
US $44.99

Shelve in
Business/Management

User level
Beginning–Advanced

www.apress.com

Varm
a

Agile Product Developm
ent

Agile Product
Development

How to Design
Innovative Products That Create
Customer Value
—
Tathagat Varma

F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S® THE E XPER T ’S VOICE® IN A G I L E P R O D U C T D E V E L O P M E N T

Agile Product Development

Agile Product Development will show you what it takes to develop products that blow your users away—and
take market share from your competitors. This book will explain how the principles behind agile product
development help designers, developers, architects, and product managers create awesome products;
and how to look beyond a shiny user interface to build a great product. Most importantly, this book will
give you a shared framework for your product development team to collaborate eff ectively.

Product development involves several key activities—including ideation, discovery, design, development,
and delivery—and yet too many companies and innovators focus on just a few of them much to the
detriment of the product’s success in the marketplace. As a result we still continue to see high failure rates
in new product development, be it inside organizations or startups. Unfortunately, or rather fortunately,
these failures are largely avoidable.

In the last � � een years, advances in agile so� ware development, lean product development, human-
centered design, design thinking, lean startups and product delivery have helped improve individual
aspects of product development. However, not enough guidance has been available to integrate them
in the context of the product development life cycle.

Until now. Product developer extraordinaire Tathagat Varma in Agile Product Development integrates
individual knowledge areas into a � eld manual for product developers. Organized in the way an idea
germinates, sprouts, and grows, the book synthesizes the body of knowledge in a pragmatic way that is
more natural to the entire product creation process rather than from individual practices that constitute it.

In today’s hyper-innovative world, being � rst to the market, or delivering feature-loaded products,
or even off ering the latest technology doesn’t guarantee success anymore. Sure, those elements are all
needed in the right measures, but they are not suffi cient by themselves. And getting it right couldn’t be
more important: Building products that deliver awesome user experiences is the top challenge facing
businesses today, especially in a post-Apple world where user experience and design has been elevated
to a cult status.

You will learn:

• How to stimulate creativity and prioritization of ideas in product design
• How to get early feedback on initial product idea iterations
• How to design and develop products using sound engineering practices
• How to apply principles of agility into soft ware delivery

9 781484 210680

54499
ISBN 978-1-4842-1068-0

Agile Product
develoPment

How to Design innovative ProDucts
tHat create customer value

Tathagat Varma

Agile Product Development: How to Design Innovative Products That
Create Customer Value

Copyright © 2015 by Tathagat Varma

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1068-0

ISBN-13 (electronic): 978-1-4842-1067-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Developmental Editor: Douglas Pundick
Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, James DeWolf,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James
Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben
Renow-Clarke, Gwenan Spearing, Matt Wade

Coordinating Editor: Rita Fernando
Copy Editor: Ann Dickson
Compositor: SPi Global
Indexer: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go
to www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
http://www.springer.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
www.apress.com/source-code/

apress Business: the unbiased source of Business
information

Apress business books provide essential information and practical advice,
each written for practitioners by recognized experts. Busy managers and
professionals in all areas of the business world—and at all levels of technical
sophistication—look to our books for the actionable ideas and tools they
need to solve problems, update and enhance their professional skills, make
their work lives easier, and capitalize on opportunity.

Whatever the topic on the business spectrum—entrepreneurship, finance,
sales, marketing, management, regulation, information technology, among
others—Apress has been praised for providing the objective information and
unbiased advice you need to excel in your daily work life. our authors have no
axes to grind; they understand they have one job only—to deliver up-to-date,
accurate information simply, concisely, and with deep insight that addresses
the real needs of our readers.

it is increasingly hard to find information—whether in the news media,
on the internet, and now all too often in books—that is even-handed and
has your best interests at heart. We therefore hope that you enjoy this
book, which has been carefully crafted to meet our standards of quality and
unbiased coverage.

We are always interested in your feedback or ideas for new titles. Perhaps
you’d even like to write a book yourself. Whatever the case, reach out to us
at editorial@apress.com and an editor will respond swiftly. incidentally, at
the back of this book, you will find a list of useful related titles. Please visit
us at www.apress.com to sign up for newsletters and discounts on future
purchases.

The Apress Business Team

http://editorial@apress.com
http://www.apress.com

To the ever-changing
software industry

for making me
a lifelong learner

Contents
about the author� �ix

about the technical reviewer �xi

acknowledgments� �xiii

introduction� xv

chapter 1: Preamble � 1

chapter 2: Discover � 31

chapter 3: Deliberate� 49

chapter 4: Describe � 83

chapter 5: Design � 105

chapter 6: Develop � 127

chapter 7: Deliver� 169

index � 183

About the Author
tathagat varma has been involved with
high-tech software product development since 1991
when he began working with defense research
and development organisation (drdo). He
has subsequently worked with Siemens telecom,
Philips medical Systems and Philips digital
networks divisions, Huawei technologies,
mcAfee, netScout Systems, Yahoo!, and [24]7
innovation labs in significant technical and
leadership roles. His key roles include being
a member of the senior management team at
Huawei, starting up and heading india operations

for netScout Systems (when it was known as Sniffer technologies prior to
acquisition), and heading the business operations at Yahoo! r&d india. in 2014,
he founded thought leadership, a knowledge creation firm that adopts an
interdisciplinary approach to solving organizational problems and offers high-
end consulting and coaching on strategy, agility, innovation, and leadership to
product development organizations.

tathagat holds an mS in computer science from JK institute of Applied
Physics and technology, Allahabad university, india, a post-graduate
certificate in Hr management from Xavier labor research institute School
of Business and Human resources (Xlri), Jamshedpur, india, and certificates
in business leadership skills, executive leadership, and financial management
from cornell university, uSA. in addition, he is also certified PmP, Prince2
registered Practitioner, cSP, cSm, cSPo, Scaled Agile Framework Program
consultant (SAFe SPc), management 3.0 Practitioner, and Senior member
of ieee and Acm.

tathagat has volunteered with Pmi innovation and new Product development
community of Practice, ieee technology management council, Agile india,
Agile leadership network, and several other voluntary organizations.
He has been a mentor at startup accelerators such as google launchpad,
First100Sales, nASScom 10,000 Startups, Sandbox Startups, and numA,
and has been a visiting faculty teaching project management, business ethics,
design thinking, lean startup, and agile software development courses.
He has authored and presented over 150+ papers and talks at national

About the Author x

and international conferences and other corporate sessions. He blogs at
www.managewell.net, and his slide decks are hosted at http://slideshare
.net/managewell.

tathagat also holds the unique distinction of being the youngest member of
the 13th indian Scientific expedition to Antarctica, where he participated as
a computer scientist and stayed at the indian permanent station maitri for
a period of 16 icy months in 1993–1995. He studied data communication
between india and Antarctica and the effects of unique weather conditions
on life-support systems in Antarctica. He thinks everyone should at least
spend a summer in Antarctica!

http://www.managewell.net
http://slideshare.net/managewell
http://slideshare.net/managewell

About the Technical
Reviewer

swapnil saurav is a Project manager with
JdA Software, Hyderabad (india). He has earned
the reputation as a perceptive and practical
troubleshooter with the unique ability to
solve large-scale problems often deemed too
challenging for others. With more than 12 years
of work experience handling and managing
large and complex software projects, Swapnil
has a passion for the supply chain with a focus
on retail and manufacturing industries and an
uncompromising commitment to quality and
outstanding customer service. An ambitious,

creative, and highly motivated individual, Swapnil has been invited as keynote
speaker at various industry forums, and he has a passion for teaching and
developing leaders for tomorrow. He holds a BS in computer science
engineering (visweswaraih technological university), an mS (BitS Pilani),
and an mBA (S.P. Jain institute of management and research). His motto is
to “learn everyday” and is currently pursuing a Phd in management from
the university of Petroleum and energy Studies. His personal website is
www.swapnil.asia.

http://www.swapnil.asia

Acknowledgments
no one can truly appreciate what it takes to write a book until one begins to
actually start writing it! Having been blogging for over ten years, i was under
the naive impression that my transition from an amateur blogger to a book
author would be a linear one. if anything, the last year has been a great learning
experience—and a humbling one, too!

First and foremost, i must thank the awesome team at Apress for offering me
such a wonderful opportunity to write this book. When celestin “discovered”
me through my blog post on linkedin and asked me if i would like to write a
book, it sounded straight out of a movie plot. over the next several months,
he painstakingly guided me through the entire process of preparing an initial
proposal for the book, and helped me finalize it. Subsequently, when the real
action started in terms of writing down the chapters, rita was always there.
She was the scrum master who was always there to help. She gave me that
gentle nudge to make sure that even as i was running behind schedule, i did
everything that needed to be done to catch up and deliver the chapter in
potentially shippable increments. thanks, celestin and rita, for not giving up
on me!

i know that a large team from Apress was there in the background working
on this book, and i want to call out matt moodie, Ann dickson and SPi global
for all their efforts. in addition, the review feedback and critical inputs by
reviewers is an author’s lifeline—that is the first feedback on a product that
is still quite raw. i want to offer my sincere thanks to Swapnil Saurav for his
technical review.

i can’t thank my professional network enough for enriching my learning
journey through the years—my former employers, my clients, managers,
colleagues, team members, students, readers of my blog, audience to my talks,
and the noblest of them all—the fellow volunteers. thanks for all the support
and learning opportunities, and for making me a better professional every
single day.

my wife, Shikha, and son, chanakya, deserve an extra special round of
applause. the year 2015 was an especially tough year for us as i was busy
building my newly started venture, chanakya was busy writing his senior
secondary school exams and Shikha was busy helping him prepare for his
college admissions. despite all that chaos, i managed to get this book out only

Acknowledgments xiv

because of their encouragement and understanding. thanks for putting up
with all the discomfort, but you guys were awesome, and your support was so
good, i can’t wait to get started on my next book!

Finally, despite all the diligent efforts of the editorial team and reviewers,
i must accept responsibility for all the mistakes and shortcomings in this book.
let me know how i can make this book better.

Introduction
In the past man has been first. In the future the System will be first.

—Frederick Winslow taylor, The Principles of
Scientific Management, 1911

With all due regards to taylor, this one single line from the world of
manufacturing has perhaps caused more damage to the entire knowledge
industry in the last hundred years than everything else put together. during
the twentieth century, we blindly adopted this mantra without realizing that
manufacturing and knowledge creation are two different worlds—they are
like chalk and cheese in that what works in one doesn’t necessarily work
in the other. manufacturing is fundamentally a production problem, and
knowledge creation is more like a design problem. most certainly, there
can’t be a “system” to developing new and innovative products—we must
leverage human creativity, judgment and continuous learning to solve the
problems effectively.

While the production world was all about predictability, control, “Plan A,”
organization, accuracy, structure, tools, automation, and so on, the world
of knowledge was full of messy creation, cognitive work, experimentation,
mistakes, adaptation, “Plan B,” iteration, prototyping, serendipity, wicked
problems, people dependency, and so on. the methods that worked well
for production (such as the waterfall model, frameworks like PmBoK and
cmmi, and standards like iSo9000) were well suited for a world where a
problem was all about producing a replica of something that had been already
designed—for example, assembling cars or manufacturing mobile phones.
However, these methods, standards, and frameworks were fairly useless
when it came to “managing” a creative process for they sought false value
in accuracy, predictability, repeatability, and efficiency when these were not
even the key drivers of value in a constantly changing world. Having been
part of several endeavors where we tried to tame the software process using
industrial-era thinking, i realized the naivety and futility of our efforts. over
time, i had opportunities to learn better ways to build products, and this book
is my attempt to put it all together.

Introduction xvi

in this book, i have tried to establish the journey of an idea as it is born,
and as it fights for survival and grows on the back of market and end-user
validation—starting with high-level feedback on something that might simply
be a doodle on a cocktail napkin to fleshed-out working software that allows
users to interact with it. conventional methods assume we are solving the
right problem and we know enough about the right solution. unfortunately,
this set of deadly assumptions leads to over 90% mortality of new product
initiatives and startups. in today’s world, this could be fatal not just from
the cost point of view, but also even more importantly from the loss of the
window of opportunity.

irrespective of your field, the ideas shared in this book could help you align
your level of investment into the solutioning commensurate with the level
of problem validation. if you have chosen a wrong idea, a wrong market, or
prematurely chosen a wrong solution, this book will help you fail faster and fail
cheaper so that you don’t waste an inordinate amount of time, effort, and money
in chasing the wrong problem. of course, if you are on the right track, this book
will teach you how to establish checkpoints along the way to systematically
mitigate the risks in new product development using agile thinking.

C h a p t e r

Preamble
Back to Agility

… And, unfortunately, I think the time has proven me right. The word
“agile” has been subverted to the point where it is effectively meaningless,
and what passes for an agile community seems to be largely an arena for
consultants and vendors to hawk services and products.

So I think it is time to retire the word “Agile.”

…We’ve lost the word agile. Let’s try to hang on to agility. Let’s keep it
meaningful, and let’s protect it from those who would take the soul of our
ideas in order to sell it back to us.

—Dave thomas, Agile Manifesto Signatory, Keynote address1
at Agile India 2014, Bangalore

Dave was not just ranting when he delivered his keynote talk, which was
actually his first one since co-authoring the Agile Manifesto in 2001. Sitting in
rapt attention in the audience, many of us could relate to what’s been hap-
pening. While in 2001, the original signatories of the Agile Manifesto created a
powerful and aspirational vision for software development and established its
first principles, the current reality seemed to be very distant from what was
originally propounded.

1

1Agile is Dead (Long Live Agility), http://pragdave.me/blog/2014/03/04/time-to-
kill-agile/.

http://pragdave.me/blog/2014/03/04/time-to-kill-agile/
http://pragdave.me/blog/2014/03/04/time-to-kill-agile/

Chapter 1 | Preamble2

Having been given consultant-ese and vendor-driven commandments of imple-
menting and achieving agility through specialized, costly, and proprietary tools,
we are in perpetual danger of being run over by slick marketing brochures
that promise to teach everything except, perhaps, agility. A practitioner-led
movement that started out with the goal of restoring agility to individuals and
teams so they could shape their own destiny had gradually deteriorated to
a one-size-fit-all template at the mercies of consultants and toolmakers. The
notion of agility has been reduced to following an “agile process” out of the
box—whatever that means!

The moment we say we follow a certain “agile process,” we are essentially
saying that there is this one great process that we have chosen to follow that
works for all seasons and all reasons, and, by the way, it is an “agile process” so
we can now claim to be agile. Following an agile process makes us agile. Yay!

Sadly, this is a farce.

The reality is that following an agile process, or any process for that matter,
makes us “un-agile.”

Agility is all about nurturing a mindset that enables us to constantly adapt to a
rapidly evolving situation and look for more effective ways to solve a problem.
To that end, an “agile process” is an oxymoron because the moment we call
a given sequence of steps a “process,” we basically nail down all its moving
parts in order to construct some kind of a repeatable finite state machine—
something where there is a finite and fixed number of states with clear rules
that govern transition among them—with the “assurance” that following this
process will lead to agility. Needless to say, such thinking kills any element of
“agility” right then and there!

Imagine driving with your family for a vacation to a new place out of town.
If you have a route map, you are likely to have comfort in knowing what to
expect in terms of distance to the destination, highways to take, establish-
ments to stop for food and gas, and so on. You are likely to follow the map
verbatim lest you be stranded in the middle of nowhere on a cold, rainy
night with a hungry, tired, and upset family. If your map matches the terrain,
it essentially means you are replaying a script that hundreds or thousands of
people have already played before you. All you need to do is simply follow the
instructions and you will get to your destination. There is no inherent reason
for not reaching the destination, other than perhaps inclement weather condi-
tions, unexpected car trouble, or a passenger with motion sickness. However,
imagine that one of the towns you are passing through is holding a carnival
and your family wants to spend a day there before proceeding farther. If you
have watertight plans that don’t allow for accommodating such last-minute
or even in-process “changes,” you risk losing the benefits from those changes
(in this case, a great family time) by simply sticking to a fixed plan.

Agile Product Development 3

Let’s further say that your map is a few years old (and which map isn’t?), so
chances are that the terrain might not match the map—some old roads have
been closed, some new ones have opened, a few new pit stops have come
to your attention, and there are some temporary traffic diversions. Most of
them won’t be reflected on your map. Are you still going to follow the map?2
Perhaps some of us would rather follow the map as it is written than adapt
to the current conditions. We might get confused, delayed, or even stuck in
a zombie town, a consequence of what happens when we continue to stick
to the standard process even when the ground conditions have changed. We
have a Plan A that has been meticulously planned over months, and the suc-
cess of the project lies in its flawless execution, even if blindly following the
plan could lead us to more problems than it was meant to solve. I call such
mindless compliance as “operation successful, but the patient died.”

However, if you are like most people, you will not likely trust the map beyond
a point. The map will only serve as a guide at a macro level, but you will have
to rely on other better means to find your way at a micro level. In India, it is
very common for travelers to simply pull the car over to the side of the road
(and sometimes even on the road itself!) and ask any of the local people for
directions. And since you don’t know if you got the right answer from one,
you ask another, and another…! But what if it raining or it is late night and you
can’t find anyone on the road to ask?

Luckily, we have GPS. If our GPS is up-to-date, it will tell us which roads have
changed (say, from a two-way street into a one-way street) or new gas sta-
tions that have opened. As a result, you will be able to use GPS to plan and
replan your destination. Taken an exit one too soon? Or, missed the U-turn?
No problem. The GPS will recalculate so you can get to a new route that
eventually takes you to your destination. As opposed to the previous two
examples, we are not sticking to a Plan A nor are we assuming that the ground
condition will remain static. As the situation changes, we change our priorities
and replan the rest of the journey—going from Plan A to a Plan B, Plan C, or
even a Plan D. We are constantly accommodating factors that are beyond our
control. Instead of either ignoring them until they become inevitable, we are
responding to them in time so that we can stay focused on the end objective.

Is there a predictable process to what we are doing? Not really. One could
argue that the “atomic constituents” of what it takes to reach our destination
are still the same—filling up the gas tank, changing the flat tire, driving, taking
breaks, and so on are the same whether you have a map or use a GPS for
directions. However, the way we schedule these constituents or interweave
them in a given sequence, as in the last case, is not always known a priori. Or,
even if it is planned a priori, we recognize that adapting to immediate changes

2There is a saying in the Swiss Army manual—when the map and the terrain disagree, trust
the terrain!

Chapter 1 | Preamble4

is more valuable than simply sticking to a predetermined routine (that was
created sitting at the dining table away from the ground zero, and hence a
plan that could be very romantic and very different from the reality on the
road!). We might have a big grain size plan (for example drive 150 miles, stop
for refreshments, go to a water park, and then resume driving at 4 p.m.) and,
in many cases, we might also do some research on the available options, but
as we get closer to the point of action or a point of decision, we might change
our plan without ever worrying about how are we going to complete the rest
of the journey. In some cases, we might decide to go completely “off script”
because we see something that was not on the original to-do list, but seems
to be too good to pass.

Luckily, software development is not very different in terms of its meta-
approach to building systems (though one could argue that the “atomic opera-
tions” are fundamentally more complex than, say, driving to another town,
and the judgment on what to do next only comes with deep experience).
When you have done a given task dozens of times before, you need to find a
way to “standardize” the “process” so that it can be accomplished by anyone
without too much thinking (in other words, reduce the wait times or deci-
sions by making it known in advance) and without making too many mistakes.
However, when you take the road less traveled, you don’t have enough data
points to help you “standardize” the “process.” While you still have to rely on
fundamental atomic operations of problem-solving, you can’t quite say, with
enough certainty, as to what specific process you would follow to solve the
problem. And, by corollary, you can’t say by when will you be finished. The
general approach you might take is to formulate a hypothesis and then test
it as soon as possible without expending too much of time, effort, or money.
The 1938 Nobel Prizewinner in Physics, Enrico Fermi, said it so well: “There
are two possible outcomes: if the result confirms the hypothesis, then you’ve
made a measurement. If the result is contrary to the hypothesis, then you’ve
made a discovery.”

Would you call this approach to problem-solving a “process”? Or, does it
sound more like a very haphazard and chaotic way to solve problems—
something that can’t be “measured” or “monitored,” and, hence, can’t be
“controlled”? Well, depending on what problem we are trying to solve, we
might need to decide what solution to use. If the problem hasn’t been solved
before and looks more like an “unknown-unknown” problem, there is no way
you are going to have divine insight that leads you straight into the solution
without making dozens of mistakes during the journey. However, if you want
to solve a “known-known” problem that has been already solved hundreds of
time before, you recognize that all systemic uncertainties and complexities
have been ironed out by people before you, so all you need to focus is on
carefully executing it.

Agile Product Development 5

A process, by definition, has connotations of being a series of fixed steps
that, when repeated in the pre-defined sequence, will lead to the desired and
already known outcome.

However, can we solve all kinds of problems using a process?

Spectrum of Problems
Clearly, the world seems to be full of problems that we have solved before
as well as problems that we are yet to solve. Sometimes we call the second
category “unknown-unknown” problems, whereas the ones that we have
solved before are called “known-known.”

In this context, I like the Stacey Matrix (Figure 1-1) that helps us build a good
thinking model on how to segregate problems into big buckets or category
of problem types.

Complex

Complicated

Simple

Far from
Agreement

Close to
Agreement

Close to
Certainty

Far from
CertaintyTechnology (“How”)

Re
qu

ire
m

en
ts

 (“
W

ha
t”

) Anarchy

Figure 1-1. Each problem is unique and different

Solving Simple Problems
When we know enough about the problem to be solved and the technology
we are going to use to solve it, it typically falls into the simple quadrant, or
the “known-known” part of the problem spectrum. Say, for example, we want
to produce 10,000 writing pens. Would you call the problem fundamentally

Chapter 1 | Preamble6

a “known-known” problem, never mind the fact that it might require some
complex machining technology? What would be the best process to solve
such a problem? Given that the problem has been solved before and all that is
needed is to execute the specific steps in a fixed sequence, it is more like an
execution problem and could perhaps be best solved using waterfall thinking
(linear, sequential, fixed steps that require the product to be built essentially in
a single pass). What about the quality? Well, we could apply the principles of
statistical process control to measure, monitor, and control product quality. In
this class of problems, mistakes are typically a manifestation of poor execution,
and by reverse corollary, more management control typically leads to better
awareness about them.

What would be the best way to solve such problems? Frameworks such as
PMBoK, CMMi, and Six Sigma sound like a great way. The process is largely pre-
dictive, so a plan could be built around all knowns. If there are any unknowns
during execution, they could be addressed using risk management techniques
or by creating appropriate time or resource buffers. The variations in execution
could be monitored using statistical process control techniques and brought
under a process improvement loop such as a PDCA loop using principles of
six sigma.

Solving Complicated and Complex Problems
Let’s go to the next point in this continuum. Let’s say we know enough about the
requirements to solve the problem, but not enough about the technology—or
vice versa. What would be a good way to solve such class of problems? Since
we don’t understand the “cause-and-effect” relationships very well in this
case, we will need to conduct experiments to “uncover” them. Since one of
the variables is known, it allows us to experiment. Based on the results (which
allow us to establish the cause- and-effect relationship more completely since
only one variable is unknown), we can adapt our hypotheses for the next
set of learning. However, we must recognize that the fundamental nature of
problem-solving shifts to learning to quite an extent and, hence, must be open
to experimentation and even making mistakes in that process. This is quite
a contrast to the simple class of problems, where making mistakes would be
akin to poor performance. However, in a complicated or a complex problem,
it might be the fastest way for us to accomplish our goals! So, if we start
blaming people for mistakes, we might be sending the wrong message, and any
chance of solving such problems could be foregone.

By design, agile methods suit this class of problems well. For example, we
know how to build an e-commerce web site. However, we don’t know what
will people like to buy or how would people like a given set of products to be
presented (visual, or multimedia, or textual) or what design will suit best the
product (material design, minimalistic design, and so on) … the list is endless.

Agile Product Development 7

Instead of guessing at these aspects and building a product that people don’t
like, we could take baby steps and make key hypotheses around the most
critical open issues, while learning incrementally. At the same time, we would
be establishing the cause-and-effect relationship before moving on to the next
stage of problem-solving. Understanding these cause-and-effect relationships
among different moving parts is perhaps the most important part of problem-
solving in this class of problems, and agile thinking provides some helpful ideas
(as we will examine in this book).

Solving Anarchy Problems
What happens when you reach the anarchy or the “unknown-unknown”
category of problems? Would you know, a priori, the cause-and-effect rela-
tionships at play? Are there logical or analytical tools or methods available
that can help us solve the problem? Not very likely. The success depends
largely on making intelligent hypotheses and quickly testing them so that we
can “discover” them. The key is to prototype the ideas using the smallest
amount of time, effort, and money possible and learn before making the next
mistake. Again, making mistakes is the most appropriate form of learning in
solving such problems and, hence, must be encouraged. Of course, we are not
saluting people for making obvious mistakes, but for making new and intel-
ligent mistakes—the ones that help validate a key hypothesis faster than your
competitors and save invaluable time (and money).

Can we solve such problems using a “scripted process” such as a waterfall,
or even an “inspect-and-adapt” process like the agile? A scripted process is
clearly out of question because we can’t accurately forecast all the nooks
and crannies, humps and potholes that we happen upon on the untraveled
road. Agile thinking could help, but it does suffer a limitation in terms of the
fundamental reason what are we solving—the fundamental aim is exploration
and the basic unit of progress is the number of ideas that have been validated.
Agile thinking is more close-ended and has been designed to bring software
processes under more empirical control rather than address the so-called
“fuzzy front-end of innovation” where the end is often not known when we
start the journey. Most successful companies today did not initially have a well-
defined product vision or a backlog that they could simply go and run with.
They had a big bold idea, often called the founder’s vision, or a “leap of faith
hypothesis” in Lean Startup parlance, around which they designed series of
experiments to validate thoroughly. Often the idea had to be discarded and
the founders had to "pivot" to something else that sounded more reasonable
and promising. On the other hand, agile thinking is more execution-focused
and places emphasis on delivering value to the customer with each iteration.
Unfortunately, in this class of problems, we are still very far from discovering
the true source of value to the customers.

Chapter 1 | Preamble8

Solving Problems in Software Development
In the late 1990s, the software process improvement (SPI) movement was
at its peak in most parts of the tech world, and most certainly in Bangalore.
After all, with some 50% of CMM Level 5 assessed companies being in this
single city alone, there was a great momentum across the industry (and often
a sense of immense pride in it). I remember recruitment ads and marketing
brochure milking those credentials every day. I was also part of two product
MNCs that went in for CMM Level 5 assessment, including an ISO 9000 TickIT
at one of them. And when I look back, I still can’t figure out why we did it.
Perhaps, we simply had nothing else to help solve the problems. So, when the
new-age process wave came along, we all simply latched on to it. But that
still doesn’t answer why we did it? IT/ITES outsourcing companies had at
least some commercial reasons—after all, they had to tick the RFP checklist
(especially for the large corporations and government clients who needed
the comfort of safety before deciding to outsource to a third-world country
twelve time zones away), but why did product companies do it? I still don’t
have an answer that I really believe in.

The process improvement movement created reams of Dilbertesque docu-
mentation that sought to standardize software development processes, still
predominantly waterfall, in a highly prescriptive manner. With the entire focus
on predictability of delivery, quality by inspection, and execution to the bud-
get, the desired outcome was to deliver all the features as per the contract
within the limits of the allotted time, cost, and quality as mutually agreed upon.
The subsequent changes were consigned to change control board (CCB), and
were often a way to wrestle more time, effort, and money from the customers.
Accommodating any new requirement in a waterfall cycle meant extending
the entire delivery timelines, even for the initially envisaged and clearly known
upfront requirements, at the expense of the customer. So, agility was not
something that we offered as the default with our process, or as a core value
to our customers, or even as a strategic competitive advantage over our com-
petitors. Instead, we charged our customers while they waited through the
extended delivery timelines!

The entire project planning was a wishful thinking at best and a managerial farce
at worst. In one product MNC that shall go unnamed, we were once sitting
and “estimating” a large system. There were several folks who had more
experience than me, so I was more like looking at their faces and hoping to
learn a trick or two on how they pulled that magic. To my dismay, they would
pull out numbers like 5-man-years or 12-man-years of effort with such atomic
precision that I was completely floored. Especially given that there was no
basis for coming up with those numbers—hell, we didn’t even know the “size”
of what we were signing up for, let alone the capability of people whom we
were yet to hire for this project! In just a few hours, we had “estimated” over
100-man-years of project in complex space of telecommunication software

Agile Product Development 9

for ATM switches. That meeting was an epiphany for me—I was getting close
to understanding why software projects were always running late with the
engineers spending all their evenings and weekends at work. Thankfully, the
project was scrapped after a few months.

When I moved to a more process-driven company, we applied some common
sense and a bit more software science. If the total “size” of a project was,
say, 10KLOC and engineer’s productivity was an average of 20LOC/person-
day (averaged through the entire development lifecycle), and the project was
needed in five months, then we needed five team members. The challenge was
to estimate the size, for which we had to first freeze the scope of project and
identify all requirements clearly. Did that work? Not really. In one product that
I was once leading, we were working on the complex domain of digital video
broadcasting for the first time. We had no clue what to expect. We estimated
3KLOC of software in C/C++ to be written, which ended up being some
30KLOC. Estimating LOC was helpful because it helped determine the ROM
size needed for the embedded software. Was there a better way to solve that
problem? Not to any of us on the project back then.

When it came to planning the project, it was essentially parametric estima-
tion. Once you knew the size, it was easy to come up with effort and schedule
trade-offs if you knew the complexity and productivity numbers. However,
with the uncertainty being what it was and the nature of project planning
being a fixed end date and fixed budget, one had to introduce a fair amount of
buffers to raise confidence levels to 80–90% or more. Despite having buffers,
something would invariably derail the project and delay it—sometimes even
sending it in a deep tailspin. Since that’s how most of the projects were run in
those days (just checkout the Standish Group Report stats from the early ‘90s
until 2004), it was not completely unacceptable.

This was also an old world of large customers who would typically ask large
vendors to build or maintain large systems. Teams would be given a multi-
year budget to deliver a dot release where all requirements were priority
one. No one wanted, or had the need, to ever see an early version of the
product, and certainly there was no urgency to revisit requirement every
few weeks—both the technology and markets remained largely static over
reasonably long periods of time. We essentially shipped hope and dreams
on the back of status reports, keeping stakeholders happy for the most part.
Despite its known shortfalls, waterfall still was the preferred way to solve
problems in this old world. If there were stringent constraints on some
parameter (mostly it would be around delivery schedule), we would bake in
a risk management and contingency buffer during project planning to buy us
more people or simply have dollars to ensure that delivery commitment was
not seriously impacted.

However, the post-dotcom world changed it all.

Chapter 1 | Preamble10

In terms of the technology, the focus was increasingly on Internet-based soft-
ware, even though the tech stack was not fully mature or proven. Due to the
market crash, there wasn’t enough money or interest to fund large and com-
plex multi-year projects, and the investors, executives, and financial controllers
were looking for faster ROI. Not only were the project budgets much smaller
immediately after the dotcom meltdown (and later again, more decisively,
after the global financial meltdown in 2008), the timelines were also much
shorter and the products were more customer-focused than tech-focused as
in the past. Internet technologies started evolving and getting obsoleted at a
mindboggling pace, which essentially meant that large companies with their
archaic planning cycles and bloated execution methods couldn’t keep pace
with such an “agile” world. The proliferation of consumer devices in small
businesses and homes impacted the nature of software consumption and, in
turn, the software development. The focus clearly went from being predomi-
nantly B2B (or rather LB2LB—large business to large business) to B2C. Like
the investors, these customers were equally cost-conscious and were not
willing to wait long periods of time only to get a bad product. For the first
time in tech history, hundreds and thousands of entrepreneurs sprang up all
over the world (several of them H1B visa holders returning home after being
on either a Y2K project or a dotcom that went down, or who simply got laid
off from a large company). They all had technical chops and a certain level of
market understanding, and now, thanks to advancements in communications
and collaboration technologies, they could be sitting anywhere in the world
and serving global customers.

Clearly, the old methods of using waterfall or V-model were inadequate for
this new world. While the Agile Manifesto called out better ways to develop
software in 2001, it didn’t exactly catch on like wildfire. Lack of enough proof
points, especially with conventional enterprises and large projects, was a major
issue. As a result, agile methods were perceived only for the small, web-based
projects. Specific methodologies such as Scrum, XP, Crystal, and DSDM were
available, but without much context into large systems or systems software.
Hence, they were typically rejected by the large enterprises (who only needed
any flimsy reason to justify and retain the archaic ways to develop software
and run businesses).

Agile was the new kid on the block, promising all kinds of new magic tricks,
but it was not clear how much of the magic was actually possible. In an indus-
try used to seeing new silver bullets every now and then, and guided by “pre-
dictions” such as the famous “No Silver Bullet” by practitioner-luminaries
like Fred Brooks, agile was seen as one more “silver bullet.” And in a typical
old-school mindset, it made sense to stick to the imperfect present than to
embrace the uncertain future.

Agile Product Development 11

At the developer and even at team level, however, agile methods were slowly
making great inroads. Individuals and teams were discovering newer ways to
plan and execute projects using small time slices, capture and understand
requirements better, manage changes more gracefully even later in the cycle,
and create much shorter, earlier, and frequent feedback loops with their cus-
tomers. Also, this was pure salvation to an engineer’s soul. Sadly, not much
upper management was buying into this. In several cases, there were other
organizational inefficiencies outside the software team at play, so even if the
software team made fantastic improvements in performance, most of that
vanished when scaled up at the organization level.3 Justifiably, agile didn’t make
much financial sense under those scenarios.

In its initial days, agile was also perceived as too much of an anti-establishment.
In particular, scrum came up with fancy stuff like the “chicken and pigs” meta-
phor and the agile community nodded their heads collectively in agreement.
Clearly, the message being driven was that management was evil, so let’s fix it.
Agile methods sought to create an alternate reality in which there was little
role for any form of management, let alone having a project manager. Needless
to say, such radical methods were seen too communist to be adopted by
companies, especially old-school companies looking to solve their problems
without being forced to completely change their existing management struc-
tures or policies.

No points for guessing what happens when you point fingers at your sponsors?

Over time, businesses were forced to adopt elements of agile, while the agile
community was also forced to re-examine its approach. At almost every orga-
nization where I worked or consulted, there was a home blend approach,
taking some of the “standard” framework and adapting it with the unique
constraints of one’s business. Some people in the agile community believe
such methods are neither agile nor waterfall, and thus an even bigger danger.

So, where does that leave an agility practitioner?

Should she stay focused on changing her ways to craft better software and
write elegant bug-free code, never mind that all that productivity will evaporate
when it comes to the big picture?

Should the old manager relinquish “control” of the power he had worked
so hard for, and become a facilitator or a coach just to be a more effective
“servant leader,” never mind that it could make him unmarketable for the
industry at large?

3Just to illustrate the point, the average profit margins of S&P500 companies is in the range
of 15-20%.

Chapter 1 | Preamble12

Should the traditional product manager simply become a curator of ideas
crowdsourced from both inside and outside the team, without having his own
say or expertise in how to go about building a kickass product?

Should the leader of the software organization “de-layer” the organization
completely and adopt a more statesman-ish approach rather than leading the
charge?

Should the customers change their expectations that a delivery team can’t get
a software right in case of “unknown-unknown” problems without them being
involved and giving feedback every couple of weeks?

Before we dive deep into these question, let’s go back in time and look at
some ideas that exhibit agility before software industry rediscovered it.

Agility in Pre-software Days
In 1943, when WWII was at its peak, the US forces urgently needed a new jet
fighter. Within a month of US Army’s Air Tactical Service Command’s (ATSC)
meeting with Lockheed, a proposal was sent in June 1943. Work immediately
started on it based on what was discussed over a handshake, never mind that
the formal contract arrived only on Oct 16, by which time a solid four months
of head start had already been gained. ATSC wanted the aircraft in 150 days.
However, Lockheed, led by a young engineer, Kelly Johnson, delivered it in only
143 days.

What Kelly did is now better known as Skunk Works.4 It is a great example of
how best to remove obstacles and impediments to speed up the innovation
and new product creation process.

Kelly’s motto was “be quick, be quiet, be on time,” and he formulated 14 principles
and practices5 to set up Skunk Works. Here’s the complete list along with my
commentary (in italics) on how I see it in the context of new product creation:

1. The Skunk Works manager must be delegated practically
complete control of his program in all aspects. He should
report to a division president or higher.

4Skunk Works Origin Story, www.lockheedmartin.co.in/us/aeronautics/skunkworks/
origin.html.
5Kelly’s 14 Rules and Practices, www.lockheedmartin.co.in/us/aeronautics/
skunkworks/14rules.html. Reproduced with permission.

http://www.lockheedmartin.co.in/us/aeronautics/skunkworks/origin.html
http://www.lockheedmartin.co.in/us/aeronautics/skunkworks/origin.html
http://www.lockheedmartin.co.in/us/aeronautics/skunkworks/14rules.html
http://www.lockheedmartin.co.in/us/aeronautics/skunkworks/14rules.html

Agile Product Development 13

A new product development is fraught with several “unknown-
unknowns” and, unlike a routine operations work such as
sustaining or enhancements, it doesn’t follow any predictable
pattern. There will be lots of mistakes that often look like no
progress is being made in a conventional sense, and, unless the
team manager is given complete autonomy, decision-making
and execution is likely to suffer. It only makes sense that the
leader of the product team is given complete autonomy to run
the program in the best possible manner. Any external interfer-
ence is only likely to cause avoidable distractions.

2. Strong but small project offices must be provided both by
the military and industry.

We need to recognize that, in today’s context, management
is an overhead, and we must carefully limit the amount of
managerial oversight required for a project. It must be com-
mensurate to the kind of work being undertaken as well as
the maturity of the team to handle such work. A small project
office team will help ensure that the team is being given maxi-
mum autonomy to handle most of the issues by themselves
and only the most critical issues are being addressed at proj-
ect office level.

3. The number of people having any connection with the project
must be restricted. Use a small number of good people
(10–25% compared to the so-called normal systems).

We can’t overemphasize the need to have small teams. Large
teams result in specializations, which tend to hide inefficien-
cies. The result is a dysfunctional team where delays in deci-
sion-making or finger-pointing in execution is far too common.
As opposed, a small team knows they must collaborate with
each other to deliver goods.

4. A very simple drawing and drawing release system with
great flexibility for making changes must be provided.

When you start a project with nothing but a handshake, you
make a lot of assumptions about the system being developed.
However, these assumptions must be validated in due course
before irrecoverable investments are made. Validating the
assumptions will invariably lead to subsequent changes that will
help fine-tune the system specifications. If incorporating these
changes requires complex decision-making and endless wait
times and delays, the team is likely to lose momentum. Hence,
it only makes sense to create a very lightweight and flexible
system to incorporate changes.

Chapter 1 | Preamble14

5. There must be a minimum number of reports required,
but important work must be recorded thoroughly.

Kelly wanted to keep the administrative overhead to the bare
minimum (how else could he promise to deliver the new plane
in 150 days?), but make sure that key information was dili-
gently captured. Often, status reports become a project unto
themselves, taking far disproportionate amount of time and
effort from the project manager (and his team) but hardly
being “seen” by their intended audience.

6. There must be a monthly cost review covering not only
what has been spent and committed but also what are
projected costs to the conclusion of the program.

While spending money against the budget is one of the
critical measures of the health of the project, especially in
capex-intensive projects, it is equally important to use that
information to build projection into the future that allows the
stakeholders to know what’s happening in the trenches and
respond appropriately.

7. The contractor must be delegated and must assume
more than normal responsibility to get good vendor bids
for subcontract on the project. Commercial bid proce-
dures are very often better than military ones.

When you are assigned responsibility for a project, you need
to ensure that it is executed and delivered successfully. Quite
often, we find that project managers are given accountability
but don’t have complete authority, which only ends up limiting
their ability to influence the project.

8. The inspection system as currently used by the Skunk
Works, which has been approved by both the Air Force
and Navy, meets the intent of existing military require-
ments and should be used on new projects. Push more
basic inspection responsibility back to subcontractors
and vendors. Don't duplicate so much inspection.

Who was being agile here? Kelly was shortening the feedback
loop as close to the source of defect injection as possible. So,
if there were subcontractors or vendors, he wanted them to
inspect their work rather than Skunk Works to duplicate the
inspection. A shorter feedback loop can help deliver a higher
quality component, which in turn reduces the need for subse-
quent rework and can lead to faster execution and lowered
costs of inspection and rework.

Agile Product Development 15

9. The contractor must be delegated the authority to test
his final product in flight. He can and must test it in the
initial stages. If he doesn't, he rapidly loses his compe-
tency to design other vehicles.

Imagine if you are building several products and have no capa-
bility to test your product’s key design in initial stages. Most
likely, you will follow a similar process for all those products,
and any mistakes made on one are likely to go unchecked
and repeated in all other products that you build. An early
inspection could help mitigate the risk of cascading a wrong
process or a practice in all other products you build using a
similar process.

10. The specifications applying to the hardware must be
agreed to well in advance of contracting. The Skunk
Works practice of having a specification section stating
clearly which important military specification items will
not knowingly be complied with and reasons therefore is
highly recommended.

In the past, hardware would not only constitute a major cost
item, it would also have a significant time impact. Today, except
for some very specialized systems, hardware is pretty much
an off-the-shelf commodity. Businesses can simply rent a cloud
and adjust its consumption on an on-demand basis.

11. Funding a program must be timely so that the contrac-
tor doesn't have to keep running to the bank to support
government projects.

While this might have been contextual to a private contractor
servicing government projects, especially on time-critical new
product development, it can be safely applied to just about
anyone delivering bespoke products and services. If the con-
tractor is not reimbursed in a timely manner for his products
and services, focus from work will be redirected to finding a
way to sustain his team, thereby losing track of the project
priorities and commitments.

12. There must be mutual trust between the military project
organization and the contractor, the very close cooperation
and liaison on a day-to-day basis. This cuts down misunder-
standing and correspondence to an absolute minimum.

Chapter 1 | Preamble16

This seems like modern-day agile! In the middle of develop-
ing a complex, hi-tech product, Kelly is talking about trust as
a key requirement. He clearly recognized that a new product
development is an even bigger human endeavor, and there
must be strong trust and collaboration on a daily basis to keep
the flow going.

13. Access by outsiders to the project and its personnel must
be strictly controlled by appropriate security measures.

Surely this was in a military context, but it is relevant in
commercial product development. The competition between
market leaders is so intense that trade secrets and release
schedules can have a major impact on the success of their
future products.

14. Because only a few people will be used in engineering and
most other areas, ways must be provided to reward good
performance by pay not based on the number of person-
nel supervised.

I think this is a great reminder why product companies exist
and where most of IT/ITES services companies, and even
some of the product companies, are going wrong.

So, what can we learn from how Kelly built a highly efficient and effective sys-
tem of creating new products, especially in the context of building software
products? I think most of these 14 rules apply quite well and could be a guide
for anyone building new products, especially on a limited time budget. Now,
let’s examine the Agile Manifesto.

Re-examining the Agile Manifesto
The Agile Manifesto represents an event in time when some of the industry-
leading practitioners pooled their ideas and experiences and built a com-
mon set of core values that represented their collective perspectives. Many
of these ideas had been around for years before they became part of agile
thinking. However, the Agile Manifesto succeeded in aligning them together so
that practitioners could apply them in their work.

Following are the key events that happened before the Agile Manifesto came
into existence:

 – 1970: Royce critiques Waterfall and offers improvement ideas.

 – 1971: Harlan Mills proposes Incremental Development.

 – 1986: Barry Boehm proposes Spiral Model.

Agile Product Development 17

 – 1986: The HBR article “The New New Product Development
Game” comes onto the scene.

 – 1987: Cleanroom software engineering is born.

 – 1980s: Tom Gilb’s Evo Project Management takes off.

 – 1990: Peter DeGrace and Leslie Hulet Stahl publish Wicked
Problems, Righteous Solutions, which introduces the concept
of Scrum in software development based on “The New
New Product Development Game”.

 – 1991: Sashimi Overlapping Waterfall Model is introduced.

 – 1992: Crystal family of methodologies is embraced.

 – 1994: DSDM is released.

 – 1995: Jeff Sutherland and Ken Schwaber propose Scrum.

 – 1996: Rational Unified Process framework debuted.

 – 1997: Feature-Driven Development is introduced.

 – 1999: Extreme Programming Explained is published.

 – 2001: The Agile Manifesto is born.

Of course, the signing of the Agile Manifesto was only one of the many events
preceding and succeeding the movement. For example, the major events that
continue to evolve post-Agile Manifesto include the following:

 – 2003: May Poppendeick publishes Lean Software Development.

 – 2005: PM Declaration of Interdependence is created.

 – 2005: Steve Blank introduces Customer Development
methodology in Four Steps to the Epiphany.

 – 2008: Eric Ries introduces the Lean Startup approach.

 – 2009: Scrumban methodology is introduced.

 – 2010: David Anderson publishes Kanban.

 – 2011: Corey Ladas publishes Scrumban.

 – 2011: Alexander Osterwalder publishes Business Model
Generation.

As we can see, the journey to agility has been a long one and most of its under-
lying principles have been around for more than a few decades. Unfortunately,
it still continues to surprise and shock that most people think these are new-
age software development methods, and tend to disregard them with con-
tempt. Perhaps a discussion about its principles is in order.

Chapter 1 | Preamble18

The Agile Manifesto
The notion of agility in software development is well-documented in the Agile
Manifesto (http://agilemanifesto.org). In 2001, 17 leading practitioners
of alternate software methods met at a ski resort in Utah and came up with
the following manifesto:

MaNIFeStO FOr aGILe SOFtWare DeVeLOpMeNt

We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Kent Beck

Mike Beedle

Arie van Bennekum

Alistair Cockburn

Ward Cunningham

Martin Fowler

James Grenning

Jim Highsmith

Andrew Hunt

Ron Jeffries

Jon Kern

Brian Marick

Robert C. Martin

Steve Mellor

Ken Schwaber

Jeff Sutherland

Dave Thomas

© 2001, the above authors

This declaration may be freely copied in any form, but only in its entirety through this notice.

The authors were disappointed with the state of practice at that time. They
didn’t see how frameworks like Software CMM, standards like ISO9000, or
the numerous tools that were beginning to mushroom all over the place were
going to solve the problem of software development.

The Agile Manifesto was perhaps the earliest attempt to come from practitio-
ners’ community as opposed from a standards body of upper- management
consultants. Perhaps this is the reason it was not taken seriously in its initial
years, despite its intuitive appeal at an individual and a team level. Undoubtedly,
it left several questions unanswered, especially those pertaining to outside
the agile teams: How does the agile team operate in the context of a large
organization? What is the role of leadership? What is the notion of agility out-
side the software team? How do you organize a large and distributed team?

http://agilemanifesto.org/

Agile Product Development 19

How do you organize an R&D team? These questions were all very pertinent
with no immediate answers, at least not ones that could convince the change
sponsors to try them out.

However, despite these known issues, the set of four core values and twelve prin-
ciples supporting the manifesto gave a solid framework for agile teams to operate
with high efficiency and efficacy. By itself, it didn’t alter any management hierar-
chy or power structures. Nonetheless, it was not received very positively. Steve
Denning calls Agile the best-kept secret in management today6 and feels man-
agement continues to live in denial about it, with the most prestigious Harvard
Business Review hardly mentioning “…even an oblique reference to the solution
that Agile offers to one of the fundamental management problems of our times.”

Even though management continues to live in denial mode, let’s examine how
we as software development community responded to some of these ideas.

Are you serving the process well?
On one hand, we have this large industry of trainers, certification factories,
coaches, consultants, and process methodologists who all bring their pet ver-
sion of yoga promising to cure all chronic maladies.7 In several cases, certainly
much more than what I’d like to see, they “teach” a process that they claim is
the agile way. And yes, the big bold (marketing) disclaimer that often goes with
it—you must follow the process in entirety, or else it becomes “agile-but,”8
as if being “agile-but” is the most heinous crime of them all! In most of these
cases, the method evangelists literally make you feel that following the process
is why software teams exist in the first place.

Can we skip this practice?

Nope, you can’t do that.

OK, how about using another technique that we have been following and seems to
work reasonably well for us?

No way, that is waterfall!

I like this practice from the other agile process. Can I blend it in?

I don’t know what you are talking about!

6www.forbes.com/sites/stevedenning/2012/04/09/the-best-kept-management
-secret-on-the-planet-agile/.
7Some of us have seen this script play a couple times before as well. In the 1980s, it was
TQM, SPC, and BPR; in the 1990s, it was CMM, Six Sigma, and ISO9000. Thankfully, we
haven’t found the silver bullet yet.
8I have used “agile-but” in a generic sense to represent the viewpoint that quite often people
claim they are applying the agile method, but they don’t follow all its guidelines. While I agree
with the intent behind this viewpoint, it suggests that there is only right way to being agile.

http://www.forbes.com/sites/stevedenning/2012/04/09/the-best-kept-management-secret-on-the-planet-agile/
http://www.forbes.com/sites/stevedenning/2012/04/09/the-best-kept-management-secret-on-the-planet-agile/

Chapter 1 | Preamble20

I see a major challenge with this narrow and self-serving thinking. We are for-
ever confusing the means with the ends. Let’s step back and understand why
are we even developing software in the first place.

In my mind, a business exists to make ethical profits in a sustainable man-
ner, whatever profits those might be—providing a return to shareholders,
providing cleantech, enriching the lives of disadvantaged communities, having
happy employees, and so on. Hence, there is no such things as a true non-
profit. Now, over a period of time, businesses go through cycles of growth,
stagnation, and slowdowns. They face a constant barrage of ever-increasing
competition, globalization, lowering prices, decreasing customer loyalty, ever-
increasing customer expectations and demands, trade barriers, and so forth.
Several businesses simply pack up. The company size doesn’t seem to matter.
Standard and Poor’s 500 index replaces over two dozen companies each year,
which averages to one company among the largest 500 companies on NYSE
and NASDAQ every fortnight. On the other hand, over 90% of the startups
fail. Irrespective of the process these business follow, could you call them
agile? Nokia was a great poster child of agile adoption, but when the company
was left fighting for survival on the “burning platform”,9 it didn’t seem to make
a great story about it being agile. Yahoo! has been a great company and a big
champion of agile development, but if you look at its topline and bottom-line
for the last 5+ years, it has largely remained flat. Would we consider these
success stories in their agile adoption journeys?

On the other hand, the best businesses often come out of these cycles stron-
ger, resilient, efficient, and innovative. To that end, a business that is constantly
growing and getting better at its game is already “agile,” no matter what brand
of agile it follows. How does that even matter? Such businesses have learned,
and some have even mastered, the art, science, management, and leadership of
what it takes to survive in the real world. And just like no two problems are
alike, these businesses recognize that adapting to the situations in real time is
key to success, much like their biological equivalent. Taking Darwin’s premise,
we can safely say that for today’s businesses, adaptation is key. Process is sec-
ondary. And the specific flavor of process is a distant tertiary.

And what is adaptation all about? When we say organizations need to be
adaptable, we are not talking about the building and furniture being adapt-
able to business cycles! We are talking about the individuals that constitute
an organization—whatever roles they might be playing. So, in the end, it is all
about people.

9http://blogs.wsj.com/tech-europe/2011/02/09/full-text-nokia-ceo-stephen-
elops-burning-platform-memo/.

http://blogs.wsj.com/tech-europe/2011/02/09/full-text-nokia-ceo-stephen-elops-burning-platform-memo/
http://blogs.wsj.com/tech-europe/2011/02/09/full-text-nokia-ceo-stephen-elops-burning-platform-memo/

Agile Product Development 21

Unfortunately, in our zeal, we often forget that it is people who created pro-
cess and that the processes are meant to serve people—not the other way
round. What will a group of reasonably intelligent people do in the absence of
a process? If all they will do it wait for an epiphany or instructions or a catas-
trophe, then have we failed to give them a thinking process?

True agility is not about following a great “agile process,” but having the right
set of people collaborate and figure out their own way of working. When situ-
ations change, as they eventually will, this group finds the best way to adapt to
the evolving situation.

If an agile process ever exists in reality, its only indicator of existence must be
that it changes every now and then!

Tools can’t be wrong!
An equally strong industry of toolmakers promise the moon through their
tools, never mind that agility is fundamentally all about people. Surely, the tool
movement is not new. When I was doing my masters in the late 1980s, the
new big thing on the horizon was the so-called CASE tools, or Computer
Aided Software Engineering. The grand promise was that if only we could
somehow specify all the requirements, we might develop the software “faster,
better, cheaper.” The CASE tool movement died, but the dream didn’t. In the
1990s, there were toolmakers who would claim that if you bought their tools,
you would get “CMM Level 3” out of the box—whatever that meant!

So, where does that leave a practitioner? They refer to the Agile Manifesto
only to learn that the first value states the following:

Individuals and Interactions over process and tools

They question if individuals and interactions is indeed the bedrock of agile
software development, why are we insisting and enforcing one particular
brand of agile? Should it not be left to those individuals to figure out their
own process and decide what tool they want to use? Are the process and
tools meant for CEO, the VPs, and the procurement team, or the engineers in
the trenches? In most cases, senior leadership is not prepared to answer these
questions honestly.

What happens inside a team is far more important than institutionalized
processes that might have no context to the team’s local dynamics. Most orga-
nizations and leaders fail to recognize this aspect and find ways to enforce an
institutionalized way to run projects, and track and report project progress.
Not only is this single-minded approach reminiscent of the old industrial way
of doing software development, it also serves no particular purpose. If upper
management is looking for some specific ways to get the information, let them
negotiate with the managers or the product owner and the scrum master

Chapter 1 | Preamble22

(or their equivalent in non-scrum teams). But for goodness sake, don’t use the
production-era process-thinking to solve a problem that doesn’t exist in the
knowledge-era new-product development thinking.

Customers are human beings too!
When a customer contracts us to build something, it is tempting to ask them
for all the minutest details and plan accordingly. If we are able to deliver them
all, we can delight our customers. Sounds simple and easy, right?

Wrong!

Let’s go back again to the Stacey Matrix. When we are solving the simple class
of problems, it is relatively easy to identify all the variables in a project.10 If you
can specify all the variables, you can ask someone else to do the project for
you. The only source of uncertainty is the normal causes of process variance
and the contractor’s ability to execute to the plan. Assuming you have found
the right vendor, it would be safe to say that if you could build a solid contract,
you could be finished. Sadly, software development—especially in new-prod-
uct creation—isn’t often like that. It is more in the complex or complicated
or even anarchy zone. Thus, drafting a contract when so many variables are
unknown is not just detrimental to the contractor’s commercial interests, it
is equally, or more, dangerous for the customer. For the contractor, a project
gone awry might only be only a loss of name and money, but for a customer, it
might be loss of real market opportunity.

So, what is the best way to deal with contractual relationships when there are
several variables in the equation? The Agile Manifesto’s third value is all about
creating a collaborative relationship with the customer as opposed to a strict
customer-vendor relationship only dictated by the contract:

Customer collaboration over contract negotiation

Obviously, it is easier said than done! Not all customers will understand the
importance of collaboration. If they happen to talk to their legal folks, there
is no chance they are ever going to get advice that favors a collaborative
approach over a contractual one, especially if you are working with a large
company that will eventually seek to indemnify them against any potential
damages due to poor quality or incorrect implementation. Fair enough.

However, if we go a bit deeper to understand the sources of such poor qual-
ity or incorrect implementation, we might be able to attribute them to the
fundamental nature of software being a “wicked problem.”

10One might argue that it is never easy to outsource, and I don’t disagree with that. My
point is that with everything else being equal, it is still be easier to outsource a simple
problem than to ask someone else to build a complex system for us.

Agile Product Development 23

In 1973, Horst Rittel and Melvin Webber introduced the concept of wicked
problem in their treatise “Dilemmas in a General Theory of Planning”11 and
propounded that planning problems are inherently “wicked”. They defined
wicked problems as basically problems that were complex and had no simple
solution. They also identified ten characteristics of a wicked problem:

 1. There is definite formulation of a wicked problem.

 2. Wicked problems have no stopping rule.

 3. Solutions to wicked problems are not true-or-false, but
good-or-bad.

 4. There is no immediate and no ultimate test of a solution
to a wicked problem.

 5. Every solution to a wicked problem is a “one shot opera-
tion”; because there is no opportunity to learn by trial-
and-error, every attempt counts significantly.

 6. Wicked problems do not have an enumerable (or an
exhaustively describable) set of potential solutions, nor is
there a well-described set of permissible operations that
may be incorporated into the plan.

 7. Every wicked problem is essentially unique.

 8. Every wicked problem can be considered to be a symp-
tom of another problem.

 9. The existence of a discrepancy representing a wicked
problem can be explained in numerous ways. The choice
of explanation determines the nature of the problem’s
resolution.

 10. The planner has no right to be wrong.

While their original idea of wicked problems pertained to social problems, the
idea was soon picked up to describe problems in several domains, including
software development. Several of these characteristics apply extremely well
to software development.

11www.uctc.net/mwebber/Rittel+Webber+Dilemmas+General_Theory_of_
Planning.pdf.

http://www.uctc.net/mwebber/Rittel+Webber+Dilemmas+General_Theory_of_Planning.pdf
http://www.uctc.net/mwebber/Rittel+Webber+Dilemmas+General_Theory_of_Planning.pdf

Chapter 1 | Preamble24

In 1990, Peter deGrace and Leslie Hulet Stahl wrote Wicked Problems, Righteous
Solutions, which, perhaps, for the first time recognized that software develop-
ment was more like a wicked problem. Regarding the title of their book, they
said, “The title of the book reflects, I’m sorry to say, a condition of our field
where there are often more moral issues than technical ones. That is why
I have chosen the term ‘wicked’ to describe a certain set of problems that
involve not only large and complex problems of a technical nature, but also
problems of a moral nature. This book provides some righteous solutions to
these wicked problems.” How do they suggest solving wicked problems? Here
are some excerpts from the book that help us understand their viewpoint:

“…the problem is fully understood only after it is solved. This means
that intermediate results must be obtained before a final solution can
be reached, or that a problem is defined and solved at the same time.”

They introduce the analogy with successive approximation in engineering as
the way to produce a solution. They also offer a similar way to solve a market
problem in software product development:

… there is a similar procedure in the consumer software market.
We produce a word processor, take it to the market, and wait for
the feedback, which provides the initial results. This feedback is in
the form of revenue, product reviews, complaints, and suggestions. It
tells us whether or not we have at least partially solved the problem
of producing an acceptable word processor … My correspondents
in the consumer market tell me that although they start off with a
“specification,” they do not maintain it. It is a “seed” document, and
the current specifications are in the source code of the product.

They consider using waterfall ineffective for solving these “untameable”
problems because it is difficult to make waterfall iterate, and it must be
based on a complete set of unambiguous requirements. If we concede that
software development is indeed a wicked problem, it sounds like a logical
fallacy that its full specifications can ever be known, most certainly never
known in the beginning of the project. This implies that any form of writ-
ing down the contract sounds like wishful thinking and potentially open for
misinterpretation.

The authors of the Agile Manifesto advised not attempting to solve the unsolv-
able by using the waterfall approach of “specifying” the requirements upfront,
but gradually learning about them by close collaboration with the customer.

Agile Product Development 25

Show, don’t tell!
When computers were introduced more than 50 years ago, they were
extremely costly and, as a result, very rare. If you had to use a computer, you
had to book the time, which would be costly in terms of money and often
wasteful in terms of time.

When I was growing up in the beautiful city of Udaipur, my father was pursu-
ing his PhD in nuclear physics. The mainframes closest to Udaipur were in
National Physical Lab Ahmedabad or IIT Delhi. He would typically go there
once every few months, with a bagful of punch cards, and run his programs
and then come back to work on the data further. If he made a mistake during
that time, he would lose a few months of work time.

When I was earning my master’s in computer science in 1989, we had a Russian
mainframe in the college, an EC1045. It had only six terminals, and over 150+
students in various courses would have to wait for their turn to use it (or they
could just use the MS-DOS based IBM PC/XT/AT, but those were also shared
resources in the computer lab). For the mainframe, we would typically be
allotted an hour per week. So, I would sit on the (dumb) terminal and starting
punching in my FORTRAN or COBOL program. I had only one hour to not
only type my code, but also to compile it, debug it, test it, and finally take print-
out for the lab assignment. One hour would never be enough, but if the work
were not completed, I would have to wait for one more week and sometimes
miss the assignment deadline. So, our professors would insist on the age-old
way to address it—measure twice, cut one. We would be required to write
down the pseudo code, perform a dry run, write the code and manually test
it, do the boundary value partitioning, do the static code analysis, and so on …
all on paper! We would spend hours just getting to an error-free code before
we could sit in front of the terminal and write it! Why? Because the machine
time was much costlier compared to the programmer time.

When I started working in the 1990s, the process movement had taken over, and
documentation had become like an organized religion. Unfortunately, it not only
took too much time to document things, it also failed to provide remedies for
the reason it was created—feedback on the workmanship of the product. For
example, looking at an MS Word document or even a UML diagram, there was no
way to know if certain performance criteria could actually be met until that code
was actually written. So, it was solving a problem that didn’t quite exist. Upper
management as well as the customers was sure that the project was proceeding
well because they had documents to show it, and the team had no other option.

Over time, thanks to Moore’s law and mass production, the prices of machines
kept getting lower while the programmer salaries continued to rise. The eco-
nomics of software development had reversed—it was much cheaper to get
an hour of computing time than an hour of programmer time. And thanks
to the availability of cheap and smart tools, programmers could continue to
tinker around with code and debug it without worrying about old economics.

Chapter 1 | Preamble26

It made much more sense to simply write software and show it than to write
reams of documentation, which supports the following agile value:

Working software over comprehensive documentation

Today, it is almost unthinkable that someone will first take weeks or months
to write meaningless documentation and then get it reviewed and approved
before starting to write code. Today’s businesses and customers don’t have
that kind of time.

Google’s AdWords program is the main source of Google’s advertising rev-
enue. It was revamped as a weekend project.12 Imagine trying to write docu-
mentation to first show how it works!

I’m loving it!
When we were planning to build our house, my wife and I engaged with an
architect. We basically gave him a lowdown of what we had in mind, and he
said he would come back with a design in a couple of weeks. When he shared
his designs, we liked some aspects but didn’t like others. We asked the architect
to make changes that we wanted—not that he wanted. The conversations
weren’t always easy, and finally getting to something that we could all agree
upon took more than a dozen iterations and perhaps an entire quarter. Why
is it that once we create something, we fall in love with our creation and don’t
like any changes to it, even if that happens to come from our customers who
are paying for it and are the ones who are actually going to use it?

We seek comfort in the plans we make, and any slightest variation is seen as most
unwelcome! Give a set of Lego blocks to a child and let her build something.
After she has built something that she adores, ask her to make some changes.
Chances are that you will be talking to one very stubborn child. Ask a project
manager to make changes to his plans or ask an architect to make changes to her
design, and you are almost guaranteed to be given a lesson in software design!

We think the best thing after building a plan is to follow the plan, lest we be
faulted on poor execution. Unfortunately, life is not that simple. Not only do
our customers want change, but when they ask for change, it is actually great
news. It shows they care for the product and want suitable changes to make
the product more usable to them. Keeping this in mind, the Agile Manifesto
signatories proposed the following value:

responding to change over following a plan

Of course, it is easier said than done! A lot of customers expect us to make
good on our commitments! Once we tell them our plans, they want us to stick
to the plans, for no one likes surprises. But, what if halfway through the project,

12www.newyorker.com/magazine/2014/12/01/g-m-google.

http://www.newyorker.com/magazine/2014/12/01/g-m-google

Agile Product Development 27

the technology changes, or a new competitor comes up with some really cool
features, or the government changes laws that make your plans worthless, or
just about any other external factor that could essentially render sticking to
your plans useless? What are you going to do? If you want to stick to the original
plans, you might learn, much to your dismay, that there isn’t a market or a cus-
tomer for it, no matter how much you pat yourself for on-time and on-budget
completion of the project. A far more pragmatic way would be to recognize
that by asking you to incorporate those late changes, the customer is actually
giving you a great chance to stay relevant in the business.

Accelerating the Agility
These four core values lay the foundation for agility in software development.
However, agility is not a single-point outcome, but it must be deliberately
practiced and applied at multiple levels—right from individual, team, organiza-
tion, and business levels for true agility to be achieved and sustained. I call this
accelerating the agility.

Software development is a social sport. We bring individuals to the table, and
then, based on whom are we playing against, we pick up the team that best
represents our chances of winning. If a project requires lots of complicated
algorithms, we might need some strong computer science grads or, more
recently, the data scientists. If the work requires building some cool user expe-
rience, we might need some eccentric designers (yes, that’s right, because they
tend to be really sharp and worth the money they command). Of course, a
lot of work just requires a focused and flawless execution, in which case, we
require people who can sustain a pre-defined process over a long period of
time while making incremental progress in execution performance.

However, life is not always as compartmentalized as this, and neither is the talent.

Products are born when a crazy new idea is born. We get literally hundreds
of ideas daily. Certainly not all of them are the game-changers of tomorrow.
Referring back to the Stacey Matrix, the new ideas are typically “unknown-
unknowns” and require a thinking framework to build hypotheses; test them
using minimum amounts of time, effort, and money; and then quickly learn
before your competitors do.

At an individual level, it requires creating an environment that empowers and
motivates individuals to not just deliver their best but also to go over and
above their assigned roles and responsibilities to search for better solutions.
If team members have to wait for hours or days for small clarifications or
decisions, they don’t just lose time and productivity, they also lose the motiva-
tion and commitment to perform the task. Eliminating hierarchy so that team
members can directly decide which tasks to work on, how best to organize
the work, when to contact the customer directly, and where to get early

Chapter 1 | Preamble28

and frequent feedback is one way we can accelerate the individual agility. In
addition, the engineering practices such as practicing test-driven development,
refactoring, test automation, continuous integration, and pair programming
are some of the great ways to reduce length and cost of the feedback loop,
thus making an engineer much more efficient (how best to do something),
focused (what to work on), empowered (how to solve a given problem), com-
mitted (why we are doing it), and effective (how we are delivering the right
value to the customer).

At the team level, not only do the members need the support and resources,
they also need a management system that allows them to select work that they
can deliver proudly in a sustainable manner. When they serve only one master
(for example, listen only to the product owner in a scrum team), their work
creates the highest value for its customers. When they are allowed to make
team-level commitments, it raises the team trust to unprecedented heights
and allows them to self-organize to solve any kind of unplanned or unfore-
seen problems. A team’s agility has two dimensions—internal and external.
Internal dimension means that when a team is stuck and its commitments
are in jeopardy, the members are allowed to look inwards and find the best
possible solution. External dimension means that when the customer requires
changes in deliverables, the customer is able to engage with the team without
going through multiple layers of hierarchy and negotiate a win-win solution.

At the organizational level, being agile determines how fast an organization is
able to capitalize on the market opportunities. In the Skunk Works example,
Lockheed didn’t wait to get a formal purchase order. Indeed, by the time it got
the formal work order, he and his team had already completed four months
of work—which was roughly 80% of the schedule on a time-critical project of
global geopolitical significance.

And, finally, there is the issue of agility at the business level. I would typically
look at bottom-line, cash cycle, and the “inventory turns” as three critical met-
rics that tell me how efficient you are as a business, how fast you convert raw
materials into revenues, and how many times you are able to do it in a year.

Guess what the average profits of S&P500 index companies are? In 2014, the
average profit margin was 9.5%—which is 61% highest since 1980.13 In 2012,
the net margins varied from 2.9% for food and staples retailing to 20.2% for
software and services. Let’s just concentrate on the software sector. If the
best companies only manage to make 20% profits, why don’t all the fancy
claims of productivity improvements at team level to the tune of 400% or
1,000% quite add up? Doesn’t it raise a few questions about the true effective-
ness of business agility?

13www.forbes.com/sites/janetnovack/2014/10/28/profit-peril-sp-500-margins-
are-near-multi-decade-high/.

http://www.forbes.com/sites/janetnovack/2014/10/28/profit-peril-sp-500-margins-are-near-multi-decade-high/
http://www.forbes.com/sites/janetnovack/2014/10/28/profit-peril-sp-500-margins-are-near-multi-decade-high/

Agile Product Development 29

Let’s look at cash cycle. The best businesses have negative cash cycles—they
make money from their customers even before they pay their suppliers. Some
of the famous examples include Toyota, Amazon (-30.6 days in 2013)14, Apple
(-44.5 days in 2013).

In terms of inventory turns, it is a great measure of business agility. It essen-
tially means how many times a business is able to sell its inventory in a given
time period. The higher, the better. Typical manufacturing companies might
do 6–8 turns per year; Samsung does 17, while Dell does 36. However, Apple
leads with 74 inventory turns a year, or almost selling its entire inventory
every 5 days,15 indeed a great indicator of how well its products sell and how
lean its own inventory is.

When your business is that agile, does it matter what name you give to your
process?

What’s next?
Jim Highsmith wrote16 a very interesting behind-the-scenes account of what
happened before the Agile Manifesto was crafted. Among other things, one of
the interesting thoughts shared goes like this:

The Agile Movement is not anti-methodology, in fact, many of us
want to restore credibility to the word “methodology.” We want
to restore a balance. We embrace modeling, but not in order to
file some diagram in a dusty corporate repository. We embrace
documentation, but not hundreds of pages of never-maintained and
rarely used tomes. We plan, but recognize the limits of planning in a
turbulent environment.

I think it is important to recognize that the agile movement is not just about a
new process. It is a new management system for the knowledge industry, and
perhaps the first one that recognizes that people are far more important than
processes or systems.

In this book, we will examine how we apply principles of agility to accomplish
our business goals in a more effective manner than in the past. We will discuss
various approaches as we take an idea and build it into a tangible product.

Welcome to the beautiful world of Agile Product Development.

14https://hbr.org/2014/10/at-amazon-its-all-about-cash-flow/.
15www.theatlantic.com/technology/archive/2012/05/wow-apple-turns-over-its-
inventory-once-every-5-days/257915/.
16History: The Agile Manifesto, http://agilemanifesto.org/history.html.

https://hbr.org/2014/10/at-amazon-its-all-about-cash-flow/
http://www.theatlantic.com/technology/archive/2012/05/wow-apple-turns-over-its-inventory-once-every-5-days/257915/
http://www.theatlantic.com/technology/archive/2012/05/wow-apple-turns-over-its-inventory-once-every-5-days/257915/
http://agilemanifesto.org/history.html

C h a p t e r

Discover
Let’s find the next big idea

Discovery consists of seeing what everybody has seen, and thinking what
nobody has thought.

—Albert Szent-Gyorgyi

In the beginning, it was all about accidental discovery.

Who first discovered how to start a fire? We don’t know who, but we know
that humans have used fire since the early Stone Age. Who invented the
wheel? Again, we don’t know who, but the wheel has been around for more
than five thousand years.

When we examine these technological breakthroughs closely, we ask, “Were
they simply accidental discoveries or were they the result of deliberate
efforts?” If consider them accidents, we don’t seem to be giving much credit
to the brainpower of mankind. If these were accidents, what facilitated
them? Do we observe a direct correlation between the environmental con-
ditions, and the quantity and quality of such accidents? The accident theory
seems limiting. If we still rely on the power of accidents for the growth
of mankind, then why do we fund research and development? Perhaps we
should stop pumping in all those dollars into so-called research and simply
let people experiment haphazardly, and hopefully something interesting will
eventually emerge.

The twentieth century was all about funding huge research labs in order to
build engines of innovation. In addition, companies would run large market
research campaigns to learn about customer behavior so that product devel-
opment could keep up with customer preferences. This model worked well
in the pre-Internet era of mass production and trade barriers. With a more

2

Chapter 2 | Discover32

globalized knowledge economy, products and services enabled by the Internet
began to mushroom all over the world and brought in a new system of
discovering the next big idea quickly—that is, one of experimenting and
gradually refining the idea. Companies that barely existed five years ago are
today’s multibillion-dollar cap companies. Companies such as Google that are
still celebrating their teenage years are buying grandfather companies like
Motorola. Clearly, the rules of product discovery have changed over time, and
the larger and established companies are increasingly finding themselves out of
their depth in a world dominated by the fast pace of technology adoption and
the equally fast pace of technology obsolescence. The old methods of elabo-
rate market research, followed by multiyear cycles of product development
are just not effective anymore. And the new methods of product discovery
seem to be founded more on the accidental discovery type of paradigm rather
than some kind of purposeful innovation. How else do you explain an idea like
WhatsApp or Snapchat taking over the online world by storm? Could they
have been come to fruition with such long-haul methods?

So, what is the answer? I think while serendipity plays a great role in discovery
of knowledge, there is the human brain plays a far greater role—without the
power of the human brain, we would perhaps fail to even recognize serendipity.
And if there is a method to the madness, what is it—are there tools and
techniques that could be used to stimulate and channelize human creativity
into a tangible solution? Or, are we simply dependent on the lone genius as
opposed to a team working on a problem?

Let’s examine some of the key patterns that have evolved in the last few
decades:

Accidental Discovery vs. Directed Innovation
The phenomenon of making technological breakthroughs accidentally seems
to be getting rarer. While Archimedes perhaps “accidentally” discovered
buoyancy while taking a bath and Newton famously “discovered” gravity
while sitting under an apple tree, the serendipitous nature of scientific dis-
coveries seems to have peaked 150 years ago. Penicillin, the microwave oven,
Velcro, Teflon, vulcanized rubber, Coca-Cola, Post-its, radioactivity, smart
dust, saccharin, the slinky, Play-Doh, super glue, Bakelite … even potato chips,
stainless steel, and Viagra … are examples of “accidental” discoveries and
inventions. However, when we examine the first 15 years of the twenty-first
century, many discoveries aren’t being attributed to accidents and chance—
rather they are more and more purposeful, even if their starting point was
not as promising as the discoveries themselves eventually ended up being.

Agile Product Development 33

Indeed in many cases, accidental discoveries did not go on to become over-
night successes. When Dr. Spencer Silver, a scientist at 3M, discovered a
low-quality glue in 1968, he spent years trying to promote it internally within
3M before running into another scientist, Art Fry, in 1973, after which 3M
decided to mass produce Post-it notes. However, the product was not exactly
a runaway success, and it failed to attract consumer interest when launched
as “Press ‘n Peel” in four cities in 1977. The product didn’t take off until 3M
implemented a different strategy. In 1980, 3M released the product onto the
national market by issuing free samples directly to customers—a whopping
94% of those who tried the product indicated interest in buying the product.
We are often intrigued by the “overnight success” stories, but even brilliant
ideas such as Post-it notes had to struggle through 12 years of trials and
tribulations before market launch!

On other side of the spectrum, elaborate and extensive research was not able
to save such great companies as Kodak, Motorola, Radio Shack, and Polaroid.
Such research also didn’t lead to the success of Microsoft Zune or HP’s tablet
or Amazon’s Fire smartphone.

Hence, if you are a company or a startup intending to introduce the next
big idea quickly, what is your best bet—take a gut-feeling approach and start
experimenting until an accidental discovery happens; or pump in time, effort,
and money to find that perfect market opportunity, never mind that by the
time you get to launch it, the market might have moved on?

I think neither of these extremes makes sense in today’s world. While acci-
dental discovery might be possible, business plans can’t be built around a
team of bright individuals waiting and hoping for a miracle to happen. Similarly,
large-scale, directed innovation might not be possible for lean-and mean-
startups that barely have the money to survive beyond next few months.

We clearly need methods that allow for discovering the next killer idea in a
more directed manner that could be done on a shoestring budget in a short
amount of time.

Lone Genius vs. Cross-Functional Team
The idea of a lone genius is a timeless, romantic one. It appeals to the human
heart and emotions more than to the brain and the rational mind. It is also
a convenient way to rationalize successes—of course, the creator had born
talent, and lesser mortals simply didn’t have what it took to create things or
build stuff!

Chapter 2 | Discover34

The lone genius metaphor is now mostly replaced with the idea of a cross-
functional team whose members complement each other with their individual
strengths, allowing the team to make better decisions and move much more
rapidly than simply relying on a single brain. Leonardo da Vinci did not lock
himself up in a corner and come up with those fantastic ideas all by himself.
Instead, as a member of a vibrant community established by the Medici family
at the Garden of the Piazza San Marco in Florence, he collaborated with other
luminaries of his time. Isaac Newton graciously said, “If I have seen further, it
is by standing on the shoulders of giants,” referring to the works of countless
others before him upon which he was able to develop his own work.

The Jan 30, 2012, issue of The New Yorker published an interesting article titled
“Groupthink: The Brainstorming myth.”1 There is an interesting bit of data
from the article:

… Ben Jones, a professor at the Kellogg School of Management,
at Northwestern University, has quantified this trend. By analyzing
19.9 million peer-reviewed academic papers and 2.1 million patents
from the past fifty years, he has shown that levels of teamwork have
increased in more than ninety-five per cent of scientific subfields;
the size of the average team has increased by about twenty per
cent each decade. The most frequently cited studies in a field used
to be the product of a lone genius, like Einstein or Darwin. Today,
regardless of whether researchers are studying particle physics or
human genetics, science papers by multiple authors receive more
than twice as many citations as those by individuals. This trend
was even more apparent when it came to so-called “home-run
papers”—publications with at least a hundred citations. These were
more than six times as likely to come from a team of scientists.

This is an interesting observation—backed by solid research and data—.that
flies in the face of the “lone genius myth” There is enough data to suggest that
we are facing more and more complex problems than what a single human
mind can individually comprehend, and perhaps cross-functional problems
need multiple specialists to collaborate more than ever before.

A key aspect of a cross-functional team is in its flexibility and adaptability.
Problems never remain static, and invariably the team working on it must
change its tactics and experiment with multiple approaches. In the agile world,
a cross-functional team allows for thinking on a problem completely “verti-
cally”, that is, from the top of a customer’s touch point down to the entire tech
stack. This creates customer value as opposed to simply delivering horizontal

1www.newyorker.com/magazine/2012/01/30/groupthink?currentPage=all

http://www.newyorker.com/magazine/2012/01/30/groupthink?currentPage=all

Agile Product Development 35

layers of partial software functionality that neither solve a customer’s pain
point nor allow the development team to validate any key hypotheses or make
any tangible progress.

Indeed, in many cases, the team might have to start all over again, and solve
a totally different problem than first anticipated. Agile takes the idea of a
cross-functional team to a “self-organizing team” which doesn’t stay in its
silos, but is willing to adapt itself and acquire newer competencies to handle
emergent problems more effectively. A self-organizing team has a very high
team-chemistry environment where trust replaces controls, and curiosity
replaces fear—even failures are rewards as they eventually lead to better
results. When challenged with a problem that it has never faced before, a
self-organizing team doesn’t express its helplessness in its inability to solve
the problem. Instead, it regroups itself, quickly finds the key gaps, and works
coherently to fill the gaps. It recognizes that the confidence and power of a
team comes from the ability and willingness to continuously learn new things.
No problem is too big for a self-organizing team.

Slow Market Research vs. Rapid
Experimentation
The erstwhile market research is increasingly being seen as a too long-drawn-
out and rigid process to build products and services in a dynamic world with
increasingly short technology adoption cycles. We need to remember that
while it took 75 years for the telephone to reach 50 million users and the
radio 38 years, it only took 3.5 years for Facebook to reach that mark, and for
Angry Birds, it was just 35 days. What level of market research can you do to
compete in this market? The rather slow-moving process of yesteryears might
favor rigorous elaboration and testing of all the steps that lead to launching
a new product, but the market opportunity might be over by the time that
happens, thus rendering those efforts completely useless. Clearly, we need to
upgrade our methods.

The new-age entrepreneurs, armed with methods like Design Thinking and
Lean Startups, don’t have the patience or the budget to fund elaborate, mul-
tiyear market research. They would much rather take an initial hypothesis
and quickly design experiments to validate it in a so-called “fail fast, fail cheap,
fall forward” manner. If the experiment “fails,” it is celebrated as a success
because it allowed us to quickly validate a key assumption and saved us pre-
cious time and money from a certain wild goose chase.2 More importantly,

2Check out this interesting video on how $40 saved a startup $2million and 9 months of
effort: https://vimeo.com/24749599

https://vimeo.com/24749599

Chapter 2 | Discover36

it allowed us to “pivot” our plans much sooner (that is, change the strategy
without changing the vision, and increase the odds of eventual success by
making a series of course-corrections while it was still easier and cheaper to
do so). However, being able to operate at that level requires a fundamentally
different thinking than is unfortunately available in most organizations, espe-
cially those with a glorious and successful past. Take Sony. It was successful in
Trinitron technology and was the market leader. This success stopped them
from exploring flat-screen TVs, eventually causing them to almost lose the
plasma and LCD market. Other examples include Sony Walkman’s inability to
lead the innovation into digital music and Kodak’s reluctance to move from
chemistry to digital photos.

When Yahoo! launched BOSS—Build Your Own Search Service—in 2008,
developers were able to actually build something and use that for experi-
mentation to learn about what customers might need from a search engine
instead of using a focus-group survey to elicit requirements. I have heard of
people using BOSS to build a search engine in four hours flat. However, when
I was writing this chapter, I saw an interesting new item in my Facebook’s
news feed—a developer built a Facebook messenger app for Windows in a
whopping three minutes3 flat! Whether these ideas survive beyond the initial
euphoria or even the “1.0” avatar, is immaterial. What they do is of tremen-
dous value because they allow potential users to play around with the ideas
and share meaningful feedback back to developers.

In the world of idea discovery, there are no guarantees or set formulas for
success We must experiment to learn more about a problem. However,
experiments that take several years and consume millions of dollars are not
the best approach in today’s world. First off, no one might have that luxury.
Secondly, even if the results are proven successful, by the time a develop-
ment team uses those results and creates products based on those results,
the market might have moved on, thereby rendering such efforts completely
useless. A team must find a way to learn in short baby steps by a series of
rapid experiments. Learning can simply not be a one-time event, but rather
a continuous process.

Role-Based Innovation vs. Ability-Based
Innovation
Traditional organizations have hierarchies, functional boundaries, and roles
that decide who can innovate and who can’t. Corporate syndromes like NIH
(“Not Invented Here”) limit the inflow of new ideas because the incumbents

3http://venturebeat.com/2015/04/09/watch-this-developer-build-a-
facebook-messenger-app-for-windows-in-3-minutes/

http://venturebeat.com/2015/04/09/watch-this-developer-build-a-facebook-messenger-app-for-windows-in-3-minutes/
http://venturebeat.com/2015/04/09/watch-this-developer-build-a-facebook-messenger-app-for-windows-in-3-minutes/

Agile Product Development 37

feel threatened that others are encroaching upon their boundaries. I am not
an expert enough historian to judge whether it worked in the past, but I
do know that such a model is not likely to work today (and I can fairly well
guess that people must have hated it even back then!). The young workforce
in knowledge industry is looking at a level playing field where they are not
simply there to spin their wheels, but be heard and given the opportunity to
bring change. Unfortunately, a lot of the old guard is not willing to listen. They
still believe that innovation is what separates leaders from workers.

Could innovation be democratized? Yes, absolutely. Should innovation be
democratized? No doubt! In today’s world, it is a criminal waste of human tal-
ent to stop individuals from improving the company. Having seen the power of
young minds, I have no doubt that organizations that fail to democratize inno-
vation will soon find their best minds walking away, either to their competition
or, worse, creating startups their own. And those left inside the system will
either be people who have simply learned to abide by rules of survival (which
means, not to open up their mouths) or those left with no new ideas to con-
tribute. Either way, those organizations stand to lose in the face of a globalized
flat and increasingly VUCA4 world—volatile, uncertain, complex and ambiguous.
Given that S&P 500 index replaces one among the 500 largest companies by
market cap every two weeks, I think there are no guarantees that any com-
pany of any size will survive if it can’t keep pace with the fast-evolving future.

Ideas and Techniques
In this section, we will discuss ideas and techniques that you and your team
could utilize to discover the next big idea quickly. Like every good technique,
there are areas where it works well while, but in other environments, other
methods and techniques might be better suited. While it might be foolhardy
to master one or two techniques and apply them in all situations and expect
equally stellar results, it might be equally useless to be familiar with all the
methods without really knowing when or why to choose one over other. We
will also discuss how each of these techniques differs from each other and
when are they likely to be most useful.

Let’s examine if some of the ideation methods can help us mitigate the risks
of homeostasis.

4What VUCA Really Means for you, https://hbr.org/2014/01/what-vuca-really-
means-for-you

https://hbr.org/2014/01/what-vuca-really-means-for-you
https://hbr.org/2014/01/what-vuca-really-means-for-you

Chapter 2 | Discover38

Brainstorming

It is easier to tone down a wild idea than to think up a new one.

—Alex Osborne

Imagine participating in a meeting where the atmosphere is highly politically
charged. There are rival factions that are out to nix any new ideas from oppos-
ing camps. Then there are self-appointed perennial naysayers (and old-school
and agenda-less critics) who believe their only job is to protect the organiza-
tion against “those crazy new ideas.” Of course, there are leaders who like to
show that they value everyone’s opinions, but actually want their own ideas
to be in the ones in place. And then, finally, you have the lowly employees
who are being told that their ideas are valued, but with hardly any realistic
opportunity of sharing their ideas. Can you guess how many new, bold, and
creative ideas are likely to come out of such a meeting? While this might seem
straight out of Dilbert comics, an average meeting does suffer from many of
these dysfunctions, and, as a result, the quality of output is often suboptimal.

In 1939, Alex Osborne, an ad executive, was grappling with improving the
quality of ideas. In a typical group setting when new ideas are being generated,
various factors are at play, including group pressure, organizational politics,
people’s shyness to share a seemingly dumb idea, or uncertainty if the orga-
nization would have appetite for a radical idea. To counter these biases and
prejudices, Alex created a “conference technique by which a group attempts
to find a solution for a specific problem by amassing all the ideas spontane-
ously by its members,” and called it “brainstorming.”5 He postulated following
these four rules6 to make an effective brainstorming session:

•	 Focus on quantity. The more ideas you produce, the
greater your chances of hitting on something radical are.

•	 Withhold criticism. There are no bad ideas in a
brainstorm.

•	 Welcome unusual ideas. Suspend your assumptions
on the road to solutions.

•	 Combine and improve ideas. In other words, 1 + 1 = 3.

5Brainstorm means using the brain to storm a creative problem and to do so "in commando
fashion, each stormer audaciously attacking the same objective.
6www.inc.com/the-build-network/the-real-don-draper-invented-
brainstorming-but-he-did-it-wrong.html

http://www.inc.com/the-build-network/the-real-don-draper-invented-brainstorming-but-he-did-it-wrong.html
http://www.inc.com/the-build-network/the-real-don-draper-invented-brainstorming-but-he-did-it-wrong.html

Agile Product Development 39

By focusing on these five simple ground rules, he created a simple but highly
effective system where participants didn’t have to feel “threatened” to voice
their ideas. Also, these rules “allowed” everyone to share their ideas, even if
they were junior employees.

A basic brainstorming process works something like this:

 1. Participants and facilitator identify/define the problem
to be discussed. Quite often, we assume that everyone
understands the problem equally, whereas, in reality, each
person involved might have a very different understand-
ing of what the problem is.

 2. Participants write down everything that pops into their
heads until they run out of ideas. This might be typically
one of the following two flavors:

 a. an individual brainstorming session where everyone
is given 10–15 minutes to write down their ideas
before sharing with others.

 b. a group brainstorming session where participants
might extend an idea or modify it, and so on.

 3. Facilitator encourages creative flow of ideas by ensur-
ing there is no bias, criticism, or premature evaluation
of any idea until everyone has had a chance to present
his or her ideas. This, in essence, is the divergent think-
ing part of the process—to be able to create as many
options as the group can think of without prematurely
determining which are useless or which are interesting
but unusable. Many of the most successful ideas started
their long and arduous journey as someone’s silly idea.
In fact, the main reason we want to brainstorm is to
think of ideas outside of our comfort zone. So, at this
stage of the process, we focus on capturing as many
ideas as the group can generate.

 4. Once all ideas have been presented, the facilitator coordi-
nates collation by removing duplicates, clustering similar
ideas, eliminating unfit ideas, and so on. We need to be
careful here when we say “eliminating unfit ideas,” since it
is not often obvious which ideas are duds and which ones
are potential goldmines? Hence, one might not want to
rush into pruning the list lest some very promising ideas
are thrown out.

Chapter 2 | Discover40

 5. The group discusses all ideas, selects promising ones, and
prioritizes them for planning the next set of action items.
While many teams tend to prioritize based on some kind
of complexity or criticality to business, This is the conver-
gent thinking part of the process. We have a large pool
of ideas wherein we apply our collective brainpower to
sift through them and understand which ones will likely
be strong enough to go to the next stage. We also start
synthesizing them to build upon the ideas.

For the next 50+ years, this largely remained as the single-most talked-about
method (if not the most effective one!) to stoke creativity in business meet-
ings. IDEO, the leading design firm, swears by it. However, due to improp-
erly trained facilitators and unwilling participants, brainstorming got a bad
name. Several studies have shown that, in fact, brainstorming is a more inferior
technique than simply having people work independently on ideas and later
pooling them.7 There is also a fair bit of criticism that the quantity doesn’t
necessarily beget quality.

The original idea behind brainstorming was not bad—if anything, it was meant
to free up creativity from the clutches of a select few (mostly the top lead-
ership) and democratize the process so that everyone present in the room
could participate.

However, over the years, it has lost its edge as an effective tool for generating
ideas due to various factors, including inadequate preparation of participants,
not having enough agreement or clarity about the goals of a session, ineffec-
tive or weak trainers, and politically driven agendas. Clearly, something more
contemporary was needed.

Gamestorming

In knowledge work, we need our goals to be fuzzy.

—Gamestorming, Dave Gray et al.

Anyone who has been in a few brainstorming sessions will quickly notice
that while they offer a relatively quick way to get a conversation started,
the format of capturing and conveying information is mostly textual, and the
meetings tend to be very dull and businesslike. Compare this to how human
beings—mostly children, but even grownups—manage to have fun when
playing games.

7www.newyorker.com/magazine/2012/01/30/groupthink?currentPage=all

http://www.newyorker.com/magazine/2012/01/30/groupthink?currentPage=all

Agile Product Development 41

Who says work can’t be fun? Why can’t a meeting be considered a “game” and
the participants be considered “players” who are all playing by some common
rules and are guided together by a shared goal?

If the team has a bit of fun doing things, it won’t dilute the importance of a
business meeting. In fact, if anything, it might stimulate more creative ideas and
collaboration among the participants. Experience and research have shown
that happy people are more creative and collaborative.8

This fact becomes even more profound when we consider that playing is a
fundamental part of human nature. Unfortunately, the word “play” is often
considered to be synonymous with “not working.” Hence, it was generally
looked down upon as a workplace practice for most of the industrial era.
However, the advent of the knowledge era saw people using the gaming phi-
losophy to stimulate creativity, breaking the monotony and injecting fun and
energy into the rituals while fostering the spirit of teamwork and collabora-
tion. In addition, it reduced the stress level of the participants.

With that perspective, the authors Sunni Brown, Dave Gray, and James
Macanufo wrote an interesting book, Gamestorming. They attribute the gen-
esis of gamestorming to Silicon Valley in the 1970s. They consider “game”
a quick way to put a structure around a creative process to quickly orga-
nize a team into an ad-hoc way to collaborate and solve problems, especially
the unknown-unknown or the complex ones. Much like the famous Brothers
Grimm, they have essentially documented a lot of these “games” that have
been around for several decades in the high-tech industry.

So, what is gamestorming? Let’s first define what a game is.

A game can be deconstructed as a finite event that has boundaries in time
and space with the spatial constraints of the game (for example, the swim-
ming pool or a ping-pong table) where normal day-to-day rules of human
interaction are replaced by a different set of mutually agreed-upon rules (for
example, each of the pieces on a chessboard has different set of rules on how
they could be moved). As long as the playtime is on (that is, within the tem-
poral constraints of the game), these rules continue to govern this temporary,
but real world. During this time, the players interact with each other using
artifacts, like a football or an ice puck. And, finally, there is an end goal that tells
when a game is over. In cricket, the team playing second must score the runs
within the available time to be declared the winner.

8www.forbes.com/2010/08/13/happiest-occupations-workplace-productivity-
how-to-get-a-promotion-morale-forbes-woman-careers-happiness.html

http://www.forbes.com/2010/08/13/happiest-occupations-workplace-productivity-how-to-get-a-promotion-morale-forbes-woman-careers-happiness.html
http://www.forbes.com/2010/08/13/happiest-occupations-workplace-productivity-how-to-get-a-promotion-morale-forbes-woman-careers-happiness.html

Chapter 2 | Discover42

We all know this is not the real world, for every game has a finite life, and yet,
the game has such power to bring its players together in pursuit of its collec-
tive goals. Sometimes there might be extrinsic rewards for accomplishing the
objectives, but most often, teams come together because they believe in the
cause and, hence, the rewards are mostly intrinsic in spirit.

Can we liken a business meeting to a game? If we can take a very broad view
of what we try to accomplish in a meeting, it is a definitely possibility. And if
we could do that, we could change the way people view meetings —rather
than energy-sapping events, they regard them as fun and collaboration activi-
ties that leave them recharged and refreshed.

So, how would gamestorming be applied to an ideation session? Let’s say you
want to understand what are some of the pain points of your product or ser-
vice. Traditionally, we might commission a user feedback survey, get the data,
and brainstorm solutions. However, Luke Hohman suggested some ideas that
might help solve problems such as these in a more creative and collaborative
manner. In his 2007 book Innovation Games,9 he suggests the game Speedboat
where we take a speedboat as a visual metaphor of your product or service
and anchors representing pain points that are slowing down the boat. This
“same” information might be available in reams of documentation and cus-
tomer feedback forms, but there is no comparison when you get your entire
team working together in the room – including the customer—and build a
visual speedboat collaboratively such that your team starts to see why exactly
your customers feel that a particular issue is a pain point. When I conduct this
activity, I can see the teams having fun and end up creating a very high-energy
environment. Apart from the fun and collaborative environment, the output
of the exercise is highly visual in nature, which stimulates higher engagement
and invites action.

This is just one of over a dozen games that Luke captures in his book. Depending
on your specific needs, he has given guidance on which is a more appropriate
game. Luke’s website has quite a lot of information on these games that can
help you get started, but for a more in-depth and thorough understanding,
I would recommend reading his book.

Bodystorming
Gamestorming raises the level of game to make it more collaborative and fun.
It also exploits the power of visual thinking, which is certainly better received
by the human brains. However, there might be problems that may still not be
best captured or analyzed using gamestorming.

9http://innovationgames.com has good amount of information to get started on this topic.

http://innovationgames.com/

Agile Product Development 43

Suppose you are exploring a very radical idea—something that the world
hasn’t quite seen, or at least you are personally not very familiar with it. For
example, you want to build a new wheelchair that will make life much easier
for people with temporary or extended immobility. Your team might consist
of the best electrical engineers, mechanical engineers, software developers,
and so on, but if none of you has ever experienced what it is like to sit in a
wheelchair for longs periods of time, you might end up making a lot of techni-
cally correct functional decisions, but have no real idea about the users’ needs.
A gamestorming session might help build a higher level of empathy, but unless
you have subjected yourself to near-real-life experience, it might not bring the
finer aspects of what it takes to understand the small details vital to building
a great solution. That’s where bodystorming could help.

Simply put, bodystorming is all about using our human bodies to enact a given
scenario and cull out important and finer aspects of a problem that otherwise
might remain only broadly and superficially understood. In some situations,
this could bring an altogether new level of thinking to problem solving.

Bodystorming is also a fun way to build first-hand empathy about limitations
or situations that the team might not be able to fully grasp. For example, you
are developing a new type of crutches that help improve people with dis-
abilities’ effectiveness. Unless you have been disabled, it might be extremely
difficult to think of underlying use cases that might only be discovered when
one has “lived” that life.

The Beta Cup10 project was started in May 2009 because some people were
concerned that 58 billion paper cups were sold each year—but never recy-
cled. They employed bodystorming11 to understand how they could conceive
of a new product that could not only solve the problem but also make it fun
and easy to use.

How do you do bodystorming? Well, there are no real rules. The only thing
one really needs to do is to get off the chair12 and involve their human bodies
in enacting the product or the service they wish to get more insights about.

Depending on the kind of problem you are solving, bodystorming might be
a great alternative way to develop deeper insights about the problem being
solved. It might offer better ROI than simply sitting in a meeting room and
brainstorming what “might” be the real-world issues, or even collaborating
with the customer during a gamestorming session.

10http://thebetacup.com/
11https://vimeo.com/5968946
12https://dschool.stanford.edu/groups/k12/wiki/48c54/Bodystorming.html

http://thebetacup.com/
https://vimeo.com/5968946
https://dschool.stanford.edu/groups/k12/wiki/48c54/Bodystorming.html

Chapter 2 | Discover44

Trystorming
Sometimes we end up spending far too much time and effort in simply thinking
and talking about things when “doing” might help us understand the problems
much better. For example, instead of brainstorming about a mobile app that
helps finds your lost dog, why not simply build a prototype and see what
happens?

Today’s technology and tools make it extremely easy to build software in
a very rapid manner. If you are offering your products or services over the
Internet (and who isn’t nowadays?), you can quickly find a way to deliver to a
test group across the Web and get feedback from real humans (a term used to
make developers remember that their opinions are only a second-best guess
and that the feedback that counts comes from real users, not from friends or
family).

So, what is trystorming? Put simply, it is using the hands to “build” a rapid pro-
totype instead of making PowerPoint slides or Word documents about it. The
prototype doesn’t need to be perfect or have polished edges. In fact, its utility
stems from the least amount of time and effort it requires to put something
up on the table that could start conversations. Clearly, the more refined such
a prototype is, the more resistance to feedback or criticism one could expect
from its creator. Hence, it is often better to build something that demonstrate,
or helps validate, the key aspects of the problem or the riskiest assumptions
behind it.

In their book Toyota by Toyota, authors Samuel Obara and Darril Wilburn
describe trystorming as “the hands-on version of brainstorming,” and provide
a context to trystorming as the following:

… Trystorming is the antidote when team members are already
exhausted from meticulous and thorough brainstorming and they
are borderline becoming too comfortable in their chairs. I think
there is some truth to the adage “analysis paralysis,” in that after
some time sitting, thinking, and talking, we become paralyzed by the
inertia and our bodies are numbed up like zombies at the end of a
long movie.

There are some interesting articles that describe how trystorming could be
utilized13 and that describe how Japanese companies put it in practice.14

13www.thefreelibrary.com/Establishing+a+Kaizen+culture%3a+on+%22trystorming
%2c%22+and+why+%22best%22+is...-a0171685315
14http://pebblestorm.com/2008/06/24/better-than-brainstorming-trystorming/

http://www.thefreelibrary.com/Establishing+a+Kaizen+culture%3a+on+%22trystorming%2c%22+and+why+%22best%22+is%E2%80%A6-a0171685315
http://www.thefreelibrary.com/Establishing+a+Kaizen+culture%3a+on+%22trystorming%2c%22+and+why+%22best%22+is%E2%80%A6-a0171685315
http://pebblestorm.com/2008/06/24/better-than-brainstorming-trystorming/

Agile Product Development 45

All said, I am a big believer of trystorming as a means to develop deeper
understanding about the problem and to get the conversations between the
customer and the development flowing. This is especially beneficial in our
industry where writing a few lines of code to quickly test out an idea or a
hypothesis is perhaps the least time- or effort-consuming of them all.

Hackathons
Popularized by high-tech companies from Silicon Valley, hackathon culture has
gradually permeated across the globe, at least in the high-tech industry. It is
a great way to align energies and resources of entire organization and focus
them to solve an important problem—all while having fun.

In its simplest form, a hackathon is all about creating a special fun-filled atmo-
sphere for 24 to 48 hours where a group of people form teams and build
a quick hack to solve some problem innovatively. The idea is not to cre-
ate PowerPoint-laden business plans, but rather working software that helps
demonstrate the happy path of a use case. The spirit of the event and its
carnival-style atmosphere helps lower the anxiety levels related to risk of
failure among participants. However, in a hackathon, we want participants to
completely change their thinking and do something totally crazy, something
that they might never do unless someone guarantees them total immunity
from ridicule, reprisal, and rejection (never mind that quite often, we may not
even get any real idea worth next year’s business plan).

Why will we want to put organizational time, effort, and money into some-
thing like this? After all, we might not get any ROI on this!

Hackathons help address some of the major impediments to an innovation
culture by doing the following:

•	 Empowering people. Innovation is democratized, and just
about anyone can bring in new ideas. If the idea is any
good, rest assured, it can quickly find favor among the
upper management.

•	 Eliminating fear or embarrassment of failure. When we
are not being judged by the quality of our efforts, it is easy
to think completely wildly, and sometimes that can propel
the creative thinking in ways like never before.

•	 Creating fun. When people are having fun, it takes away
the pressure to perform. While it might appear to the
uninitiated that people are slacking off and not really
being “productive,” I consider this as the organization-
wide teambuilding experience that eventually pays off by
creating a culture of collaborative problem solving in a
fun-filled manner.

Chapter 2 | Discover46

•	 Providing help. In any reasonable product, there are
several moving parts, and it is literally impossible for any
single engineer to come up with a complete solution.
A hackathon, thus, helps provide a platform where the
success depends on a small group of engineers with
cross-functions skills coming together and producing
working software in a small amount of time.

•	 Thinking bite size. Unless there are constraints that limit
the time (and resources) available to solve the problem,
it is unlikely that the team will zero in on the crux of the
problem.

•	 Encouraging speed. By limiting the time to 24 or 48 hours,
the team is under pressure to deliver the goods fast. This
also allows the team to identify newer ways to quickly
solve problems.

•	 Lowering the barriers to innovation. Sometimes we
unnecessarily bloat the entire decision-making or execu-
tion process and end up doing no real work. By contrast,
a hackathon is completely bereft of the administrative
red tape, making it far easier for innovation to happen.

I consider a hackathon to be like a mass-scale trystorming. It is a very small
investment of an organization’s time, effort, and money, and when done under
the right conditions, it can spur up an organization’s culture by encouraging
people to take meaningful risks and develop ideas that hold potential.

Medici Effect
A hackathon is often a diverse group of professionals who all decide to come
together for a finite period of time and collaborate on a common problem.
What if such a confluence were not confined by short time limits, but were
allowed to happen in a more systemic manner and for a longer time period?
What would happen if people stepped outside their comfort zones and agreed
to work together at the intersection of their respective competencies without
ever worrying about the pressure of delivering some pre-determined output?

Frans Johansson’s 2006 book The Medici Effect: What Elephants and Epidemics
Can Teach Us About Innovation is a great read. Based on the fifteenth-century
banking family in Florence that funded a multitude of innovations, Johansson
presents a compelling argument that “when you step into an intersection of
fields, disciplines or cultures, you can combine existing concepts into a large
number of extraordinary new ideas.” He calls it the Medici Effect.

Agile Product Development 47

Johansson’s fascinating body of research shows that when you purposefully
bring people from diverse skill sets together and allow to them intermingle
without any specific agenda, the result is invariably something of great value.
He calls such an intersection as “your best chance to innovate.”

Creating the Medici Effect might require much more time and careful efforts
than some of the methods discussed earlier, but it is certainly much more
powerful and sustaining. It might enable an organization to build upon a cul-
ture of sharing and learning that fosters teamwork and collaboration, and
gradually builds a DNA of innovation.

Conclusion
When embarking on innovation, a classic conundrum is whether to pursue an
idea until you eventually find a way to turn it into a product and solve a real-
world problem, or to take up current pain points and solve them?

I once attended a talk by Scott Cook, Founder of Intuit, who outlined Intuit’s
innovation strategy—find the pain points and solve them. Simple. While this
approach to innovation might reflect a highly customer-driven mindset and
could be very effective, it might have limitations in terms of creating radical or
disruptive innovative ideas. As an example, Intuit was not able to extend its
leadership in the online space and, while it had Quickenonline as an internal
program, it finally had to shell out $170 million to buy mint.com to augment
its online offering.15

So, what is the best way forward for companies looking for the next big idea?
Clearly, there is no one right answer. In fact, depending on one’s unique con-
text, more than one approach might be needed to triangulate the right set of
ideas to pursue.

In this chapter, we have discussed some of the techniques that can help quickly
identify probable sets of ideas that could be taken up in the value chain for
further deliberation. We have not included all the techniques (for example,
we have not talked about Chindogu, Jugaad, or the McGuyver-style of innova-
tion), and some of the techniques such as Design Thinking and Lean Startups
will be discussed later in this book. We hope that the chapter has given you a
quick overview of the underlying ideas behind ideation techniques.

15http://voices.washingtonpost.com/fasterforward/2010/07/intuit_quashes_
quicken_online.html

http://voices.washingtonpost.com/fasterforward/2010/07/intuit_quashes_quicken_online.html
http://voices.washingtonpost.com/fasterforward/2010/07/intuit_quashes_quicken_online.html

Chapter 2 | Discover48

Peter Thiel’s latest book, Zero to One, offers an interesting metaphor with
an undeniable patter. Going from “zero to one” creates a unique value that
invariably comes from a disruptor (think of Yahoo, Google, Facebook, Twitter,
LinkedIn, and Snapchat at the time they were created) but over time, each one
had to scale horizontally. Most of them had to rely on shopping other disrup-
tors who were busy crafting their own “zero to one” journey (Whatsapp,
Instagram, Broadcast.com, Android, and so on) to keep their innovation engine
running. At last count, Google had done 178 acquisitions,16 Yahoo! had done
112 acquisitions,17 Cisco had done 170 acquisitions,18 and even a company as
young as Facebook had done 53 acquisitions.19

So, who would you rather be—the company that acquires innovation or the
one who actually creates it?

16https://en.wikipedia.org/wiki/List_of_mergers_and_acquisitions_by_Google
17https://en.wikipedia.org/wiki/List_of_mergers_and_acquisitions_by_Yahoo!
18https://en.wikipedia.org/wiki/List_of_acquisitions_by_Cisco_Systems
19https://en.wikipedia.org/wiki/List_of_mergers_and_acquisitions_by_Facebook

https://en.wikipedia.org/wiki/List_of_mergers_and_acquisitions_by_Google
https://en.wikipedia.org/wiki/List_of_mergers_and_acquisitions_by_Yahoo
https://en.wikipedia.org/wiki/List_of_acquisitions_by_Cisco_Systems
https://en.wikipedia.org/wiki/List_of_mergers_and_acquisitions_by_Facebook

C h a p t e r

Deliberate
To do or not to do?

New ideas pass through three periods: (1) It can’t be done. (2) It probably
can be done, but it’s not worth doing. (3) I knew it was a good idea all
along!

—Arthur C. Clarke

Eureka!

You think you have found an idea that can change the world …

Great!

Now, what next?

This question befuddles many product managers and entrepreneurs alike.
How should we decide if the cool new technical idea is really a great product
idea worth pursuing? Should we conduct market research first and gauge the
market opportunity, or should we simply go out and build the product before
a competitor gets a whiff of it? How do we convince the upper management
to fund this great idea? Or, should we try to build something on the side (like
a Skunk Works)? Should we fortify our first-mover advantage by protecting
some of the intellectual property, or open source it to make it more likely to
be adopted by the wider community? How do we know if people really want
this idea? How soon can we get this feedback so that we could build a better
product or cut our losses sooner rather than later? These questions, among
others, make the journey of product development interesting, challenging, and
rewarding. Of course, there are no quick or ready-made answers, and the
answers that worked the last time might not apply here—hence, you must
start the journey afresh every time.

3

Chapter 3 | Deliberate50

Stealth Mode Development
The most common approach to product development involves taking the
most promising ideas (often based on intuition) and developing them into
products in a “stealth mode.” In a stealth mode, companies typically cut them-
selves off from mainstream civilization and choose to complete a product built
primarily on their assessment of what the problem is and what the solution
should be instead of getting any early feedback or validation from the custom-
ers. Companies hypothesize that they understand enough about the problem
their customers are facing to know the right solution to build. Hence, they
don’t consider slowing down the process by introducing any feedback loops
in between steps. Being an early mover is clearly one of the goals, and fear of
competition makes companies wary of sharing their idea prematurely, even for
the purpose of obtaining potentially life-saving feedback.

During the infamous dotcom meltdown, dozens of companies folded because
they chose to build products without fully deliberating upon what the right
product ideas worth pursuing were. They chose to build out every single con-
ceivable product feature without determining if there was a market for it or
not. The result was that while they built a fully scaled, fancy-looking product
or service, they unfortunately didn’t have a large enough customer base to
make the product launch as interesting and successful as the product develop-
ment journey had been. During the time that briefly preceded the NASDAQ
crash in March 2000 and some two years after that, over 800 Internet com-
panies collapsed.1 Some notable examples include Webvan.com, ePets.com,
and Toys.com. Most of these companies had unrealistic valuations without any
regard to a proven and repeatable business model.

Despite the recent history of obvious pitfalls of such an approach, we still find
takers for this grand way of building products. This method requires a long
runway (meaning, a long supply of funding and patience), but more importantly,
the belief that we the makers know better than the consumers. In a way, this
is like Henry Ford saying, “Had we gone to the people, they would have told
us faster horses.”—a sentiment doesn’t quite apply in today’s world. Clearly,
the current thinking is not about making products in isolation or with an arro-
gance that we know better than our customers.

In today’s ever-changing world, a successful approach asks these three funda-
mental questions:

•	 What is the problem?

•	 Who are the customers?

•	 What do they want?

1www.businessplanarchive.org/whatwecanlearn/statsummary.php

http://www.businessplanarchive.org/whatwecanlearn/statsummary.php

Agile Product Development 51

What is the problem?
Very often, the entrepreneurs are strong techies who have a great understand-
ing of the solution domain, such as how to build the next cool search engine or
design a great web site. However, they don’t always know or fully understand
why anyone would want their cool product. In fact, I have seen a clear pat-
tern—the stronger the techies are, the more likely they have their own view of
what the problem is without much perspective from the potential customers.
The result is often a great fancy toy that looks cool to play with, but whether
it solves a customer problem or not is often a big question mark.

Who are my customers?
When you are a bunch of techies building an elegant solution without really
exposing it to “real humans,” chances are you will end up building one that
only similarly qualified techies (or unqualified users, depending on how you
look at it) can use. Knowing who your potential customers are is not only
needed to elicit the right set of requirements, but it is also a great mechanism
to validate the fundamental hypotheses around the intended solution. The
typical advice for entrepreneurs is to go beyond “friends and family” and talk
to “real humans” to discover your customers.

What do they want?
Finding out what customers want is the key to product development. In the past,
as Eddie Obeng puts it so well,2 our rate of learning surpassed the pace of change
around us. However, today these two lines have crossed and the pace of change
not only surpasses our ability to learn, but the gap is also increasing. In such a
world, there is no way we can make fixed assumptions about what people want
from a given product or service. Instead, we need to constantly explore what
interests them. As Steve Blank puts it so firmly, the only real way to discover what
your customer wants is to “get out of the building” and talk to real humans—
that’s where the facts exist. Inside a meeting room, we only have opinions.

Well, who ever said product development was easy?

Collaborative Development
Given the previous argument, it seems fairly logical that a far better way to
develop products is by having continuous interaction between the creators
and the consumers.

2https://youtu.be/yVIe1MOpiHU

https://youtu.be/yVIe1MOpiHU

Chapter 3 | Deliberate52

In the last several years, new product development has clearly and irreversibly
tilted to a more collaborative approach. New product development is often
co-created rather than built on the shaky foundations of mass production
thinking.

In the rest of this chapter, we will explore some of these contemporary
approaches and discuss the techniques for evaluating ideas before we start to
build better products.

Prototyping
Prototyping can be best understood by applying economics of software
development.

When people think of a “prototype,” they often imagine a scaled-down ver-
sion of the actual object that moves and behaves pretty much the same way
as the real thing. While there is some truth to this concept of a prototype, it
makes assumptions about what goes into building a prototype. For example,
if you spend huge amounts of time, effort, and money to build a prototype,
chances are that it might be too late and too costly to build the actual product.
And, most importantly, it may not be amenable to making changes (imagine
being told that after spending half a million dollars, your prototype needs
some serious revisions!).

The current thinking is all about building prototypes commensurate with the
context of business and the phase one is in. As we will discuss in the rest of this
section, even a napkin is a great tool to “prototype” an idea when you don’t have
anything concrete yet, but you do want to communicate your ideas to inter-
ested stakeholders or potential customers. However, much later in the product
life cycle, the same napkin might not be the most effective tool anymore.

In the context of software development, the current trend is to minimize the
amount of software written and to maximize the amount of learning we can
glean from putting the prototype in customers’ hands. After all, the customers
neither know what programming language was used nor care how much code
was written to make the prototype happen. But minimizing written software
means actively seeking other tools that allow a product to be created, often
with a minimum or no amount of software being written. Reducing the amount
of software not only reduces the time and effort to build a prototype, but it
also makes it relatively “easy” for a criticism to be accepted by its creator.

A good prototype should be easy to discard after it has served its purpose.
This is where the economics of software development makes even more
sense. When we realize that the prototype is only an experiment whose real
purpose is to generate feedback and not ship software code, we are in a
 better position to embrace the idea of minimizing the amount of time, effort,
and money invested upfront in creating it.

Agile Product Development 53

Prototypes are typically classified as either low-fidelity or high-fidelity. As their
names suggest, a low-fidelity prototype is rather abstract and incomplete in
terms of details as opposed to a high-fidelity prototype that has richer and
deeper details. A low-fidelity prototype allows a broad-level inspection of the
key assumptions about a future product’s intended user interface, whereas a
high-fidelity prototype is much more closer to the final end-product. A low-
fidelity prototype is of great value in the initial stages of product development
because it encourages conversation around key design principles and assump-
tions about the product. On the other hand, a high-fidelity prototype is much
more useful in the later stages of the product and allows for more fine-grained
feedback about how to make the product more useful.

In this book, we have restricted our discussion to low-level design because it
is more contextual to building products using agile thinking. To that end, we
have limited our discussion to methods and techniques that don’t require
anything more than a pen and a paper. We recognize that as the ideas mature,
the team will need to evolve toward high-fidelity prototypes and will also
require specialists in user experience, graphic design, interaction design, and
user interface design.

Back of Napkin
What is the fastest and most effective way you can communicate your idea
to a peer, a collaborator, a leader, an investor, or a customer? We often write
reams of documentation or present tons of slides to share our ideas, or we
simply start building them as a full-fledged product. While writing about an
idea might be relatively fast and cheap, it might not convey the entire pic-
ture. Building the product prematurely might be time-consuming and costly.
So, what if there were some very simple “template” to sketch out the most
important elements of an idea during its initial phase—something that will
capture the essence without taking a lot of time?

In 1986, Bill Zeidman designed the “Silicon Valley Napkin” so that “a prospec-
tive entrepreneur need only complete the check boxes in order to have a
business plan ready to present to a venture capitalist for funding.”

Here’s how he explains what he did3:

“In 1986 I created the Silicon Valley Napkin and began marketing and
selling it. The printer required minimum print runs in the thousands,
so I had boxes stacked to the ceiling in the kitchen of my one-
bedroom apartment. By 1990, the napkin had run its course, and

3http://www.siliconvalleynapkin.com/

http://www.siliconvalleynapkin.com/

Chapter 3 | Deliberate54

I still had boxes left. I approached The Garage, the precursor to the
Tech Museum, to make a napkin donation. They were excited to
have the napkins at their invitation-only, kickoff donor event, and I
was glad to supply them.”

It only takes a small amount of real estate to put across your idea (and, con-
versely, your idea is probably way too complex if you can’t fit it on something
like the Silicon Valley Napkin).

The napkins sound like a cool idea, but are they actually useful? Perhaps the
most famous of them all is Southwest’s story. In 1967, Rollin King and Herb
Kelleher famously drew their idea on a cocktail napkin that eventually became
Southwest Airlines. (See Figure 3-1 for my attempt to re-draw their original
idea on a cocktail napkin.)

Figure 3-1. The idea behind Southwest Airlines was initially drawn on a cocktail napkin

King and Kelleher were leaving a failed airline, and they wanted to start a new
airline with just three destinations. They found themselves in a pub, where the
only thing available paper to doodle their idea on was a cocktail napkin. In fact,
they value their napkin experience so much that they now print their route
maps on napkins.

More recently, in 2008, Dan Roam wrote The Back of a Napkin. Roam believes
that any problem can be made clearer with a picture, and any picture can be
made using a simple set of tools and rules. He uses the humble “paper napkin”
as a possible tool for quickly communicating ideas on a tangible medium,
claiming that the napkin is a more powerful tool than Excel or PowerPoint.
Roam claims that if you can draw basic geometric figures such as straight
lines, arrows, circles, squares, and triangles, you are “guaranteed to become a
 better visual thinker.” We are not talking about making someone a world-class
graphic artist but rather using visual elements to enhance the thinking process.

Agile Product Development 55

Visual thinking is extremely effective in engaging a group of people who are
trying to solve a complex problem. Representing the idea pictorially helps
illustrate the connections between the different aspects in a manner that
 simply can’t be accomplished in written text.

Paper Prototyping
A napkin is a great starting point. However, assuming that someone buys
into your idea and provides you with the funding to get started, you don’t
immediately go out and build them the full product! In fact, prototyping is a
continuous journey of learning. A good product developer engages different
prototyping tools and techniques through the product creation process to get
different types of feedback at different points in time.

Carolyn Snyder is a user experience consultant who specializes in qualitative
user research and usability testing. In her 2003 book, Paper Prototyping: The Fast
and Easy Way to Design and Refine User Interfaces explains how something as
simple as using paper to create a low-fidelity prototype can be a very effective
means for creating rapid feedback. She defines it in the following way:

Paper prototyping is a variation of usability testing where
representative users perform realistic tasks by interacting with
a paper version of the interface that is manipulated by a person
“playing computer,” who doesn’t want to explain how the interface
is intended to work.

Without writing a single piece of software code, a developer (ideally it might
make sense to have a design engineer on the team, but if you don’t have one,
it’s not a bad idea for the developers to start the conversation rather than
wait for an expert to arrive) can initiate a conversation with a prospective
customer or an end-user. In just a matter of hours, the developer can deter-
mine what the customer might be looking for in a product.

Figure 3-2 illustrates a very rudimentary paper prototype for “bill pay”
 functionality as one of the features. It took me less than a few minutes to draw,
but it allows me to show it to my customer and get her feedback if this is what
she had in mind. She might come back with feedback that she doesn’t want to
offer the “pay later” option and just wants to keep it simple for now. Instead
of making all the efforts to implement it and then discover her preference,
my paper prototype has created the opportunity to learn of that preference
before I even get started. Also, my customer wouldn’t have been able to get
such a clear picture of what I had in mind if not for such a visual representa-
tion of the user interface.

http://snyderconsulting.net/

Chapter 3 | Deliberate56

The prototype might begin with a blank sheet of paper that the developer
gradually fills in with various elements of the user interface, without much
regard to its relative positioning or sizing. At this point, the developer is only
trying to get a visual dump of the mental models around the user interface for
an intended product.

However, I prefer doing something a bit more “rearrangable” by using Post-it
notes. Let’s say I want to build a travel site and offer services for people to
book flight tickets, hotels, holidays, and so on. Technically there is nothing new
in any of these ideas anymore—pretty much anyone can offer these services
in literally no time. The secret is to find out which are key requirements from
the customer’s point of view, and how best a layout would appeal to them. I
could draw something like Figure 3-3 to show how a paper prototype could
be created using Post-it notes.

Figure 3-2. A paper prototype could be a crude drawing of the user interface

Agile Product Development 57

These Post-it notes could be created by crowdsourcing from inside the team
and with the customers, and a working session could help establish a visual
layout.

Using Post-it notes (or even simple colored paper notes, which is what I used
for this particular picture) makes it a lot easier to make changes based on
the conversation and feedback that a paper drawing might inhibit. When the
goal of the activity is to get creative juices flowing in order to better under-
stand and validate customer needs, it only makes sense to work on a medium
that doesn’t convey a sense of “finality,” especially in the initial stages of the
exploration.

Once I have something like this, I can present it to my target customers and
get their feedback. For example, it turns out that my target customers care
more for adventure and nature; I might want to prominently position these
options and even decide to remove the other options from my main page lest
I encourage a feeling among my target customers that I am not a specialized
“vertical” site but a very generic “horizontal” one and, hence, might lack the
real experience that they might be looking for.

Based on a series of interactions, we might lock down the high-level screen
layout and get ready to understand how an old-school 2D engineering draw-
ing of the product’s user interface would look. Or, more simply, let’s just call
it a wireframe.

Figure 3-3. A paper prototype using Post-it notes

Chapter 3 | Deliberate58

Wireframes
A paper prototype is often a crude way to express the key functionalities with-
out any regard to visual aesthetics, usability, or operational ease. Nonetheless,
it serves a key purpose in the initial stages of exploring an idea. However, once
we have a reasonably good understanding and agreement on what custom-
ers are expecting, we will need to go into a bit more detail. We might need
something that is a bit more refined, more tangible, and, perhaps, a bit more
actionable.

A wireframe improves on its predecessors (that is, paper prototypes or a
napkin doodle) by creating a two-dimensional, spatially proportioned visual
representation of the key elements of user interaction with the product’s or
the object’s interfaces.

Let’s say I am trying to build a page for displaying user profiles for a social net-
working platform that I am building. I want to see the headshot of the person,
some recent pictures that they have shared, and maybe some text about them
that includes their interests, their hobbies, what kind of people they like to
hang out with, and so on. I could try to explain this in a document, or I could
try to communicate verbally—one will require a significant amount of time
and effort in writing it, while the other could take reasonable efforts to draw
a “pie in the sky,” but still not establish a common medium on which I could
easily collaborate with my customer. Or I could just spend a few minutes and
create something like Figure 3-4 with any of the freely available products on
the web to communicate what I have in mind.

Figure 3-4. A wireframe offers a more realistic and proportionate depiction of the layout

Agile Product Development 59

I could share it with my target customers and ask them to give feedback, or I
could share several variants of the layout and ask them to tell me which one
they like (or even identify elements of each one that they like so I could mash
them up into a single new one). Or, I could always sit down with them and
let them co-create it. In all these situations, I can expect to get a much higher
level of feedback in a comparatively short amount of time.

Even though the wireframe is totally devoid of any fancy-looking colors or
high-resolution graphics, it captures the essence of the product as far as user
interaction is concerned by depicting key elements of the user interface, their
relative positioning on the interface, and their intended behaviors. It is a grad-
ual and progressive refinement of the idea as it gets transformed into a full-
fledged product. At this point, it is still not anywhere close to being a working
prototype, but might suffice in terms of its look and feel, and, in the hands of
a potential user, it gives an opportunity for early feedback on key assumptions
and decisions.

Mock-ups
A mock-up picks up where a wireframe stops. It includes more details in the
user interface than a wireframe and facilitates further discussion about the
emotional connect of the product with its intended users. It can offer richer
details about the intended product so that users can see how the final product
might look like. They can decide if they would like to make any major changes
before the same look and feel is replicated in the final product.

Creating a mock-up might require writing software code, though, increasingly,
it doesn’t have to. Tools such as Keynotopia offer a smart way to convert a
PowerPoint or a keynote presentation into a mock-up in less than 30 minutes
by creating a series of highly interactive mock-up screens. These screens give
a more dynamic representation of the workflow.

Let’s say I am building a new web site called MyDreamHome that allows a
property owner to sell and/or lease and an interested buyer to buy and/or
rent properties. I am trying various options for the initial screen layout, and I
want to know if my prospective users will like some visual layout aspects over
others. I could use any of the several available software to quickly create a
layout like the one in Figure 3-5 and, instead of asking them over a phone call
or an e-mail, give them something tangible to think about in order to make a
choice. In this case, making a mock-up like this costs me less than ten minutes
and, though it is a static prototype (meaning, none of the buttons are click-
able), it still offers a starting point for the conversation.

Chapter 3 | Deliberate60

Note that a mock-up might still not offer the intended functionality—if it
does, it tends to be more like a prototype, though it doesn’t have to. What
is important is that it allows the conversations between the creator and the
consumer to proceed to the next level where more specific decisions can be
made about delivering the desired functionality in the most effective manner.
The true payoff of a mock-up is that we get a disproportionately large amount
of feedback by putting in relatively small amounts of time and effort in building
it. Surely, if the mock-up is extremely bad, you might get a lot of feedback, but
it might shake a customer’s confidence in your ability to understand the prob-
lem and design a solution. On the other hand, a completely detailed, pixel-
perfect mock-up might not only take too much time and effort to be effective
in terms of a real ROI, it might also put off prospective users into thinking that
the product is already done. A designer or a developer must keep these finer
points in mind while exploring the options to get to the right level of details.

Design Thinking
In the previous section, we discussed prototyping as the means to expedite
feedback before the team starts detailing out the product. The key principles
behind prototyping are, once again, economics—how can we ensure that
we are able to validate our key assumptions before incurring irrecoverable
time, effort, and money, sometimes referred to as the “sunk costs.” However,
 prototyping only offers the operational tools and techniques to systematically
and progressively evolve a product’s design.

Figure 3-5. With modern-day tools, realistic-looking mock-ups can be created very quickly

Agile Product Development 61

A lot of traditional product developers, especially in the software industry,
often establish the technology and architecture first, and then try to retrofit
the user experience and the user interface into what the technology allows.
Many of us are building products with a technical mindset that is not appropri-
ate for the average user. This realization enraged Alan Cooper, and he ended
up writing the classic 1998 book The Inmates Are Running the Asylum, in which
he argues that we techies are basically unqualified to write software and build
systems for the technically illiterate human beings. Having been a software
developer myself, I can very well relate to it. In several cases, we techies used
to design the user experience for totally non-technical users, such as nurses or
normal people who watch television, and the results left much to be desired!
So how do we make sure we don’t build technologically superior products
that don’t serve any real useful value for its target users?

In the last few years, the term “design thinking” has taken off as one of the
most fancied buzzwords. Even though most people don’t really understand
what it means, much less what it can do for them, there is an active interest
in learning more about it.

Tim Brown of IDEO defines “design thinking” in the following way:

Design thinking is a human-centered approach to innovation that
draws from the designer’s toolkit to integrate the needs of people,
the possibilities of technology, and the requirements for business
success.

Tom Kelly in Change by Design describes design thinking’s mission as follows:

The mission of design thinking is to translate observation into
insights, and insights into products and services that will improve
lives.

Design thinking is the process that combines the elements of people
(desirability), business (viability), and technology (feasibility) and seeks to build
products that solve real needs of people.

Figure 3-6 illustrates IDEO’s philosophy behind design thinking.

Chapter 3 | Deliberate62

Design thinking is both a process and a mindset. Stanford’s Design School has
identified seven key mindsets4 that facilitate a design thinker:

1. Focus on human values: Design thinking is first and
foremost about empathy for the people for whom we
are designing solutions. In the absence of a genuine empa-
thy, we tend to make ignorant assumptions or become
judgmental and end up designing products that conform
to our mental models rather than acknowledging the
real pain felt by the people who go through the problem
every day.

2. Show, don’t tell: Instead of talking about something, we
want people to build something that allows them to pres-
ent their vision and ideas visually and with more com-
pelling storytelling, or by creating impactful and meaning
experiences. I often go to the point where you learn
more by simply showing something and there is no tell
at all—let the people “give” you feedback based on how
they interact with the object.

Figure 3-6. Design thinking is at the center of interaction among people, technology, and
business

4h t t p : / / d s c h o o l . s t a n f o r d . e d u / w p - c o n t e n t / u p l o a d s / 2 0 1 1 / 0 3 /
BootcampBootleg2010v2SLIM.pdf

http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCQQFjAB&url=https%3A%2F%2Fdschool.stanford.edu%2Fgroups%2Fk12%2Fwiki%2F535f1%2Fattachments%2Fa6678%2Fmindsets%25203.0.pdf&ei=arkqVevlENCyuASV0YHYBw&usg=AFQjCNG1QcV3_pqXbDOUccgs-toVwnaKMg&sig2=JmdmhzyqZWtWMetNwDa1xg&bvm=bv.90491159,d.c2E
http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCQQFjAB&url=https%3A%2F%2Fdschool.stanford.edu%2Fgroups%2Fk12%2Fwiki%2F535f1%2Fattachments%2Fa6678%2Fmindsets%25203.0.pdf&ei=arkqVevlENCyuASV0YHYBw&usg=AFQjCNG1QcV3_pqXbDOUccgs-toVwnaKMg&sig2=JmdmhzyqZWtWMetNwDa1xg&bvm=bv.90491159,d.c2E

Agile Product Development 63

3. embrace experimentation: I consider experimenta-
tion as the unit of progress, especially when solving com-
plex problems that haven’t been solved before. We must
start with a beginner’s mindset and not be afraid to ask
questions and conduct small experiments that help us
validate our assumptions and put us on a learning path.
Of course, mistakes will be made and some amount of
time and effort will have to be discarded while pursuing
the path of experimentation. However, without experi-
mentation, we might be doomed to accept even bigger
costs should our strategy, largely unvalidated, happen to
be nothing more than a mirage.

4. Be mindful of process: Even as we say that a design
thinker must have the right mindset to be effective in
solving problems and designing better solutions and that
the whole process is not really a predictable process in
the traditional sense, there is still a close-ended orien-
tation to the entire activity. At the end of the day, this
is not a science project or something that is only being
pursued for someone’s happiness alone! We are com-
mitted to solving real-world problems and, hence, there
must be a sense of how well are we progressing, how we
are keeping the stakeholders involved and communicated,
and, if there is an overall “process” that we have agreed to
follow, how we are doing on it.

5. Bias towards action: Let the word “thinking” in design
thinking not mislead you, for design thinking is more
about “doing” than thinking. Having ideas is a great thing,
but if we fail to translate them into something tangible
that others can see, touch, and feel, we might not be able
to get any meaningful feedback that helps us validate our
raw assumptions and make tangible progress. As a design
thinker, we are more like “thinking with hands” than a
usual thinking with the mind alone.

6. radical collaboration: Any non-trivial problems have so
many moving parts that it is virtually impossible for any one
individual to understand them all equally well. Designing a
great solution might require an understanding of the under-
lying technology, the markets, product landscape, fundamen-
tal human behavior, pricing, cost of manufacturing, materials
technology, supply chains, marketing and distribution chan-
nels, and so on. When teams are small and close-knit, they
rely upon each other to find the best solutions rather than
apportioning responsibility (and often blame) on each other.

Chapter 3 | Deliberate64

7. Craft clarity: Our solution, or prototype, will reflect
our clarity about a given problem. If a solution hasn’t been
well crafted, it will fail to inspire the prospective users to
consider it, and we will lose the opportunity to get mean-
ingful feedback on it. The most successful products of our
generation are not the ones that make its user think, but
hide the technical complexity under the product’s surface
and craft the level of clarity that is aligned to the user’s
mindset rather than the developer’s mindset.

These mindsets are a great learning tool for anyone aspiring to become an
effective design thinker (and, yes, anyone can become a better and effective
design thinker with enough learning and practice).

In addition to being a mindset, design thinking is also a process, but not in the
traditional sense of a series of fixed steps with a rigid sequence. Any design
thinking process typically starts with developing a deep empathy about the
target users, followed by a divergent effort to explore as many solutions as
possible. The next step is to prune down this list of solutions by choosing the
most promising ideas that go on to be prototyped and refined iteratively with
user feedback. Different schools and organizations have developed their own
version of the design thinking process, but the essence remains similar to this.
Instead of looking for one sight solution, we are willing to explore multiple
options that help us understand various facets of the problem better. By not
prematurely converging onto a solution, we allow ourselves to think of better
alternatives than simply copying the solution that worked the last time. Finally,
the whole loop of prototyping, iterating, and receiving feedback allows us to
get invaluable insight on patterns that might work better. We are not looking
for one single prototype to be the eventual winner, but we are often looking
for individual patterns to be discovered through these short-cycle experi-
ments that allow us to build some kind of a repository of successful patterns.
Once we have found what works and have tested it rigorously enough, we are
on the way to solving the problem.

Figure 3-7 illustrates IDEO’s design thinking process looks. While the process
seems to be a linear flow from left to right, it is only to reflect the key activi-
ties undertaken, which could flow in any direction depending on the ground
realities. However, a complete run of the design thinking process will typically
involve all these key steps and will roughly flow in this fashion, though internal
flows among various steps are perfectly normal.

Agile Product Development 65

While a design thinking process is often visually represented to look like a
linear process, in reality it is anything but a linear sequential process! While
each of the atomic elements do constitute a specific functional aspect of the
overall process, the interaction and the flows inside a design thinking process
are highly fluid, and are more driven by the way a given problem unfolds itself
rather than a pre-determined and fixed sequence of steps. To that end, it is
once again a mindset even when operating within the context of a “process.”

To recap, design thinking as an approach to solve problems emphasizes the
following key elements:

•	 Empathy—not just functional / technological solutions

•	 Creativity—not just known / obvious solutions

•	 Learning—iterating through prototypes leads to feedback

Google Ventures has created a very specific adaptation of design thinking that
they call “Design Sprints.” Design Sprints is a five-day structured process for solv-
ing problems in a very structured manner using the principles of design thinking.

Google Ventures’ Design Sprints
Google Ventures design partner Jake Knapp developed the design thinking
process from IDEO and Stanford’s Design School into a structured and opti-
mized process known as Design Sprint.5 It takes a product or a feature from
design through prototyping and testing within a week. He has run over 100
sprints within Google and with startups within Google Ventures’ portfolio.

Here’s how the process goes:

Figure 3-7. A design thinking process is not a single-pass sequence of steps

5The Design Sprint, http://www.gv.com/sprint/

http://www.gv.com/team/jake-knapp
http://www.gv.com/sprint/

Chapter 3 | Deliberate66

Before the Sprint: Prepare
The Design Sprint process is best suited for solving big problems—for exam-
ple, you want to redesign your entire web site, improve conversions, or solve
another critical problem. The process involves having the entire startup or
the product team—CEO, designer, architect, product manager, and so on—in
the same room for the next five days. A good team is often made up of four
to eight people.

One key activity is to find a good facilitator. The facilitator will orchestrate the
activities for the next five days and should be able to maintain the flow of ideas
while being aware of time management. An external facilitator is often recom-
mended because the facilitator doesn’t participate in the hands-on activities,
but rather runs the process as effectively as possible.

Enlisting users for the prototype testing at the end of the sprint should be
done as soon as possible. Several startups within Google Ventures’ portfolio
are known to use simple methods such as advertising for (paid) users on
Craigslist. Doing so at this stage ensures that all the users are available for the
fifth day of the Design Sprint.

Other steps in preparation involve taking care of the logistics, such as schedul-
ing the event and procuring resources (basic office supplies such as tape, white
sheets, sticky notes, sharpies, and timers as well as a large conference room).

Day 1: Understand
The focus of the first day of the sprint is understanding the problem as deeply
and comprehensively as possible. Having all key stakeholders in the room
ensures that the team is able to build individual understandings into a com-
mon understanding of the problem to be solved.

The team could utilize a number of techniques to broaden its common
understanding. For example, the CEO could present on the business oppor-
tunity, while a product manager could demo a competitor’s product or share
analytics. The designer could share ideas about improving user experience,
while techies could explain some tech stacks that might help improve system
 performance. A time limit of each of these presentations of ten minutes is
 recommended to keep the conversation flowing while covering as many
aspects of the problem as possible.

Once the group has had the opportunity to share various perspectives, the
team can start evolving its understanding of the single most important “user
story” for the current sprint. In my experience, this should be the most
important value your product or service aims to offer, or the biggest pain
point that threatens to wipe out your customer base. This user story should
be expressed as visually as possible.

Agile Product Development 67

For any non-trivial problem, it’s perfectly possible that this user story is too
large to be prototyped within a short sprint of five days. In such cases, the
team needs to refine part of the user story into areas that should be sub-
jected to the user story on Day 5. In other words, what would you as a team
like to know better that will help you make more-informed decisions in the
following weeks?

At the end of Day 1, the team has chosen some important ideas that they
would like to learn about in the next few days.

Day 2: Diverge
The team begins Day 2 at the point where it ended Day 1—at a common
understanding of the problem and what aspect of the problem it would like
to solve during the current sprint. On Day 2, the team works toward explor-
ing as many solutions as possible. The team exploits divergent thinking. As
opposed to traditional brainstorming, which has its known perils, the team
works individually and often silently—without worrying about how will their
ideas will get implemented, or if they even make sense.

One way the team accomplishes such ideation at speed is by using perhaps
the lowest-fidelity prototypes—paper prototypes. There is no need to be
pixel-perfect at this time. Rather, by focusing on a very high-level “appear-
ance” of a user interface, the team can focus on the most important elements
instead of embellishing the idea prematurely. For example, one of the tech-
niques described is “Crazy Eights” where each team member comes up with
eight sketches of an idea within five minutes. If there are eight people in the
room, you have sixty-four possible user-interface sketches within five minutes.
That’s a lot of input for the next stage, which is storyboarding the user story.
Decide on the best ideas from Crazy Eights to proceed with.

The storyboard is then subjected to silent critique—everyone does “dot vot-
ing” on the ideas without really talking to others. Since there is no attribu-
tion to anyone’s ideas, there is no “pressure” to accept the CEO’s idea, for
example. At the end, you get a heat map of what the group considers as the
best ideas. Next, the team comes together and for each of the “hottest” ideas
does a three-minute critique on what they like about the idea, what is missing,
and so on.

Finally, the team does a super vote to choose the very best ideas. Repeat the
process for any other idea that needs to be validated in the sprint.

Chapter 3 | Deliberate68

Day 3: Decide
By the beginning of Day 3, you have come up with some great ideas. However,
you have just a day to prototype them, so you must decide which of these
ideas gets your “prototyping dollars.”

Although voting might seem like the easiest way to decide which ideas to
choose, groupthink can sometimes cloud a team’s ability to choose the best
ideas. The role of the facilitator becomes very important here. Looking for
conflicts is a great opportunity to dig deeper into various options.

Finally, you have to make a key decision—whether to test out a single bold bet
(“Best Shot”) or have two equally appealing possibilities that you can’t quite
decide between and make them fight against each other (“Battle Royale”).
Both strategies offer unique opportunities and are well suited for different
situations, so the team needs to carefully evaluate those options.

Finally, you are ready to construct the entire storyboard to show just how the
user will navigate each of the interfaces click-by-click.

Day 4: Prototype
Day 4 is the day when you get to “build” stuff to show to real users and get
some meaningful feedback. However, all we have is one day to build a pro-
totype to put in the hands of users so they can give us feedback on our key
hypotheses.

To best utilize the validate stage (on the following and the final day of the
sprint), we don’t need high-pixel-quality prototypes. Some of the best proto-
types are, in fact, built using Keynote and other simple tools. The idea is to
avoid (or minimize) writing code as much as you can while making the proto-
type look as real as possible—what users really care about.

The team works together to produce a working prototype that will meet its
first big test on Day 5.

Day 5: Validate
The last day of the sprint is important—it’s where the rubber meets the road.
The users whom you enlisted earlier are now raring to go; their feedback will
be critical to your further progress.

Validation marks the end of a design sprint where a key hypothesis is collec-
tively decided upon by the team and, through a series of divergent and conver-
gent thinking steps, a prototype is made, which is then subsequently tested by
“real humans.” Given the track record of Google Ventures in applying design
sprints to solve some hard problems, it offers a great way to align the team
and make tangible progress in a short time period.

Agile Product Development 69

Customer Development, Lean Startup, and
Business Model Canvas
Design thinking takes the entire process of prototyping into a close-ended
process that starts with acquiring a deep knowledge of empathy about the
target users rather than solving the problem using technology alone. It allows
starting in the absence of any real input on what the intended solution might
be. However, what do you do once you have zeroed down on the idea? Do
you now go out and build the final product?

Well, not quite!

We still haven’t quite figured out all the unknowns of the idea and the intended
solution. We still need to systematically perform tests before we offer the idea
as a full-scale commercial product. For example, until this point in our jour-
ney of the evolution and exploration of an idea, we haven’t really figured out
how are we going to make money. What if we built the product and offered
it at a price point that was way above customers’ expectations. Will it be
way too late in the day to get that feedback? Or, how do we determine if the
best way to reach our customers is through direct sales or through affiliate
marketing? Pricing might only be one of the unknowns in the whole equation,
and we might need to understand more about the market, target custom-
ers, value proposition, channels, and so on. Without fully understanding and
validating these unknowns, building a product and simply relying on marketing
push-and-sales gimmicks might be too risky. Apart from the risk of losing the
investments and time, there might be a real risk to losing the market window.

Traditionally, product developers have often assumed that we know who the
customers are, what the problem is, and what solution the customers desire.
Unfortunately, most businesses make these one-sided assumptions that go
untested for quite a while. When they get the shiny new product to market,
they are often shocked to see there is no customer for their products!

Steve Blank has identified the need to “develop” customers in a similar fashion
as we develop products—start with several hypotheses and rigorously test
them until we have found the right answers. Only then can we begin to
offer the idea as the full-scale solution. Blank has compiled his ideas in the
“Customer Development Model.” (See Figure 3-8.)

Chapter 3 | Deliberate70

In the initial stages, the customer development model talks about “searching”
a repeatable and scalable business model. At that time, a new business or a
new product doesn’t know how to make money. The creator asks, “Who
are my customers? What do they want?” How will I serve them?’ What are
my cost structures?” and so on. Through a series of experiments, the teams
find their business model that has no more hypotheses around it—all the
unknowns and assumptions have been comprehensively tested and they are
all ready for the next phase of execution. That’s the time when we essentially
step into the world of execution and scaling up.

The Customer Development Model starts with “Customer Discovery”, where
the focus is on understanding the problem and how a solution fits into it. The
idea is not to develop a complete solution at this point, but to develop the
minimum viable product that focuses on the “vital few” elements of the solu-
tion without too many finer details. Though the name “MVP” tends to limit
the thinking to the “product,” the product under question is the entire busi-
ness model and not just the physical product that people buy.

Having identified, or discovered, the customers and having understood
the “problem-solution fit,” we then go on to the next stage of “Customer
Validation” to validate how our proposed product fits in the market. At this
point, we start sketching elements of the entire business model and design
experiments that allow us to rigorously test the hypotheses until we have dis-
covered the repeatable and scalable business model. When the assumptions
prove to be invalid, as they indeed will, we go back and “pivot” on our business
model, which essentially means we stay focused on the vision but change the
strategy. Given that the focus is on learning, we are constantly willing to adapt
to feedback that doesn’t conform to our original hypotheses.

Only after we have eliminated all these unknowns and luck factors that
might bring occasional success but not assure repeatability and scalability of
the business model do we start building the machinery to create customer

Figure 3-8. The Customer Development Model

Agile Product Development 71

demand and offer a standard product. During this “Customer Creation”
stage, we focus on scaling the execution, and we might undertake a series of
activities to create the demand, build a sales playbook that allows us to scale
up based on the proven patterns of successful lead generation and closure,
and so on.

During the final “Company Building” stage, we eventually start scaling up the
operations to sustain offering the entire business model in the most efficient
and effective manner.

The entire Customer Development Model identifies several new ideas that
have now evolved into disciplines by themselves.

One of the most interesting developments happened when Blank’s student,
Eric Ries, took the ideas around building MVP and published the book Lean
Startup. His book identifies some very powerful—and radical—ideas to build
new products by systematically and incrementally validating them before
moving to the next stage. Another author, Alexander Osterwalder also
wrote a very interesting book, Business Model Generation, which captures the
essence of the business model in the context of entrepreneurship in a handy
“canvas” format known as the “business model canvas.” More specifically, it
helps us examine elements of an idea not at the technical or the functional
level, but at the entire business level. The ideas behind the business model
canvas are coupled with the ideas of lean startups to create a powerful way
to build new products by using the power of data-driven feedback. This
facilitates “validated learning” that gradually raises the chances of eventual
success.

Let’s examine each of these ideas.

Business Model Canvas
Every business, new or old, startup or established, digital or conventional,
product or service, has nine essential building blocks that describe key attri-
butes about its business model:

1. Customer Segments (CS): Making a product that
seeks to serve every conceivable customer segment
might end up leaving everyone unsatisfied. Hence, every
business must ask, “Whom are we serving?” Over time, a
business might expand its footprint to address more than
more customer segments, but in the lean startup world, it
is recommended that we initially focus on only the most
important customer segment.

Chapter 3 | Deliberate72

2. Value proposition (Vp): Offering a “me too” product
at a lower price point compared to incumbents might
help you enter the market and be noticed, but might not
be a sustainable growth strategy. Hence, each business
must identify what really separates them from other
competitors. Product traits like extended functionality,
improved performance, interoperability, personalization,
longevity of products, usability, and so on, are all examples
of what might constitute a value proposition.

3. Channels (Ch): There is no single way to reach the
target customers; each way has its own pros and cons.
Thus, a business must decide how do deliver its value
proposition to the customer segments. For example,
some of the leading Indian e-commerce sites, Myntra and
Flipkart, have decided to go mobile-only, given the bur-
geoning mobile usage in Indian market.

4. Customer relationships (Cr): Depending on the
product and specific customer segments, each business
must identify what kinds of relationships it wants to estab-
lish with its customers. For example, most travel and hos-
pitality companies have multiple touch points, and any bad
experience can create upset customers. Consequently,
such companies find a higher value in creating extensive
loyalty programs that create multiple points of customer
engagement, compared to, say, a laptop, where it is easy to
compare specs by putting laptops side by side, and, hence,
a relationship might end at the point of sale.

5. revenue Streams (r$): Simply stated, no business can
sustain indefinitely without having a solid revenue stream
with its pricing mechanisms. Even businesses that offer
“free” products must eventually have some form of revenue
stream to stay afloat. While a site like Yahoo! might appear to
have no apparent revenue stream to its end users, it needs
to generate revenue from advertisers. Similarly, a business
like Wikipedia must rely on donations to keep it going.

6. Key resources (Kr): Depending on the nature of the
business and the type of product offered, a business might
need different key resources to build its value proposi-
tion and offer it to the target customers. A business like
Amazon doesn’t really produce any of the products it sells,
but needs extensive resources with supply chain, procure-
ment ,and service delivery. On the other hand, for a com-
pany like IDEO, the key resources are its people who help
solve complex problems by applying interdisciplinary skills.

Agile Product Development 73

7. Key activities (Ka): What are the key activities that a
business must undertake to create, deliver, and sustain its
value proposition to the customer segments? A company
like UBER doesn’t need to buy and operate a fleet of
cabs, but simply have a way to onboard independent cab
drivers. On the flip side, a company such as Apple must
make heavy investments in R&D and design and develop
new products. In addition, it must work with companies
like Foxcon to produce iPhones. Each of these companies
represent different key activities to its respective cus-
tomer segments.

8. Key partnerships (Kp): What kind of partner and sup-
plier ecosystem enables a business to offer value proposi-
tion in the most effective manner? Several other Japanese
companies practice “keiretsu,” which is a network of
companies with deep partnerships that often result into
shareholdings, and lead to shared learning and improve-
ment. On the other hand, a small business might find value
from signing up with someone like Amazon or Staples for
taking care of its business needs.

9. Cost Structure (C$): What are the input costs in cre-
ating, delivering, and sustaining the value proposition?
Some businesses like Intel’s fab plants might need heavy
upfront investment (including a long lead time) and run
heavy risks in terms of anticipating future demand, while
business like Wal-Mart might decide on keeping low
prices and accept profits as low as 3% and, thus, have a
different cost structure.

Normally, these elements are captured in a document like a business plan.
Alexander Osterwalder took these nine building blocks and organized them
into a one-page visual “canvas” in his book Business Model Generation, as shown
in Figure 3-9.

Chapter 3 | Deliberate74

The visual format makes it easy to capture the essence of several moving parts
in order to view them holistically rather than seeing them as independent
aspects of a traditional business plan spread over several pages.

The layout of these building blocks is not random. It depicts clustering of ele-
ments that provides value to the customers on the right side of the canvas and
clustering of elements that identify efficiency on the left side of the canvas, as
shown in Figure 3-10.

Figure 3-10. The business model canvas creates a balance between value and efficiency

Figure 3-9. The business model canvas

Agile Product Development 75

Normally, these building blocks are identified in a document such as a lengthy
business plan, but it tends to be rather dull and boring—and quite useless,
given that a new business has absolutely no clue on any of these elements.
At best, we make some convenient assumptions that mostly go untested as
the team goes about building the entire product. Only when the full and final
product is out in the market, do we actually start validating these assumptions.
Needless to say, it is way too late to get validation feedback at that point, espe-
cially if major changes are needed because we made incorrect assumptions in
the beginning.

To mitigate such risks, the business must identify some intelligent options
and test them iteratively until each assumption on a business model canvas
has been comprehensively validated and has eliminated any “luck” factor. Put
another way, this is the stage at which all the cause-and-effect relationships
between any elements on the business model canvas have been discovered
and rigorously tested by field tests. (See Figure 3-11.)

Figure 3-11. Validation of the business model canvas eventually leads to the one where all
assumptions have been validated

The team starts with a set of business model canvases that might have differ-
ent assumptions about different elements of the business model. They design
the so-called “Minimum Viable Product” (MVP) that allows them to test and
validate those assumptions using the least amount of time, effort, and money
in learning cycles known as “build-measure-learn” loops.

Chapter 3 | Deliberate76

An MVP is something that doesn’t simply test the “product” as the techni-
cal product, but rather the entire business model! We clearly don’t want to
limit ourselves in validating all the unknowns. The term “MVP” connotes a
small intersection between the terms “minimum” and “viable.” It metaphori-
cally represents the “vital few” as opposed to the “trivial many.” Applying the
central idea behind Pareto Law, we want to build and test that 20% of the
product, which represents 80% of the value or risk, or both, to the central
idea. (See Figure 3-12.)

Figure 3-12. An MVP focuses on the “vital few” elements of the product that represent
highest value or risk

The MVP allows the team to rigorously test its riskiest assumptions. Clearly,
the goal is to limit how much finished product to build, but it is also important
not ship a shoddy and incomplete product to the customer. We also want to
test the hypothesis around revenue streams and the pricing mechanism, and
not just the value proposition. If the product resembles a science project, the
users might not “buy” it and the entire experiment might fall flat. On the other
hand, to make the users “buy” a partial product, we can’t simply go to the
regular, or the mainstream, customers! They want the full and final product
and nothing less, especially when they are going to pay for it! So, whom do we
reach out to for feedback on our MVP?

In his 1962 book, Diffusion of Innovations, Everett Rogers identified how new
ideas are spread. (See Figure 3-13.) He also identified a special category of
users—he called them “innovators”—who are more interested in new ideas
than any other cohort. These 2.5% of users are extremely “venturesome” due
to a “… desire for the rash, the daring, and the risky.”

Agile Product Development 77

Rogers acknowledged the “gatekeeping” role these innovators play in the flow
of new ideas into a system.

Steve Blank defines these innovators further as “earlyvangelists.” (See
Figure 3-14) and identifies them based on certain scenarios.

Figure 3-13. Innovators lead the pack when it comes to the diffusion of innovation

Figure 3-14. The “Earlyvangelists” are great for validating an MVP

These early + evangelists, or earlyvangelists, not only have a much higher risk
appetite, but they also have special knowledge about the problem that makes
them not just passive consumers but also active co-creators. The best busi-
nesses learn how to leverage such specialized knowledge and skills into build-
ing great products and services.

Once we have identified the earlyvangelists, and have built the MVP, we subject
it to experiment in the so-called “Build-Measure-Learn” cycle, as shown in
Figure 3-15.

Chapter 3 | Deliberate78

In essence, the Build-Measure-Learn cycle is not really new. At its core, it
is the same as Deming’s PDCA Cycle6 but more relevant to the context
of modern-day product development. The need to “minimize the total time
through the loop” is also emphasized because the purpose of this cycle is not
to ship the functionality sooner, but rather to expedite the learning process, in
other words, facilitate a way to get actionable feedback sooner. At this point,
we introduce agile software development as the means to develop software
iteratively and incrementally in short time boxes. This allows us to design
and implement experiments to progressively test each hypothesis before we
decide to step up the investment and build the entire system.

Figure 3-15. In a “Build-Measure-Learn” cycle, the idea is the minimize the time and effort
to create learning about ideas

6Initially known as PDCA cycle, it is also known as PDSA cycle. https://www.deming.org/
theman/theories/pdsacycle

https://www.deming.org/theman/theories/pdsacycle
https://www.deming.org/theman/theories/pdsacycle

Agile Product Development 79

These ideas complement and reinforce each other, and allow us to establish
checks and balances to systematically mitigate risks around each of the nine
blocks of the business model. Gradually, we can scale up the level of invest-
ment to commensurate with the certainty and merit of the idea.

Lean Canvas
Ash Maurya made some changes to the business model canvas to adapt it
specifically for products, and called the new canvas a “lean” canvas.7 (See
Figure 3-16.)

7http://practicetrumpstheory.com/why-lean-canvas/

Figure 3-16. A lean canvas is an adapted version of the business model canvas

The lean canvas focuses on more specific elements at the product level than
at the business level, and it could be the next step in evolution and validation
of the product idea.

Figure 3-17 shows the new lean canvas.

http://practicetrumpstheory.com/why-lean-canvas/

Chapter 3 | Deliberate80

It offers interesting alternatives to the business model canvas that explain
more about the product-market fit. Thus, it is possible to build a product that
understands and addresses the real needs of its intended audience. A lean
canvas could be created and taken through the build-measure-learn loop and,
when all its assumptions are validated, the team might achieve product-market
fit. This marks the customer validation in the customer development model,
and at this point, we are ready to move into the customer creation phase as
part of the execution.

Conclusion
In the past, if an idea was considered cool, the next logical step was to build
it and prepare for a full-blown, go-to market product with a grand product
launch. However, this approach is fraught with risks, especially in today’s
“VUCA” world.8 Furthermore, businesses no longer have the risk appetite
to invest in multiyear research-and-development budgets and wait for the
miracle to happen!

Figure 3-17. A lean canvas creates a balance between the product and market fit

8VUCA stands for “Volatile, Uncertain, Complex, and Ambiguous.”

Agile Product Development 81

Today, time and budgets are scarce, while ideas abound! However, simply hav-
ing an idea or executing it mindlessly does not guarantee success. While exe-
cution is key, it makes sense to incubate ideas in a manner that aligns further
investment with the amount of learning we have about the certainty, merit,
and utility of the idea.

While having the next big idea is imperative, it is often hidden among hundreds
of mediocre and worthless ideas. Employees often come up with countless
ideas that go ignored in the absence of a mechanism to test them in a short
amount of time with relatively little effort. Even the ideas that get validated
don’t often get end-user validation, and the result is a technical solution that
might have no takers. We need to validate ideas for their commercial viability
before we commit a large amount of time and money to it.

C h a p t e r

Describe
Let me tell you what I want …

We are searching for some kind of harmony between two intangibles:
a form which we have not yet designed and a context which we cannot
describe.

—Christopher Alexander, American Architect

In the last few chapters, we have discussed how we go from mining ideas to
systemically testing them until we have found a repeatable and scalable busi-
ness model. Once we have the idea tested at a high level for its merit and
feasibility and we understand the nine building blocks (Chapter 3) of its busi-
ness model, we can begin to flesh out more details. Now that we’ve gone from
the idea to prototype to MVP, the next logical step in this journey is to create
the actual product, which needs to be developed over several iterations and
releases. To accomplish this, we first need to be able to describe what we
want! If we leave the description open-ended, we might be able to get started
sooner, but we risk creating a product that might be too removed from the
original idea. On the other hand, if we describe every single detail, we might
take an inordinate amount of time, in which the market might change. We
also risk making a very limited product that might not be able to benefit from
creative ideas that, at a later date, could actually make the product much bet-
ter. So, it makes sense to gradually evolve the idea into a tangible product with
the details commensurate with the level of investment and decision-making.

Once we have deliberated on the right set of ideas and converged upon the
most promising ones, we need to find a way to productize them. At the high-
est level, there could be issues relating to financial viability and ROI, or market
fitment and future strategy. There could be decisions pertaining to technology,
usability, internationalization, feature set, timelines, build vs. buy, and so on.

4

http://dx.doi.org/10.1007/978-1-4842-1067-3_3

Chapter 4 | Describe84

In this chapter, we will explore how we apply principles of agile software
development to productize ideas so that we can accelerate product creation,
mitigate product risks, and keep learning actionable through the journey.

Old-School Documentation
In traditional waterfall-based development, it was common for product man-
agers to work alone and, after a couple of months of isolated work, come up
with a big fat document called the PRD (Product Requirements Document),
which would, in principle, capture everything that a customer might want in
the upcoming product release. The product managers might gather inputs
from sales, marketing, customers, support, engineering, and so on, but the
process predominantly focused on having a phased approach to capture all
the possible product requirements without the need to revisit them. Despite
knowing the limitations of being able to forecast future needs accurately and
precisely, and the futility of formalizing what can at best be described as a
moving target, traditional organizations continue to practice such an approach.
In some cases, this obsolete and largely farcical process is front-ended by
marketing’s period of intense activity where the output known as the MRD
(Marketing Requirements Document) is created. An MRD might set the high-
level context for the next several releases essentially based on a one-time
market research—never mind that the market might evolve faster than the
document might have predicted!

Traditional waterfall methods heavily relied on the power of documentation
as the sole mechanism to describe ideas. However, no amount of documen-
tation for a non-trivial system could possibly be comprehensive, complete,
consistent, and correct all at the same time! Indeed, in several situations, we
might actually be better off without any documentation, though we might
need experts and a bit of luck, and our ideas might not constitute a “repeat-
able” process by any definition.

However, in reality, we do need a balanced approach. Some documentation
rather than zero documentation or over documentation—could provide clar-
ity about the intent and the desired outcome of an activity. It could quickly
“validate” the high-level direction. Unfortunately, we often quickly lose the
forest for trees.

Let’s explore how agile thinking helps us articulate various aspects of a prod-
uct that address increasing level of details as we make further progress.

Agile Product Development 85

Product Vision
Building a product is a transformational activity. It often changes how people,
societies, and civilizations behave. Amazon has forever changed the way we
buy books (and increasingly other stuff) from the Internet. Skype, Facebook,
and WhatsApp have changed the way people communicate. Uber is disrupting
the taxi business. Bitcoin might eventually change how digital money is used
in future. Hundreds of other bold ideas are forever changing the world. One
idea at a time, one product at time.

However, having such a profound impact can’t be purely accidental. The cre-
ators of these ideas had a clear vision. Like the proverbial North Star, a vision
helps creators stay focused as they experiment with their idea, but the star
stays high enough to remain largely “unachievable.” If creators achieve their
goal reasonably early in the journey, we would consider it too tactical—no
longer a “vision.”

In 1983, Toyota Chairman Eiji Toyoda gave a mission impossible to his team
—build the best luxury sedan in the world, in the first attempt.1 There were
top-of-the-shelf engineering specs to go along with it (top speed of 155 mph,
22.5 mpg fuel economy, and aerodynamic drag coefficient of less than 0.3—all
these were unprecedented for a luxury sedan, let alone all being present in
the same car). After six years and some 450 prototypes later, Lexus LS400
launched. Would Toyota have achieved such an unprecedented level of design
and engineering excellence if not for such an audacious vision? What else
could have sustained the untiring efforts and single-minded focus of 1,400
engineers over six years?

So, an important question is what the vision of the product is. Given that the
basic technology in the majority of these examples is available, the question
is not whether we can build it, but, rather, what should we build? In my view,
a vision should be aspirational—even provocative—and the end-state of a
product should be stated very crisply. Anything else is simply not a vision—
maybe just a roadmap or even a to-do list.

If you want to build a ship, don’t drum up people to collect wood and don’t
assign them tasks and work, but rather teach them to long for the endless
immensity of the sea.

—Antoine de Saint-Exupéry

1“Shattering Expectations,” Peter McSean, www.lexus-int.com/our-story/shattering-
expectations.html.

http://www.lexus-int.com/our-story/shattering-expectations.html
http://www.lexus-int.com/our-story/shattering-expectations.html

Chapter 4 | Describe86

In my view, a product vision should inspire people to long for the endless
immensity of the sea, without actually prescribing how to go about building
the ship. The vision might serve its purpose best by being minimalistic and
inspirational.

Let’s examine some of the way to articulate a great product vision.

Elevator Pitch
Popularized by Geoffrey Moore’s classic Crossing the Chasm, the idea behind an
elevator pitch is rather simple—can you explain your product in the time it
takes to ride up in an elevator? Moore reasoned that venture capitalists don’t
invest in an idea if the creator can’t pass the elevator test. If you can’t pass the
test, investors often make the following assumptions:

1. Whatever your claim is, it can’t be transmitted by word
of mouth.

 2. Your marketing communications will be all over the map.

 3. Your R&D will be all over the map.

 4. You won’t be able to recruit partners and allies.

 5. You are not likely to get financing from anybody with
experience.

Moore then prescribed a “proven formula” to guarantee passing the elevator
test in just two short sentences:

For (target customers)

Who are dissatisfied with (the current market alternative)

Our product is a (new product category)

That provides (key problem-solving capability).

Unlike (the product alternative),

Our product (describe the key product features).

This formula is a simple template used even today to create a crisp position-
ing about the value proposition to your target investors. Its appeal lies in its
simplicity, for anything that can be communicated in a hallway or at a water
cooler has a better chance of being spread among the troops.

Agile Product Development 87

Product Vision Box
Each month, some 20,000 new consumer packaged goods are added from 50
countries to the world market.2 This translates to almost 650 products a day!

Any guess how many of these actually succeed in the market?

Philip Kotler writes in Principles of Marketing that “of the 30,000 new food,
beverages and beauty products launched each year (presumably in the U.S.),
an estimated 70 to 90% fail within just 12 months.” According to Jack Trout, a
typical U.S. family buys only from the approximately 150 products that consti-
tute 85% of its needs.3

How will you entice a consumer to pick up your product rather than any of
the other competing products from the shelf? Despite all the evidence that
suggests consumers are smart and intelligent and, hence, will find a way to
choose better products, most are victims of old habits and don’t always feel
motivated to try new products outside the 150-odd products that serve the
majority of their needs. So, how can you make someone interested in your
new product? Having the lowest-priced product or trying some product-pro-
motion gimmicks might get you some short-term attention, but if the custom-
ers can’t relate to your product, chances are you will be heading back to the
drawing board pretty soon. Here’s where a product vision box could come
in handy.

A product vision box is a visual and physical way to capture the most important
aspects of the product that connect with customers. While it might appear to
be a superficial packaging gimmick, especially if you haven’t tried it before, the
ability to drive a crisp, clutter-free message is perhaps an important part of the
product positioning. You have very limited real estate on a physical product
box (think of a “box” for dry cell batteries or maybe a bar of soap) and writing
the entire PRD on the product box might be a sure way to drive customers
faster to your competitor. On the other hand, if its packaging looks like it is
missing important information, the product might fail to catch the attention
of potential customers and miss the opportunity to tell its story. For example,
Apple product boxes are known for their minimalistic design and uncluttered
white background. Some other product boxes might be full of features and
details, but these features and details might make the product seem cumber-
some. The idea is to capture the most compelling set of product features that
drive the right message across, and help a potential customer understand the
product better, and expedite the buying process, ideally in your favor.

2www.gnpd.com/sinatra/gnpd/frontpage/?__cc=1.
3“Why Most Product Launches Fail,” Joan Schneider and Julie Hall, https://hbr.
org/2011/04/why-most-product-launches-fail.

http://www.gnpd.com/sinatra/gnpd/frontpage/?__cc=1
https://hbr.org/2011/04/why-most-product-launches-fail
https://hbr.org/2011/04/why-most-product-launches-fail

Chapter 4 | Describe88

Go ahead and try to create a product vision box. What will you write on
it that will pique buyers’ interest, perhaps enough to pick it up, check it out,
and hopefully buy it? What are the top things that you will want your product
to “say” to the buyers? To be able to do convey your product’s features in a
desirable way, you will need to have a deep understanding of your customers
and their needs. By going through the process of getting to truly know your
customers, you will come out with a much sharper vision of your story. While
an elevator pitch might have gotten you started, a product vision box will
make your story resonate with the actual buyers.

Check out Luke Hohmann’s immensely useful book Innovation Games for
details on how to go about playing the product vision box game. (Yes, that’s
what it is known as, and it already sounds interesting.)

Press Release
Amazon uses an interesting variant of the press release. Before even a single
line of code has been written for a new product, its developers write a hypo-
thetical press release and FAQ announcement.4 By asking the team to come
up with a compelling story, it helps uncover the key value proposition. It makes
developers think of what features their potential customers would like to see
in a product as well as what the most critical and unique value proportions
are that trade journals and analysts would like to rave about. Thinking about a
product while considering how to message it to customers makes the devel-
opment team think about building the product from customer’s point of view
and not simply from the engineering point of view.

In his 2010 book about Amazon, The Everything Store, Brad Stone talks about
this unique practice:

Amazon’s internal customs are deeply idiosyncratic. PowerPoint
decks or slide presentations are never used in meetings. Instead,
employees are required to write six-page narratives laying out their
points in prose, because Bezos believes doing so fosters critical
thinking. For each new product, they craft their documents in the
style of a press release. The goal is to frame a proposed initiative
in the way a customer might hear about it for the first time. Each
meeting begins with everyone silently reading the document, and
discussion commences afterwards.

4Here’s the Surprising Way Amazon decides what new enterprise products to work on
next – Jillian D’Onfro, http://www.businessinsider.in/Heres-the-surprising-way-
Amazon-decides-what-new-enterprise-products-to-work-on-next/articleshow/
46544156.cms.

http://www.businessinsider.in/Heres-the-surprising-way-Amazon-decides-what-new-enterprise-products-to-work-on-next/articleshow/46544156.cms
http://www.businessinsider.in/Heres-the-surprising-way-Amazon-decides-what-new-enterprise-products-to-work-on-next/articleshow/46544156.cms
http://www.businessinsider.in/Heres-the-surprising-way-Amazon-decides-what-new-enterprise-products-to-work-on-next/articleshow/46544156.cms

Agile Product Development 89

While this style of product vision is a bit more verbose than the two previ-
ous ones, it requires thinking about the future and putting oneself in the cus-
tomers’ shoes. I would find it particularly useful to conduct such an exercise
alongside your target customers—imagine being able to get direct feedback
on your product from your target customers even before writing a single line
of code.

Product Roadmap
A product vision is a high-level aspirational projection of the future state of a
product. It must be impactful to generate sufficient interest among the inno-
vators, early adopters, and early-stage investors. However, once it finds some
level of interest and support, it must provide more details that reflect its con-
ceptual integrity as well as a timeline outlining the introduction of features.
What does each release look like, and when can the customers expect their
favorite features? Here’s where a product roadmap comes in handy.

A product roadmap is essentially a timeline of feature rollout plans. It helps
product managers prioritize R&D dollars to maximize chances of realizing the
product’s promised or anticipated ROI. It allows the product team to focus on
more value-creating features “here and now” versus hundreds of features that
might have limited relative potential. And it helps customers know that their
favorite features are planned somewhere down the road, and, if they so desire,
the product team can expedite them.

The notion of “value” is often a poorly understood one. We all understand
the intent of value but often struggle to articulate it in practical terms. It could
be absolute or relative. An absolute value could be the real-dollar opportunity
that exists if only a certain product or a feature were available by a certain
time. Or, it could be the amount of money a customer is willing to pay to get
some key feature. However, we might not always have a sense of the abso-
lute value. The relative value is indeed a useful way to compare which of the
features offers higher value. A simple tool to use is “Buy a Feature,”5 where
customers play with a notional $100 or $200 to buy the feature(s) they care
about. Over a reasonably large sample of the target group, a clear pattern
might emerge that helps identify which features are most valued. In Innovation
Games, Hohmann has many such ideas to help prioritize features so that a
product roadmap could be constructed or improved. One such game is the
“20/20 Vision”6 where the intent is to try to prioritize features relative to one
another.

5www.innovationgames.com/buy-a-feature/.
620/20 Vision, www.innovationgames.com/2020-vision/.

http://www.innovationgames.com/buy-a-feature/
http://www.innovationgames.com/2020-vision/

Chapter 4 | Describe90

The notion of business value of software or a release must eventually be bro-
ken down at a feature, and eventually at a story, level. Indeed, this is among the
most ill understood ideas in agile product development. In the waterfall world,
the notion of business value at a requirement or a feature level didn’t exist
because so long as all features were delivered by a certain date, everything
was of equally high value. Which is just a nice way to say that nothing was of
value – at least on a relative basis. However, as we have seen from examples
of MS Office 2007 and Instagram, it’s clear that for just about any software
product, not all features are alike.

Most people ignore close to 90% of the features and simply use features that
meet their requirements. Since no team is blessed with an unlimited amount
of time and effort, it makes no sense to mindlessly deliver all features in a
waterfall manner. Instead, what does make software valuable is its ability to
deliver the most important features.

Being able to articulate relative value helps a team understand the pecking
order of requirements from an end-user’s point of view, and is a great deci-
sion-making aid, especially when a team must prioritize its work (and later on,
when it must constantly reprioritize its work to meet the project schedule
and cost boundaries).

Using the notion of relative business value, a team could prioritize its work to
maximize the “outcomes” and not just deliver the “outputs”. I define outputs as
simply the stories delivered at the end of an iteration, e.g., number of story points,
or the velocity. It only signifies the throughput of a team’s process. However, an
outcome is much more, and I define it as the ratio of business value delivered
by a story to its relative size. Note that both are abstract and relative quantities,
and the notion of outcome is not a mathematically precise number but a way to
order features in a consistent way such that a team is able to direct its effort in
maximizing the outcomes over simply limiting itself to delivering higher output.

A product roadmap not only helps clarify how the R&D effort will be stag-
gered to realize the product’s vision and align the entire team around it, but
it also allows customer feedback of what features are perceived as critical
and what could be deferred to another time. In the case of B2B products, the
roadmap allows (leads) customers to take on the role of active co-creators
by letting them reprioritize based on the business needs. In the case of B2C
products, the roadmap gauges potential interest from early adopters and thus
ensures better ROI of the features.

My ideal view of a product roadmap is that it visualizes how a given piece of
software will deliver outcomes over its entire development and sustaining
cycle. However, most often, the product managers limit themselves to only
identifying units of outputs (i.e., product features). While this might be a good
starting point, it might be even more valuable to think of the product roadmap
in terms of outcomes.

Agile Product Development 91

Product Backlog
The term “product backlog” comes from scrum methodology. A product
backlog is a prioritized wish list of all features and bugs that a product owner
would like to get implemented during the lifetime of a product. It differs from
a product roadmap in the sense that a product roadmap typically doesn’t have
prioritized lists of features but might indicate a desired timeline (which might
be more of a ballpark guess, as in Q3 or Q4) of them. However, a product
backlog is not expected to have a timeline view, but just an ordering of fea-
tures or requirements in terms of value to the customer.

The key distinction between a product roadmap and a backlog is about the
confirmation of features in a given slice of time. While a roadmap might be
more aligned to organizational boundaries, such as the annual budget, it might
only have high-level bullet points about big buckets of functionality that are
targeted to be delivered at big time intervals, typically each quarter, or so –
but there might be no, or low commitment on all those features.

However in the case of a product backlog, the typical runway is for a release
(and there might be potentially 2-3 releases in a year) and the features are
linearly ordered in terms of priority. The timeline is not quite known, at least
at the start of the release. The product backlog has a much shorter planning
horizon than the product roadmap and hence is only expected to have more
firm product feature requests, and, in turn, be assured more firm commit-
ments by the development teams.

Product backlog is often described as being “DEEP”:

•	 Detailed appropriately: The higher priority the features
are in the backlog, the more likely they are known in greater
details. This helps ensure we are not overspending our time
and effort on features that are not important at this point.

•	 estimable: If a backlog has features that appear to be
too big to estimate, the team and the product owner
work together to groom the product and bring it down
to more acceptable levels.

•	 emergent: This is a consistent theme across the whole
of agile thinking—we recognize that we will get better
clarity after we start the project. Sometimes new things
will emerge, sometimes they will get clarified, prioritizes
will change and so on. A product backlog is a live docu-
ment that undergoes constant refinements.

•	 prioritized: A product backlog must be able to provide
direction about what is considered more valuable to its
users so that the development team can focus its atten-
tion accordingly.

Chapter 4 | Describe92

Note that there is no mention of size in the product backlog. In reality, a
backlog undergoes a continuous process of analysis, refinement, and estima-
tion—often known as “backlog grooming,” or “story time.” The result of such
sessions is an increasing level of clarity about each of these features, a lowered
sense of uncertainty, and a higher agreement within the team on its relative
size—all of which helps improve planning and implementation of the respec-
tive features.

Sprint Backlog
Sprint backlog comes from the most popular agile methodology scrum (which
is described in more detail in Chapter 6). It represents a subset of the high-
est priority requirements (and their component tasks) in a product backlog
that have been mutually agreed upon by the product owner and the develop-
ment team to be delivered in the current time box of planning and execution,
known as “sprint” in scrum. These requirements are often initially bigger than
what could be delivered in a single sprint and are sometimes known as “epic
stories” or, simply, “epics.” An epic that spans more than one sprint could rep-
resent both a technical risk (How are we going to implement and test it?) and
a product risk (Is that what is really needed?) due to delayed feedback. Hence,
it is generally broken down in what are known as “user stories” or, simply,
“stories.” Stories are normally small enough to be delivered in a single sprint,
and they represent a finite amount of end-user facing functionality rather than
a software module or a component that might exist independently but have
no meaningful value from the customers’ point of view.

A sprint backlog provides a common basis for the product owner and the
team to plan and track their commitments over a short planning horizon that
represents balance between the lowest risk in terms of the length of feedback
loop and the impracticality and overheads of working in any timeslice smaller
than that. The product owner makes plans for consuming the output of the
sprint by organizing customer demos or customer betas, or simply dogfood-
ing it internally. The team benefits by having a stable set of requirements that
allows it to plan and organize its work without worrying about ad hoc planning
or last-minute changes leading to task switching or rework. In addition, the
output of a sprint is a collection of end-user facing sprints that help validate
the entire technical stack, including integration of all software components. As
a result, any risks relating to overall integration if performed towards the end
get mitigated over time, with each sprint establishing a stable-state based on
the incremental delta over the previous one. If the new state of the sprint is
unstable or if the customer rejects the output of a sprint, the team can easily
roll back to the previous sprint, which is the last-known stable state.

http://dx.doi.org/10.1007/978-1-4842-1067-3_6

Agile Product Development 93

Scrum’s rules prohibit making any changes to the sprint backlog once the
sprint gets underway, so a scrum backlog is ideally created at the start of the
sprint and then completed (or rather “burnt down”) as the sprint progresses.
If all its stories are completed and delivered as per their respective acceptance
criteria, the scrum backlog is said to have been completed. Any leftover from
the sprint backlog is simply moved back to the product backlog for reprioriti-
zation (not necessarily in the next sprint by default), and a fresh sprint backlog
is created accordingly.

A sprint backlog allows creation of a “potentially shippable increment” of the
most important features without worrying about the entire product backlog
during a given sprint. This is important because it allows teams to make incre-
mental progress while the product owner works on getting more clarity on
the rest of the product backlog without really holding up the most immediate
work. Any new requirements or changes are pushed onto the product back-
log and prioritized by the product owner. During periodic backlog grooming
sessions, the team examines the backlog. If it feels there is sufficient clarity,
they estimate it so that the product owner can rearrange product release
plans based on the objective and quantifiable data.

User Stories
“User stories,” or simply “stories,” is agile’s preferred mechanism to create
a placeholder for a future conversation between the product owner and the
developers on a specific user requirement. Instead of spending too much
time and effort to nail down every single detail about a product requirement
upfront, agilists prefer to simply state the high-level functionality and let the
details emerge from in-person conversations between the product owner and
the developers at a time closer to its implementation.

In the process, time is saved from over documentation. The process also
accommodates for leaving the implementation details until the last respon-
sible moment and encourages the developers to think of creative solutions
based on a high-level idea of what is required. Quite often, we get caught up
in mechanics of stories, but miss the intent. The idea is not to capture and
specify every single detail of the requirement (which would not only be too
costly in terms of time and effort, but even be futile given the inefficacy of
documentation to help clarify every possible detail, which anyway are likely to
change over time), but to convey minimum yet adequate information about
a feature for the purpose of high-level planning and technical analysis. The
details are omitted for now. As opposed to the waterfall model, where all
requirements are analyzed and designed well ahead of time, this is a very
lean way of thinking about limiting the work-in-progress by doing only what
the customer really needs. In addition, by delivering only the most valuable
requirements, this model allows the delivery of working software rather than

Chapter 4 | Describe94

delivering documentation for all requirements, which might be of no signifi-
cant value, especially to the customers.

User stories have a well-developed body of knowledge in terms of document-
ing them, writing them (for example, the “INVEST” test of readiness), or slic-
ing them into smaller stories. However, simply visualizing them as an ordered
one-dimensional list could make us see them as independent units of func-
tionality with no relationships at a higher level. In his book User Story Mapping,
Jeff Patton challenges developers to think of user requirements not only as
a one-dimensional priority list as in a product backlog, but also as a two-
dimensional map using cluster of product functionality as the second dimen-
sion. The developers can then build a “product” incrementally as opposed to
focusing on disjointed features that might be delivered in the order of prior-
ity but might not reflect the needed functionality set. A story map can help
in planning, implementing and delivering a product in terms of its functional
completeness rather than simply delivering stories that might be ordered in
terms of priority from a development team’s point of view, but lack the mean-
ingfulness from an end-user’s point of view as a cohesive functional set. The
user story map seeks to create an artifact that can bridge this gap, and provide
a common basis for delivering functionality rather than being limited to an
assortment of stories.

In my view, the journey of incremental development must begin with the abil-
ity to specify user requirements as bite-sized stories. If a product owner is
not able to create such slivers of functionality, any ability to perform short-
feedback agile engineering (such as TDD, refactoring, and CI) might simply be
the raw horsepower that remains unharnessed. If one needs to eventually get
to the point of continuous deployment, she must be able to think of product
functionality in these terms. User stories provide a great mechanism to help
get started.

Feature Prioritization
In my talks and presentations, I often ask what percentage of features people
use with MS Word. The answers average between 10 and 15%. This range
seems to corroborate well with a customer survey Microsoft did when creat-
ing MS Office 2007. When users of MS Office 2003 were asked what features
they would like to have in MS Office 2007, more than 90% of them asked for
features that were already present in MS Office 2003!7 It was a shame that
they had not “discovered” them, let alone used them. If we could somehow

7https://news.microsoft.com/2006/11/21/microsoft-to-share-significant-ui-
investment-in-2007-microsoft-office-applications-with-partner-community/.

https://news.microsoft.com/2006/11/21/microsoft-to-share-significant-ui-investment-in-2007-microsoft-office-applications-with-partner-community/
https://news.microsoft.com/2006/11/21/microsoft-to-share-significant-ui-investment-in-2007-microsoft-office-applications-with-partner-community/

Agile Product Development 95

learn what users want and find a way to deliver only those features (or deliver
them sooner than the unimportant features), we might be able to create much
higher value for our customers. Instead, we typically cram all the features in the
products, thinking that we must compete feature-by-feature with competitors.
Anything short of that is simply going to make our products inferior. Really?

Kathy Sierra, co-creator of the best-selling Head First series, hosts an influential
blog known as Creating Passionate Users. In a blog post in 2005, “Featuritis vs.
the Happy User Peak,”8 she discusses the problem of product designers cram-
ming way too many features into their product. She attributed that mindset
to fear—the fear of being perceived inferior to competitors because of fewer
features resulting in customers deserting them. As a result, we keep adding
features until we come to the so-called “Featuritis Curve.” Her hypothesis
states that we should stop at the “Happy User Peak” stage and slow down on
the development of new features. She argues that companies should focus on
making a product or service easier to use rather than adding more features.

The question is how we prioritize the most important features so that we
build just enough features and not overwhelm the consumer.

Back in waterfall days, prioritizing features was not a major prerequisite as
long as 100% of the features were delivered by the promised date (but then it
did lead to different problems by unnecessarily bloating up the software with
90% of the features being unwanted). The end-date was not only far out in
future, but it also had enough hidden buffers due to the fundamental nature of
waterfall planning. (We will discuss this in Chapter 6.) However, we never have
enough time to deliver all the features, and even if we deliver them all, chances
are high that not all features will be used. So, there needs to be a smarter way
to focus on higher-value requirements before delivering the lesser require-
ments. Prioritization allows teams to make important trade-offs while direct-
ing their time and effort on activities that are more strategic or critical.

It is important to note that there might be different reasons to prioritize a
given feature. For example, in some cases, delivering a high-value feature might
be critical to demonstrate tangible progress to the customer, and it might be
linked to some early cash flows. In some other cases, there might be a need to
tackle the highest-risk items first in order to mitigate critical risks, say, around
architecture or infrastructure.

A very simple way to prioritize requirements would be to somehow classify
them as high, medium, or low priority. While there might be usefulness in such
a classification, different people and different stakeholders might have differ-

8Featuritis vs. Happy User Peak, http://headrush.typepad.com/creating_passionate_
users/2005/06/featuritis_vs_t.html.

http://dx.doi.org/10.1007/978-1-4842-1067-3_6
http://headrush.typepad.com/creating_passionate_users/2005/06/featuritis_vs_t.html
http://headrush.typepad.com/creating_passionate_users/2005/06/featuritis_vs_t.html

Chapter 4 | Describe96

ent understandings of each of these labels. We need some mechanism that is
objective, transparent, and equally understood by all stakeholders.

Let’s review some of the popular mechanisms to understand and prioritize
product needs.

Kano Analysis
Not all features are equal! While some features create the so-called “wow”
user experience, some features are simply table stakes—the presence of them
doesn’t add to user experience, though the absence of them could lead to
customer dissatisfaction.

Professor Noriaki Kano developed the so-called Kano Model,9 which helps
place customer preferences into the following categories:

•	 Basic quality attributes are like table stakes, or hygiene
factors: By themselves, they may not make a user happy,
but their absence is likely to cause dissatisfaction. For
example, a Bluetooth-enabled pairing of a smartphone
with a car’s music system is considered a standard acces-
sory nowadays.

•	 Linear performance attributes are like a linear function:
the more, the better. Examples include the battery life of
a smartphone and the storage capacity of different mod-
els of a laptop.

•	 Exciters and delighters are the “wow” factors that make
a product stand apart, and they might well be the com-
petitive advantage the product offers. For example, today
wireless charging of smartphones is a new thing and
might be a very cool feature.

No feature remains static in its category. Over time, the exciters and delight-
ers are copied by other competitors, and very soon they become table stakes.
When Apple introduced the “pinch-to-zoom” interface for touch devices, it
was revolutionary. Today, however, it is unimaginable for any device manufac-
turer to offer a touch product without it.

The Kano Model is a great visual tool to identify and describe different types
of product features. If you have too many features in the basic or the linear
performance category, chances are that you are not innovating enough. You
might want to consider putting some time and money aside for creative think-
ing. On the other hand, if there are too many features in the exciters category,

9Kano Model, https://en.wikipedia.org/wiki/Kano_model.

https://en.wikipedia.org/wiki/Kano_model

Agile Product Development 97

you might run the risk of building a product so radical that the market might
not be ready for it. Think of Amazon’s Fire smartphone. With four front
cameras, it offered the industry’s first true 3D display. However, with no other
perceived benefits over other comparable features, it bombed10 at the market
within a month of its introduction.

MoSCoW
You have a truckload of requirements to deliver, but you have a rather hard
deadline to deliver them by. In most such cases, you might only be able to
deliver some of those requirements. How will you decide what to deliver by
the deadline? In many cases, we make either arbitrary and ill-informed deci-
sions, or we simply go with the most demanding customers. However, this
might not always be the best strategy. We need a more consistent way to cat-
egorize requirements into what must get shipped and what could be optional.
While it might be ideal if all the features could be delivered, the reality is
that we will always have more feature ideas than time! So, by focusing on the
“must-have” requirements, we are able to address a minimal, usable subset of
the business case that helps focus maximum effort toward it. Over time, other
features will be addressed.

Originally developed as part of the DSDM method,11 MoSCoW is a simple but
useful technique to prioritize requirements based on their perceived relative
criticality. It doesn’t use any quantitative measures in coming up with a rela-
tive prioritization, but it allows the delivery of “Minimum Usable Subset” of
requirements:

•	 Must: This requirement is mandatory, or a “must-have,”
for the final deliverable to be accepted. All requirements
placed in the Must category must be included in the final
delivery, for if even one is missing, it could mean total
rejection of the final work product. Such a grouping is also
known by the acronym MUST (Minimum Usable SubseT).

•	 Should: This is not a mandatory requirement, but it is
included in the final deliverable if possible. It might repre-
sent a critical requirement, but something that might be
possible to realize in some other way.

10Why Amazon’s Fire phone failed, http://fortune.com/2014/09/29/why-amazons-
fire-phone-failed/.
11www.dsdm.org/content/10-moscow-prioritisation.

http://fortune.com/2014/09/29/why-amazons-fire-phone-failed/
http://fortune.com/2014/09/29/why-amazons-fire-phone-failed/
http://www.dsdm.org/content/10-moscow-prioritisation

Chapter 4 | Describe98

•	 Could: This requirement might be considered “good to
have” if time and money permits.

•	 Won’t: This requirement is not required in the current
version, but might be needed in a future version. The only
reason to communicate it might be so that designers are
consciously aware of any design implication to consider at
this point (without really bloating the design for futuristic
requirements).

Let’s take an example. If you were designing a new smartphone, you might use
MoSCoW to prioritize requirements, as shown in Table 4-1.

table 4-1. Features Prioritization for a Smartphone

Priority Features

Must Make voice calls

Surf Internet

Check e-mails

Pre-loaded apps for alarm, contacts, calendar, music, videos, camera

Should Download new apps

Allow documents to be stored locally to read later

Could Waterproof

Wireless charging

Won’t 3D display

Word processor

Creating a prioritization along these lines can allow users and developers to
be on the same page, and it helps focus on core value features, especially when
time is at a premium.

Financial Measures
Every product can be considered as a series of cash flows in finance terms.
There could be an initial investment upfront (meaning, “outflows”) in terms of
acquiring hardware or software or buying some infrastructure or tools, fol-
lowed by periodic outflows. This could go on for some time until the product
is ready to be shipped. When customers start paying for it, there could be
cash “inflows.” Eventually, we break even when we have recovered all the initial
investment. Then we start making profits.

Agile Product Development 99

Typical cash outflows include salaries for product team, bills for utilities (such
as facility rent, electricity, water, and networking), development tools, licensing
fee, servers, training budget, marketing budget, sales costs, and so on.

Typical cash inflows could include revenue from sales, royalty payments, licens-
ing revenues, lead generation commission, and so forth.

In this simplistic model, we could envisage each product and its features as
various financial measures. For example, a product might need an upfront
investment of $100k and start giving returns of $50k in the third year. It will
then provide a lifelong return of $10k. Maybe there is another product that
needs $200k investment upfront and only starts returning in the fifth year, but
it returns $30k every year. Which product is a better investment?

There are several measures that can help us make such product decisions
using financial measures, when such data is available. These mechanisms are
often used in portfolio management but could also be used when big-ticket
features need to be decided. Let’s look as some of these measures.

Break-even period (Bep)

A break-even period (BEP), or the payback period, is simply the amount of
time it takes to recover all investments. In most cases, we want the quickest
BEP. However, these might be businesses that have a long gestation period
and, hence, have a long BEP. For example, Peter Thiel in his 2014 book Zero to
One, says “…most of a tech company’s value will come at least 10 to 15 years
in future.” He is referring to “value” and not the BEP, but if we extend the
idea of how long it takes to recover the “value”, we can draw comparisons.
Talking specifically about the company he co-founded, PayPal, he says most of
the company’s value will come from 2020 and beyond. Clearly, when you are
building a great product or a great company, you are not looking for a quick
way to make money and exit out. On the other hand, an extraordinary long
BEP could also make investors worry if the business is interesting enough. So,
a balance might be needed, but being aware of the BEP might be a good start-
ing point before making the decision.

Internal return rate (Irr)

Any investment made by a company might require that the product deliver
returns higher than a given minimum rate of return, often known as the
“hurdle rate.” This might be a company’s internal discipline to invest in
products that deliver a certain minimum ROI. A product with a high IRR
might reflect a market opportunity to offer premium services, whereas one
with a low IRR might reflect a highly commoditized market where cost is the
only differentiation and hence a focus on offering basic hygiene features in the
most cost-effective manner might be the only strategy till a firm can figure out
how to create some form of value differentiation. For example, a firm might

Chapter 4 | Describe100

 consider the Blue Ocean strategy to offer value without necessarily succumb-
ing to price leadership which might only create a “me too” product and offer
no real innovation.

Discount Cash Flow (DCF)

A discounted cash flow takes macroeconomic factors such as rate of inflation
into account to offset the true time-value of money. Compared to a regular
cash flow analysis, a DCF makes a more realistic comparison of cash flows.

Net present Value (NpV)

The net present value is the sum total of all the product’s cash inflows and
outflows, and it is typically discounted against inflation. It is one of the most
common measures to compare between two financial instruments. Warren
Buffet is supposed to use NPV to decide on investing in companies.12

Cash Cycle

A cash cycle is a simple, but extremely important measure of the amount
of time between the point when we start collecting money from custom-
ers and the time we pay our suppliers. A negative cash cycle, thus, is not a
mathematical fallacy, but a great business acumen. It basically means that you
collect money from customers first and then pay your suppliers later, and
it represents virtually no need for the working capital (which, if anything, is
negative here). Working capital is another form of the inventory, and the lon-
ger the sales cycle, the more working capital is needed to remain inside the
system, thus representing a higher amount of inventory. Thus, a negative cash
cycle means there is literally no such inventory. Companies such as Toyota
and Dell have created an extremely efficient lean production system to build
products only against firm order (MTO, or Made-to-Order) rather than the
conventional methods of mass-producing products against forecast (MTF, or
Made-to-Forecast). The MTF approach keeps high inventory locked up until
the time the final sale happens, and it carries the risk of not having demand as
per the plan. Amazon had a cash cycle of -14 days in 201213 and it means there
is virtually no need to hold cash to operate such a business.

12A Refresher on Net Present Value, https://hbr.org/2014/11/a-refresher-on-net-
present-value.
13The Cash Conversion Cycle, http://www.forbes.com/sites/ycharts/2012/03/10/
the-cash-conversion-cycle/.

https://hbr.org/2014/11/a-refresher-on-net-present-value
https://hbr.org/2014/11/a-refresher-on-net-present-value
http://www.forbes.com/sites/ycharts/2012/03/10/the-cash-conversion-cycle/
http://www.forbes.com/sites/ycharts/2012/03/10/the-cash-conversion-cycle/

Agile Product Development 101

Inventory turns

Inventory turnover, or simply inventory turns, is another very interesting mea-
sure of the efficiency of the end-to-end process of product development and
sales. It is an indicator of how many times a company’s inventory gets sold
and replaced over time. A high inventory turnover means there is a strong
demand for sales and a corresponding lower amount of inventory of unsold
goods, which results into lower risk of stock surpluses. On the other hand,
a low inventory turn could represent a sluggish demand for the product (for
whatever reason) and might represent a higher amount of unsold goods, lead-
ing to risks around it.

Apple is thought to have 74 inventory turns in a year, which is the highest in
the industry.14 This means Apple turns over its entire inventory every five days
(and only McDonalds with 2.5 days fares better than Apple). In lean terms, it
represents an extremely low amount of inventory in the process.

Pugh Matrix
Let’s consider a situation where there are several options, but we can only
choose one of them. Let’s also consider that there are multiple factors that we
can use to compare these options—so, there is no one single factor that can
be chosen as the tiebreaker. These factors may again not have the same rela-
tive importance. How do we decide which option is “better” than the others?

Stuart Pugh created the “Pugh Matrix,”15 which is a simple way to identify fac-
tors, allocate weightages, and weigh each of the factors against the parameters
so that a weighted sum is available for each option. The option with the high-
est weighted sum would then be chosen as the best option representing the
most balanced choice among all factors and their relative weights.

For example, a chief product owner might be faced with the choice of decid-
ing between multiple product proposals. She might apply weightage to choose
the most promising one, say, based on market size, newness of technology,
propensity to pay premium prices, and distribution costs. Based on the relative
important of these factors for all the product proposals, their relative weights
could be considered and a Pugh Matrix could be created for comparing vari-
ous product candidates to arrive at a single decision.

14Apple turns over entire inventory every five days, http://appleinsider.com/
articles/12/05/31/apple_turns_over_entire_inventory_every_five_days.
15Decision Matrix, http://asq.org/learn-about-quality/decision-making-tools/
overview/decision-matrix.html.

http://appleinsider.com/articles/12/05/31/apple_turns_over_entire_inventory_every_five_days
http://appleinsider.com/articles/12/05/31/apple_turns_over_entire_inventory_every_five_days
http://asq.org/learn-about-quality/decision-making-tools/overview/decision-matrix.html
http://asq.org/learn-about-quality/decision-making-tools/overview/decision-matrix.html

Chapter 4 | Describe102

Conclusions
Applying agile thinking to product development allows various product arti-
facts to be created with increasing level of detail as there is confirmation on
the previous steps. This allows only investing the time and effort on the details
that are needed here and now, as opposed to building everything in finer detail
for a future that may or may not happen.

Various key artifacts can be thought of as multiple agile runways that have
varying lengths, as shown in Figure 4-1.

The strategic vision of a company helps establish a long-term vision that aligns
all its products in a common direction. This might be abstracted at sufficiently
high levels and act as the common frame of reference to any product that
gets built under a portfolio or inside the company. It has a rather long runway
given its nature. A product vision acts as the true north for a specific product
and might have a long-term runway for it, say between three and five years.
A product roadmap could be zooming into the product vision and allocating
it to some timelines, typically around an annual plan (because that tends to be
the budgeting and revenue cycle in most organizations). Product backlog might
refer to the next 1–3 releases, and the sprint backlog is the most specific and
shortest runway among them all—just two to four weeks in most cases.

How do these artifacts help? To begin with, they allow us to make well-informed
trade-offs between predictability and flexibility. In general, the longer the plan-
ning horizon, the higher its flexibility in accommodating changes. However,
that flexibility comes at the cost of predictability. Similarly, the shorter the
runway, the lower its flexibility in accommodating late changes, which lead to
much higher predictability. This trade-off is represented in Figure 4-2.

Figure 4-1. Product runways represent planning horizon at varying levels of operational details

Agile Product Development 103

Figure 4-2. Product runways represent a healthy trade-off between flexibility and predictability

Starting with the long-term product vision, we have high flexibility in what
is to be implemented to realize the product vision, but that have little or no
predictability in when it will be delivered. This isn’t necessarily bad because it
is still early in the process. Once we have the necessary sign-offs on the vision,
we can flesh out more details until we have very firm requirements that must
go into the current sprint. This can offer a high level of predictability but at the
cost of sacrificing flexibility. The idea is that in the coming two- to four-week
period, we must have a very clear picture of what is really needed. By locking
down those short-term requirements, we are able to raise predictability in
our work.

Agile methods offer mechanisms and artifacts to capture and describe such
nuances to aid progressive elaboration as the idea gets validated and evolves.
As a result, we can build plans with increasing clarity and predictability. Note
that at any time, changes can be accommodated. However, to ensure that
unbridled changes don’t disrupt the entire effort, agile methodologies such
as scrum introduce some constraints that help maintain a healthy balance
between flexibility and predictability.

In Chapter 5, we will discuss how an agile team incorporates these product
descriptions in designing and developing a product.

http://dx.doi.org/10.1007/978-1-4842-1067-3_5

C h a p t e r

Design
Design is how you design!

Design is not just what it looks like and feels like. Design is how it works.

—Steve Jobs

This is the golden age of design. We have gone past the point where products
compete on functionality alone. Today, most products easily meet our basic
needs in terms of functionality. Most washing machines offer similar basic
functions, and the same can be said about cars, smartphones, wrist watches,
word processors, or just about any other modern-day product. Similarly, every
web-mail or cloud storage service offers similar features. Sure, there are clever
innovations related to making some features stand out from others and to
using an intellectual property to protect from (and outcompete) the imitators,
but the basic function of these products and services are dangerously alike.
Even price points are within the same ballpark. In such a world, how do you
create products that stand out from your competitors?

In context of agile product development, the notion of architecture design
undergoes a major paradigm shift. Agile methods favor an “inspect-and-adapt”
approach that is based on a working software being subjected to a real-world
deployment. The traditional approach, on the other hand, was to “slow cook”
in the sense that a lengthy document was created to diligently document all
aspects of design in adequate detail that would then be reviewed to verify its
correctness and other non-functional aspects such as performance, scalability,
reliability, portability, and maintainability.

In this chapter, let’s look at some of the ideas behind design, and the methods
and practices that designers use to accomplish these objectives.

5

Chapter 5 | Design106

Design as Differentiator?
In a world where everyone is constantly copying each other, how do you cre-
ate a niche and be seen as the preferred choice by your customers? In other
words, why should your customers choose you over your competitors?

Could functionality, or rather more functionality, be the differentiator? While
an incumbent might have the unfair advantage of having more product features
(apart from knowing the market and the customer needs better), having more
features alone might not help a challenger. In fact, it might not even help the
incumbent, either. Myspace was the market leader between 2005 and 2008
and even surpassed Google as the most visited web site in the United States
in 2008. Yet none of its early popularity could save it from eventual extinc-
tion as Facebook gradually came up with a better product.1 MP3 players (and
the previous generation successes like music CDs) existed long before Apple
introduced the iconic iPod, which offered hardly any new “functionality” in
the traditional sense. The contemporary (and largely anecdotal) data seem to
suggest that less functionality—not more functionality—might actually be a
key factor in a winning product.2 When burbn.com built a copy of foursquare.
com as a check-in service app, they found that most people who were using
their service were simply using it to upload pictures from their mobile phones.
They created the “zoom-in” pivot and the resultant product, Instagram, cre-
ated a billion-dollar value.3 Perhaps Dave McClure’s prescription to “kill a
feature every week”4 isn’t that radical after all!

Could price perhaps be the differentiator? While the incumbent is sitting
pretty with an uncontested market leadership and enjoying hefty profits, how
does a challenger enter the ring and disrupt the market? Perhaps the answer
is in offering a similar product at a lower price point. GM employed this clever
strategy back in 1924. While Ford was sticking to a single model in each seg-
ment, GM came up with the idea of “a car for every purse and purpose.”5 That
surely was a winning strategy for GM for the next several decades. However,
with today’s consumers spoiled by choice, a lower price point alone might
not be the best strategy, especially if it makes the business itself unviable over

1Sean Parker, “Why Myspace Lost To Facebook,” http://techcrunch.com/2011/06/28/
sean-parker-on-why-myspace-lost-to-facebook/
2“Why More Features Doesn’t Mean More Success,” https://blog.kissmetrics.com/
features-doesnt-mean-success/
3“How Instragrm Grew from Foursquare Knock-Off to $1 Billion Photo Empire,”
www.inc.com/eric-markowitz/life-and-times-of-instagram-the-complete-
original-story.html
4“Startup Metrics for Pirates/KILL a feature,” www.slideshare.net/dmc500hats/
startup-metrics-for-pirates-fowa-london-oct-2009/17
5https://history.gmheritagecenter.com/wiki/index.php/1924,_%22A_
Car_for_Every_Purse_and_Purpose%22

http://techcrunch.com/2011/06/28/sean-parker-on-why-myspace-lost-to-facebook/
http://techcrunch.com/2011/06/28/sean-parker-on-why-myspace-lost-to-facebook/
https://blog.kissmetrics.com/features-doesnt-mean-success/
https://blog.kissmetrics.com/features-doesnt-mean-success/
http://www.inc.com/eric-markowitz/life-and-times-of-instagram-the-complete-original-story.html
http://www.inc.com/eric-markowitz/life-and-times-of-instagram-the-complete-original-story.html
http://www.slideshare.net/dmc500hats/startup-metrics-for-pirates-fowa-london-oct-2009/17
http://www.slideshare.net/dmc500hats/startup-metrics-for-pirates-fowa-london-oct-2009/17
https://history.gmheritagecenter.com/wiki/index.php/1924,_%22A_Car_for_Every_Purse_and_Purpose%22
https://history.gmheritagecenter.com/wiki/index.php/1924,_%22A_Car_for_Every_Purse_and_Purpose%22

Agile Product Development 107

the long term, as the Kingfisher Airlines experience taught us.6 Proclaiming
itself as India’s only five-star airline, Kingfisher offered top-of-the-shelf pre-
mium services and yet kept underpricing itself in the fiercely competitive and
newly opened Indian aviation market. Having never made any profits during
its lifetime, it finally stopped operations in 2012. Though its current state is
unknown, it is most likely a closed chapter.

What other ways could a newcomer disrupt the market and win the market
share? Let’s consider a few examples.

When Apple launched the first iPhone in June 2007, market leader Nokia was
worth $115 billion and Blackberry $40 billion.7 Clearly, the iPhone was not
a threat to them. Nokia’s Chief Strategist Annsi Vanjoki is supposed to have
made this statement:

The development of mobile phones will be similar in PCs. Even with
the Mac, Apple has attracted much attention at first, but they have still
remained a niche manufacturer. That will be in mobile phones as well.8

Blackberry’s maker, RIM, actually thought iPhone was impossible in 2007 and
that Apple was lying about having developed it.9 What stopped the traditional
phone makers to think differently and disrupt their own success before some-
one else could?

Consider Uber. The idea for Uber was born on a snowy night in Paris when
Travis Kalanick and his friend Garrett Camp couldn’t get a cab. Garrett said,
“I want(ed) to push a button and get a ride.”10 As a result of this experience,
Kalanick and Camp decided to disrupt the market. Today, Uber has close
to a million drivers working with it globally (and it expects to add another
million in 2015 alone) and a valuation of over $50 billion.11 Yet, it owns not
a single car. (In fact, it actually wants to end car ownership all together and
make the world a bit greener.) Uber reached the $50-billion milestone two
years sooner than even Facebook did. No wonder Google wanted to invest

6“The Flight and Fall of Kingfisher Airlines, “ www.livemint.com/Opinion/
n62RtIr8O9UKqfgTJNDnIM/The-flight-and-fall-of-Kingfisher-Airlines.html
7“iPhone, Nokia, and Blackberry: One Chart That Tells a Story of Divergent Fortunes,”
https://gigaom.com/2013/09/26/iphone-nokia-blackberry-one-chart-that-
tells-a-story-of-divergent-fortunes/
8“Top 5 Assclown iPhone Quotes in 2007,” http://gizmodo.com/5416781/
top-5-assclown-iphone-quotes-in-2007
9“RIM Thought iPhone Was Impossible in 2007,” www.macnn.com/articles/10/12/27/
rim.thought.apple.was.lying.on.iphone.in.2007/
10“5-Year Anniversary Remarks From Uber CEO Travis Kalanich,” https://newsroom.
uber.com/2015/06/5-years-travis-kalanick/
11“Uber Values at More Than $50 Billion,” www.wsj.com/articles/uber-valued-at-
more-than-50-billion-1438367457

http://www.livemint.com/Opinion/n62RtIr8O9UKqfgTJNDnIM/The-flight-and-fall-of-Kingfisher-Airlines.html
http://www.livemint.com/Opinion/n62RtIr8O9UKqfgTJNDnIM/The-flight-and-fall-of-Kingfisher-Airlines.html
https://gigaom.com/2013/09/26/iphone-nokia-blackberry-one-chart-that-tells-a-story-of-divergent-fortunes/
https://gigaom.com/2013/09/26/iphone-nokia-blackberry-one-chart-that-tells-a-story-of-divergent-fortunes/
http://gizmodo.com/5416781/top-5-assclown-iphone-quotes-in-2007
http://gizmodo.com/5416781/top-5-assclown-iphone-quotes-in-2007
http://www.macnn.com/articles/10/12/27/rim.thought.apple.was.lying.on.iphone.in.2007/
http://www.macnn.com/articles/10/12/27/rim.thought.apple.was.lying.on.iphone.in.2007/
https://newsroom.uber.com/2015/06/5-years-travis-kalanick/
https://newsroom.uber.com/2015/06/5-years-travis-kalanick/
http://www.wsj.com/articles/uber-valued-at-more-than-50-billion-1438367457
http://www.wsj.com/articles/uber-valued-at-more-than-50-billion-1438367457

Chapter 5 | Design108

in Uber so badly. Google literally gave Uber a blank term sheet!12 Why had
none of the carmakers and rental companies in the world come up with such
an outrageous idea?

Here’s another example, this time from India. If Google truly disrupted the ad
market in the Internet world, InMobi did that in the mobile world. It reached
one billion unique mobile devices in February 2015, making it the largest mobile
ad platform in the world13 and second largest overall, second only to Google.
InMobi started in India in 2007 when no one gave India a chance as it was
predominantly a feature-phone market. (However, it will become the world’s
second largest smartphone market by 2017.)14 Again, what stopped the exist-
ing (largely Western) Internet players to ignore this burgeoning market of the
future, and what did InMobi do differently to become the global leader?

Did InMobi just build yet another mousetrap with more features, or did it sell
its new product at lower cost? I don’t think so. Did it build better products
and services? I definitely think so.

Apple continues its relentless march to build better products through its
highly secretive design process that Jony Ive summarizes as “design is the
whole thing.”15 Uber wanted to make it simple for people to get a cab, and
InMobi sought to ride the wave of mobile adoption in emerging markets
and “completely understand the usage pattern and trends,” which was being
missed by the Western Internet-based companies.16

So, where does it all lead?

One common thread that unites these examples is how well these products
and services are designed—not just the bright and shiny wrapper, but as a
well-designed product in the truest sense. These companies aim to deliver
superior experiences through their deep understanding of target group users
rather than mindlessly stuffing features into the product. They strive to learn
about their pain points and address them through evolving innovative solu-
tions and by increasing the number of cases through “co-creation.” They
don’t proceed with a “we-know-everything” attitude, but actually listen to
their prospective users and aim to deliver solutions through a process of

12“Google Wanted to Invest in Uber so Badly, it Gave CEO Travis Kalanick a Blank Term
Sheet,” www.fastcompany.com/3050811/fast-feed/google-wanted-to-invest-in-
uber-so-badly-it-gave-ceo-travis-kalanick-a-blank-term-
13“InMobi Reaches Over One Billion Mobile Devices,” www.inmobi.com/company/press/
inmobi-reaches-over-one-billion-mobile-devices/
14“India Will Pass US to Become World’s Second Largest Smartphone Market by 2017,”
http://venturebeat.com/2015/07/01/india-will-pass-u-s-to-become-worlds-
second-largest-smartphone-market-by-2017/
15“Apple’s Jonathan Ive in Conversation with Vanity Fair’s Graydon Carter,” https://
youtu.be/ef69BUlge-A
16“The ‘InMobi’ Story,” http://headstart.in/2009/12/14/the-inmobi-story/

www.fastcompany.com/3050811/fast-feed/google-wanted-to-invest-in-uber-so-badly-it-gave-ceo-travis-kalanick-a-blank-term-
www.fastcompany.com/3050811/fast-feed/google-wanted-to-invest-in-uber-so-badly-it-gave-ceo-travis-kalanick-a-blank-term-
http://www.inmobi.com/company/press/inmobi-reaches-over-one-billion-mobile-devices/
http://www.inmobi.com/company/press/inmobi-reaches-over-one-billion-mobile-devices/
http://venturebeat.com/2015/07/01/india-will-pass-u-s-to-become-worlds-second-largest-smartphone-market-by-2017/
http://venturebeat.com/2015/07/01/india-will-pass-u-s-to-become-worlds-second-largest-smartphone-market-by-2017/
https://youtu.be/ef69BUlge-A
https://youtu.be/ef69BUlge-A
http://headstart.in/2009/12/14/the-inmobi-story/

Agile Product Development 109

continuous feedback, adaptation, and improvement. They display the humil-
ity to accept feedback—as critical as it might be—so that they can take baby
steps and deliver better products on an incremental basis. They don’t simply
deliver a technology and expect their users to start using it, but firmly position
their users into the center of the process. They build their products for “real
humans,” and not for people like themselves who might have achieved a higher
level of technology sophistication.

In short, they have all learned to design their products better on an ongoing
basis. So, what is design?

What is Design?
In his 1988 classic The Design of Everyday Things, the design guru Dan Norman
talks about the problems with the design of everyday appliances. He recounts
that Kenneth Olsen, who founded Digital Equipment Corporation. “couldn’t
figure out how to heat a cup of coffee in the company’s microwave oven,”
and goes on to argue that “you probably would need an engineering degree
from MIT to work it.” (Incidentally, Olsen had two degrees from MIT, and yet
couldn’t quite figure the microwave out!)

Why is it that some products are designed so badly that they actually end
up annoying the users? In terms of functionality, they perhaps offer the same
features as other products, but the way they are designed to deliver those
functionalities leaves the users fuming. No wonder such products are simply
stillborn when they are launched!

Is design an art form? Is it a science, a product of engineering, or, more increas-
ingly in the context of building better products, yet another management dis-
cipline? I think of design as a field that requires multiple competencies from
various disciplines, such as the arts, sciences, humanities, and engineering, to
solve problems in a creative and useful manner. The end goals of a design can’t
just be the design in and of itself. (If it is, it might be closer to an art form, and
while it might have a great artistic and aesthetic value, it might have a limited
utilitarian value.) It also might not be just science that offers a great possibility
inside the labs under “test conditions,” but hardly holds up when exposed to
the real world. It also can’t be a just hardcore engineering solution that is so
brilliant and efficient that it is probably not even usable by the fallible, ignorant,
and unpredictable humans. Limiting it to humanities might fail to highlight the
aspect of building a commercial product that uses technology to deliver the
intended solutions. So, what, then, is design?

In his immensely readable book, Design: A Very Short Introduction, John Heskett
defined design in a rather “nonsensical sentence”:

Design is to design a design to produce a design.

Chapter 5 | Design110

He identified design as the overall concept that entails using “design” as a verb.
He also describes it as the process behind the overall concept. In addition, he
indicates that “design” refers to some idea or concept being developed. Finally,
Heskett suggests that “design” is the final, tangible outcome. He recognizes
that design takes place at multiple levels.

We can say the same about design in the context of software products as well,
and we can perhaps divide them into two broad themes.

At the outermost level, there is an element of external appearance and usability
—the look-and-feel aspects, and the way a target user interacts with a given
software. Design, or more specifically human-centered design (also known as
user-centered design or “UCD,” user experience or “UX,” and often mistaken
for a much smaller subset of the overall user experience known as the user
interface or “UI”), is perhaps the single most important factor today in our
post-Apple world. Consumers expect a very high level of usability and intu-
itiveness in products. They are often willing to forgo some aspects of function-
ality and even pay more for desirable products.

There are also hidden (but highly “visible” when done poorly) elements of the
internal working of a software under the hood—how its data structures are
used, how optimally the algorithms use computing resources, how various mod-
ules inside a system communicate with each other, and so on. For a large part,
these elements relate to the fundamentals of computer science and are realized
through the state-of-art technology available to its software designers. In this
book, we limit ourselves to the first level of product design because we believe
the topic of software design requires a much deeper and specialized discussion
than the intent and scope of this book. However, we shall touch upon the topic.

Is every design good? We all have seen scores of products that are way too
complex to be useful. Even if the original idea was brilliant, the way it is designed
and executed leaves much to be desired. The world is full of such products.
In fact, there are some interesting ones called out on a blog post on UXPin.17

So, what is good design and how do you recognize it?

What is Good Design?
Deiter Rams18 is one of the most influential industrial designers, known for his
“less, but better” philosophy to design. He was the Chief Design Officer at the
German electrical appliances company Braun between 1961 and 1995, dur-
ing which time he and his team designed over 500 products. The only other

17“10 Worst Design Failures of All Time,” http://blog.uxpin.com/2837/10-worst-
design-failures-of-all-times/
18www.vitsoe.com/gb/about/dieter-rams

http://blog.uxpin.com/2837/10-worst-design-failures-of-all-times/
http://blog.uxpin.com/2837/10-worst-design-failures-of-all-times/
http://www.vitsoe.com/gb/about/dieter-rams

Agile Product Development 111

company he worked with is British furniture maker Vitsoe, a company whose
goal has always been to make long-living furniture.

In 1976, he delivered a talk19 where he said “design is a popular subject today.
No wonder because, in the face of increasing competition, design is the only
product differentiation that is truly discernible to the buyer.” I think that mes-
sage is even more relevant today!

He described ten principles of good design.20 Jony Ive, Apple’s Chief Designer,
considers Dieter Rams as his inspiration, and, in turn, Rams considers Apple to
“genuinely understand and practice the power of good design.”21 I think that
alone calls for a good reason to study his principles:

 1. Good design is innovative.

There might be several ways to solve a problem, and some
of them are surely uglier than others. While we want to
eventually solve the problem, we don’t want to design the
product so that it looks like it was accomplished with an
obsolete technology. The design must evolve in tandem
with newer technology and provide innovative solutions.

 2. Good design makes a product useful.

While good design is desirable, it is not the end in itself.
Customers want to solve their problems, and they need
a better and more useful product—the design must even-
tually lead to such a product. It is not just about func-
tionality alone, but the design must also cater to the
physiological and aesthetic aspects of the product.

 3. Good design is aesthetic.

A good design is a piece of art. Apart from its functional
value, it appeals to our senses—be it visual, aural, or touch
(and even smell and taste well!). I have thought of a sim-
ple test for an aesthetic design—place it in the hands of
someone who hasn’t tried the product before and leave it
for 20 or 30 seconds while you talk about something else.
In the meantime, let the person touch and feel the object.
Then try to take it back—if the person doesn’t part with
it easily, you know you have an appealing product.

19“Dieter Rams: Design by Vitsoe,” www.vitsoe.com/files/assets/1000/17/VITSOE_
Dieter_Rams_speech.pdf
20“SFMOMA Presents Less and More: The Design Ethos of Dieter Rams,” www.sfmoma.
org/about/press/press_exhibitions/releases/880
21“Dieter Rams: Apple has achieved something I never did,” www.forbes.com/sites/
anthonykosner/2013/11/30/jony-ives-no-longer-so-secret-design-weapon/

http://www.vitsoe.com/files/assets/1000/17/VITSOE_Dieter_Rams_speech.pdf
http://www.vitsoe.com/files/assets/1000/17/VITSOE_Dieter_Rams_speech.pdf
http://www.sfmoma.org/about/press/press_exhibitions/releases/880
http://www.sfmoma.org/about/press/press_exhibitions/releases/880
http://www.forbes.com/sites/anthonykosner/2013/11/30/jony-ives-no-longer-so-secret-design-weapon/
http://www.forbes.com/sites/anthonykosner/2013/11/30/jony-ives-no-longer-so-secret-design-weapon/

Chapter 5 | Design112

 4. Good design makes a product understandable.

I am sure many of us can relate to seeing old VCRs in our
living rooms that perpetually blinked “12:00” all the years
we had them. Why didn’t we just set them to the right
time? Because, generally, people didn’t have the patience
to read the bulky and confusing user manuals,22 or they
were unable to intuitively figure out how to program
their VCRs. A good design aims to do exactly reverse—
build products that are easy to understand, making those
useless user manuals obsolete.

 5. Good design is unobtrusive.

Good design must lead to purposeful products, which are
like tools—they should be attractive but, apart from their
usefulness, not demand unnecessary attention.

 6. Good design is honest.

When you use Dropbox, you experience honest design.
This honesty is apparent when compared to Dropbox’s
ancestors (good old FTP software) where one had to go
a character interface and do dozens of manual settings to
correctly complete a simple file transfer. Dropbox doesn’t
trick the user or manipulate the user into operating it in
a certain manner. Rather, it is very transparent (and easy)
what to do.

 7. Good design is long-lasting.

LEGO blocks are a perfect example of a great design
that is long lasting. If you have ever held one of those
blocks in your hands, you probably didn’t want to let it go.
LEGO blocks not only look “inviting,” but they are also
extremely durable in both their appeal as well as durabil-
ity. An average LEGO brick can be used 37,112 times!,23
and perhaps the LEGO bricks made in 1950s can still be
used with more moderns ones! A good design doesn’t
seek to cut corners in the name of creating something
that is simple and visually appealing.

22Incidentally, Elon Musk believes that any product that needs a manual to work is broken.
23“LEGO’s Magic Number Is 37,112,” http://phillipecantin.blogspot.co.uk/2013/
02/legos-magic-number-is-37112.html

http://phillipecantin.blogspot.co.uk/2013/02/legos-magic-number-is-37112.html
http://phillipecantin.blogspot.co.uk/2013/02/legos-magic-number-is-37112.html

Agile Product Development 113

 8. Good design is thorough down to the last detail.

In the 2013 movie Jobs, Steve Jobs (played by Ashton
Kutcher) says, “We gotta make small things unforget-
table.” When an employee responds that “typeface isn’t
a pressing issue,” he fires him on the spot. While this
might have been an artistic portrayal of the enigma that
was Steve Jobs, it must reflect his vision. We can see this
vision when we look at Apple products of today living up
to such high attention to “pixel-perfect” details.

 9. Good design is environmentally friendly.

There was an interesting article that argued if all indus-
tries (and not just the companies) were asked to factor
in the cost of “natural capital,” no industry would ever
be profitable.24 We must remember that the natural
resources we use in building products must not pollute
the environment. This is equally applicable to digital prod-
ucts, even when the resource is “invisible” (for example,
power consumption or radio waves, or the amount of
time people spend figuring out a feature).

 10. Good design is as little design as possible.

I believe Apple is perhaps the best embodiment of this
minimalist principle. Its products are extremely simple, so
much so that most of them come with no user manual.
Even traditional non-technology users such as children,
homemakers, and senior citizens across the globe, enjoy
them and find them easy to operate. Apple believes in a
reductionist approach to product design—remove all the
clutter and make it easy for people to use the products.

Rams captures not just design but the whole world in these ten principles.
Some people might argue they are more applicable for a world with physical
products, but I think they are equally applicable for a digital world because
they relate to a formless notion of design as a philosophy rather than any
specific technology, methods, or practices.

So, how we do bring these ideas into our software products?

24“None of the World’s Top Industries Would Be Profitable If They Paid for the Natural
Capital They Use,” http://grist.org/business-technology/none-of-the-worlds-
top-industries-would-be-profitable-if-they-paid-for-the-natural-capital-
they-use/

http://grist.org/business-technology/none-of-the-worlds-top-industries-would-be-profitable-if-they-paid-for-the-natural-capital-they-use/
http://grist.org/business-technology/none-of-the-worlds-top-industries-would-be-profitable-if-they-paid-for-the-natural-capital-they-use/
http://grist.org/business-technology/none-of-the-worlds-top-industries-would-be-profitable-if-they-paid-for-the-natural-capital-they-use/

Chapter 5 | Design114

Human-Centered Design
When it comes to software products, designers got a rather late start. Our
initial products were meant for people like us—techies. Consequently, it was
not very uncommon for us techies to actually design our products. Pretty
much throughout the 1990s in several global products companies where I
worked we never had a specialist user experience designer on our teams, and
software engineers would draw up wireframes and build mock-ups. In many
cases, we even created the “UI Style Guide” that would specify a product’s
look and feel, its appearance, its interaction design, and so on. As a matter
of fact, most of us were computer science graduates with no knowledge of
something as basic as color theory, let alone the ability to understand the
complexities of creating a “wow” experience. As a result, our products were
reasonably high on technology and extremely low on user experience.

In the late 80s and early 90s, IBM started the PC revolution and filled up every
office and eventually every home with one such machine. For the first time,
we had users who were more “regular” humans—school kids, senior citizens,
homemakers, non-PhDs, and so on. They were not technologically savvy to
begin with and sought comfort in simplicity as they did with other day-to-day
products. Microsoft Windows operating system did manage to fill that void
at the OS level, even though we were not really thinking hard about building
products with real humans in mind.

Starting with the iPod, and then the iPhone and iPad, Apple broke new ground
by placing a device in each pocket. It threatens to disrupt the market once
again by putting another device on every wrist. What IBM did to homes and
offices, Apple did to every user—created a personal computing device that
hardly looked like a traditional computer. It looked cute, required no extra-
terrestrial intelligence to operate, and worked! It resonated deeply with the
users for whom it was designed. As a result, Apple has become that iconic
company that now commands 92% of the entire smartphone industry’s profits
even though it only sells 20% of its products.25 It looks even more remarkable
when you realize there are over 1,000 makers of smartphones and Apple is
the undisputed king by many, many billions of dollars.

So, what did Apple do differently that several others couldn’t? It was on
the verge of bankruptcy in 1997 and was ironically bailed out by archrival
Microsoft’s investment. However, that only provided badly needed funds.
What else did it do? Its focus on design or, more specifically, human-centered
design led to such unprecedented success.

25“Apple’s Share of Smartphone Industry’s Profits Soars to 92%,” www.wsj.com/articles/
apples-share-of-smartphone-industrys-profits-soars-to-92-1436727458

http://www.wsj.com/articles/apples-share-of-smartphone-industrys-profits-soars-to-92-1436727458
http://www.wsj.com/articles/apples-share-of-smartphone-industrys-profits-soars-to-92-1436727458

Agile Product Development 115

Stated simply, human-centered design is a mindset that recognizes we can build
better products by learning from our users. It seeks to learn about people for
whom it is designing, understand their pain points, get their feedback on an
early and frequent basis, and eventually deliver them just what they need. This
is a major contrast with the hitherto technology-led design that sought to
deliver top-end technology irrespective of whether it made sense to users. It
is more like designing a product or a system with an outside-in perspective.

Apart from the mindset, there are human-centered design methods and tech-
niques that help us understand aspects of “real human” users. Let’s explore
some of them.

User Personas
Consider the Swiss Army Knife. Originally designed as military ware, it is an
ideal tool for someone who goes out hiking in the woods. It helps with four
or five of the most common needs of someone trekking or camping. Now
imagine we have the following conversation with some non-customers of the
Swiss Army Knife:

“This is so cool, but I would like it to have a laser pointer to help point to
a location at night. As a camp guide, that would help me keep my team
focused, especially on a dark night.”

“I am a writer, and I wish they had a pen in it—I always forget to carry
one.”

“It would be so nice to have a solar charger for my smartphone. I love
to take calls with my clients when outdoors, and I don’t want to be stuck
with a dead phone.”

Now imagine we decide to include these three customer types in the profile
of our target product users. To do so, we need to include their requirements
so they feel interested in our product. The result might be a bloated mega
knife that is so bulky to carry, it upsets everyone because it tries to please
them all at the same time!

So, how do we decide whom to build it for? There might be several customer
segments or customer types with varying interest levels (which would accord-
ingly impact the business potential). Accommodating them all sure seems like
a recipe for disaster. On the other hand, if we have to pick up a few of them,
whom do we pick first, and, eventually, how do we address the rest of them, if
we must address them all?

Chapter 5 | Design116

That’s where user personas come in handy. Cooper first proposed the con-
cept of user personas in The Inmates Are Running the Asylum. In a blog post on
the origin of personas,26 he refers to some of his earlier work in 1995 when
he became so frustrated talking to developers that he eventually demanded to
speak to customers instead. While talking to customers, he was able to draw
out their commonalities and think of them in terms of their goals, tasks, and
skill levels. When he used these hypothetical archetypes, he felt the develop-
ers could relate to them much better. Cooper’s work led to the so-called
goal-directed design methodology.27

Personas are the customer archetypes that allow us to focus on the primary
user of a product. This aligns extremely well with the agile way of thinking
by focusing on the highest-value requirements for the most important cus-
tomers and gradually evolving the product over time to address a secondary
persona. It is also possible that a business might decide to only focus on a
primary persona just to retain the sharp focus of the product. Nonetheless,
personas are a great tool to get a deeper understanding of the target cus-
tomers, and a typical persona definition captures critical demographical and
ethnographical information about it. The typical building blocks of a person
include the following:

•	 Profile

•	 Personality

•	 Referents and Influences

•	 Archetypes and Quotes

•	 Technology Expertize

•	 User Experience Goals

•	 Used Device and Platforms

•	 Domain Details

•	 Must Do, Must Never

•	 Brand and Product Relationship

Again, there is no standard template for personas—the business must con-
sider the most critical elements relevant to their market, customers, and
products, and then construct the personas.

26“The Origin of Personas,” www.cooper.com/journal/2003/08/the_origin_of_personas
27“Inside Goal-Directed Design: A Two-Part Conversation with Alan Cooper,”
www.cooper.com/journal/2014/04/inside-goal-directed-design-a-two-part-
conversation-with-alan-cooper

http://www.cooper.com/journal/2003/08/the_origin_of_personas
http://www.cooper.com/journal/2014/04/inside-goal-directed-design-a-two-part-conversation-with-alan-cooper
http://www.cooper.com/journal/2014/04/inside-goal-directed-design-a-two-part-conversation-with-alan-cooper

Agile Product Development 117

The process of creating personas involves significant commitments of time,
effort, and money. It often takes up to six months to come up with personas.
If you don’t have that much time, brainstorming is a shortcut you can use to
come up with what is known as a “proto-persona.” A proto-persona offers
limited insight, rather “guesstimates,” into customer archetypes without actu-
ally talking to them and, thus, could have serious limitations on its real utility.
However, creating a proto-persona does have advantages—it just doesn’t have
the accuracy of user research and might have a bunch of untested hypoth-
eses. So, while brainstorming might be a great starting point, especially in the
absence of anything better, it is important to test your assumptions in the field
rather than invest time and money to build a product based simply on those
meeting-room assumptions.

Empathy Map
While a user persona might give you a broad picture of who your (target)
customers are and what they “look” like, that information alone might not be
adequate to learn how they find doing business with you. Why do they want
your product, and what do they think or feel when using your product?

Often, we don’t fully understand these questions because, as product develop-
ers, we have a limited interaction with our real users. A quantitative market
survey could bring hard numbers that don’t tell much about customers’ moti-
vation, frustrations, and so on.

An empathy map28 is a simple way to visually capture such “sensory” informa-
tion about your users. Originally created by Dave Gray of XPLANE, its goal is
to “gain a deeper level of understanding of a stakeholder in your business eco-
system, which may be a client, prospect, partner, etc., within a given context,
such as a buying decision or an experience using a product or service.” 29 This
is especially helpful when you can create a typical empathy map in something
as frugal as a 20-minute workshop.

While creating a user persona is one technique to learn from a large number
of target customers about their pain points, we don’t quite have the product
or service in mind. The user personas, as useful as they are, could still appear
like “lifeless” categorizations without a real sense of how they will respond
to a given product or service. An empathy map could give additional insights
from the target customers on how they think or feel about a specific problem
or a solution, and it could be an extremely rapid way to collect insights to get
the rest of work started.

28“Empathy Map,” http://gamestorming.com/core-games/empathy-mapping/
29“Empathy Map—Dave Gray,” http://gamestorming.com/core-games/empathy-
mapping/

http://gamestorming.com/core-games/empathy-mapping/
http://gamestorming.com/core-games/empathy-mapping/
http://gamestorming.com/core-games/empathy-mapping/

Chapter 5 | Design118

Customer Journey Map
Let’s say you are in the business of supplying made-to-order cakes. Your cus-
tomers contact you via phone calls, e-mails, mobile apps, or chats and place
their order for either standard items in your catalog or make customized
orders. You might build the back-end infrastructure to effectively address
your requirements to front-end with the customer’s buying process.

However, do you know how they find doing business with you? What pain
points do they face in finding you, choosing the right products, or placing the
order and checking out? It is likely in some cases that your product makes life
difficult for them. How do you discover these insights and capture them in an
actionable manner?

A customer journey map could be a helpful visualization of the user experi-
ences across the whole buying process. Adaptive Path30 defines it “as a strate-
gic process of capturing and communicating complex customer interactions.
The activity of mapping builds knowledge and consensus across your organi-
zation, and the map helps build seamless customer experiences.” It further
describes the four steps of experience mapping:

•	 Uncover the truth: Sometimes we work with several
pre-conceived notions or one-sided assumptions about
the way users like to use a given product or service.
Unless we make efforts to really observe their usage hab-
its and learn about their experiences, we might not be
able to uncover the truth.

•	 Chart the course: Quite often, we tend to simply pick
up individual touch points without fully understanding
the end-to-end journey that might give far better and
actionable insights. Charting the entire course could help
us understand if there are interdependencies in various
steps, or if there are individual outliers that create disen-
gagement despite an otherwise wow experience.

•	 tell the story: While having raw data and insights is
great, what really engages the audience is a story that
brings out its finer points in rich details and provides
an emotional connection. When the storytelling involves
lifelike characters, we develop a much higher sense of
empathy, which is a great first step in design thinking
as well.

30Adaptive Path Mapping Experiences - http://mappingexperiences.com/

http://mappingexperiences.com/

Agile Product Development 119

•	 Use the map: The map is not just a way to make notes
from a field trip, but it must provide actionable insights
that allow a team to work on specific pain points in the
journey. Most importantly, it allows everyone on the team
to have a single shared vision of the customer journey
and not everyone’s individual guesses and interpretations
of what the problem might be.

There are several ways to describe an experience map, but the basic frame-
work is a timeline that describes how a customer interacts with the system
through its various touch points. It identifies their experiences (positive or
negative) on a graded scale.

You could typically organize a workshop to learn from your customers and docu-
ment an experience map. The whole aspect of customer collaboration, teamwork,
and visual thinking makes an extremely valuable tool to understand our customers
better in order to develop products and services with a better user experience.

Lean UX
Jeff Gothelf and Josh Seiden’s 2013 book Lean UX: Applying Lean Principles to
Improve User Experience was one of the earliest discussions on this subject.
They mashed up lean (startups), design thinking and agile development as the
foundations that influence lean UX.

In their book, they identified the following principles of lean UX:

•	 Cross-functional teams

•	 Small, dedicated, co-located

•	 Progress = outcomes, not output

•	 Problem-focused teams

•	 Removing waste

•	 Small batch size

•	 Continuous discovery

•	 GOOB31: The new user-centricity

•	 Shared understanding

•	 Anti-pattern: Rockstars, gurus, and ninjas

•	 Externalizing your work

31Steve Blank’s famous mantra for all entrepreneurs” “Get out of the building.”

Chapter 5 | Design120

•	 Making over analysis

•	 Learning over growth

•	 Permission to fail

•	 Getting out of the deliverables business

With the foundations of lean UX (lean, design thinking and agile development),
most of these ideas reinforce each other and help build small, cross-functional
teams that focus on delivering business-driven values and outcomes in an
iterative manner. These ideas are especially potent in solving the “unknown-
unknown” class of problems where there can’t possibly be any previously
known patterns of success. Surely, there are principles that guide the team to
behave in some specific manner. The tools that the teams use are rather the
same in terms of its “atomic operations,” but the way they are applied or the
sequence in which they are applied is highly fluid, iterative, and indeterministic.
However, an empowered team of experts will invariably find its way to accom-
plish the desired results by sticking to these fundamental principles.

Figure 5-1 illustrates the lean UX process.

Figure 5-1. The lean UX process

Declaring assumptions is a critical starting point that allows the team to focus
on outcomes rather than on a specific output to be delivered. In a lean startup
fashion, we treat requirements as hypotheses. However, it might be too costly
to build the entire product just to validate those hypotheses—perhaps the

Agile Product Development 121

whole point of validation becomes moot if we have to build the entire sys-
tem! So, lean UX talks about identifying the riskiest assumptions and creat-
ing a minimum viable product (MVP) that could be built quickly and cheaply
and could offer decisive data points around the riskiest hypotheses through
a series of experiments. Many such experiments might have very short run,
again in order to optimize the total time through the learning loop, and they
might use techniques such as A/B testing or a multivariate testing. Finally, these
tests result in lots of data that serves as feedback to further improve the idea.
The entire process goes on until the team has verified that its assumptions
have been rigorously tested. Now it is all about implementing (or developing)
the feature as a properly designed and well-tested software.

A key point about lean UX is that it is not a one-off activity only meant to
be undertaken at the start of a product development endeavor. Rather, it is
best served in small doses in each sprint of the agile development cycle. This
avoids the risk of a big-bang disruption as well as the pitfall of going on without
user feedback for far too long and risking the upfront design and development
efforts. When lean UX practices are undertaken in an agile methodology such
as scrum, they are performed inside the stories picked up for each of the sprints.

What about Software Design?
Software design is all about how the software accomplishes its intended func-
tionality. Software design is the inner core of how components of software inter-
act with each other and how the overall system eventually interacts with the
external world. If that is not well designed, no amount of shiny wrapping can help.

Paul Ralph’s PhD guide, Yair Wand, asked him to clearly define what we mean
by (software) design. Together they came up with the following definition32:

DESIGN: (noun) a specification of an object, manifested by some agent,
intended to accomplish goals, in a particular environment, using a set of
primitive components, satisfying a set of requirements, subject to some
constraints.

Every decision or action pertaining to software design can perhaps be summed
up in this definition. However, how we carry out that definition is more rel-
evant to this book.

In the traditional waterfall world, software was designed in the so-called Big
Design Up Front33 (BDUF) manner—an approach that seeks to nail down
and document every single detail before starting to write code. The approach

32“Is There a Scientific Definition of ‘Design’?,” www.fastcodesign.com/1672937/
is-there-a-scientific-definition-of-design
33“Big Design Up Front,” https://en.wikipedia.org/wiki/Big_Design_Up_Front

http://www.fastcodesign.com/1672937/is-there-a-scientific-definition-of-design
http://www.fastcodesign.com/1672937/is-there-a-scientific-definition-of-design
https://en.wikipedia.org/wiki/Big_Design_Up_Front

Chapter 5 | Design122

compartmentalizes design from its subsequent stage of construction
(or actually writing the software). While this might have been an acceptable, or
even a good strategy in the past, it relies on documentation as a source of vali-
dating the correctness of program logic. This practice is questionable today,
given that it is far cheaper, faster, and effective to simply write software and
test the program logic and correctness than to first write about it in documents,
review it, and then finally implement it. Also, the decision to specify all details
upfront (even if possible) can only make later-day changes harder to achieve.
Martin Fowler in his highly influential 2004 blog post “Is Design Dead?,”34
refers to the inadequacy of a planned software approach that is all about
putting together the big building blocks, or designing the software, as being
distinct from writing it.

Agile paradigm places lower importance on the traditional BDUF. It places a
much higher importance on the evolutionary/emergent design (also known as
continuous design). It was popularized by proponents of extreme program-
ming, and it seeks to “reduce time to market for agile teams by incrementally
formulating the design while implementing the software.”35 Rigorous self-test-
ing software and design steps undertaken in short quantum throughout the
lifecycle often accompany it.

However, many software developers consider the concepts of agility and
architecture to be antithetical. Traditionally, architecture design has been
considered the heavy-lifting activity that creates a robust architecture—
something that might require a more rigorous and prolonged process than
what could be possibly accomplished in, say, a two-week iteration. As a result,
the agile way of architecture design is often seen as a very “soft” approach.
I often meet engineers from systems companies or finance companies who
consider their software to be “extremely complex”—and not like a “cute-
looking” web site! However, I believe they are taking a narrow view of archi-
tecture design.

A key difference between traditional architecture design and agile architec-
ture design is that architecture design happens throughout the lifecycle. As
a result, we are not only incrementally evolving it, we are also constantly
validating it. As a practice, a team might still perform a high-level architecture
design at the start of the project based on the details known to it, but might
stop short of getting into operational details knowing that the nature of soft-
ware requirements is “emergent.” In addition, with increasing clarity about the
problem domain, we will also evolve the solution. In terms of implementing it,

34“Is Design Dead?,” http://martinfowler.com/articles/designDead.html
35“Practice: Evolutionary Design,” http://epf.eclipse.org/wikis/openup/practice.
tech.evolutionary_design.base/guidances/practices/evolutionary_design_
DE27D8D9.html

http://martinfowler.com/articles/designDead.html
http://epf.eclipse.org/wikis/openup/practice.tech.evolutionary_design.base/guidances/practices/evolutionary_design_DE27D8D9.html
http://epf.eclipse.org/wikis/openup/practice.tech.evolutionary_design.base/guidances/practices/evolutionary_design_DE27D8D9.html
http://epf.eclipse.org/wikis/openup/practice.tech.evolutionary_design.base/guidances/practices/evolutionary_design_DE27D8D9.html

Agile Product Development 123

the code is typically created using agile engineering practices—such as
test-driven development and refactoring—and integrated using practices such
as continuous integration, which allows validating the design. Collectively,
these practices help build software incrementally, test it continuously, and
adapt it gracefully in short durations, sometimes as small as 20 or 30 minutes,
throughout the time a product is being actively worked upon. As a result,
while the heavy lifting might be missing from the process, the architecture of
the product gets constantly validated iteratively and incrementally, and built in
an extremely robust manner.

Unlike traditional architecture design that was often documented in Word
documents, agile favors creating working software to specify or document it.
Of course, as needed, other artifacts such as UML, event-trace diagrams, and
the class hierarchy diagrams might still be created, but a well-documented and
self-testing code is perhaps far more effective to “describe” the architecture
design. Among other things, it helps eliminate the need for paper reviews by
creating a working software that can be executed and tested to validate the
architecture.

Software architecture and design is a key pillar of software construction. The
knowledge and skills required are often specialized and though agile methods
(specifically Scrum, where there is no such role of an “architect”) tend to
democratize it. I don’t believe everyone on the team can simply perform these
activities—most certainly not on day one of the project!

At an individual level, one could surely accomplish lower-level design, say, of a
private method, or how a particular database search query is written to mini-
mize the query time, but at a systems level, it typically entails high-level con-
siderations of system performance and scale, among others. As opposed to
the waterfall model, agile thinking aims to validate the key assumptions before
getting to the next levels of details, but at every point, creating assets and
artifacts that can be quickly executed to validate its underlying assumptions.

At a high level, agile methods recognize the need for defining such system
architecture albeit not in a highly detailed manner, while at a low level, the
thinking is to implement design in code using agile engineering methods such
as TDD, refactoring and CI. These methods allow the design to be constantly
tested and corrected, building in the quality and keeping a check on the so-
called technical debt lest a great design eventually becomes unusable due to
subsequent haphazard changes that never get properly tested or adequately
refactored.

In the overall context of product development using agile methodologies, the
fundamental techniques or practices around software architecture and design
need to be practiced in short feedback loops. They also need to operate

Chapter 5 | Design124

under a large umbrella of the overall architecture. The technical architecture
thus evolves based on how the system gets incrementally developed and con-
stantly tested in the real world.

Conclusion
Great design is simple and puts users in direct control of their products and
services. It establishes the emotional connection that causes consumers to
buy a product or service they crave (sometimes even at a higher price point
than its competitors) and ultimately creates a “stickiness.”

However, design is not simply about having a slick UI or window dressing a bad
product! While visual design is an important and integral element of the over-
all design process, a successful product engages its users with an overall user
experience that might span from the time they decide to research a product
to the time they purchase it and start using it. In fact, other aspects of design
only begin to be visible when the users start using the product, whereas “user
experience” is a much more broad and pervasive term.

Despite the foundation of some of the timeless principles that the subject of
design stands firmly on, technology is a big driver of how it is actually imple-
mented. Thirty or forty years ago, we had monochrome displays with poor
resolution. It was more common to have command-line interfaces (CLI) than
graphical user interfaces (GUI). Over time, the GUI technology has invaded
our space to the point that they are not just limited to computers but have
been adopted to watches, phones, cameras, and so on. However, the coming
future might once again disrupt that all!

Aaron Shapiro, author of an interesting article on anticipatory design, “The
Next Big Thing in Design? Less Choice,”36 argues the case for simplifying
design (and choices) even further. As opposed to current trends where the
designer does the “thinking” on behalf of the user, she might be responsible
for creating a platform or service that rather “anticipates” the next logical
move of a user and takes action automatically. For example, the system might
learn that the user is on his way home and knows from past experience that it
will take ten minutes to brew the coffee. The designer would consider these
factors and adjust the system accordingly.

The coming age of the Internet of Things (IoT) promises 50 billion intercon-
nected devices in just the next five years. That’s an impressive seven devices
per human being! However, not all devices will perhaps have user interfaces as
we take for granted today. Indeed, a majority of them might have “Zero UI”—
and in its simplest form, there might not be a “screen” as we take know it today.

36www.fastcodesign.com/3045039/the-next-big-thing-in-design-fewer-choices

https://www.fastcodesign.com/3045039/the-next-big-thing-in-design-fewer-choices

Agile Product Development 125

Its most complex forms could include motion-controlled, touch interfaces,
voice-controlled or thought-reading cognitive computing. In any case, this is a
major paradigm shift on product design. Many of the mental models will likely
be disrupted, and apart from the quintessential visual design, we might soon be
exploring new elements of design. As Andy Goodman remarked,37 we might
become the next UI!

37“What is Zero UI? (And Why It Is Crucial to the Future Of Design),” John Brownlee,
www.fastcodesign.com/3048139/what-is-zero-ui-and-why-is-it-crucial-
to-the-future-of-design

http://www.fastcodesign.com/3048139/what-is-zero-ui-and-why-is-it-crucial-to-the-future-of-design
http://www.fastcodesign.com/3048139/what-is-zero-ui-and-why-is-it-crucial-to-the-future-of-design

C h a p t e r

Develop
Let’s do it!

Ready, fire, aim: the fast approach to software development. Ready, aim,
aim, aim, aim: the slow approach to software development.

—Author unknown1

We all come up with lots of ideas every day despite varying levels of intel-
ligence, experience, and exposure. Some people believe we might generate
tens of thousands of ideas on a daily basis.2 While most ideas are fun to think
about (imagine if we could move things by mere thoughts or if champagne
flowed in municipal taps, just like water!), they are usually too impractical,
obscure, wild, or outrageous to follow up on. Only a small percentage of ideas
are actually worth pursuing.

However, many ideas become valuable when we take them out of our heads
and start turning them into something tangible—be it a wooden bench, an
origami bird, a house made of LEGOs, or a few lines of software code. In most
cases, one needs to have a few basic resources to perform some experiments
with ideas. We generally lack either the skills or resources to bring our ideas
to life, or we are too afraid of peer ridicule or social rejection. Hence, our
ideas die an unnatural death before they are given a fair chance.

Fortunately, the software industry is blessed with an amazing medium that
allows developing ideas into a tangible experiment with a rather small invest-
ment of time, effort, and money. If the experiment works as promised, one

6

1www.quotegarden.com/programming.html
2“The 70,000 Thoughts Per Day Myth?” Neuroskeptic, http://blogs.discovermagazine.
com/neuroskeptic/2012/05/09/the-70000-thoughts-per-day-myth/

http://www.quotegarden.com/programming.html
http://blogs.discovermagazine.com/neuroskeptic/2012/05/09/the-70000-thoughts-per-day-myth/
http://blogs.discovermagazine.com/neuroskeptic/2012/05/09/the-70000-thoughts-per-day-myth/

Chapter 6 | Develop128

could then decide to build it as a full-fledged product. Many people consider
the process of development the soul of software development. Indeed, being
able to develop something of value is a source of great joy!

However, in reality, software development doesn’t always go so smoothly. It
has traditionally been plagued with delays, cost overruns, poor quality, and
people issues. Starting with the critique of the waterfall model by Winston
Royce in his famous 1970 paper “Managing the Development of Large Software
Systems,”3 enough anecdotal data exists to prove that waterfall simply isn’t the
right approach for software development. Strangely, our industry still loves
waterfall because it seems to provide a sense of safety. In most cases, we sim-
ply pad estimates that give both a false sense of accuracy and precision at the
same time. Since it is better than living with a sense of uncertainty, we prefer
it. Customers are happy because they have an ironclad guarantee that they
will receive the software by the deadline. The suppliers are happy because
they have contained the requirements in a base-lined document and have pad-
ded the budget enough to make money even in the worst-case scenario. And
the engineers have no option but to accept whatever work there is to do.
Project managers are assigned to execute and are perhaps the most hassled
of all—we blame delays on poor execution because we believe that’s the only
thing that could lead to the grounding of the project when everything else is
so clear. The teams create reams of documentation and send useless status
reports to keep the hope of a software shipment alive. In the end, teams work
hundred-hour weeks and somehow ship a buggy product without several key
features, while the lawyers on both sides argue who was wrong in specifying
or understanding the requirements. The vendors hope the customers will
have no option but to trigger the change management process to handle addi-
tional requirements. This game is played every time—just the setting differs.
Sadly, no one seemed to mind it for a long time. Thankfully, businesses today
are being held accountable for such inglorious mismanagement.

Our challenge today is to develop better products faster and cheaper. How do
we leverage the continuous feedback work cycle, and how do we ensure the
highest-value delivery with every increment?

In this chapter, we shall study various agile methods used to develop software
products.

3“Managing the Development of Large Software Systems,” Dr. Winston Royce,
www.serena.com/docs/agile/papers/Managing-The-Development-of-Large-
Software-Systems.pdf

http://www.serena.com/docs/agile/papers/Managing-The-Development-of-Large-Software-Systems.pdf
http://www.serena.com/docs/agile/papers/Managing-The-Development-of-Large-Software-Systems.pdf

129Agile Product Development

The World Before
Until the 90s, we used a simplistic model of software development that was
essentially wrong. In this so-called waterfall method, we essentially “captured”
100% of the requirements upfront (Big Requirements Up Front, or “BRUF”)
and designed the entire system (Big Design Up Front, or “BDUF”) before get-
ting on with strictly sequential downstream phases of implementation, coding,
and testing. Once the coding phase was completed, the teams would start a
big-bang integration phase and, upon its completion, start the testing phase.

Even though this model seemed like a fairly logical process for developing
software, it was conceptually wrong and technically ineffective on multiple
counts, but largely due to one key reason—that we took what was essentially
a production model in the manufacturing industry and applied it to what is
essentially a design problem in the software world of knowledge creation.
In production, we must clearly understand the process steps, and we must
be able to replicate them one after other in a pre-specified sequence to get
the pre-determined output. If we have the right raw material at every pre-
specified phase and its quality is of acceptable level, we are (almost) guaran-
teed to get the final product out by following all steps of the process. If there
are problems with the product in its intermediate or final stages, we can apply
quality-assurance and quality-control principles. Since we are going to run this
process hundreds and thousands of times, we can additionally apply principles
of statistical process control (SPC) and tools such as Six Sigma to systemically
eliminate or minimize normal variations and improve the quality of an existing
product.

Take the case of Coke. For over a hundred years, Coke has manufactured
its sugared beverage in most countries of the world. Even though its exact
chemical formulation is supposedly a secret, its manufacturing process must
be so crystal clear that it can be translated into any known language in any
country where it can be carried out by the local bottlers. Now imagine being
able to sustain this level of process rigor for over hundred years, and you will
pretty soon recognize that this process isn’t black magic and it doesn’t rely on
expert minds or skilled hands alone. It must be extremely transparent so that
it can be followed consistently, and since it pertains to something consumable,
it must also adhere to every country’s food safety laws. The process must
be repeatable so that it can be executed day in and day out without any loss
in product quality, despite any variations in quality of raw materials, such as
water, etc.. Finally, it must be scalable, which means it can be manufactured all
over the world. (In other words, the process doesn’t depend on any specific
cultural way of doing things, and the raw materials, factory, and machinery are
available or able to be constructed just about anywhere.)

Chapter 6 | Develop130

Now contrast this with a knowledge creation work. Say that you are helping
your eighth-grade daughter with project on solving nutrition problems for
homeless people, or that you are a master chef trying to invent a new recipe
for this year’s New Year’s party, or that you are a software engineer trying to
find a new way for people to bank more easily on their smartphones. Do you
know the process that will lead you to the final outcome? For that matter, do
you even know what the final outcome is? If we go by the recent history of
successful companies such as PayPal and Instagram, we find the final services
were not the initial ideas. PayPal and Instagram started out as Confinity and
Burbn, respectively, as their “Plan A,” and they pivoted to their current avatars,
which were more like their “Plan B” or “Plan C” as they learned more about
the market. Sticking to a predetermined waterfall-ish plan would have only
resulted in what I call an “operation successful, but the patient died” scenario.
(Eric Ries calls it “achieving failure.”)

So, clearly the manufacturing metaphor was not the right solution for modern-
day, knowledge-intensive work such as software creation. Software develop-
ment projects were beginning to go awry due to the wrong approach as early
as the 60s. Frederick Brooks was the manager of the software team that built
IBM/360, one of the most famous and successful operating systems. He had
over 1,000 software engineers on his team in 1964–65. He learned a lot from
that experience—so much that he ended up writing the 1975 software project
management classic The Mythical Man-Month. In the book, Brooks identifies
several issues leading to a software project’s going awry:

•	 Techniques of estimating are poorly developed.

•	 Estimating techniques fallaciously confuse effort with progress.

•	 Because we are uncertain of estimates, we are not able to
forecast accurately.

•	 Schedule progress is poorly monitored.

•	 Manpower is added to a late project.

Unfortunately, there was no real alternative to the then prevalent methods,
even though practitioners like Harlan Mills were beginning to experiment with
incremental methods. As a result, not much changed throughout the 70s and
the 80s.

In 1986, Brooks postulated the famous “No Silver Bullet” (NSB) argument:
“There is no single development, in either technology or management tech-
nique, which by itself promises even one order-of-magnitude improvement
within a decade in productivity, in reliability, in simplicity.” Surely we have
seen many such “silver bullets” in software industry since then. Brooks calls
out ideas even during his time such as object-oriented programming, arti-
ficial intelligence, expert systems, “automatic” programming, graphical pro-
gramming, program verification, environment and tools, workstations, and

131Agile Product Development

so on. The NSB theory proved provocative and in the 1995 edition of his
book, Brooks discussed the impact on quality and productivity, asserting that,
despite authors of respective methodologies claiming a ten-fold improvement
as a result of their methodologies, the reality was otherwise.

Does it mean we are doomed with the status quo?

Thankfully, software thinkers and leading practitioners continued experiment-
ing with ways to improve software development methods.

Extreme Programming
One effort that gained popularity was Kent Beck’s C3 project at Chrysler
Corporation in the late 90s. It advocated rapid cycles of software creation fol-
lowed by periodic feedback. Unlike the slow-moving, long cycle of quintessen-
tial document-driven and hand-offs-led development and post-facto feedback
of yesteryears, it was considered “extreme” and focused on delivering the
software (that is, programming). Hence, the moniker “Extreme Programming”
stuck. Extreme Programming, or simply XP, was a set of principles and prac-
tices that Beck brought to the sinking C3 payroll project, managing to bring it
out of chaos, though not before it was eventually killed. What Kent brought
to the table was radical ideas to the software engineering world, but were
reasonably well proven in other industries. For example, NASA had reported
test-first development much earlier in the 60s. As I also discussed in ear-
lier chapters, Kelly’s Skunk Works also pioneered several ideas that resemble
modern-day XP predecessors, at least as far as new product development is
concerned. The original idea of a 40-hour workweek ironically came from
Henry Ford4 in a manufacturing environment in the early twentieth century.
Ford recognized that human capability was beginning to be considered deplet-
able and susceptible to errors unless adequately rested from time to time.

XP defined 12 core practices, “XpXtudes,”5 that the XP programmers do,
grouped into four categories:

•	 Fine-scale feedback

•	 Test-driven development

•	 Planning game

•	 Whole team

•	 Pair programming

4“Where Did the 40-Hour Workweek Come From?”
5“XPXtudes,” http://c2.com/cgi/wiki?XpXtude

http://c2.com/cgi/wiki?XpXtude

Chapter 6 | Develop132

•	 Continuous process rather than batch

•	 Continuous integration

•	 Design improvement

•	 Small releases

•	 Shared understanding

•	 Simple design

•	 System metaphor

•	 Collective code ownership

•	 Coding standard

•	 Programmer welfare

•	 Sustainable pace

Today, XP as a methodology is all but dead, but its practices, especially the
technical practices, are once again being recognized as a better way to bake
in software quality as compared to an inspection-based approach. Some prac-
tices like coding standard were not really new, but simply gained more atten-
tion. Continuous integration was a new practice that eventually got elevated
to continuous delivery and continuous deployment, and it has almost become
table stakes in modern-day software development, even more so for online
software. Other technical practices such as the test-driven development and
code refactoring require strong technical and design skills, and they have not
always been practiced by a majority of teams. However, there is a sense of
belated recognition that ignoring XP practices and practicing Scrum with
waterfall-era engineering practices was not the best way to achieve agility.

In addition to placing very high premium on such technical practices, XP also
identified five core values:6 communication, simplicity, feedback, respect, and
courage. However, there is an invisible secret sauce of a team’s sociology that
binds it all together in a way that Jim Highsmith reflected in his 2001 interview
with Kent7—the “social contracts.” While most people today recognize XP’s
important contribution to technical practices, much of its key learning from
its social context paved the way for the Agile Manifesto, which was essentially
bereft of any technical practices. XP largely established agile as more of a
“people” thing than a “process” thing.

6“Extreme Programming: A Gentle Introduction,” www.extremeprogramming.org/
7“Interview with Kent Beck (circa 2001),” Jim Highsmith, https://dzone.com/articles/
interview-kent-beck-circa-2001

http://www.extremeprogramming.org/
https://dzone.com/articles/interview-kent-beck-circa-2001
https://dzone.com/articles/interview-kent-beck-circa-2001

133Agile Product Development

Agile
During the 90s, multiple approaches were being experimented and improved
upon by software practitioners. Some of them were the big daddies of pro-
cess world, such as Software Engineering Institute’s Capability Maturity Model
(Software CMM, or CMMi as it is known currently) or the highly institutional
ISO9000 (originally starting as ISO9000 TickIT). While these large standards
and frameworks were created in response to the alarming percentage of failed
and challenged projects, they were rather ill suited to an ever-changing world.
Even today, a significant number of (mostly large) companies use these frame-
works. For example, the number of companies that report using a CMMi
framework continues to post a modest 10% year-on-year growth. However,
it wouldn’t be inaccurate to say that agile methods are now the mainstream
way of software development, even though a typical adoption curve could be
expected across industries.

Some of the other leading ideas that built upon foundational incremental
and iterative methods have significantly contributed to the agile thinking in
software development include (in no particular order of importance): Tom
Gilb’s Evo, Alistair Cockburn’s Crystal Clear, Dynamic Systems Development
(DSDM), Jeff De Luca’s Feature-Driven Development (FDD), Jim Highsmith’s
Adaptive Software Development (ASD), and so on. In most cases, the meth-
ods had more in common in terms of values and principles (even if they were
not always explicitly articulated in that many words) and differed only a little
on specific methods and practices. These similarities paved the way for sig-
nificantly advancing the body of knowledge when 17 leading methodologists
came together at a ski resort in Utah in 2001 and decided to put their ideas
and thoughts in a blender and created the Agile Manifesto.

Agile Manifesto
As we discussed in Chapter 1, the Agile Manifesto was an important milestone
in the history of software development, embracing some of the best ideas and
thoughts of that time, in 2001. Since then, we have seen more initiatives to inte-
grate agile thinking into product development and other aspects of businesses.

When I am training, I always put up an image of the Agile Manifesto and explain
its four values (and twelve principles in the longer version of my training). No
one has ever really questioned or disagreed on the utility or relevance of the
Agile Manifesto, even in 2015. Clearly, these four lines continue to be critical
to software development. Indeed, there have been many more such manifestos
subsequently, including some by the original signatories of the Agile Manifesto
themselves. For example, in today’s world, a “working software” might not be
simple enough—you might want to know how many people are actually using
it? Or responding to change might simply demonstrate a follower’s mindset,
while the leader might actually be the disruptor, the risk-taker, or the harbinger,

http://dx.doi.org/10.1007/978-1-4842-1067-3_1

Chapter 6 | Develop134

of change. Clearly, the Agile Manifesto seems to be an archeological remnant
of time frozen in 2001. However, when my colleagues in consulting and coach-
ing rightly point out that a significant majority of teams they work with still
struggle to even get to that point, I am reminded that we will continue to see
varying levels of maturities of software teams.

However, my advice to the uninitiated would be to closely examine the Agile
Manifesto and embrace its purpose, values, and principles. When there is a
better basis for breaking the mold, by all means go ahead and create your own
agile manifesto that works for you better than the standard version.

The PM Declaration of Interdependence
In 2005, a few leading software community leaders came together (some of
whom were the original signatories of the Agile Manifesto in 2001) and cre-
ated the so-called “Declaration of Interdependence,”8 or the DOI. The DOI
specifically calls out the notion of “interdependence” being vital to the suc-
cess of software development endeavors, which is a rather broad term that
includes customers, stakeholders, teams, and so on.

The declaration goes like this:

Agile and adaptive approaches for linking people, projects, and value.

We are a community of project leaders that are highly successful at delivering
results. To achieve these results:

•	 We increase return on investment by making continuous
flow of value our focus.

•	 We deliver reliable results by engaging customers in fre-
quent interactions and shared ownership.

•	 We expect uncertainty and manage it through iterations,
anticipation, and adaptation.

•	 We unleash creativity and innovation by recognizing
that individuals are the ultimate source of value, and creating
an environment where they can make a difference.

•	 We boost performance through group accountability for
results and shared responsibility for team effectiveness.

•	 We improve effectiveness and reliability through situ-
ationally specific strategies, processes and practices.

8“Declaration of Interdependence,” http://pmdoi.org/

http://pmdoi.org/

135Agile Product Development

Among other things, the DOI also lays a strong foundation for agile proj-
ect management, specifically by calling out the last value—we could be much
more effective by being dynamically adaptive to the situation and to the needs
of the projects and teams rather than following overly standardized and static
processes.

I always view the declaration as a set of guiding principles for managing proj-
ects in an agile environment—something that the original Agile Manifesto
didn’t articulate in so many words. The specific process or the method is not
so important, but being consciously aware of the values and principles allows
a (thinking) practitioner to explore answers and find solutions without being
directed to follow some prescription for every single conceivable situation.
Even though there are specific frameworks, such as Scrum, that elaborate
upon how some specific management practices are applied in real-world agile
projects, I think a deep understanding of the core principles of the DOI go a
long way in preparing an agile mindset that isn’t always looking for applying a
cookie-cutter solution to every problem, but is willing to explore every prob-
lem as unique by applying fundamental atomic operations that collectively help
solve the problem more effectively. The real judgment is in knowing which of
these atomic operations to be applied, in what degree, and when.

Scrum
The first mention of the word “Scrum” in software development came from
Peter DeGrace and Leslie Hulet Stahl’s 1991 software classic Wicked Problems,
Righteous Solutions: A Catalogue of Modern Engineering Paradigms.

They drew inspiration from the famous 1986 HBR classic The New New Product
Development Game9 by Hirotaka Takeuchi and Ikujiro Nonaka, and wrote in
Chapter 7 the “The All-at-Once Model”:

If Scrum was applied to software development, it would go something
like this:

Suppose you have a software development project to do. For each
traditional phase, you can draw from a pool of experienced people. Rather
than have several designers do the design phase and have several coders
do the construction phase, etc., you form a team by carefully selecting one
person from each pool. During a team meeting, you will tell them that
they have been carefully chosen to do a project that is very important
to the company, country, organization, or whatever. This unsettles them

9“The New New New Product Development Game,” Hirotaka Takeuchi and Ikujiro
Nonaka, https://hbr.org/1986/01/the-new-new-product-development-game

http://dx.doi.org/10.1007/978-1-4842-1067-3_7
https://hbr.org/1986/01/the-new-new-product-development-game

Chapter 6 | Develop136

somewhat. You then give them a description of the problem to be solved,
the figures for how much it cost in time and money to do similar projects,
and what the performance figures for similar systems are. Then, after
you have gotten them used to the idea that they are special, having been
specially chosen and challenged to do an important job, you further
unsettle the team by saying that their job is to produce the system in, say,
half the time and money and it must have twice the performance of other
systems. Next, you say that how they do it is their business. Your business
is to support them in getting resources. Then, you leave them alone.

You stand by to give them advice if you are asked. You get their reports,
which come regularly but not as often nor as voluminously as with the
Waterfall. But, mostly you wait. In something like the appointed time, out
pops the system with the performance and cost figures you wanted.

DeGrace and Stahl go on to describe just how an autonomous team, where
members learn from and teach each other (by word of mouth), will self-
organize in such an “all-at-once,” or concurrent, engineering environment. On
the need of management control, they further say:

To be sure, control is exercised; but, it is subtle and much of it is indirect. It is
exercised by selecting the right people, creating an open work environment,
encouraging feedback from the field, establishing an evaluation and reward
system based on group performance, managing the tendency for going off
in many directions early on and the need to integrate transformation and
effort later on, tolerating and even anticipating mistakes, and encouraging
suppliers to become involved early without controlling them.

I think they lay a solid foundation for agility with these words.

Jeff Sutherland and Ken Schwaber took the idea of Scrum into software devel-
opment further10 when they conceived the Scrum process in the early 90s11,
and presented “Scrum Software Development Process” at OOPSLA95.

Scrum process is founded on principles of empirical process control. It ques-
tions the ability and utility of making long-range predictions when there are
several unknowns along the way. It seeks to minimize overall uncertainty and
risk by initially saying no to the big upfront planning and instead developing
slivers of completed functionality in short back-to-back timeboxes (known

10I haven’t come across anything in Sutherland’s or Schwaber’s literature that suggests they
either collaborated with DeGrace and Stahl, or referred to their book. However, I am only
referring to the publication dates to refer to the timeline, and by no means implicating that
these two ideas are the same or different
11“The History of Scrum,” www.scrumguides.org/history.html

http://www.scrumguides.org/history.html

137Agile Product Development

as “sprints”) based on what we know right now (rather than what we might
possibly need in the future) and prioritizing them per highest value, develop-
ing and delivering them iteratively and incrementally, and using the experi-
ence data to evolve the increasingly reliable long-range predictions about the
release as we get better clarity later in the day. It seeks to keep its plans, work
products, and progress (as well as impediments) transparent and highly visible
to all stakeholders, including customers and team members alike, and practice
a continuous “inspect-and-adapt” learning loop throughout the development
cycle. Through such series of small in-process course corrections throughout
the development, Scrum methodology seeks to maximize the chances of hit-
ting the goals rather than hoping to accomplish them in the waterfall-style in
one single, and rather questionable Hail Mary pass.12

The term “Scrum” denotes a cross-functional team, much like the Scrum for-
mation in the game of rugby, where everyone in the team comes together
and “holds the ball” and takes it to the other goalpost. Like in rugby, each
player might have different skills and positions on the field. During a Scrum,
they all might need to step out of their comfort zone and perform like a
cross-functional team. Similarly, a software team might need to come out of
its silo mindset and deliver the goods at the end of its sprint. This requires
the team to own its process and self-organize itself according to the need
of the moment. However, at an individual level, deep expertise might often
become the impediment for someone trying to help his or her peers on the
team. No one can plan for it on an emergency basis (which means the team
must do what it can do best, given the situation), but teams could maximize
their chances to deal with such anticipated scenarios in near-term future by
continuously cross-training team members. Scrum calls this “generalizing spe-
cialists,” and it is a very big part of building a culture of learning and growing
Scrum teams and team members.

Scrum is often criticized for ignoring technical practices and making the entire
framework appear so (deceptively) simple. In fact, the Scrum guide doesn’t
even mention practices such as test-driven development, refactoring, or con-
tinuous integration. Scrum is considered more of a framework than a process
because it doesn’t prescribe any specific technical practices. Such a “light-
weight” approach has definitely helped make Scrum a popular choice in the
industry across the globe, but it has also created significant problems. Since
Scrum itself neither explicitly discourages such an approach nor actively pro-
motes any specific way of “constructing” the software, most teams continue
to blissfully implement waterfall-based linear phases and sequential engineer-
ing processes inside each sprint. The result is a “mini-waterfall” inside a sprint!
While this by itself might or might not be a problem, it does limit the agility
potential of the team, especially in a world where the cycle times are crashing

12“Hail Mary Pass,” https://en.wikipedia.org/wiki/Hail_Mary_pass

https://en.wikipedia.org/wiki/Hail_Mary_pass

Chapter 6 | Develop138

with every passing day. With the advent of SaaS and mobile-based delivery
models (which we discuss in Chapter 7), it is now almost every software’s
business to deliver to the customer’s cadence. A mini-waterfall, on the other
hand, might not only seriously limit a team’s ability to “ship-at-will” but also
make sprints very heavily backloaded and liable for rejection, especially by
those seeking instant nirvana. This whole “Agile = Scrum” mindset has led to
some serious damage to the agile movement, for it seems to eschew the very
cause it was created to address—that is, focus on “individuals and interac-
tions” more than on process and tools! Indeed, as part of my consulting prac-
tice, I see many organizations that felt shortchanged by Scrum and decided to
discard it, sometimes even finding the comfort in good-old waterfall despite
all its shortcomings!

Notwithstanding arguments for and against Scrum, it still is a great framework
that helps build a management structure to deliver valuable software in short
cadence. Given its huge adoption, there is also huge body of knowledge (and
coaches, certifications, and trainers) to explain and describe its adoption.

The Scrum guide13 remains the best concise presentation of the modern-day
Scrum framework (which hasn’t changed much since it was first announced
and isn’t likely to change much in the future14).

Lean
Henry Ford pioneered mass production of affordable cars. Over a period of
19 years starting in 1908, he was able to bring down the price of the famous
Model T (also known as the “Tin Lizzie”) from the initial introduction price
of $950 to as little as $26015 because he was able to mass-produce cars that
were largely identical and employed interchangeable parts. This led to major
economies of scale and created an extremely successful company for a coun-
try that was discovering its middle class in a growing economy. He sold over
15 million cars during that time, and at times, comprised as much as 40% of all
the cars sold in the US market. However, the success of Ford was also its limi-
tation. Ford’s philosophy of offering standard design without any customiza-
tion or personalization is summed up in these immortal words: “You can have
any color of car as long as it is black.” Ford offered only black cars between
1913 and 1925.

13“The Scrum Guide,” www.scrumguides.org/scrum-guide.html
14Ken Schwaber, co-creator of Scrum, wrote in his 2007 book The Enterprise and Scrum,
“ There will be no Scrum Release 2.0 … Why not? Because the point of Scrum is not to
solve [specific problems of development] … Scrum unearths the problems caused by the
complexity and lets the organization solve them, one by one, over and over again”
15https://media.ford.com/content/fordmedia/fna/us/en/news/2013/08/05/model-
t-facts.html

http://dx.doi.org/10.1007/978-1-4842-1067-3_7
http://www.scrumguides.org/scrum-guide.html
https://media.ford.com/content/fordmedia/fna/us/en/news/2013/08/05/model-t-facts.html
https://media.ford.com/content/fordmedia/fna/us/en/news/2013/08/05/model-t-facts.html

139Agile Product Development

Ford pioneered an ultra-efficient production system where there was basi-
cally only one design of car that was mass-produced against market forecast
and sold at a dealership. Having squeezed a great deal of efficiency from car-
making innovations, Ford was rolling in lots of money. When the first Model
T was introduced in 1908, Ford’s profit margin was $220 per car. By 1914, it
had dropped to $99. However, Ford was not worried about it. He was able
to make cars cheaper by mass-producing them, and by passing on the cost
savings to customers, he was able to make them even cheaper for more and
more customers to afford them.

When Kiichoro Toyoda, son of Toyota Group founder Sakichi Toyoda first
went to the US and Europe in 1929, he came back with lots of ideas to
set up automobile production operations in Japan. However, his biggest chal-
lenge was to create a production system for the smaller market that Japan
was. He recognized that unlike the US, he did not have the luxury of large
volumes to accrue economies of scale. He was also interested in offering
variability in design to the customers. Through a series of innovations, along
with tremendous contributions from Taiichi Ohno, who was inspired by the
efficient supermarkets in US, Toyota was able to create a system that did not
offer any car on a cash-down basis! The customers could browse through the
brochures, and maybe even check out a demo car or two, and select the car
they wanted to buy. They would pay upfront for the car, and Toyota would
only then start the production of the car using the so-called “pull production”
method. Pull production allowed Toyota to maintain a minimum inventory of
car parts in various stages of assembly (a zero inventory would have been
technically the leanest operations but would have led to unacceptable delivery
times, and hence a balance between inventory and delivery times was needed).
During the production, Toyota would employ a series of simple but extremely
powerful ideas to create a highly efficient system:

•	 Just-in-time: Rather than producing all the parts first
and storing them for future use, and then transporting
them when actually required, Toyota created a system
for just-in-time production where production and sub-
sequent transport would happen simultaneously, thereby
significantly reducing the need for hand-offs and stor-
age and transportation time and effort. This would be
accomplished by a simple concept that would be intri-
cately interconnected with all components, known as the
“pull system.”

Chapter 6 | Develop140

•	 pull system/Kanban: Unlike the conventional car mak-
ing where the production was more like “push system,”
that is, the order fulfillment would start upstream irre-
spective of whether the downstream stations had avail-
able capacity to cope with the amount of flow or not.
This would ensure that only the parts needed would
be produced at the right time and in the right quantity.
Toyota used a rather simple visual signaling mechanism to
communicate a “pull” from downstream to upstream—a
visual indicator card known as kanban would be moved
and would indicate to the most immediate upstream pro-
cess that a component created by it had been consumed,
and that it must now replenish to maintain the stable
number of semi-finished components at that level. That
process would trigger similar kanbans to other feeding
processes upstream and acquire components for it to
assemble its own parts, and so on. The entire system
would create only and exactly the number of parts that
were needed by the actual customer demand that had
been pulled by the most downstream process. In a steady
state, the process is extremely effective in reducing the
inventory at each stage without sacrificing the overall
lead times.

•	 andon cord: When a worker detects an issue, he is
empowered to pull a cord passing overhead at all sta-
tions that will immediately bring the production of the
entire line to a halt. This will attract everyone’s atten-
tion to solve the problem, for if the issue is allowed to
go uncorrected, it might create similar problems in all
subsequent parts. The system requires empowering each
worker with the judgment that he is trusted to make the
right decision on behalf of the company—a very big deal,
given the inordinate costs of halting the production line
in any factory.

•	 Single-piece flow: In a traditional production set-up,
the work planners might decide to fill up a large batch
size to ensure high utilization of the costly machinery.
However, if there is no firm demand for those items, the
production might happen economically, but the surplus
items of the batch will continue to be stored as inventory
without any market demand, and eventually contribute
to the waste. On the other hand, if we wait for the real
demand to be available until the entire batch is filled up,

141Agile Product Development

we might lose on the customer lead time. Both the sce-
narios are bad. In lean, the production is done only against
actual demand, and the idea is to reduce the batch size
to as low as possible—ideally a single piece—so that one
work piece is moved from one step to the next without
waiting for the machine utilization. The idea is to have
no work-in-progress, and thus eliminate inventories and
create a single-piece flow in the shortest amount of time.
It is also known as continuous flow. In addition to keep-
ing the inventories low, the process is faster as the batch
sizes are reduced, thus leading to reduced wait times at
each of the interim workstations. Another positive side
effect is to assess the quality of the finished piece and, if
there are any issues, ensure that the system is immedi-
ately corrected so that similar defects don’t recur.

•	 Single-minute-exchange-of-dye: A production setup
could either have dedicated specialized machines for
each specific operation or a process, or some generic
machines that could be configured for multiple purposes.
However, such reconfigurations normally take a lot of
time and effort in changing over, thus literally offsetting
any potential costs savings due to having lesser number
of machines in a factory. When Toyota recognized that
having specialized machines would also mean acquir-
ing additional land (which was too costly in Japan) not
just for the factory but also for keeping the vehicles for
transportation, they started looking for opportunities to
reduce the changeover/setup times. Shigeo Shingo cre-
ated the SMED approach, which led over to a 40-fold
improvement between 1975 and 1985.

Lean thinking was a major guiding force behind agile thinking, even though
they have a subtle difference. While lean is all about reducing wastes from the
system and thereby delivering the product faster and cheaper, agile is all about
responding to changes faster. However, despite this subtle difference, there
two share a fundamental philosophy and values even though specific methods
might vary. Both talk about reducing batch sizes, creating single-piece flow,
and implementing the notion of swarming in XP from the concept of the
andon cord.

The ideas behind lean production were still largely considered unsuitable for
software development, because of the fundamental differences between pro-
duction and design. However, in 2003, Mary Poppendieck formally brought
Lean thinking into software development when she wrote the book on “Lean

Chapter 6 | Develop142

Software Development.” Rather than giving another methodology or a pro-
cess lifecycle, she proposed a set of practices that help reduce waste from the
software development value stream. She identified the following principles of
lean software development:16

•	 Optimize the whole: The strength of a chain is known
by its weakest link, not the strongest link. In a value-cre-
ation process such as software development, if we con-
tinue optimizing the performance of a single step inside
it, we might still be limited in terms of the overall perfor-
mance by relatively weaker processes in rest of the pro-
cess. Thus, lean promotes optimizing the whole rather
than focusing only on parts. For example, it might not
be enough to only focus on improving the unit testing if
there are other serious issues in design.

•	 Focus on customers: Software development is a busi-
ness-critical activity that must satisfy customer needs to
be deemed useful. It is often very easy for development
teams to lose track of customers and think of solutions
in technical terms, resulting in bad product that either no
one wants or requires too much of rework. We must be
able to ask the right questions to understand customer
needs better, which in turn helps us focus on solving
the right problems, thereby leading to a great customer
experience.

•	 energize workers: The most precious resource for
any enterprise, and more so for a software organiza-
tion, is its people. If we don’t have talented people who
are seriously fired up by meaningful challenges and have
been empowered to come up with creative ideas and
solutions, we might soon lose their interest, energy, and
engagement. Lean doesn’t just stop at optimizing systems,
but considers people as the most important aspect of
problem-solving.

16“The Lean Mindset,” http://poppendieck.com/

http://poppendieck.com/

143Agile Product Development

•	 eliminate waste: In line with the original seven wastes
identified in lean, Poppendieck identified equivalent
wastes in software development:

•	 partially done work: Any partially done work
adds up to unnecessary inventory that leads to no
economic output of the process without answering
the fundamental question. So, documentation or
a piece of software that only addresses a part of
the hypothesis might represent waste that must be
avoided.

•	 extra processes: Poppendieck is extremely critical
of “paperwork” that leads to the extra processes
without adding to real customer value. She
encourages exploration of better means to transmit
or share information to reduce or eliminate any
extra processing step.

•	 extra features: There is enough industry and
anecdotal data to show that the majority of features
in a software rarely or never get used. However,
we spend a significant amount of effort and time to
specify, design, implement, and test them all.

•	 task switching: Multitasking gives the impression
that all the work streams are being served, but there
are invisible costs of task switching that gradually add
up to the overall lead times.

•	 Waiting: A significant part of software development
lead time is consumed by delays that lead to the
downstream work waiting. The delays might be
due to an extraordinary amount of documentation,
reviews, decision, approvals, testing, deployment, and
so on. A process where there are multiple hand-offs
is especially prone to such delays and subsequent
wait times.

Chapter 6 | Develop144

•	 Motion: While in manufacturing it is easy to visualize
the notion of unnecessary motion that could lead to
wastes, in software development, motion is all about
how much human effort or interaction it takes for a
developer to find out given information. It also relates
to a document being circulated among various groups
so that information can be collated into it.

•	 Defects: As in manufacturing, any defects in software
development are a source of customer dissatisfaction
and will eventually need rework in order to fix them.
The longer the defect stays in production, the more
costly it might be to fix it.

•	 enhance Learning: Unlike in production where the
entire knowledge has to be mapped to a process before
starting a production run, software development is more
like a design activity where much of the knowledge will be
discovered and created—and indeed, even discarded—
before the final product is built. A software developer,
therefore, must identify ways to enhance the learning
by undertaking short experiments that allow for rapid
validation of hypotheses, eliminating sources of variability,
and using feedback to amplify learnings.

•	 Increase flow: Conventional economics of production
emphasizes resource utilization, which could lead to sur-
plus inventory that wipes out any short-term gains from
mass production while reducing the speed of throughput.
The software equivalent would be to execute software
development in phases that aim to accomplish design or
coding for all features. Lean software development favors
creating a smooth flow, improving efficiency, and deliver-
ing value.

•	 Build quality in: The fundamental idea is to bake in the
quality, that is, to find and fix defects closest to the origin
of defects, before moving on to the next level of elabora-
tion. This reduces the costly rework cycles downstream
while also establishing predictable quality, cost, and time
commitments. It requires improving the processes and
establishing mechanisms to integrate the software early
and often.

145Agile Product Development

•	 Keep getting better: There is no such thing as the per-
fect or best or ideal process. Just when we think we have
created the best process to address a problem, the exter-
nal world changes and we must learn to quickly adapt
to it. As the saying goes, “Today’s solutions are tomor-
row’s problems.” We must constantly keep looking for
improvements rather than resting on yesterday’s laurels.

Poppendieck’s writings provide a number of insights to improve software
development processes. While there might be a significant overlap in terms of
ideas and the basic philosophy, lean doesn’t really require any changes in the
team’s composition or its software process, per se, and these principles can
be applied to an existing process—even in a waterfall process—in a Kaizen
manner.

Kanban
Lean uses a rudimentary but rather effective tool, known as kanban, to cre-
ate a pull system. The pull system ensures each part is only produced in the
right quantity and only when it is actually needed. The same idea can be used
in software development, too. Instead of developing and deploying all the fea-
tures that might or might not have been asked for by the customer, we decide
to deploy only those features that have a real customer ask. Everything else
stays in the backlog, and we use work-in-progress limits at each step of the
process to balance the pull system and achieve a continuous flow. In short, we
throttle the number of cars that can get on the highway by ensuring that only
a certain maximum number of cars are on the highway at any given time so
that everyone can go faster.

In 2004–05, while working at Network General, Bangalore, I had to solve some
significant problems around customer/field defects. When every method had
failed us, we ended up writing a process that resembles a modern-day kanban.
In all honesty, we stumbled upon it. I had then recently attended Tom Gilb’s
workshop on Evo,17 and was eager to try Evo-style weekly deliveries. At that
time, we were doing waterfall-style quarterly service packs. It took some seri-
ous thinking to craft a process that allowed us to pull the work off a common
backlog and maintain a configuration management system that allowed devel-
opers and testers to ship on weekly cadence. It was a kanban in the sense
that only when a developer would complete his bug fix, would he be allowed
to pick up another. We didn’t know the concept of “work in progress,” but
simply agreed to have a WIP=1 (which might or not be the best thing!).

17“Evolutionary Project Management,” http://gilb.com/Project-Management

http://gilb.com/Project-Management

Chapter 6 | Develop146

Luckily, it all worked out for us very well. We were extremely successful with
our experiments. I have presented my work at various conferences since then,
and the following slideshares refer to it in details:

•	 “Applying ‘Kanban’ in Enterprise-Class Products
Sustaining Engineering: An Experience Report,” Agile-
Scrum International Summit 2012, Bangalore: www.
slideshare.net/Managewell/applying-kanban-in-
enterpriseclass-products-sustaining-engineer-
ing-an-experience-report

•	 “From Waterfall to Weekly Releases: A Case Study in Using
Evo and Kanban (2004–05),” Agile India 2015,Bangalore:
www.slideshare.net/Managewell/from-waterfall-
to-weekly-releases

Around the same time, David J. Anderson created a Kanban process for
knowledge work and service work, based on his team’s work at Microsoft
Hyderabad, India. His pioneering work led to the creation of a comprehensive
body of knowledge, complete with frameworks, training, and certifications.
This, in turn, led to the founding of the Lean-Kanban University (LKU). LKU
has identified the following foundational principles and core practices of the
Lean-Kanban Method.18

Foundational Principles
The Kanban Method identifies the following foundational principles that help
establish the context in which a system under implementation could benefit:

•	 Start with what you do now: Kanban doesn’t require
a drastic change in your existing process. The idea is to
be able to start from whatever is the existing process.
To that end, the Kanban Method is less “disruptive” than
agile methods.

•	 agree to pursue evolutionary change: Rather than
bring about big-bang changes, keep learning and make
slow and steady changes to the process.

18“The Kanban Method,” http://edu.leankanban.com/kanban-method

http://www.slideshare.net/Managewell/applying-kanban-in-enterpriseclass-products-sustaining-engineering-an-experience-report
http://www.slideshare.net/Managewell/applying-kanban-in-enterpriseclass-products-sustaining-engineering-an-experience-report
http://www.slideshare.net/Managewell/applying-kanban-in-enterpriseclass-products-sustaining-engineering-an-experience-report
http://www.slideshare.net/Managewell/applying-kanban-in-enterpriseclass-products-sustaining-engineering-an-experience-report
http://www.slideshare.net/Managewell/from-waterfall-to-weekly-releases
http://www.slideshare.net/Managewell/from-waterfall-to-weekly-releases
http://edu.leankanban.com/kanban-method

147Agile Product Development

•	 Initially, respect current roles, responsibilities, and
job titles: The Kanban Method doesn’t require chang-
ing the team roles, structure, or titles, at least to begin
with. Later on, as the process keeps improving, you might
identify the need to change them, but there is no need to
make radical changes as a pre-condition to the method.

•	 encourage acts of leadership at all levels: The
Kanban Method is generally aligned with the tenets of
agility in terms of creating empowered teams that exhibit
collective responsibility. To that end, leadership must not
be restricted to the designated authority, but must be
actively encouraged across the team.

Core Practices
In addition to the foundational principles, the following core practices help
explain The Kanban Method as they are implemented in software projects:

•	 Visualize: In most cases, the project metrics and other
data about the project’s progress remain deeply buried
inside verbose documents and status reports that are
hardly ever useful. When the same information and data
are visualized, the same data is represented in a much
more actionable and meaningful form.

•	 Limit WIp: This is perhaps the most important dif-
ference between a Scrum task board and a kanban
board—the explicit definition of “work-in-progress” lim-
its. Establishing WIP limits allows for balancing the work
across various workstations so that the wastes in the
process can be minimized. An explicit WIP limit ensures
that upstream processes don’t drown downstream
processes, or downstream processes don’t sit idle just
because some process steps have a higher throughput on
a local level.

•	 Manage flow: The idea is not to rush the product out of
the process faster but to create an even flow that allows
for a much better utilization of resources in a pull system
than simply shoving the workflow downstream against a
push system. A smooth flow can manage demand and
supply much more effectively, rather than needing to
invest in building higher capacity for a temporary or a
short-term higher demand only to leave unused surplus
capacity against a low demand.

Chapter 6 | Develop148

•	 Make policies explicit: By making policies explicit, we
remove the guesswork and subjectivity in the process,
thereby leading to reduced variability and unpredict-
ability. This improves the ability to plan the work much
more effectively, and to execute the plan with higher
predictability.

•	 Implement feedback loops: A process can only be
made better by incorporating feedback, and the shorter
the feedback loops, the easier, faster, and cheaper it
becomes to incorporate feedback. When such feedback
loops are created at the entire shipment level, i.e., the
small unit of work that leads to a customer value being
shipped (and not just at the intermediate level of work
completion), it ensures that the feedback is not just on
a piecemeal basis but captures the entire process of
creating and delivering customer value. If there are any
issues during this process, a short feedback loop can help
ensure that appropriate remedial action is taken without
creating more parts with similar defects or issues.

•	 Improve collaboratively, evolve experimen-
tally (using models and the scientific method): Finally,
the Kanban Method places importance on team col-
laboration and experimentation to bring about changes
incrementally.

The most important contribution of kanban in software engineering is provid-
ing a non-timebox option to incremental software development. Based on my
own work in 2004–05, I learned that such a system works extremely well for
problems where the work arrival pattern is stochastic in nature, as is the case
for customer requests or field issues. Anderson’s Kanban Method also advo-
cates not estimating the work, though we did estimate our work and found it
helpful in planning, especially during the QA phase when test setup availability
could become a bottleneck.

I would strongly recommend Anderson’s blue book on Kanban for any serious
practitioner looking for ideas on a non-timebox way of delivering increments
of software.

149Agile Product Development

Agile Engineering Practices
Unlike linear or sequential engineering practices in a traditional waterfall proj-
ect, agile advocates concurrent engineering. The idea is to take a little bit of
task, perform just enough analysis, just enough design, implement and test it,
and “deliver” it. However, let the phrase “just enough” not mislead you into
thinking that we simply ship a low-quality piece of code! On the contrary, we
ship the highest-quality code that we can create in that quantum of time—we
just deliberately reduce the amount of functionality to what is most important
to the customers. In that sense, we let quality prevail over quantity.

Secondly, we don’t randomly pick just any functionality to be delivered. Agile
places a very high importance on delivering the highest-value software in
short and frequent intervals. This can’t be accomplished without a clear-cut
understanding of the business value each feature creates. Agile methods rec-
ognize that the value is created by differentiation and not by aggregating all
features in one big lump of software.

The reason agile adopts this strategy is to accelerate the end-to-end soft-
ware creation and expedite customer feedback. Let’s understand why these
are important. When we traverse the entire horizontal path of software
creation (that is, analysis, design, coding, integration, and testing) as well as
deliver a vertical slice of functionality (for example, user interface, business
logic, middleware, database, and backend) in the smallest conceivable piece of
demonstrable functionality, we create opportunities to mitigate several critical
technical, infrastructure, and business risks that typically go uncontested in a
traditional software project in the waterfall model till the final stages of inte-
gration and testing, by which time it is too late to incorporate any upstream
changes without accepting serious time and effort implications.

It is highly possible that such early efforts lead to lots of problems and even to
rejection of the early deliverables. Sometimes this can dissuade conventional
teams who are not used to such adverse feedback early in the development life-
cycle, and believe that they should only ship a fully-constructed and well-tested
piece of software so that the shipment is “right first time”, thereby eliminat-
ing the need for feedback. On the contrary, agile practitioners welcome such
feedback, especially when it comes to integration and testing issues because it
allows a course-correction process to begin that goes on until late in the release
cycle, eventually leading to a far superior product and a greater customer and
stakeholder experience. In the traditional project, all practitioners have is a doc-
uments-and-status reports to figure out. However, in an agile project, they are
assured of working software at periodic intervals, and they can understand the
system being built much better than lengthy Microsoft Word documents.

However, creating working software is not a science project. It requires high
technical skills. Practitioners must be able to work with multiple unknowns and
assumptions, while systemically creating high-quality engineering components.

Chapter 6 | Develop150

Let’s understand the key engineering processes and artifacts that help us
accomplish this. We have used the Scrum framework and its associated arti-
facts to explain some of the underlying concepts. However, we don’t advocate
any specific process. We recommend that practitioners understand the core
idea behind the concept being discussed, rather than picking up any ready-
made solutions. As any serious agile practitioner knows, these ideas are only
“training wheels”—great to get started when you are a novice, but as you gain
proficiency and fluency, you want to replace these training wheels, or even
completely eliminate them, so that you can develop processes and practices
that suit your needs far better than the standard version offers.

User Requirements
An old saying goes that walking on water and working on product require-
ment are very easy—if only they were both frozen! The sad truth is that user
requirements are never complete,19 so if your process places that as a pre-
condition, which the waterfall method did, you might be disappointed.

In Scrum, we represent user requirements in the form of “user stories” in a
live document known as “product backlog” that is never complete or frozen
(and hence never baselined in the traditional sense), but is prioritized accord-
ing to what might be more value to the customers. Rather than waiting for
long periods of time for them to be first complete before starting with the
design and development, we start with what we know today, and build them
in a way that subsequent changes can be accommodated with little pain. In
each sprint, we take up the highest value stories that the team can deliver at
a sustainable pace. We call this subset of the product backlog the sprint back-
log, and the only condition we impose is that no changes can be made to this
sprint backlog once the sprint gets underway.

User Stories
User stories are essentially a “tweet-length” representation of a key prod-
uct functionality expressed from the point of view of a user. It deliberately
skips finer details in favor of providing a general, high-level direction, for the
agilests believe the value is not in documentation but in conversation. Given
the obvious inadequacies of documentation (for example, natural languages
are not mathematically complete or proven to be correct or unambiguous),

19One could argue that if the user requirements are indeed complete, the product that
would be built might only represent the time when those requirements were thought of;
however, it is very likely that the world has moved on since then.

151Agile Product Development

agile practitioners favor identifying just the high-level stories that act as place-
holders for a future conversation between the product owner and the con-
cerned developers. This in-person conversation is a collaborative dialogue
that enhances the richness of requirements that might otherwise take weeks.

Ron Jeffries proposed the 3C approach to write better user stories:

•	 Capture: A user story is typically small enough to be
captured on a 4"x6" index card. The limited space places
a physical limit on the number of details that might not
be required at this stage. I like to use the “tweet-length”
analogy so that only the most crucial elements of a user-
facing requirement are captured.

•	 Conversation: Given that a user story will only capture
the essence of what a user might want to accomplish
with a given system, and a conversation might be needed
to elicit these further details, the user story acts as an
invitation for such later-date conversations.

•	 Confirmation: This suggests identifying the conditions
of completion that will lead to successful acceptance by
the product owner, including the non-functional require-
ments (NFR). Identifying these conditions upfront builds
a level of transparency that allows the product owner
and the teams to work on the same page.

This 3C framework is a nice way to describe the overall concept behind user
story, but how does one determine if a given user story is good or bad?

In 2003, Bill Wake came up with a readiness criteria, called “INVEST”20 to
allow the product owner and the team to be on the same page:

•	 Independent: It should be possible to clearly identify a
user story that is independent of other stories.

•	 Negotiable: The user story should only give a general
direction of “what” is required without getting into “how”
it is going to be implemented.

•	 Valuable: Sometimes also written as “vertical,” a user
story must be of value to the customer, that is, it creates
some level of functionality that an end-user can use.

•	 estimable: The user story is a key input for release and
sprint planning, and hence it must be possible to estimate
it using estimation methods.

20http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

Chapter 6 | Develop152

•	 Small: Long user stories represent significant technical
and project management risks. Thus, a good story should
ideally complete inside a single iteration so that all the
risks associated with it can be validated.

•	 testable: A user story must be testable. In other words,
its behavior and acceptance criteria must be clearly speci-
fied so that it can be demonstrated if the implementation
meets all those requirements.

The teams could typically use INVEST readiness criteria during backlog
grooming and sprint planning sessions to determine if the given user story
needs any further refinement from the product owner, or if it is good to go.
Some teams also plan an upfront release planning workshop where they can
additionally use the INVEST criteria. The key is to recognize that whenever
there are new or changed requirements, it represents a risk for planning the
activities inside a release or a sprint. An instrument like INVEST should be
used to understand and mitigate corresponding risks.

But, what do these user stories look like?

Agile practitioners have left this question open-ended to allow the teams to
decide what format they would like to use. However, for those looking for
some quick start guidance, the following is a very commonly used “template”
for writing user stories:

As <who> I want to do <what>, so that <why>

where the three components are:

•	 Who: Who is the intended user of this feature? This is
ideally represented as a user persona so that the ele-
ments of human-centered design are adequately repre-
sented in capturing the user requirements. By identifying
the “who”, we provide a context to the “what” which
would otherwise reflect functionality but without really
any human-centricity.

•	 What: What do they need to do with the feature? The
functionality is not expressed as a system feature but
how a given user persona interacts with the system to
accomplish some task. Traditionally, we have expressed
requirements only in terms of “what”, which often left
developers wondering why should anyone want that
given functionality, etc.

153Agile Product Development

•	 Why: Why do they need this feature? Determining the
“why” helps establish the key reason a given user per-
sona wants to use the given system. Establishing a proper
“why” is extremely important to help developers under-
stand the real reason a given “who” will require a given
“what”, or the business value they will accrue out of it.

User stories represent an unconventional way to communicate about user
requirements. Without getting into very heavy details, the idea is to keep the
central idea very lightweight, but encourage communication from all relevant
team members as and when the right moment comes. To that end, user sto-
ries discourage excessive analysis upfront when the story hasn’t quite been
confirmed on the backlog. Thus, it is a very lean approach.

There is extensive literature,21 and guidance22 in the agile and Scrum commu-
nity on how to write user stories. In this book, we have explained the context
in which user stories are useful for agile product development. Compared to
other methods of communicating that require traditional product require-
ments documents (“PRDs”) or detailed “use cases”, the user stories are short
and crisp, and they invite collaboration. They also encourage innovation from
the developers.

Splitting User Stories
What happens when a given user story is “big”? If the team proceeds with
sizing it (say, using planning poker23 or any other equivalent method), it might
be unknowingly signing up for risk given that not all details inside the story
might be visible or known in such a big story. So, it is in the entire team’s, as
well as the customer’s interest, to break down stories to a more manageable
size before making planning commitments. But, how do you split a user story?

The conventional wisdom of splitting user requirements along the horizontal
layers of architecture is prone to challenges, as was identified back in 1968 by
Mel Conway.24 A horizontal way to specify requirements invariably leads to a
layered architecture, which leads to longer lead times and other challenges.
While this was the classical way to specify the architecture, agile methods favor
vertical splitting alongside logical function of a cluster of feature boundaries,
where each vertical split is a full-stack, end-to-end, customer-facing feature.
This ensures that each piece of work that the team undertakes can indeed

21“User Stories: An Agile Introduction,” www.agilemodeling.com/artifacts/userStory.htm
22“User Stories,” www.mountaingoatsoftware.com/agile/user-stories
23“Planning Poker in Details,” www.old-planningpoker.com/detail.html
24“How Do Committees Invent?,” Melvin Conway, 1968, www.melconway.com/Home/
Conways_Law.html

http://www.agilemodeling.com/artifacts/userStory.htm
http://www.mountaingoatsoftware.com/agile/user-stories
http://www.old-planningpoker.com/detail.html
http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html

Chapter 6 | Develop154

be delivered to the end-users, rather than completing an internal module or
a component that might appear to give the sense of progress without really
delivering working software.

One such method is the hamburger method25 by Gojko Adzic. It uses the
metaphor of how we eat a hamburger—we don’t eat the top bread first and
then the patty and then the tomato slice and the lettuce, and so on. Rather,
we take a big vertical bite and in every bite, we get a bit of each of the layers
of the hamburger! Similarly, when we apply the hamburger method, the idea
is to identify components of each layer and recombine them in a way that
allows for a full vertical slide of functionality to be delivered in each increment
of delivery. It allows us to establish validation points—not just technical ones
in terms of the tech-stack compatibility but also in terms of the customer
feedback on functionality, usability, and performance. I like the method for its
simplicity and flexibility. However, teams might discover more effective meth-
ods that are more contextual to their work. You can find some good guidance
at this blog post on epic sharding.26

Estimating User Stories
Once we have split the user stories into an acceptable level (which doesn’t
have be a standard one-size-fit-all, but rather more suited to every team’s
comfort level), we are ready to estimate their size. In a traditional project
management approach, we mostly adopt top-down methods that have their
own limitations:

•	 expert judgment: There might not be any substitute
for an expert in the knowledge-intensive industry such
as ours. However, an expert might not be always available
and definitely won’t lead to improving an organizational
collective capability to do better estimations in future.

•	 parametric estimation: If we could somehow come
up with the size (say, as in lines of code or function
points), we might be able to use something like the soft-
ware equation27 to compute the effort and duration.
However, given the variability in human capabilities, is a
one-size approach even useful?

25“Splitting User Stories: The Hamburger Method,” http://gojko.net/2012/01/23/
splitting-user-stories-the-hamburger-method/
26Epic Sharding, http://blog.pivotal.io/pivotal-labs/labs/epic-sharding

http://gojko.net/2012/01/23/splitting-user-stories-the-hamburger-method/
http://gojko.net/2012/01/23/splitting-user-stories-the-hamburger-method/
http://blog.pivotal.io/pivotal-labs/labs/epic-sharding

155Agile Product Development

•	 analogous estimation: If there are historical data
points from similar projects in the past, it might be one
way to do a kind of “estimation by reference.” However,
in all honesty, no two software projects are alike and such
estimates might come with their own error margins.

We could also use bottom-up estimation methods but they also suffer from
limitations:

•	 Function point: We might need to capture all require-
ments upfront and must know enough about all the
requirements to compute the functions points with rea-
sonable accuracy, not to mention that we must first train
all developers to be experts on function points.

•	 Wideband delphi: It seems like a good way to crowd-
source the knowledge and arrive at a collective opinion
fairly quickly, except that too much time could be wasted
in arriving at “precision” when just the “accuracy” will do.

•	 Lines-of-code productivity/backfiring: If we can
compute the size in lines of code and we know the pro-
ductivity data, we might be able to back-compute the
effort and roll it up across rest of the phases. The pro-
cess suffers from over-standardizing human capabilities
and effort distributions across phases, which might not
always be true.

•	 three-point estimates: –Instead of a single data point,
we could do three-point estimates28 and triangulate the
data to improve our estimates, which might be a bit bet-
ter way to crowdsource the estimates.

However, from the historical data and literature, it doesn’t seem like these
approaches were very successful in giving us reliable estimates. As a result,
it was common practice to add liberal amount of buffers in the estimates to
improve the confidence levels, a practice that Eliyahu Goldratt discussed well
in The Critical Chain.29 Clearly, there are several limitations and biases affecting
the estimates, and even then given the track record of project execution in
our industry, no one is happy with what we have.

27“Software Equation,” https://en.wikipedia.org/wiki/Software_equation
28https://en.wikipedia.org/wiki/Three-point_estimation
29“Critical Chain,” www.goldratt.co.uk/resources/critical_chain/

https://en.wikipedia.org/wiki/Software_equation
https://en.wikipedia.org/wiki/Three-point_estimation
http://www.goldratt.co.uk/resources/critical_chain/

Chapter 6 | Develop156

Agile methods discard top-down methods as being too risky. This is in line
with the overall lean thinking to reduce the batch size. As we discussed in
previous sections, we break user stories until we feel they are small enough
as per the INVEST criteria. What is small? Again, there is no single math-
ematical definition, but generally, small is something that could be reasonably
accomplished inside a single sprint (and, there again, we are not talking about
just barely fitting it inside a sprint!). We are looking at a something that is
small enough to be taken through an entire cycle of closed-loop learning in
a small time slice that ideally fits well inside a sprint length. We do it so that
we can not only deliver something of value but also create data points that
help execution of other stories better in terms of similar risks of technology,
infrastructure, and customer asks.

Now that we have a small story, we need to estimate its size and effort. A
size estimate allows us to get a sense of how much work needs to be done,
and the effort gives us a sense of how much effort and time it would take to
accomplish it. Quite often, we skip the size and directly proceed to effort.
However, this is fraught with risks and several challenges. First off, the grain
size of our work at the start of the project is too big to be broken down at
such “inch-pebbles”30 level, which is quite impractical and of not much utility.
On the other hand, the size of a software is a very soft and abstract notion
with high levels of uncertainty and error margins. On top of it all, the cone
of uncertainty31 trumps it all, even though the business expects hard commit-
ments to be made about the project delivery. So, how do we proceed?

As Goldratt explained in The Critical Chain, we tend to pad our effort to
increase the confidence level, and unfortunately, due to student syndrome,32
the buffer gets exhausted first. Even if the work somehow gets done before
the deadline, the time savings are not given back to the project (even though
the delays do end up accumulating!). Now imagine an environment where
sticking to estimates is considered non-negotiable. We will only end up seeing
more people gaming the system by building in all kinds of invisible buffers, and
we will never get a true sense of the “size” of the system to be developed for
us to do any meaningful release planning.

Agile approach is to delink the size and effort. Size is the high-grain-size work
items (such as features, epics, and stories) that can’t be precisely estimated,
but accurate-enough information about them (say, in a given ballpark) might
be helpful to find similar, or comparable, work in the backlog and do an esti-
mation for the entire release to get a high-order plan underway. The effort is

30“How to Use Inch-Pebbles When You Think You Can’t,” www.jrothman.com/
articles/1999/01/how-to-use-inch-pebbles-when-you-think-you-cant/
31“The Cone of Uncertainty,” www.construx.com/Thought_Leadership/Books/
The_Cone_of_Uncertainty/
32“Student Syndrome,” https://en.wikipedia.org/wiki/Student_syndrome

http://www.jrothman.com/articles/1999/01/how-to-use-inch-pebbles-when-you-think-you-cant/
http://www.jrothman.com/articles/1999/01/how-to-use-inch-pebbles-when-you-think-you-cant/
http://www.construx.com/Thought_Leadership/Books/The_Cone_of_Uncertainty/
http://www.construx.com/Thought_Leadership/Books/The_Cone_of_Uncertainty/
https://en.wikipedia.org/wiki/Student_syndrome

157Agile Product Development

computed for small-grain-size work items (like individual tasks inside stories)
that can be well estimated but only for the stories that are crystal clear in
the near horizon of planning, that is, the sprint backlog items. So, they could
be helpful only in planning and tracking the most immediate work. However,
using those methods to estimate the entire product release backlog might be
like using a tape measure to measure a football ground—it is neither going
to be accurate nor useful to anyone. So, we use two different approaches to
estimate the size of work—the first one is a relative sizing of the high-level
work, while the second one is the absolute effort required for specific low-
level tasks.

We need the right balance of accuracy and precision in our estimates.
Unfortunately, we tend to mix them up without realizing they are not the
same! The following diagram illustrates how they are different from each
other. Imagine someone practicing target shooting. Depending on their skill
level, we could broadly expect one of the four patterns shown in Figure 6-1.

While low accuracy, low precision estimates are useless to just about every-
one, we do need the following during different stages of agile planning:

Figure 6-1. Varying skill levels could lead to variances in accuracy and precision

Chapter 6 | Develop158

•	 high accuracy, low precision: –When we are look-
ing at the product release backlog and want to know
when can we get this entire backlog completed, we don’t
need to be precise to the second decimal place. It is good
enough to know the ballpark estimates with enough
accuracy. As long as we don’t change the measurement
scale halfway through a release, we can establish a mea-
surement system to help us plan the release using big
rocks at that level.

•	 Low accuracy, low precision; low accuracy, high
precision, and high accuracy, high precision: When
we start to work on a new project and everyone on the
team is new to the work, we can expect low accuracy,
low precision estimates. Over time, we share our learn-
ing with each other and establish common standards of
workmanship and graduate to low accuracy, high precision
because everyone is now aligned to what the task entails.
As the team continues to get better with understanding
and predicting its work and acquires higher standards of
the workmanship (that is, a more stringent “definition of
done”), it matures to high accuracy, high precision stage.

However, I must call out that the capability is not the only factor that impacts
this journey. The environment, empowerment, and fear of reprisal in case of
mistakes could all have a significant impact on how people actually behave,
individually or in a group. Estimation is not a mechanical activity. If anything, it
is a social activity. We need a mechanism that allows us to initially arrive at
high accuracy, low precision estimates of size and later, as we go to the finer
details, allows us to plan the most immediate work using high accuracy, high
precision estimates.

One of the most popular techniques to estimate the size of work is using the
so-called planning poker cards. Essentially a variant of the wideband delphi
technique, which uses Fibonacci series as the grading scale, the technique
relies on crowdsourcing estimates such that the following biases are mini-
mized, if not completely eliminated:

•	 Bias of group think

•	 Bias of expert opinion. In a team, there might be individu-
als with specific expertise.

•	 Bias of effort vs. schedule

The output of a planning poker session is typically expressed in terms of a
unitless size known as story points, rather than in hours. Story points are
abstract numbers that prevent premature commitment and gaming, but are

159Agile Product Development

fairly useless by themselves unless they are viewed in the context of other
story point estimates by the same team for the same release. They represent
the relative size of a story as per the acceptance criteria and team’s definition
of done compared to some previously agreed-upon story in the same release.
Story points are helpful for long-range and mid-range planning—not for the
work to be done “here and now.” For that, we must consider breaking down
stories into individual tasks, as described in the next section.

Breaking Down Stories into Tasks
As we saw in the previous section, story points are useful in the high-level
planning of a release, but when it comes to implementing a story, it must be
broken down into its constituent technical tasks,33 for example, writing a new
class, or refactoring the database. These technical tasks are well known to the
development team, and they are in great position to estimate them directly in
hours. Breaking-down of the stories into tasks allows for the technical details
about implementation emerge, which helps in better task estimation and plan-
ning, as well as risk reduction. However, it is key to recognize that tasks can’t
really be verified. They must be carried out and tested by the respective
developer for the correctness of desired operation, but they must be collated
alongside other tasks that are part of the same story. Only then can we apply
the acceptance criteria to test it at a story level for functionality and usability.
However, establishing tasks creates a basis for making and measuring tangible
progress on a daily basis. Identifying and implementing the individual technical
tasks is the least count of a developer’s progress that has no real meaning to
anyone outside the team.

There is no single magic formula for how to break down stories into tasks;
however, there is good guidance available for it, like this one.34 Most techies
can decompose a story into its constituent technical tasks, though given the
massive number of combinations and permutations in a modern-day tech
stack, it is likely that one might always forget to include all the components
during planning. I find that involving the entire team in the breaking down of
stories into tasks is a great way to not only remove the guesswork from the
process, but also share the tacit knowledge without the need to do excessive
documentation. The second valuable learning is about keeping the tasks small.
A good guide is to stick to tasks that can be completed in less than one day
(that is, a net productive programmer day, whatever that might be for your

33“The Difference between a Story and a Task,” www.mountaingoatsoftware.com/blog/
the-difference-between-a-story-and-a-task
34“How to Decompose User Stories into Tasks,” www.payton-consulting.com/decompose-
user-stories-tasks/

http://www.mountaingoatsoftware.com/blog/the-difference-between-a-story-and-a-task
http://www.mountaingoatsoftware.com/blog/the-difference-between-a-story-and-a-task
http://www.payton-consulting.com/decompose-user-stories-tasks/
http://www.payton-consulting.com/decompose-user-stories-tasks/

Chapter 6 | Develop160

team). This ensures a feedback loop at the end of the day to confirm whether
the task was completed as envisaged, and thus minimize the technical tasks
and associated risks to go into the next day.

For each of these tasks, the team estimates the effort directly in hours. These
estimates are then compared to the total number of productive or net hours
available to the team throughout the upcoming sprint and accordingly com-
mitted. This process helps balance the effort available vs. the effort required
to complete tasks and deliver stories at the end of the sprint.

Backlog Grooming
In Scrum, a product backlog is a prioritized wish list of all features. It is always
considered “emergent,” meaning we never consider a situation where all
requirements might be known to the customer or the team, and we could
“baseline” them once and for all (and utilize the money-making “change man-
agement” process for any subsequent changes). Rather, we recognize the inev-
itability—and the power—of constantly changing requirements as the means
to eventually deliver the “right” software by a series of feedback cycles.

On a well-run team, just about anyone might be empowered to add ideas to
the product backlog—even the development team members. And they might
submit ideas throughout the time a product is alive. Now we don’t expect all
ideas worthy of being taken up, so Scrum recommends that we trust the prod-
uct owner to make that call. The product owner might or might not individu-
ally be the most competent expert to make that call by herself. However, she
is expected to work with other folks from business and engineering to collect
all data points so that we could make the “most-informed” call.

Scrum requires a sprint be planned on the first day of each sprint. However,
over time, practitioners have found that by simply focusing on the current
sprint and ignoring the needs of the most immediate future—the next upcom-
ing sprint—we limit our ability to not just prepare and plan for it, but also
make the entire planning a rather episodic one, even if only in shorter time-
boxes! So, the practitioners advocate a more continuous discussion of the
emerging backlog as and when new features are requested. Teams typically
spend an hour or so each week discussing major new changes in the product
backlog since the previous week. If the changes are clear and small enough,
even estimate its size, so that the product owner can use this information
in the overall release plans. I have seen teams taking an hour each week, as
well as teams taking ten minutes every day, to conduct backlog grooming.

161Agile Product Development

Irrespective of what works best for you, the key takeaway from such back-
log grooming is to keep the team engaged on the upcoming changes and to
help the product owner do a continuous release planning based on emer-
gent changes. This ensures there are no, or minimum, surprises to anyone
in the end.

In a steady state, the backlog grooming sessions help a team maintain a looka-
head of one to two sprints while also exploring the product backlog and help-
ing the product owner “groom” the backlog—break down epics, estimate the
stories that appear to be ready (that is, as per the INVEST criteria), reconsider
any need to reprioritize stories, and so on.

User Story Mapping (USM)
A prioritized product backlog is a great way to represent stories in a one-
dimensional list on the basis of their relative values and, thus, establish a basis
for scheduling them in sprints. However, a backlog might not be the most
effective in terms of capturing a sense of the system being designed. For exam-
ple, an isolated story that is priority #2 might not have anything to do with
its adjoining stories on #1 and #3 positions in terms of its logical placement
across the product’s functionality. So, a developer working on the #2 story
might not get the entire picture of the functionality that the story #2 is a
part of, nor will she ever get to realize that the given subset of functionality is
actually composed of stories #2, #8, #14, and #23. Similarly, the stories #1, #4,
#9, #19, and #51 might collectively represent another functionality. Even if we
simply go on scheduling the stories per the priority in the product backlog, we
might be completing stories and yet not shipping value from the user’s point
of view!

Jeff Patton came up with an interesting way to bunch user stories in a two-
dimensional map rather than placing them in order of priority. He calls it User
Story Mapping.35 He felt there was an opportunity to cluster them based
on a higher-order grouping, or a theme. He propounded that such grouping
created a better opportunity to understand the big picture and then build
increments than to deliver higher-value stories that might not help build a
minimum functionality.

A user-story map, or USM, is essentially a view of all user stories in a release
(or a series of releases) that has been simultaneously prioritized on time and
priority, as shown in Figure 6-2.

35“User Story Mapping,” www.agileproductdesign.com/presentations/user_story_
mapping/

http://www.agileproductdesign.com/presentations/user_story_mapping/
http://www.agileproductdesign.com/presentations/user_story_mapping/

Chapter 6 | Develop162

We initially identify the “backbone,” which gives a structure to the solutions
being discussed. These could be the big-bucket functionalities that a system
requires. To accomplish the backbone, we might have a number of features
that are broken down into epics and stories. The bare minimum set of sto-
ries that represents a viable solution is identified and is known as the “walk-
ing skeleton.” It could be conceptually equivalent to identifying the Minimum
Viable Product (MVP). All other stories are prioritized into the “release
slices,” which help stagger the releases without losing the information within
a respective backbone grouping.

Jeff Patton wrote a book on this, and has given further guidance on his web site.36

Figure 6-2. A user-story map organizes user stories based on a timeline and priority

36“User Story Mapping,” http://jpattonassociates.com/user-story-mapping/

http://jpattonassociates.com/user-story-mapping/

163Agile Product Development

Design, Development, and Testing
In the waterfall model (Figure 6-3), we take up a phased approach to software
development. Following the requirements analysis phase where we typically
document requirements into use cases or verbose descriptions of the sys-
tem behavior, there is a documentation-intensive phase where the design of
the system is specified. It is described typically in the form of UML diagrams,
event-trace diagrams, a high-level architecture, or in Word documents. These
documents are then taken as the input by developers for development, coding,
or the implementation phase. (See Figure 6-3.)

Figure 6-3. In the waterfall model, the engineering phases are sequential to each other

In the past, there would typically be high-level-design (HLD) phase followed by
a low-level-design (LLD) phase. The HLD phase would establish the architec-
ture and identify big building blocks or sub-systems. The LLD would go on to
describe key class hierarchy, public methods, and even the algorithms, pseudo-
code, data structures, and so on. Finally, when the developers were done with
the coding phase, they would start unit testing, which used be manual more
often than not. Once the developer was satisfied with the results of unit test-
ing at the white-box level, she would get its code reviewed and then check in.
Not every check-in would always be built, but when the build would be done,
there would be all kinds of integration issues, often leading to finger pointing
and a waste of countless hours. Finally, when the build was completed, the QA
team member would execute functional testing at the black-box level, which
once again would be highly manual and, hence, could only be done on the “QA
drops.” QA drops were mini-episodic events where the entire system under
development was built and given to QA for a round of functional or regres-
sion testing. Not only was this entire process extremely time-intensive, it was
also very inflexible. Any agility that might be expected at the developer level
was out of question.

Chapter 6 | Develop164

Instead of performing such “sequential” engineering, agile methods advocate
concurrent engineering (Figure 6-4)—that is, perform design, development,
and testing concurrently to minimize the intermediate steps and eliminate
phase-driven hand-offs. Instead of taking on 100% requirements and then
completing 100% analysis, followed by 100% design, then 100% coding and
finally 100% testing, agile methods favor taking a very small subset of those
requirements but completing all engineering activities for that subset in the
smallest amount of time. Ideally, a very small number of individuals works
together to complete these activities. The result is not a heavy document but
a piece of well-tested code that takes far less time to develop but delivers a
high-quality, customer-facing functionality.

Figure 6-4. In agile development, the emphasis is on undertaking all aspects of engineering
in a concurrent manner

The typical sequence of design, development, and testing is reversed in this
approach. As described in Figure 6-5, a developer takes a small task (that has
already been broken down inside the user story) and, before starting anything
else, writes the test case to test its desired performance. Such a test-first
approach is based on the idea that the human mind is likely to become biased
during testing to subconsciously conform to the way an implementation has
been done. This is known as test-driven development, or TDD. So, if we first
specify the test cases, we are less likely to fall into the familiarity trap. In terms
of implementation, a TDD approach ensures that at any point in time, a suite
of automated unit test cases is available to test a given piece of functional-
ity. This gives a great deal of power to a developer to go out and make any
changes to the code because she is never more than a few changes away from
validating whether any changes made break the existing functionality.

165Agile Product Development

This piece of test code is not very elaborate—maybe a few lines, but enough
to test the module’s key functional behavior to be created. Predictably, this
piece of test code will fail because there is no functionality in terms of the
production code to test it against. Immediately after writing the test code, the
developer writes the functional code that will satisfy the test code enough
to pass the test cases. Again, the emphasis is on writing the absolute least
amount of code that will make the test cases pass. Once that is done, the
developer now refactors the code, that is, redesigns the code to improve
its design, readability, performance, and so on. However, unlike a traditional
redesign, this effort might at most be limited to a dozen or two lines of code
at a time and immediately proceeds with executing the test loop. Such a
“test-code-refactor” or “red-green-refactor” loop might be typically executed
every hour or even more frequently, and it leads to a software whose state is
always known relative to the previous stable state. The software is continually
“grown” around like an expanding spiral. When the entire module is ready,
the developer checks in the code in a code repository, or a configuration man-
agement system, which is then hooked on to a continuous integration (CI)
server. Each such check-in typically leads to a CI build that gives quick feed-
back if any major functionality of the code is broken. Along with each such
a CI build, an automated build verification test suite might also be executed
that tests the completed work at story level. The CI build as well as the build
verification test are both executed in fast cycles, typically not more than 8–10
minutes or faster, so that the developers don’t have to wait for hours or days
to get feedback on their software.

This test-code-refactor loop represents the smallest unit of concurrent engi-
neering at a task level. When the task is completed, it is integrated with other
modules to test the integration (rather than doing a traditional big-bang inte-
gration). When all modules pertaining to a story have been completed, we

Figure 6-5. The test-code-refactor loop helps build high-quality software in a series of small
iterations

Chapter 6 | Develop166

can demonstrate and test a user story—the small subset of user-facing func-
tionality. Unlike waterfall model where testing is a phase downstream in the
development process, agile emphasizes building in quality upfront. At its core,
it does that by reducing the length of the feedback loop as much as possible
so that establishing the cause-and-effect relationship between a bug and the
defect is easier to establish.

In terms of product validation, agile also places heavy emphasis on building
small but complete increments of functionality and delivering them to the cus-
tomer for earlier feedback. In case the feedback doesn’t match expectations,
there is an opportunity to correct the course sooner and at a cheaper cost.
In the worst-case scenario, the product increment doesn’t meet any require-
ments and the team can make necessary changes much earlier in the cycle,
thereby minimizing the amount of time and money wasted.

This could be accomplished using techniques such as Acceptance Test—Driven
Testing (ATDD), where the system under development might be subjected
to automated tests at a system level. These test cases are oblivious to the
internal implementation of its features and are only interested in ascertaining
whether the system under development meets those pre-specified criteria.
This could ensure that the feedback loop is shortened so that developers
could get feedback at each epic or a feature-level sooner than later.

Behavior-Driven Development (BDD) is yet another idea that seeks to specify
and test a system's behavior in plain English. However as an idea, agile seeks to
establish continuous feedback at appropriate levels of a system, and it is pos-
sible to eliminate a testing or a validation phase the way it exists today. Using
the ideas of test-driven development at all levels of software, and using the
power of automated tests and frameworks, the system under development
can be subjected to continuous automated testing that can reduce the unit
size of product validation to each story, thus paving the way for incremental or
continuous delivery if the users are willing to accept incremental functionality.

Conclusion
In the waterfall-development paradigm, we often estimated and made plans
when we knew the least about the system. Hidden buffers invariably com-
pensated for this, giving a false sense of precision, even if the estimates them-
selves were not accurate. The engineering methods were documentation-led
because they worked on the older economics of software development that
one hour of computing time is costlier than one hour of programmer time.
Consequently, we must use the programmer time to optimize the comput-
ing time by doing extensive documentation and review it to ascertain pro-
gram correctness. Given the siloed nature of software development in such
a model, we often had to accept extremely long loops of feedback, and the

167Agile Product Development

risk of it all blowing up would be extremely high towards the integration and
testing phases.

However, over time, the computing time has become substantially cheaper
compared to the programmer time, so it doesn’t make sense to do exten-
sive documentation simply to communicate the requirements or review the
design—it is far cheaper and effective to simply write software and test it.
However, it must be done in quick enough bursts that allow for rapid feedback
and course correction, i.e. correct before making the same mistake again!
Unfortunately, traditional engineering methods don’t lend themselves very
well to such in-process course correction because the developers and testers
must rely on costly and laborious manual processes to verify and validate
after every change. Agile favors a concurrent engineering approach where the
test-first mindset creates a basis for comparing the “before” and “after” con-
dition with minimal effort. More importantly, the automated test cases that
are created as part of the development also grow incrementally and become
a permanent part of the code, which unlike the documentation, are always in
sync with the code and, thus, more likely to be used. The result is a well-tested
and working piece of software created at every sprint, and if the system-level
validation is also possible at each sprint, then even delivering those “poten-
tially shippable increments”.

In Chapter 7, we will discuss how we apply principles of agile product develop-
ment to deliver the software to customers.

http://dx.doi.org/10.1007/978-1-4842-1067-3_7

C h a p t e r

Deliver
Not documents … but the software!

Give your clients the earliest delivery consistent with quality—whatever
the inconvenience to us.

—Arthur C. Nielsen

In the past, a long waterfall-style development was briefly punctuated by the
delivery of documents such as the design documents and status reports. It
finally culminated with the real end goal—the software delivery. The docu-
ments were often seen as the proxy for the real product because nothing
else was available to communicate progress through the long dark phases
proceeding the final delivery. Needless to say, these documents often had no
correlation whatsoever to the actual product or its quality. A status report
could at best only communicate the past (which everyone already knew!),
but never really predict the future in ways that would be meaningful to the
product development team and the customers so that they could collectively
re-plan their activities to align with the evolving dynamics of a project.

In this final chapter, we will examine how agile product development enters
the final phase in which being able to make a high-quality delivery becomes
most critical. During this phase, the customers don’t care what agile method-
ology you used during development or what tools your team used. As far as
they are concerned, the software should just work—not just when doing the
initial installation, but every time it is accessed.

After all, the proof is in the pudding!

7

Chapter 7 | Deliver170

Integration
One particularly sore point of waterfall-style development was integration. All
along the development phases, the software was written by individual devel-
opers in silos on their respective desktops. Only when the integration phase
began would the team start to “integrate” the software modules together—
and then all hell would break loose. What should ideally be a non-event in
terms of assembling different parts of software would soon turn into days
and weeks of saga with all its frustration and unpredictability. In several cases,
the integration would rapidly degenerate into a mini-project by itself! As you
can imagine, in such a development process, the customer became a distant
second-class citizen, whose interests were hardly the driving point of software
delivery. However, none of this has to be this way, at least not anymore.

Compared to these rather obviously questionable and, thankfully, obsolete
delivery methods, agile methods seek to deliver incremental value through-
out the lifecycle—literally from the first iteration onward. As we discussed
in Chapter 6, each iteration typically leads to high-quality working software
of a subset of the final functionality—something that the customer can play
around with and hopefully deploy in the production environment, which will
lead to quality feedback. However, in the real world, the working software
might be necessary but not sufficient to constitute a “delivery,” especially
when we consider every single iteration. For example, a team might complete
a few stories over an iteration that meet their respective acceptance criteria,
but have a limited utility for the users given the partial functionality it delivers.
So, clubbing of individual stories into a full-fledged feature makes sense until
we create complete functionality instead of shipping elements of code that
only represent partial functionality. But even then, it is a big step forward from
the older process.

Shipping
In the pre-Internet days, companies would typically ship software in CDs (flop-
pies or tapes in the pre-CD days). Given the challenges and expenses of the
physical shipment of CDs to customers all over the world, it is not surprising
that such an episodic event was avoided. Since a CD could not be shipped
every few weeks even if individual features were ready (which obviously they
were not, as the waterfall-style didn’t lend itself to completion and delivery of
partial functionality), it was more like accumulating all the features for a mega-
release every couple of years, and then delivering minor updates and repairs
every couple of quarters. Due to the logistics and costs of shipping CDs, every
amount of caution would need to be taken to ensure that bad code was not
being delivered, lest another expensive operation be needed to ship a recti-
fied code—at no additional costs to the customers. At some point, this last
mile of delivery became the rate-limiting factor of the software development

http://dx.doi.org/10.1007/978-1-4842-1067-3_6

Agile Product Development 171

process and had a major impact on everything upstream. In other words, the
tail started to wag the dog, and the upstream development process had to
adapt itself to deliver a software that adhered 100% to the specs and delivered
the right quality. However, as we have discussed before, this was wishful think-
ing given the nature of software development. There is ample data from the
industry to suggest that the approach of first specifying every single requirement
and then inspecting and testing every line of code after it was written wasn’t the
best way to ensure that the goals of software development were met.

When the Agile Manifesto came along in 2001, it emphasized the importance
of “early and continuous delivery of valuable software.” It discouraged a single
episodic release that would typically be fraught with multiple “single points
of failure”. At that time, software configuration management practices were
already beginning to mature. It was normal for teams to practice things such
as daily builds (or rather, nightly builds) earlier in the lifecycle, followed by
smoke tests to validate the integrity of these builds. However, these checks
and balances were meant to get a continuous in-process feedback into what
was still a waterfall-style delivery. Most of this software was never shipped
until the time everything was ready to be shipped.

And then the Internet happened.

Among other things, the advent of the Internet created the possibility of deliv-
ering software globally without having to ship physical CDs. The end users
simply had to access a web site in order to use the software. Whenever a
patch, an update, or a new feature was ready, all the developers needed was
a way to update the software that powered the web site and then the users
would get the latest software. The end users didn’t have to wait for the so-
called “forklift upgrades” anymore—piecemeal updates were actually possible
without any of the traditional costs and logistic issues of the past. Of course,
the success of this new delivery method depended on whether the customers
were willing to accept it. Given the short lead-times and relative ease of incre-
mental upgrades, and the substantially lower risks of each of these upgrades,
it is a no-brainer that users prefer them.

Cloud computing and SaaS have taken the paradigm further down the road.
The customers and end users don’t need to install the software on their
devices. Instead, they simply access the web site whenever they want to use
the software. The latest version of software is always available. Of course, in
the mobile world, we are seeing a strong play of native apps, but the mobile
Internet still continues to be the predominant form of accessing the software,
having exceeded desktop Internet usage sometime during 2014–15.

Today’s software delivery is not just about completing the coding and then
shipping it via CDs. Given the increasing amount of software being hosted in
private or public clouds that operate out of globally located data centers with
hundreds of thousands of servers, the complexity of delivering a software at

Chapter 7 | Deliver172

Internet-scale becomes a significant challenge. This challenge is found not just
at the technical level, but also at the business level.

Intel has a very interesting graphic on its web page: “What happens in an
Internet minute?”1 When you realize the sheer volume of the data being cre-
ated and shared every single minute, you soon understand that traditional
software delivery methods aren’t adequate in this world. We need a way to
deliver software that address today’s needs:

•	 Speed: the speed of doing business in today’s world,
where every passing hour creates some new technology
or business paradigm, and where decisions must be made
in nano-seconds

•	 Scale: more and more businesses today are operating
globally and, eventually, any serious business must con-
sider performance at Internet-scale

•	 Sustainability: with more software being delivered
online, there is an inevitable need to deliver and sustain
a high-performance through the troughs and valleys of
market demand

The developers cannot compromise quality since the technology, markets,
and customer needs continue to evolve around the clock. Today, the leading
software companies operate at high levels of speed, scale, and sustainability.
They use their high performance to continuously deliver “wow” customer
experiences.

Let’s examine the building blocks in software development that enable soft-
ware construction leading to the eventual delivery.

Software Configuration Management (SCM)
For a telecom project I worked on in 1995, we didn’t use any code manage-
ment tool at all. All of us wrote C++ code on our respective desktops. When
we finished, we simply copied our .cpp and other resource files on a common
desktop into pre-designated folders. Initially, we copied our individual work
approximately every week and, later on, daily as we got close to complet-
ing the coding. Not every developer was able to “check in” their code daily
(sometimes due to a bad developer behavior and sometimes due to interde-
pendent modules that had to be significantly mocked up just to make the build

1www.intel.in/content/www/in/en/communications/internet-minute-infographic.html.

http://www.intel.in/content/www/in/en/communications/internet-minute-infographic.html

Agile Product Development 173

happen painlessly). Most of the time, we were not able to perform a build on
this software during the initial days of the coding phase. However, we kept a
local backup on a separate machine—just in case! We eventually completed
the development, tested it rigorously, and packaged the software. One of our
colleagues then traveled to the client location with the CD in hand. While
installing the software, she discovered that our software wouldn’t even install.
After some debugging, we discovered that someone had changed the name
of one of the database fields. Somehow, this had not affected the work during
the preceding phases. Unfortunately, we had never tested the software on a
“virgin” machine until installation.

After some Hollywood-style heroics, we did manage to save the day, but not
before realizing that our configuration management, integration, build process,
and packaging verification process were basically broken. We were lucky to
come out with minor bruises that we could debug and fix fast. For example,
we didn’t even have backup in those days—the code repository was stored in
file folders on one desktop and we would simply back up the repository onto
another desktop! I don’t know too many teams who were doing things very
differently back then.

Clearly, we have come a long way.

With the advancement in software configuration management and build tools,
all this sounds like a relic of a bygone era. A software configuration manage-
ment system, or SCM (also known as a version control system), is a given
today. With the advent of so many open source and free tools available, the
SCM is largely a non-issue.

Over time, we got better tools (both free ones like CVS as well as paid ones
like Rational (now IBM) ClearCase or Microsoft Visual SourceSafe, etc.) that
made life much easier. We elevated the process rigor to include additional
checks and balances where the tools lacked in capability. For example, during
the late 90s, it was not uncommon to perform elaborate CMM- and ISO9000-
style Physical Configuration Audits (PCAs) and Functional Configuration
Audits (FCAs) to validate how well a configuration management environment
was maintained for a project. These issues are still important, but most of
these elements are available out-of-box with modern-day configuration man-
agement tools. We must remember that these are, at best, a side issue that
must be quickly streamlined and automated so that developers don’t waste
time doing things that don’t add any value to the product. Instead, they can
focus on what does matter—creating innovative products.

In classical agile (that is, the Agile Manifesto), there is no specific recommen-
dation on practice or tools around SCM. I believe the agilests saw that as an
integral part of software development that didn’t have to be explicitly called
out. As a result, we don’t have any CMM- or ISO-style guidelines on what to
expect. The focus is on establishing and nurturing an environment that enables

Chapter 7 | Deliver174

sustainable agility as a mindset and a set of values and practices. To that end,
each team must identify and assess its needs rather and evolve its methods,
process and tools than blindly following some standard tool or process.

However, specific agile frameworks such as DSDM and FDD do call out SCM
explicitly. DSDM Atern doesn’t specify a specific process or a tool to accom-
plish SCM, but it does talk about the following values of good configuration
management2:

•	 Focus on business needs

•	 Deliver on time

•	 Collaborate

•	 Never compromise quality

•	 Build incrementally from firm foundations

•	 Develop iteratively

•	 Communicate continuously and clearly

•	 Demonstrate control

Similarly, FDD also talks about configuration management as a best practice
without specifying any further details about the process per se. However, by
the time FDD came out in 1997, SCM was already a commonplace activity,
even in the waterfall world (thanks to Software CMM and ISO9000 TickIT).
So, agile or no agile, anyone doing any non-trivial software development was
probably practicing some form of configuration management. I remember that
in the late 90s, all my teams had one engineer spending part of his time setting
up and managing the configuration management environment, and for larger
project teams, there was a full-time engineer managing the configuration, build
and release environment.

If a good SCM solution was the minimum expectation 15 years ago, today it
has been upgraded to Continuous Integration (CI).

Continuous Integration (CI)
In traditional software development, the standard practice was to have a
prolonged coding phase followed by a relatively quick “big-bang” integration
phase (talk about perennial optimism in our industry!). This sounded good
in theory, but it almost always bombed in reality. As you can imagine, the
process was fraught with risks. When multiple engineers were writing code

2“Configuration Management,” www.dsdm.org/content/24-configuration-management.

http://www.dsdm.org/content/24-configuration-management

Agile Product Development 175

without integrating their work collectively at regular intervals, serious issues
arose whenever they decided to build the entire software. Even with initial
agreements on who would do what, what interfaces would be provided, and
how their signatures would look, as well as the testing of the individual com-
ponents, they would not integrate together. Unfortunately, these issues would
be discovered so late in the game that what should have been a non-event
often became a project unto itself. Integration of the code was as painful as
pulling teeth.

“Integration hell”3 was real and often led to the last-mile problems of soft-
ware delivery. As a result, people started integrating the code a bit sooner—
during the (latter part of) coding phases without waiting for the completion of
the entire coding phase. In this model, the developers would continue writing
code, often in their private branches, and only check in every few days (or
even weeks!), if at all. The builds would typically be more like distant events
but more frequent than the erstwhile big-bang integration. Surely this led to
improvements over big-bang integration, though it was only a half-step. Like
several other practitioners who would tinker around with process and tools
at that time, I also had an interesting experience.

In 1997, we stumbled upon a very rudimentary form of “Continuous
Integration” while solving a real issue. We were using good old CVS for con-
figuration management of our Oracle-based product for hospitals, and my
team had close to 20 developers. It was based on client-server architecture
and, thus, it was relatively easy to write it independently for developers as long
as the server-side changes were centrally coordinated. So, even though there
was a high level of agility at the developers’ level, we didn’t integrate them
all together very frequently. With so much code being written, it was only
natural that there would be some server-side and client-side issues whenever
we would build, which would invariably lead to last-minute action and missed
deadlines. To address the issue, we created a low-tech solution. Each time
someone would commit the code, a copy of the module being checked in
would be made in another common folder where all the latest versions of the
entire codebase were kept. The developer could then trigger a manual build
to check if his software was integrating with rest of the team’s. We thought
it was a smart solution that made it easier to verify if the software integrated
well. Little did we realize that what we did brought us closer to modern-day
Continuous Integration.

3“Continuous Integration: How to Avoid ‘Integration Hell,”’ https://dzone.com/articles/
continuous-integration-how-0.

https://dzone.com/articles/continuous-integration-how-0
https://dzone.com/articles/continuous-integration-how-0

Chapter 7 | Deliver176

So, what is Continuous Integration, or CI? Martin Fowler defined4 it in the
following way:

Continuous Integration is a software development practice where members
of a team integrate their work frequently, usually each person integrated
at least daily—leading to multiple integrations per day. Each integration is
verified by an automated build (including test) to detect integration errors
as quickly as possible.

Paul Duvall provided a short and sweet definition of CI in his 2007 book
Continuous Integration: “build software at every change.” Most developers are
used to compiling their piece of software at frequent intervals, but they don’t
always go on to build the entire software. They are hesitant because they fear
long build cycles and dozens of unresolved interdependencies lurking in the
darkness, which would make the entire effort so time-consuming and effort-
intensive that it wouldn’t be of meaningful value as a source of continuous
feedback. However, a well-implemented CI system could change all that.

CI originally started as one of the 12 practices within XP. Although it doesn’t
require nor recommend any specific tooling, teams normally use one of the
several dozen commercial and open sources tools available. They all have a
similar function. They work in tandem with the software configuration man-
agement system and, whenever there is a code check-in, an automated build
on the CI server is triggered. This CI build is typically meant to be very fast—
terms such as “espresso builds” are not uncommon to highlight that the build
must be completed in the amount of time it takes to drink a coffee. The logic
here is that if something isn’t fast enough to give meaningful feedback to the
developers, most likely it will be avoided and skipped. So, the idea is to make
it usable by making it lightning fast. Once the build is ready, an automated test
suite, typically known as Build Verification Test, is triggered to perform smoke
testing on the build as well as regression testing on the existing code with
some level of functional testing increases as newer features and stories are
added to the newly checked-in code. Again, the goal is to keep it fast. I often
see that teams have improved the builds to under ten minutes, but the veri-
fication takes between six and eight hours. In such situations, the developers
will have no motivation to exploit the capabilities of the CI system, and the
practice might deteriorate to a daily build (because an eight-hour build verifi-
cation can only be run when everyone is asleep!).

4“Continuous Integration,” http://martinfowler.com/articles/continuousIntegration
.html.

http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html

Agile Product Development 177

In theory, CI can be practiced in just about any project—waterfall or agile.
However, when implemented in the context of agile product development, it is
specifically useful in building and testing the features incrementally. When we
define byte-size stories at the planning level, we create the possibility to main-
tain the same small batch size during the development and through the inte-
gration—and achieve single-piece flow in product development. Remember
the readiness criteria for user stories, “INVEST,” where “I” stands for indepen-
dent. If the stories have been well defined and are independent enough, they
will be easier to implement and test without requiring significant amounts of
code being available from any dependent features or stories. Second, when the
acceptance criteria of those stories are clearly spelled out as part of the sprint
planning (or as early as backlog grooming), it makes writing automated tests at
the functional level much easier. So, while the developers go about developing
the functionality, the test engineers can write automated test scripts that go
on to be part of the build verification test suite. Every time the CI build is trig-
gered, the entire system gets tested—not just for the newly added functional-
ity but also for any regression effects on the existing functionality.

Each such integration is really a mini-integration with an additional increment
of software added since the previous integration, but with a significantly lower
risk of anything going wrong because we have already traversed the entire
path of performing the integration and build and, thus, already know the last
stable state of the software code. And when things do go wrong and a build
breaks, it is far easier to debug and fix the problem since the quantum of
change is much smaller.

A CI system can deliver continuous feedback per story (rather than on tra-
ditional monolithic software modules) that significantly reduces the need for
a very complex big-bang integration. As Jez Humble and David Farley say in
their 2011 book Continuous Delivery, “if it hurts, do it more frequently, and
bring the pain forward.” However, the risks relating to user experience or
some assumptions around the key functional behavior of a feature might still
remain untested because the output of a CI build might not be exposed to
the customers unless deployed in the field. That’s where the next two topics
of continuous delivery and continuous deployment help push the boundaries.

Continuous Delivery
Hardly a day goes by when an app on your favorite mobile or tablet doesn’t
get an “update.” In fact, when I pick up my tablet after not using it for several
days, I can see a dozen or more updates waiting. At that point, I make the
choice of whether to spend (some people might even call that “waste”) the
first 15 minutes updating to the latest version of those products, or use the
apps and ignore the updates. What’s happening here?

Chapter 7 | Deliver178

Welcome to the world where software is literally being released as it is being
written. As a software developer, I now have the opportunity to keep writing
software. Whenever a meaningful amount of product updates are ready, I club
them up and make them available as a product update. Rather than making
my software updates available once in a blue moon as was the practice in the
past, I can now make them available “continuously.” The user can decide if she
would like to update her software immediately or continue to use the old
software. Of course, over time, the old software will have reduced the abil-
ity to exploit newer hardware and operating system features and might even
become incompatible with newer features.

Humble describes continuous integration in the following way:

Continuous integration demands that we are able to keep the application
working after every change made to it. This includes changes to the
structure or content of our data. Continuous delivery demands that we
must be able to deploy any successful release candidate of our application,
including the changes to the database, into production.”

The aim of continuous delivery is to always have a system in releasable state.
If we go back to agile thinking, it takes the whole idea of delivering “vertical”
stories through the end. However, we may not always deploy those changes
into production. But, what if we were to actually deploy them?

Continuous Deployment (CD)
Most of us use dozens of consumer Internet software every day, such as
Facebook, LinkedIn, Twitter, Google, and Flickr, and so on. Do you know what
version of these services you are using at any given time? More than likely, you
don’t know, and probably no one else knows (not that it matters from the
user point of view anymore!). We have moved away from the classical “ver-
sion-and-release” mindset to a world where there is a constant “drip feed” of
byte-sized features. Whenever a user logs onto the web site of an online or
a hosted service or software, she receives the latest version of the software
that is in production (which might constantly keep changing as she uses it, by
the way!). With software apps (or native apps in the case of mobile), these
increments of functionality were made available as notifications to the users
and the choice to update was typically left to them. But with online services
and software, the software makers can directly take care of software upgrades
and, as a result, make the process even faster.

Any idea how much time it takes for companies to roll out such code updates
into production?

Agile Product Development 179

At the Velocity 2011 Conference, Jon Jenkins shared Amazon’s May Deployment
Stats.5 He said that every 11.6 seconds, someone at Amazon was deploying
the code into production. He also mentioned that on average, some 10,000
hosts would receive a deployment. However, in that particular month, that
number maxed up to 30,000. While I am sure those numbers have gone up
significantly since then, I think they represent a great story. Most importantly,
they highlight the possibility of what technology could offer to businesses
today. Not every business will exploit such advanced technologies, but they
open up endless possibilities. Imagine being able to think of an idea and being
able to validate it with your customers in a non-disruptive manner. If the idea
has any legs, you are able to conduct stuff like A/B tests to quickly learn about
it. Or, in the worst case, you drop the idea because there are no takers. Most
importantly, you do that all in a matter of hours and days rather than weeks
and months.

Welcome to the bold new world of continuous deployment, where the soft-
ware you use is constantly being updated as it gets written. If a “release”
was planned with some 50 features to be delivered in ten months and if the
first few features are ready in the initial few months—enough to roll out a
Minimum Viable Product (MVP)—then why not do a dark launch, some kind of
private beta, or a by-invitation roll-out so that valuable feedback can be taken
from the innovators or early adopters? As more features become ready, they
keep getting pushed into production. Whenever users log into the service,
they get the latest features that are in the production. Their usage pattern
and feedback can help developers understand how users like the newly rolled
out features. Developers can also learn about any major blind spots in terms
of the user experience.

Why would someone do it? Well, imagine that being able to respond to cus-
tomer behavior in real time could ensure higher engagement and monetiza-
tion. For example, pretend you are selling vacation packages online, and there
is a program on a popular lifestyle channel about a great vacation destination.
You suddenly start seeing higher traffic from viewers who want to check
out the destination. At that point, you might have a golden opportunity to
respond to such a surge in traffic by making it easier for visitors to your web
site to find the information they are looking for. Hopefully, you can convert
them into customers.

I see the CI/CD pipeline as an integral part of the deployment pipeline for any
modern software development process. Even if the software is offered as a
non-online (or an “on-prem,” meaning it is hosted on servers that are housed
on-premises inside an enterprise, perhaps due to security or some other con-
cern), the development process doesn’t have to stop benefiting from a system
that offers such continuous feedback.

5Velocity 2011: Jon Jenkins, “Velocity Culture,” https://youtu.be/dxk8b9rSKOo

https://youtu.be/dxk8b9rSKOo

Chapter 7 | Deliver180

DevOps
When the Agile Manifesto came out in 2001, it was normal to have silos—
especially between development and testing—with clearly divided roles and
responsibilities. The manifesto propounded an environment with a higher
amount of shared responsibility among all the team members. In short, it
introduced the idea that great development teams were not just separated
around functional specializations, but were built around them: “Developers
who test, and Testers who develop.”

Back in 2001, enterprise software was still an 800-pound gorilla. Getting
developers and testers together was a big deal. Web-based software was
just beginning to appear, and the then-recent success of the web was quickly
vaporized with the dot-com meltdown. As a result, there were no compelling
use cases when it came to online businesses that needed hosted software as a
key resource. However, over time, we have seen more and businesses, from all
walks of life, embrace the online world and have increasingly higher business
happenings online.

DevOps takes this inclusive, holistic thinking to a new level. I like what
John Allspaw talked about in his deck “10+ Deploys Per Day: Dev and Ops
Cooperation at Flickr.”6

“Ops who think like devs and Devs who think like ops”

So, what is this DevOps? Is it a process, a tool, a technique, a framework, or
something else? I think it is more like a mindset—just like it all started as
an agile mindset and an agile culture, DevOps is all about creating a culture
in organizations that promotes a holistic product thinking without compart-
mentalizing the responsibilities. It promotes shared ownership of a product
without apportioning the responsibilities between development and opera-
tions—one seeks to maximize disruption and rollout innovation while the
other thrives on steady state to ensure uptime and usage experience. In
DevOps world, the entire team must accept shared responsibility for both
these important business activities. This is extremely important for any kind
of product that offers online services.

However, this is still a new area, and we are sure to see more innovation in
this space. Again, I believe this is an integral part of the agile product culture
that promotes thinking about all the aspects of a product, including ops, rather
than thinking of it as an afterthought. Most importantly, it seeks to remove the
barrier between “us” vs. “them,” whichever side of the product development
equation you see yourself in.

6www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-
flickr.

http://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr
http://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr

Agile Product Development 181

Conclusions
Software delivery has come a long way from the multi-year release cycles in
the past when the users had to wait for shipment of the next version CDs.
We have come to the point where a new idea might only be hours away from
being put in the hands of end users. We now have the technology and tools to
take such new ideas right from ideation through production and test them in
byte-size deployments. As a result, we can really understand what customers
want and respond in real time to their desires.

Two major trends are interesting: online software consumption and startups.
Startups, and more specifically the lean startups, are constantly trying out
newer and better ways of doing business. Concepts like MVP are becom-
ing an integral part of product lingo, and supporting infrastructure, such as
CI/CD and DevOps, is making it possible for entrepreneurs and startups to
experiment with partial functionality before committing to a bigger and longer
investment timeframe. In addition, with more and more software being con-
sumed online, the whole incremental delivery is even more powerful because
there are virtually no marginal costs associated with the digital distribution
of software.

In this final chapter, we have briefly looked at the ideas behind software deliv-
ery. My aim was to stitch up the entire value creation chain in the context of
agile product development. While the aspect of software delivery is an impor-
tant one, I consider it a necessary but not sufficient part of the product devel-
opment. Once the deployment pipeline is set up (and if you have the right
talent, it might require a few hours or a couple of days), it is available as the
raw capability. With better technology and tools, it can be made extremely
fast and efficient.

Version control, build and release infrastructure alone can’t win you matches—
for that, you still need rock-solid talent, However, you do need infrastructure
to support and reinforce some of your process tasks that can be automated
to the extent their execution is not only made lightning fast to eventually
“run anytime, anywhere”, even the human errors in delivery can be totally
eliminated.

I realize that I might be oversimplifying the reality by saying it, but I do believe
that infrastructure is (or it eventually must be) table stakes—if it continues to
be “visible” to you daily, there is something wrong in the way you have imple-
mented it. It should be the silent hum of the engine running somewhere in the
background that ensures your teams can peacefully do why you hired them
for in the first place—design innovative products that create customer value!

Welcome to the journey…

I

A
Acceptance Test—Driven

Testing (ATDD), 166

Accidental discovery
bodystorming, 42
brainstorming

effective tool, 40
process, 39
rules, 38

cross-functional team, 34
vs. directed Innovation, 32
gamestorming, 40
hackathons, 45
lone genius, 34
Medici Effect, 46
role-based vs.

ability-based innovations, 36
slow market research vs.

rapid experimentation, 35
trystorming, 44

Adaptive Software Development (ASD), 133

Agility
acceleration, 27
Agile Manifesto

business handling, 20
CASE, 21
company size, 20
consumer software market, 24
customer collaboration, 22
customer contracts, 22
documentation, 25
FORTRAN/COBOL program, 25
Harvard Business Review, 19
individuals and interactions, 21
key events, 17
Moore’s law, 25

process methodologies, 19
responding to change, 26
signing, 17
source of uncertainty, 22
upper-management consultants, 18
wicked problems, 23
working software, 26

a priori, 3
finite state machine, 2
GPS, 3
pre-software days

ATSC, 12
Kelly’s motto, Skunk Works, 12–16

problem-solving
anarchy, 7
complicated and

complex problems, 6–7
fuzzy front-end of innovation, 7
“known-known” problem, 4, 6
scripted process, 7
software development (see Software

process improvement (SPI))
spectrum problems, 5
“unknown-unknown” problem, 4

process standardization, 4
standard process, 3
vendor-driven commandments, 2

B
Behavior-Driven Development (BDD), 166

Break-even period (BEP), 99

Build Your Own Search Service (BOSS), 36

Business model
channels, 72
cost structure, 73
customer relationships, 72

Index

184 Index

customer segments, 71
key activities, 73
key partnerships, 73
key resources, 72
revenue streams, 72
value proposition, 72

C
Capability Maturity Model (CMM), 133

Cash cycle, 100

Change control board (CCB), 8

Computer Aided Software
Engineering (CASE), 21

Continuous deployment (CD), 178

Continuous integration (CI), 174, 178

Cross-functional team, 34

Customer development model
business model canvas, 71
company building, 71
customer creation, 71
focus, 70
identification, 70
lean canvas, 79

D
Declaration of Interdependence (DOI), 134

Design, definition, 109

DevOps, 180

Differentiator design
functionality, 106
InMobi, 108
market share, 107
price, 106
product design, 108
Uber, 107

Discount cash flow (DCF), 100

Dynamic Systems
Development (DSDM), 133

E
Elevator pitch, 86

Extreme programming, 131

F
Feature-Driven Development (FDD), 133

Featuritis curve, 95

G
Good design, principles

aesthetic design, 111
environmentally friendly, 113
honest, 112
innovative, 111
last detail, 113
little design, 113
long-lasting, 112
right time, 112
product useful, 111
unobtrusive, 112

Google Ventures’ design sprints
decide, 68
diverge, 67
facilitator, 66
product team, 66
non-trivial problem, 67
prototype, 68

H
Hamburger method, 154

High-fidelity prototype, 53

High-quality delivery
continuous delivery, 178
continuous deployment, 178
continuous integration, 174
DevOps, 180
integration, 170
shipping, 170
SCM, 172

Human-centered design
customer journey map, 118
empathy map, 117
mindset, 115
user personas, 115

I, J
Integration, 170

Internal return rate (IRR), 99

Inventory turns, 101

Business model (cont.)

185Index

K
Kanban method

experimentation, 148
feedback loops, 148
foundational principles, 146
limit WIP, 147
manage flow, 147
overview, 145
policies explicit, 148
team collaboration, 148
visualization, 147

Kano model, 96

L
Lean

Andon cord, 140
just-in-time, 139
principles

customers focus, 142
energize workers, 142
enhance learning, 144
increase flow, 144
optimization, 142
perfect/best/ideal process, 145
quality, 144
waste elimination, 142

pull system/Kanban, 140
single-piece flow, 140
SMED, 141

Lean UX
assumptions, 120–121
principles, 119
process, 120

Lone genius metaphor, 34

Low-fidelity prototype, 53

M
Made-to-Forecast (MTF), 100

Made-to-order (MTO), 100

Marketing requirements document (MRD), 84

Moscow, 97

N
Net present value (NPV), 100

No Silver Bullet (NSB) theory, 130

O
Old-school documentation, 84

P, Q, R
Press release, 88

Prioritization
Featuritis Curve, 95
financial measures

BEP, 99
cash cycle, 100
DCF, 100
inventory turnover, 101
IRR, 99
NPV, 100
simplistic model, 99
typical cash inflows, 99
typical cash outflows, 99

Kano analysis, 96
MoSCoW, 97
pugh matrix, 101

Product backlog, 91

Product development
Agile Manifesto, 133
collaborative development, 51
customer development (see

Customer development model)
design thinking

mindsets, 62
process, 64

DOI, 134
engineering practices

concurrent manner, 164
TDD approach, 164
user requirements, 150
user stories (see User stories)
waterfall model, 163

extreme programming, 131
kanban method

(see Kanban method)
lean (see Lean)
NSB theory, 130–131
prototypes

high-fidelity, 53
low-fidelity, 53
mock-ups, 59
napkin, back of, 53
paper prototyping, 55

186 Index

software development, 52
wireframes, 58

stealth mode, 50
scrum, 135
waterfall method, 129

Product requirements
document (PRD), 84

Product roadmap, 89

Product vision
audacious vision, 85
elevator pitch, 86
press release, 88
product vision box, 87

Pugh Matrix, 101

Pull production method, 139

S
Scripted process, 7

Scrum, 135

Shipping, 170

Single-minute-exchange-of-dye (SMED), 141

Software configuration
management (SCM), 172

Software design
agility and architecture, 122
BDUF, 121
definition, 121

Software process improvement (SPI)
B2B, 10
CCB, 8
CMM Level 5, 8
home blend approach, 11
Internet-based software, 10
new-age process, 8
productivity, 11
project manager, 11

project planning, 8–9
silver bullets, 10
software team, 11
specific methodologies, 10
standardization process, 8
waterfall, 9

Sprint backlog, 92

Stacey Matrix, 5

Stealth mode development
customers want, 51
my customers, 51
problem, 51

T
Test-driven development (TDD), 164

U, V, W, X, Y, Z
US Army’s Air Tactical Service

Command’s (ATSC), 12

User requirements, 150

User stories, 93
estimation methods

backlog grooming, 161
bottom-up, 155
breaking-down stories, 159
Critical Chain, 155
planning poker cards, 158
skill levels variation, 157
top-down, 154
USM, 161

INVEST criteria, 151
splitting, 153
templates, 152
3C approach

capture, 151
confirmation, 151
conversation, 151

User Story Mapping (USM), 161

Product development (cont.)

	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Preamble
	 Spectrum of Problems
	 Solving Simple Problems
	 Solving Complicated and Complex Problems
	 Solving Anarchy Problems

	 Solving Problems in Software Development
	 Agility in Pre-software Days
	 Re-examining the Agile Manifesto
	 The Agile Manifesto
	Are you serving the process well?
	Tools can’t be wrong!
	Customers are human beings too!
	Show, don’t tell!
	I’m loving it!

	 Accelerating the Agility
	 What’s next?

	Chapter 2: Discover
	 Accidental Discovery vs. Directed Innovation
	 Lone Genius vs. Cross-Functional Team
	 Slow Market Research vs. Rapid Experimentation
	 Role-Based Innovation vs. Ability-Based Innovation
	 Ideas and Techniques
	 Brainstorming
	 Gamestorming
	 Bodystorming
	 Trystorming
	 Hackathons
	 Medici Effect

	 Conclusion

	Chapter 3: Deliberate
	 Stealth Mode Development
	 What is the problem?
	 Who are my customers?
	 What do they want?

	 Collaborative Development
	 Prototyping
	 Back of Napkin
	 Paper Prototyping
	 Wireframes
	 Mock-ups

	 Design Thinking
	 Google Ventures’ Design Sprints
	 Before the Sprint: Prepare
	 Day 1: Understand
	 Day 2: Diverge
	 Day 3: Decide
	 Day 4: Prototype
	 Day 5: Validate

	 Customer Development, Lean Startup, and Business Model Canvas
	 Business Model Canvas
	 Lean Canvas

	 Conclusion

	Chapter 4: Describe
	 Old-School Documentation
	 Product Vision
	 Elevator Pitch
	 Product Vision Box
	 Press Release

	 Product Roadmap
	 Product Backlog
	 Sprint Backlog
	 User Stories
	 Feature Prioritization
	 Kano Analysis
	 MoSCoW
	 Financial Measures
	 Pugh Matrix

	 Conclusions

	Chapter 5: Design
	 Design as Differentiator?
	 What is Design ?
	 What is Good Design?
	 Human-Centered Design
	 User Personas
	 Empathy Map
	 Customer Journey Map

	 Lean UX
	 What about Software Design?
	 Conclusion

	Chapter 6: Develop
	 The World Before
	 Extreme Programming
	 Agile
	 Agile Manifesto
	 The PM Declaration of Interdependence

	 Scrum
	 Lean
	 Kanban
	 Foundational Principles
	 Core Practices

	 Agile Engineering Practices
	 User Requirements
	User Stories
	 Splitting User Stories
	Estimating User Stories
	 Breaking Down Stories into Tasks
	Backlog Grooming
	 User Story Mapping (USM)

	 Design, Development, and Testing

	 Conclusion

	Chapter 7: Deliver
	 Integration
	 Shipping
	 Software Configuration Management (SCM)
	 Continuous Integration (CI)
	 Continuous Delivery
	 Continuous Deployment (CD)
	 DevOps
	 Conclusions

	Index

