slack for activity F are:

TS = 11 − 6 = 5 days
FS = Min{11} − 6 = 11 − 6 = 5 days

Table 1.2 presents a tabulation of the results of the CPM example. The table contains
the earliest and latest times for each activity as well as the total and free slacks. The results
indicate that the minimum total slack in the network is zero. Thus, activities C, E, and
G are identified as the critical activities. The critical path is highlighted in Figure 1.4 and
consists of the following sequence of activities:

Start → C → E → G → End

The total slack for the overall project itself is equal to the total slack observed on the
critical path. The minimum slack in most networks will be zero as the ending LC is set equal
to the ending EC. If a deadline is specified for a project, then we would set the project’s
latest completion time to the specified deadline. In that case, the minimum total slack in
the network would be given by:

TSMin = Project Deadline − EC of the last node

TABLE 1.2 Result of CPM Analysis for Sample Project
Activity Duration ES EC LS LC TS FS Criticality

A 2 0 2 4 6 4 0 –
B 6 0 6 3 9 3 3 –
C 4 0 4 0 4 0 0 Critical
D 3 2 5 6 9 4 4 –
E 5 4 9 4 9 0 0 Critical
F 4 2 6 7 11 5 5 –
G 2 9 11 9 11 0 0 Critical
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FIGURE 1.5 CPM network with deadline.

This minimum total slack will then appear as the total slack for each activity on the
critical path. If a specified deadline is lower than the EC at the finish node, then the project
will start out with a negative slack. That means that it will be behind schedule before it
even starts. It may then become necessary to expedite some activities (i.e., crashing) to
overcome the negative slack. Figure 1.5 shows an example with a specified project deadline.
In this case, the deadline of 18 days comes after the earliest completion time of the last
node in the network.

1.2.5 Using Forward Pass to Determine the Critical Path

The critical path in CPM analysis can be determined from the forward pass only. This
can be helpful in cases where it is desired to quickly identify the critical activities without
performing all the other calculations needed to obtain the latest starting times, the latest
completion times, and total slacks. The steps for determining the critical path from the
forward pass only are:

1. Complete the forward pass in the usual manner.
2. Identify the last node in the network as a critical activity.
3. Work backward from the last node. Whenever a merge node occurs, the criti-

cal path will be along the path where the earliest completion time (EC) of the
predecessor is equal to the earliest start time (ES) of the current node.

4. Continue the backtracking from each critical activity until the project starting
node is reached. Note that if there is a single starting node or a single ending
node in the network, then that node will always be on the critical path.

1.2.6 Subcritical Paths

In a large network, there may be paths that are near critical. Such paths require almost as
much attention as the critical path as they have a high potential of becoming critical when
changes occur in the network. Analysis of subcritical paths may help in the classification
of tasks into ABC categories on the basis of Pareto analysis. Pareto analysis separates
the “vital” few activities from the “trivial” many activities. This permits a more efficient
allocation of resources. The principle of Pareto analysis originated from the work of Italian
economist Vilfredo Pareto (1848–1923). Pareto discovered from his studies that most of the
wealth in his country was held by a few individuals.
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TABLE 1.3 Analysis of Sub-Critical Paths
Path No. Activities on Path Total Slack λ (%) λ′

1 A,C,G,H 0 100 10
2 B,D,E 1 97.56 9.78
3 F,I 5 87.81 8.90
4 J,K,L 9 78.05 8.03
5 O,P,Q,R 10 75.61 7.81
6 M,S,T 25 39.02 4.51
7 N,AA,BB,U 30 26.83 3.42
8 V,W,X 32 21.95 2.98
9 Y,CC,EE 35 17.14 2.54
10 DD,Z,FF 41 0 1.00

For project control purposes, the Pareto principle states that 80% of the bottlenecks are
caused by only 20% of the tasks. This principle is applicable to many management processes.
For example, in cost analysis, one can infer that 80% of the total cost is associated with only
20% of the cost items. Similarly, 20% of an automobile’s parts cause 80% of the maintenance
problems. In personnel management, about 20% of the employees account for about 80% of
the absenteeism. For critical path analysis, 20% of the network activities will take up 80% of
our control efforts. The ABC classification based on Pareto analysis divides items into three
priority categories: A (most important), B (moderately important), and C (least important).
Appropriate percentages (e.g., 20%, 25%, 55%) may be assigned to the categories.

With Pareto analysis, attention can be shifted from focusing only on the critical path
to managing critical and near-critical tasks. The level of criticality of each path may be
assessed by the steps below:

1. Sort paths in increasing order of total slack.
2. Partition the sorted paths into groups based on the magnitudes of their total

slacks.
3. Sort the activities within each group in increasing order of their earliest starting

times.
4. Assign the highest level of criticality to the first group of activities (e.g., 100%).

This first group represents the usual critical path.
5. Calculate the relative criticality indices for the other groups in decreasing order

of criticality.

Define the following variables:
α1 =the minimum total slack in the network
α2 =the maximum total slack in the network
β = total slack for the path whose criticality is to be calculated.

Compute the path’s criticality as:

λ =
α2 − β

α2 − α1
(100%)

The above procedure yields relative criticality levels between 0% and 100%. Table 1.3
presents a hypothetical example of path criticality indices. The criticality level may be
converted to a scale between 1 (least critical) and 10 (most critical) by the expression below:

λ′ = 1 + 0.09λ

1.2.7 Gantt Charts

When the results of a CPM analysis are fitted to a calendar time, the project plan becomes
a schedule. The Gantt chart is one of the most widely used tools for presenting a project
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schedule. A Gantt chart can show planned and actual progress of activities. The time scale
is indicated along the horizontal axis, while horizontal bars or lines representing activities
are ordered along the vertical axis. As a project progresses, markers are made on the activity
bars to indicate actual work accomplished. Gantt charts must be updated periodically to
indicate project status. Figure 1.6 presents the Gantt chart using the earliest starting (ES)
times from Table 1.2. Figure 1.7 presents the Gantt chart for the example based on the
latest starting (LS) times. Critical activities are indicated by the shaded bars.

Figure 1.6 shows the Gantt chart for the example based on earliest starting time. From
the CPM network computations, it is noted that activity F can be delayed from day two
until day seven (i.e., TS= 5) without delaying the overall project. Likewise, A, D, or both
may be delayed by a combined total of 4 days (TS= 4) without delaying the overall project.
If all the 4 days of slack are used up by A, then D cannot be delayed. If A is delayed by 1 day,
then D can only be delayed by up to 3 days without causing a delay of G, which determines
project completion. CPM computations also reveal that activity B may be delayed up to
3 days without affecting the project completion time.

In Figure 1.7, the activities are scheduled by their latest completion times. This represents
a pessimistic case where activity slack times are fully used. No activity in this schedule can
be delayed without delaying the project. In Figure 1.7, only one activity is scheduled over the
first 3 days. This may be compared to the schedule in Figure 1.6, which has three starting
activities. The schedule in Figure 1.7 may be useful if there is a situation that permits
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only a few activities to be scheduled in the early stages of the project. Such situations
may involve shortage of project personnel, lack of initial budget, time for project initiation,
time for personnel training, allowance for learning period, or general resource constraints.
Scheduling of activities based on ES times indicates an optimistic view. Scheduling on the
basis of LS times represents a pessimistic approach.

1.2.8 Gantt Chart Variations

The basic Gantt chart does not show the precedence relationships among activities. The
chart can be modified to show these relationships by coding appropriate bars, as shown by
the cross-hatched bars in Figure 1.8. Other simple legends can be added to show which bars
are related by precedence linking. Figure 1.9 shows a Gantt chart that presents a compar-
ison of planned and actual schedules. Note that two tasks are in progress at the current
time indicated in the figure. One of the ongoing tasks is an unplanned task. Figure 1.10
shows a Gantt chart on which important milestones have been indicated. Figure 1.11 shows
a Gantt chart in which bars represent a combination of related tasks. Tasks may be com-
bined for scheduling purposes or for conveying functional relationships required in a project.
Figure 1.12 presents a Gantt chart of project phases. Each phase is further divided into
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FIGURE 1.8 Coding of bars that are related by precedence linking.
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parts. Figure 1.13 shows a Gantt chart for multiple projects. Multiple project charts are
useful for evaluating resource allocation strategies. Resource loading over multiple projects
may be needed for capital budgeting and cash flow analysis decisions. Figure 1.14 shows
a project slippage chart that is useful for project tracking and control. Other variations of
the basic Gantt chart may be developed for specific needs.
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1.2.9 Activity Crashing and Schedule Compression

Schedule compression refers to reducing the length of a project network. This is often accom-
plished by crashing activities. Crashing, sometimes referred to as expediting, reduces activ-
ity durations, thereby reducing project duration. Crashing is done as a tradeoff between
shorter task duration and higher task cost. It must be determined whether the total cost
savings realized from reducing the project duration is enough to justify the higher costs
associated with reducing individual task durations. If there is a delay penalty associated
with a project, it may be possible to reduce the total project cost even though individual
task costs are increased by crashing. If the cost savings on delay penalty is higher than the
incremental cost of reducing the project duration, then crashing is justified. Under conven-
tional crashing, the more the duration of a project is compressed, the higher the total cost
of the project. The objective is to determine at what point to terminate further crashing in
a network. Normal task duration refers to the time required to perform a task under normal



© 2009 by Taylor & Francis Group, LLC

Project Management 1-15

TABLE 1.4 Normal and Crash Time and Cost Data
Activity Normal Duration Normal Cost Crash Duration Crash Cost Crashing Ratio

A 2 $210 2 $210 0
B 6 400 4 600 100
C 4 500 3 750 250
D 3 540 2 600 60
E 5 750 3 950 100
F 4 275 3 310 35
G 2 100 1 125 25

$2775 $3545
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FIGURE 1.15 Example of fully crashed CPM network.

circumstances. Crash task duration refers to the reduced time required to perform a task
when additional resources are allocated to it.

If each activity is assigned a range of time and cost estimates, then several combinations
of time and cost values will be associated with the overall project. Iterative procedures are
used to determine the best time and cost combination for a project. Time-cost trade-off
analysis may be conducted, for example, to determine the marginal cost of reducing the
duration of the project by one time unit. Table 1.4 presents an extension of the data for
the earlier example to include normal and crash times as well as normal and crash costs for
each activity. The normal duration of the project is 11 days, as seen earlier, and the normal
cost is $2775.

If all the activities are reduced to their respective crash durations, the total crash cost
of the project will be $3545. In that case, the crash time is found by CPM analysis to be
7 days. The CPM network for the fully crashed project is shown in Figure 1.15. Note that
activities C, E, and G remain critical. Sometimes, the crashing of activities may result in a
new critical path. The Gantt chart in Figure 1.16 shows a schedule of the crashed project
using the ES times. In practice, one would not crash all activities in a network. Rather,
some heuristic would be used to determine which activity should be crashed and by how
much. One approach is to crash only the critical activities or those activities with the best
ratios of incremental cost versus time reduction. The last column in Table 1.4 presents the
respective ratios for the activities in our example. The crashing ratios are computed as:

r =
Crash Cost − Normal Cost

Normal Duration − Crash Duration

This method of computing the crashing ratio gives crashing priority to the activity with
the lowest cost slope. It is a commonly used approach in CPM networks.

Activity G offers the lowest cost per unit time reduction of $25. If our approach is to
crash only one activity at a time, we may decide to crash activity G first and evaluate the
increase in project cost versus the reduction in project duration. The process can then be
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TABLE 1.5 Selected Crashing Options for CPM Example
Option No. Activities Crashed Network Duration Time Reduction Incremental Cost Total Cost

1. None 11 – – 2775
2. G 10 1 25 2800
3. G,F 10 0 35 2835
4. G,F,D 10 0 60 2895
5. G,F,D,B 10 0 200 3095
6. G,F,D,B,E 8 2 200 3295
7. G,F,D,B,E,C 7 1 250 3545

repeated for the next best candidate for crashing, which is activity F in this case. After F
has been crashed, activity D can then be crashed.

This approach is repeated iteratively in order of activity preference until no further
reduction in project duration can be achieved or until the total project cost exceeds a
specified limit.

A more comprehensive analysis is to evaluate all possible combinations of the activities
that can be crashed. However, such a complete enumeration would be prohibitive, as there
would be a total of 2c crashed networks to evaluate, where c is the number of activities that
can be crashed out of the n activities in the network (c<= n). For our example, only 6 out
of the 7 activities in the sample network can be crashed. Thus, a complete enumeration will
involve 26 =64 alternate networks. Table 1.5 shows 7 of the 64 crashing options. Activity
G, which offers the best crashing ratio, reduces the project duration by only 1 day. Even
though activities F, D, and B are crashed by a total of 4 days at an incremental cost of $295,
they do not generate any reduction in project duration. Activity E is crashed by 2 days
and it generates a reduction of 2 days in project duration. Activity C, which is crashed by
1 day, generates a further reduction of 1 day in the project duration. It should be noted that
the activities that generate reductions in project duration are the ones that were identified
earlier as the critical activities.

Figure 1.17 shows the crashed project duration versus the crashing options, while Fig-
ure 1.18 shows a plot of the total project cost after crashing versus the selected crash-
ing options. As more activities are crashed, the project duration decreases while the total
project cost increases. If full enumeration were performed, Figure 1.17 would contain addi-
tional points between the minimum possible project duration of 7 days (fully crashed) and
the normal project duration of 11 days (no crashing). Similarly, the plot for total project
cost (Figure 1.18) would contain additional points between the normal cost of $2775 and
the crash cost of $3545.
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FIGURE 1.18 Project cost as a function of crashing options.

Several other approaches exist for determining which activities to crash in a project
network. Two alternate approaches are presented below for computing the crashing ratio, r.

Let r = Criticality Index

or

Let r =
Crash Cost − Normal Cost

(Normal Duration − Crash Duration)(Criticality Index)
.

The first approach uses a critical index criterion, giving crashing priority to the activity
with the highest probability of being on the critical path. In deterministic networks, this
refers to the critical activities. In stochastic networks, an activity is expected to fall on the
critical path only a percentage of the time. The second approach is a combination of the
approach used for the illustrative example and the criticality index approach. It reflects
the process of selecting the least-cost expected value. The denominator of the expression
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represents the expected number of days by which the critical path can be shortened. For
different project networks, different crashing approaches should be considered, and the one
that best fits the nature of the network should be selected.

1.3 PERT Network Analysis

Program evaluation review technique (PERT) is an extension of CPM that incorporates
variability in activity durations into project network analysis. PERT has been used exten-
sively and successfully in practice. In real life, activities are often prone to uncertainties that
determine the actual durations of the activities. In CPM, activity durations are assumed to
be deterministic. In PERT, the potential uncertainties in activity durations are accounted
for by using three time estimates for each activity. The three time estimates represent the
spread of the estimated activity duration. The greater the uncertainty of an activity the
wider the range of the estimates.

1.3.1 PERT Estimates and Formulas

PERT uses three time estimates (optimistic, most likely, and pessimistic) to compute the
expected duration and variance for each activity. The PERT formulas are based on a sim-
plification of the expressions for the mean and variance of a beta distribution. The approx-
imation formula for the mean is a simple weighted average of the three time estimates,
with the end points assumed to be equally likely and the mode four times as likely. The
approximation formula for PERT is based on the recognition that most of the observations
from a distribution will lie within plus or minus three standard deviations, or a spread of
six standard deviations. This leads to the simple method of setting the PERT formula for
standard deviation equal to one-sixth of the estimated duration range. While there is no
theoretical validation for these approximation approaches, the PERT formulas do facilitate
ease of use. The formulas are presented below:

te =
a + 4m + b

6

s =
(b − a)

6
where
a = optimistic time estimate
m = most likely time estimate
b =pessimistic time estimate a<m<b
te =expected time for the activity
s2 =variance of the duration of the activity

After obtaining the estimate of the duration for each activity, the network analysis is
carried out in the same manner previously illustrated for the CPM approach. The major
steps in PERT analysis are summarized below:

1. Obtain three time estimates a,m, and b for each activity.
2. Compute the expected duration for each activity by using the formula for te.
3. Compute the variance of the duration of each activity from the formula for s2.
4. Compute the expected project duration, Te. As in the case of CPM, the duration

of a project in PERT analysis is the sum of the durations of the activities on the
critical path.
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5. Compute the variance of the project duration as the sum of the variances of the
activities on the critical path. The variance of the project duration is denoted by
S2. It should be recalled that CPM cannot compute the variance of the project
duration, as variances of activity durations are not computed.

6. If there are two or more critical paths in the network, choose the one with the
largest variance to determine the project duration and the variance of the project
duration. Thus, PERT is pessimistic with respect to the variance of project dura-
tion when there are multiple critical paths in the network. For some networks,
it may be necessary to perform a mean-variance analysis to determine the rela-
tive importance of the multiple paths by plotting the expected project duration
versus the path duration variance.

7. If desired, compute the probability of completing the project within a specified
time period. This is not possible under CPM.

1.3.2 Modeling of Activity Times

In practice, a question often arises as to how to obtain good estimates of a, m, and b. Several
approaches can be used to obtain the time estimates for PERT. Some of the approaches are:

• Estimates furnished by an experienced person
• Estimates extracted from standard time data
• Estimates obtained from historical data
• Estimates obtained from simple regression or forecasting
• Estimates generated by simulation
• Estimates derived from heuristic assumptions
• Estimates dictated by customer requirements.

The pitfall of using estimates furnished by an individual is that they may be inconsistent,
as they are limited by the experience and personal bias of the person providing them.
Individuals responsible for furnishing time estimates are usually not experts in estimation,
and they generally have difficulty in providing accurate PERT time estimates. There is often
a tendency to select values of a,m, and b that are optimistically skewed. This is because a
conservatively large value is typically assigned to b by inexperienced individuals.

The use of time standards, on the other hand, may not reflect the changes occurring in the
current operating environment due to new technology, work simplification, new personnel,
and so on. The use of historical data and forecasting is very popular because estimates
can be verified and validated by actual records. In the case of regression and forecasting,
there is the danger of extrapolation beyond the data range used for fitting the regression
and forecasting models. If the sample size in a historical data set is sufficient and the data
can be assumed to reasonably represent prevailing operating conditions, the three PERT
estimates can be computed as follows:

â = t − kR

m̂ = t

b̂ = t + kR

where
R = range of the sample data
t = arithmetic average of the sample data
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k = 3/d2

d2 =an adjustment factor for estimating the standard deviation of a population

If kR > t, then set a= 0 and b= 2t. The factor d2 is widely tabulated in the quality con-
trol literature as a function of the number of sample points, n. Selected values of d2 are
presented below.

n 5 10 15 20 25 30 40 50 75 100

d2 2.326 3.078 3.472 3.735 3.931 4.086 4.322 4.498 4.806 5.015

As mentioned earlier, activity times can be determined from historical data. The pro-
cedure involves three steps:

1. Appropriate organization of the historical data into histograms.
2. Determination of a distribution that reasonably fits the shape of the histogram.
3. Testing of the goodness-of-fit of the hypothesized distribution by using an appro-

priate statistical model. The chi-square test and the Kolmogrov-Smirnov (K-S)
test are two popular methods for testing goodness-of-fit. Most statistical texts
present the details of how to carry out goodness-of-fit tests.

1.3.3 Beta Distribution

PERT analysis assumes that the probabilistic properties of activity duration can be modeled
by the beta probability density function. The beta distribution is defined by two end points
and two shape parameters. The beta distribution was chosen by the original developers of
PERT as a reasonable distribution to model activity times because it has finite end points
and can assume a variety of shapes based on different shape parameters. While the true
distribution of activity time will rarely ever be known, the beta distribution serves as an
acceptable model. Figure 1.19 shows examples of alternate shapes of the standard beta
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FIGURE 1.19 Alternate shapes of the beta distribution.
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distribution between zero and one. The uniform distribution between 0 and 1 is a special
case of the beta distribution with both shape parameters equal to one.

The standard beta distribution is defined over the interval 0 to 1, while the general beta
distribution is defined over any interval a to b. The general beta probability density func-
tion is given by:

f(t) =
Γ(α + β)
Γ(α)Γ(β)

· 1
(b − a)α+β−1

· (t − a)α−1(b − t)β−1

for a ≤ t ≤ b and α > 0, β > 0

where
a= lower end point of the distribution
b= upper end point of the distribution
α and β are the shape parameters for the distribution.

The mean, variance, and mode of the general beta distribution are defined as:

μ = a + (b − a)
α

α + β

σ2 = (b − a)2
αβ

(α + β + 1)(α + β)2

m =
a(β − 1) + b(α − 1)

α + β − 2

The general beta distribution can be transformed into a standardized distribution by
changing its domain from [a, b] to the unit interval [0, 1]. This is accomplished by using the
relationship ts = a+ (b− a)ts, where ts is the standard beta random variable between 0 and
1. This yields the standardized beta distribution, given by:

f(t) =
Γ(α + β)
Γ(α)Γ(β)

tα−1(1 − t)β−1; 0 < t < 1; α, β > 0

= 0; elsewhere

with mean, variance, and mode defined as:

μ =
α

α + β

σ2 =
αβ

(α + β + 1)(α + β)2

m =
a(β − 1) + b(α − 1)

α + β − 2

1.3.4 Triangular Distribution

The triangular probability density function has been used as an alternative to the beta distri-
bution for modeling activity times. The triangular density has three essential parameters: a
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FIGURE 1.20 Triangular probability density function.

minimum value (a), a mode (m) and a maximum (b). It is defined mathematically as:

f(t) =
2(t − a)

(m − a)(b − a)
; a ≤ t ≤ m

=
2(b − t)

(b − m)(b − a)
; m ≤ t ≤ b

with mean and variance defined, respectively, as:

μ =
a + m + b

3

σ2 =
a(a − m) + b(b − a) + m(m − b)

18
Figure 1.20 presents a graphical representation of the triangular density function. The

three time estimates of PERT can be inserted into the expression for the mean of the
triangular distribution to obtain an estimate of the expected activity duration. Note that
in the conventional PERT formula, the mode (m) is assumed to carry four times as much
weight as either a or b when calculating the expected activity duration. By contrast, under
the triangular distribution, the three time estimates are assumed to carry equal weights.

1.3.5 Uniform Distribution

For cases where only two time estimates instead of three are to be used for network analysis,
the uniform density function may be assumed for activity times. This is acceptable for
situations where extreme limits of an activity duration can be estimated and it can be
assumed that the intermediate values are equally likely to occur. The uniform distribution
is defined mathematically as:

f(t) =
1

b − a
; a ≤ t ≤ b

= 0; otherwise

with mean and variance defined, respectively, as:

μ =
a + b

2

σ2 =
(b − a)2

12
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Figure 1.21 presents a graphical representation of the uniform distribution, for which the
expected activity duration is computed as the average of the upper and lower limits of the
distribution. The appeal of using only two time estimates a and b is that the estimation
error due to subjectivity can be reduced and the estimation task simplified.

Other distributions that have been explored for activity time modeling include the nor-
mal distribution, lognormal distribution, truncated exponential distribution, and Weibull
distribution. Once the expected activity durations have been computed, the analysis of the
activity network is carried out just as in the case of single-estimate CPM network analysis.

1.4 Statistical Analysis of Project Duration

Regardless of the distribution assumed for activity durations, the central limit theorem
suggests that the distribution of the project duration will be approximately normally dis-
tributed. The theorem states that the distribution of averages obtained from any probability
density function will be approximately normally distributed if the sample size is large and
the averages are independent. In mathematical terms, the theorem is stated as follows.

1.4.1 Central Limit Theorem

Let X1, X2, . . .,XN be independent and identically distributed random variables. Then the
sum of the random variables is normally distributed for large values of N . The sum is defined
as:

T = X1 + X2 + · · · + XN

In activity network analysis, T represents the total project length as determined by the
sum of the durations of the activities of the critical path. The mean and variance of T are
expressed as:

μ =
N∑

i=1

E[Xi]

σ2 =
N∑

i=1

V [Xi]

where
E[Xi] = expected value of random variable Xi

V[Xi] = variance of random variable Xi.
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When applying the central limit theorem to activity networks, one should note that the
assumption of independent activity times may not always be satisfied. Because of precedence
relationships and other interdependencies of activities, some activity durations may not be
independent.

1.4.2 Probability Calculation

If the project duration Te can be assumed to be approximately normally distributed based
on the central limit theorem, then the probability of meeting a specified deadline Td can be
computed by finding the area under the standard normal curve to the left of Td. Figure 1.22
shows an example of a normal distribution describing the project duration.

Using the familiar transformation formula below, a relationship between the standard
normal random variable z and the project duration variable can be obtained:

z =
Td − Te

S

where
Td = specified deadline
Te =expected project duration based on network analysis
S =standard deviation of the project duration.

The probability of completing a project by the deadline Td is then computed as:

P (T ≤ Td) = P

(
z ≤ Td − Te

S

)

The probability is obtained from the standard normal table. Examples presented below
illustrate the procedure for probability calculations in PERT.

1.4.3 PERT Network Example

Suppose we have the project data presented in Table 1.6. The expected activity durations
and variances as calculated by the PERT formulas are shown in the last two columns of
the table. Figure 1.23 shows the PERT network. Activities C, E, and G are shown to be
critical, and the project completion time is 11 time units.
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TABLE 1.6 Data for PERT Network Example
Activity Predecessors a m b te s2

A – 1 2 4 2.17 0.2500
B – 5 6 7 6.00 0.1111
C – 2 4 5 3.83 0.2500
D A 1 3 4 2.83 0.2500
E C 4 5 7 5.17 0.2500
F A 3 4 5 4.00 0.1111
G B,D,E 1 2 3 2.00 0.1111
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FIGURE 1.23 PERT network example.

The probability of completing the project on or before a deadline of 10 time units
(i.e., Td = 10) is calculated as shown below:

Te = 11

S2 = V[C] + V[E] + V[G]

= 0.25 + 0.25 + 0.1111

= 0.6111

S =
√

0.6111

= 0.7817

P (T ≤ Td) = P (T ≤ 10)

= P

(
z ≤ 10 − Te

S

)

= P

(
z ≤ 10 − 11

0.7817

)

= P (z ≤ −1.2793)

= 1 − P (z ≤ 1.2793)

= 1 − 0.8997

= 0.1003
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Thus, there is just over 10% probability of finishing the project within 10 days. By contrast,
the probability of finishing the project in 13 days is calculated as:

P (T ≤ 13) = P

(
z ≤ 13 − 11

0.7817

)

= P (z ≤ 2.5585)

= 0.9948

This implies that there is over 99% probability of finishing the project within 13 days.
Note that the probability of finishing the project in exactly 13 days will be zero. That
is, P (T = Td)= 0. If we desire the probability that the project can be completed within a
certain lower limit (TL) and a certain upper limit (TU), the computation will proceed as
follows: Let TL = 9 and TU = 11.5. Then,

P (TL ≤ T ≤ TU) = P (9 ≤ T ≤ 11.5)

= P (T ≤ 11.5) − P (T ≤ 9)

= P

(
z ≤ 11.5 − 11

0.7817

)
− P

(
z ≤ 9 − 11

0.7817

)

= P (z ≤ 0.6396) − P (z ≤ −2.5585)

= P (z ≤ 0.6396) − [1 − P (z ≤ 2.5585)]

= 0.7389 − [1 − 0.9948]

= 0.7389 − 0.0052

= 0.7337

That is, there is 73.4% chance of finishing the project within the specified range of duration.

1.5 Precedence Diagramming Method

The precedence diagramming method (PDM) was developed in the early 1960s as an exten-
sion of PERT/CPM network analysis. PDM permits mutually dependent activities to be
performed partially in parallel instead of serially. The usual finish-to-start dependencies
between activities are relaxed to allow activities to overlap. This facilitates schedule com-
pression. An example is the requirement that concrete should be allowed to dry for a number
of days before drilling holes for handrails. That is, drilling cannot start until so many days
after the completion of concrete work. This is a finish-to-start constraint. The time between
the finishing time of the first activity and the starting time of the second activity is called
the lead–lag requirement between the two activities. Figure 1.24 shows the basic lead–lag
relationships between activity A and activity B. The terminology presented in Figure 1.24
is explained as follows.

SSAB (Start-to-Start) lead: Activity B cannot start until activity A has been in
progress for at least SS time units.

FFAB (Finish-to-Finish) lead: Activity B cannot finish until at least FF time units
after the completion of activity A.
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FIGURE 1.24 Lead–lag relationships in PDM.

FSAB (Finish-to-Start) lead: Activity B cannot start until at least FS time units
after the completion of activity A. Note that PERT/CPM approaches use
FSAB = 0 for network analysis.

SFAB (Start-to-Finish) lead: This specifies that there must be at least SF time
units between the start of activity A and the completion of activity B.

The leads or lags may, alternately, be expressed in percentages rather than time units.
For example, we may specify that 25% of the work content of activity A must be completed
before activity B can start. If the percentage of work completed is used for determining
lead–lag constraints, then a reliable procedure must be used for estimating the percent com-
pletion. If the project work is broken up properly using work breakdown structure (WBS),
it will be much easier to estimate percent completion by evaluating the work completed
at the elementary task level. The lead–lag relationships may also be specified in terms of
at most relationships instead of at least relationships. For example, we may have at most
FF lag requirement between the finishing time of one activity and the finishing time of
another activity. Splitting of activities often simplifies the implementation of PDM, as will
be shown later with some examples. Some of the factors that will determine whether or
not an activity can be split are technical limitations affecting splitting of a task, morale of
the person working on the split task, set-up times required to restart split tasks, difficulty
involved in managing resources for split tasks, loss of consistency of work, and management
policy about splitting jobs.

Figure 1.25 presents a simple CPM network consisting of three activities. The activities
are to be performed serially and each has an expected duration of 10 days. The conventional
CPM network analysis indicates that the duration of the network is 30 days. The earliest
times and the latest times are as shown in the figure.

The Gantt chart for the example is shown in Figure 1.26. For a comparison, Figure 1.27
shows the same network but with some lead–lag constraints. For example, there is an SS
constraint of 2 days and an FF constraint of 2 days between activities A and B. Thus,
activity B can start as early as 2 days after activity A starts, but it cannot finish until
2 days after the completion of A. In other words, at least 2 days must separate the finishing
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FIGURE 1.25 Serial activities in CPM network.
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FIGURE 1.26 Gantt chart of serial activities in CPM example.
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FIGURE 1.27 PDM network example.

time of A and the finishing time of B. A similar precedence relationship exists between
activity B and activity C. The earliest and latest times obtained by considering the lag
constraints are indicated in Figure 1.27.

The calculations show that if B is started just 2 days after A is started, it can be completed
as early as 12 days as opposed to the 20 days obtained in the case of conventional CPM.
Similarly, activity C is completed at time 14, which is considerably less than the 30 days
calculated by conventional CPM. The lead–lag constraints allow us to compress or overlap
activities. Depending on the nature of the tasks involved, an activity does not have to
wait until its predecessor finishes before it can start. Figure 1.28 shows the Gantt chart
for the example incorporating the lead–lag constraints. It should be noted that a portion
of a succeeding activity can be performed simultaneously with a portion of the preceding
activity.

A portion of an activity that overlaps with a portion of another activity may be viewed
as a distinct portion of the required work. Thus, partial completion of an activity may be
evaluated. Figure 1.29 shows how each of the three activities is partitioned into contiguous
parts. Even though there is no physical break or termination of work in any activity, the
distinct parts (beginning and ending) can still be identified. This means that there is no
physical splitting of the work content of any activity. The distinct parts are determined on
the basis of the amount of work that must be completed before or after another activity, as
dictated by the lead–lag relationships. In Figure 1.29, activity A is partitioned into parts
A1 and A2. The duration of A1 is 2 days because there is an SS= 2 relationship between
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FIGURE 1.28 Gantt chart for PDM example.
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FIGURE 1.29 Partitioning of activities in PDM example.

activity A and activity B. As the original duration of A is 10 days, the duration of A2 is
then calculated to be 10− 2 = 8 days.

Likewise, activity B is partitioned into parts B1, B2, and B3. The duration of B1 is 2 days
because there is an SS= 2 relationship between activity B and activity C. The duration
of B3 is also 2 days because there is an FF =2 relationship between activity A and activ-
ity B. As the original duration of B is 10 days, the duration of B2 is calculated to be
10− (2+ 2)= 6 days. In a similar fashion, activity c is partitioned into C1 and C2. The
duration of C2 is 2 days because there is an FF =2 relationship between activity B and
activity C. As the original duration of C is 10 days, the duration of C1 is then calculated
to be 10− 2= 8 days. Figure 1.30 shows a conventional CPM network drawn for the three
activities after they are partitioned into distinct parts. The conventional forward and back-
ward passes reveal that all the activity parts are performed serially and no physical splitting
of activities has been performed. Note that there are three critical paths in Figure 1.30, each
with a length of 14 days. It should also be noted that the distinct parts of each activity are
performed contiguously.

Figure 1.31 shows an alternate example of three serial activities. The conventional CPM
analysis shows that the duration of the network is 30 days. When lead–lag constraints are
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FIGURE 1.30 CPM network of partitioned activities.
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FIGURE 1.31 Another CPM example of serial activities.
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FIGURE 1.32 Compressed PDM network.

introduced into the network as shown in Figure 1.32, the network duration is compressed
to 18 days.

In the forward pass computations in Figure 1.32, note that the earliest completion time
of B is time 11, because there is an FF = 1 restriction between activity A and activity B.
As A finishes at time 10, B cannot finish until at least time 11. Even though the earliest
starting time of B is time 2 and its duration is 5 days, its earliest completion time cannot
be earlier than time 11. Also note that C can start as early as time 3 because there is
an SS= 1 relationship between B and C. Thus, given a duration of 15 days for C, the
earliest completion time of the network is 3+ 15= 18 days. The difference between the
earliest completion time of C and the earliest completion time of B is 18− 11= 7 days,
which satisfies the FF =3 relationship between B and C.

In the backward pass, the latest completion time of B is 15 (i.e., 18− 3= 15), as there is
an FF =3 relationship between activity B and activity C. The latest start time for B is time
2 (i.e., 3− 1= 2), as there is an SS= 1 relationship between activity B and activity C. If we
are not careful, we may erroneously set the latest start time of B to 10 (i.e., 15− 5= 10).
But that would violate the SS=1 restriction between B and C. The latest completion time
of A is found to be 14 (i.e., 15− 1= 14), as there is an FF =1 relationship between A
and B. All the earliest times and latest times at each node must be evaluated to ensure
that they conform to all the lead–lag constraints. When computing earliest start or earliest
completion times, the smallest possible value that satisfies the lead–lag constraints should
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FIGURE 1.33 CPM expansion of second PDM example.
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FIGURE 1.34 Compressed PDM schedule based on ES times.

be used. By the same reasoning, when computing the latest start or latest completion times,
the largest possible value that satisfies the lead–lag constraints should be used.

Manual evaluations of the lead–lag precedence network analysis can become very tedious
for large networks. A computer tool may be needed to implement PDM. If manual analysis
must be done for PDM computations, it is suggested that the network be partitioned into
more manageable segments. The segments may then be linked after the computations are
completed. The expanded CPM network in Figure 1.33 was developed on the basis of the
precedence network in Figure 1.32. It is seen that activity A is partitioned into two parts,
activity B is partitioned into three parts, and activity C is partitioned into two parts. The
forward and backward passes show that only the first parts of activities A and B are on the
critical path, whereas both parts of activity C are on the critical path.

Figure 1.34 shows the corresponding earliest-start Gantt chart for the expanded network.
Looking at the earliest start times, one can see that activity B is physically split at the
boundary of B2 and B3 in such a way that B3 is separated from B2 by 4 days. This implies
that work on activity B is temporarily stopped at time 6 after B2 is finished and is not
started again until time 10. Note that despite the 4-day delay in starting B3, the entire
project is not delayed. This is because B3, the last part of activity B, is not on the critical
path. In fact, B3 has a total slack of 4 days. In a situation like this, the duration of activity
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FIGURE 1.35 Compressed PDM schedule based on LS times.

B can actually be increased from 5 days to 9 days without any adverse effect on the project
duration. It should be recognized, however, that increasing the duration of an activity may
have negative implications for project cost, personnel productivity, and morale.

If physical splitting of activities is not permitted, then the best option available in
Figure 1.34 is to stretch the duration of B3 so as to fill up the gap from time 6 to time 10.
An alternative is to delay the starting time of B1 until time 4 so as to use up the 4-day
slack right at the beginning of activity B. Unfortunately, delaying the starting time of B1

by 4 days will delay the overall project by 4 days, as B1 is on the critical path as shown
in Figure 1.33. The project analyst will need to evaluate the appropriate tradeoffs between
splitting of activities, delaying activities, increasing activity durations, and incurring higher
project costs. The prevailing project scenario should be considered when making such trade-
off decisions. Figure 1.35 shows the Gantt chart for the compressed PDM schedule based
on latest start times. In this case, it will be necessary to split both activities A and B even
though the total project duration remains the same at 18 days. If activity splitting is to
be avoided, then we can increase the duration of activity A from 10 to 14 days and the
duration of B from 5 to 13 days without adversely affecting the entire project duration.
The benefit of precedence diagramming is that the ability to overlap activities facilitates
flexibility in manipulating individual activity times and reducing project duration.

1.5.1 Reverse Criticality in PDM Networks

Care must be exercised when working with PDM networks because of the potential for
misuse or misinterpretation. Because of the lead and lag requirements, activities that do
not have any slacks may appear to have generous slacks. Also, “reverse critical” activities
may occur in PDM. Reverse critical activities are activities that can cause a decrease in
project duration when their durations are increased. This may happen when the critical
path enters the completion of an activity through a finish lead–lag constraint. Also, if a
“finish-to-finish” dependency and a “start-to-start” dependency are connected to a reverse
critical task, a reduction in the duration of the task may actually lead to an increase in
the project duration. Figure 1.36 illustrates this anomalous situation. The finish-to-finish
constraint between A and B requires that B should finish no earlier than 20 days. If the
duration of task B is reduced from 10 days to 5 days, the start-to-start constraint between
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FIGURE 1.36 Reverse critical activity in PDM network.

B and C forces the starting time of C to be shifted forward by 5 days, thereby resulting in
a 5-day increase in the project duration.

The preceding anomalies can occur without being noticed in large PDM networks. One
safeguard against their adverse effects is to make only one activity change at a time and
document the resulting effect on the network structure and duration. The following catego-
rizations are used for the unusual characteristics of activities in PDM networks.

Normal Critical (NC): This refers to an activity for which the project duration
shifts in the same direction as the shift in the duration of the activity.

Reverse Critical (RC): This refers to an activity for which the project duration
shifts in the reverse direction to the shift in the duration of the activity.

Bi-Critical (BC): This refers to an activity for which the project duration increases
as a result of any shift in the duration of the activity.

Start Critical (SC): This refers to an activity for which the project duration shifts
in the direction of the shift in the start time of the activity, but is unaffected
(neutral) by a shift in the overall duration of the activity.

Finish Critical (FC): This refers to an activity for which the project duration shifts
in the direction of the shift in the finish time of the activity, but is unaffected
(neutral) by a shift in the overall duration of the activity.

Mid Normal Critical (MNC): This refers to an activity whose mid-portion is nor-
mal critical.

Mid Reverse Critical (MRC): This refers to an activity whose mid-portion is
reverse critical.

Mid Bi-Critical (MBC): This refers to an activity whose mid-portion is bi-critical.
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A computer-based decision support system can facilitate the integration and consistent
usage of all the relevant information in a complex scheduling environment. Task precedence
relaxation assessment and resource-constrained heuristic scheduling constitute an example
of a problem suitable for computer implementation. Examples of pseudocoded heuristic
rules for computer implementation are shown below:

IF: Logistical conditions are satisfied
THEN: Perform the selected scheduling action

IF: condition A is satisfied and
condition B is false and
evidence C is present or
observation D is available

THEN: precedence belongs in class X

IF: precedence belongs to class X
THEN: activate heuristic scheduling procedure Y

The function of the computer model will be to aid a decision maker in developing a task
sequence that fits the needs of concurrent scheduling. Based on user input, the model will
determine the type of task precedence, establish precedence relaxation strategy, implement
task scheduling heuristic, match the schedule to resource availability, and present a rec-
ommended task sequence to the user. The user can perform “what-if” analysis by making
changes in the input data and conducting sensitivity analysis. The computer implementation
can be achieved in an interactive environment as shown in Figure 1.37. The user will pro-
vide task definitions and resource availabilities with appropriate precedence requirements.
At each stage, the user is prompted to consider potential points for precedence relaxation.
Wherever schedule options exist, they will be presented to the user for consideration and
approval. The user will have the opportunity to make final decisions about task sequence.

1.6 Software Tools for Project Management

There are numerous commercial software packages available for project management.
Because of the dynamic changes in software choices on the market, it will not be effec-
tive to include a survey of the available software in an archival publication of this nature.
Any such review may be outdated before the book is even published. To get the latest on
commercial software capabilities and choices, it will be necessary to consult one of the fre-
quently published trade magazines that carry software reviews. Examples of such magazines
are PC Week, PC World, and Software. Other professional publications also carry project
management software review occasionally. Examples of such publications are Industrial
Engineering Magazine, OR/MS Today Magazine, Manufacturing Engineering Magazine,
PM Network Magazine, and so on. Practitioners can easily get the most current software
information through the Internet. Prospective buyers are often overwhelmed by the range
of products available. However, there are important factors to consider when selecting a
software package. Some of the factors are presented in this section.

The proliferation of project management software has created an atmosphere whereby
every project analyst wants to have and use a software package for every project situation.
However, not every project situation deserves the use of project management software.
An analyst should first determine whether or not the use of software is justified. If this
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FIGURE 1.37 Decision support model for PDM.

evaluation is affirmative, then the analyst will need to determine which specific package
out of the many that are available should be used. Some of the important factors that may
indicate the need for project management software are:

1. Multiple projects are to be managed concurrently.
2. A typical project contains more than 20 tasks.
3. The project scheduling environment is very complex.
4. More than five resource types are involved in each project.
5. There is a need to perform complementing numerical analysis to support project

control functions.
6. The generation of graphics (e.g., Gantt, PERT charts) are needed to facilitate

project communication.
7. Cost analysis is to be performed on a frequent basis.
8. It is necessary to generate forecasts from historical project data.
9. Automated reporting is important to the organization.

10. Computerization is one of the goals of the organization.
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A close examination of a project will reveal whether it fits the criteria for using project
management software. Only very small and narrowly focused projects will not need the help
of software for effective management. Some of the important factors for software selection
are summarized below:

1. Cost
2. Need
3. Complexity of project scope and plan
4. Diversity of resource types
5. Frequency of progress tracking
6. Need for versatile report generation
7. Ease of use and learning curve requirement
8. Supporting analytical tools (e.g., optimization add-on, economic analysis)
9. Hardware requirements

10. General characteristics (e.g., software version, vendor accessibility, technical support).

Some of the above factors may be more important than others in specific project situ-
ations. A careful overall analysis should be done by the project analyst. With more and
more new programs and updates appearing in the market, a crucial aspect of the project
management function is keeping up with what is available and making a good judgment in
selecting a software tool.

The project management software market continues to be very competitive. Many pack-
ages that were originally developed for specific and narrow applications, such as data anal-
ysis and conventional decision support, now offer project management capabilities. For
example, SAS/OR, a statistical analysis software package that is popular on large comput-
ers, has a PC-based version that handles project management. Similarly, AutoCAD, the
popular computer-aided design software, now has a project management option within it.
The option, called AutoProject, has very good graphics and integrated drafting capabilities.

Some of the most popular project management software packages include InstaPlan 5000,
Artemis Project, Microsoft Project for Windows, Plantrac II, Advanced Project Work-
bench, Qwiknet Professional, Super Project Plus, Time Line, Project Scheduler, Primav-
era, Texim, ViewPoint, PROMIS, Topdown Project Planner, Harvard Project Manager,
PCS (Project Control System), PAC III, VISION, Control Project, SAS/OR, Autoproject,
Visual Planner, Project/2, Timesheet, Task Monitor, Quick Schedule Plus, Suretrak Project
Scheduler, Supertime, On Target, Great Gantt, Pro Tracs, Autoplan, AMS Time Machine,
Mac-Project II, Micro Trak, Checkpoint, Maestro II, Cascade, OpenPlan, Vue, and Cosmos.
So prolific are the software offerings that the developers are running out of innovative pro-
ductive names. At this moment, new products are being introduced while some are being
phased out. Prospective buyers of project management software should consult vendors for
the latest products. No blanket software recommendation can be offered in this chapter as
product profiles change quickly and frequently.

1.6.1 Computer Simulation Software

Special purpose software tools have found a place in project management. Some of these
tools are simulation packages, statistical analysis packages, optimization programs, report
writers, and others. Computer simulation is a versatile tool that has a potential for enhanc-
ing project planning and control analysis. Computer simulation is a tool that can be effec-
tively utilized to enhance project planning, scheduling, and control. At any given time, only
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a small segment of a project network will be available for direct observation and analysis.
The major portion of the project either will have been in the past or will be expected in
the future. Such unobservable portions of the project can be studied by simulation.

Using the historical information from previous segments of a project and the prevailing
events in the project environment, projections can be made about future expectations of the
project. Outputs of simulation can alert management to real and potential problems. The
information provided by simulation can be very helpful in projecting selection decisions.
Simulation-based project analysis may involve the following components:

• Activity time modeling
• Simulation of project schedule
• What-if analysis and statistical modeling
• Management decisions and sensitivity analysis.

1.7 Conclusion

This chapter has presented the basic techniques of activity network analysis for project
management. In business and industry, project management is rapidly becoming one of
the major tools used to accomplish goals. Engineers, managers, and OR professionals are
increasingly required to participate on teams in complex projects. The technique of network
analysis is frequently utilized as a part of the quantitative assessment of such projects. The
computational approaches contained in this chapter can aid project analysts in developing
effective project schedules and determining the best way to exercise project control whenever
needed.
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2.1 Introduction

Quality has been defined in different ways by various experts and the operational defini-
tion has even changed over time. The best way is to start from the beginning and look
at the origin and meaning of the word. Quality, in Latin qualitas, comes from the word
qualis, meaning “how constituted” and signifying “such as a thing really is.” The Merriam-
Webster dictionary defines quality as “. . . peculiar and essential character . . . a distinguish-
ing attribute. . . .” Thus, a product has several or infinite qualities. Juran and Gryna [1]
looked at multiple elements of fitness of use based on various quality characteristics (or
qualities), such as technological characteristics (strength, dimensions, current, weight, ph
values), psychological characteristics (beauty, taste, and many other sensory characteristics),
time-oriented characteristics (reliability, availability, maintainability, safety, and security),
cost (purchase price, life cycle cost), and product development cycle. Deming also discussed
several faces of quality; the three corners of quality relate to various quality characteristics
and focus on evaluation of quality from the viewpoint of the customer [2]. The American
Society for Quality defines quality as the “totality of features and characteristics of a prod-
uct or service that bear on its ability to satisfy a user’s given needs” [3]. Thus the quality
of a process or product is defined and evaluated by the customer. Any process has many
processes before it that are typically called the suppliers and has many processes after it
that are its customers. Thus, anything (the next process, environment, user) the present
process affects is its customer.

2-1
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FIGURE 2.1 Quality, customer satisfaction, and target values.

One of the most important tasks in any quality program is to understand and evaluate the
needs and expectations of the customer and to then provide products and services that meet
or exceed those needs and expectations. Shewhart states this as follows: “The first step of
the engineer in trying to satisfy these wants is, therefore, that of translating as nearly as pos-
sible these wants into the physical characteristics of the thing manufactured to satisfy these
wants. In taking this step, intuition and judgment play an important role as well as the broad
knowledge of human element involved in the wants of individuals. The second step of the
engineer is to set up ways and means of obtaining a product which will differ from the arbi-
trary set standards for these quality characteristics by no more than may be left to chance”
[4]. One of the objectives of quality function deployment (QFD) is exactly to achieve this
first step proposed by Shewhart. Mizuno and Akao have developed the necessary philosophy,
system, and methodology to achieve this step [5]. QFD is a means to translate the “voice of
the customer” into substitute quality characteristics, design configurations, design parame-
ters, and technological characteristics that can be deployed (horizontally) through the whole
organization: marketing, product planning, design, engineering, purchasing, manufacturing,
assembly, sales, and service [5,6]. Products have several characteristics, and an “ideal” state
or value of these characteristics must be determined from the customer’s viewpoint. This
ideal state is called the target value (Figure 2.1). QFD is a methodology to develop target
values for substitute quality characteristics that satisfy the requirements of the customer.
The purpose of statistical process control is to accomplish the second step mentioned by
Shewhart, and his pioneering book [4] developed the methodology for this purpose.

2.2 Quality Control and Product Life Cycle

Dynamic competition has become a key concept in world-class design and manufacturing.
Competition is forcing us to provide products and services with less variation than our com-
petitors. Quality effort in many organizations relies on a combination of audits, process and
product inspections, and statistical methods using control charts and sampling inspection.
These techniques are used to control the manufacturing process and meet specifications in
the production environment. We must now concentrate on achieving high quality by start-
ing at the beginning of the product life cycle. It is not enough for a product to work well
when manufactured according to engineering specifications. A product must be designed for
manufacturability and must be insensitive to variability present in the production environ-
ment and in the field when used by the customer. Reduced variation translates into greater
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FIGURE 2.2 Cost to fix problems vs. product life cycle.

repeatability, reliability, and ultimately cost savings to both the producer and the consumer
and thus the whole society.

Figure 2.2 shows how the cost to fix or solve problems increases as we move downstream
in the product life cycle. Another way to emphasize the early and proactive activities related
to quality is to evaluate Figure 2.3, which shows that approximately 90% of the life cycle
cost is determined by the concept and development phases of the life cycle.

Different quality improvement methods should be applied for the different phases of
the product life cycle. During the phase of design and development of products, design
of experiments should be utilized to select the optimal combination of input components
and minimize the variation of the output quality characteristic, as shown in Figure 2.4.
Sometimes, we use offline quality engineering to refer to the quality improvement efforts
including experiment design and robust parameter design, because these efforts are made
off the production line.

As opposed to offline quality engineering, online quality control refers to the techniques
employed during the manufacturing process of products. Statistical quality control (SQC)
is a primary online control technique for monitoring the manufacturing process or any
other process with key quality characteristics of interest. Before we use statistical quality
control to monitor the manufacturing process, the optimal values of the mean and standard
deviation of the quality characteristics are determined by minimizing the variability of
the quality characteristics through experimental design and process adjustment techniques.
Consequently, the major goal of SQC (SPC) is to monitor the manufacturing process, keep
the values of mean and standard deviation stable, and finally reduce variability.

The manufactured products need to be inspected or tested before they reach the customer.
Closely related to the inspection of output products, acceptance sampling is defined as the
inspection and classification of samples from a lot randomly and decision about disposition
of the lot.
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At different phases of the product life cycle, the modeling approaches in operations
research and management science (OR/MS) are widely used. For example, as a collec-
tion of statistical and optimization methods, the response surface methodology (RSM) is a
specialized experimental design technique in off-line quality engineering. The basic idea of
RSM is to fit a response model for the output variable and then explore various settings
of the input design variables with the purpose to maximize or minimize the response [7].
For online quality control and inspection efforts, various optimization modeling approaches
are involved for process adjustment, economic design of control charts, and optimization of
specifications, and so on [8,9].

Six Sigma methodology is one of the most distinctive applications of quality improve-
ment effort with the involvement of OR/MS approaches. As a collection of optimization,
statistical, engineering, and management methods, Six Sigma methodology emerged in man-
ufacturing industry, and has been widely practiced in many industries including energy,
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health care, transportation, and financial services. The next section will describe the basic
ideas of Six Sigma, and its relationship with the quality control effort.

2.3 New Trends and Relationship to Six Sigma

Industrial, manufacturing, and service organizations are interested in improving their pro-
cesses by decreasing the process variation because the competitive environment leaves little
room for error. Based on the ideal or target value of the quality characteristic from the view-
point of the customer, the traditional evaluation of quality is based on average measures
of the process/product and their deviation from the target value. But customers judge the
quality of process/product not only on the average measure, but also by the variance in each
transaction with the process or use of the product. Customers want consistent, reliable, and
predictable processes that deliver best-in-class levels of quality. This is what the Six Sigma
process strives to achieve. Six Sigma has been applied by many manufacturing companies
such as GE, Motorola, and service industries including health care systems.

Six Sigma is a customer-focused, data-driven, and robust methodology, which is well
rooted in mathematics and statistics [10–12]. A typical process for Six Sigma quality
improvement has six phases: Define, Measure, Analyze, Improve, Control, and Technol-
ogy Transfer, denoted by (D)MAIC(T). Traditionally, a four-phase process, MAIC is often
referred in the literature [13]. We extend it to the six-phase process, (D)MAIC(T). We want
to emphasize the importance of the define (D) phase as the first phase for problem definition
and project selection and technology transfer (T) as the never-ending phase for continuous
applications of the Six Sigma technology to other parts of the organization to maximize the
rate of return on the investment in developing this technology.

The process of (D)MAIC(T) stays on track by establishing deliverables at each phase, and
by creating engineering models over time to reduce the process variation. Each of the six
phases answers some target questions, and this continuously improves the implementation
and the effectiveness of the methodology [8].

Define—What problem needs to be solved?
Measure—What is the current capability of the process?
Analyze—What are the root causes for the process variability?
Improve—How to improve the process capability?
Control—What controls can be put in place to sustain the improvement?
Technology Transfer—Where else can these improvements be applied?

In each phase, there are several steps that need to be implemented. For each step, many
quality improvement methods, tools, and techniques are used. We next describe the six
phases in more detail.

Phase 0: Define (D)
Once an organization decides to launch a Six Sigma process improvement project, they need
to first define the improvement activities. Usually the following two steps are taken in the
define phase:

Step 0.1: Identify and prioritize customer requirements. Methods such as benchmarking
surveys, spider charts, and customer needs mapping must be put in place to ensure that the
customer requirements are properly identified. The critical to quality (CTQ) characteristics
are defined from the viewpoint of customers, which are also called external CTQs. We need
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to translate the external CTQs into internal CTQs that are key process requirements. This
translation is the foremost step in the measure phase.

Step 0.2: Select projects. Based on customer requirements, the target project is selected
by analyzing the gap between the current process performance and the requirement of
customers. Specifically, we need to develop a charter for the project, including project
scope, expectations, resources, milestones, and the core processes.

Phase 1: Measure (M)
Six Sigma is a data-driven approach that requires quantifying and benchmarking the process
using actual data. In this phase, the performance or process capability of the process for
the CTQ characteristics are evaluated.

Step 1.1: Select CTQ characteristics. This step uses tools such as QFD and FMECA
to translate the external CTQs established in the define phase into internal requirements
denoted by Y ’s. Some of the objectives for this step are:

• Define, construct, and interpret the QFDs.
• Participate in a customer needs mapping session.
• Apply failure mode, effect, and criticality analysis (FMECA) to the process of

selecting CTQ characteristics.
• Identify CTQs and internal Y ’s.

Step 1.2: Define performance standards. After identifying the product requirements,
Y ’s, measurement standards for the Y ’s are defined in this step. QFD, FMECA, as well as
process mapping can be used to establish internal measurement standards.

Step 1.3: Validate measurement system. We need to learn how to validate measurement
systems and determine the repeatability and reproducibility of these systems using tools
such as gage R&R. This determination provides for separation of variability into components
and thus into targeted improvement actions.

Phase 2: Analyze (A)
Once the project is understood and the baseline performance is documented, it is time to do
an analysis of the process. In this phase, the Six Sigma approach applies statistical tools to
validate the root causes of problems. The objective is to understand the process in sufficient
detail so that we are able to formulate options for improvement.

Step 2.1: Establish product capability. This step determines the current product capabil-
ity, associated confidence levels, and sample size by process capability analysis, described in
Section 2.5. The typical definition for process capability index, Cpk, is Cpk =

min
{

USL− μ̂
3σ̂ , μ̂−LSL

3σ̂

}
, where USL is the upper specification limit, LSL is the lower spec-

ification limit, μ̂ is the point estimator of the mean, and σ̂ is the point estimator of the
standard deviation. If the process is centered at the middle of the specifications, which is
also interpreted as the target value, that is, μ̂ = USL + LSL

2 = y0, then 6σ process means that
Cpk = 2.

Step 2.2: Define performance objectives. The performance objectives are defined to
establish a balance between improving customer satisfaction and available resources. We
should distinguish between courses of actions necessary to improve process capability ver-
sus technology capability.

Step 2.3: Identify variation sources. This step begins to identify the causal variables
that affect the product requirements, or the responses of the process. Some of these causal
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variables might be used to control the responses Y ’s. Experimental design and analysis
should be applied for the identification of variation sources.

Phase 3: Improve (I)
In the improvement phase, ideas and solutions are implemented to initialize the change.
Experiments are designed and analyzed to find the best solution using optimization
approaches.

Step 3.1: Discover variable relationships. In the previous step, the causal variables X’s
are identified with a possible prioritization as to their importance in controlling the Y ’s. In
this step, we explore the impact of each vital X on the responses Y ’s. A system transfer
function (STF) is developed as an empirical model relating the Y ’s and the vital X’s.

Step 3.2: Establish operating tolerances. After understanding the functional relationship
between the vital X’s and the responses Y ’s, we need to establish the operating tolerances
of the X’s that optimize the performance of the Y ’s. Mathematically, we develop a variance
transmission equation (VTE) that transfers the variances of the vital X’s to variances of Y ’s.

Step 3.3: Optimize variable settings. The STF and VTE will be used to determine the
key operating parameters and tolerances to achieve the desired performance of the Y ’s.
Optimization models are developed to determine the optimum values for both means and
variances for these vital X’s.

Phase 4: Control (C)
The key to the overall success of the Six Sigma methodology is its sustainability. Performance
tracking mechanisms and measurements are put in place to assure that the process remains
on the new course.

Step 4.1: Validate measurement system. The measurement system tools first applied in
Step 1.3 will now be used for the X’s.

Step 4.2: Implement process controls. Statistical process control is a critical element in
maintaining a Six Sigma level. Control charting is the major tool used to control the vital
few X’s. Special causes of process variations are identified through the use of control charts,
and corrective actions are implemented to reduce variations.

Step 4.3: Documentation of the improvement. We should understand that the project
is not complete until the changes are documented in the appropriate quality management
system, such as QS9000/ISO9000. A translation package and plan should be developed for
possible technology transfer.

Phase ∞: Technology Transfer (T)
Using the infinity number, we convey the meaning that transferring technology is a never-
ending phase for achieving Six Sigma quality. Ideas and knowledge developed in one part
of the organization can be transferred to other parts of the organization. In addition, the
methods and solutions developed for one product or process can be applied to other similar
products or processes. With technology transfer, the Six Sigma approach starts to create
phenomenal returns.

2.4 Statistical Process Control

A traditional approach to manufacturing and addressing quality is to depend on produc-
tion to make the product and on quality control to inspect the final product and screen out
the items that do not meet the requirements of the next customer. This detection strategy
related to after-the-fact inspection is mostly uneconomical, as the wasteful production has
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FIGURE 2.5 A process control system.

already been produced. A better strategy is to avoid waste by not producing the unac-
ceptable output in the first place and thus focus more on prevention. Statistical process
control (SPC) is an effective prevention strategy to manufacture products that will meet
the requirements of the customer [14]. We will discuss the following topics in this section.

1. What is a process control system?
2. What are different types of variation and how do they affect the process output?

We will discuss two types of variation based on common or system causes and
special or assignable causes.

3. How can a control chart or statistical methods tell us whether a problem is due
to special causes or common causes?

4. What is meant by a process being in statistical control?
5. What are control charts and how are they used?
6. What benefits can be expected from using control charts?

2.4.1 Process Control System

A process control system can be described as a feedback system as shown in Figure 2.5.
Four elements of that system are important to the discussions that will follow:

1. The process—by the process, we mean the whole combination of people, equip-
ment, input materials, methods, and environment that work together to produce
output. The total performance of the process—the quality of its output and its
productive efficiency—depends on the way the process has been designed and
built, and on the way it is operated. The rest of the process control system is
useful only if it contributes to improved performance of the process.

2. Information about performance—much information about the actual performance
of the process can be learned by studying the process output. In a broad sense,
process output includes not only the products that are produced, but also any
intermediate “outputs” that describe the operating state of the process, such as
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temperatures, cycle times, and the like. If this information is gathered and inter-
preted correctly, it can show whether action is necessary to correct the process
or the just-produced product. If timely and appropriate actions are not taken,
however, any information-gathering effort is wasted.

3. Action on the process—action on the process is future-oriented, as it is taken
when necessary to prevent the production of nonconforming products. This action
might consist of changes in the operations (e.g., operator training, changes to the
incoming materials, etc.) or the more basic elements of the process itself (e.g.,
the equipment—which may need rehabilitation, or the design of the process as a
whole—which may be vulnerable to changes in shop temperature or humidity).

4. Action on the output—action on the output is past-oriented, because it involves
detecting out-of-specification output already produced. Unfortunately, if current
output does not consistently meet customer requirements, it may be necessary
to sort all products and to scrap or rework any nonconforming items. This must
continue until the necessary corrective action on the process has been taken and
verified, or until the product specifications have been changed.

It is obvious that inspection followed by action only on the output is a poor substitute
for effective first-time process performance. Therefore, the discussions that follow focus on
gathering process information and analyzing it so that action can be taken to correct the
process itself.

Process control plays a very important role during the effort for process improvement.
When we try to control a process, analysis and improvement naturally result; and when we
try to make an improvement, we naturally come to understand the importance of control.
We can only make a breakthrough when we have achieved control. Without process control,
we do not know where to improve, and we cannot have standards and use control charts.
Improvement can only be achieved through process analysis.

2.4.2 Sources of Variation

Usually, the sources of variability in a process are classified into two types: chance causes and
assignable causes of variation. Chance causes, or common causes, are the sources of inherent
variability, which cannot be removed easily from the process without fundamental changes
in the process itself. Assignable causes, or special causes, arise in somewhat unpredictable
fashion, such as operator error, material defects, or machine failure. The variability due to
assignable causes is comparatively larger than chance causes, and can cause the process to
go out of control. Table 2.1 compares the two sources of variation, including some examples.

TABLE 2.1 Sources of Variation
Common or Chance Causes Special or Assignable Causes

1. Consist of many individual causes 1. Consist of one or just a few individual
causes

2. Any one chance cause results in only a 2. Any one assignable cause can result
minute amount of variation. (However, in a large amount of variation
many of chance causes together result in
a substantial amount of variation)

3. As a practical matter, chance variation 3. The presence of assignable variation
cannot be economically eliminated—the can be detected (by control charts) and
process may have to be changed to reduce action to eliminate the causes is usually
variability economically justified

4. Examples: 4. Examples:
• Slight variations in raw materials • Batch of defective raw materials
• Slight vibrations of a machine • Faulty setup
• Lack of human perfection in reading • Untrained operator

instruments or setting controls
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2.4.3 Use of Control Charts for Problem Identification

Control charts by themselves do not correct problems. They indicate that something is
wrong and it is up to you to take the corrective action. Assignable causes are the factors
that cause the process to go out of control. They are due to change in the condition of
manpower, materials, machines, or methods or a combination of all of these.

Assignable causes relating to manpower:

• New or wrong man on the job
• Careless workmanship and attitudes
• Improper instructions
• Domestic, personal problems
Assignable causes relating to materials:
• Improper work handling
• Stock too hard or too soft
• Wrong dimensions
• Contamination, dirt, etc.
• Improper flow of materials
Assignable causes relating to machines or methods:
• Dull tools
• Poor housekeeping
• Machine adjustment
• Improper machine tools, jigs, fixtures
• Improper speeds, feeds, etc.
• Improper adjustments and maintenance
• Worn or improperly located locators

When assignable causes are present, as shown in Figure 2.6, the probability of noncon-
formance may increase, and the process quality deteriorates significantly. The eventual goal
of SPC is to improve the process quality by reducing variability in the process. As one of
the primary SPC techniques, the control chart can effectively detect the variation due to
the assignable causes and reduce process variability if the identified assignable causes can
be eliminated from the process.

?
? ?

? ?
? ?

? ?
 ? ?

Time

Prediction

Location changed

Both spread and location change

Spread changed

FIGURE 2.6 Unstable and unpredictable process with presence of assignable causes.
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2.4.4 Statistical Control

Statistically, SPC techniques aim to detect changes over time in the parameters (e.g., mean
and standard deviation) of the underlying distribution for the process. In general, the sta-
tistical process control problem can be described as below [15]. Let X denote a random
variable for a quality characteristic with the probability density function, f(x; θ), where θ
is a set of parameters. If the process is operating with θ = θ0, it is said to be in statistical
control; otherwise, it is out of control. The value of θ0 is not necessarily equal to the target
(or ideal) value of the process. Due to the effort of experimental design and process adjust-
ment techniques, a process is assumed to start with the in-control state [7,16,17]. After a
random length of time, variability in the process will possibly cause deterioration or shift
of the process. This shift can be reflected by a change in θ from the value of θ0, and the
process is said to be out of control. Therefore, the basic goal of control charts is to detect
changes in θ that can occur over time.

A process is said to be operating in statistical control when the only source of variation
is common causes. The status of statistical control is obtained by eliminating special causes
of excessive variation one by one.

Process capability is determined by the total variation that comes from common causes.
A process must first be brought into statistical control, and then its capability to meet
specifications can be assessed. We will discuss the details of process capability analysis in
the next section.

2.4.5 Control Charts

The basic concept of control charts was proposed by Walter A. Shewhart of the Bell Tele-
phone Laboratories in the 1920s, which indicates the formal beginning of statistical quality
control. The effective use of the control chart involves a series of process improvement activ-
ities. For a process variable of interest, one must observe data from a process over time, or
monitor the process, and apply a control chart to detect process changes. When the control
chart signals the possible presence of an assignable cause, efforts should be made to diagnose
the assignable causes and implement corrective actions to remove the assignable causes so
as to reduce variability and improve the process quality. The long history of control chart-
ing application in many industries has proven its effectiveness for improving productivity,
preventing defects and providing information about diagnostic and process capability.

A typical control chart is given in Figure 2.7. The basic model for Shewhart control charts
consist of a center line, an upper control limit (UCL) and a lower control limit (LCL) [18].

UCL = μs + Lσs

Center line = μs (2.1)
LCL = μs − Lσs

where μs and σs are the mean and standard deviation of the sample statistic, such as sample
mean (X-bar chart), sample range (R chart), and sample proportion defective (p chart). Lσs

is the distance of the control limits from the center line and L is most often set at three. To
construct a control chart, one also needs to specify the sample size and sampling frequency.
The common wisdom is to take smaller samples at short intervals or larger samples at
longer intervals, so that the sampling effort can be allocated economically. An important
concept related to the sampling scheme is the rational subgroup approach, recommended
by Shewhart. To maximize detection of assignable causes between samples, the rational
subgroup approach takes samples in a way that the within-sample variability is only due to
common causes, while the between-sample variability should indicate assignable causes in
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FIGURE 2.7 A typical control chart (x-bar chart).

TABLE 2.2 The Most Commonly Used Shewhart Control
Charts
Symbol Description Sample Size

Variable Charts

X-bar and R The average (mean) and range Must be constant
of measurements in a sample

X-bar and S The average (mean) and May be variable
standard deviation of
measurements in a sample

Attributes Charts

p The percent of defective May be variable
(nonconforming) units in a
sample

np The number of defective Must be constant
(nonconforming) units in a
sample

c The number of defects in a Must be constant
sample

u The number of defects per unit May be variable

the process. Further discussion of the rational subgroup approach can be found in Refs. [19]
and [20].

An out-of-control signal is given when a sample statistic falls beyond the control limits, or
a nonrandom pattern presents. Western Electric rules are used to identify the nonrandom
pattern in the process. According to Western Electric rules [21], a process is considered out
of control if any of the following occur:

1. One or more points outside 3σ limits.
2. Two of three consecutive points outside 2σ limits.
3. Four of five consecutive points beyond the 1σ limits.
4. A run of eight consecutive points on one side of the center line.

More decision rules or sensitizing rules can be found in the textbook by Montgomery.
The measurements of quality characteristics are typically classified as attributes or vari-

ables. Continuous measurements, such as length, thickness, or voltage, are variable data.
Discrete measurements, such as number of defective units, number of nonconformities per
unit, are attributes. The most commonly used Shewhart control charts for both attributes
and variables are summarized in Table 2.2.

Control Charts for Variables

When a quality characteristic is measured as variables, it is necessary to monitor the process
mean and standard deviation. For grouped data, we use X charts to detect the process
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mean shift (between-group variability), and R charts or S charts to monitor the process
variation (within-group variability). The control limits of each chart are constructed based
on the Shewhart model in Equation 2.1. When we use X, R, and S charts, we assume
that the underlying distribution of the quality characteristic is normal and the observations
exhibit no correlation over time. If the quality characteristic is extremely nonnormal or
the observations are autocorrelated, other control charts such as the exponentially weighted
moving average control charts (EWMA) or time series model (ARIMA) may be used instead.

In practice, the parameters of the underlying distribution of a quality characteristic are
not known. We need to estimate the process mean and standard deviation based on the
preliminary data. It can be shown that an unbiased estimate of the standard deviation is
σ̂ = s/c4, where s is the sample standard deviation. A more convenient approach in quality
control application is the range method, where the range of the sample, R, is used to estimate
the standard deviation, and it is obtained as σ̂ = R/d2. The resulting control charts using
different estimators of standard deviation are the R chart and the S chart, respectively.

X and R Charts

When the sample size is not very large (n< 10), X and R charts are widely used to mon-
itor variable quality characteristics due to their simplicity of application. To use the basic
Shewhart model in Equation 2.1 for X and R charts, we need to estimate μx and σx, μR, and
σR first.

It is obvious that we can use the grand average to estimate μx and μR, that is, μ̂x =x and
μ̂R =R. Using the range method, we have σ̂x = σ̂/

√
n = R/(d2

√
n) and σ̂R = d3σ̂ = d3R/d2.

The control limits for Xand R charts are

LCL = x − A2R

CL = x

ULC = x + A2R

and

LCL = D3R

CL = R

UCL = D4R

respectively, where A2 = 3
d2

√
n
, D3 = 1− 3d3

d2
, and D4 = 1 + 3d3

d2
. The values of d2, d3, A2,D3,

and D4 can be obtained from most books on control charts for n up to 25 [22,20]. Normally,
the preliminary data used to establish the control limits are 20–25 samples with sample size
3–5. The established control limits are then used to check if the preliminary samples are in
control. The R chart (or S chart) should be checked first to ensure the process variability
is in statistical control, and then the X chart is checked for the process mean shift. Once a
set of reliable control limits is constructed, they can be used for process monitoring.

X and S Charts

When the sample size is relatively large (n> 10), or the sample size is variable, the X and S
charts are preferred to X and R charts. To construct the control limits, we need to estimate
the mean and standard deviation of X and S, that is, μx and σx, μS and σS first. We have
μ̂x =x and μ̂S =S. Using σ̂ = s/c4, we have σ̂x = σ̂/

√
n = s/(c4

√
n) and σ̂s = s

√
1− c2

4/c4.
Therefore, the control limits for X and S charts are

LCL = x − A3S

CL = x

ULC = x + A3S

and

LCL = B3S

CL = S

UCL = B4S

respectively, where A3 = 3
c4

√
n
, B3 = 1− 3

c4

√
1− c2

4, and B4 = 1 + 3
c4

√
1 − c2

4. The values of
c4, A3, B3, and B4 can be obtained from most books on control charts for n up to 25.
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Control Charts for Attributes

When quality characteristics are expressed as attribute data, such as defective or conforming
items, control charts for attributes are established. Attribute charts can handle multiple
quality characteristics jointly because the unit is classified as defective if it fails to meet the
specification on one or more characteristics. The inspection of samples for attribute charts is
usually cheaper due to less precision requirement. Attribute charts are particularly useful in
quality improvement efforts where numerical data are not easily obtained, such as service,
industrial, and health care systems. In the context of quality control, the attribute data
include a proportion of defective items and a number of defects on items. A defective unit
may have one or more defects that are a result of nonconformance to standard on one or
more quality characteristics. Nevertheless, a unit with several defects may not necessarily
be classified as a defective unit. It requires two different types of attribute charts: control
charts for proportion defective (p chart and np chart), and control charts for number of
defects (c chart and u chart).

p Chart and np Chart

The proportion that is defective is defined as the ratio of the number of defective units to the
total number of units in a population. We usually assume that the number of defective units
in a sample is a binomial variable; that is, each unit in the sample is produced independently
and the probability that a unit is defective is constant, p. Using preliminary samples, we can
estimate the defective rate, that is, p =

∑m
i = 1 Di/mn, where Di is the number of defective

units in sample i, n is the sample size, and m is the number of samples taken. The formulas
used to calculate control limits are then given as

UCLp̂ = p + 3

√
p(1 − p)

n

Centerline = p

LCLp̂ = p − 3

√
p(1 − p)

n
.

Sometimes, it may be easier to interpret the number that is defective instead of the
proportion that is defective. That is why the np chart came into use:

UCL = np + 3
√

np(1 − p)

Centerline = np

LCL = np − 3
√

np(1 − p).

The developed trial control limits are then used to check if the preliminary data are in
statistical control, and the assignable causes may be identified and removed if a point is out
of control. As the process improves, we expect a downward trend in the p or np control chart.

c Chart and u Chart

Control charts for monitoring the number of defects per sample are constructed based
on Poisson distribution. With this assumption of reference distribution, the probability of
occurrence of a defect at any area is small and constant, the potential area for defects is
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infinitely large, and defects occurs randomly and independently. If the average occurrence
rate per sample is a constant c, we know that both the mean and variance of the Poisson
distribution are the constant c. Therefore, the parameters in the c chart for the number of
defects are

LCL = c − 3
√

c

CL = c

UCL = c + 3
√

c

where c can be estimated by the average number of defects in a preliminary sample. To
satisfy the assumption of constant rate of occurrence, the sample size is required to be
constant.

For variable sample size, the u chart should be used instead of the c chart. Compared
to the c chart that is used to monitor the number of defects per sample, the u chart is
designed to check the average number of defects per inspection unit. Usually, a sample may
contain one or more inspection units. For example, in a textile finishing plant, dyed cloth
is inspected for defects per 50 m2, which is one inspection unit. A roll of cloth of 500 m2 is
one sample with 10 inspection units. Different rolls of cloth may have various areas, hence
variable sample sizes. As a result, it is not appropriate to use the c chart, because the
occurrence rate of defects in each sample is not a constant. The alternative is to monitor
the average number of defects per inspection unit in a sample, ui = ci/ni. In this way, the
parameters in the u chart are given as

LCL = u − 3

√
u

n

CL = u

UCL = u + 3

√
u

n

where u =
∑m

i = 1 ui/m, is an estimation of the average number of defects in an inspection
unit. For variable sample size, the upper and lower control limits vary for different n.

To effectively detect small process shifts (on the order of 1.5σ or less), the cumulative sum
(CUSUM) control chart and the exponentially weighted moving average (EWMA) control
chart may be used instead of Shewhart control charts. In addition, there are many situations
where we need to simultaneously monitor two or more correlated quality characteristics. The
control charts for multivariate quality characteristics will also be discussed in the following.

2.4.6 Benefits of Control Charts

In this section, we summarize some of the important benefits that can come from using
control charts.

• Control charts are simple and effective tools to achieve statistical control. They
lend themselves to being maintained at the job station by the operator. They give
the people closest to the operation reliable information on when action should be
taken—and on when action should not be taken.

• When a process is in statistical control, its performance to specification will be
predictable. Thus, both producer and customer can rely on consistent quality
levels, and both can rely on stable costs of achieving that quality level.
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• After a process is in statistical control, its performance can be further improved
to reduce variation. The expected effects of proposed improvements in the sys-
tem can be anticipated, and the actual effects of even relatively subtle changes
can be identified through the control chart data. Such process improvements
will:

• Increase the percentage of output that meets customer expectations (improve
quality),

• Decrease the output requiring scrap or rework (improve cost per good unit
produced), and

• Increase the total yield of acceptable output through the process (improve
effective capacity).

• Control charts provide a common language for communications about the per-
formance of a process—between the two or three shifts that operate a process;
between line production (operator, supervisor) and support activities (mainte-
nance, material control, process engineering, quality control); between different
stations in the process; between supplier and user; between the manufacturing/
assembly plant and the design engineering activity.

• Control charts, by distinguishing special from common causes of variation, give
a good indication of whether any problems are likely to be correctable locally or
will require management action. This minimizes the confusion, frustration, and
excessive cost of misdirected problem-solving efforts.

2.5 Process Capability Studies

As discussed earlier, statistical control of a process is arrived at by eliminating special causes
of excessive variation one by one. Process capability is determined by the total variation
that comes from common causes. Therefore, a process must first be brought into statistical
control and then its capability to meet specifications can be assessed.

The process capability to meet specifications is usually measured by process capability
indices that link process parameters to product design specifications. Using a single num-
ber, process capability indices measure the degree to which the stable process can meet
the specifications [23,24]. If we denote the lower specification limit as LSL and the upper
specification limit as USL, the process capability index Cp is defined as:

Cp =
USL − LSL

6σ

which measures the potential process capability. To measure the actual process capability,
we use Cpk that is defined as:

Cpk = min
(

USL − μ

3σ
,
μ − LSL

3σ

)

The measure of Cpk takes the process centering into account by choosing the one side Cp

for the specification limit closest to the process mean. The estimations of Cp and Cpk are
obtained by replacing μ and σ using the estimates μ̂ and σ̂. To consider the variability
in terms of both standard deviation and mean, another process capability index Cpm is
defined as

Ĉpm =
USL − LSL

6τ̂
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where τ̂ is an estimator of the expected square deviation from the target, T , and is given by

τ2 = E
[
(x − T )2

]
= σ2 + (μ − T )2

Therefore, if we know the estimate of Cp, we can estimate Cpm as:

Ĉpm =
Ĉp√

1 +
(

μ̂ − T

σ̂

)2

In addition to process capability indices, capability can also be described in terms of the
distance of the process mean from the specification limits in standard deviation units, Z,
that is

ZU =
USL − μ̂

σ̂
, and ZL =

μ̂ − LSL
σ̂

Z values can be used with a table of standard normal distribution to estimate the proportion
of process fallout for a normally distributed and statistically controlled process. The Z value
can also be converted to the capability index, Cpk:

Cpk =
Zmin

3
=

1
3

min (ZU , ZL)

A process with Zmin =3, which could be described as having μ̂± 3σ̂ capability, would
have Cpk =1.00. If Zmin =4, the process would have μ̂± 4σ̂ capability and Cpk = 1.33.

Example 2.1

For a process with μ̂ = 0.738, σ̂ = 0.0725, USL = 0.9, and LSL = 0.5,

• Since the process has two-sided specification limits,

Zmin = min
(

USL − μ̂

σ̂
,
μ̂ − LSL

σ̂

)

= min
(

0.9 − 0.738
0.0725

,
0.738 − 0.5

0.0725

)
= min(2.23, 3.28) = 2.23

and the proportion of process fallout would be:

p = 1 − Φ(2.23) + Φ(−3.28) = 0.0129 + 0.0005 = 0.0134

The process capability index would be:

Cpk =
Zmin

3
= 0.74

• If the process could be adjusted toward the center of the specification, the pro-
portion of process fallout might be reduced, even with no change in σ:

Zmin = min
(

USL − μ̂

σ̂
,
μ̂ − LSL

σ̂

)
= min

(
0.9 − 0.7
0.0725

,
0.7 − 0.5
0.0725

)
= 2.76

and the proportion of process fallout would be:

p = 2Φ(−2.76) = 0.0058

The process capability index would be:

Cpk =
Zmin

3
= 0.92
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• To improve the actual process performance in the long run, the variation from
common causes must be reduced. If the capability criterion is μ̂± 4σ̂ (Zmin ≥ 4),
the process standard deviation for a centered process would be:

σnew =
USL − μ̂

Zmin
=

0.9 − 0.7
4

= 0.05

Therefore, actions should be taken to reduce the process standard deviation from
0.0725 to 0.05, about 31%. �

At this point, the process has been brought into statistical control and its capability has
been described in terms of process capability index or Zmin. The next step is to evaluate
the process capability in terms of meeting customer requirements. The fundamental goal
is never-ending improvement in process performance. In the near term, however, priori-
ties must be set as to which processes should receive attention first. This is essentially an
economic decision. The circumstances vary from case to case, depending on the nature of
the particular process in question. While each such decision could be resolved individu-
ally, it is often helpful to use broader guidelines to set priorities and promote consistency of
improvement efforts. For instance, certain procedures require Cpk > 1.33, and further specify
Cpk = 1.50 for new processes. These requirements are intended to assure a minimum perfor-
mance level that is consistent among characteristics, products, and manufacturing sources.

Whether in response to a capability criterion that has not been met, or to the continuing
need for improvement of cost and quality performance even beyond minimum capability
requirement, the action required is the same: improve the process performance by reducing
the variation that comes from common causes. This means taking management action to
improve the system.

2.6 Advanced Control Charts

The major disadvantage of the Shewhart control chart is that it uses the information in the
last plotted point and ignores information given by the sequence of points. This makes it
insensitive to small shifts. One effective way is to use

• cumulative sum (CUSUM) control charts
• exponentially weighted moving average (EWMA) control charts

2.6.1 Cumulative Sum Control Charts

CUSUM charts incorporate all the information in the sequence of sample values by plotting
the CUSUM of deviations of the sample values from a target value, defined as

Ci =
i∑

j=1

(xj − T )

A significant trend developed in Ci is an indication of the process mean shift. Therefore,
CUSUM control charts would be more effective than Shewhart charts to detect small process
shifts. Two statistics are used to accumulate deviations from the target T :

C+
i = max[0, xi − (T + K) + C+

i−1]

C−
i = max[0, (T − K) − xi + C−

i−1]
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where C+
0 = C−

0 = 0, and K is the slack value, and it is often chosen about halfway between
the target value and the process mean after shift. If either C+ or C− exceeds the decision
interval H (a common choice is H = 5σ), the process is considered to be out of control.

2.6.2 Exponentially Weighted Moving Average Control Charts

As discussed earlier, we use Western Electric rules to increase the sensitivity of Shewhart
control charts to detect nonrandom patterns or small shifts in a process. A different approach
to highlight small shifts is to use a time average over past and present data values as an
indicator of recent performance. Roberts [25] introduced the EWMA as such an indicator,
that is, past data values are remembered with geometrically decreasing weight. For example,
we denote the present and past values of a quality characteristic x by xt, xt−1, xt−2, . . .;
then the EWMA yt with discount factor q is

yt = a(xt + qxt−1 + q2xt−2 + · · ·)

where a is a constant that makes the weights add up to 1 and it equals to 1− q. In the
practice of process monitoring, the constant 1− q is given the distinguishing symbol λ.
Using λ, the EWMA can be expressed as yt = λxt + (1−λ)yt−1, which is a more convenient
formula for updating the value of EWMA at each new observation. It is observed from the
formula that a larger value of λ results in weights that die out more quickly and place more
emphasis on recent observations. Therefore, a smaller value of λ is recommended to detect
small process shifts, usually λ = 0.05, 0.10, or 0.20.

An EWMA control chart with appropriate limits is used to monitor the value of EWMA.
If the process is in statistical control with a process mean of μ and a standard deviation of
σ, the mean of the EWMA would be μ, and the standard deviation of the EWMA would

be σ
(

λ
2−λ

)1/2

. Thus, given a value of λ, three-sigma or other appropriate limits can be
constructed to monitor the value of EWMA.

2.6.3 Other Advanced Control Charts

The successful use of Shewhart control charts and the CUSUM and EWMA control charts
have led to the development of many new techniques over the last 20 years. A brief summary
of these techniques and references to more complete descriptions are provided in this section.

The competitive global market expects smaller defect rates and higher quality level that
requires 100% inspection of output products. The recent advancement of sensing techniques
and computer capacity makes 100% inspection more feasible. Due to the reduced inter-
vals between sampling of the 100% inspection, the complete observations will be correlated
over time. However, one of the assumptions for Shewhart control charts is the indepen-
dence between observations over time. When the observations are autocorrelated, Shewhart
control charts will give misleading results in the form of many false alarms. ARIMA are
used to remove autocorrelation from data, and then control charts are applied to the
residuals. Further discussion on SPC with autocorrelated process data can be found in
Refs. [16,20].

It is often necessary to simultaneously monitor or control two or more related quality
characteristics. Using individual control charts to monitor the independent variables sep-
arately can be very misleading. Multivariate SPC control charts were developed based on
multivariate normal distribution by Hotelling [26]. More discussion on multivariate SPC
can be found in Refs. [20,26].
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The use of control charts requires the selection of sample size, sampling frequency or inter-
val between samples, and the control limits for the charts. The selection of these parameters
has economic consequences in that the cost of sampling, the cost of false alarms, and the
cost of removing assignable causes will affect the choice of the parameters. Therefore, the
economic design of control charts has received attention in research and practice. Related
discussion can be found in Refs. [8,27]. Other research issues and ideas in SPC can be found
in a review paper by Woodall and Montgomery [28].

2.7 Limitations of Acceptance Sampling

As one of the earliest methods of quality control, acceptance sampling is closely related to
inspection of output of a process, or testing of a product. Acceptance sampling is defined
as the inspection and classification of samples from a lot randomly and decision about
disposition of the lot. At the beginning of the concept of quality conformance back in
the 1930s, the acceptance sample took the whole effort of quality improvement. The most
widely used plans are given by the Military Standard tables (MIL STD 105A), which were
developed during World War II. The last revision (MIL STD 105E) was issued in 1989,
but cancelled in 1991. The standard was adopted by the American Society for Quality as
ANSI/ASQ A1.4.

Due to its less proactive nature in terms of quality improvement, acceptance sampling
is less emphasized in current quality control systems. Usually, methods of lot sentencing
include no inspection, 100% inspection, and acceptance sampling. Some of the problems
with acceptance sampling were articulated by Dr. W. Edwards Deming [2], who pointed
out that this procedure, while minimizing the inspection cost, does not minimize the total
cost to the producer. To minimize the total cost to the producer, Deming indicated that
inspection should be performed either 100% or not at all, which is called Deming’s “All or
None Rule.” In addition, acceptance sampling has several disadvantages compared to 100%
inspection [20]:

• There are risks of accepting “bad” lots and rejecting “good” lots.
• Less information is usually generated about the product or process.
• Acceptance sampling requires planning and documentation of the acceptance

sampling procedure.

2.8 Conclusions

The quality of a system is defined and evaluated by the customer [29]. A system has many
qualities and we can develop a utility or customer satisfaction measure based on all of
these qualities. The design process substitutes the voice of the customer with engineering or
technological characteristics. Quality function deployment (QFD) plays an important role
in the development of those characteristics. Quality engineering principles can be used to
develop ideal values or targets for these characteristics. The methodology of robust design
is an integral part of the quality process [30–32]. Quality should be an integral part of all
the elements of the enterprise, which means that it is distributed throughout the enterprise
and also all of these elements must be integrated together as shown in Figure 2.8.

Statistical quality control is a primary technique for monitoring the manufacturing process
or any other process with key quality characteristics of interests. Before we use statistical
quality control to monitor the manufacturing process, the optimal values of the mean and
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FIGURE 2.8 Integrated and distributed quality management.

standard deviation of the quality characteristic are determined by minimizing the variability
of the quality characteristic through experimental design and process adjustment techniques.
Consequently, the major goal of SQC (SPC) is to monitor the manufacturing process, keep
the values of mean and standard deviation stable, and finally reduce variability. When
the process is in control, all the assignable causes are not present and consequently the
probability to produce a nonconforming unit is very small. When the process changes to
out of control, the probability of nonconformance may increase, and the process quality
deteriorates significantly. As one of the primary SPC techniques, the control charts we
discussed in this chapter can effectively detect the variation due to the assignable causes
and reduce process variability if the identified assignable causes can be eliminated from the
process.

The philosophy of Deming, Juran, and other quality gurus implies that the responsibility
for quality spans the entire organization. It is critical that the management in any enterprise
recognize that quality improvement must be a total, company-wide activity, and that every
organizational unit must actively participate. Statistical quality control techniques are the
common language of communication about quality problems that enables all organizational
units to solve problems rapidly and efficiently.
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Appendix

Constants and Formulas for Constructing Control Charts

X and R Charts X and S Charts

Chart for Chart for
Averages Averages

X Chart for Ranges (R) X Chart for Standard Deviations (S)

Devisors for Divisors for
Factors for Estimate of Factors for Factors for Estimator of Factors for

Subgroup Control Standard Control Limits Control Standard Control Limits
Size Limits Deviation Limits Deviation
n A2 d2 D3 D4 A3 c4 B3 B4

2 1.880 1.128 – 3.267 2.659 0.7979 – 3.267
3 1.023 1.693 – 2.574 1.954 0.8862 – 2.568
4 0.729 2.059 – 2.282 1.628 0.9213 – 2.266
5 0.577 2.326 – 2.114 1.427 0.9400 – 2.089
6 0.483 2.534 – 2.004 1.287 0.9515 0.030 1.970
7 0.419 2.704 0.076 1.924 1.182 0.9594 0.118 1.882
8 0.373 2.847 0.136 1.864 1.099 0.9650 0.185 1.815
9 0.337 2.970 0.184 1.816 1.032 0.9693 0.239 1.761

10 0.308 3.078 0.223 1.777 0.975 0.9727 0.284 1.716

LCL = x − A2R

CL = x

ULC = x + A2R

and

LCL = D3R

CL = R

UCL = D4R

LCL = x − A3S

CL = x

ULC = x + A3S

and

LCL = B3S

CL = S

UCL = B4S

σ̂ = R/d2 σ̂ = s/c4

Guide for Selection of Charts for Attributes:

Nonconforming
Units Nonconformities

Number of Nonconformities np c
(Simple, but needs constant
sample size)

Proportion p u
(More complex, but adjusts
to understandable proportion,
and can cope with varying
sample sizes)

• p chart for proportion of units nonconforming, from samples not necessarily of
constant size: (If n varies, use n or individual ni.)

UCLp̂ = p + 3

√
p(1 − p)

n

Centerline = p

LCLp̂ = p − 3

√
p(1 − p)

n

• np chart for number of units nonconforming, from samples of constant size:

UCL = np + 3
√

np(1 − p)

Centerline = np

LCL = np − 3
√

np(1 − p)
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• c chart for number of nonconformities, from samples of constant size:

LCL = c − 3
√

c

CL = c

UCL = c + 3
√

c

• u chart for number of nonconformities per unit, from samples not necessarily of
constant size: (If n varies, use n or individual ni.)

LCL = u − 3

√
u

n

CL = u

UCL = u + 3

√
u

n
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3.1 Introduction

Reliability theory involves the mathematical modeling of systems, typically comprised of
components, with respect to their ability to perform their intended function over time. Reli-
ability theory can be used as a predictive tool, as in the case of a new product introduction;
it can also be used as a descriptive tool, as in the case of finding a weakness in an existing
system design.

Reliability theory is based on probability theory. The reliability of a component or sys-
tem at one particular point in time is a real number between 0 and 1 that represents the
probability that the component or system is functioning at that time. Reliability theory
also involves statistical methods. Estimating component and system reliability is often per-
formed by analyzing a data set of lifetimes.

Recent tragedies, such as the space shuttle accidents, nuclear power plant accidents, and
aircraft catastrophes, highlight the importance of reliability in design. This chapter describes
probabilistic models for reliability in design and statistical techniques that can be applied
to a data set of lifetimes. Although the majority of the illustrations given here come from
engineering problems, the techniques described here may also be applied to problems in
actuarial science and biostatistics.

Reliability engineers concern themselves primarily with lifetimes of inanimate objects,
such as switches, microprocessors, or gears. They usually regard a complex system as a

3-1
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collection of components when performing an analysis. These components are arranged in
a structure that allows the system state to be determined as a function of the component
states. Interest in reliability and quality control has been revived by a more competitive
international market and increased consumer expectations. A product or service that has a
reputation for high reliability will have consumer goodwill and, if appropriately priced, will
gain in market share.

Literature on reliability tends to use failure, actuarial literature tends to use death, and
point process literature tends to use epoch, to describe the event at the termination of a
lifetime. Likewise, reliability literature tends to use a system, component, or item, actuarial
literature uses an individual, and biostatistical literature tends to use an organism as the
object of a study. To avoid switching terms, failure of an item will be used as much as
possible throughout this chapter, as the emphasis is on reliability. The concept of failure
time (or lifetime or survival time) is quite generic, and the models and statistical methods
presented here apply to any nonnegative random variable (e.g., the response time at a
computer terminal).

The remainder of this chapter is organized as follows. Sections 3.2 through 3.4 contain
probability models for lifetimes, and the subsequent remaining sections contain methods
related to data collection and inference.

Mathematical models for describing the arrangement of components in a system are
introduced in Section 3.2. Two of the simplest arrangements of components are series and
parallel systems. The notion of the reliability of a component and system at a particular
time is also introduced in this section. As shown in Section 3.3, the concept of reliability
generalizes to a survivor function when time dependence is introduced. In particular, four
different representations for the distribution of the failure time of an item are considered:
the survivor, density, hazard, and cumulative hazard functions.

Several popular parametric models for the lifetime distribution of an item are investi-
gated in Section 3.4. The exponential distribution is examined first due to its importance as
the only continuous distribution with the memoryless property, which implies that a used
item that is functioning has the same conditional failure distribution as a new item. Just
as the normal distribution plays a central role in classical statistics due to the central limit
theorem, the exponential distribution is central to the study of the distribution of lifetimes,
as it is the only continuous distribution with a constant hazard function. The more flexible
Weibull distribution is also outlined in this section.

The emphasis changes from developing probabilistic models for lifetimes to analyzing
lifetime data sets in Section 3.5. One problem associated with these data sets is that of
censored data. Data are censored when only a bound on the lifetime is known. This would
be the case, for example, when conducting an experiment with light bulbs, and half of the
light bulbs are still operating at the end of the experiment. This section surveys methods for
fitting parametric distributions to data sets. Maximum likelihood parameter estimates are
emphasized because they have certain desirable statistical properties. Section 3.6 reviews a
nonparametric method for estimating the survivor function of an item from a censored data
set: the Kaplan–Meier product-limit estimate. Once a parametric model has been chosen to
represent the failure time for a particular item, the adequacy of the model should be assessed.
Section 3.7 considers the Kolmogorov–Smirnov goodness-of-fit test for assessing how well a
fitted lifetime distribution models the lifetime of the item. The test uses the largest vertical
distance between the fitted and empirical survivor functions as the test statistic.

We have avoided references throughout the chapter to improve readability. There are
thousands of journal articles and over 100 textbooks on reliability theory and applications.
As this is not a review of the current state-of-the-art in reliability theory, we cite only a
few key comprehensive texts for further reading. A classic, early reference is Barlow and
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Proschan (1981). Meeker and Escobar (1998) is a more recent comprehensive textbook
on reliability. The analysis of survival data is also considered by Kalbfleisch and Prentice
(2002) and Lawless (2003). This chapter assumes that the reader has a familiarity with
calculus-based probability and statistical inference techniques.

3.2 Reliability in System Design

This section introduces mathematical techniques for expressing the arrangement of compo-
nents in a system and for determining the reliability of the associated system. We assume
that an item consists of n components, arranged into a system. We first consider a system’s
structural properties associated with the arrangement of the components into a system, and
then consider the system’s probabilistic properties associated with determining the system
reliability. Structure functions are used to map the states of the individual components to
the state of the system. Reliability functions are used to determine the system reliability at
a particular point in time, given the component reliabilities at that time.

3.2.1 Structure Functions

A structure function is used to describe the way that the n components are related to form
a system. The structure function defines the system state as a function of the component
states. In addition, it is assumed that both the components and the system can either
be functioning or failed. Although this binary assumption may be unrealistic for certain
types of components or systems, it makes the mathematics involved more tractable. The
functioning and failed states for both components and systems will be denoted by 1 and 0,
respectively, as in the following definition.

DEFINITION 3.1 The state of component i, denoted by xi is

xi =
{

0 if component i has failed
1 if component i is functioning

for i= 1, 2, . . ., n.

These n values can be written as a system state vector, x = (x1, x2, . . ., xn). As there are
n components, there are 2n different values that the system state vector can assume, and(

n
j

)
of these vectors correspond to exactly j functioning components, j = 0, 1, . . ., n. The

structure function, φ(x ), maps the system state vector x to 0 or 1, yielding the state of the
system.

DEFINITION 3.2 The structure function φ is

φ(x ) =
{

0 if the system has failed when the state vector is x
1 if the system is functioning when the state vector is x

The most common system structures are the series and parallel systems, which are defined
in the examples that follow. The series system is the worst possible way to arrange compo-
nents in a system; the parallel system is the best possible way to arrange components in a
system.
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1 2 n3

FIGURE 3.1 A series system.

Example 3.1

A series system functions when all its components function. Thus φ(x ) assumes the value 1
when x1 =x2 = · · ·= xn =1, and 0 otherwise. Therefore,

φ(x ) =
{

0 if there exists an i such that xi = 0
1 if xi = 1 for all i = 1, 2, . . ., n

= min{xi, x2, . . ., xn}

=
n∏

i=1

xi

These three different ways of expressing the value of the structure function are equivalent,
although the third is preferred because of its compactness. Systems that function only when
all their components function should be modeled as series systems.

Block diagrams are useful for visualizing a system of components. The block diagram
corresponding to a series system of n components is shown in Figure 3.1. A block diagram
is a graphic device for expressing the arrangement of the components to form a system.
If a path can be traced through functioning components from left to right on a block
diagram, then the system functions. The boxes represent the system components, and either
component numbers or reliabilities are placed inside the boxes. �

Example 3.2

A parallel system functions when one or more of the components function. Thus φ(x )
assumes the value 0 when x1 = x2 = · · ·=xn =0, and 1 otherwise.

φ(x) =
{

0 if xi = 0 for all i = 1, 2, . . ., n
1 if there exists an i such that xi = 1

= max{x1, x2, . . ., xn}

= 1 −
n∏

i=1

(1 − xi)

As in the case of the series system, the three ways of defining φ(x ) are equivalent. The
block diagram of a parallel arrangement of n components is shown in Figure 3.2. A parallel
arrangement of components is appropriate when all components must fail for the system to
fail. A two-component parallel system, for instance, is the brake system on an automobile
that contains two reservoirs for brake fluid. Arranging components in parallel is also known
as redundancy. �

Series and parallel systems are special cases of k-out-of-n systems, which function if k or
more of the n components function. A series system is an n-out-of-n system, and a parallel
system is a 1-out-of-n system. A suspension bridge that needs only k of its n cables to
support the bridge or an automobile engine that needs only k of its n cylinders to run are
examples of k-out-of-n systems.
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FIGURE 3.2 A parallel system.
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FIGURE 3.3 A 2-out-of-3 system.

Example 3.3

The structure function of a k-out-of-n system is

φ(x) =

{
0 if

∑n
i=1 xi < k

1 if
∑n

i=1 xi ≥ k

The block diagram for a k-out-of-n system is difficult to draw in general, but for specific
values of k and n it can be drawn by repeating components in the block diagram. The block
diagram for a 2-out-of-3 system, for example, is shown in Figure 3.3. The block diagram
indicates that if all three, or exactly two out of three components (in particular 1 and 2,
1 and 3, or 2 and 3) function, then the system functions. The structure function for a
2-out-of-3 system is

φ(x) = 1 − (1 − x1x2)(1 − x1x3)(1 − x2x3)

= x1x2 + x1x3 + x2x3 − x2
1x2x3 − x1x

2
2x3 − x1x2x

2
3 + (x1x2x3)2 �

Most real-world systems have a more complex arrangement of components than a
k-out-of-n arrangement. The next example illustrates how to combine series and parallel
arrangements to determine the appropriate structure function for a more complex system.

Example 3.4

An airplane has four propellers, two on each wing. The airplane will fly (function) if at
least one propeller on each wing functions. In this case, the four propellers are denoted by
components 1, 2, 3, and 4, with 1 and 2 being on the left wing and 3 and 4 on the right
wing. For the moment, if the plane is considered to consist of two wings (not considering
individual propellers), then the wings are arranged in series, as failure of the propulsion
on either wing results in system failure. Each wing can be modeled as a two-component
parallel subsystem of propellers, as only one propeller on each wing is required to function.
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1

2

3

4

FIGURE 3.4 A four-propeller system.

The appropriate block diagram for the system is shown in Figure 3.4. The structure function
is the product of the structure functions of the two parallel subsystems:

φ(x) = [1 − (1 − x1)(1 − x2)][1 − (1 − x3)(1 − x4)] �

To avoid studying structure functions that are unreasonable, a subset of all possible
systems of n components, namely coherent systems, has been defined. A system is coher-
ent if φ(x ) is nondecreasing in x [e.g., φ(x1, . . ., xi−1, 0, xi+1, . . ., xn)≤φ(x1, . . ., xi−1, 1,
xi+1, . . ., xn) for all i] and there are no irrelevant components. The condition that φ(x )
be nondecreasing in x implies that the system will not degrade if a component upgrades. A
component is irrelevant if its state has no impact on the structure function. Many theorems
related to coherent systems have been proven; one of the more useful is that redundancy
at the component level is more effective than redundancy at the system level. This is an
important consideration in reliability design, where a reliability engineer decides the com-
ponents to choose (reliability allocation) at appropriate positions in the system (reliability
optimization).

3.2.2 Reliability Functions

The discussion of structure functions so far has been completely deterministic in nature. We
now introduce probability into the mix by first defining reliability. The paragraphs following
the definition expand on the italicized words in the definition.

DEFINITION 3.3 The reliability of an item is the probability that it will adequately
perform its specified purpose for a specified period of time under specified environmental
conditions.

The definition implies that the object of interest is an item. The definition of the item
depends on the purpose of the study. In some situations, we will consider an item to be an
interacting arrangement of components; in other situations, the component level of detail
in the model is not of interest.

Reliability is defined as a probability. Thus, the axioms of probability apply to reliabil-
ity calculations. In particular, this means that all reliabilities must be between 0 and 1
inclusive, and that the results derived from the probability axioms must hold. For exam-
ple, if two independent components have 1000-hour reliabilities of p1 and p2, and system
failure occurs when either component fails (i.e., a two-component series system), then the
1000-hour system reliability is p1p2.

Adequate performance for an item must be stated unambiguously. A standard is often
used to determine what is considered adequate performance. A mechanical part may require
tolerances that delineate adequate performance from inadequate performance. The perfor-
mance of an item is related to the mathematical model used to represent the condition of
the item. The simplest model for an item is a binary model, which was introduced earlier,
in which the item is in either the functioning or failed state. This model is easily applied to
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a light bulb; it is more difficult to apply to items that gradually degrade over time, such as
a machine tool. To apply a binary model to an item that degrades gradually, a threshold
value must be determined to separate the functioning and failed states.

The definition of reliability also implies that the purpose or intended use of the item must
be specified. Machine tool manufacturers, for example, often produce two grades of an item:
one for professional use and another for consumer use.

The definition of reliability also indicates that time is involved in reliability, which implies
five consequences. First, the units for time need to be specified (e.g., minutes, hours, years)
by the modeler to perform any analysis. Second, many lifetime models use the random
variable T (rather than X, which is common in probability theory) to represent the failure
time of the item. Third, time need not be taken literally. The number of miles may represent
time for an automobile tire; the number of cycles may represent time for a light switch.
Fourth, a time duration associated with a reliability must be specified. The reliability of
a component, for example, should not be stated as simply 0.98, as no time is specified.
It is equally ambiguous for a component to have a 1000-hour life without indicating a
reliability for that time. Instead, it should be stated that the 1000-hour reliability is 0.98.
This requirement of stating a time along with a reliability applies to systems as well as
components. Finally, determining what should be used to measure the lifetime of an item
may not be obvious. Reliability analysts must consider whether continuous operation or
on/off cycling is more effective for items such as motors or computers.

The last aspect of the definition of reliability is that environmental conditions must be
specified. Conditions such as temperature, humidity, and turning speed all affect the lifetime
of a machine tool. Likewise, the driving conditions for an automobile will influence its relia-
bility. Included in environmental conditions is the preventive maintenance to be performed
on the item.

We now return to the mathematical models for determining the reliability of a system.
Two additional assumptions need to be made for the models developed here. First, the n
components comprising a system must be nonrepairable. Once a component changes from
the functioning to the failed state, it cannot return to the functioning state. This assumption
was not necessary when structure functions were introduced, as a structure function simply
maps the component states to the system state. The structure function can be applied to
a system with nonrepairable or repairable components. The second assumption is that the
components are independent. Thus, failure of one component does not influence the proba-
bility of failure of other components. This assumption is not appropriate if the components
operate in a common environment where there may be common-cause failures. Although
the independence assumption makes the mathematics for modeling a system simpler, the
assumption should not be automatically applied.

Previously, xi was defined to be the state of component i. Now Xi is a random variable
with the same meaning.

DEFINITION 3.4 The random variable denoting the state of component i, denoted by
X i, is

Xi =
{

0 if component i has failed
1 if component i is functioning

for i= 1, 2, . . ., n.

These n values can be written as a random system state vector X . The probability that
component i is functioning at a certain time is given by pi = P (Xi = 1), which is often called
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the reliability of the ith component, for i= 1, 2, . . ., n. The P function denotes probability.
These n values can be written as a reliability vector p = (p1, p2, . . ., pn).

The system reliability, denoted by r, is defined by

r = P [φ(X ) = 1]

where r is a quantity that can be calculated from the vector p, so r = r(p). The function r(p)
is called the reliability function. In some of the examples in this section, the components have
identical reliabilities (that is, p1 = p2 = · · ·= pn = p), which is indicated by the notation r(p).

Several techniques are used to calculate system reliability. We will illustrate two of the
simplest techniques: definition and expectation. The first technique for finding the reliabil-
ity of a coherent system of n independent components is to use the definition of system
reliability directly, as illustrated in the example.

Example 3.5

The system reliability of a series system of n components is easily found using the definition
of r(p) and the independence assumption.

r(p) = P [φ(X) = 1]

= P

[
n∏

i=1

Xi = 1

]

=
n∏

i=1

P [Xi = 1]

=
n∏

i=1

pi

The product in this formula indicates that system reliability is always less than the reliability
of the least reliable component. This “chain is only as strong as its weakest link” result
indicates that improving the weakest component causes the largest increase in the reliability
of a series system. �

In the special case when all components are identical, the reliability function reduces
to r(p)= pn, where p1 = p2 = · · ·= pn = p. The plot in Figure 3.5 of component reliability
versus system reliability for several values of n shows that highly reliable components are
necessary to achieve reasonable system reliability, even for small values of n.

The second technique, expectation, is based on the fact that P [φ(X )= 1] is equal to
E[φ(X )], because φ(X ) is a Bernoulli random variable. Consequently, the expected value
of φ(X ) is the system reliability r(p), as illustrated in the next example.

Example 3.6

Since the components are assumed to be independent, the system reliability for a parallel
system of n components using the expectation technique is

r(p) = E[φ(X)]

= E

[
1 −

n∏
i=1

(1 − Xi)

]
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FIGURE 3.5 Reliability of a series system of n components.
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FIGURE 3.6 Reliability of a parallel system of n components.

= 1 − E

[
n∏

i=1

(1 − Xi)

]

= 1 −
n∏

i=1

E[1 − Xi]

= 1 −
n∏

i=1

(1 − pi)

In the special case of identical components, this expression reduces to r(p) = 1− (1− p)n.
Figure 3.6 shows component reliability versus system reliability for a parallel system of n
identical components. The law of diminishing returns is apparent from the graph when a
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fixed component reliability is considered. The marginal gain in reliability decreases dramat-
ically as more components are added to the system. �

There are two systems that appear to be similar to parallel systems on the surface, but
they are not true parallel systems such as the one considered in the previous example.
The first such system is a standby system. In a standby system, not all the components
function simultaneously, and components are switched to standby components upon failure.
Examples of standby systems include a spare tire for an automobile and having three power
sources (utility company, backup generator, and batteries) for a hospital. In contrast, all
components are functioning simultaneously in a true parallel system.

The second such system is a shared-parallel system. In a shared-parallel system, all com-
ponents are online, but the component reliabilities change when one component fails. The
lug nuts that attach a wheel to an automobile are an example of a five-component shared-
parallel system. When one lug nut fails (i.e., loosens or falls off), the load on the remaining
functioning lug nuts increases. Thus, the static reliability calculations presented in this
section are not appropriate for a wheel attachment system. In contrast, the failure of a
component in a true parallel system does not affect the reliabilities of any of the other
components in the system.

3.3 Lifetime Distributions

Reliability has only been considered at one particular instant of time. Reliability is general-
ized to be a function of time in this section, and various lifetime distribution representations
that are helpful in describing the evolution of the risks to which an item is subjected over
time are introduced. In particular, four lifetime distribution representations are presented:
the survivor function, the probability density function, the hazard function, and the cumula-
tive hazard function. These four distribution representations apply to both continuous (e.g.,
a fuse) and discrete (e.g., software executed daily) lifetimes, although the focus here is on
continuous lifetimes. These four representations are not the only ways to define the distri-
bution of the continuous, nonnegative random variable T , referred to generically here as
a “lifetime.” Other methods include the moment generating function E[esT ], the charac-
teristic function E[eisT ], the Mellin transform E[T s], and the mean residual life function
E[T − t|T ≥ t]. The four representations used here have been chosen because of their intu-
itive appeal, their usefulness in problem solving, and their popularity in the literature.

3.3.1 Survivor Function

The first lifetime distribution representation is the survivor function, S(t). The survivor
function is a generalization of reliability. Whereas reliability is defined as the probability
that an item is functioning at one particular time, the survivor function is the probability
that an item is functioning at any time t:

S(t) = P [T ≥ t] t ≥ 0

It is assumed that S(t)= 1 for all t< 0. A survivor function is also known as the reliability
function [since S(t) is the reliability at time t] and the complementary cumulative distribu-
tion function [since S(t) = 1−F (t) for continuous random variables, where F (t)= P [T ≤ t]
is the cumulative distribution function]. All survivor functions must satisfy three conditions:

S(0) = 1 lim
t→∞S(t) = 0 S(t) is nonincreasing
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There are two interpretations of the survivor function. First, S(t) is the probability that
an individual item is functioning at time t. This is important, as will be seen later, in
determining the lifetime distribution of a system from the distribution of the lifetimes of
its individual components. Second, if there is a large population of items with identically
distributed lifetimes, S(t) is the expected fraction of the population that is functioning at
time t.

The survivor function is useful for comparing the survival patterns of several populations
of items. If S1(t)≥S2(t), for all t values, for example, it can be concluded that the items in
population 1 are superior to those in population 2 with regard to reliability.

3.3.2 Probability Density Function

The second lifetime distribution representation, the probability density function, is defined
by f(t)=−S′(t), where the derivative exists. It has the probabilistic interpretation

f(t)Δt = P [t ≤ T ≤ t + Δt]

for small values of Δt. Although the probability density function is not as effective as
the survivor function in comparing the survival patterns of two populations, a graph of
f(t) indicates the likelihood of failure for a new item over the course of its lifetime. The
probability of failure between times a and b is calculated by an integral:

P [a ≤ T ≤ b] =

b∫
a

f(t)dt

All probability density functions for lifetimes must satisfy two conditions:
∞∫
0

f(t)dt = 1 f(t) ≥ 0 for all t ≥ 0

It is assumed that f(t)= 0 for all t < 0.

3.3.3 Hazard Function

The hazard function, h(t), is perhaps the most popular of the five representations for lifetime
modeling due to its intuitive interpretation as the amount of risk associated with an item
at time t. The hazard function goes by several aliases: in reliability it is also known as the
hazard rate or failure rate; in actuarial science it is known as the force of mortality or force
of decrement; in point process and extreme value theory it is known as the rate or intensity
function; in vital statistics it is known as the age-specific death rate; and in economics its
reciprocal is known as Mill’s ratio.

The hazard function can be derived using conditional probability. First, consider the
probability of failure between t and t + Δt:

P [t ≤ T ≤ t + Δt] =

t+Δt∫
t

f(τ)dτ = S(t) − S(t + Δt)

Conditioning on the event that the item is working at time t yields

P [t ≤ T ≤ t + Δt|T ≥ t] =
P [t ≤ T ≤ t + Δt]

P [T ≥ t]
=

S(t) − S(t + Δt)
S(t)
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If this conditional probability is averaged over the interval [t, t + Δt] by dividing by Δt, an
average rate of failure is obtained:

S(t) − S(t + Δt)
S(t)Δt

As Δt→ 0, this average failure rate becomes the instantaneous failure rate, which is the
hazard function

h(t) = lim
Δt→0

S(t) − S(t + Δt)
S(t)Δt

= − S′(t)
S(t)

=
f(t)
S(t)

t ≥ 0

Thus, the hazard function is the ratio of the probability density function to the survivor func-
tion. Using the previous derivation, a probabilistic interpretation of the hazard function is

h(t)Δt = P [t ≤ T ≤ t + Δt|T > t]

for small values of Δt, which is a conditional version of the interpretation for the probability
density function. All hazard functions must satisfy two conditions:

∞∫
0

h(t)dt = ∞ h(t) ≥ 0 for all t ≥ 0

The units on a hazard function are typically given in failures per unit time, for example,
h(t)= 0.03 failures per hour. Since the magnitude of hazard functions can often be quite
small, they are often expressed in scientific notation, for example, h(t)= 3.8 failures per
106 hours, or the time units are chosen to keep hazard functions from getting too small, for
example, h(t)= 8.4 failures per year.

The shape of the hazard function indicates how an item ages. The intuitive interpretation
as the amount of risk an item is subjected to at time t indicates that when the hazard
function is large the item is under greater risk, and when the hazard function is small the
item is under less risk. The three hazard functions plotted in Figure 3.7 correspond to an
increasing hazard function (labeled IFR for increasing failure rate), a decreasing hazard
function (labeled DFR for decreasing failure rate), and a bathtub-shaped hazard function
(labeled BT for bathtub-shaped failure rate).

The increasing hazard function is probably the most likely situation of the three. In this
case, items are more likely to fail as time passes. In other words, items wear out or degrade
with time. This is almost certainly the case with mechanical items that undergo wear or
fatigue. The second situation, the decreasing hazard function, is less common. In this case,
the item is less likely to fail as time passes. Items with this type of hazard function improve
with time. Some metals, for example, work-harden through use and thus have increased
strength as time passes. Another situation for which a decreasing hazard function might be
appropriate for modeling is in working the bugs out of computer programs. Bugs are more
likely to appear initially, but the likelihood of them appearing decreases as time passes.

The third situation, a bathtub-shaped hazard function, occurs when the hazard function
decreases initially and then increases as items age. Items improve initially and then degrade
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FIGURE 3.7 Hazard functions.

as time passes. One instance where the bathtub-shaped hazard function arises is in the life-
times of manufactured items. Often manufacturing, design, or component defects cause early
failures. The period in which these failures occur is sometimes called the burn-in period. If
failure is particularly catastrophic, this part of the lifetime will often be consumed by the
manufacturer in a controlled environment. The time value during which early failures have
been eliminated may be valuable to a producer who is determining an appropriate warranty
period. Once items pass through this early part of their lifetime, they have a fairly constant
hazard function, and failures are equally likely to occur at any point in time. Finally, as
items continue to age, the hazard function increases without limit, resulting in wear-out
failures. Bathtub-shaped hazard functions are also used for modeling human lifetimes.

Care must be taken to differentiate between the hazard function for a population and
the hazard function for an individual item under consideration. Consider the lifetimes of a
certain model of a laptop computer as an illustration. Consider the following question: do
two laptops operating in identical environments necessarily have the same hazard function?
The answer is no. The laptops have their own individual hazard functions as they might
have been manufactured at different facilities that may have included differing conditions
(e.g., temperature, raw materials, parts suppliers). So, although a hazard function could be
drawn for all laptop computers, it would be an aggregate hazard function representing the
population, and individual laptops may be at increased or decreased risk.

3.3.4 Cumulative Hazard Function

The fourth lifetime distribution representation, the cumulative hazard function H(t), can
be defined by

H(t) =

t∫
0

h(τ)dτ t ≥ 0

The cumulative hazard function is also known as the integrated hazard function. All cumu-
lative hazard functions must satisfy three conditions:

H(0) = 0 lim
t→∞H(t) = ∞ H(t) is nondecreasing
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The cumulative hazard function is valuable for variate generation in Monte Carlo simu-
lation, implementing certain procedures in statistical inference, and defining certain distri-
bution classes.

The four distribution representations presented here are equivalent in the sense that each
completely specifies a lifetime distribution. Any one lifetime distribution representation
implies the other four. Algebra and calculus can be used to find one lifetime distribution
representation given that another is known. For example, if the survivor function is known,
the cumulative hazard function can be determined by

H(t) =

t∫
0

h(τ)dτ =

t∫
0

f(τ)
S(τ)

dτ = − log S(t)

where log is the natural logarithm (log base e).

3.3.5 Expected Values and Fractiles

Once a lifetime distribution representation for a particular item (which may be a component
or an entire system) is known, it may be of interest to compute a moment or a fractile of
the distribution. Moments and fractiles contain less information than a lifetime distribution
representation, but they are often useful ways to summarize the distribution of a random
lifetime. Examples of these performance measures include the mean time to failure, E[T ],
the median, t0.50, and the 99th fractile of a distribution, t0.99.

A formula for the expectation of some function of the random variable T , say u(T ), is

E[u(T )] =
∫ ∞

0

u(t)f(t)dt

The most common measure associated with a distribution is its mean, or first moment,

μ = E[T ] =
∫ ∞

0

tf(t)dt =
∫ ∞

0

S(t)dt

where the last equality is proved using integration by parts and is based on the assumption
that limt→∞ tS(t)= 0. The mean is a measure of the central tendency or average value that
a lifetime distribution assumes and is known as the center of gravity in physics. It is often
abbreviated by MTTF (mean time to failure) for nonrepairable items. For repairable items
that can be completely renewed by repair, it is often abbreviated by MTBF (mean time
between failures). Another value associated with a distribution is its variance, or second
moment about the mean,

σ2 = V [T ] = E[(T − μ)2] = E[T 2] − (E[T ])2

which is a measure of the dispersion of a lifetime distribution about its mean. The positive
square root of the variance is known as the standard deviation, which has the same units
as the random variable T .

Fractiles of a distribution are the times to which a specified proportion of the items
survives. The definition of the pth fractile of a distribution, tp, (often called the pth quantile
or 100pth percentile) satisfies

F (tp) = P [T ≤ tp] = p

or, equivalently,

tp = F−1(p)
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Example 3.7

The exponential distribution has survivor function

S(t) = e−λt t ≥ 0

where λ is a positive parameter known as the failure rate. Find the mean, variance, and the
pth fractile of the distribution. The mean can be found by integrating the survivor function
from 0 to infinity:

μ = E[T ] =

∞∫
0

S(t)dt =

∞∫
0

e−λtdt =
1
λ

Since the probability density function is f(t)=−S′(t)= λe−λt for t> 0, the second moment
about the origin is

E[T 2] =

∞∫
0

t2f(t)dt =

∞∫
0

t2λe−λtdt =
2
λ2

using integration by parts twice. Therefore, the variance is

σ2 = V [T ] = E[T 2] − (E[T ])2 =
2
λ2

− 1
λ2

=
1
λ2

Finally, the pth fractile of the distribution, tp, is found by solving

1 − e−λtp = p

for tp, yielding tp =− 1
λ log(1− p). �

3.3.6 System Lifetime Distributions

To this point, the discussion concerning the four lifetime representations S(t), f(t), h(t),
and H(t) has assumed that the variable of interest is the lifetime of an item. For systems of
components, both the individual components and the system have random lifetimes whose
lifetime distributions can be defined by any of the four lifetime distributions. We now inte-
grate reliability functions from Section 3.2 and the lifetime distribution representations from
this section, which allows a modeler to find the distribution of the system lifetime, given
the distributions of the component lifetimes. The component lifetime representations are
denoted by Si(t), fi(t), hi(t), and Hi(t), for i= 1, 2, . . ., n, and the system lifetime represen-
tations are denoted by S(t), f(t), h(t), and H(t).

The survivor function is a time-dependent generalization of reliability. Whereas reliability
always needs an associated time value (e.g., the 4000-hour reliability is 0.96), the survivor
function is the reliability at any time t.

To find the reliability of a system at any time t, the component survivor functions should
be used as arguments in the reliability function, that is,

S(t) = r(S1(t), S2(t), . . ., Sn(t))

Once S(t) is known, it is straightforward to determine any of the other four lifetime repre-
sentations, moments, or fractiles, as illustrated in the following examples.
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Example 3.8

Two independent components with survivor functions

S1(t) = e−t and S2(t) = e−2t

for t≥ 0, are arranged in series. Find the survivor and hazard functions for the system
lifetime. Since the reliability function for a two-component series system is r(p)= p1p2, the
system survivor function is

S(t) = S1(t)S2(t)

= e−te−2t

= e−3t t ≥ 0

which can be recognized as the survivor function for an exponential distribution with λ = 3.
The hazard function for the system is

h(t) = −S′(t)
S(t)

= 3 t ≥ 0

Thus, if two independent components with exponential times to failure are arranged in
series, the time to system failure is also exponentially distributed with a failure rate that
is the sum of the failure rates of the individual components. This result can be generalized
to series systems with more than two components. If the lifetime of component i in a series
system of n independent components has an exponential distribution with failure rate λi,
then the system lifetime is exponentially distributed with failure rate

∑n
i=1 λi. �

The next example considers a parallel system of components having exponential lifetimes.

Example 3.9

Two independent components have hazard functions

h1(t) = 1 and h2(t) = 2

for t≥ 0. If the components are arranged in parallel, find the hazard function of the time
to system failure and the mean time to system failure.

The survivor functions of the components are

S1(t) = e−H1(t) = e−
∫ t
0 h1(τ)dτ = e−t

for t≥ 0. Likewise, S2(t) = e−2t for t≥ 0. Since the reliability function for a two-component
parallel system is r(p) = 1− (1− p1)(1− p2), the system survivor function is

S(t) = 1 − (1 − S1(t))(1 − S2(t))

= 1 − (1 − e−t)(1 − e−2t)

= e−t + e−2t − e−3t t ≥ 0

The hazard function is

h(t) = −S′(t)
S(t)

=
e−t + 2e−2t − 3e−3t

e−t + e−2t − e−3t
t ≥ 0
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To find the mean time to system failure, the system survivor function is integrated from 0
to infinity:

μ =

∞∫
0

S(t)dt =

∞∫
0

(e−t + e−2t − e−3t)dt = 1 +
1
2
− 1

3
=

7
6

The mean time to failure of the stronger component is 1 and the mean time to failure
of the weaker component is 1/2. The addition of the weaker component in parallel with
the stronger only increases the mean time to system failure by 1/6. This is yet another
illustration of the law of diminishing returns for parallel systems. �

3.4 Parametric Models

The survival patterns of a machine tool, a fuse, and an aircraft are vastly different. One
would certainly not want to use the same failure time distribution with identical parameters
to model these diverse lifetimes. This section introduces two distributions that are commonly
used to model lifetimes. To adequately survey all the distributions currently in existence
would require an entire textbook, so detailed discussion here is limited to the exponential
and Weibull distributions.

3.4.1 Parameters

We begin by describing parameters, which are common to all lifetime distributions. The
three most common types of parameters used in lifetime distributions are location, scale,
and shape. Parameters in a lifetime distribution allow modeling of such diverse applications
as light bulb failure time, patient postsurgery survival time, and the failure time of a muffler
on an automobile by a single lifetime distribution (e.g., the Weibull distribution).

Location (or shift) parameters are used to shift the distribution to the left or right
along the time axis. If c1 and c2 are two values of a location parameter for a lifetime
distribution with survivor function S(t; c), then there exists a real constant α such that
S(t; c1)= S(α + t; c2). A familiar example of a location parameter is the mean of the normal
distribution.

Scale parameters are used to expand or contract the time axis by a factor of α. If λ1 and
λ2 are two values for a scale parameter for a lifetime distribution with survivor function
S(t;λ), then there exists a real constant α such that S(αt;λ1)= S(t;λ2). A familiar example
of a scale parameter is λ in the exponential distribution. The probability density function
always has the same shape, and the units on the time axis are determined by the value of λ.

Shape parameters are appropriately named because they affect the shape of the probabil-
ity density function. Shape parameter values might also determine whether a distribution
belongs to a particular distribution class such as IFR or DFR. A familiar example of a shape
parameter is κ in the Weibull distribution.

In summary, location parameters translate survival distributions along the time axis,
scale parameters expand or contract the time scale for survival distributions, and all other
parameters are shape parameters.

3.4.2 Exponential Distribution

Just as the normal distribution plays an important role in classical statistics because of the
central limit theorem, the exponential distribution plays an important role in reliability and
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lifetime modeling because it is the only continuous distribution with a constant hazard func-
tion. The exponential distribution has often been used to model the lifetime of electronic
components and is appropriate when a used component that has not failed is statistically as
good as a new component. This is a rather restrictive assumption. The exponential distri-
bution is presented first because of its simplicity. The Weibull distribution, a more complex
two-parameter distribution that can model a wider variety of situations, is presented sub-
sequently. The exponential distribution has a single positive scale parameter λ, often called
the failure rate, and the four lifetime distribution representations are

S(t) = e−λt f(t) = λe−λt h(t) = λ H(t) = λt for t ≥ 0

There are several probabilistic properties of the exponential distribution that are useful
in understanding how it is unique and when it should be applied. In the properties to be
outlined below, the nonnegative lifetime T typically has the exponential distribution with
parameter λ, which denotes the number of failures per unit time. The symbol ∼ means “is
distributed as.” Proofs of these results are given in most reliability textbooks.

THEOREM 3.1 (Memoryless Property) If T ∼ exponential(λ), then

P [T ≥ t] = P [T ≥ t + s|T ≥ s] t ≥ 0; s ≥ 0

As shown in Figure 3.8 for λ = 1 and s=0.5, the memoryless property indicates that
the conditional survivor function for the lifetime of an item that has survived to time s is
identical to the survivor function for the lifetime of a brand new item. This used-as-good-
as-new assumption is very strong. The exponential lifetime model should not be applied
to mechanical components that undergo wear (e.g., bearings) or fatigue (e.g., structural
supports) or electrical components that contain an element that burns away (e.g., filaments)
or degrades with time (e.g., batteries). An electrical component for which the exponential
lifetime assumption may be justified is a fuse. A fuse is designed to fail when there is a
power surge that causes the fuse to burn out. Assuming that the fuse does not undergo any
weakening or degradation over time and that power surges that cause failure occur with
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FIGURE 3.8 The memoryless property.
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equal likelihood over time, the exponential lifetime assumption is appropriate, and a used
fuse that has not failed is as good as a new one.

The exponential distribution should be applied judiciously as the memoryless property
restricts its applicability. It is usually misapplied for the sake of simplicity as the statistical
techniques for the exponential distribution are particularly tractable, or small sample sizes
do not support more than a one-parameter distribution.

THEOREM 3.2 The exponential distribution is the only continuous distribution with the
memoryless property.

This result indicates that the exponential distribution is the only continuous lifetime
distribution for which the conditional lifetime distribution of a used item is identical to the
original lifetime distribution. The only discrete distribution with the memoryless property
is the geometric distribution.

THEOREM 3.3 If T ∼ exponential(λ), then

E[T s] =
Γ(s + 1)

λs
s > −1

where the gamma function is defined by

Γ(α) =

∞∫
0

xα−1e−xdx

When s is a nonnegative integer, this expression reduces to E[T s] = s!/λs. By setting
s= 1 and 2, the mean and variance can be obtained:

E[T ] =
1
λ

V [T ] =
1
λ2

THEOREM 3.4 (Self-Reproducing) If T1, T2, . . ., Tn are independent, Ti ∼ expo-
nential(λi), for i= 1, 2, . . ., n, and T = min{T1, T2, . . ., Tn}, then

T ∼ exponential

(
n∑

i=1

λi

)

This result indicates that the minimum of n exponential random lifetimes also has the
exponential distribution, as alluded to in the previous section. This is important in two
applications. First, if n independent exponential components, each with exponential times to
failure, are arranged in series, the distribution of the system failure time is also exponential
with a failure rate equal to the sum of the component failure rates. When the n components
have the same failure rate λ, the system lifetime is exponential with failure rate nλ. Second,
when there are several independent, exponentially distributed causes of failure competing
for the lifetime of an item (e.g., failing by open or short circuit for an electronic item or
death by various risks for a human being), the lifetime can be modeled as the minimum of
the individual lifetimes associated with each cause of failure.
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THEOREM 3.5 If T1, T2, . . ., Tn are independent and identically distributed
exponential(λ) random variables, then

2λ

n∑
i=1

Ti ∼ χ2(2n)

where χ2(2n) denotes the chi-square distribution with 2n degrees of freedom.

This property is useful for determining a confidence interval for a λ based on a data set
of n independent exponential lifetimes. For instance, with probability 1−α,

χ2
2n,1−α/2 < 2λ

n∑
i=1

Ti < χ2
2n,α/2

where the left- and right-hand sides of this inequality are the α/2 and 1−α/2 fractiles of
the chi-square distribution with 2n degrees of freedom, that is, the second subscript denotes
right-hand tail areas. Rearranging this expression yields a 100(1−α)% confidence interval
for λ:

χ2
2n,1−α/2

2
∑n

i=1
Ti

< λ <
χ2

2n,α/2

2
∑n

i=1
Ti

THEOREM 3.6 If T1, T2, . . ., Tn are independent and identically distributed
exponential(λ) random variables, T(1), T(2), . . ., T(n) are the corresponding order statistics
(the observations sorted in ascending order), Gk = T(k) −T(k−1) for k = 1, 2, . . ., n, and if
T(0) = 0, then

• P [Gk ≥ t] = e−(n−k+1)λt; t≥ 0; k = 1, 2, . . ., n.
• G1, G2, . . ., Gn are independent.

This property is most easily interpreted in terms of a life test of n items with
exponential(λ) lifetimes. Assume that the items placed on the life test are not replaced
with new items when they fail. The ith item fails at time t(i), and Gi = t(i) − t(i−1) is the
time between the (i− 1)st and ith failure, for i= 1, 2, . . ., n, as indicated in Figure 3.9 for
n= 4. The result states that these gaps (Gi’s) between the failure times are independent
and exponentially distributed. The proof of this theorem relies on the memoryless property
and the self-reproducing property of the exponential distribution, which implies that when
the ith failure occurs the time until the next failure is the minimum of n− i independent
exponential random variables.

THEOREM 3.7 If T1, T2, . . ., Tn are independent and identically distributed
exponential(λ) random variables and T(r) is the rth order statistic, then

E[T(r)] =
r∑

k=1

1
(n − k + 1)λ

t
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FIGURE 3.9 Order statistics and gap statistics.
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and

V [T(r)] =
r∑

k=1

1
[(n − k + 1)λ]2

for r = 1, 2, . . ., n.

The expected value and variance of the rth-ordered failure are simple functions of n, λ,
and r. The proof of this result is straightforward, as the gaps between order statistics are
independent exponential random variables from the previous theorem, and the rth ordered
failure on a life test of n items is the sum of the first r gaps. This result is useful in
determining the expected time to complete a life test that is discontinued after r of the n
items on test fail.

THEOREM 3.8 If T1, T2, . . . are independent and identically distributed exponential(λ)
random variables denoting the interevent times for a point process, then the number of
events in the interval [0, t] has the Poisson distribution with parameter λt.

This property is related to the memoryless property and can be applied to a compo-
nent that is subjected to shocks occurring randomly over time. It states that if the time
between shocks is exponential(λ) then the number of shocks occurring by time t has the
Poisson distribution with parameter λt. This result also applies to the failure time of a cold
standby system of n identical exponential components in which nonoperating units do not
fail and sensing and switching are perfect. The probability of fewer than n failures by time
t (the system reliability) is

n−1∑
k=0

(λt)k

k!
e−λt

The exponential distribution, for which the item under study does not age in a probabilis-
tic sense, is the simplest possible lifetime model. Another popular distribution that arises
in many reliability applications is the Weibull distribution, which is presented next.

3.4.3 Weibull Distribution

The exponential distribution is limited in applicability because of the memoryless prop-
erty. The assumption that a lifetime has a constant failure rate is often too restrictive or
inappropriate. Mechanical items typically degrade over time and hence are more likely to
follow a distribution with a strictly increasing hazard function. The Weibull distribution is a
generalization of the exponential distribution that is appropriate for modeling lifetimes hav-
ing constant, strictly increasing, and strictly decreasing hazard functions. The four lifetime
distribution representations for the Weibull distribution are

S(t) = e−(λt)κ

f(t) = κλκtκ−1e−(λt)κ

h(t) = κλκtκ−1 H(t) = (λt)κ

for all t≥ 0, where λ> 0 and κ> 0 are the scale and shape parameters of the distribution.
The hazard function approaches zero from infinity for κ< 1, is constant for κ = 1, the expo-
nential case, and increases from zero when κ> 1. Hence, the Weibull distribution can attain
hazard function shapes in both the IFR and DFR classes and includes the exponential distri-
bution as a special case. One other special case occurs when κ = 2, commonly known as the
Rayleigh distribution, which has a linear hazard function with slope 2λ2. When 3< κ < 4,
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the shape of the probability density function resembles that of a normal probability density
function.

Using the expression

E[T r] =
r

κλr
Γ
( r

κ

)

for r = 1, 2, . . ., the mean and variance for the Weibull distribution are

μ =
1
λκ

Γ
(

1
κ

)

and

σ2 =
1
λ2

{
2
κ

Γ
(

2
κ

)
−
[

1
κ

Γ
(

1
κ

)]2}

Example 3.10

The lifetime of a machine used continuously under known operating conditions has the
Weibull distribution with λ = 0.00027 and κ =1.55, where time is measured in hours. (Esti-
mating the parameters for the Weibull distribution from a data set will be addressed subse-
quently, but the parameters are assumed to be known for this example.) What is the mean
time to failure and the probability the machine will operate for 5000 hours?

The mean time to failure is

μ = E[T ] =
1

(0.00027)(1.55)
Γ
(

1
1.55

)
= 3331 hours

The probability that the machine will operate for 5000 hours is

S(5000) = e−[(0.00027)(5000)]1.55
= 0.203 �

The Weibull distribution also has the self-reproducing property, although the conditions
are slightly more restrictive than for the exponential distribution. If T1, T2, . . ., Tn are inde-
pendent component lifetimes having the Weibull distribution with identical shape param-
eters, then the minimum of these values has the Weibull distribution. More specifically, if
Ti ∼Weibull(λi, κ) for i= 1, 2, . . ., n, then

min{T1, T2, . . ., Tn} ∼ Weibull

⎛
⎝
(

n∑
i=1

λκ
i

)1/κ

, κ

⎞
⎠

Although the exponential and Weibull distributions are popular lifetime models, they are
limited in their modeling capability. For example, if it were determined that an item had a
bathtub-shaped hazard function, neither of these two models would be appropriate. Dozens
of other models have been developed over the years, such as the gamma, lognormal, inverse
Gaussian, exponential power, and log logistic distributions. These distributions provide
further modeling flexibility beyond the exponential and Weibull distributions.

3.5 Parameter Estimation in Survival Analysis

This section investigates fitting the two distributions presented in Section 3.4, the exponen-
tial and Weibull distributions, to a data set of failure times. Other distributions, such as
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the gamma distribution or the exponential power distribution, have analogous methods of
parameter estimation. Two sample data sets are introduced and are used throughout this
section.

The analysis in this section assumes that a random sample of n items from a popula-
tion has been placed on a test and subjected to typical field operating conditions. The
data values are assumed to be independent and identically distributed random lifetimes
from a particular population distribution. As with all statistical inference, care must be
taken to ensure that a random sample of lifetimes is collected. Consequently, random num-
bers should be used to determine which n items to place on test. Laboratory conditions
should adequately mimic field conditions. Only representative items should be placed on
test because items manufactured using a previous design may have a different failure pattern
than those with the current design.

A data set for which all failure times are known is called a complete data set. Figure 3.10
illustrates a complete data set of n= 5 items placed on test, where the X’s denote fail-
ure times. (The term “items placed on test” is used instead of “sample size” or “number
of observations” because of potential confusion when right censoring is introduced.) The
likelihood function for a complete data set of n items on test is given by

L(θ) =
n∏

i=1

f(ti)

where t1, t2, . . ., tn are the failure times and θ is a vector of unknown parameters. (Although
lowercase letters are used to denote the failure times here to be consistent with the notation
for censoring times, the failure times are nonnegative random variables.)

Censoring occurs frequently in lifetime data because it is often impossible or impractical
to observe the lifetimes of all the items on test. A censored observation occurs when only
a bound is known on the time of failure. If a data set contains one or more censored
observations, it is called a censored data set. The most frequent type of censoring is known
as right censoring. In a right-censored data set, one or more items have only a lower bound
known on the lifetime. The number of items placed on test is still denoted by n and the
number of observed failures is denoted by r.

One special case of right censoring is considered here. Type II or order statistic censoring
corresponds to terminating a study upon one of the ordered failures. Figure 3.11 shows the
case of n= 5 items are placed on a test that is terminated when r = 3 failures are observed.
The third and fourth items on test had their failure times right censored.

Writing the likelihood function for a censored data set requires some additional notation.
As before, let t1, t2, . . ., tn be lifetimes sampled randomly from a population. The corre-
sponding right-censoring times are denoted by c1, c2, . . ., cn. The set U contains the indexes
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FIGURE 3.10 A complete data set with n = 5.
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FIGURE 3.11 A right-censored data set with n = 5 and r = 3.

of the items that are observed to fail during the test (the uncensored observations):

U = {i|ti ≤ ci}

The set C contains the indexes of the items whose failure time exceeds the corresponding
censoring time (they are right censored):

C = {i|ti > ci}
Let xi = min {ti, ci}. The likelihood function is:

L(θ) =
∏
i∈U

f(ti)
∏
i∈C

S(ci) =
∏
i∈U

f(xi)
∏
i∈C

S(xi)

The reason that the survivor function is the appropriate term in the likelihood function for
a right-censored observation is that S(ci) is the probability that item i survives to censoring
time ci. The log likelihood function is

log L(θ) =
∑
i∈U

log f(xi) +
∑
i∈C

log S(xi)

As the density function is the product of the hazard function and the survivor function, the
log likelihood function can be simplified to

log L(θ) =
∑
i∈U

log h(xi) +
∑
i∈U

log S(xi) +
∑
i∈C

log S(xi)

or

log L(θ) =
∑
i∈U

log h(xi) +
n∑

i=1

log S(xi)

Finally, as H(t)=− log S(t), the log likelihood can be written in terms of the hazard and
cumulative hazard functions only as

log L(θ) =
∑
i∈U

log h(xi) −
n∑

i=1

H(xi)

The choice of which of these three expressions for the log likelihood may be used for a
particular distribution depends on the particular forms of S(t), f(t), h(t), and H(t).
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3.5.1 Data Sets

Two lifetime data sets are presented here that are used to illustrate inferential techniques for
survivor (reliability) data. The two types of lifetime data sets presented here are a complete
data set, where all failure times are observed, and a Type II right-censored data set (order
statistic right censoring).

Example 3.11

A complete data set of n= 23 ball bearing failure times to test the endurance of deep-groove
ball bearings has been extensively studied (e.g., Meeker and Escobar, 1998, page 4). The
ordered set of failure times measured in 106 revolutions is

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84 51.96
54.12 55.56 67.80 68.64 68.64 68.88 84.12 93.12 98.64

105.12 105.84 127.92 128.04 173.40 �

Example 3.12

A Type II right-censored data set of n= 15 automotive a/c switches is given by Kapur and
Lamberson (1977, pages 253–254). The test was terminated when the fifth failure occurred.
The r = 5 ordered observed failure times measured in number of cycles are

1410 1872 3138 4218 6971

Although the choice of “time” as cycles in this case is discrete, the data will be analyzed as
continuous data. �

3.5.2 Exponential Distribution

The exponential distribution is popular due to its tractability for parameter estimation and
inference. Using the failure rate λ to parameterize the distribution, recall that the survivor,
density, hazard, and cumulative hazard functions are

S(t) = e−λt f(t) = λe−λt h(t) = λ H(t) = λt for all t ≥ 0

We begin with the analysis of a complete data set consisting of failure times t1, t2, . . ., tn.
Since all of the observations belong to the index set U , the log likelihood function derived
earlier becomes

log L(λ) =
n∑

i=1

log h(xi) −
n∑

i=1

H(xi)

=
n∑

i=1

log λ −
n∑

i=1

λti

= n log λ − λ

n∑
i=1

ti

The maximum likelihood estimator for λ is found by maximizing the log likelihood function.
To determine the maximum likelihood estimator for λ, the single element “score vector”

U(λ) =
∂ log L(λ)

∂λ
=

n

λ
−

n∑
i=1

ti
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often called the score statistic, is equated to zero, yielding

λ̂ =
n∑n

i=1
ti

Example 3.13

Consider the complete data set of n= 23 ball bearing failure times. For this particular data
set, the total time on test is

∑n
i=1 ti = 1661.16, yielding a maximum likelihood estimator

λ̂ =
n∑n

i=1
ti

=
23

1661.16
= 0.0138

failure per 106 revolutions.
As the data set is complete, an exact 95% confidence interval for the failure rate of the

distribution can be determined. Since χ2
46,0.975 = 29.16 and χ2

46,0.025 = 66.62, the confidence
interval derived in Section 3.4:

χ2
2n,1−α/2

2
∑n

i=1
Ti

< λ <
χ2

2n,α/2

2
∑n

i=1
Ti

becomes

(0.0138)(29.16)
46

< λ <
(0.0138)(66.62)

46
or

0.00878 < λ < 0.0201

Note that, due to the use of the chi-square distribution for this confidence interval, the
interval is not symmetric about the maximum likelihood estimator. For this and subsequent
examples, care has been taken to perform intermediate calculations involving numeric quan-
tities such as critical values or total time on test values to as much precision as possible;
then final values are reported using only significant digits.

Figure 3.12 shows the empirical survivor function, which takes a downward step of
1/n= 1/23 at each data point, along with the survivor function for the fitted exponen-
tial distribution. It is apparent from this figure that the exponential distribution is a very
poor fit. This particular data set was chosen for this example to illustrate one of the short-
comings of using the exponential distribution to model any data set without assessing the
adequacy of the fit. Extreme caution must be exercised when using the exponential distri-
bution since, as indicated in Figure 3.12, the exponential distribution might be a poor fit.
The appropriate distribution is probably in the IFR class, as the ball bearings are wearing
out. As shown subsequently, the Weibull distribution is a much better approximation to
this particular data set. As the exponential distribution can be fitted to any data set that
has at least one observed failure, the adequacy of the model must always be assessed. The
point and interval estimators associated with the exponential distribution are meaningful
only if the data set is a random sample from an exponential population. �

The importance of model adequacy assessments, such as those indicated in the previous
example, applies to all fitted distributions, not just the exponential distribution. Further-
more, if a modeler knows the failure physics (e.g., fatigue crack growth) underlying a process,
then an appropriate model consistent with the failure physics should be chosen.

We now turn to the analysis of right-censored data sets drawn from exponential popu-
lations. The previous discussion concerning complete data sets is a special case of Type II
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FIGURE 3.12 Empirical and exponential fitted survivor functions for the ball bearing data.

censoring when r =n. As before, assume that the failure times are t1, t2, . . ., tn, the test is
terminated upon the rth ordered failure, the censoring times are c1 = c2 = · · ·= cn = t(r) for
all items, and xi = min {ti, ci} for i= 1, 2, . . ., n.

The log likelihood function is

log L(λ) =
∑
i∈U

log h(xi) −
n∑

i=1

H(xi)

=
∑
i∈U

log λ −
n∑

i=1

λxi

= r log λ − λ
n∑

i=1

xi

Since there are r observed failures, the expression

n∑
i=1

xi

is often called the total time on test as it represents the total accumulated time that the
n items accrue while on test. To determine the maximum likelihood estimator, the log
likelihood function is differentiated with respect to λ,

U(λ) =
∂ log L(λ)

∂λ
=

r

λ
−

n∑
i=1

xi

and is equated to zero, yielding the maximum likelihood estimator

λ̂ =
r∑n

i=1
xi
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Exact confidence intervals and hypothesis tests concerning λ can also be derived in the
Type II censoring case by using the result

2λ

n∑
i=1

xi =
2rλ

λ̂
∼ χ2(2r)

where χ2(2r) is the chi-square distribution with 2r degrees of freedom. This result can be
proved in an analogous fashion to the case of a complete data set. Using this fact, it can be
stated with probability 1−α that

χ2
2r,1−α/2 <

2rλ

λ̂
< χ2

2r,α/2

Rearranging terms yields an exact 100(1−α)% confidence interval for the failure rate λ:

λ̂χ2
2r,1−α/2

2r
< λ <

λ̂χ2
2r,α/2

2r

Example 3.14

Consider the Type II right-censored data set of automotive switches, where n= 15 and there
are r = 5 observed failures, which are

t(1) = 1410, t(2) = 1872, t(3) = 3138, t(4) = 4218, t(5) = 6971

For this particular data set, the total time on test is
∑n

i=1 xi = 87,319 cycles, yielding a
maximum likelihood estimator

λ̂ =
r∑n

i=1 xi
=

5
87,319

= 0.00005726

failure per cycle. Equivalently, the maximum likelihood estimator for the mean of the dis-
tribution is

μ̂ =

∑n

i=1
xi

r
=

87,319
5

= 17,464

cycles to failure. As the data set is Type II right censored, an exact 95% confidence interval
for the failure rate of the distribution can be determined. Using the chi-square critical values,
χ2

10,0.975 = 3.247 and χ2
10,0.025 = 20.49, the formula for the confidence interval

λ̂χ2
2r,1−α/2

2r
< λ <

λ̂χ2
2r,α/2

2r

becomes

(0.00005726)(3.247)
10

< λ <
(0.00005726)(20.49)

10

or

0.00001859 < λ < 0.0001173

Taking reciprocals, this is equivalent to a 95% confidence interval for the mean number of
cycles to failure of

8525 < μ < 53,785
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FIGURE 3.13 Empirical and exponential fitted survivor functions for the automotive a/c switch data.

Not surprisingly, with only five observed failures, this is a rather wide confidence interval
for μ, and hence there is not as much precision as in the ball bearing example, where there
were 23 observed failures. Assessing the adequacy of the fit is more difficult in the case of
censoring, as it is impossible to determine what the lifetime distribution looks like after the
last observed failure time, which is 6971 cycles in this case. Figure 3.13 shows the empirical
survivor function and the associated fitted exponential survivor function. In this case, the
exponential distribution appears to adequately model the lifetimes through 6971 cycles. �

Situations often arise when it is useful to compare the failure rates of two exponential
populations based on data collected from each of the two populations. Examples include
comparing the survival of one brand of integrated circuit versus another and comparing the
survival of a single item at two levels of an environmental variable. Let the failure rate in
the first population be λ1 and the failure rate in the second population be λ2.

As in the previous subsections, x denotes the minimum of the lifetime t and the censoring
time c. The two data sets are denoted by

x11, x12, . . ., x1n1

the n1 values from the first population, and

x21, x22, . . ., x2n2

the n2 values from the second population. Thus xji is observation i (failure or right-censoring
time) from population j. Assume further that r1 > 0 failures are observed in the first popu-
lation and that r2 > 0 failures are observed in the second population. For tractability, it is
assumed that the tests performed on both populations use Type II censoring. This assump-
tion allows exact confidence intervals for λ1/λ2 to be derived. Approximate methods exist
when other types of censoring are used. In addition, these methods generalize to the case
of comparing more than two populations.
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Since 2λ1

∑n1
i=1 x1i has the chi-square distribution with 2r1 degrees of freedom and

2λ2

∑n2
i=1 x2i has the chi-square distribution with 2r2 degrees of freedom, the statistic

2λ1

∑n1

i=1
x1i/(2r1)

2λ2

∑n2

i=1
x2i/(2r2)

=
r2λ1

∑n1

i=1
x1i

r1λ2

∑n2

i=1
x2i

=
λ1λ̂2

λ2λ̂1

has the F distribution with 2r1 and 2r2 degrees of freedom. This is true because the ratio of
two independent chi-square random variables divided by their respective degrees of freedom
results in an F random variable. So with probability 1−α

F2r1,2r2,1−α/2 <
λ1λ̂2

λ2λ̂1

< F2r1,2r2,α/2

or

λ̂1

λ̂2

F2r1,2r2,1−α/2 <
λ1

λ2
<

λ̂1

λ̂2

F2r1,2r2,α/2

Two points are important to keep in mind with respect to this confidence interval. First,
it is typically of interest to see whether this confidence interval contains 1, which indicates
that there is no statistical evidence to conclude that the failure rates of the two populations
are different. Second, if the null hypothesis

H0 : λ1 = λ2

is to be tested directly, then there is cancellation in λ1λ̂2/λ2λ̂1 under H0, so that the test
statistic λ̂2/λ̂1 has the F distribution with 2r1 and 2r2 degrees of freedom.

3.5.3 Weibull Distribution

As mentioned earlier, the Weibull distribution is typically more appropriate for modeling
the lifetimes of items with increasing and decreasing failure rates, such as mechanical items.
We present the most general case of random censoring, rather than looking at each censoring
mechanism individually.

As before, let t1, t2, . . ., tn be the failure times, c1, c2, . . ., cn be the censoring times, and
xi = min {ti, ci} for i= 1, 2, . . ., n. Recall that the Weibull distribution has hazard and cumu-
lative hazard functions

h(t) = κλ(λt)κ−1 and H(t) = (λt)κ

for t≥ 0. When there are r observed failures, the log likelihood function is

log L(λ, κ) =
∑
i∈U

log h(xi) −
n∑

i=1

H(xi)

=
∑
i∈U

(log κ + κ log λ + (κ − 1) log xi) −
n∑

i=1

(λxi)κ

= r log κ + κr log λ + (κ − 1)
∑
i∈U

log xi − λκ
n∑

i=1

xκ
i

and the 2× 1 score vector has elements

U1(λ, κ) =
∂ log L(λ, κ)

∂λ
=

κr

λ
− κλκ−1

n∑
i=1

xκ
i
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and

U2(λ, κ) =
∂ log L(λ, κ)

∂κ
=

r

κ
+ r log λ +

∑
i∈U

log xi −
n∑

i=1

(λxi)κ log(λxi)

When these equations are equated to zero, the simultaneous equations

κr

λ
− κλκ−1

n∑
i=1

xκ
i = 0

and

r

κ
+ r log λ +

∑
i∈U

log xi −
n∑

i=1

(λxi)κ log(λxi) = 0

have no closed-form solution for λ̂ and κ̂. One piece of good fortune, however, to avoid
solving a 2× 2 set of nonlinear equations, is that this first equation can be solved for λ in
terms of κ as follows:

λ =

⎛
⎝ r∑n

i=1
xκ

i

⎞
⎠

1/κ

Using this expression for λ in terms of κ in the second element of the score vector yields
a single, albeit more complicated, expression with κ as the only unknown. Applying some
algebra, this equation reduces to

g(κ) =
r

κ
+
∑
i∈U

log xi −
r
∑n

i=1
xκ

i log xi∑n

i=1
xκ

i

= 0

which must be solved iteratively using the Newton–Raphson technique or a fixed point
method.

Example 3.15

It was seen in a previous example that the exponential distribution poorly approximated
the ball bearing data set. The Weibull distribution is fit to the ball bearing failure times
yielding maximum likelihood estimators λ̂ = 0.0122 and κ̂ = 2.10. Figure 3.14 shows the
empirical survival function along with the exponential and Weibull fits to the data. It is
clear that the Weibull distribution is far superior to the exponential for modeling the ball
bearing failure times. This is due to the fact that the Weibull distribution is capable of
modeling wear out for κ> 1.

In the case of the exponential distribution, we found a confidence interval for the param-
eter λ. In the case of the Weibull distribution, we desire a confidence region for the param-
eters λ and κ. Using the fact that the likelihood ratio statistic, 2[log L(λ̂, κ̂)− log L(λ, κ)],
is asymptotically χ2(2), a 95% confidence region for the parameters is all λ and κ satisfying

2[−113.691 − log L(λ, k)] < 5.99

where log L(λ̂, κ̂)=−113.691 and χ2
2,0.05 = 5.99. The two degrees of freedom for the χ2

distribution come from the fact that the Weibull distribution has two unknown parameters
λ and κ. The 95% confidence region is shown in Figure 3.15, and, not surprisingly, the line
κ = 1 is not interior to the region. This is further proof that the exponential distribution is
not an appropriate model for this particular data set. The entire confidence region is in the
κ> 1 region of the graph; this is statistically significant evidence provided by the data that
the ball bearings are indeed wearing out. �
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FIGURE 3.14 Empirical, exponential fitted, and Weibull fitted survivor functions for the ball
bearing data.
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FIGURE 3.15 Confidence region for λ and κ for the ball bearing data.

3.6 Nonparametric Methods

In the previous sections, the focus was on developing parametric models for lifetimes and
fitting them to a data set. The emphasis switches here to letting the data speak for itself,
rather than approximating the lifetime distribution by one of the parametric models. There
are several reasons to take this approach. First, it is not always possible to find a parametric
model that adequately describes the lifetime distribution. This is particularly true of data
arising from populations with nonmonotonic hazard functions. The most popular parametric
models, such as the Weibull distribution, have monotonic hazard functions. A nonparametric
analysis might provide more accurate estimates. Second, data sets are often so small that
fitting a parametric model results in parameter estimators with confidence intervals that are
so wide that the models are of little practical use. To cover all nonparametric methods used
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in reliability is not possible due to space constraints. We focus on just one such method here:
the Kaplan–Meier product-limit survivor function estimate and the associated Greenwood’s
formula for assessing the precision of the estimate.

Let y1 <y2 < · · ·<yk be the k distinct failure times, and let dj denote the number of
observed failures at yj , j = 1, 2, . . ., k. Let nj =n(yj) denote the number of items on test just
before time yj , j = 1, 2, . . ., k, and it is customary to include any values that are censored at
yj in this count. Also, let R(yj) be the set of all indexes of items that are at risk just before
time yj , j = 1, 2, . . ., k.

The search for a nonparametric survivor function estimator begins by assuming that the
data were drawn from a discrete distribution with mass values at y1, y2, . . ., yk. For a discrete
distribution, h(yj) is a conditional probability with interpretation h(yj)= P [T = yj |T ≥ yj ].
For a discrete distribution, the survivor function can be written in terms of the hazard
function at the mass values:

S(t) =
∏

j∈R(t)′
[1 − h(yj)] t ≥ 0

where R(t)′ is the complement of the risk set at time t. Thus a reasonable estimator for
S(t) is

∏
j∈R(t)′ [1− ĥ(yj)], which reduces the problem of estimating the survivor function

to that of estimating the hazard function at each mass value. An appropriate element for
the likelihood function at mass value yj is

h(yj)dj [1 − h(yj)]nj−dj

for j = 1, 2, . . ., k. This expression is correct because dj is the number of failures at yj , h(yj)
is the conditional probability of failure at yj , nj − dj is the number of items on test not
failing at yj , and 1−h(yj) is the probability of failing after time yj conditioned on survival
to time yj . Thus the likelihood function for h(y1), h(y2), . . ., h(yk) is

L(h(y1), h(y2), . . ., h(yk)) =
k∏

j=1

h(yj)dj [1 − h(yj)]nj−dj

and the log likelihood function is

log L(h(y1), h(y2), . . ., h(yk)) =
k∑

j=1

{dj log h(yj) + (nj − dj) log [1 − h(yj)]}

The ith element of the score vector is

∂ log L(h(y1), h(y2), . . ., h(yk))
∂h(yi)

=
dj

h(yi)
− ni − di

1 − h(yi)

for i= 1, 2, . . ., k. Equating this vector to zero and solving for h(yi) yields the maximum
likelihood estimate:

ĥ(yi) =
di

ni

This estimate for ĥ(yi) is sensible, since di of the ni items on test at time yi fail, so the ratio
of di to ni is an appropriate estimate of the conditional probability of failure at time yi.
This derivation may strike a familiar chord since, at each time yi, estimating h(yi) with di

divided by ni is equivalent to estimating the probability of success, that is, failing at time yi,
for each of the ni items on test. Thus, this derivation is equivalent to finding the maximum
likelihood estimators for the probability of success for k binomial random variables.
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Using this particular estimate for the hazard function at yi, the survivor function estimate
becomes

Ŝ(t) =
∏

j∈R(t)′
[1 − ĥ(yj)]

=
∏

j∈R(t)′

[
1 − dj

nj

]

commonly known as the Kaplan–Meier or product-limit estimate. One problem that arises
with the product-limit estimate is that it is not defined past the last observed failure time.
The usual way to handle this problem is to cut the estimator off at the last observed failure
time yk. The following example illustrates the product-limit estimate.

Example 3.16

An experiment is conducted to determine the effect of the drug 6-mercaptopurine (6-MP)
on leukemia remission times (Lawless, 2003, page 5). A sample of n= 21 leukemia patients
is treated with 6-MP, and the remission times are recorded. There are r = 9 individuals
for whom the remission time is observed, and the remission times for the remaining 12
individuals are randomly censored on the right. There are k = 7 distinct observed failure
times. Letting an asterisk denote a censored observation, the remission times (in weeks) are

6 6 6 6∗ 7 9∗ 10 10∗ 11∗ 13 16
17∗ 19∗ 20∗ 22 23 25∗ 32∗ 32∗ 34∗ 35∗

Find an estimate for S(14).
Table 3.1 gives the values of yj , dj , nj , and 1− dj/nj for j = 1, 2, . . ., 7. In particular, the

product-limit survivor function estimate at t = 14 weeks is

Ŝ(14) =
∏

j∈R(14)′

[
1 − dj

nj

]

=
[
1 − 3

21

][
1 − 1

17

][
1 − 1

15

][
1 − 1

12

]

=
176
255

∼= 0.69

TABLE 3.1 Product-Limit Calculations for the 6-MP Data

j yj dj nj 1− dj

nj

1 6 3 21 1− 3

21

2 7 1 17 1− 1

17

3 10 1 15 1− 1

15

4 13 1 12 1− 1

12

5 16 1 11 1− 1

11

6 22 1 7 1− 1

7

7 23 1 6 1− 1

6
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FIGURE 3.16 Product-limit survivor function estimate for the 6-MP data.

The product-limit survivor function estimate for all t values is plotted in Figure 3.16. Down-
ward steps occur only at observed failure times. The effect of censored observations in the
survivor function estimate is a larger downward step at the next subsequent failure time.
If there are ties between the observations and a censoring time, as there is at time 6, our
convention of including the censored values in the risk set means that there will be a larger
downward step following this tied value. Note that the estimate is truncated at time 23, the
last observed failure time. �

To find an estimate for the variance of the product-limit estimate is significantly more
difficult than for the uncensored case. The Fisher and observed information matrices require
a derivative of the score vector:

−∂2 log L(h(y1), h(y2), . . ., h(yk))
∂h(yi)∂h(yj)

=
di

h(yi)2
+

ni − di

(1 − h(yi))2

when i= j and 0 otherwise, for i= 1, 2, . . ., k, j = 1, 2, . . ., k. Both the Fisher and observed
information matrices are diagonal. Replacing h(yi) by its maximum likelihood estimate, the
diagonal elements of the observed information matrix are

[
−∂2 log L(h(y1), h(y2), . . ., h(yk))

∂h(yi)2

]
h(yi)=di/ni

=
n3

i

di(ni − di)

for i= 1, 2, . . ., k. Using this fact and some additional approximations, an estimate for the
variance of the survivor function is

V̂ [Ŝ(t)] = [Ŝ(t)]2
∑

j∈R(t)′

dj

nj(nj − dj)
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commonly known as “Greenwood’s formula.” The formula can be used to find asymptotically
valid confidence intervals for S(t) by using the normal critical values as in the uncensored
case:

Ŝ(t) − zα/2

√
V̂ [Ŝ(t)] < S(t) < Ŝ(t) + zα/2

√
V̂ [Ŝ(t)]

where zα/2 is the 1−α/2 fractile of the standard normal distribution.

Example 3.17

For the 6-MP treatment group in the previous example, give a 95% confidence interval for
the probability of survival to time 14.

The point estimator for the probability of survival to time 14 from the previous example is
Ŝ(14)∼= 0.69. Greenwood’s formula is used to estimate the variance of the survivor function
estimator at time 14:

V̂ [Ŝ(14)] = [Ŝ(14)]2
∑

j∈R(14)′

dj

nj(nj − dj)

= (0.69)2
[

3
21(21 − 3)

+
1

17(17 − 1)
+

1
15(15 − 1)

+
1

12(12 − 1)

]

∼= 0.011

Thus an estimate for the standard deviation of the survivor function estimate at t = 14 is√
0.011 = 0.11. A 95% confidence interval for S(14) is

Ŝ(14) − z0.025

√
V̂ [Ŝ(14)] < S(14) < Ŝ(14) + z0.025

√
V̂ [Ŝ(14)]

0.69 − 1.96
√

0.011 < S(14) < 0.69 + 1.96
√

0.011

0.48 < S(14) < 0.90

Figure 3.17 shows the 95% confidence bands for the survivor function for all t values.
These have also been cut off at the last observed failure time, t =23. The bounds are
particularly wide as there are only r =9 observed failure times. �

3.7 Assessing Model Adequacy

As there has been an emphasis on continuous lifetime distributions thus far in the chapter,
the discussion here is limited to model adequacy tests for continuous distributions. The
popular chi-square goodness-of-fit test can be applied to both continuous and discrete dis-
tributions, but suffers from the limitations of arbitrary interval widths and application only
to large data sets. This section focuses on the Kolmogorov–Smirnov (KS) goodness-of-fit
test for assessing model adequacy.

A notational difficulty arises in presenting the KS test. The survivor function S(t) has
been emphasized to this point in the chapter, but the cumulative distribution function,
where F (t)= P [T ≤ t] = 1−S(t) for continuous distributions, has traditionally been used to
define the KS test statistic. To keep with this tradition, F (t) is used in the definitions in
this section.

The KS goodness-of-fit test is typically used to compare an empirical cumulative distri-
bution function with a fitted or hypothesized parametric cumulative distribution function
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FIGURE 3.17 Confidence bands for the product-limit survivor function estimate for the 6-MP data.

for a continuous model. The KS test statistic is the maximum vertical difference between
the empirical cumulative distribution function F̂ (t) and a hypothesized or fitted cumulative
distribution function F0(t). The null and alternative hypotheses for the test are

H0 : F (t) = F0(t)

H1 : F (t) �= F0(t)

where F (t) is the true underlying population cumulative distribution function. In other
words, the null hypothesis is that data set of random lifetimes has been drawn from a
population with cumulative distribution function F0(t). For a complete data set, the defining
formula for the test statistic is

Dn = sup
t
|F̂ (t) − F0(t)|

where sup is an abbreviation for supremum. This test statistic has intuitive appeal since
larger values of Dn indicate a greater difference between F̂ (t) and F0(t) and hence a poorer
fit. In addition, Dn is independent of the parametric form of F0(t) when the cumulative
distribution function is hypothesized. From a practical standpoint, computing the KS test
statistic requires only a single loop through the n data values. This simplification occurs
because F̂ (t) is a nondecreasing step function and F0(t) is a nondecreasing continuous
function, so the maximum difference must occur at a data value.

The usual computational formulas for computing Dn require a single pass through the
data values. Let

D+
n = max

i=1,2,...,n

(
i

n
− F0(t(i))

)

D−
n = max

i=1,2,...,n

(
F0(t(i)) − i − 1

n

)

so that Dn = max{D+
n ,D−

n }. These computational formulas are typically easier to translate
into computer code for implementation than the defining formula.

We consider only hypothesized (as opposed to fitted) cumulative distribution functions
F0(t) here because the distribution of Dn is free of the hypothesized distribution specified.
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FIGURE 3.18 KS statistic for the ball bearing data set (exponential fit).

To illustrate the geometric aspects of the KS test statistic Dn, however, the fitted expo-
nential distribution is compared to the empirical cumulative distribution function for the
ball bearing data set. Figure 3.18 shows the empirical step cumulative distribution function
F (t) associated with the failure times of the n= 23 ball bearing failure times, along with the
exponential fit F0(t). The maximum difference between these two cumulative distribution
functions occurs just to the left of t(4) = 41.52 and is D23 = 0.301 as indicated on the figure.

The test statistic for the KS test is nonparametric in the sense that it has the same
distribution regardless of the distribution of the parent population under H0 when all
the parameters in the hypothesized distribution are known. The reason for this is that
F0(t(1)), F0(t(2)), . . ., F0(t(n)) have the same joint distribution as U(0,1)-order statistics
under H0 regardless of the functional form of F0. These are often called omnibus tests
as they are not tied to one particular distribution (e.g., the Weibull) and apply equally well
to any hypothesized distribution F0(t). This also means that fractiles of the distribution of
Dn depend on n only.

The rows in Table 3.2 denote the sample sizes and the columns denote several levels of
significance. The values in the table are estimates of the 1−α fractiles of the distribution
of Dn under H0 in the all-parameters-known case (hypothesized, rather than fitted distri-
bution) and have been determined by Monte Carlo simulation with one million replications.
Not surprisingly, the fractiles are a decreasing function of n, as increased sample sizes will
have lower sampling variability. Test statistics that exceed the appropriate critical value
lead to rejecting H0.

Example 3.18

Run the KS test (at α =0.10) to assess whether the ball bearing data set was drawn from
a Weibull population with λ = 0.01 and κ = 2.

Note that the Weibull distribution in this example is a hypothesized, rather than fitted
distribution, so the all-parameters-known case for determining critical values is appropriate.
The goodness-of-fit test

H0 : F (t) = 1 − e−(0.01t)2

H1 : F (t) �= 1 − e−(0.01t)2
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TABLE 3.2 Selected Approximate KS Percentiles for Small Sample Sizes
n α = 0.20 α = 0.10 α = 0.05 α = 0.01

1 0.900 0.950 0.975 0.995
2 0.683 0.776 0.842 0.930
3 0.565 0.636 0.708 0.829
4 0.493 0.565 0.624 0.733
5 0.447 0.509 0.563 0.668
6 0.410 0.468 0.519 0.617
7 0.381 0.436 0.483 0.576
8 0.358 0.409 0.454 0.542
9 0.339 0.388 0.430 0.513

10 0.323 0.369 0.409 0.489
11 0.308 0.352 0.391 0.468
12 0.296 0.338 0.376 0.449
13 0.285 0.325 0.361 0.433
14 0.275 0.314 0.349 0.418
15 0.266 0.304 0.338 0.404
16 0.258 0.295 0.327 0.392
17 0.250 0.286 0.318 0.381
18 0.243 0.278 0.309 0.370
19 0.237 0.271 0.302 0.361
20 0.232 0.265 0.294 0.352
21 0.226 0.259 0.287 0.345
22 0.221 0.253 0.281 0.337
23 0.217 0.248 0.275 0.330
24 0.212 0.242 0.269 0.323
25 0.208 0.237 0.264 0.317
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FIGURE 3.19 KS statistic for the ball bearing data set (Weibull fit).

does not involve any parameters estimated from data. The test statistic is D23 = 0.274. The
empirical cumulative distribution function, the Weibull(0.01, 2) cumulative distribution
function and the maximum difference between the two [which occurs at t(15) = 68.88] are
shown in Figure 3.19. At α = 0.10, the critical value is 0.248, so H0 is rejected. The test
statistic is very close to the critical value for α = 0.05, so the attained p-value for the test
is approximately p= 0.05. �

The KS test can be extended in several directions. First, it can be adapted for the case the
parameters are estimated from the data. Unfortunately, a separate table of critical values
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must be given for each fitted distribution. Second, the KS test can be adapted for right-
censored data sets. Many researchers have devised approximate methods for determining
the critical values for the KS test with random right censoring and parameters estimated
from data. Finally, there are several variants of the KS test, such as the Anderson–Darling
and Cramer–von Mises test, which improve on the power of the test.

3.8 Summary

The purpose of this chapter has been to introduce the mathematics associated with the
design and assessment of systems with respect to their reliability. In specific, this
chapter has:

• outlined basic techniques for describing the arrangement of components in a
system by defining the structure function φ(x ) that maps the states of the com-
ponents to the state of the system;

• defined reliability as the probability that a nonrepairable item (component or
system) is functioning at a specified time;

• introduced two techniques, definition and expectation, for determining the system
reliability from component reliabilities;

• defined four functions, the survivor function S(t), the probability density function
f(t), the hazard function h(t), and the cumulative hazard function H(t), which
describe the distribution of a nonnegative random variable T , which denotes the
lifetime of a component or system;

• reviewed formulas for calculating the mean, variance, and a fractile (percentile)
of T ;

• illustrated how to determine the system survivor function as a function of the
component survivor functions;

• introduced two parametric lifetime distributions, the exponential and Weibull
distributions, and outlined some of their properties;

• surveyed characteristics (e.g., right-censoring) of lifetime data sets;
• outlined point and interval estimation techniques for the exponential and distri-

butions;
• derived a technique for comparing the failure rates of items with lifetimes drawn

from two populations;
• derived and illustrated the nonparametric Kaplan–Meier product-limit estimate

for the survivor function;
• introduced the Kolmogorov–Smirnov goodness-of-fit test for assessing model

adequacy.

All of these topics are covered in more detail in the references. In addition, there are many
topics that have not been covered at all, such as repairable systems, incorporating covariates
into a survival model, competing risks, reliability growth, mixture models, failure modes and
effects analysis, accelerated testing, fault trees, Markov models, and life testing. These topics
and others are considered in the reliability literature, highlighted by the textbooks cited
below. Software for reliability analysis has been written by several vendors and incorporated
into existing statistical packages, such as SAS, S-Plus, and R.
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4.1 Production Planning Problem

The total problem of planning production consists of the following decisions: demand fore-
casting, the total floor space needed, the number and type of equipment, their aggregation
into groups, the floor space needed for each group, the spatial relationship of each group
relative to one another, the way the material and work pieces move within groups, the equip-
ment and methods to move work between groups, the material to be ordered, the material
to be produced in-house, the assembly layout and process, the quantities and timing of stock
purchases, and the manner of storage of purchases and the items that are to be part of the
information support system. There are no methods that determine the answers to these
questions simultaneously. There are numerous models that consider each of these decisions
as a subproblem to be optimized. When all the solutions are pieced together sometimes the
whole will be suboptimal.

The production planning problem can also be looked at as a system of systems: fore-
casting, material handling, personnel, purchasing, quality assurance, production, assembly,
marketing, design, finance, and other appropriate systems. At an advanced level one hopes
that these systems integrate: that is, the design is such that it is easy to produce by using
snap-in fasteners; materials easy to form; financial planning provides appropriate working

4-1
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FIGURE 4.1 Planning and forecast horizons in production planning.

capital; purchases arrive on time and have appropriate quality. In this context, the interfaces
of the systems become the appropriate design issue.

Forecasts form the basis of production planning. Strategic plans (e.g., where to locate
factories, etc.) are based on long-term forecasts whereas aggregate production plans (allo-
cating labor and capital resources for the next quarter’s operations, say) are usually made
a few months in advance, and production scheduling at the shop floor level may occur a few
hours or days in advance of actual production. This also allows better information and a
more detailed history to tailor production to demand or desired inventory levels. Figure 4.1
shows this graphically.

From the above comments, clearly forecasting is as much an art as a science. Given its
importance, forecasting is introduced in Section 4.2. In production planning, demand fore-
casts are used for aggregate planning and more detailed materials requirement plans. These
plans provide details on the components required and the relationships between the process-
ing steps involved in production. This information is then used to design the facility (i.e.,
positioning of various machines and processing equipment within the facility) and sched-
ule production. We assume that aggregate plans and more detailed material requirements
plans are available and do not discuss these stages of production planning; the interested
reader may consult Nahmias (1993) for details. Instead, we focus on the facility layout and
scheduling issues in Sections 4.3 and 4.4, respectively.

4.2 Demand Forecasting

Forecasting is a key activity that influences many aspects of business planning and operation.
In simple terms, a forecast is a prediction or estimate of the future. Forecasting is common
at multiple levels, from macroeconomic forecasts (e.g., forecasts of oil prices) to microlevel
estimates (of component requirements, say). We focus on forecasting in support of the
production planning function. The forecast horizon refers to how far into the future we



© 2009 by Taylor & Francis Group, LLC

Production Systems 4-3

would like to make a prediction. Some common features of forecasts are as follows (Nahmias,
1993):

• Forecasts are usually wrong—Forecasts are estimates of a random variable
(demand, price, etc.) and actual outcomes may be significantly different.

• Aggregate forecasts are better—Demand forecasts for an entire product family are
more accurate (on a percentage basis) than those for each member of the product
family.

• Forecasting error increases with the forecast horizon—Demand forecasts for the
coming week are likely to be much more accurate than forecasts of next year’s
demand.

• Environmental evidence—The environment is very important. For example, if you
are forecasting demand for spare parts for a military aircraft, then it is important
to account for the type of operations in progress. For regular training, past history
may be valid, but if the aircraft are being used in war, then peacetime history is
likely to be invalid.

4.2.1 Commonly Used Techniques for Forecasting Demand

Models for controlling and replenishing of inventories in production have the aim of deter-
mining order quantities to minimize the sum of total overage costs (costs of excess inventory
remaining at the end of the planning period) and underage costs (shortage costs, or costs
of having less than the desired amount of stock at the end of the planning period). In
production planning literature, the total overage (underage) cost is usually assumed to be
proportional to the overage (shortage) amount or quantity, to make the analysis easier.
Some companies find that a piecewise linear (PL) function provides a much closer rep-
resentation of the true overage and underage costs. In these companies, there is a buffer
with limited space in which excess inventory at the end of the planning period can be
stored and retrieved later at a low cost (i.e., with minimum requirements of human-hours
needed) per unit. Once this buffer is filled up, any remaining excess quantity has to be
held at a location farther away that requires greater number of man hours for storing
or retrieval/unit. A similar situation exists for underage cost as a function of the short-
age amount. This clearly implies that the overage and underage costs are PL functions of
the excess, shortage quantities. Determining optimum order quantities to minimize such
unusual overage and underage cost functions is much harder with inventory control models
using forecasting techniques in current literature. After reviewing the forecasting meth-
ods commonly used in production applications at present (Section 4.2.2), we will dis-
cuss a new nonparametric forecasting method (Section 4.2.3), which has the advantage
of being able to accommodate such unusual overage and underage cost functions easily
(Murty, 2006).

Almost all production management problems in practice are characterized by the uncer-
tainty of demand during a future planning period; that is, this demand is a random variable.
Usually, we do not have knowledge about its exact probability distribution, and the mod-
els for these problems have the objective of minimizing the sum of expected overage and
underage costs. Successful production management systems depend heavily on good demand
forecasts to provide data for inventory replenishment decisions. The output of forecasting
is usually presented in the literature as the forecasted demand quantity ; in reality it is an
estimate of the expected demand during the planning period. Because of this, the purpose of
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forecasting is often misunderstood to be that of generating this single number, even though
sometimes the standard deviation of demand is also estimated.

All commonly used methods for demand forecasting are parametric methods; they usually
assume that demand is normally distributed, and they update its distribution by updating
the parameters of the distribution, the mean μ, and the standard deviation σ. The most
commonly used methods for updating the values of the parameters are the method of moving
averages, and the exponential smoothing method.

The method of moving averages uses the average of n most recent observations on demand
as the forecast for the expected demand for the next period. n is a parameter known as the
order of the moving average method being used; typically it is between 3 to 6 or larger.

The other method, perhaps the most popular method in practice, is the exponential
smoothing method introduced and popularized by Brown (1959). It takes D̂t+1, the forecast
of expected demand during next period t + 1, to be αxt + (1−α)D̂t, where xt is the observed
demand during current period t, D̂t is the forecasted expected demand for current period
t, and 0< α≤ 1 is a smoothing constant, which is the relative weight placed on the current
observed demand. Typically, values of α between 0.1 and 0.4 are used, and normally the
value of α is increased whenever the absolute value of the deviation between the forecast
and observed demand exceeds a tolerance times the standard deviation. Smaller values of α
(like 0.1) yield predicted values of expected demand that have a relatively smooth pattern,
whereas higher values of α (like 0.4) lead to predicted values exhibiting significantly greater
variation, but doing a better job of tracking the demand series. Thus using larger α makes
forecasts more responsive to changes in the demand process, but will result in forecast errors
with higher variance.

One disadvantage of both the method of moving averages and the exponential smoothing
method is that when there is a definite trend in the demand process (either growing or
falling), the forecasts obtained by them lag behind the trend. Variations of the exponential
smoothing method to track trend linear in time in the demand process have been proposed
(see Holt, 1957), but these have not proved very popular.

There are many more sophisticated methods for forecasting the expected values of random
variables, for example, the Box–Jenkins ARIMA models (Box and Jenkins, 1970), but these
methods are not popular for production applications, in which forecasts for many items are
required.

4.2.2 Parametric Methods for Forecasting Demand
Distributions

Using Normal Distribution with Updating of Expected Value
and Standard Deviation in Each Period

As discussed in the previous section, all forecasting methods in the literature only provide an
estimate of the expected demand during the planning period. The optimum order quantity
to be computed depends of course on the entire probability distribution of demand, not
just its expected value. So, almost everyone assumes that the distribution of demand is the
normal distribution because of its convenience. One of the advantages that the normality
assumption confers is that the distribution is fully characterized by only two parameters,
the mean and the standard deviation, both of which can be very conveniently updated by
the exponential smoothing or the moving average methods.

Let t be the current period, xr the observed demand in period r for r≤ t, D̂t the forecast
(i.e., estimate) of expected demand in current period t (by either the exponential smoothing
or the moving average methods, whichever is being used), and D̂t+1, σ̂t+1 the forecasts for
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expected demand, standard deviation of demand for the planning period which is the next
period t + 1. Then these forecasts are:

Method Forecast

Method of moving averages of order n D̂t+1 = 1
n

∑t
r=t−n+1x r

Exponential smoothing method with D̂t+1 = αxt + (1−α)D̂t

smoothing constant α

Method of moving averages of order n σ̂t+1 = +
√

(
∑t

r=t−n+1 (xr − D̂t+1)2)/n

To get σ̂t+1 by the exponential smoothing method, it is convenient to use the mean
absolute deviation (MAD), and use the formula: standard deviation σ≈ (1.25)MAD when
the distribution is the normal distribution. Let MADt denote the estimate of MAD for
current period t. Then the forecasts obtained by the exponential smoothing method with
smoothing parameter α for the next period t + 1 are:

MADt+1 = α|xt − D̂t| + (1 − α)MADt

σ̂t+1 = (1.25)MADt+1

Usually α = 0.1 is used to ensure stability of the estimates. And the normal distribution
with mean D̂t+1 and standard deviation σ̂t+1 is taken as the forecast for the distribution of
demand during the next period t +1 for making any planning decisions under this procedure.

Using Normal Distribution with Updating of Expected Value
and Standard Deviation Only when There Is Evidence of Change

In some applications, the distribution of demand is assumed to be the normal distribution,
but estimates of its expected value and standard deviation are left unchanged until there
is evidence that their values have changed. Foote (1995) discusses several statistical con-
trol tests on demand data being generated over time to decide when to re-estimate these
parameters. Under this scheme, the method of moving averages is commonly used to esti-
mate the expected value and the standard deviation from recent data whenever the control
tests indicate that a change may have occurred.

Using Distributions Other Than Normal

In a few special applications in which the expected demand is low (i.e., the item is a slow-
moving item), other distributions like the Poisson distribution are sometimes used, but by
far the most popular distribution for making inventory management decisions is the normal
distribution because of its convenience, and because using it has become a common practice
historically.

For the normal distribution the mean is the mode (i.e., the value associated with the
highest probability), and the distribution is symmetric around this value. If histograms of
observed demand data of an item do not share these properties, it may indicate that the
normal distribution is a poor approximation for the actual distribution of demand, in this
case order quantities determined using the normality assumption may be far from being
optimal.

These days, the industrial environment is very competitive with new products replacing
the old periodically due to rapid advancements in technology. In this dynamic environment,
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the life cycles of components and end products are becoming shorter. Beginning with the
introduction of the product, its life cycle starts with a growth period due to gradual market
penetration of the product. This is followed by a stable period of steady demand. It is
then followed by a final decline period of steadily declining demand, at the end of which
the item disappears from the market. Also, the middle stable period seems to be getting
shorter for many major components. Because of this constant rapid change, it is necessary
to periodically update demand distributions based on recent data.

The distributions of demand for some components are far from being symmetric around
the mean, and the skewness and shapes of their distributions also seem to be changing over
time. Using a probability distribution like the normal defined by a mathematical formula,
involving only a few parameters, it is not possible to capture changes taking place in the
shapes of distributions of demand for such components. This is the disadvantage of existing
forecasting methods based on an assumed probability distribution. Our conclusions can be
erroneous if the true probability distribution of demand is very different from the assumed
distribution.

Nonparametric methods use statistical learning, and base their conclusions on knowledge
derived directly from data without any unwarranted assumptions. In the next section, we
discuss a nonparametric method for forecasting the entire demand distribution (Murty,
2006) that uses the classical empirical probability distribution derived from the relative
frequency histogram of time series data on demand. It has the advantage of being capable
of updating all changes occurring in the probability distribution of demand, including those
in the shape of this distribution.

Then, in the following section, we illustrate how optimal order quantities that optimize
piecewise linear and other unusual cost functions discussed in the previous section can be
easily computed using these empirical distributions.

4.2.3 A Nonparametric Method for Updating and Forecasting the
Entire Demand Distribution

In production systems, the important random variables are daily or weekly (or whatever
planning period is being used) demands of various items (raw materials, components, sub-
assemblies, finished goods, spare parts, etc.) that companies either buy from suppliers, or
sell to their customers. Observed values of these random variables in each period are gen-
erated automatically as a time series in the production process, and are usually available
in the production databases of companies. In this section, we discuss a simple nonparamet-
ric method for updating changes in the probability distributions of these random variables
using these data directly.

Empirical Distributions and Probability Density Functions

The concept of the probability distribution of a random variable evolved from the ancient
practice of drawing histograms for the observed values of the random variable. The observed
range of variation of the random variable is usually divided into a convenient number of
value intervals (in practice about 10 to 25) of equal length, and the relative frequency of
each interval is defined to be the proportion of observed values of the random variable that
lie in that interval. The chart obtained by marking the value intervals on the horizontal axis,
and erecting a rectangle on each interval with its height along the vertical axis equal to the
relative frequency, is known as the relative frequency histogram of the random variable, or
its discretized probability distribution. The relative frequency in each value interval Ii is the
estimate of the probability pi that the random variable lies in that interval; see Figure 4.2
for an example.
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FIGURE 4.2 Relative frequency histogram for daily demand for a major component at a PC assembling
plant in California.

Let I1, . . ., In be the value intervals with u1, . . ., un as their midpoints, and p= (p1, . . ., pn),
the probability vector in the discretized probability distribution of the random variable. Let

μ =
n∑

i=1

uipi, σ =

√√√√ n∑
i=1

pi(ui − μ)2

Then, μ, σ are estimates of the expected value μ and standard deviation σ of the random
variable, respectively.

We will use the phrase empirical distribution to denote such a discretized probability
distribution of a random variable, obtained either through drawing the histogram, or by
updating a previously known discretized probability distribution based on recent data.

When mathematicians began studying random variables from the sixteenth century
onwards, they found it convenient to represent the probability distribution of the ran-
dom variable by the probability density function, which is the mathematical formula for the
curve defined by the upper boundary of the relative frequency histogram in the limit as the
length of the value interval is made to approach 0, and the number of observed values of
the random variable goes to infinity. So the probability density function provides a math-
ematical formula for the height along the vertical axis of this curve as a function of the
variable represented on the horizontal axis. Because it is a mathematically stated function,
the probability density function lends itself much more nicely into mathematical derivations
than the somewhat crude relative frequency histogram.

It is rare to see empirical distributions used in decision making models these days. Almost
everyone uses mathematically defined density functions characterized by a small number of
parameters (typically two or less) to represent probability distributions. In these decision
making models, the only freedom we have in incorporating changes is to change the values
of those parameters. This may be inadequate to capture all the dynamic changes occurring
in the shapes of probability distributions from time to time.
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Extending the Exponential Smoothing Method to Update
the Empirical Probability Distribution of a Random Variable

We will now see that representing the probability distributions of random variables by their
empirical distributions gives us unlimited freedom in making any type of change including
changes in shape (Murty, 2002).

Let I1, . . ., In be the value intervals, and p1, . . ., pn the probabilities associated with them
in the present empirical distribution of a random variable. In updating this distribution, we
have the freedom to change the values of all the pi; this makes it possible to capture any
change in the shape of the distribution.

Changes, if any, will reflect in recent observations on the random variable. The following
table gives the present empirical distribution, histogram based on most recent observations
on the random variable (e.g., the most recent k observations where k could be about 30),
and xi to denote the probabilities in the updated empirical distribution to be determined.

Probability vector in the
Value Present Empirical Recent Updated Empirical
Interval Distribution Histogram Distribution
I1 p1 f1 x1

...
...

...
...

In pn fn xn

f = (f1, . . ., fn) represents the estimate of the probability vector in the recent histogram,
but it is based on too few observations. p= (p1, . . ., pn) is the probability vector in the
empirical distribution at the previous updating. x= (x1, . . ., xn), the updated probability
vector, should be obtained by incorporating the changing trend reflected in f into p. In the
theory of statistics the most commonly used method for this incorporation is the weighted
least squares method, which provides the following model (Murty, 2002) to compute x from
p and f .

Minimize (1 − β)
n∑

i=1

(pi − xi)2 + β

n∑
i=1

(fi − xi)2

Subject to
n∑

i=1

xi = 1

xi ≥ 0, i = 1, . . ., n

(4.1)

where β is a weight between 0 and 1, similar to the smoothing constant α in the exponential
smoothing method for updating the expected value (like α there, here β is the relative weight
placed on the probability vector from the histogram composed from recent observations).
x is taken as the optimum solution of this convex quadratic program. β = 0.1 to 0.4 works
well; the reason for choosing the weight for the second term in the objective function to
be small is because the vector f is based on only a small number of observations. As the
quadratic model minimizes the weighted sum of squared forecast errors over all value inter-
vals, when used periodically, it has the effect of tracking gradual changes in the probability
distribution of the random variable.

The above quadratic program has a unique optimum solution given by the following
explicit formula.

x = (1 − β)p + βf (4.2)
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So we take the updated empirical distribution to be the one with the probability vector
given by Equation 4.2.

The formula for updating the probability vector in Equation 4.2 is exactly analogous
to the formula for forecasting the expected value of a random variable using the latest
observation, in exponential smoothing. Hence, the above formula can be thought of as the
extension of the exponential smoothing method to update the probability vector in the
empirical distribution of the random variable.

When there is a significant increase or decrease in the mean value of the random variable,
new value intervals may have to be opened up at the left or right end. In this case, the
probabilities associated with value intervals at the other end may become very close to 0,
and these intervals may have to be dropped from further consideration at that time.

This procedure can be used to update the discretized demand distribution either at every
ordering point, or periodically at every rth ordering point for some convenient r, using the
most recent observations on demand.

4.2.4 An Application of the Forecasting Method for Computing
Optimal Order Quantities

Given the empirical distribution of demand for the next period based on the forecasting
method given in Section 4.2.3, the well-known newsvendor model (Murty, 2002) can be
used to determine the optimal order quantity for that period that minimizes the sum of
expected overage and underage costs very efficiently numerically. We will illustrate with
a numerical example. Let the empirical distribution of demand (in units) for the next
period be

Ii = Interval Probability ui = Mid-point
for Demand pi of Interval i

100–120 0.03 110
120–140 0.10 130
140–160 0.15 150
160–180 0.20 170
180–200 0.11 190
200–220 0.07 210
220–240 0.20 230
240–260 0.06 250
260–280 0.02 270
280–300 0.04 290
300–320 0.02 310

The expected value of this distribution μ=
∑

i uipi =192.6 units, and its standard deviation

σ =
√∑

i (ui −μ)2pi =47.4 units.
Let us denote the ordering quantity for that period, to be determined, by Q, and let d

denote the random variable that is the demand during that period. Then

y = overage quantity in this period=amount remaining after the demand is com-
pletely fulfilled= (Q− d)+ = maximum{0, Q− d}

z = underage quantity during this period= unfulfilled demand during this period=
(Q− d)− = maximum{0, d−Q}.
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Suppose the overage cost f(y), is the following piecewise linear function of y:

Overage Amount= y Overage Cost f(y) in $ Slope
0≤ y≤ 30 3y 3

30≤ y 90+ 10(y− 30) 10

Suppose the underage cost g(z) in $, is the fixed cost depending on the amount given below:

Underage Amount= y Underage Cost g(z) in $

0≤ z ≤ 10 50
10< z 150

To compute E(Q)= the expected sum of overage and underage costs when the order quantity
is Q, we assume that the demand value d is equally likely to be anywhere in the interval
Ii with probability pi. This implies, for example, that the probability that the demand d
is in the interval 120–125 is = (probability that d lies in the interval 120–140)/4= (0.10)/
4= 0.025.

Let Q= 185. When the demand d lies in the interval 120–140, the overage amount varies
from 65 to 45 and the overage cost varies from $440 to $240 linearly. So the contribution to
the expected overage cost from this interval is 0.10(440+ 240)/2.

Demand lies in the interval 140–160 with probability 0.15. In this interval, the overage cost
is not linear, but it can be partitioned into two intervals 140–155 (with probability 0.1125),
and 155–160 (with probability 0.0375) in each of which the overage cost is linear. In the
interval 140≤ d≤ 155 the overage cost varies linearly from $240 to 90; and in 155≤ d≤ 160
the overage cost varies linearly from $90 to 75. So, the contribution to the expected overage
cost from this interval is $(0.115(240+ 90)/2)+ (0.0375(90+ 75)/2).

Proceeding this way, we see that E(Q) for Q= 185 is: $(0.03(640+ 440)/2)+ (0.10(440+
240)/2)+[(0.115(240+90)/2)+(0.0375(90+75)/2)]+(0.20(75+ 15)/2)+[0.0275(15+ 0)/2)
+ 0.055(50)+ 0.0275 (150)]+ (0.07+ 0.20+ 0.06+ 0.02+ 0.04+ 0.02)150= $140.87.

145 150 155 160 165 170 175 180 185 190 195
120

130

140

150

160

170

180

Q

E
(Q

)

Q E(Q)

190 162.27
185 143.82
180 139.15
175 130.11
170 124.20
165 120.40
160 121.95
155 122.60
150 124.40
145 139.70

195 178.00

FIGURE 4.3 Plot of E(Q) for various values of Q.
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In the same way, we computed the values of E(Q) for different values of Q spaced
5 units apart, given by the side of Figure 4.3. The graph of Figure 4.3 is a plot of these
values of E(Q). Here, we computed E(Q) at values of Q, which are multiples of 5 units, and
it can be seen that Q= 165 is the optimum order quantity correct to the nearest multiple
of 5. If the optimum is required to greater precision, the above calculation can be carried
out for values of Q at integer (or closer) values between 150 and 170 and the best value of
Q there chosen as the optimum order quantity.

The optimum value of Q can then be translated into the actual order quantity for the
next period by subtracting the expected on-hand inventory at the end of the present period
from it.

For each i, assuming that demand d is equally likely to be anywhere in the interval Ii

with probability pi makes the value of E(Q) computed accurate for each Q. However, in
many applications, people make the simpler assumption that pi is the probability of demand
being equal to ui, the midpoint of the interval Ii. The values of E(Q) obtained with this
assumption will be approximate, particularly when the overage and underage costs are not
linear (i.e., when they are piecewise linear etc.); but this assumption makes the computation
of E(Q) much simpler; that’s why people use this simpler assumption.

4.2.5 How to Incorporate Seasonality in Demand into the Model

The discussion so far has dealt with the case when the values of demand in the various
periods form a stationary time series. In some applications this series may be seasonal; that
is, it has a pattern that repeats every N periods for some known value of N . The number
of periods N , before the pattern begins to repeat, is known as the length of the season. To
use seasonal models, the length of the season must be known.

For example, in the computer industry, the majority of the sales are arranged by sales
agents who operate on quarterly sales goals. That’s why the demand for components in the
computer industry and demand for their own products tend to be seasonal with the quarter
of the year as the season. The sales agents usually work much harder in the last month of
the quarter to meet their quarterly goals; so demand for products in the computer industry
tends to be higher in the third month of each quarter than in the beginning two months.
As most of the companies are building to order nowadays, weekly production levels and
demands for components inherit the same kind of seasonality.

At one company in this industry each quarter is divided into three homogeneous intervals.
Weeks 1–4 of the quarter are slack periods; each of these weeks accounts a fraction of about
0.045 of the total demand in the quarter. Weeks 5–8 are medium periods; each of these
weeks accounts for a fraction of about 0.074 of the total demand in the quarter. Weeks 9–13
are peak periods; each of these weeks accounts for a fraction of about 0.105 of the total
demand in the quarter. This fraction of demand in each week of the season is called the
seasonal factor of that week.

In the same way, in the paper industry, demand for products exhibits seasonality with
each month of the year as the season. Demand for their products in the 2nd fortnight in
each month tends to be much higher than in the 1st fortnight.

There are several ways of handling seasonality. One way is for each i= 1 to N(= length of
the season), consider demand data for the ith period in each season as a time series by itself,
and make the decisions for this period in each season using this series based on methods
discussed in earlier sections.

Another method that is more popular is based on the assumption that there exists a set
of indices ci, i= 1 to N called seasonal factors or seasonal indices (see Meybodi and Foote,
1995), where ci represents the demand in the ith period of the season as a fraction of the
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demand during the whole season (as an example, see the seasonal factors given for the com-
puter company described above). Once these seasonal factors are estimated, we divide each
observation of demand in the original demand time series by the appropriate seasonal fac-
tor to obtain the de-seasonalized demand series. The time series of de-seasonalized demand
amounts still contains all components of information of the original series except for sea-
sonality. Forecasting is carried out using the methods discussed in the earlier sections, on
the de-seasonalized demand series. Then estimates of the expected demand, standard devi-
ation, and the optimal order quantities obtained for each period must be re-seasonalized by
multiplying by the appropriate seasonal factor before being used.

4.3 Models for Production Layout Design

The basic engineering tasks involved in producing a product are

1. Developing a process plan,
2. Deciding whether to make or buy each component,
3. Deciding on the production doctrine: group technology, process oriented, or a mix,
4. Designing the layout, and
5. Creating the aisles and choosing the material handling system.

In this section, we will focus on tasks 3–5, assuming tasks 1 and 2 have been done. We will
then have available the following data: a matrix that shows the flows between processes.

4.3.1 An Example Problem

Our first problem is how to judge between layouts. A common metric is to minimize∑
di ∗ fi. This metric uses the distance from the centers of the process area multiplied

by the flow. The idea is that if this is minimized then the processes with the largest inter-
actions will be closest together. This has an unrealistic side in that flow usually is door to
door. We will look at two approaches. The first approach is the spanning tree concept and
then an approximation for the above metric.

As a practical matter, we always want to look at an ideal layout. We would like for
the material to be delivered and moved continuously through processes and be packaged
in motion and moved right into the truck or railway car that carries the product to the
store. Some examples already exist as logs of wood go to a facility that moves them directly
through a few processes that cut them into 2× 4’s or 4× 4’s and capture the sawdust and
create particle board, all of which with few stationary periods and go right into the trucks
that move them to lumber yards. In this case, the product is simple; there are only a small
number of processes that are easy to control by computers armed with expert system and
neural net rules that control the settings of the processes. Consider Example 1, where the
basic data on the first level is given in Table 4.1.

The matrix illustrates a factory with seven process areas and lists the number of containers
that will flow between them. Let us first assume that each department is of the same unit
size, say 100 sq. feet. We can draw a network to represent the flows between process areas as
in Figure 4.4. We can act as if the flows of material are from center to center of departments
by a conveyor. We can estimate a layout as in Figure 4.5. Note that we now look at the
size of the flows and put P2 and P3 adjacent and the center for P4 is slightly further away.
A similar reasoning locates the other departments. Note also the room left for expansion.
This is not a mathematical principle but is based on experience. Just as traffic on a freeway
always expands, production needs to expand if the business succeeds.
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TABLE 4.1 Flow Values for Example 1
P1 P2 P3 P4 P5 P6 P7

P1 0 20 30 15
P2 0 20
P3 0 28
P4 0 16
P5 5 0 28
P6 4 0 48
P7 0

P2

P1 P3 P5 P6 P7

P4

FIGURE 4.4 A process network for Example 1.

P1 P2 P6 P7

P3 P4 P5
Expansion

area

FIGURE 4.5 Possible layout for Example 1.

The layout in Figure 4.5 has subjective virtues as department one is “door-to-door” close
to the departments that it flows material to. An overhead conveyor down the middle has a
straight line layout that is very convenient and is of minimum length. This is not necessarily
an optimal layout but it provides a great starting point. If the departments are of different
sizes, the layout problem is much more complex and natural adjacencies are sometimes
infeasible.

Another heuristic approach to the layout adjacency problem is the use of the cut tree. If
you look at Figure 4.4 and assume the arcs are conveyors, then you try to find the set of
conveyors that, if inactive, will cut flow from 1 to 7. If the conveyors from 5 to 6 and 4 to 6
are inactive then flow from 1 to 7 cannot occur. This flow has value 44 and is the minimum
of such cuts. A common sense interpretation is that P6 and P7 should be on one end and
P1–P5 grouped on the other end. The flow between ends is the minimum it can be, which
is 44. A cut can be made in the set P1–P5 and new smaller groups can be seen. Other cut
trees can be computed and can provide a basis for several trials. The cut tree approach is
discussed further in Section 4.3.5.

4.3.2 Optimal Plant Layouts with Practical Considerations

One of the difficulties in defining “optimal” plant layouts is choosing the metric that defines
“optimal.” Most of the metrics try to minimize the product of distance and flow. The
problem is what is flowing. The weight and shape of what is moved varies tremendously.
What is moved can be a box of parts, a chassis 7′ by 4′, a container of waste, or a bundle
of electrical wire. At some point in time one needs to just find how many moves are made.
Thirty boxes can cause a move or one waste container can cause a move. The movement
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TABLE 4.2 Flow Values for Example 2
i/j 1 2 3 4 5

1 5 20
2 5 20
3 20 30
4 100
5 100

5 4

2 4

3 4

1 4

FIGURE 4.6 Conceptual layout without aisles.

5
(10′×10′)

2
(10′×10′)

3
(10′×10′)

1
(10′×10′)

Aisle
(40′× 6′)

4
(40′× 10′)

FIGURE 4.7 Layout with aisle included.

can be along aisles or on overhead conveyors. If the move is along aisles then it comes out
of doors. If it is moved by overhead conveyors, then the move is from a point inside the
area that produces it and the area that needs it. If the move is on overhead conveyors,
then the distance is Euclidean. If the move is along aisles, then distance is measured by the
Manhattan metric, which is the sum of N-S and E-W moves. The problem is clearly NP
complete, so that optimizing means optimizing in an ideal situation and then engineering
the solution into a practical satisficing layout. An approach by Tretheway and Foote (1994)
illustrates this approach.

Consider Example 2, where there are five departments with areas 100, 100, 100, 100, and
400. Let the flow values be as given in Table 4.2.

Let us assume a single aisle structure. Figures 4.6 and 4.7 illustrate an actual optimal
layout for this aisle structure and set of areas. Each block is 100 sq. ft. Based on the flow and
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the aisle down the middle of the plant, this is optimal regardless of the material handling
system. Notice that the aisle takes some area. This means that the overall structure must
contain perhaps 1024 sq. feet if the aisle is 40′ by 6′, or that each department donates some
area to the aisle.

4.3.3 The Tretheway Algorithm

Tretheway and Foote (1994) suggest a way to actually compute the two-dimensional coordi-
nates of the location of departments in a layout. Their approach works for buildings that are
rectangular, and variants of rectangular such as U, T, or L shaped structures. They adapt
a concept by Drezner (1987) to develop a technique to actually draw the layout with aisles.
The basic idea is to get a good adjacency layout on a line, then get a second layout on
another line, use the cross product to obtain a two-dimensional relative position, then draw
in aisles, account for loss of space to aisles, and create the drawing. “Rotations” of the aisles
structure create alternative structures that can be evaluated in terms of practical criteria.
An example is that a rotation which puts a test facility with a risk of explosions occurring
during test in a corner would be the layout chosen if the aisle structure can support the
material handling design.

NLP problem: Drezner’s nonlinear program for n departments is given by

min
∑
ij

fijdij i = 1, . . ., n; j = 1, . . .,m (4.3)

where fij ’s are flows (given data) and dij (decision variables) are distances between depart-
ments i and j. Utilizing a squared Euclidean distance metric, the nonlinear program is
transformed to

min

∑
ij

fij

[
(xi − xj)2 + (yi − yj)2

]
∑

i,j
(xi − xj)2 + (yi − yj)2

(4.4)

The objective in one dimension becomes

min

∑
i,j

fijx
2
ij∑

i,j
x2

ij

(4.5)

Equation 4.5 can be optimized. The minimizing solution is the eigen vector associated with
the second least eigen value of a matrix derived from the flow matrix.

To get a solution to the layout problem in a plane, we use the second and third least
eigen values to create two eigen vectors [x] and [y], each with n values. The Cartesian
product of these vectors creates a scatter diagram (a set of points in R

2) that suggests
an optimal spatial relationship in two dimensions for the n departments that optimizes the
squared distance ∗ flow relationship between the departments. Notice this relationship is not
optimized based on practical flow measures. However, it may give us a set of alternatives
that can be compared based on a practical measure. Further, this set of points can be
expressed as a layout based on two practical considerations: the areas of the departments
and the aisle structure selected. The Tretheway algorithm will illustrate how to do this. The
algorithm can actually be done easily by hand, especially if we remember that the space
requirements usually have some elasticity. The selection of an aisle structure first allows the
departments to be painted in a simple way.

Example 3: Consider the input data for 12 departments shown in Table 4.3. For this
input, consider an aisle structure with three vertical aisles. The scatter diagram with the
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TABLE 4.3 Input Data for Example 3
1 2 3 4 5 6 7 8 9 10 11 12

1 0 5 2 4 1 0 0 6 2 1 1 1
2 5 0 3 0 2 2 2 0 4 5 0 0
3 2 3 0 0 0 0 0 5 5 2 2 2
4 4 0 0 0 5 2 2 10 0 0 5 5
5 1 2 0 5 0 10 0 0 0 5 1 1
6 0 2 0 2 10 0 5 1 1 5 4 0
7 0 2 0 2 0 5 0 10 5 2 3 3
8 6 0 5 10 0 1 10 0 0 0 5 0
9 2 4 5 0 0 1 5 0 0 0 10 10

10 1 5 2 0 5 5 2 0 0 0 5 0
11 1 0 2 5 1 4 3 5 10 5 0 2
12 1 0 2 5 1 0 3 0 10 0 2 0

2

1

3

8
9

12

47
11

6
5

10

FIGURE 4.8 Example 3 scatter diagram for vertical aisles.

98

11 12
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4

6

3

1

2

10
5

FIGURE 4.9 Example 3 final solution with vertical aisles.

overlaid relative position of the aisles is shown in Figure 4.8. Figure 4.9 shows the area
proportioned final layout, with the heavy lines representing the aisles. For the same data
input of Table 4.3, Figures 4.10 and 4.11 demonstrate the technique for one main aisle
and two sub-aisles with the subaisles located between the aisle and the top wall. Note the
different proximities for the two different aisle structure layouts.
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FIGURE 4.10 Example 3 scatter diagram with one main aisle and two sub-aisles.
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FIGURE 4.11 Example 3 final solution with one main aisle and two sub-aisles.

4.3.4 A Spanning Tree Network Model for Layout Design

Consider the flow network in Figure 4.12. The base example is from Ravindran et al.
(1987).

The flows are f12 = 3, f13 = 7, f14 = 4, f26 = 9, f36 = 6, f35 = 3, f46 = 3, f23 = 2, and f34 = 1.
These represent costs, not the flow of containers, if the associated departments are neighbors.
Let us generate a spanning tree. This is a tree with no cycles such that all nodes can be
reached by a path. According to Ravindran et al. (1987), we arbitrarily select node 1 to
generate a tree such that the cost of each path segment is minimal. Thus, from 1 we go
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FIGURE 4.12 A material flow network.
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FIGURE 4.13 The minimum cost spanning tree.

5 6

43

2 1

FIGURE 4.14 A layout for equal area departments.

to 2 as 3= min (3, 7, 4). We now add node 3 as its cost of 2 is less than any other cost
from nodes 1 and 2. Now we look at arcs connecting from nodes 1, 2 and 3. Arc (3,4) is
the best.

So we have [(1,2),(2,3),(3,4)]. Now (3,5) and (4,5) are tied, so we arbitrarily pick (3,5).
(5,6) is left so we have [(1,2),(2,3),(3,4),(3,5),(5,6)]. This is the minimal spanning tree illus-
trated in Figure 4.13. We have five arcs which is one less than the number of nodes and
hence the smallest number of paths. If all departments have the same area an optimal layout
would be as given in Figure 4.14.

What if the departments do not have equal areas? Then an appropriate aisle structure
could help. If you are lucky with areas and 1 has the biggest area and 2, 3, and 4 are not
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1 2 6

1 3 5

1 4 5

FIGURE 4.15 A layout adjusted for areas.

2 2
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81
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FIGURE 4.16 A network model of container flows.

too large and 5 and 6 are intermediate then we could have a layout as given in Figure 4.15.
The aisle structure in Figure 4.15 could be two parallel aisles. This would work if the areas
are roughly proportional to 1:300, 2,3,4:100, 5:200, and 6:100. Plant layout will always be
NP complete relative to optimality in general with any metric, but in special cases apparent
optimality can be achieved.

Optimizing (flow× distance) metrics must be constrained by unique circumstances. If
department 3 in Figure 4.15 has some dangerous equipment that might explode, it has to
go to a corner. This reduces the number of outer walls that can be blown out to two. It gets
the area away from the center where all directions are in jeopardy. Buildings do not have
to be in a rectangular shape. If space permits and modules are feasible, then the shape of
the building can follow the spanning tree or the cut tree. U shapes can be solved by adding
dummy departments to the Tretheway set and setting their artificial flows such that they
will be in the middle at the end. We can also not have aisles and let the material handling
system overhead be a minimum spanning tree with nodes at the appropriate points in
departments or cells. See also Ravindran et al. (1989) for the use of shortest route network
model to minimize overhead conveyor distances along with material movement control.

4.3.5 A Cut Tree Network Model for Layout Design

If you consider the numbers on arcs representing the flow of containers, then the cut tree
provides a great basis for a layout that simply overlays a cut tree derived from the network
flow model on a plant shape. Kim et al. (1995) give an algorithm for generating the cut tree
and show an example layout for a nine area department cut tree. A cut tree divides the
network model into a final spanning tree (n− 1 arcs) that assumes flows go along the arcs and
that flows to other nodes pass through predecessor nodes. The following is a simple example.

Consider the example network with three departments D1, D2, and D3 given in Fig-
ure 4.16. We treat the arcs as conveyors. If we cut the arcs (2,1) and (2,3) we interrupt 6
units of flow to D1 and D3. If D1 is isolated, then a flow of 12 is cut. If D3 is isolated then
a flow of 10 is cut. The minimum cut is 6. If we cut arc (2,3), the 2 units from D2 to D3
must move to D1 and flow from D1 to D3 increases to 10 as seen in Figure 4.17. If we move
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FIGURE 4.17 The derived cut tree.
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FIGURE 4.18 Layout of L shaped area using the cut tree solution.

material by conveyors, then we have the minimum flow on the conveyors and a layout of
2-1-3 pasted into a building shape.

In Figure 4.18 the building shape is deliberately L-shaped, as occurs often when areas
inside a plant are re-engineered. The areas are different in size, but the material handling

ways to use cut trees and door to door metrics to rate layouts.

4.3.6 Facility Shapes

The shapes of facilities can be designed with a few basic principles. For example, the shape
with the minimum perimeter for a given area is a circle. This means that this simple shape
should be explored for nursing wards (minimum walking per day and maximum visual
surveillance of patients). This would also work for sleeping areas and jails of abused children.
A circular shape for production cells gives the best visual and response for the operator.
If walls are needed, they will have a minimum length. Of course wall construction costs
also depend on other factors such as materials (brick is more costly for circular walls) and
insulation (minimum perimeter means less insulation, and so on). Shopping mall designers
want longer walks to expose more goods, so shapes and paths will meet this requirement.
Long materials require long straight shapes. Towers work if work can trickle down by gravity.

4.4 Scheduling of Production and Service Systems

4.4.1 Definition of the Scheduling Decision

The basic function of scheduling is the decision to start a job on a given process and predict
when it will finish. This decision is determined by the objective desired, the data known,
and the constraints. The basic data required to make a mathematical decision are the
process plan, the time of operation projected for each process, the quality criteria, the bill
of materials (which may determine start dates if materials are not immediately available),
the due date, if any, and the objectives that must be met, if any. A process plan is a list
of the operations needed to complete the job and any sequence constraints. It is sometimes
thought that there is always a strict precedence requirement, but that is not true. Many
times one can paint or cut to shape in either order. A quality requirement may impose a
precedence, but this is to be determined. The basic plan can be listed as cut, punch, trim,
and smooth (emery wheel or other). This list is accompanied by instructions as to how

costs will be minimized. See Kim et al. (1995) and also Benson and Foote (1997) for other
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to execute each process (usually in the form of a drawing or pictures) and standards of
quality to be achieved; as well, there will be an estimate of the time to set up, perform
the process, do quality checks, record required information for the information and tracking
systems, and move. A decision is required when there are two or more jobs at a process and
the decision has to be made as to which job to start next. Some jobs require only a single
machine. The process could be welding, creating a photo from film, X-ray, creating an IC
board, or performing surgery. The study of single machines is very important because this
theory forms the basis of many heuristics for more complex manufacturing systems.

4.4.2 Single Machines

We are assuming here a job that only requires one process, and that the time to process is
given as a deterministic number or a random value from a given distribution. The standard
objectives are (1) to Min F the average flow time, (2) Min Max lateness Lmax, (3) Min nt,
the number of tardy jobs, and combinations of earliness and lateness. The flow time F is
the time to completion from the time the job is ready. If the job is ready at time equal to
0, flow time and completion time are the same. The function (finish time-due date) is the
basic calculation. If the value is positive the job is late, if it is negative the job is early.
The number of tardy jobs is the number of late jobs. Finish time is simply computed in
the deterministic case as the time of start+ processing time. There are surprisingly few
objectives that have an optimal policy. This fact implies that for most systems we must
rely on good heuristics. The following is a list of objectives and the policy that optimizes
the objective. The list is not exclusive, as there are many types of problems with unusual
assumptions.

Deterministic Processing Time

The objective is followed by the policy that achieves that objective:

1. Min F : Schedule job with shortest processing time first (SPT). Break ties ran-
domly or based on a second objective criterion. The basic idea is this: if the
shortest job is worked first, that is the fastest a job can come out. Every job’s
completion time is the smallest possible (Figure 4.19).

2. Min Max lateness (Lmax): Schedule the job with the earliest due first (EDD).
Break ties randomly or based on a second objective criterion (Figure 4.20).

3. Min nt: Execute Moore’s algorithm. This algorithm is explained to illustrate a
basic sequencing algorithm. Some notation is required (Figure 4.21).

SPT

B C

Job C: 5Job B: 3Job A: 1

9

985

B AC

LPT

0

0 1 4

F �

F �

3

5 � 8 � 9
3 3

22

14
3

1 � 4 � 9

Flow time � Finish time

Flow time � Finish time

A

�

�

FIGURE 4.19 Optimality of SPT for min F (single machine Gantt charts comparing optimal with
nonoptimal).
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FIGURE 4.20 Optimality of EDD to Min Max lateness (single machine problem).
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C
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� 0� 0
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FIGURE 4.21 Use of Moore’s algorithm.

Notation

Classification of problems: n/m/A/B, where n is the number of jobs, m the number of
machines, A the flow pattern (blank when m= 1, otherwise F for flow-shop, P for permu-
tation job shop (jobs in same order on all machines), G the general job shop (where jobs
can have different priorities at different process plan order), B the performance measure
(objective), C the completion time of a job and equal to the ready time plus sum of waiting
and processing times of jobs ahead of it, and D the due date of the job

L (lateness of job)= C −D

T (tardiness of job)= Max(L,0)



© 2009 by Taylor & Francis Group, LLC

Production Systems 4-23

E (earliness of job) = Max(–L,0)

Pi (processing time of job i) nt =number of tardy jobs

Moore’s algorithm solves the n/1/ /nt problem. The idea of the algorithm is simple. Schedule
by EDD to min max tardiness. Then find the first tardy job and look at it and all the jobs
in front of it. The problem job is the one with the largest processing time. It keeps other
jobs from finishing; remove it. It could be a job that is not tardy. Now repeat the process.
When no tardy jobs are found in the set of jobs that remain, schedule them in EDD order
and place the rejected jobs at the end in any order.

Figure 4.21 illustrates Moore’s algorithm and basic common sense ideas. For other single-
machine problems that can be solved optimally, see French (1982) or any current text on
scheduling (a fruitful path is to web-search Pinedo or Baker).

4.4.3 Flow Shops

More than one-third of production systems are flow shops. This means that all jobs have a
processing plan that goes through the processes in the same order (some may take 0 time
at a process). Only the two-process case has an optimal solution for min Fmax. A special
case of the three-machine flow shop has an optimal solution for the same criteria. All other
problems for m(number of processes) >2 do not have optimal solutions that are computable
in a time proportional to some quadratic function of a parameter of the problem, such as n
for any criteria. This will be addressed in more detail later.

Two-Process Flow Shops

It has been proved for flow shops that only schedules that schedule jobs through each process
(machine) in the same sequence need be considered. This does not mean that deviations
from this form will not sometimes get a criterion value that is optimal. When m= 2, an
optimal solution is possible using Johnson’s algorithm. The idea of the algorithm is to
schedule jobs that have low processing times on the first machine and thus get them out of
the way. Then schedule jobs later that have low processing times on the last machine, so
that when they get on they are finished quickly and can make way for jobs coming up. In
this way, the maximum flow time of all jobs is minimized (the time all jobs are finished).

Job Time on Machine A Time on Machine B
1 8 12
2 3 7
3 10 2
4 5 5
5 11 4

The algorithm is easy. Look at all the processing times and find the smallest. If it is on the
first machine, schedule it as soon as possible, and if it is on the second machine, schedule it as
late as possible. Then remove this job’s data and repeat. The solution here has five positions.
The following shows the sequence construction step by step. Schedule is represented by S.

S = [, , , ,3]
S = [2, , , ,3]
S = [2, , ,5,3]
S = [2,4, ,5,3] or [2, ,4,5,3]
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FIGURE 4.22 Gantt chart of an optimal schedule. For the example in two Cmax problem schedule,
using Johnson’s algorithm.

Job 1 now goes in either sequence in the only position left: S = [2,4,1,5,3] or S = [2,1,4,5,3]
(see Figure 4.22).

Heuristics for General Flow Shops for Some Selected Criteria

n/m/F/Fmax

The Campbell–Dudek heuristic makes sense and gives good solutions. There are better
heuristics if one is not solving by hand. The idea is common sense. Assume we have six
machines. If we find a job that gets through the six machines quickly, schedule it first so it
gets out of the way. If there is a job that gets through the first five quickly, schedule it as soon
as you can. This follows up to a job that gets off the first machine quickly. Alternatively, if
a job gets off the last machine quickly, schedule it last, or if it gets off the last two quickly,
or the last three, and so on. This leads to solving five constructed two-machine flow shop
problems (surrogates), finding the optimal sequences, and then picking the one with the
best maximum flow. A sixth sequence can be tested by sequencing in order of the least total
(on all machines) processing time. Here is a five-job, four-machine problem to illustrate the
surrogate problems. There will be m – 1 or three of them.

Job m1 m2 m3 m4 Total
1 5 7 4 11 27
2 2 3 6 7 18
3 6 10 1 3 20
4 7 4 2 4 17
5 1 1 I 2 5

S = [5,4,2,3,1] when looking at total processing time.

Three Surrogate Problems
Surrogate one: times on first and last machines only (solution by Johnson’s algorithm:
[5,2,3,4,1])

Job m1′ m2′′

1 5 11
2 2 7
3 6 3
4 7 4
5 1 2
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Surrogate two: times on first two and last two machines (solution by Johnson’s algorithm:
[5,2,1,4,3])

Job m1′ m2′′

1 12 15
2 5 13
3 16 4
4 11 6
5 2 3

Surrogate three: times on first three machines and last three machines (solution by Johnson’s
algorithm: [5,4,3,2,1])

Job m1′ m2′′

1 16 22
2 11 16
3 17 14
4 13 10
5 3 4

These four sequences are then Gantt-charted, and the one with the lowest F max is used. If
we want to min average flow time, then these would also be good solutions to try. If we want
to min max lateness, then try EDD, and also try these sequences. We could also put job 1
last and schedule by EDD as a commonsense approach. Later we will talk about computer
heuristics for these types of problems.

The Concept of Fit in Flow Shops

Consider a case where job (i) precedes job (j), with a six-machine flow shop. Let their
processing times be (i): [5 4 2 6 8 10] and (j): [3 2 5 8 9 15]. In the Gantt chart (see
Figure 4.23) you will see that job (j) is always ready to work when job (i) is finished on a
machine. No idle time is created (see Figure 4.23). If computer-processing time is available,
then a matrix of job fit can be created to be used in heuristics.

Fit is computed with the following notation: tij is the processing time of job (i) on
machine (j). Then let job (j) precede job (k):

Fit =
s=m∑
s=2

max[tjs − tk,s−1, 0]

Heuristics will try to make job (j) ahead of job (k) if fit is the largest positive found, that
is, [. . . k, j, . . . ]. By removing the max operator, one can get a measure of the overall fit or
one can count the number of positive terms and use this to pick a pair that should be in
sequence. If there are six machines, pick out all the pairs that have a count of 5, then 4,
then 3, and so on, and try to make a common sense Gantt chart. Consider the following
data: J1: [4 5 4 7], J2: [5 6 9 5], J3: [6 5 6 10], J4: [3 8 7 6], J5: [4 4 6 11]. The largest
number of fits is 3.

4→ 3 3→ 2 2→ 1 1→ 5 have three positive terms in the fit formula. Hence, an optimal
sequence is S = [4 3 2 1 5] (Figure 4.24).
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FIGURE 4.24 An optimal sequence since we have perfect fit.

4.4.4 Job Shops

Job shops are notoriously tough (see later discussion on NP-complete problems). In job
shops, a job may have processing plans that have a variety of sequences. For large job shops
some simulation studies have shown that job shops are dominated by their bottlenecks. A
bottleneck is the machine that has the largest total work to do when all jobs are completed.

In practice, it has been effective to schedule the jobs on each machine by using the
sequence determined by solving a one-machine problem with the bottleneck as the machine.
For large job shops, jobs are constantly entering. Thus, the structure constantly changes.
This means that at the beginning of the period, each machine is treated as a single machine,
and single machine theory is used for scheduling. At the beginning of the next period, a new
set of priorities is determined. The determination of period length is a matter still under
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FIGURE 4.25 A heuristic approach to scheduling a job shop. Compare with other guesses and pick
lowest Cmax.

research. A period length of a multiple of total average job-processing time is a good start.
A multiple such as 10 is a good middle ground to try. Perform some experiments and try
going up if you have a lot of setup time and down if setup time is minimal.

Some other approaches are to take the top two bottlenecks and schedule the jobs as a
two-machine flow shop, using only their times on the two bottlenecks. If you are using min
average flow time, use flow shop heuristics designed for that purpose. If you are using min
max flow time, use Johnson’s algorithm. If a job does not go through the two bottlenecks,
schedule it later, if you can. In the real world sometimes jobs can be worked faster than
predicted. Most schedulers try to find such jobs. They then look for small processing time
jobs and insert them. Schedulers also look for jobs that have remaining processes that are
empty and pull them out if average flow time is an issue.

It is never good to operate at 100% capacity. Quality goes down under this kind of
pressure. Studies have shown that around 90% is good. At times, random variation will put
the shop at 100% even then. But a little gap is good for preventive maintenance and for
training. Most maintenance will be off shift if unplanned, but off shift can be expensive.
Figure 4.25 is an example using Johnson’s algorithm on the two bottlenecks and then
scheduling the three machines with that sequence.
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If output from one subsystem goes to another, then there is a timing issue and hence a
due date issue. Basic queuing issues come into play. If service centers are in a flow mode,
then the jobs should be in SPT order. This gets them out of the early systems quickly and
allows the other jobs get going. If work has a large variance, then low variance jobs go first.
Simulation software analysis is a must for large systems. The biggest aid is total system
knowledge. If a truck coming in has an accident and this is known by the warehouse, some
healing action can be taken. Some borrowing from other trucks might happen. Work that
will not be completed due to the accident can be put off. Top-level knowledge of demand
from the primary data is a must. Inferring it from orders is a major mistake. This subsystem
knowledge allows coordination.

Control

What does control mean for a system? If a policy is simulated, there will be a mean and
standard deviation of the queue length. When a queue exceeds the mean plus two standard
deviations something is likely wrong. So, what questions should you ask? Are the processing
times different from predictions? Is a large amount of maintenance going on? Do we have
critical material shortages? Have we instituted just-in-time scheduling when the variance in
system parameters is too high? If your trucks go completely through urban areas, you may
not be able to arrive in a just-in-time window.

It is now possible with computers to predict a range of conditions that are normal. Readers
should refer to the literature for current information, journals, and books.

Solvability Problems

We now know of many areas that have no solution. The normal distribution function does
not have a closed-form integral. It must be computed numerically. Most scheduling prob-
lems are such that to guarantee optimality, total enumeration or implied total enumeration
(branch and bound) must be used. However, it has been shown over and over that heuristics
can get optimal solutions or solutions that are only off by 1 or 2%. When data quality is
considered, this will be satisfactory. In linear programming, any point in the vicinity of
a basic solution will be near optimal and, in fact, due to round off errors in computing,
the basis may even be better than the basis presented by the computation. Problems that
require total enumeration to prove optimality are interesting, but in practice are solved
and the solutions are good. Practically speaking, problems such as n/m/F/nt are what are
called NP complete. They must have implied total enumeration to prove the answer is opti-
mal. However, in practice, one can obtain good solutions. Moreover, for some problems, the
optimal solution is obvious (for example, in flow shops where all jobs have unit processing
times on all machines for the objective of min average flow time).

Bootstrapping

With the advent of modern computers and Monte Carlo simulation packages, it is possible to
obtain statistical predictions of systems. By using heuristics and genetic algorithms to gen-
erate policies to simulate, a good statistical prediction can be made to set control standards
with only three or four replications. Bootstrapping is the technique in which actual data are
used for lead times, processing times, etc. These data can be arranged as a histogram from
which values can be drawn randomly to determine how long a job will be processed, how
long it will take to repair a machine, and so on. This uses the best evidence, the data, and
has no chance of making an error in distribution assumption. Good data collection systems
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are a must. Distribution assumptions do have their virtues, in that we know repair times
can occur that have not previously been observed. Running a Monte Carlo simulation both
ways can throw much light on the matter.

Practical Issues

In both build-to-stock and build-to-order policies, the unexpected may happen. Machines
break down, trucks get caught in traffic delays, materials are found to be defective, and
workers do not show up. The plan and schedule must be repaired. A basic plan to illustrate
repair is to assign workers to the bottleneck one at a time, then find the new bottleneck
and assign the next worker there. Repairing, regaining feasibility, and extending the plan
when new work arrives requires software if the system is large (“large” meaning that hand
computation is simply not doable). An illustration of repair occurs when some jobs I are
not ready in an n/m/G or F/Cmax problem at time 0. One then goes ahead and solves,
assuming all i ready times are 0. If the solution requires a job to start before it is ready,
repair must be done. These needs form the criteria for selecting commercial software from
an available list. The software must be algorithmically correct and computationally efficient
with good structures for search and information retrieval. Professional magazines such as
IE Solutions provide lists of vendors to assess.
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5.1 Introduction

Energy is an all-encompassing commodity that touches the life of everyone. Managing energy
effectively is of paramount importance in every organization and every nation. Energy issues
have led to political disputes and wars. This chapter presents examples of the application of
operations research (OR) to optimizing energy decisions. Kruger (2006) presents a compre-
hensive assessment of energy resources from different perspectives, which include historical
accounts, fossil fuel, energy sustainability, consumption patterns, exponentially increasing
demand for energy, environmental impact, depletion of energy reserves, renewable energy,
nuclear energy, economic aspects, industrialization and energy consumption, and energy
transportation systems. Badiru (1982) presents the application of linear programming (LP)
technique of OR to energy management with a specific case example of deciding between
alternate energy sources. Badiru and Pulat (1995) present an OR model for making invest-
ment decisions for energy futures. Hudson (2005) developed an OR-based spreadsheet model
for energy cogeneration. All these and other previous applications of OR to energy systems
make this chapter very important for both researchers and practitioners.

5-1
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5.2 Definition of Energy

The word energy comes from the Greek word for “work.” Indeed, energy is what makes
everything work. Everything that we do is dependent on the availability of energy. Newton’s
law of conservation of momentum and energy states that energy cannot be created or
destroyed. It can, however, be converted from one form to other. Recent energy-related
events around the world have heightened the need to have full understanding of energy
issues, from basic definitions to consumption and conservation practices. Tragic examples
can be seen in fuel-scavenging practices that turn deadly in many energy impoverish parts
of the world. In May 2006, more than 200 people died when a gasoline pipeline exploded
in Nigeria while poor villagers were illegally tapping into the pipeline to obtain the much-
needed energy source. This illustrates a major lack of understanding of the volatility of
many energy sources.

Before we can develop a mathematical model of energy systems, we must understand the
inherent characteristics of energy. There are two basic types of energy:

• Kinetic energy
• Potential energy

All other forms of energy are derived from the above two fundamental forms. Energy that
is stored (i.e., not being used) is potential energy. Kinetic energy is found in anything that
moves (e.g., waves, electrons, atoms, molecules, and physical objects). Electrical energy is
the movement of electrical charges. Radiant energy is electromagnetic energy traveling in
waves. Radiant energy includes light, X-rays, gamma rays, and radio waves. Solar energy
is an example of radiant energy. Motion energy is the movement of objects and substances
from one place to another. Wind is an example of motion energy. Thermal or heat energy
is the vibration and movement of matter (atoms and molecules inside a substance). Sound
is a form of energy that moves in waves through a material. Sound is produced when a
force causes an object to vibrate. The perception of sound is the sensing (picking up) of the
vibration of an object.

Potential energy represents stored energy as well as energy of position (e.g., energy due to
fuel, food, and gravity). Chemical energy is energy derived from atoms and molecules con-
tained in materials. Petroleum, natural gas, and propane are examples of chemical energy.
Mechanical energy is the energy stored in a material by the application of force. Compressed
springs and stretched rubber bands are examples of stored mechanical energy. Nuclear
energy is stored in the nucleus of an atom. Gravitational energy is the energy of position and
place. Water retained behind the wall of a dam is a demonstration of gravitational potential
energy. Light is a form of energy that travels in waves. The light we see is referred to as
visible light. However, there is also an invisible spectrum. Infrared or ultraviolet rays cannot
be seen, but can be felt as heat. Getting a sunburn is an example of the effect of infrared.
The difference between visible and invisible light is the length of the radiation wave, known
as wavelengths. Radio waves have the longest rays while gamma rays have the shortest
rays.

When we ordinarily talk about conserving energy, we are referring to adjusting the ther-
mostat (for cooling or heating) to save energy. When scientists talk of conserving energy,
they are referring to the law of physics, which states that energy cannot be created or
destroyed. When energy is used (consumed), it does not cease to exist; it simply turns
from one form to another. As examples, solar energy cells change radiant energy into elec-
trical energy. As an automobile engine burns gasoline (a form of chemical energy), it is
transformed from the chemical form to a mechanical form.
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When energy is converted from one form to another, a useful portion of it is always
lost because no conversion process is 100% efficient. It is the objective of energy analysts
to minimize that loss, or convert the loss into another useful form. Therein lies the need
to use OR techniques to mathematically model the interaction of variables in an energy
system to achieve optimized combination of energy resources. The process of combined
heat and power (CHP) to achieve these objectives can benefit from OR modeling of energy
systems.

5.3 Harnessing Natural Energy

There is abundant energy in our world. It is just a matter of meeting technical requirements
to convert it into useful and manageable forms. For example, every second, the sun converts
600 million tons of hydrogen into 596 million tons of helium through nuclear fusion. The
balance of 4 million tons of hydrogen is converted into energy in accordance with Einstein’s
theory of relativity,

E = mc2

This is a lot of energy that equates to 40,000 W per square inch on the visible surface of the
sun. Can this be effectively harnessed for use on Earth? Although the Earth receives only
one-half of a billionth of the sun’s energy, this still offers sufficient potential for harnessing.
Comprehensive technical, quantitative, and qualitative analysis will be required to achieve
the harnessing goal. OR can play an importance role in that endeavor. The future of energy
will involve several integrative decision scenarios involving technical and managerial issues
such as:

• Micropower generation systems
• Negawatt systems
• Energy supply transitions
• Coordination of energy alternatives
• Global energy competition
• Green-power generation systems
• Integrative harnessing of sun, wind, and water energy sources
• Energy generation, transformation, transmission, distribution, storage, and

consumption across global boundaries.

5.4 Mathematical Modeling of Energy Systems

The rapid industrialization of society, coupled with drastic population growth, has fueled
increasingly complex consumption patterns that require optimization techniques to manage.
It is essential to first develop mathematical representations of energy consumption patterns
to apply OR methods of optimization. Some of the mathematical modeling options for
energy profiles are linear growth model, exponential growth model, logistic curve growth
model, regression model, and logarithmic functions. There is often a long history of energy
data to develop appropriate mathematical models. The huge amount of data involved and
the diverse decision options preclude the use of simple enumeration approaches. Thus, LP
and other nonlinear OR techniques offer proven solution techniques. The example in the
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next section illustrates how the LP model is used to determine the optimal combination of
energy sources to meet specific consumption demands.

5.5 Linear Programming Model of Energy
Resource Combination

This example illustrates the use of LP for energy resource allocation (Badiru, 1982). Sup-
pose an industrial establishment uses energy for heating, cooling, and power. The required
amount of energy is presently being obtained from conventional electric power and natural
gas. In recent years, there have been frequent shortages of gas, and there is a pressing need
to reduce the consumption of conventional electric power. The director of the energy man-
agement department is considering a solar energy system as an alternate source of energy.
The objective is to find an optimal mix of three different sources of energy to meet the
plant’s energy requirements. The three energy sources are

• Natural gas
• Commercial electric power grid
• Solar power

It is required that the energy mix yield the lowest possible total annual cost of energy for
the plant. Suppose a forecasting analysis indicates that the minimum kilowatt-hour (kwh)
needed per year for heating, cooling, and power are 1,800,000, 1,200,000, and 900,000 kwh,
respectively. The solar energy system is expected to supply at least 1,075,000 kwh annually.
The annual use of commercial electric grid must be at least 1,900,000 kwh due to a prevailing
contractual agreement for energy supply. The annual consumption of the contracted supply
of gas must be at least 950,000 kwh. The cubic foot unit for natural gas has been converted
to kwh (1 cu. ft. of gas = 0.3024 kwh).

The respective rates of $6/kwh, $3/kwh, and $2/kwh are applicable to the three sources
of energy. The minimum individual annual conservation credits desired are $600,000 from
solar power, $800,000 from commercial electricity, and $375,000 from natural gas. The
conservation credits are associated with the operating and maintenance costs. The energy
cost per kilowatt-hour is $0.30 for commercial electricity, $0.05 for natural gas, and $0.40
for solar power. The initial cost of the solar energy system has been spread over its useful
life of 10 years with appropriate cost adjustments to obtain the rate per kilowatt-hour. The
sample data is summarized in Table 5.1. If we let xij be the kilowatt-hour used from source
i for purpose j, then we would have the data organized as shown in Table 5.2. Note that
the energy sources (solar, commercial electricity grid, and natural gas) are used to power
devices to meet energy needs for cooling, heating, and power.

TABLE 5.1 Energy Resource Combination Data
Minimum

Minimum Conservation Conservation
Supply Credit Credit Rate Unit Cost

Energy Source (1000’s kwh) (1000’s $) ($/kwh) ($/kwh)

Solar power 1075 600 6 0.40
Electricity grid 1900 800 3 0.30
Natural gas 950 375 2 0.05
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TABLE 5.2 Tabulation of Data for LP Model
Type of Use

Energy Source Heating Cooling Power Constraint

Solar power x11 x12 x13 ≥1075K
Electric power x21 x22 x23 ≥1900K
Natural gas x31 x32 x33 ≥950K
Constraint ≥1800 ≥1200 ≥900

TABLE 5.3 LP Solution to the Resource Combination Example (in kwh)
Type of Use

Energy Source Heating Cooling Power

Solar power 0 1075 0
Commercial Electricity 975 0 925
Natural gas 825 125 0

The optimization problem involves the minimization of the total cost function, Z. The
mathematical formulation of the problem is presented below.

Minimize: Z = 0.4
3∑

j=1

x1j + 0.3
3∑

j=1

x2j + 0.05
3∑

j=1

x3j

Subject to: x11 + x21 + x31 ≥ 1800

x12 + x22 + x32 ≥ 1200

x13 + x23 + x33 ≥ 900

6(x11 + x12 + x13) ≥ 600

3(x21 + x22 + x23) ≥ 800

2(x31 + x32 + x33) ≥ 375

x11 + x12 + x13 ≥ 1075

x21 + x22 + x23 ≥ 1900

x31 + x32 + x33 ≥ 950

xij ≥ 0, i, j = 1, 2, 3

Using the LINDO LP software, the solution presented in Table 5.3 was obtained. The table
shows that solar power should not be used for heating or power; commercial electricity
should not be used for cooling, and natural gas should not be used for power. In pragmatic
terms, this LP solution may have to be modified before being implemented on the basis of
the prevailing operating scenarios and the technical aspects of the facilities involved. The
minimized value of the objective function is $1047.50 (in thousands).

5.6 Integer Programming Model for Energy
Investment Options

This section presents an integer programming formulation as another type of OR model-
ing for energy decision making. Planning a portfolio of energy investments is essential in
resource-limited operations. The capital rationing example presented here (Badiru and
Pulat, 1995) involves the determination of the optimal combination of energy investments
so as to maximize present worth of total return on investment. Suppose an energy analyst is
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given N energy investment options, X1, X2, X3, . . .,XN , with the requirement to determine
the level of investment in each option so that present worth of total investment return is
maximized subject to a specified limit on available budget. The options are not mutually
exclusive.

The investment in each option starts at a base level bi (i= 1, 2, . . ., N) and increases by
variable increments kij (j = 1, 2, 3, . . .,Ki), where Ki is the number of increments used for
option i. Consequently, the level of investment in option Xi is defined as

xi = bi +
Ki∑
j=1

kij

where

xi ≥ 0 ∀i

For most cases, the base investment will be 0. In those cases, we will have bi = 0. In the
modeling procedure used for this example, we have:

Xi =
{
1 if the investment in option i is greater than zero
0 otherwise

and

Yij =
{
1 if the increment of alternative i is used
0 otherwise.

The variable xi is the actual level of investment in option i, while Xi is an indicator variable
indicating whether or not option i is one of the options selected for investment. Similarly,
kij is the actual magnitude of the jth increment, while Yij is an indicator variable that
indicates whether or not the jth increment is used for option i. The maximum possible
investment in each option is defined as Mi such that

bi ≤ xi ≤ Mi

There is a specified limit, B, on the total budget available to invest such that∑
i

xi ≤ B

There is a known relationship between the level of investment, xi, in each option and the
expected return, R(xi). This relationship is referred to as the utility function, f(.), for the
option. The utility function may be developed through historical data, regression analysis,
and forecasting models. For a given energy investment option, the utility function is used
to determine the expected return, R(xi), for a specified level of investment in that option.
That is,

R(xi) = f(xi)

=
Ki∑
j=1

rij Yij

where rij is the incremental return obtained when the investment in option i is increased
by kij . If the incremental return decreases as the level of investment increases, the utility
function will be concave. In that case, we will have the following relationship:

rij − ri, j+1 ≥ 0

Thus,

Yij ≥ Yi, j+1
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FIGURE 5.1 Utility curve for investment yield.

or

Yij − Yi, j+1 ≥ 0

so that only the first n increments (j = 1, 2, . . ., n) that produce the highest returns are used
for project i. Figure 5.1 shows an example of a concave investment utility function.

If the incremental returns do not define a concave function, f(xi), then one has to intro-
duce the inequality constraints presented above into the optimization model. Otherwise,
the inequality constraints may be left out of the model, as the first inequality, Yij ≥ Yi,j+1,
is always implicitly satisfied for concave functions. Our objective is to maximize the total
investment return. That is,

Maximize: Z =
∑

i

∑
j

rij Yij

Subject to the following constraints:

xi = bi +
∑

j

kij Yij ∀i

bi ≤ xi ≤ Mi ∀i

Yij ≥ Yi, j+1 ∀i, j∑
i

xi ≤ B

xi ≥ 0 ∀i

Yij = 0 or 1 ∀i, j

Now suppose we are given four options (i.e., N = 4) and a budget limit of $10 million. The
respective investments and returns are shown in Tables 5.4 through 5.7.

All the values are in millions of dollars. For example, in Table 5.7, if an incremental
investment of $0.20 million from stage 2 to stage 3 is made in option 1, the expected
incremental return from the project will be $0.30 million. Thus, a total investment of $1.20
million in option 1 will yield present worth of total return of $1.90 million. The question
addressed by the optimization model is to determine how many investment increments
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TABLE 5.4 Investment Data for Energy Option 1
Incremental Level of Incremental Total
Investment Investment Return Return

Stage (j) y1j x1 r1j R(x1)

0 — 0 — 0
1 0.80 0.80 1.40 1.40
2 0.20 1.00 0.20 1.60
3 0.20 1.20 0.30 1.90
4 0.20 1.40 0.10 2.00
5 0.20 1.60 0.10 2.10

TABLE 5.5 Investment Data for Energy Option 2
Incremental Level of Incremental Total
Investment Investment Return Return

Stage (j) y2j x2 r2j R(x2)

0 — 0 — 0
1 3.20 3.20 6.00 6.00
2 0.20 3.40 0.30 6.30
3 0.20 3.60 0.30 6.60
4 0.20 3.80 0.20 6.80
5 0.20 4.00 0.10 6.90
6 0.20 4.20 0.05 6.95
7 0.20 4.40 0.05 7.00

TABLE 5.6 Investment Data for Energy Option 3
Incremental Level of Incremental Total
Investment Investment Return Return

Stage (j) y3j x3 r3j R(x3)

0 0 — — 0
1 2.00 2.00 4.90 4.90
2 0.20 2.20 0.30 5.20
3 0.20 2.40 0.40 5.60
4 0.20 2.60 0.30 5.90
5 0.20 2.80 0.20 6.10
6 0.20 3.00 0.10 6.20
7 0.20 3.20 0.10 6.30
8 0.20 3.40 0.10 6.40

TABLE 5.7 Investment Data for Energy Option 4
Incremental Level of Incremental Total
Investment Investment Return Return

Stage (j) y4j x4 r4j R(x4)

0 — 0 — 0
1 1.95 1.95 3.00 3.00
2 0.20 2.15 0.50 3.50
3 0.20 2.35 0.20 3.70
4 0.20 2.55 0.10 3.80
5 0.20 2.75 0.05 3.85
6 0.20 2.95 0.15 4.00
7 0.20 3.15 0.00 4.00

should be used for each option. That is, when should we stop increasing the investments
in a given option? Obviously, for a single option we would continue to invest as long as
the incremental returns are larger than the incremental investments. However, for multiple
investment options, investment interactions complicate the decision so that investment in
one project cannot be independent of the other projects. The IP model of the capital
rationing example was solved with LINDO software. The model is

Maximize: Z = 1.4Y11 + .2Y12 + .3Y13 + .1Y14 + .1Y15 + 6Y21 + .3Y22 + .3Y23
+ .2Y24 + .1Y25 + .05Y26 + .05Y27 + 4.9Y31 + .3Y32 + .4Y33 + .3Y34
+ .2Y35 + .1Y36 + .1Y37 + .1Y38 + 3Y41 + .5Y42 + .2Y43 + .1Y44
+ .05Y45 + .15Y46
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Subject to:
.8Y11 + .2Y12 + .2Y13 + .2Y14 + .2Y15 − X1 = 0
3.2Y21 + .2Y22 + .2Y23 + .2Y24 + .2Y25 + .2Y26 + .2Y27 − X2 = 0
2.0Y31 + .2Y32 + .2Y33 + .2Y334 + .2Y35 + .2Y36 + .2Y37 + .2Y38 − X3 = 0
1.95Y41 + .2Y42 + .2Y43 + .2Y44 + .2Y45 + .2Y46 + .2Y47 − X4 = 0
X1 + X2 + X3 + X4 <= 10
Y12 − Y13 >= 0
Y13 − Y14 >= 0
Y14 − Y15 >= 0
Y22 − Y23 >= 0
· · · · · ·
Y26 − Y27 >= 0
Y32 − Y33 >= 0
Y33 − Y34 >= 0
Y35 − Y36 >= 0
Y36 − Y37 >= 0
Y37 − Y38 >= 0
Y43 − Y44 >= 0
Y44 − Y45 >= 0
Y45 − Y46 >= 0
Xi >= 0 for i = 1, 2, . . ., 4
Yij = 0, 1 for all i and j

The solution indicates the following values for Yij .

5.6.1 Energy Option 1

Y11= 1, Y12= 1, Y13= 1, Y14= 0, Y15= 0
Thus, the investment in option 1 is X1= $1.20 million. The corresponding return is $1.90
million.

5.6.2 Option 2

Y21= 1, Y22= 1, Y23= 1, Y24= 1, Y25= 0, Y26= 0, Y27= 0
Thus, the investment in option 2 is X2= $3.80 million. The corresponding return is $6.80
million.

5.6.3 Option 3

Y31= 1, Y32= 1, Y33= 1, Y34= 1, Y35= 0, Y36= 0, Y37= 0
Thus, the investment in option 3 is X3= $2.60 million. The corresponding return is $5.90
million.

5.6.4 Option 4

Y41= 1, Y42= 1, Y43= 1
Thus, the investment in option 4 is X4= $2.35 million. The corresponding return is $3.70
million.
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The total investment in all four options is $9,950,000. Thus, the optimal solution indicates
that not all of the $10,000,000 available should be invested. The expected present worth
of return from the total investment is $18,300,000. This translates into 83.92% return on
investment. Figure 5.2 presents histograms of the investments and the returns for the four
options. The individual returns on investment from the options are shown graphically in
Figure 5.3.

The optimal solution indicates an unusually large return on total investment. In a prac-
tical setting, expectations may need to be scaled down to fit the realities of the investment
environment. Not all optimization results will be directly applicable to real-world scenarios.
Possible extensions of the above model of capital rationing include the incorporation of risk
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and time value of money into the solution procedure. Risk analysis would be relevant, partic-
ularly for cases where the levels of returns for the various levels of investment are not known
with certainty. The incorporation of time value of money would be useful if the investment
analysis is to be performed for a given planning horizon. For example, we might need to
make investment decisions to cover the next 5 years rather than just the current time.

5.7 Simulation and Optimization of Distributed
Energy Systems

Hudson (2005) has developed a spreadsheet-based adaptive nonlinear optimization model
that utilizes the OR methods of simulation and nonlinear optimization to determine the
optimal capacities of equipment in combined heat and power (CHP) applications, often
called cogeneration. Evaluation of potential CHP applications requires an assessment of
the operations and economics of a particular system in meeting the electric and thermal
demands of a specific end-use facility. Given the electrical and thermal load behavior of a
facility, the tariff structure for grid-supplied electricity, the price of primary fuel (e.g., natu-
ral gas), the operating strategy and characteristics of the CHP system, and an assumed set
of installed CHP system capacities (e.g., installed capacity of prime mover and absorption
chiller), one can determine the cost of such a system as compared to reliance solely on
traditional, grid-supplied electricity and on-site boilers. Selecting the optimal capacities for
a CHP system will help to produce optimal cost benefits and potentially avoid economic
losses. The following material describes the methodology of the approach and provides an
example of the results obtained.

5.8 Point-of-Use Energy Generation

Distributed energy is the provision of energy services at or near the point of use. It can
take many forms, but a central element is the existence of a prime mover for generating
electricity. Typical prime movers for current distributed energy applications are gas or light
oil-fired turbines, fuel cells, or reciprocating engines fired with natural gas or diesel fuel.
Such prime movers are only able to utilize roughly 30% of the input fuel energy in the
production of electricity. The remaining energy can either be utilized as a thermal resource
stream or must be exhausted to the atmosphere. When the waste heat is used to satisfy
heating needs, the system is typically termed a cogeneration or combined heat and power
system. Through the use of an absorption chiller, waste heat can also be utilized to provide
useful cooling, in which case the system is considered a CHP application.

Generally, CHP systems are not the sole source of electricity and thermal resource for a
facility. In most cases, these systems are merely alternatives to utility grid-supplied electric-
ity, electric chillers, and electric or gas-fired on-site water heating. As a result, CHP systems
are characteristic of the classic “make-or-buy” decision, and economic viability is relative to
grid-based electricity and on-site boiler heating. An assessment of the economic viability of
a particular CHP system requires an assumption regarding the installed equipment capaci-
ties of the system. As costs are a direct function of the installed capacities of these systems,
the challenge is to determine the most economically optimal capacities of the equipment.

An important consideration in assessing the potential for CHP systems is recognition of
the noncoincident behavior of the electric and thermal (i.e., heating and cooling) loads of a
facility. That is, the load patterns for the three load streams are not perfectly correlated with
each other through time. As a result, the peak of electrical demand will most likely not occur
at the same point in time as either the heating or cooling demand peak. Absence of means to
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store electrical or thermal energy on-site, producing electricity with a distributed generator
to track electrical demand (i.e., electric load following) may produce recovered thermal
energy that cannot be used due to lack of thermal demand at that moment. Similarly,
operating a CHP system in a thermal load following mode (i.e., tracking thermal demand),
combined with limits on the sale of electricity into the grid, may also impact the degree to
which the three demand streams can be satisfied by distributed energy.

5.9 Modeling of CHP Systems

To optimize a CHP system, the operational behavior of the system and the loads that it
serves must be taken into account. One of the best ways to do this is by simulating the
interaction of the system with its loads. With a properly detailed simulation, the variabilities
of the load streams, the time-related prices of grid-based electricity, and the performance
limitations of the CHP equipment can be recognized.

In addition to the use of the OR method of simulation, application of optimization meth-
ods is also required. An important distinction is the optimization of a system’s operation as
compared to the optimization of the system’s installed capacity. A number of early works
address the optimization of the operation of a given system. Baughman et al. (1989) devel-
oped a cogeneration simulation model in Microsoft Excel that sought optimal operation of
industrial cogeneration systems over a 15-year planning horizon using the minimization of
net present value of operating costs as the objective function. Consonni et al. (1989) devel-
oped an operations optimization simulator based on 36 separate sample day patterns to
represent annual operations. Using a binary representation of equipment being either on or
off, the model was a mixed integer linear program with an objective function of maximizing
hourly profits from operation.

Regarding the optimization of installed system capacity, Yokoyama et al. (1991) intro-
duced a coupled, “hierarchical” modeling concept, whereby the optimization of a system’s
installed capacity was an outer shell or layer serving to drive a separate inner operations opti-
mization model based on mixed integer linear programming. Similar to Consonni, Yokoyama
et al. used 36 sample day patterns to describe annual load behavior. Utilizing the hierarchi-
cal optimization process described by Yokoyama et al., Asano et al. (1992) considered the
impact of time-of-use rates on optimal sizing and operations of cogeneration systems. Using
14 sample day patterns to represent the load behavior, Asano evaluated three commercial
applications (hotel, hospital, and office building) and calculated optimal capacities ranging
from 50% to 70% of peak electricity demand. Contemporaneously, a set of closed form equa-
tions for calculating the optimal generation capacity of an industrial cogeneration plant with
stochastic input data was developed by Wong-Kcomt (1992). Wong-Kcomt’s approach relied
upon single unit prices for electricity (i.e., no separate demand charges) and assumed inde-
pendent Gaussian distributions to describe aggregate thermal and electrical demand. The
effects of hourly non-coincidence of loads were not addressed. Wong-Kcomt showed, however,
that the solution space of the objective function (cost minimization) was convex in nature.

As an extension of the hierarchical model proposed by Yokoyama et al. in 1991, Gamou
et al. (2002) investigated the impact that variation in end-use energy demands had on
optimization results. Modeling demand (i.e., load) variation as a continuous random vari-
able, probability distributions of electrical and thermal demands were developed. Dividing
the problem into discrete elements, a piecewise LP approach was used to find the minimum
cost objective function. It was observed that the capacity deemed as optimal using average
data was, in fact, suboptimal when load variations were introduced. In characterizing the
variability of electrical and thermal demands, the non-coincident behavior of the electrical
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and thermal loads led to the determination of a lower optimal capacity value when variabil-
ity was recognized, relative to the value obtained when considering only average demands.
A key finding from this work was that use of average demand data (e.g., sample day pat-
terns) may not accurately determine the true optimal system capacity. Orlando (1996) states
a similar conclusion in that “any averaging technique, even multiple load-duration curves,
by definition, cannot fully model the interaction between thermal and electrical loads.”

Within the last 10 years, cogeneration technology has evolved to include systems with
smaller electric generation unit capacities in uses other than large, industrial applications.
Termed “distributed energy” or “distributed generation,” these systems are now being
applied in commercial markets such as hospitals, hotels, schools, and retail stores. In addi-
tion, traditional cogeneration (i.e., the production of electricity and useful heat) has been
expanded to include trigeneration, that is, the use of waste heat from electrical production
to produce both useful heat and cooling. A number of works are focused on this recent
development. Marantan (2002) developed procedures to evaluate a predefined list of candi-
date system capacities for an office building application, selecting the CHP system with the
minimum net annual cost. Campanari et al. (2002) used a simulation model with 21 sample
day patterns and a predefined list of operating scenarios to select the least cost operating
strategy for a CHP system in commercial buildings. They did a somewhat reverse approach
in investigating capacity-related optimization by varying the building size for a CHP system
of fixed capacity. An important conclusion of their manual, trial and error optimization was
that “due to the inherent large variability of heating, cooling, and electric demand typical
of commercial buildings, the optimum size of a cogeneration plant is significantly lower than
peak demand.” A similar conclusion was found by Czachorski et al. (2002) while investigat-
ing the energy cost savings resulting from the use of CHP systems in hospitals, hotels, offices,
retail, and educational facilities in the Chicago area. Through manual capacity enumeration,
they found that, based on maximum annual energy cost savings, “the corresponding size of
the power generator was between 60% and 80% of the maximum electric demand for CHP
systems” in the applications considered. The study by Czachorski et al. also showed that
annual energy cost savings exhibit a concave behavior with respect to generator capacity.
While their work did not reflect life-cycle cost savings by including investment cost as a
function of generator capacity, the inclusion of generation equipment capital cost should
not eliminate the general concave behavior produced by the annual energy economics.

5.10 Economic Optimization Methods

Based on the modeling efforts described in the previous section, consideration is now given
to the question of an appropriate method to apply in seeking an optimum of an economic
objective function. A discussion of relevant optimization techniques cannot be made without
some knowledge of the structure of the model in which the optimization will be conducted.
Therefore, rather than providing a pedagogic recitation of the wide variety of optimization
methods and algorithms that exist, this section will focus on the specific methods that are
applicable to the problem at hand, which will then be further developed in the following
section. There are, however, a number of good texts on optimization methods. Two examples
are Bazaraa et al. (1993) and Gill et al. (1986).

As mentioned above, to determine an appropriate optimization method (i.e., to select the
correct tool for the job), one must have some understanding of the system or model upon
which the optimization will be applied. One approach to this selection is to consider the
attributes of the system or model and proceed through somewhat of a classification process.
A good initial step in the classification is to determine if the system or model is linear or
nonlinear in either its objective function or its constraints. If the objective function and all
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constraints are linear, then linear optimization methods (e.g., linear programming) should
be applied. If either the objective function or any constraint is nonlinear, then the nonlinear
class of methods may be required. A further distinction is whether the independent variables
are constrained. If the feasible region is defined by constraints, constrained optimization
methods generally should be applied. In addition, if one or more of the independent variables
can only take on integer values, specialized integer programming methods may be required.

With respect to the economic modeling of CHP systems, life-cycle cost, or alternatively,
the life-cycle savings relative to some non-CHP alternative, as a function of installed equip-
ment capacity, has been shown to be convex and concave, respectively (Wong-Kcomt, 1992;
Czachorski et al., 2002). Therefore, using either life-cycle cost or savings as the objective
function necessitates a nonlinear optimization approach. Beyond this, consideration must
be given as to whether the current problem has independent variables that are constrained
to certain sets of values (i.e., equality constraints) or somehow bounded (i.e., inequality
constraints). In either case, constrained nonlinear optimization is generally performed by
converting the problem in such a way that it can be solved using unconstrained methods
(e.g., via Lagrangian multipliers or penalty methods) (Bazaraa et al., 1993). In this study,
the independent variables are installed equipment capacities, which are assumed to be con-
tinuous and non-negative. Thus, the only constraints are simple bounds, defined as xi ≥ 0.
Fletcher (1987) suggests a number of ways to handle such constraints, including variable
transformation (e.g., x= y2) and introduction of slack variables. With slack variables, a
problem of the type Maximize F (x) subject to xi ≥ 0 can be rewritten using slack variables
as Maximize F (x) subject to xi −w2

i = 0, where w2
i is a squared slack variable. The solution

can then follow through the development of the Karush–Kuhn–Tucker (KKT) conditions
and the Lagrangian function. It has been shown that for linear constraints and a concave
objective function, as in this study, the global optimum will be at a point satisfying the
KKT conditions (Bazaraa et al., 1993; Winston, 1994).

Another method to extend equality-constraint methods to inequalities is through the use
of a generalized reduced gradient (GRG) approach. The reduced gradient method seeks to
reduce the number of degrees of freedom, and therefore, free variables, that a problem has
by recognizing the constraints that are active (i.e., at their bounds) during each iteration. If
a variable is at an active bound, it is excluded from calculations related to the determination
of the incremental solution step. If no variables are at active constraints, the GRG method
is very similar to the standard quasi-Newton method for unconstrained variables.

There are a number of methods available to perform unconstrained nonlinear optimiza-
tion. A central distinction is whether the method relies on derivatives of the objective func-
tion. If derivatives are not available or are computationally difficult to obtain, nonderivative
methods can be employed. Such methods are also needed when the objective function or
gradient vector is not continuous. Methods that rely solely on function comparison are con-
sidered direct search methods (Gill et al., 1986). A common direct search method is the
polytope or Nelder–Mead method in which prior functional evaluations are ordered such
that the next iteration is a step in the direction away from the worst point in the current set
of points. Another nonderivative method is the Hook and Jeeves method, which performs
exploratory searches along each of the coordinate directions followed by pattern searches
defined by the two most recent input vectors. The main disadvantage of these direct search
methods is that they can be very slow to converge.

The two direct search methods mentioned above are considered sequential methods in
that new trial inputs are the product of the previous result. Another class of the direct
search method is the simultaneous direct search in which the trial points are defined a
priori (Bazaraa et al., 1993). For variables in two dimensions, an example of this method
would be a grid-pattern search, which is employed in this particular study.
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If objective function derivatives are available, other, more efficient, methods can be
brought to bear. One of the most fundamental procedures for optimizing a differentiable
function is the method of steepest descent, also called the gradient method. In this method,
the search direction is always the negative gradient, and the step size is calculated to mini-
mize the objective function (assuming the function is convex). This is repeated until a stop-
ping criterion, such as the gradient norm, is sufficiently small. However, it has been shown
that following the direction of steepest descent does not necessarily produce rapid conver-
gence, particularly near a stationary point, and that other derivative methods perform better
(Bazaraa et al., 1993; Bartholomew-Biggs, 2005). For large problems (i.e., those with more
than 100 decision variables), the conjugate gradient method is useful as it does not require
storage of large matrices (Bazaraa et al., 1993). As this method is typically less efficient
and less robust than other methods, and as the current problem concerns a small number
of independent variables, the conjugate gradient method was not used for this application.

The remaining methods of interest are the Newton method and the related quasi-Newton
method. The Newton method has been shown to be very efficient at unconstrained nonlinear
optimization if the objective function has continuous first and second derivatives. If first
and second derivatives are available, a Taylor-series expansion in the first three terms of
the objective function yields a quadratic model of objective function that can subsequently
be used to define a Newton direction for function minimization. As long as the Hessian
is positive definite and the initial input values are in the neighborhood of the optimum,
Newton’s method converges to the optimum quadratically (Gill et al., 1986).

Due to the discrete form of the model in this study, analytical expressions for first and
second derivatives are not available. In these situations, derivatives can be approximated
using finite difference techniques. The lack of an exact expression for second derivatives
means that curvature information, typically provided by calculating the Hessian matrix, is
not directly available for use in a Newton method. The solution to this problem is to utilize
the well-known quasi-Newton method, in which an approximation to the inverse Hessian is
successively built-up during the iteration process. While typically expecting the first deriva-
tive to be analytically available in a quasi-Newton method, the additional lack of explicit
first derivatives to form the gradient does not appear to be a fatal impediment. Van der
Lee et al. (2001) successfully used this approach in studying the optimization of thermo-
dynamic efficiency in power plant steam cycles. As Gill et al. (1986) state, “when properly
implemented, finite-difference quasi-Newton methods are extremely efficient, and display
the same robustness and rapid convergence as their counterparts with exact gradients.”

With respect to the iterative update of the Hessian matrix, a number of Hessian update
methods have been proposed over the years, including the Davidson–Fletcher–Powell (DFP)
method, the Powell–Symmetic–Broyden (PSB) update, and the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method. The literature indicates that the BFGS method is clearly
accepted as the most effective update method currently available (Gill et al., 1986; Nocedal,
1992; Zhang and Xu, 2001; Bertsekas, 2004; Yongyou et al., 2004). Details of the BFGS algo-
rithm will be provided in the following section.

A final element related to the quasi-Newton method is the use of line search methods
when the full quasi-Newton step produces an objective function response that does not
make satisfactory progress relative to the previous iteration, thus possibly indicating the
passing of a local optimum. In that case, a “backtracking” process along the step direction
is needed. As discussed by Dennis and Schnabel (1983), the backtracking approach should
conform to the Armijo and Goldstein (AG) conditions to ensure satisfactory convergence.
Dennis and Schnabel provide the classic quadratic fit using three previously calculated
function values to solve for the optimum quasi-Newton step multiplier, followed by the
cubic spline fit, should the new quadratic step not meet AG conditions.
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It should be noted that the quadratic/cubic fit method is but one method to determine
an appropriate step value. While less efficient in terms of computational requirements, line
search methods that do not rely on the gradient, or in this case, an approximation to the
gradient, can also be used. Sequential search methods such as the Fibonacci and related
Golden section methods can be utilized to determine an acceptable step multiplier (Bazaraa
et al., 1993).

5.11 Design of a Model for Optimization
of CHP System Capacities

This section provides a detailed explanation of the simulation model as well as the approach
used to determine an optimum set of equipment capacities for a CHP system. Similar to the
approach used by Edirisinghe et al. (2000) and Yokoyama et al. (1991), the model consists
of two nested sections: an outer, controlling optimization algorithm and an inner opera-
tion simulation routine. The overall flow of the optimization model is shown in Figure 5.4.
Starting with an initial “guess” for the installed electrical generator and absorption chiller
capacities, an hour-by-hour operation simulation is performed to develop a value of the
objective function for the given generator and chiller capacities. Within the optimization
algorithm, a stopping criterion is used to control the updating of the optimization routine
and subsequent iterative looping back to the operation simulation with a new set of can-
didate installed capacities. The optimization algorithm seeks to maximize the net present
value (NPV) savings produced by using the CHP system relative to a non-CHP scenario
(where electricity is obtained solely from the grid and heating loads are met by an on-site
boiler). The maximization of NPV savings (i.e., maximization of overall profitability) is an
appropriate method for evaluating mutually exclusive alternatives (Sullivan et al., 2006).

In recognition of the problems identified earlier regarding the use of average or aggre-
gated demand data (Gamou et al., 2002; Hudson and Badiru, 2004), this approach utilizes
demand data expressed on an hourly basis, spanning a 1-year period. Use of hourly data
has the advantage of explicitly capturing the seasonal and diurnal variations, as well as
non-coincident behaviors, of electrical and thermal loads for a given application. In many
cases, actual hourly demand data for an entire year may not be available for a specific site.

Define initial capacities vector 

Perform hourly operations 
simulation (see Figure 5.5) 

Stopping criterion achieved? 

Perform BFGS update and 
calculate revised input vector 

Display optimal solution 

Yes

No

FIGURE 5.4 Overview flow chart for optimization model.
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TABLE 5.8 Input Variables Used in Operation Simulation Model
Variable Typical Units

Facility loads
Hourly electrical demand (non-cooling related) kW
Hourly heating demand Btu/h
Hourly cooling demand Btu/h

Electric utility prices
Demand charge $/kW-month
Energy charge $/kWh
Standby charge $/kW-month

On-site fuel price (LHV basis) $/MMBtu

Equipment parameters
Boiler efficiency (LHV) Percent
Conventional chiller COP Without units
Absorption chiller (AC) COP Without units
Absorption chiller (AC) capacity RT
AC minimum output level Percent
AC system parasitic electrical load kW/RT
Distributed generation (DG) capacity, net kW
DG electric efficiency (LHV) at full output Percent
DG minimum output level Percent
DG power/heat ratio Without units
Operating and maintenance (O&M) cost $/kWh
Number of DG units Units
DG capital cost $/kW installed
AC capital cost $/RT installed

General economic parameters
Planning horizon Years
Discount rate Percent/year
Effective income tax rate Percent

In these situations, building energy simulation programs, such as Building Energy Analyzer
or BCHP Screening Tool, are available that can develop projected hourly loads for electricity,
heating, and cooling on the basis of building application, size, location, and building design
attributes (e.g., dimensions, insulation amounts, glazing treatments) (InterEnergy/GTI,
2005; Oak Ridge National Laboratory, 2005).

The data needed to simulate the operation of a CHP system are shown in Table 5.8. The
input for the hourly facility electrical demand should include all facility electrical demand
except for cooling-related demand. As cooling may be provided by an absorption chiller
under CHP operation, electrical demand related to cooling is calculated explicitly within
the simulation model. For the hourly heating and cooling demands, the input values are
expressed on an end-use, as-consumed thermal basis.

The prices for utility-supplied electricity typically have a price component related to the
amount of energy consumed (i.e., an energy charge) as well as a component proportional
to the monthly peak rate of energy consumed (i.e., a demand charge). Some utilities will
price their electricity at different rates to those who self-generate a portion of their electrical
needs. In addition, some electric utilities charge a monthly standby fee for the availability
of power that may be called upon should the distributed generation not be available. Utility
tariff structures can also have unit prices that vary both seasonally and diurnally. Similar
to electricity rates, the unit price for on-site fuel may be different for those who operate a
CHP system.

The fuel assumed for on-site distributed generation and on-site water/steam heating in
this study is natural gas, expressed on a $/million Btu (MMBtu) lower heating value (LHV)
basis. The heating value of natural gas refers to the thermal energy content in the fuel,
which can be expressed on a higher heating value (HHV) or lower heating value basis. The
difference in the two heating values relates to the water formed as a product of combustion.
The higher heating or gross value includes the latent heat of vaporization of the water vapor.
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The lower heating or net value excludes the heat that would be released if the water vapor
in the combustion products were condensed to a liquid. As DG/CHP systems try to limit
exhaust vapor condensation due to corrosion effects, the usable heat from natural gas is
typically the LHV. In the United States, natural gas is typically priced on a HHV basis, so
care should be used in entering the proper value. For natural gas, the conversion between
HHV and LHV is

heat contentHHV = heat contentLHV × 1.11 (Petchers, 2003)

The definitions for the equipment and economic parameters listed in Table 5.8 are as follows:

Boiler efficiency—The thermal efficiency of the assumed on-site source of thermal
hot water/steam (e.g., boiler) for the baseline (non-CHP) scenario, expressed on
an LHV basis.

Conventional chiller COP—The coefficient of performance (COP) for a conven-
tional electricity-driven chiller. It is determined by dividing the useful cooling
output by the electrical energy required to produce the cooling, adjusted to con-
sistent units.

Absorption chiller COP—The coefficient of performance for the CHP system
absorption chiller. It is determined by dividing the useful cooling output by the
thermal energy required to produce the cooling, adjusted to consistent units.
Parasitic electrical support loads (e.g., pump and fan loads) are addressed sepa-
rately.

Absorption chiller capacity—The installed capacity of the absorption chiller in
refrigeration tons (RT). This is an independent variable in the model.

AC minimum output level—The minimum percent operating level, relative to full
output, for the absorption chiller. This is also known as the minimum turndown
value.

AC system parasitic electrical load—The electrical load required to support the
absorption chiller. The chiller load should include the chiller solution pump, the
AC cooling water pump, and any cooling tower or induced draft fan loads related
to the AC.

Distributed generation (DG) capacity—The installed capacity of the distributed
electrical generator (i.e., prime mover), expressed in net kilowatts. This is an
independent variable in the model.

DG electric efficiency (LHV) at full output—The electricity production effici-
ency of the DG prime mover at full output. This efficiency can be determined by
dividing the electricity produced at full output by the fuel used on a LHV basis,
adjusted to consistent units.

DG minimum output level—The minimum percent operating level, relative to full
output, for the DG unit. Also known as the minimum economic turndown value.

DG power/heat ratio—The ratio of net electrical power produced to useful thermal
energy available from waste heat, adjusted to consistent units.

O&M cost—The operating and maintenance cost of the total cooling, heating, and
power system, expressed on a $/kWh of electricity generated basis.

Number of DG units—The number of prime mover units comprising the system.
Currently, the model is limited to no more than two units, each identical in size
and performance. The optimum capacity determined by the model is the total
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capacity of the CHP system, and for a two-unit system, that capacity is split
equally between the units.

DG capital cost—The fully installed capital cost of the distributed generation sys-
tem, expressed on a $/net kW basis.

AC capital cost—The fully installed capital cost of the absorption chiller system,
expressed on a $/RT basis.

Planning horizon—The assumed economic operating life of the CHP system. The
default value is 16 years to be consistent with U.S. tax depreciation schedules for
a 15-year property. Currently, 16 years is the maximum allowed planning horizon
in the model.

Discount rate—The rate used to discount cash flows with respect to the time-value
of money.

Effective income tax rate—The income tax rate used in income tax-related calcu-
lations such as depreciation and expense deductions. The effective rate reflects
any relevant state income tax and its deductibility from federal taxes.

The general flow of calculations within the operation simulation is shown in Figure 5.5.
Once the electrical and thermal loads and general equipment/economic parameters are
defined for each iteration of the optimization routine, a trial set of distributed generator
and absorption chiller capacities are provided to the operations simulator. Two separate
simulations must be performed. First, the hour-by-hour costs for satisfying the thermal
and electric loads solely by a traditional utility grid/on-site boiler arrangement must be

Define input parameters 

Simulate non-CHP scenario 

Simulate CHP scenario 

For each hour, determine 
operational status of CHP 

system

Sum hourly costs to form 
annual operation costs for CHP 

and non-CHP scenarios 

Combine capital and operating 
costs to form net present value 

(NPV) savings 

FIGURE 5.5 Operation simulation flow chart.
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calculated. This is referred to as the non-CHP or grid-only scenario. In the non-CHP sce-
nario, grid-supplied electricity is assumed to support all facility loads, including cooling but
excluding heating. Heating is assumed to be provided by an on-site fossil-fired boiler. A
second, separate calculation develops the hour-by-hour costs of meeting at least some part
of the specified loads with a CHP system. The degree of contribution of the CHP system is
determined hourly by the relative cost of using the CHP system (i.e., making) to satisfy the
loads versus the traditional grid-purchase/on-site boiler operation (i.e., buying). If the oper-
ation of the CHP system is less expensive in a given hour than the grid/boiler approach, the
CHP system will supply the loads, with the grid/boiler providing any supplemental energy
needed to satisfy that hour’s load. If the operation of the CHP system is more expensive,
loads are satisfied in the traditional grid-purchase manner for that hour. As the price of
grid-based electricity can change depending upon the time-of-day, this test is performed for
each hour of the year. With typical time-of-day rates, the CHP system generally operates
during the workday hours and is offline during the night.

Relative to the non-CHP scenario, developing the annual cost for a CHP-based system
is substantially more complicated. There can be utility surcharges (e.g., standby fees) that
are imposed as a result of operating self-generation equipment. In addition, the unit pricing
for electricity may be different for customers using a CHP system than for those buying
all their supply solely from the utility. The operational considerations related to the CHP
system are of considerable influence as well. As an example, the fuel efficiency of electri-
cal generation equipment is directly proportional to the relative output level. Typically,
the highest efficiency (i.e., most electricity produced for the least fuel consumed) is at or
near full-rated output. Depending upon the type of prime mover, electrical efficiencies at low
part-load can be 65%–75% of full-load efficiency. As a result, there is a general lower limit on
part-load operations. A typical minimum operating value is 50% of rated unit capacity. The
limit becomes influential when the electrical demand is less than 50% of the rated unit capac-
ity, requiring that electricity be purchased from the grid. Thus, there is an economic trade-off
related to the size of the CHP generation capacity. A CHP system sized to meet peak elec-
trical or thermal loads will incur higher utility standby charges and will have less ability to
operate during periods of low demand. Conversely, a smaller sized system may be able to
operate a larger fraction of time, but may result in a higher fraction of unmet load for the
facility (resulting in higher utility purchases, typically at peak pricing). The economics are
further influenced by the direct relationship of CHP electrical generation capacity and useful
thermal energy available. Smaller electrical capacity means less useful thermal byproduct,
which might then require more supplemental gas-boiler or electric chiller operation.

At the CHP/non-CHP scenario level, two sets of annual operating costs are then deter-
mined by summing the relevant hourly costs of meeting thermal and electric demands from
either the grid and on-site boiler solely (i.e., the non-CHP scenario) or from CHP opera-
tions. A differential annual operating cost (or net annual savings, if the CHP scenario is
less costly than the non-CHP scenario) is determined based on the annual cost difference
between the non-CHP scenario and the CHP-available scenario. A net present value is then
determined by calculating the present worth of the net annual savings over the number of
years defined by the planning horizon at the defined discount rate and adding the installed
capital costs of the CHP system, adjusted for income tax effects (e.g., depreciation).

As stated earlier, the planning horizon for this model can be up to 16 years. Unit prices
for electricity and gas, as well as O&M unit costs, are not likely to remain constant over
such a long period. Similarly, it is possible that electrical or thermal loads may change over
such a period. As a result, the ability to reflect escalating unit prices and possible load
changes is needed. As annual operations are calculated on an hourly basis, performing an
explicit calculation for every hour within a 16-year duration would require 140,160 hourly
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calculations. It was felt that explicitly performing 140,160 hourly calculations would be
intractable in the Excel platform. A solution to this dilemma was to express the variables
that are subject to escalation as levelized values. A common method used in public utility
economic analysis, a levelized value is determined by calculating the present value of the
escalating annual stream and then applying an annual capital recovery factor to produce
the levelized annual equivalent value (Park and Sharp-Bette, 1990). The levelized values are
then used in the operation simulation calculations. Thus, in the material that follows, unless
explicitly stated, values for electricity and gas unit prices, thermal and electric loads, unit
O&M costs, and the resulting annual costs should be considered annual levelized values,
spanning the duration of the planning horizon.

5.12 Capacity Optimization

As mentioned, the optimization goal is to maximize NPV cost savings by determining the
optimum installed capacities for the electricity generation system and the absorption chiller.
Given that only objective function values are directly available in this computational model
(i.e., no analytical expressions for first or second derivatives), it is felt that, based on a
review of current literature, the use of a quasi-Newton method with BFGS updates of the
inverse Hessian is the most appropriate approach.

The quasi-Newton method is a variant of the Newton method and can be found in any
good nonlinear optimization textbook (Gill et al., 1986; Fletcher, 1987; Bazaraa et al.,
1993; Bertsekas, 2004; Bartholomew-Biggs, 2005). The Newton method relies on a three-
term Taylor approximation of an assumed quadratic behavior of the objective function. As
such, the quadratic model of the objective function, F , can be expressed as

F (xk + p) ≈ Fk + gT
k p +

1
2
pT Gkp

where g, p, and G are the gradient (Jacobian) in x, step direction, and Hessian in x,
respectively. As we seek to find a stationary point of the function with respect to the step
direction p, the objective function can be rewritten in p as

F (p) = gT
k p +

1
2
pT Gkp

A necessary condition for a stationary point is that the gradient vector vanishes at that
point. Thus,

∇F (p) = gk + Gkp = 0 or p = −G−1
k gk

If G is positive definite, then conditions are sufficient to state that p can be a minimum sta-
tionary point (Gill et al., 1986). In the case of maximization, G should be negative definite.
The Newton method requires, however, that the Hessian of the objective function be known
or determinable. In the current problem, the Hessian cannot be determined analytically.
Thus, we rely on a sequential approximation to the Hessian as defined by the quasi-Newton
method.

The typical quasi-Newton method assumes that the gradient of the objective function is
available. The model used in this study has no analytic representation of either first or second
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derivatives. In this situation, a forward-difference approximation must be used to estimate
the gradient vector. For the ith independent variable, xi, the gradient is estimated by

gi =
1
h

(F (xi + h) − F (xi))

where h is the finite-difference interval. For this study, a finite-difference interval of 10−4

was selected after evaluating choices ranging from 10−2 to 10−6.
The general outline of the quasi-Newton method for maximization (Bartholomew-Biggs,

2005) is as follows:

• Choose some xo as an initial estimate of the maximum of F (x).
• Set the initial inverse Hessian, H0, equal to the negative identity matrix (an

arbitrary symmetric negative definite matrix).
• Repeat for k = 0, 1, 2, . . . .

– Determine gk =∇F (xk) by forward-difference approximation.
– Set the step length scalar, λ, equal to 1.
– Calculate the full step direction pk =−Hkgk.
– Evaluate whether the full step is appropriate by comparing F (xk +λpk) to

F (xk). If F (xk + λpk) < F (xk)+ ρλgT
k pk, solve for the step length λ that

produces a univariate maximum F (λ) for 0 ≤ λ ≤ 1.
– Set xk+1 = xk + λpk, yk = gk+1 − gk, dk =xk+1 −xk.
– Evaluate stopping criteria, and if not achieved,
– Update the approximate inverse Hessian such that Hk+1yk = dk.
– Increment k.

The stopping criteria used in this model are consistent with prior work by Edirisinghe et al.
(2000) and Kao et al. (1997), in which the algorithm is terminated when either the change
(i.e., improvement) in the objective function is less than a prescribed threshold amount
or when the gradients of the objective function at a particular input vector are zero. The
setting of the termination threshold value is a matter of engineering judgment. If a value
is chosen that requires very small changes in the objective function before termination, the
algorithm can cycle for a large number of iterations with very little overall improvement in
the objective function. Conversely, a more relaxed threshold value can terminate the opti-
mization algorithm prematurely, producing a suboptimal solution. A balance must therefore
be struck between long execution times and less than total maximization of the objective
function. As the objective function in this study is NPV cost savings over a multiyear
period, one must select a value at which iterative improvements in NPV cost savings are
considered negligible. There are two approaches used in setting this termination threshold.
First, on an absolute basis, if the iterative improvement of the NPV cost savings is less than
$50.00, it is considered reasonable to terminate the algorithm. In some cases, however, this
absolute value can be a very small percentage of the overall savings, thus leading to long
execution times with little relative gain. The second termination approach is based upon
a relative measure on the objective function. If the change in NPV cost savings between
iterations is greater than $50.00, but less than 0.00001 times the objective function value,
then the algorithm terminates under the assumption that a change of less than 0.001% is
insignificant.
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In some situations, the objective function can exhibit multiple local optima of low magni-
tude relative to the average value within a neighborhood around the stationary point (i.e.,
low-level noise of the objective function). When this occurs, a means to help avoid getting
“trapped” in a near optimum response space, particularly when the response surface is
relatively flat, is to require two or three consecutive iterative achievements of the stopping
criterion (Kim, D., personal communication, 2005). For this study, two consecutive achieve-
ments of the stopping criterion detailed in the previous paragraph were required to end the
optimization process. In some cases with multiple local optima, the model may find a local
optimum rather than the global optimum. A useful technique to improve the solution is to
try different starting points for the optimization (Fylstra et al., 1998).

The updating of the matrix H, representing a sequential approximation of the inverse
Hessian, is done using the BFGS method. As mentioned earlier, the BFGS update method
is clearly considered to be the most efficient and robust approach available at this time.
The BFGS formula for Hk+1, as presented by Zhang and Xu (2001) and Bartholomew-
Biggs (2005), is:

Hk+1 = Hk − HkykdT
k + dkyT

k Hk

dT
k yk

+
[
1 +

yT
k Hkyk

dT
k yk

]
dkdT

k

dT
k yk

There are a number of methods that can be employed in the backtracking search for
the Newton step length λ that produces a maximum in the objective function. In this
study, a quadratic and cubic spline fit was evaluated, but the method was not stable under
some input conditions or required a large number of iterations before reaching the stopping
criterion. This appears to be due to the lack of strict concavity of the objective function.
As a result, the Golden sequential line search method was selected for its accuracy and
stability. The Golden search was terminated when the interval of uncertainty (IOU) for
the step length λ became less than 0.025. It should be noted that the step length can
be unique to each variable rather than being a single scalar value. Such an approach was
explored, but the additional computations did not seem to produce sufficiently improved
results (i.e., faster optimization) to merit incorporating the approach in the final model.

To provide visual guidance regarding the surface behavior of the objective function within
the overall solution space, a simultaneous uniform line search method was utilized as well.
Using a 21× 7 (electric generator capacity× absorption chiller capacity) grid, grid step sizes
were selected to evaluate the complete range of possible CHP equipment capacities (i.e.,
0≤ size≤max load) for both the distributed generator and the absorption chiller. For each
of the 147 cells, the capacity combination was used as an explicit input to the simulation
model to determine the corresponding NPV cost savings. A contour plot of the NPV cost
savings was produced to graphically display the overall solution space.

As mentioned earlier, there are simple lower bound constraints that require the capacities
of the distributed generator and absorption chiller to be greater than or equal to zero. In an
unconstrained method, it is possible that the direction vector could propose a solution that
would violate the lower bound. This model checks for this condition, and if present, sets the
capacity value to zero. As an added element to improving the efficiency of the algorithm,
if the capacity of the distributed generation is set to zero, the capacity of the absorption
chiller is also set to zero, as DG capacity is the energy source to operate the absorption
chiller. This approach does not violate the quasi-Newton method as the effect of zeroing the
capacity when a negative capacity is suggested is equivalent to reducing the Newton step
size for that iteration. In this situation, the new xk+1 point is set to zero, and gradients
are calculated at the new input vector for use in the quasi-Newton algorithm. Should the
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economic conditions of the problem be such that the maximum objective function (given
the lower bound constraints) is truly at zero capacity for the distributed generator, the next
iteration will yield the same adjusted input vector (owing to a direction vector pointing into
the negative capacity space) and same NPV cost savings, which will appropriately terminate
the optimization on the basis of similar NPV results, as discussed above.

5.13 Implementation of the Computer Model

To provide useful transparency of the calculations, the methods were implemented using
Microsoft Excel. Excel spreadsheets allow others to view the computational formulae, which
enhances understanding and confidence in the modeling approach. In addition, Microsoft
Excel is a ubiquitous platform found on most personal computer (PC) systems. The model
in this study, named the CHP Capacity Optimizer, was developed using Microsoft Office
Excel 2003 on a PC running the Microsoft Windows XP Professional operating system
(version 2002). The model makes use of Excel’s Visual Basic for Applications (VBA) macro
language to control movement to various sheets within the overall spreadsheet file and to
initiate the optimization procedure. The Excel model and User’s Manual are available from
the author or can be downloaded from the Internet (search “CHP capacity optimizer”).

5.13.1 Example Calculation

As an example of the use of the optimization tool, the potential use of CHP at a hospi-
tal in Boston, Massachusetts, will be evaluated. The hospital consists of five stories with
a total floor area of 500,000 square feet. The maximum electrical load is 2275 kW; the
maximum heating load is 17 million Btu/h; and the maximum cooling load is 808 refrigera-
tion tons (RT). Hourly electrical and thermal demands for the facility were obtained using
the building simulator program, Building Energy Analyzer (InterEnergy/GTI, 2005). Grid-
based electricity prices were based on the Boston Edison T-2 time-of-use tariff. The price
of natural gas in the initial year of operation was assumed to be $11.00/million Btu. Esca-
lation assumptions, expressed in percent change from the previous year, for this example
are provided in Table 5.9.

Other data needed to calculate the optimum capacity relate to equipment cost and per-
formance and general modeling behavior (e.g., discount rate, planning horizon). The data
assumed for the hospital in Boston are shown in Table 5.10.

TABLE 5.9 Sample Escalation Assumptions
Year Fuel Price (%) Elec Price (%) O&M Cost (%) Heat Load (%) Cool Load (%) Elec Load (%)

2 −0.5 0.5 0.5 0.0 0.0 0.0
3 0.0 1.0 0.5 0.0 0.0 0.0
4 0.0 1.0 0.5 0.0 0.0 0.0
5 0.0 1.0 0.5 0.0 0.0 0.0
6 0.0 1.0 0.5 0.0 0.0 0.0
7 0.5 0.5 0.5 0.0 0.0 0.0
8 0.5 0.5 1.0 0.0 0.0 0.0
9 0.5 0.5 1.0 0.0 0.0 0.0

10 0.5 0.5 1.0 0.0 0.0 0.0
11 0.5 0.5 1.0 0.0 0.0 0.0
12 1.0 1.0 1.0 0.0 0.0 0.0
13 1.0 1.0 1.0 0.0 0.0 0.0
14 1.0 1.0 2.0 0.0 0.0 0.0
15 1.0 1.0 2.0 0.0 0.0 0.0
16 1.0 1.0 2.0 0.0 0.0 0.0
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TABLE 5.10 General Data for the
Boston Hospital Case
On-site boiler efficiency 82.0%
Conventional chiller COP 3.54
DG electric efficiency (full output) 29.0%
DG unit minimum output 50%
Absorption chiller COP 0.70
Absorption chiller min. output 25%
Abs chiller sys elec req (kW/RT) 0.20
CHP O&M cost ($/kWh) 0.011
DG power/heat ratio 0.65
Number of DG units 1
Type of prime mover Recip
Discount rate 8.0%
Effective income tax rate 38.0%
DG capital cost ($/net kW installed) 1500
AC capital cost ($RT installed) 1000
Planning horizon (years) 16

Demands
Annual 12,406,742 kWh 37,074 MMBtu 1,617,306 RT-hr

TR808rh/utBMM0.71Wk5722mumixaM

TR0rh/utBMM15.0Wk439muminiM

Installed DG capacity: 1130.1 kW (net)
Installed AC capacity: 210.5 RT
Installed capital cost: $1,905,607

Hours of DG operation 6,717 hours/year
DG generated electricity 7,422,145 kWh/year
DG supplied heating 27,839 MMBtu/year
AC supplied cooling 535,793 RT-hr/year

With CHP No CHP
CHP system $1,056,847 $0
Utility elec $661,305 $1,785,547
Non-CHP fuel $125,137 $502,367
Total $1,843,290 $2,287,913

Annual operating savings (after tax): $275,666
$954,175

Optimum DG capacity: 1130.1 kW
Optimum AC capacity: 210.5 RT
NPV savings:

Cooling

NPV savings:

Annual costs (before tax)

$954,175

Electricity Heating

FIGURE 5.6 Optimization results for a Boston hospital.

The numeric results of the optimization are shown in Figure 5.6. At the top of the figure
is a summary of the electric and thermal loads, as estimated by the building simulation
program mentioned above. The optimal capacities for a reciprocating engine prime mover
and an absorption chiller are 1130 kW and 210.5 RT, respectively. As shown, the CHP system
operates for 6717 h each year, producing 60% of the total electricity and over 75% of the
total heating required by the facility. Owing to the relative economics of gas and electricity,
it is preferable that waste heat first go to satisfying heating demands before contributing
to cooling demands. As a result, only one-third of the total cooling demand is provided by
the CHP system. The levelized total annual operating cost savings from the CHP system
is $275,666/year. The resulting NPV cost savings, including capital investment, over the
16-year planning horizon is $954,175.

A summary of the operating frequency by hour of the day is provided in Figure 5.7. It can
be observed from the figure that the frequency of the CHP system operation is influenced
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FIGURE 5.8 Optimization contour plot for a Boston hospital.

heavily by the time-of-use electricity rates, which are higher during the normal workday
hours. Higher grid-based electricity rates increase the likelihood that the CHP system will
be the less expensive alternative, and therefore the one to be selected, during those hours.

A contour plot of the objective function surface for the hospital in Boston is shown
in Figure 5.8. Each iso-savings line represents a $50,000 increment. As shown, the surface
behavior near the optimum is relatively flat. From a practical standpoint, this is a
serendipitous result. Equipment capacities are offered in discrete sizes, and having a flat
objective function surface in the neighborhood of the optimum gives a degree of flexibility
in matching the calculated optimum set of capacities to near-values consistent with man-
ufactured equipment sizes. As an example, vendors currently offer a reciprocating engine
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TABLE 5.11 Summary Results
City Parameter Hospital Hotel Retail Store Supermarket

Boston Peak elec load (kW) 2275 1185 337 260
Peak chiller load (RT) 808 492 147 40
Optimal DG capacity (kW) 1130.1 417.2 118.3 117.7
Optimal AC capacity (RT) 210.5 88.3 35.9 6.9
NPV savings $954,175 $341,877 $57,945 $67,611
DG capacity % of peak load 50 35 35 45
AC capacity % of peak load 26 18 24 17

San Francisco Peak elec load (kW) 1949 1004 433 248
Peak chiller load (RT) 452 334 131 17
Optimal DG capacity (kW) 513.8 257.2 63.9 54.6
Optimal AC capacity (RT) 30.9 36.2 19.1 5.0
NPV savings $431,123 $212,726 $15,954 $42,666
DG capacity % of peak load 26 26 15 22
AC capacity % of peak load 7 11 15 29

prime mover at 1100 kW and an absorption chiller at 210 RT. Manually substituting these
capacities into the model produces a NPV cost savings of $951,861, which is a negligible
difference relative to the value determined for the optimum capacity. Not all cases may
have such a close match, but the flat gradient of the objective function near the optimum
provides a reasonably wide range for matching actual equipment.

5.14 Other Scenarios

Due to the variation in fuel and electricity prices, site weather, and electrical and thermal
loads of a specific facility, each potential CHP application will have a unique optimal solu-
tion that maximizes economic benefit. To illustrate, similar optimization runs were made
for hotel, retail store, and supermarket applications in Boston as well as in San Francisco.
It is instructive to consider the results of these eight cases together, looking in particular at
the percent of peak load that the DG and AC optimum capacities represent. As shown in
Table 5.11, the percent of peak load represented by the optimum capacities varies tremen-
dously both by application and location. Thus, to maximize the economic benefit of a CHP
system, each application should be individually evaluated by the methods described in this
chapter.
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6.1 Introduction

The main objective of this chapter is to describe and review airline optimization from
an applied point of view. The airline industry was one of the first to apply operations
research methods to commercial optimization problems. The combination of advancements
in computer hardware and software technologies with clever mathematical algorithms and
heuristics has dramatically transformed the ability of operations researchers to solve large-
scale, sophisticated airline optimization problems over the past 60 years. As an illustration,
consider United Airlines’ eight fleet problem in Figure 6.1, which took nearly 9 h to solve
in 1975 on an IBM System 370 running Mathematical Programming System Extended
(MPSX), and only 18 s to solve in 2001 on an IBM Thinkpad running IBM’s Optimization
Subroutine Library (OSL) V3. Better models and algorithms supported by faster hardware
achieved more than four orders of magnitude improvement in solution time for this problem
instance over the course of 26 years.

In the subsequent sections, the state-of-the-art in the application of optimization to the
airline industry is given for solving traditional airline planning problems and is arranged
by functional area. The remainder of Section 6.1 presents an overview of the major histor-
ical events in the airline industry environment, gives a description of the high-level busi-
ness processes for airline planning and operations, provides a representative list of major
airline optimization vendors, and illustrates select cases where airlines have adopted and
embraced optimization to realize productivity and efficiency gains and cost reductions. Sec-
tion 6.2 covers schedule planning including the four steps of schedule design, fleet assign-
ment, aircraft routing, and crew scheduling. Section 6.3 describes the four steps of revenue

6-1
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United Airlines
8 fleet problem

Source: IBM Research
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FIGURE 6.1 United Airlines’ eight fleet problem.

management, which consist of forecasting, overbooking, seat inventory control, and pricing.
Section 6.4 reviews aircraft load planning. Finally, Section 6.5 provides directions for future
research.

6.1.1 Airline Industry Environment

The Chicago Convention was signed in December 1944 by Franklin Roosevelt and his peers
to establish the basic rules for civil aviation. Over 60 years later, their vision of international
civil aviation as a means for fostering friendship and understanding among nations and
peoples worldwide has been realized. Air travel has not only become a common, affordable
means of transportation for developed countries, but it has also brought enormous benefits
to developing countries with potential for social progress and economic prosperity through
trade and tourism.

According to the Air Transport Action Group (ATAG), aviation transported, in 2004,
nearly 1.9 billion passengers and 38 million tons of freight worth $1.75 billion, which is over
40% of the world trade of goods by value [1]. Giovanni Bisignani, director general and CEO
of the International Air Transport Association (IATA), predicted that 2.2 billion passengers
will travel in 2006 during his speech at the State of the Industry Annual General Meeting
and World Air Transport Summit. International passenger traffic increased by 15.6% in
2004, driven primarily by a strong rebound in Asia from SARS-affected levels in 2003,
and by substantial increases in route capacity in the Middle East. However, international
passenger traffic is forecast to grow at an annual average rate of 5.6% from 2005 to 2009, but
may decline due to high oil prices [2]. Likewise, the 15.8% growth in international freight
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volumes in 2004 is expected to slow with an estimated forecast of a 6.3% annual average
growth rate between 2005 and 2009 [2].

Aviation generated nearly $3 trillion, equivalent to 8% of the world’s gross domestic
product (GDP), in 2004. The air transport industry employs 5 million people directly and
an additional 24 million indirectly or induced through spending by industry employees
globally. The world’s 900 airlines have a total fleet of nearly 22,000 aircraft [3], which serves
an estimated 1670 airports [4] using a route network of several million kilometers managed
by approximately 160 air navigation service providers [5]. Airbus forecasts that over 17,000
new planes will be needed by 2024 [6] and Boeing forecasts that over 27,000 new planes will
be needed by 2025 [7] to meet growing demand for air transport, to replace older fleet, and
to introduce more fuel-efficient planes.

Between 1944, when 9 million passengers traveled on the world’s airlines, and 1949, when
the first jet airliner flew, the modern era of airline optimization was born. George Dantzig
designed the simplex method in 1947 for solving linear programming formulations of U.S. Air
Force deployment and logistical planning problems. Applications to solve large-scale, real-
world problems, such as those found in military operations, enabled optimization to blossom
in the 1950s with the advent of dynamic programming (Bellman), network flows (Ford and
Fulkerson), nonlinear programming (Kuhn and Tucker), integer programming (Gomory),
decomposition (Dantzig and Wolfe), and the first commercial linear programming code
(Orchard-Hays) as described in Nemhauser [8].

The Airline Group of the International Federation of Operational Research Societies
(AGIFORS) was formed in 1961 and evolved from informal discussions between six air-
line operational research practitioners from Trans Canada, Air France, Sabena, BEA, and
Swissair. Today AGIFORS is a professional society comprised of more than 1200 members
representing over 200 airlines, aircraft manufacturers, and aviation associations dedicated to
the advancement and application of operational research within the airline industry. AGI-
FORS conducts four active study groups in the areas of cargo, crew management, strategic
and scheduling planning, and reservations and yield management, and holds an annual
symposium.

In the late 1960s and early 1970s, United Airlines, American Airlines, British Airways, and
Air France, recognizing the competitive advantage that decision technologies could provide,
formed operations research groups. As described by Barnhart, Belobaba, and Odoni, these
groups grew rapidly, developing decision support tools for a variety of airline applications,
and in some cases offering their services to other airlines [9]. Most major airlines worldwide
have launched similar groups.

A dramatic change in the nature of airline operations occurred with the Airline Deregula-
tion Act of 1978 led by the United States. This Act is widely credited for having stimulated
competition in the airline industry. For example, the year 1986, which was marked by eco-
nomic growth and stable oil prices, saw the poor financial results of major airlines. This was
just a symptom of the increased competitive pressures faced by the carriers. Effective 1997,
the European Union’s final stage of deregulation allows an airline from one member state
to fly passengers within another member’s domestic market. Since 1978, other important
forces such as the rising cost of fuel, the entrance of low-cost carriers into the market, the
abundance of promotional and discount fares, and consolidations have significantly shaped
the competitive landscape of the airline industry. Hundreds of airlines have entered into
alliances and partnerships, ranging from marketing agreements and code-shares to fran-
chises and equity transfers, resulting in globalization of the industry. According to IATA,
the three largest airline alliances combined today fly 58% of all passengers traveling each
year, including Star Alliance (425 million passengers/year, 23.6% market share), Skyteam
Alliance (372.9 million passengers/year, 20.7% market share), and oneworld (242.6 million
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passengers/year, 13.5% market share). Alliances between cargo airlines are also taking
place—for example, WOW Alliance and SkyTeam Cargo.

6.1.2 Airline Planning and Operations Business Processes

Business processes for airline planning and operations may be described by four high-level
processes as shown in Figure 6.2. First, resource planning consists of making strategic
decisions with respect to aircraft acquisition, crew manpower planning, and airport resources
such as slots. Resource planning is typically performed over a 1–2-year time horizon prior
to the day of operations. Due to the competitive and proprietary nature of the data, little is
published about strategic planning. Second, market planning and control consists of schedule
design, fleet assignment, and yield management decisions. Market planning and control is
typically performed over a 6 months’ time horizon. Third, operations planning consists
of making operational decisions with respect to aircraft routing and maintenance, crew
resources, and airport operations. Operations planning is typically performed over a 1-month
time horizon. Fourth, operations control consists of making tactical decisions with respect to
aircraft rerouting, crew trip recovery, airport operations, and customer service. Operations
control is typically performed over a 2-week time horizon and includes the day of operations.

6.1.3 Airline Optimization Solutions

Any discussion of airline optimization would not be complete without mentioning some of
the major vendors in this space. While not exhaustive, this list is representative. First, global
distribution systems (GDS) are operated by airlines to store and retrieve information and
conduct transactions related to travel, such as making reservations and generating tickets.
Four GDS dominate the marketplace: Amadeus (founded in 1987 by Air France, Iberia,
Lufthansa, and SAS and now owned by InterActive Corporation, which also owns Expedia),
Galileo International (founded in 1993 by 11 major North American and European airlines
and acquired in 2001 by Cendant Corporation, which also owns Orbitz), Sabre (founded
in 1960, it also owns Travelocity), and Worldspan (founded in 1990 and currently owned
by affiliates of Delta Air Lines, Northwest Airlines, and American Airlines). Sabre also
offers solutions for pricing and revenue management, flight and crew scheduling, operations
control, among others.

Second, revenue management, also referred to as yield management, is the process of
comprehending, predicting, and reacting to consumer behavior to maximize revenue. PROS
Revenue Management is a market leader in revenue optimization. Their product suite
includes forecasting demand, optimizing the allocation of inventory, providing dynamic
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FIGURE 6.2 Airline planning and operations business processes.



© 2009 by Taylor & Francis Group, LLC

Airline Optimization 6-5

packaging, and offering dynamic pricing. Recently JDA Software Group acquired Manugis-
tics, another leading provider of solutions for demand management, pricing, and revenue
management.

Third, the airline industry has seen a wave of consolidation of schedule planning providers.
Jeppesen, a wholly owned subsidiary of Boeing Commercial Aviation Services, acquired
Carmen Systems and its portfolio of manpower planning, crew pairing, crew rostering, crew
tracking, crew control, fleet control, passenger recovery, and integrated operations control
modules in 2006. Kronos purchased AD OPT Technologies’ suite of customized crew plan-
ning, management, and optimization solutions for the airline industry in 2004. Navitaire, a
wholly owned Accenture business that hosts technology solutions for reservations, direct dis-
tribution, operations recovery, decision-support and passenger revenue accounting, acquired
Caleb Technologies (operations recovery decision-support and resource planning systems)
in 2004 and Forte Solutions (operations and crew management control) in 2005.

Finally, a number of general purpose modeling and optimization tools are available includ-
ing Dash Optimization’s Xpress-MP, the IBM Optimization Solutions and Library, and
ILOG’s CPLEX.

6.1.4 Benefits of Airline Optimization

The practice of airline optimization has yielded significant business benefits. For example,
the fractional aircraft operations system designed and developed by AD OPT Technologies,
Bombardier, and GERAD to simultaneously maximize the use of aircraft, crew, and facili-
ties generated an initial savings of $54 million with projected annual savings of $27 million
as reported by Hicks et al. [10]. UPS claims savings of more than $87 million over 3 years for
a system co-developed with MIT to optimize the design of service networks for delivering
express packages by simultaneously determining aircraft routes, fleet assignments, and pack-
age routings as given in Armacost et al. [11]. The CrewSolver system developed by CALEB
Technologies for recovering crew schedules in real-time when disruptions occur has saved
Continental an estimated $40 million for major disruptions alone, as presented in Yu et al.
[12]. Air New Zealand and Auckland University teamed to develop a suite of systems to
optimize the airline’s crew schedules, which has resulted in an annual savings of $10 million
as explained in Butchers et al. [13]. Subrahmanian et al. [14] provide an account of solving
a large-scale fleet assignment problem with projected savings to Delta Air Lines of $300
million over 3 years. According to Robert Crandell, the former president and chairman of
American Airlines, yield management was the single most important technical development
in transportation management since airline deregulation in 1979 and is estimated to have
generated $1.4 billion in incremental revenue in 3 years, with projected annual savings of
more than $500 million for the airline as quoted in Smith et al. [15]. These are but a few
of many examples demonstrating the tremendous business impact and potential of airline
optimization.

6.2 Schedule Planning

The problem of airline scheduling is among the largest and most complex of any indus-
try. Airline scheduling includes determining the concurrent flows of passengers, cargo, air-
craft, and flight crews through a space-time network, performing aircraft maintenance, and
deploying ground-based resources such as gates. The problem is further complicated by
air traffic control restrictions, noise curfews, company/union regulations, market structure
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(density, volume, and elasticity of demand), fare classes, and safety and security concerns.
The overarching objective in airline schedule planning is to maximize profitability.

Etschmaier and Mathaisel [16], Rushmeier and Kontogiorgis [17], Barnhart and Talluri
[18], Clarke and Smith [19], Klabjan [20], and Barnhart and Cohn [21] supply excellent
overviews of the airline schedule development process. Airline schedule planning is tradi-
tionally broken down into four steps in such a way as to make each step computationally
viable. No single optimization model has been formulated or solved to address the complex
schedule planning task in its entirety, although attempts have been made to solve combi-
nations of two or more of the steps in a single model. The steps in sequential order are:

1. Schedule Design—defining the markets to serve and how frequently, and deter-
mining the origin, destination, and departure times of flights.

2. Fleet Assignment—designating the aircraft size for each flight.
3. Aircraft Routing—selecting the sequence of flights to be flown by each aircraft

during the course of every day and satisfying maintenance requirements.
4. Crew Scheduling—assigning crews to flights.

Next, each of these steps will be described in more detail.

6.2.1 Schedule Design

The scheduling process starts with the schedule design. The schedule design constructs
the markets and how frequently to serve them, and determines the origin, destination,
and departure times of flights. In general, schedules are dictated largely by differences in
seasonal demand and to a smaller extent by month-to-month differences. Profitability and
feasibility are two important criteria that affect how a flight schedule is designed. Schedule
profitability is determined by the degree to which the origin–destination city pairs attract
revenue from passengers and cargo compared to the operational costs of transporting the
people and goods. Schedule feasibility is determined by the ability of the airline to assign
sufficient resources, such as airplanes, crew, and airport facilities, to the flights.

Construction of the schedule typically begins 1 year in advance of its operation and
6 months in advance of its publication. The schedule construction process encompasses
three steps:

1. Establishing the service plan (a list of routes and frequencies where factors
such as demand forecasts, competitive information, and marketing initiatives are
considered).

2. Developing an initial feasible schedule (establish flight departure and arrival times
while satisfying maintenance planning and resource constraints, such as the num-
ber of aircraft).

3. Iteratively reviewing and modifying the schedule based upon evaluations of new
routes, aircraft, or frequencies, and connection variations.

Decision support systems based upon operations research have been slow to develop
for schedule design, primarily because of the inherent complexity and problem size, the
lack of sufficient and timely data from the airline revenue accounting process, the method
for collecting and forecasting market demand, and the difficulty of predicting competing
airlines’ responses to market conditions. Published literature on airline schedule design is
sparse. One of the earliest descriptions of the schedule construction process can be found in
Rushmeier et al. [22]. Erdmann et al. [23] address a special case of the schedule generation
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problem for charter airlines, model the problem as a capacitated network design problem
using a path-based mixed integer programming formulation, and solve it using a branch-and-
cut approach. Armacost et al. [24,25] apply a composite variable formulation approach by
removing aircraft- and package-flow decisions as explicit decisions, and solve a set-covering
instance to the next-day-air network-design problem for United Parcel Service (UPS).

6.2.2 Fleet Assignment

Given a flight schedule and a set of aircraft, the fleet assignment problem determines which
type of aircraft, each having a different capacity, should fly each flight segment to max-
imize profitability, while complying with a large number of operational constraints. The
objective of maximizing profitability can be achieved both by increasing expected revenue,
for example, assigning aircraft with larger seating capacity to flight legs with high passenger
demand, and by decreasing expected costs, for example, fuel, personnel, and maintenance.
Operational constraints include the availability of maintenance at arrival and departure sta-
tions (i.e., airports), gate availability, and aircraft noise, among others. Assigning a smaller
aircraft than needed on a flight results in spilled (i.e., lost) customers due to insufficient
capacity. Assigning a larger aircraft than needed on a flight results in spoiled (i.e., unsold)
seats and possibly higher operational costs.

Literature on the fleet assignment problem spans nearly 20 years. For interested readers,
Sherali et al. [26] provide a comprehensive tutorial on airline fleet assignment concepts,
models, and algorithms. They suggest future research directions including the considera-
tion of path-based demands, network and recapture effects, and exploring the interactions
between initial fleeting and re-fleeting. Additional review articles on fleet assignment include
Gopalan and Talluri [27], Yu and Yang [28], Barnhart et al. [9], Clarke and Smith [19], and
Klabjan [20].

Several of the earliest published accounts are by Abara [29], who describes a mixed integer
programming implementation for American Airlines; Daskin and Panayotopoulos [30], who
present an integer program that assigns aircraft to routes in a single hub and spoke network;
and Subramanian et al. [14], who develop a cold-start solution (i.e., a valid initial assign-
ment does not exist) approach for Delta Airlines that solves the fleet assignment problem
initially as a linear program using an interior point method, fixes certain variables, and then
solves the resulting problem as a mixed integer program. Talluri [31] proposes a warm-start
solution (i.e., a valid initial assignment does exist) that performs swaps based on the number
of overnighting aircraft for instances when it becomes necessary to change the assignment
on a particular flight leg to another specified aircraft type. Jarrah et al. [32] propose a
re-fleeting approach for the incremental modification of planned fleet assignments. Hane
et al. [33] employ an interior point algorithm and dual steepest edge simplex, cost pertur-
bation, model aggregation, and branching on set-partitioning constraints with prioritized
branching order. Rushmeier and Kontogiorgis [17] focus on connect time rules and incor-
porate profit implications of connections to assign USAir’s fleets resulting in an annual
benefit of at least $15 million. Their approach uses a combination of dual simplex and a
fixing heuristic to solve a linear programming relaxation of the problem to obtain an ini-
tial solution, which in turn is fed into a depth-first branch-and-bound process. Berge and
Hopperstad [34] propose a model called Demand Driven Dispatch for dynamically assigning
aircraft to flights to leverage the increased accuracy of the flight’s demand forecast as the
actual flight departure time approaches.

Attempts have been made to integrate the fleet assignment model with other airline pro-
cesses such as schedule design, maintenance routing, and crew scheduling. Because of the
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interdependencies of these processes, the optimal solution for processes considered sepa-
rately may not yield a solution that is optimal for the combined processes.

For example, integrated fleet assignment and schedule design models have the potential
to increase revenues through improved flight connection opportunities. Desaulniers et al.
[35] introduce time windows on flight departures for the fleet assignment problem and solve
the multicommodity network by branch-and-bound and column generation, where the col-
umn generator is a specialized time-constrained shortest path problem. Rexing et al. [36]
discretize time windows and create copies of each flight in the underlying graph to repre-
sent different departure time possibilities and then solve using a column generator that is a
shortest path problem on an acyclic graph. Lohatepanont and Barnhart [37] present an inte-
grated schedule design and fleet assignment solution approach that determines incremental
changes to existing flight schedules to maximize incremental profits. The integrated sched-
ule design and fleet assignment model of Yan and Tseng [38] includes path-based demand
considerations and uses Lagrangian relaxation, where the Lagrangian multipliers are revised
using a subgradient optimization method.

Integrated fleet assignment and maintenance, routing, and crew considerations have the
potential for considerable cost savings and productivity improvements. Clarke et al. [39]
capture maintenance and crew constraints to generalize the approach of Hane et al. [33] and
solve the resulting formulation using a dual steepest-edge simplex method with a customized
branch-and-bound strategy. Barnhart et al. [40] explicitly model maintenance issues using
ground arcs and solve the integrated fleet assignment, maintenance, and routing problem
using a branch-and-price approach where the column generator is a resource-constrained
shortest path problem over the maintenance connection network. Rosenberger et al. [41]
develop a fleet assignment model with hub isolation and short rotation cycles (i.e., a sequence
of legs assigned to each aircraft) so that flight cancellations or delays will have a lower risk
of impacting subsequent stations or hubs. Belanger et al. [42] present both a mixed-integer
linear programming model and a heuristic solution approach for the weekly fleet assignment
problem for Air Canada in the case where homogeneity of aircraft type is desired over legs
sharing the same flight number, which enables easier ground service planning.

Models to integrate fleet assignment with passenger flows and fare classes adopt an
origin–destination-based approach compared to the more traditional flight-leg approach.
Examples of fleet assignment formulations that incorporate passenger considerations include
Farkas [43], Kniker [44], Jacobs et al. [45], and Barnhart et al. [46].

The basic fleet assignment model (FAM) can be described as a multicommodity flow
problem with side constraints defined on a time-space network and solved as an integer
program using branch-and-bound. The time-space network has a circular time line rep-
resenting a 24-hour period, or daily schedule, for each aircraft fleet at each city. Along
a given time line, a node represents an event: either a flight departure or a flight arrival. Each
departure (arrival) from the city splits an edge and adds a node to the time line at the depar-
ture (arrival+ ground servicing) time. A decision variable connects the two nodes created
at the arrival and departure cities and represents the assignment of that fleet to that flight.

Mathematically, the fleet assignment model may be stated as follows, which is an adap-
tation of Hane et al. [33] without required through-flights (i.e., one-stops). The objective is
to minimize the cost of assigning aircraft types to flight legs as given in Equation 6.1. To
be feasible, the fleet assignment must be done in such a way that each flight in the sched-
ule is assigned exactly one aircraft type (i.e., cover constraints as given in Equation 6.2),
the itineraries of all aircraft are circulations through the network of flights that can be
repeated cyclically over multiple scheduling horizons (i.e., balance constraints as given in
Equation 6.3), and the total number of aircraft assigned cannot exceed the number available
in the fleet (i.e., plane count constraints as given in Equation 6.4). Additional inequality
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constraints may be incorporated to address such issues as through-flight assignments, main-
tenance, crew, slot allocation, and other issues.

min
∑
j∈J

∑
i∈I

cijXij (6.1)

subject to:
∑

i

Xij = 1, ∀j ∈ J (6.2)

∑
d

Xidot + Yiot−t −
∑

d

Xiodt − Yiott+ = 0, ∀{iot} ∈ N (6.3)

∑
j∈O(i)

Xij +
∑
o∈C

Yiotnt1 ≤ S(i), ∀i ∈ I (6.4)

Yiott+ ≥ 0, ∀{ iott+} ∈ N (6.5)

Xij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J (6.6)

The mathematical formulation requires the following notation with parameters:

C = set of stations (cities) serviced by the schedule,
I = set of available fleets,

S(i) = number of aircraft in each fleet for i ∈ I,
J = set of flights in the schedule,

O(i) = set of flight arcs, for i ∈ I, that contains an arbitrary early morning time
(i.e., 4 am, overnight),

N = set of nodes in the network, which are enumerated by the ordered triple {iot}
consisting of fleet i ∈ I, station o ∈ C, and t = takeoff time or landing time at o.

t− = time preceding t,
t+ = time following t,

{iotn
} = last node in a time line, or equivalently, the node that precedes 4 am,

{iot1} = successor node to the last node in a time line, and decision variables:
Xiodt = Xij = 1 if fleet i is assigned to the flight leg from o to d departing at time t,

and 0 otherwise;
Yiott+ = number of aircraft of fleet i ∈ I on the ground at station o ∈ C from time t to t+.

6.2.3 Aircraft Routing

The Federal Aviation Administration (FAA) mandates some safety requirements for aircraft.
Those are of four types:

• A-checks are routine visual inspections of major systems, performed every 65
block-hours or less. A-checks take 3–10 h, and are usually performed at night at
the gate.

• B-checks are detailed visual inspections, and are performed every 3 months.
• C-checks are performed every 12–18 months depending on aircraft type and

operational circumstances, and consist of in-depth inspections of many systems.
C-checks require disassembly of parts of the aircraft, and must be performed in
specially equipped spaces.

• D-checks are performed every 4–5 years, perform extensive disassembly and struc-
tural, chemical, and functional analyses of each subsystem, and can take more
than 2 months.
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Of these checks, A and B are performed on the typical planning horizon of fleet planning
and crew scheduling, and must therefore be incorporated into the problem.

Aircraft routing determines the allocation of candidate flight segments to a specific aircraft
tail number within a given fleet-type while satisfying all operational constraints, including
maintenance. Levin [47] is the first author to analyze maintenance scheduling. One simplified
formulation of the maintenance problem, following Barnhart et al. [40], is the following. We
define a string as a sequence of connected flights (i.e., from airport a to airport b, then from
b to c, until a final airport) performed by an individual aircraft. Moreover, a string satisfies
the following requirements: the number of block-hours satisfies maintenance requirements,
and the first and last nodes in the sequence of airports are maintenance stations. A string k
has an associated cost ck. Let S be the set of all augmented strings. For every node v, I(v)
and O(v) denote the set of incoming and outgoing links, respectively. The problem has two
types of decision variables: xs is set to 1 if string s is selected as a route for the associated
fleet, and 0 otherwise. ym is the number of aircraft being serviced at service station m. The
problem then becomes:

min
∑
s∈S

csxs (6.7)

subject to:
∑
i∈S

xs = 1 for all flights i (6.8)

∑
j∈O(v)
j∈s

xs −
∑

j∈I(v)
j∈s

xs + yO(v) − yI(v) = 0 for all stations v (6.9)

where y≥ 0, x = 0/1.
The problem can be formulated as a multicommodity flow problem (e.g., Cordeau et al.

[48]), as a set partitioning problem (Feo and Bard [49]; Daskin and Papadopoulos [30]),
and employing eulerian tours (Clarke et al. [50], Talluri [31], and Gopalan and Talluri [51]).
Recent work includes that of Gabteni and Gronkvist [52], who provide a hybrid column
generation and constraint programming optimization solution approach, Li and Wang [53],
who present a path-based integrated fleet assignment and aircraft routing heuristic, Mercier
et al. [54], who solve the integrated aircraft routing and crew scheduling model using Benders
decomposition, and Cohn and Barnhart [55], who propose an extended crew pairing model
that integrates crew scheduling and maintenance routing decisions.

6.2.4 Crew Scheduling

The area of crew scheduling involves the optimal allocation of crews to flights and can be
partitioned into three phases: crew pairing, crew assignment based upon crew rostering or
preferential bidding, and recovery from irregular operations. Each of these three phases will
be described in more detail in this section. The literature on crew scheduling is plentiful over
its nearly 40-year history with descriptions in comprehensive survey papers by Etschmaier
and Mathaisel [16], Clarke and Smith [19], Klabjan [20], Barnhart and Cohn [21], Arabeyre
et al. [56], Bornemann [57], Barutt and Hull [58], Desaulniers et al. [59], Barnhart et al.
[60], and Gopalakrishnan and Johnson [61].

Crew Pairing

In crew pairing optimization, the objective is to find a minimum cost set of legal duties
and pairings that covers every flight leg. An airline generally starts with the schedule of
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flight segments and their corresponding fleet assignments and decomposes the problem for
different crew types (pilots, flight attendants) and for different fleet types. The flight legs
are joined together to form duties, which are essentially work shifts. These duties are then
combined into trips/pairings that range from 1 to 5 days in length and which start and end
at a crew’s home base. There are many FAA and union regulations governing the legality
of duties and pairings. Some typical ones may include: a limit on the number of hours of
flying time in a duty, a limit on the total length of a duty (possibly stricter for a nighttime
duty), a limit on the number of duties in a pairing, and upper and lower bounds on the rest
time between two duties. The generation of good crew pairings is complicated by the fact
that a crew’s pay is determined by several guarantees that are based on the structure of
the duties in the pairing. Some common rules governing crew compensation may include: a
crew is paid overtime for more than 5 h of flying in a duty, a crew is guaranteed a minimum
level of pay per duty period, a crew is guaranteed that a certain percentage of the duty time
will count as flying time, and a crew receives a bonus for overnight flying. Some companies
also include additional constraints and objective function penalties to avoid marginally legal
pairings, tight connections, and excessive ground transportation.

The area of crew pairing optimization is complex and challenging for two reasons. First,
it is not practical to generate the complete set of feasible pairings, which can number in the
billions for major carriers, for a problem. Second, the cost of a pairing usually incorporates
linear components for hotel and per-diem charges and several nonlinear components based
upon actual flying time, total elapsed work time, and total time away from the home base.

The crew pairing problem is normally solved in three stages for North American carriers,
as described in Anbil et al. [62]. First, a daily problem is solved where all flights operate
every day. Next, a weekly problem is solved, which reuses as much of the daily problem
as possible, and also handles weekly exceptions. Finally, a dated problem is solved, which
reuses as much of the weekly problem as possible, and also produces a monthly schedule
that handles holidays and weekly transitions.

Several differences exist for European carriers. First, European crews typically receive
fixed salaries, so the objective is simply to minimize the number of crews needed. Second,
European airlines do not tend to run on a daily, repeating schedule or have hub-and-spoke
networks. Third, European carriers must comply with government regulations and work
with somewhat variable union rules, while for North American carriers, crew pairing is
primarily determined by FAA regulations.

The crew pairing problem can be modeled as a set partitioning problem where the rows
represent flights to be covered and the columns represent the candidate crew pairings as
follows:

min
∑
j∈P

cjxj (6.10)

subject to:
∑
j∈P

aijxj = 1, ∀i ∈ F (6.11)

xj ∈ {0, 1} (6.12)

The mathematical formulation requires the following notation with parameters:

P = set of all feasible pairings,
cj = cost of pairing j,

aij = 1 if pairing j includes (covers) flight i, and 0 otherwise,
F = set of all flights that must be covered in the period of time under consideration,
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and decision variable:

xj = 1 if the pairing j is used, and 0 otherwise.

The objective is to minimize the total cost as shown in Equation 6.10. Equation 6.11
ensures that each flight leg is covered once and only once. In practice, side constraints are
often added to reflect the use of crew resources; for example, upper and lower bounds on
the number of available crew at a particular base, and balancing pairings across crew bases
with respect to cost, the number of days of pairings, or the number of duties.

A variety of solution methodologies have been suggested for the crew pairing problem and
the majority are based upon pairing generation and pairing selection strategies. Pairings are
frequently generated using either an enumerative or shortest path approximation approach
on a graph network that can be represented either as a flight segment network or a duty
network. Pairing generation approaches and selected illustrations include:

• Row approach: Start with a feasible (or artificial) initial solution. Choose a sub-
set of columns and exhaustively generate all possible pairings from the flight seg-
ments covered by these columns, and solve the resulting set partitioning problem.
If the solution to this sub-problem provides an improvement, replace the appro-
priate pairings in the current solution. Repeat until no further improvements
are found or until a limit on the execution time is reached. Selected illustrations
include Gershkoff [63], Rubin [64], Anbil et al. [65,66], and Graves et al. [67].

• Column approach: Consider all the rows simultaneously, explicitly generate all
possible legal pairings by selecting a relatively small set of pairings that have
small reduced cost from a relatively large set of legal pairings, and solve the sub-
problem until optimality. Continue until the solution to the sub-problem no longer
provides an improvement. A selected illustration includes Hu and Johnson [68].

• Network approach: The network approach can utilize one of two strategies: the
column approach where the columns are generated using the flight segment or
duty network, or column generation based on shortest paths. Selected illustra-
tions include Minoux [69], Baker et al. [70], Lavoie et al. [71], Barnhart et al. [72],
Desaulniers et al. [73], Stojković et al. [74], and Galia and Hjorring [75].

Strategies for selecting pairings and solving the crew pairing optimization problem include
TPACS [64], TRIP [65,66], SPRINT (Anbil et al. [62]), volume algorithm [76,77], branch-
and-cut [78], branch-and-price [79–82], and branch-and-cut-and-price [62]. Others have pro-
posed strategies using genetic algorithms [58,83–86].

Crew Assignment

In crew assignment, pairings are assembled into monthly work schedules and assigned to
individual crew members. Depending upon the airline’s approach, either crew rostering or
preferential bidding is used for crew assignment. In crew rostering, a common process outside
of North America, the objective is to assign pairings to individual crew members based
upon the individual’s preferences while minimizing overall costs. In preferential bidding,
a common process used within North America, individual crew members bid on a set of
cost-minimized schedules according to their relative preferences. The airline assigns specific
schedules to the crew members based upon their bids and seniority.

The crew rostering and preferential bidding problems can be formulated as set partition-
ing problems. The problem decomposes based upon the aircraft equipment type and the
certification of the crew member (e.g., Captain, First Officer, Flight Attendant). The crew
assignment problem is complex, with FAA, union and company rules, and is compounded by
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additional rules involving several rosters, including language restrictions and married crew
members preferring to fly together. The airline strives to produce equitable crew assignments
in terms of equal flying time and number of days off.

The crew assignment problem can be modeled simply as follows:

min ck
rxk

r (6.13)

subject to:
∑
k∈K
i∈r

xk
r ≥ ni, ∀i (6.14)

∑
r

xk
r = 1, ∀k (6.15)

x∈{0, 1} (6.16)

The mathematical formulation requires the following notation with parameters:

K = set of crew members,
ck
r = cost of assigning roster r to crew member k,

ni = number of crew members that are required for task i,

and decision variable:

xk
r = 1 if roster r is assigned to crew member k, and 0 otherwise.

The objective is to minimize the total cost as shown in Equation 6.13. Equation 6.14 ensures
that each task is covered. Equation 6.15 assigns a roster to every crew member.

Recent work in the area of crew assignment includes Kohl and Karisch [87], Cappanera
and Gallo [88], Caprara et al. [89], Christou et al. [90], Dawid et al. [91], Day and Ryan [92],
Gamache and Soumis [93], Gamache et al. [94,95], Shebalov and Klabjan [96], and Sohoni
et al. [97]. Recent solution approaches to the crew assignment problem focus on branch-
and-price where sub-problems are solved based upon constrained shortest paths, and on
numerous heuristic approaches, for instance, simulated annealing as described in Lučić and
Teodorvić [98] and Campbell et al. [99].

Recovery from Irregular Operations

In the face of disruptions such as bad weather, unscheduled aircraft maintenance, air traffic
congestion, security problems, flight cancellations or delays, passenger delays, and sick or
illegal crews on the day of operations, the three aspects of aircraft, crew, and passengers are
impacted, often causing the airline to incur significant costs. Clarke [100] states that a major
U.S. airline can incur more than $400 million annually in lost revenue, crew overtime pay,
and passenger hospitality costs due to irregular operations. When any of these disruptions
happen, operations personnel must make real-time decisions that return the aircraft and
crew to their original schedule and deliver the passengers to their destinations as soon and
as cost effectively as possible.

Aircraft recovery usually follows groundings and delays where the objective is to minimize
the cost of reassigning aircraft and re-timing flights while taking into account available
resources and other system constraints. Interested readers are referred to detailed reviews
in Clarke and Smith [19], Rosenberger et al. [101], and Kohl et al. [102].

Crew recovery usually follows flight delay, flight cancellation, and aircraft rerouting deci-
sions, but often flight dispatchers and crew schedulers coordinate to explore the best options.
In crew recovery, the objective is to reassign crew to scheduled flights. It is desirable to return
to the original crew schedule as soon as possible. Crew recovery is a hard problem because of
complex crew work rules, complex crew cost computations, changing objectives, and having
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to explore many options. Often, airlines are forced to implement the first solution found
due to time pressures.

Airline investment in technologies to expedite crew recovery and reduce crew costs has
increased in recent years. Anbil et al. [103] develop a trip repair decision support system
with a solution approach that involves iterating between column generation and optimiza-
tion, based on a set partitioning problem formulation where the columns are trip pro-
posals and the rows refer to both flights and non-reserve crews. The solution strategy
is to determine whether the problem can be fixed by swapping flights among only the
impacted crew, and bringing in reserves and other nondisrupted crews as needed. Heuristics
are used to localize the search during column generation. Teodorvić and Stojković [104]
present a greedy heuristic based upon dynamic programming and employ a first-in-first-out
approach for minimizing crew ground time. Wei et al. [105] and Song et al. [106] describe a
heuristic-based framework and algorithms for crew management during irregular operations.
Yu et al. [12] describe the CrewSolver system developed by CALEB Technologies for recover-
ing crew schedules at Continental Airlines in real-time when disruptions occur. Abdelghany
et al. [107] design a decision support tool that automates crew recovery for an airline with
a hub-and-spoke network structure. Nissen and Haase [108] present a duty-period-based
formulation for the airline crew rescheduling problem that is tailored to European carri-
ers and labor rules. Schaefer et al. [109] develop approximate solution methods for crew
scheduling under uncertainty. Once a crew schedule has been determined, Schaefer and
Nemhauser [110] define a framework for perturbing the departure and arrival times that
keeps the schedule legal without increasing the planned crew schedule cost. Yen and Birge
[111] describe a stochastic integer programming model and devise a solution methodology
for integrating disruptions in the evaluation of crew schedules.

In the past decade, there has been a trend toward integrated aircraft, crew, and passenger
recovery from irregular operations. Clarke [100] provides a framework that simultaneously
addresses flight delays and flight cancellations, and solves the mixed-integer linear program-
ming aircraft recovery problem incorporating crew availability using an optimization-based
solution procedure. Lettovský [112] and Lettovský et al. [113] discuss an integrated crew
assignment, aircraft routing, and passenger flow mixed-integer linear programming problem,
and solve it using Bender’s decomposition. Stojković and Soumis [114,115] solve a nonlinear
multicommodity flow model that considers both flight and crew schedule recovery using
branch-and-price. Rosenberger et al. [101] develop a heuristic for rerouting aircraft and
then revise the model to minimize crew and passenger disruptions. Kohl et al. [102] develop
a disruption management system called Descartes (Decision Support for integrated Crew
and AiRcrafT recovery), which is a joint effort between British Airways, Carmen Systems,
and the Technical University of Denmark. Lan et al. [116] propose two new approaches
for minimizing passenger disruptions and achieving more robust airline schedule plans by
(a) intelligently routing aircraft to reduce the propagation of delays using a mixed-integer
programming formulation with stochastically generated inputs and (b) minimizing the
number of passenger misconnections by adjusting flight departure times within a small
time window. Bratu and Barnhart [117] minimize both airline operating costs and esti-
mated passenger delay and disruption costs to simultaneously determine aircraft, crew, and
passenger recovery plans.

6.3 Revenue Management

The Airline Deregulation Act of 1978 is widely credited for having stimulated competition in
the airline industry. For example, the year 1986, which was marked by economic growth and
stable oil prices, saw the poor financial results of major airlines. This was just a symptom
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FIGURE 6.3 Interacting revenue management sub-problems.

of the increased competitive pressure faced by the carriers. In search of greater efficiencies,
airlines began exploring ways to increase the average aircraft load and the revenue per
seat. The discipline that has developed around this issue is usually referred to as “revenue
management” (RM) although other terms are sometime used, such as “perishable asset
revenue management” (PARM), “yield management,” or “demand management.” Given
the complex and evolving nature of airline services, it does not consist of a single problem,
with an unequivocal formulation, but rather of a collection of interacting sub-problems.
The first such problem to be analyzed (before deregulation took place) was overbooking,
which addresses the decision to sell more seats than currently available. The overbooking
level depends on the likelihood that a customer will not show up at the gate, and on other
factors, such as the lost revenue due to an unsold seat and the reimbursement to an eligible
customer who is refused boarding. The former input to the overbooking problem is provided
by forecasting methods applied to the reservation process and to the actual conversion rates
of reservations in “go shows.” The period prior to the 1978 Act saw another innovation:
the promotional fare. “Early birds” would receive a discount over regular customers. From
these early instances, pricing has evolved into a sophisticated discipline, with a deep impact
in other industries as well. This simple yet effective innovation exploited the diversity of
the customer population, namely the willingness of certain customers to trade off dollars
for flexibility. However, the development of time-dependent fares posed a new challenge for
airlines: inventory seat control, which consists of assigning inventory (number of seats) to
a certain fare class. This is perhaps among the most important problems in the practice of
revenue management. The earliest known implementation of inventory seat control is that
of American Airlines in the first half of the 1980s. Since then, great progress has been made
in improving the accuracy of inventory control systems. The relationship between the four
sub-problems is shown in Figure 6.3.

The literature on revenue management is vast and growing rapidly. A complete bibli-
ography is beyond the scope of this survey. Recent comprehensive treatments of revenue
management are given by Phillips [118] and Van Ryzin and Talluri [119]. Yeoman and
McMahon-Beattie [120] offer several real-world examples. The surveys of Weatherford and
Bodily [121], McGill and Van Ryzin [122], and Barnhart et al. [9] contain comprehensive
bibliographies. Several journals regularly publish RM articles, notably Operations Research,
Management Science, Interfaces, the European Journal of Operations Research, and the
recently founded Journal of Pricing and Revenue Management, which is entirely dedicated
to this subject.

The rest of this section is organized as follows. First, the forecasting issue in revenue
management is described. Then overbooking, inventory control, and pricing are reviewed.
The section concludes with speculations on trends of the field.

6.3.1 Forecasting

Demand forecasting is a fundamental step in the RM exercise, as it influences all the others.
Nevertheless, there are fewer published articles in this area than in any other area of RM.
There are several possible reasons behind this relative scarcity. Actual booking data are not
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usually made available to academic researchers, and industry practitioners have no incentive
in revealing internal methods or data. Another disincentive for researchers is that a majority
of the articles published in flagship journals in operations research are of a theoretical, rather
than empirical, nature. Finally, forecasting for RM purposes presents a formidable set of
challenges. Next, the current approaches to this problem are reviewed, and the reader is
pointed to the relevant literature.

Airlines sell a nonstorable product: a seat on an origin–destination itinerary fare. To
maximize the financial metric of interest, it is vital for the airline not only to forecast the final
demand of a given product, but also the process through which the demand accumulated
over time. The former quantity is sometimes called the historical booking forecast and is a
necessary input to overbooking decisions, while the latter, the advanced booking forecast, is
used for pricing and inventory control, and aims at forecasting the number of bookings in a
certain time interval prior to departure. Some of the relevant factors determining advanced
booking behavior are:

1. Origin–destination pair
2. Class
3. Price
4. Time of the year
5. Time to departure
6. Presence of substitute products (e.g., a seat offered by the same company in a

different class, or products offered by competing airlines).

Moreover, group bookings may be modeled explicitly, as their impact on inventory control
policies is significant. Many methods have been proposed to explain observed reservation
patterns; for a survey, see the book of Van Ryzin and Talluri [119] and the experimental
comparison by Weatherford and Kimes [123]. Linear methods currently in place include
autoregressive, moving-average models, Bayes and Hierarchical Bayes, and linear or multi-
plicative regressive models (sometime termed “pick-up” models). Model selection depends
also on the chosen level of aggregation of the forecast. By choosing more aggregate models
(e.g., aggregating similar classes) the modeler trades off greater bias for smaller variance;
there is no “rule of thumb” or consensus on the ideal level of aggregation, although more
sophisticated and application-specific models implemented in industrial applications usually
provide very detailed forecasts.

It is important to remark that the data used in these statistical analyses are usually
censored: the observed reservations are always bounded by the inventory made available on
that day. Unconstraining demand is either based on mathematical methods (e.g., projection
detruncation, or expectation maximization), or recorded reservation denials. For a compar-
ison of popular unconstraining methods, see Weatherford and Pölt [124]. The availability of
direct reservation channels (internet, airline-operated contact centers) has made reservation
denials data both more abundant and reliable; demand correction based on denial rates is
preferable, as it is usually more accurate and requires less computational effort. Figure 6.4
illustrates the relationships among the different components of the forecasting stage.

6.3.2 Overbooking

As mentioned before, research on overbooking predates deregulation. The original objec-
tive of overbooking was to maximize average load, subject to internally or externally
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FIGURE 6.4 Forecasting components and relationships.

mandated maximum denial rates. More recently, airlines have been implementing revenue-
maximizing overbooking policies. Overbooking can be roughly partitioned into three sub-
problems: (1) identification of optimal policies (overbooking limits); (2) identification of
“fair bumping” policies (i.e., to whom should one refuse boarding); and (3) estimation
of no-show rates. Of the three problems, (1) is the better studied and understood. In its
simplest, static, form (see, e.g., Beckmann [125]), it is akin to a newsvendor problem: the
availability of a product in the face of underage and overage costs, and of uncertain demand,
must be chosen. To better understand the similarity with this problem, consider a simple
one-period model, in which random demand is observed in the first period, and departure
occurs in the second period. The available capacity is denoted by C, and the overbooking
limit must be set prior to the observation of demand to maximize expected revenue. Let p
be the unit price per seat and a be the penalty incurred for bumping a passenger. If the
number of reservations is r, a random number Z(r), with cumulative distribution function
Fr(z), of passengers will show up. A popular behavioral model for “show” demand posits
that customers show up with probability q, and that each individual behaves independently
of each other; this “binomial” model is defined by:

Fr(x) =
(

r
x

)
qx(1 − q)r−x (6.17)

The problem faced by the airline is given by:

maxr E(pZ(r) − a(Z(r) − C)+) (6.18)

It can be shown through simple algebra that the solution is given by:

1 − Fr(C) =
p

aq
(6.19)

which closely resembles the solution of a newsvendor problem.
The static policy is robust and effective in practical applications; however, using dynam-

ical models could yield revenue increases that, albeit small, can be of crucial importance to
achieve profitability. Commonly used models are in discrete time, and assume Markov or



© 2009 by Taylor & Francis Group, LLC

6-18 Operations Research Applications

independent and identically distributed (iid) demand, and binomial no-show rates, allowing
a stochastic dynamic programming formulation. Rothstein [126] is an early contribution to
this approach; Alstrup et al. [127] and Alstrup [128] present both theoretical and empirical
results.

The problem of equitable bumping has been studied, among others, by Simon [129,130]
and Vickrey [131]. Interestingly, the solution proposed in these early days—to conduct an
ascending auction to bump passengers with the lowest disutility from boarding denial, has
been implemented some three decades later.

Finally, the problem of estimating no-show rates from historical data has received rela-
tively little attention in the published literature. Lawrence et al. [132] present a data-driven
no-show forecasting rule based on customer/fare attributes.

6.3.3 Seat Inventory Control

One of the new entrants following the 1978 Act was PEOPLExpress. A nonunionized, bare-
bone service airline carrier with very low fares, it grew phenomenally in the first half of the
1980s, and had become a serious threat to the incumbents. One of them, American Airlines,
was competing directly with PEOPLExpress on its principal routes. Partly as a response to
the threat posed by the new entrant, American Airlines introduced a seat inventory control
system. Under this system, the availability of seats belonging to a certain class could be
dynamically controlled. For example, a certain low-price class (e.g., non-refundable tickets)
could be “closed” (i.e., made unavailable) at a certain date because the same seat had a
high probability of being reserved under a higher-price class (e.g., refundable tickets). The
first rule for inventory control dates back to the seminal work of Littlewood [133], which
derives it for a two-class inventory. Some assumptions are necessary to obtain closed-form
rules:

1. Over time classes are booked in a certain order
2. Low-valuation-before-high-valuation arrival pattern
3. Independent arrivals for different booking classes
4. Absence of no-shows
5. Single-leg reservations
6. No group reservations.

The formulation is reviewed here, as it is the basis for widely used revenue management
heuristics in real-world applications. Let the classes be ranked from low valuation to high
valuation p1 ≤ p2 ≤ · · · ≤ pN , and denote their uncertain demands Di, based on assumptions
1 and 2, where i also denotes the period during which the demand is observed. The decision
of interest is the capacity xi that should be allocated to class i. Let Vi(y) denote the
expected revenue from period i to period N when the available capacity at the beginning
of that period is y. At stage i− 1, the revenue is given by:

pi−1xi−1 + V (Ci−1 − xi−1) (6.20)

where xi cannot exceed the available capacity in period i− 1, Ci−1, and Di−1 the observed
demand in that period. The Bellman equation is then

Vi(y) = E(max{pi−1xi−1 + Vi(y − xi−1) : xi−1 ∈ [0,min{Di−1, x}]}), 0 < i < N (6.21)

VN (y) = 0 (6.22)
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It can be shown that the optimal policy takes a simple form as shown in Van Ryzin and
Talluri [119]: the optimal solution {x∗

i , i= 1, . . ., N} is such that x∗
1 ≤x∗

2 ≤ · · · ≤x∗
N ; the

value x∗
i does not depend on Di, that is, the optimal inventory decision in a certain period

can be taken before observing the demand in that period. According to the optimal policy,
more and more capacity is reserved for classes with higher marginal value. This policy is
sometimes termed theft nesting: at a given period, the set of higher-value classes is allocated
at least a predetermined amount of inventory, but those classes can “steal” inventory from
the lower-value class if seats are not sold by the end of the period; the opposite can never
happen. An equivalent formulation of the problem uses as the relevant decision variables
the booking limits for classes i, . . ., N , defined as the sum of inventory allocations reserved
to these classes. In the case of two classes (and two periods) only one decision is taken,
and the solution to the recursive equation (6.1) takes the closed form for the booking limit
for class 2: C −F−1(1− p1/p2), where F is the cumulative distribution function of demand
for class 2. This formula, also known as Littlewood’s rule, has been used to formulate
heuristics. Their popularity stems from their simplicity; from the fact that they predate
the general formulation for the n-class problem; and finally because their sub-optimality, as
observed from numerical experiments, is in the range 0–2%, which is considered low when
compared to the vastly simplifying assumptions underlying the model. Two such heuristics
are particularly popular in practice: expected marginal seat revenue version a (EMSR-a),
and b (EMSR-b). Both originate from the work of Belobaba [134,135]. Both heuristics reduce
the n-class problem to a 2-class problem. In the case of EMSR-a, pairwise comparisons of
class i with higher-value classes are performed, and the booking limit for each such class
in isolation is computed. The overall booking limit for classes i+ 1, . . ., N is then set equal
to the sum of the individual booking limits. By considering booking limits in isolation,
EMSR-a ignores pooling effects among the demand of various classes, and as a result it
is often more conservative than the optimal policy. EMSR-b alleviates this shortcoming
by aggregating the demand of classes i+ 1, . . ., N into an aggregated class, with demand
equal to the sum of demands and marginal revenue equal to the weighted sum of marginal
revenues: p=

∑N
k=i+1 pkE[Dk]/

∑N
k=i+1E[Dk]. The booking limit in period i is then set by

applying Littlewood’s rule to class i and the aggregated class. EMSR-b is especially popular
among practitioners, and has been extended in various directions. Notably, the case in which
there is interaction between classes has been analyzed. In this setting, closing inventory of
lower-value classes results in higher demand for higher-value classes (buy up); references on
this subject are Belobaba and Weatherford [136] and Weatherford et al. [137].

Before concluding this section, we briefly describe the extension of single-leg capacity
control mechanisms to a network setting. Indeed, the appropriate framework of analysis of
RM is on an itinerary basis. However, the complexity of the problem increases significantly
with size; moreover, network RM also poses organizational and data collection challenges, as
responsibilities for revenue targets are assigned on a geographical basis, and data require-
ments for network RM are more demanding than for single-leg instances. Consequently,
several exact formulations and heuristics are available. The heuristics rely on the concept
of marginal network revenue value: when a seat is sold at a certain price, it generates rev-
enue, but also results in lost revenues, as certain other itinerary fares will have one less seat
available for sale. The network revenue value reflects this tradeoff, and can be effectively
employed to make allocation decisions on a network. The advantage of such an approach
lies in its robustness, and in the fact that it employs leg-based sub-problems, for which
well-tested heuristics and tractable optimization formulations exist. As mentioned above,
several network optimizations have been proposed as well. The topology of the network
is captured through an incidence matrix, and the decision variables are the booking lim-
its associated to an origin–destination class. The models differ in the way they capture
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uncertainty, in the intertemporal modeling of the decisions, and finally in the algorithmic
approaches adopted to find a solution, exact or approximated. A comprehensive and current
description of models is provided in Van Ryzin and Talluri [119]. There are no available data
quantifying the financial benefits of network RM. Estimates rely on simulations, as those
provided in the industry-standard platform PODS (Passenger Origin–Destination Simula-
tor) and on the assessment of industry experts. The agreement [9] is that network RM can
yield an improvement of 1% above and beyond single-leg RM.

6.3.4 Pricing

Most airlines condition passenger demand through seat inventory control. An alternative is
to condition demand through pricing. The two practices are conceptually similar: if the only
differentiating attribute among a set of classes is price, then closing lower-value classes is
equivalent to posting a bid price for tickets equal to the cheapest class that is still open. Price
controls, however, are more granular than inventory controls, as price points are not limited
to the finite number of classes; moreover, dynamic price controls can effectively be used to
limit the access to available seats. In its early days, commercial flight did not have the instru-
ments to change prices dynamically, and to effectively advertise these changes. Moreover,
customers were not used to observing changing prices for the same service; finally, a suit-
able framework of analysis was not available. In recent years, however, we are witnessing the
evolution of revenue management systems in the direction of price-based controls. Low-cost
carriers have grown in number and have thrived: Southwest, JetBlue in the U.S., EasyJet,
RyanAir in Europe, TAM, and Go in South America. These carriers often offer a single prod-
uct: an economy, nonrefundable ticket, and this product’s availability is controlled through
price. Despite the simplicity of the setting, dynamic pricing is a complex problem that has
been attacked from many different angles, and is far from being solved. To obtain insightful
results, researchers are forced to make simplifying assumptions that are either unrealistic
or are difficult to test. Perhaps the single biggest challenge in dynamic pricing is under-
standing consumer behavior. Among the questions that have not received a definite answer
are: how sensitive are the customers to a product’s price changes, and to price changes of
substitute products? Do customers take into account expected future prices when making
their purchase decisions, and if they do, what is their learning process? How can we define
the potential market for a certain product, and what is the impact of market size on optimal
pricing? Some of these issues are studied in the marketing literature (for example, Nagle
and Hogan [138]), but empirical validation in the airline industry is still missing. Perhaps
the simplest model that captures the essential features of the airline industry is given by
the following deterministic formulation for a single-product pricing problem with myopic
customers:

max
N∑

i=1

πi(pi, di(pi)) (6.23)

subject to:
N∑

i=1

di(pi) ≤ C (6.24)

pi ≥ 0, i = 1, . . ., N (6.25)

The decision variables are the prices pi of the product in period i, the market response is
modeled by a deterministic demand function di(·), and profit is function of both price and
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demand. The above model assumes customers’ myopic behavior, as demand in a certain
period does not depend on the sequence of observed prices. Extensions of the model are
possible in several directions. Gallego and Van Ryzin [139] considered a continuous-time,
stochastic version of the pricing problem, and proved monotonicity and structural properties
of the solution. The same authors analyze the multiperiod, multiproduct case (Gallego and
Van Ryzin[140]). The case of non-myopic behavior has been analyzed by Stokey [141], Gale
and Holmes [142], Gallego and Sahin [143], and Gallego et al. [144], who consider consumers
with intertemporal valuations.

6.4 Aircraft Load Planning

The general problem of aircraft load planning can be described as transporting equipment
(vehicles, palletized cargo, helicopters, ammunitions, etc.) and personnel from a set of depar-
ture points to a set of destinations with the objective of minimizing the number of loads
used. The arrangement of the equipment and personnel affects the position of the center of
gravity of the aircraft, which in turn has an impact on aircraft drag, which in turn has an
impact on fuel consumption. The problem is further complicated by additional constraints
such as hazardous material incompatibilities. The aircraft load planner must balance the
load to ensure the safe and efficient use of the aircraft by complying with aircraft safety,
weight and balance, and floor load restrictions for takeoff, in-flight, and landing. The speed
and ease of on-loads and off-loads are of utmost importance too.

Aircraft load planning is both an important civilian and military application. The load
planning process was done by manual procedures until 1977 when the first account of
the use of computer-assisted approaches began within the U.S. Air Force, according to
Martin-Vega [145], who provides a comprehensive review of work prior to 1985. Early semi-
automated systems include CARLO (Cargo Loading system used by Scandinavian Airlines)
by Larsen and Mikkelsen [146], AALPS (Automated Air Load Planning System by SRI
International for the U.S. Army) as described in Frankel et al. [147,148] and Anderson and
Ortiz [149], and DMES in Cochard and Yost [150]. Today AALPS is used at more than 300
sites throughout the continental United States Army community and by operations Just
Cause, Desert Shield, Desert Storm, and Restore Democracy. Lockheed Corporation and
the U.S. Air Force have utilized AALPS for designing cargo aircraft and configuring the
C-17, respectively. Additional work in the area of aircraft load planning includes that of
Eilon and Christofides [151], Hane et al. [152], Ng [153], Amiouny et al. [154], Heidelberg
et al. [155], Thomas et al. [156], Gueret et al. [157], and Mongeau and Bes [158].

The aircraft loading problem belongs to the broad class of cutting and packing prob-
lems [159]. Even one-dimensional packing problems, such as the knapsack and bin-packing
problems, are NP-hard. Typically 2-D bin-packing with the length and width of both the
cargo and the aircraft’s cargo hold are used. Height is not as significant because usually
cargo is not stacked. Higher dimensional problems are much more combinatorial and can-
not be solved exactly for large instances. A heuristic approach must be taken to achieve an
acceptable result in a short amount of time, as discussed in Bischoff and Marriott [160] and
Pisinger [161].

The challenge of balancing is generally focused on one dimension: the length of the plane,
that is, positioning the center of gravity along the fore and aft axis of the aircraft. Balancing
the center of gravity side-to-side is generally considered not significant.

Mongeau and Bes [158] take a mathematical programming approach to the aircraft
loading problem for Airbus France, which can be solved optimally in a reasonable time.
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To illustrate, the formulation is given as:

max M(x) (6.26)

subject to: CG(x) ≤ Xstab (6.27)

M(x) ≤ Mmax (6.28)

Ncont∑
i=1

∑
j∈Hk

Mixij ≤ Mk
max, k = 1, 2, . . ., Nhold (6.29)

Ncomp∑
j=1

xij ≤ 1, ∀i = 1, 2, . . ., Ncont (6.30)

Ncomp∑
j=1

xij = 1, ∀i ∈ I (6.31)

xik = 1, for any given container i required (6.32)
to be in a specific compartment k

Xtarget − ε ≤ CG(x) ≤ Xtarget + ε (6.33)

The mathematical formulation requires the following notation with parameters:

Ncont = number of containers on the ground,
Ncomp = number of compartments,
Nhold = number of holds,

Mi = mass of container i,
CG(x) = center of gravity of the aircraft after loading,
Xstab = maximal (longitudinal) position of the center of gravity of the aircraft after

loading to satisfy stability requirements,
Mmax = maximal mass of freight that can be loaded,
Mk

max = maximal mass of freight that can be loaded in hold k and k = 1, 2, . . ., Nhold,
Hk where Hk ⊆ {1, 2, . . ., Ncomp} are the compartments in hold k and
k = 1, 2, . . ., Nhold,

I = a subset of the container list that is required to be loaded,
Xtarget = ideal (longitudinal) position of the center of gravity of the aircraft after loading,

ε = some positive allowable displacement of the center of gravity of the aircraft from
its ideal position,
xij ∈ {0, 1} where xij = 1, if container i is to be placed in container j, and 0
otherwise; and i= 1, 2, . . ., Ncont; j = 1, 2, . . ., Ncomp.

The objective given in Equation 6.26 is to maximize the mass loaded M(x) where

M(x) =
Ncont∑
i=1

Ncomp∑
j=1

Mixij (6.34)

Equation 6.27 ensures that the aircraft stability requirement is satisfied. Equations 6.28
and 6.29 limit the stress/mass capacity overall and for each hold, respectively. Equa-
tions 6.30 state that each container must be loaded at most once. Equations 6.31 enforce
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that a subset I of the container list is loaded. Equations 6.32 ensure, in the event that
a specific container must be placed in a specific compartment, that the requirement is
met. Equation 6.33 keeps the center of gravity within an allowable displacement from the
ideal position. In the formulation, Mongeau and Bes [158] also include volume capacity
constraints, which involve nonconvex, piecewise-linear functions that are transformed into
simple linear constraints. These constraints are quite complex and vary according to both
the aircraft and the container types. The interested reader may refer to the details in the
article.

6.5 Future Research Directions and Conclusions

The application of Operations Research to airline planning processes has resulted in signif-
icant benefits to the industry through cost reductions, revenue improvements, operational
efficiencies, and automated tools. The combination of advancements in computer hardware
and software technologies with clever mathematical algorithms and heuristics has dramat-
ically transformed the ability of operations researchers to solve large-scale, sophisticated
airline optimization problems over the past 60 years. This trend will continue in the future;
airline planning problems are rich with complexities that can lead to breakthroughs in
methods and decision-support tools.

Many promising areas for future research exist in the airline industry. Some examples
include:

1. Incorporating new forecasting techniques, overbooking strategies, and pricing
strategies into revenue management decisions to address the increased market
transparency of fares and fare classes on the Web.

2. Developing accurate consumer response models that take into account the multi-
ple sales channels available to customers (e.g., travel agency, phone, online agen-
cies, online airline Web sites), and their ability to compare fares.

3. Integrating schedule development to incorporate aircraft and crew planning deci-
sions; for example, simultaneous consideration of aircraft routing, fleet assign-
ment, and crew pairing.

4. Dynamically reassigning aircraft capacities to the flight network when improved
passenger demand forecasts become available to maximize total revenue. This
line of research of demand driven re-fleeting/demand driven dispatching has been
recently explored in Sherali et al. [162] and Wang and Regan [163].

5. Exploiting the availability of real-time data to enable real-time decision-making;
for example, in the area of recovery from irregular operations.

6. Developing real-time policies to assign locations and decide ordering quantities for
spare parts. The problem formulation must take into account savings obtained
from sharing the same warehouse for multiple service centers, and the service
time requirements. Similar systems have already been implemented in military
and industrial production environments.

7. Developing loyalty programs and customer contact programs that take into
account the financial value associated to a customer, as well as his/her potential
future evolution. This line of research, traditionally associated to the field of rela-
tionship marketing, has been recently explored in the context of airline campaign
management [164].
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8. Developing decision-support tools for fractional fleet services, which are growing
in popularity, to address the stochastic nature of demand.

9. Developing new algorithms for aircraft fuel operational optimization and fuel
hedging as fuel represents the second largest cost component of an airline’s oper-
ations after labor [165].
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7.1 Introduction

Operations research provides a rich set of tools and techniques that are applied to financial
decision making. The first topic that likely comes to mind for most readers is Markowitz’s
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Nobel Prize–winning treatment of the problem of portfolio diversification using quadratic
programming techniques. This treatment, which first appeared in 1952, underlies almost all
of the subsequent research into the pricing of risk in financial markets. Linear programming,
of course, has been applied in many financial planning problems, from the management
of working capital to formulating a bid for the underwriting of a bond issue. Less well
known is the fundamental role that duality theory plays in the pricing of options and
contingent claims, both in its discrete state and time formulation using linear programming
and in its continuous time counterparts. This duality leads directly to the Monte Carlo
simulation method for pricing and evaluating the risk of options portfolios for investment
banks; this activity probably comprises the single greatest use of computing resources in any
industry.

This chapter does not cover every possible topic in the applications of operations research
(OR) to finance. We have chosen to highlight the main topics in investment theory and to
give an elementary, mostly self-contained, exposition of each. A comprehensive perspective
of the application of OR techniques to financial markets along with an excellent bibliogra-
phy of the recent literature in this area can be found in the survey by Board et al. (2003). In
this chapter, we chose not to cover the more traditional applications of OR to financial man-
agement for firms, such as the management of working capital, capital investment, taxation,
and financial planning. For these, we direct the reader to consult Ashford et al. (1988). We
also excluded financial forecasting models; the reader may refer to Campbell et al. (1997)
and Mills (1999) for treatments of these topics. Finally, Board et al. (2003) provide a survey
of the application of OR techniques for the allocation of investment budgets between a set
of projects. Complete and up-to-date coverage of finance and financial engineering topics
for readers in operations research and management science may be found in the handbooks
of Jarrow et al. (1995) and the forthcoming volume of Birge and Linetsky (2007).

We begin this chapter by introducing some basic concepts in investment theory. In Sec-
tion 7.2, we present the formulas for computing the return and variance of return on a
portfolio. The formulas for a portfolio’s mean and variance presume that these parameters
are known for the individual assets in the portfolio. In Section 7.3, we discuss two methods
for estimating these parameters when they are not known.

Section 7.4 explains how a portfolio’s overall risk can be reduced by including a diverse
set of assets in the portfolio. In Section 7.5, we introduce the risk–reward tradeoff efficient
frontier and the Markowitz problem. Up to this point, we have assumed that the investor is
able to specify a mathematical function describing his attitude toward risk. In Section 7.6,
we consider utility theory that does not require an explicit specification of a risk function.
Instead, utility theory assumes that investors specify a utility, or satisfaction, with any
cash payout. The associated optimal portfolio selection problem will seek to maximize the
investor’s expected utility.

Section 7.7 discusses the Black–Litterman model for asset allocation. Black and Litter-
man use Bayesian updating to combine historical asset returns with individual investor
views to determine a posterior distribution on asset returns that is used to make asset
allocation decisions. Section 7.8 considers the challenges of risk management. We introduce
the notion of coherent risk measures and conditional value-at-risk (CVaR), and show how
a portfolio selection problem with a constraint on CVaR can be formulated as a stochastic
program.

In Sections 7.9 through 7.13, we turn to the problem of options valuation. Options valu-
ation combines a mathematical model for the behavior of the underlying uncertain market
factors with simulation or dynamic programming (or combinations thereof) to determine
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options prices. Section 7.14 considers the problem of asset-liability matching in a multi-
period setting. The solution uses stochastic optimization based upon Monte Carlo simula-
tion. Finally, in Section 7.15 we present some concluding remarks.

7.2 Return

Suppose that an investor invests in asset i at time 0 and sells the asset at time t. The rate
of return (more simply referred to as the return) on asset i over time period t is given by:

ri =
amount received at time t − amount invested in asset i at time 0

amount invested in asset i at time 0
(7.1)

Now suppose that an investor invests in a portfolio of N assets. Letfi denote the fraction
of the portfolio that is comprised of asset i. Assuming that no short selling is allowed, fi ≥ 0.
Clearly,

∑N
i=1 fi = 1.

The portfolio return is given by the weighted sum of the returns on the individual assets
in the portfolio:

rp =
N∑

i=1

firi (7.2)

We have described asset returns as if they are known with certainty. However, there is
typically uncertainty surrounding the amount that will be received at the time that an
asset is sold. We can use a probability distribution to describe this unknown rate of return.
If return is normally distributed, then only two parameters—its expected return and its
standard deviation (or variance)—are needed to describe this distribution. The expected
return is the return around which the probability distribution is centered; it is the expected
value of the probability distribution of possible returns. The standard deviation describes
the dispersion of the distribution of possible returns.

7.2.1 Expected Portfolio Return

Suppose there are N assets with random returns r1, . . ., rN . The corresponding expected
returns are E(r1), . . ., E(rN ). An investor wishes to create a portfolio of these N assets, by
investing a fraction fi of his wealth in asset i.

Using the properties of expectation, we may compute the expected portfolio return using
Equation 7.2:

E(rp) =
N∑

i=1

fiE(ri)

That is, an expected portfolio return is equal to the weighted sum of the expected returns
of its individual asset components.

7.2.2 Portfolio Variance

The volatility of an asset’s return can be measured by its variance. Variance is often adopted
as a measure of an asset’s risk. If σ2

i denotes the variance of asset i’s return, then the variance
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of the portfolio’s return is given by:

σ2
p = E

⎡
⎣
(

N∑
i=1

firi −
N∑

i=1

firi

)2
⎤
⎦

= E

⎡
⎣
(

N∑
i=1

fi(ri − ri)

)⎛
⎝ N∑

j=1

fj(rj − rj)

⎞
⎠
⎤
⎦

= E

⎡
⎣ N∑

i,j=1

fifj(ri − ri)(rj − rj)

⎤
⎦

=
N∑

i,j=1

fifjσij

=
N∑

i=1

f2
i σ2

i +
N∑

i=1

N∑
j=1
j �=i

fifjσij

(7.3)

where ri = E(ri). Note that portfolio variance is a combination of the variance of the returns
of each individual asset in the portfolio plus their covariance.

7.3 Estimating an Asset’s Mean and Variance

Of course, asset i’s rate of return and variance are not known and must be estimated. These
values can be estimated based upon historical data using standard statistical methods.
Alternatively, one can use a scenario-based approach. We describe the two methods below.

7.3.1 Estimating Statistics Using Historical Data

To estimate statistics using historical data, one must collect several periods of historical
returns on the assets. The estimated average return on asset i is computed as the sample
average of returns on asset i, Xi, given by:

Xi =

∑
t
xit

T

where xit is the historical return on asset i in period t and there are T periods of histori-
cal data.

The variance of return on asset i is estimated by s2
i , the historical sample variance of

returns on investment i:

s2
i =

∑
t
(xit − Xi)2

T − 1

For example, Table 7.1 contains the monthly closing stock prices and monthly returns for
Sun Microsystems and Continental Airlines for the months January 2004 through February
2006. The first column of this table indicates the month, the second and third columns
contain the closing stock prices for SUN and Continental Airlines, respectively. The fourth
and fifth columns contain the monthly stock returns for SUN (XSUN,t) and Continental
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TABLE 7.1 Monthly Closing Stock Prices and Returns for Sun Microsystems
and Continental Airlines

Month SUN Stock Price ($) CAL Stock Price ($) SUN Return (%) CAL Return (%)

Jan-04 55.55 15.65 8.12 −5.04

Feb-04 61.66 14.97 11.00 −4.35

Mar-04 62.38 12.58 1.17 −15.97

Apr-04 63.00 10.66 0.99 −15.26

May-04 62.04 10.50 −1.52 −1.50

Jun-04 63.63 11.37 2.56 8.29

Jul-04 68.17 8.75 7.13 −23.04

Aug-04 61.60 9.65 −9.64 10.29

Sep-04 73.98 8.60 20.10 −10.88

Oct-04 74.76 9.24 1.05 7.44

Nov-04 82.45 11.16 10.29 20.78

Dec-04 81.71 13.75 −0.90 23.21

Jan-05 88.04 10.50 7.75 −23.64

Feb-05 98.80 11.14 12.22 6.10

Mar-05 105.00 12.00 6.28 7.72

Apr-05 98.74 12.00 −5.96 0.00

May-05 103.00 13.70 4.31 14.17

Jun-05 114.14 13.32 10.82 −2.77

Jul-05 126.33 15.81 10.68 18.69

Aug-05 75.35 13.28 −40.35 −16.00

Sep-05 78.20 9.70 3.78 −26.96

Oct-05 73.76 13.20 −5.68 36.08

Nov-05 78.10 15.59 5.88 18.11

Dec-05 79.34 21.27 1.59 36.43

Jan-06 95.20 20.50 19.99 −3.62

Feb-06 74.35 23.79 −21.90 16.05

TABLE 7.2 Expected Historical Monthly Returns, Variances, and Standard
Deviations of Returns

Expected Monthly Return Variance of Return Standard Deviation

SUN 2.30% 1.54 12.40%

Continental Airlines 2.86% 3.04 17.43%

Airlines (XCAL,t), respectively; these columns were populated using Equation 7.1. In this
example, T = 26.

Table 7.2 shows the mean and standard deviation of returns for these two stocks, based
upon the 26 months of historical data. The average monthly return for SUN, XSUN , and
the average monthly return for Continental, XCAL, is computed as the arithmetic average
of the monthly returns in the fourth and fifth columns, respectively. An estimate of the
variance of monthly return on SUN’s (Continental’s) stock is computed as the variance of
the returns in the fourth (fifth) column of Table 7.1. If variance is used as a measure of risk,
then Continental is a riskier investment as it has a higher volatility (its variance is higher).

7.3.2 The Scenario Approach to Estimating Statistics

Sometimes, historical market conditions are not considered a good predictor of future market
conditions. In this case, historical data may not be a good source for estimating expected
returns or risk. When historical estimates are determined to be poor predictors of the future,
one can consider a scenario approach.

The scenario approach proceeds as follows:
Define a set of S future economic scenarios and assign likelihood p(s) that scenario s

will occur.
∑

s∈S p(s)= 1, since in the future the economy must be in exactly one of these
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TABLE 7.3 Definition of Future Possible Scenarios for States of the Economy

Scenario (s) Likelihood (p(s)) Return (ri(s)) p(s)∗ ri(s) p(s)∗ (ri(s)− ri)
2

Weak economy 0.30 −15.00% −4.50% 1.03

Stable economy 0.45 9.00% 4.05% 0.13

Strong economy 0.25 16.00% 4.00% 0.39

3.55% 1.55

economic conditions. Next, define each asset’s behavior (its return) under each of the defined
economic scenarios. Asset i’s expected return is computed as:

ri =
∑

s

p(s)ri(s) (7.4)

where ri(s) is asset i’s return under scenario s.
Similarly, we compute the variance of return on asset i as:

vi =
∑

s

p(s)(ri(s) − ri)2 (7.5)

For example, suppose we use the scenario approach to predict expected monthly return
on SUN stock. We have determined that the economy may be in one of three states: weak,
stable, or strong, with a likelihood of 0.3, 0.45, and 0.25, respectively. Table 7.3 indicates
the forecasted monthly stock returns under each of these future economic conditions.

The first and second columns in Table 7.3 indicate the economic scenario and likelihood
that the scenario will occur, respectively. The third column contains the expected return
under each of the defined future scenarios. The fourth and fifth columns contain intermediate
computations needed to calculate the expected return and standard deviation of returns on
SUN stock, based upon Equations 7.3 and 7.4. Using these equations we find that the
expected monthly return on SUN stock is 3.55%, variance of monthly return is 1.55, with
corresponding standard deviation of 12.46%.

Comparing the estimates of mean and standard deviation of SUN’s monthly return using
the historical data approach versus the scenario-based approach we find that while the
estimates of volatility of return are close in value, the estimates of monthly return differ
significantly (2.3% versus 3.55%). In Section 7.7, we discuss the negative impact that can
result from portfolio allocation based upon incorrect parameter estimation. Thus, care must
be taken to determine the correct method and assumptions when estimating these values.

7.4 Diversification

We now explore how a portfolio’s risk, as measured by the variance of the portfolio return,
can be reduced when stocks are added to the portfolio. This phenomenon, whereby a port-
folio’s risk is reduced when assets are added to the portfolio, is known as diversification.

Portfolio return is the weighted average of the returns of the assets in the portfolio,
weighted by their appearance in the portfolio. However, portfolio variance (as derived in
Equation 7.3) is given by:

N∑
i=1

f2
i σ2

i +
N∑

i=1

N∑
j=1
j �=i

fifjσij

Namely, portfolio variance is comprised of two components. One component is the vari-
ances of the individual assets in the portfolio and the other component is the covariance
between the returns on the different assets in the portfolio. Covariance of return between
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asset i and j is the expected value of the product of the deviations of each of the assets from
their respective means. If the two assets deviate from their respective means in identical
fashions (i.e., both are above their means or below their means at the same time) then the
covariance is highly positive, and its contribution to portfolio variance is highly positive. If
the return on one asset deviates below its mean at the time that the return on the other
asset deviates above its mean, then the covariance is highly negative, which reduces the
overall portfolio variance.

Let us explore the impact of the covariance term on overall portfolio variance. If all
of the assets are independent, then the covariance terms equal zero and only the variance of
the individual assets in the portfolio contribute to overall portfolio variance. In this case,
the variance formula is:

N∑
i=1

f2
i σ2

i

If the investor invests an equal amount in each of the N independent assets, then the
portfolio variance is:

N∑
i=1

(
1
N

)2

σ2
i =

1
N

N∑
i=1

1
N

σ2
i =

1
N

σ2
i

where σ2
i is the average variance of the assets in the portfolio. As N gets larger, the portfolio

variance goes to zero. Thus, for a portfolio comprised only of independent assets, when the
number of assets in the portfolio is large enough the variance of the portfolio return is zero.

Now consider N assets that are not independent. Without loss of generality, assume the
assets appear in the portfolio with equal weight. Then, variance of portfolio return is:

1
N

σ2
i +

N∑
i=1

N∑
j=1
j �=i

(
1
N

)2

σij

=
1
N

σ2
i +

N − 1
N

N∑
i=1

N∑
j=1
j �=i

σij

N(N − 1)

=
1
N

σ2
i +

N − 1
N

σij

(7.6)

The final equality in Equation 7.6 reveals that as the number of assets in the portfolio
increases, the contribution of the first component (variance) becomes negligible—it is diver-
sified away—and the second term (covariance) approaches average covariance. Thus, while
increasing the number of assets in a portfolio will diversify away the individual risk of the
assets, the risk attributed to the covariance terms cannot be diversified away.

As a numerical example, consider the SUN and Continental Airlines monthly stock returns
from Section 7.3.1. Average monthly return on Sun Microsystems (Continental Airlines)
stock from January 2004 through February 2006 was 2.3% (2.86%). A portfolio comprised of
equal investments in Sun Microsystems and Continental Airlines yields an average monthly
return of 2.58%. The variance of the monthly returns on Sun Microsystems stock over the
26 months considered is 1.54. The variance of the monthly returns on Continental Airlines
stock over that same time period is 3.04. However, for the portfolio consisting of equal
investments in Sun Microsystems and Continental Airlines, the variance of portfolio returns
is 1.09. This represents a significant reduction in risk from the risk associated with either of
the stocks alone. The explanation lies in the value of the covariance between the monthly
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returns on these two stocks; the value of the covariance is −0.12. Because the returns on
the stocks have a negative covariance, diversification reduces the portfolio risk.

7.5 Efficient Frontier

The discussion in Section 7.4 illustrates the potential benefits of combining assets in a port-
folio. For a risk averse investor, diversification provides the opportunity to reduce portfolio
risk while maintaining a minimum level of return. An investor can consider different com-
binations of assets, each of which has an associated risk and return.

This naturally leads one to question whether there is an optimal way to combine assets.
We address this question within the context of assuming that: (i) for a fixed return investors
prefer the lowest possible risk, that is, investors are risk averse, (ii) for a given level of
risk, investors always prefer the highest possible return, (this property is referred to as
nonsatiation), and (iii) the first two moments of the distribution of an asset’s return are
sufficient to describe the asset’s character; there is no need to gather information about
higher moments such as skew.

Given these assumptions, the risk-return trade-off of portfolios of assets can be graphically
displayed by constructing a plot with risk (as measured by standard deviation) on the
horizontal axis and return on the vertical axis. We can plot every possible portfolio on this
risk–return space. The set of all portfolios plotted form a feasible region.

By the risk averse assumption, for a given level of return investors prefer portfolios that
lie as far to the left as possible, as these have the lowest risk. Similarly, by the nonsatiation
property for a given level of risk investors prefer portfolios that lie higher on the graph as
these yield a greater return. The upper left perimeter of the feasible region is called the
efficient frontier. It represents the least risk combination for a given level of return. The
efficient frontier is concave.

Figure 7.1 shows a mean-standard deviation plot for 10,000 random portfolios created
from the 30 stocks in the Dow from 1986 through 1991. It represents the feasible region
of portfolios. Figure 7.2 is the efficient frontier for the stocks from the Dow Industrials
from 1985 through 1991. (Both figures were taken from the NEOS Server for Optimization
website.)
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FIGURE 7.1 Return vs. standard deviation for 10,000 random portfolios from the Dow Industrials.
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Mean-standard deviation efficient frontier
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FIGURE 7.2 Efficient frontier for Dow Industrials from 1985–1991.

7.5.1 Risk-Reward Portfolio Optimization

Markowitz (1952) developed a single period portfolio choice problem where the objective is
to minimize portfolio risk (variance) for a specified return on the portfolio. For this model,
it is assumed that all relevant information required by investors to make portfolio decisions
is captured in the mean, standard deviation, and correlation of assets. This method for
portfolio selection is often referred to as mean-variance optimization as it trades off an
investor’s desire for higher mean return against an aversion to greater risk as measured by
portfolio variance.

The Markowitz model for portfolio optimization is given by:

Minimize
∑
i,j

fifjσij

Subject to:
N∑

i=1

firi = R

N∑
i=1

fi = 1

(7.7)

The objective is to minimize variance subject to two constraints: (i) portfolio return must
equal the targeted return R and (ii) total allocation must equal 1. Negative values for fi

correspond to short selling.
One method that can be employed to solve this constrained optimization problem is to

form an auxiliary function L called the Lagrangian by (i) rearranging each constraint so
that the right hand side equals to zero and (ii) introducing a single Lagrange multiplier for
each constraint in the problem as follows:

L =
∑
i,j

fifjσij − λ

(
N∑

i=1

firi − R

)
− μ

(
N∑

i=1

fi − 1

)
(7.8)

We now treat the Lagrangian Equation 7.8 as an unconstrained minimization problem. A
necessary condition for a point to be optimal is that the partial derivative of the Lagrangian
with respect to each of the variables must equal zero. Thus, we take the partial derivative
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of L with respect to each of the i asset weights fi, μ, and λ and set each partial derivative
equal to zero. (Notice that the partial derivative of L with respect to λ yields the portfolio
return constraint, and the partial derivative of L with respect to μ yields the constraint on
the asset weights.) The result is a system of i+ 2 constraints. We use this set of constraints
to solve for the i+ 2 unknowns: fi, μ, and λ.

The Lagrangian method can often only be successfully implemented for small problems.
For larger problems with many variables it may be virtually impossible to solve the set of
equations for the i+ 2 unknowns. Instead, one can find the solution to Problem 7.7 using
methods developed for optimizing quadratic programs. A quadratic program is a mathe-
matical optimization model where the objective function is quadratic and all constraints
are linear equalities or inequalities. The constraints of the optimization problem define the
feasible region within which the optimal solution must lie. Quadratic programs are, in gen-
eral, difficult to solve. Quadratic programming solution methods work in two phases. In the
first phase a feasible solution is found. In the second phase, the method searches along the
edges and surfaces of the feasible region for another solution that improves upon the current
feasible solution. Unless the objective function is convex, the method will often identify a
local optimal solution.

The solution to the Markowitz problem yields a point that lies on the efficient frontier.
By varying the value of R in Problem 7.7, one can map out the entire efficient frontier.

7.6 Utility Analysis

The solution to the Markowitz problem provides one means for making investment decisions
in the mean-variance space. It requires the investor to define a measure of risk and a measure
of value and then utilizes an explicitly defined trade-off between these two measures to
determine the investor’s preferences. Utility theory provides an alternative way to establish
an investor’s preferences without explicitly defining risk functions.

Utility describes an investor’s attitude toward risk by translating the investor’s satisfac-
tion associated with different cash payouts into a utility value. The application of utility
to uncertain financial situations was first introduced by von Neumann and Morgenstern
(1944). Utility functions can be used to explain how investors make choices between differ-
ent portfolios.

Utility theory is often introduced by way of the concept of certainty equivalent. Certainty
equivalent is the amount of wealth that is equally preferred to an uncertain alternative. Risk
averse investors will prefer a lower certain cash payout to a higher risky cash payout. That
is, their certainty equivalent is lower than the expected value of uncertain alternatives. Risk
seeking individuals have a certainty equivalent that is higher than the expected value of
the uncertain alternatives. A utility function assigns different weights to different outcomes
according to the risk profile of the individual investor. The shape of a utility function is
defined by the risk profile of the investor.

Each individual investor may have a different utility function, as each investor may
have a different attitude toward risk. However, all utility functions U satisfy the
following:

• Nonsatiation: Utility functions must be consistent with more being preferred to
less. If x and y are two cash payouts and x > y, then U(x)> U(y). This property is
equivalent to stating that the first derivative of the utility function, with respect
to cash payout, is positive.

• Risk preference: Economic theory presumes that an investor will seek to maxi-
mize the utility of his investment. However, all investors will not make identical
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investment decisions because they will not all share the same attitudes toward
risk. Investors can be classified into three classes, according to their willingness to
accept risk: risk averse, risk neutral, or risk taking. Risk-averse investors invest
in investments where the utility of the return exceeds the risk-free rate. If no
such investment exists, the investor invests in risk-free investments. The util-
ity function of a risk-averse investor is increasing and concave in the cash payout
(U ′′(x)< 0); the value assigned to each additional dollar received decreases due to
the risk-averse nature of the individual. Risk-neutral investors ignore risk when
making investment decisions. They seek investments with a maximum return,
irrespective of the risk involved. The utility function of a risk-neutral individual
is linear increasing in the cash payout; the same value is assigned to each addi-
tional dollar. Risk-taking investors are more likely to invest in investments with
a higher risk involved. The utility function of a risk-taking individual is convex
(U ′′(x)> 0).

• Changes in wealth: Utility functions also define how an investor’s investment
decisions will be affected by changes in his wealth. Specifically, if an investor has
a larger amount of capital will this change his willingness to accept risk? The
Arrow–Pratt absolute risk aversion coefficient, given by

A(x) = −U ′′(x)
U ′(x)

is a measure of an investor’s absolute risk aversion. A′(x) measures changes in an
investor’s absolute risk aversion as a function of changes in his wealth. If A′(x)> 0
(A′(x)< 0), the investor has increasing (decreasing) absolute risk aversion and he
will hold fewer (more) dollars in risky assets as his wealth increases. If A′(x) = 0,
the investor has constant absolute risk aversion and he will hold the same dollar
amount of risky assets as his wealth increases.

A utility function only ranks alternatives according to risk preferences; its numerical value
has no real meaning. Thus, utility functions are unique up to a positive affine transformation.
More specifically, if U(x) is a utility function then V (x)= a + bU(x) (b> 0) will yield the
same rankings (and hence the same investment decisions) as U(x).

7.6.1 Utility Functions

Although each investor can define his own utility function, there are a number of predefined
utility functions that are commonly used in the finance and economics literature. In this sec-
tion, we describe the exponential utility function. We also reconcile between mean-variance
optimization and utility optimization.

The exponential utility function is often adopted for financial analysis. The exponential
utility function is defined as:

U(x) = 1 − e−x/R, for all x (7.9)

where x is the wealth and R > 0 represents the investor’s risk tolerance. Greater values of
R mean that the investor is less risk averse. (In fact, as R→∞ the investor becomes risk
neutral.) U ′(x) = (1/R)e−x/R and U ′′(x)=−(1/R)2e−x/R. The second derivative of Equa-
tion 7.9 is strictly negative so the exponential utility function is concave; the exponential
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utility function describes the behavior of a risk-averse investor. The absolute risk aver-
sion coefficient is (1/R), which is constant with wealth; the investor invests constant dollar
amounts in risky investments as his wealth increases.

We now demonstrate the relationship between utility and mean-variance for concave (i.e.,
risk-averse) investors, following King (1993). Suppose U(X) is a strictly concave utility
function. The Taylor expansion of U(X) is an approximation of the function at a particular
point, say M , using its derivatives. The second-order Taylor expansion of U(X) about point
M is given by:

U(X) = U(M) + U ′(M)(X − M) +
1
2
U ′′(M)(X − M)2 (7.10)

Now suppose that the point M is equal to expected wealth, that is, E(X)= M . Then the
expected value of the second-order Taylor expansion expression (Equation 7.10) is equal to

E[U(X)] = U(M) +
1
2
U ′′(M)E(X − M)2

= U(M) +
1
2
U ′′(M)σ2

(The middle term drops out as E(X)= M .) The second derivative is negative for a strictly
concave utility function. This implies that maximizing the second-order Taylor expansion
is equivalent to

min E(X − M)2 = σ2

for all X with E(X)= M , which is a mean-variance problem with a given mean return M .
It follows that mean-variance is a second-order approximation to utility maximization.

Of course, due to the two-sided nature of the variance, eventually this approximation will
become negatively-sloped—and hence not really valid as a utility function—as X increases
in value. The range over which the approximation is valid can be pretty wide. The upper
bound of the range is the point where U ′(X)+ U ′′(X)(X −M)= 0; which is the maximum
point of the approximating quadratic. For the logarithmic utility U(X)= log(X), the upper
bound of the range where the mean-variance approximation remains quadratic is X = 2M .
In other words, the mean-variance approximation for the logarithm is valid for a range that
includes twice the mean value of the return!

7.6.2 Utility in Practice

In practice, utility is not often used as an objective criterion for investment decision making
because utility curves are difficult to estimate. However, Holmer (1998) reports that Fannie
Mae uses expected utility to optimize its portfolio of assets and liabilities. Fannie Mae faces
a somewhat unique set of risks due to the specific nature of its business. Fannie Mae buys
mortgages on the secondary market, pools them, and then sells them on the open market to
investors as mortgage backed securities. Fannie Mae faces many risks such as: prepayment
risk, risks due to potential gaps between interest due and interest owed, and long-term
asset and liability risks due to interest rate movements. Utility maximization allows Fannie
Mae to explicitly consider degrees of risk aversion against expected return to determine its
risk-adjusted optimal investment portfolio.
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7.7 Black–Litterman Asset Allocation Model

Markowitz mean-variance portfolio optimization requires mean and covariance as input and
outputs optimal portfolio weights. The method has been criticized because:

i. The optimal portfolio weights are highly dependent upon the input values. How-
ever, it is difficult to accurately estimate these input values. Chopra and Ziemba
(1993), Kallberg and Ziemba (1981, 1984), and Michaud (1989) use simulation
to demonstrate the significant cash-equivalent losses due to incorrect estimates
of the mean. Bengtsson (2004) showed that incorrect estimates of variance and
covariance also have a significant negative impact on cash returns.

ii. Markowitz mean-variance optimization requires the investor to specify the uni-
verse of return values. It is unreasonable to expect an investor to know the uni-
verse of returns. On the other hand, mean-variance optimization is sensitive to
the input values so incorrect estimation can significantly skew the results.

iii. Black and Litterman (1992) and He and Litterman (1999) have studied the opti-
mal Markowitz model portfolio weights assuming different methods for estimating
the assets’ means and found that the resulting portfolio weights were unnatural.
Unconstrained mean-variance optimization typically yields an optimal portfolio
that takes many large long and short positions. Constrained mean-variance opti-
mization often results in an extreme portfolio that is highly concentrated in a
small number of assets. Neither of these portfolio profiles is typically considered
acceptable to investors.

iv. Due to the intricate interaction between mean and variance, the optimal weights
determined by Markowitz’s mean-variance estimation are often non-intuitive. A
small change in an estimated mean of a single asset can drastically change the
weights of many assets in the optimal portfolio.

Black and Litterman observed the potential benefit of using mathematical optimiza-
tion for portfolio decision making, yet understood an investment manager’s hesitations in
implementing Markowitz’s mean-variance optimization model. Black and Litterman (1992)
developed a Bayesian method for combining individual investor subjective views on asset
performance with market equilibrium returns to create a mixed estimate of expected returns.
The Bayes approach works by combining a prior belief with additional information to cre-
ate an updated “posterior” distribution of expected asset returns. In the Black–Litterman
framework the equilibrium returns are the prior and investor subjective views are the addi-
tional information. Together, these form a posterior distribution on expected asset returns.
These expected returns can then be used to make asset allocation decisions. If the investor
has no subjective views on asset performance, then the optimal allocation decision is deter-
mined solely according to the market equilibrium returns. Only if the investor expresses
opinions on specific assets will the weights for those assets shift away from the market
equilibrium weights in the direction of the investor’s beliefs.

The Black–Litterman model is based on taking a market equilibrium perspective on
asset returns. Asset “prior” returns are derived from the market capitalization weights
of the optimal holdings of a mean-variance investor, given historical variance. Then, if
the investor has specific views on the performance of any assets, the model combines the
equilibrium returns with these views, taking into consideration the level of confidence that
the investor associates with each of the views. The model then yields a set of updated
expected asset returns as well as updated optimal portfolio weights, updated according to
the views expressed by the investor.
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The key inputs to the Black–Litterman model are market equilibrium returns and the
investor views. We now consider these inputs in more detail.

7.7.1 Market Equilibrium Returns

Black and Litterman use the market equilibrium expected returns, or capital asset pricing
model (CAPM) returns, as a neutral starting point in their model. (See, e.g., Sharpe, 1964.)
The basic assumptions are that (i) security markets are frictionless, (ii) investors have full
information relevant to security prices, and (iii) all investors process the information as if
they were mean-variance investors. The starting point for the development of the CAPM is
to form the efficient frontier for the market portfolios and to draw the capital market line
(CML). The CML begins at the risk-free rate on the vertical axis (which has risk 0) and
is exactly tangent to the efficient frontier. The point where the CML touches the efficient
frontier is the pair (σm, rm), which is defined to be the “market” standard deviation and
“market” expected return. By changing the relative proportions of riskless asset and market
portfolio, an investor can obtain any combination of risk and return that lies on the CML.
Because the CML is tangent to the efficient frontier at the market point, there are no other
combinations of risky and riskless assets that can provide better expected returns for a given
level of risk. Now, consider a particular investor portfolio i with expected return E(ri) and
standard deviation σi. For an investor to choose to hold this portfolio it must have returns
comparable to the returns that lie on the CML. Thus, the following must hold:

E(ri) = rf +
σi

σm
(rm − rf )

where rf is the risk-free rate. This equation is called the CAPM.
The interpretation of the CAPM is that investors’ portfolios have an expected return

that includes a reward for taking on risk. This reward, by the CAPM hypothesis, must
be equal to the return that would be obtained from holding a portfolio on the CML that
has an equivalent risk. Any remaining risk in the portfolio can be diversified away (by,
for example, holding the market portfolio) so the investor does not gain any reward for
the non-systematic, or diversifiable, risk of the portfolio. The CAPM argument applied to
individual securities implies that the holders of individual securities will be compensated
only for that part of the risk that is correlated with the market, or the so-called systematic
risk. For an individual security j the CAPM relationship is

E(rj) = rf + βj(rm − rf )

where βj = (σj/σm)ρmj and ρmj is the correlation between asset j returns and the market
returns.

The Black–Litterman approach uses the CAPM in reverse. It assumes that in equilibrium
the market portfolio is held by mean-variance investors and it uses optimization to back
out the expected returns that such investors would require given their observed holdings
of risky assets. Let N denote the number of assets and let the excess equilibrium market
returns (above the risk-free rate) be defined by:

∏
= λ

∑
w (7.11)

where∏
= N × 1 vector of implied excess returns∑
= N ×N covariance matrix of returns
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w =N × 1 vector of market capitalization weights of the assets
λ = risk aversion coefficient that characterizes the expected risk-reward tradeoff.

λ is the price of risk as it measures how risk and reward can be traded off when making
portfolio choices. It measures the rate at which an investor will forego expected return for
less variance. λ is calculated as λ = (rm − rf )/σ2

m, where σ2
m is the variance of the market

return. The elements of the covariance matrix are computed using historical correlations and
standard deviations. Market capitalization weights are determined by measuring the dollar
value of the global holdings of all equity investors in the large public stock exchanges. The
capitalization weight of a single equity name is the dollar-weighted market-closing value of
its equity share times the outstanding shares issued. Later we will show that Equation 7.11
is used to determine the optimal portfolio weights in the Black–Litterman model.

7.7.2 Investor Views

The second key input to the Black–Litterman model is individual investor views.
Assume that an investor has K views, denoted by a K × 1 vector Q. Uncertainty regarding

these views is denoted by an error term ε, where ε is normally distributed with mean zero
and K ×K covariance matrix Ω. Thus, a view has the form:

Q + ε =

⎡
⎢⎢⎢⎢⎢⎣

Q1

...

QK

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

ε1

...

εK

⎤
⎥⎥⎥⎥⎥⎦

ε= 0 means that the investor is 100% confident about his view; in the more likely case that
the investor is uncertain about his view, ε takes on some positive or negative value.

ω denotes the variance of each error term. We assume that the error terms are indepen-
dent of each other. (This assumption can be relaxed.) Thus, the covariance matrix Ω is a
diagonal matrix where the elements on the diagonal are ω, the variances of each error term.
A higher variance indicates greater investor uncertainty with the associated view. The error
terms ε do not enter directly into the Black–Litterman formula; only their variances enter
via the covariance matrix Ω.

Ω =

⎡
⎢⎢⎢⎢⎢⎢⎣

ω1 0 . . . 0

0
. . .

...
...

0
0 . . . 0 ωK

⎤
⎥⎥⎥⎥⎥⎥⎦

The Black–Litterman model allows investors to express views such as:

View 1: Asset A will have an excess return of 5.5% with 40% confidence.
View 2: Asset B will outperform asset C by 3% with 15% confidence.
View 3: Asset D will outperform assets E and F by 1% with 20% confidence.

The first view is called an absolute view, while the second and third views are called relative
views. Notice that the investor assigns a level of confidence to each view.

Each view can be seen as a portfolio of long and short positions. If the view is an absolute
view then the portfolio position will be long. If the view is a relative view, then the portfolio
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will take a long position in the asset that is expected to “overperform” and a short position in
the asset that is expected to “underperform.” In general, the impact on the optimal portfolio
weights is determined by comparing the equilibrium difference in the performance of these
assets to the performance expressed by the investor view. If the performance expressed in
the view is better than the equilibrium performance, the model will tilt the portfolio toward
the outperforming asset. More specifically, consider View 2, which states that asset B will
outperform asset C by 3%. If the equilibrium returns indicate that asset B will outperform
asset C by more than 3% then the view represents a weakening view in the performance of
asset B and the model will tilt the portfolio away from asset B.

One of the most challenging questions in applying the Black–Litterman model is how to
populate the covariance matrix Ω and how to translate the user specified expressions of
confidence into uncertainty in the views. We will discuss this further below.

7.7.3 An Example of an Investor View

We now illustrate how one builds the inputs for the Black–Litterman model, given the
three views expressed. Suppose that there are N = 7 assets: Assets A−G. The Q matrix is
given by:

Q =

⎡
⎣5.5

3
1

⎤
⎦

Note that the investor only has views on six of the seven assets. We use the matrix P
to match the views to the individual assets. Each view results in a 1×N vector so that P
is a K ×N matrix. In our case, where there are seven assets and three views, P is a 3× 7
matrix. Each column corresponds to one of the assets; column 1 corresponds to Asset A,
column 2 corresponds to Asset B, and so on. In the case of absolute views, the sum of the
elements in the row equals 1. In our case, View 1 yields the vector:

P1 =
[
1 0 0 0 0 0 0

]
In the case of relative views, the sum of the elements equals zero. Elements corresponding

to relatively outperforming assets have positive values; elements corresponding to relatively
underperforming assets take negative values. We determine the values of the individual ele-
ments by dividing 1 by the number of outperforming and underperforming assets, respec-
tively. For View 2, we have one outperforming asset and one underperforming asset. Thus,
View 2 yields the vector:

P2 =
[
0 1 −1 0 0 0 0

]
View 3 has one outperforming asset (Asset D) and two relatively underperforming assets

(Assets E and F). Thus, Asset D is assigned a value of +1 and Assets E and F are assigned
values of −0.5 each. View 3 yields the vector:

P3 =
[
0 0 0 1 −0.5 −0.5 0

]
Matrix P is given by: ⎡

⎣1 0 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 0 1 −0.5 −0.5 0

⎤
⎦

The variance of the kth view portfolio can be calculated according to the formula pk

∑
p′k,

where pk is the kth row of the P matrix and
∑

is the covariance matrix of the excess
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equilibrium market returns. (Recall, these form the neutral starting point of the Black–
Litterman model.) The variance of each view portfolio is an important source of information
regarding the confidence that should be placed in the investor’s view k.

7.7.4 Combining Equilibrium Returns with Investor Views

We now state the Black–Litterman equation for combining equilibrium returns with investor
views to determine a vector of expected asset returns that will be used to determine optimal
portfolio weights. The vector of combined asset returns is given by:

E[R] =
[(

τ
∑)−1

+ P ′Ω−1P

]−1 [(
τ
∑)−1∏

+P ′Ω−1Q

]
(7.12)

where:
E[R] = N × 1 vector of combined returns

τ =scalar, indicating uncertainty of the CAPM prior∑
=N ×N covariance matrix of equilibrium excess returns

P= K ×N matrix of investor views
Ω= K ×K diagonal covariance matrix of view error terms (uncorrelated view uncertainty)
Π= N × 1 vector of equilibrium excess returns
Q= K × 1 vector of investor views.

Examining this formula, we have yet to describe how the value of τ should be set and
how the matrix Ω should be populated. Recall that if an investor has no views, the Black–
Litterman model suggests that the investor does not deviate from the market equilibrium
portfolio. Only weights on assets for which the investor has views should change from their
market equilibrium weights. The amount of change depends upon τ , the investor’s confidence
in the CAPM prior, and ω, the uncertainty in the views expressed.

The literature does not have a single view regarding how the value of τ should be set.
Black and Litterman (1992) suggest a value close to zero. He and Litterman (1999) set τ
equal to 0.025 and populate the covariance matrix Ω so that

Ω =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
p1

∑
p′1
)

τ 0 . . . 0

0
. . .

...
...

0
0 . . . 0

(
pK

∑
p′K
)

τ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We note that the implied assumption is that the variance of the view portfolio is the infor-
mation that determines an investor’s confidence in his view. There may be other information
that contributes to the level of an investor’s confidence but it is not accounted for in this
method for populating Ω.

Formula 7.12 uses Bayes approach to yield posterior estimates of asset returns that reflect
a combination of the market equilibrium returns and the investor views. These updated
returns are now used to compute updated optimal portfolio weights.

In the case that the investor is unconstrained, we use Formula 7.11. Using Formula 7.11
w∗, the optimal portfolio weights, are given by:

w∗ =
(
λ
∑)−1

μ (7.13)
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where μ is the vector of combined returns given by Equation 7.12. Equation 7.13 is the
solution to the unconstrained maximization problem maxw w′μ−λw′∑w/2.

In the presence of constraints (e.g., risk, short selling, etc.) Black and Litterman suggest
that the vector of combined returns be input into a mean-variance portfolio optimization
problem.

We note two additional comments on the updated weights w∗:

i. Not all view portfolios necessarily have equal impact on the optimal portfolio
weights derived using the Black–Litterman model. A view with a higher level of
uncertainty is given less weight. Similarly, a view portfolio that has a covariance
with the market equilibrium portfolio is given less weight. This is because such a
view represents less new information and hence should have a smaller impact in
moving the optimal portfolio weights away from the market equilibrium weights.
Finally, following the same reasoning, a view portfolio that has a covariance with
another view portfolio has less weight.

ii. A single view causes all returns to change, because all returns are linked via
the covariance matrix

∑
. However, only the weights for assets for which views

were expressed change from their original market capitalization weights. Thus,
the Black–Litterman model yields a portfolio that is intuitively understandable
to the investor. The optimal portfolio represents a combination of the market
portfolio and a weighted sum of the view portfolios expressed by the investor.

7.7.5 Application of the Black–Litterman Model

The Black–Litterman model was developed at Goldman Sachs in the early 1990s and is
used by the Quantitative Strategies group at Goldman Sachs Asset Management. This
group develops quantitative models to manage portfolios. The group creates views and then
uses the Black–Litterman approach to transform these views into expected asset returns.
These expected returns are used to make optimal asset allocation decisions for all of the
different portfolios managed by the group. Different objectives or requirements (such as
liquidity requirements, risk aversion, etc.) are incorporated via constraints on the portfolio.
The Black–Litterman model has gained widespread use in other financial institutions.

7.8 Risk Management

Risk exists when more than one outcome is possible from the investment. Sources of risk
may include business risk, market risk, liquidity risk, and the like. Variance or standard
deviation of return is often used as a measure of the risk associated with an asset’s return.
If variance is small, there is little chance that the asset return will differ from what is
expected; if variance is large then the asset returns will be highly variable.

Financial institutions manage their risk on a regular basis both to meet regulatory require-
ments as well as for internal performance measurement purposes. However, while variance
is a traditional measure of risk in economics and finance, in practice it is typically not the
risk measure of choice. Variance assumes symmetric deviations above and below expected
return. In practice, one does not observe deviations below expected return as often as
deviations above expected return due to positions in options and options-like instruments
in portfolios. Moreover, variance assigns equal penalty to deviations above and below the
mean return. However, investors typically are not averse to receiving higher than anticipated
returns. Investors are more interested in shortfall risk measures. These are risk measures
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that measure either the distance of return below a target or measure the likelihood that
return will fall below a threshold.

One measure of shortfall risk is downside risk. Downside risk measures the expected
amount by which the return falls short of a target. Specifically, if z is the realized return
and X is the target then downside risk is given by E[max(X − z, 0)]. Semivariance is another
measure of shortfall risk. Semivariance measures the variance of the returns that fall below
a target value. Semivariance is given by E[max(X − z, 0)2].

7.8.1 Value at Risk

Value at risk (VaR) is a risk measure that is used for regulatory reporting. Rather than
measuring risk as deviation from a target return, VaR is a quantile of the loss distribution of
a portfolio. Let L(f, r̃) be the random loss on a portfolio with allocation vector f and random
return vector r̃. Let F be its distribution function so that F (f, u)= Pr {L(f, r̃)≤u}.VaR
is the α-quantile of the loss distribution and is defined by:

V aRα(f) = min {u : F (f, u) ≥ α} (7.14)

Thus, VaR is the smallest amount u such that with probability α the loss will not exceed u.
The first step in computing VaR is to determine the underlying market factors that

contribute to the risk (uncertainty) in the portfolio. The next step is to simulate these
sources of uncertainty and the resulting portfolio loss. Monte Carlo simulation is used largely
because many of the portfolios under management by the more sophisticated banks include
a preponderance of instruments that have optional features. As we shall see in Section 7.10,
the price changes of these instruments can best be approximated by simulation. VaR can
then be calculated by determining the distribution of the portfolio losses. The key question
is what assumptions to make about the distributions of these uncertain market factors.
Similar to the two methods that we discuss for estimating asset returns and variances, one
can use historical data or a scenario approach to build the distributions.

Using historical data, one assumes that past market behavior is a good indicator of future
market behavior. Take T periods of historical data. For each period, simulate the change
in the portfolio value using the actual historical data. Use these T data points of portfolio
profit/loss to compute the loss distribution and hence VaR. The benefit of this method is
that there is no need for artificial assumptions about the distribution of the uncertainty
of the underlying factors that impact the value of the portfolio. On the other hand, this
method assumes that future behavior will be identical to historical behavior.

An alternative approach is to specify a probability distribution for each of the sources
of market uncertainty and to then randomly generate events from those distributions. The
events translate into behavior of the uncertain factors, which result in a change in the
portfolio value. One would then simulate the portfolio profit/loss assuming that these ran-
domly generated events occur and construct the loss distribution. This distribution is used
to compute VaR.

7.8.2 Coherent Risk Measures

VaR is a popular risk measure. However, VaR does not satisfy one of the basic requirements
of a good risk measure: VaR is not subadditive for all distributions (i.e., it is not always
the case that V aR(A+ B)< V aR(A)+ V aR(B)), a property one would hope to hold true
if risk is reduced by adding assets to a portfolio. This means that the VaR of a diversified
portfolio may exceed the sum of the VaR of its component assets.
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Artzner, Delbaen, Eber, and Heath (1999) specify a set of axioms satisfied by all coherent
risk measures. These are:

• Subadditivity: ρ(A+ B)≤ ρ(A)+ ρ(B)
• Positive homogeneity: ρ(λA)= λρ(A) for λ≥ 0
• Translation invariance: ρ(A+ c)= ρ(A)− c for all c

• Monotonicity: A≤B then ρ(B)≤ ρ(A)

Subadditivity implies that the risk of a combined position of assets does not exceed the
combined risk of the individual assets. This allows for risk reduction via diversification, as
we discuss in Section 7.4.

Conditional value-at-risk (CVaR), also known as expected tail loss, is a coherent risk
measure. CVaR measures the expected losses conditioned on the fact that the losses exceed
VaR. Following the definition of VaR in Equation 7.14, if F is continuous then CVaR is
defined as:

CV aR(f, α) = E{L(f, r̃)|L(f, r̃) ≥ V aR(f, α)} (7.15)

An investment strategy that minimizes CVaR will minimize VaR as well.
An investor wishing to maximize portfolio return subject to a constraint on maximum

CVaR would solve the following mathematical program:

max E

(
N∑

i=1

firi

)

subject to: CV aRα(f1, . . ., fN ) ≤ C

N∑
i=1

fi = 1

0 ≤ fi ≤ 1

(7.16)

where fi is the fraction of wealth allocated to asset i, ri is the return on asset i, and C
is the maximum acceptable risk. Formulation 7.16 is a nonlinear formulation due to the
constraint on CVaR, and is a hard problem to solve.

Suppose, instead of assuming that the loss distribution F is continuous, we discretize
the asset returns by considering a finite set of s= 1, . . ., S scenarios of the portfolio perfor-
mance. Let p(s) denote the likelihood that scenario s occurs; 0≤ p(s)≤ 1;

∑
s∈S p(s) = 1.

ϕ(s) denotes the vector of asset returns under scenario s and ρ(f, ϕ(s)) denotes the portfolio
return under scenario s assuming asset allocation vector f . Then, using this discrete set of
asset returns, the expected portfolio return is given by∑

s∈S

p(s)ρ(f, ϕ(s)) (7.17)

The investor will wish to maximize Equation 7.17. Definition 7.15 applies to continuous
loss distributions. Rockafellar and Uryasev (2002) have proposed an alternative definition
of CVaR for any general loss distribution, where u = V aRα(f):

CVaR(f, α) =
1

1 − α

⎛
⎝ ∑

{s∈S|ρ(f,ϕ(s))≤u}
p(s) − α

⎞
⎠u +

1
1 − α

∑
{s∈S|ρ(f,ϕ(s))>u}

p(s)ρ(f, ϕ(s))

(7.18)
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Using Definition 7.18, we can solve Problem 7.16 using a stochastic programming approach.
First, we define an auxiliary variable z(s) for each scenario s, which denotes the shortfall
in portfolio return from the target u:

z(s) = max(0, u − ρ(f, ϕ(s))) (7.19)

Following Rockafellar and Uryasev (2002), CVaR can be expressed using the shortfall
variables (Equation 7.19) as:

CV aR(f, α) = min

[
u − 1

1 − α

S∑
s=1

p(s)z(s)

]

The linear program is given by:

max
∑
s∈S

p(s)ρ(f, ϕ(s))

subject to:
N∑

i=1

fi = 1

0 ≤ fi ≤ 1

u − 1
1 − α

S∑
s=1

p(s)z(s) ≥ C

z(s) ≥ u − ρ(f, ϕ(s)) s = 1, . . ., S

z(s) ≥ 0 s = 1, . . ., S

(7.20)

where the last two inequalities follow from the definition of the shortfall variables (Equa-
tion 7.19) and the maximization is taken over the variables (f, u, z).

Formulation 7.20 is a linear stochastic programming formulation of the CVaR problem.
To solve this problem requires an estimate of the distribution of the asset returns, which will
be used to build the scenarios. If historical data are used to develop the scenarios then it is
recommended that as time passes and more information is available, the investor reoptimize
(Equation 7.20) using these additional scenarios. We direct the reader to Rockafellar and
Uryasev (2000, 2002) for additional information on this subject.

7.8.3 Risk Management in Practice

VaR and CVaR are popular risk measures.VaR is used in regulatory reporting and to
determine the minimum capital requirements to hedge against market, operational, and
credit risk. Financial institutions may be required to report portfolio risks such as the
30-day 95% VaR or the 5% quantile of 30-day portfolio returns and to hold reserve accounts
in proportion to these calculated amounts.VaR is used in these contexts for historical rea-
sons. But even though as we saw above it is not a coherent risk measure, there is possibly
some justification in continuing to use it.VaR is a frequency measure, so regulators can
easily track whether the bank is reporting VaR accurately;CVaR is an integral over the tail
probabilities and is likely not as easy for regulators to track.

In addition to meeting regulatory requirements, financial institutions may use VaR or
CVaR to measure the performance of its business units that control financial portfolios by
comparing the profit generated by the portfolio actions versus the risk of the portfolio itself.
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For purposes of generating risk management statistics, banks will simulate from distribu-
tions that reflect views of the market and the economy. Banks will also incorporate some
probability of extreme events such as the wild swings in correlations and liquidity that occur
in market crashes.

7.9 Options

In this section, we discuss options. An option is a derivative security, which means that its
value is derived from the value of an underlying variable. The underlying variable may or
may not be a traded security. Stocks or bonds are examples of traded securities; interest rates
or the weather conditions are examples of variables upon which the value of an option may
be contingent but that are not traded securities. Derivative securities are sometimes referred
to as contingent claims, as the derivative represents a claim whose payoff is contingent on
the history of the underlying security.

The two least complex types of option contracts for individual stocks are calls and puts.
Call options give the holder the right to buy a specified number of shares (typically, 100
shares) of the stock at the specified price (known as the exercise or strike price) by the
expiration date (known as the exercise date or maturity). A put option gives the holder the
right to sell a specified number of shares of the stock at the strike price by maturity. Amer-
ican options allow the holder to exercise the option at any time until maturity; European
options can only be exercised at maturity. The holder of an option contract may choose
whether or not he wishes to exercise his option contract. However, if the holder chooses to
exercise, the seller is obligated to deliver (for call options) or purchase (for put options) the
underlying securities.

When two investors enter into an options contract, the buyer pays the seller the option
price and takes a long position; the seller takes a short position. The buyer has large
potential upside from the option, but his downside loss is limited by the price that he paid
for the option. The seller’s profit or loss is the reverse of that of the buyer’s. The seller
receives cash upfront (the price of the option) but has a potential future liability in the case
that the buyer exercises the option.

7.9.1 Call Option Payoffs

We first consider European options. We will define European option payoffs at their expi-
ration date.

Let C represent the option cost, ST denote the stock price at maturity, and K denote the
strike price. An investor will only exercise the option if the stock price exceeds the strike
price, that is, ST > K. If ST > K, the investor will exercise his option to buy the stock at
price K and gain (ST −K) for each share of stock that he purchases. If ST <K, then the
investor will not exercise the option to purchase the stock at price K. Thus, the option
payoff for each share of stock is

max(ST − K, 0) (7.21)

The payoff for the option writer (who has a short position in a call option) is the oppo-
site of the payoff for the long position. If, at expiration, the stock price is below the strike
price the holder (owner) will not exercise the option. However, if the stock price is above the
strike price the owner will exercise his option. The writer must sell the stock to the owner
at the strike price. For each share of stock that he sells, the writer must purchase the stock
in the open market at a price per share of ST and then sell it to the owner at a price of
K. Thus, the writer loses (ST −K) for each share that he is obligated to sell to the owner.
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FIGURE 7.3 Profit from European call options.

The writer thus has an unlimited potential loss depending upon the final stock price of the
underlying asset; the writer’s payoff is

−max(ST − K, 0) = min(K − ST , 0)

Thus, an investor with a short position in a European call option has potentially unlim-
ited loss depending upon the final stock price of the underlying stock. This risk must be
compensated by the price of the option C.

The graph on the left in Figure 7.3 shows the profit at maturity for the owner of a call
option. The point of inflection occurs when the ending stock price equals the strike price.
The negative payoff is the price the investor paid for the option. As mentioned, the option
holder’s downside loss is limited by the price paid for the option. The payoff for the call
option writer is shown in the graph on the right in Figure 7.3 and is the reverse of the payoff
to the call option buyer.

When the price of the underlying stock is above the strike price, we say that the option
is “in the money.” If the stock price is below the strike price we say that the option is “out
of the money.” If the stock price is exactly equal to the strike price we say that the call
option is “at the money.”

American options can be exercised at any time prior to maturity. The decision of whether
to exercise hinges upon a comparison of the value of exercising immediately (the intrinsic
value of the option) against the expected future value of the option if the investor continues
to hold it. We will discuss this in further detail in Section 7.12, where we discuss pricing
American options.

7.9.2 Put Option Payoffs

An investor with a long position in a put option profits if the price of the underlying stock
drops below the option’s strike price. Similar to the definitions for a call option, we say that
a put option is “in the money” if the stock price at maturity is lower than the strike price.
The put option is “out of the money” if the stock price exceeds the strike price. The option
is “at the money” if the strike price equals the stock price at maturity.

Let P denote the cost of the put option, K is its strike price, and ST the stock price at
expiration. The holder of a put option will only sell if the stock price at expiration is lower
than the strike price. In this case, the owner can sell the shares to the writer at the strike
price and will gain (K −ST ) per share. Thus, payoff on a put option is max (K −ST , 0);
we note that positive payoff on a put is limited at K. If the stock price is higher than the
strike price at maturity then the holder will not exercise the put option as he can sell his
shares on the open market at a higher price. In this case, the option will expire worthless.
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FIGURE 7.4 Profit from European put options.

A put writer has opposite payoffs. If the stock price exceeds the strike price, the put
holder will never exercise his option; however, if the stock price declines, the writer will lose
money. The price P paid by the owner must compensate the writer for this risk.

Figure 7.4 shows the option payoff for a put holder and writer.

7.10 Valuing Options

The exact value of a stock option is easy to define at maturity. Valuing options prior to
expiration is more difficult and depends upon the distribution of the underlying stock price,
among other factors. Black and Scholes (1973) derived a differential equation that can be
used to price options on non-dividend paying stocks. We discuss the Black–Scholes for-
mula in Section 7.10.1. However, in general, exact formulas are not available for valuing
options. In most cases, we rely on numerical methods and approximations for options val-
uation. In Sections 7.10.3 and 7.12, we discuss two numerical methods for pricing options:
Monte Carlo simulation and dynamic programming. Dynamic programming is useful for
pricing American options, where the holder has the ability to exercise prior to the expira-
tion date. Monte Carlo simulation is useful for pricing a European option, where the option
holder cannot exercise the option prior to the maturity date. In the following sections, we
describe Monte Carlo simulation and dynamic programming and show how they can be
used to price options. We first will lay out some background and basic assumptions that
are required.

7.10.1 Risk Neutral Valuation in Efficient and Complete Markets

We base our discussion of options pricing on the assumption that markets are efficient and
complete. Efficient markets are arbitrage-free. Arbitrage provides an investor with a riskless
investment opportunity with unlimited return, without having to put up any money. We
assume that if any such opportunities exist there would be infinite demand for such assets.
This would immediately raise the price of the investments and the arbitrage opportunity
would disappear.

Black and Scholes derived a differential equation that describes the value of a trader’s
portfolio who has a short position in the option and who is trading in the underlying asset
and a cash-like instrument. Efficiency of markets is one of the key assumptions required
in their derivation. In addition, they assume that instantaneous and continuous trading
opportunities exist, no dividends, transaction costs, or taxes are paid, and that short selling
is permitted. Finally, they assume that the price of the underlying stock follows a specific
stochastic process called Brownian motion. (See Section 7.10.2 for discussion of Brownian
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motion.) In this Black–Scholes framework it turns out that there is a trading strategy (called
“delta-hedging”) that makes the portfolio’s return completely riskless. In an efficient market,
a riskless portfolio will return the risk-free rate. This arbitrage reasoning combined with
the delta-hedging strategy leads to a partial differential equation that resembles the heat
equation of classical physics. Its solution provides the option’s value at any point in time. In
the case of European-style options (those that have a fixed exercise date) the solution can
be achieved in closed form—this is the famous Black–Scholes formula. The Black–Scholes
formulas for the values of a European call C or put P are:

C = SΦ(d1) − Ke−rT Φ(d2)

P = Ke−rT Φ(−d2) − SΦ(−d1)

where:

d1 = [log(S/K) + T (r + σ2/2)]/σ
√

T

d2 = d1 − σ
√

T

Here, r is the risk-free rate (the rate of return of a riskless security such as a U.S. Trea-
sury security over time T ), log denotes the natural logarithm, and Φ() is the cumulative
distribution function for the standard normal distribution N(0, 1).

Exotic option contracts, especially those with exercise rules that give the owner the
discretion of when to exercise, or options with underlying assets that are more complicated
than equity stocks with no dividends, or options that depend on multiple assets, are very
difficult to solve using the Black–Scholes partial differential equation.

Harrison and Pliska (1981) developed a more general perspective on options pricing that
leads to a useful approach for these more general categories of options. The existence of
the riskless trading strategy in the Black–Scholes framework is mathematically equivalent
to the existence of a dual object called a “risk-neutral measure,” and the options price is
the integral of the option payouts with this risk-neutral measure. When the risk-neutral
measure is unique, the market is called “complete.” This assumption means that there is a
single risk-neutral measure that can be used to price all the options.

This perspective leads to the following methodology for options pricing. Observe the prices
of the traded options. Usually these are of a fairly simple type (European or American
calls and puts), for which closed-form expressions like the Black–Scholes formula can be
used. Then invert the formula to find the parameters of the risk-neutral distribution. This
distribution can then be used to simulate values of any option—under the assumption that
the market is efficient (arbitrage-free) and complete.

7.10.2 Brownian Motion

A key component of valuing stock options is a model of the price process of the underlying
stock. In this section, we describe the Brownian motion model for the stock prices.

The efficient market hypothesis, which states that stock prices reflect all history and that
any new information is immediately reflected in the stock prices, ensures that stock prices
follow a Markov process so the next stock price depends only upon the current stock price
and does not depend upon the historical stock price process. A Markov process is a stochas-
tic process with the property that only the current value of the random variable is relevant
for the purposes of determining the next value of the variable. A Wiener process is a type
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of Markov process. A Wiener process Z(t) has normal and independent increments with
variance proportional to the square root of time, that is, Z(t)−Z(s) has a normal distribu-
tion with mean zero and variance

√
t− s. It turns out that Z(t), t > 0 will be a continuous

function of t. If Δt represents an increment in time and ΔZ represents the change in Z over
that increment in time then the relationship between ΔZ and Δt can be expressed by:

ΔZ(t) = ε
√

Δt (7.22)

where ε is drawn from a standard normal distribution. A Wiener process is the limit of the
above stochastic process as the time increments get infinitesimally small, that is, as Δt→ 0.
Equation 7.22 is expressed as

dZ(t) = ε
√

dt (7.23)

If x(t) is a random variable and Z is a Wiener process, then a generalized Wiener process
is defined as

dx(t) = adt + bdZ

where a and b are constants. An Ito process is a further generalization of a generalized
Wiener process. In an Ito process, a and b are not constants rather, they can be functions
of x and t. An Ito process is defined as

dx(t) = a(x, t) dt + b(x, t) dZ

Investors are typically interested in the rate of return on a stock, rather than the absolute
change in stock price. Let S be the stock price and consider the change in stock price dS
over a small period of time dt. The rate of return on a stock, dS/S, is often modeled as being
comprised of a deterministic and stochastic component. The deterministic component, μdt,
represents the contribution of the average growth rate of the stock. The stochastic compo-
nent captures random changes in stock price due to unanticipated news. This component is
often modeled by σdZ, where Z is a Brownian motion. Combining the deterministic growth
rate (also known as drift) with the stochastic contribution to rate of change in stock price
yields the equation:

dS

S
= μdt + σ dZ (7.24)

an Ito process. μ and σ can be estimated using the methods described in Section 7.3.
The risk-neutral measure Q of Harrison and Pliska as applied to the Black–Scholes frame-

work is induced by the risk-neutral process X that satisfies the modified Brownian motion

dX

X
= (r − σ2/2) dt + σ dZ (7.25)

It is important to note that this process is not the same as the original process followed by the
stock—the drift has been adjusted. This adjustment is required to generate the probability
measure that makes the delta-hedging portfolio process into a martingale. According to
the theory discussed in Section 7.10.1, we price options in the Black–Scholes framework by
integrating their cash flows under the risk-neutral measure generated by Equation 7.25. In
the following section, we discuss how efficient markets and risk neutral valuation are used
to compute an option’s value using Monte Carlo simulation.
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7.10.3 Simulating Risk-Neutral Paths for Options Pricing

In this section, we discuss how simulation can be used to price options on a stock by
simulating the stock price under the risk-neutral measure over T periods, each of length
Δt= 1/52. At each time interval, we simulate the current stock price and then step the
process forward so that there are a total of T steps in the simulation. To simulate the
path of the stock price over the T week period, we consider the discrete time version of
Equation 7.25: ΔS/S = (r−σ2/2)Δt+ σdZ = (r−σ2/2)Δt+ σε

√
Δt. As ε is distributed

like a standard normal random variable, ΔS/S ∼ N((r−σ2/2)Δt, σ
√

Δt).
Each week, use the following steps to determine the simulated stock price:

i. Set i= 0.
ii. Generate a random value v1 from a standard normal distribution. (Standard

spreadsheet tools include this capability.)
iii. Convert v1 to a sample v2 from a N((r−σ2/2)Δt, σ

√
Δt) by setting

v2 = (r−σ2/2)Δt+ σ
√

Δtv1.
iv. Set ΔS = v2S. ΔS represents the incremental change in stock price from the prior

period to the current period.
v. S′ = S + ΔS, where S′ is the simulated updated value of the stock price after one

period.
vi. Set S = S′, i= i+ 1.
vii. If i= T then stop. S is the simulated stock price at the end of 6 months. If i < T ,

return to step (i).

Note that randomness only enters in step (ii) when generating a random value v1. All
other steps are mere transformations or calculations and are deterministic. The payoff of
a call option at expiration is given by Equation 7.21. Further, in the absence of arbitrage
opportunities (i.e., assuming efficient markets) and by applying the theory of risk neutral
valuation we know that the value of the option is equal to its expected payoff discounted by
the risk-free rate. Using these facts, we apply the Monte Carlo simulation method to price
the option. The overall methodology is as follows:

i. Define the number of time periods until maturity, T .
ii. Use Monte Carlo simulation to simulate a path of length T describing the evo-

lution of the underlying stock price, as described above. Denote the final stock
price at the end of this simulation by SF.

iii. Determine the option payoff according to Equation 7.21, assuming SF , the final
period T stock price determined in step (ii).

iv. Discount the option payoff from step (iii) assuming the risk-free rate. The result-
ing value is the current value of the option.

v. Repeat steps (ii)–(iv) until the confidence bound on the estimated value of the
option is within an acceptable range.

7.10.4 A Numerical Example

A stock has expected annual return of μ= 15% per year and standard deviation of σ = 20%
per year. The current stock price is S = $42. An investor wishes to determine the value of
a European call option with a strike price of $40 that matures in 6 months. The risk-free
rate is 8%.
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We will use Monte Carlo simulation to simulate the path followed by the stock price and
hence the stock price at expiration which determines the option payoff. We consider weekly
time intervals, that is, Δt = 1/52. Thus T = 24 assuming, for the sake of simplicity, that
there are 4 weeks in each month.

To simulate the path of the stock price over the 24-week period, we follow the algorithm
described in Section 7.10.3. We first compute the risk-neutral drift (r−σ2/2)Δt, which with
these parameter settings works out to be 0.0012. The random quantity ε is distributed like
a standard normal random variable, so ΔS/S ∼N(.0012, .0277).

The starting price of the stock is $42. Each week, use the following steps to determine
the simulated updated stock price:

i. Generate a random value v1 from a standard normal distribution.
ii. Convert v1 to a sample v2 from a N(.0012, .0277) by setting v2 = .0012+ .0277v1.
iii. Set ΔS = v2S.
iv. Set S =S + ΔS

Steps (i)–(iv) yield the simulated updated stock price after 1 week. Repeat this process
T =24 times to determine SF , the stock price at the end of 6 months. Then, the option
payoff equals P = max(SF − 40,0). P is the option payoff based upon a single simulation of
the ending stock price after 6 months, that is, based upon a single simulation run. Perform
many simulation runs and after each run compute the arithmetic average and confidence
bounds of the simulated values of P . When enough simulation runs have been performed so
that the confidence bounds are acceptable, the value of the option can be computed based
upon the expected value of P : V = e−.08(.5)E(P ).

7.11 Dynamic Programming

Dynamic programming is a formal method for performing optimization over time. The
algorithm involves breaking a problem into a number of subproblems, solving the smaller
subproblems, and then using those solutions to help solve the larger problem. Similar to
stochastic programming with recourse, dynamic programming involves sequential decision
making where decisions are made, information is revealed, and then new decisions are made.
More formally, the dynamic programming approach solves a problem in stages. Each stage
is comprised of a number of possible states. The optimal solution is given in the form of a
policy that defines the optimal action for each stage. Taking action causes the system to
transition from one stage to a new state in the next stage.

There are two types of dynamic programming settings: deterministic and stochastic. In
a deterministic setting, there is no system uncertainty. Given the current state and the
action taken, the future state is known with certainty. In a stochastic setting, taking action
will select the probability distribution for the next state. For the remainder we restrict our
discussion to a stochastic dynamic programming setting, as finance problems are generally
not deterministic. If the current state is the value of a portfolio, and possible actions are
allocations to different assets, the value of the portfolio in the next stage is not known with
certainty (assuming that some of the assets under consideration contain risk).

A dynamic program typically has the following features:

i. The problem is divided into t = 1, . . ., T stages. xt denotes the state at the begin-
ning of stage t and at(xt) denotes the action taken during stage t given state xt.
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Taking action transitions the system to a new state in the next stage so that
xt+1 = f(xt, at(xt), εt), where εt is a random noise term. The initial state x0 is
known.

ii. The cost (or profit) function in period t is given by gt(xt, at(xt), εt). This cost
function is additive in the sense that the total cost (or profit) over the entire T
stages is given by:

gT (xT , aT (xT ), εT ) +
T−1∑
t=1

gt(xt, at(xt), εt) (7.26)

The objective is to optimize the expected value of Equation 7.26.
iii. Given the current state, the optimal solution for the remaining states is inde-

pendent of any previous decisions or states. The optimal solution can be found
by backward recursion. Namely, the optimal solution is found for the period T
subproblem, then for the periods T − 1 and T subproblem, and so on. The final
period T subproblem must be solvable.

The features of dynamic programming that define the options pricing problem differ
somewhat from the features described here. In Section 7.12.1 we note these differences.

7.12 Pricing American Options Using
Dynamic Programming

Monte Carlo simulation is a powerful tool for options pricing. It performs well even in the
presence of a large number of underlying stochastic factors. However, at each step simulation
progresses forward in time. On the other hand, options that allow for early exercise must
be evaluated backward in time where in each period the option holder must compare the
intrinsic value of the option against the expected future value of the option.

Dealing with early exercise requires one to go backward in time, as at each decision point
the option holder must compare the value of exercising immediately against the value of
holding the option. The value of holding the option is simply the price of the option at that
point.

In this section we will show how one can use dynamic programming to price an American
option. The method involves two steps:

i. Build a T stage tree of possible states. The states correspond to points visited
by the underlying stock price process.

ii. Use dynamic programming and backward recursion to determine the current
value of the option.

7.12.1 Building the T Stage Tree

Cox et al. (1979) derived an exact options pricing formula under a discrete time setting.
Following their analysis, we model stock price as following a multiplicative binomial distri-
bution: if the stock price at the beginning of stage t is S then at the beginning of stage t + 1
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the stock price will be either uS or dS with probability q and (1− q), respectively. Each
stage has length Δt. We will build a “tree” of possible stock prices in any stage. When there
is only one stage remaining, the tree looks like:

uS

S

dS

with probability q

with probability l � q

Suppose there are two stages. In each stage, the stock price will move “up” by a factor
of u with probability q and “down” by a factor of d with probability (1− q). In this case,
there are three possible final stock prices and the tree is given by:

uS

S duS � S

dS

u2S with probability q2

with probability 2q(l � q)

d2S with probability(l � q)2

The tree continues to grow according to this method. In general, at stage t there are t + 1
possible stock prices (states) that will appear on the tree. These are given by:

ujdt−jS, for j = 0, . . ., t

The values of u, d, and q are determined based upon the assumptions of efficient markets,
risk neutral valuation, and the fact that the variance of the change in stock price is given
by σ2Δt (from Section 7.10.3). These values are:

u = eσ
√

Δt

d = e−σ
√

Δt

q =
a − d

u − d

where a= erΔt.

7.12.2 Pricing the Option Using the Binomial Tree

We now use backward enumeration through the binomial tree to determine the current
stage 0 value of the option. We will illustrate the concept using the trees developed in
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Section 7.12.1. Let K denote the strike price. With one period remaining, the binomial tree
had the form:

uS with probabilityq

S

dS with probability l � q

The corresponding values of the call at the terminal points of the tree are Cu =
max(0,uS−K ) with probability q and Cd = max(0,dS−K ) with probability (1− q). The cur-
rent value of the call is given by the present value (using the risk-free rate) of qCu + (1− q)Cd.

When there is more than one period remaining, each node in the tree must be evaluated
by comparing the intrinsic value of the option against its continuation value. The intrinsic
value is the value of the option if it is exercised immediately; this value is determined by
comparing the current stock price to the option strike price. The continuation value is the
discounted value of the expected cash payout of the option under the risk neutral measure,
assuming that the optimal exercise policy is followed in the future. Thus, the decision is
given by:

gt = max
{
max(0, xt − K), E[e−rΔtgt+1(xt+1)|xt]

}
(7.27)

The expectation is taken over the risk neutral probability measure. xt, the current state,
is the current stock price. Notice that the action taken in the current state (whether
to exercise) does not affect the future stock price. Further, this value function is not
additive. However, its recursive nature makes a dynamic programming solution method
useful.

7.12.3 A Numerical Example

We illustrate the approach using the identical setting as that used to illustrate the Monte
Carlo simulation approach to options pricing. However, here we will assume that we are
pricing an American option. The investor wishes to determine the value of an American
call option with a strike price of $40 that matures in 1 month. (We consider only 1 month
to limit the size of the tree that we build.) The current stock price is S = $42. The stock
return has a standard deviation of σ =20% per year. The risk-free rate is 8%.

We first build the binomial tree and then use the tree to determine the current value of
the option. We consider weekly time intervals, that is, Δt = 1/52. Thus T = 4 assuming, for
the sake of simplicity, that there are 4 weeks in each month.

u = eσ
√

Δt = 1.028

d = e−σ
√

Δt = 0.973

q =
erΔt − d

u − d
= 0.493
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The tree of stock movements over the 4-week period looks like:

u4S

u3S

u2S
u2S

uS uS

S S S

dS dS

d2S d2S

d3S

d4S

We will evaluate each node in the tree by backward evaluation starting at the fourth
time period and moving backward in time. For each node we will use the Equation 7.27 to
compare the intrinsic value of the option against its continuation value to determine the
value of that node. The binomial tree for the value of the American call option is:

(6.92,0)

(5.64,5.63)

(4.39,4.39) (4.39,0)

(3.18,3.21) (3.18,3.17)

(2,2.28) (2,2.068) (2,0)

(.85,1.26) (.85,.98)

(0,.485) (0,0)

(0,0)

(0,0)

Every node in the tree contains two numbers in parenthesis. The first number is the
intrinsic value of the option. The second number is the discounted expected continuation
value, assuming that optimal action is followed in future time periods. The option value at
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time zero (current time) is 2.28. Note that although the option is currently in the money, it
is not optimal to exercise even though it is an American option and early exercise is allowed.
By using the binomial tree to evaluate the option we find that the expected continuation
value of the option is higher than its current exercise value.

7.13 Comparison of Monte Carlo Simulation
and Dynamic Programming

Dynamic programming is a powerful tool that can be used for pricing options with early
exercise features. However, dynamic programming suffers from the so-called curse of dimen-
sionality. As the number of underlying variables increases, the time required to solve the
problem grows significantly. This reduces the practical use of dynamic programming as a
solution methodology. The performance of Monte Carlo simulation is better in the sense
that its convergence is independent of the state dimension. On the other hand, as we have
discussed, simulation has traditionally been viewed as inappropriate for pricing options with
early exercise decisions as these require estimates of future values of the option and simula-
tion only moves forward in time. Recent research has focused on combining simulation and
dynamic programming approaches to pricing American options to gain the benefits of both
techniques. See, for example, Broadie and Glasserman (1997).

7.14 Multi-Period Asset Liability Management

The management of liability portfolios of relatively long-term products, like pensions, vari-
able annuities, and some insurance products requires a perspective that goes beyond a
single investment period. The portfolio optimization models of Sections 7.5 through 7.7 are
short-term models. Simply rolling these models over into the next time horizon can lead to
suboptimal results. First, the models may make an excessive number of transactions. Trans-
actions are not free, and realistic portfolio management models must take trading costs into
consideration. Second, the models depend only on second moments. Large market moves,
such as during a market crash, are not part of the model assumptions. Finally, policies and
regulations place conditions on the composition of portfolios.

Academic and finance industry researchers have, over the past few decades, been exploring
the viability of using multi-period balance sheet modeling to address the issues of long-term
asset liability management. A multi-period balance sheet model treats the assets and liabili-
ties as generating highly aggregated cash flows over multiple time periods. The aggregations
are across asset classes, so that individual securities in an asset class, say stocks, are accu-
mulated into a single asset class, say S&P 500. Other asset classes are corporate bonds of
various maturity classes, and so forth. The asset class cash flows are aggregated over time
periods, typically 3 or 6 months, so that cash flows occurring within a time interval, say,
(t− 1, t], are treated as if they all occur at the end-point t. The model treats the aggre-
gate positions in each asset category as variables in the model. There is a single decision
to be made for each asset class at the beginning of each time period, which is the change
in the holdings of each asset class. The asset holdings and liabilities generate cash flows,
which then flow into account balances. These account balances are assigned targets, and
the objective function records the deviation from the targets. The objective of the model is
to maximize the sum of the expected net profits and the expected penalties for missing the
targets over the time horizon of the model.
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A simplified application of such a model to a property-casualty insurance problem is as
follows. Let At denote a vector of asset class values at time t and it denote their cash flows
(e.g., interest payment, dividends, etc.) at time t. Let xt denote the portfolio of holdings in
the asset classes. Cash flows are generated by the holdings and by asset sales:

Ct = AtΔxt + itxt−1

where Δxt := xt −xt−1. The cash flows are subject to market and economic variability over
the time horizons of interest, say t = 1, . . ., T.

Liability flows from the property-casualty portfolio are modeled by aggregating and then
forecasting the aggregated losses minus premium income. Loss events are classified by fre-
quency of occurrence and intensity given loss. These can be simulated over the time horizon
T using actuarial models. The evolution of the liability portfolio composition (say, by new
sales, lapses of coverage, and so forth) can also be modeled. The key correlation to capture
in the liability model is the relationship between the liability flows and the state of the
economy. For example, high employment is indicative of strong economic activity, which
can lead to increases in the number and size of the policies in the insurance portfolio; high
inflation will lead to higher loss payouts given losses; and so forth.

Various performance, accounting, tax, and regulatory measurements are computed from
the net cash flows. For example, one measurement could be shareholder’s equity at the
time horizon ST . Another could be annual net income Nt. Yet another could be
premium-surplus ratio Pt—a quantity used in the property-casualty industry as a proxy
for the rating of the insurance company.

In these aggregated models, we try to model the change in performance measurements
as linear computations from the cash and liability flows and the previous period quantities.
For example, net income is computed as cash flow minus operating expenses. If OtΔxt is
a proxy for the contribution of portfolio management to expenses, for example, the cost of
trading, then net income can be modeled by the following equation

Nt = Ct − Lt − OtΔxt

Shareholder’s equity can change due to a number of influences; here we just capture the
change due to the addition of net income:

St = St−1 + Nt

Finally, premium-surplus ratio can be approximated by fixing premium income to a level L
and assuming (this is a major simplification!) that the surplus is equivalent to shareholders
equity:

Pt =
L

St

A typical objective for a multi-period balance sheet model/an asset-liability matching prob-
lem is to create performance targets for each quantity and to penalize the shortfall. Sup-
pose that the targets are N t for annual net income, ST for shareholder’s equity, and P t for
premium-surplus ratio. Then the model to be optimized is:

Maximize E{ST −λ
∑

t

[N t −Nt]+ −μ
∑

[L−StP t]+}

Subject to Nt = AtΔxt + iixt−1 − Lt − OtΔxt (7.28)

St = Nt + St−1
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where the parameters λ and μ are used to balance the various contributions in the objective
function, the premium-surplus ratio target relationship has been multiplied through by the
denominator to make the objective linear in the decision variables, and the objective is
integrated over the probability space represented by the discrete scenarios.

The objective function in formulation 7.28 can be viewed as a variation of the Markowitz
style, where we are modeling “expected return” through the shareholder’s equity at the end
of the horizon, and “risks” through the shortfall penalties relative to the targets for net
income and premium-surplus ratio.

7.14.1 Scenarios

In multi-period asset liability management the probability distribution is modeled by dis-
crete scenarios. These scenarios indicate the values, or states, taken by the random quan-
tities at each period in time. The scenarios can branch so that conditional distributions
given a future state can be modeled. The resulting structure is called a “scenario tree.”
Typically there is no recombining of states in a scenario tree, so the size of the tree grows
exponentially in the number of time periods. For example, in the property-casualty model,
the scenarios are the values and cash flows of the assets and the cash flows of the liabili-
ties. The values of these quantities at each time point t and scenario s is represented by
the triple (As

t , i
s
t , L

s
t ). The pair (s, t) is sometimes called a “node” of the scenario tree. The

scenario tree may branch at this node, in which case the conditional distribution for the
triple (At+1, it+1, Lt+1) given node (s, t) is the values of the triples on the nodes that branch
from this node.

It is important to model the correlation between the asset values and returns and the
liability cash flows in these conditional distributions. Without the correlations, the model
will not be able to find positions in the asset classes that hedge the variability of the
liabilities. In property-casualty insurance, for example, it is common to correlate the returns
of the S&P 500 and bonds with inflation and economic activity. These correlations can be
obtained from historical scenarios, and conditioned on views as discussed in Section 7.7.

The scenario modeling framework allows users to explicitly model the probability and
intensity of extreme market movements and events from the liability side. One can also
incorporate “market crash” scenarios in which the historical correlations are changed for
some length of time that reflects unusual market or economic circumstances—such as a
stock market crash or a recession. Finally, in these models it is usual to incorporate the
loss event scenarios explicitly rather than follow standard financial valuation methodology,
which would tend to analyze the expected value of loss distributions conditional on financial
return variability. Such methodology would ignore the year-to-year impact of loss distribu-
tion variability on net income and shareholder’s equity. However, from the asset liability
management (ALM) perspective, the variability of the liability cash flows is very important
for understanding the impact of the hedging program on the viability of the firm.

7.14.2 Multi-Period Stochastic Programming

The technology employed in solving an asset liability management problem such as this is
multi-period stochastic linear programming. For a recent survey of stochastic programming,
see Shapiro and Ruszczynski (2003).

The computational intensity for these models increases exponentially in the number of
time periods, so the models must be highly aggregated and strategic in their recommenda-
tions. Nevertheless, the models do perform reasonably well in practice, usually generating
300 basis points of excess return over the myopic formulations based on the repetitive
application of one period formulations, primarily through controlling transaction costs and
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because the solution can be made more robust by explicitly modeling market crash scenarios.
A recent collection of this activity is in the volume edited by Ziemba and Mulvey (1998). See

management.

7.15 Conclusions

In this chapter, we saw the profound influence of applications of Operations Research to
the area of finance and financial engineering. Portfolio optimization by investors, Monte
Carlo simulation for risk management, options pricing, and asset liability management,
are all techniques that originated in OR and found deep application in finance. Even the
foundations of options pricing are based on deep applications of duality theory. As the name
financial engineering suggests, there is a growing part of the body of financial practice that is
regarded as a subdiscipline of engineering—in which techniques of applied mathematics and
OR are applied to the understanding of the behavior and the management of the financial
portfolios underpinning critical parts of our economy: in capital formation, economic growth,
insurance, and economic-environmental management.
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8.1 Introduction

Perhaps the best way to set the tone for this chapter is to consider a hypothetical encounter
that an industrial engineer or operations manager is likely to experience. It’s not quite the
“guy walks into a bar” setup, but it’s close. Consider the following scenario: A software
salesperson walks into the office of an industrial engineer and says, “I have some software
to sell you that will optimize your supply chain.” Unfortunately, the punch line—which I’ll
leave to the reader’s imagination—is not as funny as many of the “guy walks into a bar”
jokes you’re likely to hear. In fact, there are some decidedly not-funny examples of what
could happen when “optimizing” the supply chain is pursued via software implementations
without careful consideration of the structure and data requirements of the software system.
Hershey Foods’ enterprise resource planning (ERP) system implementation (Stedman, 1999)
and Nike’s advanced planning system (APS) implementation (Koch, 2004) are frequently
cited examples of what could go wrong. Indeed, without some careful thought and the
appropriate perspective, the industrial engineer (IE) in our hypothetical scenario might as
well be asked to invest in a bridge in Brooklyn, to paraphrase another old joke.

Encounters similar to the one described above surely occur in reality countless times
every day as of this writing in the early twenty-first century, and in this author’s opinion
it happens all too often because those magical words “optimize your supply chain” seem
to be used frivolously and in a very hollow sense. The question is, what could it possibly
mean to optimize the supply chain? Immediately, an astute IE or operations manager must

8-1
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ask himself or herself a whole host of questions, such as: What part of my supply chain?
All of it? What does “all of it” mean? Where does my supply chain begin and where
does it end? What is the objective function being optimized? . . . minimize cost? . . . which
costs? . . . maximize profit? . . . whose profit? What are the constraints? Where will the input
data behind the formulation come from? Is it even conceivable to formulate the problem?
Provided I could formulate the problem, could I solve it? . . . to optimality?

Now, in fairness, this chapter is not technically about supply chain optimization, but
supply chain management. Still, we should continue our line of critical questioning. What
does it mean to “manage the supply chain”? Taken at face value, it’s an enormous task. In
the author’s view, the term “manage the supply chain,” like “optimize your supply chain,”
is thrown around much too loosely. A better approach, and the one taken in this chapter, is
to consider the various aspects of the supply chain that must be managed. Our challenge at
hand, therefore, is to figure out how to identify and use the appropriate tools and concepts
to lay a good foundation for the hard work that comprises “managing the supply chain.”

In the first edition of their widely-cited text book on supply chain management (SCM),
Chopra and Meindl (2001) define a supply chain as “all stages involved, directly or indirectly,
in fulfilling a customer request” (p. 3). (In the more recent edition of the text, Chopra and
Meindl 2004, the authors substitute the word “parties” for stages. Since this is inconsistent
with the definition of SCM that is to follow, I have chosen the earlier definition.) This
definition is certainly concise, but perhaps a bit too concise. A more comprehensive definition
of the term “supply chain” is given by Bozarth and Handfield (2006), as follows: “A network
of manufacturers and service providers that work together to convert and move goods from
the raw materials stage through to the end user” (p. 4). In a more recent edition of their text,
Chopra and Meindl (2004) go on to define supply chain management as “the management of
flows between and among supply chain stages to maximize total supply chain profitability”
(p. 6). The nice aspects of this definition are that it is, once again, concise and that it clearly
emphasizes managing the flows among the stages in the chain. The problematic aspect of
the definition, for this writer, is that its objective, while worthy and theoretically the right
one (maximizing the net difference between the revenue generated by the chain and the
total costs of running the chain), would clearly be difficult to measure in reality. Would all
parties in the supply chain willfully share their chain-specific costs with all others in the
chain? This brings us back to the criticisms lodged at the outset of this chapter related to
“optimizing the supply chain”—a noble goal, but perhaps not the most practical one.

The author is familiar with a third-party logistics (3PL) company that derives a portion
of its revenue from actually carrying out the goals of optimizing—or at least improving—
its clients’ supply chains. Figure 8.1 is taken from an overview presentation by this 3PL
regarding its services and represents a cyclic perspective on what it means to manage the
supply chain—through design and redesign, implementation, measurement, and design (re-)
assessment. Figure 8.2 provides an idea of the kinds of tools this 3PL uses in carrying out
its SCM design, evaluation, and redesign activities. What is striking about this company’s
approach to doing this is that it involves neither a single software application nor a simple
series of software applets integrated into a larger “master program,” but a whole host of dis-
crete tools applied to various portions of the overarching problem of “managing the supply
chain.” The software tools listed are a mix of off-the-shelf software and proprietary code,
customized in an attempt to solve more integrated problems. The result is an approach
that views the overall challenge of managing the supply chain as one of understanding how
the various problems that comprise “supply chain management” interact with one another,
even as they are solved discretely and independently, many times for the sheer purpose of
tractability.
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Coming back to definitions of SCM, the definition from Bozarth and Handfield (2006)
offers an objective different from Chopra and Meindl’s profit-maximizing one—more
customer focused, but perhaps no less problematic in practice. Their definition is as follows:
“The active management of supply chain activities and relationships in order to maximize
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FIGURE 8.3 Drivers of supply chain management strategy. (Adapted from Ballou, 2004.)

customer value and achieve a sustainable competitive advantage” (p. 8). The idea of a sus-
tainable competitive advantage through the management of SCM-related activities is also
emphasized by Ballou (2004), who does a commendable job basing the whole of his text-
book on logistics and SCM on the various management activities that must be understood
and integrated to derive positive customer outcomes and thereby achieve a sustainable
advantage. This will be the approach taken in the remainder of this chapter.

Figure 8.3 shows an adaptation of the conceptual model that serves as the structural
basis for Ballou’s (2004) text. Ballou describes SCM as a triangle, the legs of which are the
inventory, transportation, and location strategies of the chain, with customer service goals
located in the middle of the triangle, representing the focus of these strategies. This approach
is consistent with that of the Chopra and Meindl (2004) text, whose drivers of SCM are
inventory (what is being moved through the chain), transportation (how the inventory is
moved through the chain), and facilities (where inventories are transformed in the chain).
These SCM drivers form the essence of a supply chain strategy, laying out the extent
to which a firm chooses approaches to fulfilling demand that achieve higher service, but
almost necessarily higher cost, or lower cost, but almost necessarily lower service. (Chopra
and Meindl also list information as an SCM driver, but in the author’s view, information
is more appropriately viewed as an enabler that may be used to better manage inventory,
transportation, and facilities. More discussion on enablers of SCM will follow.)

The idea of SCM drivers is useful in thinking about another theme in SCM emphasized by
many authors and first proposed by Fisher (1997) in an important article that advanced the
notion that “one size fits all” is not an effective approach to SCM. Fisher (1997) cogently
lays out a matrix that matches product characteristics—what he describes as a dichotomy
between innovative products like technology-based products and functional products like
toothpaste or other staple goods—and supply chain characteristics—another dichotomy
between efficient (cost-focused) supply chains and responsive (customer service-focused)
supply chains. Chopra and Meindl (2004) take this conceptual model a step further, first
by pointing out that Fisher’s product characteristics and supply chain strategies are really
continuous spectrums, and then by superimposing the Fisher model, as it were, on a fron-
tier that represents the natural tradeoff between responsiveness and efficiency. Clearly, it
stands to reason that a firm, or a supply chain, cannot maximize cost efficiency and cus-
tomer responsiveness simultaneously; some aspects of each of these objectives necessarily
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FIGURE 8.4 Overlay of conceptual models of Fisher (1997) and Chopra and Meindl (2004).

work at cross purposes. Chopra and Meindl’s frontier and Fisher’s product dichotomy
are presented in Figure 8.4. The value of this perspective is that it clearly identifies a
market-driven basis for strategic choices regarding the three SCM drivers: Should our inven-
tory management decisions be focused more on efficiency—minimizing inventory levels—or
on responsiveness—maximizing product availability? Should our transportation choices be
focused more on efficiency—minimizing transportation costs, perhaps through more exten-
sive economies of scale—or on responsiveness—minimizing delivery lead times and max-
imizing reliability? Should our facilities (network design) decisions be focused more on
efficiency—minimizing the number of locations and maximizing their size and scale—or on
responsiveness—seeking high levels of customer service by choosing many, focused locations
closer to customers?

Clearly, the legs of the Ballou (2004) triangle frame the SCM strategy for any firm. What
is it, however, that allows a firm to implement that strategy and execute those driver-related
decisions, effectively? Marien (2000) presents the results of a survey of approximately 200
past attendees of executive education seminars, asking these managers first to provide a
rank-ordering of four enablers of effective SCM, and then to rank the various attributes that
support each enabler. The enablers in Marien’s survey were identified through an exten-
sive search of the academic and trade literature on SCM, and the four resulting enablers
were (1) technology, (2) strategic alliances, (3) organizational infrastructure, and (4) human
resources management. Marien’s motivation for the survey was similar to the criticism laid
out at the outset of this chapter—the contrast between what he was hearing from consultants
and software salespeople, that effective SCM somehow flowed naturally from information
technology implementations, and from practicing managers, who, at best, were skeptical of
such technology-focused approaches and, at worst, still bore the scars of failed, overzealous
IT implementations. Indeed, the result of Marien’s (2000) survey indicate that managers,
circa 1998, viewed organizational infrastructure as, far and away, the most important enabler
of effective SCM, with the others—technology, alliances, and human resources—essentially
in a three-way tie for second place. The most important attributes of organizational infras-
tructure, according to Marien’s survey results, were a coherent business strategy, formal
process flows, commitment to cross-functional process management, and effective process
metrics.

The process management theme in Marien’s (2000) results is striking. It is also consis-
tent with what has arguably become the most widely-accepted structural view of supply
chain management among practitioners, the supply chain operations reference model, or
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FIGURE 8.5 The Supply Chain Operations Reference (SCORR©) model. (From Supply-Chain
Council, 2006.)

SCOR∗ (Supply-Chain Council, 2006). Figure 8.5 presents the structural framework for the
SCOR model, based on the primary business processes that comprise SCM according to the
model—plan, source, make, deliver, and return. Underlying these primary processes is an
extensive checklist, as it were, of the sub-processes and tasks that, according to the model,
should be in place to enable effective SCM. Bozarth and Warsing (2006) offer an academic
perspective that attempts to tie the underlying detail of the SCOR model back to company
performance and offers a research agenda for understanding this link; in fact, this theme
has already begun to emerge in the literature (Lockamy and McCormack, 2004).

An important theme that must be addressed in this chapter, however—and one that
is clear from Figure 8.5—is that supply chain management is encapsulated in managing
internal business processes and their interfaces with the firms immediately upstream and
downstream from your company. While the common lingo claiming to manage the chain
from the “supplier’s suppliers to the customer’s customers” is catchy, it is not clear how
this is to be done. What is more important, from an external perspective, is managing
the most important dyadic relationships in the chain, the links immediately upstream and
downstream. These dyads form the business relationships that a company can directly
influence, and direct influence is what really matters in dealing with a system as complex
and dynamic as a supply chain. Vollmann et al. (2005, chapter 3) offer an excellent discussion
of this key idea, and one that, hopefully, will help bring practitioners of SCM down from
the clouds and back to the hard work of making their links in the chain more effective.

In the remainder of this chapter, therefore, I discuss each of the drivers of SCM
separately—managing inventories, managing transportation, and managing locations (i.e.,
the network design problem)—identifying important enablers along the way. Then, I present
the important issues in managing dyads in the chain. Finally, a discussion follows to tie these
themes together, and the chapter ends with a few concluding remarks.

8.2 Managing Inventories in the Supply Chain

Inventory management can be concisely captured in the following policy, of sorts: “Before
you run out, get more.”† Though concise, the statement captures the essence of the basic
problem of inventory management, and immediately begs for an answer to two

∗SCORR© is a registered trademark of the Supply-Chain Council in the United States and Canada.
†I owe this concise statement, with only slight alterations applied, to my good friend and colleague

Douglas J. Thomas.
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FIGURE 8.6 Framework for choice of inventory management tools. (Based on Bozarth, 2005.)

questions—“How long before you run out (i.e., when)?” and “How much more do you
get?” Thus, managing inventory boils down to answering those two questions, “when?” and
“how much?”

Before I dive into tools and techniques for managing inventories—and consistent with
the theme I laid out in the Introduction—let us first step back and make sure that we are
clear about the characteristics of the items to be managed. These characteristics, it stands
to reason, should have a significant impact on the kinds of tools that are appropriate to
the management task. Again, my overarching theme is to beware of (buying or) applying a
single, elaborate, sophisticated tool to every problem. Sometimes you really might be better
off with the proverbial “hammer” to solve the simple, “nail-like” aspects of your problem.
Sometimes, I will admit, an advanced power-tool might be warranted.

Bozarth (2005) offers an effective framework for placing the inventory management prob-
lem in the context of two important aspects of demand for the products being managed.
This framework has been reproduced in Figure 8.6. The first of the two context-shaping
aspects of demand is whether demand is driven externally by forces outside the firm’s direct
control or whether demand is driven by internal management decisions. The former situa-
tion describes independent demand items, those items whose demand is driven by customer
tastes, preferences, and purchasing patterns; typically, these are finished goods. Inventory
management in these cases is influenced greatly by the extent to which the firm can effec-
tively describe the random variations in these customer purchasing patterns. The latter
situation describes dependent demand items, those items whose demand is driven by the
demand of other items; a good example of such items would be component parts, whose
demand is driven by the production schedules for the finished goods of which they are com-
ponents. Note that the production schedule for finished items is solely under the control of
the manufacturing firm; its management chooses the production plan in response to pro-
jected consumer demand, and therefore, inventory management for dependent demand items
is largely an issue of ensuring that component parts are available in sufficient quantities to
execute the production plan.

The second important aspect of demand that helps determine which inventory manage-
ment tools to apply is the stability of demand over time. Though Bozarth (2005) describes
the dichotomy as “stable” versus “variable,” I have chosen to characterize demand as sta-
tionary or non-stationary—the former being the case in which the expected value of demand
remains constant over time, or at least over the planning horizon, and the latter being the
case in which it does not. In either case, stationary or non-stationary, demand could be
uncertain or known with certainty. Obviously, then, the simplest case would be one in
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which demand is stationary and known with certainty, and the most challenging would be
one in which demand is non-stationary and uncertain.

As indicated by Bozarth (2005), another idea embedded in his framework is that the
stationary demand approaches are pull systems, whereas the non-stationary approaches
are push systems. Although definitions tend to vary (see Hopp and Spearman, 2004, for
an excellent discussion), pull systems are those that generate orders only in response to
actual demand, while push systems drive replenishments from the schedule of projected
future demands, which, consistent with Bozarth’s framework, will vary over time. Finally, I
should point out that the matrix in Figure 8.6 presents what would appear to be reasonable
approaches to managing demand in these four demand contexts, but not necessarily the only
approaches. For example, non-stationary reorder point-order quantity systems are certainly
possible, but probably not applied very often in practice due to the significant computational
analysis that would be required. The effort required to manage the system must clearly be
considered in deciding which system to apply. While the “optimal” solution might indeed be
a non-stationary reorder point-order quantity system, the data required to systematically
update the policy parameters of such a system and the analytical skill required to carry
out—and interpret—the updates may not be warranted in all cases.

As this chapter deals with managing the supply chain, I will focus only on managing those
items that move between firms in the chain—that is, the independent demand items. Man-
agement of dependent demand items is an issue of production planning, more of a “micro-
focus” than is warranted in this chapter. An excellent discussion of production planning
problems and comparisons between MRP and Kanban systems can be found in Vollmann
et al. (2005). Thus, I will spend the next few sections describing the important issues in man-
aging independent demand inventories in the supply chain. First, however, I will present an
inventory management model that does not appear, per se, in the framework of Figure 8.6.
This model is presented, however, to give the reader an appreciation for the important
tradeoffs in any inventory management system—stationary or non-stationary, independent
or dependent demand.

8.2.1 Newsvendor and Base-Stock Models

An important starting point with all inventory management decision making is an under-
standing of the nature of demand. At one extreme, demand for an item can be a “spike,”
a single point-in-time, as it were, at which there is demand for the item in question, after
which the item is never again demanded by the marketplace. This is the situation of the
classic “newsvendor problem.” Clearly, demand for today’s newspaper is concentrated solely
in the current day; there will be, effectively, no demand for today’s newspaper tomorrow
(it’s “yesterday’s news,” after all) or at any point in future. Thus, if I run a newsstand,
I will stock papers only to satisfy this spike in demand. If I don’t buy enough papers, I will
run out and lose sales—and potentially also lose the “goodwill” of those customers who
wanted to buy, but could not. If I buy too many papers, then I will have to return them or
sell them to a recycler at the end of the day, in either case at pennies on the dollar, if I’m
lucky. The other extreme for demand is for it to occur at a stationary rate per unit time
infinitely into the future. That situation will be presented in the section that follows.

I present the newsvendor model in this chapter for the purpose of helping the reader
understand the basic tension in inventory decision making—namely, balancing the cost of
having too much inventory versus the cost of having too little.∗ It does not take too much

∗For an excellent treatment of the newsvendor problem, the reader is referred to chapter 9 in Cachon
and Terwiesch (2006).
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imagination to see that this too much–too little knife edge can be affected significantly by
transportation and network design decisions. The important issue before us at this point,
however, is to understand how to evaluate the tradeoff. Note also that in the newsvendor
case, one only needs to answer the question of “how much” as the answer to the “when”
question, in the case of a demand spike, is simply “sufficiently in advance of the first sale
of the selling season.” The newsvendor model, however, is also the basis for a base-stock
inventory policy, which applies to the case of recurring demand with no cost to reorder, in
which case, the answer to “when” is “at every review of the inventory level.”

To illustrate the costs and tradeoffs in the newsvendor model, let us imagine a fictional
retailer—we’ll call them “The Unlimited”—who foresees a market for hot-pink, faux-leather
biker jackets in the Northeast region for the winter 2007–08 season. Let’s also assume that
The Unlimited’s sales of similar products in Northeastern stores in recent winter seasons—
for example, flaming-red, fake-fur, full-length coats in 2005–06 and baby-blue, faux-suede
bomber jackets in 2004–05—were centered around 10,000 units. The Unlimited’s marketing
team, however, plans a stronger ad campaign this season and estimates that there is a 90%
chance that demand will be at least 14,000 units. The Unlimited also faces fierce competition
in the Northeast from (also fictional) catalog retailer Cliff’s Edge, who has recently launched
an aggressive direct-mail and internet ad campaign. Thus, there is concern that sales might
come in three to four thousand units below historical averages for similar products. Jackets
must be ordered from an Asian apparel producer in March for delivery in October; only
one order can be placed and it cannot be altered once it is placed. The landed cost of each
jacket is $100 (the cost to purchase the item, delivered). They sell for $200 each. In March
2008, any remaining jackets will be deeply discounted for sale at $25 each.

Thus, this case gives us all the basics we will need to determine a good order quantity:
a distribution of demand (or at least enough information to infer a distribution), unit sales
price, unit cost, and end-of-season unit salvage value. In general, if an item sells for p, can
be purchased for c, and has end-of-season salvage value of s, then the cost of missing a sale
is p− c, the profit margin that we would have made on that sale, and the cost of having
a unit in excess at the end of the selling season is c− s, the cost we paid to procure the
item less its salvage value. If demand is a random variable D with probability distribution
function (pdf) f , then the optimal order quantity maximizes expected profit, given by

π(Q) =

Q∫
−∞

[(p − c)D − (c − s)(Q − D)]f(D)dD +

∞∫
Q

Q(p − c)f(D)dD (8.1)

(i.e., if the order quantity exceeds demand, we get the unit profit margin on the D units
we sell, but we suffer a loss of c− s on the Q−D units in excess of demand; however, if
demand exceeds the order quantity, then we simply get the unit profit margin on the Q
units we are able to sell).

One approach to finding the best order quantity would be to minimize Equation 8.1
directly. Another approach, and one that is better in drawing out the intuition of the
model, is to find the best order quantity through a marginal analysis. Assume that we have
ordered Q units. What are the benefits and the risks of ordering another unit versus the
risks and benefits of not ordering another unit? If we order another unit, the probability
that we will not sell it is Pr{D≤Q}=F (Q), where F is obviously the cdf of D. The cost
in this case is c− s, meaning that the expected cost of ordering another unit beyond Q is
(c− s)F (Q). If we do not order another unit, the probability that we could have sold it
is Pr{D > Q}= 1−F (Q) (provided that D is a continuous random variable). The cost in
this case is p− c, the opportunity cost of the profit margin foregone by our under-ordering,
meaning that the expected cost of not ordering another unit beyond Q is (p− c)[1−F (Q)].
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Another way of expressing the costs is to consider p− c to be the underage cost, or cu = p− c,
and to consider c− s the overage cost, or co = c− s. A marginal analysis says that we should,
starting from Q= 1, continue ordering more units until that action is no longer profitable.
This occurs where the net difference between the expected cost of ordering another unit—
the cost of overstocking—and the expected cost of not ordering another unit—the cost of
understocking—is zero, or where coF (Q)= cu[1−F (Q)]. Solving this equation, we obtain
the optimal order quantity,

Q∗ = F−1

(
cu

cu + co

)
(8.2)

where the ratio cu/(cu + co) is called the critical ratio, which we denote by CR, and which
specifies the optimal order quantity at a critical fractile of the demand distribution.

Returning to our fictional retailer example, we have cu = $100 and co = $75; therefore,
CR = 0.571. The issue now is to translate this critical ratio into a critical fractile of the
demand distribution. From the information given above for “The Unlimited,” let’s assume
that the upside and downside information regarding demand implies that the probabil-
ities are well-centered around the mean of 10,000. Moreover, let’s assume that demand
follows a normal distribution. Thus, we can use a normal look-up table (perhaps the one
embedded in the popular Excel spreadsheet software) and use the 90th-percentile estimate
from Marketing to compute the standard deviation of our demand distribution. Specifically,
z0.90 = 1.2816= (14,000− 10,000)/σ, meaning that σ =3,121. Thus, another table look-up
(or Excel computation) gives us Q∗ = 10,558, the value that accumulates a total probability
of 0.571 under the normal distribution pdf with mean 10,000 and standard deviation 3,121.

As it turns out, the optimal order quantity in this example is not far from the expected
value of demand. This is perhaps to be expected as the cost of overage is only 25% less
than the cost of underage. One might reasonably wonder what kind of service outcomes
this order quantity would produce. Let us denote α as the in-stock probability, or the prob-
ability of not stocking out of items in the selling season, and β as the fill rate, or the
percentage of overall demand that we are able to fulfill. For the newsvendor model, let
us further denote α(Q) as the in-stock probability given that Q units are ordered, and
let β(Q) denote the fill rate if Q units are ordered. It should be immediately obvious
that α(Q∗)= CR. Computing the fill rate is a little more involved. As fill rate is given by
(Total demand−Unfulfilled demand)÷ (Total demand), it follows that

β(Q) = 1 − S(Q)
μ

(8.3)

where S(Q) is the expected number of units short (i.e., the expected unfulfilled demand)
and μ is the expected demand. Computing S(Q) requires a loss function, which also is
typically available in look-up table form for the standard normal distribution.∗ Thus, for
normally distributed demand

β(Q) = 1 − σL(z)
μ

(8.4)

where L(z) is the standard normal loss function† and z = (Q−μ)/σ is the standardized
value of Q. Returning once again to our example, we can compute β(Q∗) = 0.9016, meaning

∗Cachon and Terwiesch (2006) also provide loss function look-up tables for Erlang and Poisson
distributions.

†That is, L(z) =
∫∞

z (x− z)φ(x)dx, where x∼N(0, 1) and φ is the standard normal pdf. This can also
be computed directly as L(z) = φ(z)− z[1−Φ(z)], where Φ is the standard normal cdf.
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TABLE 8.1 Comparative Outcomes of Newsvendor Example for Increasing g= k(p – c)
k α(Q∗) β(Q∗) Q∗ Q∗/μ z∗ Expected Overage

0 0.571 0.901 10,558 1.06 0.179 1543.9
0.2 0.615 0.916 10,913 1.09 0.293 1754.5
0.4 0.651 0.927 11,211 1.12 0.388 1943.2
0.6 0.681 0.935 11,468 1.15 0.470 2114.3
0.8 0.706 0.942 11,691 1.17 0.542 2269.0
1 0.727 0.948 11,884 1.19 0.604 2407.3
2 0.800 0.965 12,627 1.26 0.842 2975.4
4 0.870 0.980 13,515 1.35 1.126 3718.3
6 0.903 0.986 14,054 1.41 1.299 4196.4
8 0.923 0.989 14,449 1.44 1.426 4557.2

10 0.936 0.991 14,750 1.48 1.522 4837.0

Note: Q∗ is rounded to the nearest integer, based on a critical ratio rounded to three decimal places.

that we would expect to fulfill about 90.2% of the demand for biker jackets next winter
season if we order 10,558 of them.

A reasonable question to ask at this point is whether those service levels, a 57% chance of
not stocking out and a 90% fill rate are “good” service levels. One answer to that question is
that they are neither “good” nor “bad”; they are optimal for the overage and underage costs
given. Another way of looking at this is to say that, if the decision maker believes that those
service levels are too low, then the cost of underage must be understated, for if this cost were
larger, then optimal order quantity would increase and the in-stock probability and fill rate
would increase commensurately. Therefore, newsvendor models like our example commonly
employ another cost factor, what we will call g, the cost of losing customer goodwill due
to stocking out. This cost inflates the underage cost, making it cu = p− c+ g. The problem
with goodwill cost, however, is that it is not a cost that one could pull from the accounting
books of any company. Although one could clearly argue that it is “real”—customers do
indeed care, in many instances, about the inconvenience of not finding items they came
to purchase—it would indeed be hard to evaluate for the “average” customer. The way
around this is to allow the service outcome to serve as a proxy for the actual goodwill cost.
The decision maker probably has a service target in mind, one that represents the in-stock
probability or fill rate that the firm believes is a good representation of their commitment
to their customers, but does not “break the bank” in expected overstocking costs. Again,
back to our example, Table 8.1 shows the comparative values of Q, α, and β for goodwill
costs g = k(p− c), with k ranging from 0 to 10. Thus, from Table 8.1, as g ranges from 0 to
relatively large values, service—measured both by α and β—clearly improves, as does the
expected unsold inventory.

For comparison, Table 8.1 displays a ratio of the optimal order quantity to the expected
demand, Q∗/μ, and also shows the standardized value of the optimal order quantity, z∗ =
(Q∗ −μ)/σ. These values are, of course, specific to our example and would obviously change
as the various cost factors and demand distribution parameters change. It may be more
instructive to consider a “parameter-free” view of the service level, which is possible if
we focus on the in-stock probability. Figure 8.7 shows a graph similar to Figure 12.2 from
Chopra and Meindl (2004), which plots α(Q∗)= CR, the optimal in-stock probability, versus
the ratio of overage and underage costs, co/cu.∗ This graph shows clearly how service levels
increase as cu increases relative to c0, in theory increasing to 100% in-stock probability at
c0 = 0 (obviously an impossible level for a demand distribution that is unbounded in the
positive direction). Moreover, for high costs of overstocking, the optimal in-stock probability
could be well below 50%.

∗Note that CR = cu/(cu + co) can also be expressed as CR = 1/(1 + co/cu).
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FIGURE 8.7 Optimal service level versus ratio of overage and underage costs.

These ideas lead to a natural perspective on safety stock, which is the amount of inventory
held in excess of expected demand to protect against stockouts. In the case of the newsvendor
model, where demand is a spike, the safety stock is simply given by Q−μ. Note also that
at Q= μ, the safety stock is zero and the expected in-stock probability is 50%.

We also pointed out above that the newsvendor model is the basis for the simplest inven-
tory system to manage items with repeating demands, namely a base-stock policy. A base-
stock policy is appropriate when the cost of placing orders is zero (or negligible). In a
periodic review setting, one in which the inventory level is reviewed on a regular cycle,
say every T days, a base-stock policy is one in which, at each review, an order is placed
for B −x units, where B is the base-stock level and x is the inventory position (inventory
on-hand plus outstanding orders). In a continuous review setting, where the inventory level
is reviewed continuously (e.g., via a computerized inventory records system), a base-stock
policy is sometimes called a “sell one-buy one” system as an order will be placed every
time an item is sold (i.e., as soon as the inventory position dips below B). One can see how
a newsvendor model serves as the basis for setting a base-stock level. If one can describe
the distribution of demand over the replenishment lead time, with expected value E[DDLT ]
and variance var[DDLT ], then the base-stock level could be set by choosing a fractile of
this distribution, in essence, by setting the desired in-stock probability. For normally dis-
tributed demand over the lead time, with mean μDLT and standard deviation σDLT , this
gives B =μDLT + zασDLT , where zα is the fractile of the standard normal distribution that
accumulates α probability under the pdf. Moreover, if demand is stationary, this base stock
level is as well.

A Supply-Chain Wide Base-Stock Model

In a supply-chain context, one that considers managing base-stock levels across multiple sites
in the chain, Graves and Willems (2003) present a relatively simple-to-compute approxi-
mation for the lead times that tend to result from the congestion effects in the network
caused by demand uncertainty and occasional stockouts at various points in the network.
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FIGURE 8.8 A general production network.

We will focus on what is called the stochastic service formulation, in which the actual time
to replenish supply at any node in the network is stochastic, even if nominal replenish-
ment times are deterministic. (Graves and Willems cite Lee and Billington, 1993, as the
motivation for this approach). This results from each node occasionally stocking out, caus-
ing congestion in the system as other orders build up while supply is unavailable at some
point in the network. The other alternative is a guaranteed-service formulation, in which
each node holds sufficient inventory to guarantee meeting its service time commitment;
this, however, requires an assumption of bounded demand. Graves and Willems trace this
model back to the work of Kimball, from 1955, but published in Kimball (1988). For the
stochastic service formulation, the congestion-based adjustment to lead time employed by
Graves and Willems comes from Ettl et al. (2000), and leads to a fairly straightforward
non-linear optimization problem to minimize the cost of holding inventories throughout
the network, subject to an in-stock probability constraint at the network node farthest
downstream.

In this case, the supply chain network is defined as a graph G= (N,E), comprised of a
set of nodes N = {1, . . ., n} and edges (arcs) E = {(i, j) : i, j ∈N, i �= j}. Figure 8.8 shows
a pure production network, in which all nodes have exactly one successor, but could have
multiple predecessors. (This is done for simplicity of exposition. The optimization method
applies to more general arborescent networks as well. Graves and Willems give examples of
networks for battery packaging and distribution and for bulldozer assembly.) Node 1 (n1)
is the node farthest downstream (i.e., the node that fulfills demand for the finished item),
and downstream inventory Ii is controlled by node ni. The fulfillment time of any node j
in this network, which we denote by Lj , is the nominal amount of time required for node
j to fulfill an order from a successor node. We denote the replenishment time of node j by
τj . Thus, as indicated by Graves and Willems (following the model of Ettl et al., 2000), the
worst-case replenishment time of node j is

τmax
j = Lj + max

i:(i,j)∈E
{τi} (8.5)

but the expected replenishment time can be expressed as

E[τj ] = Lj +
∑

i:(i,j)∈E

πijLi (8.6)
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where πij is the probability that supply node i causes a stockout at j. The values of πij

can be estimated using equation 3.4 in Graves and Willems (2003), derived from Ettl et al.
(2000), which is

πij =
1 − Φ(zi)

Φ(zi)

⎡
⎣1 +

∑
h:(h,j)∈E

1 − Φ(zh)
Φ(zh)

⎤
⎦
−1

(8.7)

where zi is the safety stock factor at node i, as in our discussion above.
Using the equations above—and assuming that demand over the replenishment lead

time at each node j is normally distributed with mean μjE[τj ] and standard deviation
σj

√
E[τj ]—leads to a relatively straightforward non-linear optimization problem to mini-

mize the total investment in safety stock across the network. Specifically, that optimization
problem is to

min C =
N∑

j=1

hjσj

√
E[τj ]

⎛
⎜⎝zj +

∞∫
zj

(x − zj)φ(x)dx

⎞
⎟⎠ (8.8)

subject to z1 = Φ−1(α), where α is the target service level at the final inventory location,
Φ is the standard normal cdf, φ is the standard normal pdf, and hi is the annual inventory
holding cost at node i. The safety stock factors zi (i= 2, . . ., n) are the decision variables
and are also used in computing πij in Equation 8.6 via Equation 8.7. Feigin (1999) provides
a similar approach to setting base-stock levels in a network, but one that uses fill rate
targets—based on a fill rate approximation given by Ettl et al. (1997), an earlier version of
Ettl et al. (2000)—as constraints in a non-linear optimization.

Base-Stock Model with Supply Uncertainty

Based on the work of Bryksina (2005), Warsing, Helmer, and Blackhurst (2006) extend the
model of Graves and Willems (2003) to study the impact of disruptions or uncertainty in
supply on stocking levels and service outcomes in a supply chain. Warsing et al. consider two
possible fulfillment times, a normal fulfillment time Lj , as in Equation 8.6, and worst pos-
sible fulfillment time Kj , the latter of which accounts for supply uncertainty, or disruptions
in supply. Using pj to denote the probability that node j is disrupted in any given period,
Warsing et al. extend the estimate of Equation 8.6 further by using (1− pj)Lj + pjKj in
place of Lj . They then compare the performance of systems using the original Graves and
Willems base-stock computations, base-stock levels adjusted for supply uncertainty, and a
simulation-based adjustment to safety stock levels that they develop.

Table 8.2 shows the base case parameters from a small, three-node example from Warsing
et al. (2006), and Table 8.3 shows the results, comparing the Graves and Willems (2003)
solution (GW), the modification of this solution that accounts for supply uncertainty (Mod-
GW), and the algorithmic adjustment to the safety stock levels developed by Warsing et al.
(WHB). An interesting insight that results from this work is the moderating effect of safety
stock placement on the probability of disruptions. Specifically, as the ratio of downstream
inventory holding costs become less expensive relative to upstream holding costs, the system
places more safety stock downstream, which buffers the shock that results from a 10-fold
increase in the likelihood of supply disruptions at an upstream node in the network.
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TABLE 8.2 Base Case Parameters for Example from Warsing et al. (2006)
Node Li Ki pi hi μi σi

1 1 2 0.01 10 200 30
2 3 10 0.01 1 200 30
3 3 10 0.01 1 200 30

TABLE 8.3 Results from Warsing et al. (2006) with Target In-Stock Probability of 95%
Base Stock Levels In-Stock Probability Fill Rate

Scenario Model Node 1 Node 2 Node 3 Mean (%) Std Dev (%) Mean (%) Std Dev (%)

Base case GW 296 694 694 91.5 2.1 93.1 2.0
Mod-GW 299 709 709 92.9 1.8 94.3 1.8
WHB 299 1233 709 94.5 2.2 95.8 2.0

h3 = 5 GW 549 655 613 94.9 2.8 95.7 2.6
Mod-GW 556 670 628 95.4 1.9 96.3 1.7
WHB 556 670 628 95.4 1.9 96.3 1.7

p2 = 0.10 GW 296 694 694 71.1 4.9 75.4 4.3
Mod-GW 301 847 709 77.5 5.4 81.3 4.8
WHB 301 1488 800 91.6 2.8 93.8 2.3

h3 = 5 GW 549 655 613 80.2 3.2 83.6 2.7
p2 = 0.10 Mod-GW 554 810 629 84.3 4.4 87.3 3.9

WHB 554 1296 629 94.4 2.4 95.9 1.8

Distribution of
demand over

lead time (DLT )

Inventory

Q R

SS � R � �DLT
0
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Time

FIGURE 8.9 Continuous-review, perpetual-demand inventory model.

8.2.2 Reorder Point—Order Quantity Models

As discussed above, when there is no cost to place a replenishment order, a base-stock model
that reorders at every periodic review—or whenever inventory is depleted by one or more
units in a continuous review system—is appropriate. With costly ordering, however, this is
likely not to be the cost-minimizing policy. Therefore, in this case, the question of when to
get more is now relevant in addition to the question of how much to get.

In addition to costly ordering, let us now consider a perpetual demand setting, one in
which demand is assumed to continue infinitely far into the future, and clearly one that is the
antithesis of the spike demand that characterized the newsvendor setting. The easiest case to
analyze in this setting would be a continuous-review inventory model. A pictorial view of a
continuous-review, perpetual-demand model with stationary demand is shown in Figure 8.9.
In this setting, an order of size Q is placed whenever the inventory level reaches, or dips
below, reorder point R. The picture also provides a visual representation of safety stock for
this model. From the visual we see that safety stock SS is not only the amount of inventory
held in excess of demand—in this case demand over the replenishment lead time—to protect
against stockouts, but it can also be seen to be the amount of inventory that is expected to



© 2009 by Taylor & Francis Group, LLC

8-16 Operations Research Applications

be on hand when a replenishment order arrives. As indicated by the three dashed lines in
the second cycle of the figure, if demand over the replenishment lead time is uncertain, the
demand rate could track to expectations over the replenishment lead time (middle line),
or it could experience a slow down (upper line) or an increase (lower line), in the latter
case leaving the system at risk of a stockout. Setting the reorder point sufficiently high is
the means of preventing such stockouts, and therefore, the reorder point, as indicated by
the figure is given by

R = μDLT + SS (8.9)

The problem in this case, then, is to find good values of two decision variables, the reorder
point R and the order quantity Q, or the “when” and “how much” decisions we discussed
above. If D now denotes the expected value of annual demand, A denotes the fixed cost to
place a replenishment order, and h denotes the annual cost of holding a unit in inventory,
then the total annual costs of ordering and holding in this model are given by

TAC(R,Q) =
AD

Q
+ h

(
Q

2
+ R − μDLT

)
(8.10)

since D/Q obviously gives the number of orders placed annually, Q/2 gives the cycle stock
(or the average inventory—over and above any safety stock—given a stationary demand rate
over time), and R−μDLT gives the safety stock.∗ Some time-honored texts—for example,
Hax and Candea (1984) and Silver et al. (1998)—include explicit stockout costs in the
annual cost equation. Our approach, however, will be to consider a service constraint in
finding the (Q,R) solution that minimizes Equation 8.10.

Thus, an important issue in our formulation will be how we specify the service constraint
on our optimization problem. The most general case is the one in which both demand per
unit time period (typically days or weeks) and replenishment lead time (correspondingly
expressed in days or weeks) are random variables. Let us, therefore, assume that the lead
time L follows a normal distribution with mean μL and standard deviation σL. Further,
let us assume that the distribution of the demand rate per unit time d also is normal,
and let μd and σd denote its mean and standard deviation, respectively.† The normal-
distribution assumption allows a well-defined convolution of demand over the lead time,
which is therefore also normally distributed, with mean μDLT =μdμL and standard devia-
tion‡ σDLT =

√
μLσ2

d +μ2
dσ

2
L. Moreover, given a value of the reorder point R, the expected

number of units short in an order cycle can be expressed as S(R)= σDLT L(z), where L(z),
as above, is the standard normal loss function evaluated at z, which in this case is given
by z = (R−μDLT )/σDLT . If unmet demand in a replenishment cycle is fully backlogged, it
should be apparent that the expected demand met in a replenishment cycle is Q, meaning

∗Note that this model implies that expected inventory is Q/2 + SS. Technically, however, we should be
careful about how demand is handled in the event of a stockout. If demand is backlogged, then expected
inventory at any point in time is actually Q/2 + SS + E[BO], where E[BO] is the expected number of
backorders. Silver et al. (1998, p. 258), however, indicate that since E[BO] is typically assumed to be small
relative to inventory, it is reasonable to use Q/2+ SS for expected inventory. If demand is lost in the event
of a stockout, then expected inventory is exactly Q/2 + SS.

†As indicated by Silver et al. (1998), the assumption of the normal distribution for lead time demand is
common for a number of reasons, particularly that it is “convenient from an analytic standpoint” and “the
impact of using other distributions is usually quite small” (p. 272).

‡The general form of this equation, from the variance of a random-sized sum of random variables, can
be found in example 4 in Appendix E of Kulkarni (1995, pp. 577–578).
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that the fill rate in this continuous-review, perpetual demand model is given by

β(R,Q) = 1 − S(R)
Q

= 1 − σDLT L(z)
Q

∗ (8.11)

Note, therefore, that the problem to minimize Equation 8.10 subject to a fill rate constraint
based on Equation 8.11 is non-linear in both the objective function and the constraint. The
objective (Equation 8.10), however, is convex in both Q and R,† so the solution is fairly
straightforward.

A less rigorous approach to finding a (Q,R) solution would be to solve for Q and R
separately. Note that z = (R−μDLT )/σDLT gives a fractile of the distribution of demand
over the lead time. Thus, we could set R to achieve a desired in-stock probability, along
the lines of the newsvendor problem solution discussed above (i.e., to accumulate a given
amount of probability under the lead-time demand distribution). In this setting, the in-stock
probability is typically referred to as the cycle service level (CSL), or the expected in-stock
probability in each replenishment cycle. With R fixed to achieve a desired CSL, we then
use the first-order condition on Q in Equation 8.10,

∂TAC(R,Q)
∂Q

= −AD

Q2
+

h

2
= 0 (8.12)

to solve for

Q∗
EOQ =

√
2AD

h
(8.13)

the familiar economic order quantity (EOQ). Note also that if demand uncertainty is
removed from our model altogether, then the safety stock term is dropped from Equa-
tion 8.10 and EOQ via Equation 8.13 provides the optimal order quantity.

Reorder point–order quantity (ROP-OQ) models are also relevant to periodic review
systems, in which the system inventory is reviewed at some regular period, say every T
days, and an order is placed if the inventory position is below a given level. Analysis of the
periodic-review system is more complex and requires a dynamic programming solution (see,
e.g., Clark and Scarf, 1960), with the result being an (s, S) policy, wherein an order of size
S − s is placed if the inventory position is below s at the current review. As pointed out by
Silver et al. (1998), however, a reasonably good, approximate (s, S) policy can be generated
from continuous-review-type parameters. Specifically, one could set s equal to an extension,
of sorts, of the continuous-review reorder point R, set to cover demand over the lead time
plus the review period and achieve a desired cycle service level. The order-up-to level S
would then be given by S =R +Q, with Q given by EOQ (or a some slight adjustment—see
Silver et al., 1998, pp. 331–336, for more details).

Multi-Item Models

Our treatment of ROP-OQ models up to this point has concerned only a single item at a
single location. It would be the rare company, however, that managed only a single item at a
single location. As one complication introduced with multiple items, consider a situation in

∗Again, the backlogging assumption is important. If unmet demand is lost, then the replenishment
quantity Q is never used to meet backlogged demand, and therefore, the total demand experienced in an
average cycle is Q + E[BO] = Q + S(R), yielding β(R, Q)= 1−σDLT L(z)/[Q + σDLT L(z)].

†See Hax and Candea (1984, p. 206) for a proof of the convexity of a related model.



© 2009 by Taylor & Francis Group, LLC

8-18 Operations Research Applications

which k items can be ordered jointly at a discount in the ordering cost—that is, where the
cost of ordering k items independently is kA, but ordering these items jointly incurs only
an incremental cost, ai ≥ 0, for each item i ordered beyond the single base cost of ordering,
A, such that A+

∑k
i = 1 ai <kA.

A straightforward way to address this situation is to consider ordering all items jointly
on a common replenishment cycle. In essence this changes the decision from “how much”
to order—the individual order quantities, Qi—to “how often” to order, which is given by n,
defined as the number of joint orders placed per year. Then since n= Di/Qi ⇒Qi =Di/n
for each item i, we can build a joint-ordering TAC model with

TAC(n) =

(
A +

k∑
i=1

ai

)
n +

k∑
i=1

hi

(
Di

2n
+ SSi

)
(8.14)

where hi is the annual cost of holding one unit of item i in inventory, Di/(2n)= Qi/2 is the
cycle stock of item i, and SSi is the safety stock of item i. For fixed values of SSi (or if
demand is certain and SSi = 0, i= 1, . . ., k), the optimal solution to Equation 8.14 is found
by setting

∂TAC(n)
∂n

= A +
k∑

i=1

ai − 1
2n2

k∑
i=1

hiDi = 0 (8.15)

yielding

n∗ =

√√√√√√
∑k

i=1
hiDi

2
(

A +
∑k

i=1
ai

) (8.16)

Introducing safety stock and reorder points into the decision complicates the idea of
joint replenishments. Clearly, it would negate the assumption that all items would appear
in each replenishment since the inventory levels of the various items are unlikely to hit their
respective reorder points at exactly the same point in time. Silver et al. (1998) discuss an
interesting idea first proposed by Balintfy (1964), a “can-order” system. In this type of
inventory control system, two reorder points are specified, a “can-order” point, at which an
order could be placed, particularly if it would allow a joint-ordering discount, and a “must-
order” point, at which an order must be placed to guard against a stockout. Although I
will not discuss the details here, Silver et al. (1998: p. 435) provide a list of references
for computing “must-order” and “can-order” levels in such a system. Thus, one could pro-
pose a review period for the joint-ordering system and set reorder points to cover a certain
cumulative probability of the distribution of demand over the lead time plus the review
period.

Let’s consider an example that compares individual orders versus joint orders for two
items. Floor-Mart—“We set the floor on prices” (and, apparently, on advertising copy)—is
a large, (fictional) discount retailer. Floor-Mart stocks two models of 20-inch, LCD-panel
TVs, Toshiba and LG, that it buys from two different distributors. Annual demand for the
Toshiba 20-inch TV is D1 =1600 units, and the unit cost to Floor-Mart is $400. Annual
demand for the LG 20-inch TV is D2 =2800 units, and the unit cost to Floor-Mart is $350.
Assuming 365 sales days per year, this results in an expected daily demand of μd,1 = 4.38
units for the Toshiba TV and μd,2 = 7.67 units for the LG TV. Assume that Floor-Mart also
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has data on demand uncertainty such that σd,1 = 1.50 and σd,2 = 2.50. Annual holding costs
at Floor-Mart are estimated to be 20% on each dollar held in inventory, and Floor-Mart’s
target fill rate on high-margin items like TVs is 99%. Floor-Mart uses the same contract
carrier to ship TVs from each of the distributors. Let’s put a slight twist on the problem
formulation as it was stated above. Assume that Floor-Mart’s only fixed cost of placing a
replenishment order with its TV distributors is the cost the carrier charges to move the goods
to Floor-Mart. The carrier charges $600 for each shipment from the Toshiba distributor, and
the mean and standard deviation of the replenishment lead time are μL,1 = 5 and σL,1 = 1.5
days. The carrier charges $500 for each shipment from the LG distributor, and the mean
and standard deviation of the replenishment lead time are μL,2 = 4 and σL,2 = 1.2 days.
However, the carrier also offers a discounted “stop-off” charge to pick up TVs from each
distributor on a single truck, resulting in a charge of $700.

With the parameters above, we find that μDLT,1 = 21.92, σDLT,1 = 7.38, μDLT,2 =
30.68, and σDLT,2 = 10.60. Solving Equation 8.10 for each TV to find the optimal
independent values of Q and R (via Excel Solver), we obtain (Q1, R1)=
(166, 25) and (Q2, R2)= (207, 36). By contrast, independent EOQ solutions would be
QEOQ,1 = 155 and QEOQ,2 = 200. Using Equation 8.16 for the joint solution, we obtain
n∗ =

√
(0.2)(400 · 1600+ 350 · 2800)/(2 · 700) = 15.21, yielding Q1 = 105 and Q2 = 184. The

joint solution—assuming that it does not exceed the truck capacity—saves approximately
$5100 in ordering and holding costs over either independent solution. The issue on the table,
then, as we discuss above, is to set safety stock levels in this joint solution. As orders would
be placed only every 3.4 weeks with n= 15.21, a review period in line with the order cycle
would probably inflate safety stock too dramatically. Thus, the reader should be able to see
the benefit of a “can-order” system in this case, perhaps with a one-week review period,
a high CSL—that is, relatively large value of z = (R−μDLT )/σDLT —on the “can-order”
reorder point, and a lower CSL on the “must-order” reorder point. In closing the example,
we should point out that we have assumed a constant rate of demand over time, which
may be reasonable for TVs, but clearly ignores the effects of intermittent advertising and
sales promotions. Later in this section, we discuss distribution requirements planning, which
addresses situations where demand is not stationary over time.

Finally, the more general case for joint ordering is to consider what Silver et al. (1998)
call coordinated replenishment, where each item i is ordered on a cycle that is a multi-
ple, mi, of a base order cycle of T days. Thus, each item is ordered every miT days.
Some subset, possibly a single item, of the k items has mi =1, meaning that those items
appear in every replenishment order. Silver et al. (1998, pp. 425–430) offer an algorithmic
solution to compute mi (i= 1, . . ., k) and T for this case. Jackson et al. (1985) consider
the restrictive assumption that mi ∈{20, 21, 22, 23, . . .}= {1, 2, 4, 8, . . .}, which they call a
“powers-of-two” policy, and show that this approach results in an easy-to-compute solution
whose cost is no more than 6% above the cost of an optimal policy with unrestricted
values of mi. Another situation that could link item order quantities is an aggregate
quantity constraint or a budget constraint. Hax and Candea (1984) present this prob-
lem and a Lagranian-relaxation approach to solving it; they refer to Holt et al. (1960)
for several methods to solve for the Lagrange multiplier that provides near-optimal order
quantities.

Multi-Echelon Models

In a multi-echelon supply chain setting, Clark and Scarf (1960) show that the supply-chain
optimal solution at each echelon is an “echelon-stock policy” of (s, S) form. Clark and
Scarf are able to solve their stochastic dynamic programming formulation of the problem
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by redefining the manner in which inventory is accounted for at successive upstream ech-
elons in the chain. Clark and Scarf’s definition of echelon stock is “the stock at any given
installation plus stock in transit to or on hand at a lower installation” (p. 479). Thus, the
echelon stock at an upstream site includes stock at that site plus all stock downstream
that has not yet been sold to a customer. Using an echelon-stock approach coordinates the
ordering processes across the chain, or at least across the echelons that can be coordinated.
This last point refers to the complication that a supply-chain-wide, echelon-stock policy
would require all firms in the chain (except the one farthest upstream) to provide access to
their inventory data. Such supply-chain-wide transparency is perhaps unlikely to occur, but
coordination between company-owned production sites and company-owned distribution
sites is eminently reasonable. Silver et al. (1998, 477–480), for example, provide compu-
tational procedures to determine coordinated warehouse (upstream) and retailer (down-
stream) order quantities using an echelon-stock approach. In addition, I refer the reader to
Axsäter (2000) for an excellent overview of echelon-inventory methods and computational
procedures.

The astute reader should note that we have already discussed an approach to setting
safety stocks in a multi-echelon system, namely the non-linear optimization suggested by
Graves and Willems (2003). In the author’s view, this approach is more intuitive and more
directly solved than an echelon inventory approach, but perhaps only slightly less prob-
lematic in terms of obtaining data about upstream and downstream partners in the supply
chain. An approach that uses the GW optimization (see the earlier section in this chapter
on “A Supply-Chain Wide Base-Stock Model”) to set network-wide safety stock levels, cou-
pled with simple EOQ computations as starting points for order quantities, and possibly
“tweaked” by simulation to find improved solutions, may be a promising approach to solving
network-wide inventory management problems.

8.2.3 Distribution Requirements Planning

In an environment in which independent-item demands vary over time, distribution require-
ments planning (DRP) provides a method for determining the time-phased inventory levels
that must be present in the distribution system to fulfill projected customer demands on
time. As Vollmann et al. (2005) point out, “DRP’s role is to provide the necessary data for
matching customer demand with the supply of products being produced by manufacturing”
(p. 262). Note that in any make-to-stock product setting, the linchpin between product man-
ufacturing and customer demand is the distribution system, and indeed, it is distribution
system inventory that coordinates customer demand with producer supply. While distri-
bution system inventories could be set using the ROP-OQ control methods as described
above, the critical difference between DRP and ROP-OQ is that DRP plans forward in
time, whereas ROP-OQ systems react to actual demands whenever those demands drive
inventory to a level that warrants an order being placed. This is not to say that the two
approaches are inconsistent. Indeed, it is quite easy to show that, in a stationary-demand
environment with sufficiently small planning “time buckets,” DRP and ROP-OQ produce
equivalent results. Where DRP provides a clear benefit, however, is in situations where
demand is not constant over time, particularly those situations in which surges and drops
in demand can be anticipated reasonably accurately.

The basic logic of DRP is to compute the time-phased replenishment schedule for each
stock-keeping unit (SKU) in distribution that keeps the inventory level of that SKU at or
above a specified safety stock level (which, of course, could be set to zero). Let the DRP
horizon span planning periods t = 1, . . ., T , and assume that safety stock SS, order lot size
Q, and lead time L are given for the SKU in question. In addition, assume that we are given
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a period-by-period forecast of demand for this SKU, Dt, t = 1, . . ., T . Then, we can compute
the planned receipts for each period t, namely the quantity—as an integer multiple of the
lot size—required to keep inventory at or above SS.

To illustrate these concepts, let us consider an example, altered from Bozarth and
Handfield (2006). Assume that MeltoMatic Company manufactures and distributes snow
blowers. Sales of MeltoMatic snow blowers are concentrated in the Midwestern and North-
eastern states of the United States. Thus, the company has distribution centers (DCs)
located in Minneapolis and Buffalo, both of which are supplied by MeltoMatic’s manufac-
turing plant in Cleveland. Table 8.4 shows the DRP records for the Minneapolis and Buffalo
DCs for MeltoMatic’s two SKUs, Model SB-15 and Model SBX-25. The first three lines in
the table sections devoted to each SKU at each DC provide the forecasted demand (require-
ments), Dt; the scheduled receipts, SRt, already expected to arrive in future periods; and
the projected ending inventory in each period, It. This last quantity, It, is computed on a
period-by-period basis as follows:

1. For period t, compute net requirements NRt = max{0,Dt +SS − (It−1 +SRt)}.
2. Compute planned receipts PRt = �NRt/Q� ·Q, where �x� gives the smallest inte-

ger greater than or equal to x. (Note that this implies that if NRt = 0, then
PRt = 0 as well.)

3. Compute It = It−1 +SRt +PRt −Dt. Set t← t + 1.
4. If t≤T , go to step 1; else, done.

Then, planned receipts are offset by the lead time for that SKU, resulting in a stream
of planned orders, POt, to be placed so that supply arrives in the DC in time to fulfill
the projected demands (i.e., POt =PRt+L for t = 1, . . ., T −L, and any planned receipts in
periods t = 1, . . ., L result in orders that are, by definition, past due).

Note that an important aspect of DRP is that it requires human intervention to turn
planned orders into actual orders, the last line in Table 8.4 for each SKU. To further illustrate
this point, let’s extend our example to consider a situation where the human being charged
with the task of converting planned orders into actual orders might alter the planned order
stream to achieve some other objectives. For example, let us assume that the carrier that
ships snow blowers into MeltoMatic’s warehouses in Minneapolis and Buffalo provides a
discount if the shipment size exceeds a truckload quantity of 160 snow blowers, relevant to
shipments of either SKU or to combined shipments containing a mix of both SKUs. Table 8.5
shows an altered actual order stream that generates orders across both SKUs of at least 160
units in all periods t = 1, . . ., T −L where POt > 0 for either SKU. In addition, Table 8.5 also
shows the temporary overstock created by that shift in orders, with some units arriving in
advance of the original plan. The question would be whether the projected savings in freight
transportation exceeds the expense of temporarily carrying excess inventories. Interestingly,
we should also note that the shift to larger shipment quantities, somewhat surprisingly,
creates a smoother production schedule at the Cleveland plant (after an initial bump in
Week 46).

Once again, therefore, we revisit the enormity of the problem of “optimizing the sup-
ply chain,” noting the complexity of the above example for just two SKUs at a single
firm. Granted, jointly minimizing inventory cost, transportation cost, and possibly also
“production-change” costs might be a tractable problem at a single firm for a small set
of SKUs, but the challenge of formulating and solving such problems clearly grows as the
number of component portions of the objective function grows, as the number of SKUs
being planned grows, and as the planning time scale shrinks (e.g., from weeks to days).
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TABLE 8.4 DRP Records for MeltoMatic Snow Blowers Example with Actual Orders Equal to Planned Orders

Week 45 46 47 48 49 50 51 52 1 2 3 4

MINNEAPOLIS DC Forecasted requirements 60 60 70 70 80 80 80 80 90 90 95 95
Scheduled receipts 120

Model SB-15 Projected ending inventory 80 140 80 10 60 100 20 60 100 10 40 65 90
LT (weeks ): 2 Net requirements 0 0 0 70 30 0 70 30 0 90 65 40
Safety stock (units): 10 Planned receipts 0 0 0 120 120 0 120 120 0 120 120 120
Lot size (units): 120 Planned orders 0 0 120 120 0 120 120 0 120 120 120 0 0

Actual orders 0 120 120 0 120 120 0 120 120 120 0 0

Forecasted requirements 40 40 50 60 80 90 100 100 110 110 100 100
Scheduled receipts 40

Model SBX-25 Projected ending inventory 100 100 60 10 30 30 20 80 60 30 80 60 40
LT (weeks): 2 Net requirements 0 0 0 60 60 70 90 30 60 90 30 50
Safety stock (units): 10 Planned receipts 0 0 0 80 80 80 160 80 80 160 80 80
Lot size (units): 80 Planned orders 0 0 80 80 80 160 80 80 160 80 80 0 0

Actual orders 0 80 80 80 160 80 80 160 80 80 0 0

BUFFALO DC Forecasted requirements 70 70 80 80 90 90 100 100 120 120 140 140
Scheduled receipts 100

Model SB-15 Projected ending inventory 30 60 110 30 70 100 10 30 50 50 50 30 10
LT (weeks): 1 Net requirements 0 20 0 60 30 0 100 80 80 80 100 120
Safety stock (units): 10 Planned receipts 0 120 0 120 120 0 120 120 120 120 120 120
Lot size (units): 120 Planned orders 0 120 0 120 120 0 120 120 120 120 120 120 0

Actual orders 120 0 120 120 0 120 120 120 120 120 120 0

Forecasted requirements 50 50 60 70 80 80 100 110 130 130 100 100
Scheduled receipts 60

Model SBX-25 Projected ending inventory 30 40 70 90 20 20 20 80 50 80 30 90 70
LT (weeks): 1 Net requirements 0 25 5 0 75 75 95 45 95 65 85 25
Safety stock (units): 15 Planned receipts 0 80 80 0 80 80 160 80 160 80 160 80
Lot size (units): 80 Planned orders 0 80 80 0 80 80 160 80 160 80 160 80 0

Actual orders 80 80 0 80 80 160 80 160 80 160 80 0

CLEVELAND PLANT Master production schedule SB-15 120 120 240 120 120 240 120 240 240 240
(Gross requirements) SBX-25 80 160 80 160 240 240 160 320 160 240

Total 200 280 320 280 360 480 280 560 400 480

© 2009 by Taylor & Francis Group, LLC
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TABLE 8.5 DRP Records for MeltoMatic Snow Blowers Example with Actual Orders Altered for Transportation Discount

Week 45 46 47 48 49 50 51 52 1 2 3 4

MINNEAPOLIS DC Forecasted requirements 60 60 70 70 80 80 80 80 90 90 95 95
Projected ending inventory 80 140 80 10 60 100 20 60 100 10 40 65 90

Model SB-15 Planned orders 0 0 120 120 0 120 120 0 120 120 120 0 0
Actual orders 0 120 120 0 120 120 0 120 120 120 0 0

Forecasted requirements 40 40 50 60 80 90 100 100 110 110 100 100
Projected ending inventory 100 100 60 10 30 30 20 80 60 30 80 60 40

Model SBX-25 Planned orders 0 0 80 80 80 160 80 80 160 80 80 0 0
Actual orders 0 80 80 160 80 80 160 80 80 80 0 0

Planned orders 0 200 200 80 280 200 80 280 200 200 0 0
Total for DC Actual orders 0 200 200 160 200 200 160 200 200 200 0 0

Temporary overstock 0 0 0 80 0 0 80 0 0 0 0 0

BUFFALO DC Forecasted requirements 70 70 80 80 90 90 100 100 120 120 140 140
Projected ending inventory 30 60 110 30 70 100 10 30 50 50 50 30 10

Model SB-15 Planned orders 0 120 0 120 120 0 120 120 120 120 120 120 0
Actual orders 120 0 120 120 0 120 120 120 120 120 120 0

Forecasted requirements 50 50 60 70 80 80 100 110 130 130 100 100
Projected ending inventory 30 40 70 90 20 20 20 80 50 80 30 90 70

Model SBX-25 Planned orders 0 80 80 0 80 80 160 80 160 80 160 80 0
Actual orders 80 160 80 80 160 80 80 80 80 80 80 0

Planned orders 200 80 120 200 80 280 200 280 200 280 200 0
Total for DC Actual orders 200 160 200 200 160 200 200 200 200 200 200 0

Temporary overstock 0 80 160 160 240 160 160 80 80 0 0 0

CLEVELAND PLANT Master production schedule SB-15 120 120 240 120 120 240 120 240 240 240
(Gross requirements) SBX-25 80 240 160 240 240 160 240 160 160 160

Total 200 360 400 360 360 400 360 400 400 400

© 2009 by Taylor & Francis Group, LLC
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The examples above, however, give us some insights into how inventory decisions could be
affected by transportation considerations, a topic we consider further in the section that
follows.

8.3 Managing Transportation in the Supply Chain

8.3.1 Transportation Basics

Ballou (2004) defines a transport service “as a set of transportation performance character-
istics purchased at a given price” (p. 167). Thus, in general, we can describe and measure a
freight transport mode by the combination of its cost and its service characteristics. More-
over, we can break down the service characteristics of a transport service into speed (average
transit time), reliability (transit time variability), and risk of loss/damage. Freight transit
modes are water, rail, truck, air, and pipeline; interestingly, Chopra and Meindl (2004) also
include an electronic mode, which may play an increasing role in the future, and already has
for some goods like business documents (e.g., e-mail and fax services) and recorded music
(e.g., MP3 file services like Napster and Apple’s iTunes). I will therefore distinguish physical
modes of freight transit from this nascent electronic mode and focus our discussion exclu-
sively on the physical modes. Ballou’s characterization of a freight transport service leads
nicely to a means of comparing physical modes—with respect to their relative cost, speed of
delivery, reliability of delivery, and risk of loss and damage. Ballou (2004) builds a tabular
comparison of the relative performance of the modes in terms of cost, speed, reliability,
and risk of loss/damage, but I would suggest that there is some danger in trying to do this
irrespective of the nature of the cargo or the transportation lane (i.e., origin–destination
pair) on which the goods are traveling. Some comparisons are fairly obvious, however: Air
is clearly the fastest and most expensive of the physical modes, whereas water is the slowest
and perhaps the least expensive, although pipeline could probably rival water in terms of
cost. In terms of “in-country” surface modes of travel, rail is much cheaper than truck, but
also much slower—partially because of its lack of point-to-point flexibility—and also more
likely to result in damage to or, loss of, the cargo due to the significant number of transfers
of goods from train to train as a load makes its way to its destination via rail.

A Harvard Business School (Harvard Business School, 1998) note on freight transporta-
tion begins with a discussion of the deregulation of the rail and truck freight transport
markets in the United States and states that “. . . an unanticipated impact of regulatory
reform was a significant consolidation in the rail and LTL [less-than-truckload] trucking
sectors” (p. 3). This stemmed from the carriers in these markets seeking what the HBS
note calls “economies of flow,” consolidating fixed assets by acquiring weaker carriers to
gain more service volume, against which they could then more extensively allocate the costs
of managing those fixed assets. This provides interesting insights to the cost structures
that define essentially any transport service, line-haul costs—the variable costs of moving
the goods—versus terminal/accessorial costs—the fixed costs of owning or accessing the
physical assets and facilities where shipments can be staged, consolidated, and routed.

Even without the benefit of detailed economic analysis, one can infer that modes like
pipeline, water, and rail have relatively large terminal/accessorial costs; that air and truck
via LTL have less substantial terminal costs; and that truck via truckload (TL), as a point-
to-point service, has essentially no terminal costs. Greater levels of fixed costs for the carrier
create a stronger incentive for the carrier to offer per-shipment volume discounts on its
services. Not only does this have a direct impact on the relative cost of these modes, but
it also has implications for the relative lead times of freight transit modes, as shown in
Figure 8.10, reproduced (approximately) from Piercy (1977). In this case, more substantial
terminal operations—that is, rail yards to build trains or LTL terminals to build full trailer
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FIGURE 8.10 Comparison of shipping distance versus lead time for various modes. (Reproduced from
Piercy, 1977.)

loads—result in more non-linearity in the distance-versus-transit time relationship. Note
from the figure that for TL, this relationship is essentially linear as this mode does not
require terminal operations to mix and consolidate loads.

In building a model of transportation cost as a function of the shipment quantity, the
remainder of this section will focus on truck transit, as that is the mode for which the
most data is available and for which the full-load versus less-than-full-load analysis is most
interesting. The basic ideas of the results, however, apply to other transit modes as well. The
basic tension for the decision maker is between using smaller shipments more frequently,
but at a potentially higher per-unit shipping cost, versus making larger, but less expensive,
shipments less frequently. Clearly, this has implications for transportation and inventory
costs, and potentially for customer service as well. The analysis that follows, therefore,
begins to round out the triangle of SCM strategy—inventory, transportation, locations, and
customer service—that was presented earlier in this chapter.

In the trade press, Speigel (2002) picks up on exactly this tension in the TL versus LTL
decision. As Speigel indicates, and as we draw out in an example later in this section, the
answer to the TL–LTL question depends on a number of factors and explains why many
shippers use transportation management system (TMS) software to attempt to generate
minimum cost shipment decisions. Moreover, Speigel points out that it is getting increas-
ingly difficult to fill truckloads in practice when one considers the many factors driving small
shipment sizes: an increasing number of stock-keeping-units driven by customers’ demands
for greater customization, lean philosophies and the resulting push to more frequent ship-
ments, and customer service considerations that are driving more decentralized distribution
networks serving fewer customers per distribution center (this last theme returns in the
succeeding section of this chapter on “Managing Locations”). As I point out after our
example below, such trends probably lead to a need to consider mixed loads as a possible
means of building larger, more economical shipments. This section closes with a general
cost model that is well-positioned for carrying out such an analysis, even without the help
of a costly TMS.
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TABLE 8.6 Breakdown of United States Physical Distribution Costs, 1988 Versus
2002

1988∗ 2002†

% of Sales $/cwt‡ % of Sales $/cwt

Transportation 3.02 12.09 3.34 26.52
Warehousing 1.90 11.99 2.02 18.06
Customer service/order entry 0.79 7.82 0.43 4.58
Administration 0.35 2.35 0.41 2.79
Inventory carrying cost @ 18%/year 1.76 14.02 1.72 22.25
Other 0.88 5.94 NR NR

Total distribution cost 7.53 45.79 7.65 67.71
∗ From Davis, H. W., Annual Conference Proceedings of the Council of Logistics
Management, 1988. With permission.
† From Davis, H. W. and W. H. Drumm, Annual Conference Proceedings of the Council of
Logistics Management, 2002. With permission.
‡ Weight measure “cwt” stands for “hundred-weight,” or 100 lbs.

8.3.2 Estimating Transportation Costs

Table 8.6 shows a breakdown of total logistics cost as a percent of sales as given in Ballou
(1992) and in Ballou (2004). From the table, one can note the slight growth in transporta-
tion cost as a fraction of sales and the slight decline in inventory cost over time. Thus,
it would appear that effectively managing transportation costs is an important issue in
controlling overall logistics costs, in addition to managing the impact of transportation
decisions on warehousing and inventory carrying costs, the other large cost components in
the table.

Nearly all operations management or logistics textbooks that incorporate quantitative
methods (e.g., Nahmias, 1997; Silver et al., 1998; Chopra and Meindl, 2004; Ballou, 2004)
present methods for computing reorder points and order quantities for various inventory
models and, in some cases, also discuss accounting for transportation costs in manag-
ing inventory replenishment. To the author’s knowledge, however, no textbook currently
presents any models that effectively tie these interrelated issues together by incorporating a
general model of transportation costs in the computation of optimal or near-optimal inven-
tory policy parameters. Moreover, although many academics have previously proposed or
studied joint inventory–transportation optimization models—extending back to the work of
Baumol and Vinod (1970)—the author’s experience is that the use of previously published
approaches has not become commonplace among practitioners.

Given the recent estimate of Swenseth and Godfrey (2002) that transportation costs could
account for as much as 50% of the total annual logistics cost of a product (consistent with
Table 8.6, which shows aggregate data), it seems clear that failing to incorporate these costs
in inventory management decisions could lead to significantly sub-optimal solutions—that is,
those with much higher than minimal total logistics costs. Perhaps the most common model
for transportation costs in inventory management studies is simply to assume a fixed cost to
ship a truckload of goods (see, e.g., Waller et al., 1999, for use of such a model in studying
vendor-managed inventory). This model, however, is insensitive to the effect of the shipment
quantity on the per-shipment cost of transportation and seems unrealistic for situations in
which goods are moved in smaller-sized, less-than-truckload shipments. In contrast, several
authors have considered discrete rate-discount models, using quantity breaks to represent
the shipment weights at which the unit cost changes. Tersine and Barman (1991) provide a
review of some earlier modeling work. A recent example is the work of Çetinkaya and Lee
(2002), who modify a cost model introduced by Lee (1986), which represents transportation
costs as a stepwise function to model economies of scale by explicitly reflecting the lower
per-unit rates for larger shipments.
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FIGURE 8.11 LTL rate structure as typically stated.

TABLE 8.7 Example Class 100 LTL
Rates for NYC Dallas Lane
Minimum Weight (lbs) Rate ($/cwt)

1 107.75
500 92.26

1000 71.14
2000 64.14
5000 52.21

10,000 40.11
20,000 27.48
30,000 23.43
40,000 20.52

In contrast to explicit, discrete rate-discount models of freight rates, Swenseth and Godfrey
(1996) review a series of models that specify the freight rate as a continuous, non-linear
function of the shipment weight, building off of the work of Ballou (1991), who estimated
the accuracy of a linear approximation of trucking rates. One advantage of continuous func-
tions is that they do not require the explicit specification of rate breakpoints for varying
shipment sizes nor do they require any embedded analysis to determine if it is economical
to increase—or over-declare—the shipping weight on a given route. A second advantage is
that a continuous function may be parsimonious with respect to specifying its parameters
and can therefore be used in a wide variety of optimization models.

The idea that a shipper might benefit from “over-declaring” a shipment, or simply ship-
ping more in an attempt to reduce the overall shipping cost, stems from the manner in
which LTL rates are published by carriers. Figure 8.11 shows a pictorial view of the typ-
ical LTL rate structure as it is published to potential shippers. This rate structure uses
a series of weight levels at which the per-unit freight rate—that is, the slope of the total
shipment charge in Figure 8.11—decreases. A sample of such published rates is shown in
Table 8.7, which contains rates for the New York City-to-Dallas lane for Class 100 freight,∗

∗Coyle et al. (2006) indicate that the factors that determine the freight class of a product are its density,
its storability and handling, and its value. Class 100 freight, for example, would have a density between 6
and 12 lbs/ft3 for LTL freight.
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as given in Ballou (2004, table 6.5). Modeling per-unit rates for shipments of an arbitrary
size requires one to account for weight breaks, which are used by carriers to determine the
shipment weight at which the customer receives a lower rate, and which are typically less
than the specific cutoff weight for the next lower rate to avoid creating incentives for a
shipper to over-declare, as discussed above. For example, using the rate data in Table 8.7
for a Class 100 LTL shipment from New York to Dallas, if one were to ship 8000 pounds
(80 cwt) on this lane, the charge without considering a possible weight break would be
80× 52.21 =$4176.80. If, however, one were to add 2000 pounds of “dummy weight,” the
resulting charge would be only 100× 40.11= $4011. In Figure 8.11, this is the situation for
a shipment weight just slightly less than w2, for example. Thus, to discourage shippers from
over-declaring or “over-shipping”—and also leaving space for more goods on the carrier’s
trailer and, therefore, providing the carrier with an opportunity to generate more revenue—
the carrier actually bills any shipment at or above 7682 lbs (the weight break, or the weight
at which the $52.21 rate results in a total charge of $4011) as if it were 10,000 lbs. Therefore,
an 8000-lb shipment will actually result in carrier charges of only $4011. The effective rate
for this 8000-lb shipment is $4011÷ 80= $50.14/cwt. Figure 8.12 shows a pictorial view of
the rates as actually charged, with all shipment weights between a given weight break at
the next rate break point (i.e., w1 or w2) being charged the same amount.

Tyworth and Ruiz-Torres (2000) present a method to generate a continuous function from
rate tables like those in Table 8.7. The functional form is r(W )= CwW b, where W is the
shipment weight; r(W ) is the rate charged to ship this amount, expressed in dollars per
hundred pounds (i.e., $/cwt); and Cw and b are constants found using non-linear regression
analysis. With knowledge of the weight of the item shipped, this rate function can easily be
expressed as r(Q)= CQb (in $/unit), where Q is the number of units shipped and C is the
“quantity-adjusted” equivalent of Cw. Appending the rate function r(Q) to the annual cost
equation for a continuous-review, ROP-OQ inventory system like the one presented earlier
in this chapter results in a relatively straightforward non-linear optimization problem, as
we will demonstrate below.

Thus, to generate the rate function parameters, we can, for a given origin–destination
pair and a given set of LTL rates, compute effective rates for a series of shipment weights.
The resulting paired data can be mapped to the continuous function r(W ) presented

Minimum
charge

Shipment
charge

Rate 1

Weight
breaks

w1 w2

0 Shipment
weight

Rate 2

Rate 3

FIGURE 8.12 LTL rate structure as typically charged.
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above. Although Tyworth and Ruiz-Torres (2000) present this mapping as a non-linear
curve-fitting process, let us consider a computationally simpler linear regression approach.
Since r(W )= CwW b, then ln r(W )= ln[CwW b] = ln Cw + b ln W , and therefore, the param-
eters of the continuous function that approximates the step-function rates can be found by
performing simple linear regression analyses on logarithms of the effective rate–shipment
weight pairs that result from computations like those described above to find the effec-
tive rate. Sample plots of the results of this process for the New York-Dallas rate data
in Table 8.7 are shown in Figure 8.13, resulting in Cw = 702.67 and b=−0.3189. Thus,
shipping Q units of a Class 100 item that weighs w lbs on this lane would result in a per-
unit rate of r(Qw)= 702.67(Qw)−0.3189 $/cwt. Converting to $/unit by multiplying this by

120

100

80

60

40

20

0

E
ffe

ct
iv

e 
ra

te
 (

$/
cw

t)

0 5000 10000 15000 20000 25000 30000 35000 40000

Shipment weight (lbs)

   y � 702.67x�0.3189

R2 � 0.9505

  y � �0.3189x � 6.5549
R2 � 0.9505

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0
4 5 6 7 8 9 10 11

In (shipment weight in lbs)

In
 (

ef
fe

ct
iv

e 
ra

te
 in

 (
$/

cw
t)

)

Effective rate         Power curve estimate

In (Effective rate)       Linear regression estimate

FIGURE 8.13 Examples of non-linear and log-linear regression of shipment weight versus effective rate.
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w/100 cwt/unit, one obtains r(Q) = 7.0267w0.6811Q−0.3189 $/unit. Depending on the source
of the rates, it might also be necessary to assume a discount factor that would reflect what
the shipper would actually contract to pay the LTL carrier for its services. For example,
Tyworth and Ruiz-Torres (2000) apply a 50% discount, which they claim to be typical of
contract-based discounts in practice.∗

8.3.3 Transportation-Inclusive Inventory Decision Making

Let us return to the total annual cost equation developed earlier in the chapter, Equation
8.10. This equation accounts for the cost of placing orders and the costs of holding cycle stock
and safety stock inventories. In the preceding subsections, we indicated that transportation
costs tend to exhibit economies of scale, and we demonstrated, using LTL freight rates, a
method for building a continuous function for transportation costs, r(Q)= CQb. Note also
that, using this model of scale economies in transportation costs, the annual cost of freight
transportation for shipments of size Q to satisfy demand of D units is Q·CQb ·D/Q= DCQb.
Although it seems immediately clear that this rate function could be incorporated into an
annual cost equation, the question is, first, whether it should be incorporated into the TAC
expression, and second, whether it implies any other inventory-related costs.

Marien (1996) provides a helpful overview of what are called freight terms of sale between
a supplier shipping goods and the customer that ultimately will receive them from the carrier
that is hired to move the goods. Two questions are answered by these negotiated freight
terms, namely, “Who owns the goods in transit? ” and “Who pays the freight charges? ” Note
that legally, the carrier that moves the goods is only the consignee and never takes ownership
of the goods. The question of ownership of goods in transit is answered by the “F.O.B.”
terms,† indicating whether the transfer of ownership from supplier (shipper) to customer
(receiver) occurs at the point of origin or the point of destination, hence the terms “F.O.B.
origin” and “F.O.B. destination.” The next issue is which party, shipper or receiver, pays
the freight charges, and here there is a wider array of possibilities. Marien (1996), however,
points out that three arrangements are common: (1) F.O.B. origin, freight collect—in which
goods in-transit are owned by the receiver, who also pays the freight charges; (2) F.O.B.
destination, freight prepaid—in which the shipper retains ownership of goods in transit and
also pays the freight bill; and (3) F.O.B. origin, freight prepaid and charged back, similar
to (1), except that the shipper pays the freight bill up-front and then charges it to the
receiver upon delivery of the goods. These three sets of terms are described pictorially in
Figure 8.14. The distinction of who pays the bill, and the interesting twist implied in (3),
is important in that the party that pays the freight charges is the one who has the right,
therefore, to hire the carrier and choose the transport service and routing.

Note that our TAC expression for inventory management is a decision model for ordering;
thus, it takes the perspective of the buyer, the downstream party that will receive the goods
being ordered. Therefore, the freight transportation terms that involve “freight collect”
or “freight prepaid and charged” back imply that the decision maker should incorporate
a transportation cost term in the TAC expression that is the objective function for the

∗Using empirical LTL rate data from 2004, Kay and Warsing (2006) estimate that the average discount
from published rates is approximately 46%.

†According to Coyle et al. (2006, pp, 473, 490), “F.O.B.” stands for “free on board,” shortened from
“free on board ship.” This distinguishes it from the water-borne transportation terms “free alongside ship”
(FAS), under which the goods transfer ownership from shipper to receiver when the shipper delivers the
goods to the port (i.e., “alongside ship”), leaving the receiver to pay the cost of lifting the goods onto
the ship.
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FIGURE 8.14 Common freight transportation terms.

order-placement decision. If the terms are freight prepaid, then the order-placing decision
maker would not include the transportation cost in its objective function. At this point,
one might object, pointing out that supply chain management must concern itself with a
“supply-chain-wide” objective to minimize costs and maximize profits. My counterargument
is that the Securities and Exchange Commission has not yet required, and likely never will
require, any supply chain to report its revenues and costs; moreover, the Wall Street analysts
who are so important in determining the market valuation of a firm care only about that
firm’s individual profits, not those of its supply chain. Thus, decision models that take the
perspective of the decision-making firm and incorporate only those costs relevant to the firm
are eminently reasonable. (An analysis of complementary, and to some extent competing,
objective functions between a supplier and its customer is presented in Section 8.5.)

The next question we should address is whether the freight terms have any bearing on
inventory holding cost. The answer is—as it often is—“It depends.” Specifically, it depends
on where the ownership of the goods transfers to the receiver. If the receiver is responsible
for the goods in-transit, then it stands to reason that this liability should be reflected in
annual inventory-related costs. From a conservative standpoint, those goods are “on the
books” of the receiver, since, from the shipper’s perspective, the goods were “delivered” as
soon as the carrier took them under consignment. Although typical invoice terms dictate
that money will not change hands between the supplier and customer for between 10 and
30 days, the goods are technically now part of the payable accounts of the customer. Thus,
a conservative perspective would consider them to be “money tied up in inventory,” in this
case, inventory in-transit.

Using an approach suggested by Coyle et al. (2003, pp. 270–274), let us assume that
the lead time L is composed of two parts, a random transit time T and a constant (and
obviously non-negative) order processing time. If the expected transit time is μT , then every
unit shipped spends a fraction μT /Y of a year in transit, where Y is the number of days per
year. If hp is the annual cost of holding inventory in transit, then annual pipeline inventory
cost is given by DhpμT /Y . The resulting total annual cost equation,∗ under F.O.B. origin

∗It is straightforward to show that this cost equation is convex in Q and R. First, note that we are merely
adding a convex term to an equation we already know to be convex. Moreover, one can modify the convexity
proof of the transportation-exclusive equation from Hax and Candea (1984) to formalize the result, although
the details are not included here.
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terms that also require the receiver to pay the freight charges is

TAC(R,Q) = A
D

Q
+ h

(
Q

2
+ R − μDLT

)
+ hpD

μT

Y
+ DCQb (8.17)

Note that the pipeline inventory cost does not depend on the order quantity Q or the
reorder point R. Thus, while it will not affect the optimal values of the decision variables
for a given mode, it may affect the ultimate choice between modes through the effect of
different values of μT on pipeline inventory. Note also that this approach to computing
pipeline inventory costs ignores the time value of money over the transit time; one would
assume, however, that such time value effects are insignificant in almost all cases.

Putting all of these pieces together, let’s consider an example that compares cases with
significant differences in item weight—affecting transportation costs—and item value—
affecting holding costs. Assume that our company currently imports the item in question
from a company based in Oakland, CA, and that our company’s southeast regional distri-
bution center is located in Atlanta, GA. We compare a reorder point–order quantity (Q,R)
solution that excludes freight cost and pipeline inventory carrying costs—that is, from
“F.O.B. destination, freight prepaid” terms—to solutions that incorporate these costs, both
for LTL and TL shipments—using “F.O.B. origin, freight collect” terms—from Oakland to
Atlanta. Assume that our target fill rate at the Atlanta DC is 99%. Our approach to com-
puting the order quantity and reorder point for each of the cases—without transportation
costs, using TL, and using LTL—is as follows:

• For “F.O.B. destination, freight prepaid” terms, compute (Q∗, R∗) using Equa-
tion 8.10 as the objective function, constrained by the desired fill rate.

• For “F.O.B. origin, freight collect” terms using LTL, compute (Q∗
LTL, R∗

LTL)
using Equation 8.17 as the objective function, with the appropriate, empirically
derived values of C and b, and with the solution constrained by the fill rate and
by QLTL ·w≤ 40,000, where w is the item weight, which therefore assumes a
truck trailer weight capacity of 40,000 lbs.∗

• For “F.O.B. origin, freight collect” terms using TL, solve Equation 8.17 for
(Q∗

TL, R∗
TL) as follows:

1. TACmin ←∞; TACTL ← 0; number of truckloads = i= 1
2. Minimize Equation 8.17 with respect to RTL with QTL = i(40,000/w), C equal

to the cost of i truckloads, b=−1, and constrained by the fill rate to obtain
TAC(QTL, RTL).

3. TACTL ←TAC(QTL, RTL)
4. If TACTL < TACmin,

TACmin ← TACTL

i ← i + 1; go to step 2.

5. (Q∗
TL, R∗

TL) = (QTL, RTL)

∗Actually, an LTL carrier would probably not take a shipment of 40,000 lbs, and the shipper would clearly
get a better rate from a TL carrier for this full-TL weight. This is, however, the logical upper bound on the
size of an LTL shipment. In addition, in using this value, we assume that a TL quantity will hit the trailer
weight capacity before the trailer space (volume) capacity—i.e., that we “weigh-out” before we “cube-out.”
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FIGURE 8.15 Example of truckload cost per unit versus number of units shipped.

TABLE 8.8 Example Class 100 LTL
Rates for Oakland-Atlanta Lane
Minimum Weight (lbs) Rate ($/cwt)

1 136.26
500 109.87

1000 91.61
2000 79.45
5000 69.91

10,000 54.61
20,000 48.12
30,000 41.85
40,000 39.12

Before continuing with our example, note that the procedure laid out above to solve for
(Q∗

TL, R∗
TL) is not necessarily guaranteed to generate a global optimum due to the non-

smooth nature of the r(Q) function for TL shipments. For example, Figure 8.15 shows a
plot of r(Q) versus Q for a scenario in which the cost per TL is $5180, the TL capacity
is 40,000 lbs, and the item weight is w = 10 lbs. As Q increases, and therefore the number
of truckloads increases, the freight rate per unit falls, but not in a smooth fashion. Thus,
if TACTL,i is the total cost of shipping i truckloads, depending on the problem param-
eters, even if TACTL,i < TACTL,i−1 and TACTL,i+1 >TACTL,i, it does not immediately
follow that TACTL,i+2 > TACTL,i+1, leaving it unclear as to how TACTL,i compares to
TACTL,i+2. Thus, returning to our discussion at the outset of this section, one can see the
possible value of a TMS in performing the analysis that takes these kinds of parametric
complexities of the problem into account. Nonetheless, for our illustrative example, let us
assume that our approach for computing (Q∗

TL, R∗
TL) is sufficient.

Continuing with our example, the distance from Oakland to Atlanta is 2471 miles.∗

Using a TL price of $0.105/ton-mi (adjusted upward from the TL revenue per mile of
$0.0914/ton-mi from Wilson, 2003), the TL cost is $259/ton. For the LTL rates, we will
assume that we are shipping Class 100 goods with a published rate table as shown in
Table 8.8, resulting in b=−0.2314 and C = 2.435w0.7686, after applying an assumed 50%

∗The distances used in this example were obtained from MapQuest, www.mapquest.com.
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discount from these published rates.∗ Further, we assume a cost of $80 to place a
replenishment order, an on-site holding cost rate at the Atlanta DC of 15%, and an in-
transit holding cost rate of 12%. Finally, we assume that the LTL shipment lead time is
5 days with a standard deviation of 1.5 days, that the TL lead time is 4 days with stan-
dard deviation of 0.8 days, that mean daily demand is 30 units with a standard deviation of
8 units, and that there are 365 selling days per year, such that D = 10,950. Table 8.9 displays
the results, with item weights of w∈{10, 100} (pounds) and item costs of v ∈{$20, $500}.
We report TAC only for the transportation-inclusive cases as this is the only relevant point
of comparison. From the table, one can see that for this case, if our company pays trans-
portation costs, TL is preferred in three of the four weight-cost combinations, with LTL
being preferred only in the low-weight, high-item-cost case. This is reasonable, given the
ability of LTL to allow small shipments sizes that keep inventory holding costs in check.

Let us now assume that we have the option to switch to an importer located in New
York City (NYC), dramatically decreasing the transit distance for replenishment shipments
to the Atlanta DC to 884 mi. Assume further that this importer charges a premium over
the current importer located in Oakland so that the item cost will be 10% higher than in
the Oakland-to-Atlanta case above. Given the distance from NYC to Atlanta, using the
same approach as above, the TL cost is $92.82/ton. For an LTL shipment, the published
rates are given in Table 8.10, resulting in b=−0.3704 and C = 3.993w0.6296. Let us assume
that the LTL lead time from NYC to Atlanta is 2 days, with a standard deviation of 0.6
days, and that the TL lead time is 1 day, with a standard deviation of 0.2 days. Therefore,
although our annual materials cost will increase by 10% if we switch to the NYC importer,
our transportation costs, where applicable, and inventory holding costs—safety stock and,
where applicable, pipeline inventory—will decline. The comparative results are shown in
Table 8.11. As the annual increase in materials cost is $21,900 in the low-item-cost case
and $547,500 in the high-item-cost case, these values serve as the hurdles for shifting to the
NYC source. For the high-item-cost cases, this increase in annual materials costs swamps
the transportation and holding cost savings, even though the transportation costs are cut
dramatically for the cases in which w =100 lbs. The analysis shows, however, that the switch
is viable in the case in which our company pays for freight transportation with a high-weight,
low-cost item. In this case, TL is the preferred freight transit option, and the switch to the
NYC source saves over $88,000 in annual transportation costs and over $91,000 overall.

8.3.4 A More General Transportation Cost Function

In most commercial transportation management and planning systems, LTL rates are deter-
mined using tariff tables, as in the examples above. The major limitations of this approach
are that access to the tariff tables must be purchased and that it is necessary to know what
discount to apply to the tariff rates in determining transportation costs. Kay and Warsing
(2006), however, present a more general model of LTL rates, one that is not specific to a
transportation lane or to the class of the items being shipped, with the item’s density serving
as a proxy for its class rating. This generality allows the rate model to be used in the early
stages of logistics network design, when location decisions are being made and when the most
appropriate shipment size for each lane in the network is being determined. Thus, the model
developed by Kay and Warsing is important for the sort of analysis presented in Section 8.4.

In their model, Kay and Warsing (2006) use average, industry-wide LTL and TL rates
empirically to develop an LTL rate model that is scaled to economic conditions, using the

∗In general, C = [δCww(b+1)]/100, in $/unit, where δ is the discount factor.
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TABLE 8.9 Comparative Results from Inventory-Transportation Analysis

Ordering Holding Pipeline Transp’n
Oakland–Atlanta Freight Terms Mode Q R Cost($) Cost($) Cost($) Cost($) TAC ($)

w = 10, v = $20 Origin–collect TL 4000 120 219 6000 288 14,180 20,687
Origin–collect LTL 3750.99 150 234 5626 360 23,306 29,526
Destination–prepaid — 794.35 179.88 1103 1281 — — —

w = 10, v = $500 Origin–collect TL 4000 120 219 150,000 7200 14,180 171,599
Origin–collect LTL 361.52 201.19 2423 17,396 9000 40,047 68,866
Destination–prepaid — 176.38 217.94 4966 11,710 — — —

w = 100, v = $20 Origin–collect TL 800 127.86 1095 1224 288 141,803 144,409
Origin–collect LTL 400 198.65 2190 746 360 229,616 232,912
Destination–prepaid — 794.35 179.88 1103 1281 — — —

w = 100, v = $500 Origin–collect TL 400 140.70 2190 16,552 7200 141,803 167,745
Origin–collect LTL 400 198.65 2190 18,648 9000 229,616 259,454
Destination–prepaid — 176.38 217.94 4966 11,710 — — —

© 2009 by Taylor & Francis Group, LLC
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TABLE 8.10 Example Class 100 LTL
Rates for NYC-Atlanta Lane
Minimum Weight (lbs) Rate ($/cwt)

1 81.96
500 74.94

1000 61.14
2000 49.65
5000 39.73

10,000 33.44
20,000 18.36
30,000 14.90
40,000 13.36

producer price index for LTL services provided by the U.S. Bureau of Labor Statistics. The
LTL rate model requires inputs of W , the shipment weight (in tons); s, the density (in
lbs/ft3) of the item being shipped; and d, the distance of the move (in mi). From a non-
linear regression analysis on CzarLite tariff rates∗ for 100 random O-D pairs (5-digit zip
codes), with weights ranging from 150 to 10,000 lbs (corresponding to the midpoints between
successive rate breaks in the LTL tariff), densities from approximately 0.5 to 50 lbs/ft3

(serving as proxies for class ratings 500 to 50), and distances from 37 to 3354 mi, the
resulting generalized LTL rate function is

rLTL(W, s, d) = PPILTL

⎡
⎢⎢⎣

s2

8
+ 14(

W (1/7)d(15/29) − 7
2

)
(s2 + 2s + 14)

⎤
⎥⎥⎦ (8.18)

where, as suggested above, PPILTL is the producer price index for LTL transportation,
reported by the U.S. Bureau of Labor Statistics as the index for “General freight trucking,
long-distance, LTL.”† Kay and Warsing (2006) report a weighted average residual error
of approximately 11.9% for this functional estimate of LTL rates as compared to actual
CzarLite tariff rates. Moreover, as industry-wide revenues are used to scale the functional
estimate, the model reflects the average discount provided by LTL carriers to their cus-
tomers, estimated by Kay and Warsing to be approximately 46%.

Thus, for a given lane, with d therefore fixed, the model given by Equation 8.18 provides
estimates of LTL rates for various shipment weights and item densities. Kay and Warsing
(2006) demonstrate the use of the model to compare LTL and TL shipment decisions under
different item value conditions. Moreover, the functional estimate could easily be used to
evaluate the comparative annual cost of sending truckloads of mixed goods with different
weights and densities versus individual LTL shipments of these goods. On the other hand, for
a given item, with a given density, Equation 8.18 provides a means of analyzing the effect of
varying the origin point to serve a given destination, possibly considering different shipment
weights as well. These two analytical perspectives are, as we suggest above, important in
the early stages of supply chain network design, the subject of the section that follows.

∗CzarLite is an LTL rating application developed by SMC3 Company, and it is commonly used as the
basis for carrier rates. The rates used in the study by Kay and Warsing (2006) were obtained in November–
December 2005 from http://www.smc3.com/applications/webczarlite/entry.asp.

†See the Bureau of Labor Statistics website at http://www.bls.gov/ppi/home.htm, Series
ID=PCU484122484122.

http://www.smc3.com
http://www.bls.gov
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TABLE 8.11 Comparative Results from Extended Inventory-Transportation Analysis

Ordering Holding Pipeline Transp’n Change from
NYC–Atlanta Freight Terms Mode Q R Cost($) Cost($) Cost($) Cost($) TAC($) OAK-ATL($)

w = 10, v = $22 Origin–collect TL 4000 30 219 6600 79 5082 11,980 −8707
Origin–collect LTL 2512.92 60 349 4146 158 10,253 14,906 −14,619
Destination–prepaid — 745.02 62.15 1176 1236 — — — 28

w = 10, v = $550 Origin–collect TL 4000 30 219 165,000 1980 5082 172,281 682
Origin–collect LTL 298.71 75.09 2933 13,567 3960 22,565 43,025 −25,841
Destination–prepaid — 157.04 82.59 5578 8341 — — — −2757

w = 100, v = $22 Origin–collect TL 800 30.00 1095 1320 79 50,819 53,313 −91,096
Origin–collect LTL 400 71.31 2190 697 158 86,313 89,358 −143,554
Destination–prepaid — 745.02 62.15 1176 1236 — — — 28

w = 100, v = $550 Origin–collect TL 400 30.00 2190 16,500 1980 50,819 71,489 −96,256
Origin–collect LTL 400 71.31 2190 17,433 3960 86,313 109,895 −149,559
Destination–prepaid — 157.04 82.59 5578 8341 — — — −2757

© 2009 by Taylor & Francis Group, LLC
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8.4 Managing Locations in the Supply Chain

At this point, we have discussed the inventory and transportation legs of Ballou’s triangle,
and along the way, had some brief discussion of customer service as given by α, the cycle
service level, and β, the fill rate. Therefore, we now turn our attention to “location strategy,”
or designing and operating the supply chain network. Key questions to answer in this effort
are as follows: How do we find a good (or perhaps the best) network? What are the key
objectives for the network? What network alternatives should we consider? Once again,
we need to consider the perspective of the decision maker charged with making the design
decisions. Typically, the perspective will be that of a single firm. The objectives may be
diverse. We clearly wish to minimize the cost of operating the network, and as product
prices typically will not change as a function of our network design, this objective should be
sufficient from a financial perspective. Customer service may also need to be incorporated
in the decision, but this may pose a challenge in any explicit modeling efforts. Assuming an
objective to minimize the costs of operating the network for a single firm, the key decision
variables will be the number and locations of various types of facilities—spanning as far as
supplier sites, manufacturing sites, and distribution sites—and the quantities shipped from
upstream sites to downstream sites and ultimately out to customers.

To get a sense of the cost structure of these kinds of models, let us consider a single-echelon
location-allocation problem. This problem is used to determine which sites to include in a
network from a set of n production or distribution sites that serve a set of m customers.
The fixed cost of including site i in the network and operating it across the planning period
(say, a year) is given by fi, and each unit of flow from site i to customer j results in variable
cost cij . Site i has capacity Ki, and the total planning period (e.g., annual) demand at
customer j is given by Dj . Therefore, our objective is to

min
n∑

i=1

fiyi +
n∑

i=1

m∑
j=1

cijxij (8.19)

subject to
n∑

i=1

xij = Dj , j = 1, . . .,m (8.20)

m∑
j=1

xij ≤ Kiyi, i = 1, . . ., n (8.21)

yi ∈ {0, 1}, i = 1, . . ., n (8.22)

xij ≥ 0, i = 1, . . ., n; j = 1, . . .,m (8.23)

where decision variables yi (i= 1, . . ., n) determine whether site i is included in the network
(yi = 1) or not (yi = 0) and xij (i= 1, . . ., n; j = 1, . . .,m) determine the number of units
shipped from site i to customer j. As parameters fi and cij are constants, this problem
is a mixed-integer program (MIP). Depending on the values of n and m, solving it may
be challenging, even by twenty-first-century computing standards, given the combinatorial
nature of the problem.

Moreover, the problem represented by Equations 8.19 to 8.23 above is only a small slice
of the overall network design formulation. If we do indeed wish to consider supplier loca-
tion, production facility locations, and distribution facility locations, then we need loca-
tion variables (y) and costs (f) at each of three echelons and flow variables (x) and
costs (c) to represent the levels and costs of supplier-to-factory, factory-to-distribution, and
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distribution-to-customer flows. In addition, we need to add conservation of flow constraints
that ensure that all units shipped into the factory and distribution echelons are also shipped
back out—unless we consider the possibility of carrying inventories at the various echelons,
another complication that would also possibly entail adding time periods to the model to
reflect varying inventory levels over time. Further, we should keep in mind the data require-
ments and restrictions for formulating this problem. One must have a reasonably good
estimate of the fixed cost of opening and operating each site, the capacity of each site (or at
least a reasonable upper bound on this value), and the variable cost of producing or shipping
goods from this site to other network locations or to customers. In this latter case, one must
assume that these variable costs are linear in the quantities produced or shipped. Earlier in
this chapter, however, we indicated that shipping costs typically exhibit economies of scale;
production costs may do so as well. Moreover, the discrete-location problem formulated
above assumes that a set of candidate locations has been precisely determined in advance
of formulating the problem.

In this author’s mind, the typical IE or operations management treatment of the facility
location problem rushes to a description of the mathematical techniques without first con-
sidering all of the various inputs to the decision. As Ballou (2004, pp. 569–570) rightfully
reminds his readers, “. . . It should be remembered that the optimum solution to the real-
world location problem is no better than the model’s description of the problem realities.”

In addition, decisions regarding facility locations have significant qualitative aspects to
them as well. As with customer service, these factors may be challenging to incorporate
into a quantitative decision model. Indeed, in the author’s opinion, the typical academic
treatment of the facility location problem is one that could benefit from a serious consider-
ation of what practitioners faced with facility location decisions actually do. This author’s
reading of the trade press indicates that those practitioners, rightly or wrongly, devote only
a small portion—if any—of their decision-making process to solving traditional facility loca-
tion models. Consider this list of the “ten most powerful factors in location decisions” from
a 1999 survey of readers of Transportation and Distribution magazine (Schwartz, 1999a),
in order of their appearance in the article: reasonable cost for property, roadway access for
trucks, nearness to customers, cost of labor, low taxes, tax exemptions, tax credits, low
union profile, ample room for expansion, community disposition to industry. In fact, only
two, or perhaps three, of these ten—property and labor costs, and perhaps low taxes—could
be directly incorporated into one of the classic facility location models. The others could be
grouped into what another T&D article (Schwartz, 1999b) referred to as service-oriented
issues (roadway access, nearness to customers) and local factors (tax exemptions, tax cred-
its, union profile, expansion opportunity, and community disposition). That T&D article
goes on to state, mostly from consulting sources, that service-oriented issues now “domi-
nate,” although this is not, in this author’s mind, a “slam-dunk” conclusion. For example,
2004–2005 saw significant public debate in North Carolina as to the public benefit—or pub-
lic detriment—of using state and local tax incentives to lure businesses to locate operations
in a given community (Reuters, 2004; Cox, 2005; Craver, 2005). Given the coverage devoted
to the effects of tax incentives on these location decisions, it would be hard to conclude as
the T&D article did, that “local issues” are “least consequential” (p. 44). A more thoughtful
perspective can be found in another trade publication discussion (Atkinson, 2002, p. S65),
which states, “While everyone can identify the critical elements, not all of them agree on
the order of priority.”

From a broader perspective, Chopra and Meindl (2004) suggest that supply chain net-
work design encompasses four phases: Phase I—SC Strategy, Phase II—Regional Facility
Configuration, Phase III—Desirable Sites, Phase IV—Location Choices. They also suggest
a number of factors that enter into these decisions. In our discussion, we will indeed start
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from supply chain strategy. The primary strategic choice in the treatment of supply chain
network design that follows will be how centralized or decentralized the network design
should be. Given the complexity of the network design process, it is reasonable to frame
it as an iterative one, perhaps evaluating several network options that range from highly
centralized to highly decentralized. Ultimately, a choice on this centralized-decentralized
spectrum will lead to a sense of how many facilities there should be at each echelon of
the network. Once the decision maker has an idea of the number of facilities and a rough
regional configuration, he or she can answer the question of where good candidate locations
would be using a continuous-location model, along the lines of that studied by Cooper (1963,
1964). This “ballpark” set of locations can then be subjected to qualitative analysis that
considers service-oriented issues and local factors. Therefore, let us first turn our attention
to understanding the differences between centralized and decentralized networks.

8.4.1 Centralized Versus Decentralized Supply Chains

Let us focus on the design of a distribution network and address the following questions:
How centralized should the network be? What are the advantages of a more centralized or
a more decentralized network? This issue can clearly be addressed in the context of the legs
and center of Ballou’s strategic triangle—inventory, locations, and transportation on the legs
and customer service in the center. Consider the two DC networks laid out in Figure 8.16.
Network 1 is more centralized, with only four distribution points, laid out essentially on the
compass—west, central, northeast, and southeast. Network 2 is more decentralized, with
a hub-spoke-type structure that has twenty additional DCs located near major population
centers and ostensibly fed by the regional DCs that encompassed all of Network 1. Starting
with transportation, we can break the tradeoffs down if we first consider transportation
outbound from DCs to customers versus transportation inbound to the DCs, or essentially
within the network. In the context of the facility location problem (Equations 8.19 to 8.23)
laid out above, these would be costs cij for shipments from DC i to customer j and costs
c0i for shipments from the factory (location 0) to DC i.

As shipments to customers—often called the “last mile” of distribution—typically involve
smaller quantities, perhaps only a single unit, it is often difficult to garner significant scale-
driven discounts for these shipments. However, it is clear from our discussion above that
distance, in addition to weight, is a significant factor in the cost of freight transportation.
More weight allows greater economies in unit costs, but more distance increases the variable
costs of the carrier and thereby increases the cost of the transportation service to the

DC Network 2DC Network 1

� Plant

� Level 1 distribution center

� Level 2 distribution center

FIGURE 8.16 Comparative distribution networks.
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shipper. Note that the centralized network will clearly involve longer “last-mile” shipments
to customers than the decentralized network. Although it is possible that larger loads may
be moved on vehicles outbound to a set of customers from a centralized site, it is quite
possible that neither network affords much chance for significant bulk shipping activity
outbound, particularly if the outbound shipments must be made to customers that are
dispersed widely. Thus, one could argue persuasively that outbound distribution costs are
larger in centralized networks.

On the inbound side of the DCs, however, the situation flips. With only a few DCs in the
centralized network, the shipments from the supply points (e.g., plants, suppliers) into the
final distribution points are more likely to garner significant economies of scale in trans-
portation, and therefore, “within-network” freight costs should be lower in a centralized
distribution network. In addition, Figure 8.16 clearly shows that there are fewer miles to
travel in moving goods to the final distribution points in a centralized network, another
source of lower within-network freight transportation costs in a centralized network. How-
ever, as shipments inbound will tend to be packed in bulk, more dense, and perhaps less
time-sensitive, inbound transportation costs for a given network are likely to be much lower
than outbound costs. Thus, it stands to reason that transportation costs will net out to
be lower in a decentralized network, wherein relatively expensive “last-mile” transportation
covers shorter distances. Moreover, it should be immediately clear that customers would
prefer the decentralized network for its ability to reduce order fulfillment lead times.

From the standpoint of locations, there are obviously fewer locations in a centralized DC
network, and therefore, this network will result in lower fixed and operating costs driven by
facilities (e.g., amortization of loans, payment of leases, operating equipment, labor). In the
context of our facility location problem since fewer DC locations (yi) would be involved in
the centralized problem (or more of them would be forced to be yi =0), the sum

∑n
i=1 fiyi

in the objective function would necessarily be smaller in a more centralized solution.
Thus, we have addressed two legs of the SC strategy triangle, transportation, and loca-

tions. We are left with inventory. The effects of centralizing, or not, on this leg are richer,
and therefore, I will devote the section that follows to this topic.

8.4.2 Aggregating Inventories and Risk Pooling

Vollmann et al. (2005, p. 275) point out that “. . . if the uncertainty from several field
locations could be aggregated, it should require less safety stock than having stock at each
field location.” Indeed, in one’s mind’s eye, it is relatively easy to see that the ups and
downs of uncertain demand over time in several independent field locations are likely to
cancel each other out, to some extent, when those demands are added together and served
from an aggregated pool of inventory. This risk pooling result is the same as the one that
forms the basis of financial portfolio theory, in which the risk—that is, the variance in
the returns—of a portfolio of investments is less than the risk of any single investment
in the portfolio. Thus, an investor can cushion the ups and downs, as it were, or reduce
the variability in his investments by allocating his funds across a portfolio as opposed to
concentrating all of his funds in a single investment.

Looking at this risk pooling effect from the standpoint of inventory management, since
safety stock is given by SS = zσDLT , one would reasonably infer that the risk pooling effects
of aggregating inventories must center on the standard deviation of demand over the replen-
ishment lead time, σDLT . Indeed, this is the case. If we have, for example, descriptions of
lead-time demand for N distribution regions, with a mean lead-time demand in region i of
μDLT,i and standard deviation of lead-time demand in region i of σDLT,i, then aggregating
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demand across all regions results in a pooled lead-time demand with mean

μDLT,pooled =
N∑

i=1

μDLT,i (8.24)

and standard deviation

σDLT,pooled =

√√√√ N∑
i=1

σ2
DLT,i + 2

N−1∑
i=1

N∑
j=i+1

ρijσDLT,iσDLT,j (8.25)

where ρij is the correlation coefficient of the demand between regions i and j. If demand
across all regions is independent, then ρij = 0 for all i, j = 1, . . ., N (i �= j), and Equation 8.25
reduces to

σDLT,pooled =

√√√√ N∑
i=1

σ2
DLT,i (8.26)

By the triangle inequality,
√∑N

i=1 σ2
DLT,i ≤

∑N
i=1 σDLT,i, and therefore,

SSpooled = zσDLT,pooled ≤ z

N∑
i=1

σDLT,i = SSunpooled (8.27)

a result that holds for any values of ρij , since perfect positive correlation (ρij = 1 for all
i, j = 1, . . ., N) makes Equation 8.27 an equality (SSpooled = SSunpooled) and negative corre-
lation actually increases the pooling-driven reduction in safety stock beyond the indepen-
dent case.

Let’s consider an example. Assume we are interested in designing a distribution network
to serve 40 customers. An important decision is the number of distribution sites we need to
serve those 40 customers. Our choices range from just a single distribution center (DC) up
to, theoretically, 40 DCs, one dedicated to serving each customer. In our simplified system,
let’s assume that there is no fixed cost to place an order to replenish inventory at any
distribution site and that demand over the replenishment lead time for any distribution site
and any customer served is normally distributed with mean μ= 50 and standard deviation
σ = 15. Therefore, at any DC in the network, since there is no ordering cost, we can set
the stocking level by using a base-stock policy, with a stocking level at DC i equal to
Bi = μi + zασi, where μi is the mean demand over the replenishment lead time for the set
of customers served by DC i, σi is the standard deviation of this demand, and zα is the
safety stock factor that yields a CSL of α. If DC i serves ni (1≤ni ≤ 40) customers, then
using Equations 8.24 and 8.25 above,

μi = niμ (8.28)
and

σi =

√√√√ ni∑
j=1

σ2 + 2
ni−1∑
j=1

ni∑
k=j+1

ρjkσ2 (8.29)

where ρjk is the correlation coefficient of the demand between customers j and k. If ρjk = ρ
for all j, k = 1, . . ., 40 (j �= k), then it is easy to show that Equation 8.29 reduces to

σi =
√

[ni(1 − ρ) + ρn2
i ] σ2 (8.30)
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FIGURE 8.17 Example of risk-pooling-driven reduction in inventory.

TABLE 8.12 Risk Pooling-Based Reduction in Safety
Stock with n = 40 Customers

SS at ρ =0Number of Number of DCs
Customers per DC in Network Units % of E[D] = nμ

1 40 768.9 38.45
2 20 543.7 27.19
4 10 384.5 19.22
5 8 343.9 17.19
8 5 271.9 13.59

10 4 243.2 12.16
20 2 171.9 8.60
40 1 121.6 6.08

Note that when ρ= 0 (i.e., the aggregated customer demands are independent), σi =σ
√

ni,
meaning that safety stock increases with the square root of the number of sites aggregated—
that is, sub-linearly. In contrast, when ρ= 1 (i.e., the aggregated customer demands are
perfectly correlated), σi =niσ, meaning that—as we pointed out in the more general dis-
cussion above—the standard deviation of the aggregated demands is simply the sum of
the standard deviations of the disaggregated demands. Figure 8.17 shows the total system
inventory required in the distribution system to achieve α = 0.90 as ni ranges from 1 to
40 at various levels of demand correlation (where ρ is expressed as r in the legend of the
graph). Table 8.12 shows the reduction in system safety stock as a percentage of overall
lead-time demand as the number of DCs in the network declines, assuming independent
demands across customers.

The example above highlights the notion of postponement in the supply chain. In our
network configuration, risk pooling through aggregation is a means of time (or place)
postponement, where the forward movement of the goods to (or near) the final points of
consumption is postponed until more is known about demand at those points of consump-
tion. The opposite approach, in a decentralized network, is to speculate and move the goods
to points closer to customers in advance of demand. As Chopra and Meindl (2004) point
out, an approach that attempts to attain the best of both worlds—safety stock reduction



© 2009 by Taylor & Francis Group, LLC

8-44 Operations Research Applications

through aggregation while still retaining the customer service benefits of a decentralized
network—would be to virtually aggregate inventory in the network. The idea is to allow all
DCs in the network to have visibility to and access to inventory at all other DCs in the net-
work, such that when a particular DC’s inventory approaches zero before a replenishment
can arrive from the supplier, that DC can request a transshipment of inventory in excess
at another DC. Chopra and Meindl (2004) point out that Wal-Mart has used this strategy
effectively. With such an approach, demand at all locations is virtually pooled, with the
reductions in safety stock and improvements in customer service coming at the expense of
the transshipments that rebalance supply when necessary.

Rounding out this discussion, it is worthwhile to point out that another type of postpone-
ment is form postponement, whereby the final physical conversion of a product is delayed
until more is known about demand. The two now-classic examples of form postponement
in the operations management literature come from Hewlett-Packard (HP), the comput-
ing equipment manufacturer, and Benetton, a major apparel company. As described by
Feitzinger and Lee (1997), the HP Deskjet printer was redesigned such that the power sup-
ply was converted to a drop-in item that could be added to a generic printer in distribution
centers. The previous approach was to manufacture printers with country-specific power
supplies—due to the different electrical power systems in various countries—in the manu-
facturing process. This change in product and packaging design allowed HP to aggregate all
demand around the globe into demand for a single, generic printer and hold only the dif-
ferentiating items, the power supply, and various cables, at in-country distribution centers.
In the case of Benetton, it changed the order of manufacturing operations to re-sequence
the dyeing and sewing processes for sweaters. The previous approach, time-honored in the
apparel manufacturing industry, was first to dye bolts of “greige” (un-colored) fabric and
then cut that dyed fabric into its final form to be sewn into apparel items. Benetton swapped
this sequence to first cut and sew “greige” sweaters that would be dyed after more infor-
mation could be collected about demand for color-specific items. By doing so, demand for
all colors can be aggregated into demand for a single item until a point in time when the
inherent uncertainty in demand might be reduced, closer to the point of consumption.

One final point regarding risk pooling effects on inventory is that these effects change
significantly with changes in the coefficient of variation, cv = σ/μ, of demand. This gets to
the notion of classifying inventory items as slow movers versus fast movers. Fast movers have
expected demands that are relatively large and predictable, thereby resulting in lower cv
values. On the other hand, slow movers have expected demands that are relatively small and
unpredictable, resulting in higher values of cv. Thus, the relative benefit of centralizing slow
movers, in terms of safety stock reduction, will tend to be quite a bit larger than the benefit
of centralizing fast movers. This effect is demonstrated in Figure 8.18, which uses our 40-
customer example, still with mean lead-time demand of μ= 50 for each customer, but now
with standard deviations varying from σ = 2.5 (cv = 0.05) to σ = 17.5 (cv = 0.35—beyond
which the normal distribution will exhibit more than a 1 in 1000 chance of a negative value,
inappropriate for modeling customer demands). A simple rule of thumb that results from
this data would be to centralize the slow movers to maximize the benefits of risk pooling-
driven reductions in inventory and to stock the fast movers closer to points of consumption
to maximize the benefits of rapid customer service for these high-demand items.

8.4.3 Continuous-Location Models

Note that the discrete-location MIP model for facility location does not, in the form we
stated it above, include any inventory effects of the decision variables. Moreover, it is clear
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FIGURE 8.18 Effect of variability on risk-pooling impact on inventory levels.

from our discussion above that the effect of the centralizing decision on inventory levels
in the network is non-linear. An MIP formulation could handle such non-linear effects via
a piecewise linear approximation, but this would only add more integer variables to the
formulation.∗ A better approach, however, might be to consider a facility location model
that allows a non-linear objective function, as the most general formulation of the prob-
lem is likely to have a number of sources of non-linearity in costs: non-linear production
costs driven by economies of scale in production, non-linear transportation costs driven
by economies of scale in transportation, and non-linear inventory holding costs driven by
the risk-pooling effects of centralizing inventory in the network. Moreover, in the opinion
of the author, this approach is probably more consistent with the manner in which facil-
ity location decisions are made in practice. The resulting approach would be iterative and
would not feed a specific set of candidate locations into the modeling effort a priori, but
rather would use some preliminary modeling efforts to generate a rough geographic idea
of what might be good candidate locations, perhaps guided by the customer service impli-
cations of fewer distribution locations farther from customers, on average, or vice versa.
The resulting candidate locations from the cost-service tradeoffs could be subjected to a
more qualitative analysis based on the types of “local factors” discussed earlier in this
section.

The basis for this formulation of the facility location problem is commonly referred to as
the “gravity model,” typically formulated to minimize the costs of moving goods through
the facility, in general, taking receipts from sources and ultimately satisfying demand at
customers. In this formulation, the decision variables are x and y, the coordinates of the
facility location on a Cartesian plane. The input parameters are Di, the total volume—in

∗Most introductory operations research textbooks include such formulations; see, for example, Winston
(1994).
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TABLE 8.13 Input Data for Gravity Location Example
Fi Di

i ($/ton-mi) (Tons) xi yi

Source Locations 1 Buffalo 0.90 500 700 1200
2 Memphis 0.95 300 250 600
3 St. Louis 0.85 700 225 825

Customer Locations 4 Atlanta 1.50 225 600 500
5 Boston 1.50 150 1050 1200
6 Jacksonville 1.50 250 800 300
7 Philadelphia 1.50 175 925 975
8 New York 1.50 300 1000 1080

tons, for example—moved into (out of) the facility from source (to customer) i∈{1, . . .,m}
and Fi, the cost—in $/ton-mi, for example—to move goods to (from) the facility from
source (to customer) i∈{1, . . .,m}. Then, the problem is to

min
m∑

i=1

FiDidi (8.31)

where di =
√

(xi −x)2 + (yi − y)2, the Euclidean distance between the location (x, y) of the
facility and the locations (xi, yi) (i= 1, . . .,m) of the sources and customers that interact
with the facility being located. The “gravity” aspect of the problem stems from the fact
that the combined cost and distance of the moves into and out of the facility drive the
solution, with a high-volume or high-cost source or customer exerting significant “gravity”
in pulling the ultimate location toward it to reduce the cost of moving goods between the
facility and that source or customer.

Consider a small example, based on an example from Chopra and Meindl (2004), with
three sources and five customers. The input data for this example is shown in Table 8.13.
The optimal solution, found easily using the Solver tool embedded in Excel, is to locate the
facility that interacts with these sources and customers at (x, y)= (681.3, 882.0). A graphical
view of the problem data and the solution (labeled as “initial solution”) are shown in
Figure 8.19.

To illustrate the “gravity” aspects of this model, consider an update to the original
problem data. In this situation, assume that it is cheaper to move goods from the source
in Buffalo (F1 = 0.75) and more expensive to move them from the sources in Memphis
(F2 = 1.00) and St. Louis (F3 = 1.40), and assume that it is also cheaper to move goods to
the customers in Boston, New York, and Philadelphia (F5 = F7 =F8 = 1.30), but that the
costs of moving goods to Atlanta and Jacksonville stay the same. The combined effects of
these changes in transportation costs is to exert some “gravity” on the optimal solution
and shift it west and south, to attempt to reduce the mileage of the moves that are now
more expensive. Indeed, the updated optimal solution is (x, y)= (487.2, 796.8), shown as
“updated solution” in Figure 8.19.

Of course, the example above is a simplified version of the larger-scale problem. A typical
problem would involve a larger number of customers, and possibly also a larger number of
sources. In addition, the cost of moving goods to/from the facility location in our example
is a constant term, irrespective of the distance the goods are moved. In general, this cost
could be some non-linear function of the distance between the source/customer and the
facility, as discussed earlier in the chapter (e.g., the general function for LTL rates derived
by Kay and Warsing, 2006). In addition, a more general formulation would allocate sources
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FIGURE 8.19 Gravity location data and solution.

and customers to n candidate locations. The general formulation would be to

min
n∑

i=1

mS∑
j=1

δS
ijFijDjdij +

n∑
i=1

mC∑
k=1

δC
ikFikDkdik (8.32)

subject to
mS∑
j=1

δS
ij = 1 i = 1, . . ., n (8.33)

mC∑
k=1

δC
ik = 1 i = 1, . . ., n (8.34)

δS
ij ∈ {0, 1} i = 1, . . ., n; j = 1, . . .,mS (8.35)

δC
ik ∈ {0, 1} i = 1, . . ., n; k = 1, . . .,mC (8.36)

In addition to the generalized location decision variables (xi, yi) for each candidate facility
location i= 1, . . ., n, this formulation also introduces allocation decisions δS

ij and δC
ik, binary

variables that allocate each source and each customer, respectively, to a candidate facility.
Constraints (8.33) and (8.34) ensure that each source and each customer is allocated to
exactly one candidate facility.

Given the nature of this problem—a constrained, non-linear optimization—it would
appear that this is no easier to solve, and perhaps significantly more challenging to solve,
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than the MIP facility location problem we introduced at the outset of this section. Indeed,
solving Equations 8.32 to 8.36 to optimality would be challenging. Note, however, that for a
given allocation of sources and customers to candidate facilities—that is, if we fix the values
of δS

ij and δC
ik—the problem decomposes into n continuous-location problems of the form

of Equation 8.31. In fact, this approach has been suggested by Cooper (1964), in what he
described as an “alternate location-allocation” (ALA) algorithm. Starting from some initial
allocation of sources and customers to sites, one solves the n separate location problems
exactly. Then, if some source or customer in this solution could be allocated to another
candidate location at a net reduction in total cost, that source or customer is reallocated
and the overall solution is updated. The process continues until no further cost-reducing
reallocations are found. This algorithm results in a local minimum to the problem, but
not necessarily a global minimum. Cooper shows, however, that the algorithm is fast and
generates reasonably good solutions. More recent work (Houck et al., 1996) has shown that
the ALA procedure is actually quite efficient in reaching an optimal solution in networks
with fewer than 25 candidate facilities.

In addition, the ALA approach appears to be promising in allowing for a more generalized
functional form of the cost to move goods and fulfill demands in the network. Bucci and Kay
(2006) present a formulation similar to Equations 8.32 to 8.36 above for a large-scale distri-
bution problem—limited to customer allocations only—applied to the continental United
States. They use U.S. Census Bureau data to generate 877 representative “retail locations”
from 3-digit ZIP codes, with the relative demand values based on the populations of those
ZIP codes. They consider locating six fulfillment centers to serve these 877 customers. The
fulfillment centers exhibit economies of scale in production such that the cost of producing
a unit of output decreases by an exponential rate with increasing size of the facility. Facility
size is determined by the amount of demand allocated to the facility, with the relative costs
given by c2/c1 = (S2/S1)b, where ci is the production cost for facility i, Si is the size of facil-
ity i, and b is a constant value provided as an input parameter. Bucci and Kay (2006) cite
Rummelt (2001), who in turn cites past studies to estimate that b≈−0.35 for U.S. manufac-
turers. In addition, Bucci and Kay consider the ratio of production and transportation costs
as an input parameter to their problem formulation. Thus, their formulation minimizes the
sum of the production and transportation costs that result from the allocation of candidate
facilities to customers. Figure 8.20 shows a series of solutions that result from their analysis,
using b=−0.4 and production costs at 16% of transportation costs. The initial solution at
the top of the figure is a static solution that does not incorporate production economies;
the middle solution is intermediate in the ALA process; and the bottom solution is the final
ALA solution. This solution process provides a graphical sense of the manner in which Bucci
and Kay’s modified ALA procedure balances production and transportation costs, with the
final solution aggregating the demands of the densely populated eastern United States to
be served by a single large-scale facility and consolidating what initially were three western
facilities into two, ultimately resulting in a five-facility solution.

8.5 Managing Dyads in the Supply Chain

Much of the discussion in previous sections in this chapter, particularly in the immediately
preceding section, considers issues related to the design of the supply chain. Our emphasis
up to this point has been to carefully consider and understand the interaction of inventory,
transportation, and location decisions on SC design. In our inventory discussion, we got
some sense of how operating policies can affect the performance of the SC. The perspective
of the entire chapter thus far has really been from the standpoint of a single decision maker.
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FIGURE 8.20 Series of ALA solutions (from Bucci and Kay, 2006).

An important issue in managing the supply chain, however, is how firms in the supply
chain interact with one another. From a supply and demand perspective, the firms in any
supply chain interact through orders placed upstream to replenish supply and shipments
sent downstream to fulfill the demand represented by those orders. Vollmann et al. (2005),
however, cogently point out that understanding how to manage the supply chain really
requires a focus on firm-to-firm interactions in dyads. While it is indeed the complex network
of these dyads that truly comprises the supply chain, one cannot possibly hope to understand
all of the complexity of those many interactions without first stepping back to try and
understand the factors that drive each dyad relationship individually.

In the past decade, a number of practitioners and supply chain management researchers
have lent a significant attention to the level of variability in the stream of orders placed over
time. Empirical evidence (Blinder, 1982, 1986; Lee et al., 1997b; Chen et al., 2000; Callioni
and Billington, 2001) shows that replenishment orders demonstrate increasing variability
at successive upstream echelons of a supply chain. Lee et al. (1997b) report that Procter &
Gamble noted this phenomenon, called the bullwhip effect, in its supply chain for Pampers
diapers. Underlying demand for diapers over a relatively short period of time, say a few
months, tends to be quite stable, as one would predict—babies clearly go through them at
a pretty steady rate, as any parent knows first-hand! However, P&G noticed that, although
underlying consumer demand for Pampers was stable, the orders from retailers to their
wholesalers were more volatile than consumer demand, while orders from wholesalers to
P&G were more volatile still, and orders from P&G to its suppliers were more volatile still.



© 2009 by Taylor & Francis Group, LLC

8-50 Operations Research Applications

Indeed, the bullwhip effect is formally defined by this phenomenon, an increasing level of
variability in orders at successive upstream echelons of the supply chain.

Although the effect has been the subject of much discussion in the supply chain man-
agement literature since, roughly, the mid-1990s, the effect has been studied quite a bit
longer than this. As we indicated above, economists began to study the effect and its ori-
gins in earnest in the mid-1980s (Blinder, 1982, 1986; Caplin, 1985; Khan, 1987). Moreover,
the famous systems dynamics studies of Forrester (1961) ultimately have had a tremen-
dous impact on supply chain management education, with scores of students each academic
year playing the famous “Beer Game” that resulted from follow-on work to Forrester’s by
Sterman (1989). In playing the Beer Game, students run a four-echelon supply chain for
“beer” (typically, only coins that represent cases of beer—to the great relief of many uni-
versity administrators, and to the great dismay of many students), ultimately trying to
fulfill consumer demand at the retailer by placing orders with upstream partners, eventu-
ally culminating in the brewing of “beer” by a factory at the farthest upstream echelon
in the chain. Indeed, the author’s experience in playing the game with business students
at all levels—undergraduates, MBAs, and seasoned managers—has never failed to result in
bullwhip effects in the chains playing the game, sometimes in a quite pronounced fashion.

A natural question, and one that researchers continue to debate, is what causes this
effect. If the underlying demand is relatively stable, and orders are meant ultimately to
replenish this underlying demand, why should orders not also be relatively stable? The
astute reader may quickly identify an issue from our discussion of the inventory above,
namely that the economics of the ordering process might dictate that orders be batched
in order to, reduce the administrative costs of placing orders or the scale-driven costs of
transporting order fulfillment quantities from the supplier to the customer. Indeed, Lee
et al. (1997a,b) identify order batching as one of four specific causes of the bullwhip effect,
and the economic studies of the 1980s (Blinder, 1982, 1986; Caplin, 1985) clearly note this
cause. The other causes as described by Lee et al. are demand forecast updating, price fluc-
tuations, and supply rationing and shortage gaming. The last two effects are fairly straight-
forward to understand, namely that a customer might respond to volume discounts or
short-term “special” prices by ordering out-of-sync with demand, or that a customer might
respond to allocations of scarce supply by placing artificially-inflated orders to attempt
to secure more supply than other customers. For the purposes of understanding reason-
ably simple dyad relationships, we will focus only on order batching and demand forecast
updating, leaving the complexities of pricing and shortage gaming outside the scope of our
discussion.

Indeed, the method used to generate the demand forecast at each echelon in the supply
chain can have a significant impact on the stream of orders placed upstream. Vollmann
et al. (2005) provide a simple example to demonstrate the existence of the bullwhip effect;
this example is repeated and extended in Table 8.14 and Figure 8.21. We extend what is a
10-period example from Vollmann et al. to 20 periods that cover two repeating cycles of a
demand stream with slight seasonality. In addition, we institute a few policy rules: (1) that
orders must be non-negative, (2) that shortages at the manufacturer result in lost consumer
demand, (3) that shortages at the supplier are met by the manufacturer with a supplemental
source of perfectly reliable, immediately available supply. The example of Vollman et al.
employs a relatively simple, and essentially ad hoc, forecast updating and ordering policy
at each level in the chain: in any period t, order 2Dt − It, where Dt is actual demand in
period t and It is the ending inventory in period t, computed after fulfilling as much of Dt as
possible from the beginning inventory. Thus, the current demand is used as the forecast of
future demand, and as the replenishment lead time is one period (i.e., an order placed at the
end of the current period arrives at the beginning of the next period—one could obviously
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TABLE 8.14 Bullwhip Example from Vollmann et al. (2005) Altered for Minimum Order Size of 0 and
Horizon of 20 Periods

Manufacturer Supplier
Consumer

Period Sales Beg Inv End Inv Lost Dmd Order Beg Inv End Inv Lost Dmd Order

1 50 100 50 0 50 100 50 0 50
2 55 100 45 0 65 100 35 0 95
3 61 110 49 0 73 130 57 0 89
4 67 122 55 0 79 146 67 0 91
5 74 134 60 0 88 158 70 0 106
6 67 148 81 0 53 176 123 0 0
7 60 134 74 0 46 123 77 0 15
8 54 120 66 0 42 92 50 0 34
9 49 108 59 0 39 84 45 0 33

10 44 98 54 0 34 78 44 0 24
11 50 88 38 0 62 68 6 0 118
12 55 100 45 0 65 124 59 0 71
13 61 110 49 0 73 130 57 0 89
14 67 122 55 0 79 146 67 0 91
15 74 134 60 0 88 158 70 0 106
16 67 148 81 0 53 176 123 0 0
17 60 134 74 0 46 123 77 0 15
18 54 120 66 0 42 92 50 0 34
19 49 108 59 0 39 84 45 0 33
20 44 98 54 0 34 78 44 0 24

Min 44 38 34 6 0
Max 74 81 88 123 118

Avg 58.1 58.7 57.5 60.8 55.9
Fill rate 100.0% 100.0%

Range 30 54 118

Std Dev 9.16 17.81 39.04
Ratio 1.94 Ratio 4.26
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FIGURE 8.21 Bullwhip example from Vollmann et al. (2005) with horizon of 20 periods.

debate whether this a lead time of zero), the policy amounts to carrying a period’s worth
of safety stock.

We measure the severity of the bullwhip effect by taking the ratio of the standard devi-
ation of the orders placed at each echelon to the standard deviation of consumer sales.
As one can see, the example in Table 8.14 and Figure 8.21 demonstrates a clear bullwhip
effect, with manufacturer orders exhibiting about twice the volatility of consumer sales and
supplier orders exhibiting more than four times the volatility. One conclusion that we could
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TABLE 8.15 Bullwhip Example with Two-Period Lead Time
Manufacturer Supplier

Consumer

Period Sales Beg Inv End Inv Lost Dmd Order Beg Inv End Inv Lost Dmd Order

1 50 100 50 0 50 100 100 – 0
2 55 50 0 5 110 100 50 0 170
3 61 50 0 11 122 50 0 60 244
4 67 110 43 0 91 170 48 0 134
5 74 165 91 0 57 292 201 0 0
6 67 182 115 0 19 335 278 0 0
7 60 172 112 0 8 278 259 0 0
8 54 131 77 0 31 259 251 0 0
9 49 85 36 0 62 251 220 0 0

10 44 67 23 0 65 220 158 0 0
11 50 85 35 0 65 158 93 0 37
12 55 100 45 0 65 93 28 0 102
13 61 110 49 0 73 65 0 0 146
14 67 114 47 0 87 102 29 0 145
15 74 120 46 0 102 175 88 0 116
16 67 133 66 0 68 233 131 0 5
17 60 168 108 0 12 247 179 0 0
18 54 176 122 0 0 184 172 0 0
19 49 134 85 0 13 172 172 0 0
20 44 85 41 0 47 172 159 0 0

Min 44 0 0 0 0
Max 74 122 122 278 244

Avg 58.1 59.55 57.4 130.8 55.0
Fill rate 98.6% 94.8%

Range 30 122 244
Std Dev 9.16 35.23 77.32

Ratio 3.85 Ratio 8.44

draw from this example is that an ad hoc ordering policy can cause a bullwhip effect. Fair
enough—but an important aspect of this conclusion is that many supply chains are, in
practice, driven by similarly ad hoc ordering policies, an observation noted by the author
in conversations with practicing managers and also supported by Chen et al. (2000).

Thus, even without the type of complexities in the demand stream such as the serial
correlation in demand studied by Khan (1987), Lee et al. (1997a), and Chen et al. (2000), our
simple example shows the bullwhip effect in action. Chen et al. (2000), however, demonstrate
a key point—that the magnitude of the bullwhip effect can be shown to be a function, indeed
in their case a super-linear function, of the replenishment lead time. Thus, let us alter the
Vollmann et al. (2005) example to consider a situation in which the replenishment lead
time is two periods—that is, where an order placed at the end of period t arrives at the
beginning of period t +2. Using the same ad hoc ordering policy as above, the results are
shown in Table 8.15 and Figure 8.22. Clearly, the bullwhip effect gets dramatically worse
in this case, essentially doubling the variability in orders at both echelons with respect to
consumer demand.

Now let’s try some simple things to mitigate the bullwhip effect in this example. First,
we will use a base-stock ordering policy at both the manufacturer and the supplier. As the
original example did not specify an ordering cost, we will assume that this cost is zero or
negligible. Thus, for stationary demand, a stationary base-stock policy would be warranted;
however, in our example, demand is not stationary. Let us therefore use an “updated base-
stock” policy, where the base-stock level will be updated periodically, in this case every five
periods. We will assume that the manufacturer bases its base stock policy on a forecast of
demand, with a forecasted mean and standard deviation of per-period demand of μM

1 = 65
and σM

1 =10 in the periods 1–5 and μM
2 = 55 and σM

2 =10 in the periods 6–10. These
parameters are also used in the second demand cycle, with the higher mean being used as
the demand rises in periods 11–15 and the lower mean as demand falls in periods 16–20.
We will assume that the supplier uses a forecast of the manufacturer’s orders to compute
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FIGURE 8.22 Bullwhip example with two-period lead time.

TABLE 8.16 Bullwhip Example with Updated Base-Stock Orders
Manufacturer Supplier

Consumer

Period Sales Beg Inv End Inv Lost Dmd B Order Beg Inv End Inv Lost Dmd B Order

1 50 100 50 0 83 33 100 100 – 96 0
2 55 50 0 5 83 83 100 67 0 96 29
3 61 33 0 28 83 83 67 0 16 96 96
4 67 83 16 0 83 67 29 0 54 96 96
5 74 99 25 0 83 58 96 29 0 96 67
6 67 92 25 0 73 48 125 67 0 102 35
7 60 83 23 0 73 50 134 86 0 102 16
8 54 71 17 0 73 56 121 71 0 102 31
9 49 67 18 0 73 55 87 31 0 102 71

10 44 74 30 0 73 43 62 7 0 102 95
11 50 85 35 0 83 48 78 35 0 60 25
12 55 78 23 0 83 60 130 82 0 60 0
13 61 71 10 0 83 73 107 47 0 60 13
14 67 70 3 0 83 80 47 0 26 60 60
15 74 76 2 0 83 81 13 0 67 60 60
16 67 82 15 0 73 58 60 0 21 94 94
17 60 96 36 0 73 37 60 2 0 94 92
18 54 94 40 0 73 33 96 59 0 94 35
19 49 77 28 0 73 45 151 118 0 94 0
20 44 61 17 0 73 56 153 108 0 94 0

Min 44 0 33 0 0
Max 74 50 83 118 96

Avg 58.1 20.65 57.35 45.45 45.8
Fill rate 97.2% 84.0%

Range 30 50 96
Std Dev 9.16 16.11 36.22

Ratio 1.76 Ratio 3.95

its base-stock level in the first five periods, with μS
1 = 60 and σS

1 =20. In the next three five-
period blocks, the supplier uses actual orders from the manufacturer to compute the mean
and standard deviation of demand, so that (μS

i , σS
i )= {(64.8, 20.8), (50.4, 5.3), (68.4, 14.2)},

i= 2, 3, 4. At both echelons, therefore, the base-stock policy is computed as Bi = μi + zσi

√
2

(i= 2, 3, 4), with z = 1.282, yielding a target cycle service level of 90%, and σDLT,i =σi

√
2.

As one can see from Table 8.16 and Figure 8.23, the base-stock policies work quite well in
reducing the bullwhip effect, but at the expense of lower fill rates at both the manufacturer
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FIGURE 8.23 Bullwhip example with updated base-stock orders.

and the supplier. (Note that a higher CSL target does not have much impact on this
outcome.)

One key prescription of the literature on the bullwhip effect is to centralize demand infor-
mation so that demand forecasts are not inferred from the orders of the echelon immediately
downstream—the essence of the “demand forecast updating” (Lee et al., 1997b) cause of
the bullwhip effect—but instead come directly from consumer sales data. Therefore, let us
update our example to account for this. We will assume the same base-stock policy at the
manufacturer as above, based on its forecasts of rising and falling consumer demand. At
the supplier, however, we will assume that the initial base stock level is computed directly
from the manufacturer’s forecast so that μS

1 = 65 and σS
1 = 10. In the succeeding five-period

blocks, the supplier updates its base-stock levels using actual consumer sales data, such that
(μS

i , σS
i )= {(61.4, 9.5), (54.8, 9.0), (61.4, 9.5)}, i= 2, 3, 4. As proved in the literature (Chen

et al., 2000), this will mitigate the bullwhip effect at the supplier, as our results in Table 8.17
and Figure 8.24 demonstrate, but only slightly, and it certainly does not eliminate the effect.
Also, the supplier fill rate in this latter case improves from the previous base-stock case,
but only slightly.

Finally, let us consider the effect of batch ordering at the manufacturer. Let us assume
that the manufacturer has occasion to order in consistent lots, with Q= 150. We further
assume that the manufacturer follows a (Q,R) policy with R set to the base-stock levels
from the prior two examples. In contrast, we assume that the supplier has no need to batch
orders and follows a base-stock policy, with μS

1 = 100 and σS
1 = 30, set in anticipation of the

large orders from the manufacturer. The results are shown in Table 8.18 and Figure 8.25,
in which the supplier’s base-stock levels in the remaining five-period blocks are updated
using the manufacturer orders, resulting in (μS

i , σS
i )= (60.0, 82.2), i= 2, 3, 4, as each block

contains exactly two orders from the manufacturer. (Note that the assumption of a nor-
mal distribution for lead-time demand probably breaks down with such a large standard
deviation, due to the high probability of negative values, but we retain this assumption
nonetheless.) From the table and figure, one can see that the variability in the order stream
increases dramatically at the manufacturer. Interestingly, however, the significant increase
in variability is not further amplified at the supplier when it uses a base-stock policy.
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TABLE 8.17 Bullwhip Example with Updated Base-Stock Orders Using Consumer Demand
Manufacturer Supplier

Consumer

Period Sales Beg Inv End Inv Lost Dmd B Order Beg Inv End Inv Lost Dmd B Order

1 50 100 50 0 83 33 100 100 – 83 0
2 55 50 0 5 83 83 100 67 0 83 16
3 61 33 0 28 83 83 67 0 16 83 83
4 67 83 16 0 83 67 16 0 67 83 83
5 74 99 25 0 83 58 83 16 0 83 67
6 67 92 25 0 73 48 99 41 0 79 38
7 60 83 23 0 73 50 108 60 0 79 19
8 54 71 17 0 73 56 98 48 0 79 31
9 49 67 18 0 73 55 67 11 0 79 68

10 44 74 30 0 73 43 42 0 13 79 79
11 50 85 35 0 83 48 68 25 0 71 46
12 55 78 23 0 83 60 104 56 0 71 15
13 61 71 10 0 83 73 102 42 0 71 29
14 67 70 3 0 83 80 57 0 16 71 71
15 74 76 2 0 83 81 29 0 51 71 71
16 67 82 15 0 73 58 71 0 10 79 79
17 60 96 36 0 73 37 71 13 0 79 66
18 54 94 40 0 73 33 92 55 0 79 24
19 49 77 28 0 73 45 121 88 0 79 0
20 44 61 17 0 73 56 112 67 0 79 12

Min 44 0 33 0 0
Max 74 50 83 100 83

Avg 58.1 20.65 57.35 34.45 44.85
Fill rate 97.2% 84.9%

Range 30 50 83
Std Dev 9.16 16.11 29.47

Ratio 1.76 Ratio 3.22
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FIGURE 8.24 Bullwhip example with updated base-stock orders using consumer demand.

These examples are not intended to prove any general results, per se, but merely to
demonstrate the effect of ordering policies on supply chain performance and to emphasize
the challenge of identifying policy prescriptions to mitigate these effects. Note that Lee
et al. (1997a,b) lay out a more extensive set of prescriptions that may be used in practice
to attempt to address the full set of causes for the bullwhip effect—order batching, forecast
updating, price fluctuations, and shortage gaming. From our examples, interestingly, the
fill rate performance is actually best with the ad hoc policy from the original example
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TABLE 8.18 Bullwhip Example with (Q, R) Orders at Manufacturer and Base-Stock Orders
at Supplier

Manufacturer Supplier
Consumer

Period Sales Beg Inv End Inv Lost Dmd R Order Beg Inv End Inv Lost Dmd B Order

1 50 100 50 0 83 150 100 100 – 154 54
2 55 50 0 5 83 150 100 0 50 154 154
3 61 150 89 0 83 0 54 0 96 154 154
4 67 239 172 0 83 0 154 154 0 154 0
5 74 172 98 0 83 0 308 308 0 154 0
6 67 98 31 0 73 150 308 308 0 209 0
7 60 31 0 29 73 150 308 158 0 209 51
8 54 150 96 0 73 0 158 8 0 209 201
9 49 246 197 0 73 0 59 59 0 209 150

10 44 197 153 0 73 0 260 260 0 209 0
11 50 153 103 0 83 0 410 410 0 209 0
12 55 103 48 0 83 150 410 410 0 209 0
13 61 48 0 13 83 150 410 260 0 209 0
14 67 150 83 0 83 0 260 110 0 209 99
15 74 233 159 0 83 0 110 110 0 209 99
16 67 159 92 0 73 0 209 209 0 209 0
17 60 92 32 0 73 150 308 308 0 209 0
18 54 32 0 22 73 150 308 158 0 209 51
19 49 150 101 0 73 0 158 8 0 209 201
20 44 251 207 0 73 0 59 59 0 209 150

Min 44 0 0 0 0
Max 74 207 150 410 201

Avg 58.1 85.55 60.0 169.85 68.2
Fill rate 94.1% 87.8%

Range 30 150 201
Std Dev 9.16 75.39 75.37

Ratio 8.23 Ratio 8.23
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FIGURE 8.25 Bullwhip example with (Q, R) orders at manufacturer and base-stock orders at supplier.

in Vollmann et al. (2005). This is important, in that lost demand at the supplier in our
example is a proxy for additional cost at the manufacturer to supplement supply. (A more
complex assumption would be to allow backorders at the supplier, thus deflating the service
performance at the manufacturer further and likely exacerbating the bullwhip effect at the
supplier.) Our example might really speak to a need for a richer model of the interaction
between customer and supplier, especially in a case where there is an underlying pattern to
demand, and particularly in the case where the customer has access to more information
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about consumer demand than the supplier could infer on its own simply from the customer’s
stream of orders. Indeed, in practice, this has led to burgeoning efforts such as collaborative
planning, forecasting, and replenishment (CPFR).∗

Lest one conclude that sharing forecast information always improves the outcome for all
parties in the supply chain, let us briefly consider some other research in progress that iden-
tifies cases when forecast sharing is helpful, and when it might actually make things worse.
Thomas et al. (2005) offer a richer model of a specific dyad relationship than the simple
ordering relationships we consider above. Their model considers a contract manufacturer
(CM) that builds a product for an original equipment manufacturer (OEM). The product is
composed of two sets of components, a long lead time set and a shorter lead time set, such
that orders for the long lead time components must be committed by the CM to its supplier
some time before orders are placed for the short lead time components. In the intervening
period between these lead times, the OEM may be able to provide an updated forecast of
the single-period consumer demand to the CM. In the base model, the only cost to the OEM
is the opportunity cost of lost sales if the CM does not order sufficient quantities of both
component sets to assemble complete products and fulfill consumer demand for the prod-
uct. The CM, however, bears both a lost-sales cost, based on its share of the product profit
margin, and the overage loss related to having components left over in excess of demand.
Since the CM bears the costs of both underage and overage, it may tend to be risk averse in
its ordering, particularly when its profit margin is relatively small, meaning that the OEM
could benefit by offering contract terms to share a portion of the overage cost with the CM.

With D denoting demand, ξ the demand-related information update, and γ1 and γ2

the fraction of overage loss the OEM bears on the long lead time and short lead time
components, respectively, the OEM’s cost function in Thomas et al. (2005) is

TCOEM
fs (γ1, γ2) = Eξ[ED|ξ[mo(D − Q∗

2)
+ + γ1l1(Q∗

1 − min{D,Q∗
2})+ + γ2l2(Q∗

2 − D)+]]
(8.37)

where mo is the OEM’s share of the product margin, l1 and l2 are the overage losses
(unit cost minus salvage value) on the long lead time and short lead time components,
respectively, and Q∗

1 and Q∗
2 are the CM’s optimal ordering decisions (for long and short

lead time components, respectively), given the forecast sharing and risk sharing decisions
of the OEM. The CM’s optimal ordering decisions come from solving

TCCM
fs (Q1)= Eξ[ED|ξ[mc(D−Q∗

2)
++ (1−γ1)l1(Q1 − min{D,Q∗

2})+ + (1 − γ2)l2(Q∗
2−D)+]]

(8.38)

where mc is the CM’s share of the product margin and

Q∗
2 = min{F−1

D|ξ(α2), Q1} (8.39)

with FD|ξ being the cdf of D given ξ and with α2 given by

α2 =
mc + (1 − γ1)l1

mc + (1 − γ1)l + (1 − γ1)l1
(8.40)

If the demand forecast update is not shared, Equations 8.37 and 8.38 are simplified, with
the expectation taken over the random variable D alone. Using a model that employs nested

∗See the Web site of the Voluntary Interindustry Commerce Standards (VICS) organization at
http://www.vics.org/committees/cpfr/ for more details on this set of practices.

http://www.vics.org
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TABLE 8.19 OEM-CM Cost Reductions from Forecast and Risk Sharing, Thomas et al. (2005)
Complete

No Risk Limited Risk Risk Sharing
Sharing (%) Sharing (%) (%)

Reduction No forecast Mean – 4.60 6.87
in TCOEM sharing Max – 55.23 68.90

Forecast Mean 8.69 12.83 15.80
sharing Max 43.75 50.17 72.97

Reduction in No forecast Mean – 6.63 10.90
TCCM sharing Max – 58.97 78.30

Forecast Mean 3.16 9.19 14.28
sharing Max 17.49 49.05 79.87

uniform distributions for demand and demand-related information, Thomas et al. are able
to express solutions for Q∗

1 and Q∗
2 in closed-form. They also demonstrate that this nested-

uniform demand model is a very good approximation to the case where the demand forecast
and the related updating information form a bivariate normal pair.

Thomas et al. consider different contracts for sharing overage risk, with the extremes being
no risk sharing (γ1 = γ2 ≡ 0), limited risk sharing (only on the long lead time components—
i.e., γ2 ≡ 0), and complete risk sharing (on both long and short lead time components).
The interaction of forecast sharing and risk sharing creates some interesting results in this
relatively complex situation involving components with a complementary relationship—
noting that the CM’s order for short lead time components is bounded above by its order
for long-lead time components, per Equation 8.39 above. Table 8.19 shows the comparative
reductions in OEM and CM costs, on average, of sharing forecast information and sharing
overage risk from the base case of “no forecast sharing—no risk sharing” across 18,225
computational experiments with mo and mc ranging from 0.1 to 1.5 and l1 and l2 ranging
from 10% to 90% of unit cost. Interestingly, 12.5% of the computational experiments under
limited risk sharing exhibit increased cost for the OEM—by an average of about 4% and as
much as 12%—when the forecast update is shared with the CM. This effect is completely
mitigated, however, when the OEM shares the overage risk on both sets of components.

8.6 Discussion and Conclusions

Let us now step back and tie together the themes and ideas presented in this chapter.
An important theme, and one that appeared throughout the chapter, is that supply chain
management strategy is framed by three important decision areas—inventory, transporta-
tion, and locations—and their joint impact on customer service. Moreover, we can now turn
that statement around and state that it is the interaction of the inventory, transportation,
and location decisions—and their joint impact on customer service—that frame the design
of the supply chain itself. Indeed, it is the author’s view that SC design initiatives that
are undertaken without a clear understanding and appreciation of those interactions will
generate poor results, at best, and may be doomed to spectacular failure, at worst.

Another theme, albeit one that appeared late in the chapter and to which a much smaller
number of pages has been devoted, is the effect of SCM policies on the operation of the
supply chain. Policies in SCM take many forms, and many IE and operations management
researchers have devoted significant time and effort to the study of inventory management
policies. Indeed, a relatively wide-ranging chapter on SCM such as this one could not do
justice to the study of inventory management, about which many books have been written.
However, my hope in this chapter was to take at least a small step beyond inventory policies
and also consider coordinating mechanisms like the sharing of overage risk that help to
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better align the incentives of the parties in a supply chain. This theme focuses on the
dyad relationships in the supply chain, the point at which any two parties in the chain
interact, and, in the author’s mind, the only point at which one can hope to study supply
chain management—as opposed to making the bold and rather far-fetched claim that one
could, for example, “optimize the management of the supply chain,” whatever that might
mean. Similar to the manner in which the decisions and interactions of the “triangle-leg
decisions” (inventory, transportation, and location) frame SC design, it should be clear that
an understanding and appreciation of the interaction of dyad partners frames the design of
SCM policies.

So, we return to the “guy walks into a bar” scenario—or at least the “software salesperson
walks into the IE’s office” scenario—that opened the chapter. Could one “optimize the
supply chain” with software? Certainly not with a single piece of software solving a single
problem. After all of the discussion presented in this chapter, my sincere hope is that the
reader has an appreciation for the significant scope, complexity, and subtlety of the types of
problems underlying the relatively large domain that is supply chain management. Could
one, however, optimize portions of the supply chain? . . . individually optimize the various
decision problems that together frame SCM? . . . find policies that minimize or jointly
improve the independent objective functions of dyad partners? Certainly, all of those things
can be done. Will they, together, represent a “supply chain optimal” solution? That seems
like a loaded question, and one that I’ll avoid answering.

Perhaps the discussion at the outset of the chapter was a bit too critical, however. Soften-
ing that criticism somewhat, I will close by noting the relatively recent advent of advanced
planning systems (APS) software, which seems to indicate that the marketplace for SCM
software recognizes that “optimizing” the supply chain in one fell swoop would be a Her-
culean, if not impossible, task. Indeed, referring back to Figure 8.2 in the Introduction to this
chapter, one is reminded that at least one company that does business by attempting to cre-
ate and implement supply chain (re)design initiatives does so in modular fashion, employing
tools that solve a variety of discrete problems in the process of building an overall SC design
solution. An excellent reference on this subject is the book chapter by Fleischmann and Meyr
(2003), which includes a mapping of their conceptual model of APS activities to the APS
software offerings of the major software vendors in this market—namely Baan, i2 Technolo-
gies, J.D. Edwards, Manugistics, and SAP. Each company offers its software in a series of
modules that focus on discrete problem areas—for example, forecasting and demand man-
agement, transportation management, inventory management—very much along the lines
of the discussion in this chapter.

Indeed, supply chain management is a wide-ranging and challenging subject. Solving
the decision problems that frame SCM requires a similarly wide-ranging knowledge and
an appreciation of the manner in which the various aspects of SC design solutions and
SCM policy solutions interact to impact company objectives like minimizing operating costs
at acceptably high levels of customer service. However, armed by this chapter with an
appreciation of the challenges implied by designing and managing—let alone optimizing—
the supply chain, my sincere hope is that you, the reader, won’t be tempted to rush into
buying that bridge in Brooklyn.
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9.1 Introduction

Commerce is the exchange of goods and services between a buyer and a seller for an agreed
price. The commerce ecosystem starts with a customer who interacts with a salesperson,
typically at a storefront; the store gets the supply from a distributor; the distribution is
typically from a warehouse or a factory; if the customer decides to buy the goods, the seller
invoices the buyer for the price of goods, including taxes and shipping charges, if any; and
finally the invoiced amount is collected either immediately or through an intermediary such
as a bank or credit company. This commerce ecosystem has evolved over centuries. With the
explosion of the Internet since 1995, every aspect of commerce could be supplemented by
electronic support leading to an e-commerce ecosystem similar to the commerce eco-system.
This includes systems to support customer acquisition, price negotiation, order processing,
contracting, order fulfillment, logistics and delivery, bill presentation and payment, and
post-sales support [1–3].

E-commerce or electronic commerce is commerce conducted electronically, typically over
the Internet. E-commerce includes support to all stages of commerce.

E-commerce initially was limited to “digital goods”—software, e-books, and information.
Thanks to “digitization,” today digital goods encompass a large set of items including

• Computer and telecom software;
• Music with analog recording on tapes evolving to digital music—first as CD audio

and currently digital audio in the form of MP3 and other forms like RealAudio;

9-1
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• Video with the evolution of digital cinematography and MPEG compression
scheme;

• Images including still images captured by digital camera, video images captured
by camcorders, document images and medical images like ultrasound image, dig-
ital X-ray image, CAT scan, and MRI image;

• Documents including books, journals, tech reports, magazines, handbooks, man-
uals, catalogs, standards documentation, brochures, newspapers, phone books,
and a multitude of other “forms” often created using DTP; and

• Drawings including building plans, circuit diagrams, and flow diagrams typically
created using CAD tools.

Digital goods could be completely delivered electronically, and formed the first focus of
e-commerce. Soon it was clear that a whole range of information services lend themselves
to electronic delivery. This includes

• Financial services that include banking, insurance, stock trading, and advisory
services;

• E-governance including electronic delivery of justice and legal services, electronic
support to legislation and law making, issue of identities like passport and social
service numbers, visa processing, licensing for vehicles, toll collection, and tax
collection;

• Education that includes classroom support, instructional support, library,
laboratories, textbooks, conducting examinations, evaluation, and issue of tran-
scripts; and

• Healthcare delivery including diagnostics using imaging, record keeping, and pre-
scription handling.

Thanks to the success of digital goods delivery and electronic delivery of information ser-
vices, e-commerce could address the support issues for buying and selling of physical goods
as well. For example,

• Customer acquisition through search engine-based advertisements, online promo-
tion, and e-marketing;

• E-ticketing for airline seats, hotel rooms, and movie tickets;
• E-procurement including e-tendering, e-auction, reverse auction, and electronic

order processing;
• Electronic payment that includes electronic shopping cart and online

payments; and
• Electronic post-sales support through status monitoring, tracking, health-checking,

and online support.

To support digital goods delivery, delivery of information services, and support commerce
related to physical goods, a huge Internet infrastructure had to be built (and continues to
get upgraded). Optimizing this infrastructure that converged data communications with
voice communications on the one hand and wire-line with wireless communications on the
other hand is leading to several interesting challenges that are being addressed today. Behind
those challenges are the key techniques and algorithms perfected by the OR/MS community
over the past five decades [4–6]. In this chapter, we will address the key OR/MS applications
relating to the distribution of digital goods, electronic delivery of information services, and
optimizing the supporting Internet infrastructure.
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9.2 Evolution of E-Commerce

Electronic commerce predates the widespread use of the Internet. Electronic data inter-
change (EDI) used from the early 1960s did facilitate transfer of commercial data between
seller and buyer. The focus, however, of EDI was mostly to clear congestion of goods move-
ment at seaports and airports due to rapid globalization of manufacturing, improved trans-
portation, and the emergence of global logistics hubs such as Rotterdam and Singapore.
EDI helped many governments in the process of monitoring of export and import of goods
between countries and also control the movement of undesired goods such as drugs and
narcotics across borders [1,2,7–15].

Less widely known e-commerce applications in the pre-Internet era include

• Online databases like MEDLARS for medical professionals and Lexis-Nexis for
legal professionals;

• Electronic funds transfer such as SWIFT network; and
• Online airline tickets reservations such as SABRE from American Airlines.

In all these cases electronic data transfer was used to facilitate business between partners:

• Pre-determined intermediaries such as port authorities, customs inspectors, and
export-import agencies in the case of EDI;

• Librarians and publishing houses in the case of online databases;
• Banks and banking networks in the case of electronic funds transfer; and
• Airlines and travel agents in the case of online reservations systems.

The ordering of books online on Amazon.com in 1994 brought e-commerce to the end
users. One could order books electronically, and by the year 2000 make payments also
electronically through a secure payment gateway that connects the buyer to a bank or a
credit company. All this could be achieved from the desktop computer of an end user, a key
differentiator compared to the earlier generation of electronic commerce. Such a develop-
ment that permitted individual buyers to complete end-to-end buying (and later selling
through eBay) made e-commerce such a revolutionary idea in the past decade.

The rise of digital goods (software, music, and e-books), the growth of the Internet, and
the emergence of the “Internet-economy” companies—Yahoo and eBay—led to the second
stage of e-commerce. Software was the next commodity to embrace e-commerce, thanks to
iconic companies like Microsoft, Adobe, and Macromedia. Selling software over the Internet
was far more efficient than any other means, particularly for many small software companies
that were writing software to run on Wintel (Windows + Intel) platform (as PCs powered
by Intel microprocessors were a dominant hardware platform and Windows dominated the
desktop software platform). The outsourcing of software services to many countries including
India gave further impetus to e-commerce.

The spectacular growth of the Internet and World Wide Web (WWW) fueled the demand
for widespread access and very large network-bandwidth, leading to phenomenal investment
in wire-line (fiber optic networks and undersea cables) and wireless networks in the past
decade (the trend is continuing even today). With consumers demanding broadband Internet
access both at home and in the office, developed countries (USA, Western Europe, Japan,
and Australia) saw near ubiquitous access to Internet at least in urban areas. Widespread
Internet reach became a natural choice to extend e-commerce to support the sale of physical
goods as well.

• E-procurement (e.g., CommerceOne)
• Electronic catalogs (e.g., Library of Congress)
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• Electronic shopping cart (e.g., Amazon)
• Payment gateway (e.g., PayPal), and
• On-line status tracking (e.g., FedEx)

are tools used by ordinary citizens today. Practically every industry dealing with physical
goods—steel, automotive, chemicals, retail stores, logistics companies, apparel stores, and
transportation companies—could benefit from this third stage of e-commerce.

With the widespread adoption of e-commerce by thousands of corporations and millions
of consumers by the turn of the century, the equivalent of Yellow Pages emerged in the
form of online catalogs like Yahoo. The very size of the Yellow Pages and the need for speed
in exploration of the desired items by the buyer from online catalogs led to the arrival of
the search engines. The algorithmic approach to search (in place of database search) per-
fected by Google was a watershed in the history of e-commerce, leading to a fourth stage
in e-commerce.

The next stage of growth in e-commerce was the end-to-end delivery of information
services. Banks and financial institutions moved to online banking and online delivery of
insurance booking. NASDAQ in USA and National Stock Exchange (NSE) in India moved
to all-electronic stock trading. Airlines moved beyond online reservations to e-ticketing.
Hotels moved to online reservations, even linking to online reservations of airline tickets
to offer seamless travel services. Several movie theaters, auditoriums, and games/stadiums
moved to online ticketing. Even governments in Australia and Canada started delivering
citizen services online. Many libraries and professional societies such as IEEE shifted to
electronic libraries and started serving their global customers electronically from the year
2000, representing the fifth stage of e-commerce.

The sixth stage is the maturing of the Internet into a highly reliable, available, and
scaleable infrastructure that can be depended upon for 24× 7 delivery of services world-
wide. Services like Napster selling music to millions of users (before its unfortunate closure)
and the recent success of Apple iTunes puts enormous pressure on network bandwidth
and availability. In turn, this demand led to significant improvements in content delivery
mechanisms, pioneered by companies like Akamai.

A whole range of issues including next generation network infrastructure, such as

• Internet II
• IPv6
• Security issues
• Privacy issues
• Legal issues, and
• Social issues

are getting addressed today to take e-commerce to the next stage.
During the dotcom boom, e-commerce created a lot of hype. It was predicted that all

commerce will become e-commerce and eventually “brick and mortar” stores will be engulfed
by “click and conquer” electronic storefront. Commerce in its conventional form is far from
dead (it may never happen); yet e-commerce has made considerable progress [1,16].

• By December 2005 the value of goods and services transacted electronically
exceeded $1 trillion, as per Forrester Research.

• Stock trading, ticketing (travel, cinema, and hospitality), and music are the
“top 3” items traded electronically today.

• Online trading accounts for 90% of all stock trading.
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• Online ticketing accounts for 40% of the total ticketing business.
• Online music accounts for 30% of all “label” music sales is increasing dramatically,

thanks to iPod and iTunes from Apple.
• By the year 2010, it is expected that nearly 50% of all commercial transactions

globally will happen electronically.

9.3 OR/MS and E-Commerce

“Operations Research (OR) is the discipline of applying analytical methods to help make
better decisions using the key techniques of Simulation, Optimization and the principles
of Probability and Statistics,” according to Institute of Management Science and Opera-
tions Research (INFORMS) [17]. Starting with the innovative application of sophisticated
mathematical tools to solve logistics support issues for the Allied Forces during the Second
World War, OR has moved into every key industry segment. For example, OR has been
successfully used in the

• Airline industry to improve “yield” (percentage of “paid” seats);
• Automotive industry to optimize production planning;
• Consumer goods industry for supply chain optimization;
• Oil industry for optimizing product mix;
• Financial services for portfolio optimization; and
• Transportation for traffic simulation.

Practically all Fortune 500 companies use one or the other of the well-developed tools of
OR, namely,

• Linear, integer, nonlinear, and dynamic programming
• Network optimization
• Decision analysis and multi-criteria decision making
• Stochastic processes and queuing theory
• Inventory control
• Simulation, and
• Heuristics, AI, genetic algorithms, and neural networks.

OR tools have been extensively used in several aspects of e-commerce in the past decade. The
success behind many iconic companies of the past decade can be traced to OR embedded
within their patented algorithms—Google’s Page Ranking algorithm, Amazon’s Affiliate
program, and i2’s Supply Chain Execution Engine, for example [4–6,18–20].

During the dotcom boom a number of e-commerce companies started using OR tools
extensively to offer a range of services and support a variety of business models, though
many of them collapsed during the dotcom bust. As early as the year 1998 Geoffrion went to
the extent of stating “OR professionals should prepare for a future in which most businesses
will be e-business” [5,6] and enumerated numerous OR applications to e-commerce including

• OptiBid using integer programming for Internet-based auction;
• Trajectra using stochastic optimization for optimizing credit card portfolio planning;
• SmartSettle using integer programming for automated settling of claims;
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• Optimal Retirement Planner that used linear programming to provide advisory
services;

• Home Depot using integer programming-based bidding for truck transportation
planning;

indicating the importance of OR to e-commerce. Over the past 8 years the applications
have increased manyfold and the area has matured.

In this chapter, we will outline a number of OR applications that are widely used in
the different stages of e-commerce. This being a handbook, we will limit ourselves to out-
lining the interesting applications, indicating the possible use of OR tools to address the
selected applications, and the benefits generated. The actual formulation and the algorith-
mic implementation details of specific applications are beyond the scope of this chapter,
though interested readers can refer to literature for further details. There are dozens of OR
tools, hundreds of algorithms, and thousands of e-commerce companies, often with their
own patented implementation of algorithms. Instead of making a “shopping list” of the
algorithms and companies, we will limit our scope to nine key applications that provide a
broad sense of the applications and their richness.

We limit our scope to Internet-based e-commerce in this chapter. With the spectacular
growth of wireless networks and mobile phones—particularly in India and China with lower
PC penetration and land-line phones—e-commerce might take different forms including

• Mobile commerce (m-commerce)
• Smart cards, and
• Internet kiosks.

This is an evolving area with not-so-clear patterns of e-commerce and best captured after
the market matures.

In the next section, we will outline the OR tools that are useful in the different stages of
e-commerce, namely,

• Customer acquisition
• Order processing
• Order fulfillment
• Payment, and
• Post-sales support.

Section 9.4.1 will be devoted to the case of e-commerce related to digital goods. Section 9.4.2
will address the issues relating to e-commerce for physical goods. Section 9.4.3 will be
devoted to the case of electronic delivery of services. Section 9.4.4 will focus on the opti-
mization of the infrastructure to support e-commerce.

A very large number of e-commerce applications and business models have emerged over
the past decade. For brevity, we have identified a set of nine key tools/applications that
form the core set of tools to support e-commerce today. These nine candidates have been
so chosen that they are representative of the dozens of issues involved and comprehensive
enough to capture the essence of contemporary e-commerce.

We will discuss the chosen nine core tools/applications under one of the four categories
mentioned earlier, where the specific tool/application is most relevant to the particular
category. Accordingly,

i. Internet search
ii. Recommendation algorithms
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iii. Internet affiliate programs

will be discussed in Section 9.4.1.
Section 9.4.2 will address

iv. Supply chain optimization
v. Auction and reverse auction engines

Section 9.4.3 will be devoted to

vi. Pricing engines

And finally Section 9.4.4 will focus on

vii. Content delivery network (CDN)
viii. Web-site performance tuning
ix. Web analytics.

9.4 OR Applications in E-Commerce

OR applications predate Internet e-commerce, as demonstrated by the airline industry that
used seat reservation information to optimize route planning; in the process, innovative
concepts like “planned overbooking” were developed that dramatically improved “yield.”
In the past decade (1995–2005) a lot more has been achieved in terms of the use of algorithms
to significantly improve user experience, decrease transactions cost, reach a larger customer
base, or improve service quality. We will outline the major applications of OR to the key
aspects of e-commerce in this section.

9.4.1 E-Commerce Relating to Digital Goods

Goods that are inherently “soft” are referred to as “digital goods” as they are likely to
be created by digital technology. Packaged software such as Microsoft Office and Adobe
Acrobat that are used by millions of users globally are among the first recognizable digi-
tal goods. Until the mid-1990s shrink-wrapped software was packaged in boxes; with the
widespread availability of the Internet and high-speed access at least in schools and offices,
if not homes, software could be distributed electronically. It is common these days even for
lay people, let alone IT professionals, to routinely “download” and “install” software on
to their desktop or notebook computers. With the arrival of MP3 standard digital music
and freely downloadable digital music players for PCs, such as Real Networks’ RealAudio
player, and Microsoft Media Player, digital music became a widely traded digital good,
particularly during the Napster days. In recent years, with the phenomenal success of the
Apple iPod MP3 player and the digital music stores Apple iTunes, music has become the
fastest growing digital goods. With the world’s largest professional society IEEE launching
its Digital Library in the year 2000, online books from Safari Online have become popular;
and with many global stock exchanges going online, e-books, digital libraries, and stock
trading became popular digital goods in the past 5 years.

i. Internet Search
The first stage in commerce is the identification and acquisition of customers by the seller.
In traditional commerce this is accomplished by advertising, promotion, catalog printing
and distribution, and creation of intermediaries like agents. In e-commerce, particularly
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in the case of digital goods, the customer acquisition process itself often happens on the
Internet. Typically, a customer looking for a digital good is likely to “Google” (a term that
has become synonymous with “searching” thanks to the overwhelming success of Google
over the past 7 years) for the item over the Internet.

Search engines like Google and portals like Yahoo, MSN, eBay, and AOL have become
the focal points of customer identification today and many corporations, big and small,
are fine-tuning their strategies to reach potential customers’ eyeballs over the portal sites.
Internet advertising is only next to TV advertising today. The portal sites Yahoo and MSN
and online bookstore Amazon have their own search engines today; eBay has started using
Yahoo’s search engine recently.

Search engines help the customer acquisition process by way of helping potential cus-
tomers to explore alternatives. The reason for the phenomenal success of Google is its speed
and relevance, as well as the fact that it is free. Very few users would use Google if every
search took 5 minutes, however good the search is; similarly, Google usage would be minis-
cule if users have to wade through a large file with millions of “hits” to find the item they
are looking for, even if the million-long list is delivered within seconds.

The secret behind the speed–relevance combination of Google (and other search engines
today) is the sophisticated use of algorithms, many of them being OR algorithms.

Search engines broke the tradition followed by librarians for centuries; instead of using
databases (catalogs in the language of librarians), search engines use indexes to store the
links to the information (often contained in Web pages); they use automated tools to index,
update the index, and most importantly, use algorithms to rank the content. For the ranking
of the content another principle perfected by information scientists in the form of “citation
index” is used; it is quite natural that important scientific papers will be cited by many
scientific authors and the count of citation can be used as a surrogate for the quality of the
paper. Scientific literature goes through peer review and fake citations are exceptions. In
the “free-for-all” world of WWW publishing, a simple count of citation will not do; also the
sheer size of the content on the WWW and the instantaneous response expected by Internet
users (unlike the scientific community that is used to waiting for a year for the citations to
be “compiled”) makes it imperative to use fast algorithms to aid search. Google manages
speed through its innovative use of server farms with nearly 1 million inexpensive servers
across multiple locations and distributed algorithms to provide availability. Search engine
vendors like Google also use some of the optimization techniques discussed in Section 9.4.4
(multicommodity flows over networks, graph algorithms, scheduling and sequencing algo-
rithms) to optimize Internet infrastructure. The success behind the “relevance” of search
engines is contributed by another set of algorithms, the famous one being Google’s patented
“page ranking” algorithm [21–23].

A typical user looking for an item on the Internet would enter a couple of keywords on
the search window (another successful idea by Google of a simple text-box on a browser
screen as user interface). Google uses the keywords to match; instead of presenting all the
items that would match (often several millions), Google presents a list of items that are
likely to be the most relevant items for the keywords input by the user. Often the search
is further refined using local information (location of the computer and the network from
where the search is originating and user preferences typically stored in cookies). Google is
able to order the relevant items using a rank (patented Page Rank); the rank is computed
using some simple graph theoretic algorithm.

A typical Web page has several pieces of content (text, graphics, and multimedia); often
the contents are hyperlinked to other elements in the same Web page or to other Web pages.
Naturally, a Web page can be reduced to a graph with Web pages as nodes and hyperlinks
as edges. There are outward edges that point to other Web pages and inward edges that
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link other pages. Inward edges are equivalent to citations and outward edges are similar to
references. By counting the number of edges one can compute a surrogate for citation; this
can be a starting point for computing the rank of a Web page; the more the citations the
better the rank. What is special about Google’s page ranking algorithm is that it recognizes
that there are important Web pages that must carry a lot of weight compared to a stray
Web page. While a page with several inward links must get a higher importance, a page
with a single inward link from an important page must get its due share of importance.
However, the importance of a page would be known only after all the pages are ranked.
Using a recursive approach, Google’s page ranking algorithm starts with the assumption
that the sum of ranks of all Web pages will be a constant (normalized to unity). If page A
has inward links (citations) T1, T2, . . . , Tn and C(A) is the number of outward links of
page A, the page rank (PR) could be defined as

PR(A) = (1 − d) + d{PR(T1)/C(T1) + PR(T2)/C(T2) + · · · + PR(Tn)/C(Tn)} (9.1)

In a sense, instead of adding the citations linearly (as in the case of citation index), page
rank algorithm takes the weighted rank approach with citation from higher-ranked page
getting higher weight. “d” is used as a “dampening” constant with an initial value of 0.85
in the original Google proposal. In a sense, page rank is used as a probability distribu-
tion over the collection of Web pages. Defining page rank for the millions of Web pages
leads to a very large system of linear equations; fortunately, OR professionals have the
experience of solving such large system of linear equations using linear programming for
years. The special structure of the set of equations admits even a faster algorithm. Accord-
ing to the original paper by Google co-founders Sergey and Page, their collection had 150
million pages (nodes) and 1.7 billion links (edges) way back in 1998. Their paper reports
the following performance: 24 million pages had links to 75 million unique URLs; with an
average 11 links per page and 50 Web pages per second it took 5 days to update the con-
tent. Distributing the load to several workstations they could get convergence to the set
of equations (Equation 9.1) within 52 iterations; the total work distributed across several
workstations took 5 hours (about 6 min/workstation). Based on this empirical performance
the algorithm is extremely efficient (with complexity of O(log n) and can scale to Web
scale [21]. That explains why Google search performs so well even today, though Web page
collection has increased severalfold over the period 1998 to 2006 and Google is still serv-
ing results real fast. There are a number of special issues such as dangling links that have
been addressed well; in the year 2005 Google introduced the no-follow link to address spam
control, too.

To constantly keep pace with the changing content of the Web pages, search engines
use a crawler to collect new information from the sites all over the world. The background
infrastructure constantly updates the content and keeps an index of links to documents for
millions of possible keyword combinations as a sorted list. After matching the user-provided
keywords, Google collects the links to the documents, formats them as HTML page, and
gives it to the browser that renders it over the user screen.

Google is not the only search engine; there are many other search engines including spe-
cialized search engines used by eBay for searching price lists. Many of them use specialized
algorithms to improve ranking [20]; there are others like Vivisimo [24] and Kartoo [25] that
use clustering techniques and visual display to improve user experience with search; yet
Google remains the supreme search engine today.

The key OR algorithms used by search engines include linear programming to solve
large-scale linear equations, neural networks for updating new information (learning), and
heuristics to provide a good starting solution for the rank.
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ii. Recommendation Algorithms
When a customer visits an online store to order an item there is a huge opportunity to
up sell and cross sell similar items. Recommending such potential buy items to prospective
buyers is a highly researched area. While such direct selling is not new, online direct selling
is new. Common sense suggests that the online store recommends items similar to those
bought by the customer during the current interaction or based on prior purchases (using
database of prior purchases); a more refined common sense is to use the customer profile
(based on cookies or customer-declared profile information) and match items that suit the
customer profile. A more sophisticated approach is to use similarity between customers
with preferences that match the current customer. Many users are familiar with Amazon
Recommends [26,27] that talks of “people who ordered this book also ordered these books.”
Knowing customer profiles and customer interests it makes sense to suggest items that are
likely to appeal “most” to the customer (taking care not to hurt any customer sensitivities).
All such approaches form the core of recommendation algorithms [28].

Recommendation needs a lot of computation; both associative prediction and statisti-
cal prediction have been widely used by market researchers for ages, but at the back-end;
tons of junk promotional materials and free credit card offers are the results of such rec-
ommendation. Recently recommendation has invaded e-mail too. But recommendation in
e-commerce space needs superfast computation, as online visitors will not wait beyond sec-
onds; this poses special challenges. Considering the fact that online stores like eBay or
Amazon stock tens of thousands of items, millions of customers, and billions of past sales
transaction data, the computational challenge is immense even with super computers and
high-speed networks. Brute force method will not work! There are other constraints too.
A typical user browsing the Internet will typically see the results on a PC screen that at
best accommodates a handful of products’ information; even if the screen size is large the
customer is unlikely to view hundreds of products. The challenge is to present just a handful
of the most relevant products out of hundreds or thousands.

Starting with crude technology that simply recommended items others have purchased,
recommendation technology has evolved to use complex algorithms, use large volume of
data, incorporate tastes, demographics, and user profiles to improve customer satisfaction
and increased sales for the e-commerce site. The Group Lens project of the University of
Minnesota was an early pioneer in recommendation algorithms. E-commerce sites today
have much larger data sets leading to additional challenges. For example, Amazon had 29
million customers in 2003 and a million catalog items. While the earlier generation of OR
analysts had the problem of powerful methods and scanty data, today’s recommendation
algorithms have to contend with excessive data!

Common approaches to recommendation include [27,28]

• Simple “similarity” search that treats recommendation as a search problem over
the user’s purchased item and related items stocked by the e-commerce seller.

• Collaborative filtering uses a representation of a typical customer as an
N -dimensional vector of items where N is the number of distinct catalog items
with positive vector for items purchased or rated positively and negative vector
for negatively rated products. The vector is scaled by the number of customers
who purchased the item or recommended the item. Typically the vector is quite
sparse as most customers purchase just a few items. Collaborative filtering algo-
rithm measures the similarity between two customers (cosine of the angle between
the two vectors) and uses this similarity measure to recommend items.

• Item-to-item collaborative filtering goes beyond matching the purchased item
to each of the user’s purchased items and items rated by the user to similar
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items and combines them into a recommendation list. The Amazon site “Your
recommendations” leads to the customer’s earlier recommendations categorized
by product lines and provides feedback as to why an item was recommended.

• Cluster methods that divide the customer base into many segments using a clas-
sification scheme. A prospective user is classified into one of the groups and a
recommendation list is based on the buying pattern of the users in that segment.

Recommendation algorithms have been fairly successful; with unplanned online purchases
amounting to just 25%, it is important to recommend the right items—those the customer
likes but did not plan to buy, a sure way to increase sales.

Major recommendation technology vendors include AgentArts, ChoiceStream, Expert-
Maker, and Movice in addition to Google.

The tools of OR that recommendation algorithms use include graphs—to capture simi-
larity and identify clusters—and in turn implement collaborative filtering. Simulation and
heuristics are used to cut down computation (dimensionality reduction).

iii. Internet Affiliate Programs
The Internet search techniques help in reaching the eyeballs of potential customers; the
recommendation algorithms address the issue of recommending the right products to the
customers. Obviously the customer might purchase some or all of the items recommended.
The next stage is to retain the customer and attempt to convert the recommendation into
an actual sale. As the Internet is a platform available to billions of people and a great
equalizer that makes the platform accessible even to a small vendor in a remote area, it is
not possible for all vendors to be able to reach potential customers through search engines
or portals; an alternative is to ride on the major e-commerce sites like Amazon; the small
vendors act as intermediaries or referrals that bring customers to the major sites and get a
small commission in return. These are generally known as affiliate programs in marketing
literature. The Internet gave a new meaning to the entire area of affiliate programs [9,29].

Intermediation is not new. For decades the print advertisement media have been engaging
agents who design and get the advertisement for their agents displayed in the newspapers
and get paid a small commission from the publishers for bringing advertisement revenue and
a nominal fee from clients toward the labor of designing the advertisement. The Internet,
however, is more complex in the sense that the intermediary has no precise control on the real
estate, being a personalizeable medium rather than a mass medium, the advertisement—
typically “banner ad”—gets displayed differently on different user screens.

Amazon is credited to be a pioneer in affiliate programs. Starting in 1994, Amazon let
small booksellers link their site to Amazon site; if a prospective buyer who visits the affiliate
site is directed to the Amazon site and buys an item from Amazon, the small bookstore ven-
dor is entitled to receive a commission (a small percentage of the sale value). At a later date,
it was extended to any associate that brings the buyer to the Amazon site. Today Ama-
zon has more than 600,000 affiliates (one of the largest Internet affiliate programs). Google
started its affiliate program in 2003; initially it was AdWords meant for large Web sites and
extended later as AdSense in May 2005 for all sites. Google and others took the program to
further sophistication through cost per lead, cost per acquisition, and cost per action and
also extended it to cost per thousand that is more like the print advertisements. Dealing
with such large intermediaries (affiliates) calls for significant management resources (track
earnings, accounting, reporting, quality of service monitoring, and filter sensitive content)
leading to Internet-based solutions to manage affiliate programs from third party compa-
nies. LinkShare [29] is one of the most successful agencies to manage Internet-based affiliate
programs.
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Yahoo Search Marketing and Microsoft adCenter are other large-size affiliate programs
to watch.

Managing the banner ad that is typically 460 pixels wide× 60 pixels high is itself a
sophisticated space optimization; the banner ad must be placed within the small real estate
of the space earmarked for banner ad within the display page of the browser window on the
user screen—an interesting integer programming problem (Knapsack problem).

Internet affiliate programs use optimization techniques to optimize banner ads and esti-
mate initial cost per click; they use genetic algorithms and neural networks to adaptively
optimize and improve estimates; and graph theory to capture associations.

9.4.2 E-Commerce Relating to Physical Goods

The success of e-commerce in digital goods sales prompted the brick and mortar industry
to utilize the power of the Internet. One of the key challenges of many physical goods
companies embracing e-commerce is the speed mismatch between electronic information
delivery and the physical movement of goods that must be shipped to the customer who
has ordered electronically. It is one thing to be able to order groceries over the Internet and
yet another thing to receive it at your home by the time you reach home.

Obviously, logistics and supply chain optimization are two key issues that would make or
mar the success of e-commerce for physical goods.

iv. Supply Chain Optimization
Traditional OR models focused on the optimization of inventory, typically in a factory.
Typically one would forecast sales as accurately as possible, including variations, build
optimal level of safety stocks suiting a particular replenishment policy. Supply chain opti-
mization refers to the optimization of inventory across the entire supply chain—factory to
warehouse to distributors to final stores. Supply chain optimization must ensure that at
every stage of the supply chain there is the right material in the right quantity and quality
at the right time and supplied at the right price. Often there will be uncontrollability in
predicting the demand; this must be protected against through the cushion of safety stocks
at different levels. One must optimize the safety stocks so that they are neither too small
leading to nonavailability when needed, nor too large leading to unnecessary locking up of
capital. Naturally, supply chain optimization would involve multistage optimization and the
forecasting of inventory must evolve from a simple probability distribution to a sophisticated
stochastic process.

A key success behind today’s supply chain optimization is the power of online databases
to forecast at low granularity involving hundreds, if not thousands of items and to aggregate
the forecasts; today’s distributed computing power permits statistical forecasting to arrive
at the best fit using past demand pattern, even if it involves thousands of items.

Today’s supply chain optimization engines [30,31] use academically credible algorithms
and commercially effective implementations. Supply chain optimization leads to

• Lower inventories,
• Increased manufacturing throughput,
• Better return on investment,
• Reduction in overall supply chain costs.

Pioneering companies like i2 and Manugistics took many of the well-studied algorithms
in multistage optimization, inventory control, network optimization, and mixed-integer
programming, and combining them with recent concepts like third party logistics and



© 2009 by Taylor & Francis Group, LLC

E-Commerce 9-13

comanaged inventory along with exceptional computing power available to corporations,
they created supply chain optimization techniques that could significantly save costs. The
simultaneous development of enterprise resource planning (ERP) software—SAP R/3 and
PeopleSoft (now part of Oracle)—helped supply chain optimization to be integrated with
the core enterprise functions; together it was possible to integrate

• Supply chain network design
• Product families
• Suppliers/customers integration
• Multiple planning processes
• Demand planning
• Sales and operations planning
• Inventory planning
• Manufacturing planning
• Shipment planning

with

• Execution systems

paving the way for optimizing across the supply chain (compared to single-stage optimiza-
tion earlier).

Today’s supply chain optimizing engines use established OR tools like

• Mixed integer programming
• Network optimization
• Simulation
• Theory of constraints
• Simulated annealing
• Genetic algorithms, and
• Heuristics

routinely; and solvers like iLog are part of such supply chain optimization engines.
Dell and Cisco are two vendors who used supply chain optimization extensively and built

highly successful extranets that enabled suppliers and customers to conduct end-to-end busi-
ness online—ordering, status monitoring, delivery, and payment—leading to unprecedented
improvements in managing the supply chain. For example, Dell reported the following met-
rics for its online business [30]

• User configurable ordering with maximum of 3 days for feasibility checking
• Online order routing to the plant with a maximum of 8 h
• Assembly within 8 h
• Shipping within 5 days.

With the estimated value of 0.5–2.0% value depletion per week in the PC industry, opti-
mizing supply chain makes a lot of sense; the leadership position that Dell enjoyed for
several years is attributed to its success with supply chain optimization—a classic success
story in e-commerce for physical goods.

Supply chain uses multistage optimization and inventory control theory to reduce the
overall inventory and hence the costs; it uses networks to model multistage material
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flows; queuing theory and stochastic processes to model demand uncertainty; simulation
to model scenarios; and heuristics to reduce computation.

v. Internet Auction
In e-commerce relating to physical goods, supply chain optimization dramatically improves
the delivery side of many manufacturing enterprises. Material inputs (raw materials, sub-
assemblies) account for a significant part of the overall business of most manufacturing enter-
prises and procuring the inputs, if optimized, will lead to significant savings in costs. Another
area where e-commerce made a big difference to physical goods sales is that of auction over
the Internet pioneered by eBay. Another interesting twist pioneered by Freemarket Online
is that of reverse auction used by many in the procurement space. Internet-based reverse
auction brings unprecedented efficiency and transparency in addition to billions of dollars of
savings to large corporations like GE (though not always sustainable over a longer period).

Auction is not new; antiques, second-hand goods, flower auctions, or tea auctions are cen-
turies old. The technology industry is familiar with spectrum auction. Electricity auction is
an idea that is being experimented with in different parts of the world, though with limited
success [32].

Auctioning is an idea that has been well researched. Simply stated, a seller (generally a
single seller) puts out an item for sale; many buyers bid for it by announcing a bid price; the
process is transparent with all bidders knowing the bid price of other bidders; the bidders
can quote a higher price to annul the earlier bid; generally, an auction is for a limited time
and at the end of the time limit, the seller sells the item to the highest bidder; the seller
reserves the right to fix a floor price or reserve price below which bids are not accepted.
If there are no bids at a price higher than the reserve price, the sale does not go through,
though the seller might bring down the reserve price.

The Internet brings a number of efficiencies to the process of auctioning; unlike physical
auction electronic auction can happen across time zones globally and on a 24× 7 basis;
with geographic constraints removed electronic auction (e-auction) may bring larger num-
bers of bidders leading to network economics and improving the efficiency of the auction
process [33].

To conduct e-auction an auction engine has to be built either by the service provider
(eBay) or the seller can use third-party e-auction engines from a number of vendors Over-
Stock, TenderSystem, and TradeMe, for example.

The auction engine has modules to publish the tender, process queries, accept quotations
from the bidders, present the highest bid at any time (call out) electronically to any of
the bidders over the Net, provide time for the next higher bidder to bid, close the bid
at the end of the time, collect commission charges for conducting the auction, and declare
the results—all in a transparent manner. Though the process is fairly simple, sophisticated
algorithms have to work behind the screen as tens of thousands of auctions would be taking
place simultaneously; even the New Zealand-based TradeMe.com reports 565,000 auctions
running at any day, while eBay talks of millions of auctions running simultaneously [34,35].

A more interesting Internet auction is reverse auction (also called procurement auc-
tion) pioneered by an ex-GE employee, who founded Freemarkets Online (later acquired
by Ariba). In reverse auction, instead of the seller putting out the auction for the buyers
to bid, the buyer puts out the auction for all the sellers to bid; a typical application is the
procurement manager wanting to buy items from multiple suppliers.

In the conventional purchase, the specifications for an item, that the buyer is interested
to buy, is put out as tender. Typically, sellers put out a sealed bid; after ensuring that all the
bids have quoted for the same item the sealed bids are opened and the seller who quotes the
minimum price is awarded the contract. In reverse auction, there is no sealed bid; everyone
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would know the bid price, leading to higher levels of transparency and efficiency. Such
buying is a huge opportunity globally—Fortune magazine estimated that industrial goods
buying alone was $50 billion in year 2000—and even a single percentage improvement could
translate to millions of dollars of savings.

A typical reverse auction engine facilitates the process of auctioning [33–35] by way of

• Preparation (help in preparing standardized quotations that makes supply/
payment schedule, payment terms, and inventory arrangements common across
suppliers to get everyone a “level playing field”). In the process, many industrial
items with complex specifications that are vaguely spelt out get so standardized
that they become almost a “commodity” that can be “auctioned”;

• Finding new suppliers (being an intermediary and a “market maker,” reverse
auction vendors bring in a larger range of suppliers to choose from);

• Training the suppliers (reverse auction engine vendors train the suppliers so that
they take part more effectively in the process, leading to efficiency and time
savings);

• Organizing the auction (including the necessary electronic support, server capac-
ity, network capacity, interface software, special display to indicate the various
stages of bidding);

• Providing auction data (analysis for future auctions).

Several large buyers including General Electric and General Motors have found reverse
auctions extremely valuable. There are also consortiums like GM, Ford, and Daimler
Chrysler who run their own “specialized” reverse auction sites. A whole range of industry-
specific portals such as MetalJunction also offer reverse auction as a standard option today.

Internet auctions use economic theory (often modeled through simultaneous equations
that are solved through LP Solver), multicriteria decision making to model conflicting
requirements between bidder and buyer, and neural networks to model learning.

9.4.3 Electronic Delivery of Services

Internet search helps in the identification of potential customers; recommendation algo-
rithms help in suggesting the most relevant items for possible buy by a visitor to the specific
site or portal; affiliate programs bring in intermediaries who help in converting the potential
customer visit on the Internet to a possible sale; supply chain optimization helps in sup-
porting the sales of physical good; auction and reverse auction help in bringing efficiency
of online markets to business-to-business commerce, particularly in the case of physical
goods [36].

There are a whole range of services that are delivered electronically; these include infor-
mation services—hotel room booking, airline booking, e-trading, banking, online stores,
e-governance services, and e-learning. The delivery is completely online in the case of digital
goods and information services while all but the physical shipment (seeking, price negotia-
tion, ordering, order tracking, and payment) happen over the Net. For example [37],

• Hotel rooms are physical that the visitor physically occupies during the visit, but
all supporting services are delivered online.

• University classes are held in the classrooms of a University, but registration for
the course, payment of fees, reading materials, assignment submission, and award
of the grades happen electronically.

• In electronic trading if the stock exchange is online (like NASDAQ) the entire
process happens electronically.
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• Many banks provide full service-banking electronically, with the customer using
the “physical world” (the branch of a bank or ATM) only for cash withdrawal/
payment.

• Many governments provide electronic access to their services (marriage registra-
tion, passport, tax payment, drivers license) where all but physical documents
(actual passports, driver license, license plates) are delivered electronically.

• Many stores (bookstores, computers, electronic gadgets, video stores, merchan-
dise, and even groceries) support electronic access for all but except the actual
delivery.

vi. Price Engines
A key advantage of e-commerce is a far superior “comparison shopping” that the electronic
stores can offer. Normal paper-based comparison shopping is limited to a few stores, a few
items, and a few merchants/agents, typically in the same area. Thanks to the global footprint
of the Internet and the 24× 7 availability, “pricing engines” [38] can offer a far richer
information source, electronic support to compare “real” prices (calculating the tax, freight
charges, and accounting for minor feature variations all within seconds) and displaying the
results in a far more user-friendly manner. Special discounts that are in place in specific
time zones or geographies for specific customer segments (age groups, profession, and sex)
can be centrally served from a common database with the user not having to “scout” for
all possible promotions for which he/she is eligible on that day in that geography.

A number of price engines are available today. Google offers “Froogle”; the early pioneer
NexTag started with a focus on electronics and computer products and recently expanded to
cars, mortgages, and interestingly online education programs! PriceGrabber is an innovator
in comparative shopping with 22 channels and brings the entire ecosystem together that
includes merchants, sellers, and other intermediaries; BestBuy, Office Depot, and Wal-Mart
are PriceGrabber customers.

Comparison shopping can be viewed as a specialized search engine, specialized
e-marketplace, or as a shopping advisory service firm. Yahoo introduced YahooShopping,
another comparative shopping service.

Comparative shopping sites organize structured data—price lists, product catalog, feature
lists—unlike ordinary search engines like Google that deal with unstructured Web pages.
Specialized techniques are needed (table comparison) as well as “intelligence” to check which
accessory goes with what main item. Often many of these higher level processes are done
manually by experts and combined with automated search, though attempts to automate
structured data are underway by many comparative shopping engines. Specialized compar-
ative shopping engines focusing on travel would address issues like connectivity of different
segments, multimodal availability checking like room availability, transportation facilities,
along with airline booking.

Comparative shopping engines use expert systems, ideas from AI, heuristics, and spe-
cialized algorithms like assignment and matching to get the speed and richness of the rec-
ommendations (in that sense a comparative shopping engine can be viewed as another
“recommendation engine”).

Price engines use simulation to study millions of alternatives to generate initial alterna-
tives, linear and nonlinear programming to optimize costs, and multiattribute utility theory
to balance the conflicting requirements of buyers and sellers.

9.4.4 Support for E-Commerce Infrastructure

The sale of digital goods, electronic support for sale of physical goods, or electronic delivery
of other services need a reliable, highly available, and scaleable Internet infrastructure with
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a range of challenges. We address the challenges relating to the distribution of content by
building a specialized infrastructure for mission critical sites; we address the issues relating
to content distribution of very demanding sites like the World Cup games site or Olympic
games site during the peak period using Web-caching.

Finally, e-commerce should address post-sales support also. While there are many issues,
we address the specific technology of “Web analytics” that provides insights into customer
behavior in the e-commerce context.

vii. Content Delivery Network
Mission critical servers that distribute large content (software downloads, music, video) must
plan for sustained high performance. Downloading of software, if it takes too much time
due to network congestion, would lead to “lost customers” as the customer would “give up”
after some time; dynamic information like Web-casting (for Webinar support) would need
guaranteed steady network availability to sustain delivery of audio or video content; any
significant delay would lead to poor quality sessions that the users would give up. Compa-
nies like Akamai [39] have pioneered a way of distributing content by equipping the “edge”
with sufficient content delivery for high availability, replicating the content at multiple loca-
tions for faster delivery, and running an independent managed network for sustained high
performance, in addition to tools to manage the whole process without human intervention.

A content delivery network (CDN) consists of servers, storage, and network working in
a cooperative manner to deliver the right content to the right user as fast as possible,
typically serving the user from the nearest possible server location, and if possible using the
cheapest network. Obviously, it is a continuously adaptive optimization problem for which
multicommodity flow algorithms have been extensively applied.

The key issues that must be optimized are the location of the servers and the choice of
multiple backbones that improves performance (user gets the content delivered real fast) and
decreases cost (minimal replication, least number of servers/least expensive servers, minimal
usage of bandwidth/least cost bandwidth). Naturally the objective is to provide consistent
experience to the users without their having to direct their search to specific locations; work-
ing behind the infrastructure must be a smart system that constantly watches the network,
copies content at multiple locations, replicates servers at multiple networks/locations, and
negotiates bandwidth.

Typically, content delivery networks are built as “overlay network” over the public Inter-
net and use DNS re-direct to re-direct traffic to the overlay network. The key elements of
CDN include

• High-performance servers
• Large storage
• Backup/storage equipment and “smart” policies to manage backup/storage
• Automated content distribution/replication
• Content-specific (audio/video, file transfer) delivery
• Content routing
• Performance measurement, and
• Accounting for charging the clients.

A content delivery network can be viewed as “higher layer” routing [39]; “Ethernet rout-
ing” happens at Layer 2 (as per OSI protocol); IP routing happens at Layer 3; port-based
routing takes place at Layer 4; and content-based routing can be viewed as Layer 4 to Layer
7 routing. New protocols that permit query of cache have led to the maintenance of “cache
farms” to improve content delivery.
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Akamai, Speedera (now part of Akamai), Nexus, Clearway, and iBeam Broadcasting (that
pioneered the use of satellite for replication) are the pioneers in CDN technology develop-
ment. This is an evolving area of research currently.

The importance of CDN can be gauged by the fact that the leader in CDN, Akamai, has
Google, Microsoft, AOL, Symantec, American Express, and FedEx as its customers today.

Google uses commodity servers and high availability algorithms that use a distributed
computing model to optimize search; content delivery is optimized using sophisticated
caching servers; as search results are less demanding (compared to video streaming, Webi-
nars, and Webcasts) Google is able to provide high performance at lower costs; with Google
getting into video, some of the strategies used by other CDN vendors might be pursued by
Google also.

CDN uses a distributed computing model to improve availability, networks to model the
underlying infrastructure, linear and dynamic programming to optimize flows, stochastic
processes to model user behavior, and heuristics to decide routing at high-speed for real-
time high performance.

viii. Web Site Performance Tuning
With Internet penetration on the rise, end users depending on Google, Yahoo, MSN, AOL,
and eBay for their day-to-day operations (search, mail, buy), the demand on the Inter-
net infrastructure is increasing both quantitatively and qualitatively. Users expect better
performance and ISPs want more customers. Users want screen refresh to happen within
a couple of seconds irrespective of network congestion or the number of users online at a
time. The users also expect the same response irrespective of the nature of the content—
text, graphics, audio, or video. Several researchers have addressed this issue. Google uses
several server farms with tens of thousands of servers to make its site available all the time
and the site contents refresh fairly fast. A whole area of “load-balancing” content delivery
has emerged over the past decade with several novel attempts [40,41].

One attempt to improve Web-site performance by load balancing is to use content dis-
tribution strategies that use differentiated content delivery strategies for different content
[41]. In this scheme, the differential content is distributed to servers of varying capability:

• High-end mainframe database servers for critical content
• Medium-end Unix box running low-end DBMS for less-critical content
• Low-end commodity server for storing other information as text files.

For example, in an airline reservation system,

• Fast-changing and critical content like “seat matrix” could be stored on a
mainframe/high-performance server,

• Less frequently changing content like “fare data” that is less critical for access
performance could be stored on a mid-range database server, and

• “Time table” information that does not change for a year can be kept as a flat
file on a commodity server.

By storing differentiated content on servers of different capability, criticality, and costs, it
is possible to cut down costs without compromising on quality of service; of course, sophis-
ticated replication schemes must be in place to ensure that the data across the three levels
of servers are consistent. The queries would arrive at an intermediate server and be directed
to the right server based on the content, yet another content delivery distribution scheme.

With the rising popularity of some sites, hit rates are reaching staggering proportions—
access rates of up to million hits per minute on some sites are not uncommon, posing
great challenges to servers, software, storage, and network. Content-based networking is a
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solution for some premier sites (Microsoft and FedEx), but ordinary sites too need enhanced
performance.

One approach to improve Web-site performance is to create concurrency through

• Process-based server (e.g., Apache server)
• Thread-based server (e.g., Sun Java server)
• Event-driven server (e.g., Zeus server), or
• In-kernel servers (very fast though not portable).

OR algorithms have been used to combine the various schemes; in addition, the “pop-
ularity index” of the content is used in a prioritization algorithm to improve Web site
performance of critical application infrastructure.

Such strategies have been used successfully to optimize Web servers for critical appli-
cations like the Olympic Games site during the days of the Olympic Games with telling
performance. For example, the Guinness Book of World Records announced on July 14,
1998, has two notable records:

• Most popular Internet record of 634.7 million requests over the 16 days of the
Olympic Games.

• Most hits on an Internet site in a minute—110,114 hits—occurred at the time of
women’s freestyle figure skating.

Using special techniques that use embedded O/S to improve router performance by opti-
mizing TCP stack, such strategies helped IBM achieve superior performance—serving
5000 pages/second on a single PowerPC-processor-based PC class machines running at
200 MHz [41].

Yet another technique widely used for Web-caching uses “greedy algorithms” to improve
server throughput and client response; typical strategies include

1. Least recently used (LRV) caching and
2. Greedy dual size that uses cost of object cashing (how expensive it is to fetch the

object) and size of the object (Knapsack problem)

to fill the cache.
Web site performance tuning uses simulation to get broad patterns of usage, optimization,

and decision analysis for arriving at strategies, stochastic processes and queuing theory to
model network delays, and inventory control to decide on network storage needs.

ix. Web Analytics
The final stage of e-commerce is post-sales support. In the context of the Web it is important
to analyze the consumer behavior in terms of the number of visits, how much time it took for
the user to find the information that was being searched, the quality of the recommendations,
the time the user spent on the various activities of the buyer–seller interaction that takes
place on the Internet. In turn, such insights would help the seller to offer better buying
experience and offer more focused products in the next buying cycle. Web analytics is the
technology that addresses this issue [42].

From the early days, Web site administrators have used logs to study the visit pattern of
the visitors visiting the site—number of visitors, distribution of visitors over time, popular
Web pages of the site, most frequently visited Web page, least frequently visited Web page,
most downloaded Web page, and so on. With the proliferation of the Web and the sheer size
of the Web content, many Web masters could not cope up with the large numbers thrown
up by the logs to get any key insights. It is the marketing and marketing communications
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professionals along with tool vendors that have helped the ideas of Web analytics mature
over the past decade.

The technique of page tagging that permitted a client to write an entry on an exter-
nal server paved the way for third-party Web analytics vendors who could use the “logs”
and “page tag databases” to provide a comprehensive analysis of the way a particular
e-commerce Web site was being used. JavaScript technology permitted a script file to
be copied (say, for example, a “counter” application) that would let third party vendors
remotely “manage” the site and provide analytics.

Google started providing “Google Analytics” free of charge on an invitation basis since
2005. SAS Web Analytics, Webtrends, WebsideStory, Coremetrics, Site Catalyst, and HitBix
are other Web analytics vendors who pioneered many ideas in this emerging area [42]. A
comprehensive Web analytics report goes beyond simple page counts, unique visitors, or
page impressions to provide insights into usability, segmentation, campaigns to reach specific
customers, and identification of potential customers, in the process becoming a powerful
marketing tool.

Web analytics uses data mining including optimization and simulation for pattern gen-
eration and pattern matching, stochastic processes, and simulation for traffic analysis and
neural networks, and genetic algorithms for postulating patterns and hypotheses.

9.5 Tools–Applications Matrix

We have outlined a range of OR applications for e-commerce in this section. Instead of
listing the tools and techniques we have discussed the different OR algorithms within the
life-cycle of typical e-commerce—customer acquisition, promotion, price negotiation, order
processing, delivery, payment, and after-sales support. We have indicated at the end of every
subsection describing the nine tools and applications (Internet search to Web analytics), the
key OR algorithms that the researchers have found useful. To provide a better perspective of
the interplay of e-commerce applications and tools of OR, the following tools–applications
matrix indicates the applicability of all relevant tools for each of the nine key e-commerce
tools and applications discussed in this chapter. The chart is more indicative and includes
the tools most likely to be used; after all, most tools can be used on every occasion.

OR Techniques used in 1 2 3 4 5 6 7

Internet search ✓ ✓

Recommendation algorithms ✓ ✓ ✓ ✓

Internet affiliate programs ✓ ✓

Supply chain optimization ✓ ✓ ✓ ✓ ✓ ✓

Internet auction ✓ ✓ ✓

Price engines ✓ ✓ ✓ ✓

Content delivery network ✓ ✓ ✓ ✓ ✓

Web performance tuning ✓ ✓ ✓ ✓ ✓ ✓ ✓

Web analytics ✓ ✓ ✓ ✓ ✓

1. Linear, integer, nonlinear, and dynamic programming
2. Network optimization
3. Decision analysis and multi-criteria decision making
4. Stochastic processes and queuing theory
5. Inventory control
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6. Simulation, and
7. Heuristics, AI, genetic algorithms, and neural networks.

9.6 Way Forward

E-commerce is fundamentally transforming every business—corporations, universities,
NGOs, media, and governments. With Internet still reaching only 2 billion of the 6+ billion
people in the world, e-commerce has the potential to grow; the existing users of e-commerce
will see further improvements in the services they see today and a whole new set of services
that have not even been touched. We are still in the growth phase of global e-commerce.
OR algorithms have influenced significantly the various business models and services offered
by e-commerce today. Several of the e-commerce applications pose special challenges; OR
professionals would find new algorithms and techniques to solve the challenges arising out of
e-commerce powered by WWW 2.0 and Internet II. It will be exciting to see OR influencing
the future of e-commerce and OR getting influenced by e-commerce applications.

9.7 Summary

In this chapter, we have outlined a number of OR applications in the context of e-commerce.
With e-commerce growing phenomenally, it is impossible to document all the e-commerce
applications and the OR tools used in those applications. We have taken a more pragmatic
view of outlining the key OR tools used in the different stages of the life-cycle of a typical
e-commerce transaction, namely, customer acquisition, promotion, order processing, logis-
tics, payment, and after-sales support. A set of nine key e-commerce applications, namely,

1. Internet search
2. Recommendation algorithms
3. Internet affiliate programs
4. Supply chain optimization
5. Internet auction
6. Price engines
7. Content delivery network
8. Web-site performance tuning
9. Web analytics

have been discussed as a way to provide insight into the role of OR models in e-commerce.
It is not possible to list the thousands of e-commerce applications and the use of hundreds
of OR tools; what is indicated in this chapter is the immense potential of OR applications to
e-commerce through a set of nine core tools/applications within the world of e-commerce.
A tools–applications matrix provides the e-commerce applications versus OR tools match.
While a lot has happened in the past decade, one expects a much larger application of OR
to the next stage of growth in global e-commerce.
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10.1 Introduction

10.1.1 Sustainability

There has been an increased awareness and concern in sustaining precious natural resources.
Water resources planning is rising to the top of the international agenda (Berry, 1996). In the
following, we present some of the problems that are affecting water resources. Chiras et al.
(2002) list the following water-related problems in the United States: increasing demand
in states such as Florida, Colorado, Utah, and Arizona; water used for food has tripled in
the last 30 years to about 24(106) hectares straining one of the largest aquifers, Ogallala
aquifer, ranging from Nebraska to Texas with a water table decline of 1.5 m per year in
some regions; high industrial and personal use; unequal distribution; and water pollution.
In the United States, the estimated water use is about 408 billion [408(109)] gallons per
day with a variation of less than 3% since 1985. The water use by categories is as follows:
48% for thermoelectric power, 34% for irrigation, 11% for public supply, and 5% for other
industrial use (Hutson et al., 2004).

Sustaining this resource is attracting significant attention (Smith and Lant, 2004). Sus-
tainability is defined as “meeting current needs without compromising the opportunities

10-1
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of future generations to meet their need” (World Commission, 1987). According to the
American Society of Civil Engineers (1998) and UNESCO, “Sustainable water systems are
designed and managed to fully contribute to the objective of the society now and in the
future, while maintaining their ecological, environmental and hydrologic integrity.” Heintz
(2004) points to economics to provide a framework for sustainability as not spending the
“principal.” He also elucidates the use of technology for resource substitution especially
for nonrenewable resources. Dellapenna (2004) argues that if the replenishment time is too
long, such as for iron ore or oil cycles, the resource should not be considered sustainable.
Replenishing groundwater in general is a long-term process. Kranz et al. (2004), Smith
(2004), Loucks (2002), and Loucks and Gladwell (1999) provide indicators for sustaining
water resources. An indicator used for assessing the receiving water quality is the total
maximum daily load (TMDL), which is the maximum mass of contaminant per time that a
waterway can receive from a watershed without violating water quality standards; an allo-
cation of that mass to pollutant’s sources is also required. In 2004, about 11,384 miles of
Virginia’s 49,220 miles of rivers and streams were monitored; of these, 6948 miles have been
designated as impaired under Virginia’s water quality standards (Younos, 2005). Reinstat-
ing water resources to acceptable standards requires a holistic engineering approach. Delleur
(2003) emphasizes alternative technological solutions that should be assessed for (i) scien-
tific and technical reliability, (ii) economic effectiveness, (iii) environmental impact, and
(iv) social equity.

10.1.2 Minor Systems

In the following, we draw attention to a minor system, namely the home plumbing sys-
tem. Domestic copper plumbing pipes (for drinking water use) are experiencing pinhole
leaks. Figure 10.1 shows the distribution of locations reporting pinhole leaks around the
country. We define the major system as the public utility water distribution system that
brings drinking water to houses. While the major system is readily recognized as a vast
infrastructure system of nearly 1,409,800 km of piping within the United States (Material

FIGURE 10.1 Plumbing pipe pinhole leak distribution (2000–2004) (small triangles show number of
leaks less than 10). (From Lee and Loganathan, Virginia Water Central, Virginia Water Resources Research
Center, 2006. With permission.)
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Performance, 2002), the minor system that is at least 5–10 times larger is generally not well
addressed. When a pipe has a leak, the homeowner is faced with the following issues: water
damage cost, repair cost, service disruption, possible lowering of home value, home insur-
ance/premium increase/nonrenewal, and health consequences, resulting from brown mold
growth and mental stress. The interaction between hydraulics, water quality parameters,
and pipe material has to be understood. There is a need for a decision model recommending
whether to continue to repair or replace the system.

Another example is related to urbanization, which increases imperviousness along with
quick draining channelization for runoff. These modifications result in increases in runoff
volume and peak flow and decreases in time to peak and recharge to groundwater storage.
It is required by many local governments that the post development peak flows of certain
designated frequencies must not exceed those of the predevelopment conditions and proper
flood controlling detention ponds must be installed to contain the increased post devel-
opment peak flows. An associated problem is that the falling rain can capture airborne
pollutants with it as well as dislodge particulate matter settled on the ground. The surface
runoff can dissolve as well as carry the adsorbed pollutants downstream. The water quality
impacts of stormwater discharges on receiving lakes and rivers are quite significant, as indi-
cated by the Environmental Protection Agency’s (EPA) guidelines for stormwater discharge
permits in the National Pollutant Discharge Elimination System (NPDES) program. Civil
action may be brought by the EPA against large municipalities that do not comply with
the permit requirements.

The above description addresses the most frequent drainage problem within an urban
area. The control measures put in place together to alleviate the problem constitute the
minor drainage system consisting of street gutters, inlets, culverts, roadside ditches, swales,
small channels, and pipes. A less frequent but significant flood damage problem arises when
an urban area is located along a water course draining a large basin. The issue here is con-
trolling the flood plain use and providing for proper drainage of flood waters. The Federal
Emergency Management Agency (FEMA) issues guidelines with regard to flood plain man-
agement under the National Flood Insurance Program (NFIP). The components involved in
this latter problem are the natural waterways, large man-made conduits including the trunk-
line sewer system that receives the stormwater from the minor drainage system, large water
impoundments, and other flood protection devices. These components together are desig-
nated as the major drainage system. Distributing, dimensioning, maintaining, and operating
these devices for maximum benefit is part of efficient water resources management.

10.1.3 Chapter Organization

Even though the foregoing discussion seems to delineate large and small-scale systems, in
reality they all are intertwined. For example, phosphate is typically added as a corrosion
inhibitor at the treatment plant but may have to be removed at the wastewater plant before
it reaches the receiving water body. It has become clearer that water systems cannot be
engineered in isolation. This introduction emphasizes the need for a holistic approach. In
the following, we present a set of water resources problem formulations with the understand-
ing that by no means are these exhaustive. All real life water resources problems require
an examination of alternatives. These problems typically require a combined simulation-
optimization approach highly suited to evolutionary optimization techniques.

There are also specific structures that can be exploited for many of the problems. They
seem to break into the following categories, namely (1) project planning including sequenc-
ing of multiple projects, (2) design, (3) operation, and (4) replacement. The goals and data
needs under these categories differ. Project planning involves national and regional economic
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development, damage reduction, protection of ecosystems, and improvement of quality of
life. Planning process requires a reconnaissance study followed by feasibility assessment on
a system-wide basis (National Research Council, 1999). Typically, a design life is used. It
includes factors such as period of cost recovery, meeting the intended function, technological
obsolescence, and the life of the weakest component. The design aspect mainly focuses on
dimensioning of the components subject to regulatory, physical, societal, and technical con-
straints. The operational phase addresses system behavior of an already built system and
its coexistence under changing needs. McMahon and Farmer (2004) provide a lucid account
of the need for reallocation of federal multipurpose reservoirs because of changing social
preferences and purposes that were originally intended. The replacement facet assumes that
the facility’s continued service is essential and it fails periodically. Here the analysis focuses
on failure patterns and alternative components to provide improved service.

In this chapter, we cover two major systems, namely, reservoirs and water distribution
networks. The minor system, namely, the home plumbing system, is actually much larger
than the public water distribution system and is addressed next. We present outcomes of a
focus study group on consumer preferences toward different attributes of plumbing pipes.
Urban stormwater management related to nonpoint source pollution is a major problem. In
addition to regulations, financial considerations due to limited space and price of land steer
the engineering design. Groundwater contamination is widespread and remains a significant
cause of concern. All these problems require a process simulation-optimization approach. In
this chapter, mathematical formulations for the efficient utilization of water resources are
presented.

10.2 Optimal Operating Policy for Reservoir Systems

10.2.1 Introduction

In this section, we consider one of the largest and most complex water resource systems,
namely, the reservoir. Labadie (2004) provides a comprehensive updated review of optimiza-
tion of reservoir systems. He also includes a discussion on available software. He points out
that with construction of no new large-scale projects there is a need for methods that can
guide in efficient operation of these systems. It is not clear whether the increased demands on
fossil fuels will result in a re-examination of policy toward building dams. A comprehensive
analysis of reallocation of reservoir storage for changing uses and social preferences is given
in McMahon and Farmer (2004) (also see National Research Council, 1999). A reservoir sys-
tem captures, stores, and distributes water in sufficient quantities at sufficient head when
and where needed. Such a system is typically subjected to three kinds of analysis. At precon-
struction planning stage, determine the required capacity using the lowest inflows called the
critical duration sequence that shifts burden to storage in meeting the demand; or compute
the maximum yield that is obtainable for a given capacity. At post-construction planning
stage, reevaluate performance with multiple inflow sequences in meeting the demand.

The United States Army Corps of Engineers (USACE) is the primary agency responsible
for flood control for major reservoir systems. In the following, USACE’s storage classification
(Feldman, 1981; Wurbs, 1991) is adopted. In broad terms, reservoir storage is divided into
three zones. The bottom zone, called inactive pool, is located beneath the low-level outlet so
that no release is possible. This storage is meant to trap sediment and may provide for fish
habitat. The top zone, called flood control storage, is empty space and is used only during
periods of high flows so that releases will not exceed downstream channel capacity. When
the top of the flood control zone is exceeded, the reservoir is out of control and an emergency
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spillway is used to divert the bulk of the flow. Major dams are designed for large flood events
called probable maximum floods based on meteorological factors. The moisture maximization
procedure employed in computing probable maximum precipitation provides the upperbound
flood and it is highly unlikely this design event can ever be exceeded (Wurbs, 1991). The
middle zone, called conservation storage, is utilized to satisfy day to day demands.

The USACE employs an index level associated with the top of each storage zone from
the inactive pool, conservation pool to the flood pool. For example, a reservoir of capacity
700,000 ac-ft may have an index level of 1 assigned to a storage of 50,000 ac-ft at the top
of the inactive pool; index 2 may correspond to 200,000 ac-ft at the top of the conservation
pool; and index 3 corresponds to 700,000 ac-ft at the top of the flood control pool. The
number of index levels can be increased by further subdividing the storage zones, mainly
in the conservation pool. When the index levels at all reservoirs coincide, the entire system
is considered to be in equilibrium and deviations from the equilibrium should be mini-
mized. The equilibrium maintenance of index levels sets up a framework for a mathematical
formulation in determining the reservoir operations schedule (Loganathan, 1996).

In real-time operations, forecasted inflows are used. The problem is solved with a rolling
horizon of a few days with the results being implemented for the current day only. For the
next day, the problem is re-solved with the updated forecast information from the current
day observations. To aid the operator in day to day operations a rule curve is used. It
specifies where the water level (storage) should be as a function of a particular month
or week. These rule curves are based on the river flow sequence and the storage capacity
that are available to smooth out operations. Because they are typically based on long-term
simulations subjecting the system to a variety of inflow sequences, inherent in a rule curve is
the anticipatory nature with regard to the stream flow. Hedging is the ability to shift storage
to later times by providing only a portion of the demand when in fact it is possible to meet
the entire demand. It is done to minimize drastic deficits over prolonged low flow periods.

The maximum flow that can be guaranteed during the most adverse stream flow period,
also known as critical period, is the firm yield. The energy that can be produced under the
most adverse flow conditions is called firm energy (Mays and Tung, 1992). The firm yield
and firm energy set the lower bounds on flow and energy that are available for all times from
a reservoir. A flow duration curve, which is a plot of flow versus percentage of times flow
that is equaled or exceeded, is utilized to select the firm yield and firm energy at the near
100% exceedance level. This curve is important because it shows the inflow potential for a
reservoir. The larger the reservoir, the higher the firm yield and energy that can be sustained
for a prolonged time period. Preliminary power plant capacity is determined based on the
average flow between selected threshold percentage exceedance values (American Society of
Civil Engineers, 1989; Warnick et al., 1984). These limits help to impose a realistic demand
pattern over the system.

The demand requirements are as follows. The water supply demands require specific
amounts of flow at various locations and time; hydropower demands require both flow and
hydraulic head at the turbine; navigation operations require sufficient flow depths in the
channels and flows for the locks; recreation aspects require minimum water level fluctuations
in the reservoir and sufficient depth for boats in rivers; ecological considerations require
maintaining water quality, selective withdrawal of water from certain zones of storage for
temperature maintenance downstream, providing sufficient amounts of aeration for required
quantity of dissolved oxygen and at the same time avoiding supersaturation of water with
gases such as nitrogen, which can cause gas bubble disease in fish and other biota (Mattice,
1991). These requirements in general become constraints on flow and reservoir storage. In
the following some general guidelines as recommended by the U.S. Army Corps of Engineers
(USACE) in meeting the demands are outlined.
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10.2.2 Reservoir Operation Rules

The USACE’s (2003) HEC-ResSim computer program [HEC5 (USACE, 1982)] is designed to
simulate system behavior including hydropower under a set of operating rules. The storage
index levels for each reservoir along with downstream flow conditions, anticipated inflows,
and a view toward reaching equilibrium for the system as a whole dictate how the releases
should be made. This approach eliminates much of the leeway in determining the releases;
however, this strategy helps in minimizing flooding and empties the system as quickly as
possible. Such a strategy should be reconsidered in a situation wherein flood control is not
a major issue. In the following the operating rules are presented.

Reservoir Releases

Reservoir releases can be based on the following criteria: (1) channel capacity at the dam;
(2) rate of change of release so that current period release cannot deviate from previous
period release by more than a specified amount unless the reservoir is in flood surcharge
operation; (3) storage not exceeding the top of conservation pool; (4) downstream control
point flooding potential; (5) meeting specified target levels; (6) exceeding required low flows;
(7) reaching various storage values; and (8) hydropower requirements.

Reservoir Filling/Drawing Down

Reservoirs are operated to satisfy constraints at the individual reservoirs to maintain spec-
ified flows at downstream control points and to keep the system as a whole in balance.

Constraints at individual reservoirs:

1. When the level of a reservoir is between the top of the conservation pool and top
of the flood pool, releases are made to attempt to draw the reservoir to the top
of the conservation pool without exceeding the channel capacity.

2. Releases are made compatible with the storage divisions within the conserva-
tion pool.

3. Channel capacity releases (or greater) are to be made prior to the time the reser-
voir storage reaches the top of the flood pool if forecasted inflows are excessive.
The excess flood water is dumped if sufficient outlet capacity is available. If
insufficient capacity exists, a surcharge routing is made.

4. Rate of change criterion specifies the maximum difference between consecutive
period releases.

Constraints for downstream control points:

1. Releases are not made (as long as flood storage remains) which would contribute
to flooding during a predetermined number of future periods. During flooding at
a downstream location, there may not be any release for power requirements.

2. Releases are made, where possible, to exactly maintain downstream releases at
channel capacity for flood operation or for minimum desired or required flows for
conservation operation.

System Balancing

To keep the entire system in balance, priority is given to making releases from the reservoir
with the highest index level; if one of two parallel reservoirs has one or more reservoirs
upstream, whose storage should be considered in making the releases, an upstream reservoir
release is permitted only if its index level is greater than both the levels of the downstream
reservoir and the combined reservoir equivalent index level. The combined equivalent index
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level corresponds to the sum of the reservoirs’ storage at the appropriate index levels. For
example, if reservoirs A, B, and C have index level 5 at storage 400, 300, and 200 (in
kiloacre feet say) the combined equivalent index 5 corresponds to the storage of 900. For an
elaborate discussion the reader is referred to the HEC5 user’s manual (USACE, 1982). In
the following, a general problem formulation that accommodates many of the facets of the
above operating policy guidelines is presented.

10.2.3 Problem Formulation

A general mathematical programming formulation for the reservoir-operations problem may
be stated as
Problem 10.1:

minimize: deviations = F(Sd+
11, Qd+

11, Ed+
11, Sd−11, Qd−11, Ed−11, . . .) (10.1)

Subject to:

Real Constraints

Reservoir continuity

S(i, t + 1) + R(i, t) = S(i, t) + I(i, t) for i = 1, . . .,NRES; t = 1, . . ., T (10.2)

Reach routing

Q(i, t) = g[P (i, t),TF(i, t), Q(ji), R(ji)] for i = 1, . . .,NREACH; t = 1, . . ., T (10.3)

Hydropower

R(i, t) = A(i, t) + B(i, t) for i = 1, . . .,NPLANT; t = 1, . . ., T (10.4)

E(i, t) = η(i)γA(i, t)H [S(i, t)] for i = 1, . . .,NPLANT; A = 1, . . ., T (10.5)

Bounds on flows

LQ(i) ≤ Q(i, t) ≤ UQ(i) for i = 1, . . .,NREACH; t = 1, . . ., T (10.6)

Bounds on storages

LS(i) ≤ S(i, t) ≤ US(i) for i = 1, . . .,NRES; t = 1, . . ., T (10.7)

Powerplant capacity

E(i, t) ≤ EP(i) for i = 1, . . .,NPLANT (10.8)

Nonnegativity of variables

S(i, t), R(i, t), Q(i, t), Sd−i,t, Sd+
i,t, Qd−i,t, Qd+

i,t, Ed−i,t, Ed+
i,t ≥ 0 (10.9)

Goal Constraints

S(i, t) + Sd−i,t − Sd+
i,t = TS(i, t) for i = 1, . . .,NRES; t = 1, . . ., T (10.10)

Q(i, t) + Qd−i,t − Qd+
i,t = TQ(i, t) for i = 1, . . .,NREACH; t = 1, . . ., T (10.11)

E(i, t) + Ed−i,t − Ed+
i,t = TE(i, t) for i = 1, . . .,NPLANT; t = 1, . . ., T (10.12)

in which S(i, t)= the storage at the beginning of period; I(i, t) and R(i, t)= inflow and
release during period t for reservoir i, respectively; NRES is the number of reservoirs;
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T =the operating horizon; Q(i, t)= the flow in reach i written as some function g; P (i, t) and
TF (i, t)= precipitation and tributary flow to reach i for period t, respectively; A(i, t)= flow
for hydropower from reservoir i for period t; B(i, t)= nonpower release from reservoir i for
period t; η(i)= efficiency of plant i; γ = specific weight of water; H[S(i, t)]= head over the
turbine, a function of reservoir storage and tailwater level; EP(i)= plant capacity for the ith
power plant; NPLANT= the number of power plants; ji= the set of control stations con-
tributing flow for reach i; NREACH= the number of reaches; LQ(i) and UQ(i)= lower and
upper bounds for flow in reach i, respectively; LS(i) and US(i)= lower and upper bounds for
storage in reservoir i, respectively; Sd−

i , Sd+
i , and Qd−i , Qd+

i , and Ed−i , Ed+
i =the slack

and surplus deviational variables for storage, flow, and power respectively; TS(i, t) = the
storage target for reservoir i at time t; TQ(i, t)= the flow target for reach i at time t;
and TE(i, t)= power target for plant i at time t. The storage goal constraints provide for
recreation and hydropower; the flow goal constraints provide for water supply, navigation,
instream flow and irrigation; the hydropower goal constraints provide for target power pro-
duction at each plant.

Hydropower

Eschenbach et al. (2001) provide a detailed description of Riverware optimization decision
support software based on a goal programming formulation. Linearization is used to solve it
as a linear program. They also include a description of Tennessee Valley Authority’s use of
the software in managing their reservoirs to determine optimal hydropower schedules. The
hydropower aspect has been considered in various forms, such as assigning a target storage
for power production; maintaining a fixed head; linearization by Taylor series about an iter-
ate; induced separability/subsequent linearization; division of storage into known intervals
and choosing constant heads for each interval with the selection of intervals aided by integer
variables or by dynamic programming state transition; optimal control strategy and direct
nonlinear optimization. Comprehensive reviews are given in Labadie (2004), Yeh (1985),
Wurbs (1991), and Wunderlich (1991). Martin (1987) and Barritt-Flatt and Cormie (1988)
provide detailed formulations. Successive linear programming (Palacios-Gomez et al., 1982;
Martin, 1987; Tao and Lennox 1991) and separable programming (Can et al., 1982; Ellis and
ReVelle, 1988) are widely adopted for solution. Pardalos et al. (1987) have offered a strat-
egy to convert an indefinite quadratic objective into tight lower bounding separable convex
objective which can be solved efficiently. If the hydropower constraints are dropped or lin-
earized, then using linear routing schemes in (Equation 10.3) Problem 10.1 becomes a linear
program (Loganathan and Bhattacharya, 1990; Changchit and Terrell, 1989). Martin (1995)
presents a well-detailed real system application to the Lower Colorado River Authority dis-
trict. Moore and Loganathan (2002) present an application to a pumped storage system.

Trigger Volumes for Rationing

Thus far the discussion has paid more attention to floods. However, water shortages do
occur and how to cope with them is a critical issue. Lohani and Loganathan (1997) offer a
procedure for predicting droughts on a regional scale. In the case of a reservoir one should
know at what low storage levels the regular releases should be curtailed toward an impending
drought (Shih and ReVelle, 1995). If the available storage plus forecasted inflow is less than
V1p, the first-level trigger volume, level 1 rationing is initiated. If the anticipated storage
for the next period is less than V2p, the second level trigger volume, level 2 rationing, which
is severer than level 1 rationing, is initiated. The objective is not to have any rationing at
all by prudently utilizing the storage to satisfy the regular demands. With this objective,
the V1p and V2p will be chosen optimally by preserving storage whenever possible to hedge
against future shortfalls.
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Shih and ReVelle (1995) propose optimal trigger volumes V1p and V2p to initiate two levels
of rationing of water during drought periods as described by the following constraints.

St−1 + It ≤ V1p + Mδ1t (10.13)

St−1 + It ≥ V1p − M(1 − δ1t) (10.14)

St−1 + It ≤ V2p + Mδ2t (10.15)

St−1 + It ≥ V2p − M(1 − δ2t) (10.16)

Rt = (1 − α1)D∗δ1t + (α1 − α2)D ∗ δ2t + α2D (10.17)

V1p ≥ (1 + β1)V2p (10.18)

δ1t ≤ δ2,t+1 with δ1t, δ2t ∈ 0 or 1 binary (10.19)

in which V1p, V2p =cutoff storage values for levels 1 and 2 rationing; α1, α2 =percentages
of demand D provided during rationing levels 1 and 2, respectively; β1 = suitably chosen
percentage level, say 20%. When δ1t =1, from Equation 10.14 there is no rationing; when
δ1t = 0, and δ2t =1 from Equations 10.13 and 10.16 there is level 1 rationing. When δ2t = 0,
there is level 2 rationing and Rt = α2D. Note that when δ2t = 0, we must have δ1t = 0 by
Equation 10.14. When δ1t = 1, δ2t has to be 1 and Rt = D. Constraint 10.19 says that level 1
rationing must precede level 2 rationing. The objective is to maximize

∑
δ1t over t.

Linear Release Rule

There have been attempts to follow the rule curve in the sense of relating a fixed amount
of storage to a specific time period. For example, the release rule given by ReVelle et al.
(1969), also called linear decision rule, is

Rt = St−1 − bt (10.20)

in which St−1 = storage at the end of t− 1; bt = decision parameter for period t; Rt = release
for period t. This rule says that from the end of t− 1 period storage St−1, save bt amount
and release the remaining during period t as Rt regardless of inflow, It, which will add to
bt. It is seen from Equation 10.20 that the end period of period t storage St is the sum of
the left-over storage bt from the previous period plus the inflow. That is,

St = bt + It (10.21)

With the aid of Equation 10.21 each storage variable St can be replaced by the corresponding
decision variable bt which will be optimally determined for each t. If t represents a month,
b1 = b (January) is fixed and repeats in an annual cycle in replacing S1, S13, S25, and so on.
From Equation 10.21 it is seen that the single decision variable b1 along with the known I1,
I13, and I25 replaces the three variables S1, S13, and S25. Therefore, this substitution leads
to a few decision variables. These twelve bt values help to regulate a reservoir. Refinements
to this type of release rule are given in Loucks et al. (1981) (also see Karamouz et al., 2003,
and Jain and Singh, 2003).

Chance Constraint

Instead of using the predicted value of the inflow, its quantile may be used at a particular
probability level. For example, consider the probability that storage at the end of time
period t denoted by St exceeding some maximum storage SMAX must be less than or equal
to a small value, say 0.1. That is,

P [St ≥ SMAX] ≤ 0.1 (10.22)
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Substituting Equation 10.21 in Equation 10.22 we obtain

P [It ≥ SMAX − bt] ≤ 0.1 (10.23)

with its deterministic equivalent given by

SMAX − bt ≥ i0.9(t) (10.24)

in which i0.9(t)= cutoff value at the 90% cumulative probability level for period t.

Firm Yield, Storage Capacity, and Maximization of Benefits

As mentioned before, firm yield and storage capacity to meet fixed demands are important
parameters. The determination of firm yield requires maximize [minimum R(i, t)] for spec-
ified reservoir capacity. The required storage capacity is obtained by minimizing capacity
to satisfy the demands. The optimal capacity therefore will be determined by the critical
period with the most adverse flow situation requiring maximum cumulative withdrawal as
dictated by the continuity constraint (Equation 10.2). Of course, a large demand that cannot
be supported by the inflow sequence would trigger infeasibility. While the objective in Equa-
tion 10.1 minimizes the deviations from targets, one may choose to maximize the benefits
from the releases including hydropower, and recreation. Such a formulation can yield a prob-
lem with nonlinear objective and linear constraint region. Can et al. (1982) discuss strategies
to linearize the objective function so that the problem can be solved as a linear program.

In the simulation program HEC5, by employing the index level discretization scheme
for storage capacity, releases compatible with the storage are made, which enhances opera-
tions within the conservation zone. This scheme also minimizes flood risk at a reservoir by
having its storage compatible with the others. The program attempts to find near optimal
policies by cycling through the allocation routines several times. This approach has a ten-
dency to place the releases at their bounds. Practical considerations in reservoir operations
include a well spelt out emergency preparedness plan and the operation and maintenance of
electrical, mechanical, structural, and dam instrumentation facilities by the operating per-
sonnel located at or nearest to the dam. These practical operating procedures at the dam
site are covered in the standing operating procedures guide (U.S. Department of Interior,
1985). Because loss of lives and property damages are associated with any faulty deci-
sions with regard to reservoir operations, all model results should be subjected to practical
scrutiny.

10.3 Water Distribution Systems Optimization

10.3.1 Introduction

Water distribution systems constitute one of the largest public utilities. Optimal water
distribution system design remains intriguing because of its complexity and utility. Com-
prehensive reviews of optimization of water distribution systems are given in Boulos et al.
(2004) and Mays (2000). Bhave (1991) and Walski (1984) provide thorough details on for-
mulating water distribution network problems. The pipe network problems have feasible
regions that are nonconvex. Also, the objective function is multimodal. These two aspects
make the conventional (convex) optimization methods to result in a local optimum sensitive
to the starting point of the search. In this section, a standard test problem from the liter-
ature is considered. The pipe network is judiciously subjected to an outer search scheme
that chooses alternative flow configurations to find an optimal flow division among pipes.
An inner linear program is employed for the design of least cost diameters for the pipes.
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The algorithm can also be employed for the optimal design of parallel expansion of exist-
ing networks. Three global search schemes, multistart-local search, simulated annealing, and
genetic algorithm, are discussed. Multistart-local search selectively saturates portions of the
feasible region to identify the local minima. Simulated annealing iteratively improves the
objective function by finding successive better points and to escape out of a local minimum
it exercises the Metropolis step, which requires an occasional acceptance of a worse point.
Genetic algorithm employs a generation of improving solutions as opposed to the other two
methods that use a single solution as an iterate. Spall (2003) provides comprehensive details
on search methods.

10.3.2 Global Optimization

It is not uncommon to find real life problems that have cost or profit functions defined
over a nonconvex feasible region involving multiple local optima and the pipe network
optimization problem falls into this group. While classical optimization methods find only
a local optimum, global optimization schemes adapt the local optimum seeking methods
to migrate among local optima to find the best one. Of course, without presupposing the
nature of local optima, a global optimum cannot be guaranteed except to declare a relatively
best optimum. Detailed reviews are given in Torn and Zilinskas (1987) and Rinnooy Kan
and Timmer (1989). Consider Problem P0 given by:

Problem P0:

Minimize f(x)
Subject to : gi(x) ≥ 0 for i = 1, 2, . . .,m

Let the feasible region be X = {x|gi(x)≥ 0}. A solution x1 is said to be a local optimum
if there exists a neighborhood B around x1 such that f(x1)≤ f(x) for all x∈B(x1). A
solution xg is said to be a global optimum if f(xg)≤ f(x) for all x∈X.

10.3.3 Two-Stage Decomposition Scheme

In this section, a two-stage decomposition with the outer search being conducted among
feasible flows, and an inner linear programming to optimally select pipe diameters and
hydraulic heads is employed. The following formulation retains the same general inner linear
programming framework when addressing multiple loadings, pumps, and storage tanks as
given in Loganathan et al. (1990). However, for the sake of clarity and the nature of the
example problem these elements are suppressed. Consider a pipe network comprised of N
nodes. Let S be the set of fixed head nodes. Let {N–S} be the set of junction nodes and
L be the set of links. Q(i,j) is the steady state flow rate through link (i, j)∈L. Let L(i,j)

denote the length of link (i, j)∈L and D(i,j) be its diameter which must be selected from
a standard set of discrete diameters D = {d1, d2, . . ., dM}. In the present formulation it is
assumed that each link (i, j) is made up of M segments of unknown lengths x(i,j)m (decision
variable) but of known diameter dm for m= 1, 2, . . .,M (Karmeli et al., 1968). Let C(i,j)m

be the cost per unit length of a pipe of diameter dm. Let rk be the path from a fixed head
node (source) to demand node, k. Let P be the set of paths connecting fixed head nodes
and basic loops. Let there be Pl loops and bp denote the head difference between the fixed
head nodes for path p connecting them; and it is zero corresponding to loops. Let Hs be
the fixed head and Hmin

k be the minimum head at node k∈{N–S}. Let qi be the supply at
node i which is positive; if it is demand, it is negative. Let J(i,j)m be the hydraulic gradient
for segment m (partial length of a link with diameter dm) which is given by

J(i,j)m = K[Q(i,j)/C]1.85d−4.87
m (10.25)
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in which K = 8.515(105) for Q(i,j) in cfs and dm in inches; C =Hazen-Williams Coefficient.
The pipe network problem may be stated as follows:

Problem P1:

Minimize f(x) =
∑
(i,j)

M∑
m=1

C(i,j)mx(i,j)m (10.26)

Subject to:
∑

j

Q(i,j) −
∑

j

Q(j,i) = qi for i ∈ {N–S} (10.27)

Hs − Hmin
k −

∑
(i,j)∈rk

±
∑
m

J(i,j)mx(i,j)m ≥ 0 for s ∈ S and k ∈ {N–S}

(10.28)
∑

(i,j)∈p

±
∑
m

J(i,j)mx(i,j)m = bp for p ∈ P (10.29)

∑
m

x(i,j)m = L(i,j) for (i, j) ∈ L (10.30)

x(i,j) ≥ 0 (10.31)

In Problem P1 pipe cost objective function (Equation 10.26) is minimized; constraint 10.27
represents steady state flow continuity; constraint 10.28 is the minimum head restriction;
constraint 10.29 represents the sum of head losses in a path which is zero for loops; constraint
10.30 dictates that sum of segment lengths must equal link length; constraint 10.31 is the
nonnegativity on segment lengths. The decision variables are: Q(i,j), J(i,j)m, and x(i,j)m.
The following two-stage strategy Problem P2 is suggested for the solution of Problem P1.

Problem P2:

Min
Q(i,j)

[
Min
x∈X

f(x)
]

(10.32)

in which Q(i,j) are selected as perturbations of the flows of an underlying near optimal
spanning tree of the looped layout satisfying constraint 10.27 and X is the feasible region
made up of constraints 10.28 through 10.31. It is worth noting that the optimal layout tends
to be a tree layout. Deb (1973) shows that a typical pipe cost objective is a concave function
that attains its minimum on a boundary point resulting in a tree solution (also see Deb and
Sarkar, 1971). Gessler (1982) and Templeman (1982) also argue that because optimization
has the tendency to remove any redundancy in the system the optimal layout should be a
tree. However, a tree gets disconnected even when one link fails. Loganathan et al. (1990)
have proposed a procedure that yields a set of near optimal trees that are to be augmented
by loop-forming pipes so that each node has two distinct paths to source. It is suggested
that the flows of the optimal tree be considered as initial flows that are to be perturbed to
obtain flows in all pipes of the looped network. It is observed that the inner Problem P3 of
Problem P2 given by

Problem P3:

Min
x∈X

f(x), for fixed flows (10.33)
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is a linear program that can be solved efficiently. To choose the flows in the outer problem
of P3, multistart-local search and simulated annealing are adopted. To make the search
efficient, first a set of flows corresponding to a near optimal spanning tree of the network is
found. The flows in the looped network are taken as the perturbed tree link flows by

Q(i,j)(loop) = Q(i,j)(tree) +
∑

±ΔQp(i,j) (10.34)

in which the sum is taken over loops “p” which contain link (i, j) with positive loop change
flow ΔQ used for clockwise flow.

10.3.4 Multistart-Local Search

Multistart-local search covers a large number of local minima by saturating the feasible
region with randomly generated starting points and applying a local minimization proce-
dure to identify the local optima. A suitable generating function is needed. Because flows
in the looped network are generated by perturbing the optimal tree flows, a probability
density function for loop change flows with mean zero is a good choice. However, other
parameters of the density function must be adjusted by experimentation for the problem
under consideration. The algorithm is summarized as follows:

Procedure MULTISTART

Step 0: (Initialization) Select a suitable density function (pdf) with known parameters
and assign number of seed points to be generated, NMAX; determine an estimate of global
optimal value fg; assign a large value for the incumbent best objective function value, BEST;
set n= 1.

Step 1: (Iterative Local Minimization) Until n= NMAX
do: Generate a point using the pdf that serves as perturbation flow in Equation 10.34.

Apply the minimizer Problem P3. Update incumbent BEST.
Step 2: (Termination) If |fg −BEST |<tolerance, report BEST and the optimal solu-

tion and stop. Otherwise, revise parameter values for the generating function, and/or global
value, fg and tolerance. Set n= 1; go to Step 1.

END Procedure.

10.3.5 Simulated Annealing

Simulated annealing is an iterative improvement algorithm in which the cost of the current
design is compared with the cost of the new iterate. The new iterate is used as the starting
point for the subsequent iteration if the cost difference is favorable. Otherwise, the new
iterate is discarded. It is clear that such an algorithm needs help to get out of a local
optimum to wander among local minima in search of the global minimum. It uses the
Metropolis step to accomplish this. The Metropolis step dictates that a worse point (higher
objective value for a minimization problem) be accepted from the current point with a user
specified probability “pR.” The algorithm accepts the next iterate from the current iterate
with probability one if it is a better point (lower objective value).

From the given initial point, the corresponding objective function value, f0, is calculated.
Then, a point is randomly generated from a unit hypersphere with the current iterate at
its center. This random point specifies a random direction along which a new point is gen-
erated by taking a user specified step size of α from the current iterate. A new objective
function value (f1) is evaluated at the point. The new point is accepted with the probability
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p given by:

pR = 1 if Δf = f1 − f0 ≤ 0 (10.35)
= exp(−βΔf/fθ

0 ) if Δf > 0

where β and θ are user-specified parameters. From the first condition of Equation 10.35
it is seen that the method readily accepts an improving solution if it is found. From the
second condition, it is apparent that an inferior point (i.e., with worse objective function
value) becomes an acceptable solution with probability exp(−βΔf/fθ

0 ) when an improving
solution is not available. Bohachevsky et al. (1986) recommend selecting the parameter β
such that the inequality 0.5< exp(−βΔf/fθ

0 )< 0.9 holds, which implies that 50–90% of
the detrimental steps are accepted. The procedure continues until a solution that is within
a tolerance level from the user-specified (estimated) global optimal value is obtained. The
algorithm is stated as follows (Loganathan et al., 1995).

Procedure ANNEALING

Step 0: (Initialization) Let fg be the user-specified (estimated) global optimal value
(which may be unrealistic): α a step size, and β and θ acceptance probability parameters.
Let the vector of loop change flows be ε = {ΔQ1,ΔQ2, . . .,ΔQPl

}. Let ε0 be the arbitrary
feasible starting point of dimension Pl.

Step 1: (Local Minimization) Set f0 = f(ε0). If |f0 − fg|< tolerance, stop.
Step 2: (Random Direction) Generate Pl (number of loops) independent standard nor-

mal variates, Y1, . . ., YPl
and compute components of unit vector U: Ui = Yi/(Y 2

1 + · · ·Y 2
Pl

)1/2,
for i= 1, . . ., Pl.

Step 3: (Iterative Local Minimum) Set ε1 = ε0 +αU. Apply minimizer Problem P3. If
ε1 is infeasible, return to Step 2. Otherwise, set f1 = f(ε1) and Δf = f1 − f0.

Step 4: (Termination) If f1 >f0, go to step 5. Otherwise, set ε0 = ε1 and f0 = f1. If
|f0 − fg|< tolerance, save ε1 and stop. Otherwise go to Step 2.

Step 5: (Acceptance–Rejection) (f1 >f0): Set pR = exp(−βΔf/fθ
0 ). Generate a uniform

0–1 variate v. If v≥ pR, go to Step 2. Else v < pR and set ε0 = ε1, f0 = f1, and go to Step 2.
END Procedure.

The success of the procedure depends upon the selection of the parameters α (step size),
β (exponential probability parameter), and θ (exponent in the exponential probability func-
tion), which must be adjusted as necessary. If β is too large (pR is too small) too many
function evaluations are needed to escape from a local minimum; if β is too small (pR is close
to unity), an inefficient search results by accepting almost every inferior point generated.
The parameter α controls the search radius around ε0: α should be chosen such that the
distance is sufficiently long to prevent from falling back to the same local minimum. Also,
estimates for fg and tolerance should be updated based on the performance of the algo-
rithm. Goldman and Mays (2005) provide additional applications of simulated annealing to
water distribution systems.

10.3.6 Extension to Parallel Expansion of Existing Networks

Another important aspect that must be considered is the expansion of existing networks.
In the present formulation parallel expansion of existing pipes is considered. Adaptation
of Problem P2 for existing networks is as follows. For existing pipes, the pipe diameters
are fixed and parallel links may be required for carrying additional flow in order not to
increase the head loss. The flow from node i to node j, for a parallel system, is denoted by
Q(i,j) =Q(i,j),O + Q(i,j),N , in which subscripts O and N indicate Old and New, respectively.
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FIGURE 10.2 Two-loop example network.

TABLE 10.1 Node Data
Node i Elevation (m) Minimum Head (m) Demand (m3/h)

1 210 0 −1120
2 150 30 100
3 160 30 100
4 155 30 120
5 150 30 270
6 165 30 330
7 160 30 200

It is suggested that Problem P2 be solved with the restriction that an existing pipe should
not be undersized. From the solution to Problem P2 the head loss for each pipe can be
obtained by multiplying the optimal segment lengths, x(i,j)m’s and the corresponding head
gradients J(i,j)m’s. Because optimal head loss, friction parameter, and existing pipe size
are known, the flow in an existing link and therefore the flow for the parallel pipe can be
computed (Wylie and Streeter, 1985). The parallel pipe in turn is decomposed into discrete
diameter pipes in series.

10.3.7 Analysis of an Example Network

In this section, an example network (Alperovits and Shamir, 1977) using the data given
therein is considered (see Figure 10.2). The data for the minimization problem P2 are
the minimum and maximum heads and demand at each node, length and Hazen-Williams
coefficient C for each link, and the unit cost for different pipe diameters. These data for
Alperovits and Shamir network are given in Tables 10.1 and 10.2. Each link has length
1000 m and a Hazen-Williams coefficient of 130. For known flow rates, Problem P3 is a
linear program. The decision variables are the unknown segment lengths of known diameters.
The network consists of seven nodes, eight links (see Figure 10.2), and fourteen different
candidate diameters as shown in Table 10.2. Because there are only fifteen possible spanning
trees for the network, the global optimal tree solution is easily obtained (Loganathan et al.,
1990). These flows are {1120, 370, 650, 0, 530, 200, 270, 0} in links {(1,2), (2,3), (2,4),
(4,5), (4,6), (6,7), (3,5), (7,5)}, respectively, which are systematically perturbed to obtain
the flows for the looped network.
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TABLE 10.2 Diameter/Cost Data
Diameter (in.) Unit Cost ($/m) Diameter (in.) Unit Cost ($/m)

1 2 12 50
2 5 14 60
3 8 16 90
4 11 18 130
6 16 20 170
8 23 22 300

10 32 24 550

TABLE 10.3 Optimal Flows for Different Methods (Flow Rate m3/h)
Link Loganathan et al. (1990) Global Search Global Search with Min. Flow

(1,2) 1120.0 1120.0 1120.0
(2,3) 360.0 368.33 368.0
(2,4) 660.0 651.67 652.0
(3,5) 260.0 268.33 268.0
(4,6) 534.0 530.69 531.0
(6,7) 204.0 200.69 201.0
(7,5) 4.0 0.97 1.0
(4,5) 6.0 0.69 1.0

Total Cost 412,931 403,657 405,381

TABLE 10.4 Optimal Solution without Minimum Flow
Link Diameter (in.) Length (m) Hydraulic Gradient (m/m) Head Loss (m)

(1,2) 18 1000.00 0.0068 6.76

(2,3) 10 792.54 0.0150 11.95
12 207.46 0.0062 1.29

(2,4) 16 1000.00 0.0044 4.40

(4,5) 1 1000.00 0.0190 18.84

(4,6) 14 303.46 0.0058 1.75
16 696.54 0.0030 2.09

(6,7) 8 10.32 0.0150 0.15
10 989.68 0.0049 4.85

(3,5) 8 97.70 0.0250 2.43
10 902.30 0.0084 7.57

(7,5) 1 1000.00 0.0100 10.00

To implement the procedure MULTISTART, a probability distribution function with a
high probability mass near the origin (loop change flow vector is zero) accounting for the
core tree link flows, is needed. The generated random points are used within Problem P3 to
obtain the optimal designs. Because the normal distribution allows for positive or negative
perturbations and high probability mass close to the mean, it is chosen as the standard
distribution for each loop flow change variable ΔQp. A standard deviation of 6.5 is used
both for ΔQ1 and ΔQ2 and the maximum number of points generated NMAX is set at 200.
The optimal point ε= (ΔQ1,ΔQ2) = (1.95, 0.69) is further refined by gradient search to
obtain ε= (ΔQ1,ΔQ2) = (1.67, 0.69) producing a cost of 403,657.94 units. The optimal link
flows after ΔQ change flows applied to the optimal tree link flows are given in Table 10.3. The
procedure ANNEALING is implemented next. When the procedure locates the optimum,
ε= (ΔQ1,ΔQ2) = (2.25, 1.22), it circles around the neighborhood and does not escape. The
parameters are β = 1, θ = 1, α = 2.5, fg = 405,000, and NMAX= 200. Further refinement as
well as the gradient search yields the same optimum point (1.67, 0.69).

The global optimal tree solution made up of links {(1, 2), (2, 3), (2, 4), (3, 5), (4, 6), (6, 7)}
has a cost of $399,561 (Loganathan et al., 1990). Using the minimum possible diameter of 1
in. for two loop-forming links {(4, 5), (5, 7)} at a unit cost of $2/meter length we obtain the
global minimum cost $403,561. The proposed algorithm yields $403,657, verifying global
optimality. It is noted that for this solution a minimum diameter of 1 in. is imposed for
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TABLE 10.5 Energy Heads without Minimum Flow
Node (i) Elevation (m) Minimum Head (m) Head (m)

1 210.00 210.00 210.00
2 150.00 180.00 203.24
3 160.00 190.00 190.00
4 155.00 185.00 198.84
5 150.00 180.00 180.00
6 165.00 195.00 195.00
7 160.00 190.00 190.00

TABLE 10.6 Optimal Solution with Minimum Flow
Link Diameter (in) Length (m) Hydraulic Gradient (m/m) Head Loss (m)

(1,2) 18 1000.00 0.0068 6.76

(2,3) 10 795.05 0.0150 11.97
12 204.95 0.0062 1.27

(2,4) 16 1000.00 0.0044 4.40

(4,5) 1 951.65 0.0200 18.81
2 48.35 0.00068 0.03

(4,6) 14 300.46 0.0058 1.73
16 699.54 0.0030 2.11

(6,7) 8 9.01 0.0150 0.13
10 990.99 0.0049 4.87

(3,5) 8 99.12 0.0250 2.46
10 900.88 0.0084 7.54

(7,5) 1 488.53 0.0200 9.65
2 511.46 0.00068 0.35

TABLE 10.7 Energy Heads with Minimum Flow
Node (i) Elevation (m) Minimum Head (m) Head (m)

1 210.00 210.00 210.00
2 150.00 180.00 203.24
3 160.00 190.00 190.00
4 155.00 185.00 198.84
5 150.00 180.00 180.00
6 165.00 195.00 195.00
7 160.00 190.00 190.00

all the pipes in the looped layout as previously done by the other authors. The results are
given in Tables 10.3 through 10.5. A minimum flow of constraint 1 m3/h, in addition to the
minimum diameter of 1 in., was implemented and the results are given in Tables 10.6 and
10.7, with the cost of $405,301.

10.3.8 Genetic Algorithm

Savic and Walters (1997) applied genetic algorithms for the same problem. Deb (2001)
presents an authoritative description of genetic algorithms (GA). In GA solutions are rep-
resented by strings called chromosomes. A locus is the location of a gene (bit in binary) on a
chromosome. An allele represents the set of values that can be assigned to a gene. Good solu-
tions in terms of their objective function value are identified from an initial set of solutions.
Multiple copies of good solutions are made while eliminating the weak solutions keeping the
population size constant (Selection). The selected good solutions are combined to create
new solutions by exchanging portions of strings (Crossover). Note this process retains the
population size. To enhance diversity in the populations a bit may be changed (Mutation).
Using the new population from crossover and mutation operators, the cycle is restarted with
the selection operator. Deb (2001) makes the following key points. The three operators pro-
gressively result in strings with similarities at certain string positions (schema). A GA with
its selection operator alone increases the density of solutions with above average value while
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reducing the variance; mutation increases the variance. The crossover operator has the ten-
dency to decorrelate the decision variables. The combined effect of selection and crossover
is to enable hyperplanes of higher average fitness values to be sampled more frequently.

Handling constraints is an issue in direct search methods. Variable elimination by con-
straint substitution for equality constraints, penalty function methods including biasing
feasible solutions over infeasible solutions, hybrid methods, and methods based on decoders
are procedures for accommodating constraints. Hybrid methods combine the classical pat-
tern search methods within the GA. Bazaraa et al. (2006) and Reklaitis et al. (1983) provide
a thorough analysis of penalty function methods. Savic and Walters (1997) use a penalty
for constraint violation. They report a cost of $419,000 with a minimum diameter of 1 in.
and without using split pipes.

10.4 Preferences in Choosing Domestic
Plumbing Materials

10.4.1 Introduction

In the United States, about 90% of drinking water home plumbing systems are copper
pipes. Pinhole leaks in copper plumbing pipes are reported in several parts of the country.
Figure 10.1 shows the distribution of pinhole leaks over a five-year period, from 2000 to
2004. For a majority of homeowners, their home is the most valuable asset. A decision
has to be made on whether to continue to repair or replace the system. Loganathan and
Lee (2005) have proposed an optimal replacement time for the home plumbing system
exploiting an economically sustainable optimality criterion. Dietrich et al. (2006) present
results of their study related to material propensity to leach organic chemicals, metals, and
odorants; ability to promote growth of nitrifying bacteria; and their impact on residual
disinfectant for five polymeric and four metallic pipes. Typically, copper, PEX (cross-linked
polyethylene), and CPVC (chlorinated polyvinyl chloride) pipes are used. Stainless steel
is also being considered. The material-related attributes of price, corrosion resistance, fire
retardance, health effects, longevity, re-sale value of home, and taste and odor are considered
in making a selection. Consumer preferences toward these attributes are assessed with the
aid of a focus group.

10.4.2 Analytical Hierarchy Process

Marshutz (2001) reports that copper accounts for 90% of new homes, followed by PEX (cross
linked polyethylene) at 7%, and CPVC (chlorinated polyvinyl chloride) at 2%. All materials
have relative advantages and disadvantages. One material may be easy to install but may
not be reliable while another material may be corrosion resistant but may have health or
taste and odor problems. It is generally recognized that comparing several attributes simul-
taneously is complicated and people tend to compare two attributes at a time. The analytic
hierarchy process (AHP) is used to determine the preference for attributes by pair-wise
comparison. Assessing pair-wise preferences is easier as it enables to concentrate judgment
on taking a pair of elements and compare them on a single property without thinking about
other properties or elements (Saaty, 1990). It is noted that elicited preferences may be based
on the standards already established in memory through a person’s experience or educa-
tion. Based on Saaty (1980) the following steps are adopted in performing the analytical
hierarchy process.

Step 0: (Identify attributes) For plumbing material the following seven attributes are
considered: Price—includes cost of materials and labor for installation and repair; Corrosion
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TABLE 10.8 Standard Numerical Scores
Preference Level Numerical Score, a(i, j) 1–9 Scale

Equally preferred 1
Equally to moderately preferred 2
Moderately preferred 3
Moderately to strongly preferred 4
Strongly preferred 5
Strongly to very strongly preferred 6
Very strongly preferred 7
Very strongly to extremely preferred 8
Extremely preferred 9

TABLE 10.9 Pair-Wise Preference Weight Matrix [General]
Attribute 1 Attribute 2 . . . Attribute n

Attribute 1 w1/w1 w1/w2 . . . w1/wn
Attribute 2 w2/w1 w2/w2 . . . w2/wn
. . . . . . . . . . . . . . .
Attribute n wn/w1 wn/w2 . . . wn/wn
Sum X/w1 X/w2 . . . X/wn

[X = (w1 + w2 + · · ·+ wn)].

TABLE 10.10 Pair-Wise Preference Weight Matrix
P C F H L R T

P 1 0.20 0.25 0.14 0.20 0.50 0.33
C 5 1 5 0.33 1 6 1
F 4 0.20 1 0.17 0.33 1 0.25
H 7 3 6 1 4 8 3
L 5 1 3 0.25 1 2 0.33
R 2 0.17 1 0.13 0.50 1 0.50
T 3 1 4 0.33 3 2 1
Sum 27.00 6.57 20.25 2.35 10.03 20.50 6.42

P: price, C: corrosion resistance, F: fire retardance, H: health effects,
L: longevity, R: resale value of home, and T: taste and odor.

resistance—dependability of material to remain free of corrosion; Fire retardance—ability
of material to remain functional at high temperatures and not to cause additional dangers
such as toxic fumes; Health effects—ability of material to remain inert in delivering water
without threatening human health; Longevity—length of time material remains functional;
Resale value of home—people’s preference for a particular material including aesthetics;
and Taste and odor—ability of material to deliver water without imparting odor or taste.

Step 1: (Use standard preference scores) A scale (1–9) of pair-wise preference weights is
given in Table 10.8 (Saaty, 1980).

Step 2: (Develop pair-wise preference matrix ) In AHP, instead of directly assessing the
weight for attribute, i, we assess the relative weight aij =wi/wj between attribute i and j.
As shown in Tables 10.9 and 10.10, each participant is asked to fill in a 7× 7 attribute
matrix of pair-wise preferential weights. An example is given in Table 10.10. In Table 10.10,
row H and column P, the entry of 7 implies that health effects are very strongly preferred
in comparison to price in the ratio of 7:1. Row H for health effects overwhelms all other
attributes with the entries staying well above 1. In row P and column C, the cell value of
0.2 indicates corrosion resistance is strongly preferred to price in the ratio of 5:1.

Step 3: (Evaluate re-scaled pair-wise preference matrix ) A rescaled preference matrix
is generated by dividing each column entry in Table 10.10 by that column’s sum, yielding
Table 10.11. The last column “Average” contains average weights for each row and shows the
ranking of the attributes. Table 10.12 shows the ordered relative ranking of the attributes.
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TABLE 10.11 Rescaled Pair-Wise Weight Matrix
Attribute P C F H L R T Average

P 0.04 0.03 0.01 0.06 0.02 0.02 0.05 0.03
C 0.19 0.15 0.25 0.14 0.10 0.29 0.16 0.18
F 0.15 0.03 0.05 0.07 0.03 0.05 0.04 0.06
H 0.26 0.46 0.30 0.43 0.40 0.39 0.47 0.38
L 0.19 0.15 0.15 0.11 0.10 0.10 0.05 0.12
R 0.07 0.03 0.05 0.05 0.05 0.05 0.08 0.05
T 0.11 0.15 0.20 0.14 0.30 0.10 0.16 0.17
Sum 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TABLE 10.12 Relative Ranking of Attributes
Attribute Weight

Health effects 0.38
Corrosion resistance 0.18
Taste and odor 0.17
Longevity 0.12
Fire resistance 0.06
Resale value 0.05
Price 0.03

TABLE 10.13 Material Pair-Wise Matrix and the Associated Rescaled Matrix for
the Attribute Price

Price

Material Mat. A Mat. B Mat. C Mat. A Mat. B Mat. C Average

Mat. A 1.000 0.333 2.000 Mat. A 0.222 0.200 0.333 0.252
Mat. B 3.000 1.000 3.000 Mat. B 0.667 0.600 0.500 0.589
Mat. C 0.500 0.333 1.000 Mat. C 0.111 0.200 0.167 0.159
Sum 4.500 1.667 6.000 Sum 1.000 1.000 1.000 1.000

Step 4: (Evaluate preferences) Corresponding to each attribute, pair-wise weight matrix
and the associated rescaled matrix for three hypothetical pipe materials A, B, and C are
obtained. Results for the price attribute are shown as Table 10.13. This procedure is repeated
for the other attributes for the three materials. Table 10.14 shows the results. We obtain the
final ranking of the three materials by multiplying the pipe material preference matrix given
in Table 10.14 and the attribute preference vector given as the last column of Table 10.11.
The results are shown in Table 10.15. Mat. C is the most preferred material with a preference
score of 0.460, followed by Mat. A with a score of 0.279. Mat. B and Mat. A have rather
close scores of 0.261 and 0.279, respectively. A consistency check can be performed following
Saaty (1980) as given in Step 5. Participants were advised to reassess the pair-wise weights
if the consistency check failed.

Step 5: (Perform consistency check) The calculated maximum eigenvalue for the pair-
wise weight matrix, λmax= n. If it is different from n, we have inconsistencies in our
weight assignments. Saaty (1980) defines a consistency index as C.I.= (λ max −n)/(n− 1).
Instead of the eigenvalue, it is possible to manipulate the matrices to get a different form of
the consistency index. Let the average ratio AR= 1/n

∑n
i=1(ith row of [A]{aveW})/(ith row

{aveW}) in which [A]= matrix of pair-wise preference weights in Table 10.10, {ave W}=
vector of average rescaled weights in the last column of Table 10.11. The newly formed con-
sistency index is C.I.= [AR−n]/(n− 1). If the ratio of C.I. to R.I. (random index given in
Table 10.16) is less than 0.1, the weights should be taken as consistent. Table 10.16 contains
the random index values calculated from randomly generated weights as a function of the
pair-wise matrix size (number of criteria).

Table 10.17 contains the attribute ranking for 10 participants. From Table 10.17, it is seen
that the participants rank health effects the highest, followed by taste and odor, corrosion
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TABLE 10.14 Average Ranking for the Materials and Attributes
P C F H L R T

Mat. A 0.252 0.164 0.444 0.328 0.250 0.297 0.250
Mat. B 0.589 0.297 0.111 0.261 0.250 0.164 0.250
Mat. C 0.159 0.539 0.444 0.411 0.500 0.539 0.500
Average 0.03 0.18 0.06 0.38 0.12 0.05 0.17

TABLE 10.15 Final Preference Matrix
Material Preference

Mat. A 0.279
Mat. B 0.261
Mat. C 0.460

TABLE 10.16 Random Index (R.I.)
Matrix Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R.I. 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59

TABLE 10.17 Participants’ Ranking of Attributes
Participant/Attribute 1 2 3 4 5 6 7 8 9 10

P 0.034 0.161 0.025 0.040 0.200 0.063 0.310 0.202 0.048 0.087
C 0.182 0.037 0.107 0.061 0.090 0.091 0.158 0.111 0.112 0.256
F 0.060 0.056 0.078 0.085 0.070 0.119 0.044 0.057 0.188 0.044
H 0.385 0.211 0.395 0.304 0.270 0.450 0.154 0.369 0.188 0.367
L 0.120 0.097 0.101 0.132 0.090 0.120 0.154 0.067 0.112 0.062
R 0.054 0.020 0.027 0.127 0.050 0.098 0.103 0.064 0.033 0.029
T 0.165 0.419 0.267 0.250 0.230 0.059 0.078 0.131 0.318 0.155

P: price, C: corrosion resistance, F: fire retardance, H: health effects, L: longevity, R: resale value of home,
and T: taste and odor.

resistance, and longevity; price, resale value, and fire resistance are showing the lower ranks
of the list. Participants 2 and 9 rate taste and odor above health. Participant 5 has the closest
preferences among price, health, and taste and odor. Participant 7 has the highest preference
for price. These results indicate that health, and taste, and odor may be a surrogate for
the purity of water that dominates preferences for a plumbing material. The mental stress
resulting from frequent leaks is also an issue. While copper may have remained a relatively
inert carrier of water, the corrosion leaks have forced consumers to consider alternatives
including other materials, the use of corrosion inhibitors such as phosphate, and lining the
interior of the pipe.

10.5 Stormwater Management

10.5.1 Introduction

Urban runoff is a carrier of contaminants. As discussed in Section 10.1.1, the total maximum
daily load (TMDL) study should not only estimate the maximum permissible load per
time but also should allocate it. Runoff contributes to nonpoint source pollution and a
distributed pollutant control strategy is needed. The best management practices (BMPs)
are both nonstructural measures and structural controls employed to minimize contaminants
carried by the surface runoff. The BMPs also help to serve to control the peak flows due to
development. Therefore, the decision should be comprised of optimal location and level of
treatment at a selected location.



© 2009 by Taylor & Francis Group, LLC

10-22 Operations Research Applications

10.5.2 Problem Formulation

Zhen et al. (2004) suggest the following general framework.

Minimize total annual cost =
I∑

i=1

C(di)

subject to : Lj ≤ Lmaxj for j = 1, 2, . . ., J

di ∈Si

in which C(di)= annual cost of implementing a BMP at level di at location i; di =decision
vector pertaining to the dimensions of the BMP; Lj = annual contaminant load at the desig-
nated check point j; I =total number of potential BMP locations; J =total number of check
points; and Si = feasible set of BMPs applicable at location i. The decision vector is given
by {Ti; Hi} in which Ti is the vector of possible detention times compatible with the BMP
dimension vector (height) Hi at location i. Typically, for a choice of the decision vectors the
load, Lj at location j will have to be obtained from a simulation model. Zhen et al. (2004)
use the scatter search (Glover, 1999) to find near optimal solutions. Kuo et al. (1987) use
the complex search (Box, 1965; Reklaitis et al., 1983) to obtain near optimal solutions.

Loganathan and Sherali (1987) consider the probability of failure of a BMP (also see
Loganathan et al., 1994). They consider the risk of failure and cost of the BMP as two
objectives within a mutiobjective optimization framework. They generate a cutting plane
based on pair-wise tradeoff between objective functions provided by the decision maker at
each iterate. It is shown that the iterates are on the efficient frontier and any accumulation
point generated by the algorithm is a best compromise solution. The method is applicable
even when the feasible region is nonconvex. Lee et al. (2005) consider a production function
of release rate and storage for a certain percent pollutant removal. They recommend using an
evolutionary optimizer for the solution. They also provide a review of progress in optimizing
the storm water control systems. Adams and Papa (2000) provide analytical probabilistic
models for estimating the performance of the storm water control systems. They include
optimization strategies for these systems.

Mujumdar and Vemula (2004) present an optimization-simulation model for waste load
allocation. They apply the genetic algorithm along with an appealing constraint handling
strategy due to (Koziel and Michalewicz, 1998, 1999). The decoder method proposed by
Koziel and Michalewicz (1999) is based on homomorphous mapping between the represen-
tation space of [−1, 1]nn-dimensional cube and the feasible region, X in the decision space.
Because the feasible region may be nonconvex, it may have several points of intersection
between a line segment L and the boundary of the feasible region X. The method permits
selecting points from the broken feasible parts of the line segment L. To identify these
break points, the following procedure is used. A feasible point r is chosen. A line segment
L= r+ α (s− r) for 0≤α≤ 1, starting with r and ending with a boundary point s of the
search space S encompassing the feasible region is considered. Such a defined line segment
L involves a single variable α when substituted into each of the constraints, gi(x)≤ 0. The
domain of α is partitioned into v subintervals of length (1/v). Each subinterval is explored
for the root gi(α)= 0. The subintervals are chosen in such a manner that there can be at
most one root within each subinterval. The intersection points between the line segment
and the constraints gi(x)≤ 0 can thus be found.

The problem is as follows. A discharger m (source) removes a fractional amount x(i,m, n)
of pollutant n to control water quality indicator i at check point l. For discharger m after
removing a fractional load x(i,m, n) of pollutant n, the concentration is c(m,n). This input
concentration c(m,n) for m= 1, 2, . . .,M and n= 1, 2, . . ., N and the effluent flow at m
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denoted as q(m) for m= 1, 2, . . .,M serve as forcing functions in the water quality simulation
model QUAL2E (Brown and Barnwell, 1987) to determine the concentration c(i, l) of water
quality indicator i (dissolved oxygen) at the check point l. The discharger would like to
limit x(i,m, n) and the pollutant controlling agency would like to control c(i, l) for all check
points l. The problem is given below:

Maximize Level of satisfaction = λ

subject to : [c(i, l) − cL(i, l)]/[cD(i, l) − cL(i, l)]a(i,l) ≥ λ

[xM(i,m, n) − x(i,m, n)]/[xM(i,m, n) − xL(i,m, n)]b(i,m,n) ≥ λ

cL(i, l) ≤ c(i, l) ≤ cD(i, l)

xL(i,m, n) ≤ x(i,m, n) ≤ xM(i,m, n)

0 ≤ λ ≤ 1

in which cD(i, l)= desirable concentration level such as the dissolved oxygen, cL(i, l)=
permissible safe level concentration, xM(i,m, n)= technologically possible maximum pol-
lutant removal, xL(i,m, n)= minimum pollutant removal, a(i, l) and b(i,m, n)= positive
parameters, and λ =compromise satisfactory level.

The decision variables x(i,m, n) are determined with the aid of the genetic algorithm.
They use QUAL2E and genetic algorithm optimization packages PGAPack (Levine, 1996)
and GENOCOP (Koziel and Michalewicz, 1999) to solve the problem. Using the GA gen-
erated population of pollutant reduction values x(i,m, n), QUAL2E determines the corre-
sponding concentration of water quality indicator i at check point l, c(i, l). The feasibility
is checked by GENOCOP. They point out that the selection of the initial feasible point in
constraint handling could affect the final solution. They recommend using the incumbent
best solution as the initial point.

10.6 Groundwater Management

10.6.1 Introduction

As rain falls over land, a part of it runs over land and a part of it infiltrates into the ground.
There is void space between soil grains underground and water and air occupy that space.
Groundwater flows through the tortuous paths between the solid grains. Because of the
extremely small diameter, the tortuous nature of the path, and the nature of the hydraulic
head, the groundwater velocity is very small. Therefore, if the groundwater storage is mined,
it cannot be replenished in a short time. Driscoll (1986) reports that there has been a 400-ft
decline in groundwater table in Phoenix, Arizona, in the last 50 years. Perennial rivers
carry the base flow resulting from groundwater storage even when there is no rain. In the
United States 83.3 billion [83.3(109)] gallons of fresh groundwater and 1.26 billion gallons
of saline groundwater are used, whereas 262 billion gallons of fresh and 61 billion gallons
of saline surface water are used (Hutson et al., 2004). Declining groundwater storage and
contaminated groundwater are two major problems.

Willis and Yeh (1987), Bear and Verruijt (1987), and Bedient et al. (1999) provide com-
prehensive details on groundwater flow and contaminant transport modeling. The ground-
water problem involves detailed numerical modeling. There is an added complexity because
of the complex nature of the underground domain. The groundwater velocity is determined
by hydraulic conductivity which is not known deterministically. Chan Hilton and Culver
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(2005) offer a comprehensive review of groundwater remediation problem. They also propose
a strategy within the framework of simulation-optimization to consider the uncertainty in
the hydraulic conductivity field. Following Bedient et al. (1999) the groundwater remedia-
tion may involve one of the following: (1) removal of source by excavation, (2) containment
of source by barriers and hydraulic control, (3) reducing the mass of the source by pump
and treat, bioremediation, soil vapor extraction, and natural attenuation.

Chan Hilton and Culver (2005) propose the following simulation-optimization approach
to groundwater remediation problems. The procedure differs from the previous studies in
accommodating the uncertainty in the hydraulic conductivity field. There are three ways in
which the hydraulic conductivity field is incorporated: (1) Keep the same field throughout
the simulation-optimization study. In the genetic algorithm framework all strings are sub-
jected to the same field in every generation. (2) Use multiple fields within each generation
and each such realization is applied to all strings for that generation. Calculate the average
fitness value over all these realizations for each string. (3) Obtain a hydraulic conductivity
field for a generation. Apply the same field to all the strings in that generation. For the
next generation, obtain a new hydraulic conductivity field. The fitness value is calculated
applicable to that conductivity field. Chan Hilton and Culver use the third type and call it
the robust genetic algorithm.

10.6.2 Problem Formulation

The groundwater remediation problem formulation is as follows. There are N sampling
points for checking contaminant concentration (computational nodes) and W potential
extraction wells. The problem is to optimally decide which extraction wells should be used
such that the contaminant concentration, C(j) can be controlled; hydraulic head, h(j), above
a minimum can be maintained; extraction flow rates can be set within chosen bounds. The
mathematical formulation is

Minimize Total Cost = Pumping cost + Treatment cost + Well cost
Subject to : C(j) ≤ C max for j = 1, 2, . . ., N

h(j) ≥ h(min) for j = 1, 2, . . ., N

Q(min) ≤ Q(i) ≤ Q(max) for I = 1, 2, . . .,W

in which Pumping cost= Cpump (c1/η) Q(i) [Hdatum−h(i)+ μ Pads] Tdur, Cpump=
energy cost, c1= unit conversion, η = pump efficiency, Q(i)= extracted flow at well i,
Hdatum= depth to datum, μ= technological coefficient for adsorber, Pads = pressure
required for the adsorber, Tdur = remediation period in appropriate units; Treatment cost=
f [Cave, Qtot]+ Cads Nads, Qtot=

∑W
i=1 Q(i), Cave=

∑W
i=1

Q(i)
Qtot

[
C(i,Tbeg) + C(i,T end)

2

]
,

C(i,Tbeg)= concentration of contaminant at well i at the beginning time, Tbeg, C(i,T end)=
concentration of contaminant at well i at the ending time, T end, Tdur =T end−Tbeg, and
Cave= average influent concentration for the adsorber, Qtot= total flow, Cads = cost of an
adsorber, Nads = number of adsorbers = ceiling[Qtot(T cont)/V pore], ceiling(.)= rounds up
to nearest multiple of 1, V pore=pore volume of an adsorber, T cont= required contact time.

The above stated problem is solved using simulation–optimization approach by the
genetic algorithm. The concentration c(j), and head h(j) constraints are incorporated
through a multiplicative penalty function as

Fitness = Total cost ∗ [1 + penC ViolC + penH ViolH]

in which penC = penalty for violation in concentration C(j) and penH = penalty for viola-
tion in head h(j). For the flow Q(i) constraint, it is assumed that if a well is active, it will
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extract flow at a fixed rate. Therefore, it becomes a binary variable and is incorporated into
the decision variable string in the genetic algorithm.

The entire procedure is as follows. (1) Initialize: Generate the initial population of strings
with age(i)= 1 for the ith string. (2) Selection: For a realization of the hydraulic conductivity
field, obtain the fitness value for each string, Fitness(i). Rank order the strings by their
Fitness values with the highest rank assigned to the string with the best Fitness value. Let
r(i) be the rank for string i. Define modified rank fitness measure

rfit(i) =
[min{age(i), ageT} − 1]rprev(i) + r(i)

min{age(i), ageT} if age(i) > 1

rfit(i) = 0.9 r(i) if age(i) = 1

in which ageT = chosen value greater than 1 (set at 11), rprev(i)= rfit(i) from the previous
generation. List the strings by their rfit(i) values; assign new rnew(i) ranks to these strings.
These become rprev(i) in the next generation. Retain the highest rnew(i) strings as the elite
group. These are directly passed to the next generation without crossover and mutation.
Apply tournament selection to the population in which two strings are compared and the
string with better rank fitness is retained for crossover. The tournament selection is repeated
with replacement until the desired population size is reached. (3) Crossover: Crossover
is performed between two strings to create a new string. This new string’s age(i) = 0. If
there is no crossover due to specified probability, the first string proceeds into the next
generation with its age unchanged. (4) Mutation: If mutation causes a new string to attain
the same bits as its parent string, its age is reset to the original string’s age. If not, its
age(i)= 0. (5) New generation: The strings passed on to the next generation are assigned
age(i)= age(i)+ 1. (6) Termination check: If there is convergence to lower costs, stop. If not,
go to Step (2), selection. The robust GA retains strings that perform well over a number
of different hydraulic conductivity fields. In the noisy GA, a number hydraulic conductivity
fields are used within the same generation and the fitness value is taken as the average over
the realizations. The comparison indicates that the robust GA yields comparable results to
the noisy GA while using a smaller number of fitness evaluations.

10.7 Summary

In this chapter, selected mathematical programming formulations related to water resources
systems are presented. The overarching theme has been to expose certain underlying prob-
lem structures such as in reservoir operations and water distribution systems optimization,
the need to assess public preference toward material attributes as in plumbing systems, and
the necessity to combine process simulation and optimization such as in stormwater and
groundwater management problems. The evolutionary optimization techniques provide a
good approach. The constraint handling in these techniques is an important issue; guaran-
teeing the nature of optimality is also an issue. Often, a zero-one decision has to be made.
This decision requires consideration of political and public preferences and implications over
a long term. Both the analyst and the decision maker are interested in the alternatives and
the solution behavior with changing constraints as the result of incorporating regulatory
issues and societal preferences.
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11.1 Introduction

Operations Research (OR) has evolved through the need for analytical and analysis meth-
ods for dealing with decisions involving the use and utilization of critical resources during
military operations. One could argue that OR has been around as long as standing armies
and navies. History is replete with examples of military “geniuses” who used mathematics
and science to outwit and overcome their enemy. In more recent history, one need only look
at Thomas Edison helping the United States Navy overcome the stifling effect of German
U-boats during World War I or Lanchester’s modeling of attrition rates to see OR being
applied to the military. It was not until the late 1930s, however, that OR was officially
recognized as a scientific discipline that could help the military. At that time, British sci-
entists were called upon to apply their scientific methods not to improving the technical
aspects of the recent discoveries in Radio Detection and Ranging (RADAR) but rather the
best way to use it operationally within the military. The field of OR grew rapidly from this
point and many of the advances in the field can be directly tied to their applications in
the military. Evidence of this can be found in the articles that appeared in the early issues
of OR, documenting the interest and applications of OR methods following World War II
and throughout the three decades that followed. It is easy to argue that military OR is the
beginning and actual foundation of the OR profession which has since contributed to suc-
cessful efforts in gaining and sustaining world peace, and further established the foundation
for the field of OR and management science as it is known today.

The purpose of this chapter is to introduce and provide an overview of military OR.
We will start in Section 11.2 with a brief background on its history. There is a fairly rich
literature on the field including some excellent surveys that have appeared in several books

∗ The views expressed in this chapter are those of the authors and do not reflect the official policy or
position of the United States Air Force, the Department of Defense, or the United States Government.
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during the past 10 years. Of particular note here is the chapter by Washburn (1994). He
gives an excellent summary of the measures of effectiveness, game theory applications, and
combat modeling applied in wartime applications. Our focus will be on the methodological
aspects of military OR. In Section 11.3, we discuss current military applications. Although
the first known applications of OR might be considered the application of experimental
designs for establishing optimal machine gun firing methods during World War II by the
British, the initial methodological developments were through mathematical programming
(Dantzig, 1963). In Section 11.3, these and other methods and applications are summarized.
In Section 11.4, we provide some discussion on the current trends that are prevalent in
military OR.

11.2 Background on Military OR

Before and during World War II the military recognized the value of OR and began setting
up OR groups in the different branches. The British were the first to set up these groups
and in fact by 1941 they had OR groups in all three branches of their military: Army, Air
Force, and Navy. P. M. S. Blackett, credited by most as the father of operations research,
stood up the British Army’s first group, which as mentioned earlier dealt with air defense
and the best use of radar. Blackett also stood up the British Navy’s first OR section at their
Costal Command. The naval groups were concerned with U-boats, as they were in World
War I, but also started looking at convoy operations and protection of ships from aircraft.
The Air Force OR groups in Britain were more focused on air-to-air and bombing tactics.
About this same time, OR was growing in the United States military.

Several incidents have been credited with transferring OR from Great Britain to the
United States. In 1940, Henry Tizzard from Britain’s Committee for the Scientific Study
on Air Defense traveled to the United States to share some of the secret developments
Great Britain had made in sonar, radar, and atomic energy. Although there was no direct
mention of OR in this technical interchange, there was mention of assigning scientists to
the various commands within the United States. Captain Wilder D. Baker, in charge of
antisubmarine studies for the Atlantic Fleet, was influenced by “Scientists at the Operational
Level,” a paper written by P. M. S. Blackett, and asked John Tate of the National Defense
Research Committee to provide some scientists for his studies. It was at this time that
Phillip M. Morse was brought into operations research. Finally, the commander of the
United States’ Eighth Bomber Command requested scientists be assigned to his command
after conferring with B. G. Dickens of the ORS Bomber Command of Great Britain. This
led to the formation of what became known as operations analysis in the U.S. Army Air
Forces. How much these events actually contributed to the formation of OR units in the
United States is debatable, but shortly after its entry into World War II, the U.S. Navy
had two OR groups and the Army Air Forces had its first of many (McCloskey, 1987).

Before and during World War II, operations researchers proved the value of applying
the scientific method to the day-to-day operations of the military and not just to weapon
system development and strategy. The exploits of these early researchers are chronicled
in many articles and books, too numerous to name (see, for example, Koopman’s (1980)

of Operations Research dated in the 1950s). There is one, however, that can be used to
demonstrate how OR modeling during this time was quickly outpacing our ability to solve
many of the mathematical formulations and another that can be used to highlight the
differences between the beginnings of OR and how it is practiced today.

Saul Gass in his article “The First Linear-Programming Shoppe” (2002a) details how
the development of the computer industry and OR were linked. Of importance to this

Search and Screening, E. S. Quade’s (1964) Analysis for Military Decisions, and any issue
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chapter, however, is how that link came about. In 1947, Project SCOOP (Scientific Com-
putation Of Optimal Programs) was formed by the U.S. Air Force. The members of Project
SCOOP included at some time during its eight-year existence, George B. Dantzig, Saul
I. Gass, Murray Geisler, Leon Goldstein, Walter Jacobs, Julian Holley, George O’Brien,
Alex Orden, Thomas L. Saaty, Emil D. Schell, Philip Wolfe, and Marshall K. Wood. Its
main objective was to develop better answers to the problem of programming Air Force
requirements. Wood and Dantzig defined programming as “the construction of a schedule
of actions by means of which an economy, organization, or other complex of activities may
move from one defined state to another, or from a defined state toward some specifically
defined objective” (Wood and Dantzig 1949, p. 15).

This definition led Dantzig to name his rectangular optimization model linear program-
ming (LP). In addition to research into LP and the simplex method, Project SCOOP
researched inequality systems by the relaxation method and zero-sum two-person games by
the fictitious play method. Project Scoop was the impetus for the U.S. National Bureau
of Standards contracting the first Standards Eastern Automated Computer (SEAC) and
purchasing the second production unit of the UNIVAC. During its eight-year span, Project
SCOOP went from solving a 9× 77 Stigler’s diet problem in 120 person-days on a hand-
operated desk calculator to solving an 18× 34 gasoline blending LP in 20 minutes on an
IBM 701. While Project SCOOP and other works were outpacing technology, there was also
a shift beginning to happen in military OR (Gass, 2002).

After World War II many of the scientists that had helped the war effort were returning to
their original lives in academia and were being offered jobs in industry. Businesses, seeing the
success of OR in the military, began using these techniques to improve their own operations
and the field of management science was beginning to evolve. In 1951, Morse and Kimball
published Methods of Operations Research, originally written in 1946 as a classified report
for the U.S. Navy’s Operations Evaluation Group, in hopes to share information with the
scientific population at large about the successes of OR before and during World War II.
Morse and Kimball saw that many of the successes in OR were not widely known either
due to classification or just a general lack of free flowing information. Their hope was that
by compiling this information the field of OR could be expanded in the military and be
applied to nonmilitary operations as well. Of note in this book is how Morse and his peers
performed OR during World War II.

In the early stages of OR in the military, practitioners were focused on improving tactics
and the effective use of newly invented equipment developed by scientists to enable the
military to counter or overcome enemy techniques and equipment. Military analysts used
close observation and mathematical modeling of processes and their salient properties to
improve desired outcomes. After the war, the size of the nation’s militaries was decreasing
both because the global war was over and many of the tactics had been so improved that
smaller forces could have the same effect as larger ones. Beasley in his OR notes discusses
how the probability to attack and kill a U-boat went from 2% to 3% in 1941 to over 40% by
1945. Bothers (1954) explains how the Eighth Air Force used operations analysis to increase
the percentage of bombs that fell within 1000 feet of their aimpoint from less than 15% in
1942 to over 60% by 1944.

11.3 Current Military Applications of OR

The rest of this chapter will outline selected general application areas for OR within the
military. The goal is to describe how military organizations use common OR techniques and
to provide some specific examples where it is useful. It is not a complete review of current
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literature, as that would require an entire book. On their Web site, http://www.mors.org,
the Military Operations Research Society of the United States has a list of several excel-
lent references regarding OR and the military. When talking about the application of OR
to military problems, it is useful to look at what level the tools or techniques are being
applied. These levels are similar to those of businesses. At the topmost level are strategic
(corporate) decisions that are made for the good of a nation. The bottom level is comprised
of tactical decisions. These decisions influence how small units or individuals will engage for
short durations. Linking these levels is the operational level. At this level, decisions are
made to achieve the strategic goals. It determines the when, where, and for what purpose
forces will be employed. While each level of war is unique, many of the OR tools can be
applied at more than one of these levels.

11.3.1 Linear and Integer Programming

Linear and integer programming are used throughout the military in a variety of ways.
Most of their uses are at the strategic and operational levels. At the operational level,
LPs and integer programs (IP) have been used to allocate operating room space, route
unmanned air vehicles, and even to optimize rehabilitation and restoration of damaged
land at training facilities. Its most frequent use, however, is at the strategic level in the area
that it was originally designed by Dantzig to help, that being the planning of large-scale
operations.

Often called campaigns, these operations look at possible future scenarios for major wars,
that is, country on country conflicts. These models provide decision-makers with an analyt-
ical tool for determining the impacts of budget changes, force structures, target allocations,
munitions inventories, and combat attrition rates on a nation’s war-fighting capability. Typ-
ically, the scenarios analyzed use all of a nation’s military forces, air, ground, and sea, and
are modeled over a large time-period, for example, months or years. These large-scale oper-
ations can also be humanitarian in nature such as natural disaster relief. Typically, the
decision variables used reflect combinations of platform, weapon, target, profile, loadout,
and weather. A platform refers to the type of system delivering the weapon, for example, a
tank, aircraft, or naval vessel. The weapon refers to what type or types of munitions or
aid are being delivered, for example, food pallets, large equipment, flares, bombs, guided
munitions, or torpedoes. The profile refers to the manner in which the platform will attack
a target or deliver its cargo. For aircraft, this might include altitude, angle of attack, or
landing area. The loadout refers to the number of weapons used against or delivered to the
target. A submarine might use a volley of two torpedoes against a single target, or a large
cargo aircraft might deliver bags of grain and a truck to haul them to a different location.
Finally, target and weather are self-explanatory and refer to the target to be attacked or
location of aid delivery and the weather expected at the target area. Associated with each
of the variables are several parameters.

It is beyond the scope of this chapter to outline all of the parameters that could be
associated with these decision variables, but a few bear mentioning as they will be men-
tioned later in this chapter. With respect to war-like operations, one parameter of interest
is how much damage to the target can be expected from choosing the decision variable.
This is referred to as damage expectancy (DE) or probability of kill (PK) and takes into
account all of the characteristics used to describe the decision variable as well as those of
the target. Another is the probability that the platform making the attack described by
the variable will survive and be available for subsequent attacks. The complement of this
is called the attrition rate. How these are modeled is discussed later in this chapter and is
usually done at the tactical level.

http://www.mors.org
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11.3.2 Network Optimization

Most of the applications for network optimization within the military are no different from
those of major corporations or small cities. Like corporations, they are concerned with
building reliable communication networks to include local area networks (LANs) and wide
area networks (WANs), logistics networks for supply chain management, and the exploita-
tion of network structures and formulations for LPs and IPs. As the military must build and
maintain self-sufficient bases, like municipalities they work with electrical grids, water and
sewer supply, and other public utility networks. There are, however, some aspects of net-
work optimization that are unique to the military. One area of research that is unique to the
military (and possibly law enforcement) deals with the interdiction of an enemy’s network.

When dealing with the interdiction of an enemy’s network, the military considers both
physical networks, such as command and control networks, and more esoteric networks
such as clandestine and terrorist networks. Regardless, the goal for these types of network
operations is the same, disruption. Many of the techniques used in optimizing networks
can also be used to identify vulnerabilities within networks. The most obvious of these
techniques is the max-flow min-cut. By modeling the max flow of an enemy’s network,
bottlenecks can be identified for potential exploitation. Besides looking at arcs, one might
also be interested in the nodes of a network. In this instance a facility location problem
may be useful to identify key nodes that are in contact with many other nodes or the use
of graph theoretic centrality measures might be useful to exploit.

11.3.3 Multiple Criteria Decision-Making

Like nonlinear programming, multicriteria decisionmaking within the military has followed
from LP and IP development. While not the only techniques for multicriteria decisionmak-
ing, goal programming and multiple objective linear programming are used in conjunction
with large-scale campaign models to account for various objectives. Two examples of these
techniques follow from the U.S. Strategic Command’s Weapon Allocation Model (WAM)
and the U.S. Air Force Space Command’s (AFSPC) Aerospace Integrated Investment Study
(ASIIS).

WAM is a large-scale integer goal-programming model. It allocates weapons to tar-
gets. Several goals need to be met by the allocation. These include maximizing dam-
age expectancy, ensuring specific weapons cover specific targets, and goals for damage
expectancy within varying target categories. These goals are user defined and can be spec-
ified either as a goal to be obtained or as a hard constraint. Once the user identifies the
goals, they are given priority and the model uses preemptive goal programming. That is,
the model runs with the highest priority goal remaining as the objective function and if the
goal is obtained, that goal is added to the model as a hard constraint. If a goal cannot be
achieved it will be adjusted to the level of best achievement and added to the model as a
constraint. This technique was chosen over weighting the priorities because there was no
single decision maker from whom to solicit weights. ASIIS does support a single decision
maker and therefore uses a weighted goal programming approach.

AFSPC is responsible for training and equipping the U.S. space force. They use the ASIIS
model to aid in making decisions with regard to how to balance their spending on space
assets and maintain a capable force. ASIIS is a large-scale integer program that uses elastic
constraints (Brown et al., 2003) and has a linear objective function that penalizes deviations
in the elastic constraints. This is a long-range planning tool that looks at an epoch of time,
usually 25–30 years. There are four elastic constraints or goals in ASIIS: (1) do not exceed
the authorized funding levels in any given year, (2) do not exceed total funding over the
epoch, (3) minimize capability gaps, and (4) minimize underspending.
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The first goal ensures that AFSPC does not spend more money on its investments than
is authorized by the government in any given year. The second goal ensures that if in any
year more money is needed, that money can come from a future or past year in the epoch.
The third goal tries to purchase or fund those programs that will ensure that AFSPC can
meet its current and future mission requirements with as little capability gap as possible
based on the money and technology available. The fourth goal was added to the model to let
the model choose redundant systems for better capability coverage. This was needed due to
the way the capability gaps are calculated in the third goal. The ASIIS model uses absolute
deviations from the goals and therefore, weights for each goal both prioritize the goals and
ensure that they are of equal scale. For example, the units for money and capability gaps
are several orders of magnitude different. As there is a single decision maker in charge of
AFPSC, these weights can be solicited directly from the decision maker to ensure their
priorities are met.

11.3.4 Decision Analysis

There has been much debate in the last 5 years as to what is decision analysis (DA).
Keefer et al. (2002) define DA as a normative, not descriptive, systematic quantitative
approach to making better decisions. Specifically, for an application to be considered DA, it
must “explicitly analyze alternatives for a decision problem using judgmental probabilities
and/or subjectively assessed utility/value functions.” This definition excludes multicriteria
decisionmaking and the analytic hierarchy process. In the military, DA applications fall into
two categories: decision trees and value focused thinking (VFT).

VFT has been used extensively in the military to help senior decision makers gain insight
into decisions that have competing objectives. Of the ten articles summarized by Keefer
et al. in their survey of DA literature from 1990 to 2001, eight used some form of VFT.
The models described in these articles were usually very large in size and scope. The largest
effort described was the U.S. Air Force’s 2025 (Jackson et al., 1997; Parnell et al., 1998)
study that included over 200 subject matter experts working over a year to develop a 134-
attribute model to score 43 future concepts using weights based on six different scenarios.
Not all VFT models are at the strategic level, however. The Croatian Army (Barković and
Peharda, 2004) used a VFT model to determine what rifle to acquire to replace its aging
stores and a VFT model was developed to help U.S. psychological operations (PSYOP)
detachment commanders choose the best strategy for the use of PSYOP, where PSYOPs
are defined as operations that use selected information to influence an audience’s behavior
(Kerchner et al., 2001). Along with the VFT model, the military also use decision trees.

The application of decision trees is most useful in the military when there is a single
objective to consider. When faced with a variety of options, the decision maker can then
choose the best option based on the expected value of the objective. An example of this
in the military was the use of a decision tree to choose the best allocation of aircraft to
targets by Griggs et al. (1997). In this example, an IP was used to build the allocations
with varying weather states and the plan with the best expected value was found by solving
a decision tree with the IP solutions at the varying weather states.

11.3.5 Stochastic Models

One of the earliest quantitative approaches to combat modeling was by F. W. Lanchester
(1916) who proposed the study of the dynamics of two opposing forces, say Red versus Blue,
through a set of differential equations. Let R(t) and B(t) be the number of combatants
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remaining for each force at a time t > 0 and assume that:

d
dt

R(t) = −bB(t), R(t) > 0

d
dt

B(t) = −aR(t), B(t) > 0

where a and b are constants representing the respective lethality rates of kill against each
other. It can be shown from these equations that

a[R(0)]2 > b[B(0)]2 ⇒ Red wins

b[B(0)]2 > a[R(0)]2 ⇒ Blue wins

implying that the force with the greatest strength will first deplete the number of com-
batants of the weaker force. Strength is given by the product of the attrition rate and the
square of the initial force. This has become known as the Lanchester square law. A sim-
pler linear law follows by assuming that the attrition rates are directly proportional to the
number of opposing units. Many variations of the attrition conditions for this model have
been studied including that by Brackney (1959) and probabilistic extensions by Morse and
Kimball (1951) and further work by Smith (1965), Kisi and Hirose (1966), and Jain and
Nagabhushanam (1974).

The earlier studies of the Lanchester models focused on the development of closed form
results for force survival probabilities and expected duration of combat. A complete treat-
ment of these models can be found in Taylor (1980, 1983). Bhat (1984) formulated a con-
tinuous parameter Markov chain model for this force-on-force combat scenario. We assume
the two forces to have given fixed initial levels R(0)= R and B(0)= B. The states of the
process are outcomes of the 2-tuple 〈R(t), B(t)〉 with transitions among the finite number of
states satisfying the Markov property. For example, for R = 2 and B = 3 the state space is

Ω = {(2, 3), (2, 2), (2, 1), (2, 0), (1, 3), (1, 2), (1, 1), (1, 0)}
The survival probabilities can be derived from the Kolmogorov equations and for a Red win
with j survivors it can be shown that,

Pi,0 = bi,1

∞∫
0

Pi,1(t)dt

for the duration of combat, T

P (T > t) =
∑ ∑

i,j>0

Pi,j(t)

and

E[T ] =

∞∫
0

P (T > t)dt.

Another area of important military applications of OR is in search and detection. The
basic problem is to try to locate a hidden object in a region A through examination of
an area a∈A. This problem appears in many military settings; for example, A could be
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a region of water for antisubmarine operations, a weapon site in a region of desert, or a
failed component in a piece of equipment. Various solution approaches have been taken,
the earliest, of course, being an exhaustive search which, of course, has limitations due to
costs for searching, that is, in time, costs, or other effort, and the criticality of the objective.
Another popular method applied during World War II is the random search that can be
formulated as a nonlinear programming problem. Let pi denote the probability of a target
being in Ai ⊆A, i= l, . . ., n, and B is the amount of available search effort. The problem is
then to find a solution to

min:
n∑

i=1

pie−bi/Ai

subject to:
n∑

i=1

bi = B

More information on methods and approaches for dealing with search and detection can be
found in Washburn (2002).

11.3.6 Simulation

Simulation has become one of the most widely used OR techniques in the military. Many
of the processes that were modeled with mathematical programming or that had difficult
to find closed formed solutions using probabilistic models are now being modeled with sim-
ulations. Today’s more powerful computers allow practitioners to better model the chance
outcomes associated with many real world events and help describe how systems with many
such events react to various inputs. Within the military, Monte Carlo, discrete event, and
agent-based simulations are being used at all levels.

The most recognizable type of simulation in the military is probably the “war game.”
The “war game” gets its fame from movie and television, but actually has the same purpose
as mathematical programming at the strategic level. This type of discrete event simulation
allows decision makers to try out different strategies, force structures, and distributions of
lethality parameters and see their affect on the outcome of a given scenario. Unlike their
deterministic counterparts, these simulations show decision makers a distribution on the
output parameters of interest and not just the most likely. This provides senior military
officials insight into the inherent risks associated with war. Like their deterministic coun-
terparts, these models too are aggregated at the strategic level, but can also be used at the
operational and tactical level when disaggregated.

While senior military officials do not need to know what every soldier, sailor, or airman
is doing on the battlefield, there are leaders that do. At the operational level, simulations
focus more on small groups and allow commanders to dry run an operation. This type of
simulation is not used for planning purposes necessarily, but to provide insight to com-
manders so that they can see how different decisions might play out on the battlefield. By
identifying decisions that will likely result in bad outcomes, commanders can design new
techniques, tactics, and procedures to mitigate those bad outcomes. These same types of
simulations when run with even smaller groups can be useful at the tactical level.

At the tactical level, leaders of small units can rehearse actions, trying out different
strategies for a single scenario. An army unit might simulate patrolling a village and
try different tactics for repelling an ambush. Airmen can try several different approaches
for bombing a target and sailors for enforcing an embargo. In these cases, the simula-
tion acts as a training tool allowing the military to gain experience in what can happen
during an operation without the loss of life and with substantial monetary savings when
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compared to live exercises. There is more value to these simulations thought than just
training.

As is discussed in the section on LPs and IPs, many models require parameter estimates.
As the funding of militaries decreases and the cost of weapons increases, simulation can
help to estimate these parameters. During World War II, OR sections within bombing units
would gather data on thousands of bomb drops to try and estimate the effectiveness of
a particular tactic and try to find ways to improve them. Today’s militaries do not have
thousands of bomb drops to gather data and have turned to simulation for help. With more
powerful computers, simulations that mirror reality better can be built at the individual
weapon level. These simulations model the physics behind the weapon and its delivery
vehicle allowing researchers to generate the thousands of “bomb drops” they cannot afford.
Like their predecessors, these researchers are able to uncover problems with tactics as well
as design flaws and produce better effects. These simulations can also help militaries learn
about their enemies.

The same simulations that improve one’s own tactics and weapons can also be used to
model an enemy’s weapons. These simulations can be used to provide the distributions used
in simulations at the tactical level or higher. For example, when an aircraft is approaching a
guarded target, a simulation can be used to build a distribution on the probability that the
aircraft will survive the attack. By using engineering data and modeling the known physics
of the system guarding the target, the simulation provides both a training tool to try to
maximize the likelihood of surviving a mission, and a parameter estimate of the enemy
system that can be used in larger simulations. While all of these types of simulation are
discrete event, they are not the only type of simulation being used by the military today.

Agent-based simulations (ABS) are the newest simulation tool for the military. Originally
developed by those who study the evolution of (complex) systems, such as biologists, AI
researchers, sociologists, and psychologists, agent-based simulation is used to predict future
events as well as past processes. It is not a computational approach to rational action such as
game theory, but rather attempts to model autonomous and heterogeneous agents capable of
adapting and learning. Most military operations require that individuals interact with their
environment and other individuals. Before ABS, these interactions were modeled based on
physics vice first principles of behavior (assuming one knows what these are). That is to say,
most simulations before ABS were based on kinetics. As the military’s missions continue to
grow to include more peacekeeping and humanitarian relief, kinetic models are less useful.

For these ever-increasing missions, militaries need to be able to model the reaction of
populations to their presence. Like the tactical discrete event simulations, these ABS mod-
els can help units train for these new missions. For example, what is the best tactic for
crowd control? Should you call in more reinforcements, fire a warning shot, use non-lethal
weapons? ABS models can show how each of these choices affects different cultures and
are affected by different environments. These types of insights help commanders identify
changing situations before they get out of control. While this type of modeling is still in its
infancy, it shows promise for future military operations other than war.

11.3.7 Metrics

Once a military operations researcher has learned the techniques and tools described in
this chapter and others and applies them to a problem or process, they must then try to
build what Morse and Kimball (1970) call a “quantitative picture” for the decision maker.
This quantitative picture allows for comparisons both within an operation and between
competing alternatives that may be used for an operation. Morse and Kimball (1970) called
these comparators “constants of the operation.” Today we know them as metrics.
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The two most common categories of metrics are measures of performance (MOP) and
measures of effectiveness (MOE). MOPs are used to answer the question, “Are we doing
things right?” MOEs answer the question, “Are we doing the right things?” Examples
of military MOPs are casualties, bombs dropped, ton miles of cargo moved, or square
miles searched in a given time period. Observed actual values of MOPs can be compared
to theoretical values if calculable and show how well a unit is doing or where possible
improvements may be made. However, even when a unit is operating at or near its theoretical
limits, it still may not be effective. MOEs provide the commander or senior decision maker
insight into how well an operation or groups of operations are achieving the overall objective.
Going back to the example of ton miles of cargo moved, while a unit may be moving goods
at its capacity, if it is moving the wrong type of goods or the goods are consistently late,
then that unit is not effective.

There are countless examples in the literature of the use of metrics. Morse and Kimball
(1970) devote a whole chapter of their book to the use of metrics and give many examples
from their time with the Navy. Dyson (2006) recalls examples of metrics he used while
assigned to the Operational Research Section (ORS) of the British Royal Air Force’s Bomber
Command in 1943. While these are historical examples, they help provide today’s military
operations researchers with foundations for developing the “art” of building the quantita-
tive picture of tomorrow’s battles. To see that this “art” is still being practiced today one
need only look at recent publications. In the book by Perry et al. (2002), the Navy devel-
ops measures of effectiveness to verify the hypothesis that network-centric operations will
enhance the effectiveness of combat systems. Other examples can be found by searching the
Defense Technical Information Center (www.dtic.mil), where articles and technical reports
by Schamburg and Kwinn (2005) and West (2005) detail the use of MOPs and MOEs to
build a quantitative picture of future Army weapon systems.

11.4 Concluding Remarks

The nature of warfare is changing throughout the world and military OR practitioners
will need to change along with it. In the United States, this new generation of warfare
is referred to as the 4th generation (Lind et al., 1989). The generations of warfare are
concisely defined by Echevarria (2001) as (1) massed manpower, (2) firepower, (3) maneuver,
and (4) insurgency. While there is not complete agreement about 4th generation warfare,
one thing is clear: insurgency and terrorist attacks have presented the military with new
problems to solve.

Since World War II military OR practitioners have been focused on planning and training
and not the quick fielding of new technologies. Their modeling has been characterized by
the realistic portrayal of combat in simulations. They were often dislocated from the actual
problem being solved and have lost sight of their beginnings. The notion of 4th generation
warfare is changing this. Increased access to technology, information, and finances has given
terrorists and insurgents alike the ability to create chaos at will. The scientific community
has been asked to develop and field new technologies rapidly to thwart these new tactics.
Military OR practitioners are once again being called back to the field to help the military
employ these new technologies effectively against their enemies.

The threat of terrorism is not only affecting military OR practitioners through rapid
fielding initiatives, but also through how to plan for and respond to a terrorist attack. While
the location and timing of these attacks are not known with certainty, it is still possible to
plan for some of them. In the military, this is called contingency planning. This is in contrast
to deliberate planning where the location and enemy are known with certainty. During any

http://www.dtic.mil
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type of planning, logistics support for personnel and equipment is important. While the
military has many systems for assessing their deliberate plans, contingency or crisis planning
assessment is lacking (Thomas, 2004). The idea of contingency logistics has been brought
to the forefront of research by the recent tsunamis in the Indian Ocean and hurricanes
in the United States. While not typically the responsibility of the military, responding to
these types of contingencies is becoming more and more common. The military can learn
from these operations what is needed to support a contingency. In the future, military OR
practitioners will need to develop models both to plan for and assess contingency operations
whether they be for war or operations other than war.

Finally, a new field of study, system of systems (SoS), is emerging and OR practitioners
seem well placed to help. While there are many definitions for SoS, this chapter will use
one from the U.S. Defense Acquisition University’s Defense Acquisition Guidebook: “[SoS]
engineering deals with planning, analyzing, organizing, and integrating the capabilities of a
mix of existing and new systems into a system of systems capability greater than the sum
of the capabilities of the constituent parts.” The notion is that there are few standalone
systems and by considering during the design phase how one system will interact with
others, we can get better results in the end. As these SoS cut across many disciplines and
OR practitioners are used to interacting with multiple disciplines it seems logical that we
can help in this new field. Since the military purchases many high-cost systems it seems
prudent that military OR practitioners begin to embrace this new field and see how they
can help save their countries money and improve military capabilities. For an example of
how the military is already beginning to use SoS, see Pei (2000).
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As per Maltz [1], Simeon-Denis Poisson developed and used the Poisson distribution in
the 1830s to analyze inherent variations in jury decisions and to calculate the probability
of conviction in French courts. There have been many other initiatives prior to the 1930s
similar to Poisson’s, highlighting the use of quantitative techniques for decision support.
However, it is widely acknowledged that operations research (OR) started as a practice
in the 1930s. It owes its origin to the needs of Great Britain during World War II to
enhance the deployment effectiveness of combat resources and the support facilities. Its
subsequent growth is credited to the achievements during the war period. The year 1937
can be considered to be the base year as this was the year the term operational research
(OR) was coined [2]. It is not even a century old and compared to other functional areas
(such as production, marketing, financial management, or human resource development) or
to scientific disciplines (like mathematics, physics, or chemistry) it is a very young field.
Yet, there are many practitioners of OR who began questioning its utility, applicability [3],
and even its survivability within four decades of its existence. Fildes and Ranyard [4] have
documented that 96% of Fortune 500 companies had in-house OR groups in 1970 but the
numbers dwindled by the 1980s.

Ackoff [5] fueled this debate in 1979 with the assertion that “The future of Operational
Research is Past.” In 1997, Gass [6] proposed that in many lines of business, issues pertain-
ing to fundamental activities have been modeled and OR has saturated. And this debate
seems to be in a continuous present tense in spite of the growth in the number of OR prac-
titioners (more than 100,000), applications, and OR/MS journals. (The 1998 estimates are
42 primary OR journals, 72 supplementary journals, 26 specialist journals, 66 models of com-
mon practices, 43 distinct arenas of application, and 77 types of related theory development,
according to Miser [7].) The fundamental issue has been the gap between developments on
the theoretical front versus the application of OR models and concepts in practical circum-
stances. Consequently, the career growth of OR professionals in corporations beyond middle
management positions has become difficult.

12-1
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Rapid growth in affordable computing power since the 1970s and the advent of Internet
access on a large scale have rekindled this debate during the current decade, however, with
one significant difference. While the earlier issues of theory versus application remain, the
need for inventing newer algorithms to locate optima is also questioned now. If exhaustive
enumeration and evaluation can be done in seconds and at a small cost, even for large or
complex problems, why would one want to invent yet another superior search algorithm?

These issues can be embedded into the larger context of the relevance and utility of
OR in the present century, considered to be the growth period of Information Age. Will
OR as a discipline survive in this digital economy? Will there be newer contexts in the
emerging market place where OR would find relevance? Does the discipline need to undergo
a paradigm shift? What is the future of OR practitioners?

12.1 Past as a Guide to the Future

I propose to start with the early days of OR in the British armed forces during World War
II [7]. The original team at Royal Coastal Command (RCC) consisted of Henry T. Tizard,
Professor P. M. S. Blackett, and A. V. Hill. They were specialists in chemistry, physics,
and anatomy, respectively. They worked with many others in the military operations with
backgrounds in a variety of other disciplines. They were asked to study the deployment of
military resources and come up with strategies to improve their effectiveness. They were to
help RCC in protecting the royal merchant ships in the Atlantic Ocean from being decimated
by the German U-Boats; in enhancing the ability of the royal airforce to sight U-Boats in
time; and in increasing the effectiveness of patrol of the coast with a given aircraft fleet size.

Time was of the essence here. Solutions had to be found quickly, often in days or weeks but
not in months. Proposed solutions could not be simulated for verification of effectiveness,
yet any wrong solution could spell doom for the entire program.

Blackett and the team relied on available but limited data not only to study each of the
stated problems but also to give it a focus. They were inventive enough to relate concepts
from mathematics (the ratio of circumference to area of a circle decreases as the radius
increases) to suggest that the size of a convoy of merchant ships be increased to minimize
damage to them against enemy attacks. They were lateral thinkers who asked for painting
the aircrafts white to reduce their visibility against a light sky so that the aircraft could
sight the U-Boats before the latter detected their presence. They converted the coast patrol
problem into one of effective maintenance of aircraft. They documented the before and
after scenarios so that the effectiveness of the solutions proposed could be measured objec-
tively. They interacted with all stakeholders throughout the project to ensure that their
understanding was correct, meaningful solutions were considered, and final recommenda-
tions would be acceptable. It helped their cause that they had the ears of RCC leaders so
that their proposals could be tried with commitment.

In other words, the team was interdisciplinary to facilitate innovative thinking. It con-
sisted of scientists who could take an objective, data-based approach for situation analysis,
solution construct, and evaluation of solution effectiveness. They were capable modelers as
they knew the concepts and their applicability. Above all, they had the management sup-
port from the start, they understood the time criticality of the assignment, and they were
tackling real world problems.

Should we ever wonder why they succeeded?

Compare this to

Mitchell and Tomlinson’s [8] enunciation of six principles for effective use of OR in practice
in 1978. The second principle calls for OR to play the role of a Change Agent.
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and
Ackoff’s assertion in 1979 [5] that “American Operations Research is dead even though it
has yet to be buried” (for want of interdisciplinary approach and due to techniques chasing
solutions and not the other way round).
or
Chamberlain’s agony [9] even in 2004 that OR faced the challenge of “to get the decision
maker to pay attention to us” and to “get the practitioner and academics to talk to each
other.”

My detailed study of innumerable OR projects (both successful and failed) reveals four
discriminators of success, namely

1. Problem formulation in an inclusive mode with all stakeholders
2. An appropriate model (that recognizes time criticality, organization structure for

decision making, and ease of availability of data)
3. Management support at all stages of the project
4. Innovative solution.

These are to be considered the Four Legs of OR. Absence of any one or more of these legs
seem to be the prime cause for any failed OR project. Presence of all four legs gives an
almost complete assurance of the project’s success. Besides, they seem to be time invariant.
They hold good when applied to the pre-Internet era as well as the current period. (A
review of the Franz Edelman Prize winning articles from 1972 to 2006 lends strength to this
assertion.) Let us explore these in detail.

12.1.1 Leg 1: Problem Formulation in an Inclusive Mode

This is a lesson learned early in my career as an OR practitioner.
The governor of the state is the chancellor of the state-run university in India. The then

governor of Maharashtra called the director-in-charge of my company, Mr. F. C. Kohli, to
discuss a confidential assignment. As a young consultant I went with Mr. Kohli and met the
governor in private. The governor, extremely upset about the malpractices in the university
examination system wanted us to take up a consulting assignment and to submit a report
suggesting remedial action. He wished to keep the study confidential and not to involve any
of the university officials whose complicity was suspected. Mr. Kohli intervened to state that
it would be impossible to do such a study focusing on malpractices without involving the
key stakeholders. Much against his belief, the governor finally relented to let Mr. Kohli try.

We went and met the vice chancellor of the university and briefed him about the assign-
ment. It was the turn of the VC to express his anguish. He berated the government in
general for not giving the university an appropriate budget to meet the growing admission
and examination needs of the university during the past decade. Mr. Kohli then suggested
that the scope of the study be enhanced to cover the functioning of the examination sys-
tem in entirety (and not the malpractices alone) and was able to get the VC to agree to
participation.

As a consequence we went back to the governor and impressed upon him the need to
enlarge the scope. He consented.

Identifying all stakeholders and getting their commitment to participate from the begin-
ning is an essential prerequisite for the success of any OR assignment. That this has to be
a part of the project process is often lost among the OR practitioners.

Stakeholder involvement enables scoping the project appropriately, facilitates problem
construction in a comprehensive manner, and eases the path for solution implementation.
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Above all it recognizes and accepts the decision making role assigned to stakeholders and
creates an inclusive environment. It is a natural route to forming a multidisciplinary team.

12.1.2 Leg 2: Evolving Appropriate Models

This has turned out to be the Achilles’ heel of OR professionals.
Stated simply, a model is not reality but a simplified and partial representation of it.

A model solution needs to be adapted to reality. The right approach calls for qualitative
description, quantification, and model building as a subset and finally qualitative evalua-
tion and adaptation of the model solution. This realization is reflected in the approach of
Professor Blackett in 1938. Yet it has been lost in many a subsequent effort by others.

Many a problem of OR practice, in the pre-Internet era, can be traced to the practitioner
lamenting about the quality or reliability of data and nonavailability of data at the desired
microlevel at the right time as per model needs. This is ironical as the role of the practitioner
is to have a firm grip on data quality, availability, and reliability at the early stages so that
an appropriate model is constructed. In other words, the relationship between model and
data is not independent but interdependent.

Shrinking time horizons for decisions is the order of the day. Model-based solutions need
to be operationalized in current time. Prevention of spread of communicable diseases before
they assume epidemic proportions is critical to societal welfare when dealing with AIDS,
SARS, or avian flu. Models that depend on knowing the spread rate of a current episode
cannot do justice to the above proposition (while they are good enough to deal with com-
municable diseases that are endemic in a society and do flare up every now and then).

I was involved in a traffic management study in suburban commuter trains in Mumbai
in the early 1980s. The intent was to minimize the peak load and flatten it across different
commuting time periods. We evolved an ingenious way of using a linear programming (LP)
model with peak load minimization as the objective and scheduling the work start time
for different firms as decision variables. And we obtained optimality that showed reduction
of peak load by 15%. This admirable solution, however, could never be implemented as it
did not reflect the goal of thousands of decision makers in those firms. Instead their goals
were to maximize interact time with their customer and supplier firms as well as with their
branch offices spread out in the city.

Having learnt this lesson, I included the study of organization structure and decision
making authority as an integral aspect of any subsequent OR project. When our group
came up with the optimal product mix for a tire company, where I was the head of systems,
we ensured that the objective function reflected the aspirations of stakeholders from sales,
marketing, production, and finance functions; the constraint sets were as stated by them
and the decision variables were realistic from their perspective. The optimal solution, along
with sensitive analysis was given as an input to their fortnightly decision committee on
production planning, resulting in a high level of acceptance of our work.

Models are context sensitive and contexts change over time. Hence data used to derive
model parameters from a given period turn out to be poor representers with the passage
of time. The model itself is considered unusable at this stage. The need to construct mod-
els where model parameters are recalculated and refreshed at regular intervals is evident.
Assessing and establishing the effectiveness of a model continuously and revising the model
at regular intervals depend on data handling capabilities inbuilt into the solution.

Data collection, analysis, hypothesis formulation, and evaluation in many instances is
iterative (as opposed to the belief that they are strictly sequential). Andy Grove, then the
CEO of Intel, was afflicted with prostate cancer in the early 1990s. He was advised to go for
surgery by eminent urologists. His approach to understanding the situation and constructing
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a solution different from their suggestion is documented in Ref. [10]. The use of data and
data-based approach and the iterative nature of finding a solution are exemplified here.

12.1.3 Leg 3: Ensuring Management Support

Operations research functionaries within a firm are usually housed in corporate planning,
production planning and scheduling, management information systems (MIS), or industrial
engineering (IE) departments or in an OR cell. They tend to be involved in staff functions.
They are given the lead or coordination responsibility in productivity improvement assign-
ments by the top management. As direct responsibility to manage resources (machines,
materials, money, or workforce) rests with functional departments such as production, pur-
chase, finance, and HRD the onus to form an all inclusive stakeholder team rests with the
OR practitioner.

Most organizations are goal driven and these are generally short term. For listed compa-
nies the time horizon can be as short as a quarter and rarely extend beyond a year. The
functional departments mirror this reality with monthly goals to be met.

Many OR assignments originate with top management support. As the assignment pro-
gresses, the OR practitioner has a challenging task of including the interest of all stakehold-
ers and ensuring their continued participation vis-à-vis keeping the support and commitment
of top management. These two interests can diverge at times as the former’s goal is to pro-
tect the interest of a particular resource team while management, concerned with overall
effectiveness of all resources, is willing for a tradeoff. Issues and conflicts arise at this stage
resulting in inordinate delay in project execution. Management support soon evaporates as
a timely solution is not found.

Mitchell and Tomlinson [8] have stressed the Change Agent role of OR. Playing this role
effectively calls for many skills such as excellent articulation, unbiased representation of
all interests, negotiation, and diplomacy. OR practitioners need to ensure that they are
adequately skilled to do justice to these role requirements.

Apart from helping to ensure top management support, possession of these skills will
facilitate long-term career growth of the OR professional by switching over to line functions.
This is a career dilemma for many OR professionals. While their services are required at all
times, their role rarely rises above that of a middle or senior management position. There are
no equivalent top management positions such as Chief Finance Officer, Chief Operations
Officer, or CEO for them. (Some with IT skills can become Chief Information Officers.)
Hence, diversifying their skill base (beyond quantitative) is a precondition for the growth
of any OR professional in most organizations.

12.1.4 Leg 4: Innovative Solutions

Andy Grove, in his article about his battle with prostate cancer [10], states that “The
tenors always sang tenor, the baritones, baritone, and the basses, bass. As a patient whose
life and well-being depended on a meeting of minds, I realized I would have to do some
cross-disciplinary work on my own.”

The single value most realized out of an interdisciplinary team is the innovativeness of the
solution generated. Either the model or the process adopted should result in its emergence.
Discussing the practice of OR, Murphy [11] asserts that the “OR tools in and of themselves
are of no value to organizations.” According to him, the ability to build a whole greater
than the sum of the parts “is the missing link.” Blackett and his team took full advantage
of this. In spite of the use of models to structure and analyze the given problems, they went
out of the box when finding solutions. (But returned to quantitative techniques to assess
the impact of solutions.)
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OR has become integral to the success of an organization whenever the solution turns
out to be innovative. A case in point is the Revenue Management System of American
Airlines [12]. Innovation occurred here when the value of attributes such as time to book
and flexibility in travel planning were discovered and quantified in selling available seats.
This has been a breakthrough idea that has subsequently been adopted by hospitality and
other service-oriented industries extensively.

Indian Railways carries more than 14 million passengers every day. It is the second largest
rail network in the world in terms of kilometers of track laid. Booking reservations through
a manual system, catering to more than 14 different language requirements, prior to the
mid-1980s, was a dreaded and time wasting experience for most citizens. One had to stand
in multiple lines to book for different journeys; had to return in 2 days to know if one
would get a reservation in a train originating from elsewhere; an entire afternoon could
be wasted in this process. Meanwhile a gray market flourished for train reservations. The
computerized reservation system installed in the mid-1980s has been a phenomenal success
due to innovations introduced in the system using OR concepts. Citizens can stand in one
line, instead of many, to book journeys from anywhere to anywhere in any class. (Now they
can even do this online from their home.) Apart from saving valuable customer time, there
has been a manifold increase in railway staff productivity. In addition, the malpractices
have come down to a minimum.

Almost a decade ago, I led a team that was attempting to break into a segment of IT
services, namely outsourced software maintenance through competitive bidding. We had
superior quality and project management processes and a competent and dedicated team.
We knew how to measure software quality and programmer productivity in multiple plat-
forms on an ongoing basis. We had excellent knowledge management practices. But these
were not adequate to ensure our win. Delving deep into my OR background and work-
ing with a team of software experts, I could evolve a model that would treat the arrival
and service rates of software bugs in a queuing theoretical format. Our team could then
submit an innovative proposal to reduce the size of the maintenance team gradually. This
would result in continuous cost reduction and yet keep service quality undiluted. With this
approach, starting from Nynex, we won multiple assignments with many customers around
the world. Besides, post year 2000 (Y2K), when IT budgets were enhanced, we could obtain
development contracts to replace many of these old systems as many of our team members
now had in-depth knowledge of products and processes of the client organization. (True
multiplier effect of an innovative solution.)

12.2 Impact of the Internet

Two distinct developments need to be discussed here: the spread of computing capabilities
at an ever decreasing unit cost from the early 1950s to date and the exponential growth in
computer to computer networking due to the Internet since the 1990s.

The introduction of computers in industry during the early 1950s played a seminal role in
showcasing what OR can do. The field of OR flourished in this period. Statistical, linear and
nonlinear optimization, and stochastic simulation applications grew. The next two decades
turned out to be the most fertile age of growth in OR applications. Growth in computing
power, presence of personal computers, and crashing cost of computing have impacted on
management science practitioners in many ways. While they played a positive role in the
spread and growth of OR in the early decades, there has been a role reversal, however, since
the 1980s. Productivity gains can now be demonstrated easily by computerization projects
rather than taking the route of model building and optimization. Worse still is the ability
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of the computer to do exhaustive enumeration in a few seconds, thus striking a death knell
on many efforts to find the algorithms for optimal solution.

Personal productivity tools such as spreadsheets with programmable cells have enabled
wide-scale use of simulation, particularly of financial scenarios. Some optimization routines
are also embedded into functions such as internal rate of return (IRR) calculation resulting
in extensive use of OR concepts by masses but without the need to know the concepts.

The second phenomenon, namely, the Internet with its ubiquitous connectivity since the
mid-1980s, coupled with increase in computing power available per dollar, has impacted on
every field of human endeavor dramatically. The field of OR is no exception.

Gone are the days of data issues such as adequacy, granularity, reliability, and timeliness.
Instead it is a data avalanche now presenting a data management problem. Montgomery
[13] highlights issues relating to extraction of value from the huge volume of data in the
Internet era. The arrival of tools such as data warehousing and data mining has helped
the storage and analysis aspects. Yet the interpretation and cause–effect establishment
challenges remain.

Many practitioners have wondered if IT developments have overshadowed the practice of
OR. They also believe that OR applications in industry have reached a saturation point
with the modeling of all conceivable problems. Some other developments are considered
even more profound.

For example, for decades, inventory management has been a business area that has
received enormous attention from the OR community. Models have been built and success-
fully used to consider deterministic and stochastic demand patterns, supply and logistics
constraints, price discounts, and the like. The focus has remained in determining the opti-
mal inventory to hold. Contrast this with the developments in this era of supply chain.
Supply chain management (SCM) has been largely facilitated by the relative ease and cost
effective manner in which disjoint databases, processes, and decision makers can be linked
in real time and by real time collection and processing of point of sale (POS) data. Cou-
pled with the total quality management (TQM) principles it has also given rise to the new
paradigm that inventory in any form is evil and hence needs to be minimized. No one is yet
talking about the futility of inventory models, at least at the manufacturing plant level, but
that managerial focus has shifted to just in time (JIT) and minimal finished goods (FG)
inventory is real.

The Internet era has also squeezed out intermediaries between manufacturers and con-
sumers and has usurped their roles. Issues such as capacity planning and product mix
optimization (essential in made to stock scenario) have yielded place to direct order accep-
tance, delivery commitment, and efficient scheduling of available capacity (made to order
scenario). Dell’s success has been credited [14] to eliminating FG inventory as well as to
minimizing inventory held with its suppliers. They treated inventory as a liability as many
components lose 0.5% to 2.0% of value per week in the high tech industry.

OR expertise was called for in improving the forecasting techniques earlier. Forecasts
were fundamental to many capacity planning and utilization decisions. With the ability to
contact the end user directly, firms have embraced mass customization methodologies and
choose to count each order than forecast. In other words, minimal forecasting is in.

As the Internet has shrunk distances and time lines and as it has facilitated exponen-
tial growth in networking, the planning horizon has shrunk from quarters to days or even
hours. Decisions that were considered strategic once have become operational now. The
revenue management principle that originated in the airline industry is a prime example.
The allocation of seats to different price segments was strategic earlier. It is totally oper-
ational now and is embedded into the real time order processing systems. This practice
has spread to many other service industries such as hospitality, cruise lines, and rental cars
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(a beneficial side effect of strategic decisions becoming operational is the reduced need for
assumptions and worrying about the constancy aspects of assumptions).

When the look-ahead period was long, the need to unravel the cause and effect relationship
between different variables was strong. Regression and other techniques used to determine
this dependency have always been suspected of throwing up spurious correlations. This has
resulted in low acceptance of such techniques for certain purposes, particularly in the field
of social sciences. In the Internet age, the emphasis is not in unraveling but to accept the
scenario in totality, build empirical relationships without probing for root causes, and move
ahead with scenario management tasks.

Does it mean that many revered OR techniques of the past are becoming irrelevant in this
ICE (information, communication, and entertainment) age? Is there a change in paradigm
where the brute force method (applied at a low cost) of computers and the Internet is
sweeping to dust all optimization algorithms? Do we see a trend to embed relevant OR
concepts into many day to day systems that make every commoner an OR expert?

Or is there another side to this coin? Given that OR has the best set of tool kits to
cope with complexity and uncertainty and facilitates virtual experimentation, as seen by
Geoffrion and Krishnan [15], is this a door opening for vast new opportunities in the digi-
tal era?

I have chosen to highlight some situations already encountered in a limited way untill now
but are likely to be widespread in future. These are forerunners of possible opportunities
for OR professionals but are by no means exhaustive.

12.3 Emerging Opportunities

Gass [6] opined in 1997 that the future challenges for OR will come from real time deci-
sion support and control problems such as air traffic control, retail POS, inventory control,
electricity generation and transmission, and highway traffic control. This prediction is in
conformity with our findings that many strategic decisions have become operational in the
Information Age. Data collection at source, instantaneous availability of data across the sup-
ply and service chains, and shrinking planning horizons have meant that fundamental tasks
of OR such as cause–effect discovery, simulation of likely scenarios, evaluation of outcomes,
and optimal utilization of resources, all need to be performed on the fly. It implies that
for routine and repeatable situations OR faces the challenge of automating functions such
as modeling, determining the coefficient values, and selecting the best solutions. In other
words, static modeling needs to yield its place to dynamic modeling. I contend that this is a
whole new paradigm. OR professionals, both academicians and practitioners alike, have to
invent newer methodologies and processes, and construct templates to meet this challenge.

Gawande and Bohara [16], discussing the issue faced by U.S. Coast Guard, exemplify the
dilemma faced by many developed nations. As economic development reaches new highs, so
will concerns for ecology and preservation. Hence, many policy decisions have to wrestle with
the complex issue of balancing between incentives versus penalties. According to Gawande
and Bohara, maritime pollution laws dealing with oil spill prevention have to decide between
penalties for safety (and design) violations of ships and penalties for pollution caused.
This issue can be resolved only with OR models that reflect an excellent understanding
of maritime laws, public policy, incentive economics, and organizational behavior. In other
words, bringing domain knowledge along with the already identified interdisciplinary team
into the solution process and enhancing the quantitative skill sets of the OR practitioner
with appropriate soft skills is mission critical here. I assert that structuring of incentives
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vis-à-vis penalties will be a key issue in the future and OR practitioners with enhanced skill
sets and domain knowledge will play a significant role in helping to solve such issues.

Another dilemma across many systems relates to investments made for prevention as
opposed to breakdown management. Replacement models of yesteryear chose to balance
between cost of prevention against cost of failure. The scope of application of these principles
will expand vastly in this new age, from goods to services. They were difficult to quantify
for the services sector earlier. One of the significant developments in the digital era has been
the sharpening of our ability to quantify the cost of an opportunity lost or poor quality of
service. Further, a class of situations has emerged where cost of failure is backbreaking and
can lead to system shutdown. Aircraft and spaceship failures in flight, bugs in mission critical
software systems, and spread of deadly communicable diseases among humans are good
examples. Even a single failure has dramatic consequences. Innovative solutions need to be
found. Redundancy and real time alternatives are possible solutions with cost implications.
OR experts with innovation in their genes will find a great opportunity here.

The spread of avian flu is a global challenge threatening the lives of millions of birds, fowls,
and humans. Within the past 5 years it has spread from the Southeast Asian subcontinent
to Africa and Eastern Europe. The losses incurred run into millions of dollars whenever
the H5N1 virus is spotted in any place. The United States alone has budgeted 7 billion
dollars to stockpile drugs needed to tackle an epidemic. Policies to quarantine and to dis-
infect affected population, to create disjoint clusters of susceptible population, have been
implemented in some countries. Innovative measures to monitor, test, and isolate birds and
fowls that move across national borders through legitimate trade, illegitimate routes, and
natural migration are needed in many countries [17]. Formulating detection, prevention,
and treatment measures calls for spending millions of dollars judiciously. Cost effectiveness
of each of these measures and their region-wise efficacy can be ensured by application of
OR concepts at the highest levels of government in every country.

Almost a decade ago, Meyer [18] discussed the complexities in selecting employees for
random drug tests at Union Pacific Railroad. The issue of selection is entwined with concerns
for protection of employee privacy, confidentiality, as well as fairness. Post 9/11, similar
situations have occurred in the airline industry with passengers being selected randomly for
personal search. Modern society will face this dilemma more and more across many fields,
from work places to public facilities to even individual homes. For the good of the public
at large, a select few need to be subject to inconvenience, discomfort, and even temporary
suspension of their fundamental rights. (The alternative of covering the entire population
is cost prohibitive.) How does one be fair to all concerned and at the same time maximize
the search effectiveness for a given budget? Or what is an optimal budget in such cases?
OR expertise is in demand here.

Market researchers have struggled with the 4Ps and their interrelationships for four
decades since McCarthy [19] identified them, namely, Product, Performance, Price, and
Promotion. It is the application of OR that has helped to discover the value of each of
the 4Ps and relate them in a commercially viable way. The 4Ps have been applied in a
statistical sense in product and system design so far. Markets were segmented and prod-
ucts were designed to meet the needs of a given segment with features likely to appeal to
either the majority or a mythical ideal customer. This meant that product attributes were
subject to either the rule of least common denominator or with gaps in meeting specific
customer needs. The Internet era has extended direct connectivity to each customer, and
hence the 4Ps as they relate to any individual can be customized. The front end of mass
customization, namely, configuring the product with relevant Ps for each customer, under-
standing his/her tradeoffs, can be done cost effectively only with innovative application of
OR concepts.
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Thompson et al. [20] have dealt with one aspect of the above challenge, namely the need
for product design to reach a new level of sophistication. As costs plummet, every manu-
facturer wishes to cram the product with as many features as one can. Market research has
shown that buyers assign a higher weightage to product capability over its usability at the
time of purchase. This results in high expected utility. However, their experienced utility
is always lower as many features remain unused or underutilized. This results in feature
fatigue and lower customer satisfaction. Hence, manufacturers need to segment the market
better, increase product variety, and invest to learn consumer behavior on an ongoing basis.

Similarly, consumer research can scale new heights in the emerging decades. Customer
behavior can be tracked easily, whereas customer perception is hard to decipher. Correlating
the two and deriving meaningful insights will be the focus of market researchers. OR when
combined with market research and behavioral science concepts can play a vital role here.

Communicating with customers and potential customers on time and in a cost effective
manner is the dream of every enterprise. As the Internet and phone-based customer reach/
distribution channels have emerged, as customers seek to interact in multiple modes with
an organization, optimal channel design in terms of segments, activities within a segment,
and balancing of direct versus indirect reach partners will assume criticality. Channel can-
nibalization or channel conflicts are issues to contend with. Channels such as the Internet,
kiosks, and telephone have been around for a decade or more. However, data on channel
efficacy is either sparse or too macro. Over time a higher level of sophistication in channel
usage will emerge as a key competitive edge. OR has enough tools and concepts to help out
in such decisions for different segments in the financial services sector.

Banks, savings and loan associations, insurance firms, and mutual funds constitute the
financial services sector. Customer segmentation, product structuring, pricing, and credit
worthiness assessment are issues tackled through sophisticated OR applications since the
1970s in this sector. The concept of multi-layering of risk and treating each layer as a
distinct market segment is inherent to insurance and reinsurance lines of business [21].
Product portfolio optimization for a given level of capital and risk appetite is mission critical
here. The Internet and online systems have enabled firms to gather product, customer
segment, and channel specific data on costs, margins, and risks. Extending the product mix
optimization applications from the manufacturing area to financial services is an exciting
and emerging opportunity. Formulating cost effective programs to minimize identity theft
and fraudulent claims without alienating genuine customers are industry challenges where
OR professionals can play significant enabler roles.

With reference to physical goods, the back end of mass customization is intelligent manu-
facturing that can incorporate a feedback loop from the demand side into the manufacturing
processes. Modularizing components and subassemblies, delaying final assembly, and linking
final assembly line to specific customer orders as well as items on hand are tasks consequent
to mass customization. As discussed earlier, the move now is toward minimal forecasting.
Capacity management and order management are in focus rather than better forecasting
and finished goods inventory control. Simulation techniques have found wide acceptance in
shop floor layout, sequencing of production steps, scheduling and rescheduling of operations
to meet customer commitments and to make delivery commitments. While optimization
held sway when many decisions were strategic, operationalizing the strategic decisions has
resulted in simulation systems replacing the optimizers.

FedEx, UPS, and DHL are early movers in the courier transportation industry to have
used complex OR algorithms and sophisticated computer systems for routing and tracking
packages [22]. Cell phones, RFID devices, and GPS technologies have immense potential
to provide solutions to mobility-related issues of products and resources. Dynamic data
captured through such means facilitate building optimizing online and real time solutions for
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logistic and transportation problems. When coupled with context-specific information from
GIS databases as well as from enterprise-wide computers, higher levels of complex issues can
be solved in an integrated mode. Constructing such solutions is a skill and capability building
means for OR professionals, thus facilitating their career growth. Camm et al. report a
pioneering GIS application at Proctor & Gamble carried out by OR practitioners [23].

OR being called upon to play the role of a fair judge recurs in the telecom sector too.
Systems need to reach a new level of sophistication at the design stage itself. Many systems
have facilities that are multifaceted (can carry data, voice, video, etc.). Hence, they end up
serving multiple customer segments and multiple products. Then the critical issue is one
of design to honor service level agreements (SLAs) with each customer segment and at the
same time not to build overcapacity. This turns out to be both a facility design issue and
operational policy issue for a given system capacity. Ramaswamy et al. [24] have discussed
an Internet dial-up service clashing with the emergency phone services when provided over
the same carriers and how OR models have been used to resolve attendant issues.

Law enforcement and criminal justice systems have had a long history of use of quantita-
tive techniques, starting from Poisson in the 1830s [1]. From effective deployment of police
forces, determining patrol patterns, inferring criminality, concluding guilt or innocence,
deciding on appropriate level of punishment to scheduling of court resources, numerous
instances are citied in the literature about the use of OR techniques. However, a virtually
untapped arena of vast potential for OR practitioners is attacking cyber crime. This is fer-
tile ground for correlating data from multiple and unconnected sources, drawing inference,
and detection and prevention of criminal activities that take place through the Internet.

One of the telling effects of the Internet has been online auctions [25]. It is the virtual space
where the buyer and seller meet disregarding time and place separations. One can imagine
well the advantage of such auction sites when compared to physical sites. The emerging
issues in this scenario call for ensuring fairness in transactions through an objective pro-
cess while preserving user confidentiality. This is an exciting emerging application area for
OR experts with in-depth understanding of market behavior as well as appropriate domain
knowledge relating to the product or service in focus. Bidders in such auctions need to choose
not only the best prices to offer but also sequence their offer effectively. The emergence of
intelligent agents that can gather focused data, evolve user specific criteria for evaluation,
help both parties to choose the best path of behavior (price to quote and when) are chal-
lenges awaiting the OR practitioner. Gregg and Walizak [26] are early entrants to this arena.

A conventional assumption in any system design has been to overlook the transient state
and design for the steady state (in most queuing systems). Today’s computing technology
permits the analysis of the transient state within reasonable cost. Also it is true that many
systems spend a large amount of time in the transient state and hence have the need to
design them optimally in this state as well. OR theory has much to contribute in this area.

Developments in life sciences and related fields such as drug discovery, genetics, and
telemedicine have opened doors to many opportunities for OR applications. OR experts
are playing an increasingly assertive role in cancer diagnosis and treatment. 3D pattern
recognition issues rely heavily on statistical and related OR concepts to identify the best
fits. It is evident that such opportunities will grow manifold going forward.

The year 2003 is significant in the field of biology and bioinformatics. This was the 50th
anniversary of the discovery of the double helical structure of DNA and the completion of
the human genome project. While the first event gave birth to the field of genetics, the
second is the beginning of the use of genomes in medicine. The current challenge is to
utilize the genome data to its full extent and to develop tools that enhance our knowledge
of biological pathways. This would lead to accelerated drug discovery. Abbas and Holmes
[27] provide enormous insight into the opportunities for OR/MS expertise application in
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this area. Sequence alignment, phylogenetic tree, protein structure prediction, and genome
rearrangement and the like are problems solvable with OR tools of probabilistic modeling,
simulation, and Boolean networks.

Similarly, the next revolution in information technology itself awaits the invention of intel-
ligent devices that recognize inputs beyond keyboard tapping and speech. Other means of
inputs such as smell, vision, and touch require advancement in both hardware and software.
And the software would rely heavily on OR to draw meaningful conclusions.

Industries in the services sector will dominate the economies of both developed and devel-
oping countries in the twenty-first century. To answer the challenges in the service sector,
there is an emerging science of service management advocated by IBM and other global
companies. This would open up many opportunities for the OR/MS practitioners (see the
article by Dietrich and Harrison [28]). In this handbook, OR/MS applications to the service
sector (airlines, energy, finance, military, and water resources) are discussed in detail.

Finally, one of the significant but unheralded contributions of OR to society at large has
been the creation of means to handle variability. Previously, most systems and products
were designed with either the average in mind or custom developed. OR with its embedded
statistical tools and optimization algorithms has enabled a better understanding of variabil-
ity at multiple levels (variance, skewness, and kurtosis), its associated costs, and has enabled
meaningful and commercially viable market segmentation (as in the airlines industry). The
twenty-first century demands that we accept diversity as an integral and inevitable aspect
of nature in every aspect of our endeavor. We as a society are expected to build systems,
evolve policies, and promote thoughts that accept diversity in totality. This can, however,
be achieved only in an economic model that balances the associated costs with resultant
benefits. OR is the only discipline that can quantify the diversity aspects anywhere and
create the economic models to deal with the issues effectively. In that sense its longevity is
assured.
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