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Foreword

Everyone who uses computers these days has heard of cloud computing, and most of us utilize the
cloud in some fashion, whether it is for highly-sophisticated calculations for science and engineering
or just to store the family’s photographs safely. What is a computational cloud? Why is it so ubiqui-
tous? Who provides cloud computing services? What services are available? Why is it cost-effective?
How are computational clouds built and programmed? How are they accessed? How do they store and
process huge collections of information? How can they be made to be secure? This book answers these
questions and teaches you about the design, implementation, use, and advantages of cloud comput-
ing. The book is the definitive textbook and reference on cloud computing, written for researchers and
educators from academia, industry, and government.

I have known the author of this book, Dr. Dan Marinescu, for over 30 years. Based on many years
of working on research problems in the computer science and computer engineering with Dan, I can
state with certainty that Dan is a scholar, an intellectual, a dedicated researcher, and a diligent author.
As people who want to learn about cloud computing, we are fortunate that Dan has applied his intellect
and energy toward compiling into one coordinated volume extensive knowledge of numerous aspects
of cloud computing.

The text of the book is written in a straightforward and understandable way, drawing from hundreds
of sources. The material and jargon from these sources are organized and presented in a common
terminology, context, and framework to make them coherent.

This book is a comprehensive encyclopedia for cloud computing. In addition to the topics men-
tioned above, here is a sampling of other topics readers will learn about from this book, all in the context
of cloud computing: application development, big data, containers, control theory for optimizing sys-
tem use, data storage, data streaming, deadlock prevention, energy efficiency, graphics processing units,
hypervisors, interclouds, interconnection networks, internet communications, MapReduce program-
ming, mobile computing, network-centric computing and network-centric content, parallelism (data-
level, thread-level, and task-level), performance analysis, process coordination, resource management
and scheduling, security, service level agreements (SLAs), trust, virtualization, and warehouse-scale
computers. Also in the book are surveys and comparisons of existing cloud computing hardware and
software systems.

Each chapter is followed by a set of thought-provoking exercises and problems. Many of these
problems refer the reader to specific other references for additional information. The problems guide
students to apply and build on the knowledge in the book to explore other systems and expand and
deepen their understanding. Furthermore, there is an appendix with research projects for students in a
cloud computing class.

There is an extensive bibliography of over 500 publications. These are cited under each of the topics
in the book and leads readers to more details. The references are often also used in the problems and
exercise to help the reader learn more.

The book is well-organized, consisting of three main sections, each with multiple chapters. The
book has great technical depth, addressing both underlying theoretical concepts and practical real-
world issues. Even though the book is technically deep, the writing style and organization make it
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xiv Foreword

easy to follow and understand. There are over 180 figures, with meaningful lengthy captions, that are
constructed in a way that is clear and comprehensible to support the information presented in the text.

Cloud computing infrastructures are large-scale complex systems that need to be designed, ana-
lyzed, deployed, and made secure in a manner that supports users’ needs and provides a financial profit
to the cloud services providers. These are very difficult problems, and approaches to handling these
problems are presented throughout the book.

In conclusion, Dr. Dan Marinescu has applied his vast experience as an author of books and as
an outstanding researcher to successfully take an extensive and complicated body of knowledge and
present it in an organized, informative, and understandable way. This book is an authoritative textbook
and reference on cloud computing for researchers, practitioners, system designers and implementers,
and application specialists using cloud computing.

H.J. Siegel
Fellow of the IEEE
Fellow of the ACM

Professor Emeritus at Colorado State University, where he was
the George T. Abell Endowed Chair Distinguished Professor of Electrical

and Computer Engineering, Professor of Computer Science, and
Director of the university-wide Information Science and Technology Center



Preface to the Second Edition

Almost half a century after the dawn of the computing era, an eternity in the age of silicon, the disrup-
tive multicore technology forced the computational science community and the application developers
to realize the need to understand and exploit concurrency. There is no point now to wait for faster
clock rates, we better design algorithms and applications able to use the multiple cores of a modern
processor.

The thinking changed again when cloud computing showed that there are new applications that can
effortlessly exploit concurrency and, in the process, generate huge revenues. A new era in parallel and
distributed systems began, the time of Big Data hiding nuggets of useful information and requiring
massive amounts of computing resources. In this era “coarse” is good and “fine” is not good, at least
as far as the granularity of parallelism is concerned. The new challenge is harnessing the power of
millions of multicore processors and allowing them to work in concert effectively.

The pace of technological developments in computing and information processing is truly breath-
taking and often exceeds the expectations and the predictions of the most optimistic experts and
forecasters. For example, in early 1990s the SBSS (Science-Based Stockpile Stewardship) program
of the DOE to transition from underground testing of the nuclear stockpile to science-based, computer-
driven testing, required an increase of supercomputer speed by a factor of 10 000 over a period of ten
years. The goal of 100 Tflops was exceeded by a factor of 20 [417].

The last decades have reinforced the idea that information processing can be done more efficiently
on large farms of computing and storage systems accessible via the Internet. Advancements in net-
working, processor architecture, storage technology, and software technology are responsible for the
acceptance of new computing models.

In early 1990s, the Grid computing movement initiated by US National Laboratories and univer-
sities for the benefit of the world-wide scientific community, captivated the attention of scholars and
funding agencies. Then, a decade later, the cloud computing era targeting enterprise applications began.

In 2006 Amazon introduced Amazon Web Services (AWS). The first cloud computing services of-
fered were EC2 (Elastic Cloud Computing) and S3 (Simple Storage Service). Today, S3 has surpassed
two trillion objects and, routinely, runs more than 1.1 million peak requests per second; its year-over-
year gross rate is 132% [232]. Elastic MapReduce launched 5.5 million clusters since the start of the
service in May 2013.

AWS has more than one million customers who have access to 28+ data centers; one data center
is powered by 50 000–80 000 servers, has a network capacity of 102 Tbps and uses 25–30 megawatts
of energy [220]. In 2015 Amazon had the largest cloud infrastructure. Fourteen other cloud providers
combined have 1/5th of the aggregate capacity of AWS [232].

An unofficial estimate puts the number of servers used by Google in January 2012 close to 1.8
millions. Today there are more than 200 Cloud Service Providers (CSPs) and some 120 of them support
the IaaS (Infrastructure as a Service) and DBaaS (Database as a Service) cloud delivery models. While
in the past it took years for an IT company to reach one million customers, it took only weeks to
Instagram to reach this milestone.
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Cloud computing promoted by IT companies such as Amazon, Google, Microsoft, IBM, Oracle,
and others has effectively democratized computing. In 2015, 2.6 billion out of the 7.2 billion inhabi-
tants of the planet Earth use Email services1 such as Gmail. Hundreds of millions use online services
to buy all imaginable goods, to rent apartments in far away places, or to find a raid home. Millions of
computer experts along with neophytes need only a credit card to access computer resources previously
offered by the supercomputers operated by government institutions and only available to a select few.

Computer clouds ushered us into the Big Data age. According to an IBM post: “Every day, we
create 2.5 quintillion bytes of data, so much that 90% of the data in the world today has been created in
the last two years alone. This data comes from everywhere: sensors used to gather climate information,
posts to social media sites, digital pictures and videos, purchase transaction records, and cell phone
GPS signals to name a few. This data is Big Data” [251].

The complexity of the software and the hardware infrastructure supporting cloud service is astound-
ing. Two billion lines of code are maintained by Google and drive applications such as Google Search,
Google Maps, Google Docs, Google+, Google Calendar, Gmail, YouTube, and every other Google
Internet service. By comparison Windows operating system developed by Microsoft since 1980’s has
some 50 million lines of code, 40 times less than what Google has developed in its 19 years of exis-
tence.2

Warehouse-scale computers (WSCs) with tens of thousands processors are no longer a fiction, but
serve millions of users, and are analyzed in computer architecture textbooks [56,228] and in recent
research papers such as [262]. WSC’s processor throughput is more important than single-threaded
peak performance, because no single processor can handle the full workload of modern applications
[239]. As the number of parallel threads increases, reducing serialization and communication overheads
is increasingly more difficult thus, brawny-core systems, whose single-core performance is fairly high,
are preferable to more energy efficient wimpy-core ones.

In the early days of network-centric computing it was postulated that web searching is the “killer
application” that will drive the software and hardware of large-scale systems for the next decades [54].
It turns out that the applications running on computer clouds are very diverse. For example, at Google
the top 50% most frequently used applications account for only 50% of the CPU cycles used [262].

The broad spectrum of cloud applications adds to the challenges faced by cloud infrastructure. For
example, controlling tail latency of workloads consisting of a mix of time-critical and batch jobs is far
from trivial [131]. Some critical system requirements are contradictory, e.g., multiplexing resources to
increase efficiency and lowering the response time, while supporting performance and security isola-
tion.

The effort to build one layer of abstraction removed from the underlaying hardware, a sort of operat-
ing system for Internet-scale jobs is underway. Systems such as Dryad [253], DryadLinq [539], Mesos
[237], Borg [502], Omega [446], and Kubernets [82] attempt to bridge the gap between a clustered
infrastructure, and the assumptions made by applications about their environments. These systems
manage a virtual computer aggregating resources of a physical cluster with a very large number of
independent servers.

The software stack for cloud computing has evolved in the quest to provide a unified higher-
level view of the system, rather than a large collection of individual machines. Virtualization and

1See http://www.radicati.com/wp/wp-content/uploads/2015/02/Email-Statistics-Report-2015-2019-Executive-Summary.pdf.
2Google was formally incorporated in September 1998.
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containerization are ubiquitous abstractions that allow easier access to the increasingly larger and di-
verse population of cloud users. Distributed and semi-structured storage systems such as Google’s
BigTable [96] or Amazon’s Dynamo [134] are widely used. The pleiad of systems supporting higher
level abstractions include FiumeJava [92], Mesa [212], Pig [187], Spark [541], Spark Streaming [543],
Tachyon [301], and others.

Cloud computing had and will continue to have a profound influence not only on the large number
of individuals and institutions who are now empowered to process huge amounts of data, but also on
the research community. Computer clouds operate in an environment characterized by the variability
of everything and by conflicting requirements. Such disruptive qualities of computer clouds ultimately
demand a new thinking in system design.

The scale of clouds amplifies unanticipated benefits, as well as the nightmares of system designers.
Even a slight improvement of server performance and/or of the algorithms for resource management
could lead to huge cost savings and rave reviews. At the same time, the failure of one of the millions of
hardware and software components can be amplified, propagate throughout the entire system and have
catastrophic consequences. When engineering large scale systems an important lesson is to prepare for
the unexpected, as low probability events occur and can cause major disruptions.

The very fast pace of developments in cloud computing in the last few years are reflected in the
second edition of this book, a major revision of the first edition. We attempt to sift through the large
volume of information and present the main ideas related to cloud computing. Chapter 1 is an informal
introduction to computer clouds, network-centric computing and network-centric content, to the enti-
ties involved in cloud computing, the paradigms and the services, and the ethical issues. Chapter 2 gives
an overview of services offered by the Big Three CSPs (Cloud Service Providers), Amazon, Google,
and Microsoft and of responsibility sharing between a CSP and the cloud users. The rest of the material
is organized in four sections.

Section I introduces important theoretical and practical concepts related to parallel and distributed
computing. Chapter 3 presents subjects ranging from computational models, the global state of a pro-
cess group to causal history, atomic actions, concurrency, modeling concurrency with Petri nets, atomic
actions, consensus protocols, load balancing and consensus protocols. Chapter 4 covers data, thread-
level, task-level parallelism, parallel computer architecture and distributed systems, an introduction to
virtualization, and a discussion on how to address the complexity of modern system through modular-
ization, layering, and hierarchical organization.

Section II presents two critical elements of the cloud infrastructure. Chapter 5 is dedicated to
communication and cloud access and presents the network organization, the cloud networking infras-
tructure, named data networks, software defined networks, interconnection networks such as InfiniBand
and Myrinet, storage area networks, scalable data center communication architectures, content deliv-
ery networks, and vehicular ah-hoc networks. Chapter 6 covers storage models, file systems, NoSQL
databases, a locking service, Google’s Bigtable and Megastore, storage reliability at scale, and database
services.

Section III covers cloud applications and cloud resource management and scheduling and includes
Chapters 7, 8, 9, and 10. After a brief review of workflows Chapter 7 analyzes coordination using
ZooKeeper, the MapReduce programming model, the frameworks supporting processing of large data
sets in a distributed computing environment including Hadoop, Hive, Yarn, Tez, Pig, and Impala, fol-
lowed by the applications of cloud computing in science and engineering, biology research, and social
computing. Chapter 8 discusses cloud infrastructure including Warehouse Scale Computers (WSC)
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and WSC performance, the components of the software stack, cloud resource management, execu-
tion engines for coarse-grain data-parallel applications, in-memory cluster computing for Big Data,
and containerization software including Docker and Kubernetes. Chapter 9 is dedicated to resource
management and scheduling. A utility model for cloud-based web services, the applications of control
theory to scheduling, two-level resource allocation strategies, and coordination of multiple autonomic
performance mangers, delay scheduling, data-aware scheduling, several scheduling algorithms includ-
ing start-time fair queuing and borrowed virtual time are some of the topics covered in this chapter.
Chapter 10 covers resource virtualization including performance and security isolation, hardware sup-
port for virtualization, analysis of widely used hypervisors Xen and KVM, nested virtualization, and
the performance penalties and the risks associated with virtualization.

Section IV presents research topics in cloud computing and includes of Chapters 11, 12, and 13.
Chapter 11 is dedicated to cloud security; after a general discussion of cloud security risks, privacy,
and trust it analyzes the security of virtualization and the security risks posed by shared images and by
the management operating system. The implementation of a hypervisor based on micro kernel design
principles and a trusted virtual machine monitor are then presented. Chapter 12 is focused on the
challenges posed by Big Data, data streaming, and mobile applications. The analysis of the Big Data
revolution is followed by a presentation of MapReduce successors including Pig, Hive and Impala.
OLTP (Online Transaction Processing) databases and in-core databased are then presented. Mobile
computing applications, the energy consumption of mobile applications, and the limitation of mobile
cloud computing are analyzed. Chapter 13 is dedicated to more advanced topics such as the impact of
scale on efficiency, cloud scheduling subject to deadlines, self-organization, and combinatorial auctions
for cloud resources.

Two appendices provide information useful to users who plan to use AWS services and to students
enrolled in cloud computing classes. Appendix 1 covers cloud application development and Appendix 2
presents several cloud projects in large-scale simulations and cloud services. Applications to system
design when multiple design alternatives are evaluated concurrently and Big Data applications in com-
putational sciences are also presented.

The history notes at the end of several chapter present the milestones for the science and the tech-
nology discussed in the chapter. These history notes serve as reminders of how important concepts,
now considered classical, have been developed in the short time since the cloud computing era began.
They also show the impact of technological advances and the radical changes they have triggered in
our society and in our thinking.

Some 550 references are cited in the text. Many references present recent research results in sev-
eral areas related to cloud computing, others are classical references on major topics in parallel and
distributed systems. A glossary covers important concepts and terms used in the text. A list of abbrevi-
ations is also provided.

The author is grateful to many colleagues and collaborators who have shared their wisdom and
knowledge with him along the years. Special thanks to Professors H. J. Siegel from Colorado State
University, John Patrick Morrison from University College Cork in Ireland, and Stephan Olariu from
the Old Dominion University. We are grateful to Professor Stephan Olariu and to Gabriela Marinescu
for commenting on some 600 pages of text. Many thanks to Nate McFadden and Steve Merken from
Elsevier for guidance and help.
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ABI Application Binary Interface
ACID Atomicity, Consistency, Isolation, Durability
ACL Access Control List
API Application Program Interface
AMI Amazon Machine Image
ARM Advanced RISC Machine
ASIC Application Specific Integrated Circuit
AVX Advanced Vector Extensions
AWS Amazon Web Services
AWSLA Amazon Web Services Licensing Agreement
BASE Basically Available, Soft state, Eventually consistent
BCE Basic Core Equivalent
BIOS Basic Input Output System
BPD Bootstrap Performance Diagnostic
BSP Bulk Synchronous Parallel
CCN Content Centric Network
CDN Content Delivery Network
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CISC Complex Instruction Set Computer
COMA Cache Only Memory Access
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit
CPI Cycles per Instruction
CRM Custom Relation Management
CSP Cloud Service Provider
CUDA Compute Unified Device Architecture
DAT Dynamic Address Translation
DBaaS Database as a Service
DDoS Distributed Denial of Service
DHCP Dynamic Host Configuration Protocol
DMA Direct Memory Access
DRAM Dynamic Random Access Memory
DVFS Dynamic Voltage and Frequency Scaling
EBS Elastic Block Store
EC2 Elastic Cloud Computing
ECS EC2 Container Service
EMR Elastic Map Reduce
EPIC Explicitly Parallel Instruction Computing
FC Fiber Channel
FCFS First Come First Serve
FIFO First In First Out
FPGA Field Programmable Gate Array
FSM Finite State Machine
GFS Google File System
GiB Gibi Byte
GIMP GNU Manipulation Program
GPFS General Parallel File System
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GPU Graphics Processing Unit
HDD Hard Disk Drive
HDFS Hadoop File System
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IaaS Infrastructure as a Service
IDE Integrated Drive Electronics
IoT Internet of Things
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IRTF Internet Research Task Force
ISA Instruction Set Architecture
JDBC Java Database Connectivity
JMS Java Message Service
JSON Javascript Object Notation
KVM Kernel-based Virtual Machine
MAC Medium Access Control
MFLOPS Million Floating Point Operations per Second
MIMD Multiple Instruction Multiple Data
MIPS Million Instructions per Second
MLMM Multi-level Memory Manager
MMX Multi Media Extension
MPI Message Passing Interface
MSCR Map Shuffle Combine Reduce
NAT Network Address Translation
NDN Named Data Networks
NFS Network File System
NTFS New Technology File System
NUMA Non-Uniform Memory Access
NV-RAM Non-Volatile Random Access Memory
OCCI Open Cloud Computing Interface
OGF Open Grid Forum
OLTP On Line Transaction Processing
OLAP On Line Analytical Processing
PaaS Platform as a Service
PHP recursive acronym for PHP: Hypertext Preprocessor
PN Petri Net
QoS Quality of Service
RAID Redundant Array of Independent Disks
RAM Random Access Memory
RAR Read After Read
RAW Read After Write
RDD Resilient Distributed Dataset
RDS Relational Database Service
RDBMS Relational Database Management System
REST Representational State Transfer
RFC Remote Frame Buffer
RISC Reduced Instruction Set Computer
RMI Remote Method Invocation
RPC Remote Procedure Call
RTT Round Trip Time
SaaS Software as a Service
SAN Storage Area Network
SDK Software Development Kit
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TLB Translation Lookaside Buffer
UDP User Datagram Protocol
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VLIW Very Long Instruction Word
VM Virtual Machine
VMCS Virtual Machine Control Structure
VMM Virtual Machine Monitor
VMM Virtual Memory Manager
VNC Virtual Network Computing
VPC Virtual Private Cloud
VPN Virtual Private Network
WAN Wide Area Network
WAW Write After Write
WAR Write After Read
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XML Extensible Markup Language
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1
CHAPTER

INTRODUCTION

Conceptually, computing can be viewed as another utility, like electricity, water, or gas, accessible to
every household in many countries of the world. Computer clouds are the utilities providing computing
services. In utility computing the hardware and the software resources are concentrated in large data
centers. The users of computing services pay as they consume computing, storage, and communica-
tion resources. While utility computing often requires a cloud-like infrastructure, the focus of cloud
computing is on the business model for providing computing services.

More than half a century ago, at the centennial anniversary of MIT, John McCarthy, the 1971 Turing
Award recipient for his work in Artificial Intelligence, prophetically stated: “If computers of the type I
have advocated become the computers of the future, then computing may someday be organized as a
public utility, just as the telephone system is a public utility... The computer utility could become the
basis of a new and important industry.” The prediction of McCarthy is now a technological and social
reality.

Cloud computing is a disruptive computing paradigm and, as such, it required major changes in
many areas of computer science and computer engineering including data storage, computer archi-
tecture, networking, resource management, scheduling, and last but not least, computer security. The
chapters of this book cover the most significant challenges posed by the scale of the cloud infrastructure
and the very large population of cloud users with diverse applications and requirements.

The Internet made cloud computing possible; we could not even dream of using computing and stor-
age resources from distant data centers without fast communication. The evolution of cloud computing
is organically tied to the future of the Internet. The Internet of Things (IoT) has already planted some
of its early seeds in computer clouds. For example, Amazon already offers services such as Lambda
and Kinesis discussed in Section 2.4.

The number of Internet users has increased tenfold from 1999 to 2013; the first billion was reached
in 2005, the second in 2010, and the third in 2014. This number is even larger now, see Figure 1.1.
Many Internet users have discovered the appeal of cloud computing either directly or indirectly through
a variety of services, without knowing the role the clouds play in their life. In the years to come the
vast computational resources provided by the cloud infrastructure will be used for the design and
engineering of complex systems, scientific discovery, education, business, analytics, art, and virtually
all other aspects of human endeavor. Exabytes of data stored in the clouds are streamed, downloaded,
and accessed by millions of cloud users.

This chapter introduces basic cloud computing concepts in Section 1.1. The broader context of
network-centric computing and network-centric content is discussed in Section 1.2. Why cloud com-
puting became a reality in the last years after a long struggle to design large-scale distributed systems
and computational grids? This question is addressed in Section 1.3, while Section 1.4 coveres the defin-
ing attributes of computer clouds and the cloud delivery models. Ethical issues and cloud vulnerability
are discussed in Sections 1.5 and 1.6, respectively.

Cloud Computing. DOI: 10.1016/B978-0-12-812810-7.00001-7
Copyright © 2018 Elsevier Inc. All rights reserved.
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2 CHAPTER 1 INTRODUCTION

FIGURE 1.1

The number of Internet users in different regions of the world as of March 25, 2017 (in millions), according to
http://www.internetworldstats.com/stats.htm.

1.1 CLOUD COMPUTING
In 2011, NIST, the US National Institute of Standards and Technology, defined cloud computing as “a
model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider interaction.”

Cloud computing is characterized by five attributes: on-demand self-service, broad network access,
resource pooling, rapid elasticity, and measured service. DBaaS – database as a service is a more recent
addition to the three cloud service delivery models: SaaS – software as a service, PaaS – platform as
a service, and IaaS – infrastructure as a service. Private cloud, community cloud, public cloud, and
hybrid cloud are the four deployment models shown in Figure 1.2, Section 1.4.

Cloud computing era started in 2006 when Amazon offered the Elastic Cloud Computing (EC2)
and the Simple Storage Service (S3), the first services provided by Amazon Web Services (AWS).
Five years later, in 2012, EC2 was used by businesses in 200 countries. S3 has surpassed two trillion
objects and routinely runs more than 1.1 million peak requests per second. The Elastic MapReduce
has launched 5.5 million clusters since the start of the service in May 2010 (ZDNet 2013). The range
of services offered by Cloud Service Providers (CSPs), and the number of cloud users have increased
dramatically during the last few years.

The cloud computing movement is motivated by the idea that data processing and storage can be
done more efficiently on large farms of computing and storage systems accessible via the Internet.
Computer clouds support a paradigm shift from local to network-centric computing and network-
centric content where distant data centers provide the computing and storage resources. In this new
paradigm users relinquish control of their data and code to Cloud Service Providers.

http://www.internetworldstats.com/stats.htm
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Cloud computing offers scalable and elastic computing and storage services. The resources used
for these services can be metered and the users can be charged only for the resources they used. Cloud
computing is a business reality as a large number of organizations have adopted this paradigm.

Cloud computing is cost-effective because of resource multiplexing. Application data is stored
closer to the site where it is used in a manner that is device and location-independent; potentially,
this data storage strategy increases reliability, as well as security. The maintenance and the security
are ensured by service providers. Organizations using computer clouds are relieved of supporting large
IT teams, acquiring and maintaining costly hardware and software, and paying large electricity bills.
CSPs can operate more efficiently due to economy of scale.

Data analytics, data mining, computational financing, scientific and engineering applications, gam-
ing and social networking, as well as other computational and data-intensive activities benefit from
cloud computing. Storing information on the cloud has significant advantages. Content previously con-
fined to personal devices such as workstations, laptops, tablets, and smart phones need no longer be
stored locally. Data stored on computer clouds can be shared among all these devices and it is accessi-
ble whenever a device is connected to the Internet. For example, in 2011 Apple announced the iCloud,
a network-centric alternative for content including music, videos, movies, and personal information. In
February 2017 iCloud had 782 million subscribers according to http://appleinsider.com/.

Cloud computing represents a dramatic shift in the design of systems capable of providing vast
amounts of computing cycles and storage space. Computer clouds use off-the shelf, low-cost compo-
nents. During the previous four decades powerful, one-of-a-kind supercomputers, were built at a high
cost, with the most advanced components available at the time.

In early 1990s Gordon Bell argued that one-of-a-kind systems are not only expensive to build, but
the cost of rewriting applications for them is prohibitive. He anticipated that sooner or later massively
parallel computing will evolve into computing for the masses [59].

There are virtually no bounds on composition of digital systems controlled by software, so we are
tempted to build increasingly more complex systems including systems of systems [335]. The behav-
ior and the properties of such systems are not always well understood. We should not be surprised
that computing clouds will occasionally exhibit an unexpected behavior and large-scale systems will
occasionally fail.

The architecture, the coordination mechanisms, the design methodology, and the analysis tech-
niques for large-scale complex systems such as computing clouds will evolve in response to changes
in technology, the environment, and the social impact of cloud computing. Some of these changes will
reflect changes in communication, in the Internet itself in terms of speed, reliability, security, capacity
to accommodate a larger addressing space by migration to IPv6, and so on.

Cloud computing reinforces the idea that computing and communication are deeply intertwined.
Advances in one field are critical for the other. Indeed, cloud computing could not emerge as a feasible
alternative to the traditional paradigms for high-performance computing before the Internet was able
to support high-bandwidth, low-latency, reliable, low-cost communication. At the same time, mod-
ern networks could not function without powerful computing systems to manage the network. High
performance switches are critical elements of both networks and computer clouds.

The complexity of the cloud computing infrastructure is unquestionable and raises questions such
as: How can we manage such systems? Do we have to consider radically new ideas, such as self-
management and self-repair for future clouds consisting of millions of servers? Should we migrate from

http://appleinsider.com/
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a strictly deterministic view of such complex systems to a non-deterministic one? Answers to these
questions provide a rich set of research topics for the computer science and engineering community.

The cloud movement is not without skeptics and critics. The critics argue that cloud computing is
just a marketing ploy, that users may become dependent on proprietary systems, that the failure of a
large system such as the cloud could have significant consequences for a very large group of users who
depend on the cloud for their computing and storage needs. Security and privacy are major concerns
for cloud computing users.

A very important question is if under pressure from the user community the current standardization
efforts will succeed. The alternative, the continuing dominance of proprietary cloud computing envi-
ronments is likely to have a negative impact on the field. The cloud delivery models, SaaS, PaaS, IaaS,
together with DBaaS discussed in depth in Chapter 2 will continue to coexist for the foreseeable future.

Services based on SaaS will probably be increasingly more popular because they are more accessi-
ble to lay people, while services based on the IaaS will be the domain of computer savvy individuals,
large organizations, and the government. If the standardization effort succeeds, then we may see IaaS
designed to migrate from one infrastructure to another and overcome the concerns related to vendor
lock-in. The popularity of DBaaS services is likely to grow.

1.2 NETWORK-CENTRIC COMPUTING AND NETWORK-CENTRIC CONTENT
Network-centric computing and network-centric content concepts reflect the fact that data processing
and data storage takes place on remote computer systems accessed via the ubiquitous Internet, rather
than locally. The term content refers to any type or volume of media, be it static or dynamic, monolithic
or modular, live or stored, produced by aggregation, or mixed.

The two network-centric paradigms share a number of characteristics:

• Most network-centric applications are data intensive. For example, data analytics allow enterprises
to optimize their operations; computer simulation is a powerful tool for scientific research in virtu-
ally all areas of science from physics, biology, and chemistry, to archeology. Sophisticated tools for
computer-aided design such as Catia (Computer Aided Three-dimensional Interactive Application)
are widely used in aerospace and automotive industries. The widespread use of sensors generate a
large volume of data. Multimedia applications are increasingly more popular; the larger footprint of
the media data increases the load placed on storage, networking, and processing systems.

• Virtually all applications are network-intensive. Transferring large volumes of data requires high-
bandwidth networks. Parallel computing, computation steering, and data streaming are examples of
applications that can only run efficiently on low latency networks. Computation steering in numeri-
cal simulation means to interactively guide a computational experiment towards a region of interest.

• Computing and communication resources (CPU cycles, storage, network bandwidth) are shared and
resources can be aggregated to support data-intensive applications. Multiplexing leads to a higher
resource utilization; indeed, when multiple applications share a system their peak demands for
resources are not synchronized and the average system utilization increases.

• Data sharing facilitates collaborative activities. Indeed, many applications in science, engineer-
ing, as well as industrial, financial, governmental applications require multiple types of analysis
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of shared data sets and multiple decisions carried out by groups scattered around the globe. Open
software development sites are another example of such collaborative activities.

• The systems are accessed using thin clients running on systems with limited resources. In June 2011
Google released Google Chrome OS designed to run on primitive devices and based on the browser
with the same name.

• The infrastructure supports some form of workflow management. Indeed, complex computational
tasks require coordination of several applications; composition of services is a basic tenet of
Web 2.0.

There are sources of concern and benefits of the paradigm shift from local to network-centric data
processing and storage:

• The management of large pools of resources poses new challenges as such systems are vulnerable
to malicious attacks that can affect a large user population.

• Large-scale systems are affected by phenomena characteristic to complex systems such as phase
transitions when a relatively small change of environment could lead to an undesirable system
state [328]. Alternative resource management strategies, such as self-organization, and decisions
based on approximate knowledge of the system state must be considered.

• Ensuring Quality of Service (QoS) guarantees is extremely challenging in such environments, as
total performance isolation is elusive.

• Data sharing poses not only security and privacy challenges but also requires mechanisms for access
control for authorized users and for detailed logs of the history of data changes.

• Cost reduction. Concentration of resources creates the opportunity to pay-as-you-go for computing
and thus, eliminates the initial investment and reduces significantly the maintenance and operation
costs of the local computing infrastructure.

• User convenience and elasticity, the ability to accommodate workloads with very large peak-to-
average ratios.

The creation and consumption of audio and visual content is likely to transform the Internet. It is
expected that the Internet will support increased quality in terms of resolution, frame rate, color depth,
stereoscopic information. It seems reasonable to assume that the Future Internet1 will be content-
centric. Information is the result of functions applied to content.

The content should be treated as having meaningful semantic connotations rather than a string of
bytes; the focus will be on the information that can be extracted by content mining when users request
named data and content providers publish data objects. Content-centric routing will allow users to fetch
the desired data from the most suitable location in terms of network latency or download time. There
are also some challenges, such as providing secure services for content manipulation, ensuring global
rights-management, control over unsuitable content, and reputation management.

1The term “Future Internet” is a generic concept referring to all research and development activities involved in development of
new architectures and protocols for the Internet.
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1.3 CLOUD COMPUTING, AN OLD IDEA WHOSE TIME HAS COME
It is hard to point out a single technological or architectural development that triggered the movement
towards network-centric computing and network-centric content. This movement is the result of a
cumulative effect of developments in microprocessor, storage, and networking technologies coupled
with architectural advancements in all these areas and last but not least, with advances in software
systems, tools, programming languages and algorithms supporting distributed and parallel computing.

Along the years we have witnessed the breathtaking evolution of solid state technologies which led
to the development of multicore processors. Quad-core processors such as AMD Phenom II X4, Intel
i3, i5, and i7, and hexacore processors such as AMD Phenom II X6 and Intel Core i7 Extreme Edition
980X are now used to build the servers populating computer clouds. The proximity of multiple cores
on the same die allows cache coherency circuitry to operate at a much higher clock rate than it would
be possible if signals were to travel off-chip.

Storage technology has also evolved dramatically. For example, solid state disks such as RamSan-
440 allow systems to manage very high transaction volumes and larger numbers of concurrent users.
RamSan-440 uses DDR2 (double-data-rate) RAM to deliver 600 000 sustained random IOPS (In-
put/output operations per second) and over 4 GB/second of sustained random read or write bandwidth,
with latency of less than 15 microseconds and it is available in 256 GB and 512 GB configurations.
The price of memory has dropped significantly; at the time of this writing the price of 1 GB module
for a PC is around $5. Optical storage technologies and flash memories are widely used nowadays.

The thinking in software engineering has also evolved and new models have emerged. A software
architecture and a software design pattern, the three-tier model has emerged. Its components are:
1. Presentation tier, the topmost level of the application. Typically, it runs on a desktop, PC, or work-

station, uses a standard graphical user interface (GUI), and displays information related to services
e.g., browsing merchandize, purchasing, and shopping cart contents. The presentation tier commu-
nicates with other tiers.

2. Application/logic tier controls the functionality of an application and may consist of one or more
separate modules running on a workstation or application server. It may be multi-tiered itself and
then the architecture is called an n-tier architecture.

3. Data tier controls the servers where the information is stored; it runs a relational database man-
agement system on a database server or a mainframe and contains the computer data storage logic.
The data tier keeps data independent from application servers or processing logic and improves
scalability and performance.

Any tier can be replaced independently; for example, a change of operating system in the presentation
tier would only affect the user interface code.

Once the technological elements were in place it was only a matter of time until the economical
advantages of cloud computing became apparent. Due to the economy of scale large data centers,
centers with more than 50 000 systems, are more economical to operate than medium size centers
which have around 1 000 systems. Large data centers equipped with commodity computers experience
a five to seven times decrease of resource consumption, including energy, compared to medium size
data centers [37].

The networking costs, in dollars per Mbit/sec/month, are 95/13 = 7.1 larger for medium size data
centers. The storage costs, in dollars per GB/month, are 2.2/0.4 = 5.7 larger for medium size centers.
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Medium size data centers have a larger administrative overhead, one system administrator for 140
systems versus one for 1 000 systems for large centers.

Data centers are very large consumers of electric energy used to keep the servers and the networking
infrastructure running and heating and cooling the data centers. In 2006 the data centers reportedly
consumed 61 billion kWh, 1.5% of all electric energy in the U.S., at a cost of $4.5 billion. We have
seen a 4% increase in total data center energy consumption from 2010 to 2014.

In 2014 there were about three million data centers in the U.S. The data centers consumed about 70
billion kWh, representing about 2% of the total energy consumption in the U.S. This is the equivalent
of the electric energy consumed by about 6.4 million average homes in the U.S. that year. The energy
costs differ from state to state, e.g., one kWh costs 3.6 cents in Idaho, 10 cents in California, and 18
cents in Hawaii. This explains why cloud data centers are placed in regions with lower energy cost.

A natural question to ask is: Why cloud computing could be successful when other paradigms have
failed? The reasons why cloud computing could be successful can be grouped in several general cate-
gories: technological advances, a realistic system model, user convenience, and financial advantages.
A non-exhaustive list of reasons for the success of cloud computing includes:

• Cloud computing is in a better position to exploit recent advances in software, networking, storage,
and processor technologies. Cloud computing is promoted by large IT companies where these new
technological developments take place and these companies have a vested interest to promote the
new technologies.

• A cloud consists of a mostly homogeneous set of hardware and software resources in a single
administrative domain. In this setup security, resource management, fault-tolerance, and quality
of service are less challenging than in a heterogeneous environment with resources in multiple
administrative domains.

• Cloud computing is focused on enterprise computing [160,164]; its adoption by industrial organi-
zations, financial institutions, healthcare organizations and so on, has a potentially huge impact on
the economy.

• A cloud provides the illusion of infinite computing resources; its elasticity frees the applications
designers from the confinement of a single system.

• A cloud eliminates the need for up-front financial commitment and it is based on a pay-as-you-go
approach; this has the potential to attract new applications and new users for existing applications
fomenting a new era of industry-wide technological advancements.

In spite of the technological breakthroughs that have made cloud computing feasible, there are still
major obstacles for this new technology; these obstacles provide opportunity for research. We list a
few of the most obvious obstacles:

• Availability of service; what happens when the service provider cannot deliver? Can a large com-
pany such as GM move its IT activities to the cloud and have assurances that its activity will not
be negatively affected by cloud overload? A partial answer to this question is provided by Service
Level Agreements (SLA)s discussed in Section 2.9. A temporary fix but with negative economi-
cal implications is overprovisioning, i.e., having enough resources to satisfy the largest projected
demand.



8 CHAPTER 1 INTRODUCTION

• Vendor lock-in; once a customer is hooked to one cloud service provider it is hard to move to
another. The standardization efforts at NIST attempt to address this problem.

• Data confidentiality and auditability; this is indeed a serious problem analyzed in Chapter 11.
• Data transfer bottlenecks critical for data-intensive applications. Transferring 1 TB of data on a

1 Mbps network takes 8 000 000 seconds or about 10 days; it is faster and cheaper to use courier
service and send data recoded on some media than to send it over the network. Very high speed
networks will alleviate this problem in the future, e.g., a 1 Gbps network would reduce this time to
8 000 seconds, or slightly more than 2 hours.

• Performance unpredictability; this is one of the consequences of resource sharing. Strategies for
performance isolation are discussed in Section 10.1.

• Elasticity, the ability to scale up and down quickly. New algorithms for controlling resource alloca-
tion and workload placement are necessary. Autonomic computing based on self-organization and
self-management seems to be a promising avenue.

There are other perennial problems with no clear solutions at this time, including software licensing
and dealing with systems bugs.

1.4 CLOUD DELIVERY MODELS AND DEFINING ATTRIBUTES
Cloud computing delivery models, deployment models, defining attributes, resources, and organization
of the infrastructure discussed in chapter are summarized in Figure 1.2. The cloud delivery models,
SaaS, PaaS, IaaS, and DBaaS can be deployed as public, private, community, and hybrid clouds.

The defining attributes of the new philosophy for delivering computing services are:

• Cloud computing uses Internet technologies to offer elastic services. The term “elastic comput-
ing” refers to the ability of dynamically acquiring computing resources and supporting a variable
workload. A cloud service provider maintains a massive infrastructure to support elastic services.

• The resources used for these services can be metered and the users can be charged only for the
resources they used.

• The maintenance and security are ensured by service providers.
• Economy of scale allows service providers to operate more efficiently due to specialization and

centralization.
• Cloud computing is cost-effective due to resource multiplexing; lower costs for the service provider

are passed on to the cloud users.
• The application data is stored closer to the site where it is used in a device and location-independent

manner; potentially, this data storage strategy increases reliability and security and, at the same
time, it lowers communication costs.

The term “computer cloud” is overloaded as it covers infrastructures of different sizes, with differ-
ent management, and a different user population. Several types of clouds are envisioned:

• Private Cloud – the infrastructure is operated solely for an organization, It may be managed by the
organization or a third party and may exist on or off the premises of the organization.
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FIGURE 1.2

Cloud computing: delivery models, deployment models, defining attributes, resources, and organization of the
infrastructure.

• Community Cloud – the infrastructure is shared by several organizations and supports a specific
community that has shared concerns (e.g., mission, security requirements, policy, and compliance
considerations). It may be managed by the organizations or a third party and may exist on premises
or off premises.

• Public Cloud – the infrastructure is made available to the general public or a large industry group
and is owned by an organization selling cloud services.

• Hybrid Cloud – the infrastructure is a composition of two or more clouds (private, community, or
public) that remain unique entities but are bound together by standardized or proprietary technol-
ogy that enables data and application portability (e.g., cloud bursting for load-balancing between
clouds).

A private cloud can provide the computing resources needed by a large organization, e.g., a research
institution, a university, or a corporation. The argument that a private cloud does not support utility
computing is based on the observation that an organization has to invest in the infrastructure and the
user of a private cloud does pays as it consumes resources [37]. Nevertheless, a private cloud could use
the same hardware infrastructure as a public one; its security requirements will be different from those
for a public cloud and the software running on the cloud is likely to be restricted to a specific domain.

Cloud computing is a technical and social reality and an emerging technology. At this time, one
can only speculate how the infrastructure for this new paradigm will evolve and what applications will
migrate to it. The economical, social, ethical, and legal implications of this shift in technology, when
the users rely on services provided by large data centers and store private data and software on systems
they do not control, are likely to be significant.
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Scientific and engineering applications, data mining, computational financing, gaming and social
networking, as well as many other computational and data-intensive activities can benefit from cloud
computing. A broad range of data from the results of high energy physics experiments to financial or
enterprise management data, to personal data such as photos, videos, and movies, can be stored on the
cloud.

The obvious advantage of network centric content is the accessibility of information from any site
where one could connect to the Internet. Clearly, information stored on a cloud can be shared easily,
but this approach raises also major concerns: Is the information safe and secure? Is it accessible when
we need it? Do we still own it?

In the next years, the focus of cloud computing is expected to shift from building the infrastructure,
today’s main front of competition among the vendors, to the application domain. This shift in focus is
reflected by Google’s strategy to build a dedicated cloud for government organizations in the United
States. The company states that: “We recognize that government agencies have unique regulatory and
compliance requirements for IT systems, and cloud computing is no exception. So we’ve invested a lot
of time in understanding government’s needs and how they relate to cloud computing.”

In a discussion of the technology trends, Jim Gray emphasized that the cost of communication in a
wide area network has decreased dramatically and will continue to do so. Thus, it makes economical
sense to store the data near the application [202], in other words, to store it in the cloud where the ap-
plication runs. This insight leads us to believe that several new classes of cloud computing applications
could emerge in the next few years [37].

As always, a good idea has generated a high level of excitement translated into a flurry of publica-
tions, some of a scholarly depth, others with little merit, or even bursting with misinformation. In this
book we attempt to sift through the large volume of information and dissect the main ideas related to
cloud computing. We first discuss applications of cloud computing and then analyze the infrastructure
for cloud computing.

Several decades of research in parallel and distributed computing have paved the way for cloud
computing. Through the years we have discovered the challenges posed by the implementation, as
well as the algorithmic level and the ways to address some of them and avoid the others. Thus, it is
important to look back at the lessons we learned along the years from this experience. This is the reason
we discuss concurrency in Chapter 3 and parallel and distributed systems in Chapter 4.

1.5 ETHICAL ISSUES IN CLOUD COMPUTING
Cloud computing is based on a paradigm shift with profound implications on computing ethics. The
main elements of this shift are:
1. The control is relinquished to third party services.
2. The data is stored on multiple sites administered by several organizations.
3. Multiple services interoperate across the network.

Unauthorized access, data corruption, infrastructure failure, and service unavailability are some of
the risks related to relinquishing the control to third party services; moreover, whenever a problem
occurs it is difficult to identify the source and the entity causing it. Systems can span the boundaries of
multiple organizations and cross the security borders, a process called de-perimeterisation. As a result
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of de-perimeterisation “not only the border of the organizations IT infrastructure blurs, also the border
of the accountability becomes less clear” [485].

The complex structure of cloud services make it difficult to determine who is responsible for each
action. Many entities contribute to an action with undesirable consequences and no one can be held
responsible, the so-called “problem of many hands.”

Ubiquitous and unlimited data sharing and storage among organizations test the self-determination
of information, the right and/or the ability of individuals to exercise personal control over the collection,
the use, and the disclosure of their personal data by others. This tests the confidence and trust in today’s
evolving information society. Identity fraud and theft are made possible by the unauthorized access to
personal data in circulation and by new forms of dissemination through social networks. All these
factors could also pose a danger to cloud computing.

Cloud service providers have already collected petabytes of sensitive personal information stored
in data centers around the world. The acceptance of cloud computing will be determined by the effort
dedicated by the CSPs and the countries where the data centers are located to ensure privacy. Pri-
vacy is affected by cultural differences; while some cultures favor privacy, other cultures emphasize
community and this leads to an ambivalent attitude towards privacy in the Internet which is a global
system.

The question of what can be done proactively about ethics of cloud computing does not have easy
answers as many undesirable phenomena in cloud computing will only appear in time. However, the
need for rules and regulations for the governance of cloud computing are obvious. Governance means
the manner something is governed or regulated, the method of management, the system of regulations.
Explicit attention to ethics must be paid by governmental organizations providing research funding;
private companies are less constraint by ethics oversight and governance arrangements are more con-
ducive to profit generation.

Accountability is a necessary ingredient of cloud computing; adequate information about how data
is handled within the cloud and about allocation of responsibility are key elements for enforcing ethics
rules in cloud computing. Recorded evidence allows us to assign responsibility; but there can be tension
between privacy and accountability and it is important to establish what is being recorded, and who
has access to the records.

Unwanted dependency on a cloud service provider, the so-called vendor lock-in, is a serious concern
and the current standardization efforts at NIST attempt to address this problem. Another concern for
the users is a future with only a handful of companies which dominate the market and dictate prices
and policies.

1.6 CLOUD VULNERABILITIES
Clouds are affected by malicious attacks and failures of the infrastructure, e.g., power failures. Such
events can affect the Internet domain name servers and prevent access to a cloud or can directly affect
the clouds. For example, an attack at Akamai on June 15, 2004 caused a domain name outage and a
major blackout that affected Google, Yahoo, and many other sites. In May 2009, Google was the target
of a serious denial of service (DNS) attack which took down services like Google News and Gmail for
several days.

Lightning caused a prolonged down time at Amazon on June 29–30, 2012; the AWS cloud in the
East region of the US which consists of ten data centers across four availability zones, was initially
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troubled by utility power fluctuations, probably caused by an electrical storm. Availability zones are
locations within data center regions where public cloud services originate and operate. A June 29, 2012
storm on the East Coast took down some of Virginia based Amazon facilities and affected companies
using systems exclusively in this region. Instagram, a photo sharing service, was one of the victim of
this outage according to http://mashable.com/2012/06/30/aws-instagram/.

The recovery from the failure took a very long time and exposed a range of problems. For example,
one of the ten centers failed to switch to backup generators before exhausting the power that could be
supplied by UPS units. AWS uses “control planes” to allow users to switch to resources in a different
region and this software component also failed. The booting process was faulty and extended the time
to restart EC2 and EBS services.

Another critical problem was a bug in the Elastic Load Balancer (ELB), used to route traffic to
servers with available capacity. A similar bug affected the recovery process of the Relational Database
Service (RDS). This event brought to light “hidden” problems that occur only under special circum-
stances.

The stability risks due to interacting services are discussed in [177]. A cloud application provider,
a cloud storage provider, and a networks provider could implement different policies and the unpre-
dictable interactions between load-balancing and other reactive mechanisms could lead to dynamic
instabilities. The unintended coupling of independent controllers which manage the load, the power
consumption, and the elements of the infrastructure could lead to undesirable feedback and instability
similar with the one experienced by the policy-based routing in the Internet BGP (Border Gateway
Protocol).

For example, the load balancer of an application provider could interact with the power optimizer
of the infrastructure provider. Some of these couplings may only manifest under extreme condition and
be very hard to detect under normal operating condition, but could have disastrous consequences when
the system attempts to recover from a hard failure, as in the case of the AWS 2012 failure.

Clustering resources in data centers located in different geographical areas lowers the probability of
catastrophic failures. This geographic dispersion of resources could have additional positive side effects
such as reduction of communication traffic, lowering energy costs by dispatching the computations to
sites where the electric energy is cheaper, and improving performance by an intelligent and efficient
load balancing strategy.

Sometimes, a user has the option to decide where to run an application; we shall see in Section 2.3
that an AWS user has the option to choose the regions where the instances of his/her applications will
run, as well as the regions of the storage sites. System’s objective, maximize throughput, resource uti-
lization, and financial benefits have to be carefully balanced with the user needs, low cost and response
time and maximum availability.

The price to pay for any system optimization is an increased system complexity. For example, the
latency of communication over a Wide Area Network (WAN) is considerably larger than the one over
a Local Area Network (LAN) and requires the development of new algorithms for global decision
making.

Chapter 2 takes a closer look at the cloud ecosystem as of late 2016. The next two chapters, Chap-
ters 3 and 4 discuss concurrency concepts and parallel and distributed computing principles concepts
relevant to cloud computing. Both subjects are very broad and we only cover aspects particularly rele-
vant to cloud computing. An in depth analysis of networking access to computer clouds and cloud data
storage are the subjects of the Chapters 5 and 6, respectively.

http://mashable.com/2012/06/30/aws-instagram/
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CHAPTER

CLOUD SERVICE PROVIDERS AND
THE CLOUD ECOSYSTEM

This chapter presents the cloud ecosystem as of mid 2017. The major players in this ecosystem are
Amazon, Google, and Microsoft. Each one of the big three cloud service providers support one or
more of the cloud computing delivery models: SaaS, PaaS, IaaS, and DBaaS. Amazon is a pioneer in
IaaS, Google’s efforts are focused on SaaS and PaaS delivery models, Microsoft is mostly involved in
PaaS, while Amazon, Oracle, and many other CSPs offer DBaaS services.

Several other IT companies are also involved in cloud computing. IBM offers a cloud computing
platform, IBMSmartCloud, consisting of servers, storage and virtualization components for building
private and hybrid cloud computing environments. In October 2012 it was announced that IBM teamed
up with AT&T to give customers access to IBM’s cloud infrastructure over AT&T’s secure private
lines.

In 2011 HP announced plans to enter the cloud computing club. Oracle announced its entry to en-
terprise computing in the early 2012. The Oracle Cloud is based on Java, SQL standards, and software
systems such as Exadata, Exalogic, WebLogic, and Oracle Database. Oracle plans to offer application
and platform services. Some of these services are Fusion HCM (Human Capital Management), Fusion
CR (Customer Relation Management), and Oracle Social Network. The platform services are based on
Java and SQL.

The chapter starts with an overview of the cloud ecosystem followed by an in-depth discussion of
cloud delivery models and services and then by the analysis of cloud computing at Amazon, Google,
and Microsoft in Sections 2.1, 2.2, 2.3, 2.4, 2.5, and 2.6, respectively. Sections 2.7 and 2.8 cover the
pervasive issue of vendor lock-in and the prospects of cloud interoperability.

The presentation of Service Level Agreements (SLAs) in Section 2.9 is followed by a discussion
of the responsibility sharing between the cloud users and the cloud service providers in Section 2.10.
User experience is analyzed in Section 2.11, while Section 2.12 is dedicated to a discussion of software
licensing. Section 2.13 presents an analysis of cloud energy consumption and the ecological impact
of cloud computing. The major challenges faced by cloud computing are discussed in Section 2.14.
The chapter concludes with further readings and exercises and problems in Sections 2.15 and 2.16,
respectively.

2.1 THE CLOUD ECOSYSTEM
Hundreds of millions of individuals use online services. Computer clouds store and process every day
a large fraction of the 2.5 quintillion bytes of data from sensors gathering climate data, from millions
and millions of individuals taking digital pictures and videos, from cell phone GPS signals, and from a
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FIGURE 2.1

Annualized cloud computing revenues growth in the third quarter of 2016 by segment. The market leaders in
each segment according to Synergy Research Group.

multitude of other sources. Cloud computing promoted by IT companies including Amazon, Google,
Microsoft, IBM, and Oracle has effectively democratized computing.

Some 350 billion power-meter readings are analyzed every year to predict the electric power con-
sumption. Every day 5 million trade transactions are scrutinized to detect fraud. Twitter processes 12
TB of data every day. Instagram uses AWS to process more than 25 photos and close to 100 likes a sec-
ond. Forbes predicts that worldwide spending on public cloud services will grow at a 19.4% compound
annual growth rate from nearly $70B in 2015 to more than $141B in 2019, see http://www.forbes.com/.

The economic implications of cloud computing cannot be overestimated. The number of enterprises
using public and hybrid clouds for data analytics, product design, and a broad range of other applica-
tions increases significantly from year to year. While in the past it took years for an IT company to
reach one million customers, it took only weeks to Instagram to reach this milestone.

The revenues generated by cloud computing increase dramatically from year to year. For example,
according to the Synergy Research Group the revenues jumped 25% in 2016 as shown in Figure 2.1
from http://www.geekwire.com/2017/cloud-computing-revenues-jumped-25-2016-strong-growth-
ahead-researcher-says/.

The cloud computing landscape is still dominated by Amazon. In 2013 the next fourteen other cloud
providers combined had 1/5 the aggregate capacity of AWS [232]. A 2016 survey [420] reports “AWS
is used by 57% of respondents; enterprise adoption of AWS grew from 50 to 56% while adoption by
smaller businesses fell slightly from 61 to 58%,” see Figure 2.2.

The same survey reports that “The number of enterprises running more than 1 000 virtual machines
(VMs) in public cloud increased from 13 to 17%, while those running more than 1 000 VMs in private
cloud grew from 22 to 31%.” Docker has shown growth year-over-year, from 13 to 27% of respondents
using it. The popularity of hybrid clouds is on the rise as many users of public clouds are developing
their own private cloud infrastructure.

http://www.forbes.com/
http://www.geekwire.com/2017/cloud-computing-revenues-jumped-25-2016-strong-growth-ahead-researcher-says/
http://www.geekwire.com/2017/cloud-computing-revenues-jumped-25-2016-strong-growth-ahead-researcher-says/
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FIGURE 2.2

The 2016 state of public cloud adoption [420].

Some of the challenges faced by cloud users are: security, compliance, managing costs, and lack of
expertise. Cloud users attempt to reduce the cloud costs through a range of measures including:

• Careful resource utilization monitoring.
• Avoiding peak hours and shutting down temporary workloads.
• Purchasing AWS reserved instances along with effective use of spot instances.
• Moving workloads to regions of lower costs.

The National Science Foundation (NSF) supports research community access to two cloud facili-
ties, CloudLab and Chameleon. CloudLab is a testbed allowing researchers to experiment with cloud
architectures and new applications. Some 15,000 cores, at three sites in Utah, Wisconsin, and South
Carolina, are available for such experiments. Chameleon is an OpenStack KVM experimental environ-
ment for large-scale cloud research.

2.2 CLOUD COMPUTING DELIVERY MODELS AND SERVICES
According to the NIST reference model in Figure 2.3 [362], the entities involved in cloud comput-
ing are: service consumer – entity that maintains a business relationship with, and uses service from,
service providers; service provider – entity responsible for making a service available to service con-
sumers; carrier – the intermediary that provides connectivity and transport of cloud services between
providers and consumers; broker – an entity that manages the use, performance and delivery of cloud
services, and negotiates relationships between providers and consumers; auditor – a party that can
conduct independent assessment of cloud services, information system operations, performance and
security of the cloud implementation. An audit is a systematic evaluation of a cloud system by measur-
ing how well it conforms to a set of established criteria. For example, a security audit evaluates cloud
security, a privacy-impact audit evaluates cloud privacy assurance, while a performance audit evaluates
cloud performance.
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FIGURE 2.3

The entities involved in a service-oriented computing and, in particular, in cloud computing according to the
NIST chart. The carrier provides connectivity between service providers, service consumers, brokers, and
auditors.

It is difficult to distinguish the services associated with cloud computing from those that any com-
puter operations center would include [463]. While many of the services discussed in this section could
be provided by a cloud architecture, they are available in non-cloud architectures as well.

Figure 2.4 presents the structure of the three delivery models, SaaS, PaaS, and IaaS, according to
the Cloud Security Alliance [124]. User’s degrees of freedom and the complexity of its interaction
with the cloud infrastructure vary from extremely limited in case of SaaS, to modest for PaaS, and
significant for IaaS.

Software as a Service. The SaaS cloud infrastructure only runs applications developed by the service
provider. A wide range of stationary and mobile devices allow a large population of clients to access
the services provided by these applications using a thin client interface such as a web browser (e.g.,
web-based email). The users of services do not manage or control the underlying cloud infrastruc-
ture including network, servers, operating systems, storage, or even individual application capabilities,
with the possible exception of limited user-specific application configuration settings. Services offered
include:

(a) Enterprise services such as: workflow management, group-ware and collaborative, supply chain,
communications, digital signature, customer relationship management (CR), desktop software, finan-
cial management, geo-spatial, and search.

(b) Web 2.0 applications such as: metadata management, social networking, blogs, wiki services, and
portal services.
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FIGURE 2.4

The structure of the three delivery models, SaaS, PaaS, and IaaS. SaaS gives the users capability to use
applications supplied by the service provider but allows no control of the platform or the infrastructure. PaaS
gives the capability to deploy consumer-created or acquired applications using programming languages and
tools supported by the provider. IaaS allows the user to deploy and run arbitrary software, which can include
operating systems and applications.

The SaaS is not suitable for applications which require real-time response or those when data is not
allowed to be hosted externally; the most likely candidates for SaaS are applications when:

• Many competitors use the same product, such as Email;
• Periodically there is a significant peak in demand, such as billing and payroll;
• There is a need for the web or mobile access, such as mobile sales management software;
• There is only a short-term need, such as collaborative software for a project.

Platform as a Service. PaaS offers the capability to deploy consumer-created or acquired applications
using programming languages and tools supported by the provider. The user does not manage or con-
trol the underlying cloud infrastructure including network, servers, operating systems, or storage. The
user has control over the deployed applications and, possibly, application hosting environment config-



18 CHAPTER 2 CLOUD SERVICE PROVIDERS AND THE CLOUD ECOSYSTEM

urations. Such services include: session management, device integration, sandboxes, instrumentation
and testing, contents management, knowledge management, and Universal Description, Discovery and
Integration (UDDI), a platform-independent, Extensible Markup Language (XML)-based registry pro-
viding a mechanism to register and locate web service applications.

PaaS is not particularly useful when the application must be portable, when proprietary program-
ming languages are used, or when the underlaying hardware and software must be customized to
improve the performance of the application. Its major application areas are in software development
when multiple developers and users collaborate and the deployment and testing services should be
automated.

Infrastructure as a Service. IaaS has the capability to provision processing, storage, networks, and
other fundamental computing resources; the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The consumer does not manage or control the
underlying cloud infrastructure but has control over operating systems, storage, deployed applications,
and possibly limited control of some networking components, e.g., host firewalls. Services offered
by this delivery model include: server hosting, web servers, storage, computing hardware, operating
systems, virtual instances, load balancing, Internet access, and bandwidth provisioning.

The IaaS cloud computing delivery model has a number of characteristics such as: the resources are
distributed and support dynamic scaling, it is based on a utility pricing model and variable cost, and
the hardware is shared among multiple users. This cloud computing model is particularly useful when
the demand is volatile and a new business needs computing resources and it does not want to invest in
a computing infrastructure or when an organization is expanding rapidly.

Figure 2.3 shows that a number of activities are necessary to support the three delivery models.
They include:
1. Service management and provisioning, such as: virtualization, service provisioning, call center,

operations management, systems management, QoS management, billing and accounting, asset
management, SLA management, technical support, and backups.

2. Security management, such as: ID and authentication, certification and accreditation, intrusion
prevention, intrusion detection, virus protection, cryptography, physical security, incident response,
access control, audit and trails, and firewalls.

3. Customer services, such as: customer assistance and on-line help, subscriptions, business intelli-
gence, reporting, customer preferences, and personalization.

4. Integration services, such as: data management and development.
This shows that a service-oriented architecture involves multiple subsystems and complex inter-

actions among these subsystems. Individual subsystems can be layered; for example, we see that the
service layer sits on top of a resource abstraction layer which controls the physical resource layer.

Database as a Service. DBaaS is a cloud service where the database runs on the service provider’s
physical infrastructure. Compared with on-site physical server and storage architecture, a cloud
database service offers distinct advantages:

• Instantaneous scalability.
• Performance guarantees.
• Specialized expertise.
• Latest technology.
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• Failover support.
• Declining pricing.

Some of the most relevant features of the DBaaS model are:
1. Self-service – service provisioning without major deployment or configuration and without perfor-

mance and cost penalties.
2. Device and location-independent abstract database resources without concern for hardware utiliza-

tion.
3. Elasticity and scalability – automated and dynamic scaling.
4. Pay-as-you-go model – metered use of resources and cost reflecting the resources used.
5. Agility – the applications adapt seamlessly to new technology or additional requirements.

The cloud DBaaS uses a layered architecture. The user interface layer supports access to the service
via the Internet. The application layer is used to access software services and storage space. The
database layer provides efficient and reliable database service; it saves time for querying and loading
data by reusing the query statements residing in the storage. The data storage layer encrypts the data
when stored without user involvement; backup management and disk monitoring is also provided by
this layer.

Multi-tenancy is an integral part of the DBaaS model. In spite of its advantages multi-tenancy poses
resource management as well as security challenges as discussed in Section 11.6.

2.3 AMAZON WEB SERVICES
Amazon changed the face of computing in the last decade. First, it installed a powerful computing
infrastructure to sustain its core business, selling online a variety of goods ranging from books and
CDs to gourmet foods and home appliances. Then the company discovered that this infrastructure can
be further extended to provide affordable and easy to use resources for enterprise computing, as well
as computing for the masses.

In mid 2006 Amazon introduced AWS based on the IaaS delivery model. In this model the cloud
service provider offers an infrastructure consisting of compute and storage servers interconnected by
high-speed networks and supports a set of services to access these resources. An application developer
is responsible to install applications on a platform of his choice and to manage the resources provided
by Amazon.

It is reported that in 2012 businesses in 200 countries used the AWS. This shows the international
appeal of this computing paradigm. A significant number of large corporations, as well as start-ups
take advantage of computing services supported by the AWS infrastructure. For example, a start-up
reports that its monthly computing bills at Amazon are in the range of $100 000, while it would spend
more than $2 000 000 to compute using its own infrastructure, without the benefit of the speed and
the flexibility offered by AWS; the start-up employs 10 engineers rather than 60 that would need to
support its own computing infrastructure (“Active in cloud, Amazon reshapes computing” in the New
York Times, August 28, 2012).

A March 28 2017, New York Time article with the title “Amazon’s Cloud Business Lifts Its Profit
to a Record” reports: “The biggest source of the company’s profits is Amazon Web Services, the cloud
computing business that started just over a decade ago and is now on track to bring in more than
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$10 billion a year in revenue.....Amazon is the rare technology company of its size to still deliver
double-digit revenue growth.”

AWS computing, storage, and communication services. Amazon was the first provider of cloud
computing; it announced a limited public beta release of its Elastic Computing platform called EC2 in
August 2006. AWS released 24 services in 2008, 48 in 2009, 61 in 2010, 82 in 2011, 159 in 2012, 280
in 2013, and 449 new services and major features were released in 2014 [232]. Figure 2.5 shows the
palette of AWS services accessible via the Management Console as of late 2011.

Elastic Compute Cloud (EC2)1 is a web service with a simple interface for launching instances of an
application under several operating systems, such as several Linux distributions, Microsoft Windows
Server 2003 and 2008, OpenSolaris, FreeBSD, and NetBSD.

An instance is a virtual server; the user chooses the region and the availability zone where this
virtual server should be placed and also selects from a limited menu of instance types the one which
provides the resources, CPU cycles, main memory, secondary storage, communication and I/O band-
width needed by the application.

When launched, an instance is provided with a DNS name; this name maps to a private IP address
for internal communication within the internal EC2 communication network and a public IP address
for communication outside the internal Amazon network, e.g., for communication with the user that
launched the instance. Network Address Translation (NAT) maps external IP addresses to internal ones.

The public IP address is assigned for the lifetime of an instance and is returned to the pool of
available public IP addresses when the instance is either stopped or terminated. An instance can request
an elastic IP address, rather than a public IP address. The elastic IP address is a static public IP address
allocated to an instance from the available pool of the availability zone; an elastic IP address is not
released when the instance is stopped or terminated and must be released when no longer needed.

An instance is created either from a predefined Amazon Machine Image (AMI) digitally signed
and stored in S3, or from a user-defined image. The image includes the operating system, the run-time
environment, the libraries, and the application desired by the user. AMI images create an exact copy of
the original image but without configuration-dependent information such as hostname or MAC address.
A user can: (i) launch an instance from an existing AMI and terminate an instance; (ii) start and stop
an instance; (iii) create a new image; (iv) add tags to identify an image; and (v) reboot an instance.

EC2 is based on the Xen virtualization strategy discussed in detail in Section 10.5. In EC2 each
virtual machine or instance functions as a virtual private server. An instance specifies the maximum
amount of resources available to an application, the interface for that instance, as well as the cost per
hour. A server may run multiple virtual machines or instances, started by one or more users; an instance
may use storage services, S3, EBS, and Simple DB, as well as other services provided by AWS, see
Figure 2.6.

A user can interact with EC2 using a set of SOAP messages, see Section 7.1 and can list available
AMI images, boot an instance from an image, terminate an image, display the running instances of a
user, display console output, and so on. The user has root access to each instance in the elastic and
secure computing environment of EC2. The instances can be placed in multiple locations in different
Regions and Availability Zones.

1Amazon EC2 was developed by a team led by C. Pinkham including C. Brown, Q. Hoole, R. Paterson-Jones, and W. Van
Biljon, all from Cape Town, South Africa.
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FIGURE 2.5

Services offered by AWS are accessible from the AWS Management Console. Applications running under a
variety of operating system can be launched using EC2. Multiple EC2 instances can communicate using SQS.
Several storage services are available, such as S3, Simple DB, and EBS. The Cloud Watch supports
performance monitoring and the Auto Scaling supports elastic resource management. The Virtual Private
Cloud allows direct migration of parallel applications.

EC2 allows the import of Virtual Machine (VM) images from the user environment to an instance
through a facility called VM import. It also distributes automatically the incoming application traffic
among multiple instances using the elastic load balancing facility. EC2 associates an elastic IP address
with an account; this mechanism allows a user to mask the failure of an instance and re-map a public
IP address to any instance of the account, without the need to interact with the software support team.
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FIGURE 2.6

The configuration of an availability zone supporting AWS services. A cloud interconnect supports high-speed
communication among compute and storage servers in the zone; it also supports communication with servers
in other availably zones and with cloud users via a Network Address Translation. NAT maps external IP
addresses to internal ones. Multi-tenancy increases server utilization and lowers costs.

Simple Storage System (S3) is a storage service designed to store large objects. It supports a minimal
set of functions: write, read, and delete. S3 allows an application to handle an unlimited number of
objects ranging in size from one byte to five terabytes. An object is stored in a bucket and retrieved via
a unique, developer-assigned key; a bucket can be stored in a Region selected by the user.

S3 maintains for each object: the name, modification time, an access control list, and up to four
kilobytes of user-defined metadata; the object names are global. Authentication mechanisms ensure
that data is kept secure; objects can be made public, and rights can be granted to other users. S3
supports PUT, GET, and DELETE primitives to manipulate objects, but does not support primitives
to copy, to rename, or to move an object from one bucket to another. Appending to an object, requires
a read followed by a write of the entire object.
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S3 computes the MD52 of every object written and returns it in a field called ETag. A user is
expected to compute the MD5 of an object stored or written and compare this with the ETag; if the
two values do not match, then the object was corrupted during transmission or storage. The S3 SLA
guarantees reliability. S3 uses standards-based REST and SOAP interfaces, see Section 7.1; the default
download protocol is HTTP, but BitTorrent3 protocol interface is also provided to lower costs for
high-scale distribution.

Elastic Block Store. EBS provides persistent block level storage volumes for use with EC2 instances.
A volume appears to an application as a raw, unformatted and reliable physical disk; the size of the
storage volumes ranges from one gigabyte to one terabyte. The volumes are grouped together in Avail-
ability Zones and are automatically replicated in each zone. An EC2 instance may mount multiple
volumes, but a volume cannot be shared among multiple instances. EBS supports the creation of snap-
shots of the volumes attached to an instance and then uses them to restart an instance. The storage
strategy provided by EBS is suitable for database applications, file systems, and applications using raw
data devices.

Simple DB is a non-relational data store that allows developers to store and query data items via
web services requests; it supports store and query functions traditionally provided only by relational
databases. Simple DB creates multiple geographically distributed copies of each data item and supports
high performance web applications; at the same time, it manages automatically the infrastructure provi-
sioning, hardware and software maintenance, replication and indexing of data items, and performance
tuning.

Simple Queue Service. SQS is a hosted message queue. SQS is a system for supporting automated
workflows; it allows multiple EC2 instances to coordinate their activities by sending and receiving
SQS messages. Any computer connected to the Internet can add or read messages without any installed
software or special firewall configurations.

Applications using SQS can run independently and asynchronously, and do not need to be devel-
oped with the same technologies. A received message is “locked” during processing; if processing fails,
the lock expires and the message is available again. The timeout for locking can be changed dynami-
cally via the ChangeMessageVisibility operation. Developers can access SQS through standards-based
SOAP and Query interfaces. Queues can be shared with other AWS accounts and Anonymously; queue
sharing can also be restricted by IP address and time-of-day. An example showing the use of message
queues is presented in Section 7.6.

CloudWatch is a monitoring infrastructure used by application developers, users, and system admin-
istrators to collect and track metrics important for optimizing the performance of applications and for
increasing the efficiency of resource utilization. Without installing any software a user can monitor
approximately a dozen pre-selected metrics and then view graphs and statistics for these metrics.

When launching an Amazon Machine Image (AMI) the user can start the CloudWatch and specify
the type of monitoring. The Basic Monitoring is free of charge and collects data at five-minute intervals

2MD5 (Message-Digest Algorithm) is a widely used cryptographic hash function; it produces a 128-bit hash value. It is used
for checksums. SHA-i (Secure Hash Algorithm, 0 ≤ i ≤ 3) is a family of cryptographic hash functions; SHA-1 is a 160 bit hash
function resembling MD5.
3BitTorrent is a peer-to-peer (P2P) communications protocol for file sharing.
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for up to ten metrics, while the Detailed Monitoring is subject to a charge and collects data at one
minute interval. This service can also be used to monitor the latency of access to EBS volumes, the
available storage space for RDS DB instances, the number of messages in SQS, and other parameters
of interest for applications.

Virtual Private Cloud. VPC provides a bridge between the existing IT infrastructure of an organization
and the AWS cloud; the existing infrastructure is connected via a Virtual Private Network (VPN) to a
set of isolated AWS compute resources. VPC allows existing management capabilities such as security
services, firewalls, and intrusion detection systems to operate seamlessly within the cloud.

Auto Scaling exploits cloud elasticity and provides automatic scaling of EC2 instances. The service
supports: grouping of instances, monitoring of the instances in a group, and defining triggers, pairs of
CloudWatch alarms and policies, which allow the size of the group to be scaled up or down. Typically,
a maximum, a minimum, and a regular size of the group are specified.

An Auto Scaling group consists of a set of instances described in a static fashion by launch configu-
rations. When the group scales up, new instances are started using the parameters for the runInstances
EC2 call provided by the launch configuration; when the group scales down, the instances with older
launch configurations are terminated first. The monitoring function of the Auto Scaling service carries
out health checks to enforce the specified policies; for example, a user may specify a health check for
elastic load balancing and then Auto Scaling will terminate an instance exhibiting a low performance
and start a new one. Triggers use CloudWatch alarms to detect events and then initiate specific actions;
for example, a trigger could detect when the CPU utilization of the instances in the group goes above
90% and then scale up the group by starting new instances. Typically, triggers to scale up and down
are specified for a group.

Several AWS services introduced in 2012 include:

• Route 53 – a low-latency DNS service used to manage user’s DNS public records.
• Elastic MapReduce (EMR) – a service supporting processing of large amounts of data using a hosted

Hadoop running on EC2 and based on the MapReduce paradigm discussed in Section 7.5.
• Simple Workflow Service (SWS) – supports workflow management and allows scheduling, man-

agement of dependencies, and coordination of multiple EC2 instances.
• ElastiCache – a service enabling web applications to retrieve data from a managed in-memory

caching system rather than a much slower disk-based database.
• DynamoDB – a scalable and low-latency fully managed NoSQL database service.
• CloudFront – a web service for content delivery.
• Elastic Load Balancer – a cloud service to automatically distribute the incoming requests across

multiple instances of the application.

Two other services, the CloudFormation and the Elastic Beanstalk are discussed next.

CloudFormation allows the creation of a stack describing the infrastructure for an application. The
user creates a template, a text file formatted as in Javascript Object Notation (JSON), describing the
resources, the configuration values, and the interconnection among these resources. The template can
be parameterized to allow customization at run time, e.g., to specify the types of instances, database
port numbers, or RDS size. Here is a template for the creation of an EC2 instance:
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{
"Description" : "Create instance running Ubuntu Server 12.04 LTS 64 bit AMI"
"Parameters" : {

"KeyPair" : {
"Description" : "Key Pair to allow SSH access to the instance",
"Type" : "String"

}
},
"Resources" : {

"Ec2Instance" : {
"Type" : "AWS::EC2::Instance",
"Properties" : {

"KeyName" : { "Ref" : "KeyPair" },
"ImageId" : "aki-004ec330"

}
}

},
"Outputs" : {

"InstanceId" : {
"Description" : "The InstanceId of the newly created instance",
"Value" : { "Ref" : "Ec2InstDCM" }

}
},
"AWSTemplateFormatVersion" : "2012-03-09"

}

Elastic Beanstalk interacts with other AWS services including EC2, S3, SNS, Elastic Load Balance,
and AutoScaling. ElasticBeanstalk handles automatically the deployment, capacity provisioning, load
balancing, auto-scaling, and application monitoring functions [495]. The service automatically scales
the resources as required by the application, either up, or down based on default Auto Scaling settings.
Some of the management functions provided by the service are:
1. Deploy a new application version or rollback to a previous version.
2. Access the results reported by CloudWatch monitoring service.
3. Email notifications when application status changes or application servers are added or removed.
4. Access server log files without needing to login to the application servers.

The Elastic Beanstalk service is available to developers using either a Java platform, the PHP server-
side description language, or .NET framework. For example, a Java developer can create an application
using an Integrated Development Environment, such as Eclipse and package the code into Java Web
Application Archive file of type “.war”. The “.war” file should then be uploaded to the Elastic Beanstalk
using the Management Console and then deployed and in a short time the application will be accessible
via an URL.

Users have several choices to interact and manage AWS resources either from a web browser or
from a system running Linux or Microsoft Windows:
1. The Web Management Console; not all options may be available in this mode.
2. Command-line tools, see http://aws.amazon.com/developertools.

http://aws.amazon.com/developertools
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3. AWS SDK libraries and toolkits provided for several programming languages including Java,
PHP4, C#, and Obj C.

4. Raw REST requests as shown in Section 7.1.
The Amazon Web Services Licensing Agreement (AWSLA) allows the cloud service provider to

terminate service to any customer at any time for any reason and contains a covenant not to sue Amazon
or its affiliates for any damages that might arise out of the use of AWS. As noted in [186], AWSLA
prohibits the use of “other information obtained through AWS for the purpose of direct marketing,
spamming, contacting sellers or customers.” It prohibits AWS from being used to store any content
that is “obscene, libelous, defamatory or otherwise malicious or harmful to any person or entity;” it
also prohibits S3 from being used “in any way that is otherwise illegal or promotes illegal activities,
including without limitation in any manner that might be discriminatory based on race, sex, religion,
nationality, disability, sexual orientation or age.”

An early evaluation of Amazon Web Services. A 2007 evaluation of AWS [186] reports that EC2 in-
stances are fast, responsive, and very reliable; a new instance could be started in less than two minutes.
During the year of testing, one unscheduled reboot and one instance freeze were experienced, no data
was lost during the reboot, but no data could be recovered from the virtual disks of the frozen instance.

To test the S3 service, a bucket was created and loaded with objects in sizes of 1 byte, 1 KB, 1 MB,
16 MB, and 100 MB. The measured throughput for the 1-byte objects reflected the transaction speed
of S3 because the testing program required that each transaction be successfully resolved before the
next was initiated. The measurements showed that a user could execute at most 50 non-overlapping S3
transactions. The 100 MB probes measured the maximum data throughput the S3 system could deliver
to a single client thread. The measurements showed that the data throughput for large objects was
considerably larger than for small objects, most likely due to a high transaction overhead. The write
bandwidth for 1 MB data was roughly 5 MB/s while the read bandwidth was 5 times lower, 1 MB/s.

Another test was designed to see if concurrent requests could improve the throughput of S3. The
experiment involved two virtual machines running on two different clusters and accessing the same
bucket with repeated 100 MB GET and PUT operations. The virtual machines were coordinated, with
each one executing 1 to 6 threads for 10 minutes and then repeating the pattern for 11 hours. As the
number of threads increased from 1 to 6, the bandwidth received by each thread was roughly cut in half
and the aggregate bandwidth of the six threads was 30 MB/s, about three times the aggregate bandwidth
of one thread. In 107 556 tests of EC2, each one consisting of multiple read and write probes, only 6
write retries, 3 write errors, and 4 read retries were encountered.

2.4 THE CONTINUING EVOLUTION OF AWS
Amazon is one of the most important forces driving the spectacular evolution of cloud computing in
recent years. The AWS infrastructure has benefited from a wealth of new technologies. Today AWS is

4PHP evolved from a set of Perl scripts designed to produce dynamic web pages called “Personal Home Page Tools” into a
general-purpose server-side scripting language. The code embedded into an HTML source document is interpreted by a web
server with a PHP processor module which generates the resulting web page.
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Table 2.1 The resources offered by M4, C4, and G2 instances; the number of vCPUs,
the amount of memory, the data rates for disk access, and the cost per hour.

Instance type vCPU Memory
(GiB)

EBS throughput
(Mbps)

Cost
($/hour)

m4.large 2 8 450 0.12

m4.xlarge 4 16 750 0.239

m4.2xlarge 8 32 1 000 0.479

m4.4xlarge 16 64 2 000 0.958

m4.10xlarge 40 160 4 000 2.394

c4.large 2 3.75 500 0.105

c4.xlarge 4 7.5 750 0.209

c4.2xlarge 8 15 1 000 0.419

c4.4xlarge 16 30 2 000 0.838

c4.8-xlarge 36 60 4 000 1.675

g2.2xlarge 8 15 – 0.65

g2.4xlarge 32 60 – 2.60

probably the most attractive and cost-effective cloud computing environment, not only for enterprise
applications, but also for computational science and engineering applications [24].

The massive effort to continually expend the hardware and the software of the AWS cloud infras-
tructure is astounding. Amazon has designed its own storage racks; such a rack holds 864 disk drives
and weighs over a ton. The company has designed and built their own power substations. Three of its
regions, US West (Oregon), AWS GovCloud (US), and EU (Frankfurt) are 100% carbon neutral.

EC2 instances. AWS offers several types of EC2 instances targeting different classes of applications:

• T2 – provide a baseline CPU performance and the ability to exceed the baseline.
• M3 & M4 – provide a balance of compute, memory, and network resources.
• C4 – use high performance processors and have the lowest price/compute performance.
• R3 – are optimized for memory-intensive applications.
• G2 – target graphics and general-purpose GPU applications.
• I2 – are storage optimized.
• D2 – deliver high disk throughput.

Each instance packages a different combination of processors, memory, storage, and network band-
width. The number of vCPUs as well as the type of processor, its architecture, and clock speed are
different for different instance types. A vCPU is a virtual processor assigned to one virtual machine.

AWS does not specify if a vCPU corresponds to a core of a multi-core processor, though this is
likely. The amount of memory per vCPU is the same for low and high-end instances. The memory is
sometimes measured in Gibibytes, 1 GiB = 230 bytes or 1 073 741 824 bytes while 1 GB = 109 bytes.

The processors used by instances in Table 2.1 are Intel Xeon E5-2670 v3 running at 2.5 GHz for M4
instances, Intel Xeon E5-2666 v3 running at 2.9 GHz for C4 instances, and E5-2670 for G2 instances.
The first two processors support Advanced Vector Extensions AVX and AVX2. The two are exten-
sions to the x86 ISA. In AVX2 the width of the SIMD register file is increased from 128 bits to 256
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bits along with several additional features including: expansion of most vector integer SSE and AVX
instructions to 256 bits; three-operand general-purpose bit manipulation and multiply; three-operand
fused multiply-accumulate support; gather support, enabling vector elements to be loaded from non-
contiguous memory locations; DWORD- and QWORD-granularity any-to-any permutes; and vector
shifts. An NVIDIA GPU for a G2 instances has 1 536 CUDA cores and 4 GB of video memory.

Several operating systems including Apple OS, Linux, Windows, FreeBSD, OpenBSD, and Solaris
support AVX. Recent releases of the GCC compiler support AVX. Unfortunately, there are no recent
benchmarks comparing the performance of systems on the top 500 list with some of the 2016 AWS
instances presented in Table 2.1.

The floating point performance of C4 instances is impressive. For example, a c4.8xlarge instance
with 2 Intel Xeon E5-2666 v3 processors running at 3.50 GHz, 18 cores, and 36 threads, with 32 KB ×
9 L1 instruction and data caches, 256 KB × 9 L2 cache, 26.3 MB L3 cache, and 60 GB main memory
delivers more than 61 Gflops from a multi-core configuration according to http://browser.primatelabs.
com/geekbench3/1694602.

The performance of G2 instances with attached GPUs is even more impressive. Results reported in
[125] show the performance of CUDA 7.0 for several libraries including cuFFT, cuBLAS, cuSPARSE,
cuSOLVER, cuRAND, cuDNN. For example, cuBLAS supports all 152 standard routines and distributed
computations across multiple GPUs with out-of-core streaming to CPU and no upper limits on matrix
size supporting more than three Tflops on single-precision and more than one Tflops in double-
precision.

AWS Lambda Service. For many of us cloud computing is associated with Big Data applications and
long lasting computations rather than real-time applications and short bursts of computing triggered by
some external events. Consistent to its reputation as the leader in cloud computing AWS strives to offer
new services in anticipation of future needs of the cloud computing community.

Anticipating services relevant to the Internet of Things AWS introduced a few years ago a servless
computer service where applications are triggered by conditions and/or events specified by the user.
For example, an application may run for a brief period of time at midnight to check the daily energy
consumption of an enterprise, may be activated weekly to check the sales of chain, or to turn on the
alarm system of a home triggered by an event generated by the smartphone of the owner.

In stark contrast to EC2 when customers are billed on an hourly basis, e.g., if a C4 instance is used
for one hours and ten minutes the billing is for two hours, the Lambda service is billed for the actual
time with a resolution of milliseconds. The service seems relatively easy to use. “First you create your
function by uploading your code (or building it right in the Lambda console) and choosing the memory,
timeout period, and AWS Identity and Access Management (IAM) role. Then, you specify the AWS
resource to trigger the function, either a particular Amazon S3 bucket, Amazon DynamoDB table, or
Amazon Kinesis stream. When the resource changes, Lambda will run your function and launch and
manage the compute resources as needed in order to keep up with incoming requests” according to
https://aws.amazon.com/lambda/details/. Amazon Kinesis is a data streaming platform.

Regions and availability zones. Amazon offers cloud services through a network of data centers on
several continents. In mid 2017 Amazon had 28+ data centers. An availability zone (AZ) is a data
center with 50 000–80 000 servers using 25–30 MW of power. In each region there are several avail-
ability zones interconnected by high-speed networks. Regions do not share resources and communicate
through the Internet. All regions have at least two availability zones. The AWS regions as of January
2017 are:

http://browser.primatelabs.com/geekbench3/1694602
https://aws.amazon.com/lambda/details/
http://browser.primatelabs.com/geekbench3/1694602
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Table 2.2 AWS services with limited availability in the Europe/Middle East/Africa regions.

Service Ireland Frankfurt London
Amazon AppStream 2.0 Yes

Amazon CloudSearch Yes Yes

Amazon Cognito Yes Yes

Amazon GameLift Yes Yes

Amazon Cloud Directory Yes Yes

Amazon EC2 Systems Manager Yes Yes

Amazon Elastic Transcoder Yes

Amazon Elastic File System (EFS) Yes

Amazon Machine Learning Yes

Amazon SimpleDB Yes

Amazon WorkSpaces Yes Yes

AWS IoT Yes Yes

Table 2.3 The billing rates from several regions.

Region Location Availability zones Cost
US West Oregon us-west-2a/2b/2c Low

US West North California us-west-1a/1b/1c High

US East North Virginia us-east-1a/2a/3a/4a Low

Europe Ireland eu-west-1a/1b/1c Medium

South America São Paulo, Brazil sa-east-1a/1b Very high

Asia Pacific Tokyo, Japan ap-northeast-1a/1b High

Asia Pacific Singapore ap-southeast-1a/1b Medium

• Americas: Northern Virginia, Ohio, Oregon, Northern California, Montreal, São Paulo, and the
GovCloud.

• Asia Pacific: Singapore, Tokyo, Sydney, Seul, Mumbai, Beijing.
• Europe/Middle East/Africa: Ireland, Frankfort, London.

Storage is automatically replicated within a region. S3 buckets are replicated within an availability
zone and between the availability zones of a region, while EBS volumes are replicated only within the
same availability zone. Critical applications are advised to replicate important information in multiple
regions to be able to function when the servers in one region are unavailable due to catastrophic events.

Most AWS services are available in all regions, though some are not. The list of services in the
eight Americas regions includes: CloudWatch; CloudWatch Logs; DynamoDB; ElastiCache; Elastic
MapReduce; Glacier; Kinesis Streams; Redshift; Relational Database Service (RDS); Simple Notifica-
tion Service (SNS); Simple Queue Service (SQS); Simple Storage Service (S3); Simple Workflow
Service (SWF); Virtual Private Cloud (VPC); Auto Scaling; CloudFormation; CloudTrail; Config;
Direct Connect; Key Management Service; Shield Standard; Elastic Load Balancing; and VM Im-
port/Export. Table 2.2 lists services with limited availability in the three Europe/Middle East/Africa
regions as of January 2017.
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The billing rates differ from one region to another and can be roughly grouped into four categories,
low, medium, high, and very high, see Table 2.3. These rates are determined by the components of
the operating costs including energy, communication, and maintenance costs. Thus, the choice of the
region is motivated by the desire to minimize costs, reduce the communication latency, and increase
reliability and security.

AWS networking. Each AWS region has redundant transit centers connecting private links to other
AWS regions, private links to AWS Direct Connect customers, and to the Internet through peering and
paid transit. Most major regions are interconnected by private fiber channels and this avoids peering
issues, buffering problems, and capacity limitations that may occur on public links.

Peak traffic between availability zones of up to 25 Tbps is supported. The communication latency
between availability zones is in the 1 to 2 milliseconds range. The communication latency between two
servers has three components:
1. Application �→ guest OS �→ hypervisor �→ Network Interface (NIC) – in the milliseconds range.
2. Through the NIC – in the microseconds range.
3. Over the fiber – in the nanoseconds range.
Single Root I/O Virtualization virtualizes the NICs, each guest gets its own virtual NIC [232].

2.5 GOOGLE CLOUDS
Google’s effort is concentrated in several areas of Software-as-a-Service (SaaS) and Platform-as-a-
Service (PaaS) [198]. It was estimated that the number of servers used by Google in January 2012 was
close to 1.8 million and that number was expected to reach close to 2.4 million in the early 2013 [399].
Google maintains two billion lines of code 5 related to its cloud infrastructure.

Services such as Gmail, Google Drive, Google Calendar, Picasa and Google Groups are free of
charge for individual users and available for a fee for organizations. These services are running on a
cloud and can be invoked from a broad spectrum of devices including mobile ones including smart
phones, tablets, and laptops. The data for these services is stored at data centers on the cloud.

AppEngine. Google is a leader in the Platform-as-a-Service (PaaS) space. AppEngine (AE) is an infras-
tructure for building web and mobile applications and run these application on Google servers. Initially,
it supported only Python and support for Java was later added. The database for code development can
be accessed with GQL (Google Query Language) with a SQL-like syntax.

The AppEngine is an ensemble of computer, storage, search, and networking services. The Compute
Engine (CE) supports the creation of VMs with resources tailored to the application needs. The CE
configurations range from micro instances to the ones with 32 vCPUs or 208 GB of memory. Up to
64 TB of network storage can be attached to a VM. Always-encrypted local solid-state drive (SSD)
block storage and automatic scaling are also supported. Several operating systems including Debian,
CentOS, CoreOS, SUSE, Ubuntu, Red Hat, FreeBSD, or Windows 2008 R2 and 2012 R2 are supported.

5This repository is available only to Google’s 25,000 developers; Google has its own version control system called Piper. GitHub
is a public open source repository where individuals share enormous amounts of code.
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The Container Engine (CntE) is a cluster manager and orchestration system for Docker containers
built on the Kubernetes system. The Container Registry stores private Docker images. CntE schedules
and manages containers automatically according to user specifications. JSON config files are used to
specify the amount of CPU/memory, the number of replicas, and other relevant information. The Cloud
Container Engine SLA commitment is a monthly uptime of at least 99.5%. Cloud Functions (CF) is
a lightweight, event-based, asynchronous system to create single-purpose functions that respond to
cloud events. CFs are written in Javascript and execute in a Node.js runtime environment. Cloud Load
Balancing supports scalable load balancing on the Google Cloud Platform.

Cloud Storage is a unified object storage allowing a multi-region operation for applications includ-
ing video streaming and frequently accessed web and images sites. Cloud SQL is a fully-managed
database service, Cloud Bigtable is a high performance NoSQL database service for large analytical
and operational workloads, and Cloud Datastore is a highly-scalable NoSQL database for web and
mobile applications.

Big Data applications are supported by several services. Bigquery is a fully-managed enterprise
data warehouse for large-scale data analytics. Cloud Dataflow supports stream and batch execution of
pipelines. The Cloud Dataproc manages Spark and Hadoop service. Cloud Datalab is an interactive
tool for large-scale data exploration, analysis, and visualization. Cloud Pub/Sub is a global service for
real-time reliable messaging and data streaming.

Network functionality is managed by the Cloud Virtual Network (CVN). AppEngine users can
connect resources to each other and isolate them from one another in a Virtual Private Cloud using the
CVN. Cloud routers maintain virtual routers enabling Border Gateway Protocol (BGP) to route updates
between a user Compute Engine network and user non-Google network. CVN supports Virtual Private
Networks (VPNs) and distributed firewalls. Cloud CDN is a low-latency, low-cost content delivery
network. Cloud DNS is a resilient, low-latency DNS for Google’s worldwide network.

Several AppEngine services support security. Cloud Identity and Access Management (IAM) pro-
vides the tools to manage resource permissions and to map job functions within a company to groups
and roles. Cloud KMS is a key management service allowing users to manage encryption and gener-
ate, use, rotate and destroy AES256 key encryption keys. Cloud Security Scanner is used to scan for
common vulnerabilities in Google App Engine applications.

App Engine provides cloud development tools. Cloud SDK is a set of tools including gcloud, gsutil,
and bq, to access the Compute Engine, the Cloud Storage and other services. The Cloud Source Repos-
itories provides Git version control to support collaborative development for applications or services.
Android Studio. PowerShell, IntelliJ, Eclipse and Visual Studio tools are also available.

The array of management tools include the Stackdriver which supports monitoring, logging, and
diagnostics tools along with the Stackdriver Monitoring tool which provides performance, uptime, and
overall health information on cloud applications. The Stackdriver Debugger lets users inspect the state
of an application without logging statements and without stopping or slowing down your application.
The Stackdriver Error Reporting counts, analyzes and aggregates the crashes and provides a cleaned
exception stack trace.

A range of services supporting machine learning are also provided. The Cloud Machine Learning
is a managed service based on the TensorFlow model to build machine learning models, that work on
any type of data. The Cloud Natural Language API is a text analysis tool that can be used to extract
information about people, places, events, and so on while the Cloud Speech API allows developers to
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Table 2.4 The features of the AppEngine standard environment (AE-STD) and of the flexible environ-
ment (AE-FLX).

Feature AE-STD AE-FLX
Instance startup time Milliseconds Minutes

Maximum request timeout 60 Seconds 60 Minutes

Background threads Yes, with restrictions Yes

Background process No Yes

Writing to local disk No Yes

SSH debugging No Yes

Scaling Manual, Basic, Automatic Manual, Automatic

Network access Only via AppEngine services Yes

Support installing third party binaries No Yes

Location/Availability North America, Europe, Asia Pacific North America Asia Pacific

Table 2.5 Pricing and service quotas for Google’s App Engine for US and Europe.

App Engine Service Free Access Daily Limits Price per Unit Above Free Access
Instances 28 instance hours $0.05 per instance hour

Cloud Datastore Ops
reads/writes/deletes

50k/25k/25k $0.06/$0.18/$0.02 per 100k ops in each
category

Cloud Datastore Storage 1 GB $01.8 per GB/month

Outgoing Network Traffic 1 GB $0.12/GB

Incoming Network Traffic 1 GB Free

Cloud Storage 5 GB $0.026 per GB/month

Memcache – Dedicated Pool 0 $0.06 per GB/hour

Memcache – Shared Pool Free Free

Searches 100 $0.50 per 10 k searches

Search – Indexing Documents 0.01 GB $2.0 per GB

Task Queue 5 GB $0.026 GB/month

SSL Virtual IPs – $39.0 Virtual IP/month

convert audio to text by applying powerful neural network models and the Cloud Vision API is used to
understand the content of an image by encapsulating powerful machine learning models.

An AE application can run in the standard environment and/or the flexible environment. The features
of the two environments are summarized in Table 2.4. The pricing and service quota are summarized
in Table 2.5. After a 10-minute minimum charge the users are charged in minute-level increments.

Gmail. The service hosts emails on Google servers, provides a Web interface to access them and tools
for migrating from Lotus Notes and Microsoft Exchange.

Google Docs is a web-based software for building text documents, spreadsheets and presentations.
It supports features such as tables, bullet points, basic fonts and text size; it allows multiple users to
edit and update the same document, to view the history of document changes, and it provides a spell
checker. The service allows users to import and export files in several formats including Microsoft
Office, PDF, text, and OpenOffice extensions.
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Google Calendar is a browser-based scheduler. It supports multiple calendars for a user, the ability
to share a calendar with other users, the display of daily/weekly/monthly views, to search events, and
to synchronize with the Outlook Calendar. The calendar is accessible from mobile devices; event re-
minders can be received via SMS, desktop pop-ups, or emails. It is also possible to share your calendar
with other Google calendar users.

Picasa is a tool to upload, share, and edit images; it provides 1 GB of disk space per user free of charge.
Users can add tags to images and attach locations to photos using Google Maps. Google Groups allows
users to host discussion forums to create messages online or via email.

Google Co-op allows users to create customized search engines based on a set of facets or cate-
gories; for example, the facets for a search engine for the database research community available at
http://data.cs.washington.edu/coop/dbresearch/index.html are: professor, project, publi-
cation, jobs.

Google Base is a service allowing the users to load structured data from different sources to a cen-
tral repository which is a very large, self-describing, semi-structured, heterogeneous database. It is
self-describing because each item follows a simple schema: (item type, attribute names). Few users
are aware of this service, thus Google Base is accessed in response to keyword queries posed on
Google.com, provided that there is relevant data in the database. To fully integrate Google Base, the
results should be ranked across properties. Also, the service needs to propose appropriate refinements
with candidate values in select-menus; this is done by computing histograms on attributes and their
values during query time.

Google Drive is an online service for data storage available since April 2012. It gives users 5 GB of
free storage and charges $4/month for 20 GB. It is available for PCs, MacBooks, iPhones, iPads, and
Android devices and allows organizations to purchase up to 16 TB of storage.

Specialized structure-aware search engines for several areas, including travel, weather and local
services, have already been implemented. However, the data available on the web covers a wealth of
human knowledge; it is not feasible to define all the possible domains and it is nearly impossible to
decide where one domain ends and another begins.

Google has also redefined the laptop with the introduction of the Chromebook, a purely Web-centric
device running Chrome-OS. Cloud-based applications, extreme portability, built-in 3G connectivity,
almost instant-on, and all-day battery life are the main attractions of this device with a keyboard.

Google adheres to a bottom-up, engineer-driven, liberal licensing, and user application development
philosophy, while Apple, a recent entry in cloud computing, tightly controls the technology stack,
builds its own hardware and requires the applications developed to follow strict rules. Apple products
including the iPhone, the iOS, the iTunes Store, Mac OS X, and iCloud offer unparalleled polish and
effortless interoperability, while the flexibility of Google results in more cumbersome user interfaces
for the broad spectrum of devices running the Android OS.

Google, as well as other cloud service providers, manage vast amounts of data. In a world where
users would most likely desire to use multiple cloud services from independent providers the question
if the traditional Data Base Management Services (DBMS) are sufficient to ensure interoperability
comes to mind. A DBMS efficiently supports data manipulations and query processing, but operates in
a single administrative domain and uses a well-defined schema. The interoperability of data manage-
ment services requires semantic integration of services based on different schemas. An answer to the

http://data.cs.washington.edu/coop/dbresearch/index.html
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FIGURE 2.7

The components of Windows Azure: Compute – runs cloud applications; Storage – uses blobs, tables, and
queues to store data; Fabric Controller – deploys, manages, and monitors applications; CDN – maintains
cache copies of data; Connect – allows IP connections between the user systems and applications running on
Windows Azure.

limitations of traditional DBMS are the so called dataspaces introduced in [178]; dataspaces do not
aim at data integration, but at data co-existence.

2.6 MICROSOFT WINDOWS AZURE AND ONLINE SERVICES

Azure and Online Services are PaaS and, respectively, SaaS cloud platforms provided by Microsoft.
Azure is an operating system, SQL Azure is a cloud-based version of the SQL Server, and Azure
AppFabric (formerly .NET Services) is a collection of services for cloud applications.

Windows Azure has three core components (see Figure 2.7): Compute which provides a com-
putation environment, Storage for scalable storage, and Fabric Controller which deploys, manages,
and monitors applications; it interconnects nodes consisting of servers, high-speed connections, and
switches. The Content Delivery Network (CDN) maintains cache copies of data to speedup computa-
tions. The Connect subsystem supports IP connections between the users and their applications running
on Windows Azure. The API interface to Windows Azure is built on REST, HTTP and XML. The plat-
form includes five services: Live Services, SQL Azure, AppFabric, SharePoint, and Dynamics CR.
A client library and tools are also provided for developing cloud applications in Visual Studio.

The computations carried out by an application are implemented as one or more roles; an appli-
cation typically runs multiple instances of a role. One distinguishes: (i) Web role instances used to
create web applications; (ii) Worker role instances used to run Window-based code; and (iii) VM role
instances running user-provided Windows Server 2008 R2 images.

Scaling, load balancing, memory management, and reliability are ensured by a fabric controller,
a distributed application replicated across a group of machines which owns all resources in its envi-
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ronment including computers, switches, and load balancers. The fabric controller is aware of every
Windows Azure application and decides where new applications should run. The fabric controller
chooses the physical servers to optimize utilization using configuration information uploaded with
each Windows Azure application. Configuration information is an XML-based description of how
many web role instances, how many Worker role instances, and what other resources the application
needs; the fabric controller uses this configuration file to determine how many VMs to create.

Blobs, tables, queue, and drives are used as scalable storage. A blob contains binary data, a con-
tainer consists of one or more blobs. Blobs can be up to a terabyte and they may have associated
metadata, e.g., the information about where a JPEG photograph was taken. Blobs allow a Windows
Azure role instance interact with persistent storage as if it were a local NTFS6 file system. Queues
enable web role instances to communicate asynchronously with Worker role instances.

The Microsoft Azure platform currently does not provide or support any distributed parallel com-
puting frameworks, such as MapReduce, Dryad or MPI, other than the support for implementing basic
queue-based job scheduling [208].

2.7 CLOUD STORAGE DIVERSITY AND VENDOR LOCK-IN
The short history of cloud computing shows that cloud services may be unavailable for short, or
even for extended periods of time. Such an interruption of service is likely to impact negatively the
organization and possibly diminish, or cancel completely, the benefits of utility computing for that
organization. The potential for permanent data loss in case of a catastrophic system failure poses an
even greater danger.

Last but not least, the single vendor may decide to increase the prices for service and charge
more for computing cycles, memory, storage space, and network bandwidth than other cloud service
providers. The alternative in this case is switching to another cloud service provider. Unfortunately,
this solution could be very costly due to the large volume of data to be transferred from the old to the
new provider. Transferring terabytes or possibly petabytes of data over the network takes a fairly long
time and incurs substantial charges for the network bandwidth.

A solution to guarding against the problems posed by the vendor lock-up is to replicate the data
to multiple cloud service providers. The straightforward replication is very costly and, at the same
time, poses technical challenges. The overhead to maintain data consistency could drastically affect
the performance of the virtual storage system consisting of multiple full replicas of the organization’s
data spread over multiple vendors. Another solution could be based on an extension of the design
principle of a RAID-5 system used for reliable data storage.

A RAID-5 system uses block-level stripping with distributed parity over a disk array, see Fig-
ure 2.8A; the disk controller distributes sequential blocks of data to the physical disks and computes
a parity block by bit-wise XOR-ing the data blocks. The parity block is written on a different disk for
each file to avoid the bottleneck possible when all parity blocks are written to a dedicated disk, as it is
done in case of RAID-4 systems. This technique allows us to recover the data after a single disk loss.
For example, if Disk 2 in Figure 2.8 is lost then we still have all the blocks of the third file, c1, c2, and

6NTFS (New Technology File System) is the standard file system of the Microsoft Windows operating system starting with
Windows NT 3.1, Windows 2000, and Windows XP.
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FIGURE 2.8

(A) A (3,4) RAID-5, configuration where individual blocks are stripped over three disks and a parity block is
added; the parity block is constructed by XOR-ing the data blocks, e.g., aP = a1 XOR a2 XOR a3. The parity
blocks are distributed among the four disks, aP is on disk 4, bP on disk 3, cP on disk 2, and dP on disk 1.
(B) A system which strips data across four clouds; the proxy provides transparent access to data.

c3 and we can recover the missing blocks for the others as follows:

a2 = (a1) XOR (aP ) XOR (a3)

b2 = (b1) XOR (bP ) XOR (b3)

d1 = (dP ) XOR (d2) XOR (d3)

. (2.1)
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Obviously, we can also detect and correct errors in a single block using the same procedure. The RAID
controller allows also parallel access to data (for example, the blocks a1, a2, and a3 can be read and
written concurrently) and it can also aggregate multiple write operations to improve performance.

The system in Figure 2.8B strips data across four clusters. The access to data is controlled by a
proxy which carries out some of the functions of a RAID controller, as well as authentication and other
security related functions. The proxy ensures before-and-after atomicity as well as all-or-nothing atom-
icity for data access; the proxy buffers the data, possibly converts the data manipulation commands,
optimizes the data access, e.g., aggregates multiple write operations, converts data to formats specific
to each cloud, and so on.

This elegant idea immediately raises several questions: How does the response time of such a
scheme compare with the one of a single storage system? How much overhead is introduced by the
proxy? How could this scheme avoid a single point of failure, the proxy? Are there standards for data
access implemented by all vendors?

An experiment to answer some of these questions is reported in [6]; their RACS system uses the
same data model and mimics the interface to AWS S3. The S3 system, discussed in Section 2.3, stores
the data in buckets, each bucket being a flat namespace with keys associated with objects of arbitrary
size but less than 5 GB. The prototype implementation discussed in [6] led the authors to conclude that
the costs increases and the performance penalties of the RACS system are relatively minor. The paper
also suggests an implementation to avoid the single point of failure by using several proxies. Then the
system is able to recover from the failure of a single proxy; clients are connected to several proxies and
can access the data stored on multiple clouds.

It remains to be seen if such a solution is feasible in practice for organizations with a very large
volume of data, given the limited number of cloud storage providers and the lack of standards for
data storage. A basic question is if it makes sense to trade basic tenets of cloud computing, such as
simplicity and homogeneous resources controlled by a single administrative authority, for increased
reliability and for freedom from vendor lock-in.

This brief discussion hints to the need for standardization and for scalable solutions, two of the
many challenges faced by cloud computing in the near future. The pervasive nature of scalability dom-
inates all aspects of cloud management and cloud applications. Solutions performing well on small
systems do it no longer when the system scale increases by one or more orders of magnitude. Exper-
iments with small test bed systems produce inconclusive results. The only alternative is to conduct
intensive simulations to prove, or disprove, the advantages of a particular algorithm for resource man-
agement, or the feasibility of a particular data-intensive application.

We can also conclude that cloud computing poses challenging problems to service providers and
to users; the service providers have to develop strategies for resource management subject to quality
of service and cost constraints as discussed in Chapter 9. At the same time, the cloud application
developers have to be aware of the limitations of the cloud computing model.

2.8 CLOUD COMPUTING INTEROPERABILITY; THE INTERCLOUD
Cloud interoperability could alleviate the concerns that users become hopelessly dependent on a single
cloud service provider, the so called vendor lock-in, discussed in Section 2.7. It seems natural to ask
the question if an Intercloud, a “cloud of clouds,” a federation of clouds that cooperate to provide a



38 CHAPTER 2 CLOUD SERVICE PROVIDERS AND THE CLOUD ECOSYSTEM

better user experience, is technically and economically feasible. The Internet is a network of networks
hence, it appears that an Intercloud could be plausible [62–64].

Closer scrutiny shows that the extension of the concept of interoperability from networks to clouds
is far from trivial. A network offers one high-level service, the transport of digital information from
a source, a host outside a network to a destination, another host, or another network that can deliver
the information to its final destination. This transport of information through a network of networks is
feasible because before the Internet was born, agreements on basic questions were reached: (a) how
to uniquely identify the source and the destination of the information; (b) how to navigate through a
maze of networks; and (c) how to actually transport the data between a source and a destination. The
three elements on which agreements were reached are, respectively, the IP address, the IP protocol, and
transport protocols such as TCP and UDP.

The situation is quite different in cloud computing. First, there are no standards for either storage
or processing; second, the clouds we have seen so far are based on different delivery models, SaaS,
PaaS, and IaaS. Moreover, the set of services supported by each of these delivery models is not only
large, but it is open; new services are offered every few months. For example, in October 2012 Amazon
announced new services, the AWS GovCloud (US).

The question if Cloud Service Providers are willing to cooperate to build up an Intercloud is open.
Some CSPs may think that they have a competitive advantage due to the uniqueness of the added value
of their services. Thus, exposing how they store and process information may adversely affect their
business. Moreover, no CSP will be willing to change its internal operation, so a first question is if a
Intercloud could be built under these conditions.

Following the concepts borrowed from the Internet, a federation of clouds that does not dictate the
internal organization or the structure of a cloud, but only the means to achieve cloud interoperability
is feasible. Nevertheless, building such an infrastructure seems to be a formidable task. First, we need
a set of standards for interoperability covering items such as: naming, addressing, identity, trust, pres-
ence, messaging, multicast, and time. Indeed, we need common standards for identifying all the objects
involved, the means to transfer, store, and process information, and we also need a common clock to
measure the time between two events.

An Intercloud would then require the development of an ontology7 for cloud computing. Then
each cloud service provider would have to create a description of all resources and services using this
ontology. Due to the very large number of systems and services the volume of information provided
by individual cloud service providers would be so large, that a distributed database, not unlike the
Domain Name Service (DNS) would have to be created and maintained. According to [62] this vast
amount of information would be stored in Intercloud root nodes, analogous with the root nodes of the
DNS.

Each cloud would then require an interface, a so-called Intercloud exchange, to translate the com-
mon language describing all objects and actions included in a request originating from another cloud in
terms of its internal objects and actions. To be more precise, a request originating in one cloud would
have to be translated from the internal representation in that cloud to a common representation based
on the shared ontology and then, at the destination, it should be translated into an internal representa-
tion that can be acted upon by the destination cloud. This raises immediately the question of efficiency

7An ontology provides the means for knowledge representation within a domain. It consists of a set of domain concepts and the
relationships among the concepts.
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and performance. This question cannot be fully answered now, as an Intercloud exists only on paper,
but there is little doubt that the performance will be greatly affected.

Security is a major concern for cloud users and an Intercloud could only create new threats. The
primary concern is that tasks will cross from one administrative domain to another and that sensitive
information about the tasks and user could be disclosed during this migration. A seamless migration of
tasks in an Intercloud requires a well thought out trust model.

The Public-Key Infrastructure (PKI),8 an all-or-nothing trust model, is not adequate for an Inter-
cloud where the trust must be nuanced. A nuanced model for handling digital certificates means that
one cloud acting on behalf of a user may grant access to another cloud to read data in storage, but not
to start new instances.

The solution advocated in [63] for trust management is based on dynamic trust indexes that can
change in time. The Intercloud roots play the role of Certificate Authority, while the Intercloud ex-
changes determine the trust indexes between clouds.

Encryption must be used to protect the data in storage and in transit in the Intercloud. The OASIS9

Key Management Interoperability Protocol (KMIP)10 is proposed for key management.
In summary, the idea of an Intercloud opens up a wide range of interesting research topics. The

practicality of the concepts can only be discussed after the standardization efforts under way at NIST
will bear fruits.

2.9 SERVICE-LEVEL AGREEMENTS AND COMPLIANCE-LEVEL
AGREEMENTS

A Service Level Agreement (SLA) is a negotiated contract between two parties, the customer and the
service provider; the agreement can be legally binding or informal and specifies the services that the
customer receives, rather than how the service provider delivers the services. The objectives of the
agreement are:

• Identify and define the customer’s needs and constraints including the level of resources, security,
timing, and quality of service.

• Provide a framework for understanding; a critical aspect of this framework is a clear definition of
classes of service and the costs.

• Simplify complex issues; for example, clarify the boundaries between the responsibilities of the
clients and those of the provider of service in case of failures.

• Reduce areas of conflict.
• Encourage dialog in the event of disputes.
• Eliminate unrealistic expectations.

8PKI is a model to create, distribute, revoke, use, and store digital certificates. It involves several components: (1) The Certificate
Authority (CA) binds public keys to user identities in a given domain. (2) The third-party Validation Authority (VA) guarantees
the uniqueness of the user identity. (3) The Registration Authority (RA) grantees that the binding of the public key to an individual
cannot be challenged, the so called non-repudiation.
9OASIS stands for Advancing Open Standards for the Information Society.
10The KMIP Specification version 1.0 is available at http://docs.oasis-open.org/kmip/spec/v1.0/kmip-spec-1.0.html.

http://docs.oasis-open.org/kmip/spec/v1.0/kmip-spec-1.0.html
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An SLA records a common understanding in several areas: (i) services, (ii) priorities, (iii) respon-
sibilities, (iv) guarantees, and (v) warranties. An agreement usually covers: services to be delivered,
performance, tracking and reporting, problem management, legal compliance and resolution of dis-
putes, customer duties and responsibilities, security, handling of confidential information, and termi-
nation.

Each area of service in cloud computing should define a “target level of service” or a “minimum
level of service” and specify the levels of availability, serviceability, performance, operation, or other
attributes of the service, such as billing; penalties may also be specified in the case of non-compliance
with the SLA. It is expected that any Service-Oriented Architecture (SOA) will eventually include
middleware supporting SLA management; the Framework 7 project supported by the European Union
is researching this area, see http://sla-at-soi.eu/.

The common metrics specified by an SLA are service-specific. For example, the metrics used by a
call center usually are:
1. The abandonment rate – percentage of calls abandoned while waiting to be answered.
2. The average speed to answer – average time before the service desk answers a call.
3. The time service factor – percentage of calls answered within a definite time frame.
4. The first-call resolution – percentage of incoming calls that can be resolved without a callback.
5. The turnaround time – time to complete a certain task.

There are two well-differentiated phases in SLA management: the negotiation of the contract and
the monitoring of its fulfillment in real-time. In turn, automated negotiation has three main compo-
nents:

• The object of negotiation which define the attributes and constraints under negotiation.
• The negotiation protocols which describe the interaction between negotiating parties.
• The decision models responsible for processing proposals and generating counter proposals.

The concept of compliance in cloud computing is discussed in [73] in the context of the user abil-
ity to select a provider of service; the selection process is subject to customizable compliance with
user requirements such as security, deadlines, and costs. The authors propose an infrastructure called
Compliant Cloud Computing (C3) consisting of: (i) a language to express user requirements and the
Compliance Level Agreements (CLA), and (ii) the middleware for managing CLAs.

The web Service Agreement Specification (WS-Agreement) [31] uses an XML-based language
to define a protocol for creating an agreement using a pre-defined template with some customizable
aspects; it only supports one-round negotiation without counter proposals. A policy-based framework
for automated SLA negotiation for a virtual computing environment is described in [530].

2.10 RESPONSIBILITY SHARING BETWEEN A USER AND THE CSP
After reviewing cloud services provided by Amazon, Google, and Microsoft we are in a better position
to understand the differences between SaaS, IaaS, and PaaS. There is no confusion about SaaS, the
service provider supplies both the hardware and the application software; the user has direct access to
these services through a web interface and has no control on cloud resources. Typical examples are

http://sla-at-soi.eu/
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FIGURE 2.9

The limits of responsibility between a cloud user and the cloud service provider.

Google with Gmail, Google docs, Google calendar, Google Groups, and Picasa and Microsoft with the
Online Services.

In the case of IaaS, the service provider supplies the hardware (servers, storage, networks), and
system software (operating systems, databases); in addition, the provider ensures system attributes
such as security, fault-tolerance, and load balancing. The representative of IaaS is AWS.

PaaS provides only a platform including the hardware and system software such as operating sys-
tems and databases; the service provider is responsible for system updates, patches, and the software
maintenance. PaaS does not allow any user control on the operating system, security features, or
the ability to install applications. Typical examples are Google App Engine, Microsoft Azure, and
Force.com provided by Salesforce.com.

The level of users control over the system is different in IaaS versus PaaS; IaaS provides total
control, PaaS typically provides no control. Consequently, IaaS incurs administration costs similar to a
traditional computing infrastructure while these costs are virtually zero for PaaS.

It is critical for a cloud user to carefully read the service level agreement and to understand the
limitations of the liability a cloud provider is willing to accept. In many instances the liabilities do not
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apply to damages caused by a third party or to failures attributed either to customer’s hardware and
software, or to hardware and software from a third party.

The limits of responsibility between the cloud user and the cloud service provider are different for
the three service delivery models as we can see in Figure 2.9. In the case of SaaS the user is partially
responsible for the interface; the user responsibility increases in the case of PaaS and includes the
interface and the application. In the case of IaaS the user is responsible for all the events occurring in
the virtual machine running the application.

For example, if a distributed denial of service attack (DDoS) causes the entire IaaS infrastruc-
ture to fail, the cloud service provider is responsible for the consequences of the attack. The user is
responsible if the DDoS affects only several instances including the ones running the user applica-
tion. A recent posting describes the limits of responsibility illustrated in Figure 2.9 and argues that
security should be a major concern for IaaS cloud users, see http://www.sans.org/cloud/2012/07/19/
can-i-outsource-my-security-to-the-cloud.

2.11 USER EXPERIENCE
There are a few studies of user experience based on a large population of cloud computing users. An
empirical study of the experience of a small group of users of the Finish Cloud Computing Consortium
is reported in [385]. The main user concerns are: security threats; the dependence on fast Internet
connection; forced version updates; data ownership; and user behavior monitoring. All users reported
that trust in the cloud services is important, two thirds raised the point of fuzzy boundaries of liability
between cloud user and the provider, about half did not fully comprehend the cloud functions and its
behavior, and about one third were concerned about security threats.

The security threats perceived by this group of users are: (i) abuse and villainous use of the cloud;
(ii) APIs that are not fully secure; (iii) malicious insiders; (iv) account hijacking; (v) data leaks; and
(vi) issues related to shared resources. Identity theft and privacy were a major concern for about half
of the users questioned; availability, liability and data ownership and copyright was raised by a third of
respondents.

The suggested solutions to these problems are: Service Level Agreements and tools to monitor
usage should be deployed to prevent the abuse of the cloud; data encryption and security testing should
enhance the API security; an independent security layer should be added to prevent threats caused
by malicious insiders; strong authentication and authorization should be enforced to prevent account
hijacking; data decryption in a secure environment should be implemented to prevent data leakage; and
compartmentalization of components and firewalls should be deployed to limit the negative effect of
resource sharing.

A broad set of concerns identified by the NIST working group on cloud security includes:

• Potential loss of control/ownership of data.
• Data integration, privacy enforcement, data encryption.
• Data remanence after de-provisioning.
• Multi tenant data isolation.
• Data location requirements within national borders.
• Hypervisor security.

http://www.sans.org/cloud/2012/07/19/can-i-outsource-my-security-to-the-cloud
http://www.sans.org/cloud/2012/07/19/can-i-outsource-my-security-to-the-cloud
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Table 2.6 The reasons driving the decision to use public clouds.

Reason Percentage who agree
Improved system reliability and availability 50%

Pay only for what you use 50%

Hardware savings 47%

Software license saving 46%

Lower labor costs 44%

Lower maintenance costs 42%

Reduced IT support needs 40%

Ability to take advantage of the latest functionality 40%

Less pressure on internal resources 39%

Solve problems related to updating/upgrading 39%

Rapid deployment 39%

Ability to scale up resources to meet the needs 39%

Ability to focus on core competencies 38%

Take advantage of the improved economics of scale 37%

Reduced infrastructure management needs 37%

Lower energy costs 29%

Reduced space requirements 26%

Create new revenue streams 23%

• Audit data integrity protection.
• Verification of subscriber policies through provider controls.
• Certification/Accreditation requirements for a given cloud service.

A 2010 study conducted by IBM [246] aims to identify barriers for public and private cloud adop-
tion. The study is based on interviews with more than 1 000 individuals responsible for IT decision
making around the world. 77% of the respondents cited cost savings as the key argument in favor of
public cloud adoption, though only 30% of them believed that public clouds are “very appealing or
appealing” for their line of business, versus 64% for private clouds, and 34% for hybrid ones.

The reasons driving the decision to use public clouds and percentage of responders who considered
each element as critical are shown in Table 2.6. In view of the high energy costs for operating a data
center discussed in Section 9.2 it seems strange that only 29% of the respondents seem to be concerned
about lower energy costs.

The top workloads mentioned by the users involved in this study are: data mining and other analytics
(83%), application streaming (83%), help desk services (80%), industry specific applications (80%),
and development environments (80%).

The study also identified workloads that are not good candidates for migration to a public cloud
environment:

• Sensitive data such as employee and health care records.
• Multiple co-dependent services, e.g., online transaction processing.
• Third party software without cloud licensing.
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• Workloads requiring auditability and accountability.
• Workloads requiring customization.

Such studies help identify the concerns of potential cloud users and the critical issues for cloud
research.

2.12 SOFTWARE LICENSING
Software licensing for cloud computing is an enduring problem without a universally accepted solution
at this time. The license management technology is based on the old model of computing centers with
licenses given on the basis of named users or as a site license; this licensing technology developed for
a centrally managed environment cannot accommodate the distributed service infrastructure of cloud
computing or of Grid computing.

Only recently IBM has reached an agreement allowing some of its software products to be used
on EC2. Also, MathWorks developed a business model for the use of MATLAB in Grid environments
[85]. The SaaS deployment model is gaining acceptance as it allows users to pay only for the services
they use.

There is a significant pressure to change the traditional software licensing and find non-hardware
based solutions for cloud computing; the increased negotiating power of the users coupled with the
increased software piracy has renewed interest in alternative schemes such as those proposed by the
SmartLM research project (http://www.smartlm.eu). SmartLM license management requires a complex
software infrastructure involving Service Level Agreement, negotiation protocols, authentication, and
other management functions.

A commercial product based on the ideas developed by this research project is elasticLM which
provides license and billing Web-based services [85]. The architecture of the elasticLM license service
has several layers: co-allocation, authentication, administration, management, business, and persis-
tency. The authentication layer authenticates communications between the license service and the
billing service as well as the individual applications; the persistence layer stores the usage records;
the main responsibility of the business layer is to provide the licensing service with the licenses prices;
the management coordinates different components of the automated billing service.

When a user requests a license from the license service, the terms of the license usage are negotiated
and they are part of a Service Level Agreement document; the negotiation is based on application-
specific templates and the license cost becomes part of the SLA. The SLA describes all aspects of
resource usage, including the ID of application, duration, number of processors, and guarantees, such
as the maximum cost and deadlines. When multiple negotiation steps are necessary, the WS-Agreement
Negotiation protocol is used.

To understand the complexity of the issues related to software licensing, we point out some of
the difficulties related to authorization. To verify the authorization to use a license, an application
must have the certificate of an authority. This certificate must be available locally to the application
because the application may be executed in an environment with restricted network access; this opens
the possibility for an administrator to hijack the license mechanism by exchanging the local certificate.

http://www.smartlm.eu
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2.13 ENERGY USE AND ECOLOGICAL IMPACT OF CLOUD COMPUTING
The discussion of the cloud infrastructure cannot be concluded without an analysis of the energy used
for cloud computing and its impact on the environment [278]. Indeed, the energy consumption re-
quired by different types of human activities is partially responsible for the greenhouse gas emissions.
According to a recent study [408], the greenhouse gas emission due to the data centers is estimated
to increase from 116 × 106 tonnes of CO2 in 2007 to 257 tonnes in 2020 due primarily to increased
consumer demand [506].

The energy consumption of large-scale data centers and their costs for energy used for computing
and networking and for cooling are significant now and are expected to increase substantially in the
future. In 2013, the data centers in the US consumed an estimated 91 billion kWh, the annual output
of 34 power each producing 500-megawatts. The consumption is projected to increase to roughly 140
billion kilowatt-hours annually by 2020, the equivalent annual output of 50 power plants and cost $13
billion annually in electricity bills. As a result 100 million metric tons of carbon will be generated
each year according to the National Resource Defense Council, see https://www.nrdc.org/resources/
americas-data-centers-consuming-and-wasting-growing-amounts-energy.

The energy consumption of data centers and the network infrastructure is predicted to reach 10 300
TWh/year11 in 2030, based on 2010 levels of efficiency [408]. These increases are expected in spite of
the extraordinary reduction in energy requirements for computing activities; over the past 30 years the
energy efficiency per transistor on a chip has improved by six orders of magnitude.

Communication to and from cloud data centers is also responsible for a significant fraction of
energy consumption. The support for network centric content consumes a very large fraction of the
network bandwidth; according to the CISCO VNI forecast, consumer traffic was responsible for around
80% of bandwidth use in 2009, and is expected to grow at a faster rate than business traffic. Data
intensity for different activities ranges from 20 MB/minute for HDTV streaming, to 10 MB/minute
for Standard TV streaming, 1.3 MB/minute for music streaming, 0.96 MB/minute for Internet radio,
0.35 MB/minute for Internet browsing, and 0.0025 MB/minute for Ebook reading [408].

The same study reports that if the energy demand for bandwidth is 4 Watts-hour per Megabyte12 and
if the demand for network bandwidth is 3.2 Gbytes/day/person or 2 570 Exabytes/year for the entire
world population, then the energy required for this activity will be 1,175 GW. These estimates do not
count very high bandwidth applications that may emerge in the future, such as 3D-TV, personalized
immersive entertainment, such as Second Life, or massively multi-player online games.

Now most of the power for large data centers, including cloud computing data centers, comes from
power stations burning fossil fuels such as coal and gas. In recent years the contribution of solar, wind,
geothermal and other renewable energy sources has steadily increased. Environmentally Opportunistic
Computing is a macro-scale computing idea that exploits the physical and temporal mobility of modern
computer processes. A prototype called a Green Cloud is described in [527].

A conservative estimation of the electric energy used now by the Information and Communication
Technology (ICT) ecosystem is about 1,500 TWh of energy, 10% of the electric energy generated in
the entire world. This includes energy used for manufacturing electronic components and computing

11One TWh (Tera Watt Hour) is equal to 1012 Wh.
12In the US, in 2006, the energy consumed to download data from a data center across the Internet was in the range of 9 to 16
Watts hour per Megabyte.

https://www.nrdc.org/resources/americas-data-centers-consuming-and-wasting-growing-amounts-energy
https://www.nrdc.org/resources/americas-data-centers-consuming-and-wasting-growing-amounts-energy
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and communication systems, for powering, heating, and cooling IT systems, and for recycling and
disposing of obsolete IT equipment. ICT energy consumption equals the total electric energy used for
illumination in 1985 and represents the total electric energy generated in Japan and Germany.

Reduction of energy consumption thus, of the carbon footprint of cloud related activities, is in-
creasingly more important for the society. Indeed, more and more applications run on clouds and cloud
computing uses more energy than many other human-related activities. Reduction of the carbon foot-
print can only be achieved through a comprehensive set of technical efforts. The hardware of the cloud
infrastructure has to be refreshed periodically and new and more energy efficient technologies have to
be adopted; the resource management software has to pay more attention to energy optimization.

2.14 MAJOR CHALLENGES FACED BY CLOUD COMPUTING
Cloud computing inherits some of the challenges of parallel and distributed computing discussed in
Chapter 4 and, at the same time, it faces major challenges of its own. The specific challenges differ for
the three cloud delivery models, but in all cases the difficulties are created by the very nature of utility
computing which is based on resource sharing and resource virtualization and requires a different trust
model than the ubiquitous user-centric model we have been accustomed to for a very long time.

The most significant challenge is security; gaining the trust of a large user base is critical for the
future of cloud computing. It is unrealistic to expect that a public cloud will provide a suitable envi-
ronment for all applications. Highly sensitive applications related to the management of the critical
infrastructure, healthcare applications, and others will most likely be hosted by private clouds. Many
real-time applications will probably still be confined to private clouds. Some application may be best
served by a hybrid cloud setup; such applications could keep sensitive data on a private cloud and use
a public cloud for some of the processing.

The SaaS model faces similar challenges as other online services required to protect private infor-
mation such as financial or healthcare services. In this case a user interacts with cloud services through
a well-defined interface thus, in principle it is less challenging for the provide of service to close some
of the attack channels. Still, such services are vulnerable to denial of service attacks and the users
are fearful of malicious insiders. Data in storage is most vulnerable to attacks, so a special attention
should be devoted to the protection of storage servers. Data replication necessary to ensure continuity
of service in case of storage system failure increases vulnerability. Data encryption may protect data in
storage but eventually data must be decrypted for processing and then it is exposed to attacks.

The IaaS is by far the most challenging to defend against attacks; indeed, an IaaS user has consid-
erably more degrees of freedom than allowed by the other two cloud delivery models. An additional
source of concern is that the considerable resources of a cloud could serve as the host to initiate attacks
against the networking and the computing infrastructure.

Virtualization is a critical design option for this model, but it exposes the system to new sources
of attacks. The trusted computing base (TCB) of a virtual environment includes not only the hardware
and the hypervisor, but also the management operating system. As we shall see in Section 11.9 the
entire state of a VM can be saved to a file to allow migration and recovery, both highly desirable op-
erations; yet, this possibility challenges the strategies to bring the servers belonging to an organization
to a desirable and stable state. Indeed, an infected VM can be inactive when the systems are cleaned
up and an infected VM can wake up later and infect other systems. This is another example of the
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deep intertwining of desirable and undesirable effects of virtualization, a defining attribute of cloud
computing technologies.

The next major challenge is related to the resource management on a cloud. Any systematic, rather
than ad hoc resource management strategy, requires the existence of controllers tasked to implement
several classes of policies: admission control, capacity allocation, load balancing, energy optimization,
and, last but not least, to provide Quality of Service (QoS) guarantees.

To implement these policies the controllers need accurate information about the global state of the
system. Determining the state of a complex system with 106 serves or more, distributed over a large
geographic area, is not feasible. Indeed, the external load, as well as the state of individual resources
changes very rapidly. Thus, controllers must be able to function with incomplete or approximate knowl-
edge of the system state.

It seems reasonable to expect that such a complex system can only function based on self-
management principles. But self-management and self-organization raise the bar for the implemen-
tation of logging and auditing procedures critical for the security and trust in a provider of cloud
computing services. Under self-management it becomes next to impossible to identify the reasons why
a certain action that resulted in a security breach was taken.

The last major challenge we want to address is related to interoperability and standardization. Ven-
dor lock-in, the fact that a user is tied to a particular cloud service provider, is a major concern for
cloud users, see Section 2.7. Standardization would support interoperability and thus, alleviate some
of the fears that a service critical for a large organization may not be available for an extended period
of time. But imposing standards at a time when a technology still evolves is not only challenging, but
can be counterproductive, as it may stiffen innovation.

From this brief discussion the reader should realize the complexity of the problems posed by cloud
computing and understand the wide range of technical and social problems raised by cloud computing.
If successful, the effort to migrate the IT activities of many government agencies to public and private
clouds will have a lasting effect on cloud computing. Cloud computing can have a major impact on
education, but we have seen little effort in this area.

2.15 FURTHER READINGS
A good starting point for understanding the major issues in cloud computing is the 2009 paper “Above
the clouds: a Berkeley view of cloud computing” [37]. Content distribution systems are discussed in
[511]. The BOINC platform is presented in [32].

Ethical issues in cloud computing are discussed in [485]. A recent book covers topics in the area of
distributed systems, including grids, peer-to-peer systems, and clouds [244]. The standardization effort
at NIST is described by a wealth of documents [361–369] on the web site http://collaborate.nist.gov.

Information about cloud computing at Amazon, Google, Microsoft, HP, and Oracle is available
from the following sites:

• Amazon: http://aws.amazon.com/ec2/
• Google: http://code.google.com/appengine/
• Microsoft: http://www.microsoft.com/windowsazure/
• HP: http://www.hp.com/go/cloud
• Oracle: http://cloud.oracle.com.

http://collaborate.nist.gov
http://aws.amazon.com/ec2/
http://code.google.com/appengine/
http://www.microsoft.com/windowsazure/
http://www.hp.com/go/cloud
http://cloud.oracle.com
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Insights on Google clouds are provided by [520] and [525]. [458] and [459] cover comparisons
among cloud service providers. A white paper on SLA specification can be found at http://www.itsm.
info/SLA*.pdf, a toolkit at http://www.service-level-agreement.net and a web service level agreement
(WSLA) at http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf.

Energy use and ecological impact are discussed in [7], [225], [408], [497], [506], and [336]. Infor-
mation about the OpenStack, an open source cloud operating system, is available from the project site
http://www.openstack.org/.

The Intercloud is discussed in several papers including [62–64]. Google Docker is presented in
[199]. Enterprise migration to IaaS is analyzed in [268]. The sustainability of cloud computing is
discussed in [389]. Data portability in cloud computing software testing in the cloud, and the state of
the cloud in 2010 are analyzed in [413], [423], and [431], respectively.

[427] presents open source cloud computing tools and [461] discusses software debuggers. Cloud
workload migration is the subject of [510]. The cost of AWS spot instances is analyzed in [537] and
fault-tolerant middleware for clouds are presented in [549].

2.16 EXERCISES AND PROBLEMS

Problem 1. The list of desirable properties of a large-scale distributed system includes transparency
of access, location, concurrency, replication, failure, migration, performance, and scal-
ing. Analyze how each one of these properties applies to AWS.

Problem 2. Compare the three cloud computing delivery models, SaaS, PaaS, and IaaS, from the
point of view of the application developers and users. Discuss the security and the reli-
ability of each one of them. Analyze the differences between the PaaS and the IaaS.

Problem 3. Compare the Oracle Cloud offerings (see https://cloud.oracle.com) with the cloud ser-
vices provided by Amazon, Google, and Microsoft.

Problem 4. Read the IBM report [246] and discuss the workload preferences for private and public
clouds and the reasons for the preferences.

Problem 5. Many organizations operate one or more computer clusters and contemplate the migra-
tion to private clouds. What are the arguments for and against such an effort?

Problem 6. Evaluate the SLA toolkit at http://www.service-level-agreement.net/. Is the interactive
guide useful, what does it miss? Does the SLA template include all clauses that are
important in your view, what is missing? Are the examples helpful?

Problem 7. Software licensing is a major problem in cloud computing. Discuss several ideas to
prevent an administrator from hijacking the authorization to use a software licence.

Problem 8. Annotation schemes are widely used by popular services such as Flickr photo-sharing
service which supports annotation of photos. Sketch the organization of a cloud service
used for sharing medical x-ray, tomography, CAT-scan and other medical images and
discuss the main challenges for its implementation.

Problem 9. An organization debating whether to install a private cloud or to use a public cloud, e.g.,
the AWS, for its computational and storage needs, asks your advice. What information
will you require to base your recommendation on, and how will you use each one of the
following items: (a) the description of the algorithms and the type of the applications

http://www.itsm.info/SLA*.pdf
http://www.service-level-agreement.net
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
http://www.openstack.org/
https://cloud.oracle.com
http://www.service-level-agreement.net/
http://www.itsm.info/SLA*.pdf
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the organization will run; (b) the system software used by these applications; (c) the
resources needed by each application; (d) the size of the user population; (e) the relative
experience of the user population; (f) the costs involved?

Problem 10. A university is debating the question in Problem 9. What will be your advice and why?
Should software licensing be an important element of the decision?





3
CHAPTER

CONCURRENCY IN THE CLOUD

Leslie Lamport began his 2013 Turing Lecture dedicated to Edsger Dijkstra [293] with the observation
that concurrency has been known by several names: “I don’t know if concurrency is a science, but it
is a field of computer science. What I call concurrency has gone by many names, including parallel
computing, concurrent programming, and multiprogramming. I regard distributed computing to be part
of the more general topic of concurrency.”

Is there a distinction between concurrency and parallel processing? According to some, concurrency
describes the necessity that multiple activities take place at the same time, while parallel processing
implies a solution, where there are several processors capable of carrying out the computations re-
quired by these activities at the same time, i.e., concurrently. Concurrency emphasizes cooperation and
interference among activities, while parallel processing aims to shorten the completion time of the set
of activities and it is hindered by cooperation and activity interference.

Execution of multiple activities in parallel can proceed either quasi-independently, or tightly coordi-
nated with an explicit communication pattern. In either case some form of communication is necessary
for coordination of concurrent activities. Coordination complicates the description of a complex ac-
tivity as it has to characterize the work done by individual entities working in concert, as well as the
interactions among them.

Communication affects the overall efficiency of concurrent activities and could significantly in-
crease the completion time of a complex task and even hinder the completion of the task. Furthermore,
communication requires prior agreement on the communication discipline described by a communica-
tion protocol. Measures to ensure that communication problems do not affect the overall orchestration
required for the completion of the task are also necessary.

The practical motivations for concurrent execution of computer applications is to overcome the
physical limitations of one computer system by distributing the workload to several systems and getting
results faster. Concurrency is at the heart of cloud computing, the large workloads generated by many
applications run concurrently on multiple instances taking advantage of resources only available on
computer clouds.

The chapter starts with an overview of concurrent execution of communicating processes in Sec-
tion 3.2. Computational models including BSP, a bridging hardware-software model designed to avoid
logarithmic losses of efficiency in parallel processing and its version for a multicore computational
model are covered in Sections 3.3 and 3.4. Petri Nets, discussed in Section 3.5, are intuitive models
able to describe concurrency and conflict.

The concept of process state, critical for understanding concurrency, is covered in Section 3.6.
Many functions of a computer cloud require information about process state. For example, controllers
for cloud resource management discussed in Chapter 9 require accurate state information. Process
coordination is analyzed in Section 3.7 while Section 3.8 presents logical clocks and message delivery
rules in an attempt to bridge the gap between the abstractions used to analyze concurrency and the
physical systems.

Cloud Computing. DOI: 10.1016/B978-0-12-812810-7.00004-2
Copyright © 2018 Elsevier Inc. All rights reserved.
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The concept of consistent cuts and distributed snapshots are at the heart of checkpoint-restart pro-
cedures for long-lasting computations. Checkpoints are taken periodically in anticipation of the need
to restart a software process when one or more systems fail; when a failure occurs the computation
is restarted from the last checkpoint rather than from the beginning. These concepts are discussed in
Sections 3.9 and 3.10. Atomic actions, consensus protocols and load balancing are covered in Sec-
tions 3.11, 3.12 and 3.13, respectively. Finally, Section 3.14 presents multithreading and concurrency
in Java and FlumeJava.

This chapter reviews theoretical foundations of important algorithms at the heart of system and
application software. The concepts introduced in the next sections help us better understand cloud
resource management policies and the mechanisms implementing these policies. For a deeper under-
standing of the many subtile concepts related to concurrency the reader should consult the classical
references discussed at the end of the chapter.

3.1 ENDURING CHALLENGES; CONCURRENCY AND CLOUD COMPUTING
Concurrency is a very broad subject and in this chapter we restrict the discussion to topics closely
related to cloud computing. We start with a gentle introduction to some of the enduring challenges
posed by concurrency and coordination. Coordination starts with the resource allocation to the entities
carrying out individual tasks and the distribution of the workload among them. This initial phase is
followed by communication during the execution of the tasks, and finally, by the assembly of individual
results. Coordination is ubiquitous in our daily life and the lack of coordination has implications on the
results. For example, Figure 3.1 shows that lack of coordination and disregard of the rules regarding
the management of shared resources lead to traffic deadlock, an unfortunate phenomena we often
experience.

Synchronization is another defining aspect of concurrency. The importance of synchronization is
best illustrated by the famous dining philosophers problem, see Figure 3.2. Five philosophers sitting at
a table alternately think and eat. A philosopher needs the two chopsticks placed left and right of her
plate to eat. After finishing eating she must place the chopsticks back on the table to give a chance to
her left and right neighbors to eat. The problem is non-trivial, the naive solution when each philosopher
picks up the chopstick to the left, and waits for the one to the right to become available, or vice versa,
fails because it allows the system to reach a deadlock state, in which no progress is possible. Deadlock
would lead to philosopher starvation, a situation that must be avoided.

This problem captures critical aspects of concurrency such as mutual exclusion and resource star-
vation discussed in this chapter. Edsger Dijkstra proposed the following solution formulated in terms
of resources in general:

• Assign a partial order to the resources.
• Impose the rule that resources must be requested in order.
• Impose the rule that no two resources unrelated by order will ever be used by a single unit of work

at the same time.

In the dining philosopher problem, the resources are the chopsticks, numbered 1 through 5 and each
unit of work, i.e., philosopher, will always pick up the lower-numbered chopstick first, and then the
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FIGURE 3.1

The consequences of the lack of coordination. The absence of traffic lights or signs in intersections causes a
traffic jam. Blocking the intersections, a shared resource for North–South and East–West traffic flows,
contributes to the deadlocks.

FIGURE 3.2

Dining philosophers problem. To avoid deadlock Dijkstra’s solution requires numbering of chopsticks and two
additional rules.
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higher-numbered one next to her. The order in which each philosopher puts down the chopsticks does
not matter.

This solution avoids starvation. If four of the five philosophers pick up their lower-numbered chop-
stick at the same time, only the highest-numbered chopstick will be left on the table. Therefore, the
fifth philosopher will not be able to pick up a chopstick. Only one philosopher will have access to that
highest-numbered chopstick, so she will be able to eat using two chopsticks. Reference [306] presents
a solution of the dining philosopher problem based on a Petri Net model.

The division of work comes naturally when some activities of a complex task require special com-
petence and can only be assigned to uniquely qualified entities. In other cases, all entities have the
same competence and the work should be assigned based on the individual ability to carry out a task
more efficiently. Balancing the workload could be difficult in all cases as some activities may be more
intense than the others.

Though concurrency reduces the time to completion, it can negatively affect the efficiency of in-
dividual entities involved. Sometimes, a complex task consists of multiple stages and transitions from
one stage to the next can only occur when all concurrent activities in one stage have finished their
assigned work. In this case the entities finishing early have to wait for the others to complete, an effect
called barrier synchronization.

This discussion shines some light on the numerous challenges inherent to concurrency. Many com-
putational problems are rather complex and concurrency has the potential to greatly affect our ability
to compute more efficiently. This motivates our interest in concurrency and its applications to cloud
computing.

Parallel and distributed computing exploit concurrency and have been investigated since mid 1960s.
Parallel processing refers to concurrent execution on a system with a large number of processors, while
distributed computing means concurrent execution on multiple systems, often located at different sites.
The communication latency is considerably lower in the first case, while distributed computing could
only be efficient for coarse-grained parallel applications when concurrent activities seldom communi-
cate with one another. Metrics such as execution time, speedup, and processor utilization discussed in
Chapter 4 characterize how efficiently a parallel or distributed system can process a particular applica-
tion.

Topics discussed in this chapter such as computational models, checkpointing, atomic actions, con-
sensus algorithms, are relevant to both parallel and distributed computing. Multithreading is more
relevant to parallel processing, while load balancing is particularly important to distributed systems.

This distinction is blurred for computer clouds as their infrastructure consists of millions of servers
at one data center possibly linked by high speed networks with computers at another data center of
the same cloud service provider. Nevertheless, communication latency is a matter of concern in cloud
computing as we shall see in Chapters 7, 8, and 9.

3.2 COMMUNICATION AND CONCURRENCY IN COMPUTING
In computer science concurrency is the cooperative execution of multiple processes/threads in parallel.
Concurrency can be exploited for minimizing the completion time of a task, while maximizing the
efficiency of the computing substrate. Computing substrate is a generic term for the physical systems
used during the processing of an application. To analyze the benefits of concurrency we consider the



3.2 COMMUNICATION AND CONCURRENCY IN COMPUTING 57

FIGURE 3.3

Sequential versus parallel execution of an application. The sequential execution starts at time t0 goes through a
brief initialization phase till time t1, then starts the actual image processing. When all images have been
processes it enters a brief termination phase at time t7, and finishes at time t8. The concurrent execution has
its own brief initialization and termination phases, the actual image processing starts at time t1 and ends at
time t2. The results are available at time t3 � t8. The speedup is close to the maximum speedup.

decomposition of a computation into virtual tasks and relate them to the physical processing elements
of the computing substrate.

The larger the cardinality of the set of virtual tasks, the higher the degree of concurrency, thus, of
the potential speedup. A parallel algorithm can then be implemented by a parallel program able to run
on a system with multiple execution units. A process is a program in execution and requires an address
space hosting the code and the data of an application. A thread is light-weight execution unit running
in the address space of a process.

The speedup of concurrent execution of an application quantifies the effect of concurrent execution
and it is defined as the ratio of the completion time of sequential execution of the task versus the
concurrent execution completion time. For example, Figure 3.3 illustrates concurrent execution of an
application where the workload is partitioned and assigned to five different processors or cores running
concurrently. The application is the conversion of 5 × 106 images from one format to another. This is
an embarrassingly parallel application as the five threads running on five cores, each processing 106

images, do not communicate with one another. The speedup S for the example in Figure 3.3 is

S = t8 − t0

t3 − t0
≈ 5. (3.1)

There are two sides of the concurrency, the algorithmic or logical concurrency discussed in this
chapter and the physical concurrency discovered and exploited by the software and the hardware of
the computing substrate. For example, a compiler can unroll loops and optimize sequential program
execution and a processor core may execute multiple program instructions concurrently, as discussed
in Chapter 4.
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FIGURE 3.4

Barrier synchronization. Seven threads start execution of Stage 1 at time t0. Threads T1, T3, T4, T5, T6, and T7
finish early and have to wait for thread T2 before proceeding to Stage 2 at time t1. Similarly, tasks
T1, T2, T3, T4, T6, and T7 have to wait for task T5, before proceeding to the next stage at time t2. White bars
represent blocked task, waiting to proceed to the next stage.

Concurrency is intrinsically tied to communication, concurrent entities must communicate with
one another to accomplish the common task. The corollary of this statement is that communication and
computing are deeply intertwined. Explicit communication is built into the blueprint of concurrent ac-
tivities, we shall call it algorithmic communication for lack of a better term. Sometimes, a computation
consists of multiple stages when concurrently running threads cannot continue to the next stage until
all of them have finished the current one. This leads to inefficiencies as shown in Figure 3.4.

Communication is a more intricate process than the execution of a computational step on a machine
that rigorously follows a sequence of instructions from its own repertoire. Besides the sender and the
receiver(s), communication involves a third party, a communication channel that may, or may not be
reliable. Therefore, the two or more communicating entities have to agree on a communication protocol
consisting of multiple messages. Communication complexity reflects the amount of communication that
the participants of a communication system need to exchange in order to perform certain tasks [533].

Communication speed is considerably slower than computation speed. During the time to send
or receive a few bytes a processor could execute billions of instructions. Intensive communication can
slow down considerably the group of concurrent threads of an application. Figure 3.5 illustrates the case
of such an intensive communication when short bursts of computations alternate with relatively long
periods when a thread waits for messages from other threads, the so called fine-grained parallelism.
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FIGURE 3.5

Fine-grained parallelism. Short bursts of computations of three concurrent threads are interspaces with
blocked periods while waiting for messages from other threads. Solid black bars represent running threads
while white bars represent blocked threads waiting for messages. Arrows represent messages sent or received
by a thread.

The opposite is coarse-grained parallelism when little or no communication between the concurrent
threads takes place, as seen for the example in Figure 3.3.

The word message should be understood in an information theoretical sense rather than the more
narrow meaning used in computer networks context. Embarrassingly parallel activities can proceed
without message exchanges and enjoy linear or even super-linear speedup, while in all other cases the
completion time of communicating activities is increased because the communication bandwidth is
significantly lower than the processor bandwidth.

Non-algorithmic communication is required by the organization of a computing substrate consisting
of different components that need to act in concert to carry out the required task. For example, in
a system consisting of multiple processors and memories, a thread running on one processor may
require data stored in the memory of another one. The non-algorithmic communication, unavoidable in
a distributed systems, occurs as a side-effect of thread scheduling and data distribution strategies and
can dramatically reduce the benefits of concurrency.

Spatial and temporal locality affect the efficiency of a parallel computation. A sequence of instruc-
tions or data references enjoy spatial locality if the items referenced in a narrow window of time are
close in space, e.g., are stored in nearby memory addresses, or nearby sectors on a disk. A sequence of
items enjoy temporal locality if accesses to the same item are clustered in time.

Non-algorithmic communication complexity may decrease due to locality; it is more likely that a
virtual task may find the data it needs in the memory of the physical processor where it runs. Also, the
efficiency of the computing substrate may increase because at any given time the scheduler may find
sufficient read-to-run virtual tasks to keep the physical processing elements busy. The scale of a system
amplifies the negative effects of both algorithmic and non-algorithmic communication. The interaction
between the virtual and physical aspects of concurrency gives us a glimpse at the challenges faced by
a computational model of concurrent activities.

Today’s computing systems implement two computational models, one based on control flow and
the other one on data flow. The ubiquitous von Neumann model for sequential execution implements
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FIGURE 3.6

Control versus data flow models. Left graphs show the flow of control from one instruction Ii , 1 ≤ i ≤ 4 to the
others for if then else and the while loop constructs. Either I2 or I3 will ever run in the if then else construct.
The flow of data triggers execution of computations Ci, 1 ≤ i ≤ 13 on the right.

the former, at each step the algorithm specifies the step to be executed next. In this model concurrency
can only be exploited through the development of a parallel algorithm reflecting the decomposition of
a computational task into processes/threads that can run concurrently while exchanging messages to
coordinate their progress. In case of control flow the if then else construct is shown by the top graph
and the while loop on the bottom graph in Figure 3.6. Instructions I2 and I3 of the if then else construct
can run concurrently only after instruction I1 finishes. Instruction I4 can only be executed when I2 and
I3 finish execution.

The data flow execution model is based on an implicit communication model, where a thread starts
execution as soon as its input data become available. The advantages of this execution model are
self-evident, it is able to effortlessly extract the maximum amount of parallelism from any computation.
The data flow model example in Figure 3.6 shows a maze of computations C1, . . . ,C13 with complex
dependencies.



3.3 COMPUTATIONAL MODELS; THE BSP MODEL 61

The data flow model allows all computations to run as soon as their input data become avail-
able. For example, C1,C3 and C4 start execution concurrently with input data1, data3, and data4,
respectively, while C2 and C6 wait for completion of C3 and C1, respectively. Finally, C13 can
only start when data18, data12, data8, data13, data14, data16 and data17 are produced by
C10,C8,C6,C7,C9,C11, and C12 respectively.

The time required by computations Ci 1 ≤ i ≤ 13 to finish execution and deliver data to the ones
waiting depends upon the size of the input data which is not known a priori. To capture the dynamics of
a computational task the control flow model would require individual computations to send and receive
messages, in addition to sending the data.

There are only a few data flow computer systems in today’s landscape, but it is not beyond the realm
of possibilities to see some added to the cloud computing infrastructure in the next future. Moreover,
some of the frameworks for data processing discussed in Chapters 7 and 8 attempt to mimic the data
flow execution model to optimize their performance.

Interestingly enough, the Petri Net models discussed in Section 3.5 are powerful enough to express
either control flow or data flow. In these bipartite graphs a type of vertices, called places, model sys-
tem state while the other type of vertices, called transactions, model actions. Tokens flowing out of
places trigger transactions and end up in other places indicating a change of system state. Tokens may
represent either control or data.

For several decades concurrency was of interest mostly for systems programming and for high-
performance computing in science and engineering. The majority of other application developers were
content with sequential processing and expected increased computing power due to faster clock rates.
Concurrency is now mainstream due to the disruptive effects of the multicore processor technology.
Multicore processors are developed in response to the limitation imposed on the clock speed, combined
with the insatiable appetite for computing power encapsulated in tiny and energy frugal computing de-
vices. Writing and debugging concurrent software is considerably more challenging than developing
sequential code, it requires a different frame of mind and effective development tools.

The next three sections discuss computational models, abstractions needed to gain insight into
fundamental aspects of computing and concurrency.

3.3 COMPUTATIONAL MODELS; THE BSP MODEL
Several computational models are used in the analysis of algorithms. Each one of the two broad classes
of models, abstract machines and decision trees specify the set of primitive operations allowed by the
model. Turing machines, circuit models, lambda calculus, finite-state machines, cellular automaton,
stack machines, accumulator machines, and random access machines are abstract machines used in
proofs of computability and for establishing upper bounds on computational complexity of algorithms
[443]. Decision tree models are used in proofs of lower bounds on computational complexity.

Computational models. Turing machines are uniform models of computation, the same computational
device is used for all possible input lengths. Boolean circuits are non-uniform models of computation,
inputs of different lengths are processed by different circuits. A computational problem P is associ-
ated with the family of Boolean circuits C = {C1,C2, . . . ,Cn, . . .} where each Cn is a Boolean circuit
handling inputs of n bits. A family of Boolean circuits Cn, n ∈ N, is polynomial-time uniform if there
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exists a deterministic Turing machine TM, such that TM runs in polynomial time and ∀n ∈N it outputs
a description of Cn on input 1n.

A finite-state machine (FSM) consists of a logical circuit L and a memory M. An execution step
with the external input Lin ∈ � takes the current state S ∈ S and uses the logic circuit L for producing
a successor state Snew ∈ S and an output letter from the same alphabet, �, Lout ∈ � . FSMs are used
for the implementation of sophisticated processing scheme, such as the ZooKeeper coordination model
discussed in Section 7.4, or TCP (Transmission Control Protocol) discussed in Chapter 5 and used by
the Internet protocol stack.

The operation of a serial computer using two synchronous interconnected FSMs, a central pro-
cessing unit (CPU) with a small number of registers and a random-access memory is modeled by
a random-access machine (RAM). The CPU operates on data stored in its registers. The parallel
random-access machine (PRAM) is an abstract programming model consisting of a bounded set of
RAM processors and a common memory of a potentially unlimited size. Each RAM has its own
program and program counter and a unique ID. During a PRAM execution step the RAMs execute
synchronously three operations: read from the common memory, perform a local computation, and
write to the common memory.

The von Neumann model, based on the von Neumann machine architecture, has been an enduring
model of sequential computations. It has continued to allow “a diverse and chaotic software to run
efficiently on a diverse and chaotic world of hardware” [492]. The model has endured the rapid pace
of technological changes since 1947 when ENIAC performed the first Monte Carlo simulations for the
Manhattan Project [216]. One of the brilliant features of the von Neumann model is its clairvoyance,
the ability to remain consistent in the face of later concepts such as memory hierarchies, certainly not
available in mid 1940s. This model has been the Zeitgeist1 of computing for more than half a century.

The Bulk-Synchronous Parallel model (BSP). Leslie Valiant developed in the early 1990s a bridg-
ing hardware-software model designed to avoid logarithmic losses of efficiency in parallel processing
[492]. Valiant argues that parallel and distributed computing should be based on a model emphasizing
portability, the algorithms should be parameter-aware and designed to run efficiently on a broad range
of systems with a wide variation of parameters. The algorithms have to be written in a language that
can be compiled effectively on a computer implementing the BSP model.

BSP is an unambiguous computational model, including parameters quantifying the physical con-
straints of the computing substrate. It also includes a nonlocal primitive, the barrier synchronization.
The BSP model aims to free the programmer from managing memory, communication, and low-level
synchronization, provided that the programs are written with sufficient parallel slackness. Parallel
slackness means hiding communication latency by providing each processor with a large pool of
ready-to-run tasks while other tasks are waiting for either a message or for the completion of another
operation.

BSP programs are written for v virtual parallel processors running on p ≤ v physical processors.
This choice permits the compilers for high-level languages to create an executable sharing a virtual
address space and to schedule and pipeline computation and communication efficiently. The BSP model
includes:

1The German word “Zeitgeist” literally translated as “time spirit” is used to identify the dominant set of ideas and concepts of
the society in a particular field and at a particular time.



3.3 COMPUTATIONAL MODELS; THE BSP MODEL 63

1. Processing elements and memory components.
2. A router involved in message exchanges between pairs of components; the throughput of the router

is ḡ and s is the startup cost.
3. Synchronization mechanisms acting every L units of time.
The computation involves supersteps and tasks. A superstep is an execution unit allocated L units of
time and consisting of multiple tasks. Each task is a combination of local computations and message
exchanges. The computation proceeds as follows:

• At the beginning of a superstep each component is assigned a task.
• At the end of the time allotted to the superstep, after L units of time since its start, a global check

determines if the superset has been completed.
• If so, the next superstep is initiated;
• Else, another period of L units of time is allocated allowing the superset to continue its execution.

Local operations do not automatically slow down other processors. A processor can proceed without
waiting for the completion of processes in the router or in other components when the synchronization
is switched off. The model does not make any assumption about communication latency. The value
of the periodicity parameter L may be controlled, its lower bound is determined by the hardware,
the faster the hardware the lower L, while its upper bound is controlled by the granularity of the
parallelism, hence by the software.

The router of the BSP computing engine supports arbitrary h-relations, which are supersteps of
duration ḡ × h + s, when each component sends and receives at most h messages. It is assumed that h

is large and ḡ × h is comparable to s. When g = 2ḡ and ḡ × h ≥ s an h-relation will require at most
g × h units of time.

Hash functions are used by the model to distribute memory accesses to memory units of all BSP
components. The mapping of logical or symbolic addresses to physical ones must be efficient and
distribute the references as uniformly as possible and this can be done by a pseudo-random mapping.
When a superstep requires p random accesses to p components then a component will get with high
probability logp/ log logp accesses. If a superstep requires p logp memory accesses, then each com-
ponent will get not more than about 3 logp accessed and these can be sustained by a router in the
optimal bound O(logp).

The simulation of a parallel program with v ≥ p logp virtual processors on a BSP computer with p

components is discussed next. Each BSP computer component consists of a processor and a memory.
Each one of the p components of the BSP computer is assigned v/p virtual processors. The BSP will
then simulate one step of a virtual processor in one superstep and each one of the p memory modules
will get v/p references if the memory references are evenly spread. The BSP will execute a superstep
in an optimal time of O(v/p).

The multiplication of two n × n matrices A and B using a standard algorithm is a good example
of simulation on a BSP machine with p ≤ n2 processors. Each processor is assigned a n/

√
p × n/

√
p

submatrix and receives n/
√

p × n/
√

p rows of A and n/
√

p × n/
√

p columns of B . Thus, each
processor will carry out 2n3/p additions and multiplications and send 2n2/

√
p ≤ 2n3/p messages. If

each processor sends 2n2/
√

p messages then the running time is affected only by a constant factor.
Concurrency can be implemented efficiently by replicating data when h is small. In the matrix

multiplication example 2n2/p elements of matrices A and B can be distributed to each one of the
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p processors, each processor replicates each of its elements
√

p times and sends them to the
√

p

processors that need the entries. The number of messages sent by each processor is 2n2√p. When
g = O(n

√
p) and L = O(n3/p) we have the optimal running time of O(n3/p). In addition to matrix

multiplication, it is shown that several other important algorithms can be implemented efficiently on a
BSP computer.

Valiant concludes that the BSP model helps programmability for computations with sufficient slack
because the memory and communication management required to implement a virtual shared memory
can be achieved with only a constant factor loss in processor utilization [492]. Moreover, the BSP
model can be implemented efficiently for different communication technologies and interconnection
network topologies, e.g., for a hypercube interconnection network.

3.4 A MODEL FOR MULTICORE COMPUTING
Extracting an optimal multicore processor performance is very challenging. Most of these challenges
are intrinsically related to the complexity and diversity of the computational engines as the performance
of an application on one system may not translate on high performance on another. Developing parallel
algorithms is in itself non-trivial for many applications of interest and the application performance may
not scale with the problem size for different computation substrates.

The Multi-BSP [493] is a hierarchical multicore computing model with an arbitrary number of
levels. The computing substrate of the model includes multiple levels of cache, as well as the size of
the memory. A depth-d model is a tree of depth d with caches and memory as the internal nodes of the
tree and the processors as the leaves.

A depth-d model requires 4d parameters. Level i, 1 ≤ i ≤ d , has four parameters (pi, gi,Li,mi)

that quantify the number of subcomponents, the communication bandwidth, the synchronization cost,
and the memory/cache size, respectively. The model captures the unavoidable communication cost due
to latency Li and bandwidth gi as seen in Figure 3.7. An in-depth description of level i parameters
shows:

• pi – the number of (i − 1) level components inside an i-th level component. The 1-st level compo-
nents consist of p1 raw processors; a computation step on a word in level 1 memory represents one
unit of time.

• gi – the communication bandwidth, the ratio of the number of operations of a processor to the num-
ber of words transmitted between the memories of a component at level i and its parent component
at level (i + 1), in a unit of time. A word represents the data the processor operates on. Level 1
memories can keep up with the processors, thus their data rate, g0, is one.

• Li – the cost for barrier synchronization for a level i superstep. The barrier synchronization is
between the subcomponents of a component; there is no synchronization across separated branches
in the component hierarchy.

• mi – the number of words of memory inside an i-th level component that is not inside any (i − 1)

level component.

The number of processors in a level i component is Pi = p1 · p2 · . . . · pi . The number of level i

components in a level j component is Qi,j = pi+1 ·pi+2 · . . . ·pj , and the number in the whole system
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FIGURE 3.7

Multi-BSP model. A depth-d model is a tree of depth d with caches and memory as the internal nodes of the
tree and the processors as the leaves. pi – the number of (i − 1) level components inside an i-th level
component; gi – the communication bandwidth; Li – the cost for barrier synchronization for a level i

superstep; mi – the number of words of memory inside an i-th level component.

is Qi,d = Qi = pi+1 · pi+2 · . . . · pd . The total memory at level i component is Mi = mi + pi · mi−1 +
pi−1 ·pi ·mi−2 + . . .+ (p2 · . . . ·pi−1 ·pim1). The cost of communication from level 1 to outside level
i is Gi = gi + gi−1 + · · · + g1.

A level i superstep is a construct within a level i component that allows each of pi level (i − 1)

components to execute independently until they reach a barrier. Only after reaching the barrier all
can exchange information with the mi memory of the level i component at a communication cost
of (gi − 1). The communication cost is mi−1gi−1 where mi is the number of words communicated
between the memory at the i-th level and its level (i − 1) subcomponents. The model tolerates con-
stant factors kcomp, kcomm and ksynch, but for each depth d these constants are independent of the
(p,g,L,m) parameters.

The question is whether a model with such a large number of parameters could be useful. It is shown
that Multi-BSP algorithms for problems such as matrix multiplication, FFT (Fast Fourier Transform)
and comparison sorting can be expressed as parameter-free [493]. A parameter-free version of an
optimal Multi-BSP algorithm with respect to a given algorithm A means that it is optimal in:
1. Parallel computation steps to within multiplicative constant factors and in total computation steps

to within additive lower order terms.
2. Parallel communication costs to within constant multiplicative factors among Multi-BSP algo-

rithms.
3. Synchronization costs to within constant multiplicative factors among Multi-BSP algorithms.
The proofs of optimality of communication and synchronization in [493] are based on previous work
on lower bounds on the number of communication steps of distributed algorithms.
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FIGURE 3.8

Petri Nets firing rules. (A) An unmarked net with one transition t1 with two input places, p1 and p2, and one
output place, p3. (B) The marked net, the net with places populated by tokens; the net before firing the
enabled transition t1. (C) The marked net after firing transition t1, two tokens from place p1 and one from place
p2 are removed and transported to place p3.

3.5 MODELING CONCURRENCY WITH PETRI NETS
In 1962 Carl Adam Petri introduced a family of graphs for modeling concurrent systems, the Petri Nets
(PNs) [402]. PNs are used to model the dynamic, rather than the static system behavior, e.g., detect
synchronization anomalies. PN models have been extended to study the performance of concurrent
systems.

PNs are bipartite graphs populated with tokens flowing through the graph. A bipartite graph is one
with two classes of vertices; arcs always connect a vertex in one class with one or more vertices in the
other class. The two classes of PN vertices are places and transitions thus, the name Place-Transition
(P/T) Nets often used for this class of bipartite graphs; arcs connect one place with one or more transi-
tions or a transition with one or more places.

Petri nets model the dynamic behavior of systems. The places of a Petri Net contain tokens; firing
of transitions removes tokens from the input places of the transition and adds them to its output places,
see Figure 3.8. Petri Nets can model different activities in a distributed system. A transition may model
the occurrence of an event, the execution of a computational task, the transmission of a packet, a logic
statement, and so on.

The input places of a transition model the pre-conditions of an event, the input data for the com-
putational task, the presence of data in an input buffer, the pre-conditions of a logic statement. The
output places of a transition model the post-conditions associated with an event, the results of the
computational task, the presence of data in an output buffer, or the conclusions of a logic statement.

The distribution of tokens in the places of a PN at a given time is called the marking of the net and
reflects the state of the system being modeled. PNs are very powerful abstractions and can express both
concurrency and choice as we can see in Figure 3.9.

Petri nets can model concurrent activities. For example, the net in Figure 3.9A models conflict
or choice; only one of the transitions t1 and t2 may fire, but not both. Two transitions are said to be
concurrent if they are causally independent. Concurrent transitions may fire before, after, or in parallel
with each other; examples of concurrent transitions are t1 and t3 in Figures 3.9B and C.
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FIGURE 3.9

Petri Nets modeling. (A) Choice; only one of transitions t1, or t2 may fire. (B) Symmetric confusion; transitions
t1 and t3 are concurrent and, at the same time, they are in conflict with t2. If t2 fires, then t1 and/or t3 is
disabled. (C) Asymmetric confusion; transition t1 is concurrent with t3 and it is in conflict with t2 if t3 fires
before t1.

When choice and concurrency are mixed, we end up with a situation called confusion. Symmetric
confusion means that two or more transitions are concurrent and, at the same time, they are in conflict
with another one. For example, transitions t1 and t3 in Figure 3.9B, are concurrent and, at the same
time, they are in conflict with t2. If t2 fires either one or both of them will be disabled. Asymmetric
confusion occurs when a transition t1 is concurrent with another transition t3 and will be in conflict
with t2 if t3 fires before t1 as shown in Figure 3.9C.

The concurrent transitions t2 and t3 in Figure 3.10A model concurrent execution of two processes.
A marked graph can model concurrency but not choice; transitions t2 and t3 in Figure 3.10B are
concurrent, there is no causal relationship between them. Transition t4 and its input places p3 and p4

in Figure 3.10B model synchronization; t4 can fire only if the conditions associated with p3 and p4 are
satisfied.

PNs can be used to model priorities. The net in Figure 3.10C models a system with two processes
modeled by transitions t1 and t2; the process modeled by t2 has a higher priority than the one modeled
by t1. When both processes are ready to run, places p1 and p2 hold tokens. When the two processes
are ready, transition t2 will fire first, modeling the activation of the second process. Only after t2 is
activated transition t1, modeling the activation of the first process, will fire.

Petri Nets are able to model exclusion; for example, the net in Figure 3.10D, models a group of n

concurrent processes in a shared-memory environment. At any given time only one process may write,
but any subset of the n processes may read at the same time, provided that no process writes. Place
p3 models the process allowed to write, p4 the ones allowed to read, p2 the ones ready to access the
shared memory and p1 the running tasks. Transition t2 models the initialization/selection of the process
allowed to write and t1 of the processes allowed to read, whereas t3 models the completion of a write
and t4 the completion of a read. Indeed p3 may have at most one token while p4 may have at most n. If
all n processes are ready to access the shared memory, all n tokens in p2 are consumed when transition
t1 fires. However, place p4 may contain n tokens obtained by successive firings of transition t2.
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FIGURE 3.10

(A) A state machine; there is the choice of firing t1, or t2; only one transition fires at any given time,
concurrency is not possible. (B) A marked graph can model concurrency but not choice; transitions t2 and t3
are concurrent, there is no causal relationship between them. (C) An extended net used to model priorities; the
arc from p2 to t1 is an inhibitor arc. The process modeled by transition t1 is activated only after the process
modeled by transition t2 is activated. (D) Modeling exclusion; transitions t1 and t2 model writing and,
respectively, reading with n processes to a shared memory. At any given time only one process may write, but
any subset of the n processes may read at the same time, provided that no process writes.

Formal definitions. After this informal discussion of Petri Nets we switch to a more formal presenta-
tion and give several definitions.

Labeled Petri Net: a tuple N = (p, t, f, l) such that:

• p ⊆ U is a finite set of places,
• t ⊆ U is a finite set of transitions,
• f ⊆ (p × t) ∪ (t × p) a set of directed arcs, called flow relations,
• l : t → L a labeling or a weight function

with U a universe of identifiers and L a set of labels. The weight function describes the number of
tokens necessary to enable a transition. Labeled PNs describe a static structure; places may contain
tokens and the distribution of tokens over places defines the state, or the markings of the PN. The
dynamic behavior of a PN is described by the structure together with the markings of the net.
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Marked Petri Net: a pair (N, s) where N = (p, t, f, l) is a labeled PN and s is a bag2 over p denoting
the markings of the net.
Preset and Postset of Transitions and Places. The preset of transition ti , denoted as •ti , is the set of
input places of ti and the postset, denoted by ti•, is the set of the output places of ti . The preset of place
pj , denoted as •pj , is the set of input transitions of pj and the postset, denoted by pj•, is the set of
the output transitions of pj .

Figure 3.8A shows a PN with three places, p1, p2, and p3, and one transition, t1. The weights of
the arcs from p1 and p2 to t1 are two and one, respectively; the weight of the arc from t1 to p3 is three.
The preset of transition t1 in Figure 3.8A consists of two places, •t1 = {p1,p2} and its postset consist
of only one place, t1• = {p3}. The preset of place p4 in Figure 3.10A consists of transitions t3 and t4,
•p4 = {t3, t4} and the postset of p1 is p1• = {t1, t2}.
Ordinary Net. A PN is ordinary if the weights of all arcs are 1. The nets in Figures 3.10A, B, and C are
ordinary nets, the weights of all arcs are 1.

Enabled Transition: a transition ti ∈ t of the ordinary PN (N, s), with s the initial marking of N , is
enabled if and only if each of its input places contain a token, (N, s)[ti >⇔ •ti ∈ s. The notation
(N, s)[ti > means that ti is enabled. The marking of a PN changes as a result of transition firing; a
transition must be enabled in order to fire.

Firing Rule: the firing of the transition ti of the ordinary net (N, s) means that a token is removed
from each of its input places and one token is added to each of its output places; its marking changes
s → (s − •ti + ti•). Thus, firing of transition ti changes a marked net (N, s) into another marked net
(N, s − •ti + ti•).

Firing Sequence: a nonempty sequence of transitions σ ∈ t∗ of the marked net (N, s0), N = (p, t, f, l)

is called a firing sequence if and only if there exist markings s1, s2, . . . , sn ∈ B(p) and transitions
t1, t2, . . . , tn ∈ t such that σ = t1, t2, . . . , tn and for i ∈ (0, n), (N, si)[ti+1 > and si+1 = si − •ti + ti•.
All firing sequences that can be initiated from marking s0 are denoted as σ(s0).

Reachability is the problem of finding if marking sn is reachable from the initial marking s0, with
sn ∈ σ(s0). Reachability is a fundamental concern for dynamic systems. The reachability problem is
decidable; reachability algorithms require exponential time and space.

Liveness: a marked Petri Net (N, s0) is said to be live if it is possible to fire any transition infinitely
often starting from the initial marking, s0. The absence of deadlock in a system is guaranteed by the
liveness of its net model.

Incidence Matrix: given a Petri Net with n transitions and m places, the incidence matrix F = [fi,j ]
is an integer matrix with fi,j = w(i, j) − w(j, k). Here w(i, j) is the weight of the flow relation (arc)
from transition ti to its output place pj , and w(j, k) is the weight of the arc from the input place pj to
transition tk . In this expression w(i, j) represents the number of tokens added to the output place pj

and w(j, k) the number of tokens removed from the input place pj when transition ti fires. FT is the
transpose of the incidence matrix.

2A bag B(A) is a multiset of symbols from an alphabet, A; it is a function from A to the set of natural numbers. For example,

[x3, y4, z5,w6 | P(x, y, z,w)] is a bag consisting of three elements x, four elements y, five elements z, and six elements w

such that the P(x, y, z,w) holds. P is a predicate on symbols from the alphabet. x is an element of a bag A denoted as x ∈ A if
x ∈A and if A(x) > 0.
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FIGURE 3.11

Classes of Petri Nets.

A marking sk can be written as a m × 1 column vector and its j -th entry denotes the number of
tokens in place j after some transition firing. The necessary and sufficient condition for transition tk
to be enabled at a marking s is that w(j, k) ≤ s(j), ∀sj ∈ •ti , the weight of the arc from every input
place of the transition be smaller or equal to the number of tokens in the corresponding input place.

Extended Nets: PNs with inhibitor arcs; an inhibitor arc prevents the enabling of a transition. For
example, the arc from p2 to t1 in the net in Figure 3.10A is an inhibitor arc; the process modeled by
transition t1 can be activated only after the process modeled by transition t2 is activated.

Modified Transition Enabling Rule for Extended Nets: a transition is not enabled if one of the places
in its preset is connected with the transition with an inhibitor arc and if the place holds a token. For
example, transition t1 in the net in Figure 3.10C is not enabled while place p2 holds a token.

There are several classes of Petri Nets distinguished from one another by their structural properties:
1. State Machines – are used to model finite state machines and cannot model concurrency and syn-

chronization.
2. Marked Graphs – cannot model choice and conflict.
3. Free-choice Nets – cannot model confusion.
4. Extended Free-choice Nets – cannot model confusion but allow inhibitor arcs.
5. Asymmetric Choice Nets – can model asymmetric confusion but not a symmetric one.

This partitioning is based on the number of input and output flow relations from/to a transition or a
place and by the manner in which transitions share input places as indicated in Figure 3.11.

State Machine: a Petri Net is a state machine if and only if

| • ti | = 1 ∧ | ti • | = 1, ∀ti ∈ t. (3.2)

All transitions of a state machine have exactly one incoming and one outgoing arc. This topological
constraint limits the expressiveness of a state machine, no concurrency is possible. For example, the
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transitions t1, t2, t3, and t4 of state machine in Figure 3.10(a) have only one input and one output arc,
the cardinality of their presets and postsets is one. No concurrency is possible; once a choice was made
by firing either t1, or t2, the evolution of the system is entirely determined. This state machine has
four places p1,p2,p3, and p4 and the marking is a 4-tuple (p1,p2,p3,p4); the possible markings
of this net are (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), with a token in places p1,p2,p3, or p4,
respectively.

Marked Graph: a Petri Net is a marked graph if and only if

| •pi |= 1∧ | pi• |= 1, ∀pi ∈ p. (3.3)

In a marked graph each place has only one incoming and one outgoing flow relation; thus, marked
graphs do no not allow modeling of choice.

Free Choice, Extended Free Choice, and Asymmetric Choice Petri Nets: the marked net, (N, s0) with
N = (p, t, f, l) is a free-choice net if and only if

(•ti ) ∩ (•tj ) = ∅ ⇒| •ti | = | •tj |, ∀ti , tj ∈ t (3.4)

N is an extended free-choice net if (•ti ) ∩ (•tj ) = ∅ ⇒ •ti = • tj , ∀ti , tj ∈ t .
N is an asymmetric choice net if and only if (•ti )∩ (•tj ) �= ∅ ⇒ (•ti ⊆ •tj ) or (•ti ⊇ •tj ), ∀ti , tj ∈ t .

In an extended free-choice net if two transitions share an input place they must share all places in
their presets. In an asymmetric choice net two transitions may share only a subset of their input places.

Several extensions of Petri Nets have been proposed. For example, Colored Petri Nets (CPNs) allow
tokens of different colors thus, increase the expressivity of the PNs but do not simplify their analysis.
Several extensions of Petri Nets to support performance analysis by associating a random time with
each transition have been proposed. In case of Stochastic Petri Nets (SPNs) a random time elapses
between the time a transition is enabled and the moment it fires. This random time allows the model to
capture the service time associated with the activity modeled by the transition.

Applications of stochastic Petri nets to performance analysis of complex systems is generally lim-
ited by the explosion of the state space of the models. Stochastic High-Level Petri Nets (SHLPN) were
introduced in 1988 [308]; the SHLPNs allow easy identification of classes of equivalent markings even
when the corresponding aggregation of states in the Markov domain is not obvious. This aggregation
could reduce the size of the state space by one or more orders of magnitude depending on the system
being modeled.

Cloud applications often require a large number of tasks to run concurrently. The interdependencies
among these tasks are quite intricate and Petri Nets can be very useful to intuitively present a high level
model of the interactions among the tasks. The five classes of systems mentioned earlier, including
finite-state machines, as well as control flow and data flow systems can be modeled by Petri Nets. The
workflow patterns common to many cloud applications discussed in Section 7.2 translate easily to PN
models. Unfortunately, the size of the state space of detailed PN models of complex systems grows
very fast and that limits the usefulness of these models.
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3.6 PROCESS STATE; GLOBAL STATE OF A PROCESS OR THREAD GROUP
To understand the important properties of distributed systems we use a model, an abstraction based
on two critical components, processes/threads and communication channels. A process is a program in
execution and a thread is a light-weight process. A thread of execution is the smallest unit of processing
that can be scheduled by an operating system.

A process or a thread is characterized by its state. The state is the ensemble of information we
need to restart a process or thread after it was suspended. An event is a change of state of a process
or a thread. The events affecting the state of process pi are numbered sequentially as e1

i , e
2
i , e

3
i , . . . as

shown in the space–time diagram in Figure 3.12A. A process pi is in state σ
j
i immediately after the

occurrence of event e
j
i and remains in that state until the occurrence of the next event, e

j+1
i .

A process or a thread group is a collection of cooperating processes and threads; to reach a com-
mon goal the processes work in concert and communicate with one another. For example, a parallel
algorithm to solve a system of partial deferential equations (PDEs) over a domain D may partition the
data in several segments and assign each segment to one of the members of the group. The processes or
the treads in the group must cooperate with one another and iterate until the common boundary values
computed by one process agree with the common boundary values computed by another.

A communication channel provides the means for processes/threads to communicate with one an-
other and coordinate their actions by exchanging messages. Without loss of generality we assume that
communication among processes is done only by means of send(m) and receive(m) communication
events, where m is a message. We use the term “message” for a structured unit of information, which
can be interpreted only in a semantic context by the sender and the receiver. The state of a communi-
cation channel is defined as follows: given two processes pi and pj , the state of the channel, ξi,j , from
pi to pj consists of messages sent by pi but not yet received by pj .

These two abstractions allow us to concentrate on critical properties of distributed systems without
the need to discuss the detailed physical properties of the entities involved. The model presented is
based on the assumption that a channel is a unidirectional bit pipe of infinite bandwidth and zero
latency, but unreliable; messages sent through a channel may be lost, distorted, or the channel may fail,
losing its ability to deliver messages. We also assume that the time a process needs to traverse a set of
states is of no concern and that processes may fail, or be aborted.

A protocol is a finite set of messages exchanged among processes and threads to help them coor-
dinate their actions. Figure 3.12C illustrates the case when communication events are dominant in the
local history of processes, p1, p2 and p3. In this case only e5

1 is a local event; all others are communi-
cation events. The particular protocol illustrated in Figure 3.12C requires processes p2 and p3 to send
messages to the other processes in response to a message from process p1.

The informal definition of the state of a single process or a thread can be extended to collections of
communicating processes/threads. The global state of a distributed system consisting of several pro-
cesses and communication channels is the union of the states of the individual processes and channels
[45].

Call h
j
i the history of process pi up to and including its j -th event, e

j
i , and call σ

j
i the local state

of process pi following event e
j
i . Consider a system consisting of n processes, p1,p2, . . . , pi, . . . , pn



3.6 PROCESS STATE; GLOBAL STATE OF A PROCESS OR THREAD GROUP 73

FIGURE 3.12

Space–time diagrams display local and communication events during a process lifetime. Local events are
small black circles. Communication events in different processes/threads are connected by lines originating at
a send event and terminated by an arrow at the receive event. (A) All events in case of a single process p1 are
local; the process is in state σ1 immediately after the occurrence of event e1

1 and remains in that state until the
occurrence of event e2

1 . (B) Two processes/threads p1 and p2; event e2
1 is a communication event, p1 sends a

message to p2; event e3
2 is a communication event, process or thread p2 receives the message sent by p1.

(C) Three processes or threads interact by means of communication events.

with σ
ji

i the local state of process pi ; then, the global state of the system is an n-tuple of local states

�(j1,j2,...,jn) = (σ
j1
1 , σ

j2
2 , . . . , σ

ji

i , . . . , σ
jn
n ). (3.5)

The state of the channels does not appear explicitly in this definition of the global state because
the state of the channels is encoded as part of the local state of the processes/threads communicating
through the channels.

The global states of a distributed computation with n processes form an n-dimensional lattice. The
elements of this lattice are global states �(j1,j2,....jn)(σ

j1
1 , σ

j2
2 , . . . , σ

jn
n ).

Figure 3.13A shows the lattice of global states of the distributed computation in Figure 3.12B. This
is a two-dimensional lattice because we have two processes, p1 and p2. The lattice of global states for
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FIGURE 3.13

(A) The lattice of the global states of two processes/threads with the space–time diagrams in Figure 3.12B.
(B) The six possible sequences of events leading to the state �(2,2).

the distributed computation in Figure 3.12C is a three-dimensional lattice, the computation consists of
three concurrent processes, p1, p2, and p3.

The initial state of the system in Figure 3.13B is the state before the occurrence of any event
and it is denoted by �(0,0); the only global states reachable from �(0,0) are �(1,0), and �(0,1). The
communication events limit the global states the system may reach; in this example the system cannot
reach the state �(4,0) because process p1 enters state σ4 only after process p2 has entered the state σ1.
Figure 3.13B shows the six possible sequences of events to reach the global state �(2,2):

(e1
1, e

2
1, e

1
2, e

2
2), (e
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1, e
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2, e

2
1). (3.6)

An interesting question is: How many paths to reach a global state exist? The more paths exist, the
harder it is to identify the events leading to a state when we observe an undesirable behavior of the
system. A large number of paths increase the difficulties to debug the system.



3.6 PROCESS STATE; GLOBAL STATE OF A PROCESS OR THREAD GROUP 75

FIGURE 3.14

In the two dimensional case the global state �(m,n), ∀(m,n) ≥ 1 can only be reached from two states, �(m−1,n)

and �(m,n−1).

We conjecture that in the case of two threads in Figure 3.13A the number of paths from the global
state �(0,0) to �(m,n) is

N(m,n)
p = (m + n)!

m!n! . (3.7)

We have already seen that there are six paths leading to state �(2,2) and, indeed

N(2,2)
p = (2 + 2)!

2!2! = 24

4
= 6. (3.8)

To prove Equation (3.7) we use a method resembling induction; we notice first that the global state
�(1,1) can only be reached from the states �(1,0) and �(0,1) and that N

(1,1)
p = (2)!/1!1! = 2 thus, the

formula is true for m = n = 1. Then we show that if the formula is true for the (m − 1, n − 1) case it
will also be true for the (m,n) case. If our conjecture is true then

N [(m−1),n]
p = [(m − 1) + n)]!

(m − 1)!n! (3.9)

and

N [m,(n−1)]
p = [(m + (n − 1)]!

m!(n − 1)! . (3.10)

We observe that the global state �(m,n), ∀(m,n) ≥ 1 can only be reached from two states, �(m−1,n)

and �(m,n−1), see Figure 3.14, thus

N(m,n)
p = N(m−1,n)

p + N(m,n−1)
p . (3.11)

It is easy to see that indeed

[(m−1)+n]!
(m−1)!n! + [m+(n−1)]!

m!(n−1)! = (m + n − 1)!
[

1
(m−1)!n! + 1

m!(n−1)!
]

= (m+n)!
m!n! .

(3.12)

This shows that our conjecture is true thus, Equation (3.7) gives the number of paths to reach the global
state �(m,n) from �(0,0) when two threads are involved. This expression can be generalized for the case
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of q threads; using the same strategy it is easy to see that the number of path from the state �(0,0,...,0)

to the global state �(n1,n2,...,nq ) is

N
(n1,n2,...,nq )
p = (n1 + n2 + . . . + nq)!

n1!n2! . . . nq ! (3.13)

Indeed, it is easy to see that

N
(n1,n2,...,nq )
p = N

(n1−1,n2,...,nq )
p + N

(n1,n2−1,...,nq )
p + . . . + N

(n1,n2,...,nq−1)
p (3.14)

Equation (3.13) gives us an indication on how difficult it is to debug a system with a large number of
concurrent threads.

Many problems in distributed systems are instances of the global predicate evaluation problem
(GPE) where the goal is to evaluate a Boolean expression whose elements are functions of the global
state of the system.

3.7 COMMUNICATION PROTOCOLS AND PROCESS COORDINATION
A major concern in any parallel and distributed system is communication in the presence of channel
failures. There are multiple modes for a channel to fail and some lead to messages being lost. In the
general case, it is impossible to guarantee that two processes will reach an agreement in case of channel
failures, see Figure 3.15.

Statement. Given two processes p1 and p2 connected by a communication channel that can lose a
message with probability ε > 0, no protocol capable of guaranteeing that two processes will reach
agreement exists, regardless of how small the probability ε is.

The proof of this statement is by contradiction. Assume that such a protocol exists and it consists
of n messages. Recall that a protocol consists of a finite number of messages. Since any message might
be lost with probability ε the protocol should be able to function when only n − 1 messages reach
their destination, the last one being lost. Induction on the number of messages proves that indeed no
such protocol exists; indeed, the same reasoning leads us to conclude that the protocol should function
correctly with n − 2 messages, and so on.

In practice, error detection and error correction codes allow processes to communicate reliably
though noisy digital channels. The redundancy of a message is increased by more bits and packaging
the message as a codeword; the recipient of the message is then able to decide if the sequence of bits
received is a valid codeword and, if the code satisfies some distance properties, then the recipient of
the message is able to extract the original message from a bit string in error.

Communication protocols implement not only error control mechanisms, but also flow control and
congestion control. Flow control provides feedback from the receiver, it forces the sender to transmit
only the amount of data the receiver is able to buffer and then process. Congestion control ensures
that the offered load of the network does not exceed the network capacity. In store-and-forward net-
works individual routers may drop packets when the network is congested and the sender is forced to
retransmit. Based on the estimation of the RTT (Round-Trip-Time) the sender can detect congestion
and reduce the transmission rate.
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FIGURE 3.15

Process coordination in the presence of errors; each message may be lost with probability ε. If a protocol
consisting of n messages exists, then the protocol should be able to function properly with n − 1 messages
reaching their destination, one of them being lost.

The implementation of these mechanisms require the measurement of time intervals, the time
elapsed between two events; we also need a global concept of time shared by all entities that coop-
erate with one another. For example, a computer chip has an internal clock and a predefined set of
actions occurs at each clock tick. Each chip has an interval timer that helps enhance the system’s fault
tolerance; when the effects of an action are not sensed after a predefined interval, the action is repeated.

When the entities communicating with each other are networked computers, the precision of the
clock synchronization is critical [290]. The event rates are very high, each system goes through state
changes at a very fast pace; modern processors run at a 2–4 GHz clock rate. That explains why we
need to measure time very accurately; indeed, we have atomic clocks with an accuracy of about 10−6

second per year.
An isolated system can be characterized by its history expressed as a sequence of events, each event

corresponding to a change of the state of the system. Local timers provide relative time measurements.
A more accurate description adds to the system’s history the time of occurrence of each event as
measured by the local timer.

Messages sent by processes may be lost or distorted during transmission. Without additional re-
strictions regarding message delays and errors, there are no means to ensure a perfect synchronization
of local clocks and there are no obvious methods to ensure a global ordering of events occurring in dif-
ferent processes. Determining the global state of a large-scale distributed system is a very challenging
problem.

The mechanisms described above are insufficient once we approach the problem of cooperating
entities. To coordinate their actions, two entities need a common perception of time. Timers are not
enough, clocks provide the only way to measure distributed duration, that is, actions that start in one
process and terminate in another.

Global agreement on time is necessary to trigger actions that should occur concurrently, For ex-
ample, in a real-time control system of a power plant several circuits must be switched on at the same
time. Agreement on the time when events occur is necessary for distributed recording of events, for
example, to determine a precedence relation through a temporal ordering of events. To ensure that a
system functions correctly we need to determine that the event causing a change of state occurred be-
fore the state change, e.g., the sensor triggering an alarm has to change its value before the emergency
procedure to handle the event was activated. Another example of the need for agreement on the time
of occurrence of events is in replicated actions. In this case several replicas of a process must log the
time of an event in a consistent manner.
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Time stamps are often used for event ordering using a global time-base constructed on local virtual
clocks [333]. The �-protocols [121] achieve total temporal order using a global time base. Assume
that local virtual clock readings do not differ by more than π , called precision of the global time
base. Call g the granularity of physical clocks. First, observe that the granularity should not be smaller
than the precision; given two events a and b occurring in different processes if tb − ta ≤ π + g we
cannot tell which of a or b occurred first [500]. Based on these observations, it follows that the order
discrimination of clock-driven protocols cannot be better than twice the clock granularity.

System specification, design, and analysis require a clear understanding of cause-effect relation-
ships. During the system specification phase we view the system as a state machine and define the
actions that cause transitions from one state to another. During the system analysis phase we need to
determine the cause that brought the system to a certain state.

The activity of any process is modeled as a sequence of events; hence, the binary relation cause-
effect should be expressed in terms of events and should support our intuition that the cause must
precede the effects. Again, we need to distinguish between local events and communication events.
The latter ones affect more than one process and are essential for constructing a global history of an
ensemble of processes. Let hi denote the local history of process pi and let ek

i denote the k-th event in
this history.

The binary cause-effect relationship between two events has the following properties:
1. Causality of local events can be derived from the process history. Given two events ek

i and el
i local

to process pi

if ek
i , e

l
i ∈ hi and k < l then ek

i → el
i . (3.15)

2. Causality of communication events. Given two processes pi and pj and two events ek
i and el

j

if ek
i = send(m) and el

j = receive(m) then ek
i → el

j . (3.16)

3. Transitivity of the causal relationship. Given three processes, pi , pj , and pm and the events ek
i , e

l
j ,

and en
m

if ek
i → el

j and el
j → en

m then ek
i → en

m. (3.17)

Two events in the global history may be unrelated, neither one is the cause of the other; such events are
said to be concurrent events.

3.8 COMMUNICATION, LOGICAL CLOCKS, AND MESSAGE DELIVERY RULES
We need to bridge the gap between the physical systems and the abstractions used to describe inter-
acting processes. This section addresses the means to bridge this gap. Communicating processes often
run on distant systems whose physical clocks cannot be perfectly synchronized due to communication
latency. Global ordering of events in communicating processes running on such systems is not feasi-
ble and logical clocks are used instead. Also messages travel through physical channels with different
speeds and follow different paths. As a result, the order in which messages are delivered to processes
may be different from the order they were sent.
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FIGURE 3.16

Three processes and their logical clocks; The usual labeling of events as e1
1, e

2
1, e

3
1, . . . is omitted to avoid

overloading the figure; only the logical clock values for the local and for the communication events are marked.
The correspondence between the events and the logical clock values is obvious: e1

1, e
1
2, e

1
3 → 1, e5

1 → 5,
e4

2 → 7, e4
3 → 10, e6

1 → 12, and so on. Global ordering of all events is not possible; there is no way to establish
the ordering of events e1

1 , e1
2 and e1

3 .

Logical clocks. A logical clock (LC) is an abstraction necessary to ensure the clock condition given by
Equations (3.24) and (3.25) in the absence of a global clock. Each process pi maps events to positive
integers. Call LC(e) the local variable associated with event e. Each process time stamps each message
m sent with the value of the logical clock at the time of sending, T S(m) = LC(send(m)). The rules to
update the logical clock are specified by the following relationship:

LC(e) :=
{

LC + 1 if e is a local event or a send(m) event
max(LC,T S(m) + 1) if e = receive(m).

(3.18)

The concept of logical clocks is illustrated in Figure 3.16 using a modified space–time diagram
where the events are labeled with the logical clock value. Messages exchanged between processes are
shown as lines from the sender to the receiver; the communication events corresponding to sending and
receiving messages are marked on these diagrams.

Each process labels local events and send events sequentially until it receives a message marked
with a logical clock value larger than the next local logical clock value, as shown in Equation (3.18).
It follows that logical clocks do not allow a global ordering of all events. For example, there is no way
to establish the ordering of events e1

1, e1
2 and e1

3 in Figure 3.16. Nevertheless, communication events
allow different processes to coordinate their logical clocks; for example, process p2 labels the event
e3

2 as 6 because of message m2, which carries the information about the logical clock value as 5 at the

time message m2 was sent. Recall that e
j
i is the j -th event in process pi .

Logical clocks lack an important property, gap detection; given two events e and e′ and their logical
clock values, LC(e) and LC(e′), it is impossible to establish if an event e′′ exists such that

LC(e) < LC(e′′) < LC(e′). (3.19)
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FIGURE 3.17

Message receiving and message delivery are two distinct operations. The channel-process interface
implements the delivery rules, e.g., FIFO delivery.

For example, for process p1 there is an event, e4
1, between the events e3

1 and e5
1 in Figure 3.16; indeed,

LC(e3
1) = 3, LC(e5

1) = 5, LC(e4
1) = 4, and LC(e3

1) < LC(e4
1) < LC(e5

1). However, for process p3,
the events e3

3 and e4
3 are consecutive though, LC(e3

3) = 3 and LC(e4
3) = 10.

Message delivery rules. The communication channel abstraction makes no assumptions about the
order of messages; a real-life network might reorder messages. This fact has profound implications
for a distributed application. Consider for example a robot getting instructions to navigate from a
monitoring facility with two messages, “turn left” and ”turn right”, being delivered out of order.

Message receiving and message delivery are two distinct operations; a delivery rule is an additional
assumption about the channel-process interface. This rule establishes when a message received is actu-
ally delivered to the destination process. The receiving of a message m and its delivery are two distinct
events in a causal relation with one another, a message can only be delivered after being received, see
Figure 3.17

receive(m) → deliver(m). (3.20)

First-In-First-Out (FIFO) delivery implies that messages are delivered in the same order they are
sent. For each pair of source-destination processes (pi,pj ) FIFO delivery requires that the following
relation should be satisfied

sendi(m) → sendi(m
′) ⇒ deliverj (m) → deliverj (m

′). (3.21)

Even if the communication channel does not guarantee FIFO delivery, FIFO delivery can be en-
forced by attaching a sequence number to each message sent. The sequence numbers are also used to
reassemble messages out of individual packets.
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FIGURE 3.18

Violation of causal delivery when more than two processes are involved; message m1 is delivered to process p2
after message m3, though message m1 was sent before m3. Indeed, message m3 was sent by process p1 after
receiving m2, which in turn was sent by process p3 after sending message m1.

Causal message delivery. Causal delivery is an extension of the FIFO delivery to the case when a
process receives messages from different sources. Assume a group of three processes, (pi,pj ,pk) and
two messages m and m′. Causal delivery requires that

sendi(m) → sendj (m
′) ⇒ deliverk(m) → deliverk(m

′). (3.22)

When more than two processes are involved in a message exchange, the message delivery may be
FIFO, but not causal as shown in Figure 3.18 where we see that

• deliver(m3) → deliver(m1); according to the local history of process p2.
• deliver(m2) → send(m3); according to the local history of process p1.
• send(m1) → send(m2); according to the local history of process p3.
• send(m2) → deliver(m2).
• send(m3) → deliver(m3).

The transitivity property and the causality relations above imply that

send(m1) → deliver(m3). (3.23)

Call T S(m) the time stamp carried by message m. A message received by process pi is stable if
no future messages with a time stamp smaller than T S(m) can be received by process pi . When using
logical clocks, a process pi can construct consistent observations of the system if it implements the
following delivery rule: deliver all stable messages in increasing time stamp order.

Let us now examine the problem of consistent message delivery under several sets of assumptions.
First, assume that processes cooperating with each other in a distributed environment have access to
a global real-time clock, that the message delays are bounded by δ, and that there is no clock drift.
Call RC(e) the time of occurrence of event e. A process includes in every message it sends the RC(e),
where e is the send message event. The delivery rule in this case is: at time t deliver all received
messages with time stamps up to (t − δ) in increasing time stamp order. Indeed, this delivery rule
guarantees that under the bounded delay assumption the message delivery is consistent. All messages
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delivered at time t are in order and no future message with a time stamp lower than any of the messages
delivered may arrive.

For any two events, e and e′, occurring in different processes, the so called clock condition is
satisfied if

e → e′ ⇒ RC(e) < RC(e′), ∀e, e′. (3.24)

Oftentimes, we are interested in determining the set of events that caused an event knowing the time
stamps associated with all events; in other words, we are interested in deducing the causal precedence
relation between events from their time stamps. To do so we need to define the so-called strong clock
condition. The strong clock condition requires an equivalence between the causal precedence and the
ordering of the time stamps

∀e, e′, e → e′ ≡ T S(e) < T S(e′). (3.25)

Causal delivery is very important because it allows processes to reason about the entire system
using only local information. This is only true in a closed system where all communication channels
are known; sometimes the system has hidden channels and reasoning based on causal analysis may
lead to incorrect conclusions.

3.9 RUNS AND CUTS; CAUSAL HISTORY
Knowledge of the state of several, possibly all, processes in a distributed system is often needed. For
example, a supervisory process must be able to detect when a subset of processes is deadlocked; a
process might migrate from one location to another or be replicated only after an agreement with
others. In all these examples a process needs to evaluate a predicate function of the global state of the
system.

We call the process responsible for constructing the global state of the system, the monitor; a
monitor sends messages requesting information about the local state of every process and gathers the
replies to construct the global state. Intuitively, the construction of the global state is equivalent to
taking snapshots of individual processes and then combining these snapshots into a global view. Yet,
combining snapshots is straightforward if and only if all processes have access to a global clock and
the snapshots are taken at the same time; hence, the snapshots are consistent with one another.

A run is a total ordering R of all the events in the global history of a distributed computation
consistent with the local history of each participant process; a run

R = (e
j1
1 , e

j2
2 , . . . , e

jn
n ) (3.26)

implies a sequence of events as well as a sequence of global states.
For example, consider the three processes in Figure 3.19. We can construct a three-dimensional

lattice of global states following a procedure similar to the one in Figure 3.13 starting from the initial
state �(000) and proceeding to any reachable state �(ijk) with i, j, k the events in processes p1,p2,p3,
respectively. The run R1 = (e1

1, e
1
2, e

1
3, e

2
1) is consistent with both the local history of each process and

the global history; this run is valid, the system has traversed the global states

�000,�100,�110,�111,�211 (3.27)
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FIGURE 3.19

Inconsistent and consistent cuts: the cut C1 = (e4
1, e

5
2, e

2
3) is inconsistent because it includes e4

2 , the event
triggered by the arrival of the message m3 at process p2, but does not include e3

3 , the event triggered by
process p3 sending m3 thus, the cut C1 violates causality. On the other hand, C2 = (e5

1, e
6
2, e

3
3) is a consistent

cut, there is no causal inconsistency, it includes event e6
2 , the sending of message m4, without the effect of it,

the event e4
3 receiving the message by process p3.

On the other hand, the run R2 = (e1
1, e

2
1, e

1
3, e

3
1, e

2
3) is invalid because it is inconsistent with the global

history. The system cannot ever reach the state �301; message m1 must be sent before it is received, so
event e1

2 must occur in any run before event e3
1.

A cut is a subset of the local history of all processes. If h
j
i denotes the history of process pi up to

and including its j-th event, e
j
i , then a cut C is an n-tuple

C = {hj
i } with i ∈ {1, n} and j ∈ {1, ni}. (3.28)

The frontier of the cut is an n-tuple consisting of the last event of every process included in the cut.
Figure 3.19 illustrates a space–time diagram for a group of three processes, p1,p2,p3 and it shows
two cuts, C1 and C2. C1 has the frontier (4,5,2), frozen after the fourth event of process p1, the fifth
event of process p2, and the second event of process p3. C2 has the frontier (5,6,3).

Cuts provide the necessary intuition to generate global states based on an exchange of messages
between a monitor and a group of processes. The cut represents the instance when requests to report
individual state are received by the members of the group. Clearly not all cuts are meaningful. For
example, the cut C1 with the frontier (4,5,2) in Figure 3.19 violates our intuition regarding causality;
it includes e4

2, the event triggered by the arrival of message m3 at process p2 but does not include e3
3,

the event triggered by process p3 sending m3. In this snapshot p3 was frozen after its second event, e2
3,

before it had the chance to send message m3. Causality is violated and the system cannot ever reach
such a state.

Next we introduce the concepts of consistent and inconsistent cuts and runs. A cut closed under
the causal precedence relationship is called a consistent cut. C is a consistent cut if and only if for all
events

∀e, e′, (e ∈ C) ∧ (e′ → e) ⇒ e′ ∈ C. (3.29)
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FIGURE 3.20

The causal history of event e5
2 , γ (e5

2) = {e1
1, e

2
1, e

3
1, e

4
1, e

5
1, e

1
2, e

2
2, e

3
2, e

4
2, e

5
2, e

1
3, e

2
3, e

3
3}, is the smallest consistent

cut including e5
2 .

A consistent cut establishes an “instance” of a distributed computation; given a consistent cut we
can determine if an event e occurred before the cut.

A run R is said to be consistent if the total ordering of events imposed by the run is consistent with
the partial order imposed by the causal relation; for all events, e → e′ implies that e appears before e′
in R.

Consider a distributed computation consisting of a group of communicating processes G =
{p1,p2, ..., pn}. The causal history of event e, γ (e), is the smallest consistent cut of G including event e

γ (e) = {e′ ∈ G | e′ → e} ∪ {e}. (3.30)

The causal history of event e5
2 in Figure 3.20 is:

γ (e5
2) = {e1

1, e
2
1, e

3
1, e

4
1, e

5
1, e

1
2, e

2
2, e

3
2, e

4
2, e

5
2, e

1
3, e

3
3, e

3
3}. (3.31)

This is the smallest consistent cut including e5
2. Indeed, if we omit e3

3, then the cut (5,5,2) would
be inconsistent, it would include e4

2, the communication event for receiving m3, but not e3
3, the event

caused by sending m3. If we omit e5
1, the cut (4,5,3) would also be inconsistent, it would include e3

2
but not e5

1.
Causal histories can be used as clock values and satisfy the strong clock condition, provided that

we equate clock comparison with set inclusion. Indeed,

e → e′ ≡ γ (e) ⊂ γ (e′). (3.32)

The following algorithm can be used to construct causal histories:

• Each pi ∈ G starts with θ = ∅.
• Every time pi receives a message m from pj it constructs

γ (ei) = γ (ej ) ∪ γ (ek) (3.33)

with ei the receive event, ej the previous local event of pi , ek the send event of process pj .
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Unfortunately, this concatenation of histories is impractical because the causal histories grow very fast.
Now we present a protocol to construct consistent global states based on the monitoring concepts

discusses in this section. We assume a fully connected network. Recall that given two processes pi and
pj , the state ξi,j of the channel from pi to pj consists of messages sent by pi but not yet received by
pj . The snapshot protocol of Chandy and Lamport consists of three steps [95]:
1. Process p0 sends to itself a “take snapshot” message.
2. Let pf be the process from which pi receives the“take snapshot” message for the first time. Upon

receiving the message, the process pi records its local state, σi , and relays the “take snapshot”
along all its outgoing channels without executing any events on behalf of its underlying computa-
tion; channel state ξf,i is set to empty and process pi starts recording messages received over each
of its incoming channels.

3. Let ps be the process from which pi receives the “take snapshot” message beyond the first time;
process pi stops recording messages along the incoming channel from ps and declares channel
state ξs,i as those messages that have been recorded.

Each“take snapshot” message crosses each channel exactly once and every process pi has made its
contribution to the global state; a process records its state the first time it receives a “take snapshot”
message and then stops executing the underlying computation for some time. Thus, in a fully connected
network with n processes the protocol requires n × (n − 1) messages, one on each channel.

For example, consider a set of six processes, each pair of processes being connected by two uni-
directional channels as shown in Figure 3.21. Assume that all channels are empty, ξi,j = 0, i ∈
{0,5}, j ∈ {0,5}, at the time when process p0 issues the “take snapshot” message. The actual flow
of messages is

• In step 0, p0 sends to itself the “take snapshot” message.
• In step 1, process p0 sends five “take snapshot” messages labeled (1) in Figure 3.21.
• In step 2, each of the five processes, p1, p2, p3, p4, and p5 sends a “take snapshot” message labeled

(2) to every other process.

A “take snapshot” message crosses each channel from process pi to pj , i, j ∈ {0,5} exactly once
and 6 × 5 = 30 messages are exchanged.

3.10 THREADS AND ACTIVITY COORDINATION
While in the early days of computing concurrency was analyzed mostly in the context of the system
software, nowadays concurrency is an ubiquitous feature of today’s applications. Many applications
are data-intensive and resources of one server are insufficient. Such applications require a careful dis-
tribution of the workload to multiple instances running concurrently on a large number of servers. This
is one of the main attractions of cloud computing. Unquestionably, the need to use effectively the cores
of a modern processor has forced many application developers to implement parallel algorithms and
use multithreading.

Many concurrent applications are in the embedded systems area. Embedded systems are a class
of reactive systems where computations are triggered by external events. Such systems populate the
Internet of Things (IoT) and are used by the critical infrastructure. A broad spectrum of such appli-
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FIGURE 3.21

Six processes executing the snapshot protocol.

cations run multiple threads concurrently to control the ignition of cars, oil processing in a refinery,
smart electric meters, heating and cooling systems in homes, or coffee makers. Embedded controllers
for reactive real-time applications are implemented as mixed software-hardware systems [407].

Threads under the microscope. Threads are objects created explicitly to execute streams of instruc-
tions by an allocate thread action. A thread can be in several states as shown in Figure 3.22. Many
threads share the core of a processor and the system scheduler is the authority deciding when a thread
gets control of the core and enters a running state.

The scheduler chooses from the pool of runnable threads, the only threads eligible to run. A running
thread yields the control of the core when it has exhausted the time slot allocated to it, or blocks by
executing an await action while waiting for the completion of an I/O operation and transition to a wait
state. The thread could become runnable again when the scheduler decides to advance it, e.g., when
the I/O operation has finished.

While one may be tempted to think only about application threads, the reality is that to carry out its
functions the kernel of an operating system operates a fair number of threads. Figure 3.23 provides a
snapshot of the thread population including application and operating system threads. Multithreading
at the application level enables the threads to share the resources allocated to the application, while
operating system threads act behind the scene supporting a wide range of resource management func-
tions.



3.10 THREADS AND ACTIVITY COORDINATION 87

FIGURE 3.22

The state of a thread and the actions triggering a change of state.

FIGURE 3.23

A snapshot of the thread population. Multiple application threads share a core under the control of a scheduler.
Multiple operating system level threads work behind the scene to carry out resource management functions.
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FIGURE 3.24

Application thread scheduling involvers multiple context switches. A context switch saves the current thread
state on the system stack. SP is the stack pointer.

The operation of the scheduler, while totally transparent to application developers, is fairly complex
and multithreading require several context switches as seen in Figure 3.24. A context switch of an
application thread involves saving the thread state including registers and the address used when the
execution of the suspended thread becomes runnable again. Threads are light weight entities, unlike
processes when information related to the address space, including pointers to the page tables and the
process control block are part of the process state and must be also saved.

Concurrency – the system software side. The kernel of an operating system exploits concurrency
for virtualization of system resources such as the processor and the memory. Virtualization, covered in
depth in Chapter 10, is a system design strategy with a broad range of objectives including:

• Hiding latency and performance enhancement, e.g., schedule a ready-to-run thread when the current
thread is waiting for the completion of an I/O operation.
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FIGURE 3.25

Context switching when a page fault occurs during the instruction fetch phase. IR is the instruction register
containing the current instruction and PC is the program counter pointing to the next instruction to be
executed. VMM attempts to translate the virtual address of the next instruction of thread 1 and encounters a
page fault. Then thread 1 is suspended waiting for an event when the page is brought in the physical memory
from the disk. The Scheduler dispatches thread 2. To handle the fault the Exception Handler invokes the
MLMM.

• Avoiding limitations imposed by the physical resources, e.g., allow an application to run in a virtual
address space of a standard size, rather than be restricted by the physical memory available on a
system.
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• Enhancing reliability and performance, as in the case of RAID systems mentioned in Section 2.7.

Sometimes concurrency is used to describe activities that appear to be executed simultaneously,
though only one of them may be active at any given time. This is the case of processor virtualization
when multiple threads appear to run concurrently on a single core processor. A thread can be suspended
due to an external event and a context switch to a different thread takes place. The state of the suspended
thread is saved, the state of another thread ready to run is loaded, and then the new thread is activated.
The suspended thread will be re-activated at a later point in time.

Dealing with some of the effects of concurrency can be very challenging. Context switching could
involve multiple components of a OS kernel including the Virtual Memory Manager (VMM), the Ex-
ception Handler (EH), the Scheduler (S), and the Multi-level Memory Manager (MLMM). When a
page fault occurs during the fetching of the next instruction, multiple context switches are necessary
as shown in Figure 3.25. The thread experiencing the fault is suspended and the scheduler dispatches
another thread ready to run while in the mean time the exception handler invokes the MLMM.

If processor/core sharing seems complicated, the operation of a multi core processor running mul-
tiple virtual machines for applications running under different operating systems is considerably more
complex. In this case resource sharing occurs at the level of an operating system for the threads of one
application running under that OS and at hypervisor level for the threads of different virtual machines
as shown in Figure 3.26.

Concurrency is often motivated by the desire to enhance the system performance. For example, in a
pipelined computer architecture multiple instructions are in different phases of execution at any given
time. Once the pipeline is full, a result is produced at every pipeline cycle; an n-stage pipeline could
potentially lead to a speedup by a factor of n. There is always a price to pay for increased performance
and in this example is design complexity and cost. An n-stage pipeline requires n execution units,
one for each stage, as well as a coordination unit. It also requires a careful timing analysis in order to
achieve the full speed-up.

This example shows that the management and the coordination of the concurrent activities increase
the complexity of a system. The interaction between pipelining and virtual memory further complicates
the functions of the kernel; indeed, one of the instructions in the pipeline could be interrupted due to
a page fault and the handling of this case requires special precautions, as the state of the processor is
difficult to define.

Concurrency – the application software. Concurrency is exploited by application software to
speedup a computation and to allow a number of clients to access a service. Parallel applications
partition the workload and distribute it to multiple threads running concurrently. Distributed applica-
tions, including transaction management systems and applications based on the client-server paradigm
discussed in Chapter 4, use extensively concurrency to improve the response time. For example, a web
server spawns a new thread when a new request is received thus, multiple server threads run concur-
rently. A main attraction for hosting Web-based applications is the cloud elasticity, the ability of a
service running on a cloud to acquire resources as needed and to pay for these resources as they are
consumed.

Communication channels allow concurrent activities to work in concert and coordinate. Communi-
cation protocols allow us to transform noisy and unreliable channels into reliable ones which deliver
messages in order. As mentioned earlier, concurrent activities communicate with one another via shared
memory or via message passing. Multiple instances of a cloud application, a server and the clients of
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FIGURE 3.26

Thread multiplexing for a multicore server running multiple virtual machines. Multiple system data structures
keep track of the contexts of all threads. The information required for context switching includes the ID, the
stack pointer (SP), the program counter (PC) and the page table pointer (PMAP).

the service it provides, and many other applications communicate via message passing. The Message
Passing Interface (MPI) supports both synchronous and asynchronous communication and it is often
used by parallel and distributed applications. Message passing enforces modularity and prevents the
communicating activities from sharing their fate; a server could fail without affecting the clients which
did not use the service during the period the server was unavailable.

The communication patterns in case of a parallel application are more structured, while patterns
of communication for concurrent activities of a distributed application are more dynamic and unstruc-
tured. Barrier synchronization requires the threads running concurrently to wait until all of them have
completed the current task before proceeding to the next. Sometimes, one of the activities, a coor-
dinator, mediates communication among concurrent activities, in other instances individual threads
communicate directly with one another.
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FIGURE 3.27

Race condition. Initially, at time t0, the buffer is empty and in = 0. Thread B writes the integer 7 to the buffer at
time t1. Thread B is slow, incrementing the pointer in takes time and occurs at time t4. In the meantime, at
time t2 < t4, a faster thread A writes integer 15 to the buffer, overwrites the content of the first buffer location,
and increments the pointer, in =1 at time t3. Finally, at time t4 thread B increments the pointer in = 2.

Coordination of concurrent computations could be quite challenging and involves overhead which
ultimately reduces the speed-up of parallel computations. Concurrent execution could be very chal-
lenging, e.g., it could lead to race conditions, an undesirable effect when the results of concurrent
execution depend on the sequence of events. Figure 3.27 illustrates a race condition when two threads
communicate using a shared data buffer. Both threads can write to the buffer location pointed at
by in and can read from buffer location pointed at by out. When both threads attempt to write at
about the same time, the item written by the second thread overwrites the item written by the first
thread.
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3.11 CRITICAL SECTIONS, LOCKS, DEADLOCKS, AND ATOMIC ACTIONS
Parallel and distributed applications must take special precautions for handling shared resources. For
example, consider a financial application where the shared resource is a user’s account. A thread run-
ning on behalf of a transaction first accesses the user’s account to read the current balance, then updates
the balance, and, finally, writes back the new balance. If the thread is interrupted and another thread
operating on the same account is allowed to proceed, before the first thread was able to complete the
three steps for updating the account, the results of the financial transactions are incorrect.

Another challenge is to deal with a transaction involving the transfer from one account to another.
A system crash after the completion of the operation on the first account will lead to an inconsistency,
the amount debited from the first account is not credited to the second.

In these cases, as in many other similar situations, a multi-step operation should be allowed to
proceed to completion without any interruptions, the operation should be atomic. An important obser-
vation is that such atomic actions should not expose the state of the system until the action is completed.
Hiding the internal state of an atomic action reduces the number of states a system can be in thus, it
simplifies the design and the maintenance of the system.

An atomic action is composed of several steps and each one of them may fail. When such a failure
occures the system state should be restored to the state prior to the atomic action.

Locks and deadlocks. Concurrency requires a rigorous discipline when threads access shared re-
sources. Concurrent reading of a shared data item is not restricted, while writing a shared data item
should be subject to concurrency control. The race conditions discussed in Section 3.10 illustrate the
problems created by a hazardous access to a shared resource, the buffer where both threads attempt
to write to. The hazards posed by a lack of concurrency control are ubiquitous. Imagine an embedded
system at a power plant where multiple events occur concurrently and the event signaling a dangerous
malfunction of one subsystem is lost.

In all these cases only one thread should be allowed to modify shared data at any given time and
other threads should only be allowed to read or write this data item only after the first one has finished.
This process called serialization applies to segments of code called critical sections that need to be
protected by control mechanisms called locks permitting access to one and only one thread at a time.

A lock is an object that grants access to a critical section. To enter a critical section a thread must
acquire the lock of that section and, after finishing the thread must release the lock, as depicted in
Figure 3.28. Only one thread should be successful when multiple threads attempt to acquire the lock at
the same time; the other threads must wait until the lock is released.

One may argue that serialization by locking a data structure is against the very nature of con-
currency, allowing multiple computations to run at the same, but, without some form of concurrency
control it is not possible to guarantee the correctness of results of any computation. Lock-free program-
ming [229] is rather challenging and will not be discussed in this chapter.

A lock should be seen as an antidote to uncontrolled concurrency and should be used sparingly
and only to protect a critical section. Like any type of medication, locking has side effects, it does not
only increase the execution time, but could lead to deadlocks. Indeed, another potential problem for
concurrent execution of multiple processes/threads is the presence of deadlocks. A deadlock occurs
when processes/threads competing with one another for resources are forced to wait for additional
resources held by other processes/threads and none of the processes/threads can finish, see Figure 3.29.

The four Coffman conditions [114], must hold simultaneously for a deadlock to occur:
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FIGURE 3.28

A lock protects a critical section consisting of multiple operations that have to be executed atomically.

FIGURE 3.29

Thread deadlock. Threads T1 and T2 start concurrent execution at time t0. Both need resources R1 and R2 to
complete execution. T1 acquires R1 at time t1 and T2 acquires R2 at time t2. At time t3 > t2 thread T1 attempts
to acquire resource R2 held by thread T2 and blocks waiting for it to be released. At time t4 > t3 thread T2
attempts to acquire resource R1 held by thread T1 and blocks waiting for it to be released. Neither thread can
make any progress.
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FIGURE 3.30

The states of an all-or-nothing action.

1. Mutual exclusion; at least one resource must be non-sharable, only one process or one thread may
use the resource at any given time.

2. Hold and wait; at least one process or one thread must hold one or more resources and wait for
others.

3. No-preemption; the scheduler or a monitor should not be able to force a process or a thread holding
a resource to relinquish it.

4. Circular wait; given the set of n processes or threads {P1,P2,P3, . . . ,Pn}, P1 should wait for a
resource held by P2, P2 should wait for a resource held by P3, and so on, Pn should wait for a
resource held by P1.

There are other potential problems related to concurrency. When two or more processes/threads
continually change their state in response to changes in the other processes we have a livelock condi-
tion; the result is that none of the processes can complete its execution. Very often processes/threads
running concurrently are assigned priorities and scheduled based on these priorities. Priority inversion
occurs when a higher priority process/task is indirectly preempted by a lower priority one.

Atomicity. The discussion of the transaction system suggests that an analysis of atomicity should pay
special attention to the basic operation of updating the value of an object in storage. Several machine
instructions must be executed to modify the contents of a memory location: (i) load the current value
in a register; (ii) modify the contents of the register; and (iii) store back the result.

Atomicity cannot be implemented without hardware support; indeed, the instruction set of most
processors support the Test-and-Set instruction which writes to a memory location and returns the old
content of that memory cell as non-interruptible operations. Other architectures support Compare-and-
Swap, an atomic instruction comparing the contents of a memory location to a given value and, only if
the two values are the same, the contents of that memory location is updated atomically.

Two flavors of atomicity can be distinguished: all-or-nothing and before-or-after atomicity. All-or-
nothing means that either the entire atomic action is carried out, or the system is left in the same state
it was before the atomic action was attempted. In our previous examples a transaction is either carried
out successfully, or the record targeted by the transaction is returned to its original state. The states of
an all-or-nothing action are shown in Figure 3.30.

To guarantee the all-or-nothing property of an action we have to distinguish preparatory actions,
which can be undone, from irreversible ones, such as the alteration of the only copy of an object. Such
preparatory actions are: allocation of a resource, fetching a page from secondary storage, allocation of
memory on the stack, and so on. One of the golden rules of data management is never to change the
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FIGURE 3.31

Storage models. Cell storage does not support all-or-nothing actions. When we maintain the version histories it
is possible to restore the original content but we need to encapsulate the data access and provide mechanisms
to implement the two phases of an atomic all-or-nothing action. The journal storage does precisely that.

only copy. Maintaining the history of changes of an object and a log of all activities allow us to deal
with system failures and to ensure consistency.

An all-or-nothing action consists of a pre-commit and a post-commit phase; during the former it
should be possible to backup from it without leaving any trace, while the later phase should be able to
run to completion. The transition from the first to the second phase is called a commit point. During
the pre-commit phase all steps necessary to prepare the post-commit phase, such as check permissions,
swap in main memory all pages that may be needed, mount removable media, and allocate stack space,
must be carried out; during this phase no results should be exposed and no actions that are irreversible
should be carried out. Shared resources allocated during the pre-commit cannot be released until after
the commit point. The commit step should be the last step of an all-or-nothing action.

A discussion of storage models illustrates the effort required to support all-or-nothing atomicity,
see Figure 3.31. The common storage model implemented by hardware is the so-called cell storage, a
collection of cells each capable to hold an object, e.g., the primary memory of a computer where each
cell is addressable. Cell storage does not support all-or-nothing actions, once the contents of a cell is
changed by an action, there is no way to abort the action and restore the original content of the cell.

To be able to restore a previous value we have to maintain a version history for each variable in
the cell storage. The storage model that supports all-or-nothing actions is called journal storage. Now
the cell storage is no longer accessible to the action but the access is mitigated by a storage manager.
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In addition to the basic primitives to Read an existing value and to Write a new value in cell storage,
the storage manager uniquely identifies an action that changes the value in cell storage and when the
action is aborted it is able to retrieve the version of the variable before the action and restore it. When
the action is committed then the new value should be written to the cell.

Figure 3.31 shows that for a journal storage, in addition to the version histories of all variables
affected by the action, we have to implement a catalog of variables and also to maintain a record
identifying each new action. A new action first invokes the Action primitive; at that time an outcome
record uniquely identifying the action is created. Then, every time the action accesses a variable, the
version history is modified and, finally, the action either invokes a Commit or an Abort primitive. In the
journal storage model the action is atomic and follows the state transition diagram in Figure 3.30.

Before-or-after atomicity means that, from the point of view of an external observer, the effect
of multiple actions is as if these actions have occurred one after another, in some order; a stronger
condition is to impose a sequential order among transitions. In our example the transaction acting on
two accounts should either debit the first account and then credit the second one, or leave both accounts
unchanged. The order is important, as the first account cannot be left with a negative balance.

Atomicity is a critical concept for our efforts to build reliable systems from unreliable components
and, at the same time, to support as much parallelism as possible for better performance. Atomicity
allows us to deal with unforeseen events and to support coordination of concurrent activities. The
unforeseen event could be a system crash, a request to share a control structure, the need to suspend an
activity, and so on; in all these cases we have to save the state of the process or of the entire system in
order to be able to restart it at a later time.

As atomicity is required in many contexts, it is desirable to have a systematic approach rather than
an ad hoc one. A systematic approach to atomicity must address several delicate questions:

• How to guarantee that only one atomic action has access to a shared resource at any given time.
• How to return to the original state of the system when an atomic action fails to complete.
• How to ensure that the order of several atomic actions leads to consistent results.

Answers to these questions increase the complexity of the system and often generate additional
problems. For example, access to shared resources can be protected by locks, but when there are multi-
ple shared resources protected by locks concurrent activities may deadlock. A lock is a construct which
enforces sequential access to a shared resource; such actions are packaged in the critical sections of
the code. If the lock is not set, a thread first locks the access, then enters the critical section and finally
unlocks it; a thread wishing to enter the critical section finds the lock set and waits for the lock to be
reset. A lock can be implemented using the hardware instructions supporting atomicity.

Semaphores and monitors are more elaborate structures ensuring serial access. Semaphores force
processes to queue up when the lock is set and are released from this queue and allowed to enter
the critical section one by one. Monitors provide special procedures to access the shared data, see
Figure 3.32. The mechanisms for the process coordination we described require the cooperation of
all activities, the same way traffic lights prevent accidents only as long as the drivers follow the
rules.
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FIGURE 3.32

A monitor provides special procedures to access the data in a critical section.

3.12 CONSENSUS PROTOCOLS
Consensus is a pervasive problem in many areas of human endeavor; consensus is the process of agree-
ing to one of several alternates proposed by a number of agents. We restrict our discussion to the case
of a distributed system when the agents are a set of processes expected to reach consensus on a single
proposed value.

No fault-tolerant consensus protocol can guarantee progress [174], but protocols which guarantee
freedom from inconsistencies (safety) have been developed. A family of protocols to reach consensus
based on a finite state machine approach is called Paxos.3

A fair number of contributions to the family of Paxos protocols are discussed in the literature.
Leslie Lamport has proposed several versions of the protocol including Disk Paxos, Cheap Paxos, Fast
Paxos, Vertical Paxos, Stoppable Paxos, Byzantizing Paxos by Refinement, Generalized Consensus and

3Paxos is a small Greek island in the Ionian Sea; a fictional consensus procedure is attributed to an ancient Paxos legislative body.
The island had a part-time parliament as its inhabitants were more interested in other activities than in civic work; “the problem
of governing with a part-time parliament bears a remarkable correspondence to the problem faced by today’s fault-tolerant
distributed systems, where legislators correspond to processes and leaving the Chamber corresponds to failing” according to
Leslie Lamport [291] (for additional papers see http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html).

http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html
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Paxos, and Leaderless Byzantine Paxos. Lamport has also published a paper on the fictional part-time
parliament in Paxos [291] and a layman’s dissection of the protocol [292].

The consensus service consists of a set of n processes. Clients send requests to processes and
propose a value and wait for a response; the goal is to get the set of processes to reach consensus on a
single proposed value. The basic Paxos protocol is based on several assumptions about the processors
and the network:

• The processes run on processors and communicate through a network; the processors and the net-
work may experience failures, but not Byzantine failures. A Byzantine failure is a fault presenting
different symptoms to different observers. In a distributed system a Byzantine failure could be an
omission failure, e.g., a crash failure, failure to receive a request or to send a response; it could also
be a commission failure, e.g., process a request incorrectly, corrupt the local state, and/or send an
incorrect or inconsistent response to a request.

• The processors: (i) operate at arbitrary speeds; (ii) have stable storage and may rejoin the protocol
after a failure; (iii) can send messages to any other processor.

• The network: (i) may lose, reorder, or duplicate messages; (ii) messages are sent asynchronously
and may take arbitrary long time to reach the destination.

The basic Paxos considers several types of entities: (a) client, an agent that issues a request and
waits for a response; (b) proposer, an agent with the mission to advocate a request from a client,
convince the acceptors to agree on the value proposed by a client, and to act as a coordinator to move
the protocol forward in case of conflicts; (c) acceptor, an agent acting as the fault-tolerant “memory”
of the protocol; (d) learner, an agent acting as the replication factor of the protocol and taking action
once a request has been agreed upon; and finally (e) the leader, a distinguished proposer.

A quorum is a subset of all acceptors. A proposal has a proposal number pn and contains a value
v. Several types of requests flow through the system such as prepare and accept.

In a typical deployment of the algorithm an entity plays three roles, as proposer, acceptor, and
learner. Then the flow of messages can be described as follows [292]: “clients send messages to a
leader; during normal operations the leader receives the client’s command, assigns it a new command
number i, and then begins the i-th instance of the consensus algorithm by sending messages to a set
of acceptor processes.” By merging the roles, the protocol “collapses” into an efficient client-master-
replica style protocol.

A proposal consists of a pair, a unique proposal number and a proposed value, (pn, v); multiple
proposals may propose the same value v. A value is chosen if a simple majority of acceptors have
accepted it. We need to guarantee that at most one value can be chosen, otherwise there is no consensus.
The two phases of the algorithm are:

Phase I.
1. Proposal preparation: a proposer (the leader) sends a proposal (pn = k, v). The proposer chooses

a proposal number pn = k and sends a prepare message to a majority of acceptors requesting:

• that a proposal with pn < k should not be accepted;
• the pn < k of the highest number proposal already accepted by each acceptor.
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2. Proposal promise: An acceptor must remember the proposal number of the highest proposal num-
ber it has ever accepted as well as the highest proposal number it has ever responded to. The
acceptor can accept a proposal with pn = k if and only if it has not responded to a prepare request
with pn > k; if it has already replied to a prepare request for a proposal with pn > k then it should
not reply. Lost messages are treated as an acceptor that chooses not to respond.

Phase II.
1. Accept request: if the majority of acceptors respond, then the proposer chooses the value v of the

proposal as follows:

• the value v of the highest proposal number selected from all the responses;
• an arbitrary value if no proposal was issued by any of the proposers.

The proposer sends an accept request message to a quorum of acceptors including (pn = k, v)

2. Accept: If an acceptor receives an accept message for a proposal with the proposal number pn = k

it must accept it if and only if it has not already promised to consider proposals with a pn > k. If it
accepts the proposal it should register the value v and send an accept message to the proposer and
to every learner; if it does not accept the proposal it should ignore the request.
The following properties of the algorithm are important to show its correctness: (1) a proposal

number is unique; (2) any two sets of acceptors have at least one acceptor in common; and (3) the
value sent out in Phase 2 of the algorithm is the value of the highest numbered proposal of all the
responses in Phase 1.

Figure 3.33 illustrates the flow of messages for the consensus protocol. A detailed analysis of the
message flows for different failure scenarios and of the properties of the protocol can be found in [292].
We only mention that the protocol defines three safety properties: (1) non-triviality – the only values
that can be learned are proposed values; (2) consistency – at most one value can be learned; and (3)
liveness – if a value v has been proposed, eventually every learner will learn some value, provided that
sufficient processors remain non-faulty. Figure 3.34 shows the message exchange when there are three
actors involved.

A distributed coordination system discussed in Section 7.4, the ZooKeeper, borrows several ideas
from the Paxos algorithm:

• A leader proposes values to the followers;
• Leaders wait for acknowledgments from a quorum of followers before considering a proposal com-

mitted (learned);
• Proposals include epoch numbers, which are similar to ballot numbers in Paxos.

In Section 6.6 we discuss Chubby, a locking service based on the Paxos algorithm.

3.13 LOAD BALANCING
A general formulation of the load balancing problem is to evenly distribute N objects to P places.
Another formulation of the load balancing is in the context of placing m balls into n < m bins, chosen
independently and uniformly at random. The question in this case is to find the maximum number of
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FIGURE 3.33

The flow of messages for the Paxos consensus algorithm. Individual clients propose different values to the
leader who initiates the algorithm. Acceptor A accepts the value in message with proposal number pn=k;
acceptor B does not respond with a promise while acceptor C responds with a promise, but ultimately does not
accept the proposal.

balls in any bin. Load balancing can also be formulated in the context of hashing as the problem of
placing m items sequentially in n < m buckets and the question is to determine the maximum time to
find an item.

The load balancing problem in a distributed system is formulated as follows: given a set T of tasks
distribute them to a set of P processors which compute at the same rate, such that only one task can run
at any given time on one processor; there is no preemption and each task runs to completion. Knowing
the execution time of each task the question is how to distribute them to minimize the completion time.
Unfortunately, load balancing, as well as scheduling problems, are NP-complete [183].
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FIGURE 3.34

The basic Paxos with three actors: proposer (P), three acceptors (A1, A2, A3), and two learners (L1, L2). The
client (C) sends a request to one of the actors playing the role of a proposer. The entities involved are
(A) Successful first round when there are no failures. (B) Successful first round of Paxos when an acceptor
fails.

The importance of load balancing is undeniable and practical solutions to overcome the algorithmic
complexity are widely used. For example, randomization suggests to distribute the tasks to processors
chosen independently and uniformly at random. This random distribution strategy should lead to an
almost equal load of processors, provided that there are enough tasks and that the distribution of the
task execution times is rather narrow. Several other heuristics are used in practice.

The balls-and-bins model. The load balancing problem is often discussed using the balls-and-bins
model. In this model we define the load of a bin as the number of balls in the bin. The question asked
is what is max(Li ), 1 ≤ i ≤ n, the maximum load in any bin, once all the n balls have chosen a
bin independently and uniformly at random. The answer is that with high probability, namely with a
probability p ≥ 1 −O(1/n) [197]

max(Li ) ≈ logn

log logn
. (3.34)
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This result applies also to task scheduling in a distributed system. Interestingly enough this solution
does not involve communication among the tasks, the processors, or among the tasks and the proces-
sors.

A rather surprising result proven in [44] is that a better load balance is achieved when the balls are
placed sequentially and for each ball we choose two bins independently and uniformly at random, then
place the ball into the less full bin. In this case the maximal load, max(L2

i ), 1 ≤ i ≤ n is

max(L2
i ) ≤ log logn

log 2
+O(1) with high probability. (3.35)

This result, discussed in depth in [348,350] and called the power of two choices shows that having
two or more choices leads to an exponential improvement of the load balance. The following discussion
is based on the layered induction approach introduced by Azar [44], where the number of bins that
contain at least j balls conditioned on the number of bins that contain at least (j −1) balls is inductively
bound.

If the choice for each ball is extended from 2 to d bins then the result is further improved. The
GREEDY algorithm in [44] considers an (m,n, d) problem, n initially empty bins, m balls to be placed
sequentially in the bins, and d choices made independently and uniformly at random with replacement.
Each ball is placed in the least loaded of the d bins and ties are broken arbitrarily. Then the maximum
load, the maximum number of balls in a bin, has an upper bound

max(Ld
i ) ≤ log logn

logd
+O(1) with high probability. (3.36)

An intuitive justification of this results is discussed next. Call βk the number of bins with at least k

balls stacked on top of one another in the order they have been placed in the bin. The hight of the top
ball in a bin with k balls is k.

We wish to determine βk+1, a high probability upper bound of the cardinality of bins loaded with
at least k + 1 balls. A bin will contain at least k + 1 balls if in the previous round it had at least k balls.
Recall that there are at least βk such bins thus, the probability of choosing a bin with k or more balls
from the set of n bins is βk/n. But there are d > 2 choices, therefore the probability that a ball lands
in a bin already containing k or more balls drops at each step at least quadratically and is

pn,k,d =
(

βk

n

)d

. (3.37)

The number of balls with hight at least (k + 1) is dominated by a Bernoulli random variable with the
probability of success equals to pn,k,d . This implies that

βk+1 ≤ c ×
[
n ×

(
βk

n

)d
]

(3.38)

with c a constant. It follows that after j = O(log logn) steps the fraction βk/n drops below 1/n thus,
βj < 1.
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The sequential ball placement required in the algorithms discussed in this section and the decision
to choose one of two bins, or one of d bins, deserves further scrutiny. It implies either a centralized
system where an agent makes the choice, or some form of communication between the balls allowing
them to reach an agreement about the placement strategy. But communication is expensive, for example
during the time of a short message exchange a modern processor could execute several billion floating
point operations.

A trade-off between load balance and communication is inevitable, we can reduce the maximum
load only through coordination thus, the price to pay is increased communication. In a distributed
system a server is not aware of the tasks it has not communicated with, while tasks are unaware of the
actions of other tasks and may only know the load of the servers. Global coordination among tasks is
prohibitively expensive.

Parallelization of the randomized load balance. One of the questions examined in [348,350] is how
to parallelize the randomized load balance. Once again, an extended balls-and-bins model is used and
the goal is to minimize the maximum load and the communication complexity. Each one of the m balls
begins by choosing d out of the n bins as prospective destination.

The choices are made independently and uniformly at random with replacement of balls and the
final decision of the destination bin requires r rounds of communication, with two stages per round.
At each stage communication is done in parallel using short messages including an ID or an index. In
the first stage each ball sends messages to all prospective bins and in the second stage each bin sends
messages to all the balls the bin has received a message from. During the final round the balls commit
to a bin.

The strategies analyzed are symmetric, all balls-and-bins use the same algorithm and all possible
destinations are chosen independently and uniformly at random. An algorithm is asynchronous if an
entity, a ball or a bin, does not have to wait for a round to complete; it only has to wait for messages
addressed to it, rather than waiting for messages addressed to another entity. A round is synchronous if
a barrier synchronization is required between some pairs of rounds.

A load lower bound for a broad class of algorithms like the one in [44] with r-rounds of communi-
cation derived in [350] is

�

(
r

√
logn

log logn

)
(3.39)

with at least constant probability. Therefore, no algorithm can achieve a maximum load O(log logn)

with high probability in a constant number of communication rounds.
A random graph G(v, e) is used to represent the model and to derive this result. Each bin is a vertex

v in this graph and each ball is an undirected edge, e. When d = 2 the vertices of the two edges of a ball
correspond to the two prospective bins. There are no self-loops in this graph where S denotes the set
of edges. Multiple edges correspond to two balls that have chosen the same pair of bins. Selection of a
bin by a ball transforms the undirected edge representing the ball into a directed edge oriented toward
the vertex, or bin, the ball chooses as its destination. The goal is to minimize the maximum in-degree
over all vertices of the graph, in other words to avoid conflicts.

N (e), the neighborhood of an edge e ∈ S is the set of all edges incident to an endpoint of e and

N (S) = ∪e∈SN (e). (3.40)
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Similarly N (v) is the neighborhood of a vertex v. Nl (e), the l-neighborhood of an edge e ∈ S is
defined inductively as

N1(e) =N (e), Nl (e) =N (Nl−1(e)). (3.41)

Nl,x(e), the (l, x) – neighborhood of an edge e(x, y) is defined inductively as

N1,x(e) =N (x) − {e} Nl,x(e) =N (Nl−1,x(e)) − {e}. (3.42)

In an r round protocol the balls make their choice in the final round, therefore each ball knows every-
thing only about the balls in its (r − 1) neighborhood.

A ball e = (x;y) learns from each bin about its l-neighborhood consisting of two subgraphs corre-
sponding to Nl,x(e) and Nl,y(e). When the two subgraphs of the ball’s l-neighborhood are isomorphic
rooted trees, with the roots x and y, we say that the ball has a symmetric l-neighborhood or, that the
ball is confused, and then the ball chooses the destination bin using a fair coin flip.

A tree of depth r where the root has degree T and each internal node has T − 1 children is called
a (T , r)-rooted, balanced tree. A (T , r) tree in graph G is isolated if it is a connected component of G

with no edges of multiplicity greater than one. A random graph with n vertices and n edges contains
an isolated (T ,2) with

T =
(√

2 −O(1)
)√

logn

log logn
(3.43)

with constant probability as shown in [350]. A corollary of this statement is that any non-adaptive,
symmetric load distribution strategy for the balls-and-bins problem with n balls and n bins and with
d = 2 and r = 2, has a final load of at least(√

2

2
−O(1)

)√
logn

log logn
(3.44)

with at least constant probability. Indeed, half of the confused balls (edges) in an isolated (T ,2) tree
adjacent to the root will orient themselves towards the root as we have assumed that the balls flip an
unbiased coin to choose the bin. This result can be extended for a range of r and d .

The balls-and-bins model has applications to hashing. The hashing implementation discussed in
[275] uses a single hash function to map keys to entries in a table and in case of a collision, i.e., when
two or more keys map to the same table entry, all the colliding keys are stored in a linked list called a
chain. The table entries are heads of chains and the longest search time occurs for the longest chain.
The length of the longest chain is O(

log n
log log n

) with a high probability when n keys are inserted into a
table with n entries and each key is mapped to an entry of the table independently and uniformly, a
process known as perfect random hashing.

The search time can be substantially reduced by using two hash functions and placing an item in the
shorter of the two chains [263]. To search for an element, we have to search through the chains linked
to the two entries given by both hash functions. If the n keys are sequentially inserted into the table
with n entries, the length of the longest chain thus, the maximum time to find an item, is O(log logn)

with high probability.
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The two-choice paradigm can be applied effectively to routing virtual circuits in interconnection
networks with low congestion. The paradigm is also used to optimize the emulation of shared-memory
multiprocessor (SMM) systems on a distributed-memory multiprocessor systems (DMM). The emula-
tion algorithm should minimize the time needed by the DMM to emulate one step of the SMM.

The layered induction approach is also used in dynamic scenarios, e.g., when a new ball is inserted
in the system [349]. Another technique to analyze load balancing based on the balls-and-bins model is
the witness tree. To compute a bound for the probability of a “heavily-loaded” system event we have
to identify a witness tree of events and then estimate the probability that the witness tree occurs. This
probability can be bounded by enumerating all possible witness trees and summing their individual
probabilities of occurrence.

3.14 MULTITHREADING AND CONCURRENCY IN JAVA; FLUMEJAVA
Java is a general-purpose computer programming language designed with portability in mind at Sun
Microsystems.4 Java applications are typically compiled to bytecode and can run on a Java Virtual
Machine (JVM) regardless of the computer architecture. Java is a class-based, object-oriented language
with support for concurrency. It is one of the most popular programming language and it is widely used
for a wide range of applications running on mobile devices and computer clouds.

Java Threads. Java supports processes and threads. Recall that a process has a self-contained execution
environment, has its own private address space and run-time resources. A thread is a lightweight entity
within a process. A Java application starts with one thread, the main thread which can create additional
threads.

Memory consistency errors occur when different threads have inconsistent views of the same data.
Synchronized methods and synchronized statements are the two idioms for synchronization. Serial-
ization of critical sections is protected by specifying the synchronized attribute in the definition of a
class or method. This guarantees that only one thread can execute the critical section and each thread
entering the section sees the modification done. Synchronized statements must specify the object that
provides the intrinsic lock.

The current versions of Java, support atomic operations of several datatypes with methods such
as getAndDecrement(), getAndIncrement() and getAndSet(). An effective way to control data sharing
among threads is to share only immutable data among threads. A class is made immutable by marking
all its fields as final and declaring the class as final.

A Thread in the java.lang.Thread class executes an object of type java.lang.Runnable. The
java.util.concurrent package provides better support for concurrency than the Thread class. This pack-
age reduces the overhead for thread creation and prevents too many threads overloading the CPU and
depleting the available storage. A thread pool is a collection of Runnable objects and contains a queue
of tasks waiting to get executed.

4The design of Java was initiated in 1991 by James Gosling, Mike Sheridan, and Patrick Naughton with a C/C++-style syntax.
Five principles guided its design: (1) simple, object-oriented, and familiar; (2) architecture-neutral and portable; (3) robust and
secure; (4) interpreted, threaded, and dynamic; and (5) high performance. Java 1.0 was released in 1995. Java 8 is the only
version currently supported for free by Oracle, a company that acquired Sun Microsystems in 2010.
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Threads can communicate with one another via interrupts. A thread sends an interrupt by invoking
an interrupt on the Thread object to the thread to be interrupted. The thread to be interrupted is ex-
pected to support its own interruption. Thread.sleep causes the current thread to suspend execution for
a specified period.

The executor framework works with Runnable objects which cannot return results to the caller.
The alternative is to use java.util.concurrent.Callable. A Callable object returns an object of type
java.util.concurrent.Future. The Future object can be used to check the status of a Callable object
and to retrieve the result from it. Yet, the Future interface has limitations for the asynchronous exe-
cution and the CompletableFuture extends the functionality of the Future interface for asynchronous
execution.

Non-blocking algorithms based on low-level atomic hardware primitives such as compare-and-
swap (CAS) are supported by Java 5.0 and later versions. The fork-join framework introduced in Java
7 supports the distribution of work to several workers and then waiting for their completion. The join
method allows one thread to wait for completion of another.

FlumeJava. A Java library used to develop, test, and run efficient data parallel pipelines is described
in [92]. FlumeJava is used to develop data parallel applications such as MapReduce discussed in Sec-
tion 7.5.

At the heart of the system is the concept of parallel collection which abstracts the details of data
representation. Data in a parallel collection can be an in-memory data structure, one or more files,
BigTable discussed in Section 6.9, or a MySQL database. Data-parallel computations are implemented
by composition of several operations for parallel collections.

In turn, parallel operations are implemented using deferred evaluation. The invocation of a paral-
lel operation records the operation and its arguments in an internal graph structure representing the
execution plan. Once completed, the execution plan is optimized.

The most important classes of the FlumeJava library are the Pcollection < T > used to spec-
ify a immutable bag of elements of type T and the PT able < K,V > representing an immutable
multi-map with keys of type K and values of type V . The internal state of a PCollection object is
either deferred or materialized, i.e. not yet computed or computed, respectively. The PObject < T >

class is a container for a single Java object of type T and can be either deferred or material-
ized.

parallelDo() supports element-wise computation over an input PCollection < T > to produce
a new output PCollection < S >. This primitive takes as the main argument a DoFn < T,S >,
a function-like object defining how to map each value in the input into zero or more values in the
output. In the following example from [92] collectionOf (strings()) specifies that the parallelDo()

operation should produce an unordered PCollection whose String elements should be encoded using
UTF-85

5UTF-8 is a character encoding standard defined by Unicode capable of encoding all possible characters. The encoding is
variable-length and uses 8-bit code units.
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Pcollection<String> words =
lines.parallelDo(new DoFn<String, String> ( ) {

void process (String line, EmitFn<String> emitFn {
for (String word : splitIntoWords(line) ) {

emitFn.emit(word);
}

}
}, collectionOf(strings( ) ));

Other primitive operations are groupByKey(), combineV alues() and f latten().

• groupByKey() converts a multi-map of type PT able < K,V >. Multiple key/value pairs may
share the same key into a uni-map of type PT able < K,Collection < V >> where each key
maps to an unordered, plain Java Collection of all the values with that key.

• combineV alues() takes an input PT able < K,Collection < V >> and an associative combining
function on V s, and returns a PT able < K,V > where each input collection of values has been
combined into a single output value.

• f latten() takes a list of PCollection < T >s and returns a single PCollection < T > that con-
tains all the elements of the input PCollections.

Pipelined operations are implemented by concatenation of functions. For example, if the output of
function f is applied as input of function g in a ParallelDo operation then two ParallelDo compute
f and f ⊗ g. The optimizer is only concerned with the structure of the execution plan and not with the
optimization of user-defined functions.

FlumeJava traverses the operations in the plan of a batch application in forward topological order,
and executes each operation in turn. Independent operations are executed simultaneously. FlumeJava
exploits not only the task parallelism but also the data parallelism within operations.

3.15 HISTORY NOTES AND FURTHER READINGS
In 1965 Edsger Dijkstra posed the problem of synchronizing N processes, each with a section of
code called its critical section, so that two properties are satisfied: mutual exclusion – no two critical
sections are executed concurrently; and livelock freedom – if some process is waiting to execute its
critical section, then some process will eventually execute its critical section [147]. Lamport comments:
“Dijkstra was aware from the beginning of how subtle concurrent algorithms are and how easy it is to
get them wrong. He wrote a careful proof of his algorithm. The computational model implicit in his
reasoning is that an execution is represented as a sequence of states, where a state consists of an
assignment of values to the algorithm’s variables plus other necessary information such as the control
state of each process (what code it will execute next).”

Producer-consumer synchronization was the second fundamental concurrent programming problem
identified by Dijkstra. An equivalent formulation of the problem is: given a bounded FIFO (first-in-
first-out), the producer stores data into an N -element buffer and the consumer retrieves the data. The
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algorithm uses three variables: N – the buffer size, in – the infinite sequence of unread input values,
and out – the sequence of values output so far. In his discussion of the producer-consumer synchro-
nization algorithm Lamport notes that “The most important class of properties one proves about an
algorithm are invariance properties. A state predicate is an invariant iff it is true in every state of every
execution.”

Lamport notes that “Petri nets are a model of concurrent computation especially well-suited for
expressing the need for arbitration. Although simple and elegant, Petri nets are not expressive enough
to formally describe most interesting concurrent algorithms.” He also mentioned that the first scientific
examination of fault tolerance was Dijkstra’s 1974 seminal paper on self-stabilization [148], a work
ahead of its time. Arguably, the most influential study of concurrency models was Milner’s Calculus
of Communicating Systems (CCS) [343], [344]. A number of formalisms based on the standard model
were introduced for describing and reasoning about concurrent algorithms, including Amir Pnueli’s
temporal logic introduced in 1977 [404].

Further readings. A fair number of textbooks discuss theoretical as well as practical aspects of concur-
rency. For example, [517] is dedicated to concurrency in transactional processing systems and [401]
analyzes concurrency and consistency. The text [297] covers concurrent programming in Java while
[521] presents multithreading in C++.

The von Neumann architecture was introduced in [81]. The BSP and Multi-BSP models were in-
troduced by Valiant in [492] and [493], respectively. Models of computations are discussed in [443].

Petri Nets were introduced by Carl Adam Petri in [402]. An in-depth discussion on concurrency the-
ory and system modeling with PNs can be found in [403]. The discussion of distributed systems leads
to the observation that the analysis of communicating processes requires a more formal framework.
Tony Hoare realized that a language based on execution traces is insufficient to abstract the behavior
of communicating processes and developed communicating sequential processes (CSP) [238].

Milner initiated an axiomatic theory called the Calculus of Communicating System (CCS), [344].
Process algebra is the study of concurrent communicating processes within an algebraic framework.
The process behavior is modeled as a set of equational axioms and a set of operators. This approach
has its own limitations, the real-time behavior of the processes, the true concurrency still escapes this
axiomatization.

Seminal papers in distributed systems are authored by Mani Chandy and Leslie Lamport [95], by
Leslie Lamport [290], [291], [292], Tony Hoare [238], and Robin Milner [344]. The collection of
contributions with the title “Distributed systems”, edited by Sape Mullender includes some of these
papers.

A survey of techniques and results related to the power of two random choices is presented in [349].
Seminal results on this subject are due to Azar [44], Karp [263], [197], Mitzenmacher [348,350] and
others.

3.16 EXERCISES AND PROBLEMS

Problem 1. Non-linear algorithms do not obey the rules of scaled speed-up. For example, it was
shown that when the concurrency of an O(N3) algorithm doubles, the problem size
increases only by slightly more than 25%. Read [456] and explain this result.
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Problem 2. Given a system of four concurrent threads t1, t2, t3, and t4 we take a snapshot of the
consistent state of the system after 3,2,4, and 3 events in each thread, respectively; all
but the second event in each thread are local events. The only communication event in
thread t1 is to send a message to t4 and the only communication event in thread t3 is
to send a message to t2. Draw a space–time diagram showing the consistent cut; mark
individual events on thread ti as e

j
i .

How many messages are exchanged to obtain the snapshot in this case? The snapshot
protocol allows the application developers to create a checkpoint. An examination of the
checkpoint data shows that an error has occurred and it is decided to trace the execution.
How many potential execution paths must be examined to debug the system?

Problem 3. The run-time of a data-intensive application could be days, or possibly weeks, even on a
powerful supercomputer. Checkpoints are taken for a long-running computation period-
ically and when a crash occurs the computation is restarted from the latest checkpoint.
This strategy is also useful for program and model debugging; when one observes wrong
partial results the computation can be restarted from a checkpoint where the partial re-
sults seem to be right. Express η, the slowdown due to checkpointing, for a computation
when checkpoints are taken after a run lasting τ units of time and each checkpoint re-
quires κ units of time. Discuss optimal choices for τ and κ . The checkpoint data can
be stored locally, on the secondary storage of each processor, or on a dedicated storage
server accessible via a high-speed network. Which solution is optimal and why?

Problem 4. What is in your opinion the critical step in the development of a systematic approach
to all-or-nothing atomicity? What does a systematic approach means? What are the
advantages of a systematic versus an ad hoc approach to atomicity? The support for
atomicity affects the complexity of a system. Explain how the support for atomicity
requires new functions/mechanisms and how these new functions increase the system
complexity. At the same time, atomicity could simplify the description of a system;
discuss how it accomplishes this.
The support for atomicity is critical for system features which lead to increased perfor-
mance and functionality such as: virtual memory, processor virtualization, system calls,
and user-provided exception handlers. Analyze how atomicity is used in each case.

Problem 5. The Petri Net in Figure 3.10D, models a group of n concurrent processes in a shared-
memory environment. At any given time only one process may write, but any subset of
the n processes may read at the same time, provided that no process writes. Identify the
firing sequences, the markings of the net, the postsets of all transition and the presets of
all places. Can you construct a state machine to model the same process?

Problem 6∗. Consider a computation consisting of n stages with a barrier synchronization among
the N threads at the end of each stage. Assuming that you know the distribution of the
random execution time of each thread for each stage show how one could use order
statistics [129] to estimate the completion time of the computation.

Problem 7. Consider the data flow graph of a computation C in Figure 3.6. Call t1, t2, t3, and t4
the time when the data inputs data1, data2, data3, and data4 become available. Call
Ti, 1 ≤ i ≤ 13 the time required by computations Ci, 1 ≤ i ≤ 13, respectively, to com-
plete. Express T the total time required by C to complete function of ti and Ti .
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Problem 8. Discuss the factors affecting parallel slackness including characteristics of the parallel
computation such as fine versus coarse grain, and the characteristics of the workload
and of the computing substrate.

Problem 9∗. In Section 3.13 we discussed the power of two choices for the balls and bins problem
with n bins. Instead of placing each ball in one random bin, we choose two random
bins for each ball, place it in the one that currently has fewest balls, and proceed in this
manner sequentially for each ball. Prove Equation (3.35).
Hint – the idea of the proof: Call Bi the number of bins with more than i balls at the
end. We wish to find an upper bound, βi for Bi . The probability that a ball is placed in
bin q with at least i + 1 balls in it is

Pr(Nq ≥ i + 1) ≤
(

β1

n

)2

. (3.45)

Indeed, both choices of placing this ball must be in bins with at least i balls. The dis-

tribution of bins Bi+1 is dominated by the binomial distribution Bin

(
n,

(
β1
n

)2
)

. The

mean of this distribution is
(

β1
n

)2
. According to Chernoff bound

βi+1 = c

(
β1

n

)2

(3.46)

with some constant c. Therefore β1
n

decreases quadratically and the following holds

i ≈ ln lnn

ln 2
⇒ β1 < 1. (3.47)

It follows that the maximum number of balls in a bin is ln ln n
ln 2 with high probability.

Problem 10. What is the difference between wait for graph and resource allocation graph?
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CHAPTER

PARALLEL AND DISTRIBUTED
SYSTEMS

Parallel processing has mesmerized the computational science and engineering community since the
early days of the computing era resulting in fascination with high-performance computer systems and,
ultimately, with supercomputers. It was hard to expose the parallelism in many scientific applications,
but the harder the problem, the more satisfying it was to develop parallel algorithms, implement them,
wait for the next generation of processors running at a higher clock rate and enjoy impressive speedup.
The enterprise computing world seemed more skeptical and less involved in parallel processing.

Almost half a century after the dawn of the computing era, an eternity in the age of silicon, the
disruptive multicore technology forced the community to realize the need to understand and exploit
concurrency. There is no point now to wait for faster clock rates, we should better design algorithms
and applications able to use all cores of a modern processor.

Things changed again when cloud computing showed that there are new applications that can ef-
fortlessly exploit parallelism and, in the process, generate huge revenues. A new era in parallel and
distributed systems began, the era of Big Data hiding nuggets of useful information and requiring mas-
sive amounts of computing resources. In this era “coarse” is good and “fine” is not good, at least as
far as the granularity of parallelism is concerned. The new challenge is to obtain the results faster by
effectively harnessing the power of millions of multicore processors.

Cloud computing is intimately tied to parallel and distributed processing. Cloud applications are
based on the client–server paradigm. A relatively simple software, a thin-client, is often running on
the user’s mobile device with limited resources, while the computationally-intensive tasks are carried
out on the cloud. Many cloud applications use a number of instances running concurrently. Transaction
processing systems including web-based services represent a large class of applications hosted by
computing clouds. Such applications run multiple instances of the service and require reliable and
in-order delivery of messages.

Early on scientists and engineers understood that parallel processing requires specialized hardware
and system software. It was also clear that the interconnection fabric was critical for the performance
of parallel processing systems. Building high-performance computing systems proved to be a major
challenge.

The list of companies aiming to support parallel processing and ending as casualties of this effort
is long and includes names such as: Ardent, Convex, Encore, Floating Point Systems, Inmos, Kendall
Square Research, MasPar, nCube, Sequent, Tandem, Thinking Machines, and possibly others, now for-
gotten. The difficulties of developing new programming models and the effort to design programming
environments for parallel applications added to the challenges faced by all these companies.

Computer clouds are large-scale distributed systems, collections of autonomous and heterogeneous
systems. Cloud organization is based on a large number of ideas and the experience accumulated since
the first electronic computer was used to solve computationally challenging problems. In this chapter

Cloud Computing. DOI: 10.1016/B978-0-12-812810-7.00005-4
Copyright © 2018 Elsevier Inc. All rights reserved.
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we overview concepts in parallel and distributed systems important for understanding basic challenges
in the design and use of computer clouds. Data-level and thread-level parallelism, parallel computer
architectures, SIMD architectures, and GPUs are discussed in Sections 4.1, 4.2, 4.3, and 4.4, respec-
tively. Application speedup and Amdahl’s Law, including its formulation for multicore processors, are
analyzed in Sections 4.5 and 4.6.

Organization principles for distributed systems such as modularity, layering, and virtualization pre-
sented in Sections 4.7, 4.8, 4.10 are applied to the design of peer-to-peer and large-scale systems
discussed in Sections 4.11 and 4.12, respectively. Finally, Section 4.13 presents composability bounds
and scalability, a prelude for the discussion of cloud self-organization in Section 13.4.

4.1 DATA, THREAD-LEVEL AND TASK-LEVEL PARALLELISM
As demonstrated by nature, the ability to work as a group and carry out many tasks in parallel represents
a very efficient way to reach a common goal. Thus, we should not be surprised that the thought that
individual computer systems should work in parallel for solving complex applications was formulated
early on, at the dawn of the computer age.

Parallel processing allows us to solve large problems by splitting them into smaller ones and solv-
ing them concurrently. Parallel processing was considered for many years the holy grail for solving
data-intensive problems encountered in many areas of science, engineering, and enterprise computing.

Parallel processing required major advances in several areas including, algorithms, programming
languages and environments, performance monitoring, computer architecture, interconnection net-
works, and, last but not least, solid state technologies. In many instances discovering parallelism is
quite challenging and the development of parallel algorithms requires a considerable effort.

Fine-gained versus coarse-grained parallelism. We distinguish fine-grained from coarse-grained
parallelism, a topic discussed in Section 3.2. In the former case only relatively small blocks of code
can be executed in parallel, without the need to communicate or synchronize with other threads or
processes, whereas in the latter case large blocks of code can be executed concurrently.

Numerical computations involving linear algebra operations exhibit fine-grained parallelism. For
example, many numerical analysis problems, such as solving large systems of linear equations, or
solving systems of Partial Differential Equations (PDEs) require algorithms based on domain decompo-
sition methods. The speedup of applications displaying fine-grained parallelism is considerably lower
that those of coarse-grained applications. Indeed, even on systems with a fast interconnect the processor
speed is orders of magnitude higher than the communication speed.

Concurrent processes or threads communicate using shared-memory or message-passing. Shared-
memory is used by multicore processors where each core has private L1 instruction and data caches,
as well as an L2 cache, while all cores share the L3 cache. Shared-memory is not scalable thus, seldom
used in supercomputers and large clusters. Message-passing is used in large-scale distributed systems.
The discussion in this chapter is restricted to this communication paradigm.

Shared-memory is extensively used by the system software. The system stack is an example of
shared-memory used to save the state of a process or thread at the time of a context switch. The kernel
of an operating system uses control structures such as processor and core tables for multiprocessor and
multicore system management, process and thread tables for process and thread management, page
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tables for virtual memory management, and so on. Multiple application threads running on a multicore
processor often communicate via the shared-memory of the system. Debugging a message-passing
application is considerably easier than debugging a shared-memory one.

Data-level parallelism. This is an extreme form of coarse-grained parallelism. It is based on partition-
ing data into large chunks or blocks or segments and running concurrently either multiple programs or
copies of the same program, each on a different data block. In the later case the paradigm is called Same
Program Multiple Data (SPMD). There are the so called embarrassingly parallel problems where little
or no effort is needed to extract parallelism and to run a number of concurrent tasks with little or no
communication among them.

Assume that we wish to search for the occurrence of an object in a set of n images, or of a string
of characters in n records. Such a search can be conducted in parallel. In all these instances the time
required to carry out the computational task using N servers is reduced by a factor of N , the speedup
is almost linear in the number of servers used. This type of data-parallel applications are at the heart of
enterprise computing on computer clouds and will be discussed in depth in Chapter 7. The MapReduce
programming model will be presented in Section 7.5 followed by the discussion of Hadoop and Yarn
in Section 7.7.

Decomposition of a large problem into a set of smaller problems that can be solved concurrently is
sometimes trivial and can be implemented in hardware, a topic discussed in Section 4.2. For example,
assume that we wish to manipulate the image of a three-dimensional object represented as a 3D lattice
of n × n × n points. To rotate the image we apply the same transformation to each one of the n3

points. Such a transformation can be done by a geometric engine, a processor designed to carry out the
transformation of a subset of n3 points concurrently. Graphics Processing Units (GPUs), discussed in
Section 4.4, initially designed as graphics engines are now widely used for data-intensive applications.

Thread-level and task-level parallelism. The term thread-level parallelism is overloaded. In the com-
puter architecture literature it is used for data-parallel execution using a GPU. In this case a thread is a
subset of vector elements processed by one of the lanes of a multithreaded processor, see Section 4.4.
Hyper-threading is used to describe multiple execution threads possibly running concurrently, but on a
single core, see Section 4.2. Threads are also used in a multicore processor to run concurrently multi-
ple processes. Database applications are memory-intensive and I/O-intensive and multiple threads are
used to hide the latency of memory and I/O access.

The concept of task-level parallelism is also overloaded. In the context of scheduling, a job consists
of multiple tasks scheduled either independently or co-scheduled when they need to communicate
with one another. Tasks are often fine-grained execution units each one given control of resources for
relatively short time to guarantee a low latency response time.

Cloud computing is also very appealing for a class of applications attempting to identify the optimal
parameters of a model that best fit experimental data. Such applications involve computationally-
intensive tasks. Multiple instances running concurrently test the fitness of different sets of parameters.
The results are then compared to determine the optimal set of model parameters.

There are also numerical simulations of complex systems which require an optimal design of a
physical system. Multiple design alternatives are compared and the optimal one is selected according
to several optimization criteria. Consider for example the design of a circuit using Field Programmable
Gate Arrays (FPGAs). An FPGA is an integrated circuit designed to be configured by the customer
using a hardware description language (HDL), similar to that used for an application-specific integrated
circuit (ASIC).
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As multiple choices for the placement of components and for interconnecting them exist, the
designer could run concurrently N versions of the design choices and choose the one with the best per-
formance, e.g., minimum power consumption. Alternative optimization objectives could be to reduce
cross-talk among the wires or to minimize the overall noise. Each alternative configuration requires
hours, or maybe days of computing hence, running them concurrently reduces the design time consid-
erably.

4.2 PARALLEL ARCHITECTURES
There is a vast literature on parallel architectures. In this section we review basic concepts and ideas
that play now, and will continue to play in the future, an important role in the evolution of computer
clouds.

Control flow versus data flow processor architecture. The dominant processor architecture is the
control flow architecture pioneered by John von Neumann [81]. The implementation of the proces-
sor control flow is straightforward, the program counter determines the next instruction to be loaded
into the instruction register and then executed. The execution is strictly sequential, until a branch is
encountered.

But there is an alternative, the data flow architecture when operations are carried out at the time
when their input becomes available. Though only a few general-purpose data-flow systems are avail-
able today,1 this alternative computer architecture is widely used by network routers, digital signal
processors, and other special-purpose systems. The lack of locality, the inefficient use of cache, and
ineffective pipelining are most likely some of the reasons why data flow general-purpose processors
are not as popular as control flow processors.

Data flow is emulated by von Neumann processors. Indeed, Tomasulo’s algorithm for dynamic in-
struction scheduling [228], developed at IBM in 1967, uses reservation stations to hold instructions
waiting for their input to become available and the register renaming for out-of-order instruction exe-
cution. It should not be surprising that some of the systems discussed in Chapters 7, 8, and 9 apply the
data flow model for task scheduling on large clusters. The power of this model for supporting optimal
parallel execution is unquestionable. We should probably expect soon the addition of general-purpose
data flow systems to the cloud infrastructure.

Bit-level and instruction-level parallelism. Parallelism at different levels can be exploited by a von
Neumann processor. These levels are:
1. Bit-level parallelism. A computer word is a fixed-sized piece of data handled as a unit by the

instruction set or the hardware of the processor. The number of bits in a word has increased grad-
ually from 4-bit processors to 8-bit, 16-bit, and 32-bit processors. This has reduced the number of
instructions required to process larger size operands and allowed a dramatic performance improve-
ment. During this evolutionary process the number of address bits have also increased from 32 bits
to 64 bits in 2004 allowing instructions to reference a larger address space, from 232, about 4 GB,
to 264 or 17 179 869 184 GB.

1The motto of one company producing general-purpose data flow systems, Maxeler Technologies www.maxeler.com is “Passion-
ate for performance.”

http://www.maxeler.com
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Table 4.1 The basic pipeline of a superscalar processor. Two instructions are executed per clock cycle;
instructions i, i + 2, i + 4, i + 6 and i + 8 are executed by unit 1 and instructions i + 1, i + 3, i + 5, i + 7
and i + 9 are executed by unit 2. The pipeline has five stages: instruction fetch (IF), instruction decode
(ID), instruction execution (EX), memory access (MEM), and write back (WB). Once the pipeline is full
two instructions finish execution every clock cycle.

1 2 3 4 5 6 7 8 9

i IF ID EX MEM WB

i + 1 IF ID EX MEM WB

i + 2 IF ID EX MEM WB

i + 3 IF ID EX MEM WB

i + 4 IF ID EX MEM WB

i + 5 IF ID EX MEM WB

i + 6 IF ID EX MEM WB

i + 7 IF ID EX MEM WB

i + 8 IF ID EX MEM WB

i + 9 IF ID EX MEM WB

2. Instruction-level parallelism (ILP). Computers have used multi-stage processing pipelines to
speedup execution for sometime. Once an n-stage pipeline is full, an instruction is completed
at every clock cycle unless the pipeline is stalled.

Instruction-Level Parallelism (ILP). A closer look at ILP gives us some insight into the architec-
tural sophistication of modern processors. Pipelining, multiple-issue, dynamic instructions scheduling,
branch prediction, speculative execution, and multithreading are some of the architectural features de-
signed to maximize the IPC (Instructions Per clock Cycle), or equivalently, to minimize its inverse, the
CPI (Cycles Per Instruction).

Pipelining means splitting of an instruction into a sequence of steps that can be executed con-
currently by different circuitry on the chip. A basic pipeline of a RISC (Reduced Instruction Set
Computing) architecture consists of five stages.2 A superscalar processor executes more than one
instruction per clock cycle see Table 4.1 [228]. A Complex Instruction Set Computer (CISC) archi-
tecture could have a much large number of pipelines stages, e.g., an Intel Pentium 4 processor has a
35-stage pipeline.

There are several types of hazards, instances when unchecked pipelining would produce incorrect
results. Data, structural, and control hazards have to be handled carefully. Data hazards occur when the
instructions in the pipeline are dependent upon one another. For example, a Read after Write (RAW)
hazard occurs when an instruction operates with data in register that is being modified by a previous
instruction. A Write after Read (WAR) hazard occurs when an instruction modifies data in a register
being used by a previous instruction; finally, a Write after Write (WAW) hazard occurs when two
instructions in a sequence attempt to modify the data in the same register and the sequential execution
order is violated.

2The number of pipeline stages in different RISC processors varies. For example, ARM7 and earlier implementations of ARM
processors have a three stage pipeline, fetch, decode, and execute. Higher performance designs, such as the ARM9, have deeper
pipelines: Cortex-A8 pipeline has thirteen stages.
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Structural hazards occur when the circuits implementing different hardware functions are needed
by two or more instructions at the same time. For example, a single memory unit is accessed during the
instruction fetch stage where the instruction is retrieved from memory and it is also accessed during
the memory stage where data is written to the memory. Structural hazards can often be resolved by
separating the component into orthogonal units (such as separate caches) or bubbling the pipeline.
Control hazards are due to conditional branches. On many instruction pipeline microarchitectures, the
processor will not know the outcome of the branch when it needs to insert a new instruction into the
pipeline, normally during the fetch stage.

The architecture should preserve exception behavior, any change in instruction order must not
change the order in which exceptions are raised, to ensure program correctness. Another necessary
condition for correctness is to preserve instruction flow, the flow of data between instructions that
produce results and consume them.

A pipeline stall is the delay in the execution of an instruction in an instruction pipeline in order
to resolve a hazard. Such stalls could drastically affect the performance. Pipeline scheduling separates
dependent instruction from the source instruction by the pipeline latency of the source instruction. Its
effect is to reduce the number of stalls.

Dynamic instruction scheduling reduces the number of pipeline stalls, but adds to circuit complex-
ity. Register renaming is sometimes supported by reservation stations. A reservation station fetches and
buffers an operand as soon as it becomes available. A pending instruction designates the reservation
station it will send its output to. A reservation station stores the following information: (1) the instruc-
tion; (2) buffered operand values (when available); and (3) the ID of the reservation station number
providing the operand values.

Tomasulo’s algorithm uses register renaming to correctly perform out-of-order execution. Reserva-
tion station registers hold either a real value or a placeholder value. If a real value is unavailable to a
destination register during the issue stage, a placeholder value is initially used. The placeholder value
is a tag indicating which reservation station will produce the real value. When the unit finishes and
broadcasts the result on the CDB (Common Data Bus), the placeholder will be replaced with the real
value [228].

Flynn’s computer architecture taxonomy. In 1966 Michael Flynn proposed a taxonomy of computer
architectures based on the number of concurrent instructions and the number of data streams:

• SISD (Single Instruction Single Data);
• SIMD (Single Instruction, Multiple Data);
• MIMD (Multiple Instructions, Multiple Data);
• MISD (Multiple Instructions Single Data) is a fourth possible architecture, but it is very rarely used,

mostly for fault tolerance.

SISD architecture. SISD processors, have been around since the ENIAC, the system built at the
University of Pennsylvania’s Moore School of Electrical Engineering between 1943 and 1946 by J.
Presper Eckert and John Mauchly. Individual cores of a modern multicore processor are SISD and
support the execution of a single thread or process at any given time. A superscalar processor executes
more than one instruction per clock cycle. A single core superscalar is still a SISD processor.

SIMD architecture. The architecture supports vector processing. When a SIMD instruction is is-
sued, the operations on individual vector components are carried out concurrently. For example, to add
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two vectors (a0, a1... . . . a63) and (b0, b1... . . . b63), all 64 pairs of vector elements are added concur-
rently and all the sums (ai + bi),0 ≤ i ≤ 63 are available at the same time.

The first use of SIMD instructions was in vector supercomputers such as the CDC Star-100 and
the Texas Instruments ASC in early 1970s. Vector processing was especially popularized by Cray in
the 1970s and 1980s, by attached vector processors such as those produced by the FPS (Floating Point
Systems), and by supercomputers such as the Thinking Machines CM-1 and CM-2.

Sun Microsystems introduced SIMD integer instructions in its “VIS” instruction set extensions in
1995 for UltraSPARC I microprocessor. The first widely-deployed SIMD instruction set for gaming
was Intel’s MMX extensions to the x86 architecture. IBM and Motorola then added AltiVec to the
POWER architecture. There have been several extensions to the SIMD instruction sets for both archi-
tectures as we shall see in Section 4.3.

MIMD architecture. A MIMD architecture refers to a system with several processors that func-
tion asynchronously and independently; at any time, different processors may be executing different
instructions on different data. Several processors can share a common memory and we distinguish sev-
eral types of multiprocessor systems: UMA, NUMA, and COMA, uniform, non-uniform, and cache
only memory access, respectively.

A MIMD system could have a distributed memory. Processors and memory modules communicate
with one another using an interconnection network, such as a hypercube, a 2D torus, a 3D torus, an
omega network, or another network topology, see Section 5.6. Today, most supercomputers are MIMD
machines and some use GPUs instead of traditional processors. Multicore processors with multiple
processing units are now ubiquitous.

As more powerful processors were needed, the concept of hyper-threading was developed and in
2002 Intel introduced Xeon and later Pentium 4 processors. Hyper-threading takes advantage of unused
processor resources and presents itself to the operating system as a two core processor.

Multicore processors support true MIMD execution. Each core has its own register file, ALU and
floating-point execution units. As mentioned earlier, each core has its private L1 instruction and data
caches as well as L2 cache; all cores of a processor share the L3 cache.

From supercomputers to distributed systems. Modern supercomputers derive their power from
architecture and parallelism rather than faster processors running at higher clock rates. The super-
computers of today consist of a very large number of processors and cores communicating through
very fast custom interconnects.

In mid 2012 the most powerful supercomputer was an IBM Sequoia-BlueGene/Q Linux-based sys-
tem powered by Power BQC 16-core processors running at 1.6 GHz. The system, installed at Lawrence
Livermore National Laboratory and called Jaguar, has a total of 1 572 864 cores and 1 572.864 TB of
memory, achieves a sustainable speed of 16.32 PFlops, and consumes 7.89 MW of power. Later in 2012
a Cray XK7 system, Titan, installed at the Oak Ridge National Laboratory (ORNL) was coronated as
the most powerful supercomputer in the world. The system had 560 640 processors, including 261 632
Nvidia K20x accelerator cores; it achieved a speed of 17.59 PFlops on the Linpack benchmark.

In 2016 the most powerful supercomputer was Sunwai TaihuLight at the National Supercomputer
Center in Wixi, China with 10 649 600 cores with the peak bandwidth of 125.436 PFlops. The system
needed 15.371 MW of power. Its Linpack performance is 93.0146 PFlops and has 1 310.720 TB of
memory. Several most powerful systems listed in [486] are powered by Nvidia 2050 GPU. Some of the
top 10 supercomputers use the InfiniBand interconnect discussed in Section 5.8.
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The next natural step was triggered by advances in communication networks when low-latency and
high-bandwidth Wide Area Networks (WANs) allowed individual systems, many of them multiproces-
sors, to be geographically separated. Large-scale distributed systems were first used for scientific and
engineering applications and took advantage of the advancements in system software, programming
models, tools, and algorithms developed for parallel processing.

4.3 SIMD ARCHITECTURES; VECTOR PROCESSING AND MULTIMEDIA
EXTENSIONS

SIMD architectures have significant advantages over the other systems described by Flynn’s classifi-
cation scheme. Some of these advantages are:
1. Exploit a significant level of data-parallelism. Enterprise applications in data mining and multime-

dia applications, as well as the applications in computational science and engineering using linear
algebra benefit the most.

2. Allow mobile device to exploit parallelism for media-oriented image and sound processing using
SIMD extensions of traditional Instruction Set Architecture (ISA).

3. Are more energy efficient than MIMD architecture. Only one instruction is fetched for multiple
data operations, rather than fetching one instruction per operation.

4. Have a higher potential speedup than MIMD architectures. SIMD potential speedup could be twice
as large as that of MIMD.

5. Allows developers to continue thinking sequentially.
Three flavors of the SIMD architecture are encountered in modern processor design: (a) Vector ar-
chitecture; (b) SIMD extensions for mobile systems and multimedia applications; and (c) Graphics
Processing Units (GPUs).

Vector architectures. Vector computers operate using vector registers holding as many as 64 or 128
vector elements. Vector functional units carry out arithmetic and logic operations using data from vec-
tor registers as input and disperse the results back to memory. The vector load-store units are pipelined,
hide memory latency, and leverage memory bandwidth. The memory system spreads access to multiple
memory banks which can be addressed independently.

Chaining allows vector operations to start as soon as individual elements of vector source operands
become available and operate on convoys, sets of vector instructions that can potentially be executed
together. Multiple lanes process several vector elements per clock cycle. Each lane contains a subset
of the vector register file and one execution pipeline from each functional unit.

Vector length registers support handling of vectors whose length is not a multiple of the length of
the physical vector registers, e.g., a vector of length 100 when the vector register can only contain 64
vector elements. Vector mask registers disable/select vector elements and are used by conditional state-
ments. Non-adjacent vector elements of a multidimensional array can be loaded into a vector register,
by specifying the stride, the distance between elements to be gathered in one register. Scatter-gather
operations support processing of sparse vectors. A gather operation takes an index vector and fetches
the vector elements at the addresses given by adding a base address to the offsets given by the index
vector; as a result a dense vector is loaded in a vector register. A scatter operation does the inverse, it
scatters the elements of a vector register to addresses given by the index vector and the base address.
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SIMD extensions for multimedia applications. The name of this class of SIMD architectures reflects
the basic architectural philosophy – augmenting an existing instruction set of a scalar processor with a
set of vector instructions. SIMD extensions have obvious advantages over vector architecture:
1. Low cost to add circuitry to an existing ALU.
2. Little extra state is added thus, the extensions have little impact on context-switching.
3. Do not pose additional complications to the virtual memory management for cross-page access

and page-fault handling.
4. Need little extra memory bandwidth.

Multimedia applications often run on mobile devices and operate on narrower data types than the
native word size. For example, graphics applications use 3 × 8 bits for colors and one 8-bit for trans-
parency, audio applications use 8,16, or 24-bit samples. To accommodate narrower data types carry
chains have to be disconnected. For example a 256-bit adder can be partitioned to perform simultane-
ously 32,16,8 or 4 additions on 8,16,32, or 64 bit, respectively. The instructions opcode now encode
the data type and neither sophisticated addressing modes supported by vector architectures such as
stride-base addressing or scatter-gather, nor mask registers are supported.

Intel extended its x86 − 64 instruction set architecture. In 1996 Intel introduced MMX (Multi-
Media Extensions) which supports eight 8-bit, or four 16-bit integer operations. MMX was followed
by multiple generations of streaming SIMD extensions (SSE) in 1999 and ending with SSE4 in 2007.
The SSEs operate on eight 8-bit integers, four 32-bit or two 64-bit either integer or floating-point
operations.

AVX (Advanced Vector Extensions) introduced by Intel in 2010 operates on four 64-bit either
integer or floating-point operations. Several members of the AVX family of Intel processors are: Sandy
Bridge, Ivy Bridge, Haswell, Broadwell, Skylake, and its follower, the Baby Lake announced in August
2016. AMD offers several family of processors with multimedia extensions including the Steamroller.

Floating-point performance models for SIMD architecture. The gap between the processor and the
memory speed, though bridged by different level of caches, is still a major factor affecting the perfor-
mance of many applications. Applications displaying low spatial and temporal locality are particularly
affected by gap. The effects of this gap are also most noticeable for SIMD architectures and floating-
point operations. The concept of arithmetic intensity, defined as the number of floating-point operations
per byte of data read, is used to characterize application scalability and to quantify the performance of
SIMD systems.

The arithmetic intensity of applications involving dense matrices is high and this means that dense
matrix operations scale with problem size, while sparse matrix applications have a low arithmetic
intensity, therefore do not scale well with the problem size. Applications involving spectral methods
and FFT (Fast Fourier Transform) have an average arithmetic intensity.

The roofline model captures the fact that the performance of an application is limited by its arith-
metic intensity and by the memory bandwidth. A graph depicting the floating-point performance
function of the arithmetic intensity is shown in Figure 4.1. The memory bandwidth limits the per-
formance at low arithmetic intensity and this effect is captured by the sloped line of the graph. As
the arithmetic intensity increases, the floating-point performance of the processor is the limiting factor
captured as the straight line of the graph.
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FIGURE 4.1

The roofline performance model for Intel i7 920. When the arithmetic intensity is lower than about 3 the
memory bandwidth of 16.4 GB/sec is the bottleneck. The processor delivers 42.66 Gflops and this limits the
performance of applications with arithmetic intensity larger than about 3.

4.4 GRAPHICS PROCESSING UNITS
The desire to support real-time graphics with vectors of two, three, or four dimensions led to the de-
velopment of Graphics Processing Units (GPUs). GPUs are very efficient at manipulating computer
graphics. GPUs produced by Intel, NVIDIA, and AMD/ATI are also used in embedded systems, mo-
bile phones, personal computers, workstations, and game consoles. GPU processing is based on a
heterogeneous execution model with a CPU acting as the host connected with a GPU called the device.

The highly parallel structures of GPUs are based on SIMD execution and support parallel process-
ing of large data blocks. A GPU has multiple multithreaded SIMD processors. The current-generation
of GPUs, e.g., Fermi from NVIDIA, have 7 to 15 multithreaded SIMD processors. Compared with
vector processors, each multithreaded SIMD processor has several wide and shallow SISD lanes. For
example, an NVIDIA GPU has 32 768 registers divided among the 16 physical SIMD lanes; each lane
has 2 048 registers.

A typical processing execution includes the following steps:
1. CPU copies the input data from the main memory to the GPU memory.
2. CPU instructs the GPU to start processing using the executable in the GPU memory.
3. GPU uses multiple cores to execute the parallel code.
4. When done the GPU copies the result back to the main memory.

The GPU programming model is Single-Instruction-Multiple-Thread (SIMT). GPUs are often
programmed in CUDA, a C-like programming language developed by NVIDIA, the pioneer of GPU-
accelerated computing. All forms of GPU parallelism are unified as CUDA threads. In the SIMT model
a thread is associated with each data element. Thousands of CUDA threads could run concurrently.
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FIGURE 4.2

Grid, blocks, and threads. The grid has 8192 components of vector A. There are 16 blocks with 512 vector
components each. Each bloc has 6 threads and each thread operates on 32 components of vector A.

Threads are organized in blocks, groups of 512 vector elements, and multiple blocks form a grid.
Figure 4.2 illustrates the grid representing a vector A with 8192 components; there are 16 blocks, each
block has 16 SIMD threads; each thread operates on 32 elements of the vector.

A two-level scheduling mechanisms assigns threads to the multiple lanes of a multithreaded SIMD
processor. A thread block scheduler assigns thread blocks to multithreaded SIMD processors and then
a tread scheduler assigns threads to SIMD lanes. Figure 4.3 illustrates scheduling for the grid shown
in Figure 4.2. The thread blocks must be able to run independently.

The NVIDIA GPU memory has the following organization:

• Each SIMD lane has an off-chip private memory for stack frame, spilling registers, private variables,
and GPU data in L1 and L2 caches.

• Each multithread SIMD processor has on-chip local memory shared by all its lanes, thus, by the
threads within the block scheduled on the processor.

• GPU memory. The host can read from and write to this off-chip memory.
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FIGURE 4.3

The execution for the grid in Figure 4.2. The thread block scheduler assigns thread blocks to multithreaded
SIMD processors. A thread scheduler running on each multithreaded SIMD processor assigns threads to the
SIMD lanes of the processors.

The Fermi architecture is used in the GeForce 400 and 500 NVIDIA GPU processor series. The
host interface of Fermi connects the GPU to the CPU via a PCI-Express v2 bus with peak transfer rate
of 8 GB/s. The DRAM supports up to 6 GB of GDDR5 DRAM memory thanks to 64-bit addressing
capability and has a 192 GB/sec bandwidth. The clock runs at 1.5 GHz and the peak performance is
1.5 Flops. It should not be surprising that cloud service providers now offer GPU instances as we have
seen in Section 2.4.

4.5 SPEEDUP, AMDHAL’S LAW, AND SCALED SPEEDUP
Parallel hardware and software systems allow us to solve problems demanding more resources than
those provided by a single system and, at the same time, to reduce the time required to obtain a solu-
tion. The speedup measures the effectiveness of parallelization; in the general case the speedup of the
parallel computation is defined as

S(N) = T (1)

T (N)
, (4.1)
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with T (1) the execution time of the sequential computation and T (N) the execution time when N

parallel computations are carried out.

Amdahl’s Law. Gene Myron Amdahl3 was a theoretical physicist turned computer architect best
known for Amdahl’s Law. In a seminal paper published in 1967 [26] Amdhal argued that the fraction
of a computation which is not paralellizable is significant enough to favor single processor systems.
He reasoned that large-scale computing capabilities can be achieved by enhancing the performance of
single processors, rather than building multiprocessor systems.

Though this thesis was disproved, Amdahl’s Law is a fundamental result used to predict the theo-
retical maximum speedup for a program using multiple processors. This law states that the portion of
the computation which cannot be parallelized determines the overall speedup. If α is the fraction of
running time a sequential program spends on non-paralellizable segments of the computation then, the
maximum speedup achievable S is

S = 1

α
. (4.2)

To prove this result call σ the sequential time and π the parallel time and start from the definitions of
T (1), T (N), and α:

T (1) = σ + π, T (N) = σ + π

N
, and α = σ

π + σ
. (4.3)

Then

S = T (1)

T (N)
= σ + π

σ + π/N
= 1 + π/σ

1 + (π/σ) × ( 1/N)
. (4.4)

But

π/σ = 1 − α

α
(4.5)

Thus, for large N

S = 1 + (1 − α)/α

1 + (1 − α)/(Nα)
= 1

α + (1 − α)/N
≈ 1

α
(4.6)

An alternative formulation of Amdahl’s Law is that if a fraction f of a computation is enhanced by
a speedup S then the overall speedup is

Soverall(f, S) = f

(1 − f ) + f
S

or Soverall(f, S) = 1
1
f

+ 1
S

− 1
(4.7)

Scaled speedup. Amdahl’s Law applies to a fixed problem size; in this case the amount of work as-
signed to each one of the parallel processes decreases when the number of processes increases and this
affects the efficiency of the parallel execution.

3Gene Amdhal contributed significantly to the development of several IBM systems including System/360 and then started his
own company, Amdahl Corporation; his company produced high performance systems in the 1970s.
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When the problem size is allowed to change, Gustafson’s Law gives the scaled speedup with N

parallel processes as

S(N) = N − α(N − 1). (4.8)

As before, we call σ the sequential time; now π is the fixed parallel time per process; α is given by
Equation (4.3). The sequential execution time, T (1), and the parallel execution time with N parallel
processes, T (N), are

T (1) = σ + Nπ and T (N) = σ + π. (4.9)

Then the scaled speedup is

S(N) = T (1)

T (N)
= σ + Nπ

σ + π
= σ

σ + π
+ Nπ

σ + π
= α + N(1 − α) = N − α(N − 1). (4.10)

Amdahl’s Law expressed by Equation (4.2) and the scaled speedup given by Equation (4.8) assume
that all processes are assigned the same amount of work. The scaled speedup assumes that the amount
of work assigned to each process is the same regardless of the problem size. Then, to maintain the
same execution time the number of parallel processes must increase with the problem size. The scaled
speedup captures the essence of efficiency, namely, that the limitations of the sequential part of a code
can be balanced by increasing the problem size.

4.6 MULTICORE PROCESSOR SPEEDUP
We now live in the age of multicore processors brought about by the limitations imposed on solid state
devices by the laws of physics. Increased power dissipation due to faster clock rates makes the heat
removal more challenging and this implies that in the future we could only expect a modest increase of
the clock rate.

Moore’s Law stating that the number of transistors on a chip doubles approximately every 1.5 years
will still hold for a number of years. Multicore processors use the billions of transistors on a chip to
deliver significantly higher computing power and process more data every second. Yet, the ability to
get data in and out of the chip is limited by the number of pins. Increasing the number of cores on a
chip faces its own physical limitations.

There are alternative designs of multicore processors and the next question is to investigate chip
configurations most useful for applications exhibiting a limited parallelism. The cores can be identical
or different from one another, there could be a few powerful cores or a larger number of less powerful
cores. Theoretically, the cores could be configured automatically or be immutable.

More cores will lead to high speedup of highly parallel applications, a powerful core will favor
highly sequential applications. A chameleonic system will adapt to the actual level of parallelism
though, if feasible, changing the core configuration will incur some overhead and will challenge ap-
plication developers. Even considering the re-configuration overhead, the speedup of automatic core
configuration will be superior to either symmetric or asymmetric core design.

The design space of multicore processors should be driven by cost-performance considerations.
A design will be cost-effective if the speedup achieved will exceed the cost up defined as the multicore



4.6 MULTICORE PROCESSOR SPEEDUP 127

FIGURE 4.4

16-BCE chip. Symmetric core processor with two different configurations: (A) sixteen 1-BCE cores; (B) one
16-BCE core.

processor cost divided by the single-core processor cost. The cost of a multicore processor depends on
the number of cores and the complexity, ergo, the power of individual cores.

The Basic Core Equivalent (BCE) concept was introduced to quantify the resources of individual
cores. A symmetric core processor may have n BCEs with r resources each. Alternatively, the n × r

resources may be distributed unevenly in an asymmetric core processor.
A quantitative analysis of the design choices based on an extension of Amdahl’s Law to multicore

processors is presented in [235]. We expect this analysis to confirm the obvious, that is: the larger the
parallelizable fraction f of an application, the larger the speedup. This analysis is based on a number
of simplifying assumptions:
1. A number of factors such as the chip area, the power dissipation, or combinations of these two

with other factors limit the number of cores to n BCE. These limitations consider only on-chip
resources. Off-chip resources such as shared caches, memory controllers, or interconnection net-
works are assumed to be approximately identical for the alternative designs.

2. The performance of a single BCE core is the unity. When the chip is limited to n BCEs, all cores are
identical, and the performance of each core is r then the total number of cores on a chip is �n/r�.
Figure 4.4 shows a symmetric 16-BCE chip with two configuration: one with sixteen 1-BCE cores
and the other with one 16-BCE core.

3. The sequential performance of r BCEs is denoted as perf (r). When perf (r) > r the speedup of
both sequential and parallel execution increases, therefore the designers should increase as much
as feasible the core resources and implicitly the individual core performance. On the other hand,
when perf (r) < r increasing individual core performance increases the performance for sequen-
tial execution but lowers that of the parallel execution. Therefore, the following analysis is focused
on the case when perf (r) < r . A good model is perf (r) = √

r when the performance doubles,
triples and quadruples for 4, 9, 16 cores, respectively.

The first case analyzed assumes a symmetric multicore chip. There are n/r cores on the chip; for
example, when n = 32 the chip could have 16 cores of 2 BCE each, 8 cores of 4 BCE each, and
so on. Call f the parallelizable fraction of a computation. One core will run the (1 − f ) sequential
component of the computation and n/r cores will run the parallel component of the computation, f ,
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FIGURE 4.5

16-BCE chip. (A) Symmetric core processor with four 4-BCE cores; (B) Asymmetric core processor with one
4-BCE core and twelve 1-BCE cores.

with a performance perf (r). According to Equation (4.7) the speedup will be

Speedupsymcore(f,n, r) = 1
1−f

perf (r)
+ f ·r

n·perf (r)

. (4.11)

In an asymmetric multicore processor more powerful cores will coexist with less powerful ones.
Figure 4.5 illustrates the differences between symmetric and asymmetric cores; the asymmetric core
processor has one 4-BCE core and twelve 1-BCE cores. The sequential performance will benefit from
the more powerful core running four times faster, while the parallel performance is perf (r) from the
4-BCE core and 1 each from the remaining (n− r), in our case twelve 1-BCE cores. The speedup with
one powerful core and (n − r) 1-BCE cores is then

Speedupasymcore(f,n, r) = 1
1−f

perf (r)
+ f

perf (r)+n−r

. (4.12)

A dynamic multicore chip could configure its n BCE depending on the fraction f of a particular
application. If the sequential component of the application, (1 − f ), is large then configure the chip as
one r-BCE core while in parallel mode use all base cores in parallel. In this case

Speedupdyncore(f,n, r) = 1
1−f

perf (r)
+ f

n

. (4.13)

What non-obvious conclusions can be drawn from this analysis? First, the speedup of asymmetric
multicore processors is always larger and, in some cases, could be significantly larger than the speedup
of symmetric core processors. For example, the largest speedup when f = 0.975 and n = 1 024 is
achieved for a configuration with one 345-BCE core and 679 1-BCE cores. Second, increasing the
power of individual cores is beneficial even for symmetric core processors. For example, the maximum
speedup occurs for seven 1-BCE cores when f = 0.975 and n = 256.
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Not to be forgotten should be that task scheduling on asymmetric and dynamic multicore processors
will be fairly difficult. There are also other factors affecting the performance ignored by the simple
model discussed in [235].

4.7 DISTRIBUTED SYSTEMS; SYSTEM MODULARITY
A distributed system is a collection of autonomous and heterogeneous systems able to communicate
effectively with each other. The question is: How could such a collection be organized to cooperate and
compute efficiently? In spite of intensive research efforts spanning many years, an optimal organization
of a large-scale system has eluded us.

The inability to conceive an optimal general-purpose system reflects the realization that a system
cannot be looked upon in isolation, it should be analyzed in the context of the environment it is ex-
pected to operate in. The more complex and diverse this environment, the less likely it is to display
an asymptotically optimal performance for all, or virtually all applications. The organization and the
system management may be optimal for a class of applications, yet lead to a sub-optimal performance
for others.

Distributed systems have been around for several decades. For example, distributed file systems and
network file systems have been used for user convenience and for improving reliability and function-
ality of file systems for many years, see Section 6.3. Modern operating systems allow a user to mount
a remote file system and access it the same way a local file system is accessed, but with a performance
penalty due to larger communication costs. The Remote Procedure Call (RPC) supports inter-process
communication and allows a procedure on a system to invoke another procedure running in a different
address space, possibly on a remote system.

A distributed system is a collection of computers, connected through a network and a distribution
software called middleware, which enables computers to coordinate their activities and to share the
resources of the system; the users perceive the system as a single, integrated computing facility. The
middleware should support a set of desirable properties of the distributed system:

• Access transparency; local and remote information objects should be accessed using identical oper-
ations.

• Location transparency; information objects should be accessed without knowledge of their location.
• Concurrency transparency; processes running concurrently should share information objects with-

out interference among them.
• Replication transparency; multiple instances of information objects should be used to increase reli-

ability without the knowledge of users or applications.
• Failure transparency; the faults should be concealed.
• Migration transparency; the information objects in the system should be moved without affecting

the operation performed on them.
• Performance transparency; the system should be reconfigured based on the load and quality of

service requirements.
• Scaling transparency; the system and the applications should scale without a change in the system

structure and without affecting the applications.
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A distributed system has several characteristics: its components are autonomous, scheduling and
other resource management and security policies are implemented by each system. There are multiple
points of control and multiple points of failure in a distributed system and some sources may not
be accessible at all times. Distributed systems can be scaled by adding additional resources and can
be designed to maintain availability even at low levels of hardware / software / network reliability.
Availability is a characteristic of a system aiming to ensure an agreed level of operational performance
for an extended period of time.

Modularity. Modularity is a basic concept in the design of man-made systems; a system is made out of
components, or modules, with well-defined functions. Modularity supports the separation of concerns,
encourages specialization, improves maintainability, reduces costs, and decreases the development time
of a system.

Modularity has been used extensively since the industrial revolution for building every imaginable
product, from weaving looms to steam engines, from watches to automobiles, from electronic devices
to airplanes. Individual modules are often made of sub-assemblies. Modularity can reduce cost for the
manufacturer and for the consumers. The same module may be used by a manufacturer in multiple
products; to repair a defective product a consumer only replaces the module causing the malfunction
rather than the entire product. Modularity encourages specialization, as individual modules can be
developed by experts with deep understanding of a particular field. It also supports innovation, it allows
a module to be replaced with a better one, without affecting the rest of the system.

It is no surprise that the hardware, as well as the software systems are composed of modules in-
teracting with one another through well-defined interfaces. The software development for distributed
systems is more challenging than for sequential systems and these challenges are amplified by the scale
of the system and the diversity of applications.

Modularity, layering, and hierarchy are some of the means to cope with the complexity of dis-
tributed application software. Software modularity, the separation of a function into independent,
interchangeable modules requires well-defined interfaces specifying the elements provided and sup-
plied to a module [392]. A modular software design is driven by several principles outlined in [140]:
1. Information hiding – the user of a module does not need to know anything about the internal

mechanism of the module to make effective use of it.
2. Invariant behavior – the functional behavior of a module must be independent of the site or context

from which it is invoked.
3. Data generality – the interface to a module must be capable of passing any data object an applica-

tion may require.
4. Secure arguments – the interface to a module must not allow side-effects on arguments supplied to

the interface.
5. Recursive construction – a program constructed from modules must be usable as a component in

building larger programs or modules.
6. System resource management – resource management for program modules must be performed by

the computer system and not by individual program modules.
Some of these principles are implicitly supported by the enforced modularity. The system should pre-
vent modules to make private resource allocation decisions and should support a global address space.

Chapters 7 and 8 discuss applications and system software for large-scale distributed systems, the
computer clouds. The modularity concept is dissected and its applications are reviewed in the next
section.
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4.8 SOFT MODULARITY VERSUS ENFORCED MODULARITY
The progress made in system design is notable not in the least due to a number of principles guiding
the design of parallel and distributed systems. One of these principles is specialization; this means that
a number of functions are identified and an adequate number of system components are configured
to provide these functions. For example, data storage is an intrinsic function and storage servers are a
ubiquitous presence in most systems. This brings us to the modularity concept.

Modularity allows us to build a complex software system from a set of components built and tested
independently. A requirement for modularity is to clearly define the interfaces between modules and
enable the modules to work together. The steps involved in the transfer of the flow of control between
the caller and the callee are:
1. The caller saves its state including the registers, the arguments, and the return address on the stack.
2. The callee loads the arguments from the stack, carries out the calculations and then transfers control

back to the caller.
3. The caller adjusts the stack, restores its registers, and continues its processing.

Soft modularity. We distinguish soft modularity from enforced modularity. The former implies divid-
ing a program into modules which call each other and communicate using shared-memory or follow
the procedure call convention.

Soft modularity hides the details of the implementation of a module and has many advantages: once
the interfaces of the modules are defined, the modules can be developed independently; a module can
be replaced with a more elaborate, or with a more efficient one, as long as its interfaces with the other
modules are not changed. The modules can be written using different programming languages and can
be tested independently.

Soft modularity presents a number of challenges. It increases the difficulty of debugging; for ex-
ample, a call to a module with an infinite loop will never return. There could be naming conflicts and
wrong context specifications. The caller and the callee are in the same address space and may misuse
the stack, e.g., the callee may use registers that the caller has not saved on the stack, and so on.

Strongly-typed languages may enforce soft modularity by ensuring type safety at compile time
or at run time, it may reject operations or function class which disregard the data types, or it may
not allow class instances to have their class altered. Soft modularity may be affected by errors in the
run-time system, errors in the compiler, or by the fact that different modules are written in different
programming languages.

Enforced modularity. The ubiquitous client–server paradigm is based on enforced modularity; this
means that the modules are forced to interact only by sending and receiving messages. This paradigm
leads to a more robust design, the clients and the servers are independent modules and may fail sepa-
rately.

Moreover, the servers are stateless, they do not have to maintain state information. A server may fail
and then come back up without the clients being affected, or even noticing the failure of the server. The
system is more robust as it does not allow errors to propagate. Enforced modularity makes an attack
less likely because it is difficult for an intruder to guess the format of the messages or the sequence
numbers of segments, when messages are transported by TCP.

Last but not least, resources can be managed more efficiently. For example, a server typically con-
sists of an ensemble of systems, a front-end system which dispatches the requests to multiple back-end
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systems which process the requests. Such an architecture exploits the elasticity of a computer cloud
infrastructure, the larger the request rate, the larger the number of back-end systems activated.

The client–server paradigm. This paradigm allows systems with different processor architecture,
e.g., 32-bit or 64-bit, with different operating systems, e.g., multiple versions of operating systems,
such as Linux, Mac OS, or Microsoft Windows, libraries and other system software, to cooperate.
The client–server paradigm increases flexibility and choice; the same service could be available from
multiple providers, a server may use services provided by other servers, a client may use multiple
servers, and so on.

Heterogeneity of systems based on the client–server paradigm is less of a blessing, the problems it
creates outweigh its appeal. Heterogeneity adds to the complexity of the interactions between a client
and a server as it may require conversion from one data format to another, e.g., from little-endian to
big-endian or vice-versa, or conversion to a canonical data representation. There is also uncertainty
in terms of response time as some servers may be more performant than others or may have a lower
workload.

A major difference between the basic models of grid and cloud computing is that the former does
not impose any restrictions regarding heterogeneity of the computing platforms, whereas homogeneity
used to be a basic tenet of computer clouds infrastructure. Originally, a computer cloud was a collection
of homogeneous systems, systems with the same architecture and running under the same or very
similar system software. We have already seen in Section 2.4 that nowadays computer clouds exhibit
some level of heterogeneity.

The clients and the servers communicate through a network that can be congested. Transferring
large volumes of data through the network can be time-consuming; this is a major concern for data-
intensive applications in cloud computing. Communication through the network adds additional delay
to the response time. Security becomes a major concern as the traffic between a client and a server can
be intercepted.

Remote Procedure Call (RPC). RPCs were introduced in the early 1970s by Bruce Nelson and used
for the first time at PARC (Palo Alto Research Park). PARC is credited with many innovative ideas
in distributed systems including the development of the Ethernet, the GUI interfaces, bitmap displays,
and the Alto system.

RPC is often used for the implementation of client–server systems interactions. For example,
the Network File System (NFS) introduced in 1984 was based on Sun’s RPC. Many programming
languages support RPCs. For example, Java Remote Method Invocation (Java RMI) provides a func-
tionality similar to the one of UNIX RPC methods; XML-RPC uses XML to encode HTML-based
calls. The RPC standard is described in RFC 1831.

To use an RPC, a process may use special services PORTMAP or RPCBIND available at port 111
to register and for service lookup. RPC messages must be well-structured; they identify the RPC and
are addressed to an RPC demon listening at an RPC port. XDP is a machine independent representation
standard for RPC.

RPCs reduce the fate sharing between caller and the callee. RPCs take longer than local calls
due to communication delays. Several RPC semantics are used to overcome potential communication
problems:
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• At least once: a message is resent several times and an answer is expected. The server may end up
executing a request more than once, but an answer may never be received. This semantics is suitable
for operation free of side-effects.

• At most once: a message is acted upon at most once. The sender sets up a timeout for receiving the
response. When the timeout expires an error code is delivered to the caller. This semantics requires
the sender to keep a history of the time-stamps of all messages as messages may arrive out-of-order.
This semantics is suitable for operations which have side effects.

• Exactly once: it implements the at most once semantics and requests an acknowledgment from the
server.

Applications of the client–server paradigm. The large spectrum of applications attests to the role
played by the client–server paradigm in the modern computing landscape. Examples of popular ap-
plications of the client–server paradigm are numerous and include: the World Wide Web, the Domain
Name System (DNS), the X-windows, electronic mail, see Figure 4.6A, event services, see Figure 4.6B,
and so on.

The World Wide Web illustrates the power of the client–server paradigm and its effects on the
society. As of June 2011 there were close to 350 million web sites, in 2017 there are around one
billion web sites. The web allows users to access resources such as text, images, digital music, and
any imaginable type of information previously stored in a digital format. A web page is created using
a description language called HTML (Hypertext Description Language). The information in each web
page is encoded and formatted according to some standard, e.g., GIF, JPEG for images, MPEG for
videos, MP3 or MP4 for audio, and so on.

The web is based upon a “pull” paradigm; the resources are stored at the server’s site and the client
pulls them from the server. Some web pages are created “on the fly” others are fetched from the disk.
The client, called a web browser and the server communicate using an application-level protocol called
HTTP (HyperText Transfer Protocol) built on top of the TCP transport protocol.

The web server also called an HTTP server listens at a well known port, port 80, for connections
from clients. Figure 4.7 shows the sequence of events when a client browser sends an HTTP request to
a server to retrieve some information and the server constructs the page on the fly and then the browser
sends another HTTP request for an image stored on the disk. First a TCP connection between the client
and the server is established using a process called a three-way handshake. The client provides an
arbitrary initial sequence number in a special segment with the SYN control bit on; then the server ac-
knowledges the segment and adds its own arbitrarily chosen initial sequence number; finally, the client
sends its own acknowledgment ACK as well as the HTTP request and the connection is established.
The time elapsed from the initial request till the server’s acknowledgment reaches the client is called
the RTT (Round-Trip Time).

The response time, defined as the time from the instance the first bit of the request is sent until the
last bit of the response is received, consists of several components: the RTT, the server residence time,
the time it takes the server to construct the response, and the data transmission time. RTT depends on
the network latency, the time it takes a packet to cross the network from the sender to the receiver.
The data transmission time is determined by the network bandwidth. In turn, the server residence time
depends on the server load.

Often, the client and the server do not communicate directly, but through a proxy server as shown in
Figure 4.8. Proxy servers could provide multiple functions; for example, they may filter client requests
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FIGURE 4.6

(A) Email service; the sender and the receiver communicate asynchronously using inboxes and outboxes. Mail
daemons run at each site. (B) An event service supports coordination in a distributed system environment.
The service is based on the publish-subscribe paradigm; an event producer publishes events and an event
consumer subscribes to events. The server maintains queues for each event and delivers notifications to
clients when an event occurs.
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FIGURE 4.7

Client–server communication, the World Wide Web. The three-way handshake involves the first three
messages exchanged between the client browser and the server. Once the TCP connection is established the
HTTP server takes its time to construct the page to respond to the first request; to satisfy the second request
the HTTP server must retrieve an image from the disk. The response time includes the RTT, the server
residence time, and the data transmission time.

and decide whether or not to forward the request based on some filtering rules. A proxy server may
redirect a request to a server in close proximity of the client or to a less loaded server. A proxy can also
act as a cache and provide a local copy of a resource, rather than forward the request to the server.

Another type of client–server communication is HTTP-tunneling used most often as a means of
communication from network locations with restricted connectivity. Tunneling means encapsulation of
a network protocol, in our case HTTP acts as a wrapper for the communication channel between the
client and the server, see Figure 4.8.

4.9 LAYERING AND HIERARCHY
Layering and hierarchy have been present in social systems since ancient times. For example, the Spar-
tan Constitution, called Politeia, describes a Dorian society based on rigidly layered social system and
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FIGURE 4.8

A client can communicate directly with the server, it can communicate through a proxy, or it may use tunneling
to cross the network.

a strong military. Nowadays, in a modern society, we are surrounded by organizations structured hier-
archically. We have to recognize that layering and hierarchical organization have their own problems,
could negatively affect the society, impose a rigid structure and affect social interactions, increase the
overhead of activities, and prevent the system from acting promptly when such actions are necessary.

Layering demands modularity as each layer fulfills a well-defined function. The communication
patterns in case of layering are more restrictive, a layer is expected to communicate only with the adja-
cent layers. This restriction, the limitation of communication patterns, clearly reduces the complexity
of the system and makes it easier to understand its behavior.

There is no surprise that modularity, layering, and hierarchy are critical for computer and commu-
nication systems. Since the early days of computing large programs have been split into modules, each
with a well-defined functionality. Modules with related functionalities have then been grouped together
into numerical, graphics, statistical, and many other types of libraries.

Layering helps us dealing with complicated problems when we have to separate concerns that
prevent us from making optimal design decisions. To do so we define layers that address each concern
and design clear interfaces between the layers.

Probably, the best example is layering of communication protocols. Early on it was recognized
the need of accommodating a variety of physical communication channels that carry electromagnetic,
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optical, or acoustic signals thus, the need for a physical layer. The next concern is how to transport bits,
not signals between two systems directly connected to one another by a communication channel thus,
the need for a data link layer.

Communication requires networks with multiple intermediate nodes. When bits have to traverse a
chain of intermediate nodes from a source to the destination the concern is how to forward the bits from
one intermediate node to the next, so the network layer was introduced. Then, it was recognized that
the source and the recipient of information are in fact outside the network and the sender only wants
the data to reach destination unaltered. Therefore, the transport layer was deemed necessary. Finally,
the data sent and received has a meaning only in the context of an application thus, the need for the
application layer.

Strictly enforced layering can prevent optimizations. For example, cross-layer communication in
networking was proposed to allow wireless applications to take advantage of information available
at the Media Access Control (MAC) sub-layer of the data link layer. This example shows that lay-
ering gives us insight as to where to place the basic mechanisms for error control, flow control, and
congestion control of the network protocol stack.

An interesting question is if a layered cloud architecture could be designed that has practical impli-
cations for the future development of computing clouds. One could argue that it may be too early for
such an endeavor, that we need time to fully understand how to better organize a cloud infrastructure
and we need to gather data to support the advantages of one approach over another.

On the other hand, there are other systems where it is difficult to envision a layered organization
because of the complexity of the interaction between the individual modules. Consider for example an
operating system which has a set of well-defined functional components:

• The processor management subsystem, responsible for processor virtualization, scheduling, inter-
rupt handling, and execution of privileged operations and system calls.

• The virtual memory management subsystem, responsible for translating virtual addresses to physi-
cal addresses.

• The multi-level memory management subsystem, responsible for transferring storage blocks be-
tween different memory levels, most commonly between primary and secondary storage.

• The I/O subsystem, responsible for transferring data between the primary memory and the I/O
devices.

• The networking subsystem responsible for network communication.

The processor management interacts with all the other subsystems and there are also multiple in-
teractions between the other subsystems; therefore, it seems unlikely that a layered organization would
be feasible in this case.

4.10 VIRTUALIZATION; LAYERING AND VIRTUALIZATION
Virtualization abstracts the underlying physical resources of a computer or communication system and
simplifies their use, isolates users from one another, and supports replication which, in turn, increases
the elasticity of the system. Virtualization has been used successfully since the late 1950s; a virtual
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memory based on paging was first implemented on the Atlas computer at University of Manchester in
the United Kingdom, in 1959.

Virtualization simulates the interface to a physical object by any one of four means [434]:
1. Multiplexing: create multiple virtual objects from one instance of a physical object. For example,

a processor is multiplexed among a number of processes or threads.
2. Aggregation: create one virtual object from multiple physical objects. For example, a number of

physical disks are aggregated into a RAID disk.
3. Emulation: construct a virtual object from a different type of a physical object. For example, a

physical disk emulates a Random Access Memory.
4. Multiplexing and emulation. Examples: virtual memory with paging multiplexes real memory and

disk and a virtual address emulates a real address; the TCP protocol emulates a reliable bit pipe
and multiplexes a physical communication channel and a processor.
Virtualization is a critical aspect of cloud computing, equally important for the providers and the

consumers of cloud services, and plays an important role for:

• System security, as it allows isolation of services running on the same hardware.
• Performance and reliability, as it allows applications to migrate from one platform to another.
• The development and management of services offered by a provider.
• Performance isolation.

In a cloud computing environment a hypervisor or virtual-machine monitor runs on the physical
hardware and exports hardware-level abstractions to one or more guest operating systems. A guest OS
interacts with the virtual hardware in the same manner it would interact with the physical hardware,
but under the watchful eye of the hypervisor which traps all privileged operations and mediates the
interactions of the guest OS with the hardware. For example, a hypervisor would control I/O operations
to two virtual disks implemented as two different set of tracks on a physical disk. New services can be
added without the need to modify an operating system.

User convenience is a necessary condition for the success of the utility computing paradigm; one
of the multiple facets of user convenience is the ability to run remotely using the system software
and libraries required by the application. User convenience is a major advantage of a VM architecture
versus a traditional operating system. For example, an AWS user could submit an Amazon Machine
Image (AMI) containing the applications, libraries, data, and the associated configuration settings; the
user could choose the operating system for the application, then start, terminate, and monitor as many
instances of the AMI as needed, using the web service APIs and the performance monitoring and
management tools provided by the AWS.

There are side effects of virtualization, notably the performance penalty and the hardware costs.
All privileged operations of a VM must be trapped and validated by the hypervisor which, ultimately,
controls the system behavior. The increased overhead introduced by the hypervisor has a negative
impact on the performance.

The cost of a system running multiple VMs is higher than the cost of a system running a traditional
OS. In the former case the physical hardware is shared among a set of guest operating systems and it is
typically configured with faster and/or multicore processors, more memory, larger disks, and additional
network interfaces as compared to a system running a traditional operating system.
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FIGURE 4.9

Layering and interfaces between layers in a computer system. The software components including
applications, libraries, and operating system interact with the hardware via several interfaces: the Application
Program Interface (API), the Application Binary Interface (ABI), and the Instruction Set Architecture (ISA). An
application uses library functions (A1), makes system calls (A2), and executes machine instructions (A3).

Layers and interfaces between layers. A common approach to managing system complexity is to
identify a set of layers with well-defined interfaces among them. The interfaces separate different
levels of abstraction. Layering minimizes the interactions among the subsystems and simplifies the
description of the subsystems. Each subsystem is abstracted through its interfaces with the other sub-
systems thus, we are able to design, implement, and modify the individual subsystems independently.

The ISA (Instruction Set Architecture) defines the set of instructions of a processor; for example,
the Intel architecture is represented by the x86-32 and x86-64 instruction sets for systems supporting
32-bit addressing and 64-bit addressing, respectively. The hardware supports two execution modes, a
privileged, or kernel mode, and a user mode.

The instruction set consists of two sets of instructions, privileged instructions that can only be
executed in kernel mode and the non-privileged instructions that can be executed in user mode. There
are also sensitive instructions that can be executed in kernel and in user mode, but behave differently,
see Section 10.3.

Computer systems are fairly complex and their operation is best understood when we consider a
model similar with the one in Figure 4.9 which shows the interfaces between the software components
and the hardware [455]. The hardware consists of one or more multicore processors, a system intercon-
nect (e.g., one or more busses) a memory translation unit, the main memory, and I/O devices, including
one or more networking interfaces.

Applications written mostly in High Level Languages (HLL) often call library modules and are
compiled into object code. Privileged operations, such as I/O requests, cannot be executed in user
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mode; instead, application and library modules issue system calls and the operating system determines
if the privileged operations required by the application do not violate system security or integrity and,
if so, executes them on behalf of the user. The binaries resulting from the translation of HLL programs
are targeted to a specific hardware architecture.

The first interface, at the boundary of the hardware and the software, is the Instruction Set Archi-
tecture (ISA). The next interface is the Application Binary Interface (ABI) which allows the ensemble
consisting of the application and the library modules to access the hardware. ABI does not include
privileged system instructions, instead it invokes system calls.

Finally, the Application Program Interface (API) defines the set of instructions the hardware was
designed to execute and gives the application access to the ISA. API includes HLL library calls which
often invoke system calls. Recall that a process is the abstraction for the code of an application at
execution time; a thread is a light-weight process. ABI is the projection of the computer system seen
by the process and API is the projection of the same system from the perspective of the HLL program.

The binaries created by a compiler for a specific ISA and a specific operating systems are not
portable. Such code cannot run on a computer with a different ISA, or on the computer with the same
ISA, but a different OS. It is possible though to compile an HLL program for a VM environment,
as shown in Figure 4.10. In this case portable code is produced and distributed and then converted
by binary translators to the ISA of the host system. A dynamic binary translation converts blocks of
guest instructions from the portable code to the host instructions and leads to a significant performance
improvement, as such blocks are cached and reused.

4.11 PEER-TO-PEER SYSTEMS
Distributed systems discussed in this chapter allow access to resources in a tightly controlled envi-
ronment. System administrators enforce security rules and control the allocation of physical, rather
than virtual resources. In all models of network-centric computing prior to utility computing a user
maintained direct control of the software and the data residing on remote systems.

This user-centric model, in place since early 1960s, was challenged in 1990s by the peer-to-peer
(P2P) model. P2P systems share some ideas with computer clouds. The new distributed computing
model promoted the idea of low-cost access to storage and CPU cycles provided by participant sys-
tems. In this case, the resources are located in different administrative domains. The P2P systems are
self-organizing and decentralized, while the servers in a cloud are in a single administrative domain
and have a central management.

P2P systems exploit the network infrastructure to provide access to distributed computing re-
sources. Decentralized applications developed in the 1980s such as SMTP (Simple Mail Transfer
Protocol), a protocol for Email distribution, and NNTP (Network News Transfer Protocol), an ap-
plication protocol for dissemination of news articles, are early examples of P2P systems.

Systems developed in late 1990s such as the music-sharing system Napster gave participants access
to storage distributed over the network. The first volunteer-based scientific computing, SETI@home,
used free cycles of participating systems to carry out compute-intensive tasks.

The P2P model represents a significant departure from the client–server model, the cornerstone of
distributed applications for several decades. P2P systems have several desirable properties [426]:
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FIGURE 4.10

High Level Language (HLL) code can be translated for a specific architecture and operating system. The HLL
code can also be compiled into portable code and then the portable code can be translated for systems with
different ISAs. The shared/distributed resulting code is the object code in the first case and the portable code
in the second case.

• Require a minimally dedicated infrastructure, as resources are contributed by the participating sys-
tems.

• Are highly decentralized.
• Are scalable, the individual nodes are not required to be aware of the global state.
• Are resilient to faults and attacks, as few of their elements are critical for the delivery of service and

the abundance of resources can support a high degree of replication.
• Individual nodes do not require excessive network bandwidth as servers used in case of the client–

server model do.
• The systems are shielded from censorship due to the dynamic and often unstructured system archi-

tecture.

Undesirable properties of peer-to-peer systems are also notable. Decentralization raises the question
if P2P systems can be managed effectively and provide the security required by various applications.
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The fact that they are shielded from censorship makes them a fertile ground for illegal activities in-
cluding distribution of copyrighted content.

The new paradigm was embraced by applications other than file sharing. Since 1999 new P2P ap-
plications such as the ubiquitous Skype, a voice over IP telephony service,4 data streaming applications
such as Cool Streaming [546] and BBC’s online video service, content distribution networks such as
CoDeeN [511], and volunteer computing applications based on the Berkeley Open Infrastructure for
Networking Computing (BOINC) platform [32], have proved their appeal to users.

Skype reported in 2008 that 276 million registered users have used more than 100 billion minutes
for voice and video calls. The site www.boinc.berkeley.edu reports that at the end of June 2012 volun-
teer computing involved more than 275 000 individuals and more than 430 000 computers supplying a
monthly average of almost 6.3 × 109 MFlops. It is also reported that the peer-to-peer traffic accounts
for a very large fraction of the Internet traffic, with estimates ranging from 40% to more than 70%.

Many groups from industry and academia rushed to develop and test new ideas taking advantage
of the fact that P2P applications do not require a dedicated infrastructure. Applications such as Chord
[466] and Credence [509] address issues critical for the effective operation of decentralized systems.

Chord is a distributed lookup protocol to identify the node where a particular data item is stored.
The routing tables are distributed and, while other algorithms for locating an object require the nodes
to be aware of most of the nodes of the network, Chord maps a key related to an object to a node of the
network using routing information about a few nodes only.

Credence is an object reputation and ranking scheme for large-scale P2P file sharing systems. Rep-
utation is of paramount importance for systems which often include many unreliable and malicious
nodes. In the decentralized algorithm used by Credence each client uses local information to evaluate
the reputation of other nodes and shares its own assessment with its neighbors. The credibility of a
node depends only on the votes it casts.

Each node computes the reputation of another node based solely on the degree of matching with its
own votes and relies on like-minded peers. Overcite [470] is a P2P application to aggregate documents
based on a three-tier design. The web front-ends accept queries and display the results while servers
crawl through the web to generate indexes and to perform keyword searches; the web back-ends store
documents, metadata, and coordination state on the participating systems.

The rapid acceptance of the new paradigm triggered the development of a new communication
protocol allowing hosts at the network periphery to cope with the limited network bandwidth available
to them. BitTorrent is a peer-to-peer file sharing protocol enabling a node to download/upload large
files from/to several hosts simultaneously.

P2P systems differ in their architecture. Some do not have any centralized infrastructure, while
others have a dedicated controller, but this controller is not involved in resource-intensive operations.
For example, Skype has a central site to maintain the user accounts; the users sign in and pay for specific
activities at this site. The controller for a BOINC platform maintains membership and is involved in
task distribution to participating systems. The nodes with abundant resources in systems without any
centralized infrastructure often act as supernodes and maintain information useful to increasing the
system efficiency, e.g., indexes of the available content.

4Skype allows close to 700 million registered users from many countries around the globe to communicate using a proprietary
voice-over-IP protocol. The system developed in 2003 by Niklas Zennström and Julius Friis was acquired by Microsoft in 2011
and nowadays is a hybrid P2P and client–server system.

http://www.boinc.berkeley.edu
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Regardless of the architecture, P2P systems are built around an overlay network, a virtual network
superimposed over the real network. Each node maintains a table of overlay links connecting it with
other nodes of this virtual network, each node being identified by its IP addresses. Two types of overlay
networks, unstructured and structured, are used by P2P systems. Random walks starting from a few
bootstrap nodes are usually used by systems desiring to join an unstructured overlay.

Each node of a structured overlay has a unique key which determines its position in the structure;
the keys are selected to guarantee a uniform distribution in a very large name space. Structured overlay
networks use key-based routing (KBR); given a starting node v0 and a key k, the function KBR(v0, k)

returns the path in the graph from v0 to the vertex with key k. Epidemic algorithms are often used by
unstructured overlays to disseminate network topology.

4.12 LARGE-SCALE SYSTEMS
The developments in computer architecture, storage technology, networking, and software during the
last several decades of the twentieth century coupled with the need to access and process information
led to several large-scale distributed system developments:

• The web and the semantic web expected to support composition of services (not necessarily com-
putational services) available on the web. The web is dominated by unstructured or semi-structured
data, while the semantic web advocates inclusion of semantic content in web pages.

• The Grid, initiated in early 1990s by National Laboratories and universities primarily for applica-
tions in science and engineering.

The need to share data from high energy physics experiments motivated Sir Tim Berners-Lee, who
worked at CERN at Geneva in late 1980s, to put together the two major components of the World
Wide Web: HTML (Hypertext Markup Language) for data description and HTTP (Hypertext Transfer
Protocol) for data transfer. The web opened a new era in data sharing and ultimately led to the concept
of network-centric content.

The semantic Web is an effort to enable lay people to find, share, and combine information available
on the web more easily. The name was coined by Berners-Lee to describe “a web of data that can be
processed directly and indirectly by machines.” It is a framework for data sharing among applications
based on the Resource Description Framework (RDF). In this vision, the information can be read-
ily interpreted by machines, so machines can perform more of the tedious work involved in finding,
combining, and acting upon information on the web.

The semantic web is “largely unrealized” according to Berners-Lee. Several technologies are nec-
essary to provide a formal description of concepts, terms, and relationships within a given knowledge
domain; they include the Resource Description Framework (RDF), a variety of data interchange for-
mats, and notations such as RDF Schema (RDFS) and the Web Ontology Language (OWL).

Gradually, the need to make computing more affordable and to liberate the users from the concerns
regarding system and software maintenance reinforced the idea of concentrating computing resources
in data centers. Initially, these centers were specialized, each running a limited palette of software
systems, as well as applications developed by the users of these systems. In the early 1980s major
research organizations, such as the National Laboratories and large companies, had powerful comput-
ing centers supporting large user populations scattered throughout wide geographic areas. Then the
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idea to link such centers in an infrastructure resembling the power grid was born; the model known as
network-centric computing was taking shape.

A computing grid is a distributed system consisting of a large number of loosely coupled, heteroge-
neous, and geographically dispersed systems in different administrative domains. The term computing
grid is a metaphor for accessing computer power with similar ease as we access power provided by the
electric grid. Software libraries known as middleware were furiously developed since early 1990s to
facilitate access to grid services.

The vision of the grid movement was to give a user the illusion of a very large virtual supercomputer.
The autonomy of the individual systems and the fact that these systems were connected by wide-area
networks with latency higher than the latency of the interconnection network of a supercomputer posed
serious challenges to this vision. Nevertheless, several “Grand Challenge” problems, such as protein
folding, financial modeling, earthquake simulation, and climate/weather modeling, run successfully on
specialized grids. The Enabling Grids for Escience project is arguably the largest computing grid; along
with the LHC Computing Grid (LCG), the Escience project aims to support the experiments using the
Large Hadron Collider (LHC) at CERN which generates several gigabytes of data per second, or 10
PB (petabytes) per year.

In retrospect, two basic assumptions about the infrastructure prevented the grid movement from
having the impact its supporters were hoping for. The first is the heterogeneity of the individual systems
interconnected by the grid. The second is that systems in different administrative domain are expected
to cooperate seamlessly. Indeed, the heterogeneity of the hardware and of the system software poses
significant challenges for application development and for application mobility.

At the same time, critical areas of system management including scheduling, optimization of re-
source allocation, load balancing, and fault-tolerance are extremely difficult in a heterogeneous system.
The fact that resources are in different administrative domains further complicates many, already dif-
ficult, problems related to security and resource management. While very popular in the science and
the engineering communities, the grid movement did not address the major concerns of enterprise
computing community and did not make a noticeable impact on the IT industry.

Cloud computing is a technology largely viewed as the next big step in the development and deploy-
ment of an increasing number of distributed applications. The companies promoting cloud computing
seem to have learned the most important lessons from the grid movement. Computer clouds are typ-
ically homogeneous. An entire cloud shares the same security, resource management, cost and other
policies, and last but not least, it targets enterprise computing. These are some of the reasons why sev-
eral agencies of the US Government including the Health and Human Services, the Center for Disease
Control (CDC), NASA, Navy’s Next Generation Enterprise Network (NGEN), and Defense Informa-
tion Systems Agency (DISA) have launched cloud computing initiatives and conduct actual system
developments intended to improve the efficiency and effectiveness of their information processing
needs.

4.13 COMPOSABILITY BOUNDS AND SCALABILITY
Nature creates complex systems from simple components. For example, a vast variety of proteins are
linear chains assembled from twenty one amino acids, the building blocks of proteins. Twenty amino
acids are naturally incorporated into polypeptides and are encoded by the genetic code.
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Imitating nature, man-made systems are assembled from sub-assemblies; in turn, a sub-assembly is
made from several modules, each module could consist of sub-modules, and so on. Composability has
natural bounds imposed by the laws of physics as we have seen when discussing heat dissipation of
solid state devices. As the number of components increases, the complexity of a system also increases.

The limits of composability are reached as new physical phenomena affect the system whenever
the physical size of the individual components changes. A recent paper with the suggestive title “When
every atom counts” [345] discusses the fact that even the most modern solid state fabrication facilities
cannot produce chips with consistent properties. The percentage of defective or substandard chips has
been constantly increasing as the components have become smaller and smaller.

The lack of consistency in the manufacturing process of solid state devices is attributed to the
increasingly smaller size of the physical components of a chip. This problem is identified by the Inter-
national Technology Roadmap for Semiconductors as “a red brick,” a problem without a clear solution,
a wall that could prevent the further progress. Chip consistency is no longer feasible because the tran-
sistors and the “wires” on a chip are so small that random differences in the placement of an atom can
have a devastating effect, e.g., it can increase the power consumption by an order of magnitude and
slowdown the chip by as much as 30%.

As the features become smaller and smaller the range of the threshold voltage, the voltage needed
to turn a transistor on and off, has been widening and many transistors have this threshold voltage
at or near zero thus, they cannot operate as switches. While the range for the 28 nm technology was
approximately between +0.01 and +0.4 V, the range for the 20 nm technology is between −0.05 and
+0.45 V and the range becomes even wider, from −0.18 to +0.55 for the 14 nm technology.

There are physical bounds for the composition of analog systems: noise accumulation, heat dissi-
pation, cross-talk, the interference of signals on multiple communication channels, and several other
factors limit the number of components of an analog system. Digital systems have more distant bounds,
but composability is still limited by physical laws.

There are virtually no bounds on composition of digital computing and communication systems
controlled by software. The Internet is a network of networks and a prime example of composability
with distant bounds. Computer clouds are another example; a cloud is composed of a very large num-
ber of servers and interconnects, each server is made up of multiple processors, and each processor
has multiple cores. Software is the ingredient which pushes the composability bounds and liberates
computer and communication system from the limits imposed by physical laws.

In the physical world the laws valid at one scale break down at a different scale, e.g., the laws
of classical mechanics are replaced at atomic and subatomic scale by quantum mechanics. Thus, we
should not be surprised that scale really matters in the design of computing and communication sys-
tems. Indeed, architectures, algorithms, and policies that work well for systems with a small number
of components very seldom scale up.

For example, many computer clusters have a front-end which acts as the nerve center of the sys-
tem, manages communication with the outside world, monitors the entire system, and supports system
administration and software maintenance. A computer cloud has multiple such nerve centers and new
algorithms to support collaboration among these centers must be developed. Scheduling algorithms
that work well within the confines of a single system cannot be extended to collections of autonomous
systems when each system manages local resources; in this case, as in the previous example, entities
must collaborate with one another and this requires communication and consensus.
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Another manifestation of this phenomenon is in the vulnerabilities of large-scale distributed sys-
tems. The implementation of Google’s Bigtable revealed that many distributed protocols designed to
protect against network partitions and fail-stop are unable to cope with failures due to scale [96]. Mem-
ory and network corruption, extended and asymmetric network partitions, systems that fail to respond,
and large clock skews occur with increased frequency in a large-scale system and they interact with
one another in a manner that greatly affects the overall system availability.

Scaling has other dimensions than just the number of components; the space plays an important
role, the communication latency is small when the component systems are clustered together within a
small area and allows us to implement efficient algorithms for global decision making, e.g., consensus
algorithms. When, for the reasons discussed in Section 1.6, the data centers of a cloud provider are
distributed over a large geographic area, transactional database systems are of little use for most online
transaction oriented systems and a new type of data store has to be introduced in the computational
ecosystem.

Societal scaling means that a service is used by a very large segment of population and/or is a
critical element of the infrastructure. There is no better example to illustrate how societal scaling affects
the system complexity than communication supported by the Internet. The infrastructure supporting
the service must be highly available. A consequence of redundancy and of the measures to maintain
consistency is increased system complexity.

At the same time, the popularity of the service demands simple and intuitive means to access the
infrastructure. Again, the system complexity increases due to the need to hide the intricate mechanisms
from a lay person with little understanding of the technology. The vulnerability of wireless systems
has increased due to the desire to design wireless devices that: (a) operate efficiently in terms of power
consumption; (b) present the user with a simple interface and few choices; and (c) satisfy a host of
other popular functions. This is happening at the time when not many smart phone and tablet users
understand the security risks of wireless communication.

4.14 HISTORY NOTES AND FURTHER READINGS
Two theoretical developments in 1930s were critical for the development of modern computers; the first
was the publication of Alan Turing’s 1936 paper [489]. The paper provided a definition of a universal
computer, called a Turing machine, which executes a program stored on tape; the paper also proved that
there were problems such as the halting problem, that could not be solved by any sequential process.
The second major development was the publication in 1937 of Claude Shannon’s master’s thesis at
MIT “A Symbolic Analysis of Relay and Switching Circuits” in which he showed that any Boolean
logic expression can be implemented using logic gates.

The first Turing complete5 computing device was Z3, an electro-mechanical device built by Kon-
rad Zuse in Germany in May 1941; Z3 used a binary floating-point representation of numbers and
was program-controlled by a film-stock. The first programmable electronic computer ENIAC, built at
the Moore School of Electrical Engineering at the University of Pennsylvania by a team led by John

5A Turing complete computer is equivalent to a universal Turing machine except for memory limitations.
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Presper Eckert and John Mauchly, became operational in July 1946 [337]; ENIAC, unlike Z3, used a
decimal number system and was program-controlled by patch cables and switches.

John von Neumann, the famous mathematician and theoretical physicist, contributed fundamental
ideas for modern computers [81,504,505]. He was one of the most brilliant minds of the twentieth
century, with an uncanny ability to transform fuzzy ideas and garbled thoughts to crystal clear and
scientifically sound concepts. John von Neumann drew the insight for the stored-program computer
from Alan Turing’s work6 and from his visit at University of Pennsylvania.

John von Neumann thought that ENIAC was an engineering marvel, but was less impressed with the
awkward manner to “program” it by manually connecting cables and setting switches. He introduced
the so-called “von Neumann architecture” in a report published in 1940s. To this day he is faulted by
some because he failed to mention in this report the sources of his insight.

John von Neumann led the development at the Institute of Advanced Studies at Princeton of MA-
NIAC, an acronym for “mathematical and numerical integrator and computer.” MANIAC was closer to
the modern computers than any of its predecessors. This computer was used for sophisticated calcula-
tions required by the development of the hydrogen bomb nicknamed “Ivy Mike” secretly detonated on
November 1, 1952, over an island that no longer exists in the South Pacific. In a recent book [158] the
historian of science George Dyson writes: “The history of digital computing can be divided into an Old
Testament whose prophets, led by Leibnitz, supplied the logic, and a New Testament whose prophets
led by von Neumann built the machines. Alan Turing arrived between them.”

In 1951 Sir Maurice Vincent Wilkes developed the concept of microprogramming first implemented
in the EDSAC 2 computer. Wilkes is also credited with the idea of symbolic labels, macros and sub-
routine libraries.

Third-generation computers were built during the 1964–1971 period; they made extensive use of
integrated circuits (ICs) and ran under the control of an operating systems. MULTICS (Multiplexed
Information and Computing Service) was an early time-sharing operating system for the GE 645 main-
frame, developed jointly by MIT, GE, and Bell Labs. Multics (often called Multix) had numerous novel
features and implemented a fair number of interesting concepts such as: a hierarchical file system, ac-
cess control lists for file information sharing, dynamic linking, and on-line reconfiguration.

In his address “A Career in Computer System Architecture” MIT Professor Jack Dennis writes:
“In 1960 Professor John McCarthy, now at Stanford University and known for his contributions to
artificial intelligence, led the Long Range Computer Study Group (LRCSG) which proposed objectives
for MIT’s future computer systems. I had the privilege of participating in the work of the LRCSG,
which led to Project MAC and the Multics computer and operating system, under the organizational
leadership of Prof. Robert Fano and the technical guidance of Prof. Fernando Corbató. At this time Prof.
Fano had a vision of the Computer Utility – the concept of the computer system as a repository for the
knowledge of a community – data and procedures in a form that could be readily shared – a repository
that could be built upon to create ever more powerful procedures, services, and active knowledge from
those already in place. Prof. Corbató’s goal was to provide the kind of central computer installation
and operating system that could make this vision a reality. With funding from DARPA, the Defense

6Alan Turing came to Institute of Advanced Studies at Princeton in 1936 and got his Ph.D. there in 1938; von Neumann offered
him a position at the Institute but, as the dark clouds signaling the approaching war were gathering over Europe, Turing decided
to go back to England.
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Advanced Research Projects Agency, the result was Multics...... in the 1970s I found it easy to get
government funding. The agencies were willing to fund pretty wild ideas, and I was supported to do
research on data flow architecture, first by NSF and later by the DOE” (http://csg.csail.mit.edu/Users/
dennis/essay.htm).

The development of the UNIX system was a consequence of the withdrawal of Bell Labs from the
Multics project in 1968. UNIX was developed in 1969 for a DEC PDP minicomputer by a group led
by Kenneth Thompson and Dennis Ritchie [422]. According to [421] “the most important job of UNIX
is to provide a file-system.” The same reference discusses another concept introduced by the system:
“For most users, communication with UNIX is carried on with the aid of a program called the Shell.
The Shell is a command line interpreter: it reads lines typed by the user and interprets them as requests
to execute other programs.”

The first microprocessor, the Intel 4004, announced in 1971, performed binary-coded decimal
(BCD) arithmetic using 4-bit words; it was followed in 1971 by Intel 8080, the first 8-bit microproces-
sor, and by its competitor, Motorola 6800 released in 1974. The first 16-bit multi-chip microprocessor,
IMP-16, was announced in 1973 by National Semiconductor. The 32-bit microprocessors appeared in
1979; widely used Motorola MC68000, had 32-bit registers and supported 24-bit addressing. Intel’s
80286 was introduced in 1982. The 64-bit processor era was inaugurated by AMD64, an architec-
ture called x86-64, backward compatible with Intel x86 architecture. Dual-core processors appeared in
2005; multicore processors are ubiquitous in today’s servers, PCs, tablets, and even smart phones.

The development of distributed systems was only possible after major advances in communication
technology. The Advanced Research Projects Agency (ARPA) created in 1958 funded research at mul-
tiple universities and businesses sites and the ARPANET project to connect them all into a network
was initiated.

The Internet is a global network based on the Internet Protocol Suite (TCP/IP); its origins can
be traced back to 1965 when Ivan Sutherland, the Head of the Information Processing Technology
Office (IPTO) at ARPA, encouraged Lawrence Roberts who had worked previously at MIT’s Lincoln
laboratories to become the Chief Scientist at IPTO and to initiate a networking project based on packet
switching rather than circuit switching.

Leonard Kleinrock from UCLA developed the theoretical foundations for packet-switched net-
works in early 1960s and for hierarchical routing in packet-switching networks in early 1970s. Klein-
rock published the first paper in 1961 and the first book on packet-switching theory in 1964.

In August 1968 DARPA released a request for quotation (RFQ) for the development of packet-
switches called Interface Message Processors (IMPs). A group from Bolt Beranek and Newman (BBN)
won the contract. Several researchers including Robert Kahn from BBN, Lawrence Roberts from
DARPA, Howard Frank from Network Analysis Corporation, and Leonard Kleinrock from UCLA
and their teams played a major role in the overall ARPANET architectural design. The idea of open-
architecture networking was first introduced by Kahn in 1972 and his collaboration with Vint Cerf from
Stanford led to the design of TCP/IP. Three groups, one at Stanford, one at BBN, and one at UCLA
won the DARPA contract to implement the TCP/IP.

In 1969 BBN installed the first IMP at UCLA. The first two interconnected nodes of the ARPANET
were the Network Measurement Center at the UCLA’s School of Engineering and Applied Science and
the SRI International in Menlo Park, California. Two more nodes were added at UC Santa Barbara and
University of Utah. By the end of 1971 there were 15 sites interconnected by ARPANET.

http://csg.csail.mit.edu/Users/dennis/essay.htm
http://csg.csail.mit.edu/Users/dennis/essay.htm
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Ethernet technology, developed by Bob Metcalfe at Xerox PARC in 1973 and other local area net-
work technologies, such as token passing rings, allowed the personal computers and the workstations
to be connected to the Internet in the 1980s. As the number of Internet hosts increased, it was no longer
feasible to have a single table of all hosts and their addresses. The Domain Name System (DNS) was
invented by Paul Mockapetris of USC/ISI. The DNS permitted a scalable distributed mechanism for
resolving hierarchical host names into an Internet address.

UC Berkeley with support from DARPA rewrote the TCP/IP code developed at BBN and incorpo-
rated it into the Unix BSD system. In 1985 Dennis Jennings started the NSFNET program at NSF to
support the general research and academic communities.

The first distributed computing programs were a pair of worm programs called Creeper and Reaper.
In 1970s Creeper was using the idle CPU cycles of processors in the ARPANET to copy itself onto
the next system and then delete itself from the previous one. Then it was modified to remain on all
previous computers. Reaper deleted all copies of the Creeper.

Further readings. Several texts are highly recommended. “Computer Architecture: A Quantitative
Approach” [228] by John Hennessy and David Patterson is the authoritative reference for computer ar-
chitecture. The text “Principles of Computer Systems Design” co-authored by Jerome Saltzer and Frans
Kaashoek [434] covers basic concepts in computer system design. “Computer networks: a top-down
approach featuring the Internet” by James Kurose and Keith Ross is a good introduction to networking.

Amdahl’s paper [26] is a classic and [421] and [422] are the references for UNIX. [235] covers
multicore processors.

The development of the MULTICS system [117,118] had a lasting impact on the design and imple-
mentation of computer systems. Load balancing in distributed system is analyzed in [159].

A comprehensive survey of peer-to-peer systems was published in 2010 [426]. Chord [466] and
Credence [509] are important references in the area of peer-to-peer systems.

4.15 EXERCISES AND PROBLEMS

Problem 1. Do you believe that the homogeneity of a large-scale distributed systems is an advan-
tage? Discuss the reasons for your answer. What aspects of hardware homogeneity are
the most relevant in your view and why? What aspects of software homogeneity do you
believe are the most relevant and why?

Problem 2. Peer-to-peer systems and clouds share a few goals, but not the means to accomplish
them. Compare the two classes of systems in terms of architecture, resource manage-
ment, scope, and security.

Problem 3. Explain briefly how the publish-subscribe paradigm works and discuss its application
to services such as bulletin boards, mailing lists, and so on. Outline the design of an
event service based on this paradigm, see Figure 4.6B. Can you identify a cloud service
that emulates an event service?

Problem 4. Tuple-spaces can be thought of as an implementation of a distributed shared-memory.
Tuple-spaces have been developed for many programming languages including Java,
Lisp, Python, Prolog, Smalltalk, and Tcl (Tool Command Language). Explain briefly
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how tuple spaces work. How secure and scalable are the tuple spaces you are familiar
with, e.g., JavaSpaces?

Problem 5. Arithmetic intensity is defined as the number of floating-point operations divided by the
number of bytes in the main memory accessed for running a program.
1. Give examples of computations with low, medium, and high arithmetic intensity.
2. Derive a formula relating the attainable performance to the peak performance of

a processor, the peak memory bandwidth, and the arithmetic intensity.
3. How is this formula related to the roofline model?

Problem 6. Dynamic instruction scheduling is discussed in Section 3.5 of [228].
1. What is the role of the reservation stations used by Tomasulo’s approach for dy-

namic instruction scheduling?
2. Draw a diagram of a system with two reservation station.
3. What are the instruction execution steps for dynamic instruction scheduling?

Problem 7. There are several approaches to hardware multithreading, fine-grained, coarse-grained,
and simultaneous (SMT). What are benefits and disadvantages of each one of them and
if and where are they used.

Problem 8. Amazon realized the benefits of EC2 instances with GPU co-processors for data-
intensive applications and in 2016 introduced the P2 instances.
1. Is it beneficial to have the GPUs attached as co-processors, or is it a disadvantage?
2. Is the thread scheduling inside a GPU done by hardware or controlled by the

application?
3. Is it beneficial to add more CUDA threads to an application?

Problem 9. Reference [56] analyzes the power consumption of computing, storage, and networking
infrastructure in a cloud data center. Find the percentage of the total power consumed
by the CPUs, the DRAM, the disks, the networking, and the other consumers and then
suggest the most effective means to reduce the power consumption.
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CHAPTER

CLOUD ACCESS AND CLOUD
INTERCONNECTION NETWORKS

The decades-long evolution of microprocessor and storage technologies, computer architecture and
software systems, parallel algorithms and distributed control strategies, paved the way to cloud comput-
ing. The interconnectivity supported by a continually evolving Internet made cloud computing feasible.
A cloud is built around a high-performance interconnect, the servers of a cloud infrastructure commu-
nicate through high-bandwidth and low-latency networks. Unquestionably, communication is at the
heart of cloud computing.

At the scale of a single system optimal performance requires a balance between the bandwidth, the
number of operations per unit of time, of the three major subsystems, CPU, memory, and I/O. The
reality is that processor bandwidth is orders of magnitude higher than the I/O bandwidth and much
higher than the memory bandwidth. This imbalance is further amplified by a well-known empirical
law, the Moore’s Law whose corollary is that the processor performance doubles every 18 months or
so, much faster than memory and I/O.

The effects of this imbalance are inevitably amplified in a large-scale system where the intercon-
nect allows a very large number of processors to work together under the control of the orchestration
software. The designers of a cloud computing infrastructure are acutely aware that the communication
bandwidth goes down and the communication latency increases the farther from the CPU data travels.
The limits of cloud interconnection networks latency and bandwidth are tested by the demands of a
cloud infrastructure with millions of servers.

Cloud workloads fall into four broad categories based on their dominant resource needs: CPU-
intensive, memory-intensive, I/O-intensive, and storage-intensive. While the first two benefit from, but
do not require, high-performing networking, the last two do. Networking performance directly impacts
the performance of I/O- and storage-intensive workloads.

A recent report [454] forecasts that by 2018, more than 10% of hyperconverged integrated systems1

deployments will suffer from avoidable network-induced performance problems, up from less than 1%
of today’s systems. It is also forecasted that 60% of providers will start offering integrated networking
services, along with compute and storage services.

The costs of the networking infrastructure continue to raise at a time when the costs of the other
components of the cloud infrastructure continue to decrease. Moreover, many cloud applications in-
cluding analytics and applications in science and engineering are data-intensive and network-intensive
and require more expensive networks with higher bandwidth and lower latency. The networking equip-
ment represents about 8%, the servers account for 57%, and the power represents 31% [232] of the
monthly costs of a CSP.

1Hyperconvergence is a software-centric architecture that tightly integrates compute, storage, networking, virtualization, and
possibly other technologies in a commodity hardware box supported by a single vendor.

Cloud Computing. DOI: 10.1016/B978-0-12-812810-7.00007-8
Copyright © 2018 Elsevier Inc. All rights reserved.

153

http://dx.doi.org/10.1016/B978-0-12-812810-7.00007-8


154 CHAPTER 5 CLOUD ACCESS AND CLOUD INTERCONNECTION NETWORKS

This chapter is focused on communication and the discussion starts with an overview of the network
used to access the cloud, the Internet, a packet-switched network of networks, and the World Wide Web
in Sections 5.1, 5.2, and 5.3, followed by a discussion of Named Data Networks and Software Defined
Networks in Sections 5.4 and 5.5, respectively. Then the focus is changed to the communication fabric
used inside the cloud infrastructure and to the analysis of interconnection networks architecture and
algorithms.

After an overview of the interconnection networks in Section 5.6 the chapter covers multistage net-
works, InfiniBand and Myrinet, and Storage Area Networks in Sections 5.7, 5.8, and 5.9, respectively.
A scalable data center architecture and network resource management are the topics of Sections 5.10
and 5.11. Then the limelight changes again, this time to content delivery networks and vehicular net-
works in Sections 5.12 and 5.13. Further readings, historical notes, and a set of exercises and problems
conclude the chapter.

5.1 PACKET-SWITCHED NETWORKS AND THE INTERNET
The Internet, a packet-switched network, provides access to computer clouds. A packet-switched net-
work transports data units called packets through a maze of switches where packets are queued and
routed towards their destination. Packets are subject to random delays, loss, and may arrive at their
final destination out of order.

A few basic concepts are defined next. A datagram is a transfer unit in a packet-switched network.
In addition to its payload a datagram has a header containing control information necessary for its
transport through the network. A network architecture describes the protocol stack used for communi-
cation. A protocol is a set of rules on how to communicate, it specifies the actions taken by the sender
and the receiver of a data unit. A network host identifies a system located at the network edge capable
to initiate and to receive communication, be it a computer, a mobile device such as a phone, or a sensor.

Network architecture and protocols. A packet-switched network has a network core consisting of
routers and control systems interconnected by very high bandwidth communication channels and a
network edge where the end-user systems reside.

A packet-switched network is a complex system consisting of a very large number of autonomous
components subject to complex and, sometimes, contradictory requirements. Basic strategies for imple-
menting a complex system are layering and modularization. Layering means decomposing a complex
function into elements interacting through well-defined channels, a layer can only communicate with
its adjacent layers.

The protocol stack of the Internet, based on the TCP/IP network architecture is shown in Figure 5.1.
At the sending host data flows down the protocol stack from the application layer to the transport layer,
then to the network layer, and to the data link layer. The physical layer pushes the streams of bits
through a physical communication link encoded either as electrical, optical, or electromagnetic signals.
The corresponding data units for the five layer architecture are: messages, segments, packets, frames,
and encoded bits, respectively.

The transport layer is responsible for end-to-end communication, from an application running on
the sending host to its peer, running on the destination host using either TCP or UDP protocols. The
network layer decides where the packet should be sent, either to another router, or to a destination
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FIGURE 5.1

The Internet protocol stack. Applications running on hosts at the edge of the network communicate using
application layer protocols. The transport layer deals with end-to-end delivery. The network layer is responsible
for routing a packet through the network. The data link layer ensures reliable communication between
adjacent nodes of the network, and the physical layer transports streams of bits encoded as electrical, optical,
or electromagnetic signals (the thick lines represent such bit pipes).

host connected to a local area network connected to the router. IP, the network layer protocol, guides
packets through the packet-switched network from the point of entry to the place where a packet exits
the network. The data link layer encapsulates the packet for the communication link to the next hop.
Once a packet reaches a router the bits are passed to the data link and then to the network layer.

A protocol on one system communicates with its peer on another system. For example, the transport
protocol on the sender, host A, communicates with the transport protocol on the receiver, host B. On
the sending side, A, the transport protocol encapsulates the data from the application layer and adds
control information as headers that can only be understood by its peer, the transport layer on host B.
When the peer receives the data unit, it carries out a decapsulation, retrieves the control information,
removes the headers, then passes the payload to the next layer up, the application layer on host B.

The payload for the data link layer at the sending site includes the network header and the payload
at the network layer. In turn, the network layer payload includes transport layer header and its payload
consisting of the application layer header and application data.

The Internet. The Internet is a network of networks, a collection of separate, autonomous, and distinct
networks. All networks adhere to a common framework and use: (i) globally unique IP addresses;
(ii) the IP (Internet Protocol) routing protocol; and (iii) the Border Gateway Routing (BGP) protocol.
BGP is a path vector reachability protocol making core routing decisions. BGP maintains a table of IP
networks designating network reachability among autonomous systems. BGP makes routing decisions
based on path, network policies, and/or rule sets.
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FIGURE 5.2

The hourglass network architecture of the Internet. Regardless of the application, the transport protocol, and
the physical network, all packets are routed from the source to the destination using the IP protocol and the IP
address of the destination.

An IP address is a string of integers uniquely identifying every host connected to the Internet. An
IP address allows the network to identify first the destination network and then the host in that network
where a datagram should be delivered. A host may have multiple IP addresses and it may be connected
to more than one network. A host could be a supercomputer, a workstation, a laptop, a mobile phone,
a network printer, or any other physical device with a network interface.

The Internet is based on a hourglass network architecture, see Figure 5.2. The hourglass architec-
ture is partially responsible for the explosive growth of the Internet, it allowed the lower layers of the
architecture to evolve independently from the upper layers. The communication technology drives the
dramatic change of the lower layers of the Internet architecture including the increase of the communi-
cation channels bandwidth, the widespread use of wireless networks, and of satellite communication.
The software and the applications are the engines of progress for the upper layers of the architecture.

The hourglass model reflects the end-to-end architectural design principle. The model captures the
fact that all packets transported through the Internet use IP to reach their destination. IP only provides
best effort delivery. Best effort delivery means that any router along the path from the source to the
destination may drop a packet when it is overloaded.
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Another important architectural design principle of the Internet is the separation between the for-
warding and the routing planes. The forwarding plane decides what to do with packets arriving on an
inbound interface of a router. The plane uses a table to lookup the destination address of an incom-
ing packet, then it retrieves the information to determine the path from the receiving element to the
proper outgoing interface(s) through the internal forwarding fabric of the router. The routing plane is
responsible for building the routing table in each router. The separation of the two planes allowed the
forwarding plane to function, while the routing evolved.

In addition to the IP or logical address, each network interface, the hardware connecting a host with
a network, has a unique physical or MAC address. While the MAC address is permanently assigned
to a network interface of the device, the IP address may be dynamically assigned. The IP address of a
mobile device changes depending on the device location and the network it is connected to.

The Dynamic Host Configuration Protocol (DHCP) is an automatic configuration protocol. DHCP
assigns an IP address to a client system. A DHCP server has three methods of allocating IP addresses:
1. Dynamic allocation – a network administrator assigns a range of IP addresses to DHCP. During

network initialization each client computer on the LAN is configured to request an IP address
from the DHCP server. The request-and-grant process uses a lease concept with a controllable
time period, allowing the DHCP server to reclaim (and then reallocate) IP addresses that are not
renewed.

2. Automatic allocation – the DHCP server permanently assigns a free IP address to a client, from
the range defined by the administrator.

3. Static allocation – the DHCP server allocates an IP address based on a manually filled in table with
(MAC address – IP address) pairs. Only a client with a MAC address listed in this table is allocated
an IP address.

Once a packet reaches the destination host it is delivered to the proper transport protocol daemon
which, in turn, delivers it to the application which listens to an abstraction of the end-point of a logical
communication channel called a port, Figure 5.3. The processes or threads running an application use
an abstraction called socket to send and receive data through the network. A socket manages one queue
of incoming messages and another one for outgoing messages.

Internet transport protocols. The Internet uses two transport protocols, a connectionless datagram
protocol, UDP (User Datagram Protocol) and a connection-oriented protocol, TCP (Transport Control
Protocol). The header of a datagram contains information sufficient for routing through the network
from the source to the destination. The arrival time and order of delivery of datagrams are not guaran-
teed.

To ensure efficient communication, the UDP transport protocol assumes that error checking and
error correction are either not necessary or performed by the application. Datagrams may arrive out of
order, duplicated, or may not arrive at all. Applications using UDP include: the DNS (Domain Name
System), VoIP, TFTP (Trivial File Transfer Protocol), streaming media applications such as IPTV, and
online games.

TCP provides reliable, ordered delivery of a stream of bytes from an application on one system to
its peer on the destination system. An application sends/receives data units called segments to/from a
specific port, an abstraction of and end-point of a logical communication link. TCP is the transport
protocol used by the World Wide Web, email, file transfer, remote administration, and many other
important applications.
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FIGURE 5.3

Packet delivery to processes and threads; a packet is first routed by the IP protocol to the destination network
and then to the host specified by the IP address. Applications listen to ports, abstractions of the end point of a
communication channel.

TCP uses an end-to-end flow control mechanism based on a sliding-window, a range of packets the
sender can send before receiving an acknowledgment from the receiver. This mechanisms allows the
receiver to control the rate of segments sent and process them reliably.

A network has a finite capacity to transport data and when its load is approaching this capacity, we
witness undesirable effects, the routers start dropping packets, the delays and the jitter increase. An
obvious analogy is a highway where the time to travel from point A to point B increases dramatically
in case of congestion. A solution for traffic management is to introduce traffic lights limiting the rate
at which new traffic is allowed to enter the highway and this is precisely what the TCP emulates.

TCP uses several mechanisms for congestion control, see Section 5.3. These mechanisms control
the rate of the data entering the network, keeping the data flow below a rate that would lead to a network
collapse and enforcing a fair allocation among flows. Acknowledgments coupled with timers are used
to infer network conditions between the sender and receiver.

TCP congestion control policies are based on four algorithms, slow-start, congestion avoidance,
fast retransmit, and fast recovery. These algorithms use local information, such as the RTO (retrans-
mission timeout) based on the estimated RTT (round-trip time) between the sender and receiver, as
well as the variance in this round trip time to implement the congestion control policies. UDP is a
connectionless protocol thus, there are no means to control the UDP traffic.
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The review of basic networking concepts in this section shows why process-to-process communica-
tion incurs a significant overhead. While raw speed of fiber optic channels can reach Tbps,2 the actual
transmission rate for end-to-end communication over a wide area network can only be of the order
of tens of Mbps and the latency is of the order of milliseconds. This has important consequences for
the development of computer clouds. The term “speed” is used informally to describe the maximum
data transmission rate, or the capacity of a communication channel; this capacity is determined by the
physical bandwidth of the channel and this explains why the term channel “bandwidth” is also used to
measure the channel capacity, or the maximum data rate.

5.2 THE TRANSFORMATION OF THE INTERNET
The Internet is continually evolving under the pressure of its own success and the need to accommodate
new applications and a larger number of users. Initially conceived as a data network, a network de-
signed to transport data files, the Internet has morphed into today’s network supporting data-streaming
and applications with real-time constraints such as the Lambda service offered by the AWS. The dis-
cussion in this section is restricted to the aspects of the Internet evolution relevant to cloud computing.

Tier 1, 2, and 3 networks. To understand the architectural consequences of Internet evolution we
discuss first the relation between two networks. Peering means that two networks exchange traffic
between each other’s customers freely. Transit requires a network to pay another one for accessing the
Internet. The term customer means that a network is receiving money to allow Internet access.

Based on these relations the networks are commonly classified as Tier 1, 2, and 3. A Tier 1 network
can reach every other network on the Internet without purchasing IP transit or paying settlements;
examples of Tire 1 networks are Verizon, ATT, NTT, Deutsche Telecom, see Figure 5.4.

A Tier 2 network is an Internet service provider who engages in the practice of peering with other
networks, but who still purchases IP transit to reach some portion of the Internet; Tier 2 providers
are the most common providers on the Internet. A Tier 3 network purchases transit rights from other
networks (typically Tier 2 networks) to reach the Internet. A point-of-presence (POP) is an access point
from one place to the rest of the Internet.

An Internet exchange point (IXP) is a physical infrastructure allowing Internet Service Providers
(ISPs) to exchange Internet traffic. IXPs interconnect networks directly, via the exchange, rather than
through one or more third party networks. The advantages of the direct interconnection are numerous,
but the primary reasons to implement an IXP are cost, latency, and bandwidth. Traffic passing through
an exchange is typically not billed by any party, whereas traffic to an ISP’s upstream provider is.

IXPs reduce the portion of an ISP’s traffic which must be delivered via their upstream transit
providers, thereby reducing the average per-bit delivery cost of their service. Furthermore, the increased
number of paths found through the IXP improves routing efficiency and fault-tolerance. A typical IXP
consists of one or more network switches, to which each of the participating ISPs connects.

New technologies such as web applications, cloud computing, and content-delivery networks are
reshaping the definition of a network as we can see in Figure 5.5 [287]. The World Wide Web, gam-

2NTT (Nippon Telegraph and Telephone) achieved a speed of 69.1 Tbps in 2010 using wavelength division multiplexing of 432
wavelengths with a capacity of 171 Gbps over a 240 km-long optical fiber.
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FIGURE 5.4

The relation of Internet networks based on the transit and paying settlements. There are three classes of
networks, Tier 1, 2, and 3; an IXP is a physical infrastructure allowing ISPs to exchange Internet traffic.

ing, and entertainment are merging and more computer applications are moving to the cloud. Data
streaming consumes an increasingly larger fraction of the available bandwidth as high definition TV
sets become less expensive and content providers such as Netflix and Hulu offer customers services
that require a significant increase of the network bandwidth.

Does the network infrastructure adequately respond to the current demand for bandwidth? The In-
ternet infrastructure in the US is falling behind in terms of network bandwidth, see Figure 5.6. A natural
question to ask is: Where is the actual bottleneck limiting the bandwidth available to a typical Internet
broadband user? The answer is: the “last mile,” the link connecting the home to the ISP network. Rec-
ognizing that the broadband access infrastructure ensures continual growth of the economy and allows
people to work from any site, Google has initiated the Google Fiber Project which aims to provide a
one Gbps access speed to individual households through FTTH.3

Migration to IPv6. The Internet Protocol, Version 4 (IPv4), provides an addressing capability of 232,
or approximately 4.3 billion addresses, a number that proved to be insufficient. Indeed, the Internet
Assigned Numbers Authority (IANA) assigned the last batch of 5 address blocks to the Regional In-

3The fiber-to-the-home (FTTH) is a broadband network architecture that uses optical fiber to replace the copper-based local loop
used for the last mile network access to home.
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FIGURE 5.5

The transformation of the Internet; the traffic carried by Tier 3 networks increased from 5.8% in 2007 to 9.4%
in 2009; Goggle applications accounted for 5.2% of the traffic in 2009 [287].

ternet Registries in February 2011, officially depleting the global pool of completely fresh blocks of
addresses; each of the address blocks represents approximately 16.7 million possible addresses.

The Internet Protocol, Version 6 (IPv6), provides an addressing capability of 2128, or 3.4 × 1038

addresses. There are other major differences between IPv4 and IPv6:

• Multicasting. IPv6 does not implement traditional IP broadcast, i.e. the transmission of a packet
to all hosts on the attached link using a special broadcast address and, therefore, does not define
broadcast addresses. IPv6 supports new multicast solutions, including embedding rendezvous point
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FIGURE 5.6

The broadband access, the average download speed advertised by several countries.

addresses in an IPv6 multicast group address. This solution simplifies the deployment of inter-
domain solutions.

• Stateless address autoconfiguration (SLAAC). IPv6 hosts can configure themselves automatically
when connected to a routed IPv6 network using the Internet Control Message Protocol version 6
(ICMPv6) router discovery messages. When first connected to a network, a host sends a link-local
router solicitation multicast request for its configuration parameters. If suitably configured, routers
respond to such a request with a router advertisement packet that contains network-layer configura-
tion parameters.

• Mandatory support for network security. Internet Network Security (IPsec) is an integral part of the
base protocol suite in IPv6 while it is optional for IPv4. IPsec is a protocol suite operating at the
IP layer. Each IP packet is authenticated and encrypted. Other security protocols, e.g., the Secure
Sockets Layer (SSL), the Transport Layer Security (TLS) and the Secure Shell (SSH) operate at the
upper layers of the TCP/IP suite. IPsec uses several protocols: (1) Authentication Header (AH) sup-
ports connectionless integrity, data origin authentication for IP datagrams, and protection against
replay attacks; (2) Encapsulating Security Payload (ESP) supports confidentiality, data-origin au-
thentication, connectionless integrity, an anti-replay service, and limited traffic-flow confidentiality;
(3) Security Association (SA) provides the parameters necessary to operate the AH and/or ESP
operations.

Unfortunately, migration to IPv6 is a very challenging and costly proposition [115]. A simple anal-
ogy allows us to explain the difficulties related to migration to IPv6. The telephone numbers in North
America consist of 10 decimal digits. This scheme supports up to 10 billion phones but, in practice,
we have fewer available numbers. Indeed, some phone numbers are wasted because we use area codes
based on geographic proximity and, on the other hand not all available numbers in a given area are
allocated.
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Table 5.1 Web statistics collected from a sample of several billion pages detected during Google’s crawl
and indexing pipeline.

Metric Value
Number of sample pages analyzed 4.2 × 109

Average number of resources per page 44

Average number of GETs per page 44.5

Average number of unique host names encountered per page 7

Average size transferred over the network per page, including HTTP headers 320 KB

Average number of unique images per page. 29

Average size of the images per page 206 KB

Average number of external scripts per page 7

Number of sample SSL (HTTPS) pages analyzed 17 × 106

To overcome the limited number of phone numbers in this scheme, large organizations use private
phone extensions that are typically 3 to 5 digits long; thus, a single public phone number can translate to
1000 phones for an organization using a 3 digit extension. Analogously, Network Address Translation
(NAT) allow a single public IP address to support hundreds or even thousands of private IP address.
In the past NAT did not work well with applications such as VoIP (Voice over IP) and VPN (Virtual
Private Network). Nowadays Skype and STUN VoIP applications work well with NAT. Now NAT-T
and SSLVPN support VPN NAT.

If the telephone companies decide to promote a new system based on 40 decimal digit phone num-
bers we will need new telephones. At the same time we will need new phone books, much thicker
as each phone number is 40 characters instead of 10, each individual needs a new personal address
book, and virtually all the communication and switching equipment and software need to be updated.
Similarly, the IPv6 migration involves upgrading all applications, hosts, routers, and DNS infrastruc-
ture; also, moving to IPv6 requires backward compatibility, any organization migrating to IPv6 should
maintain a complete IPv4 infrastructure.

5.3 WEB ACCESS AND THE TCP CONGESTION CONTROL WINDOW
The web supports access to content stored on a cloud. Virtually all cloud computing infrastructures
allow users to interact with their computations on the cloud using web-based systems. It should be clear
that the metrics related to web access are important for designing and tuning the networks. The site
http://code.google.com/speed/articles/web-metrics.html provides statistics about metrics such as the
size and the number of resources and Table 5.1 summarizes these metrics. The statistics are collected
from a sample of several billion pages detected during Google’s crawl and indexing pipeline.

Such statistics are useful to tuning the transport protocols to deliver optimal performance in terms
of latency and throughput. Metrics, such as the average size of a page, the number of GET operations,
are useful to explain the results of performance measurements carried out on existing systems and to
propose changes to optimize the performance as discussed next. HTTP, the application protocol for
web browsers uses TCP and takes advantage of its congestion control mechanisms.

http://code.google.com/speed/articles/web-metrics.html
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TCP flow control and congestion control. To achieve high channel utilization, avoid congestion,
and, at the same time, ensure a fair sharing of the network bandwidth TCP uses two mechanisms,
flow control and congestion control. A flow control mechanism throttles the sender, feedback from the
receiver forces the sender to transmit only the amount of data the receiver is able to buffer and then
process. TCP uses a sliding window flow control protocol. If W is the window size, then the data rate
S of the sender is:

S = W × MSS

RT T
bps = W

RT T
packets/second (5.1)

where MSS and RTT denote the Maximum Segment Size and the Round Trip Time, respectively,
assuming that MMS is 1 packet. If S is too small the transmission rate is smaller than the channel
capacity, while a large S leads to congestion. The channel capacity depends on the network load as the
physical channels along the path of a flow are shared with many other Internet flows.

The actual window size W is affected by two factors: (a) the ability of the receiver to accept new
data and (b) the sender’s estimation of the available network capacity. The receiver specifies the amount
of additional data it is willing to accept in the receive window field of every frame. The receiver’s
window shifts when the receiver receives and acknowledges a new segment of data. When a receiver
advertises a window size of zero, the sender stops sending data and starts the persist timer. This timer
is used to avoid the deadlock when a subsequent window size update from the receiver is lost.

When the persist timer expires, the sender sends a small packet and the receiver responds by sending
another acknowledgment containing the new window size. In addition to the flow control provided by
the receiver, the sender attempts to infer the available network capacity and to avoid overloading the
network. The source uses the losses and the delay to determine the level of congestion. If awnd denotes
the receiver window and cwnd the congestion window set by the sender, the actual window should be:

W = min(cwnd,awnd). (5.2)

Several algorithms are used to calculate cwnd including Tahoe and Reno, developed by Van Ja-
cobson in 1988 and 1990. Tahoe was based on slow start (SS), congestion avoidance (CA), and fast
retransmit (FR). The sender probes the network for spare capacity and detects congestion based on
loss. The slow start means that the sender starts with a window of two times MSS, init_cwnd = 1.
For every packet acknowledged, the congestion window increases by 1 MSS so that the congestion
window effectively doubles for every RTT.

When the congestion window exceeds the threshold, cwnd ≥ ssthresh, the algorithm enters the
CA state. In CA state, on each successful acknowledgment cwnd ← cwnd + 1/cwnd and on each
RTT cwnd ← cwnd + 1. The fast retransmit is motivated by the fact that the timeout is too long thus,
a sender retransmits immediately after 3 duplicate acknowledgments without waiting for a timeout.
Two adjustments are made in this case:

flightsize = min(awnd, cwnd) and ssthresh ← max(flightsize/2,2) (5.3)

and the system enters in the slow start state, cwnd = 1. The pseudocode describing the Tahoe algorithm
is:
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for every ACK {
if (W < ssthresh) then W++ (SS)
else W += 1/W (CA)

}
for every loss {

ssthresh = W/2
W = 1

}

The pattern of usage of the Internet has changed. Measurements reported by different sources [156]
show that in 2009 the average bandwidth of an Internet connection was 1.7 Mbps. More than 50% of
the traffic required more than 2 Mbps and could be considered broadband, while only about 5% of the
flows required less that 256 Kbps and could be considered narrowband. Recall that the average web
page size is in the range of 384 KB.

While the majority of the Internet traffic is due to long-lived, bulk data transfer, e.g., video and
audio streaming, the majority of transactions are short-lived, e.g., web requests. So a major challenge
is to ensure some fairness for short-lived transactions.

To overcome the limitations of the slow start, application strategies have been developed to reduce
the time to download data over the Internet. For example, two browsers, Firefox 3 and Google Chrome
open up to six TCP connections per domain to increase the parallelism and to boost start-up perfor-
mance when downloading a web page. The Internet Explorer 8 opens 180 connections. Clearly, these
strategies circumvent the mechanisms for congestion control and incur a considerable overhead. It is
argued that a better solution is to increase the initial congestion window of TCP and the arguments
presented in [156] are:

• The TCP latency is dominated by the number of RTT’s during the slow start phase. Increasing the
init_cwnd parameter allows the data transfer to be completed with fewer RTT’s.

• Given that the average page size is 384 KB, a single TCP connection requires multiple RTT’s to
download a single page.

• It ensures fairness between short-lived transactions which are a majority of Internet transfers and
the long-lived transactions which transfer very large amounts of data.

• It allows faster recovery after losses through Fast Retransmission.

It can be shown that the latency of a transfer completing during the slow start without losses is
given by the expression

⌈
logγ

(
L(γ − 1)

init_cwnd
+ 1

)⌉
× RT T + L

C
(5.4)

with L the transfer size, C the bottleneck-link rate, and γ a constant equal to 1.5 or 2 depending if the
acknowledgments are delayed or not; L/init_cwnd ≥ 1. In the experiments reported in [156] the TCP
latency was reduced from about 490 msec when init_cwnd = 3 to about 466 msec for init_cwnd =
16.
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FIGURE 5.7

(A) The NDN hourglass architecture parallels the one of the Internet, it separates the lower layers of the
protocol stack from the upper ones thus, naming of the data can evolve independently from networking.
(B) The semantics of the NDN networking service is to fetch a data chunk identified by name, while the
Internet semantics is to deliver a packet to a given network address through an end-to-end channel identified
by the source and the destination IP addresses. Two packet types, Interest and Data, see
http://named-data.net/doc/ndn-tlv/ are used for NDN routing and forwarding.

5.4 NAMED DATA NETWORKS
The Internet is a network of communication networks where the communication units, the packets,
only name the communication end points. Today’s Internet is mostly used as a distribution network by
applications in areas such as digital media, electronic commerce, Big Data analytics, and so on.

In a distribution network communication is content-centric, named objects are requested by an
agent and, once a site holding the object is located, the network transports it to the site that requested
the object. The end user in a distribution network is oblivious to the location of the data and it is only
interested in the content. The data in today’s communication networks is tied to a particular host and
this makes data replication and migration difficult.

The idea of a content-centric network has been around for some time. In 1999 the TRIAD project
at Stanford4 [205,487] proposed to use the name of an object to route towards a replica of it. In this
proposal the Internet Relay Protocol performs name-to-address conversion using the routing informa-
tion maintained by relay nodes. The Name-Based Routing Protocol performs a function similar to the
BGP protocol, it supports a mechanism for updating the routing information in relay nodes.

In 2006 the Data Oriented Network Architecture (DONA) project at U.C. Berkeley [150] extended
TRIAD incorporating security and persistence as primitives of the new network architecture. DONA
architecture exposes two primitives: FIND – allows a client to request a particular piece of data by
its name and REGISTER – enables content providers to indicate their intent to serve a particular data

4TRIAD stands for Translating Relaying Internet Architecture Integrating Active Directories.

http://named-data.net/doc/ndn-tlv/
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object. In 2006 Van Jacobson from UCLA argued that Named Data Networks (NDNs) should be the
architecture of the future Internet.

In 2012 the Internet Research Task Force (IRTF) established an information-centric networking
(ICN) research working group for investigating architecture designs for NDN. A 2014 survey of ICN
research and a succinct presentation of NDNs can be found in [532] and [548], respectively. The im-
portant features of the NDN architecture addressed by the current research efforts include namespaces,
trust models, in-network storage, data synchronization, and last but not least, rendezvous, discovery,
and bootstrapping.

The hourglass model can be extended, the packets can name objects rather than communication
endpoints. The NDNs hourglass model separates the lower layers of the protocol stack from the upper
ones thus, data naming can evolve independently from networking, see Figure 5.7A.

The NDN packet delivery is driven by the data consumers, the communication is initiated by an
agent generating an Interest packet containing the name of the data, see Figure 5.7B. Once the Interest
packet reaches a network host which has a copy of the data item, a Data packet containing the name,
the data contents, and the signature is generated. The signature consists of the producer’s key. The Data
packet follows the route traced by the Interest packet and it is delivered to the data consumer agent. An
NDN router maintains the information necessary to forward the packet:
1. Content Store – local cache for Data packets previously crossing the router. When an Interest

packet arrives, a search of the content store determines if a matching data exists and if so the data
is forwarded on the same router interface the Interest packet was received. If not, the router uses a
data structure, the Forwarding Information Base, to forward the packet. More recently, NDN sup-
ports more persistent and larger-volume in-network storage, called Repositories providing services
similar to that of the Content Delivery Networks.

2. Forwarding Information Base – the entries of this data structure are populated by a name-prefix
based procedure. The Forwarding Strategy retrieves the longest prefix matched entry from for-
warding information base for an Interest packet.

3. Pending Interest Table (PIT) – stores all the Interest packets the router has forwarded but have
not been satisfied yet. A PIT entry records the data name carried in the Internet, together with
its incoming and outgoing router interface(s). When a Data packet arrives, the router finds the
matching PIT entry and forwards the data to all downstream interfaces listed in that PIT entry, then
removes the PIT entry, and caches the Data packet in the Content Store.

Names are essential in NDN, though namespace management is not part of the NDN architecture.
The scope and contexts of NDN names are different. Globally accessible data must have globally
unique names, while local names require only local routing and must only be locally unique. There
is no namespace exhaustion in NDN, while migration to IPv6 has become a necessity due to the IP
address limitations of IPv4.

There are other important differences between NDN and TCP/IP. Each Data packet is crypto-
graphically signed thus the system supports data-centric security, while TCP/IP security is left to the
communication endpoints. An NDN router announces name prefixes for the data it is willing to serve,
while an IP router announces IP prefixes.
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NDN is a universal overlay,5 it can run over any datagram network and, conversely, any datagram
network, including IP, can run over NDN. Classical algorithms such as Open Shortest Path First (OSPF)
route data chunks using component-wise longest prefix match of the name in an Interest packet with
the FIB entries of a router.

Wide area applications can operate over IP tunnels and islands of NDN nodes could be intercon-
nected by tunneling over non-NDN clouds. Scalable forwarding along with robust and effective trust
management are critical challenges for the future of NDN networks. Namespace design is at the heart
of NDNs as it involves application data, communication, storage models, routing, and security.

NDN could be useful for cloud data centers and in particular for those supporting the IaaS cloud
delivery model. Data is replicated and multiple instances could access data concurrently from their
nearest storage servers. This would be useful for some MapReduce applications but it would require
major changes in the frameworks supporting this paradigm. On the other hand, many applications cache
data in the server memory and they would only marginally benefit from the NDN support.

5.5 SOFTWARE DEFINED NETWORKS
Software-defined Networks (SDN) extend basic principles of resource virtualization to networking to
allow programmatic control of communication networks. SDNs introduce an abstraction layer sepa-
rating network configuration from the physical communication resources. More precisely, a network
operating system running inside a control layer, sandwiched between the application layer and the
infrastructure layer, allows applications to re-configure dynamically the communication substrate to
adapt to their security, scalability, and manageability needs.

Though enthusiastically embraced by networking vendors, the SDN technology is largely concep-
tual and there is little agreement either on the architecture, the APIs, or the overlay networks among
vendors. A 2012 white paper of the Open Network Foundation (ONF) (https://www.opennetworking.
org/sdn-resources) promoted OpenFlow-based SDNs. According to ONF a new network architecture
is necessary for several reasons including changing traffic patterns due to several factors such as the
rise of cloud services and the need for more bandwidth demanded by Big Data applications. The ONF
architecture includes several components:

• Applications – generate network requirements to controllers.
• Controllers – translate application requirements to SDN datapaths and provide the applications with

an abstract view of the network.
• Datapaths – logical network devices which expose control to the physical substrate; consist of agents

and forwarding engines.
• Control-to-Data-Plane Interfaces – the interfaces between SDN controllers and SDN datapaths.
• Northbound Interfaces – interfaces between applications and controllers.
• Interface Drivers and Agents – driver-agent pairs.
• Management and Administration.

5An overlay network is a network built on top of another physical network, its nodes are connected by virtual links, each of
which corresponds to a path, possibly through many physical links, in the underlying network.

https://www.opennetworking.org/sdn-resources
https://www.opennetworking.org/sdn-resources
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OpenFlow is an API for programming data plane switches. The data path and the control paths
of an OpenFlow switch consist of a flow table including an action associated with each flow entry
and a controller which programs the flow entry. The controller configures and manages the switch and
receives events from the switch.

5.6 INTERCONNECTION NETWORKS FOR COMPUTER CLOUDS
Interconnection networks for multiprocessor systems, supercomputers, and cloud computing are dis-
cussed in the next sections. Computing and communication are deeply intertwined as we have seen in
Chapters 3 and 4 and interconnection networks are critical for the performance of computer clouds and
supercomputers.

Several concepts important for understanding interconnection networks are introduced next. A net-
work consists of nodes and links or communication channels. The degree of a node is the number of
links the node is connected to. The nodes of a interconnection network could be processors, memory
units, or servers. The network interface of a node is the hardware connecting it to the network.

Switches and communication channels are the elements of the interconnection fabric. Switches
receive data packets, look inside each packet to identify the destination IP addresses, then use the
routing tables to forward the packet to the next hop towards its final destination. An n-way switch has n

ports that can be connected to n communication links. An interconnection network can be non-blocking
if it is possible to connect any permutation of sources and destinations at any time. An interconnection
network is blocking if this requirement is not satisfied.

While processor and memory technology have followed Moore’s Law, interconnection networks
have evolved at a slower pace and have become a major factor in determining the overall performance
and cost of the system. For example, from 1997 to 2010 the speed of the ubiquitous Ethernet network
has increased from 1 to 100 Gbps. This increase is slightly slower than the Moore’s Law for traffic
[354] which predicted, 1 Tbps Ethernet by 2013.

Interconnection networks are distinguished by their topology, routing, and flow control. Network
topology is determined by the way nodes are interconnected, routing decides how a message gets from
its source to destination, and the flow control negotiates how the buffer space is allocated. There are
two basic types of network topologies:

• Static networks where there are direct connections between servers;
• Switched networks where switches are used to interconnect the servers.

The topology of an interconnection network determines the network diameter, the average distance
between all pairs of nodes, the bisection width, the minimum number of links cut to partition the
network into two halves, the bisection bandwidth, as well as the cost and the power consumption [271].
When a network is partitioned into two networks of the same size the bisection bandwidth measures
the communication bandwidth between the two.

The full bisection bandwidth allows one half of the network nodes to communicate simultaneously
with the other half of the nodes. Assume that half of the nodes inject data into the network at a rate B

Mbps. When the bisection bandwidth is B then the network has full bisection bandwidth. The switching
fabric must have sufficient bi-directional bandwidth for cloud computing.
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FIGURE 5.8

Static interconnection networks. (A) Bus; (B) Hypercube; (C) 2D-mesh: (D) 2D-torus.

Some of the most popular topologies with a static interconnect are:

• Bus, a simple and cost-effective network, see Figure 5.8A. It does not scale, but it is easy to im-
plement cache coherence through snooping for distributed memory systems. A bus is often used in
shared memory multiprocessor systems.

• Hypercube of order n, see Figure 5.8B. A hypercube has a good bisection bandwidth, the number
of nodes is N = 2n, the degree is n = logN , and the average distance between nodes is O(N) hops.
Example of use: SGI Origin 2000.

• 2-D mesh, see Figure 5.8C. An n × n 2D-mesh has many paths to connect nodes, has a cost of
O(n), and the average latency is O(

√
n). A mesh is not symmetric on edges thus, its performance

is sensitive to the placement of communicating nodes on edges versus the middle. Example of use:
Intel Paragon supercomputer of the 1990s.

• Torus, avoids the asymmetry of the mesh, but has a higher cost in terms of the number of compo-
nents. A torus is good for applications using nearest-neighbor communication, see Figure 5.8D. It
is prevalent for proprietary interconnects. Example of use: 6-D Mesh/torus of Fujitsu K supercom-
puter.

Switched networks have multiple layers of switches connecting the nodes as shown in Figure 5.9:
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FIGURE 5.9

Switched networks. (A) An 8 × 8 crossbar switch. 16 nodes are interconnected by 49 switches represented by
the dark circles; (B) An 8 × 8 Omega switch. 16 nodes are interconnected by 12 switches represented by white
rectangles.

• Crossbar switch – has N2 crosspoint switches, see Figure 5.9A
• Omega (Butterfly, Benes, Banyan, etc.) have (N logN)/2 switches, see Figure 5.9B. The cost is

O(N logN) and the latency is O(logN). Omega networks are low diameter networks.

Cloud interconnection networks. The cloud infrastructure consists of one or more Warehouse Scale
Computers (WSCs) discussed in Section 8.2. A WSC has a hierarchical organization with a large
number of servers interconnected by high-speed networks.

The networking infrastructure of a cloud must satisfy several requirements including scalability,
cost, and performance. The network should allow low-latency, high speed communication, and, at the
same time, provide location transparent communication between servers. In other words, each server
should be able to communicate with every other server with similar speed and latency. This requirement
ensures that applications need not be location aware and, at the same time, it reduces the complexity
of the system management.

Typically, the networking infrastructure is organized hierarchically. The servers of a WSC are
packed into racks and interconnected by a rack router. Then rack routers are connected to cluster
routers which in turn are interconnected by a local communication fabric. Finally, inter data center net-
works connect multiple WSCs [277]. Clearly, in a hierarchical organization true location transparency
is not feasible. Cost considerations ultimately decide the actual organization and performance of the
communication fabric.

Oversubscription is a particularly useful measure of the fitness of an interconnection network for
a large scale cluster. Oversubscription is defined as the ratio of the worst-case achievable aggregate
bandwidth among the servers to the total bisection bandwidth of the interconnect. An oversubscription
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FIGURE 5.10

Fat-trees. (Top) A fat-tree in nature. (Bottom) A 192 node fat-tree interconnection network with two 96-way
and twelve 24-way switches in a computer cloud.

of one to one indicates that any host may communicate with an arbitrary hosts at the full bandwidth of
the interconnect. An oversubscription value of 4 to 1 means that only 25% of the bandwidth available
to servers can be attained for some communication patterns. Typical oversubscription figures are in the
2.5 to 1 and 8 to 1 range.

The cost of the routers and the number of cables interconnecting the routers are major components
of the overall cost of an interconnection network. Wire density has scaled up at a slower rate than
processor speed and wire delay has remained constant over time thus, better performance and lower
costs can only be achieved with innovative router architecture. This motivates the need to take a closer
look at the actual design of routers.

Fat-trees. A special instance of the Clos topology discussed in Section 5.7, fat-trees, are optimal in-
terconnects for large-scale clusters and, by extension, for WSCs. When using a fat-tree interconnect
servers are placed at the leafs of the tree, while switches populate the root and the internal nodes of
the tree. Fat-trees have additional links to increase the bandwidth near the root of the tree. Some set
of paths in a fat-tree will saturate all bandwidth available to the end hosts for arbitrary communica-
tion patterns. A fat-tree communication architecture can be built with cheap commodity parts as all
switching elements of a fat-tree are identical.

Figure 5.10 shows a 192 node fat-tree built with two 96-way switches and twelve 24-way switches.
The two 96-way switches at the root are connected via 48 links. Each 24-way switch has 6 × 8 up-
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FIGURE 5.11

A 192 node fat-tree interconnect with two 96-way and twelve 24-way switches.

Table 5.2 A side-by-side comparison of performance and cost figures of several interconnection network
topologies for 64 nodes.

Property 2D mesh 2D torus Hypercube Fat-tree Fully connected
BW in # of links 8 16 32 32 1024

Max/Avg hop count 14/7 8/4 6/3 11/9 1/1

I/O ports per switch 5 5 7 4 64

Number of switches 64 64 64 192 64

Total number of links 176 192 256 384 2080

link connections to the root and 6 × 16 down connections to 16 servers. Another 192 node fat-tree
interconnect with two 96-way and twelve 24-way switches is shown in Figure 5.11.

Table 5.2 from [228] summarizes the performance/cost for a 2D-mesh, a 2D-torus, a Hypercube
of order 7, a fat-tree, and a fully connected network. Two dimensions of interconnection network
performance, the bisection bandwidth and the average and maximum number of hops, along with three
elements affecting the cost, the number of ports per switch, the number of switches, and the total
number of links are shown. The fat-tree has the largest bisection bandwidth with the smallest number
of I/O ports per switch while the fully connected interconnect has a prohibitively large number of links.

5.7 MULTISTAGE INTERCONNECTION NETWORKS
There are low-radix and high-radix routers. The former have a small number of ports, while the latter
have a large number of ports. The number of intermediate routers in a high-radix network is greatly
reduced. Such networks enjoy lower latency and reduced power consumption.

Every five years during the past two decades the pin bandwidth of the chips used for switching has
increased by approximately an order of magnitude as a result of the increase in the signaling rate and
in the number of signals. High-radix chips divide the bandwidth into a larger number of narrow ports
while low-radix chips divide the bandwidth into a smaller number of wide ports.

Clos networks. Clos networks were invented in early 1950s by Charles Clos from Bell Labs [112].
A Clos network is a multistage non-blocking network with an odd number of stages, see Figure 5.12A.
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FIGURE 5.12

(A) A 5-stage Clos network with radix-2 routers and unidirectional channels; the network is equivalent to two
back-to-back butterfly networks. (B) The corresponding folded-Clos network with bidirectional channels; the
input and the output networks share switch modules.

The network consists of two butterfly networks where the last stage of the input is fused with the first
stage of the output.

The name butterfly comes from the pattern of inverted triangles created by the interconnections,
which look like butterfly wings. A butterfly network transfers the data using the most efficient route,
but it is blocking, it cannot handle a conflict between two packets attempting to reach the same port at
the same time. In a Clos network all packets overshoot their destination and then hop back to it. Most
of the time the overshoot is not necessary and increases the latency, a packet takes twice as many hops
as it really needs.

In a folded Clos topology the input and the output networks share switch modules. Such networks
are sometimes called fat-tree; many commercial high-performance interconnects such as Myrinet,
InfiniBand, and Quadrics implement a fat-tree topology. Some folded Clos networks use low-radix
routers, e.g., the Cray XD1 uses radix-24 routers. The latency and the cost of the network can be
lowered using high-radix routers.

The Black Widow topology extends the folded Clos topology and has a lower cost and latency; it
adds side links and this permits a statical partitioning of the global bandwidth among peer subtrees
[447]. The Black Widow topology is used in Cray computers.

Flattened butterfly networks. The flattened butterfly topology [270] is similar to the generalized
hypercube that was proposed in the early 1980s, but the wiring complexity is reduced and this topology
is able to exploit high-radix routers. When constructing a flattened butterfly we start with a conventional
butterfly and combine the switches in each row into a single, higher-radix one. Each router is linked to
more processors and this halves the number of router-to-router connections.
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FIGURE 5.13

(A) A 2-ary 4-fly butterfly with unidirectional links. (B) The corresponding 2-ary 4-flat flattened butterfly is
obtained by combining the four switches S0, S1, S2 and S3 in the first row of the traditional butterfly into a
single switch S′

0 and by adding additional connections between switches [270].

The latency is reduced as data from one processor can reach another processor with fewer hops,
though the physical path may be longer. For example, in Figure 5.13A we see a 2-ary 4-fly butterfly;
we combine the four switches S0, S1, S2 and S3 in the first row into a single switch S′

0. The flattened
butterfly adaptively senses congestion and overshoots only when it needs to. On adversarial traffic
pattern, the flattened butterfly has a similar performance as the folded Clos, but provides over an order
of magnitude increase in performance compared to the conventional butterfly.

The network cost for computer clusters can be reduced by a factor of two when high-radix routers
(radix-64 or higher) and the flattened butterfly topology are used according to [271]. The flattened
butterfly does not reduce the number of local cables, e.g., backplane wires from the processors to
routers, but it reduces the number of global cables. The cost of the cables represents as much as 80%
of the total network cost, e.g., for a 4K system the cost savings of the flattened buttery exceed 50%.

5.8 INFINIBAND AND MYRINET
InfiniBand is an interconnection network used by high-performance computing systems, as well as
computer clouds. As of 2014 InfiniBand was the most commonly used interconnect in supercomput-
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Table 5.3 The evolution of the speed of several high-speed interconnects including SDR, DDR, QDR,
FDR, and EDR data rates of InfiniBand.

Network Year Speed
Gigabit Ethernet (GE) 1995 1 Gbps

10-GE 2001 10 Gbps

40-GE 2010 40 Gbps

Myrinet 1993 1 Gbps

Fiber Channel 1994 1 Gbps

InfiniBand (IB) 2001 2 Gbps (1X SDR)

2003 8 Gbps (4X SDR)

2005 16 Gbps (4X DDR) & 24 Gbps (12X SDR)

2007 32 Gbps (4X QDR)

2011 56 Gbps (4X FDR)

2012 100 Gbps (4X EDR)

ers. The architecture of InfiniBand is based on a switched fabric rather than a shared communication
channel. In a shared channel architecture all devices share the same bandwidth; the higher the number
of devices connected to the channel, the less bandwidth is available to each one of them.

InfiniBand has a very high throughput and very low latency and it is backed by top companies in
the industry, including Dell, HP, IBM, Intel, and Microsoft. Intel manufactures InfiniBand host bus
adapters and network switches. From Section 5.7 we know that a switched fabric is fault-tolerant and
scalable. Every link of the fabric has exactly one device connected at each end of the link thus, the
worst case is the same as the typical case. It follows that the performance of InfiniBand can be much
greater than that of a shared communication channel such as the Ethernet.

InfiniBand architecture implements the “Bandwidth-out-of-the-box” concept and delivers band-
width traditionally trapped inside a server across the interconnect fabric. InfiniBand supports several
signaling rates and the energy consumption depends on the throughput. Links can be bonded together
for additional throughput as shown in Table 5.3. The architectural specifications of InfiniBand define
multiple operational data rates: single data rate (SDR), double data rate (DDR), quad data rate (QDR),
fourteen data rate (FDR), and enhanced data rated (EDR).

The signaling rates are: 2.5 Gbps in each direction per connection for an SDR connection; 5 Gbps
for DDR; 10 Gbps for QDR; 14.0625 Gbps for FDR; 25.78125 Gbps for EDR per lane. The SDR,
DDR and QDR link encoding is 8 B/10 B, every 10 bits sent carry 8 bits of data. Thus single, double,
and quad data rates carry 2, 4, or 8 Gbit/s useful data, respectively, as the effective data transmission
rate is four-fifths the raw rate.

InfiniBand allows links to be configured for a specified speed and width; the reactivation time of the
link can vary from several nanoseconds to several microseconds. Exadata and Exalogic systems from
Oracle implement the InfiniBand QDR with 40 Gbit/s (32 Gbit/s effective) using Sun Switches. The
InifiniBand fabric is used to connect compute nodes, compute nodes with storage servers, and Exadata
and Exalogic systems.

In addition to high throughput and low latency InfiniBand supports quality of service guarantees and
failover – the capability to switch to a redundant or standby system. It offers point-to-point bidirectional
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serial links intended for the connection of processors with high-speed peripherals, such as disks, as well
as multicast operations.

Note also that the deployment of InfiniBand pushes the limitations of the buses used in personal
computers (PCs) and other personal devices as well. Introduced as a standard PC architecture in early
90’s the PCI bus has evolved from 32 bit/33 MHz to 64 bit/66 MHz while PCH-X has doubled the
clock rate to 133 MHz. Buses have severe electrical, mechanical, and power issues. The number of
pins of a parallel bus is quite large; the number of pins necessary for each connection is quite large,
e.g., a 64 bit PCI bus requires 90 pins.

Myrinet is an interconnect for massively parallel systems developed at Caltech and later at a com-
pany called Myricom. Its main features are [69]:
1. Robustness ensured by communication channels with flow control, packet framing, and error con-

trol.
2. Self-initializing, low-latency, cut-through switches.
3. Host interfaces that can map the network, select routes, and translate from network addresses to

routes, as well as handle packet traffic.
4. Streamlined host software that allows direct communication between user processes and the net-

work.
The design of Myrinet benefits from the experience gathered by a project to construct a high-speed

local-area network at USC/ISI. A Myrinet is composed of point-to-point, full-duplex links connecting
hosts and switches, an architecture similar to the one of the ATOMIC project at USC. Multiple-port
switches may be connected to other switches and to the single-port host interfaces in any topology.
Transmission is synchronous at the sending end, while the receiver circuits are asynchronous. The
receiver injects control symbols in the reverse channel of the link for flow control. Myrinet switches
use blocking-cut-through routing similar to the one in Intel Paragon and Cray T3D.

Myrinet supports high data rates; a Myrinet link consists of a full-duplex pair of 640 Mbps channels
and has regular topology with elementary routing circuits in each node. The network is scalable, its
aggregate capacity grows with the number of nodes. Simple algorithmic routing avoids deadlocks and
allows multiple packets to flow concurrently through the network.

There is a significant difference between store and forward and cut-through or wormhole networks.
In the former an entire packet is buffered and its checksum is verified in each node along the path from
the source to the destination. In wormhole networks the packet is forwarded to its next hop as soon
as the header is received and decoded. This decreases the latency, but a packet can still experience
blocking if the outgoing channel expected to carry it to the next node is in use. In this case the packet
has to wait until the channel becomes free.

A comparison of Myrinet and Ethernet performance as a communication substrate for MPI libraries
is presented in [321]. MPI library implementations for Ethernet have a higher message latency and
lower message bandwidth because they use the OS network protocol stack. The NAS benchmarks,6 MG
messaging over Myrinet only achieves a 5% higher performance then TCP messaging over Ethernet.

6NASA Parallel Benchmarks, NAS, are used to evaluate the performance of parallel supercomputers. The original benchmark
included five kernels: IS – Integer Sort, random memory access, EP – Embarrassingly Parallel, CG – Conjugate Gradient, MG –
Multi-Grid on a sequence of meshes, long- and short-distance communication, memory intensive, FT – discrete 3D Fast Fourier
Transform, all-to-all communication.
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FIGURE 5.14

A storage area network interconnects servers to servers, servers to storage devices, and storage devices to
storage devices. Typically it uses fiber optics and the FC protocol.

5.9 STORAGE AREA NETWORKS AND THE FIBRE CHANNEL
A storage area network (SAN) is a specialized, high-speed network for data block transfers. SANs
interconnect servers to servers, servers to storage devices, and storage devices to storage devices, see
Figure 5.14. A SAN consists of a communication infrastructure and a management layer. The Fibre
Channel (FC) is the dominant architecture of SANs.

FC it is a layered protocol with several layers depicted in Figure 5.15:

A. The three lower layer protocols: FC-0, the physical interface; FC-1, the transmission protocol re-
sponsible for encoding/decoding; and FC-2, the signaling protocol responsible for framing and flow
control. FC-0 uses laser diodes as the optical source and manages the point-to-point fiber connections;
when the fiber connection is broken, the ports send a series of pulses until the physical connection is
re-established and the necessary handshake procedures are followed.

FC-1 controls the serial transmission and integrates data with clock information. It ensures encod-
ing to the maximum length of the code, maintains DC-balance, and provides word alignment. FC-2
provides the transport methods for data transmitted in 4-byte ordered sets containing data and control
characters. It handles the topologies, based on the presence or absence of a fabric, the communication
models, the classes of service provided by the fabric and the nodes, sequence and exchange identifiers,
and segmentation and reassembly.
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FIGURE 5.15

FC protocol layers. The FC-4 supports communication with the Small Computer System Interface (SCSI), the
IP, and the Asynchronous Transfer Mode (ATM) network interfaces.

B. Two upper layer protocols: FC-3, the common services layer; and FC-4, the protocol mapping layer.
FC-3 supports multiple ports on a single-node or fabric using:

• Hunt groups – sets of associated ports assigned an alias identifier that allows any frame containing
that alias to be routed to any available port within the set.

• Striping to multiply bandwidth, using multiple ports in parallel to transmit a single information unit
across multiple links.

• Multicast and broadcast to deliver a single transmission to multiple destination ports or to all ports.

To accommodate different application needs, FC supports several classes of service:

Class 1: rarely used blocking connection-oriented service; acknowledgments ensure that the frames
are received in the same order in which they are sent, and reserve full bandwidth for the connection
between the two devices.

Class 2: acknowledgments ensure that the frames are received; allows the fabric to multiplex several
messages on a frame-by-frame basis; as frames can take different routes it does not guarantee in-order
delivery, it relies on upper layer protocols to take care of frame sequence.

Class 3: datagram connection; no acknowledgments.

Class 4: connection-oriented service. Virtual circuits (VCs) established between ports, guarantee
in-order delivery and acknowledgment of delivered frames. The fabric is responsible for multiplexing
frames of different VCs. Supports Guaranteed Quality of Service (QoS), including bandwidth and
latency. This layer is intended for multimedia applications.

Class 5: isochronous service for applications requiring immediate delivery, without buffering.

Class 6: supports dedicated connections for a reliable multicast.

Class 7: similar with Class 2, but used for the control and management of the fabric; a connection-
less service with notification of non-delivery.

While every device connected to a LAN has a unique MAC address, each FC device has a unique
ID called the WWN (World Wide Name), a 64 bit address. Every port in the switched fabric has its
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FIGURE 5.16

The format of an FC frame; the payload can be at most 2112 bytes, larger data units are carried by multiple
frames.

own unique 24-bit address consisting of: the domain (bits 23–16), the area (bits 15–08), and the port
physical address (bits 07–00).

The switch of a switched fabric environment assigns dynamically and maintains the port addresses.
When a device with a WWN address logs into a given port, the switch maintains the correlation between
that port address and the WWN address of the device using the Name Server. The Name Server is a
component of the fabric operating system, which runs inside the switch.

The format of an FC frame is shown in Figure 5.16. Zoning permits finer segmentation of the
switched fabric; only the members of the same zone can communicate within that zone. It can be used
to separate different environments, e.g., a Microsoft Windows NT from a UNIX environment.

Several other protocols are used for SANs. Fibre Channel over IP (FCIP) allows transmission of Fi-
bre Channel information through the IP network using tunneling. Tunneling is a technique for network
protocols to encapsulate a different payload protocol; it allows a network protocol to carry a payload
over an incompatible delivery-network, or to provide a secure path through an untrusted network.

Tunneling allows a protocol normally blocked by a firewall to cross it wrapped inside a protocol
that the firewall does not block. For example, an HTTP tunnel can be used for communication from
network locations with restricted connectivity, e.g., behind NATs, firewalls, or proxy servers. Restricted
connectivity is a commonly-used method to lock down a network to secure it against internal and
external threats.

Internet Fibre Channel Protocol (iFCP) is a gateway-to-gateway protocol that supports commu-
nication among FC storage devices in a SAN, or on the Internet using TCP/IP; iFCP replaces the
lower-layer Fibre Channel transport with TCP/IP and Gigabit Ethernet. With iFCP, Fibre Channel de-
vices connect to an iFCP gateway or switch and each Fibre Channel session is terminated at the local
gateway and converted to a TCP/IP session via iFCP.

5.10 SCALABLE DATA CENTER COMMUNICATION ARCHITECTURES
The question addressed now is: How to organize the communication infrastructure of large cloud data
centers to get the best performance at the lowest cost? Several architectural styles for data center
networks (DCNs) attempting to provide an answer to this question face major challenges:

• The aggregate cluster bandwidth scales poorly with the cluster size.
• The bandwidth needed by many cloud applications comes at a high price and the cost of the inter-

connect increases dramatically with the cluster size.
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Table 5.4 A side-by-side comparison of performance and cost of hierarchical and fat-tree networks over
a span of six years [17].

Hierarchical Network Fat-tree
Year 10 GigE Servers Cost/GigE 10 GigE Servers Cost/GigE
2001 28-port 4480 $25.3 K 28-port 5488 $4.5K

2004 32-port 7680 $4.4 K 48-port 27,688 $1.6K

2006 64-port 10,240 $2.1 K 48-port 27,688 $1.2K

2008 128-port 20,480 $1.8 K 48-port 27,688 $0.3K

• The communication bandwidth of DCNs may become oversubscribed by a significant factor de-
pending on the communication patterns.

We only mention two DCN architectural styles, the three-tier and the fat-tree DCNs. The former has
a multiple-rooted tree topology with three layers, core, aggregate, and access. The servers are directly
connected to switches at the leafs of the tree at the access layer.

Enterprise switches at the root of the tree form the core layer and connect together the switches
at the aggregate layer and also connect the data center to the Internet. The uplinks of the aggregate
layer switches connect them to the core layer and their download links connect to the access layer.
The three-tier DCN architecture is not suitable for computer clouds, it is not particularly scalable, the
bisection bandwidth is not optimal, and the switches at the core layer are expensive and power-hungry.

As noted in Section 5.6 the fat-tree topology is optimal for computer clouds, the bandwidth is not
severely affected for messages crossing multiple switches and the interconnection network can be built
with commodity rather than enterprise switches. An implementation of the fat-tree topology proposed
in [17] is discussed in this section. Several principles guide the design of this network:

• The network should scale to a very large number of nodes.
• The fat-tree should have multiple core switches.
• The network should support multi-path routing. The equal-cost multi-path (ECMP) routing algo-

rithm [241] which performs static load splitting among flows should be used.
• The building blocks of the network should be switches with optimal cost/performance ratios.

Table 5.4 shows the performance and the cost of hierarchical and fat-tree interconnection networks
expressed in GigE7 evolved in the span of six years. The cost per GigE of both types of networks
decreased by one order of magnitude, yet this cost/performance indicator for fat-tree built with com-
modity switches is almost an order of magnitude lower than that of the hierarchic networks. The choice
of multi-rooted fat-tree topology and multi-path routing is justified because in 2008 the largest cluster
that could be supported with a single rooted core 128-port router with 1:1 oversubscription would have
been limited to 1280 nodes.

7The IEEE 802.3-2008 standard defines GigE as a technology for transmitting Ethernet frames. 1 GigE corresponds to a rate of

one gigabit per second, i.e., 109 bits per second.
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FIGURE 5.17

A fat-tree network with k = 4-port switches. Four core 4-way switches are at the root, there are four pods, and
two switches at the aggregation layer and two at the edge layer of each pod. Each switch at the edge of a pod
is connected to two servers.

A WSC interconnect can be organized as a fat-tree with k-port switches and k = 48, but the same
fat-tree organization can be supported for any k. The network consists of k pods8 each pod has two
layers and k/2 switches at each layer. Each switch at the lower layer is connected directly to k/2
servers. The other k/2 ports are connected to k/2 of the k ports in the aggregation layer. The total
number of switches is k(k + 1) and the total number of servers connected to the system is k2. There
are (k/2)2 paths connecting every pair of servers.

A WSC with 16 384 servers can be built with 128-port switches and one with 262 144 servers will
requires 512-port switches. Figure 5.17 shows a fat-tree interconnection network for k = 4. The core,
the aggregation, and the edge layers are populated with 4-port switches. Each core switch is connected
with one of the switches at the aggregation layer of each pod. The network has four pods, there are
four switches at each pod, two at aggregation layer and two at the edge. Four servers are connected to
each pod.

The IP addresses of switches have the form 87.pod.switch.1, and the switches are numbered left
to right, and bottom to top. The core switches have addresses of the form 10.k.j.i where j and i denote
the coordinates of the switch in the (k/2)2 core switch grid starting from top-left. For example, the
four switches of pod 2 have IP addresses 87.2.0.1,87.2.1.1,87.2.2.1, and 87.2.3.1.

8A pod is a repeatable design pattern to maximize the modularity, scalability, and manageability of data center networks.
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FIGURE 5.18

(Left) The two level routing tables for switch 87.2.2.1. Two incoming packets for IP addresses 10.2.1.2 and
10.3.0.3 are forwarded on ports 1 and 3, respectively. (Right) The RAM implementation of a two-level TCAM
routing table.

Servers have IP addresses of the form 87.pod.switch.serverID where serverID is the server
position in the subnet of the edge router starting from left to right. For example, the IP addresses of the
two servers connected to the switch with IP address 87.2.0.1 are 87.2.0.2 and 87.2.0.3.

We can see that there are multiple paths between any pairs of servers. For example, packets sent by
the server with IP address 87.0.1.2 to server with IP address 87.2.0.3 can follow the following routes:

87.0.1.1 �→ 87.0.2.1 �→ 87.4.1.1 �→ 87.2.2.1 �→ 87.2.0.1
87.0.1.1 �→ 87.0.2.1 �→ 87.4.1.2 �→ 87.2.2.1 �→ 87.2.0.1
87.0.1.1 �→ 87.0.1.1 �→ 87.4.2.1 �→ 87.2.2.1 �→ 87.2.0.1
87.0.1.1 �→ 87.0.1.1 �→ 87.4.2.2 �→ 87.2.2.2 �→ 87.2.0.1

(5.5)

Packet routing supports two-level prefix lookup and it is implemented using two-level routing ta-
bles. This strategy may increase the lookup latency but the prefix search can be done in parallel and
could compensate for the latency increase. The main table entries are of the form (prefix,output port)
and could have an additional pointer to a secondary table or could be terminating if none of its en-
tries point to a secondary table. A secondary table consists of (suffix,output port) entries and may be
pointed to by more than one first level entry.

Figure 5.18 (Left) shows the two level routing tables for switch 87.2.2.1 and routing for two incom-
ing packets for servers with the IP addresses 87.2.1.2 and 87.3.0.3; the incoming packets are forwarded
on ports 1 and 3, respectively. Lookup engines use a ternary version of content-addressable memory
(CAM), called TCAM. Figure 5.18 (Right) shows that TCAM stores address prefixes and suffixes,
which index a RAM that stores the IP address of the next hop and the output port.

The prefix entries are stored with numerically smaller addresses first and the right-handed (suffix)
entries in larger addresses. The output of the CAM is encoded so that the entry with the numerically
smallest matching address is the output. When the destination IP address of a packet matches both a
left-handed and a right-handed entry, then the left-handed entry is chosen.

The k switches in a pod have terminating prefixes to the subnets in that pod. When two servers in
the same pod but on a different subnets communicate, all upper-level switches of the pod will have a
terminating prefix pointing to the destination subnet’s switch.

For all outgoing pod traffic, the pod switches have a default /0 prefix with a secondary table match-
ing the least-significant byte of the destination IP address, the server ID. Traffic diffusion occurs only
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in the first half of a packet’s journey. Once a packet reaches a core switch, there is exactly one link
to its destination pod, and that switch will include a terminating /16 prefix for the pod of that packet
(87.pod.0.0/16,port). Once a packet reaches its destination pod, the receiving upper-level pod switch
will also include a (10.pod.switch.0/24,port) prefix to direct the packet to its destination subnet
switch, where it is finally switched to its destination server.

Each pod switch assigns terminating prefixes for subnets in the same pod and add a /0 prefix with
a secondary table matching the serverIDs for inter-pod traffic. The routing tables for the upper pod
switches are generated with the pseudocode of Algorithm 5.1. For the lower pod switches, the /24
subnet prefix in line 3 is omitted since that subnet’s own traffic is switched, and intra- and inter-pod
traffic should be evenly split among the upper switches.

Algorithm 5.1 Generates aggregation switch routing tables.

1 foreach pod x ∈ [0, k − 1] do
2 foreach switch z ∈ [k/2, k − 1] do
3 foreach subnet i ∈ [0, k/2 − 1] do
4 addP ref ix(10.x.z.1,10.x.i.0/24, i);
5 end
6 addP ref ix(10.x.z.1,0.0.0.0/0,0);
7 foreach hostID i ∈ [2, (k/2) + 1] do
8 addSuff ix(10.x.z.1,0.0.0.i/8, (i − 2 + z) mod (k/2) + (k/2);
9 end
10 end
11 end

Core switches contains only terminating /16 prefixes pointing to their destination pods, as shown in
Algorithm 5.2.

Algorithm 5.2 Generates routing tables for core switches.

1 foreach j ∈ [0, k − 1] do
2 foreach i ∈ [1, k/2] do
3 foreach destination pod ∈ [0, k/2 − 1] do
4 addP ref ix(10.k.j.i,10.x.0.0/16, x);
5 end
6 end
7 end

The maximum numbers of first-level prefixes and second-level suffixes are k and k/2, respectively.
Flow classification with dynamic port-reassignment in pod switches overcomes cases of local con-

gestion when two flows compete for the same output port, even though another port that has the same
cost to the destination is underused.

Power consumption and heat dissipation are major concerns for the cloud data centers. Switches at
the higher tiers of the interconnect in data centers consume several kW and the entire interconnection
infrastructure consumes hundreds to thousands of kW.
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FIGURE 5.19

Fair Queuing – packets are first classified into flows by the system and then assigned to a queue dedicated to
the flow; queues are serviced one packet at a time in round-robin order and empty queues are skipped.

5.11 NETWORK RESOURCE MANAGEMENT ALGORITHMS
A critical aspect of resource management in cloud computing is to guarantee the communication band-
width required by an application as specified by an SLA. The solutions to this problem are based on
the strategies used for some time on Internet to support the data streaming QoS requirements.

Cloud interconnects consist of communication links of limited bandwidth and switches of limited
capacity. When the load exceeds its capacity, a switch starts dropping packets because it has limited
input buffers for the switching fabric and for the outgoing links, as well as limited CPU cycles. A switch
must handle multiple flows, pairs of source-destination end-points of the traffic, thus, a scheduling
algorithm has to manage several quantities at the same time: the bandwidth, the amount of data each
flow is allowed to transport, the timing when the packets of individual flows are transmitted, and the
buffer space allocated to each flow.

Communication and computing require scheduling therefore, it should be no surprise that the first
algorithm we discuss can be used for scheduling packets transmission, as well as threads. A first
strategy to avoid network congestion is to use a FCFS scheduling algorithm. The advantage of FCFS
algorithm is a simple management of the three quantities: bandwidth, timing, and buffer space. Never-
theless, the FCFS algorithm does not guarantee fairness; greedy flow sources can transmit at a higher
rate and benefit from a larger share of the bandwidth.

Fair Queuing (FQ). The algorithm ensures that a high-data-rate flow cannot use more than its fair
share of the link capacity. Packets are first classified into flows by the system and then assigned to a
queue dedicated to the flow. Packet queues are serviced one packet at a time in round-robin (RR) order,
Figure 5.19. FQ’s objective is max–min fairness. This means that first it maximizes the minimum
data rate of any of the data flows and then it maximizes the second minimum data rate. Starvation of
expensive flows is avoided but the throughput is low.
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FIGURE 5.20

Transmission of a packet i of flow a arriving at time tai of size P a
i bits. The transmission starts at time

Sa
i = max[Fa

i−1,R(tai )] and ends at time Fa
i = Sa

i + P a
i with R(t) the number of rounds of the algorithm.

(A) The case Fa
i−1 < R(tai ). (B) The case Fa

i−1 ≥ R(tai ).

The FQ algorithm guarantees the fairness of buffer space management, but does not guarantee
fairness of bandwidth allocation; indeed, a flow transporting large packets will benefit from a larger
bandwidth [355].

The FQ algorithm in [139] proposes a solution to this problem. First, it introduces a Bit-by-bit
Round-robin (BR) strategy; as the name implies, in this rather impractical scheme a single bit from
each queue is transmitted and the queues are visited in a round-robin fashion. Let R(t) be the number
of rounds of the BR algorithm up to time t and Nactive(t) the number of active flows through the
switch. Call tai the time when the packet i of flow a, of size P a

i bits arrives and call Sa
i and Fa

i the
values of R(t) when the first and the last bit, respectively, of the packet i of flow a are transmitted.
Then,

Fa
i = Sa

i + P a
i and Sa

i = max[Fa
i−1,R(tai )]. (5.6)

The quantities R(t), Sa
i and Fa

i in Figure 5.20 depend only on the arrival time of the packets, tai , and
not on their transmission time, provided that a flow a is active as long as

R(t) ≤ Fa
i when i = max(j |tai ≤ t). (5.7)

The authors of [139] use for packet-by-packet transmission time the following non-preemptive schedul-
ing rule which emulates the BR strategy: the next packet to be transmitted is the one with the smallest
Fa

i . A preemptive version of the algorithm requires that the transmission of the current packet be in-
terrupted as soon as one with a shorter finishing time, Fa

i , arrives.
A fair allocation of the bandwidth does not have an effect on the timing of the transmission. A pos-

sible strategy is to allow less delay for the flows using less than their fair share of the bandwidth. The
same paper [139] proposes the introduction of a quantity called the bid, Ba

i , and scheduling the packet
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FIGURE 5.21

CBQ link sharing for two groups A, of short-lived traffic, and B, of long-lived traffic, allocated 25% and 75% of
the link capacity, respectively. There are six classes of traffic with priorities 1, 2, and 3. The RT (real-time) and
the video streaming have priority 1 and are allocated 3% and 60%, respectively, of the link capacity. Web
transactions and audio streaming have priority 2 and are allocated 20% and 10%, respectively of the link
capacity. Intr (interactive applications) and FTP (file transfer protocols) have priority 3 and are allocated 2%
and 5%, respectively, of the link capacity.

transmission based on its value. The bid is defined as

Ba
i = P a

i + max[Fa
i−1, (R(tai ) − δ)], (5.8)

with δ a non-negative parameter. The properties of the FQ algorithm, as well as the implementation of
a non-preemptive version of the algorithm are analyzed in [139].

The Stochastic Fairness Queuing (SFQ) algorithm is a simpler and less accurate implementation
of the FQ algorithms and requires less calculations. SFQ ensures that each flow has the opportunity to
transmit an equal amount of data and takes into account data packet sizes [338].

Class-Based Queuing (CBQ). This algorithm is a widely used strategy for link sharing proposed
by Sally Floyd and Van Jacobson in 1995 [176]. The objective of CBQ is to support flexible link
sharing for applications which require bandwidth guarantees such as VoIP, video-streaming, and audio-
streaming. At the same time, CBQ supports some balance between short-lived network flows, such as
web searches, and long-lived ones, such as video-streaming or file transfers.

CBQ aggregates the connections and constructs a hierarchy of classes with different priorities and
throughput allocations. To accomplish link sharing, CBQ uses several functional units: (i) a classifier
which uses the information in the packet header to assign arriving packets to classes; (ii) an estimator
of the short-term bandwidth for the class; (iii) a selector, or scheduler, to identify the highest priority
class to send next and, if multiple classes have the same priority, to schedule them on a round-robin
base; and (iv) a delayer to compute the next time when a class that has exceeded its link allocation is
allowed to send.

The classes are organized in a tree-like hierarchy; for example, in Figure 5.21 we see two types of
traffic, group A corresponding to short-lived traffic and group B corresponding to long-lived traffic.
The leaves of the tree are considered Level 1 and in this example include six classes of traffic: real-time,
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FIGURE 5.22

There are two groups A and B and three types of traffic, e.g., web, real-time, and interactive, denoted as 1,2,
and 3. (A) Group A and class A.3 traffic are underlimit and unsatisfied; classes A.1,A.2 and B.1 are overlimit,
unsatisfied and with persistent backlog and have to be regulated; type A.3 is underlimit and unsatisfied; group
B is overlimit. (B) Group A is underlimit and unsatisfied; Group B is overlimit and needs to be regulated; class
A.1 traffic is underlimit; class A.2 is overlimit and with persistent backlog; class B.1 traffic is overlimit and with
persistent backlog and needs to be regulated.

web, interactive, video streaming, audio streaming, and file transfer. At Level 2 there are the two classes
of traffic, A and B . The root, at Level 3 is the link itself.

The link sharing policy aims to ensure that if sufficient demand exists then, after some time in-
tervals, each interior or leaf class receives its allocated bandwidth. The distribution of the “excess”
bandwidth follows a set of guidelines, but does not support mechanisms for congestion avoidance.

A class is overlimit if over a certain recent period it has used more than its bandwidth allocation (in
bytes per second), underlimit if it has used less, and atlimit if it has used exactly its allocation. A leaf
class is satisfied if it is underlimit and has a persistent backlog and it is unsatisfied otherwise; a non-leaf
class is unsatisfied if it is underlimit and has some descendent class with a persistent backlog. A precise
definition of the term “persistent backlog” is part of a local policy. A class does not need to be regulated
if it is underlimit or if there are no unsatisfied classes; the class should be regulated if it is overlimit
and if some other class is unsatisfied and this regulation should continue until the class is no longer
overlimit or until there are no unsatisfied classes, see Figure 5.22 for two examples.

The Linux kernel implements a link sharing algorithm called Hierarchical Token Buckets (HTB)
inspired by CBQ. In CBQ every class has an assured rate (AR); in addition to the AR every class in
HTB has also a ceil rate (CR), see Figure 5.23. The main advantage of HTB over CBQ is that it allows
borrowing. If a class C needs a rate above its AR it tries to borrow from its parent; then the parent
examines its children and, if there are classes running at a rate lower that their AR, the parent can
borrow from them and reallocate it to class C.

5.12 CONTENT DELIVERY NETWORKS
Computer clouds support not only network-centric computing but also network-centric content. For
example, we shall see in Chapter 6 that Internet video was expected to generate in 2013 over 18
Exabytes of data per month. Video traffic will account for 79% of the global Internet traffic by 2020.
The vast amount of data stored on the cloud has to be delivered efficiently to a large user population.
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FIGURE 5.23

HTB packet scheduling uses for every node a ceil rate in addition to the allowed rate.

Content Delivery Networks (CDNs) offer fast and reliable content delivery and reduce communi-
cation bandwidth by caching and replication. A CDN receives the content from an Origin server, then
replicates it to its Edge cache servers; the content is delivered to an end-user from the “closest” Edge
server.

CDNs are designed to support scalability, to increase reliability and performance, and to provide
better security. The volume of transactions and data transported by the Internet increases dramati-
cally every year; additional resources are necessary to accommodate the additional load placed on the
communication and storage systems and to improve the end-user experience. CDNs place additional
resources provisioned to absorb the traffic caused by flash crowds9 and, in general, to provide capacity
on demand.

The additional resources are placed strategically throughout the Internet to ensure scalability. The
resources provided by a CDN are replicated and when one of the replicas fails, the content is available
from another one; the replicas are “close” to the consumers of the content and this placement reduces
the start-up time and the communication bandwidth. A CDN uses two types of servers; the origin
server updated by the content provider and replica servers which cache the content and serve as au-
thoritative reference for client requests. Security is a critical aspect of the services provided by a CDN;
the replicated content should be protected from the increased risk of cyber fraud and unauthorized
access.

A CDN can deliver static content and/or live or on-demand streaming media. Static content refers
to media that can be maintained using traditional caching technologies because changes are infrequent;
examples of static content are: HTML pages, images, documents, software patches, and audio and/or
video files. Live media refers to live events when the content is delivered in real time from the encoder
to the media server. On-demand delivery of audio and/or video streams, movie files and music clips

9The term flash crowds refers to an event which disrupts the life of a very significant segment of the population, such as an
earthquake in a very populated area, and causes the Internet traffic to increase dramatically.
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provided to the end-users is content-encoded and then stored on media servers. Virtually all CDN
providers support static content delivery, while live or on-demand streaming media is considerably
more challenging.

CDN providers and protocols. The first CDN was setup by Akamai, a company evolved from an MIT
project to optimize network traffic. Since its inception Akamai has placed some 20 000 servers in 1000
networks in 71 countries; in 2009 it controlled some 85% of the market [394].

Akamai mirrors the contents of clients on multiple systems placed strategically through the Internet.
Though the domain name (but not sub-domain) is the same, the IP address of the resource requested
by a user points to an Akamai server rather than the customer’s server. Then the Akamai server is
automatically picked depending on the type of content and the network location of the end user.

There are several other active commercial CDNs including EdgeStream providing video streaming
and Limelight Networks providing distributed on-demand and live delivery of video, music, and games.
There are several academic CDNs: Coral is a freely-available network designed to mirror web content,
hosted on PlanetLab; Globule is an open-source collaborative CDN developed at the Vrije Universiteit
in Amsterdam.

The communication infrastructure among different CDN components uses a fair number of pro-
tocols including: Network Element Control Protocol (NECP), Web Cache Coordination Protocol
(WCCP), SOCKS, Cache Array Routing Protocol (CARP), Internet Cache Protocol (ICP), Hyper-
text Caching Protocol (HTCP), and Cache Digest described succinctly in [394]. For example, caches
exchange ICP queries and replays to locate the best sites to retrieve an object; HTCP is used to discover
HTTP caches, to cache data, to manage sets of HTTP caches and monitor cache activity.

CDN organization, design decisions, and performance. There are two strategies for CDN organiza-
tion; in the so-called overlay, the network core does not play an active role in the content delivery. On
the other hand, the network approach requires the routers and the switches to use dedicated software to
identify specific application types and to forward user’s requests based on predefined policies.

The first strategy is based exclusively on content replication on multiple caches and redirection
based on proximity to the end-user. In the second approach the network core elements redirect content
requests to local caches or redirect data center’s incoming traffic to servers optimized for specific
content type access. Some CDNs including Akamai use both strategies.

Important design and policy decisions for a CDN are:
1. Placement of the edge servers.
2. Content selection and delivery.
3. Content management.
4. Request routing policies.

The placement problem is often solved with suboptimal heuristics using as input the workload pat-
terns and the network topology. The simplest, but a costly approach for content selection and delivery,
is the full-site replication suitable for static content; the edge servers replicate the entire content of the
origin server. On the other hand, the partial-site selection and delivery retrieves the base HTML page
from the origin server and the objects referenced by this page from the edge caches. The objects can
be replicated based on their popularity, or on some heuristics.

The content management depends on the caching techniques, the cache maintenance and the cache
update policies. CDNs use several strategies to manage the consistency of content at replicas: periodic
updates, updates triggered by the content change, and on-demand updates.
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The request-routing in a CDN directs users to the closest edge server that can best serve the request;
metrics, such as network proximity, client perceived latency, distance, and replica server load are taken
into account when routing a request. Round-robin is a non-adaptive request-routing which aims to
balance the load; it assumes that all edge servers have similar characteristics and can deliver the content.

Adaptive algorithms perform considerably better, but are more complex and require some knowl-
edge of the current state of the system. The algorithm used by Akamai takes into consideration metrics
such as: the load of the edge server, the bandwidth currently available to a replica server, the reliability
of the connection of the client to the edge servers.

CDN routing can exploit an organization where several edge servers are connected to a service node
aware of the load and the information about each edge server connected to it and attempts to implement
a global load balancing policy. An alternative is DNS-based routing when a domain name has multiple
IP addresses associated to it and the service provider’s DNS server returns the IP addresses of the edge
servers holding the replica of the requested object; then the client’s DNS server chooses one of them.

Another alternative is the HTTP redirection; in this case a web server includes in the HTTP header
of a response to a client the address of another edge server. Finally, IP anycasting requires that the
same IP address is assigned to several hosts and the routing table of a router contains the address of the
host closest to it.

The critical metrics of CDN performance are:
1. Cache hit ratio – the ratio of the number of cached objects versus total number of objects requested.
2. Reserved bandwidth for the origin server.
3. Latency – it is based on the perceived response time by the end users.
4. Edge server utilization.
5. Reliability – based on packet loss measurements.

CDNs will face considerable challenges in the future due to increased appeal of data streaming
and to the proliferation of mobile devices such as of smart phones and tablets. On-demand video
streaming requires enormous bandwidth and storage space, as well as powerful servers; CDNs for
mobile networks must be able to dynamically reconfigure the system in response to spatial and temporal
demand variations.

Content-Centric Networks. Content-Centric Networks (CCNs) are related to information-centric net-
working architectures such as Named Data Networks (NDNs) discussed in Section 5.4 where content
is named and transferred throughout the network. In such networks the request for a named content is
routed to the producer or to any entity that can deliver the expected content object.

CCNs content may be served from the cache of any router. Content is signed by its producer and
the consumer is able to verify the signature before actually using the content. CCNs supports oppor-
tunistically caching. According to http://chris-wood.github.io/2015/06/16/CCN-vs-CDN.html CCNs
offer a number of advantages. The popularity of the content need not be predicted beforehand, while
providing the benefits not offered by IP-based CDNs including:
1. Active and intelligent forwarding strategies for routers.
2. Publisher mobility is easily supported via CCN routing protocols.
3. Congestion control can be enforced within the network.
4. The existing (and problematic) IP stack can be completely replaced with a new set of layers.
5. Existing APIs can be completely reworked to focus on content, not on addresses.
6. Content security is not tied to the channel, but to the content itself.

http://chris-wood.github.io/2015/06/16/CCN-vs-CDN.html
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Table 5.5 VANETs applications, contents, local interest, local validity, and lifetime.

Application Contents Local interest Local validity Lifetime
Safety warnings Dangerous Road All 100 m 10 s

Safety warnings Accident All 500 m 30 s

Safety warnings Work zone All 1 km Construction

Public service Emergency vehicle All 500 m 10 min

Public service Highway information All 5 km All day

Driving Road congestion All 5 km 30 min

Driving Navigation Map Subscribers 5 km 30 min

The concept of content service network (CSN) was introduced in [318]. CSNs are overlay networks
built around CDNs to provide an infrastructure service for processing and transcoding.

5.13 VEHICULAR AD HOC NETWORKS
A vehicular ad hoc network (VANET) consists of groups of moving or stationary vehicles connected
by a wireless network. Until recently the main use of VANETs was to provide safety and comfort to
drivers in vehicular environments. This view is changing, vehicular ad hoc networks are seen now as an
infrastructure for an intelligent transportation system with increasing number of autonomous vehicles,
and for any activity requiring Internet connectivity in a smart city. Also, VANETs allow on-board
computers of mostly stationary vehicles, e.g., vehicles at an airport parking, to serve as resources of a
mobile computer cloud with minimum help from the Internet infrastructure.

The contents produced and consumed by vehicles has local relevance in terms of time, space,
and agents involved, the producer and the consumer. Vehicle-generated information has local validity,
a limited spatial scope, an explicit lifetime, a limited temporal scope, and local interest, it is relevant
to agents in a limited area around the vehicle. For example, the information that a car is approaching
a congested area of a highway is relevant only for that particular segment of the road, at a particular
time, and for vehicles nearby. The attributes of vehicular contents are summarized in Table 5.5 from
[299].

One of the distinguishing characteristics of VANETs is the content-centric distribution, the content
is important, the source is not. This is in marked contrast to the Internet where an agent demands
information from a specific source. For example, traffic information floods a specific area and vehicle
retrieves it without concern for the source of it, while an Internet request for highway traffic information
is directed to a specific site. Vehicle applications collect sensor data and vehicles collaborate sharing
sensory data. Sensory data is collected by vehicle-installed cameras, by on-board instruments. For
example, CarSpeak allows a vehicle to access sensors on neighboring vehicles in the same manner
in which it can access its own [284]. Waze is a community-based traffic and navigation application
allowing drivers real-time traffic and road information.

VANET communication protocols are similar to the ones used by wired networks, each host has an
IP address. Assigning IP addresses to moving vehicles is far from trivial and often requires a Dynamic
Host Configuration Protocol (DHCP) server, a heresy for ad hoc networks that operate without any
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infrastructure, using self-organization protocols. Vehicles frequently join and leave the network and
content of interest cannot be consistently bound to a unique IP address. A router typically relays and
then deletes content.

5.14 FURTHER READINGS
The “Brief history of the Internet” [288] was written by the Internet pioneers Barry Leiner, Vinton Cerf,
David Clark, Robert Kahn, Leonard Kleinrock, Daniel Lynch, Jon Postel, Larry Roberts, and Stephen
Wolff.

The widely used text of Kurose and Ross [283] is an excellent introduction to basic networking
concepts. The book by Bertsekas and Gallagher [65] gives insights into the performance evaluation of
computer networks. The classic texts on queuing theory of Kleinrock [274] are a required reading for
those interested in network analysis.

A survey of information-centric networking research is given in [532] while [548] is a succinct
presentation of NDNs. Several publications related to software-defined networks are available on the
site of the Open Network Foundation, https://www.opennetworking.org/sdn-resources.

The Moore’s Law for traffic is discussed in [354]. The class-based queuing algorithm was intro-
duced by Floyd and Van Jacobson in [176]. The Black Widow topology for system interconnects is
analyzed in [447]. An extensive treatment of Storage Area Networks can be found in [481].

Alternative organizations of networks have been discussed in the literature. Scale-free networks
and their applications are described by Barabási and Albert in [14–16,51]. The small-worlds networks
were introduced by Watts and Strogatz in [515]. Epidemic algorithms for the dissemination of topolog-
ical information are presented in [210,255,256]. Erdös–Rény random graphs are analyzed in [71,165].
Energy efficient protocols for cooperative networks are discussed in [163].

The future of fiber networks is covered in [289]. Vehicle ad hoc networks and their applications
to vehicular cloud computing are discussed in [191,299,518]. An analysis of peer-to-peer networks is
reported in [192]. Network management for private clouds, p2p networks, and virtual networks are
presented in [351], [352], and [359], respectively.

5.15 EXERCISES AND PROBLEMS

Problem 1. Four ground rules for an open-architecture principle are cited in the “Brief history of
the Internet.” Read the paper and analyze the implication of each one of these rules.

Problem 2. The paper in Problem 1 lists also several key issues for the design of the network:
(1) algorithms to prevent lost packets from permanently disabling communications
and enabling them to be successfully retransmitted from the source; (2) providing for
host-to-host “pipelining” so that multiple packets could be en-route from source to des-
tination at the discretion of the participating hosts, if the intermediate networks allowed
it; (3) the need for end-end checksums, reassembly of packets from fragments and de-
tection of duplicates, if any; (4) the need for global addressing; and (5) techniques for
host-to-host flow control.

https://www.opennetworking.org/sdn-resources
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Discuss how these issues were addressed by the TCP/IP network architecture.
Problem 3. Analyze the challenges of transition to IPv6. What will be in your view the effect of this

transition on cloud computing?
Problem 4. Discuss the algorithms used to compute the TCP window size.
Problem 5. Creating a virtual machine (VM) reduces ultimately to copying a file, therefore the

explosion of the number of VMs cannot be prevented, see Section 11.9. As each VM
needs its own IP address, virtualization could drastically lead to an exhaustion of the
IPv4 address space. Analyze the solution to this potential problem adopted by the IaaS
cloud service delivery model.

Problem 6. Read the paper describing the stochastic fair queuing algorithm [176]. Analyze the sim-
ilarities and dissimilarities of this algorithm and the start-time fair queuing discussed in
Section 9.13.

Problem 7. The small-worlds networks were introduced by D. Watts and S. H. Strogatz. They have
two desirable features, high clustering and small path length. Read [515] and design an
algorithm to construct a small-worlds network.

Problem 8. The properties of scale-free networks are discussed in [14–16,51]. Discuss the important
features of systems interconnected by scale-free networks discussed in these papers.

Problem∗ 9. Consider two 192 node fat-tree interconnect with two 96-way and twelve 24-way
switches, the one in Figure 5.10 and the one in Figure 5.11. Compute the bisection
bandwidth of the two interconnects.
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CHAPTER

CLOUD DATA STORAGE

The volume of data generated by human activities is growing about 40% per year; 90% of the data
in the world today has been gathered in the last two years alone (https://e27.co/tag/aureus-analytics/).
Computer clouds provide the vast amounts of storage demanded by many applications using these data.

Several data sources contribute to the massive amounts of data stored on a cloud. A variety of
sensors feed streams of data to cloud applications or simply generate content. An ever increasing
number of cloud-based services collect detailed data about their services and information about the
users of these services.

Big Data, discussed in depth in Chapter 12, reflects the reality that many applications use data sets
so large that local computers, or even small to medium scale data centers, do not have the capacity
to store and process such data. The consensus is that Big Data growth can be viewed as a three-
dimensional phenomenon: (i) implies an increased volume of data; (ii) requires increased processing
speed to process more data and produce more results; and (iii) involves a diversity of data sources and
data types.

The network-centric data storage model is particularly useful for mobile devices with limited power
reserves and local storage, now able to save and to access large audio and video files stored on computer
clouds. Billions of Internet-connected mobile, as well as stationary devices, access data stored on com-
puter clouds. It is predicted that: “annual global IP traffic will pass the zettabyte, 1000 exabytes [EB]
threshold by the end of 2016, and will reach 2.3 ZB per year by 2020” (http://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html).

Storage and processing on the cloud are intimately tied to one another. Data analytics uses the
very large volumes of data collected by many organizations to optimize their businesses. An in-depth
analysis allows these organizations to discover how to reach a larger population of customers, identify
strength in their products or shortcomings in the organization, save energy, and, last but not least,
protect the environment.

Applications in many areas of science, including genomics, structural biology, high energy physics,
astronomy, meteorology, and the study of the environment, carry out complex analysis of data sets
often of the order of terabytes.1 In 2010, the four main detectors at the Large Hadron Collider (LHC)
produced 13 PB of data; the Sloan Digital Sky Survey (SDSS) collects about 200 GB of data per night.
As a result of this increasing appetite file systems, such as Btrfs, XFS, ZFS, exFAT, NTFS, HFS Plus,
and ReFS, support disk formats with theoretical volume sizes of several exabytes.

While we emphasize the advantages of a concentration of resources we have to be acutely aware that
a cloud is a large-scale distributed system with a very large number of components which must work
in concert. The management of the large collection of storage systems poses significant challenges

1Terabyte, 1 TB = 1012 bytes; Petabyte, 1 PB = 1015 bytes; Exabyte, 1 EB = 1018 bytes; Zettabyte, 1 ZB = 1021 bytes.

Cloud Computing. DOI: 10.1016/B978-0-12-812810-7.00008-X
Copyright © 2018 Elsevier Inc. All rights reserved.
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and requires novel approaches to system design. Effective data replication and storage management
strategies are critical to the computations performed on the cloud.

Sophisticated strategies to reduce the access time and to support multimedia access are necessary
to satisfy the timing requirements of data streaming and content delivery. Data replication allows con-
current access to data from multiple processors and decreases the chances of data loss. Maintaining
consistency among multiple copies of data records increases the data management software complex-
ity and could negatively affect the storage system performance if data is frequently updated.

Nowadays large-scale systems are built with off-the-shelf components, while the distributed file
systems of the past used custom-designed reliable components. The storage system design philosophy
has shifted from performance-at-any-cost to reliability-at-the-lowest-possible-cost. This shift is evident
in the evolution of ideas from the file systems of the 1980s, such as the Network File System (NFS),
the Andrew File System (AFS), and the Sprite File System (SFS), to the Google File System (GFS),
the Megastore, and the Colossus [173] developed during the last two decades.

The discussion of cloud storage starts with a review of the storage technology followed by an
overview of storage models in Sections 6.1 and 6.2, respectively. The evolution of file systems from
distributed file systems to parallel file systems, then to the file systems capable of handling massive
amounts of data is presented in Sections 6.3, 6.4, and 6.5 which cover distributed file systems, the
General Parallel File Systems, and the Google File System, respectively.

A locking service, Chubby, based on the Paxos algorithm is presented in Section 6.6 followed
by a discussion of NoSQL databases and of transaction processing systems in Sections 6.7 and 6.8.
Sections 6.9 and 6.10 analyze the BigTable and the Megastore system, respectively. Storage reliability
at scale, data center disk locality, and database provenance are discussed in Sections 6.11, 6.12, and
6.13, respectively.

6.1 THE EVOLUTION OF STORAGE TECHNOLOGIES

During the last decades the storage technological has evolved at an accelerated pace and the volume of
data stored every year has constantly increased [233]:

• 1986 – 2.6 EB; equivalent to less than one CD-ROM storing 730-MB per person.
• 1993 – 15.8 EB; equivalent to 4 CD-ROMs per person.
• 2000 – 54.5 EB; equivalent to 12 CD-ROMs per person.
• 2007 – 295 EB; equivalent to almost 61 CD-ROMs per person.

Storage technology. Though it pales in comparison with the evolution of processor technology, the
evolution of the storage technology is astounding. A 2003 study [354] shows that during the 1980–2003
period the storage density of hard disk drives (HDD) has increased by four orders of magnitude from
about 0.01 Gb/in2 to about 100 Gb/in2. During the same period the prices have fallen by five orders of
magnitude to about 1 cent/Mbyte. HDD densities were projected to climb to 1 800 Gb/in2 by 2016, up
from 744 Gb/in2 in 2011.

The density of DRAM (Dynamic Random Access Memory) increased from about 1 Gb/in2 in 1990
to 100 Gb/in2 in 2003. The cost of DRAM tumbled from about $80/Mbyte to less than $1/Mbyte
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during the same period. In 2010 Samsung announced the first monolithic 4 gigabit, low-power double-
data-rate (LPDDR2) DRAM using a 30 nm process.

Recent advancements in storage technology have a broad impact on the storage systems used for
cloud computing. The capacity of NAND flash-based devices outpaced DRAM capacity growth and
the cost per gigabyte has significantly declined. The manufacturers of storage devices are investing in
competing solid state technologies such as Phase-Change Memory.

While solid state memories are based on the charge of the electron, other fundamental property of
an electron, its spin, is used to store information. A new field known as spintronics, an acronym for
spin transport electronics, promises storage media based on antiferromagnetic materials insensitive to
perturbations by stray fields and with much shorter switching times [528]. Solid state drives (SSDs)
can support hundreds of thousands IOPS (I/O operations per second).

While the density of storage devices has increased and the cost has decreased dramatically, the
access time has improved only slightly. The performance of I/O subsystems has not kept pace with the
performance of processors. This performance gap affects multimedia, scientific and engineering, and
other modern applications which process increasingly large volumes of data.

Storage systems face substantial pressure as the volume of data generated increased exponentially
during the last decades. While in the 1980s and 1990s data was primarily generated by humans, nowa-
days machines generate data at an unprecedented rate. Mobile devices, such as smart phones and
tablets, record static images as well as movies; they have limited local storage capacity and rely on
transferring the data to cloud storage. Sensors, surveillance cameras, and digital medical imaging de-
vices generate data at a high rate and dump it on storage systems accessible via the Internet. Online
digital libraries, eBooks, and digital media, along with reference data add to the demand for massive
amounts of storage. The term reference data is used for infrequently used data such as archived copies
of medical or financial records, customer account statements, and so on.

As the volume of data increases, new methods and algorithms for data mining that require powerful
computing systems have been developed. Only a concentration of resources could provide the CPU
cycles along with the vast storage capacity necessary when performing such intensive computations
and when accessing the very large volume of data.

The rapid technological advancements have changed the balance between the initial investment
in the storage devices and the system management costs. Now, the cost of storage management is the
dominant element of the total cost of a storage system. This effect favors the centralized storage strategy
supported by a cloud; indeed, a centralized approach can automate some of the storage management
functions such as replication and backup and thus, reduce substantially the storage management cost.

Disk technologies. Hard disk drives are ubiquitous secondary storage media for general-purpose com-
puters. An HDD is a non-volatile random-access data storage device consisting of one or more rotating
platters coated with magnetic material. Magnetic heads mounted on a moving actuator arm read and
write data to the surface of the platters.

A typical HDD has a spindle motor that spins the disks and an actuator that positions the read/write
head assembly across the spinning disks. The rotation speed of platters in today’s HDDs ranges from
4 200 rpm for energy-efficient portable devices, to 15 000 rpm for high-performance servers. HDDs for
desktop computers and laptops are 3.5-inch and 2.5-inch, respectively.

HDDs are characterized by capacity and performance. The capacity is measured in Megabytes
(MB), Terabytes (TB), or Gigabytes (GB). The average access time is the most relevant HDD per-
formance indicator. The access time includes the seek time, the time for the arm to reach to the
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Table 6.1 The evolution of hard disk drive technologies from 1956 to 2016. The im-
provement ranges from astounding ratios such as 650 × 106 to one, 300 × 106 to one,
and 2.7 × 106 to one for density, price, and capacity, respectively, to a modest 200 to one
for average access time and 11 to one for MTBF, the mean time between failures.

Parameter 1956 2016
Capacity 3.75 MB 10 TB

Average access time ≈ 600 msec 2.5–10 ms

Density 200 bits/sq. inch 1.3 TB sq. inch

Average life span ≈ 2 000 hours/MTBF ≈ 22,500 hours/MTBF

Price $9,200/MB $0.032/GB

Weight 910 Kg 62 g

Physical volume 1.9 m3 34 cm3

cylinder/track and the search time, the time to locate the record on a track. HDD technology has im-
proved dramatically since the disk first introduced by IBM in 1956, as shown in Table 6.1.

At this time typical servers of a data center have up to six 2 TB disks; the physical space available
on the rack limits this number. Increasing the disk space of a data center is costly.

Solid-state disks are persistent storage devices using integrated circuit assemblies as memory. SSD
interfaces are compatible with the block I/O of HDDs, thus they can replace the traditional disks. SSDs
do not have moving parts, are typically more resistant to physical shock, run silently, have lower access
time, and lower latency than HDDs.

Lower-priced SSDs use triple-level or multi-level cell (MLC) flash memory, slower and less re-
liable than single-level cell (SLC) flash memory. The MLC to SLC ratios of persistence, sequential
write, sequential read, and price are 1 : 10, 1 : 3, 1 : 1, and 1 : 1.3, respectively. Most SSDs use MLC
NAND-based flash memory, a non-volatile memory that retains data when power is lost.

The latency of SLC NAND I/O operations is: 25 µsec to fetch a 4 KB page from the array to the
I/O buffer on a read, 250 µsec to commit a 4 KB page from the IO buffer to the array on a write, and
2 msec to erase a 256 KB block. When multiple NAND devices operate in parallel the SSD bandwidth
scales and the high latencies can be hidden, provided that the load is evenly distributed between NAND
devices and sufficient outstanding operations are pending. Most SSD manufacturers use non-volatile
NAND due to lower cost compared with DRAM and the ability to retain the data without a constant
power supply.

Solid state hybrid disks (SSHDs) combine the features of SSDs and HDDs, they include a large
HDD and an SSD cache to improve performance of frequently accessed data. The SSD cost-per-byte
is reduced by about 50% every year, but it should be down by up to three orders of magnitude to be
competitive with HDD.

6.2 STORAGE MODELS, FILE SYSTEMS, AND DATABASES

Storage models. A storage model describes the layout of a data structure in physical storage, while a
data model captures the most important logical aspects of a data structure in a database. The physical
storage can be a local disk, a removable media, or storage accessible via the network.
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FIGURE 6.1

Illustration capturing the semantics of read/write coherence and before-or-after atomicity.

Two abstract models of storage are commonly used: cell storage and journal storage. Cell storage
assumes that the storage consists of cells of the same size and that each object fits exactly in one
cell. This model reflects the physical organization of several storage media; the primary memory of
a computer is organized as an array of memory cells and a secondary storage device, e.g., a disk, is
organized in sectors or blocks read and written as a unit. Read/write coherence and before-or-after
atomicity are two highly desirable properties of any storage model, and in particular, of cell storage,
Figure 6.1.

Journal storage is a fairly elaborate organization for storing composite objects such as records
consisting of multiple fields. Journal storage consists of a manager and a cell storage where the entire
history of a variable is maintained, rather than just the current value. The user does not have direct
access to the cell storage, instead it can request the journal manager to: (i) start a new action; (ii) read
the value of a cell; (iii) write the value of a cell; (iv) commit an action; and (v) abort an action. The
journal manager translates user requests to commands sent to the cell storage: (i) read a cell; (ii) write
a cell; (iii) allocate a cell; and (iv) deallocate a cell.

In the context of storage systems a log contains the history of all variables in a cell storage. The
information about the updates of each data item forms a record appended at the end of the log. A log
provides authoritative information about the outcome of an action involving the cell storage; the cell
storage can be reconstructed using the log which can be easily accessed, we only need a pointer to the
last record.

An all-or-nothing action first records the action in a log in journal storage and then installs the
change in the cell storage by overwriting the previous version of a data item, see Figure 6.2. The log is
always kept on non-volatile storage, e.g., disk, and the considerably larger cell storage resides typically
on non-volatile memory, but can be held in memory for real-time access or using a write-through cache.

File systems. A file system consists of a collection of directories and each directory provides infor-
mation about a set of files. Today high-performance systems can choose among three classes of file
systems: Network File Systems (NFS), Storage Area Networks (SAN), and Parallel File Systems (PFS).
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FIGURE 6.2

A log contains the entire history of all variables; the log is stored on a non-volatile media of a journal storage. If
the system fails after the new value of a variable is stored in the log, but before the value is stored in the cell
memory, then the value can be recovered from the log. If the system fails while writing the log, the cell memory
is not updated. This guarantees that all actions are all-or-nothing. Two variables A and B in the log and the cell
storage are shown. A new value of A is written first to the log and then installed on cell memory at the unique
address assigned to A.

Network file systems are very popular and have been used for some time, but do not scale well and
have reliability problems; an NFS server could be a single point of failure.

Advances in the networking technology allow the separation of the storage systems from the com-
putational servers; the two can be connected by a SAN. SANs offer additional flexibility and allow
cloud servers to deal with non-disruptive changes in the storage configuration. Moreover, the stor-
age in a SAN can be pooled and then allocated based on the needs of the servers. Pooling requires
additional software and hardware support and represents another advantage of a centralized storage
system. A SAN-based implementation of a file system can be expensive, as each node must have a
Fiber Channel adapter to connect to the network.

Parallel file systems are scalable, are capable of distributing files across a large number of nodes,
and provide a global naming space. In a parallel file system several I/O nodes serve data to all compu-
tational nodes and include also a metadata server which contains information about the data stored in
the I/O nodes. The interconnection network of a parallel file system could be a SAN.

Databases and database management systems. Most cloud applications do not interact directly with
the file systems, but through an application layer which manages a database. A database is a collection
of logically-related records. The software that controls the access to the database is called a Data Base
Management System (DBMS). The main functions of a DBMS are: enforce data integrity, manage data
access and concurrency control, and support recovery after a failure.

A DBMS supports a query language, a dedicated programming language used to develop database
applications. Several database models, including the navigational model of the 1960s, the relational
model of the 1970s, the object-oriented model of the 1980s, and the NoSQL model of the first decade
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of the 2000s, reflect the limitations of the hardware available at the time and the requirements of the
most popular applications of each period.

In October 2015 Gartner (http://www.gartner.com) predicted that by 2017 a single DBMS platform
will include multiple data models, relational and NoSQL and that the NoSQL label will no longer be
used. The study classified DBMS offerings in four quadrants based on the ability to execute and the
completeness of company vision:
1. Leaders – Oracle, Microsoft, AWS, IBM, MongoDB, SAP, DataStax, EnerpriseDB, InterSystems,

MarkLogic, and Redis Las.
2. Visionaries – Couchbase, Fujitsu, MemSQL, and NuoDB.
3. Challenges – MariaDB and Percona.
4. Niche players – FairCom, Cloudera, MapR, Atibase, VoltDB, NeoTechnology, TmaxSoft, Clustrix,

Actian, Aerospike, Hortonworks, Orient Technologies, and McObject.

Cloud databases. Most cloud applications are data-intensive, test the limitations of the existing cloud
storage infrastructure, and demand database management systems capable of supporting rapid appli-
cation development and short-time to the market. At the same time, cloud applications require low
latency, scalability, high availability, and demand a consistent view of the data.

These requirements cannot be satisfied simultaneously by existing database models; for example,
relational databases are easy to use for application development, but do not scale well. As its name
implies, the NoSQL model does not support SQL as a query language and may not guarantee the
ACID, Atomicity, Consistency, Isolation, and Durability properties of traditional databases. It usually
guarantees an eventual consistency for transactions limited to a single data item.

The NoSQL model is useful when the structure of the data does not require a relational model and
the amount of data is very large. Several types of NoSQL databases have emerged in the last few years.
Based on the manner the NoSQL databases store the data, we recognize several types such as key-value
stores, BigTable implementations, document store databases, and graph databases.

Replication, used to ensure fault-tolerance of large-scale systems built with commodity compo-
nents, requires mechanisms to guarantee that replicas are consistent with one another. This is yet
another example of increased complexity of modern computing and communication systems when
the software has to support desirable properties of the physical systems. Section 6.6 contains an in-
depth analysis of a service implementing a consensus algorithm to guarantee that replicated objects are
consistent.

Many cloud applications support online transaction processing and have to guarantee the correct-
ness of the transactions. Transactions consist of multiple actions; for example, the transfer of funds
from one account to another requires withdrawing funds from one account and crediting it to another.
The system may fail during or after each one of the actions and steps to ensure correctness must be
taken. Correctness of a transaction means that the result should be guaranteed to be the same as if the
actions were applied one after another regardless of the order. More stringent conditions must some-
times be observed; for example, banking transactions must be processed in the order they are issued, the
so-called external time consistency. To guarantee correctness, a transaction processing system supports
all-or-nothing atomicity discussed in Section 3.11.

http://www.gartner.com
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6.3 DISTRIBUTED FILE SYSTEMS; THE PRECURSORS
The first distributed file systems were developed in the 1980s by software companies and universities.
The systems covered are: NFS developed by Sun Microsystems in 1984, AFS developed at Carnegie
Mellon University as part of the Andrew project, and SFS developed by John Osterhout’s group at
U. C. Berkeley as a component of the Unix-like distributed operating system called Sprite. Other sys-
tems developed at about the same time are Locus [507], Apollo [298], and the Remote File System
(RFS) [46]. The main concerns in the design of these systems are scalability, performance, and secu-
rity, see Table 6.2.

In 1980s many organizations, including research centers, universities, financial institutions, and
design centers, considered that networks of workstations are an ideal environment for their operations.
Diskless workstations were appealing due to reduced hardware costs and also to lower maintenance
and system administration costs. Soon it became obvious that a distributed file system could be very
useful for the management of a large number of workstations and Sun Microsystems, one of the main
promoters of a distributed systems based on workstations, proceeded to develop the NFS in the early
1980s.

Network File System. NFS was the first widely used distributed file system; the development of this
application based on the client-server model was motivated by the need to share a file system among a
number of clients interconnected by a local area network.

A majority of workstations were running under UNIX; thus, many design decisions for the NFS
were influenced by the design philosophy of the UNIX File System (UFS). It is not surprising that the
NFS designers aimed to:

• Provide the same semantics as a local UFS to ensure compatibility with existing applications.
• Facilitate easy integration into existing UFS.
• Ensure that the system will be widely used; thus, support clients running on different operating

systems.
• Accept a modest performance degradation due to remote access over a network with a bandwidth

of several Mbps.

UFS has three important characteristics which enabled the extension from local to remote file man-
agement:
1. The layered design provides the necessary flexibility of the file system. Layering allows separation

of concerns and minimization of the interaction among the modules necessary to implement the
system. The addition of the vnode layer allowed UNIX file system to treat uniformly local and
remote file access.

2. The hierarchical design supports file system scalability; it allows grouping of files into special files
called directories, supports multiple levels of directories and collections of directories and files, the
so-called file systems. The hierarchical file structure is reflected by the file naming convention.

3. The metadata supports a systematic rather than an ad hoc design philosophy of the file system.
Inodes contain information about individual files and directories and are kept on persistent media
together with the data. Metadata includes the file owner, the access rights, the creation time or the
time of the last modification of the file, the file size, as well as information about the structure
of the file and the persistent storage device cells where data is stored. Metadata also supports
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FIGURE 6.3

UFS layered design separates the physical file structure from the logical one. The lower three layers, block, file,
and inode, are related to the physical file structure, while the upper three layers, path name, absolute path
name, and symbolic path name reflect the logical organization. The file name layer mediates between the two
groups.

device-independence, a very important objective due to the very rapid pace of storage technology
development.

The logical organization of a file reflects the data model, the view of the data from the perspective
of the application. The physical organization reflects the storage model and describes the manner the
file is stored on a given storage media. The layered design allows UFS to separate the concerns for the
physical file structure from the logical one.

Recall that a file is a linear array of cells stored on a persistent storage device; the file pointer
identifies a cell used as a starting point for a read or write operation. This linear array is viewed by an
application as a collection of logical records; the file is stored on a physical device as a set of physical
records, or blocks, of size dictated by the physical media.

The lower three layers of the UFS hierarchy, the block, the file, and the inode layer, reflect the
physical organization. The block layer allows the system to locate individual blocks on the physical
device; the file layer reflects the organization of blocks into files; and the inode layer provides the
metadata for the objects (files and directories). The upper three layers, the path name, the absolute path
name, and the symbolic path name layer, reflect the logical organization. The file name layer mediates
between the machine-oriented and the user-oriented views of the file system, see Figure 6.3.

Several control structures maintained by the kernel of the operating systems support the file han-
dling by a running process; these structures are maintained in the user area of the process address space
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FIGURE 6.4

The NFS client-server interaction. The vnode layer implements file operation in a uniform manner, regardless
of whether the file is local or remote. An operation targeting a local file is directed to the local file system, while
one for a remote file involves NFS; an NFS client packages the relevant information about the target and the
NFS server passes it to the vnode layer on the remote host which, in turn, directs it to the remote file system.

and can only be accessed in kernel mode. To access a file, a process must first establish a connection
with the file system by opening the file; at that time a new entry is added to the file description table
and the meta-information is brought in to another control structure, the open file table.

A path specifies the location of a file, or directory, in a file system. A relative path specifies the
file location relative to the current/working directory of the process, while a full path, also called an
absolute path, specifies the location of the file independently of the current directory, typically relative
to the root directory. A local file is uniquely identified by a file descriptor (fd), generally, an index in
the open file table.

NFS is based on the client-server paradigm. The client runs on the local host, while the server is
at the site of the remote file system. The client and the server interact by means of Remote Procedure
Calls (RPCs), Figure 6.4. The API interface of the local file system distinguishes file operations on a
local file from the ones on a remote file and, in the later case, invokes the RPC client. Figure 6.5 shows
the API for a UNIX file system, the calls made by the RPC client in response to API calls issued by a
user program for a remote file system, as well as some of the actions carried out by the NFS server in
response to an RPC call. NFS uses a vnode layer to distinguish between operations on local and remote
files, as shown in Figure 6.4.

A remote file is uniquely identified by a file handle (fh), rather than a file descriptor. The file handle
is a 32-byte internal name, a combination of the file system identification, an inode number, and a
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FIGURE 6.5

The API of UFS and the corresponding RPCs issued by an NFS client to the NFS server. The actions of the
server in response to an RPC issued by the NFS client are too complex to be fully described. fd stands for file
descriptor, fh for file handle, fname for file name, dname for directory name, dfh for the directory were the file
handle can be found, count for the number of bytes to be transferred, buf for the buffer to transfer the data
to/from, device for the device where the file system is located.
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generation number. The file handle allows the system to locate the remote file system and the file on
that system; the generation number allows the system to reuse the inode numbers and ensures a correct
semantics when multiple clients operate on the same remote file.

While many RPC calls, such as Read, are idempotent2 communication failures could sometimes
lead to an unexpected behavior. Indeed, if the network fails to deliver the response to a Read RPC,
then the call can be repeated without any side effects. By contrast, when the network fails to deliver the
response to the Rmdir RPC, the second call returns an error code to the user if the call was successful
the first time; if the server fails to execute the first call then the second call returns normally. Note also
that there is no Close RPC because this action only makes changes to the open file data structure of the
process and does not affect the remote file.

The NFS has undergone significant transformations along the years; it has evolved from Version 2
[437] discussed in this section, to Version 3 [395] in 1994, and then to Version 4 [396] in 2000, see
Section 6.14.

Andrew File System. AFS is a distributed file system developed in the late 1980s at Carnegie Mellon
University (CMU) in collaboration with IBM [353]. The designers of the systems envisioned a very
large number of workstations interconnected with a relatively small number of servers; it was antici-
pated that each individual at CMU would have an Andrew workstation thus, the system would connect
up to 10 000 workstations.

The set of trusted servers in AFS form a structure called Vice. The workstation OS, 4.2BSD UNIX,
intercepts file system calls and forwards them to a user-level process called Venus which caches files
from Vice and stores modified copies of files back on the servers they came from. Reading and writing
operations are performed directly on the cached copy of the file and bypass Venus. Only when a file is
opened or closed does Venus communicate with Vice.

The emphasis of the AFS design is on performance, security, and simple management of the file
system [242]. The local disks of a workstations act as persistent cache ensuring scalability and reducing
the response time. The master copy of a file residing on one of the servers is updated only when the
file is modified. This strategy reduces the server load and improves the system performance.

Another major objective of the AFS design is improved security. The communications between
clients and servers are encrypted and all file operations require secure network connections. When a
user signs in to a workstation the password is used to obtain security tokens from an authentication
server; these tokens are then used every time a file operation requires a secure network connection.

AFS uses Access Control Lists (ACLs) to allows control sharing of the data. An ACL specifies the
access rights of an individual user or of a group of users. A set of tools support the management of
ACLs. Another facet of the effort to reduce the user involvement in the file management is location
transparency. Files could be accessed from any location and could be moved automatically, or at the
request of system administrators, without user’s involvement and inconvenience. The relatively small
number of servers reduces drastically the efforts related to system administration as operations, such
as backups, affect only the servers while workstations can be added, removed, or moved from one
location to another without administrative intervention.

Sprite Network File System. SFS is a component of the Sprite network operating system [234]. SFS
supports non-write-through caching of files on the client, as well as the server systems [358]. Processes

2An action is idempotent if repeating it several times has the same effect as if the action was executed only once.
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running on all workstations enjoy the same semantics for file access as if they would run on a single
system. This is possible due to a cache consistency mechanism which flushes portions of the cache and
disables caching for shared files opened for read-write operations.

Caching not only hides the network latency, but also reduces the server utilization and obviously
improves the performance by reducing the responser time. A file access request made by a client
process could be satisfied at different levels. First, the request is directed to the local cache; if not
satisfied there, it is passed to the local file system of the client. If it cannot be satisfied locally, then the
request is sent to the remote server. Finally, when the request cannot be satisfied by the remote server’s
cache the request is sent to the file system running on the server.

The design decisions for the Sprite system were influenced by the resources available at a time
when a typical workstation had a 1 to 2 MIPS processor and 4 to 14 Mbytes of physical memory.
The main-memory caches allowed diskless workstations to be integrated in the system and enabled the
development of unique caching mechanisms and policies for both clients and servers. The results of a
file-intensive benchmark reported by [358] show that SFS was 30% to 35% faster than either NFS or
AFS.

The file cache is organized as a collection of 4K blocks; a cache block has a virtual address consist-
ing of a unique file identifier supplied by the server and a block number in the file. Virtual addressing
allows the clients to create new blocks without the need to communicate with the server. File servers
map virtual addresses to physical disk addresses. Note also that the page size of the virtual memory in
Sprite is also 4K. The size of the cache available to an SFS client or a server system changes dynam-
ically function of the needs. This is possible because the Sprite operating system ensures an optimal
sharing of the physical memory between file caching by SFS and virtual memory management.

The file system and the virtual memory manage separate sets of physical memory pages and main-
tain a time-of-last-access for each block or page, respectively. Virtual memory uses a version of the
clock algorithm [357] to implement a Least Recently Used (LRU) page replacement algorithm and the
file system implements a strict LRU order since it knows the time of each read and write operation.
Whenever the file system or the virtual memory management experience a file cache miss or a page
fault it compares the age of its oldest cache block or page, respectively, with the age of the oldest one
of the other system; the oldest cache block or page is forced to release the real memory frame.

An important design decision of the SFS was to delay write-backs; this means that a block is first
written to cache and the writing to the disk is delayed for a time of the order of tens of seconds. This
strategy speeds-up writing and also avoids writing when data is discarded before the time to write it
to the disk. The obvious draw back of this policy is that data can be lost in case of a system failure.
Write-through is the alternative to the delayed write-back. Write-through guarantees reliability as the
block is written to the disk as soon as it is available on the cache, but it increases the time for a write
operation.

Most network file systems guarantee that once a file is closed, the server will have the newest ver-
sion on persistent storage. As far as concurrency is concerned we distinguish sequential write-sharing,
when a file cannot be opened simultaneously for reading and writing by several clients, from concur-
rent write-sharing, when multiple clients can modify the file at the same time. Sprite allows both modes
of concurrency and delegates the cache consistency to the servers. In case of concurrent write-sharing
the client cashing is disabled and all reads and writes are carried out by the server.

Table 6.2 presents a comparison of caching, writing strategy, and consistency of NFS [437], AFS
[353], Sprite [234], Locus [507], Apollo [298], and RFS [46].
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Table 6.2 A comparison of several network file systems [353].

File system Cache size and
location

Writing policy Consistency
guarantees

Cache validation

NFS Fixed, memory On close or 30 sec.
delay

Sequential On open, with server
consent

AFS Fixed, disk On close Sequential When modified server
asks client

SFS Variable, memory 30 sec. delay Sequential, concurrent On open, with server
consent

Locus Fixed, memory On close Sequential, concurrent On open, with server
consent

Apollo Variable, memory Delayed or on unlock Sequential On open, with server
consent

RFS Fixed, memory Write-through Sequential, concurrent On open, with server
consent

6.4 GENERAL PARALLEL FILE SYSTEM
Once the distributed file systems became ubiquitous, the natural next step in the file systems evolution
was supporting parallel access. Parallel file systems allow multiple clients to read and write concur-
rently from the same file. Support for parallel I/O is essential for the performance of many applications
[334]. Early supercomputers such as the Intel Paragon took advantage of parallel file systems to support
data-intensive applications.

Concurrency control is a critical issue for parallel file systems. Several semantics for handling
shared and concurrent file access are possible. One option is to have a shared file pointer. In this case
successive reads issued by different clients advance the file pointer. Another semantics is to allow each
client to have its own file pointer.

The General Parallel File System (GPFS) [444] was developed by IBM in early 2000s as a successor
of the TigerShark multimedia file system [226]. GPFS is a parallel file system emulating closely the
behavior of a general-purpose POSIX system running on a single system. GPFS was designed for
optimal performance of large clusters. GPFS can support a file system of up to 4 petabytes consisting
of up to 4 096 disks of 1 TB each, see Figure 6.6. The maximum file size is 263 − 1 bytes.

A file consists of blocks of equal size, ranging from 16 KB to 1 MB stripped across several disks.
The system could support not only very large files, but also a very large number of files. GPFS directo-
ries use the extensible hashing techniques to access a file. A hash function is applied to the name of the
file; then the n low-order bits of the hash value give the block number of the directory where the file
information can be found, with n a function of the number of files in the directory. Extensible hashing
is used to add a new directory block. The system maintains user data, file metadata, such as the time
when last modified, and file system metadata, such as allocation maps. Metadata, such as file attributes
and data block addresses, is stored in inodes and in indirect blocks.

Reliability is a major concern in a system with many physical components. To recover from system
failures GPFS records all metadata updates in a write-ahead log file. Write-ahead means that updates
are written to persistent storage only after the log records have been written. For example, when a new
file is created, a directory bloc must be updated and an inode for the file must be created. These records
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FIGURE 6.6

A GPFS configuration. The disks are interconnected by a SAN; compute servers are distributed in four LANs,
LAN1–LAN4. The I/O nodes/servers are connected to LAN1.

are transferred from cache to disk after the log records have been written. When the system ends up
in an inconsistent state, the directory bloc is written and then if the I/O node fails before writing the
inode, the log file allows the system to recreate the inode record. The log files are maintained by each
I/O node for each file system it mounts and any I/O node is able to initiate recovery on behalf of a
failed node. Disk parallelism is used to reduce the access time; multiple I/O read requests are issued in
parallel and data is pre-fetched in a buffer pool.

Data striping allows concurrent access and improves performance, but can have unpleasant side-
effects. Indeed, when a single disk fails, a large number of files are affected. To reduce the impact of
such undesirable events, the system attempts to mask a single disk failure or the failure of the access
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path to a disk. The system uses RAID devices with the stripes equal to the block size and dual-attached
RAID controllers. To further improve the fault tolerance of the system GPFS data files, as well as
metadata, are replicated on two different physical disks.

Consistency and performance, critical for any distributed file system, are difficult to balance.
Support for concurrent access improves performance, but faces serious challenges for maintaining
consistency. GPFS consistency and synchronization are ensured by a distributed locking mechanism.
A central lock manager grants lock tokens to local lock managers running in each I/O node. Lock
tokens are also used by the cache management system.

Lock granularity has important implications on the performance of a file system and GPFS uses
a variety of techniques for different types of data. Byte-range tokens are used for read and write op-
erations to data files as follows: the first node attempting to write to a file acquires a token covering
the entire file, [0,∞]. This node is allowed to carry out all reads and writes to the file without any
need for permission until a second node attempts to write to the same file; then, the range of the token
given to the first node is restricted. More precisely, if the first node writes sequentially at offset fp1
and the second one at offset fp2 > fp1, then the range of the tokens for the two tokens are [0, fp2]
and [fp2,∞], respectively, and the two nodes can operate concurrently without the need for further
negotiations. Byte-range tokens are rounded to block boundaries.

Byte-range token negotiations among nodes use the required range and the desired range for the
offset and for the length of the current and the future operations, respectively. The data-shipping,
an alternative to byte-range locking, allows fine-grain data sharing. In this mode the file blocks are
controlled by the I/O nodes in a round-robin manner. A node forwards a read or write operation to the
node controlling the target block, the only one allowed to access the file.

A token manager maintains the state of all tokens; it creates and distributes tokens, collects tokens
once a file is closed, downgrades/upgrades tokens when additional nodes request access to a file. Token
management protocols attempt to reduce the load place on the token manager; for example, when a
node wants to revoke a token it sends messages to all the other nodes holding the token and forwards
the reply to the token manager.

Access to metadata is synchronized; for example, when multiple nodes write to the same file, the
file size and the modification dates are updated using a shared write lock to access an inode. One of
the nodes assumes the role of a metanode and all updates are channeled through it; the file size and
the last update time are determined by the metanode after merging the individual requests. The same
strategy is used for updates of the indirect blocks. GPFS global data such as ACLs (Access Control
Lists), quotas, and configuration data are updated using the distributed locking mechanism.

GPFS uses disk maps for the management of the disk space. The GPFS block size can be as large
as 1 MB and a typical block size is 256 KB. A block is divided into 32 sub-blocks to reduce disk
fragmentation for small files thus, the block map has 32 bits to indicate if a sub-bloc is free or used.
The system disk map is partitioned into n regions and each disk map region is stored on a different
I/O node; this strategy reduces the conflicts and allows multiple nodes to allocate disk space at the
same time. An allocation manager running on one of the I/O nodes is responsible for actions involving
multiple disk map regions. For example, it updates free space statistics, helps with deallocation by
sending periodically hints of the regions used by individual nodes.

A detailed discussion of system utilities and of the lessons learned from the deployment of the
file system at several installations in 2002 can be found in [444]; the documentation of the GPFS is
available from [247].
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6.5 GOOGLE FILE SYSTEM
The Google File System, developed in late 1990s, uses thousands of storage systems built from inex-
pensive commodity components to provide petabytes of storage to a large user community with diverse
needs [193]. Thus, it should not be surprising that a main concern of the GFS designers was reliability
of a system exposed to hardware failures, system software errors, application errors and, last but not
least human errors.

The system was designed after a careful analysis of the file characteristics and of the access models.
Some of the most important aspects of this analysis reflected in the GFS design are:

• Scalability and reliability are critical features of the system; they must be considered from the
beginning, rather than at later design stages.

• The vast majority of files range in size from a few GB to hundreds of TB.
• The most common operation is to append to an existing file; random write operations to a file are

extremely infrequent.
• Sequential read operations are the norm.
• Users process the data in bulk and are less concerned with the response time.
• To simplify the system implementation the consistency model should be relaxed without placing an

additional burden on the application developers.

As a result of this analysis several design decisions were made:
1. Segment a file in large chunks.
2. Implement an atomic file append operation allowing multiple applications operating concurrently

to append to the same file.
3. Build the cluster around a high-bandwidth rather than low-latency interconnection network. Sep-

arate the flow of control from the data flow; schedule the high-bandwidth data flow by pipelining
the data transfer over TCP connections to reduce the response time. Exploit network topology by
sending data to the closest node in the network.

4. Eliminate caching at the client site; caching increases the overhead for maintaining consistency
among cashed copies at multiple client sites and it is not likely to improve performance.

5. Ensure consistency by channeling critical file operations through a master controlling the entire
system.

6. Minimize master’s involvement in file access operations to avoid hot-spot contention and to ensure
scalability.

7. Support efficient checkpointing and fast recovery mechanisms.
8. Support efficient garbage collection mechanisms.

GFS files are collections of fixed-size segments called chunks; at the time of file creation each
chunk is assigned a unique chunk handle. A chunk consists of 64 KB blocks and each block has a 32
bit checksum. Chunks are stored on Linux files systems and are replicated on multiple sites; a user may
change the number of the replicas, from the standard value of three, to any desired value. The chunk
size is 64 MB; this choice is motivated by the desire to optimize the performance for large files and to
reduce the amount of metadata maintained by the system.

A large chunk size increases the likelihood that multiple operations will be directed to the same
chunk thus, it reduces the number of requests to locate the chunk and, at the same time, it allows an
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FIGURE 6.7

The architecture of a GFS cluster; the master maintains state information about all system components. The
master controls a number of chunk servers. A chunk server runs under Linux and uses metadata provided by
the master to communicate directly with an application. The data flow is decoupled from the control flow. The
data and the control paths are shown separately, data paths with thick lines and the control paths with thin
lines. Arrows show the flow of control between an application, the master and the chunk servers.

application to maintain a persistent network connection with the server where the chunk is located.
Space fragmentation occurs infrequently as the chunk of a small file and the last chunk of a large file
are only partially filled.

The architecture of a GFS cluster is illustrated in Figure 6.7. The master controls a large number
of chunk servers; it maintains metadata such as the file names, access control information, the location
of all the replicas for every chunk of each file, and the state of individual chunk servers. Some of the
metadata is stored in persistent storage, e.g., the operation log records the file namespace, as well as
the file-to-chunk-mapping.

The locations of the chunks are stored only in the control structure of the master’s memory and are
updated at the system start up, or when a new chunk server joins the cluster. This strategy allows the
master to have up-to-date information about the location of the chunks.

System reliability is a major concern and the operation log maintains a historical record of metadata
changes enabling the master to recover in case of a failure. As a result, such changes are atomic and are
not made visible to the clients until they have been recorded on multiple replicas on persistent storage.
To recover from a failure, the master replays the operation log. To minimize the recovery time, the
master periodically checkpoints its state and at recovery time it replays only the log records after the
last checkpoint.

Each chunk server is a commodity Linux system. A chunk server receives instructions from the
master and responds with status information. For file read or write operations an application sends to
the master the file name, the chunk index, and the offset in the file. The master responds with the chunk
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handle and the location of the chunk. Then the application communicates directly with the chunk server
to carry out the desired file operation.

The consistency model is very effective and scalable. Operations, such as file creation, are atomic
and are handled by the master. To ensure scalability, the master has a minimal involvement in file
mutations, operations such as write or append which occur frequently. In such cases the master grants
a lease for a particular chunk to one of the chunk servers called the primary; then, the primary creates
a serial order for the updates of that chunk.

When data of a write operation straddles chunk boundary, two operations are carried out, one for
each chunk. The following steps of a write request illustrate the process which buffers data and decou-
ples the control flow from the data flow for efficiency:
1. The client contacts the master which assigns a lease to one of the chunk servers for the particular

chunk, if no lease for that chunk exists; then, the master replies with the Ids of the primary and the
secondary chunk servers holding replicas of the chunk. The client caches this information.

2. The client sends the data to all chunk servers holding replicas of the chunk; each one of the chunk
servers stores the data in an internal LRU buffer and then sends an acknowledgment to the client.

3. The client sends the write request to the primary chunk server once it has received the acknowledg-
ments from all chunk servers holding replicas of the chunk. The primary chunk server identifies
mutations by consecutive sequence numbers.

4. The primary chunk server sends the write requests to all secondaries.
5. Each secondary chunk server applies the mutations in the order of the sequence number and then

sends an acknowledgment to the primary chunk server.
6. Finally, after receiving the acknowledgments from all secondaries, the primary informs the client.

The system supports an efficient checkpointing procedure based on copy-on-write to construct sys-
tem snapshots. A lazy garbage collection strategy is used to reclaim the space after a file deletion. As
a first step, the file name is changed to a hidden name and this operation is time stamped. The master
periodically scans the namespace, removes the metadata for the files with a hidden name older than
a few days. This mechanism gives a window of opportunity to a user who deleted files by mistake to
recover the files with little effort.

Periodically, chunk servers exchange with the master the list of chunks stored on each one of them;
the master supplies them with the identity of orphaned chunks, whose metadata has been deleted and
such chunks are then deleted. Even when control messages are lost, a chunk server will carry out the
house cleaning at the next heartbeat exchange with the master. Each chunk server maintains in core
the checksums for the locally stored chunks to guarantee data integrity.

CloudStore is an open source C++ implementation of GFS. CloudStore allows client access from
C++, Java, and Python.

6.6 LOCKS; CHUBBY – A LOCKING SERVICE

Locks support the implementation of reliable storage for loosely-coupled distributed systems. Locks
enable controlled access to shared storage and ensure atomicity of read and write operations. Consen-
sus protocols are critical for the design of reliable distributed storage systems. The election of a leader
or master from a group of data servers requires an effective consensus protocol because the master
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plays an important role in the management of a distributed storage system. For example, in GFS the
master maintains state information about all systems components.

Locking and the election of a master can be done using a version of the Paxos algorithm for asyn-
chronous consensus. The algorithm guarantees safety without any timing assumptions, a necessary
condition in a large-scale system when communication delays are unpredictable. Nevertheless, the
algorithm must use clocks to ensure liveliness and to avoid the impossibility of reaching consensus
with a single faulty process [174]. Coordination and consensus using Paxos are discussed in depth in
Sections 7.4 and 3.12, respectively.

Distributed systems experience communication problems, such as lost messages, messages out of
sequence, or corrupted messages. There are solutions for handling these undesirable phenomena; for
example, one can use virtual time, i.e. sequence numbers, to ensure that messages are processed in
an order consistent with the time they were sent by all processes involved, but this complicates the
algorithms and increases the processing time.

Advisory locks are based on the assumption that all processes play by the rules; advisory locks
do not have any effect on processes that circumvent the locking mechanisms and access the shared
objects directly. Mandatory locks block access to locked objects to all processes that do not hold the
corresponding locks, regardless if a process uses locking primitives or not.

Locks that can be held for only a very short time are called fine-grained, while coarse-grained locks
are held for a longer time. Some operations require meta-information about a lock, such as the name
of the lock, whether the lock is shared or held in exclusivity, the generation number of the lock. This
meta-information is sometimes aggregated into an opaque byte-string called a sequencer. The question
how to most effectively support a locking and consensus component of a large-scale distributed system
demands several design decisions.

A first decision is whether the locks should be mandatory or advisory. Mandatory locks have the
obvious advantage of enforcing access control; a traffic analogy is that a mandatory lock is like a drawn
bridge, once it is up all traffic is forced to stop. An advisory lock is like a stop sign, those who obey the
traffic laws will stop, but some may not. The disadvantages of mandatory locks are added overhead and
less flexibility. Once a data item is locked, even a high priority task related to maintenance or recovery
cannot access the data unless it forces the application holding the lock to terminate. This is a very
significant problem in large-scale systems where partial system failures are likely.

A second design decision is whether the system should be based on fine-grained or course-grained
locking. Fine-grained locks allow more application threads to access shared data, but generate a larger
workload for the lock server. Moreover, when the lock server fails for a period of time, a larger number
of applications are affected. Advisory locks and course-grained locks seem to be a better choice for a
system expected to scale to a very large number of nodes distributed in data centers interconnected via
wide area networks with a higher communication latency.

A third design decision is how to support a systematic approach to locking. Two alternatives come
to mind:
1. Delegate the implementation of the consensus algorithm to the clients and provide a library of

functions needed for this task.
2. Create a locking service implementing a version of the asynchronous Paxos algorithm and provide

a library to be linked with an application client to support service calls.
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FIGURE 6.8

A Chubby cell consisting of five replicas, one of them is elected as the master. Clients c1, c2, . . . , cn

communicate with the master using RPCs.

Forcing application developers to invoke calls to a Paxos library is more cumbersome and more
prone to errors than the service alternative. Of course, the lock service itself has to be scalable to
support a potentially heavy load.

Another consideration when making this choice is flexibility, the ability of the system to support a
variety of applications. A name service comes to mind as many cloud applications read and write small
files. To allow atomic file operations the names of small files should be included in the namespace of
the service. The choice should also consider the performance, a service can be optimized and clients
can be allowed to cache control information. Lastly, the overhead and resources for reaching consensus
should be considered. Again, the service alternative seems more advantageous as it needs fewer replicas
for high availability.

In early 2000s, when Google started to develop a lock service called Chubby [83], it was decided
to use advisory locks and coarse-grained locks. The service has been used since by several Google
systems including the GFS discussed in Section 6.5 and the BigTable presented in Section 6.9.

A Chubby cell typically serves one data center. The cell server in Figure 6.8 includes several repli-
cas; the standard number of replicas is five. To reduce the probability of correlated failures, the servers
hosting replicas are distributed across the campus of a data center.

Chubby replicas use a distributed consensus protocol to elect a new master when the current one
fails. The master is elected by a majority, as required by the asynchronous Paxos algorithm, accompa-
nied by the commitment that another master will not be elected for a period of time, the master lease.
A session is a connection between a client and the cell server maintained over a period of time. The
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FIGURE 6.9

Chubby replica architecture; a Chubby component implements the communication protocol with the clients.
The system includes a component to transfer files to a fault-tolerant database and a fault-tolerant log
component to write log entries. The fault-tolerant log uses the Paxos algorithm to achieve consensus. Each
replica has its own local file system. Replicas communicate with one another using a dedicated interconnect
and communicate with the clients through a client network.

data cached by the client, the locks acquired, and the handles of all files locked by the client are only
valid for the duration of the session. Clients use RPCs to request services from the master. When it
receives a write request, the master propagates the request to all replicas and waits for a reply from
a majority of replicas before responding. The master responds without consulting the replicas when
receiving a read request.

The client interface of the system is similar, yet simpler, than the one supported by the Unix file
system. It includes notification for events related to file or system status. A client can subscribe to
events such as: file contents modification, change or addition of a child node, master failure, lock
acquired, conflicting lock requests, and invalid file handle. The files and directories of the Chubby
service are organized in a tree structure and use a naming scheme similar to Unix. Each file has a file
handle similar to the file descriptor.

The master of a cell periodically writes a snapshot of its database to a GFS file server. Every file or
directory can act as a lock. To write to a file the client must be the only one holding the file handle, while
multiple clients may hold the file handle to read from the file. Handles are created by a call to open()
function and destroyed by a call to close(). Other calls supporting the service are GetContentsAndStat(),
to get the file data and meta-information, as well as SetContents, Delete().

Several calls allow the client to acquire and release locks. Some applications may decide to create
and manipulate a sequencer with calls to: SetSequencer() for associating a sequencer with a handle;
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GetSequencer() for obtaining the sequencer associated with a handle; or CheckSequencer() for check-
ing the validity of a sequencer.

The sequence of calls SetContents(), SetSequencer(), GetContentsAndStat(), and CheckSequencer()
can be used by an application for the election of a master. In this process all candidate threads attempt
to open a lock file, call it lfile, in exclusive mode. The one which succeeds to acquire the lock for lfile,
becomes the master, writes its identity in lfile, creates a sequencer for the lock of lfile, call it lfseq, and
passes it to the server. The other threads read the lfile and discover that they are replicas. Periodically,
they check the sequencer lfseq to determine if the lock is still valid. This example illustrates the use of
Chubby as a name server; in fact, this is one of the most frequent uses of the system.

Chubby locks and Chubby files are stored in a replicated database. The architecture of these replicas
shows that the stack consists of: (i) the Chubby component implementing the Chubby protocol for
communication with the clients; and (ii) the active components writing log entries and files to the local
storage of the replica, see Figure 6.9.

An atomicity log for a transaction processing system allows a crash recovery procedure to undo
all-or-nothing actions that did not complete, or finish all-or-nothing actions that committed but did not
record all of their effects. Each replica maintains its own copy of the log; a new log entry is appended
to the existing log and the Paxos algorithm is executed repeatedly to ensure that all replicas have the
same sequence of log entries.

The next element of the stack is responsible for the maintenance of a fault-tolerant database, in
other words to ensure that all local copies are consistent. Fault tolerance enables a system to continue
operating properly in the event of one or more faults of its components. The database consists of the
actual data, or the local snapshot in Chubby speak, and a replay log to allow recovery in case of failure.
The state of the system is also recorded in the database.

The Paxos algorithm is used to reach consensus on sets of values, e.g., the sequence of entries in
a replicated log. To ensure that the Paxos algorithm succeeds, in spite of the occasional failure of a
replica, the following three phases of the algorithm are executed repeatedly:
1. Elect a replica to be the master/coordinator. When a master fails, several replicas may decide to

assume the role of a master. To ensure that the result of the election is unique, each replica generates
a sequence number larger than any sequence number it has seen, in the range (1, r) where r is the
number of replicas. Then it broadcasts a propose message with this sequence number. The replicas
which have not seen a higher sequence number broadcast a promise reply and declare that they
will reject proposals from other candidate masters. The replica who sent the propose message is
elected as the master if the number of respondents represent a majority of replicas.

2. The master broadcasts to all replicas an accept message including the value it has selected and
waits for replies, either acknowledge or reject.

3. Consensus is reached when the majority of the replicas send the acknowledge message; then the
master broadcasts the commit message.

The implementation of the Paxos algorithm is far from trivial; while the algorithm can be expressed
as a few tens of lines of pseudocode, its actual implementation could be several thousand lines of
C++ code [94]. Moreover, the practical use of the algorithm cannot ignore the wide variety of failure
modes, including algorithm errors, bugs in its implementation, and that testing a software system of a
few thousands lines of codes is challenging.
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6.7 NOSQL DATABASES
Before the age of cloud computing several data models were widely used: the hierarchical model
for strictly hierarchical relations, the network model for many-to-many relationships, and the most
ubiquitous of all, the relational model proposed by Codd [113]. Structured Query Language is a
special-purpose language for managing structured data in a relational database system and the cen-
terpiece of this storage technology. SQL has three components: a data definition language, a data
manipulation language, and a data control language. Oracle, MySQL, SQLServer, and Postgres are the
best known examples of Relational Database Management Systems (RDBMS).

Cloud computing brought along the demand for storing unstructured or semi-structured data thus,
the need for a new database model. Convenience prevailed when naming this new model. An accurate
description of this model, possibly NO-Relational-database lacked the appeal, so the name NoSQL
was rapidly adopted by the community. This name is misleading. Michael Stonebreaker notes [467]
that “blinding performance depends on removing overhead. Such overhead has nothing to do with
SQL, but instead revolves around traditional implementations of ACID transactions, multi-threading,
and disk management.”

With the new model RDBMS names changed; a partition became a shard,3 a table is a document
root element, a row is an aggregate/record and a column is an attribute/field/property. There is no
stand-alone query language for NoSQL databases.

Just to be clear, NoSQL does not reflect an advance in storing technology, but a response to practical
needs to efficiently access very large datasets stored on large computer clusters [77]. Four flavors of
the new database model can be distinguished:
1. Key-value model data as an index key and a value.
2. Aggregates/documents are similar to key-value, but the value associated with a key contains struc-

tured or semi-structured data.
3. Column-family are large sparse tables with a very large number of rows and only a few columns.
4. Graph databases where the nodes represent entities and the edges the relationships among the

entities.
Cloud stores such as document stores and NoSQL databases are designed to scale well, do not

exhibit a single point of failure, have built-in support for consensus-based decisions, and support
partitioning and replication as basic primitives. Systems such as Amazon’s SimpleDB discussed in
Section 2.3, CouchDB (see http://couchdb.apache.org/), or Oracle NoSQL database [381] are very
popular, though they provide less functionality than traditional databases. The key-value data model
is very popular. Several such systems including Voldemort, Redis, Scalaris, and Tokyo cabinet are
discussed in [90].

The soft-state approach in the design of NoSQL allows data to be inconsistent and transfers the
task of implementing only the subset of the ACID properties required by a specific application to the
application developer. The NoSQL systems ensure that data will be eventually consistent at some future
point in time, instead of enforcing consistency at the time when a transaction is “committed.”

It was suggested to associate NoSQL databases with the BASE acronym reflecting their relevant
properties, Basically Available, Soft state, and Eventually consistent, whereas traditional databases are

3A shard is a horizontal partitioning of a database, a row in a table structured data.

http://couchdb.apache.org/
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characterized by ACID properties, see Section 6.2. Data partitioning among multiple storage servers
and data replication are also tenets of the NoSQL philosophy; they increase availability, reduce the
response time, and enhance scalability.

6.8 DATA STORAGE FOR ONLINE TRANSACTION PROCESSING SYSTEMS
Many cloud services are based on Online Transaction Processing (OLTP) and operate under tight la-
tency constraints. Moreover, OLTP applications have to deal with extremely high data volumes and
are expected to provide reliable services for very large communities of users. It did not take very long
for organizations heavily involved in cloud computing such as Google and Amazon, eCommerce com-
panies such as eBay, and social media networks such as Facebook, Twitter, or LinkedIn to discover
that traditional relational databases are not able to handle the massive amount of data and the real-time
demands of online applications critical for their business model.

The search for alternate models to store the data on a cloud is motivated by the need to decrease
the latency by caching frequently used data in memory on dedicated servers, rather than fetching it
repeatedly. Distributing data to a large number of servers allows multiple transactions to occur at the
same time and decreases the response time. The relational schema is of little use for OLTP applications
and conversion to key-value databases seems a much better approach. Of course, such systems do not
store meaningful metadata information, unless they use extensions that cannot be exported easily.

Reducing the response time is a major concern of OLTP system designers. The term memcaching
refers to a general purpose distributed memory system that caches objects in main memory. The system
is based on a very large hash table distributed across many servers. A memcached system is based on a
client-server architecture and runs under several operating systems including, Linux, Unix, Mac OS X,
and Windows. The servers maintain a key-value associative array. The API allows clients to add entries
to the array and to query it; a key can be up to 250 bytes long and a value can be not larger than 1 MB.
A memcached system uses the LRU cache replacement strategy.

Scalability is the other major concern for cloud OLTP applications and implicitly for datastores.
There is a distinction between vertical scaling, where the data and the workload are distributed to sys-
tems that share resources such as cores/processors, disks, and possibly RAM, and horizontal scaling,
where the systems do not share either the primary or secondary storage [90].

The overhead of OLTP systems is due to four sources with equal contribution: logging, locking,
latching, and buffer management. Logging is expensive because traditional databases require transac-
tion durability thus, every write to the database can only be completed after the log has been updated.
To guarantee atomicity, transactions lock every record and this requires access to a lock table.

Many operations require multi-threading and the access to shared data structures, such as lock
tables, demands short-term latches4 for coordination. The breakdown of the instruction count for these
operations in existing DBMS is: 34.6% buffer management, 14.2% latching, 16.3% locking, 11.9%
logging, and 16.2% for hand-coded optimization [224].

Today OLTP databases could exploit the vast amounts of resources of modern computing and com-
munication systems to store the data in main memory rather than rely on disk-resident B-trees and heap

4A latch is a counter that triggers an event when it reaches zero. For example a master thread initiates a counter with the number
of worker threads and waits to be notified when all of them have finished.
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files, locking-based concurrency control, support for multi-threading optimized for computer technol-
ogy of past decades [224]. Logless, single threaded, and transaction-less databases could replace the
traditional ones for some cloud applications.

Data replication is critical not only for system reliability and availability, but also for its perfor-
mance. In an attempt to avoid catastrophic failures due to power blackouts, natural disasters, or other
causes (see also Section 1.6), many companies have established multiple data centers located in differ-
ent geographic regions. Thus, data replication must be done over a wide area network. This could be
quite challenging especially for log data, metadata, and system configuration information due to larger
communication delays and an increased probability of communication failures. Several strategies are
possible, some based on Master–Slave configurations, other based on homogeneous replica groups.

Master–Slave replication can be asynchronous or synchronous. In the first case the master repli-
cates write-ahead log entries to at least one slave and each slave acknowledges appending the log
record as soon as the operation is done, while in the second case the master must wait for the acknowl-
edgments from all slaves before proceeding. Homogeneous replica groups enjoy shorter latency and
higher availability than Master–Slave configurations, any member of the group can initiate mutations
which propagate asynchronously.

In summary, the “one-size-fits-all” approach in the traditional storage system design is replaced by a
flexible one, tailored to the specific requirements of the applications. Sometimes, the data management
of a cloud computing environment integrates multiple databases. For example, Oracle integrates its
NoSQL database with the HDFS discussed in Section 7.7, with the Oracle Database, and with the
Oracle Exadata. Another approach, discussed in Section 6.10, partitions the data and guarantees full
ACID semantics within a partition, while supporting eventual consistency among partitions.

6.9 BIGTABLE
BigTable is a distributed storage system developed by Google to store massive amounts of data and to
scale up to thousands of storage servers [96]. The system uses the GFS discussed in Section 6.5 to store
user data, as well as system information. To guarantee atomic read and write operations, BigTable uses
the Chubby distributed lock service, see Section 6.6. The directories and the files in the namespace of
Chubby are used as locks. Client applications written in C++ can add/delete values, search for a subset
of data, and lookup for data in a row.

BigTable is based on a simple and flexible data model and allows an application developer to ex-
ercise control on the data format and layout. It also reveals data locality information to the application
clients. Column keys identify units of access control called column families including data of the same
type. A column key consists of a string defining the family name, a set of printable characters, and
an arbitrary string as qualifier. A row key is an arbitrary string of up to 64 KB and a row range is
partitioned into tablets serving as units for load balancing. Any read or write row operation is atomic
even when it affects more than one column. Time stamps used to index different versions of the data in
a cell are 64-bit integers. The interpretation of time stamps can be defined by the application, while the
default is the time of an event in microseconds. Figure 6.10 shows an example of BigTable, a sparse,
distributed, multidimensional map for an Email application.

The system consists of three major components: a library linked to application clients to access the
system, a master server and a large number of tablet servers. The master server controls the entire sys-
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FIGURE 6.10

A BigTable example; the organization of an Email application as a sparse, distributed, multidimensional map.
The slice of the BigTable shown consists of a row with the UserId key and three family columns; the Contents
key identifies the cell holding the contents of Emails received, the one with the Subject key identifies the
subject of Emails, and the one with the Reply key identifies the cell holding the replies; the version of records
in each cell are ordered according to their time stamps. The row keys of this BigTable are ordered
lexicographically; a column key is obtained by concatenating the family and the qualifier fields. Each value is
an uninterpreted array of bytes.

tem, it assigns tablets to tablet servers and balances the load among them, manages garbage collection,
and handles table and column family creation and deletion.

Internally, the space management is ensured by a three-level hierarchy: the root tablet whose lo-
cation is stored in a Chubby file, points to entries in the second element, the metadata tablet which,
in turn, points to user tablets, collections of locations of user’s tablets. An application client searches
through this hierarchy to identify the location of its tablets and then caches the addresses for further
use.

The performance of the system reported in [96] is summarized in Table 6.3; the table shows the
number of random and sequential read and write and scan operations for 1 000 bytes, when the number
of servers increases from 1 to 50, then to 250, and finally to 500. Locking prevents the system from
achieving a linear speedup, but the performance of the system is still remarkable due to a fair number
of optimizations. For example, the number of scans on 500 tablet servers is 7 843 × 500 instead of
15 385 × 500. It is reported that only 12 clusters use more than 500 tablet servers, while some 259
clusters use between 1 and 19 tablet servers.

BigTable is used by a variety of applications including Google Earth, Google Analytics, Google
Finance, and web crawlers. For example, Google Earth uses two tables, one for preprocessing and
one for serving client data. The preprocessing table stores raw images; the table is stored on disk as
it contains some 70 TB of data. Each row of data consists of a single imagery; adjacent geographic
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Table 6.3 BigTable performance; the number of operations per tablet server.

Number of tablet
servers

Random
read

Sequential
read

Random
write

Sequential
write

Scan

1 1 212 4 425 8 850 8 547 15 385

50 593 2 463 3 745 3 623 10 526

250 479 2 625 3 425 2 451 9 524

500 241 2 469 2 000 1 905 7 843

segments are stored in rows in close proximity to one another. The column family is very sparse, it
contains a column for every raw image. The preprocessing stage relays heavily on MapReduce to clean
and consolidate the data for the serving phase. The serving table is stored on GFS, its size is “only”
500 GB, and it is distributed across several hundred tablet servers which maintain in-memory column
families. This organization enables the serving phase of Google Earth to provide a fast response time
to tens of thousands of queries per second.

Google Analytics provides aggregate statistics such as the number of visitors of a web page per day.
To use this service web servers embed a JavaScript code in their web pages to record information every
time a page is visited. The data is collected in a raw click BigTable of some 200 TB with a row for
each end-user session. A summary table of some 20 TB contains predefined summaries for a website.

6.10 MEGASTORE
Megastore is a scalable storage for online services. The system, distributed over several data centers,
has a very large capacity and is highly available. Megastore is widely used internally at Google. In
2011 Megastore had a capacity of 1PB, handled some 23 billion transactions daily, 3 billion write, and
20 billion read transactions [48].

The basic design philosophy of the system is to partition the data into entity groups and replicate
each partition independently in data centers located in different geographic areas. The system sup-
ports full ACID semantics within each partition and provides limited consistency guarantees across
partitions, see Figure 6.11. Megastore supports only those traditional database features that allow the
system to scale well and do not affect drastically the response time.

Another distinctive feature of the system is the use of the Paxos consensus algorithm discussed in
Section 3.12 for replicating primary user data, metadata, and system configuration information across
data centers and for locking. The version of the Paxos algorithm used by Megastore does not require a
single master; instead, any node can initiate read and write operations to a write-ahead log replicated
to a group of symmetric peers.

The entity groups are application-specific and store together logically related data; for example, an
email account could be an entity group for an Email application. Data should be carefully partitioned
to avoid excessive communication between entity groups. Sometimes, it is desirable to form multiple
entity groups as is the case of blogs [48].

This middle ground between traditional and NoSQL databases taken by the Megastore designers is
also reflected by the data model. The data model is declared in a schema consisting of a set of tables,
composed of entries, each entry being a collection of named and typed properties. The unique primary
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FIGURE 6.11

Megastore organization. The data is partitioned into entity groups; full ACID semantics within each partition
and limited consistency guarantees across partitions are supported. A partition is replicated across data
centers in different geographic areas.

key of an entity in a table is created as a composition of entry properties. A Megastore table can be a
root or a child table; each child entity must reference a special entity, called root entity in its root table.
An entity group consists of a primary entity and all the entities that reference it.

The system makes extensive use of BigTable. Entities from different Megastore tables can be
mapped to the same BigTable row without collisions. This is possible because the BigTable column
name is a concatenation of the Megastore table name and the name of a property. A BigTable row for
the root entity stores the transaction and all metadata for the entity group. Multiple versions of the data
with different time stamps can be stored in a cell as we have seen in Section 6.9.

Megastore takes advantage of this feature to implement multi-version concurrency control. When
a mutation of a transaction occurs, this mutation is recorded along with its time stamp, rather than
marking the old data as obsolete and adding the new version. This strategy has several advantages: read
and write operations can proceed concurrently, a read always returns the last fully updated version.
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A write transaction involves several steps: (1) get the time stamp and the log position of the last
committed transaction; (2) gather the write operations in a log entry; (3) use the consensus algorithm
to append the log entry and then commit; (4) update the BigTable entries; and (5) cleanup.

6.11 STORAGE RELIABILITY AT SCALE
Building reliable systems with unreliable components is a major challenge in system design identified
and studied early on by John von Neumann [504]. This challenge is greatly amplified on one hand by
the scale of the cloud computing infrastructure and by the use of off-the-shelf components that reduces
the infrastructure cost and, on the other hand, by the latency constrains of many cloud applications.

Even though the mean time to failure of individual components can be of the order of month or
years, it is unavoidable to witness a small, but significant number of server and network components
that are failing at any given time. Data losses cannot be tolerated thus, the failure of storage devices is
a major concern. It is left to the software to mask the failures of storage devices and avoid data loss.

Dynamo and DynamoDB. Amazon developed two database systems to support reliability at scale.
Dynamo, a highly available key-value storage system has been solely used by AWS core services for
in-house applications since 2007 [134]. In 2012 DynamoDB, a NoSQL database service for latency-
sensitive applications that need consistent access at any scale, was offered to the AWS user community.
Dynamo and DynamoDB use a similar data model, but Dynamo had a multi-master design requiring
the client to resolve version conflicts, whereas DynamoDB uses synchronous replication across multi-
ple data centers for high durability and availability.

DynamoDB is a fully-managed database service designed to provide an “always-on” experience.
It supports both document and key-value store models and has been used for mobile, web, gaming,
IoT, advertising, real-time analytics, and other applications. DynamoDB stores data on SSDs to sup-
port latency-sensitive applications; typical requests take milliseconds to complete. DynamoDB allows
developers to specify the throughput capacity required for specific tables within their database using
the provisioned throughput feature to deliver predictable performance at any scale. The service is inte-
grated with other AWS services, e.g., it offers integration with Hadoop via Elastic MapReduce.

Design objectives. As opposed to BigTable, Dynamo’s primary concern is high availability where
updates are not rejected even in the wake of network partitions or server failures. Dynamo has to deliver
predictive performance in addition to reliability and scalability. The services supported by Dynamo
have stringent latency requirements and this precludes supporting ACID properties. Indeed, data stores
providing ACID guarantees tend to exhibit poor availability.

Some of the most significant design considerations regard data replication and measures to increase
availability in wake of failures. Strong consistency and high data availability cannot be achieved si-
multaneously. Availability can be increased by optimistic replication, allowing changes to propagate to
replicas in the background, while disconnected work is tolerated.

In traditional data stores writes may be rejected if the data store cannot reach all, or a majority of the
replicas at a given time. This approach is not tolerated by many AWS applications. As a consequence,
rather than implementing conflict resolution during writes and keeping the read complexity simple,
Dynamo increases the complexity of conflict resolution of the read operations.
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Dynamo supports simple read and write operations to data items uniquely identified by a key. The
get(key) operation locates the object replicas associated with the key in the storage system and returns
a single object or a list of objects with conflicting versions along with a context. The put(key, context,
object) operation determines where the replicas of the object should be placed based on the associated
key and writes replicas to the secondary storage.

The context encodes system metadata about the object that is opaque to the caller and includes
information such as the version of the object. The context information is stored along with the object
so that the system can verify the validity of the context object supplied in the put request.

The main techniques used to achieve Dynamo’s design objectives are:
1. Incremental scalability ensured by consistent hashing.
2. High write availability based on the use of vector clocks with reconciliation.
3. Handling temporary failures using sloppy quorum and hinted handoff. This provides high avail-

ability and durability guarantees when some of the replicas are not available.
4. Permanent failure recovery based on anti-entropy and Merkle trees. This technique synchronizes

divergent replicas in the background.
5. Gossip-based membership protocol and failure detection for membership and failure detection.

The advantage of this technique is that it preserves symmetry and avoids having a centralized
registry for storing membership and node liveness information.

These techniques are discussed next.

Scaling, load balancing, and replication. The data partitioning scheme designed to support incremental
scaling of the system is based on consistent hashing. The output of a hash function is treated as a ring
and each node in the system is assigned a random value within this space representing its position on
the ring.

Consistent hashing reduces the number of keys to be remapped when a hash table is resized. On
average only K/n keys need to be remapped, with K the number of keys and n the number of slots.
In most traditional hash tables a change in the number of slots causes nearly all keys to be remapped
because the mapping between the keys and the slots is defined by a modular operation.

A data item identified by a key is assigned to a storage server by hashing the data item key to yield
its position on the ring, and then walking the ring clockwise to find the first node with a position larger
than the position of the item. Each storage server is responsible for the ring region between itself and
its predecessor on the ring, see Figure 6.12A. In this example node B replicates key k at nodes C and
D in addition to storing it locally. Node D will store the keys that fall in the ranges (A,B], (B,C], and
(C,D].

Instead of mapping a storage server to a single point in the ring, the system uses the concept of
“virtual nodes” and assigns it to multiple points in the ring. A physical server is mapped to multiple
nodes of the ring. This form of virtualization supports:
1. Load balancing. When a storage server is unavailable its load is dispersed among available servers.

When the server comes back again, it is added to the system and accepts a load roughly equivalent
to the load of other servers.

2. System heterogeneity. The number of virtual nodes a physical server is mapped to depends on its
capacity.

A data item is replicated at N servers. Each key, k, is assigned to a coordinator charged with the
replication of the data items in its range. In addition to locally storing each key within its range, the
coordinator replicates these keys at the N − 1 clockwise successor nodes in the ring. In this manner
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FIGURE 6.12

(A) The servers of the Dynamo service are organized as a ring. Ring nodes B, C, and D store keys in range
(A, B), including the key k. (B) The evolution of an object in time using vector clocks.

each node is responsible for the region of the ring between it and its N -th predecessor. The preference
list is the list of all nodes responsible for storing a particular key.

Eventual consistency. This strategy allows updates to be propagated to all replicas asynchronously.
A versioning system allows multiple versions of a data object to be present in the data store at the same
time. The result of each modification is a new and immutable version of the data. New versions often
subsume the older ones and the system can use syntactic reconciliation to determine the authoritative
version.

The system uses vector clocks, lists of (node, counter) pairs, to capture causality of each version
of a data object. When a client updates an object, it must specify the version it is updating by passing
the context it obtained from an earlier read operation, which contains the vector clock information.
System failures combined with concurrent updates lead to conflicting versions of an object and version
branching. Given two versions of the same object, the first is an ancestor of the second and can be
forgotten if the counters on the first object’s clock are less-than-or-equal to all of the nodes in the
second clock; otherwise, the two changes are in conflict and require reconciliation.

Figure 6.12B illustrates the versioning mechanism for the following sequence of events. Data is
written by server Sa and the object Data1 with the associated clock [Sa,1] is created. The same server
Sa writes again and the object Data2 with the associated clock [Sa,2] is created. Data2 is a descendent
of Data1 and overwrites it. There may be replicas of Data1 at servers that have not yet seen Data2.
Then the same client updates the object and server Sb handles the request; a new object data Data3 and
its associated clock [(Sa,2), (Sb,1)] are created.

A different client reads Data2 and then tries to update it, and this time server Sc handles her re-
quest. A new object Data4, a descendent of Data2, with version clock is [(Sa,2), (Sc,1)] is created.
Upon receiving Data4 and its clock, a server aware of Data1 or Data2 could determine that both are
overwritten by the new data and can be garbage collected.
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A node aware of Data3 and Data4 will see that there is no causal relation between them as
there are changes not reflected in each other. Both versions of the data must be kept and presented
to a client for semantic reconciliation. If a client reads both Data3 and Data4 its context will be
[(Sa,2), (Sb,1), (Sc,1)], the summary of the virtual clocks of both data objects. If the client performs
a reconciliation and the write request is handled by server Sa then the vector clock of the new data,
Data5, will be [(Sa,3), (Sb,1), (Sc,1)]. The size of the vector clock grows, but in practice this growth
is limited.

Sloppy quorum for handling failures. During server failures and network partitions a strict quorum
membership is enforced by traditional systems. This conflicts with the durability requirement and in
Dynamo all read and write operations are performed on the first N healthy nodes from the preference
list. In this sloppy quorum the healthy nodes may not always be the first N nodes encountered while
walking the consistent hashing ring.

For example, to maintain the desired availability and durability guarantees when node A in Fig-
ure 6.12A is unreachable during a write operation, a replica that would normally have been sent to A

will be sent to D. The metadata of this replica will include a hint indicating the intended recipient of
the replica.

Replica synchronization in case of permanent failures. Replica inconsistencies can be detected faster
and with a minimum of data transferred using Merkle trees.5 This allows each branch of the tree to be
checked independently without the need to download the entire tree. For example, if the hash values
of the root of two trees are equal, then the values of the leaf nodes in the trees are equal and the nodes
require no synchronization.

Anti-entropy is a process of comparing the data of all replicas and updating each replica to the
newest version; Merkle trees are used for anti-entropy. The key range is the set of keys covered by a
virtual node. Each node maintains a separate Merkle tree for each key range and two nodes exchange
the root of the Merkle tree corresponding to the key ranges that they host in common to compare
whether the keys within a key range are up-to-date.

Gossip-based node addition to the ring or removal from the ring. The node receiving the request writes
the change and its time of issue to persistent store. A gossip-based protocol propagates membership
changes and maintains an eventually consistent view of the membership. Each node contacts a peer
chosen at random every second and the two nodes reconcile their persisted membership change histo-
ries. For example, consider the case when a new node Q is added between nodes A and B to the ring in
Figure 6.12A. Now node Q will be storing keys in the ranges (F,G], (G,A] and (A,Q] freeing nodes
B,C and D from storing the keys in these ranges. Upon confirmation from Q, nodes B,C, and D will
transfer the appropriate set of keys to it. When a node is removed from the system, the reallocation of
keys proceeds as a reverse process.

5A Merkle tree is a hash tree where leaves are hashes of the values of individual keys. Parent nodes higher in the tree are hashes
of their respective children.
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6.12 DISK LOCALITY VERSUS DATA LOCALITY IN COMPUTER CLOUDS

Locality is critical for the performance of computing systems. Recall that a sequence of references is
said to have spatial locality if the items referenced within a short time interval are close in space, e.g.,
they are at nearby memory addresses or nearby sectors on a disk. A sequence exhibits temporal locality
if accesses to the same item are clustered in time.

Locality has major implications for memory hierarchies. The performance of a processor is highly
dependent on the ability to access code and data in cache rather than memory. Virtual memory can
only be effective if the code and the data exhibit spatial and temporal locality, so that page faults occur
infrequently.

Optimizing locality in cloud computing a challenging problem. We shall see in Chapters 7, 8, and 9
that a fair amount of effort has been devoted to algorithms and systems designed to increase the fraction
of the tasks of a job enjoying locality. Locality, the availability of data on the server where a task is
running, improves the performance of cloud applications for two main reasons:
1. The bandwidth of disks is larger than the network bandwidth; moreover, the off-rack communica-

tion bandwidth is oversubscribed and affects the off-rack disk access.
2. The better performance of I/O-intensive applications when data are stored locally is due to the

lower latency and the higher bandwidth of a local disk versus the latency and the bandwidth of a
remote disk.
An important question for cloud resource management is whether disk locality is important. Intu-

itively, we expect the answer to the question whether tasks should be dispatched to the cluster nodes
where their input data resides should be a resounding “Yes.” A slightly different view on the sub-
ject of disk locality is expressed in a paper with a blunt title “Disk-Locality in Datacenter Computing
Considered Irrelevant” [28].

Maybe we tried to solve the wrong problem, instead of focusing on disk locality we should focus
on data locality. In other words, we should look at the local memory as a “data cache” and make sure
that data is stored in the local memory rather than the local disk of the processor where the task is
scheduled to run. Of course, data transfer through the network may still be necessary, but why store it
on the disk and then load it in memory? Several arguments support this thesis:

• The networking technology improves at a faster pace than hard disk technology. Switches with
aggregate link speeds of 40 Gbps and 100 Gbps are available today. Server network interfaces will
soon support rates of 10 Gbps and 25 Gbps.

• The bandwidth available to applications will increase as data centers adopt bisection topologies for
their interconnects [56]. Recall that the bisection bandwidth is the sum of the bandwidths of the
minimal number of links that are cut when splitting the system into two parts.

• The latency of a read access to a local disk is only slightly lower than the latency of a read to a disk
in the same rack; local disk access is about 8% faster [56]. Access to a disk in a different rack will
not increase drastically due to faster networks.

• Though the cost of solid state disk technology is climbing down at an impressive rate, 50% per year,
SSDs are unlikely to replace hard disk drives any time soon due to the sheer volume of data stored
on computer clouds. To be competitive with HDDs the cost-per-byte of SSD should be reduced by
up to three orders of magnitude.
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• Accessing data in local memory is two orders of magnitude faster than reading from a local disk. An
increasing number of applications use the processor memory distributed across the nodes of large
clusters to cache the data, rather than access the HDDs.

• There is at least a two orders of magnitude discrepancy between the capacity of the disks and the
memory of today’s clusters thus, it seems reasonable to use processor memory as a cache for the
much larger volume of data stored on the disks.

It makes sense to use processor memory as a cache for large data sets used as the input of an
application if and only if: (1) the size of the application’s input is much larger than the memory size;
and (2) the applications exhibit locality and have a modest sized working set, in other words if they
access frequently only a relatively small fraction of data blocks.

The authors of [28] investigated Hadoop tasks running at a data center with some 3 000 machines
interconnected by three-tiered networks. Most of the jobs at the Facebook center are data-intensive and
spent most of their execution time reading input data. The analysis of job traces led to the conclusion
that there is an order of magnitude discrepancy between the input size and the memory size and that
some 75% of the data blocks are accessed only once.

The analysis also shows that workloads have a heavy tail distribution of block access. Moreover,
96% of the data inputs can fit into a fraction of the total cluster memory for a majority of jobs. Some
64% of all jobs investigated perform well under a least frequently used (LFU) replacement policy
applied to all their tasks.

The task progress report, T, measures the effect of locality on the duration of a task and is defined
as the ratio

T = data_read + data_written

task_duration
. (6.1)

The results of measurements comparing node-local versus rack-local tasks show that 85% of the jobs
have 0.9 ≤ T ≤ 1.1 and only 4% of jobs have T ≤ 0.7 thus, rack-local tasks are unlikely to significantly
affect performance.

Data compression reduces the pressure on the data center disk space. Tasks read compressed data
and uncompress it before processing. In spite of a network oversubscribed by a factor of ten at Face-
book, data compression leads to very good results; running a task off-rack is only 1.2 times to 1.4 times
slower compared with on-rack execution. The log analysis of Hadoop jobs suggests that prefetching
data blocks could be beneficial because a large fraction of data blocks are accessed only once.

6.13 DATABASE PROVENANCE
Data provenance or lineage describes the origins and the history of data and adds value to data by
explaining how it was obtained. The lineage of a tuple T in the result of a query is the set of items
contributing to produce T . The lineage is important for the extract-transform-load process and for
incrementally adding and updating a database.

Before the Internet era the information in databases was trusted, it was assumed that the organi-
zation maintaining the database was trustworthy and that every effort to ensure the veracity of data
was made. This assumption is no longer true, there is no centralized control over data integrity as the
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Internet allows data to be created, copied, moved around, and combined indiscriminately. Establishing
data provenance is necessary for all databases and is also critical for cloud databases as the data owners
relinquish control of their data to the CSPs.

Data provenance has been practiced by the scientific and engineering community for some time,
long before the disruptive effects of data democratization brought about by the Internet. Data collected
by scientific experiments contains information about the experimental setup and the settings of mea-
suring instruments for each batch of data. Ensuring that experiments can be replicated has always been
an essential aspect of scientific integrity. The same requirements apply to engineering when test data,
e.g., data collected during the testing of a new aircraft, include lineage information.

Data provenance could show inputs that explain why an output record was produced, describing in
detail how the record was produced, and/or explaining where output data cames from. The why-, how-,
and where-provenance are analyzed in [107] and discussed briefly in this section.

The witness of a database record is the subset of database records ensuring that the record is the out-
put of a query. The why-provenance includes information about the witnesses to a query. The number
of witnesses can be exponentially large. To limit this number the concept of witness bases of tuple T in
query Q on database D is defined as the particular set of witnesses which can be calculated efficiently
from Q and D.

The why-provenance of an output tuple T is the witness basis of I according to Q. The witness
basis depends on the structure of the query and it is sensitive to the query formulation. Let us now take
a short detour for introducing the Datalog conjunctive query notations before presenting an example
showing that the why-provenance is sensitive to query rewriting.

Datalog is a declarative logic programming language. Query evaluation in Datalog is based on first
order logic thus, it is sound and complete. A Datalog program includes facts and rules. A rule consists
of two elements, the head and the body, separated by the “:-”symbol. A rule should be understood as:
“head” if it is known that “body”. For example,

• the facts in the left box below mean: (1) Y is in relation R with X; (2) Z is in relation R with Y.
• the rules in the right box mean: (1) Y is in relation P with X if it is known that Y is in relation R

with X; (2) Y is in relation P with X if it is known that Z is in relation R with X AND rule P is
satisfied, i.e., Y is in relation P with Z.

R(X,Y).
R(Y,Z).

P(X,Y) :- R(X,Y).
P(X,Y) :- R(X,Z), P(Z,Y)

Consider now an instance I defining relation R and three tuples t, t ′, t ′′, two queries Q,Q′ and the
output of the two queries Q(I),Q′(I ). The two queries are

Q : Ans(x, y) : −R(x, y).

Q′ : Ans(x, y) : −R(x, y),R(x, z)
(6.2)

Table 6.4 shows that queries Q and Q′ are equivalent, they produce the same result. Table 6.5
shows that the why-provenance is sensitive to query rewriting. There exists a subset of the witness
basis invariant under equivalent queries. This subset, called minimal witness basis, includes all minimal
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Table 6.4 The two queries Q and Q′ are equivalent under R.

Instance I Output of Q(I)
R A B A B
t : 1 2 1 2

t ′: 1 3 1 3

t ′′: 4 2 4 2

Table 6.5 The why-provenance of the two equivalent queries Q and Q′ are different for the three tuples
t, t ′ and t ′′.
Instance I Output of Q(I) Output of Q′(I )

R A B A B why A B why
t : 1 2 1 2 {{t}} 1 2 {{t}, {t, t ′′}}
t ′: 1 3 1 3 { { t ′ } } 1 3 { {t ′ }, { t, t ′′ } }

(t ′′)2: 4 2 4 2 { { (t ′′)2 } } 4 2 { { (t ′′)2 } }

Table 6.6 The how-provenance of the two equivalent queries Q and Q′ are different for the three tuples
t, t ′ and t ′′.
Instance I Output of Q(I) Output of Q′(I )

R A B A B how A B how
t : 1 2 1 2 t 1 2 t2 + t · t ′
t ′: 1 3 1 3 t ′ 1 3 (t ′)2 + t · t ′
t ′′: 4 2 4 2 t ′′ 4 2 (t ′′)2

witnesses in the witness basis. A witness is minimal if none of its proper sub-instances is also a witness
in the witness basis. For example, {t} is a minimal witness for the output tuple (1,2) in Table 6.5 but
{t, t ′} is not a minimal witness since {t} is a sub-instance of it and it is a witness to (1,2). Hence, the
minimal witness basis is {t} in this case.

The why-provenance describes the source tuples that witness the existence of an output tuple in
the result of the query, but it does not show how an output tuple is derived according to the query. The
how-provenance is more general than the why-provenance, thus, it is also sensitive to query formulation
as shown in Table 6.6. The how-provenance of the tuple (1,2) in the output of Q is t but it is t2 + t · t ′
for Q′.

The where-provenance describes the relationship between the source and the output locations, while
the why-provenance describes the relationship between source and output tuples. Examples presented
in [107] illustrate the fact that the where-provenance is also sensitive to query formulation.

6.14 HISTORY NOTES AND FURTHER READINGS
A 1989 survey of distributed file systems can be found in [440]. NFS Versions 2, 3, and 4 are defined
in RFCs 1094, 1813, and 3010, respectively. NFS Version 3 added a number of features including:
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support for 64-bit file sizes and offsets, support for asynchronous writes on the server, additional file
attributes in many replies, and a READDIRPLUS operation. These extensions allowed the new version
to handle files larger than 2 GB, to improve performance, and to get file handles and attributes along
with file names when scanning a directory. NFS Version 4 borrowed a few features from the Andrew
file system. WebNFS is an extension of NFS Versions 2 and 3; it enables operations through firewalls
and is easier integrated into Web browsers.

AFS was further developed as an open-source system by IBM under the name OpenAFS in 2000.
Locus [507] was initially developed at UCLA in the early 1980s and its development was continued
by Locus Computing Corporation. Apollo [298] was developed at Apollo Computer Inc, established
in 1980 and acquired in 1989 by HP. The Remote File System (RFS) [46] was developed at Bell Labs
in mid 1980s. The documentation of a current version of GPFS and an analysis of the caching strategy
are given in GPFS [247] and [444], respectively.

Several DBMS generations based on different models have been developed along the years. In
1968 IBM released the Information Management System (IMS) for the IBM 360 computers. IMS was
based on the so-called navigational model supporting manual navigation in a linked data set where the
data is organized hierarchically. In the RDBMS model, introduced by Codd, related records are linked
together and can be accessed using a unique key. Codd also introduced a tuple calculus as a basis for a
query model for a RDBMS; that led to the development of the Structured Query Language.

In 1973, the Ingres research project at U. C. Berkeley developed a relational data base management
system. Several companies including Sybase, Informix, NonStop SQL, and Ingres were established to
create SQL RDBMS commercial products based on the ideas generated by the Ingres project. IBM’s
DB2 and SQL/DS dominated the RDBMS market for mainframes during the later years of 1980s.
Oracle Corporation, founded in 1977, was also involved in the development of RDBMS.

ACID properties of database transactions were defined by Jim Gray in 1981 [201] and the term
ACID was introduced in [223]. The object-oriented programming ideas of the 1980s led to the de-
velopment of Object-Oriented Data Base Management Systems (OODBMS) where the information is
packaged as objects. The ideas developed by several research projects, including Encore-Ob/Server at
Brown University, Exodus at the University of Wisconsin-Madison, Iris at HP, ODE at Bell Labs, and
the Orion project at MCC-Austin, helped the development of several OODBMS commercial products
[269].

NoSQL database management systems emerged in the 2000s. They do not follow the RDBMS
model, do not use SQL as a query language, may not give ACID grantees, and have a distributed,
fault-tolerant architecture.

Further readings. A 2011 article in the journal Science [233] discusses the volume of information
stored, processed, and transferred through the networks. [354] is a comprehensive study of the storage
technology until 2003. The evolution of storage technology is presented in [248].

Network File System Versions 2, 3, and 4 are discussed in [437], [395], and [396], respectively.
[353] and [242] provide a wealth of information about the Andrew File System, while [234] and [358]
discuss in detail the Sprite File System. Other file systems such as Locus, Apollo, and the Remote File
System (RFS) are discussed in [507], [298], and [46], respectively. The recovery in the Calypso file
system is analyzed in [144]. The Lustre file system is analyzed in [380].

The General Parallel File System (GPFS) developed at IBM and its precursor, the TigerShark mul-
timedia file system are presented in [444] and [226]. A good source for information about the Google
Files System is [193]. Main memory OLTP recovery is covered in [322]. The development of Chubby
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is covered by [83]. NoSQL databases are analyzed in several papers including [467], [224], and [90].
BigTable and Megastore developed at Google are discussed in [96] and [48]. An evaluation of dis-
tributed data store is reported [80].

Attaching cloud storage to a campus grid is the subject of [151]. A cost analysis of storage in
enterprise is discussed in [412] and [464] is an insightful discussion of main-memory OLTP databases.
[503] presents VMware storage.

6.15 EXERCISES AND PROBLEMS

Problem 1. Analyze the reasons for the introduction of storage area networks (SANs) and their
properties. Hint: read [354].

Problem 2. Block virtualization simplifies the storage management tasks in SANs. Provide solid
arguments in support of this statement. Hint: read [354].

Problem 3. Analyze the advantages of memory-based checkpointing. Hint: read [258].
Problem 4. Discuss the security of distributed file systems including SUN NFS, Apollo Domain,

Andrew, IBM AIX, RFS, and Sprite. Hint: read [440].
Problem 5. The designers of the Google file system (GFS) have re-examined the traditional choices

for a file system. Discuss the four observations regarding these choices that have guided
the design of GFS. Hint: read [193].

Problem 6. In his seminal paper on the virtues and limitations of the transaction concept [201] Jim
Gray analyzes logging and locking. Discuss the main conclusions of his analysis.

Problem 7. Michael Stonebreaker argues that “blinding performance depends on removing over-
head...” Discuss his arguments regarding the NoSQL concept. Hint: read [467].

Problem 8. Discuss the Megastore data model. Hint: read [48].
Problem 9. Discuss the use of locking in the BigTable. Hint: read [96] and [83].





7
CHAPTER

CLOUD APPLICATIONS

The users of large-scale computing systems discovered along the years how difficult it was to develop
efficient data-intensive and computationally-intensive applications. It was equally difficult to locate
systems best suited to run an application, to determine when an application was able to run on these
systems, and to estimate when results could be expected. Porting an application from one system to
another frequently represented a challenging endeavor. Often, an application optimized for one system
performed poorly on other systems.

There were also formidable challenges for the providers of service because system resources could
not be effectively managed and it was not feasible to deliver QoS guarantees. Accommodating a dy-
namic load, supporting security and rapid recovery after a system-wide failure, were daunting tasks
due to the scale of the system. Any economic advantage offered by resource concentration was offset
by the relatively low utilization of costly resources.

Cloud computing changed the views and perceptions of users and providers of service on how to
compute more efficiently and at a lower cost. Most of the challenges faced by application developers
and service providers either disappeared, or are significantly diminished. Cloud application developers
enjoy the advantages of a just-in-time infrastructure, they are free to design an application without
being concerned where the application will run.

Cloud elasticity allows applications to seamlessly absorb additional workload. Cloud users also
benefit from the speedup due to parallelization. When the workload can be partitioned in n seg-
ments, the application can spawn n instances of itself and run them concurrently resulting in dramatic
speedups. This is particularly useful for computer-aided design and for modeling complex systems
when multiple design alternatives and multiple models of a physical system can be evaluated at the
same time.

Cloud computing is focused on enterprise computing, this clearly differentiates it from the grid
computing effort largely focused on scientific and engineering applications. An important advantage
of cloud computing over grid computing is that the resources offered by a cloud service provider are in
one administrative domain.

Cloud computing is beneficial for the providers of computing cycles as it typically leads to a more
efficient resource utilization. It soon became obvious that a significant percentage of the typical work-
loads are dominated by frameworks such as MapReduce and that multiple frameworks must share the
large computer clusters populating the cloud infrastructure.

The future success of cloud computing rests on the ability of companies promoting utility comput-
ing to convince an increasingly larger segment of user population of the advantages of network-centric
computing and network-centric content. This translates into the ability to provide satisfactory solutions
to critical aspects of security, scalability, reliability, quality of service, and the requirements agreed
upon in SLAs.

Sections 7.1, 7.2, and 7.3 cover cloud application developments and provide insights into workflow
management. Coordination based on a state machine model is presented in Section 7.4 followed by the
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in-depth discussion of the MapReduce programming model and one of its applications in Sections 7.5
and 7.6. Hadoop, Yarn, and Tez are covered in Section 7.7, while systems such a Pig, Hive, and Impala
are discussed in Section 7.8.

An overview of current cloud applications and new application opportunities is presented 7.9 fol-
lowed by a discussion of cloud applications in science and engineering and in biology research in
Sections 7.10 and 7.11, respectively. Social computing and software fault isolations are the subjects of
Sections 7.12 and 7.13.

7.1 CLOUD APPLICATION DEVELOPMENT AND ARCHITECTURAL STYLES
Web services, database services, and transaction-based services are ideal applications for cloud com-
puting. The cost-performance profiles of such applications benefit from an elastic environment where
resources are available when needed and where a cloud user pays only for the resources consumed by
her application.

Not all types of applications are suitable for cloud computing. Applications where the workload
cannot be arbitrarily partitioned, or require intensive communication among concurrent instances are
unlikely to perform well on a cloud. An application with a complex workflow and multiple dependen-
cies, as is often the case in high-performance computing, could experience longer execution times and
higher costs on a cloud. Benchmarks for high-performance computing discussed in Section 7.10 show
that communication-intensive and memory-intensive applications may not exhibit the performance lev-
els shown when running on supercomputers with low latency and high bandwidth interconnects.

Cloud application development challenges. The development of efficient cloud applications faces
challenges posed by the inherent imbalance between computing, I/O, and communication bandwidth
of processors. These challenges are greatly amplified due to the scale of the cloud infrastructure, its
distributed nature, and by the very nature of data-intensive applications. Though cloud computing
infrastructures attempt to automatically distribute and balance the workload, application developers
are still left with the responsibility to identify optimal storage for the data, exploit spatial and temporal
data and code locality, and minimize communication among running treads and instances.

A main attraction of cloud computing is the ability to use as many servers as necessary to optimally
respond to the cost and the timing constraints of an application. This is only possible if the workload
can be partitioned in segments of arbitrary size and can be processed in parallel by the servers available
in the cloud. The arbitrarily divisible load sharing model describes workloads that can be partitioned
into an arbitrarily large number of units and can be processed concurrently by multiple cloud instances.
Applications most suitable for cloud computing enjoy this model.

The shared infrastructure, a defining quality of cloud computing, has side effects. Performance
isolation discussed in Section 10.1 is nearly impossible under real conditions, especially when a sys-
tem is heavily loaded. The performance of virtual machines fluctuates based on the workload and the
environment. Security isolation is challenging on multi-tenant systems.

Reliability of the cloud infrastructure is also a major concern. The frequent failures of servers built
with off-the-shelf components is a consequence of the sheer number of servers and communication
systems. Choosing an optimal instance from those offered by the cloud infrastructure is another critical
factor to be considered. Instances differ in terms of performance isolation, reliability, and security. Cost
considerations also play a role in the choice of the instance type.
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Many applications consist of multiple stages. In turn, each stage may involve multiple instances
running in parallel on cloud servers and communicating among them. Thus, efficiency, consistency,
and communication scalability are major concerns for an application developer. A cloud infrastruc-
ture exhibits latency and bandwidth fluctuations affecting the performance of all applications and, in
particular, of data-intensive ones.

Data storage plays a critical role in the performance of any data-intensive application. The organi-
zation and the location of data storage, as well as the storage bandwidth must be carefully analyzed to
ensure optimal application performance. Clouds support many storage options to set up a file system
similar to the Hadoop file system discussed in Section 7.7. Among them are off-instance cloud storage,
e.g. S3, mountable off-instance block storage, e.g., EBS, as well as storage persistent for the lifetime
of the instance.

Many data-intensive applications use metadata associated with individual data records. For exam-
ple, the metadata for an MPEG audio file may include the title of the song, the name of the singer,
recording information, and so on. Metadata should be stored for easy access, the storage should be
scalable, and reliable.

Another important consideration for the application developer is logging. The ability to identify the
source of unexpected results and errors is helped by frequent logging, but performance considerations
limit the amount of data logging. Logging is typically done using instance storage preserved only for
the lifetime of the instance thus, measures to preserve the logs for a post-mortem analysis must be
taken. Another challenge waiting resolution is related to software licensing discussed in Section 2.12.

Cloud application architectural styles. Cloud computing is based on the client-server paradigm dis-
cussed in Section 4.8. The vast majority of cloud applications take advantage of request-response
communication between clients and stateless servers. A stateless server does not require a client to
first establish a connection to the server, instead it views a client request as an independent transaction
and responds to it.

The advantages of stateless servers are obvious. Recovering from a server failure requires a consid-
erable overhead for a server which maintains the state of all its connections, but in case of a stateless
server a client is not affected while a server goes down and then comes back up between two consec-
utive requests. A stateless system is simpler, more robust, and scalable. A client does not have to be
concerned with the state of the server; if the client receives a response to a request, this means that
the server is up and running, if not it should resend the request later. A connection-based service must
reserve space to maintain the state of each connection with a client therefore, such a system is not
scalable; the number of clients a server could interact with at any given time is limited by the storage
space available to the server.

The Hypertext Transfer Protocol used by a browser to communicate with a web server is a request-
response application protocol. HTTP uses TCP, a connection-oriented and reliable transport protocol.
While TCP ensures reliable delivery of large objects, it exposes web servers to denial of service attacks.
In such attacks malicious clients fake attempts to establish a TCP connection and force the server to al-
locate space for the connection. A basic web server is stateless; it responds to an HTTP request without
maintaining a history of past interactions with the client. The client, a browser, is also stateless since it
sends requests and waits for responses.

A critical aspect of the development of networked applications is how processes and threads run-
ning on systems with different architectures, possibly compiled from different programming languages,
can communicate structured information with one another. First, the internal representation of the two



240 CHAPTER 7 CLOUD APPLICATIONS

structures at the two sites may be different, one system may use Big-Endian and the other Little-
Endian representation. The character representations may also be different. A communication channel
transmits a sequence of bits/bytes thus, the data structure must be serialized at the sending site and
reconstructed at the receiving site.

Several considerations including neutrality, extensibility, and independence, must be analyzed be-
fore deciding the architectural style of an application. Neutrality refers to application-level protocol
ability to use different transport protocols such as TCP and UDP and, in general, to run on top of a
different protocol stack. For example, we shall see that SOAP can use as transport vehicles TCP, but
also UDP, SMTP, and Java Message Service. Extensibility refers to the ability to incorporate additional
functions such as security. Independence refers to the ability to accommodate different programming
styles.

Very often application clients and the servers running on the cloud communicate use RPCs dis-
cussed in Section 4.8, yet other communication styles are possible. RPC-based applications use stubs
to convert the parameters involved in an RPC call. A stub performs two functions, marshaling the data
structures and serialization.

A more general concept is that of an Object Request Broker (ORB), a middleware facilitating
communication of networked applications. The ORB at the sending site transforms the data structures
used internally and transmits a byte sequence over the network. The ORB at the receiving site maps
the byte sequence to the data structures used internally by the receiving process.

CORBA (Common Object Request Broker Architecture), developed in early 1990s, enables net-
worked applications developed using different programming languages and running on systems with
different architecture and system software to work with one another. At the heart of the system is the
Interface Definition Language (IDL) used to specify the interface of an object. An IDL representation
is then mapped to the set of programming languages including: C, C++, Java, Smalltalk, Ruby, Lisp,
and Python. Networked applications pass CORBA by reference and pass data by value.

SOAP (Simple Object Access Protocol) was developed in 1998 for web applications. SOAP mes-
sage format is based on the Extensible Markup Language (XML). SOAP uses TCP and more recently
UDP transport protocols but it can also be stacked above other application layer protocols such as
HTTP, SMTP, or JMS. The processing model of SOAP is based on a network consisting of senders,
receivers, intermediaries, message originators, ultimate receivers, and message paths. SOAP is an un-
derlying layer of Web Services.

WSDL (Web Services Description Language) (see http://www.w3.org/TR/wsdl) was introduced in
2001 as an XML-based grammar to describe communication between end points of a networked ap-
plication. The abstract definitions of the elements involved include: services, collection of endpoints
of communication; types, containers for data type definitions; operations, description of actions sup-
ported by a service; port types, operations supported by endpoints; bindings, protocols and data format
supported by a particular port type; and port, an endpoint as a combination of a binding and a network
address. These abstractions are mapped to concrete message formats and network protocols to define
endpoints and services.

REST (Representational State Transfer) is a style of software architecture for distributed hyperme-
dia systems. REST supports client communication with stateless servers, it is platform and language
independent, supports data caching, and can be used in the presence of firewalls. REST almost always
uses HTTP to support all four CRUD (Create/Read/Update/Delete) operations; it uses GET, PUT, and
DELETE to read, write, delete the data, respectively.

http://www.w3.org/TR/wsdl
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REST is a much easier to use alternative to RPC, CORBA, or Web Services such as SOAP or
WSDL. For example, to retrieve the address of an individual from a database a REST system sends
an URL specifying the network address of the database, the name of the individual, and the specific
attribute in the record, the client application wants to retrieve, in this case the address. The correspond-
ing SOAP version of such a request consists of ten lines or more of XML. The REST server responds
with the address of the individual. This justifies the statement that REST is a lightweight protocol. As
far as usability is concerned, REST is easier to build from scratch and debug, but SOAP is supported
by tools that use self-documentation, e.g., WSDL to generate the code to connect.

7.2 COORDINATION OF MULTIPLE ACTIVITIES
Many applications require the completion of multiple interdependent tasks [538]. The description of
a complex activity involving such an ensemble of tasks is known as a workflow. In this section we
discuss workflow models, the lifecycle of a workflow, the desirable properties of a workflow descrip-
tion. Workflow patterns, reachability of the goal state of a workflow, dynamic workflows, and a parallel
between traditional transaction systems and cloud workflows are covered in Section 7.3.

Basic concepts. Workflow models are abstractions revealing the most important properties of the enti-
ties participating in a workflow management system. Task is the central concept in workflow modeling.
A task is a unit of work to be performed on the cloud and it is characterized by several attributes, such
as:

• Name – a string of characters uniquely identifying the task.
• Description – a natural language description of the task.
• Actions – an action is a modification of the environment caused by the execution of the task.
• Preconditions – boolean expressions that must be true before the action(s) of the task can take place.
• Postconditions – boolean expressions that must be true after the action(s) of the task do take place.
• Attributes – provide indications of the type and quantity of resources necessary for the execution of

the task, the actors in charge of the tasks, the security requirements, whether the task is reversible
or not, and other task characteristics.

• Exceptions – provide information on how to handle abnormal events. The exceptions supported by
a task consist of a list of <event, action> pairs. The exceptions included in the task exception
list are called anticipated exceptions, as opposed to unanticipated exceptions. Events not included
in the exception list trigger re-planning. Replanning means restructuring of a process, redefinition
of the relationship among various tasks.

A composite task is a structure describing a subset of tasks and the order of their execution. A primi-
tive task is one that cannot be decomposed into simpler tasks. A composite task inherits some properties
from workflows; it consists of tasks, has one start symbol, and possibly several end symbols. At the
same time, a composite task inherits some properties from tasks; it has a name, preconditions, and
postconditions.

A routing task is a special-purpose task connecting two tasks in a workflow description. The task
that has just completed execution is called the predecessor task, the one to be initiated next is called the
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successor task. A routing task could trigger the sequential, concurrent, or iterative execution. Several
types of routing tasks exist:

• A fork routing task triggers execution of several successor tasks. Several semantics for this construct
are possible:
1. All successor tasks are enabled.
2. Each successor task is associated with a condition; the conditions for all tasks are evaluated and

only the tasks with a true condition are enabled.
3. Each successor task is associated with a condition; the conditions for all tasks are evaluated but,

the conditions are mutually exclusive and only one condition may be true thus, only one task
is enabled.

4. Nondeterministic, k out of n > k successors are selected at random to be enabled.
• A join routing task waits for completion of its predecessor tasks. There are several semantics for

the join routing task:
1. The successor is enabled after all predecessors end.
2. The successor is enabled after k out of n > k predecessors end.
3. Iterative – the tasks between the fork and the join are executed repeatedly.

Process descriptions and cases. A process description, also called a workflow schema, is a structure
describing the tasks or activities to be executed and the order of their execution; a process description
contains one start symbol and one end symbol. A process description can be provided in a Workflow
Definition Language (WFDL), supporting constructs for choice, concurrent execution, the classical
fork, join constructs, and iterative execution. Clearly, a workflow description resembles a flowchart, a
concept we are familiar with from programming.

The phases in the life-cycle of a workflow are creation, definition, verification, and enactment.
There is a striking similarity between the life-cycle of a workflow and that of a traditional computer
program, namely, creation, compilation, and execution, see Figure 7.1. The workflow specification by
means of a workflow description language is analogous to writing a program. Planning is equivalent
to automatic program generation. Workflow verification corresponds to syntactic verification of a pro-
gram, and workflow enactment mirrors the execution of a compiled program.

A case is an instance of a process description. The start and stop symbols in the workflow descrip-
tion enable the creation and the termination of a case. An enactment model describes the steps taken to
process a case. When all tasks required by a workflow are executed by a computer, the enactment can
be performed by a program called an enactment engine.

The state of a case at time t is defined in terms of tasks already completed at that time. Events cause
transitions between states. Identifying the states of a case consisting of concurrent activities is consid-
erably more difficult than identifying the states of a strictly sequential process. Indeed, when several
activities could proceed concurrently, the state has to reflect the progress made on each independent
activity.

An alternative description of a workflow can be provided by a transition system describing the pos-
sible paths from the current state to a goal state. Sometimes, instead of providing a process description,
we may specify only the goal state and expect the system to generate a workflow description that could
lead to that state through a set of actions. In this case, the new workflow description is generated auto-
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FIGURE 7.1

A parallel between workflows and programs. (A) The life-cycle of a workflow. (B) The life-cycle of a computer
program. The workflow definition is analogous to writing a program. Planning is analogous to automatic
program generation. Verification corresponds to syntactic verification of a program. Workflow enactment
mirrors the execution of a program. A static workflow corresponds to a static program and a dynamic workflow
to a dynamic program.

matically, knowing a set of tasks and the preconditions and postconditions for each one of them. In AI
this activity is known as planning.

The state space of a process includes one initial state and one goal state. A transition system iden-
tifies all possible paths from the initial to the goal state. A case corresponds to a particular path in the
transition system. The state of a case tracks the progress made during the enactment of that case.

Safety and liveness are the most desirable properties of a process description. Informally, safety
means that nothing “bad” ever happens while liveness means that something “good” will eventually
take place, should a case based on the process be enacted. Not all processes are safe and live. For
example, the process description in Figure 7.2A violates the liveness requirement. As long as task C is
chosen after completion of B , the process will terminate. However, if D is chosen, then F will never
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FIGURE 7.2

(A) A process description which violates the liveness requirement; if task C is chosen after completion of B,
the process will terminate after executing task G; if D is chosen, then F will never be instantiated because it
requires the completion of both C and E. The process will never terminate because G requires completion of
both D and F . (B) Tasks A and B need exclusive access to two resources r and q and a deadlock may occur
if the following sequence of events occur: at time t1 task A acquires r , at time t2 task B acquires q and
continues to run; then, at time t3, task B attempts to acquire r and it blocks because r is under the control of
A; task A continues to run and at time t4 attempts to acquire q and it blocks because q is under the control
of B.

be instantiated because it requires the completion of both C and E. The process will never terminate
because G requires completion of both D and F .

A process description language should be unambiguous and should allow a verification of the pro-
cess description before the enactment of a case. It is entirely possible that a process description may be
enacted correctly in some cases, but could fail for others. Such enactment failures may be very costly
and should be prevented by a thorough verification at the process definition time. To avoid enactment
errors, we need to verify process description and check for desirable properties such as safety and
liveness. Some process description methods are more suitable for verification than others.

A note of caution: although the original description of a process could be live, the actual enactment
of a case may be affected by deadlocks due to resource allocation. To illustrate this situation, consider
two tasks, A and B , running concurrently; each of them needs exclusive access to resources r and q

for a period of time. Two scenarios are possible:

(1) either A or B acquires both resources and then releases them, and allows the other task to do
the same;

(2) we face the undesirable situation in Figure 7.2B when at time t1 task A acquires r and continues
its execution; then at time t2 task B acquires q and continues to run. Then at time t3 task B attempts
to acquire r and it blocks because r is under the control of A. Task A continues to run and at time t4
attempts to acquire q and it blocks because q is under the control of B .
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The deadlock illustrated in Figure 7.2B can be avoided by requesting each task to acquire all re-
sources at the same time; the price to pay is under-utilization of resources; indeed, the idle time of each
resource increases under this scheme.

7.3 WORKFLOW PATTERNS
The term workflow pattern refers to the temporal relationships among the tasks of a process. The work-
flow description languages and the mechanisms to control the enactment of a case must have provisions
to support these temporal relationships. Workflow patterns are analyzed in [1], [323], and [540]. These
patterns are classified in several categories: basic, advanced branching and synchronization, structural,
state-based, cancellation, and patterns involving multiple instances. The basic workflow patterns in
Figure 7.3 are:

• The sequence pattern occurs when several tasks have to be scheduled one after the completion of
the other, Figure 7.3A.

• The AND split pattern requires several tasks to be executed concurrently. Both tasks B and C are
activated when task A terminates, Figure 7.3B. In case of an explicit AND split the activity graph
has a routing node and all activities connected to the routing node are activated as soon as the flow
of control reaches the routing node. In the case of an implicit AND split, activities are connected
directly and conditions can be associated with branches linking an activity with the next ones. The
tasks are activated only when the conditions associated with a branch are true.

• The synchronization pattern requires several concurrent activities to terminate before an activity can
start; in our example, task C can only start after both tasks A and B terminate, Figure 7.3C.

• The XOR split requires a decision; after the completion of task A, either B or C can be activated,
Figure 7.3D.

• The XOR join; several alternatives are merged into one; in our example task C is enabled when
either A or B terminates, Figure 7.3E.

• The OR split pattern is a construct to choose multiple alternatives out of a set. In our example, after
completion of task A, one could activate either B or C, or both, Figure 7.3F.

• The multiple merge construct allows multiple activations of a task and does not require synchroniza-
tion after the execution of concurrent tasks. Once A terminates, tasks B and C execute concurrently,
Figure 7.3G. When the first of them, say B , terminates, then task D is activated; then, when C ter-
minates, D is activated again.

• The discriminator pattern waits for a number of incoming branches to complete before activating
the subsequent activity, Figure 7.3H; then it waits for the outgoing branches to finish without taking
any action until all of them have terminated. Next, it resets itself.

• The N out of M join construct provides a barrier synchronization. Assuming that M > N tasks run
concurrently, N of them have to reach the barrier before the next task is enabled; in our example,
any two out of the three tasks A, B , and C have to finish before E is enabled, Figure 7.3I.

• The deferred choice pattern is similar to the XOR split but this time the choice is not made explicitly
and the run-time environment decides what branch to take, Figure 7.3J.

Next we discuss the reachability of the goal state and we consider the following elements:
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FIGURE 7.3

Basic workflow patterns. (A) Sequence; (B) AND split; (C) Synchronization; (D) XOR split; (E) XOR merge;
(F) OR split; (G) Multiple Merge; (H) Discriminator; (I) N out of M join; (J) Deferred Choice.

• A system �, an initial state of the system, σinitial , and a goal state, σgoal .
• A process group, P = {p1,p2, . . . , pn}; each process pi in the process group is characterized by a

set of preconditions, pre(pi), postconditions, post(pi), and attributes, atr(pi).
• A workflow described by a directed activity graph A or by a procedure � capable to construct

A given the tuple < P, σinitial, σgoal >. The nodes of A are processes in P and the edges define
precedence relations among processes. Pi → Pj implies that pre(pj ) ⊂ post (pi).
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• A set of constraints, C = {C1,C2, . . . ,Cm}.

The coordination problem for system � in state σinitial is to reach state σgoal , as a result of
postconditions of some process Pf inal ∈ P subject to constraints Ci ∈ C. Here σinitial enables the
preconditions of some process Pinitial ∈P . Informally, this means that a chain of processes exists such
that the postconditions of one process are preconditions of the next process in the chain.

Generally, the preconditions of a process are either the conditions and/or the events that trigger the
execution of the process, or the data the process expects as input. The postconditions are the results
produced by that process. The attributes of a process describe special requirements or properties of the
process.

Some workflows are static, the activity graph does not change during the enactment of a case.
Dynamic workflows are those that allow the activity graph to be modified during the enactment of a
case. Some of the more difficult questions encountered in dynamic workflow management refer to:
(i) how to integrate workflow and resource management and guarantee optimality or near optimality
of cost functions for individual cases; (ii) how to guarantee consistency after a change in a workflow;
(iii) how to create a dynamic workflow. Static workflows can be described in WFDL (the workflow
definition language), but dynamic workflows need a more flexible approach.

We distinguish two basic models for the mechanics of workflow enactment:
1. Strong coordination models where the process group P executes under the supervision of a coordi-

nator process. A coordinator process acts as an enactment engine and ensures a seamless transition
from one process to another in the activity graph.

2. Weak coordination models where there is no supervisory process.
In the first case, we may deploy a hierarchical coordination scheme with several levels of coordina-

tors. A supervisor at level i in a hierarchical scheme with i + 1 levels coordinates a subset of processes
in the process group. A supervisor at level i − 1 coordinates a number of supervisors at level i and the
root provides global coordination. Such a hierarchical coordination scheme may be used to reduce the
communication overhead; a coordinator and the processes it supervises may be co-located.

An important feature of this coordination model is its ability of supporting dynamic workflows. The
coordinator or the global coordinator may respond to a request to modify the workflow by first stopping
all the threads of control in a consistent state, then investigating the feasibility of the requested changes,
and finally implementing feasible changes.

Weak coordination models are based on peer-to-peer communication between processes in the pro-
cess group by means of a societal service such as a tuple space. Once a process pi ∈ P finishes, it
deposits a token including possibly a subset of its postconditions, post (pi), in a tuple space. The con-
sumer process pj is expected to visit at some point in time the tuple space, examine the tokens left
by its ancestors in the activity graph and, if its preconditions pre(pj ) are satisfied, commence the
execution. This approach requires individual processes to either have a copy of the activity graph or
some timetable to visit the tuple space. An alternative approach is using an active space, a tuple space
augmented with the ability to generate an event awakening the consumer of a token.

There are similarities and some differences between workflows of traditional transaction-oriented
systems and cloud workflows; the similarities are mostly at the modeling level, whereas the differences
affect the mechanisms used to implement workflow management systems. Some of the more subtle
differences between them are:
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• The emphasis in a transactional model is placed on the contractual aspect of a transaction; in a
workflow the enactment of a case is sometimes based on a “best-effort” model where the agents
involved will do their best to attain the goal state but, there is no guarantee of success.

• A critical aspect of the transactional model in database applications is that of maintaining a consis-
tent state of the database; a cloud is an open system, thus, its state is considerably more difficult to
define.

• The database transactions are typically short-lived; the tasks of a cloud workflow could be long
lasting.

• A database transaction consists of a set of well-defined actions that are unlikely to be altered during
the execution of the transaction. However, the process description of a cloud workflow may change
during the lifetime of a case.

• The individual tasks of a cloud workflow may not exhibit the traditional properties of database
transactions. For example, consider durability; at any instance of time, before reaching the goal
state, a workflow may roll back to some previously encountered state and continue from there on an
entirely different path. A task of a workflow could be either reversible or irreversible. Sometimes,
paying a penalty for reversing an action is more profitable in the long run than continuing on a
wrong path.

• Resource allocation is a critical aspect of the workflow enactment on a cloud without an immediate
correspondent for database transactions.

The relatively simple coordination model discussed next is often used in cloud computing.

7.4 COORDINATION BASED ON A STATE MACHINE MODEL – THE
ZOOKEEPER

Cloud computing elasticity requires the ability to distribute computations and data across multiple sys-
tems. In a distributed computing environment coordination among these systems is a critical function.
The coordination model depends on the specific task, e.g., coordination of data storage, orchestration
of multiple activities, blocking an activity until an event occurs, reaching consensus for the next action,
or recovery after an error.

The entities to be coordinated could be processes running on a set of cloud servers or even running
on multiple clouds. Servers running critical task are often replicated; when one primary server fails, a
backup automatically continues the execution. This is only possible if the backup is in a hot standby
mode, in other words, if the primary server shares at all times its state with the backup.

For example, in the distributed data store model discussed in Section 2.7 the access to data is
mitigated by a proxy. An architecture with multiple proxies is desirable as the proxy is a single point
of failure. The proxies should be in the same state so, whenever one of them fails, the client could
seamlessly continue to access the data using another proxy.

Consider now an advertising service involving a large number of servers in a cloud. The adver-
tising service runs on a number of servers specialized for tasks such as: database access, monitoring,



7.4 COORDINATION BASED ON A STATE MACHINE MODEL – THE ZOOKEEPER 249

accounting, event logging, installers, customer dashboards,1 advertising campaign planners, scenario
testing, and so on.

These activities can be coordinated using a configuration file shared by all systems. When the ser-
vice starts, or after a system failure, all servers use the configuration file to coordinate their actions. This
solution is static, any change requires an update and re-distribution of the configuration file. Moreover,
in case of a system failure the configuration file does not allow recovery from the state each server was
in prior to the system crash.

A solution for the coordination problem is to implement a proxy as a deterministic finite state
machine transitioning from one state to the next in response to client commands. When P proxies are
involved, all must be synchronized and execute the same sequence of state transitions upon receiving
client commands. This scenario can be ensured when all proxies implement a version of the Paxos
consensus algorithm described in Section 3.12.

ZooKeeper is a distributed coordination service based on this model. The high throughput and low
latency service is used for coordination in large-scale distributed systems. The open-source software
is written in Java and has bindings for Java and C. The information about the project is available at
http://zookeeper.apache.org/.

The ZooKeeper software must first be downloaded and installed on several servers. Then clients
can connect to any server and access the coordination service. The service is available as long as the
majority of servers in the pack are available.

The servers in the pack communicate with one another and elect a leader. A database is replicated
on each one of them and the consistency of the replicas is maintained. Figure 7.4A shows that the
service provides a single system image, a client can connect to any server of the pack. A client uses
TCP to connect to one server, then sends requests, receives responses, and watches events. A client
synchronizes its clock with the server it is connected to. When a server fails, the TCP connections of
all clients connected to it time-out, the clients detect the failure and connect to other servers.

Figures 7.4B and C show that a READ operation directed to any server in the pack returns the same
result, while processing of a WRITE operation is more involved. The servers elect a leader and any
follower server forwards to the leader requests from the clients connected to it. The leader uses atomic
broadcast to reach consensus. When the leader fails the servers elect a new leader.

The system is organized as a shared hierarchical namespace similar to the organization of a file
system. A name is a sequence of path elements separated by a backslash. Every name in ZooKeeper’s
name space is identified by a unique path, see Figure 7.5.

A znode of ZooKeeper, the equivalent of an inode of UFS, may have data associated with it. The
system is designed to store state information, the data in each node includes version numbers for the
data, changes of ACLs,2 and time stamps. A client can set a watch on a znode and receive a notification
when the znode changes. This organization allows coordinated updates. The data retrieved by a client
contains also a version number. Each update is stamped with a number that reflects the order of the
transition.

1A customer dashboard provides access to key customer information, such as contact name and account number, in an area of
the screen that remains persistent as the user navigates trough multiple web pages.
2An Access Control List (ACL) is a list of pairs (subject,value) which define the list of access rights to an object; for example,
read, write, execute permissions for a file.

http://zookeeper.apache.org/
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FIGURE 7.4

The ZooKeeper coordination service. (A) The service provides a single system image, clients can connect to
any server in the pack. (B) The functional model of the ZooKeeper service; the replicated database is accessed
directly by READ commands. (C) Processing a WRITE command: (1) a server receiving a command from a
client, forwards it to the leader; (2) the leader uses atomic broadcast to reach consensus among all followers.

FIGURE 7.5

The ZooKeeper is organized as a shared hierarchical namespace; a name is a sequence of path elements
separated by a backslash.

The data stored in each node is read and written atomically, a READ returns all data stored in a
znode, while a WRITE replaces all data in the znode. Unlike a file system, the ZooKeeper data, the
image of the state, is stored in the server memory. Updates are logged to disk for recoverability, and
WRITEs are serialized to disk before they are applied to the in-memory database containing the entire
tree. The ZooKeeper service guarantees:
1. Atomicity – a transaction either completes or fails.



7.5 THE MAPREDUCE PROGRAMMING MODEL 251

2. Sequential consistency of updates – updates are applied strictly in the order they are received.
3. Single system image for the clients – a client receives the same response regardless of the server it

connects to.
4. Persistence of updates – once applied, an update persists until it is overwritten by a client.
5. Reliability – the system is guaranteed to function correctly as long as the majority of servers

function correctly.
READ requests are serviced from the local replica of the server connected to the client to reduce

the response time. When the leader receives a WRITE request it determines the state of the system
where the WRITE will be applied and then it transforms the state into a transaction capturing the new
state.

The messaging layer is responsible for the election of a new leader when the current leader fails.
The messaging protocol uses: packets – sequence of bytes sent through a FIFO channel, proposals –
units of agreement, and messages – sequence of bytes atomically broadcast to all servers. A message
is included into a proposal and it is agreed upon before it is delivered. Proposals are agreed upon by
exchanging packets with a quorum of servers as required by the Paxos algorithm.

An atomic messaging system keeps all of the servers in pack in synch. The messaging system guar-
antees: (a) Reliable delivery: if a message m is delivered to one server, it will be eventually delivered
to all servers; (b) Total order: if message m is delivered before message n to one server, it will be
delivered before n to all servers; and (c) Causal order: if message n is sent after m has been delivered
by the sender of n, then m must be ordered before n.

The ZooKeeper Application Programming Interface (API) is very simple, it consists of seven oper-
ations:

• create – add a node at a given location on the tree.
• delete – delete a node.
• get data – read data from a node.
• set data – write data to a node.
• get children – retrieve a list of the children of the node.
• synch – wait for the data to propagate.

The system also supports the creation of ephemeral nodes, nodes created when a session starts and
deleted when the session ends.

This brief description shows that the ZooKeeper service supports the finite state machine model of
coordination where a znode stores the state. The ZooKeeper service can be used to implement higher-
level operations such as group membership, synchronization, and so on. Yahoo’s Message Broker and
many other applications use the ZooKeeper service.

7.5 THE MAPREDUCE PROGRAMMING MODEL
A main advantage of cloud computing is elasticity, the ability to use as many servers as necessary to
optimally respond to the cost and the timing constraints of an application. In case of transaction pro-
cessing system typically, a front-end system distributes incoming transactions to a number of back-end
systems and attempts to balance the workload. As the workload increases new back-end systems are
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FIGURE 7.6

The MapReduce philosophy. (1) An application starts a Master instance and M worker instances for the Map
phase and later R worker instances for the Reduce phase. (2) The Master partitions the input data in M

segments. (3) Each Map instance reads its input data segment and processes the data. (4) The results of the
processing are stored on the local disks of the servers where the Map instances run. (5) When all Map
instances have finished processing their data the R Reduce instances read the results of the first phase and
merges the partial results. (6) The final results are written by Reduce instances to a shared storage server.
(7) The Master instance monitors the Reduce instances and when all of them report task completion the
application is terminated.

added to the pool. Many realistic applications in physics, biology, and other areas of computational sci-
ence and engineering obey the arbitrarily divisible load sharing model, the workload can be partitioned
into an arbitrarily large number of smaller workloads of equal, or very close size. Yet, partitioning the
workload of data-intensive applications is not always trivial.

MapReduce. MapReduce is based on a very simple idea for parallel processing of data-intensive ap-
plications supporting arbitrarily divisible load sharing, see Figure 7.6. First, split the data into blocks,
assign each block to an instance/process and then run these instances in parallel. Once all the instances
have finished the computations assigned to them, start the second phase and merge the partial results
produced by individual instances. The Same Program Multiple Data (SPMD) paradigm, used since
the early days of parallel computing, is based on the same idea, but assumes that a Master instance
partitions the data and gathers the partial results.
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MapReduce is a programming model inspired by the map and the reduce primitives of the Lisp
programming language. It was conceived for processing and generating large data sets on computing
clusters [130]. As a result of the computation, a set of input < key, value > pairs is transformed into
a set of output < key, value > pairs.

Numerous applications can be easily implemented using this model. For example, one can process
logs of web page requests and count the URL access frequency; the Map and Reduce functions produce
the pairs < URL,1 > and < URL, totalcount >, respectively. Another trivial example is distributed
sort when the Map function extracts the key from each record and produces a < key, record > pair
and the Reduce function outputs these pairs unchanged. The following example [130] shows the two
user-defined functions for an application which counts the number of occurrences of each word in a set
of documents.

map(String key, String value):
// key: document name; value: document contents
for each word w in value:
EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word; values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);
Emit(AsString(result));

Call M and R the number of Map and Reduce tasks, respectively, and N the number of systems used
by the MapReduce. When a user program invokes the MapReduce function, the following sequence of
actions take place:

• The run-time library splits the input files into M splits of 16 to 64 MB each, identifies a number
N of systems to run, and starts multiple copies of the program, one of the system being a Master
and the others Workers. The Master assigns to each idle system either a map or a reduce task.
The Master makes O(M + R) scheduling decisions and keeps O(M × R) worker state vectors in
memory. These considerations limit the size of M and R; at the same time, efficiency considerations
require that M,R >> N .

• A Worker being assigned a Map task reads the corresponding input split, parses < key, value >

pairs and passes each pair to a user-defined Map function. The intermediate < key, value > pairs
produced by the Map function are buffered in memory before being written to a local disk, parti-
tioned into R regions by the partitioning function.

• The locations of these buffered pairs on the local disk are passed back to the Master, who is re-
sponsible for forwarding these locations to the Reduce Workers. A Reduce Worker uses remote
procedure calls to read the buffered data from the local disks of the Map Workers; after reading all
the intermediate data, it sorts it by the intermediate keys. For each unique intermediate key, the key
and the corresponding set of intermediate values are passed to a user-defined Reduce function. The
output of the Reduce function is appended to a final output file.

• The Master wakes up the user program when all Map and Reduce task finish.
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The system is fault-tolerant; for each Map and Reduce task, the Master stores the state (idle,
in-progress, or completed) and the identity of the worker machine. The Master pings every worker
periodically and marks the worker as failed if it does not respond; a task in progress on a failed worker
is reset to idle and becomes eligible for rescheduling. The Master writes periodic checkpoints of its
control data structures and, if the task fails, it can be restarted from the last checkpoint. The data is
stored using GFS, the Google File System discussed in Section 6.5.

An environment for experimenting with MapReduce is described in [130]: the computers are
typically dual-processor x86 processors running Linux, with 2–4 GB of memory per machine and
commodity networking hardware typically 100–1 000 Mbps. A cluster consists of hundreds or thou-
sands of machines. Data is stored on IDE3 disks attached directly to individual machines. The file
system uses replication to provide availability and reliability with unreliable hardware. To minimize
network bandwidth the input data is stored on the local disks of each system.

MapReduce with FlumeJava. The Java library discussed in Section 3.14 supports a new operation
called MapShuffleCombineReduce. This operation combines ParallelDo, GroupByKey, CombineVal-
ues, and Flatten operations into a single MapReduce [92]. This generalization of MapReduce supports
multiple reducers and combiners and allows each reducer to produce multiple outputs, rather than en-
forcing the requirement that the reducer must produce outputs with the same key as its input. This
solutions enables the FlumeJava optimizer to produce better results.

M input channels, each performing a Map operation, feed into R output channels, each optionally
performing a shuffle, an optional combine, and a Reduce operation. The executor of FlumeJava will run
an operation locally if the input is relatively small. It will run parallel MapReduce remotely, though
the overhead of launching a remote execution is larger but the advantages for data larger inputs is
significant. Temporary files for the outputs of all operations are created automatically and deleted
when no longer necessary for later operations of the pipeline.

The system supports a cached execution mode when it first attempts to reuse the result of an oper-
ation from the previous run, if it was saved in a (internal or user-visible) file and if it was not changed
since. A result is unchanged if the inputs and the operation’s code and the saved state have not changed.
This execution mode is useful for debugging an extended pipeline. Reference [92] reports that the
largest pipeline had 820 unoptimized stages and 149 optimized stages.

7.6 CASE STUDY: THE GREPTHEWEB APPLICATION
Many applications process massive amounts of data using the MapReduce programming model. An
application, GrepTheWeb [494], in production at Amazon, illustrates the power and the appeal of
cloud computing. The application allows a user to define a regular expression and search the web for
records that match it. GrepTheWeb is analogous to the grep Unix command used to search a file for a
given regular expression.

This application performs a search of a very large set of records attempting to identify records that
satisfy a regular expression. The source of this search is a collection of document URLs produced by the

3IDE (Integrated Drive Electronics) is an interface for connecting disk drives; the drive controller is integrated into the drive, as
opposed to a separate controller on, or connected to, the motherboard.
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Alexa Web Search, a software system that crawls the web every night. The inputs to the applications
are: (i) the large data set produced by the web crawling software, and (ii) a regular expression. The
output is the set of records that satisfy the regular expression. The user is able to interact with the
application and get the current status, see Figure 7.7A.

The application uses message passing to trigger the activities of multiple controller threads
which launch the application, initiate processing, shutdown the system, and create billing records.
GrepTheWeb uses Hadoop MapReduce, an open source software package that splits a large data set
into chunks, distributes them across multiple systems, launches the processing, and, when the process-
ing is complete, aggregates the outputs from different systems into a final result. Apache Hadoop is a
software library for distributed processing of large data sets across clusters of computers using a simple
programming model.

GrepTheWeb workflow, illustrated in Figure 7.7B, consists of the following steps [494]:
1. The start-up phase: create several queues – launch, monitor, billing, and shutdown queues; start

the corresponding controller threads. Each thread polls periodically its input queue and when a
message is available, retrieves the message, parses it, and takes the required actions.

2. The processing phase: it is triggered by a StartGrep user request; then a launch message is en-
queued in the launch queue. The launch controller thread picks up the message and executes the
launch task; then, it updates the status and time stamps in the Amazon Simple DB domain. Lastly,
it enqueues a message in the monitor queue and deletes the message from the launch queue. The
processing phase consists of the following steps:
(a) The launch task starts Amazon EC2 instances: it uses a Java Runtime Environment pre-

installed Amazon Machine Image (AMI), deploys required Hadoop libraries and starts a
Hadoop job (run Map/Reduce tasks).

(b) Hadoop runs map tasks on EC2 slave nodes in parallel: a map task takes files from S3, runs a
regular expression and writes locally the match results along with a description of up to five
matches; then the combine/reduce task combines and sorts the results and consolidates the
output.

(c) Final results are stored on Amazon S3 in the output bucket.
3. The monitoring phase: the monitor controller thread retrieves the message left at the beginning

of the processing phase, validates the status/error in Simple DB and executes the monitor task; it
updates the status in the Simple DB domain, enqueues messages in the shutdown and the billing
queues. The monitor task checks for the Hadoop status periodically, updates the Simple DB items
with status/error and the S3 output file. Finally, it deletes the message from the monitor queue
when the processing is completed.

4. The shutdown phase: the shutdown controller thread retrieves the message from the shutdown
queue and executes the shutdown task which updates the status and time stamps in the Simple DB
domain; finally, it deletes the message from the shutdown queue after processing. The shutdown
phase consists of the following steps:
(a) The shutdown task kills the Hadoop processes, terminates the EC2 instances after getting

EC2 topology information from Simple DB and disposes of the infrastructure.
(b) The billing task gets the EC2 topology information, Simple DB usage, S3 file and query

input, calculates the charges, and passes the information to the billing service.
5. The cleanup phase: archives the Simple DB data with user info.
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FIGURE 7.7

The organization of the GrepTheWeb application. The application uses the Hadoop MapReduce software and
four Amazon services: EC2, Simple DB, S3, and SQS. (A) The simplified workflow showing the two inputs, the
regular expression and the input records generated by the web crawler; a third type of input are the user
commands to report the current status and to terminate the processing. (B) The detailed workflow; the system
is based on message passing between several queues; four controller threads periodically poll their associated
input queues, retrieve messages, and carry out the required actions.
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6. User interactions with the system: get the status and output results. The GetStatus is applied to the
service endpoint to get the status of the overall system (all controllers and Hadoop) and download
the filtered results from S3 after completion.

Multiple S3 files are bundled up and stored as S3 objects to optimize the end-to-end transfer rates
in the S3 storage system. Another performance optimization is to run a script and sort the keys, the
URL pointers, and upload them in sorted order in S3. Multiple fetch threads are started to fetch the
objects. This application illustrates the means to create an on-demand infrastructure and run it on a
massively distributed system in a manner that allows it to run in parallel and scale up and down based
on the number of users and the problem size.

7.7 HADOOP, YARN, AND TEZ
A wide range of data-intensive applications such as marketing analytics, image processing, machine
learning, and web crawling use the Apache Hadoop, an open source, Java-based software system.4

Hadoop supports distributed applications handling extremely large volumes of data. Many members of
the community have contributed to the development and optimization of Hadoop and of several related
Apache projects such as Hive and HBase.

Hadoop is used by many organizations from industry, government, and research. The long list of
Hadoop users includes major IT companies e.g., Apple, IBM, HP, Microsoft, Yahoo, and Amazon,
media companies e.g., New York Times and Fox, social networks including Twitter, Facebook, and
LinkedIn, and government agencies such as the Federal Reserve. In 2012 the Facebook Hadoop cluster
had a capacity of 100 petabytes and was growing at a rate of 0.5 petabytes a day. In 2013 more than half
of Fortune 500 companies were using Hadoop. Azure HDInsight service deploys Hadoop on Microsoft
Azure.

Hadoop. Apache Hadoop is an open-source software framework for distributed storage and distributed
processing based on the MapReduce programming model. Recall that in MapReduce the Map stage
processes the raw input data, one data item at a time, and produces a stream of data items annotated with
keys. Next, a local sort stage orders the data produced during the map stage by key. The locally-ordered
data is then passed to an (optional) combiner stage for partial aggregation by key. The shuffle stage then
redistributes data among machines to achieve a global organization of data by key.

A Hadoop system has two components, a MapReduce engine and a database, see Figure 7.8. The
database could be the Hadoop File System (HDFS), Amazon S3, or CloudStore, an implementation
of GFS discussed in Section 6.5. HDFS is a highly performant distributed file system written in Java.
HDFS is portable, but cannot be directly mounted on an existing operating system, it is not fully POSIX
compliant.

The Hadoop engine on the master of a multi-node cluster consists of a job tracker and a task tracker,
while the engine on a slave has only a task tracker. The job tracker receives a MapReduce job from
a client and dispatches the work to the task trackers running on the nodes of a cluster. To increase
efficiency, the job tracker attempts to dispatch the tasks to available slaves closest to the place where

4Hadoop requires JRE (Java Runtime Environment) 1.6 or higher.
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FIGURE 7.8

A Hadoop cluster using HDFS; the cluster includes a master and four slave nodes. Each node runs a
MapReduce engine and a database engine, often HDFS. The job tracker of the master’s engine communicates
with the task trackers on all the nodes and with the name node of HDFS. The name node of HDFS shares
information about the data placement with the job tracker to minimize communication between the nodes
where data is located and the ones where it is needed.

had stored the task data. The task tracker supervises the execution of the work allocated to the node.
Several scheduling algorithms for Hadoop engines have been implemented; Facebook’s fair scheduler
and Yahoo’s capacity scheduler are examples of Hadoop schedulers.

HDFS replicates data on multiple nodes, the default is three replicas; a large dataset is distributed
over many nodes. The name node running on the master manages the data distribution and data repli-
cation and communicates with data nodes running on all cluster nodes it shares with the job tracker. To
minimize communication between the nodes where data is located and the ones where it is needed the
name node shares information about data placement with the job traker. Although HDFS can be used
for applications other than those based on the MapReduce model, its performance for such applications
is not at par with the ones it was originally designed for.

Hadoop brings computations to the data on clusters built with off-the-shelf components. This strat-
egy is pushed further by Spark which stores data in processor’s memory instead of the disk. Data
locality allows Hadoop and Spark to compete with traditional High Performance Computing (HPC)
running on supercomputers with high-bandwidth storage and faster interconnection networks.

The Apache Hadoop framework has the following modules:



7.7 HADOOP, YARN, AND TEZ 259

FIGURE 7.9

The resources needed by the MapReduce framework are provided by the cluster and are managed by Yarn.
HDFS provides permanent, reliable, and distributed storage; different organizations of the storage system are
supported, e.g., AWS implementation of Hadoop offers S3.

1. Common – contains libraries and utilities needed by all Hadoop modules.
2. Distributed File System (HDFS) – a distributed file-system that stores data on commodity ma-

chines, providing very high aggregate bandwidth across the cluster.
3. Yarn is a resource-management platform responsible for managing computing resources in clusters

and using them for scheduling of users’ applications.
4. MapReduce, an implementation of the MapReduce programming model.

Additional software packages such as Apache Pig, Apache Hive, Apache HBase, Apache Phoenix,
Apache Spark, Apache ZooKeeper, Cloudera Impala, Apache Flume, Apache Sqoop, Apache Oozie,
and Apache Storm are also available.

Several Hadoop frameworks are used to manage and run deep analytics. SQL processing is par-
ticularly important to gain insights from large collections of data and the number of SQL-on-Hadoop
systems has increased. There are many SQL engines running on Hadoop including BigSQL from IBM,
Impala from Cloudera, and HAWQ from Pivotal. All these engines implement a standard language
specification and compete on performance and extended services. Users are insulated from difficulties
because the applications that talk to those engines are portable.

Systems such as Pig, Hive, and Impala discussed in Section 7.8 are native Hadoop-based systems,
or database-Hadoop hybrids. HadoopOthers, such as Hadapt [4] exploits Hadoop scheduling and fault-
tolerance, but uses a relational database, PostgreSQL, to execute query fragments.

Yarn. Yarn is a resource management system supplying CPU cycles, memory, and other resources
needed by a single job or to a DAG of MapReduce applications. Resource allocation and job schedul-
ing in Hadoop versions prior to 2.0 were done by the MapReduce framework. Yarn carries out these
functions in the newer versions of Hadoop. This new system organization allows frameworks such
Spark to share cluster resources.

The organization of Hadoop including Yarn is shown in Figure 7.9 where we see the three elements
involved:(1) the MapReduce framework; (2) Yarn, HDFS and the storage substrate; and (3) the cluster
where the application is running.

Figure 7.10 presents the organization of Yarn and shows the Resource Manager and the Node
Managers running in each node. A Node Manager is responsible for containers, monitors their resource
usage (CPU, memory, disk, network) and reports to the resource manager tasked to arbitrate resources
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FIGURE 7.10

Yarn organization and application processing. Applications are submitted to the Resource Manager. The
Resource Manager communicates with Node Managers running on every node of the cluster. The tasks of
every application are managed by an Application Manager. Each task is packaged in a container.

sharing among all applications. Each application has an Application Manager which negotiates with
the Resource Manager the access to resources needed by the application. Once resources are allocated,
the Application Manager interacts with the Node Managers of each node allocated to the application
to start the tasks and then monitors their execution.

The Scheduler component of the Resource Manager uses the resource Container abstraction which
incorporates memory, CPU, disk, and network to make resource allocation decisions for an applica-
tions. The Scheduler performs no monitoring or tracking application status and offers no guarantees
about restarting failed tasks. A pluggable policy is responsible for sharing cluster resources among
applications. The Capacity Scheduler and the Fair Scheduler are examples of scheduler plug-ins.
MapReduce in Hadoop-2.x maintains API compatibility with previous stable release thus, MapReduce
jobs should still run unchanged on top of Yarn after a recompile.

The process of starting an application involves several steps illustrated in Figure 7.11:
1. The user submits an application to the Resource Manager.
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FIGURE 7.11

The interaction among the components of Yarn and MapReduce. Once an application is submitted Yarn’s
Resource Manager contacts a Node Manager to create a container for the Application Manager. Then the
Application Manager is activated. The Resource Manager with the assistance of the Scheduler selects the
Node Manager(s) where the containers for the application tasks are created. Then the containers start the
execution of these tasks.

2. The Resource Manager invokes the Scheduler and allocates a container for the Application Man-
ager.

3. The Resource Manager contacts the Node Manager where the container will be launched.
4. The Node Manager lunches the container.
5. The container executes the Application Manager.
6. The Resource Manager contacts the Node Manager(s) where the tasks of the application will run.
7. Containers for the tasks of the application are created.
8. The Application Manager monitors the execution of the tasks until termination.

Tez. Tez is an extensible framework for building high performance batch and interactive processing for
Yarn-based applications in Hadoop. A job is decomposed into individual tasks and each task of the job
runs as an Yarn process. Tez models data processing as a DAG; the graph vertices represent application
logic and edges represent movement of data. A Java API is used to express the DAG representation of
the workflow. The execution engine uses Yarn to acquire resources and reuses every component in the
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pipeline to avoid operation duplication. Apache Hive and Apache Pig use Apache Tez to improve the
speed of MapReduce applications, see http://hortonworks.com/apache/tez/.

7.8 SQL ON HADOOP: PIG, HIVE, AND IMPALA
The landscape of parallel SQL database vendors prior to 2009 included IBM, Oracle, Microsoft, ParAc-
cel, Greenplum, Teradata, Netezza, Vertica, but none of them were supporting SQL queries along with
MapReduce jobs. From their early years in business Yahoo and Facebook used the MapReduce plat-
form extensively to store, process, and analyze huge amounts of data. Both companies wanted a faster
and easy-to-work-with platform supporting SQL queries.

MapReduce is a heavyweight, high-latency execution framework and does not support workflows,
join operations for combined processing of several datasets, filtering, aggregation, top-k thresholding,
and high-level operations. To address these challenges in 2009 Yahoo created a dataflow system called
Pig, while Facebook built Hive on MapReduce because it was the shortest path to SQL on Hadoop. Pig
and Hive have their own language, Pig Latin and HiveQL, respectively. In both systems a user types a
query, then a parser reads the query, figures out what the user wants and runs a series of MapReduce
jobs. That was a sensible decision given the requirements of the time.

In 2012 Cloudera developed Impala and published it under an Apache license. Later Facebook
developed Presto, its next-generation query processing engine for real-time access to data via SQL. It
was built, like Hive, new, from the ground up, as a distributed query processing engine.

Pig. The system presented in [187] supports workflows, join operations for combined processing of
several datasets, filtering, aggregation, and the high-level operations. Pig compiles programs written
in Pig Latin into a set of Hadoop jobs and coordinates their execution. It also supports several user
interaction modes: (1) Interactive – using a shell for Pig commands; (2) Batch – a user submits a
script containing a series of Pig commands; and (3) Embedded – commands are submitted via method
invocation from a Java program. The job processing stages are:
1. Parsing – the parser performs syntactic verification, type checking, and schema inference and pro-

duces a DAG called a Logical Plan. In this plan an operator is annotated with the schema of its
output data, with braces indicating a bag of tuples.

2. Logical optimization of the DAG and creation of a Physical Plan describing data distribution.
3. Compilation of the optimized Physical Plan into a set of MapReduce jobs, followed by optimiza-

tion phase, e.g., partial aggregation, resulting in an optimized DAG. Distributive and algebraic
aggregation functions, e.g., AVERAGE, are broken into series of three steps: initial (e.g. generate
[sum, count] pairs), intermediate (e.g. combine n [sum, count] pairs into a single pair), final (e.g.
combine n [sum, count] pairs and take the quotient). These steps are assigned to the map, combine,
and reduce stages, respectively.

4. The DAG is topologically sorted and jobs are submitted to Hadoop for execution. The flow control
is implemented using a pull model with a single threaded implementation and a simple API for
user-defined functions for moving tuples through the execution pipeline. An operator can respond
in one of three ways when asked to produce a tuple, return the tuple, declare that it has finished, or
return a pause signal indicating that either it is not finished or unable to produce an output tuple.
Compilation and execution is triggered by the STORE command. If a Pig Latin program contains

more than one STORE command, the generated physical plan contains a SPLIT physical operator.

http://hortonworks.com/apache/tez/
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FIGURE 7.12

The transformation of a Pig Latin program into a Logical Plan, followed by the transformation of the Logical
Plan into a Physical Plan, and finally the transformation of the Physical Plan into a MapReduce Plan. Each one
of the two JOINs in the Logical Plan generate LOCAL REARRANGE, GLOBAL REARRANGE, PACKAGE, and
FOREACH statements. A pair of MAP, REDUCE is then generated in the MapReduce Plan.

Figure 7.12 illustrates the transformation of a Pig Latin program into a Logical Plan, followed by the
transformation of the Logical Plan into a Physical Plan, and finally the transformation of the Physical
Plan into a MapReduce Plan.

Memory management is challenging because Pig is implemented in Java and program controlled
memory allocation and deallocation is not feasible. A handler can be registered using the Memory-
PoolMXBean Java class. The handler is notified whenever a configurable memory threshold is reached;
then the system releases registered bags until enough memory is freed.

Pig Mix is a benchmark used at Yahoo and elsewhere to evaluate system’s performance and to
exercise a wide range of the system functionality. About 60% of the ad hoc Hadoop jobs at Yahoo use
Pig. The use of the system outside Yahoo has been increasing.

Hive. Hive is an open-source system for data-warehousing supporting queries expressed in an SQL-like
declarative language called HiveQL [484]. These queries are then compiled into MapReduce jobs
executed on Hadoop. The system includes the Metastore, a catalog for schemas and statistics used
for query optimization.

Hive supports data organized as tables, partitions, and buckets. Tables are inherited from relational
databases and can be stored internally or externally in HDFS, NFS, or local directory. A table is seri-
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alized and stored in the files of an HDFS directory. The format of each serialized table is stored in the
system catalog and it is accessed during query compilation and execution.

Partitions are components of tables described by the subdirectories of table directory. In turn, buck-
ets consists of partition data stored as a file in the partition’s directory and selected based on the hash of
one of the columns of the table. The query language supports data definition statements to create tables
with specific serialization formats, and partitioning and bucketing columns, as well as user defined
column transformation and aggregation functions implemented in Java.

HiveQL accepts as input DDL, DML and allows user-defined MapReduce scripts written in any
language using a simple row-based streaming interface. Data Description Language (DDL) has a syntax
for defining data structures similar to a computer programming language and it is widely used for
database schemas. Data Manipulation Language (DML) is used to retrieve, store, modify, delete, insert
and update data in database; SELECT, UPDATE, INSERT statements or query statements are examples
of DML.

The system has several components:

• External Interface – includes a command line (CLI), a Web user-interface (UI), and language APIs
such as JDBC and ODBC.5

• Thrift Server – a client API for execution of HiveQL statements6 Java and C++ clients can be used
to build JDBC or ODBC common drivers, respectively.

• Metastore – the system catalog. It contains several objects: (1) Database – a namespace for tables;
(2) Table – contains the list of columns and their types, owner, storage, the location of the table data,
data formats and bucketing information; (3) Partition – each partition can have its own columns and
storage information.

• Driver – manages the compilation, optimization, and execution of HiveQL statements.
• Database – the namespace for tables.
• Table – the metadata for tables containing the list of columns and their types, owner, storage, and a

wealth of other data including the location of the table data, data formats and bucketing information.
It also includes SerDe metadata regarding the implementation class of serializer and deserializer
methods and information required by their implementation.

• Partition – information about the columns in a partition including SerDe and storage information.

The HiveQL compiler has several components: the Parser transforms an input string into a parse tree,
then the Semantic Analyzer transforms this tree into an internal representation, the Logical Plan Gen-
erator converts this internal representation into a Logical Plan, and finally the Optimizer rewrites the
logical plan.

Facebook’s Hive warehouse contains over 700 TB of data and supports more than 5000 daily
queries. Hive is an Apache project, with an active user and developer community.

Impala. Impala is a query engine exploiting a shared-nothing parallel database architecture written
in C++ and Java and designed to use standard Hadoop components (HDFS, HBase, Metastore, Yarn,

5Java Database Connectivity (JDBC) is an API for Java, defining how a client may access a database. Open Database Connec-
tivity (ODBC) is an open standard application API for accessing a database.
6Thrift is a framework for cross-language services, see Apache Thrift, http://incubator.apache.org/thrift.

http://incubator.apache.org/thrift
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Sentry) [280]. The system developed by Cloudera and published under an Apache license in 2012 is
designed from the ground up for SQL query execution on Hadoop, rather than on a general-purpose
distributed processing system. It delivers better performance than Hive because it does not translate
an SQL query into another processing framework as Hive. It supports most of the SQL-92 SELECT
statement syntax and SQL-2003 analytic functions. It does not support UPDATE or DELETE, but
supports bulk insertions INSERT INT O . . . , SELECT . . ..

Impala code, installed on every node of a Cloudera cluster alongside MapReduce, Apache HBase,
and third-party engines like SAS and Apache Spark, a customer may choose to deploy, waits for SQL
queries to execute. All these engines have access to the same data, and users can choose one of them
depending on the application. Impala runs queries using long-running daemons on every HDFS Data
Node, and pipelines intermediate results between computation stages.

The I/O layer of Impala spawns one I/O thread per disk on each node to read data stored in HDFS
and achieves high utilization of both CPU and disks by decoupling asynchronous read requests from
the synchronous actual reading of data. The system exploits Intel’s SSE instructions discussed in Sec-
tion 4.3 to parse and process textual data efficiently. Impala requires the working set of a query to fit in
the aggregate physical memory of the cluster.

The system operates basic services offered by three daemons:
1. Impalad – accepts, plans, and coordinates query execution. An impalad daemon is deployed on ev-

ery server and operates a query planner, a query coordinator, and a query executor. The front-end
compiles SQL text into query plans executable by the back-ends. In this stage a parse tree is trans-
lated into a single-node plan tree including: HDFS/HBase scan, hash join, cross join, union, hash
aggregation, sort, top-n, and analytic evaluation nodes. A second phase transforms the single-node
plan into a distributed execution plan; the goal of this process is to minimize data movement and
maximize scan locality.

2. Statestored – provides a metadata publish-subscribe service and disseminates cluster-wide meta-
data to all processes. It maintains a set of topics, (key, value, version) triplets defined by an
application. Processes wishing to receive updates to any topic express their interest by register-
ing at start-up and providing a list of topics.

3. Catalogd – is the catalog repository and metadata access gateway. It pulls information from third-
party metadata stores and aggregates it. Only a skeleton entry for each table it discovers is loaded
at startup, then table metadata is loaded in the background from third-party stores.

A recent paper [175] compares the performance of Impala and Hive. Both systems input their data
from columnar storage in the Parquet and the ORC (Optimized Row Columnar) formats. The Apache
columnar storage formats are shared by the software in the Hadoop ecosystem, regardless of the choice
of data processing framework, data model or programming language. Columnar formats improve the
performance of queries in the context of relational databases.

Parquet stores data grouped together in logical horizontal partitions called row groups. Every row
group contains a column chunk for each column in the table. A column chunk consists of multiple
pages and is guaranteed to be stored contiguously on disk. Compression and encoding schemes work
at a page level. Metadata is stored at all the levels in the hierarchy i.e., file, column chunk, and page. An
ORC file stores multiple groups of row data as stripes and has a footer containing the list of the stripes
in the file, the number of rows stored in each stripe, the data type of each column, and column-level
aggregates, such as: count, sum, min, and max.
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The experiments reported in [175] used Hive version 0.12 (Hive-MR) and Impala version 1.2.2 on
top of Hadoop 2.0.0-cdh4.5.0, Hive version 0.13 (Hive-Tez) on top of Tez 0.3.0, and Apache Hadoop
2.3.0.1. Hadoop was configured to run 12 containers per node, 1 per core. The HDFS replication factor
was set to three and the maximum JVM heap size was set to 7.5 GB per task. Impala uses MySQL as
the metastore. One impalad process ran on each compute node and had access to 90 GB of memory.

One of the nodes of a 21 node cluster used for the measurements hosted the HDFS Name Node
and there were 20 compute nodes. Each node ran 64-bit Ubuntu Linux 12.04 and had: one Intel Xeon
CPUs @ 2.20 GHz with 6 cores, eleven SATA disks (2TB, 7k RPM), one 10 Gigabit Ethernet card,
and 96 GB of RAM. One out of the eleven SATA disks in each node, hosted the OS and the rest were
used for HDFS.

The experiments discussed in [175] ran the 22 TPC-H7 queries for Hive and Impala and reported
the execution time for each query. The file cache was flushed before each run in all compute nodes.
The results show that Impala outperforms Hive-MR and Hive-Tez for all file formats with, or without
compression. The performance gains vary from 1.5X to 13.5X. Several factors contribute to this drastic
performance boost:

• A more efficient I/O subsystem than Hive-MR or Hive-Tez.
• Long running daemon processes process queries in each node thus, the overhead of the job initial-

ization and scheduling due to MapReduce in Hive-MR is eliminated.
• The query execution is pipelined, while in Hive-MR data is written out at the end of each step and

read in by subsequent step(s).

Impala eliminates overheads of virtual function calls, inefficient instruction branching due to large
switch statements, and other sources of inefficiency using code generation. When this feature is enabled
at runtime the query execution time improves by about 1.3X for all 21 TPC-H queries combined.
TPC-H Query 1 shows the largest improvement, 5.5X, while the remaining queries improve up to
1.75X.

A second set of experiments involve the TPC-DS benchmark.8 Results show that Impala is on
average 8.2X faster than Hive-MR and 4.3X faster than Hive-Tez and 10X faster than Hive-MR and
4.4X faster than Hive-Tez on a second workload. The first workload consisted of 20 queries which
access a single fact table and six dimension tables, while the second used the same workload but
removed the explicit partitioning predicate and used the correct predicate values.

7.9 CURRENT CLOUD APPLICATIONS AND NEW OPPORTUNITIES
Existing cloud applications can be divided in several broad categories: (i) processing pipelines; (ii)
batch processing systems; and (iii) web applications [494].

7The TPC BenchmarkH (TPC-H) is a decision support benchmark consisting of a suite of business-oriented ad hoc queries
and concurrent data modifications chosen to have broad industry-wide relevance. This benchmark is relevant for applications
examining a large volume of data and executing queries with a high degree of complexity.
8TPC-DS is a de-facto industry standard benchmark for assessing the performance of decision support systems.
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Processing pipelines are data-intensive and sometimes compute-intensive applications and repre-
sent a fairly large segment of applications currently running on a cloud. Several types of data processing
applications can be identified:

• Indexing; the processing pipeline supports indexing of large datasets created by web crawler en-
gines.

• Data mining; the processing pipeline supports searching very large collections of records to locate
items of interests.

• Image processing; a number of companies allow users to store their images on the cloud, e.g.,
Flicker (flickr.com) and Picasa (http://picasa.google.com/). The image processing pipelines support
image conversion, e.g., enlarge an image or create thumbnails; they can also be used to compress or
encrypt images.

• Video transcoding; the processing pipeline transcodes from one video format to another, e.g., from
AVI to MPEG.

• Document processing; the processing pipeline converts very large collection of documents from
one format to another, e.g., from Word to PDF or encrypt the documents; they could also use OCR
(Optical Character Recognition) to produce digital images of documents.

Batch processing systems also cover a broad spectrum of data-intensive applications in enterprise
computing. Such applications typically have deadlines and the failure to meet these deadlines could
have serious economic consequences; security is also a critical aspect for many applications of batch
processing. A non-exhaustive list of batch processing applications includes:

• Generation of daily, weekly, monthly, and annual activity reports for organizations in retail, manu-
facturing, and other economical sectors.

• Processing, aggregation, and summaries of daily transactions for financial institutions, insurance
companies, and healthcare organizations.

• Inventory management for large corporations.
• Processing billing and payroll records.
• Management of the software development, e.g., nightly updates of software repositories.
• Automatic testing and verification of software and hardware systems.

Lastly, but of increasing importance, are cloud applications in the area of web access. Several cat-
egories of web sites have a periodic or temporary presence. For example, the web site for conferences
or other events. There are also web sites active during a particular season (e.g., the Holidays Season)
or supporting a particular type of activity, such as income tax reporting with the April 15 deadline each
year. Other limited-time web site are used for promotional activities, or web sites that “sleep” during
the night and auto-scale during the day.

It makes economic sense to store the data in the cloud close to where the application runs; as we
have seen in Section 2.3 the cost per GB is low and the processing is much more efficient when the data
is stored close to the computational servers. This leads us to believe that several new classes of cloud
computing applications could emerge in the years to come; for example, batch processing for decision
support systems and other aspects of business analytics.

http://picasa.google.com/
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Another class of new applications could be parallel batch processing based on programming ab-
stractions such as MapReduce discussed in Section 7.5. Mobile interactive applications which process
large volumes of data from different types of sensors; services that combine more than one data source,
e.g., mashups,9 are obvious candidates for cloud computing.

Science and engineering could greatly benefit from cloud computing as many applications in these
areas are compute-intensive and data-intensive. Similarly, a cloud dedicated to education would be ex-
tremely useful. Mathematical software, e.g., MATLAB and Mathematica, could also run on the cloud.

7.10 CLOUDS FOR SCIENCE AND ENGINEERING
For more than two thousand years science was empirical. Several hundred years ago theoretical meth-
ods based on models and generalization were introduced and this allowed a substantial progress in
human knowledge. In the last few decades, we have witnessed the explosion of computational science
based on the simulation of complex phenomena.

In a talk delivered in 2007 and posted on his web site just before he went missing in January
2007, Jim Gray discussed the eScience as a transformative scientific method [231]. Today, the eScience
unifies the experiment, theory, and simulation; data captured from measuring instruments, or generated
by simulations is processed by software systems, data and knowledge are stored by computer systems
and analyzed with statistical packages.

The generic problems in virtually all areas of science are: (1) collection of experimental data; (2)
management of a very large volumes of data; (3) building and execution of models; (4) integration of
data and literature; (5) documentation of the experiments; and (6) sharing the data with others; data
preservation for long periods of time. All these activities require powerful computing systems.

A typical example of a problem faced by agencies and research groups is data discovery in large
scientific data sets. Examples of such large collections are the biomedical and genomic data at NCBI,10

the astrophysics data from NASA,11 or the atmospheric data from NOAA,12 and NCAR.13 The process
of online data discovery can be viewed as an ensemble of several phases: (i) recognition of the infor-
mation problem; (ii) generation of search queries using one or more search engines; (iii) evaluation of
the search results; (iv) evaluation of the web documents; and (v) comparing information from different
sources. The web search technology allows the scientists to discover text documents related to such
data but, the binary encoding of many of them poses serious challenges.

High performance computing on AWS. Reference [254] describes the set of applications used at
NERSC (National Energy Research Scientific Computing Center) and presents the results of a compar-
ative benchmark of EC2 and three supercomputers. NERSC is located at Lawrence Berkeley National

9A mashup is an application that uses and combines data, presentations, or functionality from two or more sources to create
a service. The fast integration, frequently using open APIs and multiple data sources, produces results not envisioned by the
original services; combination, visualization, and aggregation are the main attributes of mashups.
10NCBI is the National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/.
11NASA is the National Aeronautics and Space Administration, http://www.nasa.gov/.
12NOAA is the National Oceanic and Atmospheric Administration, www.noaa.gov.
13NCAR is the National Center for Atmospheric Research, https://ncar.ucar.edu/.

http://www.ncbi.nlm.nih.gov/
http://www.nasa.gov/
http://www.noaa.gov
https://ncar.ucar.edu/
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Laboratory and serves a diverse community of scientists; it has some 3 000 researchers and involves
400 projects based on some 600 codes. Some of the codes used are:

CAM (Community Atmosphere Mode), the atmospheric component of CCSM (Community Cli-
mate System Model) is used for weather and climate modeling.14 The code developed at NCAR uses
two two-dimensional domain decompositions, one for the dynamics and the other for re-mapping. The
first is decomposed over latitude and vertical level and the second is decomposed over longitude–
latitude. The program is communication-intensive; on-node/processor data movement and relatively
long MPI15 messages that stress the interconnect point-to-point bandwidth are used to move data be-
tween the two decompositions.

GAMESS (General Atomic and Molecular Electronic Structure System) is used for ab initio quantum
chemistry calculations. The code developed by the Gordon research group at the Department of En-
ergy’s Ames Lab at Iowa State University has its own communication library, the Distributed Data
Interface (DDI) and is based on the SPMD (Same Program Multiple Data) execution model. DDI
presents the abstraction of a global shared memory with one-side data transfers even on systems with
physically distributed memory. On the cluster systems at NERSC the program uses socket communi-
cation; on the Cray XT4 the DDI uses MPI and only one-half of the processors compute, while the
other half are data movers. The program is memory- and communication-intensive.

GTC (Gyrokinetic16) is a code for fusion research.17 It is a self-consistent, gyrokinetic tri-dimensional
Particle-in-cell (PIC)18 code with a non-spectral Poisson solver; it uses a grid that follows the field
lines as they twist around a toroidal geometry representing a magnetically confined toroidal fusion
plasma. The version of GTC used at NERSC uses a fixed, one-dimensional domain decomposition
with 64 domains and 64 MPI tasks. Communication is dominated by nearest neighbor exchanges that
are bandwidth-bound. The most computationally intensive parts of GTC involve gather/deposition of
charge on the grid and particle “push” steps. The code is memory intensive, as the charge deposition
uses indirect addressing.

IMPACT-T (Integrated Map and Particle Accelerator Tracking Time) is a code for the prediction and
performance enhancement of accelerators; it models the arbitrary overlap of fields from beamline ele-
ments, and uses a parallel, relativistic PIC method with a spectral integrated Green function solver. This
object-oriented Fortran90 code uses a two-dimensional domain decomposition in the y–z directions
and dynamic load balancing based on the domains. Hockney’s FFT (Fast Fourier Transform) algorithm
is used to solve Poisson’s equation with open boundary conditions. The code is sensitive to the memory
bandwidth and MPI collective performance.

14See http://www.nersc.gov/research-and-development/benchmarking-and-workload-characterization.
15MPI, Message Passing Interface is a communication library based on a standard for a portable message-passing system.
16The trajectory of charged particles in a magnetic field is a helix that winds around the field line; it can be decomposed into a
relatively slow motion of the guiding center along the field line and a fast circular motion called cyclotronic motion. Gyrokinetics
describes the evolution of the particles without taking into account the circular motion.
17See http://www.scidacreview.org/0601/html/news4.html.
18PIC is a technique to solve a certain class of partial differential equations; individual particles (or fluid elements) in a La-
grangian frame are tracked in continuous phase space, whereas moments of the distribution such as densities and currents are
computed simultaneously on Eulerian (stationary) mesh points.

http://www.nersc.gov/research-and-development/benchmarking-and-workload-characterization
http://www.scidacreview.org/0601/html/news4.html
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MAESTRO is a low Mach number hydrodynamics code for simulating astrophysical flows.19 Its
integration scheme is embedded in an adaptive mesh refinement algorithm based on a hierarchical
system of rectangular non-overlapping grid patches at multiple levels with different resolution; it uses
a multigrid solver. Parallelization is via a tri-dimensional domain decomposition using a coarse-grained
distribution strategy to balance the load and minimize communication costs. The communication topol-
ogy tends to stress simple topology interconnects. The code has a very low computational intensity, it
stresses memory latency, the implicit solver stresses global communications; the message sizes range
from short to relatively moderate.

MILC (MIMD Lattice Computation) is a QCD (Quantum Chromo Dynamics) code used to study
“strong” interactions binding quarks into protons and neutrons and holding them together in the nu-
cleus.20 The algorithm discretizes the space and evaluates field variables on sites and links of a regular
hypercube lattice in four-dimensional space–time. The integration of an equation of motion for hun-
dreds or thousands of time steps requires inverting a large, sparse matrix. The CG (Conjugate Gradient)
method is used to solve a sparse, nearly-singular matrix problem. Many CG iterations steps are required
for convergence; the inversion translates into tri-dimensional complex matrix–vector multiplications.
Each multiplication requires a dot product of three pairs of tri-dimensional complex vectors; a dot
product consists of five multiply-add operations and one multiply. The MIMD computational model
is based on a four-dimensional domain decomposition; each task exchanges data with its eight nearest
neighbors and is involved in the all-reduce calls with very small payload as part of the CG algo-
rithm; the algorithm requires gather operations from widely separated locations in memory. The code
is highly memory- and computational-intensive and it is heavily dependent on pre-fetching.

PARATEC (PARAllel Total Energy Code) is a quantum mechanics code; it performs ab initio total en-
ergy calculations using pseudo-potentials, a plane wave basis set and an all-band (unconstrained) con-
jugate gradient (CG) approach. Parallel three-dimensional FFTs transform the wave functions between
real and Fourier space. The FFT dominates the runtime; the code uses MPI and is communication-
intensive. The code uses mostly point-to-point short messages. The code parallelizes over grid points,
thereby achieving a fine-grain level of parallelism. The BLAS3 and one-dimensional FFT use opti-
mized libraries, e.g., Intel’s MKL or AMD’s ACML, and this results in high cache reuse and a high
percentage of per-processor peak performance.

The authors of [254] use the HPCC (High Performance Computing Challenge) benchmark to com-
pare the performance of EC2 with the performance of three large systems at NERSC. HPCC21 is a
suite of seven synthetic benchmarks: three targeted synthetic benchmarks which quantify basic system
parameters that characterize individually the computation and communication performance; four com-
plex synthetic benchmarks which combine computation and communication and can be considered
simple proxy applications. These benchmarks are:

19See http://www.astro.sunysb.edu/mzingale/Maestro/.
20See http://physics.indiana.edu/~sg/milc.html.
21For more information see http://www.novellshareware.com/info/hpc-challenge.html.

http://www.astro.sunysb.edu/mzingale/Maestro/
http://physics.indiana.edu/~sg/milc.html
http://www.novellshareware.com/info/hpc-challenge.html
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• DGEMM22 – the benchmark measures the floating point performance of a processor/core; the mem-
ory bandwidth does little to affect the results, as the code is cache friendly. Thus, the results of the
benchmark are close to the theoretical peak performance of the processor.

• STREAM23 – the benchmark measures the memory bandwidth.
• The network latency benchmark.
• The network bandwidth benchmark.
• HPL24 – a software package that solves a (random) dense linear system in double precision arith-

metic on distributed-memory computers; it is a portable and freely available implementation of the
High Performance Computing Linpack Benchmark.

• FFTE – measures the floating point rate of execution of double precision complex one-dimensional
DFT (Discrete Fourier Transform)

• PTRANS – parallel matrix transpose; it exercises the communications where pairs of processors
communicate with each other simultaneously. It is a useful test of the total communications capacity
of the network.

• RandomAccess – measures the rate of integer random updates of memory (GUPS).

The systems used for the comparison with cloud computing are:

Carver – a 400 node IBM iDataPlex cluster with quad-core Intel Nehalem processors running at
2.67 GHz and with 24 GB of RAM (3 GB/core). Each node has two sockets; a single Quad Data Rate
(QDR) IB link connects each node to a network that is locally a fat-tree with a global two-dimensional
mesh. The codes were compiled with the Portland Group suite version 10.0 of and Open MPI version
1.4.1.

Franklin – a 9 660-node Cray XT4; each node has a single quad-core 2.3 GHz AMD Opteron “Bu-
dapest” processor with 8 GB of RAM (2 GB/core). Each processor is connected through a 6.4 GB/s
bidirectional HyperTransport interface to the interconnect via a Cray SeaStar-2 ASIC. The SeaStar
routing chips are interconnected in a tri-dimensional torus topology, where each node has a direct link
to its six nearest neighbors. Codes were compiled with the Pathscale or the Portland Group version
9.0.4.

Lawrencium – a 198-node (1 584 core) Linux cluster; a compute node is a Dell Poweredge 1950
server with two Intel Xeon quad-core 64 bit, 2.66 GHz Harpertown processors with 16 GB of RAM
(2 GB/core). A compute node is connected to a Dual Data Rate InfiniBand network configured as a fat
tree with a 3 : 1 blocking factor. Codes were compiled using Intel 10.0.018 and Open MPI 1.3.3.

The virtual cluster at Amazon had four EC2 CUs (Compute Units), two virtual cores with two
CUs each, and 7.5 GB of memory (an m1.large instance in Amazon parlance); a Compute Unit
is approximately equivalent to a 1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor. The nodes are
connected with gigabit Ethernet. The binaries were compiled on Lawrencium. The results reported in
[254] are summarized in Table 7.1.

22For more details see https://computecanada.org/?pageId=138.
23For more details see http://www.streambench.org/.
24For more details see http://netlib.org/benchmark/hpl/.

https://computecanada.org/?pageId=138
http://www.streambench.org/
http://netlib.org/benchmark/hpl/
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Table 7.1 The results of the measurements reported in [254].

System
DGEMM
Gflops

STREAM
GB/s

Latency
µs

Bndw
GB/S

HPL
Tflops

FFTE
Gflops

PTRANS
GB/s

RandAcc
GUP/s

Carver 10.2 4.4 2.1 3.4 0.56 21.99 9.35 0.044

Frankl 8.4 2.3 7.8 1.6 0.47 14.24 2.63 0.061

Lawren 9.6 0.7 4.1 1.2 0.46 9.12 1.34 0.013

EC2 4.6 1.7 145 0.06 0.07 1.09 0.29 0.004

The results in Table 7.1 give us some ideas about the characteristics of scientific applications likely
to run efficiently on the cloud. Communication intensive applications will be affected by the increased
latency (more than 70 times larger then Carver) and lower bandwidth (more than 70 times smaller than
Carver).

7.11 CLOUD COMPUTING FOR BIOLOGY RESEARCH
Biology is one of the scientific fields in need of vast amounts of computing power and data storage
and was one of the first to take advantage of cloud computing. Molecular dynamics computations are
CPU-intensive while protein alignment is data-intensive.

An experiment carried out by a group from Microsoft Research illustrates the importance of cloud
computing for biology research [315]. The authors carried out an “all-by-all” comparison to identify
the interrelationship of the 10 million protein sequences (4.2 GB size) in NCBI’s non-redundant protein
database using Azure BLAST, a version of the BLAST25 program running on the Azure platform [315].

Azure offers VM with four levels of computing power depending on the number of cores: small
(one core), medium (two cores), large (eight cores), and extra large (more than eight cores). The ex-
periment used eight core CPUs with 14 GB RAM and a 2 TB local disk. It was estimated that the
computation would take six to seven CPU-years thus, the experiment was allocated 3 700 weighted
instances or 475 extra-large VMs from three data centers. Each data center hosted three Azure BLAST
deployments, each with 62 extra large instances. The 10 million sequences were divided into multiple
segments, each segment was submitted for execution by one Azure BLAST deployment. With this vast
amount of resources allocated, it took 14 days to complete the computations which produced 260 GB
of compressed data spread across over 400 000 output files.

A post-experiment analysis led to a few conclusions useful for many scientific applications running
on Azur. When a task runs for more than two hours, a message automatically reappears in the queue
requesting the task to be scheduled, leading to repeated computations. The simple solution to this
problem is to check if the result of a task has been generated before launching its execution.

25The Basic Local Alignment Search Tool (BLAST) finds regions of local similarity between sequences; it compares nucleotide
or protein sequences to sequence databases and calculates the statistical significance of matches; can be used to infer functional
and evolutionary relationships between sequences as well as help identify members of gene families. More information available
at http://blast.ncbi.nlm.nih.gov/Blast.cgi.

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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FIGURE 7.13

Cirrus – a general platform for executing legacy Windows applications on the cloud.

Many applications, including BLAST, allow for the setting of some parameters but, the compu-
tational effort for finding optimal parameters is prohibitive. To meet budget limitations each user is
expected to decide on an optimal balance between cost and the number of instances.

A number of inefficiencies were observed: many VMs were idle for extended periods of time. When
a task finished execution all worker instances waited for the next task. When all jobs use the same set of
instances, resources are either under or over utilized. Load imbalance is another source of inefficiency;
some of the tasks required by a job take considerably longer than others and delay the completion time
of the job.

The analysis of the logs shows unrecoverable instance failures; some 50% of active instances lost
connection to the storage service but were automatically recovered by the fabric controller. System
updates caused several ensembles of instances to fail.

Another observation is that a computational science experiment requires the execution of several
binaries thus, the creation of workflows, a challenging task for many domain scientists. To address this
challenge the authors of [302] developed a general platform for executing legacy Windows applications
on the cloud. In the Cirrus system a job has a description consisting of a prologue, a set of commands,
and a set of parameters. The prologue sets up the running environment; the commands are sequences
of shell scripts including Azure-storage-related commands to transfer data between Azure blob storage
and the instance.

After the Windows Live ID service authenticates the user, it can submit and track a job through the
portal provided by the web role, see Figure 7.13; the job is added to a table called job registry. The
execution of each job is controlled by a job manager instance which first scales the size of the worker
based on the job configuration, then, the parametric engine starts exploring the parameter space; if this
is a test-run, the parameter sweeping result is sent to the sampling filter.

Each task is associated with a record in the task table and this state record is updated periodically
by the worker instance running the task; the progress of the task is monitored by the manager. The
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FIGURE 7.14

The execution of loosely-coupled workloads using the Azure platform.

dispatch queue feeds into a set of worker instances. A worker periodically updates the task state in the
task table and listens for any control signals from the manager.

A loosely-coupled workload for an ensemble-based simulation on the Azure cloud is reported in
[316]. A role in Azure is an encapsulation of an application; as noted earlier, there are two kinds of
roles: (i) the web roles for web applications and front-end code; and (ii) the worker roles for background
processing. Scientific applications, such as Azure BLAST use worker roles for the compute tasks and
they implement their API which provides a run method and an entry point for the application and
the state or configuration change notifications. The applications use the Blob Storage (ABS) for large
raw data sets, the Table Storage (ATS) for semi-structured data, and the Queue Storage (AQS) for
message queues; these services provide strong consistency guarantees but, the complexity is moved to
the application space.

Figure 7.14 illustrates the use of a software system called BigJob to decouple resource allocation
from resource binding for the execution of loosely coupled workloads on an Azure platform [316]; this
software eliminates the need for the application to manage individual VMs. The results of measure-
ments show a noticeable overhead for starting VMs and for launching the execution of an application
task on a remote resource; increasing the computing power of the VM decreases the completion time
for long-running tasks.
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7.12 SOCIAL COMPUTING, DIGITAL CONTENT, AND CLOUD COMPUTING
Social networks play an increasingly important role in people’s lives; they have expanded in terms of
the size of the population involved and of the function performed. A promising solution for analyzing
large-scale social networks data is to distribute the computation workload over a large number of cloud
servers. Traditionally, the importance of a node or a relationship in a network is done using sampling
and surveying but, in a very large network structural properties cannot be inferred by scaling up the
results from small networks. The evaluation of social closeness is computationally intensive.

Social intelligence is another area where social and cloud computing intersect. Indeed, the pro-
cess of knowledge discovery and techniques based on pattern recognition demand high-performance
computing and resources that can be provided by computing clouds. Case-based reasoning (CBR), the
process of solving new problems based on the solutions of similar past problems, is used by context-
aware recommendation systems; it requires similarity-based retrieval. As the case base accumulates,
such applications must handle massive amount of history data and this can be done by developing new
reasoning platforms running on the cloud. CBR is preferable to rule-based recommendation systems
for large-scale social intelligence applications. Indeed, the rules can be difficult to generalize or apply
to some domains, all triggering conditions must be strictly satisfied, scalability is a challenge as data
accumulate, and the systems are hard to maintain as new rules have to be added when the amount of
data increases.

The BetterLife 2.0 [243], a CBR-based system, consists of a cloud layer, a case-based reasoning
engine, and an API. The cloud layer uses Hadoop clusters to store application data represented by cases,
as well as social network information, such as relationship topology, and pairwise social closeness
information. The CBR engine calculates similarity measures between cases to retrieve the most similar
ones and also stores new cases back to the cloud layer. The API connects to a master node which is
responsible for handling user queries, distributes the queries to server machines, and receives results.

A case consists of a problem description, solution, and optional annotations about the path to derive
the solution. The CBR uses MapReduce; all the cases are grouped by their userId, and then a breath first
search (BFS) algorithm is applied to the graph where each node corresponds to one user. MapReduce
is used to calculate the closeness according to pairwise relationship weight. A reasoning cycle has four
steps: (a) retrieve the most relevant or similar cases from memory to solve the case; (b) reuse – map
the solution from the prior case to the new problem; (c) revise – test the new solution in the real world
or in a simulation and, if necessary, revise; and (d) retain – if the solution was adapted to the target
problem, store the result as a new case.

In the past, social networks have been constructed for a specific application domain, e.g., MyEx-
periment and nanoHub for biology and nanoscience, respectively. These networks enable researchers
to share data and provide a virtual environment supporting remote execution of workflows. Another
form of social computing is the volunteer computing when a large population of users donate resources
such as CPU cycles and storage space for a specific project. The Mersenne Prime Search initiated in
1996, followed in the late 1990s by the SETI@Home, the Folding@home, and the Storage@Home,
a project to back up and share huge data sets from scientific research, are well-known examples of
volunteer computing. Information about these projects is available online at: www.myExperiment.org,
www.nanoHub.org, www.mersenne.org, setiathome.berkeley.edu, and at folding.stanford.edu.

Volunteer computing cannot be used for applications where users require some level of account-
ability. The PlanetLab project is a credit based system in which users earn credits by contributing

http://www.myExperiment.org
http://www.nanoHub.org
http://www.mersenne.org
http://setiathome.berkeley.edu
http://folding.stanford.edu
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resources and then spend these credits when using other resources. The Berkeley Open Infrastructure
for Network Computing (BOINC) aims to develop middleware for a distributed infrastructure suitable
for different applications.

An architecture designed as a Facebook application for a social cloud is presented in [100]. Methods
to get a range of data including friends, events, groups, application users, profile information, and
photos are available through a Facebook API. The Facebook Markup Language is a subset of HTML
with proprietary extensions and the Facebook JavaScript is a version of JavaScript. The prototype uses
Web Services to create a distributed and decentralized infrastructure. There are numerous examples
of cloud platforms for social networks. There are scalable cloud applications hosted by commercial
clouds.

The new technologies supported by cloud computing favor the creation of digital content. Data
mashups or composite services combine data extracted by different sources; event-driven mashups,
also called Svc, interact through events rather than the request-response traditional method. A recent
paper [462] argues that “the mashup and the cloud computing worlds are strictly related because very
often the services combined to create new Mashups follow the SaaS model and more, in general, rely
on cloud systems.” The paper also argues that the Mashup platforms rely on cloud computing systems,
for example, the IBM Mashup Center and the JackBe Enterprise Mashup server.

There are numerous examples of monitoring, notification, presence, location, and map services
based on the Svc approach including: Monitor Mail, Monitor RSSFeed, Send SMS, Make Phone Call,
GTalk, Fireeagle, and Google Maps. As an example, consider a service to send a phone call when
a specific Email is received; the Mail Monitor Svc uses input parameters, such as User ID, Sender
Address Filter, Email Subject Filter, to identify an Email and generates an event which triggers the
Make TTS Call action of a Text To Speech Call Svc linked to it.

The system in [462] supports creation, deployment, activation, execution and management of Event
Driven Mashups; it has a user interface, a graphics tool called Service Creation Environment that sup-
ports easily the creation of new Mashups, and a platform called Mashup Container that manages
Mashup deployment and execution. The system consists of two subsystems, the service execution
platform for Mashups execution and the deployer module that manages the installation of Mashups
and Svcs. A new Mashup is created using the graphical development tool and it is saved as an XML
file; it can then be deployed into a Mashup Container following the Platform as a Service (PaaS) ap-
proach. The Mashup Container supports a primitive SLA allowing the delivery of different levels of
service.

The prototype uses the JAVA Message Service (JMS) which supports an asynchronous communica-
tion; each component sends/receives messages and the sender does not block waiting for the recipient
to respond. The system’s fault tolerance was tested on a system based on the VMware vSphere. In this
environment, the fault tolerance is provided transparently by the VMM and neither the VMs nor the
applications are aware of the fault tolerance mechanism; two VMs, a Primary and a Secondary one,
run on distinct hosts and execute the same set of instructions such that, when the Primary fails, the
Secondary continues the execution seamlessly.
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Table 7.2 The features of the SFI for the Native Client on the x86-32, x86-64 , and ARM; ILP stands for
Instruction Level Parallelism.

Feature/Architecture x86-32 x86-64 ARM
Addressable memory 1 GB 4 GB 1 GB

Virtual base address any 44GB 0

Data model ILP32 ILP32 ILP 32

Reserved registers 0 of 8 1 of 16 0 of 16

Data address mask None Implicit in result width Explicit instruction

Control address mask Explicit instruction Explicit instruction Explicit instruction

Bundle size (bytes) 32 32 16

Data in text segment forbidden forbidden allowed

Safe address registers all rsp, rbp sp

Out-of-sandbox store trap wraps mod 4 GB No effect

Out-of-sandbox jump trap wraps mod 4 GB wraps mod 1 GB

7.13 SOFTWARE FAULT ISOLATION
Software fault isolation (SFI) offers a technical solution for sandboxing binary code of questionable
provenance that can affect security in cloud computing. Insecured and tampered VM images is one of
the security threats; binary codes of questionable provenance for native plugins to a web browser can
pose a security threat as web browsers are used to access cloud services.

A recent paper [448] discusses the application of the sandboxing technology for two modern CPU
architectures, ARM and x86-64. ARM is a load/store architecture with 32-bit instruction, 16 general
purpose registers. It tends to avoid multi-cycle instructions and it shares many of the RISC architec-
ture features but: (a) it supports a “thumb” mode with 16-bit instruction extensions; (b) has complex
addressing modes and a complex barrel shifter; and (c) condition codes can be used to predicate most
instructions. In the x86-64 architecture general purpose registers are extended to 64-bits, with an r
replacing the e to identify the 64 versus 32-bit registers, e.g., rax instead of eax; there are eight new
general purpose registers named r8–r15. To allow legacy instructions to use these additional registers,
x86-64 defines a set of new prefix bytes to use for register selection.

This SFI implementation is based on the previous work of the same authors on Google Native
Client (NC). This implementation assumes an execution model where a trusted runtime system shares
a process with the untrusted multi-threaded plugin. The rules for binary code generation of an untrusted
plugin are:
1. The code section is read-only and it is statically linked.
2. The code is divided into 32 byte bundles and no instruction or pseudo-instruction crosses the bundle

boundary.
3. The disassembly starting at the bundle boundary reaches all valid instructions.
4. All indirect flow control instructions are replaced by pseudo-instructions that ensure address align-

ment to bundle boundaries.
The features of the SFI for the Native Client on the x86-32, x86-64, and ARM are summarized in

Table 7.2 [448]. The control flow and store sandboxing for the ARM SFI incur less then 5% average
overhead and the ones for x86-64 SFI incur less than 7% average overhead.
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7.14 FURTHER READINGS
MapReduce is discussed in [130] and [494] presents the GrepTheWeb application. Cloud applications
in biology are analyzed in [315] and [316] and social applications of cloud computing are presented
in [100], [243], and [462]. Benchmarking of cloud services is analyzed in [108], [254], and [186]. The
use of structured data is covered in [319]. An extensive list of publications related to Divisible Load
Theory is at http://www.ece.sunysb.edu/~tom/dlt.html.

There are several cluster programming models. Data flow models of MapReduce and Dryad [253]
support a large collection of operations and share data through stable data. High-level programming
languages such as DryadLINQ [539] and FlumeJava [92] allow users to manipulate parallel collections
of datasets using operators such as map and join. There are several systems providing high-level inter-
faces for specific applications such as HaLoop [79]. There are also caching systems including Spark
[542] and Tachyon [301], discussed in Chapter 8, and Nectar [209].

Hive [484] was the first SQL over Hadoop to use another framework such as MapReduce or Tez
to process SQL-like queries. Shark uses another framework, Spark [531] as its runtime. Impala [175]
from Cloudera, LinkedIn Tajo (http://tajo.incubator.apache.org/), MapR Drill (http://www.mapr.com/
resources/community-resources/apache-drill) and Facebook Presto (http://prestodb.io/), resemble par-
allel databases and use long-running custom-built processes to execute SQL queries in a distributed
fashion. Hadapt [4] uses a relational database (PostgreSQL) to execute query fragments. Microsoft
PolyBase [145] and Pivotal [99] use database query optimization and planning to schedule query frag-
ments, and read HDFS data into database workers for processing.

A discussion of cost effective cloud high performance computing and a comparison with super-
computers [486] is reported in [88]. Scientific computing on clouds is discussed in [526]. Service level
checking is analyzed in [101].

7.15 EXERCISES AND PROBLEMS
Problem 1. Download and install the ZooKeeper from the site http://zookeeper.apache.org/. Use the

API to create the basic workflow patterns shown in Figure 7.3.
Problem 2. Use the AWS Simple Workflow Service to create the basic workflow patterns shown in

Figure 7.3.
Problem 3. Use the AWS CloudFormation service to create the basic workflow patterns shown in

Figure 7.3.
Problem 4. Define a set of keywords ordered based on their relevance to the topic of cloud security,

then search the web using these keywords to locate 10–20 papers and store the papers
in an S3 bucket. Create a MapReduce application modeled after the one discussed in
Section 7.6 to rank the papers based on the incidence of the relevant keywords. Compare
your ranking with the rankings of the search engine you used to identify the papers.

Problem 5. Use the AWS MapReduce service to rank the papers in Problem 4.
Problem 6. The paper [85] describes the elasticLM, a commercial product which provides license

and billing Web-based services. Analyze the merits and the shortcomings of the system.
Problem 7. Search the web for reports of cloud system failures and discuss the causes of each

incident.

http://www.ece.sunysb.edu/~tom/dlt.html
http://tajo.incubator.apache.org/
http://www.mapr.com/resources/community-resources/apache-drill
http://prestodb.io/
http://zookeeper.apache.org/
http://www.mapr.com/resources/community-resources/apache-drill
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Problem 8. Identify a set of requirements you would like to be included in a SLA. Attempt to
express them using the Web Service Agreement Specification (WS-Agreement) [31]
and determine if it is flexible enough to express your options.

Problem 9. Consider the workflow for your favorite cloud application. Use XML to describe this
workflow including the instances and the storage required for each task. Translate this
description into an file that can be used for the Elastic Beanstalk AWS.

Problem 10. In Section 7.10 we analyze cloud computing benchmarks and compare them with the
results of the same benchmarks performed on a supercomputer. Discuss the reasons
why we should expect the poor performance of fine-grained parallel computations on a
cloud.

Problem 11. An IT company decides to provide free access to a public cloud dedicated to higher
education. Which one of the three cloud computing delivery models, SaaS, PaaS, or
IaaS should it embrace and why? What applications would be most beneficial for the
students? Will this solution have an impact on distance learning? Why?
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CHAPTER

CLOUD HARDWARE AND
SOFTWARE

This chapter presents the computing hardware and the software stack for a cloud computing infras-
tructure. In their quest to provide reliable, low-cost services, cloud service providers exploit the latest
computing, communication, and software technologies to offer a highly available, easy to use, and
efficient cloud computing infrastructure.

The cloud infrastructure is built with inexpensive off-the-shelf components to deliver cheap com-
puting cycles. The millions of servers operating in today’s cloud data centers deliver the computing
power necessary to solve problems that in the past could only be solved by large supercomputers as-
sembled from expensive, one-of-a-kind components.

Investing in large-scale computing systems can only be justified if the systems can efficiently ac-
commodate a mix of workloads. The management of large-scale systems poses significant challenges
and has triggered a flurry of developments in hardware and software systems. For example, virtual
machines (VMs) and containers are key components of the cloud infrastructure. They exploit different
embodiments of resource virtualization, a concept discussed in depth in Chapter 10.

Virtualization means to abstract a physical system and the access to it. A VM abstracts a physical
processor and exploits virtualization by multiplexing. Containers exploit virtualization by aggregation
and bridge the gap between a clustered infrastructure and assumptions made by applications about their
environments and hide the complexity of the system.

Containers abstract an OS and include applications or tasks, as well as all their dependencies. Con-
tainers are portable, independent objects that can be easily manipulated by the software layer managing
a large virtual computer. This virtual computer exposes to users the vast resources of a physical cluster
with a very large number of independent processors.

There is not a single killer application for cloud computing. Modern cluster management systems
address the problems posed by a mix of workloads, in addition to scalability challenges. Typical cloud
workloads include not only coarse-grained, batch applications, but also fine-grained, long running ap-
plications with strict timing constrains. Only strict performance isolation and sophisticated scheduling
can eliminate the undesirable effects of the long tail distribution of the response time for latency-
sensitive jobs.

Several milestones in the evolution of ideas in cluster architecture along with algorithms and poli-
cies for resource sharing and effective implementation of the mechanisms to enforce these policies are
analyzed in this chapter. Our analysis of the cloud software stack is complemented by the discussion
of software systems closely related to applications presented in Chapter 7 and by topics related to Big
Data applications discussed in Chapter 12.

Section 8.1 looks deeper into the challenges and benefits of virtualization and containerization. The
next two Sections, 8.2 and 8.3, analyze Warehouse Scale Computers (WSCs) and their performance.
Then the focus is switched to the software as the presentation concentrates on VMs and hypervisors in

Cloud Computing. DOI: 10.1016/B978-0-12-812810-7.00011-X
Copyright © 2018 Elsevier Inc. All rights reserved.
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Section 8.4 and then on frameworks such as Dryad, Mesos, Borg, Omega, and Quasar in Sections 8.5,
8.6, 8.7, 8.8, and 8.9, respectively.

Dryad is an execution engine for coarse-grained data parallel applications, Mesos is used for fine-
grained cluster resource sharing, Omega is based on state sharing, and Quasar supports QoS-aware
cluster management. Resource isolation discussed in Section 8.10 is followed by an analysis of in-
memory cluster computing with Spark and Tachyon in Section 8.11. Docker containers and Kubernetes
are covered in Sections 8.12 and 8.13.

8.1 CHALLENGES; VIRTUAL MACHINES AND CONTAINERS
Computing systems have evolved from single processors to multiprocessors, to multicore multiproces-
sors, and to clusters. Warehouse-scale computers (WSCs) with hundreds of thousands of processors
are no longer a fiction, but serve millions of users, and are analyzed in computer architecture textbooks
[56,228].

WSCs are controlled by increasingly complex software stacks. Software helps integrate a very
large number of system components and contributes to the challenge of ensuring efficient and reliable
operation. The scale of the cloud infrastructure combined with the relatively low mean-time to failure
of the off-the-shelf components used to assemble a WSC make the task of ensuring reliable services
quite challenging.

At the same time, long-running cloud services require a very high degree of availability. For ex-
ample, a 99.99% availability means that the services can only be down for less than one hour per
year. Only a fair level of hardware redundancy combined with software support for error detection and
recovery can ensure such a level of availability [228].

Virtualization. The goal of virtualization is to support portability, improve efficiency, increase reliabil-
ity, and shield the user from the complexity of the system. For example, threads are virtual processors,
abstractions that allow a processor to be shared among different activities thus, increasing its utiliza-
tion and effectiveness. RAIDs are abstractions of storage devices designed to increase reliability and
performance.

Processor virtualization, running multiple independent instances of one or more operating systems,
pioneered by IBM in early 1970, was revived for computer clouds. Cloud Virtual Machines run appli-
cations inside a guest OS which runs on virtual hardware under the control of a hypervisor. Running
multiple VMs on the same server allows applications to better share the server resources and achieve
higher processor utilization. The instantaneous demands for resources of the applications running con-
currently are likely to be different and complement each other; the idle time of the server is reduced.

Processor virtualization by multiplexing is beneficial for both users and cloud service providers.
Cloud users appreciate virtualization because it allows a better isolation of applications from one an-
other than the traditional process sharing model. CSPs enjoy larger profits due to the low cost for
providing cloud services.

Another advantage is that an application developer can chose to develop the application in a familiar
environment and under the OS of her choice. Virtualization also provides more freedom for the system
resource management because VMs can be easily migrated. The VM migration proceeds as follows:
the VM is stopped, its state is saved as a file, the file is transported to another server, and the VM is
restarted.
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On the other hand, virtualization contributes to increased complexity of the system software and has
undesirable side-effects on application performance and security. Processor sharing is now controlled
by a new layer of software, the hypervisor, also called a Virtual Machine Monitor. It is often argued
that a hypervisor is a more compact software with only a few hundred thousand lines of code versus
the million lines of code of a typical OS, thus the hypervisor is less likely to be faulty.

Unfortunately, though the footprint of the hypervisor is small, a server must run a management
OS in addition to the hypervisor. For example, Xen, the hypervisor used by AWS and others, invokes
initially Dom0, a privileged domain that starts and manages unprivileged domains called DomU. Dom0
runs the Xen management toolstack, is able to access the hardware directly, and provides Xen with
virtual disks and network access for guests.

Containers. Containers are based on operating-system-level virtualization rather than hardware virtu-
alization. An application running inside a container is isolated from another application running in a
different container and both applications are isolated from the physical system where they run. Contain-
ers are portable and the resources used by a container can be limitted. Containers are more transparent
than VMs thus, easier to monitor and manage. Containers have several other benefits including:
1. Streamline the creation and the deployment of applications.
2. Applications are decoupled from the infrastructure; application container images are created at

build time rather than deployment time.
3. Support portability; containers run independently of the environment.
4. Support an application-centric management.
5. Have an optimal philosophy for application deployment; applications are broken into smaller, in-

dependent pieces that can be managed dynamically.
6. Support higher resource utilization.
7. Lead to predictable application performance.

Containers were initially designed to support the isolation of the root file system. The concept can
be traced back to the chroot system call implemented in 1979 in Unix to: (i) change the root directory
for the running process issuing the call and for its children; and (ii) to prohibit access to files outside
the directory tree. Later, BSD and Linux adopted the concept and in 2000, FreeBSD expanded it and
introduced the jail command. The environment created with chroot was used to create and host a new
virtualized copy of the software system.

Container technology has emerged as an ideal solution combining isolation with increased produc-
tivity for application developers who need no longer be aware of the details of the cluster organization
and management. Container technology is now ubiquitous and has a profound impact on cloud com-
puting. Docker’s containers gained widespread acceptance for ease of use, while Google’s Kubernetes
are performance-oriented.

Cluster management systems have evolved and each system has benefited from the experience
gathered from the previous generation. Mesos, a system developed at U.C. Berkeley is now widely
used by more than 50 organizations and has also morphed in a variety of systems such as Aurora
used by Twitter, Marathon offered by Mesospheres,1 and Jarvis used by Apple. Borg, Omega, and
Kubernetes are the milestones in Google’s cluster management development effort discussed in this
chapter.

1Mesospher is a startup selling the Datacenter Operating System, a distributed OS, based on Apache Mesos.
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FIGURE 8.1

The organization of a WSC with N cells, R racks, and S servers per rack.

8.2 CLOUD HARDWARE; WAREHOUSE-SCALE COMPUTERS
Cloud computing had an impact on large-scale systems architecture. The WSCs [56,228] form the
backbone of the cloud infrastructure of Google, Amazon, and other CSPs. WSCs are hierarchically
organized systems with 50 000–100 000 processors capable of exploiting request-level and data-level
parallelism.

At the heart of a WSC is a hierarchy of networks which connect the system components, servers,
racks, and cells/arrays, together as in Figure 8.1. Typically, a rack consists of 48 servers interconnected
by a 48 port, 10 Gbps Ethernet (GE) switch. In addition to the 48 ports, the GE switch has two to eight
uplink ports connecting a rack to a cell. Thus, the level of oversubscription, the ratio of internal to
external ports, is between 48/8 = 6 and 48/2 = 24. This has serious implications on the performance
of an application; two communicating processes running on servers in the same rack have a much
larger bandwidth and lower latency than the same processes running on servers in different racks.

The next component is a cell, sometimes called an array, consisting of a number of racks. The racks
in a cell are connected by an array switch, a rather expensive communication hardware with a cost
two orders of magnitude higher then that of a rack switch. The cost is justified by the fact that the
bandwidth of a switch with n ports is of order n2. To support a 10 times larger bandwidth for 10 times
as many ports, the cost increases by a factor of 102. An array switch can support up to 30 racks.
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Table 8.1 The memory hierarchy of a WSC with the latency given in microseconds, the bandwidth in
MB/sec, and the capacity in GB [56].

Location type DRAM HDD
Latency Bandwidth Capacity Latency Bandwidth Capacity

Local 0.1 20 000 16 10 000 200 2 000

Rack 100 100 1 040 11 000 100 160 000

Cell 3 000 10 31 200 12 000 10 4 800 000

WSCs support both interactive and batch workloads. The communication latency and the bandwidth
within a server, a rack, and a cell are different thus, the execution time and the costs for running an
application are affected by the volume of data, the placement of data, and by the proximity of instances.
For example, the latency, the bandwidth, and the capacity of the memory hierarchy of a WSC with
80 servers/rack and 30 racks/cell are shown in Table 8.1 based on the data from [56].

The DRAM latency increases by more than three orders of magnitude, while the bandwidth de-
creases by a similar factor. The latency and the bandwidth of the HDDs follow the same trend, but
the variation is less dramatic. To put this in perspective, the memory-to-memory transfer of 1 000 MB
takes 50 msec within a server, 10 seconds within the rack, and 100 seconds within a cell, while the
transfers between disks take 5, 10, and 100 seconds, respectively.

WSCs, though expected to supply cheap computing cycles, are by no means inexpensive. The cost
of a WSC is of the order of $150 million, but the cost-performance is what that makes WSCs appealing.
The capital expenditures for a WSC include the costs for servers, for the interconnect, and for the facil-
ity. A case study reported in [228] shows a capital expenditure of $167 510 000 including $66 700 000
for 45 978 servers, $12 810 000 for an interconnect with 1 150 rack switches, 22 cell switches, 2 layer
3 switches, and 2 border routers. In addition to the initial investment the operation cost of the cloud
infrastructure including the cost of energy is significant. In this case study the facility is expected to
use 8 MW.

We should now take a closer look at the WSC servers and ask ourselves what type of processors are
best suited as server components. Unquestionably, multicore processors are ideal components of WSC
servers as they support not only data-level parallelism for search and analysis of very large data sets, but
also request-level parallelism for systems expected to support a very large number of transactions per
second. Data-parallel and request-parallel applications are the two major components of the workloads
experienced by cloud service providers such as Google.

There are two basic groups of multicore processors often called browny and wimpy cores [239].
The single core performance of a browny core is impressive, but so is the power dissipation. On the
other hand, the wimpy cores are less powerful but they also consume less power. Power consumption
is a major concern for cloud as we shall see in Section 9.2; for solid-state technologies the power
dissipation is approximately O(f 2) with f the clock frequency.

Using wimpy cores poses several problems. When running on wimpy cores rather than on browny
cores, a task needs to spawn a larger number of threads. This has two major implications: first, it
complicates the software development process as it requires an explicit parallelization of the application
thus, increasing the cost of application development. A second, equally important implication, is that
running a larger number of threads increases the response time. Very often all threads have to finish
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before the next step of an algorithm, the well known problem posed by barrier-synchronization. This
means that all threads have to wait for the slowest one.

The cost of systems using wimpy core may increase, e.g., the cost for DRAM will increase as the
kernel and the system processes consume more aggregate memory. Data structures used by applications
might need to be loaded into memory on multiple wimpy-core machines instead of being loaded into
a single brawny-core machine memory; this has a negative effect on performance. Lastly, managing a
larger number of threads will increase the scheduling overhead and diminish performance.

Hölzle [239] concludes “Once a chip’s single-core performance lags by more than a factor of two
or so behind the higher end of current-generation commodity processors, making a business case for
switching to the wimpy system becomes increasingly difficult because application programmers will
see it as a significant performance regression: their single-threaded request handlers are no longer fast
enough to meet latency targets.”

8.3 WSC PERFORMANCE
The central question addressed in this section is how to extract the maximum performance from a
warehouse scale computer, what are the main sources of WSC inefficiency, and how these inefficiencies
could be avoided. Even slight WSC performance improvements translate to large cost savings for the
CSPs and noticeable better service for cloud users.

The workload of WSCs is very diverse, there are no typical, or “killer” applications that would
drive the design decisions and, at the same time, guarantee optimal performance for such workloads.
It is not feasible to experiment with systems at this scale or to simulate them effectively under realistic
workloads.

The only alternative is to profile realistic workloads and analyze carefully the data collected during
production runs, but this is only possible if low-overhead monitoring tools which minimize intrusion
on the workloads are available. Monitoring tools minimize intrusion by random sampling and by main-
taining counters of relevant events, rather than detailed event records.

Google-Wide-Profiling (GWP) is a low-overhead monitoring tool used to gather the data through
random sampling. GWP randomly selects a set of servers to profile every day and uses mostly Perf2 to
monitor their activity for relatively short periods of time, then collects the callstacks3 of the samples,
aggregates the data and stores it in a database [418].

Data collected at Google with GWP over a period of 36 months is presented in [262] and discussed
in this section. Only data for C++ codes was analyzed because C++ codes dominate the CPU cycle
consumption though, the majority of codes are written in Java, Python, and Go. The data was collected
from some 20 000 servers built with Intel Ivy Bridge processors.4

The analysis is restricted to 12 application binaries with distinct execution profiles: batch versus
latency sensitive, low-level versus high-level services. The applications are: (1) Gmail and Gmail-fe,

2Perf is a profiler tool for Linux 2.6+ systems; it abstracts CPU hardware differences in Linux performance measurements.
3A callstack, also called execution stack, program stack, control stack, or run-time stack, is a data structure that stores informa-
tion about the active subprograms invoked during the execution of a program.
4The Ivy Bridge-E family is made in three different versions with the postfix -E, -EN, and -EP, with up to six, ten, and twelve
cores per chip, respectively.
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the back-end and front-end Gmail application; (2) BigTable, a storage system discussed in Section 6.9;
(3) disk, low-level distributed storage driver; (4) indexing1 and indexing2 of the indexing pipeline; (5)
search1, 2, 3 application for searching leaf nodes; (6) ads, an application targeting ads based on web
page contents; (7) video, a transcoding and feature extraction application; and (8) flights-search, the
application used to search and price airline flights.

In spite of the workload diversity, there are common procedures used by a vast majority of ap-
plications running on WSCs. Data-intensive applications run multiple tasks distributed across several
servers and these tasks communicate frequently with one another. Cluster management software is
also distributed and daemons running on every node of the cluster communicate with one or more
schedulers making system-wide decisions.

It is thus, not unexpected, that common procedures that account for a significant percentage of CPU
cycles are dedicated to communication. This is the case of RPCs (Remote Procedure Calls), as well as
serialization, deserialization, and compression of buffers used by communication protocols. A typical
communication pattern involves the following steps: (a) serialize the data to the protocol buffer; (b)
execute an RPC and pass the buffer to the callee; and (c) caller deserializes the buffers received in
response to the RPC. Data collected over a period of 11 months shows that these common procedures
translate into an unavoidable “WSC architecture tax” and consume 22–27% of the CPU cycles.

About one third of RPCs are used by cluster management software to balance the load, encrypt the
data, and detect failures. The balance of the RPC is used to move data between application tasks and
system procedures. Data movement is also done using library functions such as memmove and memcpy
with descriptive names5 which account for 4–5% of the “tax.”

Compression, decompression, hashing, and memory allocation and reallocation procedures are also
common and account for more than one fourth of this “tax.” Applications spend about one fifth of their
CPU cycles in the scheduler and the other components the kernel. An optimization effort focused on
these common procedures will undoubtedly lead to a better WSC utilization.

Most cloud applications have a substantial memory footprint, binaries of hundreds of MB are not
uncommon and some do not exhibit either spatial or temporal locality. Moreover, the memory footprint
of applications shows a significant rate of increase, about 30% per year. Also the instruction-cache
footprints grow at a rate of some 2% per year. As more Big Data applications run on computer clouds
neither the footprint nor the locality of these applications are likely to limit the pressure on cache
and memory management. These functions represent a second important target for the performance
optimization effort.

Memory latency rather than memory bandwidth affects a processor ability to deliver a higher level
of performance through Instruction Level Parallelism (ILP). The performance of such processors is
significantly affected by stall cycles due to cache misses. It is reported that data cache misses are
responsible for 50–60% of the stall cycles and together with instruction cache missing contribute to a
lower IPC (Instructions Per Clock cycles).

There are patterns of software that hinder execution optimization through pipelining, hardware
threading, out-of-order execution, and other architectural features designed to increase the level of ILP.
For example, linked data structures cause indirect addressing that can defeat hardware prefetching and
build bursts of pipeline idleness when no other instructions are ready to execute.

5In Linux memmove and memcpy copy n bytes from one memory area to another; the areas may overlap for the former but do
not overlap for the later.
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FIGURE 8.2

Schematic illustration of a modern processors core microarchitecture. Shown are the front-end and back-ends,
L1 instruction and data caches, the unified L2 cache and the microoperation cache. Branch prediction unit,
load/store and reorder buffers are components of the front-end. The instruction scheduler manages the
dynamic instruction execution. The five ports of the instruction scheduler dispatch micro instructions to ALU
and to load and store units. Vector (V) and floating-point operations (FP) are dispatched to ALU units.

Understanding cache misses and stalls requires a microarchitecture-level analysis. A generic or-
ganization of the microarchitecture of a modern core is illustrated in Figure 8.2. The core front-end
processes instructions in order, while the instruction scheduler of the back-end is responsible for dy-
namic instruction scheduling and feeds the instruction to multiple execution units including Arithmetic
and Logic Units (ALU)s and Load/Store units.

The microarchitecture-level analysis is based on a Top-Down methodology [535]. According to
https://software.intel.com/en-us/top-down-microarchitecture-analysis-method: “The Top-Down char-
acterization is a hierarchical organization of event-based metrics that identifies the dominant perfor-
mance bottlenecks in an application. Its aim is to show, on average, how well the CPU’s pipeline(s)
were being utilized while running an application.”

https://software.intel.com/en-us/top-down-microarchitecture-analysis-method
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This methodology identifies the micro-op (μop) queue as the separator between the front-end and
the back-end components of a microprocessor core. The μop pipeline slots are then classified as Re-
tiring, Front-end bound, Bad speculation, Back-end bound, with only the first one doing useful work.
Front-end bound includes overheads associated with fetching, instruction caches, decoding and some
other shorter-penalties and Back-end bound includes overheads due to the data cache hierarchy and the
lack of ILP; Bad speculation is self-explanatory.

In a typical SPEC CPU 2006 benchmark the front-end wasted execution slots are typically 2–3
times lower than those reported for the Google workload which account for 15–30% of all wasted
slots. One of the reasons for this behavior is that SPEC applications6 do not exhibit the combination of
low retirement rates7 and high front-end boundedness of WSC ones.

Data shows that core back-end dominates the overhead and limit the ILP. The back-end and the
front-end stalls limit the number of cores active during an execution cycle. To be more precise, only
1 or 2 cores of a 6 core Ivy Bridge processor are active in 72% of execution cycles, while 3 cores are
active during the balance of 28% of cycles.

The observation that memory latency is more important than memory bandwidth is a consequence
of the low memory bandwidth utilization at an average of 31% and a maximum of 68% with a heavy
tail distribution. In turn, the low memory utilization is due in part to low CPU utilization. A surprising
result reported in [262] is that the median CPU bandwidth utilization is 10% while [56] reports a
median CPU utilization in a much higher range, 40–70%. A low CPU utilization is also reported for
the CloudSuite [170].

Several conclusions regarding optimal processor architecture can be reached from the Top-Down
data analysis. Data analysis shows that cloud workloads display access patterns involving bursts of
computations intermixed with bursts of stall cycles. Processors supporting a higher level of simultane-
ous multithreading (SMT) are better equipped than current generations of 2-wide SMP processors to
hide the latency by overlapping stall cycles. SMT is an architectural feature allowing instructions from
more than one thread to be executed in any given pipeline stage at a time. SMT requires the ability
to fetch instructions from multiple threads in a cycle; it also requires a larger register file to hold data
from multiple threads.

The large working sets of the codes are responsible for the high rate of instruction cache misses.
L2 caches show that MPKI (misses per kilo instructions) are particularly high. Larger caches would
alleviate this problem but at the cost of higher cache latency. Separate cache policies which give priority
to instructions over data or separate L2 caches for instructions and data could help in this regard.

6The following applications in the SPEC CPU2006 suite are used: 400.perlbench which has high IPC and the largest instruc-
tion cache working set; 445.gobmk, an application with hard-to-predict branches; 429.mcf and 471.omnetpp memory-bound
applications which stress memory latency; and 433.milc a memory-bound application which stresses memory bandwidth.
7In a modern processor the Completed Instruction Buffer holds instructions that have been speculatively executed. Associated
with each executed instruction in the buffer are its results in rename registers and any exception flags. The retire unit removes
from the buffer the executed instructions in program order, at a rate of up to four instructions per cycle. The retire unit updates
the architected registers with the computed results from the rename registers. The retirement rate measures the rate of these
updates.
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8.4 HYPERVISORS
A hypervisor is the software that securely partitions the resources of a computer system into one or
more VMs. A guest OS is an operating system that runs under the control of a hypervisor rather than
directly on the hardware. A hypervisor runs in kernel mode, while a guest OS runs in user mode.
Sometimes the hardware supports a third mode of execution for the guest OS.

Hypervisors allow several operating systems to run concurrently on a single hardware platform.
A hypervisor controls how the guest OS uses the hardware resources; the events occurring in one VM
do not affect any other VM running under the same hypervisor. At the same time, a hypervisor enables:

• Multiple services to share the same platform.
• The movement of a service from one platform to another, a process called live migration.
• System modification, while maintaining backward compatibility with the original system.

When a guest OS attempts to execute a privileged instruction the hypervisor traps the operation
and enforces operation correctness and safety. The hypervisor guarantees the isolation of the individ-
ual VMs and thus, ensures security and encapsulation, a major concern in cloud computing. At the
same time, the hypervisor monitors the system performance and takes corrective actions to avoid per-
formance degradation. For example, to avoid memory thrashing a hypervisor may swap out a VM by
copying to the disk all its pages and releasing the physical memory frames for paging by other VMs.

A hypervisor virtualizes the CPU and the memory. For example, a hypervisor traps interrupts and
dispatches them to the individual guest operating systems. When a guest OS disables the interrupts,
the hypervisor buffers them until the guest OS re-enables them. A hypervisor maintains a shadow page
table for each guest OS and replicates any modification made by the guest OS in its own shadow page
table. This shadow page table points to the actual page frame and it is used by the hardware component
called the Memory Management Unit (MMU) for dynamic address translation.

Memory virtualization has important implications for performance. Hypervisors use a range of
optimization techniques. For example, VMware systems avoid page duplication among different VMs,
they maintain only one copy of a shared page and use copy-on-write policies, while Xen imposes
total isolation of the VM and does not allow page sharing. Hypervisors control the virtual memory
management and decide what pages to swap out. For example, when the ESX VMware Server wants
to swap out pages it uses a balloon process inside a guest OS and requests it to allocate more pages to
itself and thus, swaps-out pages of some of the processes running under that VM. Then it forces the
balloon process to relinquish control of free page frames.

8.5 AN ENGINE FOR COARSE-GRAINED DATA-PARALLEL APPLICATIONS
When can we talk about coarse-grained parallelism and why is it important for the design of cloud
software? The answer to the first question is that application developers have used the SPMD (Same-
Program-Multiple-Data) paradigm for several decades. The name SPMD illustrates perfectly the idea
behind the concept – a large dataset is split into several segments processed independently, and often
concurrently, using the same program.

For example, converting a large number of images, e.g., 109, from one format to another can be done
by splitting the set into one thousand segments with 106 images each, and then running concurrently the
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conversion program on one thousand processors. The answer to the second question is now obvious:
to compute we need a large infrastructure, in this case one thousand processors, and as a result, the
computing time is cut by almost three orders of magnitude.

It is easy to see that such applications are ideal for cloud computing, they need a large computing
infrastructure and can keep the systems busy for a fair amount of time. To CSPs delight such jobs
increase system utilization as no scheduling decisions have to be made until the time-consuming job
has finished. This was noticed early on and, in 2004, the MapReduce idea was born [130].

MapReduce and Apache Hadoop, an open-source software framework consisting of a storage part,
the Hadoop Distributed File System (HDFS), and the processing part called MapReduce are discussed
in Chapter 7. MapReduce is a two-phase process. Computations on data segments are carried out
during the Map phase; partial results are then merged during the Reduce phase. This extends the scope
of SPMD for computations that are not totally independent.

The previous example can be slightly changed to benefit from MapReduce; instead of converting
109 images we now search during the Map phase for an object that could appear in any of them. After
the search in each data segment is completed we combine the partial results during the Reduce phase
to further refine the information about the object from the set of images selected during the Map phase.

Dryad is a general-purpose distributed execution engine developed in 2007 by Microsoft for coarse-
grained data-parallel applications. Microsoft wanted to use Dryad for running Big Data applications
on its clustered server environment as a proprietary alternative to Hadoop, a widely used platform for
coarse-grained data-parallel applications.

A Dryad application combines computational vertices with communication links to form a dataflow
graph [253]. Then it runs the application by executing the vertices of this graph on a set of available
computers, communicating through files, TCP pipes, and shared-memory.

The system is centrally controlled by a Job Manager (JM) running either on one of the nodes of the
cluster or outside the cluster, on the user’s computer. The JM uses a Name Server (NS) to locate the
nodes of the cluster where the work is actually done and an application-specific description to construct
the dataflow graph of the application. A daemon running on each cluster node communicates with the
JM and controls the execution of the code for the vertex of the graph assigned to that node. Daemons
communicate directly among themselves without the intervention of the JM and use the information
provided by the dataflow graph to carry out the computations.

A detailed description of the Dryad dataflow graph given in [253] presents a set of simpler graphs
used to construct more complex one. The graph nodes are annotated to show the input and output
datasets. Two connection operations are the pointwise composition and the complete bipartite compo-
sition.

The DryadLINQ (DLNQ) system is the product of a related Microsoft project [539]. It exploits
the Language INtegrated Query (LINQ), a set of .NET constructs for performing arbitrary side effect-
free transformations on datasets to automatically translate data-parallel codes into an workflow for
distributed execution. The distributed execution is then executed on the Dryad platform. The devel-
opment of DryadLINQ was motivated by the fact that parallel databases implement only declarative
sides of SQL queries and do not support imperative programming. The LINQ-expression execution in
DryadLINQ follows several steps:
1. The .NET application runs on the client machine and creates a DLNQ object.
2. The DLNQ object is passed to the DLNQ system via a ToDryadTable call.
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3. DLNQ compiles the LINQ expression into a Dryad execution plan and invokes the Dryad JM
which in turn creates the dataflow and then schedules the execution of the dataflow.

4. Each Dryad node daemon initiates the execution of the vertex allocated to it. When the execution
of the vertex is completed DLNQ creates local DryadTable objects encapsulating the outputs of
the execution that may be used as inputs to subsequent expressions in the user program.

5. Control returns to the user application and the DryadTable objects are accessible to the user via
.NET.
Dryad is not scalable and to no one’s surprise, soon after announcing plans to release Windows

Azure- and Windows Server-based implementations of open source Apache Hadoop, Microsoft dis-
continued the project.

8.6 FINE-GRAINED CLUSTER RESOURCE SHARING
Mesos is a light-weight framework for fine-grained cluster resource sharing developed in late 2010s at
U. C. Berkeley. Mesos consists of only some 10 000 lines of C++ code [237]. A novelty of the system
is a two-level scheduling strategy for large clusters with workloads consisting of a mix of frameworks.

The term “framework” in this context means a widely-used, large consumer of CPU cycles, software
system such as Hadoop, discussed in Chapter 7, and MPI (Message Passing Interface), a portable
message-passing system used by the parallel computing community since 1990s. Another novelty is
the concept of resource offer, an abstraction for a bundle of resources a framework can allocate to run
its tasks on a cluster node.

The motivation for supporting two-level scheduling in Mesos is that centralized scheduling is not
scalable due to its complexity. Centralized scheduling does not, and cannot, perform well for fine-
grained resource sharing. Framework jobs consisting of short tasks are mapped to resource slots and
the fine-grained matching has a high overhead and prevents sharing across frameworks. For example,
a fair scheduler at Facebook allocates the resources of a 2 000 node cluster dedicated to Hadoop jobs.
MPI and MapReduceOnline (a streaming of MapReduce discussed in Chapter 7) jobs for ad targeting
need the data stored on the Hadoop cluster, but the frameworks cannot be mixed. Mesos allows mul-
tiple frameworks to share resources in a fine-grained manner and achieve data locality. It can isolate a
production framework from experiments with a new version undergoing testing and experimentation.

Mesos runs on Linux, Solaris and OS X, and supports frameworks written in C++, Java, and Python.
Mesos can use Linux containers to isolate tasks, CPU cores, and memory. Mesos is organized as fol-
lows: a master process manages daemons running on all cluster nodes, while frameworks run the tasks
on cluster nodes. The master implements the fair-sharing of resource offers among frameworks and
lets each framework manage resource sharing among its tasks.

Each framework has a scheduler which receives resource offers from the master. An executor on
each machine launches the tasks of a framework. The scheduler runs

• callbacks,8 such as resourceOffer, offerRescinded, statusUdate, slaveLost, and
• actions, such as replyToOffer, setNeedsOffers, setFilters, getGuaranteedShare, killTask.

8A callback is executable code passed as an argument to other code; the callee is expected to execute the argument either
immediately or at a later time for synchronous and, respectively, asynchronous callbacks.
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The executor functions are also callbacks, such as launchTask, killTask and actions, such as sendStatus.
Framework requests differentiate mandatory from preferred resources. A resource is mandatory

if the framework cannot run without it, e.g., a GPU is a mandatory resource for applications using
CUDA.9 A resource is preferred if a framework performs better using a certain resource, but could
also run using another one.

The two-level scheduling strategy keeps Mesos simple and scalable and, at the same time, gives the
frameworks the power to optimally manage a cluster. The system is flexible and supports pluggable
isolation modules to limit the CPU, memory, network bandwidth, and I/O usage of a process tree.
Allocation modules can select framework-specific policies for resource management. For example,
the killing of a task of a greedy or buggy framework is aware whether the tasks of a framework are
interdependent, as in case of MPI, or independent, as in case of MapReduce.

The system is robust, there are replicated masters in hot-standby state. When the active master fails,
a ZooKeeper service10 is used to elect a new master. Then the daemons and the schedulers re-connect
to the newly elected master.

The limitations of the distributed scheduling implemented by Mesos are also discussed in [237].
Sometimes, the collection of frameworks is not able to optimize bin packing as well as a centralized
scheduler. Another type of fragmentation occurs when the tasks of a framework request relatively small
quantities of resources and, upon completion, resources released by the tasks are insufficient to meet the
demands of tasks from a different framework requesting larger quantities of resources. Resource offers
could increase the complexity of framework scheduling. Centralized scheduling is also not immune to
this problem.

It is reported that porting Hadoop to run on Mesos required relatively few modifications. Indeed,
the JobTracker and the TaskTrackers components of Hadoop map naturally as Mesos framework
scheduler and executor, respectively. Apache Mesos is an open-source system adopted by some 50
organizations including Twitter, Airbnb, and Apple (see http://mesos.apache.org/documentation/latest/
powered-by-mesos/).

Several frameworks based on Mesos have been developed along the years. Apache Aurora was
developed in 2010 by Twitter and now is open-source. Chronos is a cron-like11 system, elastic and able
to express dependencies between jobs. Apple uses a Mesos framework called Jarvis12 to support Siri.
Jarvis is an internal PaaS cloud service to answer IOS user’s voice queries.

The utilization analysis of a production cluster with several thousand servers used to run produc-
tion jobs at Twitter shows that the average CPU utilization is below 20% and the average memory
utilization is below 50% [237]. Reservations improve the CPU utilization up to 80%. Some 70% of
the reservations overestimate the resources they need by one order of magnitude, while 20% of the
reservations underestimate resource needs by a factor of 5.

In summary, one can view Mesos as the opposite of virtualization. A VM is based on an abstrac-
tion layer encapsulating an OS together with an application inside a physical machine. Mesos abstracts

9CUDA is a parallel computing platform supporting graphics processing units (GPUs) for general purpose processing.
10ZooKeeper is a distributed coordination service implementing a version of the Paxos consensus algorithm, see Chapter 7.
11Cron is a job scheduler for Unix-like systems used to periodically schedule jobs; often it is used to automate system mainte-
nance and administration.
12Jarvis is short for Just A Rather Very Intelligent Scheduler.

http://mesos.apache.org/documentation/latest/powered-by-mesos/
http://mesos.apache.org/documentation/latest/powered-by-mesos/
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physical machines as pools of indistinguishable servers and allows a controlled and redundant distri-
bution of tasks to these servers.

8.7 CLUSTER MANAGEMENT WITH BORG
A computer cluster may consist of tens of thousands of processors. For example, a cell of a WSC is in
fact a cluster consisting of multiple racks, each with tens of processors, as shown in Figure 8.1. There
are two sides of cluster management: one reflects the views of application developers who need simple
means to locate resources for an application and then to control the use of resources; the other is the
view of service providers concerned with system availability, reliability, and resource utilization.

These views drove the design of Borg, a cluster management software developed at Google [502].
Borg’s design goals were:

• Manage effectively workloads distributed to a large number of machines and be highly reliable and
available.

• Hide the details of resource management and failure handling thus, allow users to focus on appli-
cation development. This is important as the machines of a cluster differ in terms of processor type
and performance, number of cores per processor, RAM, secondary storage, network interface, and
other capabilities.

• Support a range of long-running, highly-dependable applications. A first group of applications are
long-running, production jobs and a second group are non-production, batch jobs.

A Borg cluster consists of tens of thousands of machines co-located and interconnected by a data
center-scale network fabric. A cluster managed by Borg is called a cell. The architecture of the system
shown in Figure 8.3 consists of a logically centralized controller, the BorgMaster, and a set of processes
running on each machine in the cell, the Borglets. All Borg components are written in C++.

The main BorgMaster has five replicas and each replica maintains an in-memory copy of the state
of the cell. The state of a cell is also recorded in a Paxos-based store on local disks of each replica.
An elected master serves as Paxos leader and handles operations that change the state of a cell, e.g.,
submission a job or termination a task. The master process performs several actions:

• Handles client RPCs that change state or looks-up data.
• Manages state machines for machines, tasks, allocs, and other system objects.
• Communicates with Borglets.
• Responds to requests submitted to a web-based user interface.

Borglets start, stop, and restart failing tasks, manipulate the OS kernel setting to manage local re-
sources, and report the local state to the BorgMaster.

Users interact with running processes by means of RPCs to BorgMaster and trigger task state
transitions. Users request actions such as submit, kill, and update. The task state is also changed by
system actions such as: reject, evict, lost, see Figure 8.4.

The scheduler is the other main component of the BorgMaster. The scheduler scans periodically in
a round-robin order a priority queue of pending tasks. The feasibility component of the scheduling al-
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FIGURE 8.3

The architecture of Borg. A replicated BorgMaster interacts with Borglets running on each machine in the cell.

gorithm attempts to locate systems where to run tasks. The scoring component identifies the machine(s)
to actually run the task.

Alloc and alloc sets reserve resources on a machine and, respectively, on multiple machines. Jobs
have priorities; distinct priority bands are defined for activities such as monitoring, production, batch,
and testing. A quota system for job scheduling uses a vector including the quantity of resources such
as CPU, RAM, disk for specified periods of time. Higher-priority quota cost more than lower-priority
ones. To simplify resource management and balance the load, a system similar with the one described
in [27] is used to generate a single cost value per vector and minimize the cost, while balancing the
workload and leaving room for spikes in demand.

Production jobs are allocated about 70% of CPU resources and 55% of the total memory [502].
A Borg job could have multiple tasks and runs in a single cell. The majority of jobs do not run inside a
VM. Tasks map to Linux processes running in containers.

To manage large cells, the scheduler spawns several concurrent processes to interact with the
BorgMaster and Borglets. These processes operate on cached copies of the cell state. Several other
design decisions are important for system scalability. For example, to avoid frequent time-consuming
machine and task scoring, Borg caches the score until the properties of the machine or task change
significantly.
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FIGURE 8.4

The states of a Borg task. Task state changes as a result of either user requests or system actions.

To avoid determining the feasibility of each pending task on every machine, Borg computes fea-
sibility and scoring per equivalence classes of tasks, tasks with similar requirements. Moreover, this
evaluation is not done for every machine in the cell but on random machines until enough suitable
machines have been found.

The state of the BorgMaster can be saved as a checkpoint file and later used for studies of sys-
tem performance and effectiveness, or to restore the state at a early point in time. A simulator, the
FauxMaster, designed to identify system errors and performance problems by replaying checkpoint
file facilitated the effort to improve the Borg system.

Results collected for a 12 000 server cluster at Google show an aggregate CPU utilization of
25–35% and an aggregate memory utilization of 40%. A reservation system raises these figures to
75% and 60%, respectively [416].

8.8 SHARED STATE CLUSTER MANAGEMENT
Could multiple independent schedulers do a better cluster management job than monolithic or two-level
schedulers? The designers of the Omega system understood that efficient scheduling of large clusters
is a very hard problem due to the scale of the system combined with the workload diversity and that
only a novel approach should be conceived [446].

The workload of Google systems targeted by Omega was the mix of production/service and batch
jobs discussed in Section 8.7. More than 80% of the workload are short batch jobs, spawning a large
number of tasks. A larger share of resources, 55–80%, is allocated to production jobs running for
extended periods of time and with fewer tasks than the batch jobs. The scheduling requirements are:
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short turnaround time for the batch jobs and strict availability and performance target for the production
jobs.

The workload of the scheduler increases with the cluster size and with the granularity of the tasks
to be scheduled. The finer the task granularity, the more scheduler decisions have to be made, thus the
higher is the likelihood of spatial and temporal resource fragmentation and lower resource utilization.
The solution adopted in Omega’s design is to allow multiple independent schedulers to access a shared
cluster state protected with a lock-free optimistic concurrency control algorithm.

In Omega there is no central resource allocator and each scheduler has access to all cluster re-
sources. A scheduler has its own private and frequently updated copy of the shared cluster state, a
resilient master copy of the state of all cluster resources. Whenever it makes a resource allocation
decision, a scheduler updates the shared cluster state in an atomic transaction.

In case of conflict among tasks, at most one commit succeeds and the resource is allocated to the
winner. Then, the shared cluster state re-synchs with local copies of all schedulers. The losers may then
retry at a later time to gain access to the resource and can be successful after the resource was released
by the task holding it.

Multiple schedulers may attempt to allocate the same resource at the same time thus, there is the
possibility of conflict. An optimal solution to this problem depends upon the frequency of conflicts. An
optimistic approach increases parallelism and assumes that conflicts seldom occur and, when detected,
they can be resolved efficiently. A pessimistic approach used by Mesos is to ensure that a resource is
available to only one framework scheduler at a time.

Jobs typically spawn multiple tasks and the next question is whether all tasks of a job should be
allocated all the resources they need at the same time when the job starts execution, a strategy called
co-scheduling or gang scheduling. The alternative is to allocate resources only at the time when a task
needs them. In the former case resources end up being idle until the tasks actually need them and the
average resource utilization decreases. In the later case there is a chance of deadlock as some tasks
need resources allocated to other tasks, while those holding these resources need the resources held by
the first group of tasks.

Several metrics are useful to compare the effectiveness of large cluster schedulers. When we view
scheduling as a service and a scheduling request as a transaction, the time elapsed from the instance
a job is submitted until the time when the scheduler attempts to schedule a job is the waiting time,
while the time required to schedule the job is the service time of the transaction. The waiting time
and the service time are two important metrics for scheduler effectiveness. Conflict resolution is a
component of the scheduler service time for a shared-state scheduler like Omega. The conflict fraction
is the average number of conflicts per successful transaction.

The service time has two components, tsch_job , the overhead for scheduling a job and tsch_task , the
time to schedule a task of the job; thus, the total time to make a scheduling decision for a job with n

tasks is

tsch = twait + tsch_job + n × tsch_tks . (8.1)

A monolithic scheduler using a centralized scheduling algorithm does not scale up. Another solu-
tion is to statically partition a cluster into sub-clusters allocated to different types of workloads. This
policy is far from optimal due to fragmentation because the balance between different types of work-
load changes in time. A two-level scheduler has its own limitations, as we have seen in Section 8.6.
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Table 8.2 A side-by-side comparison of four types of schedulers. The schedulers differ in terms of: (a)
scope, the set of resources controlled; (b) possibility of conflict and conflict resolution method; (c) alloca-
tion granularity, gang co-scheduling versus task-by-task; and (d) scheduling policy.

Scheduler Resources Conflict Granularity Policy
Monolithic, e.g. Borg All available resources None Global Priority & preemption

Static partition, e.g.
Dryad

Fixed subset of resources None Per-partition policy Scheduler-dependent

Two-level, e.g. Mesos Dynamic subset of resources Pessimistic Gang scheduling Strict fairness

Shared-state, e.g. Omega All available Optimistic Per-scheduler policy Priority & preemption

Table 8.2 provides a side-by-side comparison of monolithic schedulers, schedulers for static-partitioned
clusters, two-level schedulers, and multiple independent shared-state schedulers.

A light-weight simulator was used for a comparative study of Omega and the other schedulers.
The two-level scheduling model in this simulator emulates Mesos and achieves fairness by alternately
offering all available cluster resources to different schedulers. It assumes low-intensity tasks, thus re-
sources become available frequently and scheduler decisions are quick. As a result, a long scheduler
decision time means that subsets of cluster resources are unavailable to other schedulers for extended
periods of time. The simulation results show that Omega is scalable and at realistic workloads there
is little interference among independent schedulers. The simulator was also used to investigate gang
scheduling [39] useful for MapReduce applications.

A more accurate, trace-driven scheduler can be used to gain further insights into scheduler conflicts.
Trace-driven simulation is quite challenging; moreover, a large number of simplifying assumptions
limit the accuracy of the simulator results. Neither the machine failures, nor the disparity between
resource requests and the actual usage of those resources in the traces are simulated by the trace-driven
simulator designed for Omega. The results produced by the trace-driven simulator are consistent with
the ones provided by the light-weight simulator.

8.9 QOS-AWARE CLUSTER MANAGEMENT
Quality of Service (QoS) guarantees are important for the designers of cloud applications and for the
users of computer clouds who wish to enforce a well-defined range of response time, execution time,
or other significant performance metrics for their cloud workloads. Enforcing workload constraints is
far from trivial thus, few cluster management systems could legitimately claim adequate QoS support.

Two aspects of cluster management, resource allocation and resource assignment, play a key role
for supporting QoS guarantees. Resource allocation is the process of determining the amount of re-
sources needed by a workload while resource assignment means identifying the location of resources
that satisfy an allocation. Both aspects of resource management require the ability to classify a given
workload as a member of one of several distinct classes. Once classified, allocate to the workload
precisely the amount of resources typical for that class, assign the resources, monitor the workload
execution, and adjust this amount if needed.

QoS and workload classification. Workload classification is a challenging problem due to the wide
spectrum of system workloads. An effective filtering mechanism is thus needed to support a classifi-
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cation algorithm capable to make real-time decisions. Classification is widely used by recommender
systems such as the one used by Netflix. A recommender system seeks to predict the preference of a
user for an item by filtering information from multiple users regarding the item. Such systems are used
to recommend research articles, books, movies, music, news, and any imaginable item.

A short diversion to the Netflix Challenge [60,136] could help understanding the basis of the clas-
sification technique for a QoS-aware cluster management. The Netflix Challenge uses Singular Value
Decomposition (SVD) and PQ-reconstruction [57,508]. The input to SVD is a sparse matrix A of rank
r describing a system of n viewers and m movies to be decomposed as the product of three matrices
U,�, and V :

Am,n =

⎛
⎜⎜⎜⎝

a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
...

...
...

am,1 am,2 . . . am,n

⎞
⎟⎟⎟⎠ = U�V t (8.2)

with

Um,r =

⎛
⎜⎜⎜⎝

u1,1 u1,2 . . . u1,r

u2,1 u2,2 . . . u2,r

...
...

...
...

um,1 um,2 . . . um,r

⎞
⎟⎟⎟⎠ and Vr,n =

⎛
⎜⎜⎜⎝

v1,1 v1,2 . . . v1,n

v2,1 v2,2 . . . v2,n

...
...

...
...

vr,1 vr,2 . . . vr,n

⎞
⎟⎟⎟⎠ (8.3)

�, the diagonal matrix of singular values of matrix A is

�r,r =

⎛
⎜⎜⎜⎝

σ1,1 0 . . . 0
0 σ2,2 . . . 0
...

...
. . .

...

0 0 . . . σr,r

⎞
⎟⎟⎟⎠ (8.4)

The ratings are the matrix elements aij ∈ A, 1 ≤ i ≤ m, 1 ≤ j ≤ n. SVD decomposes matrix A as
A = U · � · V t with U the matrix of left singular vectors representing correlation between rows of A

and the similarity values, � is the matrix of similar values, and V the matrix of right singular vectors
representing the correlation between columns of A and the similarity values.

PQ-reconstruction with Stochastic Gradient Descent (SGD) [57] uses matrices U and V to recon-
struct the missing entries in matrix A. The initial reconstruction of A uses P t = � · V t and V = U .
SGD iterates over the elements R = [rui] of R = Q · P t until convergence. The iteration process uses
two empirically determined values, η and λ, the learning rate and the SGD regularization factor, re-
spectively. Two parameters, μ and bu, the average rating and a user bias that account for the divergence
of some viewers from the norm, respectively, are also used. The error εui and the values qi and pu at
each iteration are computed as

εui ← rui − μ − bu − qi · pt
u

qi ← qi + η(εuipu − λqi)

pu ← pu + η(εuiqi − λpu)

(8.5)
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The iteration continues until the L2 norm of the error becomes arbitrarily small

| ε |L2=
√∑

u,i

| εui |2 ≤ ε. (8.6)

The convergence speed of stochastic gradient descent is limited by the noisy approximation of the
true gradient. When the gains decrease too slowly, the variance of the parameter estimate decreases
equally slowly. When the gains decrease too quickly, the expectation of the parameter estimate takes a
very long time to approach the optimum. SVD complexity is O(min[n2m,m2n]) and the complexity
of PQ-reconstruction with SGD is O(n × m).

Quasar. A performance-centric approach for cluster management is implemented by two systems de-
veloped at Stanford University, Quasar [137] and its predecessor Paragon [135]. While Paragon handles
only resource assignment, Quasar implements resource allocation, as well as resource assignment.

Quasar is implemented in C, C++, and Python, runs on Linux and OS X, and supports applications
written in C/C++, Java, and Python. The applications run unaltered, there is no need to modify them
for running under Quasar.

Quasar is based on several innovative ideas. One of them regards reservation systems and the
realization that users are seldom able to accurately predict the resource needs of their applications.
Moreover, performance isolation, though highly desirable, is hard to implement. As a result, the exe-
cution time and the resources used by an application can be affected by other applications sharing the
same physical platform(s). This is the reason why reservation systems often lead to underutilization of
resources and why QoS guarantees are seldom offered.

Quasar presents a high-level interface to allow users, as well as schedules integrated in widely-used
frameworks, to express constraints for the workloads they manage. These constraints are then translated
into actionable resource allocation decisions. Classification techniques are then used to evaluate the
impact of these decisions on all system workloads.

Performance constraints differ for different types of workloads. For transaction processing systems
the system bandwidth, expressed as number of queries per second, represents a meaningful constraint
as it reflects the response time experienced by users. For large batch workloads, e.g., the ones involving
frameworks such as Hadoop, the execution time captures the expectations of the end-users.

To operate efficiently, the classification algorithms is based on four parameters: resources per node,
the number of nodes for allocation, the server type, and the degree of interference for assignment.
The results of the four independent classifications are combined by a greedy algorithm used to de-
termine as accurately as feasible the set of resources needed to satisfy the performance constraints.
The system constantly monitors the performance of the workload and adjusts the allocations if feasi-
ble.

Rather than relying exclusively on user’s characterization of the workload, the classification sys-
tem combines information gathered about the workload from prescreening with information from a
database about past workloads. Once accepted in the system, a workload is profiled during a short
execution on a few servers with two randomly-selected scale up allocations.

For example, Hadoop workloads are profiled for a small number of map tasks and two configura-
tions of parameters, such as the number of mappers per node, the size of Java AM heap, the block size,
the amount of memory per task, the replication factor, and the compression factor. The configuration
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data is then uploaded into a matrix with workloads as rows and scale up configurations as columns. To
constrain the number of columns the vectors are quantized to integer multiples of cores and blocks of
memory and storage. A configuration includes all relevant data for the workload.

The classification engine and the scheduler. The classification engine distinguishes between the allo-
cation of more servers to a workload, called resource scale out, and additional resources from servers
already allocated to the workload, called resource scale up. The Quasar classification engine carries
out for each workload four classifications for scale up, scale out, heterogeneity, and interference. Some
workloads may require both types of scaling, others one type or another. For example, Quasar may
monitor the number of queries per second and the latency for a web server and apply both types of
scaling. Initially, Quasar was focused on compute cores, memory and storage capacity with the expec-
tation to cover also the network bandwidth soon.

In addition to scale up and scale out, there are two other types of classifications, heterogeneity and
interference. To operate with a matrix of small dimensions and thus, reduce computational complex-
ity, the four types of classifications are done independently and concurrently. The greedy scheduler
combines data from the four classifications.

The scale up classification evaluates how the number of cores, the cache and the memory size
affect performance. The scale out classification is only applied to several types of workloads that can
use multiple servers and profiling is done with the same parameters as for the scale up classification.
Heterogeneity classification is the result of profiling the workload on several randomly selected servers.
Lastly, interference classification reflects the sensitivity and tolerance of other workloads using shared
cores, cache, memory, and communication bandwidth.

The objective of the greedy scheduler is to allocate to each workload the least amount of resources
allowing it to meet its SLO (Service Level Objectives).13 For each allocation request the scheduler
ranks available servers based on the resource quality, e.g., the sustainable throughput combined with
minimal interference. First, it attempts vertical scaling, allocating more resource on each node, then, if
necessary, switches to horizontal scaling allocating additional nodes, while keeping the total number
of nodes as low as feasible.

Resources are allocated to applications on a FCFS basis. This could led to sub-optimal assign-
ments but such assignments can be easily detected by sampling a few workloads. The scheduler also
implements admission control to prevent oversubscription.

In summary, Quasar provides QoS guarantees and, at the same time, increases resource utilization.
The process starts with an initial profiling of an application with short runs. The information from the
initial profiling is expanded with information regarding four factors that can affect performance, scale
up, scale out, heterogeneity, and interference. Then, the greedy scheduler uses the classification output
to allocate resources that allow SLO compliance and maximize resource utilization.

8.10 RESOURCE ISOLATION
A recurring theme of this chapter is that cluster management systems must perform well for a mix of
applications and deliver the performance promised by the strict SLOs for each workload. The dominant

13A service level objective is a key element of a SLA. SLOs are agreed upon as a means of measuring the performance of the
CSP and are a way of avoiding disputes between the users and the CSP based on misunderstanding.
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components of the application mix are latency-critical (LC) workloads, e.g., web search, and best-effort
(BE) batch workloads, e.g., Hadoop. The two types of workloads share the servers and compete with
one another for their resources.

The resource management systems discussed up to now act at the level of a cluster, but cannot be
very effective at the level of individual servers or processors. First, they cannot have accurate infor-
mation simply because the state of processors changes rapidly and communication delays prohibit a
timely reaction to these changes. Second, a centralized, or even a distributed system for fine-grained
server-level resource tuning would not be scalable.

Each server should react to changing demands and dynamically alter the balance of resources used
by co-located workloads. A system with feedback is needed to implement an iso-latency policy, in
other words to supply sufficient resource so that SLOs are met. More bluntly, this means allowing LC
workloads to expand their resource portfolio at the expense of co-located BE workloads.

This is the basic philosophy of the Heracles system developed at Stanford and Google [311]. In this
section we discuss the realtime mechanisms used by Heracles controller to isolate co-located work-
loads. In this context the term “isolate” means to prevent the best-effort workload to interfere with the
SLO of the latency-critical workload.

Latency-critical workloads. A closer look at three Google latency-critical workloads, websearch,
ml_cluster, and memkeyval helps us better understand why resource isolation is necessary for co-
located workloads. The first, websearch, is the query component of the web search service. Every
query has a large fan-out to thousands of leaf nodes, each one of them processing the query on a shard
of the search index stored in DRAM. Each leaf node has a strict SLO of tens of milliseconds. This task
is compute- intensive as it has to rank search hits and has a small working set of instructions, a large
memory footprint, and a moderate DRAM bandwidth.

The second, ml_cluster, is a standalone service using machine-learning for assigning a snippet of
text to a cluster. Its SLO is also of tens of milliseconds. It is slightly less CPU intensive, requires a
larger memory bandwidth and lower network bandwidth than memkeyval. Each request for this service
has a small cache footprint but a high rate of pending requests put pressure on the cache and DRAM.

The third, memkeyval, is an in-memory key-value store used by the back-end of the web service.
Its SLO latency is of hundreds of microseconds. The high request rate makes this service compute-
intensive mostly due to the CPU cycles needed for network protocol processing.

Sharing resources of individual servers is complicated because the intensity of LC workloads at
any given time is unpredictable, therefore their latency constrains are unlikely to be satisfied at times
of peak demand unless special precautions are taken. Resource reservation at the level needed for peak
demand of LC workloads may come to mind first. But this naive solution is wasteful, it leads to low or
extremely low resource utilization, thus, the need for better alternatives.

Processor resources. Processor resources subject to dynamic scaling and the mechanisms for resource
isolation for each one of them are discussed next. Physical cores, caches, DRAM, power supplied
to the processor, and network bandwidth are all resources affecting the ability of an LC workload to
satisfy its SLO constraints. Individual resource isolation is not sufficient, cross-resource interactions
deserve close scrutiny. For example, contention for cache affects DRAM bandwidth; a large network
bandwidth allocated to query processing affects CPU utilization as communication protocols consume
a large number of CPU cycles.

Processor cores are the engines delivering CPU cycles and an obvious target for dynamic, rather
than static allocation for co-located workloads. This problem is complicated by Hyper-threading (HT)
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in multicore Intel processors. HT is a proprietary form of SMT (simultaneous multi-threading) dis-
cussed in Section 8.3. HT takes advantage of superscalar architecture and increases the number of
independent instructions in the pipeline. The OS uses two virtual cores for each physical core and
shares the workload between them whenever possible. Sharing between the two virtual cores interferes
with the instruction execution, shared caches, and TLB 14 operations.

Dynamic frequency scaling is a technique for adjusting the clock rate for cores sharing a socket.
The higher the frequency, the more instructions are executed per unit of time by each core, and the
larger is the processor power consumption. Clock frequency is related to the operating voltage of the
processor. The dynamic voltage scaling is a power conservation technique often used together with
frequency scaling, thus the name dynamic voltage and frequency scaling (DVFS).

The overclocking techniques based on DVFS opportunistically increase the clock frequency of
processor cores above the nominal rate when the workload increases. To allow the cores of an Intel
processor to adjust their clock frequency independently, the Enhanced Intel SpeedStep technology op-
tion should be enabled in the BIOS.15 To lower best-effort workloads, Heracles reduces the number of
cores assigned to best-effort tasks.

The cycle stalls limit the effective IPC (instructions per clock cycle) of individual cores. This means
that the shared last-level cache16 is another critical resource shared by the LC and BE co-located
workloads and should be dynamically allocated. Lastly, the DRAM bandwidth can greatly affect the
performance of applications with a large memory footprint.

One answer to the question on how to implement an isolation mechanism allowing LC workloads to
scale up could be to delegate this task to the local scheduler. Why not use existing work-conserving17

real-time schedulers such as SCHED_FIFO or CFS, the Completely Fair Scheduler? A short detour
to the world of real-time schedulers used by most operating systems should convince ourselves that
these schedulers are designed to support data streaming and cannot satisfy SLO requirements of LC
tasks.

The SCHED_FIFO scheduler allocates the CPU to a high priority process for as long the process
wants it, subject only to the needs of higher-priority realtime processes. It uses the concept of “real-
time bandwidth,” rt_bandwidth, to mitigate the conflicts between several classes of processes; once a
process exceeds its allocated rt_bandwidth, it is suspended. The bandwidth of LC tasks changes so
SCHED_FIFO scheduler cannot satisfy the SLO requirements of LC tasks.

CFS uses a red-black tree18 in which the nodes are structures derived from the general task_struct
process descriptor with additional information. CFS is based on the “sleeper fairness” concept enforc-
ing the rule that interactive tasks which spend most of their time waiting for user input or other events

14TLB, (translation look-aside buffer) can be viewed as a cache for dynamic address translation; it holds the physical address of
recently used pages in virtual memory.
15The basic input/output system (BIOS) is invoked after a computer system is powered on to load the OS and later to manage
the data flow between the OS and devices such as keyboard, mouse, disk, video adapter, and printer.
16Multicore processors have multiple level caches. The last level cache (LLC) is the cache called before accessing memory.
Each core has its own L1 I-cache (instruction cache) and D-cache (data cache). Sometimes two cores share the same unified
(instruction + data) L2 cache and all cores share an L3 cache. In this case the highest shared LLC is L3.
17A work-conserving scheduler tries to keep the resources busy, if there is work to be done, while a non-work conserving
scheduler may leave resources idle while there is work to be done.
18A red-black tree is a self-balancing binary search tree where each node has a “color” bit (read or black) to ensure the tree
remains approximately balanced during insertions and deletions.
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FIGURE 8.5

The organization of Heracles. The system runs on each server and controls isolation of a single LC workload
and multiple best-effort jobs. The LC controller acts based on information regarding latency constraints of the
LC workload and manages three resource controllers for: (A) Core and DRAM – uses CAT for LLC management
and acts based on DRAM bandwidth data; (B) Power management – acts on DVFS using information on CPU
power consumption; and (C) Network bandwidth – enforces bandwidth limits for outgoing traffic from the
best-effort tasks using the qdisc scheduler with HTB (token bucket queuing) discipline with information
provided by the network bandwidth monitoring system.

get a comparable share of CPU time as other processes, when they need it. As threads are spawned for
every new query request we see that this approach is not satisfactory either.

Communication bandwidth sharing inside the server is controlled by the OS. Linux can be con-
figured to guarantee outgoing bandwidth for the latency-critical workload. For incoming traffic it is
necessary to throttle the core allocation until flow-control mechanisms of communication protocols are
triggered. Communication among servers is supported by the cluster interconnection fabric and can be
ensured by communication protocols that give priority to short messages typical for the latency-critical
workloads.

Architectural support is needed for workload isolation at the microarchitecture level. Newer gen-
erations of Intel processors such as Xeon E5-2600 v3 family provide the hardware framework to
manage a shared resource, like last level cache through Cache Monitoring Technology (CMT) and
Cache Allocation Technology (CAT). CMT allows an OS or a hypervisor to determine the usage
of cache by applications running on the platform. It assigns a Resource Monitoring ID (RMID)
to each of the applications or VMs scheduled to run on a core and monitors cache occupancy on
a per-RMID basis. CAT allows access to portions of the cache according to the class of service
(COS).

Heracles organization and operation. Heracles runs as a separate instance on each server and man-
ages the local interactions between the latency-critical and best-effort jobs. Figure 8.5 shows the
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latency-critical controller and the three resource controllers for cores, cache, and DRAM, for power
management, and for communication bandwidth. The controller uses the slack, the difference between
the SLO target and the tail of the measured performance index. A negative value of the latency slack
means that the latency-critical workload has increased in intensity and is getting close to exceeding
its SLO latency thus, it requires more resources. The operation of the latency-critical controller is
described by the following pseudocode:

while True
latency = Poll_Latency-critical -AppLatency
load = Poll_latency-critical -AppLoad
slack = (target - latency)/target
if slack < 0

Disable Best-effort
EnterCoolDown()

elseif load > 0.85
Disable best-effort

elseif load < 0.80
Enable Best-effort

else if slack < 0.10
Dissallow Best-effort Growth
if slack < 0.05
Best-effort_core.RemoveTwoCores

sleep{15}

The latency-critical controller is activated every 15 units of time and uses as input the latency-
critical application latency and its load. When the slack is negative or when the latency-critical load
is larger than 80% of capacity, the best-effort application is disabled. If the slack is less than 10% the
best-effort task is not allowed to grow and when the slack further decreases to 5% then two cores allo-
cated to best-effort tasks are removed. Best-effort is enabled when the latency-critical load is less than
80%.

There is a strong interaction between the number of cores allocated to a workload, its LLC cache,
and DRAM requirements. This strong correlation explains why a single specialized controller is dedi-
cated to the management of cores, LLC, and DRAM. The main objective of this controller is to avoid
memory bandwidth saturation. The high-water mark that triggers action is 90% of the peak streaming
DRAM bandwidth measured by the value of hardware counters for per-core memory traffic. When this
limit is reached cores are removed from best-effort tasks.

When the DRAM bandwidth is not saturated, the gradient descent method is used to find the largest
number of cores and cache partitions by alternating between increasing the number of cores and in-
creasing the number of cache partitions allocated to best-effort tasks subject to the condition that the
SLO of latency-critical tasks are satisfied. The power controller determines if there is sufficient power
slack to guarantee latency-critical SLO with the lowest clock frequency. The system was evaluated with
the three latency-critical workloads and the results show an average 90% resource utilization without
any SLO violations.
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8.11 IN-MEMORY CLUSTER COMPUTING FOR BIG DATA
The distinction between system and application software is blurred in cloud computing. The software
stack includes components based on abstractions that combine aspects of applications and system
management. Two systems developed at U. C. Berkeley, Spark [542] and Tachyon [301] are perfect
examples of such elements of a cloud software stack.

It is unrealistic to assume that very large clusters could accommodate in-memory storage of
Petabytes or more in the foreseeable future. Even if storage costs will decline dramatically, the in-
tensive communication among the servers will limit the performance. There are iterative and other
classes of Big Data applications where a stable subset of the input data is used repeatedly. In such
cases dramatic performance improvements can be expected if a working set of input data is identified,
loaded in memory, and kept for future use.

Obvious examples of such applications are those involving multiple databases and multiple queries
across them and interactive data mining involving multiple queries over the same subset of data. An-
other well-known example of such an iterative algorithm is the PageRank algorithm [75] where data
sharing is more complex. At each iteration i a document with rank r(i) and n neighbors sends a con-

tribution of r(i)

n
to each one of them. Then it updates its own rank as

ri+1 = α

N
+ (1 − α)

n∑
j=1

cj (8.7)

with α a dumping factor, N the number of the documents in the database, and the sum over all contri-
butions it received.

A distributed shared-memory (DSM) is a solution to in-memory data reuse. DSM allows fine-
grained operations yet, access to individual data elements is not particularly useful for the class of
applications discussed in this section. DSM does not support effective fault-recovery and data distribu-
tion, and does not lead to significant performance improvements. Ad hoc solutions to in-memory data
reuse for different frameworks have been implemented, e.g., HaLoop [79] for MapReduce.

The question is whether a data sharing abstraction suitable for a broad class of applications and use
cases can be developed for supporting a restricted form of shared memory based on coarse-grained
transformations. This abstraction should provide a simple, yet expressive, user-interface allowing the
end-user to describe data transformations, as well as powerful behind-the-scene mechanisms to carry
out the data manipulations in a manner consistent with the system configuration and the current state
of the system.

A data sharing abstraction. The concept of Resilient Distributed Dataset (RDD), for fault-tolerant,
parallel data structures was introduced in [541]. RDD allows a user to keep intermediate results and
optimizes their placement in the memory of a large cluster. The user interface of RDD exposes: (1)
partitions, atomic pieces of the dataset; (2) dependencies on parent RDD; (3) a function for constructing
the dataset; and (4) metadata about data location.

Spark provides a set of operators to efficiently manipulate such persistent datasets using a set of
coarse-grained operations such as map, union, sample and join. Map creates an object with the same
partitions and preferred locations as its parent, but applies the function used as an argument to the call
to the iterator method applied to the parent’s records. Union applied to two RDDs returns an RDD
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whose partitions are the union of the partitions of the two parents. Sampling is similar to map, but the
RDD stores for each partition a random number generator to deterministically sample parent records.
Join creates an RDD with either two narrow, two wide or mixed dependencies.

At run time, a driver program created by the user launches multiple workers to read data from a
distributed file system such as HDFS and distribute it across multiple RDD partitions. Tasks locality
is ensured by the delay scheduling algorithm [541] used by the Spark’s scheduler. If a task fails the
system restarts it on a different node if the parent is available. Partitions too large to fit in memory are
stored on the secondary storage, possibly on solid state disks, if available.

Spark [542] and RDDs are restricted to I/O-intensive applications performing bulk writing. Spark
and Tachyon [301], discussed later in this section, share the concept of lineage to support error recov-
ery without the need to replicate the data. Lineage means to trace back descendents from a common
ancestor and in the context of this discussion it means that lost output is recovered by carrying out
again the tasks that created the lost data in the first place.

Spark driver programs. Imagine that an application wants to access a large log file stored in HDFS
as a collection of lines of text. We wish to: (i) create a persistent dataset called errors of lines starting
with the prefix “ERROR” distributed over the memory of the cluster; (ii) count the number of lines
in this persistent dataset; (iii) count errors containing the string “MySQL;” and (iv) return the time of
the errors, assuming that time is the third field in a tab-separated format of an array called HDFS. The
following self-explanatory Spark code will do the job

lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
errors.persist()
errors.count
errors.filter(_.contains("MySQL")).count()
errors.filter(_.contains("HDFS")).map(_.split(’\t’)(3)).collect()

Notice that the lines dataset is not stored, only the much smaller errors dataset is stored in memory
and used for the three actions. Behind the scene, the Spark scheduler will dispatch a set of tasks carrying
the last two transformations to the nodes where the cached partitions of errors reside.

The Spark code for the PageRank algorithm summarized in Equation (8.7) is

// Load graph as an RDD of (URL, outlinks) pairs
val links = spark.textFile(...).map(...).persist()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS) {
// Build RDD of (targetURL, float) pairs with contributions sent by each page
val contribs = links.join(ranks).flatMap {

(url, (links, rank)) =>links.map(dest => (dest, rank/links.size))
}

// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y).mapValues(sum => a/N + (1-a)*sum)
}

The map, reduce, and join operations and the lineage datasets of the graph of the several iterations of
the PageRank algorithm are shown in Figure 8.6.



308 CHAPTER 8 CLOUD HARDWARE AND SOFTWARE

FIGURE 8.6

The lineage dataset for several iterations of the PageRank algorithm and the map, reduce, and join operations.

A new ranks dataset is created at each iteration and it is wise to call the persist action to save
the dataset on secondary storage using the RELIABLE argument and reduce the recovery time in case
of system failure. The ranks can be partitioned in the same way as the links to ensure that the join
operation requires no communication.

Spark dependencies. An important design decision in Spark was to distinguish between narrow and
wide dependencies. The former allow only one RDD partition to use the parent RDD and allow
pipelined execution on one cluster to compute all parent partitions; for example, marrow partitions
allow the application of a map followed by a filter on an element-by-element basis. In addition, re-
covery after a node failure is more efficient for narrow dependencies, only the lost parent needs to be
recomputed and this can be done in parallel.

On the other hand, wide dependencies allow multiple children to depend on a single parent. Data
from all parent partitions must be available and shuffled across the nodes for MapReduce operations.
This also complicates recovery after a node failure. Figure 8.7 shows the effect of dependencies on
RDD partitions as a result of map, filter, union, join and group operations.

Persistent RDD can be stored in memory either as deserialized Java objects or as serialized data
and can also be stored on disk. Lineage is a very effective tool to recover RDDs after a node failure.
�Spark also supports checkpointing and this is particularly useful for large lineage graphs.
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FIGURE 8.7

Narrow and wide dependencies in Spark. Arrows show the transformation of the partitions of one RDD due to
map, filter, two RDDs for union, and two RDDs for join with inputs co-partitioned for narrow dependencies,
when only one partition of RDD is allowed to use the parent RDD. For wide dependencies, when multiple
children depend upon a single parent, two transformations are presented: a group by key of one RDD and join
with input not co-partitioned for two RDDs.

According to [542] “Spark is up to 20 times faster than Hadoop for iterative applications, speeds-up
a data analytics report 40 times and can be used interactively to scan a 1 TB dataset with 5–7 seconds
latency.” It is also very powerful, only 200 lines of Spark code implement the HaLoop model for
MapReduce applications. HaLoop [79] extends MapReduce with programming support for iterative
applications and improves efficiency by adding various caching mechanisms and by making the task
scheduler loop-aware.

These results show that caching improves dramatically the performance of Big Data applications
running on storage systems such HDFS which support only append operations. Lost data can be recov-
ered by lineage, there is no need for replication of immutable data. On the other hand, fault-tolerance of
applications involving write operations is more challenging. Fault tolerance based on data replication
incurs a significant performance penalty when a data item is written on multiple nodes of a cluster.

The write bandwidth throughput for both hard disks and solid-state disks is three orders of magni-
tude lower than the memory bandwidth. Only the random access latency of solid-state disks is much
lower than the latency of hard disks, their sequential I/O bandwidth is not larger. The network band-
width is also orders of magnitude lower than the memory bandwidth. The system discussed next
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addresses precisely the problem of supporting fault-tolerance for in-memory datasets where both read
and write operations must be supported.

Tachyon. The system was designed for high throughput in-memory storage for applications performing
both extensive reads and writes [301]. The name of the system targeting Big Data workloads discussed
in Chapter 12, “Tachyon,”19 was most likely chosen to reflect the performance of the system, in Greek
“tachy” means “fast.” To recover lost data the system exploits the lineage concept used also by Spark
and avoids data replication which could dramatically affect its performance.

To support read, as well as write operations, fault-tolerant, in-memory caching of datasets requires
answers to several challenging questions:
1. How to recover the lost data due to server failures?
2. How to limit the resources and the time needed to recover lost data?
3. How to identify frequently used files and recover them with high priority when lost?
4. How to avoid recovering temporary files?
5. How to share resources among the two activities, running the jobs and re-computations?
6. How to ensure the system fault-tolerance?
7. How to manage the storage for binaries necessary for data recovery?
8. How to choose the files to be evicted when their cumulative size exceeds the available storage

space?
9. How to deal with file name changes?

10. How to deal with changes in the cluster’s run time environment?
11. How to support different frameworks?

The answers to these questions given by the designers of the system are discussed next. Check-
pointing alone is not a solution for re-computation of lost data because periodic checkpointing leads
to an unbounded recovery time. Lineage alone is also not feasible because the depth of the lineage
graphs keeps growing and the time to recompute the entire path to a leaf of the graph is prohibitive.
The solution adopted by Tachyon is based on combined checkpointing and lineage.

The Edge algorithm introduced in [301] checkpoints only the leaves of the lineage directed acyclic
graph (DAG). This strategy reduces the number of checkpointed files and limits the resources needed
for recovery. The implicit assumption of this approach is that data is immutable between consecutive
checkpoints. Data should be versioned if modified between two consecutive checkpoints, different files
produced from the same parent should have different IDs.

A read counter associated with every file is used as file priority. Frequently read files have a high pri-
ority while temporary files with a low read count are avoided. Re-computation is done asynchronously
in the background using the linage thus, the interference with jobs running on the cluster is minimized
and their SLOs can be guaranteed. The system is controlled by a Tachyon Master with several stand-by
replicas ready to take over if the current master fails. If the master fails, a Paxos algorithm is used to
elect the next master.

Computing the lineage of a file requires re-running the binaries of all applications executed from
the instance the parent was created until the lost data was created. The workflow manager, a component
of the Tachyon Master, uses a DAG for each file and does a depth-first search (DFS) of nodes to reach

19Tachyon is also the name given to a hypothetical particle that moves faster than the speed of light. In modern physics “tachyon”
refers to imaginary mass fields rather than to faster-than-light particles.
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the targeted files; it stops as soon as it reaches a node representing a file already in storage. So it is
fair to ask ourselves how much storage is necessary for the binaries of all the jobs that can potentially
be executed during the recovery process. Data gathered by Microsoft shows that a typical data center
running some 1 000 jobs daily needs about 1 TB of storage for all binaries executed over a period of
one year [209].

Data eviction is based on a LRU (Least Recently Used) policy. This policy is justified by the access
frequency and the by temporal locality. According to a cross-industry study [105] the file access in a
large data center often follows a Zipf-like distribution and 75% of re-accessing occurs within 6 hours.
A file is uniquely identified by an immutable ID in the lineage information record to address file name
changes. This ensures that the re-computation done according to the ordered list prescribed by lineage
reads the same files and in the same order as in the original execution.

Among the most frequent changes in the cluster’s runtime environment are changes of the version
of a framework used to re-compute lost data and changes of the OS version. To address this problem
the system runs in a Synchronous mode before any such change when all un-replicated files are check-
pointed and the new data is saved. Once this is done, this mode is disabled. Lastly, Tachyon requires a
program written in a framework to provide information before writing a new file. This information is
used: (i) to decide if the file should be in memory only and (ii) to recover a lost file using its lineage.

Edge algorithm. The algorithm assumes that the lineage is represented by a DAG with files as ver-
tices and edges representing the transformation of a parent to all of its descendants. The algorithm
checkpoints the leafs of the graph. For example, assume a lineage chain for a file A0 including files
{A0,A1,A2, . . . ,Ai, . . . ,Aj , . . .}. Then if there is a checkpoint of Ai and Aj is lost, the re-computation
starts with the latest checkpoint, in this case Ai , rather than A0. Figure 8.8 shows the lineage DAGs
of two files A1 and B1 and the leafs checkpointed at several instances of time; A1 and B1 are check-
pointed first, then A4,B4,B5, and B6.

The Edge algorithm does not take into account priorities. A balanced algorithm alternates edge-
driven checkpointing with priority-based checkpointing and allocates a fraction c of time to the former
and a fraction (1 − c) of time to the latter. To guarantee applications SLOs the recovery time for any
file must be bounded.

Call Wi the time to checkpoint an edge i of the DAG and Gi the time to generate edge i from its an-
cestors. Then two bounds on the recovery time for any file are proven in [301]: (1) Edge checkpointing
alone leads to the following bound of the recovery time

T edge = 3 × M with M = max
i

{Ti}, and Ti = max(Wi,Gi). (8.8)

This shows that the re-computation time is independent of the DAGs depth. (2) The bound for the
recovery time for alternating edge and priority checkpointing is

T edge,priority = 3 × M

c
with M = max

i
{Ti}, and Ti = max (Wi,Gi) . (8.9)

Resource management. The resource management policies should address several concerns. For ex-
ample, when several files have to be recovered at the same time the system should consider data
dependencies to avoid recursive task launching. Dynamic file checkpointing priorities are also nec-
essary; the low priority assigned to a file requested by a low priority job should be automatically
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FIGURE 8.8

Illustration of the Edge algorithm. Dark-filled ellipses represent checkpointed files and light-filled ones
represent un-checkpointed files. Lineage is represented by a DAG with files as vertices and edges representing
the transformation of a parent to all of its descendants. Shown are the lineage DAGs of two files, A1 and B1. At
each stage only the leaf nodes of the lineage DAG are checkpointed. A1 and B1 are checkpointed first, then
A4,B4,B5, and B6. In the next stage, not shown in the figure, only A7 and B9 will be checkpointed.

increased when the same file is requested by a high priority job. The lineage record should be deleted
after checkpointing to save space.

All resources should be dedicated to normal work when no recovery is necessary. Typical average
server utilization rarely exceeds 30%, so most of the time there are sufficient resources available for
data recovery. But what to do when the system is near its capacity? Then the priority of the jobs and of
the recovery come into play and is used by the cluster scheduler.

Tachyon could accommodate the two most frequently used scheduling policies for cluster resource
management, priority based and fair-shared based scheduling. In case of priority-based scheduling all
re-computation jobs are given the lowest priority by default. Deadlock may occur unless precautions
are taken.

For example, assume that a job Ji has a higher priority than file F it needs to recover and that
job Ji is scheduled to run. At the time when Ji needs access to F another job, RF , also needing to
recover F , cannot run as it inherits the lower priority of F . The solution is priority inheritance. In this
case Ji and, implicitly the job RF , should inherit the priority of Ji that needs F . If another job with
an even higher priority needs the file F , its priority, hence the priority of RF , should increase again.

Assume now a fair-share scheduler. In this case W1,W2, . . . ,Wi, . . . are the weights of resources
allocated to jobs J1,J2, . . . ,Ji , . . ., respectively. The minimal share unit is, Wg = 1. When files
Fi,1,Fi,2,Fi,3 of job Ji are lost the scheduler allocates the minimum weight Wg from the Wi to
the three recovery jobs RJi ,F1,RJi ,F2 and RJi ,F3 . At the time job Ji needs to access the file Fi,2 the
scheduler allocates the fractions (1 − α) and α of Wi to Ji and RJi ,F2 , respectively.
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Tachyon implementation. Tachyon has two layers: the lineage layer, which tracks the sequence of
jobs that have created a data output; the persistence layer which manages data in storage and is mainly
used for asynchronous checkpoints. The persistence layer can be any replication-based storage, such
as HDFS. Tachyon has a master-slave architecture with several passive replicas of the master and
worker daemons running on every cluster node and managing local resources. The lineage informa-
tion is tracked by a workflow manager running inside the master. The workflow manager computes
the order of checkpoints and interacts with the cluster resource manager to get resources needed for
re-computations.

Each worker uses a RAM disk for storing memory-mapped files. The concept of wide and narrow
dependences inherited from Spark is used to carry out the operations discussed earlier in this section.
The system was implemented in about 36 000 lines of Java code and uses the ZooKeeper for election
of a new master when one fails.

Tachyon lineage can capture the requirements of MapReduce, and SQL, as well as Hadoop. Spark
can run on top of Tachyon. According to [301] Tachyon has a 110 times higher write throughput and
for realistic workloads improves end-to-end latency four times compared with in-memory HDFS. It
can also reduce network traffic by up to 50% because many temporary files are deleted before being
checkpointed. Data from Facebook and Bing show that it consumes not more than 1.65% of cluster
resources for re-computations.

8.12 CONTAINERS; DOCKER CONTAINERS
This idea of containers was extended from file systems supported by chroot to other namespaces in-
cluding the process IDs. Initially named control groups, the cgroups concept was implemented in the
Linux kernel in 2006 at Google. cgroups isolate, control, limit, prioritize, and account for resources
such CPU, memory, disk I/O, and network bandwidth, available to a set of processes. Control allows
freezing groups of processes, manages checkpointing, and restarting. Resource limiting enforces the
target set for resource utilization, while prioritization allows a group of processes to get a larger share
of CPU cycles or a higher disk I/O throughput.

Docker made containers easy to use, created a set of tools with standard APIs, and made the same
container portable across all environments. According to https://docs.docker.com/: “Docker containers
wrap a piece of software in a complete filesystem that contains everything needed to run: code, runtime,
system tools, system libraries – anything that can be installed on a server. This guarantees that the
software will always run the same, regardless of its environment.” Figure 8.9 depicts the organization
of both VM- and container-based systems.

Docker containers are light-weight, cost-effective in a public cloud environment, provide better per-
formance, and require fewer hardware resources from a private cloud. Containers isolate an application
from the underlying infrastructure and from other applications and support performance and security
isolation. Multiple containers running on the same machine share the OS kernel thus, have a smaller
memory footprint and a shorter start-up time than VMs.

Another major advantage of Docker containers is increased productivity. Containerization allows
developers to choose the most suitable programming languages and software systems and eliminates
the need to make copies of production code and install the same configuration in different environ-
ments. It also supports efficient up and down scaling of an application.

https://docs.docker.com/
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FIGURE 8.9

Organization of VMs and Docker containers. (A) VM; (B) Multiple Docker containers running on the same
machine share the OS kernel, thus, have a smaller memory footprint and a shorter start-up time than VMs.

The Docker ecosystem is built around a few concepts discussed next. An image is a blueprint of
an application. A container consists of one or more images and runs the actual application. A daemon
is a background service running on the host that manages building, running, and distributing Docker
containers. The daemon is the process that runs under the operating system to which clients talk to.
A client is a command line tool used by a user to interact with the daemon. A hub is a registry of
Docker images, a directory of all available Docker images.

There are two types of images, base and child. Base images have no parent image, usually images
with an OS like Ubuntu, or BusyBox.20 Child images are build on base images with additional function-
ality. Official images are maintained and supported by Docker, and have one word name; for example,
python, ubuntu are base official images. User images are created and shared by users. A Dockerfile is
a facility to automate the image creation, a text-file including Linux-like commands invoked by clients
to create an image.

Docker Swarm exposes standard Docker API. Docker tools including Docker CLI, Docker Com-
pose, Dokku, and Krane, work in this native Docker clustering. The distribution of it is packed as a
Docker container and to set it up one only needs to install one of the service discovery tools and run
the swarm container on all nodes, regardless of the OS.

Cloud computing has embraced containerization. Containers-as-a-Service (CaaS) is geared toward
efficiently running a single application. Several CSPs including Heroku, OpenShift, dotCloud and
CloudFoundry use containers to support PaaS delivery model. Amazon, Google, Microsoft, Open-

20BusyBox is software providing several stripped-down Unix tools in a single executable file and running in environments such
as Linux, Android, FreeBSD, or Debian.
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Stack, Cloudstack and other CSPs offering the IaaS cloud delivery model support containers. The
container support from Amazon, Google, and Microsoft is overviewed next.

ECS is Amazon EC2 Container Service. It is straightforward for AWS users to create and manage
ECS clusters, as ECS is integrated with existing services such as IAM for permissions, CloudTrail
to get data regarding resources used by a container, CloudFormation for cluster lunching, and other
services. AWS uses a custom scheduler/cluster manager for containers.

Container hosts are regular EC2 instances. To deploy a containerized application on AWS one has
to first publish the image on an AWS accessible registry, e.g., the Docker Hub. Amazon ECS is free,
while Google Container Engine discussed next is free up to five nodes. AWS charging granularity is
one hour, while Google and Microsoft charge for the actual time used.

Google Container Engine (GKE). GKE is based on Kubernetes an open source cluster man-
ager available to Google developers and the community of outside users. Google’s approach to
containerization is slightly different, its emphasis is more on performance than ease of use as dis-
cussed in Section 8.13. Two billion containers are started at Google every week according to http:
//www.theregister.co.uk/2014/05/23/google_containerization_two_billion/.

GKE is integrated with other services including Google Cloud Logging. Google users have access
by default to private Docker registry and a JSON-based declarative syntax for configuration. The same
syntax can be used to define what happens with the hosts. GKE can launch and terminate containers
on different hosts as defined in the configuration file.

Microsoft Azur Container Service. The Azure Resources Manager API supports multiple orches-
trations including Docker, and Apache Mesos.

In recent years the Open Container Initiative (OCI) was involved in an effort to create industry-
standard container format and runtime systems under the Linux Foundation. The 40+ members of the
OCI work together to make Docker more accessible to the large cloud users community. OCI’s ap-
proach is to break Docker into small reusable components. In 2016 OCI announced Docker Engine
1.11 which uses a daemon, containers, to control runC21 or other OCI compliant run-time systems to
run containers. Users access the Docker Engine via a set of commands and a user interface.

8.13 KUBERNETES
First, the origin of the word Kubernetes. In ancient Greek “kubernan” means to steer and “kubernetes”
is helmsman. In Latin “gubernare” means to steer/govern and “gubernator” means governor. Kuber-
netes is an open source software system developed and used at Google for managing containerized
applications in a clustered environment.

Kubernetes bridges the gap between a clustered infrastructure and assumptions made by applica-
tions about their environments. Kubernetes is a cluster manager for containers. Mesos is adding several

21runC is an implementation of the Open Containers Runtime specification and the default executor bundled with Docker
Engine. Its open specification allows developers to specify different executors without any changes to Docker itself.

http://www.theregister.co.uk/2014/05/23/google_containerization_two_billion/
http://www.theregister.co.uk/2014/05/23/google_containerization_two_billion/
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Kubernetes ideas and expected to support Kubernetes API. Kubernetes is written in Go22 and it is de-
signed to work well with operating systems that offer lightweight virtual computing nodes. The system
is lightweight, modular, portable and extensible.

Kubernetes is an open-ended system and its design allowed a number of other systems to be build
atop Kubernetes. The same APIs used by its control plane are also available to developers and users
who can write their own controllers, schedulers, etc., if they choose so. The system does not limit the
type of applications, does not restrict the set of runtimes of languages supported and allows users to
choose the logging, monitoring, and alerting systems of their choice.

Kubernetes does not provide built-in services including message buses, data-processing frame-
works, databases (e.g., mysql), or cluster storage systems and does not require a comprehensive
application configuration language. It provides deployment, scaling, load balancing, logging, moni-
toring, etc., services common to PaaS Kubernetes. Kubernetes is not monolithic, and default solutions
are optional and pluggable.

Kubernetes organization. A master server manages a Kubernetes cluster and provides services to
manage the workload and to support communication for a large number of relatively unsophisticated
minions servers that do the actual work. Etcd is a lightweight, distributed key-value store to share
configuration data with the cluster nodes. The master also provides an API service; an HTTP/JSON API
is used for service discovery. The Kubernetes scheduler tracks resources available and those allocated
to the workloads on each host.

Minions use a docker service to run encapsulated application containers. A kuberlet service allows
minions to communicate with the master server and with the etcd store to get configuration details and
update the state. A proxy service of the minions interacts with the containers and provides a primitive
load balance.

In Kubernetes pods are groups of containers scheduled onto the same host and serve as units of
scheduling, deployment, horizontal scaling, and replication. Pods share fate and share resources such
as storage volumes. The run command is used to create a single container pod and the Deployment
which monitors that pod. All applications in a pod share a network namespace, including the IP address
and the port space thus, can communicate with each other using localhost.

Pods manage co-located support software including: content management systems, controllers,
managers, configurators, updaters, logging and monitoring adapters, and event publishers. Pods also
manage file and data loaders, local cache managers, log and checkpoint backup, compression, rotation,
snapshotting, data change watchers, log trailers, proxies, bridges, and adapters.

Arguably, pods are preferable to running multiple applications in a single Docker container for
several reasons:
1. Efficiency – containers can be lightweight as the infrastructure takes on more responsibility.
2. Transparency and user convenience – the containers within a pod are visible to the infrastructure

and allow it to provide process management, resource monitoring, and other services. Users do not
need to run their own process managers, or deal with signal and exit-code propagation.

3. Decoupling software dependencies – individual containers may be versioned, rebuilt and rede-
ployed independently.

22Go or Golang is open source compiled, statically typed language like Algol and C; has garbage collection, limited structural
typing, memory safety features, and CSP-style concurrent programming.
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Kubernetes replication controllers – handle the lifecycle of containers. The pods maintained by a
replication controller are automatically replaced if they fail, get deleted, or are terminated. A replication
controller supervises multiple pods across multiple nodes. Labels provide the means to find and query
containers and services identify a set of containers performing a common function.

Kubernetes has different CLI, API, and YAML23 definitions than Docker and has a steep learn-
ing curve. Kubernetes setup is more complicated than Docker Swarm and its installation differs for
different operating systems and service providers.

8.14 FURTHER READINGS
There is little doubt that Amazon has a unique position in the cloud computing world. There is a wealth
of information on how to use AWS services [18–25], but little has been published about the algorithms
and the mechanisms for resource allocation and the software used by AWS. The effort to maintain a
shroud of secrecy probably reflects the desire to maintain Amazon’s advantage over its competitors.
There are only a few papers published in leading journals or in the proceeding of top conferences
describing research results related to Microsoft’s Azur cloud platform such as [253,539].

In stark contrast with Amazon and Microsoft, Google’s research teams publish often and have made
a significant contribution to understanding the challenges posed by very large systems. The evolution of
ideas and Google’s perspective in cloud computing is presented in [132]. An early discussion of Google
cluster architecture is presented in [54]. The current hardware infrastructure and the Warehouse Scale
Computers are analyzed in a 2013 book [56] and in a chapter of a classical computer architecture book
[228]. A very interesting analysis of WSC performance is due to a team including Google researchers
[262]. The discussion of multicores best suited for typical Google workloads is presented in [239].

There is a wealth of information regarding cluster management and the systems developed at
Google: Borg [502], Omega [446], Quasar [137], Heracles [311], and Kubernetes [82]. Controlling
latency is discussed in [131]. Performance analysis of large-scale systems using Google trace data is
reported in [416]. Important research results related to cloud computing have been reported at U.C.
Berkeley where Mesos was designed [237], Stanford [135,137,310,311], and Harvard [262]. Cloud
energy consumption is analyzed in many publications including [7,36,50,55,56,327,501,506].

A very positive development is the dominance of open software. Open software is available from
Apache, Linux Foundation, and others. Docker software and tutorials can be downloaded from
https://www.docker.com/ and https://www.digitalocean.com/community/tags/docker?type=tutorials
and http://prakhar.me/docker-curriculum/, respectively.

Detailed information about Kubernetes are at http://kubernetes.io/ and https://www.
digitalocean.com/community/tutorials/an-introduction-to-kubernetes. The Open Containers Initiative
of the Linux Foundation has developed technologies for container-based applications, see https://
www.opencontainers.org/news/news/2016/04/docker-111-first-runtime-built-containerd-and-based-oci
-technology. A distributed main memory processing system is presented in [259].

23CLI stands for Command Line Interface and provides the means for a user to interact with a program; YAML is a human-
readable data serialization language.

https://www.docker.com/
https://www.digitalocean.com/community/tags/docker?type=tutorials
http://prakhar.me/docker-curriculum/
http://kubernetes.io/
https://www.digitalocean.com/community/tutorials/an-introduction-to-kubernetes
https://www.digitalocean.com/community/tutorials/an-introduction-to-kubernetes
https://www.opencontainers.org/news/news/2016/04/docker-111-first-runtime-built-containerd-and-based-oci-technology
https://www.opencontainers.org/news/news/2016/04/docker-111-first-runtime-built-containerd-and-based-oci-technology
https://www.opencontainers.org/news/news/2016/04/docker-111-first-runtime-built-containerd-and-based-oci-technology
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8.15 EXERCISES AND PROBLEMS

Problem 1. The average CPU utilization is an important measure of performance for the cloud
infrastructure. [56] reports a median CPU utilization in the 40–70% range while [262]
reports a median utilization around 10% consistent with utilization reported for the
CloudSuite [170]. Read the three references. Discuss the results in [262] and explain
the relation between CPU utilization and memory bandwidth and latency.
1. Discuss the effects of cycle stalls and of the ILP (Instruction Level Parallelism) on

processor utilization. Analyze the data on cycle stalls and ILP reported in [262].
2. Identify the reasons for the high ratio of cache stalls and the low ILP for data-

intensive WSC workloads reported in [262].
3. Why WSC workloads exhibit the high ratio of cache stalls and the low ILP?
4. What conclusions regarding memory bandwidth and latency can be drawn from

the results reported in [262]? Justify your answers.
Problem 2. Discuss the results regarding simultaneous multithreading (SMT) reported in [262].

1. For what type of workloads is SMT most effective? Explain your answer.
2. The efficacy of SMT can be estimated by comparing specific per-hyperthread per-

formance counters with ones aggregated on a per-core basis. This is very different
from measuring the speedup that a single application experiences from SMT.
Why?

3. Why is it difficult to measure the SMT efficiency in a cloud environment?
Problem 3. Mesos is a cluster management system designed to be robust and tolerant to failure.

Read [237] and answer the following questions:
1. What are the specific means to achieve these design goals?
2. It is critical to make the Mesos master fault-tolerant because all frameworks de-

pend on it. What are the special precautions to make the master fault-tolerant?
Problem 4. Borg system is a cluster manager that runs hundreds of thousands of jobs, from many

thousands of different applications, across a number of clusters each with up to tens of
thousands of machines. Read [502] and answer the following questions:
1. Does Borg have an admission control policy? If so describes its mechanism.
2. What are the elements that make the Borg scheduler scalable?
3. How does the job mix on Borg cells affect the CPI (Cycles per Instruction)?

Problem 5. Omega is a scalable cluster management system based on a parallel scheduler archi-
tecture built around shared state, using lock-free optimistic concurrency control. Read
[446] and answer the following questions:
1. What scheduler performance metrics are used for Omega, why each one of them

is relevant, and how it is actually measured?
2. Trace-driven simulation was used to gain insights into the system. What are the

benefits of trace-driven simulation and how was it used to investigate conflicts?
3. One of the simulation results refers to gang scheduling. What is gang scheduling

and why it is beneficial for MapReduce applications?
Problem 6. Quasar is a QoS-aware cluster management system using a fast classification techniques

to determine the impact of different resource allocations and assignments on workload
performance.
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1. Read [136] to understand the relationship between the Netflix challenge and the
cluster resource allocation problem.

2. Quasar [137] classifies resource allocation for scale up, scale out, heterogeneity,
and interference. Why are classification criteria important, and how are they ap-
plied?

3. What are stragglers and how does Quasar deal with them?
Problem 7. Cluster management systems must perform well for a mix of applications and deliver

the performance promised by the SLOs for each workload. Resource isolation is critical
for achieving strict SLOs.
1. What are the mechanisms used by Heracles [311] for mitigating interference?
2. Discuss the results related to latency of Latency Sensitive workload (LS) from

Heracles experiments.
3. Discuss the results related to Effective Machine Utilization (EMU) from Heracles

experiments.
Problem 8. Effective cloud resource management require understanding the interaction between the

workloads and the cloud infrastructure. An analysis of both sides of this equation uses
a trove of trace data provided by Google. This analysis is reported in [416].
1. What conclusions can you draw from the analysis of the trace data regarding the

schedulers used for cluster management?
2. What are the reasons for scheduler behavior revealed by the trace analysis?
3. What characteristics of the Google workloads are most notable?

Problem 9. Tachyon is a distributed file system enabling reliable data sharing at memory speed
across cluster computing frameworks. Read [301] and answer the following questions:
1. Does the evolution of memory, storage, and networking technologies support the

argument that cloud storage systems should achieve fault-tolerance without repli-
cation?

2. What is file popularity, what is the distribution of file popularity for big data work-
loads?

3. How is this distribution used?
4. For what type of events is this distribution particularly important?
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CHAPTER

CLOUD RESOURCE MANAGEMENT
AND SCHEDULING

Resource management is a core function of any man-made system, it affects the three basic criteria
for the evaluation of a system: performance, functionality, and cost. An efficient resource management
has a direct effect on performance and cost and an indirect effect on the functionality of the system as
some of the functions may be avoided due to the poor performance, and/or cost.

A cloud is a complex system with a very large number of shared resources subject to unpre-
dictable requests and affected by external events it cannot control. Cloud resource management requires
complex policies and decisions for multi-objective optimization. Effective resource management is ex-
tremely challenging due to the scale of the cloud infrastructure and to the unpredictable interactions
of the system with a large population of users. The scale makes it impossible to have accurate global
state information and the large user population makes it nearly impossible to predict the type and the
intensity of the system workload.

Resource management becomes even more complex when resources are oversubscribed and users
are uncooperative. In addition to external factors, resource management is affected by internal factors,
such as heterogeneity of hardware and software systems, the scale of the system, the failure rates of
different components, and other factors.

The strategies for resource management associated with the basic cloud delivery models, IaaS,
PaaS, SaaS, and DBaasS are different. In all cases the cloud service providers are faced with large
fluctuating loads which challenge the claim of cloud elasticity. In some cases, when a spike can be
predicted, the resources can be provisioned in advance, e.g., for web services subject to seasonal spikes.
For an unplanned spike the situation is slightly more complicated.

Auto-scaling can be used for unplanned spikes of the workload provided that: (a) there is a pool of
resources that can be released or allocated on demand; and (b) there is a monitoring system enabling the
resource management system to reallocate resources in real time. Auto-scaling is supported by PaaS
services, such as Google AppEngine. Auto-scaling for IaaS discussed in Section 9.3 is complicated
due to the lack of standards.

Centralized control cannot provide adequate solutions for management policies when changes in
the environment are frequent and unpredictable. Distributed control poses its own challenges since it
requires some form of coordination between the entities in control. Autonomic policies are of great
interest due to the scale of the system and the unpredictability of the load when the ration of peak to
mean resource demands can be very large.

Throughout this text we use the term bandwidth in a broad sense to mean the number of operations
or the amount of data transferred per time unit. For example Mips (Million Instructions Per Second)
or Mflops (Million Floating Point Instructions Per Second) measure the CPU speed, Mbps (Mega bits
per second) measure the speed of a communication channel. The latency is defined as the time elapsed
from the instance an operation is initiated and the instance its effect is sensed. Latency is context
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dependent. For example, the latency of a communication channel is the time it takes a bit to traverse
the communication channel from its source to its destination; the memory latency is the time elapsed
from the instance a memory read instruction is issued until the time the data becomes available in a
memory register. The demand for computing resources such as CPU cycles, primary and secondary
storage, and network bandwidth depend heavily on the volume of data processed by an application.

This chapter presents research topics related to cloud resource management and scheduling. The
overview of policies and mechanisms for cloud resource management in Section 9.1 is followed by a
presentation of energy efficiency and cloud resource utilization and the impact of application scaling
on resource management in Sections 9.2 and 9.3, respectively. A control theoretic approach to resource
allocations is discussed in Sections 9.4, 9.5, and 9.6 followed by a machine learning algorithm for
coordination of specialized autonomic performance managers in Section 9.7.

A utility model for resource allocation for a web service is then presented in Section 9.8. The
discussion of scheduling algorithms for computer clouds in Section 9.9 is followed by an analysis of
delay scheduling and of data-aware scheduling in Sections 9.10 and 9.11, respectively. The Apache
capacity scheduler is presented in Section 9.12. The start-time fair queuing and the borrowed virtual
time scheduling algorithms are analyzed in Sections 9.13 and 9.14, respectively.

9.1 POLICIES AND MECHANISMS FOR RESOURCE MANAGEMENT
A policy refers to the principles guiding decisions, while mechanisms represent the means to implement
policies. Separation of policies from mechanisms is a guiding principle in computer science. Butler
Lampson [294] and Per Brinch Hansen [221] offer solid arguments for this separation in the context of
operating system design and their arguments can be extended to computer clouds.

Cloud resource management policies can be loosely grouped into five classes: admission control,
capacity allocation, load balancing, energy optimization, and QoS guarantees. The explicit goal of an
admission control policy is to prevent the system from accepting workload in violation of high-level
system policies. For example, a system may not accept additional workload which would prevent it
from completing work already in progress or contracted.

Limiting the workload requires some knowledge of the global state of the system; in a dynamic
system such knowledge, when available, is at best obsolete. Capacity allocation means to allocate
resources for individual instances; an instance is an activation of a service. Locating resources subject
to multiple global optimization constraints requires a search of a very large search space when the state
of individual systems changes rapidly.

Load balancing and energy optimization can be done locally, but global load balancing and energy
optimization policies encounter the same difficulties as the ones we have already discussed. Load
balancing and energy optimization are correlated and affect the cost for providing services [146].

The common meaning of the term “load balancing” is evenly distribute the load among the set of
servers. For example, consider the case of four identical servers, A,B,C and D whose relative loads
are 80%,60%,40% and 20%, respectively, of their capacity. As a result of a perfect load balancing
all servers would end with the same relative workload, 50% of each server’s capacity. An important
goal of cloud resource management is minimization of the cost for providing cloud service and, in
particular, minimization of cloud energy consumption.
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Table 9.1 The normalized performance and energy consumption, function of the processor speed; the
performance decreases at a lower rate than does the energy when the clock rate decreases.

CPU speed (GHz) Normalized energy (%) Normalized performance (%)
0.6 0.44 0.61

0.8 0.48 0.70

1.0 0.52 0.79

1.2 0.58 0.81

1.4 0.62 0.88

1.6 0.70 0.90

1.8 0.82 0.95

2.0 0.90 0.99

2.2 1.00 1.00

This leads to a different meaning of the term “load balancing;” instead of having the load evenly
distributed amongst all servers, we wish to concentrate it and use the smallest number of servers while
switching the others to a standby mode, a state where a server uses very little energy. In our example,
assuming that the servers have the same capacity the load from D will migrate to A and the load from
C will migrate to B; thus, A and B will be loaded at full capacity while C and D will be switched to
standby mode. In practice workloads larger than 80% of system capacity are not desirable. QoS is the
aspect of resource management probably the most difficult to address and, at the same time, possibly
the most critical for the future of cloud computing.

As we shall see in this section, often resource management strategies jointly target performance
and power consumption. The Dynamic Voltage and Frequency Scaling (DVFS)1 techniques such as
Intel’s SpeedStep and AMD’s PowerNow lower the voltage and the frequency to decrease the power
consumption.2 Motivated initially by the need to save power for mobile devices, these techniques have
migrated virtually to all processors including the ones used for high performance servers.

Processor performance decreases, but at a substantially lower rate than the energy consumption,
as a result of lower voltages and clock frequencies [300]. Table 9.1 shows the dependence of the
normalized performance and the normalized energy consumption of a typical modern processor on the
clock rate. As we can see, at 1.8 GHz we save 18% of the energy required for maximum performance,
while the performance is only 5% lower than the peak performance, achieved at 2.2 GHz. This seems
a reasonable energy-performance trade-off!

Virtually all optimal, or near-optimal, mechanisms to address the five classes of policies do not
scale up and typically target a single aspect of resource management, e.g., admission control, but ignore
energy conservation. Many require complex computations that cannot be done effectively in the time
available to respond. The performance models are very complex, analytical solutions are intractable,

1Dynamic voltage and frequency scaling is a power management technique to increase or decrease the operating voltage or
frequency of a processor to increase the instruction execution rate and, respectively, to reduce the amount of heat generated and
to conserve power.
2The power consumption P of a CMOS-based circuit is: P = α · Ceff · V 2 · f with: α – the switching factor, Ceff – the
effective capacitance, V – the operating voltage, and f – the operating frequency.
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and the monitoring systems used to gather state information for these models can be too intrusive and
unable to provide accurate data.

Many techniques are concentrated on system performance in terms of throughput and time in
system, but they rarely include energy trade-offs or QoS guarantees. Some techniques are based on
unrealistic assumptions. For example, capacity allocation is viewed as an optimization problem, but
under the assumption that servers are protected from overload.

Cloud resource allocation techniques must be based on a systematic approach, rather than on ad
hoc methods. The four basic mechanisms for the implementation of resource management policies are:

• Control theory. Control theory uses feedback mechanisms to guarantee system stability and to pre-
dict transient behavior [260], [285]. Feedback can only be used to predict local, rather than global
behavior. Kalman filters have been used for unrealistically simplified models.

• Machine learning. Machine learning techniques do not need a performance model of the system
[488], a major advantage. This technique can be applied for coordination of several autonomic
system managers, as discussed in [265].

• Utility-based. Utility-based approaches require a performance model and a mechanism to correlate
user-level performance with cost, as discussed in [9].

• Market-oriented mechanisms. Such mechanisms do not require a model of the system, e.g., combi-
natorial auctions for bundles of resources discussed in [465].

A distinction should be made between interactive and non-interactive workloads. The management
techniques for interactive workloads, e.g., web services, involve flow control and dynamic application
placement, while those for non-interactive workloads are focused on scheduling. A fair amount of
work reported in the literature is devoted to resource management of interactive workloads, some to
non-interactive ones, and only a few, e.g., [476], to heterogeneous workloads, a combination of the two.

9.2 CLOUD RESOURCE UTILIZATION AND ENERGY EFFICIENCY
According to Moore’s Law the number of transistors on a chip, thus, the computing power of micropro-
cessors doubles approximately every 1.5 years. A recent study [279] reports that electrical efficiency
of computing devices doubles also about every 1.5 years. Thus, performance growth rate and improve-
ments in electrical efficiency almost cancel out. It follows that the energy used for computing scales
linearly with the number of computing devices. The number of computing devices continues to grow
and many are now housed in large cloud data centers.

The energy consumption of cloud data centers is growing and has a significant ecological impact. It
also affects the cost of cloud services. The energy costs are passed on to the users of cloud services and
differ from one country to another and from one region to another. For example, the published rates for
two AWS regions, US East and South America are: upfront for a year $2,604 versus $5,632 and hourly
$0.412 versus $0.724, respectively. Higher energy and communication costs are partially responsible
for the significant difference in this example; the energy costs for the two regions differ by about 40%.

All these facts justify the need to take a closer look at cloud energy consumption, a complex subject
extensively discussed in the literature [7,36,50,55,56,327,501,506]. The topics to be covered are how to
define the energy efficiency, how energy-efficient are the processors, the storage devices, the networks,
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FIGURE 9.1

Even when power requirements scale linearly with the load, the energy efficiency of a computing system is not
a linear function of the load. When idle, a system may use 50% of the power corresponding to the full load.
Data collected over a long period of time shows that the typical operating region for the servers at a data center
is the range 10% to 50% of system utilization [55].

and the other physical elements of the cloud infrastructure, and what are the constraints and how well
are these resources managed.

Cloud elasticity and overprovisioning. One of the main appeals of utility computing is elasticity.
Elasticity means that additional resources are guaranteed to be allocated when an application needs
them and that resources will be released when no longer needed. A user ends up paying only for
resources actually used.

Overprovisioning means having capacity in excess of normal or average needs. This implies that a
cloud service provider has to invest in an infrastructure larger than typical cloud workload warrants.
It follows that the average cloud server utilization is low [7,68,327]. Low server utilization negatively
affects the performance per watt of power, a common measure of energy efficiency, and the ecological
impact of cloud computing. Overprovisioning is not economically sustainable [97].

Elasticity is based on overprovisioning and on the assumption that there is an effective admission
control mechanism. Another assumption is that the likelihood of all running applications dramatically
increasing their resource consumption at the same time is extremely low. This assumption is realistic,
though we have seen cases when a system is overloaded due to concurrent access by large crowds, e.g.,
the phone system in case of a catastrophic event such as an earthquake. A possible solution is to request
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cloud users to specify in their service request the type of workloads and to pay for access accordingly,
e.g., a low rate for slow varying and a high rate for workloads with sudden peaks.

Energy efficiency and energy-proportional systems. An energy-proportional system consumes no
power when idle, very little power under a light load and, gradually, more power as the load increases.
By definition, an ideal energy-proportional system is always operating at 100% efficiency. Humans
are a good approximation of an ideal energy proportional system; the human energy consumption is
about 70 W at rest, 120 W on average on a daily basis, and can go as high as 1 000–2 000 W during a
strenuous, short time effort [55].

In real life, even systems whose power requirements scale linearly, when idle use more than half
the power consumed at full load, see Figure 9.1. Indeed, a 2.5 GHz Intel E5200 dual-core desktop
processor with 2 GB of RAM consumes 70 W when idle and 110 W when fully loaded; a 2.4 GHz
Intel Q6600 processor with 4 GB of RAM consumes 110 W when idle and 175 W when fully loaded
[50].

Different subsystems of a computing system behave differently in terms of energy efficiency; while
many processors have relatively good energy-proportional profiles, significant improvements in mem-
ory and disk subsystems are necessary. The processors used in servers consume less than one-third of
their peak power at very low load and have a dynamic range of more than 70% of peak power; the
processors used in mobile and/or embedded applications are better in this respect.

The dynamic power range3 of other components of a system is much narrower [55]: less than 50%
for DRAM, 25% for disk drives, and 15%for networking switches. The power consumption of such
devices is: 4.9 KW for a 604.8 TB, HP 8100 EVA storage server, 3.8 KW for the 320 Gbps Cisco 6509
switch, 5.1 KW for the 660 Gbps Juniper MX-960 gateway router [50].

The alternative to the wasteful resource management policy when the servers are always on, re-
gardless of their load, is to develop energy-aware load balancing and scaling policies. Such policies
combine dynamic power management with load balancing and attempt to identify servers operating
outside their optimal energy regime and decide if and when they should be switched to a sleep state or
what other actions should be taken to optimize the energy consumption.

Energy saving. The effort to reduce the energy use is focused on the computing, networking, and
storage activities of a data center. A 2010 report shows that a typical Google cluster spends most of its
time within the 10–50% CPU utilization range; there is a mismatch between server workload profile
and server energy efficiency [7]. A similar behavior is also seen in the data center networks; these
networks operate in a very narrow dynamic range, the power consumed when the network is idle is
significant compared to the power consumed when the network is fully utilized.

A strategy to reduce energy consumption is to concentrate the workload on a small number of disks
and allow the others to operate in a low-power mode. One of the techniques to accomplish this is based
on replication. A replication strategy based on a sliding window is reported in [506]. Measurements
results indicate that it performs better than LRU, MRU, and LFU4 policies for a range of file sizes, file
availability, and number of client nodes and the power requirements are reduced by as much as 31%.

3The dynamic range in this context is determined by the lower and the upper limit of the power consumption. A large dynamic
range means that the device is better, it is able to operate at a lower fraction of its peak power when its load is low.
4LRU (Least Recently Used), MRU (Most Recently Used), and LFU (Least Frequently Used) are replacement policies used by
memory hierarchies for caching and paging.
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Another technique is based on data migration. The system in [225] uses data storage in virtual
nodes managed with a distributed hash table. Migration is controlled by two algorithms, a short-term
optimization algorithm used for gathering or spreading virtual nodes according to the daily variation
of the workload so that the number of active physical nodes is reduced to a minimum, and a long-term
optimization algorithm used for coping with changes in the popularity of data over a longer period,
e.g., a week.

A number of proposals have emerged for energy proportional networks [8]; the energy consumed by
such networks is proportional with the communication load. For example, a data center interconnection
network based on a flattened butterfly topology is more energy and cost efficient according to [7].
High-speed channels typically consist of multiple serial lines with the same data rate. A physical unit
is stripped across all active lines. Channels commonly operate plesiochronously5 and are always on,
regardless of the load, because they must still send idle packets to maintain byte and lane alignment
across the multiple lines. An energy proportional network, InfiniBand, is discussed in Section 5.7.

Many proposals argue that dynamic resource provisioning is necessary to minimize power con-
sumption. Two issues are critical for energy saving: the amount of resources allocated to each appli-
cation and the placement of individual workloads. A resource management framework combining a
utility-based dynamic VM provisioning manager with a dynamic VM placement manager to minimize
power consumption and reduce Service Level Agreement violations is presented in [497].

Energy optimization is an important policy for cloud resource management, but it cannot be consid-
ered in isolation; energy optimization should be coupled with admission control, capacity allocation,
load balancing, and quality of service. Existing mechanisms cannot support concurrent optimization
of all policies. Mechanisms based on a solid foundation such as control theory are too complex and do
not scale well, those based on machine learning are not fully developed, and the others require a model
of a system with a dynamic configuration operating in a fast-changing environment.

9.3 RESOURCE MANAGEMENT AND DYNAMIC APPLICATION SCALING
The demand for resources can be a function of the time of day, can monotonically increase or decrease
in time, or can experience predictable or unpredictable peaks. For example, a new web service will
experience a low request rate at the very beginning and the load will exponentially increase if the
service is successful. A service for income tax processing will experience a peak around the tax filling
deadline, while access to a service provided by FEMA (Federal Emergency Management Agency) will
increase dramatically after a natural disaster.

The elasticity of a public cloud, the fact that it can supply precisely the amount of resources an
application needs, and that a cloud user pays only for resources consumed are serious incentives to
migrate to a public cloud. The question we address is how scaling can be implemented in a cloud with
a very large number of applications exhibiting an unpredictable behavior [84,331,496]. To make matter
worse, in addition to an unpredictable external workload the cloud resource management has to deal
with relocation of running applications due to server failures.

5Different parts of the system are almost, but not quite perfectly, synchronized; in this case, the core logic in the router operates
at a frequency different from that of the I/O channels.
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We distinguish two scaling strategies, vertical and horizontal. Vertical scaling keeps the number of
VMs of an application constant, but increases the amount of resources allocated to each one of them.
This can be done either by migrating VMs to more powerful servers, or by keeping VMs on the same
servers, but increasing their share of the CPU time. The first alternative involves additional overhead;
the VM is stopped, a snapshot of it is taken, the file is transported to a more powerful server, and,
finally, the VM is restated at the new site.

Horizontal scaling is the most common scaling strategy on a cloud; it is done by increasing the
number of VMs as the load increases and reducing this number when the load decreases. Often, this
leads to an increase of communication bandwidth consumed by the application. Load balancing among
the running VMs is critical for this mode of operation. For a very large application multiple load bal-
ancers may need to cooperate with one another. In some instances load balancing is done by a front-end
server which distributes incoming requests of a transaction-oriented system to backend servers.

An application should be designed to support scaling. Workload partitioning of a modularly divisi-
ble application is static as we have seen in Section 7.5. Static workload partitioning is decided a priori
and cannot be changed thus, the only alternative is vertical scaling. The workload of an arbitrarily
divisible application can be partitioned dynamically. As the load increases, the system can allocate ad-
ditional VMs to process the additional workload. Most cloud applications belong to this class and this
justifies the statement that horizontal scaling is the most common scaling strategy.

Mapping a computation means to assign suitable physical servers to the application. A very impor-
tant first step in application processing is to identify the type of application and map it accordingly. For
example, a communication-intensive application should be mapped to a powerful server to minimize
the network traffic. Such a mapping may increase the cost per unit of CPU usage, but it will decrease
the computing time and, probably, reduce the overall user cost. At the same time, it will reduce network
traffic, a highly desirable effect from the perspective of the CSP.

To scale up or down a compute-intensive application a good strategy is to increase/decrease the
number of VMs or instances. As the load is relatively stable, the overhead of starting up or terminating
an instance does not increase significantly the computing time or the cost.

Several strategies to support scaling exist. Automatic VM scaling uses pre-defined metrics, e.g.,
CPU utilization to make scaling decisions. Automatic scaling requires sensors to monitor the state of
the VMs and servers and controllers to make decisions based on the information about the state of the
cloud.

Controllers often use a state machine model for decision making. Amazon and Rightscale (http:
//www.rightscale.com) offer automatic scaling. The AWS CloudWatch service supports applications
monitoring and allows a user to set up conditions for automatic migrations.

Non-scalable or single load balancers are also used for horizontal scaling. The Elastic Load Balanc-
ing AWS service automatically distributes incoming application traffic across multiple EC2 instances.
Another service, the Elastic Beanstalk allows dynamic scaling between a low and a high number of
instances specified by the user, see Section 2.3. The cloud user usually has to pay for the more sophis-
ticated scaling services such as Elastic Beanstalk.

9.4 CONTROL THEORY AND OPTIMAL RESOURCE MANAGEMENT
Control theory has been used to design adaptive resource management for many classes of applications
including power management [265], task scheduling [314], QoS adaptation in web servers [3], and load

http://www.rightscale.com
http://www.rightscale.com
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balancing [350,398]. The classical feedback control methods are used in all these cases to regulate the
key operating parameters of the system based on measurement of the system output. The feedback
control for these methods assumes a linear time-invariant system model, and a closed-loop controller.
This controller is based on an open-loop system transfer function which satisfies stability and sensitivity
constraints.

A technique to design self-managing systems based on concepts from control theory is discussed
in [512]. This technique allows multiple QoS objectives and operating constraints to be expressed as a
cost function. The technique can be applied to stand-alone or distributed web servers, database servers,
high performance application servers, and embedded systems.

The following discussion considers a single processor serving a stream of input requests with the
goal of minimizing a cost function reflecting the response time and the power consumption. The goal
is to illustrate the methodology for optimal resource management based on control theory concepts.
The analysis is intricate and cannot be easily extended to a collection of servers.

Control theory principles. An overview of control theory principles used for optimal resource al-
location is presented next. Optimal control generates a sequence of control inputs over a look-ahead
horizon, while estimating changes in operating conditions. A convex cost function has as arguments
x(k), the state at step k, and u(k), the control vector. The cost function is minimized subject to the
constraints imposed by system dynamics. The discrete-time optimal control problem is to determine
the sequence of control variables u(i), u(i + 1), . . . , u(n − 1) to minimize the expression

J (i) = �(n,x(n)) +
n−1∑
k=i

Lk(x(k), u(k)) (9.1)

where �(n,x(n)) is the cost function of the final step, n, and Lk(x(k),u(k)) is a time-varying cost
function at the intermediate step k over the horizon [i, n]. The minimization is subject to the constraints

x(k + 1) = f k(x(k), u(k)), (9.2)

where x(k + 1), the system state at time k + 1, is a function of x(k), the state at time k, and of u(k),
the input at time k; in general, the function f k is time-varying thus, its superscript.

One of the techniques to solve this problem is based on the Lagrange multiplier method of finding
the extremes (minima or maxima) of a function subject to constrains. More precisely, if we wish to
maximize the function g(x, y) subject to the constraint h(x, y) = k we introduce a Lagrange multi-
plier λ. Then we study the function

�(x,y,λ) = g(x, y) + λ × [
h(x, y) − k

]
. (9.3)

A necessary condition for optimality is that (x, y,λ) is a stationary point for �(x,y,λ), in other words

∇x,y,λ�(x, y,λ) = 0 or

(
∂�(x, y,λ)

∂x
,
∂�(x, y,λ)

∂y
,
∂�(x, y,λ)

∂λ

)
= 0. (9.4)

The Lagrange multiplier at time step k is λ(k) and we solve Equation (9.4) as an unconstrained
optimization problem. We define an adjoint cost function which includes the original state constrains
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FIGURE 9.2

The structure of the optimal controller in [512]. The controller uses the feedback regarding the current state,
as well as, the estimation of the future disturbance due to environment to compute the optimal inputs over a
finite horizon. The two parameters r and s are the weighting factors of the performance index.

as the Hamiltonian function H , then we construct the adjoint system consisting of the original state
equation and the costate equation6 governing the Lagrange multiplier. Thus, we define a two-point
boundary problem;7 the state xk develops forward in time while the costate occurs backward in time.

A model capturing QoS and energy consumption for a single server system. We now turn our
attention to the case of a single processor serving a stream of input requests. To compute the optimal
inputs over a finite horizon the controller in Figure 9.2 uses the feedback regarding the current state
and the estimation of the future disturbance due to the environment. The control task is solved as a
state regulation problem updating the initial and final states of the control horizon.

We use a simple queuing model to estimate the response time; requests for service at processor P

are processed on an FCFS basis. We do not assume a priori distributions of the arrival process and
of the service process; instead, we use the estimate, �̂(k) of the arrival rate �(k) at time k. We also
assume that the processor can operate at frequencies u(k) in the range u(k) ∈ [umin, umax] and call
ĉ(k) the time to process a request at time k when the processor operates at the highest frequency in the
range, umax . Then we define the scaling factor α(k) = u(k)/umax and we express an estimate of the
processing rate N(k) as α(k)/ĉ(k).

The behavior of a single processor is modeled as a non-linear, time-varying, discrete-time state
equation. If Ts is the sampling period, defined as the time difference between two consecutive obser-
vations of the system, e.g., the one at time (k + 1) and the one at time k, then the size of the queue at
time (k + 1) is

q(k + 1) = max

{[
q(k) +

(
�̂(k) − u(k)

ĉ(k) × umax

)
× Ts

]
,0

}
(9.5)

6The costate equation is related to the state equation in optimal control.
7A boundary value problem has conditions specified at the extremes of the independent variable while an initial value problem
has all of the conditions specified at the same value of the independent variable in the equation. The common case is when
boundary conditions are supposed to be satisfied at two points – usually the starting and ending values of the integration.
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The first term, q(k), is the size of the input queue at time k and the second one is the difference between
the number of requests arriving during the sampling period, Ts , and those processed during the same
interval. The response time ω(k) is the sum of the waiting time and the processing time of the requests

ω(k) = (1 + q(k)) × ĉ(k). (9.6)

Indeed, the total number of requests in the system is (1 + q(k)) and the departure rate is 1/ĉ(k).
We wish to capture both the QoS and the energy consumption, as both affect the cost of providing

the service. A utility function, such as the one depicted in Figure 9.5, captures the rewards, as well as
the penalties specified by the SLA for the response time. In the queuing model the utility is a function
of the size of the queue and can be expressed as a quadratic function of the response time

S(q(k)) = 1/2
(
s × (ω(k) − ω0)

2
)

(9.7)

with ω0, the response time set point and q(0) = q0, the initial value of the queue length. The energy
consumption is a quadratic function of the frequency

R(u(k)) = 1/2
(
r × u(k)2

)
. (9.8)

The two parameters s and r are weights for the two components of the cost, derived from the utility
function and from the energy consumption, respectively. We have to pay a penalty for the requests left
in the queue at the end of the control horizon, a quadratic function of queue length

�(q(N)) = 1/2
(
v × q(n)2

)
. (9.9)

The performance measure of interest is a cost expressed as

J = �(q(N)) +
N−1∑
k=1

[
S(q(k)) + R(q(k))

]
. (9.10)

The problem is to find the optimal control u∗ and the finite time horizon [0,N ] such that the trajectory
of the system subject to optimal control is q∗, and the cost J in Equation (9.10) is minimized subject
to the following constraints

q(k + 1) =
[
q(k) +

(
�̂(k) − u(k)

ĉ(k) × umax

)
× Ts

]
, q(k) ≥ 0, and umin ≤ u(k) ≤ umax. (9.11)

When the state trajectory q(·) corresponding to the control u(·) satisfies the constraints

�1 : q(k) > 0, �2 : u(k) ≥ umin, �3 : u(k) ≤ umax, (9.12)

then the pair
[
q(·), u(·)] is called a feasible state. If the pair minimizes the Equation (9.10) then the

pair is optimal.
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The Hamiltonian H in our example is

H = S(q(k)) + R(u(k)) + λ(k + 1) ×
[
q(k) +

(
�(k) − u(k)

c × umax

)
Ts

]
+ μ1(k) × (−q(k)) + μ2(k) × (−u(k) + umin) + μ3(k) × (u(k) − umax).

(9.13)

According to Pontryagin’s minimum principle8 the necessary condition for a sequence of feasible
pairs to be optimal pairs is the existence of a sequence of costates λ and a Lagrange multiplier μ =
[μ1(k),μ2(k),μ3(k)] such that

H(k, q∗, u∗, λ∗,μ∗) ≤ H(k, q,u∗, λ∗,μ∗), ∀q ≥ 0 (9.14)

where the Lagrange multipliers, μ1(k),μ2(k),μ3(k), reflect the sensitivity of the cost function to the
queue length at time k and the boundary constraints and satisfy several conditions

μ1(k) ≥ 0, μ1(k)(−q(k)) = 0, (9.15)

μ2(k) ≥ 0, μ2(k)(−u(k) + umin) = 0, (9.16)

μ3(k) ≥ 0, μ3(k)(u(k) − umax) = 0. (9.17)

A detailed analysis of the methods to solve this problem and the analysis of the stability conditions is
beyond the scope of our discussion and can be found in [512].

The extension of the techniques for optimal resource management from a single system to a cloud
with a very large number of servers is a rather challenging area of research. The problem is even harder
when, instead of transaction-based processing, the cloud applications require the implementation of a
complex workflow.

9.5 STABILITY OF A TWO-LEVEL RESOURCE ALLOCATION ARCHITECTURE
The discussion in Section 9.4 shows that a server can be assimilated with a closed-loop control system
and that we can apply theoretical control principles to resource allocation. We now discuss a two-level
resource allocation architecture based on control theory concepts for the entire cloud, see Figure 9.3.
The automatic resource management is based on two levels of controllers, one for the service provider
and one for the application.

The main components of a control system are: the inputs, the control system components, and the
outputs. The inputs in such models are: the offered workload and the policies for admission control, the
capacity allocation, the load balancing, the energy optimization, and the QoS guarantees in the cloud.
The system components are sensors used to estimate relevant measures of performance and controllers
which implement various policies. The output is the resource allocations to the individual applications.

The controllers use the feedback provided by sensors to stabilize the system; stability is related to
the change in the output. If the change is too large then the system may become unstable. In our context

8Pontryagin’s principle is used in the optimal control theory to find the best possible control which leads a dynamic system from
one state to another, subject to a set of constrains.
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FIGURE 9.3

A two-level control architecture; application controllers and cloud controllers work in concert.

the system could experience thrashing, the amount of useful time dedicated to the execution of appli-
cations becomes increasingly smaller and most of the system resources are occupied by management
functions.

There are three main sources of instability in any control system:
1. The delay in getting the system reaction after a control action.
2. The granularity of the control, the fact that a small change enacted by the controllers leads to very

large changes in the output.
3. Oscillations, when the changes in the input are too large and the control is too weak, such that the

changes in the input propagate directly to the output.
Two types of policies are used in autonomic systems: (i) threshold-based policies and (ii) sequential

decision policies based on Markovian decision models. In the first case, upper and lower bounds on
performance trigger adaptation through resource reallocation; such policies are simple and intuitive but
require setting per-application thresholds.

Lessons learned from the experiments with two levels of controllers and the two types of policies are
discussed in [157]. A first observation is that the actions of the control system should be carried out in
a rhythm that does not lead to instability; adjustments should only be carried out after the performance
of the system has stabilized. The controller should measure the time for an application to stabilize and
adapt to the manner in which the controlled system reacts.

If an upper and a lower threshold are set, then instability occurs when the thresholds are too close
to one another and when the variation of the workload is large enough and the time required to adapt
does not allow the system to stabilize. The actions consist of allocation/deallocation of one or more
VMs. Sometimes allocation/deallocation of a single VM required by one of the thresholds may cause
crossing of the other threshold, another source of instability.
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9.6 FEEDBACK CONTROL BASED ON DYNAMIC THRESHOLDS
The elements involved in a control system are sensors, monitors, and actuators. The sensors measure
the parameter(s) of interest, then transmit the measured values to a monitor which determines if the
system behavior must be changed, and, if so, it requests the actuators to carry out the necessary actions.
Often, the parameter used for admission control policy is the current system load; when a threshold,
e.g., 80%, is reached the cloud stops accepting additional load.

The implementation of such a policy is challenging, or outright infeasible in practice. First, due
to the very large number of servers and to the fact that the workload changes rapidly in time, the
estimation of the current system workload is likely to be inaccurate. Second, the ratio of average to
maximal resource requirements of individual users specified in a SLA is typically very high. Once an
agreement is in place user demands must be satisfied; a user’s request for additional resources within
the SLA limits cannot be denied.

Thresholds. A threshold is the value of a parameter related to the state of a system that triggers a
change in the system behavior. Thresholds are used in control theory to keep critical parameters of
a system in a predefined range. The threshold could be static, defined once and for all, or could be
dynamic. A dynamic threshold could be based on an average of measurements carried out over a time
interval, a so called integral control; the dynamic threshold could also be a function of the values of
multiple parameters at a given time, or a mixture of the two.

A high and a low threshold are often defined to maintain the system parameters in a given range.
The two thresholds determine different actions; for example, a high threshold could force the system to
limit its activities and a low threshold could encourage additional activities. Control granularity refers
to the level of detail of the information used to control the system. Fine control means that very detailed
information about the parameters controlling the system state is used, while coarse control means that
the accuracy of these parameters is traded off for the efficiency of implementation.

Proportional thresholding. Application of these ideas to cloud computing, in particular to the IaaS
delivery model, and a strategy for resource management called proportional thresholding are discussed
in [305]. The questions addressed are:

• Is it beneficial to have two types of controllers: (1) application controllers which determine if ad-
ditional resources are needed and (2) cloud controllers which arbitrate requests for resources and
allocate the physical resources?

• Is it feasible to consider fine control? Is coarse control more adequate in a cloud computing envi-
ronment?

• Are dynamic thresholds based on time averages better than static ones?
• Is it better to have a high and a low threshold, or it is sufficient to define only a high threshold?

The first two questions are related. It seems more appropriate to have two controllers, one with
knowledge of the application and one aware of the state of the cloud. In this case a coarse control is
more adequate for many reasons. As mentioned earlier, the cloud controller can only have a very rough
approximation of the global cloud state. Moreover, to simplify the resource management policies the
cloud service provider may wish to hide some of the information available to them. For example, CSPs
may not allow a VM to access information available to hypervisor-level sensors and actuators.
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To answer the last two questions one has to define a measure of “goodness.” In the experiments
reported in [305] the parameter measured is the average CPU utilization and a strategy is better than
another if it reduces the number of requests made by the application controllers to add or remove VMs
to the pool of those available to the application.

A control theoretical approach to address these questions is challenging. The authors of [305] adopt
a pragmatic approach and provide qualitative arguments; they also report simulation results using a
synthetic workload for a transaction-oriented application, a web server.

The essence of the proportional thresholding is captured by the following algorithm:
1. Compute the integral value of the high and the low threshold as averages of the maximum and,

respectively, the minimum of the processor utilization over the process history.
2. Request additional VMs when the average value of the CPU utilization over the current time slice

exceeds the high threshold.
3. Release a VM when the average value of the CPU utilization over the current time slice falls below

the low threshold.
The conclusions reached based on experiments with three VMs are: (a) dynamic thresholds perform

better than the static ones and (b) two thresholds are better than one. While confirming our intuition,
such results have to be justified by experiments in a realistic environment. Moreover, convincing results
cannot be based on empirical values for some of the parameters required by integral control equations.

9.7 COORDINATION OF AUTONOMIC PERFORMANCE MANAGERS
Can specialized autonomic performance managers cooperate to optimize power consumption and, at
the same time, satisfy the requirements of SLAs? This is the question examined by a group from IBM
Research in a 2007 paper [265]. The paper reports on actual experiments carried out on a set of blades
mounted on a chassis. Figure 9.4 shows the experimental setup. Extending the techniques discussed in
this report to a large-scale farm of servers poses significant problems; computational complexity is just
one of them.

Virtually all modern processors support Dynamic Voltage Scaling as a mechanism for energy
saving; indeed, the energy dissipation scales quadratically with the supply voltage. The power manage-
ment controls the CPU frequency thus, the rate of instruction execution. For some compute-intensive
workloads the performance decreases linearly with the CPU clock frequency, while for others the ef-
fect of lower clock frequency is less noticeable or non-existent. The clock frequency of individual
blades/servers is controlled by a power manager typically implemented in the firmware; it adjusts the
clock frequency several times a second.

The approach to coordinating power and performance management in [265] is based on several
ideas:

• Use a joint utility function for power and performance. The joint performance-power utility func-
tion, Upp(R,P ), is a function of the response time, R, and the power, P , and it can be of the form

Upp(R,P ) = U(R) − ε × P or Upp(R,P ) = U(R)

P
, (9.18)

with U(R) the utility function based on response time only and ε a parameter to weigh the influence
of the two factors, response time and power.
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FIGURE 9.4

Autonomous performance manager and power manager cooperate to ensure SLA prescribed performance and
energy optimization; they are fed with performance and power data and implement the performance and
power management policies, respectively.

• Identify a minimal set of parameters to be exchanged between the two managers.
• Set up a power cap for individual systems based on the utility-optimized power management policy.
• Use a standard performance manager modified only to accept input from the power manager re-

garding the frequency determined according to the power management policy. The power manager
consists of TCL and C programs to compute the per-server (per-blade) power caps and send them
via IPMI9 to the firmware controlling the blade power. The power manager and the performance
manager interact but no negotiation between the two agents is involved.

• Use standard software systems. For example, use the WXD (WebSphere Extended Deployment),
a middleware which supports setting performance targets for individual web applications and for
the monitor response time, and periodically recompute the resource allocation parameters to meet
the targets set. Use the Wide-Spectrum Stress Tool from IBM Web Services Toolkit as a workload
generator.

For practical reasons the utility function is expressed in terms of nc, the number of clients, and pκ

the powercap, as in

U ′(pκ,nc) = Upp(R(pκ,nc),P (pκ,nc)). (9.19)

9Intelligent Platform Management Interface (IPMI) is a standardized computer system interface developed by Intel and used by
system administrators to manage a computer system and monitor its operation.
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The optimal powercap, p
opt
κ is a function of the workload intensity expressed by the number of

clients, nc,

popt
κ (nc) = arg maxU ′(pκ,nc). (9.20)

The hardware used for these experiments were blades with an Intel Xeon processor running at 3
GHz with 1 GB of level 2 cache and 2 GB of DRAM and with hyper-threading enabled. A blade could
serve 30 to 40 clients with a response time at or better than 1 000 msec limit. When pκ is lower than
80 watts, the processor runs at its lowest frequency, 375 MHz, while for pκ at or larger than 110 Watts,
the processor runs at its highest frequency, 3 GHz.

Three types of experiments were conducted: (i) with the power management turned off; (ii) when
the dependence of the power consumption and the response time were determined through a set of
exhaustive experiments; and (iii) when the dependency of the powercap pκ on nc is derived via
reinforcement-learning models.

The second type of experiments led to the conclusion that both the response time and the power con-
sumed are non-linear functions of the powercap, pκ , and the number of clients, nc. More specifically,
the conclusions of these experiments are:

• At a low load the response time is well below the target of 1 000 msec.
• At medium and high load the response time decreases rapidly when pk increases from 80 to 110

watts.
• For a given value of the powercap, the consumed power increases rapidly as the load increases.

The machine learning algorithm used for the third type of experiments was based on the Hybrid
Reinforcement Learning algorithm described in [483]. In the experiments using the machine learning
model, the powercap required to achieve a response time lower than 1 000 msec for a given number of
clients was the lowest when ε = 0.05 and the first utility function given by Equation (9.18) was used;
for example, when nc = 50 then pκ = 109 watts when ε = 0.05, while pκ = 120 when ε = 0.01.

9.8 A UTILITY MODEL FOR CLOUD-BASED WEB SERVICES
A utility function relates the “benefits” of an activity or service to the “cost” to provide the service. For
example, the benefit could be revenue and the cost could be the power consumption.

An SLA often specifies the rewards as well as penalties associated with specific performance
metrics. Sometimes the quality of services translates into average response time; this is the case of
cloud-based web services when the SLA often specifies explicitly this requirement. For example, Fig-
ure 9.5 shows the case when the performance metrics is R, the response time. The largest reward can
be obtained when R ≤ R0; a slightly lower reward corresponds to R0 < R ≤ R1; when R1 < R ≤ R2,
instead of gaining a reward, the provider of service pays a small penalty; the penalty increases when
R > R2. A utility function, U(R), which captures this behavior is a sequence of step functions; the
utility function is sometimes approximated by a quadratic curve as discussed in Section 9.4.

In this section we discuss a utility-based approach for autonomic management. The goal is to max-
imize the total profit computed as the difference between the revenue guaranteed by an SLA and the
total cost to provide the services. Formulated as an optimization problem, the solution discussed in [9]
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FIGURE 9.5

The utility function U(R) is a series of step functions with jumps corresponding to the response time,
R = R0|R1|R2, when the reward and the penalty levels change according to the SLA. The dotted line shows a
quadratic approximation of the utility function.

addresses multiple policies, including QoS. The cloud model for this optimization is quite complex
and requires a fair number of parameters.

We assume a cloud providing |K| different classes of service, each class k involving Nk applica-
tions. For each class k ∈ K call vk the revenue (or the penalty) associated with a response time rk
and assume a linear dependency for this utility function of the form vk = vmax

k

(
1 − rk/rmax

k

)
, see

Figure 9.6A; call mk = −vmax
k /rmax

k the slope of the utility function.
The system is modeled as a network of queues with multi-queues for each server and with a delay

center which models the think time of the user after the completion of service at one server and the start
of processing at the next server, see Figure 9.6B. Upon completion, a class k request either completes
with probability 1−∑

k′∈K πk,k′ , or returns to the system as a class k′ request with transition probability
πk,k′ . Call λk the external arrival rate of class k requests and �k the aggregate rate for class k, �k =
λk + ∑

k′∈K �k′πk,k′ .
Typically, CPU and memory are considered as representative for resource allocation. For simplic-

ity we assume a single CPU which runs at a discrete set of clock frequencies and a discrete set of
supply voltages according to a DVFS model; the power consumption on a server is a function of the
clock frequency. The scheduling of a server is work-conserving10 and is modeled as a Generalized
Processor Sharing (GPS) scheduling [545]. Analytical models [5], [386] are too complex for large
systems.

The optimization problem formulated in [9] involves five terms: A and B reflect revenues, C is the
cost for servers in a low power, stand-by mode, D is the cost of active servers given their operating

10A scheduling policy is work-conserving if the server cannot be idle while there is work to be done.
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FIGURE 9.6

(A) The utility function, vk the revenue (or the penalty) associated with a response time rk for a request of class
k ∈ K ; the slope of the utility function is mk = −vmax

k /rmax
k . (B) A network of multiqueues; at each server Si

there are |K| queues for each one of the k ∈ K classes of requests. A tier consists of all requests of class
k ∈ K at all servers Sij , i ∈ I , 1 ≤ j ≤ 6.

frequency, E is the cost for switching servers from low-power, stand-by mode, to active state, and F is
the cost for migrating VMs from one server to another. There are 9 constraints �1,�2, . . . ,�9 for this
mixed integer non-linear programming problem. The decision variables for this optimization problem
are listed in Table 9.2 and the parameters used are shown in Table 9.3.

The expression to be maximized is:

(A + B) − (C + D + E + F) (9.21)

with

A = max
∑
k∈K

⎛
⎝−mk

∑
i∈I,j∈Nk

λi,k,j∑
h∈Hi

(
Ci,h × yi,h

)
μk,j × φi,k,j − λi,k,j

⎞
⎠ , B =

∑
k∈K

vk × �k,

(9.22)
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Table 9.2 Decision variables for the optimization problem.

Name Description
xi xi = 1 if server i ∈ I is running, xi = 0 otherwise

yi,h yi,h = 1 if server i is running at frequency h, yi,h = 0 otherwise

zi,k,j zi,k,j = 1 if application tier j of a class k request runs on server i, zi,k,j = 0 otherwise

wi,k wi,k = 1 if at least one class k request is assigned to server i, wi,k = 0 otherwise

λi,k,j rate of execution of applications tier j of class k requests on server i

φi,k,j fraction of capacity of server i assigned to tier j of class k requests

Table 9.3 The parameters used for the A,B,C,D,E and F terms and the constraints �i of the opti-
mization problem.

Name Description
I the set of servers

K the set of classes

�k the aggregate rate for class k ∈ K , �k = λk + ∑
k′∈K �k′πk,k′

ai the availability of server i ∈ I

Ak minimum level of availability for request class k ∈ K specified by the SLA

mk the slope of the utility function for a class k ∈ K application

Nk number of applications in class k ∈ K

Hi the range of frequencies of server i ∈ I

Ci,h capacity of server i ∈ I running at frequency h ∈ Hi

ci,h cost for server i ∈ I running at frequency h ∈ Hi

c̄i average cost of running server i

μk,j maximum service rate for a unit capacity server for tier j of a class k request

cm the cost of moving a VM from one server to another

csi the cost for switching server i from the stand-by mode to an active state

RAMk,j the amount of main memory for tier j of class k request

RAMi the amount of memory available on server i

C =
∑
i∈I

c̄i , D =
∑

i∈I,h∈Hi

ci,h × yi,h, E =
∑
i∈I

csi max(0, xi − x̄i ), (9.23)

and

F =
∑

i∈I,k∈K,j∈Nj

cmmax(0, zi,j,k − z̄i,j,k). (9.24)

The nine constraints are:
(�1)

∑
i∈I λi,k,j = �k, ∀k ∈ K,j ∈ Nk , ⇒ the traffic assigned to all servers for class k requests

equals the predicted load for the class.
(�2)

∑
k∈K,j∈Nk

φi,k,j ≤ 1, ∀i ∈ I , ⇒ server i cannot be allocated an workload more than its
capacity.
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(�3)
∑

h∈Hi
yi,h = xi, ∀i ∈ I , ⇒ if server i ∈ I is active it runs at one frequency in the set Hi ,

only one yi,h is non-zero.
(�4) zi,k,j ≤ xi, ∀i ∈ I, k ∈ K,j ∈ Nk ⇒ requests can only be assigned to active servers.
(�5) λi,k,j ≤ �k × zi,k,j , ∀i ∈ I, k ∈ K,j ∈ Nk ⇒ requests may run on server i ∈ I only if the

corresponding application tier has been assigned to server i.

(�6) λi,k,j ≤
(∑

h∈Hi
Ci,h × yi,h

)
μk,j × φi,k,j , ∀i ∈ I, k ∈ K,j ∈ Nk ⇒ resources cannot be

saturated.
(�7) RAMk,j × zi,k,j ≤ RAMi, ∀i ∈ I, k ∈ K ⇒ the memory on server i is sufficient to

support all applications running on it.
(�8) 

Nk

j=1

(
1 − M

i=1(1 − a
wi,k

i

) ≥ Ak, ∀k ∈ K ⇒ the availability of all servers assigned to
class k request should be at least equal to the minimum required by the SLA.

(�9)
∑Nk

j=1 zi,k,j ≥ Nk × wi,k, ∀i ∈ I, k ∈ K

λi,j,k, φi,j,k ≥ 0, ∀i ∈ I, k ∈ K,j ∈ Nk

xi, yi,h, zi,k,j ,wi,k ∈ {0,1}, ∀i ∈ I, k ∈ K,j ∈ Nk ⇒ constraints and relations among
decision variables.

Clearly, this approach is not scalable to clouds with a very large number of servers. Moreover, the
large number of decision variables and parameters of the model make this approach unfeasible for a
realistic cloud computing resource management strategy.

9.9 SCHEDULING ALGORITHMS FOR COMPUTER CLOUDS
Scheduling is a critical component of the cloud resource management responsible for resource shar-
ing/multiplexing at several levels. A server can be shared among several VMs, each VM can support
several applications, and each application may consist of multiple threads. CPU scheduling supports
the virtualization of a processor, the individual threads acting as virtual processors; a communication
link can be multiplexed among a number of virtual channels, one for each flow.

In addition to the need to meet its design objectives, a scheduling algorithm should be efficient, fair,
and starvation-free. The objectives of a scheduler for a batch system are to maximize the throughput
(the number of jobs completed in one unit of time, e.g., in one hour) and to minimize the turnaround
time (the time between job submission and its completion). The objectives of a real-time system sched-
uler are to meet the deadlines and to be predictable.

Schedulers for systems supporting a mixture of tasks, some with hard real-time constraints, others
with soft, or no timing constraints, are often subject to contradictory requirements. Some schedulers
are preemptive, allowing a high-priority task to interrupt the execution of a lower priority one, others
are non-preemptive.

Two distinct dimensions of resource management must be addressed by a scheduling policy: (a) the
amount/quantity of resources allocated; and (b) the timing when access to resources is granted. Fig-
ure 9.7 identifies several broad classes of resource allocation requirements in the space defined by these
two dimensions: best-effort, soft requirements, and hard requirements. Hard real-time requirements are
the most challenging as they require strict timing and precise amounts of resources.
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FIGURE 9.7

Resource requirement policies. Best-effort policies do not impose requirements regarding either the amount of
resources allocated to an application, or the timing when an application is scheduled. Soft-requirements
policies require statistically guaranteed amounts of resources and timing constraints. Hard-requirements
policies demand strict timing and precise amounts of resources.

There are multiple definitions of a fair scheduling algorithm. First, we discuss the max–min fair-
ness criterion [180]. Consider a resource with bandwidth B shared among n users who have equal
rights; each user requests an amount bi and receives Bi . Then, according to the max–min criterion, the
following conditions must be satisfied by a fair allocation:

• C1 – the amount received by any user is not larger than the amount requested, Bi ≤ bi .
• C2 – if the minimum allocation of any user is Bmin no allocation satisfying condition C1 has a

higher Bmin than the current allocation.
• C3 – when we remove the user receiving the minimum allocation Bmin and then reduce the total

amount of the resource available from B to (B − Bmin), the condition C2 remains recursively true.

A fairness criterion for CPU scheduling [200] requires that the amount of work �a(t1, t2) and
�b(t1, t2) in the time interval from t1 to t2 of two runnable threads a and b minimize the expression

∣∣∣∣�a(t1, t2)

wa

− �b(t1, t2)

wb

∣∣∣∣ , (9.25)
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where wa and wb are the weights of the threads a and b, respectively.
The QoS requirements differ for different classes of cloud applications and demand different

scheduling policies. Best-effort applications, such as batch applications and analytics11 do not require
QoS guarantees. Multimedia applications such as audio and video streaming have soft real-time con-
straints and require statistically guaranteed maximum delay and throughput. Applications with hard
real-time constrains do not use a public cloud at this time, but may do so in the future.

Round-robin, first-come-first-serve (FCFS), shortest-job-first (SJF), and priority algorithms are
among the most common scheduling algorithms for best-effort applications. Each thread is given
control of the CPU for a definite period of time, called a time-slice, in a circular fashion in case of
round-robin scheduling; the algorithm is fair and starvation-free. The threads are allowed to use the
CPU in the order they arrive in the case of the FCFS algorithms and in the order of their running time
in the case of SJF algorithms.

Earliest Deadline First (EDF) and Rate Monotonic Algorithms (RMA) are used for real-time appli-
cations. Integration of scheduling for the three classes of applications are discussed in [74] and two new
algorithms for integrated scheduling, the Resource Allocation/Dispatching (RAD) and the Rate-Based
Earliest Deadline (RBED) are proposed.

Several algorithms of special interest for computer clouds are discussed below. These algorithms
illustrate the evolution in thinking regarding the fairness of scheduling and the need to accommodate
multi-objective scheduling, in particular scheduling for Big Data and for multimedia applications.

9.10 DELAY SCHEDULING
How to simultaneously ensure fairness and maximize resource utilization without compromising local-
ity and throughput for Big Data applications running on large computer clusters? This was one of the
questions faced early on in the cloud computing era by Facebook, Yahoo, and other large IT service
providers. Facebook’s 600 node Hadoop cluster was running 7 500 MapReduce jobs per day using a
data store of 2 PB and growing at a rate of 15 TB per day. Yahoo was facing similar problems for its
3 000 node cluster used for data analytics and ad hoc queries.

Hadoop scheduler. Each Hadoop job consists of multiple Map and Reduce tasks and the question is
how to allocate resources to the tasks of newly submitted jobs. Recall from Section 7.7 that the job
tracker of the Hadoop master manages a number of slave servers running under the control of task
trackers with slots for Map and Reduce tasks. A FIFO scheduler with five priority levels assigns slots
to tasks based on their priority. The fewer the number of tasks of a job already running on slots of all
servers, the higher is the priority of the remaining tasks.

An obvious problem with this policy is that priority-based allocation does not consider data locality,
namely the need to place tasks close to their input data. The network bandwidth in a large cluster is
considerably lower than the disk bandwidth; also the latency for local data access is much lower than
the latency of a remote disk access. Locality affects the throughput, server locality, i.e., getting data

11The term analytics is overloaded; sometimes it means discovery of patterns in the data; it could also mean statistical processing
of the results of a commercial activity.
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from the local server, is significantly better in terms of time and overhead than rack locality, i.e. getting
input data from a different server in the same rack.

In steady-state, priority scheduling leads to the tendency to assign the same slot repeatedly to the
next task(s) of the same job. As one of the job’s tasks completes execution its priority decreases and
the available slot is allocated to the next task of the same job. Input data for every job are striped over
the entire cluster so spreading the tasks over the cluster can potentially improve data locality, but the
priority scheduling favors the occurrence of sticky slots.

According to [541] sticky slots did not occur in Hadoop at the time of the report “due to a bug
in how Hadoop counts running tasks. Hadoop tasks enter a commit pending state after finishing their
work, where they request permission to rename their output to its final filename. The job object in the
master counts a task in this state as running, whereas the slave object doesn’t. Therefore, another job
can be given the task’s slot.” Data gathered at Facebook shows that only 5% of the jobs with a low
number, 1–25, of Map tasks achieve server locality and only 59% show rack locality.

Task locality and average job locality. A task assignment satisfies the locality requirement if the input
task data are stored on the server hosting the slot allocated to the task. We wish to compute the expected
locality of job J with the fractional cluster share fJ assuming that a server has L slots and that each
block of the files system has R replicas. By definition fJ = n/N with n the number of slots allocated
to job J and N the number of servers in the cluster.

The probability that a slot does not belong to J is (1 − fJ ), there are R replicas of block BJ of
job J and each replica is on a node with L slots. Thus, the probability that none of the slots of job J
has a copy of block BJ is (1 − fJ )RL. It follows that LJ , the locality of job J , can be at most

LJ = 1 − (1 − fJ )RL. (9.26)

How should a fair scheduler operate on a shared cluster? What is the number n of slots of a shared
cluster the scheduler should allocate to jobs assuming that tasks of all jobs take an average of T seconds
to complete? A sensible answer is that the scheduler should provide enough slots such that the response
time on the shared cluster should be the same as Rn,J , the completion time of job J would experience
on a fictitious private cluster with n available slots for the n tasks of J as soon as job J arrives.

The job completion time can be approximated by the sum of the job processing time for all but the
last task plus the waiting time until a slot becomes available for the last task of the job. There is no
waiting time for running on the private cluster with n slots, while on a shared cluster the last task will
have to wait before a slot is available.

A slot allocated to a task on the shared cluster will be free on average every T/N seconds thus,
the time the job will have to wait until all its n tasks have found a slot on the shared cluster will be
n × T/N . This implies that a fair scheduler should guarantee that the waiting time of job J on the
shared cluster is much smaller than the completion time, Rn,J , on the fictitious private cluster

Rn,J 
 fJ × T . (9.27)

Equation (9.27) is satisfied if one of the following three conditions is satisfied:
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1. fJ is small – there are many jobs sharing the cluster and the fraction of slots allocated to each job
is small;

2. T is small – the individual tasks are short;
3. Rn,J 
 T – the completion time of a job is much larger than the average task completion time;

the large jobs dominate the workload.
The cumulative distribution function of running time of MapReduce jobs at Facebook resembles

a sigmoid function12 with the middle stage of a job duration starting at about 10 seconds and ending
at about 1 000 seconds. The median completion time of a Map task is much shorter that the median
completion time of a job, 19 versus 84 seconds. There are fewer Reduce tasks, but of a longer average
duration, 231 seconds. 83% of the jobs are launched within 10 seconds. Results reported in [541] show
that delay scheduling performs well when most tasks are short relative to job duration, and when a
running task can read a given data block from multiple locations.

Delay scheduling. A somewhat counterintuitive scheduling policy, delay scheduling, is proposed in
[541]. As the name implies, the new policy delays scheduling the tasks of a new job for a relatively
short time to address the conflict between fairness and locality.

The new policy skips a task of the job at the head of the priority queue if the input data are not
available on the server where the slot is located and repeats this process up to D times as specified by
the delay scheduling algorithm showed in the next box. An almost doubling of the throughput under
the new policy, while ensuring fairness for workloads at Yahoo and Facebook is a good indication of
the merits of the delay scheduling policy.

An analysis of the new policy assumes a cluster with N servers and L slots per server, thus with a
total number of slots S = NL. A job J prefers slots on servers where its data are stored, call this set
of slots PJ . Call pJ the probability that a task of job J has data on the server with the slot allocated
to it

pJ = |PJ |
N

. (9.28)

It is easy to see that the probability that a task being skipped D times does not have the input data
on the server where the slot allocated to it runs, decreases exponentially with D. Indeed, after being
skipped D times the probability of not having data on the slot allocated to it is (1 − pqJ )D . For
example, if pJ = 0.1 and D = 40 then the probability of having data on the slot allocated to the task
is 1 − (1 − pJ )D = 0.99, a 99% chance.

The pseudocode for the implementation of the delay scheduling algorithm is shown next.

12A sigmoid function S(t) is “S-shaped.” It is defined as S(t) = 1
1−e−t , and its derivative can be expressed as function of itself,

S′(t) = S(t)(1−S(t)). S(t) can describe biological evolution with an initial segment describing early/childhood stage, a median
stage representing maturity, and a third stage describing the late life stage.
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Delay scheduling algorithm.

1 Initialize j.skipcount to 0 for all jobs j

2 when a heartbeat is received from node n

3 if n has a free slot then
4 sort jobs in increasing order of number of running tasks
5 for j in jobs do
6 if j has unlaunched task t with data on n then
7 launch t on n

8 set j.skipcount = 0
9 else if j has unlaunched task t then
10 if j.skipcount > D + 1 then
11 launch t on n

12 else
13 set j.skipcount = j.skipcount + 1
14 end if
15 end if
16 end for
17 end if

How to achieve the desired level of locality for job J with n tasks? An approximate analysis
reported in [541] assumes that all tasks are of the same length and that the preferred location sets PJ
are uncorrelated. If J has k task left to launch and the replication factor is as before equal to R then

pJ = 1 −
(

1 − k

N

)R

(9.29)

and the probability of launching a task of J after D skips is

pJ ,D = 1 − (1 − pJ )D = 1 −
(

1 − k

N

)RD

≥ 1 − e−RDk/N . (9.30)

The expected value of pJ ,D is

LJ ,D = 1

N

N∑
k=1

(
1 − e−RDk/N

)
= 1 − 1

N

N∑
k=1

e−RDk/N . (9.31)

Then

LJ ,D ≥ 1 − 1

N

∞∑
k=1

e−RDk/N = 1 − e−RD/N

N(1 − e−RD/N)
(9.32)

It follows that a locality LJ ,D ≥ λ requires job J to forgo D times its turn for a new slot while the
head of the priority queue, with D satisfying the following condition

D ≥ −N

R
ln

n(1 − λ)

1 + n(1 − λ)
or D ≤ N

R
ln

[
1 + 1

n(1 − λ)

]
. (9.33)
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Hadoop Fair Scheduler (HFS). The next objective of [541] is the development of a more complex
Hadoop scheduler with several new capabilities:
1. Fair sharing at the level of users rather than jobs. This requires a two-level scheduling, the first

level allocates task slots to pools of jobs using a fair sharing policy; at the second level each pool
allocates its slots to jobs in the pool.

2. User controlled scheduling; the second level policy can be either FIFO or fair sharing of the slots
in the pool.

3. Predictable turnaround time. Each pool has a guaranteed minimum share of slots. To accomplish
this goal HFS defines a minimum share timeout and a fair share timeout and when the correspond-
ing timeout occurs it kills buggy jobs or tasks taking a very long time. Instead of using a minimum
skip count D use a wait time to determine how long a job waits to allocate a slot to its next ready-
to-run task.

HFS creates a sorted list of jobs ordered according to its scheduling policy. Then scans down this
list to identify the job allowed to schedule a task next and within each pool applies the pool’s in-
ternal scheduling policy. Pools missing their minimum share are placed at the head of the sorted
list and the other pools are sorted to achieve a weighted fair sharing. The pseudocode of the HFS
scheduling algorithm maintains three variables for each job j initialized as j.level = 0, j.wait = 0, and
j.skipped = false when a heartbeat is received from node n:

HFS scheduling algorithm.

1 for each job j with j.skipped = true

2 increase j.wait by the time since the last heartbeat and set j.skipped = f alse

3 if n has a free slot then
4 sort jobs using hierarchical scheduling policy
5 for j in jobs do
6 if j has a node-local task t on n then
7 set j.wait = 0 and j.level = 0
8 return t to n

9 else
10 if j has a rack-local task t on n and j.level > 2 or j.wait > W1 + 1 then
11 set j.wait = 0 and j.level = 1 return t to n

12 else
13 if j.level = 2 and j.level = 1 and j.wait > W2 + 1
14 or j.level = 0 and j.wait > W1 + W2 + 1 then
15 set j.wait = 0 and j.level = 2 return any unlaunched task t in j to n

16 else
17 set j.skipped = true

18 end if
19 end for
20 end if

A job starts at locality level 0 and can only launch node-local tasks. After at least W1 seconds the
job advances at level 1 and may launch rack-local tasks then after a further W2 seconds, it goes to level
2 and may launch off-rack tasks. If a job launches a local task with a locality higher than the level it is
on, it goes back down to a previous level.

In summary, delay scheduling can be generalized to preferences other than locality and the only
requirement is to have a sorted list of jobs according to some criteria. It can also be applied to resource
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types other than slots. Measurements reported in [541] show that near 100% locality can be achieved
by relaxing fairness.

9.11 DATA-AWARE SCHEDULING
The analysis of delay scheduling emphasizes the important role of data locality for I/O-intensive appli-
cation performance. This is the topic discussed in this section and addressed by a paper covering task
scheduling of I/O-intensive applications [499].

There are many I/O-intensive applications translated into jobs described as a DAG (Direct Acyclic
Graph) of tasks. Examples of such applications include MapReduce, approximate query processing
applied to exploratory data analysis and interactive debugging, and machine learning applied to spam
classification and machine translation.

Jobs running such applications consist of multiple sets of tasks running in every stage; later-stage
tasks consume data generated by early-stage tasks. For some of these applications different subsets of
tasks can be scheduled independently to optimize data locality, without affecting the correctness of the
results. This is the case of an application using the gradient descent algorithm.

The gradient descent is a first-order iterative optimization algorithm. To find local minima, the
algorithm takes steps proportional with the negative of the gradient of the function at each iteration.
Figure 9.8 shows that such an application has multiple stages and that groups of tasks at each stage
can be scheduled independently. Data-aware scheduling improves locality hence, response time and
performance.

In this context late binding means correlating tasks with data dynamically, depending on the state of
the cluster. Data-aware scheduling improves the locality of early-stage tasks and, whenever possible,
the locality of the later-stage tasks of the job. Locality of all tasks is important because the job com-
pletion time is determined by the slowest task thus, a special attention should be paid to straggler13

tasks.
Recall from Chapter 8 that communication latency increases, while the communication bandwidth

decreases, with the “distance” between the server running a task and the one where the data is stored.
An I/O-intensive task operates efficiently when its input data is already loaded in local memory and
less efficiently when the data is stored on a local disk. The task efficiency decreases even further when
the data resides on a different server of the same rack, and it is significantly lower when the data is on
a server in a different rack.

A number of racks are interconnected by a cell switch thus, one of the scheduler’s objective is
to balance cross-rack traffic. Intermediate stages of a job often involve group communication among
tasks running on servers in different racks, e.g., as one-to-many, many-to-one, and many-to-many data
exchanges. A second important goal of data-aware scheduling is to reduce cross-rack communication
through the placement of the producer and consumer tasks.

KMN, the scheduler discussed in [499], launches a number of additional tasks in the early stages
thus, allows choices for the later stage tasks. The name of the system comes from its basic ideas,

13According to the Merriam Webster dictionary, “straggling” means to “walk or move in a slow and disorderly way,” or “spread
out from others of the same kind.”



9.11 DATA-AWARE SCHEDULING 349

FIGURE 9.8

Stages of an application using the graduate descent algorithm. Tasks in the later stages of the computation use
data produced by the early stage tasks. Of the four tasks in the Gradient stage the top group of two tasks can
be scheduled independently of the group of the lower two tasks.

choose K out of N blocks of input data and schedule M > K first-stage tasks on servers where these
blocks reside. The “best” K out of

(
M
K

)
choices increases the likelihood that upstream tasks outputs are

distributed across racks and the next-stage tasks using these data as input are scheduled such that the
cross-rack traffic is balanced. This heuristic is justified because selecting the best location of next stage
tasks based on the output produced by earlier tasks is an NP -complete problem.

KMN is implemented in Scala14 and it is built on top of Spark, the system for in-memory cluster
computing discussed in Section 8.11. One of the novel ideas of the KMN scheduler is to choose K

out of N input data blocks to improve locality of a cluster with S slots per server. If u denotes the
utilization of a slot, then server utilization when all its slots are busy is uS . The probability that one of
the S tasks running on the server has a block of input data on the local disk is pt = 1 − uS .

When we choose K out of N the scheduler can choose
(
N
K

)
input block combinations. The proba-

bility that K out of N tasks enjoy locality, pK|N , is given by the binomial distribution assuming that
the probability of success is pt .

pK|N = 1 −
K−1∑
i=0

(
N

i

)
pi

t (1 − pt)
N−i , (9.34)

14Scala is a general-purpose programming language with a strong static type system and support for functional programming.
Scala code is compiled as Java byte code and runs on JVM (Java Virtual Machine). KMN consists of some 1 400 lines of Scala
code.
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or

pK|N = 1 −
K−1∑
i=0

(
N

i

)(
1 − uS

)i

uS(N−i). (9.35)

It is easy to see that the probability of achieving locality is high even for very large utilization of the
server slots, e.g., when u = 90%.

The probability that all K blocks in one of the f = (
N
K

)
samples achieve locality is pK

t and, as the
samples are independent, the probability that at lest one of the samples achives locality is

p
(1)
K|N = (1 − pK

t )f . (9.36)

This probability increases as f increases.
Selection of the best K outputs from the M upstream tasks using a round-robin strategy is described

by the following pseudocode from [499]:

//Given: upstreamTasks - list with rack, index within rack for each task
//Given: K - number of tasks to pick
// Number of upstream tasks in each rack
upstreamRacksCount = map()
// Initialize
for task in upstreamTasks do

upstreamRacksCount[task:rack] += 1
end for
// Sort the tasks in round-robin fashion
roundRobin = upstreamTasks.sort(CompareTasks)
chosenK = roundRobin[0 : K]
return chosenK
procedure COMPARETASKS(task1; task2)

if task1:idx != task2:idx then
// Sort first by index

return task1:idx < task2:idx
else

// Then by number of outputs
numRack1 = upstreamRacksCount[task1:rack]
numRack2 = upstreamRacksCount[task2:rack]
return numRack1 > numRack2

end if
end procedure

A hash map with input the list of upstream tasks stores how many tasks should run on each rack. Then
the tasks are sorted first by their index in the rack and then by the number of tasks in the rack.

Experiments conducted on an EC2 cluster with 100 servers show that when the KMN scheduler
is used instead of the native Spark scheduler the average job completion time is reduced by 81%.
This reduction is due to the 98% locality of input tasks and a 48% improvement in data transfer. The
overhead of the KMN scheduler is small, it uses 5% additional resources.
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9.12 APACHE CAPACITY SCHEDULER
Apache capacity scheduler [34] is a pluggable MapReduce scheduler for Hadoop. It supports multiple
queues, job priorities, and guarantees to each queue a fraction of the capacity of the cluster. Other
features of the scheduler are:
1. Free resources can be allocated to any queue beyond its guaranteed capacity. Excess allocated

resources can be reclaimed and made available to another queue to meet its guaranteed capacity.
2. Excess resources taken from a queue will be restored to the queue within N minutes of the instance

they are need.
3. Higher priority jobs in a queue have access to resources allocated to the queue, before jobs with

lower priority have access.
4. Does not support preemption; once a job is running, it will not be preempted for a higher priority

job.
5. Each queue enforces a limit on the percentage of resources allocated to a user at any given time, if

there is competition for them.
6. Supports memory-intensive jobs. A job can specify higher memory-requirements than the default,

and the tasks of the job will only be run on TaskTrackers15 that have enough memory to spare.
When a TaskTracker is free, the scheduler chooses the queue that needs to reclaim any resources

the earliest and if no such queue exits it then chooses a queue whose ratio of the number of running
slots to guaranteed capacity is the lowest. Once a queue is selected, the scheduler chooses a job in the
queue. Jobs are sorted based on submission time and priority (if supported). Once a job is selected, the
scheduler chooses a task to run. Periodically, the scheduler takes actions allowing queues to reclaim
capacity as follows:

(a) A queue reclaims capacity when it has at least one task pending and a fraction of its guaranteed
capacity is used by another queue; the scheduler determines the amount of resources to reclaim within
the reclaim time for the queue.

(b) A queue does receive all resources it is allowed to reclaim and its reclaim time is about to expire;
then the scheduler kills the tasks that started the latest.

The scheduler can be configured with several properties for each queue using the file conf/capacity-
scheduler.xml. Queue properties can be defined by concatenating the string mapred.capacity-scheduler.
queue.〈queue − name〉 with the property name. The property name can be:

.guaranteed capacity – percentage of the number of slots guaranteed to be available for jobs in the
queue i.

.reclaim-time-limit – the amount of time, in seconds, before resources distributed to other queues
will be reclaimed.

.supports-priority – if true, priorities of jobs will be taken into account in scheduling decisions.

.user-limit-percent – if there is competition for resources each queue enforces a limit on the per-
centage of resources allocated to a user at any given time. If two users have submitted jobs to a queue,
no single user can use more than 50% of the queue resources. If a third user submits a job, no single

15In Hadoop the JobTracker and TaskTracker daemons handle the processing of MapReduce jobs.
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FIGURE 9.9

The SFQ tree for scheduling when two VMs V M1 and V M2 run on a powerful server. V M1 runs two best-effort
applications A1, with three threads t1,1, t1,2, and t1,3, and A2 with a single thread t2; V M2 runs a
video-streaming application A3 with three threads vs1, vs2, and vs3. The weights of VMs, applications, and
individual threads are shown in parenthesis.

user can use more than 33% of the queue resources. With 4 or more users, no user can use more than
25% of the queue’s resources. A value of 100 implies no user limits are imposed.

9.13 START-TIME FAIR QUEUING
A hierarchical CPU scheduler for multimedia operating systems was proposed in [200]. The basic idea
of the start-time fair queuing (SFQ) algorithm is to organize the consumers of the CPU bandwidth
in a tree structure. The root node is the processor and the leaves of this tree are the threads of each
application.

A scheduler acts at each level of the hierarchy. The fraction of the processor bandwidth, B , allocated
to the intermediate node i is

Bi

B
= wi∑n

j=1 wj

(9.37)

with wj ,1 ≤ j ≤ n, the weight of the n children of node i, see the example in Figure 9.9.
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When a VM is not active, its bandwidth is reallocated to the other VMs active at the time. When one
of the applications of a VM is not active, its allocation is transferred to the other applications running
on the same VM. Similarly, if one of the threads of an application is not runnable then its allocation is
transferred to the other threads of the applications.

Call va(t) and vb(t) the virtual time of threads a and b, respectively, at real time t . The virtual time
of the scheduler at time t is denoted by v(t). Call q the time quantum of the scheduler, in milliseconds.
The threads a and b have their time quantum, qa and qb , weighted by wa and wb , respectively; thus, in
our example, the time quantum of the two threads, are q/wa and q/wb, respectively. The i-th activation
of thread a will start at virtual time Si

a and will finish at virtual time F i
a . We call τ j the real time of the

j -th invocation of the scheduler.
An SFQ scheduler follows several rules:

1. Threads are serviced in the order of their virtual start up time; ties are broken arbitrarily.
2. The virtual startup time of the i-th activation of thread x is

Si
x(t) = max

{
v(τ j ),F (i−1)

x (t)
}

and S0
x = 0. (9.38)

The condition for thread i to be started is that thread (i − 1) has finished and that the scheduler is
active.

3. The virtual finish time of the i-th activation of thread x is

F i
x(t) = Si

x(t) + q

wx

. (9.39)

A thread is stopped when its time quantum has expired; its time quantum is the time quantum of
the scheduler divided by the weight of the thread.

4. The virtual time of all threads is initially zero, v0
x = 0. The virtual time v(t) at real time t is

computed as follows:

v(t) =
{

Virtual start time of the thread in service at time t, if CPU is busy
Maximum finish virtual time of any thread, if CPU is idle

(9.40)

In this description of the algorithm we have included the real time t to stress the dependence of all
events in virtual time on the real time. To simplify the notation we’ll use in our examples the real time
as the index of the event, in other words at S6

a means the start up time of thread a at real time t = 6.

Example. The following example illustrates the application of the SFQ algorithm when there are two
threads with the weights wa = 1 and wb = 4 and the time quantum is q = 12, see Figure 9.10.

Initially S0
a = 0, S0

b = 0, va(0) = 0, and vb(0) = 0. Thread b blocks at time t = 24 and wakes up at
time t = 60.

The scheduling decisions are made as follows:
1. t = 0: we have a tie, S0

a = S0
b and arbitrarily thread b is chosen to run first; the virtual finish time

of thread b is

F 0
b = S0

b + q/wb = 0 + 12/4 = 3. (9.41)

2. t = 3: both threads are runnable and thread b was in service, thus, v(3) = S0
b = 0; then

S1
b = max

{
v(3),F 0

b

}
= max {0,3} = 3. (9.42)
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FIGURE 9.10

Top, the virtual startup time Sa(t) and Sb(t) and the virtual finish time Fa(t) and Fb(t) function of the real time
t for each activation of threads a and b, respectively, are marked at the top and, respectively, at the bottom of
the box representing a running thread. The virtual time of the scheduler v(t) function of the real time is shown
on the bottom graph.

But S0
a < S1

b thus thread a is selected to run. Its virtual finish time is

F 0
a = S0

a + q/wa = 0 + 12/1 = 12. (9.43)

3. t = 15: both threads are runnable and thread a was in service at this time thus,

v(15) = S0
a = 0 (9.44)

and

S1
a = max

{
v(15),F 0

a

}
= max {0,12} = 12. (9.45)

As S1
b = 3 < 12, thread b is selected to run; the virtual finish time of thread b is now

F 1
b = S1

b + q/wb = 3 + 12/4 = 6. (9.46)
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4. t = 18: both threads are runnable and thread b was in service at this time, thus,

v(18) = S1
b = 3 (9.47)

and

S2
b = max

{
v(18),F 1

b

}
= max {3,6} = 6. (9.48)

As S2
b < S1

a = 12, thread b is selected to run again; its virtual finish time is

F 2
b = S2

b + q/wb = 6 + 12/4 = 9. (9.49)

5. t = 21: both threads are runnable and thread b was in service at this time, thus,

v(21) = S2
b = 6 (9.50)

and

S3
b = max

{
v(21),F 2

b

}
= max {6,9} = 9. (9.51)

As S2
b < S1

a = 12, thread b is selected to run again; its virtual finish time is

F 3
b = S3

b + q/wb = 9 + 12/4 = 12. (9.52)

6. t = 24: Thread b was in service at this time, thus,

v(24) = S3
b = 9 (9.53)

S4
b = max

{
v(24),F 3

b

}
= max {9,12} = 12. (9.54)

Thread b is suspended till t = 60, thus, the thread a is activated; its virtual finish time is

F 1
a = S1

a + q/wa = 12 + 12/1 = 24. (9.55)

7. t = 36: thread a was in service and it is the only runnable thread at this time, thus,

v(36) = S1
a = 12 (9.56)

and

S2
a = max

{
v(36),F 2

a

}
= max {12,24} = 24. (9.57)

Then,

F 2
a = S2

a + q/wa = 24 + 12/1 = 36. (9.58)

8. t = 48: thread a was in service and it is the only runnable thread at this time thus,

v(48) = S2
a = 24 (9.59)
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and

S3
a = max

{
v(48),F 2

a

}
= max {24,36} = 36. (9.60)

Then,

F 3
a = S3

a + q/wa = 36 + 12/1 = 48. (9.61)

9. t = 60: thread a was in service at this time, thus,

v(60) = S3
a = 36 (9.62)

and

S4
a = max

{
v(60),F 3

a

}
= max {36,48} = 48. (9.63)

But now thread b is runnable and S4
b = 12.

Thus, thread b is activated and

F 4
b = S4

b + q/wb = 12 + 12/4 = 15. (9.64)

Several properties of the SFQ algorithm are proved in [200]. The algorithm allocates CPU fairly
when the available bandwidth varies in time and provides throughput, as well as delay guarantees.
The algorithm schedules the threads in the order of their virtual startup time, the shortest one first; the
length of the time quantum is not required when a thread is scheduled, but only after the thread has
finished its current allocation. The authors of [200] report that the overhead of the SFQ algorithms is
comparable to that of the Solaris scheduling algorithm.

9.14 BORROWED VIRTUAL TIME
The objective of the borrowed virtual time (BVT) algorithm is to support low-latency dispatching of
real-time applications, as well as a weighted sharing of the CPU among several classes of applications
[155]. Like SFQ, the BVT algorithm supports scheduling a mixture of applications, some with hard,
some with soft real-time constraints, and applications demanding only a best-effort.

Thread i has an effective virtual time, Ei , an actual virtual time, Ai , as well as a virtual time
warp, Wi . The scheduler thread maintains its own scheduler virtual time (SVT) defined as the minimum
actual virtual time Aj of any thread. The threads are dispatched in the order of their effective virtual
time, Ei , a policy called the Earliest Virtual Time (EVT).

The virtual time warp allows a thread to acquire an earlier effective virtual time, in other words, to
borrow virtual time from its future CPU allocation. The virtual warp time is enabled when the variable
warpBack is set; in this case a latency-sensitive thread gains dispatching preference as

Ei ←
{

Ai if warpBack = OFF

Ai − Wi if warpBack = ON
(9.65)

The algorithm measures the time in minimum charging units, mcu, and uses a time quantum called
context switch allowance (C) which measures the real time a thread is allowed to run when competing
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with other threads, measured in multiples of mcu; typical values for the two quantities are mcu =
100 µsec and C = 100 msec. A thread is charged an integer number of mcu.

Context switches are triggered by traditional events, the running thread is blocked waiting for an
event to occur, the time quantum expires, an interrupt occurs; context switching also occurs when a
thread becomes runnable after sleeping. When the thread τi becomes runnable after sleeping, its actual
virtual time is updated as follows

Ai ← max {Ai,SV T } . (9.66)

This policy prevents a thread that has been sleeping for a long time to claim control of the CPU for a
longer period of time than it deserves.

If there are no interrupts threads are allowed to run for the same amount of virtual time. Individual
threads have weights; a thread with a larger weight consumes its virtual time more slowly. In practice,
each thread τi maintains a constant ki and uses its weight wi to compute the amount � used to advance
its actual virtual time upon completion of a run

Ai ← Ai + �. (9.67)

Given two threads a and b

� = ka

wa

= kb

wb

. (9.68)

The BVT policy requires that every time the actual virtual time is updated, a context switch from
the current running thread τi to a thread τj occurs if

Aj ≤ Ai − C

wi

. (9.69)

Example 1. The following example illustrates the application of the BVT algorithm for scheduling
two threads a and b of best-effort applications. The first thread has a weight twice of the weight of the
second, wa = 2wb; when ka = 180 and kb = 90, then � = 90.

We consider periods of real time allocation of C = 9 mcu; the two threads a and b are allowed to
run for 2C/3 = 6 mcu and C/3 = 3 mcu, respectively.

Threads a and b are activated at times

a : 0,5,5 + 9 = 14,14 + 9 = 23,23 + 9 = 32,32 + 9 = 41, . . .

b : 2,2 + 9 = 11,11 + 9 = 20,20 + 9 = 29,29 + 9 = 38, . . .
(9.70)

The context switches occur at real times

2,5,11,14,20,23,29,32,38,41, . . . (9.71)

The time is expressed in units of mcu. The initial run is a shorter one, consists of only 3 mcu; a context
switch occurs when a, which runs first, exceeds b by 2 mcu.

Table 9.4 shows the effective virtual time of the two threads at the time of each context switch. At
that moment, its actual virtual time is incremented by an amount equal to � if the thread was allowed
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Table 9.4 The real time of the context switch and the effective virtual time Ea(t) and Eb(t) at the time
of a context switch. There is no time warp, thus, the effective virtual time is the same as the actual virtual
time. At time t = 0, Ea(0) = Eb(0) = 0 and we choose thread a to run.

Context switch Real time Running thread Effective virtual time of the running thread
1 t = 2 a Ea(2) = Aa(2) = Aa(0) + �/3 = 30

b runs next as Eb(2) = 0 < Ea(2) = 30

2 t = 5 b Eb(5) = Ab(5) = Ab(0) + � = 90

a runs next as Ea(5) = 30 < Eb(5) = 90

3 t = 11 a Ea(11) = Aa(11) = Aa(2) + � = 120

b runs next as Eb(11) = 90 < Ea(11) = 120

4 t = 14 b Eb(14) = Ab(14) = Ab(5) + � = 180

a runs next as Ea(14) = 120 < Eb(14) = 180

5 t = 20 a Ea(20) = Aa(20) = Aa(11) + � = 210

b runs next as Eb(20) = 180 < Ea(20) = 210

6 t = 23 b Eb(23) = Ab(23) = Ab(14) + � = 270

a runs next as Ea(23) = 210 < Eb(23) = 270

7 t = 29 a Ea(29) = Aa(29) = Aa(20) + � = 300

b runs next as Eb(29) = 270 < Ea(29) = 300

8 t = 32 b Eb(32) = Ab(32) = Ab(23) + � = 360

a runs next as Ea(32) = 300 < Eb(32) = 360

9 t = 38 a Ea(38) = Aa(38) = Aa(29) + � = 390

b runs next as Eb(11) = 360 < Ea(11) = 390

10 t = 41 b Eb(41) = Ab(41) = Ab(32) + � = 450

a runs next as Ea(41) = 390 < Eb(41) = 450

to run for its time allocation. The scheduler compares the effective virtual time of the threads and runs
first the one with the minimum effective virtual time.

Figure 9.11 displays the effective virtual time and the real time of the threads a and b. When a
thread is running, its effective virtual time increases as the real time increase; a running thread appears
as a diagonal line. When a thread is runnable, but not running, its effective virtual time is constant;
a runnable period is displayed as a horizontal line. We see that the two threads are allocated equal
amounts of virtual time, but the thread a, with a larger weight, consumes its real time more slowly.

Example 2. Next we consider the previous example but, this time there is an additional thread, c, with
real-time constraints, which wakes up at time t = 9 and then periodically at times t = 18,27,36, . . .

for 3 units of time.
Table 9.5 summarizes the evolution of the system when the real-time application thread c competes

with the two best-effort threads a and b. Context switches occur now at real times

t = 2,5,9,12,14,18,21,23,27,30,32,36,39,41, . . . (9.72)

The context switches at times

t = 9,18,27,36, . . . (9.73)
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FIGURE 9.11

Example 1 – the effective virtual time and the real time of the threads a (solid line) and b (dotted line) with
weights wa = 2wb when the actual virtual time is incremented in steps of � = 90 mcu. The real time the two
threads are allowed to use the CPU is proportional with their weights; the virtual times are equal but thread a

consumes it more slowly. There is no time warp, the threads are dispatched based on their actual virtual time.

are triggered by the waking up of the thread c which preempts the currently running thread. At t = 9
the time warp Wc = −60 gives priority to thread c. Indeed

Ec(9) = Ac(9) − Wc = 0 − 60 = −60 (9.74)

compared with Ea(9) = 90 and Eb(9) = 90. The same conditions occur every time the real-time thread
wakes-up. The best-effort application threads have the same effective virtual time when the real-time
application thread finishes and the scheduler chooses b to be dispatched first. We should also notice
that the ratio of real times used by a and b is the same, as wa = 2wb.

Figure 9.12 shows the effective virtual times for the three threads a, b, and c. Every time when
thread c wakes up it preempts the current running thread and it is immediately scheduled to run.

9.15 FURTHER READINGS
Cloud resource management poses new and extremely challenging problems so there should be no
surprise that this is a very active area of research. A fair number of papers including [98], [436], and
[33] are dedicated to different resource management policies. Several papers are concerned with QoS
[171] and Service Level Agreements [194]. SLA-driven capacity management and SLA-based resource
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Table 9.5 A real-time thread c with a time warp Wc = −60 is waking up periodically at times
t = 18,27,36, . . . for 3 units of time and is competing with the two best-effort threads a and b. The real
time and the effective virtual time of the three threads of each context switch are shown.

Context
switch

Real
time

Running
thread

Effective virtual time of the running thread

1 t = 2 a Ea(2) = Aa(2) = Aa(0) + �/3 = 0 + 90/3 = 30

2 t = 5 b E1
b = A1

b = A0
b + � = 0 + 90 = 90 ⇒ a runs next

3 t = 9 a c wakes up

E1
a = A1

a + 2�/3 = 30 + (−60) = 90

[Ea(9),Eb(9),Ec(9)] = (90,90,−60) ⇒ c runs next

4 t = 12 c SV T (12) = min(90,90)

Es
c (12) = SV T (12) + Wc = 90 + (−60) = 30

Ec(12) = Es
c(12) + �/3 = 30 + 30 = 60 ⇒ b runs next

5 t = 14 b E2
b = A2

b = A1
b + 2�/3 = 90 + 60 = 150 ⇒ a runs next

6 t = 18 a c wakes up

E3
a = A3

a = A2
a + 2�/3 = 90 + 60 = 150

[Ea(18),Eb(18),Ec(18)] = (150,150,60) ⇒ c runs next

7 t = 21 c SV T = min(150,150)

Es
c (21) = SV T + Wc = 150 + (−60) = 90

Ec(21) = Es
c(21) + �/3 = 90 + 30 = 120 ⇒ b runs next

8 t = 23 b E3
b = A3

b = A2
b + 2�/3 = 150 + 60 = 210 ⇒ a runs next

9 t = 27 a c wakes up

E4
a = A4

a = A3
a + 2�/3 = 150 + 60 = 210

[Ea(27),Eb(27),Ec(27)] = (210,210,120) ⇒ c runs next

10 t = 30 c SV T = min(210,210)

Es
c (30) = SV T + Wc = 210 + (−60) = 150

Ec(30) = Es
c(30) + �/3 = 150 + 30 = 180 ⇒ b runs next

11 t = 32 b E4
b = A4

b = A3
b + 2�/3 = 210 + 60 = 270 ⇒ a runs next

10 t = 36 a c wakes up

E5
a = A5

a = A4
a + 2�/3 = 210 + 60 = 270

[Ea(36),Eb(36),Ec(36)] = (270,270,180) ⇒ c runs next

12 t = 39 c SV T = min(270,270)

Es
c (39) = SV T + Wc = 270 + (−60) = 210

Ec(39) = Es
c(39) + �/3 = 210 + 30 = 240 ⇒ b runs next

13 t = 41 b E5
b = A5

b = A4
b + 2�/3 = 270 + 60 = 330 ⇒ a runs next

allocation policies are covered in [5] and [35], respectively. [169] analyzes performance monitoring for
SLAs. Dynamic request scheduling of applications subject to SLA requirements is presented in [72].
The QoS in clouds is analyzed in [72]. Semantic resource allocation using a multi-agent system is
discussed in [162].

The autonomic computing era is presented in [182]. Energy-aware resource allocation in auto-
nomic computing is covered in [36]. Policies for autonomic computing based on utility functions are
analyzed in [266]. Coordination of multiple autonomic managers and power-performance trade-offs
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FIGURE 9.12

Example 2 – the effective virtual time and the real time of the threads a (solid line), b (dotted line), and the c

with real-time constraints (thick solid line). c wakes up periodically at times t = 9,18,27,36, . . ., is active for 3
units of time and has a time warp of 60 mcu.

are dissected in [265]. Autonomic management of cloud services subject to availability guarantees is
presented in [9]. The use of self-organizing agents for service composition in cloud computing is the
subject of [214].

An authoritative reference on fault-tolerance is [43]; applications of control theory to resource
allocation discussed in [157] and [93] cover resource multiplexing in data centers. Admission control
policies are discussed in [211]. Optimal control problems are analyzed in [222] and system testing is
covered in [227]. Verification of performance assertion on the cloud is the subject of [276].

Power and performance management are the subject of [285] and performance management for
cluster based web services is covered in [386]. Autonomic management of heterogeneous workloads
is discussed in [476] and application placement controllers is the topic of [479]. Application of pat-
tern matching for forecasting on demand resources needs are discussed in [89]. Economic models for
resource allocations are covered in [324,326], and [435].

Scheduling and resource allocation are also covered by numerous papers: a batch queuing system on
clouds with Hadoop and HBase is presented in [547]; data flow driven scheduling for business applica-
tions is covered in [152]. Scalable thread scheduling is the topic of [524]. Reservation-based scheduling
is discussed in [127]. Anti-caching in database management is the subject of [133]. Scheduling of real
time services in cloud computing is presented in [309]. The OGF (Open Grid Forum) OCCI (Open
Cloud Computing Interface) is involved in the definition of virtualization formats and APIs for IaaS.
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Flexible memory exchange, bag of tasks scheduling and distributed low latency scheduling are cov-
ered in [375], [379] and [384], respectively. Reference [428] analyzes capacity management for pools
of resources.

9.16 EXERCISES AND PROBLEMS

Problem 1. Analyze the benefits and the problems posed by the four approaches for the implemen-
tation of resource management policies: control theory, machine learning, utility-based,
market-oriented.

Problem 2. Can optimal strategies for the five classes of policies, admission control, capacity alloca-
tion, load balancing, energy optimization, and QoS guarantees be actually implemented
in a cloud? The term “optimal” is used in the sense of control theory. Support your an-
swer with solid arguments. Optimal strategies for one may be in conflict with optimal
strategies for one or more of the other classes. Identify and analyze such cases.

Problem 3. Analyze the relationship between the scale of a system and the policies and the mech-
anisms for resource management. Consider also the geographic scale of the system in
your arguments.

Problem 4. What are the limitations of the control theoretic approach discussed in Section 9.4?
Do the approaches discussed in Sections 9.5 and 9.6 remove or relax some of these
limitations? Justify your answers.

Problem 5. Multiple controllers are probably necessary due to the scale of the cloud. Is it beneficial
to have system and application controllers? Should the controllers be specialized; for
example, some to monitor performance, others to monitor power consumption? Should
all the functions we want to base the resource management policies on be integrated in
a single controller and one such controller be assign to a given number of servers, or to
a geographic region? Justify your answers.

Problem 6. In a scale-free network the degrees of the nodes have an exponential distribution.
A scale-free network could be used as a virtual network infrastructure for cloud comput-
ing. Controllers represent a dedicated class of nodes tasked with resource management;
in a scale-free network nodes with a high connectivity can be designated as controllers.
Analyze the potential benefit of such a strategy.

Problem 7. Use the start-time fair queuing (SFQ) scheduling algorithm to compute the virtual
startup and the virtual finish time for two threads a and b with weights wa = 1 and
wb = 5 when the time quantum is q = 15 and thread b blocks at time t = 24 and wakes
up at time t = 60. Plot the virtual time of the scheduler function of the real time.

Problem 8. Apply the borrowed virtual time (BVT) scheduling algorithm to the problem in Exam-
ple 2 of Section 9.14 but with a time warp of Wc = −30.

Problem 9. In Section 9.2 we introduced the concept of energy-proportional systems and we saw
that different system components have different dynamic ranges. Sketch a strategy to
reduce the power consumption in a lightly-loaded cloud and discuss the steps for placing
a computational server in a standby mode and then for bringing it back up to an active
mode.
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Problem 10. Overprovisioning is the reliance on extra capacity to satisfy the needs of a large com-
munity of users when the average-to-peak resource demand ratio is very high. Give an
example of a large-scale system using overprovisioning and discuss if overprovisioning
is sustainable in that case and what are the limitations of it. Is cloud elasticity based on
overprovisioning sustainable? Give the arguments to support your answer.
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Three classes of fundamental abstractions are necessary to describe the operation of a computing sys-
tem: interpreters, memory, and communications channels, [434]. Their respective physical realizations
are: processors to transform information; primary and the secondary memory to store information; and
communication systems allowing different systems to interact with one another. Processors, memory,
and communication systems have different bandwidth, latency, reliability, and other physical charac-
teristics. Software systems manage these resources and transform the physical implementations of the
three abstractions into computer systems capable to process applications.

The traditional solution for a data center is to install a standard operating system (OS) on individual
systems and to rely on conventional OS techniques to ensure resource sharing, application protection,
and performance isolation. Cloud service providers, as well as cloud users, face multiple challenges in
such a setup.

CSPs are stressed by system administration, accounting, security, and system resource manage-
ment. The users are under pressure to develop and optimize the performance of their application for
one system and, eventually, to start over again when the application is moved to another data center
with different system software and libraries.

Resource virtualization, the technique analyzed in this chapter, is a ubiquitous alternative to the
traditional data center operation. Virtualization, a basic tenet of cloud computing, simplifies some of
the resource management tasks. For example, the state of a virtual machine running under a hypervisor
can be saved and migrated to another server to balance the load. At the same time, virtualization
allows users to operate in environments they are familiar with, rather than forcing them to work in
idiosyncratic environments.

Resource sharing in a VM environment requires not only ample hardware support and, in particular,
powerful processors and fast interconnects, but also architectural support for multi-level control as
resource sharing occurs at multiple levels. Resources, such as CPU cycles, memory, secondary storage,
and I/O and communication bandwidth, are shared among several VMs. The resources of one VM are
shared among multiple processes or threads of an application.

This chapter starts with a discussion of virtualization principles and the motivation for virtualiza-
tion. Section 10.1 is focused on performance and security isolation. Alternatives for the implementation
of virtualization are analyzed in Section 10.2.

Two distinct approaches for processor virtualization, full virtualization and paravirtualization are
presented in Section 10.3. Full virtualization is feasible when the hardware abstraction provided by
the hypervisor is an exact replica of the physical hardware. In this case any operating system running
on the hardware will run without modifications under the hypervisor. In contrast, paravirtualization
requires modifications of the guest operating systems because the hardware abstraction provided by
the hypervisor does not support all functions the hardware does.

Cloud Computing. DOI: 10.1016/B978-0-12-812810-7.00013-3
Copyright © 2018 Elsevier Inc. All rights reserved.
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Traditional processor architectures support two execution modes, kernel and user mode. In a vir-
tualized environment the hypervisor controls resource sharing among the VMs. A guest OS manages
resources allocated to the applications running under a VM. While a two-level scheduling for shar-
ing CPU cycles can be easily implemented, sharing of other resources such as cache, memory, and
I/O bandwidth is more intricate. In 2005 and 2006 the x86 processor architecture was extended to
provide hardware support for virtualization, as discussed in Section 10.4. Nested virtualization allows
hypervisors to run inside a VM complicating even further the virtualization landscape.

Several hypervisors are used nowadays. One of them, Xen, is analyzed in Section 10.5 and an opti-
mization of its network performance is presented in Section 10.6. KVM, a virtualization infrastructure
of the Linux kernel, is discussed in Section 10.7 and nested virtualization is analyzed in Section 10.8
followed by the presentation of a trusted kernel virtualization in Section 10.9.

High performance processors, e.g., Itanium,1 have multiple functional units, but do not provide ex-
plicit support for virtualization, as discussed in Section 10.10 which covers Itanium paravirtualization.
System functions, critical for the performance of a VM environment are cache and memory manage-
ment, handling of privileged instructions, and I/O handling.

Cache misses are an important source of performance degradation in a VM environment as we shall
see in Section 10.11. An overview of open source software platforms for virtualization is presented in
Section 10.12. The potential risks of virtualization are the subject of Section 10.13 and virtualization
software is discussed in Section 10.14.

10.1 PERFORMANCE AND SECURITY ISOLATION IN COMPUTER CLOUDS
To exhibit a predictable performance an application has to be isolated from other applications it shares
resources with. Performance isolation is a critical condition for QoS guarantees in cloud computing
where system resources are shared.

If the run-time behavior of an application is affected by other applications running concurrently and
thus, competing for CPU cycles, cache, main memory, disk and network access, it is rather difficult to
predict its completion time. Therefore, it is equally difficult, or in some instances impossible, to opti-
mize application’s performance. Performance unpredictability is a “deadly sin” for real-time operation
and for embedded systems.

Several operating systems including Linux/RK [374], QLinux [475], and SILK [58] support some
performance isolation. In spite of the efforts to support performance isolation, interactions among
applications sharing the same physical system, often described as QoS crosstalk, still exist [482].
Accounting for all consumed resources and distributing the overhead of different system activities,
including context switching and paging to individual users, is challenging.

Processor virtualization presents multiple copies of the same processor or of a core on multicore
systems and the application code is executed directly by the hardware. Processor virtualization is differ-
ent than processor emulation when the machine instructions of guest system are emulated by software
running on the host system. Emulation is much slower than virtualization. For example, Microsoft’s

1In the late 2000s Itanium was the fourth-most deployed microprocessor architecture for enterprise-class systems. The first three
were Intel’s x86-64, IBM’s Power Architecture, and Sun’s SPARC.
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VirtualPC was designed to run on x86 processor architecture. VirtualPC was running on emulated x86
hardware until Apple adopted Intel chips.

Traditional operating systems multiplex multiple processes or threads, while virtualization sup-
ported by a hypervisor multiplexes full operating systems. There is a performance penalty due to
hypervisor multiplexing. An OS is heavyweight and the overhead of context switching carried out
by the hypervisor is larger.

A hypervisor executes directly on the hardware a subset of frequently-used machine instructions
generated by the application and emulates privileged instructions including device I/O requests. The
subset of instructions executed directly by the hardware includes arithmetic instructions, memory ac-
cess and branching instructions.

Operating systems use the process abstraction not only for resource sharing, but also to support iso-
lation. Unfortunately, this is not sufficient from a security perspective, once a process is compromised
it is rather easy for an attacker to penetrate the entire system.

The software running on a VM has the constraints of its own dedicated hardware, it can only access
virtual devices emulated by the software. This layer of software has the potential to provide a level
of isolation nearly equivalent to the isolation presented by two different physical systems. Therefore,
virtualization can be used to improve security in a cloud computing environment.

A hypervisor is a much simpler and better specified system than a traditional OS. For example,
the Xen hypervisor discussed in Section 10.5 has approximately 60 000 lines of code while the Denali
hypervisor [522] has only about half, 30 000 lines of code. The security vulnerability of hypervisors is
considerably reduced, as the systems expose a much smaller number of privileged functions.

For example, Xen can be accessed through 28 hypercalls, while a standard Linux OS allows hun-
dreds, e.g., Linux 2.6.11 allows 289 system calls. A traditional OS supports special devices, e.g.,
/dev/kmem, and many privileged third party programs, e.g., sendmail and sshd, in addition to a plethora
of system calls.

10.2 VIRTUAL MACHINES
A VM is an isolated environment with access to a subset of physical resources of the computer system.
Each VM appears to be running on the bare hardware, giving the appearance of multiple instances of
the same computer, though all are supported by a single physical system. The history of VMs can be
traced back to the early 1960s.2 In early 1970s IBM released its widely used VM 370 system followed
in 1974 by the MVS (Multiple Virtual Storage) system.

There are two types of VMs, process and system, Figure 10.1A:

• A process VM is a virtual platform created for an individual process and destroyed once the process
terminates. Virtually all operating systems provide a process VM for each one of the applications
running, but the more interesting process VMs are those which support binaries compiled on a
different instruction set.

2In July 1963 MIT announced Project MAC (Multiple Access Computer) and choose GE-645 as the mainframe for its Multics
project. IBM was GE’s competitor and realized that there is a demand for such systems and designed the CP-40 mainframe
followed by CP-67, also called CP/CMS mainframes. CP was a program running on the mainframe used to create VMs running
a single-user OS called CMS.
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FIGURE 10.1

(A) A taxonomy of process and system VMs for the same and for different Instruction Set Architectures (ISAs).
Traditional, Hybrid, and Hosted are three classes of VMs for systems with the same ISA. (B) Traditional VMs;
the hypervisor supports multiple VMs and runs directly on the hardware. (C) Hybrid VM; the hypervisor shares
the hardware with a host OS and supports multiple VMs. (D) Hosted VM; the hypervisor runs under a host OS.

• A system VM supports an OS together with many user processes. When the VM runs under the
control of a normal OS and provides a platform-independent host for a single application we have
an application VM, e.g., Java Virtual Machine (JVM).

A system VM provides a complete system; each VM can run its own OS, which in turn can run
multiple applications. Systems such as Linux Vserver http://linux-vserver.org, OpenVZ (Open Virtu-
aliZation) [378], FreeBSD Jails [419], and Solaris Zones [409] based on Linux, FreeBSD, and Solaris,

http://linux-vserver.org
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Table 10.1 A non-exhaustive inventory of system VMs. The host ISA refers to the instruction set of the
hardware; the guest ISA refers to the instruction set supported by the VM. The VM could run under
a host OS, directly on the hardware, or under a hypervisor. The guest OS is the OS running under the
control of a VM which in turn may run under the control of the VM monitor.

Name Host ISA Guest ISA Host OS Guest OS Company
Integrity VM x86-64 x86-64 HP-Unix Linux, Windows

HP Unix
HP

Power VM Power Power No host OS Linux, AIX IBM

z/VM z-ISA z-ISA No host OS Linux on z-ISA IBM

Lynx Secure x86 x86 No host OS Linux, Windows LinuxWorks

Hyper-V Server x86-64 x86-64 Windows Windows Microsoft

Oracle VM x86, x86-64 x86, x86-64 No host OS Linux, Windows Oracle

RTS Hypervisor x86 x86 No host OS Linux, Windows Real Time
Systems

SUN xVM x86, SPARC same as host No host OS Linux, Windows SUN

VMware EX
Server

x86, x86-64 x86, x86-64 No host OS Linux, Windows
Solaris, FreeBSD

VMware

VMware Fusion x86, x86-64 x86, x86-64 MAC OS x86 Linux, Windows
Solaris, FreeBSD

VMware

VMware Server x86, x86-64 x86, x86-64 Linux, Windows Linux, Windows
Solaris, FreeBSD

VMware

VMware
Workstation

x86, x86-64 x86, x86-64 Linux, Windows Linux, Windows
Solaris, FreeBSD

VMware

VMware Player x86, x86-64 x86, x86-64 Linux
Windows

Linux, Windows
Solaris, FreeBSD

VMware

Denali x86 x86 Denali ILVACO, NetBSD University of
Washington

Xen x86, x86-64 x86, x86-64 Linux
Solaris

Linux, Solaris
NetBSD

University of
Cambridge

respectively, implement OS-level virtualization technologies. Table 10.1 lists a subset of system VMs.
A literature search reveals the existence of some 60 different VMs, many created by large software
companies.

The OS-level virtualization allows a physical server to run multiple isolated OS instances subject
to several constraints; the instances are known as containers, Virtual Private Servers, or Virtual Envi-
ronments. For example, OpenVZ requires both the host and the guest OS to be Linux distributions.
These systems claim performance advantages over the systems based on a hypervisor such as Xen or
VMware. According to [378], there is only a 1% to 3% performance penalty for OpenVZ as compared
to a standalone Linux server. OpenVZ is licensed under the GPL version 2.

Recall that a hypervisor allows several VMs to share a system. Several organizations of the software
stack are possible:

• Traditional – VM, also called a “bare metal” hypervisor, a thin software layer that runs directly on
the host machine hardware; its main advantage is performance, Figure 10.1B. Examples: VMWare
ESX, ESXi Servers, Xen, OS370, and Denali.
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• Hybrid – the hypervisor shares the hardware with an existing OS, Figure 10.1C. Example: VMWare
Workstation.

• Hosted – the VM runs on top of an existing OS, Figure 10.1D; the main advantage of this approach
is that the VM is easier to build and install. Another advantage of this solution is that the hypervisor
could use several components of the host OS, such as the scheduler, the pager and the I/O drivers,
rather than providing its own. A price to pay for this simplicity is the increased overhead and the
associated performance penalty; indeed, the I/O operations, page faults, and scheduling requests
from a guest OS are not handled directly by the hypervisor, instead they are passed to the host OS.
Performance, as well as the challenges to support complete isolation of VMs make this solution
less attractive for servers in a cloud computing environment. User-mode Linux is an example of a
hosted VM.

As pointed out in [102] services provided by the VM “operate below the abstractions provided
by the guest OS....... it is difficult to provide a service that checks file system integrity without the
knowledge of on-disk structure.” Hypervisors discussed in Section 8.4 manage resource sharing among
the VMs running on a physical system.

10.3 FULL VIRTUALIZATION AND PARAVIRTUALIZATION
In 1974 Popek and Goldberg gave a set of sufficient conditions for a computer architecture to support
virtualization and allow a hypervisor to operate efficiently. Their crisp description of these conditions
in [406] is a major contribution to the field:

1. A program running under the hypervisor should exhibit
a behavior essentially identical to that demonstrated
when running on an equivalent machine directly.

2. The hypervisor should be in complete control of the
virtualized resources.

3. A statistically significant fraction of machine instructions
must be executed without the intervention of the hypervisor.

One way to identify an architecture suitable for a VM is to distinguish sensitive machine instructions
which require special precautions at execution time from machine instructions that can be executed
without special precautions. In turn, sensitive instructions are:

• Control sensitive, instructions that attempt to change either the memory allocation, or operate in
kernel mode.

• Mode sensitive, instructions whose behavior is different in kernel mode.

An equivalent formulation of the conditions for efficient virtualization can be based on this classifi-
cation of machine instructions: a hypervisor for a third or later generation computer can be constructed
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FIGURE 10.2

(A) Full virtualization requires the hardware abstraction layer of the guest OS to have some knowledge about
the processor architecture. The guest OS runs unchanged thus, this virtualization mode is more efficient than
paravirtualization. (B) Paravirtualization is used when the processor architecture is not easily virtualizable. The
hardware abstraction layer of the guest OS does not have knowledge about the hardware. The guest OS is
modified to run under the hypervisor and must be ported to individual hardware platforms.

if the set of sensitive instructions is a subset of the privileged instructions of that machine. To handle
non-virtualizable instructions one could resort to two strategies:

• Binary translation. The hypervisor monitors the execution of guest operating systems; non-
virtualizable instructions executed by a guest OS are replaced with other instructions.

• Paravirtualization. A guest OS is modified to use only instructions that can be virtualized.

There are two basic approaches to processor virtualization, see Figure 10.2: full virtualization when
each VM runs on an exact copy of the actual hardware; and paravirtualization when each VM runs on
a slightly modified copy of the actual hardware. Paravirtualization is often adopted for several reasons:
(1) some aspects of the hardware cannot be virtualized; (2) has better performance; and (3) presents a
simpler interface.

Full virtualization requires a virtualizable architecture. The hardware is fully exposed to the guest
OS which runs unchanged and it is necessary to ensure that this execution mode is efficient. Systems
such as the VMware EX Server support full virtualization on x86 architecture and have to address
several problems, including the virtualization of the MMU. Privileged x86 instructions executed by a
guest OS fail silently thus, traps must be inserted whenever privileged instructions are issued by a guest
OS. The system must also maintain shadow copies of system control structures, such as page tables,
and trap every event affecting the state of these control structures. Therefore, the overhead of many
operations is substantial.

Computer architectures such as x86 are not easily virtualizable as we shall see in Section 10.4.
Paravirtualization is the alternative, though it has its own problems. Paravirtualization requires modifi-
cations to a guest OS. Moreover, the code of the guest OS has to be ported to each individual hardware
platform. Xen [53] and Denali [522] are based on paravirtualization.
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Generally, the virtualization overhead negatively affects the performance of applications running
under a VM. Sometimes, an application running under a VM could perform better than one running
under a classical OS. This is the case of cache isolation when the cache is divided among VMs. In this
case it is beneficial to run workloads competing for cache in two different VMs [453]. Often, the cache
is not equally partitioned among processes running under a classical OS and one process may use the
cache space better than the other. For example, in case of two processes, one write-intensive and the
other read-intensive, the cache may be aggressively filled by the first process.

The I/O performance of applications running under a VM depends on factors such as, the disk
partition used by the VM, the CPU utilization, the I/O performance of the competing VMs, and the I/O
block size. The discrepancies between the optimal choice and the default ones on a Xen platform are
between 8% and 35% [453].

10.4 HARDWARE SUPPORT FOR VIRTUALIZATION
In early 2000 it became obvious that hardware support for virtualization was necessary and Intel and
AMD started working on the first generation virtualization extensions of the x863 architecture. In 2005
Intel released two Pentium 4 models supporting VT-x and in 2006 AMD announced Pacifica and then
several Athlon 64 models.

The Virtual Machine Extension (VMX) was introduced by Intel in 2006 and AMD responded with
the Secure Virtual Machine (SVM) instruction set extension. The Virtual Machine Control Structure
(VMCS) of VMX tracks the host state and the guest VMs as control is transferred between them. Three
types of data are stored in VMCS:

• Guest state. Holds virtualized CPU registers (e.g., control registers or segment registers) automati-
cally loaded by the CPU when switching from kernel mode to guest mode on VMEntry.

• Host state. Data used by the CPU to restore register values when switching back from guest mode
to kernel mode on VMExit.

• Control data. Data used by the hypervisor to inject events such as exceptions or interrupts into VMs
and to specify which events should cause a VMExit; it is also used by the CPU to specify the VMExit
reason.

VMCS is shadowed in hardware to overcome the performance penalties of nested hypervisors dis-
cussed in Section 10.8. This allows the guest hypervisor to access VMCS directly, without disrupting
the root hypervisor in case of nested virtualization. VMCS shadow access is almost as fast as a non-
nested hypervisor environment. VMX includes several instructions [250]:
1. VMXON – enter VMX operation;
2. VMXOFF – leave VMX operation;
3. VMREAD – read from the VMCS;

3x86-32, i386, x86 and IA-32 refer to the Intel CISC-based instruction architecture, now supplanted by x86-64 which supports
vastly larger physical and virtual address spaces. The x86-64 specification is distinct from Itanium, initially known as IA-64
architecture.
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4. VMWRITE – write to the VMCS;
5. VMCLEAR – clear VMCS;
6. VMPTRLD – load VMCS pointer;
7. VMPTRST – store VMCS pointer;
8. VMLAUNCH/VMRESUME – launch or resume a VM; and
9. VMCALL – call to the hypervisor.

A 2006 paper [356] analyzes the challenges to virtualizing Intel architectures and then presents
VT-x and VT-i virtualization architectures for x86 and Itanium architectures, respectively. Software
solutions at that time addressed some of the challenges, but hardware solution could improve not only
performance but also security and, at the same time simplify the software systems. The problems faced
by virtualization of the x86 architecture are:

• Ring deprivileging. This means that a hypervisor forces a guest VM including an OS and an ap-
plication, to run at a privilege level greater than 0. Recall that the x86 architecture provides four
protection rings, 0–3. Two solutions are then possible:
1. The (0/1/3) mode when the hypervisor, the guest OS, and the application run at privilege levels

0,1, and 3, respectively; this mode is not feasible for x86 processors in 64-bit mode, as we shall
see shortly.

2. The (0/3/3) mode when the hypervisor, a guest OS, and applications run at privilege levels 0,3
and 3, respectively.

• Ring aliasing. Such problems are created where a guest OS is forced to run at a privilege level other
than that it was originally designed for. For example, when the CS register4 is PUSHed, the current
privilege level in the CR is also stored on the stack [356].

• Address space compression. A hypervisor uses parts of the guest address space to store several
system data structures such as the interrupt-descriptor table and the global-descriptor table. Such
data structures must be protected, but the guest software must have access to them.

• Non-faulting access to privileged state. Several instructions, LGDT, SIDT, SLDT, and LTR which
load the registers GDTR, IDTR, LDTR, and TR, can only be executed by software running at
privileged level 0 because these instructions point to data structures that control the CPU operation.
Nevertheless, instructions that store these registers fail silently when executed at a privilege level
other than 0. This implies that a guest OS executing one of these instructions does not realize that
the instruction has failed.

• Guest system calls. Two instructions, SYSENTER and SYSEXIT support low-latency system calls.
The first causes a transition to privilege level 0, while the second causes a transition from privilege
level 0 and fails if executed at a level higher than 0. The hypervisor must then emulate every guest
execution of either of these instructions and that has a negative impact on performance.

• Interrupt virtualization. In response to a physical interrupt the hypervisor generates a “virtual inter-
rupt” and delivers it later to the target guest OS. But every OS has the ability to mask interrupts,5

thus the virtual interrupt could only be delivered to the guest OS when the interrupt is not masked.

4The x86 architecture supports memory segmentation with a segment size of 64K. The CR (code-segment register) points to the
code segment. MOV, POP, and PUSH instructions serve to load and store segment registers, including CR.
5The interrupt flag, IF in the EFLAGS register, is used to control interrupt masking.
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FIGURE 10.3

(A) The two modes of operation of VT-x, and the two operations to transit from one to another; (B) VMCS
includes host-state and guest-state areas which control the VM entry and VM exit transitions.

Keeping track of all guest OS attempts to mask interrupts greatly complicates the hypervisor and
increases the overhead.

• Access to hidden state. Elements of the system state, e.g., descriptor caches for segment registers,
are hidden; there is no mechanism for saving and restoring the hidden components when there is a
context switch from one VM to another.

• Ring compression. Paging and segmentation are the two mechanisms to protect hypervisor code
from being overwritten by guest OS and applications. Systems running in 64-bit mode can only use
paging, but paging does not distinguish between privilege levels 0, 1, and 2, thus the guest OS must
run at privilege level 3, the so called (0/3/3) mode. Privilege levels 1 and 2 cannot be used thus,
the name ring compression.

• Frequent access to privileged resources increases hypervisor overhead. The task-priority register
(TPR) is frequently used by a guest OS; the hypervisor must protect the access to this register and
trap all attempts to access it. That can cause a significant performance degradation.

Similar problems exist for the Itanium architecture discussed in Section 10.10.
A major architectural enhancement provided by the VT-x is the support for two modes of operation

and a new data structure, VMCS, including host-state and guest-state areas, see Figure 10.3:

• VMX root: intended for hypervisor operations, and very close to the x86 without VT-x.
• VMX non-root: intended to support a VM.

When executing a VMEntry operation the processor state is loaded from the guest-state of the VM
scheduled to run; then the control is transferred from the hypervisor to the VM. A VMExit saves the
processor state in the guest-state area of the running VM; it loads the processor state from the host-state
area, and finally transfers control to the hypervisor. All VMExit operations use a common entry point
to the hypervisor.

Each VMExit operation saves in VMCS the reason for the exit and eventually some qualifications.
Some of this information is stored as bitmaps. For example, the exception bitmap specifies which one
of 32 possible exceptions caused the exit. The I/O bitmap contains one entry for each port in a 16-bit
I/O space.
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The VMCS area is referenced with a physical address and its layout is not fixed by the architecture,
but can be optimized by a particular implementation. The VMCS includes control bits that facilitate
the implementation of virtual interrupts. For example, external-interrupt exiting, when set, causes the
execution of a VM exit operation; moreover the guest is not allowed to mask these interrupts. When
the interrupt window exiting is set, a VM exit operation is triggered if the guest is ready to receive
interrupts.

Processors based on two new virtualization architectures, VT-d6 and VT-c have been developed.
The first supports the I/O Memory Management Unit (I/O MMU) virtualization and the second the
network virtualization.

Also known as PCI pass-through the I/O MMU virtualization gives VMs direct access to peripheral
devices. VT-d supports:

• DMA address remapping, address translation for device DMA transfers.
• Interrupt remapping, isolation of device interrupts and VM routing.
• I/O device assignment, the devices can be assigned by an administrator to a VM in any configura-

tion.
• Reliability features, it reports and records DMA and interrupt errors that may otherwise corrupt

memory and impact VM isolation.

10.5 XEN – A HYPERVISOR BASED ON PARAVIRTUALIZATION
Xen is a hypervisor developed by the Computing Laboratory at the University of Cambridge, United
Kingdom, in 2003. Since 2010 Xen has been a free software, developed by the community of users and
licensed under the GNU General Public License (GPLv2). Several operating systems including Linux,
Minix, NetBSD, FreeBSD, NetWare, and OZONE can operate as paravirtualized Xen guest operating
systems running on x86, x86-64, Itanium, and ARM architectures.

The goal of the Cambridge group led by Ian Pratt was to design a hypervisor capable of scal-
ing to about 100 VMs running standard applications and services without any modifications to the
Application Binary Interface. Fully aware that the x86 architecture does not support efficiently full
virtualization, the designers of Xen opted for paravirtualization.

We analyze next the original implementation of Xen for the x86 architecture discussed in [53].
The creators of Xen used the concept of domain (Dom) to refer to the ensemble of address spaces
hosting a guest OS and address spaces for applications running under this guest OS. Each domain runs
on a virtual x86 CPU. Dom0 is dedicated to the execution of Xen control functions and privileged
instructions, and DomU is a user domain, Figure 10.4.

The most important aspects of Xen paravirtualization for virtual memory management, CPU mul-
tiplexing, and I/O device management are summarized in Table 10.2 [53]. Efficient management of
the TLB (Translation Look-aside Buffer), a cache for page table entries, requires either the ability to
identify the OS and the address space of every entry, or to allow software management of the TLB.

6The corresponding AMD architecture is called AMD-Vi.
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FIGURE 10.4

Xen for the x86 architecture. The management OS dedicated to the execution of Xen control functions and
privileged instructions resides in Dom0. Guest operating systems and applications reside in DomU. A guest OS
could be either XenoLinix, XenoBSD, or XenoXP in the original Xen implementation [53].

Table 10.2 Paravirtualization strategies for virtual memory management, CPU multiplexing, and I/O
devices in the original x86 Xen implementation.

Function Strategy
Paging A domain may be allocated discontinuous pages. A guest OS has direct access to page tables and han-

dles pages faults directly for efficiency; page table updates are batched for performance and validated
by Xen for safety.

Memory Memory is statically partitioned between domains to provide strong isolation. XenoLinux implements
a balloon driver to adjust domain memory.

Protection A guest OS runs at a lower priority level, in ring 1, while Xen runs in ring 0.

Exceptions A guest OS must register with Xen a description table with the addresses of exception handlers previ-
ously validated.

System To increase efficiency, a guest OS must install a “fast” handler.

Interrupts A lightweight event system replaces hardware interrupts; synchronous system calls from a domain to
Xen use hypercalls and notifications are delivered using the asynchronous event system.

Multiplexing A guest OS may run multiple applications.

I/O devices Data is transferred using asynchronous I/O rings.

Disk access Only Dom0 has direct access to IDE and SCSI disks; all other domains access persistent storage
through the Virtual Block Device (VBD) abstraction.
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Unfortunately, the x86 architecture did not support either the tagging of TLB entries or the software
management of the TLB. As a result, the address space switching when the hypervisor activates a
different OS requires a complete TLB flush. Flushing the TLB has a negative impact on performance.

The solution adopted was to load Xen in a 64 MB segment at the top of each address space and
to delegate the management of hardware page tables to the guest OS with minimal intervention from
Xen. The 64 MB region occupied by Xen at the top of every address space is not accessible, or not
re-mappable by the guest OS.

When a new address space is created, the guest OS allocates and initializes a page from its own
memory, registers it with Xen, and relinquishes control of the write operations to the hypervisor. Thus,
a guest OS could only map pages it owns. On the other hand, a guest OS has the ability to batch
multiple page update requests to improve performance. A similar strategy is used for segmentation.

The x86 Intel architecture supports four protection rings or privilege levels; virtually all OS kernels
run at level 0, the most privileged one, and applications at level 3. In Xen the hypervisor runs at level
0, the guest OS at level 1, and applications at level 3.

Applications make system calls using the so called hypercalls processed by Xen; privileged in-
structions issued by a guest OS are paravirtualized and must be validated by Xen. When a guest OS
attempts to execute a privileged instruction directly, the instruction fails silently.

Memory is statically partitioned between domains to provide strong isolation. To adjust domain
memory XenoLinux implements a balloon driver which passes pages between Xen and its own page
allocator. For the sake of efficiency page faults are handled directly by the guest OS.

Xen schedules individual domains using the Borrowed Virtual Time scheduling algorithm discussed
in Section 9.14. BVT is a work conserving7 and low-latency wake-up scheduling algorithm. BVT uses
a virtual-time warping mechanism to support low-latency dispatch to ensure timely execution whenever
needed, for example, for timely delivery of TCP acknowledgments.

A guest OS must register with Xen a description table with the addresses of exception handlers
for validation. Exception handlers are identical with the native x86 handlers; the only one that does
not follow this rule is the page fault handler which uses an extended stack frame to retrieve the faulty
address because the privileged register CR2, where this address is found, is not available to a guest OS.

Each guest OS can validate and then register a “fast” exception handler executed directly by the
processor without the interference of Xen. A lightweight event system replaces hardware interrupts;
notifications are delivered using this asynchronous event system. Each guest OS has a timer interface
and is aware of “real” and “virtual” time.

XenStore is a Dom0 process supporting a system-wide registry and naming service. It is imple-
mented as a hierarchical key-value storage. A watch function of the process informs listeners of
changes of the key in the storage they have subscribed to. XenStore communicates with guest VMs
via shared memory using Dom0 privileges, rather than grant tables.

Toolstack is another Dom0 component responsible for creating, destroying, and managing the re-
sources and privileges of VMs. To create a new VM a user provides a configuration file describing
memory and CPU allocations, as well as device configuration. Then the Toolstack parses this file and
writes this information in the XenStore. Toolstack takes advantage of Dom0 privileges to map guest

7A work conserving scheduling algorithm does not allow the processor to be idle when there is work to be done.
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memory, to load a kernel and virtual BIOS and to set up initial communication channels with the
XenStore and with the virtual console when a new VM is created.

Xen defines abstractions for networking and I/O devices. Split drivers have a frontend in the DomU
and the backend in Dom0; the two communicate via a ring in shared memory. Xen enforces access
control for the shared memory and passes synchronization signals. Access Control Lists (ACLs) are
stored in the form of grant tables, with permissions set by the owner of the memory.

Data for I/O and network operations moves vertically through the system, very efficiently, using
a set of I/O rings, see Figure 10.5. A ring is a circular queue of descriptors allocated by a domain
and accessible within Xen. Descriptors do not contain data, the data buffers are allocated off-band by
the guest OS. Memory committed for I/O and network operations is supplied in a manner designed to
avoid “crosstalk” and the I/O buffers holding the data are protected by preventing page faults of the
corresponding page frames.

Each domain has one or more Virtual Network Interfaces (VNIs) which support the functional-
ity of a network interface card. A VNI is attached to a Virtual Firewall-Router (VFR). Two rings of
buffer descriptors, one for packet sending and one for packet receiving, are supported. To transmit a
packet, a guest OS enqueues a buffer descriptor to the send ring, then Xen copies the descriptor and
checks safety, and finally copies only the packet header, not the payload, and executes the matching
rules.

The rules of the form (< pattern >,< action >) require the action to be executed if the pattern
is matched by the information in the packet header. The rules can be added or removed by Dom0; they
ensure the demultiplexing of packets based on the destination IP address and port and, at the same time,
prevent spoofing of the source IP address. Dom0 is the only one allowed to access directly the physical
IDE or SCSI disks. Domains other than Dom0 access persistent storage through a Virtual Block Device
(VBD) abstraction created and managed under the control of Dom0.

Xen includes a device emulator, QEMU, to support unmodified commodity operating systems.
QEMU is a machine emulator, it runs unmodified OS images and emulates the ISA of the host it
runs on. QEMU had several devices already emulated for the x86 architecture, including the chipset,
network cards, and display adapters. QEMU emulates a DMA8 and can map any page of a DomU
memory. Each VM has its own instance of QEMU and runs it either as a Dom0 process, or as a process
of the VM.

Xen, initially released in 2003, has undergone significant changes in 2005, when Intel released the
VT-x processors. In 2006 Xen was adopted by Amazon for its EC2 service and in 2008 Xen running
on Intel’s VT-d passed the ACPI S39 test. Xen support for Dom0 and DomU was added to the Linux
kernel in 2011.

8Direct Memory Access (DMA) is a specialized hardware allowing I/O subsystems to access the main memory without the
intervention of the CPU. It can also be used for memory-to-memory copying and can offload expensive memory operations,
such as scatter-gather operations, from the CPU to the dedicated DMA engine. Intel includes such engines on high-end servers
and calles it I/O Acceleration Technology (I/OAT).
9Advanced Configuration and Power Interface (ACPI) specification is an open standard for device configuration and power
management by the OS. It defines four Global “Gx” states and six Sleep “Sx” states, “S3” is referred to as Standby, Sleep, or
Suspend to RAM.
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FIGURE 10.5

Xen zero-copy semantics for data transfer using I/O rings. (A) The communication between a guest domain
and the driver domain over an I/O and an event channel; NIC is the Network Interface Controller. (B) The
circular ring of buffers.
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In 2008 the PCI pass-through was incorporated for Xen running on VT-d architectures. The PCI10

pass-through allows a PCI device, be it a disk controller, Network Interface Card (NIC),11 graphic card,
or Universal Serial Bus (USB) to be assigned to a VM. This avoids the overhead of copying and allows
setting up of a Driver Domain to increase security and system reliability. A guest OS can exploit this
facility to access the 3D acceleration capability of a graphics card. The BDF12 of a device must be
known for pass-through.

An analysis of VM performance for I/O-bound applications under Xen is reported in [411]. Two
web servers, each running under a different VM, share the same server running Xen. The workload
generator sends requests for files of fixed size ranging from 1 KB to 100 KB. When the file size
increases from 1 KB to 10 KB, and to 100 KB the performance metrics change as follows: CPU
utilization – 97.5%,70.44%, and 44.4%; throughput – 1 900,1 104, and 1 112 requests/sec; data rate
– 2 018,11 048, and 11 208 KBps; response time – 1.52,2.36, and 2.08 msec. From the first group of
results we see that for files 10 KB or larger the system is I/O bound. The second set of results shows that
the throughput measured in requests/second decreases by less than 50% when the system becomes I/O
bound, but the data rate increases by a factor of five over the same range. The response time increases
only about 10% when the file size increases by two orders of magnitude.

The paravirtualization strategy in Xen is different from the one adopted by the group at the Univer-
sity of Washington, the creators of the Denali system [522]. Denali was designed to support a number
of VMs running network services one or more orders of magnitude larger than Xen. The design of
Denali did not target existing application binary interface and does not support some features of poten-
tial guest operating systems, for example, it does not support segmentation. Denali does not support
application multiplexing, running multiple applications under a guest OS, while Xen does.

Finally, a few words regarding the complexity of porting commodity operating systems to Xen. It is
reported that a total of about 3 000 lines, or 1.36% of the Linux code had to be modified. For Windows
XP this figure is 4 620 lines, or about 0.04% of the Windows XP code [53].

10.6 OPTIMIZATION OF NETWORK VIRTUALIZATION IN XEN 2.0
A hypervisor introduces a significant network communication overhead. For example, it is reported
that the CPU utilization of a VMware Workstation 2.0 system running Linux 2.2.17 was 5 to 6 times
higher than that of the native system (Linux 2.2.17) while saturating a 100 Mbps network [471]. This
means that the hypervisor executes a much larger number of instructions to saturate the network, 5 to
6 times larger, while handling the same amount of traffic as the native system.

Similar overheads are reported for other hypervisors and in particular for Xen 2.0 [340,341]. To
understand the sources of the network overhead we examine the basic network architecture of Xen, see

10PCI stands for Peripheral Component Interconnect and describes a computer bus for attaching hardware devices to a com-
puter. The PCI bus supports the functions found on a processor bus, but in a standardized format independent of any particular
processor. The OS queries all PCI buses at startup time to identify the devices connected to the system and the memory space,
I/O space, interrupt lines, and so on needed by each device present.
11A Network Interface Controller is the hardware component connecting a computer to a LAN.
12BDF stands for Bus.Device.Function and it is used to describe PCI devices.
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FIGURE 10.6

Xen network architecture: (A) The original architecture; (B) The optimized architecture.

Figure 10.6A. Recall that privileged operations, including I/O, are executed by Dom0 on behalf of a
guest OS. In this context we shall refer to Dom0 as the driver domain.

The driver domain is called in to execute networking operations on behalf of the guest domain. It
uses the native Linux driver for the NIC (Network Interface Controller), which in turn, communicates
with the physical NIC, also called the network adapter. The guest domain communicates with the driver
domain through an I/O channel, see Section 10.5. More precisely, the guest OS in the guest domain
uses a virtual interface to send and receive data to/from the backend interface in the driver domain.

A bridge uses broadcast communication to identify the MAC address13 of a destination system.
Once identified, this address is added to a table. The bridge uses the link layer protocol to send the
packet to the proper MAC address, rather than broadcast it when the next packet for the same destina-
tion arrives.

The bridge in the driver domain performs a multiplexing/demultiplexing function. Packets received
from the NIC are demultiplexed and sent to the VMs running under the hypervisor. Similarly, packets
arriving from multiple VMs have to be multiplexed into a single stream before being transmitted to the
network adaptor. In addition to bridging, Xen supports IP routing based on network address translation.

Table 10.3 shows the ultimate effect of the longer processing chain for the Xen hypervisor, as
well as, the effect of optimizations [341]. The receiving and sending rates from a guest domain are
roughly 30% and 20%, respectively, of the corresponding rates of a native Linux application. Packet

13A Media Access Control (MAC) address is a unique identifier permanently assigned to a network interface by the manufac-
turer.
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Table 10.3 A comparison of send and receive data rates for a na-
tive Linux system, the Xen driver domain, an original Xen guest
domain, and an optimized Xen guest domain.

System Receive data rate (Mbps) Send data rate (Mbps)
Linux 2 508 3 760

Xen driver 1 728 3 760

Xen guest 820 750

optimized
Xen guest

970 3 310

multiplexing/demultiplexing accounts for about 40% and 30% of the communication overhead for the
incoming traffic and for the outgoing traffic, respectively.

The Xen network optimization discussed in [341] covers optimization of: (i) the virtual interface;
(ii) the I/O channel; and (iii) the virtual memory. The effects of these optimizations are significant for
the send data rate from the optimized Xen guest domain, an increase from 750 to 3 310 Mbps and
rather modest for the receive data rate, 970 versus 820 Mbps.

We next examine each optimization area and start with the virtual interface. There is a trade-off
between generality and the flexibility, on one hand, and the performance on the other hand. The orig-
inal virtual network interface provides the guest domain with a simple low-level network interface
abstraction supporting sending and receiving primitives.

The design supports a wide range of physical devices attached to the driver domain but does not
take advantage of the capabilities of some physical NICs such as checksum offload, e.g., TSO,14 and
scatter/gather DMA support. These features are supported by the High Level Virtual Interface of the
optimized system, Figure 10.6B.

The next target of the optimization effort is the communication between the guest domain and the
driver domain. Rather than copying a data buffer holding a packet, each packet is allocated space in
a new page and then the physical page containing the packet is re-mapped onto the target domain;
for example, when a packet is received, the physical page is re-mapped to the guest domain. The
optimization is based on the observation that there is no need to re-map the entire packet.

For example, when sending a packet, the network bridge needs only to know the MAC header of
the packet. As a result of this, the optimized implementation is based on an “out-of-band” channel used
by the guest domain to provide the bridge with the packet MAC header. This strategy contributed to a
better than four times increase in the send data rate compared with the non-optimized version.

The third optimization covers virtual memory. The virtual memory in Xen 2.0 takes advantage
of the superpage and global page mapping hardware features available on Pentium and Pentium Pro
processors. A superpage increases the granularity of the dynamic address translation; a superpage entry
covers 1 024 pages of physical memory and the address translation mechanism maps a set of contiguous
pages to a set of contiguous physical pages. This helps reduce the number of TLB misses.

All pages of a superpage belong to the same guest OS. When new processes are created, the guest
OS must allocate read-only pages for the page tables of the address spaces running under the guest

14TSO stands for TCP segmentation offload. This option enables the network adapter to compute the TCP checksum on transmit
and receive, and to save the host CPU the overhead for computing the checksum; large packets have larger savings.
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OS. This forces the system to use traditional page mapping, rather than the superpage mapping. The
optimized version on network virtualization uses a special memory allocator to avoid this problem.

10.7 KERNEL-BASED VIRTUAL MACHINE
Kernel-based Virtual Machine (KVM) [286] is a virtualization infrastructure of the Linux kernel (see
http://www.linux-kvm.org). KVM, developed in 2006, was released as part of the 2.6.20 Linux kernel
in February 2007.

Running multiple guest operating systems on the x86 architecture was quite difficult before the
introduction of VMX and SVM extensions of Intel architecture. These extensions allow the hypervisor
to run within the privileged ring 1 and allow KVM to provides VMs with an execution environment
nearly identical to the physical hardware. KVM executes guest VM’s instructions directly on the host.
Each guest OS is isolated, it runs in a different instance of the execution environment.

KVM does not run as a normal program inside Linux but relies on the Linux kernel infrastruc-
ture to run. Its organization is shown in Figure 10.7. As opposed to Xen, which runs on the physical
hardware, KVM runs inside Linux as a driver handling the new virtualization instructions exposed by
the hardware. A major advantage of this model is that KVM inherits all the new features of Linux in
scheduling, memory management, power management, and so on. KVM has several components:
1. A generic host kernel module exposing the architecture-independent functionality.
2. An architecture-specific kernel module for the host system.
3. A user-space emulation of the VM hardware that the guest OS runs on.
4. A guest OS performance optimization addition.

kvm-userspace is a fork of the QEMU project; it short-circuits the emulation code to only allow
x86-on-x86 and use the KVM API for running the guest OS on the host CPU. When the guest OS
performs a privileged operation the CPU exits and KVM takes over. If KVM itself can service the
request it then gives control back to the guest.

KVM exposes the /dev/kvm interface allowing a user-space host to: (a) setup the guest VM address
space; (b) feed the guest simulated I/O; and (c) map the video display of the host. The host supplies a
firmware image used by the guest to bootstrap into the host OS.

10.8 NESTED VIRTUALIZATION
Nested virtualization describes a system organization when a guest hypervisor runs inside a VM which
is itself running under a host hypervisor. Figure 10.8A illustrates an instance of nested virtualization
where a KVM is the host hypervisor supporting resource sharing among three VMs. Two of the three
VMs run guest hypervisors Xen and VMware’s ESXi and the third VM runs Windows. There are two
VM running under guest hypervisors, one runs Linux under Xen and another runs Windows under
ESXi.

Nested virtualization is useful for experimenting with server setup or testing configurations. Nested
virtualization allows IaaS users to run their own hypervisor as a VM. Nested virtualization can be also
used for live migration of hypervisors together with their guests VM for load balancing, for hypervisor-
level protection, and for supporting other security mechanisms. Another use of nested virtualization is
to experiment with cloud interoperability alternatives.

http://www.linux-kvm.org
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FIGURE 10.7

KVM organization. KVM runs inside Linus as a driver handling the new virtualization instructions exposed by
hardware. The IOthread generates requests on the guest’s behalf to the host; it also handles events.

x86 virtualization is based on the trap and emulate model. This model requires that every sensitive
instruction executed by either a guest hypervisor or OS to be handled by the most privileged hyper-
visor. Nested virtualization incurres a substantial performance price, unless the switching between the
levels of the virtualization stack is optimized. It is thus, not surprising that nested virtualization is not
supported by many hypervisors and not all operating systems can nest successfully with all hypervisors.

Nested virtualization is supported differently by Intel and AMD processors. Consider for example
the Intel version discussed in [128] and illustrated in Figure 10.8B. In this example KVM runs at level
L0 and controls the allocation of all resources. Xen runs at level L1 and KVM uses VMCS01 for the
VM running Xen.

When Xen executes a vmlaunch operation to start a new VM (see Section 10.4), a new VM control
structure, VMCS12 is created. Then vmlaunch traps to L0 and L0 merges VMCS01 with VMCS12 and
creates VMCS02 to run Linux at level L2. When an application running under Linux at level L2 makes a
system call, or when Linux itself executes a privileged instruction, L2 traps and KVM decides whether
to handle the trap itself or to forward it to Xen at level L1 and, eventually, Xen resumes execution.
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FIGURE 10.8

Nested virtualization [128]. (A) KVM allows three VM to run concurrently. Two VMs run hypervisors Xen and
ESXi and the third runs Windows. A VM runs Linux under Xen and another VM runs Windows under ESXi.
(B) Intel-supported nested virtualization. KVM runs at level L0, Xen runs at level L1 and KVM uses VMCS01 for
the VM running Xen.

FIGURE 10.9

Nested virtualization with single-level hardware virtualization support. A trap is handled by the L0 trap handler
regardless of the hypervisor where a trap occurs. Nested traps for: (Left) Two-level, L0, L1, and L2 nested
hypervisors; and (Right) Three-level, L0, L1, L2, and L3 nested hypervisors.

Nested virtualization is limited by the hardware support. When the hardware supports multi-level
nested virtualization, each hypervisor handles all traps caused by sensitive instructions of guest hyper-
visors running directly above of it. Multi-level nested virtualization is supported by the IBM System
z architecture [383]. Intel and AMD processors support only single-level nested virtualization. This
implies that the host hypervisor, the one running directly above the hardware and managing all system
resources, handles all trapped instructions as shown in Figure 10.9.
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FIGURE 10.10

Multiple virtualization levels on the left are multiplexed into the singe hardware virtualization level on the right,
as described in [61]. A VMX instruction used by a guest hypervisor running in guest mode at level Li is
trapped and translated by the host hypervisor at level L0 running in kernel mode into one that can be used to a
VM at level Li+1.

An in-depth discussion of the intricacies of nested virtualization on x86 architecture can be found in
a paper describing the Turtle project from IBM Israel [61]. A guest hypervisor cannot use the hardware
virtualization support because the x86 provides only a single-level hardware virtualization support.
The aim of the project was to show that a 6–8% overhead is feasible for “unmodified binary-only
hypervisors executing non-trivial workloads.”

Recall that VMX instructions can only be successfully executed in kernel mode. A guest hypervi-
sors at level Li operates in guest mode and whenever it executes a VMX instruction to launch a level
Li+1 guest, the instruction is trapped and handled at level L0. Trapping execution exceptions enables
the host hypervisor at level L0 running in kernel mode to emulate VMX instruction executed by guest
hypervisors at level Li . This mechanism supports a critical idea for increasing efficiency of nested
virtualization, multiplexing multiple hypervisors, as shown in Figure 10.10.

As long as the host hypervisor at level L0 emulates faithfully the VMX instruction set, a guest
hypervisor at level L1 cannot distinguish if it is running directly on the hardware or not. It follows that
the guest hypervisor at level L1 can lunch VMs using the standard mechanisms. The guest hypervisor
at level L1 does not run at the highest privileged level and the action of starting a VM is trapped and
handled by the trap handler at level L0. The specification of the new VM is then translated by the
host hypervisor at level L0 running in kernel mode into one that can be used to run L2 directly on
the hardware. This translation includes converting L1 physical addresses to the physical address space
of L0.

The guest hypervisor can use the same technique to give another guest hypervisor at level L2

the same illusion, namely that it is running directly on the hardware. The process can be extended,
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FIGURE 10.11

VMX extension for nested virtualization as described in [61].

a hypervisor at level Li giving the illusion that the one at level Li+1 is running directly on the hard-
ware.

The processor runs L1 and L2 maintained by L0 using VMCS0→1 and VMCS0→2 environment
specification, respectively. L1 creates VMCS1→2 within its own virtualized environment and the pro-
cessor uses it to emulate VMX for L1, as illustrated by Figure 10.11. Switching from one level to
another is emulated. For example, when an VMExit occurs while L2 is running there are two possible
paths:

• When an external interrupt, a non-maskable interrupt, or any trappable event specified in VMCS0→2

that was not specified in VMCS1→2 occurs, then L0 handles the event and then L2 execution is
resumed.

• Trappable events specified in VMCS1→2 are handled by L1. The host hypervisor at L0 forwards
the event to L1 by copying VMCS0→2 fields updated by the processor to VMCS1→2 and then
resuming L1. This makes the L1 hypervisor believe there was a VMExit directly from L2 to L1,
handles the event and then resumes L2 by executing VMLAUNCH or VMRESUME, emulated
by L0.

Another complication of nested virtualization is that the MMU must be virtualized to allow a guest
hypervisor to translate guest virtual addresses to guest physical addresses. A multi-dimensional paging
for multiplexing the three needed translation tables onto the two available in hardware is also described
in [61].
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10.9 A TRUSTED KERNEL-BASED VIRTUAL MACHINE FOR ARMV8
Advanced RISC Machine (ARM) processors are widely used in mobile devices such as smart phones,
tables, and laptops. ARM processors are also used in embedded systems connected to the IoT. Such
systems require an increased level of security therefore, it is not surprising that the latest generation of
the ubiquitous ARM processors support the Trusted Execution Environment (TEE).

TEE functions are summarized at http://www.globalplatform.org/ as: “TEE’s ability to offer iso-
lated safe execution of authorized security software, known as trusted applications, enables it to provide
end-to-end security by enforcing protected execution of authenticated code, confidentiality, authentic-
ity, privacy, system integrity and data access rights.” Trusted applications, running in TEE, their assets
and data are isolated from the Rich Execution Environment where standard operating systems such as
Linux run. TEE consists of several components:
1. A common abstraction layer, the Trusted Core Framework providing OS functions, such as mem-

ory management, entry points for trusted applications, panic and cancelation handling, and trusted
application properties access.

2. Inter-process communication used by rich execution environment applications to request services
from TEE.

3. API for accessing services such as Trusted Storage for Data and Keys, TEE Cryptographic Opera-
tions, Time, and TEE Arithmetica.
AArch64, the 64 bit ARM architecture, is compatible with AArch32, the 32 bit ARM architec-

ture. The members of the AArch64 family including ARMv8 Cortex-Axx (xx={35,53,57,72,73})
processors share a number of features:

• Support a new instruction set, A64, with the same instruction semantics as AArch32, but with fewer
conditional instructions. A64 includes major functional enhancements:
1. Has thirty two 128-bit wide registers.
2. Advanced SIMD supports double-precision floating-point execution.
3. Advanced SIMD supports full IEEE 75415 execution.

• Provides instruction-level support for cryptography. Has two encode and two decode instructions
for AES and SHA-1 and SHA-256 support.

• Has thirty one general purpose registers accessible at all times.
• Provides revised exception handling in the AArch64 state.
• Supports virtualization.
• Supports Trust Zone and Global Trust TEE.

The ARM Trust Zone (ATZ) splits an ARM-based system into the Secure World, a trusted subsystem
responsible for the boot and the configuration of the entire system, and the Non-Secure World (NSW)
intended for hosting operating systems such as Linux and Android, as well as user applications. CPU
has banked registers for each World.

15IEEE Standard for Floating-Point Arithmetic (IEEE 754) defines arithmetic formats, interchange formats, rounding rules, op-
erations, and exception handling for floating point numbers, see “IEEE Standard for Floating-Point Arithmetic” IEEE Computer
Society (August 29, 2008), doi:10.1109/IEEESTD.2008.4610935.

http://www.globalplatform.org/
http://dx.doi.org/10.1109/IEEESTD.2008.4610935


10.10 PARAVIRTUALIZATION OF ITANIUM ARCHITECTURE 389

Security-specific configurations can only be performed in the Secure World mode while access to
AMBA peripherals such as fingerprint readers, cryptographic engines, and others can be restricted to
the Secure World. A secure context switch procedure routs interrupts, either to the Secure or to the
Non-Secure World, depending upon the configuration and allows the two Worlds to communicate with
one another.

ATZ is enabled by a set of hardware security extensions including:
1. A CPU with ARM Security Extensions (SE).
2. A compliant Memory Management Unit (MMU).
3. An AMBA system bus.16

4. Interrupt and cache controllers.
T-KVM, a KVM-based trusted hypervisor for ARMv8, combines Trust Zone with GlobalPlatform

TEE and SELinux [391]. T-KVM implements: (a) a trusted boot; (b) support for Trusted Computing
inside a Virtual Machine; (c) a zero copy shared memory mechanism for data sharing between the
two Trust Zone Worlds and between the VM and the host; (d) a secure, ideally real-time, reliable, and
error-free OS running in the Secure World.

The challenge of a secure boot is to eliminate vulnerabilities while the security mechanisms are not
yet in place. The solution implemented in T-KVM is a four-stage boot process. A small program stored
in the on-chip ROM, along with the public key needed for the attestation of the second stage loader, is
activated in the first stage.

The second stage loads the microkernel in the Secure World zone and activates it. The third stage
checks the integrity of the Linux kernel, a Non-Secure World binary, and of its loader and, finally, the
fourth stage runs it. The failure of any check in this chain of events brings the system to a secure state
stop. T-KVM boot sequence is shown in Figure 10.12A.

The main challenge for supporting Trusted Computing inside a VM is the virtualization of the TEE
APIs. To allow the TEE Client API to execute directly in the Guest OS, a specific QEMU device
implements the TEE control plane and sets up its data plane, see Figure 10.12B. Requests for service
such as initialization/close session, command invocation, and notification of response are sent to the
TEE Device which delivers them either to the trusted applications or to the client applications running
on the guest OS. The data plane uses the shared memory. The TEE device notifies its driver upon
receiving a response notification from the Trust Zone Secure World (TZSW) and the driver forwards
the information to the Guest-Client application.

The zero-copy shared memory is based on the fact that trusted applications can read/write VMs
shared memory because TZSW can access the entire NSW workspace. The TEE Device control plane
extends the T-KVM shared memory mechanism, allowing it to send the shared memory address to the
Secure World applications.

10.10 PARAVIRTUALIZATION OF ITANIUM ARCHITECTURE
We now analyze some of the findings of a Xen project at HP Laboratories [320]. This analysis will
help us better understand the impact of the computer architecture on the ability to virtualize efficiently

16The Advanced Microcontroller Bus Architecture (AMBA) is an open-standard, on-chip interconnect specification for connec-
tion and management of a large numbers of controllers and peripherals.
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FIGURE 10.12

T-KVM. (A) The boot sequence; a trusted application runs the Non-Secure loader in stage three and in stage
four a Non-Secure OS is booted. TEE attestation and SELinux permissions are enforced while the host OS is
running. Guest Client applications (CSs) use the Secure TEE Services while the Guest OS is running.
(B) Communication between the Non-Secure and the Secure Worlds as described in [391].

a given computer architecture. The goal of the project was to create a hypervisor for the Itanium family
of IA64 Intel processors.

Itanium is a processor developed jointly by HP and Intel based on a new architecture, the Explicitly
Parallel Instruction Computing. This architecture allows the processor to execute multiple instruc-
tions in each clock cycle and implements a form of Very Long Instruction Word (VLIW) architecture.
In VLIW a single instruction word contains multiple instructions, see http://www.dig64.org/about/
Itanium2_white_paper_public.pdf.

The design mandated that the hypervisor should be capable of supporting the execution of multiple
operating systems in isolated protection domains with security and privacy enforced by the hardware.
The hypervisor was also expected to support optimal server utilization and allow comprehensive mea-
surement and monitoring for detailed performance analysis.

Virtualization of the IA64 Architecture. The discussion in Section 10.2 shows that to be fully vir-
tualizable the ISA of a processor must conform to a set of requirements. Unfortunately, the IA64
architecture does not meet these requirements and that made the Xen project more challenging.

We first review the features of the Itanium processor important for virtualization and start with
the observation that the hardware supports four privilege rings, PL0, PL1, PL2, and PL3. Privileged

http://www.dig64.org/about/Itanium2_white_paper_public.pdf
http://www.dig64.org/about/Itanium2_white_paper_public.pdf
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instructions can only be executed by the kernel running at level PL0, while applications run at level
PL3 and can only execute non-privileged instructions; PL1 and PL2 rings are generally not used.

The hypervisor uses ring compression and runs itself at PL0 and PL1 while forcing a guest OS to
run at PL2. A first problem called privilege leaking is that several non-privileged instructions allow an
application to determine the Current Privilege Level (CPL). As a result, a guest OS may not accept to
boot or run, or may itself attempt to make use of all four privilege rings.

Itanium was selected because of its multiple functional units and multi-threading support. The Ita-
nium processor has 30 functional units: six general-purpose ALUs, two integer units, one shift unit,
four data cache units, six multimedia units, two parallel shift units, one parallel multiply, one popu-
lation count, three branch units, two 82-bit floating-point multiply-accumulate units, and two SIMD
floating-point multiply-accumulate units. A 128-bit instruction word contains three instructions; the
fetch mechanism can read up to two instruction words per clock from the L1 cache into the pipeline.
Each unit can execute a particular subset of the instruction set.

The hardware supports 64-bit addressing. The processor has thirty two 64-bit general-purpose reg-
isters numbered R0 to R31 and ninety six automatically renumbered registers, R32 through R127, used
by procedure calls. When a procedure is entered, the alloc instruction specifies the registers the pro-
cedure could access by setting the bits of a 7-bit field that controls the register usage. An illegal read
operation from such a register out of range returns a zero value while an illegal write operation to it is
trapped as an illegal instruction.

The Itanium processor supports isolation of the address spaces of different processes with eight
privileged region registers; the processor abstraction layer firmware allows the caller to set the values
in the region register. The hypervisor intercepts the privileged instruction issued by the guest OS to
its processor abstraction layer and partitions the set of address spaces among the guests OS to ensure
isolation. Each guest is limited to 218 address spaces.

The hardware has an IVA register to maintain the address of the interruption vector table; the entries
in this table control both the interrupt delivery and the interrupt state collection. Different types of
interrupts activate the interrupt handlers pointed at from this table, provided that the particular interrupt
is not disabled. Each guest OS maintains its own version of this vector table and has its own IVA
register; the hypervisor uses the guest OS IVA register to give control to the guest interrupt handler
when an interrupt occurs.

CPU virtualization. When a guest OS attempts to execute a privileged instruction the hypervisor traps
and emulates the instruction. For example, when the guest OS uses the rsm psr.i instruction to turn off
delivery of a certain type of interrupt, the hypervisor does not disable the interrupt, but records the fact
that interrupts of that type should not be delivered to the guest OS and, in this case, the interrupt should
be masked.

There is a slight complication because the Itanium does not have an Instruction Register (IR) and
the hypervisor has to use state information to determine if an instruction is privileged. Another compli-
cation is caused by the register stack engine which operates concurrently with the processor and may
attempt to access memory (load or store) and generate a page fault. Normally, the problem is solved
by setting up a bit indicating that the fault is due to the register stack engine and, at the same time, the
engine operations are disabled. The handling of this problem by the hypervisor is more intricate.

A number of privileged-sensitive instructions behave differently function of the privilege level. The
hypervisor replaces each one of them with a privileged instruction during the dynamic transformation
of the instruction stream. Among the instructions in this category are:
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• cover, saves stack information into a privileged register; the hypervisor replaces it with a break.b
instruction.

• thash and ttag, access data from privileged virtual memory control structures and have two registers
as arguments. The hypervisor takes advantage of the fact that an illegal read returns a zero and an
illegal write to a register in the range 32 to 127 is trapped and translates these instructions as:
thash Rx = Ry → tpa Rx = R(y + 64) and ttag Rx = Ry → tak Rx = R(y + 64), 0 ≤ y ≤ 64.

• PSR.sp, controls access to performance data from performance data registers by setting up a bit in
the Processor Status Register.

Memory virtualization. The virtualization is guided by the realization that a hypervisor should not
be involved in most of memory read and write operations to prevent a significant degradation of the
performance. At the same time, the hypervisor should exercise a tight control and prevent a guest OS
from acting maliciously. The Xen hypervisor does not allow a guest OS to access the memory directly,
it inserts an additional layer of indirection called metaphysical addressing between virtual and real
addressing.

A guest OS is placed in the metaphysical addressing mode. If the address is virtual, then the hyper-
visor first checks if the guest OS is allowed to access that address and, if so, the hypervisor provides the
regular address translation. The hypervisor is not involved when the address is physical. The hardware
distinguishes between virtual and real addresses using bits in the Processor Status Register.

10.11 A PERFORMANCE COMPARISON OF VIRTUAL MACHINES
There is well-documented evidence that hypervisors negatively affect the performance of applications
[53,340,341]. The topic of this section is a quantitative analysis of VM performance. The performance
of two virtualization techniques is compared with the performance of a plain vanilla Linux. The two
VM systems, Xen and OpenVZ are based on paravirtualization and full virtualization, respectively
[387].

OpenVZ, a system based on OS-level virtualization, uses a single patched Linux kernel. The guest
operating systems in different containers may be different software distributions, but must use the same
Linux kernel version that the host uses. An OpenVZ container emulates a separate physical server, it
has its own files, users, process tree, IP address, shared memory, semaphores, and messages. Each
container can have its own disk quotas.

OpenVZ’s lack of virtualization flexibility is compensated by a lower overhead. OpenVZ memory
allocation is more flexible than in hypervisors based on paravirtualization. The memory not used in one
virtual environment can be used by other virtual environments. The system uses a common file system;
each virtual environment is a directory of files isolated using chroot. To start a new VM one needs to
copy the files from one directory to another, create a config file for the VM, and launch the VM.

OpenVZ has a two level scheduler: at the first level, a fair-share scheduler allocates CPU time
slices to containers based on cpuunits values. The second level scheduler is a standard Linux scheduler
deciding what process to run in that container. The I/O scheduler is also two-level; each container has
an I/O priority and the scheduler distributes the available I/O bandwidth according to priorities.
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The discussion in [387] is focused on user’s perspective and the performance metrics analyzed are
throughput and response time. The general question is whether consolidation of the applications and
the servers is a good strategy for cloud computing. The specific questions examined are:

• How does performance scale up with the load?
• What is the impact on performance of a mixture of applications?
• What are the implications of the load assignment on individual servers?

There is substantial experimental evidence that the load placed on system resources by a single
application varies significantly in time. A time series displaying CPU consumption of a single appli-
cation clearly illustrates this fact and justifies CPU multiplexing among threads and/or processes. The
concept of application and server consolidation is an extension of the idea of creating an aggregate
load consisting of several applications and aggregating a set of servers to accommodate this load. The
peak resource requirements of individual applications are unlikely to be synchronized therefore, the
aggregate average resource utilization is expected to increase.

The application used for comparison in [387] is a two-tier system consisting of an Apache web
server and a MySQL database server. A web application client starts a session as a user browses through
different items in the database, requests information about individual items, and buys or sells items.
Each session requires the creation of a new thread; thus, an increased load means an increased number
of threads. To understand the potential discrepancies in performance among the three systems, a per-
formance monitoring tool reports the counters that allow the estimation of: (i) the CPU time used by a
binary; (ii) the number of L2-cache misses; and (iii) the number of instructions executed by a binary.

The experimental setup for three different experiments are shown in Figure 10.13. In the first group
of experiments each one of the two tiers of the application, the web server and the database, run on a
single server for the Linux, the OpenVZ, and the Xen systems.

When the workload increases from 500 to 800 threads, the throughput increases linearly with the
workload. The response time increases only slightly for the base system and for the OpenVZ system,
while it increases 600% for the Xen system. For 800 threads the response time of the Xen system is
four times larger than the one for OpenVZ. The CPU consumption grows linearly with the load in all
three systems. The DB consumption represents only 1–4% of the CPU consumption.

For a given workload the web-tier CPU consumption for the OpenVZ system is close to the base
Linux system and it is about half of that for the Xen system. The performance analysis tool shows that
the OpenVZ execution has two times more L2-cache misses than the base system, while Xen Dom0
has 2.5 times more and Xen application domain has 9 times more cache misses.

Recall that the base system and the OpenVZ run a Linux OS and the sources of cache misses can
be compared directly, while Xen runs a modified Linux kernel. The procedures hypervisor_callback,
invoked when an event occurs, and evtchn_do_upcall, invoked to process an event, are responsible
for 32% and 44%, respectively, of the L2-cache misses for the Xen-based system. The percentage of
the instructions invoked by these two procedures are 40% and 8%, respectively.

Most of the L2-cache misses in OpenVZ and the base system occur in:
1. A procedure called do_anonimous_pages used to allocate pages for a particular application with

the percentage of cache misses 32% and 25%, respectively.
2. Two procedures, _copy_to_user_ll and _copy_f rom_user_ll used to copy data from user to sys-

tem buffers and back. The percentage of cache misses are (12 + 7)% and (10 + 1)%, respectively;
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FIGURE 10.13

The setup for the performance comparison of a native Linux system with OpenVZ and Xen. The applications
are a web server and a MySQL database server. (A) The first experiment - the web and the DB, share a single
server; (B) The second experiment - the web and the DB run on two different servers; (C) The third experiment
- the web and the DB run on two different servers and each has four instances.

the first figure refers to the copying from user to system buffers and the second to copying from
system buffers to the user space.
In the second group of experiments each one of the three systems uses two servers, one for the web

and the other for the DB application. When the load increases from 500 to 800 threads the throughput
increases linearly with the workload. The response time of Xen increases only 114%, compared with
600% reported for the first experiments.

For the web application the CPU time of the base system, OpenVZ, and Xen Dom0 and DomU are
similar. For the DB application the CPU time of OpenVZ is twice as large as that of the base system,
while Dom0 and DomU require CPU times 1.1 and 2.5 times larger than the base system.

For web application the L2-cache misses relative to the base system is the same for OpenVZ and 1.5
larger for Dom0 of Xen and 3.5 times larger for the DomU. For DB application the L2-cache misses
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relative to the base system are 2 times larger for the OpenVZ and 3.5 larger for Dom0 of Xen and 7
times larger for DomU.

In the third group of experiments each one of the three systems uses two servers, one for the web
and the other for the DB application, but runs four instances of the web and the DB application on the
two servers. The throughput increases linearly with the workload for the range used in the previous
two experiments, from 500 to 800 threads. The response time remains relatively constant for OpenVZ
and increases 5 times for Xen.

The main conclusion drawn from these experiments is that the virtualization overhead of Xen is
considerably higher than that of OpenVZ and that this is due primarily to L2-cache misses. Xen per-
formance degradation is noticeable when the workload increases. Another important conclusion is that
hosting multiple tiers of the same application on the same server is not optimal.

10.12 OPEN-SOURCE SOFTWARE PLATFORMS FOR PRIVATE CLOUDS
Private clouds provide a cost effective alternative for very large organizations. A private cloud has es-
sentially the same structural components as a commercial one: the servers, the network, hypervisors
running on individual systems, an archive containing disk images of VMs, a front-end for communica-
tion with the user, and a cloud control infrastructure. Open-source cloud computing platforms such as
Eucalyptus [373], OpenNebula, and Nimbus can be used as a control infrastructure for a private cloud.

Schematically, a cloud infrastructure carries out the following steps to run an application:

• Retrieves the user input from the front-end.
• Retrieves the disk image of a VM (Virtual Machine) from a repository.
• Locates a system and requests the hypervisor running on that system to set up a VM.
• Invokes the DHCP (see Section 5.1) and the IP bridging software to set up a MAC and IP address

for the VM.

We discuss briefly the three open-source software systems, Eucalyptus, OpenNebula, and Nimbus.

Eucalyptus (http://www.eucalyptus.com/) can be regarded as an open-source counterpart of Ama-
zon’s EC2, see Figure 10.14. The system supports several operating systems including: CentOS 5 and
6, RHEL 5 and 6, Ubuntu 10.04 LTS and 12.04 LTS.

The components of the system are:

• Virtual Machine. Runs under several hypervisors including Xen, KVM, and VMware.
• Node Controller. Runs on every server/node designated to host a VM and controls the activities of

the node. Reports to a cluster controller.
• Cluster Controller. Controls a number of servers. Interacts with the node controller on each server

to schedule requests on that node. Cluster controllers are managed by cloud controller.
• Cloud Controller. Provides the cloud access to end-users, developers, and administrators. It is ac-

cessible through command line tools compatible with EC2 and through a web-based Dashboard.
Manages cloud resources, makes high-level scheduling decisions and interacts with cluster con-
trollers.

http://www.eucalyptus.com/
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FIGURE 10.14

Eucalyptus supports several distributions and is a well documented software for private clouds.

• Storage Controller. Provides persistent virtual hard drives to applications. It is the correspondent
of EBS. Users can create snapshots from EBS volumes. Snapshots are stored in Walrus and shared
across availability zones.

• Storage Service (Walrus). Provides persistent storage and, similarly to S3, allows users to store
objects in buckets.

The system supports a strong separation between the user space and administrator space; users
access the system via a web interface while administrators need root access. The system supports a
decentralized resource management of multiple clusters with multiple cluster controllers, but a single
head node for handling user interfaces. It implements a distributed storage system called Walrus, the
analog of Amazon’s S3 system. The procedure to construct a VM is based on the generic one described
in [449]:

• The euca2ools front-end is used to request a VM.
• The VM disk image is transferred to a compute node.
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Table 10.4 A side-by-side comparison of Eucalyptus, OpenNebula, and Nimbus.

Eucalyptus OpenNebula Nimbus
Design Emulate EC2 Customizable Based on Globus

Cloud type Private Private Public/Private

User population Large Small Large

Applications All All Scientific

Customizability Administrators
limited users

Administrators and
users

All but image storage
and credentials

Internal security Strict Loose Strict

User access User credentials User credentials x509 credentials

Network access To cluster controller – To each compute node

• This disk image is modified for use by the hypervisor on the compute node.
• The compute node sets up network bridging to provide a virtual NIC with a virtual MAC address.
• The head node the DHCP is set up with the MAC/IP pair.
• The hypervisor activates the VM.
• The user can now ssh directly into the VM.

The system can support a large number of users in a corporate enterprise environment. Users are
shielded from the complexity of disk configurations and can choose for their VM from a set of five con-
figurations of available processors, memory and hard drive space setup by the system administrators.

Open-Nebula (http://www.opennebula.org/) is a private cloud with users actually logging into the
head node to access cloud functions. The system is centralized and its default configuration uses the
NFS filesystem. The procedure to construct a VM consists of several steps: (i) a user signs in to the
head node using ssh; (ii) next, it uses the onevm command to request a VM; (iii) the VM template
disk image is transformed to fit the correct size and configuration within the NFS directory on the head
node; (iv) the oned daemon on the head node uses ssh to log into a compute node; (v) the compute
node sets up network bridging to provide a virtual NIC with a virtual MAC; (vi) the files needed by the
hypervisor are transferred to the compute node via the NFS; (vii) the hypervisor on the compute node
starts the VM; (viii) the user is able to ssh directly to the VM on the compute node.

According to the analysis in [449], the system is best suited for an operation involving a small to
medium size group of trusted and knowledgeable users who are able to configure this versatile system
based on their needs.

Nimbus (http://www.nimbusproject.org/) is a cloud solution for scientific applications based on
the Globus software. The system inherits from Globus the image storage, the credentials for user
authentication, and the requirement that a running Nimbus process can ssh into all compute nodes.
Customization in this system can only be done by the system administrators.

Table 10.4 summarizes the features of the three systems [449]. The conclusions of the comparative
analysis are: Eucalyptus is best suited for a large corporation with its own private cloud as it ensures
a degree of protection from user malice and mistakes; OpenNebula is best suited for a testing envi-

http://www.opennebula.org/
http://www.nimbusproject.org/
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ronment with a few servers; Nimbus is more adequate for a scientific community less interested in the
technical internals of the system, but with broad customization requirements.

OpenStack is an open source project started in 2009 at NASA in collaboration with Rackspace
(http://www.rackspace.com) to develop a scalable cloud OS for farms of servers using standard hard-
ware. Though recently NASA has moved its cloud infrastructure to AWS, in addition to Rackspace,
several other companies including HP, Cisco, IBM, and Red Hat have an interest in OpenStack. The
current version of the system supports a wide range of features such as: APIs with rate limiting and
authentication, live VM management to run, reboot, suspend, and terminate instances, role-based ac-
cess control, and the ability to allocate, track, and limit resource utilization. The administrators and the
users control their resources using an extensible web application called the Dashboard.

10.13 THE DARKER SIDE OF VIRTUALIZATION
Can virtualization empower the creators of malware17 to carry out their mischievous activities with
impunity and minimal danger of being detected? How difficult is it to implement such a system? What
are the means to prevent this type of malware to be put in place? The answers to these questions are
discussed in this section.

It is well understood that in a layered structure a defense mechanism at some layer can be disabled
by malware running at a layer below it. Thus, the winner in the continuous struggle between the attack-
ers and the defenders of a computing system is the one in control of the lowest layer of the software
stack, the software controlling the hardware, the hypervisor in a virtualized cloud environment.

Recall that a hypervisor allows a guest OS to run on virtual hardware; the hypervisor offers to the
guest operating systems a hardware abstraction and mediates its access to the physical hardware. We
argued that a hypervisor is simpler and more compact than a traditional OS thus, it is more secure. What
if the hypervisor itself is forced to run above another software layer thus, it is prevented to exercise
direct control of the physical hardware?

A 2006 paper [272] argues that it is feasible to insert a “rogue hypervisor” between the physical
hardware and an OS, as shown in Figure 10.15A. Such a rogue hypervisor is called a Virtual-Machine
Based Rootkit (VMBR). The term rootkit refers to malware with a privileged access to a system. The
name comes from root, the most privileged account on a Unix system, and kit, a set of software com-
ponents.

It is also feasible to insert the VMBR between the physical hardware and a legitimate hypervisor,
as in Figure 10.15B. As a VM running under a legitimate hypervisor sees a virtual hardware, the guest
OS will not notice any change of the environment. The only trick is to present the legitimate hypervisor
with a hardware abstraction, rather than allow it to run on the physical hardware.

Before we address the question how such an insertion is possible we should point out that in this
approach the malware runs either inside a hypervisor or with the support of a hypervisor. A hypervisor

17Malware, an abbreviation for malicious software, is software designed specifically to circumvent the authorization mechanisms
and gain access to a computer system, gather private information, block access to a system, or disrupt the normal operation of a
system; computer viruses, worms, spyware, and Trojan horses are examples of malware.

http://www.rackspace.com
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FIGURE 10.15

The insertion of a Virtual-Machine Based Rootkit (VMBR) as the lowest layer of the software stack running on
the physical hardware; (A) below an OS; (B) below a legitimate hypervisor. The VMBR enables a malicious OS
to run surreptitiously and makes it invisible to the genuine or the guest OS and to the application.

is a very potent engine for the malware, it prevents the software of the guest OS or the application
to detect malicious activities. A VMBR can record key strokes, system state, data buffers sent to, or
received from the network, data to be written to, or read from the disk with impunity; moreover, it can
change any data at will.

The only way for a VMBR to take control of a system is to modify the boot sequence and to first
load the malware and only then load the legitimate hypervisor, or the OS; this is only possible if the
attacker has root privileges. Once the VMBR is loaded it must also store its image on the persistent
storage.

The VMBR can enable a separate malicious OS to run surreptitiously and make this malicious OS
invisible to the guest OS and to the application running under it. Under the protection of the VMBR the
malicious OS could: (i) observe the data, the events, or the state of the target system; or (ii) run services
such as spam relays or distributed denial-of-service attacks; or (iii) interfere with the application.

A proof-of-concept VMBRs to subvert Windows XP and Linux and several services based on these
two platforms is described in [272]. We should stress that modifying the boot sequence is by no means
an easy task and once an attacker has root privileges she is in total control of a system.

10.14 VIRTUALIZATION SOFTWARE
Several virtualization software packages including hypervisors, OS-level virtualization software, and
desktop virtualization software are available. There are two types of hypervisors, native and hosted.
The set of native hypervisors includes:
1. Red Hat Virtualization (RHV) – enterprise virtualization based on the KVM hypervisor.
2. Hyper-V or formerly Windows Server Virtualization – creates VMs on x86-64 systems running

Windows.
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3. z/VM – current version of IBM’s VM operating systems.
4. VMware ESXi – enterprise-class, type-1 hypervisor from VMware.
5. Oracle VM Server for x86 – server virtualization from Oracle Corporation. Incorporates the free,

open-source Xen. Supports Windows, Linux, and Solaris guests.
6. Adeos – the Adaptive Domain Environment for Operating Systems is a nanokernel hardware ab-

straction layer.
7. XtratuM – bare-metal hypervisor for embedded real-time systems. Available for the instruction

sets x86, ARM Cortex-R4F processors, and others.
There are several hosted independent hypervisors including:

1. VMware Fusion – software hypervisor developed for Intel-based Macs to run Microsoft Windows,
Linux, NetWare, or Solaris on VMs, along with the OS X OS. It is based on paravirtualization,
hardware virtualization, and dynamic recompilation.

2. PearPC – architecture-independent PowerPC platform emulator for PowerPC operating systems,
including pre-Intel versions of OS X, Darwin, and Linux.

3. Oracle VM VirtualBox – free and open-source hypervisor for x86 computers.
4. QEMU (Quick Emulator) – free and open-source hosted hypervisor.

Among the hosted specialized hypervisors we note:
1. coLinux – Cooperative Linux, allows Microsoft Windows and the Linux kernel to run simultane-

ously.
2. MoM – Mac-on-Mac is a port of Mac-on-Linux for Mac OS X.
3. Mac-on-Linux – open source VM for running the classic Mac OS or OS X on PowerPC computers

running Linux.
4. bhyve – a type-1 hypervisor included in FreeBSD running FreeBSD 9+, OpenBSD, NetBSD, Linux

and Windows desktop and Windows Server.
5. L4Linux – a variant of Linux kernel running virtualized on L4. L4 is a microkernel and the L4Linux

kernel runs a service.

10.15 HISTORY NOTES AND FURTHER READINGS
Virtual memory was the first application of virtualization concepts to commercial computers. Virtual
memory allowed multiprogramming and eliminated the need for users to tailor their applications to the
physical memory available on individual systems. Paging and segmentation are the two mechanisms
supporting virtual memory. Paging was developed for the Atlas Computer built in 1959 at University
of Manchester. Independently, the Burroughs Corporation developed B5000, the first commercial com-
puter with virtual memory and released it in 1961; the virtual memory of B5000 used segmentation
rather than paging.

In 1967 IBM introduced 360/67, the first IBM system with virtual memory expected to run on a
new OS called TSS. Before TSS was released, an operating system called CP-67 was created; CP-67
gave the illusion of several standard IBM 360 systems without virtual memory. The first hypervisor
supporting full virtualization was the CP-40 system and ran on a S/360-40 that was modified at the
IBM Cambridge Scientific Center to support Dynamic Address Translation, a key feature that allowed
virtualization. In CP-40, the hardware’s supervisor state was virtualized as well, allowing multiple
operating systems to run concurrently in separate VM contexts.
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Virtualization was driven by the need to share a very expensive hardware among a large population
of users and applications in the early age of computing. The VM/370 system, released in early 1970s
for large IBM mainframes was very successful; it was based on a re-implementation of CP/CMS. In
VM/370 a new VM was created for every user and this VM interacted with the applications. The hyper-
visor managed hardware resources and enforced the multiplexing of resources. Modern-day IBM main-
frames, such as the zSeries line, retain backwards-compatibility with the 1960s-era IBM S/360 line.

The production of microprocessors coupled with advances in storage technology contributed to the
rapid decrease of hardware costs and led to the introduction of personal computers at one end of the
spectrum and of large mainframes and massively parallel systems at the other end of the spectrum. The
hardware and the operating systems of the 1980s and 1990s gradually limited virtualization and focused
instead on efficient multitasking, user interfaces, the support for networking and security problems
brought in by interconnectivity.

The advancements in computer and communication hardware, the explosion of the Internet partially
due to the success of the World Wide Web at the end of 1990s, renewed the interest in virtualization
to support server security and isolation of services. In their review paper Rosenbloom and Grafinkel
write [429]: “hypervisors give OS developers another opportunity to develop functionality no longer
practical in today’s complex and ossified operating systems, where innovation moves at a geologic
pace.”

Nested virtualization was first discussed in the early 1970s by Popek and Goldberg [196,406].

Further readings. The text of Saltzer and Kaashoek [434] is a very good introduction to virtualiza-
tion principles. Virtual machines are dissected in a paper by Smith and Nair [455] and architectural
principles for virtual computer systems are analyzed in [195,196].

An insightful discussion of hypervisors is provided by the paper of Rosenblum and Garfinkel [429].
Several papers [53,340,341] discuss in depth the Xen hypervisor and analyze its performance, while
[529] is a code repository for Xen. The Denali system is presented in [522].

Modern systems such as Linux Vserver (http://linux-vserver.org/), OpenVZ (Open VirtualiZation)
[378], FreeBSD Jails [419], and Solaris Zones [409] implement OS-level virtualization technologies.
Reference [387] compares the performance of two virtualization techniques with a standard OS.

A 2001 paper [102] argues that virtualization allows new services to be added without modifying
the OS. Such services are added below the OS level, but this process creates a semantic gap between
the VMs and these services. Reflections on the design of hypervisors are the subject of [103] and a
discussion of Xen is reported in [110]. The state of the art and the future of nested virtualization are
the subject of [128]. An implementation of nested virtualization for KVM is discussed in [61]. [549]
surveys security issues in virtual systems and [281] covers reliability in virtual infrastructures. Virtual-
ization technologies in HPC are analyzed in [415] and [457] provides a critical view on virtualization.
[516] reports on IBM virtualization strategies.

10.16 EXERCISES AND PROBLEMS
Problem 1. Identify the milestones in the evolution of operating systems during the half century

from 1960 to 2010 and comment on the statement from [429] “Hypervisors give OS
developers another opportunity to develop functionality no longer practical in today’s
complex and ossified operating systems, where innovation moves at a geologic pace.”

http://linux-vserver.org/
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Problem 2. Virtualization simplifies the use of resources, isolates users from one another, supports
replication and mobility, but exacts a price in terms of performance and cost. Analyze
each one of these aspects for: (i) memory virtualization, (ii) processor virtualization,
and (iii) virtualization of a communication channel.

Problem 3. Virtualization of the processor combined with virtual memory management pose multi-
ple challenges; analyze the interaction of interrupt handling and paging.

Problem 4. In Section 10.1 we stated that a hypervisor is a much simpler and better specified system
than a traditional OS. The security vulnerability of hypervisors is considerably reduced,
as the systems expose a much smaller number of privileged functions. Research the
literature to gather arguments in support of these affirmations; compare the number of
lines of code and of system calls for several operating systems including Linux, So-
laris, FreeBSD, Unbuntu, AIX, and Windows with the corresponding figures for several
system VMs in Table 10.1.

Problem 5. In Section 10.3 we state that a hypervisor for a processor with a given ISA can be
constructed if the set of sensitive instructions is a subset of the privileged instructions
of that processor. Identify the set of sensitive instructions for the x86 architecture and
discuss the problem each one of these instruction poses.

Problem 6. Table 10.3 summarizes the effects of Xen network performance optimization reported
in [341]. The send data rate of a guest domain is improved by a factor of more than 4,
while the improvement of the receive data rate is very modest. Identify several possible
reasons for this discrepancy.

Problem 7. In Section 10.5 we note that several operating systems including Linux, Minix, NetBSD,
FreeBSD, NetWare, and OZONE can operate as paravirtualized Xen guest operating
systems running on x86, x86-64, Itanium, and ARM architectures, while VMware EX
Server supports full virtualization of x86 architecture. Analyze how VMware provides
the functions discussed in Table 10.2 for Xen.

Problem 8. In 2012 Intel and HP announced that Itanium architecture will be discontinued. Review
the architecture discussed in Section 10.10 and identify several possible reasons for this
decision.

Problem 9. Read [387] and analyze the results of performance comparison discussed in Sec-
tion 10.11.
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CHAPTER

CLOUD SECURITY

Security has been a concern since the early days of computing when a computer was isolated, and
threats could only be posed by someone with access to the computer room. Once computers were able
to communicate with one another the Pandora box of threats was wide opened. In an interconnected
world, various embodiments of malware can migrate easily from one system to another, cross national
borders, and infect systems all over the world.

Security of computer and communication systems takes on a new urgency as the society becomes
increasingly more dependent on the information infrastructure. Even the critical infrastructure of a na-
tion can be attacked by exploiting flaws in computer security and often human naivety. Malware, such
as the Stuxnet virus, targets industrial systems controlled by software [104]. The concept of cyberwar-
fare meaning “actions by a nation-state to penetrate another nation’s computers or networks for the
purposes of causing damage or disruption” [111], was recently included in the dictionary.

A computer cloud is a target-rich environment for malicious individuals and criminal organizations.
It is, thus, no surprise that security is a major concern for existing users and for potential new users of
cloud computing services. Some of the security risks faced by computer clouds are shared with other
systems supporting network-centric computing and network-centric content, e.g., service-oriented ar-
chitectures, grids, and web-based services.

Cloud computing is an entirely new approach to computing based on a new technology. It is there-
fore reasonable to expect that new methods to deal with some of the security threats will be developed,
while other perceived threats will prove to be exaggerated [30]. Indeed, “early on in the life cycle of a
technology, there are many concerns about how this technology will be used... they represent a barrier
to the acceptance... over the time, however, the concerns fade, especially if the value proposition is
strong enough” [245].

The breathtaking pace of developments in information science and technology has many side-
effects. One of them is that standards, regulations, and laws governing the activities of organizations
supporting the new computing services, and in particular utility computing, have yet to be adopted.
As a result, many issues related to privacy, security, and trust in cloud computing are far from being
settled. For example, there are no international regulations related to data security and privacy. Data
stored on a computer cloud can freely cross national borders among the data centers of the CSP.

The chapter starts with a discussion of cloud users concerns related to security in Section 11.1 then,
in Section 11.2 we elaborate on the security threats perceived by cloud users already mentioned in
Section 2.11. Privacy and trust are covered in Sections 11.3 and 11.4. Encryption protects data in cloud
storage, but data must be decrypted for processing as discussed in Section 11.5. Threats during pro-
cessing originating from flaws in the hypervisors, rogue VMs, or a VMBR, discussed in Section 10.13,
cannot be ignored.

The analysis of database service security in Section 11.6 is followed by a presentation of oper-
ating system security, VM security, and security of virtualization in Sections 11.7, 11.8, and 11.9,
respectively. Sections 11.10 and 11.11 analyze the security risks posed by shared images and by a
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management OS. An overview of the Xoar hypervisor, a version of Xen which breaks the monolithic
Design of the TCB, is discussed in Section 11.12 followed in Section 11.13 by a presentation of a
trusted hypervisor and mobile device security in Section 11.14.

11.1 SECURITY, THE TOP CONCERN FOR CLOUD USERS
Some believe that moving to a computer cloud frees an organization from all concerns related to com-
puter security and eliminates a wide range of threats to data integrity. They believe that cloud security
is in the hands of experts, hence cloud users are better protected than when using their own computing
resources. As we shall see throughout this chapter, these views are not entirely justified.

Outsourcing computing to a cloud generates major new security and privacy concerns. Moreover,
the Service Level Agreements do not provide adequate legal protection for cloud computer users who
are often left to deal with events beyond their control.

Some cloud users were accustomed to operate inside a secure perimeter protected by a corporate
firewall. Now they have to extend their trust to the cloud service provider if they wish to benefit from
the economical advantages of utility computing. The transition from a model when users have full
control of all systems where their sensitive information is stored and processed is a difficult one. The
reality is that virtually all surveys report that security is the top concern of cloud users.

Major user concerns are about the unauthorized access to confidential information and the data
theft. Data is more vulnerable in storage, than while it is being processed. Data is kept in storage for
extended periods of time, while during processing it is exposed to threats for relatively short time.
Close attention should be paid to storage server security and to data in transit. There is also the risk
of unauthorized access and data theft posed by rogue employees of a CSP. Cloud users are concerned
about insider attacks because hiring and security screening policies of a CSP are totally opaque to the
outsiders.

The next concerns regard the user control over the lifecycle of data. It is virtually impossible for a
user to determine if data that should have been deleted was actually deleted. Even if deleted, there is no
guarantee that the media was wiped out and the next user is not able to recover confidential data. This
problem is exacerbated as the CSPs rely on seamless backups to prevent accidental data loss. Such
backups are done without user knowledge or consent. During this exercise data records can be lost,
accidentally deleted, or accessible to an attacker.

Lack of standardization is next on the list of concerns. Today there are no inter-operability standards
as discussed in Section 2.7. Important questions do not have satisfactory answers, e.g.: What can be
done when service provided by the CSP is interrupted? How to access critically needed data in case
of a blackout? What if the CSP drastically raises its prices? What is the cost of moving to a different
CSP? It is undeniable that auditing and compliance pose an entirely different set of challenges in
cloud computing. These challenges are not yet resolved. A full audit trail on a cloud is an unfeasible
proposition at this time.

Another, less analyzed user concern is that cloud computing is based on a new technology expected
to evolve in the future. Case in point, autonomic computing is likely to enter the scene. When this
happens self-organization, self-optimization, self-repair, and self-healing could generate additional se-
curity threats. In an autonomic system it will be even more difficult than at the present time to determine
when an action occurred, what was the reason for that action, and how it created the opportunity for an
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attack or for data loss. It is still unclear how autonomic computing can be compliant with privacy and
legal issues.

There is no doubt that multi-tenancy is the root cause of many user concerns. Nevertheless, multi-
tenancy enables a higher server utilization, thus lower costs. The users have to learn to live with
multi-tenancy, one of the pillars of utility computing. The threats caused by multi-tenancy differ from
one cloud delivery model to another. For example, in case of SaaS private information such as name,
address, phone numbers, possibly credit card numbers of many users are stored on one server; when
the security of that server is compromised a large number of users are affected.

Users are also greatly concerned about the legal framework for enforcing cloud computing security.
The cloud technology has moved much faster than cloud security and privacy legislation thus, users
have legitimate concerns regarding the ability to defend their rights. The data centers of a CSP may be
located in several countries and it is unclear what laws apply, the laws of the country where information
is stored and processed, the laws of the countries the information crossed when sent by the user, or the
laws of the user’s country.

To make matter even more complicated, a CSP may outsource handling of personal and/or sensitive
information. Existing laws stating that the CSP must exercise reasonable security may be difficult to
implement in case when there is a chain of outsourcing to companies in different countries. Lastly,
a CSP may be required by law to share private data with law enforcement agencies. For example,
Microsoft was served a subpoena to provide emails exchanges by users of the Hotmail service.

The question is: What cloud users can and should do to minimize the security risks regarding the
data handling by the CSP? First, a user should evaluate the security policies and the mechanisms the
CSP has in place to enforce these policies. Then, the user should analyze the information that would
be stored and processed on the cloud. Finally, the contractual obligations should be clearly spelled out.

The contract between a user and a CSP should [400] state clearly:
1. CSPs obligations to handle sensitive information and its obligation to comply with privacy laws.
2. CSP liabilities for mishandling sensitive information, e.g., data loss.
3. The rules governing ownership of the data.
4. Specify the geographical regions where information and backups can be stored.

To minimize the security risks a user may try to avoid processing sensitive data on a cloud. The
Secure Data Connector from Google caries out an analysis of the data structures involved and allows
access to data protected by a firewall. This solution is not feasible for several classes of applications,
e.g., processing of medical or personnel records. The solution may not be feasible when the cloud
processing workflow requires cloud access to the entire volume of user data. When the volume of sen-
sitive data or the processing workflow requires sensitive data to be stored on the cloud then, whenever
feasible, data should be encrypted [189] and [534].

11.2 CLOUD SECURITY RISKS
Some believe that it is easy, possibly too easy, to start using cloud services without the commitment to
follow the ethics rules for cloud computing and without a proper understanding of the security risks. A
cloud could be used to launch large-scale attacks against other components of the cyber infrastructure.
A first question is: How the nefarious use of cloud resources can be prevented?
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The next question is: What are the security risks faced by cloud users? There are multiple ways to
look at the cloud security risks. A recent paper identifies three broad classes [109]: traditional security
threats, threats related to system availability, and threats related to third-party data control.

Traditional threats are those experienced for some time by any system connected to the Internet, but
with some cloud-specific twists. The impact of traditional threats is amplified due to the vast amount of
cloud resources and the large user population that can be affected. The long list of cloud user concerns
includes also the fuzzy bounds of responsibility between the providers of cloud services and users, as
well as the difficulties to accurately identify the cause of a problem.

The traditional threats begin at the user site. The user must protect the infrastructure used to connect
to the cloud and to interact with the application running on the cloud. This task is more difficult because
some components of this infrastructure are outside the firewall protecting the user.

The next threat is related to authentication and authorization. Procedures in place for one individual
do not extend to an enterprise, the cloud access of the members of an organization must be nuanced.
Different individuals should be assigned distinct levels of privilege based on their role in the organiza-
tion. It is also nontrivial to merge or adapt the internal policies and security metrics of an organization
with the ones of the cloud.

Traditional attacks have already affected cloud service providers. The favorite means of attack are:
distributed denial of service (DDDS) attacks which prevent legitimate users to access cloud services,
phishing, SQL injection, or cross-site scripting. Phishing aims to gain information from a database by
masquerading as a trustworthy entity. Such information could be names and credit card numbers, social
security numbers, other personal information stored by online merchants or by other service providers.

SQL injection is typically used against a web site. An SQL command entered in a web form causes
the contents of a database used by the web site to be either dumped to the attacker or altered. SQL
injection can be used against other transaction processing systems and it is successful when the user
input is not strongly typed or rigorously filtered. Cross-site scripting is the most popular form of attack
against web sites; a browser permits the attacker to insert client-scripts into the web pages and thus,
bypass the access controls at the web site.

Identifying the path followed by an attacker is more difficult in a cloud environment. Cloud servers
host multiple VMs and multiple applications may run under one VM. Multi-tenancy, in conjunction
with hypervisor vulnerabilities, could open new attack channels for malicious users. Traditional inves-
tigation methods based on digital forensics cannot be extended to a cloud where resources are shared
among a large user population and traces of events related to a security incident are wiped out due to
the high rate of write operations.

Availability of cloud services is another major concern. System failures, power outages, and other
catastrophic events could shutdown cloud services for extended periods of time. Data lock-in discussed
in Section 2.7 could prevent a large organization whose business model depends on these data to
function properly, when such a rare event occurs.

Clouds can also be affected by phase transition phenomena and other effects specific to complex
systems. Another critical aspect of availability is that the users cannot be assured that an application
hosted on the cloud returns correct results.

Third-party control generates a spectrum of concerns caused by lack of transparency and limited
user control. For example, a cloud provider may subcontract some resources from a third party whose
level of trust is questionable. There are examples when subcontractors failed to maintain the customer
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data. There are also examples when the third party was not a subcontractor but a hardware supplier and
the loss of data was caused by poor quality storage devices [109].

Storing proprietary data on the cloud is risky as cloud provider espionage poses real dangers. The
terms of contractual obligations usually place all responsibilities for data security with the user. The
Amazon Web Services customer agreement does not help user’s confidence as it states “We ...will
not be liable to you for any direct, indirect, incidental,.... damages.... nor... be responsible for any
compensation, reimbursement, arising in connection with: (A) your inability to use the services... (B)
the cost of procurement of substitute goods or services..or (D) any unauthorized access to, alteration
of, or deletion, destruction, damage, loss or failure to store any of your content or other data.”

It is very difficult for a cloud user to prove that data has been deleted by the service provider. The
lack of transparency makes auditability a very difficult proposition for cloud computing. Auditing
guidelines elaborated by the National Institute of Standards (NIST) such as the Federal Informa-
tion Processing Standard (FIPS) and the Federal Information Security Management Act (FISMA) are
mandatory for US Government agencies.

The 2010 Cloud Security Alliance (CSA) report. The report identifies seven top threats to cloud
computing. These threats are: the abusive use of the cloud, APIs that are not fully secure, malicious
insiders, shared technology, account hijacking, data loss or leakage, and unknown risk profile [123].
According to this report the IaaS delivery model can be affected by all threats. PaaS can be the affected
by all, but the shared technology, while SaaS is affected by all, but abuse and shared technology.

Abusing the cloud refers to conducting nefarious activities from the cloud. For example, use multi-
ple AWS instances or applications supported by IaaS to launch distributed denial of service attacks or
to distribute spam and malware. Shared technology considers threats due to multi-tenant access sup-
ported by virtualization. Hypervisors can have flaws allowing a guest OS to affect the security of the
platform shared with other VMs.

Insecure APIs may not protect the users during a range of activities starting with authentication
and access control to monitoring and control of the application during runtime. The cloud service
providers do not disclose their hiring standards and policies thus, the risks of malicious insiders cannot
be ignored. The potential harm due to this particular form of attacks is high.

Data loss and data leakage are two risks with devastating consequences for an individual or an
organization using cloud services. Maintaining copies of the data outside the cloud is often unfeasible
due to the sheer volume of data. If the only copy of the data is stored on the cloud, then sensitive data
is permanently lost when cloud data replication fails followed by a storage media failure. As some of
the data often includes proprietary or sensitive data access to such information by third parties could
have severe consequences.

Account or service hijacking is a significant threat and cloud users must be aware of and guard
against all methods to steal credentials. Lastly, unknown risk profile refers to exposure to the ignorance
or underestimation of the risks of cloud computing.

The 2011 CSA report. The report “Security Guidance for Critical Area of Focus in Cloud Computing
V3.0,” provides a comprehensive analysis of the risks and makes recommendations to minimize the
risk in cloud computing [124].

An attempt to identify and classify the attacks in a cloud computing environment is discussed
in [207]. The three actors involved in the model considered are: the user, the service, and the cloud
infrastructure, and there are six types of attacks possible, see Figure 11.1. The user can be attacked
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FIGURE 11.1

Surfaces of attacks in a cloud computing environment.

from two directions, the service and the cloud. Secure Sockets Layer (SSL) certificate spoofing, attacks
on browser caches, or phishing attacks are example of attacks that originate at the service. The user
can also be a victim of attacks that either truly originate or that spoof originating from the cloud
infrastructure.

Buffer overflow, SQL injection, and privilege escalation are the common types of attacks from the
service. The service can also be subject of attacks by the cloud infrastructure and this is probably the
most serious line of attack. Limiting access to resources, privilege-related attacks, data distortion, in-
jecting additional operations are only a few of the many possible lines of attacks originated at the cloud.

The cloud infrastructure can be attacked by a user which targets the cloud control system. These
types of attacks are the same a user would direct toward any other cloud service. The cloud infrastruc-
ture may also be targeted by a service requesting an excessive amount of resources and causing the
exhaustion of the resources.

Top twelve cloud security threats. The 2016 CSA report lists the top security threats [414]:
1. Data breaches. The most damaging breaches are for sensitive data including financial and health

information, trade secrets, and intellectual property. The ultimate responsibility rests with the orga-
nizations maintaining data on the cloud and CSA recommends that organizations use multi-factor
authentication and encryption to protect against data breaches. Multi-factor authentication such
as one-time passwords, phone-based authentication, and smart card protection make it harder for
attackers to use stolen credentials.
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2. Compromised credentials and broken authentication. Such attacks are due to lax authentication,
weak passwords, and poor key and/or certificate management.

3. Hacked interfaces and APIs. Cloud security and service availability can be compromised by a weak
API. When third parties rely on APIs more services and credentials are exposed.

4. Exploited system vulnerabilities. Resource sharing and multi-tenancy create new attack surfaces
but the cost to discover and repair vulnerabilities is small compared to the potential damage.

5. Account hijacking. All accounts should be monitored so that every transaction can be traced to the
individual requesting it.

6. Malicious insiders. This threat can be difficult to detect and system administrator errors could
sometimes be falsely diagnosed as threats. A good policy is to segregate duties and enforce activi-
ties such as logging, monitoring, and auditing administrator activities.

The other six threats are: advanced persistent threats (APTs), permanent data loss, inadequate diligence,
cloud service abuse, DoS attacks, and shared technology.

An update of the “Cloud Controls Matrix” spells out the impact of control specifications on cloud
architecture, cloud delivery models, and other aspects of the cloud ecosystem, according to https://
cloudsecurityalliance.org/download/cloud-controls-matrix-v3-0-1/.

Cloud vulnerability incidents reported over a period of four years and data breach incidents in 2014
identified several other threats including: hardware failures, natural disasters, cloud-related malware,
inadequate infrastructure design and planning, point-of-sale (POS) intrusions and payment card skim-
mers, crimeware and cyber-espionage, insider and privilege misuse, web app attacks, and physical
theft/loss [480].

11.3 PRIVACY AND PRIVACY IMPACT ASSESSMENT
The term privacy refers to the right of an individual, a group of individuals, or an organization to keep
information of personal nature or proprietary information from being disclosed. Many nations view
privacy as a basic human right. The Universal Declaration of Human Rights, article 12, states: “No one
shall be subjected to arbitrary interference with his privacy, family, home or correspondence, nor to
attacks upon his honor and reputation. Everyone has the right to the protection of the law against such
interference or attacks.”

The U. S. Constitution contains no express right to privacy, however the Bill of Rights reflects the
concern of the framers for protecting specific aspects of privacy.1 In the United Kingdom privacy is
guaranteed by the Data Protection Act. The European Court of Human Rights has developed many
documents defining the right to privacy.

At the same time, the right to privacy is limited by laws. For example, the taxation laws require
individuals to share information about personal income or earnings. Individual privacy may conflict
with other basic human rights e.g., with freedom of speech. The privacy laws differ from country to

1The 1st Amendment covers the protection of beliefs, the 3rd Amendment privacy of homes, the 4th Amendment the privacy
of person and possessions against unreasonable searches, the 5th Amendment the privilege against self-incrimination, thus
the privacy of personal information, and, according to some Justices, the 9th Amendment that reads “The enumeration in the
Constitution, of certain rights, shall not be construed to deny or disparage others retained by the people” can be viewed as a
protection of privacy in ways not explicitly specified by the first eight amendments in the Bill of Rights.

https://cloudsecurityalliance.org/download/cloud-controls-matrix-v3-0-1/
https://cloudsecurityalliance.org/download/cloud-controls-matrix-v3-0-1/
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country; laws in one country may require public disclosure of information considered private in other
countries and cultures.

Digital age has confronted legislators with significant challenges related to privacy as new threats
have emerged. For example, personal information voluntarily shared, but stolen from sites granted
access to it or misused can lead to identity theft.

Some countries have been more aggressive in addressing the new privacy concerns than others.
For example, European Union (EU) has very strict laws governing handling of personal data in the
digital age. A sweeping new privacy right, the “right to be forgotten” is codified as part of a broad new
proposed data protection regulation in EU. This right addresses the problem that it is hard to escape
your past now when every photo, status update, and tweet lives forever on some web site.

Our discussion targets primarily public clouds where privacy has an entirely new dimension as
data, often in an un-encrypted form, resides on servers owned by a CSP. Services based on individual
preferences, location of individuals, membership in social networks, or other personal information
present a special risk. The owner of the data cannot rely exclusively on the CSP to guarantee the
privacy of the data.

Privacy concerns are different for the three cloud delivery models and also depend on the ac-
tual context. For example, consider the widely used Gmail; Gmail privacy policy reads (see http:
//www.google.com/policies/privacy/ accessed on October 6, 2012): “We collect information in two
ways: information you give us... like your name, email address, telephone number or credit card; infor-
mation we get from your use of our services such as:.. device information, ... log information,... location
information,... unique application numbers,... local storage,... cookies and anonymous identifiers.... We
will share personal information with companies, organizations or individuals outside of Google if we
have a good-faith belief that access, use, preservation or disclosure of the information is reasonably
necessary to: meet any applicable law, regulation, legal process or enforceable governmental request;
... protect against harm to the rights, property or safety of Google, our users or the public as required or
permitted by law. We may share aggregated, non-personally identifiable information publicly and with
our partners like publishers, advertisers or connected sites. For example, we may share information
publicly to show trends about the general use of our services.”

The main aspects of cloud privacy are: the lack of user control, potential unauthorized secondary
use, data proliferation, and dynamic provisioning [400]. The lack of user control refers to the fact that
user-centric data control is incompatible with cloud usage. Once data is stored on the servers of the
CSP the user losses control on the exact location, and in some instances it could lose access to the data.
For example, in case of the Gmail service the account owner has no control on where the data is stored
or how long old Emails are stored on some backups of the servers.

A CSP may obtain revenues from unauthorized secondary usage of the information e.g., for tar-
geted advertising. There are no technological means to prevent this use. Dynamic provisioning refers
to threats due to outsourcing. A range of issues are very fuzzy; for example, how to identify the sub-
contractors of a CSP, what rights to the data they have, and what rights to data are transferable in case
of bankruptcy or merger.

There is the need for legislation addressing the multiple aspects of privacy in the digital age. A doc-
ument elaborated by the Federal Trading Commission for the US Congress states [172]: “Consumer-
oriented commercial web sites that collect personal identifying information from or about consumers
online would be required to comply with the four widely-accepted fair information practices:

http://www.google.com/policies/privacy/
http://www.google.com/policies/privacy/
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1. Notice – web sites should be required to provide consumers clear and conspicuous notice of their
information practices, including what information they collect, how they collect it (e.g., directly or
through non-obvious means such as cookies), how they use it, how they provide Choice, Access,
and Security to consumers, whether they disclose the information collected to other entities, and
whether other entities are collecting information through the site.

2. Choice – web sites should be required to offer consumers choices as to how their personal identi-
fying information is used beyond the use for which the information was provided, e.g., to consum-
mate a transaction. Such choices would encompass both internal secondary uses (such as marketing
back to consumers) and external secondary uses, such as disclosing data to other entities.

3. Access – web sites would be required to offer consumers reasonable access to the information a
web site has collected about them, including a reasonable opportunity to review information and
to correct inaccuracies or delete information.

4. Security – web sites would be required to take reasonable steps to protect the security of the
information they collect from consumers. The Commission recognizes that the implementation of
these practices may vary with the nature of the information collected and the uses to which it is
put, as well as with technological developments. For this reason, the Commission recommends that
any legislation be phrased in general terms and be technologically neutral. Thus, the definitions of
fair information practices set forth in the statute should be broad enough to provide flexibility to
the implementing agency in promulgating its rules or regulations.”

There is the need for tools capable to identify privacy issues in information systems, the so called
Privacy Impact Assessment (PIA). As of mid 2017 there are no international standards for such a
process, though different countries and organization require PIA reports. An example of an analysis is
to assess the legal implications of the UK-US Safe Harbor process to allow US companies to comply
with the European Directive 95/46/EC2 on the protection of personal data.

Such an assessment forces a proactive attitude towards privacy. An ab initio approach for embed-
ding privacy rules in new systems is preferable to painful changes that could affect the functionality
of existing systems. A PIA tool that could be deployed as web-based service is proposed in [478].
The input to the tool includes: project information, an outline of project documents, privacy risks, and
stakeholders. The tool will produce a PIA report consisting of a summary of findings, a risk summary,
security, transparency, and cross-borders data flows.

The centerpiece of a PIA tool is a knowledge base (KB) created and maintained by domain experts.
The users of the SaaS service providing access to the PIA tool must fill in a questionnaire. The system
uses templates to generate additional questions necessary to fill in the PIA report. An expert system
infers which rules are satisfied by the facts in the database as provided by the users and executes the
rule with the highest priority.

11.4 TRUST
Trust, in the context of cloud computing, is intimately related to the general problem of trust in online
activities. In this section we first discuss the traditional concept of trust and then the trust in online
activities.

2See http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML.

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML
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Trust. According to the Merriam-Webster dictionary trust means “assured reliance on the character,
ability, strength, or truth of someone or something.” Trust is a complex phenomenon, it enables cooper-
ative behavior, promotes adaptive organizational forms, reduces harmful conflict, decreases transaction
costs, facilitates formulation of ad hoc work groups, and promotes effective responses to crisis [430].

Two conditions must exist for trust to develop. The first is risk, the perceived probability of loss.
Indeed, trust would not be necessary if there is no risk involved, if there is a certainty that an action can
succeed. The second is interdependence, the interests of one entity cannot be archived without reliance
on other entities.

A trust relationship goes though three phases:
1. Building phase, when trust is formed.
2. Stability phase, when trust exists.
3. Dissolution phase, when trust declines.

There are different reasons and forms of trust. Utilitarian reasons could be based on the belief that
the costly penalties for breach of trust exceed any potential benefits from opportunistic behavior. This
is the essence of deterrence-based trust. Another reason is the belief that the action involving the other
party is in the self-interest of that party. This is the so-called calculus-based trust. After a long sequence
of interactions relational trust between entities can developed based on the accumulated experience of
dependability and reliance on each other.

The common wisdom is that an entity must work very hard to build trust, but may lose trust very
easily. A single violation of trust can lead to irreparable damages. Persistent trust is based on the long
term behavior of an entity, while dynamic trust is based on a specific context, e.g., state of the system
or the effect of technological developments.

Internet trust. Internet trust “obscures or lacks entirely the dimensions of character and personality,
nature of relationship, and institutional character” of the traditional trust [360]. The missing identity,
personal characteristics, and role definitions are elements we have to deal with in the context of online
trust.

The Internet offers individuals the ability to obscure or conceal their identity. The resulting
anonymity reduces the clues normally used in judgments of trust. Identity is critical for developing
trust relations, it allows us to base our trust on the past history of interactions with an entity. Anonymity
causes mistrust because identity is associated with accountability and in absence of identity account-
ability cannot be enforced.

The opacity extends immediately from identity to personal characteristics. It is impossible to infer
if the entity or individual we transact with is who it pretends to be, as the transactions occur between
entities separated in time and distance. Lastly, there are no guarantees that the entities we transact with
fully understand the role they have assumed.

To remedy the loss of clues we need security mechanisms for access control, transparency of
identity, and surveillance. The mechanisms for access control are designed to keep intruders and mis-
chievous agents out. Identity transparency requires that the relation between a virtual agent and a
physical person should be carefully checked through methods such as biometric identification. Digital
signatures and digital certificates are used for identification. Surveillance could be based on intrusion
detection or can be based on logging and auditing. The first is based on real-time monitoring, while the
second relies on off-line sifting through audit records.

Credentials are used when the entity is not known; credentials are issued by a trusted authority and
describe the qualities of the entity using the credential. A DDS (Doctor of Dental Surgery) diploma
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hanging on the wall of a dentist’s office is a credential that the individual has been trained by an ac-
credited university and hence capable to perform a set of procedures. A digital signature is a credential
used in many distributed applications.

Policies and reputation are two ways of determining trust. Policies reveal the conditions to obtain
trust, and the actions when some of the conditions are met. Policies require the verification of creden-
tials. Reputation is a quality attributed to an entity based on a relatively long history of interactions or
possibly observations of the entity. Recommendations are based on trust decisions made by others and
filtered through the perspective of the entity assessing the trust.

In a computer science context “trust of a party A to a party B for a service X is the measurable
belief of A that B behaves dependably for a specified period within a specified context (in relation to
service X),” [376]. An assurance about the operation of particular hardware or software component
leads to persistent social-based trust in that component.

A comprehensive discussion of trust in computer services in the semantic web can be found in [38].
In Section B.1 we discuss the concept of trust in the context of cognitive radio networks where multiple
transmitters compete for communication channels. Then, in Section B.3 we present a cloud-based trust
management service.

11.5 CLOUD DATA ENCRYPTION
The government, large corporations, and individual users ponder if it safe to store sensitive infor-
mation on a public cloud. Encryption is the obvious solution to protect outsourced data and cloud
service providers have been compelled to offer encryption services. For example, Amazon offers AWS
Key Management Service (KMS) to create and control the encryption keys used by clients to encrypt
their data. KMS is integrated with other AWS services including EBS, S3, RDS, Redshift, Elastic
Transcoder, and WorkMail. AWS also offers Encryption SDK for developers.

The seminal RSA paper [424] and the survey of existing public-key crypto systems in [433] are
some of the notable publications in the vast literature dedicated to cryptosystems. Several new research
results in cryptography are important to data security in cloud computing. In 1999 Pascal Paillier pro-
posed a trapdoor mechanism based on composite residuosity classes, i.e., factoring a hard-to-factor
number n = pq where p and q are two large prime numbers [388]. This solution exploits the homo-
morphic properties of composite residuosity classes to design distributed cryptographic protocols. A
major breakthrough are the algorithms for Fully Homomorphic Encryption (FHE) proposed by Craig
Gentry in his seminal 2009 dissertation at Stanford University [189,190]. In recent years, searchable
symmetric encryption protocols have been reported in [86] and [168].

Homomorphic encryption. Sensitive data is safe while in storage, provided that it is encrypted with
strong encryption. But encrypted data must be decrypted for processing and this opens a window of
vulnerability. So a first question examined in this section is if it is feasible to operate on encrypted
data. The homomorphic encryption, a long time dream of security experts, reflects the concept of
homomorphism, a structure-preserving map f (·) between two algebraic structures of the same type
see Figure 11.2.

When f (·) is a one-to-one mapping, call f −1 : A′ → A the inverse of f (·). Then a = f −1(a′), b =
f −1(b′), c = f −1(c′). In this case we can carry out the composition operation ♦ in the target domain
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FIGURE 11.2

A homomorphism f : A → A′ is a structure-preserving map between sets A and A′ with the composition
operations � and ♦, respectively. Let a, b, c ∈ A with c = a�b and a′, b′, c′ ∈ A′ with c′ = a′♦b′. Let
a′ = f (a), b′ = f (b), c′ = f (c) be the results of the mapping f (·). If f is a homomorphism, then the
composition operation ♦ in the target domain A′ produces the same result as mapping the result of the
operation � applied to the two elements in the original domain A: f (a)♦f (b) = f (a�b).

and apply the inverse mapping to get the same result produced by the � composition operation in the
original domain, f −1(a)♦f −1(b) = f (a�b), as shown in Figure 11.2.

In case of homomorphic encryption the mapping f (·) is a one-to-one transformation, the encryption
procedure; its inverse, f −1(·) is the decryption procedure and the composition operation can be any
arithmetic and logic operation carried out with encrypted data. In this case we can carry arithmetic
and/or logic operations with encrypted data and the decryption of the result of these operations is
identical with the result of carrying out the same operations with the plaintext data. The window of
vulnerability created when data is decrypted for processing disappears.

General computations with encrypted data are theoretically feasible using FHE algorithms. Unfor-
tunately, the homomorphic encryption is not a practical solution at this time. Existing algorithms for
homomorphic encryption increase the processing time with encrypted data by many orders of magni-
tude compared with processing of plaintext data. A recent implementation of FHE [218] requires about
six minutes per batch; the processing time for a simple operation on encrypted data dropped to almost
one second after improvements in other experiments [154].

Users send a variety of queries to many large databases stored on clouds. Such queries often in-
volve logic and arithmetic functions so an important question is if it is feasible and practical to search
encrypted databases. Application of widely used encryption techniques to database systems could lead
to significant performance degradation. For example, if an entire column of a NoSQL database table
contains sensitive information and it is encrypted, then a query predicate with a comparison operator
requires a scan of the entire table to evaluate the query. This is due to the fact that existing encryption
algorithms do not preserve order and database indices such as B-tree can no longer be used.

Order Preserving Encryption. OPE can be used for encryption of numeric data, it maps a range of
numerical values into a much larger and sparse range of values [70]. Let a order-preserving function
f : {1, ...,M} → {1, ...,N} with N >> M be uniquely represented by a combination of M out of N
ordered items. Given N balls in a bin, M black and N − M white, we draw a ball at random without
replacement at each step. The random variable X describing the total number of balls in our sample
after we collect the k-th black ball follows the negative hypergeometric distribution (NHG). One can
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show that a order preserving f (x) for a given point x ∈ {1, . . . ,M} has a NHG distribution over a
random choice of f .

To encrypt plaintext x the OPE encryption algorithm performs a binary search down to x. Given the
secret key K the algorithm first assigns Encrypt(K,M/2), then Encrypt(K,M/4) if the index m <

M/2 and Encrypt(K,3M/4) otherwise, and so on, until Encrypt(K,x) is assigned. Each ciphertext
assignment is made according to the output of the negative hypergeometric sampling algorithm. One
can prove by strong induction on the size of the plaintext space that the resulting scheme induces a
random order-preserving function from the plaintext to ciphertext space.

To allow efficient range queries on encrypted data, it is sufficient to have an order-preserving
hash function family H (not necessarily invertible). The OPE algorithm would use a secret key
(KEncrypt ,KH ) where KEncrypt is a key for a normal (randomized) encryption scheme and KH is
a key for H . Then Encrypt(KEncrypt , x) || H(KH ,x) will be the encryption of x [70].

Searching encrypted databases is of particular interest [11]. Several types of searches are fre-
quently conducted including: single-keyword, multi-keyword, fuzzy-keyword, ranked, authorized, and
verifiable search. Searchable symmetric encryption (SSE) is used when an encrypted databases E is
outsourced to a cloud or to a different organization. SSE hides information about the database and the
queries.

The client only stores the cryptographic key. To search the database the client encrypts the query,
sends it to the database server, receives the encrypted result of the query and decrypts it using the
cryptographic key. The information leakage from these searches is confined to query patterns, while
disclosure of explicit data and query plaintext values is prevented.

An SSE protocol supporting conjunctive search and general Boolean queries on symmetrically
encrypted data was proposed in [86]. This SSE protocol scales to very large databases. It can be used
for arbitrarily structured data including free text search with the moderate and well defined leakage to
the outsourced server. Performance results of a prototype applied to encrypted search over the entire
English Wikipedia are reported. The protocol was extended with support for range, substring, wildcard,
and phrase queries [168].

The next question is if sensitive data stored on the servers of a private cloud is vulnerable. The
threat posed by an outsider attacker is diminished if the private cloud is protected by an effective
firewall. Nevertheless, there are dangers posed by an insider. If such an attacker has access to log files
it can infer the location of database hot spots, copy data selectively, and use the data for a nefarious
activity. To minimize the risks posed by an insider, a set of protections rings should be enforced to
restrict the access of each member of the staff to a limited area of the data base.

11.6 SECURITY OF DATABASE SERVICES
Cloud users often delegate control of their data to the database services supported by virtually all
CSP and are concerned with security aspects of DBaaS. The model used to evaluate DBaaS security
includes several groups of entities: data owners, users of data, CSPs, and third party agents or Third
Party Auditors (TPAs).

Data owners and DBaaS users fear compromised integrity and confidentiality, as well as data un-
availability. Insufficient authorization, authentication and accounting mechanisms, inconsistent use of
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encryption keys and techniques, alteration or deletion of records without maintaining backup, and op-
erational failures are the major causes of data loss in DBaaS.

Some data integrity and privacy issues are due to the absence of authentication, authorization and
accounting controls, or poor key management for encryption and decryption. Confidentiality means
that only authorized users should have access to the data. Unencrypted data is vulnerable to bugs,
errors, and attacks from external entities affecting data confidentiality. Insider attacks are another con-
cern for DBaaS users and data owners. Superusers have unlimited privileges and misuse of superuser
privileges poses a considerable threat to confidential data such as medical records, sensitive business
data, proprietary product data, and so on.

Malicious external attackers use spoofing, sniffing, man-in-the-middle attacks, side channeling and
illegal transactions to launch DoS attacks. Another concern is illegal recovery of data from storage
devices, a side effect of multi-tenancy. CSP often carry out sanitation operations after deleting data
from physical devices, but sophisticated attackers can still recover information from storage devices,
unless a thorough scrubbing operation is carried out. Data is also vulnerable during transfer from the
data owner to the DBaaS through public networks. Encryption before data transmission can reduce the
risks posed to the data in transit to the cloud.

Data provenance, the process of establishing the origin of data and its movement between databases,
uses metadata to determine the data accuracy, but the security assessments are time-sensitive. More-
over, analyzing large provenance metadata graphs is computationally expensive.

Cloud users are not aware of the physical location of their data. This lack of transparency allows
cloud service providers to optimize the use of resources but in case of security breaches it is next to
impossible for users to identify compromised resources. DBaaS users do not have fine-grained control
of the remote execution environment and cannot inspect the execution traces to detect the occurrence
of illegal operations.

To increase availability, performance and to enhance reliability, cloud database services replicate
data. Ensuring consistency among the replicas is challenging. Another critical function of DBaaS is to
carry out timely backups of all sensitive and confidential data to facilitate quick recovery in case of
disasters. Auditing and monitoring are important functions of a DBaaS but generate their own security
risks when delegated to TPAs. Conventional methods for auditing and monitoring demand detailed
knowledge of the network infrastructure and physical devices. Data privacy laws can be violated as
consumers are unaware where the data is actually stored. Privacy laws in Europe and South America
prohibit storing data outside the country of origin.

In summary, DBaaS data availability is affected by several threats including:

• Resource exhaustion caused by imprecise specification of user needs or incorrect evaluation of user
specifications.

• Failures of the consistency management; multiple hardware and/or software failures lead to incon-
sistent views of user data.

• Failure of the monitoring and auditing system.

DBaaS data confidentiality is affected by insider and outsider attacks, access control issues, illegal
data recovery from storage, network breaches, third-party access, inability to establish the provenance
of the data.
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11.7 OPERATING SYSTEM SECURITY
An operating system allows multiple applications to share the hardware resources of a physical system
subject to a set of policies. A critical function of an OS is to protect applications against a wide range
of malicious attacks such as unauthorized access to privileged information, tampering with executable
code, and spoofing. Such attacks can target even single-user systems such as personal computers,
tablets, or smart phones. Data brought in the system may contain malicious code; this could be the
case of a Java applet, or of data imported by a browser from a malicious web site.

The mandatory security of an OS is considered to be [295]: “any security policy where the definition
of the policy logic and the assignment of security attributes is tightly controlled by a system security
policy administrator.” Access control, authentication usage, and cryptographic usage policies are all
elements of the mandatory OS security.

Access control policies specify how OS controls access to different system objects, authentication
usage defines the authentication mechanisms used by the OS to authenticate a principal, and crypto-
graphic usage policies specify the cryptographic mechanisms used to protect the data. A necessary but
not sufficient condition for security is that the subsystems tasked to perform security-related functions
are tamper-proof and cannot be bypassed. An OS should confine an application to a unique security
domain.

Applications with special privileges performing security-related functions are called trusted appli-
cations. Such applications should only be allowed the lowest level of privileges required to perform
their functions. For example, type enforcement is a mandatory security mechanism that can be used to
restrict a trusted application to the lowest level of privileges.

Enforcing mandatory security through mechanisms left at user’s discretion can lead to a breach of
security, sometimes due to malicious intent, in other cases due to carelessness, or to lack of under-
standing. Discretionary mechanisms place the burden of security on individual users. Moreover, an
application may change a carefully defined discretionary policy without the consent of the user, while
a mandatory policy can only be changed by a system administrator.

Unfortunately, commercial operating systems do not support multi-layered security. They only dis-
tinguish between a completely privileged security domain and a completely unprivileged one. Some
operating systems, e.g., Windows NT, allow a program to inherit all the privileges of the program
invoking it, regardless of the level of trust in that program.

The existence of trusted paths, mechanisms supporting user interactions with trusted software is
critical for system security. When such mechanisms do not exist malicious software can impersonate
trusted software. Some systems allow servers to authenticate their clients and provide trusted paths for
a few functions, such as login authentication and password changing.

A solution to the trusted path problem is to decompose a complex mechanism in several components
with well-defined roles [295]. For example, the access control mechanism for the application space
could consist of enforcer and decider components. To access a protected object the enforcer will gather
the required information about the agent attempting the access, will pass this information to the decider
together with the information about the object and the elements of the policy decision; finally, it will
carry out the actions requested by the decider.

A trusted path mechanism is required to prevent malicious software invoked by an authorized ap-
plication to tamper with the attributes of the object and/or with the policy rules. A trusted path is also
required to prevent an impostor from impersonating the decider agent. A similar solution is proposed
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for the cryptography usage which should be decomposed into an analysis of the invocation mechanisms
and an analysis of the cryptographic mechanism.

Another question is how an OS can protect itself and applications running under it from malicious
mobile code attempting to gain access to data and other resources and compromise system confi-
dentiality and/or integrity. Java Security Manager uses the type-safety attributes of Java to prevent
unauthorized actions of an application running in a “sandbox.” Yet, the Java Virtual Machine (JVM)
accepts byte code in violation of language semantics; moreover, it cannot protect itself from tampering
from other applications.

Even if these security problems could be eliminated, the security relies on the ability of the file
system to preserve the integrity of the Java class code. Requiring digitally signed applets and accept-
ing them only from trusted sources could fail due to the all-or-nothing security model. A solution to
securing mobile communications could be to confine a browser to a distinct security domain.

Specialized closed-box platforms such as the ones on some cellular phones, game consoles, and
Automatic Teller Machines (ATMs) could have embedded cryptographic keys that allow themselves
to reveal their true identity to remote systems and authenticate the software running on them. Such
facilities are not available to open-box platforms, the traditional hardware designed for commodity
operating systems.

A highly secure operating system is necessary but not sufficient. Application-specific security is
also necessary. Sometimes, security implemented above the operating system is better, e.g., electronic
commerce requires a digital signature on each transaction.

We conclude that commodity operating systems offer low assurance. Indeed, an OS is a complex
software system consisting of millions of lines of code and it is vulnerable to a wide range of malicious
attacks. An OS poorly isolates one application from another; once an application is compromised, the
entire physical platform and all applications running on it can be affected. The platform security level
is thus reduced to the security level of the most vulnerable application running on the platform.

Operating systems provide only weak mechanisms for applications to authenticate one another and
do not have a trusted path between users and applications. These shortcomings add to the challenges of
providing security in a distribute computing environment. For example, a financial application cannot
determine if a request comes from an authorized user or from a malicious program; in turn, a hu-
man user cannot distinguish a response from a malicious program impersonating the service from the
response provided by the service.

11.8 VIRTUAL MACHINE SECURITY
The following discussion of VM security is restricted to the traditional system VM model in Fig-
ure 10.1B when a hypervisor controls the access to the hardware. The hybrid and the hosted VM
models shown in Figures 10.1C and D, respectively, expose the entire system to the vulnerability of
the host operating system thus, will not be analyzed.

Virtual security services are typically provided by the hypervisor as shown in Figure 11.3A; another
alternative is to have a dedicated VM providing security service as in Figure 11.3B. A secure TCB
(Trusted Computing Base) is a necessary condition for security in a VM environment. When the TCB
is compromised then the security of the entire system is affected.
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FIGURE 11.3

(A) Virtual security services provided by the hypervisor/Virtual Machine Monitor; (B) A dedicated security VM.

The analysis of Xen and vBlades in Sections 10.5 and 10.10 shows that the VM technology provides
a stricter isolation of VMs from one another than the isolation of processes in a traditional operating
system. Indeed, a hypervisor controls the execution of privileged operations and can thus enforce mem-
ory isolation as well as disk and network access.

Hypervisors are considerably less complex and better structured than traditional operating systems
thus, in a better position to respond to security attacks. A major challenge is that a hypervisor sees only
raw data regarding the state of a guest OS while security services typically operate at a higher logical
level, e.g., at the level of a file rather than a disk block.

A guest OS runs on simulated hardware and the hypervisor has access to the state of all VMs
operating on the same hardware. The state of a guest VM can be saved, restored, cloned, and encrypted
by the hypervisor. Replication can ensure not only reliability but also support security, while cloning
could be used to recognize a malicious application by testing it on a cloned system and observing if it
behaves normally.

We can also clone a running system and examine the effect of potentially dangerous applications.
Another interesting possibility is to have the guest VMs files moved to a dedicated VM and thus,
protect it from attacks [549]. This solution is possible because inter-VM communication is faster than
communication between two physical machines.

Sophisticated attackers are able to fingerprint VMs and avoid VM honey pots designed to study the
methods of attack. They can also attempt to access VM-logging files and thus, recover sensitive data;
such files have to be very carefully protected to prevent unauthorized access to cryptographic keys and
other sensitive data.

We expect to pay some price for the better security provided by virtualization. This price includes:
(i) higher hardware costs because a virtual system requires more resources such as CPU cycles, mem-
ory, disk, and network bandwidth; (ii) the cost of developing hypervisors and modifying the host
operating systems in case of paravirtualization; and (iii) the overhead of virtualization as the hyper-
visor is involved in privileged operations.

VM-based intrusion detection systems such as Livewire and Siren which exploit the three capabil-
ities of a VM for intrusion detection, isolation, inspections, and interposition are surveyed in [549].
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Resource isolation was examined in Section 8.10. Inspection means that the hypervisor has the ability
to review the state of the guest VMs and interposition means that the hypervisor can trap and emu-
late the privileged instruction issued by the guest VMs. VM-based intrusion prevention systems such
as, SVFS, NetTop, and IntroVirt, and surveys Terra, a VM-based trust computing platform are also
discussed in [549]. Terra uses a trusted hypervisor to partition resources among VMs.

NIST security group distinguishes two groups of threats, hypervisor-based and VM-based.
There are several types of hypervisor-based threats:

1. Starvation of resources and denial of service for some VMs. Probable causes: (a) badly configured
resource limits for some VMs; (b) a rogue VM with the capability to bypass resource limits set in
hypervisor.

2. VM side-channel attacks: malicious attack on one or more VMs by a rogue VM under the same
hypervisor. Probable causes: (a) lack of proper isolation of inter-VM traffic due to misconfiguration
of the virtual network residing in the hypervisor; (b) limitation of packet inspection devices to
handle high speed traffic, e.g., video traffic; (c) presence of VM instances built from insecure VM
images, e.g., a VM image having a guest OS without the latest patches.

3. Buffer overflow attacks.
There are also several types of VM-based threats:

1. Deployment of rogue or insecure VM; unauthorized users may create insecure instances from
images or may perform unauthorized administrative actions on existing VMs. Probable cause:
improper configuration of access controls on VM administrative tasks such as instance creation,
launching, suspension, re-activation and so on.

2. Presence of insecure and tampered VM images in the VM image repository. Probable causes: (a)
lack of access control to the VM image repository; (b) lack of mechanisms to verify the integrity
of the images, e.g., digitally signed image.

11.9 SECURITY OF VIRTUALIZATION
The complex relationship between virtualization and security has two distinct aspects: virtualization
of security and security of virtualization [302]. In Chapter 10 we praised the virtues of virtualization.
We also discussed two problems associated with virtual environments: (a) the negative effect on per-
formance, due to the additional overhead; and (b) the need for more powerful systems to run multiple
VMs. In this section we take a closer look at the security of virtualization.

The complete state of an operating system running under a VM is captured by the VM. The VM
state can be saved in a file and then the file can be copied and shared. There are several useful implica-
tions of this important virtue of virtualization:
1. Supports the IaaS delivery model. An IaaS user selects an image matching the local application

environment and then uploads and runs the application on the cloud using this image.
2. Increased reliability. An operating system with all the applications running under it can be repli-

cated and switched to a hot standby in case of a system failure. Recall that a hot standby is a
method to achieve redundancy. The primary and the backup systems, run simultaneously and have
identical state information.

3. Straightforward mechanisms for implementing resource management policies. An OS and the ap-
plications running under it can be moved to another server to balance the load of a system. For
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example, the load of lightly loaded servers can be moved to other servers and then lightly loaded
servers can be switched off or placed in standby mode to reduce power consumption.

4. Improved intrusion detection. In a virtual environment a clone can look for known patterns in sys-
tem activity and detect intrusion. The operator can switch a server to hot standby when suspicious
events are detected.

5. Secure logging and intrusion protection. When implemented at the OS level intrusion detection
can be disabled and logging can be modified by an intruder. When implemented at the hypervisor
layer, the services cannot be disabled or modified. In addition, the hypervisor may be able to log
only events of interest for a post-attack analysis.

6. More efficient and flexible software maintenance and testing. Virtualization allows the multitude of
OS instances to share a small number of physical systems, instead of a large number of dedicated
systems running under different operating systems, different versions of each OS, and different
patches for each version.

Is there a price to pay for the benefits of virtualization outlined above? There is always the other
side of a coin, so we should not be surprised that the answer to this question is a resounding Yes. In
a 2005 paper [185] Garfinkel and Rosenblum argue that the serious implications of virtualization on
system security cannot be ignored. This theme is revisited in 2008 by Price [410] who reaches similar
conclusions.

A first group of undesirable effects of virtualization lead to a diminished ability of an organization
to manage its systems and track their status. These undesirable effects are:

• The number of physical systems in the inventory of an organization is limited by cost, space, energy
consumption, and human support. The explosion of the number of VMs is a fact of life; to create a
VM one simply copies a file. The only limitation for the number of VMs is the amount of storage
space available.

• There is also a qualitative side to the explosion of the number of VMs. Traditionally, organizations
install and maintain the same version of system software. In a virtual environment such a uniformity
cannot be enforced, the number of different operating systems, their versions, and the patch status
of each version will be diverse and the diversity will tax the support team.

• One of the most critical problems posed by virtualization is related to the software lifecycle. The
traditional assumption is that the software lifecycle is a straight line, hence the patch management is
based on a monotonic forward progress. The virtual execution model maps to a tree structure rather
than a line. Indeed, at any point in time multiple VM instances can be created and then each one of
them can be updated, different patches installed, and so on. This problem has serious implication
on security as we shall see shortly.

What are the direct implications of virtualization on security? A first question is how can the support
team deal with the consequences of an attack in a virtual environment. Do we expect the infection with
a computer virus or a worm to be less manageable in a virtual environment? The surprising answers to
these questions is that an infection may last indefinitely.

Some of the infected VMs may be dormant at the time when the measures to clean up the systems
are taken. Then, at a later time, the infected VMs wake up and infect other systems. The scenario can
repeat itself and guarantee that infection will last indefinitely. This is in stark contrast with the manner
an infection is treated in non-virtual environments. Once an infection is detected, the infected systems
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are quarantined and then cleaned up; the systems will then behave normally until the next infection
occurs.

A more general observation is that in a traditional computing environment a steady state can be
reached. In this steady state all systems are brought up to a “desirable” state, whereas “undesirable”
states, states when some of the systems are either infected by a virus or display an undesirable pattern
of behavior, are only transient. The desirable state is reached by installing the latest system software
version and then applying the latest patches to all systems.

A virtual environment may never reach such a steady state due to the lack of control. In a non-virtual
environment the security can be compromised when an infected laptop is connected to the network
protected by a firewall, or when a virus is brought in on a removable media. But, unlike a virtual
environment, the system can still reach a steady state.

A side effect of the ability to record the complete state of a VM in a file is the possibility to roll
back a VM. This opens wide the door for a new type of vulnerability caused by events recorded in the
memory of an attacker. Two such situations are discussed in [185]. The first is that one-time passwords
are transmitted in clear and the protection is guaranteed only if the attacker does not have the possibility
to access passwords used in previous sessions.

An attacker can replay rolled back versions and access past sniffed passwords if a system runs
the S/KEY password system. S/KEY is a password system based on Leslie Lamport’s scheme. It is
used by several operating systems including, Linux, OpenBSD, and NetBSD. The real password of the
user is combined with a short set of characters and a counter that is decremented at each use to form a
single-use password. The second situation is related to the requirement of some cryptographic protocols
and even non-cryptographic protocols regarding the “freshness” of the random number source used for
session keys and nonces. This situation occurs when a VM is rolled back to a state when a random
number has been generated but not yet used.

A nonce is a random or pseudo-random number issued in an authentication protocol to ensure that
old communications cannot be reused in replay attacks. For example, nonces are used to calculate the
MD5 of the password for HTTP digest access authentication. Each time the authentication challenge
response code is presented, the nonces are different, thus replay attacks are virtually impossible. This
guarantees that an online order to Amazon or other online store cannot be replayed.

Even non-cryptographic use of random numbers may be affected by the rollback scenario. For
example, the initial sequence number for a new TCP connection must be “fresh.” The door to TCP
hijacking is left open when the initial sequence number is not fresh.

Another undesirable effect of virtual environment affects trust. Recall from Section 11.4 that trust
is conditioned by the ability to guarantee the identity of entities involved. Each computer system in a
network has a unique physical, or MAC address. The uniqueness of the MAC address guarantees that
an infected or a malicious system can be identified and then shut down, or denied network access. This
process breaks down for virtual systems when VMs are created dynamically. Often, a random MAC
address is assigned to a newly created VM to avoid name collision. The other effect discussed at length
in Section 11.10 is that popular VM images are shared by many users.

The ability to guarantee confidentiality of sensitive data is yet another pillar of security affected
by virtualization. Virtualization undermines the basic principle that time-sensitive data stored on any
system should be reduced to a minimum. First, the owner has very limited control on where sensitive
data is stored, it could be spread across many servers and may be left on some of them indefinitely.
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A hypervisor records the state of a VM to be able to roll it back; this process allows an attacker to
access sensitive data the owner attempted to destroy.

11.10 SECURITY RISKS POSED BY SHARED IMAGES
Even if we assume that a cloud service provider is trustworthy there are other sources of concern many
users either ignore, or underestimate the danger they pose. One of them, especially critical for the IaaS
cloud delivery model, is image sharing. For example, an AWS user has the option to choose between
Amazon Machine Images (AMIs) accessible through the Quick Start or the Community AMI menus
of the EC2 service. The option of using one of these AMIs is especially tempting for a first time user,
or for a less sophisticated one.

First, we review the process to create an AMI. We can start from a running system, from another
AMI, or from the image of a VM and copy the contents of the file system to the S3, a process called
bundling. The first of the three steps of bundling is to create an image, the second step is to compress
and encrypt the image, and the last step is to split the image into several segments and then upload the
segments to S3.

Two procedures, ec2-bundle-image and ec2-bundle-volume, are used for creation of an AMI. The
first is used for images prepared as loopback files3 when data is transferred to the image in blocks. To
bundle a running system the creator of the image can use the second procedure when bundling works
at the level of the file system and files are copied recursively to the image.

To use an image, a user has to specify the resources, provide the credentials for login, a firewall
configuration, and specify the region, as discussed in Section 2.3. Once the image is instantiated, the
user is informed about the public DNS and the VM is available. A Linux system can be accessed using
ssh at port 22, while the Remote Desktop at port 3389 is used for Windows.

A recent paper reports on the results of an analysis carried over a period of several months, from
November 2010 to May 2011 of over five thousand AMIs available through the public catalog at
Amazon [49]. Many analyzed images allowed a user to undelete files, recover credentials, private keys,
or other types of sensitive information with little effort, using standard tools. The results of this study
were shared with the Amazon’s Security Team which acted promptly to reduce the threats posed to
AWS users.

The details of the testing methodology can be found in [49], here we only discuss the results of
this analysis. The study was able to audit some 5 303 images out of the 8 448 Linux AMIs and 1 202
Windows AMIs at Amazon sites in the US, Europe and Asia. The audit covered software vulnerabilities
and security and privacy risks.

The average duration of an audit was 77 minutes for a Windows image and 21 minutes for a Linux
image; the average disk space used was about 1 GB and 2.7 GB, respectively. The entire file sys-
tem of a Windows AMI was audited because most of the malware targets Windows systems. Only

3A loopback file system (LOFS) is a virtual file system providing an alternate path to an existing file system. When other file
systems are mounted onto an LOFS file system, the original file system does not change. One useful purpose of LOFS is to take
a CDROM image file, a file of type “.iso” and mount it on the file system and then access it without the need to record a CD-R. It
is somewhat equivalent to the Linux mount-o loop option, but adds a level of abstraction; most commands that apply to a device
can be used to handle the mapped file.
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directories containing executables for Linux AMIs were scanned; this strategy and the considerably
longer start-up time of Windows explain the time discrepancy of the audits for the two types of
AMIs.

The software vulnerability audit revealed that 98% of the Windows AMIs (249 out of 2 53) and
58% (2 005 out of 3 432) Linux AMIs audited had critical vulnerabilities. The average number of
vulnerabilities per AMI were 46 for Windows and 11 for Linux AMIs. Some of AMI images were
rather old; 145,38, and 2 Windows AMIs and 1 197,364, and 106 Linux AMIs were older than two,
three, and four years, respectively. The tool used to detect vulnerabilities, the Nessus system, available
from http://www.tenable.com/productus/nessus, classifies the vulnerabilities based on their severity in
four groups, at levels zero to three. The audit reported only vulnerabilities of the highest severity level,
e.g., remote code execution.

Three types of security risks are analyzed: (1) backdoors and leftover credentials, (2) unsolicited
connections, and (3) malware. An astounding finding is that about 22% of the scanned Linux AMIs
contained credentials allowing an intruder to remotely login to the system. Some 100 passwords, 995
ssh keys, and 90 cases when both could be retrieved were identified.

To rent a Linux AMI a user must provide the public part of the her ssh key and this key is stored
in the authorized_keys in the home directory. This opens a backdoor for a malicious creator of an AMI
who does not remove her own public key from the image and can remotely login to any instance of this
AMI. Another backdoor is opened when the ssh server allows password-based authentication and the
malicious creator of an AMI does not remove her own password. This backdoor is even wider open as
one can extract the password hashes and then crack the passwords using a tool such as John the Riper,
see http://www.openwall.com/john.

Another threat is posed by the omission of the cloud-init script that should be invoked when the
image is booted. This script provided by Amazon regenerates the host key an ssh server uses to identify
itself; the public part of this key is used to authenticate the server. When this key is shared among
several systems these systems become vulnerable to man-in-the middle attacks.

An attacker impersonates the agents at both ends of a communication channel in the man-in-the
middle attack and makes them believe that they communicate through a secure channel. For example,
if B sends her public key to A, but C is able to intercept it, such an attack proceeds as follows: C sends
a forged message to A claiming to be from B, but instead includes C’s public key. Then A encrypts her
message with C’s key, believing that she is using B’s key, and sends the encrypted message to B. The
intruder, C, intercepts, deciphers the message using her private key, possibly alters the message, and
re-encrypts with the public key B originally sent to A. When B receives the newly encrypted message,
she believes it came from A.

When this script does not run, an attacker can use the NMap tool4 to match the ssh keys discovered
in the AMI images with the keys obtained with NMap. The study reports that the authors were able to
identify more than 2 100 instances following this procedure.

Unsolicited connections pose a serious threat to a system. Outgoing connections allow an outside
entity to receive privileged information, e.g., the IP address of an instance and events recorded by a

4NMap is a security tool running on most operating systems including Linux, Microsoft Windows, Solaris, HP-UX, SGI-IRIX
and BSD variants such as Mac OS X to map the network. Mapping the network means to discover hosts and services in a
network.

http://www.tenable.com/productus/nessus
http://www.openwall.com/john
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syslog daemon to files in the var/log directory of a Linux system. Such information is available only to
users with administrative privileges.

The audit detected two Linux instances with modified syslog daemon which forwarded to an outside
agent information about events such as login and incoming requests to a web server. Some of the
unsolicited connections are legitimate, for example, connections to a software update site. It is next to
impossible to distinguish legitimate from malicious connections.

Malware including viruses, worms, spyware, and Trojans were identified using ClamAV, a software
tool with a database of some 850 000 malware signatures, available from http://www.clamav.net. Two
infected Windows AMIs were discovered, one with a Trojan-Spy (variant 50112) and a second one
with a Trojan-Agent (variant 173287). The first Trojan carries out keylogging, and allows stealing data
from the files system and monitoring processes; the AMI also included a tool to decrypt and recover
passwords stored by the Firefox browser, called Trojan.Firepass.

The creator of a shared AMI assumes some privacy risks. Her private keys, IP addresses, browser
history, shell history, and deleted files can be recovered from the published images. A malicious agent
can recover the AWS API keys which are not password protected. Then the malicious agent can start
AMIs and run cloud applications at no cost to herself, as the computing charges are passed on to
the owner of the API key. The search can target files with names such as pk-[0-9A-Z]*.pem or cert-
[0-9A-Z]*.pem used to store API keys.

Another avenue for a malicious agent is to recover ssh keys stored in files named id_dsa and id_rsa.
Though ssh keys can be protected by a passphrase, the audit determined that the majority of ssh keys
(54 out of 56) were not password protected. A passphrase is a sequence of words used to control access
to a computer system. A passphrase is the analog of a password, but provides added security. For high
security non-military applications NIST recommends an 80-bit strength passphrase. Therefore, a secure
passphrase should consist of at least 58 characters including uppercase and alphanumeric characters.
The entropy of written English is less than 1.1 bits per character.

Recovery of IP addresses of other systems owned by the same user requires access to the lastlog or
the lastb databases. The audit found 187 AMIs with a total of more than 66 000 entries in their lastb
databases. Nine AMIs contained Firefox browser history and allowed the auditor identify the domains
contacted by the user.

612 AMIs contained at least one shell history file. The audit analyzed 869 history files named
∼/.history, ∼/.bash_history, and ∼/.sh_history containing some 160 000 lines of command history
and identified 74 identification credentials. The users should be aware that, when the HTTP protocol
is used to transfer information from a user to a web site, the GET requests are stored in the logs of the
web server. Passwords and credit card numbers communicated via a GET request can be exploited by
a malicious agent with access to such logs. When remote credentials, such as the DNS management
password are available then a malicious agent can redirect traffic from its original destination to her
own system.

Recovery of deleted files containing sensitive information poses another risk for the provider of
an image. When the sectors on the disk containing sensitive information are actually overwritten by
another file, recovery of sensitive information is much harder. To be safe, the creator of the image effort
should use utilities such as shred, scrub, zerofree or wipe to make recovery of sensitive information
next to impossible. If the image is created with the block-level tool discussed at the beginning of
this section the image will contain blocks of the file system marked as free; such blocks may contain
information from deleted files. The audit process was able to recover files from 98% of the AMIs using

http://www.clamav.net
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the exundelete utility. The number of files recovered from an AMI were as low as 6 and as high as
40 000.

We conclude that the users of published AMIs as well as the providers of images may be vulnerable
to a wide range of security risks and must be fully aware of the dangers posed by image sharing.

11.11 SECURITY RISKS POSED BY A MANAGEMENT OS
We often hear that virtualization enhances security because a VM monitor or hypervisor is considerably
smaller than an operating system. For example, the Xen hypervisor discussed in Section 10.5 has
approximately 60 000 lines of code, one to two orders of magnitude fewer than a traditional operating
system.5

A hypervisor supports a stronger isolation between the VMs running under it than the isolation
between processes supported by a traditional operating system. Yet the hypervisor must rely on a
management OS to create VMs and to transfer data in and out from a guest VM to storage devices and
network interfaces.

A small hypervisor can be carefully analyzed, thus one could conclude that the security risks in a
virtual environment are diminished. We have to be cautious with such sweeping statements. Indeed, the
Trusted Computer Base (TCB)6 of a cloud computing environment includes not only the hypervisor
but also the management OS. The management OS supports administrative tools, live migration, device
drivers, and device emulators.

For example, the TCB of an environment based on Xen includes not only the hardware and the
hypervisor, but also the management operating system running in Dom0, see Figure 11.4. System
vulnerabilities can be introduced by both software components, Xen and the management operating
system. An analysis of Xen vulnerabilities reports that 21 of the 23 attacks were against service com-
ponents of the control VM [116]; 11 attacks were attributed to problems in the guest OS caused by
buffer overflow and 8 were denial of service attacks. Buffer overflow allows execution of arbitrary
code in the privileged mode.

Dom0 manages the building of all user domains (DomU), a process consisting of several steps:
1. Allocate memory in the Dom0 address space and load the kernel of the guest OS from secondary

storage.
2. Allocate memory for the new VM and use foreign mapping to load the kernel to the new VM. The

foreign mapping mechanism of Xen is used by Dom0 to map arbitrary memory frames of a VM
into its page tables.

3. Set up the initial page tables for the new VM.
4. Release the foreign mapping on the new VM memory, set up the virtual CPU registers, and launch

the new VM.

5The number of lines of code of the Linux operating system evolved in time from 176 250 for Linux 1.0.0, released in March
1995, to 1 800 847 for Linux 2.2.0, released in January 1999, 3 377 902 for Linux 2.4.0, released in January 2001, and to 5 929 913
for Linux 2.6.0, released in December 2003.
6The TCB is defined as the totality of protection mechanisms within a computer system including hardware, firmware, and,
software. The combination of all these elements is responsible for enforcing a security policy.
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FIGURE 11.4

The trusted computing base of a Xen-based environment includes the hardware, Xen, and the management
operating system running in Dom0. The management OS supports administrative tools, live migration, device
drivers, and device emulators. A guest OS and applications running under it reside in a DomU.

A malicious Dom0 can play several nasty tricks at the time when it creates a DomU [302]:

• Refuse to carry out the steps necessary to start the new VM, an action that can be considered a
denial-of-service attack.

• Modify the kernel of the guest OS in ways that will allow a third party to monitor and control the
execution of applications running under the new VM.

• Undermine the integrity of the new VM by setting the wrong page tables and/or setup wrong virtual
CPU registers.

• Refuse to release the foreign mapping and access the memory while the new VM is running.

We now turn our attention to the run-time interaction between Dom0 and a DomU. Recall that
Dom0 exposes a set of abstract devices to the guest operating systems using split drivers; the frontend
of such a driver is in the DomU and its backend in Dom0 and the two communicate via a ring in shared
memory, see Section 10.5.

In the original implementation of Xen a service running in a DomU sends data to, or receives data
from a client located outside the cloud using a network interface in Dom0; it transfers the data to I/O
devices using a device driver in Dom0. Note that later implementations of Xen offer the pass-through
option.

Therefore, we have to ensure that run-time communication through Dom0 is encrypted. Yet, Trans-
port Layer Security (TLS) does not guarantee that Dom0 cannot extract cryptographic keys from the
memory of the OS and applications running in DomU. A significant security weakness of Dom0 is that
the entire state of the system is maintained by XenStore, see Section 10.5. A malicious VM can deny
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access to this critical element of the system to other VMs; it can also gain access to the memory of a
DomU. This brings us to additional requirements for confidentiality and integrity imposed on Dom0.

Dom0 should be prohibited to use foreign mapping for sharing memory with a DomU, unless
DomU initiates the procedure in response to a hypercall from Dom0. When this happens, Dom0 should
be provided with an encrypted copy of the memory pages and of the virtual CPU registers. The entire
process should be closely monitored by the hypervisor which, after the access, should check the in-
tegrity of the affected DomU.

A virtualization architecture that guarantees confidentiality, integrity, and availability for the TCB
of a Xen-based system is presented in [302]. A secure environment when Dom0 cannot be trusted can
only be ensured if the guest application is able to store, communicate and process data safely. The
guest software should have access to a secure secondary storage on a remote storage server and to the
network interfaces when communicating with the user. A secure run-time system is also needed.

To implement a secure run-time system we have to intercept and control the hypercalls used for
communication between a Dom0 that cannot be trusted and a DomU we want to protect. Hypercalls
issued by Dom0 that do not read from or write to the memory of a DomU or to its virtual registers
should be allowed. Other hypercalls should be restricted either completely or during specific time
window. For example, hypercalls used by Dom0 for debugging or for the control of the IOMMU should
be prohibited. The Input/Output Memory Management Unit (IOMMU) connects the main memory
with a DMA-capable I/O bus; it maps device-visible virtual addresses to physical memory addresses
and provides memory protection from misbehaving devices.

We cannot restrict some of the hypercalls issued by Dom0, even though they can be harmful to the
security of DomU. For example, foreign mapping and access to the virtual registers are needed to save
and restore the state of DomU. We should check the integrity of DomU after the execution of such
security-critical hypercalls.

New hypercalls are necessary to protect:
1. The privacy and integrity of the virtual CPU of a VM. When Dom0 wants to save the state of the

VM the hypercall should be intercepted and the contents of the virtual CPU registers should be
encrypted. The virtual CPU context should be decrypted and then an integrity check should be
carried out when DomU is restored.

2. The privacy and integrity of the VM virtual memory. The page table update hypercall should
be intercepted and the page should be encrypted so that Dome handles only encrypted pages of
the VM. The hypervisor should calculate a hash of all the memory pages before they are saved
by Dom0 to guarantee the integrity of the system. An address translation is necessary because a
restored DomU may be allocated a different memory region [302].

3. The freshness of the virtual CPU and the memory of the VM. The solution is to add to the hash a
version number.
As expected, the increased level of security and privacy leads to an increased overhead. Measure-

ments reported in [302] show increases by a factor of: 1.7 to 2.3 for the domain build time, 1.3 to 1.5
for the domain save time, and 1.7 to 1.9 for the domain restore time.
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11.12 XOAR – BREAKING THE MONOLITHIC DESIGN OF THE TCB
Xoar is a modified version of Xen designed to boost system security [116]. The security model of
Xoar assumes that the system is professionally managed and that a privileged access to the system
is granted only to system administrators. The model also assumes that administrators have neither
financial incentives, nor the desire to violate the user’s trust. Security threats come from a guest VM
which could attempt to violate the data integrity or the confidentiality of another guest VM on the same
platform, or to exploit the code of the guest. Another source of threats are bugs in initialization code of
the management VM.

Xoar is based on microkernel7 design principles. Xoar modularity makes exposure to risk explicit
and allows the guests to configure the access to services based on their needs. Modularity allows the
designers of Xoar to reduce the size of the permanent footprint of the system and increase the level
of security of critical components. Ability to record a secure audit log is another critical function of a
hypervisor facilitated by a modular design. The design goals of Xoar are:

• Maintain the functionality provided by Xen.
• Ensure transparency with existing management and VM interfaces.
• Tight control of privileges. Each component should only have the privileges required by its function.
• Minimize the interfaces of all components to reduce the possibility that a component can be used

by an attacker.
• Eliminate sharing. Make sharing explicit, whenever it cannot be eliminated, to allow meaningful

logging and auditing.
• Reduce the opportunity of an attack targeting a system component by limiting the time window

when the component runs.

These design principles aim to break the monolithic TCB design of a Xen-based system. Inevitably,
this strategy has an impact on performance, but the implementation should attempt to keep the modu-
larization overhead to a minimum.

A close analysis shows that booting the system is a complex activity, but the fairly large modules
used during booting are no longer needed once the system is up and running. In Section 10.5 we have
seen that XenStore is a critical system component, as it maintains the state of the system thus, it is a
prime candidate for hardening. The ToolStack is only used for management functions and can only be
loaded upon request.

The Xoar system has four types of components: permanent, self-destructing, restarted upon request,
and restarted on timer, see Figure 11.5:
1. Permanent components. XenStore-State maintains all information regarding the state of the system.
2. Components used to boot the system; they self-destruct before any user VM is started. The two

components discover the hardware configuration of the server including the PCI drivers and then
boot the system:

7A microkernel (μ-kernel) supports only the basic functionality of an OS kernel including low-level address space management,
thread management, and inter-process communication. Traditional OS components such as device drivers, protocol stacks, and
file systems are removed from the microkernel and run in user space.
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FIGURE 11.5

Xoar has nine classes of components of four types: permanent, self-destructing, restarted upon request, and
restarted on timer. A guest VM is started using the Toolstack by the Builder and it is controlled by the
XenStore-Logic. The devices used by the guest VM are emulated by the QEMU component.

• PCIBack – virtualizes access to PCI bus configuration.
• Bootstrapper – coordinates booting of the system.

3. Components restarted on each request:

• XenStore-Logic
• Toolstack – handles VM management requests, e.g., it requests the Builder to create a new guest

VM in response to a user request.
• Builder – initiates user VMs.

4. Components restarted on a timer: the two components export physical storage device drivers and
the physical network driver to a guest VM.

• BlkBack – exports physical storage device drivers using udev8 rules.
• NetBack – exports the physical network driver.

8udev is the device manager for the Linux kernel.
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FIGURE 11.6

Component sharing between guest VM in Xoar. Two VM share only the XenStore components. Each one has a
private version of the BlkBack, NetBack and Toolstack.

Another component, QEMU, is responsible for device emulation. Bootstrapper, PCIBack, and Builder
are the most privileged components, but the first two are destroyed once Xoar is initialized. The
Builder is very small, it consists of only 13 000 lines of code. XenStore is broken into two compo-
nents, XenStore-Logic and XenStore-State. Access control checks are done by a small monitor module
in XenStore-State. Guest VMs share only the Builder, XenStore-Logic, and XenStore-State, see Fig-
ure 11.6.

Users of Xoar are able to only share service VMs with guest VMs that they control; to do so they
specify a tag on all of the devices of their hosted VMs. Auditing is more secure, whenever a VM is
created, deleted, stopped, or restarted by Xoar the action is recorded in an append-only database on a
different server accessible via a secure channel.

Rebooting provides the means to ensure that a VM is in a known good state. To reduce the overhead
and the increased startup time demanded by a reboot, Xoar uses snapshots instead of rebooting. The
service VM snapshots itself when it is ready to service a request. Similarly, snapshots of all components
are taken immediately after their initialization and before they start interacting with other services or
guest VMs. Snapshots are implemented using a copy-on-write mechanism9 to preserve any page about
to be modified.

9Copy-on-write (COW) is used by virtual memory operating systems to minimize the overhead of copying the virtual memory
of a process when a process creates a copy of itself. Then the pages in memory that might be modified by the process or by its
copy are marked as COW. When one process modifies the memory, the operating system’s kernel intercepts the operation and
copies the memory so that changes in one process’s memory are not visible to the other.
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11.13 A TRUSTED HYPERVISOR
After the discussion of Xoar we briefly analyze the design of a trusted hypervisor called Terra [184].
The novel ideas of this design are:

• A trusted hypervisor should support not only traditional operating systems, by exporting the hard-
ware abstraction for open-box platforms, but also the abstractions for closed-box platforms dis-
cussed in Section 11.7. Note that the VM abstraction for a closed-box platform does not allow the
contents of the system to be either manipulated or inspected by the platform owner.

• An application should be allowed to build its software stack based on its needs. Applications requir-
ing a very high level of security, e.g., financial applications and electronic voting systems should run
under a very thin OS supporting only the functionality required by the application and the ability
to boot. At the other end of the spectrum are applications demanding low assurance, but a rich set
of OS features. Such applications need a commodity operating system. Information assurance (IA)
means to manage the risks related to the use, processing, storage, and transmission of information,
as well as protecting the systems and processes used for those purposes. IA implies protection of
the integrity, availability, authenticity, non-repudiation and confidentiality of the application data.

• Support additional capabilities to enhance system assurance:
– Provide trusted paths from a user to an application. We have seen in Section 11.7 that such a path

allows a human user to determine with certainty the identity of the VM it is interacting with and,
at the same time, allows the VM to verify the identity of the human user.

– Support attestation, the ability of an application running in a closed-box to gain trust from a
remote party, by cryptographically identifying itself.

– Provide air-tight isolation guarantees for the hypervisor by denying the platform administrator
the root access.

The management VM is selected by the owner of the platform but makes a distinction between the
platform owner and a platform user. The management VM formulates limits for the number of guest
VMs running on the platform, denies access to the guest VM deemed unsuitable to run, grants access
to I/O devices to running VMs and limits their CPU, memory, and disk usage.

Guest VMs expose a raw hardware interface including virtual network interfaces to virtual devices.
The trusted hypervisor runs at the highest privilege level and it is secure even from the actions of the
platform owner; it provides application developers with the semantics of a closed-box platform.

A significant challenge to the security of a trusted hypervisor comes from the device drivers used
by different VMs running on the platform. Device drivers are large or very large software components,
especially the drivers for high-end wireless cards and video cards. There is also a large variety of such
drivers, many hastily written to accommodate new hardware features.

Typically, the device drivers are the lowest quality software components found in the kernel of
an operating system thus, they pose the highest security risks. To protect a trusted hypervisor, the
device drivers should not be allowed to access sensitive information and their memory access should be
limited by different hardware protection mechanisms. Malicious I/O devices can use different hardware
capabilities such as DMA to modify the kernel.
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11.14 MOBILE DEVICES AND CLOUD SECURITY
Mobile devices are an integral part of the cloud ecosystem, mobile applications use cloud services to
access and store data or to carry out a multitude of computational tasks. Security challenges for mobile
devices common to all computer and communication systems include: (i) Confidentiality – ensure that
transmitted and stored data cannot be read by unauthorized parties; (ii) Integrity – detect intentional or
unintentional changes to transmitted and stored data; (iii) Availability – ensure that users can access
cloud resources whenever needed; and (iv) Non-repudiation – the ability to ensure that a party to a
contract cannot deny the sending of a message that they originated.

The technology stack of a mobile device consists of the hardware, the firmware, the operating sys-
tem, and the applications. The separation between the firmware and the hardware of a mobile device
is blurred. A baseband processor is used solely for telephony services involving data transfers over
cellular networks operating outside the control of the mobile OS which runs on the application proces-
sor. Security-specific hardware and firmware store encryption keys, certificates, credentials, and other
sensitive information on some mobile devices.

The nature of mobile devices places them at higher exposure to threats than stationary ones. Mobile
devices are designed to easily install applications, to use third-party applications from application
stores, and to communicate with computer clouds via often untrusted cellular and WiFi networks.
Mobile devices interact frequently with other systems to exchange data and often use untrusted content.

Mobile devices often require a short authentication passcode and may not support strong storage
encryption. Location services increase the risk of targeted attacks. Potential attackers are able to deter-
mine user’s location, correlate the location with information from other sources on the individuals the
user associates with, and infer other sensitive information.

Special precautions must then be taken due to exposure to the unique security threats affecting
mobile devices, including:
1. Mobile malware.
2. Stolen data due to loss, theft, or disposal.
3. Unauthorized access.
4. Electronic eavesdropping.
5. Electronic tracking.
6. Access to data by third party applications.
Some of these threats can propagate to the cloud infrastructure a mobile device is connected to. For
example, files stored on the mobile devices subject to ransomeware and encrypted by a malicious
intruder can migrate to the backup stored on the cloud. The risks posed to the cloud infrastructure by
mobile devices are centered around data leakage and compromise. Such security risks are due to a set
of reasons including:

• Loss of the mobile device, lock screen protection, enabling smudge attacks and other causes lead-
ing to mobile access control. A smudge attack is a method to discern the password pattern of a
touchscreen device such as a cell phone or tablet computer.

• Lack of confidentiality protection for data in transit in unsafe or untrusted WiFi or cellular networks.
• Unmatched firmware or software including operating system and application software bypassing

the security architecture, e.g., rooted/jailbroken devices.
• Malicious mobile applications bypassing access control mechanisms.
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• Misuse or misconfiguration of location services, such as GPS.
• Acceptance of fake mobility management profiles.

An in-depth discussion of the Enterprise Mobile Management (EMM) lists different EMM services
including the Mobile Device Management (MDM) and the Mobile Application Management (MAM)
and suggests a number of functional and security capabilities of the system [179]. Some of these
policies and mechanisms should also be applied to mobile devices connected to computer cloud:
1. Use device encryption, application-level encryption, and remote wipe capabilities to protect stor-

age.
2. Use Transport Layer Security (TLS) for all communication channels.
3. Isolate user-level applications from each other to prevent data leakage between applications using

sandboxing.
4. Use device integrity checks for boot validation, verified application and OS updates.
5. Use auditing and logging.
6. Enforce authentication of the device owner.
7. Automatic, regular device integrity and compliance checks for threats and compliance.
8. Automated alerts for policy violations.
A system for Microsoft Outlook mobile application requires individuals who wish to participate in
a managed scenario to download the Microsoft Community Portal application and input the required
information including local authentication to the mobile OS via a lockscreen and the encryption capa-
bilities provided by the mobile OS to protect data on the device. The cloud MDM portal discussed in
[179] is available to administrators through a web interface.

11.15 FURTHER READINGS
The Cloud Security Alliance (CSA) is an organization with more than 100 corporate members. It
aims to address all aspects of cloud security and serve as a cloud security standards incubator. The
reports, available from the web site of the organization are periodically updated; the original report was
published in 2009 [122] and subsequent reports followed [123] and [124]. An open security architecture
is presented in [382].

A seminal paper [185] on the negative implications of virtualization on system security “When
virtual is harder than real: security challenges in VM based computing environments” by Garfinkel and
Rosenblum was published in 2005, followed by another one which reaches similar conclusions, [410].
Risk and trust are analyzed in [153], [252], and [317]. Cloud security is also discussed in [339], [468],
and [474]. Managing cloud information leakage is the topic of [519].

A 2010 paper, [207] presents a taxonomy of attacks on computer clouds and [138] covers the man-
agement of security services lifecycle. Security issues vary depending on the cloud model as discussed
in [377]. The privacy impact in cloud computing is the topic of [478]. A 2011 book [523] gives a com-
prehensive look at cloud security. Privacy and protection of personal data in the EU is discussed in a
document available at http://ec.europa.eu/justice/policies/privacy.

The paper [40] analyzes the inadequacies of current risk controls for the cloud. Intercloud security
is the theme of [63]. Secure collaborations are discussed in [66]. The paper [303] presents an approach
for secure VM execution under untrusted management OS. The social impact of privacy in cloud
computing is analyzed in [166]. An anonymous access control scheme is presented in [257].

http://ec.europa.eu/justice/policies/privacy
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An empirical study into the security exposure to hosts of hostile virtualized environments can be
found at http://taviso.decsystem.org/virtsec.pdf. A model-based security testing approach for cloud
computing is presented in [544]. Cold boot attacks on encryption keys are discussed in [217]. Cloud
security concerns and mobile device security are covered in [370] and [371], respectively. [405] intro-
duces an encryption system for query processing and [439] discusses a pragmatic security discipline.

11.16 EXERCISES AND PROBLEMS

Problem 1. Identify the main security threats for the SaaS cloud delivery model on a public cloud.
Discuss the different aspects of these threats on a public cloud as compared to the threats
posed to similar services provided by a traditional service-oriented architecture running
on a private infrastructure.

Problem 2. Analyze how the six attack surfaces discussed in Section 11.2 and illustrated in Fig-
ure 11.1 apply to the SaaS, PaaS and IaaS cloud delivery models.

Problem 3. Analyze Amazon privacy policies and design a service level agreement you would sign
on if you were to process confidential data using AWS.

Problem 4. Analyze the implications of the lack of trusted paths in commodity operating systems
and give one or more examples showing the effects of this deficiency. Analyze the
implications of the two-level security model of commodity operating systems.

Problem 5. Compare the benefits and the potential problems due to virtualization on public, private,
and hybrid clouds.

Problem 6. Read [49] and discuss the measures taken by Amazon to address the problems posed
by shared images available from AWS. Would it be useful to have a cloud service to
analyze images and sign them before being listed and made available to the general
public?

Problem 7. Analyze the risks posed by foreign mapping and the solution adopted by Xoar. What is
the security risk posed by XenStore?

Problem 8. Read [116] and discuss the performance of the system. What obstacles to its adoption
by the providers of IaaS services can you foresee?

Problem 9. Discuss the impact of international agreements regarding privacy laws on cloud com-
puting.

Problem 10. Propagation of the malware in the Internet has similarities with the propagation of an
infectious disease. Discuss the three models for the propagation of an infectious disease
in a finite population, SI, SIR, and SIS. Justify the formulas describing the dynamics of
the system for each model. Hint: read [76,161] and [267].

http://taviso.decsystem.org/virtsec.pdf
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CHAPTER

BIG DATA, DATA STREAMING,
AND THE MOBILE CLOUD

Advances in processor, storage, software, and networking technologies allow us to store and pro-
cess massive amounts of data for the benefit of humanity, for profit, for entertainment, for nefarious
schemes, or simply because we can. One can talk about “democratization of data,” as scientists and
decision makers, journalists and health care providers, artists and engineers, neophytes and domain
experts attempt to extract knowledge from data.

This chapter covers three of the most exciting and demanding classes of cloud applications, Big
Data, data streaming, and mobile cloud computing. Big Data is a reality, every day we generate 2.5
quintillion, 2.5 × 1018, bytes of data.1 This colossal volume of data is collected every day by devices
ranging from inexpensive sensors in mobile phones to the detectors of the Large Hadron Collider, by
online services offered by Google and Amazon, or by devices connected by the Internet of Things.

Big Data is a defining challenge for cloud computing; a significant amount of the data collected
every day is stored and processed on computer clouds. Big Data and data streaming applications require
low-latency, scalability, versatility, and a high degree of fault-tolerance. Achieving these qualities at
scale is extremely challenging.

It makes sense to define a more comprehensive concept of scale for the applications discussed in this
chapter. The “scale” in this context means millions of servers operating in concert in large data centers,
a very large number of diverse applications, tens of millions of users, and a range of performance
metrics reflecting the views of users on one hand and those of the CSPs, on the other hand. The scale
has a disruptive effect, it changes how we design and engineer such systems and broadens the range of
problems that can be solved and of applications that can only run on computer clouds.

The scale amplifies unanticipated benefits, as well as dreaded nightmares of system designers.
Even a slight improvement of the individual server performance and/or of the algorithms for resource
management could lead to huge cost savings and rave reviews. At the same time, the failure of one
of the millions of hardware and software components can be amplified, can propagate throughout the
entire system and have catastrophic consequences ultimately taking down the system.

Several important lessons when engineering large-scale systems for Big Data storage and process-
ing are: (a) Prepare for the unexpected as low probability events occur and can cause major disruptions;
(b) It is utterly unreasonable to assume that strict performance guarantees can be offered at scale; and
(c) It is unfeasible to build fault-free systems beyond a certain level of system complexity; under-
standing this truth motivated the next best solution, the development of fault-tolerant system design
principles.

1See the April 2015 report at http://www.vcloudnews.com/every-day-big-data-statistics-2-5-quintillion-bytes-of-data-created-
daily/.

Cloud Computing. DOI: 10.1016/B978-0-12-812810-7.00016-9
Copyright © 2018 Elsevier Inc. All rights reserved.

439

http://www.vcloudnews.com/every-day-big-data-statistics-2-5-quintillion-bytes-of-data-created-daily/
http://www.vcloudnews.com/every-day-big-data-statistics-2-5-quintillion-bytes-of-data-created-daily/
http://dx.doi.org/10.1016/B978-0-12-812810-7.00016-9


440 CHAPTER 12 BIG DATA, DATA STREAMING, AND THE MOBILE CLOUD

A realistic alternative for the applications discussed in this chapter is to develop tail-tolerant tech-
niques for the distributions of performance metrics such as response time latency. This means to
understand why a performance metric has a heavy tail distribution, detect the events leading to such
an undesirable state as early as feasible, and take the necessary actions to limit its effects. Another
design principle for a large-scale information retrieval system is that an approximate, but fast response,
is preferable to a delayed best result.

The defining attributes of Big Data are analyzed in Section 12.1. The next sections discuss how Big
Data is stored and processed. High capacity datastores and databases are necessary to store the very
large volume of data. Scaling data warehouses and databases poses its own challenges. Mesa datastore
and Spanner and F1 databases developed at Google are discussed in Section 12.2.

Many cloud applications process Big Data; data analytics is an important class of such applica-
tions. Bootstrapping techniques offer a low latency alternative for responding to queries of very large
datasets. Such techniques and approximate query processing are analyzed in Sections 12.3 and 12.4,
respectively. Finally, another class of Big Data applications combining mathematical modeling with
simulation and measurements, the dynamic, data-driven applications are discussed in Section 12.5.

Computer clouds host many classes of data streaming applications, ranging from content deliv-
ery data streaming to applications consuming a continuous stream of events. Such applications are
discussed in Sections 12.6, 12.8, and 12.7.

Scale changes everything in the realm of cloud computing. Scale makes it possible to add mission-
critical applications demanding very high availability to the clouds, a topic discussed in Section 12.9.
Scale amplifies variability often causing heavy-tail distributions of critical performance metrics includ-
ing latency, discussed in Section 12.10.

Mobile devices such as smart phones, tablets, laptops, and wearable devices are ubiquitous and
indispensable for life in a modern society. A great benefit of mobile devices is due to their symbiotic
relationship with computer clouds. Mobile cloud users benefit from democratization of data process-
ing. An individual with a mobile device has access to vast amounts of computing cycles and storage
available on computer clouds.

Mobile cloud computing is positioned at the intersection of cloud computing, wireless networks,
and mobile devices. Mobile devices are producers and consumers of cloud data. Sensores embedded
in mobile devices generate data stored on the cloud and shared with others; applications running on
mobile devices use cloud data and can trigger execution of cloud computations.

Section 12.11 is an introduction to mobile computing and its applications, while Section 12.12 cov-
ers energy efficiency of mobile computing. Section 12.13 analyzes the effects of latency and presents
alternative mobile computing models including Cloudlets. The same theme continues with the discus-
sion of the mobile edge clouds and Markov Decision Processes in Section 12.14.

12.1 BIG DATA

Some of the defining characteristics of Big Data are the three Vs, volume, velocity, and variety, as
well as persistency. Volume is self-explanatory and velocity means that responses to queries and data
analysis requests have to be provided very fast. Variety recognizes the wide range of data sources and
data formats. Persistency means that data has a lasting value, it is not ephemeral.
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Big Data covers a wide spectrum of data including user-generated content and machine-generated
data. Some of the data is highly structured, as is the case of patient records in healthcare, insurance
claims, or mortgage documents. Others are raw data from sensors, log files, or data generated by social
media.

Big Data has affected the organization of database systems. The traditional relational databases
are unable to satisfy some of these requirements and NoSQL databases proved to be better suited for
many cloud applications. A database schema is a way to logically group objects such as tables, views,
stored procedures etc. A schema can be viewed as a container of objects. One can assign a user login
permission to a single schema so that the user can only access the objects they are authorized to.

For decades the database community used the schema-on-write approach. First, one defines a
schema, then writes the data. When reading the data comes back according to the original schema.
As an alternative, the schema-on-read loads the data as-is. Then, a user-defined filter is used to extract
the data for processing. Schema-on-read has several advantages:

• Often data is a shared asset among individuals with differing roles and differing interests who want
to get different insights from that data. Schema-on-read can present data in a schema that is best
adapted to the queries being issued.

• When multiple datasets are consolidated it is not necessary to develop a super-schema that covers
all of the datasets.

An insightful discussion of the state of research on databases [2] starts by acknowledging that “Big
Data requirements will cause massive disruptions to the ways that we design, build, and deploy data
management solutions.” The report continues by identifying three major causes for these disruptions
“...it has become much cheaper to generate a wide variety of data, due to inexpensive storage, sen-
sors, smart devices, social software, multiplayer games, and the emerging IoT .... it has become much
cheaper to process large amounts of data, due to advances in multicore CPUs, solid state storage,
inexpensive cloud computing, and open source software .... not just database administrators and devel-
opers, but many more types of people have become intimately involved in the process of generating,
processing, and consuming data....”

Big Data revolutionized computing. We have discussed in Chapter 7 specialized frameworks for
Big Data processing such as MapReduce and Hadoop. The pleiad of system software components
reviewed in Chapter 8 including Pig, Hive, Spark, and Impala are essential elements of a more effective
infrastructure for processing unstructured or semi-structured data. The evidence of the effort to mold
the cloud infrastructure to the requirements of Big Data is overwhelming. The success of these efforts
is due to the fact that in spite of diversity Big Data workloads have a few common traits:

• Data is immutable, widely used storage systems for Big Data such as HDFS only allow append
operations.

• Jobs such as MapReduce are deterministic therefore, fault-tolerance can be ensured by re-
computations.

• The same operations are carried out on different segments of the data on different servers; replicating
programs is less expensive than replicating data.



442 CHAPTER 12 BIG DATA, DATA STREAMING, AND THE MOBILE CLOUD

Table 12.1 Capacity and bandwidth of hard disks (HDD), solid-state disks (SDD),
and memory of a modern server according to http://www.dell.com/us/business/p/
servers. The network bandwidth is 1.25 GB/sec.

Media Capacity (TB) Bandwidth GB/sec
HDD (x12) 12–36 0.2–2

SDD (x4) 1–4 1–4

Memory 0.128–0.512 10–100

• It is feasible to identify a working set, a subset of data frequently used within a time window, and
keep this working set in the memory of the servers of a large cluster. Systems such as Spark [542]
and Tachyon [301] exploit this idea to dramatically improve performance.

• Locality, the proximity of the data to the location where it is processed, is critical for the per-
formance. Supporting data locality is a main objective of scheduling algorithms including delay
scheduling [541] and data-aware scheduling [499], as we have seen in Chapter 9.

The cloud hardware infrastructure also faces a number of challenges. Bridging the gap between the
processor speed and the communication latency and bandwidth is a major challenge. This challenge
is greatly amplified by response time constrains when Big Data is processed on the cloud. Addressing
this challenge requires prompt adoption of faster networks such as InfiniBand and Myrinet, and of
full bisection bandwidth networks between servers. Remote direct memory access capabilities can also
help bridge this gap.

Non-volatile random-access memories, specialized processors such as GPUs and field-prog-
rammable gate arrays (FPGAs), and application-specific integrated circuits (ASICs) contribute to the
effort to develop a scalable infrastructure. The storage technology has dramatically improved, see Ta-
ble 12.1.

Some of the enduring challenges posed by Big Data are:
1. Develop a scalable data infrastructures capable of responding promptly to timing constraints of an

application.
2. Develop effective means of accommodating diversity in data management systems.
3. Support comprehensive end-to-end processing and knowledge extraction from data.
4. Develop convenient interfaces for a layman involved in data collection and analysis.

The next sections address the scalability challenges faced by the development of large data storage
systems and by processing very large volumes of data.

12.2 DATA WAREHOUSES AND GOOGLE DATABASES FOR BIG DATA
Data warehouses and databases for cloud Big Data have been developed in recent years. A data ware-
house is a central repository for the important data of an enterprise. A data warehouse is a core
enterprise software component required by a range of applications related to the so-called business
intelligence. Data from multiple operational systems are uploaded and used for predictive analysis,
the detection of hidden patterns in the data. Data models developed using Statistical Learning Theory
allow enterprises to optimize their operations and maximize their profits.

http://www.dell.com/us/business/p/servers
http://www.dell.com/us/business/p/servers
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Scaling data repositories is very challenging due to the low-latency, versatility, availability, and
fault-tolerance requirements. Google realized early on the need to develop a coherent storage architec-
ture for the massive amounts of data required by their cloud services and by AdWords.2 This storage
architecture reflects the realization that “developers do not ask simple questions of the data, change
their data access patterns frequently and use APIs that hide storage requests while expecting unifor-
mity of performance, strong availability and consistent operations, and visibility into distributed storage
requests” [173].

Two of the most popular Google data stores, BigTable and Megastore discussed in Sections 6.9
and 6.10, respectively, were designed and developed early on to support Google’s cloud comput-
ing services. A major complaint about BigTable is the lack of support for cross-row transactions.
Megastore supports schematized semi-relational tables and synchronous replication. At least 300 ap-
plications within Google use Megastore including Gmail, Picasa, Calendar, Android Market, and
AppEngine.

From the experience with the BigTable storage system the developers of Google storage software
stack learned that it is hard to share distributed storage. Another lesson is that distributed transactions
are the only realistic option to guarantee the low latency requited for a high volume transaction pro-
cessing system. They also learned that the end-user latency matters and that application complexity is
reduced if an application is close to its data [173]. Another important lesson for developing a large-scale
system is that making strong assumptions about applications is not advisable.

These lessons led to the development of Colossus, the successor of GFS as a next-generation
cluster-level file system, of Mesa warehouse, and of Spanner and F1 databases discussed in this section.
Colossus is built for real-time services and now supports virtually all web services, from Gmail, Google
Docs, and YouTube, to Google Cloud Storage service offered to third-party developers. Colossus al-
lows client-driven replication and encoding. Data is typically encoded using Reed–Solomon codes to
reduce cost. The automatically shared metadata layer enables availability analysis.

Mesa – a scalable data warehouse. Mesa [212] is an example of a data warehouse designed to support
measurement data for the multibillion advertising business of Google. The system is expected to sup-
port near-real-time data processing, be highly available, and scalable. The extremely high availability
is ensured by geo-replication.3

Mesa is able to handle petabytes of data, respond to billions of queries accessing trillions of rows
of data per day, and update millions of rows per second. The system complexity reflects the stringent
requirements including the support for:

• Complex queries such as “How many ad clicks were there for a particular advertiser matching the
keyword “fig” during the first week of December between 11:00 AM and 2:00 PM and displayed
on google.com for users in a specific geographic location using a mobile device?” [212].

• Multi-dimensional data with two classes of attributes: dimensional attributes, called keys and mea-
sure attributes, called values.

2AdWords consists of hundreds of applications supporting Google’s advertising services.
3The term geo-replication used in the title of the paper [212] means that the Mesa system runs at multiple sites concurrently.
The term used in [213] for this strategy supporting high availability is multi-homing.



444 CHAPTER 12 BIG DATA, DATA STREAMING, AND THE MOBILE CLOUD

• Atomic updates, consistency and correctness. Multiple data views defined for different performance
metrics are affected by a single user action and all must be consistent. The BigTable storage system
does not support atomicity, while the Megastore system provides consistency across geo-replicated
data, see Sections 6.9 and 6.10, respectively.

• Availability. Planned Mesa downtime is not allowed and unplanned downtime should never be ex-
perienced.

• Scalability. The system should accommodate a very large volume of data and a large user popula-
tion.

• Near real-time performance. Users should be able to support live customer queries and reports and
updates. It should allow queries to multiple data views from multiple data centers.

• Flexibility and ability to support new features.

Logical and physical data organization in Mesa. The system stores data using tables with very large
key, K , and value, V , spaces. These spaces are represented by tuples of columns of items of identical
data type, e.g., integers, strings, or floating point numbers. The data is horizontally partitioned and
replicated.

The table structure and the aggregation function F : V × V �→ V are specified by a table schema.
Function F is associative and often commutative. To maximize the throughput updates, each consisting
of at most one aggregated value for every (table name, key) pair, are applied in batches.

The updates are applied by version number and are atomic, the next update can only be applied
after the previous has finished. The time associated with a version is the time when the version was
generated. A query has also a version number and a predicate P on key K .

A delta is a pre-aggregation of versioned data consisting of a set of rows corresponding to the set
of keys for a range of versions [V1,V2] with V1 ≤ V2. Deltas can be aggregated by merging row keys
and aggregating values accordingly e.g.,

[V1,V2] & [V2 + 1,V3] → [V1,V3]. (12.1)

Mesa limits the time a version can be queried to reduce the amount of space. Older versions can be
deleted and queries for such versions are rejected. For example, updates can be aggregated into base
B ≥ 0 with version [0,B] and any updates with [V1,V2] with 0 ≤ V1 ≤ V2 ≤ B can be deleted.

Deltas are immutable and the rows in one are stored in sorted order in files of limited size. A
row consists of multiple row blocks; each row block is transposed and compressed. Each table has
one or more table indexes and each table index has a copy of the data sorted according to the index
order.

Mesa instances. One Mesa instance runs at every site and consists of two subsystems, the update/main-
tenance and the query subsystem as shown in Figure 12.1. The pool of workers of the first subsystem
operate on data stored in Colossus. The workers load updates, carry out table compaction, apply schema
changes, and run table checksums under the supervision of controllers which determine the work to be
done and manage the metadata stored on the BigTable.

To scale, the controller is sharded by table; recall that a shard is a horizontal partition of data in
a data store and that each shard is held on separate physical storage device. The controller maintains
separate queues of work for each type of worker and redistributes the workload of a slow worker to
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FIGURE 12.1

Mesa instance (A) The controller/worker subsystem. The controllers interact with four types of workers: update,
compaction, schema change, and checksum. The data and the metadata are stored on Colossus and
BigTable, respectively. (B) The query subsystem of a Mesa instance interacts with the clients and with the
Global Location Service.

another worker in the same pool. The workers poll the controller for additional work when idle and
notify the controller upon completion of a task. Work requiring global coordination, including schema
change and checksums, is initiated by components outside the controller.

The query subsystem includes a pool of query servers which process client queries. A query server
looks up the BigTable for the metadata, determines the files where data is stored, performs on-the-fly
aggregation of the data, and converts the data from the internal format to the client protocol format. To
reduce the access time and to optimize the system performance multiple queries acting upon the same
tables are assigned to a group of servers.

Mesa instances are running at multiple sites to support a high level of availability. A committer
coordinates updates at all sites. The committer assigns a new version number to batches of updates and
publishes the metadata for the update to the versions database, a globally replicated and consistent data
store using the Paxos algorithm. The controllers detect the availability of new updates by listening to
the changes in the versions database and then assign the work to update workers.

Mesa reads 30 to 60 MB compressed data, adds some 3×105 new rows per second, and updates 3 to
6 million distinct rows. Each day it executes more than 500 million queries and returns (1.7–3.2)×1012

rows. Updates arrive in batches about every five minutes, with median and 95th percentile commit times
of 54 seconds and 211 seconds, respectively.

Spanner – a globally distributed database. Scaling traditional databases is not without major chal-
lenges. Spanner [119] is a distributed database replicating data on many sites across the globe. Some
applications replicate their data across three to five data centers running Spanner in one geographic
area. Other applications spread their data over a much larger area, e.g., F1 maintains five replicas of
data around the US. The F1 system is presented later in this section.

Spanner has been used by many Google applications since its release in 2011. The first user of
Spanner was the F1 system. The data model of each application using Spanner is layered on top of the
directory-bucketed key-value mappings supported by the distributed database.
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Spanner supports consistent backups, atomic schema updates, and consistent MapReduce execution
and provides externally-consistent reads and writes, and globally-consistent reads across the database
at a time stamp. This is possible because Spanner assigns globally-meaningful commit time stamps to
transactions reflecting the serialization order, even though transactions may be distributed. Serialization
order satisfies external consistency. This means that the commit time stamp of transaction T1 is lower
than that of transaction T2 when T1 commits before T2 starts.

Spanner applications can control the number and the location of the data centers where the replicas
reside, as well as the read and write latency. The read and write latencies are determined by how far
the data is from its users and, respectively, how far are the replicas from one another. The system is
organized in zones, units of administrative deployment and of physical isolation similar with AWS
zones.

Spanner organization. In each zone a zonemaster is in charge of several thousand spanservers. The
clients use location proxies to find the spanservers able to serve their data. A placement driver handles
the migration of data across zones with latencies of minutes and the universe master maintains the
state of all zones. A spanserver serves data to the clients. The spanserver implements a Paxos state
machine per tablet, and manages 100–1 000 tablets. A tablet is a data structure implementing a bag of
the mapping

(key : string, aimestamp : int64) → string. (12.2)

A great deal of attention is paid to replication and concurrency control. A set of replicas is called a
Paxos group. The system administrators control the number and types of replicas and the geographic
placement of them. Applications control the manner the data is replicated.

Each spanserver implements a lock table for concurrency control. Every replica has a leader. Every
Paxos write is logged twice, once in the tablet’s log and once in the Paxos log. The (key, value)

mapping state is stored in the tablet. The local spanserver software stack at each site includes a site
participant leader communicating with its peers at other the sites. This leader controls a transaction
manager and manages the lock table.

The system stores all tablets in Colossus. The implementation of the Paxos algorithm is optimized.
The algorithm is pipelined to reduce latency. The leaders of the Paxos algorithm discussed in Sec-
tion 3.12 are long lived, their life time is about 10 seconds.

Spanner directories, also called buckets, are sets of contiguous keys sharing a common prefix.
A directory is the smallest data unit whose placement can be specified by an application. A background
task called moved moves data directory-by-directory between the Paxos groups. This task is also used
to add or remove replicas to/from Paxos groups.

Spanner transactions. The database supports read-write transactions, read-only transactions, and
snapshot reads. A read-write transaction implements a standalone write; the concurrency control is
pessimistic. A read-only transaction benefits from snapshot isolation,4 it is lock-free, the read does not
block incoming writes, it is executed at a system-chosen time stamp without locking. A snapshot read

4Snapshot isolation is a guarantee that all reads made in a transaction will see a consistent snapshot of the database.
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Table 12.2 Spanner latency and throughput for write, read-only, and snapshot read. The mean and
standard deviation over 10 runs as reported in [119].

Latency in ms Throughput in Kops/sec
Replicas Write Read-only Snapshot

read
Write Read-only Snapshot

read
1 14.4 ± 1.0 1.4 ± 0.1 1.3 ± 0.1 4.1 ± 0.5 10.9 ± 0.4 13.5 ± 0.1

3 13.9 ± 0.6 1.3 ± 0.1 1.2 ± 0.1 2.2 ± 0.5 13.8 ± 3.2 38.5 ± 0.3

5 14.4 ± 0.4 1.4 ± 0.05 1.3 ± 0.4 2.8 ± 0.3 25.3 ± 5.2 50.0 ± 1.1

is lock-free read in the past at a time stamp specified by the client or at a time stamp chosen by the
system before a time stamp upper bound specified by the client.

The system supports atomic schema change transactions. The transaction is assigned a time
stamp t in the future. The time stamp is registered during the prepare phase so that the schema
changes on thousands of servers can complete with minimal disruption to other concurrent activity.
Reads and writes, implicitly depending on the schema, are synchronize with any registered schema-
change and may proceed if their time stamps precede time t , otherwise they must block until schema
changes.

Some of the results of a micro-benchmark reported in [119] are shown in Table 12.2. The data was
collected on timeshared systems with spanservers running in each zone on four-core AMD Barcelona
2200 MHz servers with 4 GB RAM. The two-phase commit scalability was also assessed: it increases
from 17.0 ± 1.4 ms for one participant to 30.0 ± 3.7 for 10 participants, to 71.4 ± 7.6 for 100, and
150.5 ± 11.0 ms for 200 participants.

TrueTime. A two-phase locking is used for transactional reads and writes. An elaborate process for
time stamp management based on the TrueTime is in place. The TrueTime API enables the system to
support consistent backups, atomic schema updates, and other desirable features. This API represents
time as a TTinterval with the starting and ending times of type TTstamp. A TTinterval has bounded
time uncertainty. Three methods using t of type TTstamp as argument are supported

T T .now() – returns a T T interval : [earliest, latest].
T T .af ter(t) – returns true if time t has definitely past.

T T .bef ore(t) – returns true if time t has definitely not arrived.

TrueTime guarantees that for an invocation

t t = T T .now(), tt.earliest ≤ tabs(enow) ≤ t t.latest (12.3)

where enow is the invocation event. Each data center has one timemaster and each server has its own
timeslave daemon interacting with several time masters to reduce the probability of errors.

TrueTime guarantees correctness of concurrency control and supports externally consistent trans-
actions, lock-free read-only transactions, and non-blocking reads in the past. It guarantees that a
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whole-database audit at time t sees the effects of every transaction committed up to time t . The re-
sults show that refining clock uncertainty associated with jitter or skew allows building distributed
systems with much stronger time semantics.

F1 – scaling a traditional SQL database. A traditional database design shares the goals with the one
discussed for data warehouses, i.e., scalability, availability, consistence, usability, and latency hiding.
Google system developers realized that scaling up their sharded MySQL implementation supporting
online transaction processing and online analytical processing systems was not feasible. Instead, a
distributed SQL database called F1 was developed. F1 uses Spanner and stores its data on Colossus
File System (CFS).

F1 database [451] was used since 2012 for the AdWords advertising ecosystem. F1 inherits Span-
ner’s scalability, synchronous replication, strong consistency, and ordering properties and adds to them:
(1) distributed SQL queries; (2) secondary indexes transactionally consistent; (3) asynchronous schema
changes; (4) optimistic transactions, and (5) automatic change history recording and publishing. Users
interract with F1 using a client library.

The organization of F1 is shown in Figure 12.2. F1 servers are co-located in each data center along
with Spanner servers. Multiple Spanner instances run at each site along with multiple CFS instances.
CFS is not a globally replicated service and Spanner instances communicate only with local CFS
instances. Storing data locally reduces the latency. The system is scalable and its throughput can be in-
creased by adding additional F1 and Spanner servers. The commit latencies are in the range 50–150 ms
due to the synchronous data replication across multiple data centers.

F1 has a logical Relational Database Management System schema with some extensions includ-
ing explicit table hierarchy and columns with Protocol Buffer data types. F1 stores each child table
clustered with and interleaved within the rows from its parent table. Table columns contain structured
data types based on the schema and binary encoding format of Google’s open source Protocol Buffer
library. F1 supports non-blocking schema changes in spite of several challenges including:

• The system scale.
• High availability and tight latency constraints.
• The requirement to continue queries and transaction processing while schema changes.
• It is impractical to require atomical schema updates for all servers as each F1 server has a copy of

the schema in local memory for efficiency reasons.

The schema change algorithm requires that at most two different schema are active at any time; one can
be the current schema, the other the next schema. A server cannot use a schema after its lease expires.
A schema change is divided in multiple phases such that consecutive pairs of phases are mutually
compatible.

F1 transactions. F1 supports ACID transactions discussed in Section 6.2 and required by systems
such as financial systems and AdWords. The three types of F1 transactions built on top of Spanner
transactions are:
1. Snapshot transactions – read-only transactions with snapshot semantics used by SQL queries and

by MapReduce. Snapshot isolation is a guarantee that all reads made in a transaction see a consis-
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FIGURE 12.2

F1 architecture. A load balancer distributes the workload to F1 server instances at every site which, in turn,
interact with Spanner instances at all sites where F1 is running. F1 data is stored on Colossus at the same site.
The shared slave pool execute parts of distributed query plans on behalf of regular F1 servers. F1 master
monitors the health of slave pool processes and communicates to F1 server the list of available slaves.

tent snapshot of the database. The transaction itself will successfully commit only if no updates it
has made conflict with any concurrent updates made since that snapshot.

2. Pessimistic transactions – map to the same Spanner transaction type.
3. Optimistic transactions – have an arbitrarily long lockless read phase followed by a short write

phase and are the default transactions used by the clients.
Optimistic transactions have a number of benefits:

• Are long-lasting.
• Can be retried transparently by an F1 server.
• The state is kept on the client and is immune to server failure.
• The time stamp for a read can be used by a client for a speculative write that can only succeed if no

other writes occurred after the read.
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Optimistic transactions have two drawbacks, insertion phantoms and low throughput for high con-
tention. Insertion phantoms occur when one transaction selects a set of rows, then another transaction
inserts rows that meet the same criteria; then, different results are produced when the first transaction
re-executes the query.

The default locking in F1 is at the row-level, though concurrency levels can be changed in the
schema. By default tables are change-tracked, unless the schema shows that the some tables or columns
have opted out. Every transaction creates one or more ChangeBatch Protocol Buffers, including the
primary key and before and after values of changed columns for each updated row.

12.3 BOOTSTRAPPING TECHNIQUES FOR DATA ANALYTICS

The size of the datasets used for data analytics, as well as the complexity and the diversity of queries
posed by impatient users, often without training in statistics, continually increase. In many instances,
e.g., in case of exploratory queries, it is desirable to provide good enough, yet prompt answers, rather
than perfect answers after a long delay.

This is only possible by limiting the search to a subset of data, but in such instances along with
the answer the user expects an estimation of answer’s quality. The quality of the answer is context-
dependent and a general solution is far from trivial. Bootstrapping techniques discussed in this section
can be applied to a broad range of applications for estimating the quality of such approximations. Given
a set F and a random variable U , the bootstrapping methods are based on the bootstrap substitution
principle

To determine the probability distribution of U ≡ u(Y,F ) with Y = {Y1, Y2, . . . , Yn} random
samples of F , then F is replaced by a fitted model F̂ .

Thus, we make the approximation

Pr{u(Y,F ) ≤ u | F } ≈ Pr{u(Y ∗, F̂ ) ≤ uF̂ }. (12.4)

The superscript ∗ distinguishes random variables and related quantities sampled from a probability
model that has been fitted to the data. Sometimes, u(Y,F ) = T −θ with T as the estimator of parameter
θ ≡ t (F ); more sophisticated cases involve transformations of T . Often T = t (F̃ ) and F̃ is an empirical
distribution function of the data values.

While bootstrapping can produce reasonably accurate results, there are also instances when the
results are unreliable. Some of such instances discussed in depth in [87] are:
1. Inconsistency of the bootstrap method when the model, the statistics, and the resampling fail to

approximate the required properties, regardless of the sample size.
2. Incorrect resampling model in case of non-homogeneous data when the random variation of data

is incorrectly modeled.
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3. Non-linearity of statistics T as the good properties of the bootstrap are associated with an accurate
linear approximation T ≈ θ + n−1 ∑

i l(Ti) with l(y) the influence function of t (·) at (y,F ).
A key idea is to construct a proxy to the ground truth for a sample smaller than that of a fully

observed dataset and compare the bootstrap’s results with this proxy. The bootstrapping techniques
discussed in this section are based on [273] which states “existing diagnostic methods target only
specific bootstrap failure modes, are often brittle or difficult to apply, and generally lack substantive
empirical evaluations... this paper presents a general bootstrap performance diagnostic which does not
target any particular bootstrap failure mode but rather directly and automatically determines whether
or not the bootstrap is performing satisfactorily.”

The bootstrap method. Let P be an unknown distribution, θ(P ) be some parameter of P , and D the
set of n independent identically distributed (i.i.d.) sampled data points D = {X1,X2, . . . ,Xn} from P .
Let P = n−1 ∑n

i=1 δXi
be the empirical distribution of data. We wish to construct the estimate θ̂ (D) of

θ(P ) and then create ξ(P,n), an assessment of the quality of θ̂ (D), consisting of a summary of the
distribution Qn of some quantity u(D,P ).

Both P and Qn are unknown thus, the estimate ξ(P,n), called the ground truth in this discussion,
cannot be computed directly, it can be approximated by ξ(Pn, n) using Monte Carlo procedure. The
following steps are carried out repeatedly:
1. Form simulated datasets D∗ of size n consisting of i.i.d. sampled points from Pn;
2. Compute u(D∗,Pn) for the simulated dataset D∗;
3. Form the empirical distribution Qn of the computed values of u;
4. Return the desired summary of this distribution.
The final bootstrap output will be a real-valued ξ(Qn, n). The assessment ξ(P,n) could compute:
1. The bias, the expectation of

u(D,P ) = θ̂ (D) − θ(P ). (12.5)

2. A confidence interval based on the distribution of

u(D,P ) = n1/2[θ̂ (D) − θ(P )]. (12.6)

3. Simply

u(D,P ) = θ̂ (D). (12.7)

Given the estimator, the data generating distribution P , and n, the size of the data set, we want
to determine if the output of the bootstrap procedure is sufficiently close to the ground truth. The for-
mulation sufficiently close avoids a precise expression of accuracy giving the procedure a degree of
generality and allowing its use for a range of applications with own accuracy requirements.
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Pseudocode of the BPD Algorithm - Bootstrap Performance Diagnostic [273]

Input: D = {X1, . . . ,Xn}: observed data

– u: quantity whose distribution is summarized to yield estimator quality assessments

– ξ: assessment of estimator quality

– p: number of disjoint subsamples used to compute ground truth approximations

– b1, . . . , bk: increasing sequence of subsample sizes for which ground truth approximations

– are computed with bk ≤ 	n/p
 (e.g., bi = 	n/(p2k−i )
 with k = 3.

– c1 ≥ 0: tolerance for decreases in absolute relative deviation of mean bootstrap output

– c2 ≥ 0: tolerance for decreases in relative standard deviation of bootstrap output

– c3 ≥ 0, α ∈ [0,1]: desired probability that bootstrap output at sample size n has absolute

– relative deviation from ground truth less than or equal to c3 (e.g., c3 = 0:5; = 0:95)

Output: true if the bootstrap is deemed to be performing satisfactorily, and false other-

wise

Pn → n−1 ∑n
i=1 δXi

for i ← 1 to k do

– Di1, . . . ,Dip → random disjoint subsets of D, each containing bi data points

– for j ← 1 to p do

– uij ← u(D,Pn)

– ξ∗
ij

← bootstrap(ξ,u, bi ,Dij )

– end

– // Compute ground truth approximation for sample size bi

– Qbi
← ∑p

j=1 δuij

– ξ̃i ← ξ(Qbi
, bi )

– // Compute absolute relative deviation of mean and relative standard deviation

– // of bootstrap outputs for sample size bi

– �i ←| mean{ξ̃∗
i1,...,ξ̃∗

ip
}−ξ̃i

ξ̃i
| σi ←| stddev{ξ̃∗

i1,...,ξ̃∗
ip

}−ξ̃i

ξ̃i
|

end

return true if all of the following hold, and false otherwise

�i+1 < �i OR �i+1 ≤ c1,∀i = 1, . . . , k (12.8)

σi+1 < σi OR σi+1 ≤ c2,∀i = 1, . . . , k (12.9)

#

(
j ∈ {1, . . . , p} : | ξ̃∗

kj −ξ̃k

ξ̃k
|≤ c3

)
p

≥ α (12.10)

In practice we can observe only one set with n data points rather than many independent sets
of size n. The solution is to randomly sample p ∈ N disjoint subsets of the dataset D, each of size
b ≤ 	n/p
. Then, to approximate the distribution of Qb we use the set of values of u calculated for
each subset. This distribution yields an approximation of the ground truth, ξ(P, b) for datasets of size
b. Then, to determine if the bootstrap performs as expected on sample size b, we run the bootstrap on
each of the p subsets and compare the p bootstrap outputs to the ground truth.

Carrying out this procedure for a single sample size b is insufficient, the bootstrap performance
may be acceptable for small sample size, but may get worse as the sample size increases or, conversely,
be mediocre for small sizes, but improve as the sample size increases. It is thus, necessary to compare
the distribution of bootstrap outputs for a range of sample sizes, b1, b2, . . . , bk, bk ≤ 	n/p
. If the
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distribution of the bootstrap outputs converges monotonically for all smaller sample sizes b1, b2, . . . , bk

we conclude that the bootstrap is performing satisfactorily for size n.
The convergence criteria are based on the relative deviation of the absolute value and the size of

the standard deviation of the bootstrap output from the ground truth. The pseudocode of the Bootstrap
Performance Diagnostic (BPD) algorithm illustrates these steps.

This algorithm generates a confidence interval with coverage α ∈ [0,1].5 A false positive, deciding
that an approximation is satisfactory when it is not, is less desirable than a false negative, rejecting
an approximation when in fact it is a satisfactory one. Equation (12.10) reflects this conservative ap-
proach. The absolute value of the deviation of a quantity γ from γ0 is defined as |γ − γ0|/|γ0| and an
approximation is satisfactory if the output of the bootstrap run on a dataset of size n has an absolute
value of the relative deviation from the ground truth of at most c3 with a probability α ∈ [0,1].

Choosing the sample sizes close together or choosing c1 or c2 too small will cause a larger
number of false negatives. It is recommended to use an exponential distribution of sample sizes to
ensure a meaningful comparisons of bootstrap performance for consecutive valuers bi, bi+1 in the set
{b1, . . . , bi, bi+1, . . . , bk}.

The process discussed in this section requires a substantial amount of data but this does not seem
to be a problem in the age of Big Data. For example, according to [273] when p = 100 and bk = 1 000
then n ≥ 1015 and if bk increases, bk = 10 000, n ≥ 1016. Processing such large data sets requires
significant resources.

Simulation experiments for several distributions including Normal(0; 1), Uniform(0; 10), Stu-
dentT(1.5), StudentT(3), Cauchy(0; 1), 0.95Normal(0; 1) + 0.05Cauchy(0; 1), and 0.99Normal(0; 1)
+ 0.01Cauchy(104; 1) are reported in [273]. The results of these experiments show that the diagnostic
performs well across a range of data generating distributions and estimators. Moreover, its performance
improves with the size of the sample data sets.

In summary, given S a random sample from D, the subsamples generated by disjoint partitions of
S are also mutually independent random samples from D. The procedure must be carried out using
a sequence of samples of increasingly larger size, b1, . . . , bi, . . . , bk . It is necessary to ensure that the
error decreases while increasing the sample size and that the error is sufficiently small for the largest
sample.

12.4 APPROXIMATE QUERY PROCESSING
The advantages of executing a query on a sample of data rather than on an entire dataset are quite per-
spicuous and, indeed, as early as 1970s this idea was applied to sampling relational databases. Different
versions of this technique have been investigated since its first use. Approximate query processing and
sampling-based approximate query processing have become popular enough to warrant the acronyms,
AQP and S-AQP, respectively, along with the realization that approximate answers are most useful if
accompanied by accuracy estimates.

5Confidence intervals offer a guarantee of the quality of a result. A procedure is said to generate confidence intervals with a
specified coverage α ∈ [0,1] if, on a proportion exactly α of the set of experiments, the procedure generates an interval that
includes the answer. For example, a 95% confidence interval [a, b] means that in 95% of the experiments the result will be in
[a, b].
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Let θ be a query on a dataset D and the desired answer to it be θ(D). Simple random sampling with
plug-in estimation is often used for approximate query processing. This method generates a sample
with replacement S ⊂ D of cardinality n = |S| ≤ |D| and produces a sample estimate result θ(S)

instead of computing θ(D) with the sampling error ε = θ(S −D) and the sampling error distribution
Dist (ε).

The emergence of Big Data processed on large clusters in the cloud and the requirement of near
real-time response have increased the demand for high quality error estimates. Such error estimates can
be reported to the users allowing them to judge the impact of errors on their specific applications and/or
to application developers to decide if the sampling methods are adequate. These estimates can also be
used to correlate errors with the sample size necessary for the accuracy-response time trade-offs.

Two methods for producing closed-form estimates for error bars6 are based on the Central Limit
Theorem (CLT)7 and on Hoeffding bounds [215]. The derivation of Hoeffding bounds starts with the
estimation of the mean

μ = 1

m

m∑
i=1

v(i) (12.12)

with v a real-valued function defined on the set S = {1,2, . . . ,m} and m > 1 a fixed integer. Let
L1,L2, . . . ,Ln and L′

1,L
′
2, . . . ,L

′
n be random samples from the set S with and without replacement,

respectively. Given n > 1 let Ȳn and Ȳ ′
n be two estimators for μ and be defined as

Ȳn = 1

n

n∑
i=1

v(Li) and Ȳ ′
n = 1

min(n,m)

min(n,m)∑
i=1

v(L′
i ). (12.13)

These estimators are unbiased if E[Ȳn] = E[Ȳ ′
n]. Hoeffding showed that for any n ≥ m and convex

function f

E[f (Ȳ ′
n)] ≤ E[f (Ȳn)]. (12.14)

It follows that when f (x) = x2 − μ

V ar[f (Ȳ ′
n)] ≤ V ar[f (Ȳn)]. (12.15)

6An error bar is a line segment through a point on a graph, parallel to one of the axes, which represents the uncertainty or error
of the corresponding coordinate of the point.
7Informally, CLT states that the sum of a large number of independent random variables has a normal distribution. More pre-

cisely, if {X1, . . . ,Xn} is a sequence of i.i.d. random variables with E[Xi ] = μ and V ar[Xi ] = σ 2 < ∞ and Sn = 1/n
∑n

i=1 Xi

is the sample average then the random variables
√

n(Sn − μ) converge in distribution to a normal distribution, N(0, σ 2) as n

approaches infinity

√
n

⎡
⎣

⎛
⎝ 1

n

n∑
i=1

Xi

⎞
⎠ − μ

⎤
⎦ d→ N(0, σ 2). (12.11)
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FIGURE 12.3

The sample size for CLT-based and Hoeffding-based estimation methods for the error bars [10].

These results are useful to bound the probability that the estimates deviate from μ more than a given
amount. If the only information available before sampling is that

a ≤ v(i) ≤ b, 1 ≤ i ≤ m (12.16)

Hoeffding established the following bounds for the estimation error

P {|Ȳn − μ| ≥ t} ≤ 2e−2nt2/(b−a)2
(12.17)

and

P {|Ȳ ′
n − μ| ≥ t} ≤ 2e−2n′t2/(b−a)2

(12.18)

for t > 0, n ≥ 1 and

n′ =
{

n if n < m;
+∞ if n ≥ m.

(12.19)

The Hoeffding bounds overestimate the error and increase the computational effort. The sample
sizes for a system using Hoeffding bounds are one to two orders of magnitude larger than for CLT-
based or bootstrap-based methods but their accuracy is significantly higher. Experiments to estimate
the sample sizes for achieving different levels of relative errors carried out on tens of terabytes of data
are reported in [10] and reproduced in Figure 12.3.

Investigation of non-parametric bootstrap, closed-form estimation of variance, and large deviation
bounds confirms that all techniques have different failure modes. A benchmark consisting of 100 dif-
ferent samples of some 106 rows reported by [10] shows that only queries with COUNT, SUM, AVG,
and VARIANCE aggregates are amenable to closed-form error estimation. All aggregates are amenable
to the bootstrap and 43.21% of the queries over one dataset and 62.79% of the queries over another can
only be approximated using bootstrap-based error estimation methods. As expected, queries involving
MAX and MIN are very sensitive to rare large or small values, respectively. In one dataset, these two
functions involved 2.87% and 33.35% of all queries, respectively. Bootstrap error estimation fails for
86.17% of these queries.
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The diagnostic algorithm discussed in Section 12.3 is computationally-intensive thus, impractical
in many cases. A method to quickly determine if a technique will work well for a particular query based
on symmetrically centered confidence intervals was proposed in [10]. The workflow for a large-scale
distributed approximate query processing proposed has several steps:
1. Logical Plan (LP) – a query is compiled into an LP consisting of three procedure to compute: (1) an

approximative answer θ(S); (2) the error ξ̄ ; and (3) the diagnostic tests;
2. Physical Plan (PP) – initiates a DAG of tasks involving these procedures;
3. Data Storage Layer – distributes the samples to a set of servers and manages the cached data.
The system supports Poissonized resampling thus, allowing a straightforward implementation of the
bootstrap error. For example, for a simple query of the form SELECT foo(col_S) FROM S the bootstrap
error is computed by using the BEC pseudocode shown below.

BEC: Bootstrap Error Computation for a SELECT query on S

SELECT foo(col_S), ξ̂(resample_error) AS error
FROM (
. SELECT foo(col_S) AS resample_answer
. FROM S TABLE_SAMPLE POISSONIZED (100)
. UNION ALL
. SELECT foo(col_S) AS resample_answer
. FROM S TABLE_SAMPLE POISSONIZED (100)
. UNION ALL
. . . .

. UNION ALL

. SELECT foo(col_S) AS resample_answer

. FROM S TABLE_SAMPLE POISSONIZED (100)
)

An important source of inefficiency of the bootstrap method is the execution of the same query on
different samples of the data. Scan consolidation can eliminate this source of inefficiency. As a first step
of this process, the Logical Plan is optimized by extending the resampling operations. Each tuple in the
sample S is extended with a set of 100 independent weights w1,w2, . . . ,w100 drawn from a Poisson
distribution. The sample S is partitioned into multiple sets of a = 50, b = 100 and c = 200 MB, and
three sets of weights, Da1, . . . ,Da100, Db1, . . . ,Db100 and Dc1, . . . ,Dc100 are associated with each
row to create 100 resamples of each set.

The logical plan is rewritten for a further optimization. After finding the longest set of consecu-
tive operators that do not change the statistical properties of the set of columns that are being finally
aggregated,8 the custom Poissonized resampling operator is inserted right before the first non pass-
through operator in the query graph. The subsequent aggregate operators are modified to compute a
set of resample aggregates by appropriately scaling the corresponding aggregation column with the
weights associated with every tuple. Further optimization of the cache management is used to improve
the performance of the procedure discussed in [10].

8These so-called pass-through operators could be scans, filters, projections, and so on.
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12.5 DYNAMIC DATA-DRIVEN APPLICATIONS
There are many applications combining mathematical modeling with simulation and measurements.
Some of these applications involve Big Data. For example large-scale-dynamic-data refers to data
captured by sensing instruments and control in engineered, natural, and societal systems. Some of the
sensing instruments capture very large volumes of data; this is the case at the Large Hadron Collider
at CERN, discussed in Section 4.12. A special case of such systems is discussed in this section, the
Dynamic Data-Driven Application Systems (DDDAS). Such applications can benefit from dataflow ar-
chitectures and programming models such as FreshBreeze developed at MIT by Professor Jack Dennis,
[141,142,304].

Dynamic data-driven application systems. Efforts to analyze, understand, and predict the behavior
of complex systems often require a dynamic feedback loop. Sometimes the simulation of a system uses
measurement data to refine the system model through successive iterations, or to speedup the simula-
tion. Alternatively, the accuracy of a measurement process can be iteratively improved by feeding the
data to the system model and then using the results to control the measurement process. In all these
cases the computational and the instrumentation have to work in concert. The mathematical model-
ing, the simulation algorithms, the control system, the sensors, and the computing infrastructure of a
DDDAS system should support an optimal logical and physical dataflow through this feedback loop.

Some of the DDDAS applications discussed in http://www.1dddas.org/activities/2016-pi-meeting
are: adaptive stream mining, modeling of nanoparticle self-assembly processes, dynamic integration
of motion and neural data to capture human behavior, real-time assessment and control of electric
microgrids, optimization, and health monitoring of large-scale structural systems.

The FreshBreeze multiprocessor architecture and FreshBreeze model of thread execution. A chip
architecture guided by modular programming principles described in [141] is well suited for DDDAS
applications as we shall see in the discussion of the Mahali project. The system is designed to satisfy the
software design principles discussed in Section 4.7. One of the distinctive features of the architecture is
to prohibit memory updates and use a cycle-free heap. Objects retrieved from memory are immutable
and the allocation, release, and garbage collection of fixed-size chunks of memory are implemented by
hardware mechanisms. This eliminates entirely the challenges posed by the cache coherence.

The organization of the system is depicted in Figure 12.4. The system consists of several mul-
tithreaded scalar processors (MTPs), a shared memory system (SMS) organized as a collection of
fixed-size chunks of 1 024 bits, and an interconnection network. An MTP supports up to four execu-
tion threads involving integer and floating point operations. The MTPs communicate with Instruction
Access Units (IAU) and Data Access Units (DAUs) to access chunks containing instructions and data,
respectively. The access units have multiple slots of size equal to the size of memory chunks and
maintain chunk usage data used by LRU algorithms for purging data to the SMS. The SMS performs
automatically all memory updates including garbage collection.

An array is represented by a tree of chunks with element values at level 0. The number of tree
levels is determined by the largest index value with a defined element, up to a maximum of eight
levels. A collection of chunks containing pointers to other chunks forms a heap. The FreshBreeze
execution model allows only the creation of cycle-free heaps. Many applications use also stream data
types, unending series of values of uniform type. A Fresh Breeze stream is represented by a sequence
of chunks, each chunk containing a group of stream elements. A chunk may include a reference to the

http://www.1dddas.org/activities/2016-pi-meeting
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FIGURE 12.4

A FreshBreeze system consists of multithreaded processors (MTPs), shared memory system (SMS),
instruction and data access units (IAU) and (DAUs), and instruction and data switches, [141].

chunk holding the next group of stream elements. As an alternative, an auxiliary chunk may contain
“current” and “next” references.

The FreshBreeze execution model is discussed in [142]. A master thread spawns slave threads and
initializes a join point providing the slave with a join ticket, similar to the return address of a method.
Any slave thread may be a master for a group of slaves. The master does not continue after spawning
the slaves and there is no interaction between the master and the slaves or among the slaves other than
the contribution of each to the continuation thread. A program can generate an arbitrary hierarchy of
concurrent threads corresponding to the available application parallelism.

A join point is a special entry in the local data segment of the master thread that provides space for
a record of master thread status and for the result produced by the slave. Only one slave can be given a
join ticket to the same join point to avoid race conditions. Several instructions are used to access a join
point:
1. Spawn – sets a flag, stores a joint ticket in the slave’s local data segment, and starts slave execution.
2. EnterJoinResult – allows the slave to save the result in the join point and then quit.
3. ReadJoinValue – returns the join value if it is available, or suspends the master if the join value has

not yet been entered.
The operation of a thread is deterministic, any heap operation either reads data or creates private data.
Operations at a join point are independent of the order of slave thread arrival.

The parallelization of a dot product of two vectors discussed next illustrates an application of the
Fresh Breeze execution model [304]. First, the vectors are converted to tree-based memory chunks.
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FIGURE 12.5

The Mahali system used entire ionosphere as sensor for ground-based and space-based phenomena and a
multitude of mobile devices to gather the data and feed it to a cloud infrastructure https://mahali.mit.edu/.

The vectors are split into 16-element segments and organized as a tree structure. The leaf chunks hold
the actual values, while the internal nodes of the tree store chunks holding handles of chunks that point
to other chunks.

The TraverseVector thread takes the roots of two trees-of-chunks of vectors A and B as inputs and
checks the depth of the tree to see if it is a leaf node. If not a leaf node then it recursively spawns
TraverseVector threads taking the root handles of the next level as inputs. At the leaf level, a Compute
thread is spawned to compute the dot product of 16 elements and return the result sum to the Sync
chunk. The continuation Reduce thread adds all partial results in the Sync chunk filled by lower level
Compute/Reduce threads. Then Reduce thread returns the handle of the Sync chunk to the upper level
Sync chunk until reaching the root level Sync chunk as the final result.

Space weather monitoring. The Mahali9 space weather monitoring project at MIT captures the
quintessence of the DDDAS applications. The project uses multicore mobile devices, such as phones
and tablets, to form a global space weather monitoring network. Multi-frequency GPS sensor data is
processed in a cloud to reconstruct the structure of the space environment, and its dynamic changes see
Figure 12.5.

The core ideas of the project are: (1) leverage entire ionosphere as a sensor for ground-based and
space-based phenomena; and (2) take advantage of mobile technology as a game changer for observa-
tories.

9“Kila Mahali” means “everywhere” in the Swahili language, see https://mahali.mit.edu/.

https://mahali.mit.edu/
https://mahali.mit.edu/
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12.6 DATA STREAMING
Data streaming is the transfer of data at a steady high-speed rate, with low and well-controlled latency.
In data streaming the volume of the data is very high and decisions have to be made in real-time.
High-definition television (HDTV) is a ubiquitous application of data streaming.

Cloud data streaming services support content distribution from many organizations, e.g., AWS
hosts Netflix and Google cloud hosts YouTube. Clouds support a variety of other data streaming ap-
plications in addition to hosting content providers. For example, AWS supports several streaming data
platforms including Apache Kafka, Apache Flume, Apache Spark Streaming, and Apache Storm.

Data streaming versus batch processing. According to AWS: “Streaming data ..... is generated con-
tinuously by thousands of data sources, which typically send in the data records simultaneously, and
in small sizes (order of Kilobytes). Streaming data includes a wide variety of data such as log files
generated by customers using your mobile or web applications, ecommerce purchases, in-game player
activity, information from social networks, financial trading floors, or geospatial services, and telemetry
from connected devices or instrumentation in data centers. This data needs to be processed sequentially
and incrementally on a record-by-record basis or over sliding time windows, and used for a wide variety
of analytics including correlations, aggregations, filtering, and sampling.”

There are important differences between streaming and batch data processing:
1. Streaming processes either individual records or micro batches, rather than large data batches.
2. Streaming processes only the most recent data or data over a rolling time window, rather than the

entire, or a large segment of a data set.
3. Streaming requires latency of milliseconds, rather than minute or hours.
4. Streaming provides simple response functions, aggregates, and rolling metrics, rather than carrying

out complex analytics.
5. It can be hard to reason about the global state in data streaming because different nodes may be

processing data that arrived at different times, while in batch processing the system state is well
defined and can be used to checkpoint and later restart the computation.
These differences suggest that the data streaming programming models and the APIs will be dif-

ferent from the ones for batch processing discussed in Chapters 7 and 8. It is therefore necessary to
develop new data processing models for cloud data streaming services. Such models should be simple,
yet effective.

Spark Streaming. Spark Streaming along with a data streaming model, called D-Streams, are dis-
cussed in [543]. The D-Streams model offers a high-level functional programming API, strong con-
sistency, and efficient fault recovery. This model, prototyped as the Spark Streaming achieves fault
tolerance by replication; there are two processing nodes, the upstream backup and a downstream node.

To address the latency concerns the Spark Streaming system relays on a storage abstraction, the
Resilient Distributed Dataset (RDD) to rebuild lost data without replication. A parallel recovery mech-
anism involving all cluster nodes work in concert to reconstruct lost data. The system divides the time
in short intervals, stores the input data received during each interval in RDD and then processes the
data via deterministic parallel computations that may involve MapReduce and other frameworks. A D-
Stream is a collection of RDDs.

Spark Streaming provides an API similar to DryadLINQ in the Scala language and supports state-
less operations acting independently in each time interval, as well as aggregation over time window.
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To recover in case of node failures D-Streams and RDDs track their lineage using a dependency graph.
The system supports:

• Stateless transformations available in batch frameworks such as map, reduce, groupBy, and join and
provides two operators:
1. Stateless and statefull transform operators; the first class of operators act independently on each

time interval and the second share data among intervals.
2. Output operators that save data, e.g., store RDDs on HDFS.

• New statefull operations:
1. Windowing; a window groups records from a range of past intervals into one RDD.
2. Incremental aggregation over a window.
3. Time-skewed joins when a stream is combined with RDDs.

Spark Streaming uses an inefficient upstream backup approach, does not support finer checkpointing
as it creates checkpoints every minute, and depends on application idempotency and system slack for
recovery.

Zeitgeist and MillWheel. Google’s Zeitgeist,10 a system used to track trends in web queries, is a typ-
ical application of data streaming. The system builds a historical model of each query and continually
identifies queries that spike or dip. The Zeitgeist processing pipeline includes a window counter with
query searches as input, a model calculator and a spike/dip detector, and an anomaly notification en-
gine. The system buckets records arriving in one-second intervals and then compares the actual traffic
for each time bucket to the expected traffic predicted by the model. An example of Zeitgeist aggregation
of one-second buckets of (key, value, time stamp) query triplets given in [12] is shown in Figure 12.6.

The MillWheel framework developed at Google for building fault-tolerant and scalable data stream-
ing systems supports persistent state [12] and addresses some of the limitations of Spark Streaming and
other data streaming systems. The Zeitgeist system provided the initial requirements for the MillWheel
stream processing services. Some of these requirements are:

• Immediate availability of data for services processing data.
• Exposure of persistent state abstraction to user applications.
• Graceful handling of out-of-order data.
• Exactly-once delivery of records.
• Constant latency as the system scales up.
• Monotonically increasing low watermarking of data time stamps.

MillWheel users express the logic of their data streaming applications as a directed graph where the
stream of data records is delivered along the graph edges. A node or an edge in the arbitrary topology
can fail at any time without affecting the correctness of the result. Record delivery is idempotent.11

10Zeitgeist is a German word literary translated as time mind and used with the sense of the spirit of the time. This concept, at-
tributed to Georg Wilhelm Friedrich Hegel, an important figure of the German idealism philosophy school, reflects the dominant
ideas in the society at a particular time.
11An idempotent operation can be carried out repeatedly without affecting the results.
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FIGURE 12.6

Zeitgeist aggregation of one-second buckets of (key, value, time stamp) query triplets [12].

The data structures used by MillWheel as input and output are (key, value, time stamp) triplets. The
key and the value can be any string. The time stamp is typically close to the wall time of the event,
though it can be assigned an arbitrary value by MillWheel. Input data trigger computations invoking
either user-defined actions, or MillWheel primitives.

The key extraction function uses a user-assigned key for the aggregation and the comparison among
records. For applications such as Zeitgeist the key could be the text of the query. MillWheel uses the
concept of low water mark to bound the time stamp of future records. Waiting for the low water mark
allows computations to reflect a more complete picture of the data. Timers are programmatic hooks
that trigger at a specific wall time or at a low watermark value for a particular key.

A user-defined computation subscribes to input streams and publishes output streams. The system
guarantees delivery of both streams. Computation is run in the context of a specific key. The processing
steps for an incoming record are:

• Check for duplication and discard a previously seen record.
• Run user code and identify pending changes to the timers, state, and production.
• Commit pending changes to backing store.
• Acknowledge senders.
• Send pending downstream productions.

There are two types of productions, strong and weak. Strong productions support handling of inputs
that are not necessarily ordered or deterministic. Checkpointing of strong productions is done before
delivery as a single atomic write; the state modification is done at the same time with the atomic write.
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Weak productions are generated when the application semantics allows the user to disable the strong
production option.

The computations are pipelined and may run on different hosts of the MillWheel cluster. To record
the persistent state the system uses either BigTable or other databases supporting single-row updates.
A replicated master balances the load and distributes it based on lexicographic analysis of the record
keys.

Measurements conducted on the system report low latency and scalability, well within the targets
set for stream processing at Google. A median record delay of 3.6 milliseconds and a 95 percentile
latency of 30 milliseconds are reported for an experiment on 200 CPUs.

MillWheel is not suitable for monolithic computations whose checkpointing would interfere with
the dynamic load balancing necessary to ensure low latency.

Caching strategies for data streaming. Several replacement policies are used by caching routers of
a Content-Centric Network (CCN) discussed in Section 5.12 and used for data streaming. LRU (Least
Recently Used) policy keeps in cache the most recently used content. LFU (Least Frequently Used)
uses the cache request history to keep in cache the highly used content.

There are obvious limitations of both LRU and LFU. The former ignores the popularity of an item,
the later ignores the history, e.g., items highly used in the past are kept in cache in spite of a new patterns
of access. It should be no surprise that combinations of the two, the so called Least Recently/Frequently
Used replacement strategies support trade-offs by specifying a weight that decays exponentially over
time for each request.

The sLRFU (streaming Least Recently/Frequently Used) introduced in [425] aims to maximize
cache. The novelties introduced by sLRFU are:
1. Partitions a cache of size C into an LFU-managed area using a sliding window of size k and an

LRU-managed area of size C − k.
2. Estimates the top-k most popular data item in a sliding window of requests, keeps the frequently

used ones in cache, and discards the old ones. k is set dynamically based on bounds given by the
streaming algorithm.

3. For every request

• Increases the reference counter for the data item referenced by the request and decreases the
counter for the request falling out of the window.

• If the data requested is not in cache it recovers the data and delivers it.
• Using the last N requests, possibly rearranges the top-k most popular elements in cache (adding

and/or removing content from the list), and complements the available spaces in cache with the
C − k most recently requested elements that are not already in cache.

Simulation results reported in [425] show that sLRFU has a hit rate of 70% compared with a base-
line LRU of 65%.

12.7 A DATAFLOW MODEL FOR DATA STREAMING
There should be no surprise that a more sophisticated programming model for data streaming has
been developed at Google. Alphabet, the holding company consisting of Google’s core businesses and
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future-looking and finance stuff, earns billions from advertising embedded in data streaming. That’s
why Goggle is interested to support an effective computational model for event-time correlations. The
Dataflow SDK model described in [13] is based on MillWheel [12] and FlumeJava [92].

Instead of the widely used terminology distinguishing batch processing from streaming, the two
types of data processing are identified by a characterization of the input data: bounded for batch pro-
cessing, and unbounded for streaming. The implications of this dichotomy are clear and reflect what
the execution engine is expected to do. In the bounded case the engine processes a data set of known
contents and size. In the unbounded case the engine processes a dynamic data set where one never
knows if the set is complete, as new records are continually added and old ones are retracted.

The Dataflow SDK motivation for developing a new model is that grooming unbounded data sets
to look as bounded ones does not allow an optimal balance between correctness, latency, and cost.
It is thus necessary to refresh, simplify, and made flexible the programming model for unbounded
datasets. The shortcomings of previous models are perfectly well illustrated by Google applications.
For example, assume that a streaming video provider wants to bill advertisers placing their adds along
with the video stream for the amount of advertising watched. This requires the ability to identify who
and for how long watched a video stream and each add.

Some of the existing systems do not provide exactly-once semantics, do not scale well, are not
fault-tolerant, have high latency, while others, such as MillWheel or Spark Streaming, do not have a
high-level programming support for event-time correlations. The model introduced in [13] “Allows for
the calculation of event-time ordered results, windowed by features of the data themselves, over an
unbounded, unordered data source, with correctness, latency, and cost tunable across a broad spectrum
of combinations.”

It also “Decomposes pipeline implementation across four related dimensions, providing clarity,
composability, and flexibility: What results are being computed. Where in event time they are being
computed. When in processing time they are materialized. How earlier results relate to later refine-
ments.” The design of the system was guided by several principles:

• Never rely on the notion of completeness.
• Encourage clarity of implementation.
• Support data analysis in the context it was collected.

The new model uses windowing to split a dataset into groups of events to be processed together,
an essential concept for unbounded data processing. Windowing is almost always time-based and the
windows can be static/fixed or sliding. A sliding window has a size and a sliding period, e.g., a 2-hour
window starting every 10 minutes. Sessions are sets of windows related by a data attribute, e.g., key
for key-value datasets.

An event causes the change of the system state, for example, the arrival of a new record in case of
data streaming. Typically the time skew, the difference between the event time and the event processing
time, varies during processing. The distinction between the event time and the processing time of the
event is illustrated in Figure 12.7.

The Dataflow SDK uses the ParDo and GroupByKey operations of FlumeJava discussed in Sec-
tion 3.14 and defines a new operation GroupByKeyAndWindow. The entities flowing through the
pipeline are four-tuples (key, value, eventtime,window). Several operations involving windows are de-
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FIGURE 12.7

The event time skew. The event time is the wall clock time when the event occurred; this time never changes.
The event processing time is the time when the event was observed during the processing pipeline; this time
changes as the event flows through the processing pipeline. For example, an event occurring at 7:01 is
processed at 7:02.

fined. Window assignment replicates an object in every window, the (key, value) pairs are duplicated
in windows overlapping the time stamp of an event.

Window merging is a more complex operation involving the six steps in Figure 12.8 where the
window size is 30 minutes and there are four events, three with key k1 and one with key k2. In Step 2
the four-tuples (key; value; event time;window) are transformed as three-tuples (key; value;window).
The GroupByKey combines the three events with k1 in Step 3. Overlapping windows [13 : 02,13 : 32]
and [13 : 20,13 : 50] for k1 are merged as [13 : 02,13 : 50] in Step 4 of the operation. Then in Step 5
the two k1 events with values v1 and v4 in the same window [13 : 02,13 : 50] are grouped together.
Finally, in Step 6 time stamps are added.

Watermarks used in MillWheel to trigger processing of the events in a window cannot ensure
correctness by themselves, sometimes late data is missed. At the same time, a watermark may de-
lay pipeline processing. The Dataflow system uses triggers to determine the time when the results of
groupings are emitted as panes.12

12A pane is a well defined area within a window for the display of, or interaction with, a part of that window’s application or
output.
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FIGURE 12.8

Window merging in Dataflow SDK involves six steps [13]. (1) AssignWindow; (2) Drop the time stamps; (3)
GroupByKey; (4) MergeWindows – based on windowing strategy; (5) GroupAlsoByWindow – for each key
group values by window; and (6) ExpandToElements – expand per-key, per-window groups of values into
(key; value; event time;window) tuples, with new per-window time stamps.
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FIGURE 12.9

Primary and secondary stream events in Photon are query stream and ad click stream events. At time t1 a web
server responding to a query also serves an ad. The user clicks on the ad at time t2 and then the query event
and the click event are combined into a joined click event [29].

The system has several refinement mechanisms to control how several panes are related to none
another. Window contents are discarded once triggered, provided that later pipelines stages expect
the values of the triggers to be independent. The window contents are also discarded when the user
expresses no interest in later events. The contents of a window can be saved in persistent storage when
needed for refining the system state.

12.8 JOINING MULTIPLE DATA STREAMS
Applications such as advertising, IP network management, and telephone fraud detection require the
ability to correlate in real-time events occurring in separate high-speed data streams. For example,
Google search engines deliver ads along with answers to queries. The Photon system [29] developed
for Google Advertising System produces joint logs for the query data stream and the ad click data
stream. The joint logs are used for billing the advertisers. A typical application of Photon is illustrated
in Figure 12.9.

Photon processes millions of events per minute with an average end-to-end latency of less than 10
seconds. The system joins 99.9999% events within a few seconds, and 100% events within a few hours.

The Proton designers had to address a set of challenges including:

• Each click on an ad should be processed once and only once. This means: at-most-once semantics
at any point of time, near-exact semantics in real-time, and exactly-once semantics eventually. If
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a click is missed Google loses money; if one click is processed multiple times the advertisers are
overcharged.

• Automated data center-level fault-tolerance. Manual recovery takes too long. Photon instances in
multiple data centers will attempt to join the same input event, but must coordinate their output to
guarantee that each input event is joined at-most-once.

• Latency constraints. Low latency is required by advertisers as it helps optimize their marketing
campaigns. Load balancers redirect a user request to the closest running server, where it is processed
without interacting with any other server.

• Scalability. The event rates are very high now and are expected to increase in the future, therefore
to satisfy latency constraints the system has to scale up.

• Combine ordered and unordered streams. While the query stream events are ordered by time stamps,
the events in the click stream may occur at any time and are not sorted. Indeed, the user may click
on the ad long after the results of the query are displayed.

• Delays due to the system scale. The servers generating query and click events are distributed over
the entire world. The volume of query logs is much greater than that of the click logs thus, the query
logs can be delayed relative to the click logs.

Photon organization and operation. The IdRegistry stores the critical state shared among running
Photon instances all over the world. This critical state includes the eventId of all events joined during
the last N days. Each instance checks whether the eventId already exists in the IdRegistry before writing
a joined event; if so, it skips processing the event, otherwise adds the event to IdRegistry.

The IdRegistry is implemented using the Paxos protocol discussed in Section 3.12. An in-memory
key-value store based on PaxosDB is consistently replicated across multiple data centers to ensures
availability in case of the failure of one or more data centers. All operations are carried out as read-
modify-write transactions to ensure that writing to the IdRegistry is carried out if and only if the event
is not already in. An eventId uniquely identifies the server, the process on that server that generated the
event, and the time the event was generated

EventId = (ServerIP,ProcessId,Timestamp). (12.20)

Events with different Ids can be processed independently of each other. This allows the EventId space
of the IdRegistry to be partitioned into disjoint shards. EventId’s from separate shards are managed by
separate IdRegistry servers.

Identical Photon pipelines run at multiple data centers around the world. A Photon pipeline has
three major components shown in Figure 12.10:
1. The Dispatcher – reads the stream of clicks and feeds them to the joiner.
2. The EventStore – supports efficient query lookup.
3. The Joiner – generates joined output logs.
The joining process involves several steps:
1. The Dispatcher monitors the logs and when new events are detected it looks-up the IdRegistry to

determine if the clickId is already recorded.

• If already recorded, skip processing the click.
• Else, send the event to the joiner and wait for a reply. To guarantee at-least-once semantics the

dispatcher resends it to the joiner until it gets a positive acknowledgment.
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FIGURE 12.10

The organization of the Photon pipeline. At each site the pipeline includes the Dispatcher, the EventStore and
the Joiner. These components operate on the query logs, the click logs, and the joined click logs. The
IdRegistry stores the critical state shared among running Photon instances all over the world.

2. The Joiner extracts queryId and carries out an EventStore lookup to locate the corresponding query.
If the query is

• Found - the joiner attempts to register the clickId in the IdRegistry:
– if clickId is in the IdRegistry the Joiner assumes that the join has already been done.
– if not, the clickId is recorded in the IdRegistry and the event is recorded in the joint event

log.
• Not found - the Joiner sends a failure response to the dispatcher; this causes a retry.

In the US there are five replicas of the IdRegistry in data centers in three geographical regions
up to 100 ms apart in round-trip latency. The other components in the pipelines are deployed in two
geographically distant regions on the East and West coast. According to [29]: “during the peak periods,
Photon can scale up to millions of events per minute,... each day, Photon consumes terabytes of foreign
logs (e.g. clicks), and tens of terabytes of primary logs (e.g. queries), ... more than a thousand IdRegistry
shards run in each data center, .... each data center employs thousands of Dispatchers and Joiners, and
hundreds of CacheEventStore and LogsEventStore workers.”

12.9 SYSTEM AVAILABILITY AT SCALE
As the cloud user population grows and the scale of the data center infrastructure expands the concerns
regarding system availability are amplified. Very high system availability and correctness are critical
for data streaming processing systems. Such systems are particularly vulnerable because the likeli-
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hood of missed events is very high when the resources required for event processing suddenly become
unavailable.

When we think about availability, a 99% figure of merit seems quite high. There is another way
to look at this figure; a 99% availability translates to 22 hours of downtime per quarter and this is not
acceptable for mission-critical systems. Goggle aims to achieve 99.9999–99.99999% availability for
their data streaming systems [213]. How can this be achieved? An answer to this question is the topic
of this section.

Multiple failure scenarios are possible. Individual servers may fail, all servers in one rack may
be affected by a power failure, and a power failure may force the entire data center infrastructure to
shutdown, though such events are rare. The interconnection network may fail and partition the network,
the public networks connecting a data center with the Internet or the private networks connecting the
data center with other data centers of the same CSP may fail.

The workloads can be migrated to functioning systems in case of partial failures affecting a subset
of resources. The users may experience slower communication and extended execution times in such
cases. When partial failures affect data streaming some events are missed. Often, it takes some time
before the cause of a partial failure is found and corrective measures are taken.

Shutdown of servers, networks, or the entire data center may be planned for hardware or software
updates or maintenance. Such events are announced in advance, and in such cases the shutdown is
graceful and without data loss or other unpleasant consequences for the cloud users. The unplanned
shutdown are the ones the CSPs are concerned about. The most consequential are the data center-level
failures.

While current systems manage quite well the failure of individual servers, data center-level fail-
ures, though seldom occurring, have catastrophic consequences especially for single-hommed software
systems, the ones running only at the site affected by the failure. Less affected are the failover-based
software systems. Such systems only run at one site, but checkpoints are created periodically and sent
to backup data centers. When the primary data center fails the last checkpoints of the critical systems
are used to restart processing at the backup site. Data streaming is affected in this case as events are
likely to be missed.

Checkpointing can be done asynchronously or synchronously. In the first case, all events are pro-
cessed exactly once during the restart if the events in progress are drained before checkpointing, and
only when the shutdown was planned. Synchronous checkpointing can, in principle, capture all events
even in case of unplanned shutdowns, but their processing is considerably more complex. For planned
shutdowns they require each pipeline to generate a checkpoint and block until the checkpoint is repli-
cated.

Virtually all CSPs have multiple data centers distributed across several regions and a basic as-
sumption for handling data center-level failures is that the probability of a simultaneous failure of
data centers in different regions is extremely low. Critical software systems are multi-homed and the
workload is dynamically distributed among these centers and, when one of them fails, its share of the
workload is reassigned to the ones still running.

The design of multi-homed systems is not without its own challenges. First, the global state of the
system must be available to all sites. The size of the metadata reflecting the global state should be min-
imized. Communication delays of tens of milliseconds and limited global communication bandwidth
do not make determination of the global state an easy task, even when a Paxos-bases commit is used
to update the global state.
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Second, a data streaming pipeline is implemented as a network with multiple processing nodes.
Checkpointing has to capture the state of all nodes, as well as metadata such as the state of the input and
output queues of pending and completed node work. Clustering groups nodes together and recording
only the global state of the cluster helps. Clustering increases the checkpointing efficiency and shrinks
the checkpoint size.

Handling the same input events at several sites can be optimized so that the checkpoint includes
only one copy of the event. This is actually done for the events recorded by logs in the system discussed
next. Such primary events may require database lookup and if the database data does not change, then
the state of the primary event should not record database information.

Lastly, guaranteeing exactly once semantics for multi-homed systems is nontrivial because
pipelines may fail while producing output; multiple sites may process the same events concurrently.
Updating global state can be atomic when the global state is stored in shared memory. Idempotence
can help achieving the desired semantics. When multiple sites update the same record the desired se-
mantics is guaranteed. If idempotence is not achievable a two-phase commit can be used to write the
results produced by the streaming system to the output.

Data streaming services collect data generated by user interactions and expect consistency. Data
streaming consistency means that when the state at time t includes an event e any future state, at time
t + τ , must also include event e; an observer should see consistent outcomes if more than one are
generated.

The concern for data center-level failures forced Google to run multiple copies of critical systems
at different data centers. Several large-scale Google systems run hot in multiple data centers, including
the F1 database [451] discussed in Section 12.2 and the Photon system [29] discussed in Section 12.8.

An infrastructure supporting adds management at Google is discussed in [213]. The strategy for
supporting availability and consistency for streaming system is to log the events caused by user inter-
actions in multiple data centers. Local logs are then collected by a log collection service and are sent
to several locations designated as log data centers. Consistency of these logs is critical and requires an
exactly once event processing semantics.

Once a system is developed for a single site it is very hard to adapt to multi-site operations, espe-
cially when consistency among sites is a strong requirement. An ab initio design as a multi-home is the
optimal solution for mission critical systems. Running a system at multiple sites transfers the burden
to solve the very hard problem caused by data center-level failures to the infrastructure. This burden
falls to the users in traditional systems designed to run at one site only. Indeed, the users have to take
periodic checkpoints and transfer them to backup sites.

Multi-homing is challenging for system designers and adds to the resource costs. Additional re-
sources are needed to process the workload normally processed by the failing data center and to catch
up after delays. The spare capacity has to be reserved ahead of time and should be ready to accept the
additional workload.

12.10 THE SCALE AND THE LATENCY
The scale of clouds has altered our ideas on how to compute efficiently. The scale has also generated
new challenges in virtually all areas of computer science and computer engineering, from computer
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FIGURE 12.11

(A) The probability density function of the unshifted Lévy distribution, μ = 0; (B) The cumulative distribution
function.

architecture to security, via software engineering and machine learning. A fair number of models and
algorithms for parallel processing have been adapted to the cloud environment.

Frameworks for Big Data processing, resource management for large-scale systems, scheduling
algorithms for latency-critical workloads discussed in Chapters 7, 8, 9, 10, and 12 offer only a limited
window into the new computing landscape. Several critically important ideas for the future of cloud
computing are discussed in this section.

Latency, the time elapsed from the instant when an action is initiated and its completion, has always
been an important measure of quality of service for interactive applications, but its relevance and impact
has been substantially amplified in the age of online searches and web-based electronic commerce.
There are quite a few latency-critical applications of cloud computing now and their number is likely
to explode when a large number of cyber-physical systems of the IoT will invade our working and
living space.

The latency has three major components, communication time, waiting time, and service time. Only
the later two are discussed in this section because the communication speed is not controlled by the
cloud service provider and in practice it has little impact on latency. A heavy tail distribution of latency
due to the last two components is undesirable, it affects the user’s experience and, ultimately, the ability
of the service provider to compete.

Heavy-tail distributions. A random variable X with the cumulative distribution function FX(x) is said
to have a heavy-right tail if

lim
x→∞ eλxP r [X > x] = ∞, ∀ λ > 0. (12.21)
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This definition can also be expressed in terms of the tail distribution function

F̄X(x) ≡ Pr [X > x] (12.22)

and implies that MF(t), the moment generating function of FX(x), is infinite for t > 0. The Lévy
distribution is an example of a heavy-tail distribution. Its probability density function (PDF) over the
domain x ≥ μ and cumulative distribution function (CDF) are, respectively,

fX(x;μ,c) =
√

c

2π
× e

− c
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and FX(x;μ,c) = erf c

(√
c
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)
(12.23)

with μ the location parameter, c the scale parameter, and erf c(y) the complementary error function.
Figure 12.11 displays the PDF and the CDF of the Lévy distribution. In probability theory and statis-
tics, a scale parameter is a special kind of numerical parameter of a parametric family of probability
distributions. The larger the scale parameter, the more spread out is the distribution function.

Query processing at Google. The analysis of query processing at Google gives us some insight into
the reasons why latency has a heavy-tail distribution and how this can be managed. A query fans-out
into thousands of requests to a large number of servers where cached data resides. Some of these
servers contain images, others videos, web data, blogs, books, news, and many other bits of data that
could possibly answer the query.

The individual-leaf-request finishing times measured from the root node to the leafs of the query
fan-out tree show the effect of the heavy-tail distribution [131]. As the limit x in the latency cumulative
distribution function increases from 50 to 95 and then to 99 percentile, the latency increases:

• When a single randomly selected leaf node of the tree is observed, the latency increases from 1 to
5, and then to 10 milliseconds, respectively.

• When we request that 95% of all leafs finish execution, the latency increases from 12 to 32, and
then to 70 milliseconds, respectively.

• When we request that all nodes finish execution, the latency increases from 40 to 87, and then to
140 milliseconds, respectively.

These measurements show that latency increases with the number of leafs of the fan-out tree; it also
increases as we wait for more leafs to finish. The extent of the latency tail is significant, the difference
between 95 and 99 percentile is dramatic, it doubles or nearly doubles for the three cases examined, 10
versus 5, 70 versus 32, and 140 versus 87, mimicking the law of diminishing returns.

Google is able to address the problems posed by the heavy-tail latency distribution [131]: “The
system updates the results of the query interactively as the user types predicting the most likely query
based on the prefix typed so far, performing the search and showing the results within a few tens of
milliseconds.” How this is done is discussed in this section.

A brief analysis of the factors affecting the variability of the query response time helps understand-
ing how this variability can be limited. Resource sharing is unavoidable and contention for system
resources translates into longer response time for the losers. There are actors working behind the scene
carrying out system management and maintenance functions. For example, daemons are themselves
users of resources and competitors of production workloads; they can occasionally cause an increase
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of the response time. Data migration, data-replication, load balancing, garbage collection, log com-
paction are all activities competing for system resources.

Multiple layers of queuing in the hierarchical infrastructure increase the waiting time and this can
be addressed by priority queuing and techniques discussed next. Optimization of resource utilization
and energy saving mechanisms contribute to an increased latency. For example, servers are switched
to a power-saving mode when the workload dips. The latency can increase in this case because it takes
some time before servers wakeup and are able to absorb a spike in demand. Dynamic frequency and
voltage scaling, a mechanism to adapt the power consumption to the workload intensity, could also
contribute to latency variability.

Several techniques can reduce the effects of component-level variability on the heavy-tail query
latency distribution. These techniques are:
1. Define different service classes and use priority queuing to minimize waiting for latency-critical

workloads.
2. Keep server queues short allowing requests from latency-critical workloads to benefit from their

high priority. For example, Google storage servers keep few operations outstanding, instead of
maintaining a queue. Thus, high-priority requests are not delayed when earlier requests from low
priority tasks are served.

3. Reduce head-of-line blocking. When a long-running task cannot be preempted, other tasks waiting
for the same resource are blocked, a phenomenon called head-of-line blocking.13 The solution is
to split a long-running task into a number of shorter tasks and/or to use time-slicing to allocate
the resource to task for brief periods of time. For example, Google’s Web search system uses
time-slicing to prevent computationally expensive queries to add to the latency.

4. Limit the disruption caused by background activities. Some of the behind-the-scene activities such
as garbage collection or log compaction require multiple resources. Their continuous running in the
background could lead to increased latency of many high-priority queries over extended periods of
time. It is more beneficial to allow such background activities to proceed in synchronous bursts of
concurrent utilization of several servers thus, affect only the latency-critical tasks over the time of
the burst.
A very important realization is that the heavy-tail distribution of latency cannot be eliminated,

the only alternative is to develop tail-tolerant techniques for masking long latencies. Two types of
tail-tolerant techniques are used at Google: (i) within request, short-term, acting in milliseconds; and
(ii) cross-request, long-term, acting at a scale of seconds.

The former technique works well for replicated data, e.g., for distributed files systems with data
striped and replicated across multiple storage servers and for read-only datasets. For example, the
spelling-correction service benefits from this mechanisms as the model is updated once a day and
handles a very high rate of requests, in the hundreds of thousands per second. Cross-request techniques
aim to increase parallelism and prevent imbalance either by creating micro-partitions, by replicating
the items likely to cause imbalance, or by latency-induced probation.

Hedged and tied requests are short-term tail-tolerant techniques. In both cases the client issues
multiple replicas of the request to increase the chance of a prompt reply. Hedged requests are separated

13For an intuitive scenario of head-of-line blocking imagine a slow-moving truck on a one-lane, winding mountain road. It is
very likely that a large number of cars will be stuck behind the truck.
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Table 12.3 Read latency in ms with requests tied 1 ms [131] for a latency-critical
application. Columns 2 & 3 - mostly idle system. Columns 4 &5 - system running
a background job in addition to the latency-critical application.

Limit (%) Not hedged Hedged-tied Not hedged Hedged-tied
50 19 16 24 19
90 38 29 54 38
99 67 42 108 67
99.9 98 61 159 108

by a short time interval; the client issues the requests, accepts the first answer, and then notifies the
other servers canceling the request. The client should wait a fraction, say 90% to 95%, of the average
response time before sending the replica of the request to limit the additional workload and to avoid
duplication.

The requests are tied when each replica includes the address of the other servers. In this case the
servers receiving the request communicate with one another; the first server able to start processing
the request sends a canceling message to the other servers at the time it starts execution. If the input
queue of all recipients of the request is empty then all can start processing at about the same time
and canceling messages crisscross the network unable to prevent work duplication. This undesirable
situation is prevented if the client waits a time equal to twice the average message delay, before sending
a replica of the request.

Hedged requests are very effective. For example, a Google benchmark reads the key value of
1 000 key-value pairs stored in a large BigTable distributed over 100 servers. Hedged requests sent
10 milliseconds after the original ones reduced the 99 percentile latency dramatically, from 1 700 to
74 milliseconds while sending only 2% more requests. Another Google benchmark shows the effect of
the queries tied one millisecond to an idle cluster and the other query on a cluster running a batch job
in the background. The BigTable data is not cached and each file chunk has three replicas on different
storage servers. Table 12.3 shows read latencies with no hedged and with hedged tied requests.

The results in Table 12.3 show first that hedged and tied requests work well not only when the
system is lightly loaded, but also at higher system loads. This also implies that the overhead of this
mechanisms is low and adds only a minute workload to the system. These results also show the extent
of the heavier tail; the difference in latency between 99% and 99.9% is significant for both the lightly
and the heavily loaded system.

Micro-partitions, replication of items likely to cause imbalance, and latency-induced probation are
long-term tail-tolerant techniques. Perfect load balancing in a large-scale system is practically un-
achievable for many reasons. These reasons include the difference in server performance, the dynamic
nature of the workloads, and the impossibility of having an accurate picture of the global system state.
A fairly intuitive approach is a fine-grain partitioning of resources on every server, thus the name
micro-partitions.

These “virtual servers” are more nimble and able to process fine-grained units of work in shorter
time. Error-recovery is also less painful, as less work is lost in case of errors. For a long time immovable
data replication has been a method of choice for improved performance and it is also widely used at
Google. Intermediate servers in a hierarchically-organized system can identify slow-responding servers
and avoid sending them latency-critical tasks, while continuing to monitor their behavior.
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12.11 MOBILE COMPUTING AND APPLICATIONS
According to http://www.mobilecloudcomputingforum.com/ “...mobile cloud computing at its sim-
plest, refers to an infrastructure where both the data storage and data processing happen outside of
the mobile device. Mobile cloud applications move the computing power and data storage away from
mobile phones and into the cloud, bringing applications and mobile computing to not just smartphone
users but a much broader range of mobile subscribers.”

Mobile devices are in a symbiotic relationship with computer clouds. Mobile devices are produc-
ers as well as consumers of data stored on the cloud. They also take advantage of cloud resources for
computationally-intensive tasks. Mobile devices benefit from this symbiotic relationship; their reliabil-
ity is improved as data and the applications are backed up on the cloud.

Clouds extend the utility of mobile devices providing access to vast amount of information stored
on their servers and also extend their limited physical resources:

• The processing power and the storage capacity – an ubiquitous applications of mobile devices is
to capture still images or videos, upload to a computer cloud, and make them available via cloud
services such as Flickr, Youtube, or Facebook.

• The battery life – migrating mobile game components to a cloud can save 27% of the energy con-
sumption for computer games and 45% for chess game [126].

The integration of mobile devices in the cloud ecosystem has major benefits [442]:

• Mobile devices capture images and videos rich in content, rather than simple scalar data such as
temperature. Such information can be used to understand the extent of catastrophic events such as
earthquakes or forest fires.

• There is power in numbers – cloud sourcing amplifies the power of sensing and can be used for
applications related to security, rapid service discovery, and so on.

• Support near-real time data consistency, important in disaster relief scenarios. For example, the
aftershocks of an earthquake often trigger major structural changes of the buildings. Images and/or
videos taken before and after the event help asses the extend on the damages and identify buildings
to be immediately evacuated.

• Enable opportunistic information gathering. For example, anti-lock braking devices on cars transmit
their GPS coordinates on each activation, enabling maintenance crews to identify the slick spots on
roads.

• Computer vision algorithms running on clouds can use images captured by mobile devices to locate
lost children in crows, estimate the size of crowds.

Applications of mobile cloud computing. Many mobile applications consist of a light-weight front-
end component running on the mobile device and a back-end data-intensive and computationally-
intensive component running on a cloud. There are countless examples of such ubiquitous applications
of mobile cloud computing in areas as diverse as healthcare, learning, electronic commerce, mobile
gaming, mobile location services, and searching.

An important application of mobile healthcare is patient record storage and retrieval and medical
image sharing using computer clouds and mobile devices. Other applications in this area are [149]:

http://www.mobilecloudcomputingforum.com/
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health monitoring services where patients are monitored using wireless services; emergency manage-
ment involves coordination of emergency vehicles; and wearable system for monitoring the vital signs
of outpatients after a surgery.

There are many educational tools helping students learn and understand subjects as diverse as
anatomy, computer science and engineering, or arts. Though some progress has been made, the po-
tential of mobile learning is not fully exploited at this time. Classroom tools using AI algorithms to
identify relevant questions posed by the students during lectures and allowing the instructor to interact
with the students in classes with large enrollments are yet to be developed.

Mobile gaming has the potential of generating large earnings for CSPs. The engine requiring large
computing resource can be offloaded to a cloud, while gamers only interact with the screen interface
running on their mobile devices. For example, the Maui system [126] partitions the application codes
at runtime based on the costs of network communication and on the CPU power and the energy con-
sumption of the mobile device, to maximize energy savings. Browsers running on mobile devices are
often used for keyword-, voice- or tag-based searching of large debases available on computer clouds.

All applications of mobile cloud computing face challenges related to communication and com-
puting. Low bandwidth, service availability, and network heterogeneity pose serious communication
problems. Security, efficiency of data access, and offloading overhead are top concerns on the comput-
ing side.

Mobile devices are exposed to a range of threats including viruses, worms, Trojan horses, and
ransomware. Such threats are amplified as mobile devices have limited power resources and it is im-
practical to continually run virus detection software. Moreover, once files located on the mobile device
are infected, the infection propagates to the cloud when the files are automatically uploaded. At the
same time the integration of GPS is a source of concern for privacy as the number of location-based
services (LBS) increases. Cloud data security, integrity, authentication along with digital rights man-
agement are also sources of concern.

Enhancing the efficiency of data access requires a delicate balance between local and remote oper-
ations and the amount of data exchanged between the mobile device and the cloud. The number of I/O
operations executed on the cloud in response to a mobile device request should be minimized to reduce
the access time and the cost. The memory and storage capacity of the mobile device should be used to
increase the speed of data access, reduce latency, and improve energy efficiency of mobile devices.

The future of mobile cloud computing. As the technology advances mobile devices will be equipped
with more advanced functional units, including high-resolution cameras, barometers, light sensors, and
so on. Augmented reality and mobile gaming are emerging as important mobile cloud computing appli-
cations. Augmented reality could be ubiquitous with new mobile devices and fast access to computer
clouds. Composition of real-time traffic maps from collective traffic data sensing, monitoring environ-
mental pollution, traffic and pollution management in smart cities are only a few of the potential future
applications of mobile cloud computing. A recent survey [513] analyzes applications, the solutions to
the challenges they pose, and the future solutions:

• Code and computation offloading – currently based on static partitioning and dynamic profiling is
expected to be automated in the future.

• Task-oriented mobile services – currently provided by Mobile-Data-as-a-Service, Mobile-Compu-
ting-as-a-Service, Mobile-Multimedia-as-a-Service and Location-based Services is expected to be
replaced by human-centric mobile services.
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• Elasticity and scalability – components of the resource allocation and scheduling are expected to be
validated by algorithms using valid traffic VM migration models.

• Cloud service pricing – currently based on auctions and bidding is expected to be replaced by
empirical validation and optimization algorithms.

Unquestionably, inclusion of mobile devices into the cloud ecosystem has countless benefits. It
opens new avenues for learning, increased productivity, and entertainment, but can also have less desir-
able effects, it can overwhelm us with information. Herb Simon reflected on the effects of information
overload [452] “What information consumes is rather obvious: it consumes the attention of its recipi-
ents. Hence a wealth of information creates a poverty of attention and a need to allocate that attention
efficiently among the overabundance of information sources that might consume it.”

12.12 ENERGY EFFICIENCY OF MOBILE COMPUTING
Mobile computing enjoys the benefits of virtually infinite resources available on demand on computer
clouds. Utility computing offers considerable economic advantages to mobile cloud users. To enjoy
these benefits mobile system need network access to these islands of plentiful computing and storage
resources.

Cloud users transfer data to/from the cloud, but there is a significant dissimilarity between cloud
users connected to computer clouds via landlines and using stationary devices and users of mobile
devices connected via cellular or wireless local area networks. The first are concerned with the time
and the cost of transferring massive amounts of data, while for mobile cloud users the key issue is the
energy consumption for communication.

The battery technology is lagging behind the needs of modern mobile devices. The amount of
energy stored in a battery is growing only about 5% annually. Increasing the battery size is not an
option, as devices tend to be increasingly lighter. Moreover, the power of small mobile devices without
active cooling is limited to about three watts [372].

An analysis of the critical factors regarding mobile devices every consumption reported in [342] is
discussed in this section. As expected, the computing-to-communication ratio is the critical factor for
balancing local processing and computation offloading. The analysis shows that not only the amount
of transferred data, but also the traffic pattern is important. Indeed, sending a larger amount of data in
a single burst consumes less energy than sending a sequence of small packets.

The analysis uses several parameters: Ecloud and Elocal , the energy for a computation on the cloud
and locally, respectively; D – the amount of data to be transferred; C – the amount of computation
expressed as CPU cycles. Ceff and Deff are the efficiencies of computing and device specific data
transfer, respectively. Ceff is measured in CPU cycles per Joule and represents the amount of compu-
tations that can be carried out with a given energy.

Dynamic voltage and frequency scaling affects only slightly the power and performance of the
CPU thus, Ceff , during execution. For example, the N810 Nokia processor requires 0.8 W and has
Ceff = 480 cycles/J when running at 400 MHz and needs only 0.3 W and has a Ceff = 510 cycles/J at
165 MHz. This is also true for the more performant N900 Nokia processor; when running at 600 MHz
the power required and the Ceff are 0.9 W and 650 cycles/J, respectively, while at 250 MHz the same
parameters are 0.4 W and 700 cycles/J, respectively.
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Deff is measured in bytes per Joule and represents the amount of data that can be transferred
with a given energy. Deff is affected by the traffic pattern. The time the network interface is active
affects the energy consumption for communication. Typically, the power consumption for activation
and deactivation of a cellular network interface is larger than that of a wireless interface. The larger the
clock rate, the larger the power consumption and Deff . For example, for N810 the power consumption
and Deff at 400 MHz are 1.5 W and 390 KB/J, respectively, and decrease to 1.1 W and 310 KB/J,
respectively, at 165 MHz.

It makes sense to offload a computation to a cloud if

Ecloud < Elocal (12.24)

with

Ecloud = D

Deff

and Elocal = C

Ceff

. (12.25)

The condition expressed by Equation (12.24) becomes:

C

D
>

Ceff

Deff

. (12.26)

According to [342] a rule of thumb is that “offloading computation is beneficial when the workload
needs to perform more than 1 000 cycles of computation for each byte of data.”

The CPU cycles per byte ratios measured on a system with an ARM Cortex-A8 core running
at 720 MHz for several applications are: 330 for gzip ACII compression, 1 300 for x264 VBR en-
coding, 1 900 for CBR encoding, 2 100 for htm12text on wikipedia.org and 5 900 for htm12text on
en.wikipedia.org.

Several conclusions were drawn from the experiments reported in [342]:

• The energy consumption of a mobile device is affected by the end-to-end chain involved in each
transaction thus, the server-side resource management is important.

• Higher performance typically contributes to better energy efficiency.
• Simple models able to guide design decisions for increasing energy efficiency should be developed.
• Automated decisions on whether a computation should be uploaded to a cloud to maximize en-

ergy efficiency of mobile devices should be built in the middleware of mobile cloud computing
applications.

• Latencies associated with wireless communication are critical for interactive workloads.

It is unlikely to see dramatic improvements in the energy storage capacity of batteries for mobile
devices in the immediate future. The need for increasingly more sophisticated software for energy opti-
mization should motivate the research in this challenging area as new mobile cloud computing data and
computation-intensive applications are developed every day. At the same time, the other critical limita-
tions of mobile cloud computing applications, communication speed and effectiveness, are improving
as WLAN speed is steadily increasing along with the mobile device antenna efficiency.
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12.13 ALTERNATIVE MOBILE CLOUD COMPUTING MODELS
In Section 12.11 we have seen that mobile device access to the large concentration of resources in cloud
computing data centers is supported by wide area networks (WANs), cellular networks, and wireless
networks. In this section we examine the limitations due to the communication latency and, to some
extent, of the bandwidth and discuss alternative mobile cloud computing architectures.

The effects of latency. An important observation is that communication latency through WANs and
wireless networks is unlikely to improve. It is not hard to see that network security, energy efficiency,
network manageability, along with bandwidth are the main sources of concern for networking compa-
nies and for networking research.

Unfortunately, virtually all methods to address these concerns have a negative side effect, they
increase the end-to-end communication latency. Indeed, the techniques to increase energy efficiency
discussed in Section 12.12 include reduction of the time the network interface is active, delaying data
transmission until large data blocks of data can be sent, and turning on the transceivers of mobile
devices for short periods of time to receive and to acknowledge data packets buffered at a base station.

The speed of the fastest wireless LAN (802.11n) and of the wireless Internet HSPDA (High-Speed
Downlink Packet Access) technologies are 400 Mbps and 2 Mbps, respectively, and the correspond-
ing transmission delays for a 4 Mbyte Jpeg image are 80 versus 16 msec, respectively. The range
of Internet latencies is 30–300 msec. For example, the mean Berkeley to Trondheim–Norway and
Berkeley to Canberra–Australia latencies are 197 and 174 msec, respectively, while Pittsburg to
Hong Kong and Pittsburg to Seattle are 223 and 83.9 msec, respectively, as measured in 2008–2009
[441]. The current Internet latencies between selected pairs of points on the globe can be found at
https://www.internetweathermap.com/map.

The latency effect differs from application to application. For example, the subjective effects of
the latency, L, for a particular application, GNU Manipulation Program (GIMP) for Virtual Network
Computing communication software, the graphical desktop sharing system that uses the Remote Frame
Buffer protocol are: crisp when L < 150 msec; noticeable to annoying when 150 < L < 1 000 msec;
annoying when 1 < L < 2 sec; unacceptable when 2 < L < 5 sec; and unusable when L > 5 sec [441].

Cloudlets. A possible solution to reduce end-to-end latency mimics the model supporting wireless
communication where access points are scattered throughout campuses of large organizations and in
the cities. Micro data centers or “clouds in a box,” called cloudlets, are placed in the proximity of
regions with a high concentrations of mobile systems. A cloudlet could be a cluster of multicore pro-
cessors with a fast interconnect and a high-bandwidth wireless LAN.

The resources available on such cloudlets pale in comparison with the ones on a cloud. Cloudlets
only assist mobile devices for data and computationally-intensive tasks, they are not permanent repos-
itories of data. A mobile device could connect to a cloudlet and upload code to the cloudlet.

There are obvious benefits, as well as problems, with this solution proposed in [441]. The main
benefit is the short end-to-end communication delay for mobile devices in the proximity of a cloudlet.
On the other hand, the cost and the maintenance of cloudlets able to support a wide range of mobile
users are of concern. It is safe to assume that hardware costs will decline as the processor technology
evolves and that the processor bandwidth and reliability will increase. The software maintenance ef-
fort can be reduced if self-management techniques are developed. A range of business and technical
challenges including cloudlet sizing must be addressed before this solution gets sufficient traction.

https://www.internetweathermap.com/map
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FIGURE 12.12

Kimberly organization. Kimberley Control Manager (KCM) runs on both the cloudlet and the mobile device.
The two communicate over a wireless link using the Virtual Network Computing (VNC) communication
software and Avahi [441].

The solution for software organization proposed in [441] is to have a permanent cloudlet host
software environment and a transient guest software environment. A transient customization configures
the system for running an application and, once the run is complete, a cleanup phase clears the way for
running the next one. A VM encapsulates the transient guest environment.

The VM can be created on the mobile device, runs locally until the VM needs additional resources,
then stopped, its state is saved in a file, and the file is sent to a cloudlet in the vicinity of the mobile
device where the VM is restarted. The problem with this straightforward solution is that the latency
can be increased when the footprint of the VM migrated to the cloudlet is substantial.

Another solution is the dynamic VM synthesis when the mobile device delivers to the cloudlet only
a small overlay. This solution assumes that the cloudlet already has the base VM used to derive the
small overlay, therefore the cloudlet environment can start execution immediately without the need to
contact a cloud or other cloudlets. The assumption that a relatively small set of base VMs will suffice
for a large range of applications may prove to be overly optimistic.

Kimberlay – a proof of concept cloudlet system. The cloudlet infrastructure consists of a desktop
running Ubuntu Linux and the mobile device is a Nokia N810 tablet running Maemo 4.0 Linux [441].
The cloudlet uses a hosted hypervisor for Linux called VirtualBox and a tool with three components,
baseVM, install-script and resume-script to create the VM overlays for any OS compatible with the
components of the tool.

First, the baseVM is launched, then the install-script in the guest OS is executed, and finally the
resume-script in the guest OS launches the application. The VM encapsulates the application, the so
called launchVM can be activated without the need to reboot, and finally this VM is compressed and
encrypted.

Kimberley organization depicted in Figure 12.12 shows the software components running on the
cloudlet and the mobile device. Communication through the wireless link is supported by Virtual
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Network Computing (VNC) communication software and Avahi,14 a free zero-configuration15 for au-
tomatic networking implementation supporting multicast DNS/DNS-SD service discovery.

KCM abstracts the service discovery including browsing and publishing in Linux using Avahi. A
secure TCP tunnel using SSL is established between KCM instances. After the establishment of the
secure TCP tunnel the authentication using the Simple Authentication and Security Layer (SASL)
framework is carried out. Then the KCM on the cloudlet fetches the VM overlay from the mobile
device KCM, decrypts and decompresses the VM overlay, and applies the overlay to the base VM.

12.14 MOBILE EDGE CLOUD AND MARKOV DECISION PROCESSES
Follow-me cloud [477] and mobile edge-cloud are variations on the theme of cloudlets discussed in
Section 12.13. The two systems aim to reduce the end-to-end latency for cloud access. The mobile
edge-cloud concept allows mobile devices to carry out computational-intensive tasks on stationary
servers located in the small data centers distributed across the network and connected directly to base
stations at the edge of the network.

The new twist is to support dynamic service placement, in other words, to allow computations
initiated by a mobile device in motion to migrate from one mobile edge-cloud server to another fol-
lowing the movement of the mobile device [491,514]. Optimal service migration policies pose very
challenging problems due to: (i) the uncertainty of the mobile device movements; and (ii) the likely
non-linearity of migration and communication costs. One method to address these challenges is to
formulate the migration problem in terms of Markov decision process discussed next.

Markov decision processes. Markov decision processes are discrete-time stochastic control processes
used for a variety of optimization problems where the outcome is partially random and partially under
the control of the decision maker. Markov decision processes extend Markov chains with choice and
motivations; actions allow choices, and rewards provide motivation for actions.

The state of the process in slot t is st and the decision maker may choose any action at ∈ A(st )

available in that state. As a result of action at the system moves to a new state s′ and provides the
reward Rat (st , s

′). The next state s′ depends only on the current state st and the action taken. The
probability that the system moves to state s′ is given by the transition function pat (st , s

′).
A Markov decision process is a 5-tuple: (S,A,P(·, ·),R(·, ·), γ ) with

• S – a finite set of system states;
• A – a finite set of actions; Ast ∈A is the finite set of actions available in state st ∈ S in time slot t .
• P – the set of transition probabilities; pat (st , s

′) = Pr(s(t + 1) = s′|st , at ) – the probability that
action at in state st in time slot t will lead to state s′ in time slot t + 1.

• Rat (st , s
′) – the immediate reward after the transition from state st to state s′.

14Avahi is the Malagasy and scientific Latin name of the woolly lemur primates indigenous to Madagascar.
15Zero-configuration networking (zeroconf) creates a TCP/IP computer network based on automatic assignment of numeric
network addresses for networked devices, automatic distribution and resolution of computer hostnames, and automatic location
of network services. It is used to interconnect computers or network peripherals.
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• γ ∈ [0,1] is a discount factor representing the difference in importance between present and future
rewards.

The goal is to optimize a policy π maximizing a cumulative function of the random rewards, e.g.,
the expected discounted sum of rewards over an infinite time horizon is

∞∑
t=0

γ tRat (st , st+1). (12.27)

To calculate the optimal policy given P and R, the state transitions and, respectively, the rewards,
one needs two arrays V(s) and π(s) indexed by state, the value and policies, respectively. The first
array contains values and the second actions:

π(s) = arg max
α

{∑
s′

Pα(s, s′)
(
Rα(s, s′) + γV(s′)

)}
(12.28)

V(s) =
∑
s′

Pπ(s)(s, s
′)

(
Rπ(s)(s, s

′) + γV(s′)
)

(12.29)

In the value induction proposed by Bellman the calculation of π(s) is substituted in the calculation
of V(s):

Vi+1(s) = max
α

{∑
s′

Pα(s, s′)
(
Rα(s, s′) + γVi(s

′)} . (12.30)

A Markov decision process can be solved by linear programming or by dynamic programming.

Migration decisions and cost in mobile cloud edge. The solution proposed in [491,514] assumes
that:
1. The user’s location in each slot is the same and changes from one slot to the next are according to

the Markovian model discussed in this section, see Figure 12.13.
2. The set of all possible locations, L, can be represented as a 2D-vector and the distance between

two locations l1, l2 ∈ L is given by || l1 − l2 ||.
3. The migration time is very small and will be neglected.

The following notations are used in [514]:

• u(t) – users’s location in slot t .
• h(t) – service location in slot t .
• d(t) – the distance between the user and the service; d(t) = ‖u(t) − h(t)‖ in slot t .
• N – the maximum allowed distance between the user and the service, N = maxd(t).
• s(t) = (u(t), h(t)) – the initial system state at the beginning of slot t . The initial state is s(0) = s0.
• cm(x) – the migration cost is a non-decreasing function of x, the distance between the two edge

cloud servers, x = ‖h(t) − h′(t)‖.
• cd(x) – the transmission cost is a non-decreasing function of x, the distance between the edge cloud

server and the user, x. with x = ‖u(t) − h′(t)‖. Initially, cd(0) = 0.
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FIGURE 12.13

Edge cloud time slots. At the beginning of slot t the user and service locations are u(t) and h(t), respectively.
The service migrates to h′(t), as soon as slot t starts and during the slot t the system operates with u(t) and
h′(t). At the beginning of slot t + 1 the service location is h(t + 1) = h′(t).

• π – the policy used for control decision based on s(t).
• aπ(s(t)) – the control action taken under policy π when the system is in state s(t).
• Caπ – the sum of migration and transmission costs incurred by a control aπ(s(t)) in slot t .

Caπ = cm(‖h(t) − h′(t)‖) + cd(‖u(t) − h′(t)‖).
• γ – discount factor, 0 < γ < 1.
• Vπ – expected discount under policy π .

The Markov decision process controller makes a decision at the beginning of each slot. The decision
could be:
1. Do not migrate the service; then the cost is cm(x) = 0.
2. Migrate the service from location h(t) to location h′(t) ∈ L; cm(x) > 0.

Given a policy π , its long-term expected discounted sum cost is

Vπ (s0) = lim
t→∞E

{
t∑

τ=0

γ τCaπ (s(τ )) | s(0) = s0

}
. (12.31)

An optimal control policy is one that minimizes Vπ (s0) starting from any initial state

V∗(s0) = min
π

Vπ (s0), ∀s0. (12.32)

A stationary policy is given by Bellman’s equation written as

V∗(s0) = min
α

⎧⎨
⎩Cα(s0) + γ

∑
s1∈L×L

Pα(s0, s1)V∗(s1)

⎫⎬
⎭ (12.33)

with Pα(s0, s1) the transition probability from state s′(0) = α(s0) to s(1) = s1. The intermediate state
s′(t) has no randomness when s(t) and α(·) are given.

A proposition reflecting the intuition that it is not optimal to migrate the service to a location that is
farther away from the current location of the mobile device has the following intuitive implication that
simplifies the search for optimal policy [514]:
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FIGURE 12.14

Markov decision process state transitions assuming a 1-D mobility model for the edge cloud. The mobile
device moves one step to the left or right with probability r1 and stays in the same location with probability
1 − 2r1 thus, p = q = r1 and p0 = 2r1. Migration occurs in slot t if and only if d(t) ≥ N . The actions in slot t

with distance d(t) are α(d(t)) = α(N) for d(t) > N . This implies that we need only to study the states where
d(t) ∈ [0,N]. After an action α(N) the system moves to states 0, 1, and 2 with probabilities q,1 − p − q and
p, respectively.

Proposition. If cm(x) and cd(x) are constants and

cm(0) < cm(x) and cd(0) < cd(x) for x > 0 (12.34)

then the current user location is not optimal.

Figure 12.14 shows the system transition model when the transition probabilities are p0,p and q

assuming a uniform 1-D mobility model. In this model u(t), h(t) and h′(t) are scalars. h′ is the new
service location chosen such that

‖h(t) − h′(t)‖ = ‖d(t) − d ′(t)‖ and ‖u(t) − h′(t)‖ = d ′(t). (12.35)

The migration occurs along the shortest path connecting u(t), h(t) and h′(t).
An operating procedure is discussed in [514] and workload scheduling for edge clouds is presented

in [491].

12.15 FURTHER READINGS
Several references including [2,301,541,542] discuss the defining characteristics of Big Data applica-
tions. Insights into Google’s storage architecture for Big Data can be found in [173]. Several Google
systems including Mesa, Spanner, and F1 are presented in [212], [119], and [451], respectively.

Data analytics is the subject of [536] and [106] analyzes interactive analytical processing in Big
Data systems. [203] covers in-memory performance of Big Data. Continuous pipelines are discussed
in [143]. The Starfish system for Big Data analytics is covered in [230] and [249] analyzes enterprise
use of Big Data. Several papers including [87] and [273] cover bootstrapping techniques and [10] ana-
lyzes approximate query processing. Hoeffding bounds are discussed in [215]. Several references such
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as [141,142,304] cover Dynamic Data-Driven Application Systems (DDDAS) and the FreshBreeze
system.

The Spark Streaming system is discussed in [543] and [12] covers the MillWheel framework devel-
oped at Google for building fault-tolerant and scalable data streaming systems. [425] presents caching
strategies for data streaming. [29] covers Google’s Photon system and system scalability and perfor-
mance of large-scale system is the topic of [213]. The problems posed by the heavy tail distribution of
latency are analyzed in [131].

Mobile devices and applications are covered in the literature including [126,149,441,442,513]. En-
ergy efficiency of mobile computing is analyzed in [342]. The use of mobile devices for space weather
monitoring is discussed in [390]. The Follow-me cloud and edge cloud computing are presented in
[477] and [491,514].

12.16 EXERCISES AND PROBLEMS

Problem 1. Read [178] and analyze the benefits and the problems related to dataspaces. Re-
search the literature for potential application of dataspaces to data management of
data-intensive applications in science and engineering.

Problem 2. Discuss the possible solution for stabilizing cloud services mentioned in [177] inspired
by BGP routing [204,498].

Problem 3. Discussing the bootstrap method presented in Section 12.3 reference [273] states: “Ide-
ally, we might approximate ξ(P,n) for a given value of n by observing many indepen-
dent datasets, each of size n. For each dataset, we would compute the corresponding
value of u, and the resulting collection of u values would approximate the distribution
Qn, which would in turn yield a direct approximation of the ground truth value ξ(P,n).
Furthermore, we could approximate the distribution of bootstrap outputs by simply run-
ning the bootstrap on each dataset of size n. Unfortunately, however, in practice we only
observe a single set of n data points, rendering this approach an unachievable ideal. To
surmount this difficulty, our diagnostic, the BPD Algorithm, executes this ideal pro-
cedure for dataset sizes smaller than n. That is, for a given p ∈ N and b ≤ �n/p� we
randomly sample p disjoint subsets of the observed dataset D, each of size b. For each
subset, we compute the value of u; the resulting collection of u values approximates
the distribution Qb , in turn yielding a direct approximation of ξ(P, b) the ground truth
value for the smaller dataset size b. Additionally, we run the bootstrap on each of the
p subsets of size b, and comparing the distribution of the resulting p bootstrap out-
puts to our ground truth approximation, we can determine whether or not the bootstrap
performs acceptably well at sample size b.”
(1) Estimate the bootstrap speedup function of n,p,b; ignore the time to compute
�i,σi . (2) Examine the simulation results in [273] and discuss the impact of the sample
size.

Problem 4. Read [10] and discuss the merits and the shortcomings of the three techniques for es-
timating the sample distribution using only a single sample: non-parametric bootstrap,
close-form estimation, and large deviation bounds.
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Problem 5. What is a key extraction function and what role does it play in MillWheel? Give an
example of such a key extraction function in Zeitgeist.

Problem 6. In systems with very high fan-out a request may exercise an untested code path, causing
crashes or extremely long delays on thousands of servers simultaneously. How can this
problem be prevented?

Problem 7. Variability in the latency distribution of individual components is magnified at the ser-
vice level. For example, consider a system where each server typically responds in
10 ms but with a 99th-percentile latency of one second. If a user request must collect
responses from 100 such servers in parallel then 63% of user requests will take more
than one second [131]. Assume that there are 1 000 servers and the user request needs
responses from 1 000 servers running in parallel. What is the probability that response
latency will be than one second? What if instead of 1 000 individual requests the user
request needs data from 2 000 servers running in parallel?

Problem 8. Research the power consumption of processors used in mobile devices and their energy
efficiency. Rank the components of a mobile device in terms of power consumption.
Establish a set of guidelines to minimize the power consumption of mobile applications.

Problem 9. What is the main benefit of Algorithm 1 for finding the optimal policy of a Markov
Decision Process in [513] compared with the standard approaches?



13
CHAPTER

ADVANCED TOPICS

Cloud functionality is evolving as new services and more diverse and powerful instance types are
released every year. For example, Amazon recently introduced Lambda, a service when applications
are triggered by user-defined conditions and events. In late 2016 AWS added P2, a powerful, scalable
instance with GPU-based parallel compute capabilities. Google has been adding to the software stack
for coarse-grained parallelism based on MapReduce. IBM’s efforts target computational intelligence
displayed by the success of Watson in healthcare and data analytics. Microsoft attempts to extend the
range of commercial applications supported by its growing cloud infrastructure.

This chapter aims of providing a glimpse at the challenges cloud computing practitioners and cloud
research community will face in the next future. Section 13.1 overviews these challenges. Real-time
applications related to IoT, smart cities, the smart grid, and others will undoubtedly join the broad spec-
trum of cloud applications. Sections 13.2 and 13.3 discuss some of the challenges posed by real-time
scheduling.

Cloud infrastructure will most likely continue to scale up for accommodating the demands of an
increasingly larger cloud user community. A fair question is whether current cloud management sys-
tems can sustain this expansion. Self-organization and self-management alternatives come to mind, but
the very slow progress made by the autonomic computing initiative is likely to dampen the enthusiasm
of those believing in self-management. Nevertheless, we discuss emergence and self-organization in
Section 13.4 and market-based self-organization and combinatorial auctions in Section 13.5.

13.1 A GLIMPSE AT THE FUTURE
Cloud computing will continue to have a profound influence on the large number of individuals and
institutions who are now empowered to process huge amounts of data. Cloud research community will
most likely be faced with new and challenging problems. Computer clouds operate in an environment
characterized by variability of everything and by conflicting requirements. Such disruptive qualities
ultimately demand a new thinking in system design.

Variability is a defining characteristics of a computer cloud. The physical infrastructure consists
of servers with different architecture and performance and it is frequently updated as solid state tech-
nologies and processor architecture evolves. New software orchestrating a coherent system view is
developed every month and the depth of the software stack is continually increasing. If cloud comput-
ing will continue to be successful, it is very likely that new applications will emerge. The size of the
cloud user population and the diversity of their requirements will grow.

Conflicting requirements in system design are not a novelty, but the depth and the breadth of such
conflicts is unprecedented and qualitatively different due to scale of the cloud infrastructure. The many
contradictory requirements in the design of computer clouds have to be carefully balanced. For exam-
ple, resource sharing is a basic design principle, yet strict performance and security isolation of cloud
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application are also critical. To deliver cheap computing cycles the cloud infrastructure should always
run at full capacity, while sufficient resources should be kept in reserve to respond to large workload
spikes. The system as a whole should present itself as flawless, indefectible, though the failure rate of
the cheap, off-the-shelf system components can be fairly high. Performance guarantees should be pro-
vided, while a mix of workloads with very different requirements will continue to dynamically share
system resources.

Unquestionably, computer clouds will continue to evolve but how? A parallel between clouds and
the Internet is unavoidable. Initially, Arpanet, the precursor of the Internet, was a best-effort data net-
work designed to transfer data files from one location to another. It was a best-effort network doing its
best to transport data packets without providing end-to-end delivery guarantees. Support for commu-
nication with real-time delivery constraints was not foreseen. The Internet’s success forced changes.
The Internet of today supports low-latency and high-bandwidth data streaming. The traffic is shaped to
guarantee that routers have enough resources to transmit a continuous stream of data with low jitter.

How will computer clouds simultaneously provide QoS guarantees, increase resource utilization,
support elasticity, and be more secure? Cloud evolution poses fundamental questions that deserve
further research. A first question is whether applications with special requirements such as real-time
constraints or applications exhibiting fine-grained parallelism, could migrate to the cloud. Such a mi-
gration requires changes in software, in particular in resource management and scheduling components
of the software stack. At the same time the hardware and, in particular, the cloud interconnection net-
works have to offer lower latency and higher bandwidth as we have seen in Section 7.10.

Another question is how to reduce cost by increasing resource utilization, without affecting the
QoS promises of cloud computing. It is self-evident that cloud elasticity cannot be supported without
some form of overprovisioning, and overprovisioning implies lower average resource utilization. The
conclusion is that alternative means to reduce cost should be considered.

A solution practiced by AWS and others is to combine a reservation system with spot allocations.
Spot allocations are designed to consume excess resources if and when such resources are available.
Cloud users with a good understanding of the resources needed and the time required by their applica-
tions should use the reservation system. They will benefit from QoS guarantees and pay more for cloud
services. The other cloud users should compete for lower cost spot allocations.

An alternative is to use machine learning and profile cloud users and cloud applications. This so-
lution requires large databases of historic data and data analytics to predict the resource needs and the
time required by an application. Once this information is available a virtual private cloud that best fits
the profile of the application and user’s choices should be configured. Another alternative is to support
cloud self-organization and self-management [261,328]. Market-based resource allocation could be at
the heart of such an approach in spite of the problems it posses [450], including auctions as suggested
in [329,330].

Homogeneity of the cloud computing infrastructure was one of the design tenants early on. The
obvious advantages of infrastructure homogeneity are: simplification of resource management, low-
ering hardware and software maintenance costs. Also, acquiring large volumes of identical hardware
components lowers the infrastructure cost.

In the last few years CSPs realized why heterogeneity is clamored by cloud users. As a result, to-
day’s clouds have different types of processors and co-processors such as GPUs. In addition to hard
disk drives the cloud infrastructure now includes solid state disks. In the future the cloud infrastructure
may include data flow engines. It is also likely that islands of systems communicating through Infini-



13.2 CLOUD SCHEDULING SUBJECT TO DEADLINES 491

Band, Myrinet, or other high performance networks will be part of the cloud computing landscape.
Such islands in the clouds are necessary to allow the fine-grained parallel scientific and engineering
applications to perform well on computer clouds.

It is necessary to address the question how to accommodate cloud heterogeneity, while preventing
a dramatic increase of both infrastructure cost and complexity of resource management policies and
mechanisms implementing these policies. Market mechanisms proved to be successful in dealing with a
diverse set of goods and a large consumer population could provide an answer to this question important
for the future of computer clouds.

13.2 CLOUD SCHEDULING SUBJECT TO DEADLINES
Often, a service level agreement specifies the time when the results of computations done on the cloud
should be available. This motivates us to examine cloud scheduling subject to deadlines, a topic draw-
ing from a vast body of literature devoted to real-time applications.

Task characterization and deadlines. Real-time applications involve periodic or aperiodic tasks with
deadlines. A task is characterized by a tuple (Ai, σi,Di), where Ai is the arrival time, σi > 0 is the
data size of the task, and Di is the relative deadline. Instances of a periodic task, �

q
i , with period q are

identical, �
q
i ≡ �q , and arrive at times A0,A1, . . . ,Ai, . . ., with Ai+1 − Ai = q .

The deadlines satisfy the constraint Di ≤ Ai+1 and generally the data size is the same, σi = σ . The
individual instances of aperiodic tasks, �i , are different, their arrival times Ai are generally uncor-
related, and the amount of data σi is different for different instances. The absolute deadline for the
aperiodic task �i is (Ai + Di).

We distinguish hard deadlines from soft deadlines. In the first case, if the task is not completed by
the deadline other tasks which depend on it may be affected and there are penalties. A hard deadline is
strict and expressed precisely as milliseconds, or possibly seconds.

Soft deadlines are more of a guideline and, in general, there are no penalties; soft deadlines can
be missed by fractions of the units used to express them, e.g., minutes if the deadline is expressed in
hours, or hours if the deadlines is expressed in days. The scheduling of tasks on a cloud is generally
subject to soft deadlines though, occasionally, applications with hard deadlines may be encountered.

The model of the system. We consider only aperiodic tasks with arbitrarily divisible workloads. The
application runs on a partition of a cloud, a virtual cloud with a head node called S0 and n worker
nodes S1, S2, . . . , Sn. The system is homogeneous, all workers are identical, and the communication
time from the head node to every worker node is the same. The head node distributes the workload
to worker nodes and this distribution is done sequentially. In this context there are two important
problems:
1. The order of execution of the tasks �i .
2. The workload partitioning and the task mapping to worker nodes.

Scheduling policies. The most common scheduling policies used to determine the order of execution
of the tasks are:

• FIFO – First-In-First-Out, the tasks are scheduled for execution in order of their arrival.
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Table 13.1 The parameters used for scheduling with deadlines.

Name Description
�i the aperiodic tasks with arbitrary divisible load of an application A
Ai arrival time of task �i

Di the relative deadline of task �i

σi the workload allocated to task �i

S0 head node of the virtual cloud allocated to A
Si worker nodes 1 ≤ i ≤ n of the virtual cloud allocated to A
σ total workload for application A
n number of nodes of the virtual cloud allocated to application A
nmin minimum number of nodes of the virtual cloud allocated to application A
E(n,σ ) the execution time required by n worker nodes to process the workload σ

τ time for transferring a unit of workload from the head node S0 to worker Si

ρ time for processing a unit of workload

α the load distribution vector α = (α1, α2, . . . , αn)

αi × σ the fraction of the workload allocated to worker node Si

�i time to transfer the data to worker Si , �i = αi × σ × τ, 1 ≤ i ≤ n

�i time the worker Si needs to process a unit of data, �i = αi × σ × ρ, 1 ≤ i ≤ n

t0 start time of the application A
A arrival time of the application A
D deadline of application A
C(n) completion time of application A

• EDF – Earliest Deadline First, the task with the earliest deadline is scheduled first.
• MWF – Maximum Workload Derivative First.

The workload derivative DCi(n
min) of a task �i when nmin nodes are assigned to the application

is defined as

DCi(n
min) = Wi(n

min
i + 1) − Wi(n

min
i ), (13.1)

with Wi(n) the workload allocated to task �i when n nodes of the cloud are available. The MWF
policy requires that:
1. The tasks are scheduled in the order of their derivatives, the one with the highest derivative DCi

first.
2. The number n of nodes assigned to the application is kept to a minimum, nmin

i .
Two workload partitioning, the optimal partitioning and the equal partitioning, and task mappings

to worker nodes are discussed next. In our discussion we use the derivations and some of the notations
in [307]. These notations are summarized in Table 13.1.

Optimal Partitioning Rule (OPR). The workload is partitioned to ensure the earliest possible com-
pletion time. Optimality of OPR scheduling requires all tasks to finish execution at the same time.

The head node, S0, distributes data sequentially to individual worker nodes. The workload assigned
to worker node Si is αiσ . The time for delivering input data to worker node Si is �i = (αi × σ) × τ ,
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FIGURE 13.1

OPR timing diagram. The algorithm requires worker nodes to complete execution at the same time.

where 1 ≤ i ≤ n. Worker node Si starts processing the data as soon as the transfer is complete. The
processing time of worker node Si is �i = (αi × σ) × ρ, 1 ≤ i ≤ n.

The timing diagram in Figure 13.1 allows us to determine the execution time E(n,σ ) for the OPR
as

E(1, σ ) = �1 + �1

E(2, σ ) = �1 + �2 + �2

E(3, σ ) = �1 + �2 + �3 + �3

...

E(n,σ ) = �1 + �2 + �3 + . . . + �n + �n.

(13.2)

We substitute the expressions of �i,�i, 1 ≤ i ≤ n, and rewrite these equations as

E(1, σ ) = α1 × σ × τ + α1 × σ × ρ

E(2, σ ) = α1 × σ × τ + α2 × σ × τ + α2 × σ × ρ

E(3, σ ) = α1 × σ × τ + α2 × σ × τ + α3 × σ × τ + α3 × σ × ρ

...

E(n,σ ) = α1 × σ × τ + α2 × σ × τ + α3 × σ × τ + . . . + αn × σ × τ + αn × σ × ρ. (13.3)

From the first two equations we find the relation between α1 and α2 as

α1 = α2

β
with β = ρ

τ + ρ
, 0 ≤ β ≤ 1. (13.4)



494 CHAPTER 13 ADVANCED TOPICS

This implies that α2 = β × α1; it is easy to see that in the general case

αi = β × αi−1 = βi−1 × α1. (13.5)

But αi are the components of the load distribution vector thus,

n∑
i=1

αi = 1. (13.6)

Next, we substitute the values of αi and obtain the expression for α1:

α1 + β × α1 + β2 × α1 + β3 × α1 . . . βn−1 × α1 = 1 or α1 = 1 − β

1 − βn
. (13.7)

We have now determined the load distribution vector and we can now determine the execution time as

E(n,σ ) = α1 × σ × τ + α1 × σ × ρ = 1 − β

1 − βn
σ(τ + ρ). (13.8)

Call CA(n) the completion time of an application A = (A,σ,D) which starts processing at time t0
and runs on n worker nodes; then

CA(n) = t0 + E(n,σ ) = t0 + 1 − β

1 − βn
σ(τ + ρ). (13.9)

The application meets its deadline if and only if

CA(n) ≤ A + D, (13.10)

or

t0 + E(n,σ ) = t0 + 1 − β

1 − βn
σ(τ + ρ) ≤ A + D. (13.11)

But, 0 < β < 1 thus, 1 − βn > 0 and it follows that

(1 − β)σ(τ + ρ) ≤ (1 − βn)(A + D − t0). (13.12)

The application can meet its deadline only if (A + D − t0) > 0 and under this condition this inequality
becomes

βn ≤ γ with γ = 1 − σ × τ

A + D − t0
. (13.13)

If γ ≤ 0 there is not enough time even for data distribution and the application should be rejected.
When γ > 0 then n ≥ ln γ

ln β
. Thus, the minimum number of nodes for the OPR strategy is

nmin = � lnγ

lnβ
�. (13.14)
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FIGURE 13.2

EPR timing diagram.

Equal Partitioning Rule. EPR assigns an equal workload to individual worker nodes, αi = 1/n. The
workload allocated to worker node Si is σ/n. The head node, S0, distributes sequentially the data to
individual worker nodes. The time to deliver the input data to Si is �i = (σ/n) × τ, 1 ≤ i ≤ n. Worker
node Si starts processing the data as soon as the transfer is complete. The processing time for node Si

is �i = (σ/n) × ρ, 1 ≤ i ≤ n.
From the diagram in Figure 13.2 we see that

E(n,σ ) =
n∑

i=1

�i + �n = n × σ

n
× τ + σ

n
× ρ = σ × τ + σ

n
× ρ. (13.15)

The condition for meeting the deadline, CA(n) ≤ A + D, leads to

t0 + σ × τ + σ

n
× ρ ≤ A + D or n ≥ σ × ρ

A + D − t0 − σ × τ
. (13.16)

Thus,

nmin = � σ × ρ

A + D − t0 − σ × τ
�. (13.17)

The pseudo code for a general schedulability test for FIFO, EDF, and MWF scheduling policies,
for two node allocation policies, MN (minimum number of nodes) and AN (all nodes), and for OPR
and EPR partitioning rules is given in [307]. The same reference reports on a simulation study for ten
algorithms.

The generic format of the names of the algorithms is Sp-No-Pa with Sp=FIFO/EDF/MWF,
No=MN/AN, and Pa=OPR/EPR. For example, MWF-MN-OPR uses MWF scheduling, minimum
number of nodes, and OPR partitioning. The relative performance of the algorithms depends on the
relations between the unit cost of communication τ and the unit cost of computing ρ.
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Table 13.2 The parameters used for Hadoop scheduling with deadlines.

Name Description
Q the query Q = (A,σ,D)

A arrival time of query Q

D deadline of query Q

�i
m a map task, 1 ≤ i ≤ u

�
j
r a reduce task, 1 ≤ j ≤ v

J the job to perform the query Q = (A,σ,D), J = (�1
m,�2

m, . . . ,�u
m,�1

r ,�
2
r , . . . ,�

v
r )

τ cost for transferring a data unit

ρm map task time for processing a unit data

ρr reduce task time for processing a unit data

nm number of map slots

nr number of reduce slots

nmin
m minimum number of slots for the map task

n total number of slots, n = nm + nr

t0
m start time of the map task

tmax
r maximum value for the start time of the reduce task

α map distribution vector; the EPR strategy is used and , αi = 1/u

φ filter ratio, the fraction of the input produced as output by the map process

13.3 SCHEDULING MAPREDUCE APPLICATIONS SUBJECT TO DEADLINES
We now discuss scheduling of MapReduce applications on the cloud subject to deadlines. Several
options for scheduling Apache Hadoop, an open source implementation of the MapReduce algorithm
are: FIFO, the Fair Scheduler [541], the Capacity Scheduler, and the Dynamic Proportional Scheduler
[438].

A recent paper [264] applies the deadline scheduling framework discussed in Section 13.2 to
Hadoop tasks. Table 13.2 summarizes the notations used for this analysis. The term slots is equiva-
lent with nodes and means the number of instances.

We make two assumptions for our initial derivation:

• The system is homogeneous, ρm and ρr , the cost of processing a unit data by the Map and the
Reduce tasks, respectively, are the same for all servers.

• Load equipartition.

Under these conditions the duration of the job J with input of size σ is

E(nm,nr , σ ) = σ

[
ρm

nm

+ φ

(
ρr

nr

+ τ

)]
. (13.18)
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Thus, the condition that the query Q = (A,σ,D) with arrival time A meets the deadline D can be
expressed as

t0
m + σ

[
ρm

nm

+ φ

(
ρr

nr

+ τ

)]
≤ A + D. (13.19)

It follows immediately that the maximum value for the startup time of the reduce task is

tmax
r = A + D − σφ

(
ρr

nr

+ τ

)
. (13.20)

We now plug the expression of the maximum value for the startup time of the reduce task in the
condition to meet the deadline

t0
m + σ

ρm

nm

≤ tmax
r . (13.21)

It follows immediately that nmin
m , the minimum number of slots for the map task, satisfies the condition

nmin
m ≥ σρm

tmax
r − t0

m

, thus, nmin
m = � σρm

tmax
r − t0

m

�. (13.22)

The assumption of homogeneity of the servers can be relaxed and assume that individual servers have
different costs for processing a unit workload ρi

m �= ρ
j
m and ρi

t �= ρ
j
t . In this case we can use the

minimum values ρm = minρi
m and ρr = minρi

r in the expression we derived.
A Constraints Scheduler based on this analysis and an evaluation of the effectiveness of this sched-

uler are presented in [264].

13.4 EMERGENCE AND SELF-ORGANIZATION
Computer clouds are complex systems and should be analyzed in the context of the environment they
operate in. The more diverse the environment, the more challenging is the cloud resource management.
Cloud self-management and self-organization [328] offer a glimpse of hope.

Two most important concepts for understanding complex systems are emergence and self-
organization. Emergence lacks a clear and widely accepted definition, but it is generally understood
as a property of a system that is not predictable from the properties of individual system components.
There is a continuum of emergence spanning multiple scales of organization. Halley and Winkler ar-
gue that simple emergence occurs in systems at, or near thermodynamic equilibrium while complex
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emergence occurs only in non-linear systems driven far from equilibrium by the input of matter or
energy [219].

Physical phenomena which do not manifest themselves at microscopic scales, but occur at macro-
scopic scale are manifestations of emergence. For example, temperature is a manifestation of the
microscopic behavior of large ensembles of particles. For such systems at equilibrium the tempera-
ture is proportional to the average kinetic energy per degree of freedom. This is not true for ensembles
of a small number of particles. Even the laws of classical mechanics can be viewed as limiting cases of
quantum mechanics applied to large masses.

Emergence could be critical for complex systems such as financial systems, the air-traffic control
system, and the power grid. The May 6, 2010 event when Dow Jones Industrial Average dropped
600 points in a short period of time is a manifestation of emergence. The cause of this failure of the
trading systems is attributed to interactions of trading systems developed independently and owned by
organizations which work together, but their actions are motivated by self-interest.

A recent paper [460] points out that dynamic coalitions of software-intensive systems used for
financial activities pose serious challenges because there is no central authority and there are no means
to control the behavior of the individual trading systems. The failures of the power grid (for example,
the Northeast blackout of 2003) can also be attributed to emergence. Indeed, during the first few hours
of this event the cause of the failure could not be identified due to the large number of independent
systems involved. It was established only later that multiple causes, including the deregulation of the
electricity market and the inadequacy of the transmission lines of the power grid, contributed to this
failure.

Informally, self-organization means synergetic activities of elements when no single element acts
as a coordinator and the global patterns of behavior are distributed [188,445]. The intuitive meaning
of self-organization is captured by the observation of Alan Turing [490]: “global order can arise from
local interactions.”

Self-organization is prevalent in nature; for example, in chemistry this process is responsible for
molecular self-assembly, for self-assembly of monolayers, for the formation of liquid and colloidal
crystals, and in many other instances. Spontaneous folding of proteins and other biomacromolecules,
the formation of lipid bilayer membranes, the flocking behavior of different species, the creation of
structures by social animals, are all manifestation of self-organization of biological systems.

Inspired by biological systems, self-organization was proposed for the organization of different
types of computing and communication systems [240,325], including sensor networks, for space ex-
ploration [236], or even for economical systems [282].

The generic attributes of complex systems exhibiting self-organization are summarized in Ta-
ble 13.3. Non-linearity of physical systems used to build computing and communication systems has
countless manifestations and consequences. For example, when the clock rate of a microprocessor
doubles, the power dissipation increases 4 − 8 (22 − 23) times, depending of the solid state technology
used. This means that the heat removal system of much faster microprocessors has to use a different
technology when we double the speed.

This non-linearity is ultimately the reason why in the last years we have seen the clock rate of
general-purpose microprocessors increasing only slightly1. Nevertheless the number of transistors used

1In 1975, the Intel 8080 had a clock rate of 2 MHz; the HP PA-7100, a RISC microprocessor released in 1992, and the Intel P5
Pentium, released in 1995, had a 100 MHz clock rate; in 2002 Intel Pentium 4 had a clock rate of 3 GHz.
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Table 13.3 Attributes associated with self-organization and complexity.

Simple systems; no self-organization Complex systems; self-organization
Mostly linear Non-linear

Close to equilibrium Far from equilibrium

Tractable at component level Intractable at component level

One or few scales of organization Many scales of organization

Similar patterns at different scales Different patterns at different scales

Do not require a long history Require a long history

Simple emergence Complex emergence

Unaffected by phase transitions Affected by phase transitions

Limited scalability Scale-free

to build multi-core chips has increased as postulated by Moore’s law. This example illustrates also
the so called incommensurate scaling, another attribute of complex systems. Incommensurate scaling
means that when the size of the system, or when one of its important attributes such as speed increases,
different system components are subject to different scaling rules.

The fact that computing and communication systems operate far from equilibrium is clearly illus-
trated by the traffic carried out by the Internet; there are patterns of traffic specific to the time of the day
but, there is no steady-state. The many scales of the organization and the fact that there are different
patterns at different scales is also clear in the Internet which is a collection of networks where, in turn,
each network is also a collection of smaller networks, each one with its own specific traffic patterns.

The concept of phase transition comes from thermodynamics and describes the transformation,
often discontinuous, of a system from one phase/state to another, as a result of a change in the envi-
ronment. Examples of phase transitions are: freezing, transition from liquid to solid and its reverse,
melting; deposition transition from gas to solid and its reverse, sublimation; ionization, transition from
gas to plasma and its reverse, recombination.

Phase transitions can occur in computing and communication systems due to avalanche phenom-
ena, when the process designed to eliminate the cause of an undesirable behavior leads to a further
deterioration of the systems state. A typical example is thrashing due to competition among several
memory-intensive processes which lead to excessive page faults.

Another example is an acute congestion which can cause a total collapse of a network; the routers
start dropping packets and, unless congestion avoidance and congestion control means are in place and
operate effectively, the load increases as senders retransmit packets and the congestion increases. To
prevent such phenomena some form of negative feedback has to be built into the system.

A defining attribute of self-organization is scalability, the ability of the system to grow without
affecting its global function(s). Complex systems encountered in nature, or man-made, exhibit an in-
triguing property, they enjoy a scale-free organization [51,52]. This property reflects one of the few
attributes of self-organization that can be precisely quantified.

The scale-free organization can be best explained in terms of the network model of the system, a
random graph [71] with vertices representing the entities and the links representing the relationships
among them. In a scale-free organization the probability P(m) that a vertex interacts with m other
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vertices decays as a power law

P(m) ≈ m−γ (13.23)

with γ a real number, regardless of the type and function of the system, the identity of its constituents
and the relationships between them.

Empirical data available for social networks, power grids, the web, or the citation of scientific
papers, confirm this trend. As an example of a social network, consider the collaborative graph of
movie actors where links are present if two actors were ever cast in the same movie; in this case
γ ≈ 2.3. The power grid of the Western US has some 5 000 vertices representing power generating
stations and in this case γ ≈ 4.

The exponent of the World Wide Web scale-free network is γ ≈ 2.1. This means that the probability
that m pages point to one page is P(m) ≈ m−2.1 [52]. Recent studies indicate that γ ≈ 3 for the
citation of scientific papers. The larger the network, the closer a power law with γ ≈ 3 approximates
the distribution [51].

13.5 RESOURCE BUNDLING; COMBINATORIAL AUCTIONS FOR CLOUD
RESOURCES

Resources in a cloud are allocated in bundles; users get maximum benefit from a specific combination
of resources. Indeed, along with CPU cycles, an application needs specific amounts of main memory,
disk space, network bandwidth, and so on. Resource bundling complicates traditional resource alloca-
tion models; it has generated an interest in economic models and, in particular, in auction algorithms.
In the context of cloud computing, an auction is the allocation of resources to the highest bidder.

Combinatorial auctions. Auctions in which participants can bid on combinations of items or pack-
ages are called combinatorial auctions [120]. Such auctions provide a relatively simple, scalable, and
tractable solution to cloud resource allocation. Two recent combinatorial auction algorithms are the
Simultaneous Clock Auction [41] and the Clock Proxy Auction [42]. The algorithm discussed in this
section and introduced in [465] is called Ascending Clock Auction, (ASCA). In all these algorithms
the current price for each resource is represented by a “clock” seen by all participants at the auc-
tion.

We consider a strategy when prices and allocation are set as a result of an auction; in this auction,
users provide bids for desirable bundles and the price they are willing to pay. We assume a population
of U users, u = {1,2, . . . ,U}, and R resources, r = {1,2, . . . ,R}. The bid of user u is Bu = {Qu,πu}
with Qu = (q1

u, q2
u, q3

u, . . .) an R-component vector.
Each element of this vector, qi

u, represents a bundle of resources user u would accept and, in return,
pay the total price πu. Each vector component qi

u is either a positive quantity and encodes the quantity
of a resource desired, or if negative, it encodes the quantity of the resource offered. A user expresses
her desires as an indifference set I = (q1

u XOR q2
u XOR q3

u XOR . . .).
The final auction prices for individual resources are given by the vector p = (p1,p2, . . . , pR) and

the amounts of resources allocated to user u are xu = (x1
u, x2

u, . . . , xR
u ). Thus, the expression [(xu)

T p ]
represents the total price paid by user u for the bundle of resources if the bid is successful at time T .
The scalar [minq∈Qu

(qT p)] is the final price established through the bidding process.
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Table 13.4 The constraints for a combinatorial auction algorithm.

xu ∈ {0 ∪Qu}, ∀u –a user gets all resources or nothing∑
u xu ≤ 0 –final allocation leads to a net surplus of resources

πu ≥ (xu)T p, ∀u ∈ W –auction winners are willing to pay the final price

(xu)T p = minq∈Qu (q
T p), ∀u ∈ W –winners get the cheapest bundle in I

πu < minq∈Qu (q
T p), ∀u ∈ L –the bids of the losers are below the final price

p ≥ 0 –prices must be non-negative

The bidding process aims to optimize an objective function f (x,p). This function could be tailored
to measure the net value of all resources traded, or it can measure the total surplus, the difference be-
tween the maximum amount the users are willing to pay minus the amount they pay. Other optimization
function could be considered for a specific system, e.g., the minimization of energy consumption, or
of the security risks.

Pricing and allocation algorithms. A pricing and allocation algorithm partitions the set of users in
two disjoint sets, winners and losers, denoted as W and L, respectively; the algorithm should:
1. Be computationally tractable. Traditional combinatorial auction algorithms such as Vickey-Clarke-

Groves (VLG) fail this criteria, they are not computationally tractable.
2. Scale well. Given the scale of the system and the number of requests for service, scalability is a

necessary condition.
3. Be objective; partitioning in winners and losers should only be based on the price πu of a user’s

bid; if the price exceeds the threshold then the user is a winner, otherwise the user is a loser.
4. Be fair. Make sure that the prices are uniform, all winners within a given resource pool pay the

same price.
5. Indicate clearly at the end of the auction the unit prices for each resource pool.
6. Indicate clearly to all participants the relationship between the supply and the demand in the sys-

tem.
The function to be maximized is

max
x,p

f (x,p). (13.24)

The constraints in Table 13.4 correspond to our intuition: (a) the first one states that a user either
gets one of the bundles it has opted for or nothing, no partial allocation is acceptable; (b) the second
one expresses the fact that the system awards only available resources, only offered resources can be
allocated; (c) the third one is that the bid of the winners exceeds the final price; (d) the fourth one states
that the winners get the least expensive bundles in their indifference set; (e) the fifth one states that
losers bid below the final price; (f) finally, the last one states that all prices are positive numbers.

Ascending Clock Auction algorithm (ASCA). Informally, the participants at the auction based on the
ASCA algorithm [465] specify the resource and the quantities of that resource offered or desired at the
price listed for that time slot. Then the excess vector

z(t) =
∑
u

xu(t) (13.25)
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FIGURE 13.3

The schematics of the ASCA algorithm; to allow for a single round auction users are represented by proxies
which place the bids xu(t). The auctioneer determines if there is an excess demand and, in that case, it raises
the price of resources for which the demand exceeds the supply and requests new bids.

is computed. If all its components are negative, then the auction stops; negative components mean
that the demand does not exceed the offer. If the demand is larger than the offer, z(t) ≥ 0, then the
auctioneer increases the price for items with a positive excess demand and solicits bids at the new
price.

The algorithm satisfies conditions 1 through 6 in this section. All users discover the price at the
same time and pay or receive a “fair” payment relative to uniform resource prices, the computation is
tractable, and the execution time is linear in the number of participants at the auction and the number
of resources. The computation is robust, generates plausible results, regardless of the initial parameters
of the system.

There is a slight complication as the algorithm involves user bidding in multiple rounds. To address
this problem the user proxies automatically adjust their demands on behalf of the actual bidders, as
shown in Figure 13.3. These proxies can be modeled as functions which compute the “best bundle”
from each Qu set given the current price

Qu =
{

q̂u if q̂T
u p ≤ πu with q̂u ∈ arg min(qT

u p)

0 otherwise
(13.26)

In this algorithm g(x(t),p(t)) is the function for setting the price increase. This function can be
correlated with the excess demand z(t) as in g(x(t),p(t)) = αz(t)+ (the notation x+ means max(x,0))
with α a positive number. An alternative is to ensure that the price does not increase by an amount larger
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than δ; in that case g(x(t),p(t)) = min(αz(t)+, δe) with e = (1,1, . . . ,1) is an R-dimensional vector
and minimization is done componentwise.

The input to the ASCA algorithm: U users, R resources, p̄ the starting price, and the update incre-
ment function, g : (x,p) �→ R

R . The pseudo code of the algorithm is:

Pseudo code for the ASCA algorithm.

1 set t = 0, p(0) = p̄

2 loop
3 collect bids xu(t) = Gu(p(t)) ∀u

4 calculate excess demand z(t) = ∑
u xu(t)

5 if z(t) < 0 then
6 break
7 else
8 update prices p(t + 1) = p(t) + g(x(t),p(t))

9 t ← t + 1
10 end if
11 end loop

The convergence of the optimization problem is guaranteed only if all participants at the auction
are either providers of resources or consumers of resources, but not both providers and consumers at
the same time. Nevertheless, the clock algorithm only finds a feasible solution, it does not guarantee
its optimality.

The authors of [465] have implemented the algorithm and allowed internal use of it within Google;
their preliminary experiments show that the system led to substantial improvements. One of the most
interesting side effects of the new resource allocation policy is that the users were encouraged to make
their applications more flexible and mobile to take advantage of the flexibility of the system controlled
by the ASCA algorithm.

Auctioning algorithms are very appealing because they support resource bundling and do not re-
quire a model of the system. At the same time, a practical implementation of such algorithms is
challenging. First, requests for service arrive at random times while in an auction all participants must
react to a bid at the same time. Periodic auctions must then be organized but this adds to the delay
of the response time. Second, there is an incompatibility between cloud elasticity which guarantees
that the demand for resources of an existing application will be satisfied immediately and the idea of
periodic auctions.

13.6 CLOUD INTEROPERABILITY AND SUPER CLOUDS
Vendor lock-in is a concern, therefore cloud interoperability is a topic of great interest for the cloud
community [91,313,332]. This section addresses several questions: What are the challenges? What is
realistic to expect now? What could be done in the future for cloud interoperability? It makes only
sense to discuss interoperability of PaaS and IaaS cloud delivery models, the expectation that SaaS
services offered by one CSP will be offered by others e.g., that Google’s Gmail will be supported by
Amazon is not realistic.

A workload can migrate from one server to another server in the same data center or among data
centeres of the same CSP. Migrating a workload to a different CSP is not feasible at this time. To use
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multiple clouds data must be replicated and application binaries must be created for all targeted clouds.
This is a costly proposition thus, unfeasible in practice.

There is already a significant body of work on cloud standardization carried out at NIST, but it may
take some time before the standards are adopted. First, cloud computing is a fast-changing field and
early standardization would hinder progress and slowdown or stifle innovation. It is also likely that the
CSPs will resist the standardization efforts.

CSPs are adamant to share information about their internal specifications of the software stack,
their policies, the mechanisms implementing these policies, and data formats. Each CSP is confident
that such information gives it an advantage over the competition. There are also technical reasons
why cloud interoperability poses a fair number challenges, some insurmountable due to the current
limitations of computing and communication technologies.

So why a complex system such as the Internet is so successful while the development of an In-
tercloud, a worldwide organization allowing CSPs to share load is so challenging? The Internet is a
network of networks and its architecture is based on two simple ideas:

• Every communicating entity must be identified by an address thus, a host at the periphery of the
Internet, or a router at its core must have one or more IP address;

• Data sent should be able to reach its destination in this maze of networks, therefore each network
should route packets using the same protocol, the IP.

The function of a digital network, regardless of its physical substrate used for communication, is
to transport bits of data regardless of what their provenance, music, voice, images, data collected by
a sensor, text, or any other conceivable type of information. To make matters even easier these bits
can be packaged together in blocks of small, large, medium, or blocks of any desirable size and can
be repackaged whenever the need arises. All that matters is to deliver these bits from a source to a
destination in a finite amount of time or in a very short time if the application so requires.

Things cannot be more different for an Intercloud. First of all, most applications running on clouds
need a large volume of data as input to produce results. Transferring say 1 TB of data over a 10 Gbps
network takes 8 × 105 seconds, slightly less than a day. Increasing the network speed by an order of
magnitude will still require a few hours to transfer this relatively modest volume of data for most cloud
applications. Often, we need to transfer more than 1 TB and it is unlikely that Internet speeds of 100
Gbps will be available to connect data centers to one another.

What we expect from an Intercloud is different from what is expected from the Internet where the
only function required is to transport data and where all routers, regardless of their architecture, run
software implementing the IP protocol. On the other hand, the spectrum of computations done on a
cloud is extremely broad and the heterogeneity of the cloud infrastructure cannot be ignored. Clouds
use processors with different architectures, different configurations of cache, memory, and secondary
storage, support different operating systems, and use different hypervisors.

The architecture of the server matters; one can only execute code on a server with the same ISA
as the one the code was compiled for. The operating system running on a server matters because user
code makes system calls to carry out privileged operations and a binary running under one OS cannot
be migrated to another OS. The hypervisor running on the server matters because each hypervisor
supports only a set of operating systems.
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Fortunately, there are VMs and containers so there is a glimpse of hope. A VM including the OS
and the application can be migrated to a system with similar architecture and the same hypervisor.
Nested virtualization discussed in Section 10.8 allows a hypervisor to run another hypervisor and this
idea discussed later in the section adds to the degrees of freedom for VM migration.

Container technologies, such as Docker and LXC, are incredibly useful but one cannot move a
Docker container from one host to another. What can be done to preserve data that an application has
created inside the container is to commit the changes in the container to an image using Docker commit,
move the image to a new host, and then start a new container with Docker run.

Moreover, a Docker container is intended to run a single application. There are Docker containers
to run applications such as MySQL. A new back-end Docker engine, the libcontainer, can run any
application. LXC containers run an application under an instance of Linux. A Windows-based container
runs an application as an instance of Windows.

13.7 IN SEARCH FOR BLOOMS AMID A FLURRY OF CHALLENGES
A cursory look at the cloud computing literature reveals the extraordinary attention given to this emerg-
ing field of computer science. Areas such as computer architecture, concurrency, data management and
databases, resource management, scheduling, and mobile computing have bloomed in response to the
need of finding efficient solutions to the challenges brought about by cloud computing. Even some-
what ossified areas such as operating systems have been brought back to life by problems posed by
virtualization and containerization.

Several areas critical for the future of cloud computing, including communication and security, still
demand special attention. Increasing the bandwidth and lowering the communication latency will make
cloud computing more attractive for real-time applications and for integrations of services related to
IoT. Optimization of communication protocols could lower the latency up to the limits imposed by the
laws of physics. Ultimately, communication latency depends on the distance between the producer and
the consumer of data.

Computer clouds and mobile devices are in a symbiotic relationship with one another and effective
communication to/from clouds and inside the cloud infrastructure has to keep pace with advances
in processor and storage technology. Faster cloud interconnects are also necessary to accommodate
data-intensive and communication-intensive applications in need of a large number of servers working
in concert. Applications in computational sciences and engineering exhibiting fine-grained parallelism
would greatly benefit from lower latency.

Data security and privacy are major concerns not properly addressed by existing SLAs. Though
sensitive information has been leaked or stolen from large data centers, many cloud users are unaware
of the potential dangers they are exposed to when entrusting their data to a third party and trusting the
protection guaranteed by SLAs.

Strong encryption protects data in storage, but processing encrypted data is only feasible for some
types of queries. Most applications only operate with plaintext data thus, encrypted data has to be
decrypted before processing. This creates a window of vulnerability that can be exploited by insider
attacks. Hybrid clouds offer an alternative to protect sensitive information. In this case effective mech-
anisms to hide sensitive information stored on the public cloud and revealed only on the private side of
the cloud must be conceived.
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Virtualization, in spite of its benefits, creates significant complications for software maintenance.
A checkpointed virtual machine containing an older version of an operating system without the current
security patches may be activated at a later time, opening a window of vulnerability that could affect
the entire cloud infrastructure.

Response times plagued by a heavy tail distribution cannot be tolerated by most interactive or real-
time applications, but eliminating the tail of the latency at the scale of clouds is an enduring challenge.
Another enduring challenge is the reduction of energy consumption and, implicitly, increasing the av-
erage server utilization. Elasticity without overprovisioning, requires accurate knowledge of resource
consumption.

Resource reservations can help, but reservations place an additional burden on cloud users expected
to know well the needs of their applications. Moreover, accurately predicting resource consumption is
possible if and only if the system enforces strict performance isolation, yet another major headache for
systems based on multi-tenancy.

Even skeptics cautioning about the dangers inherent to systems “too big to fail” have to recognize
that the cloud ecosystem plays an important role in the modern society, that it has democratized com-
puting, the same way the web has completely changed the manner we access and use information.
The Internet will continue to morph, the web will evolve to a semantic web or Web 3.0. It is thus, fair
to expect that computer clouds will continue to change under the pressure from consumers of cloud
services and from new technologies.

It is hard to predict how the cloud ecosystem will look five or ten years from now, but it should
be perfectly clear that the disruptive qualities of computer clouds ultimately demand a new thinking in
system design. The design of large scale systems requires an ab initio preparation for the unexpected,
as low probability events occur and can cause major disruptions.

We have seen that the separation of control and routing planes in the Internet is partially responsible
for the rapid assimilation of new communication technologies. Only a holistic approach could lead to
a similar separation of concerns for computer clouds and allow computing technology to evolve at its
lightning pace.

There is a glimmer of hope that machine learning, data analytics, and market-based resource man-
agement will play a transformative role in cloud computing [47,328]. As more data are collected after
the execution of all instances of an application it may be possible to construct the application profile,
optimize its execution, and, ultimately, optimize the overall system performance. It may also be pos-
sible to identify conditions leading to phase transitions and prevent their occurrence often leading to
data center shutdown.

In this maze of challenges and uncertainties there is one prediction few could argue against: the
interest in cloud computing, as well as the need for individuals well trained in this field will continue
to grow for the foreseeable future. The incredible pace of developments in cloud computing poses its
own challenges and demands the grasp of fundamental concepts in many areas of computer science
and computer engineering, as well as curiosity and desire to continually learn.
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CLOUD APPLICATION
DEVELOPMENT

In the previous chapters our discussion was focused on research issues in cloud computing; now we
examine computer clouds from the perspective of an application developer. This chapter presents a few
recipes useful to assemble a cloud computing environment on a local system and to use basic cloud
functions.

It is fair to assume that the population of application developers and cloud users is, and will continue
to be, very diverse. Some cloud users have developed and run parallel applications on clusters or other
types of systems for many years and expect an easy transition to the cloud. Others, are less experienced,
but willing to learn and expect a smooth learning curve. Many view cloud computing as an opportunity
to develop new businesses with minimum investment in computing equipment and human resources.

The questions we address are: How easy is it to use the cloud? How knowledgeable should an
application developer be about networking and security? How easy is it to port an existing application
to the cloud? How easy is it to develop a new cloud application?

The answers to these questions are different for the three cloud delivery models, SaaS, PaaS, and
IaaS; the level of difficulty increases as we move towards the base of the cloud service pyramid as
shown in Figure A.1. Recall that SaaS applications are designed for the end-users and are accessed
over the web; in this case the user must be familiar with the API of a particular application. PaaS
provides a set of tools and services designed to facilitate application coding and deploying, while IaaS
provides the hardware and the software for servers, storage, networks, including operating systems and

FIGURE A.1

A pyramid model of cloud computing paradigms; the infrastructure provides the basic resources, the platform
adds an environment to facilitate the use of these resources, while software allows direct access to services.

Cloud Computing. DOI: 10.1016/B978-0-12-812810-7.00025-X
Copyright © 2018 Elsevier Inc. All rights reserved.
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storage management software. We restrict our discussion to the IaaS cloud computing model and we
concentrate on popular services offered by AWS.

Though the AWS services are well documented, the environment they provide for cloud computing
requires some effort to benefit from the full spectrum of services offered. In this section we report on
lessons learned from the experience of a group of students with a strong background in programming,
networking, and operating systems; each one of them was asked to develop a cloud application for a
problem of interest in their own research area. First, we discuss several issues related to cloud security,
a major stumbling block for many cloud users; then we present a few recipes for the development of
cloud applications, and finally we analyze several cloud applications developed by individuals in this
group over a period of less than three months.

A.1 AWS EC2 INSTANCES
In spite of the wealth of information available from the providers of cloud services, the learning curve
of an application developer is still relatively steep. The examples discussed in this chapter are designed
to help overcome some of the hurdles faced when someone first attempts to use the AWS. Due to space
limitations we have chosen to cover only a few of the very large number of combinations of services,
operating systems, and programming environments supported by AWS.

Amazon Web Services are grouped in several categories: computing and networking, storage and
content delivery, deployment and management, databases, and application services. In Sections 2.3
and 2.4 we mentioned that new services are continually added to AWS; the look and feel of the web
pages changes in time. The screen shots reflect the state of the system at the time of the writing of
the first edition of the book, second half of 2012. To access AWS one must first create an account at
http://aws.amazon.com/. Once the account is created the Amazon Management Console (AMC) allows
the user to select one of the service, e.g., EC2 and then start an instance.

Recall that an EC2 instance is a virtual server started in a region and availability zone selected by
the user. Instances are grouped into a few classes and each class has a specific amount of resources
such as CPU cycles, main memory, secondary storage, communication, and I/O bandwidth available
to it. Several operating systems are supported by AWS including: Amazon Linux, Red Hat Enterprize
Linux 6.3, SUSE Linux Enterprize Server 11, Ubuntu Server 12.04.1, as well as several version of
Microsoft Windows, see Figure A.2.

The next step is to create an AMI (Amazon Machine Image) on one of the platforms supported by
AWS and start an instance using the RunInstance API. An AMI is a unit of deployment, an environment
including all information necessary to set up and boot an instance. If an application needs more than
20 instances then a special form must be filled out. The local instance persists in storage only for the
duration of an instance. The data persist when an instance is started using the Amazon EBS (Elastic
Block Storage) and then the instance can be restarted at a later time.

Once an instance is created the user can perform several actions; for example, connect to the in-
stance, launch more instances identical to the current one, or create an EBS AMI. The user can also
terminate, reboot, or stop the instance, see Figure A.3. The Network & Security panel allows the cre-
ation of Security Groups, Elastic IP addresses, Placement Groups, Load Balancers and Key Pairs (see
the discussion in Section A.3), while the EBS panel allows the specification of volumes and the creation
of snapshots.

http://aws.amazon.com/
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FIGURE A.2

The Instance menu allows the user to select from existing AMIs.

A.2 CONNECTING CLIENTS TO CLOUD INSTANCES THROUGH FIREWALLS
A firewall is a software system based on a set of rules for filtering network traffic; its function is to
protect a computer in a local area network from unauthorized access. The first generation of firewalls,
deployed in the late 1980s, carried out packet filtering; they discarded individual packets which did
not match a set of acceptances rules. Such firewalls operated below the transport layer, and discarded
packets based on the information in the headers of physical, data link, and transport layer protocols.

The second generation of firewalls operate at the transport layer and maintain the state of all connec-
tions passing through them. Unfortunately, this traffic filtering solution opened the possibility of denial
of service attacks; a denial of service (DOS) attack targets a widely used network service and forces the
operating system of the host to fill the connection tables with illegitimate entries. DOS attacks prevent
legitimate access to the service.

The third generation of firewalls “understand” widely-used application layer protocols such as FTP,
HTTP, TELNET, SSH, and DNS. These firewalls examine the header of application layer protocols and
support intrusion detection systems.

Firewalls screen incoming traffic and, sometimes, filter outgoing traffic as well. A first filter encoun-
tered by the incoming traffic in a typical network is a firewall provided by the operating system of the
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FIGURE A.3

The Instance Action pull-down menu of the Instances panel of the AWS Management Console allows the user
to interact with an instance, e.g., Connect, Create an EBS AMI Image, and so on.

router; the second filter is a firewall provided by the operating system running on the local computer,
see Figure A.4.

Typically, the local area network (LAN) of an organization is connected to the Internet via a router;
a router firewall often hides the true address of hosts in the local network using the network address
translation (NAT) mechanism. The hosts behind a firewall are assigned addresses in a “private ad-
dress range” and the router uses the NAT tables to filter the incoming traffic and translate external
IP addresses to private ones. The mapping between the pair (external address, external port) and the
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FIGURE A.4

Firewalls screen incoming and sometimes outgoing traffic. The first obstacle encountered by the inbound or
outbound traffic is a router firewall, the next one is the firewall provided by the host operating system;
sometimes, the antivirus software provides a third line of defense.

Table A.1 Firewall rule setting. The columns indicate if a feature is supported or not by an operating
system: the second column – a single rule can be issued to accept/reject a default policy; the third and
fourth columns – filtering based on IP destination and source address, respectively; the fifth and sixth
columns – filtering based on TCP/UDP destination and source ports, respectively; the seventh and eights
columns – filtering based on Ethernet MAC destination and source address, respectively; the ninth and
tenth columns – inbound (ingress) and outbound (egress) firewalls, respectively.

Operating
system

Def rule IP
dest
addr

IP
src
addr

TCP/
UDP
dest
port

TCP/
UDP src
port

Ether
MAC
dest

Ether
MAC
src

In-
bound
fwall

Out-
bound
fwall

Linux
iptables

Yes Yes Yes Yes Yes Yes Yes Yes Yes

OpenBSD Yes Yes Yes Yes Yes Yes Yes Yes Yes

Windows
XP

No No Yes Partial No No No Yes No

Cisco
Acces List

Yes Yes Yes Yes Yes Yes Yes Yes Yes

Juniper
Networks

Yes Yes Yes Yes Yes Yes Yes Yes Yes

(internal address, internal port) tuple carried by the network address translation function of the router
firewall is called a pinhole.

If one tests a client-server application with the client and the server in the same local area network,
the packets do not cross a router; once a client from a different LAN attempts to use the service, the
packets may be discarded by the firewall of the router. The application may no longer work if the router
is not properly configured.

The firewall support in several operating systems is discussed next. Table A.1 summarizes the
options supported by different operating systems running on a host or on a router.
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A rule specifies a filtering option at: (i) the network layer, when filtering is based on the desti-
nation/source IP address; (ii) the transport layer, when filtering is based on destination/source port
number; (iii) the MAC layer, when filtering is based on the destination/source MAC address.

In Linux or Unix systems the firewall can be configured only by someone with a root access using
the sudo command. The firewall is controlled by a kernel data structure, the iptables. The iptables
command is used to set up, maintain, and inspect the tables of the IPv4 packet filter rules in the Linux
kernel. Several tables may be defined; each table contains a number of built-in chains and may also
contain user-defined chains.

A chain is a list of rules which can match a set of packets: the INPUT rule controls all incoming
connections; the FORWARD rule controls all packets passing through this host; and the OUTPUT rule
controls all outgoing connections from the host. A rule specifies what to do with a packet that matches:
Accept – let the packet pass; Drop – discharge the packet; Queue – pass the packet to the user space;
Return – stop traversing this chain and resume processing at the head of the next chain. For complete
information on the iptables see http://linux.die.net/man/8/iptables.

To get the status of the firewall, specify the L (List) action of the iptables command

sudo iptables -L

As a result of this command the status of the INPUT, FORWARD, and OUTPUT chains will be dis-
played.

To change the default behavior for the entire chain, specify the action P (Policy), the chain name,
and target name; e.g., to allow all outgoing traffic to pass unfiltered use

sudo iptables -P OUTPUT ACCEPT

To add a new security rule specify: the action, A (add), the chain, the transport protocol, tcp or udp,
and the target ports as in

sudo iptables -A INPUT -p -tcp -dport ssh -j ACCEPT
sudo iptables -A OUTPUT -p -udp -dport 4321 -j ACCEPT
sudo iptables -A FORWARD -p -tcp -dport 80 -j DROP

To delete a specific security rule from a chain, set the action D (Delete) and specify the chain name
and the rule number for that chain; the top rule in a chain has number 1:

sudo iptables -D INPUT 1
sudo iptables -D OUTPUT 1
sudo iptables -D FORWARD 1

By default the Linux virtual machines on Amazon’s EC2 accept all incoming connections.
The ability to access that virtual machine will be permanently lost when a user accesses an EC2

virtual machine using ssh and then issues the following command

sudo iptables -P INPUT DROP.

The access to a Windows firewall is provided by a GUI accessed as follows:

Control Panel -> System & Security -> Windows Firewall -> Advanced Settings

http://linux.die.net/man/8/iptables
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The default behavior for incoming and/or outgoing connections can be displayed and changed from
the window Windows Firewall with Advanced Security on Local Computer.

The access to the Windows XP firewall is provided by a GUI accessed by selecting Windows Fire-
wall in the Control Panel. If the status is ON, incoming traffic is blocked by default, and a list of
Exceptions (as noted on the Exceptions tab) define the connections allowed. The user can only define
exceptions for: tcp on a given port, udp on a given port, and a specific program. Windows XP does not
provide any control over outgoing connections.

Antivirus software running on a local host may provide an additional line of defense. For example,
the Avast antivirus software (see www.avast.com) supports several real-time shields. The Avast network
shield monitors all incoming traffic; it also blocks access to known malicious websites. The Avast web
shield scans the HTTP traffic and monitors all web browsing activities. The antivirus also provides
statistics related to its monitoring activities.

A.3 SECURITY RULES FOR APPLICATION- AND TRANSPORT-LAYER
PROTOCOLS IN EC2

A client must know the IP address of a virtual machine in the cloud, to be able to connect to it. Domain
Name Service (DNS) is used to map human-friendly names of computer systems to IP addresses in the
Internet or in private networks. DNS is a hierarchical distributed database and plays a role reminiscent
of an Internet phone book.

In 2010 Amazon announced a DNS service called Route 53 to route users to AWS services and to
infrastructure outside of AWS. A network of DNS servers scattered across the globe, which enables
customers to gain reliable access to AWS and place strict controls over who can manage their DNS
system by allowing integration with AWS Identity and Access Management (IAM).

For several reasons, including security and the ability of the infrastructure to scale up, the IP ad-
dresses of instances visible to the outside world are mapped internally to private IP addresses. A virtual
machine running under Amazon’s EC2 has several IP addresses:
1. EC2 Private IP Address: The internal address of an instance; it is only used for routing within the

EC2 cloud.
2. EC2 Public IP Address: Network traffic originating outside the AWS network must use either the

public IP address or the elastic IP address of the instance. The public IP address is translated using
the Network Address Translation (NAT) to the private IP address when an instance is launched and
it is valid until the instance is terminated. Traffic to the public address is forwarded to the private
IP address of the instance.

3. EC2 Elastic IP Address: The IP address allocated to an account and used by traffic originated
from outside AWS. NAT is used to map an elastic IP address to the private IP address. Elastic IP
addresses allow the cloud user to mask instance or availability zone failures by programmatically
re-mapping a public IP addresses to any instance associated with the user’s account. This allows
fast recovery after a system failure; for example, rather than waiting for a cloud maintenance team
to reconfigure or replace the failing host, or waiting for DNS to propagate the new public IP to all
of the customers of a web service hosted by EC2, the web service provider can re-map the elastic
IP address to a replacement instance. Amazon charges a fee for unallocated Elastic IP addresses.

http://www.avast.com
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To control access to a user VMs AWS uses security groups. A VM instance belongs to one, and
only one, security group which can only be defined before the instance is launched. Once an instance
is running, the security group the instance belongs to cannot be changed. However, more than one
instance can belong to a single security group.

Security group rules control inbound traffic to the instance and have no effect on outbound traffic
from the instance. The inbound traffic to an instance, either from outside the cloud or from other
instances running on the cloud, is blocked, unless a rule stating otherwise is added to the security
group of the instance. For example, assume a client running on instance A in the security group �A

is to connect to a server on instance B listening on TCP port P, where B is in security group �B . A
new rule must be added to security group �B to allow connections to port P; to accept responses from
server B a new rule must be added to security group �A.

The following steps allow the user to add a security rule:
1. Sign in to the AWS Management Console at http://aws.amazon.com using your Email address and

password and select EC2 service.
2. Use the EC2 Request Instance Wizard to specify the instance type, whether it should be monitored,

and specify a key/value pair for the instance to help organize and search, see Figure A.6.
3. Provide a name for the key pair, then on the left hand side panel choose Security Groups under

Network & Security, select the desired security group and click on the Inbound tab to enter the
desired rule, see Figure A.5.

To allocate an elastic IP address use the Elastic IPs tab of the Network & Security left hand side
panel.

On Linux or Unix systems the port numbers below 1024 can only be assigned by the root. The
plain ASCII file called services maps friendly textual names for Internet services to their assigned port
numbers and protocol types as in the following example:

netstat 15/tcp
ftp 21/udp
ssh 22/tcp
telnet 23/tcp
http 80/tcp

A.4 HOW TO LAUNCH AN EC2 LINUX INSTANCE AND CONNECT TO IT
This section gives a step-by-step process to launch an EC2 Linux instance from a Linux platform.

A. Launch an instance
1. From the AWS management console, select EC2 and, once signed in, go to Launch Instance Tab.
2. To determine the processor architecture when you want to match the instance with the hardware

enter the command

uname -m

and choose an appropriate Amazon Linux AMI by pressing Select.
3. Choose Instance Details to control the number, size, and other settings for instances.
4. To learn how the system works, press Continue to select the default settings.

http://aws.amazon.com
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FIGURE A.5

AWS security. Choose Security Groups under Network & Security, select the desired security group and click
on the Inbound tab to enter the desired rule.

5. Define the instances security, as discussed in Section A.3: in the Create Key Pair page enter a
name for the pair and then press Create and Download Key Pair.

6. The key pair file downloaded in the previous step is a .pem file and it must be hidden to prevent
unauthorized access; if the file is in the directory awcdir/dada.pem enter the commands

cd awcdir
chmod 400 dada.pem
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FIGURE A.6

EC2 Request Instances Wizard is used to: (A) specify the number and type of instances and the zone;
(B) specify the kernelId, the RAM diskId, and enable the CloudWatch service to monitor the EC2 instance;
(C) add tags to the instance; a tag is stored in the cloud and consists of a case-sensitive key/value pair private
to the account.
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7. Configure the firewall; go to the page Configure Firewall, select the option Create a New Security
Group and provide a Group Name. Normally one uses ssh to communicate with the instance;
the default port for communication is port 8080 and one can change the port and other rules by
creating a new rule.

8. Press Continue and examine the review page which gives a summary of the instance.
9. Press Launch and examine the confirmation page and then press Close to end the examination of

the confirmation page.
10. Press the Instances tab on the navigation pane to view the instance.
11. Look for your Public DNS name. As by default some details of the instance are hidden, click on

the Show/Hide tab on the top of the console and select Public DNS.
12. Record the Public DNS as PublicDNSname; it is needed to connect to the instance from the Linux

terminal.
13. Use the ElasticIP panel to assign an elastic IP address if a permanent IP address is required.

B. Connect to the instance using ssh and the tcp transport protocol.
1. Add a rule to the iptables to allow ssh traffic using the tcp protocol. Without this step either anac-

cess denied or a permission denied error message appears when trying to connect to the instance.

sudo iptables -A iptables -p -tcp -dport ssh -j ACCEPT

2. Enter the Linux command

ssh -i abc.pem ec2-user@PublicDNSname

If you get the prompt You want to continue connecting? respond Yes; a warning that the DNS name
was added to the list of known hosts will appear.

3. An icon of the Amazon Linux AMI will be displayed.

C. Gain root access to the instance
By default the user does not have root access to the instance thus, cannot install any software. Once

connected to the EC2 instance use the following command to gain root privileges

sudo -i

Then use yum install commands to install software, e.g., gcc to compile C programs on the cloud.

D. Run the service ServiceName
If the instance runs under Linux or Unix the service is terminated when the ssh connection is closed;

to avoid the early termination use the command

nohup ServiceName

To run the service in the background and redirect stdout and stderr to files p.out and p.err, respectively,
execute the command

nohup ServiceName > p.out 2 > p.err &
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A.5 HOW TO USE S3 IN JAVA
The Java API for Amazon Web Services is provided by the AWS SDK. A software development kit
(SDK) is a set of software tools for the creation of applications in a specific software environment. Java
Development Kit (JDK) is an SDK for Java developers available from Oracle.

JDK includes a set of programming tools such as: javac, the Java compiler which converts Java
source code into Java bytecode; java, the loader for Java applications, it can interpret the class files
generated by the Java compiler; javadoc the documentation generator; jar, the archiver for class li-
braries; jdb, the debugger; JConsole, the monitoring and management console; jstat, JVM statistics
monitoring; jps, JVM process status tool; jinfo, the utility to get configuration information from a run-
ning Java process; jrunscript, the command-line script shell for Java; appletviewer tool to debug Java
applets without a web browser; and idlj, the IDL-to-Java compiler. The Java Runtime Environment is
also a component of the JDK consisting of a Java Virtual Machine (JVM) and libraries.

Create an S3 client. S3 access is handled by the class AmazonS3Client instantiated with the account
credentials of the AWS user

AmazonS3Client s3 = new AmazonS3Client(
new BasicAWSCredentials("your_access_key", "your_secret_key"));

The access and the secret keys can be found on the user’s AWS account home page as mentioned in
Section A.3.

Buckets. An S3 bucket is analogous to a file folder or directory and it is used to store S3 Objects. Bucket
names must be globally unique hence, it is advisable to check first if the name exists

s3.doesBucketExist("bucket_name");

This function returns “true” if the name exists and “false” otherwise. Buckets can be created and deleted
either directly from the AWS Management Console or programmatically as follows:

s3.createBucket("bucket_name");
s3.deleteBucket("bucket_name");

S3 objects. An S3 object stores the actual data and it is indexed by a key string. A single key points to
only one S3 object in one bucket. Key names do not have to be globally unique, but if an existing key
is assigned to a new object, then the original object indexed by the key is lost. To upload an object in
a bucket one can use the AWS Management Console, or programmatically a file local_f ile_name can
be uploaded from the local machine to the bucket bucket_name under the key key using

File f = new File("local_file_name");
s3.putObject("bucket_name", "key", f);

A versioning feature for the objects in S3 was made available recently; it allows to preserve, retrieve,
and restore every version of an S3 object. To avoid problems when uploading large files, e.g., the drop
of the connection, use the .initiateMultipartUpload() with an API described at the AmazonS3Client. To
access this object with key key from the bucket bucket_name use:

S3Object myFile = s3.getObject("bucket_name", "key");
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To read this file, you must use the S3Object’s InputStream:

InputStream in = myFile.getObjectContent();

The InputStream can be accessed using Scanner, BufferedReader or any other method supported. Ama-
zon recommends closing the stream as early as possible, as the content is not buffered and it is streamed
directly from the S3; an open InputStream means an open connection to S3. For example, the following
code will read an entire object and print the contents to the screen:

AmazonS3Client s3 = new AmazonS3Client(
new BasicAWSCredentials("access_key", "secret_key"));
InputStream input = s3.getObject("bucket_name", "key")

.getObjectContent();
Scanner in = new Scanner(input);
while (in.hasNextLine())

{
System.out.println(in.nextLine());

}
in.close();
input.close();

Batch Upload/Download. Batch upload requires repeated calls of s3.putObject() while iterating over
local files.

To view the keys of all objects in a specific bucket use

ObjectListing listing = s3.listObjects("bucket_name");

Object Listing supports several useful methods including getObjectSummaries(). S3ObjectSum-
mary encapsulates most of an S3 object properties (excluding the actual data), including the key to
access the object directly,

List<S3ObjectSummary> summaries = listing.getObjectSummaries();

For example, the following code will create a list of all keys used in a particular bucket and all of the
keys will be available in string form in List < String > allKeys:

AmazonS3Client s3 = new AmazonS3Client(
new BasicAWSCredentials("access_key", "secret_key"));
List<String> allKeys = new ArrayList<String>();
ObjectListing listing = s3.listObjects("bucket_name");
for (S3ObjectSummary summary:listing.getObjectSummaries())
{
allKeys.add(summary.getKey());

}

Note that if the bucket contains a very large number of objects then s3.listObjects() will return a trun-
cated list. Use the following command to test if the list is truncated one could use listing.isTruncated();
to get the next batch of objects

s3.listNextBatchOfObjects(listing)};
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FIGURE A.7

Queue actions in SQS.

To account for a large number of objects in the bucket, the previous example becomes

AmazonS3Client s3 = new AmazonS3Client(
new BasicAWSCredentials("access_key", "secret_key"));
List<String> allKeys = new ArrayList<String>();
ObjectListing listing = s3.listObjects("bucket_name");
while (true)

{
for (S3ObjectSummary summary :

listing.getObjectSummaries())
{
allKeys.add(summary.getKey());

}
if (!listing.isTruncated())

{
break;

}
listing = s3.listNextBatchOfObjects(listing);
}

A.6 HOW TO MANAGE AWS SQS SERVICES IN C#
Recall from Section 2.3 that SQS is a system for supporting automated workflows. Multiple compo-
nents can communicate with messages sent and received via SQS. An example showing the use of
message queues is presented in Section 7.6. Figure A.7 shows the actions available for a given queue
in SQS.

The following steps can be used to create a queue, send a message, receive a message, delete a
message, delete the queue in C#:
1. Authenticate an SQS connection

NameValueCollection appConfig =
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ConfigurationManager.AppSettings;
AmazonSQS sqs = AWSClientFactory.CreateAmazonSQSClient

(appConfig["AWSAccessKey"], appConfig["AWSSecretKey"]);

2. Create a queue

CreateQueueRequest sqsRequest = new CreateQueueRequest();
sqsRequest.QueueName = "MyQueue";
CreateQueueResponse createQueueResponse =

sqs.CreateQueue(sqsRequest);
String myQueueUrl;
myQueueUrl = createQueueResponse.CreateQueueResult.QueueUrl;

3. Send a message

SendMessageRequest sendMessageRequest =
new SendMessageRequest();

sendMessageRequest.QueueUrl =
myQueueUrl; //URL from initial queue

sendMessageRequest.MessageBody = "This is my message text.";
sqs.SendMessage(sendMessageRequest);

4. Receive a message

ReceiveMessageRequest receiveMessageRequest =
new ReceiveMessageRequest();

receiveMessageRequest.QueueUrl = myQueueUrl;
ReceiveMessageResponse receiveMessageResponse =

sqs.ReceiveMessage(receiveMessageRequest);

5. Delete a message

DeleteMessageRequest deleteRequest =
new DeleteMessageRequest();

deleteRequest.QueueUrl = myQueueUrl;
deleteRequest.ReceiptHandle = messageRecieptHandle;
DeleteMessageResponse DelMsgResponse =

sqs.DeleteMessage(deleteRequest);

6. Delete a queue

DeleteQueueRequest sqsDelRequest = new DeleteQueueRequest();
sqsDelRequest.QueueUrl =

createQueueResponse.CreateQueueResult.QueueUrl;
DeleteQueueResponse delQueueResponse =
sqs.DeleteQueue(sqsDelRequest);

A.7 HOW TO INSTALL SNS ON UBUNTU 10.04
SNS, the Simple Notification Service, is a web service for: monitoring applications, workflow systems,
time-sensitive information updates, mobile applications, and other event-driven applications which
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require a simple and efficient mechanism for message delivery. SNS “pushes” messages to clients,
rather than requiring a user to periodically poll a mailbox or another site for messages.

SNS is based on the publish-subscribe paradigm; it allows a user to define the topics, the transport
protocol used (HTTP/HTTPS, Email, SMS, SQS), and the end-point (URL, Email address, phone
number, SQS queue) for notifications to be delivered.

Ubuntu is an open source operating system for personal computers based on Debian Linux distri-
bution. The desktop version of Ubuntu1 supports Intel x86 32-bit and 64-bit architectures.

SNS supports the following actions:

• Add/Remove Permission
• Confirm Subscription
• Create/Delete Topic
• Get/Set Topic Attributes
• List Subscriptions/Topics/Subscriptions By Topic
• Publish/Subscribe/Unsubscribe

The site http://awsdocs.s3.amazonaws.com/SNS/latest/sns-qrc.pdf provides detailed information about
each one of these actions.

The following steps must be taken to install an SNS client:
1. Install Java in the root directory and then execute the commands

deb http://archive.canonical.com/lucid partner
update
install sun-java6-jdk

Then change the default Java settings

update-alternatives -config java

2. Download the SNS client, unzip the file and change permissions

wget http://sns-public-resources.s3.amazonaws.com/
SimpleNotificationServiceCli-2010-03-31.zip

chmod 775 /root/ SimpleNotificationServiceCli-1.0.2.3/bin

3. Start the AWS management console and go to Security Credentials. Check the Access Key ID and
the Secret Access Key and create a text file /root/credential.txt with the following content:

AWSAccessKeyId= your_Access_Key_ID
AWSSecretKey= your_Secret_Access_Key

4. Edit the .bashrc file and add

export AWS_SNS_HOME=~/SimpleNotificationServiceCli-1.0.2.3/
export AWS_CREDENTIAL_FILE=$HOME/credential.txt
export PATH=$AWS_SNS_HOME/bin
export JAVA_HOME=/usr/lib/jvm/java-6-sun/

1Ubuntu is an African humanist philosophy; “ubuntu” is a word in the Bantu language of South Africa meaning “humanity
towards others.”

http://awsdocs.s3.amazonaws.com/SNS/latest/sns-qrc.pdf
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5. Reboot the system
6. Enter on the command line

sns.cmd

If the installation was successful the list of SNS commands will be displayed.

A.8 HOW TO CREATE AN EC2 PLACEMENT GROUP AND USE MPI
An EC2 Placement Group, is a logical grouping of instances which allows the creation of a virtual
cluster. When several instances are launched as an EC2 Placement Group the virtual cluster has a
high bandwidth interconnect system suitable for network-bound applications. The cluster comput-
ing instances require an HVM (Hardware Virtual Machine) ECB-based machine image, while other
instances use a PVM (Paravirtual Machine) image. Such clusters are particularly useful for high per-
formance computing when most applications are communication intensive.

Once a placement group is created, MPI can be used for communication among the instances in the
placement group. MPI is a de-facto standard for parallel applications using message passing, designed
to ensure high performance, scalability, and portability; it is a language-independent “message-passing
application programmer interface, together with a protocol and the semantic specifications for how its
features must behave in any implementation” [206]. MPI supports point-to-point, as well as collective
communication; it is widely used by parallel programs based on the SPMD (Same Program Multiple
Data) paradigm.

The following C code [206] illustrates the startup of MPI communication for a process group,
MPI_COM_PROCESS_GROUP consisting of nprocesses; each process is identified by its rank. The
runtime environment mpirun or mpiexec spawns multiple copies of the program, with the total number
of copies determining the number of process ranks in MPI_COM_PROCESS_GROUP.

#include <mpi.h>
#include <stdio.h>
#include <string.h>
#define TAG 0
#define BUFSIZE 128

int main(int argc, char *argv[])
{
char idstr[32];
char buff[BUFSIZE];
int nprocesses;
int my_processId;
int i;
MPI_Status stat;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COM_PROCESS_GROUP,&nprocesses);
MPI_Comm_rank(MPI_COM_PROCESS_GROUP,&my_processId);

MPI_SEND and MPI_RECEIVE are blocking send and blocking receive, respectively; their syntax
is:
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int MPI_Send(void *buf, int count, MPI_Datatype datatype,
int dest, int tag,MPI_Comm comm)

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

with

buf − initial address of send buffer (choice)
count − number of elements in send buffer (nonnegative integer)
datatype − data type of each send buffer element (handle)
dest − rank of destination (integer)
tag − message tag (integer)
comm − communicator (handle).

Once started, every process other than the coordinator, the process with rank = 0, sends a message
to the entire group and then receives a message from each of the other members of the process group.

if(my_processId == 0)
{
printf("%d: We have %d processes\n", my_processId, nprocesses);
for(i=1;i<nprocesses;i++)
{

sprintf(buff, "Hello %d! ", i);
MPI_Send(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_PROCESS_GROUP);

}
for(i=1;i<nprocesses;i++)
{

MPI_Recv(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_PROCESS_GROUP, &stat);
printf("%d: %s\n", my_processId, buff);

}
}
else
{
/* receive from rank 0: */
MPI_Recv(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COMM_PROCESS_GROUP, &stat);
sprintf(idstr, "Processor %d ", my_processId);
strncat(buff, idstr, BUFSIZE-1);
strncat(buff, "reporting for duty\n", BUFSIZE-1);
/* send to rank 0: */
MPI_Send(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COM_PROCESS_GROUP);

}

MPI_Finalize();
return 0;

}

An example of cloud computing using the MPI is described in [167]. An example of MPI use on
EC2 is at http://rc.fas.harvard.edu/faq/amazonec2.

http://rc.fas.harvard.edu/faq/amazonec2
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A.9 STARCLUSTER – A CLUSTER COMPUTING TOOLKIT FOR EC2
StarCluster, http://star.mit.edu/cluster/, is an open source cluster-computing toolkit for EC2. The sys-
tem assigns user-friendly names to the nodes of the virtual cluster and the cluster is so configured to
allow ssh from any node of the cluster to any other nodes. It allows to attach EBS volumes to the
cluster for persistent storage and provides and API for executing OS commands such as copying files.
StarCluster supports dynamically cluster reconfiguration, as well as lunching spot instances to reduce
the service costs.

StarCluster AMIs consist of several scientific libraries:
1. OpenMPI – for writing parallel applications.
2. Automatically Tuned Linear Algebra Software (ATLAS) – optimized for Amazon EC2 larger in-

stances, see http://math-atlas.sourceforge.net/.
3. NumPy/SciPy compiled against the optimized ATLAS install. SciPy is a Python-based ecosystem

of open-source software for mathematics, science, and engineering. NumPy is a set of tools for
integrating C/C++ and Fortran code useful linear algebra, Fourier transform, and random number
capabilities, see https://www.scipy.org/scipylib/.

4. IPython – interactive parallel computing in Python, see https://ipython.org/.
Several other important features of the StarCluster are: (1) Support for starting/stopping EBS-

backed clusters on EC2. (2) Elastic Load Balancing – using Sun Grid Engine queue statistics. (3) Sup-
port for specifying instance types on a per-node basis. (4) A number of commands for EC2 and S3
operations including the ones in Table A.2.

A.10 AN ALTERNATIVE SETTING OF AN MPI VIRTUAL CLUSTER
An alternative setting up for an MPI cluster is described in [312]. The instances used are cc2.8xlarge
with 2x Intel Xeon E5-2670 processors and ≈ 60 GB of RAM per node and spot instances rather than
reserved ones were used thus, saving about 90% of the cost. The VM virtualization layer used by the
cc2.8xlarge instances is thinner than the one of other instances.

Setting user’s instances involves several steps:
1. Select a VM image and an instance type.
2. Define a placement group.
3. Configure the storage.
4. Define the VM tags to manage the instances.
5. Create of a key pair.
6. Setup the security group.
7. Launch the instances.

The nest phase is the configuration of the virtual cluster (VC). All instances of the virtual cluster are
booted with the same operating system and share a 10 Gbps Ethernet subnet. The public IP address of
the booted instances is available from the EC2 Dashboard by selecting their entry under the “Instances”
page. The preliminary steps for the VC configurations are:

• Create nodes aliases – add their internal IP addresses to /etc/hosts as node1, node2, node3, node4.
• Create aliases for files to be transferred from the master (node1) to workers node2, node3, node4.
• Enable password-less ssh between instances.

http://star.mit.edu/cluster/
http://math-atlas.sourceforge.net/
https://www.scipy.org/scipylib/
https://ipython.org/
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Table A.2 StartCluster commands for EC2 and S3 operations.

Command Function
listinstances List all running EC2 instances

listspots List all EC2 spot instance requests

listimages List all registered EC2 images (AMIs)

listpublic List all public StarCluster images on EC2

listkeypairs List all EC2 keypairs

createkey Create a new Amazon EC2 keypair

removekey Remove a keypair from Amazon EC2

s3image Create a new instance-store (S3) AMI from a running EC2 instance

ebsimage Create a new EBS image (AMI) from a running EC2 instance

removeimage Deregister an EC2 image (AMI)

createvolume Create a new EBS volume for use with StarCluster

listvolumes List all EBS volumes

resizevolume Resize an existing EBS volume

removevolume Delete one or more EBS volumes

spothistory Show spot instance pricing history stats

showconsole Show console output for an EC2 instance

listregions List all EC2 regions

listzones List all EC2 availability zones in the current region

listbuckets List all S3 buckets

showbucket Show all files in an S3 bucket

There are two options to install and lunch MPI in every node, the first for OpenMPI and the second
for mpich, both use the yum package.

sudo yum install openmpi-devel
sudo yum install mpich-devel

Once the GCC compiler, the MPI runtime, and the mpicc wrapper are available in every node the
following commands must be added to the .bashrc file on all compute nodes

export PATH=/usr/lib64/openmpi/bin:$PATH
export LD_LIBRARY_PATH=/usr/lib64/openmpi/lib

The following command runs a program “application.xx” available on every node

mpirun -np 32 -hostfile ~/nodefile ~/application.xx

with the hostfile called “nodefile” compatible with OpenMPI created as follows:

$ cat ~/nodefile
node1 slots=16
node2 slots=16
node3 slots=16
node4 slots=16

A 64-way MPI job is created. Each node has 16 cores and 16 hyperthreads.
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A.11 HOW TO INSTALL HADOOP ON ECLIPSE ON A WINDOWS SYSTEM
Eclipse (http://www.eclipse.org/) is a software development environment. Eclipse consists of an inte-
grated development environment (IDE) and an extensible plug-in system. It is written mostly in Java
and can be used to develop applications in Java and, by means of various plug-ins, in C, C++, Perl,
PHP, Python, R, Ruby, and several other languages. The IDE is often called Eclipse CDT for C/C++,
Eclipse JDT for Java, and Eclipse PDT for PHP.

The software packages used are:

• Apache Hadoop is a software framework that supports data-intensive distributed applications under
a free license. Hadoop was inspired by Google’s MapReduce; see Section 7.5 for a discussion of
MapReduce and Section 7.6 for an application using Hadoop.

• Cygwin is a Unix-like environment for Microsoft Windows. It is open source software, released
under the GNU General Public License version 2. Cygwin consists of: (1) a dynamic-link library
(DLL) as an API compatibility layer providing a substantial part of the POSIX API functionality;
and (2) an extensive collection of software tools and applications that provide a Unix-like look and
feel.

A. Pre-requisites

• Java 1.6; set JAVA_Home = path where JDK is installed.
• Eclipse Europa 3.3.2

Note: the hadoop plugin was specially designed for Europa and newer releases of Eclipse might
have some issues with hadoop plugin.

B. SSH Installation
1. Install cygwin using the installer downloaded from http://www.cygwin.com. From the Select

Packages window select the openssh and openssl under Net.
Note: Create a desktop icon when asked during installation.

2. Display the “Environment Variables” panel

Computer -> System Properties -> Advanced System Settings
-> Environment Variables

Click on the variable named Path and press Edit; append the following value to the path variable

;c:\cygwin\bin;c:\cygwin\usr\bin

3. Configure the ssh daemon using cygwin. Left click on the cygwin icon on desktop and click “Run
as Administrator”. Type in the command window of cygwin

ssh-host-config.

4. Answer “Yes” when prompted sshd should be installed as a service; answer “No” to all other
questions.

http://www.eclipse.org/
http://www.cygwin.com
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5. Start the cygwin service by navigating to

Control Panel -> Administrative Tools -> Services

Look for cygwin sshd and start the service.
6. Open cygwin command prompt and execute the following command to generate keys

ssh-keygen

7. When prompted for filenames and pass phrases press ENTER to accept default values. After the
command has finished generating keys, enter the following command to change into your .ssh
directory:

cd ~/.ssh

8. Check if the keys were indeed generated

ls -l

9. The two files id_rsa.pub and id_rsa with recent creation dates contain authorization keys.
10. To register the new authorization keys, enter the following command (Note: the sharply-angled

double brackets are very important)

cat id_rsa.pub >> authorized_keys

11. Check if the keys were set up correctly

ssh localhost

12. Since it is a new ssh installation, you will be warned that authenticity of the host could not be
established and will be asked whether you really want to connect. Answer YES and press ENTER.
You should see the cygwin prompt again, which means that you have successfully connected.

13. Now execute again the command:

ssh localhost

this time no prompt should appear.

C. Download hadoop
1. Download hadoop 0.20.1 and place in a directory such as

C:\Java

2. Open the cygwin command prompt and execute

cd

3. Enable the home directory folder to be shown in the Windows Explorer window

explorer

4. Open another Windows Explorer window and navigate to the folder that contains the downloaded
hadoop archive.

5. Copy the hadoop archive into the home directory folder.
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FIGURE A.8

The result of unpacking hadoop.

D. Unpack hadoop
1. Open a new cygwin window and execute

tar -xzf hadoop-0.20.1.tar.gz

2. List the contents of the home directory

ls -l

A newly created directory called hadoop-0.20.1 should be seen. Execute

cd hadoop-0.20.1
ls -l

The files listed in Figure A.8 should be seen.

E. Set properties in configuration file
1. Open a new cygwin window and execute the following commands

cd hadoop-0.20.1
cd conf
explorer

2. The last command will cause the Explorer window for the conf directory to pop up. Minimize it
for now or move it to the side.
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FIGURE A.9

The creation of HDFS.

3. Launch Eclipse or a text editor such as Notepad ++ and navigate to the conf directory
and open the file hadoop-site to insert the following lines between < conf iguration > and
< /conf iguration > tags.

<property>
<name>fs.default.name</name>
<value>hdfs://localhost:9100</value>
</property>
<property>
<name>mapred.job.tracker</name>
<value>localhost:9101</value>
</property>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>

F. Format the Namenode
Format the namenode to create a Hadoop Distributed File System (HDFS). Open a new cygwin

window and execute the following commands:

cd hadoop-0.20.1
mkdir logs
bin/hadoop namenode -format

When the formatting of the namenode is finished, the message in Figure A.9 appears.

A.12 EXERCISES AND PROBLEMS
Problem 1. Establish an account to AWS. Use the AWS management console to launch an EC2

instance and connect to it.
Problem 2. Launch three EC2 instances; the computations carried out by the three instances should

consist of two phases and the second phase should be started only after all instances
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have finished the first stage. Design a protocol and use Simple Queue Service (SQS) to
implement the barrier synchronization after the first phase.

Problem 3. Use the Zookeeper to implement the coordination model in Problem 2.
Problem 4. Use the Simple Workflow Service (SWF) to implement the coordination model in Prob-

lem 2. Compare the three methods.
Problem 5. Upload several (10–20) large image files to an S3 bucket. Start an instance which

retrieves the images from the S3 bucket and compute the retrieval time. Use the Elasti-
Cache service and compare the retrieval time for the two cases.

Problem 6. Numerical simulations are ideal applications for cloud computing. Output data analy-
sis of a simulation experiment requires the computation of confidence intervals for the
mean for the quantity of interest [296]. This implies that one must run multiple batches
of simulation, compute the average value of the quantity of interest for each batch, and
then calculate say 95% confidence intervals for the mean. Use the CloudFormation ser-
vice to carry out a simulation using multiple cloud instances which store partial results
in S3 and then another instance computes the confidence interval for the mean.

Problem 7. Run an application which takes advantage of the Autoscaling service.
Problem 8. Use the Elastic Beanstalk service to run an application and compare it with the case

when the Autoscaling service was used.
Problem 9. Design a cloud service and a testing environment; use the Elastic Beanstalk service to

support automatic scaling up and down and use the Elastic Load Balancer to distribute
the incoming service request to different instances of the application.
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APPENDIX

CLOUD PROJECTS

Several projects for students enrolled in a cloud computing class and a research project involving
an extensive simulation are discussed in this section. These projects reflect the great appeal of cloud
computing for several types of applications. Large-scale simulation of complex systems such as the
one discussed in Sections B.1 and B.2 can only be done using the large pool of resources provided by
clouds. Cloud services such as the one discussed in Sections B.3 and B.4 are another important class
of applications.

Design projects where multiple alternatives must be evaluated and compared, such as the one dis-
cussed in Section B.5, benefit from a cloud environment. Several, possibly many design alternative can
be simulated concurrently; then the selection of the best alternatives based on different performance
objective can be done by multiple instances running concurrently. Big Data applications such as the one
discussed in Section B.6 require resources that can only be provided by super computers or computer
clouds. Clouds are by far the better alternative to supercomputers due to access and lower cost.

B.1 CLOUD-BASED SIMULATION OF A DISTRIBUTED TRUST ALGORITHM
Mobile wireless applications are likely to benefit from cloud computing, as discussed in Chapter 12.
This expectation is motivated by several reasons:

• The convenience of data access from any site connected to the Internet.
• The data transfer rates of wireless networks are increasing; the time to transfer data to and from a

cloud is no longer a limiting factor.
• The mobile devices have limited resources; while new generations of smart phones and tablet com-

puters are likely to use multi-core processors and have a fair amount of memory, power consumption
is and will continue to be a major concern in the near future. Thus, it seems reasonable to delegate
compute-intensive and data-intensive tasks to an external entity, e.g., a cloud.

The first application we discuss is a cloud-based simulation for trust evaluation in a Cognitive Ra-
dio Networks (CRN) [67]. The available communication spectrum is a precious commodity and the
objective of a CRN is to use the communication bandwidth effectively, while attempting to avoid in-
terference with licensed users. Two main functions necessary for the operation of a CRN are spectrum
sensing and spectrum management; the former detects unused spectrum and the later decides the op-
timal use of the available spectrum. Spectrum sensing in CRNs is based on information provided by
the nodes of the network. The nodes compete for the free channels and some may supply deliberately
distorted information to gain advantage over the other nodes; thus, trust determination is critical for the
management of CRNs.

Cloud Computing. DOI: 10.1016/B978-0-12-812810-7.00026-1
Copyright © 2018 Elsevier Inc. All rights reserved.
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Cognitive radio networks. Research in the last decade reveals a significant temporal and spatial under-
utilization of the allocated spectrum. Thus, the motivation to opportunistically harness the vacancies of
spectrum at a given time and place.

The original goal of cognitive radio, first proposed at Bell Labs [346,347], was to develop a
software-based radio platform which allows a reconfigurable wireless transceiver to automatically
adapt its communication parameters to network availability and to user demands. Today the focus
of cognitive radio is on spectrum sensing [78].

We recognize two types of devices connected to a CRN, the primary and the secondary ones;
primary devices have exclusive rights to specific regions of the spectrum, while secondary devices
enjoy dynamic spectrum access and are able to use a channel, provided that the primary, licensed to
use that channel, is not communicating. Once a primary starts its transmission, the secondary using
the channel is required to relinquish it and identify another free channel to continue its operation; this
mode of operation is called an overlay mode.

Cognitive radio networks are often based on cooperative spectrum sensing strategy. In this mode
of operation each device determines the occupancy of the spectrum based on its own measurements
combined with information from its neighbors and then shares its own spectrum occupancy assessment
with its neighbors [181,472,473].

Information sharing is necessary because a device alone cannot determine the true spectrum oc-
cupancy. Indeed, a secondary device has a limited transmission and reception range; device mobility
combined with typical wireless channel impairments such as multi path fading, shadowing, and noise
add to the difficulties of gathering accurate information by a single device.

Individual devices of a centralized, or infrastructure-based CRN, send the results of their mea-
surements regarding spectrum occupancy to a central entity, be it a base station, an access point, or a
cluster head. This entity uses a set of fusion rules to generate the spectrum occupancy report and then
distributes it to the devices in its jurisdiction. The area covered by such networks is usually small as
global spectrum decision are affected by the local geography.

There is another mode of operation based on the idea that a secondary device operates at a much
lower power level than a primary one. In this case the secondary can share the channel with the primary
as long as its transmission power is below a threshold, μ, that has to be determined periodically. In this
scenario the receivers wishing to listen to the primary are able to filter out the “noise” caused by the
transmission initiated by secondaries if the signal-to-noise ratio, (S/N), is large enough.

We are only concerned with the overlay mode whereby a secondary device maintains an occupancy
report, which gives a snapshot of the current status of the channels in the region of the spectrum it is
able to access. The occupancy report is a list of all the channels and their state, e.g., 0 if the channel is
free for use and 1 if the primary is active. Secondary devices continually sense the channels they can
access to gather accurate information about available channels.

The secondary devices of an ad hoc CRN compete for free channels and the information one device
may provide to its neighbors could be deliberately distorted; malicious devices will send false infor-
mation to the fusion center in a centralized CRN. Malicious devices could attempt to deny the service,
or to cause other secondary devices to violate spectrum allocation rules. To deny the service a device
will report that free channels are used by the primary. To entice the neighbors to commit FCC viola-
tions, the occupancy report will show that channels used by the primary are free. This attack strategy
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is called secondary spectrum data falsification (SSDF) or Byzantine attack.1 Thus, trust determination
is a critical issue for CR networks.

Trust. The actual meaning of trust is domain and context specific. Consider for example networking;
at the MAC-layer (Medium Access Control) the multiple-access protocols assume that all senders
follow the channel access policy, e.g., in CSMA-CD a sender senses the channel and then attempts to
transmit if no one else does. In a store-and-forward network, trust assumes that all routers follow a
best-effort policy to forward packets towards their destination. We shall use the term node instead of
device throughout the remaining of this section.

In the context of cognitive radio trust is based on the quality of information regarding the channel
activity provided by a node. The status of individual channels can be assessed by each node based on
the results of its own measurements combined with the information provided by its neighbors, as is the
case of several algorithms discussed in the literature [105,472].

The alternative discussed in Section B.3 is to have a cloud-based service which collects information
from individual nodes, evaluates the state of each channel based on the information received, and
supplies this information on demand. Evaluation of the trust and identification of untrustworthy nodes
are critical for both strategies [393].

A distributed algorithm for trust management in cognitive radio. The algorithm computes the trust
of node 1 ≤ i ≤ n in each node in its vicinity, j ∈ Vi , and requires several preliminary steps. The basic
steps executed by a node i at time t are:
1. Determine node i’s version of the occupancy report for each one of the K channels:

Si(t) = {si,1(t), si,2(t), . . . , si,K(t)} (B.1)

In this step node i measures the power received on each of the K channels.
2. Determine the set Vi(t) of the nodes in the vicinity of node i. Node i broadcasts a message and

individual nodes in its vicinity respond with their NodeId.
3. Determine the distance to each device j ∈ Vi(t) using the algorithm described in this section.
4. Infer the power as measured by each device j ∈ Vi(t) on each channel k ∈ K .
5. Use the location and power information determined in the previous two steps to infer the status of

each channel

s
inf er
i,k,j (t) with 1 ≤ k ≤ K, j ∈ Vi(t) (B.2)

a secondary node j should have determined: 0 if the channel is free for use, 1 if the primary device
is active, and X if it cannot be determined.

s
inf er
i,k,j (t) =

⎧⎨
⎩

0 if secondary node j decides that channel k is free
1 if secondary node j decides that channel k is used by the primary
X if no inference can be made

(B.3)

6. Receive the information provided by neighbor j ∈ Vi(t), Srecv
i,k,j (t).

1See section for 3.12 for a brief discussion of Byzantine attacks.
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7. Compare the information provided by neighbor j ∈ Vi(t)

Srecv
i,k,j (t) = {srecv

i,1,j (t), s
recv
i,2,j (t), . . . , s

recv
i,K,j (t)} (B.4)

with the information inferred by node i about node j

S
inf er
i,k,j (t) = {sinf er

i,1,j (t), s
inf er

i,2,j (t), . . . , s
inf er
i,K,j (t)} (B.5)

8. Compute the number of matches, mismatches, and cases when no inference is possible, respec-
tively,

αi,j (t) =M
[
S

inf er
i,k,j (t), Srecv

i,k,j (t)
]

(B.6)

with M the number of matches between the two vectors,

βi,j (t) =N
[
S

inf er
i,k,j (t), Srecv

i,k,j (t)
]

(B.7)

with N the number of mismatches between the two vectors, and Xi,j (t) the number of cases where
no inference could be made.

9. Use the quantities αi,j (t), βi,j (t), and Xi,j (t) to assess the trust in node j . For example, compute
the trust of node i in node j at time t as

ζi,j (t) = [
1 + Xi,j (t)

] αi,j (t)

αi,j (t) + βi,j (t)
(B.8)

Simulation of the distributed trust algorithm. The cloud application is a simulation of a CRN to
assess the effectiveness of a particular trust assessment algorithm. Multiple instances of the algorithm
run concurrently on an AWS cloud. The area where the secondary nodes are located is partitioned in
several overlapping sub-areas as in Figure B.1. The secondary nodes are identified by an instance ID,
iId, as well as a global ID, gId. The simulation assumes that the primary nodes cover the entire area
thus their position is immaterial.

The simulation involves a controller and several cloud instances; in its initial implementation, the
controller runs on a local system under Linux Ubuntu 10.04 LTS. The controller supplies the data, the
trust program, and the scripts to the cloud instances; the cloud instances run under the Basic 32-bit
Linux image on AWS, the so called t1.micro. The instances run the actual trust program and compute
the instantaneous trust inferred by a neighbor; the results are then processed by an awk2 script to
compute the average trust associated with a node as seen by all its neighbors. On the next version of
the application the data is stored on the cloud using the S3 service and the controller also runs on the
cloud.

In the simulation discussed here the nodes with

gId = {1,3,6,8,12,16,17,28,29,32,35,38,39,43,44,45} (B.9)

2The AWK utility is based on a scripting language and used for text processing; in this application it is used to produce formatted
reports.
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FIGURE B.1

Data partitioning for the simulation of a trust algorithm; the area covered is of size 100 × 100 units. The nodes
in the four sub-areas of size 50 × 50 units are processed by an instance of the cloud application. The
sub-areas allocated to an instance overlap to allow an instance to have all the information about a node in its
coverage area.

were programmed to be dishonest. The results show that the nodes programmed to act maliciously
have a trust value lower than that of the honest nodes; their trust value is always lower than 0.6 and,
in many instances lower than 0.5, see Figure B.2. We also observe that the node density affects the
accuracy of the algorithm; the algorithm predicts more accurately the trust in densely populated areas.
As expected, nodes with no neighbors are unable to compute the trust.

In practice the node density is likely to be non-uniform, high density in a crowded area such as
a shopping mall, and considerably lower in surrounding areas. This indicates that when the trust is
computed using the information provided by all secondary nodes we can expect a higher accuracy of
the trust determination.

B.2 SIMULATION OF TRAFFIC MANAGEMENT IN A SMART CITY
The objective of the project is to study the traffic crossing the center of a city for different traffic
intensities and traffic light scheduling strategies.

The layout of the city center. Rectangular grid with n rows and m columns. There are NS (North–
South) avenues and EW (East–West) streets. All avenues and streets are one way and have multiple
lanes.

• The NS and SN avenues are ANS(i) and ASN
i , i ≤ m, respectively. The EW and WE streets are

SEW
j and SWE

j , j ≤ n, respectively.
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FIGURE B.2

The trust values computed using the distributed trust algorithm. The secondary nodes programmed to act
maliciously have a trust value less than 0.6 and many less than 0.5, lower than that of the honest nodes.

• All distances are measured in c units; one unit equals the average car length plus an average required
distance from the car ahead.

• The distance between rows i and i+1 and between columns j and j +1 are denoted by di,1 ≤ i ≤ n

and dj ,1 ≤ j ≤ m, respectively and min(di, dj ) > kc with k > 100.
• The direction of one-way traffic alternates on both avenues and streets; ANS

j , j ∈ {1,3, . . .} and

ASN , j ∈ {2,4, . . .}; similarly, SEW
i , i ∈ {1,3, . . .} and SWE, i ∈ {2,4, . . .}. Avenues and streets

have either two or three lines. Call LNS
j the number of lanes of ANS

j .

The traffic lights are installed at all intersections Ii,j ,1 ≤ i ≤ n, 1 ≤ j ≤ m. The traffic lights Ii,j ,1 <

i < n, 1 < j < m allow left turns. Call τ
gNS
i,j (t), τ

gNW
i,j (t), τ

gEW
i,j (t) and τ

gES
i,j (t) the duration of the

green light for the cycle starting at time t for directions NS, NW, EW, and ES, respectively, of traffic
light Ii,j .

Cars enter and exit the grid from all directions, NS, SN, EW, and WE.

• Each car has an associated path. For example, the path P k of car Ck
i , 1 ≤ i ≤ MaxConv entering

the grid is described by the pair entry point Ik,entry
i,j and exit point Ik,exit

i,j with i = 1 or i = n and

j = 1 or j = m and at most two intermediate turning points Ik,turn1
i,j and Ik,turn2

i,j with 1 < i < n

and 1 < j < m. Call t ini the time when a car enters the grid.
• Cars entering the grid are grouped in “convoys” of different sizes. Convoys can be split when cars

leave it to turn left or right or when the light turns red. Convoys are merged when cars enter the
convoy or when cars from a different convoy join one convoy stopped at a traffic light.
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• Cars whose paths requires a right turn should be in the right lane of an avenue or street and cars
whose path requires a left turn should be on the left lane. Cars that do not turn should be on the
center lane.

• Call νin
i,j (t, s) and νout

p,q(t, s) the number of cars in the convoys entering and respectively exiting the
grid at intersections Ii,j and Ip,q , in the interval s − t .

• Call �in
i,j (t, s) the traffic intensity as the number of cars entering the grid in the interval s − t .

Hints for project implementation. Some of the suggestions for the project:
1. Create a description file with separate sections describing:

(a) The layout including n,m, c; for example, n = 100, m = 80, and c = 12 m.
(b) The initial setting of the traffic lights.
(c) The car arrival process and the convoys at each entry point.

The simulation will require several data structures including:

• Car records. Each record includes:
1. static data such as: the CarId, the entry point, the exit point, the entry time, the path;
2. dynamic data such as: a list of all traffic lights it had to wait for the green light and the waiting

time, the speed on each block, the time of exit.
• Traffic light records. Each record should include:

1. static data such as: TrafficLightId; the location as the intersection of avenue AXX
i with street

SYY
j ;

2. dynamic data such as: the number of cycles (red + yellow + green); for each cycle it should
include the times for green in each direction and the identity of convoys waiting.

Test several algorithms for traffic management.
1. Dumb scheduling – traffic lights follow a static, deterministic schedule.
2. Individual self-managed scheduling – a traffic light switches to green in direction DD when the

length of the queue of cars waiting to cross the intersection exceeds a threshold Lsw .
3. Coordinated scheduling – modify the previous algorithm to include communication among neigh-

boring nodes; use a publish-subscribe algorithm in which each traffic light subscribes to messages
sent by its four neighbors.

4. Convoy-aware algorithm – attempts to create a green wave for the largest convoys and anticipate
the setting of green lights to next intersections at the time the convoy reaches the intersection.

To evaluate the performance of an algorithm compute the average transition time of all cars in the
interval (s, t).

Project implementation.3 The simulation includes a graphical user interface displaying the smart
city center. The four traffic scheduling algorithms are called: Dumb, Self-Managed, Coordinated, and
Convoy.

The implementation uses Java Swing API and defines several classes:
1. Road – manages the layout of the grid.

3The implementation of the project is due to the group of five students: Ahmed Alhazmi, Austin Jerome, Ahmad Qutbuddin, Sai
Lalitha Renduchintala, and Wendelyn Sanabria.
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FIGURE B.3

The number of cars entering the system function of time represented by simulation cycles. Higher values of
the parameter λ in Equation (B.10) scatters cars for a larger number of simulation cycles.

2. Traffic Point – handles intersections, as well as entry and exit points.
3. PaintGrid – is responsible for continuously painting and repainting the grid for a given time inter-

val.
4. Frame – sets the size of the Frame Window used by the Canvas drawn the grid.
5. Car – creates cars and feeds them to a Java hashmap dynamic list.
6. Schedule – manages changing of the traffic lights and implements the logic of the four scheduling

algorithms and controls the car arrival process.
7. Convoy – generates new convoys and adds cars to a convoy.
8. Statistics – gather traffic statistics.
9. StatWindow – display traffic statistics.

The car arrival stochastic process has an exponential distribution of the interarrival-times

p(t) = λe−λt . (B.10)

Lower values of parameter λ in Equation (B.10) results in higher concentration of cars for the first
few simulation cycles, while higher values of lambda scatters cars on larger number of simulation
cycles see Figure B.3. A record describing the path of a car is created at the time when a car enters the
grid. The path of a car could have zero turns if the car enters and exit on the same street or avenue. The
path will have one turn if the car enters on one street and exits from an avenue, or enters an avenue and
exits a street. The path will have two turns if the car enters one street and exits from another street or
enters an avenue and exits from a different avenue.

Shown next is a segment of the configuration file specifying the layout and some of parameters
related to cars.
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import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;

public class Configuration {
// Simulation class:
// Exponential Car Insertion Rate; Number of Cars
protected int Lambda = 15;
protected int NumberOfCars = 350;
// Grid class:
// Number of Streets and Avenues
// Maximum and Minimum Block Side Length in c units
protected int NumberOfStreets = 3;
protected int NumberOfAvenues = 3;
protected int MaximumBlockSide = 35;
protected int MinimumBlockSide = 35;
// Road class:
// Number of Forward and Turning Lanes
protected int NumberOfForwardLanes = 2;
protected int NumberOfTurningLanes = 1;
// TrafficLight class
// Maximum Red and Green time in seconds
// Maximum Red Time could be Maximum Green Time + Yellow Time
// Yellow Time in seconds; Intersection light initial status (TBD)
// Scheduling Scheme D, S, C, V
protected int MaxRedTime = 4000;
protected int MaxGreenTime = 3000;
protected int YellowTime = 1000;
protected char SchedulingScheme = ’C’;
// Car class:
// Maximum Car Speed in c/second unit
// Car Acceleration in c/second2 unit; Car length and width in pixels
protected int CarSpeed = 5;
protected int CarAcceleration = 1;
protected int CarLength = 6;
protected int CarWidth = 3;
protected int Clearance = 2;

The next step involves the logic of car movement through an intersection. The traffic light checks
if the car is moving straight or turning using car path information. The state of the traffic light status
determines whether the car should decelerate to stop or move ahead and accelerate towards the next
intersection. If the car turns, then a car speed switch function is called.
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FIGURE B.4

(A) Self-managed scheduling uses the information about the number of cars to change the traffic light. (B) In
the coordinated scheduling self-managed intersections coordinate their traffic lights.

FIGURE B.5

(A) Convoy of cars waiting at an intersection (left); traffic lights extend the yellow lights to allow a convoy to
cross the intersection (right). (B) The simulation of maximum capacity scenario based on an ideal
orchestration.

The self-managed scheduling uses two queues for the traffic lights at the intersection of streets and
avenues. The length of the car queue at the traffic lights triggers changes of the traffic lights, as seen in
Figure B.4A

The coordinated scheduling algorithm was implemented as an extension to the self-managed
scheduling algorithm. Now an intersection communicates with its neighboring intersections to deter-
mine the number of cars that are passing through. This allows the next intersection along the path to
turn Green when a larger number of cars will reach the intersection, see Figure B.4B.
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FIGURE B.6

The three bars for each one of the four traffic lights scheduling algorithms represent: (a) the waiting time
before entering the grid; (b) the transit time through the grid; and (c) the waiting time at traffic lights while
transiting the grid. The four traffic lights scheduling algorithms are: (1) dumb; (2) self-managed; (3) correlated;
and (4) convoys.

The convoy scheduling algorithm treats a number of n cars separated by a car length, c, to be
assimilated with larger car of length n × c. Once a convoy is in motion, a traffic light extends its
yellow state to allow the entire convoy to pass. Once a car turns, the whole convoy is broken up, see
Figure B.5A.

We have also investigated an ideal orchestrations scenario when the distance between cars allows
the two continuous streams of cars entering every intersection from the two directions to pass alterna-
tively through without stopping. This ideal traffic light-less scenario seen in Figure B.5B allows us to
determine the maximum capacity of the grid.

Some of the simulation results are discussed next. The average transit time decreases steadily from
about 36.8 units of simulated time for the Dumb traffic lights scheduling algorithm to 32.6 for the
self-managed, 32 for coordinated, and 31.4 for the convoy. The average waiting time is 19.8, 17.4, and
15.2 for the self-managed, coordinated, and convoys traffic lights scheduling algorithms, respectively.

Figure B.6 shows also a comparison of four algorithms. For each algorithm it shows the waiting
time for entering the grid, the transit time through the grid, and the waiting time at traffic lights while
transiting through grid. The convoy scheduling algorithm performs best. Figure B.7 shows the confi-
dence intervals from 50 simulation runs for the coordinated scheduling algorithm.

B.3 A CLOUD TRUST MANAGEMENT SERVICE
The cloud service discussed in this section [67] is an alternative to the distributed trust management
scheme analyzed in Section B.1. Mobile devices are ubiquitous nowadays and their use will continue
to increase. Clouds are emerging as the computing and the storage engines of the future for a wide
range of applications. There is a symbiotic relationship between the two; mobile devices can consume,
as well as produce very large amounts of data, while computer clouds have the capacity to store and
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FIGURE B.7

Confidence intervals for the car transit time.

deliver such data to the user of a mobile device. To exploit the potential of this symbiotic relationship
we propose a new cloud service for the management of wireless networks.

Mobile devices have limited resources. While new generations of smart phones and tablet comput-
ers are likely to use multicore processors and have a fair amount of memory, power consumption is
still, and will continue to be in the near future, a major concern. It seems thus, reasonable to delegate
compute-intensive and data-intensive tasks to the cloud.

Transferring computations related to CRN management to a cloud supports the development of
new, possibly more accurate, resource management algorithms. For example, algorithms to discover
communication channels currently in use by a primary transmitter could be based on past history, but
are not feasible when the trust is computed by the mobile device. Such algorithms require massive
amounts of data and can also identify malicious nodes with high probability.

Mobile devices such as smart phones and tablets are able to communicate using two networks:
(i) a cellular wireless network; and (ii) a WiFi network. The service we propose assumes that a mobile
device uses the cellular wireless network to access the cloud, while the communication over the WiFi
channel is based on cognitive radio (CR). The amount of data transferred using the cellular network
is limited by the subscriber’s data plan, but no such limitation exists for the WiFi network. The cloud
service discussed next will allow mobile devices to use the WiFi communication channels in a cognitive
radio network environment and will reduce the operating costs for the end-users.

While the focus of our discussion is on trust-management for CRN networks, the cloud service we
propose can be used for tasks other than the bandwidth management. For example, routing in a mobile
ad hoc network, detection and isolation of non-cooperative nodes, and other network management and
monitoring functions could benefit from the identification of malicious nodes.

Model assumptions. The cognitive radio literature typically analyzes networks with a relatively small
number of nodes active in a limited geographic area; thus, all nodes in the network sense the same
information on channel occupancy. Channel impairments such as signal fading, noise, and so on, cause
errors and lead trustworthy nodes to report false information. We consider networks with a much larger
number of nodes distributed over a large geographic area; as the signal strengths decays with the
distance we consider several rings around a primary tower. We assume a generic fading model given
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by the following expression

γ i
k = Tk × A2

sα
ik

(B.11)

where γ i
k is the received signal strength on channel k at location of node i, A is the frequency constant,

2 ≤ α ≤ 6 is path loss factor, sα
ik is the distance between primary tower Pk and node i, and Tk is the

transition power of primary tower Pk transmitting on channel k.
In our discussion we assume that there are K channels labeled 1,2, . . . ,K and that the primary

transmitter P k transmits on channel k. The algorithm is based on several assumptions regarding the
secondary nodes, the behavior of malicious nodes, and the geometry of the system. First, we assume
that the secondary nodes:

• Are mobile devices; some are slow-moving, while others are fast-moving.
• Cannot report their position because they are not equipped with a GPS system.
• The clocks of the mobile devices are not synchronized.
• The transmission and reception range of a mobile device can be different.
• The transmission range depends on the residual power of each mobile device.

We assume that the malicious nodes in the network are a minority and their behavior is captured by the
following assumptions:

• The misbehaving nodes are malicious, rather than selfish; their only objective is to hinder the activity
of other nodes whenever possible, a behavior distinct from the one of selfish nodes motivated to gain
some advantage.

• The malicious nodes are uniformly distributed in the area we investigate.
• The malicious nodes do not collaborate in their attack strategies.
• The malicious nodes change the intensity of their Byzantine attack in successive time slots; similar

patterns of malicious behavior are easy to detect and an intelligent attacker is motivated to avoid
detection.

The geometry of the system is captured by Figure B.8. We distinguish primary and secondary nodes
and the cell towers used by the secondary nodes to communicate with service running on the cloud.

We use majority voting rule for a particular ring around a primary transmitter; the global decision
regarding the occupancy of a channel requires a majority of the votes. Since the malicious nodes are a
minority and they are uniformly distributed, the malicious nodes in any ring are also a minority; thus,
a ring based majority fusion is a representative of accurate occupancy for the channel associated with
the ring.

All secondary nodes are required to register first and then to transmit periodically their current
power level, as well as their occupancy report for each one of the K channels. As mentioned in the
introductory discussion, the secondary nodes connect to the cloud using the cellular network. After a
mobile device is registered, the cloud application requests the cellular network to detect its location; the
towers of the cellular network detect the location of a mobile device by triangulation with an accuracy
which is a function of the environment and is of the order of 10 meters. The location of the mobile
device is reported to the cloud application every time they provide an occupancy report.



e40 APPENDIX B CLOUD PROJECTS

FIGURE B.8

Schematic representation of a CR layout; four primary nodes, P1–P4, a number of mobile devices, two towers
for a cellular network and a cloud are shown. Not shown are the hotspots for the WiFi network.

The nodes which do not participate in the trust computation will not register in this cloud-based
version of the resource management algorithm thus, they do not get the occupancy report and cannot
use it to identify free channels. Obviously, if a secondary node does not register it cannot influence
other nodes and prevent them from using free channels, or tempt them to use busy channels.

In the registration phase a secondary node transmits its MAC address and the cloud responds with
the tuple (
, δs). Here, 
 is the time interval between two consecutive reports, chosen to minimize
the communication, as well as the overhead for sensing the status of each channel. To reduce the
communication overhead secondary nodes should transmit only the changes from the previous status
report. δs < 
 is the time interval to the first report expected from the secondary node. This scheme
provides a pseudo-synchronization, so that the data collected by the cloud and used to determine the
trust is based on observations made by the secondary nodes at about the same time.

An algorithm for trust evaluation based on historical information. The cloud computes the proba-
ble distance dk

i of each secondary node i from the known location of a primary transmitter, P k . Based
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on signal attenuation properties we conceptualize N circular rings centered at the primary where each
ring is denoted by Rk

r , with 1 ≤ r ≤ N the ring number.
The radius of a ring is based on the distance dk

r to the primary transmitter P k . A node at a distance
dk
i ≤ dk

1 is included in the ring Rk
1, nodes at distance dk

1 < dk
i ≤ dk

2 are included in the ring Rk
2, and so

on. The closer to the primary, the more accurate the channel occupancy report of the nodes in the ring
should be. Call nk

r the number of nodes in ring Rk
r .

At each report cycle at time tq , the cloud computes the occupancy report for channel 1 ≤ k ≤ K

used by primary transmitter P k . The status of channel k reported by node i ∈ Rk
r is denoted as sk

i (tq).
Call σk

one(tq) the count of the nodes in the ring Rk
r reporting that the channel k is not free (reporting

sk
i (tq) = 1) and σk

zero(tq) the count of those reporting that the channel is free (reporting sk
i (tq) = 0):

σk
one(tq) = 

nk
r

i=1s
k
i (tq) and σk

zero(tq) = nk
r − σk

one(tq). (B.12)

Then the status of channel k reported by the nodes in the ring Rk
r is determined by majority voting as

σk
Rr

(tq)

{
= 1 when σk

one(tq) ≥ σk
zero(tq)

= 0 otherwise
(B.13)

To determine the trust in node i we compare sk
i (tq) with σk

Rr
(tq); call αk

i,r (tq) and βk
i,r (tq) the number

of matches and, respectively, mismatches in this comparison for each node in the ring Rk
r . We repeat

this procedure for all rings around P k and construct

αk
i (tq) = 

nk
r

r=1α
k
i,r (tq) and βk

i (tq) = 
nk

r

r=1β
k
i,r (tq) (B.14)

Node i will report the status of the channels in the set Ci(tq), the channels with index k ∈ Ci(tq); then
quantities αi(tq) and βi(tq) with αi(tq) + βi(tq) = |Ci(tq)| are

αi(tq) = k∈Ci
αk

i (tq) and βi(tq) = k∈Ci
βk

i (tq). (B.15)

Finally, the global trust in node i is a random variable

ζi(tq) = αi(tq)

αi(tq) + βi(tq)
. (B.16)

The trust in each node at each iteration is determined using a similar strategy as the one discussed
earlier; its status report, Sj (t), contains only information about the channels it can report on and only
if the information has changed from the previous reporting cycle.

Then a statistical analysis of the random variables for a window of time W , ζj (tq), tq ∈ W allows
us to compute the moments as well as a 95% confidence interval. Based on these results we assess if
node j is trustworthy and eliminate the untrustworthy ones when we evaluate the occupancy map at
the next cycle. We continue to assess the trustworthiness of all nodes and may accept the information
from node j when its behavior changes.

Let us now discuss the use of historical information to evaluate trust. We assume a sliding window
W(tq) consists of nw time slots of duration τ . Given two decay constants k1 and k2, with k1 + k2 = 1,
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we use an exponential averaging giving decreasing weight to old observations. We choose k1 << k2 to
give more weight to the past actions of a malicious node. Such nodes attack only intermittently and try
to disguise their presence with occasional good reports; the misbehavior should affect the trust more
than the good actions. The history-based trust requires the determination of two quantities

αH
i (tq) = 

nw−1
i=0 αi(tq − iτ )ki

1 and βH
i (tq) = 

nw−1
i=0 βi(tq − iτ )ki

2 (B.17)

Then the history-based trust for node i valid only at times tq ≥ nwτ is:

ζH
i (tq) = αH

i (tq)

αH
i (tq) + βH

i (tq)
. (B.18)

For times tq < nwτ the trust will be based only on a subset of observations rather than a full window
on nw observations.

This algorithm can also be used in regions where the cellular infrastructure is missing. An ad hoc
network could allow the nodes that cannot connect directly to the cellular network to forward their
information to nodes closer to the towers and then to the cloud-based service.

Simulation of the history-based algorithm for trust management. The aim of the history-based trust
evaluation is to distinguish between trustworthy and malicious nodes. We expect the ratio of malicious
to trustworthy nodes, as well as the node density, to play an important role in this decision. The node
density, ρ, is the number of nodes per unit of area. In our simulation experiments the size of the area
is constant, but the number of nodes increases from 500 to 2 000 thus, the node density increases by a
factor of four. The ratio of the number of malicious to the total number of nodes varies between α = 0.2
to a worst case of α = 0.6.

The performance metrics we consider are: the average trust for all nodes, the average trust of in-
dividual nodes, and the error of honest/trustworthy nodes. We wish to see how the algorithm behaves
when the density of the nodes increases; we consider four cases with 500,1000,1 500 and 2 000 nodes
on the same area thus, we allow the density to increase by a factor of four. We also investigate the
average trust when α, the ratio of malicious nodes to the total number of nodes increases from α = 0.2
to α = 0.4 and, finally, to α = 0.6.

This straightforward data partitioning strategy for the distributed trust management algorithm is
not a reasonable one for the centralized algorithm because it would lead to excessive communication
among the cloud instances. Individual nodes may contribute data regarding primary transmitters in a
different sub-area; to evaluate the trust of each node the cloud instances would have to exchange a
fair amount of information. This data partitioning would also complicate our algorithm which groups
together secondary nodes based on the distance from the primary one.

Instead, we allocate to each instance a number of channels and all instances share the information
about the geographic position of each node; the distance of a secondary node to any primary one can
then be easily computed. This data partitioning strategy scales well in the number of primaries. Thus, it
is suitable for simulation in large metropolitan areas, but may not be able to accommodate cases when
the number of secondaries is of the order of 108–109.

The objectives of our studies are to understand the limitations of the algorithm; the aim of the algo-
rithm is to distinguish between trustworthy and malicious nodes. We expect that the ratio of malicious
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to trustworthy nodes, as well as the node density should play an important role in this decision. The
measures we examine are the average trust for all nodes, as well as the average trust of individual
nodes.

The effect of the malicious versus trustworthy node ratio on the average trust. We report the effect
of the malicious versus trustworthy node ratio on the average trust when the number of nodes increases.
The average trust is computed separately for the two classes of nodes and allows us to determine if the
algorithm is able to clearly separate them.

Recall that the area is constant thus, when the number of nodes increases so does the node density.
First, we consider two extreme cases; the malicious nodes represent only 20% of the total number
of nodes and an unrealistically high presence, of 60%. Then we report on the average trust when the
number of nodes is fixed and the malicious nodes represent an increasing fraction of the total number
of nodes.

Results reported in [67] show that when the malicious nodes represent only 20% of all nodes, there
is a clear distinction between the two groups. The malicious nodes have an average trust of 0.28 and
the trustworthy ones have an average trust index of 0.91, regardless of the number of nodes.

When the malicious nodes represent 60% of all the nodes then the number of nodes plays a signifi-
cant role; when the number of nodes is small the two groups cannot be distinguished their average trust
index is almost equal, 0.55 although the honest nodes have a slightly more average trust value. When
the number of nodes increases to 2 000 and the node density increases four folds then the average trust
of the first (malicious) group decreases to 0.45 and for the second (honest) group it increases to about
0.68.

This result is not unexpected; it only shows that the history-based algorithm is able to classify the
nodes properly even when the malicious nodes are a majority, a situation we do not expect to encounter
in practice. This effect is somewhat surprising; we did not expect that under these extreme condition
the average of the trust of all nodes will be so different for the two groups. A possible explanation is
that our strategy to reward constant good behavior, rather than occasional good behavior, designed to
mask the true intentions of a malicious node, works well.

Figure B.9 shows the average trust function of α, the ratio of malicious versus total number of
nodes. The results confirm the behavior discussed earlier; we see a clear separation of the two classes
only when the malicious nodes are in minority. When the density of malicious nodes approaches a high
value so that they are in majority, the algorithm still performs as evident from the figure that the average
trust for honest nodes even at high value of α is more than for malicious nodes. Thus the trusts reflect
the aim of isolating the malicious from the honest set of nodes. We also observe that the separation is
more clear when the number of nodes in the network increases.

The benefits of a cloud-based service for trust management. A cloud service for trust management
in cognitive networks can have multiple technical as well as economical benefits [97]. The service
is likely to have a broader impact than the one discussed here, it could be used to support a range
of important policies in wireless network where many decisions require the cooperation of all nodes.
A history-based algorithm to evaluate the trust and detect malicious nodes with high probability is at
the center of the solution we have proposed [67].

A centralized, history-based algorithm for bandwidth management in CRNs has several advantages
over the distributed algorithms discussed in the literature:
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FIGURE B.9

The average trust function of α for a population size of 2 000 nodes. As long as malicious nodes represent 50%
or less of the total number of nodes the average trust of malicious nodes is below 0.3, while the one of
trustworthy nodes is above 0.9 in a scale of 0 to 1.0. As the number of nodes increases, the distance between
the average trust of the two classes becomes larger and even larger when α > 0.5. i.e., the malicious nodes are
in majority.

• Drastically reduces the computations a mobile device is required to carry out to identify free chan-
nels and avoid penalties associated with interference with primary transmitters.

• Allows a secondary node to get information about channel occupancy as soon as it joins the system
and later on demand; this information is available even when a secondary node is unable to receive
reports from its neighbors, or when it is isolated.

• Does not require the large number of assumptions critical to the distributed algorithms.
• The dishonest nodes can be detected with high probability and their reports can be ignored; thus

in time the accuracy of the results increases. Moreover, historic data could help detect a range of
Byzantine attacks orchestrated by a group of malicious nodes.

• It is very likely to produce more accurate results than the distributed algorithm as the reports are
based on information from all secondary nodes reporting on a communication channel used by a pri-
mary, not only those in its vicinity; a higher node density increases the accuracy of the predictions.
The accuracy of the algorithm is a function of the frequency of the occupancy reports provided by
the secondary nodes.

The centralized trust management scheme has several other advantages. First, it can be used not only
to identify malicious nodes and provide channel occupancy reports but also to manage the allocation
of free channels. In the distributed case, two nodes may attempt to use a free channel and collide; this
situation is avoided in the centralized case. At the same time, malicious nodes can be identified with
high probability and be denied access to the occupancy report.
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The server could also collect historic data regarding the pattern of behavior of the primary nodes
and use this information for the management of free channels. For example, when a secondary node
requests access for a specific length of time the service may attempt to identify a free channel likely to
be available for that time.

The trust management may also be extended to other network operations such as routing in a mobile
ad hoc network; the strategy in this case would be to avoid routing through malicious nodes.

B.4 A CLOUD SERVICE FOR ADAPTIVE DATA STREAMING
In this section we discuss a cloud application related to data streaming [397]. Data streaming is the
name given to the transfer of data at a high-rate with real-time constraints. Multi-media applications
such as music and video streaming, high-definition television (HDTV), scientific applications which
process a continuous stream of data collected by sensors, the continuous backup copying to a storage
medium of the data flow within a computer, and many other applications require the transfer of real-
time data at a high-rate. For example, to support real-time human perception of the data, multi-media
applications have to make sure that enough data is being continuously received without any noticeable
time lag.

We are concerned with the case when the data streaming involves a multi-media application con-
nected to a service running on a computer cloud. The stream could originate from the cloud, as is the
case of the iCloud service provided by Apple, or could be directed toward the cloud, as in the case of
a real-time data collection and analysis system.

Data streaming involves three entities, the sender, a communication network, and a receiver. The
resources necessary to guarantee the timing constraints include CPU cycles and buffer space at the
sender and the receiver and network bandwidth. Adaptive data streaming determines the data rate
based on the available resources. Lower data rates imply lower quality, but reduce the demands for
system resources.

Adaptive data streaming is possible only if the application permits trade-offs between quantity and
quality. Such trade-offs are feasible for audio and video streaming which allow lossy compression, but
are not acceptable for many applications which processes a continuous stream of data collected by
sensors.

Data streaming requires accurate information about all resources involved and this implies that the
network bandwidth has to be constantly monitored; at the same time, the scheduling algorithms should
be coordinated with memory management to guarantee the timing constraints. Adaptive data streaming
poses additional constraints because the data flow is dynamic. Indeed, once we detect that the network
cannot accommodate the data rate required by an audio or video stream we have to reduce the data rate
thus, to convert to a lower quality audio or video. Data conversion can be done on the fly and, in this
case, the data flow on the cloud has to be changed.

Accommodating dynamic data flows with timing constraints is non-trivial; only about 18% of the
top 100 global video web sites use ABR (Adaptive Bit Rate) technologies for streaming [469].

This application stores the music files in S3 buckets and the audio service runs on the EC2 platform.
In EC2 each virtual machine functions as a virtual private server and is called an instance; an instance
specifies the maximum amount of resources available to an application, the interface for that instance,
as well as the cost per hour.
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EC2 allows the import of VM images from the user environment to an instance through a facility
called VM import. It also distributes automatically the incoming application traffic among multiple
instances using the elastic load balancing facility. EC2 associates an elastic IP address with an account.
This mechanism allows a user to mask the failure of an instance and re-map a public IP address to any
instance of the account, without the need to interact with the software support team.

The adaptive audio streaming involves a multi-objective optimization problem. We wish to convert
the highest quality audio file stored on the cloud to a resolution corresponding to the rate that can be
sustained by the available bandwidth; at the same time, we wish to minimize the cost on the cloud
site, and also minimize the buffer requirements for the mobile device to accommodate the transmission
jitter. Finally, we wish to reduce to a minimum the start-up time for the content delivery.

A first design decision is if data streaming should only begin after the conversion from the WAV
to MP3 format has been completed, or it should proceed concurrently with conversion, in other words
start as soon as several MP3 frames have been generated; another question is if the converted music
file should be saved for later use or discarded.

To answer these question we experimented with conversion from the highest quality audio files
which require a 320 Kbps data rate to lower quality files corresponding to 192,128,64,32 and finally
16 Kbps. If the conversion time is small and constant there is no justification for pipelining data con-
version and streaming, a strategy which complicates the processing flow on the cloud. It makes sense
to cache the converted copy for a limited period of time with the hope that it will be reused in the next
future.

Another design decision is how the two services should interact to optimize the performance; two
alternatives come to mind:
1. The audio service running on the EC2 platform requests the data file from the S3, converts it, and,

eventually, sends it back. The solution involves multiple delays and it is far from optimal.
2. Mount the S3 bucket as an EC2 drive. This solution reduces considerably the start-up time for

audio streaming.
The conversion from a high-quality audio file to a lower quality, thus a lower bit rate is performed

using the LAME library.
The conversion time depends on the desired bit-rate and the size of the original file. Tables B.1,

B.2, B.3, and B.4 show the conversion time in seconds when the source MP3 file are of, 320 Kbps and
192 Kbps, respectively; the size of the input files is also shown.

The platforms used for conversion are: (a) the EC2 t1.micro server for the measurements reported
in Tables B.1 and B.2 and (b) the EC2 c1.medium for the measurements reported in Tables B.3 and B.4.
The instances run the Ubuntu Linux operating system.

The results of our measurements when the instance is the t1.micro server exhibit a wide range of
the conversion times, 13–80 seconds, for the large audio file of about 6.7 MB when we convert from
320 to 192 Kbps. A wide range, 13–64 seconds, is also observed for an audio file of about 4.5 MB
when we convert from 320 to 128 Kbps. For poor quality audio the file size is considerably smaller,
about 0.56 MB and the conversion time is constant and small, 4 seconds.

Figure B.10 shows the average conversion time for the experiments summarized in Tables B.1, B.2.
It is somewhat surprising that the average conversion time is larger when the source file is smaller as
is the case when the target bit rates are 64,32 and 16 Kbps. Figure B.11 shows the average conversion
time for the experiments summarized in Tables B.3 and B.4.
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Table B.1 Conversion time in seconds on a EC2 t1.micro server platform; the source file is of the highest
audio quality, 320 Kbps. The individual conversions are labeled C1 to C10; T̄c is the mean conversion
time.

Bit-rate
(Kbps)

Audio file
size (MB)

C1 C2 C3 C4 C5 C6 C 7 C8 C9 C10 T̄c

192 6.701974 73 43 19 13 80 42 33 62 66 36 46.7

128 4.467982 42 46 64 48 19 52 52 48 48 13 43.2

64 2.234304 9 9 9 9 10 26 43 9 10 10 14.4

32 1.117152 7 6 14 6 6 7 7 6 6 6 7.1

16 0.558720 4 4 4 4 4 4 4 4 4 4 4

Table B.2 Conversion time in seconds on a EC2 t1.micro server platform; the source file is of high audio
quality, 192 Kbps. The individual conversions are labeled C1 to C10; T̄c is the mean conversion time.

Bit-rate
(Kbps)

Audio file
size (MB)

C1 C2 C3 C4 C5 C6 C 7 C8 C9 C10 T̄c

128 4.467982 14 15 13 13 73 75 56 59 72 14 40.4

64 2.234304 9 9 9 32 44 9 23 9 45 10 19.9

32 1.117152 6 6 6 6 6 6 20 6 6 6 7.4

16 0.558720 6 6 6 6 6 6 20 6 6 6 5.1

FIGURE B.10

The average conversion time on a EC2 t1.micro platform. The left bars and the right bars correspond to the
original file at: the highest resolution (320 Kbps data rate) and next highest resolution (192 Kbps data rate),
respectively.

The results of our measurements when the instance runs on the EC2 c1.medium platform show
consistent and considerably lower conversion times; Figure B.11 presents the average conversion time.

To understand the reasons for our results we took a closer look at the two types of EC2 instances,
“micro” and “medium”, and their suitability for the adaptive data streaming service. The t1.micro sup-
ports bursty applications, with a high average-to-peak ratio for CPU cycles, e.g., transaction processing
systems. EBS provides block level storage volumes; the “micro” instances are only EBS-backed.
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Table B.3 Conversion time Tc in seconds on a EC2 c1.medium platform; the source file is of the highest
audio quality, 320 Kbps. The individual conversions are labeled C1 to C10; T̄c is the mean conversion
time.

Bit-rate
(Kbps)

Audio file
size (MB)

C1 C2 C3 C4 C5 C6 C 7 C8 C9 C10 T̄c

192 6.701974 15 15 15 15 15 15 15 15 15 15 15

128 4.467982 15 15 15 15 15 15 15 15 15 15 15

64 2.234304 11 11 11 11 11 11 11 11 11 11 11

32 1.117152 7 7 7 7 7 7 7 7 7 7 7

16 0.558720 4 4 4 4 4 4 4 4 4 4 4

Table B.4 Conversion time in seconds on a EC2 c1.medium platform; the source file is of high audio
quality, 192 Kbps. The individual conversions are labeled C1 to C10; T̄c is the mean conversion time.

Bit-rate
(Kbps)

Audio file
size (MB)

C1 C2 C3 C4 C5 C6 C 7 C8 C9 C10 T̄c

128 4.467982 15 15 15 15 15 15 15 15 15 15 15

64 2.234304 10 10 10 10 10 10 10 10 10 10 10

32 1.117152 7 7 7 7 7 7 7 7 7 7 7

16 0.558720 4 4 4 4 4 4 4 4 4 4 4

FIGURE B.11

The average conversion time on a EC2 c1.medium platform. The left bars and the right bars correspond to the
original file at: the highest resolution (320 Kbps data rate) and next highest resolution (192 Kbps data rate),
respectively.

The “medium” instances support compute-intensive application with a steady and relatively high
demand for CPU cycles. Our application is compute-intensive thus, there should be no surprise that our
measurements for the EC2 c1.medium platform show consistent and considerably lower conversion
times.
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B.5 CLOUD-BASED OPTIMAL FPGA SYNTHESIS
In this section we discuss another class of applications that could benefit from cloud computing. The
benchmarks presented in Section 7.10 compared the performance of several codes running on a cloud
with runs on supercomputers. As expected, the results showed that a cloud is not an optimal environ-
ment for applications exhibiting fine- or medium-grain parallelism.

Indeed, the communication latency is considerably larger on a cloud than on supercomputer with a
more expensive, custom interconnect. This simply means that we have to identify applications which
do not involve extensive communication, or applications exhibiting coarse-grain parallelism.

A cloud is an ideal running environment for scientific applications involving model development
when multiple cloud instances could concurrently run slightly different models of the system. When
the model is described by a set of parameters, the application can be based on the SPMD paradigm
combined with an analysis phase when the results from the multiple instances are ranked based on a
well-defined metric.

In this case there is no communication during the first phase of the application, when partial results
are produced and then written to storage server. The individual instances signal the completion and
a new instance to carry out the analysis and display the results is started. A similar strategy can be
used by engineering applications of mechanical, civil, electrical, electronic, or any other system design
area. In this case the multiple instances run concurrent design for different sets of parameters of the
system.

A cloud application for optimal design of field-programmable gate arrays (FPGAs) is discussed
next. As the name suggests, an FPGA is an integrated circuit designed to be configured/adapted/pro-
grammed in the field to perform a well-defined function [432]. Such a circuit consists of logic blocks
and interconnects that can be “programmed” to carry out logical and/or combinatorial functions, see
Figure B.12.

The first commercially viable FPGA, XC2064, was produced in 1985 by Xilinx. Today FPGAs are
used in many areas including digital signal processing, CRNs, aerospace, medical imaging, computer
vision, speech recognition, cryptography, and computer hardware emulation. FPGAs are less energy ef-
ficient and slower than application-specific integrated circuits (ASICs). The widespread use of FPGAs
is due to their flexibility and the ability to reprogram them.

Hardware description languages (HDLs) such as VHDL and Verilog are used to program FPGAs;
HDLs are used to specify a register-transfer level (RTL) description of the circuit. Multiple stages are
used to synthesize FPGA.

A cloud-based system was designed to optimize the routing and placement of components. The
basic structure of the tool is shown in Figure B.13. The system uses the PlanAhead tool from Xilinx,
see http://www.xilinx.com/, to place system components and route chips on the FPGA logical fabric.
The computations involved are fairly complex and take a considerable amount of time; for example,
a fairly simple system consisting of a software core processor (Microblaze), a block random access
memory (BRAM), and a couple of peripherals can take up to forty minutes to synthesize on a powerful
workstation. Running N design options in parallel on a cloud speeds-up the optimization process by a
factor close to N .

http://www.xilinx.com/
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FIGURE B.12

The structure of a Field Programmable Gate Array (FPGA) with 30 pins, P 1–P 29, 9 logic blocks and 4
switchblocks.

FIGURE B.13

The architecture of a cloud-based system to optimize the routing and placement of components on an FPGA.
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B.6 TENSOR NETWORK CONTRACTION ON AWS
A numerical simulation project related to research in condensed matter physics is discussed in [328]
and overviewed in this section. To illustrate the problems posed by Big Data we analyze different
options offered by 2016 vintage Amazon Web Services for running the application. M4 and C4 seem
to be the best choices for applications such as Tensor Network Contraction (TNC).

Tensor contraction. In linear algebra the rank R of an object is given by the number of indices
necessary to describe its elements. A scalar has rank 0, a vector a = (a1, a2, . . . , an) has rank 1 and n

elements, a matrix A= [aij ],1 ≤ i ≤ n, 1 ≤ j ≤ m has rank 2 and n × m elements

A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1m

a21 a22 . . . a2m

...

an1 an2 . . . anm

⎤
⎥⎥⎥⎦ . (B.19)

Tensors have rank R ≥ 3; the description of tensor elements is harder. For example, consider a
rank 3 tensor B = [bjkl] with elements bjkl ∈ R

2×2×2. The eight elements of this tensor are:
{b111, b112, b121, b122} and {b211, b212, b221, b222}. We can visualize the tensor elements as the vertices
of a cube where the first group of elements are in the plane j = 1 and j = 2, respectively. Similarly, the
tensor elements {b111, b211, b112, b212} and {b121, b221, b122, b222} are in the planes k = 1 and k = 2,
respectively, while {b111, b121, b211, b221} and {b112, b122, b212, b222} are in the planes l = 1 and l = 2,
respectively.

Tensor contraction is the summation over repeated indices of the two tensors or of a vector and a
tensor. Let C be the contraction of two arbitrary tensors A and B. The rank of the tensor resulting after
contraction is

R(C) =R(A) +R(B) − 2. (B.20)

For example, when A= [aij ], B = [bjkl] and we contract over j we obtain C = [cikl] with

cikl =
∑
j

aij bjkl . (B.21)

The rank of C is R(C) = 2 + 3 − 2 = 3. Tensor C has 8 elements

c111 = ∑2
j=1 a1j bj11 = a11b111 + a12b211 c121 = ∑2

j=1 a1j bj21 = a11b121 + a12b221

c212 = ∑2
j=1 a2j bj12 = a21b112 + a22b212 c222 = ∑2

j=1 a2j bj22 = a21b122 + a22b222

c112 = ∑2
j=1 a1j bj11 = a11b112 + a12b212 c122 = ∑2

j=1 a1j bj21 = a11b122 + a12b222

c211 = ∑2
j=1 a2j bj11 = a21b111 + a22b211 c221 = ∑2

j=1 a2j bj21 = a21b121 + a22b221

(B.22)

Tensor networks and tensor network contraction (TNC). A tensor network is defined as follows: let
[A1], . . . , [An] be n tensors with index sets x(1), . . . , x(n) where each {x(i)} is a subset of {x1, . . . , xN }
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FIGURE B.14

The ordering of tensor contraction when the index set is {x1, x2, . . . , x7} and the four “small” tensors are
[A1]{x1,x2,x5}, [A2]{x2,x3,x4}, [A3]{x3,x4,x6} and [A4]{x5,x6,x7}. Tensors [B] and [C] are the results of contraction of
[A2], [A3], and [A4], [B], respectively.

with N very large. We assume that the “big” tensor [A]{x1,...,xN } can be expressed as the product of the
“smaller” tensors [A1], . . . , [An]

[A]{x1,...,xK } = [A1]{x(1)} . . . [An]{x(n)}. (B.23)

We wish to compute the scalar

ZA =
∑

{x1,...,xN }
[Ai]{x1,...,xN } (B.24)

For example, N = 7 and n = 4 and the index set is {x1, x2, . . . , x7} for the TNC in Figure B.14. The
four “small” tensors and their respective subsets of the index set are

[A1]{x1,x2,x5}, [A2]{x2,x3,x4}, [A3]{x3,x4,x6} and [A4]{x5,x6,x7}. (B.25)

The “big” tensor [A] is the product of the four “small” tensors

[A]{x1,x2,x3,x4,x5,x6,x7} = [A1]{x1,x2,x5} ⊗ [A2]{x2,x3,x4} ⊗ [A3]{x3,x4,x6} ⊗ [A4]{x5,x6,x7}. (B.26)

To calculate ZA we first contract [A2] and [A3] and the result is tensor [B]

[B]{x2,x6} =
∑
x3

∑
x4

[A2]{x2,x3,x4} ⊗ [A3]{x3,x4,x6}. (B.27)

Next we contract [B] and [A4] to produce [C]

[C]{x2,x5,x7} =
∑
x6

[B]{x2,x6} ⊗ [A4]{x5,x6,x7}. (B.28)
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FIGURE B.15

Contraction when L = 8 and we have an 8 × 8 tensor network. The first iteration contracts columns 1 and 2
and columns 7 and 8, see 1L and 1R boxes. During the second iteration the two resulting tensors are
contracted with columns 3 and 6, respectively, as shown by 2L and 2R boxes. During the 3-rd iteration the new
tensors are contracted with columns 4 and 5, respectively, as shown by the 3L and 3R boxes. Finally, during
the 4-th iteration the “big” vector is obtained by contracting the two tensors produced by the 3-rd iteration.

Finally, we compute

Z{x1,x7} =
∑
x2

∑
x5

[A1]{x1,x2,x5} ⊗ [C]{x2,x5,x7}. (B.29)

Tensor network contraction is CPU- and memory-intensive. If the tensor network has an arbitrary
topology TNC is considerably more intensive than in the case of a regular topology, e.g., a 2-D lattice.

A TNC example. We now discuss the case of an application where the tensors form a 2-D, L × L

rectangular lattice. Each tensor in the interior of the lattice has four indices each one running from
1 to D2, while outer tensors have only three indices, and the ones at the corners have only two. The
resulting tensors form a product of vectors (top and bottom tensors) and matrices (interior tensors) with
vertical orbitals running from 1 to D2L. The space required for tensor network contraction can be very
large, we expect parameter values as large as D = 20 and L = 100. This is a Big Data application,
20200 is a very large number indeed!!

Figure B.15 illustrates the generic TLC algorithm for L = 8. The first iteration of the computation
contracts the left-most (1L) and the right-most columns (1R) of the tensor network. The process contin-
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ues until we end up with the “big” vector after L/2 = 4 iterations. The left and right contractions, (1L,
2L, and 3L) and (1R, 2R, and 3R) are mirror images of one another and are carried out concurrently.

A TNC algorithm for condensed matter physics. In quantum mechanics vectors in an n-dimensional
Hilbert space describe quantum states and tensors describe transformation of quantum states. Tensor
network contraction has applications in condensed-matter physics and our discussion is focused only
on the algorithmic aspects of the problem.

The algorithm for tensor network contraction should be flexible, efficient, and cost effective. Flex-
ibility means the ability to run problems of different sizes, with a range of values for D and L

parameters. An efficient algorithm should support effective multithreading and optimal use of avail-
able system resources.

The notations used to describe the contraction algorithms for tensor network T are:

• N(i) – number of vCPUs for iteration i; N = 2 for all iterations of Stage 1, while the number of
vCPUs for Stage 2 may increase with the number of iterations;

• m – the amount of memory available on the vCPU of the current instance;
• T (i) = [T (i)

j,k ] – version of the [T ] after the i-th iteration;

• L(i) – the number of columns of [T ] at iteration i;
• T (i)

j,k – tensor in row j and column k of T (i); T 1
j,k = Tj,k ;

• T (i)
k – column k of T (i);

• C(T (i)
k , Tj ), i > 1 – contraction operator applied to columns T (i)

k and Tj in Stage 1;
• V(T (Lcol )) – vertical contraction operator applied to the “big tensor” obtained after Lcol column

contractions;
• μ – amount of memory for Tj,k , a tensor of the original T ;

• μ(i) – storage for a tensor T (i)
j,k created at iteration i;

• Imax – maximum number of iterations for Stage 1 of the TNC algorithm.

The generic contraction algorithm for a 2-D tensor network with Lrow rows and Lcol columns, T =
[Tj,k], 1 ≤ j ≤ 2Lrow 1 ≤ k ≤ 2Lcol is an extension of the one in Figure B.15. TNC is an iterative
process, at each iteration two pairs of columns are contracted concurrently. During the first iteration
the two pairs of columns of T , (1,2), and (2L,2L − 1) are contracted. At iterations 2 ≤ i ≤ L the
new tensor network has L(i) = L − 2i columns and the contraction is applied to column pairs: the
column resulting from the contractions at iteration (i − 1), now columns 1 and L(i) with columns 2
and L(i) − 1, respectively.

The TNC algorithm is organized in multiple stages with different AWS instances for different
stages. Small to medium size problems need only the first stage to produce the results and use low
end instances with 2 vCPUs, while large problems must feed the results of the first stage to a second
one running on more powerful AWS instances. A third stage may be required for extreme cases when
the size of one tensor exceeds the amount of vCPU memory, some 4 GB at this time. The three stages
of the algorithm are discussed next.
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• Stage 1. An entire column of T (i) can be stored in the vCPU memory and successive contraction
iterations can proceed seamlessly when

Lrow

(
2μ + μ(i−1) + μ(i)

)
< m. (B.30)

This is feasible for the first iterations of the algorithm and for relatively small values of Lrow . Call
Imax the largest value of i which satisfies Equation (B.30).
Use a low-end M4 or C4 instance with 2 vCPUs, N = 2. The computation runs very fast with
optimal use of the secondary storage and network bandwidth. Each vCPU is multithreaded, multiple
threads carry out the operations required by the contraction operator C while one thread reads the
next column of the original tensor network, T in preparation for the next iteration.

• Stage 2. After a number of iterations the condition in Equation (B.30) is no longer satisfied and the
second phase should start. Now an iteration consists of partial contractions when subsets of column
tensors are contracted independently. In this case the number of vCPUs is N > 2.

• Stage 3. As the amount of space needed for a single tensor increases and the vCPU memory cannot
store a single tensor

μi > m. (B.31)

In this extreme case we use several instances with the largest number of vCPUs, e.g., either
M4.10xlarge or C4.10xlarge.

Stage 1 TNC algorithm. The algorithm is a straightforward implementation of the generic TNC algo-
rithm:
1. Start an instance with N = 2, e.g., C4.large;
2. Read input parameters e.g., Lrow,Lcol ;
3. Compute Imax ;
4. First iteration

(a) vCP1 – read T1 and T2, apply C(T1, T2); start reading T3;
(b) vCP2 – read TLcol

and TLcol−1, apply C(TLcol
, TLcol−1), start reading TLcol−2;

5. Iterations 2 ≤ i ≤ min[Imax,Lcol]. The column numbers correspond to the contracted tensor net-
work with L

(i)
col = Lcol − 2(i − 1) columns

(a) vCP1 – apply C(T (i)
1 , T2); start reading T3;

(b) vCP2 – apply C(T (i)

L
(i)
col

, T
L

(i)
col−1

); start reading T
L

(i)
col−2

;

6. If Lcol ≤ Imax carry out vertical compression of the “big tensor” and finish;
(a) Apply V(T (Lcol );
(b) Write result;
(c) Kill the instance;

7. Else prepare the data for the Stage 2 algorithm;
(a) vCPU1 – save T (i)

i ;

(b) vCPU2 – save T (i)
Lcol−i ;

(c) Kill the instance.
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Stage 2 TNC algorithm. This stage starts with a tensor network T (Imax) with 2(Lcol − Imax) columns

and Lrow rows. Multiple partial contractions will be done for each column of T (Imax) during this stage.
The number of vCPUs for the instance used for successive iterations may increase. Results of a

partial iteration have to be saved at the end of the partial iteration. The parameters for this phase are:

• μ
(i)
pc – the space per tensor required for partial contraction at iteration i

μ(i)
pc = μ + μ(i−1) + μ(i), (B.32)

partial contraction increases the space required by each tensor;

• Cpc

(
T (i)

k , Tj , s
)

– partial contraction operator applied to segment s of columns T (i)
k and Tj in

Stage 2;
• n

(i)
r – number of rows of a column segment for each partial contraction at iteration i given by

n(i)
r =

⌈
m

μ
(i)
pc

⌉
. (B.33)

• p(i) – number of partial contractions per column at iteration i;

p(i) =
⌈

Lrow

n
(i)
r

⌉
. (B.34)

The total number of partial contractions at iteration i is 2p(i);
• The number of vCPUs for iteration i is

N(i) = 2p(i). (B.35)

• L
(i)
col – the number of columns at iteration i of Stage 2;

• IMax = Lcol − Imax – the number of iterations of Stage 2 assuming that Stage 3 is not necessary;

• Apc

(
T i

k,p(i)

)
– assembly operator for the p(i) segments resulting from partial contraction of column

k at iteration i.

Stage 2 TNC consists of the following steps:
1. For i = 1, IMax

(a) Compute μpc,n
(i)
r ,p(i),N(i);

(b) If N ≤ 40 start an instance with N = N(i); else start multiple C4.10xlarge instances to run
concurrently all partial contractions.

(c) For j = 1,p(i)

i. vCPUj

• Read T (i)
1,j and T2,j and apply Cpc

(
T (i)

1,j , T2,j

)
;

• Store the result T (i+1)
1,j



B.6 TENSOR NETWORK CONTRACTION ON AWS e57

ii. vCPUj+p(i)

• Read T (i)

L
(i)
col ,j

and T
L

(i)
col−1,j

and apply Cpc

(
T (i)

L
(i)
col ,j

, T
L

(i)
col−1,j

)
;

• Store the result, T (i+1)

L
(i)
col ,j

;

(d) Assemble partial contractions
i. vCPU1

• Apply Apc

(
T i

1 ,p(i)
)
,

• Store T (i+1)
1 .

ii. vCPU2

• Apply Apc

(
T i

L
(i)
col

, p(i)

)
,

• Store T (i+1)

L
(i+1)
col

.

2. If i < IMax proceed to next iteration, i = i + 1; else
(a) Apply VT (IMax);
(b) Write TNC result;
(c) Kill the instance.

Stage 3 TNC algorithm. The algorithm is similar with the one for Stage 2 but now a single tensor is
distributed to multiple vCPUs.

An analysis of memory requirements for TNC. Let us assume that we have L tensors per column
and each tensor has dimension D. Consider the leftmost, or equivalently the rightmost column, and
note that the number of bonds differs for different tensors, the top and the bottom tensors have 2 bonds
and the other L − 1 have 3 bonds, so the total number of elements in this column is

N (0)
1 = 2D2 + (L − 2)D3. (B.36)

The top and bottom tensors of the next column have three bonds and the remaining L − 2 have four
bonds thus the total number of elements in the second column is

N (0)
2 = 2D3 + (L − 2)D4. (B.37)

After contraction the number of elements becomes

N (1)
1 = 2D3 + (L − 2)D5. (B.38)



e58 APPENDIX B CLOUD PROJECTS

Each tensor element requires two double precision floating point numbers thus, the amount of memory
needed for the first iteration is

M(1) = 2 × 8 × [D2 + (L − 2)D3 + 2D3 + (L − 2)D4 + 2D3 + (L − 2)D5]
= 16 × [2D3 + (L − 2)D4 + 2D2(1 + D) + (L − 2)D3(1 + D2)] (B.39)

The amount of memory needed for iterations 2 and 3 are

M(2) = 16 × [2D3 + (L − 2)D5 + 2D3 + (L − 2)D4 + 2D4 + (L − 2)D7]
= 16 × [2D3 + (L − 2)D4 + 2D3(1 + D) + (L − 2)D5(1 + D2)] (B.40)

and

M(3) = 16 × [2D4 + (L − 2)D7 + 2D3 + (L − 2)D4 + 2D5 + (L − 2)D9]
= 16 × [2D3 + (L − 2)D4] + 2D4(1 + D) + (L − 2)D7(1 + D2))

(B.41)

It follows that the amount of memory for iteration i is

M(i) = 16 × [2D3 + (L − 2)D4 + 2Di+1(1 + D) + (L − 2)D2i+1(1 + D2] (B.42)

When D = 20 and L = 100 the amount of memory for the first iteration is

16 ×[2 × 203 + 98 × 204 + 2 × 202 × (1 + 20)+ 98 × (203 + 205)] = 5,281,548,800 bytes. (B.43)

This example shows why only the most powerful systems with ample resources can be used for TNC.
It also shows that an application has to adapt, the best it can, to the packages of resources provided
by the CSP, while in an better world an application-centric view should prevail, and the system should
assemble and offer precisely the resources needed by an application neither more nor less.
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Glossary

A
Access Control List (ACL) list of pairs (subject, value) defining the set of access rights to an object; for example, read, write,

execute permissions for a file.
Advanced Configuration and Power Interface (ACPI) open standard for device configuration and power management by the

operating system. It defines four Global “Gx” states and six Sleep “Sx” states. For example, “S3” is referred to as Standby,
Sleep, or Suspend to RAM.

Advanced Microcontroller Bus Architecture (AMBA) open standard, on-chip interconnect specification for the connection
and management of a large number of controllers and peripherals.

Amazon Machine Image (AMI) a unit of deployment, an environment including all information necessary to set up and boot
an instance including: (1) a template for the root volume for the instance; e.g., an operating system, an application server,
and applications; (2) launch permissions controlling all AWS accounts that can use the AMI to launch instances; and (3) a
block device mapping specifying the volumes to be attached to the instance when launched.

Amdahl’s law formula used to predict the theoretical maximum speedup for a program using multiple processors/cores. Infor-
mally, it states that the portion of the computation which cannot be parallelized determines the overall speedup.

Anti-entropy a process, often using Merkle trees, of comparing the data of all replicas and updating each replica to the newest
version.

AppEngine (AE) an ensemble of computer, storage, search, and networking services for building web and mobile applications
and run them on Google servers.

Application Binary Interface (ABI) the projection of the computer system seen by a process or thread in execution. ABI allows
the ensemble consisting of the application and the library modules to access the hardware. ABI does not include privileged
system instructions, instead it invokes system calls.

Application Program Interface (API) defines the set of instructions the hardware was designed to execute and gives the
application access to the Instruction Set Architecture (ISA) layer. It includes High Level Language (HLL) library calls which
often invoke system calls. The API is the projection of the system from the perspective of the HLL program.

Application layer deployed software applications targeted towards end-user software clients or other programs, and made
available via the cloud.

Auction a sale where items are sold to the highest bidder.
Auditor party conducting independent assessment of cloud services, information system operations, performance and security

of the cloud implementation.
Audit systematic evaluation of a cloud system by measuring how well it conforms to a set of established criteria; e.g., security

audit if the criteria is security, privacy-impact audit if the criteria is privacy assurance, performance audit if the criteria is
performance.

Authentication credential something that an entity is, has, or knows that allows that entity to prove its identity to a system.
Auto Scaling AWS service providing automatic scaling of EC2 instances through grouping of instances, monitoring of the

instances in a group, and defining triggers, pairs of CloudWatch alarms and policies, which allow the size of the group to be
scaled up or down.

AWK utility utility for text processing based on a scripting language.

B
Bandwidth the number of operations per unit of time; for example, the bandwidth of a processor is expressed in Mips or Mflops

while the memory and I/O bandwidth is expressed in Mbps.
Basic Core Equivalent (BCE) quantity describing how resources of a multicore processor are allocated to the individual cores.

For example, a symmetric core processor can be configured as sixteen 1-BCE cores, eight 2-BCE cores, four 4-BCE cores,
two 6-BCE cores, or one 16-BCE cores. An asymmetric core processor may have ten 1-BCE cores and one 6-BCE core.

Basic input/output system (BIOS) system component invoked after a computer system is powered on to load the operating
system and later to manage the data flow between the OS and devices such as keyboard, mouse, disk, video adapter, and
printer.
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Bigquery fully-managed enterprise data warehouse for large-scale data analytics on Google cloud platform.
BigTable distributed storage system developed by Google to store massive amounts of data and to scale up to thousands of

storage servers.
Bisection bandwidth the sum of the bandwidths of the minimal number of links that are cut when splitting a network into two

parts.
Bit-level parallelism parallel computing based on increasing processor word size thus, lowering the number of instructions

required to process larger size operands.
BitTorrent peer-to-peer communications protocol for file sharing.
Border Gateway Protocol (BGP) a path vector reachability protocol. It maintains a table of IP networks. It designates network

reachability among autonomous systems and makes the core routing decisions in the Internet based on path, network policies
and/or rule sets.

Borg management software for clusters consisting of tens of thousands of servers co-located and interconnected by a datacenter-
scale network fabric.

Boundary value problem problem with conditions specified at the extremes of the independent variable(s).
Bounded input data defining property of batch processing. The computing engine has as input a dataset of known contents and

size, as opposed to processing a continuous stream of incoming data.
Broker entity that manages the use, performance and delivery of cloud services, and negotiates relationships between cloud

service providers and cloud users.
Buffer overflow anomaly where a program, while writing data to a buffer, overruns the buffer’s boundary and overwrites

adjacent memory locations.
BusyBox software providing several stripped-down Unix tools in a single executable file and running in environments such as

Linux, Android, FreeBSD, or Debian.
Bus.Device.Function (BDF) data used to describe PCI devices.
Byte-range tokens used to specify the range of read and write operations to data files.
Byzantine failure a fault presenting different symptoms to different observers. In a distributed system a Byzantine failure could

be: an omission failure, e.g., a crash failure, failure to receive a request or to send a response; it could also be a commission
failure, e.g., process a request incorrectly, corrupt the local state, and/or send an incorrect or inconsistent response to a
request.

C
Callback executable code passed as an argument to other code; the callee is expected to execute the argument either immediately

or at a later time for synchronous and, respectively, asynchronous callbacks.
Callstack data structure storing information about the active subprograms invoked during the execution of a program. Also

called execution stack, program stack, control stack, or run-time stack.
Carrier a networking organization that provides connectivity and transports data between communicating entities. Also, a

carrier signal is a transmitted electromagnetic pulse or wave at a steady base frequency on which information can be imposed
by modulation.

Causal delivery extension of the First-In-First-Out (FIFO) delivery to the case when a process receives messages from different
sources.

Cell storage storage organization consisting of cells of the same size and objects fitting exactly in one cell.
Central Limit Theorem (CLT) statistical theory stating that the sum of a large number of independent random variables has a

normal distribution.
Chaining in vector computers mechanisms allowing vector operations to start as soon as individual elements of vector source

operands become available. Chaining operates on convoys, sets of vector instructions that can potentially be executed to-
gether.

Chameleon an NSF facility, an OpenStack KVM experimental environment for large-scale cloud research.
Command Line Interface (CLI) provides the means for a user to interact with a program.
Client-server paradigm software organization based on message-passing enforcing modularity. It allows systems with different

processor architectures, different operating systems, libraries, and other system software, to cooperate.
Clock condition a strong clock condition in a distributed system requires an equivalence between the causal precedence and

the ordering of the time stamps of messages.
Closed-box platforms systems with embedded cryptographic key that allow themselves to reveal their true identity to remote

systems and authenticate the software running on them. Found on some cellular phones, game consoles, and ATMs.
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Clos network multistage nonblocking network with an odd number of stages. In a Clos network all packets overshoot their
destination and then hop back to it.

Cloud Bigtable high performance NoSQL database service for large analytical and operational workloads on Google cloud
platform.

Cloud Datastore highly-scalable NoSQL database for web and mobile applications on Google cloud platform.
CloudFormation AWS service for creation of a stack describing the application infrastructure.
Cloud Functions (CF) a lightweight, event-based, asynchronous system to create single-purpose functions that respond to

cloud events on Google cloud platform.
CloudLab an NSF facility, a testbed allowing researchers to experiment with cloud architectures and new applications.
CloudWatch AWS monitoring infrastructure used to collect and track metrics important for optimizing the performance of

applications and for increasing the efficiency of resource utilization. Without installing any software a user can monitor
pre-selected metrics and then view graphs and statistics for these metrics.

Coarse-grained parallelism execution mode when large blocks of code are executed before the concurrent threads/processes
communicate with one another.

Cognitive radio wireless communication when an intelligent transceiver detects which communication channels are not in use
and uses them while avoiding channels in use.

Cognitive radio trust trust regarding the information received by a intelligent transceiver from other nodes.
Combinatorial auction auction in which participants can bid on combinations of items or packages.
Community cloud a cloud infrastructure shared by several organizations and supporting a specific community with shared

concerns (e.g., mission, security requirements, policy, and compliance considerations).
Communication channel physical system allowing two entities to communicate with one another.
Communication protocol a communication discipline involving a finite set of messages exchanged among entities. A protocol

typically implements error control, flow control, and congestion control mechanisms.
Computation steering interactively guiding a computational experiment towards a region of interest.
Computer cloud a collection of systems in a single administrative domain offering a set of computing and storage services; a

form of utility computing.
Computing grid a distributed system consisting of a large number of loosely coupled, heterogeneous, and geographically

dispersed systems in different administrative domains. The name is a metaphor for accessing computer power with similar
ease as accessing electric power supplied by the electric grid.

Concurrency simultaneous execution of related activities.
Concurrent write-sharing multiple clients can modify the data in a file at the same time.
Confidence interval statistical measure offering a guarantee of the quality of a result. A procedure is said to generate confidence

intervals with a specified coverage α ∈ [0,1] if, on a proportion exactly α of the set of experiments, the procedure generates
an interval that includes the answer. For example, a 95% confidence interval [a, b] means that in 95% of the experiments the
result will be in [a, b].

Conflict fraction average number of conflicts per successful transactions in a transaction processing system.
Congestion control mechanism ensuring that the offered load of a network does not exceed the network capacity.
Consistent hashing hashing technique for reducing the number of keys to be remapped when a hash table is resized. In average

only K/n keys need to be remapped with K the number of keys and n the number of slots.
Container Engine cluster manager and orchestration system for Docker containers built on the Kubernetes system. It schedules

and manages containers automatically according to user specifications on the Google cloud platform.
Content any type or volume of media, be it static or dynamic, monolithic or modular, live or stored, produced by aggregation,

or mixed.
Container software system emulating a separate physical server; a container has its own files, users, process tree, IP address,

shared memory, semaphores, and messages. Each container can have its own disk quotas.
Control flow architecture computer architecture when the program counter of a processor core determines the next instruction

to be loaded in the instruction register and then executed.
Control sensitive instructions machine instructions changing either the memory allocation, or the execution to kernel mode.
Cooperative spectrum sensing mode of operation in which each node determines the occupancy of the spectrum based on its

own measurements, combines it with information from its neighbors and then shares its own spectrum occupancy assessment
with its neighbors.

Copy-on-write (COW) mechanism used by virtual memory operating systems to minimize the overhead of copying the virtual
memory of a process when a process creates a copy of itself.
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Cron a job scheduler for Unix-like systems used to periodically schedule jobs, often used to automate system maintenance and
administration.

Cross-site scripting the most popular form of attack against web sites; a browser permits the attacker to insert client-scripts
into the web pages and thus, bypass the access controls at the web site.

Compute Unified Device Architecture (CUDA) programming model invented by NVIDIA for using graphics processing units
(GPUs) for general purpose processing.

Cut subset of the local history of all processes of a process group. The frontier of the cut is an n-tuple consisting of the last
event of every process included in the cut.

Cut-through (wormhole) network routing routing mechanism when a packet is forwarded to its next hop as soon as the header
is received and decoded. The packet can experience blocking if the outgoing channel expected to carry it to the next node is
in use; in this case the packet has to wait until the channel becomes free.

D
Database as a Service (DBaaS) a cloud service where the database runs on the physical infrastructure of the cloud service

provider.
Data Description Language (DDL) syntax similar to a computer programming language for defining data structures; it is

widely used for database schemas.
Data Manipulation Language (DML) programming language used to retrieve, store, modify, delete, insert and update data in

database; SELECT, UPDATE, INSERT statements or query statements are examples of DML statements.
Dataflow architecture computer architecture where operations are carried out at the time when their input becomes available.
Datagram basic transfer unit in a packet-switched network; it consists of a header containing control information necessary to

transport its payload through the network.
Data hazards in pipelining potential danger situations when the instructions in a pipeline are dependent upon one another.
Data-level parallelism an extreme form of coarse-grained parallelism, based on partitioning the data into chunks/blocks/seg-

ments and running concurrently either multiple programs or copies of the same program, each on a different data block.
Data portability the ability to transfer data from one system to another without being required to recreate or reenter data

descriptions or to significantly modify the application being transported.
Data object a logical container of data that can be accessed over a network, e.g., a blob; may be an archive, such as specified

by the tar format.
Data-shipping allows fine-grained data sharing; an alternative to byte-range locking.
Deadlock synchronization anomaly occurring when concurrent processes or threads compete with one another for resources

and reach a state when none of them can proceed.
Denial of service attack (DOS attack) Internet attack targeting a widely used network service and preventing legitimate access

to the service. It forces the operating system of the targeted host(s) to fill the connection tables with illegitimate entries.
De-perimeterisation process allowing systems to span the boundaries of multiple organizations and cross the security borders.
Direct Memory Access (DMA) hardware feature allowing I/O devices and other hardware subsystems direct access to the sys-

tem memory without the CPU involvement. Also used for memory-to-memory copying and for offloading expensive memory
operations, such as scatter-gather operations, from the CPU to the dedicated DMA engine. Intel includes I/O Acceleration
Technology (I/OAT) on high-end servers.

Distributed system collection of computers interconnected by a network. Users perceive the system as a single, integrated
computing facility.

Dynamic binary translation conversion of blocks of guest instructions from a portable code format to the instructions under-
stood by a host system. Such blocks can be cached and reused to improve performance.

Dynamic instruction scheduling architectural feature of modern processors supporting out of order instruction execution. It
can reduce the number of pipeline stalls but adds to circuit complexity.

Dynamic power range interval between the lower and the upper limit of the device power consumption. A large dynamic range
means that the device is able to operate at a lower fraction of its peak power when its load is low.

Dynamic voltage scaling a power conservation technique; often used together with frequency scaling under the name dynamic
voltage and frequency scaling (DVFS).

Dynamic voltage and frequency scaling (DVFS) power management technique of increasing or decreasing the operating
voltage or the clock frequency of a processor in order to increase the instruction execution rate and, respectively, to reduce
the amount of heat generated and to conserve power.
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E
EC2 Placement Group a logical grouping of instances which allows the creation of a virtual cluster.
Elastic Beanstalk AWS service handling automatically the deployment, the capacity provisioning, the load balancing, the

auto-scaling, and the application monitoring functions. It interacts with other AWS services including EC2, S3, SNS, Elastic
Load Balance, and AutoScaling.

Elastic Block Store (EBS) AWS service providing persistent block level storage volumes for use with EC2 instances. EBS
supports the creation of snapshots of the volumes attached to an instance and then uses them to restart an instance. The
storage strategy provided by EBS is suitable for database applications, file systems, and applications using raw data devices.

Elastic Compute Cloud (EC2) AWS service for launching instances of an application under several operating systems, such
as several Linux distributions, Windows, OpenSolaris, FreeBSD, and NetBSD.

Elastic IP address AWS feature allowing an EC2 user to mask the failure of an instance and re-map a public IP address to any
instance of the account, without the need to interact with the software support team.

Embarrassingly parallel application application when little or no effort is needed to extract parallelism and to run a number
of concurrent threads with little communication among them.

Emergence generally understood as a property of a system that is not predictable from the properties of individual system
components.

Energy proportional system system enjoying the propery that the energy consumed is proportional with the system’s workload.
Enforced modularity software organization supported by the client-server paradigm when modules are forced to interact only

by sending and receiving messages. The clients and the servers are independent modules and may fail separately. The servers
are stateless, they do not have to maintain state information. Servers may fail and then come up without the clients being
affected or even noticing the failure.

Error bar a line segment through a point on a graph, parallel to one of the axes, which represents the uncertainty or error of the
corresponding coordinate of the point.

Event a change of state of a process or thread.
Event time the wall clock time when the event occurred.
Exception anomalous or exceptional conditions requiring special processing during the execution of a process. An exception

breaks the normal flow of execution of a process/thread and executes a pre-registered exception handler from a known
memory location provided by the first-level interrupt handler (FLIV).

Exception behavior preservation condition required for dynamic instruction scheduling. Any change in instruction order must
not change the order in which exceptions are raised.

Explicitly Parallel Instruction Computing (EPIC) processor architecture allowing the processor to execute multiple instruc-
tions in each clock cycle. EPIC implements a form of Very Long Instruction Word (VLIW) architecture.

F
Fabric controller a distributed Windows Azure application replicated across a group of machines which owns all resources in

its environment and it is aware of every application; it ensures scaling, load balancing, memory management, and reliability.
Facility layer heating, ventilation, air conditioning (HVAC), power, communications, and other aspects of the physical plant in

a data center.
Failover-based software systems systems less affected by data center level failures; such systems only run at one site, but

checkpoints are created periodically and sent to backup data centers.
FedRAMP common security model allowing joint authorizations and continuous security monitoring services for Government

and Commercial cloud computing systems; intended for multi-agency use. The use of this common security risk model
provides a consistent baseline for cloud-based technologies and ensures that the benefits of these cloud-based technologies
are effectively integrated across a variety of cloud computing solutions. The risk model will enable the government to
“approve once, and use often” by ensuring multiple agencies gain the benefit and insight of the FedRAMP’s Authorization
and access to service provider’s authorization packages.

Field-programmable gate array (FPGA) an integrated circuit designed to be configured, adapted, and programmed in the
field to perform a well-defined function.

Fine-grained parallelism concurrency when only relatively small blocks of the code can be executed in parallel without the
need to communicate or synchronize with other threads or processes.

FISMA compliant environment environment that meets the requirements of the Federal Information Security Management Act
of 2002. The law requires an inventory of information systems, the categorization of information and information systems
according to risk level, security controls, a risk assessment, a system security plan, certification and accreditation of the
system’s controls, and continuous monitoring.
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First-In-First-Out delivery delivery rule requiring that messages are delivered in the same order they were sent.
First-level interrupt handler (FLIH) software component of the kernel of an operating system activated in case of an interrupt

or exception. It saves the registers of current process in the PCB (Process Control Block), determines the source of interrupt,
and initiates the service of the interrupt.

Flash crowds an event which disrupts the life of a very significant segment of the population, such as an earthquake in a very
populated area, and dramatically increases the load of computing and communication service; for example, an earthquake
increases the phone and Internet traffic.

Flynn’s taxonomy classification of computer architectures, proposed by Michael J. Flynn in 1966. Classifies the systems based
on the number of control and data flows as: Single Instruction Single Data (SISD), Single Instruction Multiple Data (SIMD),
and Multiple Instruction Multiple Data (MIMD).

Flow control mechanism used to control the traffic in a network. Feedback from the receiver forces the sender to transmit only
the amount of data the receiver is able to buffer and then process.

Front-end system component of a server system tasked to dispatch the client requests to multiple back-end systems for pro-
cessing.

Full virtualization type of virtualization when each virtual machine runs on an exact copy of the actual hardware.
Future Internet a generic concept referring to all research and development activities involved in the development of new

architectures and protocols for the Internet.

G
Geo replication operation when a system runs at multiple sites concurrently.
Gather operation operation supported by vector processing units to deal with sparse vectors. It takes an index vector and

fetches the vector elements at the addresses given by adding a base address to the offsets given by the index vector; as
a result a dense vector is loaded in a vector register. In parallel computing this operation is supported by MPI (Message
Passing Interface) to take elements from many processes and gathers them for a single process.

Global agreement on time a necessary condition to trigger actions that should occur concurrently.
Go or Golang open source compiled, statically typed language like Algol and C; has garbage collection, limited structural

typing, memory safety features, and CSP-style concurrent programming.
Guest operating system an operating system that runs under the control of a hypervisor, rather than directly on the hardware.

H
HaLoop extension of MapReduce with programming support for iterative applications and improved efficiency. Adds various

caching mechanisms and makes the task scheduler loop-aware.
Hash function function used to map data of arbitrary size to data of fixed size. For example, a hash function can be applied to

the name of a file and the n low-order bits of the hash value give the block number of the directory where the file information
can be found. Extensible hashing is used to add a new directory block.

Hard deadline strict deadline with penalties, expressed precisely as milliseconds, or possibly seconds.
Hardware layer includes computers (CPU, memory), network (router, firewall, switch, network link and interface) and storage

components (hard disk), and other physical computing infrastructure elements.
Head-of-line blocking situation when a long-running task cannot be preempted and other tasks waiting for the same resource

are blocked.
Hedged requests short-term tail-tolerant techniques; the client issues multiple replicas of the request to increase the chance of

a prompt reply.
Hot standby a method to achieve redundancy. The primary and the secondary (backup) system(s) run simultaneously. The data

is mirrored to the secondary system(s) in real time so that both systems contain identical information.
Horizontal scaling application scaling by increasing the number of VMs as load increases and by reducing this number when

load decreases; most common form of cloud application scaling.
Hybrid cloud an infrastructure consisting of two or more clouds (private, community, or public) that remain unique entities but

are bound together by standardized or proprietary technology that enables data and application portability.
HyperText Transfer Protocol (HTTP) application-level protocol built on top of the TCP transport protocol. HTTP is used by

a web browser (the client) to communicate with the server.
HTTP-tunneling technique most often used as a means of communication from network locations with restricted connectivity.

Tunneling means the encapsulation of a network protocol. In this case HTTP acts as a wrapper for the communication
channel between the HTTP client and the HTTP server.
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Hyper-convergence a software-centric architecture that tightly integrates compute, storage, networking, virtualization, and
possibly other technologies in a commodity hardware box supported by a single vendor.

Hypervisor or virtual machine monitor (VMM) software that securely partitions the computer’s resources of a physical
processor into one or more virtual machines. Each virtual machine appears to be running on the bare hardware, giving the
appearance of multiple instances of the same computer, but all are supported on a single physical system.

Hyper-threading term used to describe multiple execution threads possibly running concurrently but on a single core processor.

I
Idempotent action action that repeated several times has the same effect as when the action is executed only once.
IEEE 754 Standard for Floating-Point Arithmetic defines arithmetic formats, interchange formats, rounding rules, opera-

tions, and exception handling for floating point numbers.
Incommensurate scaling attribute of complex systems; when the size of the system, or when one of its important attributes,

such as speed, increases, or when different system components are subject to different scaling rules.
InfiniBand switched fabric for supercomputer and data center interconnects. The serial link can operate at several data rates:

single (SDR), double (DDR), quad (QDR), fourteen (FDR), and enhanced (EDR). The highest speed supported is 300 Gbps.
Infrastructure as a Service (IaaS) cloud delivery model that supplies resources for processing, storage, and communication,

and allows the user to run arbitrary software, including operating systems and applications. The user does not manage
or control the underlying cloud infrastructure, but has control over operating systems, storage, deployed applications, and
possibly limited control of select networking components (e.g., host firewalls).

Initial value problem computational problem when all conditions are specified at the same value of the independent variable
in the equation.

Input/Output Memory Management Unit (IOMMU) connects the main memory with a DMA-capable I/O bus; it maps
device-visible virtual addresses to physical memory addresses and provides memory protection from misbehaving devices.

Instruction flow preservation preservation of the flow of data between the instructions producing results and the ones consum-
ing these results.

Instruction-level parallelism simultaneous execution of independent instructions of an execution thread.
Instruction Set Architecture (ISA) interface between the computer software and the hardware. It defines the valid instructions

that a processor may execute. ISA allows the independent development of hardware and software.
Instruction pipelining technique implementing a form of parallelism called instruction-level parallelism within a single core

or processor. A pipeline has multiple stages and at any given time several instructions are in different stages of processing.
Each pipeline stage requires its own hardware.

Integrated Drive Electronics (IDE) interface for connecting disk drives; the drive controller is integrated into the drive, as
opposed to a separate controller on, or connected to, the motherboard.

Intelligent Platform Management Interface (IPMI) standardized computer system interface developed by Intel and used by
system administrators to manage a computer system and monitor its operation.

Interoperability capability to communicate, execute programs, or transfer data among various functional units under specified
conditions.

Interrupt flag (IF) flag in the EFLAGS register used to control interrupt masking.

J
Jarvis short for Just A Rather Very Intelligent Scheduler; used to support Siri.
Java Database Connectivity (JDBC) API for Java defining how a client can access a database.
JobTracker and TaskTracker daemons handling processing of MapReduce jobs in Hadoop.
Journal storage storage for composite objects such as records consisting of multiple fields.
Java Message Service (JMS) middleware of the Java Platform for sending messages between two or more clients.

L
Large-scale-dynamic-data data captured by sensing instruments and controled in engineered, natural, and societal systems.
Last level cache (LLC) the cache called before accessing memory. Multicore processors have multiple level caches. Each

core has its own L1 I-cache (instruction cache) and D-cache (data cache). Sometimes two cores share the same unified
(instruction+data) L2 cache and all cores share an L3 cache. In this case the highest shared LLC is L3.

Latch a counter that triggers an event when it reaches zero.
Late binding dynamical correlation of tasks with data, depending on the state of the cluster.
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Latency the time elapsed from the instance an operation is initiated until the instance its effect is sensed. Latency is context
dependent.

LRU (Least Recently Used), MRU (Most Recently Used), and LFU (Least Frequently Used) replacement policies used by
memory hierarchies for caching and paging.

Livelock condition appearing when two or more processes/threads continually change their state in response to changes in the
other processes and none of the processes can complete execution.

Logical clock abstraction necessary to ensure the clock condition in the absence of a global clock.
Loopback file system (LOFS) virtual file system providing an alternate path to an existing file system. When other file systems

are mounted onto an LOFS file system, the original file system does not change.

M
MAC address unique identifier permanently assigned to a network interface by the manufacturer. MAC stands for Media Access

Control.
Maintainability a measure of the ease of maintenance of a functional unit.Synonymous with serviceability.
Malicious software (Malware) software designed to circumvent the authorization mechanisms and gain access to a computer

system, gather private information, block access to a system, or disrupt the normal operation of a system; computer viruses,
worms, spyware, and Trojan horses are examples of malware.

Man-in-the middle attack attacker impersonates the agents at both ends of a communication channel making them believe that
they communicate through a secure channel.

Mapping a computation assign suitable physical servers to the application.
Mashup application that uses and combines data, presentations, or functionality from two or more sources to create a service.
Megastore a scalable storage for online services.
Memcaching a general purpose distributed memory system caches objects in main memory.
Message-Digest Algorithm (MD5) cryptographic hash function used for checksums. MD5 produces a 128-bit hash value.

SHA-i (Secure Hash Algorithm, 0 ≤ i ≤ 3) is a family of cryptographic hash functions; SHA-1 is a 160 bit hash function
resembling MD5.

Merkle tree hash tree where leaves are hashes of the values of individual keys. Parent nodes higher in the tree are hashes of
their respective children.

Message delivery rule an additional assumption about the channel-process interface; establishes when a message received is
actually delivered to the destination process.

Metering providing a measurement capability at some level of abstraction appropriate to the type of service.
Microkernel (μ-kernel) system software supporting only the basic functionality of an operating system kernel including

low-level address space management, thread management, and inter-process communication. Traditional operating system
components such as device drivers, protocol stacks, and file systems are removed from the microkernel and run in user space.

Middleware software enabling computers of a distributed system to coordinate their activities and to share their resources.
Mode sensitive instructions machine instructions whose behavior is different in the privileged mode.
Modularity basic concept in the design of man-made systems; a system is made out of components, or modules, with well-

defined functions. A strong requirement for modularity is to define very clearly the interfaces between modules and to enable
the modules to work together. Modularity can be soft or enforced.

Modularly divisible application application whose workload partitioning is decided a priori and cannot be changed.
Monitor process responsible for determining the state of a system.
Message Passing Interface (MPI) communication standard and communication library for a portable message-passing system.
Multi-homing a strategy to support high availability.
Multiple Instructions, Multiple Data architecture (MIMD) system with several processors/cores that function asyn-

chronously and independently.

N
NAS Parallel Benchmarks benchmarks used to evaluate the performance of supercomputers. The original benchmark included

five kernels: IS – Integer Sort, random memory access, EP – Embarrassingly Parallel, CG – Conjugate Gradient, MG –
Multi-Grid on a sequence of meshes, long- and short-distance communication, memory intensive, FT – discrete 3D Fast
Fourier Transform, and all-to-all communication.

Network bisection bandwidth network attribute, measures the communication bandwidth between the two partitions when a
network is partitioned into two networks of the same size.



Glossary 541

Network bisection width minimum number of links cut when dividing a network into two halves.
Network diameter average distance between all pairs of two nodes; if a network is fully-connected its diameter is equal to one.
Network Interface Controller (NIC) the hardware component connecting a computer to a Local Area Network (LAN); also

known as a network interface card, network adapter, or LAN adapter.
Network layer layer of a communication network responsible for routing packets through a packet switched network from the

source to the destination.
NMap a security tool running on most operating systems to map the network, that is, to discover hosts and services in the

network. The systems include Linux, Microsoft Windows, Solaris, HP-UX, SGI-IRIX and BSD variants such as Mac OS X.
Nonce a random or pseudo-random number issued in an authentication protocol to ensure that old communications cannot be

reused in replay attacks. Each time the authentication challenge response code is presented, the nonces are different, thus
replay attacks are virtually impossible.

Non-privileged instruction machine instruction executed in user mode.

O
Object Request Broker (ORB) the middleware which facilitates communication of networked applications.
Ontology branch of metaphysics dealing with the nature of being. Provides the means for knowledge representation within a

domain, it consists of a set of domain concepts and the relationships among these concepts.
Open-box platforms traditional hardware designed for commodity operating systems; does not have the same facilities as the

closed-box platforms.
Open Database Connectivity (ODBC) open standard application API for database access.
Overclocking technique-based on DVFS; increases the clock frequency of processor cores above the nominal rate when the

workload increases.
Overlay network a virtual network superimposed over a physical network.
Overprovisioning investment in a larger infrastructure than the typical workload warrants.
Oversubscription the ratio of the worst-case achievable aggregate bandwidth among the servers to the total bisection bandwidth

of an interconnect.

P
Packet-switched network network transporting data units called packets through a maze of switches where packets are queued

and routed towards their destination.
Pane a well defined area within a window for the display of, or interaction with, a part of that window’s application or output.
Paragon Intel family of supercomputers launched in 1992 based on the Touchstone Delta supercomputer installed at CalTech

for the Concurrent Supercomputing Consortium.
Parallel slackness method of hiding communication latency by providing each processor with a large pool of ready-to-run

threads, while other threads wait for either a message, or for the completion of another operation.
Paravirtualization virtualization when each virtual machine runs on a slightly modified copy of the actual hardware; the reasons

for paravirtualization: (i) some aspects of the hardware cannot be virtualized; (ii) to improve performance; (iii) to present a
simpler interface.

Passphrase a sequence of words used to control access to a computer system; it is the analog of a password, but provides added
security.

Paxos protocols a family of protocols to reach consensus based on a finite state machine approach.
Peer-to-Peer system (P2P) distributed computing system when resources (storage, CPU cycles) are provided by participant

systems.
Peripheral Component Interconnect (PCI) computer bus for attaching hardware devices to a computer. The PCI bus supports

the functions found on a processor bus, but in a standardized format independent of any particular processor.
Perf profiler tool for Linux 2.6+ systems; it abstracts CPU hardware differences in Linux performance measurements.
Petri nets bipartite graphs used to model the dynamic behavior of systems.
Phase transition thermodynamics concept describing the transformation, often discontinuous, of a system from one phase/state

to another, as a result of a change in the environment.
Phishing attacks aiming to gain information from a site database by masquerading as a trustworthy entity.
Physical data container storage device suitable for transferring data between cloud-subscribers and clouds.
Physical resource layer includes all physical resources used to provide cloud services.
Pinhole mapping between the pair (external address, external port) and the (internal address, internal port) tuple carried by the

network address translation function of the router firewall.
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Pipelining splitting of an instruction into a sequence of steps that can be executed concurrently by different circuitry on the
chip.

Pipeline scheduling separates dependent instruction from the source instruction by the pipeline latency of the source instruction.
Its effect is to reduce the number of stalls.

Pipeline stages execution units of a pipeline. A basic pipeline has five stages for instruction execution: IF = Instruction Fetch,
ID = Instruction Decode, EX = Execute, MEM = Memory access, WB = Register write back.

Pipeline stall the delay in the execution of an instruction in an instruction pipeline in order to resolve a hazard. Such stalls could
drastically affect the performance.

Platform as a Service (PaaS) cloud delivery model supporting consumer-created or acquired applications created using pro-
gramming languages and tools supported by the provider. The consumer does not manage or control the underlying cloud
infrastructure including network, servers, operating systems, or storage, but has control over the deployed applications.

Platform architecture layer software layer consisting of compilers, libraries, utilities, and other software tools and develop-
ment environments needed to implement applications.

Plesiochronous operation operation when different parts of a system are almost, but not quite perfectly, synchronized; for
example, when the core logic of a router operates at a frequency different from that of the I/O channels.

Pontryagin’s principle method used in optimal control theory to find the best possible control which leads a dynamic system
from one state to another, subject to a set of constrains.

Power consumption P of a CMOS-based circuit describes the power consumption function of the operating voltage fre-
quency, P = α · Ceff · V 2 · f with: α – the switching factor, Ceff – the effective capacitance, V – the operating voltage,
and f – the operating frequency.

Privacy the assured, proper, and consistent collection, processing, communication, use and disposition of personal information
and personally-identifiable information.

Private cloud infrastructure operated solely for the benefit of one organization; it may be managed by the organization or a
third party and may exist on the premises or off the premises of the organization.

Privileged instructions machine instruction that can only be executed in kernel mode.
Process a program in execution.
Process group collection of cooperating processes.
Process/thread state ensemble of information needed to restart a process/thread after it was suspended.
Process or application virtual machine virtual machine running under the control of a normal OS and providing a platform-

independent host for a single application, e.g., Java Virtual Machine (JVM).
Public-Key Infrastructure (PKI) model to create, distribute, revoke, use, and store digital certificates.
Pull paradigm distributed processing when resources are stored at the server site and the client pulls them from the server.

Q
Quick emulator (QEMU) a machine emulator; it runs unmodified OS images and emulates the guest architecture instructions

on the host architecture it runs on.

R
Rapid provisioning automatically deploying cloud system based on the requested service, resources, and capabilities.
Recommender system system for predicting the preference of a user for an item by filtering information from multiple users

regarding that item; used to recommend research articles, books, movies, music, news, and any imaginable item.
Red-black tree a self-balancing binary search tree where each node has a “color” bit (red or black) to ensure the tree remains

approximately balanced during insertions and deletions.
Reference data infrequently used data, such as archived copies of medical or financial records, customer account statements,

and so on.
Reliability measure of the ability of a functional unit to perform a required function under given conditions for a given time

interval.
Remote Procedure Call (RPC) procedure for inter-process communication. RPC allows a procedure on a system to invoke a

procedure running in a different address space, possibly on a remote system.
Resilience ability to reduce the magnitude and/or duration of the events disruptive to critical infrastructure.
Resilient Distributed Dataset (RDD) storage concept allowing a user to keep intermediate results and optimize their placement

in the memory of a large cluster; used for fault-tolerant, parallel data structures.
Resource abstraction and control layer software elements used to realize the infrastructure upon which a cloud service can

be established, such as hypervisor, virtual machines, virtual data storage.
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Resource scale-out allocation of more servers to an application.
Resource scale up allocation of more resources to servers already allocated to an application.
Reservation station hardware used for dynamic instruction scheduling. A reservation station fetches and buffers an operand as

soon as it becomes available. A pending instruction designates the reservation station it will send its output to.
Response time the time from the instance a request is sent until the response arrives.
Round-Trip Time (RTT) the time it takes a packet to cross the network from the sender to the receiver and back. Used to

estimate the network load and detect network congestion.
Run total ordering of all the events in the global history of a distributed computation consistent with the local history of each

participant process.
runC implementation of the Open Containers Runtime specification and the default executor bundled with Docker Engine.

S
Same Program Multiple Data (SPMD) parallel computing paradigm when multiple instances of one program run concurrently

and each instance processes a distinct segment of the input data.
Scala general-purpose programming language supporting functional programming and a strong static type system. Scala code

is compiled as Java byte code and runs on JVM (Java Virtual Machine).
Scalability ability of a system to grow without affecting its global function(s).
Scatter operation vector processing operation, the inverse of a gather operation, it scatters the elements of a vector register to

addresses given by the index vector and the base address. In distributed computing MPI scatters data from one processor to
a number of processors.

Searchable symmetric encryption (SSE) encryption method used when an encrypted databases is outsourced to a cloud or to
a different organization. It supports conjunctive search and general Boolean queries on symmetrically encrypted data. SSE
hides information about the database and the queries.

Secondary spectrum data falsification (SSDF) in software-defined radio the occupancy report from a malicious node showing
that channels used by the primary node are free.

Security accreditation the organization authorizes (i.e., accredits) the cloud system for processing before operations and up-
dates the authorization when there is a significant change to the system.

Security assessment risk assessment of the management, operational, and technical controls of the cloud system.
Security certification certification for the accreditation of a cloud system.
Self-organization process where some form of global order is the result of local interactions between parts of an initially

disordered system. No single element acts as a coordinator and the global patterns of behavior are distributed.
Semantic Web term coined by Tim Berners-Lee to describe “a web of data that can be processed directly and indirectly by

machines.”
Sensitive instructions machine instructions behaving differently when executed in kernel and in user mode.
Sequential write-sharing condition when a file cannot be opened simultaneously for reading and writing by several clients.
Service aggregation operation when an aggregation brokerage service combines multiple services into one or more new ser-

vices.
Service arbitrage/service aggregation grouping of cloud services. In service aggregation the services being aggregated are

not fixed. Arbitrage provides flexibility and opportunistic choices for the service aggregator, e.g., provides multiple e-mail
services through one service provider, or provides a credit-scoring service that checks multiple scoring agencies and selects
the best score.

Service deployment activities and organization needed to make a cloud service available.
Service intermediation operation when an intermediation broker provides a service that directly enhances a given service

delivered to one or more service consumers.
Service interoperability the capability to communicate, execute programs, or transfer data among various cloud services under

specified conditions.
Service layer defines the basic services provided by cloud providers.
Service Level Agreement (SLA) a negotiated contract between the customer and the service provider explaining expected

quality of service and legal guarantees. An agreement usually covers: services to be delivered, performance, tracking and
reporting, problem management, legal compliance and resolution of disputes, customer duties and responsibilities, security,
handling of confidential information, and termination.

Shared channel architecture network organization when all physical devices share the same bandwidth; the higher the number
of devices connected to the channel the less bandwidth is available to each one of them.
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Shard a horizontal partitioning of a database, a row in a table structured data.
Simple Object Access Protocol (SOAP) an application protocol developed in 1998 for web applications.
Singular Value Decomposition (SVD) given an m × n matrix A = [aij ], 1 ≤ i ≤ n,1 ≤ j ≤ m with entries either real or

complex numbers, aij ∈ R or aij ∈C, there exits a factorization

A = U�V ∗ (259)

where: U is an m × n unitary matrix, � is a diagonal m × n matrix with non-negative real numbers on the diagonal, V is an
n × n unitary matrix over the field, R or C, and V ∗ is the complex conjugate transpose of V .

SLA management the ensemble of activities related to SLAs including SLA contract definition (basic schema with the quality
of service parameters), SLA monitoring, and SLA enforcement.

Service management all service-related functions necessary for the management and operations of those services required by
customers.

Service provider entity responsible for making a service available to service consumers.
Service orchestration the arrangement, coordination, and management of cloud infrastructure to provide different cloud ser-

vices to meet IT and business requirements.
Servless computer service AWS service when applications are triggered by conditions and/or events specified by the end user.

Lambda is an example of such service.
Shared cluster state a resilient master copy of the state of all cluster resources.
Sigmoid function S(t) an “S-shaped” function defined as S(t) = 1

1−e−t . Its derivative can be expressed as function of itself,

S′(t) = S(t)(1 − S(t)).
Simple DB AWS non-relational data store that allows developers to store and query data items via web services requests. It

creates multiple geographically distributed copies of each data item and supports high performance web applications.
Simple Queue Service (SQS) AWS service for hosted message queues. It allows multiple EC2 instances to coordinate their

activities by sending and receiving SQS messages.
Simple Storage System (S3) AWS storage service for large objects. It supports a minimal set of functions: write, read, and

delete. S3 allows an application to handle an unlimited number of objects ranging in size from one byte to five terabytes.
Single Instruction, Single Data architecture (SISD) computer architecture supporting the execution of a single thread or

process at any given time. Individual cores of a modern multicore processor are SISD.
Single Instruction, Multiple Data architecture (SIMD) computer architecture when one instruction processes multiple data

elements. Used in vector processing.
S/KEY password system based on Leslie Lamport scheme. The real password of the user is combined with a short set of

characters and a counter that is decremented at each use to form a single-use password. Used by several operating systems
including, Linux, OpenBSD, and NetBSD.

Skype communication system using a proprietary voice-over-IP protocol. The system developed in 2003 was acquired by Mi-
crosoft in 2011. Nowadays it is a hybrid P2P and client-server system. It allows close to 700 million registered users from
many countries around the globe to communicate.

Simultaneous multithreading (SMT) architectural feature allowing instructions from more than one thread to be executed in
any given pipeline stage at a time.

Simple Mail Transfer Protocol (SMTP) application protocol defined in the early 1980s to support Email services.
Snapshot isolation guarantee that all reads made in a transaction will see a consistent snapshot of the database.
Soft deadline deadline that can be missed by fractions of the units. It is more of a guideline, no penalties are involved.
Soft modularity dividing a program into modules which call each other and communicate using shared memory or follow the

procedure call convention. It hides the details of the implementation of a module. Once the interfaces of the modules are
defined, the modules can be independently developed even in different programming languages, replaced, and tested.

Software as a Service (SaaS) cloud delivery model when cloud applications are accessible from various client devices through
a thin client interface such as a web browser. The user does not manage or control the underlying cloud infrastructure.

Software development kit (SDK) a set of software tools for the creation of applications in a specific software environment.
Speed term used informally to describe the maximum data transmission rate, or the capacity of a communication channel; this

capacity is determined by the physical bandwidth of the channel and this explains why the term channel “bandwidth” is also
used to measure the channel capacity, or the maximum data rate.

Speedup measure of parallelization effectiveness.
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SQL injection attack typically used against a web site; an SQL command entered in a web form causes the contents of a
database used by the web site to be altered or to be dumped to the attacker site.

ssh (Secure Shell) network protocol that allows data to be exchanged using a secure channel between two networked devices;
ssh uses public-key cryptography to authenticate the remote computer and allow the remote computer to authenticate the
user. It also allows remote control of a device.

Streaming SIMD Extension (SSE) SIMD instruction set extension to the x86 architecture introduced by Intel in 1999. Its latest
expansion is SSE4. It supports floating point operations and has a wider application than the MMX introduced in 1996.

Store-and-forward network packet switched network where a router buffers a packet, verifies its checksum, and then forwards
it to the next router along the path from its source to the destination.

Structural hazards in pipelining hazards occurring when a part of the processor hardware is needed by two or more instruc-
tions at the same time.

Structured Query Language (SQL) special-purpose language for managing structured data in a relational database system
(RDBMS). SQL has three components: a data definition language, a data manipulation language, and a data control language.

Structured overlay network network where each node has a unique key which determines its position in the structure. The
keys are selected to guarantee a uniform distribution in a very large name space. Structured overlay networks use key-based
routing (KBR); given a starting node v0 and a key k the function KBR(v0, k) returns the path in the graph from v0 to the
vertex with key k.

Superscalar processor processor able to execute more than one instruction per clock cycle.
System history information about the past system evolution expressed as a sequence of events, each event corresponding to a

change of the state of the system.
System portability the ability of a service to run on more than one type or size of cloud.

T
Task-level parallelism parallelism when the tasks of an application run concurrently on different processors. A job consists of

multiple tasks scheduled either independently or co-scheduled when they need to communicate with one another.
Timestamps patterns used for event ordering using a global time-base constructed on local virtual clocks.
Thread of execution the smallest unit of processing that can be scheduled by an operating system.
Thread-level parallelism term describing the data-parallel execution using a GPU. A thread is a subset of vector elements

processed by one of the lanes of a multithreaded processor.
Thread block scheduler GPU control software assigning thread blocks to multithreaded SIMD processors.
Thread scheduler GPU control software running on each multithreaded SIMD processor to assign threads to the SIMD lanes.
Three-way handshake process to establish a TCP connection between the client and the server. The client provides an arbitrary

initial sequence number in a special segment with the SYN control bit on; then the server acknowledges the segment and adds
its own arbitrarily chosen initial sequence number; finally, the client sends its own acknowledgment ACK as well as the HTTP
request and the connection is established.

Threshold value of a parameter related to the system state that triggers a change in the system behavior.
Thrift framework for cross-language services.
Top-Down methodology hierarchical organization of event-based metrics that identifies the dominant performance bottlenecks

in an application.
TPC BenchmarkH (TPC-H) decision support benchmark relevant for applications that examine large volumes of data and

execute queries with a high degree of complexity; it consists of a suite of business oriented ad hoc queries and concurrent
data modifications with broad industry-wide relevance.

TPC-DS de facto industry standard benchmark for assessing the performance of decision support systems.
Trusted application application with special privileges for performing security related functions.
TCP segmentation offload (TSO) procedure enabling a network adapter to compute the TCP checksum on transmit and re-

ceive, saves the host CPU the overhead for computing the checksum; large packets have larger savings.
Translation look-aside buffer (TLB) cache for dynamic address translation; it holds the physical address of recently used

pages in virtual memory.
Transport layer network layer responsible for end-to-end communication, from the sending host to the destination host.
Trusted Computer Base (TCB) totality of protection mechanisms within a computer system, including hardware, firmware,

and software, the combination of which is responsible for enforcing a security policy.
Turing complete computer model of computation equivalent to a universal Turing machine except for memory limitations.
Tera Watt Hour (TWh) measure of energy consumption, one TWh is equal to 109 KWh.
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U
Ubuntu open source operating system for personal computers. Ubuntu is an African humanist philosophy; “ubuntu” is a word

in the Bantu language of South Africa meaning “humanity towards others.”
Unbounded input data concept related to data streaming; the computing engine processes a dynamic data set where one never

knows if the set is complete as new records are continually added and old ones are retracted.
Usability extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency and

satisfaction in a specified context of use.
Utility function relates the “benefits” of an activity or service with the “cost” to provide the service.

V
Vector computer computer operating on vector registers holding as many as 64 or 128 vector elements. Vector functional units

carry out arithmetic and logic operations using data from vector registers as input and disperse the results back to memory.
Vector length register register of a SIMD processor for handling of vectors whose length is not a multiple of the length of the

physical vector registers.
Vector mask register register of a SIMD processor used by conditional statements to disable/select vector elements.
Vertical scaling method to increase the resources of a cloud application. It keeps the number of VMs of an application constant,

but increases the amount of resources allocated to each one of them.
Virtual Machine (VM) an isolated environment with access to a subset of the physical resources of a computer system. Each

virtual machine appears to be running on the bare hardware, giving the appearance of multiple instances of the same com-
puter, though all are supported by a single physical system.

Virtual Private Cloud (VPC) cloud organization providing a connection, via a Virtual Private Network, between an existing
IT infrastructure of an organization and a set of isolated compute resources in the AWS cloud.

Virtual time warp abstraction allowing a thread to acquire an earlier effective virtual time, in other words, to borrow virtual
time from its future CPU allocation.

Virtualization abstraction of hardware resources.
Virtualized infrastructure layer software elements, such as hypervisors, virtual machines, virtual data storage, and supporting

middleware components used to realize the infrastructure upon which a computing platform can be established. While virtual
machine technology is commonly used at this layer, other means of providing the necessary software abstractions are not
precluded.

W
Work-conserving scheduling policy scheduling policy when the server cannot be idle while there is work to be done.
WebSphere Extended Deployment (WXD) middleware supporting setting performance targets for individual web applications

and for the monitor response time.
Where-provenance information describing the relationship between the source and the output locations of data in a database.
Why-provenance information describing the relationship between the source tuples and the output tuples in the result of a

database query.
Wide Area Network (WAN) packet switched network connecting systems located throughout a very large area.
Witness of database record the subset of database records ensuring that the record is the output of a query.
Work-conserving scheduler scheduler with the goal of keeping the resources busy, if there is work to be done; a non-work

conserving scheduler may leave resources idle while there is work to be done.
Workflow description of a complex activity involving an ensemble of multiple interdependent tasks.
Write-ahead database technique when updates are written to persistent storage only after the log records have been written.

X
x86-32, i386, x86 and IA-32 CISC-based instruction set architecture of Intel processors. Now supplanted by x86-64 which

supports vastly larger physical and virtual address spaces. The x86-64 specification is distinct from Itanium, initially known
as IA-64 architecture.

x86 architecture architecture of Intel processors supporting memory segmentation with a segment size of 64K. The CR (code-
segment register) points to the code segment. MOV, POP, and PUSH instructions serve to load and store segment registers,
including CR.
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Z
Zero-configuration network (zeroconf) computer network based on the TCP/IP and characterized by automatic assignment

of numeric network addresses for networked devices, automatic distribution and resolution of computer hostnames, and
automatic location of network services.

ZooKeeper a distributed coordination service implementing a version of the Paxos consensus algorithm.
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